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♣ Résumé ♣

La théorie des ensembles flous intuitionniste (IFS) introduit par Atanassov [1] généralise

celle des ensembles flous proposée par Zadeh [46] et contribue à résoudre les problèmes

de la vie réelle dans un environnement incertain et non probabiliste. Afin d’évaluer la

proximité ou la similarité entre deux ensembles dans cet environnement, plusieurs auteurs

ont proposé, étudié et utilisé des outils importants tels que la mesure de distance, la mesure

de similarité et la métrique. Cependant les outils basés sur les différences symétrique n’ont

pas encore été explorés.

Dans cette thèse, nous définissons, à l’aide des R-implication et co-implication flou,

les opérations de différence et de différence symétrique de deux ensembles flous intu-

itionnistes (IFS). Nous étudions leurs propriétés. Nous proposons des classes de mesures

de distance et de similarité sur les IFS. Nous déterminons des conditions sur les opéra-

teurs d’implication et de co-implication pour lesquelles plusieurs de ces classes deviennent

des métriques (distances). Nous appliquons ces mesures de distance et ces mesures de

similarité dans le cas des t-représentables t-normes floues intuitionnistes de Lukasiewicz,

Maximum et Produit pour contribuer à la prise de décision dans les problèmes de recon-

naissance de formes et de diagnostic médical.

Mots clés: Sous ensemble flou intuitionniste; Différence symétrique; Mesure de dis-

tance; Reconnaissance de formes et de Diagnostic médical.
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♣ Abstract ♣

The theory of intuitionistic fuzzy sets (IFSs) introduced by Atanassov [1] generalizes

fuzzy set theory proposed by Zadeh [46] and solves some problems in real life dealing

with imprecision and vagueness. In order to evaluate closeness or similarity between two

sets in these problems, many authors have proposed, studied and used important tools

such as distance measure, similarity measure and metric. But there are no tools based on

symmetric difference.

In this thesis, based on R-implication and co-implication, we define difference and

symmetric difference operations of two Intuitionistic fuzzy sets (IFSs). We study their

properties. We propose some classes of distance and similarity measures on IFSs. We

determine conditions on both fuzzy implication operators and fuzzy co-implication op-

erators under which many of those classes become metrics (distances). We apply those

distances measures and those similarity measures in the case of the t-representable IF

t-norms of Lukasiewicz, Maximum and Product to contribute to the decision making in

the problems of pattern recognition and medical diagnosis.

Keywords: Intuitionistic fuzzy set; Symmetric difference; Distance measure; Pattern

recognition and medical diagnosis.
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♣ Introduction ♣

Our society harbors problems that are very often the cause of social conflicts, stress

and even the high rate of mortality. Pattern recognition problem and medical diagnosis

problem are among these. Some of those problems are solved in supply chain management

([23, 28, 35]) and social choice ([15]). The social sciences are part of the life sciences

which identifies and offers solutions in order to resolve social conflicts. This then requires

more in-depth tools. In the search for such tools, Atanassov [1] introduced the theory of

intuitionistic fuzzy sets (IFSs) to generalize fuzzy set theory introduced by Zadeh [46] and

to solve some problems in real life dealing with imprecision and vagueness. For example,

it has been applied in logic programming in [5], pattern recognition in [31, 43] and medical

diagnosis in [30, 45] to solve some decisions making problems.

Evaluate closeness or similarity between two intuitionistic fussy sets draw attention

of authors these recent years. More precisely, authors have proposed, studied and used

important tools such as similarity measures, distance measures and metrics. Szmidt and

Kacprzyk [39] proposed four distance measures: Hamming distance, Euclidean distance,

Normalized Hamming distance and Normalized Euclidean distance. Wang and Xin [43]

showed that the normalized Euclidean distance may not classify patterns in some cases.

They provided a more generalized definition of distance measures between IFSs inspired

from the definition of geometric distance between crisp sets, and then they proposed many

new distance measures. Grzegorzewski [22] proposed other Hamming and Euclidean dis-

tance measures for IFSs based on Hausdorff metric. Hung and Yang [26, 27] proposed

some distance measures one based on Lp metric and other based on exponential, and then

compared them to existing measures. Mitchell [32] proposed other distance measure.

It should be noted that in our society, many problems arise from the differences that

resiles between the parties, which is what physicists call force action. It is therefore

3



Introduction

imperative to create a symmetrization of this difference to neutralize the causes of these

differences, this is what physicists call reciprocal force. The symmetry difference thus

appears as a tool for social balance. So, according to the literature review, distance

measures and metrics for IFSs based on symmetric difference have not yet been studied

as in the case of fuzzy sets and crisp sets. In addition, the existing literature on difference

and symmetric difference operations on IFS, introduced by Huawen [25], Bustince et al.

[4], Ejepwa [13] presents some intuitive difficulties. The two major concerns of this thesis

are to introduce and study (i) Difference and symmetric difference for two IFSs (associated

to a IF t-norm) preserving usual properties of those operations on fuzzy and crisp sets

and (ii) distance measures, similarity measures and metrics generated by the obtained

symmetric difference operations on IFSs(X).

The following are the contributions of our study. Inspired by the work of Fono et al.

[17] on fuzzy sets, we introduce new definitions for difference and symmetric difference

for intuitionistic fuzzy sets, by means of intuitionistic fuzzy R-implications and we study

their properties. We establish that some common properties of the difference operations

for fuzzy sets defined by Fono et al. [17] and for crisp sets are preserved by the new

difference and symmetric difference operations for intuitionistic fuzzy sets. Then the

new proposed difference and symmetric difference operations for intuitionistic fuzzy sets

generalize the case for fuzzy sets introduced by Fono et al. [17]. This constitutes the

first main stage of the thesis. The second main stage of this work is based on some

classes of distance measure, similarity measures and metrics based on cardinality of new

symmetric difference. For that, we firstly use the means of symmetric difference between

two IFSs to give new definition for cardinality of symmetric difference between IFSs

associated to a t-representable IF t-norm. We use this new definition to propose eight

new classes of distance measures based on IF-cardinality symmetric difference of IFSs

and by extension eight classes of similarity measures using dual construction. And we

determine two conditions based on both fuzzy R-implications and fuzzy co-implication

operators under which many of those distances measures become metrics. We apply the

new distance measures (under the t−representable IF t−norms of Lukasiewicz, Maximum

and Product to) solve the problem of pattern recognition introduced by Wang and Xin

[43]. And we use the new similarity measures (under the t−representable IF t−norms of

Lukasiewicz and Product) to solve the problem of medical diagnosis recalled in [40, 42, 47].

It is important to outline three notes from our contribution. The eight classes of

distances measures are inspired from (i) the three distance measures proposed by Wang

and Xin [43], (ii) the two Hamming and Euclidean distances for IFSs based on Haus-

DZATI KAMGA Romuald Thierry
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Introduction

dorff metric proposed by Grzegorzewski [22], (iii) the two distance measures one based

on Lp metric proposed by Hung and Yang [26] and (iii) the distance measures proposed

by Mitchell [32]. The obtained Euclidean and Hamming distance measure are the same

as those proposed by Grzegorzewski [22] and the distance measure based on exponential

function is the same as the one proposed by Hung and Yang [27] when we consider the

t−representable IF t−norms of Lukasiewicz. Using those classes of distance measures,

we determine two conditions (condition C∗ and condition C2) on both fuzzy implication

operators and fuzzy co-implication operators under which many of those classes become

metrics. Furthermore, we show that all the t−representable IF t-norms of the Frank and

Mayor-torrens usual parametric families satisfy condition C∗ and then generated metrics.

The continuation of this thesis is next organized as follows. Chapter 1 focuses on

literature review where we recall some preliminaries on fuzzy sets and intuitionistic fuzzy

sets and their operations. And we present the problems of pattern recognition and medical

diagnosis. In Chapter 2, we introduce difference and symmetric difference between two

intuitionistic fuzzy sets and based on fuzzy implications and fuzzy co-implications. We

study their properties and we propose some classes of IF cardinality for difference and

symmetric difference of IFSs. In Chapter 3, we propose and study new distance measures,

similarity measures and metrics based on cardinality components of symmetric difference

between IFSs. Chapter 4 is based on some applications of the obtained distance and

similarity measures for decision making. More precisely, we use the IF t-norms TL of

Lukasiewicz, TM Maximum and TP Product in order to apply six classes of the proposed

distance measures to pattern recognition problem and two classes of proposed similarity

measures to medical diagnosis problem. Finally we give some concluding remarks.

DZATI KAMGA Romuald Thierry
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? ? Chapter 1 ? ?

Literature review

Contents
1.1 On fuzzy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Fuzzy operators and operations . . . . . . . . . . . . . . . . . . 7

1.1.3 Difference and symmetric difference of fuzzy sets based on fuzzy

implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 On intuitionistic fuzzy sets (IFSs) . . . . . . . . . . . . . . . . 15

1.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Intuitionistic fuzzy operators and operations . . . . . . . . . . . 17

1.2.3 Distance measures and similarity measures for IFSs . . . . . . . 21

1.3 On some society problems . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 On pattern recognition . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.2 On medical diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 24

Throughout this chapter, X is a non empty set.

1.1 On fuzzy sets

1.1.1 Description

Fuzzy Logic has been successfully applied in various areas pertaining to wireless com-

munication systems. As fuzzy logic is used to model systems and situations, taking into

consideration uncertainty and ambiguity, it can be an efficient tool to be used in problems
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1.1. On fuzzy sets

for which knowledge of all factors is insufficient or impossible to obtain. The following

definition of fuzzy set is as such.

Definition 1.1.1 ([46]). A fuzzy set A in X is given by A = {(x, µA(x)), x ∈ X} where
µA : X → [0, 1] is the membership function of A and µA(x) ∈ [0, 1] is the membership

degree of x ∈ X in A.

If for all x ∈ X, µA(x) ∈ {0, 1}, then A is a crisp set.

The following example display the membership function to define a fuzzy set A.

Example 1. Assume that X denote the set of age. The membership function to define

a fuzzy set A = {To have about twenty years old} is given in the following Figure 1.1:

We observe that the membership function can be fixed arbitrarily. So the explicite

Figure 1.1: To have about twenty years hold

form is: for all x ∈ X = R+,

µA(x) =





0.4x− 6, if 15 ≤ x < 17.5;

1, if 17.5 ≤ x < 22.5;

−0.4x+ 10, if 22.5 ≤ x < 25;

0, otherwise.

The following Subsection presents the fuzzy operators and operations.

1.1.2 Fuzzy operators and operations

Let us give first the fuzzy t-norms and t-conorms.

DZATI KAMGA Romuald Thierry
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1.1. On fuzzy sets

Fuzzy t-norms and t-conorms

Definition 1.1.2. 1. A fuzzy triangular-norm (fuzzy t-norm) is a binary operation

> : [0, 1] × [0, 1] −→ [0, 1] such that for any x ∈ [0, 1], >(x, 1) = x and >
satisfies commutativity (∀a, b ∈ [0, 1], >(a, b) = >(b, a)), monotonicity (increas-

ing) (∀a, b, c, d ∈ [0, 1], if a ≤ b and c ≤ d, then >(a, c) ≤ >(b, d)) and associativity

(∀a, b, c,∈ [0, 1], >(a,>(b, c) = >(>(a, b), c)).

2. A fuzzy t-conorm is a binary operation S : [0, 1]× [0, 1] −→ [0, 1] such that for any

x ∈ [0, 1], S(x, 0) = x and S satisfies commutativity, monotonicity (increasing) and

associativity.

3. A fuzzy negation N is a non-increasing mapping N : [0, 1] −→ [0, 1] with N(0) = 1

and N(1) = 0. If N(N(x)) = x, ∀x ∈ [0, 1] (i.e. N satisfies the involutive property),

then N is called strong fuzzy negation.

4. The dual of a fuzzy t-norm > is a fuzzy t-conorm S, such that, for all a, b ∈
[0, 1], >(a, b) = 1− S(1− a, 1− b).

Klement et al. [29] displayed seven families of t−norms and their dual t−conorms.

We give in the following examples the expressions of t-norms and their dual t-conorms

of two families namely Frank and Mayor-Torrens. These two families will commonly be

referred to in our study.

Example 2. ([17, 20, 29])

1. The Frank t-norms
(
>lF
)
l∈[0,+∞]

are given by: for all a, b ∈ [0, 1],

>lF (a, b) =





>M(a, b) = min(a, b), if l = 0,

>P (a, b) = ab, if l = 1,

>L(a, b) = max(a+ b− 1, 0), if l = +∞,

logl

(
1 + (la−1)(lb−1)

l−1

)
, otherwise,

(1.1)

where>M ,>P and>L are respectively the minimum, product and Lukasiewicz fuzzy

t-norms. The Frank t-conorms
(
SlF
)
l∈[0,+∞]

are given by: for all a, b ∈ [0, 1],

SlF (a, b) =





SM(a, b) = max(a, b), if l = 0,

SP (a, b) = a+ b− ab, if l = 1,

SL(a, b) = min(a+ b, 1), if l = +∞,

1− logl

(
1 + (l1−a−1)(l1−b−1)

l−1

)
, otherwise,

(1.2)

DZATI KAMGA Romuald Thierry
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1.1. On fuzzy sets

where SM , SP and SL are respectively the maximum, probabilistic sum and Lukasiewicz

fuzzy t-conorms.

2. The Mayor-Torrens t−norms (>λM>)λ∈[0,1] are given by: for all λ ∈ [0, 1] and a, b ∈
[0, 1],

>λM>(a, b) =





max(a+ b− λ, 0), if λ ∈]0, 1] and (a, b) ∈ [0, λ]2

min(a, b), otherwise
; (1.3)

The Mayor-Torrens t-conorms (SλM>)λ∈[0,1] are given as: for all λ ∈ [0, 1] and a, b ∈
[0, 1],

SλM>(a, b) =




max(a+ b+ λ− 1, 1), if λ ∈]0, 1] and (a, b) ∈ [1− λ, 1]2

max(a, b), otherwise.
. (1.4)

We now give the definition of fuzzy implication and co-implication associated respec-

tively with t−norm and t−conorm.

Fuzzy implications and co-implications

Definition 1.1.3. Let > be a t-norm and S be a t-conorm.

• The fuzzy residual implication (for short R-implication) operator associated to > is

the binary operator I1
> on [0, 1] defined as follows: for all a, b ∈ [0, 1] by I1

>(a, b) =

sup{t ∈ [0, 1] | >(a, t) ≤ b}.

• The fuzzy symmetric contraposition implication operator associated to > is the bi-

nary operator I2
> on [0, 1] defined as follows: for all a, b ∈ [0, 1], I2

>(a, b) = 1−inf{t ∈
[0, 1], S(b, t) ≥ a}.

• The QL−implication operator associated to > is the binary operator I3
> on [0, 1]

defined as follows: for all a, b ∈ [0, 1], I3
>(a, b) = S(n(a),>(a, b)).

• The S−implication operator associated to > is the binary operator I4
> on [0, 1] de-

fined as follows: for all a, b ∈ [0, 1], I4
>(a, b) = S(n(a), b).

• The fuzzy residual co-implication (for short co-implication) operator associated to a

t-conorm S is the binary operator JS on [0, 1] defined as follow: for all a, b ∈ [0, 1]

by JS(a, b) = inf{r ∈ [0, 1] | b ≤ S(a, r)}.
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1.1. On fuzzy sets

It is important to notice that if > and S are left-continuous, the previous operators

(I1
>, I

2
> and JS) become: for all a, b ∈ [0, 1],





I1
>(a, b) = max{t ∈ [0, 1] | >(a, t) ≤ b};
I2
>(a, b) = 1−min{t ∈ [0, 1], S(b, t) ≥ a};
JS(a, b) = min{r ∈ [0, 1] | b ≤ S(a, r)}.

(1.4)

We will go further in this thesis by assuming that, > and S are left-continuous t-norm

and t-conorm respectively. I> = I1
> is the fuzzy R-implication operator associated to >

and JS is the fuzzy co-implication operator associated to S.

Fono and Fotso. [16] displayed the fuzzy R-implication and the fuzzy co-implication

associated with seven families of t−norms and t−co-norms of Klement et al. [29]. The

following are examples of fuzzy R-implicators and fuzzy co-implicators associated with

family of Frank t-norms and their dual t−conorm, and Mayor-Torrens t-norms, and their

dual t−conorm.

Example 3. ([16], [17], [20]) For all a, b ∈ [0, 1]:

1. Fuzzy R-implication associated with TM and fuzzy co-implication associated with

SM are respectively given by:

I>M (a, b) =





1, if a ≤ b,

b, if a > b.
and JSM (a, b) =




b, if a < b,

0, if a ≥ b.
(1.4)

2. Fuzzy R-implication associated with TP and fuzzy co-implication associated with

SP are respectively given by:

I>P (a, b) =





1, if a ≤ b,

b
a
, if a > b.

and JSP (a, b) =





b−a
1−a , if a < b,

0, if a ≥ b.
(1.4)

3. Fuzzy R-implication associated with TL and fuzzy co-implication associated with

SL are respectively given by:

I>L(a, b) =





1, if a ≤ b,

1− a+ b, if a > b.
and JSL(a, b) =




b− a, if a < b,

0, if a ≥ b.
(1.4)
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1.1. On fuzzy sets

4. Fuzzy R-implication associated with >lF and fuzzy co-implication associated with

SlF for all l ∈ (0, 1) ∪ (1,+∞) are respectively given by:

I>lF (a, b) =





1, if a ≤ b,

logl

(
1 + (l−1)(lb−1)

la−1

)
, if a > b.

and J lSF (a, b) =





1− logl

(
1 + (l−1)(l1−b−1)

l1−a−1

)
, if a < b,

0, if a ≥ b.

(1.4)

5. Fuzzy R-implications associated with (>λM>)λ∈[0,1] and fuzzy co-implications associ-

ated with (SλM>)λ∈[0,1] are respectively given by: for all λ ∈ [0, 1] and a, b ∈ [0, 1],

I>λM>(a, b) =









1 if a ≤ b

b if a > b
if




λ = 0

or

λ 6= 0, a ∈ [0, λ] and b ∈ (λ, 1]

or

λ 6= 0, a ∈ (λ, 1] and b ∈ [0, λ]

or

λ 6= 0 and (a, b) ∈ (λ, 1]2








1 if a ≤ b

λ+ b− a if a > b
if λ ∈ (0, 1] and (a, b) ∈ [0, λ]2

(1.4)

and

JSλM>(a, b) =





0 if a ≥ b

1 + b− (a+ λ) if (a < b, a ∈ [1− λ, 1] and λ ∈ (0, 1])

b if




λ = 0, a 6= 1 and a < b

or

λ 6= 0, a ∈ [0, 1− λ] and a < b




(1.4)

We will require the following useful results to establish the proofs of some basic findings

in this thesis.

Proposition 1.1.1 ([17, 19]). For all a, b, c ∈ [0, 1],

1. I>(a, a) = 1; JS(a, a) = 0; JS(a, b) ≤ b ≤ I>(a, b) and I>(1, a) = a = JS(0, a);

2. b < a⇐⇒ (I>(a, b) < 1 or JS(b, a) > 0);
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3. a ≤ b⇒




I>(b, c) ≤ I>(a, c),

I>(c, a) ≤ I>(c, b).
and a ≤ b⇒




JS(b, c) ≤ JS(a, c),

JS(c, a) ≤ JS(c, b).

Thus I> and JS are left decreasing and right increasing operators.

4. Let S and > be such that, for all a, b ∈ [0, 1], >(a, b) ≤ 1− S(1− a, 1− b). Then

i. for all a, b ∈ [0, 1], I>(a, b) ≥ 1− JS(1− a, 1− b);

ii. if > and S are dual, then for all a, b ∈ [0, 1], I>(a, b) = 1− JS(1− a, 1− b).

Fuzzy operations of fuzzy sets

Definition 1.1.4 ([17, 19]). Let A and B be any two fuzzy sets defined on X. The

following operations are defined by associated membership function as follows:

i) Inclusion: A ⊆ B if and only, µA(x) ≤ µB(x), ∀x ∈ X;

ii) Intersection: A ∩B is defined by: µA∩B(x) = µA(x) ∧ µB(x), ∀x ∈ X;

iii) Union: A ∪B is defined by: µA∪B(x) = µA(x) ∨ µB(x), ∀x ∈ X;

iv) Complement: Ac is defined by: µAc(x) = 1− µA(x), ∀x ∈ X.
Where ∨ and ∧ are max and min respectively.

In the next Subsection, we recall the difference and symmetric difference operations

for fuzzy sets, some examples and their properties as proposed by Fono et al. [17]

1.1.3 Difference and symmetric difference of fuzzy sets based on

fuzzy implications

The following definition give difference and symmetric difference of fuzzy sets based on

fuzzy implications.

Definition 1.1.5 (Difference and Symmetric Difference Operations for Fuzzy Sets [17]).

a. Let M,N be any two fuzzy sets defined on X and i ∈ {1, 2, 3, 4}. The fuzzy difference

of type i associated to > of M and N is the fuzzy set of X denoted by M
i
−
>
N and

defined by:

µ
M

i
−
>
N

(x) = I i>(µM(x), µN(x)) = 1− I i>(µM(x), µN(x)), for all x ∈ X.
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1.1. On fuzzy sets

b. The fuzzy symmetric difference of type i ∈ {1, 2} associated to > of M and N is the

fuzzy set of X denoted by M
i
M
>
N and defined for all x ∈ X by:

µ
M

i
M
>
N

(x) = µ
M∪N

i
−
>
M∩N

(x) =





1− I1
> (µM(x) ∨ µN(x), µM(x) ∧ µN(x)) , if i = 1

1− I2
> (µM(x) ∨ µN(x), µM(x) ∧ µN(x)) , if i = 2.

We recall the examples of these operations for fuzzy sets of type 1 and 2 associated to

the usual three fuzzy t-norms in what follows.

Example 4. For any fuzzy sets M and N defined on X,

1. Examples of fuzzy difference operations

(a) The difference operation associated with >M is given by, for all x ∈ X

µ
M

1
−
>M

N
(x) =





0, if µM(x) ≤ µN(x),

1− µN(x), if µM(x) > µN(x),

µ
M

2
−
>M

N
(x) =





0, if µM(x) ≤ µN(x),

µM(x), if µM(x) > µN(x)

(b) The difference operation associated with >P is given by, for all x ∈ X

µ
M

1
−
>P

N
(x) =





0, if µM(x) ≤ µN(x),

1− µN (x)
µM (x)

, if µM(x) > µN(x),

µ
M

2
−
>P

N
(x) =





0, if µM(x) ≤ µN(x),

µM (x)−µN (x)
1−µN (x)

, if µM(x) > µN(x).

(c) The difference operation associated with >L is given by, for all x ∈ X and

i ∈ {1, 2},

µ
M

i
−
>L

N
(x) =





0, if µM(x) ≤ µN(x),

µM(x)− µN(x), if µM(x) > µN(x).

2. Examples of fuzzy symmetric difference operations

(a) The symmetric difference operation associated with >M is given by, for all

x ∈ X

µ
M

1
M
>M

N
(x) =





0, if µM(x) = µN(x),

max (1− µM(x), 1− µN(x)) , if µM(x) 6= µN(x),
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1.1. On fuzzy sets

µ
M

2
M
>M

N
(x) =





0, if µM(x) = µN(x),

max (µM(x), µN(x)) , if µM(x) 6= µN(x).

(b) The symmetric difference operation associated with >P is given by, for all

x ∈ X

µ
M

1
M
>P

N
(x) =





0, if µM(x) = µN(x) = 0,

|µM (x)−µN (x)|
max{µM (x),µN (x)} , if µM(x) 6= 0, or µN(x) 6= 0 ,

µ
M

2
M
>P

N
(x) =





0, if µM(x) = µN(x) = 1,

|µM (x)−µN (x)|
1−min{µM (x),µN (x)} , if µM(x) ∧ µN(x) < 1.

(c) The symmetric difference operation associated with >L is given by, for all

x ∈ X and i ∈ {1, 2},

µ
M

i
M
>L

N
(x) =| µM(x)− µN(x) | .

Fono et al. [17] have also proved that the difference and symmetric difference oper-

ations for fuzzy sets of type 1 and 2 associated to any continuous t-norm > so defined

preserve the properties of the classical difference and symmetric difference operation for

crisp sets. We recall these results as follow:

Proposition 1.1.2. Let i ∈ {1, 2} and M,M ′, N be any arbitrary fuzzy sets on X. The

following properties hold [17]:

1. Properties of fuzzy difference operation;

(a) if M ⊆ N , then M
i
−
>
N = ∅, (b) if M ⊆ M ′, then M

i
−
>
N ⊆ M ′ i

−
>
N , (c)

if M ⊆ M ′, then N
i
−
>
M ′ ⊆ N

i
−
>
M , (d)

(
M

i
−
>
N

)
∩
(
N

i
−
>
M

)
= ∅ and (e)

M
i
−
>
N = M

i
−
>

(M ∩N).

2. Properties of fuzzy symmetric difference operation;

(a) M
i
M
>
N =

(
M

i
−
>
N

)
∪
(
N

i
−
>
M

)
,

(b) if M ⊆ N , then M
i
M
>
N = N

i
−
>
M and (c) M

i
M
>
M = ∅.

The following result shows that, the fuzzy complement of fuzzy sets associated with

any continuous t-norm > so defined, preserve the property of the classical complement

for crisp sets.
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1.2. On intuitionistic fuzzy sets (IFSs)

Corollary 1. Let > be any continuous t-norm, A a fuzzy set X, and Ac the fuzzy

complement of A associated with >.
Then Ac = X −> A.

Proof. Let x ∈ X. From Definition 1.1.5, it is sufficient to show that: µX−>A(x) =

1− µA(x).

Since µX(x) = 1 and I>(1, a) = a (see Proposition 1.1.1) for all a ∈ [0; 1], from Definition

1.1.5,

µX−>A(x) = 1− I>(µX(x), µA(x)) = 1− µA(x).

In the following section, We describe some useful knowledge in of intuitionistic fuzzy

sets.

1.2 On intuitionistic fuzzy sets (IFSs)

Fuzzy set is not appropriate to describe some situation in real life which shared ambiguous,

vagueness and incomplete informations. It takes into account only a positive interpreta-

tion and looses a negative one. Note that there are situations where positive and negative

interpretation are not dual. According to Example 1, in the context of FS "to have 25

years old" is the same situation as "to have 100 years old". But such situation is not right

in real context. Intuitionistic fuzzy sets (IFSs) are very important tools to describe these

situations.

In the following Subsection, we will describe IFSs on X (IFSs(X))

1.2.1 Description

To generalize Fuzzy set, IFS has been proposed by Atanassov [1] and has been successfully

applied in various areas pertaining to decision making. As intuitionistic fuzzy logic is used

to model systems and situations, taking into consideration uncertainty and ambiguity, it

can be an efficient tool to be used in problems for which knowledge of all factors is vague.

In the following, we will give the definition and geometrical interpretation of an example

of IFSs.

Definition 1.2.1 (Atanassov [1]). An intuitionistic fuzzy set D on X is defined by:

D = {(x, µD(x), νD(x)) | µD(x), νD(x) ∈ [0, 1], 0 ≤ µD(x) + νD(x) ≤ 1, ∀x ∈ X},

where µD(x), νD(x) are the degrees of membership and non-membership of x in D respec-

tively.

DZATI KAMGA Romuald Thierry
15

Phd. thesis c©UY1 2020



1.2. On intuitionistic fuzzy sets (IFSs)

Figure 1.2: To have about twenty years hold

If µD(x) + νD(x) = 1, then D is a fuzzy set on X.

For each intuitionistic fuzzy set D on X, we call πD(x) = 1 − µD(x) − νD(x) the intu-

itionistic index of x in D. It is the hesitancy degree of x to D, and it is obvious that

0 ≤ πD(x) ≤ 1 for each x ∈ X.
The following example display the membership and nonmembership function to define a

IFS D.

Example 5. Assume that X denote the set of age. The membership and nonmembership

function to define a IFS D = {To have about twenty years hold} is given in Figure 1.2:

We observe that the membership and nonmembership functions can be fixed arbitrarily.

So the explicite form is: For all x ∈ X = R+,





µD(x) = 0, νD(x) = − 1
15
x+ 1, if 0 ≤ x < 15;

µD(x) = 0.4x− 6, νD(x) = −0.2x+ 3.5, if 15 ≤ x < 17.5;

µD(x) = 1, νD(x) = 0, if 17.5 ≤ x < 22.5;

µD(x) = −0.4x+ 10, νD(x) = 0.2x− 4.5, if 22.5 ≤ x < 25;

µD(x) = 0, νD(x) = 25
x
, otherwise.

The following Subsection introduce some basic definitions and provide some prelimi-

nary results along on Intuitionistic Fuzzy Operators and Operations, and needed in the

rest of this thesis.
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1.2.2 Intuitionistic fuzzy operators and operations

In this subsection, we recall the definitions of some intuitionistic fuzzy operators and op-

erations ([6, 19, 36]).

