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Abstract

In this thesis we are interested in the dynamics of electrical pulses in weakly coupled

nonlinear transmission lines, with emphasis on two contexts of pulse dynamics: first the

context of leapfrogging dynamics, characterized by periodic opposite-phase oscillations

of two pulses on two distinct transmission lines one with respect to the other. The second

context deals with pulse propagation in nonlinear transmission lines in the presence of

inhomogeneities, such as capacitive impurity and resistances both in the main and the

shunt branches. It is well established that the presence of such inhomogeneities can cause

pulse amplification or damping. We first consider a setup consisting of two LC nonlinear

transmission lines, coupled via a linear capacitance shunted with a linear resistance.

Using mathematical analysis we showed that nonlinear excitations of the two coupled

NLTLs can be described by two perturbed KdV equations, in the long-wavelength and

small-amplitude regimes. We examined the effect of adding the resistive shunt on the

soliton leapfrogging, and obtained the analytical expression of the leapfrogging frequency.

In the second case we considered two RLC nonlinear transmission lines coupled by a

linear capacitance, and in the third case we examined the effects of a localized impurity

on the soliton leapfrogging in the context of pulses propagating in the model studied by

Koichi Narahara. In these two last cases we carefully examined the soliton leapfrogging

and its stability under variations of relevant characteristic parameters of the models.

Then we examined a model of nonlinear electrical transmission line, which mimics

a ladder circuit periodically loaded with Schottky varactors having a resistance in their

shunt branches and connected to voltage-terminal modules. Analytical treatment reduces

to the perturbed KdV equation which establishes that pulse-shaped electrical solitons can

propagate in the nonlinear transmission line while experiencing amplification due to the

voltage terminals, but also a damping caused by the resistance. Numerical simulations

bring out a novel process namely a possible disintegration of the single pulse into two

or more pulses upon propagation in the nonlinear transmission line, resulting from the

competition between amplification and damping.

Keywords: NLTLs; capacitive impurity; leapfrogging, amplification, damping.
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Résumé

Dans cette thèse, nous nous intéressons à la dynamique des impulsions électriques

dans les lignes de transmission non linéaires faiblement couplées, en mettant l’accent

sur deux contextes de dynamique d’impulsion: d’abord le contexte de la dynamique

dite ”leapfrogging” ou (saute-mouton), caractérisée par des oscillations périodiques et

en opposition de phases de deux impulsions se propageant chacune sur une ligne de

transmission. Le second contexte traite de la propagation des impulsions dans les lignes

de transmission non linéaires, en présence des inhomogénéités telles que les impuretés

capacitives et les résistances dans les branches principale et de shunt. Il est bien établi

que la présence de telles inhomogénéités peuvent provoquer une amplification ou un

amortissement des impulsions. Nous considérons d’abord une configuration composée

de deux lignes de transmission LC non linéaires, couplées via une capacité linéaire

shuntée par une résistance linéaire. En utilisant l’analyse mathématique, nous avons

montré que les excitations non linéaires des deux lignes de transmissions non linéaires

couplés peuvent être décrites par deux équations de KdV perturbées, en régimes de

grande longueur d’onde et de petite amplitude. Nous avons examiné l’effet de l’ajout

d’un shunt résistif sur la dynamique ”saute-mouton” du soliton, et obtenu l’expression

analytique de la fréquence de ce type particulier de mouvement. Dans le second cas,

nous avons considéré deux lignes de transmission non linéaires RLC couplées par une

capacité linéaire, et dans le troisième cas nous avons examiné les effets d’une impureté

localisée sur le mouvement ”saute-mouton” des solitons dans le contexte des impulsions

se propageant dans un modèle étudié par Koichi dans un précedent travail. Dans ces

deux derniers cas, nous avons soigneusement examiné la dynamique ”saute-mouton”

de la paire de solitons et sa stabilité sous les variations des paramètres caractéristiques

pertinents des modèles.

Ensuite, nous avons examiné un modèle de ligne de transmission électrique non

linéaire, qui imite un circuit en échelle chargé périodiquement de varactors type ”Schot-

tky” ayant une résistance dans leurs branches shunt et connectés à des modules de bornes

de tension. Le traitement analytique se réduit à l’équation KdV perturbée qui établit

que les solitons électriques, qui sont des pulses, peuvent se propager dans la ligne de

xiv



transmission non linéaire tout en subissant une amplification due aux bornes de tension,

mais également un amortissement causé par la résistance. Des simulations numériques

mettent en évidence un nouveau phénomêne physique caractéristique des lignes de

transmissions non linéaires couplées, à savoir une désintégration possible des solitons à

un pulse sur les lignes de transmission, en deux ou plusieurs impulsions aucours de leur

propagation dans la ligne de transmission non linéaire, résultant de la compétition entre

l’amplification et l’amortissement.

Mots clés: lignes de transmission non linéaires; impureté capacitive; ”leapfrog-

ging”, amplification, amortissement.
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General Introduction

The study of nonlinear phenomena has become very popular in science, most especially

in Physics. Nonlinearity is a fascinating feature of nature whose importance has been

thought of for many years when considering large amplitude wave motions observed

in various fields ranging from fluids and plasma to solid state, biological and chemical

systems.

One particular aspect of nonlinear science that has attracted a lot of attention is that

of solitons. Solitons are a special class of pulse-shaped waves that propagate without

changing their shape in nonlinear dispersive media. A balancing mechanism between

nonlinearity and dispersion is responsible for the appearance of soliton phenomena.

In electronics, nonlinear transmission lines (NLTLs) serve as nonlinear dispersive

media where electrical signals can propagate in the form of voltage waves. NLTLs are

constructed by periodically loading normal transmission lines with nonlinear capacitors

and/or nonlinear inductors. The NLTL can be modeled as a typical LC ladder network[1]

where the series inductors are connected to ground by a shunt capacitor. The nonlinear

capacitors are simply reverse biased p-n junction diodes whose capacitance is a function

of its terminal voltage and decreases with increasing voltage. This model retains most of

the physics of the NLTL. An inductor L and a capacitance C(V ) model each section of the

transmission line. This model is accurate enough as long as the minimum wavelength of

the propagating signal is longer than the distance between nonlinear capacitances.

If the nonlinearity of the NLTL comes from the inductors then the inductance is

defined as a function of the current through it. The inductance value will decrease as

the current through the inductor increases. Nonlinear magnetic materials receive the

most considerations for nonlinear inductors. A majority of nonlinear magnetic materials

1



used today are a type of soft ferrites which are typically characterized at low frequencies

(' 10 kHz). A major problem with these ferrites is that they have a wide range of

permeability; saturation flux and resistivity values and are relatively inexpensive. An

LC ladder network with both nonlinear capacitors and nonlinear inductors is called the

nonlinear hybrid line or simply hybrid line.

The fundamental reason nonlinear materials allow the creation of solitons is that the

wave velocity is a function of the electric and magnetic field strengths. Specifically, the

wave velocity in a transmission line is given by v = 1√
µε

, where µ and ε are respectively,

the permeability and the permittivity of the material. Both permeability and permittivity

decrease with increasing field strengths. Therefore the portion of the wave having a

relatively large field strength propagates rapidly and the lower field strength portion

at a reduced velocity thereby sharpening broad pulses into shorter duration pulses that

usually have a larger peak value.

Quantitatively, the origin of solitons in NLTLs is explained by the balance between

the effect of dispersion (due to the periodic location of capacitors in the NLTL) and

nonlinearity (due to the voltage dependence of the capacitance). A soliton is a localized

waveform that travels along the system with constant velocity and undeformed shape.

This means that due to nonlinearity, points closer to the peak of the current or voltage

signal will have a faster propagation velocity and produce a shock wavefront. Conversely,

dispersion due to discreteness of the NLTL causes the signal to spread out. It is well

known that in transmission media supporting solitons, any input pulse with a duration

greater than soliton width tends to dissolve into a superposition of solitons. In this regard,

a sinusoidal signal fed to the NLTL will progressively decompose into multiple solitons

per cycle, and harmonics of the input frequency will be obtained at the output. When the

nonlinearities are large over the signal amplitudes, the problem does not always admit

analytical solutions. Rather, one must resort to numerical or graphical methods. But

when nonlinearities are small, we can make use of conventional perturbation techniques

to obtain analytical results.

Although much of the work related to nonlinear lumped LC networks has been
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done with the Toda lattice (and its particular C-V characteristics), a discrete Korteweg

de Vries (KdV) equation, sometimes referred to as the nonlinear ladder equation, has

been also studied and experimentally implemented[2]. In accordance to fabricated NLTL

prototypes, previous theoretical works are mainly based on Schottky diodes as the

nonlinear device. Since these diodes need to be reverse biased, the use of small signal

conditions around a DC value is fairly justified. Heterostructure-barrier-varactors (HBVs)

have been proposed as the nonlinear candidates for harmonic generation in NLTLs. HBVs

have a key advantage: only odd order harmonics of the input frequency are proposed

due to the symmetric C-V characteristics of the HBV[3].

NLTLs have also become increasingly popular as a way of developing very high

frequency, wideband waveforms that offer extremely fast rise time usually unobtainable

by any other method. The applications of NLTLs range from very wideband telecommu-

nication systems to high energy physics. An electrical NLTL[4] is undoubtedly one of

the best platforms for all electrical short pulse generation. When a pulse is input to an

NLTL such that the nonlinearity of the Schottky varactors compensate for dispersion, the

line generates multiple solitonic pulses, where widths are generally smaller than that of

the input. By extracting the largest, an NLTL operates as a good short pulse generator[5].

Moreover when a step pulse is input to an NLTL such that both nonlinearity and disper-

sion sharpen the edge, the edge finally results in a shock, by which a sub-picosecond

temporal transient is observed[6]. An NLTL is useful for more than just short pulse

generation. By applying a short pulse supported by a step-like wave to an NLTL enables

a short pulse amplification[7]. In the linear regime, NLTLs can be used as phase shifters

phase antennas arrays where time delay can be controlled by means of DC bias applied

to Schottky diodes acting as variable reactance. Under large signal conditions, NLTLs

can serve as pulse compressors or frequency multipliers[8].

The interest in monolithic NLTLs has ground[9, 10] due to their ability to give ac-

ceptable power efficiencies at terahertz frequencies by harmonic multiplication. The

multiplicative process in NLTLs is understood as a direct consequence of soliton-like

propagation in this medium. Due to technological progress in fast integrated Schottky
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diodes, practical NLTLs with excellent performance have been realized in the past two

decades. In almost all published work on NLTLs, a periodically loaded NLTL approach

has been used, i.e., a linear transmission line is periodically loaded by nonlinear devices,

either varactors or HBVs. The structure of a transmission line can be either continuous

(fully distributed (FD)) or discrete (periodically loaded (PL)). Continuous transmission

lines are typically wave guide-based while discrete transmission lines usually consist

of repeated identical subcircuits made up of lumped elements (e.g. resistors, capacitors,

inductors, etc.), any one of which can be voltage dependent.

NLTLs are good examples of a few systems where solitons are easily and directly

observed in controlled laboratory experiments. The development in NLTLs has demon-

strated its capacity to work as signal processing tools [12, 13, 14]. To cite only a few

examples, it has been demonstrated that the nonlinear uniform electrical line can be used

for:

1. extremely wideband signal shaping applications [15].

2. waveform equalizer in the compensation scheme for signal distortion caused by

optical fibre polarization dispersion mode [16].

3. doubling repetition rate of incident pulse streams [17] and the delay of ultrashort

pulses through the coupled propagation of the solitonic and dispersive parts, which

is important in that it enables the characterization of high-speed electronic de-

vices and raises the possibility of establishing future ultra-high signal processing

technology [18].

Review on Leapfrogging in Nonlinear Dynamics

Leapfrogging of soliton pairs in the past three decades had been proposed to describe the

particular motion of two weakly interacting solitons characterized by their anti-phase

oscillations and oppositely varying amplitudes [19]. In fluid dynamics the leapfrogging

of co-propagating KdV pulses have been widely discussed, and shown to provide an
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interesting configuration of the system dynamics in which solitons in the pair oscillate

periodically one with respect to the other such as to mutually sustain their propagation

at very small velocity [20]. This concept was recently extended to nonlinear electrical

transmission lines by Koichi Narahara [21], who considered two capacitively coupled

nonlinear transmission lines and determined characteristic properties for the leapfrogging

motion of electrical soliton pairs.

Leapfrogging of solitary waves has also been observed in pycnoclines. Pycnocline is

a region between two fluids of different densities. Pycnoclines support internal waves

which are dispersive, and can be nonlinear even for modest amplitudes. Eckart discussed

the linear internal-wave problem for two well-separated pycnoclines, and showed the

resonant transfer of energy between waves in each of the pycnoclines. This energy transfer

is also possible between solitary waves, each on its own pycnocline. This situation was

treated by Liu et al. [22], in which they derived two coupled equations for the evolution

of the wave amplitudes of single-mode waves propagating along each pycnocline with

nearly equal speeds, and investigated the interactions numerically. They noticed that

after initial transients there appear clearly time-periodic solitary waves, which alternate

their relative phase relationship as a result of the oscillation of wave amplitudes. That is

the solitary waves are leapfrogging over each other as they propagate. In Liu, Pereira

and Ko [23], weak coupling between nonlinear internal solitary waves on neighbouring

pycnoclines was seen to allow resonant energy exchange. The lagging wave increases its

energy and speed at the expense of the front-running wave, so that the waves leapfrog

about an average position. Their analytical estimates for this process agreed with the

wave-tank experiments described by Wiedman and Johnson [24].

Leapfrog oscillations of two-mode solitary waves were first realized in the laboratory

experiments performed by Wiedman and Johnson (referred to as WJ). These experiments

were performed in a 10m channel in which the initial two-pycnoclines stratification was

constructed using saline water. Under the gravitational collapse of two uniformly mixed

regions at one end of the tank, two-mode waves formed, travelled down the tank and

reflected at the endwall resulting in as many as five visible hops. Measurements of
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solitary wave amplitudes and positions were taken after an initial adjustment period in

which dispersive waves were shed, exhibited the leapfrog dynamics.

In a couple of instances in the WJ experiments, two solitary waves ordered in am-

plitude evolved along each pycnocline from the collapsed mixed regions. In one such

realization, a lead and trailing wave on one pycnocline interacted with the lead wave

on the neigbouring pycnocline, the remaining trailing wave having been left behind.

This resulted in a three-wave interaction which combines both upstream and downstream

energy transfer. Again, dissipation precluded evaluation of the long-time behaviour

of this curious interaction. Wiedman and Johnson conjectured that the ideal (inviscid)

three- wave interaction is not one of simple resonance since the time scale for forward

energy transfer between waves traveling along the given pycnocline is faster than the

rearward energy transfer between waves on neighbouring pycnoclines. As a result it

was postulated that the motion is either a Fermi-Pasta-Ulam recurrence phenomenon or

chaotic. By using simple averages and the assumption that the waves can be described

by Joseph solitons, Wiedman and Johnson obtained reasonably good agreement with

the predicted oscillations frequency reported in Liu et. al companion paper, even for

relatively long-amplitude waves.

Following the publication of the WJ experiments, there have appeared other studies of

leapfrogging KdV solitary waves. First and foremost is the work of Gear and Grimshaw

who derived a set of amplitude equations for the interaction of weakly nonlinear internal

gravity waves on pycnoclines not widely separated, H/λ� 1. The equations describing

this system are both nonlinearly and dispersively coupled. Integrations for realistic

Brunt Väisälä frequencies reveal that the upper and lower disturbances evolve, after an

initial adjustment, into a completely phase-locked non-oscillatory solitary wave system.

When the coefficients of the nonlinear terms are set to zero, on the other hand, the

system evolves into a quasi-periodic state with upper and lower amplitudes continually

exchanging energy, closely resembling the leapfrog results found in [22]. However, Gear

and Grimshaw carefully noted that complete periodicity is not attained, as some trailing

radiation is continually being formed. Should this occur for H/λ = 0(1), an asymptotic
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periodic leapfrog behaviour of the Liu, Kubota and Ko (referred to as LKK) system would

not be possible.

Malomed in [20] also studied the LKK equations coupled only through dispersion.

Using the adiabatic approximation, he found inter alia:

1. An estimate of the frequency of small oscillations in the vicinity of equilibrium.

2. The power radiated in the form of small-amplitude quasilinear waves from leapfrog-

ging solitons.

Not surprisingly, he found that the frequency of radiation coincides with the frequency

of soliton oscillation. No mention was made of the possible long-time behaviour of the

system.

Wright and Scheel [25] analyse the linear stability of a coupled pair of evolution

equations which include those of Gear and Grimshaw as special case. They found

that the system is linearly unstable and concluded that the slowly growing oscillatory

instability is the origin of the leapfrogging behaviour described in previous literatures.

As a numerical example, they integrated a pair of equations coupled only nonlinearly

through parameter ε. For ε < 0 leapfrog oscillations are found with waves radiating

behind the travelling wave system. When the integration is carried out to long times the

amplitudes decrease, the spatial oscillations grow and eventually the interaction ceases

at which point the waves separate as individual solitary waves. Thus leapfrogging is a

transient behaviour for the KdV equations coupled only through nonlinearity.

In Nitsche et al. [26], the phenomenon of leapfrogging internal solitary waves located

on separate pycnoclines was revisited to explore the behaviour of the near resonance phe-

nomenon. They presented a numerical study of two-mode solitary waves travelling on

neighbouring pycnoclines to determine the range of parameters for which leapfrogging

occurs and their ultimate long-time behaviour. Their work was motivated by the original

numerical discovery of leapfrog oscillations by Liu et al. [22] for an inviscid fluid and

by the laboratory experiments of Wiedman and Johnson who observed highly damped

leapfrog behaiour in a viscous fluid.
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Koichi Narahara in [21] studied the characterization of leapfrogging solitary waves in

coupled NLTLs. In his study, he clarified how the leapfrogging frequency depends on the

physical parameters of the coupled NLTLs using a numerical model validated through

measuring test lines. He also demonstrated the relaxation of leapfrogging. In adddition,

coupled KdV equations are derived by applying the reductive perturbation method to

the transmission equations of coupled NLTLs. Leapfrogging pulses were detected and

were well modelled by the numerical calculations.

Nonlinear electrical networks composed of two coupled NLTLs have been considered

in the studies of simultaneous propagation of two electrical solitons obeying two coupled

KdV equations [27, 28]. Previous theoretical and experimental works on electrical line

networks have provided a consistent amount of knowledge about fundamental properties

and the complex dynamics of soliton structures propagating along such structures. In

particular there have been recent experimental and theoretical evidences of a rich and

complex dynamics in the case when a pair of electrical solitons propagate on two coupled

lines at nearly equal velocities.

In [21] it was observed experimentally that when the difference in velocity of the

two pulses is very small, their interaction is optimized, thus favouring a bound state in

which electrical energy will be alternately transferred from a leading soliton to a trailing

soliton. To be more explicit, when one of the solitons in the bound state is at its maximum

amplitude it leads the pair motion, while the second, trailing soliton, is at its minimum

amplitude. As the energy leaves the leading soliton to the trailing soliton, the amplitude

of the leading soliton dies down while the amplitude of the trailing soliton grows. Given

that by definition the velocity of the KdV soliton increases with amplitude, the trailing

soliton is expected to speed up and to eventually overtake the leading soliton, such that

the direction of energy transfer is reversed. Under certain conditions, this overtaking will

occur repeatedly giving rise to relative oscillations in amplitudes and phases in which

the two solitons in the bound states continuously leap over each other periodically. Such

motion is called ”leapfrogging”. It is worthwhile noting that the leapfrogging dynamics

of electrical solitons offers the possibility to quassi-resonantly transfer energy between
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coupled ladder lines in distributed electrical networks. Remarkably such process would

be of great interest for space/time multiplexed ultrafast electronics.

There has been recent interest in the possibility for short-pulse amplification using

NLTLs, for possible applications in high-resolution measurements and high-speed com-

munication systems [12, 29]. Thus, considering the Hirota-Suzuki line and envisaging

connection of elementary circuits to voltage-terminal modules (or voltage edges), it was

shown that the propagation of a KdV pulse could result into pulse amplification by the

voltage terminal. Quite remarkably the author established that while pulse amplification

was of a universal exponential law, the amplification rate was dependent on the specific

characteristic properties of the Schottky varactor loaded in the line. In the general context

of studies of soliton propagation in NLTLs, it is well known that although pulses possess

robust shape by virtue of their soliton features, resistive components which are almost

always present in the line cause pulse energy to be dissipated as it propagates. Given

that within the framework of the adiabatic perturbation theory, the amplitude damping

in this later case too follows an exponential law, it is useful to examine the competition

between the amplification due to voltage terminals and the damping related to a resistive

component.

The work carried out in this thesis was motivated by the works of Koichi [7, 21, 40].

In [21], Koichi studied the characterization of leapfrogging solitary waves in lossless

coupled NLTLs. As an extension to his model, we formulated three models. Two of which

are gotten by adding a shunt resistance to the coupling capacitor in one model and in the

other we added an intraline resistance. In the third model we studied the lossless coupled

NLTLs in [21] in the case where one of the varactors in one line is defective. In these three

models we studied the leapfrogging dynamics of electrical pulses as they travel down

the weakly coupled NLTLs. Finally our fourth and last model is also an extension to the

model studied by Koichi in [40]. In this last model we added shunt resistances to the

varactors. In this final model we studied how amplification and damping of electrical

pulses is moderated by the balance between voltage terminal modules and varactor shunt

resistances.
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Objectives of Thesis

In this thesis, we present models used to study leapfrogging dynamics, amplification

and damping of soliton signals in NLTLs. In this connection, we will investigate certain

scenarios, as follows:

Firstly, we seek to investigate the leapfrogging of a pair of electrical pulses propagating

each along a nonlinear LC line, both weakly interacting via a coupling branch composed

of a constant capacitor shunted by a linear resistance. In this case our study rest on

the analysis of the time evolution of the amplitudes and phases of two electrical pulses,

within the framework of the adiabatic perturbation theory based on exact solution to the

KdV equation.

Secondly we investigate the leapfrogging dynamics of a pair of KdV solitons in two

nonlinear transmission lines, weakly coupled by a linear capacitance. To do this, we

explore two different configurations: the first comprising of two RLC lines with intraline

resistances, and the second is two coupled LC lines one of which is the host of a localized

capacitive impurity.

Finally, we consider a nonlinear electrical transmission line periodically loaded with

Schottky varactors having a resistance in their shunt branches and connected to voltage

terminal modules. Using multiple-scale expansion and the adiabatic perturbation theory,

we seek to investigate that pulse-shaped electrical solitons can propagate in the NLTL

while experiencing amplification due to the voltage terminals, and also a damping caused

by resistive elements in the line.

Outline of Thesis

There are altogether three chapters in this thesis. The thesis begins with general introduc-

tion which gives the general description of soliton propagation in NLTLs.

Chapter 1 presents the in-depth literature review of signal propagation in NLTLs,

leapfrogging dynamics and amplification of signals in NLTLs.
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Chapter 2 presents the various nonlinear model reduction methods that we deemed

relevant to the research work of this thesis. This is followed by the explicit sixth order

Runge-Kutta method used in our numerical simulations. Next we present all the models

under study and their various mathematical analysis.

In chapter 3, we present the results and discussions of this thesis. First we discuss

the effects of a resistive component shunting a coupling capacitor on the leapfrogging

dynamics of a pair of electrical pulse solitons, propagating along two weakly coupled

NLTLs. Secondly we investigate the leapfrogging dynamics of a pair of KdV solitons in

two nonlinear transmission lines, weakly coupled by a linear capacitance. Two different

physical configurations of coupled nonlinear transmission lines are considered: the

first configuration was two RLC lines with intraline Schottky varactors and the second

configuration had two coupled LC lines one of which had a localized capacitive impurity.

Lastly we investigate the competition between amplification and damping effects of

pulse-shaped electrical solitons in NLTLs connected to voltage-terminal modules.

And finally, this dissertation ends with a general conclusion on all work carried out

in this thesis. We also present some perspectives of future works on signal propagation

in NLTLs.
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CHAPTER I

LITERATURE REVIEW ON NLTLS

I.1 Introduction

The interest in waves propagating through a nonlinear and dispersive media was kindled

over a century and half ago by Scott-Russell who observed that disturbances could

propagate over long distances in a channel of water. Scott’s classical treatise was among

the first to treat the physics of transmission lines. Scott showed that the KdV equation

describes weakly nonlinear waves in the uniform NLTL. If the nonlinearity is moved

from the capacitor parallel to the shunt branch of the line to a capacitor parallel to the

series branch, the NLS equation is obtained instead.

A lot of research on NLTLs has been carried out for the past seven decades. In

recent years, considerable interest has been shown in problems associated with the

propagation of EM waves in nonlinear media in order to effectively utilize the nonlinear

effects in both the radio and the optical range. When losses in the medium are small,

shock wave formation is possible. Thus, transmission lines with nonlinear propagation

media can be used for sharpening wavefronts and consequently for harmonic generation

and parametric amplification of EM signals. Mullick in 1967 published a theoretical

investigation of signals in transmission lines whose nonlinear parameters are distributed

capacitance and conductance. He carried out his analysis by conventional perturbation

theory, where nonlinearity and dispersion were assumed to be small. Using perturbation

technique, they solved the problem of propagation of signals in NLTLs with weak

nonlinearity in its distributed capacitance and small nonlinear shunt loss. They derived

the condition for the formation of shock waves, and that for sinusoidal inputs, the

presence of nonlinearity in the shunt loss makes possible the formation of shock waves
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at a smaller amplitude than when the nonlinearity is absent. For step-like inputs, this

critical amplitude either increases or decreases depending on the sign of the nonlinearity

and the polarity of the step.

In 1895, Korteweg and de Vries were able to derive an equation now called the

Korteweg de Vries (KdV) equation, in which they were able to explain the observed

phenomena of Scott-Russell. With the advent of numerical techniques and higher speed

computers, several problems which have their origin in studying wave propagation in

nonlinear dispersive media have been examined. An extensive review article on these

nonlinear equations, their properties, and techniques of solutions has been written by

Scott et. al.. By 1970’s, only two experiments had been reported which described some

properties associated with solitary-wave propagation in electrical networks. The first

was constructed by Hirota and Suzuki [4].

I.2 Survey Research on NLTLs

The theoretical study of soliton propagation in nonlinear LC networks has been carried

out with much attention devoted to two equations: The Toda lattice equation and the

KdV equation. In 1973, Hirota and Suzuki demonstrated that the LC ladder network

with a nonlinear shunt capacitance given by the expression

C(V ) =
CoVo

(V − Vo)
, (1)

where Vo is constant, is equivalent to the Toda lattice, for which soliton solutions are

well known. They even reported experimental results for the transmission of solitons

in LC networks by using varactor diodes with nonlinearity given by C(V ) ' 27(V −

Vo)
−0.48 pF. Singer and Oppenheim [2] proposed a new hardware implementation of the

Hirota and Suzuki capacitor, providing a more accurate experimental implementation of

the Toda lattice with electrical circuits.

Wave propagation on nonlinear dispersive transmission lines leads to the generation
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of harmonics, each of which travels at its own characteristic velocity. If nonlinearity

and dispersion are just ”balanced” a dynamic steady state propagation of waves with

permanent profile occurs, similar to the behaviour of solitons which are today discovered

in a lot of areas in physics. Lumped electrical networks have been used very often to

study nonlinear dispersive wave propagation in which some fundamental properties, like

the generation of solitary waves and soliton interactions and the recurrence phenomena

have been confirmed.

Nagashima and Amagishi also obtained a quantitative method to analyse the nonlin-

ear LC circuit equivalent to the Toda lattice and pointed out that the difference from the

analysis of Hirota and Suzuki came from the definition of the nonlinear charge. With the

use of this quantitative method, the energy of a soliton were calculated and compared

with experimental results. When the amplitude of a soliton is small, the width of a soliton

becomes large and as a results the continuum approximation of the circuit holds. In this

limit, the circuit equation reduces to the KdV equation.

Many equations for lines that combine nonuniformity, nonlinearity, and resistive loss

have been derived, but these models were not analyzed and the possible applications

of a nonuniform NLTL were not explored. In other works, numerics and experiments

indicated that a nonuniform NLTL could be used for ”temporal contraction” of pulses.

For the description of long waves in a 2D lattice consisting of 1D lines coupled together

by capacitors, one obtains a modified ZK equation [30]. When a small transverse pertur-

bation is added to the KdV equation, one obtains a Kadomtsev-Petviashvili (KP) model

equation. Dinkel et al. [31] carried out this procedure for a uniform nonlinear 2D lattice,

and mentioned that the circuit maybe useful for ”mixing” purposes. The classification of

the effects of discreteness, nonuniformity and nonlinearity in the theory of 1D transmis-

sion lines is reviewed in [15]. Also in [15] Afshari et al. showed analytically that a linear

nonuniform transmission line, with constant delay but exponentially tapered impedance,

can be used for combination of signals. The speed and amplitude of outgoing signals

are analyzed directly from the continuum model. Also they showed numerically that

introducing weak nonlinearities causes outgoing pulses to assume a solitonlike shape.
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The notion of transmission was generalized to a 2D transmission lattice, in which case,

they applied the reductive perturbative method and showed that a modified KP equation

describes the weakly nonlinear wave propagation in the lattice.

Extending the transmission line model to higher dimensions has proven difficult, both

theoretically and experimentally. There have been particular applications of versions of

the KdV equation. Experiments have been performed on cylindrical solitons using a 2D

transmission line. Resonances of a 2D transmission line have also been examined. How-

ever, with the rapid developments in integrated circuit technology, we believe that soliton

propagation in higher dimensional transmission lines will be a topic that will continue

to receive attention. In [31], they were able to model distributed electrical transmission

lines containing common linear and nonlinear electrical elements and to transform the

1D and 2D nonlinear equations into the KdV and the KP equations respectively. They

suggested that the critical resonance angle and the amplitude enhancement found in the

KP equation may have a practical application. For example, in a ”mixing” application for

small signal detection of a soliton B, they suggested that an idler soliton propagation on

path A would always be present at an interaction region. If soliton B is also incident at

the interaction region simultaneously, a soliton whose amplitude is four times as large

would be created. This amplitude enhancement may be sufficient to keep it out of the

background noise in a communication system or even to bring a low-level signal out of

the background noise in a detection system.

Based on the lumped element equivalent circuit of the NLTL, a numerical model[32]

was presented to study soliton behaviour in NLTLs. The main advantage of this model

over previous model is that it allows us to obtain soliton waveforms regardless of the

considered nonlinear capacitance. Their model can be used to predict soliton propaga-

tion in fabricated NLTLs and is especially useful in studying the influence of nonlinear

device on soliton characteristics, since C − V curves experimentally obtained on non-

linear loading devices can be introduced in the formation. However, for strong lumped

solitons, or to study soliton propagation in nonlinear LC networks with arbitrary C(V )

nonlinearity, a KdV approach cannot generally be applied. Also in [32], a new procedure
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to obtain soliton solutions in NLTLs described by its lumped element equivalent circuit

is presented and applied to structures with HBV-like nonlinear devices. By considering

model parameters of typical HBV-like NLTL structures, soliton waveforms for different

propagation delays were numerically obtained. It was found that the resulting voltage

pulses are stable and maintain shape and speed after interaction. These results validated

their model for use in studying soliton behaviour in NLTLs.

NLTLs have evolved from large-scale prototypes using discrete components and

producing nanosecond edges into integrated circuits capable of pico- and sub-picosecond

outputs. These circuits are interesting not only because of their intrinsic ultrafast physics

but also for their applications in measuring other high-speed or broadband phenomena,

such as in spectroscopy or device characterization. In [33], it is shown that electrical

circuits can reach well into the femtosecond regime by using the NLTL concept with a

δ-doped epitaxial profile to achieve large C(V ) nonlinearities and low capacitance diodes

on the same substrate. Similar benefits could be realized for other harmonic generation

and mixing integrated circuits. In [34], the study of soliton propagation characteristics in

NLTLs loaded with HBVs was investigated. A simple equation, valid for any nonlinear

device, was presented to directly determine the relationship between soliton amplitude

and per-second propagation delay. By means of a simple approximation, an analytical

expression for the complete description of the solitaries was presented. Their results

clearly justified the utility of our approach for the study of moderate to high voltage

solitons in actual NLTLs. Their model helps in the understanding of soliton-like harmonic

generation in NLTLs loaded with HBVs for terahertz frequency multipliers. In [35], a

discrete NLTL with nonlinear intersite resistance exhibiting pulse signal voltages with

compact shape was introduced and investigated. More precisely, they first showed that

shunting the linear inductor in each cell of the basic LC electrical transmission line by

a nonlinear resistance(NLR) induces a nonlinear diffusion term in the circuit equations.

