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Abstract

Complex networks are the sets made up of a large number of entities interconnected by links.
They can be found in several areas: biology, transport, online social networks, agriculture, etc.
Many recent applications handle huge volumes of personal or public data resulting from complex
networks. They are modeled by graphs in which nodes represent entities and edges model the links
between them. These entities generally tend to group themselves into communities, based on
certain criteria of similarity or connectivity, and this is a very current research problematic called
"community detection". A plethora of community detection methods have been implemented.
However, many of them consider that communities should be dense and therefore do not take
into account the interest that might bind entities within a community. Nevertheless, when interest
is taken into account, it is based on semantic. In spite of its usefulness in the interpretation of
data, semantic has the main drawback that the network should be known in advance before being
exploited. This consideration is not trivial given the immense size of complex networks. Thus, a
fundamental aspect remains to be considered, namely the interest based on topology which does
not require a prior knowledge of the entire network.

The work of research presented in this manuscript addresses directed, attributed and multidi-
mensional graphs and proposes methods for detecting communities of interest. These methods
rely on the topology and properties of real networks to extract significant communities of interest
depending on the context.

Thus, we propose in the first contribution, a triad-based method for detecting communities
of interest in oriented networks, using a seed-centric approach. Indeed, triads constitute a more
significant elementary topological structure than structures centered around an actor and a diad,
because it offers more configurations. Hence, we define a similarity measure allowing to imple-
ment the interest of the incoming links with regard to the outgoing ones, with the result that the
communities obtained are dense in triads. This density reflects the idea that nodes of the same
community adhere to the strong opinion of the previously identified nodes of interest. The sec-
ond contribution proposes a hybrid community detection method based on the optimization of a
novel quality function, the hybrid modularity. This method is applied to attributed networks to ex-
tract communities of interest that are topologically similar and homogeneous in their attributes.
In this respect, we propose the hybrid modularity which is a composite modularity combining
Newman’s classical modularity and a modularity based on the attributes and orientation of the
links through the previous similarity measure. Through this hybrid method, link density is not
guaranteed, but the interest in topological equivalence and attribute homogeneity is ensured.

Finally, for the case of multidimensional graphs modeling more types of interactions between
two entities, we propose in the third contribution a method for identifying communities whose
interest is modeled by the level of activity of a node in a dimension. These methods are based on
machine learning techniques. Our algorithms, implemented on examples of context graphs, con-
firm their relevance by extracting groups of more homogeneous entities by common topological
features.

Key-words: Community detection, complex networks, community of interest, triads, dimen-
sion relevance.
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Résumé

Les réseaux complexes sont des ensembles constitués d’un grand nombre d’entités interconnec-
tées par des liens. Ils ont en effet eu un essor important en biologie, transports, réseaux sociaux
en ligne, etc. Pami celles-ci, de nombreuses applications récentes traitent d’immenses volumes
de données personnelles ou publiques qui en découlent. Les réseaux complexes sont modélisés
par des graphes dans lesquels les noeuds représentent les entités et les arêtes entre les noeuds
représentent les liens entre ces entités. Ces entités ont généralement tendance à se regrouper en
communautés, en fonction de certains critères de similarité ou de connectivité. Ceci constitue une
problématique d’actualité appelée "détection des communautés". Une pléthore de méthodes de
détection de communautés ont été implémentées. Toutefois, plusieurs d’entre elles considèrent
que les communautés devraient être denses et par conséquent ne tiennent pas compte de l’intérêt
des entités d’une même communauté. Lorsque l’intérêt est pris en compte, il est basé sur la sé-
mantique. La sémantique possède la limite principale que le réseau devrait être préalablement
connu pour être exploité. Ainsi, un aspect fondamental reste à considérer, à savoir l’intérêt basé
sur la topologie qui n’exige pas une connaissance a priori de l’entièreté du réseau.

Les travaux de recherche présentés dans ce manuscrit exploitent les graphes orientés, attribués
et multidimensionnels et proposent des nouvelles méthodes de détection des communautés d’intérêt.
De ce fait, nous proposons dans la première contribution, une méthode de détection de commu-
nautés d’intéret dans les réseaux orientés, basée sur les triades, à travers une approche centrée-
graine. En effet, la triade constitue une structure topologique élémentaire plus significative que
les structures centrées autour de l’acteur et de la diade, car elle offre plus de configurations. Nous
définissons ainsi une mesure de similarité permettant d’implémenter l’importance des liens en-
trants par rapport à ceux sortants. Ainsi les communautés obtenues sont denses en triades. Cette
densité traduit l’idée selon laquelle les noeuds de la même communauté adhèrent à l’opinion forte
des noeuds d’intérêt préalablement identifiés.

La deuxième contribution propose une méthode hybride d’optimisation d’une nouvelle fonc-
tion de qualité, la modularité hybride. Celle-ci intègre la modularité classique de Newman et
une modularité basée sur les attributs et l’orientation des liens à travers la précedente mesure
de similarité. Cette méthode est appliquée aux graphes attribués et permet d’identifier des com-
munautés d’intérêt dont les entités sont topologiquement similaires et homogènes par leurs at-
tributs. A travers cette méthode hybride, la densité des liens n’est pas garantie, mais l’intérêt relatif
à l’équivalence topologique et à l’homogénéité des attributs est assurée.

Enfin, pour le cas des graphes multidimensionnels modelisant plusieurs types d’interactions
entre deux entités, nous proposons dans la troisième contribution une méthode d’identification
de communautés dont l’intérêt est modélisé par le niveau d’activité d’un noeud dans une dimen-
sion. Ces méthodes sont basées sur des techniques d’apprentissage automatique. Nos algorithmes
mis en oeuvre sur des exemples de graphes du contexte, confirment leur pertinence en extrayant
des groupes d’entités plus homogènes par des caractéristiques topologiques communes.

Mots-clés: Détection des communautés, réseaux complexes, communauté d’intérêt, triades,
pertinence de la dimension.
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CHAPTER1
INTRODUCTION

1.1 Context

With the proliferation of social media and mobile applications, users are constantly interacting,

sharing documents, images/videos and messages, etc. These interactions can be modeled by a

complex system. A complex system is a system possessing some emergent properties, due to the

interactions of its constituting objects [17, 114]. It can be encountered in many different domains

such as biology, physics, computer science, sociology, etc. [3, 114]

Network modeling consists in representing such systems through complex networks [3, 17,

114] using nodes to represent the objects and links for their interactions. Thus, complex sys-

tems broaden the understanding of the topological real-world networks’ properties, such as small-

world effect, Scale-free, Homophily and Community structure, as described in Chapter 2. Likewise

they help in the analysis of semantics and functioning of the systems of interest. In its most basic

form, a complex network contains only nodes and links; it can then be qualified of plain network.

However, one can introduce a richer information in this model, depending on the considered sys-

tem, modeling needs and constraints, which makes it a very flexible tool. Thereby, the network

can be directed [114] if the relations between objects are asymmetric. It can be represented by

multiple dimensions, where each dimension represents one type of relationship between nodes,

leading to multidimensional network [138]; it also can be an attributed or assigned network [114]

when some attributes are added to nodes or links in order to a better description of the model,

etc. Before highlighting the goals and the contributions of this thesis, we will present the main

problem encountered in complex networks analysis directions.

1



CHAPTER 1. INTRODUCTION

1.2 Problem

Data quanta spread throughout Social Networks reflecting the way people interact with each other.

Discussion forums, video platforms, sharing networks, so many platforms offering rich content

can be explored. The aim is therefore to analyze large amounts of social data from these several

distributed sources. This analysis involves many applications of data mining, machine learning,

etc. and the use of a variety of tools. Among them, the task of community detection in complex

networks remains of great interest to the community of scientific researchers. With the spread of

mobile applications and the growing diversity of information on the web, the people forming a

community attach more value to a shared area of interest or expertise. They constitute a com-

munity of interest. However, the communities of interest detection methods are in general based

either on the link density or the semantic contents. They do not conserve the directionality of links

in directed networks, and they do not consider the level of activity of a node in a multidimensional

network. Yet, these informations seem to be relevant for more cohesion involving more interest

within the nodes of the community. Thus, the problem addressed in this thesis focuses on com-

munity of interest discovery in complex networks. It is centered around the two sub-problems

as stated in the sections below.

1.2.1 Disregarding the impact of incoming links

According to Girvan [116], a community corresponds to a set of nodes that are densely connected

to each other and weakly connected to the other nodes of the network. This definition is inter-

esting for some types of graphs like undirected ones; like this many community detection algo-

rithms implemented for directed networks simply ignore the directionality during the cluster-

ing step [16, 116, 124, 127] while other technics transform the directed graph into an undirected

weighted one [124, 132, 135], either unipartite or bipartite, and then algorithms for undirected

graph clustering problem can be applied to them. These simplistic technics are not satisfactory

because the underlying semantic is not retained. For example, in a food web network, according

to them, the community structure will be corporated of predator species with their preys. This re-

flexion is not quite right, since preys must be clustered together and predators together. Moreover,

another problem lies in disregarding the importance of in-centric nodes [99]. Indeed, several com-

munity detection methods are based on a quality function optimization. The most widespread is

modularity [116, 118] that has been extended for directed graphs [121]. However, these methods
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do not address the impact of a community’s incoming links as they do not realize that there is an

added value in taking into account nodes with a high degree of their incoming links.

1.2.2 Ignoring the level of nodes’activity

Increasingly, in many real-life situations, entities within a network interact with each other in a

variety of ways. Therefore, they can be interconnected by several types of relationships. In a co-

authorship network for instance, if we connect two authors by the papers they write together, it is

clear to see that each venue, taken as a type of relationship, provides its edges among the authors.

Each type of relationship constitutes a dimension [14] also called layer [113]. Such networks are

modeled by so-called multidimensional networks [14,138]. In this regard, several existing methods

have dealt with the detection of communities in multidimensional networks [5, 15, 23, 104, 113].

In general, they assume the existence of a community on each dimension of the entire multidi-

mensional network. However, they remain limited to apparent communities since they ignore the

interest one node has for a particular dimension.

Indeed, a node which is active in several relationships is not involved at a same degree. In this

vein, Nicosia [120] argued that an active node on one of these relationships can remain inactive

on the rest of the dimensions. This level of activity implies the level of the dimension relevance. As

highlighted in [36] the new interest focuses on the question not of how to detect communities, but

on what kind of communities are we interested in detecting. Which approach is appropriate for

the identification of communities whose entities have common centers of interest based on their

relevant interactions/dimensions?

The following paragraph sets out the purpose of taking into account the interest of entities to

be together, on the one hand, and on the other hand, the implemented methodology to achieve

this solution.

1.3 Thesis goal and methodology

The thesis presented in this manuscript focuses its study on the uncovering of communities of in-

terest being a set of entities interacting within a complex network and acquiring or exchanging

information related to a shared area of expertise or activity. Because real networks are increas-

ingly enriched by relevant informations on the interactions between entities, we focus on directed
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and multidimensional networks. According to these two types of studied graphs, the interest is

based on both the topological and relational properties of links respectively. Indeed, for directed

networks, the community detection approach stresses on the directionality of in-links (area of ex-

pertise), while for multidimensional networks, the community discovering method deals with the

relevant dimensions (area of activity) to build its communities of interest. The following main

goals arise:

1. Our first aim is to propose a method for extracting communities in directed graphs, based

on the consideration of the incoming links to the nodes of interest, using triads. Triads are

structures based on the homophily property of terrain graphs [86]. Therefore, interest-based

similarity, such as in social network analysis, exhibits the idea that two entities going inward

a third named as their common friend, have a higher probability of belonging to the same

community. Indeed, the incoming link reflects the semantics of adhesion to the same idea

as the node of interest, hence the notion of triad for directed graphs. The underlying goal

behind it lies in revealing the in-centric nodes’ importance. Furthermore, when these di-

rected networks are assigned, we propose a method that simultaneously takes into account

the directionality of edges and attributes of nodes to extract communities of interest;

2. Our second objective is to propose a method for community discovery in multidimensional

graphs that includes the neighborhood quality and consequently the nodes interest based

on their involvement level in their interactions. The interest is expressed by the relevance

dimension-based similarity of nodes. The dimension relevance is assessed by the neighbor-

hood stability of a node in that dimension, being dimensions in which the node owns more

stable neighbors. The implied purpose is to show that a node’s membership to a commu-

nity depends on its level of activity in the dimensions included in that community, i.e. to

establish that relevant dimensions are profitable for the community of interest extraction.

The methodology used to achieve these outcomes is described below: For the first goal related

to community detection in directed networks:

• Define a similarity measure for kernel nodes’ extraction,

• Extract the kernels by taking into account the interest principle based on the triads,

• Build communities centered around these kernels.
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As far as the second aim for discovering communities in multidimensional networks is concerned,

the implemented protocol is described below:

• Define a new centrality measure based on the stability of a node’s neighborhood,

• Extract relevant dimensions of nodes based on the stability centrality measure ,

• Construct an assigned monodimensional network based on relevant dimensions,

• Extract communities from the monodimensional network.

The following sections consecutively present the contribution and the plan of this thesis.

1.4 Contributions

In order to tackle the research problem defined in this thesis, and to propose solutions to over-

come the limits of existing approaches, we propose new methods and measures for discovering

communities of interest, considering the topological and relational properties of links. This con-

sideration highlights the common interest of the identified community nodes. The main purpose

is to define a new way of looking at community of interest, different from the one discussed in the

literature which focuses on semantics through ontologies [32]. This method is mainly limited by

the fact that despite all works done on validation, they are still subject to discussion as knowledge

not only evolves but also there is no evidence that ontology always captures all the knowledge in

the field. In order to consider real network features, we will be able to reuse and/or adapt existing

topology-based solutions to uncover communities of interest in our context (directed and multidi-

mensional graphs). As a result, the three most prominent contributions are listed below, according

to the type of graphs of the context. For directed graphs, the two contributions are described in

Subsections 1.4.1 and 1.4.2 and for multidimensional networks, there is one contribution illus-

trated in subsection 1.4.3.

1.4.1 Heuristic for Community detection on directed networks.

The first heuristic is related to community detection in directed networks. It allows to detect com-

munities densely linked by triads, since communities’ members are centered around kernels, be-

ing structures consisting in dense triads. To detect communities, we first define Kernel degree, a
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similarity measure based on both triads and Jaccard index, to measure the strength of the kernel

vertices’ similarity. Afterwards, the kernels reflecting the nodes of interest sets are extracted. Then

we define NCI (Node Community Index), a merging measure of non-kernel nodes to kernels, in

order to detect communities of interest consisting in triad-based densely nodes. Finally, we merge

non-kernel nodes to kernel for which the NCI measure is maximized. This contribution has been

the subject of 4 publications, namely one paper in an international journal [46], and 2 papers in

international conferences [45, 47] and one paper in national conference [48].

1.4.2 Novel quality function.

In order to take into account both relational and topological information, we propose a "modular-

ity hybrid" quality function. It is a combination of 3 types of information: relational information

based on link connectivity, topological information based on link directionality, and information

based on node attributes. The modularity hybrid includes an hybrid similarity that investigates

the topological aspect by applying the Kernel degree similarity measure implemented in the first

contribution. This similarity measure contains informations on attributes and directionality and

is joined to structural information to transform the directed attributed graph into a weighted one.

Then, the resulting graph is applied to an hierarchical agglomerative algorithm to extract the com-

munities qualified as more meaningful. This contribution has been the subject of one publication

in CARI 2018, an international conference [49].

1.4.3 Heuristic for Community discovery multidimensional networks.

This contribution focuses on the implementation of commUnity disCovery method in Attributed-

based multiDimensional networks (UCAD) for community discovery in multidimensional net-

works. We use some topological graph properties to define a novel centrality called stability,

needed for computing relevant dimensions. Then, we extract relevant dimensions of nodes based

on the stability centrality measure. Afterwards, we enrich the attributes of nodes by their rele-

vant dimensions. A dimension aggregation approach is then used to design a monodimensional

attributed network. Finally, through a modified version of an hierarchical agglomerative method,

we extract communities. This contribution was the subject of an accepted paper in CARI 2020 [50].

In addition, one submitted paper in an international revue is currently under revision.
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1.5 Organization

This thesis is organized in 6 chapters: The second one is dedicated to explaining the fundamen-

tal concepts about complex networks and community structure. We also describe in detail some

topological measures of centrality and illustrate communities.

The third chapter proposes an overview on community detection methods. We first describe

different detection methods for directed network, before tackling attributed based approaches and

finally community discovery methods in multidimensional networks.

The following chapters focus on the community detection problem itself. More precisely, in

fourth chapter describes our heuristic for detecting communities in directed networks. We first

give some preliminary definitions and new similarity metric dealing with directionality, in order to

understand the proposed in-seed-centric scheme based on directed triads. Then we concentrate

on the validation of the similarity measure on attributed networks. We indicate how to use that

measure through both illustration on a small example of food network based on prey-predator

relationships and application on a directed attributed network.

The fifth chapter describes a new community discovering method in multidimensional graphs.

In this chapter, we focus on the extraction of relevant dimensions through the computation of

node centrality. This centrality is subject to a new measure called stability, allowing to extract a

posteriori communities that not only have a more stable neighborhood but also whose nodes are

generally influenced by the same types of relationships, which defines the same center of interest.

After this, we describe our multi-community detection framework, giving the details for each step.

Finally, in the sixth chapter, we summarize and criticize our work, propose some leads to solve

the existing limitations, and identify our major perspectives.
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CHAPTER2
Generalities on complex networks analysis

The world around us can be seen as a set of interactions between elements. These interactions

can take place at the microscopic level, such as those between proteins that are constantly at work

in our human body, or on the contrary at a macroscopic scale like the gravitational interactions

between astronomical objects. These set of interactions, known as complex networks [114, 149],

are studied in many scientific fields: sociology, physics, economics, biology [87, 151], etc. They

are frequently called terrain graphs, because they are used to model a real "life" situation. As

mentioned in the introduction in Chapter 1, several real networks consider either asymmetrical

relations between entities (for example: a citation network) or several types of relations between

entities (for example: a co-author network). These two examples take into account the orien-

tation and dimensionality of the links, giving rise respectively to directed and multidimensional

networks. It appears that complex networks constitute a powerful modeling tool, able to repre-

sent most real-world systems. This chapter introduces the definitions and notations of the main

concepts handled in this thesis. It is organized in 4 sections: the first section describes the graph

theory concepts frequently used and necessary for a good understanding of this thesis. The sec-

ond overviews some main properties of complex networks. The third one illustrate their modeling

structures. The last section describes some applications and available tools for complex networks

analysis. Finally we investigate on the focal notion of this study, namely communities in complex

networks.

2.1 Basic concepts.

As we pointed out in the introduction, complex networks are modeled by graphs. Therefore, we

can use graph theory to analyze them, as described in [21, 63]. In this perspective, we provide the

terminology and typology of topological properties of graph theory for an understanding of the

8
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Table 2.1: Table of notations

Notation Description

G = (V ,E) A single graph with a set of vertices V and a set of edges E
G = A multigraph with a set of vertices V , a set of edges E , and a set of

dimensions D
A = A(1), ..., A(k) A multidimensional network of K = |D| dimensions
n The number of nodes of G , i.e. |V |
m The number of edges of G , i.e. |E |
m(v,c) The number of edges incident to v in the community c
kv Degree of node v disregarding the dimensions
k l

v Degree of node v in dimension l
kK

v =∑l=1
K k l

v Overlapping degree of a node v across all K dimensions [120]
E l Set of edges in the dimension l
E l

c Edge number of the community c in dimension l
V l Set of nodes of the dimension l
V l

c Number of nodes of the community c in dimension l
Dv Subspace of relevant dimensions of the node v
Γl

v Neighborhood of a node v in a given dimension l
|C | Size of a community in the partition
cut (c) Number of links between the nodes of community c and the other

nodes of the network
Ai j Entry of the adjacency matrix which represents the existence or not

of edge between nodes i and j
∆(i ,c) Number of triangles that vertex i closes with vertices in c
verδ(i ,c) Number of vertices of c that form at least one triangle with i
δ(ci ,c j ) The Kronecker function equal 1 if ci = c j (i.e., if nodes i and j belong

to the same community) and 0 otherwise.
si m A Attribute similarity function, whose value depend on the type of at-

tributes
Cs j r = 0,ω Value indicating the absence (0) or presence (ω) of interconnection

between dimensions
γs A resolution parameter on dimension s
µ A normalization factor

rest of this manuscript. Table 2.1 introduces several notations that will be used in the rest of the

manuscript.

2.1.1 Graphs

This section first describes different typology of graphs, according to the interaction type in the

corresponding network. When there is only one relationship type among entities, networks are

represented by single graphs. Otherwise, they are multidimensional graphs. The second part out-

lines the key concepts and measures used throughout the manuscript.
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Single graphs: weighted, assigned, undirected, directed graphs Single graphs constitute the

basic representation of networks consisting in one type of relationship among its entities. They

are also called unidimensional, monodimensional, one-dimensional graphs. For the sake of sim-

plicity, we use the term graph to refer to a single graph. Figure 2.1 shows three examples of graph

types.

Definition 2.1.1. (Graph). A graph G is a pair (V ,E) consisting of a set V of objects and a set E of

edges, disjoint from V , together with an incidence function G which associates to each edge e of G a

pair of vertices u and v (not necessarily distinct) of vertices of G, such that φG (e) = uv.

(a) An undirected
weighted graph. (b) A Directed graph.

(c) An undirected assigned
graph.

Figure 2.1: Examples of single graphs.

The objects are called the vertices or nodes and the edges model the relationships between ob-

jects. For an undirected graph, an unordered pair of nodes that specify an edge joining these two

nodes are said to form a link. Thus, the graph is said to be undirected if the edges are non-oriented.

We also speak of bidirectional or symmetrical graphs. In other words, a link between nodes vi and

v j indicates a relationship in both directions. This is the case for relationships of friendships,

group membership, etc. Figure 2.1a shows a toy example of undirected graph.

For more flexibility, some additional information can be added to the simple graph, such as

the direction and weight of the links, as well as attributes describing the nodes. Thus, the graph is

directed if the edges are ordered to represent the asymmetry of the relationship between two ver-

tices. The edge expressing ordered pair of nodes is called an arc. This is the case for relationships

of parent-child, predator-prey, master-slave, etc. For the sake of simplicity, we will use the term

edge to simply design a link between two nodes in the graph, leaving out the direction. Figure 2.1b

shows an illustration of directed graph.

In addition, a weighted graph is one in which each link is assigned a positive numerical value,

called a weight. This value expresses for example, the distance between two vertices or the density
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of their interactions. Figure 2.1a shows an example of weighted graph.

Definition 2.1.2. (Neighbor). The simplistic definition of a vertex neighbors indicates those of nodes

immediately connected to him in an undirected graph. The set of these neighbors refers to the neigh-

borhood concept.

This concept changes in two ways, in directed graphs: In-neighbors are those considered as

sources of the edges pointing in to vi while Out-neighbors are those of vertices considered as target

of edges pointing out of vi .

Γi = {v j : ei j ∈ E } (2.1)

Definition 2.1.3. (In(Out)-Neighborhood). The In(Out)-Neighborhood for a vertex vi corresponds

to the set of its predecessors(successors), or to the set of its immediately connected in(out)-neighbors

as formally described above.

Let Γi n
i be the in-neighborhood vertices set of vertex vi and Γout

i be the out-neighborhood

vertices set of vertex vi .

Γi n
i = {v j : e j i ∈ E } (2.2)

Γout
i = {v j : ei j ∈ E } (2.3)

Definition 2.1.4. (Degree). Let v ∈V be a node in a graph G. The degree of v is the number of nodes

connected (with an edge) to the node v. It is the neighborhood cardinality of v.

Deg r ee(v) = |{(u, v) ∈ E s.t .u ∈V }| (2.4)

This concept can be dismembered into in-degree and out-degree in directed graph, where in-

Degree being the number of incoming edges to the node and out-Degree being the number of

out-going edges from the node.

Definition 2.1.5. (Path). A path is a sequence of links which connects nodes, with the number of

links representing the path’s length.

A shortest path between two nodes has the shortest length.

Definition 2.1.6. (Geodesic).A geodesic is the shortest path between two nodes.

Definition 2.1.7. (Distance). A distance is the length of a geodesic.
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Definition 2.1.8. (Diameter). The diameter of a connected graph refers to the largest possible dis-

tance among all the geodesics, between any two nodes.

Di ameter = maxu,vGeodesi c(u, v) (2.5)

Definition 2.1.9. (Triad). A triad is a sub-graphs of three nodes involving at least two links between

them.

When there are three links among the nodes, it is called a triangle or closed triad, otherwise, it is

an opened triad. Triads are considered as wedges, i.e paths of length 2 in undirected networks [86].

Directed networks have six opened triads as observed in Figure 2.2 below.

Figure 2.2: Opened triads in directed graphs

In most real networks, in addition to relational information, each node has a set of information

describing it, called attributes. The corresponding graph is called attributed or assigned graph. An

attributed graph is denoted as G = (V ,E ;W ), where V is the set of nodes, E is set of edges, and W

is the set of attributes associated to the nodes in V for describing their features. Each vertex vi is

described by a real attribute vector di = (w1(vi ), ..., w j (vi ), ..., wm(vi )) where w j (vi ) is the attribute

value of vertex vi on attribute w j . For instance, in a co-author network, a vertex represents an au-

thor and an edge represents the coauthor relationship between two authors. In addition, there are

an author ID and primary topic(s) associated with each author. The research topic is considered

as an attribute to describe the vertex property. Figure 2.1c shows an illustrating example of a coau-

thor graph with node assigned attributes namely skyline and XML. Attributes are classified into 3

categories: discrete/binary attributes also called categorical attributes, continuous or numerical

attributes, and textual attributes [37].

In above mentioned networks, there are one type of interactions between entities. Yet, many

connections may reside between any two nodes, either to reflect different kinds of relationships,
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or to connect nodes by different values of the same type of tie. This representation is expressed by

multidimensional graphs.

Multidimensional graphs In general, the authors [14] use a multigraph to model a multidimen-

sional network M and its properties. Formally, a matrix representation of M is: A = {A(1), A(2), ..., A(K )},

where A(i ) denotes adjacency matrix of interactions among actors in the i th dimension satisfying,

such that A(i ) ∈ Rn×n+ , A(i ) = (A(i ))T , i = 1,2, ...,K . n is the total number of nodes involved in the

multidimensional network. Figure 2.3 shows an example of multidimensional graph with inter-

slice coupling being interactions across dimensions, and intraslice links, being interactions within

the dimension. There are many formalizations of a multigraph. The simplest and most widely

implemented formalization is as follows [14]:

Figure 2.3: Example of multidimensional graph

Definition 2.1.10. (Multigraph). A multigraph is a triplet G =<V ,E ,D >where V is the set of nodes,

E is the set of edges, D is the set of dimensions, such as V d ⊆V ; E d ⊆V ×V . ∀d ∈ (1, ...,K ), the triple

(u, v,d) describes an edge of E d where u, v ∈V are nodes tied in d, with d ∈ D.

Authors in [85] give another formalization of a multigraph as following: A multigraph GM is a

quadruplet GM = (VM ,EM ,V ,L), where V be a set of nodes as defined in a graph, and D be the set

of the types of relationships between pairs of nodes. They define VM ⊆ V ×D as the subset that

contains only the node-dimension combinations such that a node-dimension tuple (v,d) ∈ VM

if and only if v is present in dimension d . EM ⊆ VM ×VM is the subset of edges between node-

dimensions. For the sake of simplicity, in our model in Chapter 5, we only consider undirected

multigraphs and since we do not consider node labels and edge weights, hereafter we use the

triplet-based definition of multigraph as defined in Definition 2.1.10.

Many of the concepts defined for single graphs can be extended to multidimensional graphs

[14]. In [11], the degree of a node across K dimensions called overlapping degree is defined as

following:
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Definition 2.1.11. (Overlapping degree). The overlapping degree of a node v is the number of con-

nexions or edges to v across different dimensions.

The function ODeg r ee is defined as:

ODeg r ee (v,D) = | (u, v,d) ∈ E , s.t .u ∈V ∧d ∈ D|

In multidimensional networks the degree of a node and the number of nodes adjacent to it are

no longer related, since there may be more than one edge between any two nodes. In order to cap-

ture this difference and distinguish the neighbor concept in Definition 2.1.2 for single networks,

we add an "s" for multidimensional cases as defined in the following:

Definition 2.1.12. (Neighbors). Neighbors is the set of all the nodes directly reachable from node v

by edges labeled with dimensions belonging to D.

Nei g hbor s(v,D) = {u ∈V |∃(u, v,d) ∈ E ∧d ∈ D}

One key aspect of multidimensional network analysis is to understand how important a partic-

ular dimension is over the others for the connectivity of a node, i.e. what happens to the connec-

tivity of the node if we remove that dimension. To assess that dimension behavior, a new concept,

namely Dimension Relevance, is defined as follows.

Definition 2.1.13. (Dimension Relevance). Dimension relevance computes the ratio between the

number of neighbors of a node v connected by edges belonging to a specific set of dimensions in Dv

and the total number of its neighbors.

DR(v,Dv ) = |Nei g hbor s(v,Dv )|
|Nei g hbor s(v,D)| (2.6)

2.1.2 Topological measures

In the literature, real-world networks have been characterized by their non-trivial topological prop-

erties. We addressed some of them in the introduction, and we will describe them in Section 2.2.

Authors used topological measures to quantify these properties. Consult [65, 95, 114] for detailed

explanation of each measure. In this subsection, we describe some of these measures in further
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details. We first focus on those used later in this thesis and then describe similarity and dissimilar-

ity measures, that are important since they are used by data mining techniques, such as cluster-

ing [140].

Global measures. Global metrics summarize the structure of a given network in a simple way.

Some of them assess the size of the network while others focus on the organization of the network.

Definition 2.1.14. (Density). The density of a graph is equal to the proportion of existing links

compared to the total number of possible links.

Indeed, the maximal number of edges in the graph (or sub-graph) with n vertices equals n(n−1)
2

in the case of undirected graphs and n(n −1) on the contrary. Thus the directed graph density is

δ= m
n(n−1) while the undirected graph density is δ= m

n(n−1)
2

, where m is the existing number of links.

When the number of links takes into account the triads in the graph, we talk about triad density.

Definition 2.1.15. (Triad density). The Triad Density of a graph (or sub-graph) is a ratio that

conceals difference between real number of triads in that graph and maximal possible number of

triads in the whole graph.

Formally, it is defined as follow:

δ∆ = |∆|(3
n

) (2.7)

where the numerator expresses the number of triads from the graph, and the denominator denotes

that combination value equals to n!
3!(n−3)! = 1

6 (n(n − 1)(n − 2)). δ∆ = 0 if vertices are isolated or if

n < 3. Otherwise δ∆ = 1 if the graph is complete, i.e there is bidirectional edge between every pair

of vertices.

We investigate in this thesis the edges’in-direction. Thus, the in-neighborhood cardinality of

vertex vi being its in-degree valuation, or the number of vertices in its in-neighbourhood, will be

the one taken into account.

Local measures focus on describing the situation of a network objects, compared to the other

objects, whether it is a node or a link. They can be interpreted as measures of centrality or accessi-

bility. There are several types of centralities [20,79], but we described only those that are useful for

our work. The first centrality to be introduced is the degree centrality. It defines the importance of

a node by the number of links it has. From this centrality, the chances of an individual (represented

by a node) to become infected by a virus or influence the nodes around it can be estimated.
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Definition 2.1.16. (Degree centrality). The degree centrality of a node refers to the number of its

direct neighbors, meaning the number of its incident links.

It is formally defined as in Equation 2.1.4. In a weighted graph, this degree centrality can be

weighted through the links’values. This degree is then called weighted degree. This measure takes

into account the intensity of communication between the elements of the network. However, it

removes the topological aspect of the network. Let W be the matrix of weights in which wuv rep-

resents the link weight between node u and node v . The weighted degree of a node u is defined by

the sum of the weights of all incident links at u :

wDeg r ee(u) = ∑
∀∈V ,u 6=v

(wuv ) (2.8)

As one would expect information to travel via the shortest path called geodesic, a class of centrality

metrics was introduced to evaluate the importance of nodes in relation to this notion. One of the

centrality based on geodesic was introduced by [12] and is named the Closeness centrality.

Definition 2.1.17. (Closeness centrality). Closeness for a node u is the sum of the inverse of dis-

tances between u and all the other nodes.

Formally, the definition of this centrality for a node u is:

C l oseness(u) = ∑
v 6=u

1

d(u, v)
(2.9)

where d(u, v) represents the distance between u and v . Another centrality based on the shortest

path was introduced by Freeman and is called the Betweenness Centrality [64]. This centrality

measures a different notion of importance than that of Closeness centrality. It measures the extent

to which a node tends to be on the shortest paths between other nodes.

Definition 2.1.18. (Betweenness centrality). Betweenness is the number of shortest paths between

all vertex pairs that run along the node.

Formally, the betweenness centrality of a node u is defined as follows:

Bet weenness(u) =
n∑

j=1

n∑
k=1

(g j k (u))

g j k
(2.10)

such that g j k (u) is the total number of geodesic between nodes j and k crossing node u, and g j k

is the total number of shortest paths between nodes j and k.
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Newman [117] remains critical towards the betweenness centrality since, according to him,

flows in a network do not necessarily follow the shortest or most efficient path. He therefore pro-

poses that random-walk betweenness be taken into account, and acknowledges the existence of

multiple existing measures to this effect.

These measures of centrality allow nodal evaluation, given that they indicate the importance

of an entity in the network. For global evaluation, similarity measures as described in the following

sub-section are used to assess the similarity of a set of entities.

Similarity, distance measures. Some measures are used to assess the objects’behavior in net-

works. Some of them are based either on similarity or distance. Unlike similarity measures, dis-

tance measures have some well-known properties: Positivity, Symmetry and triangle inequal-

ity [140]. If d(x, y) is the distance between two points x and y , then the abovementioned properties

hold.

• Positivity assumes that d(x, y) ≥ 0 for all x 6= y and that d(x, y) = 0 only if x = y ;

• Symmetry assumes that d(x, y) = d(y, x) for all x 6= y ;

• Triangle inequality assumes that d(x, y) ≤ d(x, z)+d(z, y) for all x, y and z.

Definition 2.1.19. (Common neighbors - CN). This similarity computes the intersection of finite

sample sets, being the number of common neighbors many nodes have together.

si mC N (x, y) = |Γx ∩Γy | (2.11)

Definition 2.1.20. (Jaccard index). Also called Jaccard coefficient, it measures similarity between

finite sample sets, and is defined as the size of the intersection divided by the size of the union of the

sample sets.

It allows to assess the similarity and diversity of two sample sets. If the sets refers to neighbors

of nodes x and y respectively, the measure is defined as follows:

si m Jacc (x, y) = |Γx ∩Γy |
|Γx ∪Γy |

(2.12)
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Depending on the link direction, one can have either the in- or the out- Jaccard index, as defined

below:

si m Jacc (x, y)i n =
|Γi n

x ∩Γi n
y |

|Γi n
x ∪Γi n

y | (2.13)

si m Jacc (x, y)out =
|Γout

x ∩Γout
y |

|Γout
x ∪Γout

y | (2.14)

Unlike the Jaccard coefficient, Jaccard distance measures dissimilarity between sample sets.

Definition 2.1.21. (Jaccard distance). It is complementary to the Jaccard coefficient and is obtained

by subtracting the Jaccard coefficient from 1, or, equivalently, by dividing the difference of the sizes

of the union and the intersection of two sets by the size of the union.

Formally, Jaccard distance is defined :

di s Jacc (x, y) = 1− si m Jacc (x, y) = |Γx ∪Γy |− |Γx ∩Γy |
|Γx ∪Γy |

(2.15)

Definition 2.1.22. (Euclidean distance). The Euclidean distance between points x and y is the

length of the line segment connecting them.

Euc(x, y) =
√∑

d
(w d

x −w d
y )2 (2.16)

Definition 2.1.23. (Cosine similarity). Cosine similarity is the measure of the cosine of the angle

between points x and y. If x and y are two document vectors, cosine similarity is the most widely

used metric.

Cos(s, y) = x.y

∥ x ∥∥ y ∥ (2.17)

One can deduce the cosine distance between x and y as following:

di sCos(s, y) = 1− x.y

∥ x ∥∥ y ∥ (2.18)

2.2 Complex networks properties

Complex networks have been receiving increasing attention by the scientific community, also due

to the availability of massive network data from diverse domains. In their basic form, they are
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structured by nodes tied by links. In some cases, richer informations added are useful for better

interpretation or modeling needs. Whatever the need, these networks can be classified into two

groups: monodimensional networks and multidimensional networks. The former case presents

the description of a single type of interaction between the entities of the network. Otherwise, the

network is said to be multidimensional. Multidimensional networks best describe the variety of

real interactions between individuals. In such networks, many connections may reside between

any two nodes, either to reflect different kinds of relationships, or to connect nodes by different

values of the same type of tie.

A complex network is a set made of a large number of entities interconnected with links. Social

network would be a major example of a complex network where entities are individuals and links

are relationship (friendship, message passing or other) between these individuals. Research on

the complex systems modeling reveals the existence of common properties found in real-world

networks, frequently called terrain graphs [77], because they are used to model real "real-life"

situations, unlike random graphs which do not. Among these properties, one could include the

following:

2.2.1 Small-world effect

This concept has been initially studied by Watts et al. [152]. It states that the average distance

between two nodes logarithmically increases with the size of the network (number of nodes) [114].

It expresses the fact that terrain graphs often have very small diameters [147].

2.2.2 Scale-free heterogeneity

This property is based on the heterogeneity of node degree. The heterogeneity of node degree

is characterized by the fact that there are (usually a small number of) nodes with higher degree

(called hub nodes) compared to other nodes with smaller degree. In several cases the tail of this

distribution can be described as a power law with good approximation [4, 8]. Formally, P (k) ∼ k(γ)

where P (k) denotes the probability of a node having k neighbors and γ the power law exponent.

In [9], this property is proposed under the form of the preferential attachment principle stating

that in a growing network, the new nodes are more likely to get connected to popular existing

nodes. As shown in Figure 2.4, there are few hubs centralizing structures of distinct vertex shape.

The figure represents a collaborative graph of scientists from different disciplines (represented by
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Figure 2.4: An example of a Collaborative Social Network between scientists [68]

different shapes) of the Santa Fe Institute in the United States [68]. The network contains 271

nodes representing the scientists of the institute during the two years 1999 and 2000. A link is put

between two authors if they are co-authors of at least one research paper during these two years.

Each color represents a community as described in subsection 2.2.4 below.

2.2.3 Transitivity or Clustering

Transitivity means the presence of a heightened number of triangles in the network. This prop-

erty states that the probability that two nodes having at least one common neighbor are linked, is

much greater than the probability of linkage between two randomly chosen nodes. Thus, complex

networks contain high local clustering coefficient. For example, in social networks one generally

observes that a person’s friends tend to collaborate with each other [9]. The clustering coefficient

is given by the following formula: CC = ∑ 3×#∆
#∧ , where #∆ is the number of triangles in the graph,

and #∧ the number of triads.

2.2.4 Community structure

Authors in [9, 57] have shown that real networks are not random graphs because they are highly

heterogeneous, revealing a high level of sequence and structure. Moreover, the edge distribution

is not only global, but also locally non-homogeneous, with high aggregations in special groups of

vertices and low aggregations between these groups. This real-world networks’ feature is called
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Figure 2.5: Networks with(left) and without (right) community structure

community structure. It is one of the most investigated properties of major importance, as in-

troduced by Girvan and Newman [68]. A graph has a community structure if it is characterized

by groups of nodes that have a higher density of edges within them, and a lower density of edges

between other groups. This concept is more investigated in Section 2.4.3. Figure 2.5 shows a toy

example of network with and without communities.

Increasingly, the community detection subject is attracting more and more attention of the

community of scientific researchers. Therefore, there have been hundreds of studies on this topic

over the last few years [60, 110]. This inevitably growing interest is explained by the diverse and

multiple uses of the concept of community in many fields. In these different fields, objects can be

social entities interacting with each other.

We argue in this thesis that a proper exploitation of these properties coupled with an elaborate

use of some analysis measures can enhance the relevance of community’s nodes interest.

2.3 Complex networks modeling

2.3.1 Monodimensional networks

A social network is a set of social entities such as individuals, close to each other through a rela-

tionship or a common interest. Hence, social networks form a basic example of complex networks.

In their basic form, they describe entities’ interactions of the same nature. They are referred to as

monodimensional (unidimensional, or one-dimensional) networks. In order to better understand

the behavior of individuals or groups of individuals in a social network, Social Network analysis

(SNA) aims to define measures that capture the existing interactions between individuals in the
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network. Depending on the symmetrical or asymmetrical nature of these interactions, we refer

to undirected or directed networks respectively. Figure 2.6 shows a toy example of monodimen-

sional network of relations among Renaissance Florentine families [26]. In this network, there is

only one type of relationship, expressing no matter what kind of relation ( disregarding marriage

or business relations) between its members. Node color depends on the “degree”categories: 3 col-

ors are used to encode the simple pattern (grey color) very important, important (blue color), less

important(red color).

When there are several types of interactions between entities, the network can be structured on

dimensions, hence the term multidimensional network as described in the following paragraph.

Figure 2.6: A monodimensional network

2.3.2 From complex networks to multidimensional networks

In the world as we know it, we can see a large number of interactions and relations among infor-

mation sources, events, people, or items, giving birth to complex networks. With social media,

people can connect to each other more conveniently than ever. In some social networking sites,

entities other than human beings can also be involved. For instance, in YouTube, a user can upload

a video and another user can tag it. In other words, the users, videos, and tags are knit together

in the same network. This description expresses the data representation through a complex net-

work, in which the "actors" are not homogeneous. Furthermore, examining activities of users, we

can observe different interaction networks between the same set of actors. Take Facebook as an

example. A user can become a friend of another user; he can also subscribe to another user. The

existence of different relations suggests that the interactions between actors are not homogeneous

but rather heterogenous [139].

When the network has multiple types of interactions (relations) between the same type of
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users, it becomes a multidimensional network. Multidimensional networks [14] are also desig-

nated as multiplex networks [113], multilayer networks [38], multislice networks [113], edge-colored

multigraphs [85], or network of networks [109]. Here, the former designations mainly stress the

same behaviors or roles for nodes in all networks. Moreover, there exist only tiny differences for

these nodes in different dimensions. On the contrary, the latter designation, namely network of

networks, mainly stresses the difference for these nodes in cross dimensions. Kivelä et al. [85]

present network types that can be represented using their general multilayer-network framework.

When the number of interaction types between entities is d , the multidimensional network

stands for a d-dimensional network. Figure 2.7 shows a two-dimensional social network depicting

the network in Figure 2.6 taking into account the two types of interactions between its members,

namely business and marriage ties. In general, there are two views of multidimensional networks:

independent and interdependent multidimensional networks [14, 85]. Independent networks in-

volve actors that are distinct from one dimension to another. They stand for a stacking of single

networks (See Figures 2.8a and 2.8b). Interdependent networks involve actors that should be a

fixed one across several dimensions. They stress the same behaviors for nodes in these dimen-

sions as shown in Figure 2.8c. It shows configurations on multidimensional networks: namely in

(a) an example of a multidimensional network (i.e. an interconnected network, a network of net-

works etc.), in (b) a representation of the same multidimensional network using another formal-

ism (Node names are the same from the original network) and in (c) an alternative representation

of the same multidimensional network in our considered formalism [85]. The type of graph used in

this thesis only takes into account the "independent" aspect. The use of the aforementioned net-

works for the representation of complex systems provides a more thorough and efficient analysis

of the processed data. The following paragraph describes the steps of data analysis.

2.4 Complex Network analysis (CNA)

A notable feature of the last two decades is the daily use of Web 2.0, which has become a verita-

ble social media seedbed enabling users to interact, share, group together, collaborate, etc. From

the content of these social media, interconnected and well-organized structures can be extracted.

These structures are often referred to as "online social networks" to distinguish them from social

networks as they are traditionally handled in the social sciences [72]. They are generally formed

on the basis of either virtual/digital or physical interactions between individuals. Thus, one can
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Figure 2.7: Florentine multidimensional network - visualization performed using muxviz package
[39]

have networks of individuals, networks of web pages, networks of enterprises, networks of prod-

ucts/services, etc. These different examples reveal the complex nature of social networks, their

omnipresence in our lives, but also the interest they present as a subject of study. The current

problem is no longer how to collect and store data from social networks but rather how to use

them in a relevant way for a value-added analysis.

Figure 2.8: Multidimensional networks configuration

This section presents in the following paragraphs, the different research issues on data analysis

in complex networks, communities and the tools for their analysis, and the basic concepts used in

the rest of the manuscript.

2.4.1 Typology of Complex network analysis

The analysis of a complex network is often achieved by the following four steps: data collection,

data processing, data analysis, and visualization of the network extracted from the data. The anal-

ysis phase consists in exploring the structure of the network by means of graph theory techniques
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or statistical modeling. The analysis is often carried out to understand or explain the structure of

the network. It allows identifying, in particular, the nodes’ social position, the network density, the

network diameter, the level of connectivity, the impact of the social structure on the behavior of

individuals, etc. These questions are addressed by significant research issues as described in [140],

namely:

• Link prediction which consists in determining the presence at a time t + 1 of a link non-

existing at an earlier time t ;

• Sentiment analysis consisting in the interpretation/prediction of users’opinions or emotions

within text data;

• Community detection: the goal here is to identify groups of similar entities;

• Detection of influencer i.e. to determine the actors who can be the leaders of a particular

trend;

• Information spreading which reflects how information is disseminated ;

• Categorization of nodes consisting in determining the state of an individual (healthy or in-

fected in epidemiology);

The detection of communities is the focal point of these works. A multitude of detection ap-

proaches have been proposed in the literature, as described in Chapter 3. In order to detect

communities in a social network, there are several typology for complex networks’ description,

as shown in Figure 2.9, which can be grouped into three key factors: the scale of analysis, the

analysis time, and the heterogeneity of objects.

Scale criteria refers to the scope of the analysis; it can be structured in two levels: The local

level or microscopic scale which focuses on a minority of network entities when computing so-

cial ranks or their categorization within the structure, and the global level or macroscopic scale

studying the whole network, without specifying a subgroup on which to initiate the analysis. The

time factor indicates the period of the network analysis, based on the assumption that the struc-

ture of a network is constructed and evolves over time rather than being considered to have been

created instantaneously. Thus, the structure can be analyzed in the past (retrospective analysis),

present (current-time analysis) or future (prospective analysis). Note that this chronological anal-

ysis requires a historical overview of the structure’s changing history. The heterogeneity of objects
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expresses heterogeneous networks [139]. Accordingly, heterogeneous networks can be categorized

in two different types: multi-mode network involving heterogeneous actors/entities with the same

type of interactions between them (each mode represents one type of entities) and multidimen-

sional network consisting in multiple types of interactions between the same type of users (each

dimension represents one type of interaction). In this thesis, we are interested in community de-

Figure 2.9: Different typologies of complex network design

tection on the local level scale, by investigating the study at a specific time (static-based methods),

together with the consideration of the interaction-based heterogeneity. In general, communities

are obtained and visualized by means of Social Network Analysis tools. The following paragraph

describes some of them.

Table 2.2: Comparison of some tools for complex network analysis

Tool and date of
pubication

Category Licence OS Implementation Multidimensional
network

Gephi 2009 Software Free Windows, Linux,
MacOS

Java

Statnet 2019 Library Free Windows, Linux,
MacOS

R

NetMiner 2010 Software Private Windows Java
Igraph 2006 Package Free Windows, Linux,

MacOS
C, R, Python X

NetworkX 2019 Package Free Windows, Linux Python X
Cytoscape 2016 Software Free Windows, Linux,

MacOS
C++ X

MuxViz 2014 Software Free Windows, Linux,
MacOS

R X

MultinetX 2017 Package Free Windows, Linux Python X
Multinet 2018 Package Free Windows R X
Pymnet 2018 Library Free Windows Python X
Py3Plex 2019 Library Free Windows, Linux Python X
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2.4.2 Complex Network Analysis Tools

With increasing amounts of data that lead to large social networks consisting of different node and

edge types, there is an increasing need for versatile visualization and analysis software. A multi-

tude of tools are used to analyze social networks. In this perspective, these tools allow the data

loading, their analysis and the structure visualization. However, it should be noted that some tools

only allow either visualization or analysis of social networks. In addition, these tools can be soft-

ware or libraries. In general, software is easier to utilize as it provides a graphical and interactive

interface for a broader user audience. Libraries require programming language skills and offer

more opportunities for feature extensions. For example, the analyst can add functions in accor-

dance with its needs.

Table 2.2 shows some of the tools used for CNA comparing them according to a grid designed

around five criteria. The first comparison criterion indicates the category of the tool, i.e. whether

it is software or a library/package. The second criterion refers to the type of the tool’s license:

free or private. The third criterion focuses on operating systems supporting the tool. The fourth

criterion gives an idea of the programming language(s) of the tool implementation and therefore

which can be used to extend the functionality of the tool. The last criterion specifies whether

the tool has features allowing the analysis of multidimensional networks or not. Remember that

there are many other criteria for comparing these tools. Our choices are mainly guided by the

context of this thesis also dealing with multidimensional networks and that both performance

and scalability of the tools are of great importance for complex applications such as community

detection. Furthermore, it is necessary to underline that combining several tools is possible when

a single tool does not provide satisfactory of the expected results.

A very common task in the analysis of terrain graphs, which has generated a prolific literature

over the last twenty years, is the detection of communities [60, 62]. This involves finding sets of

elements in a graph that interact more specifically with each other than with the rest of the graph,

thus forming so-called communities. Section 2.4.3 outlines the notion of community.

2.4.3 Communities in social networks

As mentioned in Section 2.2.4, community structure is one of the most studied network properties.

In this section we will remember some basic concepts of community definition in social networks.
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There are several different terms referring to communities, like modules, clusters or cohesive

subgroups. The notion of “Community”is a concept not unanimously accepted by the scientific

literature, as it depends on some constraints together with the network structure under study and

needs. A variety of considerations on the notion of community emerge from this [6, 41, 60, 114],

according to the semantics or structural analysis criteria. Moreover, Malliaros [110] classifies com-

munities into two groups, according to their topology: density-based communities and pattern-

based communities. To generalize these insights, authors in [36] give a meta-definition of com-

munity as a set of entities that share some closely correlated actions with the other entities of the

set.

From this generic definition, whatever the type of information or needs dealt with in the net-

work, there are three things that need to be specified: the notion of connectivity, the notion of

similarity among the nodes of the network, and the notion of interest/influence around which the

nodes are centered.

1. Connectivity : this criteria expresses both the density-based and pattern-based clusters. The

density-based clusters definition states the set of nodes that are strongly connected with

each other while weakly connected with other nodes in the network [118] while the pattern-

based clusters definition focuses on groups of nodes that go beyond edge density consider-

ation. As we will describe shortly, an example of this category is the case of flow circulation,

where information moves across nodes in the same community most quickly.

2. Similarity: this feature is based on a set of similar objects [153]. The connectivity links are

ignored and only the node attributes are considered. Here, members of these communities

being clusters, may know or care little about others. An example of such community is the

community that contains mainly agricultural sector operators interested in "rice" planting.

3. Interest: Interest-based clusters are groups of nodes interested in the same types of infor-

mation. The type of information may be found in the link direction as well as in the nodes’

attributes. Interest-based clusters can be included in the two above community concepts,

depending on the needs or the topological graph properties of the nodes. An example of

such community concerns those authors attending the same venue, namely CRI’17, on the

same research topic, namely Social network analysis. In the rest of this thesis, if not stated

explicitly, this is the definition of community that is assumed. Examples of such communi-

ties will be presented in the following chapter.
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With regard to the three axes that we have just elaborated, we can deduce the plural and non-

exhaustive approaches of community discovery in social networks. Before addressing the chap-

ter on the description of some existing community detection methods, several terms need to be

explained in order to make it easier for the reader to understand both the manuscript and the

proposed methods.

Definition 2.4.1. (Node of interest). Also called "seed", or "ego", a node of interest is any influen-

tial node that we are interested in at a given situation.

Definition 2.4.2. (Semantic definition: Kernel). A kernel is a set of nodes of interest. [150].

For Wang [150], a kernel called community kernel, is considered as a set of influential nodes

inside a group. Each member of a community kernel has more connections to/from the kernel

than a vertex outside the kernel does. As shown in Figure 2.1b, nodes with orange color form a

kernel. Community kernel consists then in nodes centralizing information. Fortunato [60] gives

three different families of definitions: Global, local and interest-based.

Definition 2.4.3. (Global communities). Global communities are sub-graphs whose nodes pos-

sess remarkable properties relatively to the rest of the network.

Definition 2.4.4. (Local Communities). A local community is based on the exploitation of an

information concerning a node and its close neighborhood, and neglecting the rest of the network.

(a) Disjoined communities. (b) Overlapping communities.

Figure 2.10: Examples of partitions and covers.

Definition 2.4.5. (Semantic definition: Community of interest). A Community of interest is a

community of people who share a common interest or passion [59]. In other words, it is a set of

individual that share the same subject of interest/passion.
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In the context of online social networks (OSN), these people exchange ideas and thoughts

about the given passion, but may know (or care) little about each other outside of this area. An

example of such a community is the set of fans of "The Beattles". This definition is based on the

interaction semantics [32]. Because semantic based definition drawback relies difficulty in infer-

ring new knowledge, in our research, we consider the definitions of communities of interest based

on the topology, according to the context graphs, namely directed graphs on the one hand (see

Definition 30), and multidimensional graphs on the other hand (Definition 36), as described in

our contribution sections in Chapters 4 and 5 respectively. Overlapping vs disjoined communi-

ties . A community is an overlapping community if a portion of its nodes simultaneously belongs

to other communities while a disjointed community has exclusive nodes.

For example, in social networks actors may be part of different communities: work, family,

friends, and so on. All these communities will share a common member, and usually more since a

work colleague can also be a friend outside the working environment. Figure 2.10 shows an exam-

ple of both disjoined and overlapping communities’ partitions. In Subfigure 2.10b, blue nodes are

share by three communities. Cover vs partition . A cover C is division of a graph into overlapping

(or fuzzy) communities. A cover C is a set of overlapping communities ci such that ∪ci =V . A Par-

tition P of a graph is a cover whose communities are disjointed: ∀c1,c2 ∈C , c1 6= c2 ⇒ c1 ∩ c2 =;.

In other words, partitions are structures whose standard definition forbids multiple memberships

or vertices [60, 62]. Throughout the document we will use the expression "partition" to indicate

the result of a community detection algorithm without regard to the overlapping nature of com-

munities. But when necessary, we will specify that the result is a cover.