We first recall in the following the definition of lattice and complete lattice.

Notice that, on L-fuzzy sets, Goguen [21] defined L-fuzzy set has a function f : X −→ L

where X is a universe. When L = [0, 1], we have [0, 1]-fuzzy set. On Intuitionistic

fuzzy sets, Atanassov [1] defined Atanassov’s intuitionistic fuzzy set (AIFS) as defined in

Definition 1.2.1. On the relationship between some extensions of fuzzy set theory, De-

schrijver and Kerre [10] gave an alternative approach for AIFS by justifying that AIFS

can also be seen as an L-fuzzy set in the sense of Goguen when the complete lattice

L = L∗ = {(x, y) ∈ [0, 1]2, x+ y ≤ 1} that we will use in this thesis.

Definition 1.2.2 (Lattice and complete lattice ([37])). Let (E,R) be an ordered set with

an order relation R.

1. (E,R) is a lattice if for all (x, y) ∈ E2, sup({x, y}) and inf({x, y}) exist.

2. (E,R) is a complete lattice if for all D ⊂ E, sup(D) and inf(D) exist

We will subsequently be referring to the complete lattice (L∗,≤L∗) (with 0L∗ = (0, 1)

as bottom element and the unit 1L∗ = (1, 0) as top element; where L∗ = {(x1, x2) ∈
[0, 1]× [0, 1] | x1 +x2 ≤ 1} and ≤L∗ is an order on L∗ defined by: for all (x1, x2), (y1, y2) ∈
L∗, (x1, x2) ≤L∗ (y1, y2) if and only if x1 ≤ y1 andx2 ≥ y2.

The meet operator ∧ and the join operator ∨ on this lattice are defined for all (x1, x2), (y1, y2) ∈
L∗ as:

(x1, x2) ∧ (y1, y2) = (min(x1, y1),max(x2, y2))

(x1, x2) ∨ (y1, y2) = (max(x1, y1),min(x2, y2)).

Intuitionistic Fuzzy Operators

Definition 1.2.3 (Intuitionistic Fuzzy t-norm and t-conorm, ([6, 9, 19])). 1. An intu-

itionistic fuzzy t-norm is a binary operation T : L∗ × L∗ −→ L∗ such that for any

x ∈ L∗, T (x, 1L∗) = x (neutral element) and, T satisfies commutativity, mono-

tonicity (increasing) and associativity.
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1.2. On intuitionistic fuzzy sets (IFSs)

2. An intuitionistic fuzzy t-conorm is a binary operation J : L∗×L∗ −→ L∗ such that

for any x ∈ L∗, J (x, 0L∗) = x and, J is commutative, monotone increasing and

associative.

We denote by IF-t-norm the intuitionistic fuzzy t-norm and, by IF-t-conorm the intu-

itionistic fuzzy t-conorm.

Definition 1.2.4 (Intuitionistic Fuzzy Negation, ([6, 9, 19])). An intuitionistic fuzzy

negation is a non-increasing mapping N : L∗ −→ L∗ satisfying N (0L∗) = 1L∗ and

N (1L∗) = 0L∗. If N (N (x)) = x, ∀x ∈ L∗, then N is said to be involutive. An invo-

lutive intuitionistic fuzzy negation is called strong intuitionistic fuzzy negation.

The following definitions recall useful classes of intuitionistic fuzzy t-norm and t-

conorm and, their implications and co-implications.

Definition 1.2.5 (t-Representable intuitionistic fuzzy t-norm and t-conorm ([6, 9, 36,

19])). An intuitionistic fuzzy t-norm T (respectively intuitionistic fuzzy t-conorm J ) is t-
representable if there exists a fuzzy t-norm > and a fuzzy t-conorm S (respectively a fuzzy

t-conorm S ′ and a fuzzy t-norm >′) such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

T (x,y) = (>(x1, y1), S(x2, y2)) and J (x,y) = (S ′(x1, y1),>′(x2, y2)), respectively.

Definition 1.2.6 (Intuitionistic fuzzy R-implication and co-implicator [6, 9, 19]). 1.

An intuitionistic fuzzy R-implication (for short, IF-R-implication) associated with

an IF-t-norm T = (>, S), is a mapping IT : L∗ × L∗ −→ L∗ such that, for all

x = (x1, x2), y = (y1, y2) ∈ L∗,

IT (x,y) = sup{z ∈ L∗ | T (x, z) ≤L∗ y}

= sup{z = (z1, z2) ∈ L∗ | >(x1, z1) ≤ y1 and S(x2, z2) ≥ y2}.

2. An intuitionistic fuzzy co-implication (for short, IF-co-implication) associated with

an IF-t-conorm, J = (S,>), is a mapping JJ : L∗ × L∗ −→ L∗ such that, for all

x = (x1, x2), y = (y1, y2) ∈ L∗,

JJ (x,y) = inf{z ∈ L∗ | y ≤L∗ J (x, z)}

= inf{z = (z1, z2) ∈ L∗ | y1 ≤ S(x1, z1) and y2 ≥ >(x2, z2)}.

The following known result is very helpful to construct t-representable intuitionistic

fuzzy t-norms and t-conorms from fuzzy t-norms and t-conorms.

DZATI KAMGA Romuald Thierry
18

Phd. thesis c©UY1 2020



1.2. On intuitionistic fuzzy sets (IFSs)

Proposition 1.2.1. ([6, 9, 19]) Given a fuzzy t-norm > and fuzzy t-conorm S satisfying

>(a, b) ≤ 1−S(1− a, 1− b) for all a, b ∈ [0, 1]. Then T (x,y) = (>(x1, y1), S(x2, y2)) and

J (x,y) = (S(x1, y1),>(x2, y2)) for all x = (x1, x2), y = (y1, y2) ∈ L∗, are t-representable

intuitionistic fuzzy t-norm and t-representable intuitionistic fuzzy t-conorm respectively.

The following useful result relates IF-co-implication and IF-R-implication associated

with an IF-t-conorm, J = (S,>) and IF-t-norm, T = (>, S), respectively to correspond-

ing fuzzy co-implication, JS associated to S and fuzzy R-implication, I> associated to

>.

Lemma 1 ([19]). For any x = (x1, x2), y = (y1, y2) ∈ L∗, we have

1. JJ (x,y) = (JS(x1, y1),min (I>(x2, y2), 1− JS(x1, y1))) .

2. IT (x,y) = (min (I>(x1, y1), 1− JS(x2, y2)) , JS(x2, y2)).

The following are examples of t-representable IF-t-norms and IF-t-conorms [19].

Example 6. i. TM = (>M , SM) and JM = (SM ,>M) are t-representable IF-t-norm

and IF-t-conorm respectively associated to >M and SM .

ii. TP = (>P , SP ) and JP = (SP ,>P ) are t-representable IF-t-norm and IF-t-conorm

respectively associated to >P and SP .

iii. TL = (>L, SL) and JL = (SL,>L) are t-representable IF-t-norm and IF-t-conorm

respectively associated to >L and SL.

iv. Also, by verifying that >lF (a, b) ≤ 1 − SlF (1 − a, 1 − b) holds for all a, b ∈ [0, 1], l ∈
(0, 1) ∪ (1,+∞), T lF = (>lF , SlF ) and J l

F = (SlF ,>lF ) are t-representable IF-t-norm

and IF-t-conorm respectively associated to >lF and SlF for all l ∈ (0, 1) ∪ (1,+∞).

Using Lemma 1 and Example 6, we construct the following examples of IF-R-implication

and IF-co-implication associated with an IF-t-norm, T = (>, S) and IF-t-conorm, J =

(S,>).

Example 7. For all x = (x1, x2),y = (y1, y2) ∈ L∗,

1. The IF-R-implication associated with TM = (>M , SM) and the IF-co-implication

associated with JM = (SM ,>M) are respectively given by:

ITM (x,y) =





(1, 0), if x ≤L∗ y,

(min(y1, 1− y2), y2) , if x >L∗ y.
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and

JJM (x,y) =





(0, 1), if x ≥L∗ y,

(y1,min(y2, 1− y1)) , if x <L∗ y.

2. IF-R-implication associated with TP = (>P , SP ) and IF-co-implication associated

with JP = (SP ,>P ) are respectively given by:

ITP (x,y) =





(1, 0), if x ≤L∗ y,(
min

(
y1

x1
, 1−y2

1−x2

)
, y2−x2

1−x2

)
, if x >L∗ y.

and

JJP (x,y) =





(0, 1), if x ≥L∗ y,(
y1−x1

1−x1
,min

(
y2

x2
, 1−y1

1−x1

))
, if x <L∗ y.

3. The IF-R-implication associated with TL = (>L, SL) and the IF-co-implication as-

sociated with JL = (SL,>L) are respectively given by:

ITL(x,y) =





(1, 0), if x ≤L∗ y,

(min (1− x1 + y1, 1 + x2 − y2) , y2 − x2) , if x >L∗ y.

and

JJL(x,y) =





(0, 1), if x ≥L∗ y,

(y1 − x1,min (1− x2 + y2, 1 + x1 − y1)) , if x <L∗ y.

4. The IF-R-implication associated with T lF = (>lF , SlF ) and the IF-co-implication as-

sociated with J l
F = (SlF ,>lF ) for all l ∈ (0, 1) ∪ (1,+∞) are respectively given by:

IT lF (x,y) =





(1, 0), if x ≤L∗ y,(
min

(
logl

(
1 + (l−1)(ly1−1)

lx1−1

)
, logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

))
, 1− logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

))
, if x >L∗ y.

and JJ lF (x,y) =





(0, 1), if x ≥L∗ y,(
1− logl

(
1 + (l−1)(l1−y1−1)

l1−x1−1

)
,min

(
logl

(
1 + (l−1)(ly2−1)

lx2−1

)
, logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

)))
, if x <L∗ y.

We end this Subsection by recalling inclusion and some operations on intuitionistic

fuzzy sets.

Intuitionistic fuzzy operations

Definition 1.2.7 (Intuitionistic Fuzzy Operations [14, 17, 18]). Let A and B be any two

IFSs defined on X. The following operations are defined by associated membership and

non-membership functions as follows:
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1.2. On intuitionistic fuzzy sets (IFSs)

i. Inclusion: A ⊆ B if ∀x ∈ X,µA(x) ≤ µB(x) and νA(x) ≥ νB(x);

ii. Intersection: A ∩B is defined by: ∀x ∈ X, (µA∩B(x), νA∩B(x)) = (µA(x) ∧ µB(x), νA(x) ∨ νB(x)) ;

iii. Union: A ∪B is defined by: ∀x ∈ X, (µA∪B(x), νA∪B(x)) = (µA(x) ∨ µB(x), νA(x) ∧ νB(x)) ;

iv. Complement: Ac is defined by: ∀x ∈ X, (µAc(x), νAc(x)) = (νA(x), µA(x)) ;

v. Difference: A−B is defined by: ∀x ∈ X, (µA−B(x), νA−B(x)) = (µA(x) ∧ νB(x), νA(x) ∨ µB(x)) ;

vi. Symmetric Difference: A M B is defined by: ∀x ∈ X, (µAMB(x), νAMB(x)) =

(max{µA(x) ∧ νB(x), νA(x) ∧ µB(x)}, min{νA(x) ∨ µB(x), µA(x) ∨ νB(x)}) .

In the sequel, > is a t−norm, S is a t−conorm, J = (S,>) is a t−representable
IF−t−conorm, T = (>, S) is a t−representable IF−t−norm, I> and JS are fuzzy impli-

cation and co-implication operators associated respectively with > and S.

1.2.3 Distance measures and similarity measures for IFSs

Distance measure is another important tool in IFS theory measuring the difference be-

tween IFSs. In the following, we recall definitions and useful properties of a distance

measure, similarity measure and metric between two IFSs.

Definition 1.2.8. ([8, 10, 39])

1. A mapping s : IFSs(X) × IFSs(X) → [0, 1] is a similarity measure if for all

A, B, C ∈ IFSs(X), the following properties hold: (i) 0 ≤ s(A,B) ≤ 1; (ii)

A = B if and only if s(A,B) = 1; (iii) s(A,B) = s(B,A) and (iv) If A ⊆ B ⊆ C,

then s(A,C) ≤ s(A,B) and s(A,C) ≤ s(B,C).

2. Let d : IFSs(X)× IFSs(X)→ [0, 1] be a mapping.

a) d is a distance measure if for all A, B, C ∈ IFSs(X), the following properties

hold:(i) 0 ≤ d(A,B) ≤ 1; (ii) d(A,B) = 0 if and only if A = B; (iii) d(A,B) =

d(B,A); (iv) If A ⊆ B ⊆ C, then d(A,C) ≥ d(A,B) and d(A,C) ≥ d(B,C).

b) d is a distance on IFSs(X) if for all A,B,C ∈ IFSs(X), d satisfies the follow-

ing properties: (i): d(A,B) = 0 if and only if A = B; (ii): d(A,B) = d(B,A)

and (iii): d(A,C) ≤ d(A,B) + d(B,C).
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1.2. On intuitionistic fuzzy sets (IFSs)

Note that we can rewrite the last property of a distance measure as follows: If

A,B,C,D ∈ IFSs(X) such that A ⊆ B ⊆ C ⊆ D, then d(A,D) ≥ d(B,C).

Corollary 2. [Theorems 3.4 and 3.5 of [43]] Let d be a distance measure, then s = 1− d
is associated similarity measure and vis verso .

Recently Zhou and Wu [47] took into account the hesitancy degree to define some

distance based-similarity measures and applied it in medical diagnostic.

In the following example, we recall some usual distances measures.

Example 8. (Some distance measures on IFSs) Let A and B be any two IFSs of X =

{x1, x2, ..., xn}.

(i) Wang and Xin [43] defined the tree following distance measures between A and B:

dn1 (A,B) = 1
n

n∑
i=1

[
|µA(xi)−µB(xi)|+|νA(xi)−νB(xi)|

4
+ max(|µA(xi)−µB(xi)|,|νA(xi)−νB(xi)|)

2

]
. (1.-3)

Usually, the weight of the element xi ∈ X should be taken into account (assume the

weight of the element xi ∈ X, (i = 1...n) is wi (i = 1...n), where 0 ≤ wi ≤ 1), so

they present the following weighted distance measures between IFSs A and B.

dnw1 (A,B) = 1
nw

n∑
i=1

wi

[
|µA(xi)−µB(xi)|+|νA(xi)−νB(xi)|

4
+ max(|µA(xi)−µB(xi)|,|νA(xi)−νB(xi)|)

2

]
.

(1.-3)

where w =
n∑
i=1

wi.

Let p be a strictly positive integer, they proposed also the following distance measure:

dnp1 (A,B) =
1
p
√
n

p

√√√√
n∑

i=1

( |µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|
2

)p
. (1.-3)

(ii) Grzegorzewski [22] proposed the two following distance measures (derived from Ham-

ming and Euclidean distance for IFSs based on Hausdorff metric).

dnH1 (A,B) =
1

n

n∑

i=1

max{|µA(xi)− µB(xi)|, |νA(xi)− νB(xi)|}. (1.-3)

and

dnE1 (A,B) =

√√√√ 1

n

n∑

i=1

max{(µA(xi)− µB(xi))2, (νA(xi)− νB(xi))2}. (1.-3)
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(iii) Hung and Yang [26] proposed some similarity measures based on Lp metric and

compared them to existing measures. They deduced the following distance measure

based on Lp metric:

dHYLp (A,B) =
1

n p
√

2

n∑

i=1

(|µA(xi)− µB(xi)|p + |νA(xi)− νB(xi)|p)
1
p . (1.-3)

Hung and Yang [27] also proposed the following distance measure:

dHY1 (A,B) =
1− e

− 1
n

n∑
i=1

max{|µA(xi)−µB(xi)|,|νA(xi)−νB(xi)|}

1− e−1
. (1.-3)

(iv) Mitchell [32]

dM1 (A,B) =
1

2


 p

√√√√ 1

n

n∑

i=1

|µA(xi)− µB(xi)|p + p

√√√√ 1

n

n∑

i=1

|νA(xi)− νB(xi)|p

 . (1.-3)

As we had presented in the introduction of this thesis, symmetric difference can be

consider as an important tool for social balance, nevertheless distance measures based

on symmetric difference have not yet be defined. Subsequently, we will refer to distance

measures defined by Eqs.(i)-(iv) to propose and study the new distance measures based

on symmetric difference between IFSs in Chapter 3.

In the following section we present some societal problems.

1.3 On some society problems

In real life, there are many problems dealing with imprecision and vagueness in decision

making. IFSs are a suitable tool to cope with imperfect information. In literature, some of

those problems are solved using distance measures or similarity measures between IFSs. In

this Section we present the basic concepts of pattern recognition and medical diagnostic.

1.3.1 On pattern recognition

The theory of IFSs has been used to perform pattern recognition in [43, 47]. The pattern

recognition problem in the classification of objects using IFSs is defined as follows: We

have m known objects A1, ..., Am and one unknown object B (test sample) described as

IFSs by n features of the universe X = {x1, x2, ..., xn} with the weights w1, ..., wn. The

main objective is to determine which known objects is close to B with respect to a distance

measure or similarity measure on IFSs(X).
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1.3.2 On medical diagnosis

Medical diagnosis comprises of uncertainties and increased volume of information available

to physicians from new medical technologies. A diagnosis procedure usually starts off

with an interview of patient and doctor [33]. Therefore, the screening method using

questionaire is helpful in diagnosis of headache and interview chart is a leading part. The

process of classifying different set of symptoms under a single name of a disease is a very

difficult task. In some practical situations, there exists possibility of each element within

a lower and an upper approximation of IFSs. It can deal with the medical diagnosis

involving more indeterminacy. Actually this approach is more flexible and easy to use.

The theory of IFSs has been used to perform medical diagnosis in [40, 34, 44]. The

medical diagnosis problem using IFSs is given as follow: We have a set of m diseases

D = {d1, d2, ..., dm} described as IFSs by a set of n symptoms S = {s1, s2, ..., sn} and

a set of k patients P = {p1, p2, ..., pk}. One needs to find a proper diagnosis for each

patient p1, p2, ..., pk. So medical diagnostic problem sometimes use pattern recognition

approached.
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In this Chapter we define and study the properties of new operations of difference and

symmetric difference between IFSs based on fuzzy implications and fuzzy co-implications

Operators. In addition, we establish some cardinality properties of the proposed opera-

tions.

2.1 Difference operations between IFSs

Huawen [25] used standard definition of classical difference to define difference operation

− between two IFSs A and B as an IFS A−B = A ∩Bc such that,

∀x ∈ X, (µA−B(x), νA−B(x)) = (µA(x) ∧ νB(x), νA(x) ∨ µB(x)) . (2.0)

25



2.1. Difference operations between IFSs

But Huawen’s difference operation does not satisfy three of the five basic properties of

standard difference operation (see Table 2.1).

Satisfy Counter-example

If A ⊆ B, then A−B = ∅ NO A = {(x, 0.3, 0.2), x ∈ X}, B = {(x, 0.6, 0.1), x ∈ X}
A−B = {(x, 0.1, 0.6), x ∈ X} 6= ∅ = {(x, 0, 1), x ∈ X}

If A ⊆ B, then A− C ⊆ B − C YES

If A ⊆ B, then C −B ⊆ C − A YES

(A−B) ∩ (B − A) = ∅ NO A = {(x, 0.2, 0.6), x ∈ X}, B = {(x, 0.7, 0.1), x ∈ X}
A−B ∩B − A = {(x, 0.1, 0.7), x ∈ X} 6= ∅

A−B = A− (A ∩B) NO A = {(x, 0.7, 0.2), x ∈ X}, B = {(x, 0.2, 0.1), x ∈ X}
A− A ∩B = {(x, 0.2, 0.2), x ∈ X} 6= A−B = {(x, 0.1, 0.2), x ∈ X}

Table 2.1: Properties of Huawen’s difference operation

In the following Subsections, we will give the definition of difference operations between

IFSs, we then study their properties and display some examples.

2.1.1 Definitions and examples

Let IT = (1IT ,2 IT ) be an IF-R-implication operator. We define the negation of IT
as N (IT ) = (2IT ,1 IT ). In particular, using Lemma 1 we define the negation of IF-R-

implication as

∀x = (x1, x2), y = (y1, y2) ∈ L∗,N (IT (x,y)) = (JS(x2, y2),min{I>(x1, y1), 1− JS(x2, y2)}) .

Definition 2.1.1. Let A, B be any two intuitionistic fuzzy sets defined on X. The intu-

itionistic fuzzy difference associated to T of A and B is the intuitionistic fuzzy set on X

denoted by A −T B and define by the membership and non-membership degrees as follows:

for all x ∈ X,

(µA−T B(x), νA−T B(x)) = N (IT ((µA(x), νA(x)), (µB(x), νB(x))))

= (JS(νA(x), νB(x)),min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}) .

The following are typical examples of difference operations associated with the three

usual and well-known T .

Example 9. For any intuitionistic fuzzy sets A and B defined on X,

1. The difference operation associated with TM is given by:

for all x ∈ X
(
µA−TM B(x), νA−TM B(x)

)
=





(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x)),

(νB(x),min{µB(x), 1− νB(x)}) , else.
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2.1. Difference operations between IFSs

2. The difference operation associated with TP is given by:

for all x ∈ X
(
µA−TP B(x), νA−TP B(x)

)
=





(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x))
(
νB(x)−νA(x)

1−νA(x)
,min

{
µB(x)
µA(x)

, 1−νB(x)
1−νA(x)

})
, else.

3. The difference operation associated with TL is given by:

for all x ∈ X
(
µA−TL B(x), νA−TL B(x)

)
=





(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x))
(
νB(x)− νA(x),min

{
1− µA(x) + µB(x), 1 + νA(x)− νB(x)

})
, else.

We now establish the classical properties of a difference operation.

2.1.2 Some properties allowing to difference between IFSs

In the following results, we will establish four classical properties for difference operation

which are satisfied by the new intuitionistic fuzzy difference operation.

Proposition 2.1.1 (Properties of Intuitionistic Fuzzy Difference Operation). Let A,B,C

be intuitionistic fuzzy sets on X. The following properties for intuitionistic fuzzy difference

operations hold:

1. if A ⊆ B, then A − T B = ∅;

2. if A ⊆ B, then A − T C ⊆ B − T C;

3. if A ⊆ B, then C − T B ⊆ C − T A;

4. A − T B = A − T (A ∩B).

Proof. By Proposition 1.1.1 and Definition 2.1.1, we establish the results for all x ∈ X
as follows:

1. Assume that, A ⊆ B, then µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

Since JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x), and I>(µA(x), µB(x)) = 1,

whenever µA(x) ≤ µB(x) then by Definition 2.1.1, we have (µA−T B(x), νA−T B(x)) =

(0, 1) and the result follows.

2. Assume that A ⊆ B, then µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

(µA−T C(x), νA−T C(x)) = (JS(νA(x), νC(x)),min{I>(µA(x), µC(x)), 1− JS(νA(x), νC(x))}) ,

(µB−T C(x), νB−T C(x)) = (JS(νB(x), νC(x)),min{I>(µB(x), µC(x)), 1− JS(νB(x), νC(x))}) .

Since νB(x) ≤ νA(x), then from Proposition 1.1.1 JS(νA(x), νC(x)) ≤ JS(νB(x), νC(x)).

So, µA−T C(x) ≤ µB−T C(x).

For the non-membership degree, there are four possibilities:
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Case i: νA−T C(x) = I>(µA(x), µC(x)) and νB−T C(x) = I>(µB(x), µC(x)).

Since µA(x) ≤ µB(x), then I>(µA(x), µC(x)) ≥ I>(µB(x), µC(x)) and we have

νA−T C(x) ≥ νB−T C(x).

Case ii: νA−T C(x) = 1− JS(νA(x), νC(x)) and νB−T C(x) = 1− JS(νB(x), νC(x)).

Since νB(x) ≤ νA(x)then, JS(νA(x), νC(x)) ≤ JS(νB(x), νC(x)), then we have

νA−T C(x) ≥ νB−T C(x).

Case iii: νA−T C(x) = I>(µA(x), µC(x)) and νB−T C(x) = 1− JS(νB(x), νC(x)).

Since µA(x) ≤ µB(x), then

I>(µA(x), µC(x)) ≥ I>(µB(x), µC(x)) ≥ 1− JS(νB(x), νC(x)).

So, νA−T C(x) ≥ νB−T C(x).

Case iv: νA−T C(x) = 1− JS(νA(x), νC(x)) and νB−T C(x) = I>(µB(x), µC(x)).

Since νA(x) ≥ νB(x), then

1− JS(νA(x), νC(x)) ≥ 1− JS(νB(x), νC(x)) ≥ I>(µB(x), µC(x)).

So, νA−T C(x) ≥ νB−T C(x).

Thus for all x ∈ X, µA−T C(x) ≤ µB−T C(x) and νA−T C(x) ≥ νB−T C(x).

So, A − T C ⊆ B − T C.

3. Assume that A ⊆ B then, µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

(µC−T B(x), νC−T B(x)) = (JS(νC(x), νB(x)),min{I>(µC(x), µB(x)), 1− JS(νC(x), νB(x))}) ,

(µC−T A(x), νC−T A(x)) = (JS(νC(x), νA(x)),min{I>(µC(x), µA(x)), 1− JS(νC(x), νA(x))}) .

Since νB(x) ≤ νA(x), then JS(νC(x), νB(x)) ≤ JS(νC(x), νA(x)). So, µC−T B(x) ≤
µC−T A(x).

For the non-membership degree, there are four possibilities:

Case i: νC−T B(x) = I>(µC(x), µB(x)) and νC−T A(x) = I>(µC(x), µA(x)).

Since µA(x) ≤ µB(x), then I>(µC(x), µB(x)) ≥ I>(µC(x), µA(x)) and we have

νC−T B(x) ≥ νC−T A(x).

Case ii: νC−T B(x) = 1− JS(νC(x), νB(x)) and νC−T A(x) = 1− JS(νC(x), νA(x)).

Since νB(x) ≤ νA(x) then JS(νC(x), νB(x)) ≤ JS(νC(x), νA(x)), then we have

νC−T B(x) ≥ νC−T A(x).
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Case iii: νC−T B(x) = I>(µC(x), µB(x)) and νC−T A(x) = 1 − JS(νC(x), νA(x)). Since

µA(x) ≤ µB(x), then

I>(µC(x), µB(x)) ≥ I>(µC(x), µA(x)) ≥ 1− JS(νC(x), νA(x)).

So, νC−T B(x) ≥ νC−T A(x).

Case iv: νC−T B(x) = 1− JS(νC(x), νB(x)) and νC−T A(x) = I>(µC(x), µA(x)).

Since νA(x) ≥ νB(x), then

1− JS(νC(x), νB(x)) ≥ 1− JS(νC(x), νA(x)) ≥ I>(µC(x), µA(x)).

So, νC−T B(x) ≥ νC−T A(x).

Thus for all x ∈ X, µC−T B(x) ≤ µC−T A(x) and νC−T B(x) ≥ νC−T A(x).

So, C − T B ⊆ C − T A.

4. From Definition 2.1.1 we have,

µA−T (A∩B)(x) = JS(νA(x), νA∩B(x)) = JS(νA(x),max{νA(x), νB(x)}), (2.-1)

νA−T (A∩B)(x) = min
{
I>(µA(x), µA∩B(x)), 1− JS(νA(x), νA∩B(x))

}

= min
{
I>(µA(x),min{µA(x), µB(x)}), 1− JS(νA(x),max{νA(x), νB(x)})

}
,(2.-1)

µA−T B(x) = JS(νA(x), νB(x)), (2.0)

νA−T B(x) = min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}. (2.1)

Claim:

We claim µA−T (A∩B)(x) = µA−T B(x) and νA−T (A∩B)(x) = νA−T B(x) for all x ∈ X.
We note the following properties:

JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x); I>(µA(x), µB(x)) = 1, whenever µA(x) ≤
µB(x); JS(νA(x), νA(x)) = 0 and I>(µA(x), µA(x)) = 1.

Then consider the following cases:

Case i: If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), then by Equations (2.-1)-(2.1), we have

µA−T (A∩B)(x) = JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µA(x)), 1− JS(νA(x), νB(x))

}

= min
{

1, 1− JS(νA(x), νB(x))
}

= min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).
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Case ii: If µA(x) ≤ µB(x) and νA(x) ≥ νB(x), then by Equations (2.-1)-(2.1), we have

µA−T (A∩B)(x) = JS(νA(x), νA(x)) = 0

= JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µA(x)), 1− JS(νA(x), νA(x))

}
= min

{
1, 1− 0

}

= min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Case iii: If µA(x) ≥ µB(x) and νA(x) ≤ νB(x), then by Equations (2.-1)-(2.1), we have

µA−T (A∩B)(x) = JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Case iv: If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), then by Equations (2.-1)-(2.1), we have

µA−T (A∩B)(x) = JS(νA(x), νA(x)) = 0

= JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νA(x))

}

= min
{
I>(µA(x), µB(x)), 1− 0

}

= min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Hence,
(
µA−T (A∩B)(x), νA−T (A∩B)(x)

)
= (µA−T B(x), νA−T B(x)) for all x ∈ X, and

the result follows.

