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Abstract

This thesis proposes a theoretical approach to explore the effects of the competition between

multi-photon absorption, group-velocity dispersion and electron-hole radiative recombination

processes, on the laser beam dynamics (i.e. continuous-wave and femtosecond regimes) and

stability (spot) during inscription on amorphous silica glass. The study rests on a model con-

sisting of a K-order nonlinear complex Ginzburg-Landau equation, coupled with a Drude-type

equation for the electron plasma density. In this goal, the modulational instability analysis

combined with the dynamical approach was used to explore all the possible operation regimes

inherent to the stability of the model. For the modulational instability analysis, we have

considered a single input laser intensity in the continuous wave regime then we started the

analysis from an input field in the steady state, and followed its stability when coupling a

small perturbation with the laser amplitude as it propagates in an anisotropic transparent

amorphous silica glass. An analysis of the stability of continuous-waves regime, following the

modulational-instability theory, reveals that, in the absence of electron-hole radiative recom-

bination, the competing effects of Kerr nonlinearity and K-photon absorptions can stabilize

or destabilize the continuous wave laser beam during the inscription process. However, in the

presence of electron-hole radiative recombination, our analysis of stability of continuous-waves

regime, following the modulational-instability, suggests that the competitions between multi-

photon absorption and radiative recombination processes can be detrimental or favorable to

continuous-wave laser stability, depending on the group-velocity dispersion of amorphous silica

glass. In the full nonlinear dynamical regime, we have chosen a specific ansatz (to represent

a femtosecond laser) that we introduced in the model and this allows us to transform the

system of model equations into a system of four equations of first order (ODE’s) for which

we examined its singular solutions by exploring the possible fixed points, as a function of the

multi-photon absorption rate K. Then, we proceeded numerically to solve the system of four

equations of first order ordinary differential equation (ODE’s), using a fourth-order Runge-

Kutta algorithm. Numerical simulations of the full nonlinear regime reveal the existence of

the stable pulse trains for which the amplitudes are increased by the radiative recombination

processes. From these last results, we were able to derive the femtosecond laser beam spot
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diameter dspot = 50µm that could allow to obtain a fine engraving on amorphous silica glass.

Keywords: Laser Inscription, Engraving, Multi-photon Absorptions, Avalanche

Ionization, Plasma Generation, Radiative Recombination, Modulational-Instability,

Continuous Waves Laser, Femtosecond laser, Pulse train, Amorphous Silica.
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Résumé

Cette thèse propose une étude théorique pour explorer les effets compétitifs entre l’absorption

multi-photonique, la dispersion de la vitesse de groupe, et les processus de recombinaison ra-

diative électron-trou, sur la dynamique et la stabilité du faisceau laser continu et femtoseconde

(spot) lors de l’inscription sur un verre de silice amorphe. L’étude repose sur un modèle con-

sistant en une équation de Ginzburg-Landau complexe non linéaire d’ordre K, couplée à une

équation de type Drude, decrivant l’evolution temporelle de la densité du plasma d’électrons

genéré dans la silice amorphe. Dans cette optique, l’analyse de l’instabilité modulationnelle

combinée à l’approche dynamique a été utilisée pour explorer tous les régimes d’opération

possibles inhérents à la stabilité du modèle. Pour la technique d’analyse de l’instabilité mod-

ulationnelle, nous avons considéré une intensité laser d’entrée en régime d’onde continue, puis

nous avons commencé l’analyse part un champ d’entrée en régime permanent, et nous avons

suivi sa stabilité en couplant une petite perturbation sur l’amplitude du faisceau laser continu

lorsqu’il se propage dans le verre de silice amorphe optiquement anisotrope. Une analyse de la

stabilité du faisceau laser en mode continue, suivant la théorie de l’instabilité modulationnelle,

révèle qu’en l’absence de recombinaison radiative électron-trou, les effets compétitifs de la non-

linéarité Kerr et de l’absorptions multi-photonique peuvent stabiliser ou déstabiliser le faisceau

laser continue pendant le processus d’inscription. Cependant, en présence d’une recombinaison

radiative électron-trou, notre analyse de la stabilité en mode continue, au moyen de l’instabilité

modulationnelle, suggère que la compétition entre les processus d’absorption multi-photonique

et de recombinaison radiative peut être préjudiciable ou favorable à la stabilité en régime con-

tinue, selon la dispersion de la vitesse de groupe dans le verre de silice amorphe. Dans le régime

dynamique complètement non linéaire, nous avons choisi une solution spécifique (pour repre-

senté un laser femtoseconde) que nous avons introduite dans le modèle et cela nous a permis

de transformer le système d’équations du modèle en un système de quatre équations differen-

tielle linéaire du premier ordre (EDO) pour lequel nous avons examiné ses solutions singulières

en explorant les points fixes possibles, en fonction du taux d’absorption multi-photonique K.

Ensuite, nous avons résolu numériquement le système de quatre équations (EDO) du premier

ordre, en utilisant l’algorithme de Runge-Kutta d’ordre quatre. Les simulations numériques
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du régime complètement non linéaire révèlent l’existence des trains d’ondes stables dont les

amplitudes sont augmentées par la recombinaison radiative. À partir de ces derniers résultats,

nous avons pu déterminer le diamètre du spot laser femtoseconde dspot = 50µm sur la surface

du verre de silice amorphe qui permettrait d’obtenir une gravure fine.

Mots-clés : Inscription laser, Gravure, Absorption multi-photon, Ionisation

par avalanche, Génération de plasma, Recombinaison radiative, Instabilité mod-

ulationnelle, Laser à ondes continues, Laser femtoseconde, Train d’ondes, Silice

amorphe.
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General Introduction

Laser inscription nowadays offers one of the most reliable and easily portable tools in a broad

range of modern industrial material processing [1, 2]. Applications extend from accurate man-

ufacturing of electronic devices to fine engraving and machining of hard metals, ceramics and

soft plastics into various micro textures for improvement of functions and properties of end

products [3, 4]. In these applications laser beam focused on a dielectric medium is absorbed via

nonlinear photo-ionization mechanisms [5, 6], leading to a permanent modification of material

structure at scales of the order of nanometers. In the specific context of transparent materials

[7, 6], at low pulse powers, the modification will be a smooth refractive index change which can

be exploited advantageously in the fabrication of photonic devices [3, 8]. However, at higher

pulse powers, the modification gives rise to more complex processes such as birefringences,

periodic nanoplanes aligning themselves orthogonally to the laser polarization to form peri-

odic nanogratings, change in the electronic structure due to electron and hole productions from

charge ionization with the generation of electron plasma, electron-hole radiative recombination

processes [3, 6, 8], etc..

Although, laser inscription on transparent materials, usually relies on three main factors,

namely the characteristic laser parameters (i.e. the laser power, pulse duration, pulse repetition

rate and laser beam spot size), characteristic properties of host materials (e.g. their absorption,

reflection, transmission, chromatic dispersions, optical nonlinearities or self-focusing conditions

etc.), and the relative importance of physical processes such as the electron plasma generation,

multiphoton absorption, and electron-hole radiative recombination. These factors (laser and

medium) act in conjunction to impose the regime of laser operation, in particular their compe-

tition determines the laser stability in a specific operation regime. Indeed, in accordance with

the fineness required at the end of an inscription, optical fields used in laser material processing

can be operated in two different regimes [3, 9, 8], namely: continuous-wave (cw) regime, and

pulsed regime [9]. Laser operating in pulsed regime can allow inscription with high resolution

in depth and therefore offer a rich potential for applications in drilling [3], cutting [10], welding

[11, 12], ablation [11], material surface texturing and scripting [11, 12]. Of the class of pulsed

lasers, we remark that besides their short duration and high powers, femtosecond laser have

1 KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics



GENERAL INTRODUCTION 2/138

been most attractive owing to their minimal thermal drawbacks [13, 14]. Indeed femtosecond

laser are able to accumulate heat such as to minimize defect-induced damages, as a matter of

fact this heat accumulation prevents undesired physical casualties as for instance the forma-

tion of microcracks, material bending, etc. [15], notably during laser engraving/or marking

transparent glasses [16, 17]. Furthermore, femtosecond laser are highly attractive in modern

laser processing technologies [18, 19], with possibility of applications in optical waveguide fab-

rications, direct laser writing on optical discs, lasers marking and engraving on transparent

materials [20].

Theoretical considerations of femtosecond laser inscription on transparent materials

have attracted only little attention in the study of laser machining processes [21, 16, 9]. The

motivation for such considerations rests on a need for a good understanding not only of physical

processes involved in the processes, but also of the implications of the combination of these

physical processes on the aspects like the laser stability in its distinct possible operation regimes

during inscription on transparent material. Indeed, as already mentioned above, a plasma is

formed because of the nonlinear absorption of the laser radiation in transparent material.

However, it is reported that the presence of this plasma leads to a protective shield on the

material’s upper surface [22]. Due to plasma influence, the incident laser energy gradually

decreases as it interacts with the material while the plasma keeps expanding. As a consequence,

there is a transition dynamics of the laser due to its instability. Such a process driven by an

instability-induced dynamical transition of laser can affect namely the shape, size and fineness

of the characters to be engraved on transparent material. In fact, to achieve the desired shape,

size and fineness of the characters to be engraved on the transparent material surface, the laser

beam (spot) should be stable in the inscription processes. Figure 1 is an examples letter ”A”

printed with stable laser beam (left) and unstable laser beam (right).

In this thesis, we propose a theoretical study to investigate the continuous-wave and

femtosecond laser dynamics and stability during inscription on a transparent material with

promising applications in engraving. Before following the ultimate goal of our study, we would

like to underline that transparent material here refers to any material that could manipulate

or modify light properties (e.g. Glasses, lenses, reflecting prisms, mirror, optical fibres etc..).

The transparent material that attracted our attention in the present work is amorphous silica

glass best known as fused silica glass. This material will be well presented in chapter 2.
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Figure 1: Examples letter ”A” printed with laser radiation stable (left) and unstable laser

radiation (right) [23].

However, as already stressed above, for this inscription application, the laser beam spot

must operate in a specific regime as a continuous wave or as a pulsed wave and should be

stable during the materials processing. In general, continuous-wave laser is useful when we do

not want a very fine character, while pulsed waves (i.e. femtosecond laser) are necessary when

we want to have a very fine character on the material. If the laser beam spot is not stable

on the material during the process, then the precision and the fineness of the characters to be

generated on the material will not be achieved. Therefore, if we understand the laser stability

via theoretical model, we can prevent undesired printing errors on amorphous silica glass dur-

ing its inscription. Investigating the stability of laser beam spot is relevant for an optimum

preconditioning for the required quality, precision and fineness in a step of laser inscription

on amorphous silica glass. In this thesis, we address these issues and our investigation will be

based on the theoretical model that will be constructed in chapter 2. In order to achieve our

objective, this thesis will be organized as follows:

In chapter 1, we introduce some basic concepts regarding lasers as well as laser transpar-

ent material-interaction. Then we emphasize on laser inscription process where, we presented

the two methods used in the inscription technology. In addition to this we also defined the

important parameters used in the inscription process. To end this chapter, we presented a

previous work done on lasers marking and engraving.
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In chapter 2, we present the amorphous silica glass structure as well as its different

properties. Then we build the theoretical model dedicated to our study and the chapter end

with the methodology of our work.

In chapter 3, we utilize the theoretical model that we built in chapter 2 to investigate the

continuous-wave and femtosecond laser dynamics and stability during inscription on amorphous

silica glass, taking into account multi-photon absorption, Kerr nonlinearity, plasma generation

and electron-hole radiative recombination processes in the plasma generated.
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Chapter

1
State of the Art on Lasers and Laser

Inscriptions

The objective of this chapter is to introduce some basic concepts regarding lasers as well

as the advantages of using femtosecond laser in the inscription processes. As we are already

stressed in our introduction that a transparent material is any material that could manipulates

or modifying the light properties, then we will be emphasized on the laser inscriptions on

transparent materials in general. In this goal, some previous works done on the lasers marking

and engraving will be presented.

1.1 Overview on laser

1.1.1 Brief historical development of lasers

The word laser is an acronym which stands for light amplification by stimulated emission of

radiation. Actually, laser is a photonic device that produces intense beams of light which

are monochromatic, coherent, and highly collimated. In 1917, Albert Einstein introduced the

theory of stimulated emission. He hypothesized that if a molecule or an atom is in an excited

state, it will give up its energy if acted upon by a quantum of the same energy [24]. Therefore,

this idea permitted Ch.H. Townes, J.P. Gordon and H.J. Zeiger in 1954 to build the very

first maser (microwave amplifier by stimulated emission of radiation) [25, 26]. Then in 1957,

Bloembergen et al. realized the second generation of maser whose device was emitted in the

infrared domain. Just one year (1958) after the maser was performed to generate light in the

infrared range, Schawlow and Townes concluded that it is possible to adapt this device in such

a way that it can generated wave at higher frequency energy, corresponding to a visible domain

[27]. The pioneering works of Townes, Bassov, Schawlow and Prokhorov, permitted Theodore
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Maiman in 1960, to invent the first laser using ruby crystals whose device was emitting optical

radiation with the wavelength 694 nm as shown on figure 1.1 [28]. The same year, Javan,

Figure 1.1: A cross-sectional view of the first Ruby Laser [28].

Bennet and Herriot created a gas laser using He-Ne (helium-neon) as an amplifying medium.

In 1962, Hall invented the first semiconductor laser. Then, in 1966, Sorokin realized the first

dye laser [29].

1.1.2 Basic principles of laser

The laser is a photonic component, based on light amplification by stimulated emission of

radiation. Stimulated emission is an interaction between matter and light, where an already

excited atom will emit two photons, completely identical after the absorption of a second

photon. By multiplying the number of excited atoms in the amplifying medium, a beam of

light is created with identical photons. Lasers emit radiation that is spatially and temporally

coherent. A laser system is the sum of an amplifying medium, resonator and energy pumping

source. The general principle of operation of a laser, illustrated in figure 1.2, can thus be

summarized as follows: we feed a medium with a pumping source, this medium will emit a

laser beam which will be reflected on the mirrors of a resonant cavity. The multiple reflections

of the beam in the cavity participate in the amplification, by stimulated emission, of the beam.
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Figure 1.2: Schematic set up of Laser system [30].

The laser radiation is emitted by the output mirror which is semi-transparent.

1.1.3 The laser beam

Laser is just another source of electromagnetic radiation with very unique properties. For

the best understanding of these properties, we can think about an ordinary source of light

such as a burning candle or the sun. With an ordinary source of light the photon is emitted

by spontaneous emission in all directions. In contrast, laser device emits photons, which are

all concentrated in only one direction and these directivity has a consequence on the output

power. If we take for instance an incandescent lamp (see figure 1.3, left), the power radiates

will be distributed in all direction in the space and for that reason the power measure at a

given point is low. However, for the laser all the power will be concentrated on a very small

surface such that even with a low power laser, the power measured on that small surface will be

considerable. The specific properties that make the difference between an ordinary source of

light and light from the laser source are; monochromaticity, coherence, directionality, spectral

brightness and operation regime (i.e. continuous-wave or pulse regimes). Indeed in continuous-

wave regime, power is provided continuously over a given time while in pulsed regime, power

is delivered in pules of chosen duration over a given time.
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Figure 1.3: Comparison between ordinary light properties and laser light [31].

1.1.4 Different types of lasers and application

The different types of lasers can be classified according to the amplifying media used, gaseous,

liquid and solid state lasers. Gas lasers are pumped using an electric current. The gaseous

amplifying medium is then excited by collision with electrons. Among the most widely used

are excimer lasers, argon lasers and CO2 lasers. These are particularly used in industry for

their high efficiency and allow the materials treatment. As for liquid lasers, more commonly

known as dye lasers, the pumping is optical and uses arc lamps or other lasers, gas or solid

state. These lasers use organic molecules in solvents, which must be changed regularly, and

cover the entire visible spectrum. Finally, solid-state lasers fall into two families, electrically

pumped semiconductor lasers (laser diodes) and optically pumped lasers using crystals or

glasses. Laser diodes are particularly compact and highly efficient lasers that use stimulated

emission to recombine electron-hole pairs in semiconductors that can be of various types (GaN,

AlGaAs, etc.) depending on the desired wavelength, ranging from ultraviolet to near infrared.

These lasers have two major defects: the spatial quality of the beams obtained is poor and it

is not possible to use them in triggered mode. Other solid-state lasers use matrices, crystalline
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or amorphous, doped with ions (Nd3+, Yb3+, Ti3+, etc.) which enable a laser effect to be

obtained. They are optically pumped by other lasers and emit in the red or near infrared.

Lasers are used in various applications such as [32]:

i) In Medicine, lasers are used to destroy kidney stones, to remove tumors successfully,

to remove caries or decayed portion of the teeth, Lasers are used in cancer diagnosis and

therapy.

ii) In Communications, laser light is used in optical fiber communications to send infor-

mation over large distances with low loss, in space communication, radars and satellites.

iii) In Industries, lasers are used to cut glass and quartz, lasers are used for heat treatment

in the automotive industry, for inscription on transparent materials and therefore offer a

rich applications in ablation, marking and engraving.

iV) In Science and Technology, a laser helps in studying the Brownian motion of particles,

lasers are used in computer printers, lasers are used to measure the pollutant gases and

other contaminants of the atmosphere.

V) In spectroscopic lasers are used to characterize the materials. Indeed, figure 1.4 shown

an example of Laser Induced Breakdown Spectroscopy approach where, a nanosecond

laser Nd:YAG is used to identify a potassium, in the matrix Li2CO3.

Progress in laser technology has made possible a wealth of micromachining processing

applications, one of most currently popular ones being related to its use, is laser inscriptions

on transparent material. This application in general rest on fundamental principles of Physics,

particularly the theory of laser-material interactions which involves concepts of light propaga-

tion in materials.

In general, the nature of laser-material interaction in the femtosecond mode is funda-

mentally different from interaction with longer pulses (i.e. cw-lasers and nanosecond lasers)

see for instance figure 1.5. Indeed, L. Rihakova et al. [18] and Sanjay Mishra et al [19], has

investigated on different laser materials processing such as transparent Glass, Silicon, Poly-

mers and Ceramics. They compared different results obtained with different type of lasers (i.e.

nanosecond and femtosecond lasers) in the material processing and come out with the same
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Figure 1.4: identification of a potassium, in the matrix Li2CO3 using LIBS approach.

conclusion that the femtosecond (1fs = 10−15 s) laser was more suitable than the nanosecond

laser for material processing.

Figure 1.5: Comparison of damages produce by CW-laser, ns-laser and ps/fs laser on the

transparent material [31].
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As we have already stressed in our introduction, during the process of laser interaction

with transparent material, the structures of materials are modified by the breaking of chemical

bonds that causes the release of free electrons. These electrons usually form a plasma with

variable density, and their interactions with photons composing the laser lead to relevant

phenomena as for instance multiphoton absorptions, tunneling ionization, avalanche ionization

and radiative recombinations [33]. However, to gain a good understanding of the physics behind

laser inscription processes, it is useful to first understand all those phenomena generated in

the transparent material.

1.2 Laser interaction with transparent material

Laser parameters and material properties have a significant effect on the interaction and there-

fore on the results of inscription. Laser energy, laser stability, repetition rate, laser wavelength,

and pulse duration are several laser parameters that play a role in the absorption of laser pulses

by the optical materials. Specific properties of materials, such as bandgap and thermal prop-

erties determine whether inscription with continuous-wave or femtosecond lasers is possible

and how the resulting structures look and behave. The process by which energy from laser is

absorbed by the material and the mechanisms by which the material responds, are the key to

understand the laser material interaction.

1.2.1 Optical Kerr effect

The optical Kerr effect is a phenomenon in which the refractive index of a material changes

because of an applied high intensity laser beam, and the change in the refractive index is

proportional to the square of the electric field of the laser. The optical Kerr effect is best

observed in materials known as Kerr mediums, centrosymmetric materials (e.g. fused silica).

The optical Kerr effect plays and important role in the laser inscription process. To be more

explicit it allows self-focusing of the laser beam in the material and therefore provides enough

energy density to generate features on the material.

When the material is subjected to high laser intensity, the refractive index of this

material does not depends only on the frequency ν of the radiation propagating through it,

but also on its intensity I. In an instantaneous response medium, the polarization of the
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medium can be developed in increasing power of the electric field [34]:

P1(t) = ε0
(
χ(1)E1(t) + χ(2)E2

1(t) + χ(3)E3
1(t) + ......

)
(1.1)

Note that in this expression E1 is the real field. If we consider a quasi-monochromatic wave of

central frequency ω0 then the real electric field is written as:

E1(r,t) =
1

2

(
E(r,t)e−iω0t + E(r,t)eiω0t

)
. (1.2)

Defined E(r,t) = E(r,t)e−iω0t and Ē(r,t) = E(r,t)eiω0t, (1.3)

and replacing equation (1.3) into (1.2) yields:

E1(r,t) =
1

2

(
E(r,t) + Ē(r,t)

)
(1.4)

In a medium that has an inversion center, it is shown that terms with even powers in the field

cancel each other out [34]. The media that will be considered later falls into this category.

In the spectral domain, this non-linear response corresponds to a source term that will

radiate waves at new frequencies. We retain in what follows only the components at the

frequency ω0. The expression (1.1) is then written:

Pω0 = ε0

(
χ(1)E(t) +

3

4
χ(3)|E(t)|2E(t)

)
= ε0

(
χ(1) +

3

4
χ(3)|E(t)|2

)
E(t) (1.5)

In general, we know that:

Dω0(t) = ε0E(t) + Pω0(t) = εE(t) =⇒ Pω0(t) = (ε− ε0)E(t). (1.6)

Knowning that ε = ε0εr and n2 = εr, equation (1.6) becomes:

Pω0(t) = ε0
(
n2 − 1

)
E(t). (1.7)

Utilizing equations (1.5) and (1.7) we obtain:

n2 − 1 = χ(1) +
3

4
χ(3)|E|2 (1.8)

hence n =

(
1 + χ(1) +

3

4
χ(3)|E|2

) 1
2

(1.9)

KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics

Continuous-Wave and Femtosecond Lasers Inscriptions on Amorphous Silica Glass



1.2. LASER INTERACTION WITH TRANSPARENT MATERIAL 13/138

setting n2
0 = 1 + χ(1), equation (1.9) becomes:

n =

(
n2

0 +
3

4
χ(3)|E|2

) 1
2

(1.10)

= n0

(
1 +

3

4n2
0

χ(3)|E|2
) 1

2

(1.11)

≈ n0

(
1 +

1

2

3

4n2
0

χ(3)|E|2
)

(1.12)

Thus,

n = n0 +
3

8n0

χ(3)|E|2 (1.13)

Let’s look at the meaning of |E|2. In general, the power density in the medium or intensity I

is obtaining by calculating the time average of the Poynting vector < Π >.