Naturally, several alternate definitions on this concept also exist. However, community detection-

related works are often focused on designing new methods to detect communities, and less on

what a community exactly is. For this reason, the notion of community is very frequently im-

plicitly defined as the result of the considered community detection method. The next chapter

overviews some community detection methods.

2.5 Conclusion

In this chapter, we have outlined the background to complex network analysis. Specifically, we

have reviewed some concepts of graph theory necessary to well understand the remainder of this

thesis, as well as a few related metrics such as the centrality and similarity of entities in a network.
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In addition, we presented the complex network properties as well as the models used for repre-

senting them, and finally we discussed the notion of community which constitutes the focus of

this thesis. In the next chapter, we present the state of the art in the area of community detection

in both monodimensional and multidimensional networks. We also focus more specifically on

detection approaches based on the optimization of quality functions.
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CHAPTER3
Community discovery methods and

applications

3.1 Introduction

We now focus on the notion of community detection, which was introduced in the previous chap-

ter. As aforementioned, a key characteristic of terrain graphs is the presence of community struc-

ture. The concept of communities is complex and no universal definition is recognized [60]. Be-

cause of this popularity, hundreds of different algorithms [7, 62, 110] were developed for the task

consisting in identifying the community structure of a network, an operation generally called com-

munity detection. Indeed, community detection is used in several fields, as described in Section

3.5.2 below. In this chapter, we describe the state of the art in the field of community detection

and present some of its applications. The objective of this study is to clearly define the research

context in order to highlight the contribution of our work with respect to the existing literature.

More specifically, section 3.2 presents some quality functions, section 3.3 describes the methods

of community detection in single graphs, section 3.4 deals with multidimensional graphs. Finally,

Section 3.5 presents different ways to evaluate the methods and their applications in terrain net-

works.

3.2 Quality functions

Remember that the resulting structure of the community detection is called cover or partition, de-

pending on the overlapping nature of the nodes. To ensure the validity of the partitions or covers, a

function called quality function is sometimes optimized [116]. The estimation of the value for this
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quality function is either done directly during the optimization, because it is used as the objective

function to optimize, or indirectly because it is used a posteriori to evaluate the mined community

structure. Yang and Leskovec [154] have defined four characteristics that they consider desirable

in the expected communities.

• The internal density: the nodes within the community are very connected to each other.

• Separability: the community has different characteristics from its surroundings. For exam-

ple, nodes within the community have more neighbors inside than outside the community.

• Internal cohesion: the characteristics of the community are more robust to the deletion of

nodes or edges. For example, it is necessary to remove many of the edges of a community so

that it is no longer connected.

• Triadic closure: for u, v , w the nodes of the community, if (u, v) ∈ E and (v, w) ∈ E then,

generally (u, w) ∈ E .

These characteristics are not completely independent. For example, high internal density is

often correlated with high triadic closure. The Topological equivalence is a good illustration of

this reliable correlation. There are two main definitions of topological equivalence for vertices:

structural equivalence [105], in which vertices are equivalent if they have the same neighbors, as

shown in Figure 3.3a; regular equivalence [55], in which vertices of a class have similar connection

patterns to vertices of the other classes, as shown in Figure 3.3b. However, these features some-

times reveal a conflict. Indeed, method X may produce communities that are denser than method

Y, but Y produces communities with more similar entities. This is why the community detection is

often perceived as a multi-objective optimization problem. Nevertheless, it is possible to describe

the intuitive notion of communities based on interest, as well as its detection task, which is at the

heart of the thesis and will be taken up again, detailed, formalized and discussed in the following

Chapters. In this section, we describe the quality functions investigated throughout this thesis, to

assess a community detection method and outline the steps of quality function optimization.

Definition 3.2.1. (Quality function). Given a partition P . A quality function is an application

q(P ) −→ R that quantifies the aforementioned characteristics on a partition in order to obtain a

Numeric result.

Quality functions are presented in the table 3.1 below. There are three levels of quality func-

tion estimation: Microscopic, mesoscopic and macroscopic levels. Microscopic level consists in
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(a) Pattern based on structural equivalence. (b) Pattern based on regular equivalence.

Figure 3.1: Different types of structural patterns.

functions defined at the node level. Such functions compute a quality for all nodes of the graph.

They take three parameters as input: the node v , the community c in which it is located, and the

partition P .

Clustering coefficient [152] . The Clustering Coefficient of a node is the probability that two of

its neighbors randomly selected in the same community are also neighbors. This function mea-

suring the triadic closure refers also to a terrain graph property as stated in subsection 2.2.3.

Permanence [30] . The permanence is a metric of communities’ separability. It measures the

connectivity of a node within its community by involving the Clustering coefficient. This function

is weighted in such a way that a node has a lower permanence if it is relatively highly connected

to another community in particular. Thus Permanence measures both separability and triadic

closure.

Mesoscopic level consists in quality functions that are defined at the community level, i.e. they

calculate a quality for each community. In this case, they take as input a cluster c of the partition

P .

Conductance [73,134] . The conductanceΦ is defined for the community c as the ratio between

the number of links having one end in the community and the minimum between the number of

links inside the community and the number of links outside it. The community detection method

we suggest in chapter 4 presents a variant of this function applied at the microscopic level i.e. at the

nodal level. The value of Φ(S) ranges from 0 (when the community is good since it is a connected

component) to 1 (the community is bad since it has no internal links, or has an infinite number of
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external links).

Weighted community Clustering [125] . The Weighted Community Clustering (W CC ) for a

community c computes the density of triangles indicating the nodes in c close to each other. It

can be extended for the whole partition through an average function as described in Equation 3.1.

Q(P ) =
∑

i f (Pi )

|P | (3.1)

Multidimensional density [104] . This metric measures the density of links in multidimensional

networks, through an extension of the community density in single networks [2].

In order to evaluate the community-level functions f () over the whole partition P , the quality

average of the communities that make it up could be determined, as shown in Equation 3.1.

Macroscopic level functions compute the whole partition validity. It includes many parameters

based on various features of the partition.

Modularity [118] . Modularity is a function detecting the ratio between intra- and inter-community

number of edges. It is one of the basic objective metric about the quality of a particular division

into clusters for a network and is widely studied in many works (one of them is a greedy opti-

mization able to scale up to networks with billions of edges) [16] and has been successively ex-

tended, according to the type of directed [121], attributed [37], multidimensional graphs [113], as

described in the following corresponding paragraphs.

The modularity has been extended in order to consider characteristics of directed, attributed

and multidimensional networks respectively.

Directed modularity [96, 121] . Directed modularity is similar to modularity, but the configura-

tion model is modified, as discriminates incoming and outgoing degrees of the nodes.

Modularity attribute [37] . Unlike Newman’s modularity [118] which does not include the at-

tribute similarity between nodes, the "modularity attribute" Q At tr of Dang and Viennet [37] in-

clude similarity based on nodes’attributes. The measure used to compute the similarity depends

on the type of attributes, as described in Subsection 3.3.3

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 35



CHAPTER 3. COMMUNITY DISCOVERY METHODS AND APPLICATIONS

Table 3.1: Quality functions

Level Name Functions

Node Level
Clustering coefficient qCC (P,c, v) = 2|u,v,w∈c/((u,v);(v,w);(u,w))∈E 3|

|c|(|c|−1)
Permanence qPer m(P,c, v) =

Community Level
Conductance Φ= cut (c)

mi n(
∑

v∈c kv ,
∑

u∈c ku )

Multidimensional
Density

Densi t yMul ti (c) =
∑|D|

l=1 E l
c−

∑|D|
l=1 mi n(E l

c )∑|D|
l=1 max(E l

c )−∑|D|
l=1 mi n(E l

c )

Weighting Community
Clustering for a com-
munity

W cc(c) = 1
|c|

∑
i∈c ( ∆(i ,c)

∆(i ,V ) . ver∆(i ,V )
|c{{i }|+ver (i ,V )̧ )

Partition Level

Weighting Community
Clustering for a parti-
tion

W CC (P ) = 1
|V |

∑|P |
j=1(|C j |.W cc(C j ))

Modularity Q = 1
2m

∑
i j (Ai j − ki k j

2m )δ(ci ,c j )

Directed modularity Qd = 1
2m

∑
i j (Ai j −

kout
i k i n

j

2m )δ(ci ,c j )

Multislice modularity Qmul ti sl i ce = 1
2µ

∑
i j sr [(Ai j s −γs

k s
i k s

j

2|E s | )δsr +δi j C j sr ]δ(%i s ,% j )

LPA-based objective
function

F = 1
2

∑
u,v∈V Av,uδ(lv , lv u)

Multi LPA-based ob-
jective function

Fmul ti = 1
2

∑
u,v∈V

∑
d∈D A(d)

v,uδ(lv , lu)

Multislice modularity. Mucha et al. [113] derived the generalized modularity, a metric to assess

the quality of a given partition into multidimensional communities.

LPA-based objective function. Barber and Clark [10] defined a function for an undirected monodi-

mensional network G , based on the Label Propagation Algorithm (LPA).

To support the multidimensional setting, one straightforward way to redefine the LPA-based

objective function as Fmul ti is to sum over all within-community edges irrespective of their di-

mensions.

3.2.1 Steps for quality function optimization

The optimization process of a quality function consists in three stages. Hence, all the optimization

heuristics follow the same process but may vary in their implementation of the three phases. In

the following, we summarize these three steps and explore some possible variants.

1. The first phase is community initialization. It consists in finding the set of nodes, called

"seed", which represents the initial composition of the community. The seed may consist
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of one or more nodes. The choice of the seed depends on the nature of the communities

we want to identify [78]. For example, if we want to detect an ego-centric community, we

can initialize the seed with the node of interest [106]. On the other hand, if we already have

an idea about the initial status of the community and we would like to expand it, it is more

useful to consider that the seed includes a group of nodes. This variant is used in [150]. In

addition, if we are interested in diverse forms of a community, it is recommended to use

random seed initialization. Thus, each time we build a community, we will have a different

composition. This is the variant chosen in [94]. The contribution in Chapter 4 on community

detection in oriented graphs uses this principle of community initialization by kernel nodes

2. The second phase is the setting of a stopping condition for the optimization process. The

most intuitive stopping condition is to run until all the neighbors of the node of interest are

visited [73]. It is also possible, as demonstrated by Guimera [69], to consider that the opti-

mization of the quality score is bounded by a given threshold. They show that the optimal

number of communities that maximizes modularity is closed to
p

n. This threshold is held

in Chapter 5 to assess the uncovered covers

3. The third phase consists in a quality function optimization. Indeed, optimization refers to

minimizing [31] or maximizing [106] the quality score. The goal of this phase is to reorder

the graph in order to obtain a partition that offers a higher quality score. This process is

repeated until the stop condition is verified.

In general, community of interest detection techniques refer to a classification of network

nodes that are more densely connected than others, in order to construct related classes of users

with the same characteristics with respect to a measure of similarity referring to common inter-

ests. Thus, their objective is to create a group of vertices, taking into account the relationships

between the vertices in the graph and their attributes, so that the communities are composed of

vertices which respect the definition of the community previously established.

Deterministic vs non-deterministic algorithm. A non-deterministic community detection al-

gorithm is an algorithm that detects different communities by running it repeatedly on the same

dataset, unlike the deterministic algorithm that detects identical communities.
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3.3 Community detection in single networks

The objective of community detection in graphs, or in complex networks, is to create a partition

of vertices, taking into account the relationships and features that exist between vertices in the

graph, so that the communities are composed of strongly connected vertices [60,114]. In addition,

Mehdi et al. [7] presented a deepen recent overview of community detection methods. We will

present the most addressed methods in this thesis, focusing on those that optimize a partition

quality criterion, notably modularity, since our proposals use this criterion, in section 2.3.2.

3.3.1 Community detection in undirected networks

This section deals with approaches that just take into account the methodological principles with-

out dwelling on the internal information of the network. There is a wide variety of approaches

to community identification. Kanawati [77] classifies them in four groups of non-restrictive ap-

proaches:

• Group-centered approaches where nodes are grouped into communities based on common

topological properties;

• Network-centric approaches where the overall structure of the network is examined to sep-

arate the graph into communities;

• Propagation-centric approaches which often apply a procedure for the community structure

to emerge by exchanging messages between neighboring nodes;

• Seed-centric approaches where the community structure is built around a set of knowl-

edgably selected nodes.

Group-centered approaches. The principle is to restrict the definition of a community to that of

a group of nodes that share some topological features. Clique percolation [41] is the most obvious

example of method which assimilates a community to a maximal clique in the graph (a clique

is a complete subgraph). However, the problem of maximal clique estimation is that it is an NP-

difficult problem [19], which makes it difficult to consider its use in the context of very large graphs.

Moreover, terrain graphs are mainly sparse. Therefore such structures are often very minority in

these graphs. In contrast, dense groups of nodes may be used as seeds for community detection.
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Moreover, k − cor e (a k − cor e is a maximum connected subgraph in which each node’s degree

is greater than or equal to k) is another concept of community that authors in [123] explore to

identify communities.

Network-centric approaches. Most of the approaches proposed in the literature are based on a

scheme of computation taking into account the global connection of the graph. Authors in [60,

142] synthesized them in three families of approaches:

Traditional methods: Traditional Methods consisting in the optimal partitioning into k "clus-

ters" of the graphs representing the Social Networks, k being set as input, include graph partition-

ing [81], partitional clustering [107] and Spectral clustering [51]. Their solution look for partitions

often of the same size. This constraint being too restrictive and difficult to find in real situations,

it has been loosened in order to investigate communities but without having to specify the exact

size.

Hierarchical methods: The most applied heuristics are based on the principle of hierarchical

classification. Two opposing approaches are widely experimented: Agglomerative (or bottom-up)

approaches, which start from vertices as separate clusters (singletons), and merge two communi-

ties at each iteration, to ends up with the graph as a unique cluster. The communities to be merged

are those that promise maximum modularity. Louvain [16, 124] are some examples of these ap-

proaches. Divisive (or top-down) approaches, such as Edge Betweenness [68, 116, 126], start from

the whole graph as a cluster. At each iteration, an attempt is made to split the cluster in two in

order to maximize modularity.

Optimization-based approaches: The problem of community detection can be reduced to the

clustering of the nodes in the network, in terms of an optimization problem of a predefined ob-

jective function. Quality functions described in Table 3.1 are optimized by these family of ap-

proaches [73, 125, 134]. The most widely addressed function is the modularity [115], whose max-

imization is a difficult NP-hard problem [24]. So other alternatives, such as the Louvain algo-

rithm [16], are based on greedy techniques to provide suitable solutions in computing time.

Propagation centric approaches. These approaches are based on an information propagation

within the communities. Therefore, they explore the density-based property of intra-community

links. Indeed, because of the higher relative density of communities and weak inter-community

links, it is reasonable to assume that a signal emitted by a node and retransmitted by its neighbors
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is more likely to remain in the community of the source node than to propagate to other commu-

nities. Walktrap [124] is based on the probability that a random walker will reach the other nodes

of the network in k time steps. Label propagation [127] present another example of algorithms

based on label propagation techniques.

Seed centric approaches. Seed-Centric approaches for Community Detection in Complex Net-

works generally follows these principal steps [78]:

1. Seed computation which consists in identifying core or influential nodes;

2. Seed local community computation enlarges seed to built their local communities;

3. Community computation out from the set of local communities from step 2.

Different seed expansion strategies are also proposed, as described in [77]. In many algo-

rithms, the heuristics developed for the identification of local communities apply this family of

approaches. Ngomnang et al. [119] consider that the starting node is at the boundary of a com-

munity, unlike the other approaches which do not guarantee the coverage of all nodes of a graph in

the resulting community structure. In [76], a more original approach is proposed where, after seed

detection, each node in the graph (seed or outside the seed) computes a community membership

preference vector for each seed. This community membership of the nodes is the result of a lo-

cal choice process involving the node and its direct neighbors. The following methods incorporate

one or more of the aforementioned features, since they consider additional information from both

structural and semantic networks, that are not considered by the methods in this section.

3.3.2 Community detection in directed networks

Finding clusters in directed networks is a challenging task with several important applications in

a wide range of domains. Malliaros et al. [110] give a taxonomy on the directed network clus-

tering approaches depending on the way directed edges are treated. They classify them in four

main categories: Naive graph transformation approach, transformations maintaining directional-

ity, Extending clustering objective functions and methodologies to directed networks, alternative

approaches.
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Naive graph transformation approach. As Santo Fortunato stated that developing methods of

community detection for directed graphs is a hard task [60], a common approach is to ignore the

direction of the link and run the algorithms designed for undirected networks, largely due to no

other better options. Thus the potentially useful information of the edge directions is discarded

and the meaningful communities are also missed. The algorithms based on this approach are :

Walktrap [124], Edge Betweenness [68], Label Propagation [127] and Louvain [16]. Indeed, when a

directed network is set as input, the results are the same as well as the network was undirected.

Transformations maintaining directionality. This category concerns simple schemes that con-

vert a directed graph into either unipartite weighted network through symmetrization techniques

[84, 132] or bipartite [70, 157, 159], this enabling to utilize the richness and complexity of existing

methods to find communities in undirected graphs. However, the basic question behind such ap-

proaches remains the same: How to consider the common interest of the nodes on the principle of

the edges’ directionality? Thus, to try to deal with the problem without transforming the original

graph structure, several methodologies would be to extend quality functions and tools, to the case

of directed networks, as described in the following paragraph.

Approaches based on the extension of objective functions and methodologies. These approaches

focus on the extension of tools and measures developed for undirected case. The ones based

on the optimization of the so-called directed modularity [96, 121], the directed clustering coeffi-

cient [34] and the objective function of weighted cuts in directed graphs [112]. In the following,

we address the limits of the modularity, whose optimization steps have been described in Section

3.2.1, since we use it through this thesis.

• Resolution Limit: It has been shown in [61, 92] that the size of each community depends on

the number of nodes in the network. It is then difficult to detect small communities, even

well separated. To make up for this limit, Gautier and Lancichinetti [88, 91] proposed to

inform some parameters about either the number of communities or whether the method

should extract small communities or not. However, these parameters can greatly affect the

accuracy of an approach if the values provided by the user are incorrect since there is no

knowledge to the network.

• No edge directionality discrimination: As shown in [84, 99], modularity ignores the impact

of incoming-link degree of nodes. Indeed, it does not implement the idea that an edge from
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a low out-degree but high in-degree node to an opposite case node should be considered

of a bigger value. In order to make good use of the directionality, a recent heuristic based

on Constrained Directed Label Propagation Algorithm (CDLPA) is proposed in [99]. The

authors consider the balance growth of communities through an improvement of LPA for

directed networks. CDLPA is effective for datasets with a monotonous degree distribution of

nodes, and overcomes the imbalance growth of communities limit. Indeed, it assumes that

communities must have a similar capacity of nodes; therefore it constrains the membership

of a node towards a community to which it is not strongly connected.

• Instability: The high modularity score is obtained even in random networks [80]. Indeed,

the assumption behind the modularity is that a random network is not supposed to have

community structure. The current community structure is then compared with a null model,

leading to many possible realizations from the null model.

Alternative approaches follow different and diverse methodological principles. Some of them

based on various probabilistic models in [156] have been proposed for community detection.

Among them, stochastic block models are probably the most successful ones in terms of cap-

turing meaningful communities, producing good performance, and offering probabilistic inter-

pretations. However, the method discontinues in practice when the number of iterations goes

beyond 20, and results become insignificant. To make up for this failure and investigate topologi-

cal properties to assess the pattern-based communities of interest, some authors [71, 150] explore

two structures respectively: “triads”and “kernels” like described below.

A kernel standing for the community seed, as described in Subsection 3.3.1, is considered as

a set of influential nodes inside a group. It seems to be information centralizing nodes. Some

methods explored the problem of detecting community kernels, in order to either exhibit different

influence and different behavior of nodes inside a structure for easily interpreting the common

interest of nodes or uncover the hidden community structure in large social networks. Wang et

al. [150] identify those influential members, the kernels, to detect the communities and propose

efficient algorithms for finding community kernels; however in their method named GREEDY, they

proposed to extract community kernels (group of nodes of interest) then their auxiliary commu-

nities (non-kernel nodes), by a non-deterministic algorithm. Wang models its community ker-

nels associated to their auxiliary communities by an unbalanced weakly bipartite (UWB) struc-

ture as shown in Figure 3.2. The UWB structure consists in two disjoined graphs G1 = (V1,E1)

and G2 = (V2,E2) such that: d21 > d11 > d22 >> d12, where di j = |E(Vi ,V j )|/|V j |, with E(Vi ,V j ) =
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(u, v) ∈ E |u ∈Vi , v ∈V j and (u, v) an ordered edge.

Figure 3.2: An Unbalanced weakly bipartite structure

Wang’s method [150], in addition to its speed and simplicity, integrates both community sep-

arability and triadic closure feature of partitions. However, this method sets the size of kernels,

and therefore the size the communities and their number. It proceeds by a random choice of

node to initiate the kernel. By this way, results are arbitrary and not efficient for directed graphs

as confirmed by Seifi [133], because of the random node choice and the difficulty for a better pa-

rameterization. This constitutes a considerable drawback. In fact, providing accurate values input

parameters, including the number of communities, requires a priori knowledge of the network to

be analyzed. Whereas, in practice, such knowledge is not always available.

3.3.3 Community detection in attributed networks

Ding [43] studies the type of connections that exist between entities in a community and describes

two types of connections: social connections that are often real relationships in networks such as

friendship, communication or collaborative relationships, and similaritybased connections that

are derivative connections. Based on these types of connections, he distinguished topology-based

methods [33, 68] and interest-based methods [141]. In the first category, the identified commu-

nities consisting in densely connected nodes but differing interests, while in the second category,

communities with coherent interests but rather disconnected nodes may result. In order to deal

both with link density and common interests, Zhou et al. [160] introduced clustering in attribute

vector graphs where entities are described by numerical vectors. The partitioning of the graphs is

based on the similarity of the attributes so that nodes with the same attribute values are grouped

into a single partition. As illustrated in Chapter 2, there are three types of attributes: Discrete, con-

tinuous and textual attributes. If the attributes are discrete, a commonly used similarity measure is

based on the simple matching criterion. The similarity between two nodes in an attributed graph

is determined by examining each of the d attributes and counting the number of attribute values
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they have in common. For continuous attributes, the most commonly used metric is based on the

Euclidean distance as defined in Equation 2.1.22 in Chapter 2. If the attributes are textual, the au-

thors need to transform them into numeric values. They represent a text document through a bag

of words. Each word is represented as a separate variable having numeric weight. The most pop-

ular weighting schema is Term Frequency - Inverted Document Frequency (TF-IDF) [131]. Each

document is then represented as a vector of weight. To measure the similarity between two docu-

ment vectors, cosine similarity is the most widely used metric.

Bothorel [22] studied clustering methods in assigned graphs and classified them into three

families, according to their methodological principles :

Attributes based clustering approaches. In this family of approaches, attribute based clustering

method first exploits attributes by graph or node enrichment and compute similarity or distance

measures over nodes’ attributes [56, 160], then apply a clustering technique to detect communi-

ties. According to the SA-Cluster method [160], the unified random walk distance is applied to an

augmented graph. Then, a simple graph clustering algorithm [116] that optimizes modularity for

weighted graphs is applied for clustering the whole vertices of V . Moreover, according to ANCA

method [56], after characterizing each node by its relationship with preselected seeds, authors

compute a similarity between nodes and apply unsupervised learning techniques to generate at-

tribute and topological communities.

Relational based clustering approaches. In the relational based clustering model, structural

properties are considered first through either a neighborhood similarity. Li in [98] proposed a

hierarchical clustering by filtering process of cores (kernels) based on structural information, then

merging them by their attributes similarity. Dang and Viennet [37] studied two approaches. S AC 1,

the first one, applies Louvain’s detection method [16] to partition the graph into k groups, then

apply the “modularity attribute”maximization involving attribute-based similarity Si m A(vi , v j ),

to evaluate the more positive gain by moving of nodes. In the second approach S AC 2, the author

constructs a KNN (k nearest neighbour) directed graph through an attribute similarity, then apply

Louvain’s method.

Methods exploring together attributes and relationships. These methods belong to the cate-

gory of semi-hybrid approaches since they investigate together attributes and structure. Combe

et al. in [35] propose the I-Louvain algorithm which uses the inertia based modularity combined
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with the Newman’s modularity. More recently, a multiobjective evolutionary algorithm based on

structural and attribute similarities (MOEA-SA) is first proposed to solve the attributed graph-

clustering problems by Li et al. [101]. Two objectives termed as modularity Q (see Modularity

in Table 3.1) and attribute similarity (SA) are used to be maximized in the algorithm. SA is defined

as a criterion to measure the quality of attribute similarity of nodes inside clusters of G .

3.3.4 Summary of detection algorithms in monodimensional graphs

In this section, we provide a critical overview of existing solutions based on networks with one

type of relationships within entities namely monodimensional networks. An overview Table 3.2

cumulates some of the algorithms presented above in four criteria.

The first criterion indicates the particular used strategy. This criterion is assessed on the ba-

sis of three sub-criteria, namely, the type of approach, its advantages and disadvantages. With

the second criterion, it is possible to know which types of networks are handled by the algorithm.

We considered two types of networks: directed and attributed networks. The third criterion gives

an overview about the types of communities covered: their nature and their overlapping aspect.

The last criterion presents information about the behaviour of the algorithm. Three sub-criteria

are used to evaluate this criterion, namely determinism, complexity and prior knowledge on the

number of communities. The first sub-criterion focuses on the deterministic behaviour of the al-

gorithm. In other words, does the algorithm always return the same output community for the

same input data? The second sub-criterion gives an idea about the speed of the algorithms. The

third sub-criterion gives information on whether the algorithm predefines the number of commu-

nities to be detected or not. While reading Table 3.2, we note that each approach has advantages

and weaknesses. We also observe that no algorithm covers all the defined criteria simultaneously

and that none of these approaches is deterministic.

The table is divided into two panels: In contrast to the top panel, the bottom panel concerns

the methods applied to the assigned graphs. A main drawback has been observed: the disregard

of the importance of the incoming degrees of the nodes that would have a higher value in the

community detection.

When reading the top panel, we observe that only one method is concerned by the commu-

nities of interest based on the authority of the seed nodes. The methods implemented by these

authors have the advantage of taking into account the nodes of interest called kernels, by extract-
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ing as kernels those of influential nodes with a similar dense neighborhood. Precisely, the GREEDY

algorithm extracts kernels on the basis of a random choice of the initial node from which to carry

out the kernel construction process. The partition is therefore arbitrary depending on the choice

of this node. Moreover, the size of the kernel is given as a parameter. If this parameter is misin-

formed, then the output is still insignificant.

Furthermore, very few methods deal with both directed and attributed networks, as presented

in the bottom panel. We identified only one method that does, namely SAC1. It has the advantage

of producing more meaningful communities. Indeed, it adapts to both network topology and a

variety of attribute types simultaneously. Although this method combines structural (topological)

and semantic (attribute) information, it has a fundamental limitation, namely the lack of infor-

mation on edge directionality. In view of its approach based on the optimization of modularity, it

does not distinguish the importance of the incoming degrees of a node from its outgoing degrees,

as expected by the modularity. In addition, the centrality of authority in oriented graphs stipulates

that authoritative nodes have more important incoming than outgoing degrees.

Finally, the algorithms we have presented in this section have been designed only to deal with

monodimensional networks. As a result, they are not able to interpret the multiple types of inter-

actions between the entities, which are the object of many types of real-world networks, namely

multidimensional networks. In the following section, we present some methods for detecting

communities in multidimensional networks.

3.4 Multidimensional community discovery methods

This section presents a short study on some multidimensional community discovery methods. It

precisely gives an overview of their operating principles and organization mode according to their

computational accuracy and efficiency. Hmimida [74] classifies them into two main groups: those

for transforming into a unidimensional community detection problem and those for generalizing

existing methods to deal directly with multidimensional networks.

3.4.1 Transformation into a unidimensional community detection problem

This family of approaches aims to carry out specific tasks on dimensions before proceeding to

community extraction from the generated task result. They differ by the type of extracted infor-
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Table 3.2: Summary of some community detection algorithms in single networks

M
et

h
o

d
A

p
p

ro
ac

h
N

et
w

o
rk

Ty
p

e
C

o
m

m
u

n
it

y
n

at
u

re
A

lg
o

ri
th

m
b

eh
av

io
r

C
at

eg
o

ry
A

d
va

n
ta

ge
s

D
ra

w
b

ac
ks

D
ir

ec
te

d
A

tt
ri

b
u

te
d

D
et

ec
ti

o
n

N
at

u
re

O
ve

rl
ap

?
D

et
er

m
in

is
ti

c
C

o
m

p
le

xi
ty

P
re

d
efi

n
ed

co
m

m
u

-
n

it
y

n
u

m
b

er
?

K
ly

m
ko

[8
6]

G
ro

u
p

ce
n

te
re

d
C

o
m

m
u

n
it

ie
s

ar
e

d
en

se
r

N
P-

D
if

fi
cu

lt
X

Ö
St

ru
ct

u
ra

l
N

o
N

o
-

N
o

C
P

M
[4

1]
X

×
St

ru
ct

u
ra

l
Ye

s
N

o
O

(e
x

p
(n

))
N

o
Lo

u
va

in
[1

6]
Q

u
al

it
y

fu
n

ct
io

n
o

p
ti

m
iz

at
io

n

N
o

li
m

it
re

so
lu

ti
o

n
,

fa
st

O
rd

er
o

fn
o

d
e

se
le

ct
io

n
af

fe
ct

s
th

e
co

m
p

u
ta

ti
o

n
ti

m
e

×
×

St
ru

ct
u

ra
l

N
o

N
o

O
(n

lo
g

(n
))

N
o

E
d

ge
b

et
w

ee
n

es
s

[1
18

]
In

st
ab

il
it

y
in

co
m

m
u

n
it

ie
s

×
×

St
ru

ct
u

ra
l

N
o

N
o

O
(n

3
))

Ye
s

N
ic

o
si

a
[1

21
]

C
o

n
si

d
er

at
io

n
o

fE
d

ge
d

ir
ec

ti
o

n
al

-
it

y
D

o
n

o
td

is
cr

im
in

at
e

in
-

o
r

o
u

t-
d

e-
gr

ee
o

fl
in

ks
X

×
St

ru
ct

u
ra

l
Ye

s
N

o
O

(|C
|∗

n
2

)
Ye

s

G
re

ed
y

[1
50

]
Se

ed
-c

en
tr

ic
T

h
e

in
te

re
st

fo
cu

se
s

o
n

in
fl

u
en

t
n

o
d

es
o

ft
h

e
co

m
m

u
n

it
y

It
ig

n
o

re
s

th
e

lin
k

in
fo

rm
at

io
n

b
et

w
ee

n
n

o
n

-k
er

n
el

s
an

d
ke

rn
el

m
em

b
er

s
-

T
h

e
n

u
m

b
er

an
d

th
e

si
ze

o
fc

o
m

m
u

n
it

ie
s

is
kn

ow
n

X
×

St
ru

ct
u

ra
l

N
o

N
o

O
(m

+n
)

Ye
s

N
go

m
n

an
g

et
al

.[
75

]
Se

ed
co

u
ld

b
e

lo
ca

te
d

at
th

e
b

o
u

n
d

ar
y

o
ft

h
e

co
m

m
u

n
it

ie
s

A
re

n
o

t
ap

p
li

ed
to

a
b

ro
ad

ty
p

e
o

f
n

et
w

o
rk

s
×

×
St

ru
ct

u
ra

l
Ye

s
N

o
O

(n
2

)
N

o

C
D

LP
A

[9
9]

P
ro

p
ag

at
io

n
b

as
ed

ap
p

ro
ac

h

B
al

an
ce

gr
ow

th
o

fc
o

m
m

u
n

it
ie

s
N

o
t

ef
fe

ct
iv

e
fo

r
n

et
w

o
rk

s
w

it
h

p
ow

er
la

w
d

is
tr

ib
u

ti
o

n
o

f
n

o
d

es
’d

eg
re

e

X
×

St
ru

ct
u

ra
l

Ye
s

N
o

-
N

o

W
al

kt
ra

p
[1

24
]

W
h

at
ev

er
th

e
le

n
gt

h
o

f
th

e
ra

n
-

d
o

m
w

al
k,

th
e

n
o

d
es

sp
ac

ed
at

th
is

le
n

gt
h

ar
e

si
m

il
ar

.

R
eq

u
ir

e
th

e
le

n
gt

h
o

f
th

e
ra

n
d

o
m

w
al

k
×

×
St

ru
ct

u
ra

l
Ye

s
N

o
O

(n
2

lo
g

(n
))

N
o

LP
A

[1
27

]
Li

n
ea

r
ti

m
e

co
m

p
le

xi
ty

If
th

e
n

et
w

o
rk

is
d

ir
ec

te
d

,
it

ig
-

n
o

re
s

th
e

ed
ge

s’d
ir

ec
ti

o
n

×
×

St
ru

ct
u

ra
l

Ye
s

N
o

O
(n

))
N

o

IL
o

u
va

in
[3

5]

Q
u

al
it

y
fu

n
ct

io
n

o
p

ti
m

iz
at

io
n

U
se

s
n

u
m

er
ic

al
at

tr
ib

u
te

s
In

st
ab

il
it

y
li

m
it

o
ft

h
e

m
o

d
u

la
ri

ty
Ö

X
St

ru
ct

u
ra

l
an

d
se

m
an

-
ti

c
Ye

s
N

o
-

N
o

SA
C

[3
7]

Sc
al

ab
le

-
co

n
si

d
er

s
se

ve
ra

l
ty

p
es

o
fa

tt
ri

b
u

te
s

H
ig

h
er

co
m

p
le

xi
ty

-
It

d
o

es
n

o
t

d
is

cr
im

in
at

e
in

-
fr

o
m

o
u

t-
d

eg
re

es
o

fn
o

d
es

.

X
X

St
ru

ct
u

ra
l

an
d

se
m

an
-

ti
c

N
o

N
o

O
(n

2
)

Ye
s

M
O

E
A

-S
A

[1
01

]
Ta

ke
s

in
to

ac
co

u
n

t
lin

k
in

fo
rm

a-
ti

o
n

vi
a

a
h

yb
ri

d
li

n
k

re
p

re
se

n
ta

-
ti

o
n

A
lo

t
o

f
in

fo
rm

at
io

n
s

h
av

e
to

b
e

gi
ve

n
in

in
p

u
tp

ar
am

et
er

s
Ö

X
St

ru
ct

u
ra

l
an

d
se

m
an

-
ti

c
N

o
N

o
O

(n
2

)
Ye

s

C
E

SN
A

[1
55

]
Sc

al
ab

le
-

F
in

d
re

le
va

n
t

n
o

d
e

at
-

tr
ib

u
te

s
O

n
ly

ca
te

go
ri

ca
la

tt
ri

b
u

te
s

ar
e

im
-

p
le

m
en

te
d

Ö
X

St
ru

ct
u

ra
l

an
d

se
m

an
-

ti
c

Ye
s

N
o

O
(n

)
Ye

s

SA
-C

Lu
st

er
[1

55
]

Ve
ry

go
o

d
b

al
an

ce
b

et
w

ee
n

st
ru

c-
tu

ra
la

n
d

at
tr

ib
u

te
si

m
il

ar
it

ie
s

D
ow

n
gr

ad
e

th
e

in
tr

ac
lu

st
er

co
h

e-
si

ve
n

es
s

Ö
X

St
ru

ct
u

ra
l

an
d

se
m

an
-

ti
c

N
o

N
o

O
(n

3
)

Ye
s

A
N

C
A

[5
6]

Se
ed

-c
en

tr
ic

ap
p

ro
ac

h
P

ro
vi

d
es

m
ea

n
in

gf
u

lc
o

m
m

u
n

it
ie

s
R

an
d

o
m

ch
o

ic
e

o
fs

ee
d

s
Ö

X
St

ru
ct

u
ra

l
an

d
se

m
an

-
ti

c
N

o
N

o
-

Ye
s

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 47



CHAPTER 3. COMMUNITY DISCOVERY METHODS AND APPLICATIONS

(a) Process of dimension aggregation based ap-
proach.

(b) Integration process of the multidimensional com-
munity structures.

Figure 3.3: Process of multidimensional community discovery

mation from each dimension.

Aggregation based approaches. This group of methods generally considers each dimension of

the multidimensional network individually. Thereafter, by applying a dimension aggregation scheme

[27], one constructs a weighted network flatten. Different weight computation techniques can

be applied, namely frequential aggregation, binary aggregation, similarity aggregation and linear

combination aggregation [13,27]. Traditional community detection algorithms based on weighted

links can then be applied on the flattened network (see Figure 3.3a).

Meta clustering based methods. These approaches apply simple community detection algo-

rithms on each dimension to extract partitions. Thereafter, proceed through the ensemble-clustering

technique [15, 93] on the whole partitions computed from each dimension of the multidimen-

sional network, to generate the final partition of the system. Figure 3.3b illustrates this process.

They depend on some parameters defining the number of nodes needed in the overlap for it to

be considered as a community. The parameters are critical for the algorithm since they determine

the number of communities to return.

Structural features based approaches. The third group of this family of approaches aims to ex-

tract the structural features from the multidimensional network by constructing for each dimen-

sion a utility matrices. Afterwards, they unify them to generate an aggregated multidimensional

utility matrix [53,143,144]. The major disadvantage of these approaches lies in the need to specify

the number of communities targeted (in terms of the use of the k-means algorithm [52]).

These approaches have the advantage of preprocessing the multigraph into a mathematical
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structure that promotes the simple use of classical community detection methods. However, they

suffer from some limitations: sensitivity to non-relevant dimensions, loss of information induced

by dimension compression, and their dependence on traditional methods for detecting commu-

nities in one-dimensional graphs. In order to consider some structural features in the commu-

nities inherent in a multidimensional network, some approaches explore the dimensions simul-

taneously. Thus, several methods for extending traditional community detection approaches in

simple networks and quality functions for multidimensional networks, emerged.

3.4.2 Generalization of unidimensional-oriented algorithms to multidimen-

sional networks

This family of approaches focuses on the simultaneous exploration of dimensions. They allow

classical techniques (those from monodimensional networks) to deal directly with multidimen-

sional networks.

Quality function optimization based approaches. This family of approaches focuses on the

optimization of some metrics to form the hierarchical structure for multidimensional networks.

More precisely, Mucha et al. [113] derived a generalized modularity (GM-Louvain), namely Mul-

tislice modularity, a metric to assess the quality of a given partition into multidimensional com-

munities, as defined in Table 3.1. Liu et al. [104] proposed a method based on an extension of

the community density in single networks [2]. They concluded that the denser a community in

multidimensional networks is, the larger the outcome of this equation will be.

Random walk based approaches. This family devoted oneself to the extension of the classi-

cal methods based on random walk in monodimensional networks, namely Infomap [129] and

WalkTrap [124] algorithms. Specially De Domenico et al. [38] introduced Multiplex Infomap (Mul-

timap), and Kuncheva et al. [89] developed Locally Adaptive Random Transitions (LART).

Propagation based Approaches. Methods focus on the label propagation principle [5, 23]. A

multidimensional version of the classic LPA [10], namely Multi Dimensional Label Propagation

Algorithm (MDLPA) was intoduced in [23]. This method is based on an iterative process that is in-

spired by the principle of label propagation. Its major disadvantage lies in the technique of deter-

mining the relevant dimensions, since it uses the degree centrality of a node to improve Fmul ti ob-
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jective function (see Table 3.1). The implication is that maximizing that objective function based

on these relevant dimensions does not necessarily guarantee an optimal partitioning. In fact, if

the node has a constant degree centrality over all the dimensions, the global maximum1 to avoid

will always be reached.

Topological organization based approaches. Several approaches of discovery communities in-

terpret a community as the combination of a set of sub-graphs that share nodes between them.

Tehrani et al. [146] developed Mul-CPM which is an extension of the popular Clique Percolation

Method (CPM) [41] to multidimensional networks. The author rethought the basic concepts on

which the original CPM is based, including cliques and clique adjacency, to handle the presence

of multiple types of ties and extract overlapping communities.

Despite the fact that most of these approaches leverage all structure information across dimen-

sions, their major limitation is that they are strongly parameterizable. Specifically, some variables

are fulfilled at the input of the algorithm, such as the number and size of communities to be uncov-

ered, the random walk length and the rate of relaxation. These parameters could greatly affect the

accuracy of an approach if the values provided by the user are incorrect. Moreover, the consider-

ably large and increasingly growing size of complex networks lead to a waste of time and resources

caused by implementing partitions based on global knowledge of network.

To overcome these limitations, some scholars adopted local community detection schemes.

Similarity based approach. This approach yields communities based on similarity of nodes dur-

ing their clustering process. Hmimida et al. [74] introduced mux-LICOD, a multidimensional ver-

sion of the LICOD approach [78]. This method is based on a seed-centric approach, using the

Jaccard coefficient as similarity measure to obtain real leaders. Recently, Li et al. in [100] im-

plemented M-ALCD (Multi-Layer Attribute and Local Community Detection), an attribute-based

discovering method, based on the attribute similarity between a node and its neighbors in the cor-

responding structure. The method pre-defines a maximum number of communities required as

the condition for terminating the algorithm.

In most of interconnected systems, there is a correlation between entities due to the fact that

information travels not only among vertices of the same dimension, but also between pairs of

dimensions. Thus, intuitively, the activity of a node may evolve from one dimension to another.

1Maximizing Fmul ti does not necessarily guarantee optimal network partitioning.
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However, most of the above-mentioned approaches do not take into account either the correlation

or the activity of the nodes in multiple dimensions. To overcome these limits, some studies have

already been done, as described in the following section.

3.4.3 Overview on multidimensional network- based community detection al-

gorithms

Table 3.3 presents a n overview of some usual community discovery algorithms identified. Some

of the comparison criteria are of importance to better situate the method proposed in chapter 5.

The first criterion is the implemented technique or strategy of detection. The second criterion

is Information nature referring to the consideration or not of attributes. In the third criterion,

the overlapping nature of communities is stated. We indicate in the fourth criterion whether the

method is parameterizable or not. The last column specifies the fact that methods consider the

activity level across dimensions, through Dimension relevance criterion. The function f (M) in

the complexity column means that the complexity of the algorithm is unstable, as it depends on

another method M to which it is applied to determine partitions. The Guangyao’s method [161]

was applied on three algorithms, namely Louvain [40], OSLOM [91] and Infomap [129]. Thus, M

could be one of them in this case.

According to the table 3.3, the majority of the methods only take into account structural infor-

mation. A recent work [100] includes nodes attributes to identify more semantic communities. It

also observed that all of the methods are parameterizable. This reflects the importance of provid-

ing certain parameters by the user in order to perform results. So, the quality of the parameters

affects the quality of the outcomes. Therefore, if the parameters are wrongly supplied, the results

will not be satisfactory. It is therefore interesting to have a prior knowledge of the network.

Table 3.4 presents the advantages and drawbacks of the above methods listed in Section 3.3.

Specifically, since the advantages are varied, the focus is on the drawbacks, which are grouped

into four criteria. The first outlines the methods that set the number and size of communities. The

second criterion presents methods that are insensitive to relevant dimensions because they do not

deal with the level of a node’s activity in a dimension. In the third criterion, the performance limit

of the methods is mentioned, i.e. methods with high complexity. The last criterion concerns the

instability of the method due to three parameters, namely the pre-established order of dimension

assessment, the various existing methods applied on the method, and the initialization of some
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Table 3.3: Summary of some multidimensional community discovery algorithms
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parameters.

3.5 Evaluation techniques and applications

3.5.1 Evaluating community detection methods

Estimating the performance of a method consists in checking whether expected communities are

obtained or not. Given a community detection method, how can we attest that it performs well?

And how to compare two different methods that eventually optimize two different objectives func-

tions? These are the main questions addressed by evaluation techniques for community detection.

According to the knowledge about the ground truth, there are two kind of community detection

methods’ assessment.

Evaluation with ground truth. When the ground truth is known, the evaluation consists in com-

paring how well the algorithm recovers the known communities. Fortunato [62] divides measures

in three categories, based on pair counting, cluster matching and information theory. Among

many others [60], we choose to describe the following pair counting measures, depending on the

one used in this thesis: the Jaccard Index, the Mutual Information and its variants. Pair counting

consists in computing the number of pairs of vertices which are classified in the same (different)

clusters in the two partitions [62]. Let us consider S = (s1, s2, ..., scs) and T = (t1, t2, ..., tct ) being

two partitions of the network G with cs and ct clusters respectively. Jaccard index as defined in

Chapter 2 determines the similarity between two clusters sc and tc as following:

Jacc(sc , tc ) = |sc ∩ tc |
|sc ∪ tc |

(3.2)

The mutual Information (MI) [6] is a measure allowing to compare two partitions by quantify-

ing their common information. The mutual information of two partitions S and T is given by:

M I (S,T ) =
|S|∑

i=1

|T |∑
j=1

P (i , j )log
P (i , j )

P (i )P ( j )
(3.3)

Where P (i ) = |si |
N is the probability of a node in the community si in the first partition, P ( j ) = |t j |

N

is the probability that a node in the community t j in the second partition and P (i , j ) = |ti∩t j |
N the
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joint probability. Since the values of the mutual information are not in ranging between 0 (different

partitioning) and 1 (identical partitioning), Lancichinetti et al. [91] normalized them as follows:

N M I (S,T ) = 2M I (S,T )

H(S)+H(T )
(3.4)

where H(S) is the entropy of S.

Evaluation without ground truth. In some situations, the ground truth is unknown. Therefore,

comparing two algorithms consists in comparing their quality function values. The widely and

popular measure is the modularity objective function and its variants, as defined in Section 3.2.

A community structure is neither always present nor easy to detect. It is therefore possible for

graphs with ground truth to check the presence of the community structure before applying the

quality measures. This topic is the subject of some research in [80] and [28], using the notion of

consensus to decide whether or not a network has a community structure. More precisely, different

partitions are found in the network by using many executions of a non deterministic algorithm and

the frequent nodes of the same communities form the consensus (also called community cores).

It has been shown in [28] that in a network without community structure, community cores are

trivial, either containing all the nodes of the graph or one node each.

3.5.2 Applications

In recent years, many researchers devoted attention to the problem of community detection. The

interest of this detection is multiple, and we can highlight as examples the following applications.

Recommendation: Identifying communities of customers with similar interests in online sales

and purchasing channels between customers and products, such as Amazon11 , enables the de-

velopment of more effective recommender systems [128], in order to better respond to customer

needs and improve market opportunities. In addition, the identification of agricultural practition-

ers having a preference for a specific type of crop, in order to promote the exchange of experiences

through recommendations of suitable treatment products and soil types, to increase yields while

overcoming climate change.
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Table 3.4: Summary table of advantages and limits of some multidimensional methods

Algorithm Benefits Limits
ABACUS [15] Scalable, Success-

fully identify a high-
resolution partitioning

The size and number of
communities to be identified is
known

Carchialo [29] Scalable, multi-
resolution and natu-
rally gives a hierarchical
decomposition of the
network

PMM & SC-
ML [53, 144]

Meaningfulness results :
Flexibility in combining
structural features

M-ALCD [100] Scalable and efficient be-
cause it is based on at-
tributes and interaction
of nodes

Aggregation [27] Easy and simple to apply Sensitivity to non-relevant
dimensions , InstabilityMux-LICOD [74] Better performance

GM-Louvain Adaptable to a broader
class of networks

Higher complexity - Low
performance because the
correlation depends on
topological features which
could be complex to compute
if the graph is large-scale

LART [89] The length of the random
walk promotes the dis-
covery of communities
across all dimensions

MDLPA [23] Considers the dimension
relevance

Instability due to the undesir-
able global maximum

Multimap [38] Accuracy of results as it
reveals smaller modules
with more overlap

Instability due to its nondeter-
minism

MultiMOGA [5] Flexible of use: possibil-
ity of specifying the order
of exploration of dimen-
sions

Not efficient: it assumes the ex-
istence of a partition on each
dimension; Instability due to
the pre-established order of di-
mension assessment

Guangyao et
al. [161]

Simply implementation;
more tools and tech-
niques to use on the
unified matrix

Unstable because of variables
existing methods applied on it
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Link prediction: This task involves identifying new interactions between members of a Social

Network that are likely to occur in the close future [102]. Thus, information on future interactions

can be extracted from the network topology, in particular, the community structure in order to

predict these relationships and anticipate containment measures or new habits to be taken.

Spread of epidemics: It is crucial to understand how an epidemic expands once it has occurred

in order to control it. We are recently witnessing the Covid-19 pandemic, a pandemic of an in-

fectious emerging disease called coronavirus 2019 (Covid-19). Individuals back from a trip are

possibly in direct contact with their close surroundings. Some criteria related to distance induced

by the means of communication in addition to geographical distances are incorporated in recent

models of epidemic spread. Some of these models have shown that community structure is a key

factor in the behavior of network percolation processes such as the spread of an epidemic. Indeed,

the structure of the community can both impose and inhibit the processes of dissemination [118].

Information spreading: A major feature of Social Networks is the dissemination of information,

such as rumors, stories and opinions. Indeed, the processes of this dissemination are now affected

by the community structure [103]. More specifically, the detection of dynamic communities re-

lated to hot topics, linking content designers and disseminators, allows a rapid dissemination of

information.

Prediction of cellular functions: In biology, Protein-protein Interaction Networks (PINs) are

characterized by a noticeable modular organization that reflects the functional associations be-

tween proteins. Thus, a group of proteins that collaborate on the same cell function correspond to

communities. The detection of these communities and the analysis of PINs are thereby a precious

tool for functional prediction.

Detection of terrorist organizations : Understanding the hierarchies within criminal organiza-

tions and discovering the members who play a central role is necessary to support law enforce-

ment agencies. In this context, the study of criminal networks using communication tracks from

telephone call recordings reveals the underlying community structure that will be exploited by

forensic investigators [58].
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3.6 Conclusion

Throughout this chapter, the concepts of community detection methods have been explored, in-

cluding the definition of quality functions together with a description of detection approaches for

both mono- and multidimensional graphs. Particular emphasis was placed on the applications of

this crucial area of research, which is the detection of communities in complex graphs. Indeed,

it has been a matter of reviewing the main solutions for detecting communities in undirected, di-

rected, attributed and multidimensional graphs. The study of the existing situation allowed us to

identify five shortcomings that, if taken into account, will improve the communities of interest

discovery from complex networks.

Firstly, algorithms for detecting communities in directed and attributed graphs generally focus

on the topological (link density) and semantic (attribute similarities) characteristics of the net-

work by studying, for instance, triangles, homophily, centrality or distance measures and/or sim-

ilarities between nodes, without really taking into account the directionality of links. Indeed, this

topological modeling disregards the triad-based seed-centric interest between network elements,

because it does not implement the idea that an edge from a low out-degree but high in-degree

node to an opposite case node should be considered of a bigger value, as described in subsection

3.3.2. Secondly, the existing detection methods are for the most part non-deterministic. This non-

deterministic behavior is caused by this variation of methods or the random choice of some pa-

rameters. As a result, there is a glaring instability in the obtained partitions. Thirdly, all methods

are highly parameterizable, as they require certain parameters to be filled in, in advance, which

when misinformed, lead to incorrect results. In fact, providing accurate values input parameters,

including the number of communities, requires a priori knowledge of the network to be analyzed.

However, in practice, such knowledge is not always available. The fourth shortcoming is that the

interest in multidimensional graphs is not taken into account since only a few methods consider

the relevance of dimensions in the clustering process. These focus on the degree of nodes that

constitute a limit. Indeed the importance of a dimension for a node cannot be limited to its degree

because if this node has the same degree in all dimensions, then all these dimensions would be

relevant to it. This consideration thus constitutes a limitation to which it would be important to

remedy.

After identifying these four shortcomings, the next chapters will therefore present the con-

tributions of this thesis, aiming to overcome the limitations of existing approaches and propose
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effective solutions for the detection of communities in the context graphs of our study
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CHAPTER4
Community of interest detection in directed

networks

4.1 Introduction

In Chapter 3, we presented some examples of partition quality functions, then we described in two

sections, the community detection methods in simple graphs and in multidimensional graphs.

Concerning the first group of methods, we have dislocated the description in three parts: detection

methods in undirected graphs, in directed graphs and then in attributed graphs. We also proposed

a method of community detection in directed networks in [44] that improves Edge Betweenness

method [68]. It appears that several of these methods for directed graphs do not focus on the

interest on incoming links of nodes. Yet incoming links are more important than outgoing ones,

as stipulated by modularity [99, 110], a favorite function in the literature to assess the quality of a

partition. Indeed, the link density on which existing methods predominantly have been focusing

is limited by the link directionality, which gives a non-objective meaningfulness or interpretation

to the resulting communities.

Among these approaches, some investigated the classification of vertices with attributes [160].

Others approaches [37] stressed on the combination of both relational and attribute data without

taking into account the directionality of the edges. This can lead to an imbalance of the commu-

nities, since there is no consideration of the three types of informations simultaneously (both link

density and directionality, as well as the attributes of the nodes).

In this chapter we present our first two contributions, one being the detection method of triad-

based clusters in Section 4.2, and the other being a hybrid model of community detection in Sec-

tion 4.3, designed to address the above weaknesses.
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4.2 Community detection using triads

We study in [45, 48] two methods of detection of triad-based communities. In [45], we proposed a

method for optimizing the kernel degree metric, initially defined in [47]. This method is executed

in two steps: kernel extraction and community building. The kernel extraction step is the most

critical part of the clustering process. Indeed it consists in the optimization of the Kernel degree

metric, namely Kuv (see Equation 4.1 in Section 4.2.3 below). After determining v as the maximum

incoming degree node, it is a question of computing the Kuv metric for all the other nodes u of

the graph. Then after estimating the average Kuv , we proceed by a kernel improvement heuristic

by choosing to put the node u in the kernel of v for which Kuv is higher than this average. Af-

ter a certain pre-specified number of steps for which Kuv does not cross any more the process is

interrupted. This method is an improvement of method in [50] because instead of going link by

link to compare the kernel degree that optimizes the kernel in training, it computes the average of

the kernel degrees obtained on the kernel in training to optimize it. This approach improves the

complexity of the method described in [47] and is applicable to larger datasets.