The following result shows that, the intuitionistic fuzzy complement of fuzzy sets as-

sociated with a t-representable IF-t-norm T = (>, S) so defined, preserves the properties

of the classical complement for crisp sets.

Corollary 3. Let A be any intuitionistic fuzzy set of X. AcT be the intuitionistic fuzzy

complement of A. Then AcT = X −T A.

Proof. Let x ∈ X. Since (µX(x), νX(x)) = (1, 0), then from Definition 2.1.1,

(µX−T A(x), νX−T A(x)) = (JS(0, νA(x)),min{I>(1, µA(x)), 1− JS(0, νA(x))}) ,

= (νA(x), min{µA(x), 1− νA(x)}) , (recalling Prop. 1.1.1(1)),

= (νA(x), µA(x)) , since µA(x) ≤ 1− νA(x). (2.-15)

From Definition 1.2.7, the result follows.
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The following is the definition of intersection of two IFSs.

Definition 2.1.2. Let A and B be two intuitionistic fuzzy sets and T = (>, S) be a t-

representable IF t-norm. The intuitionistic fuzzy intersection of A and B associated with

T is defined as follows:

A ∩T B = {〈x,>(µA(x), µB(x)), S(νA(x), νB(x))〉 | x ∈ X}. (2.-15)

The following result also establish a property of the new difference operation.

Proposition 2.1.2. Let A and B be any intuitionistic fuzzy sets on X.

1. Then (A − T B) ∩T (B − T A) is an intuitionistic fuzzy set with membership func-

tion,

µ(A−T B)∩T (B−T A)(x) = 0, ∀x ∈ X and non-membership function defined by: for all

x ∈ X,

ν(A−T B)∩T (B−T A)(x) = (2.-14)



S (1− JS(νA(x), νB(x)), I>(µB(x), µA(x))) , if µA(x) ≤ µB(x) and νA(x) ≤ νB(x) ,

S (I>(µA(x), µB(x)), 1− JS(νB(x), νA(x))) , if µA(x) ≥ µB(x) and νA(x) ≥ νB(x) ,

1, otherwise.

(2.-13)

2. If T is a Lukasiewicz IF-t-norm, then

(A − T B) ∩T (B − T A) = ∅.

Proof. 1. From Definition 2.1.2,

µ(A−T B)∩T (B−T A)(x) = > (JS(νA(x), νB(x)), JS(νB(x), νA(x))) , (2.-12)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))},

min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) . (2.-12)

We note that JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x) and I>(µA(x), µB(x)) =

1, whenever µA(x) ≤ µB(x), then consider the following cases: for all x ∈ X,

Case i: If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), then from Equation (2.-12) µ(A−T B)∩T (B−T A)(x) =

> (JS(νA(x), νB(x)), 0) = 0, and from Equation (2.-12) we have

ν(A−T B)∩T (B−T A)(x) = S (min{1, 1− JS(νA(x), νB(x))},min{I>(µB(x), µA(x)), 1− 0}) ,

= S (1− JS(νA(x), νB(x)), I>(µB(x), µA(x))) .
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Case ii: If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), then from Equation (2.-12) µ(A−T B)∩T (B−T A)(x) =

> (0, JS(νB(x), νA(x))) = 0, and from Equation (2.-12)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− 0},min{1, 1− JS(νB(x), νA(x))}) ,

= S (I>(µA(x), µB(x)), 1− JS(νB(x), νA(x))) .

Other possible cases are:

Case iii: If µA(x) ≤ µB(x) and νA(x) ≥ νB(x), then from Equation (2.-12) µ(A−T B)∩T (B−T A)(x) =

> (0, JS(νB(x), νA(x))) = 0, and from Equation (2.-12)

ν(A−T B)∩T (B−T A)(x) = S (min{1, 1− 0},min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) ,

= S (1,min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) = 1.

Case iv: If µA(x) ≥ µB(x) and νA(x) ≤ νB(x), then from Equation (2.-12) µ(A−T B)∩T (B−T A)(x) =

> (JS(νA(x), νB(x)), 0) = 0, and from Equation (2.-12)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))},min{1, 1− 0}) ,

= S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}, 1) = 1.

So, we have established the result 1.

2. If T is Lukasiewicz IF-t-norm, then T = TL = (>L, SL). Since from the result

in 1 above, we have the membership function µ(A−T B)∩T (B−T A)(x) = 0, ∀x ∈ X,

then from Equation (2.-13) it suffices to prove that the non-membership function,

ν(A−T B)∩T (B−T A)(x) = 1, ∀x ∈ X, for the first two cases in (2.-13). From Equation

(2.-12),

i If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), we obtain by applying Proposition 1.1.1

and Example 6,

ν(A−T B)∩T (B−T A)(x) = min (1− JSL(νA(x), νB(x)) + I>L(µB(x), µA(x)), 1) ,

= 1, if µA(x) = µB(x) or νA(x) = νB(x).

If µA(x) < µB(x) and νA(x) < νB(x), then we have

ν(A−T B)∩T (B−T A)(x) = min (1− νB(x) + νA(x) + 1− µB(x) + µA(x), 1) ,

= min (2− (µB(x) + νB(x)) + µA(x) + νA(x), 1) = 1, since µB(x) + νB(x) ≤ 1.
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ii If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), we obtain by applying Proposition 1.1.1

and Example 6,

ν(A−T B)∩T (B−T A)(x) = min (I>L(µA(x), µB(x)) + 1− JSL(νB(x), νA(x)), 1) ,

= 1, if µA(x) = µB(x) or νA(x) = νB(x).

If µA(x) > µB(x) and νA(x) > νB(x), then we have

ν(A−T B)∩T (B−T A)(x) = min (1− µA(x) + µB(x) + 1− νA(x) + νB(x), 1) ,

= min (2− (µA(x) + νA(x)) + µB(x) + νB(x), 1) = 1, since µA(x) + νA(x) ≤ 1.

So
(
µ(A−T B)∩T (B−T A)(x), ν(A−T B)∩T (B−T A)(x)

)
= (0, 1), for all x ∈ X. Hence result

2 is established.

Remark 1. 1. Note that, (A − T B) ∩T (B − T A) = ∅ whenever either A ⊆ B or

B ⊆ A. This follows immediately from the third case in Equation (2.-13).

2. Proposition 2.1.1 specifies conditions which are preserved by the intuitionistic fuzzy

difference operation. These four conditions shall be referred to as the minimal con-

ditions to require of difference operation on (even in crisp, fuzzy and intuitionistic)

sets in general.

Note that for all two crisp sets A and B, the following equation holds.

(A−B) ∩B = ∅ (2.-12)

The following result shows that Eq.(2.1.2) is not satisfies for IFSs in general.

Proposition 2.1.3. There exists two IFSs(X) A and B, such that:

(A−T B) ∩T B 6= ∅ (2.-12)

Proof. Let A and B be two IFSs(X) such that for all x ∈ X, µA(x) > µB(x) and

νA(x) > νB(x). Then from Definition 2.1.1,

µA−T B(x) = 0 and νA−T B(x) = 0. (2.-12)

We most show that: (µ(A−T B)∩T B(x), ν(A−T B)∩T B(x)) 6= (0, 1).

Since µ(A−T B)∩T B(x) = min{µA−T B(x), µB(x)} and ν(A−T B)∩T B(x) = max{νA−T B(x), νB(x)}
then from Eq. (2.1.2) the result follows.
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The following result gives a necessary and sufficient condition for difference of intu-

itionistic fuzzy sets to be a fuzzy set.

Proposition 2.1.4. Let A and B be any intuitionistic fuzzy sets defined on X.

Then the intuitionistic fuzzy difference A − T B is a fuzzy set if and only if for all x ∈ X,

I> (µA(x), µB(x)) ≥ 1− JS (νA(x), νB(x)) .

Proof. Let x ∈ X. Then from the Definition 2.1.1,

(µA−T B(x), νA−T B(x)) = (JS(νA(x), νB(x)),min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}) .

A − T B is a fuzzy set if and only if νA−T B(x) = 1− µA−T B(x),

if and only if min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))} = 1− JS(νA(x), νB(x)),

if and only if I>(µA(x), µB(x)) ≥ 1− JS(νA(x), νB(x)).

Note that A −T B also becomes a fuzzy set if A ⊂ B, because in this case A −T B = ∅
(Proposition 2.1.1), I>(µA(x), µB(x) = 1 and JS(νA(x), νB(x)) = 0. Furthermore, in the

case where A − T B becomes a fuzzy set, we deduce from Proposition 2.1.4 that for

x ∈ X : (µA−T B(x), νA−T B(x)) = (JS(νA(x), νB(x)), 1− JS(νA(x), νB(x))) . This can be

considered as fuzzy part of A − T B.

The following are typical applications of Proposition 2.1.4 to difference operators as-

sociated with the three usual and well-known T .

Notation 2.1.1. Let A and B be any fuzzy sets, A ≡ B if and only if for all x ∈ X,

µA(x) = µB(x).

The following result shows that, the intuitionistic fuzzy difference operator defined in

Definition 2.1.1 associated with t-representable IF t-norm T = (>, S) is a generalization

of fuzzy difference operator proposed by Fono et al. [17] associated with a t-norm > if

and only if the fuzzy t-norm > and fuzzy t-conorm S are dual.

Proposition 2.1.5 (Generalization of Difference Operation for Fuzzy Sets). Let > and

S be any fuzzy t-norm and t-conorm respectively, and T = (>, S) a t-representable IF

t-norm associated with any intuitionistic fuzzy set. > and S are dual if and only if for

any fuzzy sets A and B, A−T B is a fuzzy set and A−> B ≡ A−T B.
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Proof. Let x ∈ X, and A and B be any fuzzy sets.

a. Assume that > and S are dual.

i. Let us show that A−T B is a fuzzy set.

Since > and S are dual, then From Proposition 1.1.1, I>(µA(x), µB(x)) = 1 −
JS(1− µA(x), 1− µB(x)) and from Proposition 2.1.4, the result follows.

ii. Now we shall show that, A−>B ≡ A−T B. It is sufficient to prove that µA−>B(x) =

µA−T B(x).

According to Fono and al. [17], µA−>B(x) = 1− I>(µA(x), µB(x)) and from Defi-

nition 2.1.1 µA−T B(x) = JS(1− µA(x), 1− µB(x)).

Since > and S are dual, the Proposition 1.1.1 shows that, I>(µA(x), µB(x)) =

1− JS(1− µA(x), 1− µB(x)) and the result follows.

b. Assume now that A −T B is a fuzzy set and A −> B ≡ A −T B. Let us show that >
and S are dual.

We have,

µA−>B(x) = 1− I>(µA(x), µB(x))

= 1−max{t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}

= min{1− t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}

= min{1− t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}, (2.-14)

and

µA−T B(x) = JS(1− µA(x), 1− µB(x))

= min{r ∈ [0; 1], S(1− µA(x), r) ≥ 1− µB(x)}

= min{1− t ∈ [0; 1], S(1− µA(x), 1− t) ≥ 1− µB(x)}

= min{1− t ∈ [0; 1], 1− S(1− µA(x), 1− t) ≤ µB(x)} (2.-16)

Since A −> B ≡ A −T B then, µA−>B(x) = µA−T B(x). From Equations (2.-11) and

(2.-13) >(µA(x), t) = 1− S(1− µA(x), 1− t), ∀t ∈ [0; 1] and the result follows.

In the following Subsection, we will define a new symmetric difference operation for

intuitionistic fuzzy sets based on the IF-R-implication and IF-co-implication and we will

study its properties.
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2.2 Symmetric difference operation between IFSs

Ejegwa [13] defines IF symmetric difference of IFs A and B as the IFS A M B of X such

that,

∀x ∈ X, (µAMB(x), νAMB(x)) = (max{µA(x) ∧ νB(x), νA(x) ∧ µB(x)}, min{νA(x) ∨ µB(x), µA(x) ∨ νB(x)}) .

(2.-16)

But Ejegwa’s symmetric difference operation does not satisfy one of the four basic prop-

erties of standard symmetric difference operation (see Table 2.2).

Satisfy Counter-example

A M B = (A − B) ∪ (B − A) YES

A M B = B M A YES

If A ⊆ B, then A M B = B − A YES

A M A = ∅. NO A = {(x, 0.6, 0.2), x ∈ X},
A M A = {(x, 0.2, 0.6), x ∈ X} 6= ∅

Table 2.2: Properties of Ejegwa’s symmetric difference operation

In the following Subsections, we will first give the definition of the new symmetric

difference operations between IFSs and display appropriate examples.

2.2.1 Definition and examples

The idea for the new definition is derive from the classical formula for symmetric difference

and the operations of union and intersection alongside with the proposed difference for

intuitionistic fuzzy sets.

Definition 2.2.1. Let A, B be any two IFSs defined on X. The intuitionistic fuzzy

symmetric difference associated to T of A and B is the IFS on X denoted by A M T B
and defined by the membership and non-membership degrees as follows:

For all x ∈ X,

µAMT B(x) = JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)), (2.-15)

νAMT B(x) = min{I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)), 1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x))}.

Example 10. For any two intuitionistic fuzzy sets A and B defined on X,
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1. The symmetric difference operator associated with TM is given by, for all x ∈ X

µAMTM B(x) =





0, if (µA(x), νA(x)) = (µB(x), νB(x))

νB(x) ∨ νA(x), if (µA(x), νA(x)) 6= (µB(x), νB(x)),

νAMTM B(x) =





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min{min{µB(x), 1− νB(x)},min{µA(x), 1− νA(x)}}, if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min{µA(x) ∧ µB(x), 1− νA(x) ∨ νB(x)}, if (µA(x), νA(x)) 6= (µB(x), νB(x)).

2. The symmetric difference operator associated with TP is given by, for all x ∈ X

µAMTP B(x) =





0, if (µA(x), νA(x)) = (µB(x), νB(x))

max
{
νB(x)−νA(x)

1−νA(x)
, νA(x)−νB(x)

1−νB(x)

}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=





0, if (µA(x), νA(x)) = (µB(x), νB(x))

(νA(x)−νB(x))∨(νB(x)−νA(x))
(1−νA(x))∧(1−νB(x))

, if (µA(x), νA(x)) 6= (µB(x), νB(x)),

νAMTP B(x) =





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{

min
{µB(x)
µA(x)

, µA(x)
µB(x)

}
, 1−max

{νB(x)−νA(x)
1−νA(x)

, νA(x)−νB(x)
1−νB(x)

}}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{
µA(x)∧µB(x)
µA(x)∨µB(x)

, 1− (νA(x)−νB(x))∨(νB(x)−νA(x))
(1−νA(x))∧(1−νB(x))

}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)).

3. The symmetric difference operator associated with TL is given by, for all x ∈ X

µAMTL B(x) =





0, if (µA(x), νA(x)) = (µB(x), νB(x))

(νA(x)− νB(x)) ∨ (νB(x)− νA(x)), if (µA(x), νA(x)) 6= (µB(x), νB(x)),

and

νAMTL B(x) =





1, if (µA(x), νA(x)) = (µB(x), νB(x)),

∧
{
∧ {1− µA(x) + µB(x), 1 + νA(x)− νB(x)},∧{1− µB(x) + µA(x), 1 + νB(x)− νA(x)}

}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)).

=





1, if (µA(x), νA(x)) = (µB(x), νB(x)),

min
{

1− (µA(x)− µB(x)) ∨ (µB(x)− µA(x)), 1− (νA(x)− νB(x)) ∨ (νB(x)− νA(x))
}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)).

In what follows, we are going to establish some results showing that some properties

of the classical set symmetric difference are preserved by this new proposed intuitionistic

fuzzy symmetric difference operation.
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2.2.2 Some properties allowing to symmetry difference between

IFSs

In the following results, we establish four classical properties for intuitionistic fuzzy sym-

metric difference operations.

Proposition 2.2.1 (Properties of intuitionistic fuzzy symmetric difference operation). Let

A,B be any two IFSs on X. The following properties for intuitionistic fuzzy symmetric

difference operation hold:

1. A M T B = (A − T B) ∪ (B − T A);

2. A M T B = B M T A;

3. If A ⊆ B, then A M T B = B − T A;

4. A M T A = ∅.

Proof. 1. The following are properties for fuzzy-R-implication, I> and fuzzy co-implication,

JS which we require here:

I>(a ∨ b, c) = I>(a, c) ∧ I>(b, c), and JS(a ∨ b, c) = JS(a, c) ∧ JS(b, c);

I>(a ∧ b, c) = I>(a, c) ∨ I>(b, c), and JS(a ∧ b, c) = JS(a, c) ∨ JS(b, c);

I>(a, b ∨ c) = I>(a, b) ∨ I>(a, c), and JS(a, b ∨ c) = JS(a, b) ∨ JS(a, c);

I>(a, b ∧ c) = I>(a, b) ∧ I>(a, c), and JS(a, b ∧ c) = JS(a, b) ∧ JS(a, c).

These can easily be verified.

Now, we proceed to prove 1 and 2 consequently as follows: From Equation (2.-15)

and applying above properties of I> and JS we have, for all x ∈ X

(µAMT B(x), νAMT B(x)) = (JS(νA(x) ∧ νB(x), νA(x)) ∨ JS(νA(x) ∧ νB(x), νB(x)) ,

min{I>(µA(x) ∨ µB(x), µA(x)) ∧ I>(µA(x) ∨ µB(x), µB(x)) ,

1− JS(νA(x) ∧ νB(x), νA(x)) ∨ JS(νA(x) ∧ νB(x), νB(x))}) .

So we have

µAMT B(x) = (JS(νA(x), νA(x)) ∨ JS(νB(x), νA(x)))∨(JS(νA(x), νB(x)) ∨ JS(νB(x), νB(x))) .

νAMT B(x) = min{(I>(µA(x), µA(x)) ∧ I>(µB(x), µA(x))} ∧ {I>(µA(x), µB(x)) ∧ I>(µB(x), µB(x))) .

1−(JS(νA(x), νA(x)) ∨ JS(νB(x), νA(x))} ∨ {JS(νA(x), νB(x)) ∨ JS(νB(x), νB(x)))},
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and applying Proposition 1.1.1 we have the following:

µAMT B(x) = JS(νB(x), νA(x)) ∨ JS(νA(x), νB(x)),

= JS(νA(x), νB(x)) ∨ JS(νB(x), νA(x)), (2.-20)

= µA−T B(x) ∨ µB−T A(x),

= µ(A−T B)∪(B−T A)(x).

νAMT B(x) = min{I>(µB(x), µA(x)) ∧ I>(µA(x), µB(x)), 1− JS(νB(x), νA(x)) ∨ JS(νA(x), νB(x))},

= min{I>(µA(x), µB(x)) ∧ I>(µB(x), µA(x)), 1− JS(νA(x), νB(x)) ∨ JS(νB(x), νA(x))},

= min{I>(µA(x), µB(x)) ∧ (1− JS(νA(x), νB(x))), I>(µB(x), µA(x)) ∧ (1− JS(νB(x), νA(x)))},

= νA−T B(x) ∧ νB−T A(x),

= ν(A−T B)∪(B−T A)(x).

So, result 1 is established.

2. By commutativity of Equations (2.-20) and (1), result 2 follows, since A M T B =

(A − T B) ∪ (B − T A) = (B − T A) ∪ (A − T B) = B M T A.

3. If A ⊆ B, then for all x ∈ X, µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

Applying the above inequalities to the Equation (2.-15), we get

(µAMT B(x), νAMT B(x)) = (JS(νB(x), νA(x)),min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) ,

= (µB−T A(x), νB−T A(x)) ,

and the result follows.

4. By Equation (2.-15) we have, for all x ∈ X

µAMT A(x) = JS(νA(x) ∧ νA(x), νA(x) ∨ νA(x)),

= JS(νA(x), νA(x)) = 0.

νAMT A(x) = min{I>(µA(x) ∨ µA(x), µA(x) ∧ µA(x)), 1− JS(νA(x) ∧ νA(x), νA(x) ∨ νA(x))},

= min{I>(µA(x), µA(x)), 1− JS(νA(x), νA(x))},

= min{1, 1} = 1.

So the result is established.
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2.2. Symmetric difference operation between IFSs

We are going to establish important results which will be very useful in the study of

distance measure between IFSs.

Lemma 2. Let A,B,C ∈ IFSs(X).

1. A∆TB = ∅ if and only if A = B.

2. If A ⊆ B ⊆ C, then A∆TB ⊆ A∆T C and B∆T C ⊆ A∆T C.

Proof. 1. To prove the first result of Lemma 2, let us recall the well-know properties

of JS and I>: for all a, b ∈ [0, 1].

JS(a, b) = 0 if and only if a ≥ b (2.-31)

and

I>(a, b) = 1 if and only if a ≤ b (2.-31)

Let us prove now that A∆TB = ∅T if and only if A = B.

If A = B, then from Proposition 2.2.1, A∆TB = A∆TA = ∅T .

On the other hand, suppose that A∆TB = ∅T . Let us show that A = B, that is, for

all x ∈ X, µA(x) = µB(x) and νA(x) = νB(x).

Since A∆TB = ∅T then

µA∆T B(x) = 0 and νA∆T B(x) = 1, for all x ∈ X. (2.-31)

From Definition 2.2.1, (1) implies that, for all x ∈ X,

JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) = 0 and I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)) = 1.

(2.-31)

Since µA(x) ∨ µB(x) ≥ µA(x) ∧ µB(x) and νA(x) ∧ νB(x) ≤ νA(x) ∨ νB(x), then

from (1), (1) and (1) we have µA(x) ∨ µB(x) = µA(x) ∧ µB(x) and νA(x) ∧ νB(x) =

νA(x) ∨ νB(x). And the result follows.

2. Let us prove the second result of Lemma 2.

i) Let us show first that: A∆TB ⊆ A∆T C.

It is sufficient to show that: for all x ∈ X, µA∆T C(x) ≥ µA∆T B(x) and

νA∆T C(x) ≤ νA∆T B(x).

Since A ⊆ B ⊆ C, then: for all x ∈ X,



µA(x) ≤ µB(x) ≤ µC(x)

νA(x) ≥ νB(x) ≥ νC(x).
(2.-31)
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2.2. Symmetric difference operation between IFSs

By using (2i) and Definition 2.2.1, we have the following system for all x ∈ X,:




µA∆T C(x) = JS(νC(x), νA(x)),

µA∆T B(x) = JS(νB(x), νA(x)),

νA∆T C(x) = min{I>(µC(x), µA(x)), 1− JS(νC(x), νA(x))},

νA∆T B(x) = min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}.

(2.-31)

Since JS and I> are left decreasing, (2i) and (2i) show that:

for all x ∈ X, µA∆T C(x) ≥ µA∆T B(x) and νA∆T C(x) ≤ νA∆T B(x) and the result

follows.

ii) Let us show now that B∆T C ⊆ A∆T C.

It is sufficient to show that: for all x ∈ X, µA∆T C(x) ≥ µB∆T C(x) and

νA∆T C(x) ≤ νB∆T C(x).

Since A ⊆ B ⊆ C, then, by using (2i) and Definition 2.2.1, we have the following

system for all x ∈ X,:




µA∆T C(x) = JS(νC(x), νA(x)),

µB∆T C(x) = JS(νC(x), νB(x)),

νA∆T C(x) = min{I>(µC(x), µA(x)), 1− JS(νC(x), νA(x))},

νB∆T C(x) = min{I>(µC(x), µB(x)), 1− JS(νC(x), νB(x))}.

(2.-31)

Since JS and I> are right increasing, (2i) and (2ii) show that:

for all x ∈ X, µA∆T C(x) ≥ µB∆T C(x) and νA∆T C(x) ≤ νB∆T C(x) and the result

follows.

The following result shows that, the intuitionistic fuzzy symmetric difference operator

in Definition 2.2.1 associated with t-representable IF t-norm T = (>, S) is a generalization

of fuzzy symmetric difference operation proposed by Fono et al. [17] associated with the

t-norm > if and only if > and S are dual.

Proposition 2.2.2. [Generalization of symmetric difference operation for fuzzy sets] Let

> and S be any fuzzy t−norm and t−conorm respectively, T = (>, S) a t-representable

IF t-norm associated with any intuitionistic fuzzy set. > and S are dual if and only if for

any fuzzy sets C and D, C M T D is a fuzzy set and for all x ∈ X, µCM>D(x) = µC MT D(x).

Proof. Let x ∈ X, and C and D be any fuzzy sets.
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2.2. Symmetric difference operation between IFSs

a. Assume that > and S are dual.

i. Let us show that C M T D is a fuzzy set.

Since C and D are fuzzy sets (1−µC(x) = νC(x) and 1−µD(x) = νD(x)) , and >
and S are dual, then from Proposition 1.1.1,

I>(µC(x) ∨ µD(x), µC(x) ∧ µD(x))

= 1− JS(1− µC(x) ∨ µD(x), 1− µC(x) ∧ µD(x))

= 1− JS((1− µC(x)) ∧ (1− µD(x)), (1− µC(x)) ∨ (1− µD(x)))

= 1− JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x)). (2.-33)

From Definition 2.2.1, the result follows.

ii. Now we shall show that, C M >D ≡ C M T D. It is sufficient to prove that

µCM>D(x) = µC MT D(x).

Definition 1.1.5 and Definition 2.2.1 shows that,

µ
C
i
M
>
D

(x) = µ
C∪D

i
−
>
C∩D

(x) =





1− I1
> (µC(x) ∨ µD(x), µC(x) ∧ µD(x)) , if i = 1

1− I2
> (µC(x) ∨ µD(x), µC(x) ∧ µD(x)) , if i = 2,

and µC MT D(x) = JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x)).

From Equation (2.-30), the result follows.

b. Assume now that C M T D is a fuzzy set and C M >D ≡ C M T D.
Let us show that > and S are dual.

We have,

µCM>D(x) = 1− I>(µC(x) ∨ µD(x), µC(x) ∧ µD(x))

= 1−max{t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)}

= min{1− t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)}

= min{1− t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)},(2.-35)

and

µC MT D(x) = JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x))

= min{r ∈ [0; 1], S(νC(x) ∧ νD(x), r) ≥ νC(x) ∨ νD(x)}

= min{1− t ∈ [0; 1], S(1− µC(x) ∨ µD(x), 1− t) ≥ 1− µC(x) ∧ µD(x)}

= min{1− t ∈ [0; 1], 1− S(1− µC(x) ∨ µD(x), 1− t) ≤ µC(x) ∧ µD(x)}.(2.-37)
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2.3. Some classes of IF cardinality for difference and symmetric difference of IFSs

Since C M >D ≡ C M T D then, µCM>D(x) = µC MT D(x). From Equation (2.-32) and

(2.-34),

>(µC(x)∨µD(x), t) = 1−S(1−µC(x)∨µD(x), 1−t), ∀t ∈ [0; 1], and the result follows.

In the following Section, we will first give a generalized definition of intuitionistic

fuzzy cardinality for difference and symmetric difference and we will then investigate

their properties.

2.3 Some classes of IF cardinality for difference and

symmetric difference of IFSs

Throughout this Section, the universal set X is finite. On fuzzy sets, Deschrijver and Král

[11] introduce the cardinalities of interval-valued fuzzy sets and study their properties.

In this subsection, we will discuss the cardinality of IFSs. First, we will recall the

definition of intuitionistic fuzzy cardinality introduced by Tripathy et al. [41].

Definition 2.3.1. (Cardinality of Intuitionistic Fuzzy Set [41]) Let A = {(xi, µA(xi), νA(xi)), xi ∈
X} be an IFS on X. The intuitionistic fuzzy cardinality (IF-cardinality) of A denoted by

Count(A) is given by

Count(A) =

(
n∑

i=1

µA(xi),
n∑

i=1

(1− νA(xi))

)
. (2.-36)

One of the properties of this cardinality operation is given here.

Theorem 1 (Property of Count [41]). Let A and B be any two intuitionistic fuzzy sets

on X. Then

Count(A ∪B) + Count(A ∩B) = Count(A) + Count(B). (2.-35)

Using Definition 2.3.1, we obtain the IF-cardinality of symmetric difference between

IFSs A and B associated with T as follows:

Count(A∆TB) =

(
n∑

i=1

µA∆T B(xi),
n∑

i=1

(1− νA∆T B(xi))

)
. (2.-34)

Given IFSs A = {(xi, µA(xi), νA(xi)), xi ∈ X} and B = {(xi, µB(xi), νB(xi)), xi ∈ X},
we let

fABS (i) = JS(νA(xi) ∧ νB(xi), νA(xi) ∨ νB(xi)) for i = 1, . . . , n. (2.-34)
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2.3. Some classes of IF cardinality for difference and symmetric difference of IFSs

and

gAB> (i) = I>(µA(xi) ∨ µB(xi), µA(xi) ∧ µB(xi)) for i = 1, . . . , n. (2.-34)

Using Equation (2.-34), we can rewrite the IF-cardinality for symmetric difference between

any two IFSs A and B as follows.

