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ABSTRACT xii

Abstract

Under the influence of seismic hazards, the interaction between adjacent structures

at insufficient distance can cause resonance effects due to hammering which is likely to

lead to damage and destruction of said structures. In this work, we analyze the pounding

problem in systems modeled by nonlinear differential equations of Filippov type. Three

systems are studied, namely a Smooth and discontinuous oscillator (SD), a spillway col-

liding with the dam (the pillar) and a building model subjected to an earthquake-type

excitation. We focus on the study of the influence of noise, geological soil structure,

impact points or discontinuity points on the dynamics of the system when it enters the

inelastic phase. The analytical method of Dormant Prince is used to detect discontinuity

points. Runge Kutta’s fourth order numerical algorithms, Subset Simulation and Thom’s

conditional probabilities or catastrophe theory are used to solve the equations govern-

ing the dynamics of the system and to detect intermediate faults. Emphasis is put on

the estimation of the probabilistic distribution of impact forces due to pounding and on

the theory of stochastic bifurcation. We obtained in these discontinuous systems, the

stochastic bifurcation (p-bifurcation) which identifies the instability zones as areas where

the hammering presents a higher intensity. This instability shows the pounding effect

even at low amplitude of stochastic excitations. We have noted that certain relationships

emerge between instantaneous contact (impact), continuous contact of finite duration and

pounding which refers to repetitive contacts. When the time of continuous contact of fi-

nite duration is higher than that of impact at low noise intensity, the probability density

is high and a lot of damage is observed in the colliding structures. It is also shown that

the analysis of impact distribution points promotes the physical understanding of meso-

macroscopic slip.

Keywords: Impact; Filippov systems; Pounding; P-bifurcation; Structural failure;

Seismic hazard; discontinuity.
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RÉSUMÉ xiii

Résumé

Sous l’influence des hasards sismique, l’interaction entre les structures adjacentes

insuffisamment distants peut causer les effets de résonance dus au martèlement qui est

susceptible de conduire à des dommages et des destructions des dites structures. Dans ce

travail, nous analysons le problème de martèlement dans des systèmes modélisés par des

équations différentielles non linéaires de type Filippov.

Trois systèmes sont étudiés, à savoir un oscillateur lisse et discontinu (SD), un évac-

uateur de crues entrant en collision avec la digue (le pilier) et un modèle de bâtiment

soumis à une excitation de type séisme. Nous nous focalisons sur l’étude de l’influence

du bruit, de la structure géologique du sol, des points d’impact ou de discontinuité sur la

dynamique du système lorsqu’il entre dans la phase inélastique.

La méthode analytique de Dormant Prince est utilisée pour détecter les points de

discontinuité. Les algorithmes numériques de Runge Kutta de quatrième ordre, le " Sub-

set Simulation " et les probabilités conditionnelles ou théorie catastrophe de Thom sont

utilisées pour résoudre les équations gouvernant la dynamique du système et détecter les

défauts intermédiaires. L’accent est mis sur l’estimation de la distribution probabiliste des

forces d’impact dues au martèlement et sur la théorie de la bifurcation stochastique. Nous

avons obtenu dans ces systèmes discontinus, la bifurcation stochastique (p-bifurcation) qui

identifie les zones d’instabilité comme zones où le martèlement présente une plus forte in-

tensité. Cette instabilité montre l’effet de martèlement même à une faible amplitude des

excitations stochastiques. Nous avons noté que certaines relations s’en dégagent entre con-

tact instantané (impact), contact continu de durée finie et martèlement qui fait référence

à des contacts répétitifs. Lorsque le temps de contact continu de durée finie est plus élevé

que celui d’impact à une faible intensité de bruit, la densité de probabilité est élevée et

beaucoup de dommages sont observés dans les structures en collision.

Il en ressort également que l’analyse des points de distribution des impacts favorise la

compréhension physique du glissement méso-macroscopique.

Mots clés: Impact; Modèle de type Filippov; Martèlement ; P-bifurcation; Dommages

structurels; Hasard sismique; discontinuité.
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General Introduction

0.0.1 Background

Stochastic dynamics was originated from an effort to describe Brownian motion

quantitatively a century ago. There are some results about these different kinds of stochas-

tic systems. The first kind of stochastic dynamical systems are the systems driven by

stochastic parameter excitation or external noise excitation idealized as Gaussian white

noise processes. The second kind of stochastic systems are the systems with only internal

random parameter considered as time-invariant and that served as random fields or as

random variables. However, there also exist other stochastic systems with both random

fields and external noise processes.

The theory of structural pounding risk analysis may be considered as a branch

of applied probability theory. The main issue of this theory is to define an event called

"structural pounding" and to set up a "probability space" that contains that event. This

modeling part of structural pounding risk analysis is based on statistical information about

the uncertainty of the relevant parameters or knowledge about the inherent stochastic

nature of the applied earthquake loads. A major reason leading to interactions between

adjacent insufficiently separated structures results from the differences in their dynamic

properties.

The earthquakes are stochastic events, so in most of the studies each single seismic

event is defined as a sample function of a stochastic process that models the earthquake

ground motion occurring in a specific area. This stochastic process modelling the earth-

quake occurring in an area is defined through the characteristics of the strong ground

motions recorded in that area. The stochastic-based approach is the most suitable to

model earthquake records owing to the complex nature of the release of the seismic waves
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GENERAL INTRODUCTION 2

and their propagation in the soil.

In evaluation of the pounding risk of buildings, Lin and Weng [1] proposed a

spectral approach to investigate the seismic pounding probability of adjacent buildings

based on random vibration theory and total probability theory, assuming linear elastic

structure responses. Recently, Lin, J. H. et al. [2] investigated the probability distribu-

tion of the required separation distance of buildings with steel moment resisting frame

(SMRF), which exhibit elasto-plastic behavior in the form of a hysteretic restoring force

displacement characteristic, by the Kolmogorov Smirnov test that considers the quality of

fit between a hypothesized distribution function and an empirical distribution function,

based on data obtained by the Monte Carlo simulation method. The results indicated that

the separation data fit almost perfectly with extreme value distribution. This disserta-

tion considered stochastic bifurcation (p-bifurcation) as instability zone. This instability

increases pounding effect with weak noise, hence high probability density function (PDF).

Safety analysis of structures subjected to stochastic excitations, such as earth-

quake, wind or wave loading, is a primary goal of structural engineering [3]. Therefore,

prediction of the structural response under uncertain conditions, either in the structural

characteristics or in the input excitations, is a more realistic approach for the civil en-

gineering field. The earthquakes are stochastic events, hazardous phenomenon due to

insufficient clear spacing often called pounding effects. Noises due to internal friction of

colliding bodies could include either architectural or severe structural damage in both

spillway structures, bridges and dam during strong ground motion vibrations. Due to

discontinuities in soil conditions along the propagation earthquake excitation, there are

both evident randomness and strong nonlinearity owing to the evaluation norms of seismic

intensity but also the site soil classification. A realistic analysis and design of structural

systems subjected to such earthquake excitations must account for the uncertainty arising

from randomness, impact and friction.

In recent years, many damages in structures have occurred at the past earthquakes be-

cause of insufficient gaps between adjacent buildings. Especially, significant damage of

pounding occurred after 1971 San Fernando, 1994 Northridge, 1989 Loma Prieta earth-

quakes in United States of America; 1985 Mexico City earthquake in Mexica, 1999 Athens

earthquake in Greece, 1999 Kocaeli (Izmit) and 2011 Van earthquakes in Turkey. The
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GENERAL INTRODUCTION 3

recent investigations have reported that pounding effects due to relative displacements

of neighboring buildings should not be ignored. Pounding effects could include either

architectural or severe structural damage in both building structures and bridges during

strong ground motion vibrations. In the case of closely spaced buildings, the damages

appear in the form of infill wall damage, column shear failure and collapse due to pound-

ing [4]. Pounding between structures could produce large acceleration demands on the

floors which are directly involved in collisions [5].

Events like earthquakes are likely to induce pounding between adjacent structures with

different dynamic characteristics and insufficient separation distance. In particular, dy-

namic impacts represent a problem in densely built-up area, where adjacent structures can

be in a full or partial contact with each other. Many cases related to structural damages

due to impacts in neighboring buildings have been reported [6–8]. The same phenomena

can affect different typologies of structural systems or structural elements [9,10]. For ex-

ample, structural damages due to the pounding have been reported in several bridges in

past seismic events, such as in the 1995 Kobe earthquake [11]. Taflanidis [12] has shown

that pounding forces lead to high impact stresses in the bridge deck, the support bearings,

and the substructures, and the non-uniform seismic excitation in long bridges exacerbates

the problem. Pounding action may also result in areas of damage located around the

corners of the deck or in large differential settlements on the abutments side with a con-

sequent presence of cracks [13]. Dynamic impacts can occur even between base-isolated

buildings and the surrounding moat walls [14–16], leading to a significant increase in the

superstructure response. Impact phenomena can also represent an issue in the nuclear

field. Pellissetti et al. [17] have studied how plastic deformations, due to impacts between

fuel assemblies in a nuclear reactor, can affect the reliability of a safety shutdown for

increasing seismic intensity levels.

0.0.2 Motivation, Goals and Scope of the Project

Theory of nonlinear stochastic dynamics was developed mainly since the 1960s due

to mathematicians, engineers and physicists. The results up to the 1980s were summarized

in many review papers [18,19]. However, the theory of piecewise-smooth SDEs is only in

its infancy compared to its noiseless counterpart. From the previous disconnected studies,
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it is not clear how non-smooth SDEs can be studied with techniques developed and used

for smooth systems. More efforts need to be done to understand the interrelation between

noise and discontinuities. Thus, understanding the interplay between discontinuities and

noisy perturbations is a great challenge in many applications. Dynamical systems with

discontinuities are frequently used by piecewise-smooth differential equations, the study

of which is a relatively recent topic in the field of dynamical systems. The dynamics

generated by these equations displays many unexpected phenomena, including stick-slip

transitions associated, for instance, with dry friction forces [20], and bifurcations that do

not appear in the standard classification of catastrophes of smooth dynamical systems.

They also show, in the case of systems with discontinuous derivatives or forces (so-called

Filippov systems [21]), multi-valued solutions for a given initial condition, leading to a

loss of determinism.

Stochastic bifurcation theory is consisting in a qualitative change of the stationary prob-

ability distribution. However, the p-bifurcation studies the mode of the stationary proba-

bility density function or the invariant measure of the stochastic process. The stochastic

p-bifurcation takes place when the mode of the stationary probability density function

changes in nature. It indicates the jump of the distribution of the random variable in

probability sense. Over the last fifteen years, an important research activity has been

devoted to the studied of stochastic p-bifurcation in the smooth systems [22]. However,

the study of stochastic bifurcation phenomena is still immature, precisely in non-smooth

systems. Overviews of this literature models are presented in [23,24].

In engineering practice, to estimate seismic gap between buildings, nonlinearities in the

structure are to be considered when the structure enters into inelastic range during dev-

astating earthquakes exhibiting restoring forces that depend on the response history [25].

This kind of behaviour is described in the literature by the term hysteresis. To consider

this nonlinearity effects, inelastic time history analysis is a powerful tool for the study

of structural seismic performance. The reliability should be evaluated considering the

inherent randomness of the structural parameters.

In this thesis, we focus on dynamical properties of piecewise-smooth SDEs with respect

to three interesting topics:

(i) Stochastic bifurcations of SD oscillator with dry friction.
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(ii) non-linear structural pounding in non-smooth stochastic systems.

(iii) Structural failure analysis.

The reason to consider these three topics is explained as follows. Firstly, the SD oscillator

is particularly interesting from a physical point of view because a piecewise-smooth sys-

tem does not necessarily behave continuously with the magnitude of a force or noise and

therefore may behave in a non-trivial way in the limit of vanishing noise. While noise in

self-excited oscillator has been widely used for smooth systems, it is not clear how to apply

noise in SD oscillator for non-smooth systems. Moreover, the validity of a weak-noise for

non-smooth systems needs to be checked. This type of nonlinear dynamical systems are

usually called piecewise-smooth or non-smooth dynamical systems. The terms are used

interchangeably in this thesis. Secondly, in dynamic of structures, the explanation and

understanding of the impact model focuses on the usual case of two bodies. The impact

forces and consequences between two colliding bodies depend on their masses and their

acceleration. Since all the structures can exhibit dramatic movements when they vibrate

under earthquakes, building pounding is a special event for engineers to investigate and to

assess the numerical study of collision. If adjacent buildings do not have sufficient separa-

tion distance from each other, earthquake can be provided large lateral displacement and

buildings can be damaged considering building pounding, even if they are well designed

and well-constructed. Due to the high number of degrees of freedom and the nonlinearity

as well as non-smoothness of the contact problem, the evaluation of the multiple structure

pounding is time-consuming. Thirdly, safety analysis of structures subjected to stochastic

excitations, such as earthquake, wind or wave loading, is a primary goal of structural

engineering. Therefore, prediction of the structural response under uncertain conditions,

either in the structural characteristics or in the input excitations, is a more realistic ap-

proach for the civil engineering field. The factor of safety is typically a ratio of strength to

stress, thus an accurate estimation of strength and stress is required for a safe and good

design. The organization of the work is as follow:

0.0.3 Thesis Outline

⋄ Chapter 1 presents the background, literature review and some consequences

of pounding phenomenon. The inherent nonlinear nature of non-smooth (discontinuous)
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systems leads to phenomenologically rich dynamical behaviors could be significantly dif-

ferent from continuous nonlinear dynamical systems.

⋄ In chapter 2, we deal with the numerical methods used in the study of the dynamics of

stochastic bifurcations of discontinuous systems. The study of the effects of earthquakes

subjected to Gaussian white noise of relatively high intensity, filtered through a Kanai-

Tajimi filter.

⋄ Then in chapter 3, the main findings of this thesis are presented. In fact, we analyze the

dynamics of some civil structures and examine numerically the generation of the proba-

bility density function (PDF) of those Non-smooth Systems.

⋄ The present thesis ends with a general conclusion along with prospects. We summarize

our results and give some future directions that could be investigated.
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Chapter 1

Literature review and problem

statement

Introduction

This chapter aims to insert the object under consideration in this thesis, i.e.

pounding which introduces impact loads that have to be superimposed on those caused

by the ground acceleration itself. It introduces basic concepts to be used in the remainder

(subsequent chapters) of this dissertation.

We will consider the impact-friction phenomena in engineering structures in order to

illustrate the structural pounding, preventing earthquake-induced pounding, describe the

impacts in engineering structures, define various contact mechanisms for impact and then

point out general information on non-smooth systems. We will then analyze the effects

of structural failures; stochastic processes and the problem statement in conclusion. The

goal of this dissertation is to illustrate the potential of non-smooth analysis in modelling

of various problems in real-life problems. The emphasis will be laid on the completeness

and mathematical correctness of the presentation, although several industrial applications

will be presented.
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1.1 Impact-friction phenomena in engineering structures 8

1.1 Impact-friction phenomena in engineering structures

In the framework of a comprehensive study on the seismic risk of historical lands,

large attention should be paid to the assessment of the vulnerability of constructions, of the

seismic hazard and of the exposure, the latter representing the number of assets (economic

damages, damaged constructions and loss of human lives) exposed to risk. Instead, the

seismic hazard is dependent on both the event physical characteristics and the geological

characteristics of the area in which the event occurs: the higher is the frequency and

intensity of events characterizing geographical area, the greater is the hazard. In fact, the

seismic hazard is related to a natural phenomenon typically aleatory in terms of occurrence

probability and frequency, which can affect areas with different geological characteristics.

1.1.1 Structural Pounding

The first mention of structural pounding in the literature may have been as early

as 1926 [26] in which the pounding of non-structural components against the structural

elements of a building was discussed and the provision of a sufficient separation gap and

proper detailing were recommended. Since then, the increase in urban development and

the associated increase in real-estate values have compelled developers and designers to

maximize land usage.

Although the Mexico City earthquake of 1985 is often cited as the most important single

event in which extensive pounding damage was reported [27], the actual severity of the

damage attributed directly to pounding may have been overstated [28], it counts about

15 percent of the failure case (U.S. Dept. of commerce 1990). Nonetheless, the potential

structural and non-structural damage due to pounding should be assessed during the

design stage or in the seismic assessment of structures. Sufficient provisions should be

implemented to minimize the potential threat to human life (caused by falling debris, e.g.

glass or concrete, loss of a structural element, e.g. failure of a column due to sustained

pounding at its mid-height and to the worst condition of total collapse of the structure)

and to limit the resulting financial losses which may be incurred by the owner(s).

Cases of structural pounding have been reported in more recent earthquakes such as the

1994 Northridge earthquake [29] (pounding of base-isolated buildings against their stops),
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1.1 Impact-friction phenomena in engineering structures 9

the 1995 Hyogo-ken-Nanbu (Kobe) earthquake of 1995 [38] (collision of pedestrian bridges

between buildings) and the 1998 Colombia earthquake.

As population of a country increase land become the scarcest resource, because of the

land cost wise utilization of the space becomes not a choice rather an obligation. Owners

want to build their structure aligned with their property line ignoring adjacent structure

that lead to pounding.

1.1.2 Preventing of earthquake-induced pounding

Earthquake is a set of vibrations on the Earth’s surface, ranging from faint tremor to

wild motion. These are caused by sudden release of energy stored beneath the Earth. In

most of the cases checking the minimum pounding free distance, for future earthquake

problem that will be applied according to the need, will solve pounding problems. Be-

fore design and construction of any structure it is necessary to step out and check the

surrounding space of the structure to avoid future pounding problem.

Structural pounding is mainly attributed to the difference in the dynamic prop-

erties of adjacent structures. The disparities in mass, stiffness, and/or strength result in

out-of-phase lateral displacements under external excitations. Impacts will occur if these

out-of-phase displacements exceed the available separation gap between the structures.

The magnitude of the impact force and the location of impact along the height of the

structures depends on the magnitude of the existing separation gap, the extent of the dis-

parity between the dynamic properties of the impacting structures, and the characteristics

of the excitation. It is therefore apparent that, under certain conditions, the properties

of the supporting soil must also be taken into consideration due to its influence on the

above aspects.

Many suggestions were made to reduce the destructive effects of pounding in the

past. Westermo [30] recommended connecting of buildings by beams. The transmittance

of the forces between buildings in this case could eliminate pounding’s effects. Another

advantage of this method is the energy absorbance property [30]. According to the study

of Anagnostopoulos [31], filling the gap distance between two adjacent structures by energy

absorbing materials can reduce the destructive effects of pounding [31]. Application of

bumpers, variable dampers and crushable devices is another idea which has been proposed
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by Jankowski et al. to reduce the destructive effects of pounding in bridges [32]. Recently,

Sheikh et al. presented an analytical investigation on the use of magneto-rheological

(MR) dampers in reducing the pounding effect of base-isolated multi-span RC highway

bridges [33]. Although the results of several analytical studies are available vastly in

pounding problem, few experiments have been conducted to investigate its destructive

effects. The experiment of Van Mier et al. [34], which was implemented on concrete to

concrete collisions, is one of them. Besides, Papadrakakis and Mouzakis [35] and Chau

et al. [36] conducted shaking table tests with considering different cases for pounding

analysis. As a new attempt, Jankowski determined the coefficient of restitution (e), for

different materials based on the experimental analysis [37]. Seismic pounding is essentially

a problem of dynamic impact.

1.1.3 Impacts in engineering structures

Impact implies a sudden and brief rise in forces exerted on a body colliding with

another object and is a strong nonlinearity when viewed from a dynamical systems per-

spective. It is therefore natural to model impacts in the piecewise-smooth framework.

For impacts where the duration of contact is relatively long, a compliant impact model is

appropriate. This is typically modelled as contact with a stiff spring and a damper. On

the other hand, if the time duration of the impact is relatively short, an instantaneous

jump in velocity according to Newtons impact law

vrel | after = −evrel | before (1.1)

where e is called the coefficient of restitution and vrel is the relative velocity of the colliding

bodies, is usually sufficient. e ∈ [0, 1] is a measure of the amount of kinetic energy

dissipated in the collision. For further discussions of modelling impacts see [40]. Eq. (1.1)

together with the law of conservation of momentum defines the state of the system after the

impact. Ivanov in [42] writes; "The choice of this or other impact model for exact problem

solution is connected with compromise between simplicity and realistic approach. However,

one can achieve it rarely at practice". The use of Hertz contact force allows to determine

both impact duration and impact force value and to find the law of its time change. There

are generally two different approaches to modelling of structural pounding. The first one
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applies the classical theory of impact, called stereo mechanics, which is based on the

laws of conservation of energy and momentum and does not consider transient stresses

and deformations in the impacting bodies. The theory focuses on determination of post

impact velocities of colliding bodies based on the approaching velocities prior to contact

and a coefficient of restitution which accounts for the energy dissipation during impact

incorporating response non-linearities. The second model to simulate structural pounding

is the contact element approach. The stereo-mechanical theory is not appropriate for

developing a time-history analysis of multi-degree-of freedom structural systems, as it does

not simulate the structural response during contact, by assuming a negligible duration of

it. The contact element approach offers a straightforward idealization of the pounding

problem, as it corresponds to the intuitive interpretation of the phenomenon. Impact is

simulated by a contact element that is activated when the separation gap between the

structures shrinks, which allows solving the problem within the framework of an ordinary

response analysis. The formulae for the post-impact velocities v′1 and v′2 of two non-

rotating bodies with masses m1 and m2 in the case of the central impact are given by [44]

v′1 = v1 − (1 + e)
m2v1 −m2v2
m1 +m2

; v′2 = v2 + (1 + e)
m1v1 −m1v2
m1 +m2

; (1.2)

where v1 and v2 are approaching velocities and e is a coefficient of restitution which

can be obtained from the equation

e =
v′2 − v′1
v1 − v2

(1.3)

the coefficient of restitution which is a measure of energy loss during each impact.

A value of e = 1 deals with the case of a fully elastic collision, and a value of e = 0

with a fully plastic one. The value of the coefficient of restitution can be determined

experimentally by dropping a sphere on a massive plane plate of the same material from

a height h and observing the rebound height h∗. Then, the following formula is used:

e2 =
h∗

h
(1.4)

It has been assessed that the coefficient of restitution used to simulate real collisions

between structures ranges usually from 0.5 to 0.75 (see Reference [45]). Based on the

experimental results, Azevedo and Bento [46]) suggested that e = 0.65 should be used for
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typical concrete structures. In fact, this value has been used by a number of researchers in

the analysis of pounding between different types of structures (see, for example, References

[47,48]). Some of the studies indicate, however, that collisions between structural members

can be more plastic in some cases. Zhu et al. [49], for example, obtained the value of e = 0.4

based on the results of the experiments conducted on a steel bridge girder model. Owing

to its macroscopic approach, the classical theory of impact is rather not recommended

when a precise pounding-involved structural response is required, especially in the case

of multiple impacts. Moreover, since it does not trace the structural response during

contact, assuming that it lasts a negligibly short time, its application is usually limited

to the analysis of pounding between two structures modelled as single-degree-of-freedom

systems [50]. In the case when the structures are simulated by multi-degree-of-freedom

models or when the study on the pounding of buildings in series or between several

segments of a bridge is conducted, the structural response during the time when contact

takes place is essential. This is due to the fact that, when the structural members rebound

after collision they might come into contact with other members. Moreover, it may also

happen that at the time of contact between two given structural members other members

may collide with each other. The energy dissipation during the pounding process is

dependent on the differences between approaching and separative velocities of colliding

bodies. Structural pounding is a complex phenomenon involving plastic deformations at

contact points, local cracking or crushing, fracturing due to impact, friction, etc. Forces

created by collisions are applied and removed during a short interval of time initiating

stress waves which travel away from the region of contact. The process of energy transfer

during impact is highly complicated which makes the mathematical analysis of this type

of problem difficult.

1.1.4 Various contact mechanisms for impact

The forces produced during collision act over a short period of time, where energy

is dissipated as heat due to random molecular vibrations and the internal friction of the

colliding bodies. Usually, contact is modeled using either a continuous force model by

using contact element approach or via a stereo-mechanical (coefficient of restitution) ap-

proach. The contact element approach has been widely used by the researchers because of
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its easy adaptableness and reasonable accuracy. The impact forces generated during the

collision of two adjacent structures can readily be thought as being provided by a contact

element, which is activated only when the structures come into contact. The collision

forces are assumed to act in a continuous manner. The contact element is usually a spring

of very high stiffness, which may be used in combination with a damping element. The

high spring stiffness is necessary to provide a realistic estimate of the impact force, ensure

small impact duration and limit the penetration or overlapping of the colliding structures.

The contact element is linear or nonlinear based on the stiffness of spring element and

the damping properties of dashpot. The stereo mechanical model, which works on the

principle of momentum conservation and coefficient of restitution, is rather not recom-

mended when a precise pounding involved structural response is required especially in the

case of multiple impacts with longer duration. The stereo mechanical approach uses the

instantaneous impact for which the duration of impact should be very small, which is not

possible in the case of building pounding. Furthermore, this approach cannot be easily

programmed in widely used commercially available software.

1.1.4.1 Linear spring contact element

Figure 1.1: Contact elements for impact simulation: Linear spring element

A linear impact of stiffness (kl) can be used to simulate impact once the gap between

adjacent structures closes. The impact force at time t is provided by

Fc(t) = k1δ(t) (1.5)

Where, δ(t) is the interpenetration depth of the colliding bodies. This approach is rel-

atively straightforward and can be easily implemented in commercial software. However,

in the formulation the energy loss during impact is not taken into account. This model
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is shown in Fig.1.1 which has been extensively used for impact simulation by Maison and

Kasai [54].

1.1.4.2 Kelvin-Voigt element contact element

Figure 1.2: Contact elements for impact simulation: Kelvin-Voigt element

A linear impact spring of stiffness (kk) is used to be in conjunction with a damper

element (ck) that accounts for energy dissipation during impact. The model shown in

Fig.1.2 has been widely used in some studies reported by Anagnostopoulos [45]. The

impact force penetration relation can be represented as

Fc(t) = kkδ(t) + ckδ̇(t) (1.6)

Where, δ̇(t) is the relative velocity between the colliding bodies at time t. The damping

coefficient ck can be related to the coefficient of restitution e, by equating the energy losses

during impact:

ck(t) = 2ξ

√
kk(

m1m2

m1 +m2

) (1.7)

ξ = − lne√
π2 + (lne)2

(1.8)

The damping force in the Kelvin-Voigt model causes negative impact forces that pull the

colliding bodies together, during the unloading phase, instead of pushing them apart. To

avoid the tensile impact forces, slight modification is proposed by Komodromos et al. [55].

The modified equation for the next time interval is written as

Fc(t+∆t) =

 kkδ(t) + ckδ̇(t), Fc(t) > 0;

0, Fc(t) ≤ 0.
(1.9)
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1.1.4.3 The modified Kelvin-Voigt contact element

Figure 1.3: Contact elements for impact simulation: modified Kelvin-Voigt element

This model is developed by Pant and Wijeywickrema [56]. Here, the impact force

Fc(t) is expressed as

Fc(t+∆t) =

 kkδ(t) + ckδ̇(t), Fc(t) > 0;

0, Fc(t) ≤ 0.
(1.10)

Where, kk is the stiffness of spring element, ck is the damping coefficient, indentation

at contact surface is δ and relative velocity of impact is δ̇ .

ck = ξδ and ξ =
3kk(1− e2)

2r2δ̇0
(1.11)

Where, ξ is damping ratio. In expression, e is the coefficient of restitution and δ̇0 is

the relative velocity just before the impact. This model is depicted in Fig.1.3.