I =< Π >=< E1(r,t)×H1(r,t) > (1.14)

where,

E1(r,t) =
1

2

(
E + Ē

)
(1.15)

H1(r,t) =
1

2

(
H + H̄

)
(1.16)

For a plane wave we have the relationship:

H = n0

√
ε0
µ0

E = n0cε0E, since c =
1

√
ε0µ0

(1.17)

Taking equation (1.17) into equation (1.16) reads:

H1(r,t) =
1

2
n0cε0(E + Ē). (1.18)

Introducing equations (1.15) and (1.18) into equation (1.14) yields:

I =
1

4
n0cε0 < (E + Ē)2 > (1.19)

=
1

4
n0cε0 < E2e−2iω0t + E2e2iω0t + 2|E|2 > (1.20)

=
1

2
n0cε0|E|2 =

1

2
n0cε0|E|2 (1.21)

This intensity is often expressed in W/cm2. It follows from equation (1.21) that:

|E|2 =
2I

n0cε0
(1.22)
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Replacing formula (1.22) into equation (1.13), we can then write the refractive index of the

medium in the form:

n =
√

1 + χ(1) +
3χ(3)

4n2
0cε0

I = n0 + n2I (1.23)

with:

n0 =
√

1 + χ(1) and n2 =
3χ(3)

4n2
0cε0

(1.24)

n0 the linear index of refraction is dimensionless while n2 the non-linear index of the middle

is often expressed in cm2/W . This changes in refractive index due to laser intensity is called

the optical Kerr effect by analogy to the classic electro-optical Kerr effect in which the index

of the material changes in proportion to the square of the applied static field. The coefficient

n2 is related to the third-order susceptibility of the material. This coefficient can be positive

or negative, and its contribution to the total refractive index is no longer negligible when the

material is exposed to a high peak intensity carried by ultra-short pulses in the case of fused

silica material we have n0 = 1.45 and n2 = 3.54× 10−16 cm2 / W [35].

As a summary of this subsection, we can say that, when the optical intensity inside

the material is strong, the polarizability of the material change in response, leading to the

modification of the nonlinear refractive index of the material. The phenomena which explain

the nonlinearity in the laser is the Kerr nonlinearity. Actually, the Kerr nonlinearity affects the

phase of an optical laser beam via the intensity-dependent refractive index n = n0 +n2I. Here,

n0 is a linear refractive index of the bulk medium, n2 is the nonlinear coefficient describing

nonlinear self-modulation such that n2I is a nonlinear contribution to the refractive index. In

general, over the material length, the kerr nonlinearity on laser propagation in the material is

defined by [36]:

Zn = i
2πn2Lmat
λ0Aeff

|E|2E (1.25)

where Lmat is the material length and Aeff is the effective area of the nonlinear medium.

Because E is normalized to represent the laser power, |E|2/Aeff represents optical intensity of

laser beam. We shall come back in a detail on this notion in chapter 2, while modelling the

laser equation.

For a Gaussian spatial distribution of the laser pulse intensity, the central part has a

higher intensity than the wings. According to equation (1.23), the centre section will see a
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higher index (lower if n2 < 0 ) than the other sections of the pulse. Thus, its propagation

speed will be lower and the wave-front will bend as if it had passed through a converging

lens. The effect of self-focusing is cumulative, which can lead to a catastrophic collapse of the

wave-front on the optical axis. For self-focusing to be dominant, the wave-front must overcome

the defocusing effect of diffraction. This condition is met when the peak power exceeds the

critical self-focusing power [37]

P ≥ Pcr where, Pcr =
3.72λ2

0

8πn0n2

(1.26)

This parameter is valid for continuous-wave beams but is used as a reference for pulsed

beams. When a laser pulse with a peak power greater than the critical power is focused

by an optical element, the position of the wave-front collapse is generally located in front of

the geometrical focus. However, other effects, such as dispersion and plasma formation, can

influence the process. The cumulative effect of self-focusing by several slices of the pulse can

also lead to filamentation [37].

However, when a laser pulse hits the surface of a material, it can be linearly or nonlin-

early absorbed depending on the incident photon energies. If the laser energy is greater than

the energy gap of the material, a single photon from the laser pulse will have sufficient energy to

excite the electrons in the valence band and will allow them to move directly from the valence

band to the conduction band of the material. In this case, the laser energy is said to be linearly

absorbed. Actually, it has been reported that in some indirect bandgap semiconductors single

photon absorption can also occur but this process requires assistance from phonon interactions

[38]. On the other hand, if the laser energy is less than the energy gap of the material, the

absorption is nonlinear meaning that several photons will simultaneously add up their energies

to allow the electrons to be excited in the valence band to reach the conduction band. The

two processes are well shown in figure 1.6.

We have already stress above that the material targeted by the current work is a trans-

parent material and in general for such material, there is no linear absorption of the laser

radiation. Therefore, in what will follow, we will be focused only on the case of nonlinear

absorption. Indeed, there exist two classes of nonlinear absorption processes leading to the

ionization of the irradiated material, they are the nonlinear photoionization and the avalanche

or cascade ionization.
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Figure 1.6: A schematic of single and multiphoton absorption of incident photons (shown in

red) causing electrons to be promoted to the conduction band from the valence band. [38].

1.2.2 Photoionization

Photoionization is define as a direct excitation of the electron by the optical field. As we

already mentioned above, if a single photon of laser light does not have enough energy to

excite an electron in a transparent material from the valence to the conduction band, muliple

photons must cooperate together to excite the electron. Depending on the laser frequency and

intensity, there are two regimes of Photoionization, namely, multi-photon ionization regime

and tunneling ionization regime [39].

The adiabatic parameter γ, also known as the keldysh parameter for the transition point

between multiphoton ionization and tunneling ionization is defined as [40, 33]

γ =
ω

e

√
mecn0ε0Eg

I
, (1.27)

where, ω is the laser frequency, I is the laser intensity at the focus, me is the effective electron

mass, e is the elementary electron charge, c is the speed of light, n0 is the linear refractive

index and ε0 is the permittivity of free space.

+ At low laser intensity (∼ 1013 − 1014 W/cm2), with higher frequency (but not high

enough that single photon absorption can occur), γ > 1.5 (Keldysh parameter). The

Photoionization in this case is a multiphoton ionization. This mechanism of ionization

occurs due to the simultaneous absorption of multiple photons by an electron in the
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valence band. The number of photons K required to bridge the bandgap must satisfy

Khν0 ≥ Eg [33], where Eg is the material bandgap, and ν0 is the laser frequency. In the

multiphoton ionization mechanism, the ionization rate is defined as P (I) = σKI
K where

σK is the multiphoton absorption for K−photon absorption while I is the optical field

intensity.

+ For high laser intensity (> 1015 W/cm2), with low frequency and γ < 1.5, the dominant

mechanism, in this case, is a tunneling ionization. The strong field distorts the band

structure and reduces the potential barrier between the valence and conduction bands.

Direct band to band transitions may then proceed by quantum tunneling of the electron

from the valence to conduction band. However, when γ ∼ 1.5, the photoionization is

a combination of tunneling and multiphoton ionization. The representation of those

different processes can be observed in figure 1.7.

Figure 1.7: Diagram of the photoionization of an electron through tunnelling (left), multi-

photon ionization (right) and both non-linear processes (central) with different values for

Keldysh parameter γ [39].

1.2.3 Avalanche ionization and plasma generation

When a laser pulse with a high enough pulse peak intensity is focused into a material, the laser

pulse transfers energy to the electrons in the valence band of the material and allows them to

be excited and to reach the conduction band through nonlinear ionization. The free electron in

the conduction band is accelerated by the electrical field of the laser from the conduction band

minimum to higher energy levels of the conduction band, with an energy that allows it to collide
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with other bound electrons. As long as the laser beam is present in the medium, the process

will repeat itself and strong enough, giving rise to an electron avalanche as shown on figure 1.8.

The existence of excited electrons in the conduction band is an initial condition required for

avalanche ionization to occur. These initial electrons can be provided through multi-photon or

tunneling ionization, ionized impurities or defect states, and thermally excited carriers [40, 39].

In this process, the electron density N , in the conduction band grows according to

dN

dt
= ηN, (1.28)

where η is the avalanche ionization rate. Stuart et al. [40] developed a model of avalanche

ionization in which the avalanche rate depends linearly on the laser intensity meaning that,

η = vI, where v is the cascade ionization coefficient. Experimentally, it is shown that when

Figure 1.8: Schematic potential energy diagram for avalanche ionization (right), that follows

after seed electrons are created by multi-photon absorption (left) [39].

the density of excited electrons in the conduction band reaches about 1029cm−3, a plasma is

generated with a natural frequency that is resonant with the laser, leading to reflection and

absorption of the remaining pulse energy [6]. The plasma generated expands rapidly in the

opposite direction to the propagation of the laser beam. By reacting to the plasma relaxation

effect, a shock wave then originates and propagates within the material. If the latter has a

finite thickness, the shock wave can open with the relaxation of material towards the rear

surface as shown on figure 1.9. The K−photon absorption and the avalanche ionization are

responsible for the electron plasma generation.

KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics

Continuous-Wave and Femtosecond Lasers Inscriptions on Amorphous Silica Glass



1.2. LASER INTERACTION WITH TRANSPARENT MATERIAL 19/138

Figure 1.9: Plasma expansion by pulse laser. I(r), spatial intensity distribution; r, radius; τ ,

pulse duration, HAZ is the heat affected zone, and SAZ is the shock affected zone [2].

1.2.4 Laser-plasma interaction

The plasma formed by this nonlinear ionization also affects the optical field propagation

through absorption processes. The absorption of the laser field by the plasma is easily un-

derstood using the Drude model. In general, when the plasma density grows and its frequency

[33]

ωp =

√
Ne2

ε0m
(1.29)

reaches the laser frequency, then the absorption of the optical field by the plasma becomes

very important. The absorption coefficient in this case in given by:

Γ =
ω2
pτ

c(1 + ω2τ 2)
(1.30)

where ω is the laser frequency, and τ the phemenological Drude scattering time (usually around

0.2 fs) [40]. In addition to the fact that the plasma generated during the propagation of

the laser beam in the transparent material is absorbed at high density, it can also have a

defocusing effects on the laser pulse as shown on figure 1.10. This is because the free electron

that constitute the plasma contribute negatively to the refractive index of the medium (Kerr

effect). This plasma de-focusing is the process that arrests self-focusing and perturbed the
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Figure 1.10: Schematic representation of the focusing-defocusing cycles undergone by the in-

tense core of the beam [9].

laser signal (intensity clamping) [41]. Therefore becomes a relevant issue when laser is utilized

in the inscription processes.

The physical mechanism generated during the laser-material interaction are summarized

on figure 1.11.

Figure 1.11: Occurrence of different physical phenomena during different timescales involved

in laser-material interaction [42].
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1.3 Generality on laser inscription: marking and en-

graving

Laser inscription, plays a significant role in modern industries where it is used to imprint

characters, images, symbols or to leave mark on an object. Indeed laser inscription is a process

in which the laser is use to engrave or mark a material from the top surface down to a specified

depth. Actually, a number of different techniques have been utilized to mark different materials,

e.g mechanical engraving, hot stamping, serigraphy, manual scribing, photo-lithography and

etching. Some of these techniques are using inks or tool bits to mark the material. The

disadvantages of this method is that when inscription is done with the tool bits, there is

contact with the inscribing surface. According to the marking techniques with the inks, the

issue is that the material’s surface needs to be prior degreased to the ink-print process, and

it takes much time to dry the ink on the material’s surface. However, the technique of laser

inscription does not include the use of inks, nor does it include tool bits which contact the

inscribing surface and wear out. This offers a wide range of advantages over above mentioned

traditional method where inks or bit heads have to be replaced regularly [43]. The arguments

in favour of inscription by laser are strong meaning that, it is a technique fast, flexible, made

inalterable, high degree of accuracy and the smoothness of the features, high precision, the

possibility of inscribe at difficult to reach places, and the fact of being to engrave fragile

materials such as ceramic, glass etc. [44]. Moreover, laser inscription process is also used to

produce indelible alpha-numeric characters and logos for the purposes of product identification

and traceability. Because of these applications, lasers inscription have attracted much attention

in many industries sectors as for instance; microelectronics industry, glasses industry, medical

industry, photonic industry and so on.

1.3.1 Methods of laser inscription technologies

Indeed, there are two different methods for laser inscription namely; inscription through mask

and inscription via beam deflected method.
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Mask Inscription method

In general, mask inscription method uses masks to engrave alpha-numeric characters on the

material. This mask is made by the metal or dielectric coating deposited onto a glass substrate

[45]. This contains all the information to be engraved on the material. Figure 1.12 is an

example of mask engraving system used to engrave ”A” letter on the workpiece. One of the

Figure 1.12: An Example of mask inscription system [46].

advantages of using mask inscription system to engrave the material is that a large quantity

of material can be engraved at relatively high speed with high repeatability, provided that the

engrave information stays the same. However, a disadvantage of this system is that it requires

expensive masks that should be fabricated to suit different messages. Furthermore, changing

the messages requires the changing of masks, and large engrave surfaces or long information

to be engraved on the material require multiple pulses, which reduce throughput [47, 46, 45].

Laser beam deflected Inscription method

For the inscription with laser beam deflected method, a computer is uses to move a work-

table or a set of galvanometer mirrors to scan a focussed laser beam over the surface of the

material. In this processes, the computer plays a role of turning the laser on and off as

required by the information being engraved. According to the fact that the work-table or the

galvanometer mirrors are computer driven, messages can be changed from one to another quite

easily. Graphics and characters with multiple fonts, sizes, orientations and rotations can all

be combined into one inscription process. However, in this method, inscription is done either

in the dot-matrix mode utilizing a raster scan (see figure 1.13), or in a vector scan mode (see
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figure 1.14) [47, 48]. To be more specific, for the inscription in the dot-matrix or raster mode,

Figure 1.13: Engraving using raster or dot matrix inscription [48, 49].

the laser beam moves sequentially in rows on the material. This method is usually used mainly

for engrave alpha numeric information, and it is less appropriate for graphic images. However,

Figure 1.14: Engraving via vector inscription method [48].

in vector inscription method, the marks are imprint by focused laser radiation on the target

material, which in turn is guided by an optical system and operated by a computer program.

Vector engraving method can be applied to all types of information such as: numeric-code,

bar-codes (i.e 1D and 2D codes, see figure 1.15), logos, and almost any other kind of image as

well as characters [50]. This is the most common and versatile method of lasers inscription.

Figure 1.16 represent the laser inscription machine

Figure 1.15: Engraving of bar-codes: a) 1D; b) 2D [51, 52].
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Figure 1.16: An example of beam deflected inscription system [48].

1.3.2 Inscription criteria and mark legibility characteristics

There are many parameters which affect both the ability of material inscription and the speed

at which it can be engraved. One of the important key consideration of this technology is how

well the material being inscribed absorbs the laser radiation. This can be determined by the

type of laser used as different wavelengths can have different absorption characteristics. If the

laser light is transmitted or reflected, then engraving becomes more difficult or even impossible.

For optimum results the focussed laser beam has to be absorbed in the top few microns of the

material surface, so that sufficient energy density is produced to modify the material surface.

It is reported that, Metals reflect CO2 laser radiation and therefore cannot be engraved by

CO2 lasers [53]. An absorbent coating will enable engraving by a CO2 laser, or alternatively

a solid-state laser can be utilized. Some polymers transmit CO2 laser beam and cannot be

engraved, and therefore it is necessary to include additives in the polymers [49], which absorb

the radiation or to use a laser with a different wavelength as for instance Nd:YAG laser or

femtosecond laser. However, If a material surface has a varnished coating the laser light has

to remove the varnish before it can engrave the surface, and this will require a higher energy

density.

Although, the quality of the mark on the material surface is assessed by its legibility

characteristics such as mark contrast, mark width, mark depth, spattering, and microcracks
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[3, 54, 55]. The level of acceptance of these different characteristics generally depends on the

manufacturer’s requirements [47].

Mark width

This denotes the width of the line segment that forms a character. With the mask image

inscription, the mark width in the characters is essentially determined by the mask geometry

and the lens imaging quality. It can be as small as a few micro-meters, which can only be read

under a microscope. In deflected inscription method, the line width is mainly determined by

the focused beam spot size [56]. Other parameters such as scanning speed, power density and

material properties also affect the line width. In general, a toolmaker’s microscope or Talysurf

surface texture measuring equipment are used for the line width measurement.

Mark depth

The Engraving depth depends on energy volume density, materials properties and the laser-

material interaction time. In mask inscription process, the vaporization depth is often deter-

mined by the thickness of paint or oxidation layer. It is typical of few microns to several tens

of microns. In deflected laser inscription method, greater depth penetration into the material

can be achieved varying between a few microns to several tens of millimeters. A further en-

hancement of the effect on the material can be realized by supplying gases such as oxygen or

compressed air, which assist material removal. It has been reported that, with mask inscrip-

tion method, the depth of penetration ranges from 1 to 10µm [57, 58], while with the deflected

inscription method, the depths mark of about 25µm to 0.25mm have been reported [57]

Mark contrast

The mark contrast is define as a visual difference between the apparent brightness of the

marked surface and unmarked surface of a material. The sharpness or resolution of the marked

edges affects the engraving contrast [45]. This parameter is particularly important in bar code

engraving, as poor edge sharpness may fail bar code reader. High peak power or power density

produces better edge resolution.
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Spattering

Spattering is characterized by the presence of resolidified streamers and droplets of surface

material in the vicinity of the engravings, resulting probably from the powerful vaporization

forces generated during the inscription process. This is undesirable, as it distorts the boundary

of the mark, giving the lettering poor line definition and, therefore, poor mark legibility [59].

Spattering can be assessed as an attributable entity whereby ratings are used to associate the

degree of spattering effects for each marking. One can rate the spattering effect either visually

or through the use of an optical microscope.

Microcracks

The microcracks are created by the presence of tensile stress during the inscription process

when a material is cooled rapidly from a molten state to a solid state. This is undesirable

characteristics that affect the mechanical properties of the material. Moreover, this may induce

corrosion-related failures into the material, thereby impairing the mark legibility as well as the

reliability of the material [59]. Microcracks can be evaluated using either scanning-acoustic

microscopy (SAM) or scanning-electron microscopy (SEM). Figure 1.17 shows the presence of

microcracks in a marked line.

Figure 1.17: Microcracks along a line generated by a Nd:YAG laser on a plastic leadless chip

carrier covered with a gold-nickel lid; with pulse energy of 0.1 J, pulse duration of 0.6 ms,

argon as the assist gas, gas pressure of 0.2 MPa, lens focal length of 150 mm, focal position of

0.1 mm away from the material, and percentage overlap of 85% [59].
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1.3.3 Important inscription parameters

The effectiveness of laser engraving also depends on the following parameters: the energy den-

sity, interaction time, material properties, focussing lens, spot size, pulse repetition frequency

and the inscription speed.

Power density, energy density and lasers material interaction time

The power density, qs, is defined as the average incident laser power at the material, P , divided

by the focussed area, S0 [60, 61]:

qs =
P

S0

. (1.31)

The energy density or laser fluence, F , refers to the amount of laser energy radiation falling

onto the surface of the specimen and is determined from [60]:

F =
E

S0

=
P

S0

T (1.32)

where E is the amount of laser energy incident on the material and S0 is the area of the focussed

beam. For a fixed amount of input energy to the material, it has been found that the depth

of penetration varies directly with the energy density of the beam [60]. For mask marking the

focussed area is about 0.36− 1.6cm2 while for beam deflected inscription method the focussed

area is about 2.5× 10−5cm2 [62]. However, the time of the impact of the laser radiation on the

material also has a significant influence on the quality of engraving and the penetration depth

of the incoming laser beam in the material. It is related to the power density, qs, as:

T =
F

qs
(1.33)

where T is the time interval over which the laser pulse interacts with the material. The

interaction time is inversely proportional to the beam speed and affects the ease of engraving

and mark depth, as it determines the speed of heat transfer, phase changes, and any chemical

reactions that may occur. If the energy is dissipated over a long duration, mark contrast can

be effected by pigment discoloration. As the interaction time is decreased, mark contrast can

be obtained through phase change by melting and resolidification, foaming, vaporization of

surface area, and spattering of matrix materials [63].
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Focussing lens and spot size

The quality and focal length of the focussing lens and the relative position of the laser beam

with respect to the material are other important parameters in laser engraving. Highest power

density is obtained if the focal position is at the lens focal point (i.e the spot size is small).

In general, the wavelength, beam divergence and quality of optics has an important effect in

determining how small a spot size can be on the material surface. The spot diameter dspot is

given by [48]:

dspot = M2 4λ

π

f

D
, (1.34)

where f , is the focal length, D the laser beam diameter and M2 a parameter defining the

quality of the beam. However, the spot diameter dspot (see figure 1.18), is related to the focal

length and the beam divergence by dspot = fθ [59]. The spot size or the focussed area increases

Figure 1.18: View of the spot diameter of the laser beam on the transparent material [59].

as the focal position is shifted away from the focal point. This means that, as the focussed

area increases, the power density decreases [60, 64]. The focussed area of the laser beam as

shown on figure 1.18, can be computed as:

S0 =
π

4
d2
spot. (1.35)

Figure 1.19 illustrates the effect of spot size by increasing the lens focal length [65]. For constant

output energy and pulse duration, increasing either the focal length or the beam divergence

will result in a lower laser power density, as the focussed area is increased. In principle, the

pulse duration and the pumping level do not affect the size of the focussed area.

Inscription speed and laser repetition rate

In the context of laser beam deflected inscription, engraving speed is defined as the linear

speed of the laser beam whereas in the mask inscription, engraving speed is defined as the total
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Figure 1.19: Effects of increasing the lens focal length [65].

number of material that can be engraved in 1 s. The repetition rate is the pulse frequency of

the laser. In mask inscription, a typical engraving speed is about 8 to 20 materials per second,

while in deflected inscription, the engraving speed is about 5 to 15 characters per second or

about 400 mm/s [45]. Usually, the overlap region is used to ensure that the marks are visually

continuous (see Fig. 1.20) on the material. The laser beam speed movement on the material

Figure 1.20: Effects of increasing the lens focal length [65].

is related to the percentage overlap and the repetition rate as follows:

v = d

(
1− percentage overlap

100

)
× pulse repetition rate (1.36)

where,

percentage overlap =

(
1− S

d

)
× 100 (1.37)

with d the spot size and S the centre-to-centre spacing between the pulsed spots [65].
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Optical and thermal properties of the materials

During the lasers material-inscription, there can be either Fusion and Ejection, Vaporization,

or Ablation of the material. These depend mainly on the material properties and laser pa-

rameters. The mechanism of material removal in laser engraving is the result of the laser

absorption by this material. The absorption coefficient (αn) of the material controls the decay

of laser intensity with depth inside the material [19]. The absorption coefficient depends on

the temperature and wavelength but at constant αn , decay of laser intensity with depth is

given by Beer-Lambert Law as, I(z) = I0e
−αnz where I0 is the input intensity at the surface of

the material after considering reflection losses. The depth at which the intensity of the laser

drops to 1/e value of its initial value at the interface is known optical penetration or absorption

depth (δn) given by δn = 1/αn. Laser radiation is absorbed either by exciting free electrons or

by electronic or vibrational transitions in atoms, ions, or molecules. Electronic or vibrational

states may be localized or non-localized and may be related to the solid surface, defects and

impurities.

The absorptivity of a given material depends on its reflection and transmission charac-

teristics. The absorptivity, transmissivity and reflectivity are inter-related by [45]:

an + rn + τn = 1, (1.38)

where an is the absorptivity, rn is the reflectivity and τn is transmissivity of the material.

Indeed, the absorptivity is affected by material properties, surface condition, wavelength and

surface temperature, as established by Bramson equation [60]:

an = 0.365

(
Te
λ

)0.5

− 0.0667

(
Te
λ

)
+ 0.006

(
Te
λ

)1.5

, (1.39)

where Te is the temperature dependent electrical resistivity (Ωm), and λ is the laser wavelength.

From equation 1.39, one can conclude that the absorptivity of the material surface increases

with temperature. The thermal properties of the material are defined by the specific heat per

unit mass, Cv, the mass density, ρn, and the thermal conductivity, Γn . These are related to

the thermal diffusivity, κn by [45]:

κn =
Γn
Cvρn

. (1.40)

This thermal property determine the depth and the total volume of the material that undergoes

thermal transformations. It is reported that, for a constant uniform irradiance, the thermal
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penetration depth, Lmax, is given by [60]:

Lmax =
√

4κntd, (1.41)

where td is the pulse duration.