One of the most obvious drawbacks of the method in [45] is the over propagation problem. The

main reason behind the over propagation is the rapid and aggressive expansion of the core of some

communities. The weaker in-degree nodes have little chance to grow. The extreme case of the over

propagation is one giant community, dividing all the nodes into one class. However, comparing

with other cases, the one giant community is not so bad. It at least notifies if the community

detection failed in this attempt and needs another try. To overcome this drawback, we improved it

in [48]. The method proposed there builds kernels no longer on the basis of the optimization of the

Kernel degree function, but on the basis of the structural equivalence of the nodes. Thus, the nodes

having the common neighborhood are eventually members of the same kernel. The kernel degree

measure is used to determine the threshold for selecting nodes to be kernel members. Therefore,

the threshold for creating these kernels is not set as a parameter anymore. It is derived from the

standard deviation and interclass inertia based on the kernel degree. An extension of this method

was elaborated in [46], thus constituting the subject of the first contribution addressed in Section

4.2.2.

As a reminder, we are interested in the detection of communities of interest in directed graphs.

This method has several objectives: first of all, it should create communities of interest in directed

networks based on topological features of the complex networks namely homophily [111] and pref-

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 60



CHAPTER 4. COMMUNITY OF INTEREST DETECTION IN DIRECTED NETWORKS

erential attachment [9], and secondly, it should promote the impact of the incoming links in the

communities through the definition of a measure of similarity namely the kernel degree, which

expresses the interest based on the same information perception by a group of nodes. Thus, we

focus on community of interest referring to entities centered round kernels. In other words, the in-

terest reflects the fact that kernels enjoy communities’ members confidence. The higher the value

of kernel degree is raised, the more the nodes of the kernel are similar through the trust in the

same kernel (same in-neighborhood). This measure is then used in the second proposal of this

chapter, as investigated in Section 4.3, to take into account the attributes between the nodes of a

community, in order to strengthen the cohesion between members of the same community.

We begin this section by defining the notion of community of interest based on triads. Stress

that this concept is very important because it is the baseline for designing our solution.

4.2.1 Topological Community of interest definition

Triads were initially studied by Wasserman et al. [151] in social network analysis. They are con-

sidered as wedges, i.e paths of length 2 by Klymko [86] who focuses on the density in triangles for

identifying communities. This method has the advantage of detecting denser communities. How-

ever, triangle density would be a restriction since the triangle is an elementary clique, and finding

cliques in a graph has been proved to be an NP-complete problem [19]. To remedy to this com-

plexity, algorithms based on Clique percolation [41] may work well for graphs characterized by a

large number of cliques, like certain social networks, whereas it may give poor results otherwise.

In directed graphs, the process of extracting communities should take into account either “in”or

“out”directionality of the edges for meaningful interpretation. For example, in citation graphs,

the incoming degree (also called the number of citations) is used to quantify the importance of

scientific publications [66]. Therefore, it becomes interesting to specify those of nodes centered

around kernels (set of influential nodes inside a group) according to in-direction of the edges. This

in-direction reflects directed triads in directed networks. Moreover, Yang and Leskovec [154] show

that more simple criteria such as conductance and enrollment rate in triads, in particular, often

better characterize a community structure than modularity.

Then, in this chapter we propose a community of interest detection method based on topology,

unlike the one in [32] based on ontology, which shows that directed triads enlarges the possibility

to imply considerably in-degree than out-degree of nodes, as was expected the directed modular-
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ity function. Our method is based on the common neighborhood of nodes and identify groups of

nodes dense in triads.

Considering a given directed graph G = (V ;E) with n = |V | the number of vertices and m = |E |
the number of edges. An edge ei j connects vertex vi with vertex v j . We now give the definition

of the community of interest in directed networks, based on some topological features namely

high clustering coefficient and structural equivalence. In this context of directed networks, the

topological definition of community is as in the following:

Definition 4.2.1. (Community of interest). A community of interest in a directed graph refers to a

structure in which nodes are both dense in terms of triads, but also similar since they point to the

same kernel.

We refer to triad-based clusters to express communities extracted from our model, because

these communities express subgraph engendered by kernels and whose nodes are densely tied by

triads.

4.2.2 Triad-based model

The Triad-based community detection method we propose in this section aims to generate com-

munities of interest. The intuition behind this method is that the nodes of the same community

follow a set of nodes of interest because they subscribe to their ideology or consider their opinions.

The interest is expressed by the “in-direction ”of edges towards the kernels. Hence the kernels have

important incoming degrees. Indeed, the nodes of the same community are interested by the ker-

nel with that they have a maximum of links which point to it. Thus the incoming direction of these

links reflects the fact that they trust kernels. When an entity’s in-degree is maximal, it indicates

that the number of that entity/user’s subscribers reflects his popularity. For instance, in a social

network such as Facebook, there are subscribers who seldom publish, but are regularly followed

by a large number of fans. Consider a citation network in which the nodes represent the authors

and the links represent the relationship a quotes b ˝. In such a network, the community of inter-

est corresponds to the set of authors interested in a specific research topic. Such specific research

topic is implicitly derived from the kernels which are effectively made up of the authors pioneers

of the field. Hence, the fundamental metric on which our work is based relies on the in-degree,

being the number of incoming edges to node. Therefore, our model, based on the seed-centric

approach [78], uses the in-degree of nodes and their common neighborhood according to triads
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as shown in the grey bottom part of Figure 2.2. It is inspired by Wang’s GREEDY method [150]. Our

triad-based model keeps the same constructive idea of the communities, but relies on a kernel

score criterion based on dense triads to build the kernels before migrating the non-kernel nodes

to the kernels thereby forming the final communities. The concept of kernel related to nodes of

interest [150] is outlined in Definition 4.2.2. It considers a kernel as set of nodes having more

connections to/from the kernel than a vertex outside the kernel does. Unlike this view, the ker-

nel proposed here focuses on the structural equivalence and limit the over propagation through a

threshold as follows:

Definition 4.2.2. (Kernel). A kernel is a set of vertices with the same neighborhood, such that these

neighbors expand gradually inward the kernel, according to a threshold σ.

Formally, the kernel K fulfills the following properties:

- K = {v1, ..., vi , ..., v|K |}, vi ∈V

- ∀vi , v j ∈ K , Γi n
i 'Γi n

j ,

- ∀i 6= j \vi , v j ∈ K , Ki j >σ.

The first property states that the nodes of the kernel are nodes of the graph. The second prop-

erty specifies that the kernel nodes have almost the same neighborhood. In the third property, the

kernel nodes are similar, because they are subject to peers whose kernel degree measure valuation

is above a σ threshold.

We describe the triad-based community model through the Algorithm 1 below. The steps that

it consists in are grouped into the following 3 main phases:

1. Kernel candidates’ generation (from step 1 to step 3) at the end of which the dictionary struc-

ture K Di ct contains these candidates;

2. Kernel extraction (step 4 and step 5) where t kernels formed by triads are extracted from the

candidates;

3. Community computing process (Step 6) where kernels are extended by migration of the non-

kernel nodes to kernels.

We will use Wang’s network [150], shown in Figure 4.1, to illustrate the steps of the proposed

method. It is an extract from Twitter and we named it Subtwitter in this thesis for sake of simplicity.
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It contains 14 nodes and 32 edges. The notations are simplified by abbreviating the names of the

entities as follows: Demi Moore (DM), Oprah Winfrey(OW), Al Gore (AG), Barack Obama (BO),

Ashton Kutcher (AK).

Figure 4.1: Subtwitter: Extract from Twitter social network used in [150]

Algorithm 1 The triad-based community model for community detection

Require: Directed graph G = (V ,E)
Ensure: List of Communities C = {C (1), ...,C (t )}

1: Step 1: Compute In-degree pruned Central List C L according to the degree average of the graph. The
list is in decreasing order of degree

2: Step 2: Compute Kernel Dictionary K Di ct based on each distinct pair of C L such as K Di ct =
[((vi , v j ),Ki j )]

3: Step 3: Compute Interclass inertia vector I according to Ki j values of K Di ct
4: Step 4: Compute a threshold σ being the standard deviation of the vector I
5: Step 5: Extraction of kernels as described in Algorithm 2 from Line 3 to Line 13.
6: Step 6: Community building through non-kernel nodes migration, as described in Algorithm 3

4.2.3 Step 1: Kernel candidates’ generation

This step consists in generating the list of eligible nodes to eventually belong to kernels. It spreads

out into three subtasks: extract the list of node in-degrees through computing a degree centrality

list; then compute the values of the weights between pairs of nodes from the previous list, through

computing kernel dictionary; finally grouping these couples according to their neighbors’ similar-

ity through the computation of an inter-class inertia vector.

In-degree centrality list computing. This step consists in determining a list of nodes sorted

in the descending order of their in-degree; that list is called Centrality List (C L). So that those

with maximal in-degree are more eligible than those with a low in-degree, since we focus on the
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preferential attachment property of real-world complex networks. Then, pruning from the list

in–pendant and in–isolated vertices i.e. those of nodes with an in–degree below the in–degree

graph average, as inspired by Steven L. and al. [90] who defined a pendant as vertex with a sin-

gle neighbor which has degree 1. This filtering step improves performance and allows simplifying

assumptions later when deciding whether to include a vertex into a kernel. For instance, in a ci-

tation network, an in–pendant or in–isolated vertex corresponds to an author whose the research

area does not interest other researchers, so removing these nodes with an in-degree below 2 im-

proves the processing speed and produces more cohesive communities of interest later. For illus-

tration on the Subtwitter network, the C L contents is: C L = [′AG ′, ′BO′, ′AK ′, ′DM ′, ′OW ′] because

they have an in-degree above 2, being average degree of the network.

Kernel dictionary computing. This step consists in computing the strength of similarity of

nodes that could be membership of the same kernel. To compute that strength, we defined a

measure called kernel degree, which computes the score of kernel, in order to determine whether

the ending nodes of every edge (vi , v j ) such that vi , v j ∈C L, will belong to the same kernel or not,

as described in Definition 4.2.5 below. This measure consists in two metrics: The Neighborhood

Overlap as defined in Definition 4.2.3 and the Triad Weight as defined in Definition 4.2.4.

Definition 4.2.3. (Neighborhood Overlap). Given two vertices vi and v j . The neighborhood overlap

NOi j is a Jaccard Index variant [140], which consists in measuring neighborhood similarity of two

vertices vi and v j so that they could belong to the same kernel.

NOi j =
|Γi n

j ∩Γi n
i |

|Γi n
j ∪Γi n

i |−θ

Unlike the Jaccard Index which does not consider the connectivity between the nodes because it

just computes the common neighbors of 2 vertices vi and v j , Neighborhood Overlap integrates the

fact that there could be or not an edge between vi and v j . That is why we use the θ parameter in the

denominator to compare 2 similar kinds of neighbor sets. In fact, according to the numerator, one

vertex can belong to the in-neighborhood of another, and vice versa. θ can take different values 0,

1 and 2, depending on the connectivity of vi and v j vertices.

• θ = 0 if (vi , v j ) ∉ E and (v j , vi ) ∉ E

• θ = 1 if (vi , v j ) ∈ E and (v j , vi ) ∉ E

• θ = 2 if (vi , v j ) ∈ E and (v j , vi ) ∈ E
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Definition 4.2.4. (Triad Weight). The Triad Weight T Wi j of any edge ei j in graph G can reflects the

percentage of directed wedges linking the nodes vi and v j . It computes the ratio between the number

of triads crossing both vi and v j and the number of triads in which v j is involved such that:

T Wi j = |∆i j |
|∆ j |

where |∆i j | represents number of triads crossing both vi and v j according to the scheme pre-

sented in the bottom of the Figure 2.2 and |∆ j | to represents the number of triads in which v j is

involved. Let us assume that v j is the target node of the edge ei j . The idea behind the kernel de-

gree measure is that kernel nodes must have high affinity with each other, based on their common

neighborhood. For this reason, we combine the two neighborhood metrics above mentioned to

develop the proposed new similarity measure, as defined in Definition 4.2.5.

At first glance, the triad weight and the neighborhood overlap simultaneously compute the

common neighborhood of nodes vi and v j . Nevertheless it would be necessary to mention the

difference between the two concepts. While the triad weight considers the directionality of edges

on the numerator through the directed triads, the neighborhood overlap considers it on the de-

nominator because it favors situations in which kernel nodes are not tied. These considerations of

directionality reinforce the strength of nodes’ similarity. We have shown in Section 4.2.6 that the

exclusive consideration of one or the other (either triad weight or neighborhood overlap) does not

favor the high kernel score. Their combination leads to scalable results. Indeed, our empiric tests

on metric taken separately show the superiority of Kernel Degree on various networks, as evaluated

in section 4.2.6. Thus, we define Kernel degree in the following way:

Definition 4.2.5. (Kernel Degree). Intuitively, Kernel degree measures the strength or the score of

the kernel vertex similarity.

Its value between a pair of vertices vi and v j is evaluated using Equation 4.1.

Ki j = T Wi j ×NOi j (4.1)

In Equation 4.1, the first term is based on triads, and promotes the Triad Weight in a kernel;

Given two vertices vi and v j , a standard way to compute the percentage of triads they form to-

gether is to compute the ratio between the total number of triads in which the pair of vertices is

included (numerator) and the total number of triads in which vertex v j is contained (denomina-

tor). The second term promotes the Neighborhood overlap of vi and v j vertices. The values of
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kernel degree are represented by a kernel dictionary named (K Di ct ), whose items are structured

through the following format: (ke y_di ct ; value_di ct ). ke y_di ct is any unordered pair of nodes

from C L pruned list, and value_d i ct is the corresponding kernel degree Ki j of these pairs. For-

mally, K Di ct = [((vi , v j ),Ki j )].

For illustration, K Di ct = [((‘DM’, ‘OW’), 1.6), ((‘AG’, ‘BO’), 0.595 ), ((‘AK’, ‘OW’), 0.32 ), ((‘AK’,

‘DM’),0.267), ((‘BO’, ‘DM’), 0.0635 ), ((‘AG ’, ‘DM’), 0.057 ), ((‘BO’, ‘OW’), 0.0158 ), ((‘AG’, ‘OW’), 0.0143

), ((‘BO’, ‘AK’), 0.013 ), ((‘AG’, ‘AK’), 0.012 )].

Let us remember that a kernel in this thesis is a set of nodes owning a common central in-

degree overlapping neighborhood. This task of extracting kernels focuses on determining those of

nodes more eligible to belong to kernel via interclass inertia.

Interclass inertia computation. Given that the clustering main goal is to form homogeneous

groups, the measure used here to divide objects into two groups, those eligible to belong to a kernel

and those not eligible is Inter-class Inertia. A list I of the inter-class inertia values is computed

on basis of K Di ct dictionary. Indeed, high interclass inertia values indicate that objects tend to

be more dissimilar, and consequently should belong to distinct groups. To delimit node in two

groups, we compare values from Inter-class Inertia List to a computed Standard Deviation σ on

I . This way, vertex pairs (i , j ) of K Di ct whose Inter-class Inertia value is larger than σ are more

eligible to belong to kernels. The Inter-class Inertia between 2 sub-groups G1 and G2 is expressed

as:

I (G1,G2) = |G1|(µ1 −µ)2 +|G2|(µ2 −µ)2 (4.2)

|G1| and |G2| are respectively the number of edges in groups G1 and G2. µ1, µ2, and µ are respec-

tively the average Kernel Degree for G1, G2 and G . The Subtwitter Network in Figure 4.1 presents

distinct groups G1 and G2 respectively as the following, and the corresponding Inter-class Inertia

of KDict as : for G1 = {(DM, OW)} and G2 = {(AG, BO), (AK, OW), (AK, DM), (BO, DM), (AG, DM),

(BO, OW), (AG, OW), (BO, AK), (AG, AK)}, the Inter-class Inertia for these groups is 1.987. Then, the

following pair of nodes in K Di ct list moves from G2 to G1, and their contents become: G1 = {(DM,

OW), (AG, BO)} and G2 = {(AK, OW), (AK, DM), (BO, DM), (AG, DM), (BO, OW), (AG, OW), (BO, AK),

(AG, AK)}, and the Inter-class Inertia for these groups is 1.705. We change the G1 and G2 contents

and so on. The interclass inertia vector is progressively computed and its contents are presented

as follows: I = [ 1.987, 1.705, 1.359, 1.162, 0.844, 0.627, 0.439, 0.297, 0.186, 0.131]. Afterwards, a

threshold helpful for kernel extraction process is computed, as detailed in the next section.
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4.2.4 Step 2: Kernel extraction approach

This section firstly presents the methodological principle followed by the properties fulfilled by

kernels, and finally it describes the threshold on which the kernels are structured.

Methodological principle. The phase begins by initiating kernels with distinct pair of vertices

possessing the highest corresponding Inter-class Inertia, through the mileage of the K Di ct dictio-

nary. Given that an initiating vertex r of a kernel t between the initiating pair of vertices {r,u}. If a

vertex p in K Di ct is coupled to another one q with whom the Kernel Degree Kpq is lower than its

Kernel Degree Kpr with the initiating kernel vertex r , p immediately migrates to that kernel t . So

the kernel t will be made of {r,u, p}. Then those already belonging to the kernel will not be treated

in the future steps. The vertices belonging to the kernel own almost the same neighbors. The

approach proposed here makes use of a new concept Kernel Degree Ki j as defined in Definition

4.2.3, that measures the strength of a kernel according to a threshold. This concept is based on the

triadic membership to emphasize the semantic proximity that ties kernel members conducting to

efficient centralization of information over the network.

Kernel properties. We require that the kernel fulfills the following properties:

1. Every kernel contains distinct pair of vertices with inter-class inertia upper than a threshold.

2. The kernel vertices have higher Kernel Degree values, proportionally to the degree distribu-

tion of the graph.

3. Given an initiating pair (i , j ) and a border vertex k in a kernel, the neighborhood overlap

cardinality of (i , j ) must be higher than the neighborhood overlap cardinality of any neigh-

bor t of (i , j ,k). Formally, Given ∀(i , j )\i , j ∈ C L, and k ∈ K , | Γi , j ∩Γk |≥| Γi , j ∩Γt |, where

Γi , j =Γi ∩Γ j .

Standard deviation σ. To compute Kernels, we focus on a threshold, which is the standard devi-

ation from interclass inertia list I . Unlike the well-known meaning of the standard deviation, we

observe during the experimental phase that the higher the standard deviation σ computed from

a set nodes, the more likely they possess an almost common neighborhood. As a matter of fact,

as illustrated through the Table 4.3, a lower standard deviation indicates that these vertices have

a quasi-null common-neighborhood cardinality. Because of the power-law degree distribution in

real-life networks, very little nodes get a high in-degree widely above the in-degree average. We
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make the assumption that according to [97], there tend to be a few “hub”vertices with a very high

degree and great number of vertices with a much lower degree. In the case of directed graphs,

the concept of hub vertices depend on the in-degree or the out-degree value. This study stresses

on in-degree vertices, meaning that they receive more information from the other vertices than

“non-hub”vertices. The standard deviation is expressed as:

σ=
√

1

n
Σn

i=1(x2
i )−µ2 (4.3)

where µ= 1
nΣ

n
i=1xi indicates si average (or mean), and xi indicates every element of the interclass

inertia array. A kernel is initially made of a pair of vertices, and expands progressively by adding

vertices which are in couple with kernel members, whose the corresponding Kernel Degree value is

aboveσ. This leading to an expansion of the starting kernel. As shown in Figure 4.2b, initial kernels

are surrounded of red dashed lines, and grow progressively (see green dashed lines in Figure 4.2b).

When a node already belongs to a kernel, it is omitted later in the list of eligible nodes, because

discovered communities are disjointed. We make use of a denoted K e y variable which could be

any pair/couple of vertices of K Di ct . In fact, each eligible ke y is integrated into a new kernel,

after confirming its non-existence anywhere in the list of kernel vertices. This merging step im-

proves performance and allows simplifying assumptions later when deciding whether to choose

the favorite kernel by a non-kernel vertex (the vertex not belonging to a kernel).

(a) Output by Wang’s algorithm
(b) Output by our triad-based
algorithm

Figure 4.2: An illustration of outputs from the Subtwitter network in Figure 4.1

The implementation for kernel is presented in Algorithm 2, which extracts a list of kernels

named Li stK , from the overall nodes of the graph. st and ar d_devi ati on(I ) is the function com-

puting the standard deviation from the inter class inertia vector I . i nke y represents a boolean

array of distinct nodes from K Di ct ′ reflecting whether they are in a kernel or not. nei g hbor (e)

returns the other member of the pair of nodes defined by key in K Di ct , orderless.
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Algorithm 2 Kernel extraction

Require: Directed graph G = (V ,E)
Require: I inter-class inertia vector //corresponding to the vector I in the explanation above.
Ensure: Structured-by-key Kernels set called Li stK

1: Initialization : σ← st and ar d_devi ati on(I ) , Li stK ←;;
2: ∀ di st i nct e ∈ K Di ct .ke y_di ct , i nke y[e] = F al se
3: K Di ct ′ ← K Di ct such as K Di ct .value_di ct >σ
4: while ∃e ∈ K Di ct ′.ke y_di ct/i nke y[e] = F al se do
5: if i nke y[nei g hbor (e)] = F al se then
6: K e y ← (e,nei g hbor (e))
7: Li stK ← Li stK ∪K e y
8: else
9: K ← K ∪ {e}/nei g hbor (e) ∈ K and K ∈ Li stK

10: end if
11: i nke y[e] ← Tr ue
12: i nke y[nei g hbor (e)] ← Tr ue
13: end while
14: returnLi stK

The standard deviation value for that network is σ= 0.62. It is the threshold on which kernels

are to be built. The model computes the first kernel K1 initialized by nodes ‘DM’and ‘OW ’for which

the associated inertia in I is 1.987 ≥ 0.62; thereafter, K1 is extended by the node AK because AK is in

the couple with the other nodes already assigned to kernels (See K Di ct in the above Step 1), with

corresponding inertia of 1.359, 1.162 (See I list in Interclass inertia paragraph above); the second

kernel K2 is initialized by ‘AG ’and ‘BO ’for which the associated inertia in I is 1.705 ≥ 0.62. The

process is repeated on the other i values in I for which I [i ] ≥σ; and if the corresponding K Di ct [i ]

pair nodes are already keys or associated values of keys, they are just omitted. Figure 4.2b shows

in green dashed lines the kernels.

4.2.5 Step 3: Community computing process

After extracting kernels, the other nodes not into the kernels, called non-kernels vertices, remain.

The process of generating global communities (communities containing both kernels and non-

kernels vertices) is an iterative optimization process of a function named Node community In-

dex(NC I ) (see Definition 4.2.6). It consists in migrating non-kernels vertices to the kernel with

whom they have a maximal number of links as shown in Equation 4.5. NC I is based on the num-

ber of connection each non-kernel vertex owns with the kernel.

Definition 4.2.6. (Node community Index). NC I is a node membership score defined for a node x

to belong to the kernel K as the ratio between the number of outgoing links from x pointing to K and

the minimum between the number of outgoing edges from x and the number of nodes in the kernel
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K ; then NC I is defined as NC I : V ×K −→R+. Formally, NCI is defined in Equation 4.4 below.

NC I (x,K ) = mout (x,K )

mi n(mout (x),nK )
(4.4)

This measure corresponds to an extension of the conductance measure defined in Section 3.2

in Chapter 3. Indeed, in the NCI formula, the community is restricted to a unique node, unlike

the community considered in the conductance formula. NCI consists in determining the mem-

bership of a vertex x, depending on three parameters: mout (x,K ) is the number of outgoing edges

from x pointing to a kernel K , mout (x) is the total number of outgoing edges from x or its out-

neighborhood cardinality, and nK is the number of vertices in the kernel K .

A vertex x migrates to kernel K ∗ if:

K ∗ = argmax
Kl∈Li stK

(NC I (x,Kl )) (4.5)

where Li stK is a set of extracted kernels.

The pseudo-code of this migration approach is described in the following algorithm 3. It

presents in Line 1 the initialization of Communities named Gi by their corresponding kernel Ki

computed in the preceding kernel extraction step (see Section 4.2.4). From Line 2 to Line 6, the

method computes for each non-kernel node its Node Community Index (NCI) and puts it in the

kernel (or growing community) whose NC I is maximal. In Line 7, results which are global com-

munities (communities not growing, but definitely computed) are produced.

Algorithm 3 Algorithm for non-kernels vertices migration

Require: Communities Kernels Li stK = {K1,K2, ...,Kt }
Require: NonK er nel Set = {G .nodes\∪Ki } //nodes x of G not belonging to any Ki

Ensure: Global Communities GK = {G1,G2, ...,Gt }
1: ∀i ∈ {1, ..., t } , Gi ←− Ki

2: for x ∈ NonKernelSet do
3: Compute NC I (x,Gi ) for each Gi

4: G∗ ←− ar g max(NC I (x,Gi ))
5: G∗ ←−G∗∪ {x}
6: end for
7: returnGK

Non-kernel vertices for the Figure 4.1 Network are listed below: shallowend, abhubbu,ryzgo,

106andpark, 3atma, brycob, 303nomad, ritajohnsonn, BizPlanUSA. Global communities detected
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by Triad-based approach are shown in Figure 4.3d below. The number of communities is visibly

2: We see in Figure 4.2a that Wang extracts the same partition as well as our model. Nevertheless,

Wang sets the number of communities to detect. In other words, if its input on the number of

communities was 1, his result would had been different from ours. Results on this illustration

network are shown in Figure 4.3 according to 4 methods namely Walktrap [124], Louvain [16],

Edge-betweenness [68], Label propagation [127] and Triad-based method.

(a) Edge-betweeness Partition (b) Label Propagation Partition

(c) Walktrap and Louvain Partition (d) Triad-based partition

Figure 4.3: Visualization of the partitions obtained from Subtwitter Network in Figure 4.1, by the
different algorithms, using R 3.5.1 package

Complexity analysis: In view of the size of G with n the number of vertices and m the number

of edges, the complexity is assessed according to each phase.

The first phase of constructing candidate kernels is assessed in 3 ways as shown in Section

4.2.2: Step 1 in Algorithm 1 computes a Centrality list CL. Assume that the length of CL is p = n−k.

The complexity of this sorted degree-based centrality list CL is (p)log (p). Step 2 in Algorithm 1

computes the kernel dictionary K Di ct . Its computation is assessed considering the right and left

sides of the kernel degree measure Ki j : Given ni and n j the number of neighbors of nodes vi

and v j respectively. The left side namely triad weight is assessed as follows: the numerator is the

intersection of neighbors of nodes vi and v j . So the numerator complexity is O(ni +n j ). The

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 72



CHAPTER 4. COMMUNITY OF INTEREST DETECTION IN DIRECTED NETWORKS

denominator is O(n), in the worst case. This worst case is reached when v j get all of the other

nodes (n − 1) as neighbors. For p elements of CL, we will have O(pn). The right side namely

Jaccard index variant, possesses a complexity of O(ni +n j ). Thus the complexity of the sorted

Kernel dictionary computation is O(pn +nlog n). Step 3 computes the interclass inertia vector.

Its complexity is O(p2). So the first phase of kernel candidate’s generation is pn + (p)log (p) or

n2 + (n)log (n) in the worst case.

The second phase of kernel extraction namely Step 5 in Algorithm 1, is assessed as follows:

given that KDict is pruned considering the threshold, and that its remaining elements are copied

in K Di ct ’, let us assume that the size of K Di ct ’ is s, the number of distinct element; thus, to

obtain kernels, we compare one element of K Di ct ’ to the other, so the complexity is O(s2). In the

worst case when the number of nodes involved in pairs of K Di ct ’ is n, the complexity of Kernel

extraction is O(n2).

The third phase based on migration of non-kernel nodes to kernels in order to constitute final

communities (Step 6) is assessed as follows: Suppose that t is the number of kernels and L the

number of non-kernel nodes. So the complexity will be O(Lt ). In the worst case, we have (n −2)

non kernel nodes with one kernel. Thus, complexity in the worst case is O(n).

The global complexity of the proposed model is O(n2 +nlog n).

4.2.6 Empirical evaluation and experiments

In this section, we show experiment results. We assess a variety of models on three main tasks:

Triad density of the partition, modularity evaluation and the number of communities. In order

to evaluate kernels, the study of the kernel degree measure as shown in Paragraph 1 below will be

made on the illustration on Subtwitter network as shown in Figure 4.4, and tested through some

criteria as described below; and the experiments will not focus on Kernel Degree metric, but on

three criteria as described in Paragraph 2 namely partition Triad Density referenced by σ∆ defined

through the formula 2.7, partition quality through directed modularity Qd defined in Table 3.1 and

the number of communities each partition of experimented datasets get.

Datasets

In the following experiments, we use a neural network called Celegansneural, a blog network

namely Polblogs, and two paper citation networks namely Citeseer and Cora. Information about
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(a) σ= 0.62 on Subtwitter (b) σ= 26.8 on Celegansneural

(c) σ= 3.9 on Polblogs

Figure 4.4: Standard deviation distribution

Table 4.1: Characteristics of the test graphs

Networks Nodes edges Comm
Celegansneural 297 2,345 5
Polblogs 1,490 19,090 -
Citeseer 3,327 4,732 -
Cora 2,708 5,429 -

each network can be found in Table 4.1. The columns Nodes, Edges and Comm refer to the number

of nodes, the number of edges and the number of communities expected, respectively. Only the

Celegansneural network possesses an expected number of communities [86]. The other datasets,

as denoted by the character "-", do not have a ground truth on the number of communities.

Celegansneural network. This is a weighted, directed network representing the neural net-

work of Celegansneural. The weighted parameter is not taken into account in this work. There are

297 nodes and 2,345 links. This dataset possesses 5 communities as obtained by Tianbao [156].

Political Blog Network. This is a directed and unconnected network of hyperlinks between a

set of weblogs about US politics [1]. In this network, there is a total of 1,490 nodes and 19,090 links.

Seeing that the new approach is based on connected networks, the largest connected subgraph

with the highest number of links and nodes is the one taken into account throughout the execution
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of the approach.

Paper Citation Networks. We use the Cora and the Citeseer paper citation networks processed

by Getoor et al. [67]. There are 2,708 nodes connected by 5,429 links in Cora network, while 3,327

nodes and 4,732 links in Citeseer network.

The phenomenon described by these datasets follows a power-law in-degree distribution ex-

cept the in-degree distribution in Cora network. The scatter plots for in-degree valuation of nodes

are presented in Figure 4.5. In fact, a small number of vertices possess a high in-degree value,

implying that a small amount of nodes have high quasi-common neighborhood cardinality, while

larger nodes have less common neighbors. Yet, the indegree in Cora dataset follows a rather uni-

form distribution with in-degree not larger than 5. We suspect such a distribution is due to the

small scale of the Cora dataset which leads to many references, and therefore in-links, inside the

dataset.

(a) Distribution on Celegansneural (b) Distribution on Polblogs

(c) Distribution on Citeseer (d) Distribution on Cora

Figure 4.5: In-degree distribution on dataset nodes

The goal of experiments is to demonstrate the influence of in-links emphasized by the method,

as the numbers of authors quoting an article favors to delimit a topic area among a pioneer area

(the node of interest or the node of interest set). In other words, our goal is to evaluate if our new

Kernel Degree based metric yields the link semantic of communities in directed networks, in ac-

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 75



CHAPTER 4. COMMUNITY OF INTEREST DETECTION IN DIRECTED NETWORKS

Table 4.2: Using metric Comparison.

Metric Figure 4.1 Network Celegansneural
#Comm Tr i adDens #Comm Tr i adDens

Kernel-degree 2 0.64 5 0.711
Neighborhood Overlap 2 0.64 91 0.20

Triad Weight 2 0.64 73 0.254

Table 4.3: σ choice evaluation.

Inertia Criteria Figure 4.1 Network Celegansneural
#Comm Tr i adDens #Comm Tr i adDens

I [ei j ] >σ 2 0.6428 5 0.711
I [ei j ] <σ 1 0.417 103 0.065

cordance with triad-based community definition. The empirical evaluation of the new approach,

to show its performance, is compared to some of the state-of-the-art methods: Walktrap [124],

Louvain [16], Edge-betweenness [68], Label propagation [127].

Paragraph 1: Kernel degree metric and threshold evaluation Kernel degree metric evalua-

tion. To appreciate the powerfulness of the Kernel Degree formula, let us consider two networks

namely Subtwitter Network and Celegansneural network for better results’ visualization. Kernel

Degree computes the similarity strength between kernel vertices; in other words, it determines the

kernel power. Both Triad Weight (Definition 4.2.4) and Neighborhood Overlap (Definition 4.2.3)

are associated to reinforce this similarity, because, when taken separately, the expected results are

not obtained, as presented in the Table 4.2. In fact, for the Subtwitter Network, results are the same

regardless of the criteria (2 communities with the same triad density and same modularity). But

for the Celegansneural network, using separately Neighborhood Overlap or Triad Weight leads to

results (91 and 73 communities respectively) far from expected one as demonstrated by Klymko

and Tianbao [86, 156] who detect 5 communities. Furthermore, taken separately, they lead to a

computation of weak values of triad density, contrary to the new composite kernel degree metric

which computes a better triad density of 0.711, close to the triad density value of 0.78 obtained by

Klymko.

Threshold σ evaluation. As far as the threshold σ is concerned, the empirical experiments

show that when taking descent values of the interclass inertia, meaning those less thanσ, expected

results are not obtained. For illustration, as seen from the Table 4.3, our approach performs the

best in both datasets. Figure 4.6 illustrates the comparison of these both σ considerations. For

sake of simplicity, we assume that I [ei j ] = Ii j . Then, in the first case (Ii j <σ as shown in subfigure
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4.6a), the Subtwitter Network just contains 1 community with a low triad density of 0.417 and

Celegansneural 103 communities with 0.065 triad density value. On the contrary, the Subtwitter

Network, for the second case (Ii j > σ) contains 2 communities, as shown in subfigure 4.6b, with

a triad density of 0.6428, and Celegansneural 5 communities with a high value of triad density

equals to 0.711. This result means that the Subtwitter Network partition is not well structured for

the first case. Higher inter-class inertia values indicate better kernel based-triad structures and

therefore, finding vertices with similar neighbours whose inter-class inertia values are upper than

threshold provides a method for extracting the underlying kernel structure. The Figure 4.4 shows

(a) The first case (Ii j <σ) produces one community
(b) The second case (Ii j > σ) produces two commu-
nities

Figure 4.6: Graphical visualization with Gephi tool, on Subtwitter Network, for the threshold eval-
uation

the analysis made on the idea that the more the inter-class inertia is upper than a threshold σ, the

more the kernel degree values are large, meaning better triad-based structures.

Paragraph 2: Performance on Community Detection The community detection performances

for different models on the four datasets are given in Table 4.4. Notably, the Subtwitter Network

obviously contains 2 communities in all meanings of the term. This constitutes a ground truth,

as shown on the Figure 4.6b. We first illustrate the performance of triad-based approach based

on the Subtwitter and Celegansneural networks results, as shown in the following: To illustrate

the results of our approach, based on Subtwitter Network, Table 4.4 shows some results and com-

pares them to triad-based approach. We observe that as well as the Triad-based approach, both

Walktrap and Louvain detect 2 communities with the same high values of triad density and mod-

ularity. Label and Edge Betweenness methods compute respectively 5 and 7 communities with

lowest triad density and modularity values. Visibly, our approach extracts expected structures bet-

ter than some other methods, as pointed up in Figure 4.6b. Celegansneural network is also used to

illustrate the new approach methodology and its hidden idea because it possesses a ground truth
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Table 4.4: Community detection performance where the best performances are in bold.

Datasets Methods TriadDens Modularity #of Communities
Twitter network Edge-Betweenness 0.0857 0.187 7

Walktrap 0.6428 0.410 2
Label Propagation 0.34 0.306 5
Louvain 0.6428 0.395 2
Kernel Approach 0.6428 0.410 2

Celegans Neural Edge-Betweenness 0.0004 0.081 194
Walktrap 0.0458 0.363 21
Label Propagation 0.0135 0.0027 29
Louvain 0.608 0.379 6
Triad-based Approach 0.711 0.393 5

Polblogs Edge-Betweenness 0.0064 0.1872 55
Walktrap 0.67 0.4302 12
Label Propagation 0.0026 0.386 244
Louvain 0.0085 0.427 274
Triad-based Approach 0.5732 0.429 34

Citeseer Edge-Betweenness 0.0 0.5344 738
Walktrap 0.0 0.811 593
Label Propagation 0.0 0.491 842
Louvain 0.079 0.886 466
Triad-based Approach 0.407 0.8907 121

Cora Edge-Betweenness 0.0516 0.3999 1028
Walktrap 0.2131 0.756 265
Label Propagation 0.2801 0.6565 133
Louvain 0.313 0.808 100
Triad-based Approach 0.0853 0.212 1107
CDLPA - 0.6042 -

result [86]. With this dataset, both the expected number of communities and triad density metrics

are evaluated.

Triad density δ∆ and Modularity Evaluation. For the Celegans dataset, Table 4.4 shows that

Triad-based method improves triad density δ∆ = 0.711, close to 0.78, being Klymko’s triad den-

sity [86]; likewise, the higher modularity (see 0.393) proves its performance on the partition qual-

ity. However, Edge Betweenness algorithm produces the weakest triad density δ∆(0.0004) while

Label propagation obtains the weakest modularity (0.0027), since it favors the over propagation

and giant communities, meaning that its communities could be scarcely dense.

For the polblogs network, Triad-based approach methods slowly performs in all of the criteria:

it improves triad density to δ∆ = 0.5732 and modularity value of 0.429 as shown in Table 4.4. This

result indicates that models of “what is a growing-community”are somehow in agreement with

the notion of Kernel degree measure; moreover, as confirmed by Yang’s [154] assertion, triads are

more effective in contributing to community structures than modularity. Walktrap performs the
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best since it considers unconnected partitions, indicating that it captures the so-called “outliers”,

which are anomalous nodes (belonging to none of the communities). Meanwhile, Louvain method

results are not so interesting with a δ∆ of 0.0085. This result could be due to the fact that Louvain’s

method stresses on the modularity optimization. Indeed, this measure does not implement the

higher consideration of nodes with higher incoming edges and weak outcoming edges than the

opposite. Since Label propagation method operates by moving nodes from one community to

another according to its common neighbors’ label, it computes the weakest δ∆ (0.0026) because

Polblogs is a non-connected network.

In Table 4.4, through results presented for Citeseer dataset, Triad-based approach improves

values of modularity and triad density. As shown in Figure 4.7a, the Citeseer dataset has good

community structures based on link density, because its application to all the methods allows for

greater values of modularity. Triad density criteria is underlined in Figure 4.7b. There, triad density

has a good exponential progression on this dataset, expressing that for Triad-based approach, triad

density is upper, contrary to its value on the other datasets and other approaches. This result

underwrites that this kind of network with a power-law distribution is characterized by better triad

density, one of the main criteria of the Kernel approach. As shown in figure 4.5c, more than 80%

of the nodes have a degree between 1 and 3 and the remaining nodes have a degree between 4

and 26. Since the majority of the nodes have such a low degree, it means that the method will

produce few kernels, and therefore few communities. In other words, the resulting structure will

have more followers than leaders, more citations than articles containing them. This behavior

reflects the reality insofar as for 2 articles, one could have about fifty articles in the bibliography.

According to figure 2.2 which presents the triads considered in our approach, we can deduce that

it is quite normal that the proposed method produces this high value of triad density, compared to

the low values obtained by the other methods. Moreover, the value of modularity obtained by our

approach is not very far from Louvain because of link density that the latter takes into account.

The null triad density values for the other methods in the table 4.4 illustrates better type of

scorpus that our method performs on. In fact, contrary to the other datasets, Citeseer follows the

deepest power law distribution, because it possesses a hub node (node with a higher degree dis-

tant from the other nodes degrees), as presented in subfigure 4.5c. Tsourakakis [148] confirms the

plausibility of these results by its argumentation that low degree nodes form fewer triangles than

higher degree nodes; and according to Durak [54], citation networks are dominated by heteroge-

neous triangles; like this, triads are included into triangle. So results on Citeseer, a citation network

type, seem to be valid in regard of both precedent demonstrations.
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(a) Link Density (modularity) as a criteria of network
type

(b) Triad Density as a metric of partition evaluation

Figure 4.7: Global measures evaluation

For Cora network, results shown in Table 4.4 indicate that the new scheme is based on power-

law distribution in datasets. Indeed, since Cora follows a uniform in-degree distribution as shown

in Figure 4.5, our kernel approach produces weak results; CDLPA improves LPA results, since it

overcomes the imbalance growth of communities; Louvain’s method performs the best. This result

is due to the fact that it is based on density of links disregarding the benefit of the node in-degree.

Summarily, these weak results for Louvain method compared with the proposed triadbased

approach on the overall of datasets indicate that it focuses solely on link density in the community

without no interest of the topology or in-link based semantic of triads into the communities. The

triad-based approach performs the best in all the cases except on the triad density for Cora net-

work. These results also illustrate that most of the time, it is beneficial to use both triad weight and

neighborhood overlap measures simultaneously, establishing Kernel Degree formula, to enhance

the similarity kernel vertices in a directed network.

Number of communities. According to results on Celegansneural as shown in Table 4.4, Triad-

based method confirms the 5 communities detected by [86]. Since Edge Betweenness algorithm

focuses on links between nodes by searching the central edge (geodesic) meaning the short path

linking two communities, it detects 194 communities for this dataset, instead of 5, as expected by

ground truth of Klymko [86].

Results on Polblogs are slowly claimed for Triad-based method. As mentioned above, Polblogs’s

nodes do not follow a power law degree distribution. In addition, the network is non-connected,

meaning that there are isolated nodes into that network. Since Triad-based method focuses on

common neighborhood and is applied to connected graphs, it has to cover the connected compo-

nent of the whole network. We think that this slight result on the number of communities is due
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to these considerations on the networks. As far as Label Propagation method is concerned, a node

moves from one community to another if, its neighbors share the same label. Hence, for the pol-

blogs network, it computes the high number of communities (namely 244 communities) because

Polblogs is a non-connected network. Walktrap produces few communities (namely 12). Indeed,

it is also based on the principle of common neighborhood. Since the neighborhood implies triad

density [157], they produce the smallest community number, more close to Triad-based method

number, compared to the other values of the community number.

An efficient report made from Table 4.4 is that the more the number of communities is low

the more triad density and modularity values are great. Indeed, the proposed approach shows

that the number of communities depends on the depth of the power law distribution. The deeper

this distribution is (case of Citeseer, Celegans), the fewer communities there are. These results

show that taking into account the edge directionality through the triads together with the density

of links, yields more cohesive structures. However, the informations based on node attributes are

not taken into account. The work in the following section proposes a solution to overcome this

limitation.

4.3 Towards a hybrid model of communities detection

As already stated, we are studying the detection of communities in directed graphs. The previous

section proposed the triad-based method, based on both topological and relational informations.

For more cohesive or semantic communities, it seems interesting to integrate semantic informa-

tion based on nodes attributes. The method proposed in [49] thus constitutes the essence of this

contribution.

In this section, we propose a hybrid technique dealing with the attributes of nodes, together

with the structure in a directed graph. Indeed, we define a hybrid similarity measure which in-

cludes node attribute informations along with the network structure and edges’ directionality.

Then by application of a hierarchical agglomerative clustering technique namely Louvain [16],

we evaluate its performance and results on a dataset with ground truth by showing that with at-

tributes joined to vertices, it is possible to extract meaningful clusters. To make the difference with

the communities uncovered from the previous method described in Section 4.2, we called hybrid

clusters those of the communities identified by the hybrid model. This section describes first of

all in Subsection 4.3.1 the properties to be fulfilled by hybrid clusters, before setting out the semi-
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hybrid approach intended to contextualize the proposed hybrid approach. Afterwards, the hybrid

model proposed to detect hybrid clusters is investigated in Subsection 4.3.2.

4.3.1 Clustering Graph models

A major difference between structure graph clustering and traditional data clustering is that, struc-

ture graph clustering measures vertex closeness based on connectivity (e.g., the number of pos-

sible paths between two vertices) and structural similarity (e.g., the number of common neigh-

bors of two vertices); while data clustering measures distance mainly based on attribute similarity

(e.g., Euclidian distance between two attribute vectors). Remember that approaches for attributed

graph clustering handle both structure and vertex attributes, and differ by their manner of com-

bining the structure and attributes of nodes, but they largely ignore edge directionality. The con-

sideration of directionality is included into properties, as described in the following section.

Hybrid clusters properties

In attributed networks, the clustering task should take into account both structure network

and attribute information by achieving a good balance between the following two properties : (i)

vertices within one cluster are closed to each other in terms of " structure", meaning that vertices

are arranged according to a specific pattern, while vertices across clusters are not patterned (Fig-

ure 3.3 shows pattern-based structures); (ii) vertices within one cluster are more similar by their

attributes than vertices from different clusters that could have quite different attribute values. In

this work, we consider that the partitioning process focuses on both a patterned structure based

on triads and node attributes. In others words, our structure concept includes not only connec-

tivity, but also link directionality according to the in-degree of nodes. The approach consists in

detecting a partition of k clusters ci , from the set of nodes V such that :

1. ci ∩ c j 6= ;∀i 6= j and ∪i ci = |V |;

2. Hybrid clusters are patterned according to the structural equivalence;

3. The similarity between nodes takes into account three criteria : the connectivity, the node

attribute and the edge directionality;

4. Vertices within clusters are homogeneous, while the vertices in different clusters are hetero-

geneous according to their attributes.
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Semi Hybrid clustering

As described in Chapter 3, there are three sights of clustering in attributed networks. The first

approaches refer to the Ma model since they first exploit attributes by graph enrichment through a

node attribute similarity function. SA-Cluster [160] is an example method of this model consisting

in augmenting the initial graph, thereafter, a random walk distance is applied to the augmented

graph. The second approaches refer to the Mr model since they consider relational-based proper-

ties first [37, 98, 137]. An example of this model is the hierarchical clustering of Li et al. [98], which

consists in its first phase in detecting community seeds with the relational information; thereafter,

the final communities are built under constraints defined by the attributes. This leads to merging

the seeds on the base of their attributes’similarity. The third approaches refer to semi-hybrid SHar

model [35, 101] since they combine both relational information and attributes similarity of nodes.

A typical instance of semi-hybrid technique is Combe’s model [35] based on a similarity measure

defined as a linear combination function as in Equation 4.6

di sG(vi , v j ) =α.di sT (vi , v j )+β.di sS(vi , v j ) (4.6)

where di sT and di sS denote a distance measure for attribute data and geodesic distance for struc-

ture data respectively.

Semi-hybrid methods are significant, but they do not integrate the edges directionality. A

straightforward way to integrate link directionality is to combine relational, attribute and direc-

tionality similarities by adding another factor to the Equation 4.6 as described in the section 4.3.2

below.

4.3.2 Hybrid clustering model

This section presents the hybrid community detection method for directed attributed graphs which

exploits a similarity based on the attributes and directionality informations, jointly with the New-

man modularity QNewman . To avoid confusion to the semi-hybrid measure previously mentioned

(not taking into account link direction), we add the hybrid similarity based on both nodes’ at-

tributes and edges’ directionality, named Si mH , as defined in Equation 4.11. In the following

paragraphs, we first presents measures optimized by the method and secondly we describe the

hybrid method.
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Hybrid similarity measure Before clustering phase, some similarity measures must be deter-

mine. Assume that the nodes of the network are described by attributes.

Since the proposed hybrid model involves the structure, the node attributes and edge direc-

tionality, we have to formally describe each of these informations.

Let si mS(vi , v j ) be the structure based information as shown in Equation 4.7

si mS(vi , v j ) = 1

2m
.(Ai j −

ki k j

2m
) (4.7)

si m refers to the link strength between nodes vi and v j . It is included into the Newman’s well-

known modularity [118] function as defined in Section 3.2 in Chapter 3. Newman’s modularity

based on the density of links through si mS(vi , v j ) can be written as:

Qnewman =
|P |∑
l=1

∑
vi ,v j∈l

si mS(vi , v j ) (4.8)

Concerning node attributes, let si m A(vi , v j ) be the attribute-based similarity. If nodes are as-

sociated to categorical attributes, the attribute-based similarity is based on the euclidean distance

as described in the formula 4.9 below.

si m A(vi , v j ) = 1

1+
√∑

k∈T (xk
i −xk

j )2
(4.9)

where xk
i is the value of the attribute k associated to the vertex vi .

For the information concerning the directionality of edges, let si mR(vi , v j ) be the similarity

based on edges’ directionality, corresponding to Kernel degree measure, as defined in one of our

previous works [47], such that:

si mR = |∆i j |
|∆ j |

.
|Γi n

j ∩Γi n
i |

|Γi n
j ∪Γi n

i |−θ (4.10)

Although there is a modularity for directed graphs [121], it does not take into account the impor-

tance of the incoming degrees compared to the outgoing degrees of nodes. Indeed, directed mod-

ularity does not implement the idea that an edge from a low outdegree but high in-degree node

to an opposite case node should be considered of a higher value. We define an hybrid similarity

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 84



CHAPTER 4. COMMUNITY OF INTEREST DETECTION IN DIRECTED NETWORKS

(si mH) in Equation 4.11, based on node attribute (see Equation 4.9) and edge Directionality Sim-

ilarity (see Equation 4.10), then we propose a "hybrid modularity" Qhyb of a partition in Equation

4.12.

si mH(vi , v j ) =ω.si m A(vi , v j )+ (1−ω).si mR(vi , v j ) (4.11)

Qhyb(vi , v j ) =
|P |∑
l=1

∑
vi ,v j∈l

si mH(vi , v j ) (4.12)

Figure 4.8: Progress of the hybrid model

Qhyb is used for extending the modularity composite of Dang and Viennet [37]. We named

that extended modularity as Global modularity QG which combines simultaneously 3 informa-

tions data namely: structural information through si mS, edge directionality through si mR and

attribute of nodes through si m A.

Hybrid method description

As stated above, a direct application of our measure si mH is the community detection in com-

plex networks represented by an attributed directed graph G = (V ,E ,W ) where V is a set of vertices,

E is a set of edges and where each vertex v ∈V is described by attributes wi ∈W .

Our method, called Hybrid-Louvain, is based on the exploration principle of the Louvain

method. Since Louvain method does not include the attribute similarity between nodes together
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with directionality of edges, Hybrid-Louvain consists in determining hybrid clusters by optimizing

the global criterion QG defined in Equation 4.13, to find answer of the following question: Whether

meaningful communities be detected by dealing with direction of the edges? Pseudo code of this

model is shown in Algorithm 4 and its architecture is shown in Figure 4.8.

QG (P ) =α.Qnewman(P )+β.Qhyb(P ) (4.13)

where α and β are weighting factors that enable to give more importance to the structural, at-

tribute or directionality of edges. α+β = 1. The next step is to find an approximate optimization

of QG (direct optimization is a NP-hard problem [24]). We follow an approach directly inspired by

the Louvain algorithm [16]. The algorithm starts with each node belonging to a separated com-

munity. A node is then chosen randomly. The algorithm tries to move this node from its current

community. If a positive gain is found, the node is then placed to the community with the maxi-

mum gain. Otherwise, it stays in its original community. This step is applied repeatedly until no

more improvement is achieved. When moving node x to community C , the composite modularity

gain is calculated as:

∆Q =α.∆Qnewman + (1−α).∆Qhyb (4.14)

with

∆Qnewman =∑
vi ,v j∈C∪x si mS(vi , v j )−∑

vi ,v j∈C si mS(vi , v j ) = 1
2m (

∑
vi∈C Avi ,x − kx

2m

∑
vi∈C ki ) and

∆Qhyb =∑
vi ,v j∈C∪x si mH(vi , v j )−∑

vi ,v j∈C si mH(vi , v j ) =
∑

vi∈C si mH(x, vi )

Algorithm 4 Algorithm for hybrid clusters identification

Require: An attributed directed network G = (V ,E ,W ), Similarity matrix
Ensure: Partition of hybrid clusters

1: Phase 1: Initialize each node to a separated community;
2: repeat
3: for i ∈V do
4: for j ∈V do
5: Remove i from its community, place to j ’s community
6: Compute the composite modularity gain G

7: end for
8: Choose j with maximum positive gain (if exists) and move i to j ’s community
9: Otherwise i stays in its community

10: end for
11: until No further improvement in QG

12: Phase 2: Each community is considered as new hypernode
13: Compute QG through summing up the similarity of their members
14: Reapply Phase 1.
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The first phase is completed when there is no more positive gain by moving of nodes. Following

Louvain, we can reapply this phase by grouping the nodes in the same communities to a new

community-node. The weights between new nodes are given by the sum of the weight of the links

between nodes in the corresponding communities. To determine the attribute similarity between

two communities, we choose the majority attribute.

4.3.3 Illustration of the hybrid model

To our knowledge, there is no referenced benchmark with attributes information handling edge

directionality. Thus we used an illustration network namely Food web where a vertex represents

a specie and edge the relationship between prey and predator. Also, each vertex is described by

the attributes according to the mode of reproduction (viviparous, oviparous, Asexual) and to the

mode of nutrition (carnivorous, herbivorous, producers/- consumers, vegetables etc.). An exam-

ple1 of food web chain network is shown in Figure 4.9. We assume a small ground truth dataset

based on this network as shown in Table 4.5. These assumptions help to study the behavior of

methods, according to the consideration of each type of information namely structural, attributes

or directionality.

Figure 4.9: Food web illustration network with Diet sectors

Assumptions on food web network

Here we enumerate partitioning scenario and present expected results which are ground truth

of food web network in Figure 4.9, since we focus on communities of interest. The interest depends

on each type of informations (relational, attribute, directionality and combination of them). We

1https://www.pinterest.com/pin/241998179953934424/ image viewed on May 20, 2020
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Table 4.5: Number of species by nutrition sector and mode of reproduction

Category Diet mode Mode of reproduction Number

A Carnivorous Viviparous 8
B Carnivorous Oviparous 3
C Herbivorous Viviparous 7
D Herbivorous Oviparous 4
E Vegetables Asexual 3

Total 25

consider 5 subsets of vertices A,B ,C ,D,E describing species diet mode and by their reproduction

mode, to be real meaningful cluster of Hybrid-Louvain. The Table 4.5 shows an illustration of

properties of each animal :

• Relational (connectivity) : 2 sectors according to their consumer or producer status. Th first

is based on tertiary, secondary and primary consumers and the second one on primary pro-

ducers. Indeed, there are three consumers sectors with dense edges among species, namely

primary consumers corresponding to vegetarian animals, secondary consumers that are

carnivorous, and tertiary consumers, those eating species of the others sectors. The sec-

ond component of this partition is based on primary producers which do not have any prey.

So the ground truth partition Ps is structured by two communities of species belonging to

each sector. Ps = {A∪B ∪C ∪D,E }.

• Attribute : 3 clusters in which species are grouped by their mode of reproduction, either

viviparous or oviparous or asexual. The ground truth partition is formally defined as Pa =
{A∪C ,B ∪D,E }.

