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Résumé xii

L’étude expérimentale des caractéristiques vibratoires des ponts est un élément im-

portant dans les efforts pour comprendre et contrôler de nombreux phénomènes vibratoires

rencontrés lors de la conception de ces derniers. À cet effet, une étude expérimentale a

été réalisée dans cette thèse sur un modèle réalisé en laboratoire simulant la dynamique

de deux ponts de poutres indirectement couplés par leur environnement proche constitué

du sol sous les piles des ponts. L’objectif de cette recherche étant le développement d’un

modèle théorique valide de ponts indirectement couplés et la mise en évidence des influ-

ences mutuelles de la dynamique de ces ponts couplés, l’un sur l’autre. Une modélisation

de la dynamique du système est proposée puis validée par les résultats expérimentaux. Les

influences mutuelles des vibrations des ponts de poutres soumis à diverses excitations ex-

térieures sont explorées expérimentalement puis théoriquement. Par suite, les performances

des mécanismes d’isolement non linéaires avec une caractéristique de rigidité quasi-nulle sont

étudiées pour l’isolation vibratoire de ces deux ponts de poutres couplés afin de réduire leurs

vibrations.

Tout au long de cette thèse, tous les ponts ont été modélisés avec des poutres d’Euler-

Bernoulli continues à travées multiples sur appuis simples. L’environnement proche de cou-

plage des ponts a été modélisé comme une fondation de type Winkler viscoélastique linéaire.

L’isolation des vibrations des ponts de poutres couplées a été réalisée grâce aux isolateurs

de vibrations non linéaires à rigidité quasi-nulle qui se sont avérés plus efficaces que leurs

homologues linéaires. La principale contribution scientifique de cette thèse est le développe-

ment d’un modèle théorique valide de ponts couplés par leur environnement proche et la

proposition d’un modèle d’isolement efficace basé sur un mécanisme à rigidité quasi-nulle.

Mots-clés: Vibration, Ponts couplés, Isolateur de vibrations à raideur quasi-

nulle, Poutres d’Euler-Bernoulli continue à travées multiples, Fondation de type

Winkler.
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Abstract



Abstract xiv

The experimental study of the vibration characteristics of bridges is an important el-

ement in the efforts to understand and control many vibration phenomena encountered in

design. For this purpose, an experimental study was carried out in this thesis on a laboratory-

mounted model simulating the dynamics of two beam bridges indirectly coupled by their close

environment consisting of the ground under the piers of the bridges. The objective of this

research being the development of a valid theoretical model of indirectly coupled bridges

and the highlighting of the mutual influences of the dynamics of these coupled bridges, one

on the other. A modeling of the system dynamics is proposed and then validated by experi-

mental results. The mutual influences of the vibrations of beam bridges subjected to various

external excitations are explored experimentally and then theoretically. Consequently, the

performance of nonlinear isolation mechanisms with a quasi-zero stiffness characteristic are

investigated for vibration isolation of these two coupled beam bridges in order to reduce

their vibrations.

Throughout this thesis, all the bridges have been modelled with elastically simply

supported multi-span continuous Euler-Bernoulli beams. The coupling close environment of

the bridges has been modelled as a linear viscoelastic Winkler foundation. The vibration

isolation of the coupled beam bridges has been achieved by nonlinear quasi-zero stiffness

vibration isolators which have been proven to be more effective than their linear counterparts.

The main scientific contribution of this thesis is the development of a valid theoretical model

of bridges coupled by their close environment and the proposal of an efficient isolation model

based on a quasi-zero stiffness mechanism.

Keywords: Vibration, Coupled bridges, Quasi-zero stiffness vibration isola-

tor, Multi-span continuous Euler-Bernoulli beam, Winkler foundation.
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Very often in practical engineering, the experimental tests are performed on a complex

structure with the objective of obtaining an empirical description of its dynamical behavior,

or providing verification for an analytical or a numerical structural model [1–5]. To quantify

the dynamical response of a given structure, the determination of its intrinsic dynamic

properties such as natural frequencies, vibration modes and damping, etc., is of a particular

importance. Over the years, dynamic tests of highway bridges have been performed by many

researchers and engineers. However, most of the tests are in-field dynamic tests [6]. Lab-based

dynamic tests of full assemblage bridge models under a controlled environment are rather

scanty. Looking at the way the tests were performed on the field or in laboratory, these tests

were focused essentially on single bridges [7]. Despite the existence of many coupled bridges

on beds of multiple rivers over the world, dynamic tests on bridges indirectly coupled by their

close environment are rarely performed. As an example, we can cite in Cameroon, the two

bridges built on the Wouri river about ten meters apart [8] (see Fig. 1) which have inspired

the work of this thesis. It is therefore of interest to investigate these coupled bridges from

a dynamic test setting. In addition, the dynamical response and the vibration isolation of

single span bridges subjected to different kinds of dynamic loads have drawn much research

attention, but relatively small amount of research work has been devoted to dynamics and

vibration isolation of multi-span continuous bridges and coupled bridges.

In most of the cases, vibrations are undesirable because of their detrimental effects on

bridges and on the human body. Excessive levels of noise from factories and vehicles engines

as well as vibrations transmitted through bridges can cause discomfort in humans, and high

amplitude vibrations can cause fatigue and damage in machinery and in bridges. Structure

damages often occur at a low excitation frequency in practical engineering [9, 10]. Due to

their structural easiness and as the fundamental vibrational period of most bridges ranges

from 0.2 to 1.2 second [11], bridges are particularly vulnerable to damages and sometimes
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Figure 1: Location map of the second bridge over the Wouri river in Cameroon [8]

collapse when subjected to earthquakes and other external excitation such as moving and

wind loads. Since the collapse of Stephenson’s bridge at Chester in England in 1847 [12],

more than a century of research has been devoted to vibration control of bridges under

different kinds of loads such as moving loads and earthquakes. Nowadays there is still a

pressing demand for the protection of structural installations, nuclear reactors, mechanical

components, and sensitive instruments from earthquake ground motion, shocks, and impact

loads. These detrimental effects have motivated diverse approaches to vibration control which

can be divided mainly into three areas. The first is the reduction of the vibrational excitation

at source, which is often unrealizable because of economic and practical reasons. The second

is the modification of the physical properties of the receiver, which is the part of the system
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which receives the transmitted vibration. The third is called vibration isolation. In this

approach, the vibration is reduced by employing vibration isolators between the vibration

source and the receiver [13, 14].

In recent years, base vibration isolation has become an increasingly applied structural

design technique to protect bridges from severe loads. The main goal of base vibration iso-

lation is to produce a substantial decoupling of the superstructure from the substructure

resting on the vibrating ground, therefore minimizing the internal state of stress during an

earthquake by increasing the period of the structure and acting as an energy dissipation

device [15, 16]. It can be achieved by means of active, semi active and passive vibration

isolators placed between the source and the receiver. Active isolators usually perform well,

reducing vibration to desirable levels over a wide range of excitation frequencies. However,

computers and actuators are employed to modify the system response and they require a

continuous supply of energy and have high costs. Semi active isolators modify the proper-

ties of the system. They use small quantities of energy and have good performance at high

excitation frequencies, but usually they have a complicated engineering design. A passive vi-

bration isolator is composed of a spring and a damper located in parallel between the source

and the receiver. Passive vibration isolation systems can be linear or nonlinear depending

on the form of the forces in the system. Vibration isolation is still an important problem,

especially the low-frequency vibration isolation. The most important characteristics of a vi-

bration isolator are its natural frequency and load bearing capacity. As it is well known, a

linear passive vibration isolator often faces a difficult choice situation that arises between

these two characteristics. For traditional passive linear vibration isolators, a smaller stiffness

is needed to achieve a smaller natural frequency so that it can reduce low frequency vibra-

tions [17]. In this case, a larger static deflection is unavoidable in practical applications. To

overcome the limitation between the isolation frequency range and the load bearing capac-
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ity of linear vibration isolators, many nonlinear vibration isolators using quasi-zero stiffness

(QZS) mechanisms have been proposed to obtain a high static stiffness resulting in a small

static deflection and a low dynamic stiffness resulting in a small natural frequency [18–21].

QZS vibration isolators have been proven to offer a unique passive approach for achieving

low vibration environments [22]. In recent years, several types of vibration isolators using

QZS mechanisms have been developed and applied to improve working environment for users

in many engineering fields, such as vibration resonance test of aircrafts, vibration isolation of

precision instruments, sensor, energy harvest, suspensions and seats of vehicles and protec-

tion of motors. However, there are not many research on vibration isolation of beam bridges.

The main goal of this thesis is to gain knowledge on the subjects of Structural Control of

beam-like structures by comparing theoretically, the performance of a nonlinear QZS isolator

with that of a linear isolator on the reduction of vibrations of two coupled beam bridges. But

the dynamics of these coupled beam bridges is first investigated experimentally on a model

built in lab.

The aim of this thesis is to study the dynamic interaction between two indirectly cou-

pled seven-span continuous beam bridges in lab by theories and experiments in order to

gain further understanding of the dynamic interaction of two beam bridges coupled by their

close environment and to propose an efficient isolation technique based on a QZS mechanism

to reduce their vibrations. To this end, there are several interesting aspects that are worth

investigated:

(1) To describe the mode shapes of a continuous beam bridge approximately by one equa-

tion for the whole length of the beam bridge and to derive the analytical solution of the

equation of motion of the two seven-span continuous beam bridges subjected to sinusoidal

and impulsive loads in two coupled equations.

(2) To assess the vibration behavior of two coupled beam bridges model excited by sinusoidal
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and impulsive loads theoretically and experimentally.

(3) To implement the Mode Superposition (MS) method and an iterative algorithm for

analysing the problem of the dynamics of beam bridges.

(4) To build a complete enough descriptive theoretical model for experimental indirect cou-

pled beam bridges dynamic system and determine their dynamical responses efficiently.

(5) To study the influences of distance between the two coupled bridges, the nature of the

close environment on the dynamic responses of the coupled bridges theoretically and exper-

imentally in the lab.

(6) To use QZS vibration isolators to control the vibrations of the coupled beam bridges

under pier base vibrating excitation on one hand and subjected to a moving mass on the

other hand.

(7) To study the performance of a nonlinear QZS vibration isolator with that of a linear

isolator on the reduction of vibrations of the two coupled beam bridges theoretically.

(8) To study the effects of each control parameter on the absolute motion transmissibility of

steady-state responses of the two coupled beam bridges for a better isolation performance.

This thesis has made several contributions by:

(1) Developing a complete enough descriptive theoretical model of indirect coupled bridges

validated experimentally. We have analyzed analytically and numerically the effectiveness of

this modelling.

(2) Making a brief review of existing structural control systems and utilizing the QZS vibra-

tion isolation in vibration control of beam bridges.

(3) Establishing the benefit of using such QZS mechanisms as vibration isolators in vibration

control of beam bridges under pier base vibrating excitation and subjected to a moving mass.

Chapter 1 presents a brief literature review of the most important aspects related to

the dynamical behavior and vibration isolation of bridges under several kinds of external
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excitations. This includes an overview of generalities on bridges, coupled bridges and their

dynamical behavior, soil-bridge interaction, and a state-of-the-art review of structural vi-

bration control systems. Chapter 2 focuses on the different methods used along the thesis

to solve the problems presented in Chapter 1. It presents the mathematical, numerical and

experimental methods used in this thesis. In Chapter 3, the results of the mathematical

analysis, numerical and experimental simulations are presented. Discussion and extension

to applications are made. The thesis ends with a general conclusion where the main results

obtained are reminded in summary and perspectives for future investigations are suggested.
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1.1 Introduction

Bridge vibrations due to their close environment are a source of nuisance that affects

the longevity of bridges and the comfort of their users. Vibration isolators are therefore

widely used to subdue vibrations in order to lengthen the service life of equipments and

structures, also to provide a more comfortable and safe condition for human beings. Due

to their structural easiness, bridges are particularly vulnerable to damages and sometimes

collapse when subjected to earthquakes and other external excitation such as moving and

wind loads. In recent years, vibration isolation has become an increasingly applied structural

design technique to protect bridges from severe loads. Its main goal is to produce a substantial

decoupling of the superstructure from the substructure resting on the ground. Despite the

decades of previous studies, vibration isolation remains an important problem, especially the

low-frequency vibration isolation.

This chapter presents a brief literature review of the most important aspects related to

the dynamical behavior and vibration isolation of bridges under several kinds of external ex-

citations. This includes the formulation of the equation of motion, the soil-bridge interaction,

and a state-of-the-art review of structural vibration control systems.

1.2 Generalities on bridges and coupled bridges

A bridge is a structure that crosses over a river, bay, or other obstruction, permitting

the smooth and safe passage of vehicles, trains, and pedestrians. It acts as an important link

in surface transportation network. An elevation view of a typical bridge is shown in Fig. 1.1.

A bridge structure is divided into an upper part (the superstructure), which consists of the

slab, the floor system, and the main truss or girders, and a lower part (the substructure),

which are piers, footings, piles and abutments. The superstructure provides horizontal spans
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such as deck and girders and carries traffic loads directly. The substructure supports the

horizontal spans, elevating above the ground surface.

Figure 1.1: Elevation view of a typical bridge [23]

1.2.1 Classification

a) Classification by Materials

• Steel bridges: A steel bridge may use a wide variety of structural steel components

and systems: girders, frames, trusses, arches, and suspension cables.

• Concrete bridges: There are two primary types of concrete bridges: reinforced and

prestressed.

• Timber bridges: Wooden bridges are used when the span is relatively short.

• Metal alloy bridges: Metal alloys such as aluminium alloy and stainless steel are

also used in bridge construction.

b) Classification by Objectives

• Highway bridges: bridges on highways.

• Railway bridges: bridges on railroads.
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• Combined bridges: bridges carrying vehicles and trains.

• Pedestrian bridges: bridges carrying pedestrian traffic.

• Aqueduct bridges: bridges supporting pipes with channeled waterflow.

c) Classification by Structural System (Superstructures)

• Plate girder bridges: The main girders consist of a plate assemblage of upper and

lower flanges and a web. H- or I-cross-sections effectively resist bending and shear.

• Box girder bridges: The single (or multiple) main girder consists of a box beam

fabricated from steel plates or formed from concrete, which resists not only bending and

shear but also torsion effectively.

• T-beam bridges: A number of reinforced concrete T-beams are placed side by side

to support the live load.

• Arch bridges: The arch is a structure that resists load mainly in axial compression.

In ancient times stone was the most common material used to construct magnificent arch

bridges.

• Cable-stayed bridges: The girders are supported by highly strengthened cables

(often composed of tightly bound steel strands) which stem directly from the tower. These

are most suited to bridge long distances.

• Suspension bridges: The girders are suspended by hangers tied to the main cables

which hang from the towers. The load is transmitted mainly by tension in cable. This

design is suitable for very long span bridges.

d) Classification by Support Condition

Fig. 1.2 shows three different support conditions for girder bridges.

• Simply supported bridges: The main girders or trusses are supported by a
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movable hinge at one end and a fixed hinge at the other (simple support); thus they can be

analyzed using only the conditions of equilibrium.

• Continuously supported bridges: Girders or trusses are supported continuously

by more than three supports, resulting in a structurally indeterminate system. These tend

to be more economical since fewer expansion joints, which have a common cause of service

and maintenance problems, are needed. Sinkage at the supports must be avoided.

• Gerber bridges (cantilever bridge): A continuous bridge is rendered

determinate by placing intermediate hinges between the supports.

Figure 1.2: Supporting conditions
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1.2.2 Loads

Designers should consider the following loads in bridge design:

a) Primary loads exert constantly or continuously on the bridge

• Dead load: weight of the bridge.

• Live or imposed load: vehicles, trains, or pedestrians, including the effect of

impact. Other primary loads may be generated by prestressing forces, the creep of

concrete, the shrinkage of concrete, soil pressure, water pressure, buoyancy, snow, and

centrifugal actions or waves.

b) Secondary loads occur at infrequent intervals

• Wind load: a typhoon or hurricane.

• Earthquake load: especially critical in its effect on the substructure.

• Other secondary loads come about with changes in temperature, acceleration,

collision forces, and so forth.

1.2.3 Bridges and beams coupling

Directly coupled bridges are very scarce in practical engineering. However, there are

several types of coupling between bridge-like structures consider as beams or plates. These

couplings are generally carried out in order to control the vibrations of one of the structures

involved. Nana and Woafo [24] have presented a sandwich control comprise of a nonlinear

beam coupled in a sandwich manner with a linear beam as shown in Fig. 1.3. The linear beam

serves as a control element used to reduce the amplitude of vibration of the nonlinear beam.

The range of coupling or control parameters that can produce an effective control (reduction

of amplitude) is determined. Zhang et al. [25] have proposed to stabilize an elastic plate using
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viscoelastic boundary condition as feedback control. Hongpan et al. [26] have investigated

vibrations control of plate through electromagnetic constrained layer damping which consists

of, electromagnet layer, permanent layer and viscoelastic damping layer. Moreover, Aida

et al. [27, 28] have modelled the dynamics and optimized control by sandwich of a plate

(and beam) under sinusoidal periodic excitation. They have shown that the effectiveness

of this control is more effective as the number of springs and shock absorbers becomes

higher. Sonfack and Nana [29] have modelled the dynamics of a plate by plate type dynamics

vibration absorber subjected to a localized periodic impulsive excitation. as shown in Fig.

1.4. Another approach is the use of coupling beams between the structures to be controlled.

Coupling beams are essential for transmitting shear forces from a shear wall to another in

order to create a coupled-wall system [30]. This system is used to resist both monotonic

and cyclic lateral loads due to wind or earthquake. The aim of coupling beams in high-rise

buildings is to connect shear walls which resist, in addition to gravity loads, lateral loads

induced by seismic events or wind loading. When subjected to lateral ground acceleration the

loads need to be transferred to the foundation system through the coupled-wall system. The

deformation of coupled wall systems is shown in Fig. 1.5. It can be seen that the coupling

beams suffer from double curvature due to lateral loading (seismic loading in this example).

Coupling beams are used typically in high-rise buildings to connect shear walls which usually

surround elevator shafts.

1.3 Dynamics of bridges

As seen in previous subsection, bridges can be modelled as single span or multi-spans

continuous elastic beams as shown in Fig. 1.2. Beams are the most common type of structural

component, particularly in Civil and Mechanical Engineering. A beam is a bar-like structural

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter I: State of the art 15

Figure 1.3: Beams with sandwich coupling [24]

Figure 1.4: Main plate and dynamic absorbing plate with uniformly distributed connecting

springs and dampers [29]

member whose primary function is to support transverse loading and carry it to the supports

as seen in Fig. 1.6. By “bar-like” it is meant that one of the dimensions is considerably larger

than the other two. This dimension is called the longitudinal dimension or beam axis. The

intersection of planes normal to the longitudinal dimension with the beam member are called

cross sections. A longitudinal plane is one that passes through the beam axis.

A beam resists transverse loads mainly through bending action, bending produces

compressive longitudinal stresses in one side of the beam and tensile stresses in the other.

The two regions are separated by a neutral surface of zero stress. The combination of tensile

and compressive stresses produces an internal bending moment. This moment is the primary

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter I: State of the art 16

Figure 1.5: Reinforce concrete (RC) wall, Coupled RC wall by coupling beams (CB) and

deformation due to seismic effects (SE) [30]

mechanism that transports loads to the supports. The mechanism is illustrated in Fig. 1.7.

Here, the mathematical modelling of bending vibration of a free bridge will be treated. For

bending vibration of a bridge in the vertical plane, beam theories can be used.

Figure 1.6: A beam is a structural member designed to resist transverse loads

1.3.1 Mechanical model of beam bridges

One-dimensional mathematical models of structural beams are constructed based on

beam theories. Because beams are three-dimensional bodies, all models necessarily involve
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Load

SupportSupport

Figure 1.7: Beam transverse loads are primarily resisted by bending action

some form of approximation to the underlying physics. There are four main theories about

beams modelling [31]. In Table 1.1, we present these different beam theories:

Table 1.1: Four beam theories

Beam models Bending Lateral Shear Rotary

moment displacement deformation inertia

Euler - Bernoulli
√ √ × ×

Rayleigh
√ √ × √

Shear
√ √ √ ×

Timoshenko
√ √ √ √

Bridges are usually modelled as beam-type structures with Euler-Bernoulli or Timo-

shenko beam models. Euler-Bernoulli beam theory is the oldest, the simplest classical theory

for beam bending. It is used in typical hand calculations of beam deflection. It assumes

that the cross-section of the beam is always perpendicular to the neutral axis (also after

the deformation). Deflection is calculated only using the bending moment, without taking

shear forces into account. On the other hand, Timoshenko beam theory is the extended ver-

sion of Euler-Bernoulli theory that takes into consideration deformations caused by shear. It

assumes that the cross-section after deformation doesn’t have to be perpendicular to the neu-
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tral axis. In general, Timoshenko beam theory is used for thick beams while Euler-Bernoulli

theory is used for thin beams for which the length L is much larger than the thickness hb of

the cross-section (at least 10 times i.e. L/hb ≥ 10) and the deflections are small compared

to the thickness hb of the cross-section.

The choice of the Euler-Bernoulli beam model in this thesis is justified because this

theory describes more simply the real situation of common bridge structures than other

theories.

1.3.2 Governing equation of transverse vibration of Euler-Bernoulli

beams

Basically, a real bridge vibrates in three directions. These three vibrations influence

each other through the wheel/rail contact, but the influence is sometimes small and could

be ignored depending on the situation and the purpose of the study. The vertical vibration

of a bridge is one of the major concerns in design. The lateral vibration of the train-bridge

system is important in studying train derailment [32]. The longitudinal vibration of the rail

is a big factor affecting the wheel and rail wear. In this thesis, the vertical vibration of the

bridge is the only concern. The influences of the lateral vibration and longitudinal vibration

on the vertical vibration of the bridge are small for the experimental rig in the lab and thus

ignored. The transverse vibration of beams is governed by the well-known Euler-Bernoulli

equation. To develop the governing equation, let us consider a free-clamped cantilever beam

according to Fig. 1.8. The Cartesian axes for plane beam analysis are chosen as shown in

Fig. 1.9. Axis x lies along the beam longitudinal axis, at neutral axis height. Axis y lies in

the symmetry plane and points downwards. The origin is placed at the left most section.

The beam is vibrates in a transversal fashion, up and down in the y direction. The

vibration is predominant in the y direction and we will neglect vibration in the x direction.
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Figure 1.8: Schematic representation of a clamped beam under transversal vibration

Figure 1.9: Forces and moments acting on the infinitesimally small portion of the clamped

beam under transversal vibration

The vibration in the direction perpendicular to the beam length is commonly referred to

as flexural or transverse vibration. We may separate the beam to create infinitesimal slices

dx. The position of this element is denoted by the coordinate x. The beam is made of the

homogeneous material with the density ρ, its constant cross section is given by S, Young’s

modulus by E and its second moment of area by I. The total length (or span) of the beam

member is called L. Fig. 1.9 shows a free body diagram of a beam element in bending. In this

figure, M (x, t) is the bending moment, T (x, t) is the shear force, and f (x, t) is the external

force per unit length acting on the beam.

Equilibrium condition of moments leads to the following equation

M + Tδx−
(

M +
∂M

∂x

)

= 0, (1.1)
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or

T =
∂M

∂x
=

∂

∂x

(

EI
∂2y

∂x2

)

. (1.2)

Since a uniform beam is not assumed in the formulation, I (x) will be variable along the

beam length. The equation of motion in the transverse direction for the beam element is

(ρSδx)
∂2y

∂t2
= f (x, t) δx+ T −

(

T +
∂T

∂x

)

. (1.3)

In Eq. (1.3), ρ is the mass density of the beam material. After simplifications, this equation

can be rewritten as follows

ρS
∂2y

∂t2
+
∂T

∂x
= f (x, t) . (1.4)

Considering Eq. (1.2), Eq. (1.4) can be rewritten as

∂2

∂x2

(

EI
∂2y

∂x2

)

+ ρS
∂2y

∂t2
= f (x, t) , (1.5)

which is the well-known Euler-Bernoulli equation descibing the forced transverse vibrations

of a beam.

For a uniform beam, EI is constant. therefore, Eq. (1.5) reduces to

EI
∂4y

∂x4
+ ρS

∂2y

∂t2
= f (x, t) . (1.6)

Consequently, the equation of motion of a uniform beam for free vibrations where f (x, t) = 0

is given by

EI
∂4y

∂x4
+ ρS

∂2y

∂t2
= 0. (1.7)

Transverse vibration of beams is an initial-boundary value problem. Hence, both initial

and boundary conditions are required to obtain a unique solution y (x, t). Since the equation

involves a second-order derivative with respect to time and a fourth-order derivative with

respect to a space coordinate, two initial conditions and four boundary conditions are needed.
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1.3.3 Boundary and initial conditions

The boundary conditions express the deflection position of the beam (and its derivatives

with respect to beam longitudinal coordinate x) at any given time. In more practical terms,

the zeroth derivation with respect to beam longitudinal coordinate x is a deflection position,

while the first is the angle of the tangent line to the neutral axis. Moreover, If the beam

is uniform, i.e. EI is constant, the second and third derivatives can be expressed using the

moment and shear force as

∂2y

∂x2
=
M

EI
, (1.8)

∂3y

∂x3
=

T

EI
. (1.9)

The common boundary conditions related to beam’s ends are given in Table 1.2 below.

Table 1.2: The common boundary conditions related to beam’s ends

Boundary condition Deflection Slope Bending Moment Shear Force

at xb = 0 and xb = L y (xb, t) = 0 ∂y

∂x

∣

∣

x=xb
= 0 EI ∂2y

∂x2

∣

∣

∣

x=xb

= 0 EI ∂3y

∂x3

∣

∣

∣

x=xb

= 0

Simply supported

(Pinned) end/
√ × √ ×

Hinged end

Fixed (Clamped) end
√ √ × ×

Free end × × √ √

Sliding end × √ × √

The boundary conditions for beams are very varied, but as seen in previous subsection,

only one canonical case is most often encountered in practical bridge engineering: the simple

support, as illustrated in Fig. 1.10. This justifies the choice of this type of boundary condition

in this thesis. In addition to the boundary condition, there is also the initial conditions,
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Figure 1.10: Simply supported beam: (a) single span; (b) continuous multi-span

expressing geometrical configuration at zero time as

y (x, 0) = ψ1 (x) , (1.10)

∂y

∂t

∣

∣

∣

∣

t=0

= ψ2 (x) . (1.11)

1.4 Bridge-soil interaction model

The role of the soil-structure interaction (SSI) in the field of bridge dynamics is a

relatively unexplored topic. One reason for this could be that researchers within the field

of bridges have limited knowledges of soil materials. However, during the last decade, the

interest in SSI has increased due to the development of new highspeed lines.

The following subsections describe some fundamentals of soil dynamics. Dynamic load-

ing is characterized by short duration, but repeated loading. The soil behavior in dynamic

situations will differ from that under static circumstances. Soil dynamics include the un-

derstanding of soil properties influencing its dynamic behavior, how the waves propagate

through the material and also the mechanisms behind attenuation of the waves motions as

the distance to the source increases.
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1.4.1 Elastic foundations models of soil

The key aspect in the design of flexible structural elements in contact with bearing

soils is the way in which soil reaction, referred qualitatively as soil’s reactive pressure (p), is

assumed or accounted for in analysis.

Generally, the analysis of bending of flexible structural elements on an elastic founda-

tion is developed on the assumption that the reaction forces of the foundation are propor-

tional at every point to the deflection of the beam at that point. The vertical deformation

characteristics of the foundation are defined by means of identical, independent, closely

spaced, discrete and linearly elastic springs. The constant of proportionality of these springs

is known as the foundation stiffness (the bed modulus), ks(N/m2). This simple and rela-

tively crude mechanical representation of soil foundation was firstly introduced by Winkler,

in 1867 [33, 34].

The Winkler model, which had been originally developed for the analysis of railroad

tracks, is very simple but does not accurately represents the characteristics of many practical

foundations. One of the most important deficiencies of the Winkler model is that a displace-

ment discontinuity appears between the loaded and the unloaded part of the foundation

surface. In reality, the soil surface does not show any discontinuity (Fig. 1.11).

(a) (b)

Figure 1.11: Deflections of elastic foundations under uniform pressure: (a) Winkler founda-

tion; (b) practical soil foundation

Historically, the traditional way to overcome the deficiency of Winkler model is by
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introducing some kind of interaction between the independent springs by visualizing various

types of interconnections such as flexural elements (beams in one-dimension (1-D), plates in

2-D), shear-only layers and deformed, pretensioned membranes [33]. The foundation model

proposed by Filonenko and Borodich in 1940 [33] acquires continuity between the individual

spring elements in the Winkler model by connecting them to a thin elastic membrane under

a constant tension. In the model proposed by Hetényi in 1950 [33], interaction between

the independent spring elements is accomplished by incorporating an elastic plate in 3-D

problems, or an elastic beam in 2-D problems, that can deform only in bending. Another

foundation model, proposed by Pasternak in 1954, acquires shear interaction between springs

by connecting the ends of the springs to a layer consisting of incompressible vertical elements

which deform only by transverse shearing [33]. This class of mathematical models have

another constant parameter which characterizes the interaction between springs and hence

are called two-parameter models (Fig. 1.12).

c
s

Figure 1.12: Beam resting on two-parameter elastic foundation

In this thesis, the soil foundation is modelled as a linear viscoelastic Winkler foundation

( [35,36]) known as Kelvin-Voigt model of soil [3]. In this model, the elastic behavior of the

soil is represented by a stiffness spring (ks) placed in parallel with a viscosity damping (Cs)
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representing the viscous behavior of the soil (Fig. 1.13). Thus, external restoring forces of a

linear viscoelastic Winkler foundation are given as follows

F (x, t) = −ksw (x, t)− Cs

∂w (x, t)

∂t
, (1.12)

where ks and Cs are the two coupling parameters characterizing the strength and the damping

of the soil, respectively.

ks cs

Figure 1.13: Kelvin-Voigt model of soil

1.4.2 Modelling the propagation of vibration in the soil

It is well-known that ground borne vibrations are transmitted as shown in Fig. 1.14,

through soil material as compression (P), shear (S), and Rayleigh (R) waves whose propa-

gation velocities are given by [37] as

VP =

√

E (1− ν)

ρ (1 + ν) (1− 2ν)
, (1.13)

VS =

√

G

ρ
, (1.14)

VR ≈ vS (0.86 + 1.14ν)

1 + ν
, (1.15)
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where the modulus of elasticity E, the density ρ, the Poisson’s ratio ν, and the shear modulus

G are assumed to be known. From Eqs. (1.13) to (1.15) it is easy to show that VR < VS < VP .