1.3.4 Marking and engraving transparent materials

Laser marking discolors the surface of the material, while laser engraving actually removes a

portion of the surface area as it marks see figure 1.21. Laser marking most commonly takes

Figure 1.21: Laser marking (left) and laser engraving (right) [47].

the form of an alphanumeric code imprinted on the surface of the product to indicate the date

of manufacture, best-before, serial number etc. Laser used in marking process are nanosecond

lasers. In laser marking, the mark is generated on the material by the thermal process and it is

possible to realize physical processes such as heating, vaporizing, melting or annealing. Each

has a specific effect for different marking applications. Heating induce crack or micro-crack

around the mark, vaporization produces a mark with depth in the material, like engraving.

Although, the labelling of glass is an important processing step for the medical sectors

that allows tracing and controlling of their products. The traditional techniques, i.e. colour

bar codes or labels, have several disadvantages, e.g. lack of permanency and susceptibility

for tampering, limited adhesion and problems during sterilization [66]. Therefore, the unique

recommended treatment of the glass used in medicine is the laser engraving. Actually, materials

processing technology by using laser irradiation for glass engraving presents two principal

aspects, namely the purely decorative side and the aspect of traceability or identification

products. These makes it possible to include in a permanent way of the job numbers, matric

code of date or any important information on parts and articles [44, 67]. In general, glass

KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics

Continuous-Wave and Femtosecond Lasers Inscriptions on Amorphous Silica Glass



1.3. GENERALITY ON LASER INSCRIPTION: MARKING AND
ENGRAVING 32/138

is a difficult material to mark at certain wavelengths because of its transparency and ability

to reflect the laser radiation during the inscription processes [68]. The CO2 laser and the

femtosecond laser are suitable for glass inscription. Indeed, for the wavelength of the CO2

lasers (i.e 10.6µm), glass is very absorbent. This is due to silica present in this material.

Moreover, it has been reported that for glass, one notes 94% of absorption with the CO2 lasers

at the wavelength of 10.6µm [44].

A) Marking on transparent Ceramic

Nood et al [45], has investigated on the marking of transparent Ceramic (i.e. alumina cor-

rundum, Al2O3). They reported that marking via inscription process are found to be caused

mainly by phase transformation, melting and resolidification, vaporization or explosive vapor-

ization.

Phase transformation: Some materials undergo phase changes, from a polycrystalline

phase to a crystalline phase, when laser treated to just below the melting point in air, e.g.

alumina corrundum (Al2O3) [69, 70]. Upon cooling, the grains grow in a preferred orientation

[71], mark contrast being achieved from the differences between the orientated grains and the

base material. Figure 1.22 shows a cross-sectional view of an Al2O3 substrate showing the

phase changes after it has been laser treated in air. Other ceramic materials may undergo

Figure 1.22: Cross-section of laser scribed Al2O3 substrate in air [72].

phase changes from the polycrystalline phase to the amorphous phase when laser treated in

air or vacuum, giving the marked surface a glassy appearance, e.g. silicon nitride (Si3N4) [72].
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Melting and resolidification: In this process, the surface temperature of the ceramic

is raised just to its melting point and the material on the surface is then allowed to solidify,

the result being a series of overlapping pools of resolidified material (usually of different phase)

[59]. Visual contrast stems from the difference of reflection between the overlapping pools and

the background area. The advantages of this technique include: no material removal, no debris

generation, and minimum thermal stress introduced into the ceramics.

Vaporization: Vaporization produces visual contrast by physically removing surface

material, contrast resulting from differences in colour, reflectance, or texture, or by the casting

of shadows. When very high laser beam intensities are used, an explosive loss of material as

well as vaporization may occur. In explosive vaporization, molten material is ejected in tiny

droplets. Some of these droplets settle in the neighbourhood of the exposed area. The result

is deep marks with ridges, burrs or spatters along the markings, which give good visibility but

may not be acceptable in terms of mark quality (see Figure. 1.23). Microcracks may form

along the markings, being produced by tensile stresses which result when the ceramic material

is cooled rapidly from a molten state to an amorphous solid state.

Figure 1.23: Vaporization effect of a letter ”8” marked on a ceramic package using Nd:YAG

laser [59].

J. Peter et al. [73] has investigated on the analysis of Nd:YAG laser marking process

parameters. They studied for instance the effects of pulse frequency on various laser marking

characteristics like mark width, mark depth and mark intensity (see figure 1.24), on alumina

ceramic. According to figure 1.24 (left), the authors concluded that the mark width decreases

with the increase in the pulse frequency and that also, increase in the pulse frequency, the spot
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Figure 1.24: Effect of pulse frequency on mark width and depth with different lamp current

(left) and Effect of pulse frequency on mark intensity with different lamp current (right) [73].

size decreases which lead to finer marking. In this same figure 1.24 (left), they represented

the mark depth as function of pulse frequency too and concluded that, mark depth increases

gradually for lower values of pulse frequency but decreases for higher values of pulse frequency.

In general, the high peak power pulses at low frequencies will increase the surface temperature

very rapidly resulting in material vaporization and minimal heat conduction into the part. But

when the frequency increases the peak power is not sufficient to melt the material. Hence a

part of the material stays inside owing to reduction in the depth of the mark. Equation (1.42)

gives the relation between the average power and the peak power.

Peak Power =
Average Power

Pulse Frequency x Pulse Duration
. (1.42)

With respect to the effect of pulse frequency on the mark intensity, the authors has

shown on figure 1.24 (right), that as the pulse frequency increases, the mark intensity increases

in a very steep manner. In addition to this, they mentioned that, as the pulse frequency

increases, the peak power decreases which cause less material removal and less thermal damage,

which creates a clean surface thereby resulting in an increase of mark intensity.

B) Engraving on transparent glass

The reason for which researchers are currently investigating on laser glass engraving are: the

identification of microcracks in the mass of the material and the depth, shape and dimensions

of craters induced by laser [20, 74]. The studies that will improve research in this field will

have to establish the admissible dimension of the microcracks and the craters that may appear
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in the mass of the material after the laser inscription operation has been carried out. In

general, engraving on the glass is the result of the generation of a succession of small cavities

appearing in this material during the inscription processes. This induced cavities as a result

of laser inscription on the glass is regulated by the reaction effect of pressures, i.e. vapour

pressure and gravitational pressure. A cavity is formed when the vapour pressure exceeds the

gravitational pressure, according to the findings in reference [74]. In practice, these phenomena,

which occur as the laser beam intensity increases, define the stages of cratering in the mass

of the glass material. Knowledge of the shape and dimensions of craters is very important to

evaluate the quality of the fineness of the character printed on the glass materials [75].

We have already said above that during the interaction of the laser beam with glass

materials craters and cracks in the material structure are formed. These are visible with the

naked eye, and some microcracks are visible with the microscope. For the best understanding

of how microcracks are generated on the surface or in the bulk of the transparent glass material,

it is important to study in depth the thermal, physical and chemical phenomena that occur

in the process of laser glass inscription [66, 76]. Figure 1.25 shows the laser treatment of glass

surfaces followed by microscopic observation of samples with microcracks in the area adjacent

to the engraving.

Actually, when the laser beam is applied to glass surfaces with short pulses duration,

small craters appear. The quantity of material melted and evaporated over the duration of a

laser pulse is of the order of milliseconds. This depends largely on the laser parameters and

the nature of the material. Surface engraving is defined as repeated passes of the laser beam

over the surface being treated. The appearance of the engraved surfaces is influenced by the

shape and the dimension of the crater induced by laser. In [20], the author has shown from an

experimental design that the shape of craters changes significantly from one case to another

according to technological parameters. In order to observe the evolution of the shape of the

crater at sight in the section and the quality of the resulting engraved surfaces, the author had

described the effects of the action of laser parameters on the glass surfaces being engraved and

presented the results on figure 1.26. These results represent a synthesis of the descriptions of

the shape and dimensions of the resulting craters as a function of certain parameters.
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Figure 1.25: Microscopy observation of the microcrack induced by the laser in the glass float

around the engraved zone [20].
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Figure 1.26: Description of the effects of the laser parameters on the glass float surface engraved

with CO2 laser in the continuous-wave regime (λ = 10.6µm and the maximum power P = 60W)

[20].
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Data matrix code engraving on transparent glass

The importance of laser engraving with high quality and precision on the glass is beneficial to

the engraving of matrix codes. The data matrix offers the possibility to store a clearly defined

amount of product information on a relatively small area. Researchers such as Dumont et al

[66], have studied the quality of matrix code engraving on the glass material in pulse regime.

Their objective was to observe the aspect of the matrix code which can be optimized by the

optimal setting of the technological parameters such as; the laser power and the number of

pulses. In the realization of these types of codes of high complexity and size, the use of laser

inscription in pulse regime has been very flexible and effective. Figure 1.27 shows the glass

engraving of a matrix code that is similar to the ideal model shown on the left side of the

figure. The code was engraved by laser inscription with the wavelength λ = 10.6µm with

maximum power of P = 1500W [20, 66]. In the composition of the matrix code, each laser

pulse represents a pixel. On the right side of the figure 1.27 we can see the appearance of the

craters formed by the laser pulses at different degrees of increase. The depth, the dimension

Figure 1.27: Data matrix engraved on glass material with CO2 laser operating in pulse regime

using wavelength of 10.6µm, with a fluence of 7J/cm2 and 10 pulses [20].

and the shape of the craters formed in the glass during the laser inscription on this material

are one of the key criteria for the appreciation of the qualitative aspects of laser engraving on

glass. Figure 1.28 represented the engraved of the matrix code on the clear glass material when

the craters generated in the mass of the glass are inhomogeneous. The authors of this work

[66], presented on figure 1.28, reported that this unacceptable results is due to the fact that

the applied ArF excimer laser energy (i.e. F = 0.95J/cm2) was not high enough to engrave

this material.
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Figure 1.28: Data matrix engraved on clear glass material using ArF excimer laser with the

wavelength of 193 nm, with a fluence of F = 0.95J/cm2 and 200 pulses [66].

In general, the specific geometric shape of the crater is that of a straight circular cone

with very small dimensions [20]. For the best engraving in accordance with the finesse, the

depths, shapes and dimensions of all the craters generated in the material by the action of the

laser radiation on it should be the same.

Laser technologies are of particular interest in the field of transparent materials inscrip-

tion. For such materials inscription, the lasers usually used, nanosecond pulse duration, have

wavelengths most often in the ultraviolet range. However, for the ns-laser inscription, the pulse

duration is larger than the time required for transfer of laser energy for absorption and con-

version to heat energy which is responsible for laser machining. This heat energy diffuses from

skin layer to the significant thickness of bulk material by conduction, and therefore re-solidified

layer and microcracks are visible on the machined surface. Laser marking and engraving is

now considered an area of interest for femtosecond technologies [77]. It is possible to reach, in

femtosecond mode (1 femtosecond =10−15 second), the laser ablation threshold of all types of

materials: special metals and ceramics, organic or polymeric materials and transparent glass

(amorphous or crystalline). The use of femtosecond pulses has opened many industrial and

scientific perspectives, especially for transparent material engraving. Indeed, the field of en-

graving is a very active area of femtosecond applications. It is an industrial sector in strong

development, for the needs of identification and traceability of industrial production and the

fight against counterfeiting.
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1.4 Femtosecond laser inscription on transparent ma-

terial

In Petrovic et al [21], a model was proposed to describe the dynamics of femtosecond laser

in laser inscription processes involving nonlinear transparent media with Kerr nonlinearity (as

for instance fused silica materials [21]). In this model, the laser propagation in the material

was accompanied by multiphoton ionization processes contributing in the generation of a free

electron plasma. The model was represented by a complex Ginzburg-Landau (CGL) equation

for the laser propagation in the Kerr optical medium, coupled to a rate equation describing

time variation of the electron plasma. In this model, multiphoton ionization resulted in a

higher (i.e. K)-order nonlinear term both in the CGL equation and the rate equation. In their

work the authors [21] led their attention on thermal processes associated with laser propagation

in the nonlinear transparent medium, by carrying out numerical simulations and establishing

that multiphoton ionization processes would minimize drastically thermal drawbacks during

macromachining processes involving femtosecond laser.

J. Krüger et al [2], has shown experimentally that during the transparent material in-

scription with a femtosecond laser in the presence of plasma generation, the craters generated

in the material are inhomogeneous (i.e. Do not have the same depth, shape and size), when

the laser fluence decrease from F = 0.8J/cm2 to F = 0.2J/cm2 (see figure 1.29).

Figure 1.29: Laser ablation of transparent material with F = 0.8J/cm2 (left) and F = 0.2

J/cm2 (right) both of then with λ = 612nm and T = 300 femtosecond [2].

In this chapter, we introduced some basic concepts regarding lasers then we emphasized

on femtosecond laser transparent material-interaction. We described the optical Kerr effect as
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well as the main energy deposition mechanisms via the photoionization and formation of an

electron-hole plasma. We also paid attention on the laser inscription process. For this last

point, we presented the two methods used in the material inscription processes with lasers. In

addition to this, we have presented the mark legibility characteristics as well as the important

inscription parameters. To follow the objective of our dissertation, the review work on lasers

marking and engraving in the inscription technology was done. In this cases, we presented

the work done by some authors in the marking of transparent ceramic with Nd:YAG laser.

Moreover, we have introduced another work done in the engraving of transparent glass material

with CO2 laser.

These literature review that we have done in this first chapter allowed us to identify

one of the phenomenon (i.e. plasma generation in material), that affect the laser inscription

process on the transparent material. In fact, femtosecond laser transparent material inscription

is a nonlinear process, which induce the modification of the refractive index of this material

via optical Kerr effect. This optical Kerr effect focuses the laser beam into the transparent

material, producing ionization and generated an electron plasma whose density growths and

affects the laser signal in the inscription process. As we mentioned in our general introduc-

tion, we are interesting on amorphous silica inscription with promise application in characters

engraving. To be more specific, our objective is to optimize this inscription process. Where

optimization is meant to provide an optimal combination of continuous-wave and femtosecond

lasers parameters and amorphous silica properties that must be set for the best engraving

finesse. To follow the goal of our work, in the next chapter, the amorphous silica properties

as well as the theoretical model for lasers interacting with amorphous silica will be presented.

This will be following by the methodology of our thesis.

KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics

Continuous-Wave and Femtosecond Lasers Inscriptions on Amorphous Silica Glass



Chapter

2
Material, Theoretical Model and

Methodology

The aim of this chapter, is to present some basic notion regarding the structures of crystalline

and amorphous silica. In this purpose, the mean distances between the chemical bonds of

each structure will be introducing as well as the bonds angles. Furthermore, the diagram of

the phase transition paths between different categories of silica material will be presenting.

Some important properties of fused silica will be also introduce. Then we shall build the

model for laser used for the inscription processes on fused silica material. Finally this chapter

will be ending with the methodology that we will be utilizing within the main part of our work.

Indeed, materials in the crystalline solid state is composed of a periodic arrangement

(the lattice) and a pattern of atoms (their natures and relative positions). The lattice defines

quantitatively the periodic nature of the crystal structure described by mesh parameters. The

pattern concerns the chemical nature of the solid. The crystal is generated by applying to the

basic group of atoms all the translations of the lattice. This structure is to be contrasted to

the amorphous solid state for which we find neither periodicity nor order at a medium and

long distance from the atom pattern. Glasses are the main representatives of this class of

solids [78]. However, each atom has an electronic precession, the experimental proof of which

was provided at the end of the 19th century by J. J. Thomson. We generally distinguish two

families of electrons according to their energy bond. The core electrons are strongly connected

to their parent atom and localized. Since this strong bond energy is of the order of a hundred

electron volts, they are not accessible to the optical excitations used within this thesis. The

electrons of valence are weakly linked and partially delocalized. They are responsible for many

macroscopic properties in solid-state physics. In 1930, F. Bloch demonstrated the influence of

electronic properties on the macroscopic behavior of matter in the crystalline solid-state using
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band theory. This quantum theory is based on solving Schrödinger’s equation, associated with

a periodic description of the crystal. This provided a clear understanding of the existence of the

band structure in the material. This demonstrates the existence of the bandgap i.e. of forbidden

energy levels for the electron. The position of the electronic occupation levels with respect to

this forbidden band has a strong influence on the physical, thermal, and optical properties of

the material [78]. The position of the Fermi level EF , which is the highest energy level occupied

at 0 K, allows to categorize solids as, Metals, insulators and Semiconductors.

2.1 Crystalline and amorphous silica structures

Silica exist in a crystalline and non-crystalline form [44]. This material is the main composition

of glasses. It is made of silicon and oxygen. This silicon atom is connected to 4 oxygen atoms

forming silicon dioxide (SiO4). The silicon is placed in 4 coordination and the oxygen atoms

in 2 coordination as shown on figure 2.1. However, most of glasses used in research are made

Figure 2.1: Tetrahedral pattern of silica [79].

by oxide silicon with the chemical formula (SiO2). Glass based on this type of material is

transparent in the ultraviolet, visible, and near-infrared [80]. Actually, quartz, tridymite, and

cristobalite are the crystalline varieties of glass silica (SiO2), while the non-crystalline form

refer to amorphous silica [81]. Figure 2.2 represent the diagram of the phase transition from

the crystalline forms to the amorphous form.

KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics

Continuous-Wave and Femtosecond Lasers Inscriptions on Amorphous Silica Glass



2.1. CRYSTALLINE AND AMORPHOUS SILICA STRUCTURES 44/138

Figure 2.2: Diagram of the phase transition paths between different varieties of silica at 1

atmosphere pressure, as controlled by temperature [79].

2.1.1 Crystalline silica structure

In crystalline silica, the silicon and oxygen atoms are arranged in a fixed geometric pattern

(see for instance figure 2.3) [82]. For this type of silica, the distances between Si–O is 1.61Å.

Figure 2.3: Crystalline structures of SiO2: 2D (left) and 3D (right) [83, 84].

The bonding between Si and O atoms is sufficiently strong that it forms very rigid structures

with a O − Si−O angle φT = 109.5o [85, 86].

2.1.2 Amorphous silica structure

In amorphous silica also known as fused silica, no spatial ordering of the atoms is present (see

figure 2.4). This disorder is due to the inability of the molecules to reorganize themselves

to get a balanced structure. This structure is said to be disordered on a large scale. But
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on an inter-atomic scale, the structure is orderly. It has a pattern that repeats itself but in

different directions. The most important parameter is the mean equilibrium bond length of

Figure 2.4: Amorphous structures of SiO2: 2D (left) and 3D (right) [83, 84].

Si − O, however, the mean distances between O − O and Si − Si could also be considered.

These different distances between chemical bonds are Si−O (1.6Å), O−O (2.6Å) and Si–Si

(3.2Å), as determined from X-rays diffraction [85]. The Si−O−Si bond angles are about 144o.

According to what we have seeing in the above two subsections, it is clear that the differ-

ence between crystalline silica and amorphous silica are highly visible. Actually, this difference

in structure was revealed in X-ray diffraction by Zachariasen [87]. He showed that a crys-

talline structure had a spectrum with fine peaks corresponding to the different crystal planes

whereas the spectrum of an amorphous structure was spread out. In general, the crystalline

silica favour the diffraction phenomena when it interact with an electromagnetic radiation.

Therefore, among different categories of glasses that exist, fused silica glass has attracted

considerable attention because of its favorable physical, chemical, and optical characteristics

[88, 34]. In most of the modern industry, amorphous silica is used in numerous applications

such as glassware in laboratory, lenses or beam splitters in optics, dielectric insulator in micro

and optoelectronics, optical fiber in telecommunication etc..
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2.2 Amorphous silica glass properties

Fused Silica has a remarkably low coefficient of thermal expansion, which varies only slightly

with temperature [80]. This material characteristic imparts fused silica a high resistance to

thermal shock, and makes it an excellent material for applications that require the utmost

in dimensional stability over a large temperature range. Fused silica shows an almost perfect

brittle elastic behavior at temperature lower than the transformation point. Some important

properties of fused silica is given in table 2.1

Table 2.1: Some Important Properties of Amorphous Silica Glass

Coefficient of thermal expansion 0.57 × 10−6/K over 0 oC to 200 oC temperature

range [80]

Thermal conductivity 1.38W/mK, measured at 25 oC [80]

Density 2.202g/cm3 [80]

Elasticity modulus 73GPa at 25 oC [80]

Band gap Eg = 7.6eV [34]

Free electron mass me = 0.9× 10−30kg [86]

Effective mass of electron m = 0.86me [86]

Electron trapping time τs = 150 fs [35]

Group velocity dispersion coefficient k′′ = 361 fs2/ cm [86]

Linear refractive index n0 = 1.45 [35]

Nonlinear refractive index n2 = 3.54× 10−16 cm2 / W [35]

Electron collision time t0 = 1fs [35]

Maximum electron density ρmax = 2.2× 1022cm−3 [35]

Absorption coefficient βn = 1.8± 0.4× 10−5 cm−1 [89]

Fused silica offers a set of optical characteristics that compare favorably with other

optical materials. The optical properties of fused silica can be fully described in terms of

transmission, absorption, reflection, dispersion and scattering. The description of these prop-

erties is based on the interaction of an electromagnetic wave with this material. To establish

an optical description, two quantities are necessary i.e. the complex refractive index ñ and

the dielectric function ε. These two quantities are related by ñ2 = ε. This index of refraction
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depends on the wavelength of light propagating in this medium. It decreases as the wavelength

increases, implying a dispersion of the optical field. In general, the dispersion is described from

the wavenumber, which is a function of the frequency k(ω). From this, the group velocity is

defined as vg = ∂ω/∂k. As the first derivative of the dispersion relation affects only pulse

propagation velocity, then the pulse shape is also altered by the second or higher order terms.

The second derivative of the dispersion relation, which is related to the group velocity disper-

sion, which is the principal source of pulse spreading is k′′ = ∂2k/∂ω2, evaluated at ω = ω0

where ω0 is a center frequency. In the fused silica material, the dispersion is represented by

the quantity [36]:

ΓN = −ik
′′

2

∂2E

∂t2
, (2.1)

where E is the electric field of the electromagnetic wave passing through fused silica material.

By setting θN = −k′′/2, equation (2.1) becomes:

ΓN = iθN
∂2E

∂t2
(2.2)

where θN is a group velocity dispersion. This quantity can be positive or negative. Actually,

when θN is positive, it correspond to the normal dispersion regime and when θN is negative,

it correspond to the anomalous dispersion regime.

In general, the propagation of laser beam into a material starts at its surface and the

laser beam entering the material is given by the transmittance, T , which is related to the

surface reflectance, R, as T = 1−R. Indeed, the reflectivity R is given by the refractive index

of the material and the surrounding media as well as the angle of incident. The reflectivity

is polarization dependent and is expressed for s− and p− polarized light by the well-known

Fresnel equations [90]:

Rs =

(
n1 cos(θi)− n2 cos(θt)

n1 cos(θi) + n2 cos(θt)

)2

(2.3)

Rp =

(
n1 cos(θt)− n2 cos(θi)

n1 cos(θt) + n2 cos(θi)

)2

(2.4)
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P−polarized light has the electric field oscillating parallel to plane of incidence and s−polarized

perpendicular, i.e. for normal incident Rp and Rs are identical.

The absorption properties of fused silica is defined by the Beer-Lambert Law that we

have already introduced in chapter 1. Actually, the range of transparency of fused silica is

mainly related to the composition of this material. It is delimited by two boundaries: The

bandgap boundary and the multiphonon boundary. The first boundary is related to the ab-

sorption of optical field by electronic transitions, from the valence band to the conduction

band. The second limit is related to the vibrations of the chemical bonds.

