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ABSTRACT 

Genomic selection (GS) is expected to increase the annual genetic progress and lead 

palm oil production up to the growing world demand. Genetic improvement for hybrid 

performances has a major role to play to meet this demand while minimizing environmental 

impacts. A modified reciprocal recurrent scheme is used to select the most performing hybrids 

commercialized as hybrid cultivars or used for the most performing individuals as hybrid ortets 

in clonal selection. The current study empirically evaluated the interest of using genomic data 

from A × B hybrid individuals for the genomic approach applied to oil palm (Elaeis guineensis 

Jacq.). 

The efficiency of GS for clonal selection was first evaluated using a training set 

comprising almost 300 Deli × La Mé crosses phenotyped for eight palm oil yield components 

and the validation set 42 Deli × La Mé ortets. Genotyping-by-sequencing (GBS) revealed 

15,054 single nucleotide polymorphisms (SNP). The effects of the SNP dataset (density and 

percentage of missing data) and two GS modeling approaches, across-population SNP genotype 

models (ASGM) and population-specific effects of SNP alleles models (PSAM), respectively 

ignoring considering the parental origin of alleles, were assessed. Secondly, we investigated the 

effect of two strategies to optimize the GS accuracy in oil palm hybrid: genotyping strategy for 

the training population, i.e., genotyping only the hybrid parents or also a sample of hybrid 

individuals, and modeling of markers ASGM and PSAM. For that purpose, genomic data of 

both parents and hybrid individuals were used for calibration and predictions were done using 

ASGM and PSAM. The training set was constructed with around 350 hybrid crosses, including 

around 15,000 to 23,000 individuals phenotyped, depending on trait. Validation was realized in 

an independent set of 213 hybrid crosses. GBS was applied on the parents of the training and 

validation sets and on around 400 training hybrid individuals, yielding 21,458 SNPs. 

The results showed prediction accuracies ranging from 0.08 to 0.70 for ortet candidates 

without data records, depending on trait, SNP dataset and modeling. ASGM with a mean 

prediction of 0.45 was better (on average slightly more accurate, less sensitive to SNP dataset 

and simpler) than PSAM with a mean prediction accuracy of 0.43, although PSAM appeared 

interesting for a few traits. With ASGM, the number of SNPs had to reach 7,000, while the 

percentage of missing data per SNP was of secondary importance, and GS prediction accuracies 

were higher than those of PS for most of the traits. 

Prediction accuracies ranged from 0.15–0.89 for hybrid crosses depending on trait, 

model and genotyping strategy. Prediction accuracies increased on average by 5% when 
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training was done with genomic data of hybrid individuals and parents compared with only 

parental genomic data. Prediction accuracies increased on average by 3% with ASGM 

compared to PSAM. In our dataset, the mean prediction accuracy over traits of the best GS 

approach, i.e., ASGM with hybrid individuals’ genotypes, reached 0.53. 

Ultimately, this work makes possible two practical applications of GS, that will increase 

genetic progress by improving ortet preselection before clonal trials: preselection at the mature 

stage on all yield components jointly using ortet genotypes and phenotypes, and genomic 

preselection on more yield components than PS, among a large population of the best possible 

crosses at nursery stage. In addition, this work revealed that genomic data of the training hybrid 

individuals and GBLUP are useful to increase prediction accuracy; with ASGM the 

recommended modeling approach for that purpose. Further studies should investigate the 

factors controlling the relative performance of ASGM and PSAM approaches in oil palm, and 

focus on the optimal number of hybrid individuals to genotype to maximize the selection 

response per unit cost. 

Keywords: Elaeis guineensis Jacq., genomic selection, clonal selection, genotyping-by-

sequencing, prediction accuracy. 
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RESUMÉ 

La sélection génomique (SG) peut augmenter le progrès génétique annuel et la 

production en huile de palme afin de satisfaire la demande mondiale croissante. L'amélioration 

génétique des performances des hybrides a un rôle majeur à jouer pour répondre à cette 

demande tout en minimisant les impacts environnementaux. Le schéma de sélection récurrente 

réciproque est utilisé afin de sélectionner les hybrides les plus performants qui sont 

commercialisés comme cultivars ou alors pour les meilleurs de ces individus, utilisés comme 

têtes de clone (ortets) dans la sélection clonale. La présente étude a évalué empiriquement 

l'intérêt de l’utilisation des données génomiques d'individus hybrides A × B pour l'approche 

génomique appliquée au palmier à huile (Elaeis guineensis Jacq.). 

D’une part, l'efficacité de la SG pour la sélection clonale a d'abord été évaluée à l'aide 

d’une population de calibration comprenant près de 300 croisements Deli × La Mé, phénotypés 

pour huit composantes de rendement en huile de palme et la population de validation 

comprenant 42 ortets Deli × La Mé. Le génotypage par séquençage (GBS) a révélé 15 054 

polymorphismes mono-nucléotidiques (SNP). L’effet des jeux de données SNP (densité et 

pourcentage de données manquantes) et de deux approches de modélisation de la SG ont été 

évalués : les modèles de génotypes SNPs à travers la population (ASGM) et les modèles des 

effets spécifiques aux allèles SNPs de la population (PSAM) ; ignorant et prenant en compte 

l'origine parentale des allèles respectivement. 

D'autre part, l'effet de deux stratégies d’optimisation de la précision de la SG chez les 

hybrides de palmier à huile a été examiné : stratégie de génotypage pour la population de 

calibration, c'est-à-dire, génotypage des parents hybrides uniquement ou génotypage également 

d'un échantillon d'individus hybrides, et modélisation ASGM et PSAM. Les prédictions ont été 

effectuées à l’aide des modèles ASGM et PSAM qui ont été calibrés en utilisant les données 

génomiques des parents et des individus hybrides. La population de calibration a été construite 

avec environ 350 croisements hybrides, soit environ 15 000 à 23 000 individus phénotypés, 

selon les caractères. La validation a été réalisée sur une population indépendante de 213 

croisements hybrides. Le GBS a été appliqué sur les parents des populations de calibration et 

de validation, et sur environ 400 individus hybrides de la population de calibration, générant 

ainsi 21 458 SNPs. 

Les résultats révèlent des précisions de prédiction allant de 0,08 à 0,70 pour les ortets 

sans leurs phénotypes, en fonction des caractères, du jeu de données SNP et de l’approche de 
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modélisation. Le modèle ASGM avec une précision moyenne de 0.45 est meilleur (légèrement 

plus précis, moins sensible au jeu de données SNP et plus simple) que le modèle PSAM avec 

une précision moyenne de 0.43, bien que PSAM semble intéressant pour trois caractères. 

Environ 7 000 SNPs sont nécessaires lorsque le modèle ASGM est utilisé, alors que le 

pourcentage de données manquantes par SNP est d'importance secondaire, et les précisions de 

prédiction de la SG sont plus élevées que celles de la sélection phénotypique (SP) pour la 

plupart des caractères. 

Les précisions de prédiction vont de 0,15 à 0,89 pour les croisements hybrides en 

fonction des caractères, du modèle et de la stratégie de génotypage. Les précisions de prédiction 

augmentent en moyenne de 5 % lorsque la calibration est effectuée avec des données 

génomiques d'individus hybrides et de parents par rapport à une calibration effectuée 

uniquement avec les données génomiques parentales. Les précisions de prédiction augmentent 

en moyenne de 3 % avec ASGM par rapport à PSAM. La précision de prédiction moyenne sur 

les caractères de la meilleure approche de SG, c'est-à-dire ASGM avec des génotypes 

d'individus hybrides, est de 0,53. 

En définitive, cette étude permet deux applications pratiques de la SG qui augmenteront 

le progrès génétique en améliorant la présélection d'ortets avant les essais clonaux : la 

présélection au stade mature sur toutes les composantes du rendement en utilisant 

conjointement des génotypes et phénotypes des ortets, et la présélection génomique sur plus de 

composants de rendement que la SP, parmi une large population des meilleurs croisements 

possibles au stade pépinière. Par ailleurs, ces travaux révèlent que calibrer les modèles de SG 

avec un échantillon de données génomiques d’individus hybrides en plus de celles des parents 

et l’utilisation du modèle ASGM sont d’une grande importance pour augmenter la précision des 

prédictions. D'autres études sont nécessaires pour examiner les facteurs contrôlant la 

performance relative des approches ASGM et PSAM chez le palmier à huile, et se focaliser sur 

le nombre optimal d'individus hybrides à génotyper afin de maximiser la réponse à sélection en 

fonction du coût. 

Mots clés : Elaeis guineensis Jacq., sélection génomique, sélection clonale, génotypage par 

séquençage, précision de prédiction.
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CHAPTER I. GENERALITIES 

I.1. Introduction 

Genomic selection (GS) (Meuwissen et al., 2001) is a marker-assisted selection (MAS) 

method with a high density of markers on the entire genome so that at least one marker can be 

in linkage disequilibrium with each quantitative trait locus (QTL) (Goddard & Hayes, 2007). 

Compared to the previous MAS approach based on QTL detection, GS takes into account all 

the markers jointly and without any test of significance. In this way, even markers capturing 

small QTL effects are used in the model predicting the genetic values, thus improving the 

efficiency of selection. GS is, therefore, the most appropriate MAS method for yield traits 

which are usually quantitative, i.e., controlled by many loci with small effects. The GS model 

is calibrated (trained) on individuals genotyped and phenotyped (training set) and predicts the 

genetic value of a set of related individuals that are genotyped with the same set of markers. 

Before its practical application, the GS method must be evaluated and the prediction model that 

gives the highest accuracy (i.e. the correlation between the predicted and the true genetic values) 

is retained (Grattapaglia et al., 2018). The GS accuracy is estimated in a validation set, made 

of individuals genotyped and phenotyped, and representative of the population that will be used 

for application. Therefore, for a given species, GS allows selecting elite individuals based only 

on their genomic information, thus, making possible the shortening of the breeding cycle and/or 

the increase of selection intensity. 

Oil palm (Elaeis guineensis Jacq.), an allogamous species of the Arecaceae family, is 

the main oleaginous worldwide through its annual yield of four tons of crude palm oil (CPO) 

per hectare and a world production above 75 million tons CPO (Anonymous, 2020c). Oil palm 

production is 36% of the world's vegetable oils on only 0.36% of the world’s agricultural lands 

(Mayes, 2020). Most cultivated oil palms are hybrid cultivars, mainly due to their high yield 

per hectare. Two parental and heterotic groups are involved in the production of hybrid 

cultivars, namely group A, consisting essentially of the Deli population (Asia) and, to a lesser 

extent, the Angola population, and group B, involving the other African breeding populations. 

Group A produces a small number of large bunches and group B produces a lot of small 

bunches. This complementarity and the resulting heterosis expressed on hybrids through sexual 

crosses leading to a 30% yield increase explains why they were widely adopted in the 1960s 

(Corley & Tinker, 2016). The commercial oil palm material is tenera (thin-shelled) fruit form, 

resulting from the cross between the thick-shelled dura of group A and the shell-less and usually 

female sterile pisifera of group B. Selection of hybrids is carried out through progeny tests in a 
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modified reciprocal recurrent selection (MRRS) breeding scheme (Gascon & Berchoux, 1964; 

Meunier & Gascon, 1972). The best hybrids are primarily selected based on the parental general 

combining abilities (GCA). While progeny-testing has the advantage of providing high 

prediction accuracy, it also lengthens the selection cycle by up to ten years. That enabled an 

annual genetic progress of 1–1.5% so far (Hardon et al., 1987; Soh et al., 2003; Rival & Levang, 

2014). Although the annual yield of the oil palm hybrids obtained through the genetic 

improvement of A×B hybrids increased over the past decades (Rival & Levang, 2014), this 

remains insufficient to face the expected increase in the demand. Therefore, an additional yield 

increase is expected. Indeed, the world population is expected to be over nine billion by 2050, 

and the annual demand for palm oil to be between 120 and 156 million tons (Corley, 2009; 

Rival & Levang, 2014). Genetic improvement has a major role to play to meet this demand 

while minimizing environmental impacts. The so far used commercial A×B tenera hybrids 

essentially take advantage of the between-hybrid crosses variability. However, the within-

hybrid crosses genetic variability (additive and non-additive) can be exploited in two ways to 

increase the genetic gain. 

Firstly, a supplementary yield increase of 20-30% compared to sexual crosses can be 

obtained by using clones (ramets) obtained from the micropropagation of top-ranking 

commercial hybrid tenera individuals (ortets) (Corley & Law, 1997). This allows taking 

advantage of the within-hybrid crosses variability that results from parental heterozygosity. 

However, this approach has been hampered for a long time by a floral epigenetic abnormality 

producing mantled fruits, which could result in severe production loss. This abnormality is a 

somaclonal variation arising during tissue culture due to hypomethylation of the 

retrotransposon Karma in mantled variants, leading to homeotic transformations and 

parthenocarpy (Jaligot et al., 2000; Ong-Abdullah et al., 2015; Soh et al., 2017).  

The recent understanding of the molecular mechanism involved in the mantled disorder 

has led to the possibility of early detection of mantled ramets during the first stages of seedling 

growth (Ong-Abdullah et al., 2015), thus arousing a new impetus for oil palm clonal selection. 

The evaluation of ortets on their phenotypic value is possible, but some of the oil palm yield 

components have a low heritability. Indeed, Nouy et al. (2006) found a broad-sense heritability 

(H²) of 0 and 0.1 for bunch number and total bunch production, respectively, thus making the 

estimation of their genetic values of low reliability. As a consequence, breeders set clonal trials 

where they evaluate samples of ramets of candidate ortets that are preselected on the few yield 

traits with high heritability, i.e. usually the percentage of pulp per fruit (PF) and of oil per pulp 

(OP), for which, Nouy et al. (2006) found H² values of 0.84 and 0.63, respectively. These trials 
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give accurate estimations of the genetic value of the ortets but also extend, by around 10 years, 

the time required for the selection process for clone production, setting of trials, and collection 

of phenotypic data. This considerably reduces the interest of clonal selection as, during this 

time, conventional hybrids were also improved. Another drawback of the clonal trials is that 

their cost means that only a small number of ortet candidates can be evaluated, thus limiting the 

selection intensity. There is, therefore, a need to optimize clonal selection in the oil palm. 

Secondly, taking advantage of the within-crosses genetic variability to increase the 

prediction accuracy can lead to an additional yield increase of sexual crosses for outcrossing 

species where hybrid parents are heterozygotes (e.g. in oil palm (Nyouma et al., 2019), 

eucalyptus (Bouvet et al., 2016), robusta coffee (Leroy et al., 1997), etc) depending on the 

genotyping strategy. When the progeny-tested hybrid parents are in sufficient number to form 

a training set, two genotyping strategies are possible for the training set: genotyping only the 

hybrid parents, in order to reduce the genotyping costs, and genotyping also hybrid individuals, 

or at least a sample. To our knowledge, such a comparison was not made yet. 

Oil palm is one of the pioneer perennial crops on which GS studies have been carried 

out. The oil palm GS studies provided prominent results, such as the superiority of GS over 

both QTL-based MAS and phenotypic selection (Wong & Bernardo, 2008), and the possibility 

of increasing the performance of sexual hybrid crosses by genomic preselection before progeny-

tests (Cros et al., 2017). The main advantages of GS for the oil palm are its ability to enhance 

selection intensity and/or to shorten the generation interval, thus increasing the annual genetic 

gain (Nyouma et al., 2019). So far, GS has been successfully used in oil palm (Cros et al., 

2015a,b, 2017, 2018; Kwong et al., 2017a) parent selection of hybrid individuals (Cros et al., 

2017; Kwong et al., 2017a). A previous empirical study predicted hybrid phenotypes using a 

thousand hybrid individuals as a training set (Kwong et al., 2017a). Although phenotypes are 

estimates of the total genetic values, they often have low reliability, and therefore, when 

evaluating GS for clonal selection, it would be better to use clonal values as the target values 

predicted by the GS models. This has not yet been done in the oil palm, despite the potential 

benefits that genomic clonal selection have already shown in other perennial crops such as the 

eucalyptus (Durán et al., 2017) and the rubber tree (Cros et al., 2019). In addition, while 

genotypes of hybrid individuals take profit of the within-crosses variability, they however, 

present the major drawback of being expensive given the large number of hybrid individuals to 

genotype, thus reducing the economic interest of using GS. 

Moreover, in a simulation study, Cros et al. (2015a) demonstrated that including 

genomic data of a set of hybrid individuals (1,000) in addition to those of their parents 
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significantly increase genomic prediction accuracies. Such studies are common in animal 

breeding (Xiang et al., 2016). However, to our knowledge in plant breeding, no empirical study 

of that kind has already been performed despite the potential benefits in terms of prediction 

accuracy and genetic gain that it could provide. To value such type of genomic data, appropriate 

modeling approaches and imputation and phasing methods will be of great interest. 

Given that hybrid cultivars or ortets for clonal selection come from a cross between two 

oil palm origins, the genomic prediction of their genetic values can be done using two modeling 

approaches (Ibánez-Escriche et al., 2009), which are the genomic extensions of the modeling 

approach developed by Stuber & Cockerham (1966) for interpopulation hybrids. The first 

approach, the population-specific effects of single nucleotide polymorphism (SNP) alleles 

model (PSAM, or breed-specific effects of SNP alleles model (BSAM) in the animal breeding 

literature), considers that alleles of the same marker have different effects in the hybrids 

depending on their population of origin, whereas the second approach, the across-population 

SNP genotype model (ASGM), considers that alleles of a marker have the same effect 

regardless of their population of origin. Studies in livestock showed that BSAM can outperform 

ASGM in terms of accuracy with a low number of SNPs, a large training set, and slightly related 

or unrelated individuals (Ibánez-Escriche et al., 2009). Only a few articles investigated this 

aspect in animals (Ibánez-Escriche et al., 2009; Stock et al., 2020). However, to our knowledge, 

in the context of plant hybrids, these types of models were only compared in simulated maize 

populations (Technow et al., 2012). 

Based on the above, it is legitimate to ask how we could (better) exploit within hybrid 

crosses variability to improve genetic gain and therefore palm oil yield. 

From this overall question, it emerges specific questions such as: 

- how can we improve the prediction of the genetic values of A×B hybrid individuals for 

a better clonal selection in oil palm? 

- with regard to recent simulation studies on oil palm, can training using genomic data 

from parents and hybrid individuals improve the prediction of the genetic values of 

parents A and B for yield components in oil palm? 

The hypotheses resulting from these objectives are: 

- training genomic selection models using genomic data from ortets and parents improves 

the prediction of the genetic value of A×B hybrid individuals for clonal selection in oil 

palm; 
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- training genomic selection models using genomic data from parents and hybrid 

individuals improves the prediction of the genetic values of parents A and B for yield 

components in oil palm. 

The general objective of this study is to evaluate empirically the interest of using 

genomic data from A × B hybrid individuals for the genomic approach applied to oil palm. The 

specific objectives are: 

- to evaluate the efficiency of genomic selection for clonal selection; 

- to investigate the effect of the genotyping strategy to optimize prediction accuracy. 

 

I.2. Literature review 

I.2.1. Generalities on oil palm 

I.2.1.1. Classification and origin of the oil palms 

The genus Elaeis comprises two main species whose study is of some interest both 

economically and genetically: the cultivated African oil palm E. guineensis Jacq. and the 

American oil palm E. oleifera (HBK) Cortès. Two other species namely E. madagascariensis 

and E. odorata are sometimes evoked in literature but present a low commercial and economical 

interest (Jacquemard et al., 1997; Corley & Law, 1997). 

I.2.1.1.1. American oil palm Elaeis oleifera (HBK) Cortès 

The American oil palm E. oleifera (HBK) Cortès, also known as E. melanococca 

(Hartley, 1988), has a distribution area going from Central America to the Amazon through 

Colombia and the Guyanas (Meunier & Boutin, 1975; Rajanaidu et al., 1986; Jacquemard et 

al., 1997; Corley & Tinker, 2016). E. oleifera palms are in general very small compared with 

their relative E. guineensis, with a procumbent stem although erected in some environment. E. 

oleifera as E. guineensis, is used domestically for the oil contained in its mesocarp and kernel. 

A significant proportion of its fruits develop in a parthenocarpic way, and the oil extracted from 

its pulp has a high content of unsaturated fatty acids, which gives it a fluidity comparable to 

that of olive oil (Meunier, 1969). Hybridization of E. oleifera with E. guineensis has been 

carried out and resulted to individuals with intermediate characteristics to their parents. 

However, this hybrid is economically of low interest given its partial sterility.  Thereafter, oil 

palm will only refer to E. guineensis. 
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I.2.1.1.2. African oil palm, Elaeis guineensis Jacq. 

Etymologically called olive tree of Guinea, oil palm (Fig. 1) originated from the Gulf of 

Guinea where its name comes from.  

  

Fig. 1. Oil palm tree (Anonymous, 2020a). 

It is a tree-like diploid with 2n = 2x = 32 chromosomes, monocotyledon from the 

Arecaceae family (formerly called Palmae) (Jacquemard et al., 1997). 

The African origin of oil palm has long been controversial by the international scientific 

community until (Zeven, 1964) provides evidence showing an African origin. His work is based 

on the research of the first Botanists and the fossil pollen found in the soils of the Miocene in 

the Niger Delta (Fig. 2). 

 

Fig. 2. Comparison of oil palm pollen (Nigeria). a: fossil pollen apparently similar to a fern 

spore (size × 1750); b, c: fresh pollen of oil palm pisifera (size × 1300) (Zeven, 1964). 

a 

c 

b 
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I.2.1.2. Taxonomy and botanical description of E. guineensis 

I.2.1.2.1. Taxonomy 

The genus Elaeis belongs to the Arecaceae family, one of the oldest flowering plant 

families that exists, with fossils from the Cretaceous (Purseglove, 1976). E. guineensis belongs 

to the subfamily of Arecoideae containing approximately 60% of the genera of that family, 

therefore, 107 out of 183 and more than 50% of the species, i.e. approximately 1,300 out of 

2,400 (Baker et al., 2011) making this subfamily the largest and most diverse of the five 

subfamilies of Arecaceae. Classification of Elaeis is made using the taxa below (Cronquist & 

Takhtadzhian, 1981; Dransfield et al., 2005; Corley & Tinker, 2016): 

Domain: Eukaryota  

Kingdom: Plantae 

Subkingdom: Viridaeplantea 

Phylum: Spermatophyta 

Subphylum: Angiospermae 

Class: Liliopsida/Monocotyledons 

Order: Arecales 

Family: Arecaceae/Palmae 

Subfamily: Cocosideae/Arecoideae 

Tribe: Cocoseae 

Genus: Elaeis 

Species: Elaeis guineensis Jacq. and Elaeis oleifera (HBK). 

I.2.1.2.2. Botanical description 

E. guineensis is a perennial tree plant with indefinite growth, presenting a crown 

extended from 30 to 45 green palms from 5 to 9 m long and a single cylindrical stipe 

(Rafflegeau, 2008). From 5 to 8 years old, its pinnate compound leaves bear 100 to 120 leaflets, 

while those at the base are transformed into thorns. The leaflets are quite short and about 7-10 

cm wide. From 20 to 40 years old, a healthy tree has leaves that carry 190 to 200 leaflets from 

70 to 90 cm long by 4 cm (sometimes 6 cm) wide and the petiole measures 70 cm to 1.10 m 

long and 25 cm wide (Chevalier, 1943). 

The stipe or pseudo trunk of E. guineensis, has from 3 to 6 years a growth in length 

which goes from 30 to 75 cm per year. Its size can reach 25 to 30 cm long but its commercial 

exploitation stops when the tree exceeds 12 m. The diameter at the base is 80 to 110 cm, then 
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40 to 50 cm on the cylindrical area (Chevalier, 1943; Jacquemard, 2012). A lignified star-shaped 

cavity is present at the base of the bulb at the interface with the root system. 

The oil palm's root system is made up of fasciculate adventitious roots originating on 

the root plate, which can reach 15 to 20 m in length and penetrate to around 6 m in depth. The 

voluminous root plateau of about 80 cm in diameter penetrates the soil to a depth of about 40 

to 50 cm (Jourdan & Rey, 1997; Jacquemard, 2012). 

I.2.1.3. Oil palm ecology 

Oil palm is a plant that supports a very wide range of climatic factors. It is a plant at the 

edge of the forest and a gallery forest or shore (riversides). At the juvenile stage, it is sciaphile, 

therefore young plants usually need shade to resist drought in the savannah. As it develops, the 

need for light gradually increases, thus, becoming heliophile (Chevalier, 1943). Its cultivation 

is carried out in an interval of the humid tropical zone limited to 15° latitude on both sides of 

the equator (Henry, 1958; Jacquemard et al., 1997). Maximum growth and production are 

obtained when the various climatic factors are at their optimum. Indeed, a minimum of 2,000 

mm of precipitation well distributed i.e. without a pronounced dry season and ideally 100 mm 

at least each month is necessary throughout the year, the optimum insolation is beyond 1,800 

hours (heliometers) and solar radiation above 12-15 MJ/m²/day and sunshine of 5-7 h/day 

(Hartley, 1988; Jacquemard, 1995, 2012; Goh, 2000). Maximum production is obtained for 

monthly average temperatures between 22 and 24°C. However, the monthly minima must be 

above 18°C and the maxima between 28 and 33°C because a blockage of bunches ripening and 

lethal effects occur if temperatures regularly drop below 18°C. Oil palm is not very demanding 

on its soil fertility and can therefore be cultivated on most tropical soils provided that they are 

deep, loose, not very grainy and well-drained (Hartley, 1988; Jacquemard et al., 1997; Goh, 

2000; Jacquemard, 2012). 

I.2.1.5. Oil palm and environment 

 With an expected world population of over 9 billion by 2050, around 240 million tons 

of vegetable oil will be needed to supply the world demand, i.e., 120 to 156 million tons for 

palm oil (Corley, 2009; Rival & Levang, 2014). To supply palm oil, 12 to 28 million hectares 

of planted oil palm will be necessary depending on the performance of the planting material 

(Corley, 2009). It will therefore be necessary to increase the planted area and/ or the 

productivity of the already existing planted area. Oil palm is usually considered as a driver of 

deforestation (Butler et al., 2009) and significant loss of animal biodiversity when a forest is 
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replaced with an oil palm plantation (Fitzherbert et al., 2008). However, this belief can be 

misleading given the important part of destroyed forests not used for oil palm culture (Corley 

& Tinker, 2016). Indeed, from 1990 to 2000, around 78 million hectares of rainforest have been 

destroyed in the main 29 oil palm producers but the planted area of oil palm at the same period 

increased by only 3.9 million hectares (Anonymous, 2010), i.e., 5%.  In consequence, 

deforestation due to oil palm culture accounted only for 5% of the total forest destroyed (Corley 

& Tinker, 2016). Moreover, from 2000 to 2010, 58 million hectares of forest were destroyed, 

while oil palm plantations expanded from 6 million hectares in the same 29 countries; 

corresponding to only 10% of deforestation (Anonymous, 2010). 

I.2.1.4. Production and economic importance 

Palm oil world production is distributed among many countries (Fig. 3). This production 

has increased steadily for the last 60 years. Starting with a production of around 1.5 Mt in the 

1960s to over 75 Mt in 2020 (Anonymous, 2020c). This production is largely provided by two 

countries, Indonesia with 43.5 Mt and Malaysia with 19.3 Mt, i.e., 85% of the world production 

in 2020 for both. Cameroon, with a production estimated at 269,000 tons in 2018, although an 

increase compared to 2017, is still only the 13th world producer and fourth in Africa, behind 

Nigeria, Ivory Coast and Ghana. An important regression of Cameroon production compared 

to 2011 (354,000 tons) is acknowledged (Anonymous, 2020b). Although Indonesia and 

Malaysia are by far the largest producers of palm oil, India is the highest importer with 9.2 Mt, 

and Indonesia is the top domestic consumer with 14.875 Mt (Anonymous, 2020c). 
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Fig. 3. Distribution of oil palm production worldwide (Anonymous, 2020b). 

I.2.2. Concepts of quantitative genetics 

I.2.2.1. Quantitative traits 

Quantitative genetics is a special branch of genetics interested in the inheritance of 

quantitative traits i.e., traits jointly controlled by multiple genes of small effects and the 

environment. Phenotypic values of quantitative traits can vary in a range among individuals, 

thus giving a continuous distribution (Falconer & Mackay, 1996; Lynch & Walsh, 1998). 

Quantitative traits are therefore contrasted with Mendelian traits (also known as qualitative 

traits) whose phenotype is controlled by one or very few genes, with as consequence, a discrete 

distribution over individuals (Stearns, 1992). Genes responsible for quantitative traits are called 

quantitative traits loci (QTL) and usually, the segregation of these genes individually, expresses 

a small quantity of the genetic variance but collectively, a significant amount of the total genetic 

variance (Hayes & Goddard, 2001). In addition to the genetic factors, the phenotype over 

individuals can be explained by environmental factors and/ or their interaction with genetic 

factors, although the latter can be of less importance overall (Xu, 2013). Thanks to the progress 

of molecular biology, it becomes possible to link molecular markers to gene alleles, therefore, 

making a study of marker segregations possible whatever the gene’s effect on the phenotype 

(Gallais, 2011). The variation of the phenotype due to individual QTL segregation effects are 
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usually difficult to observe, hence the necessity of appropriates statistical methods and 

mathematical models to value their effects, since most yield traits in cultivated plants are 

quantitative such as oil palm whose yield components are quantitative traits (Nyouma et al., 

2019). 

I.2.2.2. Main properties of quantitative traits 

Two main properties of quantitative traits are at the basis of breeding methods. First and 

foremost, the resemblance between relatives (explained below). The degree of resemblance 

between relatives varies across traits. Breeding strategies rely on the resemblance between 

parents and offspring, therefore, mating high-yielding parents will bring an improvement to the 

yield components of the next generation, depending on the degree of resemblance and their 

responsiveness to selection. The degree of resemblance between different relatives is used in 

breeding programs to predict the outcome of the breeding strategies in order to determine the 

best  to be used (Falconer & Mackay, 1996). 

The second property is the inbreeding depression. Indeed, this latter appears to diminish 

the mean of traits linked to fitness in animals and naturally outbreeding plants, thus leading to 

vigour and fertility losses. That loss is detrimental given that the majority of traits with high 

economic value for animals and plants are a feature of vigour or fertility. There are several 

techniques of inbreeding management mostly consisting of crossing in inbred lines (Falconer 

& Mackay, 1996). 

I.2.2.3. Phenotypic value 

Quantitative genetics focuses on genes involved in the expression of quantitative traits. 

In order to determine the link between the properties of a population as aforementioned and 

quantitative traits, the concept of phenotypic value should be introduced. This latter represents 

the first value obtained from the measure of quantitative traits. All the genetic parameters: 

population means, variance, covariance and heritability are derived from that value. The 

phenotypic value can be divided into components attributable to genetic and environmental 

(non-genetic) factors, and their interaction (Doolittle, 1987; Falconer & Mackay, 1996; Lynch 

& Walsh, 1998). The genetic components include the set of genes of an individual having an 

influence on the phenotype, while environmental components are non-genetic causes modifying 

the phenotype and their interaction. Hence, the phenotype results from genes’ actions 

subsequently modified by environmental factors. Therefore, the basic model in quantitative 

genetics can be symbolically written as follow (Falconer & Mackay, 1996; Lynch & Walsh, 

1998; Verrier et al., 2001): 
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 𝑃 =  𝐺 +  𝐸   [1.1] 

with 𝑃 the phenotypic value of the population, 𝐺 the genetic (genotypic) value and E the 

environmental deviation or environmental value.  

It is convenient for an individual or a group of individuals to express the phenotypic 

value in terms of deviation from the population mean. Hence, a more useful form for expressing 

the phenotypic value is (Doolittle, 1987; Verrier et al., 2001):  

𝑃𝑖 = µ + 𝐺𝑖 + 𝐸𝑖  [1.2] 

with µ the phenotypic population mean, 𝐺𝑖 the genetic value of the individual 𝑖 and 𝐸𝑖 the 

environmental effects on the individual 𝑖. 

From equation [1.2], it is possible to obtain: 

𝑃 = µ + 𝐴𝑖 + 𝐷𝑖 + 𝐼𝑖 + 𝐸𝑖, with 𝐴𝑖 the additive genetic value of the individual 𝑖 and 𝐷𝑖 the 

dominance genetic value or dominance deviation of the individual 𝑖 and 𝐼𝑖 the epistatic genetic 

value of the individual 𝑖, 𝐺𝑖 =  𝐴𝑖 + 𝐷𝑖 + 𝐼𝑖. When 𝐷𝑖 and 𝐼𝑖 are negligible only the additive 

effects remain. 

I.2.2.3.1. Genotypic values at one diallelic locus 

Since the deviation due to environmental factors is not negligible, measuring genotypic 

value is feasible only theoretically but impossible in practice, unless if one locus only is 

involved with genotypes resulting to distinct phenotypes or in genotypes of high inbred lines 

(Falconer & Mackay, 1996). 

Consider a locus 𝐴 with two alleles, 𝐴1 the allele that increases the genotypic value and 

𝐴2 the allele that reduces it. Let +𝑎 be the genotypic value of the homozygote 𝐴1𝐴1, −𝑎 the 

genotypic value of the second homozygote 𝐴2𝐴2 and 𝑑 the genotypic value of the heterozygote 

𝐴1𝐴2 (Fig. 4). 

 

Fig. 4. Genotypic value based on one locus-genotype, with  randomly assigned alleles (Falconer 

& Mackay, 1996; Lynch & Walsh, 1998; Conner & Hartl, 2004). 

The midpoint between the two homozygotes is 0. Heterosis or hybrid vigor of the 

heterozygote depends on the values taken by 𝑑 i.e., the dominance degree. For 𝑑 = 0, there is 
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no dominance; for 𝑑 > 0, 𝐴1 is dominant over 𝐴2, for d < 0 𝐴1 is dominant over 𝐴2. In case of 

overdominance (𝐴1𝐴2 > 𝐴1𝐴1) 𝑑 > +𝑎, and complete dominance if 𝑑 = +𝑎 (𝐴1𝐴2 = 𝐴1𝐴1, 

with 𝐴1 being dominant over 𝐴2) or 𝑑 = −𝑎 (𝐴1𝐴2 = 𝐴2𝐴2, with 𝐴2 being dominant over 𝐴1). 

The ratio 𝑑/𝑎  allows expressing the degree of dominance (Falconer & Mackay, 1996; Lynch 

& Walsh, 1998; Conner & Hartl, 2004; Gallais, 2011). 

I.2.2.3.2. Genotypic mean of a population 

The genotypic mean of the population when the population allele (or gene) frequencies 

of 𝐴1 and 𝐴2 are 𝑝 and 𝑞 respectively, can be computed as follow (Falconer & Mackay, 1996; 

Conner & Hartl, 2004): 

𝑀 = 𝑎𝑝2 + 2𝑑𝑝𝑞 + (−𝑎) × 𝑞2, with 𝑝2𝑎 the mean of 𝐴1𝐴1, 2𝑝𝑞𝑑 the mean of 𝐴1𝐴2 and −𝑞²𝑎 

the mean of 𝐴2𝐴2 (Table I). 

𝑀 = 𝑎(𝑝 − 𝑞) + 2𝑑𝑝𝑞 [2] 

In case there are many loci involved as in quantitative traits, and it is assumed that genes 

additionally combine i.e., the genotypic value is the sum of values of each locus taken 

independently. The equation is expressed as follow: 

𝑀 = ∑[𝑎(𝑝 − 𝑞) + 2𝑑𝑝𝑞] [3] 

Table I. Deduction of the population genotypic mean from the relative allele frequencies and 

genotypic value ( Falconer & Mackay, 1996; Conner & Hartl, 2004). 

Genotype Frequency Genotypic value Frequency × Genotypic value 

𝑨𝟏𝑨𝟏 𝑝2 +𝑎 𝑝2𝑎 

𝑨𝟏𝑨𝟐 2𝑝𝑞 𝑑 2𝑝𝑞𝑑 

𝑨𝟐𝑨𝟐 𝑞2 −𝑎 −𝑞²𝑎 

Sum 𝑎(𝑝 − 𝑞) + 2𝑝𝑞𝑑 

 

I.2.2.3.3. Average effect of allele substitution  

Once seen how the genotypic mean can be calculated in a population, the following step 

is the understanding of the transmission of genes from parents to their progenies. The 

knowledge of the genotypic mean does not provide such information given that genotypes are 

made up in each generation. The average allele (gene) effect can be defined as the average 

deviation from the population mean of individuals that received a given allele from one parent, 

with the allele of the other parent assumed to come randomly from the population. In other 
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words, if 10 individuals carrying the allele are combined with random alleles in that population, 

then the deviation of the mean genotype obtained from the population mean is the average effect 

(Falconer & Mackay, 1996; Gallais, 2011).  

In order to link the genotypic mean and the average effect, two alleles 𝐴1 with a 

frequency 𝑝 and 𝐴2with a frequency 𝑞 are considered. Let 𝛼1 the average effect of 𝐴1. If the 

gametes carrying 𝐴1 randomly unite with gametes from the population, the frequencies of the 

genotypes involving 𝐴1 will be 𝑝 of 𝐴1𝑨𝟏, 𝑞 of 𝐴1𝑨𝟐, with a mean of 𝑝𝑎 +  𝑞𝑑 (Fig. 5). The 

average effect 𝛼1 of 𝐴1 is the difference between this mean and the population mean calculated 

above. Simplification enables to obtain (Fisher, 1918; Falconer & Mackay, 1996): 

𝛼1 =  𝑝𝑎 +  𝑞𝑑 – [𝑎(𝑝 − 𝑞) + 2𝑑𝑝𝑞] 

𝛼1 = 𝑞[𝑎 + 𝑑(𝑞 − 𝑝)]   [4] 

The average effect of 𝐴2 is computed similarly as:  

𝛼2 = −𝑝[𝑎 + 𝑑(𝑞 − 𝑝)]  [5] 

 

Fig. 5. Allele substitution and genotypic values of the resulting genotypes. 

It is recommended to express the average effect in terms of the average effect of allele 

substitution. That corresponds when loci involve only two alleles, to the difference between the 

average effect of the two alleles 𝐴1 and 𝐴2: 

 𝛼 = 𝛼1 − 𝛼2 

𝛼 = 𝑎 + 𝑑(𝑝 − 𝑞) [6] 
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The average effects of 𝐴1 and 𝐴2 in terms of the average effect of the allele substitution, are: 

𝛼1 = 𝑞𝛼 

𝛼2 = −𝑝𝛼   

I.2.2.3.4. Breeding value or additive genetic value 

The breeding value of an individual is the value passed on average to its progeny. Given 

that parents transmit their alleles and not their genotypes to their progeny, the breeding value 

can therefore be computed as the sum of allele average effects for all the loci. While average 

effects cannot be measured, the breeding values can, through its progeny. Indeed, if an 

individual is randomly mated with several other random individuals, its breeding value is twice 

the mean deviation of its offspring from the population mean. One parent passes on only half 

of its genes, hence the deviation is doubled (Falconer & Mackay, 1996; Conner & Hartl, 2004; 

Gallais, 2011). The breeding value is a function of the individual and the population in which 

its mates are randomly drawn. The breeding value can be measured for traits that one parent 

does not possess. An example to illustrate that is the breeding value of a bull for milk 

production, although does not produce milk strictly speaking. This can be done on its offspring 

in which the measures are done (Conner & Hartl, 2004). Considering [7], the different breeding 

values will be (see Doolittle (1987); Falconer & Mackay (1996)): 

𝛼1 = 2𝑞𝛼 for 𝐴1𝐴1     [8.1] 

 𝛼2 = −2𝑝𝛼 for 𝐴2𝐴2    [8.2] 

 𝛼1 + 𝛼2 = (𝑞 − 𝑝)𝛼 for 𝐴1𝐴2    [8.3] 

The population means i.e., the means including all the three genotypes is obtained by summing 

their respective breeding values. Following that reasoning, the mean population (𝑀)  is: 

𝑀 = 2𝑞𝛼 − 2𝑝𝛼 + (𝑞 − 𝑝)𝛼 , by substituting 𝛼 by its value 𝑎 + 𝑑(𝑝 − 𝑞), we find: 

𝑀 = 𝑎(𝑝 − 𝑞) + 2𝑑𝑝𝑞 which is the expression of breeding value without average effects. 

The expected breeding value of a given individual is the average breeding value of its 

two parents. As a consequence, different descendants of the same parents can have different 

breeding values depending on the received alleles from their parents. The solution to deal with 

that is to calculate the expected breeding value in a large number of descendants of the same 

parent as (Falconer & Mackay, 1996):   

𝐴𝑖 =
1

2
(𝐴𝑝𝑚

+ 𝐴𝑝𝑓
)  [9] 

[7] 
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with 𝐴𝑖 the expected breeding value of an individual 𝑖, 𝐴𝑝𝑚
 and 𝐴𝑝𝑓

 the breeding values of the 

male (𝑝𝑚) and female (𝑝𝑚) parents of 𝑖. 

Similarly, the dominance deviation or dominance value can be expressed in terms of 

assigned genotypic values 𝑎 and 𝑑. Therefore, the genotypic values should be converted into 

deviation to the population given that breeding values have already been expressed that way. 

To illustrate that, consider 𝐴1𝐴1 with its assigned genotypic value +𝑎. The genotypic value +𝑎 

in the form of deviation to the population can be obtained as the difference between the 

genotypic value, +𝑎 and the mean population genotypic value (𝑀) as follow (Falconer & 

Mackay, 1996): 

𝑎 − 𝑀 = 𝑎 − [𝑎(𝑝 − 𝑞)2𝑑𝑝𝑞] 

= 𝑎(1 − 𝑝 + 𝑞) − 2𝑑𝑝𝑞   

= 2𝑞(𝑎 − 𝑑𝑝) [10a] 

That equation can be expressed with average effects by replacing 𝑎 by its value 𝛼 − 𝑑(𝑞 − 𝑝); 

thus becoming: 

2𝑞(𝛼 − 𝑞𝑑)  [10b]  

The dominance deviation is finally obtained by subtracting the genotypic value of 𝐴1𝐴1 in [10b] 

by its breeding value, 2𝑞𝛼 in [8.1]. 

2𝑞(𝛼 − 𝑞𝑑) − 2𝑞𝛼 = −2𝑞2𝑑 [11]. 

Similarly, the dominance deviation of 𝐴1𝐴2 and 𝐴2𝐴2 can be obtained as: 2𝑝𝑞𝑑 and −2𝑝2𝑑, 

respectively.  

I.2.2.3.5. Genetic value 

The difference between breeding value and genetic or genotypic value is dominance 

deviations indicated by vertical dotted lines (Fig. 6) and epistasis deviations. The genetic value 

can, therefore, be divided into two parts: additive genetic value (breeding value) and non-

additive genetic value (dominance and epistasis) observable on the individual itself. The 

dominance genetic value results from an interaction of alleles within a locus while epistatic 

value results from an interaction of alleles from different loci. Dominance genetic effect is the 

most important non-additive genetic effect (Falconer & Mackay, 1996; Gengler et al., 1998). 

The link between genotypic values, breeding values and dominance deviation is illustrated in 
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Fig. 6. The genotypic values are represented in relation to the number of 𝐴1 alleles present in 

the genotype. A regression line is fitted by points and each point is weighted by the frequency 

of its genotype. The line provides the breeding values of each genotype and the upper cross 

mark on it is the population mean. The average allele effect is the allele substitution 𝛼, the 

difference between 𝐴2𝐴2 and 𝐴1𝐴2 or 𝐴1𝐴2 and 𝐴1𝐴1 (Falconer & Mackay, 1996). 

 

Fig. 6. Decomposition of phenotypes into genotypic values (closed circles), breeding values 

(open circles), for a locus with two alleles, 𝐴1 and 𝐴2 at frequencies 𝑝 and 𝑞. 𝑑 = ¾, 𝑎 and 𝑞 =

¼ and 𝛼 is the average effect of allele substitution (Falconer & Mackay, 1996). 

I.2.2.4. Phenotypic variance 

I.2.2.4.1. Definition of the components of phenotypic variance 

As the population mean aforementioned, variance is an important parameter for the 

characterization of quantitative traits in a population. Variance is a fundamental statistical 

measure of the amount of variation from which other parameters and tests are based (Conner & 

Hartl, 2004). Variance is also the mean of the square deviation of a random variable from its 

mean or population mean. In plant breeding, the total variance corresponds to the phenotypic 

variance, also known as the variance of phenotypic values, and can be computed by summing 

separately all its components. Indeed, the phenotypic variance can be partitioned into variances 
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of the phenotypic components, total genotypic variance (𝑉𝐺), environmental variance (𝑉𝐸) and 

their interactions, assuming there is no interaction or correlation between genetic and 

environmental factors (Gallais, 2011): 

𝑉𝑃 = 𝑉𝐺 + 𝑉𝐸 + 𝑉𝐺×𝐸   [12] 

For a better understanding of the phenotypic variance, some basic concepts mentioned in 

previous paragraphs should be known, among which the population mean, the average (genetic) 

effect and the breeding value.  