1.1.4.4 Hertz contact element

Figure 1.4: Contact elements for impact simulation: Hertz contact element

In pounding, it is expected that the contact area between neighboring structures should

be increased as the contact force grows, leading to a non-linear stiffness. In order to model

highly non-linear pounding more-realistically, Hertz impact model has been adopted by
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various researchers [57, 58]. This model uses the Hertz contact law: a non-linear spring

in an impact oscillator. The force in the contact element as shown in Fig. 1.4 can be

expressed as:

Fc =

 khδ(t)
3
2 , δ(t) > 0;

0, δ(t) ≤ 0.
(1.12)

Where, δ(t) is the relative displacement. Assuming that the colliding structures are

spherical of density ρ and the radius Ri estimation can be calculated as:

Ri =

√
3mi

4πρ
; i = 1, 2 (1.13)

The nonlinear spring stiffness kh is linked to the material properties and the radii of the

colliding structures as stated through the eq.1.14 and eq.1.15:

kh =
4

3π(h1 + h2)
[
R1R2

R1 +R2

]
1
2 (1.14)

Where, h1 and h2 are the material parameters defined by the eq.1.15:

hi =
1− γi
πEi

; i = 1, 2 (1.15)

Here, γi and Ei are the Poisson’s ratio and Young’s Modulus respectively. The co-

efficient kh depends on material properties and geometry of colliding bodies. The Hertz

contact law, is incapable of taking into account energy dissipation during impact phe-

nomenon.

Results of the experiments indicate that for impacts between concrete elements, it

ranges typically from 40 to 80kN/mm
3
2 , (1.2× 109 − 2.6× 109N/m

3
2 ) depending mainly

on the contact surface geometry [59]. The impact stiffness parameter for steel-to-steel

impacts takes usually higher values [51]. The formulae to calculate values of kh for certain

special impact cases, such as impacts between two spheres or between a sphere and a

massive plane surface, have been given by Goldsmith [51]. The disadvantage of the Hertz

contact law model is that it is fully elastic and does not account for the energy dissipation

during contact due to plastic deformations, local cracking, friction, etc.
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1.1.4.5 Hertz damp contact element model

Figure 1.5: Contact elements for impact simulation: Hertz-damp contact element

An improved version of the Hertz model, called Hertz damp model, has been considered

by Muthukumar and Des Roches [60], where in a non-linear damper is used in combination

with the Hertz spring. The pounding force for the model shown in Fig.1.5 is written as

F (t) =

 khδ
3
2 (t)[1 + 3(1−e2)

4(v1−v2)
δ̇(t)], δ(t) > 0;

0, δ(t) ≤ 0.
(1.16)

Where, e is the coefficient of restitution and δ̇(t) is the relative velocity during contact

and v1 − v2 is the relative approaching velocities prior to contact.

1.1.4.6 Nonlinear viscoelastic model

Figure 1.6: Contact elements for impact simulation: Nonlinear viscoelastic element

Another improved version of the Hertz model has been introduced by Jankowski [61]

as shown in Fig.1.6 by connecting a nonlinear damper in unison with the nonlinear spring.

The contact force for this model is expressed as:
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F (t) =


βδ

3
2 (t) + c̄(t)δ̇(t), δ(t) > 0 and δ̇(t) > 0;(Approach period)

βδ
3
2 (t), δ(t) > 0 and δ̇(t) < 0;(restitution period)

0, δ(t) ≤ 0.

(1.17)

Where, β is the impact stiffness parameter and c̄(t) is the impact element damping.

Here ξ is an impact damping ratio corresponding to a coefficient of restitution e which

can be defined as;

ξ =
9
√
5

2

(1− e2)

e(e(9π − 16) + 16)
; c̄(t) = 2ξ

√
β
√

δ(t)
m1m2

m1 +m2

(1.18)

In addition to the above contact element models, recently various contact element

models have been added in the pounding simulation contact element dictionary by the

researchers from all around the globe [62,63].

1.1.5 Non-smooth systems

Roughly speaking, non-smooth systems are those systems whose solutions are not ev-

erywhere differentiable, and may even possess discontinuities. Their study requires quite

specific tools that people working with smooth systems are usually not familiar with. Me-

chanical Engineers and Applied Mathematicians have long studied this class of dynamical

systems (Lagrangian systems with impacts, friction, variational inequalities, differential

inclusions). Dynamical systems with discontinuities in the time evolution of their state

space trajectories - due to such phenomena as impact, friction or state dependent switches

- are defined as non-smooth systems. The inherent nonlinear nature of such systems leads

to phenomenologically rich dynamical behavior characterized by bifurcations and routes

to chaos which could be significantly different from continuous nonlinear dynamical sys-

tems. Before proceeding we should clarify what we mean with the term ’discontinuous

dynamical system’. Physical systems can often operate in different modes, and the transi-

tion from one mode to another can sometimes be idealized as an instantaneous or discrete

transition. Examples include mechanical systems with dry friction, impact and backlash.

Discontinuous dynamical systems can be divided in three types according to their degree

of discontinuity: The mathematical modeling of non-smooth dynamical systems involves
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ordinary differential equations with discontinuous right hand sides. Depending on the

type of discontinuity, these systems are categorized as follows:

1. Systems in which the vector fields are continuous at a discontinuity boundary but their

Jacobian is discontinuous i.e., systems with continuous but non-smooth vector fields. Sys-

tems with purely elastic one-sided supports fall into this category.

2. Systems in which the vector fields governing the motion are discontinuous at a discon-

tinuity boundary, called Filippov systems. Systems involving dry friction and viscoelastic

supports fall into this category.

3. Systems involving jumps in state space resulting from impacts between various system

components in a mechanical system. Impact micro actuators and gear rattle are a few

examples of systems with jumps. These are also called impact oscillators.

In all three cases a kind of switching is involved and those systems are therefore often

called switching systems or differential equations with switching conditions. In the field

of systems and control theory, the term hybrid system is frequently used for systems

composed of continuous differential equations and discrete event parts. Nowadays, the

term hybrid system is used for any system which exposes a mixed continuous and discrete

nature, even if the system is not controlled. Discontinuous (or switching/hybrid) systems

can be considered as dynamical extensions of Linear Complementarity Problems, which

gives another term: complementarity systems. Application of the Amontons-Coulomb

model to dynamical models of systems with dry friction results in differential equations of

Filippov-type. Filippov systems form a class of discontinuous systems described by differ-

ential equations with a discontinuous right-hand side. To the class of Filippov systems do

not only belong mechanical systems with Amontons-Coulomb friction but also electrical

circuits with diode elements, controlled systems with switching control laws, mechatroni-

cal systems with encoders and many other systems, being mechanical or non-mechanical,

where a kind of switching is involved.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.7: Examples of the Kobe earthquake aftermath. Picture on the right shows dam-

age: Partial collapse or total collapse of civil structures caused by liquefaction: (a) build-

ing, (b) landslides/creep (c) bridges/tunnel, (d)scupper-hole, (e) Building pounding

(New Zealand 2009) [11], (f) Pounding effect between two buildings [43]
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1.2 Consequences of non-smooth geomechanics and nat-

ural hazards assessment

The earth’s crust is a rocky layer of variable thickness; crust comprises of portions

called plates which vary in size from a few hundred to thousands of kilometers. When

these plates contact each other, stress occurs within the crust. The peripheries of the

plates pull away from each other, push against one another or slide sideways relative to

each other; these are the major causes for the occurrences of earthquakes. The main

disasters of geological origin are earthquakes, landslides, tsunamis and volcanic eruptions.

Earthquake is a form of energy, which originates in a limited region and then spreads in

the form of waves in all directions from the source of disturbance.

Natural hazards failure are represented in Fig. 1.7. We can see failure in foundations

caused by liquefaction, foundation movements, creep, shrinkage, cracking, cumulative

damage (Fig. 1.7(a, b)). Fig. 1.7(e, f) shows pounding of two adjacent concrete buildings

with no sufficient gap size. When two structures are close together, it is expected that they

will pound against each other. Pounding of adjacent structures increases the damage of

structural components. It may even cause collapse of structures. Fig. 1.9(b) leads to fail-

ure occurred during volcanic eruption. Therefore, in Fig. 1.9(c), we can see Beam-column

joint or infill wall failure. But Fig. 1.9(d) illustrates the overflow in rail transport. Earth-

quake is the most dangerous among the disasters of geological origin. The destruction

caused by an earthquake is directly related to its source (size) and indirectly related to the

path travelled by the seismic waves. In order to mitigate the destruction, the knowledge

of its source and path travelled by seismic waves is very important. The understanding

of these attributes of earthquakes is important for carrying various development activity

such as, river valley projects, bridges and other construction works. The basic physical

mechanisms which are responsible for the loss of energy of propagating seismic waves are

intrinsic absorption from inelasticity of rocks and scattering due to heterogeneities present

in the path of seismic waves. The seismic energy is converted into the heat by intrinsic

absorption and redistributed due to the internal heterogeneous medium though which the

seismic wave passes. The higher frequency component of seismic waves attenuates more
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(a) (b)

(c) (d)

Figure 1.8: Examples or traffic disruption due to key network component failures: (a)

The landslide at Gouache, Bafoussam. (b) landslide at Gouache (c) In Bafoussam, in

western Cameroon, a landslide in early November caused large cracks on a tarmac track;

(d) The erosion has washed away part of the sidewalk from the track.
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rapidly than the low frequency components resulting in resolution loss in seismograms.

Therefore, the attenuation of seismic waves in the lithosphere is an important property

for studying the regional earth structure in relation to seismicity.

On the night of Monday October 28, 2019, in the Gouache IV -Block 6 district in the

Arrondissement of Bafoussam III, Western region, a natural disaster occurred. On a

night that was apparently calm and punctuated by severe weather, the worst happened

suddenly at around 10 p.m. On the side of these clay hills of Gouache, a strong shock

accompanied by a landslide and a deafening noise wake up the peaceful citizens. The

concern spontaneously gives way to cries of distress that resonates. The landslide buried

11 houses and their occupants. The balance sheet shows 43 dead Fig.1.8(a, b).

Two weeks after a landslide in a district of the city of Bafoussam, in the west of Cameroon,

left forty people dead, another ground movement, without victims this time, cut a tarmac

road in two. People are worried Fig.1.8(c, d). When they woke up on the morning

of November 5, residents of Bafoussam noticed, in amazement, large faults over several

hundred meters on the bitumen of a bypass road very popular with motorists to avoid

traffic jams in the city center. Since then, it is no longer possible for the populations

of Bafoussam to take this section of asphalted track between the crossings Evêché and

Cami − Toyota which allows to join the National 6 in the first arrondissement of the

commune.

1.3 Analysis of structural failures

This section outlines the common observed damage patterns of different types of build-

ings in engineering structures induced by the earthquake and their constructional deficien-

cies. Both un-reinforced masonry buildings and reinforced masonry structures suffered low

to heavy destruction. The construction and structural deficiencies were identified to be

the major cause of failure, however local soil amplification, foundation problems, lique-

faction associated damages and local settlement related damages were also significantly

observed during this earthquake. Failure event can be classified in several types according

to many factor ranging from natural hazards, materials assessment to designers errors.

Classification of failures
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(a) (b)

(c) (d)

Figure 1.9: Examples or traffic disruption due to key network component failures: (a)

bridges. (b) slopes or roads; (c) beams, columns and infill walls failure (Commercial Rd

collapse, London, 2007); (d) overflow in rail transport [11]
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(a) Structures, the behaviour of which are reasonably well understood by the designers

(and consequently, the calculation procedural models are good), but which fail because

a random extremely high value of load or extremely low value of strength occurs (e.g.

excessive wind load, imposed load, inadequate beam strength);

(b) Structures which fail due to being overloaded or to being under strength (as (a)), but

where the behaviour of the structure is poorly understood by the designer and the system

errors in the calculation procedural models are as large as the random errors in the param-

eters describing the model; the designer here is aware of the difficulties (e.g. foundation

movements, creep, shrinkage, cracking, cumulative damage, durability generally);

(c) Structural failures where some independent random hazard is the cause, e.g. earth-

quake, fire, floods, explosion, vehicle impact; the incidence of this type can be obtained

statistically;

(d) Failures which occur because the designers do not allow for some basic mode of be-

haviour inadequately understood by existing technology (this mode of behaviour has prob-

ably never before been critical with the type of structure under consideration; a basic

structural parameter may have been changed so much from previous applications that

the new behaviour becomes critical, or alternatively, the structure may be entirely of a

new type or involve new materials or techniques; it is possible, however, that some infor-

mation concerning the problem may be available from other disciplines or from specialist

researchers, and this will be information which has not generally been absorbed by the

profession);

(e) Failures which occur because the designer fails to allow for some basic mode of be-

haviour well understood by existing technology;

(f) Failures which occur through an error during construction; these would be the result

of poor site control, poor inspection procedures, poor site management, poor communica-

tions leading to errors of judgement, the wrong people taking decisions without adequate

consultation etc., and may also occur through a lack of appreciation of critical factors and

particularly through poor communications between designers and constructors;

(g) Failures which occur in a deteriorating climate surrounding the whole project; this

climate is defined by a series of circumstances and pressures on the personnel involved;

pressures may be of a financial, political or industrial nature, and may lead directly to a
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shortage of time or money with the consequent increased likelihood of errors during both

design and construction processes; they may also result in rapidly deteriorating relation-

ships between those involved in the project;

(h) Failures which occur because of a misuse of a structure or because the owners of

the structure have not realized the critical nature of certain factors during the use of a

structure; associated failures are those where alterations to the structure are improperly

done. We can identify damage and failure mode either in Reinforce Concrete (RC) build-

ings, un-reinforce masonry (URM) buildings, the deck and the abutment, Local failures

in RC Buildings, or Non-Structural Damage of Buildings. The tables: 1.1, 1.2, 1.3, 1.4

illustrated these cases.

1.4 Stochastic processes

Noise or random excitations are the words that are used to define stochastic processes.

The oldest experiment concerning a noise in physical system is the Brownian particle. In

our case, we will be dealing with mechanical noise. Noise can be classified in two different

ways. Based on the spectral properties, we can distinguish white noise and colored noise.

1.4.1 Spectral properties of white noise

A white noise is a realization of random process in which the power spectral density

is the same for all the frequencies. Since white noise is a totally random process, there

is no relation between the values taken by it at the different instant. Similarly, there is

no relation between the values taken at any two instants by two different white noises.

The consequence is that the autocorrelation function of a white noise is a Dirac function,

while the correlation function of two different noises is the null function.

⟨ξ1(t)ξ2(t′)⟩ = Cteδ(t− t′)

⟨ξ1(t)ξ2(t′)⟩ > 0

Moreover, a noise is said to be colored when it is not white. The difference can be as much

on its Fourier spectrum as on its autocorrelation function. In the majority of physical

systems, there is no ideal white noise as described above. This is the case, for example,
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Table 1.1: Damage and failure mode in Reinforce Concrete (RC) buildings

Failure mode Types of damages Causes

Soft story failure Sinking of lower sto-

ries, sinking of inter-

mediate stories

X Omitting infill masonry wall

for parking, shopping, lobby, etc.

purpose

X Omitting infill masonry wall

for architectural needs like creat-

ing big halls (even omitting mid-

dle column), irregular sizing of

rooms, etc.

Pounding failure Displacement, plumb

out of the buildings,

severe damage of the

adjacent buildings, to-

tal collapse of the ad-

joining buildings

X Lack of gap between adjoining

buildings

X Stiffness different within the

adjoining buildings

X Floor height different between

adjoining buildings, stiffness and

mass irregularities

X Excessive load transfer from

higher buildings to lower height

buildings

X Drastic decrease in stiffness in

the higher buildings from the roof

level of lower building to top of

higher building

Structural irregularity

failure (plan and

mass)

Overturning of mas-

sive floor, tilting of the

building, separation of

massive story from the

building

X Relatively higher deflection of

massive floor to other light floor

X Stress concentrate in the floor

level and ultimately may separate

(poor ductile detailing in joints
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Failure mode Types of damages Causes

Failure due to ground

rupture

Tilting or shifting of

the building, struc-

tural elements dam-

ages or total collapse

X Built building in the poor soil

strata

X Build in the land pooling area

X Lack of important of soil test-

ing

X Built in the fault area

Pancake Total collapse X Weak column-strong beam

X Poor workmanships

X Worst ductile detailing

X Poor quality of construction

material

X Built for selling purpose

of the external force acting on a Brownian particle. In reality, in this physical system,

the values taken by the external force are correlated. However, the time after which the

correlation function begins to take almost zero values, reflecting the fact that there is no

relationship between the values taken at the time t and at the time t+τ is very small. It is

of the order of the intermolecular distance divided by the mean velocity of the molecules

(10−13s). However, in the limit where the correlation time tends to 0, this force can

be assimilated to an ideal white noise. This type of approximation is often done in the

modeling of many physical systems, which facilitates their analytical and/or numerical

study. In the literature, noise with a constant probability density function is said to be

uniform and we have [64]

f(y) =
1

2Am

(1.19)

Where Am is the maximum amplitude of the noise. While noise with a Gaussian proba-

bility density function are called Gaussian noises.
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Table 1.2: Local Failures in RC Buildings.

Failure mode Types of Damages Causes

Beam failure;

Shear failure

(Cracks developed at

45o, angle normally),

spallation of concrete

at the middle or near

the joints)

X Stirrups provided in the Beams are

not sufficient (spacing of rebar 175 mm

to 300 mm)

X Rebar size that is used is of minimum

diameter (5 mm to 7 mm)

X Hoop provided is 90o with minimum

hoop length (20 mm to 50 mm)

X Stirrups are not placed correctly

XMain rebar provided in the beam are

not sufficient (using four bars of diam-

eter ranging from 10 mm to 12 mm)

X Overlapping length is minimum

(usually 150 mm to 300 mm)

X Overlapping location is also not ap-

propriate (major problem)

X Confinement reinforcement are not

provided

X Size of the beam is 230 mm by 230

mm (including slab thickness)

Beam-column (Joints failure) ...
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Failure mode Types of Damages Causes

Shear failure (Cracks develop at the

beam- column joint,

crumble of concrete at

the joints)

X Lack of use of confinement rebar near

the joints

X Lack of use of confinement rebar in-

side the beam-column junction

X Use of poor quality concrete

Brittle failure (Separation of beam

from column, crumble

of concrete)

X Adequate anchorage length of the

beam is not provided (major problem)

X Main bar provided in the beam and

column is not sufficient

X Extra bar that need to provide in the

beam column joints are omitted

Shear failure (Diagonal cracks of

the column near joints

and at the middle of

the column, crushing

of the column majorly

near the joints)

X Stirrups provided in the column are

not sufficient (Single hoop)

X Rebar size that is used is of minimum

diameter (usually 5 mm to 7 mm)

X Hoop provided is 90o with minimum

length (20 mm to 50 mm)
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Failure mode Types of Damages Causes

Flexural failure (Crumble of concrete,

yielding of rebar,

racks near the joints,

formation of hinge

(ultimate condition))

X Main rebar provided in the column

are not sufficient (normally four bars

of diameter ranging from 10 mm to 12

mm)

X Overlapping length is minimum

(usually 150 mm to 300 mm)

X Overlapping location is also not ap-

propriate (major problem)

X Confinement reinforcement are not

provided

X Size of the column is 230 mm by 230

mm majorly

X Orientation of the column is not ap-

propriate

Buckling failure (Buckling of column,

spalling of the con-

crete, bending of the

rebar)

X Main rebar is not sufficiently layout

X Meshing of the rebar is same for any

kind of slab size

X Thickness varies (100 mm to 175

mm)

X Lack of proper detailing of the slab

rebar

X Poor concrete quality
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Table 1.3: Non-Structural Damage of Buildings.

Failure mode Types of Damages Causes

Infill wall (Out of plan damage,

crushing of wall diag-

onally or at toe and

heel, shearing of bed

joints, separation be-

tween the wall and the

frame)

X Lack of sill band and lintel band

X Diagonal strut action

X Due to strong infill surrounded by a

strong frame

X Weak joints and strong members

X Strong infill and strong frame but

vibrate differently

Water tank fail-

ure

(Bare framed support-

ing polythene tank

collapsed, formation

of plastic hinges in the

upper and lower edges

of column)

Large inertia forces due to water tank

mass

Staircase (Damage at the junc-

tion of the landing and

the flight, sagging or

drop down of the land-

ing, total collapse)

X Rebar detailing problems

X Minimum use of main bar (8 mm to

10 mm)

X Short column effect

X Deck thickness varies from 75 to 125

mm

Parapet failure (Partial and totally

collapsed)

X No anchorage is provided

X Built as secondary element with no

proper design
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Failure mode Types of Damages Causes

Poor quality of

materials

(Cop-outs and

spalling of concrete,

material deteriorates

effortlessly, breakage

of corroded rods,

loss in capacity of

rods, corrosion can to

spread to other parts,

possibility of vanish of

rods due to corrosion)

X Pilling out/cop out the cover of the

concrete in structural components

X Breakage of the rod due to size re-

duction of rebar due to corrosion

f(y) =
1√
2πσ2

exp(−(y − ⟨y⟩2)
2σ2

) (1.20)

One also says that the random variable y follows a normal distribution.

1.4.2 Techniques for the production of random number sequences:

Box-Muller Transformation

This transformation created in 1958 by Georges Edward et al. [64] states that if y1 and

y2 are two independent random variables uniformly distributed between 0 and 1, then the

variables:

z1 =
√
−2ln(y1)cos(2πy2); z1 =

√
−2ln(y1)sin(2πy2) (1.21)

are Gaussian random variables each having a zero mean and a variance equal to unity.

This transformation will be used in the simulations to produce random variables repre-

senting the Gaussian white noises.

1.4.3 Stochastic bifurcations.

Many engineers believe that, for instance, probability theory will be of little help in un-

derstanding the basic causes of structural failures. Arnold proposed two kinds of stochastic
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Table 1.4: Damage and Failure Mode of un-reinforce masonry (URM) buildings.

Failure mode Types of Damages Causes

Shear failure (Diagonal cracks at

corner of openings and

at center of wall seg-

ment)

X Stress concentration at corners of

windows and doors

X Absent of sill and lintel band

Tension failure (Vertical cracks at the

center, ends or corners

of the walls)

X Walls too high and too narrow

X Openings too close to corners

Out-of-plane

failure

(End masonry walls

failure, bulging of ma-

sonry wall, delamina-

tion of wall leaf)

X Lack of structural integrity

X Deficient bond at corners continuous

vertical joints (wall to wall connection)

X Flexible floor diaphragm

X Trusting nature of sloping roof

X Ineffective or lacking passing

through connections in multi leaf

masonry assemblages

Spandrel failures (Cracks between two

openings one above

the other)

X Flexible floor diaphragm

X Absent of sill and lintel band
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Failure mode Types of Damages Causes

Pounding (Cracks at the floor

level, sway of build-

ings)

X Lack of space between two buildings

Torsion and

warping Failure

(Larger damage oc-

curs near the corner of

the building, excessive

cracking due to shear

in all walls)

X Unsymmetrical in plan and elevation

of building

X Imbalance in the sizes and positions

of openings in the walls

Mixed mode fail-

ure

(Partial collapse or to-

tal collapse)

X Accumulation of in plane out of

plane and corner effects

X Corner buildings in row housing

Roof failure (Dislodging of roofing

material, separation of

roof truss from sup-

ports)

X Improperly tied roofing material

X Lack of tie rod or tie beam

X Weak support connection

X Heavy roof material

Overturning fail-

ure

(Sliding of the whole

building)

X Weak foundation design
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bifurcations: D-bifurcation and P-bifurcation. The so-called dynamical bifurcation (D-

bifurcation) examines the sudden change of sign of the largest Lyapunov exponents, and

the phenomenological bifurcation (P-bifurcation) studies the sudden change of the shape

of the stationary probability density. First, the model is reduced to a one-dimensional

Ito averaged equation by using the stochastic averaging method. Then, the relationship

between the qualitative behavior of the stationary probability density and the qualita-

tive behavior of the diffusion process is established. The results show that stochastic

P-bifurcation occurs when the system parameter varies in the response analysis and the

stationary PDF evolves from bimodal to unimodal along the unstable manifold during the

bifurcation.

1.5 Problem statement

This chapter has given an overview on the generalities concerning the natural hazard

impact-friction phenomenon and the effects induced by those non-smooth vibrations on

engineering structures. An important issue which has seen somewhat less attention in

the friction and dynamic systems literature is the stochastic nature of dynamic surface

interactions. The source of the random excitation is the environmental changes, such

as earthquakes and wind loads exciting for example high rise buildings or wave motions

at sea exciting for example offshore structures. Alternatively, the randomness of the

excitation may stem from material properties, such as the distribution of imperfections

or defects. The analysis of nonlinear non-smooth stochastic systems is studied. Friction

under nominally constant sliding conditions can be described by a constant value plus

broadband noise. Different control strategies used to mitigate those pounding phenomena

due to external excitations have been also presented. To reduce the effects of pounding,

small separation distances needs to be maintained and these gaps needs to be filled up

with a special shock absorbing material (bumper dampers for instance). So that where

the structures are subjected to pounding action, there will not be any damage to the main

structure. The bumper damper element in the form of rubber shock absorber can be placed

between the structures, but connected only to one of the structures. Bumper dampers are

the energy dissipation links that are activated when the gap is closed. The presence of the
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bumper damper element will reduce the impulsive forces transmitted from one structure to

the other. Other options to minimize the effect of pounding have to do with the decreasing

of lateral motion by joining adjacent buildings at critical positions so that their motion

could be in-phase. The nonlinear dynamics of mechanical Filippov systems is explored in

this thesis. The following chapter will be devoted to the description of mathematical tools

used to model a network of adjacent engineering structures. Analytical and numerical

formalisms used to solve the problem of the thesis are presented.
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Chapter 2

Methodology: Analytical and numerical

methods

Introduction

The previous chapter has introduced the phenomenon of structural pounding and

some analysis of structural failure. The topic is interesting because it is a more realistic

approach for the prediction of the structural response under uncertain conditions, either

in the structural characteristics or in the input excitations in the civil engineering. This

chapter deals with the models, the analytical and numerical methods that will be used

to solve the problems that thesis addresses. We will consider a model of smooth-and-

discontinuous (SD) oscillator, a model of a bridge or a spillway which interacts with an

abutment under the influence of noise or external excitation. The last model is a practical

example of building subjected to natural hazard excitation.

2.1 Smooth -and -discontinuous oscillator model

Consider a non-deformable moving belt, moving with a constant velocity v0, the block

of mass m1 moving in the lying flat surface and connected to a damping capacity C (or

damping function Φ(x1(t), µ))) and a fixed backing by an inclined linear spring of stiffness

coefficient K, which is capable of opposing both tension and compression (see Fig. 2.1.

