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Abstract

In almost every domain of life, there are situations where big databases are used. In
these situations, extracting and exploiting information from such databases become
extremely difficult. In Formal Concept Analysis, such information is called "patterns".
When these data are transformed into formal contexts, patterns can be extracted, mainly
in two forms: i) formal concepts describing object sets together with their common
attributes, and ii) association rules including implications between attributes or objects.
More often, the number of these patterns appears very large in a context, making them
difficult to be studied. Many authors have proposed several methods of reducing the
number of these patterns, notably in [7, 26, 27, 39, ?, 43, 44, 45]. Generalization of
attributes is one of these methods.

Generalization on attributes in a formal context is a method of aggregation of at-
tributes in order to form new attributes called generalized attributes. It was first men-
tioned in [34] where the authors consider a taxonomy on items to extract relevant
information in the formal context of a transactions database in the form of association
rules. However, in this study, the authors considered both the items of the leaves of the
taxonomy and that of the others nodes, called generalized items. With the type of gen-
eralization described in [27], the attributes which are put together do not appear in the
generalized context, and then the generalized context has a size less than the initial one.
Depending of the way attributes are grouped in a formal context, there are three types
of generalization (see [27]): the universal generalization denoted by (∀-generalization),
the alpha-generalization denoted by (α-generalization) and the existential generalization
denoted by (∃-generalization). By reducing the size of the context trough a generaliza-
tion, one expects to also reduce the size of the concept lattice. But that is not always
the case, especially with the ∃-generalization.

In this work, we have brought our contribution to the resolution of the following
problems: i) The study of the size of concept lattices: by studying a special case,
we have shown that in the ∃-generalization, the size of concept lattices can increase
exponentially. Then, we have studied the worst case of increase one can get after an ∃-
generalization on a pair of attributes in a given formal context; and to round up, we have
presented some conditions for which the ∃-generalization stabilizes the size of concept
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lattices. ii) The search of a method of grouping attributes: here, we have proposed a
way of grouping attributes such that the size of the concept lattice does not increase
after an ∃-generalization. By observing some existing similarity measures, we have found
that they do not enhance a decision on wether the size of the concept lattice increases
or no. This gave us enough reason to construct a new similarity measure compatible
with the ∃-generalization, and such that putting together similar attributes do not leads
to more new concepts than putting together non similar ones. iii) The study of the
relation between implications of the initial formal context and that of the generalized
formal context: here, we have mainly studied the variation of the size of the set of all
informative implications between the initial formal context and the generalized formal
context.

Key Words : Formal Concept Analysis, ∃-generalization, Attribute, Similarity
Measure, Attributes Implication.
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Résumé

Dans la quasitotalité des domaines de la vie, on rencontre des situations où de très
grandes bases de données sont présentes. Dans ces situations, on a des difficultés
d’extraction et d’exploitation d’information de ces bases de données. En Analyse des
Concepts Formels, ces informations sont appelées "motifs". Lorsque ces bases de données
sont transformées en contextes formels, des motifs peuvent être extraits, principalement
sous deux formes: i) des concepts formels décrivant des ensembles d’objets avec leurs
attributs communs, et ii) des règles d’association parmi lesquelles les implications entre
des attributs. Très souvent, le nombre de ces motifs apparait très grand dans un con-
texte, les rendant ainsi difficile à étudier. Plusieurs auteurs ont proposé des méthodes
de réduction du nombre de ces motifs, notamment dans [7, 26, 27, 39, ?, 43, 44, 45]. La
généralisation est l’une de ces méthodes.

La généralisation en Analyse des Concepts Formels est une technique d’aggrégation
d’attributs ou d’objets dans le but de former d’autres attributs appelés attributs général-
isés. Il a été pour la première fois mentionné dans [34], dans lequel les auteurs ont utilisé
une taxonomie sur les objets ou les attributs pour extraire d’importantes informations
dans le contexte formel d’une base de données de transactions, notamment sous forme
de règles d’association. Cependant, les auteurs de cette étude ont considéré aussi bien
les attributs situés aux extremités de la taxonomie que ceux se trouvant sur d’autres
noeuds, appelés attributs généralisés. Avec la généralisation décrite dans [27], les at-
tributs qui sont généralisés n’apparaissent pas dans le contexte généralisé, donnant ainsi
à celui-ci une taille automatiquement inférieure à celle du contexte initial. En fonction
de la manière dont les attributs sont groupés dans un contexte formel, on distingue trois
type de généralisation (voir [27]): la généralisation universelle notée (∀-généralisation),
la généralisation α notée (α-généralisation) et la généralisation existentielle notée (∃-
généralisation). En réduisant la taille du contexte formel à partir d’une généralisation,
on s’attend aussi à une réduction de la taille du treillis des concepts. Cependant, ce
n’est pas toujours le cas, notamment avec la généralisation existentielle.

Dans ce travail, nous avons apporté notre contribution dans la résolution des prob-
lèmes suivants: i) L’étude de la taille du treillis des concepts: en étudiant un cas précis,
nous avons montré que dans la généralisation existentielle, la taille du treillis de con-
cepts peut augmenter exponenciellement. Ensuite, nous avons étudier le pire des cas
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d’augmentation que l’on puisse obtenir après une généralisation existentielle d’une paire
s’attributs dans un contexte formel donnée et enfin nous avons présenté quelques con-
ditions pour lesquelles la taille du treillis se stabilise. ii) La recherche d’une méthode
de regroupement des attributs: ici, nous avons proposé une méthode de regroupement
d’attributs assurant la non augmentation de la taille du treillis de concepts après une
généralisation existentielle. En examinant les mesures de similarité existantes, nous
avons constaté qu’elles ne permettent pas de décider sur l’augmentation ou non de la
taille du treillis des concepts après regroupement des attributs, ceci nous a motivé à
construire une nouvelle mesure de similarité compatible avec la généralisation existen-
tielle, de sorte que la mise en commun d’attributs similaires ne conduise pas à plus de
concepts que la mise en commun d’attributs non similaires. iii) l’étude du lien entre
les implications du contexte de départ et celles du contexte généralisé: ici, nous avons
essentiellement étudié les variations en nombre des implications informatives entre le
contexte de départ et le contexte généralisé.

Mots clés : Analyse des Concepts Formels, Généralisation Existentielle, Attribut, Mésure
de Similarité, Implication sur les Attributs.
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General Introduction

0.1 Motivations

In an economic environment where the population keeps growing, the demand for
goods and services tends to follow the population growth. This is not only observed

in developed or emerging countries where the standard of living is high, but is more and
more a reality in almost all developing countries, especially those that are involved in
the fight against poverty. Hence, in their attempt to increase production so as to meet
the rising demand, enterprises often face the problem of management of big databases,
which contain information about their customers or about the transactions made by their
customers. Such information can cover different kinds of products sold, the characteristic
of these products, their sources, their prices,... Most often, they are analysed in order
to predict the customers choices.

In such big databases, enterprises often have enormous difficulties extracting useful
information just by observation, and even when they succeed, the volume of information
extracted is often too much that it makes it very difficult for them to select the relevant
ones. Hence, the needed information can be contained into thousands of information
from data. Hence, to efficiently extract relevant information from such big databases,
experts often look for a means of reducing both the size of the databases and that of the
volume of information that they contain. Formal Concept Analysis has so far proposed
several technics ( [27]) of extraction of useful information from big data; mainly in the
form of clusters (or concepts), and association rules. The set of all the concepts forms
a lattice called concept lattice.

To control the size of concept lattices, some authors have proposed the constraining
of concept lattices by attributes dependencies in the form of attribute implications [40]
or in the form of attributes-dependency formulas [6]. This method consisted of defining
projection mappings on the lattice, such that the analysis is carried out only on the side
of the lattice satisfying these attributes dependencies. Some other methods have been
suggested: decomposition [43, 44, 45] where concept lattices of direct sums and direct
products of formal contexts are respectively decomposed into direct products and tensor
products for better viewing; iceberg lattices [39] which consist of considering only the
concepts that the intents have a greater support than a user-specified minimum support
(minsupp, with 0 6 minsup 6 1); α-Galois lattices [?] in which extensional projections
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projα (for 0 6 α 6 1) which reduce the initial concept lattice by modifying the notion
of extents, are defined on the powerset of the entities of the context; Fault tolerant
patterns [7] in which some extensions of formal concepts are often computed instead
of formal concepts in other to reduce the number of patterns, notably when there are
noises in the data set (and then the number of concepts tends to explode); closure or
Kernel operators and approximation [26] which permit to obtain from a concept lattice,
a new lattice of smaller size without a huge loss of information; and generalization [27].
In the present contribution, we are following the direction in [27], where some attributes
are put together to define generalized attributes.

When some attributes are put together, the stake is to decide whether an object has
this new combined attribute. Different scenarios have been discussed in [27], among
which the ∃-generalization.

0.2 Objectives and results found
Generalization of attributes leads to the decrease in the size of formal contexts, and one
expects the size of the corresponding concept lattices to decrease as well. But that is not
always the case. If some generalizations reduce both the size of the formal context and
that of the corresponding concept lattice, it is not always the case for others: in [27],
a case of ∃-generalization was presented where the size of the concept lattice increases
by 1. Natural questions are then raised: how far can the increase in the size of the
concept lattice be after an ∃-generalization? and how can the attributes be put together
to ensure the decrease in the size of the concept lattice?

The main aim of this PhD thesis is to determine to what extent the increase in
size of a concept lattice can be, after an ∃-generalization on attributes and to propose
a way of grouping attributes together by ∃-generalization such that both the size of
the formal context and that of the corresponding concept lattice decrease. It has a
great and positif impact on reducing the size of big data (big formal context) and the
quantity of information (concept) in these data in order to make their analysis more
easy. We have therefore contributed at three levels in generalizing attributes in Formal
Concepts Analysis: At the first level, we have shown that the size of the lattice can
increase exponentially after an ∃-generalization, and we have presented the worst case
of increase one can get. At the second level, we have constructed a new similarity
measure on attributes such that putting together similar attributes would not lead to
more new concepts as grouping together non similar ones. Thirdly, we have studied
the size of the set of informative attributes implications between the initial context
and the generalized one, and discovered that an increase in size of the lattice after an
∃-generalization is not always compensated by a reduction of the basis of implications.

0.3 Organisation of the thesis
This work is divided into five (05) chapters.

In Chapter 1, some preliminaries are presented, notably those that can permit a
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good understanding of the problem discussed in the thesis. They are in relation with
lattice theory, Formal Concept Analysis and Generalization.

In Chapter 2, one of the main problems is addressed: to what extent can the increase
in the size of the concept lattice be after an ∃-generalization on a pair of attributes?
Here, we study the effect of adding a new attribute to a formal context. After that,
we present a family of formal contexts containing a special pair of attributes such that
when put together, it leads to an exponential increase in the size of the concept lattice.
Moreover, we expose a case where the ∃-generalization stabilizes the size of the lattice
and discuss the maximal increase of size of a concept lattice after an ∃-generalization
on a pair of attributes.

In Chapter 3, we answer the question of how to group attributes together so that their
∃-generalization does not lead to an increase in the size of the concept lattice. First, we
introduce the notion of similarity measure and give a brief survey of the existing types
of similarity measures. With specific examples, we show that the existing measures are
not suitable for ∃-generalization. To round up, we propose a new similarity measure
compatible with the ∃-generalization and test it on lexicographic data.

Chapter 4 examines the attribute implications while moving from an initial context
to the generalized context. Here, we study the variation of informative implications while
moving from a formal context to the corresponding generalized context, and present a
case where the size of the canonical base of implications increases after the existential
generalization.

Finally, the conclusion of this dissertation follows and proposes some future lines of
research.
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Chapter 1

Preliminaries

This section exposes some theoretical basic notions on lattices, Formal Concepts Analysis
and Generalization. Most of the definitions and results of this section are from [10, 15,
27].

1.1 Some basic notions of lattice theory
There are two standard ways of defining a lattice: by means of algebraic structure and
by means of order.

Definition 1.1.1. [10] A nonempty set L together with two binary operations ∨ and ∧
(read "join" and "meet" respectively) on L is called a lattice if it satisfies the following
identities:

i) x ∨ y ≈ y ∨ x and x ∧ y ≈ y ∧ x (commutative laws);

ii) x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z and x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z (associative laws);

iii) x ∨ x ≈ x and x ∧ x ≈ x (idempotent laws);

iv) x ≈ x ∨ (x ∧ y) and x ≈ x ∧ (x ∨ y) (absorption laws).

Example 1.1.1. Let X be a set, and P(X) the powerset of X. Then P(X) together
with ∪ and ∩ ("join" and "meet") is a lattice.

Definition 1.1.2. [10] A binary relation 6 defined on a set A is a partial order on the
set A if the following conditions hold identically in A:

i) a 6 a (reflexivity);

ii) a 6 b and b 6 a imply a = b (antisymmetry);

iii) a 6 b and b 6 c imply a 6 c (transitivity).

If in addition, a 6 b or b 6 a for every a, b ∈ A, then we say that 6 is a total order
on A.
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Example 1.1.2. Let X be a set, and P(X) the powerset of X. Then the relation ⊆ is
a partial order on P(X).

Definition 1.1.3. [10] Let A be a subset of a partially order set P . An element
p ∈ P is an upper bound for A if a 6 p for every a ∈ A. An element p ∈ P is the
least upper bound of A or supremum of A (sup(A)) if p is an upper bound of A, and
a 6 b for every a ∈ A implies p 6 b.

Similarly, we can define what it means for p to be a lower bound of A, and for p
to be the greatest lower bound also called the infimum of A (inf(A)).

We now give the second definition of a lattice.

Definition 1.1.4. [10] A poset L is a lattice if for every a, b ∈ L both
∨{a, b} and∧{a, b} exist in L.

In lattices, some elements are often called join-irreducible.

Definition 1.1.5. [1] Let (L,<) be a complete lattice and v an element of L. One set
v∗ =

∨{x ∈ L;x < v}. v is join-irreducible if v 6= v∗.

Some of the most studied classes of lattices are that of distributive lattices and
complete lattices.

Definition 1.1.6. [10] A distributive lattice is a lattice which satisfies both of the
distributive laws:

i) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z);

ii) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

Definition 1.1.7. [10] A partially ordered set (Poset) P is complete if for every subset
A of P , both Sup(A) (denoted by ∨A) and Inf(A) (denoted by ∧A) exist in P .

All complete Posets are lattices and a lattice L which is complete as a poset is a
complete lattice.

Theorem 1.1.1. [10] Let P be a poset such that ∧A exists for every subset A, or ∨A
exists for every subset A. Then P is a complete lattice.

Example 1.1.3. Let X be a set and P(X) the powerset of X. Then P(X) together
with the usual ordering ⊆ is a complete lattice.

Definition 1.1.8. [10] A sublattice L′ of a complete lattice L is called a complete sublattice
of L if for every subset A of L′ the elements ∨A and ∧A, as defined in L, are actually
in L′.

Complete lattices are sometimes produced or recognised through closure operator.

Definition 1.1.9. [10] Let A be a set. A mapping C : P(A) → P(A) is called a
closure operator on A if for X, Y ⊆ A, it satisfies:
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- X ⊆ C(X) (extensive);

- C2(X) = C(X) (idempotent);

- X ⊆ Y implies C(X) ⊆ C(Y ) (monotone);

Given a closure operator C on P(A), a subset X of A is called a closed subset if
C(X) = X. That poset of closed subsets of A with set inclusion as the partial ordering
is denoted by LC .

Theorem 1.1.2. [10] Let C be a closure operator on a set A. Then LC is a complete
lattice with

∨
i∈I C(Ai) = C(

⋃
i∈I Ai)

and
∧
i∈I C(Ai) =

⋂
i∈I C(Ai)

Theorem 1.1.3. [10] Every complete lattice is isomorphic to the closed subsets of some
set A with a closure operator C.

The above basic notions on lattice theory are often used in Formal Concept Analysis.

1.2 Basis of Formal Concepts Analysis
Formal Concepts Analysis is often based on some important notions that we present in
the following definitions, mostly from [18] and [4].

Definition 1.2.1. A formal context is a triplet (G,M, I) where G and M are non-empty
sets and I is a binary relation between G and M , i.e, I ⊆ G×M .

For a formal context, elements g from G are called objects and elements m from M
are called attributes. (g,m) ∈ I indicates that object g has attribute m.

For a given cross table with n rows and p columns, a corresponding formal context
(G,M, I) consists of a set G = {g1, ..., gn}, a set M = {m1, ...,mp}, and a relation I
defined by: (g,m) ∈ I if and only if the table entry corresponding to row i and column
j contains ×.

Example 1.2.1. The following table is a formal context describing several transactions
in a shop.

cake bread chocolate butter

T1 × × × ×
T2 × × ×
T3 × × ×
T4 × × ×
T5 ×

6
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Every formal context induces a pair of operators, the so-called concept-forming op-
erators.

Definition 1.2.2. For a formal context (G,M, I), operators (I) : P(G) → P(M) and
(I) : P(M)→ P(G) are defined for every A ⊆ G and B ⊆M , by

AI = {m ∈M | for each g ∈ A, (g,m) ∈ I},
and

BI = {g ∈ G| for each m ∈ B, (g,m) ∈ I}.
Example 1.2.2. In the formal context of example 1.2.1, we have: {T2}I = {cake, choco-
late, butter}, {T2, T3}I = {chocolate, butter}, {cake}I = {T1, T2, T5},{bread, chocolate}I =
{T1, T3, T4}.

The notion of formal concept is fundamental in FCA. Formal concepts are particular
clusters in cross-tables, defined by means of attributes sharing.

Definition 1.2.3. A formal concept in a context (G,M, I) is a pair (A,B) of A ⊆ G

and B ⊆M such that AI = B and BI = A.

Remark 1.2.1. For a given formal context (G,M, I) and a given attribute a, we denote
by a′ the set of objects having the attribute a.

For a formal concept (A,B) in (G,M, I), A and B are called the extent and intent
of (A,B), respectively. Note the following verbal description of formal concepts: (A,B)
is a formal concept if and only if A contains just objects sharing all attributes from B
and B contains just attributes shared by all objects from A.

Example 1.2.3. In the formal context of example 1.2.1, (A,B) = ({T1, T2, T3, T4},
{chocolate, butter}) is a formal concept.

Definition 1.2.4. For formal concepts (A1, B1) and (A2, B2) of (G,M, I). One defines
the binary relation (A1, B1) 6 (A2, B2) iff A1 ⊆ A2 (iff B2 ⊆ B1). The concept (A1, B1)
is called a subconcept of (A2, B2) and (A2, B2) is called a superconcept of (A1, B1).

Example 1.2.4. In the formal context of example 1.2.1, let (A1, B1) = ({T1, T2}, {cake,
chocolate, butter}) and (A2, B2) = ({T1, T2, T3, T4}, {chocolate, butter}) be formal con-
text. We have (A1, B1) 6 (A2, B2).

Definition 1.2.5. Let denote by B(G,M, I) the collection of all formal concepts of
(G,M, I), i.e, B(G,M, I) = {(A,B) ∈ P(G) × P(M) | AI = B, and BI = A}.
B(G,M, I) equipped with the subconcept-superconcept ordering 6 is called the concepts
lattice of (G,M, I).

In the above definition, if (A,B) and (A1, B1) are two concepts of a formal context
K, then∨

({(A,B), (A1, B1)}) = ((A∪A1)
I I, B∩B1) and

∧
({(A,B), (A1, B1)}) = (A∩A1, (B∪

B1)
I I).
Using Lattice Miner, all concepts of a formal context can be automatically computed

as shown in the following example with the context of example 1.2.1.
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Example 1.2.5.

Figure 1.1: The concept lattice of example 1.2.1.

In the above Hasse diagram, the concept ({T1, T3, T4}, {bread, butter, chocolate})
means that in transactions T1, T2 and T3, bread is bought together with butter and
chocolate. Other concepts are read in the same way.

Definition 1.2.6. A formal context K := (G,M, I) is clarified if for any objects g, h ∈
G, from g′ = h′, it always follows that g = h and correspondingly, m′ = n′ implies
m = n for all m,n ∈M .

Clarification can therefore be performed by removing identical rows and columns
(only one of several identical rows/columns is left).

Example 1.2.6. The following formal context is not clarified.

K cake bread chocolate butter

T1 × × × ×
T2 × × ×
T3 × × ×
T4 × × ×
T5 ×

The context obtained from the above formal context by clarification is the following:

8
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cake bread chocolate

T1 × × ×
T2 × ×
T3 × ×
T5 ×

Theorem 1.2.1. [18] If (G1,M1, I1) is a clarified context resulting from (G2,M2, I2) by
clarification, then B(G1,M1, I1) is isomorphic to B(G2,M2, I2).

Definition 1.2.7. For a formal context (G,M, I), an attribute m ∈ M is called re-
ducible if there is Z ⊂ M with m /∈ Z such that mI =

⋂
z∈Z z

I i.e, the column corre-
sponding to m is the meet of columns corresponding to zs from M . An object g ∈ G

is called reducible if there is P ⊂ G with g /∈ P such that gI =
⋂
z∈P z

I i.e, the row
corresponding to g is the meet of rows corresponding to zs from P .

Example 1.2.7. A non reduced formal context. Here, the attribute "bread" is a reducible
attribute.

cake bread chocolate

T1 ×
T2 × × ×
T3 ×

The reduced formal context obtained from the above context by removing the reducible
attribute "bread" is the following.

cake chocolate

T1 ×
T2 × ×
T3 ×

Definition 1.2.8. Let (G,M, I) be a formal context. Then (G,M, I) is

- row reduced if no object g ∈ G is reducible,

- column reduced if no attribute m ∈M is reducible,

- reduced if it is both row reduced and column reduced.

Example 1.2.8. The following context is a reduced context.

cake chocolate

T1 ×
T3 ×

Any context yields a concept lattice. Now we present the basic theorem of concept
lattice.

9
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Definition 1.2.9. [18] A subset X of a complete lattice V is called supremum-dense in
V , if every element from V can be represented as the supremum of a subset of X and,
dually, infimum-dense, if every element from V can be represented as the infimum of a
subset of X.

Theorem 1.2.2. [18](The basic Theorem on Concept Lattices) The concept lattice
B(G,M, I) is a complete lattice in which infimum and supremum are given by:

∧
t∈T (At, Bt) = (

⋂
t∈T At, (

⋃
t∈T Bt)

I I),

and
∨
t∈T (At, Bt) = ((

⋃
t∈T At)

I I,
⋂
t∈T Bt).

A complete lattice V is isomorphic to B(G,M, I) if and only if there are mappings
γ : G→ V and µ : M → V such that γ(G) is supremum-dense in V , µ(M) is infimum-
dense in V and gIm is equivalent to γ(g) 6 µ(m) for all g ∈ G and all m ∈ M . In
particular, V ∼= B(V, V,6).

Information can also be extracted from data in the form of associations rules, in-
cluding implications on attributes. Let Y be a non empty set (of attributes).

Definition 1.2.10. [4] An attribute implication over Y is an expression A⇒ B, where
A ⊆ Y and B ⊆ Y .

Example 1.2.9. Let consider the set Y = {y1, y2, y3, y4}. Then {y1, y3} ⇒ {y2, y4},
and {y2, y3} ⇒ {y1, y2, y4} are implications over Y .

Definition 1.2.11. [4] An attribute implication A⇒ B is true or valid in a formal
context K = (G,M, I) if and only if for each object g, if g has all attributes from A then
g has all attributes from B.

Definition 1.2.12. [4] Let Y be a set of attributes.

a) A theory (over Y ) is any set T of implications (over Y ),

b) A model of a theory T is any subset M ⊆ Y such that every A ⇒ B from T is
true in M .

Example 1.2.10. theories over {y1, y2, y3}

- T1 = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}},

- T2 = {{y1, y3} ⇒ {y2}}.

For a given theory T , Mod(T ) denotes the set of all the models of T .

Example 1.2.11. Let consider the theories of the example above. then

- for T1 = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}},Mod(T1) = {∅, {y1}, {y2}, {y1, y2}, {y1,
y2, y3}},

10
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- T2 = {{y1, y3} ⇒ {y2}}, Mod(T2) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.

Remark 1.2.2. The study of attribute implications, theories and models are very im-
portant in Basket Market Analysis, because it permit to deduce which items are surely
present in some transactions, knowing that some items are already contained in these
transactions.

Definition 1.2.13. [4] An attribute implication A ⇒ B follows semantically from
a theory T (which is denoted by T |= A ⇒ B) if and only if A ⇒ B is true in every
model M of T .

Example 1.2.12. Let consider the set Y = {y1, y2, y3}. We consider the theory T1 =
{{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}} and A ⇒ B={y2, y3} ⇒ {y1}. As we have seen in
the previous example, Mod(T1) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}, and ‖{y2, y3} ⇒
{y1}‖∅= 1, ‖{y2, y3} ⇒ {y1}‖{y1}= 1, ‖{y2, y3} ⇒ {y1}‖{y2}= 1, ‖{y2, y3} ⇒ {y1}‖{y1,y2}=
1, ‖{y2, y3} ⇒ {y1}‖{y1,y2,y3}= 1. Therefore, T1 |= {y2, y3} ⇒ {y1}.

Definition 1.2.14. [4] A set T of attribute implications over Y is called non-redundant
if and only if for any A⇒ B ∈ T , T\{A⇒ B} 2 A⇒ B.

Implications can also be defined in formal contexts.

Definition 1.2.15. [4] Let K = (G,M, I) be a formal context, T a set of attributes
over M . T is called complete in K if and only if for any attributes implication A⇒ B,
A⇒ B is true in (G,M, I) if and only if T |= A⇒ B.

Theorem 1.2.3. [4] Let K = (G,M, I) be a formal context. A set T of attributes
implications over M is called a basis if and only if

a) T is complete in (G,M, I),

b) T is non-redundant.

Remark 1.2.3. Basically speaking, a basis of implications in a formal context K =
(G,M, I) is a (relatively small) set of valid implications of K which can be used to
generate all other valid implications in K.

Now we define what are called informative implications in a formal context. They are
implications that provide interesting information compared to others types of attribute
implications.

Definition 1.2.16. [18] Let K = (G,M, I) be a formal context. An informative
implication of K is an implication of the form A ⇒ A∗, where A is a set of attributes
and

A∗ = AI I\[A ∪⋃x∈A(A\{x})I I] 6= ∅

Definition 1.2.17. [18] Let K = (G,M, I) be a formal context. A set P ⊆M is called
a pseudo-intent of K if P 6= P I I and QI I ⊆ P holds for every pseudo-intent Q ( P .
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Theorem 1.2.4. [18] Let K = (G,M, I) be a formal context. The set T of attributes
implications

T = {P ⇒ P I I, P is a Pseudo-intent of K}
is non-redundant and complete.

Remark 1.2.4. [18] In practice, the implications of T are not stated in the form P ⇒
P I I, but in the form P ⇒ P I I\P . In this case, T is called the Duquenne-Guigues-
Basis or the canonical basis or simply the stem base of all the valid implications in
K.

Remark 1.2.5. [18] The Duquenne-Guigues-Basis is the smallest basis of implications
one can get in a given formal context.

Definition 1.2.18. [34] Given a set of Transactions, where each transaction is a set
of items, an association rule is an expression X ⇒ Y , where X and Y are sets of items.

The intuitive meaning of such a rule is that transactions in the database which
contain the items in X tend to also contain the items in Y .

Definition 1.2.19. [34]

- The support of the rule X ⇒ Y is the percentage of transactions that contains both
X and Y .

- The confidence of the rule X ⇒ Y is the percentage of transactions that contains
Y , knowing it already contains X.

Example 1.2.13. [34]

- 70% of people that purchase exercise books also by pens;

- 95% of transactions made in a bookshop contains both exercise books and pens.

Here, if we set by X the set of exercise books and Y the set of pens in a bookshop,
then 70% and 95% are respectively the confidence and the support of the rule X ⇒ Y .

In the rest of this thesis, the formal contexts are considered to be finite.

1.3 Generalization in Formal Concept Analysis
In this section, we define the notion of generalization, present the different kinds of
generalization and their first properties.

Definition 1.3.1. [27] In the field of data mining, generalized patterns are pieces of
knowledge extracted from data when a taxonomy is used.

Simply speaking, generalization in a formal context K = (G,M, I) is a way of group-
ing attributes together in order to form new others groups S of attributes. It can be
observed in several domains of life:
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- In basket market analysis, products can be generalized into product categories. For
example, in a market, we consider the following items in sale: maize, yams, potato,
tomato, guavas, orange, cassava, cocoa, coffee, vegetable, bananas, cabbage, rice,
juice and mineral water. A seller dealing simultaneously in all these items can
decide to evaluate the transactions concerning some of these products in order to
make predictions on his future sales. Another seller, for the same raisons, can
also decide to evaluate the transactions on some groups of items: fruits ({tomato,
guavas, orange}), tubers ({cassava, yams, potato}) or drinks ({juice, mineral
water}). The items tubers, fruits and drinks can be referred to as generalized
items. The transactions concerning these groups of items provide the seller with
new information which could not be easily identified if only the items themselves
were considered. Moreover, customers in a market can also be grouped to form
generalized group according to some specificities (level of education or income for
example).

- In educational field, marks of students can be generalized or categorized in order
to facilitate some analysis on results of exams. Subjects can also be categorized
into modules in other to facilitate the computation of marks of students.

- In the field of health, patients can be generalized according to their reactions to
treatments, to their age, etc.

To the best of our knowledge, generalized attributes were first considered by Srikant
and Agrawal ( [34]), as they discussed the problem of mining generalized association
rules. In fact, they consider an "is-a" relationship (taxonomy) on items to extract
relevant information in the form of association rules in transactions data. They called
such rules generalized association rules. Note that using a taxonomy is equivalent to
the ∃-generalization of some attributes. The following example from [34] shows the
added-value of generalizing attributes. If a taxonomy is available and says for example
that: Jacket is-a Outwear, Ski Pants is-a Outwear, Outwear is-a Clothes, etc, then
generalizing rules that span different levels of the taxonomy could lead to discovering
interesting information that were not possible without generalizing the attributes. A
rule like "people who buy Outwear tend to buy Hiking Boots" may be inferred from the
fact that people bought Jackets with Hiking Boots and Ski Pants with Hiking Boots.
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Figure 1.2: The taxonomy defined in [34]

Given a formal context K = (G,M, I), when attributes of K are grouped together,
they form a new set S of attributes such that the set {ms|s ∈ S} covers the set M .
Each attribute ms is a group of attributes of the initial context K, and is called the
generalized attribute. More often, ms is simply identify by the index s. A new
formal context KS = (G,S, J) is then constructed, where the binary relation J is still
to be defined. That context is called generalized formal context. The definition of
the binary relation J leads to different scenarios of generalization. More of this can be
found in [27]. There exists principally three types of generalization according to the
way the relation J is defined:

(∀)-generalization: The object should satisfy each of the attributes that were com-
bined ((g, s) ∈ J if and only if for every m ∈ s, (g,m) ∈ I). It is called the Universal
Generalization.

Example 1.3.1. Let recall the following context K.

cake bread chocolate butter

T1 × × × ×
T2 × × ×
T3 × × ×
T4 × × ×
T5 ×

Grouping the attributes "cake" and "bread" via universal generalization (s={cake, bread})
leads to the following generalized formal context:

14
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s chocolate butter

T1 × × ×
T2 × ×
T3 × ×
T4 × ×
T5

(α)-generalization: The object should satisfy at least a certain proportion of the
attributes that were combined ((g, s) ∈ J if and only if |{m∈s|(g,m)∈I}|

|s| > α). That is the
α-generalization.