Genetic variance often termed genotypic variance can be fragmented into additive and 

non-additive genetic variances. In a given population, the additive genetic variance expresses 

the variance of additive effects of genes, i.e., the sum of additive effects at each locus. 

Dominance genetic variance is the sum of statistical dominance variance at each locus. In the 

absence of epistatic effect, total genetic variance is the sum of dominance and additive genetic 

variances when the population is in Hardy-Weinberg equilibrium (Falconer & Mackay, 1996; 

Gallais, 2011): 𝑉𝐺 = 𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼 

Hence, [12] becomes: 𝑉𝑃 = 𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼 + 𝑉𝐸 + 𝑉𝐺×𝐸. 

Often, 𝑉𝐺×𝐸  can be neglected without significantly affecting the phenotypic variance 

(Falconer & Mackay, 1996). 

I.2.2.4.2. Additive genetic variance 

The additive genetic variance is the only genotypic variances that can be estimated from 

field observations of the population. Response to selection of the population is usually 

proportional to the genetic (additive) variance (Toro et al., 2011), hence its importance in plant 

breeding. To determine the additive variance in practice, the total variance is partitioned in 

additive variance against all the other forms of variances. Additive variance does not mean 

alleles or genes act additively with non-additive actions (dominance and epistasis). Additive 

variance in the scale of locus is the average effect of its different alleles (Kempthorne, 1955) 

and no assumption should be made on gene action modes. 

Consider a single locus with two alleles (excluding within-loci interactions), and let 

express the genetic variance in the form of gene frequencies (𝑝 and 𝑞) and genotypic value (𝑎 

and 𝑑). The additive genetic variance corresponding to the variance of breeding value can be 

calculated by multiplying the squared breeding value ([8.1], [8.2], [8.3]) of each genotype by 

its frequency and summing as follow (Falconer & Mackay, 1996; Conner & Hartl, 2004): 
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𝑉𝐴 = 𝑝2(2𝑞𝛼)2 + 2𝑝𝑞(𝑞 − 𝑝)2𝛼2 + (−2𝑝𝛼)𝑞2   

𝑉𝐴 = 4𝑝22𝑞2𝛼2 + 2𝑝𝑞(𝑞 − 𝑝)2𝛼2 + 4𝑝2𝑞2𝛼2  [13.1] 

𝑉𝐴 = 2𝑝𝑞𝛼2 [13.2] (expressed in terms of average effect)  

𝑉𝐴 = 2𝑝𝑞[𝑎 + 𝑑(𝑞 − 𝑝)]2 [13.3] (expressed in terms of assigned genotypic values 𝑎 and 𝑑). 

I.2.2.4.3. Dominance genetic variance 

The dominance variance can be expressed similarly to the genetic additive variance as 

follow (Falconer & Mackay, 1996; Conner & Hartl, 2004):  

𝑉𝐷 = 𝑝2(−2𝑞2𝑑)2 + 𝑞2(−2𝑝2𝑑)2 + 2𝑝𝑞(2𝑝𝑞𝑑)²  

𝑉𝐷 = (2𝑝𝑞𝑑)2 [14] 

Overall, all the variance components have a squared term because variance has 

previously been defined as a square deviation from the population mean. That term prevents 

variance components from being negative because negative genetic variability is meaningless 

except in practice where it often occurs due to random error (Conner & Hartl, 2004). 

I.2.2.4.4. Total genetic variance without epistasis 

Assuming epistatic effects are negligible, the total genetic variance can be expressed as: 

𝑉𝐺 = 𝑉𝐴 + 𝑉𝐷 + 2𝐶𝑜𝑣(𝐴, 𝐷)  [15] 

𝐶𝑜𝑣(𝐴, 𝐷) being the covariance of breeding value and dominance deviation. 𝐶𝑜𝑣(𝐴, 𝐷) 

can be calculated as the sum of the product of breeding value by dominance deviation and the 

frequency, of each genotype. Thus, it can easily be demonstrated that 𝐶𝑜𝑣(𝐴, 𝐷)=0, hence 

𝑉𝐺 = 𝑉𝐴 + 𝑉𝐷   

𝑉𝐺 = (2𝑝𝑞𝑑)2 + 2𝑝𝑞[𝑎 + 𝑑(𝑞 − 𝑝)]2 [16] 

In case of absence of dominance (𝑑 = 0), 

𝑉𝐺 = 𝑉𝐴 = 2𝑝𝑞𝑎² [17] 

I.2.2.4.5. Total genetic variance with epistasis 

Two considerations of epistasis phenomenon as any type of genetic effects are possible: 

the physiological or biological epistasis and the statistical epistasis. Epistasis can biologically 

be defined as a phenomenon in which the phenotype of an individual with several genotypes at 

one locus depends on the genotypes at the other loci (Cheverud & Routman, 1995). Statistically, 
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epistasis will be defined as already mentioned i.e. the deviation of the genotypic values of many 

loci from the expected value based on the sum of the value of each locus (Falconer & Mackay, 

1996). Just like all the statistical parameters in quantitative genetics, statistical epistasis is 

function to the population and the allele frequency, while biological epistasis depends on the 

individual genotype, and is independent of the population and remains constant, even if the 

allele frequency changes (Cheverud & Routman, 1995; Goodnight, 2016). Hereafter, epistasis 

will refer to statistical epistasis. 

When at least two loci are involved, from their interactions arises epistatic variance, 

called by some authors, variance interaction deviations (𝑉𝐼) (Falconer & Mackay, 1996). 

Epistatic variance can be theoretically explained depending on the number of loci involved on 

one hand, and the type of genetic effects (breeding or dominance genetic value) on the other 

hand. 

Firstly, the number of loci involved is proportional to the number of factors involved in 

the interaction; for instance, between two loci, two interaction factors will be involved and so 

on. Moreover, when a large number of loci are implicated, there is also a large number of 

interaction factors so that, the epistatic variance is minimized and negligible.  

Secondly, when considering breeding and dominance values, three forms of epistasis 

are possible: additive interaction at both loci, additive interaction at one locus and dominance 

at the other and dominance at both loci leading respectively to additive × additive variance 

(𝑉𝐼𝐴×𝐴
), additive × dominance variance (𝑉𝐼𝐴×𝐷

), dominance × dominance variance (𝑉𝐼D×𝐷
) 

(Falconer & Mackay, 1996). As a result, epistasis variance for two interaction factors is 

expressed as follow:  𝑉𝐼 = 𝑉𝐼𝐴×𝐴
+ 𝑉𝐼𝐴×𝐷

+ 𝑉𝐼D×𝐷
. In many studies, epistasis variance shown 

to be non-significantly different from zero i.e., negligible over all the phenotypic variance (Su 

et al., 2012) and therefore, will be ignored here.  

Estimation of the genetic variance is just theoretical, to the extent that in practice, gene 

frequencies and gene effects are unknown, unless if a special population is made up accordingly 

(Falconer & Mackay, 1996). In practice, genetic variance is estimated through its components, 

and easily when data about relative resemblance are available. 

I.2.2.5. Resemblance between relatives 

The theoretical resemblance between relatives caused by genetic factors was first 

ascertained by Fisher (1918). Based on his theory, quantitative genetic factors are estimated 

thanks to the resemblance between different types of relatives by linking phenotypic covariance 

to the degree of genetic relationship, usually expressed as the kinship coefficient (or coancestry 
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coefficient) (Lynch & Walsh, 1998) or the additive coefficient of relationship (Falconer & 

Mackay, 1996; Lynch & Walsh, 1998). 

I.2.2.5.1. Genetic relationships 

Kinship coefficient or coancestry coefficient (Wright, 1922; Malécot, 1948) can be 

computed using the pedigree—genetic genealogical relationship or using molecular markers—

genetic realized or molecular relationship, which can be either additive or nonadditive 

(dominance or epistatic genetic relationship) (Visscher et al., 2006). Indeed, the coefficient of 

kinship (𝑓𝑖𝑗) is a probabilistic measure of relatedness or relationship between two individuals 𝑖 

and 𝑗, defined as the probability that a pair of homologous alleles randomly sampled at a given 

locus are identical by descent (IBD). In other words, it is the probability to have for the same 

locus the allele of an individual 𝑖 identical to the allele of an individual 𝑗, and coming from a 

common recent ancestor. It ranges from 0 – 1, with 0 corresponding to unrelated individuals 

and 1 corresponding to pure lineage (Table II).  

Two alleles are IBD (Fig. 7) if they are homologous alleles inherited from a common 

recent ancestor. Two alleles can be identical by state (IBS) i.e., alleles that are identical or 

similar regardless of whether they are inherited from a common ancestor. Therefore, IBD alleles 

or genes are IBS but not conversely (Lange, 2003; Powell et al., 2010). The concept of IBD 

must be defined for a given base or reference population. In other words, the probability to have 

the same allele inherited from a common recent ancestor must be applicable only if the two 

individuals belong to the same studied reference population. 

Table II. Kinship and fraternity coefficients according to their family relationship. 

Individual relationships Kinship coefficient (𝒇𝒊𝒋) Fraternity coefficient (𝛗) 

unrelated individuals 0 0 

pure lineage 1 1 

individual - self 1/2 1 

clones 1/2 1 

fullsibs (with unrelated parents) 1/4 0.25 

parents - offspring 1/4 0 

grandparents-grandchild  1/8 0 

half-sib 1/8 0 

great grandparent - great 

grandchild 

1/16 0 

Classically, IBD is computed using a pedigree spanning many generations, in which the 

first individuals (at the top) are considered to be the founders (with no known parents) and 

assumed unrelated and noninbred. With the advent of molecular biology, it is now common to 

compute IBD using molecular markers (SSRs or SNPs) (Powell et al., 2010). 
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An individual is inbred if both of its two parents are related. The consequence of 

inbreeding is the possibility for an individual to have received for a given locus two allele copies 

(IBD) of the same gene present in the common ancestor of its two parents (Fig. 8). 

The coefficient of inbreeding of an individual 𝑥,  𝐹𝑥, is the probability to have two 

identical copies of the same allele (IBD) in a given locus. The two alleles of 𝑥 being the result 

of a random draw of a gene among the two of its male parent and of a gene among the two of 

its female parent, the coefficient of inbreeding of an individual is equal to the coefficient of 

kinship between his two parents i.e. 𝑥 with female parent 𝑖 and male parent 𝑗; we obtain (Wright, 

1922):  𝐹𝑥 = 𝑓𝑖𝑗 

 

Fig. 7. Transmission of identical by descent segment of chromosome in two offspring (IBD) 

(Anonymous, 2013). 

Kinship and inbreeding concepts are often confounded, whereas, although close, they 

are quite different. While kinship concerns pairs of individuals, inbreeding involves single 

individuals. Confusion commonly occurs because in common parlance, consanguineous refers 

to the fact of descending from the same strain. However, geneticists refer to marriage between 

relatives and reserve the term consanguineous for children born of such a marriage (Verrier et 

al., 2001). 

To know how 𝑓𝑖𝑗 is computed, the estimation of the coefficient of coancestry of an 

individual with itself (self-coancestry), 𝑓𝑥𝑥 is necessary. Let us assume that an individual 𝑥 

carries in a given locus two alleles 𝑥1 and 𝑥2. Now, consider that two alleles of 𝑥 are randomly 

drawn in that locus. Given that 𝑓𝑥𝑥 is the probability two alleles are IBD, there are four 

possibilities, with a probability of ¼ each: 𝑥1𝑥1 (IBD), 𝑥2𝑥2 (IBD), 𝑥1𝑥2 (non-IBD), 𝑥2𝑥1 (non-

IBD). Consequently, 𝑓𝑥𝑥 =
1

4
+

1

4
 = ½. However, individual 𝑥 could be inbred; in that case 𝐹𝑥 is 

the probability that 𝑥1 and 𝑥2 are IBD. In result, the coefficient of self-coancestry becomes 
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𝑓𝑥𝑥 =
1

4
+

1

4
+

1

4
𝐹𝑥 +

1

4
𝐹𝑥. By simplifying this equation, we obtain: 𝑓𝑥𝑥 =

1

2
(1 + 𝐹𝑥) (Falconer 

& Mackay, 1996; Verrier et al., 2001). 

The coefficient of coancestry between a parent and its offspring can be obtained quite 

similarly, although slightly more complicated. Let us consider now two unrelated parents 𝑀 

and 𝑃, with a pair of alleles 𝑚1and 𝑚2, 𝑝1and 𝑝2, respectively. Four different types of 

descendants can be obtained:  𝑚1𝑝1, 𝑚1𝑝2, 𝑚2𝑝1, 𝑚2𝑝2. To make this example simple, let us 

compute the coancestry coefficient between the parent 𝑚1𝑚2 and its offspring 𝑚1𝑝1. Here, 

between 𝑚1𝑚2 and 𝑚1𝑝1, there is only one possibility (probability equal to ¼) to obtain IBD 

alleles (𝑚1𝑚1) among the four. This coancestry coefficient is exactly the same whichever 

offspring individual or parent taken. To summarize, the coancestry coefficient between a parent 

(unrelated to the second parent) and its offspring (non-inbred) is ¼. However, this conclusion 

assumes that the two parents are unrelated and the offspring is non-inbred. In case the two 

parents are related this coancestry coefficient will increase (Falconer & Mackay, 1996). To sum 

up, when literature says the coefficient of coancestry between a parent and its offspring is ¼, it 

implies that the parents are not related, and the offspring is not inbred as well. 

Moreover, the coancestry coefficients between two individuals 𝑥 and 𝑦 (𝑓𝑥𝑦) can also 

be calculated between full sibs or in more complex relatedness schemes using the generalizing 

formula (Boucher, 1988; Lynch & Walsh, 1998):  

𝑓𝑥𝑦 = ∑ 𝑓𝑖𝑖𝑖 (
1

2
)

𝑛𝑖−1

+ ∑ ∑ 𝑓𝑗𝑘𝑗≠𝑘𝑗 (
1

2
)

𝑛𝑗𝑘−2

, with 𝑛𝑖 the number of individuals in the path (𝑥 

and 𝑦 included) leading to 𝑖 the common ancestor, 𝑛𝑗𝑘  the number of individuals in the path 

conducting to 𝑗 and 𝑘 the two related but different ancestors (Lynch & Walsh, 1998).  

Inbreeding coefficient is defined for a given neutral locus; therefore, their values depend 

on the length and the reliability of the pedigree. Inbreeding coefficients range also from 0 to 1.  

The double of the kinship coefficient termed relationship or relatedness coefficient is 

used in practice to elaborate the additive relations relationship matrix, which is also referred to 

as the numerator relationship matrix (Lynch & Walsh, 1998). A relationship matrix is a square 

matrix with the same individuals in rows and columns, giving the self-relationship coefficients 

on the diagonal and relationship coefficients between distinct individuals off-diagonal. These 

relationships matrices are used for predictions purposes of the general combining ability (GCA) 

or additive genetic values. 
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Fig. 8. Inheritance of two identical segments from a common ancestor in an inbred individual 

(Severson et al., 2019). 

The coefficient of fraternity is another useful measure of the resemblance between 

relatives, defined as the probability for both alleles of a given locus in a pair of individuals to 

be IBD (Trustrum & Williamson, 1961; Lynch & Walsh, 1998).  When considering two 

individuals 𝑥 and 𝑦 with their male parents 𝑝𝑥 and 𝑝𝑦, and their female parents 𝑚𝑥 and 𝑚𝑦, 

respectively, there are ways to draw a pair of IBD alleles between 𝑥 and 𝑦. Firstly, the couple 

of alleles of 𝑝𝑥 and 𝑚𝑥 can be IBD and that of 𝑝𝑦 and 𝑚𝑦 maybe IBD. Secondly, the couple 

alleles from 𝑝𝑥 maybe be IBD with that of 𝑚𝑦, and that from 𝑝𝑦 can be IBD with that from 𝑚𝑥. 

Hence the following formula (Lynch & Walsh, 1998):  

𝜑𝑥𝑦 = 𝑓𝑝𝑥𝑝𝑦
𝑓𝑚𝑥𝑚𝑦

+ 𝑓𝑝𝑥𝑚𝑦
𝑓𝑝𝑦𝑚𝑥

   [18] 

If 𝑥 and 𝑦 are full sibs [18] becomes: 

𝜑𝑥𝑦 = 𝑓𝑝𝑝𝑓𝑚𝑚 + 𝑓𝑝𝑚𝑓𝑝𝑚   [19] 

If in addition 𝑝 and 𝑚 are unrelated, 𝑓𝑝𝑝 = 𝑓𝑚𝑚 =
1

2
 and 𝑓𝑝𝑚 = 0, with as result 𝜑𝑥𝑦 = 1/4 

(Table II). In case one of the two parents of [18] are not related, 𝜑𝑥𝑦 = 0. 

 The fraternity coefficient is used to calculate the dominance relationship matrix used in 

the prediction of specific combining ability (dominance) or non-additive genetic value (here 

dominance genetic value). 

I.2.2.5.2. Genetic covariances between relatives 

The merit for clarifying the link between phenotypic resemblance and genetic variances 

in populations goes to Fisher (1918), Wright (1921), Cockerham (1954) and Kempthorne 

(1954). Statistical methods using the maximum likelihood and software programs have been 
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developed to compute genetic variance and covariance (Gilmour et al., 1995; Neale et al., 

2003). These methods are able to estimate variance components using observed variations 

between and within families (Falconer & Mackay, 1996). Phenotypic variance, as 

aforementioned, can be partitioned into environmental and genetic components. Assuming that 

genetic and environmental components are not correlated when the genotypes are distributed in 

different environments, the covariance between two phenotypes of individuals 𝑖 and 𝑗 can be 

expressed as (Fisher, 1918):  

𝐶𝑜𝑣(𝑃𝑖 , 𝑃𝑗) = 𝐶𝑜𝑣(𝐺𝑖 , 𝐺𝑗) +  𝐶𝑜𝑣(𝐸𝑖, 𝐸𝑗). If 𝑖 and 𝑗 are drawn randomly and independently 

(not related), 𝐶𝑜𝑣(𝐺𝑖, 𝐺𝑗) = 0. 𝐶𝑜𝑣(𝐺𝑖 , 𝐺𝑗) ≠ 0 if 𝑖 and 𝑗 are related (not taken independently) 

i.e., have a common ancestor (have alleles IBD). If the individuals are in different 

environments, 𝐶𝑜𝑣(𝐸𝑖, 𝐸𝑗) = 0. When individuals do not have a common environment, 

phenotypic covariance comes down to genotypic variance: 𝐶𝑜𝑣(𝑃𝑖, 𝑃𝑗) = 𝐶𝑜𝑣(𝐺𝑖, 𝐺𝑗). 

It is fundamental to identify cases where the common environmental factors are 

significant. That situation is observed when uncontrolled environmental factors, or whose effect 

cannot be corrected, affects several individuals (Falconer & Mackay, 1996). 

Genetic covariance can be partitioned into additive and non-additive components. The 

latter is divided into dominance and epistasis components. Here, epistasis will be considered 

negligible. Assuming that variables 𝐴 and 𝐷 are not correlated i.e., independent, the phenotypic 

covariance between the individuals becomes: 

𝐶𝑜𝑣(𝑃𝑖 , 𝑃𝑗) = 𝐶𝑜𝑣(𝐴𝑖 , 𝐴𝑗) +  𝐶𝑜𝑣(𝐷𝑖, 𝐷𝑗)   [20] 

The additive covariance is non-null, if the two individuals have IBD alleles. For the dominance 

covariance to be non-null, the two individuals must have received, from their two respective 

parents, the same pair of genes; in other words, their coefficient of fraternity should be non-

null.  To summarize, genetic covariance is therefore non-null if the two individuals have 

received each at least one copy of the same gene present in a common ancestor. The calculation 

of the covariance between relatives involves the probabilities of identity of the genes (Fisher, 

1918; Malécot, 1948). We can easily demonstrate that [20] becomes (Falconer & Mackay, 

1996): 

𝐶𝑜𝑣(𝐺𝑖 , 𝐺𝑗) = 2𝑓𝑥𝑦𝑉𝐴 + (𝑓𝑝𝑥𝑝𝑦
𝑓𝑚𝑥𝑚𝑦

+ 𝑓𝑝𝑥𝑚𝑦
𝑓𝑝𝑦𝑚𝑥

)𝑉𝐷 

𝐶𝑜𝑣(𝐺𝑖 , 𝐺𝑗) = 2𝑓𝑖𝑗𝑉𝐴 + 𝜑𝑖𝑗𝑉𝐷 
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I.2.2.5.3. Concept of heritability 

Environment sometimes can influence and disturb the correspondence between the 

expected phenotypic value based on gene effects and the phenotypic value obtained (Wray & 

Visscher, 2008; Gallais, 2011). Heritability is the degree of expression of genetic factors on 

phenotypes; in other words, the amount of phenotypic variance due to genetic causes. It can be 

used also to designate resemblance between parents and their offspring (Wray & Visscher, 

2008). Heritability is one of the most important properties of quantitative traits mostly due to 

its ability to show the evolution of phenotypes in response to selection (natural or artificial) 

(Conner & Hartl, 2004). The values of heritability can range from 0 (if the total variation is due 

to environmental causes) to 1 when the total variation is due to genetic causes (Corley & Tinker, 

2016). 

I.2.2.5.2.1. Broad sense heritability 

Broad sense heritability (𝐻2) is the proportion of phenotypic variance that is of genetic 

origin. In other words, it is the ratio between the genetic variance and the phenotypic variance 

(Verrier et al., 2001; Conner & Hartl, 2004; Gallais, 2011). Broad sense heritability includes 

variance due to dominance and epistasis factors, therefore, is more useful in clonal selection 

and in the selection of highly self-fertilizing species whose genotypes are almost intactly passed 

on from parents to offspring (Conner & Hartl, 2004). The broad-sense heritability is expressed 

as follow (Verrier et al., 2001; Conner & Hartl, 2004; Gallais, 2011):  

𝐻2 =
𝑉𝐺

𝑉𝑃
=

𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼

𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼 + 𝑉𝐸
 

I.2.2.5.2.2. Narrow-sense heritability 

Narrow-sense heritability or sensu stricto heritability (ℎ2) is the ratio between the 

genetic additive variance and the phenotypic variance. Narrow-sense heritability is mostly 

useful in the selection of outbreeding species (Conner & Hartl, 2004) such as oil palm. Narrow-

sense heritability is expressed as (Conner & Hartl, 2004; Gallais, 2011): 

ℎ2 =
𝑉𝐴

𝑉𝑃
=

𝑉𝐴

𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼 + 𝑉𝐸
 

I.2.3. Overview of oil palm genetics and breeding strategies 

I.2.3.1. Oil palm breeding goals and objectives 

A breeding goal is a direction to follow in the improvement of traits of interest including 

the emphasis of each trait of a crop population. A breeding goal usually focused on economical 

[21] 

[22] 
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profit although the quality of the product is also taken into consideration. Afterwards, breeding 

objectives are defined based on traits on which breeding should be oriented in order to make 

the culture economically profitable. 

The breeding goal in oil palm is to increase the yield and make an economically 

profitable oil palm culture. To achieve that, many objectives are set by research programs, 

among which priority is respectively given to agronomic traits: oil yield increase, disease 

resistance (among which Ganoderma basal stem rot and Fusarium wilt, Crown disease) and 

high bunch index or yield. As suggested by Corley (2009, 2006), palm oil yield per hectare 

could reach up to 18 tons of oil per year if growth and yield components are at their optimum. 

The other traits in oil palm breeding programs are to simplify the harvesting process: slow 

height increase, long bunch stalk, oil composition (low lipase, high oleic acid, carotene content), 

stress tolerance (drought tolerance, low‐temperature tolerance, etc.) (Jacquemard et al., 1997; 

Corley & Tinker, 2016; Soh et al., 2017). 

I.2.3.2. Genetic determinism and fruit forms 

The understanding of the genetic determinism of the fruit form was acquired in the 

1930s (Beirnaert & Vanderweyen, 1941). Fruit form is genetically controlled by a gene, now 

named SHELL (Sh), with two codominant alleles Sh- and Sh+ at the origin of three fruit form in 

oil palm (Fig. 9.). pisifera Sh-//Sh- and dura Sh+//Sh+ are thus homozygotes and tenera Sh+//Sh- 

heterozygote. pisifera is a shell-less natural mutant usually female sterile with lignified fiber 

pulp, naturally present in nature at less than 0.5%. dura, has a thick-shell greater than 2 mm 

and therefore a small pulp (or mesocarp) quantity, and a mesocarp ranging from 2 to 6 mm size 

and taking 35–65% of fruit quantity. dura is the most abundant in spontaneous and sub-

spontaneous palm groves i.e., around 97% of the total palms. tenera is the hybrid of the cross 

between dura and pisifera with a thin shell lesser than 2 mm and a ring of lignified fibers in the 

pulp around the kernel (Cochard et al., 2001; Demol, 2002; Corley & Tinker, 2016). The form 

cultivated in commercial plantations since the 1950s is tenera, as it combines a high percentage 

of pulp per fruit (PF) with female fertility, and is obtained by the cross dura × pisifera. Its use 

instead of the traditional dura increased oil palm yield by 30% (Corley & Tinker, 2016). 
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Fig. 9. Oil palm fruit forms (Singh et al., 2013a). 

 

I.2.3.3. Fruit types 

Pigmentation of fruits before maturity is at the origin of three fruits types: Virescens, 

Nigrescens and Albescens (Fig. 10).  

Nigrescens is the most common and cultivated fruit type in commercial plantations. The 

apex of Nigrescens fruits is dark violet to black and the base is pale green to yellow, due to the 

presence of chlorophyll and anthocyanins in unripen fruits (Fig. 10a).  As fruits grow, violet 

coloured area by anthocyanins increases while the green area reduces. At ripening, almost all 

the brown-coloured area turns to more or less deep red-orange due to the presence of 

carotenoids (Demol, 2002; Luyindula et al., 2005; Corley & Tinker, 2016). 

Virescens plants have green fruits unripe and orange green at ripening with the top of 

the outer fruit remaining almost always greenish (Fig. 10b) (Demol, 2002). They are by far less 

common than Nigrescens, 0.5% in Nigeria, 0.7% in Angola and 6% in Cameroon (Rajanaidu, 

1986; Hartley, 1988). Virescens trait is a qualitative trait controlled by a single dominant gene 

because homozygotes (Vir//Vir) and heterozygotes (Vir//vir) have shown identical phenotypes 

(Corley & Tinker, 2016). Palm oil quality of Virescens is of no economic interest (Demol, 

2002). 

Albescens type can be divided into two subtypes, Albo-Nigrescens (Alb-Nig) and Albo-

Vigrescens (Alb-Nig). Before ripening, Alb-Nig fruits are black (Fig. 10c) and Alb-Vir fruits are 

dura Sh+//Sh+ pisifera Sh-//Sh- 

tenera Sh+//Sh- 

Kernel 

Pulp or mesocarp 

Almond 
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green light (Fig. 10d) so that they respectively become brown in the apex and yellow pale on 

the centre and the base, and yellow-green on the apex and light yellow on the centre and base, 

characteristic of a very low carotenoid content in the mesocarp. Albescens is the least common 

fruit type in natural palm groves (Demol, 2002; Luyindula et al., 2005). 

 

  

Fig. 10. Oil palm fruit types. a: fruits from Nigrescens (Nig) bunch, b: fruits from Virescens 

(Vir) bunch (Singh et al., 2014), fruits from Albo-Nigrescens (Alb-Nig) bunch and fruit from 

Albo-Virescens (Alb-Vir) bunch (Luyindula et al., 2005). 

I.2.3.4. Mantled fruit type 

Mantled fruit type was first named poissoni in 1918 after colonists' Poisson brothers 

settled in Cameroon. Diverse terms are used to designate these palms: palm trees with ears for 
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French, diwakkawakka for Germans and Dutch and mantled type for English. Mantled fruits 

contain up to six fleshy additional carpels derived from stamen primordia (Fig. 11) (Demol, 

2002; Corley & Tinker, 2016). At first, mantled fruits seemed to present an interest because of 

a higher percentage of pulp on fruit and a fruit abscission delay. However, the oil content of the 

additional carpels is noticeably lower than that of the mesocarp itself. In addition, the number 

of fruits on mantled bunches is significantly lower than in ordinary types (Demol, 2002; Corley 

& Tinker, 2016) (Fig. 11). 

 

Fig. 11. Transversal and longitudinal section of oil palm fruit. a: normal fruit, b: mantled fruits 

(Ong-Abdullah et al., 2015). 

I.2.3.5. Reproduction system 

Oil palm is a diploid naturally seed propagated plant and monoecious i.e., with male and 

female flowers carried on the same plant and usually in distinct inflorescences (set of flowers 

borne on spikelets), hence reducing selfing occurrences. The flowering of oil palm is continuous 

with an inflorescent bud in the axils of each leaf, constrained by external environment 

conditions and endogenous sexual cycles. Thus, inflorescent bud can develop into a male or 

female inflorescence which alternates during the individual plant lifetime (Jacquemard, 1995; 

Demol, 2002; Corley & Tinker, 2016). Consequently, oil palm is an obligate allogamous plant, 

with inflorescences enclosed in spathes tearing a few days before anthesis. A given palm tree 

produces barely two palms monthly (Jacquemard, 1995; Demol, 2002). Once the inflorescences 

have reached maturity, pollination will occur naturally thanks to pollinating agents (wind, 

insects, etc.) or for commercial seed production, under the control of a pollinating agent. Flower 

sex differentiation and inflorescence initiation start around 24 months before frond axils 

emerge. The nature of the future sex inflorescence is conditioned by the environment, thus 

a 

b 
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favourable environmental conditions induce female inflorescence production while hostile 

conditions favour male inflorescence production (Soh et al., 2017). 

I.2.3.5.1. Opened pollination 

At maturity, male inflorescences produce pollen which emits a fragrant scent 

characteristic of anise, attracting insects making hence, open-pollination mainly entomophilic. 

In order to ease insect movements in both directions, male towards female inflorescences and 

conversely, papillae of different female flowers also emit a similar anise scent. Many species 

of insects are involved in oil palm pollination among which the predominant are weevils 

belonging to the genus Elaeidobius, with Elaeidobius kamerunicus from Cameroon being the 

main species (Syed, 1982; Corley & Tinker, 2016). Flower pollination can also be 

anemophilous but to a lesser extent (Syed, 1982). 

I.2.3.5.2. Controlled pollination 

Controlled pollination is used by seed producers to obtain the most yielding dura × 

pisifera progenies thanks to the best combinations of parents with known abilities. This 

laborious task is carried out following a rigorous and meticulous procedure to avoid any 

contaminations and obtain pure commercial seeds with the highest heterosis. Details about 

controlled pollination are described in (Rao & Kushairi, 1999; Periasamy et al., 2002). 

The first step consists on the identification of the target inflorescences, female or male, 

through weekly, then daily inspections. Once the inflorescence is identified, isolation just 

follows i.e., one week before the expected opening of the external spathe. Isolation of the female 

inflorescence involves spraying the flowers with formaldehyde, followed by bagging using a 

woven fiber bag with little pore size. Afterwards, impregnated cotton in an insecticide is then 

placed at the tied end of the bag to prevent penetration of any insects. 

On the other side, male inflorescences are bagged following the same procedure as 

female inflorescences and are harvested at the anthesis, i.e., when inflorescences mature and 

fully open. Pollen collected from the inflorescence undergo a viability test and is used for 

controlled pollination afterwards. 

I.2.3.6. Genetic resources for oil palm breeding 

Genetic resources used for oil palm breeding in current research programs come from a 

narrow genetic base termed breeding populations of restricted origin (BPRO, (Rosenquist, 

1986). Most of these palms come from Africa (La Mé, Yagambi, Ekona, etc.) and of plant sent 

from Africa and early planted in Asia thus forming decades after new geographical origins 

(Deli, AVROS).  
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The well-known dura Deli material used as a female parent in the commercial hybrid 

tenera seeds comes from four ancestors of an unknown area of Africa planted in Bogor 

Botanical Gardens in Java, Indonesia in 1848. All these four ancestors were phenotypically 

similar suggesting that they were from related palms or the same palm in Africa (Hartley, 1988). 

Progenies of these palms were first transferred in Sumatra plantations in Deli province in 1875 

hence their name Deli, thenceforth planted and selected in other countries resulting in many 

other subpopulations bearing the names of their plantation localities. Indeed the Deli can be 

further divided into several subpopulations, such as Marihat Baris, Elmina,  Ulu Remis, Dabou, 

etc. (Durand-Gasselin et al., 2000; Demol, 2002; Soh et al., 2003; Corley & Tinker, 2016). 

Palms obtained in Eala Botanical Garden in Zaire, now Democratic Republic of Congo 

(DRC) from Djongo plant meaning the best in a local language during exchanges of breeding 

material were planted in 1923 in Sungai Pancur, Sumatra by Algemeene Vereniging van 

Rubberplantera ter Oostkust van Sumatra (AVROS), where its name comes from. As, 

consequence, pisifiera AVROS palms used as male parents in hybrid crosses are descendants 

of Djongo are characterized by their high oil yield, sturdy growth, thin shell, thick mesocarp, 

etc. 

In Africa, there is an important genetic diversity currently used in breeding programs 

with the large majority being used as male parents (i.e., La Mé in Ivory Coast, Yangambi in 

DRC, Ekona in Cameroon, Calabar in Nigeria) in tenera hybrids and parents to a lesser extent 

as female (Angola). The La Mé population originated from 19 individuals selected from 

prospections made in the 1920s. The Yangambi population dated from the 1920s and originated 

from 10 to 20 tenera, included the Djongo palm which given its exceptional qualities, would 

have finally contributed more than 70% to the Yangambi population (Demol, 2002; Cochard, 

2008; Corley & Tinker, 2016). The Ekona population originated from wild plantations located 

at Ekona, Cameroon that was further improved in the Unilever plantations. 

I.2.3.7. Mass selection 

Mass selection is the selection of individuals on the basis of their phenotypic 

performance. Therefore, its efficiency relies on the heritability of traits.  

The genetic improvement of palm oil production started in the 1920s, in South-East Asia 

(Indonesia and Malaysia) and in what was then known as Belgian Congo  (Demol, 2002; Corley 

& Tinker, 2016), and was based on mass selection. 

In South-East Asia, the very narrow genetic base followed by several generations of 

selection led to the relatively homogenous and inbred breeding population Deli aforementioned 

(Demol, 2002; Corley & Tinker, 2016). 
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In Africa, as the source palms were of dura, tenera and pisifera types, the breeding 

approaches differed from those used in South-East Asia (Durand-Gasselin et al., 2000; Corley 

& Tinker, 2016). Breeding was less efficient in Africa, as it was complicated by the segregation 

of the fruit types in the crosses between the best tenera (Durand-Gasselin et al., 2000; Corley 

& Tinker, 2016). However, it led to the creation of the several breeding populations already 

mentioned (Demol, 2002; Cochard, 2008; Corley & Tinker, 2016). 

Mass selection with the early breeding populations had been efficient as some 

components of oil yield had a moderate level of narrow-sense heritability h2 such as PF (0.53) 

and BW (0.39) (Corley & Tinker, 2016). However, the other components (BN, FB and OP) had 

low h2 (<0.25). This, and perhaps from knowledge of the advancement of breeding 

methodology from other crops, prompted the adoption of the more complex breeding schemes 

described below. 

The breeding populations inherited from this period of mass selection can be classified 

into two complementary groups (A and B) based on the characteristics of their bunch 

production. Group A, mostly from South-East Asia (i.e., Deli population) and Angola, although 

the latter has been of lesser importance, produces a small number of big bunches. Group B, 

comprising the other African populations (with La Mé and Yangambi currently being the most 

widely used) and AVROS, produces a large number of small bunches (Meunier & Gascon, 

1972). The complementarity of the FFB yield components traits in the two groups resulting in 

hybrid vigour explains the choice of A × B cross hybrid breeding approaches. 

I.2.3.8. Current breeding schemes 

The breeding schemes currently applied to improve oil palm yield involve two major 

improvements over mass selection: they exploit the hybrid vigour for bunch production that 

appeared in the A × B crosses, and they enable better estimates of genetic values. These schemes 

are mainly modified reciprocal recurrent selection (MRRS, Fig. 12), which generates sexual 

crosses, which account for the vast majority of oil palm commercial varieties grown in 

plantations; and clonal selection. They use mating designs, experimental designs and methods 

of statistical analysis that more efficiently separate the different genetic and environmental 

effects. 
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Fig. 12. Scheme of one cycle of modified reciprocal recurrent selection applied to oil palm 

(MRRS). D: dura, T: tenera, P: pisifera, green: commercial seeds (Nyouma et al., 2019). 

I.2.3.8.1. Mating designs 

In oil palm MRRS, the selected candidates are evaluated in hybrid crosses obtained 

according to NCM1 (NCM, North Carolina model) or NCM2 mating designs (Soh, 1999). The 

NCM1 is a hierarchical mating design in which each individual belonging to group B is crossed 

with a set of different individuals belonging to group A. If individuals in group A can be 

considered as genetically homogenous, NCM1 gives satisfactory estimates of the relative 

genetic or general combining ability values in group B. The NCM2 is a factorial design in which 

each B individual is crossed with the same set of A individuals (Corley & Tinker, 2016). This 

takes longer as several crosses have to be made per individual in group A, but is more suitable 

than NCM1 when genetic variability among the A individuals is not negligible or when the 

interactions between parents (i.e., specific combining abilities, SCA) need to be estimated. 

I.2.3.8.2. Experimental designs 

Once the crosses or the clones to be evaluated have been obtained, they are planted in 

field trials, usually according to randomized complete block designs (RCBD). The RCBD used 

in oil palm breeding usually has 10 to 50 families repeated three to six times in plots each of 

which contains 12 to 30 palms (Soh et al., 2017). Given the low planting density of oil palm 
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(normally 143 individuals per hectare), the trials require a large area (often >10 ha) whose 

environmental conditions are consequently subject to some heterogeneity. To better account for 

this heterogeneity, the complete blocks can be divided into incomplete blocks, i.e. comprising 

a sample of the evaluated families randomized within the complete blocks (Breure & 

Verdooren, 1995; Soh et al., 2017). Several experimental designs with incomplete blocks are 

thus commonly used for oil palm, including squared balanced or unbalanced lattices and alpha-

plans (Soh et al., 2017). The results of evaluations of such trials using RCBDs and lattices have 

been published for hybrid crosses (Soh et al., 2017) and clones (Nouy et al., 2006). In 

experiments to study the genotype (G) × environment (E) interaction, the most commonly used 

design is the split-plot. In this case, E is the main treatment (planting density, fertilization, etc.) 

and G the sub-treatment (parents, hybrids or clones), which facilitates the management of the 

sub-plots and improves the statistical analysis, as the sub-treatment and the interaction effects 

are estimated more accurately (Soh et al., 2017). For instance, in a trial based on a split-plot 

design with planting density as the main treatment and hybrid crosses as sub-treatment, Rafii et 

al. (2013) found significant effects of G × planting density interactions on the average bunch 

weight.   

I.2.3.8.3. Modified reciprocal recurrent selection 

I.2.3.8.3.1. Principle 

Reciprocal recurrent selection (RRS) was defined by Comstock et al. (1949) in maize. 

It relies on the joint and reciprocal improvement of two heterotic groups. A modified version 

of reciprocal recurrent selection (MRRS) was adapted for oil palm (Gascon & De Berchoux, 

1964) and implemented by the Institut de Recherches pour les Huiles et Oléagineux (IRHO) in 

Ivory Coast (CNRA), Cameroon (IRAD), Benin (CRAPP) and Indonesia (SOCFINDO, IOPRI) 

(Meunier & Gascon, 1972; Corley & Tinker, 2016; Cochard et al., 2018). In oil palm, MRRS 

is justified by the fact that in A × B crosses the production of bunches is > 25% higher than in 

the parental populations (Gascon & De Berchoux, 1964). This is the result of the negative 

correlation between ABW and BN within each group, and from the complementarity of groups 

A and B for these two traits (Table III). Today, MRRS is used in many countries and, although 

its implementation varies among research centres, it generally follows the scheme described 

above (Fig. 12). However, a number of programs in Malaysia, Indonesia, and Papua New 

Guinea also practice the modified recurrent selection (MRS) or FIPS (family and individual 

palm selection) in which dura and tenera parents for further breeding are recurrently mass 
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selected and the dura × pisifera progeny testing is done to identify the parents, especially the 

pisifera, used for dura × pisifera seed production (Soh et al., 2017). 

Table III. Origin of heterosis in oil palm for bunch yield. 

 Annual number of 

bunches 

Average bunch weight 

(kg) 

Bunch yield 

(kg/an) 

Group A 10 20 200 

Group B 20 10 200 

A × B hybrid  15 15 225 

One cycle of oil palm MRRS (Fig. 12) starts with the selection of candidates from 

groups A and B and, after evaluation in hybrid progeny tests, the best ones will be selected 

among them. These candidates will then be used to produce the next generation, which will be 

used to produce seeds of tenera hybrids and to start a new MRRS cycle (Meunier & Gascon, 

1972). In more detail, a cycle starts with phenotypic preselection prior to progeny tests. In group 

A, the individuals are selected based on their own phenotypic value for the traits with the highest 

heritability (mostly PF) and on the mean performance of their family (i.e., FIPS). In group B, 

the female sterility of pisifera means they can only be selected based on the mean value of their 

tenera full-sibs. For the same reason, and to be able to produce the following B generation, 

tenera individuals are also chosen by FIPS. Second, the combining ability of these individuals 

in hybrid crosses is evaluated in progeny tests, for the selection of low heritability traits and to 

finalize the selection of the traits subjected to the first stage of selection. For this purpose, the 

hybrids crosses are made according to the previously described mating designs, B individuals 

being crossed with three to five dura belonging to group A (Soh et al., 2010). These crosses are 

then evaluated in field trials, during which data are usually recorded from the third year after 

planting (i.e., at the beginning of production) to the tenth year. A long time is therefore required 

to obtain the genetic value of the progeny-tested individuals, resulting in long selection cycles 

lasting around 20 years. The resources required to carry out such long-term evaluations limit 

the number of individuals that are progeny tested, which results in the erosion of genetic 

diversity. To address this problem, new germplasms, for example originating from other 

breeding programs, are introduced (Jacquemard et al., 1997). 

When analysing the phenotypic data of the progeny tests, the total genetic value of a 

hybrid cross is partitioned into the additive value or GCA of its parents or the non-additive or 

SCA of the cross. The GCA of a parent is the mean value of all the crosses that can be made 

between this parent and the parents of the other group, expressed as the difference from the 



 

37 

 

mean value of all possible hybrid crosses (Corley & Tinker, 2016; Gallais, 2011). The SCA of 

a cross is the difference between the observed value of the cross and the value predicted from 

the GCA of its parents (Gallais, 2011). It represents the interaction between its parents and 

usually results from dominance and/or epistatic effects (Stuber & Cockerham, 1966; De Souza, 

1992). It can also result from the multiplicative interaction between two negatively correlated 

traits as BN and ABW for FFB production in oil palm. In this case, SCA may be present even 

in the absence of non-additive genetic effects (Schnell & Cockerham, 1992; Gallais, 2011). 

Finally, the parents with the best GCAs and/or resulting in the crosses with the best SCAs are 

selected. However, the SCAs for the components of oil palm yield are a much smaller source 

of variation among the hybrid performances than the GCAs, and are estimated with a lower 

accuracy than the GCAs (Cros, 2014). For these reasons, the selection is mostly made on the 

GCAs (Breure & Verdooren, 1995; Cros, 2014). 

I.2.3.8.3.2. Statistical methods to estimate genetic values 

According to the number of published articles, ANOVA is still the most widely used 

method to estimate GCAs in oil palm, and even to estimate the total genetic value of hybrid 

crosses without partitioning it into GCAs and SCAs (Breure & Bos, 1992; Okwuagwu et al., 

2008; Okoye et al., 2009; Junaidah et al., 2011; Noh et al., 2012; Arolu et al., 2016). To estimate 

the parental GCAs using ANOVA in a hybrid trial set up according to a RCBD, it can be 

considered that the yield 𝑦𝑖𝑗𝑘
 of cross Ai × Bj measured in block k is given by the model:  𝑦𝑖𝑗𝑘  

= μ + bk + GCAi + GCAj + 𝜀𝑖𝑗𝑘
, where μ is the phenotypic mean of the trial, bk the effect of 

block k, GCAi and GCAj the parental GCAs and 𝜀𝑖𝑗𝑘
 the error associated with the kth replicate 

of the cross (Breure & Verdooren, 1995), with 𝑦𝑖𝑗𝑘
 ~ N(E(𝑦𝑖𝑗𝑘

), σ2) and 𝜀𝑖𝑗𝑘
 ~ N(0, 𝜎𝜀

2). The 

solutions of the model (i.e., the least square means), and in particular the parental GCAs, are 

obtained by the ordinary least squares’ method. The SCAs are then obtained by subtracting the 

cross values expected from the parental GCAs from the mean cross values observed in the trial. 

ANOVA is useful for complete or balanced experimental designs and mating designs. 