(a)). The block can either ride on the belt, with zero relative velocity with respect to it,
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2.1 Smooth -and -discontinuous oscillator model 39

or slip on it because friction is added as a constraint on a rough surface between the mass

and the belt. We then suppose large displacements of the mass same as large deformations

in continuum mechanics so that the system is strongly nonlinear. X1 is the displacement

from the rest state. The kinetic energy and the potential energy of the system can be

written as:

T =
1

2
m1Ẋ

2
1 ; V =

1

2
K(

√
X2

1 +H2
1 − L)2 (2.1)

which follow the Lagrangian formulation
dL
dt
( ∂L
∂Ẋ1

)− ( ∂L
∂X1

) = 0 where L = T − V . The presence of damping, restoring and external

forces in the system leads to the following perturbed system:

(a)

(b)

Figure 2.1: The mechanical model of the system: (a): the self-excited SD oscillator (b): Coulomb

friction Eq. 2.4 with: α = 0.1 ; g1 = 2.0; µ = 0.1; v0 = 0.0

m1
d2X1(t)

dt2
+ C

dX1(t)

dt
+KX1(t)(1−

L√
X2

1 + L2
1

) +Gs = Fecos(wt) + ξ(t) (2.2)
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where L1 is the original length of the spring, H1 is the distance between fixed point

and belt, and ξ(t) is the normalized source of Gaussian white noise satisfied:

⟨ξ(t)ξ(t′)⟩ = 2Dδ(t− t′), ⟨ξ(t)⟩ = 0 (2.3)

where D is the noise intensity. The dry friction force Gs is due to the surfaces in contact

and can be defined during the slip mode. We use the friction force Gs modeled as Stribeck

friction between objects in contact. It is determined by the material characteristics of the

block and the belt and is described as

Gs = −µ(C0 + C1|X1|+ C2|(Ẋ1)|)sgn(Ẋ1)) (2.4)

So that X1 and Ẋ1 are the sliding displacement, and correspondent velocity, C0 is

the vertical contribution of the spring force, coefficients C1 and C2 are respectively the

friction interface amplitudes , with the correspondent velocity. µ is the friction coefficient

depending on the relative velocity of the contact Vr = (Ẋ1 − V0) as:

µ =

 µk (Ẋ1 ̸= V0),

µs (Ẋ1 = V0),
(2.5)

Where V0 is the belt velocity. C0 = FN is the contribution of the weight in the friction

force and can be expressed as FN = Mg − KH1(1 − L√
X2

1+H2
1

); where the condition

Mg > KH1 is satisfied.

The coefficient of the kinematic friction characteristic α0 = µFN is determined by the

material characteristics of the block and the belt.

If the moving load acceleration is equal to zero, i.e. Ẍ1 = 0 when the load sticks on the belt,

Ẋ1 = V0, thus the value of the friction force (G = −KX1(t)(1− L√
X1(t)2+H2

1

)) is confined

to the interval (−Gmax < G < Gmax). Knowing that Gmax = µ(Mg−KH1(1− 1√
X2

1+H2
1

))

is the maximum static friction force derived from the product of the friction coefficient

with the normal force.

Hence the Coulomb friction force Gs between the mass and the belt is illustrated in Fig.

(2.1)(b). We have described the intermittent behaviour (or the set-valued extension) of
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the system in the differential inclusion of Filippov type as:

sgn(X1) =


1 if (X1 > 0),

∈ [−1, 1] if (X1 = 0),

−1 if (X1 < 0),

(2.6)

without loss of generality, the equation of motion Equation (2.2) can be normalized

using the non-dimensional variables and parameters as follows: x1 = X1

L1
; w2

0 = K
m1

;

c = Φ(x1, µ) =
C

m1w0
ie., (damping capacity C (or damping function Φ(x1, µ)))); τ = w0t

; α = H1

L1
; v0 = V0

L1w0
; g1 = g

L1w2
0
.

Then, substituting these variables into Equation (2.2), the non-dimensional equation of

motion for this system is:

ẍ1+(Φ(x1, µ))ẋ1+x1(t)(1−
1√

x2
1 + α2

)−µ(C0+C1|x|+C2|(ẋ1)|)sgn(ẋ1)) = fcos(wt)+ξ(t)

(2.7)

Where C0 = [g1 − α(1− 1√
x2
1+α2

)], and (.) denotes the differentiation with respect to the

non-dimensional time τ . The motion of the mass can be characterized into two qualita-

tively different modes, the slip and stick modes.

Physically, this oscillator is similar to a snapthrough truss system. The smoothness pa-

rameter α not only defines the geometry of the oscillator, but also has physical meaning.

For α > 1, the system represents a pretensioned discrete elastic string, while if α = 0,

the model corresponds to an oscillating mass supported by two parallel vertical springs.

When α > 0, the nonlinearity associated with the system is continuous and for α = 0,

the system nonlinearity is discontinuous. The dynamics of the SD oscillator has been

investigated randomly in the two domains. The equation of motion of the SD oscillator

for the discontinuous case is given by:

ẍ1 + (Φ(x1(t), µ))ẋ1 + (x1 − zsgn(x1))− dsgn(ẋ1) = fcos(wt) + ξ(t) (2.8)

Where d = −µ(C0 + C1|x1|+ C2|(ẋ1)|).

At least one coefficient will be null in practical case (one between z and d will be zero).

Thus, for the two intermittent modes ”sgn(x1)” and ”sgn(ẋ1 − v0)”, one could have the

excited SD oscillator when (z = d = 0) and the dry friction model when (z = 0; d = 1).

Other phenomena such as clearance, vibro-impacts, and preloaded compliance can occur
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when (z = 1; d = 0). A Filippov (or piecewise smooth) system [65] is composed of

different smooth ODEs defined in open non-intersecting domains Si separated by smooth

discontinuity boundaries. Filippov representation for the discontinuous SD oscillator is

given by:

F1(x1, x2) =



ẋ1 = x2, vr = x2 − v0 < 0;

ẋ2 = −(Φ(x1(t), µ))x2(t)

−x1(t)(1− 1√
x2
1+α2

)+

−µ(g1 − α( 1√
x2
1+α2

) + C1|x1|+ C2|(x2)|)sgn(x2))+

+fcos(x3) + ξ(t) vr = x2 − v0 < 0.

F2(x1, x2) =



ẋ1 = x2, vr = x2 − v0 > 0;

ẋ2 = (Φ(x1(t), µ))x2(t)

−x1(t)(1− 1√
x2
1+α2

)+

+µ(g1 − α( 1√
x2
1+α2

) + C1|x1|+ C2|(x2)|)sgn(x2))+

+fcos(x3) + ξ(t) vr = x2 − v0 > 0.

(2.9)

Where vr = x2 − v0; C0 = [g1 − α(1− 1√
x2
1+α2

)]; µ is the friction coefficient (see Eq.2.5).

A solution of this equation should be continuously differentiable. This equation describes

many physical systems collectively called SD Van der Pol−Duffing oscillators.

2.1.1 Generic Filippov system analysis

The oscillator slides or rests on the horizontal belt surface traveling with a constant

speed v0. If a self−excited SD oscillator is pulled by a stage and it starts to slide, then,

because of the variation of position X1(t), the sliding process destroys the limit cycle

setting up a stick-slip dynamics. Consider x ∈ Rn, and f (i) : Rn → Rn, i = 1, 2, are

smooth functions. A generic Filippov system of the form:

x =

 f+(x) (for x ∈ S1),

f−(x) (for x ∈ S2),
(2.10)
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is defined in Fig. 2.2. Moreover, the discontinuity boundary Σ separating the two

regions is described as

Σ = {x ∈ Rn : H(x) = 0}, where H is a smooth scalar function with non vanishing

gradient Hx(x) =
∂H(x)
∂x

on the discontinuity boundary Σ, and

S1 = {x ∈ Rn : H(x) < 0},

S2 = {x ∈ Rn : H(x) > 0}, and

Σ = {x ∈ R2/n(x) = ẋ− xv = 0}. (2.11)

(a) (b)

(c)

Figure 2.2: Filippov representation: (a) Two vector fields Fi and Fj and an open Σij (left),

of the corresponding trajectories (right-hand side,(b)). (c) Filippov’ Piecewise Smooth

System
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The boundary Σ is either closed or goes to infinity in both directions and f (+) ̸= f (−)

on Σ. By concatenating standard solutions in S1,2 and sliding solutions on Σ obtained

with the well known Filippov convex method, it is possible to construct the desired general

solutions of Eq. 2.9.

Let σ(x) = ⟨Hx(x), f
(+)⟩⟨Hx(x), f

(−)⟩, be the definition of switch control function in which

⟨., .⟩ denotes the standard scalar product in Rn. The crossing set Σc ⊂ Σ is defined as:

Σc = {x ∈ Σ : σ(x) > 0}, which is the set of all points x ∈ Σ , where at these points

the orbit of system Eq.2.9 crosses the boundary Σ i.e., the orbit reaching x from Si

concatenates with the orbit entering Sj, i ̸= j, from x. The complement to Σc in Σ:

Σs = {x ∈ Σ : σ(x) ≤ 0}, where at these points x ∈ Σs, the orbit of system Eq.2.9

which reaches x does not leave Σ and will therefore have to move along Σ. The crossing

set is open, while the sliding set is the union of closed sliding segments and isolated

sliding points. In general, the orbit of system Eq.2.9 crosses Σ at points x ∈ Σc , while

it slides on Σ when points x ∈ Σs. Notice that, a sliding segment is delimited either

by a boundary equilibrium xB, or by a point xT (called tangent point) in which one

of the vectors f (i)(xT ) is tangent to Σ and both of them are nonzero. Therefore, the

following definition of the tangent points x ∈ Σs holds: ⟨Hx(xT ), f
i(xT )⟩ = 0, i = 1, 2.

In the discontinuous differential system Eq.2.9 with switching conditions, f(x) is not well

defined when x is on the discontinuity surface Σ. A way to define the vector field on Σ is

to consider the Filippov approach, that is the set valued extension F (x) below:

ẋ ∈ F (x) =


f+(x, µ), x ∈ S1;

co{f+(x, µ), f−(x, µ)}, x ∈ Σ;

f−(x, µ), x ∈ S2.

(2.12)

where (f+(x), f−(x)) are given by the smooth functions, and co{A}, is a vector field

along the separation boundary, (the closure of the convex hull) denotes the smallest closed

convex set containing A.

co{f+, f−} = {fF : x ∈ Rn → Rn : fF = (1 − α)f+ + αf−, α ∈ [0, 1]}, then the

system vector field can be described by a differential inclusion (systems with multi-valued

right-hand sides)
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2.1.2 The convex approach of non-smooth dynamics

Consider a piecewise smooth dynamical system

dx

dt
= f(x) =

 f+(x) (for v(x) > 0),

f−(x) (for v(x) < 0),
(2.13)

we can extend such a model across v(x) = 0. In the standard Filippov approach

prominent in variable structure control and in piecewise smooth dynamical systems the-

ory, when a system switches between two systems as in Eq.2.13, we form their convex

combination
dx
dt

= f(x, λ) = F+(x)+F−(x)
2

+ λF+(x)−F−(x)
2

(or a similar form dx
dt

= f(x, λ) = [F+(x)+F−(x)]+u[F+(x)−F−(x)], with λ = 2u−1

where

λ ∈

 sgn(v) (if v ̸= 0),

[−1,+1] (if v = 0),
(2.14)

Thus f(x,+1) ≡ f+(x); f(x,−1) ≡ f−(x) . The standard approach then seeks so-

called sliding modes which satisfy dv
dt

= 0 at v = 0.

2.2 Model of a bridge or a spillway which interacts with

an abutment

(a) (b)

Figure 2.3: Model of a spillway which interacts with an abutment.
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2.2.1 General formulation

James H. Dieterich et al., [66] described the phenomenon to model the friction between

the crustal plates of Earth . J. R. Rice et al., [67] have analyzed a special friction model

in the stability of tectonic sliding. The model has also been used in connection with

control, see James R. Rice et al., [68]. Due to discontinuities in soil conditions along

the propagation earthquake excitation, there are both evident randomness and strong

nonlinearity owing to the evaluation norms of seismic intensity but also the site soil

classification. A realistic analysis and design of structural systems subjected to such

earthquake excitations [69,70] must account for the uncertainty arising from randomness,

impact and friction.

Let us consider an n-degree-of-freedom nonlinear structural system governed by the

Eq.2.15

m1
d2q(t)

dt2
+ c1

dq(t)

dt
+ k1q(t) = f(t) (2.15)

In which m1 is the mass matrix and consistent c1 is a viscous damping matrix (which

is normally selected to approximate energy dissipation in the real structure) and k1 is the

static stiffness matrix for the system of structural elements. Forces f(t) = pj(t) acting on

each point mass mj has a resisting force fs and the damping force fd acting against them.

Newton’s second law of motion gives for each mass:

mjü(j) + fsj + fdj = pj(t). (2.16)

Where mjü is the inertia force and the damping force fd is related to the velocity u̇ across

the linear viscous damper i.e. (fd = c1u̇; fs = k1u, k1 is the lateral stiffness of the system).

The column q(t) = u(t) represents the degrees of freedom of the system. The first and

second derivative of the column q(t), with respect to time t, are q̇(t) and q̈(t), respec-

tively. The column f(t) denotes the external excitation of the system with intermittent

characteristics due to friction. The mass is able to move or vibrate in one direction, per-

pendicular to the column. It is considered to have certain amount of damping, c1 [71,72],

see table.2.1.
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Table 2.1: Damping ratios of the fixed -base eigenfrequencies of the dynamic model

mode no. 1 2 3 4 5 6 and

higher

eigenfrequency

[Hz]

0.46 1.27 1.98 2.98 4.10 4.25 and

higher

damping ratio [-] 0.03 0.04 0.05 0.06 0.08 0.10

While earthquakes are recurrent and aperiodic on a continuum time scale, the stick-slip

of spring-block oscillations has mostly been periodic on a short time scale(see Fig. 2.3).

In this model, the excitation exists of gravity; earthquake ground motion and noise due

to friction. The relatively complex phenomenon of friction has a discontinuous behaviour

caused by the fact that the friction force always opposes the relative velocity between two

contacting surfaces which are subjected to friction. Then, friction may be a function of

the relative velocity during sliding. Furthermore, dynamic effects, such as pre-sliding and

varying break-away level, may be present.

2.2.2 Stationary stochastic process modelling the seismic ground

motion

A simple model used to represent an earthquake accelerogram is a filtered stationary

noise w(t). This signal has the real frequency content of the earthquake acceleration. In

this kind of model a White Noise (WN) models the earthquake acceleration at the bedrock,

while a Single Degree of Freedom (SDoF) system defines the filtering effects of the soil

layer crossed. Indeed the soil filters the frequency content of the signal. Two parameters

characterizes this SDoF system: the damping ratio ξg and the circular frequency wg . The

ground acceleration ast is defined as the absolute acceleration of the filter:

ẍ+ 2ξgwgẋ+ w2
gx = −w(t) (2.17)
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ast = ẍ+ w(t) = −(2ξgwgẋ+ w2
gx) (2.18)

The power spectral density function of the filtered WN is

s(w) = s0|H(iw)2| (2.19)

where H(iw) is the complex frequency response function of the filter and s0 is the

Power Spectral Density (PSD) of the WN excitation. This filter is a linear second order

one, so the PSD of the filtered process is

s(w) = s0
[1 + ξ2g(

w
wg
)2]

[1− ( w
wg
)2]2 + 4ξ2g(

w
wg
)2

(2.20)

This model to estimate the PSD of the earthquake acceleration is known as the Kanai-

Tajimi one. From Eq. 2.16, we get Eq. 2.17 as

ü+ 2ξgwgu̇+ w2
gu = −üg (2.21)

such that, üg denotes the ground acceleration: horizontal motion of bedrock. The

bedrock acceleration is related to the earth surface motion through the above differential

equation.

u: vector of all translational and rotational degrees-of-freedom relative to earth surface.

The dynamic effects of the sublayer deposit are specified by a Kanai-Tajimi filter with the

parameters ξg and wg.

{üg(t), t ∈ [0,∞]} is modelled as a modulated Wiener process.

ügdt = β(t)dB(t) (2.22)

β(t) is a deterministic intensity function.

{B(t), t ∈ [0,∞]} is a unit Wiener process, which is a Gaussian process with the incre-

mental properties.

E[dB(t)] = 0, E[dB(t1)dB(t2)] =

 0, t1 ̸= t2;

dt, t1 = t2.
(2.23)
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The integrated system of differential equations consisting of the structural system equa-

tions Eq. 2.15, and the filter equation Eq. 2.21 can then be written as the Stratonovich

differential equations. Appearance of the resonant effect is in an amplification of ground

motions, which can be as large as a factor ten relative to the rock sites [73] at different

frequencies between 0.3 to 15Hz.

2.2.3 Non-linear viscoelastic model: Numerical modeling of col-

liding structures to estimate the induced pounding forces

The proposed model is a nonlinear spring following the Hertz law of contact [74]. An

other complex phenomenon involving plastic deformations at contact points is structural

pounding. It causes local cracking or crushing, fracturing due to impact, friction, etc.

Forces created by collisions are applied and removed during a short interval of time ini-

tiating stress waves which travel away from the region of contact. The process of energy

transfer during impact is highly complicated which makes this type of problem difficult

in the mathematical analysis. In general, to calculate impact force during contact we use

the formula:

Fim(t) = kstδ
n(t) + cimδ̇(t) (2.24)

such that kst represents the stiffness of impact, δ represents the relative displacement, δ̇

represents the relative velocity, and cim denotes the damping coefficient. For n = 1, we are

talking about linear systems, but in this thesis, n = 1.5 because of the nonlinearity of our

systems. We should obtained kst by iteration of experimental and numerical simulation

of the peak pounding force. And then cim = 2ζim

√
kst

√
δ(t)me for nonlinear systems.

Where me =
m1m2

m1+m2
; mi (i=1,2): masses of colliding structures.

The deformation δ(t) is expressed as δ(t) = x(t)− d where d is the initial separation gap

between the spillway and the abutment and x(t) is the displacement of the spillway for

example.
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2.2.4 Law of the conservation of momentum and Newton’s colli-

sion rule govern in collision between two systems.

Let us consider for example the collision between m1 and m2. Suppose vi and v+i to

be the velocity just before and just after the impact between the masses, respectively.

Therefore, Newton’s collision rule implies that

v+1 − v+2 = −ϵ(v1 − v2) (2.25)

where ϵ is the coefficient of restitution. It can be obtained from that eq.2.26.

ϵ =
v+2 − v+1
(v1 − v2)

(2.26)

The case of a fully elastic collision is ϵ = 1. Hence ϵ = 0 represents a fully plastic one.

The rule of conservation of momentum determines the velocities just after the collision:

m1(v
+
1 − v1) = m2(v2 − v+2 ) (2.27)

A collision between m1 and m2 happens when x1 ≥ x2 and v1 > v2. In this case, the

post-collisions velocities are

v+1 = v1
m1 − ϵm2

m1 +m2

+ v2
1 + ϵ

m1 +m2

(2.28)

and

v+2 = v1
m1(1 + ϵ)

m1 +m2

+ v2
(m2 − ϵm1)

m1 +m2

(2.29)

The state variables of the system are represented by the position and velocity of each

mass. Friction between the colliding bodies takes place during the whole time of impact.

For the reasons of simplicity, in the model, during the restitution period the minor energy

loss is neglected.
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We recognize that the equation of motion for a single degree of freedom (SDOF) system

under seismic action is generally expressed as:

mü+ cu̇+ ku = −müg (2.30)

We reminder that üg denotes the ground acceleration. The bedrock acceleration is related

to the earth surface motion through the above differential equation.

u: vector of all translational and rotational degrees-of-freedom relative to earth surface.

We can divided the Eq.2.30 by the mass, m, it results Eq.2.21, which demonstrates that

the response of a system due to an earthquake induced ground acceleration only depends

on the natural frequency, wn, of the system and its critical damping ratio, ξ.

2.2.4.1 Adjacent deck segments of bridge model: a spillway/bridge which

interacts with an abutment

Let us consider the model of structural pounding as illustrated in Fig.2.3, used in

the study of the effects of earthquakes. At each instance of collisions, the structures are

subjected to short duration high magnitude lateral impulsive impact forces for which struc-

tures are not generally being designed as per the conventional design structural codes. In

the past, it is noticed that the pounding forces can be much higher than the seismic forces

calculated as per conventional design codes [75]. Pounding in bridges have lead to local

crushing and spalling of pier bents, abutments, shear keys, bearing pads and restrainer,

and also contributed to the collapse of decks. Parameters of interest in earthquake analy-

sis, are relative displacement and velocity, and total acceleration, which is simply the sum

of relative plus ground accelerations: ẍT (t) = ẍg(t) + ẍ(t). In a practical case, Eq.2.16

becomes the following equation

2ẍ+ 4.1ẋ+ 210.125x+ v(x, ẋ) + Ff − e(t) = ξ(t) (2.31)

The system consists of a mass m1 = 2kg (for instance), a frame (or spillway’s spans)

that provides stiffness to the system for example k1 = 210.125, and a viscous damper that

dissipates vibrational energy of the system c1 = 4.10. Each structural member contributes
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to the inertia (mass), elasticity (stiffness of flexibility), and energy dissipation (damping)

properties. These properties can be considered as separate components (mass component,

stiffness component, viscous component ) [77]. For an inelastic system, v(x, ẋ), is incor-

porated in the equation. When using Newton’s second law (see Eq. 2.15), we deduced

Eq. 2.31 including the impact force term, and the friction force term. Moreover, in Eq.

2.31 , v(x, ẋ) represents the pounding force which is equal to zero if x(t) < d (d is an

initial separation gap).

It is illustrated by Eqs. (2.24) when x(t) > d, where deformation δ(t) is expressed as δ(t) =

x(t) − d. t ∈ [0, 3] the displacement time history of the spillway, with e(t) = 2sin(14t)

where the external force is acting on the system with a certain frequency, w = 14 Hz,

and the maximum amplitude of the force is p0 = 2. v(x, ẋ) is given by the knowledge

of peak impact force during collisions and frictions. The friction can be expressed as:

Ff = −µNsgn(ẋ1).

where µ is the coefficient of sliding friction, N is the weight of elements in friction (N

=
n∑

i=1

(mig). ξ(t) is the normalized source of Gaussian white noise Eq. 2.3.

The equation of motion is written including the impact force term, v(x, ẋ), force between

two masses

v(x, ẋ) =



0, if x < ν;

c(x− ν)
3
2 + 1.98

√
2c(x− ν)

1
4 ẋ, if x > ν, ẋ > 0;

c(x− ν)
3
2 , if x > ν, ẋ < 0;

c = 2.47e106, ν = 0.005.

(2.32)

ν is the Poisson’s ratio of the soil. Recall that the deformation δ(t) is expressed as

δ(t) = x(t)−d where d is the initial separation gap between the spillway and the abutment.

Moreover Eq. 2.32 denotes the pounding force as Eqs.(2.24) [78]. It is a discontinuous

nonlinear contact- impact term with friction. This impact force between the spillway

and the abutment will be our concerned in the numerical simulation. As is the case

for most forced vibration problems, the diffusion vector e(t) is independent of the state

vector x. Then the associated Itô and Stratonovich differential equations of the problem

are equivalent. Fig. 2.4 shows the view of the spillway in 3-dimensions. The pounding

phenomenon is illustrated in Fig. 2.4(b) with an associated plan scale A. The Key plan
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of spillway and flushing sluice is shown in Fig. 2.4(c).

(a) (b)

(c)

Figure 2.4: view of the 3D spillway: (a): spillway of the project. (b): Main spillway and flushing

sluice (associated with plan scale A) (c): Key plan of spillway and flushing sluice

For piecewise-smooth systems it is important to record the transitions through the

discontinuity surfaces, i.e. at impacts or switches between different vector fields of the

system. Such transitions are called events and are triggered by zero crossings of scalar

valued event functions. Matlab solvers (such as ode45) contains built in routines for

detecting zero crossings of event functions have therefore been used here. The structural

model defined by eq.2.31 is the basis of the numerical analysis. We present the expression

as a first order system (non-smooth, non-stiff differential systems

y′(t) = f(t, y(t)), y(0) = y0 ∈ Rm, t ∈ [t0, tf ] ) with two components:

 y1(t) = x(t),

y2(t) = ẋ(t)
(2.33)

Then
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ẏ =

 ẏ1

ẏ2

 =


 y2

−4.1y2 − 210.125y1 − u(y1, y2)− e(t)))

 = f(t, y) (2.34)

It is assumed that the solution crosses the hyper-surface of discontinuity and a transver-

sality condition is satisfied. However, there are dynamical systems for which the solution

reaches the discontinuity surface and stays on it for some time and then goes out again.

This happens in the so called sliding mode regime for Filippov systems in which a switching

surface attracts, in finite time, nearby dynamics, so that trajectories become constrained

to remain on this surface. Such systems appear, for example, in mechanical and elec-

tromechanical systems under certain control techniques, ecology and population models.

2.3 Application: The dynamic behavior of a n-floor

storey

The dynamic behaviour of civil structure, which is shown in Fig. (2.5), needs to be

determined concerning pounding and consequently failure of the building. Fig. 2.5 shows

the pounding phenomenon in all the building. As an impact of Ntem (River closed to

Atlantic Ocean) Fault , local faults and densely jointed zones are found on the banks

along Ntem Canyon. The rocks closer to the bank of the Ntem Canyon, the rock may

be more fractured, that’s means ν = 0.0. Therefore, the building shall be away the bank

as far as possible to avoid the adverse effects on foundation excavation and rock support,

slope stability due to cross the joints. Structures may be subject to various types of

live load caused by events such as earthquakes, high speed winds. Therefore, pounding

effect is evident. We can illustrated the displacement of the structure at each floor and

the variability effects on the response dispersion. But, the potential damaging effect of

pounding remains difficult to estimate. The columns between the floors will be taken as

springs and the masses of the floor slabs are lumped at the floor levels. Additionally, a

motion exerts a small force on the lumped mass at each floor directly proportional to the

velocity of that degree of freedom. The horizontal vibrations of a one-storey building can

be conveniently modeled as a single degree of freedom (SDOF) (Fig. 2.5), because each

structural member contributes to the inertial (mass), elastic (stiffness or flexibility) and

PAUL NDY VON KLUGE, pvonkluge@yahoo.fr c⃝UYI 2021 Ph.D. Thesis



2.3 Application: The dynamic behavior of a n-floor storey 55

-0.2 0 0.2 0.4 0.6
0

0.5

1

1.5
t = 21

K
a
/2 K

a
/2

m
a x

d
=0

(a) -0.2 0 0.2 0.4 0.6
0

0.5

1

1.5
t = 21

K
a
/2 K

a
/2

m
a x

d

(b)

-0.2 0 0.2 0.4 0.6
0

0.5

1

1.5
t = 21

m
a
/2

m
a

K
a
/2

K
a
/2 K

a
/2

K
a
/2

x
d
=0

(c) -0.2 0 0.2 0.4 0.6
0

0.5

1

1.5
t = 21

m
a

K
a
/2

K
a
/2

K
a
/2

K
a
/2

m
a
/2 x

d

X: 0.5
Y: 0

(d)

-0.2 0 0.2 0.4 0.6
0

0.5

1

1.5
t = 21

k
a
/2

k
a
/2

k
a
/2k

a
/2

k
a
/2

k
a
/2

m
a
/2

m
a

m
a

(e) -0.2 0 0.2 0.4 0.6
0

0.5

1

1.5
t = 21

m
a

m
a

m
a
/2

k
a
/2

k
a
/2

k
a
/2

k
a
/2

k
a
/2

k
a
/2

(c)

Figure 2.5: Hysteretic (one, two, three)-DOF structural system modelled as mass spring system:

Simple vibration model of a building subjected to ground motion (b);(d);(f).

energy dissipation (damping) properties of the structure. In the analysis, two types of

dynamic excitation can be considered:

i). Time-varying forcing function F(t), (Fig. 2.5(b, d, f)) and

ii). Earthquake induced ground motion ẍg(t) (Fig. 3.11(c)).