Count(A∆TB) =

(
n∑

i=1

fABS (i),
n∑

i=1

max{1− gAB> (i), fABS (i)}
)
. (2.-34)

If A is a fuzzy set we denote by Card(A) the cardinality of A.

Let β be the positive real number and B be IFS. We introduce the following notation:

Count(B) ≡ β if and only if Count(B) = (β, β).

The following remark gives fuzzy version of the IF-cardinality for the intuitionistic

fuzzy symmetric difference.

Remark 2. Let A and B be two fuzzy sets. If > and S are dual, then the IF-cardinality

of A∆TB is given by:

Count(A∆TB) ≡ Card(A
i

∆
>
B) =

n∑

i=1

fABS (i) =
n∑

i=1

(
1− gAB> (i)

)
(2.-34)

according to i ∈ {1, 2}. Where A
i

∆
>
B is define in Definition 1.1.5.

Remark 2 shows that the cardinality of the new symmetric difference between IFSs(X)

generalizes definition of the cardinality of symmetric difference between FSs(X) defined

by Fono et al. [17].

In what follows, we establish a cardinality property that is satisfied by the intuitionistic

fuzzy difference and symmetric difference proposed.

Proposition 2.3.1. Let A,B,C be any intuitionistic fuzzy sets on X. The following

property holds:

Count(A MT B) ≤L∗ Count(A−T B) + Count(B −T A).

Proof. Recall from Proposition 2.2.1, we have A M T B = (A − T B) ∪ (B − T A) and

by Theorem 1 we obtain

Count(A MT B) = Count(A−T B) + Count(B −T A)− Count ((A−T B) ∩ (B −T A)) .(2.-33)

Since by Proposition 2.1.2 we have (A − T B)∩T (B − T A) 6= ∅ in general, then we have

Count ((A − T B) ∩ (B − T A)) ≥L∗ 0L∗ . (2.-32)

Putting Equation (2.-32) into (2.-33) we obtain the required result.
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New distance measures, similarity

measures and metrics based on

symmetric difference between IFSs

Contents
3.1 Some classes of distances measures and similarity measures

for IFSs based on symmetric difference for IFSs . . . . . . . . 46

3.2 Some classes of metric for IFSs based on cardinality compo-

nents of symmetric difference for IFSs . . . . . . . . . . . . . . 51

3.2.1 New Conditions for both fuzzy implication and fuzzy co-implication

operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Some classes of metrics for IFSs . . . . . . . . . . . . . . . . . . 59

In this Chapter we first propose eight classes of distance measures and eight classes

of similarity measures between IFSs using cardinality components of the new symmetric

difference between IFSs. We further determine conditions on both fuzzy t−norm > and

fuzzy t−conorm S under which many of those classes become metrics.

Throughout this ChapterA = {(xi, µA(xi), νA(xi)), xi ∈ X} andB = {(xi, µB(xi), νB(xi)), xi ∈
X} are two IFS on X.

The following Section display the new distance measures and similarity measures.
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3.1. Some classes of distances measures and similarity measures for IFSs based on symmetric

difference for IFSs

3.1 Some classes of distances measures and similarity

measures for IFSs based on symmetric difference

for IFSs

Distance measures or similarity measures have been proposed to solve some problems of

decision making. The existing distance or similarity measures are not based on symmetric

difference between IFSs.

In this Section we proposed such tools which are based on symmetric difference.

Let us introduce our eight proposed mappings on pairs of IFSs A and B.

dZ2n,T (A,B) =
1

n

n∑

i=1

3 + µA∆T B(xi)− 3νA∆T B(xi)

4
. (3.0)

Assume the weight of the element xi ∈ X, (i = 1, ..., n) is wi (i = 1, ..., n), were 0 ≤ wi ≤ 1.

dZ2w,T (A,B) =
1

nw

n∑

i=1

wi

(
3 + µA∆T B(xi)− 3νA∆T B(xi)

4

)
(3.0)

with w =
n∑
i=1

wi.

dZ2H,T (A,B) =
1

n

n∑

i=1

(1− νA∆T B(xi)), (3.0)

dZ2E,T (A,B) =

√√√√ 1

n

n∑

i=1

(1− νA∆T B(xi))2. (3.0)

Let p be a strictly positive integer.

dZ2p,T (A,B) =
1
p
√
n

p

√√√√
n∑

i=1

(
1 + µA∆T B(xi)− νA∆T B(xi)

2

)p
; (3.0)

dZ2Lp,T (A,B) =
1

n p
√

2

n∑

i=1

p
√

(µA∆T B(xi))p + (1− νA∆T B(xi))p; (3.0)

dZHY,T (A,B) =
1− e

− 1
n

n∑
i=1

(1−νA∆T B(xi))

1− e−1
. (3.0)

and

dZM,T (A,B) =
1

2


 p

√√√√ 1

n

n∑

i=1

(µA∆T B(xi))
p + p

√√√√ 1

n

n∑

i=1

(1− νA∆T B(xi))
p


 . (3.0)

Notice that we replace |µA(xi) − µB(xi)| by µA∆T B(xi) and |νA(xi) − νB(xi)| by 1 −
νA∆T B(xi) in each of the eight distance measures proposed in the literature and recalled
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difference for IFSs

in Eq. (i), Eq. (i), Eq. (i), Eq. (ii), Eq. (ii), Eq. (iii), Eq. (iii) and Eq. (iv). Thereby,

our first main result of this chapter establishes that the eight mappings in Eqs. (3.1)-(3.1)

are distance measures. In order words the replacement preserves the structure of distance

measures.

Theorem 2. The mappings dZ2n,T , dZ2w,T , dZ2H,T , dZ2E,T , dZ2p,T , dZ2Lp,T , d
Z
HY,T and dZM,T are

distance measures associated with T .

Note that, Theorem 2 can be proved using Definition 1.2.8 and Lemma 2.

Proof. 1. Let us prove that dZ2n,T is a distance measure.

i. Let A and B be IFSs(X), we show that 0 ≤ dZ2n,T (A,B) ≤ 1.

Since A∆TB ∈ IFSs(X), then for all xi ∈ X,
0 ≤ µA∆T B(xi) + 3(1− νA∆T B(xi)) ≤ 4 implies 0 ≤ dZ2n,T (A,B) ≤ 1.

ii. Let A and B be IFSs(X), we show that dZ2n,T (A,B) = 0 if and only if A = B.

Since for all xi ∈ X, 



µA∆T B(xi) ≥ 0;

1− νA∆T B(xi) ≥ 0,
(3.0)

then from Eq. (3.1) dZ2n,T (A,B) = 0 is equivalent to: for all xi ∈ X,

µA∆T B(xi) = 0 and 1− νA∆T B(xi) = 0, (3.0)

Eq. (1ii) is equivalent to A∆TB = ∅T . The preceding and Lemma 2 give the

result.

iii. Let A and B be IFSs(X), we show that dZ2n,T (A,B) = dZ2n,T (B,A).

Since A∆TB = B∆TA (see Proposition 2.2.1), then from (3.1), the result

follows.

iv. Let A, B and C be IFSs(X) such that A ⊆ B ⊆ C. We show that

dZ2n,T (A,C) ≥ dZ2n,T (A,B) and dZ2n,T (A,C) ≥ dZ2n,T (B,C).

Since A ⊆ B ⊆ C, then from Lemma 2, we have: for all xi ∈ X.




µA∆T C(xi) ≥ µA∆T B(xi)

νA∆T C(xi) ≤ νA∆T B(xi),
(3.0)

and 



µA∆T C(xi) ≥ µB∆T C(xi)

νA∆T C(xi) ≤ νB∆T C(xi),
(3.0)
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difference for IFSs

Therefore: for all xi ∈ X




µA∆T C(xi) ≥ µA∆T B(xi)

1− νA∆T C(xi) ≥ 1− νA∆T B(xi),
(3.0)

and 



µA∆T C(xi) ≥ µB∆T C(xi)

1− νA∆T C(xi) ≥ 1− νB∆T C(xi),
(3.0)

In consequent Eqs. (3.1) and (1iv) show that dZ2n,T (A,C) ≥ dZ2n,T (A,B). Also,

Eqs. (3.1) and (1iv) show that dZ2n,T (A,C) ≥ dZ2n,T (B,C).

2. The proofs of dZ2H,T , dZ2E,T , dZ2w,T , dZ2p,T , dZ2Lp,T , d
Z
HY,T , and dZM,T . are analogous to

the proof of dZ2n,T .

We observe that many of the new previous distance measures use cardinality compo-

nents of symmetric difference between two IFSs.

The following remark establishes that dZ2n,T and dZ2H,T are equivalents; and dZ2H,T is lower

than dZ2E,T .

Remark 3. Let A and B be IFSs(X), Since µA∆T B(xi)) ≤ 1− νA∆T B(xi)) we have,
3
4
dZ2n,T (A,B) ≤ dZ2H,T (A,B) ≤ dZ2n,T (A,B) and dZ2H,T (A,B) ≤ √ndZ2E,T (A,B).

In the following remark, we give the fuzzy version of our proposed eight distance

measures. Three distance measures coincide on fuzzy sets and becomes the distance

measure introduced by Fono et al. [17], and the five other ones become new distance

measures on fuzzy sets.

Remark 4. The restrictions of dZ2n,T , dZ2w,T , dZ2H,T , dZ2E,T , dZ2p,T , dZ2Lp,T , d
Z
HY,T , and dZM,T

to FSs(X) become: for all A,B ∈ FSs(X):

dZ2n,T (A,B) = dZ2H,T (A,B) = dZ2Lp,T (A,B) =
1

n

n∑

i=1

µA∆T B(xi), (3.0)

dZ2w,T (A,B) =
1

nw

n∑

i=1

wiµA∆T B(xi), (3.0)

dZ2p,T (A,B) = dZM,T (A,B) =
1
p
√
n

p

√√√√
n∑

i=1

(µA∆T B(xi))p, (3.0)

dZ2E,T (A,B) =

√√√√ 1

n

n∑

i=1

(µA∆T B(xi))2, (3.0)
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and

dZHY,T (A,B) =
1− e

− 1
n

n∑
i=1

µA∆>B(xi)

1− e−1
. (3.0)

The above equality hold because µA∆T B(xi) = 1 − νA∆T B(xi) = µA∆>B(xi) holds due to

results of Proposition 2.2.2.

The following result justifies that, distance measure dZHY,T and, the new Hamming

and Euclidean distance measures generalize the respective distance measure dHY1 defined

by (iii) and, the Hamming and Euclidean distance measures proposed by Grzegorzewski

[22] and defined by (ii) and (ii) when T = TL = (>L, SL) is t-representable IF t-norm of

Lukasiewicz. And the five other one are greater than their corresponding in the literature

of distance measures.

Corollary 4. Let T = TL = (>L, SL) be t-representable IF t-norm of Lukasiewicz. Then

for all A, B ∈ IFSs(X),

� dZHY,T (A,B) = dHY1 (A,B); dZ2H,T (A,B) = dnH1 (A,B) and dZ2E,T (A,B) = dnE1 (A,B).

� dZ2n,T (A,B) ≥ dn1 (A,B); dZ2w,T (A,B) ≥ dnw1 (A,B); dZ2p,T (A,B) ≥ dnp1 (A,B); dZ2Lp,T (A,B) ≥
dHYLp (A,B) and dZM,T (A,B) ≥ dM1 (A,B).

Proof. Let A and B be two intuitionistic fuzzy sets defined on X. From Example 10, the

membership and non-membership of IF symmetric difference between A and B associated

with TL are defined for all x ∈ X as:

µAMTL B(x) =





0, if (µA(x), νA(x)) = (µB(x), νB(x))

| νA(x)− νB(x) |, if (µA(x), νA(x)) 6= (µB(x), νB(x)),
(3.0)

νAMTL B(x) =





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{

1− | µA(x)− µB(x) |, 1− | νA(x)− νB(x) |
}
, otherwise.

(3.0)

a) We show that dZHY,T (A,B) = dHY1 (A,B); dZ2H,T (A,B) = dnH1 (A,B) and dZ2E,T (A,B) =

dnE1 (A,B).

It follows from Eq. (3.1) that

1− νAMTL B(x) =





0, if (µA(x), νA(x)) = (µB(x), νB(x))

max
{
| µA(x)− µB(x) |, | νA(x)− νB(x) |

}
, otherwise.

(3.0)
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Therefore from Eq. (a),

dZHY,T (A,B) =
1− e

− 1
n

n∑
i=1

(1−νA∆T B(xi))

1− e−1
=

1− e
− 1
n

n∑
i=1

max{|µA(xi)−µB(xi)|,|νA(xi)−νB(xi)|}

1− e−1
,

(3.0)

dZ2H,T (A,B) =
1

n

n∑

i=1

(1−νA∆T B(xi)) =
1

n

n∑

i=1

max
{
| µA(xi)−µB(xi) |, | νA(xi)−νB(xi) |

}

(3.0)

and

dZ2E,T (A,B) =

√
1
n

n∑
i=1

(1− νA∆T B(xi))2 =

√
1
n

n∑
i=1

max
{

(µA(xi)− µB(xi))
2 , (νA(xi)− νB(xi))

2
}
.

(3.0)

From Eqs. (iii) and (a), Eqs. (ii) and (a) and, Eqs. (ii) and (a), the first result of

Corollary 4 holds.

b) The proof of the second result of Corollary 4 is obviously since for all x ∈ X, µAMTL B(x) ≤
1− νAMTL B(x).

Similarity measure is also important to measure degree of similarity between two ob-

jets. We deduce the following result for similarity measures from the proposed correspond-

ing distance measures. The proof is obviously followed from Corollary 2 and Theorem

2.

Corollary 5. a) The following mappings sZ2n,T = 1− dZ2n,T , sZ2w,T = 1− dZ2w,T , sZ2p,T =

1− dZ2p,T , sZHY,T = 1− dZHY,T and sZM,T = 1− dZM,T are classes of similarity measures

on IFSs associated with T .

b) The following mappings sZ2H,T = 1−dZ2H,T , sZ2E,T = 1−dZ2E,T and sZ2Lp,T = 1−dZ2Lp,T
are classes of similarity measures on IFSs associated with T , provided to Hamming

metric, Euclidean metric and Lp metric respectively.

Although distance measure is important for us to study difference between two objets,

metric (distance) between IFSs gives good geometric properties on the set IFSs(X). Note

that a normalized metric is a distance measure but the converse is not necessarily true.

In the following Section, we define and study condition on both fuzzy implication

operators and fuzzy co-implication operators under which some of our classes of distance

measures become metrics.
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3.2 Some classes of metric for IFSs based on cardinality

components of symmetric difference for IFSs

De Baets and Mesiar [7] introduced the condition C1 for fuzzy R-implication operators

I> as follows. For all a, b, c ∈ [0, 1],

a > b > c implies I>(a, c) ≥ >(I>(a, b), I>(b, c)). (3.0)

Fono et al. [17] introduced and studied the following condition C for fuzzy R-implication

operators (see [17] Definition 2 page 317).

I> satisfies condition C if for all a, b, c ∈ [0, 1],

a > b > c implies 1 + I>(a, c) ≥ I>(a, b) + I>(b, c). (3.0)

They showed that conditions C and C1 are equivalent when > = >L is the Lukasiewicz

t-norm.

We first recall that De Baets and Mesiar [7] have showed that the R-implicators and

contraposition symmetrical operators of the Lukasievicz t-norm satisfy condition C1 (see

[7] Theorem 5 p. 5). Fono et al. [17] have completed their results by showing that the

R-implicators and contraposition symmetrical operators of the family of Frank t-norms

(>λF )λ∈[0;+∞] satisfy condition C (see [17] Proposition 2 p. 318). In the same view, Fotso

et al. [20] displayed in each seven usual parameterized families of t-norms recalled in [29],

those which satisfy condition C and thereby generate metrics from dissimilarity mea-

sures. Their results have showed that, all the t-norms of the family of Mayor-Torrens
(
>λMT

)
λ∈[0,1]

generate metrics from the cardinality of symmetric difference for fuzzy sets

(see [20], Proposition 4 p. 7).

We now introduce and study new conditions for both fuzzy implication operators and

fuzzy co-implication operators which will be useful in the next of this section.

3.2.1 New Conditions for both fuzzy implication and fuzzy co-

implication operators

Condition C∗

The following are the definition of condition C∗ which will be helpful in this study.
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Definition 3.2.1 (Condition C∗). (I>, JS) satisfies condition C∗ if for all (a, a′), (b, b′), (c, c′) ∈
L∗, 




a > b > c implies 1 + I>(a, c) ≥ I>(a, b) + I>(b, c),

a′ < b′ < c′ implies JS(a′, c′) ≤ JS(a′, b′) + JS(b′, c′).
(3.0)

In the next, we will say T satisfies condition C∗ if (I>, JS) satisfies condition C∗.

The two lines of the Eq. (3.2.1) are linked due to the fact that (a, a′), (b, b′), (c, c′) ∈ L∗.
On the other hand condition C∗ implies condition C because the existence of the triplet

(a, b, c) ∈ [0, 1]3 such that a > b > c induces the existence of the triplet (a′, b′, c′) ∈ [0, 1]3

such that a’<b’<c’ and (a, a′), (b, b′), (c, c′) ∈ L∗.
The following result establishes that condition C∗ becomes condition C when t-norm >
and t-conorm S are dual.

Corollary 6. Suppose that > and S are dual, then conditions C∗ and C are equivalent.

Proof. From (3.2) and (3.2.1) to show that condition C∗ is the same as condition C, it

is sufficient to show that

{(a, b, c) ∈ [0, 1]3, a > b > c⇒ 1 + I>(a, c) ≥ I>(a, b) + I>(b, c)}

= {(a′, b′, c′) ∈ [0, 1]3, a′ < b′ < c′ ⇒ JS(a′, c′) ≤ JS(a′, b′) + JS(b′, c′)}.

From Proposition 1.1.1, > and S are dual, implies for all a, b ∈ [0, 1],

I>(a, b) = 1− JS(1− a, 1− b).
Thus {(a, b, c) ∈ [0, 1]3, a > b > c⇒ 1 + I>(a, c) ≥ I>(a, b) + I>(b, c)}

= {(a, b, c) ∈ [0, 1]3, 1− a < 1− b < 1− c⇒ JS(1− a, 1− c) ≤ JS(1− a, 1− b) + JS(1− b, 1− c)}
= {(1− a, 1− b, 1− c) ∈ [0, 1]3, 1− a < 1− b < 1− c⇒ JS(1− a, 1− c) ≤ JS(1− a, 1− b) + JS(1− b, 1− c)}
= {(a′, b′, c′) ∈ [0, 1]3, a′ < b′ < c′ ⇒ JS(a′, c′) ≤ JS(a′, b′) + JS(b′, c′)}.

The following result gives necessary and sufficient conditions for C∗.

Lemma 3. T satisfies condition C∗ if and only if for all IFSs A, B and C, and for all

x ∈ X,




1 + I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) ≥ I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)) + I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x));

JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)) ≤ JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) + JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)).

(3.0)

Proof. 1. Assume that T satisfies condition C∗. Let A, B and C be IFSs and x ∈ X.
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(a) Let us show first that

JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)) ≤ JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) + JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)).

(3.0)

We distinguish nine cases.

Case 1: if νA(x) = νC(x), then JS(νA(x)∧νC(x), νA(x)∨νC(x)) = JS(νA(x), νA(x)) =

0 and (1a) holds.

Case 2: if νA(x) = νB(x), then JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)) = JS(νB(x) ∧
νC(x), νB(x) ∨ νC(x)) and (1a) holds.

Case 3: if νB(x) = νC(x), then JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)) = JS(νA(x) ∧
νB(x), νA(x) ∨ νB(x)) and (1a) holds.

Case 4: if νA(x) < νC(x) < νB(x), then

JS(νA(x)∧ νC(x), νA(x)∨ νC(x)) = JS(νA(x), νC(x)) ≤ JS(νA(x), νB(x)) =

JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) since JS is right increasing operator (see

Proposition 1.1.1), and (1a) holds.

Case 5: if νB(x) < νA(x) < νC(x), then

JS(νA(x)∧ νC(x), νA(x)∨ νC(x)) = JS(νA(x), νC(x)) ≤ JS(νB(x), νC(x)) =

JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)) since JS is left decreasing operator (see

Proposition 1.1.1), and (1a) holds.

Case 6: if νB(x) < νC(x) < νA(x), then

JS(νA(x)∧ νC(x), νA(x)∨ νC(x)) = JS(νC(x), νA(x)) ≤ JS(νB(x), νA(x)) =

JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) since JS is left decreasing operator and

(1a) holds.

Case 7: if νC(x) < νA(x) < νB(x), then

JS(νA(x)∧ νC(x), νA(x)∨ νC(x)) = JS(νC(x), νA(x)) ≤ JS(νC(x), νB(x)) =

JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)) since JS is right increasing operator and

(1a) holds.

Case 8: if νA(x) < νB(x) < νC(x), then




JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)) = JS(νA(x), νC(x));

JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) = JS(νA(x), νB(x));

JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)) = JS(νB(x), νC(x)).

and (1a) follows from Definition 3.2.1 because T satisfies condition C∗.

DZATI KAMGA Romuald Thierry
53

Phd. thesis c©UY1 2020



3.2. Some classes of metric for IFSs based on cardinality components of symmetric difference

for IFSs

Case 9: if νC(x) < νB(x) < νA(x), then




JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)) = JS(νC(x), νA(x));

JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) = JS(νB(x), νA(x));

JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)) = JS(νC(x), νB(x)).

and (1a) follows from Definition 3.2.1 because T satisfies condition C∗.

(b) Let us show now that

1 + I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) ≥ I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)) + I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)).

(3.0)

As before, we distinguish nine cases.

Case 1: If µA(x) = µC(x), then I>(µA(x)∨µC(x), µA(x)∧µC(x)) = I>(µA(x), µA(x)) =

1 and (1b) holds.

Case 2: If µA(x) = µB(x), then I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) = I>(µB(x) ∨
µC(x), µB(x) ∧ µC(x)) and (1b) holds.

Case 3: If µB(x) = µC(x), then I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) = I>(µA(x) ∨
µB(x), µA(x) ∧ µB(x)) and (1b) holds.

Case 4: If µA(x) < µC(x) < µB(x), then I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) =

I>(µC(x), µA(x)) ≥ I>(µB(x), µA(x)) = I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x))

since I> is left decreasing operator and (1b) holds.

Case 5: If µB(x) < µC(x) < µA(x), then I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) =

I>(µA(x), µC(x)) ≥ I>(µA(x), µB(x)) = I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x))

since I> is right increasing operator and (1b) holds.

Case 6: If µB(x) < µA(x) < µC(x), then I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) =

I>(µC(x), µA(x)) ≥ I>(µC(x), µB(x)) = I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x))

since I> is right increasing operator and (1b) holds.

Case 7: If µC(x) < µA(x) < µB(x), then I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) =

I>(µA(x), µC(x)) ≥ I>(µB(x), µC(x)) = I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x))

since I> is left decreasing operator and (1b) holds.

Case 8: If µA(x) < µB(x) < µC(x) then




I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) = I>(µC(x), µA(x));

I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)) = I>(µB(x), µA(x));

I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)) = I>(µC(x), µB(x)).

and (1b) follows from Definition 3.2.1 because T satisfies condition C∗.

DZATI KAMGA Romuald Thierry
54

Phd. thesis c©UY1 2020



3.2. Some classes of metric for IFSs based on cardinality components of symmetric difference

for IFSs

Case 9: If µC(x) < µB(x) < µA(x) then




I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) = I>(µA(x), µC(x));

I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)) = I>(µA(x), µB(x));

I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)) = I>(µB(x), µC(x)).

and (1b) follows from Definition 3.2.1 because T satisfies condition C∗.

2. Assume that for all IFSs A, B and C, and for all x ∈ X, (3) hold. We show that T
satisfies condition C∗.

Let (a, a′), (b, b′), (c, c′) ∈ L∗, such that a > b > c and a′ < b′ < c′, we need to show

that Equation (3.2.1) holds.




1 + I>(a, c) ≥ I>(a, b) + I>(b, c);

JS(a′, c′) ≤ JS(a′, b′) + JS(b′, c′).
(3.0)

Define A,B and C such that for all x ∈ X, (µA(x), νA(x)) = (a, a′), (µB(x), νB(x)) =

(b, b′) and (µC(x), νC(x)) = (c, c′).

Since a > b > c and a′ < b′ < c′, then (3) reduces to (3.2.1) and the Definition 3.2.1

is established.

The following result shows that condition C∗ is sufficient for triangular inequalities of

the membership and non-membership of the cardinality of symmetric difference between

IFSs.

Proposition 3.2.1. If T satisfies condition C∗ then, for all IFSs A, B and C and for

all x ∈ X, 



µA∆T C(x) ≤ µA∆T B(x) + µB∆T C(x);

1 + νA∆T C(x) ≥ νA∆T B(x) + νB∆T C(x).
(3.0)

Proof. Assume that T satisfies condition C∗. Let A, B and C be IFSs and x ∈ X. We

must show that: 



µA∆T C(x) ≤ µA∆T B(x) + µB∆T C(x);

1 + νA∆T C(x) ≥ νA∆T B(x) + νB∆T C(x).

1. Let us show first that

µA∆T C(x) ≤ µA∆T B(x) + µB∆T C(x). (3.0)

From Definition 2.2.1, (1) is equivalent to

JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)) ≤ JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) + JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)).

Since T satisfies condition C∗, then from Lemma 3 the result follows.
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2. Let us show now that

1 + νA∆T C(x) ≥ νA∆T B(x) + νB∆T C(x). (3.0)

From Definition 2.2.1, we have:




νA∆T C(x) = min{I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)), 1− JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x))};
νA∆T B(x) = min{I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)), 1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x))};
νB∆T C(x) = min{I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)), 1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x))}.

We distinguish eight cases:

i) If 



νA∆T C(x) = 1− JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x))

νA∆T B(x) = 1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x))

νB∆T C(x) = 1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)),

then (2) is equivalent to (1a). Since T satisfies condition C∗, then from Lemma

3, the result follows.

ii) If 



νA∆T C(x) = I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x))

νA∆T B(x) = I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x))

νB∆T C(x) = I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)),

then (2) is equivalent to (1b). Since T satisfies condition C∗, then from Lemma

3, the result follows.

iii) If 



νA∆T C(x) = I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x))

νA∆T B(x) = I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x))

νB∆T C(x) = 1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)),

then I>(µB(x)∨µC(x), µB(x)∧µC(x)) ≥ 1− JS(νB(x)∧ νC(x), νB(x)∨ νC(x));

and since T satisfies condition C∗, from Lemma 3, 1+I>(µA(x)∨µC(x), µA(x)∧
µC(x)) ≥ I>(µA(x)∨µB(x), µA(x)∧µB(x)) + I>(µB(x)∨µC(x), µB(x)∧µC(x))

implies 1 + I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) ≥ I>(µA(x) ∨ µB(x), µA(x) ∧
µB(x)) + 1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)), and (2) holds.

iv) If 



νA∆T C(x) = I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x))

νA∆T B(x) = 1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x))

νB∆T C(x) = I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)),
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then I>(µA(x)∨µB(x), µA(x)∧µB(x)) ≥ 1−JS(νA(x)∧νB(x), νA(x)∨νB(x)) and

since T satisfies condition C∗, then from Lemma 3, 1+I>(µA(x)∨µC(x), µA(x)∧
µC(x)) ≥ I>(µA(x)∨µB(x), µA(x)∧µB(x)) + I>(µB(x)∨µC(x), µB(x)∧µC(x))

implies 1 + I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) ≥ 1− JS(νA(x) ∧ νB(x), νA(x) ∨
νB(x)) + I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)), and (2) holds.

v) If 



νA∆T C(x) = I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x))

νA∆T B(x) = 1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x))

νB∆T C(x) = 1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)),

then




I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)) ≥ 1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x));

I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)) ≥ 1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)).

and since T satisfies condition C∗, then from Lemma 3, 1+I>(µA(x)∨µC(x), µA(x)∧
µC(x)) ≥ I>(µA(x)∨µB(x), µA(x)∧µB(x)) + I>(µB(x)∨µC(x), µB(x)∧µC(x))

implies 1 + I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) ≥ 1− JS(νA(x) ∧ νB(x), νA(x) ∨
νB(x)) + 1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)), and (2) holds.

vi) If 



νA∆T C(x) = 1− JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x))

νA∆T B(x) = I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x))

νB∆T C(x) = 1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)),

then 1−JS(νA(x)∧νB(x), νA(x)∨νB(x)) ≥ I>(µA(x)∨µB(x), µA(x)∧µB(x)) and

since T satisfies condition C∗, then from Lemma 3, 1−JS(νA(x)∧νC(x), νA(x)∨
νC(x)) ≥ 2−JS(νA(x)∧νB(x), νA(x)∨νB(x))−JS(νB(x)∧νC(x), νB(x)∨νC(x))

implies 1−JS(νA(x)∧νC(x), νA(x)∨νC(x)) ≥ I>(µA(x)∨µB(x), µA(x)∧µB(x))+

1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)), and (2) holds.

vii) If 



νA∆T C(x) = 1− JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x))

νA∆T B(x) = I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x))

νB∆T C(x) = I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)),

then




1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)) ≥ I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x));

1− JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)) ≥ I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)).
,
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and since T satisfies condition C∗, then from Lemma 3, 2−JS(νA(x)∧νC(x), νA(x)∨
νC(x)) ≥ 1 + I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)) ≥ I>(µA(x) ∨ µB(x), µA(x) ∧
µB(x)) + I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)), and (2) holds.

viii) If 



νA∆T C(x) = 1− JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x))

νA∆T B(x) = 1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x))

νB∆T C(x) = I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)),

then 1− JS(νB(x)∧ νC(x), νB(x)∨ νC(x)) ≥ I>(µB(x)∨µC(x), µB(x)∧µC(x)),

and since T satisfies condition C∗, then from Lemma 3, 2−JS(νA(x)∧νC(x), νA(x)∨
νC(x)) ≥ 2−JS(νA(x)∧νB(x), νA(x)∨νB(x))−JS(νB(x)∧νC(x), νB(x)∨νC(x))

implies 2 − JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)) ≥ 1 − JS(νA(x) ∧ νB(x), νA(x) ∨
νB(x)) + I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)), and (2) holds.