Example 1.3.2. Let consider the group constituted by attributes "cake", "bread" and
"chocolate" of the context K. setting α = 2

3
, then the α-Generalization of that group of

attributes (s={cake, bread, chocolate}) leads to the following generalized context:

s butter

T1 × ×
T2 × ×
T3 × ×
T4 × ×
T5

(∃)-generalization: The object should satisfy at least one of the attributes that
were combined ((g, s) ∈ J if and only if there exists m ∈ s such that (g,m) ∈ I). That
is the ∃-generalization.
Example 1.3.3. From the ∃-Generalization of attributes "cake" and "bread" of the
context K (s={cake, bread}), we obtain the following generalized formal context:

s chocolate butter

T1 × × ×
T2 × × ×
T3 × × ×
T4 × × ×
T5 ×

Generalizing attributes in a formal context often leads to a variation of the size of
the corresponding concepts lattice. Here we present the first properties on the size of
concept lattices after generalizations

Theorem 1.3.1. [27] The ∀-generalizations on attributes do not increase the size of
the concept lattice.

Theorem 1.3.2. [27] The ∃-generalizations on distributive concept lattices whose con-
texts are object-reduced do not increase the size of the concept lattice.

Let consider the following formal context KB4 . We denote by B4 the corresponding
concept lattice.
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KB4 m1 m2 m3 m4

a × ×
b ×
c × ×
d ×

For any attribute m, we denote by µm the concept (mI,mI I).

Proposition 1.3.1. [27]

i) The lattice B4 is the smallest lattice on which there is an ∃-generalization that
increases the size of the initial concept lattice.

ii) If a context contains attributes m1, m2, m3, m4 such that µm1 6 µm2, µm3 6
µm4, µm2 ∧µm3 6 µm1 and µm1 ∧µm4 6 µm3; then there is an ∃-generalization
that does not decrease the size of the concept lattice.
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Chapter 2

On the size of the ∃-Generalized
concept lattices

2.1 Introduction

Formal Concept Analysis (FCA) offers several tools for qualitative data analysis. One
possibility is to group objects that share common attributes together and get a

concept lattice that describes the data. Quite often the size of this concept lattice is very
large. Many authors have investigated methods to reduce the size of this lattice. In [27],
the authors consider putting together some attributes to reduce the size of the attributes
sets. But this reduction does not always carry over the set of concepts. They have
provided some counter examples where the size of the concept lattice increases by one
after putting two attributes together and asked the following important question: "How
many new concepts can be generated by an ∃-generalization on just two attributes?"

In [34, 28], it is presented some applications of generating attributes, but the discus-
sion about the size of the information discovered is not stated. However, some works
have directly or indirectly dealt with the size of concept lattices and its control:

In [8], the authors have discussed a virtual correlation observed between the size of
concept lattices and that of all the pseudo-intents of randomly generated formal contexts.

To control the size of concept lattices, some authors have proposed to constrain the
concept lattice by attributes dependencies in the form of attributes implications [40]
or in the form of attributes-dependency formulas [6], which means to only select from
the initial lattice the concepts that satisfy these attributes dependencies. In these two
situations, the attributes dependencies are set in advance by an expert. The size of
the constrained lattice is usually smaller than that of the initial lattice. However, these
methods are limited, since the choice of the constraints is not well precise.

Other authors, working on pattern structures (a more general case of contexts), have
applied extensional projection on pattern structures [17] to obtain projected pattern
structures having a less number of patterns concepts than the initial patterns structures.
However, the projected patterns concepts are subsets of the set of patterns concepts of
the initial patterns structures.

In [28], a discussion is made on how to construct a concept lattice of a context
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resulting from another context with a known concept lattice by removing exactly one
incidence. Removing that incidence leads to the construction of a closure operator and
an interior operator such that if a concept of the initial context is a fixpoint of both
operators, then it is duplicated into two different concepts in the new concept lattice,
and if a concept of the initial context is not a fixpoint of any of the two operators, it
vanishes from the new concept lattice. Hence, removing an incidence from a formal
context sometimes leads to a reduction or to an increase of the size of the initial concept
lattice. Moreover, generalization on attributes can be seen as adding many incidences to
the initial context (adding the generalized attribute to the initial context) and removing
other incidences in the initial context (removing the attributes which are generalized).
In [27], an empirical test (simulation) related to the variation of size of concept lattices
after an ∃-generalization was carried out on mushrooms data with 8126 mushrooms and
117 variables representing their characteristics. In this tests, 20 attributes were first
randomly selected 5 times. In each group of twenty attributes, a pair of them were
randomly chosen 10 times and ∃-generalized. Finally, 50 generalized contexts with 8126
objects (mushrooms) and 19 attributes were obtained, and the sizes of their concept
lattices were computed and led to the following table:

Table 2.1: The variation of the size of the lattice after an ∃-generalization on a pair of
attributes in the mushroom data, as indicated in [27]

Theses tests showed that an ∃-generalization on pairs of attributes led to the decrease
of the size of the concept lattice on thirty five cases, and to an increase of the size of
the lattice on fifteen cases. However, in situations where the size of the lattice increases,
the increase was very low, as one can observe on table 2.1.

Based on the above empirical experience, one could suspect that an ∃-generalization
on a pair of attributes will often lead to the decrease of size of the concept lattice, and
even with the few cases where the size of the lattice increases, the increase will not be
drastic.

The main question of this chapter is then : To what extent can be the increase
of size of a concept lattice after an ∃-generalization on a pair of attributes?.

Generalizing two attributes m1,m2 to get a new attribute m12 can be done in two
steps: (i): adding m12 to the initial context and (ii) removing m1,m2 from the context.
Therefore we start this chapter by discussing in section 2.2 the effect of adding a new
attribute in a context K. The main result here says that the maximal number of new
concepts is |B(K)| and can be reached. This means that adding a new attribute to K
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can double the size of B(K). In section 2.3 we also provides a family of contexts for
which the size increases exponentially after putting two attributes together, and study
in section 2.4 the maximum increase one can get after an ∃-generalization on solely
two attributes. A case where the size of the concept lattice remain constant after the
generalization is also presented in section 2.5, and the link between ∃-generalization and
other fields of research such as granularity, factorisation of formal contexts and patterns
structures is raised in section 2.6.

2.2 Adding a new attribute into a context
When constructing concept lattices, the incremental methods [42] consists in starting
with one attribute and adding the rest one after another. In this section we review
the effect of adding one attribute. Let K := (G,M, I) be a context, and a /∈ M
an attribute that can be shared by some elements of G. We set Ma := M ∪ {a},
a′ := {g ∈ G | g has the attribute a} and Ka := (G,Ma, Ia) where Ia := I∪{(g, a) |
g has the new attribute a}. To distinguish between the derivation on sets of objects in
K and in Ka, we will use the name of the relation instead of ′. That said, we will write
for A ⊆ G,

AI = {m ∈M | g Im for all g ∈ A}
and

AI
a

= {m ∈M ∪ {a} | g Iam for all g ∈ A}.

If a′ = G, then |B (Ka)| = |B(K)|. Each concept (A,B) of K has a corresponding
concept (A,B∪{a}) in Ka, and vice-versa. The above equality still holds even if a′ 6= G,
but a′ = BI for some B ⊆ M . The following result expresses the relation between K
and Ka.

Proposition 2.2.1. Let K be a context and Ka be the context obtained by adding the
attribute a. The map

φa : B(K) −→ B(Ka)

(A,B) 7−→
{

(A,B ∪ {a}) if A ⊆ a′

(A,B) elsewhere

is an injective map.

Proof. The map φa is well defined. For a concept (A,B) ∈ B(K) with A ⊆ a′, we have
(B ∪ {a})I

a

= BI ∩ a′ = A∩ a′ = A, and AI
a

= AI ∪ {a} = B ∪ {a}. Thus (A,B ∪ {a})
is a concept of Ka. For a concept (A,B) ∈ B(K) with A * a′, we have BIa = BI = A,
and AI

a

= AI = B, since a is not in AI
a

. If two concepts (A1, B1) and (A2, B2) of K
have the same image under φa, then A1 and A2 are both included in a′ or both not
included in a′, and are therefore equal, hence φa is injective.
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After adding an attribute a to a context K, we will identify (A,B) ∈ B(K) with
φa(A,B) ∈ B(Ka), and write (A,B) ≡ φa(A,B). From Proposition 2.2.1 we get
|B(K)| 6 |B(Ka)|. Moreover, the increase due to adding a, which is the difference
|B(Ka)| − |B(K)|, can be computed as the number of concepts of Ka that cannot be
identified (via φa) with any concept in B(K).

We consider (A,B) in B(K) with A * a′. It holds

B(Ka) 3 (A,B) ≡ (A,B) ∈ B(K), since A * a′.

Moreover, A ∩ a′ is an extent of Ka. If A ∩ a′ is also an extent of K, then

B(Ka) 3
(
A ∩ a′, (A ∩ a′)I

a)
≡
(
A ∩ a′, (A ∩ a′)I

)
∈ B(K) because A ∩ a′ ⊆ a′.

Note that (A∩ a′)I
a

= (A∩ a′)I ∪ {a} and (A∩ a′)I = (A∩ a′)I
a

∩M . Although (A,B)

and (A ∩ a′, (A ∩ a′)I ∪ {a}) are two different concepts of Ka, they are equivalent to
two concepts of K when A ∩ a′ is an extent of K. A concept (A,B) of K induces two
concepts of Ka whenever A * a′. In the definition of φa in Proposition 2.2.1, from a
concept (A,B) of K, we went for (A,B) in Ka instead of (A ∩ a′, B ∪ {a}). This choice
is motivated by the injectivity of φa being straightforward. If A * a′ and A ∩ a′ is an
extent of K, then the two concepts induced by (A,B) in Ka have their equivalent in
B(K). Then adding a to K will increase the size of the concept lattice only if there is
A ∈ Ext(K) such that A ∩ a′ /∈ Ext(K).

Each extent of Ka is an extent of K or an intersection of an extent of K with a′. The
concepts of Ka that cannot be identified (via φa) to a concept of K are

{(
A ∩ a′, (A ∩ a′)I ∪ {a}

)
| A ∈ Ext(K) and A ∩ a′ /∈ Ext(K)

}
.

Note that it is possible to have two different extents A1, A2 ∈ Ext(K) with A1 ∩ a′ =
A2 ∩ a′ /∈ Ext(K). In this case we say that the extents A1 and A2 coincide on a′. The
increase is then less or equal to |B(K)|. We can now sum up the finding of the above
discussion in the next proposition.

Proposition 2.2.2. Let Ka be a context obtained by adding an attribute a to a context
K. Let

H(a) := {A ∩ a′ | A ∈ Ext(K) and A ∩ a′ /∈ Ext(K)} . (2.1)

1. The increase in the number of concepts due to adding the attribute a to K is

|B (Ka)| − |B(K)| = |H(a)| 6 |B(K)|

2. The maximal increase |H(a)| = |B(K)| is reached when each A ∈ Ext(K) satisfies
A ∩ a′ /∈ Ext(K) and no pairs A1, A2 ∈ Ext(K) coincide on a′.
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Before we continue with the discussion on the maximal increase, let consider the
following formal context (Table 2.2) and its concept lattice.

K v u a b

a × ×
b × ×
c × ×
g × × × ×

Table 2.2: A formal context. The corresponding concept lattice

Let us look at two examples, where an attribute m has being added to the context
of the table above.

K v u a b m

a × × ×
b × × ×
c × × ×
g × × × ×

Table 2.3: A first table obtained by adding an
attribute m to the context in Table 2.2 The corresponding concept lattice

K v u a b m

a × × ×
b × ×
c × × ×
g × × × ×

Table 2.4: A second table obtained by adding an
attribute m to the context in Table 2.2

.
The corresponding concept

lattice.

In the first case (Table 2.3) the concept lattice of Table 2.2 has been doubled and
the maximal increase is reached. In the second case (Table 2.4), only the concepts in
the interval [∅I I; {a, c}I I] of the concept lattice of Table 2.2 has been doubled. Note
that in both cases, g ∈ ∅I I 6= ∅.

Based on the examples in Table 2.3, Table 2.4 and Proposition 2.2.2, we can now
discuss the maximal increase. First we have the following proposition.
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Proposition 2.2.3. Let K be a formal context and a be an attribute added to K. The
following are equivalent:

(i) For every extent A of K, A ∩ a′ is not an extent of K.

(ii) ∅I I \ a′ 6= ∅.

Proof. If A ∈ Ext(K) and A ∩ a′ /∈ Ext(K), then A * a′. Moreover, if A * a′ for every
extent A of K, then in particular ∅I I * a′. Thus there is g ∈ ∅I I such that g /∈ a′.
This element g is in every extent of K, but is not in a′. Conversely, if an element g is in
∅I I \a′, then g is in every extent A of K, and g is not in A∩a′. Thus g ∈ (A ∩ a′)I I and
g /∈ A∩ a′, i.e. A∩ a′ is not closed in K. Thus A∩ a′ /∈ Ext(K) for each A ∈ Ext(K).

Both contexts of Table 2.3 and Table 2.4 satisfy the above conditions (the added
attribute a is m). Then each extent of K generates two extents of Km and one of these
cannot be identified (via φm) with an extent of K. However, some of these new concepts
can be equal. In fact if two extents coincide on m′, then they generate the same new
concept. To avoid coincidences on m′, it is enough to have m′ = G \ {g}.

Corollary 2.2.1. Let K be a formal context such that ∅I I 6= ∅ and Ka a context obtained
by adding an attribute a to K such that a′ = G \ ∅I I. Then we have

|B(Ka)| = 2 · |B(K)| .

Proof. It is the immediate consequence of Proposition 2.2.3.
Using these results we can now present some huge increases after generalizing only

two attributes.

2.3 The number of concepts generated by an existen-
tial generalization

By putting together some attributes, we reduce the number of attributes in the context,
and hope to also reduce the size of the concept lattice. This is true for ∀-generalization,
but not always the case for ∃-generalization. In [27] some examples were presented
where the size increased by one after an ∃-generalization. The main question here is
whether the size of the concept lattice can increase exponentially after putting solely
two attributes together. The present section gives a positive answer to this question. In
fact, we provide a family of contexts where the increase is exponential in the size of the
attribute set.

Let K := (G,M, I) be a formal context. We denote by S the set of generalized
attributes of K. Since the final goal is to reduce the size of the lattice, we will assume
that S forms a partition of M 1. Then at least the number of attributes is reduced. For
an ∃-generalization, we recall that an object g has the generalized attribute s iff g has

1It is also possible to allow some attributes to appear in different groups. In this case the number
of generalized attributes can be larger than in the initial context
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at least one of the attributes in s; i.e. s′ =
⋃{a′ | a ∈ s}. We obtain a relation J on

G× S defined by:
g J s ⇐⇒ ∃m ∈ s such that g Im.

We look at a very simple case, where two attributes a, b ∈ M are generalized to get a
new one, say s. This means that from a context (G,M, I), we remove the attributes a
and b from M and add an attribute s /∈ M to M , with s′ = a′ ∪ b′. In particular we
show that the number of concepts of (G,Mab ∪ {s}, Isab) can be extremely larger than
that of (G,M, I).

Recall that for any set E, the concepts lattice of the context (E,E, 6=) is a Boolean
algebra isomorphic to the powerset of E, and then has 2|E| concepts. By Sn, we denote
a set with n elements where n > 2, and we write for simplicity Sn := {1, 2, · · · , n}. We
define a context K1

n by:

K1
n := (Sn ∪ {g1}, Sn ∪ {m1,m2}, I)

with

g Im :⇐⇒





g,m ∈ Sn and g 6= m, or
g = g1 and m ∈ Sn, or
g = 1 and m = m1, or
g ∈ Sn \ {1} and m = m2.

(2.2)

We generalize the attributes m1 and m2 to get m12 and denote the resulting context by
K1
nge := (Sn ∪ {g1}, Sn ∪ {m12}, I) with m′12 = m′1 ∪m′2.
For the case n = 2, the contexts and their concepts lattices are displayed in Fig.2.1.

Let precise that practically, that kind of formal contexts are still to be found. We want

K1
2 1 2 m1 m2

1 × ×
2 × ×
g1 × ×

K1
2ge 1 2 m12

1 × ×
2 × ×
g1 × ×

Figure 2.1: B(K1
2) (left) and B(K1

2ge) (right), as defined by (2.2) with n = 2.

to compare the number of concepts of K1
nge and that of K1

n and their differences. With
Lattice Miner, we have computed the table below which shows some of these numbers:
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n 2 3 4 5 · · · 10 · · · 20 · · ·
|B(K1

n)| 7 13 25 49 · · · 1537 · · · 1572865 · · ·∣∣B(K1
nge)
∣∣ 8 16 32 64 · · · 2048 · · · 2097152 · · ·∣∣B(K1

nge)
∣∣− |B(K1

n)| 1 3 7 15 · · · 511 · · · 524287 · · ·

Table 2.5: Examples of increase after an ∃-generalization.

Notations: Exceptionally, in this section we denote by I the restriction of the incidence
relation of K1

n on any subcontext of K1
n, and also by I the incidence relation in the

generalized context K1
nge. We set

K00 :=(Sn ∪ {g1}, Sn, I),
K02 :=(Sn ∪ {g1}, Sn ∪ {m2}, I),
K01 :=(Sn ∪ {g1}, Sn ∪ {m1}, I),
K0s :=(Sn ∪ {g1}, Sn ∪ {m12}, I) = K1

nge,

K12 :=(Sn ∪ {g1}, Sn ∪ {m1,m2}, I) = K1
n.

However, for a single element {x}, we will often use just the symbol ′ to express the
objects that have the attribute x, instead of the name of the relation.

The context K00 has 2n concepts because g1 is a reducible object in K00 and the
remaining context after removing g1 is (Sn, Sn, 6=). The context K1

n is obtained by
adding successively m2 to K00 to get K02, and then m1 to K02. The generalized context
is obtained by adding s = m12 to K00.

The following proposition hold:

Proposition 2.3.1. Let n > 2. Let K = (Sn ∪ {g1}, Sn ∪ {m1,m2}, I) defined by (2.2).
Then generalizing the attributes m1 and m2 increases the size of the concept lattice by
2n−1 − 1.

Proof. Adding the attribute m2 to K00 = (Sn ∪ {g1}, Sn, I), we get the context K02.
Every extent A of K00 is of the form A = A1 ∪ {g1} with A1 ⊆ Sn and satisfies
A ∩m′2 /∈ Ext (K00), since (g1,m2) /∈ I. It therefore generates two concepts in K02.
Let A be an extent of K00. Then A contains 1 or A does not contains 1. Extents which
do not contains 1 are such that A1 ⊆ m′2 = {2, · · ·n}, and do not coincide on m′2.
Therefore they generate 2n−1 concepts in K02 that cannot be identified (via φm2) to any
concept of K00. If A is an extent of K00 containing 1 then A \ {1} is also an extent of
K00, and both extents coincide on m′2. Thus by Proposition 2.2.2 we get

|B (K02)| = 2n + 2n−1. (2.3)

Now adding m1 to K02 will generate at most two concepts, since m′1 = {1} and

H(m1) ⊆ {A ∩m′1 | A ∈ Ext (K02)} = {∅,m′1}
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For every extent A which do not contain 1, A ∩ m′1 = ∅ and ∅ ∈ Ext(K02). Hence,
∅ = A ∩ m′1 /∈ (H)(m1). For every extent A containing 1, A ∩ m′1 = m′1 /∈ Ext(K02).
Hence, m′1 ∈ (H)(m1). Therefore

H(m1) = {m′1} and |B(Sn ∪ {g1}, Sn ∪ {m1,m2}, I)| = 2n + 2n−1 + 1. (2.4)

The context (Sn ∪ {g1}, Sn ∪ {m12}, I) is isomorphic to (Sn+1, Sn+1, 6=). The object
g1 is identified with n+ 1 and the attribute m12 with n+ 1. Thus generalizing m1 and
m2 to m12 leads to a lattice with 2n+1 concepts. The increase is then

2n+1 −
(
2n + 2n−1 + 1

)
= 2n−1 − 1

which is exponential in the number of attributes of the initial context.

Figure 2.2: B (K00) (upper left); B (K02) (upper right); B (K12) (down left); and
B (K0s) (down right); For n = 3.

In the above construction of K1
nge the idea is to construct a context (E,E, 6=) with

|E| = n+ 1 from the initial context, via an ∃-generalization. The objects in Sn are split
between m1 and m2 with no overlap. We can choose a split that assigns k objects of Sn
to m1 and the other n− k to m2. Let

Kk
n := (Sn ∪ {g1}, Sn ∪ {m1,m2}, I)
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be such a context, where I is defined by

g Im :⇐⇒





g,m ∈ Sn and g 6= m, or
g = g1 and m ∈ Sn or
g ∈ {1, 2, ..., k} and m = m1 or
g ∈ Sn \ {1, 2, ..., k} and m = m2

(2.5)

Then the existential generalization of the attributes m1 and m2 to m12 leads to the
generalized context Kk

nge := (Sn ∪ {g1}, Sn ∪ {m12}, I) ∼= (Sn+1, Sn+1, 6=). To get the
cardinality of B(Kk

n), we observe that

(i) K00 := (Sn ∪ {g1}, Sn, I) has 2n concepts. The extents of K00 are of the form
A ∪ {g1}, A ⊆ Sn.

(ii) K02 := (Sn ∪ {g1}, Sn ∪ {m2}, I) has 2n + 2n−k concepts. They are of the form
(A ∪ {g1}, Sn \ A) with A ⊆ Sn or the form (A, (Sn \ A) ∪ {m2}) with A ⊆ m′2.

(iii) K01 := (Sn ∪ {g1}, Sn ∪ {m1}, I) has 2n + 2k concepts, which are of the form
(A ∪ {g1}, Sn \ A) with A ⊆ Sn or the form (A, (Sn \ A) ∪ {m1}) with A ⊆ m′1.

That leads to the following result:

Proposition 2.3.2. Let n > 2, 1 6 k < n and Kk
n defined by (2.5).

a) The context Kk
n has 2n + 2n−k + 2k − 1 concepts.

b) Generalizing m1 and m2 increases the number of concepts by

2n − 2k − 2n−k + 1.

Proof. K12 := (Sn∪{g1}, Sn∪{m1,m2}, I) is obtained from K02 by addingm1. Therefore
we need to compute H(m1) with respect to K02. Let A ∈ Ext(K02). We distinguish two
cases: g1 /∈ A or g1 ∈ A.

(i) If g1 /∈ A, then A ⊆ m′2, and A ∩m′1 = ∅ is an extent of K02. No new concept is
generated.

(ii) If g1 ∈ A, then the extent A is of the form A = A1 ∪ {g1} with A1 ⊆ Sn. Since
m′1 ∩m′2 = ∅, we get

A1 ∩m′1 /∈ Ext (K02) ⇐⇒ A1 ∩m′1 * m′2

Thus the number of additional concept generated is

|{A ∩m′1|A ∈ Ext (K02) and A ∩m′1 * m′2}|

Among the extents of K02 with A∩m′1 * m′2, there are 2k−1 that do not coincide
on m′1, for example those with ∅ 6= A1 ⊆ m′1. This means that adding m1 to K02

will generate 2k − 1 new concepts that cannot be identified with concepts in K02.
Therefore Kk

n has 2n + 2n−k + 2k − 1 concepts.
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The increase after the generalization is given by 2n+1 − (2n + 2n−k + 2k − 1) = 2n −
2n−k − 2k + 1 concepts.

The natural question here is: which Kk
n has a maximal increase? The increase by an

∃-generalization that puts m1 and m2 together in Kk
n is

fn(k) := 2n − 2k − 2n−k + 1.

This function is convex and its slope vanishes at k = n
2
.

f
′

n(k) = − ln(2)2k + ln(2)2n−k = 0 ⇐⇒ n = 2k.

f
′′

n (k) = − ln2(2)2k − ln2(2)2n−k < 0.

The maximum is reached when the objects are evenly split; i.e k = n
2
for n even, or

k ∈
{
bn
2
c, bn

2
c+ 1

}
for n odd, with bn

2
c the whole part of n

2
. That is the case for the

context
Kb

n
2
c

n := (Sn ∪ {g1}, Sn ∪ {m1,m2}, I)
with

g Im ⇐⇒





g,m ∈ Sn and g 6= m, or
g = g1 and m ∈ Sn, or
g ∈ {1, · · · , bn

2
c} and m = m1, or

g ∈ Sn \ {1, · · · , bn2 c} and m = m2.

Assuming n = 2q the increase is f2q(q) = 22q − 2 · 2q + 1 = (2q − 1)2.
We could allow overlap in constructing Kk

n by using any covering of Sn with two
proper subsets m′1 and m′2; this means

m′1 ∪m′2 = Sn with ∅ ( m′1,m
′
2 ( Sn.
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An ∃-generalization that puts the attributes m1 and m2 together to get m12, will
also produce a generalized context with 2n+1 concepts. However the concept lattice of
Kn will have more concepts when m′1 ∩m′2 6= ∅ compared to when m′1 ∩m′2 = ∅.

Let K12 := (Sn ∪ {g1}, Sn ∪ {m1,m2}, I) with m′1 ∩m′2 6= ∅. If m′1 ⊆ m′2 or m′2 ⊆ m′1
then putting m1 and m2 together will not increase the size of the concepts lattice.
Therefore, we assume that m′1 * m′2 and m′2 * m′1.

Proposition 2.3.3. Let n > 2 and Ks the generalized context obtained from K12 by
putting m1 and m2 together. Then:

1. The size of the concepts lattice of the context Kn is

2n + 2|m
′
2| + 2|m

′
1| − 2|m

′
2∩m′1|.

2. After the generalization, the size of the initial lattice increases by

2n − 2|m
′
1| − 2|m

′
2| + 2|m

′
1∩m′2|.

Proof. The context K12 is obtained by adding m1 to K00 to get K01 and then m2 to K01.
m′1 ⊆ Sn and for all A1 ⊆ m′1, A = A1 ∪ {g1} ∈ Ext (K00) and A∩m′1 = A1 /∈ Ext (K00)

because g1 ∈ AI I1 . Hence, A1 ∈ H(m1). Moreover, H(m1) ⊆ P(m′1). We conclude that
H(m1) = P(m′1), and then |H(m1)| = 2|m

′
1|. Hence, K12 := (Sn ∪{g1}, Sn ∪{m1,m2}, I)

has 2n + 2|m
′
1| + H(m2) concepts, where H(m2) is to be determined with respect to

K01 := (Sn∪{g1}, Sn∪{m1}, I). The concepts of K01 are of the form (A1 ∪ {g1}, Sn \ A1)
with A1 ⊆ Sn or of the form (A1, (Sn \ A1) ∪ {m1}) with A1 ⊆ m′1. Let A ∈ Ext (K01).
There are two cases, g1 /∈ A or g1 ∈ A.

• If g1 /∈ A then A ⊆ m′1 and A ∩m′2 is a subset of m′1, and then an extent of K01.
No new concept is generated.

• If g1 ∈ A then A = A1 ∪ {g1} with A1 ⊆ Sn. Since all subsets of m′1 are extents of
K01 and the object g1 does not have the attribute m2, we have

A ∩m′2 /∈ Ext (K01) ⇐⇒ A ∩m′2 ∈ P(m′2) \ P(m′1).

Thus, adding m2 to K01 will generate 2|m
′
2| − 2|m

′
1∩m′2| new concepts that cannot be

identified (via φm2) with concepts in K01. Then K12 has

2n + 2|m
′
1| + 2|m

′
2| − 2|m

′
1∩m′2|

concepts. The increase of the size of the lattice is then

|B(Ks)| − |B(K12)| = 2n+1 −
(

2n + 2|m
′
1| + 2|m

′
2| − 2|m

′
1∩m′2|

)

= 2n − 2|m
′
1| − 2|m

′
2| + 2|m

′
1∩m′2|
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Example 2.3.1. This is a concrete case with n = 3. Its context is isomorphic to

1 2 3 m1 m2

1 × × ×
2 × × × ×
3 × × ×
g1 × × ×

and has 23 + 22 + 22 − 21 = 14 concepts.

Remark 2.3.1. Note that n = |m′1 ∪m′2| and the increase is

2|m
′
1∪m′2| − 2|m

′
1| − 2|m

′
2| + 2|m

′
1∩m′2|

which is a general formula that holds, even if m′1 ∪ m′2 6= Sn. The starting context is
K00 := (Sn ∪ {g1}, Sn, I) and has 2n extents. After adding an attribute m1 to K00, we
increase the number of extents by 2|m

′
1|. After adding m2 to K00, we increase the number

of extents by 2|m
′
2|. After adding an attribute s with s′ = m′1 ∪m′2 to K00, we increase

the number of extents by 2|m
′
1∪m′2|. If we add an attribute t with t′ = m′1 ∩ m′2 to K00

we will increase the number of extents by 2|m
′
1∩m′2|. But these extents ”appear” already

when m1 or m2 is added to K00, and are therefore counted twice when both m1 and m2

are added to K00.

Remark 2.3.2. The counting with K12 has been made easy by the fact that each ”subset”
of Sn identifies an extent of K00. If m′1 ∩m′2 is not empty, then K12 has more concepts
while the number of generalized concept remains the same. Then the condition m′1 ∩
m′2 = ∅ is necessary (but not sufficient) to get the maximal increase. If n is even, then
generalizing could increase the size of the concepts lattice up to

(
2b

n
2
c − 1

) (
2d

n
2
e − 1

)

concepts. Is this the maximal increase for contexts of similar size?

Remark 2.3.3. Note that all contexts K12 constructed are reduced. Requiring the con-
texts to be reduced is a fair assumption. If not then we should first remove reducible
attributes before processing with a generalization. This removal does not affect the size
of the concept lattice. However putting together two reducible attributes will for sure not
decrease the size, but probably increases it.

Remark 2.3.4. B4 is the smallest lattice for which there are two attributes whose ∃-
generalization increases the size of the concept lattice. All lattices presented in this
section contain a labelled copy of B4 (as subposet!).

In this section we have found out that the size of the generalized concept lattice
can be exponentially larger than that of the initial concept lattice after an existential
generalization. In the next section we discuss the maximum of the increase after an
∃-generalization.
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2.4 The maximum increase after an existential gener-
alization

This section aims at finding the maximum of increase one can get after an existential
generalization, especially the case where the size of the lattice increases after the gen-
eralization. Let consider a context K = (G,M, I) and two attributes a and b such that
their existential generalization increases the size of the lattice. Let s be their existential
generalized attribute.

In general, we get the context K by adding the attribute a to Kab to get Kb, and then
by adding the attribute b to Kb. Recall that if an attribute m is added to any context
K, then the number of concepts increases by

|H(m)| = |{A ∩m′|A ∈ Ext(K) and A ∩m′ /∈ Ext(K)}|.

We denote by a ∩ b the attribute such that (a ∩ b)′ := a′ ∩ b′, and a ∪ b the attribute
such that (a ∪ b)′ := a′ ∪ b′ = s′. We start from Kab = (G,M\{a, b}, I).

Adding the attribute a to Kab increases its number of concepts by

|H(a)| = |{A ∩ a′|A ∈ Ext(Kab) and A ∩ a′ /∈ Ext(Kab)}| 6 2|a
′|.

Adding the attribute b to Kab increases its number of concepts by

|H(b)| = |{A ∩ b′|A ∈ Ext(Kab) and A ∩ b′ /∈ Ext(Kab)}| 6 2|b
′|.

Adding the attribute a ∩ b to Kab increases its number of concepts by

|H(a ∩ b)| = |{A ∩ a′ ∩ b′|A ∈ Ext(Kab) and A ∩ a′ ∩ b′ /∈ Ext(Kab)}| 6 2|a
′∩b′|.