• Directionality (Neighborhood) : 3 clusters in which species are grouped by their diet mode,

either carnivorous, herbivorous or oxygen(nutriments for vegetables diet). Since the infor-

mation based on directionality focuses on in-direction of edges, the primary producers sec-

tor is separated because vegetables do not have any in-neighborhood. The ground truth

partition is formally defined as Pr = {A∪B ,C ∪D,E }

• Hybrid informations : 5 clusters of species since we identify species by their both diet mode

and mode of reproduction characteristics, then attributes, relational and directionality prop-

erties should be used. Like this, the resulting partition is Ph = {A,B ,C ,D,E }.

Illustration on Food web network.
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Table 4.6: Food web results : N M I

Models Pr Pa Ps Ph

Mr 0.753 0.350 0.323 0.023
Ma 0.741 0.842 0.28 0.625
SHar [0.012−0.018] [0.205−0.441] [0.027−0.291] [0.085−0.397]
Hs [0.098−0.217] [0.110−0.185] [0.075−0.181] [0.558−0.895]

Given that this study focuses on directed attributed graphs which have not yet been inves-

tigated in detail, the illustration of Hybrid-Louvain consists in checking these assumptions de-

scribed above, by evaluating stated models of Section 4.3.1 (Ma , Mr ,SHar ). We compare these 3

models with the hybrid model (Hs). The synthesis of results is shown in Table 4.6, according to

the Normalized Mutual Information (N M I ) measure [137]. Then clusters issued from the ground

truth clustering transcripts the following partitions : the group of species by their diet mode (Pr ),

by their mode of reproduction (Pa), and by the both simultaneously (Ps).

• Clustering according to textual attributes :Ma Model. In this approach corresponding to

the technique in Sect.4.3.1, the euclidean distance computed on the textual attributes helps

to weight each edge. So, attributed graph becomes a weighted one; thereafter an unsuper-

vised method is applied to the resulting graph. The method performs well when the ground

truth partition is Pa = {A ∪C ,B ∪D,E } by a higher N M I value (0.842) than considering the

partitions Pr or Ps .

• Clustering according to structure : Mr Model. This method firstly exploits the structure and

secondly, with attributes handled, it detects communities so that the nodes in the same com-

munity are densely connected as well as homogeneous. The N M I value for the ground truth

partition namely Pr is higher (0.753) than its value for the ground truth partition Pa and Ps .

More specifically, Pr = {A∪B ,C ∪D,E } produces a higher N M I = 0.753. This result demon-

strates that a technique based on successively structure then attributes, performs well in

case of detecting two clusters of species with a densely internal connectivity and common

neighborhood, corresponding to diet mode. However, for the Ph partition, the lowest N M I

value indicates that the density, the directionality, together with attributes are not simulta-

neously handled.

• Semi-hybrid clustering : SHar Model. As far as this method is concerned, it deals with both

types of information simultaneously (structure and attributes) as studied by Combe [35]

through a weighted distance function. In experiments, the N M I value fluctuates as a func-

tion of the weighting factors α and β. It changes its value according to the weighting factor
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α. N M I is in the interval [0.205 -0.441] for the ground truth Pa and [0.028 - 0.291] for Ps .

For the Pr ground truth partition, since the existing methods do not take into account the

link directionality in the assigned graphs, the corresponding N M I has the lower value in

[0.012−0.018]. The interval bounds correspond to the N M I values depending on α: when

α = 0.75, results concern the lower bounds and when α = 0.5, the upper bounds are con-

cerned. Remember that β= 1 - α.

SHar Model performs the best for the ground truth Pa , meaning that textual attributes de-

scribe better the vertices similarity, but produces weak outcomes as proved by [35] for the

overall results.

• Hybrid clustering : Hs Model. The objective of this hybrid based experiment consists in 2

ways. First it shows that the consideration of the textual attributes improves better the clus-

ter semantics through the highest N M I values as presented in bold in the Table 4.6. Second

it shows that combining simultaneously the three types of information which are link direc-

tionality, relational and attribute properties respectively, leads to the highest N M I for that

expected partition Ph = {A,B ,C ,D,E }. Like this, it detects the five classifying species clusters

by their diet and reproduction mode simultaneously with a N M I value of 0.895 when the

weighting factors α and β both equal 0.5; N M I value decreases to 0.558 when the weight-

ing factors α and β equal 0.9 and 0.1 respectively, meaning that the negligence of the hybrid

similarity related to link directionality and node attributes property affects the result.

4.3.4 Experimental Study

In this section, we performed experiments to evaluate the performance of the hybrid approach on

one real-world network namely Political Blogs Dataset [1]. It is a directed network of hyperlinks

between weblogs on US politics. This dataset contains 1,490 weblogs with 19,090 hyperlinks be-

tween these weblogs. Each blog in the dataset has an attribute describing its political leaning as

either liberal or conservative. We use both Density and Normalized mutual information (N M I )

measures to evaluate the quality of clusters generated by different methods.

Evaluation on Polblogs dataset To assess the validity of the proposed hybrid model on this

dataset, we use four methods according to the models implemented: SA-Cluster for the model

considering first attributes then relational information (Ma), SAC1 and Li’s model [97] based on

the model considering first relational and then attributes informations (Mr ) and Combe’s model
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Figure 4.10: Political blogs partition by Hybrid-Louvain with 9 communities

(SHar ) considering semi hybrid informations through the combination of both types of data. Given

that Hybrid-Louvain is based on the global modularity being a linear combination of two objec-

tive functions, we considered for the sake of fairness the same weighting factors. Indeed, ω = 0.5

in the hybrid similarity formula 4.11 and α = 0.5 in the global modularity in formula 4.13, unless

otherwise stated.

Figure 4.11: Political blogs partition with weighting factor not null on directionality

Table 4.7: Polblog results : N M I

Models SA-Cluster SAC1 Li’s Model Hybrid-Louvain

Mr 0.350 0.153 0.323 0.578

To assess the quality of these methods, we compare the number of communities and the den-

sity. When a truth-ground is unknown, the N M I can be used for comparison of 2 partitions. The

validity through the N M I measure considers the SHar as basic model. Thus, the partitions ob-

tained by the Mr , Ma and Hs models are compared to the partition obtained by the SHar model,

and the results are reported in the table 4.7. We notice that Hybrid-Louvain presents a higher N M I

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 91



CHAPTER 4. COMMUNITY OF INTEREST DETECTION IN DIRECTED NETWORKS

value of 0.578 than the one obtained by the other approaches. Figure 4.13 compares Density be-

tween the five methods on Political Blogs when the number of clusters is set to k = 3,5,7,9. The

density values of the hybrid model are in general slow because Political Blogs is a non-connected

network. Since this model consider as well as the relational information based on the neighbor-

hood of nodes, it seems fair for this type of dataset. For SA-cluster and SAC1 methods, the den-

sity values are high. This demonstrates that attributes are relevant for community discovery. The

density values by Li and Combe’s models are close. When k = 3, they remain around 0.6. When

k = 5,7, they range between 0.2 and 0.4. This demonstrates that both methods can find the same

partitions according to a specific number of communities. On the other hand we observe that

Combe’s model presents a density decreasing when k increases.

Figure 4.12: Political blogs partition by Hybrid-Louvain with 3 communities

The density of the partitions obtained by the hybrid approach is in general (when k = 5,7,9)

higher than that of Combe, according to the diagram in Figure 4.13, because Combe takes into

account only relational and attribute information. Yet our approach takes into account the orien-

tation of the links. And since this direction is based on the triad-based topology that is included in

the structural information, then referring to density, the triad density is included in the structural

density. Hence the density of the partitions is greater than that of Combe.

The table 4.8 shows some results on the number of communities and the density of partitions

obtained by Hybrid-Louvain, according to the information not covered (whose weighting factor is

null) in the objective function criterion.

In the first case, when the weighting factor associated to the structure is null, Hybrid-Louvain

detects 277 low density communities, which shows that the structural characteristics are still rel-

evant for the communities [116] and therefore that the structural aspect is the basic element of

the notion of communities as defined by Newman [116]. In the second case, 161 communities
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were obtained when the weighting factor associated to the attributes in the formula 4.11 is null.

Thus partition density is higher than the previous case ignoring structural information. Indeed,

Hybrid-Louvain approach is thus assimilated to a model based solely on structure information

which includes topology based on directionality of edges.

In the third case, when the weighting factor associated to the directionality of the links is null,

the hybrid approach becomes semi-hybrid as well as SAC1 and Combe’s methods and obtains 89

communities with a density close to the one of SAC1, namely 0.241. When the edge directionality

information is considered alone, a non-structured partition is observed as shown in Figure 4.11.

On the other hand, we obtain 270 communities and a partition density of 0.018 when the weighting

factors on both the attributes and the directionality are null, i.e. when only the relational aspect

of the structure is considered. This result shows that directionality alone is not enough to obtain

significant communities.

In Figure 4.12, there are three communities identified by different colors. The green nodes

belong to the third community, since they are singleton and consequently do not belong to the

connected component of the network. Likewise, they do not change their initial position because

they do not improve the global modularity criterion. Figure 4.10 shows 9 communities, two of

which are located in the related component, and the others are made up of the singletons nodes.

This shows that some singletons nodes, by their attributes, can belong to related communities.

The observation after experimentation shows that these results together with communities in

Figures 4.12 and 4.10 strengthen the interpretation according to that high density does not in-

evitably denote good separation of communities, unlike the observation made by Dang and Vien-

net in [37]. In the other hand, trough results in Table 4.8, density is correlated with the size of the

partition; in fact, the greater the number of communities, the less dense the partition.

Table 4.8: Polblog results: Null Weighting factor consideration for Hybrid-Louvain

Weighting factor (WF) Number of communities Density

WF on Structure 277 0.017
WF on Attributes 161 0.115
WF on Directionality 89 0.211
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Figure 4.13: Density comparison on Political Blogs

4.4 Conclusion

In this chapter, we presented two contributions. In the first part, we presented a seed-centric ap-

proach of community detection in directed graphs, based on triads. The objective was to identify

communities of interest based on triads, by showing the importance of triads in the detection of

more cohesive communities, overcoming the modularity drawback related to edge directionality

discrimination between in-degree and out-degree of the nodes. Indeed, real-world networks as

addressed above, have the fundamental feature of high clustering coefficient degree. This prop-

erty reflects the attachment of small degree nodes to popular / hub nodes, therefore it becomes

important to take it into account. To this end, we defined a new similarity metric between poten-

tial kernel nodes to compute kernel scores, in order to select the effective nodes to be part of the

kernels. Then after obtaining the kernels, it was a question of making migrate the other nodes of

the network to the kernels for which they are most connected, via the implementation of a mem-

bership measure named NCI. This triad-based approach has shown its performance by the high

results of the metrics utilized. In particular, the communities obtained have a density of more

impotent triads.

Furthermore, the second contribution consisted in proposing a hybrid model for the detection

of hybrid communities whose the interest is based on common features namely homogeneous

nodes with the same pattern. It allowed to show the validity of the preceding kernel degree mea-

sure, included in the proposed composite "hybrid modularity" objective function. The latter inte-

grates three types of information, namely relational information, i.e. link density, attribute-based

information, and finally information based on the edge directionality. Through this function, we

obtained, after application of a hierarchical clustering method, namely Louvain’s method, more
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communities of interest depending on the type of information taken into account. We apply this

method to Political blogs network, showing that there is an interest in using each of the types of

information handled in the context.

The graphs used in this work do not take into account the multiple relationships that can exist

between two nodes of a network, as it is the case of multidimensional networks. This limitation

is discussed in the next chapter dealing with the community of interest discovery in multidimen-

sional networks.
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CHAPTER5
Community discovery in multidimensional

networks

5.1 Introduction

The detection of community called multi-community, to refer to community identified from mul-

tidimensional networks, has been the subject of many studies [82, 83], as described in Chapter 3.

Many of them assume the existence of a community on each dimension of the entire multidimen-

sional network [5, 144]. Therefore, it can lead to a substantial loss of information about the actual

organization of the modeled system since the same importance is not always given to the different

types of interactions between entities [120]. Thus, one aspect of such studies has been disregarded

so far: the level of activity of a node in anyone of the dimensions. Indeed, an active node on one

dimension can remain inactive on the rest of the dimensions [120]. This aspect has been mainly

addressed in [18, 23] through the identification of the customized set of dimensions of interest for

each vertex, namely the relevant dimensions. The problem is that the subspace of relevant dimen-

sions of these methods takes into account the quantity of the neighborhood at the expense of the

neighborhood quality in the clustering process. However, neighborhood quality could lead to a

more meaningful communities discovery, because in practical applications, communities whose

members possess common or similar interest (meaning neighbors), have a great promotion on

intelligent information retrieval, marketing management and other information management do-

mains [130]. This chapter deals with the community of interest discovery in multidimensional

networks, based on the level of activity of entities in a dimension. The method presented in this

chapter uses a proposed new measure of centrality, which is called stability. This measure has been

the subject of a publication [50]. We start by defining in the section 5.2 the notion of community

of interest in multidimensional graphs as well as the problem of detection of these communities
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of interest addressed in this thesis. In Section 5.3, we define the concepts used in the proposed

method to solve the problem of communities of interest discovery in multidimensional graphs

that we describe in section 5.4. Finally, in the section 5.5, we present an experimental study on the

existing methods compared to the proposed one.

5.2 Community of interest discovery problem

One key aspect of multidimensional network analysis is to understand how important a particular

dimension is over the others for the connectivity of a node. This importance of a dimension is a

property of multidimensional networks that derives from node centrality metrics, with respect to

the analysis of the within and across-dimension relations in the network [120].

In this section, we first present the characteristics of the multidimensional network we deal

with in this study (Section 5.2.1). Thereafter, we describe the multi-community of interest problem

addressed in this research (Section 5.2.2).

5.2.1 Multidimensional network model

Hereafter, we consider undirected and connected multidimensional networks, meaning those in

which it exists at least one path that connects any pair of nodes from any dimension as shown

in Figure 5.1. This figure illustrates a connected multidimensional network with a path designed

as edges in red color, linking X and Y nodes of the first and third dimensions respectively. The

union of the sets of nodes in all dimensions is not null. Formally,
⋃

d∈D V d =V and ∀d ∈ D , ∃d ′ s.t .

V d ∩V d ′=;. In contrast if ∃r ∈ D such as ∀s ∈ D , s 6= r , and if V r ⋂
V s =;, then the network is not

connected; consequently it does not correspond to the case of multidimensional network model

treated in this work.

Methods based on the importance of dimension differ from the other approaches in their abil-

ity to support the relevance of dimensions in the process of community discovery. Some of them

have been identified in the state of the art. More precisely, the aforementioned Multimap [38] and

ABACUS [15] approaches (see Table 3.3 in Chapter 3) work in different manners. The former aims

to minimize a modified version of the Infomap map equation [129] and determines relevant di-

mensions by using the coding scheme of the map equation to grant unique names to important

structures of the network. The latter firstly extracts communities per dimension, then transforms

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 97



CHAPTER 5. COMMUNITY DISCOVERY IN MULTIDIMENSIONAL NETWORKS

the set of communities into a formal context. Afterward, frequent closed itemset is mined. Finally,

relevant dimensions are determined, based on a support threshold fixed as an input parameter.

In addition, Oualid et al. [23] is inspired by the LPA method [10] which requires initial labeling

of each node of the network and assigns to a node the label carried by the majority of its neigh-

bors. Likewise, the authors used the concept of dimension relevance as defined by Berlingerio [14],

and assigned to each neighbor v of a node u, a weight standing for the relevant dimensions con-

necting u to its neighbors v . Remind that structural equivalence and homophilia are topological

properties inducing communities of interest in social networks, which is a typical example of real

complex networks. Since our work focuses on topological communities of interest, we have been

interested in the last method, namely MDLPA [23], which is also based on the neighbourhood of

nodes. Moreover, a node can be part of a community but not directly connected to the others: it is

an outlier.

In the two paragraphs below, we describe the two aspects to be taken into consideration: ac-

counting for the stable neighbourhood, and accounting for outliers.

Figure 5.1: Connected multidimensional network.

Stable neighborhood

In MDLPA approach, the subspace of relevant dimensions RD(v) of a node v is based on the

degree of v , since it is computed through its fraction of direct neighbors, following edges belong-

ing exclusively to dimensions RD(v) [14]. In spite of the fact that MDLPA produces better cohesive

communities according to its relevant dimensions, this method has the main drawback of focusing

on the number of neighbors of the node and not on the quality of the neighborhood. This consid-

eration stipulates that if a node has the same maximum degree in a subset of dimensions, then the

dimensions concerned by this subset are relevant to it. Such a consideration seems, however, too

restrictive, since, if this subset is equal to all the dimensions of the entire multidimensional net-
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work, then all the dimensions of the network would be relevant for him. This means that the node

has the same degree of activity on all dimensions. However, in practice, this node would have a

preference of one dimension in which it would have more trusted friends than in another. This

dimension would correspond for example to the dimension in which its friends are stable. This

indicates the trust and therefore the interest that binds it to this dimension.

Non-exclusiveness principle: outlier’s inclusion

Existing methods only manage exclusiveness, as they consider a node to belong to a com-

munity if there is a direct connection between that node and other nodes of the same relevant

dimensions. However, an individual of an irrelevant dimension (see Section 5.3.3) would be of

vital importance to another individual of the community. So ignoring this crucial node in a com-

munity would be a mistake. We refer to this behavior as the principle of the community’s non-

exclusiveness, which is also addressed in the proposed approach. Figure 5.2 presents a toy example

of a multi-community taking into account that non-exclusiveness property. Nodes are described

by their relevant dimensions being either A,B or D and the crucial node T expresses the outlier

since its relevant dimension (D) defers from relevant dimension of the community (A,B). To bet-

ter illustrate this principle of non-exclusiveness, consider the example of a business 2-dimensional

network including two dimensions: medical and teaching staff relationships. It consists in two

friends described by their dimension medical and teaching respectively. The one from teaching

staff, when ill, reaches the hospital and is kindly received by his long-time friend who is from the

medical staff. We see that they are not directly tied and belong to different relevant dimensions

(teaching and medical staff respectively), but could be the subject of the same community later,

namely the community of major friends, including some teachers and the doctor.

Figure 5.2: A multi-community with non-exclusiveness principle on node T
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5.2.2 Multi-community of interest problem

As highlighted in [36], the new challenge focuses on the question not of how to detect communi-

ties, but on what kind of communities are we interested in detecting. The question “what is a com-

munity in multidimensional networks?”is an embarrassed one. Intuitively, each dimension can

have its communities, and these communities may vary from one dimension to another. As the

behaviors of communities differ from one another from different points of views, the definition of

a community in multidimensional networks should then depend on the particular task [104]. Re-

member that we focus on communities of interest detection in complex networks in this research.

Authors in [36] gave a meta definition of community as a set of entities that share some closely cor-

related actions with the other entities of the set. Here we consider similar relevant dimensions as

a particular and very important kind of action. This kind of action refers to an interest involving

nodes of the same multi-community. Thus, when a set of nodes are grouped according to the level

of interest they give to a specific or set of specific dimensions, we attend to communities of interest

in multidimensional networks. We now give some following suitable definitions.

Definition 5.2.1. (Multi-Community of Interest). A community of interest in multidimensional

networks called Multi-Community of interest is a set of nodes which have a similar center of interest

through their relevant dimensions.

Our objective is to identify covers denoting partitions of overlapping multi-communities, whose

nodes are not only densely tied, but also more active in similar dimensions encountered in the

multi-community, from the multigraph G , where a node v ∈ V can belong simultaneously to sev-

eral multi-communities Cl = (Vl ,Dl ) , l = 1...L, such that L is the number of multi-communities

(previously unknown). In this work we distinguish three subsets, namely RD(u), Dl and DFl

such that RD(u) ⊆ D and Dl ⊆ DFl ⊆ D . To illustrate, consider Figure 5.2 standing for a multi-

community l where Dl = {A,B} and DFl = {A,B ,D}. Our approach has the advantage of taking

into account the “outliers”, which are nodes with a relevant dimension different from that of the

community (Node T).

A multi-community is said to be densely relevant as the majority of its nodes are both densely

linked and described by Dl subspace of relevant dimensions. More precisely, the proposed ap-

proach aims to discover densely relevant multi-communities, since it is based on both the struc-

tural information and the similarity of the relevant dimensions. The former takes into account

the density of links between nodes in the same community. The latter consists in enriching the
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attribute vector of each node (which can initially be empty in the case of a non-attributed multi-

graph) with its relevant dimensions. One can add relevant dimensions to the set of node attributes

for multi-community discovery method in attribute networks. For the sake of simplicity, we re-

serve for future work this part of the problem, and we focus only on the description of nodes by

their relevant dimensions. Figure 5.2 and the right sides of Figures 5.5(b) and 5.6(b) below show

toy examples of our multi-community scheme, with densely-relevant nodes.

The following properties must be satisfied:

• The multi-community Cl = (Vl ,Dl ), l = 1...L is a non-empty subset of the network G ;

• In each multi-community Cl = (Vl ,Dl ), the nodes in Vl must be more densely relevant across

all dimensions of Dl , than elsewhere in the multigraph. In other words, not only must the

density of internal links in Cl , be higher than with nodes external to Cl , but also most of

Cl ’s nodes must have attribute values of more similar relevant dimensions than with nodes

external to Cl ;

• It is possible to have a node u described by irrelevant dimension attributes and belonging to

Cl ;

• The subsets of dimensions Dl can be overlapping and may have different cardinalities;

• The multi-communities can be overlapping and of varying sizes.

Definition 5.2.2. (Multi-community discovery problem in attribute-based multidimensional net-

work). Given a multigraph G, find a cover P (G) of densely relevant multi-communities that maxi-

mizes the dimension-based modularity objective function Qdi m .

P (G) = argmax
Pi

(Qdi m(Pi (G))) (5.1)

where Pi (G) is the i th cover among a set of those obtained in the iterative process and Qdi m the

modularity dimension, defined in Section 5.3.4.
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5.3 Basic concepts

Some basic concepts are defined in this section for better understanding of the newly proposed

approach. Given a multidimensional graph G =< V ,E ,D >. After its frequential aggregation, the

G f l at resulting graph stands for a weighted flattened graph in which nodes are described by their

relevant dimensions and edges are weighted through the frequential weighting scheme. Formally

we have:

G f l at =<V ,E f l at >

where E f l at is the weighted edges set. The weight wuv of a link (u, v) ∈ E f l at is computed by

its redundancy in the different dimensions [14] such as: wuv =∥ {d/Ad
uv 6= 0} ∥. Each node u is

associated with an attributed vector of dimensions namely RD(u) ∈ D .

As the approach focuses on both the structural information and the similarity of relevant di-

mensions, some concepts are essential to be defined, mainly those related to the centrality and

connectivity of nodes across dimensions. These centrality and connectivity metrics can reflect the

significance that a node gives to a dimension. Unlike the wellknown measure of degree centrality,

which considers the importance of a node with respect to its number of neighbors (degree), the

new measure called Stability focuses on its common neighbors, as described in Subsection 5.3.2.

This reflects the fact that the node is more comfortable or shares more similar behaviors with these

neighbors than with others, so the dimensions in which it has a stable neighborhood are of interest

to it. As studied in [120], the activity of a node in a dimension is often correlated with its activity in

some other dimensions. To this vein, the new centrality metric depends on the inter-dimensional

correlation, as described in Subsection 5.3.1. Figure 5.3 shows two multidimensional networks on

which the illustrations of the proposed method will be carried out

5.3.1 Inter-dimensional correlation

The inter-dimensional correlation of a node u computes the proportion of the common neighbor-

hood of this node between two dimensions p and q , through a Jaccard index similarity. Figure 5.4a

shows inter-dimensional correlations, in blue color, for each node from the network in Figure 5.3a.

Definition 5.3.1. (Inter-dimensional correlation). The inter-dimensional correlation of a node u

between two dimensions p and q is described by the function Cor : V ×D ×D −→ [0,1] as :.
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(a) First illustration network
(b) Second illustration network

Figure 5.3: Examples of multidimensional network

Cor (u, p, q) = |Γp
u ∩Γq

u |
|Γp

u ∪Γq
u |

(5.2)

Its values lie in the interval [0,1]. At 1, the neighborhood of a node u in both dimensions p and

q is the same. This is the case of the labeled node (5) in Figure 5.4a. For better visualization, we

illustrated the correlation between the two first dimensions of the network.

(a) Inter-dimensional Correlation illustration
(b) Stability of nodes in Friendship and Colleague di-
mensions respectively

Figure 5.4: Illustration of the Stability centrality from network of Figure 5.3a
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5.3.2 Stability centrality

The weight of the nodes have been the subject of some studies. According to graph theory, this

weight corresponds to the sum of the weights of the edges incident to this node. It is a variant of

the degree centrality. This centrality measure shows that the importance of a node depends on the

number of communications it establishes with its neighborhood. It represents its activity level in a

network. Extending this measure in multidimensional networks, Nicosia [120] demonstrated that

the activity of a node in a particular dimension is very often correlated with its activity in another

dimension. He considered the centrality degree as a measure of the node activity in a dimen-

sion. However, the number of neighbors, being the quantitative neighborhood aspect, seems to

be meaningless when studying behavior of entities in a context of correlated dimensions, since it

only favors the variety of received information. Then, it becomes necessary to maintain the stable

behavior of a node, considering the qualitative neighborhood aspect, in order to maintain trust

among its community membership. The idea behind this centrality metric is that a stable node is

the more important because its stable neighbors rely on it. Likewise, the more the neighbors are

the same, the more the friendship relationship is reliable. Thus, its inter-dimensional correlation

is used and helps to compute the proportion of the common neighborhood of this node between

two dimensions p and q , as defined through Definition 5.3.3. Figure 5.4 shows an illustration of

stability centrality computation.

Definition 5.3.2. (The stability centrality of a node in a dimension). Stability centrality of node

u in dimension q measures its common neighborhood between q and the other dimensions. The

function Stability : V ×D −→ [0,1] is defined as:

St abi l i t y(u, q) = 1

|D|−1

|D|−1∑
p=0,p 6=q

Cor (u, p, q) (5.3)

where |D| denotes the number of dimensions. Stability takes its value in [0,1]. We refer to dis-

assortative stability when its neighborhood is totally different in all dimensions; stability tends to

be null. Otherwise, it is the assortative stability; it tends to its maximal value 1. In this work, the

node with the lowest disassortative stability is unstable and the one with the highest assortative

stability is the most stable over the network. As shown in Figures 5.5a and 5.6a, node 1 possesses a

disassortative stability, unlike node 7 which gets an assortative stability. Figure 5.4b indicates the

node stability centrality in green color, of each node for the two displayed dimensions in network
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of Figure 5.3a

(a) Node stabilitiy values

(b) Multi-community computation

Figure 5.5: Process of relevant dimensions extraction from stability to multi-community for the
example in Figure 5.3a

(a) Node stabilitiy values

(b) Multi-community computation

Figure 5.6: Process of relevant dimensions extraction from stability to multi-community for the
example in Figure 5.3b

5.3.3 Relevant dimension

The concept of dimension relevance of a node addressed by Oualid [23] in their approach of com-

munity discovery, stresses on that in which the node has the most important exclusive degree as

defined by Berlingerio [14]. Indeed, it computes the fraction of neighbors directly reachable from

node u following edges belonging exclusively to subset of dimensions Dl as shown in Equation

5.4. It is a variation of Equation 2.1.13 described in Chapter 2. The resulting communities Cl of

these authors [23] are disjointed and consist of nodes, densely connected through the subset Dl of

relevant dimensions.

DRXOR (u,Dl ) = Nei g hbor s(u,Dl )

Nei g hbor s(u,D)
(5.4)
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The authors focus only on the number of neighbors (i.e. degree) without stressing on information

on the type of neighbors. Indeed, the type of neighbors that an individual possesses implies an

underlying semantic. In this way, we give a new definition of the notion of dimension relevance

that takes into account the stability centrality defined above (see Definition 5.3.3).

Definition 5.3.3. (Relevant Dimension). The relevant dimensions RD(u) of a node u refers to those

dimensions for which the node has a stability centrality greater than a certain threshold ε. It is

described by the function RD : V −→ D as :

RD(u) = {q ∈ D, s.t .St abi l i t y(u, q) > ε} (5.5)

The threshold ε is defined in the Section 5.4.1 and two illustrations for its computation are shown

in Figures 5.5a and 5.6a. A node can have several relevant dimensions RD(u) such as RD(u)D .

When the node u has a stability centrality whose value is upper than a threshold ε, it is said that

the node u is stable for the subset of dimensions RD(u), or that the dimensions in the subset

RD(u) are relevant for the node u. Furthermore, a dimension d of a community Cl is irrelevant

for a node v when it belongs to its set of relevant dimensions RD(v) but does not belong to the

set Dl of relevant dimensions of the community. Formally, the d dimension is irrelevant for v if

d ∈ RD(v) and d ∉ Dl . The left sides of Figures 5.5a and 5.6a show a multidimensional network in

which nodes in blue color express their relevant dimensions.

5.3.4 Dimension-based objective function

The proposed approach optimizes the following defined modularity dimension objective function

Qdi m in Definition 5.3.4.

Definition 5.3.4. (Modularity dimension). The modularity dimension Qdi m is the difference be-

tween the expected number of links within a multi-community of a subspace of relevant dimensions

and the number of links within a community retrieved from a graph with the same degree distribu-

tion as the actual graph.

Qdi m =∑
C

∑
i , j∈C

(α.Q + (1−α).Si mD ) (5.6)

where α is a weighting factor, 0 ≤ α ≤ 1, Q and Si mD respectively denote Newman’s modular-
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ity [118] and dimension-based attribute similarity function computed using Equation 5.7. Si mD

is a Jaccard index variant in G f l at based on relevant dimension attributes. This objective func-

tion describes the idea that node merging into a community maximizes simultaneously its intra-

density of links and its similarity of nodes based on their relevant dimensions, according to the

value of α.

Si mD = 1

1+∑
C

∑
i , j∈C ( |RD(i )∩RD( j )|

|RD(i )∪RD( j )| )
(5.7)

5.4 Multi-community discovery algorithm: UCAD

The illustration workflow of UCAD is described through Equation 5.8, where ψ is a function that

converts a multidimensional network G to an aggregated and attributed network G fl at , BGLLnew

is the algorithm for multi-community discovery based on stability centrality of nodes. We next

give description of the workflow.

G
ψ−→G f l at

BGLLnew−−−−−−→C f l at −→ Metr i cs (5.8)

The general scheme of our proposed commUnity disCovery method in Attribute-based multiDi-

mensional networks (UCAD), is divided into two main achievements:

1. Preprocessing step of network flattening by ψ

2. Multi-community discovery through BGLL algorithm1 transformation by BGLLnew .

Algorithm 5 reports the pseudo code of the preprocessing step and Algorithm 6 reports the

second step, BGLLnew .

5.4.1 Preprocessing step

The ψ preprocessing function consists in 2 sub-tasks: (a) the identification of the relevant dimen-

sions subset RD(u) ⊆ D for each node u; (b) aggregation of the graph based on relevant dimen-

sions.

The first sub-task consists in 3 phases:

1Blondel, Guillaume, Lambiotte and Lefèvre known as Louvain algorithm [60]
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1. Determination of the stability centrality of each node on each dimension (Line 4): it consists

in average of inter-dimension correlation as defined in Equation 5.3.

2. Computation of the ε threshold as a mean (Line 5), denoting the intuitive idea that the in-

formation is more coherent when a node neighborhood is better stable over the majority of

dimensions, as defined in Equation 5.9. The choice of the mean as threshold stems from the

fact that values below that mean denote a low stability, and therefore, a more changeable

node neighborhood.

3. Choice of the subspace of dimensions (Lines 7-9), for which the node’s stability centrality is

greater than ε (see Equation 5.5)

ε(u) = 1

|D|
|D|∑

d=1
St abi l i t y(u,d) (5.9)

The second sub-task consists in computing weights of edges in the attributed flattened graph

G f l at =< V ,E f l at > (Lines 11-14). We use the frequential weighting scheme to label edges and

each node is described or enriched by its relevant dimensions, in order to preserve most of the

original multidimensional information residing in G , as degree, neighborhood, etc.

5.4.2 Algorithmic step of the BGLLnew method

As described in the pseudo-code through Algorithm 6, this step allows to extend the BGLL algo-

rithm [16] for aggregated graphs stressing on relevant dimension-based attributes. The advantage

of this algorithm is its sensitivity to relevant dimensions and overlapping nature of clusters. The

proposed approach highlights the topological features of real-world networks namely preferential

attachment of nodes and geodesic average distance k. The first node to be inserted in the list is the

node v with maximal degree. Then, it is followed by its non-allocated k-neighbors2 in decreasing

degree order. An iterative process inserts neighbors of nodes until the overall mileage of nodes of

G f l at .

Thus, unlike the BGLL algorithm which initializes each cluster with a randomly selected node

and migrates it to the cluster that maximizes modularity, our approach is based on a deterministic

scheme that computes a set of seed nodes, and re-orders the remaining nodes for optimization of

the new defined modularity. BGLLnew uses these seeds called sub-networks, as starting clusters si .

Indeed, the proposed method determines an initial Number of Sub-Networks (N SN ) containing

2Neighbors of a node according to a distance k
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Algorithm 5ψ: Generation of the aggregated attributed-based graph

Require: multidimensional graph G =<V ,E ,D >
Ensure: Weighted attributed-based graph G f l at =<V ,E f l at >

1: for Each node u ∈V do
2: Sum[u] ← 0; ψ← 0; RD(u) ←;
3: for Each dimension d ∈ D do
4: Sum[u] ←+= St abi l i t y(u,d)
5: ε←+= Sum[u]/|D| #threshold computation
6: end for
7: if St abi l i t y(u,d) > ε then
8: RD(u) ← RD(u)∪ {d} # assign attributes standing for relevant dimensions
9: end if

10: end for
11: for each edge (u, v,d) ∈ E do
12: E f l at ← E f l at ∪ {(u, v)}
13: wuv ← wuv +1 #Weights of each edge
14: end for
15: returnG f l at

seed nodes taken in a defined order. Like this, we define a NodeLi st (Line 1), referring to a list of

nodes according to a degree-based selection order. At the beginning of the process, the minimal

number of expected resulting sub-networks or communities equals to
p

n (Line 2), as the modular-

ity is used in the optimization process. Indeed, in [69], it has been proved for an important number

of networks that the modularity is maximal when the number of communities reaches
p

n. In the

experiments, the number of discovered communities also accounts for this value. Nodes in si

are distanced by a maximum average path k based on geodesic (Line 3). The objective of deter-

mining the initial clusters is double. The former promotes the gain of modularity for small-scale

communities. The latter helps to compute covers (overlapping communities) by initializing node

membership to several communities simultaneously through InitialComm function (Line 4).

Following BGLL algorithm which operates in two phases, BGLL_new achieves two functions,

that of modularity optimization adapted to the proposed “modularity dimension”, which gener-

ates optimal communities via the OptimalComm function (Line 6), and that of agglomeration of

these communities via the Compress method (Line 7). This Compress process consists in grouping

the nodes in the same communities to a new community-node. The weights between new nodes

are given by the sum of weights of the links between nodes in the corresponding communities [16].

To determine the dimension-based similarity between two communities, we use Dl , subspace of

relevant dimensions in the corresponding l community.
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Algorithm 6ψ: Generation of the aggregated attributed-based graph

Require: Aggregated attributed-based graph G f l at =<V ,E f l at >
Ensure: Densely relevant Cover P

1: Compute NodeLi st #List of nodes for selection, according to decreasing degree order
2: for Each dimension d ∈ D do
3: Mi nSN ←p

n
4: k ← aver di st (G f l at ) #Compute the average distance of the flattened graph
5: C l usti ni t ← Ini t i alComm(NodeLi st ,k) #Compute seed communities
6: repeat
7: OptC ← opti malComm(C l usti ni t ) #Node merging function
8: P ←Compr ess(OptC )
9: N SN ←|P |

10: until NSN > MinSN
11: return P

5.4.3 Computational complexity analysis

Given K = |D| dimensions from the multidimensional network G =<V ,E ,D >. we can analyze the

time complexity for each step as follows:

Algorithm 5: As the method has to compute stability and subspace of relevance dimensions

for each node in each dimension (Line 1 to 10), the time complexity is O(nK )). The last part (Line

11 to 14) assigns weight to edges of the aggregated graph, in O(m). Finally, the time complexity of

the preprocessing step is in O(nK +m).

Algorithm 6: At the beginning, the algorithm extracts list of nodes in their decreasing order

of degree (Line 1) in O(n2 + nlog (n)) (n2 for the degrees of n nodes and nlog n for the sort).

It computes the distance of the flattened aggregated graph (Line 3), using Dijkstra algorithm, in

O(m +nlog (n)). The initial clusters also called seed communities from which to begin the com-

munity extraction process (Line 4) are computed in O(n2). The second part of this algorithm (Line

5 to 9) describe the core operation of the proposed method. OptimalComm function (Line 6) com-

putes optimal communities. Each node migrates from its seed community to another one if the

modularity is improved. In the better case, we will have a single cluster containing all the nodes,

hence there is no merging. In the worst case, we will have as many clusters as there are nodes. The

number of steps needed to verify whether the running modularity maximum can be improved or

not should be O(n2). The Compress function (Line 7) aggregates nodes of the same subnetwork

in a single node in O(n2). Since the process can at worst be iterated a significant number of times

equal to
p

n, then the main part can perform in O(n1/2(n2 +m2)) which can be reduced to O(n2).

Thus, the complexity of the algorithm is O(m+nlog (n)+n2). In final, the preprocessing step being

in O(nK +m) and the BGLLnew step being in O(m+n2), the global complexity of the overall UCAD
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model would be O(m +n2pn).

5.5 Experimental Evaluation

In the following, Section 5.5.1 summarizes the evaluation datasets, Section 5.5.2 introduces com-

peting methods, Section 5.5.3 describes experimental settings and results are presented in Section

5.5.4.

5.5.1 Data

We used six real-world multidimensional network datasets, namely Florentine [122], AUCS [108],

Biogrid [136], DBLP [18], Bankwiring [145] and Monastery [25]. Some of them are available in

[42]. Florentine describes relations among 16 politically prominent families in the city of Florence

around the year 1430 structured in two blocs: business ties and marriage alliances. AUCS, an

attributed multidimensional network, models relationships between 61 employees of Aarhus Uni-

versity Computer Science department considering five different aspects: coworking, having lunch

together, Facebook friendship, offline friendship, and coauthorship. As our method considers con-

nected multidimensional networks (see Section 5.2.1), we used the subset of 52 nodes (out of 61)

sampled in [23] because the others are disconnected from the network. Each node is described

by two attributes: Workgroup and Grade. Biogrid is a protein-protein interaction network, where

dimensions correspond to seven different types of interactions between proteins. In DBLP, nodes

correspond to authors and dimensions represent the top-50 Computer Science conferences. Two

authors are connected on a dimension if they co-authored at least two papers together in a partic-

ular conference. Bankwiring is the observational data on 14 employees from the bank wiring room.

The interaction categories include 6 dimensions. For Monastery, Sampson recorded the social in-

teractions between a group of monks while residing as a vision experimenter, and collected many

sociometric rankings. Their views on the types of relationships among 18 monks were classified

into 10 dimensions through 510 connections between them.

Table 5.1 summarizes main characteristics of our evaluation datasets. Node relations in all

datasets are treated as symmetric and AUCS is the only dataset with the nodes’ attributes. We de-

note with Adeg the average degree of a node considering multiple edges and with Adi m the average

number of dimensions in which a node is present. OC N (OmniConnected Nodes) [14] computes
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the percentage of nodes that exist in all the dimensions of the network. Note that DBLP is the rich-

est in term of dimensions, and that Biogrid and DBLP have nodes, in average involved in less than

two dimensions (resp. 1.9 and 1.35). Node degree distribution in DBLP is low (3.8).

Table 5.1: Main characteristics of the multidimensional network datasets

Dataset #Nodes #Edges #Dim Density Adeg Adi m OC N

Florentine 16 35 2 0.21 4.38 1.87 0.69
AUCS 61 620 5 0.114 20.33 3.67 0.18
Biogrid 8215 43366 7 4.8e −4 17.6 1.9 0.074
DBLP 83901 159302 50 8.9e −5 3.8 1.35 0.018
Bankwiring 14 110 6 0.054 15.43 4.43 0.29
Monastery 18 510 10 0.019 38.83 3.44 0.78

5.5.2 Competing methods

In order to demonstrate the efficiency of UCAD, five approaches considering the three core con-

tributions of our community discovery algorithm were selected: approach based on relevance of

dimensions (MDLPA3 [23])to evaluate the level of activity of a node, those considering overlap-

ping feature of the structure used from the R Multinet package [158] (ABACUS [15], Generalized

Louvain (gLouvain) [113], Multiplex CPM (Mul-CPM) [146], Multimap [38]), and the overall above-

mentioned methods to evaluate the determinism property of our method.

5.5.3 Experimental settings

The performance evaluation criteria for the selected algorithms are classified into two categories

of measures: Mesoscopic and macroscopic measurements. For the former, an evaluation based on

community level is performed. We assessed the behavior of the proposed UCAD method in terms

of: (1) size of extracted overlapping multi-communities, (2) Multi-Community Density: (MC D),

(3) distribution of dimensions involved in each multi-community: Redundancy (ρ), (4) Number of

triads in each multi-community: Triad Multi-Community density (T MCdens), (5) Impact of rele-

vance dimension: Relevance Multi-Community density (RMCdens). (6) quality of the cover: mul-

tislice modularity Qmul ti sl i ce [113].

Note that the 5th point based on relevant dimension evaluation could be tracked through other

measures, by consideration of the subspace of relevant dimensions of the multi-community, Dl ,

3Source code is available on https://github.com/BoutemineOualid/MDLPA-Algorithm
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instead of the subspace of relevant dimensions found in the multi-community, DFl as described

in Section 5.2.2. Mesoscopic measures are described in the following:

• The redundancy as defined in [13], for a community l , calculates the ratio between the num-

ber of links existing in at least two dimensions (Pl ) and the total number of links (Pl ) in the

community. Equation 5.10 describes it.

ρl =
∑

(u,v)∈ ¯̄Pl

|{d : ∃(u, v,d) ∈ E }|
K .|Pl |

(5.10)

• MC D(l ) as defined in [15], for a community l , computes its proportion of links as shown in

Equation 5.11.

MC D(l ) = 2.|El |
|DFl |.|Vl |.(|Vl −1|) (5.11)

• The simple and easy to compute defined measure T MCdens(l ) being the number of triads in

a community l normalized by the maximum possible for that community, or in formula 5.12

T MCdens =
|∆l |

|DFl |.
( 3
|Vl |

) (5.12)

• For evaluating the proportion of relevant dimensions in a community l, we define another

measure namely RMCdens(l ) being the number of nodes in a community l belonging to a

subspace of relevant dimensions Dl normalized by the maximum possible for that commu-

nity, or in formula 5.13

RMCdens =
|VDl |

|DFl |.|Vl |
(5.13)

(a) Assortative behavior of nodes on AUCS (b) Disassortative behavior of nodes on Bankwiring

Figure 5.7: Stability centrality on node behavior
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(a) TMC: evaluation based on triads (b) MCD: density of links in multicommunities

Figure 5.8: Mesoscopic measure’s evaluation based on density, for α= 0.5

Given that these measures apart the modularity are computed for each community, we com-

pute the average to assess the overall cover P (G). In the remainder, we refer to these metrics de-

signed for the average of the cover as ρ, MC D,T MCdens ,RMCdens respectively.

5.5.4 Results

In this section, we present experimental results in three paragraphs as follow: The first one presents

how the stability is correlated to the density of links. The second one stresses on the behavior of

UCAD with respect to the communities identified. The third one compares the UCAD method

with methods that reveal the overlapping nature of communities and that focus on dimension

relevance.

Stability centrality evaluation

The stability centrality is assessed by comparing its values according to the density of links in

the resulting structures. Through our analysis, it is reported that the stability centrality is corre-

lated to the MCD metric.

Indeed, MCD computes the density of links between nodes of the same community. Since stability

deals with the common neighborhood of a node across all dimensions, then intuitively that node

with its stable neighbors would eventually be densely tied together in a multi-community.

According to Figure 5.9, with α= 1 , UCAD extracts 3 multi-communities with a value of MC D

of 0.5. Since Figure 5.7a shows that the set of nodes is predominantly described by 3 dimensions

(Lunch, Leisure and Work) among the 5 existing ones (which makes a ratio of 3/5 = 0.6). Then it is

quite acceptable that the nodes are mid-density. In fact, the value of MC D , i.e. 0.5, is closed to 0.6.
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Figure 5.9: How α affects Relevant dimension-based attributes on AUCS.

Table 5.2: Number of Communities

Dataset(
p

n) gLouvain ABACUS Multimap Mul-CPM UCAD

Florentine (4) 5.4 6.2 3 4.5 3
AUCS (7.8) 5.3 55.4 4.8 36.1 7
Biogrid (90.6) 806.5 7759.5 141.6 327.5 86
DBLP (289.6) 6705.1 9506.8 411.5 1975.5 283
Bankwiring (3.7) 2 23.5 1.1 12.5 2
Monastery (4.24) 3.2 142.1 1 22 1

Table 5.3: Community size

Dataset
gLouvain ABACUS Multimap Mul-CPM UCAD
µ vs σ µ vs σ µ vs σ µ vs σ µ vs σ

Florentine 3.5±0.08 4.5±0.05 4.8±0.15 4.00±0.09 5
AUCS 7.33±0.04 5.1±0.02 12.2±0.41 6.5±0.25 9.5
Biogrid 152.4±90.19 387.8±100.1 2546.4±111.1 2081.4±58.1 4710.5
DBLP 127.5±50.8 670.1±89.6 557.6±100 1231.4±79.1 8310.7
Bankwiring 7.9±0.02 5.5±0.1 14±0.01 6.7±0.31 14.4
Monastery 10.1±1.5 9.4±0.08 18±0.02 9.5±0.22 18

UCAD Evaluation

Here we assess two questions. Q1: Does our approach determine communities that are densely

connected ? Q2: How does α affects dimension relevance of nodes? Let us answer Q1 and Q2.

Q1: Density-based property of covers. This paragraph assesses both T MCdens and MC D mea-

sures, as the proposed approach also considers density of links in their discovered structures.
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Figure 5.8 shows measures based on density of links. Mul-CPM results are not displayed as the

method computes largest values of these measures as well as it focuses on the CPM principle [41].

The first report is that values of MC D are larger than those of T MC . As shown in that Figure 5.8b,

and according to the table 5.4, ABACUS has the highest values of these measures on AUCS. This

may be explained by the fact that, this dataset is the densest because it has simultaneously both

high density and Adeg (see in Table 5.1, 0.114 and 20.33 respectively) and it detects a large number

of small communities each. More precisely, it finds an average of 55 communities with an average

size of 5 nodes as shown below, in Tables 5.2 and 5.3 respectively. Nevertheless, for these two met-

rics, UCAD finds larger values than gLouvain and Multimap on the AUCS as well as it is initially

assigned and whose attributes are enriched by relevant dimensions. As far as T MCdens is con-

cerned, this measure is based on the triadic closure4. Thus we compare the values of T MC from

different methods, as shown in Figure 5.8a. UCAD produces a better improvement of TMCdens

for the majority of datasets, unlike Bankwiring whose nodes have a dissortative behavior as shown

in Figure 5.7b.

Q2: How α affects dimension relevance of nodes ? The Qdi m quality function in Equation 5.6

shows how to use to weight both similarities. As α can affect both density-based similarity and

attribute-based similarity, it is easy to notice that the higher the α is, the greater the influence of

density-based similarity is on attribute-based similarity, and vice versa. To explain this variation in

weighting factor, AUCS dataset is of interest because it has additional attributes, such as "Work-

group" and "Grade". Figure 5.9 shows the evaluation results stressing on α variation. The left

vertical axis stands for the community number in AUCS, whereas the right vertical axis represents

the MultiCommunity Density (MC D). From this figure, we can see that, when α > 0.5, the MC D

became the largest one, and the number of communities decreased. Moreover, no matter how the

weighting factor α changed, MC D value seemed to remain below 0.5. We think that the main rea-

son why this phenomenon happens is that, despite the more higher average degree of nodes (see

Adeg = 20.33 in Table 5.1), the main behaviors of how nodes have the same relevant dimensions

are mainly preserved in each community.

Comparison with other community discovery methods

Note that the following metric results on UCAD method were obtained through the Qdi m opti-

mization (see Modularity dimension in Definition 5.3.4), under the weighting factor α= 0.5.

4A triad stands for one of the fundamental features of real networks, namely homophily. Homophily explains the
tendency of individuals to associate and bond with similar others.
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Size and number of multi-communities. The Table 5.2 and Table 5.3 show the average on the

multi-community number, means (µ) and the standard deviation (σ) of the size of the communi-

ties, respectively, identified by ABACUS, gLouvain, Mul-CPM, and Multimap from an experimen-

tation on 10 executions, in order to reduce the bias due to their non-deterministic behavior except

UCAD which is deterministic. On average, UCAD yields the largest communities on all datasets

except DBLP which has the weak density (see Table 5.1). A weak density means that the network is

sparse and nodes are solely involved in all dimensions. UCAD and Multimap communities slightly

prevail in size with respect to the other methods and produces the smallest number of commu-

nities as shown in Table 5.2. Throughout our analysis we found that the higher the number of

communities is computed, the more likely they are fairly sized.

On Biogrid, UCAD discovers 86 overlapping communities with an average size of 4710.5. These

values correspond both to the minimum and to the maximum among of values for the number

and size of communities respectively, compared to other datasets. This result confirms the reality

behavior of molecules (nodes) that, they are not necessarily associated with the same biological

mechanism (because of the sparsely feature of the network through its weak density as shown in

Table 5.1), however they often interact together (large average size of communities). This obser-

vation reflects the principle of non-exclusiveness as expressed by UCAD (refer to the bottom of

Section 5.2.1). Indeed, for the “synthetic_genetic” dimension containing the smallest number of

links, namely four links, the related nodes can be strongly involved in the disease transmission

process.

To justify it, the figure 5.10 shows that the nodes H y x, L and Mus312 of this dimension are

included in almost 60 percent of the obtained communities, unlike the other approaches that in-

clude them in a low community rate. This is enough to show that neglecting a molecule in a protein

interaction system could be just as fatal. It is also deduced that the size of the dimension does not

affect the involvement of its related nodes in community discovery.

On Florentine, all methods tend to identify quite small communities, which can proceed from

the nature of the node relationship i.e. binary dimension values, either “Marriage”or “Business”.

The same behavior is observed on the other datasets. We realized through analysis based on these

datasets that the higher the number of dimensions of the multigraph, the more likely communities

are larger. UCAD exactly uncovers 7 multicommunities from AUCS, as well as presumed, standing

for the number of workgroups of employees.

The evaluation of the number of communities obtained by UCAD was also done in accordance
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Figure 5.10: Involving rate of 3 nodes of Biogrid in the overall communities.

with the principle of Guimera [69] which shows that the optimal number of communities that

maximizes modularity is closed to (
p

n). According to this principle, we compare UCAD to the

gLouvain method because they are both approaches based on the optimization of modularity.

The Table 5.2 shows that for Florentine, AUCS, Biogrid and DBLP datasets, UCAD results in bold

are more closed to their corresponding value (
p

n) given in brackets in the “Dataset”column of

this table. However, gLouvain produces the more closed community number in Bankwiring and

Monastery datasets. In fact, Bankwiring presents an disassortative behavior of nodes (see Figure

5.7b); so it becomes difficult to compute relevant dimensions of multi-communities by UCAD. On

the other hand, Monastery is densest so, since gLouvain focuses on density of links optimization

through its modularity function, it performs well in this dataset.

Redundancy ρ evaluation. Since UCAD stresses on inter-dimensional correlation involving

several dimensions simultaneously, we make use of this metric as it captures the phenomenon for

which a set of nodes that constitute a community in a dimension tend to constitute a community

also in other dimensions.

Figure 5.11 reports the results for compared algorithms, evaluated with the redundancy ρ. As

we can see, UCAD slightly prevails on AUCS, Biogrid, DBLP and Bankwiring datasets. These values

strengthen the idea that the resulting communities have nodes centered around a common inter-

est, i.e. the same relevant dimensions. We also notice that since Florentine dataset only has two
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Figure 5.11: Redundancy values distribution

dimensions, all the methods compute larges metric values as they find communities containing

both dimensions simultaneously, except Mul-CPM. Indeed, Mul-CPM computes for this measure

a null value for Florentine because every community it finds has links in one dimension at a time.

On the other hand, each method provides lower metric values for DBLP. It could be due to the fact

that DBLP has the weakest Adi m = 1.35, as reported in Table 5.1. This reflects the fact that very few

co-authors participated simultaneously to several conferences. Impact of relevant dimensions. To

make the results on the importance of relevant dimensions via RMCdens more meaningful, two

datasets were used, in particular a small one and a large-scale one as shown in Tables 5.4 and 5.5

respectively. We notice that there are two dimensional subspaces used: DFl and Dl .

The UCAD approach is compared to the MDLPA, Multimap and ABACUS approaches which

consider the relevance of dimensions. Unlike MDLPA which focuses exclusively on the Dl sub-

space, ABACUS and Multimap merge both the subspaces Dl and DFl . The Table 5.4 shows an

improvement in the RMCdens values on AUCS, over the subspace Dl , by comparing UCAD(Dl )

whose value is 0.45 to UCAD(DFl ) whose value is 0.204. MDLPA(Dl ) has a high RMCdens value

0.483 compared to UCAD(Dl ), due to its non-overlapping nature. Indeed, its Dl community sub-

spaces are large, unlike UCAD, which is overlapping both on dimensions and on nodes. This leads

to a reduction of the size of its Dl community subspace. The same behavior is observed in table

5.5 for DBLP dataset.

ABACUS and Multimap produce high values of RMCdens compared to UCAD, because they

take into account several overlaps in the discovered structures. However, the communities ob-
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tained by UCAD are more significant. Indeed UCAD considers the similarity of the attributes

which are in this context the relevant dimensions. Since co-authors in DBLP could not only com-

monly classified according to their venues, they could also be classified based on their score in a

specified journal to which the authors have submitted.