However, it is also possible to estimate the genetic values with the BLUP method, which 

is the standard approach for analyzing linear mixed models. BLUP was developed several 

decades ago to analyze highly unbalanced datasets in cattle breeding. Today it is widely used 

to estimate genetic effects in animals (Mrode, 2005) and in plants (Piepho et al., 2008). BLUP 

has the following advantages (Soh, 1999): it is useful in analyzing unbalanced mating designs 

or experimental designs; and it makes it possible to consider a large number of trials at the same 

time, even without control families, and to account for covariances when modeling, for 
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example, the relationships among individuals, competition effects or spatial heterogeneity. 

Surprisingly, in oil palm it has only been used to estimate genetic values for yield components 

by a very limited number of research groups (Soh, 1994; Purba et al., 2001; Cros et al., 2015b). 

However, oil palm progeny tests are often carried out with complex and unbalanced designs, 

with a varying number of crosses per parent, crosses evaluated in several trials planted in 

different years, varying numbers of replicates and individual palms per cross, etc. The mating 

design is also sometimes not connected, i.e. that within a parental group, some parents are not 

connected (directly or indirectly) to the others by the same partners that belong to the other 

group, even though this can bias or make the GCA of some parents impossible to estimate 

(Breure & Verdooren, 1995; Soh et al., 2017). Several studies have also shown that, in such 

complex situations, ANOVA was less efficient than BLUP in estimating the variances and/or 

the effects in the model (White & Hodge, 1989; Carvalho et al., 2008; Piepho et al., 2008; Hu, 

2015). In addition, the pedigree of the oil palm breeding populations over several generations 

is generally known (Cros et al., 2014; Corley & Tinker, 2016), and the relationships among 

selection candidates is useful information that can be included in the linear mixed model in 

order to more accurately estimate the genetic parameters and the genetic values. 

In the case of hybrid crosses between two parental populations A and B, the linear mixed 

model used to estimate the parental GCAs and the cross SCA is: 

𝑦 =  𝑿𝛽 + 𝒁𝟏𝑢𝐴  +  𝒁𝟐𝑢𝐵  +  𝒁𝟑𝑢𝐴𝐵  +  𝜀 

with: 𝑦 the vector of observed phenotypes, 𝛽 the vector of fixed effects, 𝑢𝐴 ~ N(0, 0.5𝑨𝑨𝜎𝑎𝐴
2 ) 

and 𝑢𝐵 ~ N(0, 0.5𝑨𝑩𝜎𝑎𝐵
2 ) the vectors of the GCAs of parents of groups A and B (random 

effects), respectively, and 𝑢𝐴𝐵 ~ N(0, 0.25𝑫𝑨𝑩𝜎𝑎𝑠𝑐𝐴𝐵
2 ) the vector of cross SCA, corresponding 

here to the dominance effects (random). 𝑿, 𝒁𝟏, 𝒁𝟐 and 𝒁𝟑 are, respectively, the incidence 

matrices associated to 𝛽, 𝑢𝐴, 𝑢𝐵 and 𝑢𝐴𝐵. 𝜀 ~ N(0, 𝑰𝜎ε
2) is the vector of residual effects and 𝑰 is 

the identity matrix (in this example, residuals are assumed to be independent). 0.5𝑨𝑨𝜎𝑎𝐴
2 , 

0.5𝑨𝑩𝜎𝑎𝐵
2  and 0.25𝑫𝑨𝑩𝜎𝑎𝑠𝑐𝐴𝐵

2  are the variance-covariance matrices associated with 𝑢𝐴, 𝑢𝐵 and 

𝑢𝐴𝐵, respectively. 𝑨𝑨 and 𝑨𝑩 are the matrices containing the values of additive relationships 

calculated with the pedigree of the A and B individuals, respectively, and 𝑫𝑨𝑩 is the matrix of 

dominance relationships between the crosses, and is obtained by the Kronecker product 

between 𝑨𝑨 and 𝑨𝑩. 𝜎𝑎𝐴
2  and 𝜎𝑎𝐵

2  are the additive genetic variances of groups A and B, 

respectively, and 𝜎𝑎𝑠𝑐𝐴𝐵
2  is the dominance genetic variance of the crosses. The BLUP approach 

starts with estimation of the variances 𝜎𝑎𝐴
2 , 𝜎𝑎𝐵

2 , 𝜎𝑎𝑠𝑐𝐴𝐵
2  and 𝜎ε

2. The most widely used method 
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for this purpose is restricted maximum likelihood (REML) (Xavier et al., 2016). Various 

algorithms have been developed to estimate the variance components with REML. The two 

main ones are the expectation-maximization algorithm (EM), which relies on the iterative 

updating of the residuals, variances and regression coefficients of fixed and random effects 

(Dempster et al., 1977); and the average-information algorithm, which relies on the creation of 

a gradient based on the mean of the expected and observed information (Gilmour et al., 1995). 

Second, the variances are used in the mixed model equations of Henderson, which give the 

model solutions, i.e. the vectors �̂�𝐴, �̂�𝐵 and �̂�𝐴𝐵 for the genetic effects and the vector �̂� for the 

fixed effects (Covarrubias-Pazaran, 2016). The solutions are named best linear unbiased 

estimators (BLUE), or solutions of the generalized least squares, for the fixed effects, and best 

linear unbiased predictors (BLUP) for the random effects (Mrode, 2005). The method also 

makes it possible to estimate the accuracy of the BLUPs, i.e., their correlation with the true 

genetic values that the model estimates. The accuracies are given by a theoretical formula using 

the diagonal of the variance-covariance matrix of the random effect considered and the 

prediction variance errors (PEV) associated with the BLUPs, which are easily obtained from 

the analysis. Thus, with the model presented here, the accuracy 𝑟𝑢𝐴𝑖,�̂�𝐴𝑖
 of the GCA �̂�𝐴𝑖

 of 

parent Ai is: 

𝑟𝑢𝐴𝑖,𝑢𝐴𝑖
= √1 −

PEV𝑢𝐴𝑖

0.5(1+𝐹𝐴𝑖
)𝜎𝑎𝐴

2
 , with 0.5(1 + 𝐹𝐴𝑖

)𝜎𝑎𝐴
2  the ith element of the diagonal of the 

variance-covariance matrix of 𝑢𝐴, and 𝐹𝐴𝑖
 the inbreeding coefficient of Ai (Cros, 2014). The 

application of this formula in oil palm showed that for the yield components, the hybrid progeny 

tests gave highly accurate GCAs, reaching on average 0.87 in group A and 0.91 in group B 

(Cros, 2014). 

To promote the adoption of this method by the largest number of geneticists, in 

particular in the oil palm breeding community, in appendix 1, we provide a practical example 

of the estimation of the BLUP value of parents of oil palm hybrids using R software (R Core 

Team, 2017). 

I.2.3.8.4. Clonal selection 

The main use of clonal selection in oil palm is cloning the best tenera hybrid individuals. 

For this purpose, the tenera with the best phenotypes are chosen within the best crosses 

available in the MRRS program and are evaluated in clonal trials (Corley & Tinker, 2016). The 

interest of this method is based on oil palm heterozygosity, which generates genetic variability 

within the hybrid crosses, allowing selection of the best tenera individuals to be used as ortets 
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(source plants for cloning). The clones have the potential to further increase oil palm yield by 

20% to 30% compared to sexual crosses (Corley & Law, 1997), and increases in yield of 13% 

(Nouy et al., 2006) and 18% (Soh et al. 2003) have been empirically observed. One difficulty 

in clonal selection is to accurately estimate the genetic value of the hybrid individuals from 

their own phenotypic records, given the micro-environmental effects that are hard to control 

and are confounded with individual genetic values. This accuracy can be measured by the 

broad-sense heritability H2 computed at the individual level. Soh et al. (2003), Nouy et al. 

(2006) and Potier et al. (2006) showed that H2 ranged from 0 to 0.84 among yield components. 

In these conditions, it is possible to select ortets based on their phenotype for some traits, such 

as OP, but not for all yield components. Clonal field trials are thus required to finalize the 

evaluation of the ortets selected based on the traits with the highest H². These trials allow a 

highly reliable selection of ortets, but lengthen the selection process by at least 10 years, 

corresponding to the time required to produce the clones from explants and to carry out the trial, 

thus allowing improved hybrids to catch up and reduce the advantage of clones. 

Oil palm cloning has been slowed down by the appearance of abnormal floral 

morphogenesis in the field. The abnormal ramets, or mantled variants, produce abnormal 

flowers and fruits and bunch failure, leading to sterile palms (Soh et al. 2017). The epigenetic 

molecular mechanism that causes this abnormality was recently elucidated. The mantled 

variants were shown to result from hypomethylation during tissue culture of the Karma 

retrotransposon, located in the intron of the DEFICIENS gene. This altered its splicing and 

made it produce an additional transcript associated with the mantled phenotype (Ong-Abdullah 

et al. 2015; Soh et al. 2017). The understanding of this mechanism opens the way for the 

development of a molecular kit that will allow the early detection and elimination of abnormal 

ramets, thus boosting interest in oil palm cloning. Research is also underway to broaden the 

range of genotypes in which tissue culture is efficient (Soh et al. 2017). In addition, cloning 

opens the way for the production of genetically engineered palms. Indeed, tissue culture is an 

appropriate way to regenerate genetically modified tissue, and several genetic transformation 

methods have been successfully applied in oil palm (biolistic, transformation with 

Agrobacterium and microinjection) (Masani et al., 2018).  

I.2.3.8.5. Advantages and drawbacks 

The current breeding schemes have the advantage of accurately estimating the genetic 

values, thereby enabling efficient selection, which, in turn, has enabled the significant genetic 

progress achieved so far. However, the schemes also have two drawbacks resulting from the 

difficulties involved in phenotyping. First, as mentioned above, the breeding cycle to produce 
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a new variety is long, around 20 years, whereas oil palm reaches sexual maturity relatively 

quickly (at three or four-year-old). The length of the cycle is mostly due to the phase of 

evaluation in progeny tests, as a long time is required to make the crosses, obtain the plants and 

above all, to carry out the field trial. Second, these schemes have low selection intensity, with 

- for example - fewer than 200 selection candidates progeny tested per population and cycle. 

The first stage of selection before the field trials (progeny tests or clonal trials) based on the 

phenotypic values for the most heritable traits seems to compensate for the reduced number of 

parents or clones evaluated, but this is not optimal. Indeed, the first stage of selection is made 

on a small number of traits and its accuracy is lower than selection based on progeny tests or 

clonal trials. Consequently, the individuals that would be the best considering their genetic 

value over all the yield components may be discarded before the field trials because they do not 

have the best phenotypic value for the trait or the few traits used in the first stage of selection. 

This even led to questioning the relevance of the first selection stage prior to field trials. For 

clonal selection, the possibility of randomly choosing the ortets before evaluating them in clonal 

trials has thus been considered by several authors (Corley & Tinker, 2016). However, to be 

efficient, this method would require exploring a large part of the genetic variability of the hybrid 

crosses where the ortets would be chosen, i.e., evaluating a large number of candidate ortets in 

clonal trials, which is not feasible in practice. New methods are therefore required to optimize 

the current breeding schemes. 

I.2.4. Genomic selection 

The first saturated genetic maps were produced at the end of the 1980s. They made it 

possible to detect QTLs (quantitative trait loci), leading to the idea of MAS. MAS has the 

potential to increase selection intensity and shorten the breeding cycles (Muranty et al., 2014). 

Many QTLs related to oil palm yield have been identified (see for example Billotte et al. (2010), 

Pootakham et al. (2015), Tisné et al. (2015), Ting et al. (2018)). However, for complex traits 

such as yield that are under the control of a large number of genes with small effects, the 

efficiency of the approach is limited, in particular in the case of small population size (Muranty 

et al., 2014), because it overestimates the effect of the strong QTLs and fails to exploit weak 

QTLs, as their effect does not appear to be significant (Muranty et al., 2014). A more efficient 

approach, genomic selection (GS), was consequently developed (Meuwissen et al., 2001). Its 

practical implementation was made possible by progress in genomics, in particular in next 

generation sequencing (NGS) and high throughput genotyping. Today, GS is used in animal 

breeding, particularly in dairy cattle, where it has doubled the rate of the genetic progress 
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(Wiggans et al., 2017). In plants, it is progressively being incorporated in breeding schemes, 

and it is expected to significantly increase their efficiency (Varshney et al., 2017). 

In oil palm, the use of GS to select the parents of the hybrid crosses for yield traits has 

already been investigated in several studies. They evaluated its ability to reduce the length of 

the breeding cycles, by avoiding field trials in some cycles, and to increase selection intensity, 

by the application of selection to a larger number of candidates than with the current method 

(Fig. 13). The results are promising and are detailed below. So far, no study has been published 

regarding the use of GS to select ortets, but its potential is likely also high, as suggested by the 

positive results obtained in other species, and in particular in other perennial tropical crops like 

eucalyptus (Durán et al., 2017) and rubber tree (Cros et al., 2019). 

 

      Training set 

      Genomic selection 

 Fig. 13. Possible scheme of genomic modified reciprocal recurrent selection applied in large 

populations of seedlings to increase selection intensity (cycles 1 and 2) and shorten breeding 

cycles (cycle 2) of oil palm. D: dura, T: tenera, P: pisifera, green: commercial seeds (Nyouma 

et al., 2019). 

 



 

43 

 

I.2.4.1. Principle 

GS is MAS for quantitative traits using high-density molecular markers covering the 

whole genome, in order to have every QTL in linkage disequilibrium with at least one marker. 

What mainly differentiates it from QTL-based MAS is the joint exploitation of strong QTLs 

(i.e., whose effect would be shown to be significant in a QTL analysis) and of weak QTLs (not 

significant). Its goal is to predict the genetic value of selection candidates, usually with no data 

on their performance (i.e., depending on the breeding situation concerned, with no known 

phenotype or no progeny tests). For this purpose, GS uses the genotypic and phenotypic data 

of a population called the training (or calibration) population and a linear mixed model that can 

predict the additive genetic value (GEBV, genomic estimated breeding values) or the total 

genetic value (i.e. including the non-additive effects) of the selection candidates (Heffner et al., 

2009) (Fig. 14). GS, therefore, has the potential to reduce phenotyping, thus making it possible 

to shorten the breeding cycle and/or to increase selection intensity. 

 

Fig. 14. Diagram of genomic selection (Heffner et al., 2009). 

The efficiency of GS is assessed by computing its selection accuracy (𝑟𝐺𝑆), i.e., the 

correlation between the genetic value estimated with the genomic model (GEGV) and the true 

genetic value (TGV) in a set of individuals used as the validation population. However, in 

empirical studies, the true genetic value is unknown, and the genetic value estimated with the 

genomic model is therefore correlated with an estimate of the true genetic value (EGV), 

obtained with the phenotypic data available on the validation individuals, i.e., their own 

phenotypic records or the phenotypes of their progenies. This correlation is named prediction 

accuracy. The difference between selection accuracy and prediction accuracy depends on the 

reliability of the EGV (Lorenz et al., 2011). GS accuracy is crucial to evaluate the potential of 

GS as it is directly related to the rate of the genetic progress or rate of selection response 𝑅 =

𝑟𝐺𝑆  ×  𝑖 × 𝜎𝑔/𝐿, with 𝜎𝑔 the genetic variance and 𝐿 the generation interval (Falconer & 

Mackay, 1996). However, a comprehensive comparison of GS and conventional selection 
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requires considering their respective selection accuracy, selection intensity and generation 

interval. Indeed, even in a situation where GS accuracy would be lower than the accuracy of 

the conventional phenotypic evaluations, GS can still increase R if it allows a sufficient decrease 

in the generation interval and/or increase in selection intensity. 

GS accuracy is affected by several parameters, including marker type and density, 

distribution of QTL effects, linkage disequilibrium between markers and QTLs, the size of the 

training population, the relationship between the training and selection populations, trait 

heritability and statistical methods of prediction (Lorenz et al., 2011; Grattapaglia, 2014). In 

practice, GS accuracy is usually estimated by cross-validation at a single experimental site 

(Cros et al., 2015b; Kwong et al., 2017a,b) or by between-site validation (Cros et al., 2017). 

However, single-site cross-validations may overestimate accuracy, and it is therefore preferable 

to have at least two sites to evaluate GS (Lorenz et al., 2011). 

I.2.4.2. Molecular data 

GS generally uses single nucleotide polymorphism markers (SNPs). They are abundant 

on the whole genome, have a low mutation rate (Oraguzie et al., 2007) and can easily be 

genotyped at a reasonable cost. In oil palm, given the molecular resources available at the time, 

the first empirical studies were made with microsatellites (SSR, simple sequence repeats) (Cros 

et al. 2015b; Marchal et al., 2016). However, GS studies in this species now use SNPs from 

genotyping-by-sequencing (GBS) (Cros et al., 2017) or SNP arrays (Kwong et al., 2016, 

2017a,b; Ithnin et al., 2017). This allowed reaching higher densities, which contributed to 

achieve higher accuracies. Thus, Kwong et al., (2017b) using 135 SSRs obtained mean GS 

prediction accuracies of 0.21 over palm oil yield components, against 0.31 with 200K SNPs. 

GS accuracy normally increases with the number of markers until it reaches a plateau 

(De Los Campos et al., 2013; Cros, 2014). In oil palm, the effect of marker density on the GS 

accuracy for yield components has been evaluated in three studies. When predicting the 

performance of unevaluated hybrids, GS accuracy started plateauing with 500 and 2,000 SNPs 

in Cros et al. (2017) and between 200 and 400 SNPs in Kwong et al. (2017a), depending on the 

trait. The two studies did not consider the same populations, but the smaller number of SNPs 

required in Kwong et al. (2017a) likely resulted from the fact that the SNPs were chosen based 

on the association scores estimated in a genome-wide association study, and not randomly, as 

in Cros et al. (2017). When predicting the GCA of progeny-tested individuals, Marchal et al. 

(2016) showed that GS accuracy plateaued with 160 SSRs in group A and 90 SSRs in group B. 

The marker density required to reach the maximum GS accuracy, therefore, varies depending 
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on the type of marker, the marker sampling method, the trait and the population. However, the 

marker density needed in oil palm is lower than is generally the case in other species due to the 

high rate of inbreeding in oil palm breeding populations, i.e. to their small effective size (Cros 

et al., 2014). 

Genotyping generates missing data. There are very few missing data with SNP arrays 

(< 1% in Kwong et al. (2016)) and SSRs (< 3% in Cros et al. (2015b)), but they can reach 

significant proportions with GBS (13.2% in Cros et al. (2017)). The GS statistical models 

cannot deal with missing molecular data, which therefore have to be imputed. This consists in 

replacing them by the most likely genotype. In practice, the imputation method is likely of no 

importance when the percentage of missing data is low. In this case, the missing data can be 

replaced by the genotype with the highest frequency for the marker considered in the population 

concerned, as in Kwong et al. (2017a). With more missing data, more sophisticated imputation 

approaches are recommended. Many methods are available for this purpose (Wang et al., 2016). 

Currently, only the BEAGLE software (Browning & Browning, 2007) has been used to impute 

missing molecular data in GS studies on oil palm. Cros et al. (2017) showed that taking pedigree 

information into account for imputation made BEAGLE more efficient. However, they also 

noted that, for a given number of markers, using those with the lowest percentage of missing 

data resulted in higher GS accuracy than using random markers, which suggests that imputation 

could be improved. 

I.2.4.3. Training and application populations 

GS accuracy normally increases with the size of the training population (Lorenz et al., 

2011; Grattapaglia, 2014) and with the relationship between training and application 

individuals (Pszczola et al., 2012). In oil palm, GS accuracy was observed empirically to be 

strongly affected by the relationship between training and application individuals (Cros et al., 

2015b), suggesting that the use of GS in full-sibs or progenies of the training individuals would 

maximize accuracy. To increase the size of the training set, it is possible to aggregate data from 

consecutive breeding cycles. Simulations in oil palm showed that using data from two cycles 

increased the per cycle response to selection by more than 10%, mainly as a result of higher 

selection accuracy (Cros et al., 2018). Although this aggregation of data reduces the relationship 

between training and application populations, this is more than counterbalanced by the doubling 

of the training population.  

Several strategies can be used to optimize the training and application populations. For 

instance, the CDmean criterion, derived from the generalized coefficient of determination, can 
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optimize the sampling of individuals that have to be phenotyped among a set of genotyped 

individuals, in order to form the training population (Rincent et al., 2012). In oil palm, the 

CDmean proved to be efficient for GS as it maximizes its accuracy (Cros et al., 2015b). 

However, further improvements are possible: for example, another optimization criterion 

recently developed to define training populations, CDpop, could be more efficient for oil palm 

as it is specific to highly structured populations (Rincent et al., 2017). 

I.2.4.4. Models and statistical methods for genomic predictions 

Genomic predictions are made with frequentist and Bayesian statistical approaches 

(Varshney et al., 2017). Some methods estimate an effect associated with each marker, while 

other methods give the genetic values directly without estimating marker effects. Genomic 

predictions exploit two types of information, the relationship between training and application 

populations, and the linkage disequilibrium between markers and QTLs (Varshney et al., 2017).  

In methods that estimate marker effects, the base (i.e., purely additive) genomic linear 

mixed model is of the form: 𝑦 =  𝑿𝛽 +  𝒁𝑚 +  𝑒, where 𝑦 is the vector of data records (nind 

× 1), 𝛽 the vector of fixed effects (mean, trials, blocks, etc.) associated with incidence matrix 

𝑿, 𝑚 the vector containing the substitution effect of each SNP (nSNP × 1) with incidence matrix 

𝒁 (nind × nSNP) containing the molecular data coded in the number of copies of the most frequent 

allele (0, 1 or 2), 𝑒 the vector of residuals (nind × 1), nind the number of individuals in the training 

population and nSNP the number of SNPs (Soh et al. 2017). The effects 𝑚 and 𝑒 are random. 

The GEBV of selection candidate i is given by summing the SNP effects over the whole genome 

according to the formula: GEBVi =  ∑ 𝒁ij�̂�j
nSNP
j=1 , with �̂�j the estimated effect of SNP j. 

Depending on the way the marker genetic variance (𝜎𝑚
2 ) is treated, two types of methods can 

be distinguished (Soh et al. 2017). First, some methods consider that marker effects are sampled 

according to a normal distribution with a variance common to all markers, which is relevant for 

traits following the infinitesimal model. This is the case of random regression BLUP (RR-

BLUP) (Meuwissen et al., 2001) and Bayesian random regression (BRR) (Pérez et al., 2010). 

Second, as the genetic determinism of some quantitative traits may include loci with strong 

effects, other methods such as Bayes A, Bayes B (Meuwissen et al., 2001), Bayes Cπ, 

Bayes Dπ (Habier et al., 2011) and Bayesian LASSO (De Los Campos et al., 2009) attribute 

marker specific genetic variances.  

The most widely used method to estimate GEBV directly is the genomic best linear 

unbiased predictor (GBLUP). The basic difference between GBLUP and conventional BLUP 

presented above is the use of genomic (instead of genealogic) information to compute the 
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relationship matrix, called the 𝑮 matrix in GBLUP. The 𝑮 matrix has the advantage of 

accounting for the random sampling of alleles at meiosis (Mendelian sampling) and thus gives 

realized relationships, making it possible to obtain the GEBV of unevaluated individuals. Also, 

genomic data are not affected by pedigree errors in the families used in the breeding program. 

By contrast, the pedigree-based A matrix gives expected relationships (Habier et al., 2007; 

VanRaden, 2007), and therefore does not differentiate between individuals within families, 

cannot capture relationships that do not appear in the pedigree records and gives erroneous 

values in the case of illegitimacy. The base model used with GBLUP is: 𝑦 =  𝑿𝛽 +  𝑔 +  𝑒, 

with 𝑔 the vector (nind × 1) of GEBVs following N(0, 𝑮𝜎𝑔
2), σ𝑔

2 the additive variance and 𝑮 (nind 

× nind) the genomic relationships matrix. With SNP markers, the 𝑮 matrix is usually computed 

according to VanRaden (2007). GBLUP is equivalent to RR-BLUP under the assumption of 

normality of marker effects and has the advantage of being simple to implement with existing 

software and of having a reasonable computation time.  

Various modeling approaches have been used for genomic predictions in oil palm. The 

base GS models described above were used in each parental group separately, with data records 

consisting of parental performances in crosses with the other group, i.e. GCAs (Cros et al., 

2015b) or testcross phenotypic means (Wong & Bernardo, 2008), and parent genotypes. Ithnin 

et al. (2017) and Kwong et al. (2017b) applied similar models but used parental phenotypes as 

data records. They obtained low to intermediate GS prediction accuracies but, as parental 

phenotypes may not reflect performance in hybrid crosses due to gene-frequency differences 

between parental populations and non-additive effects (Wei et al., 1991; Baumung et al., 1997; 

Vitezica et al., 2016), the relevancy of such accuracies for hybrid breeding is questionable. 

Kwong et al. (2016) studied GS with a population consisting in a mixture of Deli, group B and 

hybrid individuals. They obtained a prediction accuracy of 0.65, which could have possibly 

been improved by the use of a model designed to jointly consider parental and hybrid data, like 

in Vitezica et al. (2016). Accuracy of GS could also be improved by a single-step GBLUP 

(ssGBLUP) which blends realized relationship of genotyped individuals with the genealogical 

relationship of non-genotyped individuals to calculate GEBV. This increases the size of the 

training set by taking into account ungenotyped individuals for which phenotypes are available. 

In oil palm, this could be used to include in the training set phenotyped individuals for which 

DNA can no longer be obtained, such as individuals evaluated in past progeny tests. In 

eucalyptus, using additional phenotypic information from non-genotyped individuals thus 

increased GS prediction accuracies by up to 75% (Cappa et al., 2019). Other studies used the 

conventional MRRS model replacing genealogical relationship matrices by genomic matrices 
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to jointly predict the GEBV of A and B candidates (Cros et al., 2015b, 2017, 2018; Marchal et 

al., 2016). In order to increase the training size, this method was adapted to include molecular 

data of individual hybrids, taking into account the parental origin of marker alleles (Cros et al., 

2015a). This gave the highest selection accuracies for unevaluated parents, and thus proved to 

be more efficient than using only parental genotypes to train the model. Kwong et al. (2017a) 

also used molecular data of individual hybrids, but did not consider the parental origin of alleles. 

So far, the usefulness of modeling the parental origin of marker alleles in oil palm hybrids 

genotypes has not been investigated. Further studies thus remain necessary to identify the 

optimal prediction model, in particular depending on the nature of the training data.  

In addition, a wide range of statistical methods has been applied to analyze these models, 

and comparisons showed that they did not significantly affect the accuracy of GS (Cros et al., 

2015b; Ithnin et al., 2017; Kwong et al., 2017b). This suggests that the components of palm oil 

yield are highly polygenic and follow the infinitesimal model. 

I.2.4.5. Information captured by markers 

Without optimizing the training and validation populations, prediction accuracies 

ranging from 0.14 and 0.73 were obtained for various yield components, confirming the ability 

of GS models to predict the genetic value of unevaluated selection candidates (Cros et al., 2017; 

Kwong et al., 2017a,b). In particular, for five yield components (FFB, OP, BN, BW and PF), 

the GS model predicted the performance of unevaluated hybrid crosses with higher accuracy 

than a control model using pedigree data instead of markers (Cros et al., 2017). This showed 

the ability of GS to capture genetic differences within full-sib families (i.e., the Mendelian 

segregation term) in addition to genetic differences between families, enabling the selection of 

the best individuals within the best families, as currently done among the individuals that are 

progeny tested. The same conclusion was reached in Kwong et al. (2017b), where GS prediction 

accuracies above zero, ranging from 0.18 to 0.47, were obtained in a GS evaluation considering 

a single full-sib family. Similarly, Cros et al. (2015b) obtained GS prediction accuracies above 

0.5 within full-sib families. However, the latter study also showed that GS could also, 

depending on trait and population, fail to capture Mendelian segregation. In this case, GS 

predictions only revealed, at the best, between-family differences. 

I.2.5. Genetic progress 

The first GS study in oil palm was a simulation study (Wong & Bernardo, 2008), starting 

with an initial breeding population derived from the selfing of a hybrid. Two cycles of 

conventional breeding were simulated. At each cycle, the breeding population was crossed with 

a tester to allow phenotypic selection for yield performance, and the selected individuals were 
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crossed to produce the new generation. With MAS (QTL-based MAS and GS), the initial 

population was also genotyped and used to estimate marker effects, and in the following cycles, 

phenotypic selection was replaced by selection on markers. This reduced the length of the 

breeding cycles and enabled three consecutive selection cycles on markers, with a total number 

of years over the four cycles equivalent to the two cycles in conventional phenotypic selection. 

The authors found that GS and conventional selection outperformed QTL-based MAS in terms 

of selection response, while GS outperformed conventional selection when the population size 

reached 50 to 70 individuals, and then increased selection response by 4% to 25%, depending 

on population size, heritability and number of QTLs. 

In another simulation study, Cros et al. (2015a) compared conventional MRRS and GS 

over four cycles. With GS, each cycle including hybrid progeny tests was used to train a model 

applied to make a selection among unevaluated individuals of the same cycle (i.e., sibs of the 

evaluated individuals) and/or of the following generations. The effect on the annual selection 

response of the following parameters was quantified: frequency of progeny tests (from model 

training only in first cycle to training in every cycle), the number of GS candidates (120 and 

300) and GS strategy (genotyping limited to the parents of the calibration hybrids [RRGS_PAR] 

or also genotyping hybrid individuals [RRGS_HYB]). The authors showed that GS can increase 

annual genetic progress by reducing the generation interval and by increasing the selection 

intensity, despite the fact that GS accuracy for unevaluated hybrid parents is lower than the 

accuracy of progeny tested parents. Among the strategies evaluated, RRGS_HYB with the 

genotyping of 1,700 hybrid individuals, model training only in the first generation and 300 

selection candidates per population and generation was the most efficient, leading to 72% 

higher annual genetic progress than MRRS. Additionally, RRGS_PAR with model training 

every two generations and 300 selection candidates was shown to be an interesting alternative 

as, although its genetic progress was lower (46% higher than MRRS), it had a lower variability 

of genetic progress, reduced cost and slower increase in inbreeding over cycles in the parental 

populations compared to RRGS_HYB. The authors later studied the effect of aggregating the 

data of two consecutive cycles to train the RRGS_PAR model and showed that this increased 

the selection accuracy, leading to an annual genetic progress 37.6% to 57.5% higher than 

MRRS, depending on the number of GS candidates (Cros et al., 2018). 

These simulation results promise a revolution in the genetic improvement of oil palm 

yield. However, this needs to be put into perspective by the empirical studies that, even if they 

showed that GS accuracies could be high, also revealed that GS was not efficient for all yield 

components. Indeed, for some traits, the GS model did not predict the genetic value of 
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unevaluated individuals better than a control model using pedigree data instead of markers 

(Cros et al., 2015b, 2017). Yet, the simulations showed that the main advantage of GS was its 

ability to shorten the breeding cycles by avoiding field evaluations in some cycles, and this is 

only possible if GS is efficient for all the yield components that are currently the subject of 

phenotypic selection. Otherwise, the progeny tests remain necessary in all breeding cycles. 

Therefore, the practical application currently envisaged to start implementing GS in oil palm is 

a two-stage scheme, with an initial stage of genomic selection prior to progeny tests. This would 

be better than the current first stage of phenotypic selection for two reasons. First, the number 

of yield components for which GS is efficient is greater than the number of traits currently 

subjected to phenotypic preselection. Second, the current selection prior to progeny tests is 

made on the parental phenotypes, even though, as already mentioned, they may be poor 

indicators of performance in hybrid crosses. By contrast, this would not be a problem for 

genomic predictions obtained with a model calibrated on hybrid phenotypes. The potential of 

genomic preselection was quantified based on the GS accuracies empirically obtained by 

between-site validation for bunch production, a trait which is normally not subjected to 

phenotypic selection prior to progeny tests in the current schemes (Cros et al., 2017), and the 

study showed that this would increase the performance of the selected hybrids by more than 

10% compared to a method without preselection, thanks to higher selection intensity. 

To be applied in practice, GS must also result in annual genetic progress per unit cost 

higher than current selection methods. Although GS generates additional costs related to 

genotyping, these costs are low in comparison to the cost of phenotyping. Thus, Jacob et al. 

(2017) indicated that, even assuming a genotyping cost per sample as high as 300€, which 

seems to be the maximum possible price for a 300K SNP array, the ratio of 

genotyping/phenotyping costs lays below 1/20. In addition, these extra costs could possibly be 

offset by a reduction in phenotyping costs, when it is possible to manage without some field 

evaluations. In this case, Wong & Bernardo (2008) found that with a genotyping cost of 

US$0.15 per datapoint, corresponding to genotyping prices for SNPs, the cost per genetic 

progress unit was 35% to 65% lower with GS than with conventional selection.  
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CHAPTER II. MATERIAL AND METHODS 

 

II.1. Material 

II.1.1. Study sites and experimental designs 

The current study has been carried out in two sites, at Aek Loba Timur (ALT) at 2° 39′ 

North – 99° 42′ East and Aek Kwasan division VI (AK) at 2° 38′ North – 99° 37′ East both 

located in North Sumatra (Fig. 15), on the SOCFINDO estate (Indonesia) and with 9 km of 

distance separates them. They are both situated at around 50 km from the sea level on deep 

loamy sand soils, with low water deficit and high insolation, and benefiting from standard 

cultural practices and the same protocol for data record (Potier et al., 2006; Cros et al., 2017).  

The experimental designs used in both sites were either balanced lattice of four to five 

ranks or randomized complete block designs (RCBD). ALT is constituted of 28 trials (Fig. 16) 

and AK is divided into, AK1 composed of seven trials and AK2 composed of 19 trials (Potier 

et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Map of the study area.  
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Fig. 16. Location plan of the 28 trials (GP) of Aek Loba Timur (ALT).  

II.1.2. Plant material 

To evaluate the efficiency of genomic selection (GS) for clonal selection, the plant 

material used to train the GS models comes from controlled crosses between Deli and La Mé 

(LM) individuals. For bunch production predictions, the training set was composed of 295 

progeny-test crosses planted from 1995 to 2000 at ALT and involving 108 Deli and 102 La Mé. 

For bunch quality predictions, a sample of 279 crosses involving 103 Deli and 100 La Mé 

parents were used (Table IV). The pedigrees of these populations are known over several 

generations.  

The validation set was composed of 42 Deli × La Mé tenera ortets, evaluated in clonal 

trials involving on average 69 ramets per clone for production traits and a subset of 34 ramets 

per clone for quality traits. The ramets were established in three out of the 28 trials of ALT and 

were planted in 1995 and 1998 (Table IV). The 42 ortets were chosen among individuals from 

various hybrid crosses planted on seven trials of an earlier set of progeny tests, located at AK1. 

The plantation of the seven trials of AK1 took place between 1975 and 1979. The 42 ortets 

come from 17 families of full sibs with 16 La Mé parents and 12 Deli parents. These families 

were composed of one to five ortets each, with four families having five ortets each. 
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Table IV. Characteristics of the datasets used for training and validation for clones. 

 Hybrid crosses (training set) Hybrid clones (validation set) 

bunch 

production 

bunch quality  bunch 

production 

bunch quality  

Number of crosses or ortets 295 279 42 42 

Number of individuals or 

ramets 

19,668 12,341 2,908 1,439 

Average number of 

individuals per cross or 

ramets per clone (min–max) 

67 (17-503) 44 (21-274) 69 (5-138) 34 (4-74) 

Number of Deli parents 

(genotyped) 

108 (93) 103 (90) 16 16 

Number of La Mé parents 

(genotyped) 

102 (91) 100 (89) 12 12 

Age at time of data 

collection (years) 

3-7 5-9 3-7 5-9 

To evaluate the effect of the genotyping strategy to optimize prediction accuracy, the 

parental populations used comprised two groups, group A, mostly consisting of an Asian 

population (Deli) and, to a lesser extent, Angola, and group B, composed of other African 

populations (La Mé from Ivory Coast, Yangambi and Lisombe Kinshasa from the Democratic 

Republic of the Congo, Nifor from Nigeria and Sibiti from the Republic of Congo). Nine yield 

components were assessed: three bunch production traits BN, FFB, ABW, and six bunch quality 

traits i.e., AFW, NF, FB, PF and OP, and OER. 

The training set for bunch production contained 352 A×B tenera hybrid crosses 

including 123 parents in group A and 121 parents in group B for a total of 22,656 hybrid 

individuals. Among these crosses, only 341 could be used as a training population for bunch 

quality traits, because phenotypic data for these traits was only available for a few crosses; the 

crosses involved 121 parents in group A and 118 parents in group B, for a total of 14,985 hybrid 

individuals (Table V). Training palms were planted from 1995 to 2000 in ALT. 

For the validation of bunch production, we used a set of 213 A×B tenera hybrid crosses 

involving 71 parents in group A and 49 parents in group B, with a total of 13,399 hybrid 

individuals for bunch quality and 10,339 for bunch production. Palms destined for the 

validation set were planted between 2005 and 2009 in 19 trials in the AK2 (Table V). 
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Table V. Composition of the datasets used for training and validation for hybrids. 

 

II.2. Methods 

II.2.1. Evaluation of the efficiency of genomic selection for clonal selection 

II.2.1.1. Phenotyping 

All the individuals, i.e., the training hybrid crosses, the 42 hybrid ortets and their ramets, 

were phenotyped for eight traits. Five traits were assessed for bunch quality: average fruit 

weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to pulp (OP) ratios, and number 

of fruits per bunch (NF); and three traits for bunch production: bunch number (BN), average 

bunch weight (ABW), and total bunch production (FFB). For quality traits, data were collected 

when plants were from five to nine years old at ALT and from six to nine years old at AK1. For 

production traits, data were collected when the plants were from three to seven years old in both 

sites. 

II.2.1.2. Genotyping 

Molecular data were obtained by GBS (Elshire et al., 2011; He et al., 2014) for the 42 

ortets, 93 Deli and 91 La Mé parents of the training hybrid crosses (Table IV). Ortets genotypes 

were obtained from two or three samples collected on different ramets (thus allowing 

 Training population Validation population 

bunch 

production 

bunch quality  bunch 

production 

bunch quality  

Number of crosses 352 341 213 213 

Number of individuals 

(genotyped) 

22,656 14,985 13,399 10,339 

Average number of 

individuals per cross 

(min–max) 

64 (17-503) 44 (21-292) 63 (25-680) 48 (19-493) 

Number of group A 

parents  

123 121 71 71 

Number of group B 

parents  

121 118 49 49 

Age at time of data 

collection (years) 

3-7 5-9 3-7 5-9 
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controlling the legitimacy of the ramets). DNA extraction and GBS were performed as 

described in Cros et al. (2017), using the PstI and HhaI restriction enzymes. The raw fastq 

sequence data were processed with Tassel GBS v. 5.2.44 (Glaubitz et al., 2014), using the 

Bowtie2 software for alignment (Langmead & Salzberg, 2012), and VCFtools 0.1.14 (Danecek 

et al., 2011). The indels were discarded, the datapoints with depth below five were set to 

missing, the SNPs that were not biallelic, with more than 75% of missing data or on the 

unassembled part of the genome were discarded. This resulted in a dense genome covering, 

with 15,054 SNPs. The average percentage of missing data was 23.08% (3.64% - 43.42% per 

individual). To explain the differences in accuracy between ASGM and PSAM, the distribution 

of the minor allele frequency (MAF) and of the frequency of the alternate allele (i.e., that was 

not present on the reference genome) were computed in Deli and La Mé, as well as the 

correlation among populations for each of these two parameters.  

II.2.1.3. Imputation of missing SNP data and phasing 

Imputation of missing SNP data and phasing were carried out with Beagle 4.0 

(Browning & Browning, 2007). This software can consider the family relationships (i.e., parent-

offspring) and infers missing genotypes using genotype likelihood computed from the pedigree. 

The process followed to impute and phase the SNP data is given in Fig. 17. The pedigree of the 

population involved in this study is available over several generations. For imputation, the 

initial SNP dataset containing all the genotyped individuals was divided into three distinct SNP 

datasets containing the Deli parents, the La Mé parents and the ortets, respectively. The Deli 

and La Mé SNP datasets were imputed separately giving to the software their respective 

pedigrees, and were then merged with the unimputed SNP dataset of ortets. The resulting global 

dataset was imputed and phased, providing the software with the pedigree file indicating the 

Deli and La Mé parent of each ortet. Nine ortets had one parent for which the DNA was 

unavailable but, for the missing parents that were obtained through selfing, the selfed 

grandparents were used in the pedigree instead of the actual parents, as grandparental DNA was 

available (for the other steps of the analysis that required a pedigree, the real pedigree was 

used). As some ortets remained with one parent that was not genotyped and that did not 

originate from selfing, we used a home-made R script to recover the parental origin of ortet 

phases. For each ortet, this script considered the two phases, one after another, and checked all 

along the genome if similar blocks of consecutive SNPs were found in the Deli and La Mé 

parent. Each ortet phase was finally assigned to the parental population with the highest number 

of SNP blocks specific to the population that was found on the considered ortet phase. 
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Fig. 17. Imputation and phasing scheme for the production of the SNP datasets used for 

genomic predictions with the two models PSAM (population-specific effects of SNP alleles 

model) and ASGM (across-population SNP genotype model). pA, pB, A×B: Deli parents, La 

Mé parents and Deli×La Mé hybrid ortets, (I) denotes imputed data. 

II.2.1.4. Definition of SNP datasets 

To quantify how the characteristics of the SNP dataset (i.e., maximum percentage of 

missing data allowed per SNP, pmax, and resulting number of SNPs, nsnp) affected the GS 

accuracy, we made genomic predictions using different SNP datasets with varying maximum 

percentages of missing data per SNP, as shown in Table VI. Thereby, for the rest of the study, 

the SNP dataset will refer to an SNP matrix with a given number of SNPs resulting from the 

filtering made on the maximum percentage of missing data allowed per SNP. 

II.2.1.5. Prediction models and computation of genetic values of unobserved clones 

Two approaches were implemented to predict the genetic value of the validation clones: 

the across-population SNP genotype model (ASGM) and the population-specific effects of SNP 

alleles model (PSAM). 
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In addition, for both approaches, two models were tested: a purely additive model 

(ASGM_A and PSAM_A) and a model combining additive and dominance effects (ASGM_AD 

and PSAM_AD). 

Table VI. Characteristics of the SNP datasets defined based on a threshold in terms of maximum 

percentage of missing data per individual. 

The ASGM_A approach used a model with a single random genetic effect, 

corresponding to the additive genetic value of the parents of the training hybrid crosses and of 

the validation clones. The ASGM_AD and PSAM_AD models also included a random 

dominance effect of crosses and ortets. The PSAM_A approach used two random effects 

partitioning the additive genetic values of each individual into two parts originating from Deli 

and La Mé alleles. All these four models were implemented separately on each trait (univariate 

models). For GS, the GBLUP statistical approach was used (Clark & van der Werf, 2013; 

Habier et al., 2007), and the corresponding models were termed G_ASGM_A, G_ASGM_AD, 

G_PSAM_A, and G_PSAM_AD. In addition, to evaluate the usefulness of the SNP data, these 

four models were implemented with pedigree data instead of SNPs (control PBLUP models, 

termed P_ASGM_A, P_ASGM_AD, P_PSAM_A, and P_PSAM_AD).  

In all cases, the models were trained with the phenotypic data of ALT hybrids and the 

genomic data of their parents, and the genetic values of the 42 validation clones were predicted. 

For all the models mentioned above, no phenotypic data of the validation clones were provided 

to the prediction models. This corresponds to a breeding situation where predictions are made 

for immature individuals (e.g., nursery plantlets belonging to crosses that were not evaluated in 

progeny-tests but were produced by mating the best parents selected at the end of the progeny-

tests). However, ortet selection can also be made within the crosses evaluated in progeny tests. 

 Maximum percentage of missing data allowed per SNP pmax 

(resulting average) 

0 (0) 5 (1.03) 10 (2.19) 25 (5.92) 45 (12.10) 75 (23.08) 

Average percentage of 

missing data per individual 

in La Mé 

0 1.49 3.20 8.81 15.31 23.95 

Average percentage of 

missing data per individual 

in Deli 

0 0.87 1.83 4.76 10.62 22.56 

Number of SNPs nsnp 2,447 5,620 6,898 9,205 11,707 15,054 
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In this case, the ortet candidates have phenotypic data records, which should be taken into 

consideration along with their SNP data when predicting their clonal value. This was evaluated 

with the G_ASGM_A model, simply including the adjusted phenotypic value of the validation 

ortets (see below) to the phenotypic dataset used to train the model, and is referred to as the 

G_ASGM_A+pheno approach. 

All GS analyses were run on a server of the CIRAD-UMR AGAP HPC data center of 

the South Green bioinformatics platform (http://www.southgreen.fr/), using a homemade R 

script. 