If a′ ∩ b′ is empty, then |H(a ∩ b)| 6 1.
Adding the attribute a ∪ b to Kab increases its number of concepts by

|H(a ∪ b)| = |{A ∩ (a′ ∪ b′)|A ∈ Ext(Kab) and
A ∩ (a′ ∪ b′) /∈ Ext(Kab)}| 6 2|a

′∪b′| 6 2|a
′|+|b′|.

If |H(a ∪ b)| = 2|a
′|+|b′|, then a′ ∩ b′ = ∅ and no subset of a′ ∪ b′ is an extent of Kab, but

is the restriction of an extent of Kab on a′ ∪ b′. In this case, |H(a)| = 2|a
′|, |H(b)| = 2|b

′|

and |H(a ∩ b)| = 1.
Let

d1 = |{A ⊆ a′|A ∈ Ext(Kab)}|.

d2 = |{A ⊆ b′|A ∈ Ext(Kab)}|.

and

d0 = |{A ⊆ a′ ∪ b′|A ∈ Ext(Kab)}|.

Then |H(a)| = 2|a
′| − d1, |H(b)| = 2|b

′| − d2 and |H(s)| = 2|a
′∪b′| − d0. Since a′ ∩ b′ = ∅,

the following holds for any extent A 6= ∅ of Kab:
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A ⊆ a′ ∪ b′ ⇔ A ⊆ a′ xor A ⊆ b′ xor A ⊆ a′ ∪ b′ with A * a and A * b.

where xor denotes the exclusive or. Therefore d1 + d2 − d0 6 0
To express the maximum increase of size of the concept lattice after an existential

generalization, we have the following result.

Theorem 2.4.1. Let K := (G,M, I) be an attribute reduced context with |G| > 3 and
|M | > 3. Let a and b be two attributes such that their existential generalization s = a∪b
increases the size of the concepts lattice. Then

a) |B(K)| = |B(Kab)|+ |H(a, b)|, with

|H(a, b)| = |H(a) ∪H(b) ∪H(a ∩ b)|

b) The increase after the generalization is

|H(a ∪ b)| − |H(a, b)| 6 2|a
′|+|b′| − 2|a

′| − 2|b
′| + 1.

Proof. Let K := (G,M, I) be a such context and a, b two attributes of K. One proceed
to the ∃-generalization of attributes a and b. We set Kb = (G,Mb, Ib). Then we have:
|B(K)| = |B(Kb)| + h∗(b) = |B(Kab)| + h(a) + h∗(b) where h∗(b) = |H∗(b)| = |{B ∩ b′|
B ∈ Ext(Kb), B ∩ b′ /∈ Ext(Kb)}|. Note that H∗ is determined with respect to Kb.

Our aim is to express h∗(b) as a function of h(b) and h(a ∩ b). According to the
elements above, Ext(Kb) = Ext(Kab)∪ H(a). Hence, we have H∗(b) = {B ∩ b′|B ∈
Ext(Kb), B ∩ b′ /∈ Ext(Kb)} = {B ∩ b′|B ∈ Ext(K00), B ∩ b′ /∈ Ext(Kb)} ∪ {B ∩ b′|B ∈
H(a), B ∩ b′ /∈ Ext(Kb)}

Replacing Ext(Kb) by Ext(Kab) ∪ H(a), we obtain {B ∩ b′|B ∈ Ext(Kab), B ∩ b′ /∈
Ext(Kb)} = H(b)\H(a)∩H(b) = H(b)\H(a), and {B∩b′|B ∈ H(a), B∩ b′ /∈ Ext(Kb)} =
H(a ∩ b)\(H(b) ∪H(a)).

It comes that h∗(b)=h(b)+h(a∩b)−|H(a)∩H(b)|+ |H(a∩b)∩H(a)∩H(b)|−|H(a∩
b) ∩ H(a)| − |H(a ∩ b) ∩ H(b)|. Hence, |B(K)| = |B(Kab)| + |H(a)| + |H(b)| + |H(a ∩
b)|+ |H(a∩ b)∩H(a)∩H(b)| − |H(a)∩H(b)| − |H(a∩ b)∩H(a)| − |H(a∩ b)∩H(b)| =
|B(Kab)|+ |H(a) ∪H(b) ∪H(a ∩ b)|.

For the increase to be maximal, we need a′∩ b′ = ∅. In that case, |H(a∩ b)| ∈ {0, 1}.

• If |H(a∩ b)| = 0, then |B(K)| = |B(Kab)|+ |H(a)∪H(b)∪H(a∩ b)| = |B(Kab)|+
|H(a)|+ |H(b)|.
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• If |H(a ∩ b)| = 1, then we have two subcases:

Firstly, we suppose that the only element of H(a ∩ b) is not in H(a) ∪ H(b).
Then, |H(a)∩H(b)| = |H(a∩ b)∩H(a)∩H(b)| = |H(a∩ b)∩H(a)| = |H(a∩ b)∩
H(b)| = 0 and |B(K)| = |B(Kab)|+ |H(a)|+ |H(b)|+ |H(a ∩ b)|.

Secondly, we suppose that the only element ofH(a∩b) belongs to eitherH(a) or
H(b). Then |H(a∩b)|+|H(a∩b)∩H(a)∩H(b)|−|H(a∩b)∩H(a)|−|H(a∩b)∩H(b)| =
0, |H(a)∩H(b)| ∈ {0, 1} and |B(K)| = |B(Kab)|+|H(a)|+|H(b)|+1−|H(a)∩H(b)|.

In all the above cases, considering that |B(Ks
ab)| = |B(Kab)|+ |H(a∪b)|, the increase

after the generalization is |B(Ks
ab)| − |B(K)| = |H(a∪ b)| − |H(a, b)| 6 2|a

′|+|b′| − 2|a
′| −

2|b
′| + (d1 + d2 − d0) 6 2|a

′|+|b′| − 2|a
′| − 2|b

′| + 1, since d1 + d2 − d0 6 0.

Remark 2.4.1. If generalizing a and b does not increase the size of the lattice, then the
difference |H(a ∪ b)| − |H(a) ∪ H(b) ∪ H(a ∩ b)| is at most zero, and will describe the
reduction in the number of concepts.

Remark 2.4.2. In cases where the context does not contain a copy of B4 as specified
in [27], the increase of the size of a lattice after a generalization does not depend on
whether the attributes are reducible or no. Both attributes can even be non reducible and
the size of the lattice still increases or remains stable after an existential generalization,
as specified in the following examples.
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Example 2.4.1.

K a b c d e f g

1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 ×
6 × × × × ×

Ks
ab c d e f g s

1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 ×
6 × × × × ×

Figure 2.3: None of the attributes a and b is reducible, |B(G,M, I)| = 18 (up) and
|B(G,Mab ∪ {s}, Isab)| = 21 (down)
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K a b c d e f

1 × × ×
2 × ×
3 × ×
4 × × ×
5 ×
6 × × × ×

Ks
ab c d e f s

1 × × ×
2 × ×
3 × ×
4 × × ×
5 ×
6 × × × ×

Figure 2.4: None of the attributes a and b is reducible and |B(G,M, I)| = 15 (up) and
|B(G,Mab ∪ {s}, Isab)| = 15 (down)
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2.5 A case of stability of the size of the lattice after
an existential generalization

The ∃-generalization does not always leads to the strict increase or decrease of the
size of the concept lattice. There are certainly some cases where the size of the lattice
remain unchange after an ∃-generalization on two attributes of a reduced formal context.
Here we present one of these cases were the existential generalization stabilises the size
of the lattice. It is particularly important because an expert exploring and analysing a
database can suspect that all information that will come from the data (as concepts) are
relevant information, and can decide to reduce the size of the data2 without reducing
the quantities of these information. Since no expert wishes the size of the lattice to
increase after a generalization, he will then try to keep stable the size of the lattice.

Let K = (G,M, I) be a context such that |M | > 3. For any triple of attributes
(m1,m2,m3), we consider the condition C(m1,m2,m3) defined by:

For every element A0 of the set P(mI
1 ∪ mI

2) verifying mI
1 * A0, mI

2 * A0 and
|A0| = |mI

2| + |mI
1| − 2, there exists a unique attribute z such that z /∈ {m1,m2,m3},

A0 = zI and AI0 = {z}.
The following result holds:

Proposition 2.5.1. Let K = (G,M, I) be a reduced context such that |M | > 3, |G| >
4.We suppose that there exists attributes a, b and c of K such that:

i) aI ∪ bI  G, aI ∩ bI = ∅, aI ∩ cI = ∅ and bI ⊆ cI,

ii) |bI| > 1, |aI| > 1,

iii) C(a, b, c) holds and there exists a unique attribute z0 such that bI ⊆ zI0,

iv) for all z ∈M , aI * zI,

then there exists an ∃-generalization that stabilizes the size of the initial lattice.

Proof. Let K = (G,M, I) be such context and s be the generalized attribute resulting
from the ∃-generalization of a and b. Since aI ∩ bI = ∅, aI ∩ cI = ∅ and bI ⊆ cI,
the attribute b is a reducible attribute in the context Ks = (G,M ∪ {s}, Is) and then,
considering the context Ks, its elimination will keep stable the size of the lattice B(Ks).
It means that

|B(G,Mb ∪ {s}, Isb)| = |B(G,M ∪ {s}, Is)|.
Yet, we have that

|B(G,M ∪ {s}, Is)| = |B(G,M, I)|+ |H(s)|,
and

|B(G,Mb ∪ {s}, Isb)| = |B(G,Mab ∪ {s}, Isab)|+ |H(a)|.
2he can reduce the number of attributes in the data
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It then comes out that

|B(G,M, I)|+ |H(s)| = |B(G,Mab ∪ {s}, Isab)|+ |H(a)|.
We will now show that every subset A of aI ∪ bI (except aI ∪ bI) is either an extent

of K or cannot be written as an intersection of aI ∪ bI with an extent of K.
- Let T ∈ ExtK such that T ( G, T * aI ∪ bI and A = T ∩ (aI ∪ bI) 6= ∅ for some A.

Then a /∈ T I and b /∈ T I, else T ⊆ aI ⊆ aI ∪ bI or T ⊆ bI ⊆ aI ∪ bI, which is absurd.
Moreover A ⊆ aI ∪ bI and |A| < |aI| + |bI| − 1. In fact, if |A| > |aI| + |bI| − 1, then
A = aI ∪ bI or |A| = |aI|+ |bI| − 1. In both cases, aI ⊆ zI or bI ⊆ zI for all z ∈ T I. Let
z be an element of T I. Then zI ∩ aI 6= ∅, since |A| 6 |T | 6 |zI|. If aI ⊆ zI, then it is
a contradiction to iv). If bI ⊆ zI, then it is a contradiction to iii) because cI ∩ aI 6= ∅
and then z 6= c. Therefore, there is no extent T of K such that T ( G, T * aI ∪ bI,
T ∩ (aI ∪ bI) 6= ∅ and |T ∩ (aI ∪ bI)| > |aI|+ |bI| − 1.

- Since aI * zI for all z ∈ M , aI I = {a}. Since the attribute c is the only attribute
of K such that bI ⊆ cI, then bI I = {b, c}. Moreover, ∅I I = ∅ because aI∩ bI = ∅. Hence,
aI, bI, ∅ ∈ ExtK .

- Now we consider a proper subset A0 of aI ∪ bI such that A0 /∈ {aI, bI} and 1 6
|A0| 6 |aI|+ |bI| − 2.

Then there are several cases:
*) If aI ⊆ A0, then AI0 ⊆ aI I = {a}, which implies that AI0 = ∅ or AI0 = {a} . In

both cases, A0 /∈ ExtK because A0 ⊆ G and AI I0 = aI respectively.
**) If bI ⊆ A0, then AI0 ⊆ bI I = {b, c}, which implies that AI0 = ∅ or AI0 = {b} or

AI0 = {c} or AI0 = {b, c}. But AI0 6= {b} (because bI ⊆ cI) and AI0 6= {c} (because there
is no subset A0 of aI ∪ bI such that AI0 = {c}). Hence, AI0 = ∅ or AI0 = {b, c}. In both
cases, A0 /∈ ExtK because A0 ⊆ G and AI I0 = bI respectively.

However, in cases *) and **), if T is an extent of the context K such that T ( G,
T * aI ∪ bI and T ∩ (aI ∪ bI) = A0; and z is an element of T I, then aI ⊆ zI or bI ⊆ zI.
If aI ⊆ zI, then it is a contradiction to iv). If bI ⊆ zI, then it is a contradiction to iii)
because z 6= c. Therefore, there is no extent T of K such that T ( G, T * aI ∪ bI and
T ∩ (aI ∪ bI) = A0.

We suppose that aI * A0 and bI * A0.
*) If |A0| = |aI|+ |bI| − 2, then there exists z ∈M such that z /∈ {a, b, c}, A0 = zIA0

and AI0 = {z}. Therefore A0 ∈ ExtK.
*) If |A0| < |aI| + |bI| − 2, then there is z ∈ M and Bz

A0
⊆ aI ∪ bI such that

z /∈ {a, b, c}, |A0 ∪ Bz
A0
| = |aI| + |bI| − 2, (A0 ∪ Bz

A0
)I = {z} and A0 ∪ Bz

A0
= zI. Let

precise that aI * A0 ∪ Bz
A0
, else z = a, which is a contradiction. Also, bI * A0 ∪ Bz

A0
,

else z ∈ {b, c}, which is a again a contradiction. Therefore, A0 ⊆ zI. Hence, we set
Y KA0

= {z ∈ M ;A0 ⊆ zI} and Y ∗KA0
= {z ∈ M ;∃Bz

A0
, |A0 ∪ Bz

A0
| = |aI| + |bI| − 2, (A0 ∪

Bz
A0

)I = {z}, A0 ∪Bz
A0

= zI, A0 ⊆ zI}. Then AI0 = Y KA0
and A0 ⊆ (Y KA0

)I. It is still to be
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shown that we do not have A0 ( (Y KA0
)I.

To get there, we first show that for all z ∈ Y ∗KA0
, for all g ∈ Bz

A0
, there exists z′ ∈ Y ∗KA0

such that g /∈ Bz′
A0
.

Let consider z ∈ Y ∗KA0
and g ∈ Bz

A0
. Since z ∈ Y ∗KA0

, (A0∪Bz
A0

)I = {z} and A0∪Bz
A0

=

zI. We set A′ = A0∪(Bz
A0
\{g}). Then |A′| < |aI|+ |bI|−2 and then there exists z′ ∈M ,

and Bz′

A′ ⊆ G such that [A0∪(Bz
A0
\{g})]∪Bz′

A′ = z′ I and [[A0∪(Bz
A0
\{g})]∪Bz′

A′ ]
I = {z′},

by iii). Setting Bz′
A0

= (Bz
A0
\{g}) ∪ Bz′

A′ , we get (A0 ∪ Bz′
A0

)I = {z′} and A0 ∪ Bz′
A0

= z′ I

and g /∈ z′ I (in fact, if g ∈ z′ I, then g ∈ Bz′

A′ , which means that zI ⊆ z′ I, which is
absurd).

We also show that
⋂
z∈Y ∗KA0

Bz
A0

= ∅.
Let suppose that

⋂
z∈Y ∗KA0

Bz
A0
6= ∅. Then there exists g0 ∈

⋂
z∈Y ∗KA0

Bz
A0
. Since |aI| > 1

and |bI| > 1, we have |Y ∗KA0
| > 2. Let z ∈ Y ∗KA0

. Considering Bz
A0
, g0 ∈ Bz

A0
. However, as

we have shown before, there exists z′ ∈ Y ∗KA0
such that z 6= z′ and g0 /∈ z′. This implies

that g0 /∈ Bz′
A0
, which is absurd.

Hence, if A0 ( (Y KA0
)I, then there exists an object g0 ∈ (Y KA0

)I\A0. It means that
g0 ∈ (Y KA0

)I\A0 = (
⋂
z∈Y K

A0

zI)\A0 =
⋂
z∈Y K

A0

(zI\A0) ⊆
⋂
z∈Y ∗KA0

(zI\A0) =
⋂
z∈Y ∗KA0

Bz
A0
,

which is absurd because
⋂
z∈Y ∗KA0

Bz
A0

= ∅.
Therefore, A0 = (Y KA0

)I, which implies that A0 ∈ ExtK.
Hence, for all proper subset A0 of aI ∪ bI such that A0 /∈ {aI, bI} and |A0| > 1,

A0 ∈ ExtK or there is no extent T in K such that A = T ∩ (aI ∪ bI).
From iv) the context K has no attribute z such that aI ∪ bI ⊆ zI; therefore, aI ∪ bI

is not an extent of K (due to aI ∩ bI = ∅). Also, G is an extent of K, aI ∪ bI  G and
aI ∪ bI = G ∩ sI

s

. Hence,

|H(s)| = 1

Now we consider the generalized formal context Kos = (G,M00 ∪ {s}, Ios) = Ks
ab =

(G,Mab ∪ {s}, Isab).
We will show that every subset A of aI (except aI) is an extent of Kos.
Let A be a subset of aI such that A ( aI. There are two cases:
- If A = ∅, then A ∈ ExtKos . Else, there would exist z ∈ Y ∗KA such that |zI| >

|aI|+ |bI| − 2, which would be absurd.
- If A 6= ∅, then 1 6 A < |aI| 6 |aI|+ |bI|−2 and as we have seen before, there exists

z ∈M\{a, b, c} and Bz
A ⊆ G such that A ∪Bz

A = zI and (A ∪Bz
A)I = {z} in K, by iii).

But such z is an attribute of K00 and as we have shown previously with such set A, ∅ =⋂
z∈Y ∗KA

Bz
A =

⋂
z∈Y ∗K00

A
Bz
A and then

⋂
z∈Y ∗KA

zI =
⋂
z∈Y ∗KA

(A∪Bz
A) = A∪⋂z∈Y ∗KA

Bz
A = A,

which means that A = Y ∗KA
I = Y ∗K00

A
I00 ⊇ Y K00

A
I00 ⊇ Y Kos

A
Ios . Hence, Y Kos

A
Ios ⊆ A and

since A ⊆ Y Kos
A

Ios , we conclude that A = Y Kos
A

Ios . Also, we obviously have AIos = Y Kos
A .

Therefore, A ∈ ExtKos .
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Also, because there is no attribute z of K such that aI ⊆ zI, the generalized attribute
s is the only attribute of Ks

ab such that aI ⊆ sI
s

ab , and then aI is not an extent of Ks
ab

because a is not an attribute of Ks
ab. Moreover, G is an extent of Ks

ab, aI  G and
aI = G ∩ aI. We conclude that

|H(a)| = 1

Hence,

|B(G,M, I)|+ 1 = |B(G,Mab ∪ {s}, Isab)|+ 1

which means that

|B(G,Mab ∪ {s}, Isab)| = |B(G,M, I)|

Example 2.5.1.

Consider the following context K with de corresponding concept lattice

K a b c d e f g

1 × × ×
2 × × × ×
3 × × × ×
4 × × ×
5 ×

The ∃-generalization of attributes a and b in K leads to the following context Ks
ab

with the corresponding concept lattice.

Ks
ab c d e f g s

1 × × ×
2 × × × ×
3 × × × ×
4 × × ×
5 ×
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Figure 2.5: An example of stability after an ∃-generalization: |B(G,M, I)| = 13 and
|B(G,Mab ∪ {s}, Isab)| = 13

The generalization can also be done in many attributes at the same time. For all non
empty setX of attribute, we set sX the attribute obtained by generalizing simultaneously
all the attributes in X. Then the following result holds for ∃-generalization:

Theorem 2.5.1. Let K =: (G,M, I) be a reduced formal context such that |M | > 3.
Then the ∃-generalization in K is associative, ie

B(G,Mabc ∪ {sabc}, Isabcabc ) = B(G, (Mbc ∪ {sbc})asbc ∪ {a ∪ sbc}, Ia∪sbcasbc
) =

B(G, (Mab ∪ {sab})csab) ∪ {sab ∪ c}, Isab∪csabc
)

for attributes a, b, c of K.

Proof. After a ∃-generalization on attributes {a, b, c} in the context K, we get the gen-
eralized attribute sabc such that s′abc = a′ ∪ b′ ∪ c′. Hence, the corresponding generalized
concepts lattice is B(G,Mabc ∪ {sabc}, Isabcabc ).

Generalizing the attributes {b, c} in the context K, we get the generalized attribute
sbc such that s′bc = b′ ∪ c′, and the following generalized concepts lattice: B(G,Mbc ∪
{sbc}, Isbcbc ).

In the context (G,Mbc ∪ {sbc}, Isbcbc ), we generalize the attributes a and sbc to get the
attribute a∪ sbc such that (a∪ sbc)′ = a′∪ s′{b,c}. The generalized concepts lattice is then
given by B(G, (Mbc ∪ {sbc})asbc ∪ {a ∪ sbc}, Ia∪sbcasbc

).

But (a ∪ sbc)′ = a′ ∪ s′bc = a′ ∪ (b′ ∪ c′) = a′ ∪ b′ ∪ c′ = s′abc, because s′bc = b′ ∪ c′.
Moreover, (Mbc ∪ {sbc})asbc = Mabc.

Therefore,

B(G,Mabc ∪ {sabc}, Isabcabc ) = B(G, (Mbc ∪ {sbc})asbc ∪ {a ∪ sbc}, Ia∪sbcasbc
).
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In the same way, generalizing attribute {a, b} in the context K to get the generalized
attribute sab such that s′ab = a′ ∪ b′ and then c and sab to get the attribute sab ∪ c such
that (sab ∪ c)′ = s′ab ∪ c′ leads to:

B(G,Mabc ∪ {sabc}, Isabcabc ) = B(G, (Mab ∪ {sab})csab) ∪ {sab ∪ c}, Isab∪csabc
).

Remark 2.5.1. In the same way, generalizing several groups of attributes simultane-
ously is equivalent to generalizing each group one after another by applying associativity
on each of them.

2.6 The relationship between ∃-generalization and gran-
ularity, factorisation and pattern structure

This section looks at the link between ∃-generalization and other related notions, no-
tably the granularity in formal context, the factorization of formal contexts and pattern
structures.

2.6.1 The ∃-generalization in connection with granularity

Formal Concepts Analysis (FCA) plays a crucial role in various domains, especially in
qualitative data analysis. Here, the number of extracted pieces of information can grow
very fast. To control the number of concepts, [4] gave a method to control the structure
of the concept lattice by specifying the level of granularity of attributes. In its method,
some cases showed an increase of size of the concept lattice after the changing of level of
granularity, and other cases revealed a decrease of size of the concept lattice. The authors
said that these cases needed further examination as well as the possibility of informing
the user who is choosing a new level of granularity, whether the size of the lattice will
increase or no. The notion of granularity has a connection with ∃-generalization. First,
we recall some definitions.

Definition 2.6.1. [4]

- Granulation is a collection of pieces of information (granule) of the outer-world,
which serve as the basic of reasoning.

- Let M be a set of attributes. A granularity tree (g-tree) of an attribute y is a
rooted tree such that each node of the tree is labeled by a (unique) attribute name;
the root is labeled by y; to each label z of a node, a set z↓ (which described the
objects to which the attribute z is applied) is associated; and if the nodes labeled
by z1, ..., zn are successors of the node labeled by z, then z↓1 , ..., z↓n is a partition of
z↓.

- A cut in a g-tree for an attribute y, also called a refinement of y is a set Cy of
node labels of the g-tree such that for each leaf node u, there exists exactly one
node v on the path from the root y to u such that the label of v belongs to Cy.
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The following example of data concerning the causes of car accidents is from [5].

Example 2.6.1.

From the above data, we get the following tree:

The granule of the above tree is then given by: Granule={Cause, Time, Steering,
Priority, Alcohol, Brakes, driver, car-defect, 1AM, 6AM, 7AM, 10AM, 12AM, 8PM,
9PM, 10PM, morning, afternoon, night}.

The following are some examples of the g-trees of attributes "cause" and "time"
respectively.

The above g-trees leads to some examples of cuts of attributes "cause" and "time":
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Example 2.6.2. C1
time = {time},

C2time = {morning, afternoon, night},
C3time = {1AM, ..., 12AM, 8PM, ..., 10PM},
C1cause = {cause},
C2cause = {driver, car − defect},
C3cause = {alcohol, priority, steering, brakes}.

Definition 2.6.2. [5] Now we consider a formal context K = (G,M, I). For each
attribute y of K, one suppose there exists a g-tree Ty.

- A level of granularity in the formal context K = (G,M, I) is characterized by a
given family of cuts Y = {Cy, y ∈M}.

- A binary relation on CY = ∪y∈MCy is defined as follow: (g, z) ∈ IY if and only
if g ∈ z↓. The formal context (G, CY , IY) results from the context (G,M, I) by
replacing each attribute y ∈ Y by the corresponding collection Cy of attributes.

Definition 2.6.3. [5] Let y ∈ M . We consider two cuts C1y = {y1, ..., yn} and C2y =
{z1, ..., zm}. Then it is defined a binary relation called the refinement relation as
follow:

C1y 6 C2y iff for any yi, there exists zj such that y↓i ⊆ z↓j .

In the same way, On the set of all collection of cuts of g-trees of the formal context
K, it is defined a binary relation as follow: for all collections Y1 = {C1

y ; y ∈ M} and
Y2 = {C2

y ; y ∈M} of cuts,

Y1 6 Y2 iff C1y 6 C2y for each y ∈M .

Definition 2.6.4. [5] Given two collection of cuts Y1 and Y2 of different granularities
in the context K, such that CY1 = ∪y∈MC1y and CY2 = ∪y∈MC2y .

- If Y1 6 Y2, then we say that Y1 is finer than Y2 and Y2 is coarser than Y1.
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- In some cases, one of the contexts (G, CY1 , ICY1 ) and (G, CY2 , ICY2 ) can be deduced
from the other by coarsening or by refinement. In these cases, the finer (re-
spectively the coarser) of the two corresponding contexts is obtained from the other
by replacing each of its attributes by its corresponding finer attribute (respectively
its coarser attributes). There can also be some cases where one of them can not
be deduced from the other.

- Passing from the finer to the coarser collection of cuts is called a reduction of
the level of granularity, and passing from the coarser to the finer collection of
cuts is called an increase of the level of granularity.

These are some examples of level of granularity: Y1 = {C3cause, C3time}, Y2 =
{C2cause, C2time}, Y3 = {C3cause, C2time}. One can easily observe that Y1 6 Y2,
Y1 6 Y3 and Y3 6 Y2. With Y2 and Y3, these are their corresponding formal contexts:
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To appreciate the structure of the concept lattice, the level of granularity is changed
from one level to another and the patterns obtained are appreciated. The concept lattice
over such attributes may not contain interesting formal concepts because the selected
attributes are too coarse, resulting in a low level of granularity of concepts. If one
uses attributes with a higher level of granularity instead, such as "alcohol","night",
"afternoon", etc., the concept lattice may reveal some interesting patterns, such as a
formal concepts containing "alcohol" and "night" among its attributes. If such concept
is applied to a large number of accidents, it may reveal interesting information. Such
a concept may not be detectable when using coarser attributes. On the other hand,too
high a level of granularity may result in overly specific formal concepts which may be
of too little interest to the user.

The main concern here is to study the variation of size of concept lattices while one
moves from a smaller level of granularity to a higher level of granularity and vice-versa.

In order to get there, we study the relation between the set of extents of a formal
context and that of a subcontext having the same set of objects with the context. That
relation is given in the following result:

Theorem 2.6.1. Let K = (G,M, I) be a formal context and {z1, ..., zn} (M . One sets
M00 = Mz1,...,zn = M\{z1, ..., zn}, I00 = I∩(G×M00) and K00 = (G,M00, I00). Then

Ext(K) = Ext(K00) ∪ (∪T∈P({1,...,n})\∅HK00(∩i∈T zi))

where HK00(zi) := {A ∩ z′i|A ∈ Ext(K00) and A ∩ z′i /∈ Ext(K00)}, for all i ∈ {1, ..., n};
and ∩i∈T zi is a representative attribute such that (∩i∈T zi)′ = ∩i∈T z′i
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Proof. We have Ext(K00) ⊆ Ext(K).
We consider A ∈ ∪T∈P({1,...,n})\∅HK00(∩i∈T zi). Then there exists

T ∈ P({1, ..., n})\∅ such that A ∈ HK00(∩i∈T zi). Hence, there exists B ∈ Ext(K00) such
that A = B∩(∩i∈T zIi ). Hence, AI I = (BI00 I00∩(∩i∈T zIi ))I I = (BI00 I∩{zi, i ∈ T}I)I I =

(BI00 ∪{zi, i ∈ T})I I I = (BI00 ∪{zi, i ∈ T})I = BI00 I ∩ (∩i∈T zIi ) = BI00 I00 ∩ (∩i∈T zIi ) =

B ∩ (∩i∈T zIi ) = A. Hence, A ∈ Ext(K).
We conclude that

Ext(K00) ∪ (∪T∈P({1,...,n})\∅HK00(∩i∈T zi)) ⊆ Ext(K).

Now let A ∈ Ext(K). Since Ext(K00) ⊆ Ext(K), there are two cases: A ∈ Ext(K00)
or A /∈ Ext(K00).

If A ∈ Ext(K00), then it is over.
If A /∈ Ext(K00), then there exists at leats an index i ∈ {1, ..., n} such that zi /∈M00

and A ⊆ zIi . Let TA = {i ∈ {1, ..., n}|zi /∈ M00, A ⊆ zIi }. Then A = AI I = AI00 I ∩
(∩i∈TAzIi ) = AI00 I00 ∩ (∩i∈TAzIi ) = AI00 I00 ∩ (∩i∈TAzi)I. Hence, A ∈ HK00(∩i∈TAzi),
meaning that A ∈ ∪T∈P({1,...,n})\∅HK00(∩i∈T zi).

We conclude that

Ext(K) ⊆ Ext(K00) ∪ (∪T∈P({1,...,n})\∅HK00(∩i∈T zi)).

Corollary 2.6.1. Let K = (G,M, I) be a formal context and {z1, ..., zn} ( M . Setting
M00 = M\{z1, ..., zn}, I00 = I∩(G×M00) and K00 = (G,M00, I00). Then

|Ext(K)| = |Ext(K00)|+ | ∪T∈P({1,...,n})\∅ HK00(∩i∈T zi)|
Proof. It is the immediate consequence of the above theorem.

In order to study the variations of the size of the concept lattice after a change of the
level of granularity, we consider a situation where one moves from a coarser granularity
characterized by a collection of cuts C1 to a finer granularity characterized by a collection
of cuts C2. Let say

⋃ C1 = {x1, ..., xp, Xp+1, ..., Xp+t}
where xi are finest attributes for all i ∈ {1, ..., p} and Xp+j are coarser attributes for
all j ∈ {1, ..., t}, with |Xp+j| > 2. Since one moves from C1 to C2, some of the coarser
attributes Xp+j are refined into less coarser attributes. Without any lost of generality,
we suppose that

⋃ C2 = {x1, ..., xp, Xp+1, ..., Xp+s, Yp+s+1, ..., Yp+q}
where for all i ∈ {1, ..., s}, XP+j has not being refined and for all j ∈ {s + 1, ..., q}
(q > t), the attributes Yp+j are less coarser attributes obtained from a refinement of
Xp+k, with k ∈ {s + 1, ..., t}. Let precise that the attributes xr (r ∈ {1, ..., p}) cannot
be refined.