As a summary we could say that:

+ Chemical properties: Fused silica is composed of pure SiO2 in amorphous (non-crytalline)

form. When compared to other optical glasses, fused silica has a much higher melting

temperature. It is an extremely inert glass.

+ Thermal properties: Fused silica has low coefficient of thermal expansion, which changes

slightly with temperature. This makes it highly resistant to thermal shock, and is an ex-

cellent choice for application involving large temperature range. Thus, they are excellent

thermal insulators.

+ Optical properties: Fused silica possesses a set optical characteristics that makes them

better than other optical material. It is transparent in the ultraviolet (UV), visible and

near infrared. They respond nonlinearly to high intensity irradiations.

+ Fused silica appears to be excellent electrical insulator.

Before going further, we would like to recall that our objective in this dissertation is to

investigate the continuous-wave and femtosecond lasers inscriptions on amorphous silica glass.

In this respect, it is important to introduce some characteristics of the above mentioned lasers

in what will follow.
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2.3 Characteristics of the lasers used for inscription on

amorphous silica

In this application, lasers are designed to operate in specific regimes characterized by their

powers and wavelength. Indeed, currently, femtosecond lasers are mostly used in the inscription

processes. To this last point, since femtosecond lasers are optical fields with a duration far

below picoseconds, they belong to a specific class of lasers known as ultrashort lasers. Lasers

in this class operate typically in pulsed modes of relatively high powers, nevertheless in some

contexts they can tailored to operate in the continuous-wave regime. This is for instance the

case when their input powers are below the typical power of a high-intensity optical pulse, or

when the input field is of low power and is designed to grow upon propagation in the amorphous

silica glass from continuous-wave mode to a high-intensity pulse.

2.3.1 Characteristic of continuous-wave laser

In general, for lasers operating in continuous-wave regime, the beam is uninterrupted because

their output power is constant in time. Continuous-waves laser can be used to generate pulsed

lasers via mode-locked system. Indeed, mode-locked is methods utilized to generate ultrashort

pulse (i.e. femtosecond laser).

2.3.2 Characteristic of pulsed laser

Pulsed lasers are devices that deliver short or ultrashort pulses energy with higher peak powers.

In this work, we are dealing with ultrashort pulse laser. This kind of laser is producing pulses

in the order of femtosecond and its power is in the order of petawatts. Figure 2.5 shows the

profile of continuous-wave and pulsed lasers in the time domains [91].
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Figure 2.5: Continuous-wave laser output (left) and Pulsed laser output right [91].

The mostly type of femtosecond laser used in the laser inscription is the Ti:saphir

ultrafast regenerative amplifier system with a center wavelength of 800 nm and the repetition

rate of 1 kHz [35]. An experimental setup of femtosecond laser material inscription given in

the literature is shown on figure 2.6.

As we are dealing with transparent amorphous silica, a single photon from the fem-

tosecond laser beam cannot promote electron in the conduction band of this material, since

the photon energy is small compared to the material band gap. Therefore the process will be

required a minimum of two-photon. For the above femtosecond laser with the wavelength of

800 nm the energy for the single photon from the laser radiation can be calculated as:

EL =
hc

λ
=

6.62× 10−34 × 3.108

800.10−9
= 2.48× 10−19J, (2.5)

EL = 2.48× 10−19J =
2.48

1.6
× 1.6× 10−19 = 1.55eV (2.6)

where, c is the speed of light and h is the Planck’s constant. Because of the fact that

a single photon from the femtosecond laser beam cannot promote electron in the conduction

band of amorphous silica glass, let us compute the maximum number of photon that should
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Figure 2.6: Experimental setup for implementation of plasma assisted material processing in

the bulk of amorphous silica [83].

be required by this material to allow an electron to reach its conduction band as:

KEL ≥ Eg =⇒ K =
Eg
EL

, (2.7)

where EL is the above value of single photon energy from the laser beam and K the maximum

value of photon required by amorphous silica glass. The band gap of amorphous silica is

Eg = 7.6eV and it follows from this that:

K =
7.6

1.55
= 4.90 ≈ 5. (2.8)

2.4 Theoretical model for laser inscription on amorphous

silica glass

We are already said in chapter 1 that Petrovic et al. [21] proposed the theoretical model for

femtosecond laser inscription. This existing proposed model is a coupled equations, namely

the first one, which describe the dynamics of the laser field and the second one for the time

evolution of the plasma generated during the propagation of the optical field in amorphous
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silica material. The model proposing by these authors are given by equations (2.9) and (2.10).

i
∂u

∂z
+ ∆⊥u− δ

∂2u

∂t2
+ σ|u|2u = −iγ0 (1− iω0τ0) ρu− iµ|u|2K−2u (2.9)

∂ρ

∂t
= ν|u|2ρ+ |u|2K (2.10)

However, the model we are interest in is an extension of a version discussed in [21], where the

extension is meant to take into account the contributions of electron-hole radiative recombina-

tion processes. This translates into an additional term in the Drude equation quadratic in the

electron plasma density, competing with the avalanche impact ionization and the multiphoton

ionization. In addition to this we also considered the plasma balance rate due to multi-photon

absorptions in the plasma equation. These two consideration makes our model to be different

from the one proposed by Petrovic et al. In general, the laser equation is modelled starting

from Maxwell’s equations while the plasma equation is derived according to Keldysh theory.

This two key points of the modelling will be helped us to build our model. In this goal, some

approximations will be considered and all those approximations will be discussed at every

derivation step with the explanation of their physical meaning such that the final laser model

will be well established.

2.4.1 Laser equation

As we mentioned above, we start our consideration from the Maxwell equations [92]:

~∇× ~E(~r,t) = −∂
~B(~r,t)

∂t
(2.11)

~∇× ~H(~r,t) = ~J(~r,t) +
∂ ~D(~r,t)

∂t
(2.12)

~∇. ~E(~r,t) =
ρ− ~∇. ~P (~r,t)

ε0
(2.13)

~∇. ~B(~r,t) = 0 (2.14)

~D(~r,t) = ε0 ~E(~r,t) + ~P (~r,t), (2.15)

where, ~E(~r,t) and ~H(~r,t) are respectively, the electric and magnetic fields, ~P (~r,t) is the polariza-

tion, ~B(~r,t) is an induced magnetization ~B(~r,t) ' µ0
~H(~r,t), ~D(~r,t) is the electric displacement,

ρ and ~J(~r,t) are carrier and current densities respectively. ε0, µ0 denote the permittivity and

permeability of free space. ~∇ represent usually a vector of first order spatial derivatives [34].
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Replacing ~B(~r,t) ' µ0
~H(~r,t) into equation (2.12) and taking its derivative reads:

~∇× ∂ ~B(~r,t)

∂t
= µ0

(
∂ ~J(~r,t)

∂t
+
∂2 ~D(~r,t)

∂t2

)
(2.16)

Taking equations (2.11) and (2.15) into equation (2.16) yields:

−~∇× (~∇× ~E(~r,t)) = µ0

(
∂ ~J(~r,t)

∂t
+ ε0

∂2 ~E(~r,t)

∂t2
+
∂2 ~P (~r,t)

∂t2

)
(2.17)

By introducing the relationship ~∇ × (~∇ × ~E(~r,t)) = ~∇(~∇. ~E(~r,t) − ∆ ~E(~r,t)) into equation

(2.17), we obtain:

∆ ~E(~r,t)− ~∇(~∇. ~E(~r,t)) = µ0

(
∂ ~J(~r,t)

∂t
+ ε0

∂2 ~E(~r,t)

∂t2
+
∂2 ~P (~r,t)

∂t2

)
. (2.18)

In general, the current density ~J(~r,t) responsible to the motion of free electrons is

created by the ionization of atom in the medium whereas, the dynamics of the ions is discarded.

According to the polarization ~P (~r,t), it is responsible for the bound electron response driven

by the femtosecond laser pulse. It is usually decomposed into a linear part ~PL(~r,t) ≡ ~P (1)(~r,t)

and nonlinear part ~PNL(~r,t) satisfying | ~P (1)(~r,t)| � | ~PNL(~r,t)| [93]. The linear part is related

to the first-order susceptibility tensor χ(1) and corresponds physically to the range of electric

fields where most electrons are still bound to the nucleus. It follows from this that equation

(2.18) can be written as:

∆ ~E(~r,t)− ~∇(~∇. ~E(~r,t)) = µ0

(
∂ ~J(~r,t)

∂t
+ ε0

∂2 ~E(~r,t)

∂t2
+
∂2 ~P (~r,t)L

∂t2
+
∂2 ~P (~r,t)NL

∂t2

)
(2.19)

To follow the ultimate goal of our work, we proceed by introducing some approximations

that would help us to reduce the vectorial wave equation (2.19) to the scalar wave equation.

Indeed, the electric field is assumed to remain linearly polarized along a direction ~ex transverse

to the propagation axis. To be more explicit, the electric field and the medium response

( ~J(~r,t), ~P (~r,t)) are transverse, which mean perpendicular to the propagation direction and

determined by the wave vector ~k. This standard assumption in propagation of electromagnetic

fields means that the quantity ~∇(~∇. ~E(~r,t)) in equation (2.19) can be neglected. This remains

valid as long as radiation are not too strongly focused. It follows then from this last assumption

that, by projection along the polarization direction ~ex i.e. ~E(~r,t) = E(~r,t)~ex, ~J(~r,t) = J(~r,t)~ex,

~P (~r,t) = P (~r,t)~ex, equation (2.19) becomes [92]:

∆E(~r,t)− µ0

(
ε0
∂2E(~r,t)

∂t2
+
∂2PL(~r,t)

∂t2

)
= µ0

(
∂J(~r,t)

∂t
+
∂2PNL(~r,t)

∂t2

)
(2.20)
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Equation (2.20) is easier to handle in the Fourier domain since the computation of the polar-

ization term present in this later equation is a little bit complicated in the temporal domain.

Indeed for isotropic, homogeneous and non magnetizable media and spectral ranges far from

any material resonance, the linear polarization term can be expressed in the frequency domain

as:

~̂PL(~r,ω) = ε0χ
(1)(ω) ~̂E(~r,ω) (2.21)

Where the scalar dielectric function ε(ω) is defined by ε(ω) = 1 + χ(1)(ω).

Duel to the fact that χ(1)(ω) is complex-valued, the dielectric function ε(ω) contains

the information about material dispersion and the linear losses specified by the imaginary part

of χ(1)(ω). In general when these losses are negligible, ε(ω) is approximately real and can be

represented as ε(ω) = ε0εr(ω) meaning that the linear refractive index of the medium, enters

the wave number of the laser field define as k(ω) =
√
ε(ω)ω/c. By convention, n0 ≡ n(ω0) for

the central frequency ω0 = 2πc/λ0 of a laser operating at a wavelength λ0 and k0 ≡ k(ω0). In

what follows it will be convenient to evaluate each side of equation (2.20). In this case let us

call the left and the right hand sides A and B respectively, namely:

A = ∆E(~r,t)− µ0

(
ε0
∂2E(~r,t)

∂t2
+
∂2PL(~r,t)

∂t2

)
(2.22)

B = µ0

(
∂J(~r,t)

∂t
+
∂2PNL(~r,t)

∂t2

)
(2.23)

a) Evaluation of the left hand side A

The Fourier transformation of equation (2.22) is:

Â = ∆Ê(~r,ω) +
ω2

c2
Ê(~r,ω)−F

[
µ0
∂2 ~PL(~r,t)

∂t2

]
(2.24)

From the electric displacement we have:

ε0 ~E(~r,t) + ~P (~r,t) = ε(ω) ~E(~r,t) (2.25)

When we multiply equation (2.25) by µ0 and take its second derivation, it becomes:

µ0
∂2 ~PL(~r,t)

∂t2
+

1

c2

∂2 ~E(~r,t)

∂t2
=

εr(ω)

c2

∂2 ~E(~r,t)

∂t2
(2.26)
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Where µ0ε0c
2 = 1 and ε(ω) = ε0εr(ω), with εr(ω) = n2(ω) the refractive index. The

Fourier transformation of equation (2.26) is given in this case by:

F

[
µ0
∂2 ~PL(~r,t)

∂t2

]
− ω2

c2
Ê(~r,ω) = −n

2(ω)ω2

c2
Ê(~r,ω) (2.27)

−F

[
µ0
∂2 ~PL(~r,t)

∂t2

]
= k2(ω)Ê(~r,ω)− ω2

c2
Ê(~r,ω) (2.28)

Where k(ω) = n(ω)ω/c is the wavenumber. Replacing equation (2.28) into equation (2.24)

yield:

Â = ∆Ê(~r,ω) + k2(ω)Ê(~r,ω) (2.29)

Let us consider first one Cartesian component of the electric field in a given point by E(t).

Thus we define the electric field as a superposition of monochromatic wave thus:

E(t) =

∫ ∞
−∞

Ê(ω)e−iωtdω (2.30)

The equation describing the propagation of femtosecond laser that we are modelling in our

thesis, is a source of ultra short pulse and this allows us to consider at this setp that the wave

from the laser source is quasi-monochromatic with its spectrum placing around the central

frequency of the laser. Indeed the wave will be considered as quasi-monochromatic if (δω/ω0)�

1, where δω is a laser spectrum while ω0 is a central frequency of the laser [34]. Physically,

this means that, the optical field consists of one or small number of waves, where we can

assume that the spread of the laser in frequency δω of each of the waves is small compared

to the carrier frequency ω0. This assumption (δω/ω0) � 1 is also called the slowly varying

envelope approximation. Assuming at this step of our work that this approximation of quasi-

monochromatic wave is valid, it is possible for us to write:

ω = ω0 + δω with
δω

ω0

� 1 (2.31)

By taking equation (2.31) into equation (2.30) we obtain:

E(t) = e−iω0t

(∫ ∞
−∞

Ê(ω)e−iδωtd(δω)

)
= e−iω0tUs(t), (2.32)
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where Us(t) is the electric field components which is slowly varied in time. As we are dealing

with a quasi-monochromatic wave, equation (2.29) can be written as:

Â = ∆Ê(ω) + k2(ω0 + δω)Ê(ω) (2.33)

The wavenumber k(ω0 + δω) usually described the chromatic dispersion of the laser as it

propagates in a nonlinear medium. Indeed the group velocity vg of the pulse laser can be

calculated from vg = ∂ω/∂k evaluated at the center frequency ω0. Generally, the first derivative

of the dispersion relation only affects the pulse propagation velocity and the pulse shape is

altered by second or high order derivative. The second derivative of the dispersion relation is

related to the group velocity dispersion and it is the principal source of pulse spreading [36, 94].

To take into account this phenomenon, we would use the Taylor expansion of the wavenumber

k(ω0 + δω) around the central frequency ω0 in the second order:

k2(ω0 + δω) = k2(ω0) +

[
d

dω

(
k2(ω)

)]
ω=ω0

δω +
1

2!

[
d2

dω2

(
k2(ω)

)]
ω=ω0

(δω)2

= k2(ω0) + 2k0

[
dk

dω

]
ω=ω0

δω +

[
dk

dω

]2

ω=ω0

(δω)2 + k0

[
d2k

dω2

]
ω=ω0

(δω)2

= k2
0 + 2

k0

vg
(δω) +

(
1

v2
g

+ k0k
′′
0

)
(δω)2, (2.34)

where k0 = k(ω0) = n0ω0/c with n0 = n(ω0). vg =
[
dω
dk

]
ω=ω0

represent the group velocity of

the optical wave at the carried wave frequency ω0 while k′′0 represent the variation of the group

velocity. Replacing equation (2.34) into equation (2.33) and rewrite it in the Fourier space

yields:

Â = ∆Ê(ω) + k2(ω)Ê(ω) = e−iω0t

[
∆

∫ ∞
−∞

Ê(ω)e−iδωtd(δω) + k2

∫ ∞
−∞

Ê(ω)e−iδωtd(δω)

]
+ e−iω0t

[
2
k0

vg

∫ ∞
−∞

Ê(ω)e−iδωt(δω)d(δω)

]
+ e−iω0t

[(
1

v2
g

+ k0k
′′
0

)∫ ∞
−∞

Ê(ω)e−iδωt(δω)2d(δω)

]
(2.35)

This latest equation is written in the time spaces as:

A = ∆E(~r,t)− µ0

(
ε0
∂2E(~r,t)

∂t2
+
∂2PL(~r,t)

∂t2

)
= e−iω0t

[
∆Us(t) + k2

0Us(t) + 2i
k0

vg

∂Us(t)

∂t
−
(

1

v2
g

+ k0k
′′
0

)
∂2Us(t)

∂t2

]
(2.36)
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As we already assumed above that an approximation of quasi-monochromatic wave is valid for

the model that we are try to construct here, then we proceed to the factorization of the part

of the electric field which is varied very fast in the z direction by writing:

Us(x,y,z,t) = U(x,y,z,t)eik0z (2.37)

From equation (2.37), we can see appearing the quantity U(x,y,z,t), which is the envelope of

the electric field that is vary varying slowly in the space as well as in the time.

∂Us
∂t

=
∂U

∂t
eik0z,

∂2Us
∂t2

=
∂2U

∂t2
eik0z, (2.38)

∆Us =

[
∂2U

∂z2
+ 2ik0

∂U

∂z
− k2

0U

]
eik0z + ∆⊥Ue

ik0z, (2.39)

where, ∆⊥ = ∂2

∂x2
+ ∂2

∂y2
. Replacing equations (2.38) and (2.39) into equation (2.36) reads:

A = e−i(ω0t−k0z)
[
∆⊥U +

∂2U

∂z2
+ 2ik0

(
∂U

∂z
+

1

vg

∂U

∂t

)
−
(

1

v2
g

+ k0k
′′
0

)
∂2U

∂t2

]
. (2.40)

In order to follow the pulse in its motion with the group velocity vg, we introduce the new

time variable t′ that would allow the pulse to change from the laboratory reference frame to

the pulse local frame.

t
′ = t− z

vg

z = z′
=⇒


∂
∂t

= ∂
∂t′

∂
∂z

= ∂
∂z′
− 1

vg
∂
∂t′

∂2

∂z2
= ∂2

∂z′2
− 2

vg
∂2

∂z′∂t′
+ 1

v2g

∂2

∂t′2

(2.41)

where t′ denotes the retard time in the pulse frame. According to vg, we would like to underline

that it represents a constant velocity corresponding to the change of reference frame. It is

possible to chose vg arbitrarily but a convenient choice is vg = 1/k′0, which coincides with the

pulse group velocity obtained from the derivation of the dispersion relation in the medium

k(ω) at the central frequency of the pulse ω0 [94]. As a next step, we replaced equation (2.41)

into equation (2.40) and we obtain:

A = e−i(ω0t−k0z)
[
∆⊥U +

∂2U

∂z′2
− 2

vg

∂2U

∂z′∂t′
+ 2ik0

∂U

∂z′
− k0k

′′
0

∂2U

∂t′2

]
= e−i(ω0t−k0z)

[
∆⊥U +

∂2U

∂z′2
+ 2ik0

∂

∂z′

(
1 +

i

k0vg

∂

∂t′

)
U − k0k

′′
0

∂2U

∂t′2

]
(2.42)
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The validity of the model that we are building requires that the second-order derivative

with respect to z′ of the envelope function U should be small as compared with 2k0 (∂U/∂z′)

meaning that (∂2U/∂z′2)� 2k0 (∂U/∂z′) [94, 34]. This inequality, is usually referred to as the

paraxiality assumption. Physically, this approximation means that the laser field amplitude

and phase are evolving sufficiently slowly along the propagation direction z′. It follows then

from this approximation that equation (2.42) becomes:

A = e−i(ω0t−k0z)
[
∆⊥U + 2ik0

∂

∂z

(
1 +

i

k0vg

∂

∂t

)
U − k0k

′′
0

∂2U

∂t2

]
(2.43)

b) Study of the right hand side B

Let us evaluate now the right hand side of equation (2.20) as we call:

B = µ0

(
∂J(~r,t)

∂t
+
∂2PNL(~r,t)

∂t2

)
. (2.44)

Indeed, to explicit the expression of the current density J appearing in equation (2.44), we

used the Sprangle et al [95, 96] method, which is base on the continuity and fluid velocity

equations given by:

∂ρ

∂t
+ ~∇.(ρ~ve) = G (2.45)

meρ
∂~ve
∂t

= ρe ~E −meG~ve −meρωc~ve, (2.46)

where, G is the electron source term proportional to the ionization rate, ωc = 1/τ0 is the

frequency of electron collision with the neutral atoms, me is the electron mass while ρ and ~ve

are the electron density and velocity respectively. To follows the objective of our modelling,

we first multiply equation (2.45) by e and obtain:

e
∂ρ

∂t
+ ~∇.(ρe~ve) = eG. (2.47)

Taking the current density in the form ~J = ρe~ve and introducing it into equation (2.47) reads:

e
∂ρ

∂t
+ ~∇. ~J = eG (2.48)

Maxwell equation yields ~∇. ~J = 0 and it follows from this that:

∂ρ

∂t
= G (2.49)
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Substituting equation (2.49) into equation (2.46) yields:

eρ
∂~ve
∂t

=
ρe2 ~E

me

− e~ve
∂ρ

∂t
− ωcρe~ve

=⇒ eρ
∂~ve
∂t

+ e~ve
∂ρ

∂t
=
ρe2 ~E

me

− ωcρe~ve (2.50)

Using the relation ~J = ρe~ve that we introduced above, we derived:

∂ ~J

∂t
=

∂

∂t
(ρe~ve) = eρ

∂~ve
∂t

+ e~ve
∂ρ

∂t
(2.51)

From equation (2.51), the relationship given by equation (2.50) can be simplifying as:

∂ ~J

∂t
=
ρe2 ~E

me

− ωc ~J (2.52)

As we defined above, ~J = J~ex and ~E = E~ex therefore equation (2.52) becomes:

∂J

∂t
=
ρe2E

me

− ωcJ (2.53)

To solve equation (2.53), we chose the form of the solution to be J = j(t)e−ωct and it follows

from this latest quantity that:

∂J

∂t
=
∂j(t)

∂t
e−ωct − ωcj(t)e−ωct (2.54)

Replacing equation (2.54) into equation (2.53) reads:

∂j

∂t
=

e2

me

ρ(t)E(t)eωct =⇒ j(t) =
e2

me

∫ t

−∞
ρ(t′)E(t′)eωct′dt′ (2.55)

J(t) = j(t)e−ωct =
e2

me

e−ωct

∫ t

−∞
ρ(t′)E(t′)eωct′dt′ (2.56)

To write the expression of the current density J , we consider the fact that the electrical field

of the laser is propagates at the carried frequency ω0 meaning that, E(t) = Us(t)e
−iω0t thus:

J(t) =
e2

me

e−ωct

∫ t

−∞
ρ(t′)Us(t

′)e−iω0t′eωct′dt′ (2.57)

Taking equation (2.57) into equation (2.53) yields:

∂J

∂t
=

e2

me

ρ(t)Us(t)e
−iω0t − e2

me

ωc

∫ t

−∞
ρ(t′)Us(t

′)e−iω0t′e−ωc(t−t′)dt′ (2.58)
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To compute the integral given by formula (2.58), we change the variable by considering that

y = t− t′. Therefore equation (2.58) becomes:

∂J

∂t
=

e2

me

ρ(t)Us(t)e
−iω0t

[
1− ωc

∫ +∞

0

e(iω0−ωc)ydy

]
, (2.59)

we consider that ρ(t) and Us = Ueik0z are varied very slowly with e(iω0−ωc) and that the electron

are moving in the opposite direction of the current. Thus we obtain finally the evolution of J :

∂J

∂t
= − iω0e

2ωc
me (ω2

c + ω2
0)

(
1− iω0

ωc

)
ρUe−i(ω0t−k0z)

= − iω0e
2ωc

me (ω2
c + ω2

0)
(1− iω0τ0) ρUe−i(ω0t−k0z) (2.60)

Let us now write the expression of the nonlinear polarization.