II.2.1.5.1. Across-population SNP genotype models (ASGM) 

 The model used for the G_ASGM_AD approach was as follows: 

𝑦 =  𝑿𝛽 +  𝒁𝟏𝑔𝑖 +  𝒁𝟐𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀  + 𝒁𝟑𝑏 + 𝒁𝟒𝑝 +  𝜀 

with: 𝑦 the observed phenotypes of the training hybrid individuals, 𝛽 the vector of fixed effects 

(phenotypic mean, trial effects, block effects and, for bunch production traits, age), 

𝑔𝑖 ~ N(0, 𝑯𝒊𝜎𝑎𝑖

2 ) the individual additive genetic effects, 𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀 ~ N(0, 𝑯𝐷𝑒𝑙𝑖 × 𝐿𝑀𝜎𝑑𝐷𝑒𝑙𝑖 × 𝐿𝑀

2 ) 

the genetic dominance effects, 𝑏 ~ N(0, 𝑰𝜎𝑏
2) the incomplete block effect, and 𝑝 ~ N(0, 𝑰𝜎𝑝

2) the 

elementary plot effects. 𝑿, 𝒁𝟏, 𝒁𝟐, 𝒁𝟑 and 𝒁𝟒 are the incidence matrices associated to 𝛽, 𝑔𝑖, 

𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀, 𝑏 and 𝑝 respectively. 𝑯𝒊𝜎𝑎𝑖

2  and 𝑯𝐷𝑒𝑙𝑖 × 𝐿𝑀𝜎𝑑𝐷𝑒𝑙𝑖 × 𝐿𝑀

2  are the variance-covariance 

matrices associated with 𝑔𝑖 and 𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀, respectively. 𝜎𝑎𝑖

2  and 𝜎𝑑𝐷𝑒𝑙𝑖 × 𝐿𝑀

2  are the additive and 

dominance variances, respectively. 𝜀 ~ N(0, 𝑰𝜎ε
2) is the vector of residual effects and 𝑰 the 

identity matrix. To implement this model in practice, two specificities of our dataset had to be 

taken into account. First, a few parents of the training crosses were not genotyped (Table 

IV), and the 𝑯. matrices had therefore to be made with the genealogical data of hybrid crosses 

with ungenotyped parents and with the SNP data of hybrid crosses with genotyped parents 

(computed with the SNP data of their parents, see below) and of the ortets. All 𝑯. matrices 

subsequently in this thesis work will refer to matrices combining genealogical and genomic 

information. 𝑯𝒊
−𝟏 is the inverse of 𝑯𝒊, computed according to Misztal et al. (2009) as: 𝑯𝒊

−𝟏 =

𝑨𝒊
−𝟏 + [

0 0
0 𝑮𝒊

−𝟏 − 𝑨𝒊𝟐𝟐

−𝟏], where 𝑮𝒊
−𝟏 and 𝑨𝒊𝟐𝟐

−𝟏  are the inverse of the realized and the 

genealogical additive relationship matrices, respectively, of the 42 ortets and the hybrid crosses 

with genotyped parents, and 𝑨𝒊
−𝟏 is the inverse of the genealogical relationship matrix of all 

hybrid crosses (i.e. the few with ungenotyped parents and the ones with genotyped parents) and 

the 42 ortets. Second, the phenotyped individuals constituting the hybrid crosses were not 

http://www.southgreen.fr/
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genotyped while they had to be connected to the validation ortets through their genomic 

relationships (only the parents of the hybrids were genotyped, except a few parents that were 

not genotyped and for which the genealogical relationships were used, as explained above). To 

get genotypes for the hybrid crosses with genotyped parents, we computed for each cross the 

mean genotypes expected from the parental genotypes (i.e., for SNP j in cross i, the mean 

number of copies of the minor allele of SNP j expected to be found in the hybrid individuals of 

i), assuming this was relevant considering the relatively large number of individuals per cross 

(Table IV). The genomic additive relationship matrix G was obtained as: 𝑮 =  
𝐗 𝐗   

′

2 ∑ 𝑝𝑙(1−𝑝𝑙)
nSNP
𝑙=1

, 

with 𝑿 = 𝒁 − 𝑷, 𝑿’ the transpose of matrix X, Z the SNP matrix containing the number of 

copies of the minor allele at an SNP (ranging from 0 to 2), P a matrix given by 𝑷 = 2𝑝𝑙, and 𝑝𝑙 

the frequency of the minor allele at SNP 𝑙 (VanRaden, 2008). 𝑯𝐷𝑒𝑙𝑖 × 𝐿𝑀 is the dominance 

relationship matrix combining genomic dominance relationships between crosses with parents 

and clones, and genealogical dominance relationships between the few crosses with 

ungenotyped parents. 𝑯𝑫𝒆𝒍𝒊 × 𝑳𝑴
−𝟏  was computed following the same method as 𝑯𝒊

−𝟏 except that 

the additive relationship matrices were replaced by the dominance relationship matrices. The 

realized dominance relationship matrix 𝑮𝑫 was computed according to Su et al. (Su et al., 2012) 

as: 𝑮𝑫 =  
𝜫𝜫′

2 ∑ 𝑝𝑙𝑞𝑙(1−2𝑝𝑙𝑞𝑙)
, with 𝜫 the n × m matrix (n: number of hybrid crosses and clones and 

m: number of SNPs) of heterozygosity coefficients with element 𝜫𝑘𝑙 = 0 − 𝑝𝑙𝑞𝑙 if clone or 

ortet 𝑘 is homozygous and 𝜫𝑘𝑙 = 1 − 𝑝𝑙𝑞𝑙 if it is heterozygous at locus l, and 𝑝𝑙 and 𝑞𝑙 the 

frequencies of the first and the second allele at locus 𝑙. The purely additive approach ASGM_A 

used the same model without the dominance effect. 

For the P_ASGM_A and P_ASGM_AD, 𝑯𝒊 was replaced by the additive genealogical 

relationship matrix 𝑨𝒊 and, for P_ASGM_AD, 𝑯𝑫𝒆𝒍𝒊 × 𝑳𝑴 was replaced by the genealogical 

dominance relationship matrix. 

The estimated genetic value for the validation clones was �̂�𝑖 and, for G_ASGM_AD and 

P_ASGM_AD, �̂�𝑖 + �̂�𝐷𝑒𝑙𝑖 × 𝐿𝑀. 

II.2.1.5.2. Population-specific effects of SNP alleles models (PSAM) 

The model used for G_PSAM_AD was as follows: 

𝑦 =  𝑿𝛽 + 𝒁𝟏𝑔𝐷𝑒𝑙𝑖  +  𝒁𝟐𝑔𝐿𝑀  +  𝒁𝟑𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀 + 𝒁𝟒𝑏 + 𝒁𝟓𝑝 +  𝜀 

with 𝑔𝐷𝑒𝑙𝑖 ~ N(0, 𝑯𝑫𝒆𝒍𝒊𝜎𝑔𝐷𝑒𝑙𝑖

2 ) and 𝑔𝐿𝑀 ~ N(0, 𝑯𝑳𝑴𝜎𝑔𝐿𝑀
2 ) the additive effects inherited by the 

parents of the hybrid crosses and the ortets from the Deli and La Mé populations, respectively, 
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and 𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀 ~ N(0, 𝑯𝐷𝑒𝑙𝑖 × 𝐿𝑀𝜎𝑑𝐷𝑒𝑙𝑖 × 𝐿𝑀

2 ) the dominance effects of the crosses and clones. 𝑿, 

𝒁𝟏, 𝒁𝟐, 𝒁𝟑, 𝒁𝟒, 𝒁𝟓 are the incidence matrices associated to 𝛽, 𝑔𝐷𝑒𝑙𝑖, 𝑔𝐿𝑀, 𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀, b and p, 

respectively. 𝑯𝑫𝒆𝒍𝒊𝜎𝑔𝐷𝑒𝑙𝑖

2 , 𝑯𝑳𝑴𝜎𝑔𝐿𝑀
2  and 𝑯𝑫𝒆𝒍𝒊 × 𝑳𝑴𝜎𝑑𝐷𝑒𝑙𝑖 × 𝐿𝑀

2  are the variance-covariance 

matrices associated to 𝑔𝐷𝑒𝑙𝑖, 𝑔𝐿𝑀 and 𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀, respectively. 𝜎𝑔𝐷𝑒𝑙𝑖

2  and 𝜎𝑔𝐿𝑀
2  are the additive 

genetic variances of the Deli and La Mé populations, respectively, and 𝜎𝑑𝐷𝑒𝑙𝑖 × 𝐿𝑀

2  is the genetic 

dominance variance of crosses and clones. 𝑯𝑫𝒆𝒍𝒊 is the matrix combining the additive realized 

relationships of the clones and the genotyped Deli parents of the crosses and the additive 

genealogical relationships of the few ungenotyped Deli parents of the hybrid crosses. 𝑯𝑳𝑴 is 

defined similarly for the La Mé population. To build 𝑯𝑫𝒆𝒍𝒊, we created first the matrix of 

additive realized relationships of Deli parents 𝑮𝑫𝒆𝒍𝒊 (incorporating the Deli parents of the 

training and validation hybrid crosses and clones) as follows (Xiang et al., 2016): 

𝑮𝐷𝑒𝑙𝑖= [
𝑮𝐷𝑒𝑙𝑖

𝐷𝑒𝑙𝑖,𝐷𝑒𝑙𝑖 𝑮𝐷𝑒𝑙𝑖
𝐷𝑒𝑙𝑖,𝐷𝑒𝑙𝑖 × 𝐿𝑀

𝑮𝐷𝑒𝑙𝑖
𝐷𝑒𝑙𝑖 × 𝐿𝑀,𝐷𝑒𝑙𝑖 𝑮𝐷𝑒𝑙𝑖

𝐷𝑒𝑙𝑖 × 𝐿𝑀,𝐷𝑒𝑙𝑖 × 𝐿𝑀
] with, 

𝐆𝐷𝑒𝑙𝑖
𝐷𝑒𝑙𝑖,𝐷𝑒𝑙𝑖 = (𝐙𝐷𝑒𝑙𝑖 –  2𝐩𝐷𝑒𝑙𝑖𝟏’) (𝐙𝐷𝑒𝑙𝑖 –  2𝐩𝐷𝑒𝑙𝑖𝟏’)’,  

𝐆𝐷𝑒𝑙𝑖
𝐷𝑒𝑙𝑖,𝐷𝑒𝑙𝑖 × 𝐿𝑀 = (𝐙𝐷𝑒𝑙𝑖 –  2𝐩𝐷𝑒𝑙𝑖𝟏’) (𝐙𝐷𝑒𝑙𝑖 × 𝐿𝑀 – 𝐩𝐷𝑒𝑙𝑖𝟏’)’ and 

𝐆𝐷𝑒𝑙𝑖
𝐷𝑒𝑙𝑖 × 𝐿𝑀,𝐷𝑒𝑙𝑖 × 𝐿𝑀 = (𝐙𝐷𝑒𝑙𝑖 × 𝐿𝑀 – 𝐩𝐷𝑒𝑙𝑖𝟏’) (𝐙𝐷𝑒𝑙𝑖 × 𝐿𝑀 – 𝐩𝐷𝑒𝑙𝑖𝟏’)′. 

𝐙𝐷𝑒𝑙𝑖 and 𝐙𝐷𝑒𝑙𝑖 × 𝐿𝑀 are the matrices containing the number of copies of reference allele in the 

genotyped Deli parents (coded as 0, 1 or 2) and in the Deli haplotype of clones (coded as 0 or 

1), respectively, 𝐩𝐷𝑒𝑙𝑖 is the vector containing the allele frequencies based on SNP genotypes 

of Deli parents and Deli haplotype in clones and 𝟏 is a vector of ones. 𝑮𝑫𝒆𝒍𝒊 was then adjusted 

to be on the same scale and compatible with the genealogical additive relationship matrix of the 

clones and the genotyped Deli parents  𝑨𝐷𝑒𝑙𝑖𝟐𝟐
, according to Christensen et al. (2012) and Xiang 

et al. (2016).  

𝑮𝐷𝑒𝑙𝑖𝑤
 and using weight 0.001, to give the 𝑮𝐷𝑒𝑙𝑖𝑤

 matrix. Then the inverse of 𝑯𝐷𝑒𝑙𝑖 was 

constructed as: 

𝑯𝐷𝑒𝑙𝑖
−𝟏 = 𝑨𝐷𝑒𝑙𝑖

−𝟏 + [
0 0
0 𝑮𝐷𝑒𝑙𝑖𝒘

−𝟏 − 𝑨𝐷𝑒𝑙𝑖𝟐𝟐

−𝟏 ], with 𝑨𝐷𝑒𝑙𝑖
−𝟏  the inverse of the genealogical relationship 

matrix of all the Deli parents and clones. 𝑯𝑳𝑴 was created following the same procedure as 

𝑯𝑫𝒆𝒍𝒊. 𝑯𝑫𝒆𝒍𝒊 × 𝑳𝑴 is the dominance relationship matrix containing both realized dominance 

relationships between clones and crosses implying genotyped parents, and genealogical 
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dominance relationships between the crosses implying ungenotyped parents, computed as: 

𝑯𝑫𝒆𝒍𝒊 × 𝑳𝑴  =  𝑯𝑫𝒆𝒍𝒊  ⊗  𝑯𝑳𝑴, with ⊗ the Kronecker product. 

For P_PSAM_A and P_PSAM_AD, 𝑯𝑫𝒆𝒍𝒊 and 𝑯𝑳𝑴 were replaced by the additive 

genealogical relationship matrices 𝑨𝑫𝒆𝒍𝒊 and 𝑨𝑳𝑴 and, for P_PSAM_AD, 𝑯𝑫𝒆𝒍𝒊 × 𝑳𝑴 was 

replaced by the genealogical dominance relationship matrix. 

The estimated genetic value for the validation clones was calculated as the sum of the 

additive genetic values inherited from the two parents, i.e., �̂�𝐷𝑒𝑙𝑖 + �̂�𝐿𝑀 and, for G_PSAM_AD 

and P_PSAM_AD, of its dominance value, i.e., �̂�𝐷𝑒𝑙𝑖 + �̂�𝐿𝑀 + �̂�𝐷𝑒𝑙𝑖 × 𝐿𝑀. 

II.2.1.6. Prediction accuracies 

The ability of each model to predict the reference clonal value of the 42 validation clones 

(see below) was evaluated through their prediction accuracy, computed as the correlation 

between the reference value and the predicted clonal values. 

Pairwise comparisons of prediction accuracies among models were made for each trait 

using the Hotelling–Williams t-test (Steiger, 1980). This test compares two non-independent 

correlations, i.e., having one variable in common, which in our case is the reference value of 

the 42 clones. This test was applied using the R package psych (Revelle, 2018). The Hotelling–

Williams t-test is given as: 

𝑡 = (𝑟12 − 𝑟13)√
(𝑛 − 1)(1 + 𝑟23)

2 (
𝑛 − 1
𝑛 − 3) |𝑅| + (

𝑟12 + 𝑟13

4 )
2

(1 − 𝑟23)3

 

with |𝑅| = (1 − 𝑟12
2 − 𝑟13

2 − 𝑟23
2 ) + (2𝑟12𝑟13𝑟23), 𝑡 is the 𝑡 statistic on (𝑛 − 1) degree 

of freedom, 𝑛 (42 clones) the sample size, 𝑟12 and 𝑟13 are the coefficients of correlation whose 

differences are tested, 𝑟23 is the coefficient of correlation between the two predictors, |𝑅|is the 

determinant of the correlation matrix. 

The p-values which show the significance are deducted from the obtained t-values. 

 

II.2.1.7. Determination of the reference clonal values predicted by the model 

In order to validate the different prediction models, clonal genetic values were obtained 

for each clone from the phenotypic data collected on their ramets. Subsequently in this thesis 

work, they will be referred to as reference genetic values. They were computed using a simple 

linear mixed model to adjust the phenotypic values of the ramets for the effects of experimental 

design, i.e., clonal trials, blocks, incomplete blocks, elementary plots and, for bunch production 

traits, age. In this model, clones were included as a fixed effect. 



 

62 

 

II.2.1.8. Accuracy of phenotypic selection before clonal trials 

To evaluate the possibility of using GS instead of the current phenotypic selection (PS) 

to select the hybrid individuals to test in the clonal trials, the PS accuracy was computed for 

each trait. It was defined as the correlation between the ortet-adjusted phenotypes and the 

reference clonal genetic values. The adjusted phenotype was obtained for each ortet from its 

phenotypic data collected in AK1, using a simple linear mixed model with individuals as 

random effect and hybrid crosses and all the effects related to the experimental design, i.e., 

trials, blocks, incomplete blocks, elementary plots and, for bunch production traits, age, as fixed 

effects. Finally, each ortet had for each trait an adjusted phenotype that was equal to the sum of 

the individual effect of the ortet, the effect of its cross and the mean residual effect over its 

phenotypic data records. 

II.2.2. Effect of the genotyping strategy to optimize prediction accuracy 

II.2.2.1. Phenotyping 

Phenotypic data were collected from the hybrid individuals on nine traits, comprising 

BN, FFB, ABW, AFW, NF, FB, PF, OP and OER. These components were measured in palms 

aged from three to seven years old for bunch production and from five to nine years old for 

bunch quality. 

II.2.2.2. Generation of SNP molecular data 

A genotyping-by-sequencing (GBS) (Elshire et al., 2011) approach was used to generate 

the SNP data of the parents of groups A and B of the training and validation hybrid crosses and 

of a set of 399 hybrid individuals sampled among the training crosses (Table VII and Table 

VIII). 

Table VII. Composition of training and validation sets. 

 Training population Validation population 

bunch 

production 

bunch 

quality  

bunch 

production 

bunch 

quality  

Number of crosses 352 341 213 213 

Number of individuals 

(genotyped) 

22,656 14,985 13,399 10,339 

Average number of individuals 

per cross (min–max) 

64 (17-503) 44 (21-

292) 

63 (25-680) 48 (19-

493) 

Number of parents in group A  123 121 71 71 

Number of parents in group B  121 118 49 49 

Age of trees at time of data 

collection (years) 

3-7 5-9 3-7 5-9 
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The genotyped hybrid individuals belonged to 97 crosses involving respectively 59 

parents of group A and 60 parents of group B (Table VIII). DNA extraction and genotyping 

protocol were performed as described above (II.2.1.2), yielding to a marker density of 21,458 

SNPs. 

II.2.2.3. Imputation of missing SNP genotypes and phasing 

The initial raw SNP dataset in the form of variant call format (VCF) included parents of 

groups A and B of the training and validation sets and the 399 hybrid individuals of the training 

set having their two parents A and B genotyped. This initial dataset has been divided using 

VCFtools (Danecek et al., 2011) into three distinct sub-datasets i.e. one containing only the 

parents of group A, another with the parents of group B and the third with A×B hybrid 

individuals. SNP datasets of parents were imputed separately using their respective pedigrees, 

then merged with the unimputed SNP dataset of hybrid individuals and the whole dataset was 

imputed and phased using the global pedigree indicating parents A and B of hybrid individuals 

(see II.2.1.3). 

II.2.2.4. Models for prediction of hybrid performances 

Two different modeling approaches have been applied to predict the genetic value of oil 

palm yield components: ASGM and PSAM. Only purely additive models were considered here 

given that previous studies showed that modeling dominance effects did not improve predictive 

abilities (Cros et al., 2017; Nyouma et al., 2020). Additive genetic values of the validation 

crosses were predicted using SNP molecular data for both approaches aforementioned thus 

becoming G_ASGM_Par and G_PSAM_Par. 

In addition in each model, the effect of adding molecular hybrid individual information has 

been assessed. These models were termed ASGM_Par+Hyb and G_PSAM_Par+Hyb.  

To confirm the usefulness SNPs, the control, pedigree-based approach, were assessed with 

similar models termed as P_PSAM_Par and P_ASGM_Par, and when hybrid individuals were 

present P_PSAM_Par+Hyb and P_ASGM_Par+Hyb. 

Table VIII. Characteristics of genotyped hybrid individuals of the training set. 

 bunch production bunch quality  

Number of hybrid individuals 397 399 

Number of crosses 97 97 

Average number of individuals per cross (min–max) 4 (1-10) 4 (1-10) 

Number of group A parents  59 59 

Number of group B parents  60 60 
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II.2.2.4.1. Across-population SNP genotype models (ASGM) 

The approach ASGM considers that the allele effect of a given SNP is the same for 

group A or group B.  For this reason, ASGM contains a single genetic effect, gg, corresponding 

to the additive genetic value of the parents of the training and validation crosses (ASGM_Par), 

or of the parents of the training and validation crosses and the training hybrid individuals 

(ASGM_Par+Hyb). The G_ASGM models were as follows: 

y = 𝐗β +  𝐙𝐠gg + 𝐙𝐛b + 𝐙𝐩p +  ε 

where y is the vector of hybrid phenotypes (BN, ABW, FFB, AFW, FB, PF, OP, OER or NF) 

of the training set, β is the vector of fixed effects (overall mean of phenotypes, trial effects, 

block effects and, for bunch production traits, age), gg ~ N(0, 𝐆𝐠σag
2 ) is the vector of additive 

genetic effects, b ~ N(0, 𝐈σb
2) is the vector of incomplete block effects, and p ~ N(0, 𝐈σp

2) is the 

vector of the elementary plot effects. 𝐗, 𝐙𝐠, 𝐙𝐛 and 𝐙𝐩 are the incidence matrices associated to 

vectors β, gg,b and p respectively. 𝐆𝐠σag
2  is the variance-covariance matrix associated with gg. 

𝐆𝐠 is the genomic additive relationship matrix obtained as 𝐆𝐠 = 
𝐗 𝐗   

′

2 ∑ plql
nSNP
l=1

, with  𝐗 = 𝐙 − 𝐏; 

𝐗′ is the transpose of matrix X; Z is the matrix of SNP containing for each SNP the number of 

copies of the reference allele coded into 0, 1 and 2; 𝐏 = 2pl is a matrix with pl the frequency 

of the minor allele at SNP l and ql = (1 − pl) (VanRaden, 2008). σag
2  is the additive variance. 

ε ~ N(0, 𝐈σε
2) is the vector of residual effects and 𝐈 the identity matrix. 

 Among the phenotyped hybrid individuals, 399 were genotyped. For the ungenotyped 

hybrid individuals, the expected genotype was computed based on the genotypes of their two 

parents in groups A and B, i.e., the number of copies of reference alleles in ungenotyped hybrid 

individuals of a given cross was considered equal to the mean number of copies of the reference 

alleles of their parents.  

For G_ASGM_Par, the 𝐆𝐠 matrix only contained the hybrid parents. For 

G_ASGM_Par+Hyb, the 𝐆𝐠 matrix contained the hybrid parents and the hybrid individuals. 

Based on the results obtained in preliminary analyses, the 𝐆𝐠 matrices were adjusted 

according to the method described in Christensen et al. (2014) and Xiang et al. (2016), with the 

α and β adjustment parameters estimated from the genomic and genealogical data and ω taken 

as 0.001.  

For P_ASGM_Par+Hyb and P_ASGM_Par, 𝐆𝐠 matrices were replaced by genealogical 

relationship matrices.  
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The estimated additive genetic value of the validation crosses was found in the ĝg  

vector. 

II.2.2.4.2. Population-specific effects of SNP alleles models (PSAM) 

The PSAM model distinguishes the parental origin of group A and B alleles. 

Consequently, PSAM comprises two distinct genetic effects, gA and gB, corresponding to the 

additive genetic value of parents A and B, respectively, and, for the hybrids, to the additive 

value resulting from the alleles inherited from parents A and B, respectively. The PSAM models 

were as follows: 

y = 𝐗β +  𝐙𝐀gA + 𝐙𝐀gB + 𝐙𝐛b + 𝐙𝐩p +  ε 

where gA ~ N(0, 𝐆𝐀σaA
2 ) and gA ~ N(0, 𝐆𝐀σaA

2 ), and 𝐙𝐀 and 𝐙𝐁 are the incidence matrices 

associated to vectors gA and gB, respectively. 𝐆𝐀σaA
2  and 𝐆𝐁σaB

2  are the variance-covariance 

matrices associated to gA and gB. 𝐆𝐀 and 𝐆𝐁 are the matrices of additive realized relationships 

of groups A and B (Fig. 18. and Fig. 19). For G_PSAM_Par, they 𝐆𝐀 and 𝐆𝐁 included the 

parents of the training and validation hybrid crosses and, for G_PSAM_Par+Hyb, they also 

contained the training hybrid individuals. G_PSAM_Par, 𝐆𝐀 and 𝐆𝐁 were calculated similarly 

as 𝐆𝐠 in ASGM models (VanRaden, 2008). However, for G_PSAM_Par+Hyb i.e. including 

hybrid individuals 𝐆𝐀 and 𝐆𝐁 were constructed according Christensen et al. (2014) and Xiang 

et al. (2016) as follow:  

𝐆𝐀= [
𝑮𝑨

𝑨,𝑨 𝑮𝑨
𝑨,𝑨𝑩

𝑮𝑨
𝑨𝑩,𝑨 𝑮𝑨

𝑨𝑩,𝑨𝑩] with: 

𝐆𝐀
𝐀,𝐀 = (𝐙𝐀 –  2𝐏𝐀) (𝐙𝐀 –  2𝐏𝐀)’,  

𝐆𝐀
𝐀,𝐀𝐁 = (𝐙𝐀 –  2𝐏𝐀) (𝐙𝐀𝐁 – 𝐏𝐀)’ and 

𝐆𝐀
𝐀𝐁,𝐀𝐁 = (𝐙𝐀𝐁 – 𝐏𝐀) (𝐙𝐀𝐁 – 𝐏𝐀)′. 

Where 𝐙𝐀 and 𝐙𝐀𝐁 are the matrices containing the reference population-specific alleles of 

the parents A (coded as 0, 1 or 2) and the number of copies of the reference allele phase of the 

parents A of A×B hybrid individuals (coded as 0 or 1), 𝐩𝐀 is the vector containing the specific 

allele frequencies based on SNP genotypes for parents A and specific SNP allele of parents A 

for A×B hybrid individuals and 𝟏 is a vector of ones. 

𝐆𝐀 is then adjusted to be on the same scale and compatible with the genealogical 

relationship matrix 𝐀𝐀. 
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𝐆𝐀𝑎
= 𝐆𝐀β +  α. The parameters α and β are unknown and can be estimated by solving the 

following system of equations:  

𝑑𝐆𝐀
̅̅ ̅̅ ̅̅  β +  α = 𝑑𝐀𝐀

̅̅ ̅̅ ̅̅   

𝐆𝐀
̅̅ ̅̅  β +  α = 𝐀𝐀

̅̅ ̅̅  

𝑑𝐆𝐀
̅̅ ̅̅ ̅̅  and 𝑑𝐀𝐀

̅̅ ̅̅ ̅̅  are the averages of diagonals of matrices 𝐆𝐀 and 𝐀𝐀, 𝐆𝐀
̅̅ ̅̅  and 𝐀𝐀

̅̅ ̅̅  are the 

averages of the matrices 𝐆𝐀 and 𝐀𝐀. 

The solutions of this equation system are: 

β = (𝐀𝐀
̅̅ ̅̅ − 𝑑𝐀𝐀

̅̅ ̅̅ ̅̅ )/(𝐆𝐀
̅̅ ̅̅ − 𝑑𝐆𝐀

̅̅ ̅̅ ̅̅ )  

α = (𝑑𝐀𝐀
̅̅ ̅̅ ̅̅ − 𝑑𝐆𝐀

̅̅ ̅̅ ̅̅ ) × (𝐀𝐀
̅̅ ̅̅ − 𝑑𝐀𝐀

̅̅ ̅̅ ̅̅ )/(𝐆𝐀
̅̅ ̅̅ − 𝑑𝐆𝐀

̅̅ ̅̅ ̅̅ )  

𝐆𝐀𝒂
 is then adjusted to integrate the part of genetic variance not captured by the SNPs. 

𝐆𝐀𝑤
= (1 − 𝑤)𝐆𝐀𝑎

 + w𝐀𝐀. With the parameter 𝑤 a relative constant giving the proportion of 

genetic variance that is not captured by the SNPs. Many values have been assessed and 0.001 

have been chosen because it was maximizing prediction accuracies and minimizing biases for 

hybrid individuals. 

For group A, matrices 𝐆𝐁, 𝐆𝐁𝒂
 and 𝐆𝐁𝑤

 were computed similarly with 𝐆𝐀, 𝐆𝐀𝒂
 and 𝐆𝐴𝑤

. 

For P_ASGM_Par+Hyb and P_ASGM_Par, 𝐆𝐀𝑤
 and 𝐆𝐁𝑤

 matrices were replaced by 

the genealogical relationship matrices 𝐀𝐀 and 𝐀𝐁. 

The estimated additive genetic value of the validation crosses was the sum of the genetic 

additive value inherited from the parent of groups A and B, i.e., ĝA + ĝB. 

II.2.2.5. Reference genetic values of hybrid crosses 

For each trait, the true estimated genetic value of the validation hybrid crosses, termed 

reference genetic values, was computed from the phenotypic data of their hybrid individuals 

using a linear mixed model in which the overall mean of hybrid crosses, cross effects, trial 

effects, block effects, and for bunch production, age, have been used as fixed effects and hybrid 

individuals, elementary plots and incomplete blocs as random effects. 

II.2.2.6. Prediction accuracies and model comparison of models 

The prediction accuracies have been computed for each trait and each model as the 

correlation between the reference genetic values and the genetic values of the training crosses. 

To compare the prediction accuracy of the models, the 213 A×B validation crosses were 

divided into eight replicates, i.e., five replicates made up of 27 crosses and three replicates made 
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up of 26 crosses. Each of the parents involved in these validation crosses was genotyped and 

none were parents involved in training crosses. The prediction accuracies were computed for 

each replicate, allowing the comparison of models using an analysis of variance (ANOVA) or 

the Wald-type permutation test of the R package GFD (Friedrich et al., 2017) when the 

normality of residuals and the homoscedasticity assumptions were not met. These statistical 

tests were implemented using the agricolae R package (Mendiburu, 2016). 

 

 

 

 

 

Fig. 18. Heat map of additive realized relationships matrices of the 123 parents A of the training 

set.  
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Fig. 19. Heat map of additive realized relationships matrices of the 121 parents B of the training 

set. 
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CHAPTER III. RESULTS AND DISCUSSION 

III.1. Results 

III.1.1. Efficiency of genomic selection for clonal selection 

III.1.1.1. Distribution of frequencies of minor and alternate alleles across population 

The distribution of MAF in both Deli and La Mé populations showed a reduction in the 

number of SNPs with the increase of MAF (Fig. 20).  

 

 
Fig. 20. Distribution of minor allele frequency (MAF). a: La Mé population; b: Deli population. 
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The MAF ranged from 0 to 0.5 for both La Mé and Deli populations and the average 

was 0.1 for La Mé (Fig. 20a) and 0.07 for Deli (Fig. 20b). Most SNPs had low MAF values 

(<0.05) in both populations. La Mé populations had 65.6% SNPs with MAF<0.05, against 

73.3% SNPs in Deli (i.e., 11.7% more SNPs with low MAF in Deli). In contrast, fewer SNPs 

had high MAF (>0.40) in both populations, and they were higher in proportion in La Mé (8.2% 

SNPs) than in Deli (4.8%). This showed the lower genetic diversity of Deli parents compared 

to La Mé, which resulted from their contrasted history with more generations of selection, drift 

and inbreeding in Deli than in La Mé. 

Correlation between La Mé and Deli MAF (Fig. 21a) shows SNPs largely concentrated 

alongside x and y axes, demonstrating that most SNPs have distinct segregation patterns among 

Deli and La Mé, i.e., being fixed or almost fixed in one population while segregating, and in 

many cases with a high MAF, in the other population. Thus, 31.5% of the SNPs were fixed or 

almost fixed in one population (MAF<0.05) while segregating with MAF≥0.05 in the other 

population. This is the result of the high genetic difference between Deli and La Mé 

populations, for which the Fst fixation index reaches 0.55 (Cros et al., 2018). In detail, for these 

SNPs, MAF<0.05 was more often observed in Deli (19.6% of all SNPs had MAF<0.05 in Deli 

and MAF>=0.05 in La Mé) than in La Mé (11.9% of all SNPs had MAF<0.05 in La Mé and 

MAF>=0.05 in Deli), again as a result of the lower genetic diversity of the Deli population. 

Also, the number of SNPs segregating with MAF>0.05 in both populations was low (14.8% of 

all SNPs). 

Despite these differences, a large number of SNPs (53.7% of all SNPs) had MAF<0.05 

in both populations, showing segregation with rare alleles in both Deli and La Mé. However, 

correlation of the frequency of the alternate allele between La Mé and Deli (Fig. 21b) over all 

SNPs showed that 62.8% of SNPs have a frequency of alternate allele smaller than 0.05 in one 

population and greater than 0.95 in the other population, i.e., fixed or almost fixed in the two 

populations but for different alleles. Hence, given that most of the SNPs (85.2%) have either 

MAF<0.05 in one population and MAF>=0.05 in the other population (31.5%), or MAF<0.05 

in both populations but for different alleles (53.7%), the use of PSAM is justified. 
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Fig. 21. Correlation of minor allele frequency (MAF) (a) and frequency of alternate alleles 

between La Mé and Deli (b) populations. In (a) and (b) panels, each dot represents an SNP. 

 

a 

b 
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III.1.1.2. Effect of GS prediction model and SNP dataset on prediction accuracy 

Prediction accuracies of GS methods ranged from -0.04 to 0.70 depending on the 

prediction model, trait and SNP dataset. 

Genomic prediction accuracies of additive + dominance models ranged from -0.04 to 

0.66 depending on trait, prediction model and SNP dataset (Fig. 22). Prediction accuracies of 

GS of additive + dominance models for bunch production traits ranged from 0.1 to 0.62 

depending on model and SNP dataset. Firstly, for G_ASGM_AD models, prediction accuracies 

increased with SNP dataset up to the SNP dataset pmax=10%-nSNP=6,898 where it plateaued for 

both BN and ABW (Fig. 22a, b) and started to slightly decrease for FFB. Prediction accuracies 

of G_ASGM_AD models ranged from 0.25 (pmax=0%-nSNP=2,447) to 0.35 (pmax=75%-

nSNP=15,054) for BN (Fig. 22a), 0.39 (pmax=0%-nSNP=2,447) to 0.53 (pmax=75%-nSNP=15,054) 

for ABW (Fig. 22b) and 0.2 (pmax=0%-nSNP=2,447) to 0.39 (pmax=10%-nSNP=6,898) for FFB 

(Fig. 22c). Secondly, For G_PSAM_AD models, prediction accuracies increased in general 

with SNP dataset as in G_ASGM_AD models although varied considerably with the dataset for 

FFB (Fig. 22a, b, c). Prediction accuracies extended from 0.1 at the SNP dataset pmax=5%-

nSNP=5,620 to 0.28 at SNP datasets pmax=25%-nSNP=9,059 and pmax=75%-nSNP=15,054 for BN 

(Fig. 22a), 0.52 at the SNP dataset pmax=0%-nSNP=2,447 to 0.62 at SNP datasets pmax=5%-

nSNP=5,620 and pmax=10%-nSNP=6,898 for ABW (Fig. 22b) and 0.22 at the SNP dataset 

pmax=0%-nSNP=2,447 to 0.55 at the SNP dataset pmax=45%-nSNP=11,425 for FFB (Fig. 22c). 

Prediction accuracies of bunch quality traits extended from -0.04 to 0.66 depending on 

model, trait and SNP dataset. Firstly, for G_ASGM_AD models, prediction accuracies varied 

widely with the SNP dataset in an inconsistent way. Prediction accuracies extended from 0.41 

(pmax=75%-nSNP=15,054) to 0.55 (pmax=0%-nSNP=2,447) for AFW (Fig. 23a), 0.4 (pmax=0%-

nSNP=2,447, pmax=45%-nSNP=11,425 and pmax=75%-nSNP=15,054) to 0.47 (pmax=25%-

nSNP=9,059) for FB (Fig. 23b), -0.04 (pmax=0%-nSNP=2,447) to 0.11 (pmax=45%-nSNP=11,425) 

for PF (Fig. 23c), 0.38 (pmax=5%-nSNP=5,620) to 0.50 (pmax=0%-nSNP=2,447) for OP (Fig. 23d) 

and 0.45 (pmax=45%-nSNP=11,425) to 0.6 (pmax=75%-nSNP=15,054) for NF (Fig. 23e). Secondly, 

for G_PSAM_AD models, prediction accuracies considerably varied depending on the SNP 

dataset in an inconsistent way as in G_ASGM_AD. Prediction accuracies ranged from 0.46 

(pmax=0%-nSNP=2,447 and pmax=25%-nSNP=9,059) to 0.50 (pmax=5%-nSNP=5,620 and pmax=10%-

nSNP=6,898) for AFW (Fig. 23a), 0.53 (pmax=45%-nSNP=11,425) to 0.66 (pmax=10%-nSNP=6,898) 

for FB (Fig. 23b), 0.12 (pmax=5%-nSNP=5,620 and pmax=45%-nSNP=11,425) to 0.26 (pmax=10%-

nSNP=6,898) for PF (Fig. 23c), 0.37 (pmax=45%-nSNP=11,425 and pmax=75%-nSNP=15,054) to 
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Fig. 22. Prediction accuracies of bunch production traits according to SNP datasets and 

prediction models.  

a: bunch number (BN); b: average bunch weight (ABW); c: total bunch production (FFB). Pedigree-

based prediction models: across-population SNP genotype models (P_ASGM_AD), population-specific 

effects of SNP alleles models (P_PSAM_AD); additive + dominance genomic prediction models: 

across-population SNP genotype models (G_ASGM_AD), population-specific effects of SNP alleles 

models (G_PSAM_AD).  

               

                                             

 

a b 

c 
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0.47 (pmax=10%-nSNP=6,898) for OP (Fig. 23d) and 0.52 (pmax=25%-nSNP=9,059) to 0.61 

(pmax=10%-nSNP=6,898) for NF (Fig. 23e). These analyses depicted inconsistent differences or 

similar accuracies between additive models and additive + dominance models, depending on 

SNP dataset and trait. Henceforward, we will only refer to additive models. 

Prediction accuracies of GS methods ranged from 0.08 to 0.70 depending on the 

prediction model, trait and SNP dataset (Fig. 24 and Fig. 25) for purely additive models 

(G_ASGM_A and G_PSAM_A). 

For bunch production components, GS prediction accuracy ranged from, 0.20 to 0.63 

depending on trait and SNP dataset (Fig. 24). Prediction accuracies of GS for BN ranged from 

0.20 to 0.40 depending on the model and SNP dataset (Fig. 24a). GS prediction accuracies for 

both modeling approaches, G_PSAM_A and G_ASGM_A increased in general from around 

0.2 to 0.37 where they seemed to plateau. Genomic prediction accuracies of G_ASGM_A and 

G_PSAM_A models were not significantly different in all the SNP datasets considered. The 

highest genomic prediction accuracy for BN was observed at the SNP dataset pmax=75%-

nSNP=15,054 for both GS modeling approaches G_ASGM_A and G_PSAM_A (0.35 and 0.37, 

respectively). Regarding the pedigree-based models, P_PSAM_A was significantly different 

than P_ASGM_A, with respective prediction accuracies of - 0.05 and - 0.3 (Fig. 24). 
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Fig. 23. Prediction accuracies according to traits, SNP datasets and prediction models. 

a: average fruit weight (AFW); b: fruit to bunch (FB) ratio; c: pulp to fruit (PF) ratio; d: oil to pulp (OP) ratio; e: number of fruits (NF) per bunch. Pedigree-based prediction 

models: across-population SNP genotype models (P_ASGM_AD), population-specific effects of SNP alleles models (P_PSAM_AD); additive + dominance genomic 

prediction models: across-population SNP genotype models (G_ASGM_AD), population-specific effects of SNP alleles models (G_PSAM_AD). 

a b c 

d 
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Prediction accuracies of GS for ABW ranged from 0.43 to 0.63 according to the model 

and the SNP dataset (Fig. 24b). For the two genomic prediction approaches (G_PSAM_A and 

G_ASGM_A), the accuracy increased at the SNP dataset pmax=0%-nSNP=2,447 with 0.43 to 0.55 

and then started to decrease until the SNP dataset pmax=25%-nSNP=9,205 with prediction 

accuracy of 0.56. Subsequently, genomic prediction accuracies increased up to 0.59 at the SNP 

dataset pmax=75%-nSNP=15,054. For G_ASGM_A, prediction accuracy increased from 0.43 to 

around 0.58 where it plateaued at the SNP dataset pmax=10%-nSNP=6,898 and then slightly 

increased. No significant difference was observed between G_ASGM_A and G_PSAM_A for 

all the SNP datasets. Regarding the pedigree-based model, P_PSAM was significantly higher 

than P_ASGM_A, with respective prediction accuracies of 0.29 and 0.24 (Fig. 24b). 

Genomic prediction accuracies of FFB ranged from 0.24 to 0.55, depending on the SNP 

dataset and the modeling approach (Fig. 24c). For, both prediction modeling, G_ASGM_A and 

G_PSAM_A, prediction accuracy highly increased from the SNP dataset pmax=0%-nSNP=2,447 

to pmax=10%-nSNP=6,898, then slightly decrease for G_ASGM_A. Concerning the pedigree-

based model, P_ASGM_A with prediction accuracy of 0.36 was higher than P_PSAM_A with 

0.33 although not significant. 
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Fig. 24. Prediction accuracies of bunch production traits according to SNP datasets and 

prediction models. 

a: bunch number (BN); b: average bunch weight (ABW); c: total bunch production (FFB). Pedigree-

based prediction models: across-population SNP genotype models (P_ASGM_A), population-specific 

effects of SNP alleles models (P_PSAM_A); additive genomic prediction models: across-population 

SNP genotype models (G_ASGM_A), population-specific effects of SNP alleles models (G_PSAM_A). 
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Prediction accuracies of GS methods ranged from 0.08 to 0.7 for bunch quality traits, 

depending on the SNP dataset and prediction modeling approach (Fig. 25). 

Genomic prediction accuracies for AFW ranged from 0.42 to 0.57 depending on the 

prediction model and the SNP dataset (Fig. 25a). For G_PSAM_A, prediction accuracies 

increased from 0.43 at the SNP dataset pmax=0%-nSNP=2,447 to 0.51 at the SNP dataset 

pmax=10%-nSNP=6,898, then decreased to 0.45 at the SNP dataset pmax=25%-nSNP=9,205 where 

it increased again and plateaued afterwards. For the same trait, prediction accuracies of 

G_ASGM_A decreased from 0.57 at the SNP dataset pmax=0%-nSNP=2,447 to 0.42 at the SNP 

dataset pmax=45%-nSNP=11,707 and stabilised afterwards. Regarding the pedigree-based 

models, prediction accuracy of P_PSAM_A i.e., 0.58 was higher than prediction accuracy of 

P_ASGM_A with 0.53 (Fig. 25a). 

Prediction accuracies of GS for FB ranged from 0.49 to 0.7 depending on the SNP 

dataset (Fig. 25b). Prediction accuracies of FB for G_ASGM_A increased from 0.61 at the SNP 

dataset pmax=0%-nSNP=2,447 to 0.7 at the SNP dataset pmax=25%-nSNP=9,205, then slightly 

decreased thereafter (Fig. 25b). Concerning G_PSAM_A, prediction accuracies overall 

increased for the three first SNP datasets, then started to decrease and increase again afterwards. 

A significant difference was observed between the prediction accuracy of P_ASGM_A (0.49) 

and P_PSAM_A (0.35) (Fig. 25b).  

For PF, GS prediction accuracies ranged from 0.08 to 0.23 depending on the SNP dataset 

(Fig. 25c). For G_PSAM_A, the accuracy increased from 0.08 (pmax=0%-nSNP=2,447) to 0.23 

(pmax=10%-nSNP=6,898) then decrease and stabilized at 0.1 (pmax=45%-nSNP=11,707). Prediction 

accuracies of G_ASGM_A increased from 0.9 at the SNP dataset pmax=0%-nSNP=2,447 to 0.16 

at the SNP dataset pmax=10%-nSNP=6,898, where it plateaued. The pedigree-based models 

showed small prediction accuracies for P_PSAM_A and P_ASGM_A models, i.e., 0.03 and 

0.09, respectively. 

Prediction accuracies of GS for OP ranged from 0.33 to 0.55 according to the SNP 

dataset (Fig. 25c). For G_PSAM_A, prediction accuracy firstly decreased from 0.41 (pmax=0%-

nSNP=2,447) to 0.36 (pmax=5%-nSNP=5,620) then increased up to a peak at 0.45 (pmax=0%-

nSNP=2,447) and decreased again until 0.33 (pmax=45%-nSNP=11,707) where it plateaued (Fig. 

25d). Similarly, G_ASGM_A firstly decreased from 0.54 (pmax=0%-nSNP=2,447) to 0.46 

(pmax=5%-nSNP=5,620) then progressively increased with the SNP dataset and plateaued at SNP 
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dataset pmax=45%-nSNP=11,707 with a prediction accuracy of 0.55 (Fig. 25d). Regarding the 

pedigree-based models, moderate prediction accuracies were obtained, i.e., 0.37 and 0.4, 

respectively for P_ASGM_A and P_PSAM_A. 

Genomic prediction accuracies of NF ranged from 0.43 to 0.61 depending on the SNP 

dataset (Fig. 25e). Accuracies in both GS predictions depicted a high variation from an SNP 

dataset to another. For the pedigree-based model, prediction accuracies were 0.46 and 0.5, 

respectively for P_ASGM_A and P_PSAM_A (Fig. 25e). 