The following result presents the conditions under which the size of the lattice can
increase while passing from the coarser to the finer granularity in a formal context:
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Proposition 2.6.1. Let K = (G,M, I) be a formal context. Let consider a coarser
granularity level characterized by the collection of cuts C1 such that

⋃ C1 = {x1, ..., xp, Xp+1, ..., Xp+t}

and a finer granularity level characterized by the collection of cuts C2 such that
⋃ C2 = {x1, ..., xp, Xp+1, ..., Xp+s, Yp+s+1, ..., Yp+q} (q>t),

where (Xp+i)i∈{s+1,...,t} are coarser attributes of
⋃ C1 that has being refined to form the

less coarser attributes (Yp+j)j∈{s+1,...,q} of
⋃ C2. Then increasing the level of granularity

from C1 to C2 will increase the size of the concept lattice corresponding to the collection
of cuts C1 if and only if

| ∪T∈P({1,...,t})\∅ HK00(∩i∈TXp+j)| − | ∪R∈P({1,...,s})\∅ HK00(∩j∈RXp+j)| − | ∪T∈P({s+1,...,q})\∅
HHK01(∩i∈TYp+j)| < 0

Proof. We set K00 = (G, (
⋃ C1)\∪j∈{1,...,t}Xp+j, I00) = (G,M00, I00). Then from theorem

2.6.1,

|Ext(KC1)| = |Ext(K00)|+ | ∪T∈P({1,...,t})\∅ HK00(∩i∈TXp+j)|
(I).

where

HK00(Xp+j) := {A ∩X ′p+j|A ∈ Ext(K00) and A ∩X ′p+j /∈ Ext(K00)}, for all
j ∈ {1, ..., t}.

In the same way, setting

K01 = (G, (
⋃ C2)\ ∪j∈{s+1,...,q} Yp+j, I01) = (G,M00 ∪ {Xp+1, ..., Xp+s}, I01),

and also from theorem 2.6.1, we have

|Ext(KC2)| = |Ext(K01)|+ | ∪T∈P({s+1,...,q})\∅ HK01(∩j∈TYp+j)|

where

HK01(Yp+j) := {A ∩ Y ′p+j;A ∈ Ext(K01) and A ∩ Y ′p+j /∈ Ext(K01)},
for all j ∈ {s+ 1, ..., q}.

Since

|Ext(K01)| = |Ext(K00)|+ | ∪R∈P({1,...,s})\∅ HK00(∩j∈RXp+j)|,
we have

|Ext(KC2)| =
|Ext(K00)|+ | ∪R∈P({1,...,s})\∅ HK00(∩j∈RXp+j)|+ | ∪T∈P({s+1,...,q})\∅ HK01(∩i∈TYp+j)| (II)

From (I) and (II), we get the following equality:

|Ext(KC1)| − |Ext(KC2)| = |Ext(K00)|+ | ∪T∈P({1,...,t})\∅ HK00(∩i∈TXp+j)| −
|Ext(K00)| − | ∪R∈P({1,...,s})\∅ HK00(∩j∈RXp+j)| − | ∪T∈P({s+1,...,q})\∅ HK01(∩i∈TYp+j)|,
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which leads to

|Ext(KC1)| − |Ext(KC2)| = | ∪T∈P({1,...,t})\∅ HK00(∩i∈TXp+j)| − | ∪R∈P({1,...,s})\∅
HK00(∩j∈RXp+j)| − | ∪T∈P({s+1,...,q})\∅ HK01(∩i∈TYp+j)|,

Hence, we conclude that increasing the level of granularity from C1 to C2 will increase
the size of the concept lattice corresponding to the collection of cuts C1 if and only if

| ∪T∈P({1,...,t})\∅ HK00(∩i∈TXp+j)| − | ∪R∈P({1,...,s})\∅ HK00(∩j∈RXp+j)| − | ∪T∈P({s+1,...,q})\∅
HK01(∩i∈TYp+j)| < 0

Example 2.6.3. Let consider the following formal context K = (G,M, I) where G =
{1, 2, 3, 4, 5} and M = {a, b, c, d}.

K a b c d

1 × ×
2 × × ×
3 × × ×
4 × ×
5 × ×

We consider the following collection of cuts C1 such that
⋃ C1 = {b, c, a1, a2, d1, d2},

where the attributes a, d of K are split to respectively form the finer attributes a1, a2 and
d1, d2, and which leads to the following formal context KC1

KC1 b c a1 a2 d1 d2

1 × ×
2 × × ×
3 × × ×
4 × ×
5 ×

Note that in this collection of cuts, {x1, ..., xp} = {b, c}, and
{Xp+1, ..., Xp+t}={a1, a2, d1, d2}.

We consider the following collection of cuts C2 such that
⋃ C2 = {b, c, a1, a2, d11, d12, d21, d22},

where the attributes {d1} and {d2} of KC1 are split to respectively form the finer attributes
d11, d12 and d21, d22, and which leads to the following formal context KC2.

KC2 b c a1 a2 d11 d12 d21 d22

1 × ×
2 × × ×
3 × × ×
4 × ×
5 ×
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Then, Ext(K00) = Ext(G, {b, c}, I00) = {{3}, {2, 3}, {3, 4}, {1, 2, 3, 4, 5}} and then
|Ext(K00)| = 4.

Moreover a′1 = d′1 = {1, 2}, a′2 = {4}, d′2 = {3, 5}, a′1 ∩ d′1 = {1, 2}, and for all
X ∈ P(a1, a2, d1, d2)\{∅, {a1}, {a2}, {d1}, {d2}, {a1, d1}}, XI = ∅.

Then,

∪T∈P({1,...,t})\∅HK00(∩j∈TXp+j)=HK00(a1) ∪HK00(a2) ∪HK00(d1) ∪HK00(d2) ∪HK00(a1 ∩
d1)={∅, {2}, {1, 2}, {4}, {3, 5}}

and then

| ∪T∈P({1,...,t})\∅ HK00(∩j∈TXp+j)| = 5.

Note that in the collection of cuts C1, {Xp+1, ..., Xp+s} = {a1, a2} and {Xp+s+1, ..., Xp+q}
= {d11, d11, d21, d22}, d′11 = {1}, d′12 = {2}, d′21 = {3}, d′22 = {5}, and for all X ∈
P(d11, d12, d21, d22)\{∅, {d11}, {d12}, {d21}, {d22}}, XI = ∅.

Hence, ∪T∈P({1,...,s})\∅HK00(∩j∈TXp+j)=HK00(a1)∪HK00(a2)∪HK00(a1∩a2)={∅, {2}, {1, 2}}∪
{∅, {4}} ∪ {∅}={∅, {2}, {1, 2}, {4}}. Therefore

| ∪T∈P({1,...,s})\∅ HK00(∩j∈TXp+j)| = 4.

But

Ext(K01) = Ext(K00) ∪ (∪T∈P({1,...,s})\∅HK00(∩i∈TXp+j)) =
{∅, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {1, 2, 3, 4, 5}}.

Then,

∪T∈P({s+1,...,q})\∅HK01(∩i∈TYp+j)=HK01(d11) ∪HK01(d12) ∪HK01(d21) ∪
HK01(d22)={{1}, {5}}.

Hence,

| ∪T∈P({s+1,...,q})\∅ HK01(∩i∈TYp+j)| = 2.

It comes that:

| ∪T∈P({1,...,t})\∅ HK00(∩i∈TXp+j)| − | ∪T∈P({1,...,s})\∅ HK00(∩i∈TXp+j)| − | ∪T∈P({s+1,...,q})\∅
HK01(∩i∈TYp+j)| = 5− 4− 2 = −1.

Therefore, passing from the lower level of granularity characterized by the collection
of cuts C1 to the higher level of granularity characterized by the collection of cuts C2 will
reduce the size of the concept lattice B(KC1) by 1.

Also, we note that |B(KC2)| − |B(KC1)| = 10− 9 = 1.
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Remark 2.6.1. They could be some cases where the collection of cuts with smaller level
of granularity is not necessarily a refinement of the collection of cuts with the higher
level of granularity. For instance, from a collection of cuts C0 such that

⋃ C0 = {x1, ..., xp, Xp+1, ..., Xp+s, Xp+s+1, ..., Xp+t}

(with s = t), one can decide to only refined attributes Xp+1, ..., Xp+s into less coarser
attributes Yq1 , ..., Yqr , leading to the collection of cuts C1 such that

⋃ C1 = {x1, ..., xp, Xp+s+1, ..., Xp+t, Yq1 , ..., Yqr}

One can also decide to only refine the attributes Xp+s+1, ..., Xp+t into less coarser at-
tributes Zs1 , ..., Zsv , leading to the collection of cuts C2 such that

⋃ C2 = {x1, ..., xp, Xp+1, ..., Xp+s, Zs1 , ..., Zsv}

such that |⋃ C2| > |
⋃ C1|.

Then the collection of cuts C2 has a higher level of granularity than the collection of
cuts C1.

Hence, moving from C1 to C2, and setting

K01 = (G, (
⋃ C0)\{Xp+1, ..., Xp+s}, I01)

and

K02 = (G, (
⋃ C0)\{Xp+s+1, ..., Xp+t}, I02)

We have

|Ext(KC1)| = |Ext(K01)|+ | ∪R∈P({1,...,r})\∅ HK01(∩j∈RYqj)|,

and

|Ext(KC2)| = |Ext(K02)|+ | ∪T∈P({1,...,v})\∅ HK02(∩j∈TZsj)|.

Hence |Ext(KC2)| − |Ext(KC1)| = (|Ext(K02)| + | ∪T∈P({1,...,v})\∅ HK02(∩j∈TZsj)|) −
(|Ext(K01)|+ | ∪R∈P({1,...,r})\∅ HK01(∩j∈RYqj)|), which means that
|Ext(KC2)| > |Ext(KC1)| iff |Ext(K02)|−|Ext(K01)| > |∪R∈P({1,...,r})\∅HK01(∩j∈RYqj)|−

| ∪T∈P({1,...,v})\∅ HK02(∩j∈TZsj)|.

Now we consider the case in a formal context K = (G,M, I) where one moves from
a finer granularity characterized by a collection of cuts C1 such that

⋃ C1 = {xi1 , ..., xil , xil+1
, ..., xil+q

, Xj1 , ..., Xjm , Xjm+1 , ..., Xjm+n}

to a coarser granularity characterized by a collection of cuts C2 such that
⋃ C2 = {xi1 , ..., xil , Xj1 , ..., Xjm , Yk1(x), ..., Ykp(x), Ye1(x,X), ..., Yes(x,X),

Yh1(X), ..., Yhv(X)}
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where the Ykj(x) (1 6 i 6 p) are coarser attributes constituted from the attributes
xik (l+ 1 6 k 6 l+ q), Yej(x,X) (1 6 i 6 s) are coarser attributes constituted from the
attributes xik (l+1 6 k 6 l+q) andXjk (m+1 6 k 6 m+n) and the Ykj(X) (1 6 j 6 v)
are the coarser attributes constituted from the attributes Xjk (m+1 6 k 6 m+n). This
case is equivalent to an ∃-generalization, and the generalized attributes are precisely the
coarser attributes.

Let precise that the Xjk (1 6 k 6 m + n) are the coarser attributes from
⋃ C1,

and the attributes xi1 , ..., xiq and the coarser attributes Xj1 , ..., Xjm from
⋃ C1 are not

involved in the coarsening.
The following proposition holds:

Proposition 2.6.2. Let K = (G,M, I) be a formal context. Let consider a finer granu-
larity level characterized by a collection of cuts C1 such that

⋃ C1={xi1 , ..., xil , xil+1
, ..., xil+q

,Xj1 , ..., Xjm , Xjm+1 , ..., Xjm+n}

and a coarser granularity level characterized by a collection of cuts C2 such that⋃ C2={xi1 , ..., xil , Xj1 , ..., Xjm,Yk1(x), ..., Ykp(x), Ye1(x,X), ..., Yes(x,X)
Yh1(X), ..., Yhv(X)}

(q + n > p + s + v), where (xjl+i
)i∈{1,...,l+q} and (Xjm+i

)i∈{m+1,...,m+n} are attributes
of
⋃ C1 that has being put together to form the coarser attributes (Ykj)j∈{1,...,p+s+v} of⋃ C2. Then decreasing the level of granularity from C1 to C2 will increase the size of the

concepts lattice corresponding to the collection of cuts C1 if and only if

| ∪R∈P({1,...,p+s+v})\∅ HK00(∩i∈RQi)| − | ∪R∈P({1,...,q+n})\∅ HK00(∩j∈RZj)| > 0

where Qi = Yki(x) if (1 6 i 6 p), Qi = Yei(x,X) if (1 6 i 6 s), and Qi = Yhi(X) if
(1 6 i 6 v).

Proof. We set

K00 = (G, (
⋃ C1)\{xil+1

, ..., xil+q
, Xjm+1 , ..., Xjm+n}, I00)

|Ext(KC1)| = |Ext(K00)|+ | ∪R∈P({1,...,q+n})\∅ HK00(∩j∈RZj)|,

where Zj = xj if (jl+1 6 j 6 jl+q) and Zj = Xj if (jm+1 6 j 6 jm+n).

|Ext(KC2)| = |Ext(K00)|+ | ∪R∈P({1,...,p+s+v})\∅ HK00(∩i∈RQi)|,

where Qi = Yki(x) if (1 6 i 6 p), Qi = Yei(x,X) if (1 6 i 6 s), and Qi = Yhi(X) if
(1 6 i 6 v).

Hence,

|Ext(KC2)| − |Ext(KC1)|=|Ext(K00)|+ | ∪R∈P({1,...,p+s+v})\∅ HK00(∩i∈RQi)|-
|Ext(K00)| − | ∪R∈P({1,...,q+n})\∅ HK00(∩j∈RZj)|=| ∪R∈P({1,...,p+s+v})\∅ HK00(∩i∈RQi)|-

| ∪R∈P({1,...,q+n})\∅ HK00(∩j∈RZj)|.
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We conclude that decreasing the level of granularity from C1 to C2 will increase the
size of the concept lattice corresponding to the collection of cuts C1 if and only if

| ∪R∈P({1,...,p+s+v})\∅ HK00(∩i∈RQi)| − | ∪R∈P({1,...,q+n})\∅ HK00(∩j∈RZj)| > 0

Example 2.6.4.

Let consider the following formal context K = (G,M, I) where G = {1, 2, 3, 4, 5} and
M = {a, b, c, d}.

K a b c d

1 × ×
2 × × ×
3 × × ×
4 × ×
5 × ×

We consider the following collection of cuts C1 such that
⋃ C1 = {b, c, a1, a2, d11, d12, d21, d22},

and which leads to the following formal context KC1 .

KC1 b c a1 a2 d11 d12 d21 d22

1 × ×
2 × × ×
3 × × ×
4 × ×
5 ×

Note that in the collection of cuts C1, {xi1, ..., xil} = {b, c}, {xil+1, ..., xil+q} = ∅ and
{Xj1 , ..., Xjm} = {a1, a2}, {Xjm+1 , ..., Xjm+n} = {d11, d12, d21},
{d22}}.

The group of attributes d11, d12 and d21, d22 are coarsed to respectively form the
coarser attributes d1 and d2, which are presented in

⋃ C2 = {b, c, a1, a2, d1, d2}, leading
to the formal context KC2 below.

KC2 b c a1 a2 d1 d2

1 × ×
2 × × ×
3 × × ×
4 × ×
5 ×
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Note that in this collection of cuts, {x1, ..., xp} = {b, c}, {Yk1(x), ..., Ykp(x)} = ∅,
{Ye1(x,X), ...,
Yes(x,X)} = ∅ and {Yh1(X), ..., Yhv(X)} = {d1, d2}.

Then, Ext(K00) = Ext(G, {b, c, a1, a2}, I00) = {∅, {2}, {3}, {4}{2, 3}, {3, 4},
{1, 2}{1, 2, 3, 4, 5}} and then |Ext(K00)| = 8.

Moreover d′1 = {1, 2}, d′2 = {3, 5} and then

∪R∈P({1,...,v})\∅HK00(∩i∈RQi)=HK00(d1) ∪HK00(d2) ∪HK00(d1 ∩ d2)={{3, 5}}

and then

| ∪R∈P({1,...,v})\∅ HK00(∩i∈RQi)| = 1.

Note that in the collection of cuts C1,

{xi1, ..., xil} = {b, c}, {xil+1, ..., xil+q} = ∅, {Xj1 , ..., Xjm} = {a1, a2},

and

{Xjm+1 , ..., Xjm+n} = {d11, d12, d21, d22}. d′11 = {1}, d′12 = {2}, d′21 = {3}, d′22 = {5},

and for all X ∈ P({d11, d12, d21, d22})\{∅, {d11}, {d12}, {d21}, {d22}}, XI = ∅.

Hence,

∪R∈P({1,...,s})\∅HK00(∩j∈RZj)=HK00(d11)∪HK00(d12)∪HK00(d21)∪HK00(d22)={{1}, {5}},

meaning that,

| ∪R∈P({1,...,s})\∅ HK00(∩j∈RZj)| = 2.

Therefore

| ∪R∈P({1,...,v})\∅ HK00(∩i∈RQi)| − | ∪R∈P({1,...,s})\∅ HK00(∩j∈RZj)| = 1− 2 = −1.

Therefore, passing from the higher level of granularity characterized by the collection
of cuts C1 to the lower level of granularity characterized by the collection of cuts C2 will
decrease the size of the concept lattice B(KC1) by 1.

Remark 2.6.2. Note that |B(KC1)| = 10 and |B(KC2)| = 9.
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2.6.2 The ∃-generalization in relation with factorisation of for-
mal context

The ∃-generalization also has a link with factorisation of formal contexts. The main
question to be answered here is under which conditions the attributes of a formal context
(G,M, I) can be obtained from those of the other formal context (G,N, J) as disjunctions
in the following sense: for all m ∈M , there is a subset Sm ⊆ N such that

(g,m) ∈ I⇔ (g, n) ∈ J for some n ∈ Sm,

or equivalently

mI = ∪n∈Smn
J

Note that this also allows 1-element disjunction, so that some elements of M can
simply be copied to N . This problem was first set by Ganter.

Remark 2.6.3. Its implies that the attributes of (G,M, I) are generalized attributes
resulting from the ∃-generalization of groups of attributes of (G,N, J).

Definition 2.6.5. Let (G,M, I) a formal context. A formal context (N,M,K) is a left
factorization in the boolean factorisation of (G,M, I) if there exists a formal context
(G,N, J) such that for every object g of G and every attribute m of M , (g,m) ∈ I iff
there is t ∈ N ; (g, t) ∈ I and (t,m) ∈ I.

The following result initiated by Ganter and Kwuida holds:

Theorem 2.6.2. Let (G,M, I) be a formal context. (G,M, I) can be obtained from
(G,N, J) via attribute disjunction if and only if (G,N, J) is a left factorisation context
in a boolean factorisation of (G,M, I).

Proof. We consider two formal contexts KM = (G,M, I) and KN = (G,N, J). If
(G,M, I) can be obtained from (G,N, J) by a left factorisation, that is there exists
a formal context (N,M,K) such that (G,M, I) = (G,N, J) ◦ (N,M,K). Let g ∈ G and
m ∈M such that (g,m) ∈ I. Then there is n ∈ N such that (g, n) ∈ J and (n,m) ∈ K.
We set Sm = {n ∈ N ; (g, n) ∈ J, (n,m) ∈ K}. If g ∈ ∪n∈Smn

J, then there exists n0 ∈ Sm
such that g ∈ nJ0 . Since n0 ∈ Sm, (g, n0) ∈ J, (n0,m) ∈ K, which leads to the fact that
(g,m) ∈ I, and then g ∈ mI. In the same way, g ∈ mI implies that g ∈ ∪n∈Smn

J. Now,
we suppose that the context (G,M, I) can be obtained from (G,N, J) by disjunction.
Then for all m ∈ M , there exists Sm ⊆ N such that mI = ∪n∈Smn

J . We then consider
the binary relation K defined by: for all n ∈ N and m ∈ M , (n,m) ∈ K if and only
if n ∈ Sm. Then we obtain a formal context (N,M,K). If (g,m) ∈ I, then g ∈ mI,
and there is n ∈ Sm such that g ∈ nJ. Hence, (g, n) ∈ J and (n,m) ∈ K, and then
(g,m) ∈ (G,N, J) ◦ (N,M,K). Conversely, if (g,m) ∈ (G,N, J) ◦ (N,M,K), then there
exists n ∈ N such that (g, n) ∈ J and (n,m) ∈ K, which means that g ∈ ∪n∈mKnJ, and
then that mI = ∪n∈mKnJ.

53



On the size of the ∃-Generalized concept lattices

The following result relating ∃-generalization and factorisation is an immediate con-
sequence of the above theorem.

Corollary 2.6.2. Let (G,M, I) be a formal context and {a, b} a pair of attributes of M ,
s the generalized attribute resulting from the ∃-generalization of a and b and (G,Mab ∪
{s}, Isab) the generalized context. Then

(G,Mab ∪ {s}, Isab) = (G,M, I) ◦ (M,Mab ∪ {s}, K)

where (m,m0) ∈ K iff mI ⊆ m
Isab
0 .

Example 2.6.5.

K1 a b c d

1 × ×
2 × × ×
3 ×
4 × ×

K2 m1 m2 m3 m4 m5 m6

1 × ×
2 × × ×
3 ×
4 × ×

Table 2.6: K1 = (G,M, I) (left) and K2 = (G,N, J) (right)

With Sa = {m1,m2}, Sb = {m3}, Sc = {m4,m5} and Sd = {m6}, we define the
binary relation K as (n,m) ∈ K iff n ∈ Sm, and the context (N,M,K) is the following:

K3 a b c d

m1 ×
m2 ×
m3 ×
m4 ×
m5 ×
m6 ×

Hence, it is easy to see that K3 ◦K2 = K1.

Remark 2.6.4. The notion of factorization is important because it can permit to deter-
mine the generalized context after an ∃-generalization on attributes in a formal context
(G,M, I). The generalized context can be obtained by constructing the formal context
(N,M,K) and by multiplying it by (G,M, I).
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2.6.3 The ∃-generalization in relation with patterns structures

The more general forms of formal contexts are patterns structures. Since one can
define generalized pattern for formal contexts, the question to know whether an ∃-
generalization can also be defined on pattern structures is straightforward. Before look-
ing for a way of giving an answer to this question, we present some definitions.

Let G be a set.

Definition 2.6.6. [17] A pattern structure is a triple (G,D, δ) with D = (D,u) a
meet-semilattice, δ : G → D a mapping and Dδ = δ(G) = {δ(g)|g ∈ G} a complete
subsemilattice (Dδ,u) of (D,u).

Remark 2.6.5. [17] If (G,D, δ) is a patterns structure, one define the derivation
operators (.)� as

A� := ug∈Aδ(g) for A ∈ P(G),

and

d� := {g ∈ G|d v δ(g)}, for d ∈ D.

Remark 2.6.6. - The elements of D are called patterns, and the order on them
is given by c v d :↔ c u d = c,

- The operators (.)� make a Galois connection between the power set of G and
(D,v),

- The pairs (A, d) satisfying A� = d and A = d� with A ⊆ G and d ∈ D, are called
patterns concepts, with extent A and patterns intents d.

Let (G,D, δ) with D = (D,u) be a patterns structure. In [17], the following relation
Iv as being defined on G×D as follow:

(g, d) ∈ Iv if and only if d v δ(g).

Definition 2.6.7. [17] Let (G,D, δ) be a patterns structure. Then the formal context
(G,D, Iv) is called a representation context of (G,D, δ).

From the patterns structure (G,D, δ), we get the formal context (G,D, Iv).

Definition 2.6.8. [17] Let D be a set, ψ : D −→ D be a map and v be a partial order.
Then ψ is a projection if it is contractive (ψ(x) v x for every x ∈ D), monotone and
idempotent.

In some cases, some patterns in a given patterns structure are too difficult to be
handled. To solve the problem, expert are often tempted to replace these patterns by
other patterns more simple than the previous ones, even if this replacement can lead to
some lost of information. That is done by means of projections ψ : D −→ D such that
the pattern structure (G,D, δ) is replaced by (G,D, ψ ◦ δ).

Our aim is to show that this situation, with some conditions, is equivalent to an
∃-generalization. For every pattern d ∈ D, we set ↓ d = {t ∈ D|t v d}.

The following proposition holds:
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Proposition 2.6.3. Let (G,D, δ) be a patterns structure, ψ be a projection on D which
leads to (G,D, ψ ◦ δ) and d ∈ D. If ψ−1(d) ∩ (↓ d) 6= ∅, then d is the ∃-generalized
attribute of all the attributes of ψ−1(d) in the formal context (G,D, Iv).

Proof. Let (G,D, δ) be a patterns structure and d ∈ D be a pattern. Since ψ is a
projection, ψ−1(d) 6= ∅. We set X = ψ−1(d). Then ψ(x) = d for every x ∈ X. Let
(G,D, Iv) be the representation formal context associated to (G,D, δ). Then for every
x ∈ X and g ∈ G, if (g, x) ∈ Iv, then x v δ(g), and then ψ(x) v ψ(δ(g)) v δ(g),
because ψ is contractive. Hence, xIv ⊆ (ψ(x))Iv . Since that is true for every x ∈ X,
we conclude that ∪x∈XxIv ⊆ (ψ(x))Iv = dIv . Conversely, we suppose that g ∈ dIv . Let
x0 ∈ (↓ d) ∩ X. Then x0 v d = ψ(x0). Hence, x0 v ψ(x0) = d v δ(g), meaning that

x0 v δ(g). Therefore, g ∈ xIv0 ⊆ ∪x∈XxIv . It comes that

dIv = ∪x∈XxIv .

However the ∃-generalization here never leads to an increase of the size of the rep-
resentation concept lattice because the generalized pattern ψ(x) is also a pattern of
D.

2.7 Conclusion
In this chapter, we have shown a family of formal contexts in which the existential gen-
eralization on a specific pair of attributes increases the size of the lattice exponentially.
We have also found the maximal increase when two attributes are put together, and we
have presented a case of stability of size of the lattice after an ∃-generalization. Our
next direction of interest is to look at similarity measures that discriminate attributes
if putting these together increases the number of concepts.
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Chapter 3

A similarity measure for generalization

3.1 Introduction

In the previous chapter, we have studied the variation of the size of the concept lattice
after an existential generalization on attributes. Haven not been able to characterize

the formal contexts whose concept lattice decreases after an ∃-generalization, we there-
fore asked if there exists a formal way of putting attributes together and be assure that
the size of the lattice do not increase. We suspect that putting together incompatible
attributes would probably increase the size of the concept lattice more than compat-
ible ones. Therefore it is necessary to consider and study the similarity measures on
attributes.

From there comes the question: Is there a similarity measure (possibly cheap
and fast to compute), which is compatible with the changing of size of a
concept lattice after an existential generalization? i.e. if m1,m2 are more similar
than m3,m4, then putting m1,m2 together should not lead to more concepts as putting
m3,m4 together. This chapter is an attempt to answer this question. We first define the
notion of similarity measure and present some existing similarity measures (the most
used and the most known ones). Further, we test these similarity measures on attributes
to be generalized and prove their incompatibility. Finally, we propose a new similarity
measure compatible with ∃-generalization in a reduced formal context.

3.2 Some existing similarity measures
Some study has already been done on similarity measures. In [2, 13], the authors
discuss similarity measures on concepts, and even on lattices. For our purpose, we need
a measure of similarity on attributes such that if m1,m2 are more similar than m3,m4,
then generalizing m1,m2 should not lead to more concepts as generalizing m3,m4. We
say that such a similarity measure is compatible with the generalization. Before
we move further, let recall some definitions:

Definition 3.2.1. [2] Given a set M of attributes, a similarity measure on M is a
function S : M ×M → R such that for all m1,m2 in M ,
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(i) S(m1,m2) > 0, positivity

(ii) S(m1,m2) = S(m2,m1) symmetry

(iii) S(m1,m1) > S(m1,m2) maximality

Remark 3.2.1. [2] If in addition, S(m1,m2) = S(m1,m1) ⇐⇒ m1 = m2 and
S(m1,m2)S(m2,m3) 6 (S(m1,m2) +S(m2,m3))S(m1,m3) ∀m1,m2,m3 ∈M , then S is
called a metric similarity measure.

Remark 3.2.2. The hypothesis of symmetry in the above definition has being con-
tested by some authors, notably in [41]. However, the above definition remains the most
considered and the most used by philosophers, physiologists, and scientists.

Hence, similarity measures aim at quantifying to which extent two attributes resem-
ble each other. They are normalized when their values are between 0 and 1. Getting a
similarity measure compatible with ∃-generalization will be a valuable tools in prepro-
cessing and will warn the analyser on possible lost or gain when generalizing.

Definition 3.2.2. Let S be a normalized similarity measure on a set of attributes M .
a, b, c tree attributes.

- The attributes a and b are less similar if S(a, b) < 0, 5;

- The attributes a and b are more similar if S(a, b) > 0, 5;

- The attribute a is more similar to attribute b than to attribute c if S(a, b) > S(a, c);

- The attribute a is less similar to attribute b than to attribute c if S(a, b) 6 S(a, c).

In the literature, there are three main types of similarity measures, depending on
the type of data on which they are used:

Correlation coefficients: They are often used in data to compare variables with qual-
itative characters subdivided in more than two states.

Distance similarity coefficients: They are generally used in data with pure quanti-
tative variables. In most cases, for quantitative data, the similarity between two
taxa is expressed as a function of their distance in a dimensional space whose
coordinates are the characters.

Coefficients of association: They are often used in data with presence-absence char-
acters or in data with individuals having qualitative characters subdivided into
two states.

Now we present the different types of existing similarity measures.
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3.2.1 Correlation coefficients

Correlation coefficients are among the most ancien coefficients of similarity. The most
known one is the product moment correlation, constructed by Pearson in 1896, in order
to compare two objets or variables with qualitative characters that have more than two
states. Its formula is given by

P (X1, X2) =

∑k
i=1(xi1 − x1)(xi2 − x2)√∑k

i=1(xi1 − x1)2
∑k

i=1(xi2 − x2)2

where k is the number of individuals for which the two variables are being computed, xi1
is the state of the variable X1 for the individual i, xi2 is the state of the variable X2 for
the individual i and x1 is the mean of the different states x11, ..., xk1 of the variable X1.
Other existing correlation coefficients include the Spearman’s rank-order correlation
coefficient and the Kindall’s tau correlation coefficient. These coefficients were put in
place in order to capture the association between two ordinal variables.

Ever since Pearson proposed a coefficient of correlation in 1896, numerous similarity
measures and distance have been proposed in various fields.

3.2.2 Distance similarity coefficients

There are many existing similarity measures based on distance of a n dimensional space.
In order to measure the divergence between two populations having some given char-

acters, Klauber suggested in 1940 to divide the difference of the means of the two pop-
ulation by the sum of those means. In 1952, with the objective of determining to what
extent the simultaneous treatment of a number of characters on two populations will
reproduce a well known relationship between them, Clark decided to extent Klauber’s
idea to populations having several characters. Thus, moving from the first formula with
two populations X1 and X2 (X1−X2

X1+X2
= X1

X1+X2
− X2

X1+X2
= x1 − x2) which can only be

represented in a one dimensional space to a formula applicable to a k dimensional space,
where k is the number of characters shared by the two populations, with each character
weighted in inverse proportion to the sum of the means of the characters in the two
populations compared; he defined the coefficient of divergence as follow :

Clk(x1, x2) =

√
1

k

∑
w2
i (xi1 − xi2)2

where k is the number of characters, wi = 1
xi1+xi2

the weight of the ithcharacter.
Moving from the correlation coefficient of Pearson to distance, Sokal realised by

discussions with taxonomists, that they understood the concept of distance more than
that of the correlation. The concept of distance was more appealing to taxonomists than
the concept of correlation and association. But at that time, most of the coefficients
used to compare two taxa were coefficients of association and correlation coefficients,
and many taxonomists found some difficulties using them, especially the Pearson’s
correlation. He proposed a new distance standardly closed to the correlation of Pearson
of racial likeness for standardized data, and that could therefore be easily used by
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taxonomists. That coefficient of distance were constructed by dividing the sum of the
squared difference by the number of characters for which the two taxa are compared. It
gives a relative evaluation of taxonomic similarity.