PNL =
3

4
ε0χ

(3)|E(t)|2E(t), with E(t) = U(x,y,z,t)e−i(ω0t−k0z)

=
3

4
ε0χ

(3)|U |2Ue−i(ω0t−k0z) (2.61)

By taking the second derivation of formula (2.61) with respect to time, we obtain:

∂2PNL
∂t2

= −3

4
ω2

0ε0χ
(3)|U |2Ue−i(ω0t−k0z) (2.62)

Combining equation (2.60) with equation (2.62), we obtain the right hand side of equation

(2.20):

B = −µ0

[
iω0e

2ωc
me (ω2

c + ω2
0)

(1− iω0τ0) ρU +
3

4
ω2

0ε0χ
(3)|U |2U

]
e−i(ω0t−k0z) (2.63)

After eliminating the part of the electric field that is moving very fast, we obtain from the

expressions of A and B that the evolution of the envelope of the electric field of the laser is

given by:

∆⊥U+2ik0
∂
∂z

(
1 + i

k0vg
∂
∂t

)
U−k0k

′′
0
∂2U
∂t2

= − iµ0ω0e2

meωc(1+ω2
0τ

2
0 )

(1− iω0τ0) ρU− 3
4
ω2

0µ0ε0χ
(3)|U |2U

that also,

T
∂U

∂z
=

i

2k0

∆⊥U −
ik′′0
2

∂2U

∂t2
− σe

2
(1− iω0τ0) ρU +

3i

8k0

ω2
0µ0ε0χ

(3)|U |2U (2.64)

Where, T =
(

1 + i
k0vg

∂
∂t

)
is an operator and σe = µ0ω0e2

k0meωc(1+ω2
0τ

2
e )

is the cross section for

electron-neutral inverse bremsstrahlung. Actually, σe leads to avalanche ionization. We have

seen above that k0 = (n0ω0)/c which imply that ω2
0 = (c2k2

0)/n2
0. Substituting this last relation

into equation (2.64) and take n2 = 3χ(3)

8n2
0

yields:

T
∂U

∂z
=

i

2k0

∆⊥U −
ik′′0
2

∂2U

∂t2
− σe

2
(1− iω0τ0) ρU + ik0n2|U |2U (2.65)
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Introduction of multi-photon ionization processes in the laser equation

Equation (2.65) above which, describes the propagation of femtosecond laser in transparent

material is not complete. Indeed the effects of multi-photon ionization (MPI) of the laser which

leads to the generation of free electron in the material has to be introduce in the propagation

equation meaning that:

T
∂U

∂z
=

i

2k0

∆⊥U −
ik′′0
2

∂2U

∂t2
− σe

2
(1− iω0τ0) ρU + ik0n2|U |2U −

βMPA(|U |)
2

U (2.66)

It has been reported from the literature that, the quantity βMPI(|U |) can be expressed in

different forms depending of the type of ionization. The quantity βMPI(|U |) would have the

form of K−photons absorption if we are dealing with the multi-photon ionization and would

have the tunnelling absorption form or a generallyzed form base on the Keldysh consideration

that we have introduced in chapter 1. Actually, the function βMPI(|U |) takes the losses caused

by photo-ionization into account which means that it represents physically the dissipative

function in the model. In this thesis, we are dealing with the multiphoton ionization (MPI)

and therefore the dissipative function takes the form βMPI(|U |) −→ β(K)|U |2K−2 where βK =

Kh̄ω0σeρnt is the coefficient of multiphoton absorption (MPA) [97]. The order of the (MPA)

is obtained from K = mod(Eg/h̄ω0) + 1, which is the minimum number of photons of energy

h̄ω0 needed to overcome the energy gap Eg for liberating an electron.

c) Final laser equation

The quantity ik0n2|U |2U which denotes the Kerr nonlinear effect in equation (2.66) has to be

complet by multiply it with T 2 and this to make our model to be valid with the one in the

literature. Taking this into account in the mentioned above equation and after multiplying

with the inverse operator T−1 the ultimate propagation equation reads:

∂U

∂z
=

i

2k0

T−1∆⊥U −
ik′′0
2

∂2U

∂t2
− σe

2
(1− iω0τ0)T−1ρU + ik0n2T |U |2U −

β(K)

2
|U |2K−2U (2.67)

In this model we limited to the second order dispersion relation obtained from a Taylor

expansion around ω0 and as a consequence of this, the operator T−1 in front of the chromatic

dispersion will be neglected. Actually the operator T−1 introduces a space-time focusing in

front of the diffraction term (T−1∆⊥U). The nonlinearities of the envelope function (T |U |2U)

are also affected by the operator T corresponding physically to a self-steepening [97, 34, 94].
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Equations (2.67) describe wave diffraction, Kerr focusing response, plasma absorption and

defocussing, chromatic dispersion with a self-consistent action of deviation from the classi-

cal slowly-varying envelope approximation through space-time focusing and self-steepening

operators respectively. In this dissertation, emphasis is laid on the spatial dynamics of the

pulsed beams. Hence, for sake of simplicity, we limited at the second order dispersion and

T, T−1 −→ 1. These assumptions are justified by the slowly varying envelope approximation

condition that we introduced at the beginning of this section. It follows from this that the

final laser equations that our objective was to model is:

∂U

∂z
=

i

2k0

∆⊥U −
ik′′0
2

∂2U

∂t2
− σe

2
(1− iω0τ0) ρU + ik0n2|U |2U −

β(K)

2
|U |2K−2U (2.68)

2.4.2 Equation for the plasma generation in amorphous silica glass

The evolution equation for the electron plasma density is governed by a rate equation in the

form [93, 98, 99]:

∂ρ

∂t
= (WMPI +WAI) ρnt − α0ρ

2 (2.69)

where, WMPI and WAI denotes multiphoton (MPI) and avalanche ionization rate respectively

whereas the quantity (−α0ρ
2) stand for radiative electron recombination. According to Keldysh

theory, optical field ionization in the (MPI) regime occurs with a rate [94]:

WMPI = σKI
K = σK |U |2K (2.70)

which is valid for the laser intensities in the range 1013 − 1014 W/cm2. The rate for avalanche

ionization is proportional to the pulse intensity:

WAI =
σ(ω0)

n2
0Egρnt

ρI =
σ(ω0)

Egρnt
ρ|U |2 (2.71)

Where σ(ω0) ≡ σ0 is the cross section for inverse Bremsstrahlung evaluated at the central

frequency ω0 of the laser pulse and Eg is the ionization energy. Replacing equations (2.70) and

(2.71) into (2.69) yields:

∂ρ

∂t
=

[
σ(ω0)

n2
0Egρnt

ρ|U |2 + σK |U |2K
]
ρnt − α0ρ

2 (2.72)

The ionization of the medium implies the absorption of a large number of photons,

which means that Eg = Kh̄ω0. As we already mentioned above that in the limit of (MPI), we
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have βK = Kh̄ω0σKρnt, which imply that, σKρnt = βK/Kh̄ω0. Taking this two last quantities

into account, we rewrite equation (2.72) as:

∂ρ

∂t
=

σ0

n2
0Eg

ρ|U |2 +
β(K)

Kh̄ω0

|U |2K − α0ρ
2 (2.73)

It is worth noticing that the plasma density ρ is also a slowly varying entity, like U .

It does not take into account the fast small-scale motion (∼ 1 nm) of the electrons. We

assumed a free electron gas on a positive background. This background are the ions, which

provide the shielding of the electron charges. Because the mass of the ions is ∼ 30000 times

the electron mass, we neglect ion motions and therefore their contribution to the evolution of

plasma equation.

Equations (2.74) and (2.75) are the theoretical. From these coupled equations we shall

derive easily the theoretical model dedicated to our study. Indeed those two last coupled

equations must be supplemented with initial and boundary conditions.

∂U

∂z
=

i

2k0

∆⊥U −
ik′′0
2

∂2U

∂t2
− σe

2
(1− iω0τ0) ρU + ik0n2|U |2U −

β(K)

2
|U |2K−2U (2.74)

∂ρ

∂t
=

σ0

n2
0Eg

ρ|U |2 +
β(K)

Kh̄ω0

|U |2K − α0ρ
2 (2.75)

In general, when the femtosecond laser have not yet interact with the fused silica ma-

terial, we have ρ(0) = 0, which physically corresponds to the absence of free charges in the

media. According to the intensity distribution at the boundary, it is usually given by either

Gaussian or super-Gaussian beam shapes [100]:

U(0,t) = ξ0 exp(− r
2N

w2N
0

− ik0
r2

2f
− t2

t2p
), (2.76)

which may be focused through a lens of focal length f. Here, r2 = x2 + y2, w0 is the beam

waist and tp (the 1/e2
0 pulse half-width) is such that its full-width-at-half-maximum (FWHM)

equals ∆t =
√

2 ln 2tp. For Gaussian beams (N = 1), ξ0 =
√

2Pin/πw2
0 including the input

power Pin =
∫
|U |2d~r. Under conditions of linear focusing, the input Gaussian beam comes to

focus at longitudinal position d = f/(1 + f 2/z2
0), where z2

0 = πw2
0n0/λ0 is the Reyleigh range

(diffraction length of the collimated beam) of the input beam. The size of the laser beam wf

at the focus is (wf/w0)2 = (f 2/z2
0)/(1 + f 2/z2

0) = zf/z0, with zf the Reyleigh range of the

focused beam.
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2.4.3 Theoretical model

The model that we will be using in the next chapter is the dimensionless form of equations

(2.74) and (2.75).

Dimensionless equations

To facilitate the analysis, it is often convenient to rescale the model equations and write them

in a dimensionless form. For our system, we introduce the following scales [99, 100]:

t −→ tpt, r −→ wfr, z −→ 4zfz , U −→
√

2Pin/πw2
fu, ρ −→ ρBDρ

Where ρBD is the prescribed breakdown electron plasma density. The use of wf and

zf as transverse and longitudinal length units, respectively, is appropriate because the pulse

intensity is high near the focal point (z = f) where the plasma is expected to be generated in

a volume of 2πw2
fzf . Introducing the above scales into equations (2.74) and (2.75) reads:

i
∂u

∂z
+ ∆⊥u− δ

∂2u

∂t2
+ σ|u|2u = −iγ0 (1− iω0τ0) ρu− iµ|u|2K−2u (2.77)

∂ρ

∂t
= ν|u|2ρ+ α|u|2K − aρ2 (2.78)

where,

σ = 8Pin

Pcr
, δ =

2k′′0 zf
t2p

, γ0 = 2zzσeρBD, µ = 2zfβ
(K)
(

2Pin

πw2
f

)K−1

, ν = 2σ0Pintp
n2
0Egπw2

f
, a = α0tpρBD,

Pcr =
λ20

2πn0n2
and α = β(K)tp

Kh̄ω0ρBD

(
2Pin

πw2
f

)K
.

To be more explicit on the physical meaning of each coefficients appearing in equations

(2.77) and (2.78) as well as each term present in those two equations, we specify that z is the

propagation distance, K is a photon number, t is the propagation time, τ0 is the lifetime of the

electron plasma, ω0 is the plasma frequency [101], γ0 is the strength of coupling of the electron

plasma to the laser field, u is the normalized envelope of the laser field, ρ is the normalized

plasma density [21], δ is the group-velocity dispersion coefficient with δ = ±1 depending on

whether the group-velocity dispersion is in the anomalous or normal regime respectively, σ is

the kerr nonlinearity coefficient, ν is one photon-induced cascade ionization rate while α is the

plasma balance rate due to K-photon absorptions, and µ is the strength of nonlinearity induced

by multi-photon absorption processes. The first term in the right-hand-side of equation 2.77

accounts for the absorption and defocusing by plasma, while the second term accounts for
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K-photon absorption. For the left-hand-side, the three first terms describes the diffraction,

transverse modulations and dispersion of the laser field respectively during its propagation

and the last term contribute for the Kerr effect. According to equation 2.78, the first term on

the right-hand-side describes growth of the electron plasma by cascade (avalanche) ionization,

whereas the second term is the contribution of multi-photon absorption (MPA), and the third

term describes the electron-ion recombinations processes in the plasma. Actually, the electron-

ion recombination phenomena contribute to the loss of the generation of free electrons for

the further plasma and for the processes to occurs, two charged particles are requires thus its

proportionality to ρ2 in the above equation [36, 94, 97].

For the above model, its linear solution will represent the continuous-wave laser while

its nonlinear solution will denote the pulsed laser (i.e. femtosecond laser).

2.5 Methodology

In the next chapter, we will examine the continuous-wave and femtosecond laser stability

(i.e. spot) for different ranges of values of characteristic parameters of the model given in

equations (2.77) and (2.78). In this goal we shall examine laser stability in this proposed

model, taking into consideration multi-photon absorptions, plasma generation and radiative

recombination processes. For a start, we shall examine laser stability in our model by neglecting

the effects of radiative recombination processes in the plasma generated. Then the analysis will

take into account the effect of radiative recombination on the continuous-wave laser stability.

To do this, we will carry out a modulational instability analysis of the model starting from

a continuous-wave input field in steady state, and explore the regions of cw stability and

instability through a global spectral map generated for different sets of values of characteristic

parameters of the model. This modulational instability technique will involve the linearization

of the laser propagation equation around a continuous-wave (cw) input intensity, which leads to

a linear-stability problem for which the Green-function technique, as well as the linear-matrix

approach, contribute in the formulation of system stability. Our study will closely follow the

standard analysis [102, 103], which rests on the assumption that pulses will be favoured in the

regions where characteristic parameters of the model act against the stability of continuous-

waves. However, the modulational instability analysis provides relevant information about
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the self-starting conditions, but do not actually help identify the exact forms of the pulse

and multiple-pulse structures stabilized in the pulsed regime [104]. The reason is that the

modulational-instability method deals strictly with plane waves and its instability can only

allow us to predict a distinct operation regime. To determine the exact structures governing

the pulse regime, we must solve the complex Ginzburg-Landau equation (CGLE) numerically.

In this respect, the dynamical approach must enable us to explore all the possible operation

regimes inherent to the stability of the present model in the nonlinear regime. Therefore, in

addition to the modulational instability analysis, we shall investigate the femtosecond laser

dynamics and stability in the full nonlinear regime by transforming the model equations into

a system of four equations of first order ordinary differential equation and solve it by means of

fourth-order Runge-Kutta algorithm.

2.5.1 Fourth-order Runge Kutta algorthm

The most widely known member of the Runge Kutta family is generally referred to as ”RK4”,

the ”classic Runge-Kutta method” or simply as ”the Runge-Kutta method”.

Let an initial value problem be specified as follows [105]:

dy

dt
= f(t,y), y(t0) = y0. (2.79)

Here y is an unknown function (scalar or vector) of time t, which we would like to approximate;

we are told that dy/dt, the rate at which y changes, is a function of t and of y itself. At the

initial time t0 the corresponding y value is y0. The function f and the initial conditions t0, y0

are given. Now pick a step-size h > 0 and define:

yn+1 = yn +
1

6
h (k1 + 2k2 + 2k3 + k4) (2.80)

tn+1 = tn + h, for n = 0,1,2,3,..., (2.81)

using:

k1 = f(tn,yn) (2.82)

k2 = f

(
tn +

h

2
, yn + h

k1

2

)
(2.83)

k3 = f

(
tn +

h

2
, yn + h

k2

2

)
(2.84)

k4 = f (tn + h, yn + hk3) . (2.85)
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Here yn+1 is the RK4 approximation of y(tn+1), and the next value yn+1 is determined by the

present value yn plus the weighted average of four increments, where each increment is the

product of the size of the interval, h, and an estimated slope specified by function f on the

right-hand side of the differential equation.

+ k1 is the slope at the beginning of the interval, using y (Euler’s method);

+ k2 is the slope at the midpoint of the interval, using y and k1;

+ k3 is again the slope at the midpoint, but now using y and k2;

+ k4 is the slope at the end of the interval, using y and k3.

In averaging the four slopes, greater weight is given to the slopes at the midpoint. If f is

independent of y, so that the differential equation is equivalent to a simple integral, then

RK4 is Simpson’s rule. The RK4 method is a fourth-order method, meaning that the local

truncation error is on the order of O(h5), while the total accumulated error is on the order of

O(h4).

In many practical applications the function f is independent of t (so called autonomous

system, or time-invariant system, especially in physics), and their increments are not computed

at all and not passed to function f , with only the final formula for tn+1 used.

Our theoretical model is a function of the parameter K, which represent the number

of absorbed photon in the process of femtosecond laser inscription. Because amorphous silica

glass required the absorption of two photon (i.e. K = 2), from the laser beam to break its

chemical bond and that we have found that for the case of our study the maximum number

photon required to promote an electron in the conduction band of amorphous silica glass is

K = 5. Therefore, within chapter 3, we shall be varied K as K = 2,3,4,5.

In this chapter, we have introduce some important properties of amorphous silica glass.

We also built the theoretical model of femtosecond laser as well as the model described the

time evolution of the plasma density induce by this laser in the amorphous silica material. The

coupled equations (2.77) and (2.78) will be used to optimize the process of femtosecond laser

inscription on amorphous silica within chapter 3.
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Chapter

3
Results and Discussion

Our main objective in this chapter is to explore analytically and numerically, conditions under

which the laser will be stable while operating in the continuous wave regime or in the pulse

regime for the above model given by equations (2.77) and (2.78). In this goal, we are going

to separate this chapter in three mains part. In the first part, we will first of all neglect

the radiative recombination process in the plasma equation (i.e −aρ2), then we shall examine

the stability of the new model obtained by means of the modulational instability approach.

Actually, for this model, the modulational instability analysis stands for the most reliable

analytical approach by which the laser stability can be effectively singled out in the distinct

possible regimes of its operation. For the second part, an improvement of this theoretical

model will be attempted to take into consideration physical processes which were ignored in

the first part of our investigation in this chapter, i.e. the radiative recombination phenomena

(−aρ2). This second part will be followed by the third part where, we will be investigated

on the nonlinear solution of the model. To follow the ultimate goal of our study, in the full

nonlinear regime an ansatz will be introduced to represent the femtosecond laser as a pulse

field with a real amplitude and real phase. With the help of this ansatz the system dynamics

will be transformed into a set of four first-order ordinary differential equations. This set

of first-order ordinary differential equations will be solved numerically using a fourth-order

Runge-Kutta algorithm. In this goal, we shall be plotted dynamical quantities of the model

for different values of radiative recombination coefficient a starting with a=0 (i.e. when there

is no radiative recombination).
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3.1 Stability investigation of the continuous-wave laser

inscription on amorphous silica glass in the presence

of plasma generation

3.1.1 Model without recombination processes in the plasma gener-

ated

Ignoring transverse modulations of the optical field for simplicity (but without loss of general-

ity), in equations (2.77) and (2.78), it follows from this that the model dedicated to the study

of the first part of this chapter is given by:

i
∂u

∂z
− δ∂

2u

∂t2
+ σ|u|2u = −iγ0 (1− iω0τ0) ρu− iµ|u|2K−2u (3.1)

∂ρ

∂t
= ν|u|2ρ+ α|u|2K (3.2)

3.1.2 Steady states solutions of the laser in the continuous-wave

regime

We seek for the solutions of the two above coupled equations (3.1) and (3.2). In general, there

will be a two possibles solutions, namely continuous-wave solutions and pulsed-wave solutions.

For this section, we shall be dealing with the continuous-wave solutions of the above model

in which its stability will be examined starting from the steady states. To investigate the

continuous-wave solutions let us rewrite the optical field in steady state as:

u(z) =
√
I0 exp(iqz), ρ = ρ0, (3.3)

where ρ = ρ0 is the plasma density in the steady state, I0 is the continuous-wave input power

and q is the wavenumber. Replacing this into equations (3.1) and (3.2) yields:

−q
√
I0 + σI0

√
I0 = −iγ0(1− iω0τ0)ρ0

√
I0 − µIK−1

0

√
I0 (3.4)

ρ0 = −α
ν
IK−1

0 (3.5)

From equation (3.4), we obtain:

−q + σI0 = −iγ0ρ0 − γ0ω0τ0ρ0 − iµIK−1
0 (3.6)
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Equation (3.6) can be written as:

(−q + σI0 + γ0ω0τ0ρ0) + i
(
γ0ρ0 + µIK−1

0

)
= 0 (3.7)

Equation (3.7) is a complex equation which is zero iff the real part and the imaginary part are

both equal to zero. It follows from this property that equation (3.7) becomes:−q + σI0 + γ0ω0τ0ρ0 = 0

γ0ρ0 + µIK−1
0 = 0

(3.8)

thus,

q = σI0 + γ0ω0τ0ρ0. (3.9)

Actually, the steady states of the propagation equations (3.1) and (3.2) correspond to a

laser field and plasma density with time and space independent amplitudes. This means that:

∂u

∂z
|u=u0 = 0 and

∂u

∂t
|u=u0 = 0 (3.10)

Taking these two condition into equations (3.1) and (3.2) reads:

σ|u0|2u0 = −iγ0 (1− iω0τ0) ρ0u0 − iµ|u0|2K−2u0 (3.11)

ρ0 = −α
ν
|u0|2K−2 (3.12)

Substituting equation (3.12) into equation (3.11) yields:

σ|u0|2 −
αγ0ω0τ0

ν
|u0|2K−2 + i

(
µ− αγ0

ν

)
|u0|2K−2 = 0 (3.13)

Separating real part from the imaginary part, equation (3.13) gives rise to:

σ|u0|2 −
αγ0ω0τ0

ν
|u0|2K−2 = 0 (3.14)

µ− αγ0

ν
= 0 (3.15)

Clearly, equation (3.15) suggests that αγ0 = µν. Equation (3.14) yields:

|u0|2K−4 =
σν

αγ0ω0τ0

=⇒ |u0|2 =

(
σν

αγ0ω0τ0

) 1
K−2

(3.16)

Defining an input power I0 = |u0|2, equation (3.1) suggests that for a continuous-wave to be

stable in steady state the input power I0 should fulfill the condition:

I0 =

(
σν

αγ0ω0τ0

) 1
K−2

(3.17)
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The above condition leads to the following expression for the steady-state plasma density:

ρ0 = −α
ν
|u0|2K−2

= − µ
γ0

(
σν

αγ0ω0τ0

)K−1
K−2

, (3.18)

a relation valid provided αγ0 = µν (which follows from the requirement that I0 must be always

real). According to formula (3.9), at steady state the cw modulation wavenumber q is fixed by

the input intensity I0 as well as the equilibrium plasma density ρ0. Since these two quantities

appear to be completely determined by characteristic parameters of the model, q too should

be fixed by characteristic parameters of amorphous silica glass.

From the minus sign in the expression of ρ0 given by formula (3.18), we infer that

characteristic parameters of the coupled set (3.1) and (3.2) cannot be chosen of arbitrary

signs. Indeed values of δ, σ and γ0 considered in ref. [21] were all positive, however the Kerr

coefficient σ can readily be fixed in the positive branch, whereas the group-delay dispersion

δ may also assume negative values corresponding to an anomalous dispersion regime. In this

case, the propagation equation (3.1) can be assimilated with an inhomogeneous self-focusing

Nonlinear Schrödinger equation with complex coefficients [106, 107] the nonlinear solution of

which is a pulse soliton. However, µ, α and γ0 can be chosen unconditionally positive or

negative although formula (3.18) imposes that α and ν should be of opposite signs, while

µ can be chosen negative provided γ0 is positive. It is also instructive to stress, concerning

the presence of the term proportional to µ in the propagation equation (3.1), that this term

accounts for a nonlinear gain generated by multiphoton absorption processes. Physical contexts

with K = 2 are common in mode-locked laser systems with fast saturable absorbers (see e.g.