Figure 1.14: Illustration of vibration transfer during vibratory sheet pile driving [38]

The intensity of vibrations decreases as the wave propagates away from the source.

The attenuation of the vibration depends mainly on two damping factors: the geometry of

the propagation and the material in which the waves propagate [39]. Considering both the

material and geometrical damping, Eq. (1.16) can be used to describe the total damping

effect on the wave amplitude [39, 40].

A2 = A1

(

r1
r2

)n

e−α(r2−r1), (1.16)

where A1 is vibration amplitude at distance r1 from the source, A2 is vibration amplitude at

distance r2 from the source, α is an absorption coefficient describing material damping and

n is 1/2 for surface waves (Rayleigh waves), 1 for body waves and 2 for body waves along

the surface.
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The origin of Eq. (1.16) dates back to 1912 when Golitsin derived it specifically for Rayleigh

waves generated by earthquakes, but it has later been adjusted for application on different

kinds of waves [41]. Furthermore, the acceleration at the distant points is estimated in the

frequency domain in Refs. [42, 43].

Other types of loads to which bridges can be subjected are modeled in the next sub-

section.

1.5 Modelling of the dynamic loading acting on bridge

structures

There is a growing interest nowadays in the process of designing civil engineering struc-

tures to withstand dynamic loads [44–46]. As examples, we can mention (i) structures with

house moving or vibrating equipment, (ii) bridges under traffic, (iii) multistory structures

subject to wind and (iv) the case of earthquake induced loads [47, 48]. Essentially, the dy-

namic analyses focus on the evaluation of time dependent displacements, from which the

stress state of the structure in question can be computed [49–51]. The most basic pieces of

information needed for this are the natural period, which is a function of the structure’s

mass and stiffness, and the amount of available damping (or, equivalently , the amount of

energy that can be absorbed by the structure).

Generally, loads on bridges structures fall into two categories: dead loads and live or

imposed loads. Dead loads are loads that act on a structure all the time. Live or imposed loads

are dynamic loads; these include vehicles and people crossing a bridge, and dynamic effects

produced, for example, by vibrating machinery, wind gusts, wave action or even earthquake

action in some parts of the world. These dynamic loads can be modeled by sinusoidal loads,

impulsive loads, moving loads, random loads or a combination of these different loads as
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developed in the following subsections.

1.5.1 Sinusoidal loads

A sinusoidal load on a bridge can model for example to the actions of pedestrian and

certain vibrating machinery. Ravindra and Mallik [52] have investigated isolation systems

having nonlinearity in the stiffness and the damping under both harmonic force excitation

and harmonic base excitation. Moreover, Ding et al. [53] present a nonlinear isolation of

transverse vibration of pre-pressure beams subjected to a uniformly distributed sinusoidal

load. In this thesis, Sonfack et al. develop and examine an experimental model of two coupled

beam bridges, which on one is exerted a localized combination of sinusoidal load and periodic

impulsive load.

1.5.2 Impulsive loads

Commonly, impulsive loads (e.g., impact and blast loads) are of subsecond duration

and magnitude tens of times larger than any other loads in the design life of the structure.

This type of load on a bridge can model for example to the actions of pedestrian, certain

vibrating machinery, wave action or even earthquake action and explosive load. In general,

the impact load is modelled as a rectangular pulse or as a Gaussian function whose integral

over the duration of the impact is equal to the impulse of impact. The duration of the impact

depends on the nature of contact between the exciter and the structure, the material they

are made of and their dimensions. Therefore, minimizing the impact load is equivalent to

minimizing the impulse of impact [54]. In this thesis, the impact load is used to model the

external excitation produce by the vibration source.
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1.5.3 Moving loads

The dynamic analysis of beam structure with moving load is a fundamental problem

in structural dynamics. In comparison to other dynamic loads, the moving load varies in

position as well as time and that is why the moving load problem is a special topic in

structural dynamics. Since the 19th century, the moving load problem has become more

dynamic in nature due to the increasing of vehicle speed and structural flexibility. The

problem of dynamic response of Euler-Bernoulli beam subjected to a moving mass has been

studied by many authors and the importance of this problem is demonstrated in several ways

by many authors. The dynamic effects of moving loads were not recognized until mid-19th

century. It was believed that it was the collapse of Stephenson’s bridge across Dee river

at Chester in England in 1847 that triggered the research into moving-load problems [55].

Stokes was credited to be the first researcher who formally analysed a moving-load problem

(it is actually a moving-force problem). This history was chronicled by Timoshenko [56].

The dynamic behavior of beam structures, such as bridges on railways, subjected to moving

loads has been investigated for over a century. There are numerous reports available in the

book by Fryba [57], and most of them treat a uniform simply supported beam of single span.

Various kinds of problems associated with moving loads have been presented in the same

book. Vehicles crossing a bridge can be treated as a moving force, a moving mass, a moving

oscillator or a more complicated moving vehicle model consisting of springs, dashpot and

rigid bodies in theoretical models as shown in Fig. 1.15.

If the moving load was treated as a moving force, it would not be hard to solve the

problem. Taking a constant force moving at a constant velocity on a simply supported beam

bridge for example, the equation of motion of the beam after applying MS method has the

same form as a single degree of freedom (SDOF) system excited by a harmonic force, which

can be solved analytically [58]. On the other hand, if the mass of the moving vehicle is
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(a)

(a) moving force

(b)

(b) moving mass

(c)

(c) moving sprung mass

(d)

(d) moving oscillator

(e) moving vehicle

Figure 1.15: Different models of moving loads

considered (moving mass, moving oscillator and moving vehicle models), the contact force

between the vehicle and the bridge would change with time, as the contact force includes an

inertial force of the vehicle. The inertial force depends on the motion of the vehicle, which

is influenced by the motion of the bridge, so the contact force actually is an interaction

force varying with time. In this case, the equation of motion of the bridge cannot be solved

analytically. In order to determine the dynamic response of the bridge under moving vehicles,
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MS method can be used to separate the space component from the time component in the

whole solution. The whole solution is equal to the sum of different modes multiplied by their

corresponding modal coordinates.

The simplest type of moving loads is a constant or harmonic, pure force. But sev-

eral researches have shown that a structure under a moving pure force is equivalent to a

nonmoving-load vibration problem and does not reveal most properties specific to moving-

load dynamics and hence does not qualify as a proper moving-load problem [55]. When the

inertial effect of moving vehicles cannot be ignored, it is essential to use more complicated

models for the vehicles. As the moving mass model (Fig. 1.15(b)) is the simplest model

including the inertial effect of a moving vehicle, that model will be used in this thesis.

1.6 State of the art review of structural vibration control

systems

Structural vibration control systems, which are also referred to as Motion Control Sys-

tems, can be utilized to reduce structure’s responses to different types of dynamic loads such

as earthquakes, winds, traffic and other kinds of service loads. In general, these devices can

be classified into four main groups (passive, active, semi-active, and hybrid) based on their

operating mechanisms, as shown in Fig. 1.16 [59–66]. The following subsections describe the

main groups and subgroups of structural vibration control systems in used nowaday.

A passive control system (Fig. 1.17(a)) does not require an external power supply. Such

devices respond as per the structural response, dissipate the energy in the form of heat and

eventually reduce the structural response. Friction dampers, yielding elastoplastic dampers,

viscous dampers etc. fall into this category. Passive devices, such as base isolators, modify

the free vibration characteristics of the structure and brings it to a lower frequency, where
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Figure 1.16: Categorization of structural control systems
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the amplitude of earthquake excitation is smaller.

An active control system (Fig. 1.17(b)) is one in which external source power control

actuators require large power sources on the order of tens of kilowatts for small structures

and several megawatts for large structures. These actuators apply forces to the structure in

a prescribed manner, which can be used to both add and dissipate energy in the structure.

In the active feedback control system, the signals sent to the control actuators are a function

of the response of the system measures with physical sensors. Active tuned mass dampers,

active variable stiffness systems and active pulse generators are some of the active dampers.

An overview of active response control has been provided by Soong et al. [67].

A semi-active control system (Fig. 1.17(c)) is a combination of active and passive

systems. This facilitates less supply power on the order of tens of watts input to the systems.

The advantage is that in case of power failure the passive component of the control will

still offer some protection. Among the dampers of this type are mechatro dampers, variable

friction dampers and controllable tuned liquid dampers. Semi-active control systems have

been reviewed by Symans et al. [68].

Hybrid control systems consist of combined passive and semi-active devices [69,70] and

of combined passive and active devices [71,72] are described in the literature. Passive hybrid

control systems, mentioned by Makris et al. [73] and Soneji et al. [74], consist of passive

supplemental energy dissipation devices in association with base isolation systems.

Table 1.3 presents a general comparison of the different kinds of structural vibration

control systems presented above.

In most of engineering applications, passive vibration isolators are usually the first

solution to the problem of vibration transmission. This is mainly due to the fact that they

provide high performance and stability, they are rather simple, do not require any external

power source or computer control and therefore are also not expensive. In fact, active and
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Table 1.3: Comparison among the different kinds of structural control systems

structural con-

trol systems

Passive control sys-

tems

Semi-active control

systems

Active control sys-

tems

Hybrid control

systems

How they work? Absorb or diverge part of

the input energy

Natural extension of

passive devices

Automatically apply a

force to the structure

Mixture

How they act

on structural

response?

- Dependent on relative

movement

- Related only to the local

structure response

- No structural response

measurements

Include adaptive sys-

tems

- Depend on the global

response

- Ability to sense ex-

citation and automati-

cally adjust control ef-

forts

Mixture

Optimal condi-

tion of use

Optimally tuned to a

specified dynamic loading

Broader applicability

than passive systems

but more than active

system

Superior efficiency

compared to passive

control systems

Suitable for all

types of structures

Efficiency - No optimal for other

types of dynamic loadings

- Unable to adapt to

the excitation and global

structural response

- Limited control capacity

- Capable of acting bet-

ter than passive sys-

tems

- Limited control ca-

pacity

- Designed for different

objectives

- No theoretical limits

on efficiency

- Wide frequency range

- Greater capacity

than a passive sys-

tem

- Greater efficiency

than a passive sys-

tem

Stability Inherently stable - Fail-safe

- Reliable

Detuning may occur More reliable

Energy supply No energy requirement Little power require-

ment

Significant energy con-

sumption

Costs less than ac-

tive system

Manufacturing Simpler to design and

construct

Easy to manufacture Complicated
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(c)

(a) (b)

Figure 1.17: Different kinds of structural vibration control systems: (a) Structure with passive

control device, (b) Structure with active control device, (c) Structure with semi-active control

device

semi-active devices have the main disadvantage of the use of power, and hence they are not

that attractive for example in seismic response control. In a severe earthquake, power failure

often occurs and the power required to operate active and semi-active devices may not be

available. Hence there is always a requirement to reduce the number of active systems and

semi-active systems, and it is usually recommended to go for passive devices and the fail-safe
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design approach. For the above reasons, it is felt to be necessary to carry out a wide-ranging

literature review of passive dampers and mention the advantages and limitations of each

along with their applications in real life structures.

1.6.1 Passive vibration control (PVC)

PVC systems does not operated with the help of any external force or source. In the

passive control approach, control devices are embedded or connected to the structural mem-

bers (Fig. 1.17) to improve the structural damping or increase the stiffness without any use

of external force.

There are a great number of passive vibration isolators that are used extensively in

engineering applications. The common aspects to these isolator designs are that they all

employ a resilient structure to support the payload, and a damping component to absorb

the residual vibration energy on the payload. The current state of passive control systems

and their characteristics is summarized in Table 1.4 and common passive vibration control

systems used in bridges are discussed in more details below.

The applications of passive control systems in bridge engineering has attracted many

attentions in terms of proposing innovative control devices. Passive control systems have

proven to be effective in reducing the cable vibrations as the control system can be adjusted

for maximum damping ratio. Yan et al. [75] showed the usefulness of tuned particle dampers

on a scaled model of a continuous viaduct subjected to ground motions. Miguel et al. [76]

suggested concurrent optimization of placement and force of friction dampers (FDs) using the

Firefly Algorithm [77]. They evaluated the proposal on two footbridges under human-induced

vibrations where locations and forces of FDs were the design variables. Takeya et al. [78]

introduced an energy harvester device known as Tuned Mass Generator (TMG) consisting

of a tuned dual-mass damper system for vibration control of bridges. An electromagnetic-
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Table 1.4: State of the art in passive control systems

Control System Key Features Applications

Seismic isolation devices - Low-Damping natural and synthetic Rubber Bearing

(LDRB), Lead-plug bearing (LRB), High-Damping Natural

Rubber (HDNR), Teflon Articulated Stainless Steel (TASS)

System, Friction Pendulum System (FPS), Sleeved-Pile Iso-

lation System

- More safe and economic than the traditional structural

systems

Many buildings and

bridges have been built

with these devices

Hysteretic devices - Metallic dampers, Friction dampers

- Energy dissipation is independent of loading rate

- Have long term reliability

- Fabrication details can significantly affect the overall per-

formance of the friction dampers

They are mostly used in

structures

Viscoelastic devices - Viscoelastic solid dampers, Viscoelastic fluid dampers

- Their displacement characteristics depend on the fre-

quency of the motion and relative velocity between the ends

of the damper

They are mostly used in

structures

Re-centering devices Possess an inherent re-centering capability Many buildings have

been built with these

devices

Phase transformation dampers - Use Shape Memory Alloys

- Self-centering mechanism

- Insensitivity to environmental temperature changes

- Excellent fatigue resistance

- Corrosion resistance

- Capable of producing large control forces

Still in the stage of re-

search

Dynamic vibration absorber - Tuned Mass Damper (TMD), Tuned Liquid Damper

(TLD), Tuned Liquid Column Damper (TLCD)

- Dissipation is achieved by transferring some of the vibra-

tional energy to the absorber

- The dynamic properties should be tuned to those of the

primary structure

- Detuning may occur

- No need for any activation mechanism

- Less maintenance cost

Successfully applied

in mitigation of wind

loads in a number of

buildings and bridges

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter I: State of the art 38

transducer was applied to use the unused energy reserve of the damper. Moreover, TMG

was tuned through multi-domain parameter design approach for both the power generation

and energy storage. Miguel et al. [79] presented an application of robust optimal design of

Tuned Mass Damper (TMD) and Multiple-TMD for vehicle-induced vibration of bridges by

the implementation of a parallel-processing Monte Carlo simulation to carry out the high

computational complexity. Camara et al. [80] proposed an approach to design optimum yield-

ing dampers employing Triangular Added Damping and Stiffness (TADAS) dampers placed

between the deck and supports, based on the equivalent SDOF approximation for short to

medium span cablestayed bridges in the transverse direction. Attary et al. [81,82] evaluated

the performance of Negative Stiffness Devices (NSD) for seismic response control of scaled

highway bridge structures experimentally on a shake table. The proposed NSD is shown in

Fig. 1.18.

Figure 1.18: Negative stiffness device (NSD) investigated by Attary et al. [81, 82]
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1.6.2 Linear and nonlinear viscoelastic vibration isolation

According to Rivin [83], “vibration isolation is one of the vibration control techniques

whereby the source of vibration excitation and the object to be protected are separated by an

auxiliary system comprising special devices called vibration isolators or vibration isolation

mounts”. The purpose of an isolator may differ depending on the situation. Despite different

purposes, the same principles apply in each case. Viscoelastic vibration isolators normally

use a resilient structure to support the payload. According to the elastic behavior of the

supporting structure, passive vibration isolators can be categorized into linear and nonlinear

types.

a) Linear vibration isolation

The structural stiffness of a linear vibration isolator remains constant regardless of

either isolator static deflection (caused by the payload weight) or dynamic deflection (caused

by the dynamic load exerted from external disturbances). A typical example is the coil

spring isolator, where the spring force is a linear function of the spring deformation. In these

isolators, the payload sensitivity to external disturbance is fixed, and is dependent on the

stiffness of the supporting structure. A complete review of linear vibration isolation can

be found in numerous undergraduate texts, for example, “Passive Vibration Isolation” [83],

which contains both theories and extensive examples of the applications of linear vibration

isolators. Several studies and applications concern the TMD, which consists in adding to a

primary structure and tuning to one resonant mode, a linear device.

Early studies were conducted in [84–86], and the main parameter optimisation criteria

are based on the minimization either of the transfer function maximum or of the energy [87,

88], as well as on the pole location [89,90]. The effectiveness of one or multiple-TMD added

on single or multi degree of freedom systems subjected to harmonic, random, and seismic
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excitations has been studied in [91–95]. Among the experimental devices, recent studies deal

with TMD based on the eddy currents damping effect, [96–98]. The performance of the

TMD is very effective in the case of linear systems and has been proven to be a very reliable

passive mitigation device in many contexts. However, it is known to bear some limitations,

as e.g. its tuning to only one resonant frequency and its sensitivity to the primary structure

uncertainty [99–101]. To overcome these drawbacks, the use of nonlinear vibration absorbers

is studied as an alternative to the TMD in order to enhance the range of effectiveness in

terms of frequency or vibration amplitude.

b) Nonlinear vibration isolation

Nonlinear vibration isolation theories have witnessed significant developments due to

pressing demands for high performance vibration isolation. The stiffness and/or damping

of the resilient structures used in these designs behave in a nonlinear fashion so that, by

combining multiple nonlinear supporting structures, the overall stiffness of the isolator can

be more flexibly tuned to suit different applications [102]. Some common applications of

nonlinear vibration isolators include: isolation of diesel engines in marine vessels, isolation of

space craft, isolation of vehicle passengers from road disturbances, isolation of vibration gen-

erated by hand-held tools, and isolation of buildings, bridges, storage tanks and oil pipelines

from destructive impacts from earthquakes. The literature reports a considerable number of

studies on nonlinear vibration isolators. Ibrahim [102] published a comprehensive review on

nonlinear passive vibration isolators. This covers a wide range of mechanisms and mounts.

Ravindra and Mallik [52] investigated isolation systems having nonlinearity in the stiffness

and the damping under both harmonic force excitation and harmonic base excitation. They

showed that for such nonlinear systems, when excited by a harmonic force, the effect of in-

creasing the damping results in a decrease in the transmitted force at resonance and that the
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attenuation of forces at high frequencies decreases, in agreement with the results presented

by Ruzicka and Derby [103]. Therefore, the effects of the damping in such a system are

similar to those of a linear system. Moreover, Ding et al. [104] present a nonlinear isolation

of transverse vibration of pre-pressure beams.

As seen, the most important characteristics of an isolator are its natural frequency and

load bearing capacity. As it is well known, a linear vibration isolator often faces a difficult

choice situation that arises between these two characteristics. For traditional passive linear

isolators, a smaller stiffness is needed to achieve a smaller natural frequency so that it can

reduce low frequency vibrations [17,105]. In this case, a larger static deflection is unavoidable

in practical applications. To overcome the limitation between isolation performance and

static deflection, passive nonlinear isolators have been used to obtain a high static stiffness

resulting in a small static deflection and a low dynamic stiffness resulting in a small natural

frequency [14,18,106]. By choosing the appropriate configurative and geometric parameters

of nonlinear isolators, a QZS vibration isolator possessing zero dynamic stiffness at the static

equilibrium position is chosen in this thesis for bridge vibration isolation. Its mechanism is

presented in the following subsection.

1.6.3 Passive vibration isolation with QZS mechanism

QZS mechanism is presented to design nonlinear stiffness vibration isolators with large

static stiffness but very small dynamic stiffness, which can provide zero stiffness at the

static equilibrium position by connecting positive stiffness elements in parallel with negative

stiffness elements [107–112]. Since the 1980’s, the work in nonlinear vibration isolation has

resulted in development of several designs that can achieve quasi-zero payload supporting

stiffness. A simple QZS configuration design proposed by Carella et al. [107, 108] in 2007

consists of three linear springs with one vertical spring connected with two inclined springs
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as shown in Fig. 1.19. The negative stiffness effect can be obtained by installing springs in

the horizontal direction as shown, which can counteract the effect of positive stiffness due to

the springs in the vertical direction. With the mass loaded on the vertical spring, the static

equilibrium position with the oblique springs in the horizontal direction can be determined

by the geometry configuration. The zero stiffness at the static equilibrium position can

be obtained as shown in Fig. 1.20 by the optimum geometry configuration design. As the

disturbance is applied in the vertical direction, the system dynamic stiffness will vary nearby

the zero stiffness except for some ill conditions.

Figure 1.19: Schematic representation of the simplest system with QZS mechanism by Carella

et al. [107, 108]

By rightly selecting the geometry and stiffness parameters of the negative stiffness,

the vibration isolation system can resist a large load statically while having low-frequency

vibration isolation performance. Vibration isolation with the QZS stiffness is often used in

practice to improve comfort or safety of the systems under study. To overcome disadvantages
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Figure 1.20: Stiffness-displacement characteristic of a QZS mount: by connecting in parallel

(summing the stiffness) a linear spring (with positive stiffness, dashed line) with 2 oblique

springs (negative stiffness, dotted line); the total stiffness (solid line) at the static equilibrium

position can be set to zero

such as large value of natural frequency and large static deflection of traditional mass-

spring isolators with linear springs and dampers, oblique or horizontal springs are added as

shown in Fig. 1.19. Due to the nonlinearity introduced by oblique springs with/without pre-

deformation, the system can obtain a high static stiffness, and low natural frequency induced

by the small dynamic stiffness. Although the advantages of the QZS vibration isolator are

well recognized above, the resonance peak of the system is often considerably large and

the inherent nonlinearity could induce jump phenomenon at around the resonant frequency,

which may not be expected in practice due to safety and stability.

Because they can meet the needs of isolating low frequency vibration, even ultralow

frequency vibration, various forms of negative stiffness mechanisms have been designed to

obtain negative stiffness and combined with the positive stiffness structures to construct

QZS vibration isolators. In recent years, several types of vibration isolators using QZS mech-
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anisms have been developed and applied to improve working environment for users in many

engineering fields, such as vibration resonance test of aircraft, vibration isolation of preci-

sion instruments, sensor, energy harvest, suspensions and seats of vehicles and protection of

motors.

Many different prototypes of QZS vibration isolators were proposed by Alabuzhev

et al. [96] and more detailed information about their technical design methods and their

applications was recapitulated by Ibrahim [102]. A vehicle suspension using the negative

stiffness mechanism combined with a positive stiffness support was designed by Arafat et

al. [114]. A prototype of QZS vibration isolator composed of a pair of bars linked with a pair

of horizontal linear springs to improve the vibration isolation performance of vehicle seats

under low excitation frequencies was studied theoretically and experimentally by Le and Ahn

[115,116]. Liu et al., Huang et al. and Fulcher et al. [117–119] built a QZS vibration isolator

by using Euler buckled beams as negative stiffness correctors and explored the isolation

performance theoretically and experimentally. In these studies, the starting frequency of

isolation of the nonlinear isolator were found to be lower than that of the linear one with

the same support capacity. Platus [120] developed a nonlinear vibration isolator using two

axially loaded beams to achieve the QZS property for horizontal vibration isolation. Carrella

et al. [107, 108] built a QZS vibration isolator made of a vertical spring acting in parallel

with two inclined linear springs used as negative stiffness correctors, and investigated the

force and motion transmissibilities theoretically. The results showed that the QZS vibration

isolator outperforms the linear counterpart in some aspects. Meng et al. [105] proposed a

QZS vibration isolator using a disc spring as negative stiffness corrector and investigated its

isolation performance considering a mistuned mass. All the works mentioned above indicate

that the effectiveness of the QZS vibration isolator is superior to its linear counterpart when

the excitation amplitude is relatively small. However, increasing the excitation amplitude
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leads to the increase in response and deteriorates the isolation performance of the QZS

vibration isolator due to the existence of cubic nonlinear stiffness. The transmissibility of

vibration isolators with high dimensional QZS has also been studied by Li et al. and Wang

et al. [122–124]. The results show that quasi-zero stiffness vibration isolators have the low

force transmissibility and the low frequency band for vibration isolation.

From this literature review, it emerges that both academic and industrial organizations

show a particular interest in vibration isolators with a QZS characteristic. However, in all

the abovementioned works related to nonlinear vibration isolation using QZS mechanism,

isolated structures have usually been treated as discrete systems of concentrated masses.

The bending vibration of the isolated main structure itself has been neglected. Therefore, it

is not understood how multimode bending vibration of isolated structures changes the isola-

tion efficiency of a nonlinear QZS vibration isolator. In order to study the performance of a

nonlinear QZS vibration isolator on the multimodal elastic vibration of a continuous struc-

ture, dynamics and nonlinear isolation of the transverse vibration of a multi-span continuous

beam bridge subjected to pier base vibrating excitation and moving mass are investigated

in this thesis. It should be noted that although there are many works on bending vibrations

and vibration isolation of beams containing linear elastic boundaries and supports [125–127],

to the best of our knowledge, there are not many research papers on beams with nonlin-

ear boundaries and supports [128–131]. Presently, there is a lack of methods for studying

the bending vibration of beams with nonlinear supports. In addition, the dynamic response

and the vibration isolation of a single span beam subjected to different kind of dynamic

loads has drawn much research attention, but relatively little research has been done on the

dynamics and vibration isolation of multi-span beams under base vibrating excitation. In

order to study the performance of the nonlinear QZS vibration isolator on the multimodal

elastic vibration of a continuous structure, the dynamics and nonlinear vibration isolation
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of a multi-span continuous beam bridge are studied in this thesis.

1.7 Experimental studies of vehicle-excited bridge vibra-

tion

Experimental work is important for validating theoretical models and assessing the

condition of real systems. Experimental results are often different from the results predicted

by theoretical models. Model updating is usually adopted to tackle this problem [132]. The

material properties and modal properties of a vehicle-bridge dynamic system are significant

values to be determined by experiments in many cases. It is ideal to have the complete

information of the whole system. However, this is hard to achieve in reality. In most cases,

only partial information about a bridge or vehicles is available or can be measured. Therefore,

it is necessary to study the identification problem from partial information of the whole

system.

To assess the real structural or vehicular properties, field tests are to be carried out.

However, field tests are expensive in terms of labour and equipment, and traffic control is

often needed. These drawbacks can be overcome by doing laboratory experiments. It is ideal

to carry out laboratory experiments especially when the main purpose of the experiments is

to check a model or identification methods. In addition, the experimental conditions can be

adjusted or controlled by experimental staff depending on the experimental purposes. The

experimental work in the area of vehicle-bridge interaction is reviewed based on field tests

and laboratory experiments in the following two subsections.
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1.7.1 Field Experiments

To predict accurately the dynamical responses of a real vehicle-bridge system, it is of great

significance to determine the actual geometric and material parameters of the system and to

validate the theoretical models by experiments. In spite of the large amount of work dedicated

to the theoretical study of the vehicle-bridge dynamic problem, much less experimental works

have been reported in the literature.

Green and Cebon [133] identified the modal properties of a three-span highway bridge

by impact tests on the bridge with an instrumented hammer. The wheel loads of a vehicle

and the dynamic response of the bridge were measured simultaneously when the vehicle was

travelling on the bridge by Green [134]. Kwark et al. [135] compared simulation results with

experimental results of the dynamic response of a bridge crossed by a Korean high-speed

train. Lee and Yhim [136] adopted the FE method to analyse the dynamic response of a

two-span continuous box girder bridge subjected to moving forces. Liu et al. [3] measured

the ambient vibration and high-speed train-induced vibration of a composite railway bridge

with seven-spans to validate their train-bridge interaction model. Koziol [137] validated ex-

perimentally the wavelet-based approach of solving the infinite Euler-Bernoulli beam resting

on a nonlinear foundation subjected to a set of moving forces for the train-track interaction

problem.

To assess the bridge or the vehicle condition, various works have been done in order

to identify the bridge or vehicle parameters by using different signal processing techniques

or algorithms. Paultre et al. [138] evaluated the Dynamic Amplitude Factor (DAF) of three

highway bridges in Canada by measuring the forced vibrations of the bridges excited by

one or two trucks. Huang et al. [139] identified the modal properties of a three-span con-

tinuous bridge by impulse testing with impulsive forces generated from a loaded truck. The

recorded data was processed by applying the Ibrahim time-domain identification technique.
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The identified results were compared with those by ambient test. Gonzalez et al. [140] used

the moving force model to estimate the critical speed and the DAF of the bridge by doing the

field experiment of a truck passing over a simply supported bridge. Lee et al. [141] developed

a moving cart system instrumented with an accelerometer, a microphone and an impact

hammer to indirectly measure the Frequency Response Function (FRF) of structures. The

cart system moves at a speed of 0.4 m/s and stops to measure the FRF of a foot bridge with

the impact hammer as excitation in a field test.

1.7.2 Laboratory Experiments

Another way to study the train-bridge dynamics experimentally is conducting labora-

tory tests, which allow researchers a greater control of experimental conditions. Bilello et

al. [142] validated the theoretical model of a beam subjected to a moving mass by exper-

imental results. Stancioiu et al. [143] investigated the vibration of a fourspan continuous

beam subjected to one or two rolling balls travelling at various speeds experimentally and

theoretically (as a one-dimensional moving mass-beam model). Bian et al. [144] developed

a computer-controlled sequential loading system to generate equivalent vertical loading on

a ballastless high-speed railway sample by using actuators for simulating the dynamic exci-

tation due to moving trains. One advantage of this method is that high train speeds, like a

360 km/h train speed, can be modelled in the lab.