Next their study was completed by the investigation of losses of circuit components on

the compacton propagation where they showed that the Tanaka’s perturbation method

can be satisfactorily applied to the NDB equation which admits a solitary wave with
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compact shape.

The integration of nonlinearity and periodicity has brought to electronics engineering,

as well as many other fields in Physics, plenty of interesting topics [6]. The gap soliton

is a typical product of such an integration [36]. Moreso, interest has been shown in the

role solitons play in communications. In [37], Essimbi showed that localized solitary

signals in the form of kinks (antikinks) waves with eigenfrequencies lying inside the

nonlinearity-induced gap can propagate with a remarkable stability on the nonlinear LC

circuit, where the nonlinear capacitor is supposed to be a quadratic function of voltage.

Also in [38], Essimbi studied nonlinear localized excitation in a model of an electric circuit.

Based on a QDA, he analytically showed that the amplitude equation derived in an NLS

equation can give in a unified way non-propagating gap solitons as well as an intrinsic

localized mode for the whole Brillouin zone of the CW spectrum, except at the Brillouin

zone upper edge. Finally he noticed that when the shunt circuit is regarded as a stray

parasite component of a nonlinear capacitor, the circuit is equivalent to an electrical Toda

lattice, which can support upper cut off localized modes.

In [16], Koichi et al. proposed a new polarisation mode dispersion (PMD) compen-

sation scheme that uses an NLTL as its key device. When the number of eigenvalues

corresponding to the input pulse shape is unique, the device can equalize the input

pulses distorted by many factors other than PMD, which includes attenuation in metallic

cables. The proposed schemes succeeds in compensating for the distortions whose PMD

delay causes the interference with distinct polarization mode pulses corresponding to

the same bit. Again in [39], a new type of retimer which employs an NLTL coupled to a

linear transmission line is proposed. For the retimer, the data and the clock are applied

at the same ends of the NLTL and the linear line respectively. The clock signal couples

with the solitonic data to achieve synchronization, and is continuously modulated with

a fixed propagation velocity. This modulation causes the solitonic data to be pinned by

the clock. The retimer does not have any feedback and is designed in a fully distributed

or a traveling-wave manner. Therefore, it has the potential to achieve ultrahigh-speed

signal retiming, which cannot be attained by the lumped transistor-based retimer. In [40],
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a method of short pulse amplification with NLTL is proposed. The pulse propagation

on an NLTL is perturbatively treated to find that the nonlinear coupling of the solitonic

part with an edge establishes the amplification. Koichi numerically obtained results that

explicitly show the process of pulse amplification. The growth rate of the pulse is linearly

dependent on the line inductance and the gradient of the edge. He also believe that the

property of an NLTL to control the height of a short pulse may provide many beneficial

functions in high-speed electronics.

The optical fiber is another example of a nonlinear dispersive medium where optical

solitons are observed. optical solitons with higher order dispersion are subject of wide

mathematical interest and development of methods for their analytical and numerical

solutions [41].

Artificial materials with simultaneously negative permeability and permittivity are

sometimes called left-handed materials (LHMs). LHMs use arrays of metallic wires

and arrays of split-ring resonators or planar transmission line periodically loaded with

series capacitors and shunt connected inductors [42]. Most studies on LHMs have been

performed in linear regime of wave propagation. However, combination of nonlinearity

and anomalous dispersion of LHMs may give rise to many new and interesting phenom-

ena and applications. Some nonlinear wave phenomena that occur during propagation

of the wave along the boundary between right-hand medium and left-hand medium,

when one or both of them are nonlinear, have been considered in [43, 44, 45, 46]. Soliton

propagation in left-handed (LH) NLTL with series varactors has also been examined [47].

At microwave frequencies, a number of transmission lines with LH characteristics have

been proposed [42, 48].

In [49], the characteristics of nonlinear left-handed transmission lines (NL-LH-TLs)

were discussed for the first time. An NL-LH-TL was analyzed, and shown to exhibit

anomalous frequency dispersion and negative nonlinearity. It’s voltage-wave partial

differential equation was derived and its harmonic/pulse responses were described.

They also suggested potential applications of the NL-LH-TLs such as pulse shaping

for Ultra-Wide Band (UWB) and radar systems. In [50], Kozyrev et al. introduced
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NLTLs based on LH media and simulated third harmonic generation in a material that

in 2D could also focus microwaves. Their simulations demonstrated efficient harmonic

generation along LH NLTLs. Harmonic generation is possible over a significantly wider

operating frequency range and at relatively higher frequencies in comparison with dual

conventional low-pass filter type NLTL. Extending their results for 1D LH NLTL media

with focusing, due to the negative refractive index of 2D LH transmission line media,

leading to the development of highly efficient powerful frequency multipliers.

LH transmission lines are compact systems showing regimes of backward wave

propagation similar to negative-index metamaterials. They have been applied to a

number of engineering applications, including the study of leaky wave antennas, compact

resonators, and dual band couplers [51]. In a number of these applications, nonlinear

elements have been introduced to create tunable structures [52, 53] and, in addition, they

have been used as a platform for the study of nonlinear wave propagation in the system

supporting the propagation of backward waves [54, 55, 56]. Parametric gain is a nonlinear

process whereby a high-energy pump wave exchanges energy with a weaker signal wave

through modulation of the material or circuit parameters, thus amplifying it. This effect

is commonly used in optical systems, and it has been proposed as a way to mitigate the

losses in negative-index metamaterials [57]. In [58], David et al. experimentally studied

the parametric amplification and generation in nonlinear LH transmission lines. By

utilising the complex dispersion characteristics of this system, they demonstrated that

the amplification of a weak signal in the three different regimes: with the signal in the

LH propagation band, with the signal in the stop band, and with the signal at a defect

frequency. Their results show that substantial gain can be achieved in nonlinear systems

exhibiting backward wave propagation, and they confirmed that parametric processes

are promising candidates for mitigating the losses found in artificial backward wave

media, including negative-index metamaterials. In [59], modeling of a LH NLTL loaded

periodically with nonlinear series capacitors and linear shunt inductors is presented. In

this article it is shown that the spatial derivative of the voltage across the transmission

line satisfies a NLS equation. The coefficients of the obtained NLS equation show that the
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dispersion coefficient (Q) is always possitive, but the sign of the nonlinearity coefficient

(P) is determined by the characteristics of the varactor. Depending on the sign of the

product PQ, the proposed LH NLTL can generate either bright or dark solitons. The

condition for which this LH NLTL can exhibit modulational instability was studied in

[60].

There have been reports of applying NLTL to pulsed power generator [61, 62]. With

the development in electronics and semiconductor technology there is also increase

need for short pulses for testing and measuring of electrical equipment. Commercially

available pulse generators are nowadays quite capable, but sometimes the properties

of the generators are inadequate to create short-time pulses with suitable waveforms.

In [63], Kuusela et al. proposed the nonlinear electric transmission line as a solution

to this problem. It is a simple device that is added to a conventional signal generator

to enable the generation of burst of most faster pulses. They showed that NLTLs offer

a practical tool to generate short-time voltage pulses for various pulses. Wilson et

al. proposed the utilization of ferroelectric ceramic capacitors as nonlinear capacitors,

and used BaTiO3 ceramic capacitors that were manufactured specially for nonlinear

capacitors. They proposed pulse sharpening effect of the NLTL to generate short rise-

time high voltage pulses. In [61], Fairlie proposed utilization of electrical solitons to

generate short pulse width high voltage pulses. However, the voltage amplification effect

of the NLTL attracted no attention at that time. In [63], they developed a new pulse

generator which generates a large- amplitude and short pulse width voltage pulses at a

high repetitive frequency. This generator utilizes the voltage amplification effect of the

head-on collision of two solitons in the NLTLs containing nonlinear capacitors.

Electrical NLTL [4], is undoubtedly one of the best platforms for all electrical short

pulse generation. When a pulse is input to an NLTL such that the nonlinearity of the

Schottky varactors compensates for dispersion, the line generates multiple solitonic

pulses, whose widths are generally smaller than that of the input. By extracting the

largest pulse, an NLTL operates as a good short pulse generator [5]. Moreover when a

step pulse is input to an NLTL such that both the nonlinearity and dispersion sharpen the
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edge, the edge finally results in a shock, by which a sub-picosecond temporal transient is

observed [6]. An NLTL is useful for more than just short pulse generation, it is found

that applying a short pulse supported by a step-like wave to an NLTL enables a short

amplification [7]. Nowadays there has been a great interest in the study of nonlinear

lumped transmission lines for high power RF generation. This has been motivated by two

scientific advances. Seddon et al. [64] in the first advance obtained from BAE systems,

was development of a saturated ferrite core transmission line that is capable of generating

RF power peaks of about 20 MW with efficiency of 20% at 1.0 GHz. The other one was

the experimental work developed by Smith [65] at Oxford involving nonlinear lumped

transmission lines made of barium or strontium titanate ceramic tiles, which provided

60 MW RF power at frequencies between 100-300 MHz. In [66], they showed that the

principle of soliton generation in nonlinear lumped transmission lines. They checked

that there is a minimum rise time for the input pulse to excite the high frequency solitons

at the output of the line. They also reported that there is great prospect for hybrid lines to

produce solitons with frequency of the order of 800 MHz operating close to the saturation

region.

There have been many investigations on the dynamics of solitons in coupled nonlinear

systems including both weakly and strongly dispersive ones, governed by the coupled

KdV equations [67, 68, 69, 70, 71] and NLS equation [72] respectively. Yoshinaga and

Kakutani considered a coupled transmission line which consists of two LC ladder lines

connected by identical intermediary capacitors, and showed that weakly nonlinear long

waves on this line simulate long gravity waves on a two-layer fluid. In [27], Essimbi et

al. investigated the class localized electrical signal voltages near the gap of continuous

spectrum of two weakly coupled nonlinear LC transmission lines. They found that

in all cases such excitations are asymmetric envelope solitons, undergoing periodic

modulations in time at frequencies lying in the continuous spectrum but close to the

point ω(q = π/2), where ω is the frequency of linear waves, and q is their wave vector.

By assuming the C − V characteristics be of the form
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C =
Co

1 + ( V
Vo

)p
, (2)

where V is the voltage of the transmission line, Co, Vo, and p are all constants, Dinkel

et al. have studied the nonlinear wave on the coupled NLTL [31]. They found that, in

the continuum limit, the voltage for the transmission line is described by a modified ZK

equation. The exact cut off frequencies of the growth rate of the solitary waves for the

transverse perturbation were obtained. In [73], coupled NLTLs are studied for which

C − V characteristics is of the form

C = Co(1 + k1V + k2V
2 + · · · ), (3)

where Co, k1, and k2 are constants and V is the perturbation voltage in the transmis-

sion line. Only the case where V is small enough compared to the equilibrium voltage is

considered. He found in his analysis that there is instability to the transverse perturba-

tions with the wave number k such that 0 < k < kc where kc is the critical wave number

for a coupled ZK equation. In addition if there are higher order perturbations in the

transverse direction, the solitary wave is unstable if the wave number, k, of the transverse

perturbation satisfies 0 < k < kc with kc numerically given in the article.

In [74], he considered a weakly dispersive coupled NLTLs in order to develop base-

band pulses governed by the KdV equation and proposed a method of double repetition

rate of pulse stream input to the line. The dispersive distortions are well compensated for

by nonlinearity for both c− and π−mode pulses. c− and π−modes are two different prop-

agation modes on linear coupled NLTLs. The properties of the nonlinear pulses carried

by the c− and π−modes are quantified based on the reductive perturbation method. The

double repetition rate was successfully confirmed by the numerical evaluation. Koichi

in [21], studied leapfrogging solitary waves characterized in two capacitively coupled

NLTLs. In this work Koichi considered the case when two coupled, nonlinear, weakly

dispersive systems are almost symmetrical, so that their dispersion allows two baseband

modes with almost coincident velocity. The closed form formula of the leapfrogging
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frequency was obtained via the perturbative approach, which simulated the properties

well for the pulse amplitude uniquely specified by the coupling strength. Koichi also in

[28] investigated two capacitively coupled NLTLs. The asymmetrical pulses developed

in these lines were analyzed on the basis of numerical calculations. The closed-form

formula of the minimum spatial separation between two pulses interacting repulsively

was obtained via reduction theory, which simulated the properties quantitatively well in

order to determine the dependence on the pulse velocity and mutual capacitance. The

repulsive collision between pulses with different polarities could be effectively used to

amplify short electrical pulses.

Recently in [75], a review of the three main topologies for NLTLs was carried out. In

these topologies, lumped element and nonlinear material designs are promising for HPM

applications, while SRR designs are more applicable for lower power systems and antenna

applications. NLTLs are a promising technology for providing high power (> 100MW ),

high frequency (> 1GHz), and high repetition rate (> 1kHz) solutions in a solid state

package, while greatly decreasing the need for auxiliary systems required compared to

traditional HPM technology. Current research demonstrates the feasibility of increasing

the frequency of nonlinear capacitor-based lines simultaneously with increasing power

output and efficiency.

I.3 Transmission Lines

I.3.1 General considerations

A transmission line is a two-port network used to connect a generator or transmitter

signal to a receiving load over a distace as shown in figure (1).

A transmission line is also a device designed to guide electrical energy from one point

to another. That is a transmission line is a guided structure used to direct the propagation

of energy from the source to the load. It is used, for example, to transfer the output RF

energy of a transmitter to an antenna. Transmission lines are used mainly in transmitting
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Figure 1: Two-port model of a transmission line.

power at low frequencies and in communications at high frequencies. Transmission

lines maybe a coaxial line, two-wire line, parallel plate, planar line and microstrip line.

Common examples of transmission lines in our lives are twisted wire pairs which are

used in computer networks and coaxial cables which are used in TVs. Figure (2) shows a

cross section of different types of transmission line.

Figure 2: Different types of transmission lines.

A transmission line stores electric and magnetic energy distributed in space and

alternating between the two forms in time. That is, at any point along the line the energy

is stored in a combination of electric and magnetic forms. As such, a transmission line has

a circuit form that combines inductors, capacitors, resistors, whose values are dependent

on the geometry of the line and the properties of the materials comprising the line. The

transmission lines considered here are systems of two or more closely spaced parallel
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conductors 1. Most of the discussions in this section is restricted to just two parallel

conductors, with the distance between the two conductors being substantially smaller

than the wavelengths of the signals on the line. With this the structure maybe satisfactorily

analyzed on the basis of voltages and currents. By considering a transmission line where

electrically small transverse line dimensions (say, less than 1/20 of the wavelength)

prevail, a number of useful results are obtained on a voltage and current basis.

In low frequency analog and digital circuits, transmission lines are often referred

to as interconnects and can be viewed simply as wires, and provided that the wire

has sufficiently low resistance, the interconnect can be largely ignored. However, if

transmission must be over a nonnegligible distance compared to the wavelength, then

the interconnect must be considered as part of the circuit.

The earliest fundamental understanding of signal transmission led to telegraphy over

distances. The critical theoretical step that enabled transmission over more than short dis-

tances to be achieved was the development of an understanding of signal transmissionon

lines using phasor analysis. A phasor is a complex number that combines the amplitude

and phase of a sinewave. With transmission line equations, the introduction of phasors

eliminates time dependence from the equations and the dimensionality of the equations

is reduced by one. When phasors are used in circuit analysis, differntial equations in time

become algebraic equations. Also no information on frequency is retained when phasors

are used.

In electronics and communications engineering, a transmission line is a specialized

cable or other structure designed to conduct alternating current of radio frequency.

Transmission lines are used for purposes such as connecting radio transmitters and

receivers with their antennas, distributing cable television signals, trunkline routing calls

between telephones switching centers, computer network connections and high speed

computer data buses. Ordinary electrical cables suffice to carry low frequency a.c., such

as mains power and audio signals. However, they cannot be used to carry current in the

1 Rectangular waveguide is a transmission line that has just one conductor. Dielectric line can have no
conductor.
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radio frequency range, i.e. above 30 kHz, because the energy tends to radiate off the cable

as radio waves, causing power loses. Radio frequency currents also tend to reflect from

discontinuities in the cable such as joints and connectors, and travel back down the cable

toward the source [76, 77]. These reflections act as bottlenecks, preventing the signal

power from reaching the destination. Transmission lines use specialized constructions

and impedance matching, to carry EM signals with minimal reflections and power loses.

The distinguishing feature of most transmission lines is that they have uniform cross

sectional dimensions along their length, giving them a uniform impedance, called the

characteristic impedance [77, 78] to prevent reflections.

At microwave frequencies and above, power losses in transmission lines become

excessive, and waveguides are used instead, which functions as ”pipes” to confine and

guide the EM waves. At even higher frequencies, in the terahertz, infrared and visible

ranges, waveguides in turn become lossy, and optical methods, are used to guide EM

waves [79]. Mathematical analysis of the behavior of electrical transmission lines grew

out of the work of James Clerk Maxwell, Lord Kevin and Oliver Heaviside. In 1885 Lord

Kevin formulated a diffusion model of the current in a submarine cable. The model

correctly predicted poor performance of the 1858 trans-atlantic submarine telegraph cable.

In 1885 Heaviside published the first papers that described his analysis of propagation in

cables and the modern form of the telegraph equation.

In many electric circuits, the length of the wires connecting the components can for the

most part be ignored. That is, the voltage on the wire at a given time can be assumed to

be same at all points. However, when the voltage changes in a time interval comparable

to the time it takes for the signal to travel down the wire, the length becomes important

and the wire is important and the wire must be treated as a transmission line. That is,

the length of the wire is important when the signal includes frequency components with

corresponding wavelength comparable to or less than the length of the wire. A common

rule of thumb is that the cable or wire should be treated as a transmission line if the length

is greater than 1/10 of the wavelength. At this length the phase delay and the interference

of any reflections on the line become important and can lead to unpredictable behavior
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in systems which have not been carefully designed using transmission line theory.

I.3.2 The Four Terminal Model

For the purposes of analysis, an electrical transmission line can be modeled as a two port

network as shown in figure (3). A two port network is an electrical network with two

separate ports for input and output.

Figure 3: Two port Network

The two port network model is a popular modeling technique used to characterize

the electrical transmission line. A two port network may be voltage-driven or current-

driven. To characterize a two port network requires that we relate the terminal quantities

V1, V2, I1, and I2 in figure (3), out of which two are independent. The various terms that

relate these voltages and currents are called parameters. These parameters are impedance

(z-), admittance (y-), hybrid (h-), and transmission (ABCD-) parameters.

Among the various approaches in two port modeling, the two port impedance (z-)

model reproduces the system behavior by exciting the model with currents. As illustrated

in figure (3), the model is excited by supplying input port and output port with currents

I1 and I2 respectively. The responses to the excitation are obtained as the input port

and output port voltages V1 and V2, respectively. The input-output behavior of the

transmission line can now be easily characterized by the four variables V1, V2, I1, and I2,

and mathematically represented using the excitation-response variables and coefficients,
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called the z- parameters. The terminal voltages are related to the terminal currents as;

V1

V2

 =

z11 z12

z21 z22


I1

I2

 = [z]

I1

I2

 , (4)

where the z terms are called the impedance parameters, and have units of ohms.

These z- parameters are obtained by open-circuiting the input or output port. z11 and

z22 are the input and output impedances while z12 and z21 are the forward and reverse

transfer impedances.

In the simplest case, the network is assumed to be linear, and the two ports are

assumed to be interchangeable. If the transmission line is uniform along its length, then

its behavior is largely described by its characteristic impedance, Zo. Zo is the ratio of the

complex voltage of a given wave to the complex current of the same wave at any point on

the line. Typical values of Zo are 50Ω or 75Ω for a coaxial cable, about 100Ω for a twisted

pair of wires. When sending power down a transmission line, it is usually desirable

that as much power as possible will be absorbed by the load and as little as possible

will be reflected back to the source. This can be ensured by making the load impedance

equal to characteristic impedance Zo, in which case the transmission line is said to be

matched. Some of the power fed into a transmission line is lost because of resistance.

This in effect is called ohmic or resistive loss. At high frequencies, another effect called

dielectric loss becomes significant, adding to the losses caused by resistance. Dielectric

loss is caused when the insulating material inside the transmission line absorbs energy

from the alternating electric field and converts it to heat. The total loss of power in a

transmission line is often specified in decibels per meter (dB/m), and usually depends

on the frequency of the signal. A loss of 3 dB corresponds approximately to a halving of

the power.
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I.4 Types of Transmission Lines

In what follows in this subsection of this thesis, the following types of transmission

lines; balanced two wire, coaxial cable, microstrip line, strip line, slot line and coplanar

waveguides will be discussed.

I.4.1 Balanced Two Wire Line

A balanced line is a transmission line consisting of two conductors of the same type, and

equal impedance to ground and other circuits. There are many subtypes of balanced

lines, amongst which the most common are twisted pairs, star quad and twin-lead.

1. Twisted Pairs:

In this transmission line the rubber piping is used in circular or square shape. The

two conducting wires are kept inside the rubber at opposite sides of the piping. These

conducting wires run through the construction and remains parallel to each other. Twisted

pair lines are commonly used for terrestrial telephone communication. In such cables,

many pairs are grouped together in a single cable, from two to several thousand. Twisted

pairs are also used for data network distribution inside buildings, but the cable is more

expensive because the transmission line parameters are highly controlled.

2. Star Quad:

Star quad is a four-conductor cable in which all four conductors are twisted together

around the cable axis. It is sometimes used for two circuits, such as 4-wire telephony

and other telecommunication application. In this configuration each pair uses two non-

adjacent conductors. When used for a single line, such as audio applications and 2-wire

telephony, two non-adjacent conductors are terminated together at both ends of the

cable. The disadvantage of star quad is that, in combining two conductors, doubles
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the capacitance. High capacitance causes increasing distortion and greater loss of high

frequencies as distances increases.

3. Twin-Lead:

Twin-lead consist of a pair of conductors held apart by a continuous insulator. By holding

the conductors a known distance apart, the geometry is fixed and the line characteristics

are reliably consistent. This line has a lower loss than coaxial cable because the wave

propagates mostly in the air rather than in the thin dielectric. However, it is more

susceptible to interference.

Twin-lead transmission lines have the property that the EM wave propagating down

the line extends into space surrounding the parallel wires. these lines have low loss, but

also have undesirable characteristics. They cannot be bent, tightly twisted, or otherwise

shaped without changing their characteristic impedance, causing reflection of the signal

back toward the source. They also cannot be burried or run along or attached to anything

conductive, as the extended fields will induce currents in the nearby conductors causing

unwanted radiation and detuning of the line. Coaxial lines largely solve this problem.

Other balanced lines include Lecher lines. They are a form of parallel conductor that

can be used at UHF for creating resonant circuits. They are also a convenient practical line

that fills the gap between lumped components (used at HF/VHF) and resonant cavities

(used at UHF/SHF). The cost of two wire lines is very low compared to other types of

transmission lines. Their design is quite simple and easy too. In addition to these, they

are capable of handling high power.

I.4.2 Coaxial Cable

A coaxial line is the quintessential transmission line, as it is one of the few transmission

line structures that can be described exactly from first principles when there is no loss.

A realistic coaxial line is considered with conductors having a small amount of loss, a

structure that does not have an exact solution.
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A coaxial line is a type of transmission line that has an inner conductor surrounded by

a tabular insulating layer, surrounded by a tabular conducting shield. The term coaxial

comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial

lines were invented by Oliver Heavisde, who patented the design in 1880. Coaxial lines

conduct electrical signals using an inner conductor surrounded by an insulating layer

and all enclosed by a shield, typically one to four layers of woven metallic braids and

metallic tape. The line is protected by an outer insulating jacket.

When a positive voltage pulse is applied to the center conductor of the coaxial line,

an electric field results that is essentially directed from the center conductor to the outer

conductor. A much smaller component of the electric field will also be directed along

the line. The direction of the electric field is the direction in which a positive charge

would move if it was released into the field. The component of the field that is directed

along the shortest path from the center conductor to the outer conductor is denoted

ET , and the component directed along the line is denoted EL. The subscripts T and L

denote transverse and longitudinal components respectively. Thus, while EL � ET , it

is necessary to accelerate electrons on the conductors and give rise to current flow, and

hence the movement of the pulse along the line.

The advantage of coaxial design is that electric and magnetic fields are restricted to

the dielectric with little leakage outside the shield. Conversely, electric and magnetic

fields outside the cable are largely kept from interfering with signals inside the cable.

The characteristic impedance of a coaxial line is determined by the dielectric constant of

the inner insulator and the radii of the inner and outer conductors. Common applica-

tions of coaxial line include video, RF and microwave transmission, and computer and

instrumentation data connections.

I.4.3 Microstrip line

Microstrip lines have a very simple geometric structure but the EM fields involved

are actually complex. However, simple approaches to quasi-TEM mode calculations
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with frequency dependent expreesions yield quite acceptable design accuracy for many

applications. Microstrip line was developed by Grieg and Engelmann at ITT laboratories.

Microstrip line is a type of electrical transmission line which can be fabricated using

printed circuit board (PCB) technology, and is used to convey microwave frequency

signals. It consists of a conducting strip separated from a ground plane by a dielectric

layer known as the substrate. Microwave components such as antennas, couplers, filters,

power dividers etc. can be formed from microstrip, with the entire device existing as the

pattern of metallization on the substrate. Microstrip is thus less expensive than traditional

waveguide technology, as well as being far lighter and more compact.

Microstrips have been developed for many years and is the most popular transmission

line configuration for MMIC applications due to several reasons. Firstly, passive and

active elements are easily inserted in series in microstrip structure; also, the metalized

ground plane on the back of the substrate can be used both as the mounting surface

and the heat sink for heat generated by active devices on the surface. Moreover, a

large amount of theoretical and experimental data has been developed for microstrip

applications and most of the EM software packages are designed for this type of structure.

However, we cannot deny the difficulty of connecting elements in shunt to ground due to

the non-coplanar geometry as well as the thinned substrate for making via holes which is

fragile and increases fabrication cost. Furthermore, the parasitic inductance associated

with the via holes would degrade the peformance at high frequency [80].

Microstrip lines are also used in high-speed digital PCB designs, where signals need

to be routed from one part of the assembly to another with minimal distortion, and

avoiding high cross-talk and radiation. Microstrip are generally associated with lower

power handling capacity, and higher losses. Also, unlike waveguides, microstrip is not

enclosed, and is therefore susceptible to cross-talk and unintentional radiation.
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I.4.4 Stripline

A stripline is a symmetrical structure somewhat like a coaxial line completely flattened

out so that the center conductor is a rectangular metal strip and the outer grounded

metal is simply a rectangular box. The entire structure is 100% filled with dielectric, and

therefore transmission is TEM and dependent upon the relative permittivity explicitly.

therefore the wavelength is simply the free space value divided by the square root of the

permittivity. Stripline is a transverse electromagnetic (TEM) transmission line medium

invented by Robert M. Barrett of the Air Force Cambridge Research Center in 1955. This

means that striplines are nondispersive and have very high cut-off frequency. Striplines

offer better isolation between adjacent traces than the microstrip simply because the

upper ground plane prevents the electric fields to expand to wide area.

A stripline circuit uses a flat strip of metal which is sandwiched between two parallel

ground planes. The insulating material of the substrate forms a dielectric. The width

of the stip, the thickness of the substrate and the relative permittivity of the substrate

determine the characteristic impedance of the strip. In general, the dielectric material

maybe different above and below the central conductor.

To prevent the propagation of unwanted modes, the two ground planes must be

shorted together. This is commonly achieved by a row of vias running parallel to the strip

on each side. The disadvantage of stripline is that the fabrication is more complicated

and expensive. Lumped elements either have to be burried between the ground planes or

be transferred to microstrip structure to get the components onto the top of the substrate.

Moreover, because of the existence of the second ground plane, the strip width of a

stripline is much narrower for a given impedance and dielectric thickness than that of

microstrip.

I.4.5 Slot Line

Slot line is one of the basic instruments used in radio frequency test and measurement at

microwave frequencies. It consist of a precision transmission line, usually coaxial but
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waveguide implementations are also used, with a movable insulated probe inserted into

a longitudinal slot cut into the line. Slot line was first inroduced in 1968 as an alternative

transmission line for integrated circuits. Due to its property of radiation, it is normally

used in broadband antenna.

Slot lines are relatively cheap and can perform many of the measurements done

by more expensive equipment such as network analyzers. Slot lines are able to obtain

a characteristic impedance of 50Ω with a similar geometry size as those of microstrip

line. It is also the advantage in achieving higher theoretical impedance levels than with

microstrip for the same dielectric substrate. However, slot line support non-TEM mode

of propagation and therefore is quite dispersive and lossy. They have also difficulties to

connect devices in series therefore do not allow a great del of versatility in the circuit

layout.

I.4.6 Coplanar Waveguide

Coplanar waveguides are a type of electrical planar transmission line which was invented

in 1969 by Cheng P. Wen, primarily as a means by which non-reciprocal components such

as gyrators and isolators could be incorperated in planar transmission line circuits.

Coplanar waveguides have a coplanar geometry with a central conductive strip

and two adjacent ground planes on the same surface of the substrate. The effective

dielectric constant and characteristic impedance are determined by the dimensions of

the center strip width, the gap, the thickness and permittivity of the dielectric substrate.

For coplanar waveguides, devices and components can be grounded without via holes,

which means it is not necessary to thin down the substrate and the fabrication cost can be

reduced. It also suffers much less dispersion loss than microstrip line. Packing density

can be increased because the ground lines provide shielding between adjacent signal

lines. Coplanar waveguides have the advantage of small radiation at discontinuities [80].

The EM wave carried by a coplanar waveguide exists partly in the dielectric substrate,

and partly in the air above it. In general, the dielectric constant of the substrate will be
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different(and greater) than that of the air, so that the wave is traveling in an inhomogenous

medium. In consequence, coplanar waveguides will not support a true TEM wave;

at nonzero frequencies, both the electric and magnetic fields will have longitudinal

components.

Low characteristic impedance of conventional coplanar waveguides is achieved by

increasing the central strip width and decreasing the slot width. This will cause the

dimension size inconvenient for fabrication and any small variation of geometries would

lead to unpredictable behavior. Another disadvantage of coplanar waveguides is that

because of the ground, conductors are on each side of the signal line with small separation

distances and this will result in most of the electric field concentrated on the edge of the

signal line causing the current crowding phenomenon [81, 82]. The crowded current

on the edge of the transmission line will not only increase the dissipation loss but also

produce more heat which may damage the surrounding active devices.

I.5 Theory of Nonlinear Transmission Lines

NLTLs comprise of transmission lines periodically loaded with nonlinear varactors

and/or nonlinear inductors. In the case of nonlinear varactors the nonlinearity arises

from the variable depletion layer width of the varactor, which depends both on the

DC bias voltage and on the AC voltage of the propagating signal. NLTLs have been

the subject of several studies that have investigated their performance by means of

mathematical analysis [83, 84, 85], computer simulation, and practical experiments that

have shown their suitability for application in high speed and wide bandwidth systems.

These applications involve techniques for pulse forming and sharpening which are

applied in signal processing such as pulse compressor [86, 87], frequency multiplier [88],

etc. An NLTL in general is two wires through which a signal is transmitted. The behavior

of a pulse propagating on the NLTL is dependent on the nature of the wires, and the

nature of the pulse. The study of these various effects make up the NLTL theory.

The generation of solitons can be obtained with three different types of NLTLs:
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1. in a line where there is a balance between nonlinearity and dispersion;

2. through the effect of damped procession motion of magnetic dipoles moment in

a line buit with ferrimagnetic materials that are polarized with external magnetic

field

3. in a line that exhibits anomalous dispersion and nonlinearity.

A lumped NLTL is an LC right-handed line where each section consists of a capacitor

and an inductor. A single section of NLTL is shown in figure (4)

Figure 4: Equivalent Circuit model of one section of an NLTL

A discrete NLTL consists of a nonlinear dispersive medium where electrical solitons

propagate in the form of voltage waves with constant shape and velocity. Dispersion in

the line arises from the periodic nature of the elements while the nonlinearity is intro-

duced by nonlinear dielectric materials, such as voltage-dependent capacitors, and/or

nonlinear ferrimagnetic materials, such as current-dependent inductors, which are ar-

ranged in a series of LC section low-pass filters. The NLTL is called capacitive when it

employs capacitors as nonlinear devices, inductive when nonlinear inductors are used,

or hybrid with the simultaneous use of nonlinear capacitors and inductors in the line

section.