Table 5.4: Mesoscopic measure evaluation for AUCS

MCD RMCdens

Low µ±σ High Low µ±σ High
MDLPA (DFl ) 0.42 0.47±0.04 0.55 0.16 1.69±0.05 0.18
MDLPA (Dl ) 0.53 0.6±0.06 0.71 0.35 0.41±0.07 0.483
ABACUS (DFl ) 0.69 0.71±0.04 0.49 0.50 0.55±0.23 0.59
Multimap (DFl ) 0.67 0.69±0.01 0.13 0.207 0.219±0.01 0.23
UCAD (DFl ) 0.38 0.204
UCAD (Dl ) 0.32 0.45

Table 5.5: Mesoscopic measure evaluation for DBLP

MCD RMCdens

Low µ±σ High Low µ±σ High
MDLPA (DFl ) 0.0071 0.0075±0.001 0.008 0.0005 0.00051±0.0001 0.0006
MDLPA (Dl ) 0.0067 0.007±0.001 0.0079 0.00042 0.00045±0.17 0.00047
ABACUS (DFl ) 0.08 0.009±0.01 0.11 0.011 0.0115±0.08 0.081
Multimap (DFl ) 0.087 0.088±0.001 0.089 0.015 0.015±0.072 0.016
UCAD (DFl ) 0.86 0.112
UCAD (Dl ) 0.072 0.090

In fact, if an article is described by other attributes as key-words, affiliation, etc. then authors

are grouped with respect to their higher matching of attributes. These methods also prevail in this

metric because DFl considers all dimensions of the community. As ABACUS uses a partition inte-

gration approach and itemsets with high support values, it generates communities with better RM-

Cdens for networks which are relatively smaller in terms of nodes (AUCS, Florentine, Bankwiring

and Monastery), while low RMCdens for sparser and larger networks (DBLP and Biogrid).

From a structural point of view, we perform another evaluation of the dimension relevance.

The Table 5.6 in which lower values are in bold, describes the RMCdens measure on an assessed

DSl subspace. It corresponds to dimensions whose score is upper than a threshold ξ. In other

words, Dl is replaced by DSl in Formula 5.13. This threshold stands for the average of dimensions.

According to the results of the Mul-CPM method on Florentine (RMCdens = 1.0), the nodes of each

community share only one relevant dimension, with respect to the two existing dimensions one.

On the other hand, results of gLouvain on the same dataset (RMCdens = 0.5) shows that it detects

communities in which nodes of the same community simultaneously consider both dimensions to
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be relevant. It can be concluded via these results that the more the nodes of the same community

have relevant dimensions in common, the lower the RMCdens value. The lower values in Table 5.6,

of this measure, obtained by UCAD, reflects the fact that the communities generated are densely

relevant.

Table 5.6: Relevance MultiCommunity Density (RMCdens) based on DSl

Dataset gLouvain ABACUS Multimap Mul-CPM UCAD

Florentine 0.5 0.75 0.5 1 0.25
AUCS 0.2 0.59 0.23 0.58 0.15
Biogrid 0.048 0.28 0.16 0.115 0.03
DBLP 0.0025 0.081 0.0021 0.0075 0.0008
Bankwiring 0.167 0.41 0.167 0.69 0.135
Monastery 0.1 0.57 0.1 0.79 0.1

Table 5.7: Multilayer modularity evaluation

Dataset gLouvain ABACUS Multimap Mul-CPM UCAD

Florentine 0.015 0.175 0.215 0.227 0.255
AUCS 0.02 0.071 0.323 0.218 0.375
Biogrid 0.048 0.208 0.156 0.185 0.23
DBLP 0.031 0.065 0.0071 0.301 0.28
Bankwiring 0.17 0.141 0.177 0.086 0.205
Monastery 0.11 0.18 0.042 0.247 0.114

Global measure evaluations

Given the variation in the structural information of each dataset and the processing principle

of each approach, the unique use of local metrics (ρ, MC D , T MCdens , RMCdens) is not sufficient

to establish, objectively and fairly, the merits of each approach considered in the comparison. In

fact, a cover where communities consist of a single pair of nodes will have high scores for some

of these metrics. In order to offset this impact, two global metrics that take into account inter-

community interactions should be considered to evaluate the results of community detection al-

gorithms. These include multislice modularity of Mucha [113] and the proposed modularity di-

mension formulated in Equation 5.6.

Multislice modularity evaluation. For experiments, we fix the parameters of the multislice

modularity stated in Section 3.2 in Chapter 3 such as ω = 1 and γs = 1. We could see that the

values of the multilayer modularity of Mucha [113] are improved by UCAD as shown in Table 5.7.

These improved values of the multilayer modularity for most datasets reflect the additional value

of our method, i.e. the consideration of stability in the determination of the relevant dimensions.

Almost for all datasets UCAD has high modularity values, except on DBLP and Monastery which
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have extreme values of Adeg and ONC , as presented in dataset description in Table 5.1. Indeed, the

statistics presented in that table show that Monastery is dense as it has higher values of Adeg = 38.8

and OC N = 0.78, indicating that an algorithm that integrates multiple attribute similarity relations

can obtain weak results for datasets with concentrated nodes. On the other hand, DBLP is sparse

with low Adeg = 3.8 and OC N = 0.018, expressing the fact that an algorithm density-based simi-

larity can also obtain weak results for datasets with sparse nodes. We believe that these low values

of modularity do not reflect poor partitioning, since some authors studied the limits of modular-

ity [60]. According to them, a large value for the modularity maximum does not necessarily mean

that a graph has community structure.

Modularity dimension evaluation. The Modularity dimension Qdi m (See Definition 5.3.4) is

a quality function optimized by UCAD only. Indeed, UCAD describes each node by a subspace

RD(u) (see Section 5.2.2). RD(u) allows to deduce Dl subspace of relevant dimensions of the

multi-community Cl through a matching criterion, and it is used in Qdi m . On the other hand,

other approaches do not describe the nodes by the relevant dimensions or are not preprocessed

to extract them. If considering them, they operate through the clustering process. Likewise, this

paragraph focuses on the evaluation of the values of Qdi m , also with regard to the involved weight-

ing factor α.

Unlike the other methods which have many parameters, UCAD has only one, namely the α

weighting factor. The natural question is how to choose α. Note that the results are quite stable

with respect to α. Its value is a priori difficult to choose, with no domain knowledge. But we

observed a behavior of the metric in two cases of our study :

1. α ∈ [0;0.5[: Qdi m is weak.

2. α ∈ [0.5;1[: Qdi m is higher but under 0.5.

In the first case, the information on the relevance of dimensions is more prevalent on struc-

tural information; in other words, there is more attention to the similarity of dimensions than to

the density of links. Si mD is the inverse of the Jaccard index. The smaller this index, the more

Si mD increases, and vice versa. This index is small when the nodes have a slightly similar neigh-

borhood, therefore Si mD grows when there is dissimilarity between the relevant dimensions of the

nodes. Likewise, it decreases for similarity in relevant dimensions. So, small values of Qdi m denote

an optimal partitioning in this first case. In the second case, the structural information prevails on

relevance dimension similarity. This is like considering Newman’s property on classical modu-
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larity, which assumes that for high modularity values, we tend towards a better partitioning. For

increasing α values (case 2), the Q optimum is achieved (α = 1 then Q = 1) when all nodes are

connected two-by-two and belong to the same community. Thus, high values of Qdi m denote a

better partitioning of the network.

Figure 5.12 shows that UCAD discovers optimal covers since values of modularity dimension

are weak in the first case, and high, although below 0.5, in the second case. To summarize, there is

a balance between Q and Si mD for all values of α that leads to better values of Global modularity

as shown in Table 5.7.

Figure 5.12: Qdi m validation through α study

5.6 Conclusion

In this chapter, we addressed the problem of community discovery in multidimensional networks

via the proposition of an approach called UCAD. Specifically we gave a new definition of this prob-

lem by integrating attributes on the process of enrichment of properties of the multigraph by rel-

evant dimensions, in order to discover more significant communities of interest. To this end, we

provided a measure called stability, aimed at computing relevant dimensions for each node, and

proposed a solution that takes them into account.

Afterwards, we proceeded by a weighting-based aggregation scheme to deduce a monodimen-

sional attributed and weighted graph. Then we adapted the Louvain’s optimization based algo-

rithm to aggregated network, to make it deterministic, stressing on overlapping discovery of multi-
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communities. We also provided a quality function aimed to characterize the validity of the found

multi-communities. This function stands for the linear combination of both structural informa-

tion and relevant dimensions of nodes in the multigraph. Thus, UCAD seems to be a more appro-

priate solution to the problem of community discovery in attributed multidimensional networks.

The similarity between entities and relational information are of great interest for networks whose

nodes are described by attributes and relevant dimensions. Our outcomes are more meaningful,

since they produce better results of the metrics when focusing on relevance of dimensions. The

proposed solution provides a basis for future research on this direction, in particular the consid-

eration of directed multigraphs.
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General conclusion

The observation that interactions between individuals manipulating large amounts of data can be

modeled by complex systems. The analysis of these complex networks has produced enormous

challenges for researchers. In this thesis we focused on the communities of interest detection in

complex networks. Our motivation is that an individual’s interest is the leitmotiv of its involve-

ment in the society. Since the methods for detecting communities of interest are based on seman-

tics that require a prior knowledge of the network, then topology could be used to identify these

communities of interest.

In this thesis we focused on three main objectives. The first objective was to develop a method

of community of interest in directed networks. The second objective was to develop another

method dealing with networks whose nodes are described by attributes. The last objective was

to investigate the detection of communities of interest in multidimensional networks.

6.1 Summary of the thesis

We summarize the works achieved in this thesis by grouping them into major themes.

Literature review

In Chapter 2, we have presented the generalities on complex networks. More specifically, we

stated basic concepts handled by complex networks and their properties and tools for their ma-

nipulation.

In Chapter 3, we have presented a review community detection methods on different type of

networks of the context, namely directed, attributed and multidimensional, in addition to their

applications areas.
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Design of heuristics

In Chapter 4, we have proposed two new methods of community of interest detection in di-

rected networks. Unlike the first heuristic, the second one deals with attributes. They perform

better than state-of-the-art methods with respect to the density of triads and allow to group nodes

according to their interest based both on the structural equivalence through their homogeneous

topology and similar attributes.

In Chapter 5, we have proposed a method of community of interest discovery in multidimen-

sional networks. This new heuristic performs better in term of the level of activity involving nodes

of the same community. Thus, identified communities are densely relevant since they group nodes

of the same interest with regard to their relevant dimension

6.2 Future directions

We propose several ideas and perspectives built on the work presented in this thesis.

General perspectives

In this thesis we use attributes on nodes in directed networks. Edges are sometimes also en-

riched of attributes. Thus, it would be interesting to handle them in the process of community

detection.

In this study, we focused on some properties of complex networks, disregarding the dynamical

evolution property. Another perspective concerns the tracking of communities of interest over

time, and therefore deal with dynamic aspect, as an individual may change his or her choices or

preferences after an unknown period of time.

Also, we could be interested in graph embedding using deep neural networks to model com-

munity detection. This remains an open question that deserves to be studied.

Perspectives in heuristics evaluation

This perspective concerns a thorough evaluation of the proposed heuristic for multicommu-

nity of interest detection based on topological features of the network. Instead of using the state-

of-the-art complex networks to enhance the implemented communities of interest, we plan to set

up a platform for the interconnection of agricultural sector agents. It will aim to build a multidi-
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mensional network of users in the agricultural sector. Thereafter, the resulting social network of

agriculturists will be applied to the methods in order to discover communities of interest. This

construction is achieved by putting in communication individuals or companies who would like

to exchange their knowledge and/or technical expertise in their agricultural activities. We hope

that this would contribute to the development of the agricultural sector through exchanges of ex-

perience and thus increase yields and the economy of our country.
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A Extended Abstract

A.1 Context and Goal

Context. With the proliferation of social media and mobile applications, users are constantly inter-

acting, sharing documents, images/videos and messages, etc. These interactions can be modeled

by a complex system. A complex system is a system possessing some emergent properties, due

to the interactions of its constituting objects [17, 114]. It can be encountered in many different

domains such as biology, physics, computer science, sociology, etc. [3, 114]

Network modeling consists in representing such systems through complex networks [3,17,114]

using nodes to represent the objects and links for their interactions. For this reason, complex sys-

tems broaden the understanding of the topological real-world networks’ properties, such as small-

world effect, Scale-free, Homophily and Community structure. Likewise they help in the analysis

of semantics and functioning of the systems of interest. In its most basic form, a complex network

contains only nodes and links; it can then be qualified of plain network. However, one can intro-

duce a richer information in this model, depending on the considered system, modeling needs and

constraints, which makes it a very flexible tool. Thereby, the network can be directed [114] if the

relations between objects are asymmetric. It can be represented by multiple dimensions, where

each dimension represents one type of relationship between nodes, leading to multidimensional

network [138]; it also can be an attributed or assigned network [114] when some attributes are

added to nodes or links in order to a better description of the model, etc. The analysis of these

networks investigates their objects which generally tend to group into communities, according to

their similarity or cohesive connectivity.

Goal. The thesis presented in this manuscript focuses its study on the uncovering of commu-

nities of interest being those whose nodes are interest-based similar, meaning that they share the

same idea. Because real networks are increasingly enriched by relevant informations on the inter-

actions between entities, we focus on directed and multidimensional networks. According to these

two types of studied graphs, the interest is based both on topological and relational properties of

links respectively. Indeed, for directed networks, the community detection approach stresses on

the directionality of in-links, while for multidimensional networks, the community discovering

method deals with the relevant dimensions to built its communities of interest. The following

main goals arise:
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1. Our first aim is to propose a method for extracting communities in directed graphs, based

on the consideration of the incoming links to the nodes of interest, using triads. Triads are

structures based on the homophily property of terrain graphs [86]. Therefore, interest-based

similarity, such as in social network analysis, exhibits the idea that two entities going inward

a third named as their common friend, have a higher probability of belonging to the same

community. Indeed, the incoming link reflects the semantics of adhesion to the same idea

as the node of interest, hence the notion of triad for directed graphs. The underlying goal

behind it lies in revealing the in-centric nodes’ importance. Furthermore, when these di-

rected networks are assigned, we propose a method that simultaneously takes into account

the directionality of edges and attributes of nodes to extract communities of interest.

2. Our second objective is to propose a method for community discovery in multidimensional

graphs that includes the neighborhood quality and consequently the nodes interest based

on their involvement level in their interactions. The interest is expressed by the relevance

dimension-based similarity of nodes. The dimension relevance is assessed by the neighbor-

hood stability of a node in that dimension, being dimensions in which the node owns more

stable neighbors. The implied purpose is to show that a node’s membership to a commu-

nity depends on its level of activity in the dimensions included in that community, i.e. to

establish that relevant dimensions are profitable for the community of interest extraction.

Methodology. The methodology used to achieve these outcomes is described below: For the

first goal related to community detection in directed networks:

• Define a similarity measure for kernel nodes’ extraction

• Extract the kernels by taking into account the interest principle based on the triads.

• Build communities centered around these kernels

As far as the second aim for discovering communities in multidimensional networks is con-

cerned, the implemented protocol is described below.

• Define a new centrality measure based on the stability of a node’s neighborhood

• Extract relevant dimensions of nodes based on the stability centrality measure

• Construct an assigned monodimensional network based on relevant dimensions

• Extract communities from the monodimensional network
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A.2 Contribution

Our contribution in this thesis has three aspects: – Community detection Heuristic on directed

networks, – Heuristic for community detection in directed and attributed networks – and Com-

munity discovery Heuristic on multidimensional networks.

The main purpose is to define a new way of looking at community of interest, different from the

one discussed in the literature which focuses on semantics through ontologies [32]. This method is

mainly limited by the fact that despite all works done on validation, they are still subject to discus-

sion as knowledge do not only evolves but also there is no evidence that ontology always captures

all the knowledge in the field. In order to consider real network features, we will be able to reuse

and/or adapt existing topology-based solutions to uncover communities of interest in our context

(directed and multidimensional graphs). As a result, the three most prominent contributions are

listed below, according to the type of graphs of the context.

Heuristic for Community detection on directed networks. The first heuristic is related to

community detection in directed networks. It allows to detect communities densely linked by

triads, since communities’ members are centered around kernels, being structures consisting in

dense triads. To detect communities, we first define Kernel degree, a similarity measure based on

both triads and Jaccard index, to measure the strength of the kernel vertices’ similarity. Afterwards,

the kernels reflecting the nodes of interest sets are extracted through kernel degree measure. Then

we define NCI (Node Community Index), a merging measure of non-kernel nodes to kernels, in

order to detect communities of interest consisting in triad-based densely nodes. Finally, we merge

non-kernel nodes to kernel for which the NCI measure is maximized. This contribution has been

the subject of 4 publications, namely one paper in an international journal [46], and 2 papers in

international conferences [45, 47] and one paper in national conference [48].

Novel quality function. In order to take into account both relational and topological infor-

mation, we propose a "modularity hybrid" quality function. It is a combination of 3 types of in-

formation: relational information based on link connectivity, topological information based on

link directionality, and information based on node attributes. The modularity hybrid includes an

hybrid similarity that investigates the topological aspect by applying the Kernel degree similarity

measure implemented in the first contribution. This similarity measure contains informations on

attributes and directionality and is joined to structural information to transform the directed at-

tributed graph into a weighted one. Then, the resulting graph is applied to an hierarchical agglom-
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erative algorithm to extract the communities qualified as more meaningful. This contribution has

been the subject of one publication in a conference [49]

Heuristic for Community discovery multidimensional networks. This contribution focuses

on the implementation of UCAD(commUnity disCovery method in Attributedbased multiDimen-

sional networks) for community discovery in multidimensional networks. We use some topolog-

ical graph properties to define a novel centrality called stability, needed for computing relevant

dimensions. Then, we extract relevant dimensions of nodes based on the stability centrality mea-

sure. Afterwards, we enrich the attributes of nodes by their relevant dimensions. A dimension

aggregation approach is then used to design a monodimensional attributed network. Finally,

through a modified version of an hierarchical agglomerative method, we extract communities.

This contribution has been the subject of one publication in an international conference [50] and

one submitted paper in international revue, currently under revision.

Publications. This thesis leads to six publications with reading committee (5 conferences and

1 journal):

1. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Community structure ex-

traction in directed network using triads. International Journal of General Systems. 49(8):

819-842 (2020) https://doi.org/10.1080/03081079.2020.1786379

2. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Multidimensional networks:

A novel node centrality metric based on common neighborhood. In: 15th Edition of CARI (Col-

loque sur la Recherche en Informatique et Mathématiques Appliquées), Sénégal, 2020.

3. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Communities in directed

networks: Towards a hybrid model of semantic communities detection. In: 14th Edition of

CARI (Colloque sur la Recherche en Informatique et Mathématiques Appliquées), Stellen-

bosch, South Africa, 2018.

4. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Finding directed commu-

nity structures Using triads. In 3r d Edition of CRI (Conférence de Recherche en Informa-

tique), Yaoundé, Cameroon, November, 2017.

5. Félicité Gamgne Domgue, Norbert Tsopze and Arnaud Ahouandjinou. Nouvelle approche

de clustering par kernel-pattern via la densité en triades : Optimisation de la métrique Kernel

Degree Clustering. In: CORIA’2017, Marseilles, France, March, 2017.
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6. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Novel method to find di-

rected community structures based on triads cardinality. In: 13th Edition of CARI (Colloque

sur la Recherche en Informatique et Mathématiques Appliquées), Hammamet, Tunisia, Oc-

tober, 2016.

This thesis is an extension of our master thesis which leads to one publication with reading

committee.

7. Félicité Gamgne Domgue, and Norbert Tsopze. Analyse des réseaux sociaux: Communautés

et rôles dans les réseaux sociaux. Accepted for presentation in CARI’2014, Colloque sur la Recherche

en Informatique et Mathématiques Appliquées, SaintLouis, Sénégal, October, 2014.

A.3 Perspectives

General perspectives. In this thesis we use attributes on nodes in directed networks. Edges are

sometimes also enriched of attributes. Thus, it would be interesting to handle them in the process

of community detection.

In this study, we focused on some properties of complex networks, disregarding the dynamical

evolution property. Another perspective concerns the tracking of communities of interest over

time, and therefore deal with dynamic aspect, as an individual may change his or her choices or

preferences after an unknown period of time. Also, we could be interested in graph embedding

using deep neural networks to model community detection. This remains an open question that

deserves to be studied.

Perspectives in heuristics evaluation. This perspective concerns a thorough evaluation of the

proposed heuristic for community of interest detection based on topological features of the net-

work. Instead of using the state-of-the-art networks to enhance the implemented communities of

interest, we plan to build new networks by setting up a platform for the interconnection of agricul-

tural sector agents. Thereafter, the resulting social network (either directed or multidimensional)

of agriculturists will be applied to the methods in order to discover communities of interest. This

construction is achieved by putting in communication individuals or companies who would like

to exchange their knowledge and/or technical expertise in their agricultural activities. We hope

that this would contribute to the development of the agricultural sector through exchanges of ex-

perience and thus increase yields and the economy of our country.
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B Résumé étendu

B.1 Contexte et Objectif

Avec la prolifération des médias sociaux et des applications mobiles, les utilisateurs interagissent

en permanence en se partageant des documents, des images/vidéos et des messages, etc. Ces

interactions peuvent être modélisées par un système complexe. Un système complexe est un sys-

tème possédant certaines propriétés émergentes, dues aux interactions de ses objets constitutifs

: [17, 114]. Il peut être rencontré dans de nombreux domaines différents tels que la biologie, la

physique, l’informatique, la sociologie, etc. [3, 114]

Le network modeling permet de représenter ces systèmes par des réseaux complexes [3,17,114]

constitués de noeuds pour représenter les entités et de liens pour représenter leurs interactions.

Pour cette raison, les systèmes complexes favorisent une compréhension plus simplifiée des pro-

priétés topologiques des réseaux réels, telles que l’effet petit-monde, la propriété sans echelle,

l’homophilie et la structure communautaire. De même, ils aident à l’analyse de la sémantique et

du fonctionnement des systèmes d’intérêt. Dans sa forme la plus élémentaire, un réseau complexe

ne contient que des nœuds et des liens ; il peut alors être qualifié de réseau basique. Cependant,

on peut introduire une information plus riche dans ce modèle, en fonction du système considéré,

des besoins de modélisation et des contraintes, ce qui en fait un outil très flexible. Ainsi, le réseau

peut être orienté [114] si les relations entre les objets sont asymétriques. Il peut être structuré

en plusieurs dimensions, où chaque dimension représente un type d’interaction entre les nœuds,

conduisant à un réseau multidimensionnel ; il peut également s’agir d’un réseau attribué [114]

lorsque certains attributs sont affectés aux nœuds ou aux liens afin de mieux décrire le modèle.

L’analyse de ces réseaux porte sur leurs objets qui tendent généralement à se regrouper en com-

munautés, en fonction de leur similarité ou de la cohésion de leur connectivité.

Goal. La thèse présentée dans ce manuscrit concentre son étude sur la détection des com-

munautés d’intérêt. Il s’agit des communautés dont les nœuds sont affiliées au même intérêt,

c’est-à-dire qu’elles partagent la même idée. Comme les réseaux réels sont dotés d’amples infor-

mations pertinentes sur les interactions (liens) entre les entités, nous nous concentrons à la fois

sur les réseaux orientés pour lesquels l’information est relative à l’orientation des liens, et sur les

réseaux multidimensionnels pour lesquels l’information porte sur le type de liens. Selon ces deux

types de graphes étudiés, l’intérêt est basé à la fois sur les propriétés topologiques et relation-
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nelles des liens. En effet, pour les réseaux orientés, la méthode de détection des communautés

met l’accent sur l’orientation des liens entrant, tandis que pour les réseaux multidimensionnels,

la méthode de détection des communautés se focalise sur l’extraction des dimensions pertinentes

pour construire ses communautés d’intérêt. Les principaux objectifs sont les suivants :

• Notre premier objectif est de proposer une méthode pour extraire les communautés dans

des graphes orientés, basée sur la prise en compte des liens entrants vers les nœuds d’intérêt,

en utilisant des triades. Les triades sont des structures basées sur la propriété d’homophilie

des graphes de terrain [86]. Par conséquent, tel que le stipule l’analyse des réseaux soci-

aux, l’idée de similarité des noeuds s’exprime par le fait que deux entités orientées vers

une troisième nommée comme leur ami commun (noeud d’intérêt) ont une plus grande

probabilité d’appartenir à la même communauté. En effet, les liens entrants reflètent la sé-

mantique d’adhésion à la même idée que le nœud d’intérêt, d’où la notion de triade pour

les graphes orientés. L’objectif sous-jacent est de révéler l’importance des nœuds centrés

connectés aux liens entrants. Par ailleurs, lorsque ces reseaux orientés sont attribués, nous

proposons une methode de prise en compte simultanée de l’orientation des liens et des at-

tributs pour extraire des communautés d’intérêt.

• Notre deuxième objectif est de proposer une méthode d’extraction de communautés dans

les graphes multidimensionnels qui tient compte du type de voisinage des noeuds et non

de la cardinalité de ce voisinnage. Ainsi elle se focalise sur l’intérêt des nœuds, dépendam-

ment de leur niveau d’implication dans leurs interactions. En effet, l’intérêt est exprimé par

la similarité des dimensions pertinentes des noeuds. La pertinence de la dimension dépend

de la stabilité du voisinage d’un nœud dans cette dimension, c’est-à-dire les dimensions

dans lesquelles le nœud possède des voisins plus stables constituent son ensemble de di-

mensions pertinentes. L’objectif implicite est de montrer que l’appartenance d’un nœud à

une communauté dépend de son niveau d’activité dans les dimensions incluses dans cette

communauté, c’est- à-dire d’établir que les dimensions pertinentes sont bénéfiques pour

l’extraction de la communauté d’intérêt

Méthodologie. La méthodologie utilisée pour atteindre ces objectifs est décrite cidessous :

Pour le premier objectif lié à la détection des communautés dans les réseaux orientés :

• Définir une mesure de similarité des noeuds noyaux

• Extraire les noyaux (noeuds coeur) constituant les noeuds d’intérêt via les triades.
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• Créer des communautés centrées autour de ces noyaux

En ce qui concerne le deuxième objectif de détection de communautés dans des réseaux multidi-

mensionnels, le protocole mis en œuvre est décrit ci-dessous.

• Définir une nouvelle mesure de centralité basée sur la stabilité du voisinnage d’un noeud

• Extraire les dimensions pertinentes des nœuds sur la base de cette centralité

• Construire un réseau attribué monodimensionnel basé sur les dimensions pertinentes

• Extraire les communautés du réseau monodimensionnel

B.2 Contribution

Notre contribution dans cette thèse comporte trois aspects : – une heuristique de dé- tection de

communautés sur les graphes orientés, – une heuristique pour la détection de communautés dans

les réseaux orientés attribués – et une heuristique de détection de communautés sur les graphes

multidimensionnels.

L’objectif principal est de définir une nouvelle façon de considérer la communauté d’intérêt,

différente de celle qui est discutée dans la littérature et qui se concentre sur la sémantique à

travers les ontologies [33]. Cette méthode est principalement limitée par le fait que, malgré tous

les travaux réalisés sur la validation, ils sont toujours sujets à une discussion car non seulement les

connaissances évoluent mais aussi il n’y a pas de preuve que l’ontologie capture toujours toutes

les connaissances dans le domaine. Afin de pallier cette limite tout en prenant en compte les car-

actéristiques réelles du réseau, nous proposons de réutiliser et/ou adapter les solutions existantes

basées sur la topologie pour découvrir des communautés d’intérêt dans notre contexte (graphes

orientés et multidimensionnels). En conséquence, les trois contributions les plus marquantes sont

énumérées ci-dessous, selon le type de graphes du contexte.

Heuristique pour la détection de communautés dans les graphes orientés. La première heuris-

tique est liée à la détection de communautés d’intérêt dans les graphes orientés. Elle permet de

détecter des communautés basées sur les triades, puisque les membres des communautés sont

centrés autour de noeuds noyaux qui sont des structures constituées de triades denses. Pour dé-

tecter ces communautés, nous définissons d’abord le Kernel degree, mesure de similarité basée à

Ph’D thesis written by GAMGNE DOMGUE Félicité P. 150



APPENDIX . APPENDICES

la fois sur les triades et le coefficient de Jaccard, pour mesurer la force de la similarité des noeuds

noyaux et les extraire. Ensuite, à partir de ces noeuds noyaux reflétant les ensembles de nœuds

d’intérêt, nous définissons NCI (Node Community Index), une mesure de fusion des nœuds non-

noyaux aux noeuds noyaux, afin de détecter les communautés d’intérêt consistant en des nœuds

denses basés sur des triades. Enfin, nous fusionnons les nœuds non-noyaux au noyau pour lequel

la mesure NC I est maximale. Cette contribution a fait l’objet de 4 publications, à savoir un article

dans une revue internationale [46], et 2 articles dans des conférences internationales [45,47] et un

article dans une conférence nationale [48].

Nouvelle fonction qualité. Afin de prendre en compte les attributs de noeuds dont pourraient

être dotés les noeuds du graphe orienté, nous proposons une fonction de qualité "hybride de

modularité". Il s’agit d’une combinaison de 3 types d’informations: informations relationnelles

basées sur la connectivité des liens, informations topologiques basées sur la directionalité des

liens, et informations basées sur les attributs des nœuds. La modularité hybride est constituée

d’une mesure de similarité hybride qui modélise l’aspect topologique basée sur la mesure de sim-

ilarité des noeuds noyaux mise en œuvre dans la première contribution. Cette mesure de simi-

larité contient des informations sur les attributs et la directionnalité des liens. Elle est associée

aux informations structurelles pour extraire les noeuds d’intérêt. Ensuite, par application d’un

algorithme d’agglomération hiérarchique, l’on procède à l’identification des communautés quali-

fiées de plus significatives. Cette contribution a fait l’objet d’une publication dans une conférence

internationale [49].

Heuristique de détection de communautés d’intérêt dans les graphes multidimensionnels.

Cette contribution se concentre sur la mise en œuvre de la méthode UCAD (commUnity dis-

Covery method in Attributed-based multiDimensional networks) pour l’extraction des commu-

nautés dans des réseaux multidimensionnels. Nous utilisons certaines propriétés topologiques

des graphes pour définir une nouvelle mesure de centralité appelée stabilité, nécessaire à l’identification

des dimensions pertinentes. Ensuite, les dimensions pertinentes determinées, nous enrichissons

les attributs des nœuds par leurs dimensions pertinentes. Une approche d’aggrégation des di-

mensions est alors utilisée pour concevoir un réseau monodimensionnel attribué. Enfin, grâce à

une version modifiée d’une méthode agglomérative hiérarchique, nous construisons les commu-

nautés. Cette contribution a fait l’objet d’une publication dans une conférence internationale [50]

et de deux articles soumis dans des revues internationales. Ils sont actuellement en cours de révi-

sion.
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Publications. Cette thèse a donné lieu à six articles scientifiques avec commité de lecture (5

conférences et 1 journal):

1. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Community structure ex-

traction in directed network using triads. International Journal of General Systems. 49(8):

819-842 (2020) https://doi.org/10.1080/03081079.2020.1786379

2. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Multidimensional networks:

A novel node centrality metric based on common neighborhood. In: 15th Edition of CARI (Col-

loque sur la Recherche en Informatique et Mathématiques Appliquées), Sénégal, 2020.

3. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Communities in directed

networks: Towards a hybrid model of semantic communities detection. In: 14th Edition of

CARI (Colloque sur la Recherche en Informatique et Mathématiques Appliquées), Stellen-

bosch, South Africa, 2018.

4. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Finding directed commu-

nity structures Using triads. In 3r d Edition of CRI (Conférence de Recherche en Informa-

tique), Yaoundé, Cameroon, November, 2017.

5. Félicité Gamgne Domgue, Norbert Tsopze and Arnaud Ahouandjinou. Nouvelle approche

de clustering par kernel-pattern via la densité en triades : Optimisation de la métrique Kernel

Degree Clustering. In: CORIA’2017, Marseilles, France, March, 2017.

6. Félicité Gamgne Domgue, Norbert Tsopze and René Ndoundam. Novel method to find di-

rected community structures based on triads cardinality. In: 13th Edition of CARI (Colloque

sur la Recherche en Informatique et Mathématiques Appliquées), Hammamet, Tunisia, Oc-

tober, 2016.

Cette thèse est une extension de notre mémoire de master qui avait donné lieu à une publica-

tion avec commité de lecture.

7. Félicité Gamgne Domgue, and Norbert Tsopze. Analyse des réseaux sociaux: Communautés

et rôles dans les réseaux sociaux. Accepted for presentation in CARI’2014, Colloque sur la Recherche

en Informatique et Mathématiques Appliquées, SaintLouis, Sénégal, October, 2014.
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B.3 Perspectives

Perspectives générales. Dans cette thèse, nous nous intéressons aux attributs sur les nœuds dans

les réseaux orientés. Les liens sont parfois aussi enrichis d’attributs. Ainsi, il serait intéressant de

les manipuler dans le processus de détection des communautés.

Dans cette étude, nous nous sommes concentrés sur certaines propriétés des réseaux com-

plexes, en négligeant la propriété basée sur l’évolution du réseau. Une autre perspective concerne

le suivi des communautés d’intérêt dans le temps, et traite donc de l’aspect dynamique, car un

individu peut changer ses choix ou ses préférences après une période de temps inconnue.

Nous pourrions également être intéressés au graph embedding en utilisant des réseaux de neu-

ronnes profonds pour modéliser la détection des communautés. Cette question reste ouverte et

mérite d’être étudiée.

Perspectives dans l’évaluation des heuristique. Cette perspective concerne une évaluation

approfondie de l’heuristique proposée pour la détection de communautés d’intérêts basée sur

les caractéristiques topologiques du réseau. Au lieu d’utiliser les réseaux de l’état de l’art pour

améliorer les communautés d’intérêt mises en œuvre, nous entendons construire des nouveaux

réseaux tant orientés que multidimensionnels, en mettant en place une plateforme d’interconnexion

des opérateurs du secteur agricole. Par la suite, les réseaux sociaux d’agriculteurs qui en résul-

teront seront appliqués aux méthodes developpées dans cette thèse, afin de découvrir les com-

munautés d’intérêt. Cette construction est réalisée en mettant en communication les personnes

morales ou physiques qui souhaiteraient échanger leurs connaissances et/ou leur expertise ou

technicité dans leurs activités agricoles. Nous espérons que cela contribuera au développement

du secteur agricole par le biais d’échanges d’expériences ainsi que l’amélioration du rendement et

l’économie de notre pays.
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C List of publications

C.1 Community structure extraction in directed network using triads
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ABSTRACT
Community detection in directed networks appears as one of the
most relevant topics in the field of network analysis. One of the com-
mon themes in its formalizations is information flow clustering in a
network. Such clusters can be extracted by using triads, expected
to play an important role in the detection of that type of communi-
ties since communities could be centered round core nodes called
kernels. Triads in directed graphs are directed sub-graphs of three
nodes involving at least two links between them. To identify com-
munities in directednetworks, this paper proposes an in-seed-centric
schemebasedondirected triads.Wealsoproposeanewmetric of the
communities’ quality based on the triad density of communities. To
validate our approach, an experiment was conducted on some net-
works showing it has better performance on triad-baseddensity over
some state-of-the-art methods.
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1. Introduction

One of the recurrent research topics in Network Analysis is community detection. In
directed networks, it appears as one of the dominant researchworks because of links’ direc-
tion that should be preserved. For instance, clusters in the directed hyperlink structure of
theWeb refers to sets of web pages that share some common topics. Community detection
methods for directed graphs (Maliaros 2013) focus either on link structure or semantic
properties to detect communities. Measuring the quality of partitions also resides in the
optimization of some metrics, like the directed modularity, as it focuses on the connectiv-
ity of nodes. However, this widely popular measure stresses on the density of links within
groups without discriminating the direction of edges (Li 2019). Indeed, it does not imple-
ment the idea that an edge from a low out-degree but high in-degree node to an opposite
case node should be considered of a bigger value.

In order to improve the segmentation quality, the proposed method that extracts core
nodes based on triad density has been proposed in this work. It introduces the notion of

CONTACT Tsopze Norbert tsopze.norbert@gmail.com

© 2020 Informa UK Limited, trading as Taylor & Francis Group



820 F. GAMGNE DOMGUE ET AL.

kernel degree as a combination ofNeighborhood Overlap (NO) and TriadWeight (TW). Our
specificweighting scheme is based on an extension of the idea that, in “good” communities,
information can be centralized by kernels and attainable within a community more easily
than between communities. Therefore, our approach expresses the idea of detecting groups
of nodes with homogeneous in-link structure (e.g. citation-based clusters) through triads,
and gives the possibility to kernel nodes to own more common neighbors. The main ques-
tion to assess the performance of the proposed algorithm may arise such as: How can we
profitably use triads to quantitatively discover communities in a directed network ? What
advantages does the development of a community discovery method based on kernel has
over other methods?

The specific contributions of this paper are:

• Wepropose a new in-seed-centric based clustering scheme that points up triadic closure
of structures.

• We introduce a new concept called kernel degreeusing information about directed triads
to improve community detection in directed networks.

The paper is organized as follows. Section 2, structured in two paragraphs, presents in
the first some research works related to directed network clustering and in the second one
a detailed description of triad concept such as addressed by other methods with limits of
their contributions, then, an introduction to relatedworks on kernels community detection
is exhibited. In Section 3, we formally introduce and define several concepts used into the
proposed clustering method; therefore, a description of the proposed technique is detailed
in three steps: Kernel candidates’ generation, kernel extraction and community computa-
tion. To validate our approach and the choice of any concept pointed up into Section 3, 4
is an experiment study through some metrics (d-modularity and triad density) that shows
the performance of our method, over some state-on-the-art methods. Section 5 concludes
this work.

2. Related works

2.1. Community detection in directed networks

Finding clusters in directed networks is a challenging task with several important applica-
tions in a wide range of domains. Some methods ignore the direction of links (Walktrap
Pons and Latapy 2005; Edge Betweenness Newman 2004; Label Propagation Raghavan
and Albert 2007; Louvain Blondel et al. 2008), while others like Zhou, Hofman, and
Schlkopf (2005), Satuluri and Parthasarathy (2011) and Kim, Son, and Jeong (2010),
Clemente and Grassi (2018) propose new ways as to how edge directionality can be uti-
lized in the clustering task. The latter focuses on the extension of tools and measures
developed for undirected case, as the ones based on the optimization of the so-called
directed modularity (Nicosia, Mangioni, and Malgeri 2009) and the directed clustering
coefficient (Clemente and Grassi 2018). The formers convert a directed graph into bipar-
tite, undirected and weighted one, this enabling to utilize the richness and complex-
ity of existing methods to find communities in undirected graphs. Directed modular-
ity measure has been demonstrated in Nicosia, Mangioni, and Malgeri (2009) to be
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expressed as:

Qd = 1
2m

�ij

(
Aij −

kouti kinj
2m

)
δ(ci, cj). (1)

Yet, Fortunato (2010) describes how this measure has a limit resolution, the difficulty for
the measure to extract small scale communities. To make up for this limit, Gautier and
Lancichinetti (Lancichinetti and Fortunato 2009; Krings and Blondel 2011) proposed to
inform some parameters about either the number of communities or whether the method
should extract small communities or not. These parameters can greatly affect the accuracy
of an approach if the values provided by the user are incorrect. Moreover results could not
be satisfactory in triad-based clustering from real-world networks, if the user parametrizes
community size to 2 vertices. As the modularity optimization has been showed as NP-
hard problem (Brandes et al. 2008), many authors proposed some heuristics to optimize
the known modularity function. Santiago et al. in Santiago and Lamb (2017) propose
seven heuristics among which coarsening merger, moving node, and multilevel heuris-
tics. In DZ̃amić, Aloise, andMladenovic (2019) authors proposed a variant of the Variable
Neighborhood Decomposition Search (VNDS) heuristic called Ascent-Descent VNDS for
maximizing the modularity and a new neighborhood structure. The approach consists of
accepting the better decomposed subproblem solution in ascent way and also worse sub-
problem solution with some probability in the descent way. However, modularity ignores
the impact of in-link degree of nodes. In order to make good use of the directionality, a
recent heuristic based on constrained directed label propagation algorithm (CDLPA) is
proposed in Li (2019). The authors consider the balance growth of communities through
an improvement of LPA for directed networks. CDLPA is effective for datasets with a
monotonous degree distribution of nodes, and overcomes the imbalance growth of com-
munities limit. Indeed, it assumes that communities must have a similar capacity of nodes;
therefore it constrains the membership of a node towards a community to which it is not
strongly connected.

Likewise, by exploring the idea of extending tools, authors in Clemente and
Grassi (2018) propose a new local clustering coefficient for directed and unweighted net-
works. Starting from existing coefficient designed for the weighted and undirected case,
they propose to take into account the triangles formed by the neighbors of a node vi,
through a preserving the initial idea of the clustering coefficient. Extending tools and
algorithms does not improve the scalability of these methods. To speed up the graph clus-
tering, some authors propose some “parallel” models. This is the case of the works in
Souravlas, Sifaleras, and Katsavounis (2019) where the authors propose an incremental
approach combining parallel processing techniques with threaded binary trees. The idea
consists in both transforming the directed graph into a weighted networks with irregular
topologies and using a stepwise path detection strategy, so that each step finds a link that
increases the overall strength of the path being detected. The obtained results are over-
lapped communities and one of the main advantage is the possibility to affect the newly
introduced node to a cluster. The same team also has a new parallel approach where social
networks information (like user profile or requested data) is combined with distributed
systems information to identify users’ membership to a community. They also introduce a
newmetric, based on data requests and use it as the belonging degree of a node in a certain
formed community. Moreover, Shaojie et al. (2018) designed an approximate optimization
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parallel algorithm called Picasso by integrating Mountain model, based on graph theory
to approximate the selection of nodes needed for merging, and Landslide algorithm based
approximate optimization, which is used to update the modularity.

In order to make up for these aforementioned restrictions and enhance one of the
fundamental properties of real networks, namely homophily, which is the tendency of
neighboring nodes to share the same center of interest, some authors have focused on the
triads.

2.2. Triad-basedmethods

Triads, initially studied by authors Wasserman et al. in Wasserman and Katerin (1994)
in social network analysis were introduced by Serrour and Arenas (2011) to identify
communities of different types. Triads are considered as wedges, i.e paths of length 2
by Klymko, Gleich, and Kolda (2014). Thus, a triad can be integrated into a trian-
gle. In directed graphs, the process of extracting semantic structures should take into
account either “in” or “out” directionality of links for meaningful interpretation. There-
fore, it becomes interesting to specify those of nodes centered around kernels (set of
influential nodes inside a group) according to in-direction. Then, kernel community
detection methods are considered as seed-centric approaches (Kanawati 2014) because
of the influence of nodes centralizing information. Using triads enlarges the possibil-
ity to consider low-degree nodes instead of high degree nodes called “hub nodes”.
That way, low-degree nodes will not be isolated at the end of the community detection
process.

In the same way, Tsourakakis in Tsourakakis (2008) initiated the study of degree labeled
triangle. He argued that low-degree vertices form fewer triangles than higher degree ver-
tices. At this stage, to make up for this limit, the purpose of this new approach is to cluster
low-degree nodes so that they should be more linked together around a kernel and could
more easily access to central retained information. So, it takes into account in-links to the
kernel and vertices with low-degree.

Some methods, like Wang’s approach (Wang 2011) explored the problem of detecting
community kernels, in order to either exhibit different influence or different behavior of
vertices inside a structure for easily interpreting results, then uncovering the hidden com-
munity structure in large social networks. Wang in his model sets the size of the partition
and proceeds by a random choice of node to initiate the kernel. This constitutes a consider-
able drawback. In fact, providing accurate values input parameters, including the number
of communities, requires a priori knowledge of the network to be analyzed. Whereas, in
practice, such knowledge is not always available. To make up for this limit, the proposed
approach integrates the idea that in-degree value of nodes helps to better structure influ-
ential nodes and easy information flow. This includes topological structure based on triads
and conducts to semantic community structures.

Unlike modularity which does not allow to the incoming degree of nodes a significant
value, the new triad density measure implemented in this work (see Definition 3.4) takes
into account the strength of their incoming degree values by exhibiting triad-based struc-
ture of the resulting partition. Also, we focus on kernels because they represent community
core and lead to meaningful structures. In this paper, a triad is a set of 3 vertices linked
through at least 2 edges. It could be represented in two categories, namely opened and
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Figure 1. Basic structures of our kernel community model. (a) Examples of opened triads. (b) A toy
example of Closed triad and (c) Common neighbors’toy example.

closed triads as shown in Figure 1(b). In undirected networks, there is only two types of
triad, a path of length 2 for the opened case and a triangle for the closed one. In directed
networks, there are many types of opened cases as shown in Figure 1(a). This work focuses
on in-seed-centric (Kanawati 2014) approach because of the influence of nodes central-
izing information, a good closed relationship pattern (see Definition 3.1) and ability to
concentrate information between nodes (see Figure 1(c)). This is not the case for all types
of directed triads. As an example, in a blog readership network, there are two types of “blog-
gers”: “writers” who generate influential blogs read bymany others, and “readers” who read
a lot but seldom write anything for others to read.

3. Community detectionmethod

This method makes use of centric-based approaches through extracting subgraphs
induced by co-parent structures, called Kernel. Seed-Centric approaches for Community
Detection in Complex Networks G = (V ,E) generally follows these principal steps
(Kanawati 2014):

(1) Seed computation;
(2) Seed local community computation;
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(3) Community computation out from the set of local communities from step 2.

The algorithm for finding structures in directed networks we propose here makes use
of an introduced centrality measure kernel degree based on triads cardinality, as described
in the following section.

This method is structured in three steps: (i) Generation of Kernel candidates, (ii) Kernel
extraction, (iii) Community computing. Before describing these steps, we define some basic
concepts in Section 3.1.

In this method, we consider a Community as a set of vertices centered round kernel,
and easily accessing to the central information retained by that kernel. Otherwise, a com-
munity seems to be a subgraph yielded by kernel. This way, we consider the number of
communities as one of the metrics of quality partition evaluation in experiments.

3.1. Basic terminology and concepts

Considering a given directed graph G = (V ,E) with n = |V| the number of vertices and
m = |E| the number of edges. An edge eij connects vertex vi with vertex vj. We now give
some useful definitions:

Definition 3.1 (Pattern-based cluster): We refer to pattern-based clusters as triad-based
clusters, since they represent structures in which nodes are similar among them as they, in
majority, point to their kernel.

Definition 3.2 (Kernel degree): Intuitively, kernel degreemeasures the strength or weight
of the kernel vertex similarity. Its value between a pair of vertices vi and vj is evaluated
using the formula:

Kij =
|�ij|
|�j| ×

|�in
j ∩ �in

i |
|�in

j ∪ �in
i | − θ

. (2)

In Equation (2), �in
i stands for the in-Neighborhood set for a vertex vi. We use �ij to

represent a set of triad involving both vi and vj, and �j to represent a set of triad in which
vj is involved.

The first term is based on triads, and promotes the Triad Weight through a kernel;
Given two vertices vi and vj, a standard way to compute the percentage of triads they form
together is to compute the ratio between the total number of triads in which the pair of ver-
tices is included (numerator) and the total number of triads in which vertex vj is contained
(denominator). The second term promotes theNeighborhood Overlap of vi and vj vertices.
It concerns a Jaccard Index variant (Pang-Ning, Steinbach, and Kumar 2005), which con-
sists in measuring neighborhood similarity of two vertices so that they could belong to the
same kernel. Unlike the Jaccard Index which does not consider the connectivity between
the nodes because it just computes the common neighbors of 2 vertices vi and vj, Neighbor-
hood Overlap integrates the fact that there could be or not an edge between vi and vj. That
is why we use the θ parameter in the denominator to compare 2 similar kinds of neighbor
sets. In fact, in the numerator, one vertex can belong to the in-neighborhood of another,
and vice versa. θ can take different values 0, 1 and 2, depending on the connectivity of vi
and vj vertices.
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• θ = 0 if (vi, vj) /∈ E and (vj, vi) /∈ E
• θ = 1 if (vi, vj) ∈ E and (vj, vi) /∈ E
• θ = 2 if (vi, vj) ∈ E and (vj, vi) ∈ E

Definition 3.3 (Kernel): Kernel is a set of vertices with the same neighborhood, so that
these neighbors expand gradually inward the kernel, according to a threshold.

The Kernel is formally defined as

• K = {v1, . . . , vi, . . . , v|K|}, vi ∈ V
• ∀vi, vj ∈ K, Γ in

i � Γ in
j ,

• ∀i �= j\vi, vj ∈ K, Kij > σ .

The threshold value σ is expressed in the Section 3.3.2 below. Throughout the article,
we will use the network of Figure 3(a) ofWang (2011) to illustrate the steps of the proposed
method. It contains 14 nodes and 32 edges. The notations are simplified by abbreviating the
names of the nodes as follows: Demi Moore (DM), Oprah Winfrey(OW), Al Gore (AG),
Barack Obama (BO), Ashton Kutcher (AK).

Definition 3.4 (Triad Density): The triad density of a partition is a ratio that conceals
difference between real number of triads in that partition and maximal possible number
of triads in the whole graph.

TriadDens = �n
i |�Ci |( 3
|V|
) , (3)

where the numerator expresses the number of triads from the overall communities, and the
denominator denotes that combination value equals to |V|!/(|V| − 3)!3! = 1

6 (|V|(|V| −
1)(|V| − 2)), with |�Ci | being the number of triads in the community Ci and n, the
number of communities. TriadDens = 0 if vertices are isolated or if |V| < 3. Otherwise,
TriadDens = 1 if the graph is complete, i.e there is bidirectional edge between every pair
of vertices.

After defining useful concepts, the next sections (Sections 3.2, 3.3 and 3.2.3) present how
does the process of extracting kernels spread out and how does communities are finally
generated. We describe the kernel-based community model through the Algorithm 2
below. We group these steps into three main phases:

(1) Kernel candidates’ generation (from step 1 to step 3) at the end of which the structure
KDict contains these candidates;

(2) Kernel extraction (step 4 and step 5) where t kernels formed by triads are extracted
from the candidates;

(3) Community computing process (Step 6) where kernels are extended by migration of
the non-kernel nodes to kernels.

3.2. Kernel candidates’ generation

This step consists in pruning the list of the nodes of the network to preserve those that are
eligible to eventually be kernels. It spreads out into three subtasks: extract the list of node
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Algorithm 1 The kernel-based community model for community detection
Require: Directed graph G = (V ,E)

Ensure: List of Communities C = {C(1), ...,C(t)}
Step 1: Compute In-degree central and pruned list CL according to the degree average of the
graph. The list is in decreasing order of degree
Step 2: Compute Kernel Dictionary KDict based on each distinct pair of CL such as KDict =
[((vi, vj),Kij)]
Step 3: Compute Interclass inertia vector I according to Kij values of KDict
Step 4: Compute a threshold σ being the standard deviation of the vector I
Step 5: Extraction of kernels as described in Algorithm 1 from Line 3 to Line 13.
Step 6: Community building through non-kernel nodes migration, as described in
Algorithm 2

degrees through computing a pruned centrality list; then compute the values of the weights
between pairs of nodes from the previous list, through computing kernel dictionary; finally
grouping these couples according to their neighbors’ similarity through the computation
of an inter-class inertia vector.

3.2.1. In-degree centrality list computing
This step consists in determining a list of nodes sorted in descending order of their in-
degree; that list is called Centrality List (CL). So that those with maximal in-degree are
more eligible than those with a low in-degree. Then, pruning from the list in–pendant
and in–isolated vertices i.e. those of nodes with an in –degree below the in–degree graph
average, as inspired by Steven and Martin (2016) who defined a pendant as vertex with a
single neighbor which has degree 1. This filtering step improves performance and allows
simplifying assumptions later when deciding whether to include a vertex into a kernel.
For instance, in a citation network, an in–pendant or in–isolated vertex corresponds to an
author whose the area search does not interest other researchers, so removing these nodes
with an in-degree below 2 improves the processing speed and produces more semantic
results later.

For illustration on the network in Figure 2(a), the CL contents is: CL = [′AG′, ′BO′,
′AK ′, ′DM′, ′OW′] because they have an in-degree above 2, being average degree of the
network.

3.2.2. Kernel dictionary computing
This step consists in computing kernel degree values for every pair (vi, vj) ∈ CL (See
Definition 3.2 above).

Therefore it represents these values by a kernel dictionary called (KDict) whose items
are structured as (key_dict, value_dict). key_dict is any unordered pair of nodes from CL
pruned list, and value_dict is the corresponding kernel degree Kij of these pairs. (KDict)
will be used in the kernel extraction approach as defined in the next section. The size of
KDict equals n(n− 1)/2 in the worst case (when all the nodes of the network belong to
CL). KDict is sorted in decreasing order of Kij. Formally, KDict = [((vi, vj),Kij)].

For illustration, KDict = [((“DM”, “OW”), 1.6), ((“AG”, “BO”), 0.595 ), ((“AK”, “OW”),
0.32), ((“AK”, “DM”),0.267), ((“BO”, “DM”), 0.0635), ((“AG”, “DM”), 0.057), ((“BO”,
“OW”), 0.0158), ((“AG”, “OW”), 0.0143), ((“BO”, “AK”), 0.013), ((“AG”, “AK”), 0.012)].
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Figure 2. Illustration of the model on network in Figure 3(a).

Let us remember that a kernel in this paper is a set of nodes owning a common central in-
degree overlapping neighborhood. This task of extracting kernels focuses on determining
those of nodes more eligible to belong to kernel via interclass inertia.

3.2.3. Interclass inertia computation
Given that the clustering main goal is to form homogeneous groups, the measure used
here is Inter-class Inertia, and the list of the inter-class inertia values is named I. This list is
based on KDict dictionary. In fact, high inter-class inertia values indicate that objects tend
to be more dissimilar, and consequently should belong to distinct groups. So, it divides
objects into two groups, those eligible to belong to a kernel and those not eligible. The
delimitation of two groups is done by a comparison of values from Inter-class Inertia List
with a computed Standard Deviation σ on I. This way, vertex pairs (i, j) whose Inter-class
Inertia value is larger than σ are more eligible to belong to kernels. The Inter-class Inertia
between 2 sub-groups G1 and G2 is expressed as

I(G1,G2) = |G1|(μ1 − μ)2 + |G2|(μ2 − μ)2 (4)

|G1| and |G2| are respectively the number of edges in groups G1 and G2. μ1, μ2, and μ

are respectively the average kernel degree for G1, G2 and G.
The Figure 3(a) Network presents distinct groups G1 and G2 respectively as the fol-

lowing, and the corresponding Inter-class Inertia of KDict as : for G1 = {(DM, OW)} and
G2 = {(AG, BO), (AK, OW), (AK, DM), (BO, DM), (AG, DM), (BO, OW), (AG, OW), (BO,
AK), (AG, AK)}, the Inter-class Inertia for these groups is 1.987. Then, the following pair
of nodes in KDict list moves from G2 to G1, and their contents become: G1 = {(DM, OW),
(AG, BO)} and G2 = {(AK, OW), (AK, DM), (BO, DM), (AG, DM), (BO, OW), (AG, OW),
(BO, AK), (AG, AK)}, and the Inter-class Inertia for these groups is 1.705.We change theG1
and G2 contents and so on. The interclass inertia vector is progressively computed and its
contents are presented as follows: I = [ 1.987, 1.705, 1.359, 1.162, 0.844, 0.627, 0.439, 0.297,
0.186, 0.131]. Afterwards, a threshold helpful for kernel extraction process is computed, as
detailed in the next section.