S(x1, x2) =
1

n

∑
(xi1 − xi2)2

where x1 and x2 are the taxa being compared, n the number of characters, xi1 the
state of taxon 1 for character i.

In 1971, most of the studies in biology and botanic were based on comparing samples
of species between ecosystems or biotopes. Following the same vision, Brinkhurst and
Johnson, looking for a way to determine the number of characters of macroinvertebrate
associations in the Bay of Quinte and the area of lake Ontario, attempted to establish
the degree of difference between the associations, to determine which of the mean taxo-
nomic groups contributed towards this difference, and to examine the species diversity
in these macroinvertebrate associations. In order to evaluate the difference between
those associations, they used two coefficients index in order to be sure that the affinity
of samples is not only due to the sharing of most species, but also to the occurrence
of these species in the same proportion. The first index was that of Jaccard and the
second was a new one called the percentage similarity of community, and defined as
follow :

BJc(x1, x2) =
n∑

k=1

min(xi1, xi2)
2

where n is the number of species being compared, xi1 the percentage of specie i in the
total animals in association X1.

In the same year, studying the salinity and temperature of phytoplankton population
in two transient beach ponds and nearby long island sound in New York, Levandowsky
was confronted in comparing two samples collected from june to november from the two
ponds. He then put to place in 1971, a new similarity measure called the modified
Jaccard’s Index, because it could not only be used in binary data, but also in a general
quantitative data. It was defined as follow:

L(x1, x2) = 1−
∑

i min(xi1, xi2)∑
i max(xi1, xi2)

where xi1 is the weight of taxon i in the sample x1 , and xi2 is the weight of taxon i in
the sample x2.

Looking through many existing similarity coefficients,Gower realised that they were
made either for dichotomous characters, or for qualitative characters, or for quantitative
characters. He also found out that most of those measures were not included in computer
programs. Without questioning how each similarity coefficient should be used in different
circumstances, he realised that there was a way of putting in place a new and more
general similarity coefficient that could include several existing ones as special cases and
could be used under different circumstances. Then he defined a measure that could also
be used in different kinds of data (dichotomous, qualitative and quantitative) and could
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be particularly and easily included in computer programs. This general measure was
defined as follow: for two given individuals i and j,

Gij = 1−
∑

k Sijk∑
k δijk

where Sijk is the score assigned to the two individuals on a given character k, and δijk is
the representation of the possibility of making comparison between the two individuals
i and j on a given character k.

δijk ∈ {0, 1}

Sijk ∈ {0, 1} if the character k is qualitative
Sijk = 1− abs(xi−xj)

Rk
if the character k is quantitative with
x1, ..., xn values and Rk is the range of character k.

This measure is sometime presented as a weighted similarity coefficient as follow:

Gij =

∑
k δijk.Sijk∑

k δijk

Until 1976, looking for a successful way of comparing the level of pollution between two
stations, Pinkham and Pearson found out that the analytical technics of the existing
measures (Jaccard’s index, Sokal and Michener’s simple matching coefficient, the
Chutter’s biotic index, the Brinkhurst and Johnson’s similarity index, the Pear-
son’s product moment correlation,...) could not truthfully and accurately reflect the
extent to which these two levels of pollution are similar or dissimilar, especially when
they were applied on quantitative data. Some of them only took into account the oc-
currences or the structure of the samples related to the two stations, ignoring their
abundance. It is the case with association index. Some of them only consider the rela-
tive abundance of the two samples. It is the case of the Brinkhurst and Johnson’s
similarity index, and the Pearson’s product moment correlation. They decided to put
into place a new similarity index that could consider all those insufficiencies and simul-
taneously compare both abundance and occurrence of the two species. That measure
was therefore defined as follow :

PP (x1, x2) =
1

k

k∑

i=1

min(xi1, xi2)

max(xi1, xi2)

where k is the number of taxa being compared.

3.2.3 Coefficients of association

There are two subsets of coefficients of association: those that only depend on character-
istics present in at least one of the taxa compared, but are independent of the attributes
absent in both taxa (denoted by type 1), and those that also take into account the
attributes absent in both taxa (denoted by type 2). Those measures use
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• a as the number of cases where the two variables occur together in a sample,

• d as the number of cases where none of the two attributes occur in a sample,

• b as the number of cases in which only the first variable occur, and

• c as the number of cases where only the second variable occur.

One of the most important similarity measure of type 1 is the Jaccard measure
defined by a

a+b+c
, proposed in order to classify ecological species. Also in the ecological

field, the Dice coefficient of association defined by 2a
2a+b+c

aims at quantifying the
extent to which two different species are associated in a biotope, the Sorensen coeffi-
cient of association given by 4a

4a+b+c
and the Anderberg coefficient of association

defined by 8a
8a+b+c

are of the same type. The Sneath and Sokal 2 similarity coefficient

defined by
1
2
a

1
2
a+b+c

, put in place in order to compare organisms in numerical taxonomy,
the Kulczynski similarity measure given by 1

2
( a
a+b

+ a
a+c

) and the Ochiai similarity
measure determined by a√

(a+b)(a+c)
are also from this first type.

The most used similarity coefficient of the second type is the Sokal and Michener
coefficient of association defined by a+d

a+d+b+c
, also called the simple matching coef-

ficient, put in place to express the similarity between two species of bees. Moreover,
the Rogers and Tanimoto similarity measure given by

1
2
(a+d)

1
2
(a+d)+b+c

whose aim was
to compare species of plants in the ecological field, the Sokal and Sneath 1 similarity
coefficient defined by 2(a+d)

2(a+d)+b+c
to make comparison in numerical taxonomy and the

Russels and Rao similarity measure given by a
a+d+b+c

, who was put in place with the
aim of showing resemblance between species of anopheline larvae, are included in this
type. Same is the Yule and Kendall similarity coefficients defined by ad

ad+bc
, and often

used in the statistical field. Some of the above similarity measures can be found in [13],
which also define the similarity measure on concept lattices.

in the following, we test the compatibility of existing similarity measures to ∃-
generalization.

3.3 Test of existing similarity measures
Similarity and dissimilarity measures play a key role in pattern analysis problems such as
classification, clustering, etc. Regarding the definitions of the above kinds of similarity
measures, only the coefficients of association can be applied to formal contexts, since
formal contexts are data with binary characters.

Now, we study the impact of the above coefficients of association on a special pair
of attributes in some formal contexts. The objective is to show that these similarity
measures does not always permit us to conclude whether their ∃-generalization increases
the size of the lattice or no.

To start, we consider any formal context K containing two attributes x, y such that
x′ ⊆ y′ and |x′| = 1. Then |x′\ y′| = 0 and the generalization of the attributes x and
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y does not increase the size of the lattice. The case |y′\ x′| = 20 and |G\y′| = 1 yields
a = |x′| = 1, b = |x′\ y′| = 0, c = |y′\ x′| = 20 and d = |G\y′| = 1.

Using the following coefficients of association of type 1: Jaccard (Jc), Dice (Di),
Sorensen (So), Anderberg (An), Sneath and Sokal 2 (SS2), Kulczynski (Ku) and Orchiai
(Orch), and the following coefficients of association of type 2: Sokal and Michener (SM),
Rogers and Tanimoto (RT), Sneath and Sokal 1 (SS1) and Russel and Rao (RR), we get
the table below for s(x, y):

Jc Di So An SS2 Ku Orch SM RT SS1 RR
0,05 0,09 0,17 0,29 0,02 0,52 0,22 0,09 0,05 0,17 0,05

Table 3.1: The similarity between x and y for coefficients of association of type 1 and 2

The table above shows that the previous similarity measures between the attributes
x and y are very low, despite the fact that their generalization does not increase the size
of the lattice.

Our second example is the formal context K6 := (S6 ∪ {g1}, S6 ∪ {m1,m2}, I) below,
with S6 = {1, 2, 3, 4, 5, 6}.

K6 1 2 3 4 5 6 m1 m2

1 × × × × × ×
2 × × × × × × ×
3 × × × × × × ×
4 × × × × × × ×
5 × × × × × × ×
6 × × × × × ×
g1 × × × × × ×

We observe that |m′1 ∩m′2| = 4, |m′1 \m′2| = 1 and |m′2 \m′1| = 1. Putting together the
attributes m1 and m2 by a ∃-generalization increases the size of the lattice by 16. The
following table gives the measures of type 1 and type 2 between the attribute m1 and
any other attribute i.

Jc Di So An SS2 Ku Orch SM RT SS1 RR
i ∈ S5 0,57 0,80 0,89 0,94 0,50 0,80 0,80 0,71 0,56 0,83 0,57
i = 6 0,83 0,91 0,95 0,97 0,71 0,92 0,91 0,75 0,75 0,92 0,71
i = m2 0,67 0,80 0,89 0,94 0,50 0,80 0,80 0,71 0,56 0,83 0,57

Table 3.2: The similarity between m1 and m2 for coefficients of association of type 1
and 2

According to Table 3.2, every similarity measure of the two types shows that the
attribute m1 is more similar to m2 than to any other attribute i ∈ S6 (apart from
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i = 6); But putting m1 and m2 together increases the size of the lattice. We can
conclude that these similarity measures are not compatible with the ∃-generalization.
We are actually looking for a measure on attributes that will flag pairs of attributes as
less similar when putting these together increases the size of the concept lattice.

3.4 A similarity measure compatible with ∃-generalization
In this section we define a similarity measure on attributes which is compatible with
the existential generalization. This generalization means that from an attribute reduced
context K := (G,M, I), two attributes a, b are removed and replaced with an attribute
s defined by s′ = a′ ∪ b′. We recall that Mab := M \ {a, b} and

Kab :=(G,Mab, I∩(G×Mab)), (removing a, b from K)
Ks
ab :=(G,Mab ·∪{s}, Isab), (adding s to Kab)

where Isab := (I∩(G ×Mab)) ∪ {(g, s) | g I b or g I a}. Furthermore we denote the set of
extents of Kab by Ext(Kab). We also recall the following notations:

H(a) := {A ∩ a′ | A ∈ Ext(Kab) and A ∩ a′ /∈ Ext(Kab)} ,
H(b) := {A ∩ b′ | A ∈ Ext(Kab) and A ∩ b′ /∈ Ext(Kab)} ,

H(a ∪ b) := {A ∩ (a′ ∪ b′) | A ∈ Ext(Kab) and A ∩ (a′ ∪ b′) /∈ Ext(Kab)} ,
H(a ∩ b) := {A ∩ (a′ ∩ b′) | A ∈ Ext(Kab) and A ∩ (a′ ∩ b′) /∈ Ext(Kab)} .

We will often write h(x) for |H(x)|, for any x ∈ {a, b, a ∩ b, a ∪ b}.
Now, we define the following gain function:

ψ : M ×M −→ Z
(a, b) 7−→ ψ(a, b) = |H(a ∪ b)| − |H(a, b)|

Note that H(a ∪ b) = H(b ∪ a), and H(a, b) = H(b, a) because the order of adding
the attributes a and b does not matter. Therefore ψ(a, b) = ψ(b, a). By definition,
ψ(a, a) = 0. Further, we define the map δ as follow:

δ : M ×M −→ R

(a, b) 7−→
{

1 if ψ(a, b) 6 0

0 else

Since K is a finite context, there is a pair of attributes a0, b0 in M such that

|a′0|+ |b′0| = max
a,b∈M

(|a′|+ |b′|).

We set n0 = 2|a
′
0|+|b′0| − 2|a

′
0| − 2|b

′
0| + 1. Then n0 > 2|a

′|+|b′| − 2|a
′| − 2|b

′| + 1 for all pairs
{a, b} ⊆M . With the function δ, we construct the following map:

Sgen : M ×M −→ R
(a, b) 7−→ 1+δ(a,b)

2
− |ψ(a,b)|

2n0

where |ψ(a, b)| is the absolute value of ψ(a, b). That leads to the following results.
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Proposition 3.4.1. Let (G,M, I) be a reduced context with |G| > 3 and |M | > 3. Then
Sgen is a normalized similarity measure on M .

Proof. Let a, b be two attributes of (G,M, I). Since |ψ(a, b)| 6 n0, we can easily check
that 0 6 Sgen(a, b) = Sgen(b, a) 6 Sgen(a, a) = 1.

Sgen also has the following properties:

Proposition 3.4.2. Let (G,M, I) be a reduced context with |G| > 3 and |M | > 3. Let
a, b, c, d ∈M . It holds:

a) Sgen(a, b) > 1
2
if and only if ψ(a, b) 6 0.

b) If ψ(a, b) 6 0 < ψ(d, c), then Sgen(d, c) < Sgen(a, b).

c) If 0 < ψ(a, b) 6 ψ(d, c), then Sgen(d, c) 6 Sgen(a, b).

d) If ψ(a, b) 6 ψ(d, c) 6 0, then Sgen(a, b) 6 Sgen(d, c).

Proof. Let K = (G,M, I) be a context and a, b, c, d ∈M .

a) If ψ(a, b) 6 0, then δ(a, b) = 1 and

Sgen(a, b) =
1 + δ(a, b)

2
− |ψ(a, b)|

2n0

=
1

2

(
2 +

ψ(a, b)

n0

)
> 1

2
.

Now, Sgen(a, b) > 1
2
implies 1+δ(a,b)

2
− |ψ(a,b)|

2n0
> 1

2
and |ψ(a, b)| 6 n0δ(a, b). If

δ(a, b) = 0, then |ψ(a, b)| = 0. If δ(a, b) = 1, then ψ(a, b) 6 0 by definition of δ.

Hence, Sgen(a, b) > 1
2
if and only if ψ(a, b) 6 0.

b) If ψ(a, b) 6 0 < ψ(d, c), then Sgen(d, c) < 1
2
6 Sgen(a, b).

c) If 0 < ψ(a, b) 6 ψ(d, c), then δ(a, b) = δ(d, c) = 0, and

Sgen(d, c) =
1

2
− ψ(d, c)

2n0

6 1

2
− ψ(a, b)

2n0

= Sgen(a, b).

d) If ψ(a, b) 6 ψ(d, c) 6 0, then δ(a, b) = δ(d, c) = 1, and

Sgen(a, b) = 1 +
ψ(a, b)

2n0

6 1 +
ψ(d, c)

2n0

= Sgen(d, c).

Proposition 3.4.3. Let (G,M, I) be a reduced context and a, b ∈ M . The following
assertions are equivalent:

(i) δ(a, b) = 1.

(ii) ψ(a, b) 6 0.
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(iii) Sgen(a, b) > 1
2
.

(iv) An ∃-generalization of a and b does not increase the size of the concepts lattice.

Proof. (i)⇐⇒ (ii) follows from the definition of δ.
(ii)⇐⇒ (iii) is Proposition 3.4.2 a).
(ii) ⇐⇒ (iv) follows from the fact that ψ(a, b) = |H(a ∪ b)| − |H(a, b)| is actually the
difference |B(G,Mab ∪ {s}, Isab)| − |B(G,M, I)| between the number of concepts before
and after generalizing a, b to s with s′ = a′ ∪ b′.

Therefore, generalizing two attributes a, b in a reduced context (G,M, I) increases
the size of the lattice if and only if Sgen(a, b) < 1

2
. The threshold 1

2
is just a consequence

of the way Sgen has been defined.
To test our results we have designed a naive algorithm (see Algorithm 1) that com-

putes Sgen on all pairs of attributes a, b of K.
Algorithm 1: Computing a similarity measure
Data: An attribute reduced context (G,M, I)
Result: ψ and Sgen on M ×M

1 Choose x, y in M , x 6= y with |x′|+ |y′| maximal;
2 n0 ← 2|x

′|+|y′| − 2|x
′| − 2|y

′| + 1;
3 T ← ∅;
4 foreach a in M do
5 T ← T ∪ {a};
6 foreach b in M \ T do
7 Ext0 ← Ext(G,Mab, Iab);
8 foreach x in {a, b, a ∪ b, a ∩ b} do H(x)← ∅;
9 foreach A in Ext0 do

10 foreach x in {a, b, a ∪ b, a ∩ b} do
11 if A ∩ x′ /∈ Ext0 then H(x)← H(x) ∪ {A ∩ x′};
12 end
13 end
14 end
15 ψ(a, b)← |H(a ∪ b)| − |H(a) ∪H(b) ∪H(a ∩ b)|; ψ(b, a)← ψ(a, b);
16 if ψ(a, b) 6 0 then
17 δ(a, b)← 1
18 else
19 δ(a, b)← 0
20 end

21 Sgen(a,b) ←
1 + δ(a, b)

2
− |ψ(a, b)|

2n0

22 end

If the set of attributes M is considered as a vector, then for any attribute a ∈ M ,
we set T (a) the set of all attributes coming before a in M .
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The time complexity of our algorithm is given by
∑

a∈M
(1 +

∑

b∈M\T (a)
((q(a, b) + 4)[4(q(a, b) + 1) + 4] + 3),

which is equal to

|M |+
∑

a∈M

∑

b∈M\T (a)
(4q2(a, b) + 24q(a, b) + 35), with q(a, b) = |Ext(Kab)|.

Now we analyse the complexity of the given algorithm.

3.5 Analysing the complexity of the above algorithm
We have constructed a similarity measure compatible with the change of size of the
lattice after an ∃-generalization of a pair of attributes in a formal context. In order to
give the complexity of our algorithm, we recall the following tools and definitions which
help to understand the notion of complexity before determining the complexity of the
above algorithm.

3.5.1 Some definitions

The determination of the complexity will use the notions of subcontext, contranominal
context and minimal generators.

Definition 3.5.1. [18] Let K = (G,M, I) be a formal context, H ⊆ G and N ⊆ M .
Then the formal context (H,N, I∩(H ×N)) is called a subcontext of K.

Definition 3.5.2. [1] A contranominal scale is a formal context of the form (S, S, 6=)
where S is a set.

When the set S is finite with k elements, then the context (S, S, 6=) is denoted by
Nc(k).

Definition 3.5.3. [1]

- A formal context K is Nc(k)-free if there does not exist a subcontext K1 of K such
that K1

∼= Nc(k).

- In the same way, a lattice L is B(Nc(k))-free whenever the lattice B(Nc(k)) does
not order embed into L.

Proposition 3.5.1. [1] Let K be a context and k an element of N such that B(Nc(k))
embeds into B(K). Then Nc(k) is a subcontext of K.

The following definition says what minimal generators are:
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Definition 3.5.4. [1] Let K = (G,M, I) be a formal context. A set S ⊆ G is said to
be a minimal generator if T I I 6= SI I for every proper subset T ( S.
The set of all minimal generators of a context K will be denoted by MINGEN(K).

The following result characterizes minimal generators:

Proposition 3.5.2. [1] Let (G,M, I) be a formal context. A set S ( G is a minimal
generator if and only if for every g ∈ S, it holds that (S\{g})I 6= SI.

The next theorem gives the link between minimal generators and contranominal
scales.

Theorem 3.5.1. [1] Let K = (G,M, I) be a context and A ( G. There exists a
contranominal scale K1 (a subcontext of K) having A as its object set iff A is a minimal
generator. In particular, if G is finite: max{|A|; A is a minimal generator} = max{k ∈
N : Nc(k) 6 K}.

Theorem 3.5.2. [1] Let K = (G,M, I) be a Nc(k)-free context. Then

|B(K)| 6 (|G|.|M |)k−1 + 1

Notation 3.5.1. The above upper bound has recently being ameliorated, and the ame-
liorated upper bound is

∑k−1
i=0 C

i
|G| and is denoted by f(n, k).

The notions of Nc(k)-free contexts and minimal generators have led us to an upper
bound of the size of concept lattices of Nc(k)-free contexts. That upper bound will
be of help for constructing the complexity of the given algorithm. However, others
important notions are still to be defined, notably the notions directly in relation with
the complexity of an algorithm. These notions concern steps in algorithms and time
complexity, and are presented in the following definitions.

Definition 3.5.5. [25] A step in an algorithm is any arithmetic operation, access to
arrays or comparisons.

Definition 3.5.6. [25] The theory of complexity studies the time and memory space
an algorithm needs as a function of the size of the input data.

More often, complexity is used to make comparison among several algorithms solving
the same problem.

Definition 3.5.7. The time complexity of an algorithm A is a function f : N −→ N,
where f(n) is the maximal number of steps A needs to solve a problem instance having
input data of length n.

Remark 3.5.1. The complexity is always measured for the worst possible case for a
given length of the input, a situation which does not always traduce reality, in the sense
that an algorithm can have an exponential complexity, but work very fast in practice.

Remark 3.5.2. In most cases it is not possible to exactly obtain the complexity f(n) of
an algorithm. In these cases, it is often given an estimation of how fast f(n) can grows.
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Let consider two maps f : N −→ R+ and g : N −→ R+.

Definition 3.5.8. [25]

- f(n) = O(g(n)) if there is a constant c > 0 such that f(n) 6 cg(n) for all
sufficiently large n;

- f(n) = Ω(g(n)) if there is a constant c > 0 such that f(n) > cg(n) for all suffi-
ciently large n;

- f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Definition 3.5.9. [25] Let A be an algorithm solving a problem P .

- If f(n) = O(g(n)), we say that f has at most rate of growth g(n), the algorithm
A having f(n) as the number of steps has complexity O(g(n)) and the problem P
which is solved by the algorithm A has the complexity O(g(n));

- If f(n) = Ω(g(n)), we say that f has at least rate of growth g(n), the algorithm
A having f(n) as the number of steps has complexity Ω(g(n)) and the problem P
which is solved by the algorithm A has the complexity Ω(g(n));

- If f(n) = Θ(g(n)), we say that f has rate of growth g(n), the algorithm A having
f(n) as the number of steps has complexity Θ(g(n)) and the problem P which is
solved by the algorithm A has the complexity Θ(g(n)).

3.5.2 Determination of the complexity of the algorithm for gen-
eralization

The time complexity of our algorithm is given by

∑

a∈M
(1 +

∑

b∈M\T (a)
((q(a, b) + 4)[4(q(a, b) + 1) + 4] + 3),

which is equal to

|M |+
∑

a∈M

∑

b∈M\T (a)
(4q2(a, b) + 24q(a, b) + 35),

with q(a,b)=|Ext(Kab)|.
By Theorem 3.5.1, for every formal K = (G,M, I), there is an element k0 of N such

that K is Nk0
c -free. It is sufficient to choose k0 such that

k0 = max{|A|; A is a minimal generator}+ 1
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Hence, by Theorem 3.5.2, the upper bound for the number of formal concept of the
formal context K = (G,M, I) is given by

|B(K)| 6 (|G|.|M |)k0 + 1

We set n = |G||M |. Then

|B(K)| 6 nk0 + 1

Hence, for every pair {a, b} of M , considering the context Kab = (G,Mab, Iab), we
have

q(a, b) = |Ext(Kab)| = |B(Kab)| 6 |B(K)| 6 nk0 + 1

Hence,

q(a, b)2 6 n2.k0 + 2.nk0 + 1

Therefore,

4.q(a, b)2 6 4n2.k0 + 8.nk0 + 4

which means that

4.q(a, b)2 + 24.q(a, b) 6 4n2.k0 + 8.nk0 + 4 + 24.nk0 + 24

and then that

4.q(a, b)2 + 24.q(a, b) + 35 6 4n2.k0 + 8.nk0 + 4 + 24.nk0 + 24 + 35

Therefore,

4.q(a, b)2 + 24.q(a, b) + 35 6 4n2.k0 + 8.nk0 + 4 + 24.nk0 + 24 + 35 6 4n2.k0 + 32.nk0 + 63

Thus f(n) 6 n+ n2.(4n2.k0 + 32.nk0 + 63) 6 n+ 4n2.k0+2 + 32nk0+2 + 63.n2, because
|M | 6 |G|.|M | = n.

Then, f(n) 6 n+ 4n2.k0+2 + 32nk0+2 + 63.n2 6 100.n2.k0+2,
Hence,

f(n) 6 100.n2.k0+2,

and

f(n) = O(n2.k0+2),

We conclude that the above algorithm has the complexity O(n2.k0+2).
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3.6 Validation and experimentation on data
After the construction of a new similarity measure compatible with a ∃-generalization
on attributes in a formal context, this section aims at validating the new similarity
measure on data. But before we continue, let precise that when an expert is about to
analyse a data set and make a generalization of some attributes or items, he first has a
subjective idea about the group of attributes that are about to be put together, based
on his rationality and knowledge of the data. However, these attributes put together by
∃-generalization may not always meet his expectation. For example, he can be expecting
the size of the concept lattice to reduce after a rational grouping of some attributes,
and the size of the lattice increases. To avoid such a situation, an efficient analyses of
the database by an expert should be base by combining both a rational and objective
grouping of attributes, based on effectively measuring the similarity of the attributes he
rationally suspects that should be generalized. The data used in this section are mostly
from [31] and [15]. We first present the data before starting the analysis.

3.6.1 A case from lexicographic data

Formal Concepts Analysis has been applied to compare lexical databases. In [31] Uta
Priss proposes an example in where the information channel is "building". With respect
to this, the main difference between English and German is that in English, the word
"house" only refers to small residential buildings whereas in German even small office
buildings and large residential buildings can be called "Haus", and only factories would
normally not be called "Haus". Moreover, "building" in English refers to either a factory,
an office or even a big residential house. But only a factory can be called "Gebäude"
in German. She presented in the figure below the information channel of the word
"building"1 in both English and German.

Figure 3.1: The information channel of the word "building" in English and German
.

1in the sense of Barwise and Seligman [6]
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With the above information channel we can construct a formal context as follows:
The objects are different kinds of buildings: small house ("h"), office ("o"), factory
("f") and large residential house ("l"). The attributes are different names of these
objects in both languages: English and German. These are "building", "house", "Haus",
"Gebäude", "large building" (short: "large"), "business building" (short: "business"),
"residential house" (short: "residential"), and "small house" (short: "small"). Thus
G = {h, o, f, l} and M = {building, house, Haus, Gebäude, large, business, residential,
small}. In the following, a set of objects will be denoted as a concatenation of those
objects. For example we will write ho or oh for the set {h, o}. The English and German
classifications of the word "building" are then presented in the following formal context:

building house Haus Gebäude large business residential small
factory × × × ×
office × × × ×
house × × × ×
large × × × ×

With the above formal context, n0 = 23+3 − 23 − 23 + 1 = 49.
Now, we test the similarity measure Sgen on all the pairs of attributes of the above

formal context and produce some analysis. First, we present the results of two spe-
cific pairs of attributes, and extent them to all pairs of attributes using the algorithm
presented in the previous chapter.

Let consider the pair of attributes {house,Gebäude}. We set a := house and b :=
Gebäude. Then a′ ∪ b′ = {f, h} and a′ ∩ b′ = ∅. With this pair of attributes, the formal
context Kab is given as follow:

building Haus large business residential small
factory × × ×
office × × × ×
house × × ×
large × × × ×
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Figure 3.2: The context Kab with the corresponding lattice, with a = house and b =
Gebude

.

From the above figure, it comes that:

Ext(Kab) = {fohl, fol, ohl, fo, f l, ol, oh, hl, f, o, h, l, ∅}, and

H(a) = H(b) = H(a ∩ b) = ∅ and H(a ∪ b) = {fohl}. Therefore, ψ(a, b) = 1 and
Sgen(a, b) = 1

2
− 1

98
≈ 0.49.

Now we consider the pair of attributes {haus, building}. We set a := haus and
b := building. Then a′ ∪ b′ = {f, o, h, l} and a′ ∩ b′ = ∅. With this pair of attributes,
the formal context Kab and the corresponding lattice are given in the following:

house Gebäude large business residential small
factory × × ×
office × ×
house × × ×
large × ×
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Figure 3.3: The concept lattice of context Kab with a = haus and b = building
.

From the above figure, it comes that:

Ext(Kab) = {fohl, ho, hl, fo, f l, h, o, l, f, ∅}, and

H(a) = {fol}, H(b) = {ohl}, H(a∩b) = {ol}, andH(a∪b) = ∅. Therefore, ψ(a, b) = −3
and Sgen(a, b) = 1− 3

98
≈ 0.97.

Using the above algorithm, we compute ψ(a, b) and Sgen(a, b) for all pairs a, b ∈M .
The table below gives ψ(a, b) below the diagonal, and Sgen(a, b) on the rest.

building house Haus Gebäude large business residential small
building 1.00 0.98 0.97 1.00 0.99 0.98 0.97 0.97

house −2 1.00 1.00 0.49 0.49 0.49 1.00 1.00
Haus −3 0 1.00 0.98 0.97 0.97 0.99 0.99

Gebäude 0 1 −2 1.00 1.00 1.00 0.49 0.49
large −1 1 −3 0 1.00 0.98 0.49 0.97

business −2 1 −3 0 −2 1.00 0.98 0.49
residential −3 0 −1 1 1 −2 1.00 0.98

small −3 0 −1 1 −3 1 −2 1.00

Table 3.3: The computed ψ(a, b) and Sgen(a, b) for all pairs a, b ∈M
.

From the above table, the attributes "house" and "Gebäude" are less similar. It
reflects the fact that the words "Gebäude" (in German) and "house" (in English) do
not have the same meaning. It is also the case for the attributes "house" and "business
buildings" as well as "Gebäude" and "residential building". Hence, putting together each
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of the above pairs of attributes will increase the size of the lattice. On the contrary, the
attributes "large" and "Haus", "building" and "Haus" are more similar through Sgen. It
is because the word "Haus" which designates a house, a business office or simply large
building in German, often coincides with the words "building" or "large building" in
English. For these pairs, the existential generalization will not increase the size of the
lattice.

3.6.2 Other data

We consider some formal contexts from [18], notably the context for an educational
film, "living beings and water" which explains the capacity of some living beings to live
in water, and the context for "triangles" which presents the different types of triangles
with their main characteristics.

The context for "living beings and water" is described in the following table:

a b c d e f g h i
Leech × × ×
Bream × × × ×
Frog × × × ×
Dog × × × × ×
Spike-weed × × × ×
Reed × × × × ×
Bean × × × ×
Maize × × × ×

where a:=needs water to live, b:= lives in water, c:= lives on land, d:= needs chlorophyll
to produce food, e:= two seed leaves, f:= one seed leaf, g:= can move around, h:= has
limbs, and i:=suckles its offspring.

The following table of similarity measures of the context "Living beings and water"
shows dissimilarities between the attributes of the following pairs "{two seed leaves,
has limbs}", "{two seed leaves, suckles its offsprings} and {one seed leaf, suckles its off-
springs}, since Sgen(e, h) = 0.499994 = Sgen(e, i) = Sgen(f, i). Hence, the ∃-generalization
of these pairs of attributes increases the size of the concept lattice. These situations
may come from the fact that living beings that has either two seeds leaves or one seed
leaf are not animals, and therefore, they cannot suck their offsprings.

a b c d e f g h i
a 1.00000 0.99968 0.99968 0.99981 0.99994 0.99981 0.99981 0.99981 0.99994
b −5 1.00000 0.99930 0.99975 1.00000 0.99981 0.99968 0.99968 0.99981
c −5 −11 1.00000 0.99968 0.99994 0.99968 0.99975 0.99981 1.00000
d −3 −4 −5 1.00000 0.99994 0.99987 0.99962 0.99981 1.00000
e −1 0 −1 −1 1.00000 0.99987 1.00000 0.49994 0.49994
f −3 −3 −5 −2 −2 1.00000 0.99981 0.99994 0.49994
g −3 −5 −4 −6 0 −3 1.00000 0.99987 0.99994
h −3 −5 −3 −3 1 −1 −2 1.00000 0.99994
i −1 −3 −1 0 1 1 −1 −1 1.00000
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Let consider the context of "triangles" bellow, as presented in [18] :

a b c d e f g
T1((0, 0), (6, 0), (3, 1)) × × × ×
T2((0, 0), (1, 0), (0, 1)) × × ×
T3((0, 0), (4, 0), (1, 2)) × × ×
T4((0, 0), (2, 0), (1,

√
3)) × × × ×

T5((0, 0), (2, 0), (5, 1)) × × ×
T6((0, 0), (2, 0), (1, 3)) × × × ×
T7((0, 0), (2, 0), (0, 1)) × ×

with a:=equilateral, b:= not equilateral, c:= isosceles, d:= oblique, e:= acute, f:= obtuse,
g:= right; and for every i ∈ {1, ..., 7}, Ti is a set of tree points in an orthonormal mark,
describing a triangle.