Consider the NLTL if figure (4), there are three basic equations for describing the

discrete LC ladder network, namely: the phase velocity vp, the characteristic impedance

Zo, and the cutoff frequency fc, also called the Bragg frequency because of the similarity

to Bragg diffraction in optics, which corresponds to a phase shift of 180o per stage. These
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equations are:

vp =
1√

[L(I)C(V )]
, (5)

Zo =

√
L(I)

C(V )
, (6)

fc =
1

π
√

[L(I)C(V )]
, (7)

where L(I) is the inductance as a function of current and C(V ) is the capacitance as

a function of voltage. If we consider a capacitive line, then as C decreases with the

applied voltage, the propagation velocity will increase with increasing velocity. Thus,

the portion of the pulse with higher voltage amplitude will travel faster than the lower

initial amplitude, and the pulse peak will catch up the low-voltage amplitude, forming

an output shock wavefront with a very fast rise time [89].

Another parameter in the NLTL characterization is the voltage modulation depth

(VMD). It is defined for the first three cycles, given as [90]

VMD = Vave =
Σ3
j=1(Vpt)j

3
, (8)

where j is the oscillation cycle number and Vpt is the peak-to-trough load voltage.

For varactor diodes, the voltage dependence of the diode capacitance can be modeled

from the C(V ) curve given by [89]

C(V ) = Co

(
1 +

V

Vj

)−m
, (9)

where V is the applied voltage, Vj is the junction potential, Co is the initial capacitance,

and m is a grading coefficient determined by the doping profile of the varactors. Also the

time charging function Q(V ) is calculated as the integral of the variable capacitance C(V )

with respect to V as

Q(V ) =

∫ ν

o

C(V )dV. (10)
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Thus substituting equation (9) in (10) we get

Q(V ) =
( Co

1−m

)
.
[( V
Vj

+ 1
)(1−m)]

. (11)

In the case of a nonlinear inductive line where we have a constant capacitance and a

nonlinear inductor, we adopt from [66] an equation modified so as to have a smoothly

varying inductance function that approaches an asymptotic value as the current increases.

This equation is given by

L(I) = (Lo − Ls)
[
1− tanh2

( I
Is

)]
+ Ls, (12)

where Lo is the initial inductance (at zero current), Ls is the asymptotic inductance

with current increase, I is the current flowing through inductor and Is is the inductive

nonlinear factor.

I.5.1 NLTLs Developed from Nonlinear Dielectric Materials

It is well known that the thickness of the reverse-biased diodes depletion layer increases

with increasing voltage. This results in a junction capacitance which decreases as the

reverse bias voltage increases. Because this effect was well known, this approach was

employed for the first demonstrations of NLTLs. Indeed, this nonlinear capacitance can

be very large because it is not limited by molecular relaxation. The greatest limitation

is the device resistance which appears in series with the junction capacitance and the

breakdown voltage. Schottky diodes suitable for high frequencies are limited to low

voltages, but this approach has been used in NLTL shocklines to produce some of the

fastest electrical pulses with even sub-ps rise times being achievable.

Nonlinear dielectrics have been incorporated into transmission lines for over thirty

years [91, 92]. Using various dielectrics and geometries gave a broad range of shock

forming lines, NLTLs for pulse sharpening, or RF sources. Ferrite loaded coaxial lines

were used to produce sub-ns high voltage pulses through magnetic compression. Early

38



research examined issues with various geometries for NLTL design. Since coaxial ge-

ometry generates nonuniform fields, some researchers decided to use a parallel plate

geometry for a shock forming line. Several NLTLs studies have evaluated the effective-

ness of ferroelectric materials on NLTLs. As an example, [85] proposed invalid material

contraints since it was not bound by the laws of electrostatics. But some models [83] were

physics-based and did not violate basic laws.

When the nonlinear components are made of a ferroelectric dielectric giving rise to a

capacitance that is dependent on applied voltage, we end up with a nonlinear capacitive

transmission line. Ferroelectric materials are found in some ceramic capacitors that

exhibit a capacitance change when subjected to a great variation of voltage. Ideally,

NLTLs are simply made from nonlinear materials. Characterizing the physical behaviour

of these materials and designing effective manufacturing processes is challaging. A

few published articles [93, 94, 95] have also reported the use of ceramic blocks specially

manufactured to use as a nonlinear dielectric in NLTLs, which also require the application

of higher input voltages in the range of several kilovolts.

Ferroelectric materials are characterized with two phases: paraelectric (or nonpolar)

and ferroelectric (or polar). In the first, the polarization of the material has a linear

behavior when subjected to an external electric field and the oriented dipoles return to

their original states when the field is removed. In addition to being nonlinear, in the

ferroelectric phase there is a spontaneous electric polarization that can be reversed by

the application of a strong external electric field and, as a result, the relative permittivity

(dielectric constant) in the ferroelectric phase can vary by the application of an external

electric field. These materials usually present high values of electric permittivity which

are temperature dependent due to the well-known structural phase transition at the Curie

temperature.

Dielectric losses in ferroelectric materials arise from conduction losses, that is ohmic

conductivity, hysteresis losses and relaxation losses due to reorientation of the electric

dipoles in response to an alternating electric field. Dielectric losses cause the degradation

in the performance of an NLTL by reducing its conversion efficiency and limiting its
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operating frequency.

The nonlinear characteristic of ferroelectric materials finds application in the construc-

tion of NLTLs but requires the control of several factors that effectively enable the access

of the nonlinearity of ferroelectric materials. Some of these factors include:

1. The Curie temperature of the compound should be near the operating room temper-

ature to allow operation of the dielectric in its paraelectric phase, where depending

on the material it can present a strong nonlinearity.

2. The breakdown voltage should be high enough to allow achieving higher nonlin-

earity of the dielectric, that is, to obtain the required variation of the capacitance

across the range of applied voltage.

3. Low dielectric losses in the radio frequency range at least at a repetition pulse rate

in the tens of hertz without external cooling.

It is worth mentioning that reports on the investigation of dispersive NLTLs using a

nonlinear dielectric in a parallel-plate design with ceramic blocks made of ferroelectric

compounds such as barium and strontium titanate [93, 94], or lead magnesium niobate

[95], which present an extremely high relative permittivity. To maximize the nonlinearity

of these ferroelectric materials, they should be used near to the Curie temperature (around

120 C barium titanate) and to be exposed to an electric field variation of the order of

kilovolts.

The ferroelectric ceramics used in the construction of discrete NLTLs consist of com-

mercially available ceramic capacitors that exhibit nonlinear capacitance when a voltage

is applied. The reduction of capacitance with increasing voltage is not a property of all

capacitors, but only applies to capacitors made of ferroelectric dielectrics like barium

titanate constructed without the addition of dopants to control thermal stability and, as a

result, their capacitance has both strong temperature and voltage dependences.

The generation of high-power pulsed signals with fast rise times is the main applica-

tion of NLTLs using commercial ceramic capacitor as a nonlinear element and requires
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the use of high-voltage input signals to effectively obtain the desired nonlinear behavior.

The following setbacks are oberved With the use of ceramic capacitors:

1. The nonlinearity is achieved with capacitors with large temperature dependence,

and the heat generation by the hysteresis losses must be considered.

2. The commercial ceramic capacitors are normally limited up to 5kV rated voltages

and have self-resonant frequencies, that is a frequency at which the capacitor starts

behaving like an inductor, in the hundreds of megahertz range. This is a limiting

factor for high-power and high-frequency applications.

3. The phenomenon of aging in ceramic capacitors is well known, and the manufactur-

ers usually quote an aging rate in terms of the reduction of the value of a capacitance

as a logarithmic function of time, and this process tends to be accelerated when

they are subjected to a high level of electric stress that is required to produce the

nonlinear response.

In [96] experimental results with high-voltage NLTLs were presented showing the

generation of pulsed RF waveforms at tens of kilovolts and frequencies from around 10 to

90MHz. These NLTLs were built using obsolete ceramic capacitors that had an excellent

capacitance ratio and were stacked to improve their voltage rating. Single pulses around

30kV were generated to supply these lines. The whole assembly operated submerged in

insulating oil.

Other ceramic and organic materials may well prove to be better materials for NLTL

sources, but we must be aware that heavy ions, such as barium and lead, can give

high dielectric constant but naturally increase the molecular relaxation time which is

detrimental to our application. Any new materials to be considered for use in NLTLs must

be screened for microwave absorption frequency peaks and suitable Curie temperature

range from the onset.
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I.5.2 NLTLs Developed from Semiconductor Materials

The nonlinearity of semiconductor devices as the nonlinear element in NLTLs arises

from the junction capacitance under a reverse bias. Typically, the operating voltage of

these devices ranges from few volts for silicon varactors diode and can reach the value of

3.3kV for carbide silicon Schottky diodes. Therefore, by using these diodes in stacked

configuration, an upper bound above 3.3kV can be reached in high-voltage NLTLs.

Besides the lumped lines, these capacitive NLTLs can be constructed with compact

dimensions using different forms of planar transmission lines such as microstrip line,

slot line, CPW, and finline.

The construction of capacitive NLTLs using three different types of diodes that exhibit

nonlinear capacitance with reverse applied voltage, which are varactor diodes, HBVs,

and Schottky diodes. These devices have different characteristics due to their different

construction and materials employed. A capacitive NLTL built with these diodes would

have its performance directly influenced by the diode reverse breakdown voltage, the

cutoff frequency, and the capacitance ratio.

In a diode, the depletion region, which is formed at the p-n junction under a reverse

voltage polarization, gives rise to a junction capacitance. All diodes exhibit this variable

junction capacitance, but varactors are manufactured to exploit this effect and to increase

the capacitance variation. Unfortunately, as diode doping profile is made more abrupt

the cutoff frequency also decreases. Varactor diodes are used to construct low voltage

capacitive NLTLs.

A Schottky diode is a semiconductor diode formed by the junction of a semiconductor

with a metal. This diode presents a higher power handling capability, low power loss,

low forward voltage drop, and a very fast switching action.

HBV diodes exhibit symmetric capacitancevoltage and asymmetric currentvoltage

characteristics. This leads to the generation of only odd harmonics of an applied signal

since the even harmonics are canceled due to the symmetric nature of the nonlinearity, so

they are used to build NLTLs that operate as frequency multipliers [88].
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Besides the voltage-capacitance relation of equation (9), another important equation

of a varactor is the cutoff frequency ( fc) which is described by [98]

fc =
Smax − Smin

2πRs

, (13)

where Smax and Smin are the maximum and minimum differential elastances (inverse of

capacitance), respectively, during a pump cycle and Rs is the parasitic series resistance.

For high efficiency, any varactor diode must exhibit low series resistance Rs and must

accommodate a large elastance swing, that is, a high Smax/Smin ratio.

The cutoff frequency is defined as the frequency at which the capacitive reactance

is equal to the series resistance. It is also a function of voltage, achieving its maximum

value at the breakdown voltage, being an important consideration in diode selection.

Ultimately, the minimum pulsewidth which may be generated on an NLTL is limited by

the diode cutoff frequency and the total line loss [99].

The oscillation depth and total number of solitons generated can be increased by

varying the nonlinearity and the total number of stages; however, the conductive and

dielectric losses will dissipate much of the energy of the oscillations. This can significantly

reduce the overall efficiency of the lines with many stages [100].

The investigation of parameters that affect the performance of low-voltage NLTLs

using varactors is now possible since the test equipment needed to perform these exper-

iments are easily found in electronics labs. The experimental results with low-voltage

NLTLs were presented in [96], reporting the generation of pulse bursts at frequencies

ranging from a few megahertz to 250MHz. These lines were constructed using varac-

tors diodes (BB212) and specially manufactured inductors. The results of research on

low-voltage capacitive NLTLs built with varactors and inductors assembled on PCBs

reported the generation of pulses on the order of 100V with a rise time of 10ns [101].

This 48-section NLTL employed inductors of 1H and low-voltage varactors (1N5822).

The diodes presented a capacitance variation between 400 and 70pF , when subjected to

voltage pulses of the order of 40V .
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Several research have reported the construction of monolithic NLTLs, which enables

the construction of very compact NLTLs structures loaded with Schottky or HBV diodes

that are fabricated in a semiconductor substrate. These semiconductors have very high

cutoff frequency (THz) but have a breakdown voltage of less than 10V , allowing the

construction of low-voltage NLTLs. In [97], the authors reported the construction of a

monolithic NLTL built with a CPW structure loaded by reverse-biased gallium arsenide

(GaAs) Schottky diodes at spacing d, as shown in figure (5).

Figure 5: Illustration of a monolithic GaAs NLTL[97]:
(a) circuit diagram,
(b) equivalent circuit.

The experiments generated electrical step functions of about 5V magnitude and with

less than 1.4ps of fall time, which allowed for the development of sampling circuits

with bandwidth around 300GHz. The authors pointed that in a CPW structure the

circuit layout introduces a parasitic series inductance and shunt capacitance at the diode

locations. However, CPW skin loss is a major parasitic parameter that must be minimized.

The construction of a monolithic NLTL was presented in [88]. In it the NLTL consists

of 15 discrete GaAs-based HBV diodes periodically soldered across a finline transmission

line with tapered slot couplers at the input and output as shown in figure (6). The HBV

diodes presented a capacitance variation of 74% (6.8pF/26pF ).
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Figure 6: Layout of a monlithic NLTL constructed with finline
structure periodically loaded with HBV diodes [88]

Using diodes with variable capacitance in embedded coplanar or microstrip line, it

is possible to achieve frequency in the GHz range, but with extremely low power. For

very high Bragg frequencies, diode areas and spacing become impractically small, and

parasitic effects can dominate the cell. Dissipation is also an issue for very high Bragg

frequency lines since waveguide dimensions must become very small [102].

I.5.3 NLTLs Developed from Ferrite Magnetic Materials

The first nonlinear pulse compression scheme used magnetic material in the form of

laminated metallic strips wound to form a toroidal core. More recent high frequency

shocklines and particularly the dispersive NLTL employed by the BAE source, use high

resistance ferrite material.

The construction of coaxial-based NLTLs loaded with ferrimagnetic materials make

use of ferrites beads and inductors made of windings in ferrite cores. The gyromagnetic

properties of ferrites induce high-frequency oscillations which are reinforced by the

nonlinearity in synchronous wave and gyromagnetic NLTLs.

The macroscopic magnetic properties of a magnetic material are a consequence of

interactions between an external magnetic field and the magnetic dipole moments of

the constituent atoms. The relative magnetic permeability (µ) is defined as the ratio of

magnetic flux density (B) to magnetic field intensity (H) obtained from the slope of the

B −H curve.
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Hysteresis in magnetic materials means lagging of the magnetization behind the

magnetizing field and represents the losses when the material subjected to an alternating

magnetic field. These losses arise due to the limit of magnetization switching frequency.

In the B −H curve, the area of the hysteresis loop is associated with core losses, which

increase in direct proportion to frequency, since each cycle traverses the hysteresis loop.

Another contribution to losses is the eddy currents which are induced in the core material

by the time-varying magnetic flux; these currents, in turn, induce flux in opposition to

the initial flux. Due to the high resistivity characteristic in the ferrimagnetic materials,

eddy current losses in the core are usually much less than those due to hysteresis.

Ferrimagnetic materials are characterized by the temperature dependence of the

magnetic properties. Above the Curie temperature, the ferrimagnetic materials undergo

a phase transition and become paramagnetic, giving rise to a sharp change in magnetic

properties due to the random orientation of magnetic moments.

Investigation on synchronous wave NLTLs using axially biased ferrite and capacitive

crosslinks has been reported as a feasible technique to improve the performance of

capacitive NLTLs, which present the decay of the amplitude of the oscillations, caused

by losses, and wide frequency spectrum [103]. These lines are usually built with coaxial

transmission line configurations, providing simple means of axial biasing and increased

voltage handling capability.

In [64], the authors presented the experimental results of a synchronous NLTL, which

produced 20MW peak power with center frequencies from 200MHz to 2GHz that could

be electronically tuned by adjusting the circuit parameters (L, C, C) and feeding a contin-

uous dc bias current through the NLTL, which allows for the control of the initial state of

the nonlinear inductors. Another type of synchronous NLTL reported the construction of

a line in a coaxial oil-insulated geometry [104] that generated RF with tunable frequency

in the range of 0.9 to 1.5GHz and instantaneous peak power on the order of 100MW . This

NLTL used an axial bias to control the shock speed and spatially dispersive geometric

structure to provide a broad tuning range.

Recent research reports the generation of high-power RF using gyromagnetic NLTLs.
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These lines consist of a uniform coaxial line whose center conductor is encapsulated by

ferrite beads. The biasing field can be provided by a solenoid wrapped around the NLTL

or even by permanent magnets. The operational frequency can be controlled by varying

the dimensions of the ferrimagnetic material, which affects the azimuthal magnetic field

and material losses, or by varying the bias field strength.

The experimental results of two gyromagnetic NLTLs built with NiZn ferrite rings

distributed with a step of 9cm and length of 41 and 77cm is reported in [105]. The

experimental setup consists of two uniform sections filled with transformer oil and

the NLTL between them. The NLTL was filled with transformer oil for increasing the

electric strength. The maximum amplitude of the input voltage pulse was 295kV . The

performance of these lines was evaluated with the ferrites in both unsaturated and

saturated condition. The saturated condition was achieved with the application of an

external magnetic field (H0 ≤ 80kA/m) generated by a dc solenoid.

In [106], Romanchenko et al. reported the development of a gyromagnetic NLTL

source used in biological research. This line produced RF pulses at frequencies from 0.6 to

1GHz, with the ability to change the peak amplitude by about 400 times (52dB), reaching

a maximum value of nearly 40kV/cm and decreasing to tens of V/cm. The experiments

were performed using nickel zinc ferrite beads with saturation field Bsat = 0.35T and

coercivity Hc = 410A/m. This NLTL was built in an air-filled waveguide and was fed by

a driver which produced pulses with 9ns width whose amplitude can be varied from 150

to 270kV and optimal bias magnetic field of about 50kA/m. The approximate length of

this NLTL was about 1m.

In [107], their investigation presented the construction of gyromagnetic NLTLs loaded

with NiZn and MnZn ferrites. Due to the large electric fields found inside the NLTL,

a fully encapsulating dielectric medium (SF6 pressurized to 680kPa) was used as an

insulator to prevent breakdown. A secondary dc power supply provided the necessary

current through a solenoid wrapped around the outer conductor of the NLTL to produce

the axially directed, magnetic biasing field. By altering the bias magnitude, length of

bias, and ferrite, the NLTL could be actively tuned for specific delay times. These NLTLs
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were fed by a single shot pulse around 30kV . The line built with MnZn ferrite proved to

be too lossy and did not produce microwaves, while the lines built with NiZn ferrites

produced RF power of 4.8MW with pulse lengths ranging from 1 to 5ns and tuning

frequency in the range of 2 to 4GHz. The NiZn ferrites had different compositions;

however, oscillations with higher amplitudes were achieved with ferrites that have

relative permeabilities in the upper hundreds and saturation magnetizations around

3500G. Chadwick et al. [108] reported the construction of fully solid-state high-power

microwave source that was built using a semiconductor opening switch diode as a pulse

generator and a gyromagnetic NLTL. This structure produced peak output power about

90MW and frequencies between 700MHz and 1GHz. The suitability of yttrium iron

garnet ferrites for use in gyromagnetic NLTLs was reported in [109]. The generation of

microwave oscillations with peak power up to 200kW was noted for an input signal of

less than 6kV with sub-nanosecond rise time. The resulting output of this NLTL was

radiated, and field levels exceeding 1kV/m at a target distance of 3m at frequencies

between 1.7 and 1.8GHz were observed.

In [110], Bragg et al. reported the temperature dependence of a ferrimagnetic-based

NLTL that had been tested under the temperature range of 20oC up to 150oC. This tem-

perature range covered a wide range of potential operating temperature and provided

some insight into operational performance above the Curie temperature. The experi-

ments were conducted with a single shot operation and the NLTL consisted of a coaxial

line with toroidal ferrites loaded on the inner conductor. The experiments showed an

increase of 50% in peak power relative to room temperature and a significant decrease of

the frequency between 0oC and 100oC. This paper concluded that the exact mechanisms

responsible for power and frequency changes are not fully understood, and therefore,

further experiments are needed to know the behavior of permeability, relaxation time,

and switching time versus temperature. The excellent result obtained with a gyromag-

netic NLTL capable of producing RF pulses with estimated peak power of 260MW at

frequencies around 1GHz with 100Hz pulse repetition rate is described in [111]. The

synchronized operation of four gyromagnetic NLTLs based on the parallel arrangement

48



and loaded onto conical helix antennas is reported in [112]. The experiments showed

that the radiation power density of synchronous four-channel operation is higher than

for one-channel operation for 16 times.

The behavior of ferrite magnetic material is much more complicated than that of

nonlinear dielectrics in that the ferrite material stores significant energy in both magnetic

and electric fields. That is, the value of permittivity is generally much larger than one

and is typically nonlinear with the applied electric field. The low frequency hysteresis

provided by the manufacturers does not accurately reflect the performance of the material

under fast pulsed saturation.

I.5.4 Constraints of NLTLs

NLTLs built in CPW structures produced higher frequency oscillations, however, the

miniaturized design showed a low-power handling capability. The Schottky diodes

used to build this line provided very low values of capacitance providing oscillations

around 240GHz. To achieve higher frequencies, the dimensional reduction of the diode

junction capacitance is required, but this is limited by the capability of the technological

process of manufacture. Moreover, the low reverse breakdown voltage of the Schottky

diodes determined power level limitation. This line showed losses due to skin effect in

the semiconductor and layout parasitic impedances associated with the high-frequency

operation. The capacitive NLTLs assembled in a PCB using varactor diodes have their

performance limited by the maximum reverse breakdown voltage of the varactor. The

operating frequency defined in equation (7) is related to the minimum capacitance

value provided by the varactor. The maximum frequency is around 300MHz, since the

stray impedances of the PCB is of order of several pF for a minimum capacitance value

provided by the commercial available varactors (pF) and of tens of nH for a minimum

inductance provided by the inductors formed on the PCB track layers [113].

The use of ferroelectric ceramic materials to build high-voltage NLTLs has been

studied in [93, 94, 95, 114, 96], showing that the operational frequency is limited to
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400MHz. The best result achieved for RF generation using NLTLs built with nonlinear

dielectric ceramics was reported in [93] using ceramics blocks based on barium and

strontium titanate. These surveys have demonstrated that:

1. high-voltage values needed to access the nonlinear behavior of the relative permit-

tivity;

2. the intrinsic temperature dependence behavior of the relative permittivity is a

critical parameter;

3. the dielectric loss was the main constraint for ferroelectric materials, since it can

prevent the RF generation.

Furthermore, the difficulty of coupling the RF pulse from the nonlinear lines efficiently

into a linear resistive load is well known and is caused, primarily, by the voltage depen-

dence of the line impedance [114]. The analysis of the results obtained with capacitive

NLTLs built with ferroelectric ceramics indicates the need of new research on ferroelec-

tric materials to find materials with low dielectric losses at frequencies above 400MHz.

Considering that chemically different perovskites display very different ferroelectric

behavior, Benedek and Fennie [115] and Mulder et al. [116] reported the connection

between structural distortions and the ferroelectricity in perovskite oxides. Since proto-

typical ferroelectrics, such asBaTiO3 and PbT iO3, do not have structures with octahedral

rotation distortions, the authors suggested that the design of new ferroelectric materials

should pay attention to the structural stability in such a way to avoid the ferroelectricity

suppression caused by octahedral rotation distortions. Using this approach, the research

on different ferroelectric compositions could reveal useful materials to build NLTLs.

The efficiency of gyromagnetic NLTLs is strongly related to magnetic losses of the

ferrite materials. The parallel arrangement of four gyromagnetic NLTLs was reported

in [112] as a way to improve the device efficiency. This research also investigated the

connection between the efficiency and the physical dimension of the ferrite geometry,

concluding that the efficiency could be maximized by an optimal arrangement of ferrite
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dimensions, bias magnetic field and the amplitude of the incident pulse. Due to high-

voltage oscillations, gyromagnetic NLTLs require the use of electric insulation to prevent

breakdown. The efficiency of the gyromagnetic lines is affected by the insulator due to its

dielectric properties [106]. The temperature-dependent behavior of gyromagnetic NLTLs

performance was reported in [110]. The unstable behavior of the magnetic properties of

the ferrites is responsible for the variation in the oscillations (amplitude and frequency).

Gyromagnetic NLTLs are also subject to the temperature rise caused by heat dissipation

due to resistive and magnetic switching losses in the ferrites operating under pulsed

repetition mode.

I.6 Conclusion

In this chapter we have exhausted most of the literature on soliton propagation in NLTLs

as well as in coupled NLTLs. We also explored notions on the theory of NLTLs. The

performance of NLTLs is strongly related to the properties of nonlinear ferroelectric and

ferrimagnetic materials that are employed. The improvement of the performance of

NLTLs is still hampered by the lack of materials that present simultaneously nonlinear

behavior, low losses, and thermal stability.
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CHAPTER II

MATERIALS AND METHODS

II.1 Introduction

Almost every realistic physical system is nonlinear in nature. Nonlinear models can be

derived in many areas of physics from the propagation of water waves to the macroscopic

theory of superconductivity and superfluidity and to general relativity. Moreover one

can say all chaos theory originated from the study of nonlinear dynamics. A great number

of models of physical situations, called integrable models, exhibit features as regularity,

stability and predictability of the motion. For example the KdV equation for a real

function u(x, t) arises in the propagation of shallow water surface waves when weakly

nonlinear restoring forces are present, of long internal waves in a density stratified ocean,

of ion-acoustic waves in a plasma and acoustic waves on a crystal lattice.

The modeling of nonlinear phenomena always resolves to nonlinear differential

equations whose mathematical difficulties are numerous and solutions sometimes are

not direct. To overcome these shortcomings in the mathematics, physics has made use,

in an almost symmetrical way, of reduction methods that allow us to replace the initial

nonlinear and not solvable problem by another one that is linear and solvable.

For systems for which spectral, symmetry or other algebraic methods are not of

great help or at disposal, a great help comes from perturbative techniques. In general,

perturbation theory is a collection of iterative methods for the systematic analysis of the

behavior of solutions to differential and difference equations.
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II.2 Nonlinear Model Reduction Methods

The methods for nonlinear model reduction are much less developed and are by far

more challenging to develop and analyze. The problem of nonlinear model reduction

deals with approximations of the systems in the form of a nonlinear ordinary differential

equation. The goal of nonlinear model reduction methods, broadly speaking, is to reduce

costs of simulation of such systems. It involves not only reducing the dimensionality of

the state vector, say x, but also finding ways to efficiently calculate the right-hand and

left-hand sides of our ordinary differential equation.

The problem of nonlinear model reduction consists of the following two sub probelms:

• Reducing the dimensionality of the state vector.

• Finding representations of the reduced nonlinear functions such that the values

and derivatives can be computed efficiently.

Addressing either one of these issues leads to computational gains. Algorithms

which address both of these issues are usually much more beneficial. Up till now, the

only practical developed nonlinear dimensionality reduction methods are based on

projections. The reduction technique can be further refined by integrating the order-

estimation algorithm with the proper-orthogonal decomposition reduction model to

increase efficiency and decrease computational cost [117].

While analytic models and simulations of lumped element NLTLs are valuable for

system design, they must ultimately be compared to experimental results. Several studies

have constructed NLTLs using COTS components such as nonlinear capacitors, nonlinear

inductors, and hybrid lines. Experiments with COTS nonlinear capacitors agreed well

with lumped element models [90].

II.2.1 Nonlinear Reduction Based on Taylor Series

Circuit equations in NLTLs can be simplified from a partial differential equation to an

ordinary differential equation using Taylor series expansions and appropriate simplifi-
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cations [15, 86]. This technique can model NLTLs with nonlinear capacitors made from

metal oxide semiconductor varactors.

Taylor series expansion of a function in a nonlinear equation is applicable to either

quadratic or weakly nonlinear systems. The very first practical approaches to nonlinear

model reduction were based on using Taylor series expansion [118, 119, 120, 121].

Lets consider the folowing nonlinear ordinary differential equations [122]:

ẋ(t) = f(x(t), u(t)), x(t) ∈ R (14)

y(t) = g(x(t), u(t)), (15)

where the time-dependent vector x(t) called the state summarizes all the past inputs

u(x, t) needed to evaluate future outputs y(t) of the system. Such descriptions arise, for

example, from simulation of electrical circuits with nonlinear capacitors and/or nonlinear

inductors. Lets assume that we performed a Taylor series expansion of the function f in

the state-space model of equation (14) around some nominal xo and input uo:

ẋ ≈ f(xo, uo) +
∂f

∂x
(x− xo) +

∂f

∂u
(u− uo) +

1

2

∂2f

∂x2
(x− xo)⊗ (x− xo) +

+
∂2f

∂x∂u
(x− xo)⊗ (u− uo) +

∂2f

∂u2
(u− uo)⊗ (u− uo) + · · · , (16)

where all derivatives of f are taken at the expansion point (xo, uo). We assume that our

Taylor series, truncated upto a certain order, can approximate the original monlinear

ordinary differential equation describing our system in equation (14) with sufficient

accuracy.

We now represent x ≈ Uz, z ∈ Rq and project our series in equation (16) onto the

rowspan of matrix V , assuming it is biorthogonal to U :

ż = V Tf(Uzo, uo) + V T ∂f

∂x
U(z − zo) + V T ∂f

∂u
(u− uo) +

1

2

(
V T ∂

2f

∂2x
U ⊗ U

)
(z − zo)⊗ (z − zo) + · · · , (17)
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Observe that this expansion in equation (17) is equivalent to the Taylor series expansion

of the function given as follows:

f r(z, u) ≡ V Tf(Uz, u), (18)

with respect to reduced state z and input u upto some order as in equation (16). In the

cases treated in this thesis we carried out a Taylor series expansion of our voltage signals

V (x, t) and W (x, t) up to the fourth order.

Nonlinear reduction based on Taylor series has the following advantages and limita-

tions:

• The use of Taylor series limits the applicability of the reduction to only weakly

nonlinear dynamical systems. It is directly applicable to quadratic systems.

• Quite often in this method the original system’s Jacobian and higher-order deriva-

tives are sparse. Consequently, memory and computational cost impose severe

constraints on the reduced order of the system, making large reduced models not

practical.

• There is no global guarantee of stability of the reduced system. In general, that is

no error bounds are guaranteed. Local stability can be established based on the

linearization around equilibrium.

II.3 Perturbation Theory and the Reductive Perturbation

Method

The KdV, NLS and SG equations and several others are exactly integrable nonlinear

eqquations that play an outstanding role in physical problems. These equations are so

important because they furnish universal mathematical models for some very general

physical phenomena.
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All perturbations can be naturally divided into two classes: Hamiltonian and dissi-

pative. If a Hamiltonian perturbation does not depend explicitly on time and spartial

coordinates, the perturbed equations conserve energy and momentum.

In most perturbations, the perturbing terms are assumed to be small. The correspond-

ing perturbed equations are called nearly integrable systems. We will spend most of

what follows discussing the effects produced by small integrable perturbations added to

integrable equations, principally the KdV equation. We will recal that the most remark-

able property of exact integrable equations is the presence of exact solitonic solutions.

The existence of a one-soliton solution is not itself a specific property of integrable partial

differential equations; many nonintegrable equations also possess simple localized solu-

tions that may be called one-solitonic. In most cases many solitons solutions describe

purely elastic interactions between individual solitons.

Perturbation induced effects are of interest mainly because they represent physical

phenomena that cannot be comprised by exactly integrable models. In this connection,

nearly integrable systems are of special concern, as perturbation-induced effects in those

systems may be treated analytically.

Perturbation methods in nonlinear dynamics had been developed since the 19th cen-

tury. Several perturbation schemes have been suggested in the problem of nonlinerities.

These methods are now considered to be standard tools for the analytical investigations of

dynamical systems. In such methods expansion of the system variables in terms of small

parameter ε as P = Po+ εP1 + ε2P2 + · · · , is used, where Po is the unperturbed quantity for

a variable P . Gardner and Morikawa introduced some scale transformations in terms of ε,

whereby Reductive Perturbation Method (RPM) is developed. Such perturbation method

has been used continuously over the last several decades to derive popularly famous

evolution equations like the KdV equation, NLS equation, KdV-Burger’s equation, ZK

equations etc.