The general mathematical representation of (SDOF) system is expressed using Newton’s

second law of motion as above. The forces acting on the mass at some time instant

include the external force (F(t)), the elastic (fs = Kx) or inelastic (fs = f(x, ẋ)) resisting

force, where K is the lateral stiffness of the system (force/length units), and the damping

resisting force (fd = Cẋ), where C is the viscous damping coefficient (force · time/length

units). The external force, the displacement x, the velocity ẋ and the acceleration ẍ are
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taken to be positive in the direction of the x − axis, therefore the resultant force along

the x-axis is F (t) − fs − fd, and applying the Newton’s second law (F = ma): see Eq.

2.16. Based on the given information about the mass of each floor and the stiffness of

each column, the mass matrix M, stiffness matrix K and damping matrix C, 3 × 3 each

matrix can be constructed as the equation of motion Eq. 2.16 under seismic excitation

undergoing pounding. Let suppose fp(t) = 0, n = 1, 2, 3, we get Eq. 2.16 where ẋ0 = v0

and x0 = x(0).

Vectors x and F store the floor displacements and applied loads at each floor, respectively.

x0 and v0 give the initial state (displacement and velocity) of the structure at time t = 0.

We can then illustrated the mass of each floor and the stiffness of each column, the mass

matrix, stiffness matrix and damping matrix can be seen as:

M =


ma 0 0

0 ma 0

0 0 ma

2

;

K =


2ka −ka 0

−ka 2ka −ka

0 −ka ka

;

Obviously, the inter-story yielding strength is random with truncated normal dis-

tribution. With the Rayleigh method, in which the damping matrix is assumed to be

proportional to the mass and stiffness matrix C = α1M + β1K.

Initially, an excitation pulled the first floor with a displacement s0, and suddenly got cut

at time t = 0 (see fig. 2.5). When a structure is in free vibration, the applied loading is

zero.

In case of a free vibration problem, F = 0. Initially, s0 is a the first floor displacement,

as shown in Fig.2.5, and suddenly got cut at time t = 0. The initial conditions of this

problem can be described as ẋ0 = [0 0 0]T and x(0) = [s0 s0 s0]
T . Convert

the given system into standard form:

ẏ = f(t, y),

ẏ(t) = f(t, y(t))
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y(t) =

 y1(t)

y2(t)


 y1(t)

y2(t) = ẏ1(t)

 =

 x(t)

ẋ(t)

;

and


 ẏ1(t)

ẏ2(t)

 =

 y2(t)

M−1[F (t)− Cy2(t)−Ky1(t)]

 (2.35)

For elasto-plastic frames under heavy excitation plastic deformations may accumulate

in such a way, that large permanent deflections occur, see fig. 2.5. The variance-response

of the storey displacements will be significantly influenced by the state variables (such

as the bending moment M for instance) which control the hysteresis are far from being

normally distributed.

This section highlight the fact that periodic impacts do not occur for some excitation fre-

quencies. Among many intrinsic material parameter, Poisson’s ratio (ν) describe tough-

ness and brittleness of materials. To withstand earthquakes excitation, the natural fre-

quencies of vibration of buildings are not close the ground motion frequency oscillation.

We recognized that the natural frequencies of buildings are determined primarily by the

masses of its floors, but also by the lateral stiffness of its supporting columns, (these last

one acted as horizontal springs). We can calculated these frequencies by solving for the

roots of a polynomial called the structure’s characteristic polynomial. Fig. 2.5(f) shows

the exaggerated motion of the floors of a three-story building. Let us supposed, each floor

has a mass m and the columns have stiffness k, the structure’s characteristic polynomial

is written:

(α− f 2)[(2α− f 2)2 − α2] + α2f2 − 2α3 (2.36)

Knowing that α = k
4mπ2 . If we found the positive roots of this equation, that’s means we

got the building’s natural frequencies in cycles per second. Hence to find the building’s

natural frequencies in cycles per second for the case where m = 1000kg and k = 5 ×

106N/m. The characteristic polynomial consists of sums and products of lower-degree

polynomials. The resulting positive roots and thus the frequencies, rounded to the nearest

integer, are 20, 14, and 5Hz.
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The SDOF system is analyzed; with natural frequency w = 7.85 rad/s, and damping

ratio ζ = 0.02 subjected to the same white noise excitation Wtk defined. This system is

characterized by the following equation of motion eq.2.21.

Where ṙ0 = 0; r(0) = 0; z(0) = 0 (initial conditions) see Fig. 3.11(c).

2.3.1 The practical study of seismic vulnerability in the southern

plateau area of Cameroon

The ground generally descends from north towards south at an elevation varied be-

tween 400 m and 700 m above the Atlantic Ocean level. No seismic study has been carried

out since the following analysis. The southern plateau area of Cameroon is a part of Congo

Stable Block. Tectonic features in the region mainly comprise folds and faults striking in

a generally NE−SW direction. A major fault ( Ntem Fault) runs in NE−SW direction

at some 500 m downstream of the proposed dam site. It controls the flow of Ntem river,

making the Ntem course bended from northwest to southwest and forming a waterfall of

35 height near the faulted zone, then linearly traced to the "Gorge Du Ntem" about 40

km. Several faults are encountered at Ntem Fault that generally strike NE30 ∼ 40, dip

northwesterly at an angle of 50 ∼ 60, each of limited fractured zone. They are filled with

breccia and cataclasite and are well cemented with fair behavior. It might be formed at

Mesozoic era to Eogene period. Given the terrain feature and earthquake history, Ntem

Fault is considered to be passive.

Since seismic network was built in Cameroon in 1984, there have been in our knowl-

edge only six unfelt events that were recorded. Earthquake data of the area bounded by

latitude (N − 4.33) degrees to (S − 0.33) degrees and longitude (E − 8.25) degrees to

(E − 12.25) degrees was searched by international seismological center (ISC) in United

Kingdom by the request of JICA study team, which indicate no earthquake that may

affected to the project site was found out from the ISC historical events in the period of

1904 − 1990 and ISC comprehensive catalogue in the period of 1964 − 1988. According

to Seismicity of West Africa [79], Ambrasey and Adams studied seismic data near some

important projects area. As shown in Table2.2 and Fig.3.8 illustrated, only three events

are depicted in the report which might be affected to these projects site.
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Table 2.2: Historical Earthquakes near the Project Area

Date Epicenter M r I Ah

1903 June 10 3N10.0E 4.4 79.4 3.7 13.0

1911 March 26 3.1N11E 5.7 119.3 4.6 24.8

1913 October 9 3.8N12.3E 5.1 280.0 1.6 3.1

Where M is the magnitude, r is the distance from the epicenter of earthquake to the

site in kilometer. The Intensity I for the site can be by theoretically calculated using the

modified Mercalli Scale

I = 8.0 + 1.5M − 2.5lnr (2.37)

(by Cornell , [80])

Hence Ah, Acceleration in cm/sec2 theoretically calculated

LogAh = 0.014 + 0.30I (2.38)

(by Trifunac and Brady, [81])

The analysis for an earthquake coefficient based on the relation between intensity felt

at the site as above listed and frequency of occurrence (Nc) in the period for 100 years

and 250 years by ISC method, Japan Meteorological Agency (JMA) method and Munich

Reinsurance (M.R.) company. The results of the analysis are calculated and summarized

as shown in Table2.3

Table 2.3: Calculation of Earthquake Coefficient

Return Period ISCmethod(i) JMAmethod(ii) M.R.(i)

100 years 2.5(= 5.8gal) I − II(2.5gal) ...

250 years 4.0(= 16.4gal) III(= 14gal) 5 or blow (<

32.7gal)
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Where (i) logAh = 0.014 + 0.30I (I: Intensity in ISC scale)

(ii) a(gal) = 0.45 ∗ 10S/2 (S: Intensity in JMA scale)

From the above calculated, the earthquake coefficient (k = gal/980) is resulted as k =

0.0006Ą say; k = 0.01 for the return period of 100 years and k = 0.03 for 250 years re-

spectively. The value of k = 0.01 is the proposed earthquake coefficient for the Nachtigal

Amont Hydropower project locating some 350 km northeast of Memve’ele project site.

As defined in American regulation No. ER1110− 2− 1806, Operating Basic Earthquake

(OBE) is an earthquake that can reasonably be expected to occur within the service life

of the project, that is with 50-percent probability of exceedance during the service life. (

This corresponds to a return period of 144 years for a project with a service life of 100

years). For conservative design, OBE is currently recommended to be 0.03g (correspond-

ing to a return period of 250 years as calculated in 1993) and MCE to be double of OBE,

i.e. 0.06g for Memve’ele hydroelectric project.

To sum up, Memve’ele hydroelectric power development project is tectonically and seis-

mologically located on a stable block. Therefore, full-scale validation (monitoring) of

structural response through recorded wind and earthquake excitation is important. The

non-smooth properties can be exploited to design new mechanical devices. As suggested

in this work it opens up the possibility of, for example, fast limit switches and energy

transfer mechanisms.

2.3.2 Thom’s theorem in case of the so-called conditional catas-

trophes; Probability of failure.

Normally, structural failures occur due to extreme loads exceeding the residual strength.

The load-carrying capacity of buildings leads to a singular point on the equilibrium surface

of structures. Thus, the defect sensitivity can be expressed in terms of the bifurcation

set in the catastrophe theory. The conditional probability p0 is used to determine the im-

perfection sensitivity curves or surfaces from the singularity condition in the catastrophe

theory. Therefore in structural reliability, models are established for resistances R and

loads S individually and the structural reliability is assessed through the probability of
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failure. Probability of failure

pf = P (R− S < 0) (2.39)

Reliability:

1− pf (2.40)

Let X be a random variable in an engineering application. The probability density function

(PDF) and cumulative distribution function (CDF) of X are denoted by fX and FX ,

respectively. Their relationship is

fX(x) =
∂FX(x)

X
(2.41)

Pf = P (M ≤ 0) = P (g(X) ≤ 0);X = (x1, ....., xn).

Introduce the joint probability density function fX(X) for the basic random variables X.

Then

Pf =

∫ wf

0

fX(X)dX (2.42)

where wf is the failure region defined by the limit state function (LSF).The assessment

of small failure probability in engineering design field to find intermediate failure events

during ground shaking is our motivation. That’s why the concept of conditional proba-

bility p0 of collapse subjected to static loads is used.

2.3.2.1 Illustrative examples

Fig.(2.5) is found in fractured bedrock i.e., ν = 0.0 (poisson’s ratio of the soil Eq.(2.32),

but for ν = 0.20, the rock is not fractured. The metamorphosed bedrock at depth generally

have poor permeability and fracture water is mainly stored in densely jointed zones and

faulted zones. From Eq.(2.31), we can illustrated pounding areas i.e. the discontinuous

points, see Fig.(3.12) (b). Let us considered the two-bay two-storey frame with their

collapses subjected to static loads, including one horizontal load P1 in each storey and
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a vertical load P2, as shown in Fig.(3.12). Both P1 and P2 are random and normally

distributed. The failure of the each frame is defined by the first-order rigid-plastic hinge

theory and then some dominant collapse mechanisms can be illustrated, as shown in

Fig.(3.12) as failure modes. The frame fails when any one of these collapse mechanisms

occurs. This means that it is a series system in each storey, i.e., the limit state function

(LSF) of this frame.

Concludingly, it is noted that the behavior of the system can be described by a response

variable y, which may represent, for example, the roof displacement or the largest inter-

story drift.

As second application, let us considered now the deviation of a cantilever beam, with

a rectangular cross-section, uncertain parameters and subjected to a uniform load. The

target failure region is a linear half-space, i.e., F = h(x) < 0, and h is a normal variable

so that the failure probability is analytically given by:

pf = p(h(x) < 0) = Φ(−b) (2.43)

Where Φ(.) is the CDF of standard normal distribution; to avoid the failure of the

cantilever beam, at the fixed end of the beam, the maximum stress should not exceed the

yield strength constant value σs. To illustrate the use of subset simulation (SS function),

consider estimating the failure probability of the following LSF: the cost function is:

Φ(b, w, l) = σs −
6σxl

w2h
− 6σyl

wh2
(2.44)

where l is the length of the beam, w and h are the width and height of the cross section

of the beam, respectively. They are uncertain parameters which are supposed to be inde-

pendent and have normal distribution, as specified in tb.2.4. The force σx, is horizontal

and σy, a vertical force. These forces are applied to the end of the beam.

We use σs = 100.46154 N as the threshold for the definition of the failure event, and

a failure happens when the cost is larger than threshold.

⋄ Failure to nonstructural elements:

Various parameters can expressed the seismic performance of structures under earthquake

loading. Some of these parameters can be correlated to the amount of motion of the build-

ing and the expected resulting failure to nonstructural elements. Nonstructural elements
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Table 2.4: random input factors.

Variable Distribution values in

sample 2

l ℵ 957.64

w ℵ 94.41

h ℵ 199.87

are often considered, because they experience the same movement as structural ones, but

fail at much less deformation. Furthermore, because nonstructural elements consist of a

vast group of necessary building items (for instance ceilings, partitions, furniture, lighting,

etc.), they usually make up a great percentile of the entire cost of the building [83]. The

performance of nonstructural elements is thus of great importance. Collapse mechanisms

should occur to nonstructural elements.

Supposed two performance indicators that can be correlated to the amount of failure

modes (or damage) to nonstructural elements, are the inter-story drift ratio IDRi and

the horizontal floor acceleration a[m/s2]. The inter-story drift ratio is defined as the ratio

of the relative horizontal displacement between two successive floors and the story height:

IDRi(t) =
xi+1(t)− xi(t)

hi

(2.45)

Herein, i is the construction level, xi is the horizontal displacement [m] of the floor of

construction level i (the floor of construction level 1 equals the first slab) and hi is the

construction level height [m].

The maximum absolute value of the inter-story drift ratio of construction level i over a

time-span t, is called IDRi:

IDRi = maxt|
xi+1(t)− xi(t)

hi

| (2.46)

We can summarized the probability of failure of the inter-story drift ratio of construction

level i over a time-span t in tb.2.5.

The floor acceleration ai(t) is illustrated as the horizontal acceleration of the top of

construction level i, is another collapse mechanisms that occur to nonstructural elements;
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Table 2.5: Estimated failure probabilities and the number of samples with different p0

p0 0.10 0.15 0.20 0.35

Failure probability

(here Pfss)

(0.1000) 0.1350 0.1328 0.1533

Number of samples 950.0 925 900 825

measured relative to inertial space:

ai = ühor(t) + ẍi+1(t) (2.47)

ühor(t) equals the horizontal ground acceleration. ẍi+1(t) denotes the acceleration of the

top of construction level i.

2.4 Numerical simulation of the probability density

Obtaining analytical solution of differential equations is in most cases, the most diffi-

cult challenge in continuous time dynamics. Since most ordinary differential equations are

not soluble analytically, numerical integration is the only way to obtain information about

the trajectory. Different methods have been proposed and used in an attempt to more

accurately solve various types of differential equations. However there are a handful of

methods known and used universally (i.e., Runge-Kutta, Adams-Bashforth and Backward

Differentiation Formula methods). All these methods discretize the differential system to

produce a discrete system of equation or map. The methods obtain different maps from

the same differential equation, but they have the same aim; that the dynamics of the map

should correspond closely to the dynamics of the differential equation. In this work, we

use the fourth order Runge-Kutta algorithm and other numerical methods which depend

on what we want to find.

2.4.1 The fourth order Runge-Kutta algorithm

The fourth order Runge-Kutta is a much more locally accurate method. Let’s consider

the following problem
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
dy
dt

= f(t, y),

y(t0) = α,
(2.48)

and define h to be the normalized integration time step size and set ti = t0+ ih. Then

the following sequence of operations

Uo = α

Ui+1 = Ui +
h

6
(k1 + 2k2 + 2k3 + k4), for i = 0, 1, ..., n− 1 (2.49)

computes an approximate solution, that is Un ≈ y(tn). k1, k2, k3 and k4 are the coef-

ficients which have to be evaluated in each stage of the loop (of the fourth order Runge-

Kutta algorithm) by the formulas below:

k1 = f(ti, Ui)

k2 = f(ti +
h

2
, Ui +

h

2
k1)

k3 = f(ti +
h

2
, Ui +

h

2
k2)

k4 = f(ti + h, Ui + hk3) (2.50)

In the case of differential equation of Filippov’s type of which we are particularly

concerned with in the framework of this dissertation, the above algorithm is slightly

modified to take into account the piecewise definition of the differential equation. Consider

the following Filippov type equation


dy
dt

= f(t, y) =

 f−(t, y), if y < β;

f+(t, y), if y > β.

y(0) = α,

(2.51)

where y = β defined the switching boundary, that is the manifold of the state space

on which the right-hand side (f(t, y)) of Eq. 2.54 changes discontinuously. The algorithm

used to obtained the approximate solution of this equation (Eq. 2.54) is given as follows:
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U0 = α

Ui+1 =

 Ui +
h
6
(k−

1 + 2k−
2 + 2k−

3 + k−
4 ), if Ui < β;

Ui +
h
6
(k+

1 + 2k+
2 + 2k+

3 + k+
4 ), Ui > β.

(2.52)

where

kj
1 = f j(ti, Ui)

kj
2 = f j(ti +

h

2
, Ui +

h

2
k1)

kj
3 = f j(ti +

h

2
, Ui +

h

2
k2)

kj
4 = f j(ti + h, Ui + hk3) (2.53)

j ∈ −,+ The Runge-Kutta method is very widely favored as:

⋄ It is easy to use and no equations need to be solved at each stage;

⋄ It is highly accurate for moderate h values;

⋄ It is a one step method, that is; Ui+1 only depends on Ui;

⋄ It is easy to start and easy to code.

In the special case when f(t, y) = f(t), we have

y(t) =

∫ t

t0

f(t)dt+ y(t0) (2.54)

and the task of evaluating this integral accurately is called quadrature. To solve any

differential equation with the fourth order Runge-Kutta algorithm, we need to put it into

the standard form given by Eq. 2.48.

2.4.2 Other numerical methods

The other numerical methods used in this dissertation help us to plot the results

obtained with the fourth order Runge-Kutta algorithm and other curves such as the

dependencies of the period and the amplitude with respect to parameters of the oscillator,

the dependencies of the phase differences between coupled oscillators with respect to time

or coupling coefficients.

PAUL NDY VON KLUGE, pvonkluge@yahoo.fr c⃝UYI 2021 Ph.D. Thesis



2.4 Numerical simulation of the probability density 67

X The pair of explicit RK formulas of Dormand and Prince (DOPRI) [84] of

orders 4 and 5, for the numerical solution of PWS systems.

An adaptive Runge-Kutta code, based on the DOPRI (5, 4) [85] pair for solving Initial

Value Problems for differential systems with Piecewise Smooth solutions (PWS) is used

and the algorithms used in the code are described. The code automatically detects and

locates accurately the switching points of the PWS, restarting the integration after each

discontinuity. Further, in the case of Filippov systems, algorithms to handle properly

sliding mode regimes in an automatic way are included. The code requires the user to

provide a description of the IVP and the functions defining the hypersurfaces where the

switching points are located, and it returns the discrete approximated solution together

with the switching points.

We consider Initial Value Problems (IVPs) for differential systems with Piece Wise

Smooth solutions (PWS) that are defined by

ẏ = f(t, y); y(t0) = y0 ∈ Rm; t ∈ [t0; tf ]; (2.55)

where the vector field f : R × Rm → Rm contains bounded discontinuities either in

f itself or in some its derivatives on a smooth event hyper surface defined by g(t, y) = 0

(switching surface), so that f(t, y) can be locally written in the form:

f(t, y) =

 f−(t, y), for g(t, y) < 0;

f+(t, y), g(t, y) > 0.
(2.56)

with the sufficiently smooth functions f− and f+ satisfying a local Lipschitz condition

with respect to y in a tubular domain around the solution of Eq. 2.55 in their definition

domain. These PWS systems are also called switching systems, and some authors con-

sider them as hybrid systems. It is assumed that the solution crosses the hypersurface

of discontinuity and a transversality condition is satisfied. However, there are dynamical

systems for which the solution reaches the discontinuity surface and stays on it for some

time and then goes out again. This happens in the so called sliding mode regime for Fil-

ippov systems [86] in which a switching surface attracts, in finite time, nearby dynamics,

so that trajectories become constrained to remain on this surface.

X A Variable-Step Fourth-Fifth-Order Runge-Kutta Solver
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For problems in which the time increments are not much shorter than the shortest natural

periods involved in the system, and for problems involving hard nonlinearities, such as

problems involving impact or friction, fixed-step Runge-Kutta solvers may be numerically

unstable. In such cases one may attempt a re-analysis using a shorter time step for every

time step, or one may use a solver in which the large fixed time-steps are automatically

subdivided only when necessary. A feature of such variable time-step solvers is that a

desired level of accuracy may be enforced throughout the simulation, by comparing a

fourth-order accurate solution with a fifth-order accurate solution. The implementation

of the fourth-fifth order solver discussed here was proposed by Cash et al. [87]. The com-

ponents of the structural system have first-order dynamics (for example, visco-elasticity

or Bouc-Wen hysteresis): hence the first order dynamics can be appended to the state

vector, and the simulation of the second order structural system coupled with the first

order structural components can proceed in the same time.

X Subset Simulation Subset Simulation is an adaptive stochastic simulation procedure

for efficiently computing small failure probabilities. Strictly speaking, it is a procedure

for efficiently generating samples that correspond to specified levels of failure probabili-

ties in a progressive manner. Monte Carlo simulation (MCS) [88] is robust to the type

and dimension of the problem, however it is not suitable for finding small probabilities,

because the number of samples, and hence the number of system analyzes required to

achieve a given accuracy is proportional to 1/Pf . A more advanced method is Subset

Simulation [89, 90] (SubSim) which compensate this drawback. In this procedure, the

failure probability is expressed as a product of conditional probabilities of some chosen

intermediate failure events.

2.5 Conclusion

This chapter has presented the mathematical formalisms needed for analytical in-

vestigations and the numerical methods used to integrate the ordinary differential rate

equations of the system. We started by presenting the analytical methods and some

mathematical formalisms. After that, the numerical methods and some computational

techniques both utilized to solve the ODEs and to characterize dynamical behavior of
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the system have been described. The mathematical basis, for the pounding phenomena,

on which most of response analysis methods are founded, is discussed. Furthermore,

specific nonlinear stochastic response phenomena are encountered, discussed, explained

and compared with specific deterministic nonlinear response phenomena. The analytical

treatment of these models, which are differential equations of Filippov type, is found to

be very cumbersome. Therefore, the main results are based on numerical treatments. The

results of numerical simulations are presented in the next chapter with the discussions.
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Chapter 3

Results and discussions

Introduction

3.1 Introduction

In the previous chapters, we have provided the generalities on non-smooth systems,

impact-friction phenomena and failure events in structural buildings. We have also mod-

eled the pounding effects in civil structures and have given failure phenomena in building

structures subjected to natural hazard excitations. In the present chapter, we bring out

our results. Thus, we present an archetypal self-excited SD oscillator with dry friction

under excited stochastic base-driven stick-slip. We investigate the dynamic response,

stability, and bifurcation behavior of this non-smooth nonlinear dynamical systems un-

der stochastic excitation. Secondly, we illustrate the impact-friction behavior between a

spillway and the abutment and between three floors building with adjacent structures.

Thirdly, we present plastic deformation during excitation that is allowed in special parts

of the structure, often called plastic hinges, while the rest of the structure remains in its

elastic range. The calculation of failure probability associated with inelastic response is

performed using a Subset Simulation procedure.
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3.2 Friction processes upon geometrical nonlinearity with

large deformations in the case of SD oscillator

It is evident that a deep analyzing of the role of non-smooth sliding process of our

model is of crucial importance in the nature and many engineering cases. Friction pro-

cesses upon geometrical nonlinearity with large deformations open new windows to ob-

serve ’Tom’s catastrophic Theory’ in SD oscillator. In mathematics, catastrophe theory

is a branch of bifurcation theory in the study of dynamical systems; it is also a particu-

lar special case of more general singularity theory in geometry. Hence, René Thom calls

catastrophe theory the application of specific mathematical results in the field of differ-

ential topology and the theory of singularities. The applications of classical catastrophe

theory to engineering problems have been pioneered by Michael Thompson. In partic-

ular, the books with Giles Hunt [91, 92] serve as standard reference. Our goal was to

make this illustration homogeneous and easy to follow in the sense that each bifurcation

type is demonstrated as failure event on the same type of structure (continuous beam

with supports displacement, shear, buckling, ...), as a result, some illustrations are some-

what due from natural hazards). We have computed Eq. 2.9 numerically to illustrate

the theoretical predictions using fourth-order Runge−Kutta algorithm. In all the calcu-

lations we assume that: c = 0.048, xfk = 0.25; xfs = 1.0; f = 0.85; α = 0.4; C0 ̸= 0

(C0 = [g1 − α(1 − 1√
x2
1+α2

)]); C1 = C2 = 0; µ = 0.5. The stick-slip behavior in fric-

tion oscillators is very complicated due to the non-smoothness of the dry friction, which

is the basic form of motion of dynamical systems with friction. Furthermore, we intro-

duce a smooth function which approximates the discontinuous drift. The system exhibits

different shapes of periodic windows follow by a sudden occurrence of chaotic responses

certainly due to the jumps that are characteristics of ’grazing-sliding bifurcations’.

Fig. 3.1 shows the time histories and phase plane plots of the solution with friction

coefficients µ = (0.0; 0.1; 0.3). It shows the influence of friction coefficient in the

dynamic of the system. The stick-slip friction and limit cycle oscillation (LCO) are really

identified in Fig.3.1(b, c). Therefore, Fig.3.1(d, e) shows a segment of trajectory crosses

the sliding region, enter into the slipping region and joins back the sliding surface. The
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Figure 3.1: Friction oscillator with external excitation: sliding filippov method : c =

0.048; α = 0.4; g1 = 2.0; f0 = 0.85; Ω = 1/3: (a) Phase plane plot µ = 0.0

(b) Phase plane plot with friction (c) Limit cycle occurred in Phase plane plot as

friction increases ((d)-(e)): Dynamics at the transition from stick to slip
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stick and slip phases are consecutive. Thus, to verify directly the dynamical features of

the motion patterns transition we focus at the statistic occurrence of sticking and sliding

times, i.e., the distribution of time intervals the load spends in states vr = 0 (sticking

events) and vr ̸= 0 ( sliding events). The transition value from stick to slip is reached at

Gs = µFN . The slip event finishes for x2 = v0. Besides, we can count the same number

of sticks and slips because the system response ends during a slip mode Fig. 3.1(d, e).

We count the first slip just after the first stick. The sliding segment shows the generation

of an additional slipping segment at the boundary. Besides, if the system response ends

during a slip, the number of sticks is equal or the number of slips. The system response

is composed by a random sequence alternating stick and slip-modes. The number of

time intervals in which stick or slip occurs, the instants at which they begin, and their

duration can be estimated. Considering that base speed is constant in time, knowing the

mass position when a stick starts, it is surely possible to predict its duration.