Chan and Ashebo [145] identified the moving force between a travelling vehicle and

a multi-span continuous beam by using the measured bending moment of the beam. Cerda

et al. in 2012 compared an indirect approach of identifying the bridge damage (using the

measured vehicular response) with a direct approach (using the measured bridge response)

based on laboratory tests. McGetrick et al. [146] experimentally investigated the feasibility

of identifying the global stiffness of a beam by using a passing vehicular response. Kim et
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al. [147] utilized the subtracted responses of two connected travelling vehicles on a simply

supported beam to reduce the effect of the surface roughness of the beam on identifying

the beam’s frequencies. A laboratory experiment was conducted to verify this approach and

examine its feasibility.

1.8 Problems of the thesis

As seen above in literature review, over the years, dynamic and vibration isolation

tests on highway bridges have been performed by many researchers and engineers. However,

most of these tests are in-field tests. Lab-based dynamic and vibration isolation tests of full

assemblage bridge models under a controlled environment are rather scanty. Regardless of

whether the tests were performed on the field or in the laboratory, these tests were focused

essentially on single bridges. Despite the existence of many bridges coupled on beds of several

rivers, dynamic and vibration isolation tests on bridges coupled by their close environment

are rarely performed. It is therefore of interest to investigate these coupled bridges from a

dynamic test setting for a better understanding of the dynamics of coupled bridges on the

one hand and to propose an effective vibration isolator to reduce their vibrations on the other

hand. Furthermore, since the fundamental vibrational period of most bridges ranges from

0.2 to 1.2 second [11] and as failure induced by vibrations, often occur at a low excitation

frequency, the need for low frequency isolators is imperative in the field of vibration isolation

of bridges. The literature review above has shown that it is in the interest of both academia

and industry to improve the performance of isolation mounts by using nonlinear stiffness

elements.

The present thesis propose a dynamic test which aims at developing an enough com-

plete descriptive theoretical model of indirect coupled bridges. After several dynamic tests
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performed on a scale model built in the laboratory, a mathematical model of the device is

then proposed. We analyze analytically and numerically the effectiveness of this model set-

ting up. Because they can meet the needs of isolating low frequency vibration, even ultralow

frequency vibration, nonlinear vibration isolators base on QZS mechanism have been used

in this thesis for vibration isolation of two coupled bridges summited to different external

excitations: firstly, to pier base vibrating excitation, and secondly to moving mass excitation.

1.9 Conclusion

This chapter has provided an overview of the dynamics and generalities, on beams

bridges, soil-bridge interaction, and structural vibration control systems. We have also pre-

sented some essential works related to these topics. To analyse and to solve the problems of

the thesis, one needs the use of some analytical and numerical methods, and experimental

investigations. The next chapter will be devoted to these methods.
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2.1 Introduction

This chapter focuses on the different methods used along the thesis to solve the problems

stated in the precedent chapter. Theoretical methods concerning both analytical and numer-

ical methods are presented: Galerkin method for modal approximation of partial differential

equations, Harmonic Balance (HB) method and method of multiple scales for analytical

resolution of ordinary differential equations (ODEs), and fourth-order Runge- Kutta (RK4)

method for numerical resolution. The experimental procedure is also presented for lab ex-

periment.

2.2 Analytical and numerical methods

In general, exact analytical solutions of nonlinear differential equations rarely exist.

Results are obtained either by numerical integration or with mathematical techniques that

yield approximate closed-form expressions. However, the mathematical techniques needed

for obtaining the approximate solution of nonlinear differential equations are not always

straightforward and can be complex in nature. These analytical methods are presented in

reference textbooks [148, 149] and Refs. [150–154] which contain sections dedicated to the

topic. In this section, a brief recall of the most used techniques is provided, placing emphasis

on the Galerkin method for modal approximation, HB method, method of multiple scales

and RK4 method for numerical solutions of ODEs.

2.2.1 Galerkin method for modal approximation

In most engineering problems and bridge vibration problem in particular, a set of partial

differential equations (PDEs) with boundary conditions are often derived as equations of

motion. To solve the problem, one must find the solution function which satisfies the given
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PDEs and boundary conditions. In reality, it is a difficult task, even impossible to solve the

problem analytically. But in practical cases we often apply approximation methods. One

of these approximation methods is the Galerkin method, proposed firstly by the russian

mathematician Boris Grigoryevic Galerkin while working on the numerical solutions of the

equations of the elastic equilibrium of rods and plates [155]. In this procedure, the solution of

a partial derivative equation is assumed to be separable into amplitude and mode shapes (the

mode shapes must satisfy the geometry and natural boundary conditions). As an example,

the transverse displacement of a beam described by Eq. (1.6) with a given set of boundary

conditions, can be written as

y (x, t) =

Nmax
∑

n=1

φn (x) qn (t) , (2.1)

where Nmax is an integer greater than 1, qn (t) is the amplitude of the nth mode of vibration

and φn (x) are the mode shapes. These mode shape functions depend of the boundary con-

ditions and are eigenfunctions of the governing equations, of uniform Euler-Bernoulli beam

in absence of external excitation, obtained from Eq. (1.7) as follows

c2
∂4y

∂x4
+
∂2y

∂t2
= 0, (2.2)

where

c =

√

EI

ρS
. (2.3)

The free vibration solution can be obtained by inserting Eq. (2.1) into Eq. (2.2) and rear-

ranging it as

c2

φn (x)

∂4φn (x)

∂x4
= − 1

qn (t)

∂2qn (t)

∂t2
= ω2

n, (2.4)

where c is defined in Eq. (2.3) and ω2
n is defined as constant. Eq. (2.4) can be rearranged as

two ordinary differential equations (ODEs) as

d4φn (x)

dx4
− λ4nφn (x) = 0, (2.5)
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d2qn (t)

dt2
+ ω2

nqn (t) = 0, (2.6)

where

λ4n =
ω2
n

c2
. (2.7)

The general solution of Eq. (2.5) is a mode shape, given by

φn (x) = C1 coshλnx+ C2 sinhλnx+ C3 cos λnx+ C4 sinλnx. (2.8)

The constants C1, C2, C3 and C4 can be found from the boundary conditions of the beam.

Then, the natural frequencies of the beam are obtained from Eq. (2.7) as

ωn = λ2nc. (2.9)

Inserting Eq. (2.3) into Eq. (2.9) leads to

ωn = (λnL)
2

√

EI

ρSL4
. (2.10)

For the simply-supported beam, the deflection and bending moment at both beam

ends have to be zero, thus the boundary conditions are expressed as follows

y (0, t) = 0, y (L, t) = 0, y′′ (0, t) = 0, y′′ (L, t) = 0. (2.11)

Substituting these boundary conditions into Eq. (2.8), we get the constants C1 = 0, C2 = 0,

C3 = 0 and C4 = 1, and the eigenvalues given by

λn =
nπ

L
. (2.12)

Therefore, the eigenfunctions for a simply supported beam are obtained as

φn (x) = sin
nπx

L
, n = 1, 2, 3, ... (2.13)

Then, the natural resonant frequencies of the beam are derived as

ωn =
(nπ

L

)2

√

EI

ρS
. (2.14)
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The orthogonality condition of the mode shape functions can be written as

∫ L

0

φn (x)φm (x) dx =
L

2
δnm, (2.15)

where δnm is the Heaviside function defined as

δnm =











1 for n = m,

0 for n 6= m.

(2.16)

As previously stated, using Galerkin method, the transverse displacement of the beam (Eq.

(2.1)) can be rewritten as

y (x, t) =

Nmax
∑

n=1

qn (t) sin
nπx

L
. (2.17)

In this approximative solution, the time functions qn (t) are determined by the modal equa-

tions which are obtained by substituting the transverse displacements (Eq. (2.17)) into the

governing partial differential equations (PDEs) of the system. By applying the orthogonal-

ity property of the mode shape functions and with some mathematical calculations and

arrangements, the modal equations can be obtained.

2.2.2 Harmonic Balance method

HB method is used to determine oscillatory solution of a linear or nonlinear ODE with

a sinusoidal excitation. Indeed, let us consider the following equation

ÿ + Ω2
0y + f (t, y, ẏ) = F0 cos (Ωt) , (2.18)

where y is the displacement, Ω0 is the natural frequency of the system, F0 and Ω are re-

spectively the magnitude and frequency of the excitation force. The dot over y denotes

differentiation with respect to time t and the function f (t, y, ẏ) depends explicitly on time.

The general approach when solving a differential equation using HB method is to

assume that the solution has the form

y (t) = A cos (Ωt + ϕ) , (2.19)
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where A and ϕ are unknowns amplitude and initial phase difference, respectively. Substi-

tuting Eq. (2.19) into Eq. (2.18) and equating the coefficients of equivalent harmonics, it is

possible to obtain a system of two algebraic equations. The resolution of the obtained alge-

braic equations allows to deduce the characteristics A and ϕ of the oscillatory approximate

solutions.

2.2.3 Method of multiple scales for ordinary differential equations

Let’s Consider a nonlinear oscillator described by the equation of motion

ÿ + Ω2
0y = εf (t, y, ẏ) , (2.20)

where ε is a dimensionless parameter, assumed to be small. The dot over y denotes differ-

entiation with respect to time t and f (t, y, ẏ) is a nonlinear function which can depends

explicitly on time.

With the method of multiple scales, it is assumed that the solution of Eq. (2.20) de-

pends on multiple independent variables (two in its simplest form). Accordingly, this solution

is expressed in terms of different time scales as

y (t) =
∞
∑

m=0

εmym (t0, t1, ...) = y0 (t0, t1, ...) + εy1 (t0, t1, ...) + ..., (2.21)

where tm represents different independent time scales given by

tm = εmt,m = 0, 1, ... (2.22)

There is a normal time scale t0 = t, slow time scale t1 = εt, a super slow time scale t2 = ε2t,

etc. Thus,

d

dt
= D0 + εD1 + . . . , (2.23a)

d2

dt2
= D2

0 + 2εD0D1 + . . . , (2.23b)
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where

Dm =
∂

∂tm
, i.e. D0 =

∂

∂t0
and D1 =

∂

∂t1
(2.24)

Substituting Eq. (2.21) into Eq. (2.20) and taking into account Eqs. (2.23) and (2.24), the

following set of linear ordinary differential equations result

ε0 : D2
0y0 + Ω2

0y0 = 0, (2.25a)

ε1 : D2
0y1 + Ω2

0y1 = −2D0D1y0 + f (y0, D0y0, t0) , (2.25b)

et cetera.

The expansion gets more and more tedious with increasing order in ε. Let’s carry this

procedure out to first order in ε. At order ε0,

y0 = A cos (Ω0t0 + ϕ) , (2.26)

where A and ϕ are arbitrary (at this point) functions of {t1, t2, ...}. Now we solve the next

equation in the hierarchy, for y1.

Let θ = Ω0t0 + ϕ. Then D0 =
∂
∂t0

= Ω0
∂
∂θ

and we have

D2
0y1 + Ω2

0y1 = 2Ω0 sin θD1A+ 2AΩ0 cos θD1ϕ+ f (A cos θ,−A sin θ, t0) . (2.27)

Since the arguments of f are periodic under θ → θ+2π, we may expand f in a Fourier series

as

f (θ) = f (A cos θ,−A sin θ, t0) =

∞
∑

k=1

αk (A) sin (kθ) +

∞
∑

k=1

βk (A) cos (kθ) . (2.28)

The inverse of this relation is

αk (A) =
1

π

∫ 2π

0

f (θ) sin (kθ) dθ (k > 0) , (2.29a)

β0 (A) =
1

2π

∫ 2π

0

f (θ) dθ, (2.29b)

βk (A) =
1

π

∫ 2π

0

f (θ) cos (kθ) dθ (k > 0) . (2.29c)
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We now demand that the secular terms on the right-hand side (Eq. (2.27)) – those terms

proportional to cos θ and sin θ – must vanish. This means

2Ω0D1A+ α1 (A) = 0, (2.30a)

2AΩ0D1ϕ+ β1 (A) = 0. (2.30b)

These two first order equations require two initial conditions, which is sensible since our initial

equation ÿ + Ω2
0y = εf (y, ẏ, t) is second order in time. With the secular terms eliminated,

we may obtain y1 as follows

y1 =
∞
∑

k 6=1

{

αk (A)

1− k2
sin (kθ) +

βk (A)

1− k2
cos (kθ)

}

+B0 cos θ + C0 sin θ, (2.31)

the constants B0 and C0 are arbitrary functions of t1, t2, etc..

The equations for A and ϕ (Eqs. (2.30)) are both first-order in t1. They will therefore

involve two constants of integration – call them A0 and ϕ0. At second order, these constants

are taken as dependent upon the super slow time scale t2. The method itself may break down

at this order.

2.2.4 Numerical methods: fourth-order Runge-Kutta method

An ODE is solved analytically considering some assumption to obtain approximate

solutions. In contrast, a numerical method proposes solutions which are closed with the

experiment. In this thesis, RK4 is used for numerical resolution of ODEs. Fortran 90, with

Matlab software language are also used as programming languages. RK4 method has been

elaborated for the first time in 1894 by Carle Runge and has been improved by Martin W.

Kutta in 1901. This method is widely used because of its stability. It combines trapezium

numerical integration and Simpson methods. Let us consider the first-order ODE as

dy

dt
= f (t, y) , (2.32)
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with the initial condition y (t0) = y0.

The aim of the RK4 method is to find solutions after each time step h i.e. to determine

the point (t+ h; y (t+ h)) knowing the point (t; y (t)). This method establishes the following

relations:

y (t+ h) = y (t) +
1

6
(L1 + 2L2 + 2L3 + L4) , (2.33)

where

L1 = hf (t, y (t)) ,

L2 = hf
(

t + h
2
, y (t) + L1

2

)

,

L3 = hf
(

t + h
2
, y (t) + L2

2

)

and

L4 = hf (t+ h, y (t) + L3) .

This procedure needs in its iteration only the initial value y0, to calculate all the other values

taken by the function y at other times separated by the time step h.

In the case of second-order differential equation










d2y

dt2
= f

(

t, y, dy
dt

)

y (t0) = y0,
dy

dt

∣

∣

t=t0
= y

(1)
0

, (2.34)

it can be divided in order to obtain two first order equations. With variables change, let’s

consider Eq. (2.34) under the following form


























dy

dt
= z

dz
dt

= f (t, y, z)

y (t0) = y0, z (t0) = z0

, (2.35)

The RK4 iterations are given by the following equation










y (t+ h) = y (t) + 1
6
(L1 + 2L2 + 2L3 + L4)

z (t+ h) = z (t) + 1
6
(K1 + 2K2 + 2K3 +K4)

, (2.36)

where L1 = hz (t) ,

K1 = hf (t, y, z) ,
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L2 = h
(

z (t) + K1

2

)

,

K2 = hf
(

t+ h
2
, y (t) + L1

2
, z (t) + K1

2

)

,

L3 = h
(

z (t) + K2

2

)

,

K3 = hf
(

t+ h
2
, y (t) + L2

2
, z (t) + K2

2

)

,

L4 = h (z (t) +K3) and

K4 = hf
(

t+ h
2
, y (t) + L3, z (t) +K3

)

.

This generalized form can also serve to solve numerically second-order coupled ODEs.

2.3 Method for an experimental test in lab

An experimental work is important for validating theoretical models and assessing the

condition of real systems. Experimental results are often different from predicted results

by theoretical models. The experimental method, applied to a model of two coupled beam

bridges subjected to a vibrating universal motor is presented in this section. Firstly, the tech-

niques of measuring transverse vibrations of each beam bridge are given. Then, the method

of analyzing vibrating data is also presented. The transverse vibrations of coupled beam

bridges are sensed by DE-ACCM2G accelerometers incorporated to the structure and then

processed by Matlab software. Let’s note that the DE-ACCM2G Buffered ±2g Accelerometer

shown in Fig. 2.1 is an off the shelf 2 axis 2g accelerometer solution with analog outputs. It

features integrated op amp buffers for direct connection to a microcontroller’s analog inputs,

or for driving heavier loads.

Some applications of DE-ACCM2G accelerometer concern motion, tilt and slope mea-

surement, shock sensing and vehicle acceleration logging. To measure acceleration, the ac-

celerometer can be mounted in one of the configurations shown in Fig. 2.2 and the procedure

for determining the value of the acceleration is described below. The voltage outputs on the
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Figure 2.1: Different views of DE-ACCM2G accelerometer

DE-ACCM2G correspond to acceleration being experienced in the X and Y directions. The

output is ratiometric, so the output sensitivity (in mV/g) will depend on the supply volt-

age. When supplied with 5 V, sensitivity is typically 750 mV/g. At 3 V, sensitivity drops to

420 mV/g. Zero acceleration (0 g) will result in an output of VCC/2 regardless of the voltage

supplied to the unit.

For example, with a 3 V supply, if the X output reads 1.92 V as obtained in the last

configuration of Fig. 2.2, the corresponding value of acceleration is obtain as follows.

At 3 V, the 0 g point is approximately VCC/2 = 3.00/2 = 1.50 V

1.92 V − 1.50 V = +0.42 V with respect to the 0 g point.

At 3 V, as the sensitivity is 420 mV/g, so the corresponding acceleration is 0.42/0.420 =

1.00 g. Therefore, the acceleration in the X direction is +1 g i.e. +9.8 m/s2 if g = 9.8 m/s2

for example.
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Figure 2.2: Use of DE-ACCM2G accelerometer for the measurement of accelerations

The higher the sensitivity, the greater the change in the output signal. Reading such a

signal is easier and more precise. It is for this reason that during our laboratory experiment,

the sensitivity selected was 750 mV/g, corresponding to the supply voltage of 5 V. An exam-

ple of the analog outputs obtained by the digital oscilloscope is given in Fig. 2.3. Time/div

and Volt/div controls of the digital oscilloscope are set as 10 ms/div and 30 mV/div, respec-

tively.

The output voltage curves are obtained, one in the absence of vibrations making it

possible to determine the 0 g point which is located in the middle of the oscillogram (Fig.

2.3(a)) and the other in the presence of vibrations making it possible to determine the

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter II: Methodology 63

(a) motor supplied at the voltage U = 0 V

(b) motor supplied at the voltage U = 23 V

Figure 2.3: Digital oscilloscope screenshots of transversal acceleration of a beam bridge sub-

jected to motor excitation

transverse acceleration of the beam bridge at any time (Fig. 2.3(b)). The experimental data

collected and viewed using a digital oscilloscope through the curves in Fig. 2.3 can also be

processed in Matlab software. The curves obtained are shown in Fig. 2.4.

The curves of Fig. 2.4 are plotted with the calibrations below, given by the digital

oscilloscope.

Time step: 125 pt. = 10 ms
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Figure 2.4: Transversal acceleration of a beam bridge subjected to motor excitation supplied

at the voltage U = 0 V and U = 23 V, plotted in Matlab software

Voltage step:

CH1: 32 pt. = 30 mV

GND: 128 pt.

CH1 Y-position low: 32 pt.

CH1 Y-position mid: 127 pt.

CH1 Y-position high: 224 pt.

All these calibrations then make it possible to determine the true values of the physical

quantities on each axis as follows:

• For accelerations

The 0 g point is CH1 Y-position mid i.e. 127 pt.

If the Matlab plot output voltage is Na pt., the voltage corresponding to acceleration

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter II: Methodology 65

is (Na − 127) pt. with respect to the 0 g point. As the voltage step is such that 32 pt. =

30 mV, the voltage corresponding to acceleration is (Na − 127) × 30
32

mV. As the sensitiv-

ity is 750 mV/g, so the corresponding acceleration is (Na − 127)× 30
32×750

g. Therefore, the

acceleration is ÿ = (Na − 127)× 1.25× 10−3 g.

• For times

The time step is such that 125 pt. = 10 ms.

If the Matlab plot output time is Nt pt., the corresponding time is Nt × 10×10−3

125
s.

Therefore, the time is t = Nt × 8.00× 10−5 s.

Since the vibrations of the beam bridge are almost sinusoidal with regard to the differ-

ent curves obtained, the transverse displacement of the beam would be proportional to its

acceleration as follows ÿ = −ωy, where ω is the vibration frequency of the beam bridge.

2.4 Mechanical model of QZS vibration isolator and trans-

missibility of vibrations

2.4.1 Mathematical modelling of the QZS mechanism

The QZS mechanism under consideration is schematically shown in Figs. 1.19 and 2.5,

where the device to be isolated is not included. The system comprises a vertical spring with

linear stiffness kv which is connected at point P with two linear springs with identical stiffness

k0 and initial length L0 mounted obliquely. The two springs are initially inclined with a slope

of an angle θ0 from the horizontal plane and hinged at points M and N respectively. Consider

a loading force f at point P downwards. The loading point P is initially located at height h0

above the points M, N and a horizontal distance a0 apart from these points respectively. It is

assumed that L0 ≥ a0. The application of the force f causes a vertical displacement Y0 and
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when the system is loaded with a suitably force, the springs are compressed from the initial

unloaded position P to the equilibrium position O where the oblique springs are compressed

in the horizontal position and the static load is only supported by the vertical spring as

shown in Fig. 2.6. When kv and k0 match, the positive stiffness of the vertical spring and

negative stiffness formed by the oblique springs will cancel with each other to achieve zero

stiffness at the equilibrium position. In this way the system is developed into a QZS system.

f

a0

L0

h0

k0 k0

kV

P

M N

O

Y0

Figure 2.5: Schematic representation of an isolator with QZS characteristic

The geometry of the system is defined by the parameters a0 and h0. Provided the

coordinate Y0 defines the displacement from the initial unloaded position, a loading force f

given by the following equation, leads to a resulting displacement Y0 [14, 108, 156]

f = fv + f0, (2.37)

where the term fv denotes the contribution from the vertical spring and the term f0 denotes
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k0 k0

kV

Y

Y0f

(b)

k0 k0

kV

h0
Y0

(a)

a0

L0

Figure 2.6: QZS system with 3 springs: (a) unloaded condition; (b) loaded with a tuned mass

m so that at the static equilibrium position the oblique springs lie horizontal

the contribution from the two oblique springs given as follows

fv = kvY0, (2.38)

and

f0 = 2k0 (L0 − L) sin θ0, (2.39)

where sin θ0 =
(h0−Y0)

L
. It should be noticed that when θ0 = 0 the springs lie horizontally and

do not exert any vertical force, i.e. f0 = 0. Thus, the force-displacement relationship can be

rewritten as

f0 = 2k0 (h0 − Y0)

(

L0

L
− 1

)

. (2.40)

From Fig. 2.5 it can also be seen that

L =

√

a20 + (h0 − Y0)
2. (2.41)

Combining Eq. (2.40) with Eq. (2.41) gives

f0 = 2k0 (h0 − Y0)





L0
√

a20 + (h0 − Y0)
2
− 1



 . (2.42)

If the variable Y defines the downward displacement of the slider from the equilibrium

position, when the oblique springs are placed horizontally after applying the loading force
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f , Eq. (2.37) can be rewritten as

f = kvY − 2k0Y

(

L0
√

a20 + Y 2
− 1

)

+ kvh0. (2.43)

For clarity of analysis, the following non-dimensional parameters are introduced

y = Y /L0, a = a0/L0 = cos θ0, h = h0/L0, α = k0/kv, F =
f

kvL0
− h =

(

f

kv
− h0

)/

L0.

(2.44)

so that Eq. (2.43) can be recast in its non-dimensional form as

F = y − 2αy

(

1
√

a2 + y2
− 1

)

. (2.45)

According to the definition of stiffness, differentiating Eq. (2.45) with respect to y gives the

non-dimensional stiffness of the QZS system as

K = 1 + 2α

(

1− a2

(a2 + y2)3/2

)

. (2.46)

Substituting zero for y and setting Eq. (2.46) equal to zero, we derive the condition for zero

stiffness as

αQZS =
a

2 (1− a)
=

cos θ0
2 (1− cos θ0)

. (2.47)

The parameter α denotes the stiffness ratio and αQZS denotes the geometric ratio. When

αQZS and α are equal, zero stiffness is achieved [156].

The non-dimensional force and the non-dimensional stiffness as functions of the non-

dimensional displacement respectively are plotted in Fig.2.7 for different values of the stiffness

ratio α and when a = 0.67.

From Fig. 2.7, it can be seen that if the stiffness ratio and the geometric ratio are equal

(α = αQZS), zero stiffness can be achieved at the static equilibrium position. In this case, the

negative stiffness provided by the oblique springs exactly counteracts the positive stiffness

of the vertical spring in the vertical direction, and as a result, the system is developed into
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Figure 2.7: (a) Force-displacement characteristic and (b) non-dimensional stiffness of the

system when a = 0.67

a QZS system. When α < αQZS, the system has a weakly nonlinear characteristic and its

combined stiffness is positive; otherwise when α > αQZS, the stiffness of the oblique springs

dominates and as a result the combined stiffness of the system is always negative in the

neighborhood of the static equilibrium position.

From Fig. 2.7(a), it can also be seen that the relationship between force and displace-

ment given in Eq. (2.45) is similar to that of a cubic function [14,156]. Therefore, to simplify

subsequent dynamic analysis of the QZS system, an approximate cubic expression of the

force is sought using a Taylor series expansion at the static equilibrium position y = 0 as

F (y) ≈ F (0) +

3
∑

n=1

F n (0)

n!
yn =

αQZS

a3
y3. (2.48)

Differentiating Eq. (2.48) with respect to y gives an approximate expression for the stiffness

as

K ≈ 3αQZS

a3
y2. (2.49)

The approximations defined by Eqs. (2.48) and (2.49) are plotted in Fig. 2.8 in comparison
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with the exact expressions. It can be seen (Fig. 2.8(b)) that the QZS system has a very

small stiffness in the neighborhood of the static equilibrium position. Furthermore, there is

a very good correlation between the exact curves and the approximate curves for relatively

small displacements from the equilibrium position (± 0.2 excursion range). Clearly, higher

amplitudes of oscillation would invalidate the approximation of the cubic force and the

quadratic stiffness [14].

Let’s consider this approximation of a QZS system modelling in motion modelling of

the dynamics of a beam bridge under QZS vibration isolators driven by a pier base harmonic

vibrating displacement.

2.4.2 Experimental set up of the QZS vibration isolator

Based on QZS mechanism, QZS isolator is built up as shown in Fig. 2.9, where the QZS

system is parallel connected with a viscous damper with damping coefficient C and used for

vibration isolation of a beam bridge.

The approximate expression of the external force due to a QZS vibration isolator is

obtained from Eqs. (2.48) and (2.44) as follows

FQZS = −C ∂Y
∂T

− αQZS

a30
kvL0Y

3. (2.50)

where αQZS is the geometric ratio of the QZS vibration isolator defined as

αQZS =
a0

2 (L0 − a0)
. (2.51)

2.4.3 Transmissibility of vibrations

The vibration isolation performance of an isolation system is often quantified by the

vibration transmissibility of the isolator. It is the function characterizing the transmissibility

in the frequency domain, and is sometimes referred to as isolator transfer function in some

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter II: Methodology 71

y
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

F

-2

-1

0

1

2
(a)

exact expression

third-order Taylor expansion

y
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

K

0

1

2

3

4

5

6

7
(b)

exact expression

third-order Taylor expansion

Figure 2.8: Non-dimensional (a) force-displacement characteristic and (b) stiffness of the

quasi-zero-stiffness system when a = 0.67

contexts. In general, the vibration transmissibility is the ratio between the input and output

of a vibration isolation system. It can be categorized into two types, force transmissibility

and motion transmissibility. The force transmissibility is defined as the absolute value of the

ratio of the excitation force to the transmitted force. The absolute motion transmissibility is
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Figure 2.9: Schematic of the dynamic model of the QZS vibration isolator

defined as the absolute value of the ratio of the excitation displacement to the transmitted

displacement.

The concept can better be described by a SDOF system in Fig. 2.10. A mass m is

suspended on a parallel combination of a spring of coefficient kl and a dashpot c (which are

both considered massless). There are two different problems related to the transmission of

vibration from a source to a receiver. In one case, the mass is directly excited by a force

fe, and therefore acts as the source of the disturbance. The objective of a vibration isolator

is then to reduce the force ft transmitted to the base, which is the receiver. In the other

situation, the disturbance comes from the motion z of the base (source), in which case the

purpose of the isolator is to reduce the motion x of the mass (receiver), attached to the

vibrating base. Either way, the vibration isolator that separates the source and the receiver

can be schematised with a spring and a dashpot connected in parallel. In order to minimise

the level of the transmitted vibrations without the intervention of external forces (i.e. passive

isolation), these two elements should be opportunely chosen.

The expressions for the absolute force and motion transmissibilities are given by Eqs.
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Figure 2.10: SDOF vibration isolator model: the transmission of vibration from a source to

a receiver through the spring kl and the dashpot c which constitute the transmission path

(2.52) and (2.53), respectively

TF =
|fe|
|ft|

, (2.52)

TM =
|x|
|z| . (2.53)

The transmissibilities in decibels can also be defined as

TF (dB) = 20 · log
( |fe|
|ft|

)

, (2.54)

TM (dB) = 20 · log
( |x|
|z|

)

. (2.55)

For example, in the case of an isolator dedicated to the attenuation of ground vibration,

the force transmissibility is described as the ratio between the magnitude of the transmitted

and the base excitation forces at a given frequency, and the motion transmissibility is defined

as the ratio between the motion intensity of the payload vibration and the ground vibration.

Clarence [157] has demonstrated that for a linear system, both the forces and the motion

transmissibilities are equivalent due to the reciprocity characteristics in linear systems and
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therefore it is sufficient to consider only one of them. However, this is not the case for

a nonlinear system. In the work presented in this thesis, due to the relative simplicity of

measuring payload motions, the performance of a QZS isolator is characterized using motion

transmissibility.

The evaluation of the vibration isolation performance normally includes (but is not

limited to) assessing the three key aspects of the transmissibility curve which are the res-

onance frequency, the 0 dB cross over and the peak response. The resonance frequency

represents the frequency at which the maximum displacement (the peak response xmax or

the peak transmissibility TFmax) of the payload occurs. For a linear system, this resonance

frequency occurs approximatively at the natural frequency. The 0 dB cross over frequency is

the marginal frequency where the payload and the base have the same motion amplitudes.