828 F. GAMGNE DOMGUE ET AL.

Figure 3. An illustration of outputs from the extract of Twitter network. (a) Extract for Twitter social
network used in Wang (2011). (b) Output by Newman’s algorithm. (c) Output by Wang’s algorithm and
(d) Output by our algorithm.

3.3. Kernel extraction approach

This section firstly presents the properties fulfilled by kernels, and secondly it describes the
threshold on which the kernels are structured.

3.3.1. Kernel properties
To select kernel nodes, some metrics inherent to vertex centrality have been studied:
Common neighbors (Xu, Xu, and Zhang 2015), Distance (Cosinus, Euclidian . . . ), Jaccard
Index (Steinhaeuser and Chawla 2008), geodesic (short path) (Newman 2004), Clustering
Coefficient (Latapy, Magnien, and Del Vecchio 2008). The retained metrics in this paper
combined through kernel degree (see Equation (2)) to strengthen the similarity of kernel
vertices are: the “common neighbors” corresponding to Triad Weight, the left term of the
formula and the variant “Jaccard Index” corresponding to Neighborhood overlap, the right
term of the formula. Their combination leads to scalable results. Indeed, our empiric tests
on metric taken separately show the superiority of kernel degree on various networks, as
evaluated in Section 4.2.
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The phase begins by initiating kernels with distinct pair of vertices possessing the high-
est corresponding Inter-class Inertia, through the mileage of the KDict list. Given that an
initiating kernel vertex r of a kernel t between the initiating pair of vertices {r, u}. If a vertex
p inKDict is coupled to another one qwithwhom the kernel degreeKpq is lower than its ker-
nel degree Kpr with the initiating kernel vertex r, p immediately migrates to that kernel t. So
the kernel t will be made of {r, u, p}. Then those already belonging to the kernel will not be
treated in the future steps. The vertices belonging to the kernel own almost the same neigh-
bors. The approach proposed here makes use of a new conceptKernel Degree Kij as defined
in the Definition 3.2, that measures the strength of a kernel according to a threshold. This
concept is based on the triadic membership to emphasize the semantic proximity that links
kernel members conducting to efficient centralization of information over the network.

We require that the kernel fulfills the following properties:

(1) Every kernel contains distinct pair of vertices with inter-class inertia upper than a
threshold.

(2) The kernel vertices have higher kernel degree values, proportionally to the degree
distribution of the graph.

(3) Given an initiating pair (i, j) and a border vertex k in a kernel, the neighborhood over-
lap cardinality of (i, j) must be higher than the neighborhood overlap cardinality of
any neighbor t of (i, j, k). Formally, Given ∀(i, j)\i, j ∈ CL, and k ∈ K, | Γi,j ∩ Γk |≥|
Γi,j ∩ Γt |, where Γi,j = Γi ∩ Γj.

3.3.2. Standard deviation σ

To compute Kernels, we focus on a threshold, which is the standard deviation from inter-
class inertia list I. Unlike the well-known meaning of the standard deviation, we observe
during the experimental phase that the higher the standard deviation σ computed from
a set nodes, the more likely they possess an almost common neighborhood. As a matter
of fact, as illustrated in Figure 5, a lower standard deviation indicates that these vertices
have a quasi-null common-neighborhood cardinality. Because of the power-law degree
distribution in real-life networks, very little nodes get a high in-degree widely above the
in-degree average. We make the assumption that according to Leskovec, Kleinberg, and
Faloutsos (2005), there tend to be a few “hub” vertices with a very high degree and great
number of vertices with a much lower degree. In the case of directed graphs, the concept
of hub vertices depend on the in-degree or the out-degree value. This paper stresses on in-
degree vertices, meaning that they receive more information from the other vertices than
“non-hub” vertices. The standard deviation is expressed as

σ =
√
1
n
�n

i=1(x
2
i )− μ2, (5)

where μ = (1/n)�n
i=1xi indicates si average (or mean), and xi indicates every element of

the interclass inertia array. A kernel is initially made of a pair of vertices, and expands
progressively by adding vertices which are in couple with kernel members, whose the
corresponding kernel degree value is above σ . This leading to an expansion of the start-
ing kernel. As shown in Figure 3(d), initial kernels are surrounded of red dashed lines,
and grow progressively (see green dashed lines in Figure 2(d)). The impact of nodes
belonging to kernels, to the remaining of the entire graph, is null, because discovered
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communities are disjointed. We make use of a denoted Key variable which could be any
pair/couple of vertices of KDict. In fact, each eligible key is integrated into a new kernel,
after confirming its non-existence anywhere in the list of kernel vertices. This merg-
ing step improves performance and allows simplifying assumptions later when deciding
whether to choose the favorite kernel by a non-kernel vertex (the kernel not belonging to
a kernel).

The implementation for kernel is presented in Algorithm 2, which extracts a list of
kernels named ListK, from the overall nodes of the graph. standard_deviation(I) is the
function computing the standard deviation from the inter-class inertia vector I. inkey rep-
resents a boolean array of distinct nodes fromKDict′ reflecting whether they are in a kernel
or not. neighbor(e) returns the other member of the pair of nodes defined by key in KDict,
orderless.

Algorithm 2 Kernel extraction
Require: Directed graph G = (V ,E)

Require: I inter-class inertia vector //corresponding to the vector I in the explanation //above.
Ensure: Structured-by-key Kernels set called ListK
1: Initialization : σ ←− standard_deviation(I), ListK ←− ∅;
2: ∀ distinct e ∈ KDict.key_dict, inkey[e] = False
3: KDict′ ←− KDict such as KDict.value_dict > σ

4: while ∃e ∈ KDict′.key_dict/inkey[e] = False do
5: if inkey[neighbor(e)] = False then
6: Key←− (e, neighbor(e))
7: ListK ←− ListK ∪ Key
8: else
9: K ←− K ∪ {e}/neighbor(e) ∈ K and K ∈ ListK
10: end if
11: inkey[e]←− True
12: inkey[neighbor(e)]←− True
13: end while
14: Return ListK

Let us illustrate this idea through an example considering the network in Figure 3(a).
The standard deviation value for that network is σ = 0.62. It is the threshold on which ker-
nels are to be built. The model computes the first kernel K1 initialized by nodes “DM” and
“OW ” for which the associated inertia in I is 1.987 ≥ 0.62; thereafter,K1 is extended by the
node AK because AK is in the couple with the other nodes already assigned to kernels (See
KDict in Section 3.2), with corresponding inertia of 1.359, 1.162 (See I list in Section 3.2.3);
the second kernel K2 is initialized by “AG” and “BO” for which the associated inertia in I
is 1.705 ≥ 0.62. The process is repeated on the other i values in I for which I[i] ≥ σ ; and
if the corresponding KDict[i] pair nodes are already keys or associated values of keys, they
are just omitted. Figure 3(d) shows in green dashed lines the kernels.

3.4. Community computing process

After extracting kernels, the other nodes not into the kernels, called non-kernels ver-
tices, remain. The process of generating global communities (communities containing both
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kernels and non-kernels vertices) consists in migrating non-kernels vertices to the kernel
with whom they have a maximal number of links, as defined in the Formula (7). It is an
iterative optimization process of the number of connection each non-kernel vertex owns
with the kernel.

Node Community Index (NCI). This measure we defined corresponds to an extent
membership function. It consists in determining the membership of a vertex, accord-
ing to its maximum number of “in-connections” (incoming edges) to the kernel
or “out-connections” (outgoing edges from x) and the number of nodes in the
kernel.

A vertex xmigrates to kernel K if K = argmaxl(NCI(x,Kl))where l is a kernel number;
then NCI is defined as NCI : V × K −→ R+ so:

NCI(x,K) = mout(x,K)

min(mout(x), nK)
, (6)

wheremout(x,K) is the number of outgoing edges from x pointing to a kernel K,mout(x) is
the total number of outgoing edges from x or its out-neighborhood cardinality, and nK is
the kernel size, i.e the number of vertices in the kernel. The pseudo-code of this migration
approach is described in the following Algorithm 3. It presents in line 1 the initialization of
Communities named Gi by their corresponding kernel Ki computed in the preceding ker-
nel extraction step (see Section 3.3). From line 2 to line 6, the method computes for each
non-kernel node its Node Community Index (NCI) and puts it in the kernel (or grow-
ing community) whose NCI is maximal. In line 7, results which are global communities
(communities not growing, but definitely computed) are produced.

Algorithm 3 Algorithm for non-kernels vertices migration
Require: Communities Kernels ListK = {K1,K2, ...,Kt}
Require: NonKernelSet = {G.nodes\ ∪ Ki} //nodes x of G not belonging to any Ki
Ensure: Global Communities GK = {G1,G2, ...,Gt}
1: ∀i ∈ {1, ..., t}, Gi←− Ki
2: for x ∈ NonKernelSet do
3: Compute NCI(x,Gi) for each Gi
4: G∗ ←− argmax(NCI(x,Gi))
5: G∗ ←− G∗ ∪ {x}
6: end for
7: Return GK

Non-kernel vertices for the Figure 2(a) Network are listed below: shallowend,
abhubbu,ryzgo, 106andpark, 3atma, brycob, 303nomad, ritajohnsonn, BizPlanUSA. The
number of communities is visibly 2. We see in Figure 3(c) that Wang extracts the same
partition as well as our model. Nevertheless, he sets the number of communities to detect.
In other words, if its input on the number of communities was 1, his result would had been
different from ours.

Complexity analysis: In view of the size of G with n the number of vertices and m the
number of edges, the complexity is assessed according to each phase.

The first phase of constructing candidate kernels is assessed in 3 ways as shown in
Section 3.2: Step 1 in Algorithm 1 computes a Centrality list CL. Assume that the length of
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CL is p = n−k. The complexity of this sorted degree-based centrality list CL is (p) log(p).
Step 2 in Algorithm 1 computes the kernel dictionary KDict. Its computation is assessed
considering the right and left sides of the kernel degree measure Kij : Given ni and nj the
number of neighbors of nodes vi and vj respectively. The left side namely triad weight is
assessed as follows: the numerator is the intersection of neighbors of nodes vi and vj. So
the numerator complexity is O(ni + nj). The denominator is O(n), in the worst case. This
worst case is reachedwhen vj get all of the other nodes (n− 1) as neighbors. For p elements
of CL, we will have O(pn). The right side namely Jaccard index variant, possesses a com-
plexity of O(ni + nj). Thus the complexity of the sorted Kernel dictionary computation is
O(pn+ nlogn). Step 3 computes the interclass inertia vector. Its complexity is O(p2). So
the first phase of kernel candidate’s generation is pn+ (p) log(p) or n2 + (n) log(n) in the
worst case.

The second phase of kernel extraction namely Step 5 in Algorithm 1, is assessed as fol-
lows: given that KDict is pruned considering the threshold, and that its remaining elements
are copied inKDict’, let us assume that the size ofKDict’ is s, the number of distinct element;
thus, to obtain kernels, we compare one element of KDict’ to the other, so the complexity
is O(s2). In the worst case when the number of nodes involved in pairs of KDict’ is n, the
complexity of Kernel extraction is O(n2).

The third phase based onmigration of non-kernel nodes to kernels in order to constitute
final communities (Step 6) is assessed as follows: Suppose that t is the number of kernels
and L the number of non-kernel nodes. So the complexity will beO(Lt). In the worst case,
we have (n− 2) non-kernel nodes with one kernel. Thus, complexity in the worst case
is O(n).

The global complexity of the proposed model is O(n2 + nlogn).

4. Empirical evaluation and experiments

In this section, we show experiment results. We assess a variety of models on two main
tasks: Triad density of the partition and modularity evaluation. In order to evaluate ker-
nels, the study of the kernel degreemeasure will be made on the illustration on Figure 3(a)
network as shown in Figure 5, and tested through some criteria as described in Section 4.1
below; and the experiments will not focus on kernel degree metric, but on three criteria :
partition triad density referenced by TriadDens defined through the formula 3, partition
quality through d-modularity Qd defined in Formula (1) and the number of communi-
ties each partition of experimented datasets get. Experiments were performed on a DELL
Computer withWindows 8.1 OS 64 bytes, Intel Pentium Core Duo CPU of 4.2Ghz and 7Go
of RAM. In terms of software, we used Python 3.7.1 for the implementation of our solution,
Gephi 0.9.11 (Bastian and Hetmann 2009) and R2 (Team, R. Core 2013) for graph struc-
ture visualization.We start by describing the four datasets from real-life graphs used in the
experiments.

4.1. Datasets

In the following experiments, we use a neural network, a blog network and two
paper citation networks. Information about each graph can be found in Table 1.
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Celegansneural network. This is a weighted, directed network representing the neural
network ofC.Elegans. Theweighted parameter is not taken into account in thiswork. There
are 297 nodes and 2345 links. This dataset possesses 5 communities as obtained byTianbao,
Yun, and Shenghuo (2010).

Political Blog Network. This is a directed and unconnected network of hyperlinks
between a set of weblogs about US politics. In this network, there is a total of 1490 nodes
and 19, 090 links. Seeing that the new approach is based on connected networks, the largest
connected subgraph with the highest number of links and nodes is the one taken into
account throughout the execution of the approach.

Paper Citation Networks.Weuse the Cora paper citation network and the Citeseer paper
citation network processed byGetoor et al 3. There are 2708 nodes connected by 5429 links
in Cora network, for 3327 nodes and 4732 links in Citeseer network.

The phenomenon described by these datasets follows a power-law in-degree distribu-
tion except the in-degree distribution in Cora network. The scatter plots for in-degree
valuation of nodes are presented in Figure 6. In fact, a small number of vertices possess
a high in-degree value, implying that a small amount of nodes have high quasi-common
neighborhood cardinality, while larger nodes have less common neighbors. Yet, the in-
degree in Cora dataset follows a rather uniform distribution with in-degree not larger than
5. We suspect such a distribution is due to the small scale of the Cora dataset which leads
to many references, and therefore in-links, inside the dataset.

The goal of experiments is to demonstrate the influence of in-links emphasized by the
method, as the numbers of authors quoting an article favors to delimit a topic area among
a pioneer area (the center node or set of nodes). In other words, our goal is to evalu-
ate if our new kernel degree based metric yields the link semantic of communities in
directed networks, in accordance with triad-based community definition. The empirical
evaluation of the new approach, to show its performance, is compared to some of the state-
of-the-art methods: Walktrap (Pons and Latapy 2005), Edge Betweenness (Newman 2004),
Label Propagation (Raghavan and Albert 2007), Louvain (Blondel et al. 2008) and CDLPA
(Li 2019). The latter was assessed on the Cora dataset exclusively, as the authors considered
this dataset in their study.

Illustration from Figure 3(a) network. To illustrate the results of our approach, based on
Figure 3(a) Network, Table 4 shows some results and compares them to kernel degree-
based approach. Thus the kernel degree approach and Walktrap method present the same
results on the triad density and the modularity with the same number of communities,
contrary to Louvain method, although detecting 2 communities, computes a modularity
of 0.395. Label and Edge Betweenness methods compute respectively 5 and 7 communities
with lowest triad density and modularity values. Visibly, our approach extracts expected
structures better on this Figure 3(a) illustration, than the other methods, as pointed up in
Figure 4.

Table 1. Characteristics of the test graphs.

Networks Nodes edges Comm

Celegansneural 297 2345 5
Polblogs 1,490 19,090 –
Citeseer 3,327 4,732 –
Cora 2708 5,429 –
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Figure 4. Graphical visualization of structures obtained from the network in Figure 3(a) when the
threshold is descent or ascent. (a) Descent threshold (I[eij] < σ ) leads to one community. (b) Ascent
threshold (I[eij] > σ ) leads to two communities.

Table 2. Using metric comparison.

Figure 3(a) Network Celegansneural

Metric #Comm TriadDens #Comm TriadDens

Kernel-degree 2 0.64 5 0.711
Neighborhood overlap 2 0.64 91 0.20
Triad weight 2 0.64 73 0.254

Table 3. σ choice evaluation.

Figure 3(a) Network Celegansneural

Inertia Criteria #Comm TriadDens #Comm TriadDens

I[eij] > σ 2 0.6428 5 0.711
I[eij] < σ 1 0.417 103 0.065

4.2. Kernel degreemetric and threshold σ evaluation

4.2.1. Kernel degreemetric evaluation
To appreciate the powerfulness of the kernel degree formula, let us consider two networks
namely Figure 3(a) Network and Celegansneural network for better results’ visualiza-
tion. kernel degree computes the similarity strength between kernel vertices; in other
words, it determines the kernel power. Both Triad Weight and Neighborhood Overlap
(Definition 3.2) are associated to reinforce this similarity, because, when taken separately,
the expected results are not obtained, as presented in the Table 2. In fact, for the Figure 3(a)
Network, results are the same regardless of the criteria (2 communities with the same triad
density and samemodularity). But for the Celegansneural network, using separatelyNeigh-
borhood Overlap or Triad Weight leads to results (91 and 73 communities respectively) far
from expected one as demonstrated by Klymko, Gleich, and Kolda (2014), Tianbao, Yun,
and Shenghuo (2010) who detect 5 communities. Furthermore, taken separately, they lead
to a computation of weak values of triad density, contrary to the new composite kernel
degree metric which computes a better triad density of 0.711, close to the triad density
value of 0.78 obtained by Klymko.
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Table 4. Community detection performance where the best performances are
in bold.

Datasets Methods TriadDens Modularity #of Communities

Twitter network Edge-Betweenness 0.0857 0.187 7
Walktrap 0.6428 0.410 2
Label Propagation 0.34 0.306 5
Louvain 0.6428 0.395 2
Kernel Approach 0.6428 0.410 2

Celegans Neural Edge-Betweenness 0.0004 0.081 194
Walktrap 0.0458 0.363 21
Label Propagation 0.0135 0.0027 29
Louvain 0.608 0.379 6
Kernel Approach 0.711 0.393 5

Polblogs Edge-Betweenness 0.0064 0.1872 55
Walktrap 0.67 0.4302 12
Label Propagation 0.0026 0.386 244
Louvain 0.0085 0.427 274
Kernel Approach 0.5732 0.429 34

Citeseer Edge-Betweenness 0.0 0.5344 738
Walktrap 0.0 0.811 593
Label Propagation 0.0 0.491 842
Louvain 0.079 0.886 466
Kernel Approach 0.407 0.8907 121

Cora Edge-Betweenness 0.0516 0.3999 1028
Walktrap 0.2131 0.756 265
Label Propagation – – –
Louvain 0.313 0.808 100
Kernel Approach 0.0853 0.212 1107
CDLPA – 0.6042 –

4.2.2. Threshold σ evaluation
As far as the threshold σ is concerned, the empirical experiments show that when taking
descent values of the interclass inertia, meaning those less than σ , expected results are not
obtained. For illustration, as seen from the Table 3, our approach performs the best in both
datasets. The Figure 3(a) Network, for the first case (I[eij] > σ ) contains 2 communities
with a triad density of 0.6428, and Celegansneural 5 communities with a high value of
triad density equals to 0.711; contrary to the second case (I[eij] < σ ) for which Figure 3(a)
Network just contains 1 community with a low triad density of 0.417 and Celegansneu-
ral 103 communities with 0.065 triad density value. This result means that the Figure 3(a)
Network partition is not well structured for this second case. Figure 4 illustrates the com-
parison of these both σ considerations. Higher inter-class inertia values indicate better
kernel-based triad structures and therefore, finding vertices with similar neighbors whose
inter-class inertia values are upper than threshold provides a method for extracting the
underlying kernel structure. The Figure 5 shows the analysis made on the idea that the
more the inter-class inertia is upper than a threshold σ , the more the kernel degree values
are large, meaning better triad-based structures.

4.3. Performance on community detection

4.3.1. Quality measure evaluation
The community detection performances for different models on the four datasets are
given in Table 4. The Figure 3(a) Network contains visibly 2 communities as shown on
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Figure 5. In-degree distribution on dataset nodes.
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the Figure 4; Celegansneural network is used to illustrate the new approach methodol-
ogy and its hidden idea. With this dataset, both the expected number of communities and
TriadDensmetrics are evaluated.

As shown in Table 4, Edge Betweenness approach focus on links between nodes by
searching the central edge (geodesic) meaning the bridge linking two communities. It
detects 194 communities, with theweakestTriadDens (0.0857). Contrary to the othermod-
els, the Kernel approach confirms the 5 communities detected by Klymko, Gleich, and
Kolda (2014), with a higher TriadDens (0.711) close to the triad density (0.78) of Klymko;
likewise, the higher modularity (see 0.393) proves its performance on the partition quality.

As far as Label Propagation method is concerned, a node moves from one community
to another if, its neighbors share the same label. Hence, for the polblogs network, it com-
putes the high community number (244) with the weakest TriadDens (0.0026). Walktrap
and Kernel approach methods perform in all of the criteria: they produce small commu-
nities (12 and 34 respectively), with high TriadDens of (0.67 and 0.5732 respectively) and
the best modularity value of 0.4302 and 0.429 respectively as shown in the Table 4. This
result indicates that models of “what is a growing-community” are somehow in agreement
with the notion of Kernel-degree measure. But Walktrap performs the best since it con-
siders unconnected partitions, indicating that it captures the so-called outliers by Ester,
Kriegel, and Sander (1996), which are anomalous nodes (belonging to none of the com-
munities). Meanwhile, Louvain method results are not so interesting with a TriadDens of
0.0085. This result could be due to the fact that Louvain’s method stresses on the modu-
larity optimization. Indeed, this measure does not implement the higher consideration of
nodes with higher incoming edges and weak outcoming edges than the opposite.

In the Table 4, through results presented for Citeseer dataset, Kernel approach improves
values of modularity and triad density. As shown in Figure 6, more than 80% of the nodes
have a degree between 0 and 3 and the remaining nodes have a degree between 4 and 25.
Since the majority of the nodes have such a low degree, it means that the method will pro-
duce few kernels, and therefore few communities. In other words, the resulting structure
will have more followers than leaders, more citations than articles containing them. This
behavior reflects the reality insofar as for 2 articles, one could have about 50 articles in the
bibliography. According to Figure 1 which presents the triads considered in our approach,
we can deduce that it is quite normal that the proposed method produces this high value
of triad density, compared to the low values obtained by the other methods. Moreover, the
value of modularity obtained by our approach is not very far from Louvain because of link
density that the latter takes into account.

The null modularity values for the other methods in the Table 4 illustrates better type
of scorpus that our method performs on. In fact, contrary to the other datasets, Citeseer
follows the deepest power law distribution, because it possesses a hub node (node with a
higher degree distant from the other nodes degrees), as presented in Citeseer subfigure of
Figure 6. Tsourakakis (2008) confirms the plausibility of these results by its argumentation
that low-degree nodes form fewer triangles than higher degree nodes; and according to
Durak, Pinar, and Kolda (2012), citation networks are dominated by heterogeneous trian-
gles; like this, triads are included into triangle. So results on Citeseer, a citation network
type, seem to be valid in regard of both precedent demonstrations.

For Cora network, results shown in Table 4 guarantee that the new scheme is based
on power-law distribution in datasets. Indeed, since Cora follows a uniform in-degree
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Figure 6. Standard deviation distribution. (a) Threshold based on the network in Figure 3(a). (b) Thresh-
old based on Celegansneural network. (c) Threshold based on Extract from Polblog network.

distribution as shown in Figure 6, the kernel degree-based approach produces weak results;
label propagationmethod fails on this dataset, indicating the fact that nodes already belong
to communities containing their whole neighbors, thus most of these vertices do not need
to move from one community to another; Louvain’s method performs the best. This result
is due to the fact that it is based on density of links disregarding the benefit of the node in-
degree. Moreover, CDLPA performs better as it consists in balancing structures to reach a
computed size. Figure 7 compares the values of modularity on the partitions obtained by
each of the methods on the different data sets while Figure 8 shows a comparison of the
triad density values obtained by each method.

Summarily, these weak results for Louvain method compared with the proposed
approach on the overall of datasets indicate that it focuses solely on link density in the
community without no interest of the topology or in-link based semantic of triads into the
communities. The Kernel degree-based approach performs the best in all the cases except
on the triad density for Cora network. These results also illustrate that most of the time, it
is beneficial to use both triad weight and neighborhood overlap measures simultaneously,
establishing kernel degree formula, to valorize the similarity kernel vertices in a directed
network.

4.3.2. Number of communities
An efficient reportmade from table of results is that themore the number of communities is
low themore triad density andmodularity values are great. Indeed, the proposed approach
shows that the number of communities depends on the depth of the power law distribution.
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Figure 7. Link density (modularity) as a criteria of network type.

Figure 8. Triad density as a metric of partition evaluation.

The deeper this distribution is (case of Citeseer, Celegans), the fewer communities there
are. In our future studies, we will show the relative effects of metrics on the number of
communities or vice versa.

5. Conclusion and future work

This paper has described a simple kernel scheme to improve the detection of communities
in directed networks, through triad density. It focuses on kernels which are seed nodes
centralizing information through their in-degree valuation. Based on the definition of
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community as a subgraph induced by kernels, the new scheme basis are triads relationships
between kernel nodes and their neighbors. Thus, we have defined a metric called kernel
degree, for computing the similarity between kernel nodes. When the new metric is used,
we obtain better triad density and modularity values on some datasets, those following
the power-law degree distribution of nodes. Our model captures a significance of com-
munities based on both criteria: density of links and topology of vertices in the graph,
meaning communities with higher triad density. We compared the modularity values for
each model on the result partition, and we found a substantial improvement in the triad
density measure, with appreciable changes in the traditional community detection metrics
such as modularity.

The model complexity constitutes a main criteria of effectiveness for any method. With
the increasing ways on information access in the era of digital, it becomes important to
extend this method to parallel processing, in order to manipulate very large-scale real net-
works. Also, it is possible to apply weighted graphs to reinforce the strength of the kernel,
for community detection results more similar to the real life. We will explore this in our
future works.

Notes

1. http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
2. https://www.R-project.org
3. http://www.cs.umd.edu/projects/linqs/projects/lbc/
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ABSTRACT. Complex networks have been receiving increasing attention by the scientific community.
They can be represented by multidimensional networks in which there is multiple types of connec-
tions between nodes. Thanks also to the increasing availability of analytical measures that have been
extended in order to describe and analyze properties of entities involved in this kind of multiple re-
lationship representation of networks. These measures focused on quantitative involvement of node
through the widely popular and intuitive measure of degree. However, one aspect of such properties
have been disregarded so far: entities in such networks are often tied according to the interest they
have to their neighbors in the overall dimensions. In this paper, the problem of characterizing multidi-
mensional networks, using a qualitative aspect of the node neighborhood, has been studied, through
the new defined node centrality measure, Stability, to describe the connectivity of nodes that incorpo-
rates across-dimension topological features in order to identify the relevant dimensions. We assessed
our measure on two real-world multidimensional networks, showing its validity, its meaningfulness and
its correlation with a dimension connectivity measure.

RÉSUMÉ. Les réseaux complexes ont reçu beaucoup d’attention de la part de la recherche scien-
tifique. Ils peuvent etre représentés par des réseaux multidimensionnels dans lesquels il existe plu-
sieurs types de relations entre les entités. Plusieurs propriétés decrivant les noeuds et permettant
l’extraction de la connaissance sur de tels réseaux, ont été étudiées. La majorité d’entre elles prone
l’aspect quantitatif de la connectivité d’un noeud, à l’instar de la centralité de degré. Cependant, un
aspect primordial a été omis: celui qualitatif, basé sur le type de voisinage d’un noeud. En effet, dans
de tels réseaux, les entités sont généralement connectées selon les mêmes centres d’intérêts qu’ils
possèdent. Dans ce travail, le problème de caractérisation des réseaux multidimensionnels moyen-
nant l’utilisation de la notion qualitative du voisinage d’un noeud, a été abordé à travers la définition
d’une nouvelle mesure de centralité appelée Stabilité. Cette dernière permet de décrire la connec-
tivité des noeuds basée sur les caractéristiques topologiques, en vu de déterminer les dimensions
pertinentes. L’évaluation de cette mesure s’effectue sur deux réseaux multidimensionnels réels, et
montre sa validité et sa correlation à une mesure de connectivité de dimensions.

KEYWORDS : Multidimensionnal networks, Centrality measure, Relevance dimension

MOTS-CLÉS : Reseaux multidimensionnels, mesure de centralité, Pertinence de dimension



1. Introduction

Complex network analysis has received a lot of attention by the scientific researchers,
because it helps to better understand the intrinsic behavior of relationships between en-
tities. These relationships could be either of one or several types. Unlike amonodimen-
sionalnetwork which contains only one type of links between nodes,multidimensional
networks contain links which either reflect different kindsof relationship or represent
different values of the same kind of relationship among a same set of elementary com-
ponents. This flexibility allowed to use complex networks tostudy real-world systems in
many fields: sociology, physics, genetics, computer, etc. Such systems can be modeled by
multidimensional networks as reported in Figure 1 [1] whereon the left we have different
types of links, while on the right we have different values (conferences) for one rela-
tionship (for example, co-authorship). Multidisciplinary and extensive research works
have been devoted to the extraction of non trivial knowledgefrom such networks [7].
Some of them focused on the characterization of their properties. More precisely, they
studied some centrality measurements based on the quantitative neighborhood also called
“weight”, of each node [1, 6]. These measures, which are certainly relevant, do not take
into account a more recent reality. Indeed, with the advent of the Internet and social net-
working sites, individuals communicate more easily when the majority of their contacts
use the same platforms or means of communication as they do. Thus, the qualitative as-
pect of this neighborhood is important to be considered. From this aspect, a semantics
emerges relating to the retention of the same neighbors of a node over all dimensions,
namelyStability. To the best of our knowledge, however, the literature stillmisses a
systematic qualitative measure for weight-based centrality in the context of correlated
multidimensional networks, together with a model of extracting relevant dimensions for
each node. The aim of this paper is precisely defining a basic and analytical concept
of centrality measure, which takes into account the connectivity redundancy of nodes
among dimensions. As questioned in [1], how is it possible tocontribute to answering the
questionTo what extent one or more dimensions are more important thanothers for the
connectivity of a node?

Contributions : In this work:

– We introduce a novel centrality weighting scheme of nodes calledstability, in mul-
tidimensional network

– We formally define a measure aimed at extracting useful knowledge on relevance
dimensions of nodes

– We characterize nodes of the multidimensional network according to their stability

– we empirically test the meaningfulness of our measure, by means of a case study on
two realistic networks.

The rest of the paper is organized as follows. Section 2 overviews related works,
Section 3 describes the proposed measures to assess the activity level of a node in a
dimension. Section 4 presents experimental evaluation, Section 5 concludes the paper.

2. Related works

Multidimensional networks have for a long time been proposed as an alternative to
better describe interactions within complex systems [1]. For instance, in social networks,



individuals can be connected according to different socialties, such as friendship or family
relationship [2]. The extraction of knowledge and analysisof both the local and global
properties of such networks remains of interest to scientists. Indeed, multidimensional
networks abound with a large amount of information, particularly concerning the various
kinds of relationship between entities. Since an individual may have a particular interest
for a certain number of dimensions, he could be influential orimportant in regard to other
nodes in these dimensions: they are then qualified as central. So ignoring centrality in
multidimensional structures can lead to different rankingresults than what one obtains
for multidimensional networks [8] .

Centrality, an indicator that quantifies the importance of nodes in a network, comes
from the discipline of Social network analysis and has become a fundamental concept in
network science with its applications in a range of disciplines. In recent works, many
efforts have been devoted to "centrality" measures in orderthat they are also applicable
in multidimensional networks [8]. Examples of these various centrality measures include
degree centrality, called overlapping degree in [6]. As they help to extract a knowledge
and analyze the network properties related to the questioning of “how important a dimen-
sion for a node is”, these measures are based on both relevance dimension and dimension
connectivity, since nodes could exist across all dimensions. A multigraph used to model
a multidimensional network is denoted by a tripleG = (V,E, L) where:V is a set of
nodes;L is a set of dimensions;E is a set of edges, i.e the set of triples(u, v, d) where
u, v ∈ V are nodes andd ∈ L is a dimension. Thus, Berlingerio [1] defined a relevance
dimension measure based on the connectivity of dimensions,as described in Equation 1,
which computes the fraction of neighbors directly reachable from nodev following edges
belonging only to the set of dimensions calledD with D ⊆ L. Likewise, he defined a
measure Node Exclusive Dimension Connectivity (NEDC) computing the ratio of nodes
belonging only to a specific dimensiond, as described in Equation 2.

DRXOR(v,D) =
|NeighborsXOR(v,D)|

|Neighbors(v, L)| (1)

NEDC(d) =
|u ∈ V |∃v ∈ V : (u, v, d) ∈ E ∧ ∀j ∈ L, j 6= d : (u, v, j) /∈ E|

|u ∈ V |∃v ∈ V : (u, v, d) ∈ E| (2)

whereNeighborsXOR(v,D) is the set of neighbors ofv belonging only to dimensions
D. Despite their popularity and effectiveness in social network analysis, we believe to
our knowledge that these measures mainly take into account the quantitative aspect (i.e.
degree) of node properties and links, yet thequalitativeaspect, namely the type of neigh-
boring nodes, would have a significant impact on facilitating communication between an
individual and his neighborhood.

Indeed, these measurements focus only on the degree of nodesregardless of the type
of neighborhood, to extract the relevant dimensions. According to them, a relevant dimen-
sion for a node is quantified by the density of its neighborhood. Thus, if a node has the
same number of neighbors on all dimensions, then all these dimensions will be relevant to
it. However, in real life situations relating to human relationships, the communication is
more obvious, more easy or cheaper among individuals using the same platform of infor-
mation exchanges. So, the interest a user has for a platform depends on the subscription
of his friends to that platform. Therefore, a dimension(platform) would be more relevant
for a node(subscriber) if the node has a conservative behavior of its neighborhood over all
dimensions. It is this concept that we implement in the next section.



Figure 1: Example of multidimensional networks

3. Multidimensional network analysis

This paragraph presents new defined measures to contribute to knowledge extraction
from a multidimensional networks. They concern whether a dimension can be of interest
for a node, based on the stability of his neighbors. In the first subsection, the stability cen-
trality is defined, and in the second subsection, we present how to determine the relevant
dimensions of a node.

3.1. Stability centrality

The weights of the nodes have been the subject of some studies. According to graph
theory, this weight corresponds to the sum of the weights of the edges incident to this
node. It is a variant of the degree centrality. This measure shows that the importance of a
node depends on the number of communications it establisheswith its neighborhood. It
corresponds to its activity level in a network. Extending this measure in multidimensional
networks, Nicosia et al. [6] studied that the activity of a node in a particular dimension is
very often correlated with its activity in another dimension. The authors considered the
centrality degree as a measure of the node activity in a dimension. However, the number
of neighbors seems to be meaningless when studying behaviorof entities in a context
of correlated dimensions. Then it becomes necessary to maintain the stable behavior of
a node in order to make easy information exchange among its community membership.
The stability centrality of a nodeu is then pointed up and computes the proportion of
the common neighborhood of this node between two dimensionsp andq, through aJac-
card indexsimilarity as defined through Definition 1. It takes into account the structural
features across several dimensions.

Figure 2: An example of connected multidimensional network with 3 dimensions on the left, and
on the right, the stability node on the top and threshold for relevance dimension extraction below.



Definition 1 (The stability centrality of a node in a dimension). Stability centrality of
nodeu in dimensionq measures the common neighborhood of a node betweenq and the
other dimensions. The functionStability : V ×D → [0, 1] is defined as:

Stability(u, q) =
1

ndim− 1

ndim−1∑

p=0

| Γ p
u ∩ Γ q

u |
| Γ p

u ∪ Γ q
u | (3)

whereΓ p
u denotes the neighborhood of nodeu in the dimensionp andndim denotes the

number of dimensions. We refer todisassortative stabilitywhen its neighborhood is to-
tally different in all dimensions; Stability tends to be null. Otherwise, it is theassortative
stability; it tends to its maximal value 1. In this paper, the node with the lowest disassorta-
tive stability is unstable and the one with the highest assortative stability is the most stable
over the network. As shown in table of Figure 2 above, node1 possesses a disassortative
stability, unlike node7 which gets an assortative stability.

3.2. Relevance dimension

The concept of dimension relevance of a node studied in [5] stresses on that dimension
in which the node has the most important exclusive degree as defined by Berlingerio [1]
i.e. it computes the fraction of neighbors directly reachable from nodeu following edges
belonging exclusively to a subset of dimensionsDl as shown in Equation 1. This way
does not seem relevant in some real situations, because if a node has the same degree on
all dimensions of the network, then all of them will be relevant. Yet, if we consider only
those in which the node has a more stable neighborhood, the relevance of the dimensions
would be more semantic. The relevant dimensionsRD(u) of a nodeu refers to those
dimensions for which the node has a stability centrality greater than or equal to a certain
thresholdε. It is described by the functionRD : V → D as:

RD(u) = {q, |Stability(u, q) ≥ ε} (4)

The thresholdε is defined in the Equation 5. When the nodeu has a stability centrality
whose value is higher thanε, it is said that the nodeu is stable for the subset of dimensions
RD(u), or that thedimensions in the subsetRD(u) are relevant for the nodeu.

ε =
1

|D|

|D|∑

i=1

Stability(u, i) (5)

4. Experimental Evaluation

In this section, we assess the proposed metric on two main sights: its correlation with
dimension connectivity and the behavior of nodes accordingto the values of the metric.

4.1. Correlation with dimension connectivity

This section reports the results obtained by computing the stability measure on two
real-world multidimensional network datasets, namely AUCS [4] and DBLP [3]. AUCS,
an attributed multidimensional network, models relationships between 61 employees of
Aarhus University Computer Science department considering five different aspects: cowork-
ing, having lunch together, Facebook friendship, offline friendship, and coauthorship. In



(a) Stability centrality on the network in Fig.
2 illustration

(b) Cumulative Stability on AUCS

(c) Cumulative Stability on DBLP

Figure 3: Stability centrality distribution
DBLP, there are83901 nodes which correspond to authors, tied by159302 links, and50
dimensions represent the top-50 Computer Science conferences. Two authors are con-
nected on a dimension if they co-authored at least two paperstogether in a particular
conference. All the experiments were conducted on an Intel Core i5 − 8250U CPU
@1.60GHz, 8GB of RAM machine, Windows10 OS64 bytes.

Figure 3 reports the cumulative distribution of the stability measure. It denotes the
average of nodes’ stability on 10 intervals. The latter corresponds to the normalization
of the number of nodes. Figure 3(a) is a small dataset. Then there is no need to cu-
mulate the stability centrality of the nodes, unlike the figures 3(b) and 3(c) whose size
is important, leading to a normalization of their x-axis. Berlingerio in [1] analyzed the
correlation between theDRxor distribution and the Dimension Connectivity values (es-
peciallyNEDC). The authors deduced thatDRxor measure is correlated to theNEDC
measure. Following them, we analyze the correlation between the stability distribution
and theNEDC measure. What can be seen by looking at the Stability distribution and
NEDC values, reported in Tables 1-3, is that the Stability distributions seem to be cor-
related to theNEDC measure. This correlation is not surprising since by definition, the
two measures are two different perspectives, one local (Node stability) and one global
(Dimension Connectivity), of the same aspect: how much a node is important for the con-
nectivity of a network. We note, in fact, that the stability tends to be higher in conjunction
with higherNEDC values.

Table 1: Node connectivity, Node stability, computed on the illustration network in Fig.
2

Dimension Stability average NEDC
Dimension 1 0.63 0.85
Dimension 2 0.4 0.7
Dimension 3 0.47 0.7



Table 2: Node connectivity, Node stability, computed on AUCS network

Dimension Stability average NEDC
Lunch 0.22 0.15
Facebook 0.10 0.03
Coauthor 0.11 0.05
Leisure 0.20 0.11
Work 0.24 0.25

4.2. Analyzing node behavior

This section describes node behaviors in the overall dimensions, according to its de-
gree and its stability. Assume that the network in Figure 2 represents an exchange of
experiences through a multidimensional network between actors of the agriculture area
(e.g. farmers), in which a dimension describes a type of crop(banana, onion, rice, etc.).
The idea behind the stability metric is that a stable node/actor is the more important be-
cause it favors a success in agricultural business, moreover, the other nodes/actors trust in
him. Then, the stability of a farmer’s neighborhood demonstrates his competence; there-
fore, he becomes a more reliable source of information. An individual may not be reliable
if he loses his regular relationship. In Figure 2, node7 is an example of this. If the second
and third dimensions are removed, it looses its trusted contacts, but still remains present
in the network. On the other hand, according toDRxor measure, that node7 disappears
from the network. As shown in Figure 4, this node has the same value ofDRxor across
all dimensions, but its value of stability is low in the first dimension. Otherwise, the node
1 has a disassortative behavior. Any dimension is relevant for this node, meaning that it
is less important across dimensions.

5. Conclusion

We proposed a novel centrality measure based on stability ofthe neighborhood of
nodes. Since an active node on one dimension can remain inactive on the rest of the
dimensions, it is possible to study the stability of a node ina multidimensional context,
according to its center of interest. Therefore we defined thenotion of relevance dimension
of a node in order to contribute to the question of how important is a dimension for a node.
An assessment on the semantic given to the stability centrality compared to degree cen-
trality was carried out. Likewise, we show how correlated the stability to the dimension
connectivity NEDC measure. The next study intends to assessthe impact of this measure
on the communities obtained from a well-defined model.

Table 3: Node connectivity, Node stability, computed on DBLP network

Dimension Stability average NEDC
VLDB 0.00115 0.75
SIGMOD 0.0046 0.97
CIKM 0.15 3.86
SIGKDD 0.0087 1.38
ICDM 0.098 2.45
SDM 0.055 1.44



(a) Stability behavior on dimension 1 (b) Stability behavior on dimension 2

(c) Stability behavior on dimension 3

Figure 4: Stability andDRxor assessments on network in Fig. 2
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ABSTRACT. Community detection in directed network is of vital importance to find cohesive sub-

groups. Many existing graph clustering methods mainly focus on the relational structure and vertex

properties, but ignore edge directionality during the clustering task, in case of directed graphs. In this

paper we propose a hybrid semantic similarity which includes node attribute informations along with

the network structure and link semantic. Then by application of a partitioning clustering technique, we

evaluate its performance and results on a built textual based dataset with ground truth. We argue that,

depending on the kind of data we have and the type of results we want, the choice of the clustering

method is important and we present some concrete examples for underlining this.

RÉSUMÉ. La détection des clusters orientés constitue davantage un challenge dans l’analyse des

réseaux. Plusieurs approches de clustering s’attardent uniquement sur la structure et les attributs des

noeuds, mais ignorent la sémantique portée par les liens dans le cas des graphes orientés. Dans cet

article nous proposons une mesure de similarité hybride qui combine les informations structurelles,

les attributs et l’orientation des liens. Par application de cette mesure à un algorithme de clustering ,

nous évaluons les performances de cette nouvelle approche sur un jeu de données que nous avons

construit avec vérité de terrain. Selon le type de données exploité et le type de résultats escomptés,

nous montrons que le choix de la méthode de classification est important via quelques illustrations.

KEYWORDS : Directed attributed network, Graph clustering, Link semantic, Social network

MOTS-CLÉS : Réseau orienté attribué, Clustering, Sémantique des liens, Réseau social
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1. Introduction

Cluster extraction is one of the main tasks of descriptive modelisation in datamining
area. Like this, most of graph partitioning methods, useful for strongly connected commu-
nity detection [7], focus on relational structure, but ignore node properties or attributes.
More the recent approaches tended to find cohesive subgroups by combining node at-
tributes with link informations in graph. These informations only concerned the structure
data like frequent link-pattern(neighbourhood and leadership). Nevertheless, combining
these different data types leads to the problem of semantic classification, because of the
"inconsistent" similarity measures omitting the link semantic (meaning edge’s direction-
ality). A new challenge in community detection consists on meaningful cluster extraction
based on three parameters : structure, node attributes and link semantic. In this paper, we
propose an hybrid technique dealing with the semantic based topological structure of the
graph, and we show that with textual attributes joined to vertices, it is possible to extract
semantic clusters. We perform our experiments through the construction of an attributed
directed network with ground truth, Normalized Mutual Information (NMI ) and Density
measures are used for evaluations. The work of incorporating structural semantic and at-
tribute data has not yet been throughout studied in the context of large social graphs. This
is the motivation of our work for which key contributions are summarized next : study-
ing of the relationship between semantic similarity of species in a food web network and
showing that the type of data determine the result, thus a textual attribute strengthens the
semantic topology and helps to discover more relevant communities.

The document is organized as follows. The Section 2 presents related works based
on graphs partitioning methods that take into account both features and structure rela-
tionship. The formal description of the idea is presented in Section 3, then some hybrid
approaches based on both links and attribute information are suggested in Section 4. An
experimental study describing the constructed dataset and the expected results according
to the technique are presented in the section 5. After that experiment description, an eval-
uation on different semi-hybrid and hybrid models are shown in the Section 6, and the
Section 7 concludes the study.

2. Related works

The well-known graph clustering techniques use the relationships between vertices to
partition the graph into several densely connected components, but do not use the proper-
ties of the nodes. The problem is to combine both graph data and attribute data simulta-
neously in order to detect clusters that are densely connected and similar in the attribute
space. Few recent studies have addressed the problem of clustering in attributed networks.
Next, we present a classification of the existing methods of clustering in attributed graph
based on their methodological principles.
Edge weighting based approaches : In order to integrate the attribute or structure

information in the clustering process, these methods define a node attribute similarity that
will be used to weight the existing edges. In literature, some relevant approaches have
been proposed [1]. The first approach of the following section is based on this idea.
Pattern-based approaches : These methods focus on the structure or relational prop-

erty of the graph, based on kernels information Li et al. [2]. In the same way, Gamgne et
al. [8] extracted kernels through the neighbourhood overlap. The relationship information
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is based on either the structural equivalence i.e. two vertices belong to the same cluster if
they own the same neighbours or leadership i.e. vertices are connected to the same leader.
They defined a kernel degreemeasure which denotes the similarity of nodes in their roles
of leader (high in-degree) or follower (low in-degree) as studied by Gamgne et al. [9]. Its
limit is that it does not deal with node attributes.
Quality function optimization based approaches : This family of approaches extend

the well-know graph based clustering methods to consider both attribute information and
topological structure. Authors in [6] proposed an extension of the Louvain algorithm with
a modification of modularity by including an attribute similarity metric. [5] propose the I-
Louvain algorithm which uses the inertia based modularity combinedwith the Newman’s
modularity.
Unified distance based approaches : They consist in transforming the topological

information of the network into a similarity or a distance function between vertices. Zhou
et al. [4] exploit the attributes in order to extend the original graph to an augmented one.
A graph partitioning is then carried out on this new augmented graph. A neighborhood
random walk model is used to measure the node closeness on the augmented graph. Then,
they proposed a SA-Cluster algorithm that make use of a random walk distance measure
and K-Medoids approach for the measurement of a node’s closeness.

All of these methods have the limit that their topological property does not deal with
link semantic, meaning edge directionality in directed networks. Yet the majority of real-
life networks are represented as directed graphs, and link direction helps in improving
partition quality.

We present in the Section 4, methods handling both topological and node attributes
and that are easy to use, while the next section shows how formally a generic clustering
approach could be implemented.

3. Problem Statement

An attributed graph is denoted as G = (V, E,W ), where V is the set of nodes,
E is set of edges, and W is the set of attributes associated to the nodes in V for de-
scribing their features. Each vertex vi is described by a real attribute vector di =
(w1(vi), ..., wj(vi), ..., wm(vi)) where wj(vi) is the attribute value of vertex vi on at-
tribute wj . Into such network, clustering of attributed graph should take into account both
structure network and attribute information by achieving a good balance between the fol-
lowing two properties : (i) vertices within one cluster are closed to each other in terms
of "structure", meaning that vertices are arranged according to a semantic pattern, while
vertices between clusters are not patterned; (ii) vertices within one cluster are more sim-
ilar by their attributes than vertices from different clusters that could have quite different
attribute values. In this work, we consider that the partitioning process focuses both on
semantic based topology and node attributes. In others words, the structure concept in-
cludes not only link density, but also link semantic. The approach consists in dividing the
set of nodes V into a partition of k clusters Ci, such that :

1) Ci ∩ Cj �= Φ ∀i �= j and ∪iCi = |V |, where Φ is an empty set,

2) The semantic similarity takes into account three criteria : the link density, the
node attribute and the link direction,

3) Vertices within clusters are semantically connected, while the vertices in differ-
ent clusters are sparsely connected.
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Likewise, we assume that an information network like a food web network can be rep-
resented by an attributed directed graph. Then, species relationship corresponds to a
network in which each vertex represents a species and is described by a vector di =
(wi1, wi2)wherewi1 is the discrete attribute according to the dietmode (0 for "carnivorous"
and 1 for "herbivorous") andwi2 the textual attribute denoting mode of reproduction (ei-
ther " oviparous" or "viviparous") ; an edge from node a to node b means that species
a is consumed by species b (“Prey-Predator” relationship). Thus, partitioning this kind
of graph leads to integrate both (density and semantic) topological and (discrete or
textual) attribute knowledge.

4. Clustering Graph models

Approaches for graph clustering described in this section separately handle both rela-
tional information and vertex attributes, and differ by their manner of combining relational
data and attributes.

4.1. Attribute and Relational based clustering methods

Attribute based clustering method first exploits attributes by graph enrichment through
a node attribute similarity (NAS) function [1, 4, 6]. According to the SA-Cluster method
[4], the unified random walk distance is applied to an augmented graph. On the other
hand, cosine distance between vertices vi and vj could be used, as defined as SimA(vi, vj)
in SAC1 method [6].

In the relational based clustering model, structural properties are considered first through
either a neighbourhood similarity. Li in [2] proposed a hierarchical clustering by filtering
process of cores (kernels) based on structural information, then merging them by their
attributes similarity. The core filtering is based on a frequent itemsets process through
a similarity we labelled here simS(vi, vj); it could be based on geodesic distance [7].
Formally, simS(vi, vj) =

1
1+disS(vi,vj)

. See Sect.4.2 below.

4.2. Semi Hybrid clustering

Semi-hybrid techniques combine simultaneously structural and attribute similarities
through a weighted function as in Eq.1. W-Cluster and Combe’s Model [3] are typical
instances of this technique.

disG(vi, vj) = αdisT (vi, vj) + βdisS(vi, vj) (1)

disT and disS denote euclidean distance for attribute data and geodesic distance for
structure data respectively. A straightforward way to integrate link semantic is to com-
bine relational, attribute and semantic similarities by adding another factor to the Eq.1 as
described below.

4.3. Proposed Hybrid Clustering Model

To avoid confusion to that semi-hybridmethod (not taking into account link direction),
we add semantic property based on edge directionality named simR(vi, vj) [8] and we
call semantic clusters the groups detected from a directed attributed graph partitioning hy-
brid model. The proposed approach combines simultaneously 3 information data through
a Node Attribute and Edge Directionality Similarity (NAEDS) as defined in Eq.2. Then,
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we have applied NAEDS in Louvain’s method to find answer of the following question:
Whether semantic communities be detected by dealing with direction of the edges?

simG(vi, vj) = αsimT (vi, vj) + βsimS(vi, vj) + γsimR(vi, vj) (2)

The equation Eq.2 computes a global Similarity simG(vi, vj) between two vertices vi
and vj by the linear combination of 3 measures respectively corresponding to each type
of information. simT (vi, vj) is the attribute based similarity. It is an arithmetic average
between discrete attribute based similarity simADiscr(vi, vj) (determined by counting
the number of attribute values nodes have in common) and textual attribute based simi-
larity simA(vi, vj) =

1

1+
√
Σd(w

d
i
−wd

j
)2

based on the euclidean distance. simS(vi, vj)

corresponds to the relational based similarity (see Sect.4.1).

And simR(vi, vj) =
|∆ij |
|∆j |
∗ |Γinj ∩Γ

in
i |

|Γinj ∪Γ
in
i |−θ

as defined by Gamgne et al. [8], represents edge

directionality based similarity which focuses on triad density and neighbourhood of ver-
tices. Then the global similarity measure is used as pairwise similarity measure in the
Louvain’s method to partition the graph into clusters. The objective is to evaluate the
scalability of the method based on this global similarity by extracting semantic clusters.
α, β and γ are weighting factors that enable to give more importance to the structural,
attribute or semantic similarity. γ = 1− α − β and α,β, γ �= 0.

5. Experimental Study

In this section, we performed extensive experiments to evaluate the performance of the
linear combination-based approach on real-world network datasets. All experiments were
done on a 2.3GHz Intel Pentium IV PC with 6GB main memory, running Windows
8. Python and R package were used for implementations.

5.1. Experimental Datasets and evaluation measures

To our knowledge, there is no referenced benchmark with relational and attributes
information handling link semantic (edge directionality). We construct a small ground
truth dataset, a food web network, in order to compare each vertex to its real cluster. So,
two datasets for experiments are used :
Food web : A typical illustration dataset as shown in Fig.1 is case of foodweb network

where a vertex represents a species and edge the relationship between prey and predator.
Political Blogs Dataset: A directed network of hyperlinks between weblogs on US

politics. This dataset contains 1, 490weblogs with 19, 090 hyperlinks between these web-
blogs. Each blog in the dataset has an attribute describing its political leaning as either
liberal of conservative.

We use two measures of Density and Normalized mutual information (NMI) to eval-
uate the quality of clusters generated by different methods.

5.2. Assumptions on food web illustration

Here we enumerate partitioning scenario and present expected results. We consider 5
subsets of vertices A, B, C, D, E describing species diet mode and by their reproduc-
tion mode, to be real semantic cluster of the hybrid clustering. The Table 1. shows the
described illustration network according to each property :

Towards a hybrid model of semantic communities detection     261



Table 1: Number of species by nutrition sector and mode of reproduction

Diet Mode Mode of reproduction Number

A Carnivorous Viviparous 8
B Carnivorous Oviparous 3
C Herbivorous Viviparous 7
D Herbivorous Oviparous 4
E Vegetables Asexual or sexual 3

Total 25

– Semi attribute semantic (Textual) : 3 clusters in which species are grouped by their
mode of reproduction. The ground truth partition is formally defined as Pa = {A∪C,B∪
D,E}.