Direct perturbation theory was first developed by Ostrovskii et al.. A basis for the

application of direct perturbation theory to the perturbed SG equation has been long

elaborated by Fogel et al.. The most powerful perturbative technique is based on the

56



IST. This technique requires the unperturbed equation to be exactly solvable by the IST,

which restrict the range of applications, but enables one to solve the most sophisticated

dynamical problems.

The general procedure of perturbation theory is to identify a parameter ε such that the

solution of the given problem is constructed as a power series of ε around εo value at which

limit the problem becomes solvable, i.e., very often the system is reduced to an integrable

system. The perturbation theory results are useful in the study of solutions in all the

situations when the spectral problem is not turnable into an algebraic one. Conversely,

certain features of the dynamics of integrable and nonintegrable systems need not an

explicit solution to be enlightened as they appear only in specific asymptotic regimes. The

description of these regimes is the subject of the so called reductive perturbation method,

a method which reduces the system under study to a more tractable and solvable system.

II.3.1 Reductive Perturbation Method

The RPM method is a very important way of deriving simplified models describing

nonlinear wave propagation and interaction. This method is intimately related to plasma

wave theory. The RPM method has been applied in [123, 124] and many others. The RPM

method is mostly applied to small amplitudes nonlinear waves.

To apply this method, the stretched variables ξ and τ are introduced as follows:

ξ = εα(x− νt), (19)

τ = εα+1t, (20)

where ε(� 1) is the small parameter characterizing the stength of the nonlinearity, ν is

the phase velocity of the soliton signal and α is an integer. Along with the stretching,

expansion of the flow variables in terms of ε is given by

P = Po + εP1 + ε2P2 + · · · , (21)
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where Po is the unperturbed quantity for a flow variable P . If we consider upto 2nd order

perturbation terms, the complete nonlinearity is not incoorperated in this method.

We will use a very simple one dimensional ion acoustic plasma wave mode to explain

the RPM method. For ions we have

∂ni
∂t

+
∂

∂x
(nivi) = 0, (22)

∂ni
∂t

+ vi
∂ni
∂x

= −∂φ
∂x
, (23)

where ni, ne, and vi are ion density, electron density and velocity of ions respectively. For

electrons, ne = eφ, and the Poisson equation

∂2φ

∂x2
= ne − ni, (24)

is used to close the model of plasma wave. Our perturbation scheme for ni, vi and φ are

defined as follows:

ni = 1 + εni,1 + ε2ni,2 + ε3ni,3 + · · ·

vi = εvi,1 + ε2vi,2 + ε3vi,3 + · · ·

φi = εφi,1 + ε2φi,2 + ε3φi,3 + · · · , (25)

By using the stretched coordinates; ξ = x− νt, τ = ενt, where ν is the phase velocity

of the soliton and substituting equation (25) into equations (22), (23), and (24), the lowest

order equations in ε are obtained as:

ni,1 = φ1,
∂ni,1
∂ξ

=
∂vi,1
∂ξ

,
∂vi,1
∂ξ

=
∂φ1

∂ξ
,

⇒ ni,1 = φ1 = vi,1. (26)
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Next,©(ε2), gives the following equations:

∂ni,2
∂ξ

=
∂

∂ξ
(ni,1vi,1) +

∂ni,1
∂τ

+
∂vi,2
∂ξ

,

∂vi,2
∂ξ

= vi,1
∂vi,1
∂ξ

+
∂vi,1
∂τ

+
∂φ2

∂ξ
,

∂2φ1

∂ξ2
= φ2 +

φ2
1

2
− ni,2. (27)

By eliminating ni,2, vi,2 from equation (27) and making use of equation (26), we finally

get the KdV equation:
∂φ1

∂τ
+Bφ

∂φ1

∂ξ
+ A

∂3φ1

∂ξ3
= 0, (28)

where A and B are nonzero real values, φ1 is the dependent variable and τ , ε are the

independent variables.

II.3.2 The Method of Multiple Scales

Some natural processes have more than one characteristic length or time scales associated

with them, for example, the turbulent flow consist of various length scales of the turbulent

eddies along with the length scales of the objects over which the fluid flows. The failure

to recognize a dependence on more than one space/time scale is a common source of

nonuniformity in perturbation expansions.

The MMS method was proposed by Zakharov and Kuznetsov to reduce the KdV

equation into the NLS equation and apply to a class of nonlinear evolution equations.

They showed that using this method, conventionally employed in the theory of nonlinear

waves, integrable systems are reduced to other integrable systems. If the initial system

is nonintegrable, the result can be either integrable or nonintegrable. But if we treat an

integrable system properly, we must always get an integrable system as a result of our

analysis. This is the main purpose in the application of the method to integrable systems.

A first close link between multiscale expansions and integrable equations comes from

the physical situations in which the latter arise. Let us consider the KdV equation in

hydrodynamics: the formation of solitons assumes relations to be satisfied between the
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amplitude of the solitary waves, their lengths, the canal depth and the propagation

distance. All these quantities are lengths, whose order of magnitude differ, but are no

way arbitrary. From the physical nature of this phenomenon itself, we have multiple

scales. The formation of a soliton occurs only if some relations are satisfied between these

orders of magnitude, and between them and that of the wave amplitude.

The MMS method comprises techniques used to construct uniformly valid approxi-

mations to the solutions of perturbation problems in which the solutions depend simulta-

neously on widely different scales. This is done by introducing fast-scale and slow-scale

variables for an independent variable, and subsequently treating these variables, fast

and slow, as if they are independent. The MMS method is a more general approach

that involves two key tricks. The first is the idea of introducing scaled space and time

coordinates to capture the slow modulations of the pattern, and treating these as separate

variables in addition to the original variables that must be retained to describe the pattern

state itself. The second is the use of what are known as solvability conditions in the

formal derivation.

The formalization of the multiple scales involves the introduction of small perturba-

tion parameter ε, so that the orders of magnitude of the various effects are determined by

means of their order in an expansion in a series of powers of ε. This induces homogeneity

properties of the mathematical expressions considered. Therefore, the model equations

which are derived this way must satisfy these homogeneity properties: the number of

possible equations is hence small. Consequently, a few equations are shown to account

for analogous phenomena in many very different domains of physics.

II.3.3 Nonlinear Evolution Equations

The Method of Multiple Scales (MMS) or its cousin called the Reductive Perturbation

Method (RPM) are commonly used to derive nonlinear evolution equations. Precisely

the MMS allows a perturbation solution to a problem by addressing the problem on

appropriate time and distance scales. In this framework the relevant dispersive and
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nonlinear effects become apparent. MMS derivation for propagation of signals in optical

fibres can be found in [125].

Boyd in, said that these methods are justification for inverse scattering in the sense

that, so many physical systems reducible to either KdV and NLS equations would be

mathematically curios. Such is the universality of the KdV and NLS equations, Leroy

wrote two companion papers entitled ”Nonlinear Evolution Equations without Magic”, to

dispel the almost ”magical” way they appear in many problems. The number of different

applications of these equations is testament to the fact that nonlinear dispersive systems

all behave in a similar manner, regardless of the particular physical manifestation.

Note that the KdV and NLS equations are not complete descriptions of any real

system, but multiple scales and reductive perturbations are convenient ways of reducing

complex nonlinear problems to equations which are ideally soluble.

II.4 The Runge Kutta Method

Numerical techniques, such as the Bulirsch-Stoer or Runge-Kutta methods [126, 127],

have been used to solve the wave equation for the nonlinear circuits. The Runge-Kutta

method is more efficient than the Bulirsch-Stoer method for very sharp rise times due to

its simpler step calculation.

Runge-Kutta methods are single-step methods with multiple stages per step. They

are motivated by the dependence of the Taylor methods on the specific initial value prob-

lem. Runge-Kutta methods are among the most popular ordinary differential equation

solvers. They were first studied by Carle Runge and Martin Kutta around 1900. Modern

developments are mostly due to John Butcher in the 1960s.

The Runge-Kutta method treats every step in a sequence of steps in identical manner.

Prior behavior of a solution is not used in its propagation. This is mathematically proper,

since any point along the trajectory of an ordinary differential equation can serve as an

initial point. The fact that all steps are treated identically also makes it easy to incorperate

Runge-Kutta into relatively simple ”driver” schemes.
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Lets consider the following system of ordinary differential equations:

dy

dx
= f(x, y), y(xo) = yo, (29)

where y(x) and f(x, y) are vector-valued functions given by

y(x) = (y1(x), y2(x), · · · , ym(x)), (30)

f(x, y) = (f1(x, y), f1(x, y), · · · , fm(x, y)). (31)

This means we now have m simultaneous first-order equations. By Runge-Kutta

process we mean numerically solving the differential equation (29) at the point x = xo+h,

where h is the stepsize of our solution. The equations defining a ν stage Runge-Kutta

process are given by:

g1 = f(xo, yo),

g2 = F (xo + c2h, yo + ha21g1),

g3 = F (xo + c3h, yo + h(a31g1 + a32g2),

...
...

gν = F (xo + cνh, yo + h(aν1g1 + aν2g2 + · · ·+ aν,ν−1gν−1), (32)

where

c2 = a21,

c3 = a31 + a32,

...
...

cν = aν1 + aν2 + · · ·+ aν,ν−1, (33)

and a21, a31, a32, · · · , aν,ν−1, b1, b2, · · · , bν are a set of parameters which characterize the

process [128].
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For the interval [xn, xn+h], Lobatto quadrature points leading to a remainder of order

eight are [137]:

xn, xn + h/2, xn + (7− (21)1/2)h/14, (7− (21)1/2)h/14, xn + h. (34)

The Runge-Kutta formulas related to these quadrature point for ν = 1 are:

k1 = hf(xn, yn), (35)

k2 = hf(xn + h, yn + k1), (36)

k3 = hf(xn + h/2, yn + {3k1 + k2}/8), (37)

k4 = hf(xn + 2h/3, yn + {8k1 + 2k2 + 8k3}/27), (38)

k5 = hf(xn + (7− (21)1/2)h/14, yn + {3(3(21)1/2 − 7)k1 −

− 8(7− (21)1/2)k2 + 48(7− (21)1/2)k3 − 3(21− (21)1/2)k4}/392), (39)

k6 = hf(xn + (7 + (21)1/2)h/14, yn + {−5(231 + 51(21)1/2)k1 −

− 40(7 + (21)1/2)k2 − 320(21)1/2k3 + 3(21 + 121(21)1/2)k4 +

+ 392(6 + (21)1/2)k5}/1960), (40)

k7 = hf(xn + h, yn + {15(22 + 7(21)1/2)k1 + 120k2 +

+ 40(7(21)1/2 − 5)k3 − 63(3(21)1/2 − 2)k4 − 14(49 + 9(21)1/2)k5 +

+ 70(7− (21)1/2)k6}/180), (41)

and therefore

yn+1 = yn + {9k1 + 64k3 + 49k5 + 49k6 + 9k7}/180. (42)

This sixth-order Runge-Kutta method is what we used in our numerical analysis in
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this thesis.

II.5 Models and Theoretical Analysis

NLTLs can be modeled with lumped elements by making the standard transmission

line capacitance and inductance functions of voltage and current, respectively. The KdV

equation may be solved numerically for NLTLs comprised of nonlinear capacitors with

linear inductors [90], nonlinear inductors with linear capacitors [129], and hybrid line

configuration with nonlinear capacitors and nonlinear inductors [130, 131]. The output

of nonlinear capacitive transmission lines use a decoupling capacitor to extract the AC

signal, which is then applied to a load to allow for direct extraction [90].

II.5.1 Coupled NLTLs with Coupling Shunt by Resistor

Figure 7: Equivalent representation of two nonlinear LC transmission lines, coupled by
capacitor Cm with a resistance Rm in its shunt branch.

The electrical network formed by the two NLTLs considered in this study is depicted in

figure (7). The two lines consist of periodic arrangements of identical LC circuit units, and

corresponding sections in lines 1 and 2 are connected by intermediary linear capacitors

Cm shunted by linear resistors Rm. Dispersion in this coupled NLTLs is achieved by

the discrete nature of the lines, while nonlinearity is achieved by making use of the
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conductive nonlinearity of varactors [132]. In reverse bias, varactors have a variable

capacitance that depends on the applied reverse voltage. In our study we shall consider

the case when the varactors in the two lines are connected with opposite polarities.

Let Vn and In denote the voltage and current respectively at node n of line 1, and Wn

and Jn denote the voltage and current respectively at node n for line 2. The bias voltages

in lines 1 and 2 are −Vb < 0 and Vb respectively, reflecting the opposite polarities of the

varactor diodes on the two lines. The capacitance-voltage characteristics for lines 1 and 2

shall assume the relations [21, 133]:

C1(x) = Co

(
1− x

VJ

)−m
, (43)

C2(x) = Co

(
1 + x

VJ

)−m
, (44)

where Co represents the zero bias junction capacitance, VJ is the junction potential,

and m is a grading coefficient determined by the doping profile of the varactors [132, 133].

We note that except for the opposite polarities of the varactors the lines are symmetrical,

this near symmetry turns out to be relevant, for it favours electrical pulses at almost equal

velocities to travel on the lines as a bound state.

Applying KVL in the nth cell of lines 1 and 2, we have:

Lo
dIn
dt

= Vn−1 − Vn, (45)

Lo
dJn
dt

= Wn−1 −Wn. (46)

Similarly applying KVL in the (n + 1)th cell of lines 1 and 2 and comparing the

equations obtained to equations (45) and (46) gives

Lo
d

dt
(In − In+1) = Vn−1 − 2Vn + Vn+1, (47)
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Lo
d

dt
(Jn − Jn+1) = Wn−1 − 2Wn +Wn+1. (48)

KCL applied to node n of lines 1 and 2 results in the following two coupled transmis-

sion line equations:

In − In+1 = C1(Vn − Vb)
dVn
dt

+ Cm
d

dt
(Vn −Wn) +

1

Rm

(Vn −Wn), (49)

Jn − Jn+1 = C2(Wn + Vb)
dWn

dt
+ Cm

d

dt
(Wn − Vn) +

1

Rm

(Wn − Vn). (50)

By substituting equation (47) into equation (49) and equation (48) into equation (50)

respectively we get:

d

dt

[
C1(Vn−Vb)

dVn
dt

]
+Cm

d2

dt2
(Vn−Wn) +

1

Rm

d

dt
(Vn−Wn) =

1

Lo
(Vn−1−2Vn+Vn+1), (51)

d

dt

[
C2(Wn+Vb)

dWn

dt

]
+Cm

d2

dt2
(Wn−Vn)+

1

Rm

d

dt
(Wn−Vn) =

1

Lo
(Wn−1−2Wn+Wn+1). (52)

For convenience, we define

Cb ≡ Co

(
1 +

Vb
VJ

)−m
. (53)

A Langrangian La for equations (45) to (52) can be given by [21]:

La =
∑
n

[Lo
2

(Q̇2
1,n + Q̇2

2,n) +

∫ Ṗ 2
1,n

dx

∫ x

dyC1(y − Vb) +

+

∫ Ṗ 2
2,n

dx

∫ x

dyC2(−y + Vb) +
Cm
2

(Ṗ1,n − Ṗ2,n)2 +

+ Q̇1,n(P1,n − P1,n−1) + Q̇2,n(P2,n − P2,n−1) +
]
, (54)
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where

Ṗj,n

(
≡ dPj,n

dt

)
and Q̇j,n

(
≡ dQj,n

dt

)
,

represents the voltage and current at the nth cell of line j, respectively.

In the long-wavelength limit, when wave phenomena associated with voltage and

current propagation along the two lines are dominated by wave structures of wavelengths

far larger than the size h of an electric cell, we can readily approximate the discrete

position n by a continuous position variable x = nh. In this continuous regime, the

discrete voltages transform as Vn(t) −→ V (x, t) and Wn(t) −→ W (x, t) such that we can

carry out a continuous-limit expansion in powers of h, for the two quantities Vn±1(t) =

V (x± h, t) and Wn±1(t) = W (x± h, t). To the fourth order in h the expansion yields:

Vn±1(t) = V (x, t)± h∂V
∂x

+
h2

2!

∂2V

∂x2
± h3

3!

∂3V

∂x3
+
h4

4!

∂4V

∂x4
+©(h5), (55)

Wn±1(t) = W (x, t)± h∂W
∂x

+
h2

2!

∂2W

∂x2
± h3

3!

∂3W

∂x3
+
h4

4!

∂4W

∂x4
+©(h5). (56)

Setting h ≡ 1 for simplicity, equations (51) and (52) becomes:

C1(V )
∂2V

∂t2
+ Cm

∂2

∂t2
(V −W ) +

1

Rm

∂

∂t
(V −W ) +

dC1(V )

dV

(∂V
∂t

)2

=

=
1

Lo

(∂2V

∂x2
+
∂4V

∂x4

)
, (57)

C2(W )
∂2W

∂t2
+ Cm

∂2

∂t2
(W − V ) +

1

Rm

∂

∂t
(W − V ) +

dC2(W )

dW

(∂W
∂t

)2

=

=
1

Lo

(∂2W

∂x2
+
∂4W

∂x4

)
. (58)

As we are interested in localized electrical solitons with a pulse shape, we follow a

standard approach by applying the Reductive Perturbation Methodology [19] in order
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to obtain coupled KdV equations governing their spatiotemporal evolutions. We now

introduce a small parameter ε and define new variables:

s = ε1/2(x− η1t), (59)

τ = ε3/2t, (60)

with η−2
1 = LoCb, and Cb = C(−Vb). The voltages V and W are expressed as perturba-

tion series in powers of ε as :

V (s, τ) = −Vb +
∞∑
i=1

εiVi(s, τ), (61)

W (s, τ) = Vb +
∞∑
i=1

εiWi(s, τ). (62)

To conform to the weak-coupling assumption for the two coupled lines, the coupling

capacitance Cm and resistance Rm must be of the order of ε, and define as:

Cm = εC, (63)

Rm = ε−3/2R. (64)

By using equations (59), (60), (61), (62), (63) and (64) we get the following expression

for the terms in equation (57).

C1(V )
∂2V

∂t2
= α1Co

(
ε2η2

1

∂2V1

∂s2
+ ε3η2

1

∂2V2

∂s2
− 2ε3η1

∂2V1

∂s∂τ

)
+ αCoε

3η2
1V1

∂2V1

∂s2
, (65)

(∂V
∂t

)2

= ε3η2
1

(∂V1

∂s

)2

, (66)
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Cm
∂2

∂t2
(V −W ) = ε3η2

1C
∂2

∂s2
(V1 −W1), (67)

1

Rm

∂

∂t
(V −W ) = − 1

R1

ε3η1
∂

∂s
(V1 −W1), (68)

where α = m/VJ , α1 = (1 − αVb). The corresponding equations for expressions in

equation (58) are gotten by replacing V with W and W with V in equations (65), (66), (67)

and (68). Substituting equations (65)-(68) into equations (57) and (58) and keeping only

terms of order ε3, for which nonlinearity balances dispersion, we obtain the following

equations:

−2η1α1Co
∂2V1

∂s∂τ
+ αCoη

2
1

∂

∂s

(
V1
∂V1

∂s

)
+ η2

1C
∂2

∂s2
(V1 −W1) − η1

R1

∂

∂s
(V1 −W1)−

1

12Lo

∂4V1

∂s4
= 0, (69)

and

−2η1α1Co
∂2W1

∂s∂τ
+ αCoη

2
1

∂

∂s

(
W1

∂W1

∂s

)
+ η2

1C
∂2

∂s2
(W1 − V1) − η1

R1

∂

∂s
(W1 − V1)−

1

12Lo

∂4W1

∂s4
= 0. (70)

Integrating equations (69) and (70) once with respect to s we gets

− 2η1α1
∂V1

∂τ
− αη2

1V1
∂V1

∂s
+

1

12CoLo

∂3V1

∂s3
=
η2

1C

Co

∂

∂s
(V1 −W1)− η1

R1Co
(V1 −W1), (71)

and

− 2η1α1
∂W1

∂τ
− αη2

1W1
∂W1

∂s
+

1

12CoLo

∂3W1

∂s3
=
η2

1C

Co

∂

∂s
(W1 − V1)− η1

R1Co
(W1 − V1). (72)
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We now carry out a rescaling of the variables s, τ , V1 and W1 in equations (71) and

(72) as follows:

τ
′
=

1

2η1α1

τ, (73)

s
′
= 3
√

12CoLos, (74)

V
′
=

1

6
αη2

1
3
√

12CoLoV1, (75)

W
′
= −1

6
αη2

1
3
√

12CoLoW1, (76)

we obtain the following coupled KdV equations:

∂V
′

∂τ ′ − 6V
′ ∂V

′

∂s′
+
∂3V

′

∂s′3
= D1

∂

∂s′
(V

′
+W

′
)−D2(V

′
+W

′
), (77)

and
∂W

′

∂τ ′ − 6W
′ ∂W

′

∂s′
+
∂3W

′

∂s′3
= D1

∂

∂s′
(W

′
+ V

′
)−D2(W

′
+ V

′
), (78)

where

D1 =
η2

1C

Co

3
√

12CoLo, (79)

and

D2 =
η1

R1Co
. (80)
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II.5.2 Coupled RLC NLTLs

Figure 8: Equivalent representation of two nonlinear RLC transmission lines with
Schottky-type in-line varactor C(Vn) coupled by linear capacitors Cm.

Consider the coupled NLTLs as shown in figure (8), where each elementary unit of a

NLTL consists of a linear inductor L in parallel with a nonlinear capacitor of capacitance

C = C(V ). The two lines are coupled by means of linear capacitor Cm mode. The

nonlinear capacitors are varactor diodes, and except for their opposite polarities in our

study we shall use a common type of varactor diode with a Schottky barrier for both

lines [21, 134]. Therefore our Schottky varactors can be defined by the same capacitance-

voltage characteristics as in equations (43) and (44)

We assume that the bias voltages in lines 1 and 2 are−Vb and Vb respectively, reflecting

the opposite polarities of the varactor diodes loaded on the two lines. For convenience

we define:

Cb = Co

(
1 +

Vb
VJ

)−m
, (81)

an effective zero-bias capacitance which below turns out to be a relevant characteristic

parameter.
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Line Equations and Coupled Dissipative KdV Equations

Applying Kirchhoff’s rules on the two coupled electrical ladder circuits, we obtain the

following sets of discrete transmission line equations:

L
d

dt
(Jn−1 − Jn) +R(Jn−1 − Jn) = Wn−1 − 2Wn +Wn+1, (82)

L
d

dt
(In−1 − In) +R(In−1 − In) = Vn−1 − 2Vn + Vn+1, (83)

Jn−1 − Jn =
dQn

dt
+ Cm

d

dt
(Wn − Vn), (84)

In−1 − In =
dqn
dt

+ Cm
d

dt
(Vn −Wn). (85)

In equations (82) to (85), Wn and Jn are respectively the voltage and current of the nth

section in line 1, while Vn and In are respectively the voltage and current of the nth section

in line 2. In the continuum limit, when the size of the elementary sections in the circuits

are very small compared to the length of the transmission lines, the right hand sides of

equations (82) and (83) can readily be approximated with partial derivatives with respect

to a continuum variable x = nl. This, more exactly, corresponds to the long-wavelength

approximation which consists in Taylor expanding the discrete variaables Wn±1 and Vn±1,

i.e.:

Wn±1 = Wn ±
∂W

∂x
+

1

2

∂2W

∂x2
± 1

6

∂3W

∂x3
+

1

24

∂4W

∂x4
+ · · · , (86)

Vn±1 = Vn ±
∂V

∂x
+

1

2

∂2V

∂x2
± 1

6

∂3V

∂x3
+

1

24

∂4V

∂x4
+ · · · . (87)

Also, from the definition

dQn = C(Wn)dWn and dqn = C(Vn)dVn, (88)
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and setting αo = m/VJ , equations (82) to (85) now becomes:

LCo

(∂2W

∂t2
+
αo
2

∂2W 2

∂t2

)
+ LCm

∂2

∂t2
(W − V ) +RCm

∂

∂t2
(W − V ) +

+RCo

(∂W
∂t

+
αo
2

∂W 2

∂t

)
=
∂2W

∂x2
+

1

12

∂4W

∂x4
, (89)

LCo

(∂2V

∂t2
− αo

2

∂2V 2

∂t2

)
+ LCm

∂2

∂t2
(V −W ) +RCm

∂

∂t2
(V −W ) +

+RCo

(∂V
∂t
− αo

2

∂V 2

∂t

)
=
∂2V

∂x2
+

1

12

∂4V

∂x4
. (90)

Since we are interested in voltage signals with localized wave profile in space and time,

it is useful to find approximate equations reproducing such structures. It is in this light

that we choose the reductive perturbation method, in which the voltage variables W and

V can be expanded in series according to:

W (x, t) = −Vb +
n∑
i=1

εiWi(x, t), (91)

V (x, t) = Vb +
n∑
i=1

εiVi(x, t). (92)

In addition to equations (91) and (92), we apply the following new transformations on

the space and time variaables, as well as on the resistance coefficient R:

z = ε
1
2 (x− ηt), (93)

τ = ε
3
2 t, (94)

R = ε
3
2R1, (95)

where η = (LCb)
−1/2 with Cb defined as in equation (81). Furthermore, the coupling

capacitance Cm must be of the order ε [134], i.e. we should define Cm = εC. Substituting

equations (91) to (95) into equations (89) and (90) and using the above transformation of
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coupling capacitance, we obtain the following equations to the order©(ε3):

−2

η

∂2W1

∂z∂τ
+
αoCo
2Cb

∂2W 2
1

∂z2
+
C

Cb

∂2

∂z2
(W1 − V1)−R1Cbη

∂W1

∂z
=

1

12

∂4W1

∂z4
, (96)

−2

η

∂2V1

∂z∂τ
− αoCo

2Cb

∂2V 2
1

∂z2
+
C

Cb

∂2

∂z2
(V1 −W1)−R1Cbη

∂V1

∂z
=

1

12

∂4V1

∂z4
, (97)

with αo = α, which was defined earlier in section II.5.1.

By integration of equations (96) and (97) once with respect to z, and scaling W1, V1, τ ,

and z as

W1 =
6γCb
αoCo

ψ, (98)

V1 = −6γCb
αoCo

φ, (99)

τ =
2

η
T, (100)

z = γu, (101)

where γ = 1/ 3
√

12, we find that

∂ψ

∂T
− 6ψ

∂ψ

∂u
+
∂3ψ

∂u3
= P1(u, T ), (102)

∂φ

∂T
− 6φ

∂φ

∂u
+
∂3φ

∂u3
= P2(u, T ). (103)

Equatins (102) and (103) describes two coupled KdV equations, in which the quantities

Pi(u, T ), i = 1, 2 grouping the coupling and the resistive terms play roles of perturbations,

and are defined as:

P1(u, T ) =
C

γCb

∂

∂u
(ψ + φ)−R1Cbηψ, (104)

P2(u, T ) =
C

γCb

∂

∂u
(φ+ ψ)−R1Cbηφ. (105)

When Pi(u, T ) = 0, i = 1, 2 our equations (102) and (103) reduces to two homogeneous

74



KdV equations of the form:
∂ψ

∂T
− 6ψ

∂ψ

∂u
+
∂3ψ

∂u3
= 0, (106)

∂φ

∂T
− 6φ

∂φ

∂u
+
∂3φ

∂u3
= 0. (107)

Equatins (106) and (107) admit the following one-soliton solutions:

ψ = −2κ2
1 sech2y1, (108)

φ = −2κ2
2 sech2y2, (109)

where

y1 = κ1(u− θ1), θ1 = 4κ2
1T, (110)

y2 = κ2(u− θ2), θ2 = 4κ2
2T. (111)

In the original coordinates the one-soliton solution in equations (108) and (109) can be

written as:

W (x, t) = −3D1(VJ +mVb)
3
√

12m
sech2

(√D1

4γ2
(x− η(1 +

1

2
γD1)t)

)
, (112)

V (x, t) =
3D2(VJ +mVb)

3
√

12m
sech2

(√D2

4γ2
(x− η(1 +

1

2
γD2)t)

)
, (113)

with D1 = 4εκ2
1 and D2 = 4εκ2

2.
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II.5.3 Coupled LC NLTLs

Figure 9: Equivalent circuit model of coupled NLTLs. The capacitance at the nth cell is
given by C(Vn).

We will now consider two coupled NLTLs without intraline resistance as depicted in

figure (9). This model was studied in [21], with emphasis on conditions under which

soliton leapfrogging is expected.

In this model we are interested in the evolution of leapfrogging solitons in the elec-

trical transmission network of figure (9), when one Schottky diode in line 1 is defective.

Mathematically, we model the defect by an impurity in the feedback part of the diode

localized at position x = xo on the NLTL 1. Using a δ function to represent the localized

impurity, the capacitances of the two varactors can be expressed as:

C1(W ) = Co

(
1− 1

VJ
(1− βδ(x− xo)W

)−m
, (114)

C2(V ) = Co

(
1 + 1

VJ
V
)−m

, (115)

where the impurity rate β is assumed positive and 0 ≤ β ≤ 1. For convenience, we have
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set the bias voltage Vb to zero and hence Cb = Co. Also let

α1 =
αo
2

(1− βδ(x− xo). (116)

Line Equations and Coupled KdV equations

Applying Kirchhoff’s rules on the two coupled electrical ladder circuits, we obtained the

following sets of discrete transmission line equations:

L
d

dt
(Jn−1 − Jn) = Wn−1 − 2Wn +Wn+1, (117)

L
d

dt
(In−1 − In) = Vn−1 − 2Vn + Vn+1, (118)

Jn−1 − Jn =
dQn

dt
+ Cm

d

dt
(Wn − Vn), (119)

In−1 − In =
dqn
dt

+ Cm
d

dt
(Vn −Wn). (120)

Again in the continuum limit, the right side of equations (117) and (120) are ap-

proximated with partial derivatives with respect to x. From dQn = C(Wn)dWn and

dqn = C(Vn)dVn equations (117) to (120) reduces to:

LCo

(∂2W

∂t2
+ α1

∂2W 2

∂t2

)
+ LCm

∂2

∂t2
(W − V ) =

∂2W

∂x2
+

1

12

∂4W

∂x4
, (121)

LCo

(∂2V

∂t2
− αo

2

∂2V 2

∂t2

)
+ LCm

∂2

∂t2
(V −W ) =

∂2V

∂x2
+

1

12

∂4V

∂x4
. (122)

We series expand the voltage variables W and V , i.e.:

W (x, t) =
n∑
i=1

εiWi(x, t), (123)

V (x, t) =
n∑
i=1

εiVi(x, t). (124)
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In addition to transformations introduced in equation (94), we apply the following

transformation on the space coordinate:

z = ε
1
2 (x− ηot), (125)

where ηo = (LCo)
−1/2. Substituting equations (123) to (125) into equations (121) and (122)

and integrating once with respect to z, we obtain the following equations to the other

©(ε3):

2

η

∂W1

∂τ
− αoW1

∂W1

∂z
+

1

12

∂3W1

∂z3
=

C

Co

∂

∂z
(W1 − V1)−

− αoβ

2

∫
δ(z − zo)

∂2W 2
1

∂z2
dz, (126)

2

η

∂V1

∂τ
+ αoV1

∂V1

∂z
+

1

12

∂3V1

∂z3
=

C

Co

∂

∂z
(V1 −W1). (127)

By scaling W1, V1, τ , and z as in equation (101) gives:

W1 =
6γ

αo
ψ, (128)

V1 = −6γ

αo
φ, (129)

τ =
2

ηo
T, (130)

where γ is the same as defined in the previous section, (i.e. γ = 1/ 3
√

12), we find that:

∂ψ

∂T
− 6ψ

∂ψ

∂u
+
∂3ψ

∂u3
= P3(u, T ), (131)

∂φ

∂T
− 6φ

∂φ

∂u
+
∂3φ

∂u3
= P4(u, T ). (132)
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The perturbation terms Pi(u, T ), i = 3, 4 in this present case are given by:

P3(u, T ) =
C

γCo

∂

∂u
(ψ + φ)− 3β

γ

∫
δ(u− uo)

∂2ψ2
1

∂u2
du, (133)

P4(u, T ) =
C

γCo

∂

∂u
(φ+ ψ). (134)

In the absence of the perturbations, equations (131) and (132) become two independent

KdV equations admitting one-soliton solutions similar to equations (108) and (109).

II.5.4 NLTL with Voltage-Terminal Modules

Figure 10: Equivalent circuit model of a Schottky-type lossy NLTL, with a voltage
terminal connected to each elementary electric cell.