[103, 108, 109, 110]).

The presence of the multiphoton ionization coefficient µ in equation (3.18) is equally of

great physical significance, indeed it suggests that the plasma density at the steady state is

an increasing function of the multiphoton parameter K. This paramater also appears to affect

the continuous-wave field intensity, as evidenced by formula (3.1). More explicitely equation

(3.1) shows that depending on values of characteristic parameters of the model, multiphoton

ionization processes will lower or increase the threshold input power required for laser operation

in the continuous-wave regime.
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3.1.3 Continuous-wave laser frequency in the steady state

The continuous-wave laser energy required to promote an electron in the conduction band of

amorphous silica with bandgap Eg = 7.6 eV is given by:

Kh̄ωl = Eg =⇒ ωl =
2πEg
Kh

(3.19)

It follows from equation (3.19) that a Continuous-wave laser frequency in the steady state is:

ωl =
2× 3.14× 7.6× 1.6× 10−19

5× 6.62× 10−34
(3.20)

= 2.3 rad/s (3.21)

= 2.3× 10−15 rad/fs (3.22)

3.1.4 Laser fluence in the steady state

The femtosecond laser fluence also known as energy density in the steady state is given by [2]:

F (z) = (1−R)F0e
−βnz, (3.23)

where, βn = 1.8±0.4×10−5 cm−1 [89] is the absorption coefficient of amorphous silica, R is the

small laser beam reflectivity on this material surface, z is the local coordinate perpendicular

to the surface of amorphous silica and F0 is the maximum laser fluence at the surface of the

material targeted by the present study. The maximum laser fluence is given by:

F0 =
I0

S0

T =

(
σν

αγ0ω0τ0

) 1
K−2

T (3.24)

where I0 is the above input power, T is the time interval over which the continuous wave

laser interacts with amorphous silica and S0 = 1 cm2 is the area where the laser radiation is

focusing. Introducing equation (3.24) into (3.23) we obtain the continuous wave laser fluence

at the steady state as:

F (z) = (1−R)

(
σν

αγ0ω0τ0

) 1
K−2

Te−βnz. (3.25)

The focusing system controls the laser beam spot size on amorphous silica is an impor-

tant system part. The area diameter of the focused laser beam defined engraving line width

and the real engraving efficiency and the penetrating depth of the laser beam. The diameter

depends on the lens focal length and the laser beam deviation. Actually the origin of the laser
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beam deviation is the presence of the plasma generated during the laser inscription process.

However, this plasma perturbed and induced the instability of the laser during engraving pro-

cess. Theoretically this can be translated into a modulational-instability analysis in which the

laser stability is evaluated through a small perturbation parameter whose amplitude growth

enough to destabilized the laser beam during inscription on amorphous silica. To this aim,

in the next section we shall discuss the stability of the continuous-wave laser in steady state,

considering a small perturbation which amplitude can grow or decreases in time.

3.1.5 Modulational-instability analysis of the laser in the continuous-

wave regime

A modulational instability analysis is a theory in which a uniform train of oscillatory waves of

moderate amplitude loses energy to a small perturbation with nearly the same frequency and

direction in the steady state. To investigate the stability of the continuous-wave field and the

plasma density in their steady states, we consider a small-amplitude perturbation such that

solutions to equation (3.1) and equation (3.2) can be rewritten as:

u(z,t) = [u0 + a1(z,t)] exp(iqz), (3.26)

ρ(t) = ρ0 + ρ̃(t), (3.27)

where a1(z,t) and ρ̃ are the small-amplitude perturbation coupled to the steady-state continuous-

wave laser field and the plasma density, respectively. Substituting formula (3.27) into equations

(3.1) and (3.2) reads:

i
∂u

∂z
− δ∂

2u

∂t2
+ σ|u|2u = −iγ (1− iω0τ0) [ρ0 + ρ̃(t)]u− iµ|u|2K−2u (3.28)

∂ρ

∂t
= ν|u|2 [ρ0 + ρ̃(t)] + α|u|2K (3.29)

KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics

Continuous-Wave and Femtosecond Lasers Inscriptions on Amorphous Silica Glass



3.1. STABILITY INVESTIGATION OF THE CONTINUOUS-WAVE LASER
INSCRIPTION ON AMORPHOUS SILICA GLASS IN THE PRESENCE OF
PLASMA GENERATION 74/138

The linearization of equations (3.28) and (3.29) around u0 are:

|u|2 = (u0 + a1)(u0 + a∗1) ≈
[
u2

0 + u0(a1 + a∗1)
]

(3.30)

|u|2u ≈
[
u3

0 + u2
0(2a1 + a∗1)

]
eiqz (3.31)

|u|2K−2u ≈ u2K−2
0 [u0 +Ka1 + (K − 1)a∗1] eiqz (3.32)

|u|2K ≈ u2K
0 +K(a1 + a∗1)u2K−1

0 (3.33)

Replacing these above quantities given by formula (3.30), (3.31), (3.32) and (3.33) into equa-

tions (3.28) et (3.29) yields:

i
∂a

∂z
− δ

∂2a

∂t2
+ (a1 + a∗1)Γ

(1)
K + iγ0(1− iω0τ0)u0ρ̃ = 0, (3.34)

∂ρ̃

∂t
= νu2

0ρ̃+ Γ
(2)
K (a1 + a∗1), (3.35)

where, Γ
(1)
K = σu2

0 + iµ(K − 1)u
2(K−1)
0 and Γ

(2)
K = µν

γ0
(K − 1)u2K

0 .

The first-order linear inhomogeneous equation (3.35) is solved by means of Green’s function.

Actually, for this case the Green function can be defined as:

G(t,t′) = H(t− t′) exp
[
−νu2

0(t′ − t)
]
, (3.36)

where H(t− t′) is the Heaviside function satisfying the following properties:

H(t− t′) =

1 if t > t′

0 if t < t′
(3.37)

Therefore it follows from this technique that the solution of the linear inhomogeneous equation

(3.35) can be written as:

ρ̃(t) = Γ
(2)
K

∫ t

−∞
G(t,t′)(a1 + a∗1) dt′

ρ̃(t) = Γ
(2)
K

∫ t

−∞
H(t− t′) exp

[
−νu2

0(t′ − t)
]

(a1 + a∗1) dt′

ρ̃(t) = Γ
(2)
K

∫ t

−∞
(a1 + a∗1) exp

[
−νu2

0(t′ − t)
]
dt′, for t > t′. (3.38)
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We formally choose the perturbation parameter in the following form:

a1(z,t) = A1 exp(κz + iΩt), a∗1(z,t) = A2 exp(κz + iΩt), (3.39)

where a∗1 is its complex conjugate. κ in the above is the spatial amplification coefficient of the

perturbation coupled to the amplitude of the steady-state cw laser, and Ω is the perturbation

modulation frequency. By introducing the above form of the cw laser perturbation parameters

into equation (3.38), we find:

ρ̃(t) =
(A1 + A2)Γ

(2)
K

iΩ− νu2
0

exp(κz + iΩt) (3.40)

Because of the presence of the complex conjugate of a∗ in the linear equation (3.34), we must

take into consideration the complex conjugate of this equation, which is:

−i∂a
∗
1

∂z
− δ

∂2a∗1
∂t2
− (a1 + a∗1)Γ

(1)∗
K − iγ0(1 + iω0τ0)u0ρ̃ = 0, (3.41)

Substituting formula (3.40) and (3.39) into equations (3.34) and (3.41), we obtain the following

2× 2 matrix equation for the perturbation amplitudes A1,2:

κ

 A1

A2

 =

 M1 M2

M∗
2 M∗

1

−M0

 1 1

1 1

 A1

A2


− P

 N1 N1

N∗1 N∗1

 A1

A2

 , (3.42)

in which:

M1 = i(δΩ2 + σu2
0), M2 = iσu2

0, (3.43)

M0 = µ(K − 1)u
2(K−1)
0 ,

P =
γ0Γ

(2)
K

iΩ− νu2
0

, N1 = 1− iω0τ0. (3.44)

The secular equation of the above matrix equation, which is a quadratic polynomial in κ,

admits the following two possible roots:

κ1,2 = −µ(K − 1)u
2(K−1)
0

(
1− νu2

0

νu2
0 − iΩ

)
(3.45)

±
√

(M0 + P )2 − (δΩ2 + σu2
0)2 − 2PδΩ2ω0τ0 + σ2u4

0,
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By considering the expressions of M0 and P above, we obtained:

M0 + P = µ(K − 1)u2K−2
0

(
1− νu2

0

νu2
0 − iΩ

)
(3.46)

Equation (3.46) into formula (3.45) yields:

κ1,2 = −µ(K − 1)u
2(K−1)
0

(
1− νu2

0

νu2
0 − iΩ

)
(3.47)

±

√[
µ(K − 1)u2K−2

0

(
1− νu2

0

νu2
0 − iΩ

)]2

− (δΩ2 + σu2
0)2 − 2PδΩ2ω0τ0 + σ2u4

0,

where subscripts 1 and 2 refer to the plus and minus signs respectively. As they stand

the two eigenvalues κ1,2 are functions of several parameters, making their interpretation a

cumbersome though eventually a physically rich problem. In the subsequent analysis we intend

to proceed step by step by considering characteristic parameters of importance in the model,

and examining their specific physical influences on the cw stability in different ranges of values

of the modulation frequency Ω . However before we proceed to this analysis, it is interesting

to remark that at zero modulation frequency (i.e. Ω = 0 ) the two eigenvalues are zero.

This means that the perturbation amplitudes in this case are constant and therefore the cw

regime is expected to be always stable. For nonzero values of the modulation frequency, the

problem of cw stability is more subtle as we already argued. In general the problem will

strongly depend on values (including signs) of the model parameters. To this last point, we

emphasized that for negative values of the group-delay dispersion δ (i.e. in the anomalous

dispersion regime) equation (3.1) is equivalent to a perturbed Nonlinear Schrödinger equation,

where the perturbation coefficients include real and complex parameters. So the nonlinear

solution to the field equation in this case is dominantly either a sech-type pulse [106] or a

periodic pulse lattice of pulses [111, 112], which characteristic parameters (average amplitude,

duration and repetition rate) are modulated by the perturbations [113, 107]. On the contrary

if the dispersion is normal (i.e. when δ is positive), the nonlinear optical medium will be

self-defocusing and physical conditions become unstable for sech structures. Neverthless such

conditions favor pulse-soliton boundstates such as dark soliton structures (see e.g. [114]).

The main information suggested by the above discussion is that to gain a substantial

insight onto the continuous-wave stability at non-zero modulation frequency, we must treat

the two distinct physical contexts of anomalous and normal dispersions. We shall follow an

analysis which involves a broad range of values of the modulation frequency, hence leading to a
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global mapping of the two eigenvalues in the parameter space Re(κ)−Im(κ) where Re and Im

refer to real and imaginary parts of their argument, respectively. All our analysis will be done

in the frequency range −5 ≤ Ω ≤ 5, while we fix γ0 = 0.1 and σ = 0.8. Other characteristic

parameters appearing in equations (3.1) and (3.2) will be varied.

Effects of changing sign of the group-delay dispersion

Figures 3.1 and 3.2 are parametric maps of κ1 (full curve) and κ2 (dashed curve) corresponding

to δ < 0 and δ > 0 respectively, for four different values of K namely K = 2, 3, 4, 5. Here the

avalanche coefficient was fixed to ν = 0.5, and values of other characteristic parameters are

given in the captions.

According to Fig. 3.1, continuous-wave will be stabilized by small values of the mul-

tiphoton parameter K (two top graphs and the left bottom graph). As K increases the

continuous-wave regime gets gradually destabilized, on the figure one can notice that when

K = 5, the real and imaginary parts of the two eignvalues are both strickly positive suggesting

an expontial growth of the perturbation amplitude. Oppositely, when δ > 0 the continuous-

wave regime will be unstable for any value of K. Note the small windows around the origin

of the parametric map and growing as K increases, which simply reflects the cw stability we

discussed earlier in the case of zero modulation frequency. The widening of this windows with

increasing K suggests the possibility of a stable cw mode at nonzero, but extremely small

values of the modulation frequency Ω when K becomes very large values.

Effects of varying the avalanche coefficient ν

To look at the effects of varying the avalanche coefficient ν on the cw stability, in Figs. 3.3

and 3.4 we represent the parametric maps now considering a smaller value of this coefficient

i.e. ν = 0.05. On observation of Figs. 3.3 and 3.4 it is transparent that decreasing ν creates

favorable condition for cw modes, moreover the cw stability is seen to be strengthened by an

increase of K.

Influence of the plasma frequency ω0

Analytical expressions of the two eigenvalues κ1,2 in formula (3.45), indicate that changing

the value of ω0 for fixed values of other parameters, can result in the change of sign of the
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Figure 3.1: Imaginary versus real parts of κ1 (full curve) and κ2 (dashed curve), for I0 = 2.5,

ν = 0.5, γ0 = 0.1, ω0τ0 = 0.2, σ = 0.8, µ = −0.1 and δ = −0.5. The four graphs are for K =

2, 3, 4, 5, as indicated in the graphs.
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Figure 3.2: Imaginary versus real parts of κ1 (full curve) and κ2 (dashed curve), for K = 2, 3,

4, 5. Other parameter values are I0 = 2.5, ν = 0.5, γ0 = 0.1, ω0τ0 = 0.2, σ = 0.8, µ = −0.1

and δ = 0.5.
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Figure 3.3: Imaginary versus real parts of κ1 (full curve) and κ2 (dashed curve), for K = 2,

3, 4, 5. Other parameter values are I0 = 2.5, ν = 0.05, γ0 = 0.1, ω0τ0 = 0.2, σ = 0.8, µ = −0.1

and δ = −0.5.
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Figure 3.4: Imaginary versus real parts of κ1 (full curve) and κ2 (dashed curve), for K = 2,

3, 4, 5. Other parameter values are I0 = 2.5, ν = 0.05, γ0 = 0.1, ω0τ0 = 0.2, σ = 0.8, µ = −0.1

and δ = 0.5
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quantity in the square root. This means that the plasma frequency could stand for another

possible relevant physical parameter of the model. To gain sight of what its variation entails

on the cw stability, the parametric maps were generated for a relatively larger value of this

parameter, ω0 = 0.44 rad/fs. Results are presented in figure 3.5 in the case of anomalous

dispersion ( δ = −0.5), and figure 3.6 for the normal dispersion ( δ = 0.5). Graphs of figure

3.5 display behaviours which are fairly qualitatively similar to the behaviours observed in

figure 3.1, except for some differences in shape profiles of the curves. However the physical

interpretations of the two figures are the same. On the other hand figure 3.6 is quite suggestive

of a stable continuous-wave regime for all the values of K we have chosen. In fact the later

behaviours can be understood that at relatively high values of the plasma frequency in the

normal dispersion regime and positive µ, cw modes will be always favored. As the four graphs

of figure 3.6 suggest the continuous-wave regime will be more and more stable as K increases.

3.1.6 Summary

At zero modulation frequency of the perturbation parameter, the laser in continuous-wave

regime will be always stable irrespective of values of characteristic parameters of the model. In

this case the desire size of the characters will be possible to engrave on amorphous silica. At

non-zero modulation frequency, when δ < 0 as shown in figure 3.1, continuous-wave is stabilized

by small values of photon number K. As K increases the cw regime gets gradually destabilized.

This means that, when the absorption is low (i.e. K = 2, 3), the characters started forming

on amorphous silica and when the photon number increases gradually (i.e. K = 4) the size of

the character start to reduce and becomes very small when the photon number is large (i.e.

K = 5). However, when δ > 0 as shown in figure 3.2, the continuous-wave is always unstable

then, engraving on amorphous silica in the continuous-wave mode is not possible for this case

and therefore it is not possible to obtain the desire size of engraving characters that required

the continuous-wave laser inscription. According to figures 3.3 and 3.4, the cw stability is seen

to be strengthened by an increase of K. This means that it is possible to engrave the desire size

of characters on amorphous silica in the continuous-wave regime. On figure 3.5 in the case of

anomalous dispersion (δ < 0), the graphs display the behaviours which are fairly qualitatively

similar to the behaviours observed in figure 3.1, except for some differences in shape profiles of

the curves. Therefore, the interpretations of the two figures are the same. On the other hand,
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Figure 3.5: Imaginary versus real parts of κ1 (full curve) and κ2 (dashed curve), for K = 2, 3,

4, 5. Other parameter values are I0 = 2.5, ν = 0.5, γ0 = 0.1, ω0τ0 = 1.1, σ = 0.8, µ = −0.1

and δ = −0.5
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Figure 3.6: Imaginary versus real parts of κ1 (full curve) and κ2 (dashed curve), for K = 2, 3,

4, 5. Other parameter values are I0 = 2.5, ν = 0.5, γ0 = 0.1, ω0τ0 = 1.1, σ = 0.8, µ = 0.1 and

δ = 0.5.
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figure 3.6 (δ > 0), suggested that the continuous-wave will be always stable for all the values

of K. This means that the inscription processes is optimum and the desire size of characters

is possible to be engraved on amorphous silica.

3.2 Stability investigation of the continuous-wave laser

inscription on amorphous silica glass in the presence

of plasma generated: effect of radiative recombina-

tion

To follow the objective of our work, we introduced an addition physical quantity in the above

equation (3.2) and obtain equation (3.49). Remark that this equation (3.49) differs from pre-

vious ones. Indeed equation (3.49) takes into consideration all together the contributions from

avalanche impact ionization (first term), multiphoton ionization (second term) and electron-

hole radiative recombination (last term). The model that we will be using for our study in this

section is given by the couple equations (3.48)-(3.49).

i
∂u

∂z
− δ∂

2u

∂t2
+ σ|u|2u = −iγ0(1− iω0τ0)ρu− iµ|u|2K−2u (3.48)

∂ρ

∂t
= ν|u|2ρ+ α|u|2K − aρ2 (3.49)

3.2.1 Steady states solutions

In this second part of our investigation, we shall be looked at the effect of radiative recombina-

tion processes on the stability properties of the cw laser field. Being two nonlinear equations,

general solutions to the coupled set equation (3.48)-(3.49) are nonlinear waves. Nevertheless

provided specific conditions, linear solutions including harmonic waves and continuous-wave

can also exist for the same set. Thus steady-state continuous-wave solutions to equation (3.48)-

(3.49) can be expressed

u(z) =
√
Ip exp (iPcz) , ρ = ρ0 (3.50)
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Substituting these into the coupled set (3.48)-(3.49) reads:

−Pc
√
Ip + σIp

√
Ip = −γ0(1− iω0τ0)ρ0

√
I0 − iµIK−1

p

√
Ip (3.51)

0 = νIpρ0 + αIKp − aρ2
0 (3.52)

Equations (3.51) and (3.52) can be simplify as:

−Pc + σIp = −γ0(1− iω0τ0)ρ0 − iµIK−1
p (3.53)

0 = νIpρ0 + αIKp − aρ2
0 (3.54)

Rearranged equations (3.53) and (3.54) yields:

(−Pc + σIp + γ0ω0τ0ρ0) + i
(
γ0ρ0 + µIK−1

p

)
= 0 (3.55)

ρ2
0 −

νIp
a
ρ0 −

α

a
IKp = 0 (3.56)

Equation (3.56) is a quadratic equation which is easy to solve. Indeed computing the discrim-

inant of equation (3.56) reads:

∆ =
ν2I2

p

a2

(
1 +

4aα

ν2
IK−2
p

)
(3.57)

Using ∆, it follows that the solution of equation (3.56) that we considered is:

ρ0 =
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
(3.58)

Introducing equation (3.58) into equation (3.55) yields:[
−Pc + σIp + γ0ω0τ0

νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)]
+i

[
γ0
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
+ µIK−1

p

]
= 0

(3.59)

Equation (3.59) is a complex equation and it is equal to zero if both the real part and the

imaginary part is zero. Thus if follows from this that equation (3.59) gives rise to:

Pc = σIp + γ0ω0τ0
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
(3.60)

γ0
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
+ µIK−1

p = 0 (3.61)

As we did in the first part of this chapter, meaning that at the steady state the propagation

equations (3.48) and (3.49) correspond to a laser field and plasma density with time and space

independent amplitudes. Thus:

∂u

∂z
|u=u0 = 0 and

∂u

∂t
|u=u0 = 0 (3.62)
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Taking these two condition into equations (3.48) and (3.49) reads:

σ|u0|2u0 = −iγ0 (1− iω0τ0) ρ0u0 − iµ|u0|2K−2u0 (3.63)

0 = ν|u0|2ρ0 + α|u0|2K − aρ2
0 (3.64)

The solution of equation (3.64) is given by:

ρ0 =
ν|u0|2 −

√
ν2|u0|4 + 4aα|u0|2K

2a
(3.65)

Defined Ip = |u0|2, I2
p = |u0|4, IKp = |u0|2K and IK−1

p = |u0|2K−2 then formula (3.65) becomes:

ρ0 =
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
(3.66)

Equation (3.63) can be simplify as:

σIp = −iγ0 (1− iω0τ0) ρ0 − iµIK−1
p (3.67)

Substituting equation formula (3.66) into equation (3.67) yields:[
σIp + ω0τ0γ0

νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)]
+ i

[
γ0
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
+ µIK−1

p

]
= 0

(3.68)

Separating real part from the imaginary part in equation (3.68) reads:

σIp + ω0τ0γ0
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
= 0 (3.69)

γ0
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
+ µIK−1

p = 0 (3.70)

From equation (3.70) we derived:

γ0
νIp
2a

(
1−

√
1 +

4aα

ν2
IK−2
p

)
= −µIK−1

p (3.71)

Replacing equation (3.71) into equation (3.69) yields:

σIp − µω0τ0I
K−1
p = 0 (3.72)

=⇒ µω0τ0I
K−2
p = σ (3.73)

=⇒ IK−2
p =

σ

µω0τ0

(3.74)

=⇒ Ip =

(
σ

µω0τ0

) 1
K−2

(3.75)
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As a summary, at the steady state in the presence of electron-hole radiative recombination, we

have:

Pc = σIp + γω0τ0ρ0, (3.76)

Ip =

(
σ

µω0τ0

) 1
K−2

, (3.77)

ρ0 =
ν

2a
Ip

[
1−

√
1 +

4aασ

ν2µω0τ0

]
, (3.78)

Here Pc, the cw wavenumber, is fixed by the input power Ip = |u0|2 as well as the equilibrium

value ρ0 of the electron plasma density ρ. Given that these two last quantities (i.e. Ip and ρ0)

depend on characteristic parameters of the model, they cannot be arbitrary and hence can be

tuned by varying characteristic parameters of the model.

3.2.2 Laser fluence

Let us now computing the laser fluence that require the laser to be stable at steady state. In

general, this physical quantity can be calculated using the input power at the steady state [2].

Therefore utilizing the expression of cw laser input power given in formula (3.77), we obtain:

F1(z) = (1−R)F ′0e
−βnz, (3.79)

with, βn the absorption coefficient of the material, R the small laser reflectivity on the material

surface, z is the local coordinate perpendicular to the surface of the sample and F ′0 is the

maximum laser fluence at the surface of the specimen which can be computed as:

F ′0 =
Ip
S ′0
T0 =

(
σ

µω0τ0

) 1
K−2

T0 (3.80)

where Ip is the above input power, T0 is the time interval over which the continuous wave laser

interacts with the material and S ′0 = 1 cm2 is the area where the laser radiation is focusing.