Similarly, from the table of similarity measures of the above context, one can observe
that the attribute a is neither similar to the attribute f , nor to the attribute g, since
Sgen(equilateral, obtuse) = 0.49987 = Sgen(equilateral, right), as we can see in the
following table. Hence, the ∃-generalization of these pairs of attribute increases the size
of the concept lattice. These situations certainly come from the fact that equilateral
triangles have neither obtuse angles, nor right angles.

a b c d e f g
a 1.00000 0.99937 0.99987 0.99987 0.99987 0.49987 0.49987
b −5 1.00000 0.99861 0.99912 0.99912 0.99975 0.99975
c −1 −11 1.00000 0.99924 0.99950 0.99975 0.99975
d −1 −7 −6 1.00000 099962 0.99974 0.99937
e −1 −7 −4 −3 1.00000 0.99962 0.99987
f 1 −2 −2 −2 −3 1.00000 0.99987
g 1 −2 −2 −5 −1 −1 1.00000

3.7 Conclusion
The constructed similarity measure is effectively compatible with the ∃-generalization
as seen in the above examples. After the study of the size of the concept lattice after an
∃-generalization, it would be also interesting to study the attribute implications which
are among relevant information that can be extracted from data.
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Chapter 4

On the size of the generalized
implications

4.1 Introduction

As we have mentioned in the second chapter, relevant information are often obtained
from data in two main forms: formal concepts and association rules. Implications are

one of the most important and interesting type of association rules. As we will discuss
below, the number of attribute implications in formal contexts can also be very large,
making it difficult for an expert to analyse them for the purpose of decisions. Hence,
generalization can also be useful as a way of reducing their size in order to make the
analysis of data more easy. Let precise that attribute implications consist of deducing
which attributes are satisfied by some objects, knowing that other specific attributes are
already satisfied by these objects. They are of great importance in data analysis because
they are often of help to experts in their decision making, especially when predictions are
made in data. We have studied the variations of the size of the concept lattice after an
∃-generalization and we have discovered that the size of the concept lattice can increase
drastically. The following questions then hold: what is the variation in the size
of the set of attributes informative implications after an ∃-generalization?
Does the increase in the size of the concept lattice after an ∃-generalization
leads to a reduction in size of the base of implications?

The rest of the chapter is organized as follow: In section 4.2, we evaluate the vari-
ations in the number of informative attributes implications using the effect of adding
a new attribute to a formal context. In section 4.3, we compare the size of the set
of informative attributes implications of a formal context to that of the corresponding
generalized context after an ∃-generalization on attributes. Section 4.4 studies the vari-
ation of the canonical base of implications after the ∃-generalization, and Section 4.5
concludes the chapter.
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4.2 On the number of informative implications
In this section, we investigate the variations in the number of informative attributes
implications using the effect of adding a new attribute to a formal context.

Let K := (G,M, I) be a formal context and a an element not belonging to M . We
consider the context Ka := (G,M ∪ {a}, Ia) obtained by adding attribute a to K. For
every subset A ⊆M , we set

A∗K = AI I\(A ∪⋃x∈A(A\{x})I I)
and for every subset A ⊆M ∪ {a}, we set

A∗Ka = AI
a Ia\(A ∪⋃x∈A(A\{x})I

a Ia).

We also set ImplK = {A ⊆ M |A∗K 6= ∅}, ImplKa = {A ⊆ M ∪ {a}|A∗Ka 6= ∅} and
E{M,a} = {T ⊆M ; (T\{x})I * a′ ∀ x ∈ T}, where a′ = {g ∈ G|g has the new attribute
a}.

Then the following result holds

Lemma 4.2.1. Let K := (G,M, I) be a formal context and a an element not belonging
to M . We consider the context Ka := (G,M ∪ {a}, Ia) obtained by adding attribute a to
K. If A ⊆M , then the following statements are equivalent:

i) A∗Ka 6= ∅,
ii) A∗K 6= ∅ or AI ⊆ a′ with A∗K = ∅ and A ∈ E{M,a}.

Proof. Let K := (G,M, I) be such context and Ka := (G,M ∪ {a}, Ia) obtained by
adding attribute a to K.

We know that

A∗Ka = AI
a Ia\(A ∪

⋃

x∈A
(A\{x})I

a Ia)

= AI I
a

\(A ∪
⋃

x∈A
(A\{x})I I

a

)

ii)→ i) If A∗K 6= ∅, then there is an element x ∈ A∗K = AI I\(A ∪⋃x∈A(A\{x})I I). There-
fore, x 6= a because x ∈ M . However, x ∈ AI I ⊆ AI I

a

= AI
a Ia . Let suppose that

there exists y ∈ A such that x ∈ (A\{y})I
a Ia = (A\{y})I I

a

. Then x ∈ (A\{y})I I
since x 6= a, which is absurd. It then comes that x /∈ ⋃y∈A(A\{y})I

a Ia , which
implies that x ∈ A∗Ka . Since that is true for every x ∈ A∗K, we conclude that
A∗K ⊆ A∗Ka , and then that A∗Ka 6= ∅.
If AI ⊆ a′ with A∗K = ∅ and A ∈ E{M,a}. Since AI ⊆ a′, then AI

a

⊆ aI
a , which

means that a ∈ AI
a Ia . Moreover, a /∈ A ∪⋃x∈A(A\{x})I

a Ia because A ⊆ M and
A ∈ E{M,a}. Hence, a ∈ AI

a Ia\(A∪⋃x∈A(A\{x})I
a Ia) = A∗Ka . In fact, A∗Ka = {a}

since A∗K = ∅. It means that A∗Ka 6= ∅.
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i)→ ii) Let suppose that A∗Ka 6= ∅. We have a /∈ AI I
a

or a ∈ AI I
a

. If a /∈ AI I
a

, then
∅ 6= A∗Ka = A∗K. If a ∈ AI I

a

, then AI ⊆ a′. In this case, if a ∈ (A\{x})I I
a

for some
x ∈ A, then ∅ 6= A∗Ka = A∗K. Else, a /∈ (A\{x})I I

a

for every x ∈ A, which implies
that A ∈ E{M,a}. In this last subcase, A∗Ka = A∗K∪{a} where one can have A∗K 6= ∅
or A∗K = ∅. Finally, we only have the two following situations, A∗K 6= ∅ or AI ⊆ a′

with A∗K = ∅ and A ∈ E{M,a}.

This other result also holds

Lemma 4.2.2. Let K := (G,M, I) be a formal context and a an element not belonging
to M . We consider the context Ka := (G,M ∪{a}, Ia)obtained by adding the attribute a
to K. If A *M , then the following statements are equivalent:

*) (A ∪ {a})∗Ka 6= ∅ in the context Ka;

**) (AI ∩ a′)I\(AI I ∪⋃x∈A((A\{x})I ∩ a′)I) 6= ∅ in the context K.

Proof. Let K := (G,M, I) be such context and Ka := (G,M ∪ {a}, Ia) obtained by
adding attribute a to K. We suppose that A *M . Then

(A ∪ {a})∗Ka = (A ∪ {a})I
a Ia\((A ∪ {a}) ∪

⋃

x∈A∪{a}
((A ∪ {a})\{x})I

a Ia)

= (AI
a

∩ a′)I
a

\((A ∪ {a}) ∪ AI
a Ia ∪

⋃

x∈A
((A\{x})I ∩ a′)I

a

)

. = (AI ∩ a′)I ∪ {a}\((A ∪ {a}) ∪ (AI I ∪ {a})∪
⋃

x∈A
((A\{x})I ∩ a′)I ∪ {a})

= (AI ∩ a′)I\(AI I ∪
⋃

x∈A
((A\{x})I ∩ a′)I).

Hence, (A∪{a})∗Ka 6= ∅ in the context Ka if and only if (AI∩a′)I\(AI I∪⋃x∈A((A\{x})I∩
a′)I) 6= ∅ in the context K.

Thus, setting

IK(a) = {A ⊆M : AI ⊆ a′, A ∈ E{M,a}, A∗K = ∅} ∪ {A ∪ {a} : A ⊆
M, (AI ∩ a′)I\(AI I ∪⋃x∈A((A\{x})I ∩ a′)I) 6= ∅},

we have the following proposition
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Proposition 4.2.1. Let K := (G,M, I) be a formal context and a an element not
belonging to M . The addition of attribute a to the context K gives the context Ka :=
(G,M ∪ {a}, Ia), and

ImplKa = ImplK ∪ IK(a)

Proof. This the immediate consequence of lemma 4.2.1 and lemma 4.2.2.

Now we look at what happen when several new attributes are added simultaneously
to a formal context. We consider a formal context K = (G,M, I) and a nonempty set X
of attributes not belonging to M . We denote by KX the formal context (G,M ∪X, IX).
For any subset Y of X and any subset A of M , we denote by XY the set X\Y and by
(A ∪ Y )∗/K the set

(AI ∩ Y ′)I\[A ∪⋃y∈Y (AI ∩ (Y \{y})′)I ∪⋃x∈A((A\{x})I ∩ Y ′)I],

where Y ′ =
⋂
y∈Y y

′, with y′ the set of objects having the attribute y.
For every subset Q of X, we set

FA(Q) = {v ∈ XQ|AI ∩Q′ ⊆ v′}

and

RA(Q) = {v ∈ FA(Q)|((A\{x})I ∩Q′) * v′, (AI ∩ (Q\{y})′) * v′ ∀ x ∈ A, ∀ y ∈ Q}.

Let Y ∈ P(X). For every Q ∈ P(Y ), we set

Y (Q) = {A ∪Q|A ⊆M,FA(∅) 6= ∅,RA(Q) 6= ∅, (A ∪Q)∗/K = ∅} ∪ {A ∪Q|A ⊆
M, (A ∪Q)∗/K 6= ∅}.

and

JK(Y ) =
⋃
Q∈P(Y ) Y (Q)

For example, if Y = ∅ (as a subset of a set X), then we have:

JK(∅) = {A ⊆M : FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K = ∅} ∪ {A ⊆M : A∗K 6= ∅}
={A⊆M : A∗K = ∅ and ∃v ∈ XAI ⊆ v′ and ∀x ∈ A, (A\{x})I * v′}
∪ {A ⊆M : A∗K 6= ∅}
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if X = {a}, then

JK({a}) = Y (∅) ∪ Y ({a})
= [{A ⊆M : AI ⊆ a′,RA(∅) 6= ∅, A∗K = ∅} ∪ {A ⊆M : A∗K 6= ∅}]
∪ [{A ∪ {a}|A ⊆M, (A ∪ {a})∗/K 6= ∅}]
= [{A ⊆M : A∗K = ∅, AI ⊆ a′and∀x ∈ A, (A\{x})I * a′} ∪ {A ⊆M : A∗/K 6= ∅}]
∪ [{A ∪ {a}|A ⊆M, (A ∪ {a})∗/K 6= ∅}]
= JK(∅) ∪ {A ∪ {a}|A ⊆M, (A ∪ {a})∗/K 6= ∅}
= ImplK ∪ IK(a).

The following proposition holds:

Proposition 4.2.2. Let K = (G,M, I) be a formal context, X be a nonempty set of
attributes not belonging to M and KX = (G,M ∪X, IX). We have

{A ∈ P(M ∪X) : A∗KX 6= ∅} = JK(X)

Proof. Let A be an element of P(M) such that A ∪Q ∈ JK(X) for some Q ∈ P(X).
If (A ∪ Q)∗/K 6= ∅, then A ∪ Q ∈ P(M ∪ X) and (A ∪ Q)∗KX = (A ∪ Q)I

X IX\[A ∪
Q ∪ ⋃y∈Q(AI ∩ (Q\{y})′)I

X

∪ ⋃x∈A((A\{x})I ∩ Q′)I
X

]. Let u ∈ (A ∪ Q)∗/K. Then

u ∈ (AI ∩ Q′)I ⊆ (A ∪ Q)I
X IX . Moreover, u /∈ A ∪ Q. Let suppose that there exists

y ∈ Q such that u ∈ (AI ∩ (Q\{y})′)I
X

. Then (AI ∩ (Q\{y})′) ⊆ uI
X

= uI, meaning
that u ∈ (AI ∩ (Q\{y})′)I, which is absurd. In the same way, if there is x ∈ A such
that u ∈ ((A\{x})I ∩ Y ′)I

X

, then u ∈ ((A\{x})I ∩ Y ′)I which is absurd. Therefore,
u ∈ (A ∪Q)∗KX , which means that (A ∪Q)∗KX 6= ∅.

If (A ∪Q)∗/K = ∅, then RA(Q) 6= ∅. Therefore, (A ∪Q)∗KX = RA(Q) 6= ∅.
Therefore, JK(X) ⊆ {A ∈ P(M ∪X) : A∗KX 6= ∅}.
Let A be an element of P(M ∪ X) such that A∗KX 6= ∅. Then there exists B ⊆ M

and Q ⊆ X such that A = B ∪ Q, and (B ∪ Q)∗KX 6= ∅. If (B ∪ Q)∗/K 6= ∅, then
A ∈ {A ∪ Q|A ⊆ M,Q ∈ P(X), (A ∪ Q)∗/K 6= ∅} ⊆ JK(X). If (B ∪ Q)∗/K = ∅, then
RB(Q) 6= ∅ and FB(X) 6= ∅, meaning that B∪Q ∈ {A∪Q|A ⊆M,Q ∈ P(Y ),FA(Q) 6=
∅,RA(Q) 6= ∅, (A ∪Q)∗/K = ∅} ⊆ JK(X).

Therefore, {A ∈ P(M ∪X) : A∗KX 6= ∅} ⊆ JK(X)

Remark 4.2.1. One can observe that for a formal context K = (G,M, I) and a nonempty
set X of attributes not belonging to M ,
JK(X) = ImplK ∪ [

⋃
Q∈P(X)\{∅,X}{A ∪ Q|AI ∩ Q′ ⊆ X ′Q,RA(Q) 6= ∅, (A ∪ Q)/K =

∅} ∪ {A ∪ X|A ⊆ M, (A ∪ X)∗/K 6= ∅}] ∪ [
⋃
Q∈P(X)\{∅,X}{A;AI ⊆ X ′,RA(∅) 6= ∅, A∗K =

∅} ∪ {A ∪Q|A ⊆M, (A ∪Q)∗/K 6= ∅}].

That leads us to the following result:

81



On the size of the generalized implications

Corollary 4.2.1. Let K = (G,M, I) be a formal context and X a nonempty set of
attributes not belonging toM . We set KX = (G,M∪X, IX), X ′ =

⋂
x∈X x

′ and J ∗K(X) =

{A ⊆M : AI ⊆ X ′ and RA(∅) 6= ∅ and A∗K = ∅} ∪ [JK(X)\JK(∅)]. We have also

ImplKX = ImplK ∪ J ∗K(X)

4.3 From the initial implications to the ∃-generalized
implications

Let consider a formal context K = (G,M, I), two attributes a and b of K and s = a ∪ b
the generalized attribute obtained from the ∃-generalization of a and b. Let Ks be the
context (G,M ∪{s}, Is) and Ks

ab = (G, (M \{a, b})∪{s}, Isab) be the generalized context.
Our aim is to compare the sizes of Impl(K) and Impl(Ks

ab).
We set Kab := (G,Mab, Iab), where Mab = M\{a, b}.

Then from proposition 4.2.1,

ImplKs
ab

= ImplKab
∪ IKab

(s) = ImplKab
∪ IKab

(a ∪ b)
Moreover, also from proposition 4.2.1, we have ImplK = ImplKb

∪IKb
(b) = ImplKab

∪
IKab

(a) ∪ IKb
(b). Now we express IKb

(b) as a function of IKab
(b).

From the definition of IK(b) with K = Kb, we have

IKb
(b) = {A ⊆ Mab ∪ {a}|AI

a

ab ⊆ b′, A ∈ E{Mab∪{a},b}, A
∗
Ka

ab
= ∅} ∪ {A ∪ {b}|A ⊆

Mab ∪ {a}, (AI
a

ab ∩ b′)I
a

ab\(AI
a

ab I
a

ab ∪⋃x∈A((A\{x})I
a

ab ∩ b′)I
a

ab) 6= ∅} = F1(b) ∪ F2(b).

We express each member F1(b) and F2(b) of the above union as a function of Iab, a′
and b′.

But the fact that A∗Ka
ab

= ∅ implies that a ∈ AI
a

ab I
a

ab if and only if ∃x ∈ A such

that a ∈ (A\{x})I
a

ab I
a

ab . In fact, let suppose that A∗Ka
ab

= ∅. If ∃x ∈ A such that

a ∈ (A\{x})I
a

ab I
a

ab , we obviously have a ∈ AI
a

ab I
a

ab . Now we suppose that a ∈ AI
a

ab I
a

ab . If
∀x ∈ A, a /∈ (A\{x})I

a

ab I
a

ab , then A∗Ka
ab

= A∗Kab
∪ {a}, meaning that a ∈ A∗Ka

ab
, which is

absurd. Therefore, ∃x ∈ A, such that a ∈ (A\{x})I
a

ab I
a

ab . From there, we conclude that
A∗Ka

ab
= ∅ implies that AI

a

ab I
a

ab\(A∪⋃x∈A(A\{x})I
a

ab I
a

ab = AIab Iab\(A∪⋃x∈A(A\{x})Iab Iab .

Hence, since A ⊆ Mab ∪ {a} implies that a ∈ A (meaning that A ⊆ Mab) or a /∈ A
(meaning that A = B ∪ {a} with B ⊆Mab), we have

F1(b) = {A ⊆Mab ∪ {a}|AI
a

ab ⊆ b′, A ∈ E{Mab∪{a},b}, A
∗
Ka

ab
= ∅}

= {A ⊆Mab|AI
a

ab ⊆ b′, A ∈ E{Mab,b}, A
∗
Ka

ab
= ∅}

∪ {B ∪ {a}|B ⊆Mab, (B ∪ {a})I
a

ab ⊆ b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B ∪ {a})∗Ka
ab

= ∅}.
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Each member of the above union in F1(b) is expressed as a function of Iab, a′ and b′.
First, the development of {A ⊆ Mab|AI

a

ab ⊆ b′, A ∈ E{Mab,b}, A
∗
Ka

ab
= ∅} gives the set

{A ⊆Mab|AIab ⊆ b′, A ∈ E{Mab,b}, A
∗
Kab

= ∅} as expressed below:

{A ⊆Mab|AI
a

ab ⊆ b′, A ∈ E{Mab,b}, A
∗
Ka

ab
= ∅}

= {A ⊆Mab|AI
a

ab ⊆ b′, A ∈ E{Mab,b}, A
Iaab I

a

ab\(A ∪⋃x∈A(A\{x})I
a

ab I
a

ab) = ∅}
(because A∗Ka

ab
= AI

a

ab I
a

ab\(A ∪⋃x∈A(A\{x})I
a

ab I
a

ab)

={A ⊆Mab|AIab ⊆ b′, A ∈ E{Mab,b}, A
Iab Iab\(A ∪⋃x∈A(A\{x})Iab Iab) = ∅}

(SinceA∗Ka
ab

= ∅ and thenAI
a

ab I
a

ab\(A∪⋃x∈A(A\{x})I
a

ab I
a

ab) = AIab Iab\(A∪⋃x∈A(A\{x})Iab Iab)
={A ⊆Mab|AIab ⊆ b′, A ∈ E{Mab,b}, A

∗
Kab

= ∅}.

In the same way, from {B∪{a}|B ⊆Mab, (B∪{a})I
a

ab ⊆ b′, B∪{a} ∈ E{Mab∪{a},b}, (B∪
{a})∗Ka

ab
= ∅}, we obtain the following set {B ∪ {a}|B ⊆ Mab, B

Iab ∩ a′ ⊆ b′, B ∪ {a} ∈
E{Mab∪{a},b}, (B

Iab ∩a′)Iab\[BIab Iab ∪⋃x∈B((B\{x})Iab ∩a′)Iab ] = ∅} as developed bellow:

{B ∪ {a}|B ⊆Mab, (B ∪ {a})I
a

ab ⊆ b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B ∪ {a})∗Ka
ab

= ∅}
= {B ∪ {a}|B ⊆Mab, B

Iab ∩ a′ ⊆ b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B ∪ {a})∗Ka
ab

= ∅}
(because (B ∪ {a})I

a

ab = BIab ∩ aI
a

ab = BIab ∩ a′).
={B ∪ {a}|B ⊆Mab, B

Iab ∩ a′ ⊆ b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B ∪ {a})I
a

ab I
a

ab\[(B ∪ {a}) ∪⋃
x∈B∪{a}(B ∪ {a}\{x})I

a

ab I
a

ab ] = ∅}
(because (B ∪ {a})∗Ka

ab
= (B ∪ {a})I

a

ab I
a

ab\[(B ∪ {a}) ∪⋃x∈B∪{a}(B ∪ {a}\{x})I
a

ab I
a

ab ]).

={B ∪ {a}|B ⊆ Mab, B
Iab ∩ a′ ⊆ b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B

Iab ∩ a′)I
a

ab\[(BIab Iab ∪
{a}) ∪⋃x∈B((B\{x})Iab ∩ a′)I

a

ab ] = ∅}
(since (B∪{a})I

a

ab I
a

ab\[(B∪{a})∪⋃x∈B∪{a}(B∪{a}\{x})I
a

ab I
a

ab ] = (BIab∩a′)I
a

ab\[(BIab Iab∪
{a}) ∪⋃x∈B((B\{x})Iab ∩ a′)I

a

ab ])
={B ∪ {a}|B ⊆ Mab, B

Iab ∩ a′ ⊆ b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B
Iab ∩ a′)Iab\[BIab Iab ∪⋃

x∈B((B\{x})Iab ∩ a′)Iab ] = ∅}.
(since a ∈ (BIab ∩ a′)I

a

ab and a ∈ ⋃x∈B((B\{x})Iab ∩ a′)I
a

ab).

Hence, the two sets above lead us to the following:

F1(b) = {A ⊆Mab|AIab ⊆ b′, A ∈ E{Mab,b}, A
∗
Kab

= ∅} ∪ {B ∪ {a}|B ⊆Mab, B
Iab ∩ a′ ⊆

b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B
Iab ∩ a′)Iab\[BIab Iab ∪⋃x∈B((B\{x})Iab ∩ a′)Iab ] = ∅}.

In the same way, F2(b) is also developed as a function of Iab, a′ and b′, as follow:

F2(b) = {A∪{b}|A ⊆Mab∪{a}, (AI
a

ab ∩ b′)I
a

ab\(AI
a

ab I
a

ab ∪⋃x∈A((A\{x})I
a

ab ∩ b′)I
a

ab) 6=
∅} = {A ∪ {b}|A ⊆Mab, (A

Iaab ∩ b′)I
a

ab\(AI
a

ab I
a

ab ∪⋃x∈A((A\{x})I
a

ab ∩ b′)I
a

ab) 6= ∅} ∪ {B ∪
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{a, b}|B ⊆Mab, ((B ∪ {a})I
a

ab ∩ b′)I
a

ab\((B ∪ {a})I
a

ab I
a

ab ∪⋃x∈B∪{a}(((B ∪ {a})\{x})I
a

ab ∩
b′)I

a

ab) 6= ∅}. Since A ⊆ Mab ∪ {a}, the two members of the above union in F2(b)
represent the case where a ∈ A and the case where a /∈ A.

Each member of the above union constituted by F2(b) is expressed as a function of
Iab, a′ and b′. The case where a ∈ A gives
{A∪{b}|A ⊆Mab, (A

Iaab∩b′)I
a

ab\(AI
a

ab I
a

ab∪⋃x∈A((A\{x})I
a

ab∩b′)I
a

ab) 6= ∅} = {A∪{b}|A ⊆
Mab, (A

Iab∩b′)Iab\(AIab Iab∪⋃x∈A((A\{x})Iab∩b′)Iab) 6= ∅}∪{A∪{b}|A ⊆Mab, A
Iab∩b′ ⊆

a′, A ∪ {b} ∈ E{Mab∪{b},a}, (A
Iab ∩ b′)Iab\(AIab Iab ∪⋃x∈A((A\{x})Iab ∩ b′)Iab) = ∅}.

Expressing the second member (a /∈ A) of the union in F2(b) as a function of Iab, a′
and b′, we obtain:

{B∪{a, b}|B ⊆Mab, (B
Iaab∩a′∩b′)I

a

ab\((BIaab∩a′)I
a

ab∪(BIaab∩b′)I
a

ab∪⋃x∈B((B\{x})I
a

ab∩
a′ ∩ b′)I

a

ab 6= ∅} = {B ∪ {a, b}|B ⊆ Mab, (B
Iab ∩ a′ ∩ b′)Iab\((BIab ∩ a′)Iab ∪ (BIab ∩

b′)Iab ∪⋃x∈B((B\{x})Iab ∩ a′ ∩ b′)Iab 6= ∅}, because a, b ∈ (BIaab ∩ a′ ∩ b′)I
a

ab and a, b ∈⋃
x∈B((B\{x})I

a

ab ∩ a′ ∩ b′)I
a

ab}.

Therefore,

F2(b) = {A ∪ {b}|A ⊆ Mab, (A
Iab ∩ b′)Iab\(AIab Iab ∪ ⋃x∈A((A\{x})Iab ∩ b′)Iab) 6=

∅} ∪ {A ∪ {b}|A ⊆ Mab, A
Iab ∩ b′ ⊆ a′, A ∪ {b} ∈ E{Mab∪{b},a}, (A

Iab ∩ b′)Iab\(AIab Iab ∪⋃
x∈A((A\{x})Iab ∩ b′)Iab) = ∅}∪{B ∪{a, b}|B ⊆Mab, (B

Iab ∩ a′∩ b′)Iab\((BIab ∩ a′)Iab ∪
(BIab ∩ b′)Iab ∪⋃x∈B((B\{x})Iab ∩ a′ ∩ b′)Iab 6= ∅}.

From F1(b) and F2(b), IKb
(b) is deduced as follow:

IKb
(b) = F1(b)∪F2(b) = [{A ⊆Mab|AIab ⊆ b′, A ∈ E{Mab,b}, A

∗
Kab

= ∅}∪{B∪{a}|B ⊆
Mab, B

Iab ∩ a′ ⊆ b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B
Iab ∩ a′)Iab\[BIab Iab ∪⋃x∈B((B\{x})Iab ∩

a′)Iab ] = ∅}] ∪ [{A ∪ {b}|A ⊆ Mab, (A
Iab ∩ b′)Iab\(AIab Iab ∪⋃x∈A((A\{x})Iab ∩ b′)Iab) 6=

∅} ∪ {A ∪ {b}|A ⊆ Mab, A
Iab ∩ b′ ⊆ a′, A ∪ {b} ∈ E{Mab∪{b},a}, (A

Iab ∩ b′)Iab\(AIab Iab ∪⋃
x∈A((A\{x})Iab ∩ b′)Iab) = ∅}∪{B ∪{a, b}|B ⊆Mab, (B

Iab ∩ a′∩ b′)Iab\((BIab ∩ a′)Iab ∪
(BIab ∩ b′)Iab ∪⋃x∈B((B\{x})Iab ∩ a′ ∩ b′)Iab 6= ∅}],

and because IK(b) = {A ⊆ Mab|AIab ⊆ b′, A ∈ E{Mab,b}, A
∗
Kab

= ∅} ∪ {A ∪ {b}|A ⊆
Mab, (A

Iab ∩ b′)Iab\(AIab Iab ∪⋃x∈A((A\{x})Iab ∩ b′)Iab) 6= ∅}, we have

IKb
(b) = IK(b) ∪

{B ∪ {a}|B ⊆ Mab, B
Iab ∩ a′ ⊆ b′, B ∪ {a} ∈ E{Mab∪{a},b}, (B

Iab ∩ a′)Iab\[BIab Iab ∪⋃
x∈B((B\{x})Iab ∩ a′)Iab ] = ∅} ∪
{A ∪ {b}|A ⊆ Mab, A

Iab ∩ b′ ⊆ a′, A ∪ {b} ∈ E{Mab∪{b},a}, (A
Iab ∩ b′)Iab\(AIab Iab ∪⋃

x∈A((A\{x})Iab ∩ b′)Iab) = ∅} ∪
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{B∪{a, b}|B ⊆Mab, (B
Iab∩a′∩b′)Iab\((BIab∩a′)Iab∪ (BIab∩b′)Iab∪⋃x∈B((B\{x})Iab∩

a′ ∩ b′)Iab 6= ∅},
which leads to:

IKb
(b) = IK(b) ∪RK(a, b),

where
RK(a, b) = {B∪{a}|B ⊆Mab, B

Iab∩a′ ⊆ b′, B∪{a} ∈ E{Mab∪{a},b}, (B
Iab∩a′)Iab\[BIab Iab∪⋃

x∈B((B\{x})Iab ∩ a′)Iab ] = ∅} ∪
{A ∪ {b}|A ⊆ Mab, A

Iab ∩ b′ ⊆ a′, A ∪ {b} ∈ E{Mab∪{b},a}, (A
Iab ∩ b′)Iab\(AIab Iab ∪⋃

x∈A((A\{x})Iab ∩ b′)Iab) = ∅} ∪
{B∪{a, b}|B ⊆Mab, (B

Iab∩a′∩b′)Iab\((BIab∩a′)Iab∪ (BIab∩b′)Iab∪⋃x∈B((B\{x})Iab∩
a′ ∩ b′)Iab 6= ∅}.

We conclude that

ImplK = ImplKab
∪ IKab

(a) ∪ IKb
(b) = ImplKab

∪ IKab
(a) ∪ IKab

(b) ∪RKab
(a, b)

and the following proposition holds:

Proposition 4.3.1. Let K = (G,M, I) be a formal context and a and b two attributes
of K. Let Ks

ab = (G, (M \ {a, b}) ∪ {s}, Isab) be the generalized context after the ∃-
generalization of a and b, with s = a∪b. Then the increase in the number of informative
attributes implications after the ∃-generalization of a and b is given by:

|Impl(Ks
ab)| − |Impl(K)| = |IKab

(a ∪ b)| − |IKab
(a) ∪ IKab

(b) ∪RKab
(a, b)|

Example 4.3.1. We consider the following formal context, in which a and c are put
together through ∃-generalization. The aim of this example is to determine the varia-
tion of informative attribute implications between the initial context and the generalized
context without constructing the generalized context.

KB4 a b c d
1 × ×
2 ×
3 × ×
4 ×

Removing the attributes a and c been generalized from KB4 yields the context K00 =
Kac = (G,M \ {a, c}, Iac).

Kac = K00 b d
1 ×
2 ×
3 ×
4 ×
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We have {A ⊆Mac|AIac ⊆ a′, A ∈ E{Mac,a}, A
∗
K00

= ∅} = {{b, d}}; and
{A ∪ {a}|A ⊆Mac, (A

Iac ∩ a′)Iac\(AIac Iac ∪⋃x∈A((A\{x})Iac ∩ a′)Iac) 6= ∅} = {{a}}.
Therefore,

IKac(a) = {{b, d}, {a}}

Moreover, {A ⊆Mac|AIac ⊆ c′, A ∈ E{Mac,c}, A
∗
K00

= ∅} = {{b, d}}; and
{A ∪ {c}|A ⊆Mac, (A

Iac ∩ c′)Iac\(AIac Iac ∪⋃x∈A((A\{x})Iac ∩ c′)Iac) 6= ∅} = {{c}}.
Hence,

IKac(c) = {{b, d}, {c}}.