Consider a NLTL consisting of an homogeneous inductor, L, and a nonlinear capacitor,

C, shunted by a passive resistance R in each unit cell as shown in Figure 10. Each unit

cell of the NLTL is individually biased by a voltage terminal such that Vn, In and Φn are

the voltage, current and bias voltage respectively, in the nth cell.

The Schottky varactor is a capacitor of a nonlinear capacitance, with a generic C(V )

characteristics [132, 133]:

C(V ) =
C0(

1− V
VJ

)m , (135)

where V is the line voltage. In the above formula C0, VJ and m are the zero-bias junction

capacitance, the characteristic junction voltage and the grading index respectively. In the
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following we shall define a nonlinear coefficient b = 1/VJ . Also instructive to note, the

grading index m can take distinct values depending on the specific Schottky diode at

hand [132, 133]. For most Schottky diodes the grading index will be within the interval

0 < m ≤ 1 [132, 133].

Applying Kirchhoff’s laws in the nth unit cell, we obtain the following set of equations

for the line voltage Vn and current In:

L
dIn−1

dt
= Vn−1 − Vn, (136)

In−1 − In =
dQn

dt
+
Vn − Φn

R
, (137)

Qn = C(Vn − Φn)Vn, (138)

where Qn represents the total charge stored in the Schottky diode embedded within the

nth unit cell. Since sizes of unit cells are usually negligible compared with lengths of

the line, electrical signals propagating along the line are expected to spread over many

cells such that the discrete spatial coordinate n can be replaced by a continuous one

i.e. x. For mathematical simplifications we set the size of the unit cells to unity, and a

long-wavelength expansion of the voltage variables Vn±1 up to the fourth-order terms is

carried out as in equation (87).

Eliminating current In from equations (136), (137) and applying the long-wavelength

approximation, the continuous evolution equation for the line voltage V (x, t) is obtained

as:

L
∂C(V − Φ)

∂V

(∂V
∂t

)2

+ LC(V − Φ)
∂2V

∂t2
+
L

R

∂(V − Φ)

∂t
=
∂2V

∂x2
+

1

12

∂4V

∂x4
. (139)

We seek for solutions to equation (139) which are nonlinear waves with pulse shape.

To this end, we adopt the reductive perturbation approach by which the continuous vari-

ables V (x, t) and Φ(x, t) are series expanded in powers of some perturbation coefficient ε

i.e.:

V (x, t) =
n∑
i=1

εiVi(x, t), (140)

80



Φ(x, t) = V0 +
n∑
i=1

εiφi(x, t), (141)

where it is assumed that ε � 1. In addition to equations (140) and (141) we also make

use of the space and time variables defined in equations (93) and (94) and rescale the

resistance accordingly [135, 136]:

R = ε−
3
2R2, (142)

where η2 = (LC0)−1/2. By evaluating equation (139) at each order of ε, we can extract

equations describing contributions from different orders of the perturbation ε. Namely,

terms of orders O(ε) and O(ε2) give constant contributions whereas terms of order O(ε3),

grouped together, introduce nonlinear excitations governed by the following perturbed

KdV equation:

∂V1

∂τ
− m

2
√
LC0(V0 + VJ)

V1
∂V1

∂z
+

1

24
√
LC0

∂3V1

∂z3
=

− m

2
√
LC0(V0 + VJ)

φ1
∂V1

∂z
− VJ

2R2C0(V0 + VJ)
(V1 − φ1). (143)

Let us rescale V1, τ and z as follows:

V1 =
18(V0 + VJ)

m
V, τ =

1

9η
τ ′, z =

1

6
z′. (144)

With these new variables, equation (143) reduces to:

∂V

∂τ ′
− 6V

∂V

∂z′
+
∂3V

∂z′3
= P5(z′, τ ′), (145)

P5(z′, τ ′) = αV − αγφ1 − 6γφ1
∂V

∂z′
, (146)

where

α =
VJ

18ηR2C0(V0 + VJ)
, (147)

γ =
m

18(V0 + VJ)
. (148)

In the absence of perturbation i.e. when P5(z′, τ ′) = 0, the KdV equation admits the
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following one-soliton solution [19]:

V (z′, τ ′) = −2κ2
0sech2y, (149)

y = κ0(z′ − ζ), ζ = 4κ2
0τ
′, (150)

where κ0 is the soliton amplitude. In the original system of coordinates i.e. (x, t), the

above one-soliton solution becomes:

V (x, t) = −A(V0 + VJ)

m
sech2

[√
A
(
x− t√

LCb
− At

6
√
LCb

)]
, (151)

where A = 36εκ2
0. To keep the spirit of ref. [135] regarding the effects of voltage terminals

on pulse propagation in the NLTL, we shall pick:

Φ(x, t) = V0 + ε
3
2ϕ0(x− ηt)

= V0 + εϕ0z. (152)

Comparing equation (152) and equation (141) we find that:

φ1 = ϕ0
z′

6
. (153)

II.6 Conclusion

In this chapter we have explored the background of the materials and methods that

will be useful to understand the concepts to be developed in our subsequent chapter.

Circuit models have been developed and described for NLTLs. Most especially we have

presented models for our NLTLs and also the nonlinear model reduction methods that

we applied to our nonlinear differential equations. These models will be used extensively

to investigate the leapfrogging, amplification and damping of electric pulses in NLTLs.

82



CHAPTER III

RESULTS AND DISCUSSIONS

III.1 Introduction

In this chapter we present and discuss the main results of this thesis obtained from

mathematical analysis and numerical simulations. We now carry out numerical analysis

on all four models of our NLTLs discussed in section II.5. This is done by applying a

sixth-order Runge-Kutta scheme adapted from [137] on our adiabatically obtained sets of

equations in section II.5.

III.2 Dynamics of Soliton-pair Leapfrogging in Two RC-

Coupled Nonlinear Electrical Transmission Lines

III.2.1 Adiabatic equations of soliton-pair motion

The two coupled equations (77) and (78) are not tractable analytically, because of the

presence of coupling terms on the right hand side of these equations. However, since

the two coupling terms are assumed very small, they can be treated as perturbations.

Therefore we can rewrite equations (77) and (78) formally with their right hand sides

grouped to give a single perturbation function:

εP (V
′
,W

′
) = D1

∂

∂s′
(V

′
+W

′
)−D2(W

′
+ V

′
). (154)

Because of the weak coupling assumption, profiles of the two voltage signals will be

determined by the two KdV equations represented by the left hand side of equations (77)

and (78), while the perturbation εP (V
′
,W

′
) is expected to influence only their charac-
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teristic parameters, namely the signal’s amplitudes, widths and phases. In the absence

of perturbaation, i.e. εP (V
′
,W

′
) = 0, equations (77) and (78) are two independent KdV

equations whose single-pulse soliton solutions are [19]:

V
′
= −2κ2

1 sech2(z1), (155)

W
′
= −2κ2

2 sech2(z2), (156)

where the arguments z1 and z2 are given by

z1 = κ1(s
′ − ζ1), (157)

z2 = κ2(s
′ − ζ2), (158)

connect the pulse amplitudes κ1 and κ2 to their respective phases ζ1 and ζ2 which are

defined as:

ζ1 = 4κ2
1τ

′
, (159)

ζ2 = 4κ2
2τ

′
. (160)

To determine the time evolutions of soliton characteristic parameters κi and ζi (i = 1, 2) for

small εP (V
′
,W

′
), it is useful to start by remarking that although the evolution of bound

solitons cannot be strickly periodic because of relative losses, for small perturbations we

can disregard the effects of amplitude waves emission by the oscillating soliton-pair. In

this small perturbation regime the time evolutions of soliton characteristic parameters

can readily be determined by solutions of the following adiabatic equations [19]:

dκi
dτ ′ = − 1

4κi

∫ ∞
−∞

εP (V
′
,W

′
) sech2(zi)dzi, (161)

and
dζi
dτ ′ = 4κ2

i −
1

4κ3
i

∫ ∞
−∞

εP (V
′
,W

′
) sech2(zi)[zi +

1

2
sinh(2zi)]dzi, (162)
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with (i = 1, 2). It is worth noting that the interaction between the two solitons will be

optimal when their velocities coincide, i.e., ζ̇1 = ζ̇2. In terms of equations (155) and (156),

this also traduced by the equality of their amplitudes, i.e.:

κ1 = κ2. (163)

From a general consideration in the specific context of leapfrogging motion [20, 138], if

the amplitudes κi(i = 1, 2) are of the same order the stronger-interaction condition of

equation (163) implies that κ2
i (i = 1, 2) perform only small oscillations mediated by the

perturbation εP (V
′
,W

′
) around their mean values < κ2

i > (i = 1, 2). Since the two lines

are assumed identical and symmetric we can set < κ2
1 >=< κ2

2 >= κ2, which allows us to

define:

κi = κ+ λi, (164)

with i = 1, 2 and κ is always constant and the variables λi are assumed small compared

to κ. Similarly the phase difference ∆ζ = ζ1 − ζ2 can be assumed so small that we have:

z2 ' z1 + κ∆ζ. (165)

From equation (161), P (V
′
,W

′
) can be expressed as P (z1, τ

′
) for line 1 and P (z2, τ

′
) for

line 2. Lets assume y = κ∆ζ , then

P (z1, τ
′
) = D1[4κ3

1 sech2(z1) tanh(z1) + 4κ3
2 sech2(z1 + y) tanh(z1 + y)] +

D2[2κ2
1 sech2(z1) + 2κ2

2 sech2(z1 + y)], (166)

and

P (z1, τ
′
) sech2(z1) = D1[4κ3

1 sech4(z1) tanh(z1) +

+ 4κ3
2 sech2(z1 + y) sech2(z1) tanh(z1 + y)] +

+D2[2κ2
1 sech4(z1) + 2κ2

2 sech2(z1) sech2(z1 + y)]. (167)
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Now we linerize and approximate sech2(z1 + y) and tanh(z1 + y) as follows:

sech2(z1 + y) ' sech2(y)[1− 2 tanh(y)tanh(z1)] sech2(y), (168)

tanh(z1 + y) ' (tanh(y) + tanh(z1))[1− 2 tanh(y)tanh(z1)]. (169)

With these, equation (161) for i = 1 then becomes

dκ1

dτ ′ = − 1

4κ1

[
4D1κ

3
1

∫ ∞
−∞

sech4(z1) tanh(z1)dz1 +

+ 4D1κ
3
2

∫ ∞
−∞

sech2(z1 + y) sech2(z1) tanh(z1 + y)dz1 +

+ 2D2κ
2
1

∫ ∞
−∞

sech4(z1)dz1 + 2D2κ
2
2

∫ ∞
−∞

sech2(z1) sech2(z1 + y)dz1

]
,

which reduces to

dκ1

dτ ′ = 0− 8D1κ
3
2

15κ1

sech2(y)[tanh(y) + tanh3(y)]− 2D2κ
2
1

4κ1

[4

3

]
− 2D2κ

2
2

4κ1

[4

3
sech2(y)

]
.(170)

And using equation (164) we get

dλ1

dτ ′ = −8D1κ
3
2

15κ1

sech2(y)[tanh(y) + tanh3(y)]− 2D2κ1

3
− 2D2κ

2
2

3κ1

sech2(y). (171)

Also for i = 2 we obtain dλ2
dτ ′

from equation (161). Note that in this case z1 ' z2 − y is

substituted for z1. This gives

dλ2

dτ ′ =
8D1κ

3
2

15κ1

sech2(y)[tanh(y) + tanh3(y)]− 2D2κ1

3
− 2D2κ

2
2

3κ1

sech2(y). (172)
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In a similar way, from equation (162)

dζ1

dτ ′ = 4κ2
1 −

1

4κ3
1

∫ ∞
−∞

P (z1, τ
′
)(z1 sech2(z1) + tanh(z1))dz1

= 4κ2
1 −

1

4κ3
1

∫ ∞
−∞

P (z1, τ
′
)z1 sech2(z1)dz1 −

− 1

4κ3
1

∫ ∞
−∞

P (z1, τ
′
) tanh(z1)dz1. (173)

By evaluating the two integrals on the right hand side of equation (173), we obtain:

− 1

4κ3
1

∫ ∞
−∞

P (z1, τ
′
)z1 sech2(z1)dz1 = −1

3
D1 −

D1κ
3
2

3κ3
1

sech2(y)
[
1− 31

15
tanh2(y)

]
+

+
D2κ

2
2

3κ3
1

sech2(y) tanh(y), (174)

and

− 1

4κ3
1

∫ ∞
−∞

P (z1, τ
′
) tanh(z1)dz1 = −2

3
D1 −

2D1κ
3
2

3κ3
1

sech2(y)
[
1− 9

5
tanh2(y)

]
+

+
2D2κ

2
2

3κ3
1

sech2(y) tanh(y). (175)

By substituting equations (174) and (175) into equation (173) we obtain:

dζ1

dτ ′ = 4κ2
1 −D1 −

D1κ
3
2

κ3
1

sech2(y)
[
1− 17

9
tanh2(y)

]
+
D2κ

2
2

κ3
1

sech2(y) tanh(y). (176)

In a similar way, i.e. i = 2, we obtain dζ2
dτ ′

from equation (162). Again we note that in

this case z1 = z2 − y is substituted for z1. This gives

dζ2

dτ ′ = 4κ2
2 −D1 −

D1κ
3
1

κ3
2

sech2(y)
[
1− 17

9
tanh2(y)

]
− D2κ

2
1

κ3
2

sech2(y) tanh(y). (177)

Equations (171), (172), (176) and (177) are solved numerically using a sixth-order

Runge-Kutta scheme [137] with fixed step, and numerical results are presented in the

next section.
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III.2.2 Numerical Results

We applied a sixth-order Runge-Kutta scheme adapted from [137] on the set of equa-

tions (171), (172), (176), and (177), with κ fixed to an arbitrary constant but sufficiently

large compared to λ1 and λ2 which is consistent with the definition of equation (164).

Initial values of λ1, λ2, ζ1 and ζ2 were chosen such that the differences λ1 − λ2 and ∆ζ are

small enough to ensure their harmonic oscillations from the onset of motion. That is the

leapfrogging motion of the two solitons, described as the regime of motion where their

amplitudes vary is investigated. This was done by carrying out numerical simulations

on the four coupled ordinary differential equations (171), (172), (176), and (177). Since

it is also relevant to see what effects the coupling resistance, D2, would have on the

amplitudes of the individual solitons, we start by plotting the time series of λ1 and λ2 for

a fixed value of the capacitive coupling D1.

Figures (11a) and (11b) show a time series plot of λ1 and λ2 for a fixed value of

the capacitive coupling D1(D1 = 0.025), for different values of the resistance coupling

parameter, i.e. D2 = 0.001, 0.005 and 0.009. From these plots one sees that the time series

of λ1 and λ2 are periodic oscillations with an exponential decrease from their maxima.

This exponential damping is more and more pronounced as D2 increases.

(a) λ1 (b) λ2

Figure 11: Temporal evolutions of λ1 and λ2 for D1 = 0.23 and κ = 0.6. The solid, dashed
and dotted curves corresponds respectively to D2 = 0.001, 0.005 and 0.009.
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(a) D2 = 0.005 (b) D2 = 0.009

Figure 12: Leapfrogging dynamics of λ1(solid curve) and λ2(dashed curve)

To highlight the anti-phase oscillations of the two amplitudes, figures (12a) and (12b)

shows plots of λ1 and λ2 on the same graph for large values of D2(D2 = 0.005 and

D2 = 0.009) keeping D1 = 0.025 and κ = 0.5. The leapfrogging motions observed in these

curves occur more exactly when initial values of λ1 and λ2 used in the simulations are

very close.

Figure (13) illustrates the absence of leapfrogging, when the difference between initial

values of the two parameters in the simulations is relatively large.

Figure 13: Suppression of leapfrogging for large initial values of λ1(= 0.1) and λ1(= 0.2),
with D1 = 0.25, D2 = 0.0005 and κ = 0.5.

The signature of leapfrogging is to be observed both in the oscillating phase difference

∆ζ = ζ1 − ζ2, and the oscillating amplitude difference ∆λ1 − λ2 of the two solitons.

Therefore, to gain a consistent knowledge of this signature in the two parameters, we
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solved numerically the amplitude and phase difference equations derived from the

coupled sets, equations (171), (172), (176), and (177) by subtracting equation (172) from

(171) on the one hand and equation (177) from (176) on the other hand.

Figure (14) suggest a dynamics of the soliton pair which is summarized as follows:

initially, that is at t = 0 the amplitude difference of the two solitons is at some finite initial

value, while their phase difference is zero. As the two solitons propagate they exchange

energy, this causes them to slowly approach each other. Their amplitude difference thus

decreases gradually to zero at the time when the two electrical pulses coincide and have

equal velocities. After hopping pass each other, their amplitude and phase differences

begin to rise again and the cycle continues, for as long as the leapfrogging motion goes

on resulting in oscillating amplitude and phase differences.

(a) ∆λ (b) ∆ζ

Figure 14: Temporal oscillations of the amplitude difference ∆λ and phase difference ∆ζ
for D1 = 0.25 and D2 = 0.005.

To further emphasize the effects of the resistance on the leapfrogging dynamics of the

bound solitons, we plot three sets of curves to illustrate the behaviour of the oscillating

amplitude difference and phase difference, with increasing resistance. Using fairly large

values for the resistance, the curves clearly show that as the resistance increases, the

number of oscillations in ∆λ and ∆ζ decreases until the leapfrogging motion stops. Since

the oscillating evolutions of the amplitude and phase differences are here assumed to

characterize the leapfrogging of the soliton-pair, the decrease in the number of oscillations
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readily indicates a weakening and eventually a relaxation of the leapfrogging motion.

See figure (15).

Figure 15: Oscillating amplitude and phase differences for increasing resistance. The
top, middle and bottom set of curves are for D2 = 0.01, 0.05 and 0.09 respectively. Here
D1 = 0.25 and κ = 0.63. Leapfrogging ceases in the last set of curves due to very high
value of resistance.

To provide an analytical understanding of the origin of the harmonic oscillations

observed in numerical solutions to the phase and amplitude difference equations, it is

useful to remark that the arguments of the hyperbolic functions in equations (171), (172),

(176), and (177) are proportional to ∆ζ. Thus, for leapfrogging to occur in numerical

simulations, this latter parameter should remain very small which justifies our choice
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of very small initial values for the phase and amplitude differences. Analytically, small

amplitude and phase differences imply linearizing equations (171), (172), (176), and (177).

Recall that equations (171), (172), (176), and (177) are nonlinear functions of λ1, λ2, ζ1, ζ2

as well as κ1 and κ2. κ1 and κ2 are functions of λ1 and λ2, and to linearize terms involving

them we use the following linear approximations:

κi ' κ2 + 2κλi,

κ2
1

κ3
2

' κ−1 − 3κ−2λ2 + 2κ−2λ1,

κ2
2

κ3
1

' κ−1 − 3κ−2λ1 + 2κ−2λ2,

κ3
1

κ3
2

' 1− 3κ−1λ2 + 3κ−1λ1,

κ3
2

κ3
1

' 1− 3κ−1λ1 + 3κ−1λ2, (178)

with (i = 1, 2). Also

sech(y) ' 1− 1

2
y; sech2(y) ' 1− y2,

sech2(y)tanh(y) ' y; sech2(y)tanh2(y). ' y2 (179)

At leapfrogging < κ2
1 >=< κ2

2 >= κ2, therefore

−2D2κ1

3
− 2D2κ

2
2

3κ1

sech2(y) ' −4D2

3
κ2

= −4D2

3
κ− 4D2

3
λ2, (180)

and

8D1κ
3
2

15κ1

sech2(y)[tanh(y) + tanh3(y)] ' 8

15
y

=
8

15
κ∆ζ. (181)
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Equations (171) and (172) now become

λ1

dτ ′ = − 8

15
D1κ

3∆ζ − 4

3
D2κ−

4

3
D2λ2, (182)

and
λ2

dτ ′ =
8

15
D1κ

3∆ζ − 4

3
D2κ−

4

3
D2λ1. (183)

Subtracting equation (183) from equation (182) we obtain:

λ1

dτ ′ −
λ2

dτ ′ = −16

15
D1κ

3∆ζ. (184)

Also equations (176) and (177) reduces to

dζ1

dτ ′ = 4κ2
1 −D1 −

D1κ
3
2

κ3
1

+
D2κ

2
2

κ3
1

y, (185)

dζ2

dτ ′ = 4κ2
2 −D1 −

D1κ
3
1

κ3
2

− D2κ
2
1

κ3
2

y. (186)

Subtracting equation (186) from equation (185) we obtain:

dζ1

dτ ′ −
dζ2

dτ ′ = 4(κ2
1 − κ2

2)−D1

(κ3
2

κ3
1

− κ3
1

κ3
2

)
+D2y

(κ2
2

κ3
1

+
κ2

1

κ3
2

)
,

which reduces to

d∆ζ

dτ ′ =
(

8κ+
6D1

κ

)
(λ1 − λ2) +

D2

κ

[
2κ− (λ1 + λ2)

]
. (187)

Differentiating equation (187) with respect to τ ′ yields:

d2∆ζ

dτ ′2
=
(

8κ+
6D1

κ

)(dλ1

dτ ′ −
dλ1

dτ ′

)
+
D2

κ

[
(2κ− (λ1 + λ2))

d∆ζ

dτ ′ −
(dλ1

dτ ′ +
dλ1

dτ ′

)
∆ζ
]
,
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and by subtituting equation (187) we obtain

d2∆ζ

dτ ′2
= −(8κ2 + 6D1)

(16D1

15
κ2
)

+
D2

2

κ2

[
(2κ− (λ1 + λ2))2 +

4κ

3
(2κ+ (λ1 + λ2))

]
+

D2

κ2

[
(2κ− (λ1 + λ2))(8κ2 + 6D1)(λ1 − λ2)

]
. (188)

The variable λ1 and λ2 were assumed to be small compared with κ. So we can

conveniently make the following assumption without lost of generality:

2κ± (λ1 + λ2) ' 2κ. (189)

Substituting equation (189) into (188) we get

d2∆ζ

dτ ′2
= −Γa∆ζ + Γb, (190)

where

Γa =
16

15
D1(8κ2 + 6D1)κ2 − 20

3
D2

2, (191)

Γb =
2

κ
D2(8κ2 + 6D1)(λ1 − λ2). (192)

Equation (190) is the equation of motion for an harmonic oscillator, the frequency ωlf

of which can be gotten considering the following trial solution in equation (190).

∆ζ = Γoe
iωlf τ

′

− Γb
Γa
. (193)

By substituting equation (193) into equation (190) we obtain:

ωlf =
(128

15
D1κ

4 +
96

15
D2

1κ
2 − 20

3
D2

2

)
, (194)

where ωlf is the leapfrogging frequency. Equation (194) shows that the leapfrogging

frequency is decreased by the presence of the resistive element in the coupling branch.

From this expression of ωlf it is also apparent that as the resistance increases, the frequency
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can become complex such that the relative amplitude and phase of the two solitons are

either exponentially amplified, or exponentially damped with time. This is in agreement

with the behaviour observed in figures (11), (12) and (14). A plot of the leapfrogging

frequency against the resistance for different values of κ is shown in figure (16).

Figure 16: Influence of the resistance on the leapfrogging frequency for different values
of κ. D1 = 0.25.

In all of our analysis so far, it appeared that our choice of small initial values for the

amplitude and phase differences was necessary for the observation of leapfrogging in

numerical simulations of the coupled set of equations (171), (172), (176), and (177). A plot

of the time series of λ1 and λ2 for relatively large values of the initial phase and amplitude

differences, considering different values of D2 is shown in figure (17). As one can see,

the time series of the soliton characteristic parameters are now strongly anharmonic,

more generally an enhancement of the anharmonicity by relatively large initial values

will cause a relaxation of leapfrogging after a finite propagation time, as observed in the

graphs of figure (17).
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Figure 17: Anharmonic oscillations of λ1(solid curves) and λ2(dashed curves), for large
initial values: (a) R1 = 5 x 10−10, (b) R1 = 5 x 10−8, (c) R1 = 5 x 10−6, (d) R1 = 5 x 10−4.

A graph of λ1 plotted as a function of λ2 is represented in figure (18). This graph

shows an explicit picture of the leapfrogging dynamics of the two solitons summarized

in the phase-space representation of figure (18).

Figure 18: Phase-space representation of the leapfrogging dynamics. Here, D1 = 0.001,
D2 = 0.23 and κ = 0.6.
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III.3 Leapfrogging of Electrical Solitons in Coupled Non-

linear Transmission Lines: Effect of an Imperfect Var-

actor

III.3.1 Analysis of Leapfrogging for Coupled RLC NLTLs

In our previous study [134] we investigated the leapfrogging dynamics of soliton pairs

propagating along two LC NLTLs, weakly coupled by a linear capacitance shunted with

a linear resistance. Instructively, this coupled model considered was an extension of

the study done in [40] where the author addressed the problem considering only the

capacitive coupling.

In this section of the thesis, we are interested in the leapfrogging motion of a soliton

pair in two distinct physical contexts [136]. First we consider the case of two RLC NLTLs

coupled via a linear capacitance, and secondly two capacitively coupled LC NLTLs one

of which contains a defective varactor.

Adiabatic equations of soliton-pair motion

Within the framework of the adiabatic perturbation theory [19], the temporal evolutions

of the amplitudes κi and phases θi(i = 1, 2) of the two pulses described by equations (102)

and (103) are determined by solving the following coupled first-order ordinary differential

equations:
dκi
dT

= − 1

4κi

∫ ∞
−∞

Pi(yi, T ) sech2yidyi, (195)

and
dθi
dT

= 4κ2
i −

1

4κ3
i

∫ ∞
−∞

Pi(yi, T )[yi +
1

2
sinh(2yi)] sech2yidyi. (196)

To find explicit forms of these variational equations, we must substitute the pulse solu-

tions (112) and (113) into the perturbation parameters Pi(u, T ). So doing, equations (195)
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and (196) burst into the following four coupled first-order ordinary differential equations:

dκ1

dT
= −8M

15
κ2

2 sech2A[tanhA+ tanh3A]− 2

3
Nκ1, (197)

dκ2

dT
=

8M

15
κ2

1 sech2A[tanhA+ tanh3A]− 2

3
Nκ2, (198)

dθ1

dT
= 4κ2

1 −M −
Mκ3

2

κ3
1

sech2A[1− 17

9
tanh2A], (199)

dθ2

dT
= 4κ2

2 −M −
Mκ3

1

κ3
2

sech2A[1− 17

9
tanh2A], (200)

where M = C
γCb

, N = R1Cbη, and A = κ∆θ, with ∆θ = θ1 − θ2 the phase difference.

Leapfrogging of the two interacting solitons corresponds to small oscillations of their

amplitudes κi around a common average value κ. Consequently we can introduce a small

deviation λi from the average amplitude κ, in such a way that we can write κi = κ+ λi.

Similarly the phase difference ∆θ must be small. By using the approximation y2 ≈ y1 +A

and linearizing, equations (197) to (200) become:

dλ1

dT
= −8M

15
κ3∆θ − 2N

3
(κ+ λ1), (201)

dλ2

dT
=

8M

15
κ3∆θ − 2N

3
(κ+ λ2), (202)

dθ1

dT
= 4(κ2 + 2κλ1)−M [2− 3κ−1(λ1 − λ2)], (203)

dθ2

dT
= 4(κ2 + 2κλ2)−M [2 + 3κ−1(λ1 − λ2)], (204)

where ∆λ = λ1 − λ2 = κ1 − κ2. Subtracting equation (202) from (201) we obtain:

dλ1

dT
− dλ2

dT
= −16M

15
κ3∆θ − 2N

3
(λ1 − λ2), (205)

and also subtracting equation (204) from (203) gives:

d∆θ

dT
= (8κ+ 6κ−1M)(∆λ). (206)
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Taking the second derivative of equation (206), and the fact that dλ1
dT
− dλ2

dT
= d∆λ

dT
gives:

d2∆θ

dT 2
= (8κ+ 6κ−1M)

d∆λ

dT
. (207)

From equation (206):

∆λ =
κ

(8κ2 + 6M)

d∆θ

dT
, (208)

and equation (205) becomes:

d∆λ

dT
= −16M

15
κ3∆θ − 2N

3

κ

(8κ2 + 6M)

d∆θ

dT
. (209)

Substituting equation (209) into (207) gives:

d2∆θ

dT 2
+

2N

3

d∆θ

dT
+

(8κ2 + 6M)

κ

16M

15
κ3∆θ, (210)

from which we obtain:
d2∆θ

dT 2
+ γd

d∆θ

dT
+ ω2

o∆θ = 0, (211)

with

γd =
2N

3
, (212)

ω2
o =

16M

15
κ2(8κ2 + 6M). (213)

Equations (208) and (211) are reminiscent of the motion of a damped harmonic oscil-

lator, where γd and ωo are the damping coefficient and resonance frequency respectively.

It is remarkable that the damping coefficient, γd, is a linear function of the intraline

resistance R1, while the resonance frequency, ωo, or the frequency of the undammped

oscillatons, is proportional to the coupling capacitance C. It is worth noting that the

adiabatic perturbation theory is valid only when Cm/Cb � Vs/Vb where

Vs =
12εκ2(VJ +mVb)

3
√

12m
(214)
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is the average voltage amplitude of the incident solitons. Given that the coupling capaci-

tance C and the intraline resistance R1 should be very small, consistent with the spirit of

the adiabatic perturbation theory, the leapfrogging frequency can only be increased with

an increase in the pulse amplitude κ.

Numerical Simulations of Leapfrogging for the Coupled RLC NLTLs

In [21], an analysis of soliton leapfrogging in a model of coupled NLTLs similar to fig-

ure (8), but without intraline resistance, has been carried out. Much recently in [134], we

extended the study to the context of two LC-type NLTLs coupled by a linear capacitance

with a linear resistance in its shunt branch. In this subsection, we shall now explore

numerically the influence of the intraline resistance on pulse leapfrogging. To do this,

we apply a sixth-order Runge-Kutta scheme [137] on the set of four coupled first-order

nonlinear ordinary differential equations (197) to (200).

To start we consider small initial values for λi and θi, and in addition select very close

initial values for λ1 and λ2 on the one hand, and θ1 and θ2 on the other hand, which

are relevant conditions for leapfrogging to occur. We will later on look at the effects of

increasing the initial phase and amplitude differences, on the leapfrogging motion.

Graphs in figure (19) show the time evolutions of λ1 and λ2 for fixed values of the

average amplitude κ = 2, and the capacitive coefficient M = 0.2, and four distinct values

of the resistive coefficient N = 0.0, 0.001, 0.01, 0.1. According to figure (19), the time

evolutions of λ1 and λ2 are harmonic oscillations with amplitudes which are more and

more exponentially damped with increase in the resistive coefficient N .

Graphs in figure (20) show the time evolutions of the amplitude difference ∆λ, with

initial values λ1 = 0.25, λ2 = 0.2, θ1 = 0.25, θ2 = 0.2. Also this simulation is carried out

for fixed values of the average amplitude κ = 2, and capacitive coefficient M = 0.2,

and four distinct values of the resistive coefficient N = 0.0, 0.001, 0.01, 0.1. We noticed

from figure (20) that the amplitude difference ∆λ oscillates as well harmonically in time,

reflecting leapfrogging of the soliton pair. The amplitude difference oscillations are also

damped for higher values of resistive coefficient N .
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Figure 19: Time variations of λ1(downward from T = 0) and λ2(upward from T = 0) for
κ = 2, M = 0.2 and from top to bottom N = 0.0, 0.001, 0.01, 0.1.
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Figure 20: Time variations of amplitude difference ∆λ, initial values are λ1 =
0.25, λ2 = 0.2, θ1 = 0.25, θ2 = 0.2. Also κ = 2, M = 0.2 and from top to bottom
N = 0.0, 0.001, 0.01, 0.1.
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Figures (21), (22), and (23) are numerical results obtained when the differences of

initial values of the two soliton amplitudes and phases are increased. Figure (21) has

as initial values λ1 = 0.3, λ2 = 0.1, θ1 = 0.28, θ2 = 0.1, κ = 2 and M = 0.2. From top to

bottom rows: N = 0.0, 0.01, 0.1.

Figure 21: Left column: Time variations of λ1(downward from T = 0) and λ2(upward
from T = 0). Right column: Time variations of amplitude difference ∆λ, initial values are
λ1 = 0.3, λ2 = 0.1, θ1 = 0.28, θ2 = 0.1. Parameter values are κ = 2, M = 0.2. From top to
bottom rows: N = 0.0, 0.001, 0.1.
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Figure 22: Left column: Time variations of λ1(downward from T = 0) and λ2(upward
from T = 0). Right column: Time variations of amplitude difference ∆λ, initial values
are λ1 = 0.30076, λ2 = 0.1, θ1 = 0.28, θ2 = 0.1. Parameter values are κ = 2, M = 0.2. From
top to bottom rows: N = 0.0, 0.01.