We consider the bifurcations under changes in the driving force and frequency.

From Fig.3.2, both periodic and chaotic responses are showing. Respectively, period−1,

period-2, period-3 and chaotic responses, are presented. It should also be pointed out that

there is an abrupt transition from the periodic to chaotic response and, afterwards, from

the chaotic to the periodic response. The presence of ’grazing sliding bifurcations’ may

cause a sudden jump to chaos. Sliding bifurcations introduce discontinuous transitions

between different motions. It is also found that sliding dramatically change the character-

istics of the frequency-response curve. From the smooth to discontinuous regime, periodic

windows and chaotic responses are found. In a smooth dynamical system that exhibits

chaos, in the absence of noise a chaotic attractor is structurally unstable , whereby, the

periodic windows are found and occupy open sets in the parameter space (see Fig.(3.2(c,

d, e)). It is found that, for a fixed set of parameters, a special chaotic orbit exits there

which fills a finite region and connects a series of islands dominated by different chains

of fixed points. Indeed, a transition from regular to chaotic dynamics occurs through

chains of bifurcations where equilibria and cycles are first links (see Fig.(3.2(d, e)). Under

stochastic excitation, the shape and size of attractor and saddle can change. They are

respectively called the random attractor and the random saddle. The possible structural

changes of the asymptotic behaviour of the system under parameter variation, called bi-
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Figure 3.2: Bifurcation diagrams for displacement x = x1 versus f, (x0 = 1, y0 = 0),

c = 0.048, xfk = 0.25; xfs = 1.0: (a) α = 0.4, C1 ̸= 0, C2 = C3 = 0,(b)α = 0.0 ,C1 ̸= 0,

C2 = C3 = 0. (c) α = 0.4, C1 ̸= 0, C2 = 0.45, C3 = 0.5; (d) α = 0.4, C1 ̸= 0, C2 = 0.015,

C3 = 0.25; (e) α = 0.4, C1 ̸= 0, C2 = 0.0, C3 = 0.25
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furcations. A slight modification in a parameter value can give rise to a radical change in

the system behaviour. Therefore, through successive bifurcations where equilibriums and

cycles are first links (see Fig.(3.2(d, e)) a transition from periodic to chaotic dynamics

occurs. The shape and size of ’random attractor’ and ’random saddle’ can change under

stochastic perturbation.

3.2.1 Hard bifurcation in SD oscillator

In many practical situations applications we need to estimate the probability of failure

of a complex system. The need for such estimates come from the fact that in practice,

while it is possible (and desirable) to minimize the risk, it is not possible to completely

eliminate the risk. No matter how many precautions we take, there are always some very

low probability events that potentially lead to a system’s failure. All we do is to make

sure that the resulting probability of failure does not exceed the desired small value p0.

For example, the probability of a catastrophic event is usually required to be at or below

p0 = 10−9.

Fig.3.3(a, b) illustrates the influence of friction in the system. With the increasing of

the noise intensity, Fig.3.3(a) shows a "hard" bifurcation. A hard bifurcation is defined

as discontinuous change in the density function or support of a stationary measure of the

system. The stationary measures provide the eventual distributions of typical trajecto-

ries. Their supports are the regions accessible to typical trajectories in the long run. In

such systems, there can be more than one stationary measure and more radical changes

can occur in response to parameter changes. In the theory of mechanical vibrations,

mathematical models are helpful for the analysis of dynamic behavior of the structure

being modeled [93]. In the opinion of Meunuer and Verga [94], due to lack of certain

relationship between the shape variations of stationary probability density function and

the random excitation, it is difficult to describe the true change of topological property

of a stochastic system simply based on the shape change of stationary probability density

function. For multiple cycles, noise induces a special type of P-bifurcations. As the noise

intensity (or smoothness parameter) increases, peaks of the probability density function

merge and multiplicity of cycle is appeared. While in Fig.3.3(b) (µ = 0), the appearance

of p-bifurcation diminishes with the increases of noise intensity. In [95] a loss of stability
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Figure 3.3: from figure 3(a): Stationary amplitude distribution for: D = 0.001; c =

0.048.f01 = 0.85, C1 ̸= 0, C2 = C3 = 0 (a) α = 0.4, (b) α = 0.0. (c) α = 0.4 (d) µ = 0.10

(e) µ = 0.2; (f) µ = 0.3;
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of an invariant set is called hard if it involves a discontinuous change in Fig.3.3. The

following changes is identified in the density functions:

1. the density function of a stationary measure might change discontinuously (including

the possibility that a stationary measure ceases to exist), or

2. the discontinuous change of the support of the density function of a stationary measure.

Fig.(3.3) also shows how adding a small amount of noise to a family of ordinary differential

equations unfolding a bifurcation lead to a hard bifurcation of density functions. We also

observe here that, as friction coefficients increase, peaks number increase, consequently

appearing of p-bifurcation (see Fig.3.3(d, e, f) for µ = 0.1, 0.2, 0.3). It is also an

easy fact that the density function for the stationary measure varies continuously with

any parameter of the system. In light of these facts, Zeeman proposed that a bifurcation

in a stochastic system be defined as a change in character of the density function as a pa-

rameter is varied [96, 97]. He suggested left-right equivalence as the standard for change.

Such bifurcations have come to be known as phenomenological, or P-bifurcations.

We observe that under parameter variation, stationary measures of SD oscillator

can experience dramatic changes, such as a change in the number of stationary measures

or a discontinuous change in one of their supports, see Fig.3.4. When increasing the

damping coefficient. Fig.3.4(a) illustrates the increase in term of number of peaks and

probability density function (PDF). The same observation is recognized in Fig.3.4(b),

where the friction coefficients increase with the multiplicity of peaks number and height

value of pdf. As an alternative choice, we think that a deep experimental analysis into

the evolutionary behavior of the stochastic attractors may be helpful to understand the

stochastic bifurcation in a nonlinear system with noise. In this dissertation, a stochastic

attractor is taken as an invariant for a noisy steady-state response, and the sudden change

of attribution (number, size, attraction) of a stochastic attractor and/or a stochastic sad-

dle provides a topological change of a stochastic system to demonstrate the bifurcation

behavior. Fig.3.4(c, d, e) shows the same observation of increase of peaks number with the

increase of the smoothness parameter α = 0.0, 0.3, 0.5. The deterministic system

of the SD oscillator undergoes a pitchfork bifurcation when the smoothness parameter α

increases up to certain value. The stochastic P-bifurcation and the deterministic pitchfork

bifurcation in the SD oscillator are related. When α decreases to 0, the dynamics of the
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Figure 3.4: α = 0.4; f01 = 0.85, (a) and vary values of damping c = 0.0, 0.0141, 0.1;

C1 ̸= 0; C2 = C3 = 0 (b) C1 ̸= 0; C2 = 0.015; C3 = 0.25 and vary values of friction

coefficient µ; (c) α = 0.0 (d) α = 0.3; (e) α = 0.5
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SD oscillator suddenly becomes discontinuous. In the deterministic system, the velocity

flow goes through a jump when the system crosses from one well to another because of

the loss of local hyperbolicity.

We can summarized this subsection saying that, the shape of stationary probability den-

sity does not depend on the bifurcation parameter. These results have been already

observed by [98]. But, the stationary probability density function does change its shape

from a mono-peak one into double-peak one at a critical parameter value [99]. Thus, one

cannot help thinking about what has really happened for stochastic bifurcation, what is

the topological property of a stochastic system, what kind of invariance is suitable for

predicting stochastic bifurcation, and so on.

It is known that there is no single model that can describe a nonlinear system. Some me-

chanical elements can be represented with certain models, but their dynamic response will

depend not only on the model, but also in the system’s sensibility to the nonlinear terms.

To illustrate the statistical characteristic of a random dynamical system, the stationary

measure is an appropriate choice to describe the long term behaviour of solutions of dif-

ferential equations with random perturbations. The Phenomenological (P)-bifurcation

approach to stochastic bifurcation theory examines the qualitative changes of the station-

ary measures. There comes the idea that a stochastic attractor may be taken as invari-

ance for the randomly perturbed steady-state response. The shape, size and stability of

a stochastic attractor may be taken as its character. Whenever the character of an at-

tractor changes radically, there occurs the stochastic bifurcation. P-bifurcation is deemed

to occur when there is a change in the topology of the associated probabilistic structure

of the state variables. However, the P-bifurcation has the advantage of allowing one to

visualize the changes of the stationary density functions. Hence, for the P-bifurcation, we

are only interested in the changes of the shape of the stationary density.

The slight variation of a parameter has created the "grazing-sliding bifurcations".

The occurrence of ’catastrophic bifurcation’ transition phenomenon is characterized by

discontinuous jumps in the equations across a phase space limit. We were looking to the

shape, size and stability of a "stochastic attractor" that may be taken as its character.

Whenever the character of an attractor changes radically, there occurs the stochastic

bifurcation. P-bifurcation is deemed to occur with a change in the structural behaviour
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of the probabilistic structure of the state variables.

3.3 The dynamic behaviour of a spillway reinforced con-

crete (RC) building colliding with the abutment

The theory of structural pounding risk analysis may be considered as a branch of

applied probability theory. The main issue of this theory is to define an event called

"structural pounding" and to set up a "probability space" that contains that event. An

event here is the appearance of the stochastic bifurcation for instance. This modeling

part of structural pounding risk analysis is based on statistical information about the

uncertainty of the relevant parameters or knowledge about the inherent stochastic nature

of the applied earthquake loads. It is noted that out-of-phase vibrations may be induced

when adjacent buildings are subjected to earthquake loading and pounding may occur

if the separation distance is inadequate. This section considered stochastic bifurcation

(p-bifurcation) as instability zone. This instability increases pounding effect with weak

noise, hence high probability density function(PDF). Pounding between structures could

produce large acceleration demands (P0 big) on the floors which are directly involved

in collisions [101]. Forces created by collisions, commonly proceed over a short period

of time and the produced energy in pounding experience time is dissipated as heat due

to molecular vibrations and internal friction of colliding bodies [100]. Concerning the

phenomenon include impacts where contact forces suddenly and rapidly increase with

an associated rapid change in velocity of the impacting object, when the study on the

pounding of buildings in series or between several segments of a bridge is conducted, the

structural response during the time when contact takes place is essential. This is due to

the fact, that when the structural members rebound after collision they might come into

contact with other members. Moreover it may also happen that at the time of contact

between two given structural members other members may collide with each other. Not

surprisingly, the pounding probability is small for the cases that the periods of adjacent

buildings/ bridge are extremely closed and well separated [102]. During the whole time

of impact, friction between the colliding members takes place and this effect is especially

important in the case of rough surfaces. It has been shown that most of the energy which is
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dissipated during impact is lost during the approach period of collision and a comparably

small amount of energy is lost during the restitution period due to friction [103].

3.3.1 Probabilistic damage distribution

We recognized that for the longer bridge structures, it is often the seismic wave propa-

gation effect that is considered to be a dominant factor leading to pounding of neighboring

superstructure segments [104–106]. This effect, due to time lag and spatial variation of

seismic wave, results in different seismic input acting on supports along the structure [107].

We also recognized that the seismic wave have an amplitude of excitation, for instance

P0. The damaging is function of the value of P0. The behavior of a non-smooth system

can change when white noise is added. For pure self- excitation the changing point under-

lies a normal distribution. However, if external excitation is considered, the white noise

can cause a P-bifurcation for the distribution of the changing point coordinate [108]. P

-bifurcations are instabilities that appear with weak noise and decreased when increasing

noise.

For noise intensity ξ(t) ̸= 0.

We introduce a smooth function which approximates the discontinuous drift and apply

the Euler method with this input. The influence of the control gain α0 = (µN) determines

how quick the evolution of the sequence {x}n ≥ 0 switches around zero. In other words,

a big α0 minimizes the influence of the random variable ξ. The results of this numerical

investigation are shown in Figs.(3.5, 3.6). The chosen parameters are: α0 = 0.005; k =

210.125; c = 2.47e+ 6; ν = 0.005 [109].

For ξ(t) = 0.

In the numerical analysis, the spillway is modelled as a single-degree-of-freedom system

as shown in Fig.2.3. The resulting system of second order equation is recast as a system

of first order ordinary differential equations and solved using Matlab ’ode’ solvers (such

as ode45). We recognize that at some positions x(t) = y1(t) = ν or if x(t) = y1(t) > ν and

ẋ(t) = y2(t) = 0 the vector field f(t, y) is non-smooth. We can observed two switching

surfaces g1(y) = (y1 − ν) and g2(y) = y2. Moreover, the discontinuity limit (abutment

area) Σ separating the two areas is described as Σ = {x ∈ Rn : H(x) = 0}, where H is

a smooth scalar function with non vanishing gradient Hx(x) =
∂H(x)
∂x

on the discontinuity
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Figure 3.5: Stationary amplitude distribution and varied values of the noise intensity D:

k = 210.125; c = 2.47e + 6; ν = 0.005: (a) D = 0.0001, D = 0.001 (b) D = 0.00002, D =

0.0002 (c)D = 0.00004, D = 0.0004 .
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separation Σ.

3.3.2 Pounding between a spillway and an abutment: Structural

stability

Stability here leads the ultimate fate of the dynamics for perturbations of the ini-

tial conditions. Structural stability sometimes, deals with perturbation of the system

itself, i.e. perturbations of the own system, including parameter variations. Knowing

that the impact force term, v(y, ẏ) (an intermittent nonlinear discontinuous force), force

between two masses, the notion of structural stability is broadened to also encompass a

preservation in the event sequence, i.e. the order and number of interactions with dis-

continuity surfaces. This impact force v(y, ẏ) illustrated the same behavior as relations

Eqs.(2.24,2.32) in the sense of discontinuities. The abutment is a transversal barrier i.e.

Σ = {x ∈ Rn : H(x) = 0}, where H is a smooth scalar function with non vanishing

gradient Hx(x) =
∂H(x)
∂x

on the discontinuity separation Σ.

Two switching surfaces g1(t, y, y0) = (y − 0.005) (spillway’s area) and g2(t, y, y0) = y0

(after the abutment) are defined. (ν = 0.005 =Poisson’s ratio of the soil). When defining

the time impact-contact in between t ∈ [0, 3], the response crosses the surface g1 (area

of the spillway) twelve times and the surface g2 (region after the abutment) six times.

Hence the data corresponding to 18 switching points (i.e. impact-contact) defined in the

table (3.1). Numerical and experimental studies have shown that pounding introduces

impact loads in addition to the forces caused by the ground acceleration itself. Due to

pounding floor acceleration and inter-storey deflections are significantly amplified, which

is upsetting the serviceability of the structures i.e., damaging the non structural sensitive

in-house equipments. During collision of structures, there is a sudden break of momen-

tum of the displacement at the pounding levels which results in large and quick short

duration acceleration impulses in the opposite direction and causes a greater damage to

the structures. When these impact loads and acceleration spikes from pounding are too

high, then the structural system has to be modified by employing some of the impact

mitigation measures (see chapter 1 subsection 1.1.2).
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Table 3.1: occurrence of discontinuities corresponding to contact-impact friction and dis-

placement of structures during earthquake excitation

time (s) displacement

of the spill-

way (g1)

abutment

(transver-

sal region)

region g2

0.4006 0.0050 1 0.1664

0.4071 0.0055 2 0.0000

0.4172 0.0050 1 −0.0658

0.8384 0.0050 1 0.2095

0.8446 0.0055 2 0.0000

0.8543 0.0050 1 −0.0820

1.2818 0.0050 1 0.2079

1.2880 0.0055 2 −0.0000

1.2977 0.0050 1 −0.0811

1.7307 0.0050 1 0.2048

1.7368 0.0055 2 0.0000

1.7467 0.0050 1 −0.0799

2.1798 0.0050 1 0.2047

2.1860 0.0055 2 0.0000

2.1958 0.0050 1 −0.0799

2.6286 0.0050 1 0.2049

2.6348 0.0055 2 0.0000

2.6446 0.0050 1 −0.0799
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3.3.3 Analysis of pounding phenomenon under noise control

During an earthquake the ground motion is often defined by a time history of the

ground acceleration. It can be obtained in three directions by instruments known as

strong-motion accelerographs. When increasing the probability of pounding during an

earthquake, it is verified that strong ground motion in the near-field area has different

characteristics [110, 111]. A more advanced dynamic friction model has to be developed,

or to be utilized for systems containing high variations of normal load, namely with

impact-friction conditions.

We have defined two characteristics of noise intensity in Fig.(3.5, 3.6): very low noise

intensity and weak noise. We observed a high probability density function (PDF) for

D = (0.0001, 0.00002, 0.00004), but the peak of this PDF reduces with the increasing

of noise. The amplitude of propagation is reduced. Fig.(3.6)(a,b,c,d) shows the same

observation of appearance of p-bifurcation at very low noise intensities with height PDF

and p-bifurcation ceases to occur when noise intensity increases.

We reminder that pounding between structures could produce large acceleration de-

mands (p0 big) on the floors which are directly involved in collisions [101]. In Fig.(3.6)(e,

f), we fixed p0, the amplitude of external excitation and varying noise intensity. We ob-

served large oscillation with large amplitude at weak noise intensity. Hence p-bifurcation

occurs. The instability of the system is verified. The behavior of the system diminishes

with the increase of noise. We can summarized these two Figures saying that during earth-

quake excitation, for the impact-friction events at very low noise intensity, p-bifurcation

occurs and created instability that will increase pounding effects. The near-field buildings

will being impacting and destruct. The disasters will be very pronounced if the ampli-

tude of earthquake excitation p0 of sine wave is big [112, 113]. The seismic perturbation

decreases with the decreasing of p0. In the same manner, when increasing noise inten-

sity during impact-friction events, p- bifurcation occurs but at very low PDF, and the

amplitude of oscillation is reduced, so that pounding effects is diminished for near-field

buildings. We can note a relationship between impact-friction events saying that, small

noise intensity means continuous friction, hence high PDF, but if the noise intensity is

great, the impact event seems important with weak PDF. But successive jump effects can
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Figure 3.6: Stationary amplitude distribution and varied values of the noise intensity D:

k = 210.125; c = 2.47e + 6; ν = 0.005: (a) D = 0.01, D = 0.1 (b) D = 0.02, D = 0.2

(c)D = 0.04, D = 0.4; (d)D = 0.004, D = 0.015, D = 0.05; (e) amplitude p0 = 25; (f)

amplitude p0 = 2.0
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created continuous friction and impacting and the pounding force will influenced. These

results have also been shown by [114–116].

Hence, Based on the survey and investigations conducted by Jain et al. [117], it was

reported that there were mostly infill wall damages, column shear failures and possible

collapse due to pounding in many of closely spaced buildings. Pounding in bridges have

led to local crushing and spalling of pier bents, abutments, shear keys, bearing pads and

restrainer, and also contributed to the collapse of decks. From the inspection report of

Agarwal et al. [118] , it was reported that the Anand building and old Surajbari bridge

were severely damaged and collapsed due to pounding action. For P. Ndy Von et al. [119],

if P0, the amplitude of external excitation, then varying noise intensity. We observed large

oscillation with large amplitude at weak noise intensity. Hence p-bifurcation occurs. The

instability of the system is verified. For the impact-friction events at very low noise inten-

sity, p-bifurcation occurs and created instability that will increase pounding effects. The

near-field buildings will being impacting and destruct. The disasters will be very pro-

nounced if the amplitude of earthquake excitation p0 of sine wave is big (see Fig.(3.6)(e).

3.3.4 The switching behavior of the whole structure during pound-

ing phenomenon

The phenomenon of stick-slip is also very important during pounding effects at near-

field buildings during the seismic wave propagation. Fig.(3.7) shows the dynamic of the

transition of the wave. We reminder that ν is the Poisson’s ratio of the soil. Talking

about the switching surface g2, the vector field is discontinuous only when ẋ changes from

positive to negative. This can appeared when the space position x > ν. Sometimes, the

function defining the vector field at the region g1(y) > 0 is not defined when g1(y) < 0

due to the two fractional incommensurable powers 1
4

and 3
2
. As we have said above, f is

the vector field and continuous function. Therefore f+(td, yd) = f−(td, yd) at the switching

points and the transversality (in the abutments) condition is satisfied unless the vector

field is tangent to the switching surface (see Fig.(3.7)). The red horizontal lines that is

drawn in Fig. (3.7)(b, e)) are the discontinuous regions corresponding to the abutments.

Hence the gradient ∇g1(y)·f(t, y) = 1 for all y and ∇g2(y) = −210.125y1−c(y1−ν)
3
2 −r(t)
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Figure 3.7: Dynamics at the transition from stick to slip : the discontinuity points are

indicated by means of small circles k = 210.125; c = 2.47e + 6; ν = 0.005; (a) y0 = [3, 0]:

phase diagram,(b) y0 = [3, 0]: solution against time (c) y0 = [3, 0]: solution and derivative

against time; (d) phase diagram y0 = [0, 0], ν = 0.5 (e) y0 = [0, 0]: solution and derivative

against time (f) y0 = [0, 0]: solution and derivative against time;
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for switching points such that y2 = 0. The discontinuity points corresponding to contact-

impact areas between spillway and abutments are indicated by means of small red circles

(see Fig.(3.7)(c,f)). It can be verified that, the transversality condition is satisfied. But

this affirmation is not sure in some transitions points as: y2 = ẋ = 0, y1 = x > ν

and −210.125x(t) − c(x(t) − ν)
3
2 − e(t) = 0 (see Fig.(3.7)(d, e)). Since |e(t)| ≤ 2, and

|e(t)| ≤ 25, the switching points are transversal. The phase diagrams (x1 versus ẋ) are

founded in Fig. 3.7)(a, d).

In Fig. (3.7)(b, c, f)), the response, with the considered initial conditions, passes first

through a transversal discontinuity (abutment), then it enters a sliding region for a short

time until it exits it. After, it passes through two transversal discontinuities and enters into

another sliding region. The red dashed lines denote the switching points (not continuous

in the third derivative x(t)′′′).

For reminder: The discontinuity points i.e. contact- impact regions (where the third

derivative ...
x (t) is not continuous) are indicated by means of small circles. To recognize

the sliding regions, see Fig. 3.7)(b, c, e, f). The function (u(t)− ν(t)) is at the switching

region. The sliding zones represent to the intervals at which the functions vanishes. (The

dashed lines correspond to the switching surfaces in the phase diagrams plot 3.7(a, d)).

We can summarized Fig. 3.7 saying that for t2 ∈ [0, 3] the solution crosses the surface

g1 twelve times and the surface g2 six times. In all the cases the discontinuity is transversal.

We would like to mention that when considering the initial conditions, the response, passes

first through a transversal discontinuity, then it gets in a sliding area for a small time until

it exits it, then it continues through two transversal discontinuities and then it enters into

another sliding region.

The response with ′−′ in region g2 means that the solution exits from the sliding region.

The positive elements in that table mean that these discontinuities are transversal. (see

table3.1).

3.3.5 Overview of the selected earthquakes

A further overview of the selected earthquakes is given in Fig. (3.8). It shows the

magnitude and recorded peak acceleration in relation to the distance to the earthquake

epicenters but also the peak acceleration versus the magnitude of the earthquakes. The
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acceleration values are the absolute maximum values for each direction and the plotted

values are on the one hand the peak ground acceleration (PGA) recorded in the basement

of the spillway foundation. These values do not represent a total horizontal acceleration

component but the highest value of both sensors recording in one direction and the high-

est value of the other direction sensor and it should be emphasized that both of those

peak values of acceleration are not expected to occur at the exact same time. Although

Fig.(3.8)(b) seems to indicate that the peak acceleration grows with longer distance to the

epicenters, which is of course not the general case, it is important to see in Fig.(3.8)(a)

that the earthquakes whose epicenters are the furthest away from the project were gener-

ally of greater magnitude than those with epicenters closer to the edifice. The intensity of

pounding in neighboring structures due to earthquake is depended by many factors: the

Peak Ground Acceleration (PGA) of the earthquake, the distances of separation between

the buildings, soil configurations etc...
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Figure 3.8: Peak ground acceleration: (a) Earthquake magnitude in relation to distance to

epicenters, (b)Peak acceleration in relation to distance to epicenters. The dots represents

the peak ground acceleration (c) Peak acceleration in relation to earthquake magnitude.

The dots represents the peak ground acceleration
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3.3.6 Ground Motion Characteristics

Earthquake ground motion at a certain site, is determined by the various types of

seismic waves, their propagation paths and their corresponding arrival times at that site.

Because of the different arrival times of seismic waves, the intensity of the ground motion

varies with time [120]. Furthermore, due to discontinuities in soil conditions along the

propagation path, seismic waves can be subject to reflection, refraction, diffraction and

scattering [121]. Therefore, earthquake ground motion is a non-stationary process with

time-variant frequency content. Moreover, local soil conditions can cause a change in

the amplitude and frequency content of seismic motions. Ground motions measured on

free soil surfaces are therefore likely to differ from those on the surface of outcropping

bedrock [122]. This phenomenon is referred to as soil-amplification. Finally, due to

soil-structure-interaction, the actual base motion of a structure may significantly differ

from the corresponding free-field motion [122]. The size of earthquake ground motions

can be expressed into intensity and magnitude as shown in Table2.2. The intensity of an

earthquake denotes the severity at a particular location, based on qualitative observations

of human perception (for instance: felt by persons at rest, felt inside buildings, felt by all,

etc.) and building damage (cracks in external cladding, damage to masonry, etc.)

3.3.6.1 Different intensity scales

Several intensity scales exist, such as the Modified Mercalli Intensity Scale (grades I to

XII), the Medvedev-Sponheuer-Karnik Scale (twelve grades) and the Japanese Meteoro-

logical Agency Scale (eight grades, 0 to 7). The magnitude of an earthquake is a measure

of the amount of energy release, based on quantitative measurements. An example of such

a magnitude scale is the well-known Richter Scale. The Richter Magnitude is calculated

as the (base 10) logarithm of the maximum amplitude (in millimeters) of the recorded

seismogram on a Wood-Anderson seismograph, corrected for the epicentral distance. De-

tailed information on intensity and magnitude scales can be found in [123].

Ground motions can be expressed into three orthogonal components (two horizontal and

one vertical component). These components usually have dominant frequencies in the

range of 0.1 to 10 Hz [121, 122]. Vertical ground motions are often disregarded because
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the majority of structures are designed to carry vertical loads and are less vulnerable to

additional vertical loads, caused by earthquakes. Moreover, vertical components of ground

motions are usually weaker than the horizontal ones, although vertical components be-

come more significant for decreasing epicentral distance [121]. The two components of

the horizontal ground motion are often not correlated and have their maximum values

at different instants. The effect of the vector sum of the two components on the mag-

nitude of the total horizontal motion, can therefore be disregarded. In addition, ground

motions may cause torsional excitation of structures [122]. This is more likely to occur

for structures with an asymmetric plan. Rotational excitation is often neglected when

the structure’s base dimensions are relatively small compared to the predominant wave-

lengths of the earthquake. It can then be assumed that the same ground motion acts

simultaneously at all support points.

3.3.6.2 The influence of random character of earthquake ground motions

Due to the random character of earthquake ground motions, caused by the many

influence factors, such as focal source mechanism, epicentral distance, focal depth and

(variations in) geology along energy transmission paths, it is chosen to use recorded data

of earthquakes in this research see Table2.2, instead of generating them artificially [124].