{A ⊆Mac|AIac ⊆ a′ ∪ c′, A ∈ E{Mac,a∪c}, A
∗
K00

= ∅} = {{b, d}}; and
{A∪{a∪c}|A ⊆Mac, (A

Iac∩(a′∪c′))Iac\(AIac Iac∪⋃x∈A((A\{x})Iac∩a′∪c′)Iac) 6= ∅} = ∅.
Therefore,

IKac(a ∪ c) = {{b, d}}.

Also,

RKac(a, c) = {{d, a}, {b, c}}.

Thus, IKac(a) ∪ IKac(c) ∪RKac(a, c) = {{b, d}, {a}} ∪ {{b, d}, {c}} ∪ {{d, a}, {b, c}, }
= {{a}, {c}, {b, d}, {d, a}, {b, c}}.

Hence,

|IKac(a) ∪ IKac(c) ∪RKac(a, c)| = 5, and |IKac(a ∪ c)| = 1

and then

|IKac(a ∪ c)| − |IKac(a) ∪ IKac(c) ∪RKac(a, c)| = 1− 5 = −4.

Therefore, generalizing attributes a and c reduces the size of the set of informative at-
tributes implications in the initial context KB4 by 4.

In general, if one or several (n > 2) groups of attributes (Xi)i∈{1,...,n} of K are
simultaneously put together through ∃-generalization, and if we set X = ∪i∈{1,...,n}Xi

with Xi been seen as a generalized attribute for all i, then we have the following result:

Proposition 4.3.2. Let K = (G,M, I) be a formal context and X a set of attributes
of K. Let K{X1,...,Xn}

X = (G, (M \ X) ∪ {X1, ..., Xn}, I{X1,...,Xn}
X ) be the generalized con-

text after the simultaneous ∃-generalization of groups of attributes (Xi)i∈{1,...,n} of K,
with Xi = ∪x∈Xi

x been seen as a generalized attribute for all i ∈ {1, ..., n} and X =⋃
i∈{1,...,n}Xi. Then the increase in the number of informative implications is given by

|Impl(K{X1,...,Xn}
X )| − |Impl(K)| = |J ∗KX

({X1, ..., Xn})| − |J ∗KX
(X)|
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Proof. This is the immediate consequence of the corollary 4.2.1.

In [34], an algorithm is given, and permit to extract generalized association rules
that have a user-specified minimum support. These generalized rules included both the
generalized informative and non informative association rules. That is not the case for
generalized implications as studied here, because no minimum support is specified, and
only informative generalized implications do matter.

The following naive algorithm can be of help to extract informative generalized
attributes implications (contained in J ∗K({Y1, ..., Yn})) from a formal context.
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Algorithm 2: Computing generalized informative implications
Data: An attribute reduced context (G,M, I)

1 X := the set of all the attributes being generalized
2 Y := the set of all the generalized attributes
3 M00 := M\X
4 K00 := (G,M00, I00)
5 J0 := ∅,
6 J1 := ∅,
7 J2 := ∅
8 foreach A ∈ P(M00) do
9 foreach Q ∈ P(Y ) do

10 L := (A ∪Q)∗/K
11 if L 6= ∅ then
12 J1 := J1 ∪{A ∪Q}
13 ;
14 if L = ∅ then
15 F := ∅
16 R := ∅
17 T := Y \Q
18 foreach v ∈ T do
19 if AI ∩Q′ ⊆ v′ then
20 F := F ∪ {v}
21 r := 0
22 s := 0
23 foreach x ∈ A do
24 if (A\{x})I ∩Q′ * v′ then
25 r := r + 1 ;
26 end
27 foreach y ∈ Q do
28 if AI ∩ (Q\{y})′ * v′ then
29 s := s+ 1 ;
30 end
31 if r = |A| and s = |Q| then
32 R := R∪ {v} ;
33 ;
34 end
35 if R 6= ∅ then
36 J2 := J2 ∪{A ∪Q} ;
37 ;
38 end
39 end
40 J0 := J1 ∪ J2
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The time complexity of our algorithm is given by

f = [(|A|+ |Q|+3+1)|T |+1+3+1+1]2|Y |2|M00|+8 = [(|A|+ |Q|+4)|T |+6]2|Y |+|M00|+8

If one supposes that f can be expressed as a function of n = |G||M |, then we can
write f = f(n).

However, [(|A|+ |Q|+4)|T |+6]2|Y |+|M00|+8 6 [(2|M00|+2|Y |+4)2|Y |+6]2|Y |+|M00|+8
6 (2|Y |+|M00| + 22|Y | + 4.2|Y | + 6)2|Y |+|M00| + 8
6 22|Y |+2|M00| + 23|Y |+|M00| + 4.22|Y |+|M00| + 14.22|Y |+|M00|

6 23|Y |+2|M00| + 23|Y |+2|M00| + 4.23|Y |+2|M00| + 14.23|Y |+2|M00|

6 20.23|Y |+2|M00|

There exists k0 ∈ N∗\{1} such that 3|Y |+ 2|M00| 6 k0.|M00|.
Hence,

3|Y |+ 2|M00| 6 k0.|M00| 6 k0.|M | 6 k0.|G||M | 6 k0.n.

with n = |G||M |. Thus

f(n) 6 20.23|Y |+2|M00| 6 20.2k0.n,

and then

f(n) = O(2k0.n),

Example 4.3.2. Let reconsider the previous example with the formal context,

KB4 a b c d
1 × ×
2 ×
3 × ×
4 ×

which yielded the following context Kac = K00 after the ∃-generalization of attributes
a and c.

Kac = K00 b d
1 ×
2 ×
3 ×
4 ×

Note that X = {a, c}, M00 = Mac = {b, d}, P(Mac) = {∅, {b}, {d}, {b, d}} and
Y = {a ∪ c}. Moreover, a′ = {1}, c′ = {3}, a′ ∪ c′ = {1, 3} and X ′ = 1′ ∩ 3′ = ∅.

J ∗K00
(X) = {A|A ⊆M00,FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K00

= ∅} ∪ [JK00(X)\JK00(∅)]

Hence,
J ∗K00

({a, c}) = {A|A ⊆ {b, d},FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K00
= ∅}∪ [JK00({a, c})\JK00(∅)].
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But, {A|A ⊆ {b, d},FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K00
= ∅} = {A|A ⊆ {b, d}, AI00 =

∅,RA(∅) 6= ∅, A∗K00
= ∅}. Moreover, (∅)′ = G 6= ∅, b′ = {1, 2} 6= ∅ and d′ = {3, 4} 6= ∅.

Therefore, {b, d} is the only subset T of M00 such that T ′ = ∅. F{b,d}(∅) = {v ∈
{a, c}|({b, d})I00 ⊆ v′} = {a, c} and R{b,d}(∅) = {v ∈ F{b,d}(∅)|bI00 * v′ and dI00 *
v′} = {a, c} 6= ∅. Also, ({b, d})∗K00

= ∅ because ({b, d})I00 I00 = {b, d}.

Therefore {A|A ⊆ {b, d},FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K00
= ∅} = {b, d}.

Moreover,
JK00({a, c})\JK00(∅) = [{A ∪ {a}|A ⊆ {b, d},FA({a}) 6= ∅,RA({a}) 6= ∅, (A ∪

{a})∗/K00
= ∅}∪{A∪{a}|A ⊆ {b, d}, (A∪{a})∗/K00

6= ∅}]⋃[{A∪{c}|A ⊆ {b, d},FA({c}) 6=
∅,RA({c}) 6= ∅, (A ∪ {c})∗/K00

= ∅} ∪ {A ∪ {c}|A ⊆ {b, d}, (A ∪ {c})∗/K00
6= ∅}]⋃[{A ∪

{a, c}|A ⊆ {b, d},FA({a, c}) 6= ∅,RA({a, c}) 6= ∅, (A∪{a, c})∗/K00
= ∅}∪{A∪{a, c}|A ⊆

{b, d}, (A ∪ {a, c})∗/K00
6= ∅}].

But each of the three blocs of the above equality is developed as follow:

[{A∪ {a}|A ⊆ {b, d},FA({a}) 6= ∅,RA({a}) 6= ∅, (A∪ {a})∗/K00
= ∅} ∪ {A∪ {a}|A ⊆

{b, d}, (A ∪ {a})∗/K00
6= ∅}] = [{A ∪ {a}|A ⊆ {b, d}, AI00 ∩ a′ ⊆ c′,RA({a}) 6= ∅, (A ∪

{a})∗/K00
= ∅}∪{A∪{a}|A ⊆ {b, d}, (AI00 ∩a′)I00\(AI00 I00 ∪⋃x∈A((A\{x})I00 ∩a′)I00) 6=

∅}] = {{d, a}}∪{{a}} = {{d, a}, {a}}, because F∅({a}) = ∅, F{b}({a}) = ∅, F{d}({a}) =
{c}, F{b,d}({a}) = {c}, R{d}({a}) = {c}, R{b,d}({a}) = ∅ and (∅ ∪ {a})∗/K00

= {b} 6= ∅;

[{A ∪ {c}|A ⊆ {b, d},FA({c}) 6= ∅,RA({c}) 6= ∅, (A ∪ {c})∗/K00
= ∅} ∪ {A ∪ {c}|A ⊆

{b, d}, (A ∪ {c})∗/K00
6= ∅}] = [{A ∪ {c}|A ⊆ {b, d}, AI00 ∩ c′ ⊆ a′,RA({c}) 6= ∅, (A ∪

{c})∗/K00
= ∅}∪{A∪{c}|A ⊆ {b, d}, (AI00 ∩ c′)I00\(AI00 I00 ∪⋃x∈A((A\{x})I00 ∩ c′)I00) 6=

∅}] = {{b, c}}∪{{c}} = {{b, c}, {c}}, because F∅({c}) = ∅, F{b}({c}) = {a}, F{d}({c}) =
∅, F{b,d}({c}) = {a}, R{b}({c}) = {a}, R{b,d}({c}) = ∅ and (∅ ∪ {c})∗/K00

= {d} 6= ∅;
and

[{A ∪ {a, c}|A ⊆ {b, d},FA({a, c}) 6= ∅,RA({a, c}) 6= ∅, (A ∪ {a, c})∗/K00
= ∅} ∪

{A ∪ {a, c}|A ⊆ {b, d}, (A ∪ {a, c})∗/K00
6= ∅}] = [{A ∪ {a, c}|A ⊆ {b, d},FA({a, c}) 6=

∅,RA({a, c}) 6= ∅, (A∪{a, c})∗/K00
= ∅}∪{A∪{a, c}|A ⊆ {b, d}, (AI00 ∩a′∩c′)I00\(AI00 ∩

a′)I00 ∪ (AI00 ∩ b′)I00 ∪⋃x∈A((A\{x})I00 ∩ c′)I00) 6= ∅}] = ∅, because FA({a, c}) = ∅ for
every A ⊆ {b, d}.

Hence, the set of informative attribute implications of the initial context is identified
to:

J ∗K00
({a, c}) := {A|A ⊆ {b, d},FA(∅) 6= ∅, ,RA(∅) 6= ∅, A∗K00

=
∅} ∪ [JK00({a, c})\JK00(∅)] = {{a}, {c}, {d, a}, {b, c}, {b, d}}
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In the same way, setting X = {a ∪ c} with X ′ = a′ ∪ c′ = {1, 3}, it comes that:
{A|A ⊆ {b, d},FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K00

= ∅} = {A|A ⊆ {b, d}, AI00 ⊆ {1, 3},RA(∅) 6=
∅, A∗K00

= ∅}. Moreover, (∅)′ = G * {1, 3}, b′ = {1, 2} * {1, 3} and d′ = {3, 4} * {1, 3}.
Therefore, {b, d} is the only subset T of M00 such that T ′ ⊆ {1, 3}. Also, F{b,d}(∅) =

{v ∈ {a ∪ c}|{b, d}I00 ⊆ v′} = {a ∪ c} and R{b,d}(∅) = {v ∈ F{b,d}(∅)|bI00 * v′ and
dI00 * v′} = {a ∪ c} 6= ∅. Also, ({b, d})∗K00

= ∅ because ({b, d})I00 I00 = {b, d}.
Therefore

{A : A ⊆ {b, d}, AI00 ⊆ a′ ∪ c′,RA(∅) 6= ∅, A∗K00
= ∅} = {b, d}

Moreover, JK00(∅) = {A|A ⊆ {b, d},FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K00
= ∅} ∪ {A|A ⊆

{b, d}, A∗/K00
6= ∅}.

The fact that
JK00({a ∪ c}) = JK00(∅) ∪ {A ∪ {a ∪ c}|A ⊆ {b, d}, (A ∪ {a ∪ c})∗/K00

6= ∅} leads to

For a ∪ c, the set of attribute that added to the context Kac = (G,M\{a, c}, Iac) is
the one element set X = {a ∪ b}. Hence,
J ∗K00

({a ∪ c}) = {A|A ⊆ {b, d}, AI00 ⊆ a′ ∪ c′,RA(∅) 6= ∅, A∗K00
= ∅} ∪ [JK00({a ∪

c})\JK00(∅)]
= {A|A ⊆ {b, d}, AI00 ⊆ a′ ∪ c′,FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K00

= ∅} ∪ {A ∪ {a ∪ c}|A ⊆
{b, d}, (A ∪ {a ∪ c})∗/K00

6= ∅}
= {A|A ⊆ {b, d}, AI00 ⊆ a′ ∪ c′,FA(∅) 6= ∅,RA(∅) 6= ∅, A∗K00

= ∅} ∪ {A ∪ {a ∪ c}|A ⊆
{b, d}, (AI00 ∩ (a′ ∪ c′))I00\(AI00 I00 ∪⋃x∈A((A\{x})I00 ∩ a′ ∪ c′)I00) 6= ∅}
= {{b, d}} ∪ ∅ = {{b, d}}, because FA({a ∪ c}) = ∅ for every A ⊆ {b, d}.

Hence, the set of informative attribute implications of the generalized context is iden-
tified to:

J ∗K00
({a ∪ c}) = {{b, d}}

To the best of our knowledge, generalized association rules were first studied in [34].
There, using taxonomy, the authors reveal that generalizing attributes could leads to
a discovery of some association rules that could not have been found if the rules were
restricted only to the leaves of the taxonomy. However, their generalization included
both the generalized attributes and the attributes been generalized, and then the gen-
eralized association rules as described by them always led to an increase in the number
of association rules. In our method, generalized implications do not include the at-
tributes that are generalized and therefore, they can be a reduction of the size of the
set of generalized implications. As in the case of [34], some of the generalized attribute
implications can constitute relevant information that might not have been discovered
if generalization were not done. It can particularly happen when several groups of at-
tributes are simultaneously put together through ∃-generalization to form generalized
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attributes implications having sets of generalized attributes as premise and conclusion.
In the following, we look at some conditions under which one can obtained some of these
kinds of implications. The following result holds:

Proposition 4.3.3. Let K = (G,M, I) be a formal context, and (ai)i∈[n], (bj)j∈[m] and
(ck)k∈[p] some groups of attributes that are put together through ∃-generalization to form
the generalized attributes ã = ∪i∈[n]ai, b̃ = ∪j∈[m]bj and c̃ = ∪k∈[p]ck. Then a generalized
implication of the form
{∪i∈[n]ai,∪j∈[m]bj} ⇒ {∪k∈[p]ck} is an informative implication in the generalized context
iff the following conditions hold:

- aIi ∩ bIj ⊆ ∪k∈[p]cIk ∀i ∈ [n], ∀j ∈ [m];

- ∃i ∈ [n] such that aIi * ∪k∈[p]cIk and

- ∃j ∈ [m] such that bIj * ∪k∈[p]cIk.

Proof. Let K = (G,M, I) be such formal context, and (ai)i∈[n], (bj)j∈[m] and (ck)k∈[p]
(with [u] = {1, ..., u}∩N for every u ∈ {n,m, p}) some groups of attributes that are put
together through ∃-generalization to form several generalized attributes ã = ∪i∈[n]ai,
b̃ = ∪j∈[m]bj and c̃ = ∪k∈[p]ck. Let consider a generalized implication of the form A⇒ B
where A = {∪i∈[n]ai,∪j∈[m]bj} and B = {∪k∈[p]ck}.

Then A ⇒ B is an informative generalized implication if and only if B = A∗Kos
=

(AIos Ios)\(A ∪ ⋃x∈A((A\{x})Ios Ios), with Kos the generalized formal context and Ios
its binary relation. However, B = A∗Kos

= (AIos Ios)\(A ∪ ⋃x∈A((A\{x})Ios Ios), if and
only if for every x ∈ A and for every y ∈ B, y /∈ ({∪i∈[n]ai,∪j∈[m]bj}\{x})Ios Ios , and
y ∈ AIos Ios = ((∪i∈[n]aIi ) ∩ (∪j∈[n]bIj))Ios = (∪i∈[n] ∪j∈[m] a

I
i ∩ bIj)Ios ; That is true if and

only if

∪k∈[p]ck ∈ (∪i∈[n] ∪j∈[m] a
I
i ∩ bIj)Ios , and

∪k∈[p]ck /∈ ({∪i∈[n]ai})Ios Ios ∪ ({∪j∈[m]bj})Ios Ios .

if and only if

c̃ = ∪k∈[p]ck ∈ (∪i∈[n] ∪j∈[m] a
I
i ∩ bIj)Ios ,

c̃ = ∪k∈[p]ck ∈ (∪i∈[n] ∪j∈[m] a
I
i ∩ bIj)Ios , and

c̃ = ∪k∈[p]ck /∈ (∪j∈[m]b
I
j)
Ios ;

if and only if

aIi ∩ bIj ⊆ ∪k∈[p]cIk ∀i ∈ [n], ∀j ∈ [m],

∃i ∈ [n] such that aIi * ∪k∈[p]cIk, and
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∃j ∈ [m] such that bIj * ∪k∈[p]cIk;

Example 4.3.3. Let consider the following formal context

K a0 c1 c2 a1 a2 b1 b2
1 × × × ×
2 × × × ×
3 × × × ×
4 × × × ×
5 × × ×
6 × × ×
7 × × ×

Then we proceed to the simultaneous ∃-generalization of groups of attributes {a1, a2},
{b1, b2} and {c1, c2}, which gives the generalized attribute a12 = a1 ∪ a2, b12 = b1 ∪ b2
and c12 = c1 ∪ c2.

One can easily observe that cI1 ∪ cI2 = {1, 2, 3, 4, 5}. Moreover,
aI1 ∩ bI1 = {1, 2} ⊆ {1, 2, 3, 4, 5} = cI1 ∪ cI2,
aI1 ∩ bI2 = {1, 3} ⊆ {1, 2, 3, 4, 5} = cI1 ∪ cI2,
aI2 ∩ bI1 = {1, 4} ⊆ {1, 2, 3, 4, 5} = cI1 ∪ cI2,
aI2 ∩ bI2 = {4, 5} ⊆ {1, 2, 3, 4, 5} = cI1 ∪ cI2,
aI1 = {1, 2, 3, 7} * {1, 2, 3, 4, 5} = cI1 ∪ cI2,
bI1 = {1, 2, 4, 6} * {1, 2, 3, 4, 5} = cI1 ∪ cI2,

Therefore, in the generalized formal context, the set {a12, b12} yields an informative
generalized implication.

Remark 4.3.1. Concerning the above example, note that {a12, b12}∗Kos
= {c12} and the

yielded informative generalized implication is given by {a12, b12} ⇒ {c12}.

A more general form of the above result is given by the following proposition:

Proposition 4.3.4. Let K = (G,M, I) be a formal context, and (ai)i∈[n], (bj)j∈[m] and
(ck)k∈[p] some groups of attributes that are put together through ∃-generalization to form
the generalized attributes ∪i∈[n]ai, ∪j∈[m]bj and ∪k∈[p]ck. Then a generalized implication
of the form A0 ∪ {∪i∈[n]ai,∪j∈[m]bj} ⇒ B0 ∪ {∪k∈[p]ck} is an informative implication in
the generalized context iff the following conditions hold:

- AI0 ∩ aIi ∩ bIj ⊆ (∪k∈[p]cIk) ∩BI
0 ∀i ∈ [n], ∀j ∈ [m];

- ∀x ∈ A0, ∃i ∈ [n], ∃j ∈ [m] such that (A0\{x})I ∩ aIi ∩ bIj * ∪k∈[p]cIk and
∀y ∈ B0,∃i ∈ [n], ∃j ∈ [m] such that (A0\{x})I ∩ aIi ∩ bIj * yI;
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- ∃i ∈ [n] such that AI0 ∩ aIi * ∪k∈[p]cIk and
∀y ∈ B0,∃i ∈ [n] such that AI0 ∩ aIi * yI;

- ∃j ∈ [m] such that AI0 ∩ bIj * ∪k∈[p]cIk and
∀y ∈ B0,∃j ∈ [m] such that AI0 ∩ bIj * yI.

Proof. Let K = (G,M, I) be a formal context, and (ai)i∈[n], (bj)j∈[m] and (ck)k∈[p] some
groups of attributes that are put together through ∃-generalization to form several gen-
eralized attributes ∪i∈[n]ai, ∪j∈[m]bj and ∪k∈[p]ck. Let consider a generalized implication
of the form A⇒ B where A = A0 ∪ {∪i∈[n]ai,∪j∈[m]bj} and B = B0 ∪ {∪k∈[p]ck}.

A ⇒ B is an informative generalized implication if and only if B = A∗Kos
=

(AIos Ios)\(A∪⋃x∈A((A\{x})Ios Ios), with Kos the generalized formal context; if and only
if B0∪{∪k∈[p]ck} ⊆ AIos Ios = (AI0∩(∪i∈[n]aIi )∩(∪j∈[n]bIj))Ios = (∪i∈[n]AI∩∪j∈[m]a

I
i ∩bIj)Ios .

That is true if and only if

∪i∈[n](AI0 ∩ ∪j∈[m]a
I
i ∩ bIj) ⊆ (∪k∈[p]cIk) ∩BI

0

and for every x ∈ A and for every y ∈ B,
y /∈ (A0∪{∪i∈[n]ai,∪j∈[m]bj}\{x})Ios Ios = (A0∪{∪i∈[n]ai})Ios Ios∪(A0∪{∪j∈[m]bj})Ios Ios∪
((A0\{x})I ∩ (∪i∈[n]a′i) ∩ (∪j∈[m]b

′
j})Ios ,

That is true if and only if

∪i∈[n](AI0 ∩ ∪j∈[m]a
I
i ∩ bIj) ⊆ (∪k∈[p]cIk) ∩BI

0 ;

∪k∈[p]ck /∈ (∪i∈[n] ∪j∈[m] (A0\{x})I ∩ aIi ∩ bIj)Ios , and
y /∈ (∪i∈[n] ∪j∈[m] (A0\{x})I ∩ aIi ∩ bIj)Ios ∀y ∈ B0;

∪k∈[p]ck /∈ (∪i∈[n]AI0 ∩ aIi )Ios , and
y /∈ (∪i∈[n]AI0 ∩ aIi )Ios ∀y ∈ B0;

∪k∈[p]ck /∈ (∪j∈[m]A
I
0 ∩ bIj)Ios , and

y /∈ (∪j∈[m]A
I
0 ∩ bIj)Ios∀y ∈ B0.

if and only if

AI0 ∩ aIi ∩ bIj ⊆ (∪k∈[p]cIk) ∩BI
0 ∀i ∈ [n], ∀j ∈ [m];

∀x ∈ A0, ∃i ∈ [n], ∃j ∈ [m] such that (A0\{x})I ∩ aIi ∩ bIj * ∪k∈[p]cIk and
∀y ∈ B0,∃i ∈ [n], ∃j ∈ [m] such that (A0\{x})I ∩ aIi ∩ bIj * yI;

∃i ∈ [n] such that AI0 ∩ aIi * ∪k∈[p]cIk and
∀y ∈ B0,∃i ∈ [n] such that AI0 ∩ aIi * yI;
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∃j ∈ [m] such that AI0 ∩ bIj * ∪k∈[p]cIk and
∀y ∈ B0,∃j ∈ [m] such that AI0 ∩ bIj * yI.

Now we investigate the impact of the ∃-generalization on the basis of implications,
notably the Duquenne-Guigues basis. The main result here shows that ∃-generalizations
on attributes in a formal context does not always reduce the size of the canonical basis
of implications.

4.4 The study of the canonical base after an ∃-generalization
The last section shows that the ∃-generalization on attributes can lead to the reduction
in the size of the set of all the valid informative implications in a formal context. The
next question we ask is whether there are cases where the ∃-generalization increases the
size of the canonical basis of implications? This section is an attempt to answer that
question.

let consider the following formal context K with 6 attributes {a, b, c, d, e, f} and 4
objects {1, 2, 3, 4}.

K a c d e f b
1 × × ×
2 × ×
3 × × ×
4 × ×

The concept lattice corresponding to the above formal context is given below:

In the above context, one realizes an ∃-generalization of the pair of attributes {a, b}.
Let s be the corresponding generalized attribute. One then obtains the following gen-
eralized formal context Ks

ab.
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Ks
ab c d e f s

1 × × ×
2 × ×
3 × × ×
4 × ×

With the above generalized context, one obtains the following concept lattice:

One can see that generalizing the attributes a and b increases the size of the concept
lattice. That situation could also be justify by the fact that the context K has a labelled
copy of B4 (as indicated in [27]).

Now one analyzes the variation of pseudo-intents in the two formal contexts above.
To get there, we set by PK the set of pseudo-intents in K and PKos the set of pseudo-
intents of Kos. The following table explained how to obtained the pseudo-intent in the
formal context K.
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A AII A∈ PK? Why? A AII A∈ PK? Why
∅ ∅ no ∅I I = ∅ cdf abcdef no cdI I * acd

a acd yes cdb abcdef no cdI I * cdb

b efb yes def abcdef no deI I * def

c c no cI I = c deb abcdef no deI I * deb

d d no dII = d efb efb no efbI I = efb

e e no eI I = e cef abcdef no cfI I * cef

f f no fI I = f cfb abcdef no cfI I * cfb

ab abcdef no aI I * ab dfb abcdef no bI I * dfb

ac acd no aI I * ac afb abcdef no bI I * afb

ad acd no aI I * ad ceb abcdef no bI I * ceb

ae abcdef no aI I * ae acde abcdef no deI I * acde

af abcdef no aI I * af acdf abcdef no cfI I * acdf

cd acd yes acdb abcdef no bI I * acdb

ce ce no ceI I = ce adef abcdef no aI I * adef

cf abcdef yes adeb abcdef no aI I * adeb

cb abcdef no bI I * cb aefb abcdef no aI I * aefb

de abcdef yes cdef abcdef no cfI I * cdef

df df no dfI I = df cdeb abcdef no bI I * cdeb

db abcdef no bI I * db cdfb abcdef no bI I * cdfb

ef efb yes defb abcdef no deI I * defb

eb ebf no bI I * eb adfb abcdef no aI I * adfb

fb ebf no bI I * fb acfb abcdef no aI I * acfb

acd acd no acdI I = acd acef abcdef no aI I * acef

ace abcdef no aI I * ace acdef abcdef no deI I * acdef

acf abcdef no aI I * acf acdeb abcdef no deI I * acdef

acb abcdef no aI I * acb acdeb abcdef no deI I * acdeb

ade abcdef no deI I * ade cdefb abcdef no deI I * cdefb

adf abcdef no aI I * adf acefb abcdef no aI I * acefb

adb abcdef no aI I * adb adefb abcdef no aI I * adefb

aef abcdef no aI I * aef abcdef abcdef no abcdefI I = abcdef

aeb abcdef no aI I * aeb

cde abcdef no deI I * cde
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Hence, according to the above table, the pseudo-intents of the context K is given by
PK = {a, b, cd, cf, de, ef} and then the canonical base of implications for K is given by
the following set

{a⇒ cd, b⇒ ef, cd⇒ a, cf ⇒ abde, de⇒ abcf, ef ⇒ b}

which has 6 elements.
Now we consider the generalized formal context in which we analyse the pseudo-

intents. The following table indicates how these pseudo-intents are obtained:

A AIos Ios A∈ PKos? Why? A AIos Ios A∈ PKos? Why
∅ ∅ no ∅Ios Ios = ∅ scd scd no scdIos Ios = scd

s s no sIos Ios = s sce abcdef no cdIos Ios * cdb

c c no cIos Ios = c scf abcdef no deIos Ios * def

d d no dIos Ios = d sde abcdef no deIos Ios * deb

e e no eIos Ios = e sdf efb no efbIos Ios = efb

f f no fIos Ios = f sef abcdef no cfIos Ios * cef

sc scd yes cde abcdef no cdIos Ios * cde

sd scd yes cdf abcdef no cdIos Ios * cdf

se sef yes cef abcdef no cfIos Ios * cef

sf sef yes def abcdef no efIos Ios * def

cd scd yes scde abcdef no deIos Ios * scde

ce ce no ceIos Ios = ce scdf abcdef no sfIos Ios * scdf

cf scdef yes cdef abcdef no deIos Ios * cdef

de scdef yes scef abcdef no cfIos Ios * scef

df df no dfIos Ios = df sdef scdef no deIos Ios * sdef

ef sef yes scdef scdef no bIos Ios = scdef

The pseudo-intents of the context PKs
ab

is given by

PKs
ab

= {sc, sd, se, sf, cd, cf, de, ef}.

That leads us to the following canonical base of implications for PKs
ab

{sc⇒ d, sd⇒ c, se⇒ f, sf ⇒ e, cd⇒ s, cf ⇒ cde, de⇒ scf, ef ⇒ s},

with 8 elements.
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4.5 Conclusion
In this chapter, we have studied the variation of the number of informative implications
after an ∃-generalization on attributes in a formal context. The results show that there
are cases where the size of the set of generalized informative implications reduces after
the generalization. Other results revealed some conditions under which some new infor-
mative generalized implications could be found. Also, a case of formal context where
both the size of the Duquenne-Guigues basis and that of the concept lattice increase after
the generalization is presented. A reduction of size of the set of informative implications
could reduce the difficulties in analysing information in data.
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General Conclusion

The study of generalization have been very important, notably while extracting certain
patterns from formal data. In so doing, several types of generalization has being

defined (∀, α and ∃) and applied on attributes or objects of formal contexts, or on both
of them. Some results has being revealed on ∀-generalization.

In this work, we were focused on ∃-generalization of attributes in finite formal con-
texts. We have studied the effect of adding a new attribute to a formal context and
we have presented some corresponding results. This enabled us to construct a family
of formal contexts showing that the ∃-generalization can lead to the exponential in-
crease of size of the concept lattice. This family of formal contexts came as an answer
to the experimentation realized in [27] which permitted the authors to suggest that ∃-
generalization may increase the size of the lattice on very few cases, and even with these
cases, the increase of size of the concept lattice could not be drastic.

We have studied the maximum increase one can obtain after an ∃-generalization on
a pair of attributes in a finite formal context and presented some conditions under which
the size of the lattice stabilizes.

Showing the associativity of ∃-generalization of attributes in formal contexts reveals
that generalizing more than two attribute can be done in several steps: i) randomly
choosing two attributes in the set X of the attributes to be generalized in the for-
mal context, ii) generalizing the two attributes and continue to generalize the resulting
attribute with an attribute of X different from the attributes previously chosen for gen-
eralization. This is repeated until all the attributes of X are taken into consideration
in the generalizing process.