Figure 23: Left column: Time variations of λ1(downward from T = 0) and λ2(upward
from T = 0). Right column: Time variations of amplitude difference ∆λ, initial values are
λ1 = 0.301, λ2 = 0.1, θ1 = 0.28, θ2 = 0.1. Parameter values are κ = 2, M = 0.2, N = 0.0.

Figure (22) has as initial values λ1 = 0.30076, λ2 = 0.1, θ1 = 0.28, θ2 = 0.1, κ = 2 and

M = 0.2. From top to bottom rows: N = 0.0, 0.01. Both figures (21) and (22) show that
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as the initial values of the amplitudes increases, the effect of the resistive coefficient as a

damping factor becomes clearer on the pulse propagation of our soliton signal.

From figures (21) and (22) one sees that when the differences in initial values of

these parameters increase, their variations are more and more dominated by anharmonic

oscillations.

Figure (23) shows a total suppression of leapfrogging when the differences between

the initial amplitudes and phases become relatively large.
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III.3.2 Analysis of Leapfrogging for Coupled LC NLTLs with Impu-

rity

Adiabatic equations of soliton-pair motion

Within the framework of the adiabatic perturbation theory [19], the temporal evolutions

of the amplitudes κi and phases θi(i = 1, 2) of the two pulses described by equations (131)

and (132) leads to the following set of four coupled first-order ordinary differential

equations:

dκ1

dT
= −8M1

15
κ2

2 sech2A[tanhA+ tanh3A] +N1κ
5
1[4 sech4yo − 5 sech6yo], (215)

dκ2

dT
=

8M1

15
κ2

1 sech2A[tanhA+ tanh3A], (216)

dθ1

dT
= 4κ2

1 −M1 −
M1κ

3
2

κ3
1

sech2A[1− 17

9
tanh2A], (217)

dθ2

dT
= 4κ2

2 −M1 −
M1κ

3
1

κ3
2

sech2A[1− 17

9
tanh2A], (218)

where M1 = C/γCo, N1 = 24β/γ, and yo = κ1uo.

Again we introduce small deviations λi from the average amplitude κ of the two

solitons as κi = κ + λi, and the phase difference ∆θ = θ1 − θ2 which too must be small.

using the approximation y2 ≈ y1 + A, equations (215) to (218) can be linearized and will

yield:
dλ1

dT
= −8M1

15
κ3∆θ −N1(κ5 + 5κ4λ1) + 7N1(κ7 + 7κ6λ1)uo, (219)

dλ2

dT
=

8M1

15
κ3∆θ, (220)

dθ1

dT
= 4(κ2 + 2κλ1)−M1[2− 3κ−1(λ1 − λ2)], (221)

dθ2

dT
= 4(κ2 + 2κλ2)−M1[2 + 3κ−1(λ1 − λ2)]. (222)

Equations (221) and (222) suggest that the phase difference ∆θ and the amplitude
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difference ∆λ are related through the differential equation:

d∆θ

dT
=
(8κ2 + 6M1

κ

)
∆λ. (223)

Also, equations (219) and (220) lead to the following second-order ordinary differential

equation for the amplitude difference:

d2∆λ

dT 2
+ Ω2

o∆λ+ F (λ, uo) = 0, (224)

where

Ω2
o =

16M1

15
κ2(8κ2 + 6M1), (225)

F (λ1, uo) = (8κ2 + 6M1)[(5− 49κ2uo)N1κ
3λ1 + (1− 7κ2uo)N1κ

4]. (226)

Equation (224) is nothing else but the equation of motion of an harmonic oscillator

with the oscillation frequency Ωo, ”driven” by a force F (λ1, uo). This drive leads either to

an enhancement or a suppression of ∆λ.

To be more explicit, the expression of F (λ1, uo) given in equation (226) suggests that

the amplitude difference will oscillate with increasing amplitude when the defective

diode is closer to the input end of the transmission line and the average amplitude κ of

the leapfrogging solitons is not too large. When κ is relatively large, the impurity will

accelerate the soliton signal on line 1 thus increasing its speed relative to the speed of

soliton on line 2.

Concerning the issue of the effects of impurities on soliton propagation in NLTLs, it is

instructive to stress that the influence of a localized impurity on soliton propagation in

NLTLs has been investigated in some past works. It is therefore well established that a

default-type impurity will increase the amplitude of a soliton approaching the impurity,

hence causing its acceleration in virtue of the amplitude dependence of the velocity of the

KdV soliton. In recent numerical simulations, [139], Pan et al. obtained that the response

of a soliton signal to the presence of a localized impurity in an LC NLTL is standard:
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an excess structural defect will always trap a soliton signal causing its delay, whereas a

structural default will accelerate the soliton signal on approaching the impurity, whether

the impurity is capacitive or inductive.

Numerical Simultions of leagfrogging for coupled LC NLTLs with Impurity

We carried out numerical simulation of the set of coupled first-order nonlinear ordinary

differential eqations (215)- (218), still with a sixth-order Runge-Kutta algorithm with fixed

step. Initial values, as well as values of characteristic parameters of the model, are the

same as in section III.3.1 of figures (19) and (20), i.e.: λ1 = 0.25, λ2 = 0.2, θ1 = 0.25, θ2 = 0.2

and parameter values are κ = 2,M1 = 0.2, uo = 0.3. Results are shown in figure (24) for

time evolutions of λ1(downward from T = 0) and λ2(upward from T = 0) for different

values of the impurity coefficient N1.
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Figure 24: Time variations of λ1(downward from T = 0) and λ2(upward from T = 0) for
λ1 = 0.25, λ2 = 0.2, θ1 = 0.25, θ2 = 0.2 with parameter values κ = 2, M = 0.2, uo = 0.3
and from top to bottom N = 0.0, 0.001, 0.01.

Also figure (25) shows the amplitude difference, ∆λ, for different values of the impu-

rity coefficient N .
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Figure 25: Time variations of ∆λ for λ1 = 0.25, λ2 = 0.2, θ1 = 0.25, θ2 = 0.2 with
parameter values κ = 2, M = 0.2, uo = 0.3 and from top to bottom N = 0.0, 0.001, 0.01.

Graphs of figure (24) and (25) show that the soliton leapfrogging is a regular harmonic

oscillation with constant maximum amplitudes when there is no impurity. However, as

the impurity rate β, and hence the impurity coefficient N1, is increased from zero, the

amplitude difference ∆λ oscillates with the maximum oscillation amplitudes increasing
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with time. When N1 attains a critical value, the leapfrogging is suppressed after a short

time. A look at the variations of λ1 and λ2 with time on the graphs of figure (24) clearly

suggests that λ1 gets amplified after a short propagation time but not λ2. This implies

that there is an acceleration of the soliton signal on line 1 relative to its counterpart on

line 2.

We have investigated the leapfrogging dynamics of a pair of KdV solitons in two

nonlinear transmission lines, weakly coupled by a linear capacitance. Two different

configurations of coupled nonlinear transmission lines were considered: the first model

was composed of twoRLC lines with intraline Schottky varactors while the second model

composed of two coupled LC lines one of which had a localized capacitive impurity.

In the first model, we obtained that adding the resistive element along with the

feedback capacitor on the coupled transmission lines, causes a damping of the soliton

amplitudes thus acting against leapfrogging. For leapfrogging to survive the presence of

the resistive component, the average amplitude of the two interacting solitons should be

large enough and the resistance relatively small, being consistent with the spirit of the

adiabatic perturbation theory.

For the second model, we established that a defect in one of the Schottky diodes on

line 1 will accelerate the soliton signal on the line, causing a drive of the second soliton

with the possibility of their leapfrogging as long as the impurity rate is relatively small.

As we increase the impurity rate, the soliton signal in line 1 gains in amplitude and

consequently in speed, and hence cannot be followed by the soliton signal in line 2. In

this case no leapfrogging can occur.

The effects of a localized impurity on soliton signals in NLTLs have been investigated

in several previous works and well established that a localized impurity will always

accelerate a soliton approaching the impurity when it is a structural default in the

defective electrical component. This response of KdV soliton to the presence of a localized

impurity in the NLTL is actually universal, indeed similar behaviors are predicted in many

other distinct physical systems such as Josephson-Junction transmission lines [140, 141],

Frenkel-Kontorova systems [142, 143], double-well systems [145] and so on.
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III.4 Pulse Amplification and Damping in Lossy Nonlin-

ear Transmission lines with Voltage-Terminals

III.4.1 Adiabatic equation of soliton motion

Because of the presence of P5(z′, τ ′) in equation (146), the soliton amplitude becomes time

dependent and will be denoted κ. Within the framework of the adiabatic perturbation

theory [19], the time evolution of κ is determined by the first-order ordinary differential

equation:
dκ

dτ ′
= − 1

4κ

∫ ∞
−∞

dz′P5(z′, τ ′)sech2κz′. (227)

By substituting V and φ1 given respectively by equations (149) and (153) in equation

(146), we obtain:

P5(z′, τ ′) = 2ακ2sech2κz′ + αγϕ0 z
′ − 4γκ2ϕ0 z

′sech2κz′tanhκz′. (228)

With this last expression, the first-order ordinary differential equation (227) simplifies to:

dκ

dτ ′
= −2

3

(
α− 1

2
γϕ0

)
κ. (229)

Integrating equation (229) yields, in the time coordinate τ :

κ(τ) = κ0 exp
[
− 2η

3

(
α− 1

2
γϕ0

)
τ
]
. (230)

It turns out that the electrical pulse will be either amplified or damped during propaga-

tion, depending on which among the resistance and voltage terminal has the dominant

effect on its amplitude. However, expressions of α and γ in formula (147) and (148)

respectively, suggest that γ will be generally smaller than α. Indeed γ is proportional to

m, a small parameter compared with the quantity VJ/RC0 determining the magnitude of

α. In the next section we solve the line equations numerically, in order to compare results
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of direct numerical simulations with those obtained in this section within the framework

of the adiabatic perturbation theory, as concerns the competing effects of the voltage

terminal and the resistance on the pulse amplitude.

III.4.2 Numerical Simulations of Discrete Line Equations

In the previous section we investigated, using the adiabatic perturbation theory, the

simultaneous effects of a passive resistance and a voltage terminal on pulse propagation

along an LC NLTL. We obtained that the resistance induces a damping whereas the

voltage terminal amplifies the electrical pulse, suggesting the possibility to balance the

pulse amplification phenomenon predictced in a recent study [135]. However, actually

the adiabatic perturbation theory is a variational treatment and as such its results are

valid only for very small values of the resistance as well as of the voltage terminal.

To fully appreciate the effects of the presence of a resistance and voltage termi-

nal on characteristic features of the propagating electrical pulse, it is relevant to solve

the Kirchhoff equations (136) and (137) numerically. Focusing on the voltage signal

Vn(t), we applied a sixth-order Runge-Kutta scheme [137] on the following second-order

time-differential difference equation, derived from the coupled set (136) and (137) after

elimination of current variables i.e. In(t), In±1(t):

d2Qn

dt2
=

1

L

(
Vn+1 − 2Vn + Vn−1

)
− 1

R

d

dt
(Vn − Φn). (231)

As input profile we opt for a pulse-shaped wave of the form:

Vn(t = 0) = A0sech2
(
n/`0

)
, (232)

where the initial amplitude A0 and width at half tail `0 of the pulse are two arbitrary real

parameters. Throughout simulations they will be fixed as A0 = 1.9, `0 = 1.7 (in units of

length of an elementary cell).

Numerical simulations were carried out assuming a NLTL with 500 units cells, with a
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propagation time 0 ≤ t ≤ 2000 and a time step of 10−4. Characteristic parameters in the

discrete line equation (231) were fixed, except the resistance R for which different values

were considered. Concretely the following values were given to characteristic parameters

of the model: C0 = 0.6, L = 0.001, b = V −1
J = 0.25, m = 0.98. Also, to check the pulse

amplification predicted in [135] and in the analytical development of the previous section,

we shall consider Φn = φ0 n where φ0 is a constant which will be varied.

Figures (26), (27) and (28) show profiles of the voltage signal V (n(t) as it propagates,

for three distinct values of φ0 and different values of the resistance R in each figure.

More precisely figure (26) corresponds to the context where only the resistive component

is present in the NLTL, while figures (27) and (28) correspond to φ0 = 0.5 and φ0 =

1.5, respectively. In figure (26) the voltage signal Vn(t) propagates with a manifestly

exponentially decreasing amplitude. It is quite noticeable that as the resistance increases

the exponential damping sharpens, with a possibility of total disappearance of the pulse

due to dissipation by the resistance. Figure (27) and figure (28) show pulse propagation

for the same values of the resistance as in figure (26), but now for nonzero values of

φ0. Quite remarkably, as φ0 is increased the sharp exponential damping observed for

φ0 = 0 is gradually balanced. Clearly a nonzero value of φ0 favors pulse amplification

as predicted in [135], and consistent with the analytical result obtained above. Also

remarkable on the 3D curves is the behaviour according to which when φ0 increases,

the pulse desintegrates into two and probably more pulses after a finite propagation

time. This behaviour could not be accounted for analytically. From a general standpoint,

numerical results suggest that a combination of the resistance with the voltage terminal

can enable one control growth of the pulse amplitude or vise-versa, i.e. can prevent pulse

from being totally dissipated by a resistive component in the line [144]. For instance

a resistance will be needed to maintain a finite-amplitude pulse in a NLTL designed

with a voltage terminal. This result is not only interesting, in fact it introduces a novel

perspective in various applications such as radar transmissions, microwave and ultra-

wideband electronic devices, antenna networks, short-pulse electromagnetics and other

contexts where electrical pulse amplifications hold a relevant role [86, 135, 146].
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Figure 26: (Color online) space-time evolution of the voltage signal along the NLTL, in
the absence of voltage terminal (i.e. φ0 = 0) and for different values of the resistance R.
Top graphs: R = 0.0005 (left), R = 0.01 (right). Bottom graphs: R = 0.05 (left), R = 0.1
(right).
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Figure 27: (Color online) space-time evolution of the voltage signal along the NLTL,
for φ0 = 0.5 and for different values of the resistance R. Top graphs: R = 0.0005 (left),
R = 0.01 (right). Bottom graphs: R = 0.05 (left), R = 0.1 (right).
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Figure 28: (Color online) space-time evolution of the voltage signal along the NLTL,
for φ0 = 1.5 and for different values of the resistance R. Top graphs: R = 0.0005 (left),
R = 0.01 (right). Bottom graphs: R = 0.05 (left), R = 0.1 (right).
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III.5 Conclusion

In this chapter we have explored the propagation of signals in NLTLs. In the first case

we examined the leapfrogging motion of a pair of solitons along two NLTLs weakly

coupled by a linear capacitor shunted by a linear resistor. We established that the resistive

coupling caused a decreased in the leapfrogging frequency. This resistive coupling also

caused a damping of amplitudes of the signals. Secondly, leapfrogging dynamics was

again investigated in two RLC lines with intraline Schottky varactors and in two coupled

LC lines one of which had a localized capacitive impurity. For leapfrogging to survive in

the two RLC lines, the average amplitude of the two interacting solitons should be large

enough and the resitance relatively small. In the coupled lines with a localized capacitive

impurity, we established that a defect in one of the varactors will accelerate the soliton

signal on the line. Finally pulse amplification and damping was investigated in NLTLs

with voltage-terminal modules. Our analytical treatment established that pulse-shaped

solitons can propagate through the line while experiencing amplification caused by the

voltage-terminal modules and damping due to the resistances.
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General Conclusion

This thesis reports on signal propagation in NLTLs, specifically on the leapfrogging

dynamics of electrical pulses propagating in NLTLs and pulse amplification and damping

in lossy NLTLs with voltage terminals. The results include a range of background survey

on NLTLs, computer simulations, numerical and analytical.

The General Introduction was all about the general overview on NLTLs, review

on leapfrogging in nonlinear dynamics and the outline of this thesis. In chapter 1 we

discussed the literature review on NLTLs. In this chapter we defined a NLTL as a

nonlinear dispersive media where electrical signals can propagate in the form of voltage

waves. Also NLTLs are constructed by periodically loading normal transmission lines

with nonlinear capacitors and/or inductors. And that the theoretical study of soliton

propagation in nonlinear LC networks has been carried out with much attention devoted

to the Toda lattice equation and the KdV equation. Electrical NLTLs are undoubtedly the

best platforms for all electrical short pulse generation.

In order to understand soliton propagation in NLTLs, it is necessary to first understand

the nature of the medium through which they propagate. Thus its necessary to first of

all study the general theory of transmission lines. From this development, a physical

understanding for the cause and nature of solitons became clear. Also through this

development, some of the basics of the mathematical understanding of solitons became

clearer, and the connection between the physical and the mathematical concepts of

solitons can be made.

Chapter 1 also described the detail development of transmission lines, theory of

NLTLs, soliton systems and the perturbation theory. All these form the mathematical

backbone of this thesis. Under transmission lines we defined and described the different
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types of transmission lines, i.e., coaxial line, two-wire line, parallel plate, planar and

microstrip lines. But most of our discussions were restricted to two parallel conductors

with the distance between the two conductors being substantially smaller than the wave-

lengths of the signals on the line. Next the theory of transmission lines is discussed and

its equivalent circuit model was presented. From this circuit model, line equations were

derived and some characteristics of transmission lines examined. From an understanding

of transmission lines, we then presented the NLTL which comprise of a transmission line

periodically loaded with varactors.

In chapter 2, we presented and discussed the materials and methods used in the

research work of this thesis. Equivalent circuit models for the coupled NLTLs (lossy and

lossless) were presented. Amongst the nonlinear model reduction methods discussed in

the chapter, the perturbation method applied to the KdV equation is most importantly

treated, since the KdV equation is the main evolution equation of our soliton signal. In

addition to this the sixth order Rung-Kutta method used in our numerical analysis was

also discussed.

In chapter 3, we presented and discussed the main results of this thesis. In the first

section, the dynamics of soliton-pair leapfrogging in two RC coupled NLTLs is examined.

In this section we aimed at investigating the leapfrogging of a pair of electrical pulses

propagating each along a nonlinear LC line, both weakly interacting via a coupling

branch composed of a linear capacitor shunted by a linear resistance. We obtained that

the leapfrogging was possibe provided the two electrical pulses were almost identical

and moved at nearly equal speeds. By describing the leapfrogging as oscillations of

the phase and amplitude differences between the two interacting solitons, we obtained

the leapfrogging frquency and showed that it was a decreasing function of the resistive

coupling coefficient. Numerical simulations revealed that as the phase and amplitude

differences between the two electrical pulse increase, their separation also increases

leading to suppression of the leapfrogging motion over a finite propagation time. The

resistance coupled to the capacitive coupling was shown to extend the leapfrogging

propagation time, thus the resistive element could be utilize as a control mechanism
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for the lifetime of leapfrogging motions of solitons in weakly coupled nonlinear LC

transmission lines.

In real physical contexts it is difficult to design an electrical network with a completely

lossless dielectric medium between the conductors. Therefore, understanding how

dielectric medium loses influence the leapfrogging dynamics is an important issue for

multiplexed signal propagations and energy transfer in transmission line networks.

leapfrogging on NLTLs can for instance be used to manaage traveling multiple electrical

pulses, as well as the transmission of multiplexed signals with minimal energy. A good

understanding of the behaviours of leapfrogging pulses on NLTLs could therefore extend

the application of NLTLs in ultrafast electronics.

Next in chapter 3, we investigated the leapfrogging motion of a soliton-pair in two

distinct physical models. In the first model we considered the case of two RLC NLTLs

coupled via a linear capacitance, and in the second model two capacitively coupled LC

NLTLs one of which contains an imperfect varactor. In both models, we first derived,

using KCL and KVL, the discrete set of nonlinear equations for the coupled NLTLs.

Because we were seeking for pulse signals, we applied a multiple-scale expansion of

solutions in the full continuum limit which enabled us to obtain a set of coupled KdV

equations in the relevant scale. These coupled set of KdV equations were then treated

analytically within the framework of the adiabatic perturbation theory, by defining

appropriate variables for leapfrogging of the two KdV signals as they propagate at nearly

equal amplitudes and velocities. We obtained in the first model that adding the resistive

element along with the feedback capacitor on the coupled NLTLs, causes a damping of

the amplitude of the soliton thus acting against leapfrogging. Therefore for leapfrogging

to survive this damping effect of the resistive component, the average amplitude of the

two interacting solitons should be large enough and the resistance relatively small. We

established in the second model that a defect in one of the varactors in line 1 of the

coupled NLTLs, will accelerate the soliton signal on the line, causing a drive of the second

soliton with the possibility of their leapfrogging as long as the impurity rate is relatively

small. As we increased the impurity rate, the soliton in line 1 gains in amplitude and
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consequently in speed, and hence cannot be followed by the soliton signal in line 2. At

this point and after, no leapfrogging can occur.

Finally in chapter 3, a model of nonlinear electrical transmission line periodically

loaded with Schottky varactors shunted by resistances and connected to voltage terminal

modules, was investigated. Following the multiple-scale expansion method, we analyti-

cally derived the perturbed KdV equation where the perturbation term groups the effects

of the voltage terminal and of the resistance. This analytical study led to a KdV-type

pulse whose amplitude is amplified during propagation due to the voltage terminal,

and damped due to the resistance. Numerical simulations by means of a sixth-order

Runge-Kutta algorithm further provides evidence of a dominant effect of the resistive

component over amplification due to voltage terminal. Our simulations also brought

out a possible pulse disintegration into two pulses caused by the competition between

damping and amplification upon propagation.

This work finds relevant application in energy transfer on transmission line networks,

where leapfrogging of simultaneously launched electrical pulses can help manage their

characteristic propagation parameters such as their speeds, phases, intensities, widths

and so on.
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Perspectives

Numerical analysis is a powerful tool to study evolutions of nonlinear waves in a self-

consistent manner. Combination of numerical analysis and analytical solutions can

help us to understand nonlinear wave behavior and underline physical processes in a

complicated nonlinear system. Numerical aspects, computational methods are always

inevitable studies like soliton propagation in coupled NLTLs.

As fruitful extension to the work presented here:

• Despite the fact that the results obtained in the leapfrogging dynamics of interacting

solitons in weakly coupled NLTLs reveal a rich dynamics of the system, as a further

perspective it would also be interesting to look at the competing effects of the

coupling capacitance and resistance on the leapfrogging motion when the coupling

parameters are not too small. Given that adiabatic considerations in this context

cannot be applied, only a full numerical treatment of the discrete line equations

would be consistent. This later study requires a specific context since several

characteristic parameters are involved in the model and their contributions need to

be well emphasized both quantitatively and qualitatively.

Figure 29: Equivalent circuit model of a coupled NLTLs with voltage terminal modules

• The study of leapfrogging dynamics of solitons in coupled NLTLs can be extended
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to a coupled NLTL with voltage terminal modules. The main objective in this line

given in figure (29) will be to examine the influence of the step-like voltage on the

relative amplitude and phase oscillations of the two interacting solitons.

• Our dynamics of soliton propagation in a single impure NLTL can be extended to

study the impure NLTL circuit of figure (30). In this case we consider a model of

an electrical circuit, which consist of a primary monoinductance in parallel with

a capacitance C1, shunted cell to cell by a nonlinear capacitance in parallel with a

resistance as shown in figure (30).

Figure 30: Equivalent circuit model of NLTL with monoinductance in parallel with
capacitance C1.

• From our understanding of the work on two RLC or LC coupled NLTLs, we can

extend this to the study of lossy and defective left handed NLTLs.

In this thesis, a conscious effort has been made to approach problems from an analyti-

cal point of view, using MMS and perturbation method to derive nonlinear evolution

equations which were numerically simulated. We hope that a similar symbiosis of

techniques will further advance this study of soliton propagation on NLTLs.
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Abstract
The dynamics of two electrical pulses forming a boundstate, propagating along two nonlinear transmission lines weakly 
coupled by linear capacitors shunted with linear resistances, is considered from both analytical and numerical stand-
points. The study rests on an analysis of time series of the amplitudes and phases of the two interacting electrical pulses, 
within the framework of the variational theory based on exact one-soliton solution to the Korteweg-de Vries equation. 
In the regime where the two pulses propagate at nearly equal velocities, their relative amplitude/phase evolutions can 
result in periodic quasi-harmonic oscillations so-called leapfrogging motion. In this specific regime of motion, it is found 
that besides the expected damping effect on the soliton amplitudes, the resistance can also sustain their leapfrogging 
motion. Analytical expression of the leapfrogging frequency is derived, providing a better understanding of the com-
peting effects of the coupling capacitor and the resistive shunt on the leapfrogging motion. Leapfrogging motions of 
co-propagating pulses in electrical networks can be very useful in high-intensity signal transmissions involving least 
energy cost for the propagating signals.

Keywords  Coupled nonlinear transmission lines · Soliton pairs · Leapfrogging · KdV equations · Numerical simulations

1  Introduction

Nonlinear transmission lines (NLTLs) are dispersive media 
in which electric signals propagate in form of well-local-
ized pulses [1–13], usually referred to as electrical solitons. 
Owing to their robustness that is their ability to cover long 
distances (thousands of kilometers) without change in 
profiles, electrical solitons have been actively investigated 
over the past fifty years starting from the pioneer model of 
Hirota and Suzuki [1, 2, 14–23]. In the microwave domain 
in particular NLTLs have recently been shown [21] to repre-
sent the ideal source of stable high-intensity sharp pulses.

Typically a NLTL is constructed by periodically loading 
a linear transmission line with reverse-biased semicon-
ductor diodes (such as Schottky varactors), or by arrang-
ing inductors and varactors in a one-dimensional (1D) 

lattice. In such structures nonlinearity originates from 
the varactors whose capacitance is designed to change 
with applied voltage, while line dispersion stems from the 
structural periodicity of the loaded elementary circuits 
composing the ladder transmission line. When nonlinear-
ity and dispersion are balanced, electrical currents and all 
related physical parameters (such as the voltages) acquire 
solitonic shape profiles and thus long-lived high-intensity 
electric signals are generated [15]. In addition to main-
taining their shapes during propagation, solitons possess 
other important properties [15, 24]. Namely they can sur-
vive collisions with other solitons or solitary waves, and 
in electrical transmission lines specifically it was recently 
established [25–27] that they can retain their profiles upon 
scatterings with localized as well as distributed structural 
defects (i.e. impurities) on the lines. Current applications 
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involving NLTLs are numerous, under large signal con-
ditions they can serve as impulse compressors and fre-
quency multipliers [21], they are utilized for transportation 
of electrical energy through overhead high voltage cables, 
they serve as metal strips on printed circuit boards to carry 
digital data or control signals, they are utilized as coupled 
microstrips in microwave filters, as ribbon cables to con-
nect electronic systems and so on. Resistive NLTLs are ideal 
devices for the study of short-pulse amplitude control [20, 
28] and reshaping [21].

Nonlinear electrical networks, composed of at least 
two coupled nonlinear transmission lines, have been 
considered in the studies of simultaneous propagation of 
electrical soliton packets obeying coupled Korteweg-de 
Vries (KdV) equations [18, 29–32]. Theoretical as well as 
experimental results, in the specific context of two cou-
pled NLTLs, have revealed a rather complex dynamics of 
the interacting pulses as they propagate together. In par-
ticular when two electrical pulses propagate along two 
separate but coupled transmission lines, the strength of 
their interaction mediated by the coupling will usually 
depend on their speeds one relative to the other. It was 
observed experimentally [33] that when the difference in 
velocities of the two pulses is very small, their interaction 
is optimized thus favoring a bound state in which elec-
trical energy will be alternately transferred from a lead-
ing soliton to a trailing soliton. In this process, when one 
of the two solitons in the bound state is at its maximum 
amplitude, it leads the pair motion while the trailing 
soliton is at its minimum amplitude. As the energy leaves 
the leading soliton to the trailing soliton, the amplitude of 
the leading soliton dies down while the amplitude of the 
trailing soliton grows. Given that the velocity of the KdV 
soliton increases with amplitude [24], the trailing soliton 
is expected to speed up and to eventually overtake the 
leading soliton such that the direction of energy trans-
fer is reversed. Under certain conditions this overtaking 
will occur repeatedly, giving rise to relative oscillations 

in amplitudes and phases in which the two solitons con-
tinuously leap over each other periodically. Such motion, 
called ”leapfrogging”, was discussed in ref. [33] in the con-
text of capacitively coupled nonlinear transmission lines. 
Actually the leapfrogging of solitons is a quite common 
phenomenon in nature, it has been widely discussed in 
the past particularly in fluid dynamics [34–40]. The leap-
frogging of electrical solitons may offer the possibility to 
quasi-resonantly transfer energy between coupled ladder 
lines in distributed electric networks, such process can be 
of great interest for space and time multiplexed ultrafast 
electronics.

In this work we are interested in the leapfrogging 
dynamics of a bound soliton pair propagating in two 
NLTLs, weakly coupled by a capacitive component as 
considered in Ref. [33] but shunted with a linear resist-
ance. Our main objective is to examine the influence of 
the resistive component on relative amplitude and phase 
oscillations of the two interacting solitons. As a matter of 
fact, if the damping of soliton amplitudes due to resistive 
components along NLTLs is a well established fact, we are 
anticipating a control role of the resistance in the leapfrog-
ging dynamics of the two interacting electrical pulses.

2 � Model and coupled KdV equations

The model of two coupled nonlinear transmission lines we 
are interested in is depicted in Fig. 1. The two lines consist 
of periodically loaded identical LC elementary circuits, 
where sections of elementary circuits in line 1 and line 2 
are connected by interfacial linear capacitors Cm shunted 
by linear resistors Rm . Dispersion in the system is achieved 
by the discrete nature of the lines, while nonlinearity is 
achieved by making use of the conductive nonlinearity 
of capacitive diodes (i.e. varactors) [41]. In our study we 
assume the case when the varactors in the two lines are 
connected with opposite polarities.

Fig. 1   Equivalent represen-
tation of two nonlinear LC 
transmission lines, coupled by 
a capacitor C

m
 with a resistance 

R
m

 in its shunt branch
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Let Vn and In denote the voltage and current respec-
tively, at the nth section of line 1, and Wn and Jn the voltage 
and current respectively at the nth section of line 2. The 
bias voltages in lines 1 and 2 are −Vb and Vb respectively, 
reflecting the opposite polarities of the varactor diodes 
on the two lines. For these varactor diodes we assume the 
following capacitance-voltage characteristics [42]:

where C0 is the zero-bias junction capacitance, VJ is the 
junction potential and m (a real number) is a grading index 
coefficient determined by the doping profile of the varac-
tors [41, 42]. Note that except for the opposite polarities 
of the varactor diodes the lines are symmetrical, this sym-
metry turns out to be fundamental for it favors electrical 
pulses of almost equal velocities to travel on the two lines 
as a bound state.

Applying Kirchhoff’s voltage law on the nth cell of lines 
1 and 2, we obtain:

Kirchhoff’s current law on the nth cell of lines 1 and 2 results 
in the two coupled transmission line equations:

In the long-wavelength limit, we can approximate the dis-
crete position n by a continuous variable x = nh where 
h is the size of an elementary circuit. In this continuous 
regime the discrete voltages transform as Vn(t) → V (x, t) 
and Wn(t) ⟶ W(x, t) , such that we can carry out a con-
tinuum-limit expansion in powers of h, for the two quanti-
ties Vn±1(t) = V (x ± h, t) and Wn±1(t) = W(x ± h, t) . To the 
fourth order in h the expansion yields:

Setting h ≡ 1 for simplicity, Eqs. (3) and (4) become:

(1)

C1(x) = C0

(

1 −
x

VJ

)−m

, C2(x) = C0

(

1 +
x

VJ

)−m

,

(2)L0
dIn

dt
= Vn−1 − Vn, L0

dJn

dt
= Wn−1 −Wn.

(3)
C1(Vn)

d2Vn

dt2
+ Cm

d2

dt2
(Vn −Wn) +

1

Rm

d

dt
(Vn −Wn)

= L−1
0
(Vn+1 − 2Vn + Vn−1),

(4)
C2(Wn)

d2Wn

dt2
+ Cm

d2

dt2
(Wn − Vn) +

1

Rm

d

dt
(Wn − Vn)

= L−1
0
(Wn+1 − 2Wn +Wn−1).