Because the measurement instruments (seismographs) can be regarded as mass-spring-

damper systems, the measured data is corrected for the frequency dependency of these

sensors. Furthermore, bandpass filtering is applied to remove noise contamination. It is

assumed that this (corrected) measured motion is applied directly at all support points

of the structures base, thus neglecting soil-amplification, soil-structure-interaction and

rotational excitation. Moreover, in this thesis, both horizontal and vertical excitation will

be taken into account. We can summarize this section saying that: To preserve structural

integrity and prevent damage and injury to contents, numerous studies must be done to

understand the stochastic effect of seismic wave. With a monitoring system installed and

supplying full scale records of the structure response, considerable amount of data will

be available for investigation to avoid disaster during seismic events. The required gap

to avoid pounding is significantly determined by the table showing the impact-contact

(displacement) between the spillway and the abutment see table (3.1). Under certain
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conditions, the properties of the supporting soil must also be taken into consideration

due to its influence on the impact- friction events. If pounding appears in a foundation

of buildings it can be harmful. The impact forces that act during pounding can cause

additional sliding of the concrete or steel of the building. With high noise intensity

during the impact-friction effects, the pounding force is influenced. P-bifurcation occurs

with small peak of PDF. But weak noise intensity created a large probability density

function (PDF) (because of continuous sliding), hence a great value of pounding force.

The impact in this case is not big (friction is greater than impacting). If noise intensity

increases, (the impact is greater than friction), the pounding effects diminishes . In the

case of successive jump-impact-friction, friction and impact events can be proportional.

Hence friction increases the pounding effects. For the case of spillway and abutments, the

calculation must take in view for different loading cases, it mainly includes calculation of

sliding stability, overturning stability and stress under foundation. It is found that the

relative displacements of the spillway can be obtained by calculating the impact-contact

points of discontinuities of the system, which cannot be accessible without considering

pounding phenomena.

3.4 Dynamic reliability assessment: structural dynam-

ics

Structural dynamics is a branch of structural analysis which covers the behavior of

structures subjected to dynamic loading, which include people, wind, waves, traffic, earth-

quakes, and blasts. When the dynamic excitation is earthquake motion, the probability

density evolution method can be used to evaluate the seismic reliability of a nonlinear

structure with random parameters. Suppose in this section buildings close to each other

in fractured bedrock (earth), we reminder ν = 0.0 in this case. At time t = 21.0s,

Fig.2.10 shows the behaviour of buildings at different initial conditions. Fig.2.10(a, c, e),

with ẋ0 = [0 0 0]T and x(0) = [0 0 0]T , no motion occurred. But when

applying a sinusoidal excitation in Fig.2.10(b, d, f), we should observed the displacement

of each building. Unfortunately, the physico-mechanical properties of engineering materi-

als are always highly variable, uncertain or chaotic due to the complex in situ geological

PAUL NDY VON KLUGE, pvonkluge@yahoo.fr c⃝UYI 2021 Ph.D. Thesis



3.4 Dynamic reliability assessment: structural dynamics 94

conditions. Hence failure events are always present. Accurate determination of material

properties may be the most challenging part of the evaluation process. Median values of

material properties should be obtained.
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Figure 3.9: The transient response of an elastic/inelastic system: (a) hysteretic force,(b)

displacements (c) phase diagram y(2) versus y(1); (d) hysteretic diagram. ,

In Fig.3.9, the large deflections of the storeys are merely due to large permanent

rotations in the indicated yield hinge. Plastic deformation during excitation is allowed

in special parts of the structure (for instance cantilever or the slab), often called plastic

hinges, while the rest of the structure remains in its elastic range. These plastic hinges are

designed for high ductility, in order to ensure global stability of the structure. Because

the energy dissipation through plastic deformation is much larger than if the structure

would remain elastic, the load-capacity of the structural members can be significantly

reduced, resulting in a more economical design. Energy absorption in the inelastic range

of response of structures and equipment to earthquake motions can be very significant.

Fig.3.9(c) illustrates also the phase diagram when the force vanishes.

PAUL NDY VON KLUGE, pvonkluge@yahoo.fr c⃝UYI 2021 Ph.D. Thesis



3.4 Dynamic reliability assessment: structural dynamics 95

3.4.1 Inelastic behavior due to large deformation

The Bouc-Wen model has some advantages. It is a practically convenient represen-

tation of a force-displacement characteristic, which captures the essence of hysteretic

behavior. Moreover, the model is in the form of a differential equation and is thus easy

to incorporate in the equations of motion of the structure. Thus it is advised to provide

adequate gap between two buildings greater than the sum of the expected bending of both

the buildings at their top, so that they have enough space to vibrate.
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Figure 3.10: Displacements versus time: u0 = [0.05; 0.05; 0.05]; v0 = [0.0; 0.0; 0.0]

Concerning Fig.3.9(d), the large hysteretic energy absorption can occur even for struc-

tural systems with relatively low ductility such as concrete shear walls or steel braced

frames see Fig.1.9(c). Generally, an accurate determination of inelastic behavior necessi-

tates dynamic nonlinear analysis [125] performed on a time-history time step integration

basis. However, there are simplified methods to approximate nonlinear structural response
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based on elastic response spectrum analysis through the use of either spectral reduction

factors or inelastic energy absorption factors. Spectral reduction factors and inelastic en-

ergy absorption factors permit structural response to exceed yield stress levels a limited

amount as a means to account for energy absorption in the inelastic range. Based on

observations during past earthquakes and considerable dynamic test data, it is known

that structures can undergo limited inelastic deformations without unacceptable damage

when subjected to transient earthquake ground motion.

Fig.3.10 provides the motion of each story as drawn in Fig.2.10.
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Figure 3.11: limited inelastic deformations

3.4.2 Cumulative distribution function (CDF) and failure modes

In Fig.3.11, the movement of the structure is observed. Fig.3.11(c) presents the case

in earthquake excitation while the limit state of phase diagram of buildings constructed

in fractured rock in the standard normal space is shown in Fig.3.11(d).

In this research, for reasons of simplicity, to appreciate the failure modes, it is assumed
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Figure 3.12: Cumulative distribution function and failure modes

that the external excitation (earthquake) only acts in the lateral plane of the structure

(Fig.3.12), leading to a 2−D frame analysis. Hence, it suffices to model one portal. Two

switching surfaces g1(t, y, y0) = (y − ν) and g2(t, y, y0) = y0 are defined during pounding.

Noticed that ν = 0.00 =Poisson’s ratio of the soil for fractured bedrock, but ν = 0.20

if the earth is not fractured. The time impact-contact is taken between t ∈ [0, 3], the
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response crosses each surface of structures g1 and g2 twelve times respectively. Hence

the data corresponding to 24 switching points (i.e. impact-contact events) in case of

fractured bedrock Fig.3.12(b) but only 3 switching points of impact are observed when

the bedrock is not fractured Fig.3.12(c), see also table (3.2). The table illustrated the

impact-contact-displacement of the fractured earth is not shown here. Fig.3.12(d) shows

the phase diagram when the rock is not fractured. The switching areas are the red dashed

lines denote.

Table 3.2: contact-impact friction and displacement of buildings during earthquake exci-

tation for ν = 0.2

time (s) displacement

of the first

building

(g1)

abutment

(transver-

sal region)

region g2

0.0823 0.2000 1 1.5992

0.0862 0.2027 2 -0.0000

0.0922 0.2000 1 −0.6956

For reminder: The discontinuity points i.e. contact- impact regions (where the third

derivative
...
y (t) is not continuous) are indicated by means of small circles. The function

(y(t) − ν(t)) is at the switching region. The sliding zones represent to the intervals at

which the functions vanishes. (The dashed lines correspond to the switching surfaces in

the phase diagrams plot Fig.(3.11(d),3.12(d)). The response in region g2 with the sign
′−′ means that the solution exits from the sliding region. The positive elements in that

table3.2 mean that these discontinuities are transversal.

Numerical studies have shown that pounding introduces impact loads in addition to the

forces caused by the ground acceleration itself. A lot of impact areas are observed in case

of structures constructed in fractured bedrock than those constructed where the soil is

not fractured.

Recall that Pfss the estimator of failure probability. We recognized that the estimate pf
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obtained through MCS is unbiased. The geometry of the failure domain not influenced its

accuracy even the number of the random parameters involved. Instead, it only depends on

Pf and the number of samples N used in the simulation. p0 is adopted as optimal choice

of the conditional failure probability. The parameter p0 governs how many intermediate

failure domains Fj are needed to reach the target failure domain F , which in turn affects

the efficiency of Subset Simulation (SS). A very small value of the conditional failure prob-

ability means that fewer intermediate levels are needed to reach F but it results in a very

large number of samples N needed at each level for accurate estimation of the small con-

ditional probabilities. The CDF plots for p0 = 0.1, 0.15, ... are given in Fig.3.12(e, f), i.e.

The CDF plot for the cantilever beam and the inter-story respectively. The estimated fail-

ure probabilities and the number of required samples are listed in illustrated tables. (SS)

behaves differently by chosing different values of conditional catastrophes p0. The CDF

plot with p0 = 0.3, ... significantly jump all intermediated failure mode of the cantilever

beam and the inter-story. The conditional catastrophes probability p0 = 0.1, 0.15, 0.20, ...

are convenable for reliability analysis in case of very small values of p0 less than 0.3.

Concludingly, after evaluation of static (gravitational) load and the ground motion char-

acteristics, some structural applications are chosen. Subset Simulation (SS) is adapted

for simulating rare events and estimating the corresponding small tail probabilities with

intermediated failures. For typical engineering reliability problems, the failure probability

pf is very small, pf << 1. In other words, the system is usually assumed to be designed

properly, so that its failure is a rare event. Defining the reliability of an element in a

structure is completely dependent on the definition of failure. Different kinds of failure

can be considered for an element. Each of these failure types can be assessed separately,

and they can give different probabilities of failure or reliability indices. As a matter of

fact, each failure can have its own specific limit state function (LSF) or performance func-

tion (sometimes also called the safety margin) which will consequently lead to a specific

reliability index corresponding to that failure type. Hence, the CDF plot Fig.3.12(f) in

the case of inter-story isn’t adapted for all values of the conditional probability p0 > 0.3.

To come to the conclusion that, due to sudden applied loadings, undesired and unpre-

dicted stresses are characteristics of Thom’s theory. Given the design life of a structure,

the probability for a specific live load to cause a failure depends on the magnitude of the
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load structure it is designed to withstand (designed load).

3.5 Conclusion

The aim of this chapter was to present our results with some discussions. We have

solve some main problems namely. To preserve structural integrity and prevent damage

and injury to contents, numerous studies must be done to understand the stochastic effect

of seismic wave. With a monitoring system installed and supplying full scale records of

the structure response, considerable amount of data will be available for investigation to

avoid disaster during seismic events. The required gap to avoid pounding is significantly

important. Under certain conditions, the properties of the supporting soil must also

be taken into consideration due to its influence on the impact- friction events. During

collision, the forces produced act over a short period of time, due to random molecular

vibrations and the internal friction of the colliding bodies, energy is dissipated as heat.

If pounding appears in a foundation of buildings it can be harmful. The impact forces

that act during pounding can cause additional sliding of the concrete or steel of the

building. With high noise intensity during the impact-friction effects, the pounding force

is influenced. P-bifurcation occurs with small peak of PDF. But weak noise intensity

created a large probability density function (PDF) (because of continuous sliding), hence

a great value of pounding force. During the resolution of these different issues, it appears

many results summarized in concluding remarks.
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 Main Results of the Thesis

The scope of this thesis was based on investigating the phenomenon include im-

pacts where contact forces suddenly and rapidly increase with an associated rapid change

in velocity of the impacting object. Pursued in this work, was to model them with discrete

jumps in the equations describing the dynamics. We discussed current dissertation in the

dynamics of non-smooth systems, with an emphasis on stochastic bifurcation theory. We

have also studied the effect of noises on this model and demonstrate a practical applica-

bility of the SD oscillator. An introduction to the field of Non-smooth Structural Systems

is given in Chapter 1. This chapter provides a briefly historical background of pounding

phenomenon and the structural failure.

The second chapter was devoted to the methodological frame. We presented there the

analytical and the numerical methods used within this dissertation. We shown how to

construct the contact-impact friction in filippov’ case and illustrated the points of discon-

tinuity in the case of spillway-abutment as impacting points. As population of a country

increase, land become the scarcest resource, because of the land cost wise utilization of the

space becomes not a choice rather an obligation. Owners want to build their structure

aligned with their property line ignoring adjacent structure that lead to pounding. In

order to model highly non-linear pounding more-accurately, nonlinear viscoelastic model

have been developed. In practice, adjacent structures tremble out of phase due to differ-

ent dynamic characteristics. Moreover, in current design process, adjacent buildings with

insufficient clear spacing are designed as a standardize structure by ignoring the pounding

action during earthquake loading. This negligence causes failure of structures. This is

because of huge amount of additional shear forces and bending moments developed in the

columns due to repeated impulsive actions during tremor. The last chapter was concerned
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by our principal findings followed by some comments.

The main results that have been obtained in this thesis can be summarized as follows:

⋄ P-bifurcation occurs and created instability that will increase pounding effects.

⋄ Because of the presence of both impact-friction events, p-bifurcations should be observed

at weak noise intensities.

⋄ Some relationship between impact-friction events appears: small noise intensity occurs

when the time of friction (continuous) is greater than the impacting events, hence high

probability density function (PDF).

⋄ If the noise intensity increases, the impact events are great (small friction) with weak

PDF. But successive jump effects can create noisy system and great impact.

⋄ The damaging (collapse) is function of the value of the amplitude of excitation.

⋄ Separation distance between neighbouring structures reduces pounding damage as pound-

ing force is widely decreased for greater separation distance compared to low dimensional

gap element.

The (SD) oscillator which is a strongly irrational nonlinear system (often concerned by

engineering applications) is characterized with a coexistence of a stable limit cycle and

a stable equilibrium state. We observed a large disparity between development and un-

derstanding of smooth and discontinuous (non-smooth) systems. There is a substantial

departure in the dynamics from the standard one, at the discontinuous limit, in particular,

the velocity flow suffers a jump in crossing from one well to another, caused by the loss of

local hyperbolicity due to the collapse of the stable and unstable manifolds of the station-

ary state. Then, we have illustrated the phenomenon of pounding first with the abutment

and then with adjacent buildings and investigate the failure events. A simulation-based

approach is then employed to obtain accurate estimates of the pounding force statistics

and the results of these simulations was used to evaluate the accuracy of the simplifying

approach for pounding force assessment based on the proposed probabilistic model. We

observed large oscillation with large amplitude at weak noise intensity. For the impact-

friction events at very low noise intensity, p-bifurcation occurred and created instability

that will increase pounding effects. The near-field buildings has being impacting and de-

structed. The disasters were pronounced if the amplitude of earthquake excitation was

big. We have demonstrated that response of building is greatly affected in the direction
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of pounding (longitudinal) while response in transverse direction is almost negligible. It

is because the direction of pounding (longitudinal) is influenced by impact force but there

is only friction force acting on transverse direction. Before design and construction of any

structure it is necessary to step out and check the surrounding space of the structure to

avoid future problem as in the Gouache’s case in Cameroon.

 Open problems and future directions

The work carried out in this dissertation and the results so far obtained are a source of

encouragement for other studies. Other points of interest may be solved in the future.

⋄ We expect that these theoretical findings will stimulate experimental works taking into

account the stochastic contribution for eventual human life safety.

⋄ The minimum pounding free distance could be calculated in our models taking into

account the effects of delay.

⋄ Elastic structures with impacts show much severe pounding response than inelastic

structures, such systems arise in the analysis of bridges with seismic stoppers or the anal-

ysis of pounding of adjacent buildings. The sensitivity of the stochastic response and

failure probability to the size of gaps can be explored.
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Abstract
The stochastic model approach of a nonlinear non-smooth dynamical system with the probable occurrence of stochas-
tic P-bifurcations is devoted. The response probability density functions (PDF) for the stationary measure of a smooth 
and discontinuous oscillator under moving loads belt frictions is constructed. The appearance of abrupt changes and 
unpredictable events illustrate the complexity of the system. The stationary measure varies continuously with system’s 
parameters and describes various kinds of catastrophic events. In light of these facts, the behaviour of the “stochastic 
attractors” is examined through the stationary solution of the PDF. According to Zeeman, in the phenomenological 
approach in the presence of noise, “a change in character of the density function as a parameter is varied is known as 
p- bifurcation”. Numerous new events unique to non-smooth systems are observed under slight variation of system’s 
parameters. Discontinuous bifurcations are defined as the “hard bifurcations” that were the subject of Catastrophe theory. 
Peaks numbers increase as coefficient of friction µ (or smoothness parameter α) increases. Numerical simulations are 
presented that provide insights into the dynamics of these oscillators.

Keywords  Hard bifurcation · Stochastic attractor · Stochastic bifurcation · Self-excited SD oscillator

1  Introduction

Discrete and instantaneous transition are always observed 
in physical systems. Very often in engineering and biology, 
vibrations are influenced by physical discontinuities. The 
stick–slip phenomenon occurs.

Systems with friction as the state variables represent-
ing the system dynamics are confined to both subspaces 
at different instants of time belongs to the category of 
“discontinuous systems”. It should be noted that, because 
of discontinuous vector fields, we will focus on Filippov 
systems. Therefore, stick–slip phenomena are important 
examples of this last one. Some bifurcations referred as 
non-smooth bifurcations or C-bifurcations may occur.

Under the effects of periodic impulse and random force; 
the nonlinear system has some propensities to oscillate.

Complex behaviours occur in the system’s response 
including the transitions among the multiple motion 
patterns [1], chaotic phenomena [2] and bifurcation Phe-
nomenon, such as phenomenological [3]. Under the action 
of fast vibration friction properties change. There is the 
source of “self-sustained Oscillations” under certain condi-
tions. A lot of researches have been done in this field [4]. 
They are illustrated by a common phenomenon: switching 
behaviour upon appearance of intermittent events.

Systems with dry friction under necessary conditions 
show the catastrophic case (“grazing-sliding bifurcation”).

Non-smooth systems are receiving a great curiosity 
because of their ubiquity in applications of biological 
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and engineering nature. From interaction with the envi-
ronment, discontinuities occur naturally. Little attention 
has been paid on bifurcation behaviours of the nonlinear 
friction system characterized by geometric nonlinearities. 
Mechanical systems are subject to background vibrations 
and other sources of noise [5]: The possible structural 
changes of the asymptotic behaviour of the system under 
parameter variation. The stick–slip phenomenon and the 
related intermittent motion are the motivation of our stud-
ies, being the key driver of our non- smooth stochastic 
model.

For studying noise phenomena in nonlinear dynami-
cal systems coupled to a fluctuating environment one of 
the main statistical characteristics of these systems is the 
probability density of the solution. These have attracted a 
growing interest also from a theoretical point of view (see 
for instance [6, 7]). A whole new area of research is opened, 
surely not completely known when adding noise to the 
non-smooth dynamic system. The interplay of dry friction 
and random forces in terms of so-called P-bifurcations has 
been reported in [8]. Phenomenological bifurcations are 
defined here as changes in the distribution laws i.e. “the 
qualitative changes of the stationary probability distribu-
tion of amplitude”; alternatively, it is a sudden change in 
character of a “stochastic attractor” when the bifurcation 
parameter of the system passes through a critical value. 
Under certain circumstances the Collision between the 
“stochastic attractor” with a “stochastic saddle” created 
the loss of the stability of the system. It can happen that a 
slight variation in a parameter can have significant impact 
on the solution. By “hard bifurcation”, we are talking about 
the abrupt and unpredicted change in the probability den-
sity function (PDF), the presence of discontinuities on the 
support of a stationary measure or PDF of the system.

In 1973, Thompson and Hunt proposed a simple shal-
low “arch model” to study the buckling behaviour under 
a static load [9]. Cao et al. [10–12] proposed in 2006 the 
“smooth and discontinuous” (SD) oscillator where the non-
linearity is irrational. The geometrical nonlinearity caused 
by large deformation was illustrated. Complex motions 
and coexisting attractors are also devoted. An applied 
force moves an object and created the sliding process, 
otherwise the object sticks. Remove this constraint, the 
system becomes two dimensional. Consequently, another 
friction force must be added to separate permanent slid-
ing motions from jumping effects.

Friction constitutes an important area of many other 
disciplines rich in interesting examples and applications 
such as seismology and tectonic fault dynamics under 
geometrical nonlinearities by considering the large scale 
displacement of the system [13, 14] or climate and weather 
changes with possible stick slip motion [15], Reliability and 
braking power [16, 17] are some illustrations.

Recent studies have successively explained novel 
behaviour that may occur in such systems [18, 19]. But, 
little is known when adding random parameters to “dis-
continuous systems” in spite of some new publications 
[20, 21].

To avoid the lack of detailed of the statistical charac-
teristic of a random dynamical system, an appropriate 
choice is to describe the stationary measure. Because of 
the long term behaviour of solutions with an emphasis 
of probability densities when talking about the stationary 
and dynamical behaviour of the system.

In real systems moreover, parameter uncertainty, back-
ground vibrations and other sources of noise are ubiquitous.

The dynamic of systems with dry friction subjected to 
random forces have abrupt changes occurrence when a 
stable equilibrium is lost. A Gaussian white noise is sufficed 
to describe the influence of random perturbations.

Terminology from “catastrophe” returned to singulari-
ties, discontinuous bifurcations. What types of long-term 
dynamical behaviour are possible talking about SD oscil-
lator? The “hard bifurcations” were the subject of “Tom’s 
Catastrophe Theory”, this proved to be basic to nonlinear 
friction system with geometric nonlinearity in mechani-
cal engineering. Thus, one cannot help thinking about 
unexpected events that cannot be predicted for appear-
ance of p-bifurcations or how does the structure of the 
steady state solution set change as the parameters are var-
ied? How to predict (in the presence of noise) qualitative 
changes in system’s behaviour (stochastic perturbations) 
occurring at these equilibrium points?

The paper is organized into the following sections. Sec-
tion 2 contains the model studied. Section 3 presents the 
dry-friction oscillator as a Filippov system. Section 4, is 
devoted to theoretical discussion and physical phenom-
ena analyse. The conclusion is made in Sect. 5.

2 � System description and modelling 
assumptions for stochastically perturbed 
sliding motion

Consider a non-deformable moving belt, moving with a 
constant velocity V1, the block of mass m1 moving in the 
lying flat surface and connected to a damping capacity C 
(or damping function Φ(x1(t);�)) and a fixed backing by an 
inclined linear spring of stiffness coefficient K, which is capa-
ble of opposing both tension and compression (see Fig. 1a). 
The block can either ride on the belt, with zero relative veloc-
ity with respect to it, or slip on it because friction is added as 
a constraint on a rough surface between the mass and the 
belt. We then suppose large displacements of the mass same 
as large deformations in continuum mechanics so that the 
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system is strongly nonlinear. (Refs. therein). X1 is displace-
ment from the rest state. If there is also damping, restoring 
and external forces, the following equation is studied

L1 and H1 are respectively the spring’s length and the dis-
tance between fixed point and belt, Fµ due to contact friction 
force. ξ (t) is the normalized source of Gaussian white noise:

D—the noise intensity. The dry friction [22] force Fµ = Gs is 
due to the surfaces in contact and can be defined during 
the slip mode. The extended friction law is [23]:

So that x1 and ẋ1 are respectively the sliding displacement, 
and correspondent velocity, C0 is the vertical component of 

(1)

m1

d2X1(t)

dt2
+ C

dX1(t)

dt
+ KX1(t)

⎛
⎜⎜⎜⎝
1 −

L�
X2
1
(t) + L2

1

⎞
⎟⎟⎟⎠
+ Fμ

= Fe cos (wt) + ξ(t)

�
�(t)�

�
t�
�
= 2D�

�
t − t�

��
,

⟨�(t) = 0⟩ and

(2)Fμ = −μ
(
C0 + C1

||x1|| + C2
||ẋ1

||
)
sgn

(
ẋ1

)

the spring force, coefficients C1 and C2 are respectively the 
friction interface amplitude, with the correspondent veloc-
ity. µ stands to friction coefficient (equivalent to the static 
friction coefficient in general). Suppose the weight, FN = C0 
is in the sense of the weight in the contact area assuming 
that the direction of C0 always points down (FN > 0) only if 
Mg > KH1, i.e., the weight of the system. Hence:

µ is depending on vr = ẋ − v0 , i.e., the vertical component 
of the spring force. The friction force Fµ = Gs modelled as 
Stribeck friction between objects in contact is described as

and is determined by the material characteristics of the 
block and the belt. If the moving load acceleration is equal 
to zero, i.e. ẍ1 = 0 when the load sticks, with the belt veloc-
ity ẋ1 = v1 , thus the value of the friction force

is confined to the interval (− Gmax < G < Gmax). Knowing that

is the total static friction force derived from the product 
of the friction coefficient with the normal force. Hence 
the Stribeck friction force Fµ of the system is illustrated in 
Fig. 1b. We have described the intermittent behaviour (or 
the set-valued extension) of the system in the differential 
inclusion of Filippov type as:

The equation of motion Eq. (1) can be normalized using 
the non-dimensional procedure as follows: x = X1

L1
; w2

0
=

K

m1

;

c = Φ
(
x1(t), μ

)
=

C

m1w0

; τ = w0t;α =
H1

L1
;v0 =

V1

L1w0

;g1 =
g

L1w
2

0

 . 

Then, substituting these variables into Eq. (1) we have:

(3)

Fμ = Mg − KH1

⎛
⎜⎜⎜⎝
1 −

L�
X
2
1
(t) + H

2
1

⎞
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;

μ =

�
μk ,

dx

dt
= v0

μs,
dx

dt
≠ v0

Gs = μ
(
FN + C1

||x1|| + C2
||ẋ1||

)
sgn

(
ẋ1
)
;

⎛⎜⎜⎜⎝
G = − KX1(t)

⎛⎜⎜⎜⎝
1 −

L�
X2
1
(t) + H2

1

⎞⎟⎟⎟⎠
C1
��x1�� + C2

��ẋ1��
⎞⎟⎟⎟⎠
,

Gmax = μ

⎛⎜⎜⎜⎝
Mg − KH1

⎛⎜⎜⎜⎝
1 −

1�
X2
1
(t) + H2

1

⎞⎟⎟⎟⎠
C1
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��ẋ1��
⎞⎟⎟⎟⎠
,

(4)sgn(x1) =

⎧⎪⎨⎪⎩

1 if x1 > 0

0 ∈ [− 1, 1] if x1 = 0

− 1 if x1 < 0

Fig. 1   The mechanical model: a the “self-excited SD oscillator”, b Cou-
lomb friction Eq. 2 with Gs = μ

��
g1 − α

�
1 −

1√
x2(t)+𝛼2

��
+ C1�x� + C2�ẋ�

�

sgn (ẋ); 𝜓α = 0.1; g1 = 2.0; μ = 0.1; v0 = 0.0
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where

and (·) represents the non-dimensional ratio of time τ. 
Knowing that c = Φ(x1(t); µ). The slip and stick modes char-
acterized the motion of the mass.

(Fµ): depends of the velocity ẋ , and displacement from 
the rest state x. The smoothness parameter α. When α > 0, 
the system is continuous and for α = 0, the system nonlin-
earity is discontinuous. The dynamics of the SD oscillator 
has been investigated random domains.