Introducing equation (3.80) into (3.79) we obtain the continuous wave laser fluence at the

steady state as:

F1(z) = (1−R)

(
σ

µω0τ0

) 1
K−2

T0e
−βnz. (3.81)

3.2.3 Benjamin-Feir instability analysis of a continuous-wave

Let us now examine the stability of the above continuous-wave regime. To this aim, we carry

out a modulational-instability analysis of an input field u0 co-propagating with a continuous-
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wave signal. In this purpose we consider a small perturbation f(z,t) to the cw
√
Ip, and δρ(t) a

small deviation of plasma density from the steady-state, such that solutions to equation (3.48)

and (3.49) can now read:

u(z,t) = [u0 + f(z,t)] exp(iPcz) (3.82)

ρ(t) = ρ0 + δρ(t) (3.83)

Replacing the above solutions in equations (3.48) and (3.49) and linearizing around u0, we

find:

i
∂f

∂z
− δ∂

2f

∂t2
+ (f + f ∗)C

(1)
K + iγ0(1− iω0τ0)u0δρ(t) = 0, (3.84)

∂δρ(t)

∂t
− q0δρ(t) = (f + f ∗)C

(2)
K , (3.85)

where,

C
(1)
K = σu2

0 + iµ(K − 1)u2K−2
0 , C

(2)
K =

1

γ0

(αγ0K − µν)u2K−1
0 , (3.86)

and q0 = νu2
0 + 2aµ

γ0
u2K−2

0 .

f ∗ denotes the complex conjugate of f in the linear equation (3.84). Because of the present of

f ∗ in equation (3.84), we must consider its complex conjugate yielding:

−i∂f
∗

∂z
− δ∂

2f ∗

∂t2
+ (f ∗ + f)C

(1)∗

K − iγ0(1 + iω0τ0)u0δρ(t) = 0. (3.87)

With this consideration, as a solution of equations (3.84) and (3.87), we write formally

f(z,t) = A1 exp (κz + iΩt) and f ∗(z,t) = A2 exp (κz + iΩt), with κ the spatial amplification

factor of the perturbation and Ω the associate time-modulation frequency. The first-order

inhomogeneous linear equation (3.85) can be solved by means of Green’s function technique,

yielding:

δρ = C
(2)
K

∫ t

−∞
(f + f ∗)e−q0(t′−t)dt′ (3.88)

=
(A1 + A2)C

(2)
K

iΩ− νu2
0 −

2aµ
γ0
u2K−2

0

exp (κz + iΩt) . (3.89)

By taking equation (3.89) into equations (3.84) and (3.87), we obtain the following eigenvalue

problem:
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κ

A1

A2

 =

M1 M2

M∗
2 M∗

1

− S0

1 1

1 1

A1

A2

 (3.90)

− T0

N1 N1

N∗1 N∗1

A1

A2


where,

M1 = i(δΩ2 + σu2
0), M2 = iσu2

0, (3.91)

S0 = µ(K − 1)u2K−2
0 , N1 = 1− iω0τ0 (3.92)

T0 =
(Kαγ0 − µν)u2K

0

iΩ− νu2
0 −

2aµ
γ0
u2K−2

0

(3.93)

The determinant of the above matrix equation gives rise to a quadratic polynomial in the

eigenvalue κ, the two possible roots of which are the dispersion relations:

κ1,2 = −µ(K − 1)u2K−2
0

[
1 +

γ0(Kαγ0−µν)u20
µ(K−1)(iΩγ0−νu20γ0−2aµu2K−2

0 )

]
±
√

(S0 + T0)2 − (δΩ2 + σu2
0)2 + σ2u4

0 − 2T0δΩ2ω0τ0 (3.94)

where the subscripts 1,2 refer to the plus (+) and minus (-) sign solutions respectively. More

explicitly the two solutions formula (3.94) represent two possible amplification factors for the

field during the cavity round-trips z, for the same modulation frequency Ω. In general these

two solutions will lead to the following stability properties:

+ When the real part of κ is zero, continuous wave fields will be always stable irrespective

of the sign of its imaginary part,

+ When the real part of κ is negative, continuous wave fields will be asymptotically stable

(i.e. they are stabilized after some roundtrips) irrespective of the sign of its imaginary

part,

+ When the real part of κ is positive, continuous wave fields will be always unstable.
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Given that the two eigenvalues are functions of the modulation frequency Ω, we find it

more appropriate to first consider the cw stability at zero modulation frequency. In this later

case the eigenvalues are:

κ1 = 0,

κ2 = −2µ(K − 1)u2K−2
0 +

2γ0(Kαγ0 − µν)u2K
0

νu2
0γ0 + 2aµu2K−2

0

(3.95)

It turns out that laser self-starting (i.e. cw instability) will be favored provided κ2 > 0, or in

terms of formula (3.95);

a <
Kγ(αγ0 − µν)

2µ2(K − 1)IK−2
p

(3.96)

Quantitatively, this condition implies two possible characteristic values of the radiative recom-

bination coefficient a above which laser self-starting can occur: One is negative for αγ0 < µν

and hence is nonphysical, whereas the positive and physical one is conditioned by αγ0 > µν

and is:

ath =
Kγ0(αγ0 − µν)

2µ2(K − 1)IK−2
p

. (3.97)

In concrete terms the quantity ath sets a threshold value of the electron-ion radiative recombi-

nation coefficient, above which the laser will self-start.

Due to the strong dependence of κ1,2 in equation 3.94 on the modulation frequency,

discussing cw stability from the analytical expressions of κ1,2 for arbitrary nonzero values of

Ω is far from being an easy task. Therefore we resort to a global analysis, by mapping the

two eigenvalues onto a plane Re(κ)− Im(κ) describing a two-dimensional complex parameter

space, where Re(κ) and Im(κ) are real and imaginary parts respectively of the eigenvalue κ. In

this parametric representation, the modulation frequency Ω plays the role of a parameter and

so can span a broad range of values, which in our case will be the finite interval −5 ≤ Ω ≤ 5.

The first figures that we considered are parametric representations of Im(κ) as a function

of Re(κ), for some selected combinations of values of key characteristic parameters of the model.

To be more explicit, the four graphs in figures 3.7 and 3.8 represent Im(κ) as a function of

Re(κ), for K = 2, 3, 4 and 5. Values of model parameters are given in the captions, and

different curves in each graph correspond to different values of the radiative recombination

coefficient a. Recall that the sign of δ determines the dispersion regime indeed a positive δ
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Figure 3.7: Imaginary versus real parts of κ1 (full curve) and κ2 (dashed curve) for K = 2,

3, 4, 5. The radiative recombination coefficient a is varied as a = 0, 0.001, 0.002, 0.003, 0.004.

α = 0.6, ν = 0.5, µ = 0.1, Ip = 2.5, ω0τ0 = 0.2 , σ = 0.8, δ = −0.5, γ0 = 0.1.
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corresponds to a normal group-velocity dispersion, whereas a negative δ will correspond to an

anomalous group-velocity dispersion well known to favor the generation of pulse structures,

of course provided the intrinsic refractive index of the amorphous silica is of a self-focusing

Kerr nonlinearity. Figure 3.7 suggests that small values of photon number K are expected
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Figure 3.8: Imaginary versus real parts of κ1 (full curve) and κ2 (dashed curve) for K = 2,

3, 4, 5. The radiative recombination coefficient a is varied as a = 0, 0.001, 0.002, 0.003, 0.004.

α = 0.6, ν = 0.5, µ = 0.1, Ip = 2.5, ω0τ0 = 0.2 , σ = 0.8, δ = 0.5, γ0 = 0.1.

to favor laser self-starting in the anomalous dispersion regime. As K increases, the real part
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of the largest eigenvalue associated to the higher values of radiative recombination coefficient

gradually shifts near the negative branch but still positive and consequently, the continuous

wave regime is unstable. On the contrary figure 3.8 indicates that in the normal dispersion

regime, continuous wave operation will be stable for higher values of radiative recombination

coefficient a=0.004 m3 fs−1 as well as the multi-photon absorption rate K = 5.

3.2.4 Summary

At zero modulation frequency of the perturbation parameter, we obtained from formula (3.94)

two eigenvalues which are κ1 and κ2. We found that, the cw laser will be always stable for

κ1 = 0 and κ2 < 0, meaning that for the laser operating in the continuous-wave mode, it will be

possible to engrave the desire size of characters on amorphous silica. At non-zero modulation

frequency for δ < 0, figure 3.7 shown that the continuous wave laser will self-start. For this

case engraving on amorphous silica in the continuous-wave regime is not optimal. However,

for δ > 0 as shown in figure 3.8, the continuous wave laser is stable for K = 5 suggesting an

optimum condition to engrave a desire size of characters on amorphous silica. In this case the

best value of radiative recombination coefficient involving in the process is a=0.004 m3 fs−1.

3.3 Stability investigation of pulsed laser inscription on

amorphous silica glass

In the full nonlinear regime of inscription on amorphous silica, solutions to the femtosecond

laser equation (3.48) are high-intensity fields which can be represented as real-amplitude pulses,

undergoing spatio-temporal modulations

u(t,z) = g(τ) exp i [φ(τ)− ωz] , (3.98)

g and φ represent respectively the real laser amplitude and the modulation phase. We introduce

a reduced time as τ = t− vz, in where v is the pulse inverse velocity, t the physical time of the

pulse propagation and ω is the nonlinear shift of the propagation constant. Letting g(z,t) ≡

g(τ), φ ≡ φ(τ), and using equation (3.98) to compute the different quantities appearing in
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equations (3.48) and (3.49) yields:

∂u

∂z
= (−vg′ − i(vφ′ + ω)g) exp i(φ(τ)− ωz) (3.99)

∂2u

∂t2
=

(
g′′ + iφ′′g + 2iφ′g′ − φ′2g

)
exp i(φ(τ)− ωz) (3.100)

|u|2u = g3 exp i(φ(τ)− ωz) and |u|2K−2u = g2K−1 exp i(φ(τ)− ωz). (3.101)

Inserting equations (3.99), (3.100) and (3.101) into equation (3.48) and equation (3.49) reads:
−ivg′ + (vφ′ + ω)g − δ(g′′ + iφ′′g + 2iφ′ − φ′2g) + σg3 = −iγ0(1− iω0τ0)ρg − iµg2K−1

ρ′ − νg2ρ− αg2K + aρ2 = 0

(3.102)

The system of equation (3.102) can be putting in the form:
[(vM + ω + δM2 + γ0ω0τ0ρ) g − δy′ + σg3] + i

[
(δM ′ − γ0ρ) g + (v + 2δM) y − µg2K−1

]
= 0

ρ′ − νg2ρ− αg2K + aρ2 = 0

(3.103)

Separating real parts from the imaginary parts, we obtain the following sets of coupled first-

order nonlinear ordinary differential equations:(
vM + ω + δM2 + γ0ω0τ0ρ

)
g − δy′ + σg3 = 0 (3.104)

(δM ′ − γ0ρ) g + (v + 2δM) y − µg2K−1 = 0 (3.105)

ρ′ − νg2ρ− αg2K + aρ2 = 0, (3.106)

where each prime denotes the derivative with respect to τ and M = φ′ is the instantaneous

frequency whereas g′ = y. The parameters v and ω are eigenvalues of equations (3.104) and

(3.105). Pulse solutions exist only at certain values of v and ω. Let us focus on the system

dynamics in the particular case v = 0 i.e zero-velocity. For this value of v the set of coupled

first-order nonlinear ordinary differential equations (3.104)-(3.106) reduces to:
(ω + δM2 + γ0ω0τ0ρ) g − δy′ + σg3 = 0

(δM ′ − γ0ρ) g + 2δMy − µg2K−1 = 0

ρ′ − νg2ρ− αg2K + aρ2 = 0

(3.107)
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Separating derivatives in equations (3.107) and combine the obtaining system with equation

(3.106), we get: 

M ′ = γ0ρ
δ
− 2My

g
+ µg2K−2

δ

y′ =
(ω+δM2+γ0ω0τ0ρ)g

δ
+ σg3

δ

g′ = y

ρ′ = νg2ρ+ αg2K − aρ2

(3.108)

Our first interest will be on the singular solutions to this system of equations (3.108), which

are their fixed points, with the aim to probe the effects of important characteristic parameters

of the model such as the radiative recombination coefficient a and the multiphoton absorption

rate K, on equilibrium solutions of the laser amplitude g and instantaneous frequency M , as

well as of the electron plasma density ρ.

3.3.1 Fixed-point solutions

Singular solutions to the set of first-order nonlinear ordinary differential equations (3.108),

which are their fixed points are obtaining by setting M ′ = 0, y′ = 0, g′ = 0 and ρ′ = 0. These

fixed points, are the roots of the following nonlinear system:

γ0ρ
δ
− 2My

g
+ µg2K−2

δ
= 0

(ω+δM2+γ0ω0τ0ρ)g
δ

+ σg3

δ
= 0

y = 0

νg2ρ+ αg2K − aρ2 = 0

(3.109)

This system can be simplify as:

γ0ρ+ µg2K−2 = 0 =⇒ γ0ρ = −µg2K−2 (3.110)

ω + δM2 + γ0ω0τ0ρ+ σg2 = 0 (3.111)

νg2ρ+ αg2K − aρ2 = 0 (3.112)

Replacing equation (3.110) into equations (3.111) and (3.112) gives rise to the system:ω + δM2 + σg2 − µω0τ0g
2K−2 = 0

(αγ0 − µν) g2K − aγ0ρ
2 = 0

(3.113)
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From this system we derive:

M2 =
1

δ

[
µω0τ0g

2K−2 − ω − σg2
]

(3.114)

ρ = gK

√(
αγ0 − µν
aγ0

)
(3.115)

Remarkable enough, formula (3.115) suggests that irrespective of the value of K, the electron

plasma density ρ will be zero when the laser amplitude g is zero.

Figure 3.9 represents the variations of the two fixed points of the laser amplitude g as a

function of ω, for K = 2, 3, 4, 5 and values of model parameters given in the captions. It should

be noted that by fixed points of g we understand its extrema, i.e. its maximum and minimum

which are obtained by annihilating M in formula (3.114). According to figure 3.9, for K = 2

the laser dynamics is dominated by weakly nonlinear pulse trains with maximum amplitudes

for ω = 0. An increase of K (see graphs for K = 3, 4 and 5) favors strongly nonlinear

pulse trains of larger amplitudes. In this case, the inscription processes will be optimized

and therefore will produce a very fine characters on the material. We have also plotted the

instantaneous frequency M as a function of the amplitude g of laser (figure 3.10), and the

laser amplitude g as function of the electron plasma density ρ (figure 3.11), for four different

values of K. Remark that the expression of M given in formula (3.114) does not contains

the radiative recombination coefficient a but is controlled mainly by the laser propagation

constant ω, whereas g as a function of ρ extracted from equation (3.115) depends on a but

not on ω. Therefore, we have chosen to plot M as a function of g by considering two cases

i.e., the case ω = 0 and the case of finite nonzero value of ω as one sees in figure 3.10. The

different curves in the graphs of figure 3.10 show that M is enhanced by an increase of g, and

that there is a threshold value of the amplitude beyond which the instantaneous frequency is

expected to decrease to zero. As it is apparent, this threshold value of g (and consequently of

M) is decreased with an increase of K. To be more explicit, in this graphs, we observed that

either ω = 0 or ω = 0.5, for K = 2, the instantaneous frequency increases linearly with the

amplitude g, suggesting a single-mode laser characterized by one instantaneous frequency for

a given value of the laser amplitude. However, as the photon number increases (see graphs for

K = 3,4 and 5), the instantaneous frequency M increases until a maximum and then starts

decreasing. This non-linear behaviour of the instantaneous frequency M with an increase of K

and decreases of the laser amplitude g is marked by the emergence of two amplitudes having
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Figure 3.9: Fixed points of the laser amplitude g as a function of ω, for K = 2, 3, 4, 5, σ = 0.8,

ω0τ0 = 0.2, µ = 0.25.
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the same frequency, thus suggesting two distinct laser modes with a common instantaneous

frequency. Such behaviour indicates that, the continuous-wave laser becomes more and more

unstable as a single-mode field and bifurcates into a two-mode field. This bifurcation is of

a period-doubling type, and indicates that a further increase in the photon number and the

decrease of the laser amplitude should lead to a regime in which the laser can no more operate

as a continuous wave. Therefore, for this case it is not possible for the inscription processes

to print a fine characters on amorphous silica and it will be only possible to print a very fine

character on amorphous silica. In figure 3.11, the fixed point of the electron plasma density is

always zero at zero amplitude of the laser whatever the value of K, consistently with what we

learned from formula (3.115). However for all the values of K, as the recombination phenomena

becomes more and more strong (i.e. a = 0.001, 0.002, 0.003 and 0.004), the plasma density

decrease leading to the stability of the laser amplitude. This decreasing of the plasma density

will allow the inscription process to be optimized and therefore, the fine character will be

possible to engrave on amorphous silica in the equilibrium state of the non-linear regime.

3.3.2 Pulses stability

Considering the full nonlinear dynamics regime of femtosecond laser inscription, the set of

first-order ordinary differential equations (3.108) was solved numerically using a fourth-order

Runge-Kutta algorithm. Because equations (3.48)-(3.49) involve several parameters, all of

which cannot be varied in this study, we fixed most parameters except two ones i.e. the

multiphoton absorption rate K, which was given the four different values K = 2, 3, 4, 5, and

the radiative recombination coefficient a which was varied in three distinct ranges of values

where three distinct behaviors were noticed. Figures 3.12 and 3.13 are time variations of

the laser amplitude g(t) and of the electron plasma density ρ(t), for four distinct values of K

and values of model parameters listed in the figure captions. For these two graphs the laser

frequency have been taken to be ω = 1.3 rad/fs. In figures 3.14 and 3.17 we also plotted

respectively ρ(t) and g(t) but with ω = 1.5 rad/fs. Note that for each graph, we plotted

dynamical quantities of the model for different values of radiative recombination coefficient a

starting with a=0 (i.e. when there is no radiative recombination). Our objective in so doing

was to highlight the qualitative and quantitative influences of a, on the system dynamics.

Indeed, to show the impact of radiative recombination processes on the femtosecond laser
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Figure 3.10: Variation of the instantaneous frequency M with the amplitude g of laser, for

K = 2, 3, 4, 5 and two different values of ω indicated in the graphs. σ = 0.8, ω0τ0 = 0.2,

µ = 0.25, δ = −0.5.
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Figure 3.11: Variation of the laser amplitude g with the electron plasma density ρ, for K =

2, 3, 4, 5 and different values of the radiative re- combination coefficient a indicated in the

graphs. ν = 0.1, α = 0.6, γ0 = 0.1, µ = 0.25.
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Figure 3.12: Time variation of the laser amplitude g, for K = 2, 3, 4, 5 and different values of

the radiative recombination coefficient a indicated in the graphs. σ = 0.8, ω0 = 1.38, τ0 = 0.58,

δ = −0.5, µ = 0.5, ν = 0.5, γ0 = 0.18, α = 0.6.
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Figure 3.13: Time variation of the electron plasma density ρ, for K = 2, 3, 4, 5 and values of a

indicated in the graphs. σ = 0.8, ω0 = 1.38, τ0 = 0.58, δ = −0.5, µ = 0.5, ν = 0.5, γ0 = 0.18,

α = 0.6.
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dynamics and stability, we started our analysis by consider a small variation of the electron-

hole recombination coefficient a by taking ω = 1.3 rad/fs. In this case, we observed that, when

a are varying very weakly, the laser amplitude g(t) fluctuated as K increases (see figure 3.12).

In addition to this, there is a fall-off of g(t) with time, which is more and more pronounced as

K gets larger. We attribute this fall-off to a damping effect induced by the density of electron

plasma i.e. ρ(t), which in this context acts like a laser loss. However, the plasma density

ρ(t) is always increases even when a is increase (see figure 3.13). The fluctuation of the laser

amplitude g(t) for this case means that the range of recombination coefficient that we have

selected is very weak to contribute to the stability of the pulses train in the presence of plasma

generated. Therefore the pulse laser is unstable and the inscription process cannot be efficient.

From these results, we derived the laser power per unit area as:

P (K) =
|g|2

As
, (3.116)

where As is the focused area and K = 2,3,4,5. This focused area can be calculated as:

As =
π

4
d2
sp, where dsp is the beam spot diameter on the amorphous silica is given by:

dsp = 2

√
As
π

(3.117)

We measured the value of g from the four curves given by figure 3.12. We fixed the time over

which the laser interact with amorphous silica to be t = 10 fs, As = 0.0025cm2 and the laser

energy per unit area (i.e. laser fluence) was computed using F = P (K) × t. The results are

summarizing in table 3.1.

The electron plasma density ρ (for ω = 1.3 rad/ fs), plotted in figure 3.13, is increasing

with time for a=0, 0.002, 0.005 and 0.008 irrespective of the value of K and this affect the

inscription process. In order to optimize this process, we have increased the laser frequency to

ω = 1.5 rad/fs and keep the other parameters that we used to plot ρ versus time in figure 3.13.

From this we obtained the new plot of ρ as a function of time as represented in figure 3.15.

We also noticed that even by increasing the value of ω, the plasma density still increase, this

means that we need to find the best range of variation for the recombination parameters that

will be contributed to the pulse stability. In so doing, we realized that, when a is increased in a

relatively large range of values, ρ(t) decreases exponentially in time tending to its equilibrium
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Table 3.1: Parameters for which pulses is unstable: ω = 1.3 rad/fs

Laser amplitude Power density Laser fluence Laser spot diameter

K = 2, g = 0.057 P = 13× 1014 W/cm2 F = 13 J/cm2 dsp = 0.056 cm

K = 3, g = 0.036 P = 5.18× 1014 W/cm2 F = 5.18 J/cm2 dsp = 0.056 cm

K = 4, g = 0.063 P = 15.8× 1014 W/cm2 F = 15.8 J/cm2 dsp = 0.056 cm

K = 5, g = 0.035 P = 4.9× 1014 W/cm2 F = 4.9 J/cm2 dsp = 0.056 cm

Amorphous Silica Glass parameters

Group velocity dispersion, δ = −0.5 fs2/cm

Kerr nonlinearity coefficient, σ = 0.8 cm W−1

Electron lifetime τ0 = 0.58 fs

Electron plasma frequency ω0 = 1.38 rad/fs

Avalanche coefficient ν = 0.5 cm2/J

Loss coefficient of the multiphoton absorption in amorphous silica, µ = 0.5 cm−1

Radiative recombination coefficient (in cm3 fs−1), a = 0, 0.002, 0.005, 0.008

value with an increasingly sharp slope (see figure 3.14). This last behaviour of the plasma

density profile takes us in the situation that, when a is very small ρ is an exponentially

increasing function of time and that large value of a decrease the plasma density. The values

of a chosen for the numerical results just discussed, from figures 3.13 and 3.15 do not enable

one appreciate how the electron plasma density ρ changes from its exponentially increasing

feature for small values of a, to an exponentially decreasing feature when a is large. It is

quite apparent that in the very small range of values of a, ρ is periodically oscillating as it

increases exponentially with time (figure 3.16). The quantity ath in the graphs of figure 3.15,

is the characteristic value of the radiative recombination coefficient for which the exponential

variation of ρ with time is suppressed. For this value of a, the electron plasma density ρ(t)

constantly oscillates between two positive extrema. Keeping ω = 1.5 rad/fs , we have plotted

the laser amplitude g(t) versus time in figure 3.17 for a large values of radiative recombination

coefficient (i.e. for the same values of a used in figure 3.14). In this case we found that, a

femtosecond laser amplitude g(t) is manifestly a pulse train with a maximum varying only

weakly with a for K = 2. However, as K is increased the maximum of g gets more and

more large, which lead to the stability of laser pulses. It follows from this results that the
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femtosecond laser powers and energies for different values of K are summarizing in table 3.2.