 On average over traits and SNP datasets, G_ASGM_A was more accurate (0.45) than 

G_PSAM_A (0.43), with the mean prediction accuracy per trait over SNP datasets ranging from 

0.14 (PF) to 0.65 (FB) for G_ASGM_A and from 0.13 (PF) to 0.59 (ABW) for G_PSAM_A. 

G_ASGM_A obtained a mean prediction accuracy greater than G_PSAM_A for five traits out 

of eight, with G_PSAM_A being on average more accurate than G_ASGM_A for AFW, NF 

and ABW (Table IX). Considering the maximum accuracy over all SNP datasets, the prediction 

accuracy ranged from 0.18 (PF) to 0.70 (FB) for G_ASGM_A and 0.23 (PF) to 0.63 (ABW) 

for G_PSAM_A (Table IX), and G_ASGM_A was again more often better than G_PSAM_A 

(with G_PSAM_A being more accurate for PF, NF and ABW).  

Considering the different SNP datasets and traits, G_ASGM_A gave higher prediction 

accuracy than G_PSAM_A in 58.3% of the cases, with the largest differences in prediction 

accuracy in favor of G_ASGM_A, up to 0.22 with OP at pmax = 45%-nSNP = 11,707 (although 

they were non-significant) (Fig. 24, Fig. 25 and Table X). Significant differences were only 

found in favor of G_PSAM_A, but they were scarce (i.e., only for NF in three SNP datasets, 

pmax=5%-nSNP=5,620, pmax=10%-nSNP=6,898 and pmax=45%-nSNP=11,707). Despite the overall 

lower prediction accuracies of G_PSAM_A compared to G_ASGM_A, G_PSAM_A was the 

most accurate method for ABW and NF with all the SNP datasets, except for NF with 

pmax=75%-nSNP=15,054. G_ASGM_A, therefore, appeared to be the best approach (i.e., 

generally more accurate, in addition to being easier to implement) for predicting clonal values 

for oil palm yield components, although G_PSAM_A could be worthwhile for some traits 

(ABW and NF here).
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Fig. 25. Prediction accuracies according to traits, SNP datasets and prediction models. 
a: average fruit weight (AFW); b: fruit to bunch (FB) ratio; c: pulp to fruit (PF) ratio; d: oil to pulp (OP) ratio; e: number of fruits (NF) per bunch; pedigree-based prediction 

models: across-population SNP genotype models (P_ASGM_A), population-specific effects of SNP alleles models (P_PSAM_A); additive genomic prediction models: 

across-population SNP genotype models (G_ASGM_A), population-specific effects of SNP alleles models (G_PSAM_A). 
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Table IX. Mean prediction accuracies according to trait and prediction model. 

Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production 

(FFB); bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to pulp 

(OP) ratios, and number of fruits per bunch (NF); genomic prediction models: across-population SNP 

genotype models (G_ASGM_A), population-specific effects of SNP alleles models (G_PSAM_A). 

Values in brackets indicate the corresponding SNP dataset, defined on its maximum percentage of 

missing data.  

Prediction accuracies could be broadly improved when relationship matrices were 

computed using SNPs (G_ASGM_A and G_PSAM_A) instead of genealogical data (control 

pedigree-based models P_ASGM_A and P_PSAM_A), in particular for three traits FB, BN and 

ABW. The maximum prediction accuracies of GS over all SNP datasets outperformed pedigree-

based models for seven traits out of eight (except for AFW with G_PSAM_A) (Table XI, Fig. 

24 and Fig. 25). The largest difference was observed in BN for pmax=75%-nsnp=15,054, with 

G_ASGM_A accuracy being 0.67 higher than P_ASGM_A. Significant differences between 

GS models and their pedigree-based control models were found for five traits, with four traits 

(FB, OP, BN and ABW) where GS was the best and one trait (AFW) where pedigree-based 

models were more accurate (Table XI). The percentage of combinations of SNP datasets and 

traits where G_ASGM_A was more accurate than its control pedigree-based version reached 

83.3%, against only 64.6% for G_PSAM_A. 

 

 

 

Traits 

Mean accuracies over all SNP datasets Maximum accuracies over all SNP datasets 

G_ASGM_A G_PSAM_A G_ASGM_A  G_PSAM_A 

AFW 0.48 0.49 0.57 (0%) 0.51 (10%/45%/75%) 

FB 0.65 0.58 0.70 (25%) 0.62 (10%/75%) 

PF 0.14 0.13 0.18 (45%) 0.23 (10%) 

OP 0.52 0.38 0.55 (45%) 0.45 (10%) 

NF 0.47 0.57 0.54 (75%) 0.61 (10%) 

FFB 0.47 0.41 0.55 (10%) 0.51 (45%) 

BN 0.31 0.30 0.37 (75%) 0.35 (75%) 

ABW 0.53 0.59 0.58 (75%) 0.63 (5%) 

Mean  0.45 0.43 0.51 0.49 
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Table X. Pairwise comparison of prediction accuracies among genomic selection and pedigree-

based models, according to SNP dataset and trait. 

For any pair of models, the values indicate the difference in prediction accuracy between the two models 

(model1 – model2).  SNP datasets are defined based on the maximum percentage of missing data allowed 

per SNP pmax and the resulting number of SNPs nSNP and are labeled pmax%-nSNP. Significance of pairwise 

comparisons by Hotelling–Williams t-test: *0.05 > P ≥ 0.01; **0.01 > P ≥ 0.001; ***P < 0.001. 

Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production 

(FFB); bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to pulp 

(OP) ratios, and number of fruits per bunch (NF); pedigree-based prediction models: across-population 

SNP genotype models (P_ASGM_A), population-specific effects of SNP alleles models (P_PSAM_A); 

genomic prediction models: across-population SNP genotype models (G_ASGM_A), population-

specific effects of SNP alleles models (G_PSAM_A). 

 

 

The SNP dataset affected the prediction accuracy differently according to the trait and 

the model. With G_ASGM_A, prediction accuracies tended to increase with SNP density before 

plateauing (except for AFW) and slightly decreasing in some cases. This suggested that more 

useful information was captured for prediction purposes when using more SNPs (to a certain 

limit) and that the percentage of missing data was of lesser importance. On the other hand, a 

reduction of accuracies was observed with SNP density for AFW. For G_PSAM_A, prediction 

accuracies increased and usually plateaued, for only two traits (AFW and BN). For the other 

SNP 

dataset 

Compared 

models 

AFW FB PF OP NF FFB BN ABW 

 P_ASGM_A – 

P_PSAM_A 

-0.06 0.15* 0.06 -0.03 -0.04 0.03 -0.25** -0.04 

0%-2,447 G_ASGM_A – 

G_PSAM_A 

0.14 0.03 0.01 0.13   -0.12 0.05 -0.03 -0.12 

5%-5,620 G_ASGM_A – 

G_PSAM_A 

0.02   0.07   0.01 0.10 -0.13* 0.08 0.06 -0.11 

10%-6,898 G_ASGM_A - G 

PSAM_A 

0.00 0.07 -

0.07 

0.05   -0.14* 0.08 -0.01 -0.08 

25%-9,205 G_ASGM_A - G 

PSAM_A 

-0.03   0.11   -

0.02   

0.12   -0.05   0.13 0.00 -0.01 

45%-

11,707 

G_ASGM_A – 

G_PSAM_A 

-0.09   0.16   0.08   0.22 -0.15*   -0.02 0.00 -0.03 

75%-

15,054 

G_ASGM_A - G 

PSAM_A 

-0.08 -0.02   0.08   0.20 0.04 0.09 0.02 -0.01 
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traits, prediction accuracies remained stable or tended to decrease with increasing marker 

density and the maximum percentage of missing SNP data. 

Table XI. Pairwise comparison of prediction accuracies among genomic selection and pedigree-

based models, according to SNP dataset and trait. 

For any pair of models, the values indicate the difference in prediction accuracy between the two models 

(model1 – model2).  SNP datasets are defined based on the maximum percentage of missing data allowed 

per SNP pmax and the resulting number of SNPs nSNP and are labeled pmax%-nSNP. Significance of pairwise 

comparisons by Hotelling–Williams t-test: *0.05 > P ≥ 0.01; **0.01 > P ≥ 0.001; ***P < 0.001. 

Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production 

(FFB); bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to pulp 

(OP) ratios, and number of fruits per bunch (NF); pedigree-based prediction models: across-population 

SNP genotype models (P_ASGM_A), population-specific effects of SNP alleles models (P_PSAM_A); 

genomic prediction models: across-population SNP genotype models (G_ASGM_A), population-

specific effects of SNP alleles models (G_PSAM_A). 

 

SNP 

dataset 

Compared 

models 

AFW FB PF OP NF FFB BN ABW 

0%-2,447 P_ASGM_A – 

G_ASGM_A 

-0.04 -0.12 0.00 -0.17 -

0.01 

0.07 -0.53** -0.19 

P_PSAM_A – 

G_PSAM_A 

0.15 -0.23* -

0.05 

-0.01 -

0.09 

0.09 -0.32* -0.26 

5%-5,620 P_ASGM_A – 

G_ASGM_A 

0.03 -0.14 -

0.01 

-0.09 -

0.01 

-

0.18 

-0.56** -0.28* 

P_PSAM_A – 

G_PSAM_A 

0.10 -0.21 -

0.06 

0.04 -

0.08 

-

0.13 

-0.25 -0.34** 

10%-

6,898 

P_ASGM_A – 

G_ASGM_A 

0.02 -0.20* -

0.07 

-0.13 -

0.01 

-

0.18 

-0.59** -0.30* 

P_PSAM_A – 

G_PSAM_A 

0.07 -0.27* -

0.20 

-0.05 -

0.11 

-

0.14 

-0.35* -0.33* 

25%-

9,059 

P_ASGM_A – 

G_ASGM_A 

0.08 -0.20* -

0.08 

-0.15 -

0.02 

-

0.16 

-

0.64*** 

-0.30** 

P_PSAM_A – 

G_PSAM_A 

0.10 -0.24* -

0.16 

0.00 -

0.03 

-

0.06 

-0.39** -0.27* 

45%-

11,425 

P_ASGM_A – 

G_ASGM_A 

0.11 -0.15 -

0.09 

-0.18* 0.03 -

0.13 

-

0.62*** 

-0.30** 

P_PSAM_A – 

G_PSAM_A 

0.07 -0.14 -

0.07 

0.07 -

0.08 

-

0.18 

-0.38* -0.29* 

75%-

15,054 

P_ASGM_A – 

G_ASGM_A 

0.10* -0.11 -

0.08 

-0.17 -

0.08 

-

0.09 

-

0.67*** 

-

0.34*** 

P_PSAM_A – 

G_PSAM_A 

0.07 -

0.27** 

-

0.06 

0.06 0.00 -

0.03 

-0.40* -0.30* 
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However, the use of a different SNP dataset for each combination of trait and model 

seems unrealistic for the practical application of GS. Therefore, in order to identify the optimal 

SNP dataset(s) that would maximize GS accuracy, we computed for each GS prediction model 

and SNP dataset the mean prediction accuracy over the traits. For G_ASGM_A, this value 

increased with the SNP density (0.41 with SNP dataset pmax=0%-nsnp=2,447 and 0.43 with 

pmax=5%-nsnp=5,620), before plateauing at 0.46 with the subsequent SNP datasets. This shows 

that, for G_ASGM_A, the number of SNPs was of greater importance than the percentage of 

missing data per SNP. Mean prediction accuracy over the SNP datasets forming the plateau 

ranged from 0.17 (PF) to 0.66 (FB), and were close to the highest accuracies achieved over all 

the SNP datasets (Table IX). For G_ASGM_A, there was, therefore, a minimum of 6,898 SNPs 

required to reach maximum prediction accuracy on average over all traits. For G_PSAM_A, 

the results differed, with a peak in mean prediction accuracy at 0.47 with SNP dataset 

pmax=10%-nsnp=6,898 and mean prediction accuracy decreasing when less SNPs were used, 

falling to 0.39 with pmax=0%-nsnp=2,447, and decreasing when there were more missing data, 

falling to 0.41 with pmax=75%-nsnp=15,054. This shows that G_PSAM_A was more sensitive to 

the SNP dataset than G_ASGM_A, making again G_PSAM_A less appealing. Therefore, for 

the final part of the study, we decided to focus on G_ASGM_A. 

 

III.1.1.3. Comparison of prediction accuracies of PS and GS 

Fig. 26 presents the prediction accuracies of PS and the mean prediction accuracy of 

G_ASGM_A over the best datasets (i.e., with pmax from 10% to 75% and nsnp from 6,898 to 

15,054), with (G_ASGM_A+pheno) and without phenotypic data of the ortets. Variation of PS 

accuracy was large between traits, going from -0.03 for ABW to 0.63 for OP. Very low PS 

accuracies (<0.1) were obtained for ABW and FFB, meaning that PS would have been 

inefficient for these two traits. The highest PS accuracies were achieved in OP (0.63) and PF 

(0.59) (Table XII and Fig. 26). These two traits are known to have moderate to high heritability 

in the oil palm (Corley & Tinker, 2016) and are consequently routinely used for preselection 

before clonal trials. This was the case here, as indicated by the intensity of PS for these two 

traits, which was the highest among the eight traits studied (Table XII).  
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Fig. 26. Prediction accuracies on average over the best SNP datasets and according to the trait. 

Prediction accuracies of phenotypic selection (PS); genomic prediction models: across-population SNP 

genotype models without phenotypic data (G_ASGM_A) and with phenotypic data 

(G_ASGM_A+pheno) of ortets, population-specific effects of SNP alleles models (G_PSAM_A). 

Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production 

(FFB); bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to pulp 

(OP) ratios, and number of fruits per bunch (NF). 

 

The GS prediction accuracy obtained with the best SNP datasets was generally higher 

with G_ASGM_A+pheno than with G_ASGM_A (except for AFW, where a slight decrease 

was found) (Fig. 26). On average over all the traits, G_ASGM_A+pheno thus reached 0.53, 

against 0.46 for G_ASGM_A (i.e., +15.2%). The prediction accuracy of G_ASGM_A and 

G_ASGM_A+pheno obtained with the best SNP datasets was above PS prediction accuracies 

for six and seven traits, respectively, out of eight. On average over all traits, the prediction 

accuracies of G_ASGM_A and G_ASGM_A+pheno were, respectively, 64.3% and 89.3% 

greater than PS (0.28). The case where GS outperformed PS the most was ABW with the 

G_ASGM_A+pheno model, with an accuracy of 0.62 against -0.03. PS only surpassed 

G_ASGM_A for two traits (PF and OP) and G_ASGM_A+pheno for one trait (PF). 
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Table XII. Intensity and accuracy of phenotypic selection before clonal trials according to trait. 

Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production 

(FFB); bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to pulp 

(OP) ratios, and the number of fruits per bunch (NF). 

 

III.1.2. Effect of the genotyping strategy to optimize prediction accuracy 

III.1.2.1. Effect on prediction accuracy of using the genotyping strategy for the training 

population 

In G_ASGM_Par models, prediction accuracies ranged from 0.15 for FB to 0.88 for 

AFW and in G_ASGM_Par+Hyb models, from 0.20 for FB to 0.88 for AFW (Fig. 27 and Fig. 

28). Prediction accuracies for G_ASGM_Par+Hyb were higher than those of G_ASGM_Par for 

eight traits out of nine and the same for one trait (AFW), suggesting that training the model 

with genomic data of hybrid individuals in addition with those of parents increase prediction 

accuracies. Indeed, for AFW, prediction accuracies between G_ASGM_Par (0.88) and 

G_ASGM_Par+Hyb 0.88 were identical i.e., not significantly different (Fig. 27a). Prediction 

accuracies of FB was 0.15 for G_ASGM_Par and 0.2 for G_ASGM_Par+Hyb i.e., 25% higher, 

although without significant difference (Fig. 27b). Concerning PF, prediction accuracies were 

almost similar between (0.36) (Fig. 27c). Similarly, no significant difference was observed 

between G_ASGM_Par and G_ASGM_Par+Hyb for OP and NF (Fig. 27d, e). The only 

significant difference for bunch quality traits observed between G_ASGM_Par and 

G_ASGM_Par+Hyb was for OER. For this latter, the prediction accuracies of G_ASGM_Par 

was 0.52 while that of G_ASGM_Par+Hyb was 0.58 (Fig. 27f).  

Traits Intensity of selection Phenotypic prediction accuracies 

AFW 0.11   0.18 

FB 0.32 0.59 

PF 0.68    0.59 

OP 0.58 0.63 

NF -0.27 0.46 

FFB 0.19 0.09 

BN 0.23 0.25 

ABW -0.01 -0.03 
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Fig. 27. Prediction accuracies of bunch quality traits according to prediction models. Values 

with the same letter are not significantly different within a trait at P = 5%. 

a b 

c d 

e 
f 
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a: average fruit weight (AFW); b: fruit to bunch (FB) ratio; c: pulp to fruit (PF) ratio; d: oil to pulp (OP) 

ratio; e: number of fruits per bunch (NF), f: oil extraction rate (OER). Pedigree-based prediction models: 

across-population SNP genotype models without hybrid individuals (P_ASGM_Par) and with hybrid 

individuals (P_ASGM_Par+Hyb), population-specific effects of SNP alleles models without hybrid 

individuals (P_PSAM_Par) and with hybrid individuals (P_PSAM_Par+Hyb); genomic prediction 

models: across-population SNP genotype models without hybrid individuals (G_ASGM_Par) and with 

hybrid individuals (G_ASGM_Par+Hyb), population-specific effects of SNP alleles models without 

hybrid individuals (G_PSAM_Par) and with hybrid individuals (G_PSAM_Par+Hyb). Genomic data of 

399 hybrid individuals were used for bunch quality traits. 

Prediction accuracies of G_ASGM_Par and G_ASGM_Par+Hyb were not significantly 

different for BN and FFB, respectively. The only significant difference of prediction accuracy 

between G_ASGM_Par and G_ASGM_Par+Hyb for bunch production traits was observed on 

ABW; with G_ASGM_Par+Hyb (0.7) being 4.3% more accurate than G_ASGM_Par (0.67) 

(Fig. 28). 

Averaged over traits, G_ASGM_Par+Hyb had a prediction accuracy of 0.53, which was 

significantly higher than that of G_ASGM_Par, with 0.50 (Fig. 29), i.e., an increase of 6%. 

Among traits, the increase ranged from 0% for AFW to 33.3% for FB and it was significant for 

two traits, ABW (+4.5%) and OER (+11.5%) as aforementioned (Fig. 28 and Fig. 27). 

In G_PSAM_Par, prediction accuracies ranged from 0.16 for FB to 0.88 for AFW and 

from 0.21 for both FB and NF to 0.89 for AFW in G_PSAM_Par+Hyb (Fig. 27 and Fig. 28). 

Eight traits out of nine had better prediction accuracies with G_PSAM_Par+Hyb than with 

G_PSAM_Par, and one trait (OP) had similar prediction accuracy. Like with the G_ASGM 

approach, prediction accuracy thus increased when hybrid molecular data were added to the 

molecular data of hybrid parents in the training set. In detail, the prediction accuracy of AFW 

for G_PSAM_Par+Hyb model (0.89) was slightly higher than that of G_PSAM_Par (0.88) (Fig. 

27a). For FB, even though the prediction accuracy of G_PSAM_Par+Hyb model (0.21) was 

25% higher than that of G_PSAM_Par (0.16), no significant difference was observed (Fig. 27b). 

The prediction accuracy of G_PSAM_Par+Hyb model for PF with 0.36 was slightly higher than 

that of G_PSAM_Par with 0.34 (Fig. 27c). The only trait whose prediction accuracies were 

identical between G_PSAM_Par+Hyb model and G_PSAM_Par was OP with 0.49 (Fig. 27d). 

Regarding OER and NF, prediction accuracies of G_PSAM_Par+Hyb (0.55 and 0.2, 

respectively) were higher that G_PSAM_Par (0.52 and 0.18) but not significant (Fig. 27e, f). 
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Fig. 28. Prediction accuracies of bunch production traits according to prediction models. Values 

with the same letter are not significantly different within a trait at P = 5%. 

Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production 

(FFB); pedigree-based prediction models: across-population SNP genotype models without hybrid 

individuals (P_ASGM_Par) and with hybrid individuals (P_ASGM_Par+Hyb), population-specific 

effects of SNP alleles models without hybrid individuals (P_PSAM_Par) and with hybrid individuals 

(P_PSAM_Par+Hyb); genomic prediction models: across-population SNP genotype models without 

hybrid individuals (G_ASGM_Par) and with hybrid individuals (G_ASGM_Par+Hyb), population-

specific effects of SNP alleles models without hybrid individuals (G_PSAM_Par) and with hybrid 

individuals (G_PSAM_Par+Hyb). Genomic data of 397 hybrid individuals were used for bunch 

production traits. 

 

a b 

c 
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For BN, the prediction accuracy of G_PSAM_Par+Hyb model (0.72) was slightly higher 

than that of G_PSAM_Par (0.71) (Fig. 28). Similarly, for FFB and ABW, prediction accuracies 

of G_PSAM_Par+Hyb (0.49 and 0.68, respectively) was slightly higher than those of 

G_PSAM_Par (0.48 and 0.66, respectively) (Fig. 28b, c). 

The average prediction accuracy across traits of G_PSAM_Par+Hyb was 0.51, versus 

0.49 for G_PSAM_Par (Fig. 29), i.e., an average increase of 4.1%, range: 0% for OP to 31.3% 

for FB (Fig. 27 and Fig. 28), although the increase was not statistically significant. 

 

Fig. 29. Average prediction accuracies of prediction models across traits. Values with the same 

letter are not significantly different at P = 5%. 

Pedigree-based prediction models: across-population SNP genotype models without hybrid individuals 

(P_ASGM_Par) and with hybrid individuals (P_ASGM_Par+Hyb), population-specific effects of SNP 

alleles models without hybrid individuals (P_PSAM_Par) and with hybrid individuals 

(P_PSAM_Par+Hyb); genomic prediction models: across-population SNP genotype models without 

hybrid individuals (G_ASGM_Par) and with hybrid individuals (G_ASGM_Par+Hyb), population-

specific effects of SNP alleles models without hybrid individuals (G_PSAM_Par) and with hybrid 

individuals (G_PSAM_Par+Hyb). Genomic data of 397 and 399 hybrid individuals were used for bunch 

production and bunch quality traits, respectively. 

Regarding the control pedigree-based models, adding the genealogical data of hybrid 

individuals changed the prediction accuracies of traits in negligible and inconsistent ways (Fig. 

27 and Fig. 28). The average prediction accuracy of G_PSAM_Par was 0.47 and 0.46 for 
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G_PSAM_Par+Hyb (+2.2%). On the other hand, the average prediction accuracies of 

G_ASGM_Par and G_ASGM_Par+Hyb were respectively 0.47 and 0.48 (-2.1%) (Fig. 27, Fig. 

28 and Fig. 29). 

 

III.1.2.2. Effect on prediction accuracy of the method used to model marker effects 

Prediction accuracies were on average 2% higher with G_ASGM_Par than with 

G_PSAM_Par (Fig. 29). G_ASGM_Par was more accurate than G_PSAM_Par for four traits 

(ABW, PF, OP and NF, the difference being significant for NF, where the increase reached 

44.4%) (Fig. 27 and Fig. 28). On the other hand, in comparison to G_PSAM_Par, 

G_ASGM_Par produced better prediction accuracies for three traits (BN, FFB and FB, with a 

significant increase for FFB (+14.3%)). Similar prediction accuracies were obtained for two 

traits (AFW and OER) (Fig. 27 and Fig. 28). 

The prediction accuracy of G_ASGM_Par+Hyb was 4% higher than that of 

G_PSAM_Par+Hyb (Fig. 29). G_ASGM_Par+Hyb outperformed G_PSAM_Par+Hyb for four 

traits (ABW, OP, OER and NF), with significant differences for OP and NF, where prediction 

accuracy was, respectively, 10.2% and 43% higher than G_PSAM_Par+Hyb. 

G_ASGM_Par+Hyb underperformed G_PSAM_Par+Hyb for four traits (BN, FFB, FB and 

AFW), although the differences were never significant, and the prediction accuracies for one 

trait (PF) of the two modeling methods were similar (Fig. 27 and Fig. 28). 

Concerning the pedigree-based models, the average prediction accuracies of 

P_PSAM_Par and P_ASGM_Par were similar, while P_ASGM_Par+Hyb was 4.3% more 

accurate than P_PSAM_Par+Hyb (Fig. 27, Fig. 28 and Fig. 29). 

III.1.2.3. Comparison of GS models and control pedigree-based models 

On average across traits, the prediction accuracy of GS models was 8.5% higher than 

that of the pedigree-based models, and the difference was always significant (Fig. 29). The 

average prediction accuracy of the pedigree-based models was 0.47 (range: 0.17 for FB to 0.82) 

for AFW (Fig. 27 and Fig. 28). The prediction accuracy of GS models was higher than that of 

pedigree-based models for eight traits and lower for one trait (FFB). The biggest difference was 

for PF, for which GS prediction accuracy was 52.2% higher (Table XIII). 
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Table XIII. Maximum prediction accuracies of traits. 

Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production 

(FFB); bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to pulp 

(OP) ratios, number of fruits per bunch (NF), and oil extraction rate (OER); pedigree-based prediction 

models: across-population SNP genotype models without hybrid individuals (P_ASGM_Par) and with 

hybrid individuals (P_ASGM_Par+Hyb), population-specific effects of SNP alleles models without 

hybrid individuals (P_PSAM_Par) and with hybrid individuals (P_PSAM_Par+Hyb); genomic 

prediction models: across-population SNP genotype models without hybrid individuals (G_ASGM_Par) 

and with hybrid individuals (G_ASGM_Par+Hyb), population-specific effects of SNP alleles models 

without hybrid individuals (G_PSAM_Par) and with hybrid individuals (G_PSAM_Par+Hyb). Genomic 

data of 397 and 399 hybrid individuals were used for bunch production and bunch quality traits, 

respectively. 

 

 

III.2. Discussion 

The present thesis, evaluated empirically the benefit of using genomic data from A × B 

hybrid individuals for the genomic approach applied to oil palm (Elaeis guineensis Jacq.), using 

GS models and high throughput SNP genotyping (GBS). Two situations were considered: the 

evaluation of the efficiency of GS for clonal selection and the investigation of the effect of the 

genotyping strategy to optimize prediction accuracy. In both situations, the effect on prediction 

accuracy of two approaches for modeling the parental origin of marker alleles (across-

population SNP genotype models, ASGM, and population-specific effects of SNP alleles 

models, PSAM) were assessed. 

Traits Best predictive models Prediction accuracy 

BN G_PSAM_A_Par+Hyb 0.73 

FFB P_ASGM_A_Par 0.52  

ABW G_ASGM_Par+Hyb 0.70 

AFW G_PSAM_A_Par+Hyb 0.89 

FB G_PSAM_A_Par+Hyb 0.21 

PF G_PSAM_A_Par+Hyb/ 

G_ASGM_Par+Hyb 

0.36 

OP G_ASGM_Par+Hyb 0.54 

OER G_ASGM_Par+Hyb 0.58 

NF G_ASGM_Par+Hyb 0.30 
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III.2.1. Efficiency of genomic selection for clonal selection 

III.2.1.1. Improving the genetic progress of clonal breeding with GS 

In the current clonal breeding methodology, ortets that will be evaluated in clonal trials 

are selected on the few traits with high H² value among a limited number of phenotyped 

candidates at the mature stage and belonging to the best crosses evaluated in progeny tests. 

Based on the results presented here, annual genetic progress can be improved by selecting ortets 

(1) among a large population of the best possible crosses (produced based on the results of the 

progeny tests) at the juvenile (e.g., nursery) stage with GS models on most of the yield 

components or, (2) at the mature stage on all the yield components, using jointly the genomic 

and phenotypic data of the ortet selection candidates. 

In detail, in the first GS approach that is now possible, the best crosses identified based 

on the results of the progeny test (i.e., with the best performance expected from the parental 

GCAs and the crosses’ specific combining abilities [SCAs]) would be produced to generate a 

large number of seedlings, that would be submitted to GS on the traits with satisfactory GS 

accuracy. This would improve the genetic progress at three levels. First, most of the breeding 

programs consider that there are six traits of interest for palm oil yield breeding (FB, PF, OP, 

ABW, BN and FFB), and PS before clonal trials is usually applied to PF and OP, as they have 

the highest H² (Corley & Tinker, 2016). In our dataset, these traits indeed had high H², with PS 

prediction accuracy >0.5 (Fig. 26) (although it was not clear why FB had a similar H², while it 

is usually among the traits with low H²). Therefore, considering that breeders use 0.5 as the 

minimum prediction accuracy for applying PS before clonal trials, they would now apply GS 

to four traits (FB, OP, FFB and ABW) (Fig. 26), with a similar mean prediction accuracy over 

these traits with GS (0.56) compared to PS (0.60 over FB, PF and OP). Interestingly, the two 

traits that had a prediction accuracy lower with G_ASGM_A than with PS, i.e., PF and OP, 

were the ones for which the 42 ortets were submitted to the strongest phenotypic selection 

before clonal trials. In particular, PF had the highest intensity of phenotypic selection (0.68) 

and also had much lower prediction accuracy with G_ASGM_A than with PS. We hypothesized 

this occurred as the phenotypic preselection led to the fixation of many genes controlling these 

traits, and in particular PF, in the 42 ortets, thus making that the relationships computed over 

the genome-wide SNPs no longer matched with the relationships at the genes. This hypothesis 

could be investigated using a validation set that was not submitted to phenotypic preselection. 

Such a study would be of great interest as in case our hypothesis could be confirmed, the 
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breeders would likely get in practice a higher GS accuracy for PF and OP, as the seedlings 

comprising the population of application would not be preselected. In this case, GS before the 

clonal trials would be even more useful. Second, a GS-based approach would also increase the 

genetic progress by higher selection intensity compared to PS: GS would be applied to nursery 

individuals, i.e. possibly in the thousands, while PS is currently applied to the small number of 

individuals planted in the progeny tests trials (i.e. normally 10 to 50 per cross) (Soh et al., 2017). 

Third, making the selection in the best possible crosses instead of the best crosses evaluated 

would be an improvement in terms of genetic progress, as the best possible crosses were likely, 

not present in the progeny tests, due to the high degree of incompleteness of the mating designs. 

It is also possible to make these crosses in the context of phenotypic clonal selection, but in this 

case, the selection process would require around 10 more years of phenotypic evaluations in 

these elite crosses to identify the candidate ortets for the clonal trials (Nyouma et al., 2019). 

In the second GS approach, i.e., the selection of ortets among mature hybrid individuals, 

it is now possible to apply this selection to all the yield components. Indeed, for individuals at 

the mature stage, which thus may have phenotypic records, for each of the six commonly 

selected oil yield components, it is possible to reach a prediction accuracy of 0.5 (or almost, in 

the case of BN), using conventional PS for PF and G_ASGM_A+pheno for the other traits. In 

practice, increasing the number of traits on which ortets are selected before clonal trials will 

increase selection intensity and thus the genetic progress.  

Another possible approach to improve the genetic progress would be to use genomic 

predictions to identify, before the progeny tests, the best possible crosses, and to use them to 

implement the first approach of clonal GS suggested here. For that purpose, progeny tests from 

the previous cycle could be used as a training population, and genomic ortet selection would be 

applied at the nursery stage in the best possible crosses. This approach would, therefore, have 

the additional advantage of shortening the breeding cycle (as it makes it possible to run the 

clonal trials simultaneously with the progeny tests), but it should be investigated in greater 

detail as its efficiency also depends on the accuracy of the genomic estimated breeding values 

of the parents. 

 

III.2.1.2. Effects of prediction model and SNP dataset on prediction accuracies 

G_PSAM_A can model genetic differences between Deli and La Mé populations, as it 

considers population-specific SNP variances and SNP effects. For that reason, we expected 
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G_PSAM_A to perform better than G_ASGM_A for many traits, considering the marked 

genetic difference between Deli and La Mé, with Fst around 0.55 (Cros et al., 2018). However, 

G_PSAM_A usually did not perform better than G_ASGM_A, except for ABW and NF. We 

hypothesized that this was the consequence of stronger differences among Deli and La Mé 

populations at the QTLs controlling ABW and NF than at QTLs controlling the other traits. 

This makes sense when considering that Deli and La Mé belong to different heterotic groups 

defined based on their phenotypic values for ABW and BN, and noting that, although 

G_PSAM_A was not better than G_ASGM_A for BN, their results were actually very similar 

for this trait. This is in agreement with the results of Tisné et al. (2015), who found a large 

majority of distinct significant QTLs among groups A and B on bunch production traits, i.e. six 

in group A and ten in group B, against only one common QTL. The possibility for G_PSAM_A 

to outperform G_ASGM_A is also in agreement with the fact that a large part of the SNPs in 

the two populations have opposite minor alleles, with differences as extreme as having one 

allele fixed in one population and the other allele fixed in the other population (Fig. 20b and  

a). However, not all SNPs showed these types of differences and similar segregation patterns 

among populations were also observed, which is likely related to the similar performance of 

G_ASGM_A and G_PSAM_A for the other traits. In order to help to understand the results 

obtained here, it would be useful to investigate whether the QTLs identified in other studies for 

the different traits are located in regions of the genome where SNPs have similar or contrasted 

segregation. Also, it would be interesting to compare, across the Deli and La Mé populations, 

the linkage phases between SNP markers and the SNP effects, as it was previously done in 

cattle and maize (Technow et al., 2014). 

Although G_PSAM_A has the potential to model genetic differences between parental 

populations, it also has a drawback, which is that it has to estimate more parameters than 

G_ASGM_A (i.e. more genetic variances and, because additive effects are split into two parts 

inherited from the two parental populations, more genetic effects) (Zeng et al., 2013). For 

example, while for a given clone a single genetic effect is estimated with G_ASGM_A, two 

genetic effects, i.e., one for each of the hybrid parents, are estimated with G_PSAM_A. Our 

results corroborate those of Zeng et al. (2013) who attributed low accuracies in many scenarios 

of PSAM in animal studies to the complexity of the model caused by the segregation of SNP in 

the two parental breeds, and the resulting need to estimate two substitution effects per SNP 

instead of one. 
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Ibánez-Escriche et al. (2009) obtained a significant advantage of G_PSAM_A over 

G_ASGM_A on accuracy for a low marker density (400 markers), a large number of records in 

the training population (4,000) and a relationship between breeds that was weak (i.e., common 

origin 550 generations ago) or absent. Similarly, Esfandyari et al. (2015) found that 

G_PSAM_A outperformed G_ASGM_A for genetically distant hybrid parents, i.e., having 

diverged 300 to 400 generations ago, and a large training population with 2,000 to 8,000 

individuals. The small advantage of G_PSAM_A over G_ASGM_A obtained in our study 

might, therefore, result from the fact that the genetic difference between the Deli and La Mé 

populations was actually not large enough (the Deli also having African ancestors, planted in 

Indonesia in 1848) and/or because of our training population was too small. Technow et al. 

(2012) found higher accuracy while using G_PSAM_A+D than when using G_ASGM_A+D, 

with the gain in accuracy being larger with low SNP density (from 0.3 to 1 SNP per megabase 

pair, Mbp) than with high marker density (10 SNP per Mbp). Here, considering the length of 

the oil palm genome is 1.8 Gb (Singh et al., 2013b), the investigated range of SNP density was 

similar, going from 0.8 to 8.4 SNP per Mbp. 

Moreover, Lopes et al. (2017) obtained similar prediction accuracies between 

G_ASGM_A and G_PSAM_A with high SNP density (31,930 SNPs). In our study, the only 

SNP dataset where G_PSAM_A outperformed G_ASGM_A on average on all traits was a 

dataset with intermediate number of SNPs and intermediate percentage of missing data per 

SNP, pmax=10%-nSNP=6,898, with mean G_PSAM_A prediction accuracy of 0.47 against 0.46 

for G_ASGM_A.  This result, therefore, differs from those of Technow et al. (2012) and Lopes 

et al. (2017), likely as a consequence of the fact that, in our study, SNP density varied with SNP 

quality, with higher SNP numbers meaning a higher percentage of missing data. This indicates 

that the SNP dataset must be chosen carefully before applying G_PSAM A. From this point of 

view, G_ASGM_A appeared advantageous, as its mean accuracy over the traits remained at its 

maximum once sufficient SNP density was reached, regardless of the percentage of missing 

data. The fact that for G_ASGM_A the number of SNPs was of greater importance than the 

percentage of missing data per SNP indicates that Beagle 4.0 efficiently imputed the missing 

data. Therefore, the existence of an optimal SNP dataset for G_PSAM_A suggests that phasing 

errors increase with the percentage of missing data per SNP and when decreasing the marker 

density. 

We found that, in order to maximize the efficiency of GS, the prediction of the genetic 

values must be done using G_ASGM_A with an SNP density ranging from around 7,000 to 
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15,000 for all traits. Another possibility would be to use a different SNP dataset for each trait, 

maximizing the accuracy for the considered trait. However, as previously mentioned, this does 

not seem convenient for the practical application of GS. The variation in prediction accuracy 

among SNP datasets might also have been exacerbated by the small size of our validation 

population (due to the difficulty of obtaining a large number of clones in trials, mainly because 

of the mantled anomaly (Ong-Abdullah et al., 2015)), and therefore so far it seems wiser to 

identify the best SNP datasets on average over several traits. 

GS prediction models (G_ASGM_A and G_PSAM_A) were usually more accurate than 

their respective control pedigree-based models (P_ASGM_A and P_PSAM_A). The superiority 

of GS models shows that, even for unobserved individuals, GS models can account for both 

Mendelian sampling terms of siblings in a family and family effects, while pedigree-based 

models can only account, at best, for family effects, as already found in previous oil palm GS 

studies (Nyouma et al., 2019). 

However, G_ASGM_A outperformed its control pedigree-based model more often than 

G_PSAM_A. Thus, G_PSAM_A remained less accurate than P_PSAM_A for all the SNP 

datasets in one trait (AFW), while that never happened with G_ASGM_A. Also, the overall 

inferiority of G_PSAM_A to G_ASGM_A occurred while P_PSAM_A was actually better than 

P_ASGM_A for five traits out of eight. This looks contradictory and suggests that the 

performance of G_PSAM_A could have been reduced by phasing errors as aforementioned. 

Also, many studies comparing G_ASGM_A and G_PSAM_A were carried out by simulation 

with known phases (Technow et al., 2012; Zeng et al., 2013; Esfandyari et al., 2015), and 

therefore possible phasing errors in our study could also be the cause of the discrepancies 

observed between our results and the results obtained in simulation studies. Investigating other 

phasing approaches seems therefore of interest in the oil palm context. 

 

III.2.1.3. Genotyped individuals for training 

In this study, to make GS predictions more cost-effective, the genotypes of the 

phenotyped hybrid individuals constituting the training set were reconstructed using the 

molecular data of their parents, with G_ASGM, or not used in the model, with G_PSAM. Both 

modeling approaches, therefore, assume that the mean genotype in a hybrid family (i.e., the 

mean number of copies of the minor allele over the individuals making the family) expected 

from the parental genotypes is the same as the actual mean genotype. Nevertheless, in the case 
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of allele segregation distortion at a locus, the mean genotype in a hybrid family would 

significantly deviate from the mean genotype expected from the parental genotypes, and this 

could reduce the GS accuracy. Indeed, high numbers of distorted markers can be found in 

plants: Li et al. (2015) and Zuo et al. (2019) found more than 10% of markers (SNPs and SSRs) 

significantly distorted. For future studies, it would be of great interest to compare the approach 

used here with predictions made using real hybrid genotypes, and to measure the differences in 

terms of GS accuracy and cost. 

 

III.2.1.4. Prediction of dominance effects 

GS prediction accuracies were not significantly enhanced by adding dominance effects. 

Including dominance effects in the statistical model sometimes slightly increased or reduced 

accuracies, depending on the traits and the SNP datasets, revealing a negligible genetic 

dominance variance captured by the model compared to the total genetic variance, as already 

observed with genomic predictions for performances of oil palm hybrid crosses (Cros et al., 

2017). We assume this was a consequence of reciprocal recurrent selection, which generated 

the contrasted allele frequencies we observed across Deli and La Mé populations, thus 

decreasing the ratio of SCA variance to GCA variance (Reif et al., 2007) and making dominance 

effects absorbed by the GCAs or the population mean (Technow et al., 2014). 

 

III.2.2. Effect of the genotyping strategy to optimize prediction accuracy 

III.2.2.1. Using genomic data of hybrid individuals to train the GS model 

Models including genomic data on hybrids performed better than the corresponding 

parental models, or at least produced equivalent results, because, at SNPs that are heterozygotes 

in at least one parent, the genomic information on the hybrid individuals captures the 

segregation of the parental alleles within the hybrid crosses, and also accounts for possible 

segregation distortion. The superiority of models that included genomic data on hybrids was 

demonstrated for the two types of models tested here, ASGM and PSAM, underlining the 

robustness of the approach. 

However, the prediction accuracies were only slightly increased compared to when only 

using the parental genomic data, or even similar for some traits. This was probably due to the 

low number of genotyped hybrid individuals. Indeed, only 2.66% and 1.76% hybrid individuals 

were genotyped in the calibration set for bunch production and quality traits, respectively, the 
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genotypes of the remaining >97% hybrid individuals being replaced by the average genotypes 

expected from the cross of their two parents. Cros et al. (2015a) in a simulation study found 

that, although genotyping 300 training hybrid individuals (i.e., 25% less than what we used 

here) led to lower genetic progress than using only the parental genotypes, genetic progress 

increased with the number of hybrid individuals genotyped and, with 1,000 and 1,700 

genotyped training hybrid individuals, reached much greater values than using only the parental 

genotypes. Thus, in the case of oil palm, 400 seems the minimum number of training hybrid 

individuals to genotype. Here we could not investigate how GS prediction accuracy was 

affected by an increase in the number of genotyped hybrids. In lodgepole pine, Ukrainetz & 

Mansfield (2020) considering a population of 1,569 trees, found that GS prediction accuracy 

increased little with more than 40% of the training trees genotyped. In oil palm, this was so far 

only investigated by a simulation study (Cros et al., 2015a) which showed that genotyping 

1,700 hybrid individuals only slightly improved the results compared to when genotyping 1,000 

individuals. An empirical study is lacking in oil palm on this aspect. 

As mentioned above, genotyping hybrid individuals allows taking advantage of the 

segregation of the parental alleles within the hybrid crosses. The magnitude of this segregation 

is directly affected by the heterozygosity of the parents. In the current study, the percentage of 

heterozygote SNPs was low, under the effect of generations where inbreeding was commonly 

used, by selfing or by mating related selected individuals. The percentage of heterozygote SNPs 

was thus on average 6.6%, ranging from 3.1% to 11.2%, for the parents of group A and 8.1%, 

ranging from 3.3% to 14.1%, for the parents of group B. Therefore, it is worth genotyping 

training hybrid individuals even with a low percentage of heterozygosity in parents.  

The models used here that did not include genomic information of hybrid individuals 

assumed that the genotypes among individuals of a given hybrid cross derived from the parental 

genotypes following Mendelian rules. However, segregation distortion, i.e. the deviation 

between the expected Mendelian allele frequencies and the actual allele frequency, is a common 

phenomenon in animal and plant reproduction (Lyttle, 1991; Taylor & Ingvarsson, 2003; Diouf 

& Mergeai, 2012). It is mainly caused by zygotic and gametic selection (pollen abortion, pollen 

tube competition and competitive fertilization) (Lyttle, 1993; Xian-Liang et al., 2006; Xu et al., 

2013). In E. guineensis, it has been reported in several mapping studies. For example, Ting et 

al. (2014) found that 9.4% of SSR markers and 7.9% of SNPs showed segregation distortion at 

P<5% in a Deli × Yangambi hybrid cross, and Gan et al. (2018) found consistent results, i.e. 

9.6% and 11% of markers with segregation distortion at P<5% in two crosses of Binga × 
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Yangambi-AVROS origin, among a set of SSR, DArT and SNP markers. Models including 

genomic information of hybrid individuals in the training dataset take into account the alleles 

distortion segregation (although partially, as only a sample of the hybrid individuals are 

genotype), and this is another advantage of these models. However, the data available here did 

not allow making a distinction between the effect of capturing within crosses genetic variability 

and the effect of taking into account segregation distortion. This could be further investigated 

using a population with larger full-sib families.  

The drawback of genotyping hybrid individuals to train the GS model is that it increases 

costs and that it leads to GS statistical analyses that require extensive computer resources and 

become time-consuming. Genotyping only a sample of the phenotyped hybrids appears 

relevant, but further studies should investigate the optimal number of hybrid individuals to 

genotype to optimize the genetic progress per unit cost. 