– Semi Relational-semantic (Neighbourhood) : 3 clusters in which species are
grouped by their diet mode. The ground truth partition is formally defined as Pr =
{A ∪B,C ∪D,E}.

– Semantic : 5 clusters (species categories) : If we want to identify species by their
both diet mode and mode of reproduction characteristics, then attributes(textual infor-
mation), relational and directionality properties should be used. Like this, the resulting
partition is Ps = {A,B, C,D,E}.

6. Model evaluations and results

6.1. Evaluation on illustration dataset

Given that this study focuses on directed attributed graphs which have not yet been
investigated in detail, the evaluation consists in checking these assumptions described in
Sect.5.2, by evaluating stated models of Sect.4 (Ma, Mr, SHar). We compare these 3
models (M) and (SH) with the hybrid model (Hs). The synthesis of results is shown
in Table.2, according to the Normalized Mutual Information (NMI) measure [1]. Then
clusters issued from the ground truth clustering transcripts the following partitions : the
group of species by their diet mode (Pr), by their mode of reproduction (Pa), and by the
both simultaneously (Ps).

– Clustering according to textual attributes : Ma Model. In this approach cor-
responding to the technique in Sect.4.1, the euclidean distance computed on the tex-

(a) Food web illustration net-

work with Diet sectors

(b) Density comparison on

Poltitical Blogs

Figure 1: Example of datasets and results
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Table 2: Results : NMI

Models Pr Pa Ps

Mr 0.753 0.350 0.323
Ma 0.741 0.842 0.625
SHar [0.028− 0.291] [0.205− 0.441] [0.085− 0.397]
Hs [0.098− 0.217] [0.110− 0.185] [0.558− 0.895]

tual attributes helps to weight each edge ; then an unsupervised method is applied
to the resulting graph. The method performs well when the ground truth partition is
Pa = {A∪C,B∪D,E} by a higherNMI value (0.842) than considering the partitions
Pr or Ps.

– Clustering according to relations : Mr Model. This method firstly exploits rela-
tions and secondly, with attributes handling, it detects communities so that the nodes in
the same community are densely connected as well as homogeneous [2]. TheNMI value
for the ground truth partition Pr = {A ∪ B,C ∪D,E} is higher (0.753) than its value
for the ground truth partition Pa and Ps. This result demonstrates that a technique based
on successively relations then attributes, performs well in case of detecting two clusters
of species with a densely internal connectivity, corresponding to diet mode.

– Semi-hybrid attributed based clustering : SHar Model. As far as this method is
concerned, it deals with both types of information simultaneously as studied by Largeron
[3] through a weighted distance function. In experiments, the NMI value fluctuates as a
function of the weighting factors α and β. It changes its value according to the weighting
factor α. NMI is in the interval [0.028− 0.291] for Pr ground truth and [0.205− 0.441]
for Pa when α values are respectively 0.5 and 0.75. β = 1 − α. SHar Model performs
the best for the ground truth Pa, meaning that textual attributes describe better the vertices
similarity, but produces weak outcomes as proved by [3] for the overall results.

– Hybrid attributed based clustering : Hs Model. The objective of this hybrid
based experiment consists in 2 ways. First it shows that the consideration of the textual
attributes improves better the cluster semantics through the highest NMI values as pre-
sented in bold in the Table.2. Second it shows that combining simultaneously the three
types of information which are link semantic, relational and attribute properties respec-
tively, leads to the highest NMI for that expected partition Ps = {A,B, C,D,E}. Like
this, it detects the five classifying species clusters by their diet and reproduction mode si-
multaneously with a NMI value of 0.895 when the weighting factors α and β both equal
0.33; NMI value decreases to 0.558 when the weighting factors α and β equal 0.5 and
0.40 respectively, meaning that the negligence of the third factor relating to link semantic
property affects the result.

6.2. Evaluation on Polblogs dataset

The Table 3 presents NMI for Ps partition, with α = β = γ = 0.33, while the
figure 1b compares Density for each model through the number of cluster. These results
strengthen the interpretation according to that high density does not inevitably denote
good separation of communities.
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Table 3: Results : Density

Models SAC1 SA-Cluster Li’s model Combe’s model Hybrid model

NMI 0.153 0.350 0.323 0.675 0.878

7. Conclusion and future works

This work focused on the presentation of a hybrid clustering approach based on a pro-
posed similarity. This measure takes into account 3 properties : semantic, relational and
attributes. As presented below, we obtained different results according to the clustering
technique and to the kind of data in the directed attributed food web graph we built.

An illustration on a food web network helped to underline the choice of each method
relating to the kind of information (textual or numeric). The experiments show that on
the one hand, the consideration of textual documents as attributes in the partitioning pro-
cess leads to expected results based on the determination of species by their reproduction
and nutrition modes simultaneously, and on the other hand, the properties strengthens the
cluster semantic as computed through the NMI highest value. Nevertheless it has been
difficult to integrate simultaneously two textual attributes relating to both reproduction
mode and nutrition mode. For this reason, the second one has been processed as a nu-
meric. Although this method is simple, it is hard to set/tune the parameters as well as
interpret the weighted similarity function. Future works intend to apply large real-world
networks and study weighting factors distribution.
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RÉSUMÉ. La détection des communautés est devenue un domaine de recherche majeur ces der-
nières années. Plusieurs algorithmes appliqués aux graphes orientés ont été developpés. Ces
derniers se focalisent sur la densité de liens à l’intérieurdes communautés et considèrent la
relation entre les nœuds comme symmétrique, car ils ignorent l’orientation des liens, ce qui
biaise les résultats en produisant des communautés non-significatives. Ce document propose un
algorithme basé sur l’extraction des kernels via la distribution des triades, utilisant l’optimi-
sation de la nouvelle métrique Kernel Degree Clustering (KDC), et trouve des communautés
plus sémantiques que la modularité, en accord à la notion de centralisation de l’information.
Les expérimentations montrent que la nouvelle approche produit les résultats préconisés que
ceux produits par certains algorithmes de détection de communautés de l’état de l’art.

ABSTRACT.Community detection has become a major active area of research in recent years. A
plethora of relevant methods have been implemented for directed graphs. Most of them focus
on the density of links, and consider the relationship between nodes as symmetric by ignoring
links directionality during their clustering step, this leading to non-semantic results. This paper
propose an efficient method based on the extraction of kernels through the distribution of triads
in the graph, using Kernel Degree Clustering (KDC) a novel metric to judge the quality of
a community partitioning, demonstrated to yield superior results over other commonly used
metrics like modularity in conformity with centrality. To validate our approach, we conduct
experiments on some networks which show that it has better performance over some of the
other state-of-the-art methods and uncovers expected communities.

MOTS-CLÉS : Réseaux orientés, Détection des communautés kernel, Clusters basés sur la struc-
ture, Triade.

KEYWORDS:Directed graphs, Community kernel detection, Pattern-based clusters, Triad.
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1. Introduction

La détection des communautés dans les graphes orientés apparait comme l’un des
objectifs majeurs des domaines de la recherche d’informations et de l’analyse des ré-
seaux. Dans son sens premier, la notion de communauté correspond à un ensemble de
nœuds densément connectés entre eux et faiblement connectés avec les autres nœuds
du réseau (Fortunato, 2010). La détection des communautés peut par exemple aider
à faire du marketting viral ; ou dans un réseau de produits fréquemment achetés en-
semble, la détection des communautés peut être utilisée pour faire de la recommanda-
tion. Au vu de ces diverses perceptions sur la manière dont les objets sont semblables
ou similaires, il existe différents algorithmes de clustering formalisant ces pensées res-
pectives. A ce titre, la similarité entre les nœuds d’une même communauté ne tiendra
plus seulement compte de la densité de liens, mais aussi des caractéristiques structu-
relles des nœuds dans les graphes orientés. Ainsi, alors quecertains algorithmes de dé-
tection de communautés implémentés pour les graphes orientés ignorent l’orientation
des liens, d’autres techniques transforment le graphe orienté en graphe non-orienté
unipartite et valué (Fortunato, 2010) ou bipartite, et ensuite appliquent les algorithmes
de détection de communautés sur les graphes non-orientés pour extraire leurs commu-
nautés.

Ces techniques ne sont pas satisfaisantes et ne produisent pas des résultats signi-
ficatifs parce que la sémantique portée par les liens n’est pas prise en compte. Par
exemple, dans un graphe de citation dans lequel les articlessont représentés par les
nœuds et les relations telles que “un article cite un autre article” sont représentées par
les liens orientés. Supposons qu’un articlei cite un autrej (relationpère (j)-fils(i))mais
pas l’inverse. D’après ces méthodes, la relation de réciprocité ou de symétrie est in-
troduite entre les articlesi et j, ce qui favorise la perte de l’information selon laquelle
j soit cité pari. Dans le but de garder cette sémantique d’orientation des liens, une
définition plus générique de la notion de communauté a été introduite par (Malliaros
et Vazirgiannis, 2013) comme étant un ensemble de nœuds possédant des caracté-
ristiques homogènes (plus précisément “ensemble de nœuds centrés autour d’autres
nœuds, ces derniers possédant les intérêts communs”). Étant entendu que la majo-
rité des graphes réels sont de grande taille et deviennent deplus en plus denses, au
vu des multiples et divers outils de manipulation de l’information à l’ère du numé-
rique qui révolutionne la vie quotidienne, il devient plus difficile voire infaisable de
les traiter, suite à la taille limitée de la mémoire des machines. Pour ces deux rai-
sons, la complexité et la sémantique portée par les liens, les approches basées sur les
kernels semblent être indiquées pour résoudre le problème de détection des commu-
nautés dans les grands réseaux. Notre approche se base sur l’extension de l’idée selon
laquelle à l’intérieur des “bonnes”communautés se trouvent des nœuds influents,ker-
nels, qui centralisent l’information afin qu’elle soit aisémentaccessible. Les nœuds
influents dits nœuds centraux sont traversés par un nombre maximal de triades dans
la communauté. Une triade peut se définir comme étant un sous graphe de3 nœuds
impliquant deux liens. Ainsi, les triades constituent les bases de plusieurs structures de
communautés (Klymkoet al., 2014). Ce travail s’attardant sur l’orientation des liens
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dans les triades, les contributions spécifiques y afférentes sont entre autres :

– La définition d’un nouveau concept nommé kernel Degree Clustering(KDC)
qui mesure la puissance de similarité qui existe entre les nœuds du kernel, et une
nouvelle sémantique donnée à la notion de communauté basée sur le voisinage des
nœuds du kernel via l’appartenance triadique.

– L’implémentation d’un nouvel algorithme basé sur l’optimisation duKDC pour
découvrir les kernels et par la suite les communautés qui en découlent.

– L’amélioration de la qualité des structures obtenues par rapport aux méthodes
existantes.

La suite du document est structuré de la manière suivante : LaSection 2 est une in-
troduction aux méthodes existantes relatives à cette approche. Dans la Section 3, nous
définissons formellement les différents concepts utilisésdans l’approche de clustering
proposée. La section 4 présente une forme détaillée de l’implémentation de la nouvelle
méthode, suivie de la section 5 qui présente les expérimentations faites pour étudier et
évaluer les résultats obtenus. Et enfin la section 6 conclut notre étude.

2. Etude de l’art

Plusieurs approches de détection de communautés se focalisent sur les modèles
symétriques qui perdent la sémantique de l’orientation desliens entre les nœuds, un
facteur clé distinguant les réseaux orientés de ceux non-orientés. Pour détecter les
communautés dans les réseaux orientés, (Malliaros et Vazirgiannis, 2013) présentent
des méthodes de transformation du graphe orienté en un graphe non orienté valué,
permettant ainsi d’utiliser les concepts éprouvés ainsi que la complexité des modèles
existants pour la détection des communautés dans les graphes non-orientés. Ainsi,
pour mesurer la qualité de la partition obtenue, ils utilisent une fonction “objectif”
parmi plusieurs, dont la plus répandue est la modularité. Cette mesure a pour but de
caractériser la qualité d’une partition des sommets d’un graphe au regard de la den-
sité des liens à l’intérieur des groupes et du nombre de liensentre groupes distincts,
via la distribution des degrés des sommets. Plusieurs méthodes d’optimisation de la
modularité ont été proposées, à l’instar de la méthode d’agglomération gloutonne de
(Clausetet al., 2004),et dont la plus répandue et la plus sûre étant celle deLouvain
(Blondelet al., 2008). Si elle a eu un succès dans la détection de communautés dans
les graphes, il a néanmoins été montré que la modularité possède une limite de résolu-
tion (Fortunato et Barthelemy, 2007) qui restreint la possibilité de disposer de petites
communautés qui soient bien définies, car plus la taille du graphe croit, plus la qualité
de la partition décroit considérablement Il existe également des méthodes basées sur
les marches aléatoires (Pons et Latapy, 2005) et (Rosvall etBergstrom, 2008), consis-
tant en la recherche d’une forme de description des nœuds et les liens, permettant de
représenter les marches aléatoires. D’après ces auteurs, la description nécessitant le
moins de mémoire via le taux de compression le plus élevé de lamarche, est celui sé-
lectionné. En 2010, divers modèles probabilistes de détection de communautés ont été
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proposés (Malliaros et Vazirgiannis, 2013). Parmi eux, lesmodèles de bloc stochas-
tiques semblent avoir eu le plus de succès en termes d’extraction de communautés
sémantiques, avec des bonnes performances, et offrant des interprétations plausibles.
Cependant, leur complexité en pratique parait énorme pour la raison selon laquelle au
delà de 20 itérations, l’algorithme s’interrompt et les résultats deviennent invraisem-
blables. Pour pallier à cette limite de complexité, certains auteurs à l’instar de (Wang
et al., 2011) déterminent des kernels afin d’effectuer un traitement local de la détection
de communautés avant de l’étendre au graphe tout entier.

Un kernel peut être assimilé à un ensemble de nœuds centraux ou influents à l’inté-
rieur d’un groupe, appelés nœuds graines ou nœuds coeurs par(Kanawati, 2013). Un
exemple typique d’algorithmes s’adaptant au type d’approche centrée-noeud sont ceux
basés sur la propagation des labels (Raghavanet al., 2007). Dans ce type d’approches,
chaque vertex est initialisé par une étiquette ; elles définissent certaines règles simu-
lant la propagation de ces étiquettes tel que l’établit le principe d’infection. La mé-
thode de propagation de label possède l’avantage d’être asymptotiquement efficiente,
mais aucune garantie n’est donnée sur la qualité de la partition, précisément dans les
réseaux dans lesquels les communautés sont mal structurées. Certaines méthodes ex-
plorent le problème de détection de communautés dans les buts suivants : soit réduire
le nombre d’itérations de réalisation des actions de l’algorithme, et par conséquent la
complexité temporelle des algorithmes définis pour les grands réseaux, soit découvrir
la communauté. (Wanget al., 2011) identifie ces membres influents appelés kernel et
ensuite propose un algorithme efficient pour déterminer la structure des communautés
kernels. Lors de l’exécution de l’algorithme, le noeud initiateur du kernel est choisit
aléatoirement parmi tous les nœuds du graphe, et la taille des communautés est fixée,
ce qui mène à des résultats arbitraires de communautés. Pourpallier à cette limite,
(Klymko et al., 2014) a prouvé que les triangles jouent un rôle important dans la for-
mation des réseaux complexes structurés et convertit un graphe orienté en un autre
non-orienté et valué. Cette transformation, bien qu’efficace perd la sémantique portée
par les liens au sein d’un réseau orienté. Nous proposons uneméthode qui extrait les
kernels via les triades et le voisinage des nœuds constituant les propriétés structurelles
(orientées “pattern”) dans les grands graphes réels.

3. Formalisation de la méthode

Nous proposons dans cette section le modèle à base de la communauté kernel et
une définition des différents concepts y afférents, ainsi que les notations et formula-
tions nécessaires, à base du modèle.

3.1. Modèle de la communauté Kernel

(Newman et Girvan, 2004) dans ses travaux initie l’étude desméthodes de détec-
tion de communautés basés sur la densité des liens entre les sommets d’un graphe ;
ainsi une communauté dans son sens éthymologique correspond à un ensemble de
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nœuds possédant le plus de relations entre eux qu’avec les autres nœuds du graphe.
Cette définition typique de la notion de communautés est la plus répandue des mé-
thodes de clustering dans les graphes non-orientés. Cependant celles-ci ne peuvent
pas capturer des structures sémantiques, qui gardent le sens donné à l’orientation d’un
lien entre les nœuds d’un graphe, contrairement aux méthodes de clustering pour les-
quelles le critère cohésif de la mise en communauté des nœudsserait non pas la den-
sité, mais la topologie accordée à une formulation bien définie de la notion de commu-
nauté. Plus précisément, les nœuds dans un graphe orienté pourraient être également
groupés selon le critère de voisinage en commun (caractéristique sémantique ou struc-
turelle) qu’ils possèdent et non pas seulement selon la densité de liens (caractéristique
relationnelle) reliant les différents nœuds de cette communauté. Par exemple, le ré-
seau de Co-citation signifiant qu’un ensemble de nœudsA, relié à un ensemble de
nœudsB, implique une similarité entre les membres de chaque groupe, i.e. les nœuds
de A possèdent un comportement similaire vis-à-vis des nœuds membres de B. Dans
les graphes orientés, l’orientation des liens donne une impressionnante sémantique au
graphe dans son ensemble, et au flux de circulation d’informations en particulier. La
Figure 1 exhibe deux situations de structures représentantdifférents types de pattern
orientés “densité en triades” d’une part et “4-cycles” d’autres part (tel que le pré-
sentent les zones d’ombre de la figure). Dans un réseau Twitter par exemple, la notion
d’autorité est mise en exergue tel qu’illustré par la figure 2(a), à cause de la relation
entre un ensemble de nœuds autoritaires appelées blogs Hub (nœudsu etv ) et un en-
semble de nœuds non populaires appelés “followers”(nœudsx) tel que présenté dans
les Figures 2(b) et 2(c).

Ce concept d’autorité (ou de centralité) se traduit par l’optimisation de la notion
kernel degree Clustering. La figure 2(a) est une visualisation d’un extrait du réseau de
Twitter contenant deux kernels : d’une part les acteurs (Ashton Kutcher, Demi Moore,
Opray Winfrey) et d’autre part les politiciens (Barack Obama, Al Gore). Ils consti-
tuent en d’autres termes les leaders alors que les nœuds situés à gauche de la figure
correspondent à leurs fans ou followers, tel qu’étudié par (Gamgne et Tsopze, 2014).
Les communautés kernel décrivent les nœuds possédant le même voisinage entrant
(nœuds les plus connectés à un kernel et non pas à un autre). Nous considérons dans
ce papier, les liens entrant vers les kernels pour exprimer la puissance de similarité
qu’ils possèdent, conformément aux types de graphes qui y sont manipulés (réseau de
citation) ; pour mieux illustrer cette formulation, le réseau de Twitter est structuré de
pages hub “tweetées”ou aimées par un ensemble de visiteurs,et non l’inverse ; dans
un réseau de Citation par exemple, les pionniers d’un domaine de recherche bien pré-
cis sont le plus cités par les chercheurs juniors. Initialement, un kernel est constitué
d’un ensemble de nœuds centraux via leur degré entrant, obtenus par application de
la notion de “triade ”. Ce dernier constitue l’idée de base decette approche, tout en
s’inspirant de la notion d’ “appartenance triadique” qui stipule que si deux amis ont
un ami en commun, il est fort probable qu’ils soient du même groupe.
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3.2. Terminologie et concepts à base du modèle

Étant donné un grapheG(V,E) den = |V | sommets etm = |E| liens. SoitΓu

l’ensemble des voisins du noeudu. Nous définissons les notions et concepts à base de
notre modèle :

Definition 1 (Puissance de similarité). La puissance de similarité définit le critère
ou le degré selon lequel deux ou plusieurs nœuds possèdent leplus grand nombre de
voisins communs.

Definition 2 (Kernel). Un kernel correspond à un ensemble de nœuds possédant le
plus grand nombre de voisins en commun. Ainsi, plus les nœudsd’un kernel possèdent
des voisins en commun, plus la puissance de similarité qui les lie est important.

Definition 3 (Poids de la Triade). Le Poids de la triade pour chaque paire de nœuds
(u, v) dans le grapheG peut être représenté parTWuv. Nous utiliserons l’expression
∆uv pour décrire le nombre de triades(cardinalité de triades) impliquant les nœudsu
etv selon le schème présenté par les figures 2(b) et 2(c).

TWuv =
|∆uv|
|∆v|

[1]

Où |∆v| correspond au nombre de triades impliquant le noeudv.

Definition 4 (Chevauchement de voisinage). Étant donné deux nœudsu et v. SoitΓu

l’ensemble des nœuds appartenant au voisinage du noeudu, soit∆v l’ensemble des
nœuds appartenant au voisinage du nœudv. NotonsNOuv l’ensemble des nœuds
voisins queu etv possèdent en commun.

NOuv =
|Γv ∩ Γu|
|Γv ∪ Γu| − θ

[2]

où θ peut prendre différentes valeurs fonction de la connectivité existant entre les
nœudsu et v (0 lorsque les nœuds ne sont pas liés,1 lorsqu’il existe un arc entre les
nœuds, et2 lorsqu’il existe une relation de réciprocité entre eux).

Definition 5 (kernel Degree Clustering). Le Kernel Degree Clustering d’un couple de
sommets u et v est défini par :

KDCuv = TWuv ∗NOuv [3]

KDCuv peut mesurer de manière particulière le degré de similaritédu couple de
nœuds(u, v) et de manière générale la puissance ou “force”(notion de similarité)
d’un kernel à posséder des voisins en communs.
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Definition 6 (Communauté Kernel). La communauté kernel est un ensemble de nœuds
possédant le plus grand voisinage commun, tel que ces voisins centrés autour du ker-
nel par des liens entrant optimisent la mesure kernel DegreeClusteringKDCuv.

Definition 7 (Appartenance triadique). Cette notion stipule que si deuxindividus pos-
sèdent un ami en commun, alors il est très probable qu’ils fassent partie du même
groupe (ou kernel) sans pour autant devenir absolument des amis.

((a)) Cluster orienté Ci-
tations

((b)) Cluster orienté flot
d’informations

Figure 1 – Exemples de clusters basés sur la topologie dans les graphes orientés. Le
graphe de gauche (a) represente un cluster de pionniers d’undomaine de recherche
donné dans un réseau de citation. Celui de droite (b) expose un graphe de 4 cycles
dans un réseau de flots d’informations.

((a)) Illustration du ré-
seau de Twitter

((b)) Triade fermée ((c)) Triade ouverte

Figure 2 – Structures à base du modèle de la communauté kernel.

4. Méthode d’extraction des communautés

La nouvelle approche de détection de communautés est structurée en deux étapes :
l’identification des kernels qui sont les nœuds centraux de la communauté, et la migra-
tion des autres nœuds vers les kernels avec lesquels ils sontle plus liés. L’algorithme
d’extraction des kernels, TRICA (Triads Cardinality Algorithm) que nous proposons
ici fait usage du nouveau concept Kernel Degree Clustering (KDC), via l’optimisa-
tion de ce dernier, et pour lequel la valeur optimale détermine le degré de similarité
des nœuds de la partition kernel. Cette mesure se base sur l’appartenance triadique
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permettant d’exprimer la sémantique portée par les liens entre les différents membres
d’une communauté, favorisant ainsi un accès certain à l’information à travers le ré-
seau. Au lieu de mesurer la qualité de la partition entière decommunautés comme le
font (Clausetet al., 2004) et (Blondelet al., 2008) dans leur méthode, cette métrique
s’applique aux kernels tout en effectuant une optimisationen local du graphe, tel que
étudié par (Van Laarhoven et Marchiori, 2016). Nous nous attardons sur la cardinalité
des triades communs aux vertex du kernel, correspondant au nombre de voisins en
communs que ces derniers possèdent.

4.1. Algorithme TRICA

Ce paragraphe propose un algorithme évolutif, basé sur l’optimisation de la mé-
triqueKDC défini à la fois pour les graphes orientés et non-orientés. Ens’inspirant
des propriétés des réseaux réels, l’idée de base sous-jacente à cette métrique est la
suivante : les nœuds d’un même kernel doivent favoriser une densité en triades plus
importante dans les communautés dont ils sont le centre, en s’appuyant sur leur voisi-
nage entrant. En effet la communauté engendrée par les nœudscentrés autour du ker-
nel devrait contenir un nombre important de triades entre ses membres, et un nombre
assez faible de triades entre les nœuds de ces communautés avec les autres nœuds ex-
térieurs à la communauté. Ainsi, la qualité d’un kernel est défini comme la cohésion
moyenne de chacun de ses membres avec les autres nœuds du kernel. La cohésion
entre un vertexv et un ensemble de nœudsu ∈ S dont la valeur duNOuv est supé-
rieure à un certain seuil (ε = 0.5 expérimentalement choisit et dont la valeur se verra
discutée dans un prochain article) se définit par :

KDCuv(u, v ∈ S) = TWuv ∗NOuv. [4]

Le terme de gaucheTWuv calcule la proportion en triades à l’intérieur des kernels
entre les nœuds pris deux à deux ; et celui de droiteNOuv détermine la proportion
de voisinage en commun que deux nœuds d’un même kernel possèdent. Intuitive-
ment, la métrique Kernel Degree Clustering mesure la force de similarité des membres
d’un kernel. La qualité de la partition des kernels correspond à la qualité moyenne de
chaque vertex dans son kernel. Ainsi, pour un ensemble S correspondant à un kernel,
KDC(S) se définit comme étant la moyenne∀x ∈ S deKDC(x, S), et la valeur
finale deKDC correspondant à la partition kernelP = K1, ...,Kn deK (l’ensemble
des nœuds membres des kernels) formulé par :

KDC(P ) =
1

|V |ΣS∈PΣx∈SKDC(x, S). [5]

Supposons que le réseau à analyser est représenté par un graphe connexe, non-valué
G den = |N | nœuds etm = |E| liens . Cette étape d’identification des kernels se
décompose en 4 sous-étapes comme suit :

1) Extraire une liste triée de nœuds centraux selon le critère de leur degré entrant,
dans le graphe.
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2) Déterminer le voisinage commun de chaque couple (u,v) parle biais d’une va-
riante du coefficient de Jaccard(Fortunato, 2010) tel que décrit par NOuv dans la for-
mule 2

3) Déterminer le poids des triadesTWuv (tel que décrit par la formule 1) pour
chaqueu, v dont leNOuv ≥ ε.

4) Calculer la moyenne desKDCuv pour chaque couple(u, v) de la liste des
nœuds éligibles à appartenir à un kernel.

5) Stockerv dans le kernel pour lequelKDCuv est optimal.

Ces différentes étapes se répètent jusqu’à l’obtention d’une valeur deKDCuv

optimale.

La première étape consiste en la détermination d’une liste de nœuds triée par leur
degré entrant. L’opération de tri permet de simplifier la réalisation de la deuxième
étape consistant à supprimer aisément de cette liste les nœuds possédant moins de
deux voisins, car ce type de nœuds serait probablement disqualifié dans l’idée de faire
partie des nœuds centraux dans les kernels, à cause de leur degré entrant variant entre
1 et0.

Après extraction de cette liste triée et épurée de nœuds classés par ordre décrois-
sant de leur valeur de degré entrant, suit le calcul desNOuv pour chaque couple
de nœuds(u, v) pour déterminer ceux des nœuds éligibles à faire partie des kernels,
correspondant ainsi aux nœuds dont le couple a pour valuation deNOuv une valeur
supérieure à un seuilε.

L’étape de calcul des poids des triades quant à elle se décritde la manière suivante :
d’une part, il est question primo de compter pour chaque couple de nœuds(u, v) le
nombre total de triades dans lesquels ils sont impliqués dans le graphe, secundo de
supprimer tous les nœuds n’appartenant à aucune triade ; d’autre part l’on compte
pour chaque vertexv le nombre total de triades dans lesquels il est impliqué(∆v).
Cette phase de filtrage aide à l’amélioration des performances et permet de simplifier
les hypothèses dans les choix futurs d’un noeud quelconque,dans sa décision à pas-
ser d’une communauté à une autre. Notons que ces deux valeurssont des constantes
pendant le processus de détermination des kernels et peuvent être calculées simultané-
ment. Étant donné deux nœudsu etv, une manière classique de dénombrer les triades
dans lesquels ils sont impliqués consiste en l’intersection de leur liste d’adjacence en
vue de compter leur voisins en communs. Si les nœudsu et v ne possèdent aucun
voisin en commun, ils sont mentionnés comme devant appartenir à des communautés
distinctes dans la partition résultante du graphe, car ce type de nœuds n’affecte pas la
détermination deKDC. Pour dénombrer tous les triades impliquantv, le précédent
processus effectué pour les couples, est appliqué pour chaque voisinu dev, v étant le
noeud central de degré entrant maximal.

La 5e étape et la plus importante de ce processus de clustering deskernels consiste
en l’optimisation de la mesureKDCuv. L’idée de base sous-jacente au calcul de
KDCuv est celle permettant à chaque vertex de mettre à jour de manière répétée les
kernels, via une heuristique d’amélioration, tout en évaluant l’ensemble desKDCuv
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entre chacune des mises à jour ; et après un certain nombre pré-spécifié d’étapes pour
lesquellesKDCuv ne croit plus jusqu’à un certain seuil, le processus s’interrompt.
Cette heuristique basée sur le calcul de la moyenne desKDCuv sur l’ensemble des
nœudsu, v pour lesquelsNOuv ≥ ε permet de fixer une marge dans laquelle l’optimi-
sation de cette métrique se verra varier. En effet, pour une valeur donnée deKDCuv

inférieure à la borne inférieure de cette marge (moyenne desKDCuv), certes en deçà
de la valeur optimale (borne supérieure),u se verra supprimé du kernel courant pour
etre un noeud non-kernel. Sinon u restera dans son kernel courant. Et il migrera du
kernel courant vers un autre kernel pour lequel la valeur optimale est atteinte. En fait,
après avoir initialisé le kernel par un noeud centralv, la combinaison d’autres nœuds
u du graphe avecv via le calcul deKDCuv peut conduire aux deux états ci-dessous :

– Migrer : Le vertex migre d’un kernel vers le kernel d’un des nœuds parmi ceux
centraux, situé dans son voisinage le plus proche.

– Rester : Le vertex demeure dans son kernel.

Dans le but d’améliorer les performances de l’approche, le vertex doit choisir parmi
les actions ci-dessus, celle qui conduirait à l’obtention d’une meilleure valeur optimale
deKDCuv. Le pseudo-code associé à TRICA est présenté dans l’algorithme 1.

Algorithm 1 Implementation de la méthode d’Extraction des kernels TRICA

Entrées: Graphe orientéG = (V,E)
Sorties: K Kernels
1: Initialisation :K ← ∅
2: L = Sort(v/din(v) = max{din(t), ∀t ∈ V }) ;
3: CalculerNOuv etTWuv pour chaque(u, v) ∈ V tel queNOuv > ε ;
4: Calculer la moyenne(KDCuv)
5: pour Chaqueu ∈ L faire
6: v = argmax{din(t), ∀t ∈ L} ;
7: KDC∗ ←Moyenne(KDCuv) ;
8: répéter
9: CalculerKDCuv

10: Si KDCuv > KDC∗ alors
11: S ←− S ∪ u ;
12: Fin si
13: KDC∗ ←− KDCuv

14: jusqu’à KDCuv < KDC∗

15: K ←− K ∪ S
16: fin pour
17: RetournerK ;
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Algorithm 2 Pseudo code de l’algorithme de migration des nœuds non-kernels

Entrées: Communautés kernelsK = K1,K2, ...,Kt

Sorties: Communautés globalesGk = Gk1, Gk2, ..., Gkt

1: ∀i ∈ 1, ..., t, Gki ← ∅
2: répéter
3: ∀i ∈ 1, ..., t, Ri ← Ki ∪Gki

4: pour i← 1 to t faire
5: S ← v /∈ ∪Ri|∀j ∈ 1, ..., t,
6: |Connexions(v,Ri)| ≥ |Connexions(v,Rj)| > 0
7: Gki ← Gki ∪ S
8: fin pour
9: jusqu’à Plus de nœuds non-kernels

10: RetournerGk ;

4.2. Déduction des communautés globales

Après l’extraction des communautés kernel, il est questionde faire migrer les
nœuds non-kernels, ceux n’appartenant à aucun kernel, versles kernels avec lesquels
ils sont le plus liés, via l’orientation “entrante”des liens de ce noeud. Ces nœuds non-
kernel migreront vers les kernels et formeront ainsi des “Communautés globales”.
Le processus de génération des communautés globales (communautés contenant à la
fois les nœuds kernels et non-kernels) consiste en l’exécution des étapes suivantes :
initiallement, on étiquette chaque noeud non-kernel commeétant non-associé. Pour
chaque noeud non-associé, le ranger dans le kernel avec lequel il possède le plus grand
nombre de connexions; le kernel change ainsi d’état pour devenir une communauté
globale grandissante. Ce processus est repété jusqu’à ce qu’il n’y ait plus de nœuds
non-kernel, tel que décrit par l’algorithme 2.

5. Expérimentation et évaluation de la nouvelle méthode

5.1. Description des méthodes et des jeux de données

Afin de montrer la performance de cette approche, l’évaluation empirique s’est
focalisé sur une comparaison entre les résultats produits par plusieurs autres méthodes
de l’état de l’art parmi lesquels : Walktrap (Pons et Latapy,2005), Edge Betweenness
(Newman et Girvan, 2004), Label Propagation (Raghavanet al., 2007) et Louvain
(Krings et Blondel, 2011). Notre méthode peut s’appliquer autant aux graphes orientés
que non-orientés. L’expérimentation s’est appuyée sur trois niveaux d’évaluation :
le premier concerne la densité en triades ou triad cardinality rate (TCR), dans les
communautés résultantes, le second se base sur les valeurs de la modularité dans les
partitions obtenues par chacune des méthodes, et la dernière sur le nombre final de
communautés, en s’appuyant sur l’intuition selon laquelleplus une partition possède
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Tableau 1 – Caractéristiques des jeux de données

Jeu de données Nombre de nœuds Nombre de liens

Extrait de Twitter 14 32
Celegansneural 297 2,345
Polblogs 1,490 19,090
Citeseer 3,327 4,732

de communautés, moins elle est dense (en triades).TCR correspond au pourcentage
de triades dans la partition toute entière, tel que définit dans la formule ci-dessous.

TCR =
Σi|∆i|
|∆| [6]

où i correspond à une communauté quelconque et|δ| le nombre de triades dans le
graphe tout entier.

5.2. Evaluation de la performance des méthodes de détection

Les performances des différentes méthodes de détection de communautés sur les
quatre jeux de données sont respectivement présentées dansles tableaux 2, 3, 4 et 5.

Walktrap détermine la distance (l’homogénéité) entre les communautés et fusionne
celles qui sont moins distantes pour produire une nouvelle communauté résultante.
L’idée de Walktrap et celle de la nouvelle approche sont semblables dans la mesure
où elles ont en commun la notion de fusion des groupes de nœudsvoisins (l’un sur la
base de la distance, et l’autre sur la base du nombre de voisins en commun) ; ainsi les
résultats des deux méthodes sont dans l’ensemble convergentes, tel que présenté ci-
dessous : Dans le réseau extrait de Twitter présenté dans le Tableau 2, TRICA et Walk-
trap obtiennent la même valeur deTCR, soit0.6428, mais la valeur de la modularité
0.401 obtenue par Walktrap est plus petite que celle obtenue par TRICA, soit 0.410.
Les deux méthodes découvrent le même nombre2 de communautés. La méthode Lou-
vain détecte également 2 communautés, avec une veleur plus petite de la modularité
égale à0.395. Cependant, les méthodes Label Propagation et Edge Betweenness dé-
couvrent respectivement 5 et 7 communautés avec des faiblestaux de triades ainsi que
de valeurs de modularité, ce qui traduit l’insuffisance de ces approches sur l’idée de
clusteriser les nœuds appartenant au meme voisinage d’un ensemble de nœuds kernels.

En ce qui concerne le jeu de données Celegansneural network :la méthode Edge
Betweenness détermine le lien de centralité d’intermédiarité maximale, c’est à dire
celui traversé par le plus grand nombre de géodésiques (pluscourts chemins) et se
charge de supprimer ce lien, et de façon récursive obtient des communautés. Elle dé-
tecte le plus grand nombre de communautés (194), avec un faible taux de triades dans
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((a)) Partition Edge-betweeness ((b)) Partition Label Propaga-
tion

((c)) Partition Walktrap,
Louvain

((d)) Partition Kernel-
Pattern

Figure 3 – Visualisation des partitions obtenues par les différentes approches.

Figure 4 – Partition Walktrap sur le réseau Polblogs, avec des nœuds bruits appelés
outliers.

la partition toute entière (0.0857). Contrairement aux autres méthodes, la nouvelle
approche détermine le nombre de communautés attendues (5), car en tant que bench-
mark, (Klymkoet al., 2014) obtiennent cette meme valeur. Par ailleurs, avec un taux
élevé deTCR égal à0.3211), ceci démontre la performance de la nouvelle méthode
sur la qualité de la partition résultante, tel que présenté par le Tableau 3.

La méthode Propagation de label consiste à faire déplacer unnoeud d’une commu-
nauté vers une autre si ses voisins appartiennent à cette communauté de destination.
De cette manière, pour le jeu de données polblogs, elle détecte le plus grand nombre
de communautés (244) avec le plus faible taux de triades (0.0026). Cependant les mé-
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Tableau 2 – Performance des méthodes de détection de communautés sur le réseau
Extrait de Twitter, où les meilleures performances sont en gras.

Méthode TCR Modularité Communautés

Edge-Betweenness 0.0857 0.187 7
Walktrap 0.6428 0.401 2
Label Propagation 0.34 0.306 5
Louvain 0.531 0.395 2
Kernel-pattern 0.6428 0.410 2

thodes Walktrap et Kernel-pattern produisent de meilleursrésultats sur tous les critères
d’évaluation soit 12 et 34 communautés respectivement, avec les valeurs maximales
deTCR (0.67 et0.5732 respectivement) et les meilleures valeurs de modularité, soit
0.4302 et 0.429 respectivement, tel que présentés dans le Tableau 4. Ces résultats in-
diquent que les modèles basés sur l’idée de “communauté croissante centrée autour
de kernels” est d’une manière ou d’une autre en accord avec lanotion d’optimisation
de la mesure Kernel Degree Clustering ; en effet, le nombre minimum 12 de com-
munautés avec une valeur deTCR maximale de0.67 est preuve que la topologie en
triades via la méthode Walktrap est la mieux structurée. Cependant, cette dernière ne
saurait être meilleure, à cause des données bruitées représentées par les deux nœuds
singletons, tel que présenté dans la Figure 4, indiquant que la méthode capture des
nœuds que (Ester et al., 1996) appelle “outliers”, qui constituent des nœuds anormaux
oubruits de la partition.

Bien que la méthode Louvain produise la plus grande valeur demodularité (0.886)
pour le corpus Citeseer tel que présenté dans le Tableau 5, son nombre de communau-
tés est plus important que celui produit par la nouvelle approche. Ainsi, la méthode
Louvain détermine une valeur deTCR (0.213) moins importante que celle obtenue
par l’algorithme Kernel-pattern (0.407), ce qui montre la validité de la nouvelle ap-
proche sur la sémantique des liens. Citeseer, contrairement aux autres corpus, suit une
distribution de la loi de puissance exponentielle, dû au fait qu’il s’agisse d’un réseau
de citation dans lequel l’on pourrait être en possession de nœuds de centralité de de-
gré plus importante que les autres nœuds (l’on parle de nœuds“hub”). C’est ce qui
expliquerait la valeur nulle des TCR pour les trois méthodesdu tableau 5.

Figure 3 permet de visualiser la plausibilité de la méthode d’extraction des com-
munautés sur la base des kernels, TRICA sur le jeu de données extrait de Twitter.

6. Conclusion

Dans ce document, nous nous sommes focalisés sur le problèmed’extraction de
communautés basé sur les kernel-pattern, une communauté seramenant à un ensemble
de nœuds centrés autour d’un sous groupe de nœuds graines, initiateurs de la commu-
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Tableau 3 – Performance des méthodes de détection de communautés sur le réseau
Celegansneural, où les meilleures performances sont en gras.

Méthode TCR Modularité Communautés

Edge-Betweenness 0.0004 0.081 194
Walktrap 0.0458 0.363 21
Label Propagation 0.0135 0.0027 29
Louvain 0.2951 0.398 6
Kernel-pattern 0.3211 0.359 5

Tableau 4 – Performance des méthodes de détection de communautés sur le réseau
Polblogs, où les meilleures performances sont en gras.

Méthode TCR Modularité Communautés

Edge-Betweenness 0.0064 0.1872 55
Walktrap 0.67 0.4302 12
Label Propagation 0.0026 0.386 244
Louvain 0.1289 0.427 276
Kernel-pattern 0.5732 0.429 34

nauté, possédant quasiment le même voisinage commun. Un kernel correspond ainsi
à un outil favorisant la compréhension du rôle et de la structure d’un réseau. Nous
avons principalement orienté ce travail dans l’extractiondes kernels qui sont consi-
dérés comme étant des nœuds influents du réseau. La nouvelle approche proposée se
base sur l’optimisation de la mesure Kernel Degree Clustering (KDC) qui définit la
puissance de similarité existant entre nœuds d’un même kernel, via la notion de triade
représentant les caractéristiques structurelles des grands réseaux réels. Les expéri-
mentations sur la nouvelle approche prouvent que la méthodeKernel-pattern permet
de détecter les communautés efficaces attendues, et réalisede meilleurs valeurs de

Tableau 5 – Performance des méthodes de détection de communautés sur le réseau
Citeseer, où les meilleures performances sont en gras.

Méthode TCR Modularité Communautés

Edge-Betweenness 0.0 0.5344 738
Walktrap 0.0 0.811 593
Label Propagation 0.0 0.491 842
Louvain 0.213 0.886 466
Kernel-pattern 0.407 0.707 121



16

qualité des communautés, par rapport à certaines méthodes de l’état de l’art. Cepen-
dant, elle ne s’applique pas aux graphes valués. Nos travauxfuturs consisteront ainsi à
prendre en compte cette propriété de valuation des graphes orientés et s’attardera sur
la programmation en parallèle, afin d’améliorer la complexité du modèle.
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ABSTRACT

Community detection in directed networks appears as one of the most relevant topics in the field of network analysis. One
common theme in some formalizations is that flows should tend to stay within communities and could be centred round core
nodes called kernels. Hence, we expect triads to play an important role. Triads for directed graph are directed sub-graph
of nodes involving at least links between them. To identify communities in directed networks, we propose an undirected
edge-weighting scheme based on directed triads. We also propose a new metric on quality of the communities that is based on
the number of triads that are split across communities. To validate our approach, we conduct experiments on some networks
which show that it has better performance on triad-based density over some methods.

Keywords : Networks Analysis, Directed graphs, Kernel community detection, Triad

RESUME

La détection des communautés dans les graphes orientés constitue un domaine crucial de l’analyse des réseaux. Dans une com-
munauté, les noeuds sont plus densément connectés entre eux, et peuvent etre centrés autour d’autres noeuds “coeurs”appelés
Kernels. Ainsi nous estimons que les triades sont d’un role capital dans la detection des communautés. Une triade dans un
graphe orienté est un sous-graphe de noeuds impliqués dans au moins liens. Afin d’extraire les communautés, nous pro-
posons une methode de transformation du graphe orienté en non orienté et valué, en se basant sur les triades orientées. Et
nous proposons une nouvelle mesure de qualité basée sur la densité en triades dans les communautés. La validation de cette
approche passe par des experiementations sur des reseaux qui montrent qu’elle découvre des communautés plus significatives,
de densité en triades plus importantes que d’autres méthodes de l’état de l’art.

Mots clés : Analyse des réseaux, Graphes orientés, Détection des communautés kernel, Triades

1. INTRODUCTION

A recurrent research theme in Network analysis is community detection. In directed networks, it appears as one of dominant
research works, because of the link semantic that should be conserved. Fortunato [2] extends communities definition to be
considered as separate entities with their own autonomy. Community assignment methods for directed graphs(see [8]) focus
on either density or semantic properties to detect communities; the connectivity between nodes is often used alone to define
metrics measuring the “quality” of the assigned groups. Common quality metrics measure (i) the density of links within a
group (modularity), (ii) the density of triangles (Weighted Community Clustering- WCC-). These techniques implemented
for directed networks are more useful to detect groups with same autonomy but not with the same anatomy, meaning that
they ignore graph topology and link directionality during the clustering step [8] In order to improve the quality partition, we
propose a generic weighting model that converts a directed graph into an undirected weighted graph and takes into account both
density and semantic features. Our specific weighting scheme is based on extending the idea that, within “good” communities,
information can be centralized by kernels and accessible in a community more easily than between communities. Therefore,
our approach, considering semantic sight, is able to express the idea of detecting groups of nodes with homogeneous in-link
structure (e.g., citation-based clusters) through triads, and give the possibility to kernel nodes to own more common neighbours.
A triad in this paper is a set of nodes whose at least are the in-neighbour nodes (source nodes) of the vertex (target
node).
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Figure 1: Basic structures of our kernel community model, opened triads.

The approach is structured in three steps: first it transforms the directed graph into undirected weighted one via Kernel
Degree that measures the similarity strength or common neighbourhood of pair of nodes, then it extracts kernels; like this, we
focus on an interclass inertia vector computed from a kernel degree list, on which the extraction of kernels is based, with a
threshold fixed by the standard deviation on the interclass inertia vector. The third step consists on enlarge kernels by nodes
possessing a maximal connexion number with their kernel, leading to communities, through a proposed concept called Node
Community Index. The specific contributions of our paper are:

We proposed a structural and density based clustering scheme that points up features and community semantic.

we introduce a new concept called Kernel Degree using information about directed triads to improve community detection
in directed networks.

In addition, we focus on Triad Density measure that constitutes the essence of this approach, for partition evaluation,
different from other commonmeasures known in the state-of-the-art, like the modularity, conducting to better triad-based
quality improvement over some community detection algorithms.

2. MOTIVATIONS AND BACKGROUND

Triads, initially studied by authors Wasserman and Faust in [17] in social network analysis was introduced by [14] to identify
communities of different types. Triads are considered as wedges, i.e paths of length by [5]. Like this, a triad can be integrated
into a triangle. In [11], the authors define a “good” community to be a group of nodes that is dense in terms of triangles
through Weighted Community Clustering (WCC) measure [12]. Given that semantic properties of the graph should take into
account either “in” or “out” directionality of links, it becomes interesting to specify those of nodes centred round kernel (set of
influential nodes inside a group) according to one direction. Then, kernel community detection methods are considered as seed-
centric approaches [4] because of the influence of nodes centralizing information. Then, using triads enlarges the possibility
to consider low degree nodes instead of high degree nodes called “hub nodes” which are solely structured in the majority of
real-life networks. In this paper, a triad is a set of vertices involved to at least edges. In undirected networks, there is only
one type of triad, a path of length . In directed networks, we present six triads types as shown in Fig.1. Of these six triads, only
a few are relevant for in-seed-centric community detection approaches. We focus on in-seed-centric [4] approach because of
the influence of nodes centralizing information, a good pattern close relationship and ability to concentrate information between
nodes. This is not the case for all types of directed triads. As an example, in a blog readership network, there are two types of
bloggers: “writers”who generate influential blogs read by many others, and “readers”who read a lot but seldom write anything
for others to read. Some methods explored the problem of detecting community kernels, in order to either exhibit different
influence and different behaviour of nodes inside a structure for easily analyse and interpret results or uncover the hidden
community structure in large social networks. Like this, the new Triad Density measure implemented in this work, contrary to
modularity, exhibits “in-link”direction to kernel. And we focus on kernels because they represent community core and help to
concentrate nodes round them in order to better interpretation of the phenomena.

For detecting communities in directed networks, [8] presents some studies which propose a simple scheme that converts
a directed graph into bipartite, undirected and weighted one [13, 19], this enabling to utilize the richness and complexity of
existing methods to find communities in undirected graphs. Some hierarchical (agglomerative by Louvain [1] or separative
called Edge-Betweenness algorithm [9]) methods based on the optimization of the so-called modularity measure [10] focus on
the idea that networks with inherent community structure usually deviate from random graphs. Measuring the partition quality
consists of demonstrating whether the expected fraction of edges is null. Yet, Fortunato in [2] describes how this measure has a

2
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limit resolution, the difficulty for the measure to extract small scale communities. This limit is remediable [6, 7] but results are
not satisfactory in pattern-based clustering from real-world networks. Moreover, Malliaros and al. in their survey [8] present
some methods that either focus on transforming a directed graph to an undirected one or describe some of quality measures
in detail and also present their extensions to directed networks (e.g d-modularity). They confirm that these techniques ignore
important information about the direction of the links and miss their semantic. Tsourakakis in [15] initiated the study of degree
labelled triangle. He observed that the average number of triangles per degree follows a power-law distribution and the slope
of the degree-triangle plot has the negative slope of the degree distribution plot of the corresponding graph. He also argues
that low degree nodes form fewer triangles than higher degree nodes. Like this, to make up this limit, the objective of this new
approach is to cluster low degree nodes so that they should be more linked together around a kernel so that they could access
more easily to central retained information. So it takes into account in-links to the kernel and vertices with low degree.

3. COMMUNITY EXTRACTING METHOD

3.1. Basic terminology and concepts

Given a directed graph with vertices and edges. An edge connects vertex with vertex . We
now give some following useful definitions:

Definition 1 (Neighbourhood Overlap). Given two vertices and , let be the in-neighbourhood of vertex , let be
the in-neighbourhood of vertex . Let be the in-neighbourhoodoverlap of and vertices. is an Index Jaccard
variant as:

can take different values , and , depending on the connectivity of and vertices.

Definition 2 (Triad Weight). A triad is a subgraph (not necessarily induced) with edges and vertices, one of which is
and such that is incident to both edges. The Triad Weight of any edge in graph can be defined as:

We use to represent a triad crossing both and according to the scheme presented in the Fig.1, and to represent
triad in which is involved and is the target node of links.

Definition 3 (The Kernel Degree). Let the kernel be a set of central vertices(those owning a maximal central in-degree with
a maximal overlapping neighbourhood). The Kernel degree of a pair of vertex and is:

The first term is based on triads, and promotes the triad proportion through a kernel; and the second term promotes the neigh-
bourhood proportion of the kernel nodes. Intuitively, Kernel degree can measure the strength of the kernel node similarity.

Definition 4 (Kernel Community). Kernel community is a set of vertices with the same neighbourhood, such as these neigh-
bours expand inward the kernel, according to the Kernel Degree gradually until a threshold.

The threshold value is expressed in the section 3.3 below.
Given a graph and a subgraph of containing and . is called Kernel Community initiated

by and if: . We have the following properties:
Property 1 :
Property 2 :
Property 3 :

is the - common in-neighbourhood of vertices and (to reach and , in-neighbours cross links) and
and . Then, with . These properties indicate that: firstly,

a Kernel Degree computed for a pair of nodes of the same kernel is higher than the Kernel Degree computed for nodes of which
one belong to kernel and the other not. The standard deviation (discussed below) is the upper bound for kernel computation.
Secondly, each node in a community initiated by and is in their common in-neighbourhood. To evaluate partitions, Triad
Density of community initiated by and should be higher than the Triad Density of community not centred by kernel nodes.
This method make use of centric-based approaches [4]. It is structured in three steps: (i)Weighting scheme transformation,
(ii)Kernel extraction, (iii)Node migration and community computation.

3



COMMUNITIES IN DIRECTED GRAPHS

(a) Extract for Twitter social network
[16].

(b) Example of triads in
which there is an edge be-
tween kernel vertices and

(c) Example of a citation
pattern on the right.

Figure 2: Examples of structures expressing triads

3.2. Weighting scheme transformation

The weighting scheme consists on transforming the directed graph into undirected and weighted graph. It spreads out in two
subtasks: Computing a pruned central list of node degree, and computing kernel degree corresponding matrix of the directed
graph. In-degree central list definition. This step consists of determining a list called LCentral of in-degree centrality for each
node, and put it in decreasing order. So that those with maximal in-degree are more eligible than those with a fair in-degree.
Then, pruning from the list those of nodes with an in-degree below . This filtering step improves performance and allows
simplifying assumptions later when deciding whether to include a vertex into a kernel. For instance, in a citation network, a
node with an in-degree equal to or corresponds to an author whose the area search does not interest researchers, so remov-
ing these nodes with an in-degree below improves the speed processing. Illustration from Extract for Twitter Network(2a)
shows the central list LCentral contents as: , , , ,

because they have an in-degree above 2. Kernel Degree matrix computing. This step consists on computing
kernel degree values (see Definition 3) for every pair . As defined in section (section 3.1), The Kernel
Degree computed from the both Neighbourhood Overlap (see Definition 1) and Triad Weight (see Definition 2)
concepts, measures the strength of a kernel.

Then, constructing a Kernel Degree square matrix of with lines and columns, where is the
LCentral pruned list size, i.e deprived of nodes with in-degree below , and . And finally, representing it through a

list calledDicoK of size . is removed because of the diagonal of matrix whose values are null and the valuation
is divided by because of the symmetric matrix ( ). Illustration on Extract for Twitter network shows values of as:

The corresponding vector from matrix is represented as [((‘DemiMoore’, ‘OprahWinfrey ’), ), ((‘AlGore ’,
‘BarackObama ’), ), ((‘AshtonKutcher ’, ‘OprahWinfrey ’), ), ((‘AshtonKutcher ’, ‘DemiMoore ’), ), ((‘Barack-
Obama ’, ‘DemiMoore ’), ), ((‘AlGore ’, ‘DemiMoore ’), ), ((‘BarackObama ’, ‘OprahWinfrey ’), ), ((‘Al-
Gore ’, ‘OprahWinfrey ’), ), ((‘BarackObama ’, ‘AshtonKutcher ’), ), ((‘AlGore ’, ‘AshtonKutcher ’), )] and
the list is in decreasing order of .

3.3. Kernel extracting approach

This task of extracting kernels focus on determining those of nodes more eligible to belong to kernel via interclass inertia, and
thereafter, on constructing kernels via a threshold computation.