Condition C2

Condition C2 is defined in this thesis as follows. We shall refer to this definition in

establishing related results subsequently.

Definition 3.2.2 (Condition C2). (I>, JS) satisfies condition C2 if for all (a, a′), (b, b′), (c, c′) ∈
L∗,





a > b > c implies (1− I>(a, c))2 ≤ (1− I>(a, b))2 + (1− I>(b, c))2,

a′ < b′ < c′ implies (JS(a′, c′))2 ≤ (JS(a′, b′))2 + (JS(b′, c′))2.
(3.0)

Subsequently, we say T satisfies condition C2 if (I>, JS) satisfies condition C2.

We deduce the following result which stipulates that condition C2 is stronger than con-

dition C∗.

Corollary 7. If T satisfies condition C2, then T satisfies condition C∗.

Proof. The proof is immediate since

(1− I>(a, c))2 ≤ (1− I>(a, b))2 + (1− I>(b, c))2 implies (1− I>(a, c))2 ≤ (1− I>(a, b))2 + (1− I>(b, c))2 + 2(1− I>(a, b))(1− I>(b, c))

and (JS(a′, c′))2 ≤ (JS(a′, b′))2 + (JS(b′, c′))2 implies (JS(a′, c′))2 ≤ (JS(a′, b′))2 + (JS(b′, c′))2 + 2(JS(a′, b′))(JS(b′, c′)).

The following result gives necessary and sufficient conditions for the existence of con-

dition C2.
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Lemma 4. T satisfies condition C2 if and only if for all IFSs A, B and C, and for all

x ∈ X,




(1− I>(µA(x) ∨ µC(x), µA(x) ∧ µC(x)))2 ≤ (1− I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)))2 + (1− I>(µB(x) ∨ µC(x), µB(x) ∧ µC(x)))2,

(JS(νA(x) ∧ νC(x), νA(x) ∨ νC(x)))2 ≤ (JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)))2 + (JS(νB(x) ∧ νC(x), νB(x) ∨ νC(x)))2.

(3.0)

Proof. The proof is analogous to the Proof of Lemma 3.

The following result shows that condition C2 is sufficient for triangular inequalities of

the square of membership and non-membership of the cardinality of symmetric difference

between IFSs.

Proposition 3.2.2. If T satisfies condition C2 then, for all IFSs A, B and C, and for

all x ∈ X,




(µA∆T C(x))2 ≤ (µA∆T B(x))2 + (µB∆T C(x))2;

(1− νA∆T C(x))2 ≤ (1− νA∆T B(x))2 + (1− νB∆T C(x))2.
(3.0)

Proof. Using Lemma 4, the proof is analogous to the Proof of Proposition 3.2.1.

In the next Subsection, we establish sufficient condition under which seven of our eight

proposed classes of distance measures become metrics.

3.2.2 Some classes of metrics for IFSs

Our second main result of this chapter gives sufficient conditions on T under which seven

of our eight proposed distance measures become metrics on IFSs(X) generated by T .

Theorem 3. 1. If T satisfies condition C∗, then (a) dZ2n,T , (b) dZ2w,T , (c) dZ2H,T , (d)

dZ2E,T , (e) dZ2p,T with p = 2 and (f) dZ2p,T = dZ2Lp,T = dZM,T with p = 1 are metrics on

IFSs(X) generated by T .

2. If T satisfies condition C2 and p = 2 then dZ2Lp,T and dZM,T are metric generated by

T .

Proof. 1. From Definition 1.2.8 and Theorem 2, all of (a) – (f) satisfy properties (i)

and (ii) of metric. Thus, it remains to show that (a) – (f) satisfy the triangular

inequality property.

Assume that T satisfies condition C∗.

(a) Since dZ2n,T = ndZ2w,T when wi = 1
n
for all i = 1, ..., n, it is sufficient to show that

dZ2w,T is a metric.

DZATI KAMGA Romuald Thierry
59

Phd. thesis c©UY1 2020



3.2. Some classes of metric for IFSs based on cardinality components of symmetric difference

for IFSs

(b) To prove that dZ2w,T satisfies the triangle inequality, we let A,B,C ∈ IFSs(X)

and show that dZ2w,T (A,C) ≤ dZ2w,T (A,B) + dZ2w,T (B,C) holds.

From (3.1) we have




dZ2w,T (A,C) = 1
nw

n∑
i=1

wi
3+µA∆T C(xi)−3νA∆T C(xi)

4
;

dZ2w,T (A,B) = 1
nw

n∑
i=1

wi
3+µA∆T B(xi)−3νA∆T B(xi)

4
;

dZ2w,T (B,C) = 1
nw

n∑
i=1

wi
3+µB∆T C(xi)−3νB∆T C(xi)

4
.

(3.0)

Since T satisfies condition C∗, then from Proposition 3.2.1 we have that (3.2.1)

is satisfied.

For all x ∈ X,




µA∆T C(x) ≤ µA∆T B(x) + µB∆T C(x);

1 + νA∆T C(x) ≥ νA∆T B(x) + νB∆T C(x).
(3.0)

Hence, the result follows from (1b).

(c) For A,B,C ∈ IFSs(X) arbitrary, we show that dZ2H,T (A,C) ≤ dZ2H,T (A,B) +

dZ2H,T (B,C) holds.

From (3.1) we have




dZ2H,T (A,C) = 1
n

n∑
i=1

(1− νA∆T C(xi));

dZ2H,T (A,B) = 1
n

n∑
i=1

(1− νA∆T B(xi));

dZ2H,T (B,C) = 1
n

n∑
i=1

(1− νB∆T C(xi)).

(3.0)

Since T satisfies condition C∗, then from Proposition 3.2.1 we have 1+νA∆T C(x) ≥
νA∆T B(x)+νB∆T C(x) holds for all x ∈ X. Thus, the required result follows from

(1c).

(d) For A,B,C ∈ IFSs(X) arbitrary, we show that dZ2E,T (A,C) ≤ dZ2E,T (A,B) +

dZ2E,T (B,C) holds.

From (3.1) we have




dZ2E,T (A,C) =

√
1
n

n∑
i=1

(1− νA∆T C(xi))2;

dZ2E,T (A,B) =

√
1
n

n∑
i=1

(1− νA∆T B(xi))2;

dZ2E,T (B,C) =

√
1
n

n∑
i=1

(1− νB∆T C(xi))2.

(3.0)
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Since T satisfies condition C∗, then from Proposition 3.2.1 1 + νA∆T C(x) ≥
νA∆T B(x) + νB∆T C(x) holds for all x ∈ X.

This implies that

1

n

n∑

i=1

(1− νA∆T C(xi))
2 ≤ 1

n

n∑

i=1

[(1− νA∆T B(xi)) + (1− νB∆T C(xi))]
2. (3.0)

Recall that by Minkowski inequality in Rn, we have
√√√√

n∑

i=1

(xk + yk)2 ≤

√√√√
n∑

i=1

x2
k +

√√√√
n∑

i=1

y2
k (3.0)

holds for all (x, y) ∈ Rn×Rn such that x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) .

By combining (1d), (1d) and (1d), we obtain the required result.

(e) For A,B,C ∈ IFSs(X) arbitrary, we show that dZ22,T (A,C) ≤ dZ22,T (A,B) +

dZ22,T (B,C) holds.

From (3.1) we have




dZ22,T (A,C) = 1√
n

√
n∑
i=1

(
1+µA∆T C(xi)−νA∆T C(xi)

2

)2

;

dZ22,T (A,B) = 1√
n

√
n∑
i=1

(
1+µA∆T B(xi)−νA∆T B(xi)

2

)2

;

dZ22,T (B,C) = 1√
n

√
n∑
i=1

(
1+µB∆T C(xi)−νB∆T C(xi)

2

)2

.

(3.0)

Since T satisfies condition C∗, then from Proposition 3.2.1, (3.2.1) holds for all

x ∈ X, and this implies that

1
n

n∑
i=1

(
1+µA∆T C(xi)−νA∆T C(xi)

2

)2

≤ 1
n

n∑
i=1

[(
1+µA∆T B(xi)−νA∆T B(xi)

2

)
+
(

1+µB∆T C(xi)−νB∆T C(xi)

2

)]2

.

(3.0)

By combining (1d),(1e) and (1e), the required result is obtained.

(f) For A,B,C ∈ IFSs(X) arbitrary, we show that dZ21,T (A,C) ≤ dZ21,T (A,B) +

dZ21,T (B,C).

From (3.1) and (3.1) we have




dZ21,T (A,C) =
n∑
i=1

1+µA∆T C(xi)−νA∆T C(xi)

2n
;

dZ21,T (A,B) =
n∑
i=1

1+µA∆T B(xi)−νA∆T B(xi)

2n
;

dZ21,T (B,C) =
n∑
i=1

1+µB∆T C(xi)−νB∆T C(xi)

2n
.

(3.0)

Since T satisfies condition C∗, then from Proposition 3.2.1, (3.2.1) holds for all

x ∈ X, and by consequence, the result follows from (1f).
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2. From Definition 1.2.8 and Theorem 2, dZ2Lp,T and dZHY,T satisfies properties (i) and

(ii) of metrics.

We assume that T satisfy condition C2 and p = 2; and show that, dZ2Lp,T and dZM,T

satisfies the triangle inequality property.

a) For A,B,C ∈ IFSs(X) arbitrary, we prove that dZ2L2,T (A,C) ≤ dZ2L2,T (A,B) +

dZ2L2,T (B,C).

From (3.1) we have




dZ2L2,T (A,C) = 1
n
√

2

n∑
i=1

√
(µA∆T C(xi))2 + (1− νA∆T C(xi))2;

dZ2L2,T (A,B) = 1
n
√

2

n∑
i=1

√
(µA∆T B(xi))2 + (1− νA∆T B(xi))2;

dZ2L2,T (B,C) = 1
n
√

2

n∑
i=1

√
(µB∆T C(xi))2 + (1− νB∆T C(xi))2.

(3.0)

Since T satisfies condition C2, then from Proposition 3.2.2, (3.2.2) holds for all

x ∈ X, and this implies that

(µA∆T C(x))2 + (1− νA∆T C(x))2 ≤
(√

(µA∆T B(x))2 + (1− νA∆T B(x))2 +
√

(µB∆T C(x))2 + (1− νB∆T C(x))2
)2

(3.0)

holds for all x ∈ X. Hence, we combine (2) and (2) to obtain the required result.

b) For A,B,C ∈ IFSs(X) arbitrary, we prove that dZM,T (A,C) ≤ dZM,T (A,B) +

dZM,T (B,C).

From (3.1), we have:




dZM,T (A,C) = 1
2

(√
1
n

n∑
i=1

(µA∆T C(xi))
2 +

√
1
n

n∑
i=1

(1− νA∆T C(xi))
2

)
;

dZM,T (A,B) = 1
2

(√
1
n

n∑
i=1

(µA∆T B(xi))
2 +

√
1
n

n∑
i=1

(1− νA∆T B(xi))
2

)
;

dZM,T (B,C) = 1
2

(√
1
n

n∑
i=1

(µB∆T C(xi))
2 +

√
1
n

n∑
i=1

(1− νB∆T C(xi))
2

)
.

(3.0)

Since T satisfies condition C2, then from Proposition 3.2.2, (3.2.2) implies




1
n

n∑
i=1

(µA∆T C(xi))
2 ≤ 1

n

n∑
i=1

(µA∆T B(xi))
2 + 1

n

n∑
i=1

(µB∆T C(xi))
2;

1
n

n∑
i=1

(1− νA∆T C(xi))
2 ≤ 1

n

n∑
i=1

(1− νA∆T B(xi))
2 + 1

n

n∑
i=1

(1− νB∆T C(xi))
2.

(3.0)

And Eq. (2) implies




√
1
n

n∑
i=1

(µA∆T C(xi))2 ≤
√

1
n

n∑
i=1

(µA∆T B(xi))2 +

√
1
n

n∑
i=1

(µB∆T C(xi))2;
√

1
n

n∑
i=1

(1− νA∆T C(xi))2 ≤
√

1
n

n∑
i=1

(1− νA∆T B(xi))2 +

√
1
n

n∑
i=1

(1− νB∆T C(xi))2.

(3.0)

DZATI KAMGA Romuald Thierry
62

Phd. thesis c©UY1 2020



3.2. Some classes of metric for IFSs based on cardinality components of symmetric difference

for IFSs

Hence we combine Eq. (2) and Eq. (2) to obtain the required result.

The following remark extends our proposed metrics.

Remark 5. By multiplying each of our seven metrics by a strictly positive real number,

we obtain a metric.

Let us end this Chapter by establishing two t-representable family of IF-t-norms (IF-

t-norm of Frank and IF-t-norm of Mayor-Torrens defined in Example 2 respectively by

Eq. (1.1), Eq. (1.2), Eq. (1.3) and Eq. (1.4)) generating previous metrics (since those

metrics are based on IF-t-norms).

Corollary 8. i. If T = TM = (>M , SM) and p = 2 then dZ2Lp,T and dZM,T are metrics.

ii. If T = (T lF )l∈[0;+∞] or T =
(
T λM>

)
λ∈[0,1]

, then dZ2n,T , d
Z
2w,T , d

Z
22,T , d

Z
2H,T , d

Z
2E,T , and

dZ2L1,T are metrics.

Proof. i. Assume that T = TM = (>M , SM) and p = 2. Let us recall the following fuzzy

R-implication and fuzzy co-implication associated with >M and SM respectively given

in Example 3 by:

I>M (a, b) =





1, if a ≤ b,

b, if a > b.
(3.0)

and

JSM (a, b) =




b, if a < b,

0, if a ≥ b.
(3.0)

From the second result of Theorem 3, to prove that dZ2Lp,T and dZM,T are metrics, it’s

sufficient to prove that T satisfies condition C2.

Let (a, a′), (b, b′), (c, c′) ∈ L∗ such that:




a > b > c,

a′ < b′ < c′.

Let us show that




(1− I>M (a, c))2 ≤ (1− I>M (a, b))2 + (1− I>M (b, c))2,

(JSM (a′, c′))2 ≤ (JSM (a′, b′))2 + (JSM (b′, c′))2.
(3.0)

Since 



a > b > c,

a′ < b′ < c′,
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then from Eq. (i) we have: 



I>M (a, c) = c;

I>M (a, b) = b;

I>M (b, c) = c.

(3.0)

and from Eq. (i) we have: 



JSM (a′, c′) = c′;

JSM (a′, b′) = b′;

JSM (b′, c′) = c′.

(3.0)

Since (1− c)2 ≤ (1− b)2 + (1− c)2 and c′2 ≤ b′2 + c′2, then from Eqs. (i) and (i) , Eq.

(i) hold.

ii. Assume that T = (T lF )l∈[0;+∞]. From Theorem 3, to prove that d2n,T , dZ2w,T , d
Z
2p,T with

p = 2, dZ2H,T , d
Z
2E,T , and dZ2Lp,T with p = 1 are metrics, it’s sufficient to prove that T

satisfies condition C∗.

From Klement et al. [29], (>lF )l∈[0;+∞] and (SlF )l∈[0;+∞] are dual; and
(
>λM>

)
λ∈[0,1]

and
(
SλM>

)
λ∈[0,1]

are dual. Since Fono et al. [17] had prove that (>lF )l∈[0;+∞] satisfies

condition C; and Fotso et al. [20] had prove that
(
>λM>)

)
λ∈[0,1]

satisfies condition C,

then from Corollary 6, the result follows.
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Some applications of the new distance

and similarity measures for decision

making

Contents
4.1 Application of distances measures to solving the problems of

pattern recognition using IFSs . . . . . . . . . . . . . . . . . . . 65

4.2 Similary measures solving some problems of medical diag-

nostics using IFSs . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Some societal problems are been solved using distance measures or similarity measures.

In this chapter we will apply our proposed distance measures and similarity measures to

solve some societal problems related to pattern recognition and medical diagnosis.

4.1 Application of distances measures to solving the

problems of pattern recognition using IFSs

In this section, we will apply six classes of our proposed distance measures to solve the

following example of problem of pattern recognition.

Example 11. Given four classes of building material A1 = Brick, A2 = Concrete,

A3 = wood and A4 = Stone, each one is represented by the intuitionistic fuzzy sets (rows

2 to 5 of Table 4.1) in the feature space X = {x1, x2, ..., x12} = {solidity, stability, re-

sistance, expensive, economical, performance,...} (columns 3 to 14 of Table 4.1). For

65



4.1. Application of distances measures to solving the problems of pattern recognition using

IFSs

example if x1 is solidity then, µA1(x1) is the degree with which we can accept the hypoth-

esis that "the brick is solid" and, νA1(x1) is the degree with which we can also reject that

hypothesis.

The weight of each feature is given in row 6 of Table 4.1.

Another kind of unknown building material B has been given as test sample in row 7

of Table 4.1. The second colum of the Table gives memberships and non-memberships of

IFSs describing the objects.

The objective is to justify that, using our proposed distance measures, which classes

the unknown pattern B belongs to and which of the distances is highly confident.

Table 4.1: 4 classes, 12 attributes problem, patterns, test sample [43], and

weights

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Pattern µA1(x) 0.173 0.102 0.530 0.965 0.420 0.008 0.331 1.000 0.215 0.432 0.750 0.432

∓1 νA1(x) 0.524 0.818 0.326 0.008 0.351 0.956 0.512 0.000 0.625 0.534 0.126 0.432

Pattern µA2(x) 0.510 0.627 1.000 0.125 0.026 0.732 0.556 0.650 1.000 0.145 0.047 0.760

∓2 νA2(x) 0.365 0.125 0.000 0.648 0.823 0.153 0.303 0.267 0.000 0.762 0.923 0.231

Pattern µA3(x) 0.495 0.603 0.987 0.073 0.037 0.690 0.147 0.213 0.501 1.000 0.324 0.045

∓3 νA3(x) 0.387 0.298 0.006 0.849 0.923 0.268 0.812 0.653 0.284 0.000 0.483 0.912

Pattern µA4(x) 1.000 1.000 0.857 0.734 0.021 0.076 0.152 0.113 0.489 1.000 0.386 0.028

∓4 νA4(x) 0.000 0.000 0.123 0.158 0.896 0.912 0.712 0.756 0.389 0.000 0.485 0.912

weight wi 0.2 0.2 0.2 0.4 0.4 0.4 0.7 0.7 0.7 0.8 0.8 0.8

Test µB(x) 0.978 0.980 0.798 0.693 0.051 0.123 0.152 0.113 0.494 0.987 0.376 0.012

Sample νB(x) 0.003 0.012 0.132 0.213 0.876 0.756 0.721 0.732 0.368 0.000 0.423 0.897

To solve the main objective, scholars used the principle of minimum degree of difference

between IFSs stipulating that the lesser the difference between IFSs, the more likely these

IFSs approach. More formally, they used the minimum-distance classifier in defining the

class from which its distance to the test sample is minimum and defined as follows:

j∗ = arg min
j
{dist(Aj, B)} , (4.0)

where Aj is the intuitionistic fuzzy set representing pattern j and B is the unknown

pattern considered as test sample.

In order to compare the different distance measures, a performance index called Degree

of Confidence (DoC), introduced by Hatzimichailidis et al. [24], measures the confidence
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of each distance measures in recognizing a specific sample that belongs to the pattern (j)

and it is defined by:

DoC(j) =
n∑

i=1,i 6=j
| dist(Aj, B)− dist(Ai, B) | . (4.0)

where dist is a given distance. It follows from Equation (6), that the greater the DoC(j)

the more confident the result of the specific distance measure. This index can be used in

experiment in order to give a more accurate measurement of the distance behavior along

with the absolute recognition rate.

The following remark justifies that for a similarity measure s, This index can be used in

experiment in order to give a more accurate measurement of the similarity behavior along

with the absolute recognition rate.

Remark 6. Since s(Aj, B) = 1− dist(Aj, B) and s(Ai, B) = 1− dist(Ai, B) for all i and

all j then,

DoC(j) =
n∑

i=1,i 6=j
| s(Aj, B)− s(Ai, B) | . (4.0)

In the following paragraphs of this Section, we recall some findings on Example 11,

we tackle the problem in pattern recognition using six of our distance measures based

on IF t-norms of Lukasiewicz (TL), Maximum (TM) and Product (TP ) and, we display

comparisons.

Liang and Shi [31] used the principle of the maximum degree of similarity between IFSs

and Wang and Xin [43] used the principle of minimum degree of difference between IFSs

to solve the problem. Notice that the two proposed methods coincide.

Table 4.2 recalls results for existing distance measure and degree of confidence.

Table 4.2: Literature results of distance measures and degree of confidence

Distance Results

dist(A1, B) dist(A2, B) dist(A3, B) dist(A4, B) DoC(1) DoC(2) DoC(3) DoC(4)

dn1 0.45375 0.45992 0.21075 0.03382 0.66910 0.68144 0.66910 1.02298

dnw1 0.03637 0.04296 0.01219 0.00249 0.06465 0.07784 0.06465 0.08405

dnp1 0.43108 0.43617 0.19817 0.02704 0.64204 0.65221 0.64204 0.98429

dnH1 0.47642 0.48367 0.22333 0.04058 0.69617 0.71067 0.69617 1.06167

dnE1 0.53640 0.52586 0.31219 0.05627 0.71489 0.69381 0.69381 1.20565
√

dHYLp 0.43108 0.43617 0.19817 0.02704 0.64204 0.65221 0.64204 0.98429
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We now use our proposed distance measures to solve the problem. This problem can

be approached with the following algorithm (steps) denoted by ALG1-steps.

step 1 For each feature xi, i=1,...,12, use the data of the Table 4.1 to obtain the member-

ship µAj∆T B(xi) and non-membership νAj∆T B(xi) degrees of symmetric difference

between building material Aj and unknown pattern B.

step 2 Determine the degree of distance measure d(Aj, B) between building material Aj
and unknown pattern B where d is the given distance.

step 3 Classify the degrees of distance measure between each building material Aj and

unknown pattern B.

step 4 Use the principe of minimum degree of distance measure to choose the best building

material.

Table 4.3, 4.4 and 4.5 gives the results of our proposed distance measures and corre-

sponding degree of confidence obtained for IF t-norms TL, TM and TP respectively based

on the data in Table 4.1. Those results are obtained using ALG1-steps. Here, we assume

that parameter p = 1.

Table 4.3: Results of distance measures and degree of confidence with TL

Distance Results

dist(A1, B) dist(A2, B) dist(A3, B) dist(A4, B) DoC(1) DoC(2) DoC(3) DoC(4)

dZ2n,TL 0.46033 0.46435 0.21533 0.03848 0.67088 0.67892 0.67088 1.02458

dZ2w,TL 0.03688 0.04348 0.01265 0.00290 0.06480 0.07802 0.06480 0.08430

dZ2p,TL 0.44425 0.44504 0.207333 0.03638 0.64558 0.64717 0.64558 0.9875

dZ2H,TL 0.47642 0.48367 0.22333 0.04058 0.69617 0.71067 0.69617 1.06167

dZ2E,TL 0.53640 0.52586 0.31219 0.05627 0.71489 0.69381 0.69381 1.20565
√

dZ2Lp,TL 0.44425 0.44504 0.20733 0.03638 0.64558 0.64717 0.64558 0.9875
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Table 4.4: Results of distance measures and degree of confidence with TM

Distance Results

dist(A1, B) dist(A2, B) dist(A3, B) dist(A4, B) DoC(1) DoC(2) DoC(3) DoC(4)

dZ2n,TM 0.73071 0.70394 0.62571 0.49233 0.37015 0.31661 0.31661 0.58337

dZ2w,TM 0.0616 0.06516 0.05408 0.04674 0.02594 0.03306 0.02594 0.04062

dZ2p,TM 0.6995 0.67221 0.60192 0.47908 0.34529 0.29071 0.29071 0.53638

dZ2H,TM 0.76192 0.73567 0.6495 0.50558 0.39501 0.34251 0.34251 0.63035

dZ2E,TM 0.79059 0.77893 0.71955 0.62359 0.2497 0.22638 0.22638 0.4183

dZ2Lp,TM 0.6995 0.67221 0.60192 0.47908 0.34529 0.29071 0.29071 0.53638

Table 4.5: Results of distance measures and degree of confidence with TP

Distance Results

dist(A1, B) dist(A2, B) dist(A3, B) dist(A4, B) DoC(1) DoC(2) DoC(3) DoC(4)

dZ2n,TP 0.64968 0.62773 0.38469 0.16765 0.76897 0.72507 0.72507 1.15915
√

dZ2w,TP 0.05393 0.05917 0.029 0.0141 0.07 0.08048 0.07 0.0998

dZ2p,TP 0.61802 0.59266 0.35579 0.14783 0.75778 0.70706 0.70706 1.12298
√

dZ2H,TP 0.68134 0.6628 0.41359 0.18747 0.78016 0.74308 0.74308 1.19532
√

dZ2E,TP 0.72034 0.70311 0.49544 0.30455 0.65792 0.62346 0.62346 1.00524

dZ2Lp,TP 0.61802 0.59266 0.35579 0.14783 0.75778 0.70706 0.70706 1.12298
√

Let us discuss our obtained results.

Remark and interpretation 4.1.1. i. When T ∈ {TL, TM , TP} and the parameter

p = 1, results of Tables 4.3, 4.4 and 4.5 show that: for each of our six distance

measures and for j ∈ {1, 2, 3, 4}, dist(Aj, B) ≥ dist(A4, B) and DoC(j) ≤ DoC(4).

Consequently, we can say that A4 should approach B this means that stone is the

best building material which approache unknown pattern B. This result coincides with

the result of Liang and Shi [31]. In addition, dZ2n,T , dZ2w,T , dZ2p,T , dZ2H,T and dZ2Lp,T are

more highly confident than the respective corresponding measures dn1 , dnw1 , dnp1 , dnH1

and dHYLp .

ii. Assume that DoC(4)
nE, DoC

(4)
2E,TL , DoC

(4)
2H,TP , DoC

(4)
2n,TP , DoC

(4)
2p,TP , DoC

(4)
2Lp,TP are de-

grees of confidence of distance measures dnE1 , dZ2E,TP , d
Z
2H,TP , d

Z
2n,TP , d

Z
2p,TP , and d

Z
2Lp,TP
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respectively, then from the results above, Tables 4.3, 4.4 and 4.5 show that:

DoC4
nE = DoC4

2E,TL > DoC
(4)
2H,TP > DoC

(4)
2n,TP > DoC

(4)
2p,TP = DoC

(4)
2Lp,TP . (4.0)

This equation gives in the same order the confidence order of the distance measures

corresponding to the associated degrees of confidence.

Remark 7. The comparison of dZ2p,T and dnp1 depend on the parameter p. For example

when p = 2, dnp1 is more highly confident than dZ2p,T (see Table 4.6 below).