In other words, it is the frequency at which the isolation begins, the frequency above which

TM < 1 (or TM (dB) < 0 dB). The isolation system starts to attenuate vibration beyond this

frequency and the attenuation increases at certain rates depending of the characteristics of

the isolator. The value of the 0 dB cross over frequency is directly related to the resonance

frequency. An increase in the resonance frequency will result in an increase in the 0 dB cross

over frequency, and vice versa. Since vibration attenuation is only achieved beyond the 0 dB

cross over frequency, it is generally desirable to have low isolator resonance frequency (and

thus 0 dB cross over frequency) so that vibration attenuation is achieved from the lowest

possible frequency.

2.5 Conclusion

The present chapter has been devoted to the presentation of mathematical, numerical

and experimental methods used for the analysis of the problem of this thesis. These solving
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methods and experimental techniques will be used in chapter 3 to:

• transform the partial differential equations to ordinary differential equations;

• validate our modelling by comparing some results by both methods;

• predict the behaviour of the system while varying some parameters of the system.
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3.1 Introduction

This chapter is devoted to the results and discussions on the work carried out in this

thesis. It is therefore organized as follows. In the second section, theoretical and experimental

investigations of the dynamics of a model of two multi-span continuous beam bridges model

coupled by their close environment and subjected to different external excitations are carried

out. The third section focusses on the isolation performance of QZS vibration isolators in

vibration isolation of a multi-span continuous beam bridge under pier base vibrating excita-

tion. The fourth section deals with the vibration isolation of a multi-span continuous beam

bridge under a moving mass using QZS vibration isolators. The last section concludes the

chapter.

3.2 Dynamics of two multi-span continuous beam bridges

model coupled by their close environment

3.2.1 Experimental set up

The real structure whose model is mounted in laboratory is the one from the two bridges

built on the Wouri river in Cameroon. For simplifying reasons, the two bridges have been

considered identical in this study and to the dimensions of the second newly built. This

newly built bridge is a five-lane road seven-span continuous bridge of 820 m long and 25.6

m wide [8] as shown in Fig. 3.1. The experimental device simulating the dynamics of the

two bridges indirectly coupled by their close environment via their piers is shown in Fig.

3.2. On one of these bridge call bridge 1 is exerted a localized combination of sinusoidal and

periodic impulsive loads. The coupled bridges model of the experimental device consists of

two wooden beams designed to scale E = 1: 546.6 of the real second bridge over the Wouri
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Figure 3.1: A long view of the second bridge over the Wouri river [8]

Figure 3.2: Schematic of the experimental device

river. Their dimensions are compiled in the Table 3.1 and the photographs of the model and

the model structural elements are given in Figs. 3.3 and Fig. 3.4, respectively.

In the scale model, the two bridges are represented by two wooden beam bridges of

dimensions specified in the Table 3.1. In addition, a polyurethane (PU) mattress (see Fig.

3.4) is the most available material we could find to play the role of the close environment,

given its good viscoelastic properties; and an universal motor attached to one of the beam

bridges (bridge 1) imposes its vibrations on it in the form of both sinusoidal and periodic

impulsive loads. Vibrations are sensed by DE-ACCM2G accelerometers incorporated to the
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Table 3.1: Dimensions of the experimental set up elements

Real bridge Model

Length 820 m 1,5 m

Height 25,6 m 45 mm

Width 4 - 7,5 m 12 mm

Thickness 25 - 50 cm 1 mm

Pier length 32 m 60 mm

Span length 72,5 m and 135 m 13,25 cm and 24,7 cm

Figure 3.3: Photograph of the experimental set up
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Figure 3.4: Photograph of the model structural elements

structure and then processed by a digital oscilloscope and an appropriate computer software.

Let us recall that the DE-ACCM2G accelerometer is an off the shelf 2 axis 2g accelerometer

solution with analog outputs. It features integrated op amp buffers for direct connection to

a micro controller’s analog inputs, or for driving heavier loads.

3.2.2 Modelling the coupled bridges system

a) Model of the bridge and soil support

The transverse equation of motion for a homogeneous, isotropic and uniform elastic

beam subjected to a time-varying load is taken as the governing Euler-Bernoulli equation as

ρS
∂2Y

∂T 2
+ Cb

∂Y

∂T
+ EI

∂4Y

∂X4
= f (X, T ) , (3.1)
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where Y = Y (X, T ) is the transverse deflection of the beam, ρ and E are the density and

the Young’s modulus of the beam, S and I are the area and the second moment of area of

the beam cross section, respectively. Cb the vertical viscous damping coefficient and f (X, T )

represents all the external loads per unit of length.

The external excitation brought by the motor is supposed to be both sinusoidal and

impulsive, localized at the point X0 of bridge 1. So, it can be described as follows

f (X, T ) = [fsin (X, T ) + fimp (X, T )] δ (X −X0) , (3.2)

where δ (X) is the Dirac delta function which reflects the local nature of the excitation on

the bridge, fsin (X, T ) is the sinusoidal load and fimp (X, T ) is the periodic impulsive force

occurring at regular intervals of time T0
∗ [29]. fsin (X, T ) and fimp (X, T ) are given as follows

fsin (X, T ) = f0 cos ΩT , (3.3)

fimp (X, T ) = I0

N
∑

i=1

{H (T − iT0
∗)−H [T − (iT0

∗ +∆T0
∗)]}, (3.4)

where f0 is the amplitude of the sinusoidal load and Ω its frequency. I0 is the amplitude

of each impulsion, N stands for the total number of impulsions while ∆T0
∗ represents the

duration of the impact. H (X) is the Heaviside function defined as follows

H (X) =











1 if X ≥ 0

0 if X < 0

(3.5)

The coupling between the two bridges is an indirect coupling via an environment that is

primarily the ground under their piers that can be modelled as a linear viscoelastic Winkler

foundation (Kelvin-Voigt model of soil [3]). Thus, for this system, each bridge suffers from

environmental coupling (soil support), external restoring forces Fj (X, T ) located under the

piers and given as follows

Fj (X, T ) = −
[

ksY (X, T ) + Cs

∂Y (X, T )

∂T

]

δ (X −Xj) , (3.6)
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where ks and Cs are the two coupling parameters characterizing the strength and the damping

of the soil, respectively. Xj are the positions of the piers under the considered bridge and

δ (X) is the Dirac delta function which reflects the local nature of piers positions.

b) Modelling the propagation of vibration in the soil

Let a (Zα, ω) the acceleration in the soil at the distance Zα from the source. It was

shown that the acceleration a (Zβ, ω) at the distance Zβ can be estimated in the frequency

domain as a function of a (Zα, ω) [42, 43] as follows

a (Zβ, ω) = a (Zα, ω) exp [ik
∗(ω)dαβ] , (3.7)

where dαβ = Zβ − Zα and can be the distance between the two points Zα and Zβ if Zβ > Zα

and k∗(ω) is the complex wave number defined by

k∗(ω) = k(ω) + iλ(ω), (3.8)

where k(ω) = 2πV
ω

is the real wave number; with V the wave velocity in the ground. λ(ω) is

the vibration attenuation factor defined by the viscoelastic model considered to model the

close environment.

But a simpler model used to describe the propagation of the vibration into the soil is

given by [165] as follows

a (Zβ, ω) = a (Zα, ω) exp [−λ(ω)dαβ] . (3.9)

Let’s set γαβ = exp [−λ(ω)dαβ] the coefficient reflecting the vibration transfer from point

Zα to point Zβ; which decreases with the distance dαβ . This coefficient reflects the vibration

propagation from one to another point. Thus, the expression (3.9) can be rewritten as follows

a (Zβ, ω) = γαβa (Zα, ω) . (3.10)
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It comes out that a pier of index-number α and with an acceleration a (Zα, ω) induces on

each neighboring pier of index-number β, some vibration translated by the inertia force given

by the following equation

fβ (T ) = −mβa (Zβ, ω) = −mβγαβa (Zα, ω) , (3.11)

where mβ is the mass of the neighbouring pier of index-number β.

c) Modelling the coupled bridges system

Taking into account the above considerations, the system which consists of a bridge

under localized universal motor excitation coupled to a second one by their close environment

is governed by the following set of equations



















































ρ1S1
∂2Y1

∂T 2 + Cb1
∂Y1

∂T
+ E1I1

∂4Y1

∂X4 +
N1
∑

α=1

[

Cs
∂Y1

∂T
+ ksY1

]

δ (X −X1α)+

N1
∑

α=1

m1α

N2
∑

β=1

γαβ
∂2Y2

∂T 2 δ (X −X2β) = [fsin (X, T ) + fimp (X, T )] δ (X −X0) ,

ρ2S2
∂2Y2

∂T 2 + Cb2
∂Y2

∂T
+ E2I2

∂4Y2

∂X4 +
N2
∑

α=1

[

Cs
∂Y2

∂T
+ ksY2

]

δ (X −X2α)+

N2
∑

α=1

m2α

N1
∑

β=1

γαβ
∂2Y1

∂T 2 δ (X −X1β) = 0,

(3.12)

where Yj = Yj (X, T ) is the transverse displacement of the bridge of index-number j, N1 and

N2, m1α and m2α, and X1α and X2α are the numbers of piers, masses and positions of the

piers under the main bridge and the coupled bridge, respectively. As the two beam bridges

are hinged-hinged, the boundary conditions of the problem are given by

Y1 (X, T )|X=0,X=L = 0,

∂2Y1(X,T )
∂2X

∣

∣

∣

X=0,X=L
= 0,

Y2 (X, T )|X=0,X=L = 0,

∂2Y2(X,T )
∂2X

∣

∣

∣

X=0,X=L
= 0.

Let’s consider the dimensionless variables defined as x = X
L
, y1 = Y1

L
, y2 = Y2

L
, t =

Tω0; where ω0 =
1
L2

√

E1I1
ρ1S1

. Then, the dimensionless problem is given by the following set of
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equations


















































∂2y1
∂t2

+ δ1
∂y1
∂t

+ ω2
1
∂4y1
∂x4 +

N1
∑

α=1

[

cs1
∂y1
∂t

+ ks1y1
]

δ (x− x1α)+

N1
∑

α=1

N2
∑

β=1

γαβ1
∂2y2
∂t2

δ (x− x2β) = F (t) δ (x− x0)

∂2y2
∂t2

+ δ2
∂y2
∂t

+ ω2
2
∂4y2
∂x4 +

N2
∑

α=1

[

cs2
∂y2
∂t

+ ks2y2
]

δ (x− x2α)+

N2
∑

α=1

N1
∑

β=1

γαβ2
∂2y1
∂t2

δ (x− x1β) = 0,

(3.13)

where

M1 = ρ1S1, M2 = ρ2S2, µ =
M1

M2
, ε =

E1I1
E2I2

ω2
1 =

1

L4

E1I1
M1ω2

0

= 1, ω2
2 =

1

L4

E2I2
M2ω2

0

=
µ

ε
ω2
1 =

µ

ε
, ω =

Ω

ω0

δ1 =
Cb1

M1ω0
, δ2 =

Cb2

M2ω0
, cs1 =

Cs

M1ω0
, cs2 =

Cs

M2ω0
= µcs1

ks1 =
ks

M1ω2
0

, ks2 =
ks

M2ω2
0

= µks1

γαβ1 =
m1α

M1
γαβ, γαβ2 =

m2α

M2
γαβ, F (t) =

L3

E1I1
[fsin (x, t) + fimp (x, t)]

The set of Eqs. (3.13) are the dimensionless equations of coupled bridges resting on

a linear viscoelastic Winkler foundation. In index notation, this set of equations can be

rewritten in the following combined form

∂2yj
∂t2

+ δj
∂yj
∂t

+ ω2
j
∂4yj
∂x4 +

Nj
∑

α=1

[

csi
∂yj
∂t

+ ksiyj

]

δ (x− xjα)+

Nj
∑

α=1

Nk
∑

β=1

γαβj
∂2yk
∂t2

δ (x− xkβ) = Fj (t) δ (x− x0) , j, k = 1, 2 and k 6= j,

(3.14)

with

Fj (t) =











F (t) if j = 1,

0 if j = 2.

(3.15)

In the following sections we will deal with Eq. (3.14).
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3.2.3 Analytical explanation of the model

The MS method suggest the solutions of Eq. (3.14) into the following form

yj (x, t) =

∞
∑

n=1

φn (x) qjn (t), (3.16)

where φn (x) are the mode shapes, given in accordance with the boundary conditions of the

problem by the following expression

φn (x) = sin (nπx) (3.17)

qin (t) are time functions determined by the modal equations which are obtained by sub-

stituting the transverse displacements (Eq. (3.16)) in Eq. (3.14) governing the dynamics

of the coupled bridges. By multiplying by φm (x), integrating over the length of the beam

bridge and applying the orthogonality property of spatial functions, the modal equations are

obtained below

q̈jn + 2λjnq̇jn + ω2
jnqjn + Ckj q̈kn = 2Fj (t) sin (nπx0) , (3.18)

where j, k = 1, 2 and k 6= j, n = 1, ...,∞ characterizing the different modes of vibration

and

2λjn = δj + 2csj

Nj
∑

α=1

sin2 (nπxjα), (3.19)

ω2
jn = ω2

j (nπ)
4 + 2ksj

Nj
∑

α=1

sin2 (nπxjα), (3.20)

Ckj = 2

Nj
∑

α=1

Nk
∑

β=1

γαβjsin
2 (nπxkβ). (3.21)

For the bridge of index-number j, ωjn is the frequency of the vibration mode n. The term Ckj

given by Eq. (3.21) is the coupling term reflecting the impact of the bridge of index-number

k on the bridge of index-number j. It depends on the vibration transfer coefficient γαβ; and
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therefore on the distance between the two bridges with respect of which it decreases. Eq.

(3.18) can be rewritten as follows











q̈1n + 2λ1nq̇1n + ω2
1nq1n + C21q̈2n = 2F (t) sin (nπx0)

q̈2n + 2λ2nq̇2n + ω2
2nq2n + C12q̈1n = 0,

(3.22)

An analytical solution of this set of modal equations is given in the following subsections

in the cases of a sinusoidal excitation and a periodic impulsive load.

a) Analytical solution of the modal equations for sinusoidal excitation

In this case, Eq. (3.22) can be rewritten as follow











q̈1n + 2λ1nq̇1n + ω2
1nq1n + C21q̈2n = F0n cosωt,

q̈2n + 2λ2nq̇2n + ω2
2nq2n + C12q̈1n = 0,

(3.23)

where F0n = 2L3

E1I1
f0 sin (nπx0).

To solve this set of ODEs, let us use the HB method. Let set











q1n = An cos (ωt+ ϕ1) ,

q2n = Bn cos (ωt+ ϕ2) .

(3.24)

Substituting Eq. (3.24) into Eq. (3.23), we obtain the following amplitude equations after

some mathematical calculations










An = F0n

√

η2
1
+η2

2

η2

Bn = F0n

√

η2
3
+η2

4

η2
,

(3.25)
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where










































































η = (ω2
1n − ω2)

2
(ω2

2n − ω2)
2 − 2ω4C12C21 (ω

2
1n − ω2) (ω2

2n − ω2)− 4ω2λ21n(ω
2
2n − ω2)

2

−4ω2λ22n(ω
2
1n − ω2)

2
+ 16ω4λ21nλ

2
2n − 8ω6C12C21λ1nλ2n + ω8C2

12C
2
21

η1 = (ω2
1n − ω2)

2
(ω2

2n − ω2)− ω4C12C21 (ω
2
2n − ω2)− 2ω2λ2n (ω

2
1n − ω2)

η2 = 2ωλ1n(ω
2
2n − ω2)

2
+ 2ω5C12C21λ2n − 8ω3λ1nλ

2
2n

η3 = ω2C12 [(ω
2
1n − ω2) (ω2

2n − ω2) + 4ω2λ1nλ2n + ω4C21]

η4 = 2ω3C12 [λ1n (ω
2
2n − ω2) + λ2n (ω

2
1n − ω2)] ,

(3.26)

The two last expressions of Eq. (3.26) show, as might be expected, that the vibrations of

the unexcited coupled bridge (bridge 2) strongly depend on the vibration transfer coefficient

C12 from the main bridge 1 to the second one.

b) Analytical solution of the modal equations for periodic impulsive excitation

In this case, Eq. (3.22) can be rewritten as follows














q̈1n + 2λ1nq̇1n + ω2
1nq1n + C21q̈2n = F0n

N
∑

i=1

{H (t− iT0)−H [t− (iT0 + τ )]},

q̈2n + 2λ2nq̇2n + ω2
2nq2n + C12q̈1n = 0,

(3.27)

where F0n = 2L3

E1I1
I0 sin (nπx0), T0 and τ are non-dimensional period and duration of the

impact of the periodic impulsive excitation, respectively. T0 and τ are define as T0 = T0
∗ω0

and τ = ∆T0
∗ω0.

As the analytical resolution of the set of Eqs. (3.27) is not quite evident, let us look at

the case of two identical beam bridges whose modal equations are given as follows














q̈1n + 2λnq̇1n + ω2
nq1n + Cq̈2n = F0n

N
∑

i=1

{H (t− iT0)−H [t− (iT0 + τ )]},

q̈2n + 2λnq̇2n + ω2
nq2n + Cq̈1n = 0,

(3.28)

where λn = λ1n = λ2n, ω
2
n = ω2

1n = ω2
2n, C = C12 = C21.
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To solve these new equations, it is useful to assume new variables as follows

q+ = q1n + q2n, (3.29)

q− = q1n − q2n. (3.30)

Each of them is solution of the following differential equation

q̈± + 2λ±q̇± + ω2
±q± = F0±

N
∑

i=1

{H (t− iT0)−H [t− (iT0 + τ )]}, (3.31)

obtained by adding and subtracting the two sets of Eqs. (3.28) and where λ± = λn

1±C
, ω2

± =

ω2
n

1±C
, F0± = F0n

1±C
.

The solutions of Eq. (3.28) are then obtained from new variable parameters as follows










q1n = q++q−
2

,

q2n = q+−q−
2

.

(3.32)

For each modes (n = 1, 2, ...∞), the solutions of Eq. (3.31) can be expressed as the sum of a

homogeneous solution qH± (t) and a particular solution qP± (t), i.e.

q± (t) = qH± (t) + qP± (t) , (3.33)

where

qH± (t) = [A± cosΩ±t+B± sinΩ±t] e
−λ±t, (3.34)

with Ω± =
√

ω2
± − λ2±.

The form of the external excitation in Eq. (3.31) suggests a treatment per intervals in

order to determine its particular solutions qP± (t). For instance, let us subdivide time in two

great time domains according to instant where the impacts occur. One of these two great

time domains correspond to intervals of time before the impact sequence i and after the last

impact sequence of index N and the other correspond to the intervals of time during the

impact sequence i.
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• Before the impact sequence i i.e. ∀t ∈ [(i− 1)T0 + τ ; iT0[ ; i = 1, ..., N and after the

last impact sequence N i.e. ∀t ∈ [NT0 + τ ; +∞[, H (t− iT0) − H [t− (iT0 + τ )] = 0 and

therefore a particular solution can be qP± (t) = 0.

• During the impact sequence i i.e. ∀t ∈ [iT0; iT0 + τ [ ; i = 1, ..., N , H (t− iT0) −

H [t− (iT0 + τ )] = 1 and therefore a particular solution can be qP± (t) = F0±

ω2
±

.

So, the general solution of the problem can be written as

q± (t) =











































q
(i)
± (t1) =

[

A
(i)
± cosΩ±t1 +B

(i)
± sinΩ±t1

]

e−λ±t1

For (i− 1) T0 + τ ≤ t < iT0 or t > NT0,

q̃
(i)
± (t2) =

[

C
(i)
± cosΩ±t2 +D

(i)
± sinΩ±t2

]

e−λ±t1 + F0±

ω2
±

For iT0 ≤ t < iT0 + τ,

(3.35)

where i = 1, ..., N , t1 = t− [(i− 1)T0 + τ ] the initial instant just after the impact sequence

i− 1 and t2 = t− iT0 the initial instant of the impact sequence i. Taking into account Eqs.

(3.29) and (3.30), the final solutions of the modal equations (3.28) are given per intervals as

follows.

• Before the impact sequence i i.e. ∀t ∈ [(i− 1)T0 + τ ; iT0[ ; i = 1, ..., N and after the

last impact sequence of index N i.e. ∀t ∈ [NT0 + τ ; +∞[















































q1n (t) = q
(i)
1n (t1) =

1

2

{[

A
(i)
+ cos Ω+t1 +B

(i)
+ sinΩ+t1

]

e−λ+t1+

[

A
(i)
− cosΩ−t1 +B

(i)
− sinΩ−t1

]

e−λ−t1

}

q2n (t) = q
(i)
2n (t1) =

1

2

{[

A
(i)
+ cosΩ+t1 +B

(i)
+ sinΩ+t1

]

e−λ+t1−
[

A
(i)
− cosΩ−t1 +B

(i)
− sinΩ−t1

]

e−λ−t1

}

,

(3.36)
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• During the impact sequence i i.e. ∀t ∈ [iT0; iT0 + τ [ ; i = 1, ..., N



















































q1n (t) = q̃
(i)
1n (t2) =

1

2

{[

C
(i)
+ cos Ω+t2 +D

(i)
+ sin Ω+t2

]

e−λ+t2+

[

C
(i)
− cosΩ−t2 +D

(i)
− sin Ω−t2

]

e−λ−t2

}

+
F0n

ω2
n

,

q2n (t) = q̃
(i)
2n (t2) =

1

2

{[

C
(i)
+ cosΩ+t2 +D

(i)
+ sin Ω+t2

]

e−λ+t2−
[

C
(i)
− cosΩ−t2 +D

(i)
− sinΩ−t2

]

e−λ−t2

}

,

(3.37)

where the unknown integration constants A(i)
± , B(i)

± , C(i)
± and D

(i)
± are determined from the

initial conditions of the problem which correspond to the final conditions of the previous

phases of the movement.

3.2.4 Numerical simulations and discussion

In this section, we present the results of numerical simulations of the proposed model of

coupled bridges. Subsequently, we compare the theoretical results with experimental results

obtained on the scale model built in the laboratory to assess the efficiency of the proposed

theoretical model. In our simulations, we limit only on the first mode of vibration (n = 1)

and the numerical method used is the RK4 method.

Numerical solutions of the coupled beam bridges subjected to each kind of excitation

(sinusoidal and impulsive) whose dynamics is described by Eqs. (3.23) and (3.28) are found

and compare with the corresponding analytical solutions given by Eqs. (3.24), (3.36) and

(3.37).

a) Dynamic response of coupled bridges: validation of the analytical study

For the validation of the analytical study, the numerical solutions of the coupled beam

bridges are found and displayed in the same graph with the corresponding analytical solu-

tions. The curves of Figs. 3.5 and 3.6 are obtained for the following sets of non-dimensional
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parameters.

• For sinusoidal excitation :

λ1 = λ2 = 0.05, ω1 = ω2 = 10, C12 = C21 = 0.5, ω = 1, F0 = 0.5
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Figure 3.5: Comparison of numerically and analytically deflections obtained for sinusoidal

excitation: (a) bridge 1; (b) bridge 2
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• For train of 3 impulsions :

λ1 = λ2 = 0.05, ω1 = ω2 = 1, C12 = C21 = 0.5, T0 = 50; τ = 0.1, F0 = 0.5
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Figure 3.6: Comparison of numerically and analytically deflections obtained for periodic

impulsive excitation: (a) bridge 1; (b) bridge 2

The coincidence between the curves obtained by numerical and analytical treatment

after the initial transient regime for the two bridges in Figs. 3.5 and 3.6 shows that the

proposed analytical solutions are quite good.
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b) Resonant response

The amplitude curves are plotted versus the excitation frequency ω of the sinusoidal

excitation on the one hand and the period T0 of the periodic impulsive excitation on the

other hand. The different curves obtained are presented and discussed below for the following

sets of non-dimensional parameters λ1 = λ2 = 0.05, C12 = C21 = 0.5, F0 = 0.5.

• For sinusoidal excitation

Each of the amplitude curves corresponding to the dynamical response of the two cou-

pled bridges for a sinusoidal excitation presents four resonances in two pairs with very close

peaks as shown in Figs. 3.7 and 3.8. These two pairs are separated by many antiresonances,

with the most significant antiresonance located around the frequency ω2 of bridge 2 (Fig.

3.7). As shown in Figs. 3.7 and 3.8, the two coupled bridges present their resonance pairs

approximately at the same positions on either side of the antiresonance frequency ω2. How-

ever, these positions vary depending on the frequencies ω1 and ω2 of the bridges 1 and 2

respectively; one gradually comes closer to the antiresonance frequency ω2 while the other

moves away when ω1 increases (Fig. 3.8).

The antiresonance frequency ω2 pointed out here for which the vibration amplitudes of

bridge 1 become almost zero can be an interesting result in vibration control of the dynamics

of beams. It will be then a good issue to consider the control of the vibration of a beam by

another beam dimensioned at the excitation frequency range of this later.

• For periodic impulsive excitation

In this case, all the amplitude curves of bridges present an infinite number of reso-

nances of least importance as shown in Figs. 3.9 and 3.10. As shown in Figs. 3.9 and 3.10,

the intensities of these resonances decrease with respect to the period T0 of the impulsive
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Figure 3.7: Amplitude curves of bridge 1 versus the frequency ω of the sinusoidal excitation

for (a) ω2 = 10; (b) ω2 = 20

excitation (i.e. increase with respect to its frequency) and with respect to the frequencies

ω1 and ω2 of the two bridges; and their values tend asymptotically to a given limit. But we

can notice from Fig. 3.10(a) that the change in the frequency ω2 of bridge 2 does not have
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Figure 3.8: Amplitude curves of bridge 2 versus the frequency ω of the sinusoidal excitation

for ω2 = 10

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

T
0

D
ef

le
ct

io
n 

A
m

pl
itu

de
 q

1

(a)

 

 
ω

1
=10

ω
1
=20

ω
1
=30

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

T
0

D
ef

le
ct

io
n 

A
m

pl
itu

de
 q

2

(b)

 

 
ω

1
=10

ω
1
=20

ω
1
=30

Figure 3.9: Amplitude curves versus the period T0 of the periodical impulsive excitation for

several values of ω1 (a) bridge 1; (b) bridge 2

a significant effect on the dynamics of bridge 1.

It is therefore clear from this study that it would be more beneficial to the structure
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Figure 3.10: Amplitude curves versus the period T0 of the periodical impulsive excitation for

several values of ω2 (a) bridge 1; (b) bridge 2

to have great natural frequencies of vibration in order to present small amplitude responses.

c) Effects of some parameters on the dynamics of coupled bridges

In this section we present the influence of various parameters on the dynamic responses

of the two coupled bridges. This is done in order to point out the influences of the viscoelas-

tic coupling of the soil and the effect of the distance between the two bridges. Figs. 3.11,

3.12 and 3.13 show the amplitude of the two bridges versus the non-dimensional parameters

involving the viscoelastic coupling and the distance between the coupled bridges.

• Effects of viscoelastic coupling of the Winkler foundation

The non-dimensional parameters reflecting the effects of the viscoelastic coupling are

the frequencies ω1 and ω2 of the two coupled bridges and the damping coefficients λ1 and

λ2. The frequencies ω1 and ω2 include the stiffness of the soil through the terms ksi in Eq.

(3.20) while λ1 and λ2 include its viscosity through the terms csi in Eq. (3.19). So, the study
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of the effects of viscoelastic coupling on the dynamic responses of the two coupled bridges

amounts to the study of the effects of these four parameters.

The study of the effect of the frequencies ω1 and ω2 was made in the previous paragraph.

For periodic impulsive excitation, Figs. 3.9 and 3.10 show that the amplitudes of vibration of

the two bridges decrease with these frequencies, therefore with the rigidity ks of the Winkler

foundation, according to the definition of the non-dimensional parameters of Eq. (3.13).

In the case of a sinusoidal excitation, the effects of viscoelastic coupling of the Winkler

foundation is reflected in the resonances and antiresonances observed in Figs. 3.7 and 3.8.

As regards the effect of the damping coefficients λ1 and λ2, for the non-dimensional

quantities ω1 = ω2 = 10, ω = 1, C12 = C21 = 0.5, T0 = 50; τ = 0.1, F0 = 0.5, one obtains

the amplitude curves of Figs. 3.11 and 3.12.
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Figure 3.11: Amplitude curves versus the damping coefficient λ1 for sinusoidal excitation:

(a) bridge 1; (b) bridge 2.

Fig. 3.11 shows that the deflection amplitudes of the two coupled bridges increase with

respect to the damping coefficients λ1 and λ2 in the case of sinusoidal excitation. However,

the behavior vary in the case of periodic impulsive excitation as shown in Fig. 3.12.
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Figure 3.12: Amplitude curves versus the damping coefficient λ1 for periodical impulsive

excitation: (a) bridge 1; (b) bridge 2.

It comes out from this study that the viscoelastic coupling of the soil presents various

effects on the dynamics of the two coupled beams bridges.

• Effects of the distance between the two beam bridges

The non-dimensional parameters that include the effect of distance on the dynamics

of the coupled beam bridges are the coupling coefficients C12 and C21 between the two

modal equations in Eq. (3.22). According to Eqs.(3.9) and (3.21), C12 and C21 are decreasing

function of the distance between the bridges. Studying the effects of the distance between

the two bridges comes down now to study the effect of the parameters C12 and C21 on their

dynamic responses. For this purpose, the curves of Figs. 3.13 have been plotted for the given

values of non-dimensional parameters λ1 = λ2 = 0.05, ω1 = ω2 = 10, ω = 1, T0 = 50,

τ = 0.1 and F0 = 0.5.