III.2.2.2. Effect of modelling of markers on prediction accuracy 

The differences between G_ASGM and G_PSAM were usually small (on average 3%, 

with the exceptions of NF and FFB, with differences reaching 40% and 11.4%, respectively), 

which is in agreement with previous studies (Ibánez-Escriche et al., 2009; Technow et al., 

2012). Although G_ASGM was on average better than G_PSAM, the best method differed 

according to traits. Thus, for NF G_ASGM was 40% more accurate than G_PSAM while for 

FFB G_PSAM was 11.4% more accurate than G_ASGM. This is likely related to differences 

in the level of genetic divergence between the heterotic groups, A and B at the genes controlling 

the traits. Technow et al. (2012) indeed indicated that PSAM is most beneficial under low 

persistence of phases among parental populations, implying that the relative performance of 

G_PSAM and G_ASGM is affected by marker density and by the history of the parental 

populations, e.g., the number of generations since divergence. This aspect requires further 

investigation in oil palm. Another possible explanation of the mean superiority of G_ASGM 

over G_PSAM would be that the dataset used here did not allow taking full advantage of the 

PSAM approach. Indeed, PSAM is more challenging to implement, as it is more complex, with 

more variances and effects to estimate, and therefore requires a larger training population than 

ASGM. The performance of G_PSAM in oil palm might therefore increase using more hybrid 

individuals with phenotypic and genomic data. In addition, G_PSAM is affected by phasing 

errors. Using SNP array genotyping instead of GBS could make G_PSAM more efficient, as 

the lower percentage of missing data and genotyping errors with SNP arrays would improve 
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phasing.  Also, other phasing approaches could be investigated. Here, in a preliminary analysis 

(not shown), the AlphaImpute software (AI) (Hickey et al., 2012; Antolín et al., 2017), which 

was used with pig crossbred data in Lopes et al. (2017), was tested for imputation and phasing, 

but it resulted in lower accuracies than Beagle 4.0 (Browning & Browning, 2007), for both GS 

modelling approaches. 

Despite these possibilities for improving G_PSAM, the superiority of G_ASGM was 

already noted in a previous oil palm study, where a training population comprising the present 

Deli × La Mé crosses was used to predict the clonal values of hybrid individuals (Nyouma et 

al., 2020). However, the current study extended the previous conclusion: indeed, in Nyouma et 

al. (2020), G_PSAM_Par performed better than G_ASGM_Par in different traits, i.e., ABW 

and NF against BN, FFB and FB here, which questions the robustness of the PSAM approach. 

As Nyouma et al. (2020) concluded that the G_ASGM approach should be preferred in oil palm 

as it was on average slightly more accurate, less sensitive to SNP dataset (i.e., SNP density and 

percentage of missing data) and easier to implement than PSAM, the comparison of the results 

of the two studies, therefore, adds a new element in favor of the use of G_ASGM in oil palm 

(Nyouma et al., 2020). 

GS models were usually more accurate than their corresponding pedigree-based control 

models. This confirmed that GS predictions can account for individual genetic effects 

(Mendelian sampling terms) and family genetic effects in the parental populations, while 

pedigree-based models can only account, at best, for family effects. We also noted that on 

average over PSAM and ASGM, adding genealogical information on the hybrid individuals did 

not change the prediction accuracies of the pedigree-based prediction models. This was 

expected as only the genomic information of the hybrid individuals can bring extra information 

to the model in terms of relationships, as the pedigree attributes the same relationship to all the 

full-sib hybrid individuals. 
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CHAPTER IV. CONCLUSION, PERSPECTIVES AND RECOMMENDATIONS 

IV.1. Conclusion 

Genomic selection (GS) is a major asset for the genetic improvement of crude palm oil 

yield in oil palm (Elaeis guineensis Jacq.) in order to supply the increasing world demand. For 

that purpose, the current study aimed at empirically evaluating the interest of using genomic 

data from A × B hybrid individuals for the genomic approach applied to oil palm. It appeared 

that GS can contribute to palm oil yield increase through clonal selection or parent selection for 

hybrid creation. 

The evaluation of the efficiency of GS for clonal selection showed that clonal selection 

of oil palm can largely be improved thanks to the genomic approach. Indeed, GS prediction 

accuracies for ortets without phenotypic data records extended from 0.08 to 0.7 according to 

the trait, GS model and SNP dataset. The G_ASGM_A approach was better for predicting 

clonal values than G_PSAM_A, as it was on average slightly more accurate, less sensitive to 

the SNP dataset (i.e., SNP density and percentage of missing data) and easier to implement. 

However, G_PSAM_A appeared interesting for ABW and NF traits. The G_ASGM_A model 

required at least 7,000 SNPs to perform best, with the percentage of missing data per SNP being 

of secondary importance. In these conditions, G_ASGM_A gave higher prediction accuracies 

than current phenotypic selection for six traits out of eight. The annual genetic progress of 

clonal oil palm breeding for yield can be increased by replacing the current phenotypic ortet 

preselection before clonal trials either by genomic ortet preselection on most of the yield 

components among a large population of the best possible crosses (produced based on the 

results of the progeny tests) at the juvenile stage or by ortet preselection at the mature stage on 

all the yield components using jointly the genomic and phenotypic data of the ortet selection 

candidates. 

Our findings on the evaluation of the effect of two strategies to optimize the GS accuracy 

indicated that, despite the relatively small number of hybrid individuals genotyped and the low 

level of heterozygosity in the parents, prediction accuracies were in most cases improved (or, 

at least, similar) when genomic information of hybrid individuals were added to the training 

dataset, compared to when using only the parental genomic information. The best GS approach 

investigated here, i.e., with the ASGM model and genotyping around 400 hybrid individuals, 

reached a mean prediction accuracy over traits of 0.53.  
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Moreover, the ASGM approach, i.e., using a model that does not take into account the 

parental origin of the marker alleles, is recommended for oil palm data, as it gives higher 

prediction accuracies on average over traits, performs best on more traits and is more robust 

over populations and SNP datasets than the PSAM approach, with population-specific marker 

allele effect. 

 

IV.2. Perspectives 

The current work showed the potential of GS for the genetic improvement of palm oil 

yield components. However, in order to meet world demand while simultaneously minimizing 

environmental impacts, future researches should focus on: 

- the evaluation of different phasing approaches than Beagle; 

- optimizing the prediction accuracies for all traits; 

- optimizing the training population; 

- optimizing the prediction model; 

- the evaluation of the use of multi-omics data (transcriptomics, proteomics, etc.) for the 

training; 

- evaluation of the effect of modeling of G × E interactions on prediction accuracy; 

- the identification of the optimal number of hybrid individuals to genotype in order to 

maximize the selection response per unit cost, and better understand the factors 

controlling the relative performance of ASGM and PSAM approaches in hybrid crops. 

 

IV.3. Recommendations 

In order to increase the genetic gain in oil palm, it is recommended to oil palm breeding 

programs: 

- to perform a preselection of ortet clones at the mature stage on all the yield components 

jointly using ortet genotypes and phenotypes; 

- to make genomic preselection of ortet clones on all the yield components, among a large 

population of the best possible crosses at nursery stage; 

- to utilize the across-population SNP genotype models (ASGM) for genomic prediction 

in oil palm yield components; 

- to train genomic models using genomic data of the hybrid parents plus a sample of 

hybrid individuals. 
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APPENDICES 

Appendix 1. Objectives and corresponding published papers. 

 

 

 

 

Appendix 2. Logical framework of objective 1: evaluation of the efficiency of genomic selection for clonal selection, using ortets of known clonal 

value to validate genomic predictions 

Objectives Published papers 

general specifics 

to evaluate empirically the 

interest of using genomic 

data from A × B hybrid 

individuals for the genomic 

approach applied to oil 

palm 

to evaluate the efficiency of genomic 

selection for clonal selection, using ortets of 

known clonal value to validate genomic 

predictions 

Genomic predictions improve clonal selection in oil palm (Elaeis 

guineensis Jacq.) hybrids 

to investigate the effect of the genotyping 

strategy to optimize prediction accuracy 
Improving accuracy of genomic predictions in an outcrossing 

species with hybrid cultivars between heterozygote parents: case 

study of oil palm (Elaeis guineensis Jacq.) (accepted) 

From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm 

(Elaeis guineensis Jacq.) 
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Materials Methods Results Conclusion 

Training set: 

300 Deli × La 

Mé crosses 

phenotyped for 

eight yield 

components 

(average 

individuals per 

cross is 67 

individuals for 

bunch 

production and 

44 for bunch 

quality). 

 

Validation set: 

42 Deli × La 

Mé ortets 

(average of 69 

ramets per 

ortets for 

production 

traits and 34 

ramets for 

quality traits) 

 

Number of 

SNP: 15,054 

Individuals of the training set phenotyped for AFW, FB, PF, OP, NF, BN, ABW 

and FFB. 

 

Molecular data were obtained by GBS 

 

Imputation of missing SNP data and phasing were carried out with Beagle 4.0. 

 

To quantify how the characteristics of the SNP dataset (maximum percentage of 

missing data allowed per SNP, and resulting number of SNPs) affected the GS 

accuracy, genomic predictions were computed using different SNP datasets. 

 

Two approaches of marker modeling were considered:  one taking into account 

the parental origin of marker alleles, PSAM, or not, ASGM 

- ASGM: 𝑦 =  𝑿𝛽 + 𝒁𝟏𝑔𝑖 +  𝒁𝟐𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀  + 𝒁𝟑𝑏 + 𝒁𝟒𝑝 +  𝜀 

- PSAM: 𝑦 =  𝑿𝛽 + 𝒁𝟏𝑔𝐷𝑒𝑙𝑖  +  𝒁𝟐𝑔𝐿𝑀  +  𝒁𝟑𝑔𝐷𝑒𝑙𝑖 × 𝐿𝑀 + 𝒁𝟒𝑏 + 𝒁𝟓𝑝 +  𝜀 

Calculation of genetic values 

𝑔𝐷𝑒𝑙𝑖 + 𝑔𝐿𝑀  

 

Prediction accuracy of GS 

𝑟𝐺𝑆 = 𝐶𝑜𝑟 (�̂�𝑡𝑟𝑢𝑒 , 𝑔𝑆𝐺) 

Pairwise comparisons of prediction accuracies among models were made for each 

trait using the Hotelling–Williams t-test 

The differences in accuracy between ASGM and PSAM were explained using the 

distribution of the MAF and of the frequency of the alternate allele in Deli and La 

Mé, as well as the correlation among populations for each of these two parameters. 

 

Determination of reference clonal value predicted by the models 

to validate the different prediction models, clonal genetic values were obtained for 

each clone from the phenotypic data collected on their ramets. 

MAF ranged from 0 to 0.5 for both La Mé 

and Deli populations and the average was 

0.1 for La Mé and 0.07 for Deli. Most 

SNPs had low MAF values (< 0.05) in both 

populations. La Mé populations had 65.6 

% SNPs with MAF < 0.05, against 73.3 % 

SNPs in Deli. In contrast, fewer SNPs had 

high MAF (> 0.40) in both populations, 

and they were higher in proportion in La 

Mé (8.2 % SNPs) than in Deli (4.8 %). 

 

Most SNPs have distinct segregation 

patterns among Deli and La Mé, i.e. being 

fixed or almost fixed in one population 

while segregating, and in many cases with 

a high MAF, in the other population. 

 

Prediction accuracies were ranging from 

0.08 to 0.70 for ortet candidates without 

data records, depending on trait, SNP 

dataset and modeling 

 

ASGM was better (more robust over traits 

and SNP datasets, and simpler), although 

PSAM could noticeably improve 

prediction accuracies for some traits. The 

number of SNPs had to reach 7,000, while 

the percentage of missing data per SNP 

was of secondary importance for modeling 

approaches. 

 

GS prediction accuracies were higher than 

those of PS for most of the traits. 

This study 

makes possible 

two practical 

applications of 

GS, that will 

increase 

genetic 

progress by 

improving 

ortet 

preselection 

before clonal 

trials: (1) 

preselection at 

the mature 

stage on all 

yield 

components 

jointly using 

ortet genotypes 

and 

phenotypes, 

and (2) 

genomic 

preselection on 

more yield 

components 

than PS, 

among a large 

population of 

the best 

possible 

crosses at 

nursery stage. 
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Appendix 3. Logical framework of objective 2: investigation of the effect of the genotyping strategy to optimize prediction accuracy. 

Materials Methods Results Conclusion 

Training set: 350 

hybrid crosses 

phenotyped for 

nine yield 

components 

(average number 

of individuals per 

cross of 64 for 

bunch production 

and 44 for bunch 

quality) + 400 

training hybrid 

individuals. 

 

Validation set: 

213 hybrid 

crosses (average 

number of 

individuals per 

cross of 63 for 

production traits 

and 48 for quality 

traits) 

 

Number of SNP: 

21,458 

Individuals of the training set phenotyped for AFW, FB, PF, OP, NF, OER, BN, 

ABW and FFB. 

 

Molecular data were obtained by GBS 

 

Imputation of missing SNP data and phasing were carried out with Beagle 4.0. 

 

effects of the SNP dataset i.e., density and percentage of missing data 

 

Two approaches of marker modeling were considered:  one taking into account 

the parental origin of marker alleles, PSAM, or not, ASGM 

 

- ASGM:  y = 𝐗β +  𝐙𝐠gg + 𝐙𝐛b + 𝐙𝐩p + ε 

- PSAM:  y = 𝐗β +  𝐙𝐀gA + 𝐙𝐁gB + 𝐙𝐛b + 𝐙𝐩p +  ε 

Calculation of genetic values 

ĝA + ĝB 

 

Determination of reference value of validation hybrid crosses 

To validate the different prediction models, the true genetic value of the validation 

hybrid crosses, termed reference genetic value, was computed from the 

phenotypic data of their hybrid individuals 

 

Prediction accuracy of GS 

𝑟𝐺𝑆 = 𝐶𝑜𝑟 (�̂�𝑡𝑟𝑢𝑒 , 𝑔𝐺𝑆) 

The comparison of models was carried out an ANOVA using agricolae R package 

Prediction accuracies 

ranged from 0.15–0.89 

depending on trait, model 

and genotyping strategy.  

 

GS prediction accuracies 

increased on average by 5% 

when training was done 

with genomic data of hybrid 

individuals and parents 

compared with only 

parental genomic data. 

 

On average over traits, 

G_ASGM_Par+Hyb with a 

prediction accuracy of 0.53, 

was significantly higher 

than G_ASGM_Par with 

0.50  

 

GS prediction accuracies 

increased on average by 3% 

with ASGM compared to 

PSAM. 

Adding genomic data of 

hybrid individuals when 

training the model 

increased GS accuracy 

 

ASGM was the best model 

(giving the highest 

prediction accuracies on 

average over traits) 

 

G_ASGM_Par+Hyb with 

a prediction accuracy of 

0.53 was the best GS 

approach 

 

ASGM approach is 

recommended for oil palm 

data, as it gives higher 

prediction accuracies on 

average over traits, 

performs best on more 

traits and is more robust 

over populations and SNP 

datasets than the PSAM 

approach. 
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Appendix 4. Generation of SNP molecular data (Cros et al., 2017). 

DNA extraction was performed by ADNid (www.adnid.fr) on lyophilized tissue from 

the youngest opened leaf of each individual, using a modified mixed alkyltrimethylammonium 

bromide (MATAB) protocol. GBS was conducted on the DNA extracts by a company called 

DArT (www.diversityarrays.com) using their DArTseq™ protocol (Kilian et al., 2012), which 

combined complexity reduction of the genome and next generation sequencing (Baird et al., 

2008; Pootakham et al., 2015). DNA samples were processed in digestion/ligation reactions 

mainly as per Kilian et al. (2012) but using two adaptors corresponding to the PstI and HhaI 

restriction enzyme overhangs and moving the assay on the sequencing platform as described by 

Sansaloni et al. (2011). The PstI-compatible adapter was designed to include the Illumina flow 

cell attachment sequence, the sequencing primer sequence and the “staggered”, varying length 

barcode region, similar to the sequence reported by Elshire et al. (2011). The reverse adapter 

contained the flowcell attachment region and the HhaI-compatible overhang sequence. Only 

PstI-HhaI mixed fragments were effectively amplified in 30 rounds of PCR using the following 

reaction conditions: (1) 94 °C for 1 min, (2) 30 cycles at 94 °C for 20 s, 58 °C for 30 s, 72 °C 

for 45 s and (3) 72 °C for 7 min. Next, PCR equimolar amounts of amplification products from 

each sample in the 96-well microtiter plate were bulked and applied to c-Bot (Illumina) bridge 

PCR followed by sequencing on Illumina HiSeq2500. Single read sequencing was run for 77 

cycles. 

The GBS analysis pipeline implemented in Tassel GBS version 5.2.29 (Glaubitz et al., 

2014) was used to call SNPs according to the parameters listed in Table S1. From the total 

number of good barcoded reads (152,020,019 out of 238,493,056), the pipeline found 476,589 

tags, aligned with Bowtie2 software. The tag mapping and the polymorphism calling identified 

109,201 polymorphic sites. The data were further processed with VCFtools (Danecek et al., 

2011). Indels and SNPs that were not biallelic were discarded. Data points with a sequencing 

depth of less than five were set to missing. SNPs with more than 50% missing data were 

discarded. Using a custom R script (R Core Team, 2017), the SNPs appearing as outliers in 

terms of mean depth (i.e. higher than 500) were discarded, as it was assumed this could indicate 

duplication in the genome. This resulted in 19,432 SNPs. The molecular dataset was split into 

two, one for Group A and the other for Group B. The SNPs that mapped on the unassembled 

part of the genome were discarded, as the imputation of sporadic missing data required known 

positions. Mendelian segregation between parents and offspring was checked and the 

http://www.adnid.fr/
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inconsistent data points were set to missing. The SNP homozygotes or with more than 5% of 

Mendelian inconsistencies in a parental group were discarded from this group. 

Table S1. Tassel v5.2.29 GBS pipeline used to process raw sequence data.  

Step_plugin Parameters Results Value % 

00 (raw fastq 

data) 

 Number of reads in lanes 238,493,

056 

 

01_GBSSeqToT

agDB 

ePstI c20 kmerL68 

minKmerL20 mnQS20  

Number of correct barcoded 

reads 

152,020,

019 

63.

7 

01_GBSSeqToT

agDB 

ePstI c20 kmerL68 

minKmerL20 mnQS20  

Number of tags 476,589  

02_TagExportT

oFastq 

c1 Export tags to fastq 476,589  

03_BowtieToSA

M 

very-sensitive-local Number of tags aligned once 243,794 51.

2 

03_BowtieToSA

M 

very-sensitive-local Number of tags aligned >1 

time 

77,160 16.

2 

04_SAMToGBS

db 

aProp0 aLen0 Number of mapped tags 320,954 67.

3 

05_DiscoveryS

NPCaller 

maxTagsCutSite68 mnLCov0.1 

mnMAF0.0025 eR 0.01 

Number of polymorphic sites 109,201  

05_DiscoveryS

NPCaller 

maxTagsCutSite68 mnLCov0.1 

mnMAF0.0025 eR 0.01 

Number of alleles 230,100  

06_SNPQuality

Profiler 

 Number of polymorphic sites 109,201  

07_ProdSNPCal

ler 

ePstI kmerL68 mnQS0 Number of polymorphic sites 109,201  
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Appendix 5. Steps of genotyping-by-sequencing (GBS) in plants (He et al., 2014). 

 

 A: tissue is obtained from any plant species; B: ground leaf tissues for DNA isolation, 

quantification and normalization. At this step it is important to prevent any cross-contamination 

among samples; C: DNA digestion with restriction enzymes; D: ligations of adaptors (ADP) 

including a bar coding (BC) region in adapter 1 in random PstI restricted DNA fragments; E: 

representation of different amplified DNA fragments with different bar codes from different 

biological samples. These fragments represent the GBS library; F: analysis of sequences from 

library on a NGS sequencer; G: bioinformatic analysis of NGS sequencing data; H: possible 

application of GBS results. 
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Appendix 6. Genetic map of oil palm. 

Group A (GA, left), integrated (middle), and group B (GB, right). Marker names are indicated only at 

the right of the integrated genetic map, and map distances in centimorgans (cM) at the left of each 

genetic map. Lines between linkage groups (LG) show common markers between maps. Markers in 

black were positioned on the genome sequence while those in red could not be positioned. 
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Appendix 6 (continued) 
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Appendix 7. Published papers. 
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Abstract
More efficient methods are required to breed oil palm (Elaeis guineensis Jacq.) for yield maximization in order to meet the
increased demand for palm oil while limiting environmental impacts. This review article analyzes the evolution of breeding
schemes for oil palm yield and its quantative components and the changes expected to take place with genomic selection (GS).
Genetic improvement of oil palm yield started in the 1920s through mass selection. Later, several disruptive improvements
dramatically increased the rate of genetic progress: (1) understanding the heredity of fruit form and the adoption of tenera, with
thicker mesocarp, in plantations; (2) the discovery of hybrid vigor and the adoption ofmodified reciprocal recurrent selection; and
(3) clonal selection, exploiting intra-hybrid variability. In addition, the use of linear mixed models to estimate genetic values has
made selection more efficient. Today, GS appears to be a new disruptive improvement that can speed up breeding schemes by
avoiding field trials in some cycles and increase selection intensity by evaluating more candidates. The genetic potential for oil
palm yield has increased considerably over one century of breeding. GS is expected to bring the rate of genetic progress to a
previously unprecedented level. The future studies on oil palm GS will aim at making it efficient for all yield components. For
this purpose, they should focus in particular on the optimization of training populations and on the improvement of prediction
models. Minimizing environmental impacts will also require improvement in other aspects (resistance to diseases, cultural
practices, etc.).

Keywords Elaeis guineensis . Hybrids . Reciprocal recurrent selection . Genomic selection . BLUP . Linear mixedmodel

Introduction

Oil palm (Elaeis guineensis Jacq.) is the most productive oil
crop in the world, with annual production of more than 65
million tons of palm oil (USDA 2018). The world population
is expected to be over nine billion by 2050, and the demand
for palm oil to be between 120 and 156 million tons (Corley
2009; Rival and Levang 2014). Genetic improvement has a
major role to play to meet this demand while minimizing
environmental impacts. Indeed, a significant proportion of
the increase in yield already achieved was due to breeding.
In Malaysia, 70% of the increase in yield is attributed to ge-
netic improvement, versus only 30% to improvement in cul-
tural practices (Davidson 1993). The genetic progress in palm
oil yield is currently estimated at around 1% and 1.5% per
year, comparable to that of maize (Rival and Levang 2014,
p. 39).

Oil palm originated from the Gulf of Guinea. It is a tree-like
diploid (2n = 2x = 32 chromosomes) monocotyledon from the
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Arecaceae family (Jacquemard et al. 1997). There are three
types based on fruit morphology: dura (D), whose fruits con-
tain a thick-shelled nut; pisifera (P), which has no shell and is
generally female sterile; and tenera (T) which has a thin shell
and is female fertile. Oil palm is allogamous and artificial
pollination allows controlled crosses (Fig. 1a). It has no natu-
ral means of vegetative propagation but cloning is possible
in vitro by tissue culture in the laboratory. Palm oil yield
(OY) in E. guineensis is a complex trait. The leaves are emit-
ted successively and each bears an inflorescence bud in its
axil, which, unless abortion occurs, produces an inflorescence,
with alternating male and female cycles throughout the life of
the plant (Demol 2002). The pollinated female inflorescence
develops into a bunch. Fresh fruit bunch (FFB) production,
which is one of the two main components of OY, results from
the number of bunches (BN) and average bunch weight (BW).
The second main component is the percentage of oil in the
bunches (O/B), which can be broken down into more simple
traits (Fig. 1b, c), i.e., the percentage of fruits in the bunch
(F/B), the percentage of pulp or mesocarp per fruit (M/F), and
the percentage of oil in the mesocarp (O/M).

Genetic improvement of oil palm yield started with mass
selection in the 1920s (Demol 2002; Corley and Tinker 2016).
An understanding of the genetic determinism of the fruit form
was acquired in the 1930s (Beirnaert and Vanderweyen 1941).
In the 1950s and 1960s, mass selection was replaced by more
efficient breeding schemes, mainly of modified reciprocal re-
current selection type (MRRS), leading to interpopulation hy-
brid T cultivars (Corley and Tinker 2016; Soh et al. 2017).

Since the late 1970s, clonal varieties from tissue culture have
also been produced (Corley and Tinker 2016, p. 208; Soh et al.
2017, p. 193). The current period is marked by two new
changes. The first is the adoption of more efficient statistical
methods to estimate the genetic value of the selection candi-
dates, with a shift from analysis of variance (ANOVA) to the
BLUP (best linear unbiased predictor) method (Henderson
1950, 1984). Although this shift started several decades ago,
current literature indicates that it is still underway. The second
very recent change is the use of approaches that take advan-
tage of genomic data. For quantitative traits such as yield, the
most efficient genomic approach is genomic selection (GS,
Meuwissen et al. 2001). GS is a method of marker-assisted
selection (MAS) which when combined with specific statisti-
cal approaches such as BLUP is able to take advantage of the
information provided jointly by a large number of markers
spread along the whole genome. Advances in genomics also
recently made MAS possible for two traits related to yield
with simple inheritance, i.e., fruit form (Singh et al. 2013;
Ooi et al. 2016) and acidification due to an endogenous lipase
(Domonhédo et al. 2018); however, this is beyond the scope
of the present article, which is dedicated to the genetic im-
provement of the quantitative components of palm oil yield.

The methodological changes that punctuated the history of
oil palm breeding for yield for a century strongly affected the
rate of genetic gain. This review article analyzes these chang-
es. First, we present the approaches implemented for the ge-
netic improvement of palm oil yield (mass selection, MRRS,
clonal selection, and GS) and the associated statistical

a b

c d

Fig. 1 Breeding and seed
production in oil palm. aArtificial
pollination (CRAPP, Benin). b
Bunch partitioning into peduncle,
spikelets, fruits, and seeds to
measure physical characteristics.
c Soxhlet extractors to measure
the percentage of oil in pulp
(CRAPP, Benin). d Seed garden
(CamSeeds, Cameroon)
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methods used to estimate the genetic values. Given its expect-
ed importance, GS is presented in greater detail. Finally, the
fact that the BLUP method, despite its crucial importance for
breeding, has yet to be adopted by the whole oil palm breeding
community, and because its use becomes unavoidable with
GS, we also provide a practical example of its application with
R software and an oil palm toy dataset.

Mass selection

The genetic improvement of palm oil production started in the
1920s, in South-East Asia (SEA, Indonesia andMalaysia) and
in what was then known as Belgian Congo (Demol 2002;
Corley and Tinker 2016, p. 138), and was based on mass
selection (candidates selected on their phenotype).

In SEA, the palm oil industry developed from one planting
material, four D seedlings introduced into Java (Indonesia) in
1848 from an unknown part of Africa (Demol 2002; Corley
and Tinker 2016, p. 6). The narrow genetic base followed by
several generations of selection led to a relatively homoge-
nous and inbred breeding population called Deli (Demol
2002; Corley and Tinker 2016, p. 6). The Deli can be further
divided in several subpopulations, such as Marihat Baris,
Elmina, etc. (Durand-Gasselin et al. 2000; Demol 2002;
Corley and Tinker 2016).

In Africa, as the source palms were ofD, T, and P types, the
breeding approaches differed from those used in SEA
(Durand-Gasselin et al. 2000; Corley and Tinker 2016).
Breeding was less efficient in Africa, as it was complicated
by the segregation of the fruit types in the crosses between the
best Ts (Durand-Gasselin et al. 2000; Corley and Tinker
2016). However, it led to the creation of several breeding
populations: La Mé (Côte d’Ivoire), Yangambi (Democratic
Republic of Congo), Ekona (Cameroon), WAIFOR (Nigeria),
etc. The La Mé population originated from 19 individuals
selected from prospections made in the 1920s. The
Yangambi population dated from the 1920s and originated
from 10 to 20 Ts, included the Djongo palm which given its
exceptional qualities would have finally contributed more
than 70% to the Yangambi population (Demol 2002;
Cochard 2008; Corley and Tinker 2016).

Also, exchanges of breeding material led to the creation of
the AVROS breeding population (Indonesia, Malaysia) from
the Djongo.

Mass selection with the early breeding populations had
been efficient as some components of OY had a moderate
level of narrow-sense heritability h2 such as M/F (0.53) and
BW (0.39) (Corley and Tinker 2016, p. 174,180). However,
the other components (BN, F/B, and O/M) had low h2

(< 0.25). This, and perhaps from knowledge of the advance-
ment of breeding methodology from other crops, prompted

the adoption of the more complex breeding schemes described
below.

The breeding populations inherited from this period of
mass selection can be classified in two complementary groups
(A and B) based on the characteristics of their bunch produc-
tion. Group A, mostly from SEA (i.e., Deli population) and
Angola, although the latter has been of lesser importance,
produces a small number of big bunches. Group B, compris-
ing the other African populations (with La Mé and Yangambi
currently being the most widely used) and AVROS, produces
a large number of small bunches (Meunier and Gascon 1972).
The complementarity of the FFB yield component traits in the
two groups resulting in hybrid vigor explaining the choice of
A × B cross hybrid breeding approaches.

This period was also marked by a major finding, namely
the understanding of the genetic control of the fruit type by a
gene, now named SHELL, with two codominant alleles Sh−

and Sh+ (Beirnaert and Vanderweyen 1941). P type Sh−//Sh−

and D Sh+//Sh+ are thus homozygotes and T Sh+//Sh− hetero-
zygote. The type cultivated in commercial plantations since
the 1950s is T, as it combines a high M/F with female fertility,
and is obtained by the cross D × P. Its use instead of the
traditional D increased oil palm yield by 30% (Corley and
Tinker 2016, p. 7).

Current breeding schemes

The breeding schemes currently applied to improve oil palm
yield involve two major improvements over mass selection:
they exploit the hybrid vigor for bunch production that ap-
peared in the A × B crosses, and they enable better estimates
of genetic values. These schemes are mainly modified recip-
rocal recurrent selection (MRRS), which generates sexual
crosses (Fig. 1d), which account for the vast majority of oil
palm commercial varieties grown in plantations; and clonal
selection. They use mating designs, experimental designs
and methods of statistical analysis that more efficiently sepa-
rate the different genetic and environmental effects.

Mating designs and experimental designs

In oil palm MRRS, the selection candidates are evaluated in
hybrid crosses obtained according to NCM1 (NCM, North
Carolina model) or NCM2 mating designs (Soh 1999). The
NCM1 is a hierarchical mating design in which each individ-
ual belonging to group B is crossed with a set of different
individuals belonging to group A. If individuals in group A
can be considered as genetically homogenous, NCM1 gives
satisfactory estimates of the relative genetic or general com-
bining ability values in group B. The NCM2 is a factorial
design in which each B individual is crossed with the same
set of A individuals (Corley and Tinker 2016, p. 159). This
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takes longer as several crosses have to be made per individual
in group A but is more suitable than NCM1 when genetic
variability among the A individuals is not negligible or when
the interactions between parents (i.e., specific combining abil-
ities, SCA) need to be estimated.

Once the crosses or the clones to be evaluated have been
obtained, they are planted in field trials, usually according to
randomized complete block designs (RCBD). The RCBD
used in oil palm breeding usually have 10 to 50 families re-
peated three to six times in plots each of which contain 12 to
30 palms (Soh et al. 2017, p. 333). Given the low planting
density of oil palm (normally 143 individuals per hectare), the
trials require a large area (often > 10 ha) whose environmental
conditions are consequently subject to some heterogeneity. To
better account for this heterogeneity, the complete blocks can
be divided into incomplete blocks, i.e., comprising a sample
of the evaluated families randomized within the complete
blocks (Breure and Verdooren 1995; Soh et al. 2017).
Several experimental designs with incomplete blocks are thus
commonly used for oil palm, including squared balanced or
unbalanced lattices and alpha-plans (Soh et al. 2017, p. 330).
The results of evaluations of such trials using RCBDs and
lattices have been published for hybrid crosses (Soh et al.
2017, p. 330) and clones (Nouy et al. 2006). In experiments
to study the genotype (G) × environment (E) interaction, the
most commonly used design is the split plot. In this case, E is
the main treatment (planting density, fertilization, etc.) and G
the sub-treatment (parents, hybrids or clones), which facili-
tates the management of the sub-plots and improves the sta-
tistical analysis, as the sub-treatment and the interaction ef-
fects are estimated more accurately (Soh et al. 2017, p. 330).
For instance, in a trial based on a split plot design with plant-
ing density as the main treatment and hybrid crosses as sub-
treatment, Rafii et al. (2013) found significant effects of G ×
planting density interactions on the average bunch weight.

Modified reciprocal recurrent selection

Principle

Reciprocal recurrent selection (RRS) was defined by
Comstock et al. (1949) in maize. It relies on the joint and
reciprocal improvement of two heterotic groups. A modified
version of reciprocal recurrent selection (MRRS) was adapted
for oil palm (Gascon and De Berchoux 1964) and implement-
ed by the IRHO in Côte d’Ivoire (CNRA), Cameroon (IRAD),
Benin (CRAPP), and Indonesia (SOCFINDO, IOPRI)
(Meunier and Gascon 1972; Corley and Tinker 2016, p. 138;
Cochard et al. 2018). In oil palm,MRRS is justified by the fact
that in A × B crosses, the production of bunches is > 25%
higher than in the parental populations (Gascon and De
Berchoux 1964). This is the result of the negative correlation
between BW and BN within each group, and from the

complementarity of groups A and B for these two traits
(Table 1). Today, MRRS is used in many countries and al-
though its implementation varies among research centers, it
generally follows the scheme described below. However, a
number of programs in Malaysia, Indonesia, and Papua New
Guinea also practice the modified recurrent selection (MRS)
or FIPS (family and individual palm selection) in whichD and
T parents for further breeding are recurrently mass selected
and the D × P progeny testing is done to identify the parents,
especially the Ps, used for D × P seed production (Soh et al.
2017).

One cycle of oil palm MRRS (Fig. 2) starts with selection
of candidates from groups A and B, and after evaluation in
hybrid progeny tests, the best ones will be selected among
them. These candidates will then be used to produce the next
generation, which will be used to produce seeds of T hybrids
and to start a new MRRS cycle (Meunier and Gascon 1972).
In more detail, a cycle starts with phenotypic preselection
prior to progeny tests. In group A, the individuals are selected
based on their own phenotypic value for the traits with the
highest heritability (mostly M/F) and on the mean perfor-
mance of their family (i.e., FIPS). In group B, the female
sterility of P means they can only be selected based on the
mean value of their T full-sibs. For the same reason, and to be
able to produce the following B generation, T individuals are
also chosen by FIPS. Second, the combining ability of these
individuals in hybrid crosses is evaluated in progeny tests, for
the selection of low heritability traits and to finalize the selec-
tion of the traits subjected to the first stage of selection. For
this purpose, the hybrids crosses are made according to the
previously described mating designs, B individuals being
crossed with three to five D belonging to group A (Soh et al.
2010). These crosses are then evaluated in field trials, during
which data are usually recorded from the third year after plant-
ing (i.e., at the beginning of production) to the tenth year. A
long time is therefore required to obtain the genetic value of
the progeny-tested individuals, resulting in long selection cy-
cles lasting around 20 years. The resources required to carry
out such long-term evaluations limit the number of individuals
that are progeny tested, which results in the erosion of genetic
diversity. To address this problem, new germplasms, for ex-
ample originating from other breeding programs, are intro-
duced (Jacquemard et al. 1997, p. 516).

When analyzing the phenotypic data of the progeny tests, the
total genetic value of a hybrid cross is partitioned into the additive
value or GCA of its parents or the non-additive or SCA of the
cross. The GCA of a parent is the mean value of all the crosses
that can be made between this parent and the parents of the other
group, expressed as the difference from the mean value of all
possible hybrid crosses (Gallais 2011; Corley and Tinker 2016).
The SCA of a cross is the difference between the observed value
of the cross and the value predicted from the GCA of its parents
(Gallais 2011). It represents the interaction between its parents
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and usually results from dominance and/or epistatic effects
(Stuber and Cockerham 1966; De Souza 1992). It can also result
from the multiplicative interaction between two negatively cor-
related traits as BN and BW for FFB production in oil palm. In
this case, SCA may be present even in the absence of non-
additive genetic effects (Schnell and Cockerham 1992; Gallais
2011, pp. 68, 71). Finally, the parents with the best GCAs and/or
resulting in the crosses with the best SCAs are selected.
However, the SCAs for the components of oil palm yield are a
much smaller source of variation among the hybrid performances
than the GCAs and are estimated with a lower accuracy than the
GCAs (Cros 2014). For these reasons, selection is mostly made
on the GCAs (Breure and Verdooren 1995; Cros 2014).

Statistical methods to estimate genetic values

According to the number of published articles, ANOVA is still
the most widely used method to estimate GCAs in oil palm, and
even to estimate the total genetic value of hybrid crosses without
partitioning it into GCAs and SCAs (see for example Breure and
Bos 1992; Okwuagwu et al. 2008; Okoye et al. 2009; Junaidah
et al. 2011; Noh et al. 2012; Arolu et al. 2016). To estimate the
parental GCAs using ANOVA in a hybrid trial set up according
to a RCBD, it can be considered that the yield yijk of crossAi ×Bj

measured in block k is given by the model: yijk = μ + bk +
GCAi +GCAj + εijk , where μ is the phenotypic mean of the trial,
bk the effect of block k, GCAi and GCAj the parental GCAs, and
εijk the error associated with the k

th replicate of the cross (Breure
andVerdooren 1995), with yijk ~N(E(yijk ), σ

2) and εijk ~N(0, σ
2
ε

). The solutions of the model (i.e., the least square means), and in
particular the parental GCAs, are obtained by the ordinary least
squares method. The SCAs are then obtained by subtracting the
cross values expected from the parental GCAs from the mean
cross values observed in the trial. ANOVA is useful for complete
or balanced experimental designs and mating designs.

However, it is also possible to estimate the genetic values with
the BLUPmethod, which is the standard approach for analyzing
linear mixed models. BLUP was developed several decades ago
to analyze highly unbalanced datasets in cattle breeding. Today, it
is widely used to estimate genetic effects in animals (Mrode
2005) and in plants (Piepho et al. 2008). BLUP has the following
advantages (Soh 1999): it is useful in analyzing unbalanced mat-
ing designs or experimental designs, and it makes it possible to
consider a large number of trials at the same time, even without
control families, and to account for covariances when modeling,
for example, the relationships among individuals, competition
effects, or spatial heterogeneity. Surprisingly, in oil palm, it has
only been used to estimate genetic values for yield components
by a very limited number of research groups (Soh 1994; Purba
et al. 2001; Cros et al. 2015b). However, oil palm progeny tests
are often carried out with complex and unbalanced designs, with
a varying number of crosses per parent, crosses evaluated in
several trials planted in different years, varying numbers of rep-
licates and individual palms per cross, etc. The mating design is
also sometimes not connected, i.e., that within a parental group,
some parents are not connected (directly or indirectly) to the
others by the same partners that belong to the other group, even
though this can bias or make the GCA of some parents impossi-
ble to estimate (Breure and Verdooren 1995; Soh et al. 2017).

Table 1 Origin of heterosis in oil palm for bunch yield (figures are
indicative)

Annual number of
bunches

Average bunch
weight (kg)

Bunch yield
(kg/an)

Group A 10 20 200

Group B 20 10 200

A ×B
hybrid

15 15 225

group B (T, P)group A (D)

progeny tests
(D×T, D×P)

improved group B improved group A

seeds (D×P)

selfings and crosses
(D×D)

selfings and crosses
(T×T, T×P)

introgressions introgressions

Fig. 2 Scheme of one cycle of
modified reciprocal recurrent
selection applied to oil palm. D
dura, T tenera, P pisifera, green:
commercial seeds
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Several studies have also shown that in such complex situations,
ANOVA was less efficient than BLUP in estimating the vari-
ances and/or the effects in the model (White and Hodge 1989;
de Carvalho et al. 2008, p. 220; Piepho et al. 2008; Hu 2015). In
addition, the pedigree of the oil palm breeding populations over
several generations is generally known (Cros et al. 2014; Corley
and Tinker 2016, pp. 138–148), and the relationships among
selection candidates is useful information that can be included
in the linearmixedmodel in order tomore accurately estimate the
genetic parameters and the genetic values.

In the case of hybrid crosses between two parental popula-
tions A and B, the linear mixed model used to estimate the
parental GCAs and the cross SCA is

y ¼ Xβ þ Z1uA þ Z2uB þ Z3uAB þ ε

with y the vector of observed phenotypes, β the vector of fixed
effects, uA ~ N(0, 0.5AAσ2

aA ), and uB ~ N(0, 0.5ABσ2
aB ) the

vectors of the GCAs of parents of groups A and B (random
effects), respectively, and uAB ~ N(0, 0.25DABσ2

ascAB ) the vec-

tor of cross SCA, corresponding here to the dominance effects
(random). X, Z1, Z2, and Z3 are, respectively, the incidence

matrices associated to β, uA, uB, and uAB. ε ~ N(0, Iσ2
ε ) is the

vector of residual effects and I is the identity matrix (in this
example, residuals are assumed to be independent). 0.5AAσ2

aA ,

0.5ABσ2
aB , and 0.25DABσ2

ascAB are the variance-covariance ma-

trices associated with uA, uB, and uAB, respectively. AA and AB

are the matrices containing the values of additive relationships
calculated with the pedigree of the A and B individuals, re-
spectively, and DAB is the matrix of dominance relationships
between the crosses and is obtained by the Kronecker product
between AA and AB. σ2

aA and σ2
aB are the additive genetic

variances of groups A and B, respectively, and σ2
ascAB is the

dominance genetic variance of the crosses. The BLUP ap-
proach starts with estimation of the variances σ2

aA , σ2
aB ,

σ2
ascAB , and σ

2
ε. The most widely used method for this purpose

is restricted maximum likelihood (REML) (Xavier et al.
2016). Various algorithms have been developed to estimate
the variance components with REML. The two main ones
are the expectation-maximization algorithm (EM), which re-
lies on the iterative updating of the residuals, variances, and
regression coefficients of fixed and random effects (Dempster
et al. 1977), and the average-information algorithm, which
relies on the creation of a gradient based on the mean of the
expected and observed information (Gilmour et al. 1995).
Second, the variances are used in the mixed-model equa-
tions of Henderson, which give the model solutions, i.e.,
the vectors ûA, ûB, and ûAB for the genetic effects and the

vector β̂ for the fixed effects (Covarrubias-Pazaran 2016).
The solutions are named best linear unbiased estimators
(BLUE), or solutions of the generalized least squares, for
the fixed effects, and best linear unbiased predictors

(BLUP) for the random effects (Mrode 2005 p. 39–42).
The method also makes it possible to estimate the accu-
racy of the BLUPs, i.e., their correlation with the true
genetic values that the model estimates. The accuracies
are given by a theoretical formula using the diagonal of
the variance-covariance matrix of the random effect con-
sidered and the prediction variance errors (PEVs) associ-
ated with the BLUPs, which are easily obtained from the
analysis. Thus, with the model presented here, the accu-
racy of the GCA of parent Ai is

with 0:5 1þ FAið Þσ2
aA the ith element of the diagonal of the

variance-covariance matrix of uA, and FAi the inbreeding coef-
ficient of Ai (Cros 2014). The application of this formula in oil
palm showed that for the yield components, the hybrid progeny
tests gave highly accurate GCAs, reaching on average 0.87 in
group A and 0.91 in group B (Cros 2014).

To promote the adoption of this method by the largest number
of geneticists, in particular in the oil palm breeding community,
in Appendix, we provide a practical example of the estimation of
the BLUP value of parents of oil palm hybrids using R software
(R Core Team 2017).

Clonal selection

The main use of clonal selection in oil palm is cloning the best T
hybrid individuals. For this purpose, the Twith the best pheno-
types are chosen within the best crosses available in the MRRS
program and are evaluated in clonal trials (Corley and Tinker
2016, pp. 216–220). The interest of this method is based on oil
palm heterozygosity, which generates genetic variability within
the hybrid crosses, allowing selection of the best T individuals to
be used as ortets (source plants for cloning). The clones have the
potential to further increase oil palm yield by 20% to 30% com-
pared to sexual crosses (Corley and Law 1997), and increases in
yield of 13% (Nouy et al. 2006) and 18% (Soh et al. 2003a) have
been empirically observed. One difficulty in clonal selection is to
accurately estimate the genetic value of the hybrid individuals
from their own phenotypic records, given the micro-
environmental effects that are hard to control and are confounded
with individual genetic values. This accuracy can be measured
by the broad-sense heritability H2 computed at the individual
level. Soh et al. (2003b), Nouy et al. (2006), and Potier et al.
(2006) showed thatH2 ranged from 0 to 0.84 among yield com-
ponents. In these conditions, it is possible to select ortets based on
their phenotype for some traits, such as O/M, but not for all yield
components. Clonal field trials are thus required to finalize the
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evaluation of the ortets selected based on the traits with the
highestH2. These trials allow a highly reliable selection of ortets
but lengthen the selection process by at least 10 years, corre-
sponding to the time required to produce the clones from ex-
plants and to carry out the trial, thus allowing improved hybrids
to catch up and reduce the advantage of clones.