Table 4.6: Results of distance measures and degree of confidence with TP when

p = 2

dist(A1, B) dist(A2, B) dist(A3, B) dist(A4, B) DoC(1) DoC(2) DoC(3) DoC(4)

dnp1 0.4876 0.48308 0.29045 0.03732 0.65194 0.64291 0.64291 1.149171

dZ2p,TP 0.49753 0.49038 0.29370 0.05384 0.65468 0.64038 0.64038 1.12011

4.2 Similary measures solving some problems of medi-

cal diagnostics using IFSs

A diagnosis, in the sense of diagnostic procedure, can be regarded as an attempt at clas-

sifying an individual’s condition into separate and distinct categories that allow medical

decisions about treatment and prognosis to be made. Subsequently, a diagnostic opinion

is often described in terms of a disease or other condition.

Many methods are distinguish for diagnostic procedure (see [30, 45]).

Differential diagnosis:

The method of differential diagnosis is based on finding as many of the candidate’s diseases

or conditions as possible that can possibly cause the signs or symptoms, followed by a

process of elimination or at least of rendering the entries more or less probable by further

medical tests and other processing, aiming to reach the point where only one candidate

disease or condition remains as probable. The final result may also remain a list of possible

conditions, ranked in order of probability or severity.

Pattern recognition:

In a pattern recognition method the provider uses experience to recognize a pattern of
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clinical characteristics. It is mainly based on certain symptoms or signs being associated

with certain diseases or conditions, not necessarily implying the more cognitive processing

involved in a differential diagnosis.

This may be the primary method used in cases where diseases are "obvious", or the

provider’s experience may enable him or her to recognize the condition quickly. Theoret-

ically, a certain pattern of signs or symptoms can be directly associated with a certain

therapy, even without a definite decision regarding what is the actual disease, but such a

compromise carries a substantial risk of missing a diagnosis which actually has a different

therapy so it may be limited to cases where no diagnosis can be made.

It is important to note that there exist diseases that have the same symptoms. Pattern

recognition method can be used in this case to recognize the appropriate disease.

The theory of IFSs has been used to perform medical diagnosis. Using pattern recogni-

tion method, the following example shows how to solve medical diagnostic problem with

intuitionistic fuzzy information by two of our proposed similarity measures defined in

Corollary 5 and recalled in the followings Eqs. (4.2) and (4.2). For all A, B ∈ IFS(X),

sZM,T (A,B) = 1− 1

2


 p

√√√√ 1

n

n∑

i=1

(µA∆T B(xi))
p + p

√√√√ 1

n

n∑

i=1

(1− νA∆T B(xi))
p


 . (4.0)

and

sZHY,T (A,B) = 1− 1− e
− 1
n

n∑
i=1

(1−νA∆T B(xi))

1− e−1
. (4.0)

Here we use the IF t-norms of Lukasiewicz (TL) and Product (TP ) and we let p = 2.

Example 12. We consider the same data recalled in [40, 42, 47]. Assuming that the set

of diseases is D = {Viral fever, Malaria, Typhoid, Stomach problem, Chest problem},
the set of symptoms is S = {Temperature, Headache, Stomach pain, Cough, Chest

pain} and the set of patients is P = {Adeline, Albert, Ronald, Tom}.
Table 4.7 presents the characteristic symptoms for the considered diagnosis, and Table

4.8 gives the symptoms for each patient. Each element of the tables is given in the form

IFS represented by the membership µ and non-membership ν. The aims are to justify for

each patient what disease approches.
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Table 4.7: Symptoms characteristic for the considered diagnosis.

Viral fever Malaria Typhoid Stomach problem Chest problem

D1 D2 D3 D4 D5

Temperature (S1) µS1 0.4 0.7 0.3 0.1 0.1

∓1 νS1 0.0 0.0 0.3 0.7 0.8

Headache (S2) µS2 0.3 0.2 0.6 0.2 0.0

∓2 νS2 0.5 0.6 0.1 0.4 0.8

Stomach pain (S3) µS3 0.1 0.0 0.2 0.8 0.2

∓3 νS3 0.7 0.9 0.7 0.0 0.8

Cough (S4) µS4 0.4 0.7 0.2 0.2 0.2

∓4 νS4 0.3 0.0 0.6 0.7 0.8

Chest pain (S5) µS5 0.1 0.1 0.1 0.2 0.8

∓5 νS5 0.7 0.8 0.9 0.7 0.1

Table 4.8: Symptoms characteristic for the considered patients.

Temperature Headache Stomach pain cough Chest pain

S1 S2 S3 S4 S5

Adeline (P1) µP1 0.8 0.6 0.2 0.6 0.1

∓1 νP1 0.1 0.1 0.8 0.1 0.6

Albert (P2) µP2 0.0 0.4 0.6 0.1 0.1

∓2 νP2 0.8 0.4 0.1 0.7 0.8

Ronald (P3) µP3 0.8 0.8 0.0 0.2 0.0

∓3 νP3 0.1 0.1 0.6 0.7 0.5

Tom (P4) µP4 0.6 0.5 0.3 0.7 0.3

∓4 νP4 0.1 0.4 0.4 0.2 0.4

Now we will show how to use the proposed similarity measures defined by Eqs. (4.2)

and (4.2) to derive a proper diagnosis for each patient Pj, j = 1, ..., 4.

To solve the main objective, Liang and Shi [31] used the principle of maximum degree

of similarity between IFSs stipulating that the greatest the similarity between IFSs, the
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more likely these IFSs approach.

In order to compare similarity measures before making a better choice in a case of

necessity in this example, we can used Degree of Confidence (DoC), introduced by Hatz-

imichailidis et al. [24] to measure the confidence of each similarity measures in recognizing

a specific disease that belongs to the patient Pj and that is defined here by:

DoC(k) =
5∑

i=1,i 6=k
| s(Dk, Pj)− s(Di, Pj) | . (4.0)

where s is a given similarity measure and Dk, k = 1, ..., 5 are diseases. It follows from

Equation (4.2), that the greater the DoC(k) the more confident the result of the specific

similarity measure. This index is used in this experiment in order to give a more accurate

measurement of the similarity behavior along with the absolute recognition rate.

Like Liang and Shi [31] we use the principle of the maximum degree of similarity

between IFSs to solve the problem. This problem can be approached with the following

algorithm (steps) denoted by ALG2-steps.

step 1 For each symptoms Si, i=1,...,5, use the previous data to obtain the membership

µPj∆T Dk(Si) and non-membership νPj∆T Dk(Si) degrees of symmetry difference be-

tween patient Pj and disease Dk.

step 2 Use data of the Tables 4.7 and 4.8 to determine the degree of similarity measures

s(Pj, Dk) between patient Pj and disease Dk where s is a given similarity measure.

step 3 Classify the degrees of similarity measure between each patient and diseases.

step 4 Use the principle of the maximum degree of similarity to show the proper diagnostic

for each patient Pj (j = 1, ..., 4).

In the following Table 4.9, we recall some findings on Example 12. Table 4.9 gives

results of the following defined similarity measures sM1 and sHY1 dual of existing distance

measures dM1 (with p = 2) and dHY1 respectively, and degrees of confidence of each disease.

For all A,B ∈ IFSs(X),

sM1 (A,B) = 1− 1

2



√√√√ 1

n

n∑

i=1

|µA(xi)− µB(xi)|2 +

√√√√ 1

n

n∑

i=1

|νA(xi)− νB(xi)|2

 . (4.0)

SHY1 (A,B) = 1− 1− e
− 1
n

n∑
i=1

max{|µA(xi)−µB(xi)|,|νA(xi)−νB(xi)|}

1− e−1
. (4.0)
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Table 4.9: Result for literature similarity measures and degrees of confidence

Patients Similarity Results

measures D1 D2 D3 D4 D5 DoC(1) DoC(2) DoC(3) DoC(4) DoC(5)

P1 sM1 (P1, Dk) 0.77028 0.76862 0.71717 0.48691 0.43288 0.67554 0.67056 0.61911 0.84938 1.01148

sHY1 (P1, Dk) 0.66245 0.68758 0.61365 0.35854 0.32166 0.71863 0.79404 0.66983 0.92495 1.03558

P2 sM1 (P2, Dk) 0.59741 0.44916 0.68778 0.88710 0.55649 0.56923 0.93213 0.65961 1.25756 0.61015

sHY1 (P2, Dk) 0.47845 0.37754 0.56677 0.79332 0.47845 0.50410 0.80684 0.59242 1.27208 0.50410

P3 sM1 (P3, Dk) 0.70886 0.60687 0.76473 0.51725 0.4552 0.6030 0.5010 0.77069 0.59071 0.7767

sHY1 (P3, Dk) 0.56677 0.47845 0.61365 0.41669 0.35854 0.49350 0.40518 0.63415 0.46694 0.64141

P4 sM1 (P4, Dk) 0.78572 0.73464 0.68109 0.58648 0.52427 0.6164 0.46316 0.4096 0.50423 0.69083

sHY1 (P4, Dk) 0.63780 0.58998 0.49987 0.43687 0.33991 0.68458 0.54110 0.45099 0.51400 0.80486

We now use ALG2-steps to solve the problem.

Computation with IF t-norm of Lukasiewicz

The following Table 4.10, gives results of the proposed similarity measures sZM and sZHY
and degrees of confidence of each disease for each patient obtained for the IF t-norms TL
based on data in Tables 4.7 and 4.8.

Table 4.10: Results of the similarity measures and degree of confidence with TL

Patients Similarity results

measures D1 D2 D3 D4 D5 DoC(1) DoC(2) DoC(3) DoC(4) DoC(5)

P1 sZM(P1, Dk) 0.75492 0.74122 0.68715 0.44171 0.39369 0.7559 0.71480 0.6607 0.90616 1.0502

sZHY (P1, Dk) 0.66245 0.68758 0.61365 0.35854 0.32166 0.71863 0.79404 0.66983 0.92495 1.03558

P2 sZM(P2, Dk) 0.51420 0.39833 0.62052 0.88710 0.51937 0.60027 0.94787 0.69624 1.49599 0.59509

sZHY (P2, Dk) 0.47845 0.37754 0.56677 0.79332 0.47845 0.50410 0.80684 0.59242 1.27208 0.50410

P3 sZM(P3, Dk) 0.68609 0.55632 0.73700 0.51725 0.45441 0.58119 0.45142 0.73393 0.4904 0.67903

sZHY (P3, Dk) 0.56677 0.47845 0.61365 0.41669 0.35854 0.49350 0.40518 0.63415 0.46694 0.64141

P4 sZM(P4, Dk) 0.76524 0.67605 0.62630 0.5646 0.47422 0.71978 0.45221 0.40246 0.46417 0.73528

sZHY (P4, Dk) 0.63780 0.58998 0.49987 0.43687 0.33991 0.68458 0.54110 0.45099 0.51400 0.80486

Let us discuss our obtained results.

Remark and interpretation 4.2.1. 1. For all k ∈ {1, 2, 3, 4, 5},

sHY1 (P4, Dk) = sZHY (P4, Dk).
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This is justified by the first result of Corollary 4.

2. Assume that DOC(j)

sZHY
and DOC(j)

sZM
are degrees of confidence of disease Dj for sim-

ilarity measures sZHY and sZM respectively under the t-norm T .
According to Table 4.10, the following table classifies similarity measures follower

from diseases and gives a proper diagnosis for each patient.

Table 4.11: Classification of similarity measures and proper diagnosis for each

patient

Patients Classification of similary measure Diagnosis Degree of confidence

sZM(P1, D1) > sZM(P1, D2) > sZM(P1, D3) > sZM(P1, D4) > sZM(P1, D5) Viral fever

P1 DoC
(2)

sZHY ,TL
> DoC

(1)

sZM ,TL

sZHY (P1, D2) > sZHY (P1, D1) > sZHY (P1, D3) > sZHY (P1, D4) > sZHY (P1, D5) Malaria

sZM(P2, D4) > sZM(P2, D3) > sZM(P2, D5) > sZM(P2, D1) > sZM(P2, D2) Stomach problem

P2 DoC
(4)

sZM ,TL
> DoC

(4)

sZHY ,TL

sZHY (P2, D4) > sZHY (P2, D3) > sZHY (P2, D1) = sZHY (P2, D5) > sZHY (P2, D2) Stomach problem

sZM(P3, D3) > sZM(P3, D1) > sZM(P3, D2) > sZM(P3, D4) > sZM(P3, D5) Typhoid

P3 DoC
(3)

sZM ,TL
> DoC

(3)

sZHY ,TL

sZHY (P3, D3) > sZHY (P3, D1) > sZHY (P3, D2) > sZHY (P3, D4) > sZHY (P3, D5) Typhoid

sZM(P4, D1) > sZM(P4, D2) > sZM(P4, D3) > sZM(P4, D4) > sZM(P4, D5) Viral fever

P4 DoC
(4)

sZM ,TL
> DoC

(4)

sZHY ,TL

sZHY (P4, D1) > sZHY (P4, D2) > sZHY (P4, D3) > sZHY (P4, D4) > sZHY (P4, D5) Viral fever

From Table 4.11 the proper diagnosis for each patient using IF t-norm TL are:

• Adeline suffer of Malaria

• Albert suffer of Stomach problem

• Ronald suffer of Typhoid

• Tom suffer of Viral fever

3. In oder to compare our similarity measure for existent one, we look after degree

of confidence. For patients P1, P2, and P4 for example similarity measure sZM is

higher confident than corresponding literature one sM1 since DoC(1)

sZM ,TL
> DoC

(1)

sM1 ,TL ,

DoC
(2)

sZM ,TL
> DoC

(2)

sM1 ,TL and DoC
(4)

sZM ,TL
> DoC

(4)

sM1 ,TL . But for patient P3 s
Z
M is not

higher confident than sM1 since DoC(3)

sZM ,TL
< DoC

(3)

sM1 ,TL .
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Computation with IF t-norm Product

The following Table 4.12 gives results of the proposed similarity measures sZM and sZHY

and degrees of confidence of each disease for each patient obtained for the IF t-norms TP
based on data in Tables 4.7 and 4.8.

Table 4.12: Results of the similarity measures and degree of confidence with TP

Patients Similarity results

measures D1 D2 D3 D4 D5 DoC(1) DoC(2) DoC(3) DoC(4) DoC(5)

P1 sZM(P1, Dk) 0.63838 0.50230 0.49823 0.35155 0.26897 0.93248 0.52423 0.52016 0.66684 0.91456

sZHY (P1, Dk) 0.39018 0.40183 0.20230 0.19925 0.19925 0.65012 0.46119 0.47284 0.64908 0.65821

P2 sZM(P2, Dk) 0.37301 0.29500 0.41689 0.59120 0.27742 0.4356 0.51369 0.47956 1.00248 0.56643

sZHY (P2, Dk) 0.2577 0.22637 0.28623 0.33074 0.10745 0.28313 0.31452 0.31159 0.44514 0.67128

P3 sZM(P3, Dk) 0.42033 0.26236 0.44355 0.36017 0.26236 0.39931 0.43695 0.46897 0.33915 0.43695

sZHY (P3, Dk) 0.17334 0.09984 0.26479 0.18421 0.09984 0.24932 0.32282 0.50193 0.26019 0.32282

P4 sZM(P4, Dk) 0.57445 0.43969 0.43840 0.41843 0.27760 0.72369 0.31939 0.31810 0.33808 0.76055

sZHY (P4, Dk) 0.37845 0.35675 0.30715 0.24015 0.14684 0.46291 0.39780 0.34820 0.41519 0.69513

Let us discuss our obtained results.

Remark and interpretation 4.2.2. Assume that DOC(j)

sZHY ,T
and DOC

(j)

sZM ,T
are de-

grees of confidence of disease j for similarity measures sZHY and sZM respectively under the

t-norm T .
According to Table 4.12, the following Table 4.13 classify similarity measures follower

from diseases and gives a proper diagnosis for each patient.
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4.2. Similary measures solving some problems of medical diagnostics using IFSs

Table 4.13: Classification of similarity measures and proper diagnosis for each

patient

Patients Classification of similary measure Diagnosis Degree of confidence

sZM(P1, D1) > sZM(P1, D2) > sZM(P1, D3) > sZM(P1, D4) > sZM(P1, D5) Viral fever

P1 DoC
(1)

sZM ,TP
> DoC

(2)

sZHY ,TP

sZHY (P1, D2) > sZHY (P1, D1) > sZHY (P1, D3) > sZHY (P1, D4) = sZHY (P1, D5) Malaria

sZM(P2, D4) > sZM(P2, D3) > sZM(P2, D1) > sZM(P2, D2) > sZM(P2, D5) Stomach problem

P2 DoC
(4)

sZM ,TP
> DoC

(4)

sZHY ,TP

sZHY (P2, D4) > sZHY (P2, D3) > sZHY (P2, D1) > sZHY (P2, D2) > sZHY (P2, D5) Stomach problem

sZM(P3, D3) > sZM(P3, D1) > sZM(P3, D4) > sZM(P3, D2) = sZM(P3, D5) Typhoid

P3 DoC
(3)

sZHY ,TP
> DoC

(3)

sZM ,TP

sZHY (P3, D3) > sZHY (P3, D4) > sZHY (P3, D1) > sZHY (P3, D2) = sZHY (P3, D5) Typhoid

sZM(P4, D1) > sZM(P4, D2) > sZM(P4, D3) > sZM(P4, D4) > sZM(P4, D5) Viral fever

P4 DoC
(1)

sZM ,TP
> DoC

(1)

sZHY ,TP

sZHY (P4, D1) > sZHY (P4, D2) > sZHY (P4, D3) > sZHY (P4, D4) > sZHY (P4, D5) Viral fever

From Table 4.13 the proper diagnosis for each patient using IF t-norm TP are:

• Adeline suffer of Viral fever

• Albert suffer of Stomach problem

• Ronald suffer of Typhoid

• Tom suffer of Viral fever

Conclusion 4.2.1. : General diagnosis under IF t-norms TL and TP simultane-

ously

On the question of which diagnosis is appropriate for each patient, many false diagnosis

are often made. It would therefore be important to combine many similarity measures in

order to make the right diagnosis. In the context of this example, the degrees of confi-

dence of the similarity measures proposed by Hatzimichailidis et al. [24] allow us to take

the following most general diagnosis:

• Adeline suffer of Viral fever since DoC(1)

sZM ,TL
> DoC

(1)

sZHY ,TP
• Albert suffer of Stomach problem

• Ronald suffer of Typhoid

• Tom suffer of Viral fever.
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♣ Concluding remarks ♣

In this thesis, we propose some classes of distance measures, similarity measures and

metrics based on symmetric difference of intuitionistic fuzzy sets. Some of these classes

are based on cardinality components of symmetric difference. Our study was carried out

in two stages and applications.

In the first stage, we proposed new difference and symmetric difference operations for

intuitionistic fuzzy sets by means of intuitionistic fuzzy R-implications associated to IF

t−norm. We constructed some examples of difference and symmetric difference operations

associated to the well-known IF t−norms (minimum TM , product TP and Lukasiewicz TL).
We established that the intuitionistic fuzzy difference operation preserves four properties

out of five, which we referred to as the four minimal conditions to require of a difference

operation on sets in general (even in crisp, fuzzy and intuitionistic fuzzy cases). Whereas

Huawen’s IF difference operation preserves only two of the five. We investigated and es-

tablished some sufficient conditions under which the fifth property was satisfied. We also

established that the intuitionistic fuzzy symmetric difference operation preserves all the

four basic properties of sets. Whereas Ejegwa’s IF symmetric difference operation does

not preserves one of the four. In addition, we established one cardinality property that

was satisfied by these operations.

In the second stage, on the basis of properties of symmetric difference operations,

we proposed eight classes of distance measures and their associated classes of similarity

measures. We justified that in the case of a t−representable IF t−norm of Lukasiewicz,

the new obtained Hamming and Euclidean distance measures becomes the well-known

Hamming and Euclidean distance measures proposed by Grzegorzewski [22], also the new

obtained distance measure based on exponential function is the same as that of Hung and

Yang’s distance measure based on exponential function. We introduced conditions C∗ and

C2 on t−representable IF t−norm T (and thus conditions on fuzzy R-implication and co-
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Concluding remarks

implication operators) under which the obtained classes of distance measures become

metrics, namely, t-norm-based metrics. Specifically, we established that dZ2n,T , dZ2w,T ,

dZ2L1,T , d
Z
22,T , d

Z
2H,T and dZ2E,T are metrics if T satisfies condition C∗, and, dZ2L2,T and dZM,T

with p = 2 are metrics if T satisfies condition C2. The following Table summarizes those

results.

Distance measures dZ2n,T dZ2H,T dZ2E,T dZ2w,T dZ2p,T dZ2Lp,T dZM,T

Metric if T satisfy C∗
√ √ √ √ √

if p = 1 or p = 2
√
if p = 1 or p = 2

√
if p = 1 or p = 2

Metric if T satisfy C2
√
if p = 2

√
if p = 2

.

To display some versions of these metrics for practical use, we proved that all the

t−representable IF t-norms of Frank and Mayor-Torrens families generate metrics.

All these theoretical results generalize those obtained by Fono et al. [17] and Fotso et

al. [20] on metrics on fuzzy sets.

We derived two applications from some of the previewed theoretical results. Firstly we

applied particular case of the obtained distance measures to an Example of the problem

of pattern recognition introduced by Wang and Xin [43]. The obtained classification of

our numerical results corroborate with the results of Liang and Shi [31] and Wang and

Xin [43]. However, we noticed that by using Degree of Confidence (DoC), introduced

by Hatzimichailidis et al. [24], our proposed metrics, defined with t−representables IF

t−norms of Lukasiewicz and Product, are more highly confident than other measures

described in the review.

Secondly we applied, particular case of the obtained similarity measures to an Example

of the problem of medical diagnosis recalled in [40, 42, 47]. The diagnosis depends on the

used similarity measure. But by using degrees of confidence of the similarity measures, we

deduced the most general diagnosis. The obtained result shows that, for the four patients:

Adeline suffers of Viral fever, Albert suffers of Stomach problem, Ronald suffers

of Typhoid, and Tom suffers of Viral fever.

An open problem will be to investigate other families of t-norms generating metric

from our distance measures (thereby satisfying our two conditions on IF t-norm). This will

display more expressions of metrics usefulness to analyze some decision making problems.

Another open question, is to generalize all our obtained results for intuitionistic L-fuzzy
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Concluding remarks

set, where L is a distributive complete lattice.
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♣ Publications ♣

Metrics of Symmetric Difference on Fuzzy Sets Based on

R-implicators of the Usual Families of t-norms

The first publication of this thesis characterizes by means of R-implications operators

of the usual families of t-norms defined by Klement et al. [29], which of that families

generate metrics from dissimilarity measures on fuzzy sets.
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Difference and symmetric difference for intuitionistic fuzzy

sets

The second publication of this thesis proposes new difference and symmetric difference

operations for intuitionistic fuzzy sets based on intuitionistic fuzzy R-implication operators

and standard intuitionistic fuzzy negation operator. It also studies theirs properties.
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Abstract: Fono et al. [10] determined some classes of difference and symmetric difference oper-
ations for fuzzy sets using fuzzy implication operators. Intuitionistic fuzzy sets are known to be
generalizations of fuzzy sets. So, in this paper, we propose new difference and symmetric differ-
ence operations for intuitionistic fuzzy sets based on intuitionistic fuzzy R-implication operators
and standard intuitionistic fuzzy negation operator. We establish that some common properties of
the difference operations for fuzzy sets established earlier by Fono et al. in [10] and for crisp sets
are preserved by the new obtained operations for intuitionistic fuzzy sets. We display a specific
property satisfied by difference operation in crisp and fuzzy cases and violated in intuitionistic
fuzzy case. The proposed difference and symmetric difference operations for intuitionistic fuzzy
sets generalize the case for fuzzy sets. This strength provides a more dynamic perspective into
the studies and applications of these operations.
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1 Introduction

The framework of fuzzy set provides us with tools to handle problems in which the source of
vagueness is the ambiguity in criteria of class membership rather than randomness [20]. In this
framework, any element of a universal crisp set is allowed to belong to a subset partially with
a membership grade usually between 0 and 1 assigned to it. Furthermore, the sum of the mem-
bership grade and non-membership grade of an element is always 1. But in reality, this case is
not always true because there may be some hesitation degree [9] and this led to the introduction
of intuitionistic fuzzy sets as generalization of fuzzy sets by Atanassov [1] in which the degree
of hesitation is accounted for, so that the sum of the membership grade, non-membership grade
of an element and its degree of hesitation is always 1. Throughout this paper, we consider that
definition of an intuitionistic fuzzy set.

Since intuitionistic fuzzy set theory is a generalization of the fuzzy set theory, a rigorous study
was needful to be able to establish workable results when concepts under crisp sets and fuzzy sets
are transferred. A new set of definitions for set operations needed to be proposed for this field.
Many standard operations (such as inclusion, intersection, union, complement, etc) [2,7,9,11,12]
have been unanimously agreed upon to serve as usual operations on intuitionistic fuzzy sets.
Meanwhile, the need to study these operations in a more mathematical framework which allows
for generalization has motivated many scholars [3–6, 11–13, 17–19] among others to undertake
studies in intuitionistic fuzzy operators and generators. Of these operators which are germane
to establishing results in our current research include intuitionistic fuzzy t-norms, t-conorms,
R-implications, co-implications and negations. Cornelis et al. [5, 6] and Atanassov [3] have es-
tablished many results in the study of intuitionistic fuzzy implications, co-implications, negations
and their properties. Some of these results have provided in great measure some required mathe-
matical background for our current study.

Fono et al. [10] have proposed two classes of difference operations for fuzzy sets and two
classes of symmetric difference for fuzzy sets using the fuzzy implication operators. They estab-
lished that these difference and symmetric difference operations for fuzzy sets of type 1 and 2
preserve the classical properties of difference and symmetric difference operations for crisp sets.
Inspired by their work on fuzzy sets, we introduce new definitions for difference and symmet-
ric difference for intuitionistic fuzzy sets by means of intuitionistic fuzzy R-implications and we
study their properties.

Huawen [15] defined three difference operations for intuitionistic fuzzy sets, one based on
the intuitionistic fuzzy t-norm TM = (min,max) and the remaining based on any decreasing
intuitionistic fuzzy generators as follows: For any two intuitionistic fuzzy sets A and B of X,
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A−1 B = {〈x, µA(x) ∧ νB(x), νA(x) ∨ µB(x)〉 | x ∈ X}, (1)

A−2 B = {〈x, µA(x) ∧ ϕ(1− νB(x)), νA(x) ∨ (1− ϕ(µB(x)))〉 | x ∈ X}, (2)

A−3 B = {〈x, µA(x) ∧ ϕ(1− νB(x)), νA(x) ∨ ϕ(1− µB(x))〉 | x ∈ X}, (3)

where ϕ is any decreasing intuitionistic fuzzy generator such that ϕ(0) = 1.

However, these definitions do not provide a sufficient endowment to explore the mathemati-
cal extensions of these operations to the more general cases that apply to any intuitionistic fuzzy
t-norm. Huawen’s difference operations preserve only two out of the four properties which are
the minimal conditions (as we have established in the results of Proposition 2) to require for a
difference operation on sets, fuzzy sets and intuitionistic fuzzy sets in general. It is worthy to note
here that the Huawen’s difference operation−1 is trivially the generalization of the difference op-
eration in the sense of crisp set given byA−B = A∩Bc. As he noted, if we choose the generator
ϕ to be the standard negator defined by ϕ(x) = 1− x, then the difference operations −2 and −3

reduce to −1. The complement functions (which are special examples of any difference opera-
tion) constructed from the difference operations −2 and −3 in Equations (2) and (3) are the same
as the intuitionistic fuzzy complementation and intuitionistic fuzzy pseudo-complementation re-
spectively, obtained by Bustince, et al. [4]. Thus, we can refer to the difference operation −3

as intuitionistic fuzzy pseudo-difference operation, which in general does not inherit the general
properties of the difference −2.

It is also notable to remark here that, the intuitionistic fuzzy complementation associated to
difference −2 defined by Huawen [15] and Bustince, et al. [4] depends largely on the choice of
the intuitionistic fuzzy generator. Thus, with different choice of intuitionistic fuzzy generator,
the intuitionistic fuzzy complementation so defined may yield different result. Meanwhile, the
intuitionistic fuzzy complementation associated to the difference operation we proposed, though
by means of intuitionistic fuzzy R-implications, yet yields the same result for any choice of
associated t-representable intuitionistic fuzzy t-norm.

By these new difference and symmetric difference operations for intuitionistic fuzzy sets we
have proposed, we are able to construct typical examples of intuitionistic fuzzy difference and
symmetric difference associated to the three usual known of intuitionistic fuzzy t-norms (the
minimum, product and Lukasiewicz). More explicit examples of these new operations can be
constructed for other t-representable intuitionistic fuzzy t-norms. This possibility provides a more
robust knowledge and insight into the study of these operations in general cases and their appli-
cations would be more enriched.