Fig. 3.13 shows that, for a sinusoidal excitation, the deflection amplitudes of the two

coupled bridges increase with the coupling parameters C12 and C21; i.e. when the distance
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Figure 3.13: Amplitude curves versus the coupling coefficient C12 for sinusoidal excitation :

(a) bridge 1; (b) bridge 2.
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Figure 3.14: Amplitude curves versus the coupling coefficient C12 for periodical impulsive

excitation : (a) bridge 1; (b) bridge 2.

between the two bridges decreases. This is however not checked for bridge 2 for certain values

of C12 below 0.5. Before this value, the amplitudes of bridge 2 increase with C12 but decrease

with C21 as shown in Fig. 3.13(b).
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For a periodic impulsive excitation, complex behaviors are observed with variation of

amplitudes around a given values. Bridge 2 nevertheless has a lesser disordered response

than bridge 1 with the amplitudes that tend to decrease while C12 and C21 increase as shown

in Fig. 3.14.

d) Experimental validation of the theoretical analysis

In this subsection, comparison of the experimental results obtained from the model built

in lab is done with some results of previous theoretical study.

• Transverse displacements of the coupled beam bridges

The transverse displacements of bridge 1 in the presence of the outer exciter universal

motor are captured using the miniaturized DE-ACCM2G accelerometer incorporated into

the structure and the results are shown in the Figs. 3.15.
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Figure 3.15: Transversal displacements of bridge 1 for excitation motor excite at the voltage

U = 23 V: (a) screen of the digital oscilloscope; (b) plotted in Matlab software

Fig. 3.15 shows a perfect similarity between the curves displayed in the portable digital

oscilloscope and those drawn in Matlab software from the experimental data file.
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Figure 3.16: Comparison of the transverse displacements of the bridges 1 and 2: (a) Ex-

perimental data plotted in Matlab software: bridge 1 (a1) and bridge 2 (a2); (b) numerical

simulation of the model: bridge 1 (b1) and bridge 2 (b2)

The curves of Fig. 3.16 shows a fairly good quantitative correlation between the experi-

mental results and those obtained from numerical simulations of the developed model. Let

us notice that the numerical results are obtained by adding the dynamical responses of the

coupled beam bridges obtained from the two forms of excitation studied i.e. sinusoidal exci-

tation and periodic impulsive excitation as shown in Fig. 3.17.
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Figure 3.17: Transverse displacement of bridge 1 subjected simultaneously to sinusoidal ex-

citation and periodic impulsive excitation for λ1 = λ2 = 0.05; ω1 = ω2 = 10; C12 = C21 =

0.5; ω = 1; T0 = 1; τ = 0.1; F0 = 0.5

• Effect of the environmental coupling

To experimentally highlight the effects of coupling, the transverse displacements are

captured for different distances between the two coupled bridges. The data obtained are then

plotted in Fig. 3.18 and compared to the results of numerical simulations of the developed

model.

The experimental results in Fig. 3.18 show that the transverse displacements of bridge

1 (subject to universal motor excitation) and the bridge 2 (free of excitation) increases when

the distance between them decrease. This result has indeed been obtained theoretically on

the curve of the Fig. 3.13 for which the deflection amplitudes of the bridges increase with

coupling parameters C12 and C21; i.e. when the distance between the two bridges decreases.
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Figure 3.18: Experimental transverse displacement for several distances between the two

bridges: (a) bridge 1; (b) bridge 2.
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We can therefore conclude once again that the mathematical model we have developed is

qualitatively valid.

We have shown in these previous two paragraphs that the proposed mathematical

model of two coupled beam bridges is qualitatively satisfactory. To investigate the perfor-

mance of the QZS vibration isolation on vibration isolation of these two coupled bridges,

let us explore the dynamic behavior of a multi-span continuous beam bridge under QZS

vibration isolation in the next two sections.

3.3 Isolation performance of a quasi-zero stiffness isola-

tor in vibration isolation of a multi-span continuous

beam bridge under pier base vibrating excitation

3.3.1 Model description, modelling and modal equations of a beam

bridge under base vibrating excitation

a) Model description

The mechanical model of transverse vibration of a multi-span continuous beam bridge

under QZS vibration isolators is shown in Fig. 3.19 where each QZS vibration isolator is made

up of a QZS system connected in parallel with a viscous damper of damping coefficient C

as shown in Fig. 2.9. Both boundaries of the bridge are simply supported and isolation is

achieved by including the QZS vibration isolators under each pier of the bridge located at

the positions Xj. L represents the length of the bridge, T and X are the time and the axial

coordinate of the bridge, respectively.
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Figure 3.19: Mechanical model of the beam bridge with the QZS vibration isolators

b) Governing equation of a beam bridge with and without control

The transverse displacement of a homogeneous, isotropic and uniform elastic beam

bridge subjected to a time varying load is described by the well-known Euler-Bernoulli

equation as follows

ρS
∂2Y

∂T 2
+ Cb

∂Y

∂T
+ EI

∂4Y

∂X4
= F (X, T ) , (3.38)

where Y (X, T ) is the transverse deflection of the beam bridge, ρ and E are the density of

the beam and Young’s modulus of the beam, respectively; S and I are the area and second

moment of area of beam’s cross section, respectively; Cb is the external viscous damping

coefficient of the beam and F (X, T ) represents all the external loads including the external

forces FQZS due to the QZS vibration isolators under each pier of the beam bridge and defined

by Eq. (2.50). Given that the beam bridge is simply supported, the boundary conditions of

the problem are given by

Y (X, T )|X=0,X=L = 0 and
∂2Y (X, T )

∂X2

∣

∣

∣

∣

X=0,X=L

= 0. (3.39)

To investigate the performance of the QZS vibration isolation on bridge vibration, let’s

consider a sinusoidal base vibrating excitation Z = Z0 cosΩT , so the dynamical equations
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of the beam bridge can be derived as following, where δ (·) is the Dirac function, N and Xj

are the number and the positions of the QZS vibration isolators located under the piers of

the beam bridge, respectively.

• with QZS vibration isolators

The dynamical equation of a beam bridge with the N QZS vibration isolators can be

obtained as

ρS
∂2Y

∂T 2
+ Cb

∂Y

∂T
+ EI

∂4Y

∂X4
+

N
∑

j=1

(

C
∂ (Y − Z)

∂T
+
αQZS

a30
kvL0 (Y − Z)3

)

δ (X −Xj) = 0.

(3.40)

• without QZS control

The dynamical equation of a beam bridge without QZS control can be obtained as

ρS
∂2Y

∂T 2
+ Cb

∂Y

∂T
+ EI

∂4Y

∂X4
= −ρS

N
Z̈

N
∑

j=1

δ (X −Xj), (3.41)

where Z̈ = −Ω2Z0 cosΩT . So, Eq. (3.41) can be rewritten as

ρS
∂2Y

∂T 2
+ Cb

∂Y

∂T
+ EI

∂4Y

∂X4
=
ρSΩ2Z0

N

N
∑

j=1

δ (X −Xj) cosΩT. (3.42)

• with linear viscoelastic isolators

For a linear viscoelastic isolator obtained from the corresponding QZS vibration isolator

without the horizontal auxiliary springs, Eq. (2.50) giving the external force due to the

nonlinear QZS vibration isolator can be rewritten as

FLinear = −C∂Y
∂T

− kvY. (3.43)

So, the dynamical equation of a beam bridge with the N linear viscoelastic isolators can be

obtained as

ρS
∂2Y

∂T 2
+ Cb

∂Y

∂T
+ EI

∂4Y

∂X4
+

N
∑

j=1

(

C
∂ (Y − Z)

∂T
+ kv (Y − Z)

)

δ (X −Xj) = 0. (3.44)
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c) Modal analysis

Let’s introduce the following non-dimensional parameters

y =
Y

L0
, z =

Z

L0
, z0 =

Z0

L0
, x =

X

L
, xj =

Xj

L
, (3.45)

a =
a0
L0

, αQZS =
a

2 (1− a)
, γQZS =

αQZS

a3
=

1

2a2 (1− a)
, (3.46)

t = Tω0, ω0 =
π2

L2

√

EI

ρS
, cb =

Cb

ρSω0

, c =
2C

ρSLω0

, k =
2kv

ρSLω2
0

, ω =
Ω

ω0

, (3.47)

so that the motion equations, Eqs. (3.40), (3.42) and (3.44) can be rewritten in their non-

dimensional form given by Eqs. (3.48), (3.49) and (3.50), respectively.

∂2y

∂t2
+ cb

∂y

∂t
+

1

π4

∂4y

∂x4
+
L

2

N
∑

j=1

[

c

(

∂y

∂t
− dz

dt

)

+ γQZSk (y − z)3
]

δ (x− xj) = 0, (3.48)

∂2y

∂t2
+ cb

∂y

∂t
+

1

π4

∂4y

∂x4
=
z0ω

2

N

N
∑

j=1

δ (x− xj) cosωt, (3.49)

∂2y

∂t2
+ cb

∂y

∂t
+

1

π4

∂4y

∂x4
+
L

2

N
∑

j=1

[

c

(

∂y

∂t
− dz

dt

)

+ k (y − z)

]

δ (x− xj) = 0, (3.50)

with boundary conditions

y (x, t)|x=0,x=1 = 0 and
∂2y (x, t)

∂x2

∣

∣

∣

∣

x=0,x=1

= 0. (3.51)

3.3.2 Resonance responses

In ordre to obtain the modal equations, the Galerkin method is applied. This method of

separation of variables suggests the solutions of the equations of motion (Eqs. (3.48), (3.49)

and (3.50)) into the following form

y (x, t) =
Nmax
∑

n=1

φn (x) qn (t), (3.52)
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where Nmax is an integer greater than 1, qn (t) the amplitude of the nth mode of vibration and

φn (x) the mode shapes, given in accordance with the boundaries conditions of the problem

by

φn (x) = sin (nπx) . (3.53)

By applying the Galerkin method, the modal ordinary differential equations (3.54), (3.55)

and (3.56) can be derived for the motion partial differential equations (3.48), (3.49) and

(3.50), respectively as

q̈m + cbq̇m + ω2
mqm + c

N
∑

j=1

sin (mπxj)

[

Nmax
∑

n=1

q̇n sin (nπxj) + z0ω sinωt

]

+ γQZSk
N
∑

j=1

sin (mπxj)

[

Nmax
∑

n=1

qn sin (nπxj)− z0 cosωt

]3

= 0,

(3.54)

q̈m + cbq̇m + ω2
mqm =

2z0ω
2

NL

N
∑

j=1

sin (mπxj) cosωt, (3.55)

q̈m + cbq̇m + ω2
mqm + c

N
∑

j=1

sin (mπxj)

[

Nmax
∑

n=1

q̇n sin (nπxj) + z0ω sinωt

]

+ k
N
∑

j=1

sin (mπxj)

[

Nmax
∑

n=1

qn sin (nπxj)− z0 cosωt

]

= 0,

(3.56)

where ωm = m2 is the non-dimensional natural frequency of the mth mode of the beam

bridge, with m = 1, 2, ..., Nmax.

3.3.3 Absolute motion transmissibility

A more valuable parameter for the assessment of the isolation properties of the QZS vi-

bration isolators is the absolute motion transmissibility which is defined as the ratio between

the displacement of the beam bridge at a given point and that of the pier base. So, when

the steady-state response occurs for the mth mode, the absolute motion transmissibility of
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the QZS vibration isolators can be defined as follow

Tam =
|ym|max

|z|max

=
|qm|max sin (mπx)

z0
=
Am sin (mπx)

z0
, (3.57)

where Am is the response amplitude of the mth shape mode of the beam bridge, z0 is the

magnitude of the base excitation and sin (mπx) is the shape function of the mth mode of vi-

bration. This expression of absolute motion transmissibility (Eq. (3.32)) have the same forms

as the linear viscoelastic isolators. The next section aims to show the benefits of employing

a QZS isolation mount. This is done by comparing the absolute motion transmissibility of

the QZS vibration isolators with that of the equivalent linear viscoelastic supports.

3.3.4 Dynamical explanation

In this work, the number of vibration modes is set as Nmax = 4. Eqs. (3.54), (3.55) and

(3.56) are numerically solved by using the RK4 method in other to generate the transverse

response of the beam bridge in the presence of QZS vibration isolators, without a QZS control

and in the presence of linear vicoelastic isolators, respectively. The initial values for the first

calculations are set as q1 = 0.01 (i.e. Y1 = 0.01L0), q̇1 = 0, qn = 0, q̇n = 0 for n = 2, 3, 4 and

the non-dimensional magnitude of the base excitation is z0 = 0.05 (i.e. Z0 = 0.05L0). Table

3.2 presents the physical and geometrical parameters values of the QZS vibration isolators

used under a seven-span beam bridge with wood material [?,29,104]. In the following study,

the parameter values are assigned as listed in Table 3.2 if there is no special mention.

The non-dimensional parameters are obtained by calculation on the basis of Eqs. (3.46),

(3.47) and I = bh3

3
= 2, 59× 10−8 m4 as follows

a = 0.67, γQZS = 3.375, ω0 = 79.69 rad/s, cb = 0.290, c = 0.019, k = 2.43.

So, the first four natural frequencies of the beam bridge are determined as Ω1 = 79.69 rad/s
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Table 3.2: Physical and geometric parameters of the wooden beam bridge and the QZS

vibration isolators

Item Notation Value

Young’s modulus of the beam E 5.5 GPa

Density of the beam ρ 800 Kg/m3

Length of the beam L 1.5 m

Width of the beam b 0.045 m

Height of the beam hb 0.012 m

External damping of the beam Cb 10 N.s/m2

Viscosity damping of the spring C 0.5 N.s/m

Initial length of the horizontal spring L0 0.1 m

Horizontal length of the horizontal spring a0 0.067 m

Horizontal spring linear stiffness k0 5000 N/m

Vertical spring stiffness kv 5000 N/m

Number of piers N 6

positions of the piers Xj Xj = 0.133 + 0.247× (j − 1) m
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(f1 = 12.68 Hz), Ω2 = 318.74 rad/s (f2 = 50.73 Hz), Ω3 = 717.16 rad/s (f3 = 114.14 Hz) and

Ω4 = 1274.95 rad/s (f4 = 202.92 Hz). Moreover, the corresponding mode functions of the

transverse vibration can be obtained. The RK4 algorithm is used to compute the numerical

solutions of Eqs. (3.54), (3.55) and (3.56) for the above non-dimensional parameters.

a) Resonant vibration without and with control

In this subsection, amplitude and motion transmissibility curves are plotted versus the

excitation frequencies ω of the sinusoidal base excitation. The steady-state amplitude Am

and the absolute motion transmissibility Tam are plotted in Figs. 3.20, 3.21, 3.22 and 3.23 for

the first four modal primary resonances (m=1,2,3 and 4) of the beam bridge in the following

cases: firstly in the presence of QZS vibration isolators, then without QZS control and finally

in the presence of linear viscoelastic isolators.
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Figure 3.20: The steady-state amplitude (a) and the absolute motion transmissibility (b) for

first-order primary resonance of the beam bridge without and with control (QZS and linear

viscoelastic controls)

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter III: Results and Discussion 112

ω
5 10 15 20

A
2

×10
-5

0

0.5

1

1.5

2

2.5
(a)

QZS

Linear Stiffness

Without control

ω
5 10 15 20

20
lo
g(
T a

2)
(d
B
)

-300

-250

-200

-150

-100

-50

0
(b)

QZS

Linear Stiffness

Without control

Figure 3.21: The steady-state amplitude (a) and the absolute motion transmissibility (b)

for second-order primary resonance of the beam bridge without and with control (QZS and

linear viscoelastic controls)

It can be argued that there are two indices that allow measuring the effectiveness

of a vibration isolator: the first one is the bandwidth of the isolation region, which is the

frequency region within which the transmitted motion amplitude becomes smaller than the

base excitation amplitude, that is when Tam < 1 (i.e. 20log (Tam) < 0 dB); the other is

the peak-transmissibility, which is the maximum amplitude of the transmitted motion for a

given amplitude of the base excitation. Figs. 3.20, 3.21, 3.22 and 3.23 show that for all the

first four modes of vibration,

(a) both linear and QZS vibration control methods are effective for high frequencies after the

resonance region but only the QZS vibration isolators are able of attenuating low frequency

vibrations;

(b) the linear viscoelastic isolators modifie the natural frequencies of the beam bridge while

the QZS vibration isolators keeps them constant;
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Figure 3.22: The steady-state amplitude (a) and the absolute motion transmissibility (b) for

third-order primary resonance of the beam bridge without and with control (QZS and linear

viscoelastic controls)

(c) in the presence of the control, the vibration amplitudes of the first-order mode are very

large compared to those of the other three modes, confirming that most of the energy of the

beam bridge is concentrated in the first mode [29, 166].

In order to confirm the effectiveness of the two control methods, the dynamical re-

sponses of the first four modes of vibration of the beam bridge when the exciter vibrates at

their resonance frequencies have been plotted in Fig. 3.24. This figure clearly shows that the

QZS control method is more efficient than the linear viscoelastic control method for the first

four modes of vibration.

b) Evaluation of the vibration isolation performance of the QZS control

The vibration isolators are sometimes used to isolate the displacement excitation trans-

mitted from the base to the working equipment. In this subsection, the effects of some
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Figure 3.23: The steady-state amplitude (a) and the absolute motion transmissibility (b)

for fourth-order primary resonance of the beam bridge without and with control (QZS and

linear viscoelastic controls)

parameters on the absolute transmissibility of steady-state behaviors are investigated, in-

cluding geometrical arrangement ratio γQZS, vertical spring stiffness k of the QZS vibration

isolators and for the corresponding linear viscoelastic isolators, damping coefficient c and

excitation magnitude z0. The absolute motion transmissibility curves of the system for these

different parameters are plotted in Figs. 3.28, 3.29 and 3.30 for the beam bridge, (a) under

QZS control and (b) under linear viscoelastic control. Then, the benefit of QZS isolators

is verified when some conditions are satisfied, by comparing the absolute motion trans-

missibility of the QZS vibration isolators with that of the corresponding linear viscoelastic

isolators. The analysis is limited to the first mode of vibration of the midspan of the beam

bridge where sin (mπx) = 1, insofar as the first mode is expected to carry most of the energy,

and therefore one hopes that it could suffice to obtain a first estimate of the system behavior.
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Figure 3.24: Times histories of the first four primary resonance of the beam bridge: (a) first-

order with ω = ω1 = 1, (b) second-order with ω = ω2 = 4, (c) third-order with ω = ω3 = 9

and (d) fourth-order with ω = ω4 = 16
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• Effect of the nonlinear term of the QZS vibration isolator

Let us recall the geometric ratio αQZS is given from Eq. (2.47) as follows

αQZS =
a

2 (1− a)
. (3.58)

So, for a given value of a, there is only one value of the stiffness ratio α that ensures zer

stiffness behavior. Equivalently, the value aQZS that gives quasi-zero stiffness for a given

value of the stiffness ratio α is

aQZS =
2α

2α+ 1
. (3.59)

The subscript QZS on either α or a is used to denote that the other parameter is not

independent, but has been chosen in accordance with Eqs. (3.58) and (3.59) so as to achieve

stable QZS behavior. The combinations of stiffness ratio α and geometric ratio a that give

rise to stable QZS are shown in graphical form in Fig. 3.25. This figure shows that for

small initial angles (a ≈ 1, i.e. θ0 ≈ 0◦) and according to the expression of the parameter

α given in Eq. (2.44), the order of magnitude of the stiffness of the inclined springs needs

to be larger than this of the vertical spring. Furthermore, for moderate initial inclination

angle of is a moderate (0.4 < a < 0.8, i.e. θ0 ≈ 36◦ − 66◦), vertical and inclined springs

of similar stiffnesses can be used. The combinations of nonlinear geometric parameter γQZS

and geometric ratio a that give rise to stable QZS have been plotted in Fig. 3.26. This figure

shows that for great initial inclination angle (a < 0.2, i.e. θ0 ≈ 78◦ − 90◦), the nonlinear

geometric parameter γQZS presents very large values, which means that the isolation system

involves a strong nonlinearity. The smallest values of control parameter γQZS (γQZS = 3.375)

is obtained for a = 0.67, corresponding to the initial inclination angle θ0 = 48◦. Then, the

steady-state amplitude and the absolute motion transmissibility for the first mode of the

beam bridge for different values of the nonlinear geometric parameter γQZS are studied and

plotted in Fig. 3.27. This figure shows that the vibration amplitude and the absolute motion
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Figure 3.25: Combinations of geometric ratio a and stiffness ratio α that yield QZS
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Figure 3.26: Combinations of geometric ratio a and nonlinear geometric parameter γQZS that

yield QZS
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transmissibility increase gradually with the nonlinear term of the system, and the bend of

the curve is more and more obvious. Furthermore, for strong nonlinearities (γQZS = 26.1

and γQZS = 55.6), the frequency of resonance is shifted to the high frequency region and

jump phenomenon occur. Therefore, geometric nonlinearity is not beneficial for the vibration

isolation.
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Figure 3.27: Effect of the nonlinear geometric parameter γQZS on (a) the steady-state am-

plitude and (b) the absolute transmissibility of the beam bridge for γQZS = 4.0 (a = 0.50),

γQZS = 7.9 (a = 0.30), γQZS = 26.1 (a = 0.15) and γQZS = 55.6 (a = 0.10)

• Effect of the vertical spring stiffness

The absolute motion transmissibility of the first mode of vibration of the beam bridge

for different values of the vertical spring stiffness (a) under QZS control and (b) under linear

viscoelastic control are plotted in Fig. 3.28 in order to study the effect of the vertical spring

stiffness on the performance of the two types vibration isolators. Fig. 3.28(a) shows that the

vertical spring stiffness presents similar effects on the dynamics of the beam bridge as those
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observed with the nonlinear term of the QZS vibration isolators. It can be seen that smaller

stiffness yields smaller motion transmissibility, i.e. better isolation performance of the QZS

vibration isolators. On the other hand, Fig. 3.28(b) shows that the motion transmissibil-

ity depends strongly on the value of the vertical spring stiffness k of the linear viscoelastic

isolators with which it increases, as well as the isolation frequency band. In addition, the fre-

quency of resonance is also shifted to the high frequency region while k increases. Therefore,

vertical spring stiffness is not beneficial for the vibration isolation both for QZS vibration

isolator and its equivalent linear viscoelastic isolator. But it can be seen that, QZS vibration

isolator could have a remarkable benefit in isolation performance compared to the linear one.
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Figure 3.28: Effect of the vertical spring stiffness on the absolute transmissibility of the

beam bridge (a) under QZS control and (b) under linear viscoelastic control for k = 1,

k = 5, k = 10 and k = 20

• Effect of the viscosity damping of the QZS vibration isolator

Fig. 3.29 shows the absolute motion transmissibility of the QZS vibration isolators and
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linear viscoelastic isolators for various values of the damping coefficient c. Fig. 3.29(a) shows

that the absolute motion transmissibility of the QZS vibration isolators increase with the

viscous damping, with sacrificing the performance of the nonlinear isolators. This result is too

original in this case of base vibration control of a beam bridge with QZS vibration isolators.

Since in most of the cases where QZS vibration isolator is applied for discrete structures,

the absolute transmissibility undergoes a reduction as the damping increases [111,156,167],

similarly to the case of damping effect on linear viscoelastic isolator an shown in Fig. 3.29(b).

From the above analysis, it can be concluded that, QZS vibration isolator could have a

remarkable benefit in isolation performance for relatively low damping or without damping.

Fig. 3.29(b) shows that the increase of viscous damping lowers the absolute transmissibility

at resonance frequency but deteriorates the higher frequency vibration attenuation rate.
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Figure 3.29: Effect of viscosity damping on the absolute transmissibility of the beam bridge

(a) under QZS control and (b) under linear viscoelastic control for c = 0, c = 0.1, c = 0.5

and c = 1.0
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• Effect of magnitude of the base excitation

The effect of the base excitation amplitude on the performance of the QZS vibration

isolators and the linear viscoelastic isolators is shown in Fig. 3.30. As shown in Fig. 3.30(a),

for the QZS vibration isolators, the absolute motion transmissibility increases with the ex-

citation amplitude. Furthermore, for large amplitudes, the steady-states frequency response

curve is characterised by a jump phenomenon and the curve presents unstable solutions. In

addition, the shift of the resonance peak to the high frequencies can be also observed when

the excitation amplitude increase. This means that the use of the QZS vibration isolators is

more suitable in the conditions where the vibration excitation is smaller. For linear viscoelas-

tic isolators, the absolute motion transmissibility is unrelated to the excitation amplitude as

shown in Fig. 3.30(b).
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Figure 3.30: Effect of magnitude of base excitation on the absolute transmissibility of the

beam bridge (a) under QZS control and (b) under linear viscoelastic control for z0 = 0.01,

z0 = 0.05, z0 = 0.10 and z0 = 0.15

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter III: Results and Discussion 122

3.4 Vibration isolation of a multi-span continuous beam

bridge under moving mass using QZS vibration iso-

lators

3.4.1 Model description, modelling and modal equations of the bridge-

QZS vibration isolators coupled system

a) Model description and modelling

In order to point out the effectiveness of QZS vibration isolators on the dynamics of a

multi-span continuous beam bridge subjected to a single moving load with a constant speed

v, let’s consider the beam bridge-QZS vibration isolators coupled system shown in Fig. 3.31.

Let X and T denote the independent spatial and time variables, respectively. It is assumed

that the mass travels from left to right in the direction X at the constant speed v and the

beam vibrates only in the Y direction.

The multi-span continuous beam bridge is modeled as a single simply supported span

resting on intermediate QZS vibrations isolators placed on each pier of the bridge. The bridge

is considered as a damped linear elastic Euler-Bernoulli beam of length L, density ρ, cross-

sectional area S, Young’s modulus E, second moment of inertia with respect to the neutral

axis I, and supported by N QZS vibration isolators located above the piers at positions Xj

(j = 1, ..., N) as shown in Fig. 3.31.

The governing equation of motion of the bridge-QZS vibration isolators coupled system

under the action of the moving mass M can be written as

ρS
∂2Y

∂T 2
+ Cb

∂Y

∂T
+ EI

∂4Y

∂X4
= ζ (T )Fmov (X, T ) +

N
∑

j=1

Fj_QZS (X, T ) , (3.60)
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Figure 3.31: Mechanical model of a beam bridge under QZS isolators

with

ζ (T ) = H (vT )−H (vT − L) , (3.61)

where H (·) is the Heaviside step function that defines the time periods during which the

moving mass just comes onto and leaves the beam, Y (X, T ) is the transverse motion at

position X and time T , ρS is the mass per unit of length, EI is the bending stiffness, Cb is

the damping coefficient of beam bridge, Fj_QZS (X, T ) is the external force due to the QZS

isolator under the jth pier of the bridge approximated by Eq. (3.62) and Fmov (X, T ) is the

moving load defined by Eq. (3.63) [168–171] as follows

Fj_QZS (X, T ) = −
(

C
∂Y

∂T
+
αQZS

a30
kvL0Y

3

)

δ (X −Xj) , (3.62)

Fmov (X, T ) =

[

Mg −M

(

∂2Y

∂T 2
+ 2v

∂2Y

∂T∂X
+ v2

∂2Y

∂X2

)]

δ (X − vT ) , (3.63)

where g is the gravitational acceleration, δ (·) is the Dirac delta function, C is the damping

coefficient of the QZS isolator and αQZS is the geometric ratio of the QZS system defined as

αQZS =
a0

2 (L0 − a0)
. (3.64)
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So, the equation of motion (Eq. (3.60)) can be rewritten as follow

ρS ∂2Y
∂T 2 + Cb

∂Y
∂T

+ EI ∂4Y
∂X4 +

∑N
j=1

(

C ∂Y
∂T

+
αQZS

a3
0

kvL0Y
3
)

δ (X −Xj) =

ζ (T )
[

Mg −M
(

∂2Y
∂T 2 + 2v ∂2Y

∂T∂X
+ v2 ∂2Y

∂X2

)]

δ (X − vT )

, (3.65)

with the boundary conditions of a simply supported beam given by

Y (X, T )|X=0,X=L = 0 and
∂2Y (X, T )

∂X2

∣

∣

∣

∣

X=0,X=L

= 0. (3.66)

In order to investigate the performance of vibration isolation of the QZS isolator on

the beam bridge vibration, let us derive the modal equations.

b) Modal equations

It is convenient to introduce the following non-dimensional quantities

x =
X

L
, xj =

Xj

L
, y =

Y

L0

, a =
a0
L0

, αQZS =
a

2 (1− a)
, τ =

vT

L
. (3.67)

so that the motion equation (Eq. (3.65)) and the boundary conditions given by Eq. (3.66)

can be rewritten in their non-dimensional forms as follow

∂2y

∂τ2
+ CbL

ρSv

∂y

∂τ
+ EI

ρSL2v2
∂4y

∂x4 +
∑N

j=1

[

CL
ρSv

∂y

∂τ
+

αQZSkv

a3
L2

ρSv2
y3
]

δ (x− xj) =

ζ (τ)
[

MgL2

ρSL0v2
− M

ρS

(

∂2y

∂τ2
+ 2 ∂2y

∂τ∂x
+ ∂2y

∂x2

)]

δ (x− τ)

, (3.68)

where

ζ (τ) = H (τ)−H (τ − 1) =











1, τ ≤ 1

0, τ > 1

, (3.69)

with boundary conditions rewritten as follows

y (x, τ)|x=0,x=1 = 0 and
∂2y (x, τ)

∂x2

∣

∣

∣

∣

x=0,x=1

= 0. (3.70)

To obtain the modal equations, the MS method is applied. This method suggests the

solution of the equation of motion (Eq. (3.68)) into the following form

y (x, τ) =
∞
∑

n=1

φn (x) qn (τ) , (3.71)
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where φn (x) are the mode shapes, given in accordance with the boundary conditions of the

problem by

φn (x) = sin (nπx) , (3.72)

and qn (τ) is the amplitude of the nth mode of vibration. Substituting Eq. (3.72) into Eq.