Oil palm cloning has been slowed down by the appearance of
abnormal floral morphogenesis in the field. The abnormal ra-
mets, or mantled variants, produce abnormal flowers and fruits
and bunch failure, leading to sterile palms (Soh et al. 2017, p.
172). The epigenetic molecular mechanism that causes this ab-
normality was recently elucidated. The mantled variants were
shown to result from hypomethylation during tissue culture of
the Karma retrotransposon, located in the intron of the
DEFICIENS gene. This altered its splicing and made it produce
an additional transcript associated with the mantled phenotype
(Ong-Abdullah et al. 2015; Soh et al. 2017, p. 207). The under-
standing of this mechanism opens the way for the development
of a molecular kit that will allow the early detection and elimi-
nation of abnormal ramets, thus boosting interest in oil palm
cloning. Research is also underway to broaden the range of ge-
notypes in which tissue culture is efficient (Soh et al. 2017). In
addition, cloning opens the way for the production of genetically
engineered palms. Indeed, tissue culture is an appropriate way to
regenerate genetically modified tissue, and several genetic trans-
formation methods have been successfully applied in oil palm
(biolistic, transformation with Agrobacterium, and microinjec-
tion) (Masani et al. 2018).

Advantages and drawbacks

The current breeding schemes have the advantage of accurate-
ly estimating the genetic values, thereby enabling efficient
selection, which, in turn, has enabled the significant genetic
progress achieved so far. However, the schemes also have two
drawbacks resulting from the difficulties involved in pheno-
typing. First, as mentioned above, the breeding cycle to pro-
duce a new variety is long, around 20 years, whereas oil palm
reaches sexual maturity relatively quickly (at 3 or 4 years old).
The length of the cycle is mostly due to the phase of evalua-
tion in progeny tests, as a long time is required to make the
crosses, obtain the plants, and above all, to carry out the field
trial. Second, these schemes have low selection intensity,
with—for example—fewer than 200 selection candidates
progeny tested per population and cycle. The first stage of
selection before the field trials (progeny tests or clonal trials)
based on the phenotypic values for the most heritable traits
seems to compensate for the reduced number of parents or
clones evaluated, but this is not optimal. Indeed, the first stage
of selection is made on a small number of traits and its accu-
racy is lower than selection based on progeny tests or clonal
trials. Consequently, the individuals that would be the best
considering their genetic value over all the yield components

may be discarded before the field trials because they do not
have the best phenotypic value for the trait or the few traits
used in the first stage of selection. This even led to questioning
the relevance of the first selection stage prior to field trials. For
clonal selection, the possibility of randomly choosing the
ortets before evaluating them in clonal trials has thus been
considered by several authors (Corley and Tinker 2016, p.
216). However, to be efficient, this method would require
exploring a large part of the genetic variability of the hybrid
crosses where the ortets would be chosen, i.e., evaluating a
large number of candidate ortets in clonal trials, which is not
feasible in practice. New methods are therefore required to
optimize the current breeding schemes.

Genomic selection

The first saturated genetic maps were produced at the end of the
1980s. They made it possible to detect QTLs (quantitative trait
loci), leading to the idea of MAS. MAS has the potential to
increase selection intensity and shorten the breeding cycles
(Muranty et al. 2014). Many QTLs related to oil palm yield have
been identified (see for example Billotte et al. (2010), Pootakham
et al. (2015), Tisné et al. (2015), Ting et al. (2018)). However, for
complex traits such as yield that are under the control of a large
number of genes with small effects, the efficiency of the ap-
proach is limited, in particular in the case of small population
size (Muranty et al. 2014), because it overestimates the effect of
the strong QTLs and fails to exploit weak QTLs, as their effect
does not appear to be significant (Muranty et al. 2014). A more
efficient approach, genomic selection (GS), was consequently
developed (Meuwissen et al. 2001). Its practical implementation
wasmade possible by progress in genomics, in particular in next-
generation sequencing (NGS) and high throughput genotyping.
Today, GS is used in animal breeding, particularly in dairy cattle,
where it has doubled the rate of the genetic progress (Wiggans
et al. 2017). In plants, it is progressively being incorporated in
breeding schemes, and it is expected to significantly increase
their efficiency (Varshney et al. 2017).

In oil palm, the use of GS to select the parents of the
hybrid crosses for yield traits has already been investigated
in several studies. They evaluated its ability to reduce the
length of the breeding cycles, by avoiding field trials in
some cycles, and to increase selection intensity, by the ap-
plication of selection to a larger number of candidates than
with the current method (Fig. 3). The results are promising
and are detailed below. So far, no study has been published
regarding the use of GS to select ortets, but its potential is
likely also high, as suggested by the positive results obtain-
ed in other species, and in particular in other perennial trop-
ical crops like eucalyptus (Durán et al. 2017) and rubber
tree (Cros et al. Under review).

Tree Genetics & Genomes (2019) 15: 69 Page 7 of 16 69



Principle

GS is MAS for quantitative traits using high-density molecular
markers covering the whole genome, in order to have every QTL
in linkage disequilibrium with at least one marker. What mainly
differentiates it fromQTL-basedMAS is the joint exploitation of
strong QTLs (i.e., whose effect would be shown to be significant
in a QTL analysis) and of weakQTLs (not significant). Its goal is
to predict the genetic value of selection candidates, usually with
no data on their performance (i.e., depending on the breeding
situation concerned, with no known phenotype or no progeny
tests). For this purpose, GS uses the genotypic and phenotypic
data of a population called the training (or calibration) population
and a linear mixed model that can predict the additive genetic
value (GEBV, genomic estimated breeding values) or the total
genetic value (i.e., including the non-additive effects) of the se-
lection candidates (Heffner et al. 2009). GS therefore has the
potential to reduce phenotyping, thus making it possible to short-
en the breeding cycle and/or to increase selection intensity.

The efficiency of GS is assessed by computing its selection
accuracy (rGS), i.e., the correlation between the genetic value
estimated with the genomic model (GEGV) and the true genetic
value (TGV) in a set of individuals used as the validation popu-
lation. However, in empirical studies, the true genetic value is

unknown, and the genetic value estimated with the genomic
model is therefore correlated with an estimate of the true genetic
value (EGV), obtained with the phenotypic data available on the
validation individuals, i.e., their own phenotypic records or the
phenotypes of their progenies. This correlation is named predic-
tion accuracy. The difference between selection accuracy and
prediction accuracy depends on the reliability of the EGV
(Lorenz et al. 2011, p.94). GS accuracy is crucial to evaluate
the potential of GS as it is directly related to the rate of the genetic
progress, or rate of selection reponse R = rGS × i× σg/L, with σg
the genetic variance and L the generation interval (Falconer and
Mackay 1996). However, a comprehensive comparison of GS
and conventional selection requires considering their respective
selection accuracy, selection intensity, and generation interval.
Indeed, even in a situation where GS accuracy would be lower
than the accuracy of the conventional phenotypic evaluations,
GS can still increase R if it allows a sufficient decrease in the
generation interval and/or increase in selection intensity.

GS accuracy is affected by several parameters, including
marker type and density, distribution of QTL effects, linkage
disequilibrium between markers and QTLs, the size of the train-
ing population, and the relationship between the training and
selection populations, trait heritability, and statistical methods
of prediction (Lorenz et al. 2011; Grattapaglia 2014). In practice,

Training set
Genomic selection

improved group A

group B (T, P)group A (D)

progeny tests
(D×T, D×P)

improved group B improved group A

seeds (D×P)

selfings and crosses
(D×D)

selfings and crosses
(T×T, T×P)

introgressions introgressions

improved group B 

selfings and crosses
(D×D)

selfings and crosses
(T×T, T×P)

progeny tests
(D×T, D×P)

Fig. 3 Possible scheme of
genomic modified reciprocal
recurrent selection applied in
large populations of seedlings to
increase selection intensity
(cycles 1 and 2) and shorten
breeding cycles (cycle 2) of oil
palm. D: dura, T: tenera, P:
pisifera, green: commercial seeds
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GS accuracy is usually estimated by cross-validation at a single
experimental site (Cros et al. 2015b;Kwong et al. 2017a, b) or by
between-site validation (Cros et al. 2017). However, single-site
cross-validations may overestimate accuracy, and it is therefore
preferable to have at least two sites to evaluate GS (Lorenz et al.
2011, p.94).

Molecular data

GS generally uses single nucleotide polymorphism markers
(SNPs). They are abundant on the whole genome, have a low
mutation rate (Oraguzie et al. 2007, p. 41), and can easily be
genotyped at reasonable cost. In oil palm, given the molecular
resources available at the time, the first empirical studies were
made with microsatellites (SSR, simple sequence repeats) (Cros
et al. 2015b; Marchal et al. 2016). However, GS studies in this
species now use SNPs from genotyping by sequencing (GBS)
(Cros et al. 2017) or SNP arrays (Kwong et al. 2016, 2017a, b;
Ithnin et al. 2017). This allowed reaching higher densities, which
contributed to achieve higher accuracies. Thus, Kwong et al.
(2017b) using 135 SSRs obtainedmeanGSprediction accuracies
of 0.21 over palm oil yield components, against 0.31 with 200 K
SNPs.

GS accuracy normally increases with the number of markers
until it reaches a plateau (de los Campos et al. 2013, p. 339; Cros
2014, p. 40). In oil palm, the effect of marker density on the GS
accuracy for yield components has been evaluated in three stud-
ies. When predicting the performance of unevaluated hybrids,
GS accuracy started plateauing with 500 and 2000 SNPs in
Cros et al. (2017) and between 200 and 400 SNPs in Kwong
et al. (2017a), depending on the trait. The two studies did not
consider the same populations, but the smaller number of SNPs
required in Kwong et al. (2017a) likely resulted from the fact that
the SNPs were chosen based on the association scores estimated
in a genome-wide association study, and not randomly, as in Cros
et al. (2017). When predicting the GCA of progeny-tested indi-
viduals, Marchal et al. (2016) showed that GS accuracy
plateaued with 160 SSRs in group A and 90 SSRs in group B.
The marker density required to reach the maximumGS accuracy
therefore varies depending on the type of marker, the marker
sampling method, the trait, and the population. However, the
marker density needed in oil palm is lower than is generally the
case in other species due to the high rate of inbreeding in oil palm
breeding populations, i.e., to their small effective size (Cros et al.
2014).

Genotyping generates missing data. There are very few miss-
ing data with SNP arrays (< 1% in Kwong et al. (2016)) and
SSRs (< 3% inCros et al. (2015b)), but they can reach significant
proportions with GBS (13.2% in Cros et al. (2017)). The GS
statisticalmodels cannot deal withmissingmolecular data, which
therefore have to be imputed. This consists in replacing them by
the most likely genotype. In practice, the imputation method is
likely of no importance when the percentage of missing data is

low. In this case, the missing data can be replaced by the geno-
type with the highest frequency for the marker considered in the
population concerned, as in Kwong et al. (2017a). With more
missing data, more sophisticated imputation approaches are rec-
ommended. Many methods are available for this purpose (Wang
et al. 2016). Currently, only the BEAGLE software (Browning
and Browning 2007) has been used to impute missing molecular
data in GS studies on oil palm. Cros et al. (2017) showed that
taking pedigree information into account for imputation made
BEAGLE more efficient. However, they also noted that, for a
given number of markers, using those with the lowest percentage
of missing data resulted in higher GS accuracy than using ran-
dom markers, which suggests that imputation could be
improved.

Training and application populations

GS accuracy normally increases with the size of the training
population (Lorenz et al. 2011; Grattapaglia 2014) and with
the relationship between training and application individuals
(Pszczola et al. 2012). In oil palm, GS accuracy was observed
empirically to be strongly affected by the relationship between
training and application individuals (Cros et al. 2015b), sug-
gesting that the use of GS in full-sibs or progenies of the
training individuals would maximize accuracy. To increase
the size of the training set, it is possible to aggregate data from
consecutive breeding cycles. Simulations in oil palm showed
that using data from two cycles increased the per cycle re-
sponse to selection by more than 10%, mainly as a result of
higher selection accuracy (Cros et al. 2018). Although this
aggregation of data reduces the relationship between training
and application populations, this is more than counterbalanced
by the doubling of the training population.

Several strategies can be used to optimize the training and
application populations. For instance, the CDmean criterion, de-
rived from the generalized coefficient of determination, can op-
timize the sampling of individuals that have to be phenotyped
among a set of genotyped individuals, in order to form the train-
ing population (Rincent et al. 2012). In oil palm, the CDmean
proved to be efficient for GS as it maximizes its accuracy (Cros
et al. 2015b). However, further improvements are possible: for
example, another optimization criterion recently developed to
define training populations, CDpop, could be more efficient for
oil palm as it is specific to highly structured populations (Rincent
et al. 2017).

Models and statistical methods for genomic
predictions

Genomic predictions are made with frequentist and Bayesian
statistical approaches (Varshney et al. 2017). Some methods
estimate an effect associated with each marker, while other
methods give the genetic values directly without estimating
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marker effects. Genomic predictions exploit two types of in-
formation, the relationship between training and application
populations, and the linkage disequilibrium between markers
and QTLs (Varshney et al. 2017).

In methods that estimate marker effects, the base (i.e., purely
additive) genomic linear mixed model is of the form: y =Xβ +
Zm + e, where y is the vector of data records (nind × 1), β the
vector of fixed effects (mean, trials, blocks, etc.) associated with
incidence matrix X, m the vector containing the substitution
effect of each SNP (nSNP × 1) with incidence matrix Z (nind ×
nSNP) containing the molecular data coded in the number of
copies of the most frequent allele (0, 1 or 2), e the vector of
residuals (nind × 1), nind the number of individuals in the training
population, and nSNP the number of SNPs (Soh et al. 2017, p.
156). The effects m and e are random. The GEBVof selection
candidate i is given by summing the SNP effects over the whole
genome according to the formula: GEBVi ¼ ∑nSNP

j¼1Z ijm̂ j, with

m̂ j the estimated effect of SNP j. Depending on the way the

marker genetic variance (σ2
m ) is treated, two types of methods

can be distinguished (Soh et al. 2017, p. 156). First, some
methods consider that marker effects are sampled according
to a normal distribution with a variance common to all markers,
which is relevant for traits following the infinitesimal model.
This is the case of random regression BLUP (RR-BLUP)
(Meuwissen et al. 2001) and Bayesian random regression
(BRR) (Pérez et al. 2010). Second, as the genetic determinism
of some quantitative traits may include loci with strong effects,
other methods such as Bayes A, Bayes B (Meuwissen et al.
2001), Bayes Cπ, Bayes Dπ (Habier et al. 2011), and
Bayesian LASSO (De Los Campos et al. 2009) attribute
marker-specific genetic variances.

The most widely used method to estimate GEBV directly
is the genomic best linear unbiased predictor (GBLUP).
The basic difference between GBLUP and conventional
BLUP presented above is the use of genomic (instead of
genealogic) information to compute the relationship matrix,
called the G matrix in GBLUP. The G matrix has the ad-
vantage of accounting for the random sampling of alleles at
meiosis (Mendelian sampling) and thus gives realized rela-
tionships, making it possible to obtain the GEBVof uneval-
uated individuals. Also, genomic data are not affected by
pedigree errors in the families used in the breeding pro-
gram. By contrast, the pedigree-based A matrix gives ex-
pected relationships (Habier et al. 2007; VanRaden 2007),
and therefore does not differentiate between individuals
within families, cannot capture relationships that do not
appear in the pedigree records, and gives erroneous values
in the case of illegitimacy. The base model used with
GBLUP is y = Xβ + g + e, with g the vector (nind × 1) of
GEBVs following N(0, Gσ2

g ), σ2
g the additive variance,

and G (nind × nind) the genomic relationships matrix. With
SNP markers, the G matrix is usually computed according

to VanRaden (2007). GBLUP is equivalent to RR-BLUP
under the assumption of normality of marker effects and
has the advantage of being simple to implement with
existing software and of having a reasonable computation
time.

Various modeling approaches have been used for genomic
predictions in oil palm. The base GS models described above
were used in each parental group separately, with data records
consisting in parental performances in crosses with the other
group, i.e., GCAs (Cros et al. 2015b) or testcross phenotypic
means (Wong and Bernardo 2008), and parent genotypes.
Ithnin et al. (2017) and Kwong et al. (2017b) applied similar
models but used parental phenotypes as data records. They
obtained low to intermediate GS prediction accuracies but, as
parental phenotypes may not reflect performance in hybrid
crosses due to gene-frequency differences between parental
populations and non-additive effects (Wei et al. 1991;
Baumung et al. 1997; Vitezica et al. 2016), the relevancy of
such accuracies for hybrid breeding is questionable. Kwong
et al. (2016) studied GS with a population consisting in a mix-
ture of Deli, group B, and hybrid individuals. They obtained a
prediction accuracy of 0.65, which could have possibly been
improved by the use of a model designed to jointly consider
parental and hybrid data, like in Vitezica et al. (2016). Accuracy
of GS could also be improved by a single-step GBLUP
(ssGBLUP) which blends realized relationship of genotyped
individuals with the genealogical relationship of non-
genotyped individuals to calculate GEBV. This increases the
size of the training set by taking into account ungenotyped
individuals for which phenotypes are available. In oil palm, this
could be used to include in the training set phenotyped individ-
uals for which DNA can no longer be obtained, such as indi-
viduals evaluated in past progeny tests. In eucalyptus, using
additional phenotypic information from non-genotyped indi-
viduals thus increased GS prediction accuracies by up to 75%
(Cappa et al. 2019). Other studies used the conventionalMRRS
model replacing genealogical relationship matrices by genomic
matrices to jointly predict the GEBV of A and B candidates
(Cros et al. 2015a, 2017, 2018; Marchal et al. 2016). In order
to increase the training size, this method was adapted to include
molecular data of individual hybrids, taking into account the
parental origin of marker alleles (Cros et al. 2015a). This gave
the highest selection accuracies for unevaluated parents, and
thus proved to be more efficient than using only parental
genotypes to train the model. Kwong et al. (2017a) also used
molecular data of individual hybrids but did not consider the
parental origin of alleles. So far, the usefulness of modeling the
parental origin of marker alleles in oil palm hybrid genotypes
has not been investigated. Further studies thus remain necessary
to identify the optimal prediction model, in particular depend-
ing on the nature of the training data.

In addition, a wide range of statistical methods has been
applied to analyze these models, and comparisons showed that
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they did not significantly affect the accuracy of GS (Cros et al.
2015b; Kwong et al. 2017b; Ithnin et al. 2017). This suggests
that the components of palm oil yield are highly polygenic and
follow the infinitesimal model.

Information captured by markers

Without optimizing the training and validation populations, pre-
diction accuracies ranging from 0.14 and 0.73 were obtained for
various yield components, confirming the ability of GS models
to predict the genetic value of unevaluated selection candidates
(Cros et al. 2017; Kwong et al. 2017a, b). In particular, for five
yield components (FFB,O/M,BN,BW, andM/F), theGSmodel
predicted the performance of unevaluated hybrid crosses with
higher accuracy than a control model using pedigree data instead
of markers (Cros et al. 2017). This showed the ability of GS to
capture genetic differences within full-sib families (i.e., the
Mendelian segregation term) in addition to genetic differences
between families, enabling the selection of the best individuals
within the best families, as currently done among the individuals
that are progeny tested. The same conclusion was reached in
Kwong et al. (2017b), where GS prediction accuracies above
zero, ranging from0.18 to 0.47,were obtained in aGS evaluation
considering a single full-sib family. Similarly, Cros et al. (2015b)
obtained GS prediction accuracies above 0.5 within full-sib fam-
ilies. However, the latter study also showed that GS could also,
depending on trait and population, fail to capture Mendelian
segregation. In this case, GS predictions only revealed, at the
best, between-family differences.

Annual genetic progress

The first GS study in oil palmwas a simulation study (Wong and
Bernardo 2008), starting with an initial breeding population de-
rived from the selfing of a hybrid. Two cycles of conventional
breeding were simulated. At each cycle, the breeding population
was crossed with a tester to allow phenotypic selection for yield
performance, and the selected individuals were crossed to pro-
duce the new generation.WithMAS (QTL-basedMAS andGS),
the initial population was also genotyped and used to estimate
marker effects, and in the following cycles, phenotypic selection
was replaced by selection on markers. This reduced the length of
the breeding cycles and enabled three consecutive selection cy-
cles onmarkers, with a total number of years over the four cycles
equivalent to the two cycles in conventional phenotypic selec-
tion. The authors found that GS and conventional selection
outperformed QTL-based MAS in terms of selection response,
while GS outperformed conventional selection when the popu-
lation size reached 50 to 70 individuals, and then increased se-
lection response by 4% to 25%, depending on population size,
heritability, and number of QTLs.

In another simulation study, Cros et al. (2015a) compared
conventional MRRS and GS over four cycles. With GS, each

cycle including hybrid progeny tests was used to train a model
applied tomake a selection among unevaluated individuals of the
same cycle (i.e., sibs of the evaluated individuals) and/or of the
following generations. The effect on the annual selection re-
sponse of the following parameters was quantified: frequency
of progeny tests (from model training only in first cycle to train-
ing in every cycle), the number of GS candidates (120 and 300),
and GS strategy (genotyping limited to the parents of the calibra-
tion hybrids [RRGS_PAR] or also genotyping hybrid individuals
[RRGS_HYB]). The authors showed that GS can increase annu-
al genetic progress by reducing the generation interval and by
increasing the selection intensity, despite the fact that GS accu-
racy for unevaluated hybrid parents is lower than the accuracy of
progeny tested parents. Among the strategies evaluated,
RRGS_HYB with the genotyping of 1700 hybrid individuals,
model training only in the first generation, and 300 selection
candidates per population and generation was the most efficient,
leading to 72% higher annual genetic progress than MRRS.
Additionally, RRGS_PAR with model training every two gener-
ations and 300 selection candidates was shown to be an interest-
ing alternative as although its genetic progress was lower (46%
higher thanMRRS), it had a lower variability of genetic progress,
reduced cost, and slower increase in inbreeding over cycles in the
parental populations compared to RRGS_HYB. The authors lat-
er studied the effect of aggregating the data of two consecutive
cycles to train the RRGS_PAR model and showed that this in-
creased the selection accuracy, leading to an annual genetic prog-
ress 37.6% to 57.5% higher thanMRRS, depending on the num-
ber of GS candidates (Cros et al. 2018).

These simulation results promise a revolution in the genetic
improvement of oil palm yield. However, this needs to be put
into perspective by the empirical studies that even if they showed
that GS accuracies could be high, also revealed that GS was not
efficient for all yield components. Indeed, for some traits, the GS
model did not predict the genetic value of unevaluated individ-
uals better than a control model using pedigree data instead of
markers (Cros et al. 2015b, 2017). Yet, the simulations showed
that the main advantage of GS was its ability to shorten the
breeding cycles by avoiding field evaluations in some cycles,
and this is only possible if GS is efficient for all the yield com-
ponents that are currently the subject of phenotypic selection.
Otherwise, the progeny tests remain necessary in all breeding
cycles. Therefore, the practical application currently envisaged
to start implementing GS in oil palm is a two-stage scheme, with
an initial stage of genomic selection prior to progeny tests. This
would be better than the current first stage of phenotypic selec-
tion for two reasons. First, the number of yield components for
which GS is efficient is greater than the number of traits currently
subjected to phenotypic preselection. Second, the current selec-
tion prior to progeny tests is made on the parental phenotypes,
even though, as already mentioned, they may be poor indicators
of performance in hybrid crosses. By contrast, this would not be
a problem for genomic predictions obtained with a model
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calibrated on hybrid phenotypes. The potential of genomic pre-
selection was quantified based on the GS accuracies empirically
obtained by between-site validation for bunch production, a trait
which is normally not subjected to phenotypic selection prior to
progeny tests in the current schemes (Cros et al. 2017), and the
study showed that this would increase the performance of the
selected hybrids by more than 10% compared to a method with-
out preselection, thanks to higher selection intensity.

To be applied in practice, GS must also result in annual ge-
netic progress per unit cost higher than current selectionmethods.
Although GS generates additional costs related to genotyping,
these costs are low in comparison to the cost of phenotyping.
Thus, Jacob et al. (2017) indicated that, even assuming a
genotyping cost per sample as high as 300€, which seems to be
the maximum possible price for a 300 K SNP array, the ratio of
genotyping/phenotyping costs lays below 1/20. In addition, these
extra costs could possibly be offset by a reduction in phenotyping
costs, when it is possible to manage without some field evalua-
tions. In this case, Wong and Bernardo (2008) found that with a

genotyping cost of US$0.15 per datapoint, corresponding to
genotyping prices for SNPs, the cost per genetic progress unit
was 35% to 65% lower with GS than with conventional
selection.

Conclusions

The history of the genetic improvement of oil palm was marked
by three disruptive improvements that accelerated the rate of the
genetic progress: (1) understanding the heredity of the fruit form,
which led to the replacement of D by T in plantations; (2) the
discovery of hybrid vigor in bunch production which led to the
adoption of hybrid cultivars and to the replacement of mass
selection by MRRS; and (3) clonal selection, exploiting intra-
hybrid genetic variability. Today, GS appears to be a new

A4 A2 A1 B1 B2

A3 A6 B7 B3 A8 B4

A5 B6 B5 A6xB7 A8xB3

A7 B9 A5xB3 A5xB5 B8 A6xB5

A7xB7 A7xB9 A8xB9

Fig. S1 Pedigree of the example
population. Green: individuals
from group A; blue: individuals
from group B; turquoise: A × B
hybrid crosses

Table S1 Incomplete NCM2 mating design (the asterisks represent the
number of crosses)

Pisifera dura B3 B5 B7 B9

A5 *** ***

A6 *** ***

A7 *** ***

A8 *** ***

Table S2 Additive genetic values of progeny tested individuals

GCAs Standard
errors

uA5 −1.44 6.35

uA6 6.05 6.39

uA7 12.64 6.45

uA8 −3.35 6.35

uB3 10.60 6.48

uB5 3.96 6.45

uB7 −11.53 6.43

uB9 −1.91 6.49
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disruptive approach. However, further studies are required to
optimize it and make it efficient for all the yield components.
In particular, such studies need to focus on the optimization of the
training population and on the improvement of the prediction
model. New aspects should also be considered, like the use of
multi-omics data (transcriptomics, proteomics, etc.), the model-
ing of G ×E interactions, and the selection of ortets.

Although, thanks to the on-going methodological progresses
described here, the genetic improvement of yield components
will contribute more and more to the increase in oil palm yield,
it will not be sufficient to meet world demand while simulta-
neously minimizing environmental impacts (Rival and Levang
2014, p. 39). The genetic improvement of other traits related to
yield, in particular disease resistance, also has a major role to
play. In addition, improvements will have to be made at all levels
of the oil palm industry: generalization of access to high yield
plantmaterial, improvement in cultural practices, development of
infrastructures, and efficient organizations to collect and process
the bunches etc. Finally, appropriate development policies, with
for instance the ecological planning of the plantations, will be
necessary to limit deforestation, as a higher oil yield per hectare
will increase profitability and consequently encourage growers to
extend the planting area.
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Appendix. Estimation of oil palm genetic
values using the BLUP methodology and R
software

Here, we present a practical example of the estimation of oil
palm genetic values using BLUP with R software (R Core
Team 2017) and the breedR package (Muñoz and Sanchez
2018). It was chosen because the authors are familiar with
its use, but other packages can be used, including sommer
(Covarrubias-Pazaran 2016), RR-BLUP (Endelman 2011)
and ASReml-R (Butler et al. 2009). In this example, we will
estimate the GCA of parents from group A and group B eval-
uated in hybrid progeny tests while taking the pedigree-based
relationships into account. This example can be very easily
adapted for genomic prediction (GBLUP) as it only requires
replacing the genealogical relationship matrices by genomic
matrices, which could include individuals that have been ge-
notyped but not progeny tested. The data files and R script are
available at https://github.com/david-cros/article2018.

The data concern eight crosses made according to an incom-
plete NCM2 mating design between four group A Ds and four
group B Ps (Table S1). The crosses were planted according to a
RCBDwith three replicates. The pedigree is given in Fig. 4. The
yield obtained per cross in the different replicates (y) is listed in
Supplementary Table S1.A simple linearmixedmodelwas used,
with replicates as fixed effect (β) and the parental GCAs as
random effects (uA et uB):
y ¼ Xβ þ Z1uA þ Z2uB þ ε

In matrix form, the model is:

(

1 = 16,10

2 = 17,20

3 = 7,90

4 = 5,15

5 = 10,10

6 = 2,10

7 = 22,78
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⋮
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uA∼N 0; 0:5AAσ2
aA

� �
, uB∼N 0; 0:5ABσ2

aB

� �
and for example,

for the eight individuals in the pedigree of group A, the
coancestry matrix

0:5AA ¼

0:5 0
0 0:5

0:25 0
0:25 0

0:25 0:25
0 0

0:5 0
0 0:5

0:125 0
0:125 0:25

0:063 0
0:188 0

0:25 0:125
0:25 0:25

0:188 0
0:25 0

0:125 0:125
0 0:25

0:25 0:25
0:125 0:25

0:063 0:188
0 0

0:188 0:25
0 0

0:5 0:188
0:188 0:5

0:344 0
0:344 0

0:344 0:344
0 0

0:594 0
0 0:5

0
BBBBBBBBB@

1
CCCCCCCCCA

:

The estimates of the variance components were obtained
from the syntax:

where remlf90 is the function that analyzes the linear mixed
model using the REML, fixed is the argument representing
the fixed effects (here, replicates), generic the argument
representing the random genetic effects (GCAs) and indicat-
ing for each the associated incidence and variance-covariance
matrices (parent_A and parent_B are the columns in the
table yield_data). The objects Z.mat_A and Z.mat_B
are the incidence matrices Z1 and Z2, respectively. The objects
A.mat_A and A.mat_B are the matrices 0.5AA and 0.5AB

generated by the function kinship (package kinship2) that
computes the genealogical coancestry coefficients between
the individuals in the pedigree.

The analysis gives the following variance estimates (± stan-
dard error):σ2

aA = 192.15 ± 164.58, σ
2
aB = 195.36 ± 164.51,σ

2
ε =

7.32 ± 2.68, and the solutions for the block effects (BLUE):
β1 =6.85±8.98, β2=5.78±8.98, β3 = 6.47±8.98. The solutions
for the GCAs (BLUP) are given in Table S2. According to the
parental GCAs, the best possible cross would have been A7 ×
B3, with an expected yield of 29.60 (β+uA7 +uB3 ), while the
best cross in the trial was A7 × B9, with an expected yield of
20.91 (and a mean observed yield of 21.98).
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A B S T R A C T   

The prediction of clonal genetic value for yield is challenging in oil palm (Elaeis guineensis Jacq.). Currently, 
clonal selection involves two stages of phenotypic selection (PS): ortet preselection on traits with sufficient 
heritability among a small number of individuals in the best crosses in progeny tests, and final selection on 
performance in clonal trials. The present study evaluated the efficiency of genomic selection (GS) for clonal 
selection. The training set comprised almost 300 Deli × La Mé crosses phenotyped for eight palm oil yield 
components and the validation set 42 Deli × La Mé ortets. Genotyping-by-sequencing (GBS) revealed 15,054 
single nucleotide polymorphisms (SNP). The effects of the SNP dataset (density and percentage of missing data) 
and two GS modeling approaches, ignoring (ASGM) and considering (PSAM) the parental origin of alleles, were 
assessed. The results showed prediction accuracies ranging from 0.08 to 0.70 for ortet candidates without data 
records, depending on trait, SNP dataset and modeling. ASGM was better (on average slightly more accurate, less 
sensitive to SNP dataset and simpler), although PSAM appeared interesting for a few traits. With ASGM, the 
number of SNPs had to reach 7,000, while the percentage of missing data per SNP was of secondary importance, 
and GS prediction accuracies were higher than those of PS for most of the traits. Finally, this makes possible two 
practical applications of GS, that will increase genetic progress by improving ortet preselection before clonal 
trials: (1) preselection at the mature stage on all yield components jointly using ortet genotypes and phenotypes, 
and (2) genomic preselection on more yield components than PS, among a large population of the best possible 
crosses at nursery stage.   

1. Introduction 

The annual yield of palm oil is around four tons per hectare and 
world production is currently above 75 million tons of crude palm oil 
[1]. Most cultivated oil palms (Elaeis guineensis Jacq.) are hybrid cul-
tivars, mainly due to their high yield per hectare. Two parental and 
heterotic groups are involved in the production of hybrid cultivars, 
namely group A, consisting essentially of the Deli population (Asia) 
and, to a lesser extent, the Angola population, and group B, involving 
the other African breeding populations. Group A produces a small 
number of large bunches and group B produces a lot of small bunches. 

This complementarity and the resulting heterosis expressed on hybrids 
through sexual crosses explains why they were widely adopted in the 
1960s, leading to a 30 % yield increase [2]. In addition, commercial oil 
palm material is of tenera (T) (thin-shelled) fruit type, resulting from the 
cross between the thick-shelled dura (D) of group A and the shell-less 
and usually female sterile pisifera (P) of group B. Selection of hybrids is 
carried out through progeny tests in a modified reciprocal recurrent 
selection (MRRS) breeding scheme [3,4]. The best hybrids are primarily 
selected based on the parental general combining abilities (GCA). Al-
though the annual increase of the oil palm hybrids’ yield obtained 
through genetic improvement reached 1–1.5 % over the past decades 
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[5], this remains insufficient to face the expected increase in the de-
mand. 

An additional yield increase of 20–30 % compared to sexual crosses 
can be obtained by using clones (ramets) obtained from the micro-
propagation of top-ranking commercial hybrid T individuals (ortets) 
[6]. This allows taking advantage of the within hybrid crosses varia-
bility that results from parental heterozygosity. However, this approach 
has been hampered for a long time by a floral epigenetic abnormality 
producing mantled fruits, which could result in severe production loss. 
This abnormality is a somaclonal variation arising during tissue culture 
due to hypomethylation of the retrotransposon Karma in mantled var-
iants, leading to homeotic transformations and parthenocarpy [7–9]. 
The recent understanding of the molecular mechanism involved in the 
mantled disorder has led to the possibility of early detection of mantled 
ramets during the first stages of seedling growth [8], thus arousing a 
new impetus for oil palm clonal selection. The evaluation of ortets on 
their phenotypic value is possible, but some of the oil palm yield 
components have a low heritability (e.g. Nouy et al. [10] found a broad- 
sense heritability (H²) of 0 and 0.1 for bunch number and total bunch 
production, respectively), the estimation of their genetic values is thus 
of low reliability. As a consequence, breeders set clonal trials where 
they evaluate samples of ramets of candidate ortets that are preselected 
on the few yield traits with high heritability, i.e. usually the percentage 
of pulp per fruit (PF) and of oil per pulp (OP), for which, e.g., Nouy 
et al. [10] found H² values of 0.84 and 0.63, respectively. These trials 
give accurate estimations of the genetic value of the ortets but also 
extend, by around 10 years, the time required for the selection process 
for clone production, setting of trials and collection of phenotypic data. 
This considerably reduces the interest of clonal selection as, during this 
time, conventional hybrids were also improved. Another drawback of 
the clonal trials is that their cost means that only a small number of 
ortet candidates can be evaluated, thus limiting the selection intensity. 
There is, therefore, a need to optimize clonal selection in the oil palm. 

Genomic selection (GS) [11] is a marker-assisted selection (MAS) 
method with a high density of markers on the entire genome, so that at 
least one marker can be in linkage disequilibrium with each quantita-
tive trait locus (QTL) [12]. Compared to the previous MAS approach 
based on QTL detection, GS takes into account all the markers jointly 
and without any test of significance. In this way, even markers cap-
turing small QTL effects are used in the model predicting the genetic 
values, thus improving the efficiency of selection. GS is, therefore, the 
most appropriate MAS method for yield traits which are usually 
quantitative, i.e. controlled by many loci with small effect. The GS 
model is calibrated (or trained) on individuals genotyped and pheno-
typed (training set), and predicts the genetic value of a set of related 
individuals that are genotyped with the same markers. Before its 
practical application, the GS method must be evaluated and the pre-
diction model that gives the highest accuracy (i.e. the correlation be-
tween the predicted and the true genetic values) is retained [13]. The 
GS accuracy is estimated in a validation set, made of individuals gen-
otyped and phenotyped and representative of the population that will 
be used for application. Oil palm is one of the pioneer perennial crops 
on which GS studies have been carried out. The oil palm GS studies 
provided prominent results, such as the superiority of GS over both 
QTL-based MAS and phenotypic selection [14], and the possibility of 
increasing the performance of sexual hybrid crosses by genomic pre-
selection before progeny-tests [15]. The main advantages of GS for the 
oil palm are its ability to enhance selection intensity and/or to shorten 
the generation interval, thus increasing the annual genetic gain [16]. A 
recent study using a large training set estimated the GS accuracy when 
predicting the phenotypes of hybrid individuals [17]. Phenotypes are 
estimates of the total genetic values but they often have low reliability, 
and therefore, when evaluating GS for clonal selection, it would be 
better to use clonal values as the target values predicted by the GS 
models. This has not yet been done in the oil palm, although the po-
tential benefits of genomic clonal selection have already been shown in 

other perennial crops such as the eucalyptus [18] and the rubber tree 
[19]. 

Given that ortets come from a cross between two oil palm origins, 
the genomic prediction of their genetic values can be done by two 
modeling approaches [20], which are the genomic extensions of the 
modeling approach developed by Stuber and Cockerham [21] for in-
terpopulation hybrids. The first one, the population-specific effects of 
single nucleotide polymorphism (SNP) alleles model (PSAM, or BSAM 
in the animal breeding literature, for breed instead of population), 
considers that alleles of the same marker have different effects in the 
hybrids depending on their population of origin, whereas the second 
approach, the across-population SNP genotype model (ASGM), con-
siders that alleles of a marker have the same effect regardless of their 
population of origin. Studies in livestock showed that BSAM can out-
perform ASGM in terms of accuracy with a low number of SNPs, a large 
training set and slightly related or unrelated individuals [20]. However, 
to our knowledge, in the context of plant hybrids, these types of models 
were only compared in simulated maize populations [22]. 

The goals of this empirical study were: (1) to evaluate the efficiency 
of GS for clonal selection, using ortets of known clonal value to validate 
genomic predictions, (2) to compare ASGM and PSAM approaches, and 
(3) to evaluate the possibility of using GS instead of the current phe-
notypic selection to select the hybrid individuals to test in the clonal 
trials. The training set was composed of almost 300 Deli × La Mé 
crosses and the validation set of 42 Deli × La Mé ortets. The parents of 
the training crosses and the validation ortets were genotyped using 
genotyping-by-sequencing (GBS). Predictions were made for eight yield 
components, with three bunch production traits, i.e. bunch number 
(BN), average bunch weight (ABW) and total bunch production (FFB, 
for fresh fruit bunch), and five bunch quality traits, i.e. average fruit 
weight (AFW), fruit to bunch (FB), pulp to fruit (PF) and oil to pulp 
(OP) ratios and number of fruits per bunch (NF). The effect of the SNP 
dataset (SNP density and percentage of missing data) was studied by 
filtering SNPs with different maximum percentages of missing data. 

2. Materials and methods 

2.1. Plant materials and experimental designs 

The plant material used to train the GS model comes from controlled 
crosses between Deli and La Mé (LM) individuals. Deli material comes 
from four ancestors of an unknown area of Africa planted in Indonesia 
in 1848. The La Mé material used here comes from three founders 
collected in Ivory Coast between 1924 and 1930 [15,23]. For bunch 
production predictions, the training set was composed of 295 progeny- 
test crosses planted from 1995 to 2000 at Aek Loba Timur (ALT) and 
involving 108 Deli and 102 La Mé. For bunch quality predictions, a 
sample of 279 crosses involving 103 Deli and 100 La Mé parents were 
used (Table 1). The pedigrees of these populations are known over 
several generations (see Cros et al. [12]). ALT is located at 2° 39′ N – 99° 
42′ E in North Sumatra, on the SOCFINDO estate (Indonesia) and is 
constituted of 28 trials planted on deep loamy sand soils, with low 
water deficit and high insolation, and benefiting from standard cultural 
practices [24]. The experimental design used in these trials was either a 
balanced lattice of four to five ranks or randomized complete block 
designs (RCBD), described in detail by Cros et al. [15]. 

The validation set was composed of 42 Deli × La Mé tenera ortets, 
evaluated in clonal trials involving on average 69 ramets per clone for 
production traits and a subset of 34 ramets per clone for quality traits. 
The ramets were established in three out of the 28 trials of ALT and 
were planted in 1995 and 1998 (Table 1). The 42 ortets were chosen 
among individuals from various hybrid crosses planted on seven trials 
of an earlier set of progeny tests, located at Aek Kwasan 1 (AK1), which 
was also located on the SOCFINDO estate and benefited from the same 
agricultural practices. The plantation of the seven trials of AK1 took 
place between 1975 and 1979. The 42 ortets come from 17 families of 
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full sibs with 16 La Mé parents and 12 Deli parents. These families were 
composed of one to five ortets each, with four families having five or-
tets each. 

2.2. Phenotyping 

All the individuals, i.e. the training hybrid crosses, the 42 hybrid 
ortets and their ramets, were phenotyped for eight traits. Five traits 
were assessed for bunch quality: average fruit weight (AFW), fruit to 
bunch (FB), pulp to fruit (PF), and oil to pulp (OP) ratios, and number 
of fruits per bunch (NF); and three traits for bunch production: bunch 
number (BN), average bunch weight (ABW), and total bunch produc-
tion (FFB). For quality traits, data were collected when plants were 
from five to nine years old at ALT and from six to nine years old at AK1. 
For production traits, data were collected when the plants were from 
three to seven years old in both sites. 

2.3. Genotyping 

Molecular data were obtained by GBS [25,26] for the 42 ortets, 93 
Deli and 91 La Mé parents of the training hybrid crosses (Table 1). 
Ortets genotypes were obtained from two or three samples collected on 
different ramets (thus allowing controlling the legitimacy of the ra-
mets). DNA extraction and GBS were performed as described in Cros 
et al. [15], using the PstI and HhaI restriction enzymes. The raw fastq 
sequence data were processed with Tassel GBS v. 5.2.44 [27], using the 
Bowtie2 software for alignment [28], and VCFtools 0.1.14 [29]. The 
indels were discarded, the datapoints with depth below five were set to 
missing, the SNPs that were not biallelic, with more than 75 % of 
missing data or on the unassembled part of the genome were discarded 
(see Cros et al. [15] for more details about SNP calling and filtering). 
This resulted in a dense genome covering with 15,054 SNPs. The 
average percentage of missing data was 23.08 % (3.64 %–43.42 % per 
individual). To explain the differences in accuracy between ASGM and 
PSAM, the distribution of the minor allele frequency (MAF) and of the 
frequency of the alternate allele (i.e. that was not present on the re-
ference genome) were computed in Deli and La Mé, as well as the 
correlation among populations for each of these two parameters. 

2.4. Imputation of missing SNP data and phasing 

Imputation of missing SNP data and phasing were carried out with 
Beagle 4.0 [30]. This software can consider the family relationships (i.e. 
parent-offspring) and infers missing genotypes using genotype like-
lihood computed from the pedigree. The process followed to impute 
and phase the SNP data is given in Fig. 1. The pedigree of the popu-
lation involved in this study is available over several generations. For 
imputation, the initial SNP dataset containing all the genotyped in-
dividuals was divided into three distinct SNP datasets containing the 
Deli parents, the La Mé parents and the ortets, respectively. The Deli 
and La Mé SNP datasets were imputed separately giving to the software 
their respective pedigrees, and were then merged with the unimputed 
SNP dataset of ortets. The resulting global dataset was imputed and 

phased, providing the software with the pedigree file indicating the Deli 
and La Mé parent of each ortet. Nine ortets had one parent for which 
the DNA was unavailable but, for the missing parents that were ob-
tained through selfing, the selfed grandparents were used in the pedi-
gree instead of the actual parents, as grandparental DNA was available 
(for the other steps of the analysis that required a pedigree, the real 
pedigree was used). As some ortets remained with one parent that was 
not genotyped and that did not originate from a selfing, we used a 
home-made R script to recover the parental origin of ortet phases. For 
each ortet, this script considered the two phases, one after another, and 
checked all along the genome if similar blocks of consecutive SNPs were 
found in the Deli and La Mé parent. Each ortet phase was finally as-
signed to the parental population with the highest number of SNP 
blocks specific to the population that were found on the considered 
ortet phase.. 

2.5. Definition of SNP datasets 

To quantify how the characteristics of the SNP dataset (i.e. max-
imum percentage of missing data allowed per SNP, pmax, and resulting 
number of SNPs, nsnp) affected the GS accuracy, we made genomic 
predictions using different SNP datasets with varying maximum per-
centage of missing data per SNP, as shown in Table 2. Thereby, for the 
rest of the study, the SNP dataset will refer to an SNP matrix with a 
given number of SNPs resulting from the filtering made on the max-
imum percentage of missing data allowed per SNP. 