The rest of this paper is organized as follows. Section 2 recalls some preliminaries on fuzzy
sets and intuitionistic fuzzy sets. It also recalls known and useful results on difference and sym-
metric difference of fuzzy sets established by Fono et al. [10]. Section 3 introduces difference
and symmetric difference of intuitionistic fuzzy sets and establishes their properties. Section 4
gives some concluding remarks. An Appendix recalls some known results of the fuzzy case that
we use.
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2 Preliminaries

Throughout this paper, X shall denote a nonempty universal set, > a t-norm and S a t-conorm.

In this Section, we introduce some basic definitions and provide some preliminary results
needed in the rest of the paper. Some other useful notions and concepts on fuzzy sets are recalled
in Appendix.

2.1 Intuitionistic fuzzy sets, intuitionistic fuzzy operators and operations

Here, we introduce the basic concepts of intuitionistic fuzzy sets, recall the definitions and exam-
ples of some intuitionistic fuzzy operators and operations ( [5, 13, 17]).

Definition 1 (Intuitionistic Fuzzy Set [7, 9, 17]). An intuitionistic fuzzy set D on X is defined by:

D = {(x, µD(x), νD(x)) | µD(x), νD(x) ∈ [0, 1], 0 ≤ µD(x) + νD(x) ≤ 1, ∀x ∈ X},

where µD(x), νD(x) are the degrees of membership and non-membership of x in D, respectively.

If µD(x) + νD(x) = 1, then D is a fuzzy set of X where µD(x) is the degree of membership
of x in D.

We will subsequently be referring to the complete lattice (L∗,≤L∗) with 0L∗ = (0, 1) and
1L∗ = (1, 0) as the units whereL∗ = {(x1, x2)|(x1, x2) ∈ [0, 1]×[0, 1], x1+x2 ≤ 1} and≤L∗ is an
order on L∗ defined by: for all (x1, x2), (y1, y2) ∈ L∗, (x1, x2) ≤L∗ (y1, y2) if and only if x1 ≤
y1 andx2 ≥ y2. The meet operator ∧ and the join operator ∨ on this lattice, (L∗,≤L∗) are defined
for all (x1, x2), (y1, y2) ∈ L∗ as:

(x1, x2) ∧ (y1, y2) = (min(x1, y1),max(x2, y2))

(x1, x2) ∨ (y1, y2) = (max(x1, y1),min(x2, y2)).

Definition 2 (Intuitionistic Fuzzy t-norm and t-conorm, (see [5, 6, 13])). 1. An intuitionistic fuzzy
t-norm is a binary operation T : L∗ ×L∗ −→ L∗ such that for any x ∈ L∗, T (x, 1L∗) = x

(neutral element) and, T satisfies commutativity, monotonicity (increasing) and associativ-
ity.

2. An intuitionistic fuzzy t-conorm is a binary operation J : L∗ × L∗ −→ L∗ such that for
any x ∈ L∗, J (x, 0L∗) = x and, J is commutative, monotone increasing and associative.

Definition 3 (Intuitionistic Fuzzy Negation, (see [5–7, 18])). An intuitionistic fuzzy negation is
a non-increasing mapping N : L∗ −→ L∗ satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If
N (N (x)) = x, ∀x ∈ L∗, then N is said to be involutive. An involutive intuitionistic fuzzy
negation is called strong intuitionistic fuzzy negation.

Deschrijver et al. and, Reseir and Bedregal [6, 18] have shown that an involutive intuition-
istic fuzzy negation, N , can be characterized by an involutive fuzzy negation by proving that,
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if the fuzzy negation N is involutive, then N (x) = (N(1 − x2), 1 − N(x1)). An example of
a strong (involutive) intuitionistic fuzzy negation is the standard negation Ns on L∗ defined by
Ns(x1, x2) = (x2, x1).

We now recall useful classes of intuitionistic fuzzy t-norm and t-conorm and, their implica-
tions and co-implications.

Definition 4 (t-Representable intuitionistic fuzzy t-norm and t-conorm (see [5, 6, 13, 17])). An
intuitionistic fuzzy t-norm T (respectively intuitionistic fuzzy t-conorm J ) is t-representable if
there exists a fuzzy t-norm> and a fuzzy t-conorm S (respectively a fuzzy t-conorm S ′ and a fuzzy
t-norm >′) such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗, T (x,y) = (>(x1, y1), S(x2, y2))

and J (x,y) = (S ′(x1, y1),>′(x2, y2)), respectively.

The following result allows us to construct t-representable intuitionistic fuzzy t-norms and
t-conorms from fuzzy t-norms and t-conorms.

Theorem 1. [5, 6, 17] Given a fuzzy t-norm > and fuzzy t-conorm S satisfying >(a, b) ≤ 1 −
S(1 − a, 1 − b) for all a, b ∈ [0, 1], then T (x,y) = (>(x1, y1), S(x2, y2)) and J (x,y) =

(S(x1, y1),>(x2, y2)) for all x = (x1, x2), y = (y1, y2) ∈ L∗, are t-representable intuitionistic
fuzzy t-norm and t-representable intuitionistic fuzzy t-conorm respectively.

We denote by IF-t-norm the intuitionistic fuzzy t-norm and, by IF-t-conorm the intuitionistic
fuzzy t-conorm.

Definition 5 (Intuitionistic fuzzy R-implication and co-implicator [5, 6, 13]). 1. An intuition-
istic fuzzy R-implication (for short, IF-R-implication) associated with an IF-t-norm, T =

(>, S), is a mapping IT : L∗×L∗ −→ L∗ such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

IT (x,y) = sup{z|z ∈ L∗, T (x, z) ≤L∗ y}
= sup{(z1, z2)|(z1, z2) ∈ L∗, >(x1, z1) ≤ y1 and S(x2, z2) ≥ y2}.

2. An intuitionistic fuzzy co-implication (for short, IF-co-implication) associated with an IF-t-
conorm,J = (S,>), is a mapping JJ : L∗×L∗ −→ L∗ such that, for all x = (x1, x2), y =

(y1, y2) ∈ L∗,

JJ (x,y) = inf{z|z ∈ L∗, y ≤L∗ J (x, z)}
= inf{(z1, z2)|(z1, z2) ∈ L∗, y1 ≤ >(x1, z1) and y2 ≥ S(x2, z2)}.

The following useful result relates IF-co-implication and IF-R-implication associated with
an IF-t-conorm, J = (S,>) and IF-t-norm, T = (>, S), respectively to corresponding fuzzy
co-implication, JS associated to S and fuzzy R-implication, I> associated to >.

Lemma 1 (see [13]). For any x = (x1, x2), y = (y1, y2) ∈ L∗, we have

1. JJ (x,y) = (JS(x1, y1),min (I>(x2, y2), 1− JS(x1, y1))) .

2. IT (x,y) = (min (I>(x1, y1), 1− JS(x2, y2)) , JS(x2, y2)).
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The following are examples of t-representable IF-t-norms and IF-t-conorms [13].

Example 1. i. TM = (>M , SM) and JM = (SM ,>M) are t-representable IF-t-norm and IF-t-
conorm respectively associated to >M and SM .

ii. TP = (>P , SP ) and JP = (SP ,>P ) are t-representable IF-t-norm and IF-t-conorm respec-
tively associated to >P and SP .

iii. TL = (>L, SL) and JL = (SL,>L) are t-representable IF-t-norm and IF-t-conorm respec-
tively associated to >L and SL.

iv. Also, by verifying that >lF (a, b) ≤ 1 − SlF (1 − a, 1 − b) holds for all a, b ∈ [0, 1], l ∈
(0, 1) ∪ (1,+∞), T lF = (>lF , SlF ) and J l

F = (SlF ,>lF ) are t-representable IF-t-norm and
IF-t-conorm respectively associated to >lF and SlF for all l ∈ (0, 1) ∪ (1,+∞).

Using Lemma 1 and Example 8 (see the Appendix), we construct the following examples
of IF-R-implication and IF-co-implication associated with an IF-t-norm, T = (>, S) and IF-t-
conorm, J = (S,>).

Example 2. For all x = (x1, x2),y = (y1, y2) ∈ L∗,

1. The IF-R-implication associated with TM = (>M , SM) and the IF-co-implication associ-
ated with JM = (SM ,>M) are respectively given by:

ITM (x,y) =





(1, 0), if x ≤L∗ y,
(min(y1, 1− y2), y2) , if x >L∗ y.

and

JJM (x,y) =





(0, 1), if x ≥L∗ y,
(y1,min(y2, 1− y1)) , if x <L∗ y.

2. IF-R-implication associated with TP = (>P , SP ) and IF-co-implication associated with
JP = (SP ,>P ) are respectively given by:

ITP (x,y) =





(1, 0), if x ≤L∗ y,(
min

(
y1
x1
, 1−y2
1−x2

)
, y2−x2

1−x2

)
, if x >L∗ y.

and

JJP (x,y) =





(0, 1), if x ≥L∗ y,(
y1−x1
1−x1 ,min

(
y2
x2
, 1−y1
1−x1

))
, if x <L∗ y.

3. The IF-R-implication associated with TL = (>L, SL) and the IF-co-implication associated
with JL = (SL,>L) are respectively given by:

ITL(x,y) =





(1, 0), if x ≤L∗ y,
(min (1− x1 + y1, 1 + x2 − y2) , y2 − x2) , if x >L∗ y.
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and

JJL(x,y) =





(0, 1), if x ≥L∗ y,
(y1 − x1,min (1− x2 + y2, 1 + x1 − y1)) , if x <L∗ y.

4. The IF-R-implication associated with T lF = (>lF , SlF ) and the IF-co-implication associated
with J l

F = (SlF ,>lF ) for all l ∈ (0, 1) ∪ (1,+∞) are respectively given by:

IT l
F

(x,y) =





(1, 0), if x ≤L∗ y,(
min

(
logl

(
1 + (l−1)(ly1−1)

lx1−1

)
, logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

))
,

1− logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

))
, if x >L∗ y,

and

JJ l
F (x,y) =





(0, 1), if x ≥L∗ y,(
1− logl

(
1 + (l−1)(l1−y1−1)

l1−x1−1

)
,

min
(

logl

(
1 + (l−1)(ly2−1)

lx2−1

)
, logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

)))
, if x <L∗ y.

We end this Subsection by recalling inclusion and some operations on intuitionistic fuzzy sets.

Definition 6 (Intuitionistic Fuzzy Operations [2, 7, 9, 11, 12]). Let A and B be any two intuition-
istic fuzzy sets defined on X . Inclusion and the following operations are defined by associated
membership and non-membership functions as follows:

i. Inclusion: A ⊆ B if ∀x ∈ X,µA(x) ≤ µB(x) and νA(x) ≥ νB(x);

ii. Intersection: A∩B is defined by: ∀x ∈ X, (µA∩B(x), νA∩B(x)) = (µA(x) ∧ µB(x), νA(x) ∨ νB(x)) ;

iii. Union: A∪B is defined by: ∀x ∈ X, (µA∪B(x), νA∪B(x)) = (µA(x) ∨ µB(x), νA(x) ∧ νB(x)) ;

iv. Complement: Ac is defined by: ∀x ∈ X, (µAc(x), νAc(x)) = (νA(x), µA(x)) ;

v. Difference: A−B is defined by: ∀x ∈ X, (µA−B(x), νA−B(x)) = (µA(x) ∧ νB(x), νA(x) ∨ µB(x)) ;

vi. Symmetric Difference: A M B is defined by: ∀x ∈ X, (µAMB(x), νAMB(x)) =

(min{µA(x) ∨ µB(x), νA(x) ∨ νB(x)}, max{νA(x) ∧ νB(x), µA(x) ∧ µB(x)}) .
In the next Subsection, we recall the difference and symmetric difference operations for fuzzy

sets, some examples and their properties as proposed by Fono et al. [10].

2.2 Difference and symmetric difference of fuzzy sets
based on fuzzy implications

Definition 7 (Difference and Symmetric Difference Operations for Fuzzy Sets [10]). a. LetM,N

be any two fuzzy sets defined onX and i ∈ {1, 2, 3, 4}. The fuzzy difference of type i associated

to > of M and N is the fuzzy set of X denoted by M
i
−
>
N and defined by:

µ
M

i
−
>
N

(x) = I i>(µM(x), µN(x)) = 1− I i>(µM(x), µN(x)), for all x ∈ X.
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b. The fuzzy symmetric difference of type i ∈ {1, 2} associated to > of M and N is the fuzzy set

of X denoted by M
i
M
>
N and defined for all x ∈ X by:

µ
M

i
M
>
N

(x) = µ
M∪N

i
−
>
M∩N

(x) =





1− I1> (µM(x) ∨ µN(x), µM(x) ∧ µN(x)) , if i = 1

1− I2> (µM(x) ∨ µN(x), µM(x) ∧ µN(x)) , if i = 2.

We recall the examples of these operations for fuzzy sets of type 1 and 2 associated to the
usual three fuzzy t-norms in what follows.

Example 3. For any fuzzy sets M and N defined on X ,

1. Examples of fuzzy difference operations

(a) The difference operation associated with >M is given by, for all x ∈ X

µ
M

1
−
>M

N
(x) =





0, if µM(x) ≤ µN(x),

1− µN(x), if µM(x) > µN(x),

µ
M

2
−
>M

N
(x) =





0, if µM(x) ≤ µN(x),

µM(x), if µM(x) > µN(x)

(b) The difference operation associated with >P is given by, for all x ∈ X

µ
M

1
−
>P

N
(x) =





0, if µM(x) ≤ µN(x),

1− µN (x)
µM (x)

, if µM(x) > µN(x),

µ
M

2
−
>P

N
(x) =





0, if µM(x) ≤ µN(x),
µM (x)−µN (x)

1−µN (x)
, if µM(x) > µN(x).

(c) The difference operation associated with>L is given by, for all x ∈ X and i ∈ {1, 2},

µ
M

i
−
>L

N
(x) =





0, if µM(x) ≤ µN(x),

µM(x)− µN(x), if µM(x) > µN(x).

2. Examples of fuzzy symmetric difference operations

(a) The symmetric difference operation associated with >M is given by, for all x ∈ X

µ
M

1
M
>M

N
(x) =





0, if µM(x) = µN(x),

max (1− µM(x), 1− µN(x)) , if µM(x) 6= µN(x),

µ
M

2
M
>M

N
(x) =





0, if µM(x) = µN(x),

max (µM(x), µN(x)) , if µM(x) 6= µN(x).
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(b) The symmetric difference operation associated with >P is given by, for all x ∈ X

µ
M

1
M
>P

N
(x) =





0, if µM(x) = µN(x) = 0,
|µM (x)−µN (x)|

max{µM (x),µN (x)} , if µM(x) 6= 0, or µN(x) 6= 0 ,

µ
M

2
M
>P

N
(x) =





0, if µM(x) = µN(x) = 1,
|µM (x)−µN (x)|

1−min{µM (x),µN (x)} , if µM(x) ∧ µN(x) < 1.

(c) The symmetric difference operation associated with>L is given by, for all x ∈ X and
i ∈ {1, 2},

µ
M

i
M
>L

N
(x) =| µM(x)− µN(x) | .

Fono et al. [10] have also proved that the difference and symmetric difference operations
for fuzzy sets of type 1 and 2 associated to any continuous t-norm > so defined preserve the
properties of the classical difference and symmetric difference operation for crisp sets. We recall
these results as follows:

Proposition 1. Let i ∈ {1, 2} and M,M ′, N be any arbitrary fuzzy sets on X . The following
properties hold [10]:

1. Properties of fuzzy difference operation;

(a) if M ⊆ N , then M
i
−
>
N = ∅, (b) if M ⊆M ′, then M

i
−
>
N ⊆M ′ i−

>
N , (c) if M ⊆M ′,

thenN
i
−
>
M ′ ⊆ N

i
−
>
M , (d)

(
M

i
−
>
N

)
∩
(
N

i
−
>
M

)
= ∅ and (e)M

i
−
>
N = M

i
−
>

(M ∩N).

2. Properties of fuzzy symmetric difference operation;

(a) M
i
M
>
N =

(
M

i
−
>
N

)
∪
(
N

i
−
>
M

)
,

(b) if M ⊆ N , then M
i
M
>
N = N

i
−
>
M and (c) M

i
M
>
M = ∅.

The following result shows that, the fuzzy complement of fuzzy sets associated with any
continuous t-norm > so defined, preserve the property of the classical complement for crisp sets.

Corollary 1. Let > be any continuous t-norm, A be a fuzzy set on X , and Ac be the fuzzy
complement of A associated with >.
Then Ac = X −> A.

Proof. Let x ∈ X. From Definition 12 (see the Appendix), it is sufficient to show that: µX−>A(x) =

1− µA(x).

Since µX(x) = 1 and I>(1, a) = a (see Proposition 9 in the Appendix) for all a ∈ [0; 1], from
Definition 7,
µX−>A(x) = 1− I>(µX(x), µA(x)) = 1− µA(x).

In the following Section, we introduce new operations for intuitionistic fuzzy sets and estab-
lish some of their properties.
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3 New operations for intuitionistic fuzzy sets:
Difference and symmetric difference

3.1 Definitions and properties of difference operations

Let IT = (1IT ,2 IT ) be an IF-R-implication operator. We define the negation of IT as N (IT ) =

(2IT ,1 IT ). In particular, using Lemma 1 we define the negation of IF-R-implication as ∀x =

(x1, x2), y = (y1, y2) ∈ L∗,N (IT (x,y)) = (JS(x2, y2),min{I>(x1, y1), 1− JS(x2, y2)}) .

Definition 8. Let A, B be any two intuitionistic fuzzy sets defined on X . The intuitionistic fuzzy
difference associated to T of A and B is the intuitionistic fuzzy set on X denoted by A − T B
and defined by the membership and non-membership degrees as follows:
For all x ∈ X ,

(µA−T B(x), νA−T B(x)) = N (IT ((µA(x), νA(x)), (µB(x), νB(x))))

= (JS(νA(x), νB(x)),min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}) .

The following are typical examples of difference operations associated with the three usual
and well-known T .

Example 4. For any intuitionistic fuzzy sets A and B defined on X,

1. The difference operation associated with TM is given by, for all x ∈ X

(
µA−TM B(x), νA−TM B(x)

)
=





(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x)),

(νB(x),min{µB(x), 1− νB(x)}) ,
if (µA(x), νA(x)) >L∗ (µB(x), νB(x)).

2. The difference operation associated with TP is given by, for all x ∈ X

(
µA−TP B(x), νA−TP B(x)

)
=





(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x))(
νB(x)−νA(x)

1−νA(x)
,min

{
µB(x)
µA(x)

, 1−νB(x)
1−νA(x)

})
,

if (µA(x), νA(x)) >L∗ (µB(x), νB(x)).

3. The difference operation associated with TL is given by, for all x ∈ X

(
µA−TL B(x), νA−TL B(x)

)
=





(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x))(
νB(x)− νA(x),min

{
1− µA(x) + µB(x), 1 + νA(x)

−νB(x)
})

, if (µA(x), νA(x)) >L∗ (µB(x), νB(x)).

In the following results, we establish four classical properties for difference operation which
are satisfied by the new intuitionistic fuzzy difference operation.

Proposition 2 (Properties of Intuitionistic Fuzzy Difference Operation). LetA,B,C be intuition-
istic fuzzy sets on X . The following properties for intuitionistic fuzzy difference operations hold:
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1. if A ⊆ B, then A − T B = ∅;

2. if A ⊆ B, then A − T C ⊆ B − T C;

3. if A ⊆ B, then C − T B ⊆ C − T A;

4. A − T B = A − T (A ∩B).

Proof. By Proposition 9 and Definition 8, we establish the results for all x ∈ X as follows:

1. Assume that, A ⊆ B, then µA(x) ≤ µB(x) and νA(x) ≥ νB(x).
Since JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x), and I>(µA(x), µB(x)) = 1,

whenever µA(x) ≤ µB(x) then by Definition 8, we have (µA−T B(x), νA−T B(x)) = (0, 1)

and the result follows.

2. Assume that A ⊆ B, then µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

(µA−T C(x), νA−T C(x)) = (JS(νA(x), νC(x)),min{I>(µA(x), µC(x)), 1− JS(νA(x), νC(x))}) ,

(µB−T C(x), νB−T C(x)) = (JS(νB(x), νC(x)),min{I>(µB(x), µC(x)), 1− JS(νB(x), νC(x))}) .
Since νB(x) ≤ νA(x), then from Proposition 9 JS(νA(x), νC(x)) ≤ JS(νB(x), νC(x)).

So, µA−T C(x) ≤ µB−T C(x).

For the non-membership degree, there are four possibilities:

Case i: νA−T C(x) = I>(µA(x), µC(x)) and νB−T C(x) = I>(µB(x), µC(x)).

Since µA(x) ≤ µB(x), then I>(µA(x), µC(x)) ≥ I>(µB(x), µC(x)) and we have
νA−T C(x) ≥ νB−T C(x).

Case ii: νA−T C(x) = 1− JS(νA(x), νC(x)) and νB−T C(x) = 1− JS(νB(x), νC(x)).

Since νB(x) ≤ νA(x)then, JS(νA(x), νC(x)) ≤ JS(νB(x), νC(x)), then we have
νA−T C(x) ≥ νB−T C(x).

Case iii: νA−T C(x) = I>(µA(x), µC(x)) and νB−T C(x) = 1− JS(νB(x), νC(x)).

Since µA(x) ≤ µB(x), then

I>(µA(x), µC(x)) ≥ I>(µB(x), µC(x)) ≥ 1− JS(νB(x), νC(x)).

So, νA−T C(x) ≥ νB−T C(x).

Case iv: νA−T C(x) = 1− JS(νA(x), νC(x)) and νB−T C(x) = I>(µB(x), µC(x)).

Since νA(x) ≥ νB(x), then

1− JS(νA(x), νC(x)) ≥ 1− JS(νB(x), νC(x)) ≥ I>(µB(x), µC(x)).

So, νA−T C(x) ≥ νB−T C(x).

Thus for all x ∈ X, µA−T C(x) ≤ µB−T C(x) and νA−T C(x) ≥ νB−T C(x).

So, A − T C ⊆ B − T C.
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3. Assume that A ⊆ B then, µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

(µC−T B(x), νC−T B(x)) = (JS(νC(x), νB(x)),min{I>(µC(x), µB(x)), 1− JS(νC(x), νB(x))}) ,

(µC−T A(x), νC−T A(x)) = (JS(νC(x), νA(x)),min{I>(µC(x), µA(x)), 1− JS(νC(x), νA(x))}) .
Since νB(x) ≤ νA(x), then JS(νC(x), νB(x)) ≤ JS(νC(x), νA(x)). So, µC−T B(x) ≤
µC−T A(x).

For the non-membership degree, there are four possibilities:

Case i: νC−T B(x) = I>(µC(x), µB(x)) and νC−T A(x) = I>(µC(x), µA(x)).

Since µA(x) ≤ µB(x), then I>(µC(x), µB(x)) ≥ I>(µC(x), µA(x)) and we have
νC−T B(x) ≥ νC−T A(x).

Case ii: νC−T B(x) = 1− JS(νC(x), νB(x)) and νC−T A(x) = 1− JS(νC(x), νA(x)).

Since νB(x) ≤ νA(x) then JS(νC(x), νB(x)) ≤ JS(νC(x), νA(x)), then we have
νC−T B(x) ≥ νC−T A(x).

Case iii: νC−T B(x) = I>(µC(x), µB(x)) and νC−T A(x) = 1 − JS(νC(x), νA(x)). Since
µA(x) ≤ µB(x), then

I>(µC(x), µB(x)) ≥ I>(µC(x), µA(x)) ≥ 1− JS(νC(x), νA(x)).

So, νC−T B(x) ≥ νC−T A(x).

Case iv: νC−T B(x) = 1− JS(νC(x), νB(x)) and νC−T A(x) = I>(µC(x), µA(x)).

Since νA(x) ≥ νB(x), then

1− JS(νC(x), νB(x)) ≥ 1− JS(νC(x), νA(x)) ≥ I>(µC(x), µA(x)).

So, νC−T B(x) ≥ νC−T A(x).

Thus for all x ∈ X, µC−T B(x) ≤ µC−T A(x) and νC−T B(x) ≥ νC−T A(x).

So, C − T B ⊆ C − T A.

4. From Definition 8 we have,

µA−T (A∩B)(x) = JS(νA(x), νA∩B(x)) = JS(νA(x),max{νA(x), νB(x)}), (4)

νA−T (A∩B)(x) = min
{
I>(µA(x), µA∩B(x)), 1− JS(νA(x), νA∩B(x))

}

= min
{
I>(µA(x),min{µA(x), µB(x)}), 1− JS(νA(x),max{νA(x), νB(x)})

}
, (5)

µA−T B(x) = JS(νA(x), νB(x)), (6)

νA−T B(x) = min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}. (7)

Claim:
We claim µA−T (A∩B)(x) = µA−T B(x) and νA−T (A∩B)(x) = νA−T B(x) for all x ∈ X.
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We note the following properties:
JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x); I>(µA(x), µB(x)) = 1, whenever
µA(x) ≤ µB(x); JS(νA(x), νA(x)) = 0 and I>(µA(x), µA(x)) = 1.
Then consider the following cases:

Case i: If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), then by Equations (4)-(7), we have

µA−T (A∩B)(x) = JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µA(x)), 1− JS(νA(x), νB(x))

}

= min
{

1, 1− JS(νA(x), νB(x))
}

= min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Case ii: If µA(x) ≤ µB(x) and νA(x) ≥ νB(x), then by Equations (4)-(7), we have

µA−T (A∩B)(x) = JS(νA(x), νA(x)) = 0

= JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µA(x)), 1− JS(νA(x), νA(x))

}
= min

{
1, 1− 0

}

= min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Case iii: If µA(x) ≥ µB(x) and νA(x) ≤ νB(x), then by Equations (4)-(7), we have

µA−T (A∩B)(x) = JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Case iv: If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), then by Equations (4)-(7), we have

µA−T (A∩B)(x) = JS(νA(x), νA(x)) = 0

= JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νA(x))

}

= min
{
I>(µA(x), µB(x)), 1− 0

}

= min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Hence,
(
µA−T (A∩B)(x), νA−T (A∩B)(x)

)
= (µA−T B(x), νA−T B(x)) for all x ∈ X , and the

result follows.

The following result shows that, the intuitionistic fuzzy complement of fuzzy sets associ-
ated with a t-representable of an IF-t-norm T = (>, S) so defined, preserve the property of the
classical complement for crisp sets.

Corollary 2. Let A be any intuitionistic fuzzy set of X . AcT be the intuitionistic fuzzy complement
of A. Then AcT = X −T A.
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Proof. Let x ∈ X. Since (µX(x), νX(x)) = (1, 0), then from Definition 8,

(µX−T A(x), νX−T A(x)) = (JS(0, νA(x)),min{I>(1, µA(x)), 1− JS(0, νA(x))}) ,
= (νA(x), min{µA(x), 1− νA(x)}) , (recalling Prop. 9(1)),

= (νA(x), µA(x)) , since µA(x) ≤ 1− νA(x). (8)

From Definition 6, the result follows.

The following result establishes a property of the new difference operation.

Proposition 3. Let A and B be any intuitionistic fuzzy sets on X .

1. Then (A − T B) ∩T (B − T A) is an intuitionistic fuzzy set with membership function,
µ(A−T B)∩T (B−T A)(x) = 0, ∀x ∈ X and non-membership function defined by: for all
x ∈ X,

ν(A−T B)∩T (B−T A)(x) =





S (1− JS(νA(x), νB(x)), I>(µB(x), µA(x))) ,

if µA(x) ≤ µB(x) and νA(x) ≤ νB(x) ,

S (I>(µA(x), µB(x)), 1− JS(νB(x), νA(x))) ,

if µA(x) ≥ µB(x) and νA(x) ≥ νB(x) ,

1, otherwise.

(9)

2. If T is a Lukasiewicz IF-t-norm, then

(A − T B) ∩T (B − T A) = ∅.

Proof. 1. Recall that for any two intuitionistic fuzzy sets A and B, we define the intersection
by means of any t-representable IF-t-norm T = (>, S) as follows:

A ∩T B = {〈x,>(µA(x), µB(x)), S(νA(x), νB(x))〉 | x ∈ X}.

So,

µ(A−T B)∩T (B−T A)(x) = > (JS(νA(x), νB(x)), JS(νB(x), νA(x))) , (10)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))},
min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) . (11)

We note that JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x) and I>(µA(x), µB(x)) = 1,

whenever µA(x) ≤ µB(x), then consider the following cases: for all x ∈ X,

Case i: If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), then from Equation (10) µ(A−T B)∩T (B−T A)(x) =

> (JS(νA(x), νB(x)), 0) = 0, and from Equation (11) we have

ν(A−T B)∩T (B−T A)(x) = S (min{1, 1− JS(νA(x), νB(x))},min{I>(µB(x), µA(x)), 1− 0}) ,

= S (1− JS(νA(x), νB(x)), I>(µB(x), µA(x))) .
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Case ii: If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), then from Equation (10) µ(A−T B)∩T (B−T A)(x) =

> (0, JS(νB(x), νA(x))) = 0, and from Equation (11)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− 0},min{1, 1− JS(νB(x), νA(x))}) ,

= S (I>(µA(x), µB(x)), 1− JS(νB(x), νA(x))) .