The discontinuous case equation of motion of the (SD) 
Oscillator is given by:

where d = −μ
(
C0 + C1|x| + C2|ẋ|

)
 . At least one coefficient 

will be null in practical case. (One between z and d will be 
zero). Thus, for intermittent mode, “sgn(x)” and “sgn(ẋ − v0)”, 
one could have the excited SD oscillator (z = d = 0), the dry 
friction models (z = 0; d = 1). Filippov [24] representation 
for the discontinuous SD oscillator is given by:

(5)

ẍ + cẋ + x

�
1 −

1√
x2 + 𝛼2

�

− μ
�
C0 + C1�x� + C2�ẋ�

�
sgn(ẋ) = am cos (wt) + ξ(t),

C0 =

�
g1 − α

�
1 −

1√
x2(t) + �2

��
;

(6)
ẍ + cẋ + (x − z sgn(x)) − d sgn(ẋ) = am cos (wt) + ξ(t),

(7)

F1(x, μ) =

⎧
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ẋ = x2, x2 − v0 > 0
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(“The dynamical planar Filippov” system).
A solution of Eq. (7) should be continuously differenti-

able. If c = Φ (x (t); µ), this equation describes many physical 
systems collectively called “SD oscillators”.

3 � System with friction

The stick–slip process occurs by pulling the system i.e. 
because of the variation of the position.

3.1 � Generic “Filippov system” analysis

Consider x ∈ Rn, and f(i): Rn → Rn, i = 1, 2, are sufficiently 
smooth. Let us suppose that the vector field is discontinu-
ous along Σ,

is defined in Fig. 2 (smooth vector fields L+, L−).
In order to better analyse the non-smooth dynamics, 

define the intervals as: Σ = {x ∈ Rn, H(x) = 0}, where H is a sca-
lar indicator function

on the a hyper-surface Σ, (an unique surface of discon-
tinuity: Mathematically, it is the “switching manifold”; 
physically it corresponds to zero velocity), then the system 
domain will be divided into three sub-spaces as:

(8)x =

{
L + (x), for x ∈ S1
L − (x), for x ∈ S2

Hx(x) =
�H(x)

�x
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The subspaces S1;2 and attracting sliding occur in a 
region on Σ obtained with the well-known convexification 
[25], we can construct the desired general solutions of (8).

(9)

S1 =
{
x ∈ Rn, H(x) < 0

}
;

S2 =
{
x ∈ Rn, H(x) > 0

}
;

Σ =
{
x ∈ Rn, H(x) = 0

}
,

Let βij(x) = ⟨Hx(x), L(+)⟩⟨Hx(x), L(−)⟩, be a transversal inter-
section, Σ in which ⟨.,.⟩ is the inner product in Rn. The cross-
ing set Σc ⊂ Σ is defined as Σc = {x ∈ Σ: βij(x) > 0} i.e. the total 
of all points x ∈ Σ, the orbit of system (8) at these points 
crosses the separation area Σ i.e., the orbit reaching x from 
Si concatenates with the orbit entering Sj, i ≠ j, from x. the 
complement to Σc in Σ: Σs = {x ∈ Σ: βij(x) ≤ 0}, where at these 
points x ∈ Σs, the orbit of system (8) which reaches x does 
not leave Σ and will therefore have to move along Σ. Since 
the vector field Hx(x) determines the system flow along 
the barrier of separation, we have HΣ

T(x) = 0, (In the sliding 
domain, T is a tangent point at the boundary. Both vec-
tors H (i)(T) are non-vanishing values, but one of them is 
tangent to HΣ

T(x) = (0, 1): equilibria of the boundary, and 
singular sliding points) (See Fig. 2).

3.2 � Numerical solution of “differential equations 
with switching conditions” in the case 
of Filippov

In the piecewise smooth system (8), L(x) is not well defined 
when x is on the discontinuity surface Σ. A way to define 
the vector field on Σ is to consider the Filippov approach 
that is the set valued extension G(x) below:

where (L+(x); L−(x)) are given by the smooth functions, and 
co{A} ; is a vector field along the barrier of discontinuity, 
(“the closure of the convex hull”). It denotes the smallest 
closed convex set containing A.

then the system vector field can be described by a “dif-
ferential inclusion” (systems with multi valued right-hand 
sides).

3.3 � The convex approach of non‑smooth dynamics

Talking about the nonlinear system with discontinuous 
right-hand side

When x is on hyper-surface Σ then v(x) = 0. In order to study 
the dynamics in the neighbourhood of the equilibrium set, 
the endpoints are studied separate from the other points 
of the equilibrium set [26, 27]. Mechanical systems with 

(10)ẋ ∈ G(x) =

⎧⎪⎨⎪⎩

L+(x, μ), x ∈ S1;

co{L + (x, μ), L − (x, μ)}, x ∈ 𝛴 ;

L−(x, μ), x ∈ S1

co
{
L+, L−

}
=
{
LG ∶ x ∈ R

n
→ R

n ∶

LG = (1−α)L+ + αL−, α ∈ [0, 1]
}
;

(11)ẋ = L(x) =

{
L + (x), for v(x) > 0

L − (x), for v(x) < 0

Fig. 2   Filippov representation: a two vector fields Fi and Fj and an 
open Σij (up), of the corresponding trajectories (down, b). c Filippov’ 
piecewise smooth system
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set-valued friction, equilibrium sets will occur, generically 
when a system switches between two systems (suppose 
the intermittent behaviour of the friction force G ≡ I), then 
we form their convex combination as

Thus L (x; + 1) ≡ L+(x) and L (x; − 1) ≡ L − (x). The standard 
approach then seeks so-called sliding modes which satisfy 
“ ẋ = 0 on v = 0”.

4 � Results and discussion

It is evident that a deep analysing of the role of non-
smooth sliding process of our model is of crucial impor-
tance in the nature and many engineering cases. Fric-
tion processes upon geometrical nonlinearity with large 
deformations open new windows to observe “Tom’s cata-
strophic Theory” in SD oscillator. We have computed Eq. (7) 
numerically to illustrate the theoretical predictions using 
fourth-order Runge–Kutta algorithm. In all the calcula-
tions we assume that: c = 0.048, xfk = 0.25; xfs = 1.0; f0 = 0.85; 
α = 0.4; C0 ≠ 0; C1 = C2 = 0; µ = 0.5. Stick–slip effects in fric-
tion oscillators are very complicated. The asymptotic con-
vergence (or divergence) properties of the trajectories of 
non-smooth systems are observed. Furthermore, we intro-
duced a smooth function which approximates the discon-
tinuous drift (see “Appendix”).

The system exhibits different shapes of periodic win-
dows follow by a sudden occurrence of chaotic responses 
certainly due from jumps that are characteristics of “graz-
ing-sliding bifurcations”.

Figure 3 shows the influence of friction coefficient in 
the dynamic of the system. We have observed the time 
histories and phase plane plots of the solution when vary-
ing friction Coefficients µ = 0.0; 0.1; 0.3. The stick slips fric-
tion and limit cycle oscillation (LCO) are really identified 
in Fig. 3b, c. But, Fig. 3d, e, shows a segment of trajectory 
crosses the sliding region, enter into the slipping area and 
joins back the sliding surface. The stick and slip phases 
are consecutives. Thus, to verify directly the dynamical 
features of the motion patterns transition we focus at the 
statistic occurrence of sticking and sliding times, i.e., the 
distribution of time intervals the load spends in states 
v = 0 (sticking events) and v ≠ 0 (the statistics of the sliding 
events). The transition value from stick to slip is reached 
at Gs = µFN. The slip event finishes for ẋ2 = v0. Besides, we 
can count the same number of sticks and slips because 
the system response ends during a slip mode (Fig. 3d, e). 

(12)ẋ =

⎧
⎪⎨⎪⎩

L(x, λ) =
I+(x)+I−(x)

2
+ �

I+(x)−I−(x)

�

sgn (v) (if v ≠ 0);

[− 1; + 1] (if v = 0);

A random sequence alternating stick and slip events occur. 
When a stick starts, suppose the mass’ position is known, 
and that the base speed is constant in time, the number of 
time intervals, or the instants at which stick consecutively 
slip occur can be estimated.

We consider the bifurcations under changes in the driv-
ing force and frequency.

From Fig. 4, both periodic and chaotic responses are 
presented. We observed an abrupt transition from the 
periodic to chaotic response and, afterwards, from the 
chaotic to the periodic effect. The presence of “grazing slid-
ing bifurcations” may cause a sudden jump to chaos. It is 
also found that sliding dramatically change the character-
istics of the frequency–response curve. From the smooth 
to discontinuous regime, periodic windows and chaotic 
responses are found. The possible structural changes of 
the asymptotic behaviour of the system under parameter 
variation, called bifurcations. A slight modification in a 
parameter value can give rise to a radical change in the 
system behaviour. When noiseless nonlinear dynamical 
system exhibits chaos phenomenon, the chaotic attrac-
tor is structurally unstable. Whereby, the periodic motions 
are found and occupy open sets in the parameter space 
(see Fig. 4c, d, e).

A special chaotic orbit exits for a fixed set of param-
eters that fills a finite area. It is follow by a series of islands 
dominated by different chains of fixed points. Therefore, 
through successive bifurcations where equilibriums and 
cycles are first links (see Fig. 4d, e) a transition from peri-
odic to chaotic dynamics occurs. The shape and size of 
“random attractor” and “random saddle” can change under 
stochastic perturbation.

Figure 5a, b illustrates the influence of friction in the sys-
tem. With the increasing of noise intensity, Fig. 5a shows 
a “hard bifurcation” i.e., Tom’s catastrophic (due to “graz-
ing-sliding bifurcations”) that occur as parameters vary. 
Abrupt change involves a discontinuity of the steady state 
at the bifurcation point. The stationary measures provide 
the possible distributions of traditional trajectories. Their 
fixed backings are the perspective areas to typical trajec-
tories in the long run. As usual in this case, there can be a 
lot of possibilities of stationary measure and more radical 
changes can occur in response to parameter varies. “Tom’s 
Catastrophe” theory sufficed to be the basic to the study 
of qualitative dynamics. In some disciplines, mathemati-
cal models are efficient for the examination of dynamic 
behaviour of the system being modelled [28]. According to 
[29], because of the absence of little relationship between 
the shape variations of stationary probability density func-
tion and the random excitation, it is not easy to describe 
the true change of topological property of a stochastic 
system simply based on the shape change of stationary 
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PDF. For multiple cycles, noise induces a special type of 
P-bifurcations.

As the noise intensity (or smoothness parameter) 
increases, peaks of the probability density function 
merge and multiplicity of cycle is appeared. While in 
Fig. 5b (µ = 0), the appearance of p-bifurcation diminishes 
with the increases of noise intensity. In [30], an adjective 
“hard” is due to a loss of stability of an “invariant set”. This 

phenomenon is verified if the stability involves a discon-
tinuous change; see Fig. 5a, c, e, f. The following changes 
can be identified in the PDF:

(1)	 Sliding bifurcations introduce “discontinuous transi-
tions” between different motions. Hence, signatures 
of the stick–slip transition become dynamically pos-
sible above such a critical value.
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Fig. 3   Sliding Filippov method: c = 0.048; α = 0.4; g1 = 2.0; f0 = 0.85; w = 1
3
 : a phase plane plot µ = 0.0 no friction, b phase plane plot with fric-

tion, c limit cycle occurred in phase plane plot as friction increases, d–e dynamics at the transition from stick to slip
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(2)	 We are interested in possible changes equilibrium 
(maxima, minima) provides the asymptotic behaviour 
for large values of PDF.

(3)	 Observation of jump effects due to the phenomenon 
of “grazing-sliding bifurcation”.

(4)	 “Catastrophic (or abrupt) transitions” occur character-
ized by discontinuous changes in system properties.

Hence, knowing that a system is functioning in one 
of its asymptotic regimes, is it possible that a slight 

variation of A parameter triggers a transient toward an 
abrupt different asymptotic regime? In this case, we say 
that a “catastrophic transition” occurs.

Figure 5 Shows that with a slight variation of noise to a 
family of non-smooth system unfolding a bifurcation can 
lead to a “hard bifurcation” of stationary density functions. 
We also observe here that, as friction coefficients increase, 
peaks number, consequently appearing of p-bifurcation 
(see Fig.  5d–f for µ = 0.1; 0.2; 0.3). Any parameter can 
change the behaviour of the system. That’s why, Zeeman 

Fig. 4   Bifurcation diagrams for displacement x versus f, (x0 = 1; y0 = 0), c = 0.048, xfk = 0.25; xfs = 1.0: a α = 0.4, C1 ≠ 0, C2 = C3 = 0, b α = 0.0, C1 ≠ 0, 
C2 = C3 = 0. c α = 0.4, C1 ≠ 0, C2 = 0.45, C3 = 0.5; d α = 0.4, C1 ≠ 0, C2 = 0.015, C3 = 0.25; e α = 0.4, C1 ≠ 0, C2 = 0.0, C3 = 0.25
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defined a bifurcation in a stochastic system as a “change in 
character of the density function as a parameter is varied” 
[31, 32]. Hence the phenomenological, or P-bifurcations.

Under parameter change, stationary measures of SD 
oscillator can illustrate abrupt changes. We observed a 
change in the number of stationary measures or a discon-
tinuous change in one of their supports (see Fig. 6).

When increasing the damping coefficient c, Fig.  6a 
illustrates the increase in term of number of peaks and 
probability density function (PDF) as above. The same 

observation is recognized in Fig. 6b, where the friction 
coefficients increase with the multiplicity of peaks number 
and height value of PDF. Another point of view is to cover 
a deep experimental analysis into the evolutionary behav-
iour of the “stochastic attractors” in SD oscillator. This may 
be importantly to understand the stochastic bifurcation 
in a nonlinear system with noise. In this paper, a “stochas-
tic attractor” is chosen as an invariant for a noisy steady-
state response, and the abrupt change of attribution 
(number, size, attraction) of a stochastic attractor and/or 
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a “stochastic saddle” provides a structural change of a sto-
chastic system to demonstrate the bifurcation behaviour.

Figure 6c–e show the same observation of increasing 
of peaks number with the increase of the smoothness 
parameter α = 0.0; 0.3; 0.5. The noiseless system of the SD 
oscillator undergoes a “pitchfork bifurcation” when the 
smoothness parameter α increases up to certain value. 
The stochastic P-bifurcation and the deterministic pitch-
fork bifurcation in the SD oscillator are related. Suppose α 
is tending to 0, the behaviour of the SD oscillator suddenly 

becomes discontinuous. The speed flow goes through a 
jump when the system crosses from one side to another 
in the deterministic system.

This study shows the uncertainties associated with the 
possible future occurrence of abrupt events, called “cata-
strophic events”. A non-linear approach to detect dynami-
cal transitions and infer the causality behind events (Slid-
ing bifurcation). These Figures try to detect and interpret 
the existence of multiple equilibriums and can sometimes 
fail in complex models. Moreover, we highlight promising 
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phenomena to detect abrupt effects and to obtain infor-
mation about the mechanisms behind them.

We can summarize this subsection saying that, the 
shape of stationary PDF does not depend on the bifurca-
tion parameter [33]. But, the stationary PDF does change 
its shape at a critical parameter value [34].

5 � Conclusions

For “discontinuous systems” in Filippov case, the term bifur-
cation exists in literature with different definitions. They 
can be inconsistent with one another. The non-uniqueness 
of solutions is observed. A measure differential inclusion 
is able to describe discontinuities in the state. We recog-
nize that dry friction is a nonlinearity which is abundant in 
nature. It presence can induced “self-sustained vibration”. 
The sudden change in a slight variation of any parameter 
of the system is seems catastrophe, due to loss of stability 
of the system. This phenomenon occurs in non-smooth 
systems illustrated in a piecewise-smooth model of a SD 
oscillator Eq. (7). The slight variation of a parameter has 
created the “grazing-sliding bifurcations”. The occurrence 
of “catastrophic bifurcation” transition phenomenon is 
characterized by discontinuous jumps in the equations 
across a phase space limit.

We were looking to the shape, size and stability of a 
“stochastic attractor” that may be taken as its character. 
Whenever the character of an attractor changes radically, 
there occurs the stochastic bifurcation. P-bifurcation is 
deemed to occur with a change in the structural behaviour 
of the probabilistic structure of the state variables.

6 � Appendix

Due to the lack of continuity, we have construct a func-
tion fN(x) which has point wise convergence to the sign-
function as N → ∞.

We used fN(x) in order to avoid the discontinuous chal-
lenges by the sign function.
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A R T I C L E  I N F O   
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A B S T R A C T   

A simplified analysis model of structural pounding, used in the study of the effects of earthquakes subjected to 
Gaussian white noise of relatively high intensity, filtered through a Kanai-Tajimi filter is proposed in this 
investigation. The required distance to avoid pounding is important in structural engineering. As a consequence 
of frictional contact phenomena, energy is dissipated and the state of a system can change slowly and rapidly, 
depending on the nature of the contact, continuous or impact condition. Buildings without enough separation 
often create structural pounding under seismic events. Other effects associated with friction in mechanical 
systems are the vibration and noise propagation of the system components, nonlinear systems behavior and wear. 
In this paper, we prove that because of the inherent stochastic nature of the applied earthquake loads or the 
uncertainty arising from randomness (non-smooth behavior), stochastic p-bifurcations occur at law noise in
tensities and disappear when increasing noise intensities. Because of the presence of both impact-friction events, 
p-bifurcations should be observed at weak noise intensities. P-bifurcation occurs and created instability that will 
increase pounding effects. Some relationship between impact-friction events appears: small noise intensity occurs 
when the time of friction (continuous) is greater than the impacting events, hence high probability density 
function (PDF). But if the noise intensity increases, the impact events are great (small friction) with weak PDF. 
But successive jump effects can create noisy system and great impact. The models stochastic processes of sta
tionary probability density function (PDF) of the earthquake ground motion are set up. The demonstrative 
application examples which include friction in systems involving contact-impact events are illustrated in Central 
Africa, a part of Congo Stable Block.   

1. Introduction 

This study focuses on the dynamic behaviour of a spillway reinforced 
concrete building colliding with the abutment and how it responds to 
earthquake induced excitation. The efficient analysis of nonlinear sys
tems subject to evolutionary excitations [1] has always been in the 
general area of structural dynamics, an interesting and challenging 
branch. Nonlinearities in the structure are to be considered when the 
structure enters into inelastic range during devastating earthquakes. For 
dynamic inelastic analysis, researchers tend to adopt simplified 
non-linear static procedures instead of rigorous non-linear dynamic 
analysis when evaluating seismic demands. This is due to the problems 
related to its complexities and suitability for practical design 
applications. 

Talking about non-smooth dynamical systems, the main instances in 

mechanics are multibody systems with Signorini’s unilateral contact, 
the Coulomb-like friction [2] and impacts, or ideal plasticity, fracture or 
damage in continuum mechanics. Under the action of earthquakes most 
of the investigations emphasized the deterministic aspect of the prob
lem. The earthquakes are stochastic events, hazardous phenomenon due 
to insufficient clear spacing often called pounding effects and noise due 
to internal friction of colliding bodies could include either architectural 
or severe structural damage in both spillway structures and bridges, dam 
during strong ground motion vibrations. 

Despite an extensive previous research [3–5], there are still many 
open questions; based on the statistical information about the uncer
tainty of some relevant parameters or knowledge about the inherent 
stochastic nature of the applied earthquake loads, pounding may cause 
both architectural as well as structural damages and, in some cases, it 
may lead to collapse of the whole structure. To predict the behavior of a 
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real system with a possibility of different disturbances existence need 
carefully understanding under certain type of excitations. Within the 
earthquake energy input, a rational estimation of the maximum impact 
force would help us to control the extent of damages in different 
structures, stick-slip friction. 

Due to the random character [6,7] of earthquake ground motions, 
caused by the many influence factors, such as focal source mechanism, 
epicentral distance, focal depth and (variations in) geology along energy 
transmission paths, it is chosen to use in this research, Gaussian white 
noise excitation. Because the measurement instruments (seismographs) 
can be regarded as Spring-mass damper system. Furthermore, noise 
contamination occurs. The statistical characteristics of the stochastic 
model represent the key features of ground motions (i.e., ground motion 
intensity, duration, and frequency content) that are important for 
determination of structural response and estimation of damage induced 
from earthquakes. The problem of predicting appropriate ground mo
tions for future seismic events is currently receiving a great deal of 
attention in the engineering community [8–10]. Engineers use seismic 
ground motions for a variety of reasons, including seismic hazard 
assessment and estimation of nonlinear structural response history. 

During the whole time of impact, friction between the colliding 
members takes place and this effect is especially important in the case of 
rough surfaces considering Dimitrakopoulos [11] proposed a novel 
non-smooth rigid body approach to analyze the seismic response of 
pounding skew bridges which involve obliquely frictional multiple 
contact phenomena. 

The use of non-smooth system theory to predict and understand the 
kinematics of colliding rigid bodies in the presence of impacts and 
friction is a useful commodity in engineering in particular and research 
of such systems in general. Usually non-smooth dynamical systems are 
represented as differential inclusions, complementarity systems, evolu
tion variational inequalities, each of these classes itself being split into 
several subclasses. Under certain type of excitations, the dynamic 
response of a system depends on the nature of the induced excitation. 
(Characteristics of ground excitations having various peak ground ac
celerations, together with the dynamic properties of structures, are 
potentially the most important factors affecting the seismic response 
behaviour). Response analysis of building structures under random dy
namic forces, such as earthquake, wind, and blast loads and others 
natural hazard phenomena are responsible to induce excitation. In this 
paper, the external earthquake excitation is used. 

In the case of earthquake loading the ground excitation of the 
structure is determined not only by the geological properties along the 
path of wave propagation from the source to the structural site and the 
properties of the local site, but also by the stiffness ratio between the 
structural footing (pier) and the supporting ground. The embedment of 
the footing and the interface between piers and subsoil can also alter the 
characteristics of the incoming waves and consequently the ground 
excitation of the system. 

It has been shown that most of the energy which is dissipated during 
impact is lost during the approach period of collision and a comparably 
small amount of energy is lost during the restitution period due to 
friction [12]. 

In this research, for reasons of simplicity, it is assumed that the 
external excitation (earthquake) interacts with rough noisy system. 

The paper is organized as follows. In section 2, we discuss the 
analytical contact force models proposed in the literature are briefly 
recalled. Section 3. The practical study of seismic vulnerability in the 
southern plateau area of Cameroon. Section 4. Presents the numerical 
results and discussion. Conclusions are drawn in section 5. 

2. Analytical contact models proposed in the literature and 
problem formulation 

2.1. General formulation 

James H. Dieterich et al. [13], described the phenomenon to model 
the friction between the crustal plates of Earth. J. R. Rice et al. [14], 
have analyzed a special friction model in the stability of tectonic sliding. 
The model has also been used in connection with control, see James R. 
Rice et al., [15]. Due to discontinuities in soil conditions along the 
propagation earthquake excitation, there are both evident randomness 
and strong nonlinearity owing to the evaluation norms of seismic in
tensity but also the site soil classification. A realistic analysis and design 
of structural systems subjected to such earthquake excitations must ac
count for the uncertainty arising from randomness, impact and friction. 

Let us consider an n-degree-of-freedom nonlinear structural system 
governed by eq. 1 

m₁d
2qðtÞ
dt2 þ c₁ dqðtÞ

dt
þ k1 qðtÞ ¼ fðtÞ (1) 

In which m1 is the mass matrix or consistent c1, is a viscous damping 
matrix (which is normally selected to approximate energy dissipation in 
the real structure) and k1 is the static stiffness matrix for the system of 
structural elements. Forces f (t) ¼ pj (t) acting on each point mass mj has 
a resisting force fs, and the damping force fd acting against them. 
Newton’s second law of motion gives for each mass: (pj � fsj � fdj ¼ mj 
€u(j) or mj€u(j) þ fsj þ fdj ¼ pj (t)). Where mj€u is the inertia force and the 
damping force fd is related to the velocity _u across the linear viscous 
damper.i.e. (fd ¼ c1 _u; fs ¼ k1u, k1 is the lateral stiffness of the system). 

The column q(t) ¼ u(t) represents the degrees of freedom of the 
system. The first and second derivative of the column q(t), with respect 
to time t, are _q(t) and €q(t), respectively. The column f(t) denotes the 
external excitation of the system with intermittent characteristics due to 
friction. The mass is able to move or vibrate in one direction, perpen
dicular to the column. As the vibration of the structure diminishes in 
amplitude as the excitation finishes, rather than continuing to oscillate. 

It is considered to have certain amount of damping, c1 [16,17], see 
Table 1. 

The dependency on time (t), will be omitted in this paper. while 
earthquakes are recurrent and aperiodic on a continuum time scale, the 
stick-slip of spring-block oscillations has mostly been periodic on a short 
time scale (see Fig. 1). In this research, the excitation exists of gravity; 
earthquake ground motion and noise due to friction. The relatively 
complex phenomenon of friction has a discontinuous behaviour caused 
by the fact that the friction force always opposes the relative velocity 
between two contacting surfaces which are subjected to friction. Then, 
friction may be a function of the relative velocity during sliding. 
Furthermore, dynamic effects, such as pre-sliding and varying break- 
away level, may be present. 

2.2. Non-linear viscoelastic model: numerical modeling of colliding 
structures to estimate the induced pounding forces 

The proposed model is a nonlinear spring following the Hertz law of 
contact [18]. An other complex phenomenon involving plastic de
formations at contact points is structural pounding. It causes local 
cracking or crushing, fracturing due to impact, friction, etc. Forces 
created by collisions are applied and removed during a short interval of 
time initiating stress waves which travel away from the region of 

Table 1 
Damping ratios of the fixed-base eigen frequencies of the dynamic model.  

mode no. 1 2 3 4 5 6 and higher 

Eigen frequency [Hz] 0.46 1.27 1.98 2.98 4.10 4.25 and higher 
damping ratio [� ] 0.03 0.04 0.05 0.06 0.08 0.10  

P.N. Von Kluge et al.                                                                                                                                                                                                                           
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contact. The process of energy transfer during impact is highly compli
cated which makes this type of problem difficult in the mathematical 
analysis. In general, to calculate impact force during contact we use the 
formula: 

FimðtÞ¼ kst δnðtÞþcim _δðtÞ (2)  

such that kst represents the stiffness of impact, δ represents the relative 
displacement, _δ represents the relative velocity, and cim denotes the 
damping coefficient. For n ¼ 1, we are talking about linear systems, but 
in this paper, n ¼ 1.5 because of nonlinear systems. We should obtain kst 
by iteration of experimental and numerical simulation of the peak 

pounding force. And then cim ¼ 2ζim

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kst
ffiffiffiffiffiffiffiffi
δðtÞ

pq

me for nonlinear systems. 
Where me ¼

m1 m2
m1 þm2

; mi (i¼1, 2): masses of colliding structures. The 
deformation δ(t) is expressed as δ(t) ¼ x(t) � d where d is the initial 
separation gap between the spillway and the abutment and x(t) is the 
displacement of the spillway. 

2.3. The law of the conservation of momentum and Newton’s collision 
rule govern each collision between two masses 

Let us consider for example the collision between m1 and m2. Sup
pose vi and vi

þ to be the velocity just before and just after the impact 
between the masses, respectively. Therefore, Newton’s collision rule 
implies that 

vþ1 � vþ2 ¼ � εðv₁ � v₂Þ (3)  

where ε is the coefficient of restitution. It can be obtained from that eq. 
(4). 