For this case we kept t = 10 fs and reduced the focused area to A′s = 0.00002 cm2.
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Figure 3.14: Time variation of the electron plasma density ρ, for K = 2, 3, 4, 5 and values of a

indicated in the graphs. σ = 0.8, ω0 = 1.38, τ0 = 0.58, δ = −0.5, µ = 0.5, ν = 0.5, γ0 = 0.18,

α = 0.6.

KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics

Continuous-Wave and Femtosecond Lasers Inscriptions on Amorphous Silica Glass



3.3. STABILITY INVESTIGATION OF PULSED LASER INSCRIPTION ON
AMORPHOUS SILICA GLASS 107/138

0 2 4 6 8 10 12 14

t

0.1000

0.1005

0.1010

0.1015

0.1020

0.1025

0.1030

0.1035

0.1040

ρ

K = 2, ω = 1.5
a=0

a=0.002

a=0.005

a=0.008
ath=0.028

0 2 4 6 8 10 12 14

t

0.1000

0.1005

0.1010

0.1015

0.1020

0.1025

0.1030

0.1035

ρ

K = 3, ω = 1.5
a=0

a=0.002

a=0.005

a=0.008
ath=0.026

0 2 4 6 8 10 12 14

t

0.1000

0.1005

0.1010

0.1015

0.1020

0.1025

0.1030

0.1035

ρ

K = 4, ω = 1.5
a=0

a=0.002

a=0.005

a=0.008
ath=0.026

0 2 4 6 8 10 12 14

t

0.1000

0.1005

0.1010

0.1015

0.1020

0.1025

0.1030

0.1035

ρ

K = 5, ω = 1.5
a=0

a=0.002

a=0.005

a=0.008
ath=0.026

Figure 3.15: Time variation of the electron plasma density ρ, for K = 2, 3, 4, 5 and values of a

indicated in the graphs. σ = 0.8, ω0 = 1.38, τ0 = 0.58, δ = −0.5, µ = 0.5, ν = 0.5, γ0 = 0.18,

α = 0.6.
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Figure 3.16: Time variation of the electron plasma density ρ, for K = 2, 3, 4, 5 and values of a

indicated in the graphs. σ = 0.8, ω0 = 1.38, τ0 = 0.58, δ = −0.5, µ = 0.5, ν = 0.5, γ0 = 0.18,

α = 0.6.
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Figure 3.17: Time variation of the laser amplitude g, for K = 2, 3, 4, 5 and different values of

the radiative recombination coefficient a indicated in the graphs. σ = 0.8, ω0 = 1.38, τ0 = 0.58,

δ = −0.5, µ = 0.5, ν = 0.5, γ0 = 0.18, α = 0.6.
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Table 3.2: Parameters for which pulses is stable: ω = 1.5 rad/fs

Laser amplitude Power density Laser fluence Laser spot diameter

K = 2, g = 0.11 P = 6050× 1014 W/cm2 F = 6050 J/cm2 dsp = 0.005 cm

K = 3, g = 0.158 P = 12482× 1014 W/cm2 F = 12482 J/cm2 dsp = 0.005 cm

K = 4, g = 0.16 P = 12800× 1014 W/cm2 F = 12800 J/cm2 dsp = 0.005 cm

K = 5, g = 0.16 P = 12800× 1014 W/cm2 F = 12800 J/cm2 dsp = 0.005 cm

Amorphous Silica Glass parameters

Group velocity dispersion, δ = −0.5 fs2/cm

Kerr nonlinearity coefficient, σ = 0.8 cm W−1

Electron lifetime τ0 = 0.58 fs

Electron plasma frequency ω0 = 1.38 rad/fs

Avalanche coefficient ν = 0.5 cm2/J

Loss coefficient of the multiphton absorption in amorphous silica, µ = 0.5 cm−1

Radiative recombination coefficient, a = 6 cm3 fs−1

3.3.3 Summary

The above results shown that, as we increase the femtosecond laser frequency from ω = 1.3

rad/fs (table 3.1) to ω = 1.5 rad/fs (table 3.2), the pulsed wave becomes stable for large values

of radiative recombination coefficient. Furthermore, we also observed that, by increasing the

pulse frequency and decreasing the focused area, the laser power applied to the amorphous

silica glass increases as the recombination coefficient increase. The reduction of the focused

area from 0.0025 cm2 to 0.00002 cm2 is motivated by the fact that, mark width depends on the

focused spot size and the focused spot size too is a function of the focal length lens. Indeed,

it is revealed experimentally that as the focal length lens is shift a way from the material, the

focused area also increases which ultimately increase the mark width and decrease the laser

power per unit area. From literature, we found that, decreasing the focused area ultimately

decreases the laser beam spot diameter on the material, which leads to a very fine engraving

[73]. Indeed with the focused area of 0.00002 cm2, we were able to obtain the laser bean spot

size of 50µm, which is well in the range of the laser beam spot size 20− 100µm given in [45].
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In this chapter, we carried out a theoretical investigations of the effects of the compe-

tition between multi-photon absorption, group-velocity dispersion and electron-hole radiative

recombination processes, on the continuous-wave and femtosecond lasers dynamics and stabil-

ity (i.e. laser beam spot) during inscription on amorphous silica glass. Mathematically the

model is represented by a complex Ginzburg-Landau equation with cubic nonlinearity plus a

K-order nonlinearity accounting for K-photon absorption processes, coupled to a Drude-type

equation with a term quadratic in the electron plasma density, accounting for radiative re-

combination processes. Given that a laser dynamics in amorphous silica is intimately linked

with the specific laser operation regime during the laser inscriptions on amorphous silica, we

considered two distinct regimes of laser dynamics namely continuous and pulsed waves. First

addressing continuous-wave regime and their stability, a linear-stability analysis was carried

out following the modulational-instability theory. In this purpose, a global stability picture

have been proposed in terms of a two-dimensional complex parameter space, mapped by the

real and imaginary parts of the coefficient of spatial amplification of perturbation over a finite

range of values of the modulation frequency. Next we discussed the system dynamics in the full

nonlinear regime (for laser operating in femtosecond mode), starting with fixed-point solutions

and then carrying out numerical simulations, using a fourth-order Runge-Kutta algorithm, to

generate non-linear time series of femtosecond laser amplitude and the electron plasma density,

for different values of the radiative recombination coefficient a and the multi-photon absorption

rate K.
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General Conclusion and Perspectives

The objective of this thesis was to propose a theoretical study to explore the effects of the

competition between multi-photon absorption, group velocity dispersion and electron-hole ra-

diative recombination processes on the continuous-wave and femtosecond laser dynamics and

stability during inscription on amorphous silica glass. This analysis was supposed to allow us

to provide the set of parameters of the model that could be considered for an efficient laser

inscription. This work is the very first theoretical attempt to understand the stability of laser

in engraving processes and results could help better understand the process, as well as the

regime when the laser is expected to operate as a continuous wave or as a pulsed regime.

Understanding the stability of our model here contributes to the finesse of the characters to

be printed on amorphous silica glass. To achieve our goal, we have divided our work into three

main parts within chapter 3.

In the first part of chapter 3, we investigated the continuous-wave laser stability (spot)

by neglecting the effect of the radiative recombination phenomenon in the plasma generated.

By carrying out the modulational-instability analysis of the model that we have considered for

this process, we predicted a rich stability property for the cw regime. In this case, we showed

that when the modulation frequency of the perturbation parameter is zero, the continuous-

wave laser will be always stable and the desired size of a character will be possible to engrave

on amorphous silica glass. At non zero modulation frequency of the small perturbation induced

by the presence of plasma, the continuous-wave laser is stable in the normal dispersion regime

for any value of photon number K. In this case, the set of optimal parameters of the model

that will provide a better engraving condition are summarized as follows: a continuous-wave

laser frequency ωl = 2.3× 10−15 rad/fs and laser power I0 = 2.5 KW/cm2 on amorphous silica

of band gap Eg = 7.6 eV with a group velocity dispersion δ = 0.5 fs2/cm, Kerr nonlinearity

coefficient σ = 0.8 cm W−1, electron lifetime τ0 = 2.5 fs, plasma frequency ω0 = 0.44 rad/fs,

avalanche coefficient ν = 0.5 cm2/J and the loss coefficient of the multiphoton absorption in

amorphous silica glass µ = 0.1 cm−1.

For the second part of our work of chapter 3, the model that we used is an extension

of a version discussed in the first part, where the extension is meant to take into account
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the contributions of electron-hole radiative recombination processes. This translates into an

additional term in the Drude equation quadratic in the electron plasma density, competing with

the avalanche impact ionization and the multi-photon ionization. We start with an analysis

of the system dynamics in the cw regime. In this purpose we find steady-state solutions and

analyse their stability by means of the modulational-instability theory. We constructed a global

stability map, which enabled us explore parameter regimes in which cw operations could be

stable. For this case in the steady state, we found that in the normal dispersion regime (i.e.

δ > 0) of amorphous silica, the continuous-wave laser becomes stable for K = 5 suggesting an

optimum condition to engrave a character on amorphous silica. The set of optimal parameters

that we pointed out for this case are summarized as follows: a continuous-wave laser frequency

ωl = 2.3 × 10−15 rad/fs and the laser power Ip = 2.5 KW/cm2 on amorphous silica of band

gap Eg = 7.6 eV with a group velocity dispersion δ = 0.5 fs2/cm, Kerr nonlinearity coefficient

σ = 0.8 cm W−1, electron lifetime τ0 = 1 fs, plasma frequency ω0 = 0.2 rad/fs, avalanche

coefficient ν = 0.5 cm2/J, the loss coefficient of the multi-photon absorption in amorphous

silica glass µ = 0.1 cm−1 and the radiative recombination coefficient a=0.004 cm3 fs−1.

In the last part of chapter 3, we investigated the nonlinear solution of the model. To do

this, an ansatz was introduced, which aimed at representing a femtosecond laser as a pulse field

with a real amplitude and real phase. With the help of this ansatz, the system dynamics was

transformed into a set of four first-order ordinary differential equations. This set of first-order

ordinary differential equations was solved numerically using a fourth-order Runge-Kutta algo-

rithm, implemented in python under Linux. In this last part, we plotted dynamical quantities

(i.e. time series curves of femtosecond laser amplitude and plasma density) of the model for

different values of the radiative recombination coefficient a starting with a=0 (i.e. when there

is no radiative recombination). We found that, when a=0, there is a fall-off of femtosecond

laser amplitude g(t) with time, which is more and more pronounced as K gets larger. We

attribute this fall-off to a damping effect induced by the density of electron plasma ρ(t). Ac-

cording to this, the fine character that one would like to print on amorphous silica glass cannot

be achieved. However, when a is increased in a relatively large range of values, ρ(t) decreases

exponentially in time tending to its equilibrium value with an increasingly sharp slope. In this

case, the femtosecond laser amplitude g(t) is manifestly a pulse train with a peak varying only

weakly with a for K = 2. However, as K increases, the maximum of g(t) gets more and more
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large and stable with an increasing value of radiative recombination coefficient a. Moreover,

from the data obtained from the time series curves of the dynamics quantities of the model that

we have plotted, we showed that as we increase the femtosecond laser frequency from ω = 1.3

rad/fs to ω = 1.5 rad/fs as well as the radiative recombination coefficient a = 3.9, 5.6,6 (in cm3

fs−1), the femtosecond laser pulse stabilizes. In order to compare our simulation results and

what could be obtained experimentally, we have reduced the femtosecond laser focused area

on amorphous silica glass and we observed that an increase in a pulse frequency induces an

increase in power density while the laser beam spot size decreases. This leads to a very fine en-

graving on amorphous silica. We have obtained four sets of parameters for a femtosecond laser

at frequency ω = 1.5 rad/fs. One of them is the photon number K = 5, the laser amplitude

g = 0.16, power density P = 12800×1014 W/cm2, when engraving amorphous silica having the

following parameters: group velocity dispersion δ = −0.5 fs2/cm, Kerr nonlinearity coefficient

σ = 0.8 cm W−1, electron lifetime τ0 = 0.58 fs, plasma frequency ω0 = 1.38 rad/fs, avalanche

coefficient ν = 0.5 cm2/J, loss coefficient of the multi-photon absorption in amorphous silica

glass µ = 0.1 cm−1 and the radiative recombination coefficient a=6 cm3 fs−1. We used the

focused area of 0.00002 cm2 to obtain the above results. Indeed, with this focused area, we

were able to obtain the femtosecond laser bean spot size of 50µm, which is well in the range

of the laser beam spot size 20− 100µm given in [45]. This value of the femtosecond laser spot

size that we proposed from our analysis can allow to obtain a fine engraving on amorphous

silica glass.

For our future work, we shall be considering the electron plasma density at its equilib-

rium, by assuming that the plasma density will change very slowly with time as compared to

the laser field amplitude. Such a consideration could be achieved by doping the material to

be engraved therefore contributing significantly to the stability of continuous-wave and fem-

tosecond laser inscription. In addition to this, we shall be considering the effects of electron

diffusion and its competitive effects coupled with radiative recombination on laser stability.
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[71] A. Böcker, H.G. Brokmeier, and H.J. Bunge. Determination of preferred orientation

textures in al2o3 ceramics. J. Eur. Ceramic Soc., 8:187–194, 1991.
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Practitioner’s guide to laser pulse propagation models and simulation. Eur.J.Special

Topics, 199:5–76, 2011.

[95] P. Sprangle, E. Esarey, and J. Krall. Self-guiding and stability of intense optical beams

in gases undergoing ionization. Physical Review E, 54(4), 1996.

[96] Ch. Cheng, E. M. Wright, and J. V. Moloney. Generation of electromagnetic pulses from

plasma channels induced by femtosecond light strings. Physical Review Letters, 87(21),

2001.

[97] L. Tatarinova. Analytical Study of Light Propagation in Highly Nonlinear Media. PhD

thesis, Universität Kassel, 2009.
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Appendix

Python code for fourth-order Runge-Kutta algrithm used in chapter 3

import matplotlib.pyplot as plt

import numpy as np

import cmath as cm

%matplotlib inline

def RK4(fcn, Tspan, I, Nt, k,a):

t = np.linspace(Tspan[0], Tspan[1], Nt+1)

dt = t[1] - t[0]

f_ = lambda u, t, k,a: np.asarray(fcn(u, t, k,a))

if isinstance(I, (float, int)):

u = np.zeros(Nt+1) # u[k] is the numerical solution

else:

I = np.asarray(I)

neq = I.size

u = np.zeros((Nt+1, neq))

u[0] = I

for n in range(Nt):

k1 = dt*f_( u[n], t[n], k,a)

k2 = dt*f_( u[n] + 0.5*k1, t[n] + 0.5*dt, k,a)

k3 = dt*f_( u[n] + 0.5*k2, t[n] + 0.5*dt, k,a)

k4 = dt*f_( u[n] + k3, t[n+1], k,a)

u[n+1] = u[n] + ( k1 + 2.0 * ( k2 + k3 ) + k4 ) / 6.0

return u, t
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gamma=0.18; delta=-0.5; nu=0.5; omegtau=0.8;

sigma=0.8; mu=0.5; alpha =0.6; omega=1.5;

def fcn(u, t, k,a):

Mprime=((gamma*u[3])/delta)-(2*u[0]*u[1]/u[2])+

mu*(u[2]**(2*k-2))/delta

yprime=(((omega+(delta*u[0]**2))+gamma*omegtau*u[3])*u[2]/delta)

+sigma*(u[2]**3)/delta

gprime=u[1]

rhoprime=(nu*u[3]*u[2]**2)+(alpha*u[2]**(2*k))-a*u[3]**2

return [Mprime, yprime, gprime, rhoprime]

import numpy as np

import matplotlib.pyplot as plt

Tspan = [0.,10]

Nt = 1000

plt.xticks(fontsize=10)

plt.yticks(fontsize=10)

plt.rc(’font’, family=’serif’, serif=’cm10’)

plt.rc(’text’, usetex=True)

#intial Condition:

M0=0.002; y0=0.03; g0=0.1; rho0=0.1

#M0=0.05*np.pi; y0=0.3; g0=0.7; rho0=0.8

I = np.stack((M0,y0,g0,rho0))

k=0

#A=[0.001,0.002,0.003,0.01,0.02]

A=[0,3.9,5.6,6 ]

lstyle=[’solid’,’dashed’,’dotted’,’dashdot’]

131 KAMENI NTEUTSE PEGUY © University of Yaounde I
Ph.D. Thesis in Physics



Appendix

counter = 0

for a in A:

u, t = RK4(fcn, Tspan, I, Nt, k+2,a)

plt.plot(t, u[:,0],’-’,linestyle=lstyle[counter],label="a

="+str(a),linewidth=1.5)

plt.title(r’$K =$ ’+str(k+2)+’, ’+r’$\omega

= 1.5$ ’,fontsize=25)

counter=counter+1

#plt.ylim((0,12))

plt.xlabel(r’$t$’,fontsize=22)

plt.ylabel(r’$M$’,fontsize=22)

plt.legend(loc=’best’, fontsize=14)

plt.savefig(’/home/peguykameni/Videos/M-t2.eps’,dpi = 10000)

plt.show()

import numpy as np

import matplotlib.pyplot as plt

#Tspan = [0.,11]

Tspan = [0.,11]

Nt = 1000

plt.rc(’font’, family=’serif’, serif=’cm10’)

plt.rc(’text’, usetex=True)

#intial Condition:

M0=0.002; y0=0.03; g0=0.1; rho0=0.1

#M0=0.05*np.pi; y0=0.3; g0=0.7; rho0=0.8

I = np.stack((M0,y0,g0,rho0))

k=0

#A=[0.001,0.002,0.003,0.01,0.02]
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A=[0,3.9,5.6,6]

lstyle=[’solid’,’dashed’,’dotted’,’dashdot’]

counter = 0

for a in A:

u, t = RK4(fcn, Tspan, I, Nt, k+2,a)

plt.plot(t, u[:,1],’-’,linestyle=lstyle[counter],

label="a="+str(a),linewidth=1.5)

plt.title(r’$K =$ ’+str(k+2)+’, ’+r’$\omega = 1.5$ ’,fontsize=25)

counter=counter+1

#plt.ylim((0,12))

plt.xlabel(r’$t$’,fontsize=22)

plt.ylabel(r’$y$’,fontsize=22)

plt.legend(loc="upper left",fontsize=11.4)

plt.savefig(’/home/peguykameni/Videos/y-t2.eps’,dpi = 10000)

plt.xlim((0,11))

#plt.grid(True)

plt.show()

import numpy as np

import matplotlib.pyplot as plt

plt.xticks(fontsize=20)

plt.yticks(fontsize=20)

Tspan = [0.,8.3]

#Tspan=[0.,10]

Nt = 1000

plt.rc(’font’, family=’serif’, serif=’cm30’)

plt.rc(’text’, usetex=True)

#intial Condition:
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M0=0.002; y0=0.03; g0=0.1; rho0=0.1

#M0=0.05*np.pi; y0=0.3; g0=0.7; rho0=0.8

I = np.stack((M0,y0,g0,rho0))

k=0

#A=[0.1,0.2,0.3,0.4,0.5]

A=[0,3.9,5.6,6]

lstyle=[’solid’,’dashed’,’dotted’,’dashdot’]

counter = 0

for a in A:

u, t = RK4(fcn, Tspan, I, Nt, k+2,a)

plt.plot(t, u[:,2],’-’,linestyle=lstyle[counter],label=

"a="+str(a),linewidth=2.5)

plt.title(r’$K =$ ’+str(k+2)+’, ’+r’$\omega = 1.5$ ’,fontsize=28)

counter=counter+1

plt.ylim((0,0.28))

plt.xlabel(r’$t$’,fontsize=30)

plt.ylabel(r’$g$’,fontsize=30)

plt.legend(loc="upper center",fontsize=17.2)

#plt.legend(loc=’best’, fontsize=14)

plt.tight_layout()

plt.savefig("/home/peguykameni/Documents/s5k2.png")

plt.xlim((0,8.236))

#plt.grid(True)

plt.show()

import numpy as np

import matplotlib.pyplot as plt
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plt.xticks(fontsize=22)

plt.yticks(fontsize=22)

Tspan = [0.,10]

Nt = 10000

#intial Condition:

plt.rc(’font’, family=’serif’, serif=’cm30’)

plt.rc(’text’, usetex=True)

M0=0.002; y0=0.03; g0=0.1; rho0=0.1

#M0=0.05*np.pi; y0=0.3; g0=0.7; rho0=0.8

I = np.stack((M0,y0,g0,rho0))

k=0

#A=[0.005]

A=[0,0.2,0.8,1.25]

lstyle=[’solid’,’dashed’,’dotted’,’dashdot’]

counter = 0

for a in A:

u, t = RK4(fcn, Tspan, I, Nt, k+2,a)

plt.plot(t, u[:,3],’-’,linestyle=lstyle[counter],label=

"a="+str(a),linewidth=4)

plt.title(r’$K =$ ’+str(k+2)+’, ’+r’$\omega

= 1.5$ ’,fontsize=28)

counter=counter+1

#plt.ylim((0,0.15))

plt.xlabel(r’$t$’,fontsize=30)

plt.ylabel(r’$\rho$’,fontsize=30)

plt.legend(loc="lower left",fontsize=15)

plt.tight_layout()

plt.savefig("/home/peguykameni/Documents/s5k6.png")
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#plt.xlim((0,20))

#plt.grid(True)

plt.show()

import numpy as np

import matplotlib.pyplot as plt

plt.xticks(fontsize=20)

plt.yticks(fontsize=20)

Tspan = [0.,14]

Nt = 90000

plt.rc(’font’, family=’serif’, serif=’cm30’)

plt.rc(’text’, usetex=True)

#intial Condition:

M0=0.002; y0=0.03; g0=0.1; rho0=0.1

#M0=0.05*np.pi; y0=0.3; g0=0.7; rho0=0.8

I = np.stack((M0,y0,g0,rho0))

k=3

#A=[0.001,0.002,0.003,0.01,0.02]

A=[0,0.002,0.005,0.008, 0.026]

lstyle=[’solid’,’dashed’,’dotted’,’dashdot’,’solid’]

counter = 0

for a in A:

u, t = RK4(fcn, Tspan, I, Nt, k+2,a)

if(a!=A[len(A)-1]):

plt.plot(t, u[:,3],’-’,linestyle=lstyle[counter],label=

"a="+str(a),linewidth=4)

else:
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plt.plot(t, u[:,3],’-’,linestyle=lstyle[counter],label="$a_{th}$

="+str(a),linewidth=4)

plt.title(r’$K =$ ’+str(k+2)+’, ’+r’$\omega = 1.5$ ’,fontsize=28)

counter=counter+1

#plt.ylim((-0.12,0.12))

plt.xlabel(r’$t$’,fontsize=30)

plt.ylabel(r’$\rho$’,fontsize=30)

plt.legend(loc="upper left",fontsize=16)

plt.tight_layout()

plt.savefig("/home/peguykameni/Documents/s5k13.png")

#plt.xlim((0,3))

#plt.grid(True)

plt.show()
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[1] P. Kameni Nteutse, A.M. Dikandé and S. Zekeng Competing effects of Kerr nonlinearity

and K-photon absorptions on continuous-wave laser inscriptions. Opt. Quant. Electron 51,

313 (2019), Impact factor 1.842, https://doi.org/10.1007/s11082-019-2031-5
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