Other possible cases are:

Case iii: If µA(x) ≤ µB(x) and νA(x) ≥ νB(x), then from Equation (10) µ(A−T B)∩T (B−T A)(x) =

> (0, JS(νB(x), νA(x))) = 0, and from Equation (11)

ν(A−T B)∩T (B−T A)(x) = S (min{1, 1− 0},min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) ,

= S (1,min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) = 1.

Case iv: If µA(x) ≥ µB(x) and νA(x) ≤ νB(x), then from Equation (10) µ(A−T B)∩T (B−T A)(x) =

> (JS(νA(x), νB(x)), 0) = 0, and from Equation (11)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))},min{1, 1− 0}) ,

= S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}, 1) = 1.

So, we have established the result 1.

2. If T is Lukasiewicz IF-t-norm, then T = TL = (>L, SL). Since from the result in 1 above,
we have the membership function µ(A−T B)∩T (B−T A)(x) = 0, ∀x ∈ X , then from Equation
(9) it suffices to prove that the non-membership function, ν(A−T B)∩T (B−T A)(x) = 1, ∀x ∈
X , for the first two cases in (9). From Equation (11),

i If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), we obtain by applying Proposition 9 and
Example 8,

ν(A−T B)∩T (B−T A)(x) = min (1− JSL
(νA(x), νB(x)) + I>L

(µB(x), µA(x)), 1) ,

= 1, if µA(x) = µB(x) or νA(x) = νB(x).

If µA(x) < µB(x) and νA(x) < νB(x), then we have

ν(A−T B)∩T (B−T A)(x) = min (1− νB(x) + νA(x) + 1− µB(x) + µA(x), 1) ,

= min (2− (µB(x) + νB(x)) + µA(x) + νA(x), 1) = 1, since µB(x) + νB(x) ≤ 1.

ii If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), we obtain by applying Proposition 9 and
Example 8,

ν(A−T B)∩T (B−T A)(x) = min (I>L
(µA(x), µB(x)) + 1− JSL

(νB(x), νA(x)), 1) ,

= 1, if µA(x) = µB(x) or νA(x) = νB(x).

If µA(x) > µB(x) and νA(x) > νB(x), then we have

ν(A−T B)∩T (B−T A)(x) = min (1− µA(x) + µB(x) + 1− νA(x) + νB(x), 1) ,

= min (2− (µA(x) + νA(x)) + µB(x) + νB(x), 1) = 1, since µA(x) + νA(x) ≤ 1.
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So
(
µ(A−T B)∩T (B−T A)(x), ν(A−T B)∩T (B−T A)(x)

)
= (0, 1), for all x ∈ X. Hence result 2

is established.

Remark 1. 1. Note that, (A − T B) ∩T (B − T A) = ∅ whenever either A ⊆ B or B ⊆ A.
This follows immediately from the third case in Equation (9).

2. Proposition 2 specifies conditions which are preserved by the intuitionistic fuzzy difference
operation. These four conditions shall be referred to as the minimal conditions to require
of difference operation on (even in crisp, fuzzy and intuitionistic) sets in general.

The following result gives a necessary and sufficient condition for difference of intuitionistic
fuzzy sets to be a fuzzy set.

Proposition 4. Let A and B be any intuitionistic fuzzy sets defined on X. Then the intuitionistic
fuzzy difference A − T B is a fuzzy set if and only if for all x ∈ X,

I> (µA(x), µB(x)) ≥ 1− JS (νA(x), νB(x)) .

Proof. Let x ∈ X. Then from the Definition 8,

(µA−T B(x), νA−T B(x)) = (JS(νA(x), νB(x)),min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}) .

A − T B is a fuzzy set if and only if νA−T B(x) = 1− µA−T B(x),

if and only if

min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))} = 1− JS(νA(x), νB(x)),

if and only if I>(µA(x), µB(x)) ≥ 1− JS(νA(x), νB(x)).

Note that A − T B also becomes a fuzzy set if A ⊂ B, because in this case A − T B = ∅
(Proposition 2), I>(µA(x), µB(x) = 1 and JS(νA(x), νB(x)) = 0. Furthermore, in the case where
A − T B becomes a fuzzy set, we deduce from Proposition 4 that for

x ∈ X : (µA−T B(x), νA−T B(x)) = (JS(νA(x), νB(x)), 1− JS(νA(x), νB(x))) .

This can be considered as fuzzy part of A − T B.
The following are typical applications of Proposition 4 to difference operators associated with

the three usual and well-known T .

Example 5. For any intuitionistic fuzzy sets A and B defined on X ,

1. The difference operation associated with TM is given by, for all x ∈ X

(
µA−TM B(x), νA−TM B(x)

)
=





(νB(x), µB(x)) , Intuitionistic Fuzzy Part

(νB(x), 1− νB(x)) , Fuzzy Part.
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2. The difference operation associated with TP is given by, for all x ∈ X

(
µA−TP B(x), νA−TP B(x)

)
=





(
νB(x)−νA(x)

1−νA(x)
, µB(x)
µA(x)

)
, Intuitionistic Fuzzy Part(

νB(x)−νA(x)
1−νA(x)

, 1−νB(x)
1−νA(x)

)
, Fuzzy Part.

3. The difference operation associated with TL is given by, for all x ∈ X

(
µA−TL B(x), νA−TL B(x)

)
=





(νB(x)− νA(x), 1− µA(x) + µB(x)) , Intuitionistic Fuzzy

(νB(x)− νA(x), 1 + νA(x)− νB(x)) , Fuzzy Part.

Notation 1. Let A and B be any fuzzy sets, A ≡ B if and only if for all x ∈ X, µA(x) = µB(x).

The following result shows that the intuitionistic fuzzy difference operator defined in Defini-
tion 8 associated with t-representable IF t-norm T = (>, S) is a generalization of fuzzy difference
operator proposed by Fono et al. [10] associated with a t-norm > if and only if the fuzzy t-norm
> and fuzzy t-conorm S are dual.

Proposition 5 (Generalization of Difference Operation for Fuzzy Sets). Let > and S be any t-
norm and t-conorm respectively, and T = (>, S) be a t-representable IF t-norm associated with
any intuitionistic fuzzy set. > and S are dual if and only if for any fuzzy sets A and B, A−T B is
a fuzzy set and A−> B ≡ A−T B.

Proof. Let x ∈ X, and A and B be any fuzzy sets.

a. Assume that > and S are dual.

i. Let us show that A−T B is a fuzzy set.
Since > and S are dual, then From Proposition 10, I>(µA(x), µB(x)) = 1 − JS(1 −
µA(x), 1− µB(x)) and from Proposition 4, the result follows.

ii. Now we shall show that, A −> B ≡ A −T B. It is sufficient to prove that µA−>B(x) =

µA−T B(x).

According to Fono and al. [10], µA−>B(x) = 1− I>(µA(x), µB(x)) and from Definition
8 µA−T B(x) = JS(1− µA(x), 1− µB(x)).

Since > and S are dual, the Proposition 10 shows that, I>(µA(x), µB(x)) = 1 − JS(1 −
µA(x), 1− µB(x)) and the result follows.

b. Assume now that A −T B is a fuzzy set and A −> B ≡ A −T B. Let us show that > and S
are dual.
We have,

µA−>B(x) = 1− I>(µA(x), µB(x))

= 1−max{t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}
= min{1− t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}
= min{1− t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}, (12)
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and

µA−T B(x) = JS(1− µA(x), 1− µB(x))

= min{r ∈ [0; 1], S(1− µA(x), r) ≥ 1− µB(x)}
= min{1− t ∈ [0; 1], S(1− µA(x), 1− t) ≥ 1− µB(x)}
= min{1− t ∈ [0; 1], 1− S(1− µA(x), 1− t) ≤ µB(x)} (13)

Since A −> B ≡ A −T B then, µA−>B(x) = µA−T B(x). From Equations (12) and (13)
>(µA(x), t) = 1− S(1− µA(x), 1− t), ∀t ∈ [0; 1] and the result follows.

In the following, we define a new symmetric difference operation for intuitionistic fuzzy sets
based on the IF-R-implication and IF-co-implication and we study its properties.

3.2 Definitions and properties of symmetric difference operations

The idea for the new definition is derived from the classical formula for symmetric difference and
the operations of union and intersection alongside with the proposed difference for intuitionistic
fuzzy sets in Section 3.

Definition 9. Let A, B be any two intuitionistic fuzzy sets defined on X . The intuitionistic fuzzy
symmetric difference associated to T of A and B is the intuitionistic fuzzy set on X denoted by
A M T B and defined by the membership and non-membership degrees as follows:

For all x ∈ X ,

µAMT B(x) = JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)), (14)

νAMT B(x) = min{I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)),

1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x))}.

In what follows, we establish some results showing that some properties of the classical set
symmetric difference are preserved by this new proposed intuitionistic fuzzy symmetric differ-
ence operation.

Proposition 6 (Properties of Intuitionistic Fuzzy Symmetric Difference Operation). Let A,B be
any intuitionistic fuzzy sets on X . The following properties for intuitionistic fuzzy symmetric
difference operation hold:

1. A M T B = (A − T B) ∪ (B − T A);

2. A M T B = B M T A;

3. If A ⊆ B, then A M T B = B − T A;

4. A M T A = ∅.
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Proof. 1. The following are properties for fuzzy-R-implication, I> and fuzzy co-implication,
JS which we require here:

I>(a ∨ b, c) = I>(a, c) ∧ I>(b, c), and JS(a ∨ b, c) = JS(a, c) ∧ JS(b, c);

I>(a ∧ b, c) = I>(a, c) ∨ I>(b, c), and JS(a ∧ b, c) = JS(a, c) ∨ JS(b, c);

I>(a, b ∨ c) = I>(a, b) ∨ I>(a, c), and JS(a, b ∨ c) = JS(a, b) ∨ JS(a, c);

I>(a, b ∧ c) = I>(a, b) ∧ I>(a, c), and JS(a, b ∧ c) = JS(a, b) ∧ JS(a, c).

These can easily be verified.
Now, we proceed to prove 1 and 2 consequently as follows: From Equation (14) and apply-
ing above properties of I> and JS we have, for all x ∈ X

(µAMT B(x), νAMT B(x)) = (JS(νA(x) ∧ νB(x), νA(x)) ∨ JS(νA(x) ∧ νB(x), νB(x)) ,

min{I>(µA(x) ∨ µB(x), µA(x)) ∧ I>(µA(x) ∨ µB(x), µB(x)) ,

1− JS(νA(x) ∧ νB(x), νA(x)) ∨ JS(νA(x) ∧ νB(x), νB(x))}) .
So we have

µAMT B(x) = (JS(νA(x), νA(x)) ∨ JS(νB(x), νA(x)))∨(JS(νA(x), νB(x)) ∨ JS(νB(x), νB(x))) ,

νAMT B(x) = min{(I>(µA(x), µA(x)) ∧ I>(µB(x), µA(x))} ∧ {I>(µA(x), µB(x))

∧I>(µB(x), µB(x))) , 1− (JS(νA(x), νA(x)) ∨ JS(νB(x), νA(x))}
∨{JS(νA(x), νB(x)) ∨ JS(νB(x), νB(x)))},

and applying Proposition 9 we have the following:

µAMT B(x) = JS(νB(x), νA(x)) ∨ JS(νA(x), νB(x)),

= JS(νA(x), νB(x)) ∨ JS(νB(x), νA(x)), (15)

= µA−T B(x) ∨ µB−T A(x),

= µ(A−T B)∪(B−T A)(x).

νAMT B(x) =
min{I>(µB(x), µA(x)) ∧ I>(µA(x), µB(x)),

1− JS(νB(x), νA(x)) ∨ JS(νA(x), νB(x))}

=
min{I>(µA(x), µB(x)) ∧ I>(µB(x), µA(x)),

1− JS(νA(x), νB(x)) ∨ JS(νB(x), νA(x))}
(16)

=
min{I>(µA(x), µB(x)) ∧ (1− JS(νA(x), νB(x))),

I>(µB(x), µA(x)) ∧ (1− JS(νB(x), νA(x)))}

= νA−T B(x) ∧ νB−T A(x)

= ν(A−T B)∪(B−T A)(x).

So, result 1 is established.
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2. By commutativity of Equations (15) and (16), result 2 follows, since
A M T B = (A − T B) ∪ (B − T A) = (B − T A) ∪ (A − T B) = B M T A.

3. If A ⊆ B, then for all x ∈ X , µA(x) ≤ µB(x) and νA(x) ≥ νB(x).
Applying the above inequalities to the Equation (14), we get

(µAMT B(x), νAMT B(x)) = (JS(νB(x), νA(x)),min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) ,
= (µB−T A(x), νB−T A(x)) ,

and the result follows.

4. By Equation (14) we have, for all x ∈ X

µAMT A(x) = JS(νA(x) ∧ νA(x), νA(x) ∨ νA(x))

= JS(νA(x), νA(x)) = 0.

νAMT A(x) = min{I>(µA(x) ∨ µA(x), µA(x) ∧ µA(x)), 1− JS(νA(x) ∧ νA(x), νA(x) ∨ νA(x))}
= min{I>(µA(x), µA(x)), 1− JS(νA(x), νA(x))}
= min{1, 1} = 1.

So the result is established.

The following are typical examples of symmetric difference operators associated with the
three usual and well-known T .

Example 6. For any two intuitionistic fuzzy sets A and B defined on X ,

1. The symmetric difference operator associated with TM is given by, for all x ∈ X

µAMTM B(x) =





0, if (µA(x), νA(x)) = (µB(x), νB(x))

νB(x) ∨ νA(x), if (µA(x), νA(x)) 6= (µB(x), νB(x)),

νAMTM B(x) =





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min{min{µB(x), 1− νB(x)},min{µA(x), 1− νA(x)}},
if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min{µA(x) ∧ µB(x), 1− νA(x) ∨ νB(x)}, if (µA(x), νA(x)) 6= (µB(x), νB(x)).

2. The symmetric difference operator associated with TP is given by, for all x ∈ X

µAMTP B(x) =





0, if (µA(x), νA(x)) = (µB(x), νB(x))

max
{
νB(x)−νA(x)

1−νA(x)
, νA(x)−νB(x)

1−νB(x)

}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)),
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=





0, if (µA(x), νA(x)) = (µB(x), νB(x))
(νA(x)−νB(x))∨(νB(x)−νA(x))

(1−νA(x))∧(1−νB(x))
, if (µA(x), νA(x)) 6= (µB(x), νB(x)),

νAMTP B(x) =





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{

min
{µB(x)
µA(x)

, µA(x)
µB(x)

}
, 1−max

{νB(x)−νA(x)
1−νA(x)

, νA(x)−νB(x)
1−νB(x)

}}
,

if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{
µA(x)∧µB(x)
µA(x)∨µB(x)

, 1− (νA(x)−νB(x))∨(νB(x)−νA(x))
(1−νA(x))∧(1−νB(x))

}
,

if (µA(x), νA(x)) 6= (µB(x), νB(x)).

3. The symmetric difference operator associated with TL is given by, for all x ∈ X

µAMTL B(x) =





0, if (µA(x), νA(x)) = (µB(x), νB(x))

(νA(x)− νB(x)) ∨ (νB(x)− νA(x)), if (µA(x), νA(x)) 6= (µB(x), νB(x)),

νAMTL B(x) =





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{

min{1− µA(x) + µB(x), 1 + νA(x)− νB(x)},
min{1− µB(x) + µA(x), 1 + νB(x)− νA(x)}

}
,

if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=





1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{

1− (µA(x)− µB(x)) ∨ (µB(x)− µA(x)),

1− (νA(x)− νB(x)) ∨ (νB(x)− νA(x))
}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)).

The following result shows that, the intuitionistic fuzzy symmetric difference operator in Def-
inition 9 associated with t-representable IF t-norm T = (>, S) is a generalization of fuzzy sym-
metric difference operator proposed by Fono et al. [10] associated with a t-norm > if and only if
the fuzzy t-norm > and fuzzy t-conorm S are dual.

Proposition 7 (Generalization of Symmetric Difference Operation for Fuzzy Sets). Let > and
S be any t-norm and t-conorm, respectively, and T = (>, S) be a t-representable IF t-norm
associated with any intuitionistic fuzzy set. > and S are dual if and only if for any fuzzy sets C
and D, C M T D is a fuzzy set and C M >D ≡ C M T D.

Proof. Let x ∈ X, and C and D be any fuzzy sets.

a. Assume that > and S are dual.

i. Let us show that C M T D is a fuzzy set.
Since C and D are fuzzy sets (1− µC(x) = νC(x) and 1− µD(x) = νD(x)) , and > and
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S are dual, then from Proposition 10,

I>(µC(x) ∨ µD(x), µC(x) ∧ µD(x)) = 1− JS(1− µC(x) ∨ µD(x), 1− µC(x) ∧ µD(x))

= 1− JS((1− µC(x)) ∧ (1− µD(x)), (1− µC(x)) ∨ (1− µD(x)))

= 1− JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x)).(17)

From Definition 9, the result follows.

ii. Now we shall show that, C M >D ≡ C M T D. It is sufficient to prove that µCM>D(x) =

µC MT D(x).

Definition 7 and Definition 9 show that,

µ
C

i
M
>
D

(x) = µ
C∪D

i
−
>
C∩D

(x) =





1− I1> (µC(x) ∨ µD(x), µC(x) ∧ µD(x)) , if i = 1

1− I2> (µC(x) ∨ µD(x), µC(x) ∧ µD(x)) , if i = 2,

and µC MT D(x) = JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x)).

From Equation (17), the result follows.

b. Assume now that C M T D is a fuzzy set and C M >D ≡ C M T D.
Let us show that > and S are dual.
We have,

µCM>D(x) = 1− I>(µC(x) ∨ µD(x), µC(x) ∧ µD(x))

= 1−max{t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)}
= min{1− t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)}
= min{1− t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)}, (18)

and

µC MT D(x) = JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x))

= min{r ∈ [0; 1], S(νC(x) ∧ νD(x), r) ≥ νC(x) ∨ νD(x)}
= min{1− t ∈ [0; 1], S(1− µC(x) ∨ µD(x), 1− t) ≥ 1− µC(x) ∧ µD(x)}

= min{1− t ∈ [0; 1], 1− S(1− µC(x) ∨ µD(x), 1− t) ≤ µC(x) ∧ µD(x)}. (19)

Since C M >D ≡ C M T D then, µCM>D(x) = µC MT D(x). From Equation (18) and (19),
>(µC(x) ∨ µD(x), t) = 1− S(1− µC(x) ∨ µD(x), 1− t), ∀t ∈ [0; 1], and the result follows.

In the following Subsection, we investigate some properties of cardinality for intuitionistic
fuzzy set difference and symmetric difference. For that, throughout this Subsection, the universal
set X is finite.

134



3.3 Some cardinality properties of difference
and symmetric difference for IFSs

We recall the definition and some results on intuitionistic fuzzy cardinality in what follows.

Definition 10 (Cardinality of Intuitionistic Fuzzy Set [19]). Let A be an intuitionistic fuzzy set on
X . The cardinality of A denoted by Σ count(A) is given by

Σ count(A) = Card(A) =

(
n∑

i=1

µA(xi),
n∑

i=1

1− νA(xi)

)
. (20)

One of the properties of this cardinality operation is given here [See Property of Σ count [19]
]: Let A and B be any two intuitionistic fuzzy sets on X . Then

Σ count(A ∪B) + Σ count(A ∩B) = Σ count(A) + Σ count(B). (21)

In what follows, we establish a cardinality property that is satisfied by the intuitionistic fuzzy
difference and symmetric difference proposed.

Proposition 8. Let A,B,C be any intuitionistic fuzzy sets on X . The following property holds:

Card(A MT B) ≤L∗ Card(A−T B) + Card(B −T A).

Proof. Recall from Proposition 6, we have A M T B = (A − T B)∪ (B − T A) and by Equation
(21) we obtain

Card(A MT B) = Card(A−T B) + Card(B −T A)− Card ((A−T B) ∩ (B −T A)) . (22)

Since by Proposition 3 we have (A − T B) ∩T (B − T A) 6= ∅ in general, then we have

Card ((A − T B) ∩ (B − T A)) ≥L∗ 0L∗ . (23)

Putting Equation (23) into (22) we obtain the required result.

4 Conclusion

In this study, we have proposed new difference and symmetric difference operations for intu-
itionistic fuzzy sets by means of intuitionistic fuzzy R-implications. We have also constructed
some examples of difference and symmetric operations associated to the well-known intuition-
istic fuzzy t-norms (minimum TM , product TP and Łukasiewicz TL) and established conditions
under which these operations yield the same results for fuzzy cases as obtained by Fono et al. [10].

We further established that the intuitionistic fuzzy difference operation preserves four prop-
erties out of five, which we referred to as the four minimal conditions to require of a difference
operation on sets in general (even in crisp, fuzzy and intuitionistic fuzzy cases). We investigated
and established some sufficient conditions under which the fifth property is satisfied. Meanwhile,
we established that the intuitionistic fuzzy symmetric difference operation proposed preserves the
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properties of symmetric difference operations for crisp sets and fuzzy sets. We established out of
many, one cardinality property that is satisfied by these operations.

The results of Proposition 3 have shown that the property, (A − T B) ∩T (B − T A) = ∅ do
not hold true in general case for the difference operation for intuitionistic fuzzy sets proposed.
The open problem will be to determine all intuitionistic fuzzy-t-norms under which the difference
operation, so defined, preserves this property. We have not studied here, other cardinality prop-
erties and the cardinality-based measures of comparison for intuitionistic fuzzy sets by means of
these new difference and symmetric difference operations for intuitionistic fuzzy sets proposed.
This area is opened for further research studies.
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Appendix on Fuzzy Operators and Fuzzy Operations

Fuzzy Sets and Fuzzy Operators

Definition 11. 1. A fuzzy set B on X is defined by:
B = {(x, µB(x)) | µB(x) ∈ [0, 1], ∀x ∈ X} where µB(x) is the degree of membership of
x in B.

2. A fuzzy triangular-norm (fuzzy t-norm) is a binary operation > : [0, 1] × [0, 1] −→ [0, 1]

such that for any x ∈ [0, 1],>(x, 1) = x and> satisfies commutativity (∀a, b ∈ [0, 1], >(a, b) =

>(b, a)), monotonicity (increasing) (∀a, b, c, d ∈ [0, 1], if a ≤ b and c ≤ d, then >(a, c) ≤ >(b, d))
and associativity (∀a, b, c,∈ [0, 1], >(a,>(b, c) = >(>(a, b), c)).

3. A fuzzy t-conorm is a binary operation S : [0, 1] × [0, 1] −→ [0, 1] such that for any
x ∈ [0, 1], S(x, 0) = x and S satisfies commutativity, monotonicity (increasing) and asso-
ciativity.

4. A fuzzy negation N is a non-increasing mapping N : [0, 1] −→ [0, 1] with N(0) = 1 and
N(1) = 0. If N(N(x)) = x, ∀x ∈ [0, 1] (i.e. N satisfies the involutive property), then N is
called strong fuzzy negation.

5. The dual of a fuzzy t-norm> is a fuzzy t-conorm S, such that, for all a, b ∈ [0, 1], >(a, b) =

1− S(1− a, 1− b).

6. A fuzzy R-implicator, I> associated to a t-norm> is an operator I> : [0, 1]×[0, 1] −→ [0, 1]

defined for all a, b ∈ [0, 1] by I>(a, b) = max{t ∈ [0, 1] | >(a, t) ≤ b}.
When> is left continued, we defined the residual implicator I1>, the symetric contraposition
implicator I2>, the QL−implicator I3> and the S−implicator I4> as follows: for all x, y ∈
[o, 1], I1>(x, y) = max{t ∈ [0, 1], >(x, t) ≤ y}; I2>(x, y) = 1−min{t ∈ [0, 1], S(y, t) ≥
x}; I3>(x, y) = S(n(x),>(x, y)) and I4>(x, y) = S(n(x), y).

7. A fuzzy co-implicator, JS associated to S is an operator JS : [0, 1]× [0, 1] −→ [0, 1] defined
for all a, b ∈ [0, 1] by JS(a, b) = min{r ∈ [0, 1] | b ≤ S(a, r)}.

We will require the following useful results to establish the proofs of some basic findings in
this research work.

Proposition 9 (See [10–13]). For all a, b, c ∈ [0, 1],

1. I>(a, a) = 1; JS(a, a) = 0; JS(a, b) ≤ b ≤ I>(a, b) and I>(1, a) = a = JS(0, a);

2. b < a⇐⇒ (I>(a, b) < 1 or JS(b, a) > 0);

3. a ≤ b⇒




I>(b, c) ≤ I>(a, c),

I>(c, a) ≤ I>(c, b).
and a ≤ b⇒




JS(b, c) ≤ JS(a, c),

JS(c, a) ≤ JS(c, b).

Thus I> and JS are left decreasing and right increasing operators.
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Proposition 10 (see [13]). Let S and > be such that, for all a, b ∈ [0, 1], >(a, b) ≤ 1 − S(1 −
a, 1− b). Then

i. for all a, b ∈ [0, 1], I>(a, b) ≥ 1− JS(1− a, 1− b);

ii. if > and S are dual, then for all a, b ∈ [0, 1], I>(a, b) = 1− JS(1− a, 1− b).

The following examples of fuzzy t-norms and fuzzy t-conorms belonging to a family called
Frank t-norms and Frank t-conorms will commonly be referred to in this study (see [10, 13]):

Example 7. The Frank t-norms
(
>lF
)
l∈[0,+∞]

such that, for all a, b ∈ [0, 1],

>lF (a, b) =





>M(a, b) = min(a, b), if l = 0,

>P (a, b) = ab, if l = 1,

>L(a, b) = max(a+ b− 1, 0), if l = +∞,
logl

(
1 + (la−1)(lb−1)

l−1

)
, otherwise,

(24)

where >M ,>P ,>L are the minimum, product and Lukasiewicz fuzzy t-norms, respectively. The
Frank t-conorms

(
SlF
)
l∈[0,+∞]

such that, for all a, b ∈ [0, 1],

SlF (a, b) =





SM(a, b) = max(a, b), if l = 0,

SP (a, b) = a+ b− ab, if l = 1,

SL(a, b) = min(a+ b, 1), if l = +∞,
1− logl

(
1 + (l1−a−1)(l1−b−1)

l−1

)
, otherwise,

(25)

where SM , SP , SL are the maximum, probabilistic sum and Lukasiewicz fuzzy t-conorms, respec-
tively (see [9, 10, 13, 16, 17]). .

The following are examples of fuzzy R-implications and fuzzy co-implications associated
with Frank t-norms and Frank t-conorms respectively.

Example 8. [10, 13, 17]: for all a, b ∈ [0, 1]:

1. Fuzzy R-implication and fuzzy co-implication associated with >M and SM are respectively
given by

I>M
(a, b) =





1, if a ≤ b,

b, if a > b.

and

JSM
(a, b) =




b, if a < b,

0, if a ≥ b.

2. Fuzzy R-implication and fuzzy co-implication associated with >P and SP are respectively
given by

I>P
(a, b) =





1, if a ≤ b,

b
a
, if a > b.
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and

JSP
(a, b) =





b−a
1−a , if a < b,

0, if a ≥ b.

3. Fuzzy R-implication and fuzzy co-implication associated with >L and SL are respectively
given by

I>L
(a, b) =





1, if a ≤ b,

1− a+ b, if a > b.

and

JSL
(a, b) =




b− a, if a < b,

0, if a ≥ b.

4. Fuzzy R-implication and fuzzy co-implication associated with>lF and SlF for all l ∈ (0, 1)∪
(1,+∞) are respectively given by

I>l
F

(a, b) =





1, if a ≤ b,

logl

(
1 + (l−1)(lb−1)

la−1

)
, if a > b.

and

JSL
(a, b) =





1− logl

(
1 + (l−1)(l1−b−1)

l1−a−1

)
, if a < b,

0, if a ≥ b.

Fuzzy Operations of Fuzzy Sets

Definition 12. Let A and B be any two fuzzy sets defined on X . The following operations are
defined by associated membership function as follows:

i) Inclusion: A ⊆ B if and only, µA(x) ≤ µB(x), ∀x ∈ X;

ii) Intersection: A ∩B is defined by: µA∩B(x) = µA(x) ∧ µB(x), ∀x ∈ X;

iii) Union: A ∪B is defined by: µA∪B(x) = µA(x) ∨ µB(x), ∀x ∈ X;

iv) Complement: Ac is defined by: µAc(x) = 1− µA(x), ∀x ∈ X.
Where ∨ and ∧ are max and min respectively.
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