2.6. Prediction models and computation of genetic values of unobserved 
clones 

Two approaches were implemented to predict the genetic value of 
the validation clones: the across-population SNP genotype model 
(ASGM) and the population-specific effects of SNP alleles model 
(PSAM). In addition, for both approaches, two models were tested: a 
purely additive model (ASGM_A and PSAM_A) and a model combining 
additive and dominance effects (ASGM_AD and PSAM_AD). The 
ASGM_A approach used a model with a single random genetic effect, 
corresponding to the additive genetic value of the parents of the 
training hybrid crosses and of the validation clones. The ASGM_AD and 
PSAM_AD models also included a random dominance effect of crosses 
and ortets. The PSAM_A approach used two random effects partitioning 
the additive genetic values of each individual into two parts originating 
from Deli and La Mé alleles. All these four models were implemented 
separately on each trait (univariate models). For GS, the GBLUP sta-
tistical approach was used [31,32], and the corresponding models were 
termed G_ASGM_A, G_ASGM_AD, G_PSAM_A, and G_PSAM_AD. In ad-
dition, to evaluate the usefulness of the SNP data, these four models 
were implemented with pedigree data instead of SNPs (control PBLUP 
models, termed P_ASGM_A, P_ASGM_AD, P_PSAM_A, and P_PSAM_AD). 

In all cases, the models were trained with the phenotypic data of 
ALT hybrids and the genomic data of their parents, and the genetic 
values of the 42 validation clones were predicted. For all the models 
mentioned above, no phenotypic data of the validation clones were 

Table 1 
Characteristics of the datasets used for training and validation.        

Hybrid crosses (training set) Hybrid clones (validation set) 

bunch production bunch quality bunch production bunch quality  

Number of crosses or ortets 295 279 42 42 
Number of individuals or ramets 19,668 12,341 2,908 1,439 
Average number of individuals per cross or ramets per clone (min–max) 67 (17–503) 44 (21–274) 69 (5–138) 34 (4–74) 
Number of Deli parents (genotyped) 108 (93) 103 (90) 16 16 
Number of La Mé parents (genotyped) 102 (91) 100 (89) 12 12 
Age at time of data collection (years) 3-7 5-9 3-7 5-9 
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provided to the prediction models. This corresponds to a breeding si-
tuation where predictions are made for immature individuals (e.g. 
nursery plantlets belonging to crosses that were not evaluated in pro-
geny-tests but were produced by mating the best parents selected at the 
end of the progeny-tests). However, ortet selection can also be made 
within the crosses evaluated in progeny tests. In this case, the ortet 
candidates have phenotypic data records, which should be taken into 
consideration along with their SNP data when predicting their clonal 
value. This was evaluated with the G_ASGM_A model, simply including 
the adjusted phenotypic value of the validation ortets (see below) to the 
phenotypic dataset used to train the model, and is referred to as the 
G_ASGM_A + pheno approach. 

All GS analyses were run on a server of the CIRAD-UMR AGAP HPC 
data center of the South Green bioinformatics platform (http://www. 
southgreen.fr/), using a homemade R script. 

2.6.1. Across-population SNP genotype models (ASGM) 
The model used for the G_ASGM_AD approach was as follows: 

= + + + + +×X Z Z Z Zy g g b pi Deli LM1 2 3 4

with: y the observed phenotypes of the training hybrid individuals, 
the vector of fixed effects (phenotypic mean, trial effects, block effects 
and, for bunch production traits, age), gi ∼ N(0, Hi a

2
i ) the individual 

additive genetic effects, ×gDeli LM ∼ N(0, ×HDeli LM d×
2
Deli LM ) the genetic 

dominance effects, b ∼ N(0, I b
2) the incomplete block effect, and p ∼ 

N(0, I p
2) the elementary plot effects. X , Z1, Z2, Z3 and Z4 are the in-

cidence matrices associated to , gi, ×gDeli LM , b and p respectively. Hi a
2
i

and ×HDeli LM d×
2
Deli LM are the variance-covariance matrices associated 

with gi and ×gDeli LM , respectively. a
2
i and ×d

2
Deli LM are the additive and 

dominance variances, respectively. ∼ N(0, I 2) is the vector of re-
sidual effects and I the identity matrix. To implement this model in 
practice, two specificities of our dataset had to be taken into account. 
First, a few parents of the training crosses were not genotyped 
(Table 1), and the H . matrices had therefore to be made with the 
genealogical data of hybrid crosses with ungenotyped parents and with 
the SNP data of hybrid crosses with genotyped parents (computed with 
the SNP data of their parents, see below) and of the ortets. All H .
matrices subsequently in this paper will refer to matrices combining 
genealogical and genomic information. Hi

1 is the inverse of Hi, com-
puted according to Misztal et al. [33] as: 

= +H A G A
0 0
0i i

i i
1 1

1 1
22

, where Gi
1 and Ai

1
22 are the inverse of 

the realized and the genealogical additive relationship matrices, re-
spectively, of the 42 ortets and the hybrid crosses with genotyped 
parents, and Ai

1 is the inverse of the genealogical relationship matrix 
of all hybrid crosses (i.e. the few with ungenotyped parents and the 
ones with genotyped parents) and the 42 ortets. Second, the pheno-
typed individuals constituting the hybrid crosses were not genotyped 
while they had to be connected to the validation ortets through their 
genomic relationships (only the parents of the hybrids were genotyped, 
except a few parents that were not genotyped and for which the gen-
ealogical relationships were used, as explained above). To get geno-
types for the hybrid crosses with genotyped parents, we computed for 
each cross the mean genotypes expected from the parental genotypes 

Fig. 1. Imputation and phasing scheme for the production of 
the SNP datasets used for genomic predictions with the two 
models PSAM (population-specific effects of SNP alleles 
model) and ASGM (across-population SNP genotype model). 
pA, pB, A × B: Deli parents, La Mé parents and Deli × La Mé 
hybrid ortets, (I) denotes imputed data. 

Table 2 
Characteristics of the SNP datasets defined based on a threshold in terms of maximum percentage of missing data per individual.          

Maximum percentage of missing data allowed per SNP pmax (resulting average) 

0 (0) 5 (1.03) 10 (2.19) 25 (5.92) 45 (12.10) 75 (23.08)  

Average percentage of missing data per individual in La Mé 0 1.49 3.20 8.81 15.31 23.95 
Average percentage of missing data per individual in Deli 0 0.87 1.83 4.76 10.62 22.56 
Number of SNPs nsnp 2,447 5,620 6,898 9,205 11,707 15,054 
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(i.e. for SNP j in cross i, the mean number of copies of the minor allele of 
SNP j expected to be found in the hybrid individuals of i), assuming this 
was relevant considering the relatively large number of individuals per 
cross (Table 1). The genomic additive relationship matrix G was ob-
tained as: =

=
G XX

p p2 (1 )l l l1
nSNP , with =X Z P, X ’ the transpose of 

matrix X, Z the SNP matrix containing the number of copies of the 
minor allele at an SNP (ranging from 0 to 2), P a matrix given by 

=P p2 l, and pl the frequency of the minor allele at SNP l [34]. ×HDeli LM
is the dominance relationship matrix combining genomic dominance 
relationships between crosses with parents and clones, and genealogical 
dominance relationships between the few crosses with ungenotyped 
parents. ×HDeli LM

1 was computed following the same method as Hi
1

except that the additive relationship matrices were replaced by the 
dominance relationship matrices. The realized dominance relationship 
matrix GD was computed according to Su et al. [35] as: 

=GD p q p q
'

2 (1 2 )l l l l
, with the n × m matrix (n: number of hybrid 

crosses and clones and m: number of SNPs) of heterozygosity coeffi-
cients with element = p q0kl l l if clone or ortet k is homozygous and 

= p q1kl l l if it is heterozygous at locus l, and pl and ql the fre-
quencies of the first and the second allele at locus l. The purely additive 
approach ASGM_A used the same model without the dominance effect. 

For the P_ASGM_A and P_ASGM_AD, Hi was replaced by the ad-
ditive genealogical relationship matrix Ai and, for P_ASGM_AD, 

×HDeli LM was replaced by the genealogical dominance relationship 
matrix. 

The estimated genetic value for the validation clones was ̂gi and, for 
G_ASGM_AD and P_ASGM_AD, + ×ˆ ˆg gi Deli LM . 

2.6.2. Population-specific effects of SNP alleles models (PSAM) 
The model used for G_PSAM_AD was as follows: 

= + + + + + +×X Z Z Z Z Zy g g g b pDeli LM Deli LM1 2 3 4 5

with gDeli ∼ N(0, HDeli g
2
Deli ) and gLM ∼ N(0, HLM g

2
LM ) the additive 

effects inherited by the parents of the hybrid crosses and the ortets from 
the Deli and La Mé populations, respectively, and ×gDeli LM ∼ N(0, 

×HDeli LM d×
2
Deli LM ) the dominance effects of the crosses and clones. X , Z1, 

Z2, Z3, Z4, Z5 are the incidence matrices associated to , gDeli, gLM , 
×gDeli LM , b and p, respectively. HDeli g

2
Deli , HLM g

2
LM and × ×HDeli LM d

2
Deli LM

are the variance-covariance matrices associated to gDeli, gLM and ×gDeli LM , 
respectively. g

2
Deli and g

2
LM are the additive genetic variances of the Deli 

and La Mé populations, respectively, and ×d
2
Deli LM is the genetic dom-

inance variance of crosses and clones. HDeli is the matrix combining the 
additive realized relationships of the clones and the genotyped Deli 
parents of the crosses and the additive genealogical relationships of the 
few ungenotyped Deli parents of the hybrid crosses. HLM is defined si-
milarly for the La Mé population. To build HDeli, we created first the 
matrix of additive realized relationships of Deli parents GDeli(in-
corporating the Deli parents of the training and validation hybrid crosses 

and clones) as follows [49]: G =
G G

G G
Deli

Deli
Deli,Deli

Deli
Deli,Deli×LM

Deli
Deli×LM,Deli

Deli
Deli×LM,Deli×LM

with, G =Deli
Deli,Deli Z Z( 2p 1 )( 2p 1 )Deli DeliDeli Deli ,G =Deli

Deli,Deli×LM

Z Z( 2p 1 )( p 1 )Deli Deli×LMDeli Deli and G =Deli
Deli×LM,Deli×LM

Z Z( p 1 )( pDeli DeliDeli×LM Deli×LM 1 ) . ZDeli and ×ZDeli LM are the ma-
trices containing the number of copies of reference allele in the geno-
typed Deli parents (coded as 0, 1 or 2) and in the Deli haplotype of clones 
(coded as 0 or 1), respectively, pDeli is the vector containing the allele 
frequencies based on SNP genotypes of Deli parents and Deli haplotype 
in clones and 1 is a vector of ones. GDeli was then adjusted to be in the 
same scale and compatible with the genealogical additive relationship 
matrix of the clones and the genotyped Deli parents ADeli22, according to 
Christensen et al. [50] and Xiang et al. [49], and using weight 0.001, to 
give the GDeliw matrix. Then the inverse of HDeli was constructed as:  

= +H A G A
0
0

0
Deli

1
Deli

1
Deli

1
Deli

1
w 22

, with ADeli
1 the inverse of the 

genealogical relationship matrix of all the Deli parents and clones. HLM
was created following the same procedure as HDeli. ×HDeli LM is the 
dominance relationship matrix containing both realized dominance re-
lationships between clones and crosses implying genotyped parents, and 
genealogical dominance relationships between the crosses implying un-
genotyped parents, computed as: =×H H HDeli LM Deli LM , with the 
Kronecker product. 

For P_PSAM_A and P_PSAM_AD, HDeli and HLM were replaced by the 
additive genealogical relationship matrices ADeli and ALM and, for 
P_PSAM_AD, ×HDeli LM was replaced by the genealogical dominance 
relationship matrix. 

The estimated genetic value for the validation clones was calculated 
as the sum of the additive genetic values inherited from the two par-
ents, i.e. +ˆ ˆg gDeli LM and, for G_PSAM_AD and P_PSAM_AD, of its dom-
inance value, i.e. + + ×ˆ ˆ ˆg g gDeli LM Deli LM . 

2.7. Prediction accuracies 

The ability of each model to predict the reference clonal value of the 
42 validation clones (see below) was evaluated through their prediction 
accuracy, computed as the correlation between the reference value and 
the predicted clonal values. 

Pairwise comparisons of prediction accuracies among models were 
made for each trait using the Hotelling–Williams t-test [36]. This test 
compares two non-independent correlations, i.e. having one variable in 
common, which in our case is the reference value of the 42 clones. This 
test was applied using the R package psych [37]. 

2.8. Determination of the reference clonal values predicted by the models 

In order to validate the different prediction models, clonal genetic 
values were obtained for each clone from the phenotypic data collected 
on their ramets. Subsequently in this paper, they will be referred to as 
reference genetic values. They were computed using a simple linear 
mixed model to adjust the phenotypic values of the ramets for the ef-
fects of experimental design, i.e. clonal trials, blocks, incomplete 
blocks, elementary plots and, for bunch production traits, age. In this 
model, clones were included as a fixed effect. 

2.9. Accuracy of phenotypic selection before clonal trials 

To evaluate the possibility of using GS instead of the current phe-
notypic selection (PS) to select the hybrid individuals to test in the 
clonal trials, the PS accuracy was computed for each trait. It was de-
fined as the correlation between the ortet adjusted phenotypes and the 
reference clonal genetic values. The adjusted phenotype was obtained 
for each ortet from its phenotypic data collected in AK1, using a simple 
linear mixed model with individuals as random effect and hybrid 
crosses and all the effects related to the experimental design, i.e. trials, 
blocks, incomplete blocks, elementary plots and, for bunch production 
traits, age, as fixed effects. Finally, each ortet had for each trait an 
adjusted phenotype that was equal to the sum of the individual effect of 
the ortet, the effect of its cross and the mean residual effect over its 
phenotypic data records. 

3. Results 

3.1. Distribution of frequencies of minor and alternate alleles across 
population 

The distribution of MAF in both Deli and La Mé populations showed 
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a reduction in the number of SNPs with the increase of MAF (Fig. 2). 
The MAF ranged from 0 to 0.5 for both La Mé and Deli populations and 
the average was 0.1 for La Mé (Fig. 2a) and 0.07 for Deli (Fig. 2b). Most 
SNPs had low MAF values (<0.05) in both populations. La Mé popu-
lations had 65.6 % SNPs with MAF < 0.05, against 73.3 % SNPs in Deli 
(i.e. 11.7 % more SNPs with low MAF in Deli). In contrast, fewer SNPs 
had high MAF (>0.40) in both populations, and they were higher in 
proportion in La Mé (8.2 % SNPs) than in Deli (4.8 %). This showed the 
lower genetic diversity of Deli parents compared to La Mé, which re-
sulted from their contrasted history with more generations of selection, 
drift and inbreeding in Deli than in La Mé. 

Correlation between La Mé and Deli MAF (Fig. 2c) shows SNPs 
largely concentrated alongside x and y axes, demonstrating that most 
SNPs have distinct segregation patterns among Deli and La Mé, i.e. 
being fixed or almost fixed in one population while segregating, and in 
many cases with a high MAF, in the other population. Thus, 31.5 % of 
the SNPs were fixed or almost fixed in one population (MAF < 0.05) 
while segregating with MAF ≥ 0.05 in the other population. This is the 
result of the high genetic difference between Deli and La Mé popula-
tions, for which the Fst fixation index reaches 0.55 [38]. In detail, for 
these SNPs, MAF < 0.05 was more often observed in Deli (19.6 % of all 
SNPs had MAF < 0.05 in Deli and MAF ≥ 0.05 in La Mé) than in La Mé 
(11.9 % of all SNPs had MAF < 0.05 in La Mé and MAF ≥ 0.05 in Deli), 

again as a result of the lower genetic diversity of the Deli population. 
Also, the number of SNPs segregating with MAF > 0.05 in both po-
pulations was low (14.8 % of all SNPs). Despite these differences, a 
large number of SNPs (53.7 % of all SNPs) had MAF < 0.05 in both 
populations, showing segregation with rare alleles in both Deli and La 
Mé. However, correlation of the frequency of the alternate allele be-
tween La Mé and Deli (Fig. 2d) over all SNPs showed that 62.8 % of 
SNPs have a frequency of alternate allele smaller than 0.05 in one po-
pulation and greater than 0.95 in the other population, i.e. fixed or 
almost fixed in the two populations but for different alleles. Hence, 
given that most of the SNPs (85.2 %) have either MAF < 0.05 in one 
population and MAF ≥ 0.05 in the other population (31.5 %), or MAF 
< 0.05 in both populations but for different alleles (53.7 %), the use of 
PSAM is justified. 

3.2. Effect of GS prediction model and SNP dataset on prediction accuracy 

Prediction accuracies of GS methods ranged from 0.08 to 0.70 de-
pending on prediction model, trait and SNP dataset (Fig. 3) for additive 
models (G_ASGM_A and G_PSAM_A). Indeed, in a preliminary analysis, 
inconsistent differences or similar accuracies were observed between 
additive models and additive + dominance models, depending on 
marker dataset and trait (see Supplementary Fig. S. 1). Henceforward, 

Fig. 2. Distribution of minor allele frequency (MAF) in La Mé (a) and Deli (b) populations, and correlation of MAF (c) and frequency of alternate alleles between La 
Mé and Deli (d). In (c) and (d) panels, each dot represents an SNP. 
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we will only refer to additive models. 
On average over traits and SNP datasets, G_ASGM_A was more ac-

curate (0.45) than G_PSAM_A (0.43), with the mean prediction 

accuracy per trait over SNP datasets ranging from 0.14 (PF) to 0.65 (FB) 
for G_ASGM_A and from 0.13 (PF) to 0.59 (ABW) for G_PSAM_A. 
G_ASGM_A obtained a mean prediction accuracy greater than 

Fig. 3. Prediction accuracies according to traits, SNP datasets and prediction models.  
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G_PSAM_A for five traits out of eight, with G_PSAM_A being on average 
slightly more accurate than G_ASGM_A for AFW, NF and ABW (Table 3). 
Considering the maximum accuracy over all SNP datasets, the predic-
tion accuracy ranged from 0.18 (PF) to 0.70 (FB) for G_ASGM_A and 
from 0.23 (PF) to 0.63 (ABW) for G_PSAM_A (Table 3), and G_ASGM_A 
was again more often better than G_PSAM_A (with G_PSAM_A being 
more accurate for PF, NF and ABW). Considering the different SNP 
datasets and traits, G_ASGM_A gave higher prediction accuracy than 
G_PSAM_A in 58.3% of the cases, with the largest differences in pre-
diction accuracy in favor of G_ASGM_A, up to 0.22 with OP at pmax = 
45%-nSNP = 11,707 (although they were non-significant) (Fig. 3 and  
Table 4). Significant differences were only found in favor of G_PSAM_A, 
but they were scarce (i.e. only for NF in three SNP datasets, pmax=5%- 
nSNP=5,620, pmax=10%-nSNP=6,898 and pmax=45%-nSNP=11,707). 
Despite the overall lower prediction accuracies of G_PSAM_A compared 
to G_ASGM_A, G_PSAM_A was the most accurate method for ABW and 
NF with all the SNP datasets, except for NF with pmax=75%- 
nSNP=15,054. G_ASGM_A, therefore, appeared to be a the best ap-
proach (i.e. generally more accurate, in addition to being easier to 
implement) for predicting clonal values for oil palm yield components, 
although G_PSAM_A could be worthwhile for some traits (ABW and NF 
here). 

Prediction accuracies could be broadly improved when relationship 
matrices were computed using SNPs (G_ASGM_A and G_PSAM_A) in-
stead of genealogical data (control pedigree-based models P_ASGM_A 
and P_PSAM_A), in particular for three traits FB, BN and ABW. The 
maximum prediction accuracies of GS over all SNP datasets out-
performed pedigree-based models for seven traits out of eight (except 

for AFW with G_PSAM_A) (Table 5 and Fig. 3). The largest difference 
was observed in BN for pmax = 75 %-nsnp = 15,054, with G_ASGM_A 
accuracy being 0.67 higher than P_ASGM_A. Significant differences 
between GS models and their pedigree-based control models were 
found for five traits, with four traits (FB, OP, BN and ABW) where GS 
was the best and one trait (AFW) where pedigree-based models were 
more accurate (Table 5). The percentage of combinations of SNP da-
tasets and traits where G_ASGM_A was more accurate than its control 
pedigree-based version reached 83.3%, against only 64.6% for 
G_PSAM_A. 

The SNP dataset affected the prediction accuracy differently ac-
cording to the trait and the model. With G_ASGM_A, prediction ac-
curacies tended to increase with SNP density before plateauing (except 
for AFW) and slightly decreasing in some cases. This suggested that 
more useful information was captured for prediction purposes when 
using more SNPs (to a certain limit) and that the percentage of missing 
data was of lesser importance. On the other hand, a reduction of ac-
curacies was observed with SNP density for AFW. For G_PSAM_A, pre-
diction accuracies increased, and usually plateaued, for only two traits 
(AFW and BN). For the other traits, prediction accuracies remained 
stable or tended to decrease with increasing marker density and max-
imum percentage of missing SNP data. 

However, the use of a different SNP dataset for each combination of 
trait and model seems unrealistic for the practical application of GS. 
Therefore, in order to identify the optimal SNP dataset(s) that would 
maximize GS accuracy, we computed for each GS prediction model and 
SNP dataset the mean prediction accuracy over the traits. For 
G_ASGM_A, this value increased with the SNP density (0.41 with SNP 
dataset pmax = 0 %-nsnp = 2,447 and 0.43 with pmax = 5 %-nsnp = 
5,620), before plateauing at 0.46 with the subsequent SNP datasets. 
This shows that, for G_ASGM_A, the number of SNPs was of greater 
importance than the percentage of missing data per SNP. Mean pre-
diction accuracy over the SNP datasets forming the plateau ranged from 
0.17 (PF) to 0.66 (FB), and were close to the highest accuracies 
achieved over all the SNP datasets (Table 3). For G_ASGM_A, there was 
therefore a minimum of 6,898 SNPs required to reach maximum pre-
diction accuracy on average over all traits. For G_PSAM_A, the results 
differed, with a peak in mean prediction accuracy at 0.47 with SNP 
dataset pmax=10%-nsnp=6,898 and mean prediction accuracy de-
creasing when less SNPs were used, falling to 0.39 with pmax=0%- 
nsnp=2,447, and decreasing when there were more missing data, falling 
to 0.41 with pmax=75%-nsnp=15,054. This shows that G_PSAM_A was 
more sensitive to the SNP dataset than G_ASGM_A, making again 
G_PSAM_A less appealing. Therefore, for the final part of the study, we 
decided to focus on G_ASGM_A. 

3.3. Comparison of prediction accuracies of PS and GS 

Fig. 4 presents the prediction accuracies of PS and the mean pre-
diction accuracy of G_ASGM_A over the best datasets (i.e. with pmax 

from 10 % to 75 % and nsnp from 6,898 to 15,054), with (G_ASGM_A + 

Table 3 
Mean prediction accuracies according to trait and prediction model.       

Traits Mean accuracies over all SNP 
datasets 

Maximum accuracies over all SNP 
datasets 

G_ASGM_A G_PSAM_A G_ASGM_A G_PSAM_A  

AFW 0.48 0.49 0.57 (0 %) 0.51 (10 %/45 
%/75 %) 

FB 0.65 0.58 0.70 (25 %) 0.62 (10 %/75 %) 
PF 0.14 0.13 0.18 (45 %) 0.23 (10 %) 
OP 0.52 0.38 0.55 (45 %) 0.45 (10 %) 
NF 0.47 0.57 0.54 (75 %) 0.61 (10 %) 
FFB 0.47 0.41 0.55 (10 %) 0.51 (45 %) 
BN 0.31 0.30 0.37 (75 %) 0.35 (75 %) 
ABW 0.53 0.59 0.58 (75 %) 0.63 (5 %) 
Mean 0.45 0.43 0.51 0.49 

Bunch production: bunch number (BN), average bunch weight (ABW) and total 
bunch production (FFB); bunch quality: average fruit weight (AFW), fruit to 
bunch (FB), pulp to fruit (PF), and oil to pulp (OP) ratios, and number of fruits 
per bunch (NF); genomic prediction models: across-population SNP genotype 
models (ASGM_A), population-specific effects of SNP alleles models (PSAM_A). 
Values in brackets indicate the corresponding SNP dataset, defined on its 
maximum percentage of missing data.  

Table 4  
Pairwise comparison of prediction accuracies among genomic selection and pedigree-based models, according to SNP dataset and trait. For any pair of models, the 
values indicate the difference in prediction accuracy between the two models (model1 – model2). SNP datasets are defined based on the maximum percentage of 
missing data allowed per SNP pmax and the resulting number of SNPs nSNP and are labeled pmax%-nSNP. Significance of pairwise comparisons by Hotelling–Williams t- 
test: *0.05 > P ≥ 0.01; **0.01 > P ≥ 0.001; ***P < 0.001.            

SNP dataset Compared models AFW FB PF OP NF FFB BN ABW   

P_ASGM_A – P_PSAM_A −0.06 0.15* 0.06 −0.03 −0.04 0.03 −0.25** −0.04 
0 %-2447 G_ASGM_A – G_PSAM_A 0.14 0.03 0.01 0.13 −0.12 0.05 −0.03 −0.12 
5 %-5620 G_ASGM_A – G_PSAM_A 0.02 0.07 0.01 0.10 −0.13* 0.08 0.06 −0.11 
10 %-6898 G_ASGM_A - G PSAM_A 0.00 0.07 −0.07 0.05 −0.14* 0.08 −0.01 −0.08 
25 %-9,205 G_ASGM_A - G PSAM_A −0.03 0.11 −0.02 0.12 −0.05 0.13 0.00 −0.01 
45 %-11,707 G_ASGM_A – G_PSAM_A −0.09 0.16 0.08 0.22 −0.15* −0.02 0.00 −0.03 
75 %-15,054 G_ASGM_A - G PSAM_A −0.08 −0.02 0.08 0.20 0.04 0.09 0.02 −0.01 
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pheno) and without phenotypic data of the ortets. Variation of PS ac-
curacy was large between traits, going from -0.03 for ABW to 0.63 for 
OP. Very low PS accuracies (<0.1) were obtained for ABW and FFB, 
meaning that PS would have been inefficient for these two traits. The 
highest PS accuracies were achieved in OP (0.63) and PF (0.59) 
(Table 6 and Fig. 4). These two traits are known to have moderate to 
high heritability in the oil palm [2] and are consequently routinely used 
for preselection before clonal trials. This was the case here, as indicated 
by the intensity of PS for these two traits, which was the highest among 
the eight traits studied (Table 6). 

The GS prediction accuracy obtained with the best SNP datasets was 
generally higher with G_ASGM_A + pheno than with G_ASGM_A (ex-
cept for AFW, where a slight decrease was found) (Fig. 4). On average 
over all the traits, G_ASGM_A + pheno thus reached 0.53, against 0.46 

for G_ASGM_A (i.e. + 15.2 %). The prediction accuracy of G_ASGM_A 
and G_ASGM_A + pheno obtained with the best SNP datasets was above 
PS prediction accuracies for six and seven traits, respectively, out of 
eight. On average over all traits, the prediction accuracies of G_ASGM_A 
and G_ASGM_A + pheno were, respectively, 64.3 % and 89.3 % greater 
than PS (0.28). The case where GS outperformed PS the most was ABW 
with the G_ASGM_A + pheno model, with an accuracy of 0.62 against 
-0.03. PS only surpassed G_ASGM_A for two traits (PF and OP) and 
G_ASGM_A + pheno for one trait (PF). 

4. Discussion 

In this paper, we evaluated the possibility of predicting the genetic 
value of oil palm ortet selection candidates, using GS models and high 
throughput SNP genotyping (GBS). We considered two breeding situa-
tions consisting of candidate ortets with or without phenotypic values. 
We assessed the effect on prediction accuracy of marker datasets and of 
two approaches for modeling the parental origin of marker alleles 
(across-population SNP genotype models, ASGM, and population-spe-
cific effects of SNP alleles models, PSAM). 

4.1. Improving the genetic progress of clonal breeding with GS 

In the current clonal breeding methodology, ortets that will be 
evaluated in clonal trials are selected on the few traits with high H² 
value among a limited number of phenotyped candidates at the mature 
stage and belonging to the best crosses evaluated in progeny tests. 
Based on the results presented here, annual genetic progress can be 
improved by selecting ortets (1) among a large population of the best 
possible crosses (produced based on the results of the progeny tests) at 
the juvenile (e.g. nursery) stage with GS models on most of the yield 
components or, (2) at the mature stage on all the yield components, 
using jointly the genomic and phenotypic data of the ortet selection 
candidates. 

In detail, in the first GS approach that is now possible, the best 
crosses identified based on the results of the progeny test (i.e. with the 
best performance expected from the parental GCAs and the crosses’ 
specific combining abilities [SCAs]) would be produced to generate a 
large number of seedlings, that would be submitted to GS on the traits 
with satisfactory GS accuracy. This would improve the genetic progress 
at three levels. First, most of the breeding programs consider that there 
are six traits of interest for palm oil yield breeding (FB, PF, OP, ABW, 
BN and FFB), and PS before clonal trials is usually applied to PF and OP, 
as they have the highest H² [39]. In our dataset, these traits indeed had 
high H², with PS prediction accuracy >0.5 (Fig. 4) (although it was not 
clear why FB had a similar H², while it is usually among the traits with 
low H²). Therefore, considering that breeders use 0.5 as the minimum 

Table 5 
Pairwise comparison of prediction accuracies among genomic selection and pedigree-based models, according to SNP dataset and trait. For any pair of models, the 
values indicate the difference in prediction accuracy between the two models (model1 – model2). SNP datasets are defined based on the maximum percentage of 
missing data allowed per SNP pmax and the resulting number of SNPs nSNP and are labeled pmax%-nSNP. Significance of pairwise comparisons by Hotelling–Williams t- 
test: *0.05 > P ≥ 0.01; **0.01 > P ≥ 0.001; ***P < 0.001.            

SNP dataset Compared models AFW FB PF OP NF FFB BN ABW  

0 %-2,447 P_ASGM_A – G_ASGM_A −0.04 −0.12 0.00 −0.17 −0.01 0.07 −0.53** −0.19 
P_PSAM_A – G_PSAM_A 0.15 −0.23* −0.05 −0.01 −0.09 0.09 −0.32* −0.26 

5 %-5,620 P_ASGM_A – G_ASGM_A 0.03 −0.14 −0.01 −0.09 −0.01 −0.18 −0.56** −0.28* 
P_PSAM_A – G_PSAM_A 0.10 −0.21 −0.06 −0.04 −0.08 −0.13 −0.25 −0.34* 

10 %-6,898 P_ASGM_A – G_ASGM_A 0.02 −0.20* −0.07 −0.13 −0.01 −0.18 −0.59** −0.30* 
P_PSAM_A – G_PSAM_A 0.07 −0.27* −0.20 −0.05 −0.11 −0.14 −0.35* −0.33* 

25 %-9,059 P_ASGM_A – G_ASGM_A 0.08 −0.20* −0.08 −0.15 −0.02 −0.16 −0.64*** −0.30** 
P_PSAM_A – G_PSAM_A 0.10 −0.24* −0.16 0.00 −0.03 −0.06 −0.39** −0.27* 

45 %-11,425 P_ASGM_A – G_ASGM_A 0.11 −0.15 −0.09 −0.18* 0.03 −0.13 −0.62*** −0.30** 
P_PSAM_A – G_PSAM_A 0.07 −0.14 −0.07 0.07 −0.08 −0.18 −0.38* −0.29* 

75 %-15,054 P_ASGM_A – G_ASGM_A 0.10* −0.11 −0.08 −0.17 −0.08 −0.09 −0.67*** −0.34*** 
P_PSAM_A – G_PSAM_A 0.07 −0.27** −0.06 0.06 0.00 −0.03 −0.40* −0.30* 

Fig. 4. Prediction accuracies of phenotypic selection (PS) and of the G_ASGM_A 
model without phenotypic data (G_ASGM_A) and with phenotypic data 
(G_ASGM_A + pheno) of ortets, on average over the best SNP datasets, and 
according to trait. 

Table 6 
Intensity and accuracy of phenotypic selection before clonal trials according to 
trait.     

Traits Intensity of selection Phenotypic prediction accuracies  

AFW 0.11 0.18 
FB 0.32 0.59 
PF 0.68 0.59 
OP 0.58 0.63 
NF −0.27 0.46 
FFB 0.19 0.09 
BN 0.23 0.25 
ABW −0.01 −0.03 
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prediction accuracy for applying PS before clonal trials, they would 
now apply GS to four traits (FB, OP, FFB and ABW) (Fig. 4), with a 
similar mean prediction accuracy over these traits with GS (0.56) 
compared to PS (0.60 over FB, PF and OP). Interestingly, the two traits 
that had a prediction accuracy lower with G_ASGM_A than with PS, i.e. 
PF and OP, were the ones for which the 42 ortets were submitted to the 
strongest phenotypic selection before clonal trials. In particular, PF had 
the highest intensity of phenotypic selection (0.68) and also had much 
lower prediction accuracy with G_ASGM_A than with PS. We hypothe-
sized this occurred as the phenotypic preselection led to the fixation of 
many genes controlling these traits, and in particular PF, in the 42 
ortets, thus making that the relationships computed over the genome- 
wide SNPs no longer matched with the relationships at the genes. This 
hypothesis should be investigated using a validation set that was not 
submitted to phenotypic preselection. Such a study would be of great 
interest as, in case our hypothesis could be confirmed, the breeders 
would likely get in practice a higher GS accuracy for PF and OP, as the 
seedlings comprising the population of application would not be pre-
selected. In this case, GS before the clonal trials would be even more 
useful. Second, a GS-based approach would also increase the genetic 
progress by higher selection intensity compared to PS: GS would be 
applied to nursery individuals, i.e. possibly in the thousands, while PS is 
currently applied to the small number of individuals planted in the 
progeny tests trials (i.e. normally 10–50 per cross) [9]. Third, making 
the selection in the best possible crosses instead of the best crosses 
evaluated would be an improvement in terms of genetic progress, as the 
best possible crosses were likely not present in the progeny tests, due to 
the high degree of incompleteness of the mating designs. It is also 
possible to make these crosses in the context of phenotypic clonal se-
lection, but in this case, the selection process would require around 10 
more years of phenotypic evaluations in these elite crosses to identify 
the candidate ortets for the clonal trials [16]. 

In the second GS approach, i.e. the selection of ortets among mature 
hybrid individuals, it is now possible to apply this selection to all the 
yield components. Indeed, for individuals at the mature stage, which 
thus may have phenotypic records, for each of the six commonly se-
lected oil palm yield components it is possible to reach a prediction 
accuracy of 0.5 (or almost, in the case of BN), using conventional PS for 
PF and G_ASGM_A + pheno for the other traits. In practice, increasing 
the number of traits on which ortets are selected before clonal trials will 
increase selection intensity and thus the genetic progress. 

Another possible approach to improve the genetic progress would 
be to use genomic predictions to identify, before the progeny tests, the 
best possible crosses, and to use them to implement the first approach 
of clonal GS suggested here. For that purpose, progeny tests from the 
previous cycle could be used as a training population, and genomic 
ortet selection would be applied at the nursery stage in the best possible 
crosses. This approach would, therefore, have the additional advantage 
of shortening the breeding cycle (as it makes it possible to run the 
clonal trials simultaneously with the progeny tests), but it should be 
investigated in greater details as its efficiency also depends on the ac-
curacy of the genomic estimated breeding values of the parents. 

4.2. Effects of prediction model and SNP dataset on prediction accuracies 

G_PSAM_A can model genetic differences between Deli and La Mé 
populations, as it considers population-specific SNP variances and SNP 
effects. For that reason, we expected G_PSAM_A to perform better than 
G_ASGM_A for many traits, considering the marked genetic difference 
between Deli and La Mé, with Fst around 0.55 [38]. However, 
G_PSAM_A usually did not perform better than G_ASGM_A, except for 
ABW and NF. We hypothesized that this was the consequence of 
stronger differences among Deli and La Mé populations at the QTLs 
controlling ABW and NF than QTLs controlling the other traits. This 
makes sense when considering that Deli and La Mé belong to different 
heterotic groups defined based on their phenotypic values for BN and 

ABW, and noting that, although G_PSAM_A was not better than 
G_ASGM_A for BN, their results were actually very similar for this trait. 
This is in agreement with the results of Tisné et al. [40], who found a 
large majority of distinct significant QTLs among groups A and B on 
bunch production traits, i.e. six in group A and ten in group B, against 
only one common QTL. The possibility for G_PSAM_A to outperform 
G_ASGM_A is also in agreement with the fact that a large part of the 
SNPs in the two populations have opposite minor alleles, with differ-
ences as extreme as having one allele fixed in one population and the 
other allele fixed in the other population (Fig. 2b, c). However, not all 
SNPs showed these types of differences and similar segregation patterns 
among populations were also observed, which is likely related to the 
similar performance of G_ASGM_A and G_PSAM_A for the other traits. In 
order to help to understand the results obtained here, it would be useful 
to investigate whether the QTLs identified in other studies for the dif-
ferent traits are located in regions of the genome where SNPs have si-
milar or contrasted segregation. Also, it would be interesting to com-
pare, across the Deli and La Mé populations, the linkage phases between 
SNP markers and the SNP effects, as it was previously done in cattle and 
maize [41]. 

Although G_PSAM_A has the potential to model genetic differences 
between parental populations, it also has a drawback, which is that it 
has to estimate more parameters than G_ASGM_A (i.e. more genetic 
variances and, because additive effects are split into two parts inherited 
from the two parental populations, more genetic effects) [42]. For ex-
ample, while for a given clone a single genetic effect is estimated with 
G_ASGM_A, two genetic effects, i.e. one for each of the hybrid parents, 
are estimated with G_PSAM_A. Our results corroborate those of Zeng 
et al. [42] who attributed low accuracies in many scenarios of PSAM in 
animal studies to the complexity of the model caused by the segregation 
of SNP in the two parental breeds, and the resulting need to estimate 
two substitution effects per SNP instead of one. 

Ibánez-Escriche et al. [20] obtained a significant advantage of 
G_PSAM_A over G_ASGM_A on accuracy for a low marker density (400 
markers), a large number of records in the training population (4,000) 
and a relationship between breeds that was weak (i.e. common origin 
550 generations ago) or absent. Similarly, Esfandyari et al. [43] found 
that G_PSAM_A outperformed G_ASGM_A for genetically distant hybrid 
parents, i.e. having diverged 300–400 generations ago, and a large 
training population with 2,000–8,000 individuals. The small advantage 
of G_PSAM_A over G_ASGM_A obtained in our study might, therefore, 
result from the fact that the genetic difference between the Deli and La 
Mé populations was actually not large enough (the Deli also having 
African ancestors, planted in Indonesia in 1848) and/or because of our 
training population was too small. Technow et al. [22] found higher 
accuracy while using G_PSAM_A + D than when using G_ASGM_A + D, 
with the gain in accuracy being larger with low SNP density (from 0.3 
to 1 SNP per megabase pair, Mbp) than with high marker density (10 
SNP per Mbp). Here, considering the length of the oil palm genome is 
1.8 Gb [44], the investigated range of SNP density was similar, going 
from 0.8 to 8.4 SNP per Mbp. Moreover, Lopes et al. [45] obtained 
similar prediction accuracies between G_ASGM_A and G_PSAM_A with 
high SNP density (31,930 SNPs). In our study, the only SNP dataset 
where G_PSAM_A outperformed G_ASGM_A on average over all traits 
was a dataset with intermediate number of SNPs and intermediate 
percentage of missing data per SNP, pmax=10%-nSNP=6,898, with 
mean G_PSAM_A prediction accuracy of 0.47 against 0.46 for 
G_ASGM_A. This result therefore differs from those of Technow et al. 
[22] and Lopes et al. [45], likely as a consequence of the fact that, in 
our study, SNP density varied with SNP quality, with higher SNP 
numbers meaning a higher percentage of missing data. This indicates 
that the SNP dataset must be chosen carefully before applying 
G_PSAM_A. From this point of view, G_ASGM_A appeared advanta-
geous, as its mean accuracy over the traits remained at its maximum 
once sufficient SNP density was reached, regardless of the percentage of 
missing data. The fact that for G_ASGM_A the number of SNPs was of 
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greater importance than the percentage of missing data per SNP in-
dicates that Beagle 4.0 efficiently imputed the missing data. Therefore, 
the existence of an optimal SNP dataset for G_PSAM_A suggests that 
phasing errors increase with the percentage of missing data per SNP and 
when decreasing the marker density. 

We found that, in order to maximize the efficiency of GS, the pre-
diction of the genetic values must be done using G_ASGM_A with an 
SNP density ranging from around 7,000–15,000 for all traits. Another 
possibility would be to use a different SNP dataset for each trait, 
maximizing the accuracy for the considered trait. However, as pre-
viously mentioned, this does not seem convenient for the practical 
application of GS. The variation in prediction accuracy among SNP 
datasets might also have been exacerbated by the small size of our 
validation population (due to the difficulty of obtaining a large number 
of clones in trials, mainly because of the mantled anomaly [8]), and 
therefore so far it seems wiser to identify the best SNP datasets on 
average over several traits. 

GS prediction models (G_ASGM_A and G_PSAM_A) were usually 
more accurate than their respective control pedigree-based models 
(P_ASGM_A and P_PSAM_A). The superiority of GS models shows that, 
even for unobserved individuals, GS models can account for both 
Mendelian sampling terms of siblings in a family and for family effects, 
while pedigree-based models can only account, at best, for family ef-
fects, as already found in previous oil palm GS studies [16]. 

However, G_ASGM_A outperformed its control pedigree-based 
model more often than G_PSAM_A. Thus, G_PSAM_A remained less ac-
curate than P_PSAM_A for all the SNP datasets in one trait (AFW), while 
that never happened with G_ASGM_A. Also, the overall inferiority of 
G_PSAM_A to G_ASGM_A occurred while P_PSAM_A was actually better 
than P_ASGM_A for five traits out of eight. This looks contradictory and 
suggests that the performance of G_PSAM_A could have been reduced 
by phasing errors as aforementioned. Also, many studies comparing 
G_ASGM_A and G_PSAM_A were carried out by simulation with known 
phases [22,42,43], and therefore possible phasing errors in our study 
could also be the cause of the discrepancies observed between our re-
sults and the results obtained in simulation studies. Investigating other 
phasing approaches seems therefore of interest in the oil palm context. 

4.3. Genotyped individuals for training 

In this study, to make GS predictions more cost-effective, the gen-
otypes of the phenotyped hybrid individuals constituting the training 
set were reconstructed using the molecular data of their parents, with 
G_ASGM, or not used in the model, with G_PSAM. Both modeling ap-
proaches therefore assume that the mean genotype in a hybrid family 
(i.e. the mean number of copies of the minor allele over the individuals 
making the family) expected from the parental genotypes is the same as 
the actual mean genotype. Nevertheless, in the case of allele segrega-
tion distortion at a locus, the mean genotype in a hybrid family would 
significantly deviate from the mean genotype expected from the par-
ental genotypes, and this could reduce the GS accuracy. Indeed, high 
numbers of distorted markers can be found in plants: Zuo et al. [46] and 
Li et al. [47] found more than 10 % of markers (SNP and SSR) sig-
nificantly distorted. For future studies, it would be of great interest to 
compare the approach used here with predictions made using real hy-
brid genotypes, and to measure the differences in terms of GS accuracy 
and cost. 

4.4. Prediction of dominance effects 

GS prediction accuracies were not significantly enhanced by adding 
dominance effects. Including dominance effects in the statistical model 
sometimes slightly increased or reduced accuracies, depending on the 
traits and the SNP datasets, revealing a negligible genetic dominance 
variance captured by the model compared to the total genetic variance, 
as already observed with genomic predictions for performances of oil 

palm hybrid crosses [15] We assume this was a consequence of re-
ciprocal recurrent selection, which generated the contrasted allele fre-
quencies we observed across Deli and La Mé populations (Fig. 2), thus 
decreasing the ratio of SCA variance to GCA variance [48] and making 
dominance effects absorbed by the GCAs or the population mean [41]. 

5. Conclusion 

This work showed that GS can largely improve clonal selection in oil 
palm (Elaeis guineensis). GS prediction accuracies for ortets without 
phenotypic data records extended from 0.08 to 0.7 according to the 
trait, GS model and SNP dataset. The G_ASGM_A approach was better 
for predicting clonal values than G_PSAM_A, as it was on average 
slightly more accurate, less sensitive to SNP dataset (i.e. SNP density 
and percentage of missing data) and easier to implement. However, 
G_PSAM_A appeared interesting for ABW and NF traits. The G_ASGM_A 
model required at least 7,000 SNPs to perform best, with the percentage 
of missing data per SNP being of secondary importance. In these con-
ditions, G_ASGM_A gave higher prediction accuracies than current 
phenotypic selection for six traits out of eight. 

The annual genetic progress of clonal oil palm breeding for yield can 
be increased by replacing the current phenotypic ortet preselection 
before clonal trials by (1) genomic ortet preselection on most of the 
yield components among a large population of the best possible crosses 
(produced based on the results of the progeny tests) at the juvenile 
stage or, (2) ortet preselection at the mature stage on all the yield 
components using jointly the genomic and phenotypic data of the ortet 
selection candidates. GS can, therefore, enhance oil palm production. 
Further studies should be conducted, for example considering other 
traits (vegetative growth, resistance to diseases) and using a different 
phasing approach. 
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