ε¼ vþ2 � vþ1
ðv₁ � v₂Þ

(4) 

The case of a fully elastic collision is ε ¼ 1. Hence ε ¼ 0 represents a 
fully plastic one. The rule of conservation of momentum determines the 
velocities just after the collision: 

m1
�
vþ1 � v1

�
¼m2

�
v2 � vþ2

�
(5) 

A collision between m1 and m2 happens when x1 � x2 and v1 > v2. In 
this case, the post-collisions velocities are 

vþ1 ¼ v₁
m1 � ε m2

m1 þ m2
þ v₂

1þ ε
m1 þ m2

(6)  

and 

vþ2 ¼ v₁
m1ð1þ εÞ
m1 þ m2

þ v₂
m2 � ε m1

m1 þ m2
(7) 

The state variables of the system are represented by the position and 
velocity of each mass. Friction between the colliding bodies takes place 
during the whole time of impact. For the reasons of simplicity, in the 
model, during the restitution period the minor energy loss is neglected. 
The pounding force during impact, F(t), for that type of impact element 
is expressed as 

FðtÞ ¼

8
><

>:

ζ₁δ3
2ðtÞ þ c₁ðtÞ _δðtÞ; if _δðtÞ > 0 ðapproach periodÞ;

ζ₁δ3
2ðtÞ if _δðtÞ � 0 ðrestitution periodÞ

(8)  

where ζ1 is the impact stiffness parameter, c1(t) is the impact elements 
damping. The equation of motion is written as in eq. (1) above including 
the impact force term, and the friction force term. 

We recognize that the equation of motion for a single degree of 
freedom (SDOF) system under seismic action is generally expressed as: 

m€uþ cu⋅ þ ku ¼ � m€ug (9)  

€ug denotes the ground acceleration: horizontal motion of bedrock. The 
bedrock acceleration is related to the earth surface motion through the 
above differential equation. 

u: vector of all translational and rotational degrees-of-freedom 
relative to earth surface. We can divide eq. (9) by the mass, m, it results 

€uþ 2ςwn _uþ w2
nu ¼ � €ug (10)  

which demonstrates that the response of a system due to an earthquake 
induced ground acceleration only depends on the natural frequency, wn, 
of the system and its critical damping ratio, ς. The dynamic effects of the 
sublayer deposit are specified by a Kanai-Tajimi filter with the param
eters ς and wn. {€ug (t), t 2 [0,∞]} is modelled as a modulated Wiener 
process 

€ugdt¼ βðtÞdBðtÞ (11)  

β(t) is a deterministic intensity function. 
{B(t), t 2 [0, ∞]} is a unit Wiener process, which is a Gaussian 

process with the incremental properties. 

E
�

dBðtÞ
�

¼ 0; E
�

dBðt1ÞdBðt2Þ

�

¼

�
0; t₁ 6¼ t₂;
dt; t₁ ¼ t₂: (12) 

Appearance of the resonant effect is in an amplification of ground 
motions, which can be as large as a factor ten relative to the rock sites 
[19] at different frequencies between 0.3 to 15 Hz. 

Let us consider a simplified model of structural pounding as illus
trated in Fig. 1, used in the study of the effects of earthquakes [20] 
defined by the second order equation 

2€xþ 4:1x⋅ þ 210:125xþ vðx; x⋅ Þ þ Ff � eðtÞ ¼ ξðtÞ (13) 

Parameters of interest in earthquake analysis, are relative displace
ment and velocity, and total acceleration, which is simply the sum of 
relative plus ground accelerations: €xT (t) ¼ €xg(t) þ €x (t). 

Knowing that Newton’s second law of motion gives for each mass: 
(mj€u (j) þ fsj þ fdj ¼ mj €xg(t)). Where mj €uis the inertia force and the 
damping force fd is related to the velocity _u across the linear viscous 
damper i.e. (fd ¼ c1 _u; fs ¼ k1u, k1 is the lateral stiffness of the system). 
(See eqs. (9) and (10)). A system consists of a mass m1 ¼ 2 kg (for 
instance), a frame (or spillway’s spans) that provides stiffness to the 
system for example k1 ¼ 210.125, and a viscous damper that dissipates 
vibrational energy of the system c1 ¼ 4.10. Each structural member 
contributes to the inertia (mass), elasticity (stiffness of flexibility), and 
energy dissipation (damping) properties. These properties can be 
considered as separate components (mass component, stiffness 

Fig. 1. Model of a spillway which interacts with an abutment.  
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component, viscous component) [21]. For an inelastic system, v(x, _x), is 
incorporated in the equation. When using Newton’s second law (see eq. 
(1)), we deduced eq. (13) including the impact force term, and the 
friction force term. Moreover, in eq. (13), v(x, _x) represents the pounding 
force which is equal to zero if x(t) < d (d is an initial separation gap). It is 
illustrated by eqs. (2) and (8) when x(t) > d, where deformation δ(t) is 
expressed as δ(t) ¼ x(t) � d. We denote c1 ¼ 4.10 the damping, k1 ¼

210.125 the stiffness coefficients. t 2 [0,3] the displacement time history 
of the spillway, with e(t) ¼ 2sin(14t) where the external force is acting on 
the system with a certain frequency, w ¼ 14 Hz, and the maximum 
amplitude of the force is p0 ¼ 2. v(x, _x) is given by the knowledge of peak 
impact force during collisions and frictions. 

The friction can be expressed as: 

Ff ¼ � μNsgn
�

_x1

�

:

where μ is the coefficient of sliding friction, N is the weight of elements 
in friction 
 

N ¼
Xn

i¼1

 

mig

!!

:

ξ(t) is the normalized source of Gaussian white noise: 

〈ξðtÞξðt’Þ〉 ¼ 2Dδðt � t’Þ;

〈ξðtÞ〉 ¼ 0 and D � the noise intensity. 
The equation of motion is written including the impact force term, v 

(x _x), force between two masses 

vðx; x⋅Þ ¼

8
>>>>>>>><

>>>>>>>>:

0 if x < ν;

cðx � νÞ
3
2 þ 1:98

ffiffiffiffiffi
2c
p

ðx � νÞ
1
4 _x if x > ν; _x > 0

cðx � νÞ
3
2 if x > ν; _x < 0;

c ¼ 2:47e 106 ν ¼ 0:005

(14)  

ν is the Poisson’s ratio of the soil. Recall that the deformation δ(t) is 
expressed as δ(t) ¼ x(t) � d where d is the initial separation gap between 
the spillway and the abutment. Moreover eq. (14) denotes the pounding 
force as eqs. (2) and (8) [22]. It is a discontinuous nonlinear 
contact-impact term with friction. This impact force between the 
spillway and the abutment will be our concerned in the numerical 
simulation. 

As is the case for most forced vibration problems, the diffusion vector 
e(t) is independent of the state vector x. Then the associated Itô and 
Stratonovich differential equations of the problem are equivalent. 

3. The practical study of seismic vulnerability in the southern 
plateau area of Cameroon 

The ground generally descends from north towards south at an 
elevation varied between 400 m and 700 m above the Atlantic Ocean 
level. No seismic study has been carried out since the following analysis. 
The southern plateau area of Cameroon is a part of Congo Stable Block. 
Tectonic features in the region mainly comprise folds and faults striking 
in a generally NE � SW direction. A major fault (Ntem Fault) runs in NE 
� SW direction at some 500 m downstream of the proposed dam site. It 
controls the flow of Ntem river, making the Ntem course bended from 
northwest to southwest and forming a waterfall of 35 height near the 
faulted zone, then linearly traced to the “Gorge Du Ntem” about 40 km. 
Several faults are encountered at Ntem Fault that generally strike NE30 
~ 40, dip northwesterly at an angle of 50 ~ 60, each of limited fractured 
zone. They are filled with breccia and cataclasite and are well cemented 
with fair behavior. It might be formed at Mesozoic era to Eogene period. 
Given the terrain feature and earthquake history, Ntem Fault is 

considered to be passive. 
Since seismic network was built in Cameroon in 1984, there have 

been in our knowledge only six unfelt events that were recorded. 
Earthquake data of the area bounded by latitude (N � 4.33) degrees to 
(S � 0.33) degrees and longitude (E� 8.25) degrees to (E� 12.25) degrees 
was searched by international seismological center (ISC) in United 
Kingdom by the request of JICA study team, which indicate no earth
quake that may affected to the project site was found out from the ISC 
historical events in the period of 1904–1990 and ISC comprehensive 
catalogue in the period of 1964 � 1988. According to Seismicity of West 
Africa [23], Ambrasey and Adams studied seismic data near some 
important projects area. As shown in Table 2 and Fig. 5 illustrated, only 
three events are depicted in the report which might be affected to these 
projects site. 

Where (*) M, Magnitude(assumed); r, Distance from the epicenter of 
earthquake to the site in kilometer, so that I, Intensity by modified 
Mercalli Scale theoretically calculated for the site  

I ¼ 8.0 þ 1.5 M � 2.5lnr                                                                (15) 

(by Cornell [24]). 
Hence Ah, Acceleration in cm/sec2 theoretically calculated  

Log (Ah) ¼ 0.014 þ 0.30 I                                                              (16) 

(by Trifunac and Brady [25]). 
The analysis for an earthquake coefficient based on the relation be

tween intensity felt at the site as above listed and frequency of occur
rence (Nc) in the period for 100 years and 250 years by ISC method, 
Japan Meteorological Agency (JMA) method and Munich Reinsurance 
(M.R.) company. The results of the analysis are calculated and sum
marized as shown in Table 3. 

From the above calculated, the earthquake coefficient (k ¼ gal/980) 
is resulted as k ¼ 0.0006 say; k ¼ 0.01 for the return period of 100 years 
and k ¼ 0.03 for 250 years respectively. The value of k ¼ 0.01 is the 
proposed earthquake coefficient for the Nachtigal Amont Hydropower 
project locating some 350 km northeast of Memve’ele project site. 

As defined in American Regulation No. ER1110� 2–1806, Operating 
Basic Earthquake (OBE) is an earthquake that can reasonably be ex
pected to occur within the service life of the project, that is with 50- 
percent probability of exceedance during the service life. (This corre
sponds to a return period of 144 years for a project with a service life of 
100 years). For conservative design, OBE is currently recommended to 
be 0.03g (corresponding to a return period of 250 years as calculated in 
1993) and MCE to be double of OBE, i.e. 0.06g for Memve’ele hydro
electric project. 

To sum up, Memve’ele hydroelectric power development project is 
tectonically and seismologically located on a stable block. Therefore, 
full-scale validation (monitoring) of structural response through recor
ded wind and earthquake excitation is important. The non-smooth 
properties can be exploited to design new mechanical devices. As sug
gested in this work it opens up the possibility of, for example, fast limit 
switches and energy transfer mechanisms. 

4. The numerical results and discussion 

4.1. Numerical solution of the case study 

For piecewise-smooth systems it is important to record the 

Table 2 
Historical earthquakes near the project area.  

Date Epicenter M(*) r; DIS(*) I; INT(*) Ah; ACC* 

1903 June 10 3N10.0E 4.4 79.4 3.7 13.0 
1911 March 26 3.1N11E 5.7 119.3 4.6 24.8 
1913 October 9 3.8N12.3E 5.1 280.0 1.6 3.1  
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transitions through the discontinuity surfaces, i.e. at impacts or switches 
between different vector fields of the system. Such transitions are called 
events and are triggered by zero crossings of scalar valued event func
tions. Matlab solvers (such as ode45) contains built in routines for 
detecting zero crossings of event functions have therefore been used 
here. 

The structural model defined by eq. (13) is the basis of the numerical 
analysis. 

We present the expression as a first order system (non-smooth, non- 
stiff differential systems y0(t) ¼ f (t, y(t)), y (0) ¼ y0 2 Rm, t 2 [t0, tf]) with 
two components: 
�

y1 ðtÞ ¼ xðtÞ
y2 ðtÞ ¼ _xðtÞ (17) 

Then 

_y¼
�

_y1
_y2

�

¼

��
y2

� 4:1 y2 � 210:125 y1 � uðy1; y2Þ � eðtÞ

�

¼ f ðt; yÞ (18) 

For noise intensity ξ(t) 6¼ 0. 
The numerical scheme used to find the probability density function 

(PDF) is based on the Euler version algorithm. We introduce a smooth 
function which approximates the discontinuous drift (see appendix) and 
apply the Euler method with this input. The influence of the control 
gains α0 ¼ (μN) determines how quick the evolution of the sequence {x} 
n � 0 switches around zero. In other words, a big α0 minimizes the in
fluence of the random variable ξ. The results of this numerical investi
gation are shown in Figs. (2, 3). 

The chosen parameters are: α0 ¼ 0.005; k ¼ 210.125; c ¼ 2:47e 106; 
ν ¼ 0.005 [20].  

For ξ(t) ¼ 0                                                                                          

In the numerical analysis, the spillway is modelled as a single-degree- 
of-freedom system as shown in Fig. 1. 

The resulting system of second order equation is recast as a system of 
first order ordinary differential equations and solved using Matlab ode 
solvers (such as ode45). We recognize that at some positions x(t) ¼ y1(t) 
¼ ν or if x(t) ¼ y1(t) > ν and _x(t) ¼ y2(t) ¼ 0 the vector field f (t, y) is non- 
smooth. We can observe two switching surfaces g1(y) ¼ (y1 � ν) and 
g2(y) ¼ y2. Moreover, the discontinuity limit (abutment area) Σ sepa
rating the two areas is described as Σ ¼ {x 2 Rn: H(x) ¼ 0}, where H is a 
smooth scalar function with non-vanishing gradient: Hx(x) ¼ ∂HðxÞ

∂x on the 

discontinuity separation Σ (See appendix A). 

4.2. Pounding between a spillway and an abutment: structural stability 

Stability here leads the ultimate fate of the dynamics for perturba
tions of the initial conditions. Structural stability sometimes, deals with 
perturbation of the system itself, i.e. perturbations of the own system, 
including parameter variations. Knowing that the impact force term, v 
(y, _y) (an intermittent nonlinear discontinuous force), force between two 
masses, the notion of structural stability is broadened to also encompass 
a preservation in the event sequence, i.e. the order and number of in
teractions with discontinuity surfaces. This impact force v(y, _y ) illus
trated the same behavior as relations eqs. (2) and (8) in the sense of 
discontinuities. The abutment is a transversal barrier i.e. Σ ¼ {x 2 Rn: H 
(x) ¼ 0}, where H is a smooth scalar function with non-vanishing 
gradient Hx(x) ¼ ∂HðxÞ

∂x on the discontinuity separation Σ. 
Two switching surfaces g1(t, y, y0) ¼ (y � 0.005) (spillway’s area) and 

g2(t, y, y0) ¼ y0 (after the abutment) are defined. (ν ¼ 0.005 ¼ Poisson’s 
ratio of the soil). When defining the time impact-contact in between t 2
[0,3], the response crosses the surface g1 (area of the spillway) twelve 
times and the surface g2 (region after the abutment) six times. Hence the 
data corresponding to 18 switching points (i.e. impact-contact) defined 
in table (4). 

5. Discussion 

During an earthquake the ground motion is often defined by a time 
history of the ground acceleration. It can be obtained in three directions 
by instruments known as strong-motion accelerographs. When 
increasing the probability of pounding during an earthquake, it is veri
fied that strong ground motion in the near-field area has different 
characteristics [26,27]. A more advanced dynamic friction model has to 
be developed, or to be utilized for systems containing high variations of 
normal load, namely with impact-friction conditions. We have defined 
two characteristics of noise intensity in Figures (2, 3): very low noise 
intensity and weak noise. We observed a high probability density 
function (PDF) for D ¼ (0.0001; 0.00002; 0.00004), but the peak of this 
PDF reduces with the increasing of noise. The amplitude of propagation 
is reduced. Fig. (3) (a, b, c, d) shows the same observation of appearance 
of p-bifurcation at very low noise intensities with height PDF and 
p-bifurcation ceases to occur when noise intensity increases [28–30]. 

In Fig. (3) (e, f), we fixed p0, the amplitude of external excitation and 
varying noise intensity. We observed large oscillation with large 
amplitude at weak noise intensity. Hence p-bifurcation occurs. The 
instability of the system is verified. The behavior of the system di
minishes with the increase of noise. We can summarize these two 
Figures saying that during earthquake excitation, for the impact-friction 
events at very low noise intensity, p-bifurcation occurs and created 
instability that will increase pounding effects. The near-field buildings 
will be impacting and destruct. The disasters will be very pronounced if 
the amplitude of earthquake excitation p0 of sine wave is big [31,32]. 

Table 3 
Calculation of earthquake coefficient.  

Return Period ISC method(i) JMA method(ii) M.R.(i) 

100 years 2.5(¼ 5.8gal) I � II(2.5gal) … 
250 years 4.0(¼ 16.4gal) III(¼ 14gal) 5 or blow ( < 32.7gal) 

Where (i) log(Ah) ¼ 0.014 þ 0.30I (I: Intensity in ISC scale) (ii) a(gal) ¼ 0.45 * 
10S/2 (S: Intensity in JMA scale). 

Fig. 2. Stationary amplitude distribution and varied values of the noise intensity D: k ¼ 210.125; c ¼ 2.47eþ6; ν ¼ 0.005: (a) D ¼ 0.0001, D ¼ 0.001 (b) D ¼ 0.00002, 
D ¼ 0.0002 (c) D ¼ 0.00004, D ¼ 0.0004. 
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The seismic perturbation decreases with the decreasing of p0. In the 
same manner, when increasing noise intensity during impact-friction 
events, p-bifurcation occurs but at very low PDF, and the amplitude of 
oscillation is reduced, so that pounding effects is diminished for 
near-field buildings. We can note a relationship between impact-friction 
events saying that, small noise intensity means continuous friction, 
hence high PDF, but if the noise intensity is great, the impact event 
seems important with weak PDF. But successive jump effects can create 
continuous friction and impacting and the pounding force will influence 
[33–35]. 

The phenomenon of stick-slip is also very important during pounding 
effects at near-field buildings during the seismic wave propagation. 

Fig. (4) shows the dynamic of the transition of the wave. We reminder 
that ν is the Poisson’s ratio of the soil. 

Talking about the switching surface g2, the vector field is discon
tinuous only when _x changes from positive to negative. This can appear 
when the space position x > ν. Sometimes, the function defining the 
vector field at the region g1(y) > 0 is not defined when g1(y) < 0 due to 
the two fractional incommensurable powers 14 and 32 As we have said in 
appendix A, f the vector field continuous function. Therefore, fþ(td, yd) 
¼ f� (td, yd) at the switching points and the transversality (in the abut
ments) condition is satisfied unless the vector field is tangent to the 
switching surface (see Fig. (4)). The red horizontal lines that is drawn in 
fig. (4) (b, e)) are the discontinuous regions corresponding to the 

Fig. 3. Stationary amplitude distribution and varied values of the noise intensity D: k ¼ 210.125; c ¼ 2.47eþ6; ν ¼ 0.005: (a) D ¼ 0.01, D ¼ 0.1 (b) D ¼ 0.02, D ¼ 0.2 
(c) D ¼ 0.04, D ¼ 0.4; (d) D ¼ 0.004, D ¼ 0.015, D ¼ 0.05; (e) amplitude p0 ¼ 25; (f) amplitude p0 ¼ 2.0. 

Fig. 4. Dynamics at the transition from stick to slip: the discontinuity points are indicated by means of small circles k ¼ 210.125; c ¼ 2.47eþ6; ν ¼ 0.005; (a) y0 ¼

[3,0]: phase diagram, (b) y0 ¼ [3,0]: solution against time (c) y0 ¼ [3,0]: solution and derivative against time; (d) phase diagram y0 ¼ [0,0], ν ¼ 0.5 (e) y0 ¼ [0,0]: 
solution and derivative against time (f) y0 ¼ [0,0]: solution and derivative against time. 
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abutments. Hence the gradient rg1(y)⋅f (t, y) ¼ 1 for all y and 
rg2ðyÞ ¼ � 210:125 y₁ � cðy₁ � νÞ

3
2 � rðtÞ for switching points such that 

y2 ¼ 0. The discontinuity points corresponding to contact-impact areas 
between spillway and abutments are indicated by means of small red 
circles (see Fig. (4) (c, f)). 

It can be verified that, the transversality condition is satisfied. But 
this affirmation is not sure in some transitions points as: y2 ¼ _x ¼ 0, y1 ¼

x > ν and � 210:125 xðtÞ � cðxðtÞ � νÞ
3
2 � eðtÞ ¼ 0 (see Fig. (4) (d, e)) 

Since |e(t)| � 2, and |e(t)| � 25 the switching points are transversal. The 
phase diagrams (x1 versus _x) are founded in Fig. 4)(a, d). 

In Fig. (4) (b, c, f)), the response, with the considered initial condi
tions, passes first through a transversal discontinuity (abutment), then it 
enters a sliding region for a short time until it exits it. After, it passes 
through two transversal discontinuities and enters into another sliding 
region. 

The red dashed lines denote the switching points (not continuous in 
the third derivative x(t)0 0 0). 

For reminder: The discontinuity points i.e. contact-impact regions 
(where the third derivative €x(t) is not continuous) are indicated by 
means of small circles. To recognize the sliding regions, see Fig. 4) (b, c, 
e, f). The function (u(t) � ν(t)) is at the switching region. The sliding 
zones represent to the intervals at which the functions vanish. (the 
dashed lines correspond to the switching surfaces in the phase diagrams 
plot 4(a, d)) 

We can summarize Fig. 4 saying that for t2 2 [0,3] the solution 
crosses the surface g1 twelve times and the surface g2 six times. In all the 
cases the discontinuity is transversal. We would like to mention that 
when considering the initial conditions, the response, passes first 

through a transversal discontinuity, then it gets in a sliding area for a 
small time until it exits it, then it continues through two transversal 
discontinuities and then it enters into another sliding region. The 
response with 0� 0 in region g2 means that the solution exits from the 
sliding region. The positive elements in that table mean that these dis
continuities are transversal (see Table 4).  

� A further overview of the selected earthquakes is given in Figure (5) 

Figure (5) shows the magnitude and recorded peak acceleration in 
relation to the distance to the earthquake epicenters but also the peak 
acceleration versus the magnitude of the earthquakes. The acceleration 
values are the absolute maximum values for each direction and the 
plotted values are on the one hand the peak ground acceleration (PGA) 
recorded in the basement of the spillway foundation. These values do 
not represent a total horizontal acceleration component but the highest 
value of both sensors recording in one direction and the highest value of 
the other direction sensor and it should be emphasized that both of those 
peak values of acceleration are not expected to occur at the exact same 
time. Although Fig.(5)(b) seems to indicate that the peak acceleration 
grows with longer distance to the epicenters, which is of course not the 
general case, it is important to see in Fig.(5)(a) that the earthquakes 
whose epicenters are the furthest away from the project were generally 
of greater magnitude than those with epicenters closer to the edifice. 
The intensity of pounding in neighboring structures due to earthquake is 
depended by many factors: The Peak Ground Acceleration (PGA) of the 
earthquake, the distances of separation between the buildings, soil 
configurations … 

6. Conclusion 

To preserve structural integrity and prevent damage and injury to 
contents, numerous studies must be done to understand the stochastic 
effect of seismic wave. With a monitoring system installed and supplying 
full scale records of the structure response, considerable amount of data 
will be available for investigation to avoid disaster during seismic 
events. The required gap to avoid pounding is significantly determined 
by the table showing the impact-contact (displacement) between the 
spillway and the abutment. Under certain conditions, the properties of 
the supporting soil must also be taken into consideration due to its in
fluence on the impact-friction events. During collision, the forces pro
duced act over a short period of time, due to random molecular 
vibrations and the internal friction of the colliding bodies, energy is 
dissipated as heat. If pounding appears in a foundation of buildings it 
can be harmful. The impact forces that act during pounding can cause 
additional sliding of the concrete or steel of the building. With high noise 
intensity during the impact-friction effects, the pounding force is influ
enced. P-bifurcation occurs with small peak of PDF. But weak noise in
tensity created a large probability density function (PDF) (because of 
continuous sliding), hence a great value of pounding force. The impact 

Table 4 
Occurrence of discontinuities corresponding to contact-impact friction and 
displacement of structures during earthquake excitation.  

time (s) displacement of the spillway 
(g1) 

abutment (transversal 
region) 

region g2 

0.4006 0.0050 1 0.1664 
0.4071 0.0055 2 0.0000 
0.4172 0.0050 1 � 0.0658 
0.8384 0.0050 1 0.2095 
0.8446 0.0055 2 0.0000 
0.8543 0.0050 1 � 0.0820 
1.2818 0.0050 1 0.2079 
1.2880 0.0055 2 � 0.0000 
1.2977 0.0050 1 � 0.0811 
1.7307 0.0050 1 0.2048 
1.7368 0.0055 2 0.0000 
1.7467 0.0050 1 � 0.0799 
2.1798 0.0050 1 0.2047 
2.1860 0.0055 2 0.0000 
2.1958 0.0050 1 � 0.0799 
2.6286 0.0050 1 0.2049 
2.6348 0.0055 2 0.0000 
2.6446 0.0050 1 � 0.0799  

Fig. 5. Peak ground acceleration: (a) Earthquake magnitude in relation to distance to epicenters, (b) Peak acceleration in relation to distance to epicenters. The dots 
represent the peak ground acceleration (c) Peak acceleration in relation to earthquake magnitude. The dots represent the peak ground acceleration. 
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in this case is not big (friction is greater than impacting). If noise in
tensity increases, (the impact is greater than friction), the pounding 
effects diminishes. In the case of successive jump-impact friction, fric
tion and impact events can be proportional. Hence friction increases the 
pounding effects. For the case of spillway and abutments, the calculation 
must take in view for different loading cases, it mainly includes calcu
lation of sliding stability, overturning stability and stress under foun
dation. It is found that the relative displacements of the spillway can be 

obtained by calculating the impact contact points of discontinuities of 
the system, which cannot be accessible without considering pounding 
phenomena. 
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Appendix A 

In the discontinuous differential system, f (x) is not well defined when the position x is on the discontinuity surface Σ. A way to define the vector 
field on Σ is to consider the Filippov approach, that is the set valued extension F(x) below 

_xε FðxÞ¼

8
<

:

fþðx; μÞ; x 2 S1

coffþðx; μÞ; f� ðx; μÞg; x 2
P

f� ðx; μÞ; x 2 S2

(19)  

where (fþ(x), f� (x)) are given by the smooth functions, and cofAg, is a vector field along the separation boundary. It represents the smallest closed 
convex set containing A. 

co{fþ, f� } ¼ {fF: x 2 Rn → Rn: fF ¼ (1 � α)fþ þ αf� , α 2 [0,1]}, then the system vector field can be described by a differential inclusion (systems with 
multi valued right-hand sides). 

Appendix B 

Approximation of Sign-Function: Due to the lack of continuity, we have construct a function fN(x) which has pointwise convergence to the sign- 
function as N → ∞.  

fNðxÞ¼

8
>>>>>>><

>>>>>>>:

1; for x >
1
N

;

� N3x3

2
þ

3 N x
2

: for
�

�
1
N
� x �

1
N

�

� 1; for x <
1
N 

We used fN(x) in order to avoid the discontinuous challenges by the sign function. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.soildyn.2020.106065. 
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