(3.68), multiplying by φm (x) = sin (mπx), integrating over the beam length [0, L] and using

the orthogonality condition, leads to the modal equations

q̈m + cbq̇m + ω2
mqm +

∑N
j=1

[

c
∑∞

n=1 q̇nφn (xj) +
2L

ρSv2
κQZS (

∑∞
n=1 qnφn (xj))

3
]

φm (xj) =

2ε [P − (
∑∞

n=1 q̈nφn (τ) + 2
∑∞

n=1(nπ)q̇n cos (nπτ)−
∑∞

n=1(nπ)
2qnφn (τ))]φm (τ) ζ (τ)

.

(3.73)

In Eq. (3.73), dots stand for derivatives with respect to the non-dimensional time τ

and

cb =
CbL

ρSv
, c =

2C

ρSv
, κQZS =

αQZSkv
a3

, P =
gL2

L0v2
. (3.74)

ε =
M

ρSL
(3.75)

is the non-dimensional parameter describing the ratio of the moving mass M to the mass of

the beam bridge given by ρSL. ωm is the mth beam natural frequency nondimensionalized

with respect to frequency of moving load. Thus ωm = $m
L
v
, with $m =

(

mπ
L

)2
√

EI
ρS

the

natural frequency of the mth mode of vibration of the beam bridge.

We will focus our attention on the efficiency of vibration reduction due to the QZS

vibration isolators. As most of the energy of the beam bridge is concentrated in the first

mode [106, 171, 172], a single mode model will be adopted. Hence, modal equation (Eq.

(3.73)) can be rewritten in the following form

q̈ + ω2
1q = −2εηω1q̇ − 2εβκQZSq

3+2εP sin (πτ) ζ (τ)

− 2ε
[

q̈ sin2 (πτ) + 2πq̇ cos (πτ) sin (πτ)− π2q sin2 (πτ)
]

ζ (τ)

, (3.76)

where q (τ) is the amplitude of the first mode,

ω1 = $1
L

v
, (3.77)
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with

$1 =
(π

L

)2

√

EI

ρS
, (3.78)

2ηεω1 = cb + c
N
∑

j=1

sin2 (πxj) , (3.79)

εβ =
L

ρSv2

N
∑

j=1

sin4 (πxj) . (3.80)

From Eq. (3.76), it is obvious that when π = ω1, the constant force term on the

right-hand side of Eq. (3.76) behaves like a harmonic excitation with the frequency of the

excitation corresponding to a natural frequency of the beam, and therefore even a constant

moving force can excite the structure into resonance under these conditions. The resonant

speed [55], called critical speed, is defined as

vc =
L$1

π
. (3.81)

Eq. (3.76) is a differential equation with time-dependent periodic coefficients. As such, there

is no exact solution [55]. Nevertheless, approximate analytic methods and often numerical

methods are used.

3.4.2 Analytical formulation and parametric resonance

If the parameter ε is small, a perturbation method known as method of multiple scales

can be used to find approximate analytic solution of Eq. (3.76) for τ ≤ 1 (i.e. for ζ (τ) = 1).

Accordingly, this solution is expressed in terms of different time scales as

q (τ, ε) = q0 (τ0, τ1) + εq1 (τ0, τ1) + . . . , (3.82)

where τm represents different independent time scales given by

τm = εmτ,m = 0, 1, .... (3.83)
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So, τ0 = τ and τ1 = ετ . Substituting Eq. (3.82) in Eq. (3.76) and noting that

d

dτ
= D0 + εD1 + . . . and

d2

dτ 2
= D2

0 + 2εD0D1 + . . . , (3.84)

where

Dm =
∂

∂τm
, i.e. D0 =

∂

∂τ0
and D1 =

∂

∂τ1
. (3.85)

The following sets of linear ODEs result

ε0 : D2
0q0 + ω2

1q0 = 0, (3.86a)

ε1 : D2
0q1 + ω2

1q1 = −2D0D1q0 − 2ηω1D0q0 − 2βκQZSq
3
0 + 2P sin (πτ0)

− 2
[

D2
0q0 sin

2 (πτ) + 2πD0q0 cos (πτ) sin (πτ)− π2q0 sin
2 (πτ)

]

, (3.86b)

et cetera.

The solution of Eq. (3.86a) reads

q0 = A1 exp (iω1τ0) + c.c., (3.87)

where A1 is a complex amplitude to be determined, c.c. stands for the complex conjugate

and i = (−1)1/2. The substitution of q0 in Eq. (3.86b) results in

D2
0q1 + ω2

1q1 = −2ω1 [iD1A1 exp (iω1τ0) + c.c.]− 2ηω2
1 [iA1 exp (iω1τ0) + c.c.]

− 2βκQZS

[

A3
1 exp (3iω1τ0) + 3A2

1Ā1 exp (iω1τ0)+c.c.
]

− P [i exp (iπτ0) + c.c.]

− 1
2







−2 (ω2
1 + π2)A1 exp (iω1τ0) + (ω1 + π)2A1 exp (i (ω1 + 2π) τ0)

+ (ω1 − π)2 Ā1 exp (i (−ω1 + 2π) τ0) + c.c.







.

(3.88)

It can be seen from the terms on the right-hand side of Eq. (3.88) that the moving load

inertial effect is manifested in the form of parametric resonance when ω1 approaches π.

Furthermore, when ω1 approaches π, secular terms develop. The complex amplitude A1 is

now obtained from the condition that these terms are to be eliminated from of Eq. (3.88).

Ph.D in Structural Analysis by SONFACK BOUNA Hervé ?UY1/FS?



Chapter III: Results and Discussion 128

Let’s introduce a detuning parameter λ to quantify the deviation of ω1 from π in the

form

π = ω1 + ελ. (3.89)

Equating the secular terms to zero leads to the condition on the complex amplitude A1 given

by

2iω1D1A1 = −2iηω2
1A1 + (ω2

1 + π2)A1 − 1
2
(ω1 − π)2 Ā1 exp (2iελτ0)

− 6βκQZSA
2
1Ā1 − iP exp (iελτ0)

, (3.90a)

D2
0q1 + ω2

1q1 = −1
2
(ω1 + π)2 [A1 exp (i (3ω1 + 2ελ) τ0) + c.c.]

− 2βκQZS [A
3
1 exp (3iω1τ0) +c.c.]

. (3.90b)

Noting that the complex amplitude A1 is independent of τ0 and assuming A1 to be of the

form

A1 =
1

2
a1 exp (iθ) , (3.91)

with amplitude a1 = a1 (τ1) and phase θ = θ (τ1), Eq. (3.90a) results in the following two

first-order differential equations for the amplitude and the transformed phase ϕ = ελτ0− θ,

ω1ȧ1 = −εηω2
1a1 − 0.25ε (ω1 − π)2 a1 sin 2ϕ− εP cosϕ, (3.92a)

ω1a1ϕ̇ = εω1λa1 − 0.25ε (ω1 − π)2 a1 cos 2ϕ+ 0.5ε
(

ω2
1 + π2

)

a1 − ε
3

4
βκQZSa

3
1 + εP sinϕ.

(3.92b)

Eqs. (3.92) can be directly integrated to obtain a1 and ϕ for the modal response in the

transient period. The transient solution of the first mode valid up to the order of ε is obtained

by combining Eqs. (3.82), (3.87) and the solution q1 from Eq. (3.90b). It is given by

q (τ, ε) = a1 cos (πτ − ϕ)+ε

[

(ω1 + π) a1
8π

cos (3πτ − ϕ) +
βκQZSa

3
1

16ω2
1

cos (3πτ − 3ϕ)

]

. (3.93)

By substituting Eq. (3.93) in Eq. (3.71), the non-dimensional beam deflection can be obtained

at each point of the beam bridge as

y (X, τ) = q (τ, ε) sin

(

πX

L

)

. (3.94)
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In the next subsection, we will explore the dynamical response of the beam bridge

using numerical simulation of governing equations.

3.4.3 Numerical simulation

In this work, Eqs. (3.76) and (3.92) are numerically solved by a RK4 algorithm in

order to generate the numerical and the semi-analytical transverse responses of the beam in

presence and in absence of QZS control. The initial values for the first calculations are set

as q = 0, q̇ = 0, a1 = 0, and ϕ = 0.

Table 3.3 presents the physical and geometrical parameter values of a beam bridge

[29, 173]. In the following study, the parameter values are assigned as listed in Table 3.3 if

there is no special mention.

Some important parameters are obtained by calculation on the base of Eqs. (3.67),

(3.74), (3.75), (3.78), (3.79) and (3.81) as

κQZS = 20000 N/m, ε = 0.3, $1 = 17.89 rad/s, η = 0.17, vc = 8.5 m/s.

a) Validation of analytical study and effectiveness of the QZS isolation

Semi-analytical and numerical non-dimensional maximum deflection versus mass ratio

at the critical speed vc = 8.5 m/s are plotted on the same graph in Fig. 3.32. It appears from

this figure that the curves obtained from numerical and semi-analytical methods coincide

only for very small values of mass ratio ε (ε < 0.01 approximately). The larger ε, the greater

the gap between the two curves, reflecting the divergence of the semi-analytical solution to

the numerical solution. Therefore, the method of multiple scales used to determine the semi-

analytical solution can only be used to determine only an approximate analytical solution

whose deviation to the exact solution is even lower than when the value of ε is small. As

ε = 0.3 in this work, let us use only the numerical solution in the following to highlight the
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Table 3.3: Physical and geometric parameters of a wooden beam bridge

Description Parameter Value

Bending stiffness EI 3.66 N.m2

Mass per unit length ρS 0.22 kg/m

Length of the beam L 1.5 m

External damping of the beam Cb 0.001 N.s/m2

Viscosity damping of the spring C 0.1 N.s/m

Mass of the moving load M 0.1 kg

Initial length of the horizontal spring L0 0.1 m

Horizontal length of the horizontal spring a0 0.05 m

Horizontal spring linear stiffness k0 2500 N/m

Vertical spring stiffness kv 5000 N/m

Number of piers N 6

Positions of the piers Xj Xj = 0.133 + 0.247× (j − 1) m
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effectiveness of the QZS control used in reducing vibrations of the beam bridge subjected to

moving mass.

mass ratio ε
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Figure 3.32: Comparison between numerical and semi-analytical non-dimensional maximum

deflection versus mass ratio ε under the moving mass at the critical speed v = vc = 8.5 m/s

Fig. 3.33 presents numerical non-dimensional maximum deflection versus moving mass

velocity in the presence of QZS control and without control. It can easily be seen that in

the presence of QZS vibration isolators, the vibration amplitudes are considerably reduced

at low speed of the moving mass and around the resonance peak. However, for high speeds

(v > 30 m/s), this reduction is less seen, the QZS vibration isolators have less effect. It can

be seen from the curves of Fig. 3.33 that QZS isolators are more effective for vibrations

produced at low speed, around the critical speed than those of high speeds after the critical

speed. The QZS isolators are therefore effective in reducing the vibration of bridges subjected

to moving mass. However, for a judicious choice of QZS isolators parameters that are the
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nonlinear term κQZS and the damping coefficient C, better results can be obtained in the

reduction of bridge vibrations as shown in Figs. 3.34 to 3.37.
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Figure 3.33: Numerical non-dimensional maximum deflection versus moving mass velocity

for ε = 0.3 in presence of QZS isolator and without control

b) Effects of the nonlinear term and the viscosity damping of QZS isolator

Figs. 3.34 and 3.35 show the mid-span deflection time histories plotted for two moving

mass velocity, one before the critical speed (v < vc) and the other after the critical speed

(v > vc) for different values of nonlinear term κQZS and damping coefficient C of the QZS

vibration isolators and when the moving mass is onto (τ ≤ 1) and out of (τ > 1) the beam

bridge. Figs. 3.34(a) and 3.35(a) show that when the speed of the moving mass is set as

v = 5 m/s < vc before the resonance peak, during and after its passage on the beam bridge,

the vibrations are more and more reduced as the nonlinear term and the damping coefficient

increase. However, this reduction is more felt after the passage of the moving mass when
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Figure 3.34: Effects of nonlinear term of QZS isolator on the beam bridge mid-span deflection

time histories when the moving mass is onto (τ ≤ 1) and out of (τ > 1) the beam bridge for

ε = 0.3 (a) v = 5 m/s (v < vc) and (b) v = 50 m/s (v > vc)
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moving mass position τ
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Figure 3.35: Effects of damping coefficient of QZS isolator on the beam bridge mid-span

deflection time histories when the moving mass is onto (τ ≤ 1) and out of (τ > 1) the beam

bridge for ε = 0.3 (a) v = 5 m/s (v < vc) and (b) v = 50 m/s (v > vc)
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Figure 3.36: Effects of nonlinear term of QZS isolator on the beam bridge non-dimensional

maximum dynamic response versus moving mass velocity for ε = 0.3 when the moving mass

is (a) onto the beam (τ ≤ 1) and (b) out of the beam (τ > 1)
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Figure 3.37: Effects of damping coefficient of QZS isolator on the beam bridge non-

dimensional maximum dynamic response versus moving mass velocity for ε = 0.3 when

the moving mass is (a) onto the beam (τ ≤ 1) and (b) out of the beam (τ > 1)
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the damping coefficient increases as shown in Fig. 3.35(a). For the speed v = 50 m/s > vc

after resonance peak, the same observations are made as the damping coefficient increases as

shown in Fig. 3.35(b). But when the nonlinear term of the QZS vibration isolators increases,

its effect is noticeable until the moving mass has left the beam bridge as shown in Fig.

3.34(b). When the moving mass is still on the beam bridge, no decrease in amplitude is

observed due to the presence of the QZS vibration isolators. The results obtained are found

and confirmed for other velocity values through the amplitude curves plotted as a function

of the moving mass velocity in Figs. 3.36 and 3.37.

All these results observed for singular values of speed lower and higher than the critical

speed are confirmed for a greater number of velocity values by the plot of non-dimensional

dynamical response of the beam bridge versus moving mass velocity in Figs. 3.36 and 3.37.

Figs. 3.37(a) and 3.37(b) show that the vibration amplitudes of the beam bridge do indeed

decrease when the damping coefficient increases whatever the moving mass velocity. After

the moving mass has left the beam bridge, similar observations are made by increasing the

nonlinear term as shown in Fig. 3.36(b). On the other hand, this observation is only valid

for the low speeds and those around the resonance peak when the nonlinear term increases

during the passage of the moving mass on the beam bridge. But for high speeds after the

resonance peak (v > 30 m/s), the nonlinear term has no effect on beam bridge vibrations as

shown in Fig. 3.36(a).

It follows that the combined effects of the nonlinear term and damping coefficient

give to QZS vibration isolators great efficiency in reducing the vibrations of beam bridges

subjected to a moving mass.
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3.5 Conclusion

The present chapter has presented the results obtained in our thesis. First of all, a

theoretical model of two bridges coupled via their close environment is developed and vali-

dated by lab experiments. Analytical, numerical and experimental studies of the dynamical

responses of the two coupled beam bridges are carried out in the cases where one of the

coupled bridges is subjected to a combination of sinusoidal excitation and periodic impulsive

force. The effects of the close environment and the distance between the two coupled bridges

on the dynamical responses of each of them is pointed out. Secondly, after a QZS vibration

isolator being designed and modelled, it is then placed between a beam bridge structure and

its piers to reduce its vibrations due to base excitation of the piers on one hand and to a mov-

ing mass on the other hand. The nonlinear intergro-partial differential governing equations

of the elastic beam bridge, in different cases of study are derived considering the geomet-

ric nonlinearity. Based on the modal analysis of the controlled beam bridge, the Galerkin

method is used to discretize and solve the governing equation. Finally, the efficiency of the

QZS vibration isolators on the transverse vibration of multi-span continuous beam bridges

is studied. It rises that QZS vibration isolators can extend the service life of a multi-span

continuous beam bridge by significantly reducing its vibrations.
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The experimental studies of the interactions of coupled bridges are relatively much

fewer than the theoretical studies of this problem in the literature. Therefore, it is essential to

combine the theoretical and experimental studies of this problem in order to gain knowledges

on bridge interactions. Analytical, numerical and experimental studies of the dynamical

responses and quasi-zero stiffness vibration isolation of two seven-span continuous beam

bridges indirectly coupled via their close environment are carried out in this thesis. Main

conclusions are presented below and future works are proposed.

Firstly, the experimental and theoretical studies are carried out on a model of two

seven-span continuous beam bridges indirectly coupled via their close environment. It ap-

pears that when one of the coupled bridges is excited, the amplitudes of vibration of each

coupled bridges depend on the mechanical characteristics of the coupling close environment

and the distance between the bridges. The experimental and theoretical results show that

the transverse displacements of the coupled bridges increase when the distance between them

decreases. Another information related to this work is that, the close environment made up

of the ground under the piers of the coupled bridges really acts like a viscoelastic Winkler

foundation. Therefore, the experimental scale model built in the laboratory give rise to the

validation of the theoretical modelling qualitatively. Secondly, the efficiency of a QZS vibra-

tion isolation on the transverse vibration of the two multi-span continuous coupled beam

bridges is studied when the beam bridge is subjected to pier base vibrating excitation on

one hand, and to moving mass on other hand.

For the beam bridge subjected to pier base vibrating excitation, the performance of

the quasi-zero stiffness vibration isolator and the equivalent linear viscoelastic isolator are

evaluated through steady-state response and absolute motion transmissibility of the beam

bridge. The following conclusions are drawn:

(1) The quasi-zero stiffness vibration isolator and the linear viscoelastic isolator are both
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effective for high frequencies but only the quasi-zero stiffness vibration isolator is able to

reduce low frequency vibrations.

(2) The linear viscoelastic isolator strongly change the natural frequencies of the beam bridge

compared to the quasi-zero stiffness vibration isolator.

(3) The quasi-zero stiffness vibration control is more efficient than the linear viscoelastic

control.

(4) A curious and original result observed in the presence of quasi-zero stiffness vibration

isolation shows that the increase of the viscous damping leads to an increase of the absolute

motion transmissibility by sacrificing the performance of nonlinear isolation.

(5) The quasi-zero stiffness vibration isolator is more powerful that nonlinear geometric term,

vertical spring stiffness, viscous damping and magnitude of base excitation are small. So, to

build a quasi-zero stiffness vibration isolator with better performance, the damper must be

removed and its vertical spring must be designed to have the lowest possible stiffness leading

to achieve a quasi-zero stiffness behavior.

For the beam bridge subjected to a moving mass, the method of multiple scales and the

fourth-order Runge-Kutta algorithm are used for analytical and numerical solutions of these

equations, respectively. The research has been focused on the analysis of the effectiveness of a

quasi-zero stiffness vibration isolator. The influence of different parameters on the dynamical

responses of the beam bridge is investigated and a particular attention is paid to the effects

of the nonlinear term and the damping coefficient of the QZS vibration isolator. Hence, from

the analysis and results presented in this thesis, the following conclusions are pointed out:

(6) The method of multiple scales analysis presented in this thesis is able to capture the

parametric resonance phenomenon that leads in moving mass problems.

(7) The influence of the moving mass inertia is manifested in the modal equations in the form

of the mass ratio parameter. This parameter is used in the perturbation analysis to bring out
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the semi-analytical solution of the beam bridge response. It appears from the results that

the semi-analytical solution is closed to the numerical solution only for very small values of

mass ratio.

(8) quasi-zero stiffness vibration isolators can significantly reduce the vibration of the multi-

span continuous beam bridge subjected to moving masses.

In summary, this thesis demonstrates the superiority of the quasi-zero stiffness vi-

bration isolation in comparison of the corresponding linear isolation. A quasi-zero stiffness

vibration isolator with suitable parameters has the advantage of more effectively isolating

unwanted vibrations transmitted from the foundation to the deck of the bridge, as it can

achieve excellent low-frequency isolation performance including low initial isolation frequency

and wide isolation frequency band. The application of the quasi-zero stiffness mechanism on

the design and development of novel earthquake-resistant systems can improve seismic per-

formance of buildings and bridge structures.

This work leads to perspectives which firstly go in the direction of improving its results

and secondly in the direction of the realization of such structures. The bridges studied in

this thesis are uniform girders that are different from many real bridges whose cross-section

is not uniform, such as continuous bridges, suspension bridges and cable-stayed bridges. In

addition, a real bridge for a high-speed railway line is normally made of prestressed concrete

with a sophisticated track system. Thus, an idea for future work is to build a more realistic

bridge specimen and study it theoretically and experimentally in the laboratory. Field tests

on real bridges could also be carried out in the future should such an opportunity arise.
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Abstract In this paper, we sought to develop a valid the-
oretical model of two bridges coupled via their dynamic
environment modelled as a linear viscoelastic Winkler foun-
dation. Analytical, numerical and experimental study of
the dynamic response of the two bridges are explored in
the cases where they are submitted to sinusoidal excita-
tion and periodic impulsive force. The effects of the close
environment and the distance between the two bridges on
the amplitude of vibration of each beam bridge is pointed
out.

Keywords Coupled bridges · Sinusoidal excitation ·
Periodic impulsive force · Vibration reduction · Winkler
foundation

1 Introduction

The experimental study of the vibration characteristics of
structural systems is an important element in our efforts to
understand and control many vibration phenomena encoun-
tered in design. Very often, tests are performed on a complex
structurewith the objective of obtaining an empirical descrip-
tion of its dynamic behavior, or providing verification for
an analytical or a numerical structural model [1–5]. To
quantify the dynamic response of a given structure, the
determination of its intrinsic dynamic properties such as

B B. R. Nana Nbendjo
nananbendjo@yahoo.com

1 Laboratory of Modelling and Simulation in Engineering,
Biomimetics and Prototypes, Faculty of Science, University
of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon

natural frequencies, vibration modes and damping, etc.,
is of particular importance. These structural characteris-
tics can be determined using a modal test [6]. Performing
a modal test on a structure allows an analyst to vali-
date results generated using a finite element, analytical or
numerical model, and so more confidence can be placed
on the structural model to provide meaningful analysis
results.

Over the years, dynamic tests of highway bridges have
been performed by many researchers and engineers. How-
ever, most of the tests are in-field dynamic tests [7].
Lab-based dynamic tests of full assemblage bridge models
under a controlled environment are rather scanty. Regard-
less of whether the tests were performed on the field or in
the laboratory, these tests were focused essentially on single
bridges [8]. Despite the existence of many bridges coupled
on beds of multiple rivers, dynamic tests on bridges coupled
by their close environment are rarely performed. It is there-
fore of interest to investigate these coupled bridges from a
dynamic test setting.

The present study consists of a dynamic test which aims at
developing a enough complete descriptive theoretical model
of indirect coupled bridges. After several dynamic tests
performed on a scale model built in the laboratory, a mathe-
matical modelling of the device is then proposed.We analyze
analytically and numerically the effectiveness of this mod-
elling.

The work is organized as follows. In Sect. 2, the experi-
mental device is presented and the mathematical modelling
of the system is carried out. Section 3 is devoted to the the-
oretical analysis of the dynamic response of system on the
basis of the resulting modal equations using direct numerical
simulations and analytical explanation. Section 4 is devoted
to some experimental investigation. Section 5 gives some
concluding remarks.
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Fig. 1 Schematic of the
experimental device

Fig. 2 Photograph of the experimental set up

2 Description of the experimental devices and
general mathematical formalism

2.1 Experimental set up

The experimental device under study is a model of two cou-
pled bridges, on one of which exerts a localized combination
of sinusoidal load and periodic impulsive load. As shown in
the Fig. 1, the bridges are indirectly coupled via their close
environment (soil support) through their pier. The bridge
model of the experimental device consists of two wooden
beams (see Fig. 2) whose dimensions are compiled in the
Table 1.

In the scale model, the two bridges are represented by
two wooden beams of dimensions specified in the Table 1.
In addition, a polyurethane (PU) mattress plays the role of
the close environment and an universal motor attached to one
of the beam bridges (bridge 1) imposes its vibrations on it
as both sinusoidal and periodic impulsive loads. Vibrations
are sensed by DE-ACCM2G accelerometers incorporated to
the structure and then processed by appropriate computer
software. Let us note that the DE-ACCM2G is an off the

Table 1 Dimensions of the experimental set up elements

Model

Length 1.5m

Height 45mm

Width 12mm

Thickness 1mm

Pier length 60mm

Span length 13.25 and 24.7cm

shelf 2 axis 2g accelerometer solution with analog outputs. It
features integrated op amp buffers for direct connection to a
micro controller’s analog inputs, or for driving heavier loads.

2.2 General mathematical formalism

2.2.1 Model of the bridge and soil support

The transverse equation of motion for a homogeneous,
isotropic and uniform elastic beam subjected to a time-
varying load is taken as the governing Euler–Bernoulli
equation [9–11], i.e.

ρS
∂2y∗

∂t∗2
+ δ

∂ y∗

∂t∗
+ E I

∂4y∗

∂x∗4 = f
(
x∗, t∗

)
, (1)

where y∗ = y∗ (x∗, t∗) is the transverse deflection of the
beam, E the Young’s modulus, I the inertia moment with
respect to the neutral axis, S the beam cross-section, ρ the
density of the beam, δ the vertical viscous damping coeffi-
cient and f (x∗, t∗) is all the external load per unit length.

The external excitation brought by the motor is supposed
to be both sinusoidal and impulsive and localized at the point
x0 of bridge 1. So, it can be described as follows

f
(
x∗, t∗

) = [
fsin

(
x∗, t∗

) + fimp
(
x∗, t∗

)]
δ
(
x∗ − x∗

0

)
,

(2)
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where δ (x) is theDirac delta functionwhich reflects the local
nature of excitation on the bridge, fsin (x∗, t∗) the sinusoidal
load and fimp (x∗, t∗) the periodic impulsive force occurring
at regular intervals of time T [12], given by expressions (3)
and (4), respectively.

fsin
(
x∗, t∗

) = f0 cosω∗t∗, (3)

fimp
(
x∗, t∗

) = I0

N∑

i=1

{
H

(
t∗ − iT ∗)

−H
[
t∗ − (

iT ∗ + ΔT ∗)]} , (4)

where f0 is the amplitude of the sinusoidal load and ω∗ its
frequency. I0 is the amplitude of each impulsion, N stand for
the total number of impulsionswhileΔT represents the dura-
tion of the impact. H (x) is the Heaviside function defined
as follows

H (x) =
{
1 if x ≥ 0
0 if x < 0

(5)

The coupling between the two bridges is an indirect cou-
pling via an environment that is primarily the ground under
their piers that can be modelled as a linear viscoelastic Win-
kler foundation [13,14] (Kelvin–Voigt model of soil [3]).
Thus, for this system, each bridge suffers from environmen-
tal coupling (soil support), external restoring forces Fj (x, t)
located under the piers and given as follows

Fj
(
x∗, t∗

) = −
[
ks y

∗ (
x∗, t∗

) + cs
∂ y∗ (x∗, t∗)

∂t∗

]

δ
(
x∗ − x∗

j

)
, (6)

where ks and cs are the two coupling parameters character-
izing the strength and the damping of the soil, respectively.
x∗
j are the positions of the piers under the considered bridge

and δ (x) is the Dirac delta function which reflects the local
nature of piers positions.

2.2.2 Modelling the propagation of vibration in the soil

Let a (zα, ω) the acceleration in the soil at the distance zα
from the source. It was shown that the acceleration a

(
zβ, ω

)

at the distance zβ can be estimated in the frequency domain
[15,16] as a function of a (zα, ω) as follows

a
(
zβ, ω

) = a (zα, ω) exp
[
ik∗(ω)dαβ

]
, (7)

where dαβ = ∣∣zβ − zα
∣∣ is the distance between the twopoints

zα and zβ and k∗(ω) the complex wave number defined by:

k∗(ω) = k(ω) + iλ(ω), (8)

where k(ω) = 2πc
ω

is the real wave number; with c the wave
velocity in the ground.λ(ω) is the vibration attenuation factor
defined by the viscoelastic model considered to model the
close environment.

But a more simplest model used to describe the propaga-
tion of the vibration into the soil is given by [17] as follows

a
(
zβ, ω

) = a (zα, ω) exp
[−λ(ω)dαβ

]
. (9)

Let set γαβ = exp
[−λ(ω)dαβ

]
the coefficient reflect-

ing the vibration transfer from point zα to point zβ ; which
decreases with the distance dαβ . This coefficient reflects the
vibration propagation from one to another point. Thus, the
expression (9) can be rewritten as follows

a
(
zβ, ω

) = γαβa (zα, ω) . (10)

It comes out that a pier of index-number α of acceleration
a (zα, ω) induces on each neighboring pier of index-number
β, some vibration translated by the inertia force given by the
following equation

fβ (t) = −mβa
(
zβ, ω

) = −mβγαβa (zα, ω) , (11)

where mβ is the mass of the neighboring pier of index-
number β.

2.2.3 Modelling the coupled bridges system

Taking into account the above considerations, the system
which consists of a bridge under localized universal motor
excitation coupled to a second one by their close environment
is governed by the following set of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1S1
∂2 y∗

1
∂t∗2 + δ1

∂y∗
1

∂t∗ + E1 I1
∂4y∗

1
∂x∗4

+
N1∑

α=1

[
cs

∂y∗
1

∂t∗ + ks y∗
1

]
δ
(
x∗ − x∗

1α

)

+
N1∑

α=1
m1α

N2∑

β=1
γαβ

∂2 y∗
2

∂t∗2 δ
(
x∗ − x∗

2β

)

= [
fsin (x∗, t∗) + fimp (x∗, t∗)

]
δ
(
x∗ − x∗

0

)
,

ρ2S2
∂2 y∗

2
∂t∗2 + δ2

∂y∗
2

∂t∗ + E2 I2
∂4y∗

2
∂x∗4

+
N2∑

α=1

[
cs

∂y∗
2

∂t∗ + ks y∗
2

]
δ
(
x∗ − x∗

2α

)

+
N2∑

α=1
m2α

N1∑

β=1
γαβ

∂2 y∗
1

∂t∗2 δ
(
x∗ − x∗

1β

)
= 0,

(12)

where y∗
j = y∗

j (x∗, t∗) is the transverse displacement of the
bridge of index-number j , N1 and N2,m1α andm2α , and x∗

1α
and x∗

2α are the numbers of piers, masses and positions of the
piers under the bridge 1 and the bridge 2, respectively. As
the two beam bridges are hinged–hinged one, the boundary
conditions of the problem are given by:

123



H. S. Bouna et al.

y∗
1 (x∗, t∗)

∣∣
x∗=0,x∗=L = 0,

∂2 y∗
1(x

∗,t∗)
∂2x∗

∣∣∣
x∗=0,x∗=L

= 0,

y∗
2 (x∗, t∗)

∣∣
x∗=0,x∗=L = 0,

∂2 y∗
2(x

∗,t∗)
∂2x∗

∣∣∣
x∗=0,x∗=L

= 0.