3.3.1. Interclass inertia computation

Given that the clustering main goal is to group homogeneous groups together, the criteria used here is Inter-class Inertia
based on DicoK vector. In fact, high inter-class inertia values indicate that objects tend to be more dissimilar, and consequently
should belong to distinct groups. So, it divides objects into two groups(initiated by keys), those eligible to belong to a kernel
and those not eligible. The delimitation of two groups of key (pair nodes) is done by a comparison of values from Inter-class
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Inertia vector with a computed Standard Deviation on . Like this, node pairs whose Inter-class Inertia value is upper
than are more eligible to belong to kernels. The Inter-class Inertia between groups and is expressed as

(1)

and are respectively the number of edges in groups and . , , and are respectively the Kernel Degree
average for , and . Illustration on Extract for Twitter network presents distinct groups and respectively as
the following, and the corresponding Inter-class Inertia of DicoK as : for (DemiMoore, OprahWinfrey) and
(AlGore, BarackObama), (AshtonKutcher, OprahWinfrey), (AshtonKutcher, DemiMoore), (BarackObama, DemiMoore),

(AlGore, DemiMoore), (BarackObama, Oprah), (AlGore, OprahWinfrey), (BarackObama, AshtonKutcher), (AlGore, Ash-
tonKutcher) , the Inter-class Inertia for these groups is . Then, the following pair of nodes in DicoK list moves from
to and their contents become: (DemiMoore, OprahWinfrey), (AlGore, BarackObama) and (AshtonKutcher,
OprahWinfrey), (AshtonKutcher, DemiMoore), (BarackObama, DemiMoore), (AlGore, DemiMoore), (BarackObama, Oprah),
(AlGore, OprahWinfrey), (BarackObama, AshtonKutcher), (AlGore, AshtonKutcher) , the Inter-class Inertia for these groups
is . We change the and contents and so on; this leading to the Inter-class Inertia vector [ , , ,

, , , , , , ]. The end of this preprocessing step consists on computing a threshold value
beyond of which vertices on Dicok are the more eligible to form kernels, as detailed in the next section.

3.3.2. Kernel extraction

To compute Kernels, we focus on a threshold, which is the standard deviation from interclass inertia. So, each vertex must
decide if it could belong to the key membership(the kernel initiator vertex belonging to the pair with the highest corresponding
Inter-class Inertia). Inspired by properties of real-life networks [3] based on a power-law degree distribution meaning, the basic
idea behind the kernel degree metric is that vertices should close more triads with other vertices in the community than with
vertices outside of the community. Using this idea, the current phase consists on extracting kernels which are seeds or nodes
centralizing information through the “in-link”direction by a comparison of the Inter-class inertia to the threshold , that is the
Standard Deviation from that Inter-class Inertia set of node groups.
Standard deviation . A low standard deviation indicates that the data points tend to be closed to the mean of the set, while

a high standard deviation indicates that the data points are spread out over a wider range of values. Because of the power-law
degree distribution in real-life networks, very little nodes get a high in-degree widely above the in-degree average. Like this,
we could make the assumption that the higher the standard deviation of a node set, the more likely they possess the almost
common neighbourhood. As matter of fact, as shown in experiments, a lower standard deviation indicates that these vertices
have a quasi-null common-neighbourhood cardinality. This assumption is also applied in [11], but the computation method
presented there is not adapted to the vertex centric processing model. The standard deviation formula is :

(2)

where indicates average (or mean), and indicates every element of the interclass inertia array. The imple-
mentation for kernel communities is presented in Algorithm 1.

Let us demonstrate this idea through an example. Consider the network in Figure 2a. The model computes the first kernel
initialized by nodes ‘Demi Moore’and ‘Oprah Winfrey’for which the associated inertia in is (where is the
value of the standard variation ); thereafter, the vertex ‘Ashton Kutcher’integrates the other, inducing like this a kernel of 3
vertices; the second kernel is initialized by ‘Al Gore ’and ‘Barack Obama ’for which the associated inertia in is .
The process is repeated on the other values on I for which ; and if the corresponding pair nodes are already
keys or associated values of keys, they are just omitted.

3.4. Community computing process

After extracting kernels, it remains the other nodes not into the kernels, called non-kernels vertices. The process of generating
global communities (communities containing both kernels and non-kernels vertices) consists on migrating non-kernels vertices
to the kernel with whom they have a maximal connexion. It is an iterative optimization of the number of connexion each
nonkernel vertex own with the kernel.

4. ILLUSTRATION AND EXPERIMENTS

In this section, we illustrate some graphs analysis based on some criteria and we show experiment results. We evaluate a
variety of models on two main tasks: Triad density partition and quality measures evaluation. In the following experiments,
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Algorithm 1 Implementation for kernels extraction

Require: Directed graph
Require: vector of node pairs associated to their kernel degree
Require: inter-class inertia vector //corresponding to the vector in the explanation above.
Ensure: Structured-by-key Kernels set called
1: Initialisation : , ;
2: for each item do
3: pair of classes from the item
4: if then
5: for each distinct item do
6: if then
7:

8: Label each vertex
9: else
10: for each unlabelled item class do
11: if class Such as then
12:

13: end if
14: end for
15: end if
16:

17: end for
18: end if
19: end for
20:

we use twiter illustration network, neural network (Celegansneural), blog network (Polblogs) and two paper citation (Cora and
Citeseer) networks. Information about each graph can be found in Table 1.

Table 1: Characteristics of the test graphs.

Networks Nodes Edges Comm
Extract for Twitter
Celegansneural
Polblogs
Citeseer
Cora

4.1. Kernel degree metric and threshold evaluation

To demonstrate the idea of the Kernel Degree formula, let us consider for example two networks : Twitter illustration network
(see Figure 2a) and Celegansneural network, for better visualization of results. Kernel Degree computes the similarity strength
between kernel vertices. Both the Neighbourhood overlap (Definition ) and Triad Weight (Definition ) are associated to
reinforce this similarity. Because, when taken separately, the expected results are not purchased, as presented in the Table 2.
In fact, for the twitter illustration network, results are the same regardless of the criteria ( communities with the same triad
density and same modularity). But for the Celegansneural network, using separately Neighbourhood overlap or Triad weight
leads to results ( and communities respectively) far from expected one as demonstrated by Klymko and Tianbao [5, 18]
who detect communities, with a better triad density for Kernel Degree of .

As far as the threshold is concerned, the empirical experiments show that when taking values of the interclass inertia less
than , expected results are not produced. Extract for Twitter social network possesses 1 community and Celegansneural
communities. As can be seen from the Table 3, the new approach performs the best in both datasets. The Twitter illustration
network, for the first case ( ) contains communities with a triad density of , contrary to the second case (

) for which Twitter network just contains community with a low triad density of . This result means that the
Twitter partition is not well structured for this second case. Higher standard deviation values indicate better kernel based-triad
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structures (see Figure 3) and therefore, finding vertices with similar neighbours whose Kernel degree is upper than threshold
provides a method for extracting the underlying kernel structure.

Table 2: Using metric Comparison.

Twitter Celegansneural
Comm Triad Density Comm Triad Density

Kernel-degree
Neighbourhood Overlap

Triad Weight

Table 3: choice evaluation.

Twitter Celegansneural
Comm Triad Density Comm Triad Density

0.711

(a) threshold for Extract for Twitter
network

(b) threshold for Celegansneural net-
work

Figure 3: Standard deviation distribution based on threshold

5. CONCLUSION AND FUTUREWORK

This paper has described a simple kernel scheme to improve the detection of communities in directed networks, through triad
cardinality. It focus on kernels which are seed nodes centralizing information through their in-degree valuation. Based on the
definition of community as a subgraph induced by kernel vertices, the new scheme basis are triads, meaning the semantic rela-
tionship between kernel nodes with their neighbours. Thus, we have defined a new metric called Kernel Degree, for computing
the similarity between kernel nodes. When the new metric is used, we obtained better triad density values than modularity
on datasets. Our model captures semantic communities based on both criteria: density and topology of graphs (graphs with
power-law degree distribution and communities with higher triad density). We compared the modularity values for each model
on the result partition, and the new approach presents a better modularity on its partition than the other approaches.

The model complexity constitutes a main criteria of effectiveness for any method. With the increasing ways on information
access by the era of digital, it becomes important to extend this method to parallel processing, in order to manipulate very
large-scale real networks. Likewise, it is possible to apply weighted graphs reinforcing the strength of the kernel, for more
community detection results near the real life, as we will study in our future works.
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RÉSUMÉ. La détection des communautés est davantage un challenge dans les l’analyse des réseaux

orientés. Plusieurs algorithmes de détection de communautés ont été developpés et considèrent la

relation entre les nœuds comme symmétrique, car ils ignorent l’orientation des liens, ce qui biaise

les résultats en produisant des communnautés aléatoires. Ce document propose un algorithme plus

eff cace, TRICA, basé sur l’extraction des kernels qui sont des ensembles de nœuds inf uents dans le

réseau. Cette approche découvre des communautés plus signif catives avec une complexité tempo-

relle meilleure que celles produites par certains algorithmes de détection de communautés de l’état

de l’art.

ABSTRACT. Community structure extraction is once more a major issue in Social network analysis.

A plethora of relevant community detection methods have been implemented for directed graphs.

Most of them consider the relationship between nodes as symmetric by ignoring links directionality

during their clustering step, this leading to random results. This paper propose TRICA, an eff cient

clustering method based on kernels which are inf uencial nodes, that takes into account the cardinality

of triads containing those inf uencial nodes. To validate our approach, we conduct experiments on

some networks which show that TRICA has better performance over some of the other state-of-the-

art methods and uncovers expected communities.

MOTS-CLÉS : Réseaux orientés, détection des communautés kernel, Triade

KEYWORDS : Directed graphs, Community kernel detection, Triad.
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1. Introduction

Community detection in directed networks appears as one of dominant research works
in network analysis. The top meaning of community is a set of nodes that are densely
connected with each other while sparsely connected with other nodes in the network [1].
This definition is interesting for undirected graphs ; like this many community detection
algorithms implemented for directed networks simply ignore the directionality during the
clustering step while other technics transform the directed graph into an undirectedweigh-
ted one, either unipartite or bipartite, and then algorithms for undirected graph clustering
problem can be applied to them.

These simplistic technics are not satisfactory because the underlying semantic is not
retained. For example, in a food web network, according to them, the community struc-
ture will be corporated of predator species with their prays. This reflexion is not quite
right. To make up for that idea, a generic definition of community detection consists of
clustering nodes with homogeneous semantic characteristics(nodes centred around a set
of objects owning the same interest). Our approach is based on extending the idea that
within “good”communities, there are influencial nodes [6], kernels, that centralize infor-
mation, so that it will easily be attainable. Influancial nodes are crossed by a maximal
number of triads in a community. A triad is a set of 3 nodes whose at least 2 are the
in-neighbor nodes (target vertices) of the 3rd vertex, or according to the triadic closure.
Consequently, triads are the basis of many community structures [3]. Here we focus on
the link orientation in triads. The specific contributions of our paper are :

– we mainly define a new concept named kernel degree to measure the strength of
the pair of nodes and the similarity of vertices and give a new sense definition to kernel
community based on the triadic closure.

– we develop a novel algorithm based on kernel degree to discover kernels and then
communities from real social networks.

– We conduct to better quality improvement over the commmunity kernel detection
algorithms.

The rest of paper is organized as follows. Section 2 is an introduction to related works.
In Section 3, we formally define several concepts used into the proposed clustering me-
thod. In Section 4, we develop the algorithm. Section 5 is experiment study and Section 6
concludes this study.

2. Related works

Most approaches focused on symmetric models which lose the semantics of link di-
rections, a key factor that distinguishes directed networks from undirected networks. For
detecting communities in directed networks [2], some studies propose a simple scheme
that converts a directed graph into undirected one, this enabling to utilize the richness
and complexity of existing methods to find communities in undirected graphs, thus, to
mesure cluster strength, they use an objective function, the modularity. Yet, this mesure
has a limit resolution [1]. More recently, various probabilistic models have been propo-
sed for community detection [7]. Among them, stochastic block models are probably the
most successful ones in terms of capturing meaningful communities, producing good per-
formance, and offering probabilistic interpretations. However, its complexity is enough
because in pratice, if the number of iterations goes beyond 20, the method discontinue
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and results become insignificant. To make up for this complexity, some authors define
“kernels”like described below.

A kernel is considered as a set of influencial nodes inside a group. It seems to be
information centralizing nodes. Some methods explored the problem of detecting com-
munity kernels, in order to either reduce the number of iterations, and consequently the
time-complexity of algorithms defined for complex social networks or uncover the hid-
den community structure in large social networks. [4] identifies those influential members,
kernel and detects the structure of community kernels and proposed efficient algorithms
for finding community kernels. Through these algorithms, there is a random choice of the
initial vertex, and the size of communities is fixed, leading to an arbitrary result estima-
tion. To keep going, [3] proved that triangles(short cycles) play an important role in the
formation of complex networks, especially those with an underlying community structure
[5] and converts directed graph into an undirected and weighted one. This transformation
misses the semantic of links. We propose a method which extracts triads based on Social
properties to characterize the structure of real-world large-scale networks.

3. Method formalization

We propose in this section the kernel community model and introduce several related
concepts and necessary notations.

3.1. Kernel community model

In directed networks, the link direction gives a considerable semantic to the graph and
to the information flow. On twitter network for example, the notion of authority is pointed
up as illustrated in Fig 1.(a), because of the relationship between a set of authoritative or
hub blogs (nodes u and v ) and a set of non-popular one called followers (nodes x) as
presented in Fig 1.(b) and Fig 1.(c).

We integrated this concept of authority as one concept named kernel degree. Fig
1.(a) is a visualization of an extract from a twitter network. Kernel communities consist
of nodes owning the same “in-neighbourhood ”which corresponds to nodes that have
more connections to the kernel (and not from the kernel) than a vertex outside the kernel.
We consider only ingoing edges to the kernel vertices to express the strength these nodes
get in some kind of network treated in this paper ; in a twitter network for example, hub
blogs are viewed by many others followers and not the opposite ; in a citation network
for example, authoritative authors like pioneers in a research area are more quoted by the
others junior researchers. On the beginning, the kernel consists of two vertices sharing
the same properties, leading to the notion of “triad ”which consists of the idea that two
vertices of the kernel share the same friend, like defined in the following sub-section.

3.2. Basic terminology and concepts

Given a directed graphG(V, E) with n = |V | vertexes andm = |E| edges. Let Γu be
the neighborhoodvertices set of vertex u. We now give some following useful definitions :

Definition 1 (Triad weight). Let the identifier of vertex x in G be j. The triad weight
of any edge (u, v) in graphG can be represented as∆. We can use TWuv to represent the
number of triads (triad cardinality) crossing u and v according to the scheme presented in
the Fig 1.(b) and Fig 1.(c).

TWuv =
|∆uv|
|∆j|

.

�� ������������������������



(a) Illustration of Twitter Net-

work

(b) Closed triad (c) Opened triad

Figure 1. Basic structures of our kernel community model.

Definition 2 (Neighborhood overlap). Given two vertices u and v, let Γu be the
set of vertices that are the neighborhood of vertex u, let Γv be the set of vertices that
are the neighborhood of vertex v. Let NOuv be the neighborhood overlap of u and v.

NOuv =
|Γv∩Γu|
|Γv∪Γu|−2

if there is an edge between u and v and 0 otherwise.

Definition 3 (The kernel degree). The Kernel degree of a pair of vertex u and v is :
Kuv = TWuv ∗NOuv .Kuv can measure the strength of the pair (u, v) and the similarity
of nodes.

Definition 4 (New sense Kernel Community). A new definition of the kernel commu-
nity in the sense of this paper is a set of vertices with the same neighborhood such as these
neighbors expand inward to the kernel, according the kernel degree Kuv gradually until
its minimum.

Definition 5 (Triadic Closure). If two people in a social network have a friend in
common, then there is an increased likelihood that they will become friends themselves
at some point in the future.

The algorithm is structured into two steps : detecting kernel communities and then
migrating the others vertexes to the kernel to whom they are more connected to.

4. Our Method for extracting communities

The new algorithm is structured in two steps : identifying kernels, then migrating
the other vertices to the kernel as described in the following subsections. The algorithm
for extracting Kernel communities, TRICA (Triads Cardinality Algorithm ) we propose
here makes use of a new concept Kernel degree, that measures the strength of a kernel
gradually until it decreases. This concept is based on the triadic closure for emphasis the
semantic proximity that links community members conducting to efficient propagation
of information over the network. We focus on triads cardinality that is the number of
neighboors two nodes own.

Data set Vertices Edges Types
Extract from Twitter Network 14 31 Directed
American Football Network 115 613 Undirected
Celegansneural 297 2359 Directed

Tableau 1. Data sets description
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4.1. TRICA algorithm

We assume that the network we want to analyze can be represented as a connected, di-
rected, nonvalued graphG of n = |N | nodes andm = |E| edges. This step for identifying
kernels is described in four sub-steps as follow :

1) Detect the in-central vertex v, which is the vertex with the maximal in-degree
in the graph.

2) Determine the neighborhood overlap of each edge (u,v) through a variant of
Jaccard Index[1] represented by NOuv as defined in Definition 2

3) Store neighboorhood vertices u of v like NOuv > ε

4) ComputeKuv through the triad weight TWuv as described in Definition 1. This
action is repeated to measure the strength of a kernel gradually untilKuv decreases.

These 4 substeps are repeated n/k times, k being the in-degree of vertex v.
The space complexity of TRICA is O(n+m), and it runs in time more quickly than some
of the state-of-the-art algorithms like shown in experiments.

The TRICA implementation for kernel communities is presented in Algorithm 1.

4.2. Deduction of global communities

After extracting kernels, it remains the other nodes which don’t belong to the kernels ;
they are called non-kernels vertices. The process of generating global communities (com-
munities containing both kernels and non-kernels vertices) consists of migrating the other
members (belonging to a set called “auxiliary communities”) to the kernel whith whom
they have a maximum number of connections, as described in Algorithm 2.

Algorithm 1 TRICA implementation for kernels extraction
Data: Directed graphG = (N,E)
Result: K Kernels
1: Initialisation : K = ∅ ;
2: repeat
3: k = din(v)/din(v) = max{din(t), ∀t ∈ V } ;
4: CalculateNOuv for each (u, v) ∈ E ;
5: Γv[] ← {t ∈ V/∃t ∈ V,NOtv > 0, 8} ;Γv [].sort ;i← 1 ;
6: S ← ∅ ;
7: j ← i ; u ← Γv[j] ;K

∗
uv ← 0 ;

8: repeat
9: ComputeKuv ;
10: if (Kuv > K

∗
uv) then

11: S ← S ∪ u ;
12: end if
13: u← Γv[i ++] ;
14: until (Kuv < K

∗
uv) ;

15: K ← K ∪ S ;
16: until (|V |/k)
17: ReturnK ;

5. Experiments

To study the effectiveness and accuracy of TRICA, we compare it with following
comparative methods :

– NEWMAN : Method for finding community structure in directed networks using
the betweenness based on modularity [6].

�� ������������������������



Algorithms Extract from Twitter American Football Celegansneural

%∆ Comm Numb %∆ Comm Numb %∆ Comm Numb

Newmann 98% 2 39% 10 28% 194

Louvain 98% 2 63% 9 35% 5

Weba 98% 2 - 8 - -

Triad Cardinality 98% 2 70% 12 64% 21

Tableau 2. Community detection performance on the triad cardinality rate where the best
rate are in bold.

– LOUVAIN : Community detection algorithm based on modularity ; (we use Gephi
tool for visualizing LOUVAIN results).

– WEBA [4] :Algorithm for community kernel detection in large social networks.

Algorithm 2 Algorithm implementation for non-kernels vertices migration
Data: Communities KernelsK = {K1, K2, ...,Kt}
Result: Global Communities GK = {GK1 ,GK2 , ...,GKt}

LetN be set of auxiliary communities ;N = {NK1 , NK2 , ...,NGKt} ;

2: ∀i ∈ {1, ..., t}, GKi = ∅;
repeat

4: ∀i ∈ {1, ..., t},GKi = Ki ∪NKi ;
For i← 1 to t do

6: S ← {v /∈ ∪GKi/∀j ∈ {1, ..., t}},
|E(v,GKi )| ≥ |E(v,GKj )| > 0 ;

8: NKi ← NKi ∪ S ;
GKi ← Ki ∪NKi ;

10: End For
until (No more vertices can be added)

12: ReturnGK ;

Our method is evaluated on directed and undirected networks. We use two levels of
evaluation : The first is based on the time complexity, and the second on the triad car-
dinality rate in communities, that is the percentage of communities in the partition with
highest triad cardinality rate. We use the function TCR defined as following, to evaluate
our method :
TCR = Σi|∆i|

|∆|

where i is one community and |∆| the number of triads.
When we apply TRICA on the data sets described in the table 1, results in Fig 2 are

following : The Fig 2.(a) illustrates the 2 expected communities of the Extract from Twit-
ter Network, for all of the methods compared, with a triad cardinality rate in communities
of 98% with kernels and followers [6]. But TRICA CPU time is better than other me-
thods CPU time, as shown if 2.(c) The table 2 summarizes the comparison with some
state-of-the-art methods. It shows that Triad Cardinality algorithm provides the highest
triad cardinality rate in communities. As far as the Football network is concerned, Triads
cardinality algorithm can divide the network into 12 communities exactly as shown in Fig
2.(b). In this result, 8 communities are completely consistent, this revealed by the triad
cardinality rate of 70%. Meanwhile Newmann algorithm can divide it into 10 communi-
ties and LOUVAIN into 9. This number of communities does not reflect the real structure
of the American College Football network. On the other hand, the result for applying
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TRICA to Celegansneural network shown in Table2 presents that TRICA detects 21 com-
munities, while LOUVAIN detects 5 and NEWMAN 194. But the triad cardinality rate is
the best, 64%, certifying that our method uncovers a better structure of social networks.

(a) Extract of Twitter Network (b) American College Football network.

(c) Efficiency comparison of TRICA and

others algorithms on Twitter Network.

Figure 2. Results of applying TRICA to data sets.

6. Conclusion

In this paper, we focus on the problem of kernel community detection in directed
graphs, kernels being the key tool for understanding the role of networks and its structure.
We mainly interested on extracting kernels which are influential nodes on the network.
Our kernel community model define triads according to some social properties to cha-
racterize the structure of real-world large-scale network, and we develop a novel method
based on the proposed new concept, the kernel degree which defines the strength of ker-
nel community. Experiments proved that TRICA detects efficiently expected communities
and achieves 20% performance improvement over some other state-of-the-art algorithms,
but it only works for unweighted graphs. Our next work is to optimize Triad cardinality-
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based property, and adjust it to suit for detecting kernel communities from large-scale
directed and weighted networks.
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RÉSUMÉ. Cet article s’intéresse à la détection des communautés et des rôles dans un réseau social
modélisé à l’aide d’un graphe orienté. Premièrement, il aborde la problématique de la détection des
communautés dans les réseaux sociaux en adaptant l’algorithme de Girvan et Newman aux réseaux
modélisés par des graphes orientés et pondérés. Il propose un algorithme séparatif qui s’inspire de
celui de M.Girvan et M.Newman et détecte les composantes connexes via la centralité d’intermédiarité
en utilisant une fonction de qualité, la modularité. Deuxièment, il définit les rôles des nœuds des
communautés découvertes à l’issue de la première phase. Pour cela, il détecte le nœud central ou
« leader »en utilisant les mesures de centralité, ainsi que des méthodes pour détecter d’autres rôles
tels que l’« externer »ou externeur et le « follower »ou suiveur.

ABSTRACT. We are interested in the detection of communities and roles in complex social network
oriented and weighted networks. Firstly, the detection of communities in oriented and weighted graph
modeling a social network is presented, using Girvan and Newman algorithm. An adapted Girvan and
Newman algorithm is proposed for this issue. Secondly, we focus roles, using the degree-betweeness
to detect the central node and we propose methods for other roles like externer and follower.

MOTS-CLÉS : Réseaux sociaux, détection des communautés, détection des rôles, modularité.

KEYWORDS : Social networks, detection of communities, roles of nodes, modularity.
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1. Introduction
Les réseaux sociaux sont des structures modélisant les relations sociales (par exemple

l’amitié, la collaboration, la parenté, etc.) qui existent entre un ensemble d’individus ap-
pelés aussi acteurs. Ces réseaux sont généralement modélisés par un graphe dans lequel
les sommets correspondent aux entités sociales (individus ou acteurs) et les liens cor-
respondent aux relations sociales. La détection des communautés et l’identification des
nœuds principaux (leaders ou ceux des individus qui menent le groupe, externers qui sont
ceux qui diffusent les informations dans les communautés ainsi constituées, et followers,
qui sont les adeptes des communautés) constituent le but de ce travail.
Plusieurs travaux de recherche se sont intéressés à la détection des communautés, une

communauté étant un ensemble de noeuds densément connectés entre eux et faiblement
connectés avec les autres noeuds du graphe. La modularité est le critère de qualité le plus
employé. Une étude comparative des algorithmes de communautés a été présentée dans
[2] . Selon cette étude, l’algorithme de Girvan et Newman [1] est l’un des meilleurs en
termes de modularité [4] et complexité ; mais reste limité aux graphes non orientés. Nous
proposons dans ce travail primo d’adapter l’algorithme de Girvan et Newman au graphes
orientés ; secundo, nous proposons des heuristiques pour le choix de la partition à segmen-
ter. Nous identifions en nous basant sur d’autres heuristiques les rôles joués par chaque
nœud dans les communautés ainsi constituées. Les motivations de ce sujet sont multiples.
Les graphes d’appels téléphoniques (GAT) sont un cas pratique à modéliser par un graphe
orienté, puisque les appels et les SMS vont toujours d’un émetteur vers un récepteur. Dans
un GAT, nous pouvons déterminer ceux des individus qui collaborent ensemble, vu la fré-
quence des appels passés, et nous identifions les rôles de chaque noeud dans chacune des
communautés détectées. La détection de l’externer dans une communauté peut permettre
de limiter la propagation d’une épidémie en l’empêchant de continuer à avoir des contacts
avec l’extérieur. Une comparaison expérimentale de cette approche à l’algorithme de dé-
tection de communautés de Louvain implémenté dans l’outil Gephi [5] montre que pour
les données utilisées, notre approche trouve des communautés avec une modularité plus
élevée que celle obtenue de l’algorithme de Louvain [3].
La suite sera organisée de la manière suivante : dans la deuxième section, nous décri-

rons sommairement quelques méthodes de détection de communautés. D’autres méthodes
de détection des communautés dans les graphes orientés et non orientés sont décrits dans
[4]. Dans la troisième section, nous présenterons d’abord l’algorithme de Girvan et New-
man, puis notre adaptation à la détection des communautés dans le cas des graphes orien-
tés. La quatrième section sera consacrée à la détection des rôles. Nous continuerons par
des expérimentations de notre proposition sur un graphe d’appels téléphoniques et sur les
données d’un club de karaté. Enfin nous terminerons par une conclusion et des perspec-
tives pour ce travail.

2. Détection de communautés
L’identification de structure de communautés (ISC), appelée aussi détection ou ex-

traction de communautés, a pour but d’identifier toutes les communautés présentes dans
un graphe donné. Une structure de communautés dans un graphe G = (V,E) est un en-
semble C1,C2, ..., Ck tel que :C1∪C2∪ ...∪Ck = V et chaque Ci vérifie la définition de
communauté considérée. Cette définition passe par les approches classiques de partition-
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nement de graphe pour parvenir à des méthodes de détection hiérarchiques ascendantes et
descendantes.

2.1. Approches classiques
Il s’agit des méthodes dont l’objectif se rapproche de celui de la détection des commu-

nautés. Deux techniques y sont abordées : le bi-partitionnement de graphes et la segmen-
tation des graphes. La première technique cherche à répartir en deux groupes les tâches
représentées par les sommets d’un graphe, tout en minimisant les échanges, représentés
par les arêtes. Dans cette technique, on peut classer les deux méthodes : la méthode de bis-
section spectrale et la méthode de bissection en coupe minimale [4]. En ce qui concerne
la deuxième technique, il s’agit de voir le problème de détection de communautés comme
un problème de classement, et d’analyse générale des données, dans lequel on cherche
à regrouper les objets possédant des caractères communs, i.e. respectant les mêmes cri-
tères de similarité. La segmentation est une méthode basée sur les nœuds puisqu’elle
satisfait certaines propriétés, telles que la mutualité complète (clique : graphe dans lequel
tous les sommets sont interconnectés) et l’accessibilité de k membres (k-clique, k-club,
k-moyennes, k-hop)[8] qui sont les plus usuelles.
En effet, Girvan et Newman [1] orientent leur idée dans le découpage d’un graphe en

communautés avec pour souci la réduction des liens intercommunautaires. Bien que la
détection des communautés ait le même but que ces approches dites classiques, elle a ceci
de plus que le nombre de communautés et leurs tailles sont inconnus, et le plus important
est que la détection des communautés permet de reconnaitre les réseaux ne possédant
pas une structure modulaire. Cependant, ils ne s’intéressent pas aux graphes orientés et
pondérés. Le paragrphe suivant présente les algorithmes dits hiérarchiques.

2.2. Algorithmes hiérarchiques
Ces méthodes cherchent à diviser le graphe en des structures selon leurs connexions :

c’est une approche purement topologique. Encore appelées approches de clustering hié-
rarchique, elles construisent plutôt une hiérarchie de partitions représentée sous la forme
d’un dendrogramme. Les algorithmes de classification hiérarchiques sont de deux types :
les méthodes déscendantes [4] dites séparatives et les méthodes ascendantes dites agglo-
mératives [4].
L’idée des méthodes séparatives est de considérer au départ le graphe comme une

seule communauté et de diviser progressivement, jusqu’à l’obtention d’un graphe vide
c’est-à-dire sans arêtes. Les méthodes existantes diffèrent par la façon de choisir les arêtes
à retirer. Parmi ces méthodes, l’une des plus répandues est l’algorithme de Girvan et
Newman [4] que nous allons adapter à d’autres types de graphes.

3. Algorithme de Girvan et Newman et adaptation

3.1. Algorithme de Girvan et Newman
L’algorithme de Girvan et Newman [1] constitue l’un des plus usuels algorithmes

basés sur le clustering hiérarchique déscendant. Il comporte les étapes suivantes :
1) Calcul de la centralité d’intermédiarité pour chaque arête du graphe connexe de

départ
2) Retirer du graphe l’arête de plus grande centralité d’intermédiarité
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3) Calculer la modularité de chacune des composantes connexes Ci identifiées
4) Réitérer 2) et 3) jusqu’à l’obtention d’un graphe vide
5) Retourner la partition possédant la plus grande modularité

3.2. Adaptation de l’algorithme au graphe orienté
Pour détecter les communautés dans les graphes orientés et pondérés avec cet algo-

rithme, nous faisons des suppositions suivantes :
1) Nous ne traitons que des graphes connexes ;
2) La segmentation du graphe de départ consiste en la suppression du lien appa-

raissant le plus grand nombre de fois dans l’ensemble des plus courts chemins déterminés
entre tous les noeuds du graphe ;

3) Le plus court chemin est celui dont la somme des poids des arcs qui le com-
posent est minimale.
Afin d’éviter de construire un dendrogramme comme l’algorithme de Girvan et New-

man, nous allons proposer une nouvelle heuristique appeléeMéthode de la sélection maxi-
male, pour le choix de la composante connexe à segmenter : la composante maximale,
celle possédant le plus grand nombre d’arcs entre les noeuds.

3.3. Amélioration : méthode de la sélection maximale
L’algorithme qui améliore celui de Girvan et Newman, à savoir la méthode de la sélec-

tion maximale que nous proposons, crée des composantes connexes tout en segmentant le
cluster maximal (celui possédant le plus grand nombre d’arcs) de la partition ; ensuite on
calcule progressivement la modularité de cette dernière jusqu’à obtention de l’optimum,
contrairement au précédent qui choisit à la fin des traitements la partition renvoyant le
gain maximal de modularité. Ces heuristiques que nous proposons dérivent du fait qu’in-
tuitivement, la division de la plus grande partition produirait une meilleure structure de
communauté. L’algorithme de sélection maximale s’applique sur des graphes orientés et
pondérés, et par conséquent se sert de la fonction qualité suivante, pour qualifier chaque
partition.

Q =
$
ij

�
pij
2p −

dini ∗d
out
j

(2p)2

	
∂ (Ci,Cj)

où dini est le degré entrant du noeud i, p le poids total du graphe, pij le poids de l’arc
(i, j) et ∂() est la fonction de Kronecker qui vaut qui vaut 1 si ses paramètres sont égaux
et 0 sinon.
A chaque étape, elle détermine la qualité de la partition, et lorsque cette qualité ne croit

plus, elle retourne la structure qui en découle. De plus, la recherche de l’arc de centralité
d’intermédiarité maximale dépend d’une métrique basée sur la distance (pondérée) des
arcs entre les noeuds du graphe. Le pseudocode associé à cette méthode est proposé dans
l’algorithme1.

3.4. Analyse et complexité
Il est évident de constater que cet algorithme s’arrête car au pire des cas, nous ob-

tiendrons le dendrogramme comme dans l’algorithme de Girvan et Newman c’est-à-dire
N communautés (pour un graphe de N nœuds). Cependant, cet algorithme a une com-
plexité supérieure à celle de l’algorithme de Girvan et Newman : soit O(mn2ln(n)) . En
effet, contrairement à Girvan et Newman, la recherche de l’arc de centralité d’intermédia-
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Algorithm 1 Algorithme : Pseudocode de l’algorithme de Sélection maximale
Entrées: Graphe orienté G = (N,E)
Sorties: Partition G en communautés
1: Initialisation : D = V1, V2, ..., VN ; G = G ; Qps← 0 ; // Vi ∈ N
2: Calculer la centralité d’intermédiarité pour chaque arête ei de G ;
3: répéter
4: Q∗ ← Qs ;
5: em ← (i, j) ;//arc de centralité maximale
6: Tant que (Il existe une chaine entre les sommets i et j) faire
7: Retirer l’arc central maximal em du graphe G ;
8: em ← Recherche de l’arc (i, j) de centralité maximale ;
9: Fin tant que
10: Identifier l’ensemble C = C1, ..., Cl de toutes les composantes connexes de G
11: Mettre à jour D avec les nouvelles composantes de C ;
12: Qs ←Modularité de la partition ps obtenu ;
13: Choisir la composante maximale ;
14: jusqu’à (Q∗ > Qs)
15: Retourner D ;
rité maximale est basée sur la distance minimale entre deux nœuds, et cette distance est
déterminée avec l’algorithme de Dijkstra qui s’exécute en O(nln(n)).

4. Détection des rôles dans la communauté
Le rôle joué par un nœud dans une communauté est aussi important que la détection

de cette communauté. Il ne servirait pas à grand-chose d’obtenir des clusters dans les
réseaux sociaux sans pouvoir les interpréter. Ainsi pour faciliter cette interprétation, nous
proposons de définir les rôles des nœuds, en vous inspirant de la méthode de l’algorithme
Leader-follower[6]. Nous distinguons trois rôles : le leader, l’externer et le follower.
Pour y parvenir, nous nous appuyons sur la mesure de centralité de degré associée à la

centralité basée sur le flux réseau [7] qui s’applique aux graphes pondérés. Les formules
employées pour déterminer ces rôles des nœuds de la communauté sont décrites dans cette
section. Pour le calcul du leader, nous appliquons les formules ci-dessous :
Cdegin (vi) =

1
N−1

$
j aji et C

deg
out (vi) =

1
N−1

$
j aij

Où aij est le coefficient de la matrice d’adjacence modélisant le graphe et N l’ordre
de cette matrice. Ainsi, le nœud leader dans une communauté est le nœud tel que :
Cdeg (vi) = max

�
Cdegin (vk) ,C

deg
out (vk)

	
, vk ∈ V oùmax est la fonction retournant

la centralité dont la valeur est la plus grande entre celle de ses paramètres.
Quant à la formule du calcul de l’externer dans une communauté, nous proposons de

calculer la proportion du degré d’externers pour un nœud i de la communauté Ck, que
nous définissons comme étant le poids total d’arcs du nœud i externes à la communauté
Ck, divisé par le poids total d’arcs externes à la communauté Ck. Les formules suivantes
permettent de définir la connectivité entre un noeud et les extérieurs à sa communauté.
Edegin (vi,Ck) =

1
pk−m+1

$
j pij et E

deg
out (vi,Ck) =

1
pk−m+1

$
j pji

où Pk désigne le poids total des arcs externes de la communauté Ck et Pij le poids de
l’arc (i, j) etm la taille du graphe. Ainsi, l’externer sera celui possédant la fraction maxi-
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Propriétés GAT Karaté
Nombre de nœuds 111 34
Nombre total de liens 1263 77
Poids global du graphe 667898 241
Nombre moyen de liens par nœud 6017 7
Nombre de nœuds possédant des arcs sortants 111 25
Nombre de nœuds possédant des arcs entrants 23 25

Tableau 1. Statistiques descriptives des données
male, tel que le décrit la formule suivante :Edeg (Ck) = max

�
Edegin (vi,Ck) ,E

deg
out (vi,Ck)

	
,

vi ∈ V .
S’agissant des nœuds followers, ce sont ceux qui ne sont ni leaders, ni externers.

5. Expérimentations
Nous avons expérimenté notre approche avec deux heuristiques de sélection de la

partition à segmenter : la sélection aléatoire comme dans le cas de Girvan et Newman
et la sélection maximale comme nous l’avons définie. Nous allons d’abord présenter les
données utilisées, ensuite les résultats obtenus en comparant avec ceux obtenus avec l’al-
gorithme de Louvain implémenté dans l’outil Gephi. Enfin, nous présenterons les rôles
que nous avons détectés dans les communautés obtenues sur les graphes utilisés.

5.1. Données
Notre approche a été appliquée sur deux jeux de données : GAT et Karaté. Le jeu de

données GAT se rapporte à un graphe d’appels téléphoniques de l’opérateur de téléphonie
Orange Cote d’Ivoire et est structuré en deux ensembles. Le premier ensemble trace la
mobilité des individus : à une certaine date t, l’on a la possibilité d’avoir la position
z d’un abonné x. Et la position concerne les coordonnées en latitude et longitude du
pylône auquel se connecte l’abonné. Tandis que le second ensemble présente un graphe de
communication entre deux abonnés x et y. Les données sont contenues dans des fichiers
d’extension .gml. A partir de ces informations, l’écriture d’un script a permis d’extraire
dans un fichier texte .txt, le GAT sous le format suivant : trois colonnes, dont la première
désigne la source (ou émetteur), la deuxième désigne la destination (ou récepteur) et la
troisième désigne le poids (ou nombre d’appels ou SMS). Pour simplifier le graphe, nous
faisons abstraction des dates et heure d’appels. Et en cas de doublons des arcs, l’on cumule
les poids correspondants. Par exemple, si l’abonné 1 appelle l’abonné 2 à une date t1 3
fois et à une autre date t2 4 fois, nous aurons pour l’arc (1 −→ 2) la valeur pondérée de 7.
Le jeu de données Karaté présenté sous forme d’un fichier .gml est un réseau d’amis

d’un club de karaté dans une université des USA dans les années 1970. Ce fichier, pour
être exploitable dans le code source a été transformé par un script pour prendre le format
du fichier texte tel que décrit ci-dessus. Le tableau 1 résume les propriétés des différents
graphes utilisés pour cette phase d’expérimentation.

5.2. Résultats
Pour aboutir aux résultats, nous avons appliqué aux deux jeux de données les algo-

rithmes suivants : algorithme de Girvan et Newman modifié, Algorithme de Louvain et
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(a) Algorithme de
Girvan et Newman,
8 communautés, Q
=0,116

(b) algorithme deLou-
vain, 6 communautés, Q
= 0,133

(c) Algorithme de la sélection
maximale, 3 communautés, Q =
0,35

Figure 1. Détection des communautés des données GAT

algorithme de la sélection maximale. Les figures 1 et 2 les présentent graphiquement.
Chaque couleur dans un graphe représente une communauté détectée.
Sur les données de karaté, avec la sélection aléatoire présentée par Girvan et New-

man, nous obtenons cinq communautés avec une modularité de Q = 0, 32, la sélection
maximale trois communautés avec une modularité Q = 0, 34 et l’algorithme de Louvain
quatre communautés avec une modularité Q = 0, 46. Suivant le critère de qualité modu-
larité, l’algorithme de Girvan et Newman est meilleur que les deux autres, mais possède
l’inconvénient d’avoir plus de communautés, ce qui implique que la partition pourrait être
mal structurée.
Ces trois approches se sont exécutées avec sensiblement le même temps. Cependant

l’algorithme de Louvain dans l’outil Gephi fournit les résultats avec un temps légèrement
plus faible que les deux autres.
S’agissant des résultats des rôles des nœuds, la figure 3 permet de visualiser la pré-

sence des nœuds leader, externer et followers de chaque communauté.

6. Conclusion
La détection de communautés et l’identification des rôles des noeuds dans l’analyse

des réseaux sociaux (ARS) contribue à faciliter l’interprétation des phénomènes de la so-
ciété. L’algorithme de la sélection maximale proposé dans cet article traite des graphes
orientés et pondérés, et produit des communautés mieux structurées que celles produites
par les algorithmes séparatif de Girvan et Newman et agglomératif de Louvain. Les nœuds
jouent un rôle important dans l’ARS, ainsi, nous définissons trois principaux rôles dans
les communautés, à savoir le leader qui est le noeud possédant la centralité de degré maxi-

(a) Algorithme de Girvan et
Newman, 5 communautés, Q
= 0,32.

(b) Algorithme de la Sé-
lection maximale, 3 com-
munautés, Q = 0,34.

(c) algorithme de Louvain, 4
communautés, Q = 0,46

Figure 2. Détection des communautés des données karaté

&$5,�������6DLQW�/RXLV�GX�6pQpJDO��2FWREHU�����

&$5,�����

SS���������

���



(a) Rôles des noeuds du
graphe de Girvan et New-
man.

(b) Rôles des noeuds du
graphe de la Sélection
maximale

Figure 3. Détection des rôles des données Karaté

male, l’externer qui est le nœud commiquant avec le plus grand nombre de communautés,
et les followers qui sont les autres nœuds de la communauté.
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13 OLLE OLLE Daniel  Claude Delort Chargé de Cours C/D Enset. Ebolowa 

14 TINDO Gilbert Chargé de Cours En poste 

15 TSOPZE Norbert Chargé de Cours En poste 

16 WAKU KOUAMOU Jules Chargé de Cours En poste 

 

17 BAYEM Jacques Narcisse Assistant En poste 

18 DOMGA KOMGUEM Rodrigue Assistant En poste 

19 EKODECK Stéphane Gaël Raymond Assistant En poste 

20 HAMZA Adamou Assistant En poste 

21 JIOMEKONG AZANZI Fidel Assistant En poste 

22 MAKEMBE. S . Oswald Assistant En poste 

23 MESSI NGUELE Thomas Assistant En poste 

24 MEYEMDOU Nadège Sylvianne Assistante En poste 

 25 NKONDOCK. MI. BAHANACK.N. Assistant En poste 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

7- DÉPARTEMENT DE MATHÉMATIQUES (MA) (31) 

 

 

 

1 EMVUDU WONO Yves S. Professeur 
 Inspecteur 

MINESUP 

 

 

2 
AYISSI Raoult Domingo 

Maître de 

Conférences 
Chef de Département 

3 
NKUIMI JUGNIA Célestin 

Maître de 

Conférences 
En poste 

4 
NOUNDJEU Pierre 

Maître de 

Conférences 

Chef service des 

programmes & 

Diplômes 

5 
MBEHOU Mohamed 

Maître de 

Conférences 
En poste 

6 TCHAPNDA NJABO Sophonie B. Maître de Directeur/AIMS 
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Conférences Rwanda 

 

7 
AGHOUKENG JIOFACK Jean Gérard Chargé de Cours 

Chef Cellule 

MINPLAMAT 

8 CHENDJOU Gilbert Chargé de Cours En poste 

9 DJIADEU NGAHA Michel Chargé de Cours En poste 

10 DOUANLA YONTA Herman Chargé de Cours En poste 

11 FOMEKONG Christophe Chargé de Cours En poste 

12 KIANPI Maurice Chargé de Cours En poste 

13 KIKI Maxime Armand Chargé de Cours En poste 

14 MBAKOP Guy Merlin Chargé de Cours En poste 

15 MBANG Joseph Chargé de Cours En poste 

16 MBELE BIDIMA Martin Ledoux Chargé de Cours En poste 

17 MENGUE MENGUE David Joe Chargé de Cours En poste 

18 NGUEFACK Bernard Chargé de Cours En poste 

19 NIMPA PEFOUKEU Romain Chargée de Cours En poste 

20 POLA  DOUNDOU Emmanuel Chargé de Cours En poste 

21 TAKAM SOH Patrice Chargé de Cours En poste 

22 TCHANGANG Roger Duclos Chargé de Cours En poste 

23 TCHOUNDJA Edgar Landry Chargé de Cours En poste 

24 TETSADJIO TCHILEPECK M. E. Chargée de Cours En poste 

25 TIAYA TSAGUE N. Anne-Marie Chargée de Cours En poste 

 

26 MBIAKOP Hilaire George Assistant En poste 

27 BITYE MVONDO Esther Claudine Assistante En poste 

28 MBATAKOU Salomon Joseph Assistant En poste 

29 MEFENZA NOUNTU Thiery Assistant En poste 

30 TCHEUTIA Daniel Duviol Assistant En poste 

 
 

 

 

 

 

 

 

 

 

8- DÉPARTEMENT DE MICROBIOLOGIE (MIB) (18) 

 

 

1 ESSIA NGANG Jean Justin  Professeur Chef de Département 

 

2 
BOYOMO ONANA 

Maître de 

Conférences 
En poste 

3 
NWAGA Dieudonné M. 

Maître de 

Conférences 
En poste 

4 NYEGUE Maximilienne Ascension Maître de En poste 
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Conférences 

5 
RIWOM Sara Honorine 

Maître de 

Conférences 
En poste 

6 
SADO KAMDEM Sylvain Leroy 

Maître de 

Conférences 
En poste 

 

7 ASSAM ASSAM Jean Paul Chargé de Cours En poste 

8 BODA Maurice Chargé de Cours En poste 

9 BOUGNOM Blaise Pascal Chargé de Cours En poste 

10 ESSONO OBOUGOU Germain G. Chargé de Cours En poste 

11 NJIKI BIKOÏ Jacky Chargée de Cours En poste 

12 TCHIKOUA Roger Chargé de Cours En poste 

 

13 ESSONO Damien Marie Assistant En poste 

14 LAMYE Glory MOH Assistant En poste 

15 MEYIN A EBONG Solange Assistante En poste 

16 NKOUDOU ZE Nardis Assistant En poste 

17 SAKE NGANE Carole Stéphanie Assistante En poste 

18 TOBOLBAÏ Richard Assistant En poste 

 
 

 

 

9. DEPARTEMENT DE PYSIQUE(PHY) (40) 

 

1 BEN- BOLIE Germain Hubert Professeur En poste 

2 EKOBENA FOUDA Henri Paul Professeur Chef Division. UN 

3 ESSIMBI ZOBO Bernard Professeur En poste 

4 KOFANE Timoléon Crépin Professeur  En poste 

5 NANA ENGO Serge Guy Professeur En poste 

6 NDJAKA Jean Marie Bienvenu Professeur Chef de Département 

7 NOUAYOU Robert Professeur En poste 

8 NJANDJOCK NOUCK Philippe Professeur 
Sous Directeur/ 

MINRESI 

9 PEMHA Elkana Professeur En poste 

10 TABOD Charles TABOD Professeur  Doyen Univ/Bda 

11 TCHAWOUA Clément Professeur En poste 

12 WOAFO Paul Professeur En poste 

 

 

13 BIYA MOTTO Frédéric 
Maître de 

Conférences 
 DG/HYDRO Mekin 

14 BODO Bertrand 
Maître de 

Conférences 
En poste 

15 
DJUIDJE KENMOE épouse 

ALOYEM  

Maître de 

Conférences 
En poste 

16 EYEBE FOUDA Jean sire Maître de En poste 
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Conférences 

17 FEWO Serge Ibraïd 
Maître de 

Conférences 
En poste 

18 HONA Jacques 
Maître de 

Conférences 
En poste 

19 MBANE BIOUELE César 
Maître de 

Conférences 
En poste 

20 NANA NBENDJO Blaise 
Maître de 

Conférences 
En poste 

21 NDOP Joseph 
Maître de 

Conférences 
En poste 

22 SAIDOU 
Maître de 

Conférences 
MINERESI 

23 
SIEWE SIEWE Martin 

Maître de 

Conférences 
En poste 

24 
SIMO Elie 

Maître de 

Conférences 
En poste 

25 
VONDOU Derbetini Appolinaire 

Maître de 

Conférences 
En poste 

26 
WAKATA née BEYA Annie 

Maître de 

Conférences 

Sous Directeur/ 

MINESUP 

27 
ZEKENG Serge Sylvain 

Maître de 

Conférences 
En poste 

 

28 ABDOURAHIMI Chargé de Cours En poste 

29 EDONGUE HERVAIS Chargé de Cours En poste 

30 ENYEGUE A NYAM épse BELINGA Chargée de Cours En poste 

31 FOUEDJIO David Chargé de Cours Chef Cell. MINADER 

32 MBINACK Clément Chargé de Cours En poste 

33 MBONO SAMBA Yves Christian U. Chargé de Cours En poste 

34 MELI’I  Joelle   Larissa Chargée de Cours En poste 

35 MVOGO ALAIN Chargé de Cours  En poste 

36 
OBOUNOU Marcel Chargé de Cours 

 DA/Univ Inter 

Etat/Sangmalima 

37 WOULACHE Rosalie Laure  Chargée de Cours En poste 

 

38 AYISSI EYEBE Guy François Valérie Assistant En poste 

39 CHAMANI Roméo Assistant En poste 

40 TEYOU NGOUPOU Ariel Assistant En poste 
 

 

10- DÉPARTEMENT DE SCIENCES DE LA TERRE (ST) (43) 

 

 

1 BITOM Dieudonné Professeur Doyen / FASA / UDs 

2 FOUATEU Rose épse YONGUE Professeur En poste 

3 KAMGANG Pierre Professeur En poste 

4 NDJIGUI Paul Désiré Professeur Chef de Département 

5 NDAM NGOUPAYOU Jules-Remy Professeur En poste 
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6 NGOS III Simon Professeur DAAC/Uma 

7 NKOUMBOU Charles Professeur En poste 

8 NZENTI Jean-Paul Professeur En poste 

 

9 
ABOSSOLO née ANGUE Monique 

 Maître de 

Conférences 
Vice-Doyen / DRC  

10 
GHOGOMU Richard TANWI 

 Maître de 

Conférences 
 CD/Uma 

11 
MOUNDI Amidou 

 Maître de 

Conférences 
CT/ MINIMDT 

12 
NGUEUTCHOUA Gabriel 

Maître de 

Conférences 
CEA/MINRESI 

13 
NJILAH Isaac KONFOR 

Maître de 

Conférences 
En poste 

14 
ONANA Vincent Laurent 

Maître de 

Conférences 

Chef service 

Maintenance & du 

Matériel 

15 BISSO Dieudonné 
 Maître de 

Conférences 

Directeur/Projet Barrage 

Memve’ele 

16 
EKOMANE Emile 

 Maître de 

Conférences 
En poste 

17 
GANNO Sylvestre 

 Maître de 

Conférences 
En poste 

18 
NYECK Bruno 

 Maître de 

Conférences 
En poste 

19 
TCHOUANKOUE Jean-Pierre 

 Maître de 

Conférences 
En poste 

20 
TEMDJIM Robert 

Maître de 

Conférences 
En poste 

21 
YENE ATANGANA Joseph Q. 

Maître de 

Conférences 
Chef Div. /MINTP 

22 
ZO’O ZAME Philémon 

 Maître de 

Conférences 
 DG/ART 

 

23 ANABA ONANA Achille Basile Chargé de Cours En poste 

24 BEKOA Etienne Chargé de Cours En poste 

25 ELISE SABABA Chargé de Cours En poste 

26 ESSONO Jean Chargé de Cours  En poste 

27 EYONG JOHN TAKEM Chargé de Cours En poste 

28 FUH Calistus Gentry Chargé de Cours Sec. D’Etat/MINMIDT 

29 LAMILEN BILLA Daniel Chargé de Cours En poste 

30 MBESSE CECILE OLIVE Chargée de Cours En poste 

31 MBIDA YEM Chargé de Cours  En poste 

32 METANG Victor Chargé de Cours En poste 

33 MINYEM Dieudonné-Lucien Chargé de Cours  CD/Uma 

34 NGO BELNOUN Rose Noël Chargée de Cours En poste 

35 NGO BIDJECK Louise Marie Chargée de Cours En poste 

36 NOMO NEGUE Emmanuel Chargé de Cours En poste 

37 NTSAMA ATANGANA Chargé  de Cours En poste 
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Jacqueline 

38 TCHAKOUNTE J. épse 

NOUMBEM 
Chargée de Cours Chef.cell / MINRESI 

39 TCHAPTCHET TCHATO De P. Chargé de Cours En poste 

40 TEHNA Nathanaël Chargé de Cours En poste 

41 TEMGA Jean Pierre Chargé de Cours En poste 

 

42 FEUMBA Roger Assistant En poste 

43 MBANGA NYOBE Jules Assistant En poste 

 

Répartition chiffrée des Enseignants de la Faculté des Sciences de l’Université de Yaoundé I 

NOMBRE D’ENSEIGNANTS 

DÉPARTEMENT Professeurs Maîtres de 

Conférences 

Chargés de 

Cours 

Assistants Total 

           BCH 9 (1) 13 (09) 14 (06) 3 (2) 39 (18) 

BPA 13 (1) 09 (06) 19 (05) 05 (2) 46 (14) 

BPV 06 (0) 11 (02) 9 (06) 07 (01) 33 (9) 

CI 10 (1) 9 (02) 12 (02) 03 (0) 34 (5) 

CO 7 (0) 17 (04) 09 (03) 02 (0) 35(7) 

IN 2 (0) 1 (0) 13 (01) 09 (01) 25 (2) 

MAT 1 (0) 5 (0) 19 (01) 06 (02) 31 (3) 

MIB 1 (0) 5 (02) 06 (01) 06 (02) 18 (5) 

PHY 12 (0) 15 (02) 10 (03) 03 (0) 40 (5) 

ST 8 (1) 14 (01) 19  (05) 02 (0) 43(7) 

 

Total 69 (4) 

 

99 (28) 130 (33) 46 (10) 344 (75) 
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Soit un total de                                                   344 (75) dont : 

-  Professeurs                                                  68 (4) 

-  Maîtres de Conférences                              99 (28) 

-  Chargés de Cours                                       130 (33) 

-  Assistants                                                   46 (10) 

( ) = Nombre de Femmes                     75 
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