(5)

Vn±1(t) = V (x, t) ± h
�V

�x
+

h2

2!

�2V

�x2
±

h3

3!

�3V

�x3
+

h4

4!

�4V

�x4
+ 0(h5),

(6)

Wn±1(t) = W(x, t) ± h
�W

�x
+

h2

2!

�2W

�x2
±

h3

3!

�3W

�x3
+

h4

4!

�4W

�x4
+ 0(h5).

where C1(V ) and C2(W) are defined in (1).

3 � Adiabatic equations

As we are interested in electric signals with localized pulse 
shapes, we shall follow the reductive perturbation theory 
[35, 43] to obtain the equations governing spatiotem-
poral evolutions of such localized electric signals. In this 
respect, we introduce a small parameter � and define the 
new variables:

with �0 = 1∕
√

L0Cb . Next, express the voltages V (s, �) and 
W(s, �) as series in powers of � i.e.:

Consistently with the weak-coupling assumption, the cou-
pling capacitance Cm and coupling resistance Rm will be 
taken of the order � . In agreement with this assumption, 
we can rewrite the two coupling parameters as:

Substituting Eqs. (9), (10), (11), (12) and (13) into Eqs. (7) 
and (8), and keeping only terms of order �3 for which non-
linearity balances the dispersion, we obtain the following 
two coupled KdV equations at the third order in �:

where we define:

(7)

C1(V )
�2V

�t2
+ Cm

�2

�t2
(V −W) +

1

Rm

�

�t
(V −W)

= L−1
0

(

�2V

�x2
+

1

12

�4V

�x4

)

,

(8)

C2(W)
�2W

�t2
+ Cm

�2

�t2
(W − V ) +

1

Rm

�

�t
(W − V )

= L−1
0

(

�2W

�x2
+

1

12

�4W

�x4

)

,

(9)s = �1∕2(x − �0t), � = �3∕2t,

(10)V (s, �) = −Vb +

∞
∑

i=1

�ivi(s, �),

(11)W(s, �) = Vb +

∞
∑

i=1

�iwi(s, �).

(12)Cm = �C
�

m
,

(13)Rm = �−3∕2R
�

m
.

(14)v�
��
− 6v�v�

s�
+ v�

s�s�s�
= �(v� + w�)s� − �1(w

� + v�),

(15)w�
��
− 6w�w�

s�
+ w�

s�s�s�
= �(w� + v�)s� − �1(v

� + w�),
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with �1 = 2�0 − 4�2�0Vb , �2 =
m

VJ
 , and for convenience we 

have set rm = R�
m

 . Contributions from terms of order � give 
v1 = 0 and w1 = 0 , while contributions of order �2 (i.e. v2 
and w2 ) are determined by the following equations:

suggesting that v2 and w2 are constants.
The two coupled Eqs. (14) and (15), that provide shape 

profiles of the nonlinear components of the voltage fields 
experessed as in series as (10), (11), are not tractable ana-
lytically because of the coupling terms in their right-hand 
side. However, if we assume the two coupling components 
to be very small, they can readily be treated as perturba-
tions and therefore we can rewrite the set (14) and (15) 
formally with their right-hand side grouped to give a sin-
gle perturbation function:

In the absence of perturbation, i.e. when �P(v�,w�) = 0 , 
Eqs. (14) and (15) are two independent KdV equations 
whose exact single-pulse soliton solutions are [35]:

where the arguments z1 = �1(s
� − �1) and z2 = �2(s

� − �2) 
connect the pulse amplitudes �1,2 to their phases �1,2 via:

It is worthwhile stressing that (20) are just parts of the 
general solutions to the two line equations, however they 
are most relevant in that they provide the soliton com-
ponents in the series representation of these solutions. 
Hence we shall be mainly interested in the dynamics of 
these soliton components in the presence of the perturba-
tion �P(v�,w�) = 0 . To determine the temporal evolution 
of characteristic parameters �i and �i of the two pulse soli-
tons for small �P(v�,w�) , we use the adiabatic perturbation 
theory [35] which enables us obtain the following set of 
first-order ordinary differential equations:

(16)

�� =
�

�1
, s� = 3

√

12C0L0s,

v� = 6�2
3
√

12C0L0v3, w� = −6�2
3
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m
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0

3
√
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C0
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�0rm

C0
,

(17)0 = C0�
2

0

�2v2
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− 2C0�

2

0
�1vb

�2v2
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+

1

12L0
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,

(18)0 = C0�
2

0
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− 2C0�

2

0
�1vb
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1

12L0
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�s2
,

(19)�P(v�,w�) = �(v� + w�)s� − �1(w
� + v�).

(20)v� = −2�2

1
sech

2(z1), w� = −2�2

2
sech

2(z2),

(21)�1 = 4�3

1
��, �2 = 4�3

2
��.

(22)
d�i

d��
= −

�

4�i ∫
∞

−∞

�P(v�,w�)sech2(zi)dzi ,

with i = 1, 2 . Note that the interaction between the two 
solitons will be optimal when their velocities coincide, 
i.e. ̇𝜁1 = ̇𝜁2 . In terms of (20) this can also be formulated in 
terms of the equality of their amplitudes, i.e.:

Let us consider a very small deviation from this optimal 
state of interaction, due to the soliton velocities not 
being exactly equal but remaining nevertheless always 
very close. This can be described by small fluctuations 
in amplitudes of the two pulses from their unperturbed 
values �0

1
= �0

2
= � . It follows that since the two lines are 

identical and symmetric, we can write:

where � is constant and the variables �1 and �2 are very 
small compared to � . Similarly the phase difference 
�� ≡ �1 − �2 can be assumed so small that we have:

Substituting Eqs. (20), (25) and (26) in (22) and (23) and 
integrating, we obtain:
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where we have set y = ��� . Eqs. (27)–(30), that describe 
the motion of the two weakly interacting electrical soli-
tons in the specific context when their velocities are very 
close, are solved numerically using a sixth-order Runge-
Kutta scheme [44] with fixed step. Numerical results are 
discussed in the next section.

4 � Numerical results

To investigate the leapfrogging dynamics of the two 
electrical solitons we carried out numerical simulations 
of the four coupled ordinary differential equations Eqs. 
(27)–(30). Since it is also relevant to see the effects the 
coupling resistance would have on amplitudes of the indi-
vidual solitons, in Fig. 2a, b we started with plots of the 
time series of �1 and �2 , for a fixed value of the capacitive 
coupling � ( � = 0.025 ), for different values of the resistive 
coupling parameter i.e. �1 = 0.001 , 0.005 and 0.009. One 
sees that time series of �1 and �2 are periodic oscillations, 
with an exponential decrease of their maxima. It is quite 

remarkable that the exponential damping is more and 
more pronounced as �1 increases.

To highlight the anti-phase oscillations of the two 
amplitudes, we plot �1 and �2 on the same graph for large 
values of �1 ( �1 = 0.005 and �1 = 0.009 ) keeping � = 0.025 
and � = 0.5 . The leapfrogging motions observed in Fig. 2c, 
d, occur more exactly when initial values of �1 and �2 used 
in the simulations are very close. Figure 3 illustrates the 
absence of leapfrogging, when the difference between 
initial values of the two parameters in the simulations is 
relatively large. In fact, the signature of leapfrogging is 
to be observed both in the oscillating phase difference 
�� = �1 − �2 , and in the oscillating amplitude difference 
�� = �1 − �2 of the two solitons. Therefore, to gain a con-
sistent picture of this signature in the two parameters, we 
solved numerically the amplitude and phase difference 
equations derived from the coupled set Eqs. (27)–(30), by 
substracting Eq. (29) from Eq. (30) on one hand and Eq. 
(27) from Eq. (28) on the other hand. Figure 4 suggests 
a dynamics of the soliton pair which we can summarize 
as follows: initially (i.e. at t = 0 ) the amplitude difference 
of the two solitons is at some finite initial value, while 

(a) (b)

(c) (d)

Fig. 2   (Color online) Top graphs: Temporal evolutions of �
1
 (a) and 

�
2
 (b), for � = 0.23 and � = 0.6 . The solid, dashed and dotted curves 

correspond respectively to �
1
= 0.001 , 0.005 and 0.009. Bottom 

graphs: Leapfrogging dynamics of �
1
 (solid curve) and �

2
 (dashed 

curve), for �
1
= 0.005 (c) and �

1
= 0.009 (d)
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their phase difference is zero. As the two solitons propa-
gate they exchange energy, this causes them to slowly 
approach each other. Their amplitude difference thus 
decreases gradually to zero at the time when the two 
electrical pulses coincide and have an equal velocity. After 
hopping pass each other, their amplitude and phase dif-
ferences begin to rise again and the cycle continues, for 
as long as the leapfrogging motion goes on resulting in 
oscillating amplitude and phase differences.

To further emphasize the effects of the resistance on 
the leapfrogging dynamics of the bound solitons, we have 
plotted three sets of curves to illustrate the behaviour of 
the oscillating amplitude difference and phase difference, 
with increasing resistance (Fig. 5). Using fairly large val-
ues for the resistance, the curves clearly show that as the 
resistance increases the number of oscillations in �� and 
�� decreases until the leapfrogging motion stops. Since 

the oscillating evolutions of the amplitude and phase dif-
ferences are here assumed to characterize the leapfrog-
ging of the soliton pair, the decrease in the number of 
oscillations readily indicates a weakening and eventually 
a relaxation of the leapfrogging motion.

We can understand the origin of the harmonic oscilla-
tions observed in numerical solutions to the phase and 
amplitude difference equations, by remarking that the 
arguments of the hyperbolic functions in Eqs. (27)–(30) 
are proportional to �� . Thus for leapfrogging to occur in 
numerical simulations, this later parameter should remain 
very small which justifies our choice of very small initial 
values for the phase and amplitude differences. Analyti-
cally, small amplitude and phase differences imply lineariz-
ing Eqs. (27)–(30), which yields:

Subtracting Eq. (34) from (33) and replacing in (31) and 
(28), we obtain:
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This is the equation of motion for an harmonic oscillator, 
the frequency �lf of which is given by:

Formula (36) shows that the leapfrogging frequency is 
decreased by the presence of the resistive element in 
the coupling branch. From the expression of �lf it is also 
apparent that as �1 increases the leapfrogging frequency 
decreases, vanishing at some finite characteristic value 
of the resistance. This is in agreement with the behaviour 
observed in Figs. 2a, b, c and 4a, b. In Fig. 6, we plot the 
leapfrogging frequency against the resistance for differ-
ent values of � . The frequency decreases to zero, indicat-
ing a decay of the leapfrogging motion as the resistance 
increases.

In the above analysis it emerged that a choice of small 
initial values for the amplitude and phase differences was 
necessary for the observation of leapfrogging in numerical 
simulations of the coupled set Eqs. (27)–(30). In Fig. 7, we 
plot the time series of �1 and �2 for relatively large values 
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of the initial phase and amplitude differences, considering 
different values of �1 and � = 0.6 . One sees that the time 
series of soliton characteristic parameters are now strongly 

Fig. 5   (Color online) Oscillating 
amplitude and phase differ-
ences for increasing resistance. 
The top, middle and bottom 
set of curves are for �

1
= 0.01 , 

0.05 and 0.09 respectively. 
Here � = 0.25 and � = 0.63 . 
Leapfrogging ceases in the last 
set of curves due to very high 
value of resistance
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Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2019) 1:552  | https://doi.org/10.1007/s42452-019-0555-8

anharmonic, and more generally an enhancement of the 
anharmonicity by relatively large initial values will cause a 
relaxation of leapfrogging after a finite propagation time. 
Quite remarkably this later behaviour is valid irrespective 
of the value of the unperturbed amplitude � , which indeed 
remains fix in time. To end, an explicit picture of the leap-
frogging dynamics of the two solitons is summerized in 
the phase-space representation Fig. 8, where �1 is plotted 
as a function of �2.

5 � Conclusion

The leapfrogging of soliton pairs was proposed in the past 
to describe the particular motion of two weakly interacting 
solitons, characterized by their anti-phase oscillations and 
oppositely varying amplitudes [34–39, 45]. In fluid dynam-
ics the leapfrogging of co-propagating KdV pulses have 
been widely discussed, and shown to provide an interest-
ing configuration of the system dynamics in which solitons 
in the pair oscillate periodically one with respect to the 
other such as to mutually sustain their propagation at very 
small velocity [34]. This concept was recently extended to 

nonlinear electrical transmission lines by Narahara [33], 
who considered two capacitively coupled nonlinear trans-
mission lines and determined characteristic properties for 
the leapfrogging motion of electrical soliton pairs.

In the present work we examined the possible leap-
frogging motion of a pair of solitons along two nonlin-
ear LC transmission lines, weakly coupled by a linear 

(a) (b)

(c) (d)

Fig. 7   (Color online) Anharmonic oscillations of �
1
 (solid curves) and �

2
 (dashed curves), for large initial values: r

m
= 5 × 10−10 (a), 

r
m
= 5 × 10−8 (b), r

m
= 5 × 10−6 (c) and r

m
= 5 × 10−4 (d). � = 0.6
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Fig. 8   (Color online) Phase-space representation of the leapfrog-
ging dynamics. Here, �

1
= 0.23 , � = 0.001 and � = 0.6
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capacitor shunted by a linear resistor. We established the 
leapfrogging motion by solving numerically the coupled 
variational equations associated with the two interacting 
solitons for very small initial values of the amplitude and 
phase differences, and obtained analytically that the resis-
tive coupling component would cause a decrease in the 
leapfrogging frequency. Note that numerical curves also 
suggest a damping of amplitudes of the two solitons, also 
caused by the resistive coupling.

Although the results obtained in this work reveal a rich 
dynamics of the system, it would also be interesting to 
look at the competing effects of the coupling capacitance 
and resistance on the leapfrogging motion when the cou-
pling parameters are not too small. Given that adiabatic 
considerations in this context cannot be applied, only a full 
numerical treatment of the discrete line equations would 
be consistent. This later study requires a specific context 
since several characteristic parameters are involved in the 
model and their contributions need to be well emphasized 
both quantitatively and qualitatively. This aspect is consid-
ered in a separate work.
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Abstract
The leapfrogging dynamics of a pair of electrical solitons is investigated, by considering two capacitively coupled nonlin-
ear transmission lines with and without intraline resistances. We discuss two distinct transmission line set-ups: in the first, 
we assume two RLC ladder lines with intraline varactors and a coupling linear capacitor, and in the second, we consider 
two capacitively coupled lossless lines with a varactor carrying impurity (imperfect diode) in one of the two interacting 
transmission lines. In the first context, we find that the soliton-pair leapfrogging mimics the motion of a damped har-
monic oscillator, the frequency and damping coefficient of which are obtained analytically. Numerical simulations predict 
leapfrogging of the soliton pair when the differences in the initial values of the amplitude and phase are reasonably small, 
and the resistance is not too large. In the second context, leapfrogging occurs when the impurity rate is small enough 
and the differences in the initial values of the amplitude as well as phase are also small. As the impurity rate increases, 
the soliton signal in the imperfect line gets accelerated upon approaching the defective diode, causing only this specific 
soliton signal to move faster than its counterpart, leading to the suppression of leapfrogging.

Keywords  Coupled nonlinear transmission lines · Soliton signals · Capacitive impurity · Adiabatic perturbation theory · 
Numerical simulations

1  Introduction

The Hirota circuit [1, 2] is a simple LC ladder circuit with 
a linear inductance, but an active feedback capacitor 
embedded within the main branch of the circuit. This cir-
cuit has long served as a paradigm for the generation and 
propagation of nonlinear signals in electrical networks, 
simulating the so-called Toda lattice [3, 4] and admitting 
exact soliton solutions [5–9]. In this electrical system, the 
nonlinearity balancing the dispersion (related to the lad-
der nature of the line) is introduced by a capacitor, whose 
capacitance is controlled by the imposed bias voltage, 
thus acting like a capacitive diode (“varicap” diode or var-
actor). The nonlinear signal generated in this nonlinear 

transmission line (NLTL) is a localized electrical signal with 
a bell shape, propagating with features of pulse soliton 
(i.e., translate at constant speed keeping a permanent bell 
shape) due to the effect of varactors periodically loaded 
throughout the line. NLTLs are of interest because of their 
applications in several fields, e.g., under large signal condi-
tions NLTLs can serve as impulse compressors or frequency 
multipliers [10]. NLTLs have also proved to be of great 
practical use in extremely wideband focusing and shap-
ing of signals [11]; in the microwave domain, they are ideal 
sources of highly stable large-amplitude sharp pulses [12].

Several studies have been devoted to modelling, 
both analytically and numerically, the propagation of 
nonlinear signals in NLTLs in various physical contexts 
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including resistive NLTLs, transmission lines with impuri-
ties, networks of coupled NLTLs and so on [13–27]. Two 
most common theoretical pictures have emerged, namely 
one in which the nonlinear electrical signals are soliton 
solutions to the Korteweg–de Vries (KdV) or coupled KdV 
equations [27–29] and one in which they are looked out 
as modulated envelope solitons described by the nonlin-
ear Schrödinger or coupled nonlinear Schrödinger equa-
tions [10, 12, 18, 19]. Much interesting to us, recent theo-
retical as well as numerical works [30, 31] have established 
that under specific conditions, the coupling of two NLTLs 
can promote novel interesting configurations of soliton 
bound states in which soliton pairs propagate with oppo-
site phases, but nearly equal velocities. Bound soliton 
states of this kind, known as leapfrogging solitons, have 
actually been predicted and observed experimentally in 
many other physical contexts [32–38] as, for instance, in 
hydrodynamics and plasma dynamics.

In general, the amplitudes and phases of two leapfrog-
ging pulses depend on their initial positions and initial 
velocities, such that as they propagate they remain always 
close one to another with their amplitude and phase dif-
ferences vanishing periodically with time. In the specific 
context of coupled NLTLs, leapfrogging propagation of 
soliton pairs provides means to convey pairs of large-
amplitude signals at low energy cost from their interac-
tions. Indeed when the difference in velocities of the two 
signals is very small, their interaction is optimized, thus 
favouring a bound state in which the electrical energy will 
be alternately transferred from the leading soliton signal to 
the trailing soliton signal. This leads to a periodic change 
in positions of the two solitons, a leading one becoming a 
trailing soliton and vice versa. So to say, the leapfrogging 
motion can be used to manage the transmission of pairs 
of travelling electrical pulses in electrical networks, put-
ting into play a minimum possible power loss from the 
individual electrical soliton signals.

In a previous study [31], we investigated the leapfrog-
ging dynamics of soliton pairs propagating along two LC 
NLTLs, weakly coupled by a linear capacitance shunted 
with a linear resistance. We obtained that the inclusion of 
a resistive element in the shunt branch of the coupling 
capacitance enables to control the amplitude and phase 
differences of the interacting pulses during their propa-
gation. Instructively, the coupled model considered in 
this previous study was an extension of the study done in 
ref. [29] where the author addressed the problem consid-
ering only the capacitive coupling. In the present work, 
we are interested in the leapfrogging motion of a soliton 
pair in two distinct physical contexts: first, we consider the 
case of two RLC NLTLs coupled via a linear capacitance and 
two capacitively coupled LC NLTLs one of which contains a 
defective varactor. We first derive, using Kirchhoff’s voltage 

and current rules, the discrete set of nonlinear equations 
for the coupled NLTLs in the two physical contexts. Next, 
seeking for pulse signals, a multiple-scale expansion of 
solutions is applied in the full continuum limit which ena-
bles us to obtain a set of coupled KdV equations in the 
relevant scale. The coupled set of KdV equations is then 
treated analytically within the framework of the adiabatic 
perturbation theory [39], by defining appropriate variables 
for leapfrogging of the two KdV pulses as they propagate 
at nearly equal amplitudes and velocities. Their leapfrog-
ging are explored numerically by means of a sixth-order 
Runge–Kutta scheme with fixed steps [40], and conditions 
for suppression of leapfrogging are determined.

2 � Analysis of leapfrogging for coupled RLC 
NLTLS

2.1 � Model, line equations and coupled dissipative 
KdV equations

Consider two NLTLs as depicted in Fig.  1, where each 
elementary section in the line consists of a linear induc-
tor L in parallel with a nonlinear capacitor of capacitance 
C = C(V ) . The two lines are coupled by means of linear 
capacitor Cm at each mode.

The nonlinear capacitors are varactor diodes, and 
except for their opposite polarities in our study, we shall 
use a common type of varactor diode with a Schottky bar-
rier for both lines [30, 31]. Therefore, our Schottky varac-
tors can be represented by the following capacitance–volt-
age characteristics [41]:

where C0 , VJ and m are, respectively, the zero-bias capaci-
tance, the junction potential and the grading coeffi-
cient [41, 42]. We assume that the bias voltages in lines 1 
and 2 are −Vb and Vb , respectively, reflecting the opposite 
polarities of varactor diodes loaded on the two lines. For 
convenience, we define:

an effective zero-bias capacitance which below turns out 
to be a relevant characteristic parameter.

Applying Kirchhoff’s rules on the two coupled electri-
cal ladder circuits, we obtain the following set of discrete 
transmission line equations:

(1)C1(x) = C0∕
(

1 −
x

VJ

)m

,

(2)C2(x) = C0∕
(

1 +
x

VJ

)m

,

(3)Cb ≡ C0∕
(

1 +
Vb

VJ

)m

,
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In the above set, Wn and Jn are, respectively, the voltage 
and current of the nth section in line 1, and Vn and In are, 
respectively, the voltage and current of the nth section in 
line 2. In the continuum limit, when the size of elemen-
tary sections in the circuits is very small compared with 
the length of the transmission lines, the right-hand side 
of Eqs. (4) and (5) can readily be approximated with partial 
derivatives with respect to a continuum variable x = nl . 
This, more exactly, corresponds to the long-wavelength 
approximation which consists in Taylor expanding the dis-
crete variables Wn±1 and Vn±1 , i.e.,

(4)L
d

dt
(Jn−1 − Jn) + R(Jn−1 − Jn) = Wn−1 − 2Wn +Wn+1,

(5)L
d

dt
(In−1 − In) + R(In−1 − In) = Vn−1 − 2Vn + Vn+1,

(6)Jn−1 − Jn =
dQn

dt
+ Cm

d

dt
(Wn − Vn),

(7)In−1 − In =
dqn

d
t + Cm

d

dt
(Vn −Wn).

(8)Wn±1 = Vn ±
�W

�x
+

1

2

�2W

�x2
±

1

6

�3W

�x3
+

1

24

�4W

�x4
+⋯ ,

(9)Vn±1 = Vn ±
�V

�x
+

1

2

�2V

�x2
±

1

6

�3V

�x3
+

1

24

�4V

�x4
+⋯ .

Also,  from the definit ion dQn = C(Wn)dWn and 
dqn = C(Vn)dVn and setting �0 = m∕VJ , Eqs. (4)–(7) reduce 
to:

As we are interested in voltage signals with localized wave 
profile in space and time, it is useful to find appropriate 
equations reproducing such structures. In this goal, we 
choose the reductive perturbation method [43], in which 
the voltage variables W and V can be expanded in series 
according to:

(10)

LC0

(

�2W

�t2
+

�0

2

�2W2

�t2

)

+ LCm

�2

�t2
(W − V ) + RCm

�

�t2
(W − V )

+ RC0

(

�W

�t
+

�0

2

�W2

�t

)

=
�2W

�x2
+

1

12

�4W

�x4
,

(11)

LC0

(

�2V
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−

�0

2

�2V2

�t2

)

+ LCm

�2

�t2
(V −W) + RCm

�

�t2
(V −W)

+ RC0

(

�V

�t
−

�0

2

�V2

�t

)

=
�2V

�x2
+

1

12

�4V

�x4
.

(12)W(x, t) = − Vb +

n
∑

i=1

�iWi(x, t),

(13)V (x, t) = Vb +

n
∑

i=1

�iVi(x, t).

Fig. 1   Equivalent repre-
sentation of two nonlinear 
RLC transmission lines with 
Schottky-type in-line varactors 
C(V), coupled by linear capaci-
tors C

m
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In addition, we apply the following new transformations 
on the space and time coordinates, as well as on the resist-
ance coefficient R:

where � = (LCb)
−1∕2 with Cb defined in (3). Furthermore, 

the coupling capacitance Cm must be of order � [31], i.e.,we 
should define Cm = �C . Substituting Eqs. (12) to (14) into 
Eqs. (10) and (11) and using the above transformation of 
the coupling capacitance, we obtain the following equa-
tions to the order O(�3):

By integration of Eqs. (15) and (16) once with respect to z, 
and scaling W1 , V1 , � and z as W1 =

6�Cb

�0C0
�  , V1 = −

6�Cb

�0C0
� , 

� =
2

�
T  and z = �u where � = 1∕

3
√

12 , we find:

This last set describes two coupled KdV equations, in 
which the quantities Pi(u, T ) , i = 1, 2 grouping the coupling 
and the resistive terms play roles of perturbations and are 
defined as:

When Pi(u, T ) = 0 , the two homogeneous KdV equations 
�T� − 6��u� + �3

u
� = 0  a n d  �T� + 6��u� + �3

u
� = 0 

admit the following one-soliton solutions [5]:

(14)z = �
1

2 (x − �t), � = �
3

2 t, R = �
3

2 R1,

(15)
−

2

�

�2W1

�z��
+

�0C0

2Cb

�2W2
1

�z2
+

C

Cb

�2

�z2
(W1 − V1)

− R1Cb�
�W1

�z
=

1

12

�4W1

�z4
,

(16)
−

2

�

�2V1

�z��
−

�0C0

2Cb

�2V2
1

�z2
+

C

Cb

�2

�z2
(V1 −W1)

− R1Cb�
�V1

�z
=

1

12

�4V1

�z4
.

(17)
��

�T
− 6�

��

�u
+

�3�

�u3
= P1(u, T ),

(18)
��

�T
− 6�

��

�u
+

�3�

�u3
= P2(u, T ).

(19)P1(u, T ) =
C

�Cb

�

�u
(� + �) − R1Cb�� ,

(20)P2(u, T ) =
C

�Cb

�

�u
(� + �) − R1Cb��.

(21)� = − 2�2

1
sech2y1,

(22)� = − 2�2

2
sech2y2,

where y1 = �1(u − �1) , �1 = 4�2
1
T  and y2 = �2(u − �2) , 

�2 = 4�2
2
T  . In the original coordinates, the above one-

soliton solutions can be rewritten as:

with D1 = 4��2
1
 and D2 = 4��2

2
 . Within the framework of 

the adiabatic perturbation theory [39], the temporal evolu-
tions of the amplitudes �i and phases �i ( i = 1, 2 ) of the two 
pulses are determined by solving the following coupled 
first-order ordinary differential equations:

To find explicit forms of these variational equations, we 
must substitute the pulse solutions (23) and   (24) into 
the perturbation parameters Pi(u, T ) . Doing so, Eqs. (25) 
and (26) burst into the following four coupled first-order 
ordinary differential equations:

(23)

W(x, t) = −
3(VJ +mVb)D1

3
√

12m

sech2
�

�

D1

4�2
(x − �(1 +

1

2
�D1)t)

�

,

(24)

V (x, t) =
3(VJ +mVb)D2

3
√

12m

sech2
�

�

D2

4�2
(x − �(1 +

1

2
�D2)t)

�

,

(25)
d�i

dT
= −

1

4�i ∫
∞

−∞

Pi(yi , T ) sech
2yidyi ,

(26)

d�i

dT
= 4�2

i
−

1

4�3

i

∫
∞

−∞

Pi(yi , T )
[

yi +
1

2
sinh(2yi)

]

sech2yidyi .

(27)

d�1

dT
= −

8M

15
�2

2

sech2A
[

tanhA + tanh3A
]

−
2

3
N�1,

(28)

d�2

dT
=

8M

15
�2

1

sech2A
[

tanhA + tanh3A
]

−
2

3
N�2,

(29)

d�1

dT
= 4�2

1
−M −

M�3
2

�3
1

sech2A
[

1 −
17

9
tanh2A

]

,
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where M =
C

�Cb
 , N = R1Cb� and A = ��� , with �� = �1 − �2 

the phase difference. Leapfrogging of the two interacting 
solitons corresponds to small oscillations of their ampli-
tudes �i around a common average value � . Consequently, 
we can introduce a small deviation �i from the average 
amplitude � , in such a way that we can write �i = � + �i . 
Similarly the phase difference �� must be small. Using the 
approximation y2 ≈ y1 + A and linearizing Eqs. (27)–(30) 
become:

with �� = �1 − �2 = �1 − �2 . From these equations, one 
obtains:

Equations (35) and (36) are reminiscent of the motion of 
a damped harmonic oscillator, where the damping coef-
ficient �d and the resonance frequency �0 are defined as:

It is remarkable that the damping coefficient �d is a lin-
ear function of the intraline resistance R1 , while the res-
onance frequency �0 (or the frequency of undamped 
harmonic oscillations) is proportional to the coupling 
capacitance C. It is worth noting that the adiabatic per-
turbation theory is valid only when Cm∕Cb ≪ Vs∕Vb where 
Vs = 12��2(VJ +mVb)∕

3
√

12m is the average voltage ampli-
tude of the incident solitons. Given that the coupling 
capacitance C and the intraline resistance R1 should be 
very small consistently with the spirit of the adiabatic per-
turbation theory, the leapfrogging frequency can only be 

(30)

d�2

dT
= 4�2

2
−M −

M�3
1

�3
2

sech2A
[

1 −
17

9
tanh2A

]

,

(31)
d�1

dT
= −

8M

15
�3�� −

2N

3
(� + �1),

(32)
d�2

dT
=

8M

15
�3�� −

2N

3
(� + �2),

(33)
d�1

dT
= 4(�2 + 2��1) −M

[

2 −
3

�
��

]

,

(34)
d�2

dT
= 4(�2 + 2��2) −M

[

2 +
3

�
��

]

,

(35)d
2
��

dT 2
+�d

d��

dT
+ �2

0
�� = 0,

(36)�� =
�

(8�2 + 6M)

d��

dT
.

(37)�d =
2N

3
,�2

0
=

16

15
M�2(8�2 + 6M).

increased with an increase in the pulse amplitude � . In the 
next section, we shall carry out numerical simulations on 
the variational Eqs. (31)–(34), in order to gain a more rich 
insight onto parameter values for which leapfrogging of 
the pulse pair is more likely to be favoured.

2.2 � Numerical simulations of leapfrogging 
for the coupled RLC NLTLs

In ref. [30], an analysis of soliton leapfrogging in a model 
of coupled NLTLs similar to Fig. 1, but without intraline 
resistances, has been carried out. Much recently, we have 
extended the study to the context of two LC-type NLTLs 
coupled by a linear capacitance with a linear resistance 
in its shunt branch. In the present study, we shall explore 
numerically the influence of the intraline resistance on 
pulse leapfrogging. In this last purpose, we applied a sixth-
order Runge–Kutta scheme [40] on the set of four coupled 
first-order nonlinear ordinary differential Eqs. (27)–(30). To 
start, we considered small initial values for �i and �i and, 
in addition, selected very close initial values for �1 and �2, 
on the one hand, and �1 and �2, on the other hand, which 
are relevant conditions for leapfrogging to occur. Later on, 
we shall look at the effects of increasing the initial phase 
and amplitude differences, on the leapfrogging motion.

Graphs in Fig. 2 show time evolutions of �1 and �2 (left 
column) and of the amplitude difference �� (right col-
umn), for fixed values of the average amplitude � and the 
capacitive coefficient M, but four distinct values of the 
resistive coefficient N, listed in the figure caption.

According to Fig. 2, time evolutions of �1 and �2 are har-
monic oscillations with amplitudes which are more and 
more exponentially damped with increase in the resis-
tive coefficient N. The amplitude difference �� too oscil-
lates harmonically in time, reflecting leapfrogging of the 
soliton pair. Figures 3, 4 and 5 show the numerical results 
obtained when the differences in the initial values of the 
two solitons’ amplitudes and phases are increased. One 
sees that when the differences in the initial values of these 
parameters increase, their variations are more and more 
dominated by anharmonic oscillations. Figure 5 shows a 
total suppression of leapfrogging when the differences 
between the initial amplitudes and phases become rela-
tively large.

3 � Analysis of leapfrogging for coupled LC 
NLTLs with impurity

Let us now consider two coupled NLTLs without intraline 
resistance as represented in Fig. 6. This model was studied 
in ref. [30], with an emphasis on conditions under which 
soliton leapfrogging is expected.