Let consider the dimensionless variables defined as x =
x∗
L , y1 = y∗

1
L , y2 = y∗

2
L , t = t∗ω0; where ω0 = 1

L2

√
E1 I1
ρ1S1

.
Then, the dimensionless problem is given by the following
set of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2 y1
∂t2

+ λ1
∂ y1
∂t +ω2

1
∂4y1
∂x4

+
N1∑

α=1

[
cs1

∂ y1
∂t + ks1y1

]
δ (x − x1α)

+
N1∑

α=1

N2∑

β=1
γαβ1

∂2 y2
∂t2

δ
(
x − x2β

) = F (t) δ (x − x0)

∂2 y2
∂t2

+ λ2
∂ y2
∂t +ω2

2
∂4y2
∂x4

+
N2∑

α=1

[
cs2

∂ y2
∂t +ks2y2

]
δ (x − x2α)

+
N2∑

α=1

N1∑

β=1
γαβ2

∂2 y1
∂t2

δ
(
x − x1β

) = 0,

(13)

where

M1 = ρ1S1, M2 = ρ2S2, μ = M1

M2
, ε = E1 I1

E2 I2

ω2
1 = 1

L4

E1 I1
M1ω

2
0

= 1,

ω2
2 = 1

L4

E2 I2
M2ω

2
0

= μ

ε
ω2
1 = μ

ε
, ω = ω∗

ω0

λ1 = δ1

M1ω0
, λ2 = δ2

M2ω0
, cs1 = cs

M1ω0
,

cs2 = cs
M2ω0

= μcs1

ks1 = ks
M1ω

2
0

, ks2 = ks
M2ω

2
0

= μks1

γαβ1 = m1α

M1
γαβ, γαβ2 = m2α

M2
γαβ,

F (t) = L3

E1 I1

[
fsin (x, t) + fimp (x, t)

]

The system (13) is the dimensionless equations of coupled
bridges resting on a linear viscoelasticWinkler foundation. In
index notation, this system is put in the following combined
form

∂2yi
∂t2

+ λi
∂ yi
∂t

+ ω2
i
∂4yi
∂x4

+
Ni∑

α=1

[
csi

∂ yi
∂t

+ ksi yi

]
δ (x − xiα)

+
Ni∑

α=1

N j∑

β=1

γαβi
∂2y j
∂t2

δ
(
x − x jβ

) = Fi (t) δ (x − x0) ,

i, j = 1, 2 and j �= i, (14)

with

Fi (t) =
{
F (t) if i = 1
0 if i = 2

(15)

In the following sections we will deal with Eq. (14).

3 Analytical explanation of the model

The method of separation of variables suggests the solutions
of the system (14) into the following form

yi (x, t) =
∞∑

n=1

φn (x) qin(t), (16)

where φn (x) are the mode shapes, given in accordance with
the boundary conditions of the problem by the expression
(17).

φn(x) = sin (nπx) (17)

qin (t) are time functions determined by the modal equations
which are obtained by substituting the transverse displace-
ments by their expressions (16) in Eq. (14) governing the
dynamics of the system, multiplying by φm (x), and inte-
grating over the length of the beam bridge. Applying the
orthogonality property of spatial functions and with some
mathematical calculations and arrangements, the modal
equations are obtained below written in index notation

q̈in +2λinq̇in +ω2
inqin +C ji q̈ jn = 2Fi (t) sin (nπx0) , (18)

where i, j = 1, 2 and j �= i , n = 1, . . . ,∞ characterizing
the different modes of vibration and

2λin = λi + 2csi

Ni∑

α=1

sin2 (nπxiα), (19)

ω2
in = ω2

i (nπ)4 + 2ksi

Ni∑

α=1

sin2 (nπxiα), (20)

C ji = 2
Ni∑

α=1

N j∑

β=1

γαβi sin
2 (

nπx jβ
)
. (21)

For the bridge of index-number i , ωin is the frequency of
the vibration mode n. The term C ji given by expression (21)
is the coupling term reflecting the impact of the bridge of
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index-number j on the bridge of index-number i . It depends
on the vibration transfer coefficient γαβ ; and therefore on the
distance between the two bridges with respect of which it
decreases. System (18) can be rewritten as follows

{
q̈1n + 2λ1nq̇1n + ω2

1nq1n + C21q̈2n = 2F (t) sin (nπx0)
q̈2n + 2λ2nq̇2n + ω2

2nq2n + C12q̈1n = 0

(22)

An analytical solution of this system ofmodal equations is
given in the following subsections in the cases of sinusoidal
excitation and periodic impulsive load.

3.1 Analytical solution of the modal equations for
sinusoidal excitation

In this case, system (22) can be rewritten as follow

{
q̈1n + 2λ1nq̇1n + ω2

1nq1n + C21q̈2n = F0n cosωt,
q̈2n + 2λ2nq̇2n + ω2

2nq2n + C12q̈1n = 0,
(23)

where F0n = 2L3

E1 I1
f0 sin (nπx0)

To solve this system, let us use the harmonic balance
method. Let set

⎧
⎨

⎩

q1n = An cos (ωt + ϕ1) ,

q2n = Bn cos (ωt + ϕ2) .

(24)

Substituting Eq. (24) into Eq. (23), we obtain after some
algebraic manipulations the following amplitude equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

An = F0n

√
η21+η22

η2

Bn = F0n

√
η23+η24

η2
,

(25)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η = (
ω2
1n − ω2

)2(
ω2
2n − ω2

)2 − 2ω4C12C21
(
ω2
1n − ω2

) (
ω2
2n − ω2

) − 4ω2λ21n

(
ω2
2n − ω2

)2

−4ω2λ22n

(
ω2
1n − ω2

)2 + 16ω4λ21nλ
2
2n − 8ω6C12C21λ1nλ2n + ω8C2

12C
2
21

η1 = (
ω2
1n − ω2

)2 (
ω2
2n − ω2

) − ω4C12C21
(
ω2
2n − ω2

) − 2ω2λ2n
(
ω2
1n − ω2

)

η2 = 2ωλ1n
(
ω2
2n − ω2

)2 + 2ω5C12C21λ2n − 8ω3λ1nλ
2
2n

η3 = ω2C12
[(

ω2
1n − ω2

) (
ω2
2n − ω2

) + 4ω2λ1nλ2n + ω4C21
]

η4 = 2ω3C12
[
λ1n

(
ω2
2n − ω2

) + λ2n
(
ω2
1n − ω2

)]

(26)

The last two expressions of this system show as might be
expected that the vibrations of the unexcited coupled bridge
2 strongly depend on the vibration transfer coefficient C12

from the main bridge 1 to the second one.

3.2 Analytical solution of the modal equations for
periodic impulsive excitation

In this case, system (22) can be rewritten as follows

⎧
⎪⎪⎨

⎪⎪⎩

q̈1n + 2λ1nq̇1n + ω2
1nq1n + C21q̈2n

= F0n
N∑

i=1
{H (t − iT0) − H [t − (iT0 + τ)]},

q̈2n + 2λ2nq̇2n + ω2
2nq2n + C12q̈1n = 0,

(27)

where F0n = 2L3

E1 I1
I0 sin (nπx0), T0 and τ are respectively

dimensionless period and duration of the impact of the peri-
odic impulsive excitation.They are define asT0 = Tω0, τ =
ΔTω0.

As the analytical resolution of equations of system (27)
is not quite evident, let us look at the case of two identical
beam bridges whose modal equations are given by (28).

⎧
⎪⎪⎨

⎪⎪⎩

q̈1n + 2λnq̇1n + ω2
nq1n + Cq̈2n

= F0n
N∑

i=1
{H (t − iT0) − H [t − (iT0 + τ)]},

q̈2n + 2λnq̇2n + ω2
nq2n + Cq̈1n = 0,

(28)

where λn = λ1n = λ2n, ω2
n = ω2

1n = ω2
2n, C = C12 =

C21.
To solve these new equations, it useful to assume new

variables as follows

q+ = q1n + q2n, (29)

q− = q1n − q2n, (30)

each of them is solution of following differential equation
(31) below
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q̈± + 2λ±q̇± + ω2±q±

= F0±
N∑

i=1

{H (t − iT0) − H [t − (iT0 + τ)]} (31)

equations respectively obtain by adding and Subtracting
the two set of Eq. (28) and where λ± = λn

1±C , ω2± =
ω2
n

1±C , F0± = F0n
1±C .

The solutions of system (28) are then obtain from new
variable parameters as follows

{
q1n = q++q−

2 ,

q2n = q+−q−
2 .

(32)

For each modes (n = 1, 2, . . . ∞), the solutions of Eq. (31)
can be expressed as the sum of a homogeneous solution and
a particular solution, i.e.

q± (t) = qH± (t) + qP± (t) , (33)

where

qH± (t) = [
A± cosΩ±t + B± sinΩ±t

]
e−λ±t (34)

is the homogeneous solution, where Ω± =
√

ω2± − λ2±.
The form of the external excitation of Eq. (31) suggests

a treatment per intervals in order to determine its particular
solutions qP± (t). To do so, let us subdivide time in two great
time domains according to instant where the impacts occur.
These two great time domains correspond one to intervals of
time before the impact sequence i and after the last impact
sequence N and another to intervals of time during the impact
sequence i .

Before the impact sequence i i.e.∀t ∈ [(i − 1)T0 + τ ; iT0
[; i = 1, . . . , N and after the last impact sequence N i.e.
∀t ∈ [NT0 + τ ;+∞[, H(t − iT0) − H [t − (iT0 + τ)] = 0
and therefore a particular solution can be qP± (t) = 0.

During the impact sequence i i.e. ∀t ∈ [iT0; iT0 + τ

[; i = 1, . . . , N , H (t − iT0) − H [t − (iT0 + τ)] = 1 and
therefore a particular solution can be qP± (t) = F0±

ω2±
. So, gen-

eral solution of the problem can be written

q± (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(i)
± (t1)

=
[
A(i)

± cosΩ±t1 + B(i)
± sinΩ±t1

]
e−λ±t1

For (i − 1) T0 + τ ≤ t < iT0 or t > NT0,

q̃(i)
± (t2)

=
[
C (i)

± cosΩ±t2 + D(i)
± sinΩ±t2

]
e−λ±t1

+ F0±
ω2±

For iT0 ≤ t < iT0 + τ,

(35)

where i = 1, . . . , N , t1 = t − [(i − 1) T0 + τ ] the initial
instant just after the impact sequence i − 1 and t2 = t −
iT0 the initial instant of the impact sequence i . Taking into
account theEqs. (29) and (30), the final solutions of themodal
Eq. (28) are given per intervals as follows:

– Before the impact sequence i i.e. ∀t ∈ [(i − 1) T0
+ τ ; iT0[; i = 1, . . . , N and after the last impact
sequence N i.e. ∀t ∈ [NT0 + τ ;+∞[
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1n (t) = q(i)
1n (t1)

= 1
2

{[
A(i)

+ cosΩ+t1 + B(i)
+ sinΩ+t1

]
e−λ+t1

+
[
A(i)

− cosΩ−t1 + B(i)
− sinΩ−t1

]
e−λ−t1

}
,

q2n (t) = q(i)
2n (t1)

= 1
2

{[
A(i)

+ cosΩ+t1 + B(i)
+ sinΩ+t1

]
e−λ+t1

−
[
A(i)

− cosΩ−t1 + B(i)
− sinΩ−t1

]
e−λ−t1

}
,

(36)

– During the impact sequence i i.e. ∀t ∈ [iT0; iT0 + τ

[; i = 1, . . . , N

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1n (t) = q̃(i)
1n (t2)

= 1
2

{[
C (i)

+ cosΩ+t2 + D(i)
+ sinΩ+t2

]
e−λ+t2

+
[
C (i)

− cosΩ−t2 + D(i)
− sinΩ−t2

]
e−λ−t2

}
+ F0n

ω2
n
,

q2n (t) = q̃(i)
2n (t2)

= 1
2

{[
C (i)

+ cosΩ+t2 + D(i)
+ sinΩ+t2

]
e−λ+t2

−
[
C (i)

− cosΩ−t2 + D(i)
− sinΩ−t2

]
e−λ−t2

}
,

(37)

where unknown integration constants A(i)
± , B(i)

± , C (i)
± and

D(i)
± are determined from the initial conditions of the prob-

lem which correspond to the final conditions of the previous
phases of the movement.

4 Dynamical investigation

In this section, we present the results of numerical simu-
lations of the proposed model of coupled bridges. Subse-
quently,we compare the theoretical resultswith experimental
results obtained on the scale model built in the laboratory to
assess the efficiency of the proposed theoretical model. In
our simulations, we limit only on the first mode of vibration
(n = 1) and the numerical method used is the fourth-order
Runge–Kutta method.

123



On the dynamics of two multi-span continuous beam bridges model coupled by their close...

0 50 100 150
−0.1

−0.05

0

0.05

0.1

t

D
ef

le
ct

io
n 

q 1

(a)
numerical analytical

0 50 100 150 200 250 300
−0.05

0

0.05

t

D
ef

le
ct

io
n 

q 2

(b)
numerical analytical

Fig. 3 Comparison of numerically and analytically deflections obtained for sinusoidal excitation: a bridge 1; b bridge 2

4.1 Dynamic response of coupled bridges: validation of
analytical study

Numerical solutions of the coupled system subjected to each
kind of excitation (sinusoidal and impulsive) is found and
displayed in the samegraphwith the corresponding analytical
solutions. The curves of Figs. 3 and 4 are obtained for the
given set of dimensionless parameters:

– For sinusoidal excitation:

λ1 = λ2 = 0.05, ω1 = ω2 = 10, C12 = C21 = 0.5,

ω = 1, F0 = 0.5

– For train of 3 impulsions:

λ1 = λ2 = 0.05, ω1 = ω2 = 1, C12 = C21 = 0.5,

T0 = 50; τ = 0.1, F0 = 0.5

The coincidence between the numerical and analytical
curves after the initial transient regime for the two bridges
in Figs. 3 and 4 shows that the proposed analytical solutions
are quite good.

4.2 Resonant response

The amplitude curves are plotted versus the excitation fre-
quencyω of the sinusoidal excitation on the one hand and the
period T0 of the periodic impulsive excitation on the other
hand. the different curves obtained are presented and dis-
cussed below for set of dimensionless parameters λ1 = λ2 =
0.05, C12 = C21 = 0.5, F0 = 0.5.

– For sinusoidal excitation
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Fig. 4 Comparison of numerically and analytically deflections
obtained for periodic impulsive excitation: a bridge 1; b bridge 2

Each of the amplitude curves corresponding to the
dynamic response of the two coupled bridges to a sinusoidal
excitation present, four resonances in two pairs with very
close peaks. The two pairs are separated by many antires-
onances which the most significant antiresonance which is
located at the frequency ω2 of bridge 2 (Fig. 5). As shown in
Figs. 5 and 6, the two bridges present their resonance pairs
approximately at the same positions on either side of the
antiresonance frequency ω2. However, these positions vary
depending on the frequencies ω1 and ω2 of the bridges 1 and
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Fig. 5 Amplitude curves of bridge 1 versus the frequency ω of the sinusoidal excitation for a ω2 = 10; b ω2 = 20
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Fig. 6 Amplitude curves of bridge 2 versus the frequency ω of the
sinusoidal excitation for ω2 = 10

2 respectively; one gradually become closer to the antires-
onance frequency ω2 while the other move away when ω1

increases (Fig. 6).
The antiresonance frequency ω2 pointed out here for

which the vibration amplitudes of bridge 1 become almost
zero can be an interesting result in vibration control of the
dynamics of beams. It will be then a good issue to consider
the control of the vibration of a beamby another beamdimen-
sioned at the excitation frequency range of this later.

– For periodic impulsive excitation

In this case, all the amplitude curves of bridges present
an infinite number of resonances of lesser importance. The
intensities of these resonances decrease with respect to the
period T0 of the impulsive excitation (i.e. increase with
respect to its frequency) and with respect to the frequencies
ω1 and ω2 of the two bridges; and their value tend asymp-

totically to a given limit (Figs. 7, 8). But we can notice from
Fig. 8a that the change in the frequency ω2 of Bridge 2 does
not have significant effect on the dynamics of bridge 1.

It is therefore clear from this study that it would be more
beneficial to the structure to have great natural frequencies
of vibration in order to present small amplitude responses.

4.3 Effects of some parameters on the dynamics of
coupled bridges

In this section we present the influence of various parameters
on the dynamic responses of the two coupled bridges. This is
in order to point out the influences of theviscoelastic coupling
of the soil and the effect of the distance between the two
bridges. Figures 9, 10 and 11 show the amplitude of the two
bridges versus the dimensionless parameters involving the
viscoelastic coupling the distance between the bridges.

– Effects of viscoelastic coupling of the Winkler founda-
tion

The dimensionless parameters reflecting the effects of the
viscoelastic coupling are the frequencies ω1 and ω2 of the
two bridges and the damping coefficients λ1 and λ2. The
frequencies ω1 and ω2 depict the stiffness of the soil through
the terms ksi of expression (20) while λ1 and λ2 depict its
viscosity through the terms csi of expression (19). So, the
study of the effects of viscoelastic coupling is close to the
study of the effects of these four parameters on the dynamic
responses of the two bridges.

The study of the effect of the frequencies ω1 and ω2 was
made in the previous paragraph. Figures 7 and 8 for periodic
impulsive excitation, show that the amplitudes of vibration of
the two bridges decrease with these frequencies so with the
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Fig. 7 Amplitude curves versus the period T0 of the periodical impulsive excitation for several values of ω1 a bridge 1; b bridge 2
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Fig. 8 Amplitude curves versus the period T0 of the periodical impulsive excitation for several values of ω2 a bridge 1; b bridge 2

rigidity ks of the Winkler foundation, according to the defi-
nition of the dimensionless parameters of Eq. (13). But the
behavior is more unclear in the case of a sinusoidal excitation
(Figs. 5, 6).

As regards the effect of the damping coefficients λ1 and
λ2, for the dimensionless quantities ω1 = ω2 = 10, ω =
1, C12 = C21 = 0.5, T0 = 50; τ = 0.1, F0 = 0.5,
one obtain the amplitude curves of Figs. 9 and 10. The
curves of Fig. 9 shows that deflection amplitudes of the two
bridges increases with respect to the damping coefficients
λ1 and λ2 in the case of sinusoidal excitation. However, the
behavior vary in the case of periodic impulsive excitation
(Fig. 10).

It come out from this study that the viscoelastic coupling
of the soil presents various effects on the dynamics of the
two beams bridges.

– Effects of the distance between the two bridges

The dimensionless parameters that depicts the effect of
distance on the dynamics of the experimental device are the
coupling coefficients C12 and C21 between the two modal
equations of system (22). According to Eqs. (9) and (21),
C12 and C21 are decreasing function of the distance between
the bridges. Studying the effects of the distance between the
two bridges comes downnow to study the effect of the param-
eters C12 and C21 on their dynamic responses. To this end,
the curves of Fig. 11 is plotted for the given values of dimen-
sionless parameters:

λ1 = λ2 = 0.05, ω1 = ω2 = 10, ω = 1,

T0 = 50; τ = 0.1, F0 = 0.5

Figure 11 shows that for a sinusoidal excitation, the deflec-
tion amplitudes of the bridges increase with most values
of the coupling parameters C12 and C21; i.e. when the dis-
tance between the two bridges decreases. This is however not
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Fig. 9 Amplitude curves versus the damping coefficient λ1 for sinusoidal excitation: a bridge 1; b bridge 2
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Fig. 10 Amplitude curves versus the damping coefficient λ1 for periodical impulsive excitation: a bridge 1; b bridge 2
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Fig. 11 Amplitude curves versus the coupling coefficient C12 for sinusoidal excitation: a bridge 1; b bridge 2
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On the dynamics of two multi-span continuous beam bridges model coupled by their close...
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Fig. 12 Transversal displacements of bride 1 for excitation motor excite at the voltage U = 23V : a screen of the digital oscilloscope; b plotted in
Matlab software

Fig. 13 Experimental transverse displacement for several distances between the two bridges: a bridge 1; b bridge 2

checked for certain values for bridge 2 from a certain value
of C12 around 0.5. Before this value, the amplitudes increase
with C12 but decrease with C21.

For a periodic impulsive excitation, complex behaviors are
observed with variation of amplitudes around a given values.
Bridge 2 nevertheless has a lesser disordered response than
bridge 1 with the amplitudes that tend to decrease while C12

and C21 increase.

4.4 Experimental validation of the theoretical analysis

In this subsection, we compare of the experimental results
obtained from the model built in the laboratory is done with
some results of previous theoretical study.

4.4.1 Transverse displacements of the coupled bridges

The transverse displacements of bridge 1 in the presence
of the outer exciter universal motor are captured using the
miniaturized accelerometer DE-ACCM2G incorporated into
the structure and the results are shown in the Fig. 12.

Figure 12 shows a perfect similarity between the curves
displayed in the portable digital oscilloscope and those drawn
in Matlab software from the experimental data file.

4.4.2 Effect of environmental coupling

To highlight experimentally the effects of coupling, the
transverse displacements are captured for different distances
between the two coupled bridges. The data obtain are then
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plotted in Fig. 13 and compared to the results of numerical
simulations of the developed model.

The experimental results in Fig. 13 show that the trans-
verse displacements of bridge 1 (subject to universal motor
excitation) and the bridge 2 (free of excitation) increases
when the distance between them decreases. This result has
indeed been obtained theoretically on the curve of the Fig. 11
for which the deflection amplitudes of the bridges increase
with coupling parameters C12 and C21; i.e. when the dis-
tance between the two bridges decreases. We can therefore
conclude once again that the mathematical model we have
developed is qualitatively valid.

We have shown in these previous two paragraphs that the
proposed coupled bridgemathematical model is qualitatively
satisfactory.

5 Conclusion

An analytical, numerical and experimental study to predict
the dynamics response of two bridges indirectly coupled via
their ground support were done. It appears from this study
that, when the structure are excited, the amplitude of vibra-
tion of each structure depends on the nature of the soil and the
distance between the bridges. Another information related to
this work is that, the ground support of the bridges really acts
like a viscoelastic membrane on their piers. Furthermore, it
is the support of propagation of the vibrations between the
two bridges. Therefore, the experimental scale model built
in the laboratory give rise to the validation of the theoretical
modelling and explanation.
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Abstract This paper considers a vibration control
problem for a multi-span beam bridge under pier base
vibrating excitation by using nonlinear quasi-zero stiff-
ness (QZS) vibration isolators. Three linear springs
are needed to construct a nonlinear vibration isolator
with quasi-zero stiffness. The vibration of the multi-
span beam bridge under control and without control
is governed by partial differential equation and sev-
eral ordinary differential equations which are derived
from Galerkin method. Modal superposition method
with numerical modes of the structure and an iterative
method are combined to predict the vibration response
of the structure under pier base excitation. The influ-
ence of the quasi-zero stiffness vibration isolators on
isolation of multimodal vibration of beam bridge is
studied. The absolute motion transmissibility is pro-
posed to evaluate the performance of the quasi-zero
stiffness vibration isolator and is compared with an
equivalent linear viscoelastic vibration isolator. The
results demonstrate the effectiveness of the these two
potential control method as well as a good control per-
formance in suppressing vibration for high frequencies.
But at low frequencies, only the quasi-zero stiffness
vibration isolator can reduce the vibration amplitude
of the beam bridge around the resonance frequency
region. The effects of each control parameter on the
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Laboratory of Modelling and Simulation in Engineering,
Biomimetics and Prototypes, University of Yaoundé I, P. O.
Box 812, Yaoundé, Cameroon
e-mail: nananbendjo@yahoo.com

absolute motion transmissibility of steady-state behav-
iors are investigated for a better isolation performance.

Keywords Multi-span beam bridge · Base vibrating
excitation · Quasi-zero stiffness vibration isolator ·
Galerkin method · Absolute motion transmissibility ·
Linear viscoelastic vibration isolator

1 Introduction

Unsuitable vibrations are a problem that affects many
engineering structures. Structure damages, such as
fatigue and failure induced by vibrations, often occur
at a low excitation frequency in practical engineering
[1,2]. Active and passive methods are then the main
control strategies that are widely used by researchers
and engineers to suppress vibrations. Some researchers
have recently used the inertia-free attitude control
methods for flexible spacecraft with active vibration
suppression [3,4]. However, in most of engineering
applications, passive vibration isolations are usually the
first solution to the problem of vibration suppression.
This ismainly due to the fact that they offer high perfor-
mance and stability, are quite simple to design and do
not require any external power source or computer con-
trols as in the case of active controls. Vibration isolators
are therefore widely used to subdue vibrations in order
to lengthen the service life of equipments and structures
also to provide a more comfortable and safe condition
for human beings. For instance, the case of bridges
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which act as an important link in surface transportation
network. The collapse of bridges during a seismic event
will seriously hamper the relief and rehabilitationwork.
Due to their structural easiness and as the fundamental
vibrational period of most bridges ranges from 0.2 to
1.2 s [5], bridges are particularly vulnerable to damages
and sometimes collapse when subjected to earthquakes
and other external excitation such as moving and wind
loads [6–9].

In recent years, base vibration isolation has become
an increasingly applied structural design technique to
protect bridges from severe loads. The main goal of
base vibration isolation is to produce a substantial
decoupling of the superstructure from the substruc-
ture resting on the vibrating ground by using vibration
isolators [10,11]. Vibration isolator is a device placed
between a vibration source and an isolated object con-
sidered to be protected [12,13]. However, vibration iso-
lation is still an important problem, especially the low-
frequency vibration isolation. This method has been
widely used in engineering. Its most important char-
acteristics are its natural frequency and load bearing
capacity. As it is well known, a linear vibration iso-
lator often faces a difficult choice situation that arises
between these two characteristics. For traditional pas-
sive linear vibration isolators, a smaller stiffness is
needed to achieve a smaller natural frequency so that it
can reduce low frequency vibrations [14]. In this case, a
larger static deflection is unavoidable in practical appli-
cations. To overcome the limitation between the iso-
lation frequency range and the load bearing capacity
of linear vibration isolators, many nonlinear vibration
isolators such as nonlinear energy sink and nonlinear
vibration isolators using quasi-zero stiffness (QZS). A
nonlinear energy sink which refers to a lightweight
nonlinear device that is attached to a primary linear
or weakly nonlinear system, is increasingly used for
mitigation the vibrations of discrete and continuous
structures [15,16]. A QZS vibration isolator has been
proposed to obtain a high static stiffness resulting in
a small static deflection and a low dynamic stiffness
resulting in a small natural frequency [17–21].

QZS vibration isolators have been proved to offer
one of the best passive approach for achieving low
vibration environments [22,23]. Because they canmeet
the needs of isolating low frequency vibration, even
ultralow frequency vibration, various forms of nega-
tive stiffness mechanisms have been designed to obtain
negative stiffness and combine with the positive stiff-

ness structures to construct QZS vibration isolators.
Recent years, several types of vibration isolators using
QZS mechanisms have been developed and applied to
improve working environment for users in many engi-
neering fields, such as vibration resonance test of air-
craft, vibration isolation of precision instruments, sen-
sor, energy harvest, suspensions and seats of vehicles
and protection of motors. Many different prototypes of
QZS vibration isolators were proposed by Alabuzhev
et al. [24] and more detailed information about their
technical design and their applications was recapitu-
lated by Ibrahim [25]. A vehicle suspension using the
negative stiffness mechanism combined with a positive
stiffness support was designed by Arafat et al. [26]. A
prototype of QZS vibration isolator composed of a pair
of bars linked with a pair of horizontal linear springs to
improve the vibration isolation performance of vehicle
seats under low excitation frequencies was studied the-
oretically and experimentally by Le and Ahn [27,28].
Liu et al., Huang et al. and Fulcher et al. [29–31] built a
QZSvibration isolator by usingEuler buckled beams as
negative stiffness correctors and explored the isolation
performance theoretically and experimentally. In these
studies, the isolation starting frequency of the nonlinear
isolator were found to be lower than that of the linear
one with the same support capacity. Platus [32] devel-
oped a nonlinear vibration isolator using two axially
loaded beams to achieve the QZS property for horizon-
tal vibration isolation.Carrella et al. [33,34] built aQZS
vibration isolator comprised of a vertical spring act-
ing in parallel with two inclined linear springs used as
negative stiffness correctors, and investigated the force
and motion transmissibilities theoretically. The results
demonstrated that the QZS vibration isolator outper-
forms the linear counterpart in some aspects. Meng et
al. [35] proposed a QZS vibration isolator using a disc
spring as negative stiffness corrector and investigated
its isolation performance considering a mistuned mass.
All the researches mentioned above indicate that the
effectiveness of the QZS vibration isolator is superior
to the linear counterpart when the excitation amplitude
is relatively small. However, increasing the excitation
amplitude leads to the increase in response and deteri-
orates the isolation performance of the QZS vibration
isolator due to the existence of cubic nonlinear stiffness.
The transmissibility of vibration isolators with high
dimensional quasi-zero stiffness has also been studied
by Li et al. and Wang et al. [36–38]. The results show
that quasi-zero stiffness vibration isolators have the low
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force transmissibility and the low frequency band for
vibration isolation.

From the review of the literature presented, it
emerges that both academic and industrial establish-
ments have a particular interest in vibration isolators
with a QZS characteristic. However, in all the above-
mentioned studies related to nonlinear vibration isola-
tion using QZS mechanism, isolated structures have
usually been treated as discrete systems of concen-
trated masses. The bending vibration of the isolated
main structure itself has been neglected. Therefore, it
is not understood how multimode bending vibration
of isolated structures changes isolation efficiency of
a nonlinear QZS vibration isolator. In order to study
the performance of a nonlinear QZS vibration isola-
tor on the multimodal elastic vibration of a continu-
ous structure, dynamics and nonlinear isolation of the
transverse vibration of a multi-span continuous beam
bridge subjected to pier base vibrating excitation are
presented in this study. It should be noted that although
there are many research papers on bending vibrations
and vibration isolation of beams containing linear elas-
tic boundaries and supports [39–41], to the best of the
authors’ knowledge, there are notmany research papers
on beams with nonlinear boundaries and supports [42–
47]. Presently, there is a lack of methods for studying
thebendingvibrationof beamswith nonlinear supports.
In addition, the dynamic response and the vibration iso-
lation of a single span beam subjected to different kind
of dynamic loads has drawn much research attention,
but relatively smaller amount of researchwork has been
done for dynamics and vibration isolation ofmulti-span
beams under base vibrating excitation.

The paper is organized as follows. The structure of
the QZS vibration isolator, mathematical modeling of
the beam bridge under QZS control, linear viscoelastic
control and without control are conducted in Sect. 2.
Then, dynamic analysis and modal equations of the
beam bridge are carried out in Sect. 3. The comparisons
of the nonlinear QZS vibration isolation and the lin-
ear counterpart isolation are presented in Sect. 4 where
the isolation performance of the QZS vibration isola-
tor related to isolator parameters are also discussed.
Section 5 carries out conclusions.

Fig. 1 Schematic representation of an isolator with QZS char-
acteristic

2 Mathematical modelling

2.1 Mechanical model of the QZS vibration isolator

The QZS mechanism under consideration is schemat-
ically shown in Fig. 1, where the device to be isolated
is not included. The system comprises a vertical spring
with linear stiffness kv which is connected at point P
with two linear springs with identical stiffness k0 and
initial length L0 mounted obliquely. The two springs
are initially inclinedwith a slope of an angle θ0 from the
horizontal plane and hinged at points M and N respec-
tively. Consider a loading force f at point P down-
wards. The loading point P is initially located at height
h0 above the points M, N and at horizontal distance a0
apart from these points respectively. It is assumed that
L0 ≥ a0. The application of the force f causes a ver-
tical displacement Y0 and when the system is loaded
with a suitably force, the springs are compressed from
the initial unloaded position P to the equilibrium posi-
tion O where the oblique springs are compressed in
the horizontal position and the static load is only sup-
ported by the vertical spring. When kv and k0 match,
the positive stiffness of the vertical spring and negative
stiffness formed by the oblique springs will cancel with
each other to achieve zero stiffness at the equilibrium
position. In thisway the system is developed into aQZS
system.
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The geometry of the system is defined by the param-
eters a0 and h0. Provided the coordinate Y0 defines the
displacement from the initial unloaded position, a load-
ing force f given by the following equation, leads to a
resulting displacement Y0 [18,33,48]

f = fv + f0, (1)

where

fv = kvY0, (2)

and

f0 = 2k0 (h0 − Y0)

⎛
⎝ L0√

a20 + (h0 − Y0)2
− 1

⎞
⎠ . (3)

The term fv in Eq. (1) denotes the contribution from
the vertical spring and the term f0 denotes the contri-
bution from the two oblique springs. If the variable Y
defines the downward displacement of the slider from
the equilibrium position, when the oblique springs are
placed horizontally after applying the loading force f ,
Eq. (1) can be rewritten as

f = kvY − 2k0Y

⎛
⎝ L0√

a20 + Y 2
− 1

⎞
⎠ + kvh0. (4)

For clarity of analysis, the following non-dimensional
parameters are introduced

y = Y/L0, a = a0/L0 = cos θ0, h = h0/L0,

α = k0/kv, F = f

kvL0
− h =

(
f

kv

− h0

)
/L0,(5)

so that Eq. (4) can be recast in its non-dimensional form
as

F = y − 2αy

(
1√

a2 + y2
− 1

)
. (6)

According to the definition of stiffness, differentiating
Eq. (6) with respect to y gives the non-dimensional
stiffness of the QZS system as

K = 1 + 2α

(
1 − a2(

a2 + y2
)3/2

)
. (7)

Substituting zero for y and setting Eq. (7) equal to zero,
we derive the condition for zero stiffness as

αQZS = a

2 (1 − a)
= cos θ0

2 (1 − cos θ0)
. (8)

The parameter α denotes the stiffness ratio and αQZS

denotes the geometric ratio. When αQZS and α are
equal, zero stiffness is achieved [48].

The non-dimensional force and the non-dimensional
stiffness as a function of the non-dimensional displace-
ment respectively are plotted in Fig. 2 for the stiffness
ratio α equal to the geometric ratio αQZS and when
a = 0.67.

From Fig. 2, it can be seen that if the stiffness ratio
and the geometric ratio are equal (α = αQZS), zero
stiffness can be obtained at the static equilibrium posi-
tion. In this case, the negative stiffness provided by the
oblique springs exactly counteracts the positive stiff-
ness of the vertical spring in the vertical direction, and
as a result, the system is developed into a QZS sys-
tem. From Fig. 2a, it can also be seen that the relation-
ship between force and displacement given in Eq. (6) is
similar to that of a cubic function [18,48]. Therefore,
to simplify subsequent dynamic analysis of the QZS
system, an approximate cubic expression of the force
is sought using a Taylor series expansion at the static
equilibrium position y = 0 as

F (y) ≈ F (0) +
3∑

n=1

Fn (0)

n! yn = αQZS

a3
y3. (9)

Differentiating Eq. (9) with respect to y gives an
approximate expression for the stiffness as

K ≈ 3αQZS

a3
y2. (10)

The approximations defined by Eqs. (9) and (10) are
plotted in Fig. 3 in comparison with the exact expres-
sions. It can be seen (Fig. 3b) that the QZS system has
a very small stiffness in the neighborhood of the static
equilibrium position. Furthermore, there is a very good
correlation between the exact curves and the approxi-
mate curves for relatively small displacements from the
equilibrium position (± 0.2 excursion range). Clearly,
higher amplitudes of oscillation would invalidate the
approximation of the cubic force and the quadratic stiff-
ness [18].

Let’s consider this approximation of a QZS system
modelling in motion modelling of the dynamics of a
beam bridge under QZS vibration isolators driven by a
pier base harmonic vibrating displacement.

2.2 Governing equation of a beam bridge with and
without control

The mechanical model of transverse vibration of a
multi-span continuous beam bridge under QZS vibra-
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Fig. 2 a Force-
displacement characteristic
and b non-dimensional
stiffness of the system when
a = 0.67

(a) (b)

Fig. 3 Non-dimensional a
force-displacement
characteristic and b stiffness
of the quasi-zero-stiffness
system when a = 0.67

(a)

(b)
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Fig. 4 Mechanical model of the beam bridge with the QZS vibration isolators

Fig. 5 Schematic of the dynamic model of the QZS vibration
isolator

tion isolators is shown in Fig. 4 where each QZS vibra-
tion isolator is made up of a QZS system connected in
parallel with a viscous damper of damping coefficient
C as shown in Fig. 5. Both boundaries of the bridge are
simply supported and isolation is achieved by includ-
ing the QZS vibration isolators under each pier of the
bridge located at the positions X j . L represents the
length of the bridge, T and X are the time and the axial
coordinate of the bridge, respectively.

The transverse motion of a homogeneous, isotropic
and uniform elastic beam bridge subjected to a time
varying load is described by the well-known Euler–

Bernoulli equation [9] given by

ρS
∂2Y

∂T 2 + Cb
∂Y

∂T
+ E I

∂4Y

∂X4 = F (X, T ) , (11)

where Y (X, T ) is the transverse deflection of the beam
bridge,ρ and E are the density of the beamandYoung’s
modulus of the beam, respectively; S and I are the area
and secondmoment of area of beam’s cross section,Cb

is the external viscous damping coefficient of the beam
and F (X, T ) represents all the external loads includ-
ing the external forces due to the QZS vibration isola-
tors under each pier of the beam bridge. The approx-
imate expression of each of these forces is obtained
from Eqs. (9) and (5) as follows

FQZS = −C
∂Y

∂T
− αQZS

a30
kvL0Y

3. (12)

Given that the beam bridge is simply supported, the
boundary conditions of the problem are given by [6,49]

Y (X, T )|X=0,X=L = 0 and
∂2Y (X, T )

∂X2

∣∣∣∣∣
X=0,X=L

= 0. (13)

To investigate the performance of the QZS vibra-
tion isolation on bridge vibration, let’s consider a sinu-
soidal base vibrating excitation Z = Z0 cos�T , so the
dynamical equations of the beam bridge can be derived
as following, where δ (·) is the Dirac function, N and
X j are the number and the positions of the QZS vibra-
tion isolators located under the piers of the beambridge,
respectively.
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2.2.1 With QZS vibration isolators

The dynamical equation of a beam bridge with the N
QZS vibration isolators can be obtained as

ρS
∂2Y

∂T 2 + Cb
∂Y

∂T
+ E I

∂4Y

∂X4 +
N∑
j=1

(
C

∂ (Y − Z)

∂T

+ αQZS

a30
kvL0 (Y − Z)3

)
δ
(
X − X j

) = 0. (14)

2.2.2 Without QZS control

The dynamical equation of a beam bridge without QZS
control can be obtained as

ρS
∂2Y

∂T 2 + Cb
∂Y

∂T
+ E I

∂4Y

∂X4

= −ρS

N
Z̈

N∑
j=1

δ
(
X − X j

)
, (15)

where Z̈ = −�2Z0 cos�T . So, Eq. (15) can be rewrit-
ten as

ρS
∂2Y

∂T 2 + Cb
∂Y

∂T
+ E I

∂4Y

∂X4

= ρS�2Z0

N

N∑
j=1

δ
(
X − X j

)
cos�T . (16)

2.2.3 With linear viscoelastic isolators

For a linear viscoelastic isolator, Eq. (12) giving the
external force due to the nonlinear isolator can be
rewritten as

FLinear = −C
∂Y

∂T
− kvY. (17)

So, the dynamical equation of a beam bridge with the
N linear viscoelastic isolators can be obtained as

ρS
∂2Y

∂T 2 + Cb
∂Y

∂T
+ E I

∂4Y

∂X4

+
N∑
j=1

(
C

∂ (Y−Z)

∂T
+kv (Y−Z)

)
δ
(
X−X j

) = 0.

(18)

3 Dynamical analysis

Let’s introduce the following non-dimensional param-
eters
y = Y

L0
, z = Z

L0
, z0 = Z0

L0
, x = X

L
, x j = X j

L
,

(19)

a = a0
L0

, αQZS = a

2 (1 − a)
,

γQZS = αQZS

a3
= 1

2a2 (1 − a)
,

(20)

t = Tω0, ω0 = π2

L2

√
E I

ρS
, cb = Cb

ρSω0
,

c = 2C

ρSLω0
, k = 2kv

ρSLω2
0

, ω = �

ω0
, (21)

so that the motion equations Eqs. (14), (16) and (18)
can be rewritten in their non-dimensional form given
by Eqs. (22), (23) and (24), respectively.

∂2y

∂t2
+ cb

∂y

∂t
+ 1

π4

∂4y

∂x4
+ L

2

N∑
j=1

[
c

(
∂y

∂t
− dz

dt

)

+ γQZSk (y − z)3
]
δ
(
x − x j

) = 0, (22)

∂2y

∂t2
+ cb

∂y

∂t
+ 1

π4

∂4y

∂x4

= z0ω2

N

N∑
j=1

δ
(
x − x j

)
cosωt, (23)

∂2y

∂t2
+ cb

∂y

∂t
+ 1

π4

∂4y

∂x4

+ L

2

N∑
j=1

[
c

(
∂y

∂t
− dz

dt

)
+k (y−z)

]
δ
(
x−x j

) = 0,

(24)

with boundary conditions

y (x, t)|x=0,x=1 =0 and
∂2y (x, t)

∂x2

∣∣∣∣
x=0,x=1

=0.

(25)

3.1 Resonance responses

In order to obtain the modal equations, the Galerkin
method is applied. This method of separation of vari-
ables suggests the solutions of the equations of motion
[Eqs. (22), (23) and (24)] into the following form

y (x, t) =
Nmax∑
n=1

φn (x) qn (t), (26)

where Nmax is an integer greater than 1, qn (t) is the
amplitude of the nth mode of vibration and φn (x) are
the mode shapes, given in accordance with the bound-
aries conditions of the problem by

φn (x) = sin (nπx) . (27)
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1132 H. S. Bouna et al.

By applying the Galerkin method, the modal ordinary
differential equations (28), (29) and (30) can be derived
for the motion partial differential equations (22), (23)
and (24), respectively as

q̈m + cbq̇m + ω2
mqm + c

N∑
j=1

sin
(
mπx j

)

×
[
Nmax∑
n=1

q̇n sin
(
nπx j

) + z0ω sinωt

]

+ γQZSk
N∑
j=1

sin
(
mπx j

)

×
[
Nmax∑
n=1

qn sin
(
nπx j

) − z0 cosωt

]3

= 0, (28)

q̈m + cbq̇m + ω2
mqm

= 2z0ω2

NL

N∑
j=1

sin
(
mπx j

)
cosωt, (29)

q̈m + cbq̇m + ω2
mqm + c

N∑
j=1

sin
(
mπx j

)

×
[
Nmax∑
n=1

q̇n sin
(
nπx j

) + z0ω sinωt

]

+ k
N∑
j=1

sin
(
mπx j

)

×
[
Nmax∑
n=1

qn sin
(
nπx j

) − z0 cosωt

]
= 0, (30)

where ωm = m2 is the non-dimensional natural fre-
quency of the mth mode of the beam bridge, with
m = 1, 2, . . . , Nmax.

3.2 Absolute motion transmissibility

A more valuable parameter for the assessment of the
isolation properties of the QZS vibration isolators is
the absolutemotion transmissibilitywhich is defined as
the ratio between the displacement of the beam bridge
at a given point and that of the pier base. So, when
the steady-state response occurs for the mth mode, the
absolute motion transmissibility of the QZS vibration
isolators can be defined as follow

Tam = |ym |max

|z|max
= |qm |max sin (mπx)

z0
= Am sin (mπx)

z0
,

(31)

where Am is the response amplitude of themth shape
mode of the beam bridge, z0 is the magnitude of the
base excitation and sin (mπx) is the shape function of
the mth mode of vibration. This expression of abso-
lute motion transmissibility [Eq. (31)] have the same
forms as the linear viscoelastic isolators. The next sec-
tion aims to show the benefits of employing a QZS
isolation mount. This is done by comparing the abso-
lute motion transmissibility of the QZS vibration iso-
lators with that of the equivalent linear viscoelastic
supports.

4 Dynamical explanation

In this paper, the number of vibration modes is set
as Nmax = 4. Eqs. (28), (29) and (30) are numeri-
cally solved by using the fourth-order Runge–Kutta
method in other to generate the transverse response
of the beam bridge in the presence of QZS vibration
isolators, without a QZS control and in the presence
of linear vicoelastic isolators, respectively. The initial
values for the first calculations are set as q1 = 0.01 (i.e.
Y1 = 0.01L0), q̇1 = 0, qn = 0, q̇n = 0 for n = 2, 3, 4
and the non-dimensional magnitude of the base excita-
tion is z0 = 0.05 (i.e. Z0 = 0.05L0). Table 1 presents
the physical and geometrical parameter values of the
QZS vibration isolators used under a seven-span beam
bridge with wood material [9,46,49]. In the following
study, the parameter values are assigned as listed in
Table 1 if there is no special mention.

The non-dimensional parameters are obtained by
calculation on the basis of Eqs. (20) and (21) as a =
0.67, γQZS = 3.375, ω0 = 79.69 rad/s, cb = 0.290,
c = 0.019, k = 2.43.

So, the first four natural frequencies of the cor-
responding beam bridge are determined as �1 =
79.69 rad/s ( f1 = 12.68 Hz), �2 = 318.74 rad/s
( f2 = 50.73 Hz), �3 = 717.16 rad/s ( f3 =
114.14 Hz) and �4=1274.95 rad/s ( f4=202.92 Hz).
Moreover, the corresponding mode functions of the
transverse vibration can be obtained. The fourth-order
Runge–Kutta algorithm is used to compute the numer-
ical solutions of Eqs. (28), (29) and (30) for the above
non-dimensional parameters.
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Table 1 Physical and geometric parameters of the wooden beam bridge and the QZS vibration isolators

Item Notation Value

Young’s modulus of the beam E 5.5 GPa

Density of the beam ρ 800 Kg/m3

Length of the beam L 1.5 m

Width of the beam b 0.045 m

Height of the beam hb 0.012 m

External damping of the beam Cb 10 N.s/m2

Viscosity damping of the spring C 0.5 N.s/m

Initial length of the horizontal spring L0 0.1 m

Horizontal length of the horizontal spring a0 0.067 m

Horizontal spring linear stiffness k0 5000 N/m

Vertical spring stiffness kv 5000 N/m

Number of piers N 6

Positions of the piers X j X j = 0.133 + 0.247 × ( j − 1) m

4.1 Resonant vibration without and with control

In this subsection, amplitude and motion transmissibil-
ity curves are plotted versus the excitation frequencies
ω of the sinusoidal base excitation. The steady-state
amplitude Am and the absolute motion transmissibility
Tam are plotted in Figs. 6, 7, 8 and 9 for the first four
modal primary resonances (m = 1, 2, 3 and 4) of the
beam bridge in the following cases, firstly in the pres-
ence of QZS vibration isolators, then without a QZS
control and finally in the presence of linear viscoelas-
tic isolators.

It can be argued that there are two indices that
allow measuring the effectiveness of a vibration iso-
lator: the first one is the bandwidth of the isolation
region, which is the frequency region within which the
transmitted motion amplitude becomes smaller than
the base excitation amplitude, that is when Tam < 1
[i.e. 20 log (Tam) < 0 dB]; the other is the peak-
transmissibility, which is the maximum amplitude of
the transmitted motion for a given amplitude of the
base excitation. Figures 6, 7, 8 and 9 show that for all
the first four modes of vibration,

(a) linear and QZS vibration control methods are both
effective for high frequencies after resonance but
only QZS vibration isolators are able of attenuating
low frequency vibrations;

(b) linear viscoelastic isolators change the natural fre-
quencies of the beam bridge while QZS vibration
isolators keep them constant;

(c) in the presence of the control, the vibration ampli-
tudes of the first-order mode are very large com-
pared to those of the other three modes, confirming
that most of the energy of the beam bridge is con-
centrated in the first mode [6,49].

In order to confirm the effectiveness of the two con-
trol methods, the dynamic responses of the vibration
first four modes of the beam bridge when the exciter
vibrates at their resonance frequencies have been plot-
ted in Fig. 10.

This figure clearly shows that the QZS control
method is more efficient than the linear viscoelastic
control method for the first four modes of vibration.

4.2 Evaluation of the vibration isolation performance
of the QZS control

The vibration isolators are sometimes used to isolate
the displacement excitation transmitted from the base
to theworking equipment. In this subsection, the effects
of some parameters on the absolute transmissibility of
steady-state behaviors are investigated, including geo-
metrical arrangement ratio γQZS , vertical spring stiff-
ness k of the QZS vibrations isolators and for the cor-
responding linear viscoelastic isolators, damping coef-
ficient c and excitation magnitude z0. The absolute
motion transmissibility curves of the system for these
different parameters are plotted in Figs. 14, 15 and 16
for the beam bridge, (a) under QZS control and (b)
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1134 H. S. Bouna et al.

Fig. 6 The steady-state
amplitude (a) and the
absolute motion
transmissibility (b) for
first-order primary
resonance of the beam
bridge without and with
control (QZS and linear
viscoelastic controls)

(a) (b)

Fig. 7 The steady-state
amplitude (a) and the
absolute motion
transmissibility (b) for
second-order primary
resonance of the beam
bridge without and with
control (QZS and linear
viscoelastic controls)

(a) (b)

Fig. 8 The steady-state
amplitude (a) and the
absolute motion
transmissibility (b) for
third-order primary
resonance of the beam
bridge without and with
control (QZS and linear
viscoelastic controls)

(a) (b)
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Fig. 9 The steady-state
amplitude (a) and the
absolute motion
transmissibility (b) for
fourth-order primary
resonance of the beam
bridge without and with
control (QZS and linear
viscoelastic controls)

(a) (b)

Fig. 10 Times histories of
the first four primary
resonances of the beam
bridge: a first-order with
ω = ω1 = 1, b
second-order with
ω = ω2 = 4, c third-order
with ω = ω3 = 9 and d
fourth-order with
ω = ω4 = 16

(a) (b)

(c) (d)
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under linear viscoelastic control. Then, the benefit of
QZS isolators is verified when some conditions are sat-
isfied, by comparing the absolute motion transmissi-
bility of the QZS vibration isolators with that of the
corresponding linear viscoelastic isolators without the
horizontal auxiliary springs. The analysis is limited to
the first mode of vibration of the midspan of the beam
bridge where sin (mπx) = 1, insofar as the first mode
is expected to carry most of the energy, and therefore
one hopes that it could suffice to obtain a first estimate
of the system behavior.

4.2.1 Effect of the nonlinear term of the QZS
vibration isolator

The geometric ratio αQZS is given by Eq. (8) as

αQZS = a

2 (1 − a)
. (32)

So, for a given value of a, there is only one value of
the stiffness ratio α that ensures QZS behavior. Equiv-
alently, the value aQZS that gives quasi-zero stiffness
for a given value of the stiffness ratio α is

aQZS = 2α

2α + 1
. (33)

The subscript QZS on either α or a is used to denote
that the other parameter is not independent, but has
been chosen in accordance with Eqs. (32) and (33) so
as to achieve stable QZS. The combinations of stiff-
ness ratio α and geometric ratio a that give rise to
stable QZS are shown in graphical form in Fig. 11.
This Fig. 11 shows that for small initial angles (a ≈ 1,
i.e. θ0 ≈ 0◦) and according to the expression of the
parameter α given in Eq. (5), the order of magnitude of
the stiffness of the inclined springs needs to be larger
than this of the vertical spring. Furthermore, for mod-
erate initial angle of inclination (0.4 < a < 0.8, i.e.
θ0 ≈ 36◦−66◦), then vertical and inclined springs of
similar stiffnesses can be used. The combinations of
nonlinear geometric parameter γQZS and geometric
ratio a that give rise to stable QZS have been plot-
ted in Fig. 12. This figure shows that for great initial
angle of inclination (a < 0.2, i.e. θ0 ≈ 78◦−90◦),
the nonlinear geometric parameter γQZS presents very
large values which means that the isolation system
involves a strong nonlinearity. The smallest values of
control parameter γQZS (γQZS = 3.375) is obtained
for a = 0.67, corresponding to the initial angle of incli-
nation θ0 = 48◦. Then, the steady-state amplitude and

the absolute motion transmissibility for the first mode
of the beam bridge for different values of the nonlin-
ear geometric parameter γQZS are studied and plotted
in Fig. 13. This figure shows that the vibration ampli-
tude and the absolute motion transmissibility increase
gradually with the nonlinear term of the system, and
the bend of the curve is more and more obvious. Fur-
thermore, for strong nonlinearities (γQZS = 26.1 and
γQZS = 55.6), the resonance frequency is shifted to the
high-frequency region and a jump phenomenon occurs.
Therefore, geometric nonlinearity is not beneficial for
the vibration isolation.

4.2.2 Effect of the vertical spring stiffness

The absolute motion transmissibility of the first mode
of vibration of the beam bridge for different values
of the vertical spring stiffness (a) under QZS control
and (b) under linear viscoelastic control are plotted in
Fig. 14 in order to study the effect of the vertical spring
stiffness on the performance of the two types vibra-
tion isolators. Figure 14a shows that the vertical spring
stiffness presents similar effects on the dynamics of
the beam bridge as those observed with the nonlinear
term of the QZS vibration isolators. It can be seen that
smaller stiffness yields smaller motion transmissibility,
i.e. better isolation performance of the QZS vibration
isolators. On the other hand, Fig. 14b shows that the
motion transmissibility depends strongly on the value
of the vertical spring stiffness k of the linear viscoelas-
tic isolators with which it increases, as well as the iso-
lation frequency band. In addition, the frequency of
resonance is also shifted to the high frequency region
while k increases. Therefore, vertical spring stiffness is
not beneficial for the vibration isolation both for QZS
vibration isolator and its equivalent linear viscoelastic
isolator. But it can be seen that, QZS vibration isola-
tor could have a remarkable benefit in isolation perfor-
mance compared to linear viscoelastic isolator.

4.2.3 Effect of the viscosity damping of the QZS
vibration isolator

Figure 15 shows the absolute displacement transmis-
sibility of the QZS vibration isolators and linear vis-
coelastic isolators for various values of the damping
coefficient c. The performance of the linear viscoelastic
isolation with respect to its damping is firstly studied.
Figure 15b shows that increasing the viscous damping

123

Author's personal copy



Isolation performance of a quasi-zero stiffness isolator 1137

Fig. 11 Combinations of
geometric ratio a and
stiffness ratio α that yield
QZS

Fig. 12 Combinations of
geometric ratio a and
nonlinear geometric
parameter γQZS that yield
QZS
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Fig. 13 Effect of the
nonlinear geometric
parameter γQZS on a the
steady-state amplitude and
b the absolute
transmissibility of the beam
bridge for γQZS = 4.0
(a = 0.50), γQZS = 7.9
(a = 0.30), γQZS = 26.1
(a = 0.15) and
γQZS = 55.6 (a = 0.10)

(a) (b)

Fig. 14 Effect of the
vertical spring stiffness on
the absolute transmissibility
of the beam bridge a under
QZS control and b under
linear viscoelastic control
for k = 1, k = 5, k = 10
and k = 20

(a) (b)

decreases the absolute transmissibility in the resonant
frequency range but deteriorates the vibration attenua-
tion rate for high frequencies. Turn to theQZSvibration
isolation, the effect of viscous damping on the perfor-
mance of the nonlinear isolator is given in Fig. 15a.
By observing this figure, one can conclude that the
increase of viscous damping results in the increase of
the absolute transmissibility with sacrificing the per-
formance of the nonlinear isolators. This result is too
original in this case of base vibration control of a beam
bridge with QZS vibration isolators. Since in most of
the cases where QZS vibration isolator is applied for
discrete structures, the absolute transmissibility under-
goes a reduction as the damping increases [48,50,51],
similarly to the case of damping effect on linear vis-
coelastic isolator. From the above analysis, it can be
concluded that, QZS vibration isolator could have a

remarkable benefit in isolation performance for rela-
tively low damping or without damping.

4.2.4 Effect of magnitude of the base excitation

The effect of the base excitation amplitude on the per-
formance of the QZS vibration isolators and the linear
viscoelastic isolators is shown in Fig. 16. The absolute
motion transmissibility of the linear viscoelastic isola-
tors is unrelated to the excitation amplitude as shown in
Fig. 16b. As shown in Fig. 16a, for the QZS vibration
isolators, the absolutemotion transmissibility increases
with the excitation amplitude. Furthermore, for large
amplitudes, the steady-states frequency response curve
is characterised by a jump phenomenon and the curve
presentes unstable solution. In addition, the shift of
the resonance peak to the high frequencies can be also
observed when the excitation amplitude increase. This
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Fig. 15 Effect of viscosity
damping on the absolute
transmissibility of the beam
bridge a under QZS control
and b under linear
viscoelastic control for
c = 0, c = 0.1, c = 0.5 and
c = 1.0

(a) (b)

means that the use of the QZS isolator is more suit-
able in the conditions where the vibration excitation is
smaller.

5 Conclusion

In this paper, the effectiveness of a QZS vibration isola-
tor on the transverse vibrations of a multi-span contin-
uous beam bridge under pier base vibrating excitation
is demonstrated. After being designed and modeled,
the QZS vibration isolator is placed between the beam
bridge structure and its piers to reduce its vibration
due to the excitation of the base of the piers. A non-
linear integro-partial differential governing equation of
the elastic beam bridge is derived by considering the
geometrical nonlinearity. Based on the modal analy-
sis of the controlled beam bridge, the Galerkin method
is used to discretize the governing equation. The per-
formance of the QZS vibration isolator and the equiv-
alent linear viscoelastic isolator are evaluated by the
steady-state response and absolute motion transmissi-
bility of the beam bridge. The following conclusions
are drawn. (a) The QZS vibration isolator and the lin-
ear viscoelastic isolator are both effective for high fre-
quencies but only the QZS vibration isolator is able to
reduce low frequency vibrations. (b) The linear vis-

coelastic isolator strongly change the natural frequen-
cies of the beam bridge compared to the QZS vibration
isolator. (c) The QZS vibration control is more efficient
than the linear viscoelastic control. (d) A curious and
original result observed in the presence of QZS vibra-
tion isolation shows that the increase of the viscous
damping leads to an increase of the absolute motion
transmissibility by sacrificing the performance of non-
linear isolation. (e) The QZS vibration isolator is more
powerful that nonlinear geometric term, vertical spring
stiffness, viscous damping andmagnitude of base exci-
tation are small. So, to build a QZS vibration isolator
with better performance, the damper must be removed
and its vertical springmust be designed to have the low-
est possible stiffness leading to achieve a QZS behav-
ior. In summary, this paper demonstrates the superi-
ority of the QZS vibration isolation. The QZS vibra-
tion isolator with suitable parameters has the advan-
tage of more effectively isolating unwanted vibrations
transmitted from the foundation to the continuous pay-
load, as it can achieve excellent low-frequency isola-
tion performance including low initial isolation fre-
quency and wide isolation frequency band. The appli-
cation of the QZS type mechanism on the design and
development of novel earthquake-resistant systems can
improve seismic performance of building and bridge
structures.
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Fig. 16 Effect of
magnitude of base
excitation on the absolute
transmissibility of the beam
bridge a under QZS control
and b under linear
viscoelastic control for
z0 = 0.01, z0 = 0.05,
z0 = 0.10 and z0 = 0.15

(a) (b)
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