Vol:.(1234567890)

Research Article	 SN Applied Sciences            (2020) 2:21  | https://doi.org/10.1007/s42452-019-1740-5

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0  2  4  6  8  10

λ1
, λ

2

time

-0.1

-0.05

 0

 0.05

 0.1

 0  5  10  15  20

∆λ

time

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0  5  10  15  20

λ1
, λ

2

time

-0.1

-0.05

 0

 0.05

 0.1

 0  5  10  15  20

∆λ

time

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5  10  15  20

λ1
, λ

2

time

-0.1

-0.05

 0

 0.05

 0.1

 0  5  10  15  20

∆λ

time

-2

-1.5

-1

-0.5

 0

 0.5

 0  5  10  15  20  25  30  35  40

λ1
, λ

2

time

-0.1

-0.05

 0

 0.05

 0.1

 0  20  40  60  80  100

∆λ

time



Vol.:(0123456789)

SN Applied Sciences            (2020) 2:21  | https://doi.org/10.1007/s42452-019-1740-5	 Research Article

Here, we are interested in the evolution of leapfrogging 
solitons in the electrical transmission network in Fig. 6, 
when one Schottky diode in line 1 is imperfect. Mathe-
matically, we model the imperfection by an impurity in 
the feedback part of the diode localized at position x = x0 
on the NLTL 1. Using a � function to represent the local-
ized impurity, the capacitances of the two varactors can 
be expressed:

where the impurity rate � is assumed positive ( 0 ≤ � ≤ 1 ). 
For convenience, we have set the bias voltage Vb to zero 
and hence Cb = C0 . Also let �1 =

�0

2

(

1 − ��(x − x0)
)

 . The 
transmission line equations are then given by:

In the continuum limit, the right-hand side of Eqs. (40) 
and (41) are approximated with partial derivatives with 
respect to x. Again from the definition dQn = C(Wn)dWn 
and dqn = C(Vn)dVn , Eqs. (40) to (43) reduce to:

We expand the voltage variables W and V in series, i.e.,

(38)C1(W) = C0∕
[

1 −
W

VJ
(1 − ��(x − x0)

]m

(39)C2(V ) = C0∕
(

1 +
V

VJ

)m

,

(40)L
d

dt
(Jn−1 − Jn) = Wn−1 − 2Wn +Wn+1,

(41)L
d

dt
(In−1 − In) = Vn−1 − 2Vn + Vn+1,

(42)Jn−1 − Jn =
dQn

dt
+ Cm

d

dt
(Wn − Vn),

(43)In−1 − In =
dqn

dt
+ Cm

d

dt
(Vn −Wn).

(44)
LC0

(

�2W

�t2
+ �1

�2W2

�t2

)

+ LCm

�2

�t2
(W − V )

=
�2W

�x2
+

1

12

�4W

�x4
,

(45)
LC0

(

�2V

�t2
−

�0

2

�2V2

�t2

)

+ LCm

�2

�t2
(V −W)

=
�2V

�x2
+

1

12

�4V

�x4
.

In addition to transformations introduced in the previous 
section, we apply the following transformation on the 
space coordinate:

where �0 = (LC0)
−1∕2 . Substituting Eqs. (46) to (48) into 

Eqs. (44) and (45) and integrating once with respect to z, 
we obtain the following equations to the order 0(�3):

By scaling W1 , V1 , � and z as W1 =
6�

�0
� , V1 = −

6�

�0
� , � =

2

�0
T  

and z = �u where � is the same as defined in the previous 
section (i.e., � = 1∕

3
√

12 ), we find:

The perturbation terms Pi(u, T ) , i = 3, 4 in the present case 
are given by:

In the absence of perturbations, Eqs. (51) and (52) are two 
independent KdV equations admitting one-soliton solu-
tions similar to (21) and (22). With these solutions, the adi-
abatic perturbation theory leads to the following set of 
four coupled first-order ordinary differential equations for 
the variational parameters �i and �i ( i = 1, 2):

(46)W(x, t) =

n
∑

i=1

�iWi(x, t),

(47)V (x, t) =

n
∑

i=1

�iVi(x, t).

(48)z = �
1

2 (x − �ot),

(49)

2

�

�W1

��
− �0W1

�W1

�z
+

1

12

�3W1

�z3
=

C

C0

�

�z
(W1 − V1)

−
�o�

2 ∫ �(z − z0)
�2W2

1

�z2
dz,

(50)
2

�

�V1

��
+ �0V1

�V1

�z
+

1

12

�3V1

�z3
=

C

C0

�

�z
(V1 −W1).

(51)
��

�T
− 6�

��

�u
+

�3�

�u3
= P3(u, T ),

(52)
��

�T
− 6�

��

�u
+

�3�

�u3
= P4(u, T ).

(53)P3(u, T ) =
C

�C0

�

�u
(� + �) −

3�

� ∫ �(u − u0)
�2�2

1

�u2
du,

(54)P4(u, T ) =
C

�C0

�

�u
(� + �).

Fig. 2   Left column: time variations of �
1
 (downward from T = 0 ) 

and �
2
 (upward from T = 0 ), right column: time variations of �� , 

the initial values are �
1
= 0.25 , �

2
= 0.2 , �

1
= 0.25 , �

2
= 0.2 . Param-

eter values are � = 2 and M = 0.2 . From top to bottom rows: N = 0 , 
0.001, 0.01, 0.1

◂
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Fig. 3   Left column: time variations of �
1
 (downward from T = 0 ) and �

2
 (upward from T = 0 ), right column: time variations of �� , the initial 

values are �
1
= 0.3 , �

2
= 0.1 , �

1
= 0.28 , �

2
= 0.1 . Parameter values are � = 2 and M = 0.2 . From top to bottom rows: N = 0 , 0.01, 0.1
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Fig. 4   Left column: time variations of �
1
 (downward from T = 0 ) and �

2
 (upward from T = 0 ), right column: time variations of �� , the initial 

values are �
1
= 0.30076 , �

2
= 0.1 , �

1
= 0.28 , �

2
= 0.1 . Parameter values are � = 2 and M = 0.2 From top to bottom rows: N = 0 , 0.01

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0  5  10  15  20

λ1
, λ

2

time

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  5  10  15  20

∆λ

time

Fig. 5   Left graph: time variations of �
1
 (downward from T = 0 ) and �

2
 (upward from T = 0 ), right graph: time variations of �� , the initial val-

ues are �
1
= 0.301 , �

2
= 0.1 , �

1
= 0.28 , �

2
= 0.1 . Parameter values are � = 2 , M = 0.2 , N = 0



Vol:.(1234567890)

Research Article	 SN Applied Sciences            (2020) 2:21  | https://doi.org/10.1007/s42452-019-1740-5

where M1 = C∕�C0 , N1 = 24�∕� and y0 = �1u0 . Again we 
introduce small deviations �i from the average amplitude 
� of the two solitons as �i as �i = � + �i and the phase dif-
ference �� = �1 − �2 which too must be small. Using the 
approximation y2 ≈ y1 + A , Eqs. (55) to (58) can be line-
arized and yield:

The last two equations suggest that the phase difference 
�� and the amplitude difference �� are related through 
the differential equation:

On the other hand, the first two equations lead to the fol-
lowing second-order ordinary differential equation for the 
amplitude difference:

(58)
d�2

dT
= 4�2

2
−M1 −

M1�
3
1

�3
2

sech2A
[

1 −
17

9
tanh2A

]

,

(59)
d�1

dT
= −

8M1

15
�3�� +

[

(49�2u0 − 5)N1�
4
]

�1

+ (7�2u0 − 1)N1�
5,

(60)
d�2

dT
=

8M1

15
�3��,

(61)
d�1

dT
= 4(�2 + 2��1) −M1[2 − 3�−1(�1 − �2)],

(62)
d�2

dT
= 4(�2 + 2��2) −M1[2 + 3�−1(�1 − �2)].

(63)d��

dT
=

8�2 + 6M1

�
��.

Equation (64) is nothing else, but the equation of motion 
of an harmonic oscillator with the oscillation frequency 
�0 , “driven” by a force F(�1, u0) . This drive leads to either 
an enhancement or a suppression of ��.

To be more explicit, the expression of F(�1, u0) given in 
formula (65) suggests that the amplitude difference will 
oscillate with increasing amplitude, when the defective 
diode is closer to the input end of the transmission line 
and the average amplitude � of the leapfrogging solitons 
is not too large. When � is relatively large, the impurity will 
accelerate the soliton signal on line 1, thus increasing its 
speed relative to the speed of soliton on line 2.

Concerning the issue of the effects of impurities on 
soliton propagation in NLTLs, it is instructive stressing that 
the influence of a localized impurity on soliton propaga-
tion in NLTLS has been investigated in some past works. It 
is therefore well established that a default-type impurity 
will increase the amplitude of a soliton approaching the 
impurity [25, 26], hence causing its acceleration in virtue 
of the amplitude dependence of the velocity of the KdV 
soliton. In recent numerical simulations, Pan et al.  [26] 
obtained that the response of a soliton signal to the 

(64)0 =
d
2
��

dT 2
+�2

0
�� + F(�1, u0),

(65)

�2

0
=

16M1

15
�2(8�2 + 6M1),

F(�1, u0) = (8�2 + 6M1)
[

(5 − 49�2u0)N1�
3�1 + (1 − 7�2u0)N1�

4
]

.

Fig. 6   Equivalent circuit model 
of coupled NLTLs. The capaci-
tance at the nth cell is given 
by C(V

n
)
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presence of a localized impurity in an LC NLTL is stand-
ard: an excess structural defect will always trap a soliton 
signal causing its delay, whereas a structural default will 
accelerate the soliton signal on approaching the impurity, 
whether the impurity is capacitive or inductive.

We carried out numerical simulations of the set of cou-
pled first-order nonlinear ordinary differential equation 
(55)–(58), still with a sixth-order Runge–Kutta algorithm 
with fixed step. The initial values, as well as values of char-
acteristic parameters of the model, are the same we used 
for Fig. 2 (see values in the caption of Fig. 7). Results are 
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shown in Fig. 7, where we plotted �1 and �2 , and the ampli-
tude difference, for different values of the impurity coef-
ficient N1.

Graphs in Fig. 7 show that the soliton leapfrogging is 
a regular harmonic oscillation with constant maximum 
amplitudes when there is no impurity. However, as the 
impurity rate � (an hence the impurity coefficient N1 ) is 
increased from zero, the amplitude difference �� oscillates 
with the maximum oscillation amplitudes increasing with 
time. When N1 attains a critical value, the leapfrogging is 
suppressed after a short time. A look at the variations of 
�1 and �2 with time on the left graph clearly suggests that 
�1 gets amplified after a short propagation time, but not 
�2 , implying an acceleration of the soliton signal on line 1 
relative to its counterpart on line 2.

4 � Conclusion

We have investigated the leapfrogging dynamics of a pair 
of KdV solitons in two nonlinear transmission lines, weakly 
coupled by a linear capacitance. Two different physical 
configurations of coupled nonlinear transmission lines 
were considered: the first model was two RLC lines with 
intraline Schottky varactors, and in the second model, we 
considered two coupled LC lines one of which had a local-
ized capacitive impurity. For the first model, we obtained 
that adding the resistive element along with the feed-
back capacitor on the coupled transmission lines causes 
a damping of the soliton amplitudes, thus acting against 
leapfrogging. For leapfrogging to survive the presence of 
the resistive component, the average amplitude of the two 
interacting solitons should be large enough and the resist-
ance relatively small, consistently with the spirit of the 
adiabatic perturbation theory. For the second model, we 
established that a defect in one of the Schottky diodes on 
line 1 with accelerate the soliton signal on the line, causing 
a drive of the second soliton with the possibility of their 
leapfrogging as long as the impurity rate is relatively small. 
As we increase the impurity rate, the soliton signal in line 1 
gains in amplitude and consequently in speed, and hence 
cannot be followed by the soliton signal in line 2. In this 
case, no leapfrogging can occur.

The effects of a localized impurity on soliton signals in 
NLTLs have been investigated in several previous works; 
it is there well established that a localized impurity will 
always accelerate a soliton approaching the impurity 
when it is a structural default in the defective electrical 
component [25, 26]. This response of KdV soliton to the 
presence of a localized impurity in the NLTL is actually uni-
versal; indeed, similar behaviours are predicted in many 
other distinct physical systems such as Josephson junction 

transmission lines [44, 45], Frenkel–Kontorova systems [46, 
47] and double-well systems [48].
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Abstract. A model of nonlinear electrical transmission line, which mimics a lad-
der circuit periodically loaded with Schottky varactors having a resistance in their shunt
branches and connected to voltage-terminal modules, is considered from both analy-
tical and numerical standpoints. Analytical treatment of the problem, following the
multiple-scale expansion and the adiabatic perturbation theory involving a perturbed
Korteweg-de Vries equation, establishes that pulse-shaped electrical solitons can prop-
agate in the nonlinear transmission line while experiencing amplification due to the
voltage terminals, but also a damping caused by the resistance. Direct numerical simu-
lations of the line equations provide evidence of a dominant damping effect due to the
resistance, over pulse amplification due to the voltage terminal. Numerical simulations
bring out a novel process namely a possible disintegration of the single pulse into two
or more pulses upon propagation in the nonlinear transmission line, resulting from the
competition between amplification and damping.

Key words: Nonlinear transmission lines, Schottky varactors, Linear resistors,
Pulse amplification and damping.

1. INTRODUCTION

The study of nonlinear phenomena has become very popular due to manifesta-
tions of the fascinating features of nonlinearity in a large variety of natural processes,
ranging from fluids, plasma and optics to solid-state, biological and chemical systems
[1–13]. In electronics nonlinear transmission lines (NLTLs) have attracted a great
deal of interest [2, 14–21] since the pioneer ladder circuit introduced by Hirota and
Suzuki [22]. The Hirota-Suzuki circuit, seen as an electrical equivalent of the well-
known Toda lattice [23], is a ladder line consisting of VARICAP diodes (or varactors)
and linear inductances periodically loaded along the line to form a one-dimensional
(1D) propagation medium. In this 1D propagation medium, the nonlinearity is pro-
vided by the varactors, while the dispersion is related to the periodic arrangements
of elementary circuits. This leads to a system for which the dynamics can be repre-
sented by standard nonlinear partial differential equations such as the Korteweg-de

Romanian Journal of Physics 65, 123 (2020)
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Vries (KdV), nonlinear Schrödinger or complex Ginzburg-Landau equations [24],
depending on competing conditions between nonlinearity and dispersion (or diffrac-
tion, depending on physical contexts [25–31]). A feature common to these equations
is the possibility for large-amplitude waves among their solutions, the so-called soli-
tons [1, 2] and resulting from the competition between nonlinearity and dispersion.
Concretely, solitons in NLTLs are high-power electric waves related to the propaga-
tion of voltage excitations along the lines. NLTLs find widespread applications in
wideband and microwave digital signal processings, for instance, they are used in
wireless, radar, and sensor array processings [32], etc.

There has been recent interest in the possibility for short-pulse amplification
using NLTLs, for possible applications in high-resolution measurements and high-
speed communication systems [32]. Thus, considering the Hirota-Suzuki line and
envisaging connection of elementary circuits to voltage-terminal modules (or volt-
age edges), it was shown that the propagation of a KdV pulse could result into pulse
amplification by the voltage terminal. Quite remarkably, while the pulse amplifi-
cation was of a universal exponential law, the amplification rate was dependent on
the specific characteristic properties of the Schottky varactor loaded in the line. In
the general context of studies of soliton propagation in NLTLs, it is well known that
although pulses possess robust shape by virtue of their soliton features, resistive com-
ponents that are almost always present in the line cause pulse energy to be dissipated
as it propagates. Given that within the framework of the adiabatic perturbation the-
ory [24], the amplitude damping in this later case too follows an exponential law, it is
useful to examine the competition between the amplification due to voltage terminals
and the damping related to a resistive component.

To address the above issue we consider a modified version of the NLTL dis-
cussed recently [33], which is just the Hirota-Suzuki line with a voltage terminal in
each elementary circuit. In the present study, the Schottky diode will be shunted
with a resistive component of a constant resistance R. We first proceed analyti-
cally by deriving, following the multiple-scale expansion method [34], a perturbed
KdV equation, where the perturbation term groups the effects of the voltage termi-
nal and of the resistance and is treated via the adiabatic perturbation approach [24].
The analytical study leads to a KdV-type pulse, the amplitude of which is enhanced
during propagation due to the voltage terminal, and damped due to the resistance.
Next, numerical simulations of the discrete line equations by means of a sixth-order
Runge-Kutta algorithm [35] will be carried out, providing evidence of a dominant
effect of the resistive component over amplification due to the voltage terminal. Sim-
ulations also bring out a possible pulse disintegration into two pulses, as a result of
the competition between damping and amplification upon propagation.

(c) RJP65(Nos. 9-10), ID 123-1 (2020) v.2.2r20191120 *2020.12.4#977f8c8d
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Fig. 1 – Equivalent circuit model of a Schottky-type lossy NLTL, with a voltage terminal connected to
each elementary electric cell.

2. MODEL AND THEORETICAL ANALYSIS

Consider a NLTL consisting of a homogeneous inductor L, and a nonlinear
capacitorC(V ) shunted by a passive resistanceR in each unit cell as shown in Fig. 1.
Each unit cell of the NLTL is individually biased by a voltage terminal such that Vn,
In, and Φn are the voltage, current, and bias voltage respectively, in the nth cell.

The Schottky varactor is a capacitor of a nonlinear capacitance, with a generic
CV characteristics [36, 37]:

C(V ) =
C0(

1− V
VJ

)m , (1)

where V is the line voltage. In the above formula C0, VJ , and m are the zero-
bias junction capacitance, the characteristic junction voltage, and the grading index,
respectively. In the following we shall define a nonlinear coefficient b= 1/VJ . Also
instructive to note, the grading index m can take distinct values depending on the
specific Schottky diode at hand [36, 37]. For most Schottky diodes the grading index
will be within the interval 0<m≤ 1 [36, 37].

Applying Kirchhoff’s laws in the nth unit cell, we obtain the following set of
equations for the line voltage Vn and current In:

L
dIn−1
dt

= Vn−1−Vn, (2)

In−1− In =
dQn

dt
+
Vn−Φn

R
,

Qn = C(Vn−Φn)Vn, (3)

where Qn represents the total charge stored in the Schottky diode embedded within
the nth unit cell. Since the sizes of unit cells are usually negligible compared with
the lengths of the line, the electrical signals propagating along the line are expected

(c) RJP65(Nos. 9-10), ID 123-1 (2020) v.2.2r20191120 *2020.12.4#977f8c8d
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to spread over many cells such that the discrete spatial coordinate n can be replaced
by a continuous one i.e. x. For mathematical simplifications we set the size of unit
cells to unity, and a long-wavelength expansion of the voltage variables Vn±1 up to
the fourth-order term yields:

Vn±1 = Vn±
∂V

∂x
+

1

2

∂2V

∂x2
± 1

6

∂3V

∂x3
+

1

24

∂4V

∂x4
+ · · · . (4)

Eliminating the current In from equations (2), (3) and applying the long-wavelength
approximation, the continuous evolution equation for the line voltage V (x,t) is ob-
tained as:

L
∂C(V −Φ)

∂V

(∂V
∂t

)2
+LC(V −Φ)

∂2V

∂t2
+
L

R

∂(V −Φ)

∂t
=
∂2V

∂x2
+

1

12

∂4V

∂x4
. (5)

We seek for solutions to equation (5) that are nonlinear waves with pulse shape.
To this end, we adopt the reductive perturbation approach [34] by which the continu-
ous variables V (x,t) and Φ(x,t) are series expanded in powers of some perturbation
coefficient ε, i.e.:

V (x,t) =

n∑
i=1

εiVi(x,t), (6)

Φ(x,t) = V0 +
n∑

i=1

εiφi(x,t), (7)

where it is assumed that ε� 1. In addition to equations (6) and (7) we equally
introduce the new space and time variables:

z = ε
1
2 (x−ηt), τ = ε

3
2 t, (8)

and rescale the resistance accordingly, i.e. [33, 38]:

R= ε−
3
2R1, (9)

where η = (LC0)
−1/2. By evaluating equation (5) at each order of ε, we can ex-

tract equations describing contributions from different orders of the perturbation ε.
Namely, the terms of ordersO(ε) andO(ε2) give constant contributions [34] whereas
the terms of order O(ε3), grouped together, introduce nonlinear excitations governed
by the following perturbed KdV equation:

∂V1
∂τ
− m

2
√
LC0(V0 +VJ)

V1
∂V1
∂z

+
1

24
√
LC0

∂3V1
∂z3

=

− m

2
√
LC0(V0 +VJ)

φ1
∂V1
∂z
− VJ

2R1C0(V0 +VJ)
(V1−φ1).

(10)
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Let us rescale V1, τ , and z as follows:

V1 =
18(V0 +VJ)

m
V, τ =

1

9η
τ ′, z =

1

6
z′. (11)

With these new variables, equation (10) reduces to:

∂V

∂τ ′
−6V

∂V

∂z′
+
∂3V

∂z′3
= P (z′, τ ′),

P (z′, τ ′) = αV −αγφ1−6γφ1
∂V

∂z′
, (12)

where

α=
VJ

18ηR1C0(V0 +VJ)
, (13)

γ =
m

18(V0 +VJ)
. (14)

In the absence of perturbation, i.e. when P (z′, τ ′) = 0, the KdV equation admits the
following one-soliton solution [1, 24]:

V (z′, τ ′) =−2κ20 sech2 y, (15)

y = κ0(z
′− ζ), ζ = 4κ20τ

′, (16)
where κ0 is the soliton amplitude. In the original system of coordinates, i.e. (x,t),
the above one-soliton solution becomes:

V (x,t) =−A(V0 +VJ)

m
sech2

[√
A
(
x− t√

LCb
− At

6
√
LCb

)]
, (17)

where A = 36εκ20. To keep the spirit of Ref. [33] regarding the effects of voltage
terminals on pulse propagation in the NLTL, we shall pick:

Φ(x,t) = V0 + ε
3
2ϕ0(x−ηt)

= V0 + εϕ0z. (18)

Comparing equation (18) and equation (7) we find that:

φ1 = ϕ0
z′

6
. (19)

Because of the presence of P (z′, τ ′) in equation (12), the soliton amplitude becomes
time dependent and will be denoted κ. Within the framework of the adiabatic pertur-
bation theory [24], the time evolution of κ is determined by the first-order ordinary
differential equation:

dκ

dτ ′
=− 1

4κ

∫ ∞
−∞

dz′P (z′, τ ′) sech2κz′. (20)
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By substituting V and φ1 given respectively by (15) and (19) in equation (12), we
obtain:

P (z′, τ ′) = 2ακ2 sech2κz′+αγϕ0 z
′−4γκ2ϕ0 z

′ sech2κz′ tanhκz′. (21)

With this last expression, the first-order ordinary differential equation (20) simplifies
to:

dκ

dτ ′
=−2

3

(
α− 1

2
γϕ0

)
κ. (22)

Integrating equation (22) yields, in the time coordinate τ :

κ(τ) = κ0 exp
[
− 2η

3

(
α− 1

2
γϕ0

)
τ
]
. (23)

It turns out that the electrical pulse will be either amplified or damped during propa-
gation, depending on which among the resistance and voltage terminal has the dom-
inant effect on its amplitude. However, expressions of α and γ in formula (13) and
(14) suggest that γ will be generally smaller than α. Indeed γ is proportional to m, a
small parameter compared with the quantity VJ/RC0 determining the magnitude of
α.

In the next Section we solve the line equations numerically, in order to compare
results of direct numerical simulations with those obtained in this Section within the
framework of the adiabatic perturbation theory, as concerns the competing effects of
the voltage terminal and the resistance on the pulse amplitude.

3. NUMERICAL SIMULATIONS OF DISCRETE LINE EQUATIONS

In the previous Section we have investigated, using the adiabatic perturbation
theory, the simultaneous effects of a passive resistance and a voltage terminal on
pulse propagation along an LC NLTL. We obtained that the resistance induces a
damping whereas the voltage terminal amplifies the electrical pulse, suggesting the
possibility to balance the pulse amplification phenomenon predicted in a recent study
[33]. However, actually the adiabatic perturbation theory is a variational treatment
and as such its results are valid only for very small values of the resistance as well as
of the voltage terminal.

To fully appreciate the effects of the presence of a resistance and voltage ter-
minal on characteristic features of the propagating electrical pulse, it is relevant to
solve the Kirchhoff equations (2) and (3) numerically. Focusing on the voltage sig-
nal Vn(t), we have applied a sixth-order Runge-Kutta scheme [35] on the following
second-order time-differential difference equation, derived from the coupled set (2)
and (3) after elimination of current variables, i.e. In(t), In±1(t):

d2Qn

dt2
=

1

L

(
Vn+1−2Vn +Vn−1

)
− 1

R

d

dt
(Vn−Φn). (24)
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As input profile we opt for a pulse-shaped wave of the form:

Vn(t= 0) =A0 sech2
(
n/`0

)
, (25)

where the initial amplitude A0 and width at half tail `0 of the pulse are two arbitrary
real parameters. Throughout simulations they will be fixed as A0 = 1.9, `0 = 1.7 (in
units of length of an elementary cell).

Numerical simulations were carried out assuming a NLTL with 500 units cells,
with a propagation time 0 ≤ t ≤ 2000 and a time step of 10−4. The characteristic
parameters in the discrete line equation (24) were fixed, except the resistance R for
which different values were considered. Concretely, the following values were given
to characteristic parameters of the model: C0 = 0.6, L = 0.001, b = V −1J = 0.25,
m = 0.98. Also, to check the pulse amplification predicted in Ref. [33] and in the
analytical development of the previous Section, we shall consider Φn = φ0n, where
φ0 is a constant, which will be varied.
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Fig. 2 – Space-time evolution of the voltage signal along the NLTL, in the absence of voltage terminal
(i.e. φ0 = 0) and for different values of the resistance R. Top graphs: R = 0.0005 (left), R = 0.01
(right). Bottom graphs: R= 0.05 (left), R= 0.1 (right).
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Figures 2, 3, and 4 show the profiles of the voltage signal Vn(t) as it propagates,
for three distinct values of φ0 and different values of the resistance R in each figure.
More precisely Fig. 2 corresponds to the context where only the resistive component
is present in the NLTL, while Figs. 3 and 4 correspond to φ0 = 0.5 and φ0 = 1.5,
respectively.

In Fig. 2 the voltage signal Vn(t) propagates with a manifestly exponentially
decreasing amplitude. It is quite noticeable that as the resistance increases the expo-
nential damping sharpens, with a possibility of total disappearance of the pulse due
dissipation by the resistance.
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Fig. 3 – Space-time evolution of the voltage signal along the NLTL, for φ0 = 0.5 and for different
values of the resistance R. Top graphs: R= 0.0005 (left), R= 0.01 (right). Bottom graphs: R= 0.05
(left), R= 0.1 (right).

Figures 3 and 4 show pulse propagation for the same values of the resistance
as in Fig. 2, but now for nonzero values of φ0. Quite remarkably, as φ0 is increased
the sharp exponential damping observed for φ0 = 0 is gradually balanced. Clearly a
nonzero value of φ0 favors pulse amplification as predicted in Ref. [33], and consis-
tently with the analytical result obtained above. Also remarkable on the 3D curves
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is the behaviour according to which when φ0 increases, the pulse disintegrates into
two and probably more pulses after a finite propagation time. This behaviour could
not be accounted for analytically.
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Fig. 4 – Space-time evolution of the voltage signal along the NLTL, for φ0 = 1.5 and for different
values of the resistance R. Top graphs: R= 0.0005 (left), R= 0.01 (right). Bottom graphs: R= 0.05
(left), R= 0.1 (right).

From a general standpoint, the numerical results suggest that a combination
of the resistance with the voltage terminal can enable one the control growth of the
pulse amplitude or vice-versa, i.e. can prevent pulse from being totally dissipated by
a resistive component in the line. For instance, a resistance will be needed to main-
tain a finite-amplitude pulse in a NLTL designed with a voltage terminal. This result
is not only interesting, in fact it introduces a novel perspective in various applica-
tions such as radar transmissions, microwave and ultra-wideband electronic devices,
antenna networks, short-pulse electromagnetics and other contexts where electrical
pulse amplifications hold a relevant role [33, 39, 40].
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4. CONCLUSION

Since the pioneering work by Hirota and Suzuki on a model of NLTL mimick-
ing the Toda lattice [2, 22], there has been increasing interest to wave propagations
along nonlinear and dispersive transmission lines. These specific electronic devices
are ladder structures resulting from periodically arranged elementary circuits com-
posed of an inductance, a resistance, and a capacitive diode (i.e. a varactor) intro-
ducing nonlinearity in the device. The periodic arrangement of unit circuits along
the transmission line introduces dispersion, and the balance of nonlinearity by this
dispersion favors high-intensity signals with soliton features in the NLTL.

A NLTL model was introduced in a recent work [33] to account for pulse am-
plifications in physical contexts where such processes would be required. The NLTL
model was a ladder structure with unit circuits made up of a linear inductor in the
main branch, and a nonlinear capacitor (i.e. a varactor) in derivation connected to a
voltage edge (here denoted voltage terminal). By carrying out analytical investiga-
tions within the framework of the multiple-scale expansion method, combined with
the adiabatic perturbation theory, it was shown that the voltage terminal induces an
exponential amplification of the pulse with time. However for practical purposes it
is useful that the pulse amplitude should remain finite along the transmission line,
which might not be the case when the voltage terminal acts alone. As a control ef-
fect we envisaged the combination of the voltge terminal with a resistive component
shunting the varactor.

Analytically, we have established that when a resistance is added in the trans-
mission line the exponential amplification due to the voltage terminal is balanced.
This observation was confirmed in numerical simulations of the line equations, where
the pulse amplitude was clearly seen to decrease exponentially during propagation
with a fall-off (or slope) less and less pronounced with increase of the voltage termi-
nal. Also remarkable, we have observed in numerical simulations that when both the
resistance and the voltage terminal are relatively large, their competition can favor
pulse disintegration into two or more pulses. This last observation, as well as the
observed balance of pulse amplification by damping due to the resistance, are quite
appealing for they introduce novel perspectives in several contexts of electronic com-
munications and particularly antenna networks, radar transmissions, ultra-wideband
electronics, and short-pulse electromagnetics [33, 39, 40].
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19. A. M. Dikandé and B. Ga-Akeku, Phys. Rev. E 80, 041904 (2009).
20. T. Tsuboi and F. M. Toyama, Phys. Rev. A 44, 2686 (1991).
21. T. Tsuboi and F. M. Toyama, Phys. Rev. A 44, 2691 (1991).
22. R. Hirota and K. Suzuki, Proc. IEEE 61, 1483 (1973).
23. M. Toda, J. Phys. Soc. Jpn. 22, 431 (1967).
24. Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989).
25. E. G. Charalampidis, J. Cuevas-Maraver, D. J. Frantzeskakis, and P. G. Kevrekidis, Rom. Rep.

Phys. 70, 504 (2018).
26. C. B. Ward and P. G. Kevrekidis, Rom. J. Phys. 64, 112 (2019).
27. Z. Li, H. Wei, and P. He, Rom. Rep. Phys. 71, 110 (2019).
28. F. Tsitoura, T. P. Horikis, and D. J. Frantzeskakis, Rom. Rep. Phys. 71, 104 (2019).
29. Y. Song, Z. Wang, C. Wang, K. Panajotov, and H. Zhang, Advanced Photonics 2, 024001 (2020).
30. C. Hou, L. Bu, F. Baronio, D. Mihalache, and S. Chen, Rom. Rep. Phys. 72, 405 (2020).
31. H. Lin, J. He, L. Wang, and D. Mihalache, Nonl. Dynamics 100, 2839 (2020).
32. V. K. Madisetti (ed.), The Digital Signal Processing (2nd edn., CRC Press, Taylor and Francis,

London, 2009).
33. K. Narahara, IEICE Electron. Expr. 6, 1199 (2009).
34. T. Taniuti, Prog. Theor. Phys. Suppl. 55, 1 (1974).
35. Numerical simulations were carried out using a sixth-order Runge-Kutta algorithm adapted from

H. A. Luther, Math. Comp. 22, 434 (1968).
36. R. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory (7th edn., Prentice Hall,

USA, 2013).
37. H. Jie, Z. Qian, Y. Hao, D. Junrong, and Z. Haiying, J. Semicond. 35, 0540061 (2014).

(c) RJP65(Nos. 9-10), ID 123-1 (2020) v.2.2r20191120 *2020.12.4#977f8c8d



Article no. 123 A. Nkongho Achere, Alain M. Dikandé, B. Z. Essimbi 12
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