After presenting the different types of similarity measures, we have shown that the
existing coefficients of associations are not compatible with the ∃-generalization. A
new similarity measure on attributes is then constructed using the concept lattice of the
formal context obtained from the initial context by removing the pair of attributes being
generalized. The constructed similarity measure is such that the less the attributes are
similar, the more their generalization increases the size of the concept lattice.

Studying the implications while generalizing attributes, we have study the variation
in the number of informative implications in a formal context after an ∃-generalization.
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Moreover, we have discovered a case of formal context in which an ∃-generalization
increases both the size of the concept lattice and that of the set of the canonical basis
of implications.

Our future research will be focussed on the following aspects:

- Give the Characterization of the formal contexts with an ∃-generalization decreas-
ing the size of the concept lattice,

- Continue the search of other similarity measures more efficient and compatible
with the ∃-generalization,

- Extend the study of attribute implications to bases of implication;

- Study the generalization on other types of formal context, especially the fuzzy
formal contexts.
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1 Université de Yaoundé I, Département des Mathematiques,
BP 812 Yaoundé, Cameroun
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Abstract. Formal Concept Analysis (FCA) plays a crucial role in var-
ious domains, especially in qualitative data analysis. Here knowledge
are extracted from an information system in form of clusters (forming a
concept lattice) or in form of rules (implications basis). The number of
extracted pieces of information can grow very fast. To control the num-
ber of cluster, one possibility is to put some attributes together to get a
new attribute called a generalized attribute. However, generalizing does
not always lead to the expected results: the number of concepts can even
exponentially increase after generalizing two attributes [7,8]. A natural
question is whether there is a similarity measure, (possibly cheap and
fast to compute), that is compatible with generalizing attributes: i.e. if
m1,m2 are more similar than m3,m4, then putting m1,m2 together
should not lead to more concepts as putting m3,m4 together. This paper
is an attempt to answer this question.

Keywords: Formal Concept Analysis; Generalizing Attributes; Similarity Mea-
sures.

1 Introduction

In Formal Concept Analysis (FCA), a formal context is a binary relation
(G,M, I) that models an elementary information system, whereby G is the set of
objects,M the set of attributes and I ⊆ G×M the incidence relation. To extract
knowledge from such an elementary information system, one possibility is to get
clusters of objects and/or attributes by grouping together those sharing the
same characteristics. These pairs, called concepts, were formalized by Rudolf
Wille [16]. For A ⊆ G and B ⊆M we set

A′ = {m ∈M | g Im for all g ∈ A} and

B′ = {g ∈M | g Im for all m ∈ B}.

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 141–152,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



A concept is a pair (A,B) such that A′ = B and B′ = A. A is called extent and
B intent of the concept (A,B). The set of concepts of a context K := (G,M, I)
is ordered by the relation (A,B) ≤ (C,D) :⇐⇒ A ⊆ C, and forms a lattice,
denoted by B(K) and called concept lattice of K. To control the size of concept
lattices, many methods have been suggested: decomposition [18,19,17], iceberg
lattices [14] α-Galois lattices [15], fault tolerant patterns [3], closure or kernel
operators and/or approximation [6]. In [7] the authors consider putting together
some attributes to get a generalized attribute. Doing this one has to decide when
an object satisfies a (new) generalized attribute. They discuss several scenarios
among which the following, called ∃-generalization:

an object g ∈ G satisfies a generalized attribute s ⊆ M if g satisfies at
least one of the attributes in s. i.e. s′ =

⋃{m′ | m ∈ s}.
In the rest of this contribution, we will simply say generalization to mean ∃-
generalization. By generalizing (i.e putting together some attributes) we reduce
the number of attributes and hope to also reduce the size of the concept lattice.
Unfortunately this is not always the case. In [8] the authors provide some exam-
ples where the size increases exponentially after generalizing two attributes and
also give the maximal increase.

In [1,5], the authors discuss similarity measures on concepts, and even on
lattices. For our purpose, we need a measure of similarity on attributes such
that if m1,m2 are more similar than m3,m4, then generalizing m1,m2 should
not lead to more concepts as generalizing m3,m4. We say that such a similarity
measure is compatible with the generalization. Given a setM of attributes,
a similarity measure on M is defined as a function S :M ×M → R such that
for all m1,m2 in M ,

(i) S(m1,m2) ≥ 0, positivity
(ii) S(m1,m2) = S(m2,m1) symmetry
(iii) S(m1,m1) ≥ S(m1,m2) maximality

If in addition S(m1,m2) ≤ 1, we say that S is normalized. Similarity measures
aim at quantifying to which extent two attributes resemble each other. Getting
a similarity measure compatible with the generalization will be a valuable tool
in preprocessing and will warn the data analyst on possible lost or gain when
generalizing.

The rest of the paper is organized as follows: In Section 2, we investigate
the existing similarity measures that we found in the literature. In Section 3, we
give a new similarity measure that characterize the pairs of attributes which can
increase the size of the concept lattice after generalizing. Section 4 exposes an
example on lexicographic data and Section 5 concludes the paper.

2 Test of Existing Similarity Measures in ∃-Generalization

Similarity and dissimilarity measures play a key role in pattern analysis problems
such as classification, clustering, etc. Ever since Pearson proposed a coefficient
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of correlation in 1896, numerous similarity measures and distance have been
proposed in various fields. These measures can be grouped into tree main types,
depending of the data on which they are used:

Correlation coefficients: They are often used in data to compare variables
with qualitative characters subdivided in more than two states.

Distance similarity coefficients: They are generally used in data with pure
quantitative variables. In most cases, for quantitative data, the similarity
between two taxa is expressed as a function of their distance in a dimensional
space whose coordinates are the characters.

Coefficients of association: They are often used in data with presence-absence
characters or in data with individuals having qualitative characters subdi-
vided into two states.

There are two subsets of coefficients of association: those that only depend on
characteristics present in at least one of the taxa compared, but are independent
of the attributes absent in both taxa (denoted by type 1), and those that also
take into account the attributes absent in both taxa (denoted by type 2). Those
measures use

– a as the number of cases where the two variables occur together in a sample,
– d as the number of cases where none of the two attributes occur in a sample,
– b as the number of cases in which only the first variable occur, and
– c as the number of cases where only the second variable occur.

One of the most important similarity measure of type 1 is the Jaccard measure(
a

a+b+c

)
, proposed in order to classify ecological species. Also in the ecological

field, the Dice coefficient of association
(

2a
2a+b+c

)
aims at quantifying the

extent to which two different species are associated in a biotope, the Sorensen

coefficient of association
(

4a
4a+b+c

)
and the Anderberg coefficient of as-

sociation
(

8a
8a+b+c

)
are of the same type. The Sneath and Sokal 2 similarity

coefficient
(

1
2a

1
2a+b+c

)
, put in place in order to compare organisms in numeri-

cal taxonomy, the Kulczynski similarity measure
(

1
2 (

a
a+b +

a
a+c )

)
and the

Ochiai similarity measure ( a√
(a+b)(a+c)

) are also from this first type.

The most used similarity coefficient of the second type is the Sokal and

Michener coefficient of association
(

a+d
a+d+b+c

)
, also called the simple match-

ing coefficient, put in place to express the similarity between two species of

bees. Moreover, the Rogers and Tanimoto similarity measure (
1
2 (a+d)

1
2 (a+d)+b+c

)

whose aim was to compare species of plants in the ecological field, the Sokal and

Sneath 1 similarity coefficient ( 2(a+d)
2(a+d)+b+c ) was defined to make comparison in

numerical taxonomy and the Russels and Rao similarity measure ( a
a+d+b+c )

put in place with the aim of showing resemblance between species of anopheline
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larvae, are included in this type. Same are the Yule and Kendall similar-

ity coefficients
(

ad
ad+bc

)
, often used in the statistical field. Some of the above

similarity measures can be found in [5].
Regarding the definitions of the above kinds of similarity measures, only the

coefficients of association suitable to formal contexts, since formal contexts are
data with presence-absence characters. We will investigate the impact of these
coefficients of association on a special pair of attributes in some formal contexts.
The objective is to show that these similarity measures are not helpful in finding
whether their generalization increases the size of the lattice or not.

Our first example is an arbitrary formal context (G,M, I) containing two
attributes x, y ∈ M such that x′ ⊆ y′ and |x′ ∩ y′| = 1. Then |x′ \ y′| = 0 and
the generalization of the attributes x and y does not increase the size of the
lattice. Choosing |y′ \ x′| = 20 and |G \ (x′ ∪ y′)| = 1 yields a = |x′ ∩ y′| = 1,
b = |x′ \ y′| = 0, c = |y′ \ x′| = 20 and d = |G \ (x′ ∪ y′)| = 1. For the coefficient
of association of type 1 with Jaccard (Jc), Dice (Di), Sorensen (So), Anderberg
(An), Sneath and Sokal 2 (SS2), Kulczynski (Ku) and Orchiai (Orch), and the
coefficient of association of type 2 with Sokal and Michener (SM), Rogers and
Tanimoto (RT), Sneath and Sokal 1 (SS1) and Russel and Rao (RR), we get the
table below for s(x, y):

Jc Di So An SS2 Ku Orch SM RT SS1 RR

0,05 0,09 0,17 0,29 0,02 0,52 0,22 0,09 0,05 0,17 0,05

The table above shows that with almost all these measures, the similarity
measured between the attributes x and y is very low, despite the fact that their
generalization does not increase the size of the lattice.

Our second example is the formal context K6 := (S6∪{g1}, S6∪{m1,m2}, I)
below, with S6 = {1, 2, 3, 4, 5, 6}.

K6 1 2 3 4 5 6 m1 m2

1 × × × × × ×
2 × × × × × × ×
3 × × × × × × ×
4 × × × × × × ×
5 × × × × × × ×
6 × × × × × ×
g1 × × × × × ×

We observe that |m′
1 ∩m′

2| = 4, |m′
1\m′

2| = 1 and |m′
2\m′

1| = 1. Putting together
the attributes m1 and m2 by a ∃-generalization increases the size of the lattice
by 16. The following table shows the measures of type 1 and type 2 between
the attribute m1 and any other attribute i. All the similarity measures of the
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Jc Di So An SS2 Ku Orch SM RT SS1 RR

i ∈ S5 0,57 0,80 0,89 0,94 0,50 0,80 0,80 0,71 0,56 0,83 0,57

i = 6 0,83 0,91 0,95 0,97 0,71 0,92 0,91 0,75 0,75 0,92 0,71

i = m2 0,67 0,80 0,89 0,94 0,50 0,80 0,80 0,71 0,56 0,83 0,57

two types show that the attribute m1 is more similar to m2 than to any other
attribute i ∈ S6 (apart from i = 6); But putting m1 and m2 together increases
the size of the lattice. We can conclude that these similarity measures are not
compatible with the ∃-generalization. We are actually looking for a measure on
attributes that will flag pairs of attributes as less similar when putting these
together increases the size of the concept lattice.

3 A Similarity Measure Compatible with ∃-Generalization

In this section we define a similarity measure on attributes which is compati-
ble with the existential generalization. This generalization means that from an
attribute reduced context K := (G,M, I), two attributes a, b are removed and
replaced with an attribute s defined by s′ = a′∪ b′. We set M0 :=M \{a, b} and

K00 :=(G,M0, I∩(G×M0)), (removing a, b from K)

K0s :=(G,M0 ·∪{s}, Is0), (adding s to K00)

where Is0 := (I∩(G ×M0)) ∪ {(g, s) | g I b or g I a}. Furthermore we denote the
set of extents of K00 by Ext(K00). We also set

H(a) := {A ∩ a′ | A ∈ Ext(K00) and A ∩ a′ /∈ Ext(K00)} ,
H(b) := {A ∩ b′ | A ∈ Ext(K00) and A ∩ b′ /∈ Ext(K00)} ,

H(a ∪ b) := {A ∩ (a′ ∪ b′) | A ∈ Ext(K00) and A ∩ (a′ ∪ b′) /∈ Ext(K00)} ,
H(a ∩ b) := {A ∩ (a′ ∩ b′) | A ∈ Ext(K00) and A ∩ (a′ ∩ b′) /∈ Ext(K00)} .

We will often write h(x) for |H(x)|, for any x ∈ {a, b, a ∩ b, a ∪ b}. Before we
start the construction, let us recall the following result partly proved in [8]:

Theorem 1. Let K := (G,M, I) be an attribute reduced context with |G| ≥ 3 and
|M | > 3. Let a and b be two attributes such that their existential generalization
s = a ∪ b increases the size of the concept lattice. Then

a) |B(K)| = |B(K00)|+ |H(a, b)|, with |H(a, b)| = |H(a) ∪H(b) ∪H(a ∩ b)|.
b) The increase is |H(a ∪ b)| − |H(a, b)| ≤ 2|a

′|+|b′| − 2|a
′| − 2|b

′| + 1.

Proof. Let K := (G,M, I) be such context and a, b two attributes of K. One
proceeds to the ∃-generalization of attributes a and b.

a) We set Ka = (G,M \ {b}, I). It holds:

|B(K)| = |B(Ka)|+ h∗(b) = |B(K00)|+ h(a) + h∗(b)
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where h∗(b) = |{B ∩ b′; B ∈ Ext(Ka), B ∩ b′ /∈ Ext(Ka)}|. Our aim is to
express h∗(b) as a function of h(b) and h(a∩ b). According to [8], Ext(Ka) =
Ext(K00)∪ H(a). Hence,

H∗(b) = {B ∩ b′ | B ∈ Ext(Ka), B ∩ b′ /∈ Ext(Ka)}
= {B ∩ b′ | B ∈ Ext(K00) and B ∩ b′ /∈ Ext(Ka)}

∪ {B ∩ b′ | B ∈ H(a) and B ∩ b′ /∈ Ext(Ka)}

Replacing Ext(Ka) by Ext(K00) ∪H(a), we get

{B ∩ b′ | B ∈ Ext(K00) and B ∩ b′ /∈ Ext(Ka)} = H(b) \ H(a) and

{B ∩ b′ | B ∈ H(a) and B ∩ b′ /∈ Ext(Ka)} = H(a ∩ b) \ (H(b) ∪H(a)).

Thus, h∗(b) = h(b) + h(a ∩ b)− |H(a) ∩H(b)|+ |H(a ∩ b) ∩H(a) ∩H(b)|
− |H(a ∩ b) ∩H(a)| − |H(a ∩ b) ∩H(b)|.

Hence,

|B(K)| = |B(K00)|+ |H(a)|+ |H(b)|+ |H(a ∩ b)|+ |H(a ∩ b) ∩H(a) ∩H(b)|
− |H(a) ∩H(b)| − |H(a ∩ b) ∩H(a)| − |H(a ∩ b) ∩H(b)|

= |B(K00)|+ |H(a) ∪H(b) ∪H(a ∩ b)|.

b) Although b) was proved in [8], we can now get it from a). To maximize the
increase a′ ∩ b′ should be ∅; i.e. |H(a ∩ b)| ∈ {0, 1}.
• If |H(a ∩ b)| = 0, then

|B(K)| = |B(K00)|+ |H(a) ∪H(b) ∪H(a ∩ b)|
= |B(K00)|+ |H(a)|+ |H(b)|.

• If |H(a ∩ b)| = 1, then we consider two subcases:
– The only element of H(a ∩ b) is not in H(a) ∪H(b). Then,

|H(a) ∩H(b)| = |H(a ∩ b) ∩H(a) ∩H(b)|
= |H(a ∩ b) ∩H(a)| = |H(a ∩ b) ∩H(b)| = 0

and |B(K)| = |B(K00)|+ |H(a)|+ |H(b)|+ |H(a ∩ b)|.
– The only element of H(a ∩ b) is either in H(a) or H(b). Then

|H(a ∩ b)|+ |H(a ∩ b) ∩H(a) ∩H(b)| − |H(a ∩ b) ∩H(a)| − |H(a ∩ b) ∩H(b)|

is equal to zero and |H(a) ∩H(b)| ∈ {0, 1}. Thus

|B(K)| = |B(K00)|+ |H(a)|+ |H(b)|+ 1− |H(a) ∩H(b)|.
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In all these subcases, considering that |B(K0s)| = |B(K00)|+ |H(a∪ b)|, the
increase after the generalization is

|B(K0s)| − |B(K)| = |H(a ∪ b)| − |H(a, b)|
≤ 2|a

′|+|b′| − 2|a
′| − 2|b

′| + (d1 + d2 − d0)
≤ 2|a

′|+|b′| − 2|a
′| − 2|b

′| + 1, since d1 + d2 − d0 ≤ 0,

with d1 = |{A ⊆ a′ | A ∈ Ext(K00)}|, d2 = |{A ⊆ b′ | A ∈ Ext(K00)}| and
d0 = |{A ⊆ a′ ∪ b′ | A ∈ Ext(K00)}|. ��

Now, we define the following gain function:

ψ :M ×M −→ Z
(a, b) �−→ ψ(a, b) = |H(a ∪ b)| − |H(a, b)|

Note that H(a ∪ b) = H(b ∪ a), and H(a, b) = H(b, a) because the order of
adding the attributes a and b does not matter. Therefore ψ(a, b) = ψ(b, a). By
definition, ψ(a, a) = 0. Further, we define the map δ as followed:

δ :M ×M −→ R

(a, b) �−→
{
1 if ψ(a, b) ≤ 0

0 else

Since K is a finite context, there is a pair of attributes a0, b0 in M such that

|a′0|+ |b′0| = max
a,b∈M

(|a′|+ |b′|).

We set n0 = 2|a
′
0|+|b′0| − 2|a

′
0| − 2|b

′
0| +1. Then n0 ≥ 2|a

′|+|b′| − 2|a
′| − 2|b

′| +1 for
all pairs {a, b} ⊆M . With the function δ, we construct the following map:

Sgen :M ×M −→ R
(a, b) �−→ Sgen(a, b) =

1+δ(a,b)
2 − |ψ(a,b)|

2n0

where |ψ(a, b)| is the absolute value of ψ(a, b). That leads to the following results.

Proposition 1. Let (G,M, I) be a reduced context with |G| ≥ 3 and |M | > 3.
Then Sgen is a normalized similarity measure on M .

Proof. Let a, b two attributes of (G,M, I). Since |ψ(a, b)| ≤ n0 we can easily
check that 0 ≤ Sgen(a, b) = Sgen(b, a) ≤ Sgen(a, a) = 1 holds. ��

Sgen also has the following properties:

Proposition 2. Let (G,M, I) be a reduced context with |G| ≥ 3 and |M | > 3.
Let a, b, c, d ∈M . It holds:

a) Sgen(a, b) ≥ 1
2 if and only if ψ(a, b) ≤ 0.
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b) If ψ(a, b) ≤ 0 < ψ(d, c) then Sgen(d, c) < Sgen(a, b).
c) If 0 < ψ(a, b) ≤ ψ(d, c) then Sgen(d, c) ≤ Sgen(a, b).
d) If ψ(a, b) ≤ ψ(d, c) ≤ 0 then Sgen(a, b) ≤ Sgen(d, c).

Proof. Let K = (G,M, I) be such a context and a, b, c, d ∈M .

a) If ψ(a, b) ≤ 0 then δ(a, b) = 1 and

Sgen(a, b) =
1 + δ(a, b)

2
− |ψ(a, b)|

2n0
=

1

2

(
2 +

ψ(a, b)

n0

)
≥ 1

2
.

Now, Sgen(a, b) ≥ 1
2 implies 1+δ(a,b)

2 − |ψ(a,b)|
2n0

≥ 1
2 and |ψ(a, b)| ≤ n0δ(a, b).

If δ(a, b) = 0 then |ψ(a, b)| = 0. If δ(a, b) = 1 then ψ(a, b) ≤ 0 by definition
of δ. Hence, Sgen(a, b) ≥ 1

2 if and only if ψ(a, b) ≤ 0.
b) If ψ(a, b) ≤ 0 < ψ(d, c) then Sgen(d, c) <

1
2 ≤ Sgen(a, b).

c) If 0 < ψ(a, b) ≤ ψ(d, c) then δ(a, b) = δ(d, c) = 0, and

Sgen(d, c) =
1

2
− ψ(d, c)

2n0
≤ 1

2
− ψ(a, b)

2n0
= Sgen(a, b).

d) If ψ(a, b) ≤ ψ(d, c) ≤ 0 then δ(a, b) = δ(d, c) = 1, and

Sgen(a, b) = 1 +
ψ(a, b)

2n0
≤ 1 +

ψ(d, c)

2n0
= Sgen(d, c).

��

Proposition 3. Let (G,M, I) be a reduced context and a, b ∈M . The following
assertions are equivalent:

(i) δ(a, b) = 1.
(ii) ψ(a, b) ≤ 0.
(iii) Sgen(a, b) ≥ 1

2 .
(iv) A ∃-generalization of a and b does not increase the size of the concept lattice.

Proof. (i)⇐⇒ (ii) follows from the definition of δ. (ii)⇐⇒ (iii) is Proposition 2
a). (ii) ⇐⇒ (iv) follows from the fact that ψ(a, b) = |H(a ∪ b)| − |H(a, b)| is
actually the difference |B(G,M ∪ {s} \ {a, b}, I)| − |B(G,M, I)| between the
number of concepts before and after generalizing a, b to s with s′ = a′ ∪ b′.

Therefore, generalizing two attributes a, b in a reduced context (G,M, I) in-
creases the size of the lattice if and only if Sgen(a, b) <

1
2 . The threshold 1

2 is
just a consequence of the way Sgen has been defined.

To test our results we have designed a naive algorithm (see Algorithm 1) that
computes Sgen on all pairs of attributes a, b of K. If the set of attributes M is
considered as a vector, then for any attribute a ∈ M , we set T(a) the set of all
attributes coming before a in M . The complexity of our algorithm is given by

∑

a∈M
(1 +

∑

b∈M\T (a)

((q(a, b) + 4)[4(q(a, b) + 1) + 4] + 3),
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which is equal to

|M |+
∑

a∈M

∑

b∈M\T (a)

(4q2(a, b) + 24q(a, b) + 35), with q(a, b) = |Ext(K00)|.

Algorithm 1: Computing a similarity measure

Data: An attribute reduced context (G,M, I)
Result: ψ and Sgen on M ×M

1 Choose x, y in M , x �= y with |x′|+ |y′| maximal;

2 n0 ← 2|x
′|+|y′| − 2|x

′| − 2|y
′| + 1;

3 T ← ∅;
4 foreach a in M do
5 T ← T ∪ {a};
6 foreach b in M \ T do
7 Ext0 ← Ext(G,M \ {a, b}, I);
8 foreach x in {a, b, a ∪ b, a ∩ b} do H(x)← ∅;
9 foreach A in Ext0 do

10 foreach x in {a, b, a ∪ b, a ∩ b} do
11 if A ∩ x′ /∈ Ext0 then H(x)← H(x) ∪ {A ∩ x′};
12 end

13 end

14 end
15 ψ(a, b)← |H(a ∪ b)| − |H(a) ∪H(b) ∪H(a ∩ b)|; ψ(b, a)← ψ(a, b);
16 if ψ(a, b) ≤ 0 then
17 δ(a, b)← 1
18 else
19 δ(a, b)← 0
20 end

21 Sgen(a,b) ←
1 + δ(a, b)

2
− |ψ(a, b)|

2n0
22 end

4 An Example from Lexicographic Data

Formal Concept Analysis has been applied to compare lexical databases. In [11]
Uta Priss proposes an example in where the information channel is ”building”.
With respect to this, the main difference between English and German is that in
English, the word ”house” only refers to small residential buildings whereas in
German even small office buildings and large residential buildings can be called
”Haus”, and only factories would normally not be called ”Haus”. Moreover,
”building” in English refers to either a factory, an office or even a big residential
house. But only a factory can be called ”Gebäude” in German. She presented in
the figure below the information channel of the word ”building” in the sense of
Barwise and Seligman [2] in both English and German.
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With the above information channel we can construct a formal context as fol-
lows: The objects are different kinds of buildings: small house (”h”), office (”o”),
factory (”f”) and large residential house (”l”). The attributes are different names
of these objects in both languages: English and German. These are ”building”,
”house”, ”Haus”, ”Gebäude”, ”large building” (short: ”large”), ”business build-
ing” (short: ”business”), ”residential house” (short: ”residential”), and ”small
house” (short: ”small”). Thus G = {h, o, f, l} and M = {”building”, ”house”,
”Haus”, ”Gebäude”, ”large”, ”business”, ”residential”, ”small”}. In the follow-
ing, a set of objects will be denoted as a concatenation of those objects. For
example we will write ho or oh for the set {h, o}. The English and German
classifications of the word ”building” are then presented in the following formal
context:

building house Haus Gebäude large business residential small

factory × × × ×
office × × × ×
house × × × ×
large × × × ×

For this formal context, n0 = 23+3−23−23+1 = 49. Let consider the attributes
a := house and b := Gebäude. Then a′ ∪ b′ = {f, h} and a′ ∩ b′ = ∅. We have

Ext(K00) = {fohl, fol, ohl, fo, f l, ol, oh, hl, f, o, h, l, ∅}, and

H(a) = H(b) = H(a ∩ b) = ∅ and H(a ∪ b) = {fohl}. Therefore, ψ(a, b) = 1
and Sgen(a, b) = 1

2 − 1
98 ≈ 0.49. Using our algorithm, we compute ψ(a, b) and

150 Rostand S. Kuitché, Romuald E. A. Temgoua, and Lénard Kwuida



Sgen(a, b) for all pairs a, b ∈M . The table below show ψ(a, b) below the diagonal,
and Sgen(a, b) on the rest.

building house Haus Gebäude large business residential small

building 1.00 0.98 0.97 1.00 0.99 0.98 0.97 0.97

house −2 1.00 1.00 0.49 0.49 0.49 1.00 1.00

Haus −3 0 1.00 0.98 0.97 0.97 0.99 0.99

Gebäude 0 1 −2 1.00 1.00 1.00 0.49 0.49

large −1 1 −3 0 1.00 0.98 0.49 0.97

business −2 1 −3 0 −2 1.00 0.98 0.49

residential −3 0 −1 1 1 −2 1.00 0.98

small −3 0 −1 1 −3 1 −2 1.00

From the above table, the attributes ”house” and ”Gebäude” are less similar.
It reflects the fact that these words ”Gebäude” (in German) and ”house” (in En-
glish) do not have the same meaning. It is also the case for the attributes ”house”
and ”business buildings” as well as ”Gebäude” and ”residential building”. Hence,
putting together each of the above pairs of attributes will increase the size of
the lattice. On the contrary, the attributes ”large” and ”Haus”, ”building” and
”Haus” are more similar through Sgen. It is because the word ”Haus” which
designates a house, a business office or simply large building in German, often
coincides with the words ”building” or ”large building” in English. For these
pairs, the existential generalization will not increase the size of the lattice.

5 Conclusion

We have constructed a similarity measure compatible with the change in the size
of the lattice after a generalization of a pair of attributes in a formal context.
That measure should send a warning when grouping two attributes. Also, it
enables us to characterize contexts where generalizing two attributes increases
the size of the concept lattice. Our next step is to look at the implication between
generalized attributes. We suspect that the number of implications decreases if
the number of concepts increases.

References

1. Alqadah, F., Bhatnagar, R.: Similarity Measures in Formal Concept Analysis.
AMAI – Springer (2009)

2. Barwise, J., Seligman, J.: Information Flow: the logic of distributed systems.
Cambridge University Press (1997)

3. Besson, J., Pensa, R. G., Robardet, C., Boulicaut, J.: Constraint-Based Mining of
Fault-Tolerant Patterns from Boolean Data. KDID 55–71 (2005)

4. Dice, L. R.: Measures of the Amount of Ecologic Association Between Species. esa.
Promoting the Science of Ecology Vol. 26, No 3, 297–302 (1945)

A Similarity Measure to Generalize Attributes 151



5. Domenach, F.: Similarity Measures of concept lattices In: Lausen B., Krolak-
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a b s t r a c t

Formal Concept Analysis (FCA) offers several tools for qualitative data analysis. One
possibility is to group objects that share common attributes together and get a concept
lattice that describes the data. Quite often the size of this concept lattice is very large.
Many authors have investigated methods to reduce the size of this lattice. In Kwuida
et al. (2014) the authors consider putting together some attributes to reduce the size of
the attribute sets. But this reduction does not always carry over to the set of concepts.
They provided some counter examples where the size of the concept lattice increases
by one after putting two attributes together, and asked the following question: ‘‘How
many new concepts can be generated by an ∃-generalization on just two attributes?’’
The present paper provides a family of contexts for which the size increases on more
than one concept after putting solely two attributes together.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An elementary information system can be represented by a set G of objects or entities, a set M of attributes or
characteristics together with an incidence relation I that encodes whether an object g ∈ G has an attribute m ∈ M . For
such a system we write (g,m) ∈ I or gIm to mean that the object g has the attribute m. The binary relation K := (G,M, I)
is called a formal context.

To extract knowledge from such information systems, one possibility is to get clusters of objects and/or attributes
by grouping together those sharing the same characteristics. These pairs, called concepts, were formalized by Rudolf
Wille [19]. Traditional philosophers consider a concept as defined by two parts: an extent and an intent. The extent
contains all entities belonging to the concept and the intent is the set of all attributes common to all entities in the
concept. To formalize the notion of concept the operator ′ (known as derivation in formal contexts) is defined:

A′
:= {m ∈ M | (g,m) ∈ I for all g ∈ A}, whenever A ⊆ G

B′
:= {g ∈ M | (g,m) ∈ I for all m ∈ B}, whenever B ⊆ M.

A′ contains all attributes shared by the objects in A, and B′ all objects having all attributes in B. A concept is a pair (A, B)
with A′

= B and B′
= A. The extents are then subsets A of G with A′′

= A, and intents subsets B of M with B′′
= B. For

a single object or attribute x we write x′ for {x}′. The map X ↦→ X ′′ is a closure operator (on P(G) or P(M), where P(∗)
denotes the set of subsets of ∗). X ′′ is called the closure of X in K. Subsets X with X ′′

= X (i.e. extents and intents) are
closed subsets.

∗ Corresponding author.
E-mail address: leonard.kwuida@bfh.ch (L. Kwuida).
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Table 1
A formal context.
K v u a b

a × ×

b × ×

c × ×

g × × × ×

Fig. 1. A concept lattice.

We will denote the set of formal concepts of a context K by B(K) and the set of its extents by Ext(K). A concept
c2 := (A2, B2) is said to be more general than a concept c1 := (A1, B1) if c2 contains all objects of c1. In that case each
attribute satisfied by all objects of c2 is also satisfied by all objects of c1.

(A1, B1) ⩽ (A2, B2) : ⇐⇒ A1 ⊆ A2, (or equivalently B1 ⊇ B2).

The above defined relation ⩽ is an order relation on concepts and models the concept hierarchy. Each subset of B(K)
has a supremum and an infimum with respect to ⩽. Therefore (B(K),⩽) is a complete lattice called the concept lattice
of the context K. An extensive introduction to Formal Concept Analysis can be found on [8].

Fig. 1 shows the concept lattice of the formal context in Table 1. Concepts are nodes. The extent of a node contains all
objects below this node, and its intent all attributes above it. The node at the center of this figure represents the concept
({c, g}, {u, v}).

The size of concept lattices can be very large, even exponential with respect to the size of the context. For example
the formal context (E, E, ̸=) has 2|E| concepts, where E is any set and |E| denotes the number of elements in E. In fact
A′

= E \A and A′′
= A for any subset A of E. Thus all pairs (A, E \A) are concepts of the formal context (E, E, ̸=). To control

the size of concept lattices several methods have been suggested: decomposition [20–22], iceberg lattices [15], α-Galois
lattices [18], fault tolerant patterns [6], similarity measures [2], closure or kernel operators and/or approximation [12],
generalized attributes [13]. In the present contribution we follow the direction in [13], where some attributes can be put
together to define a new attribute called a generalized attribute.

When some attributes are put together, the main issue is to decide when an object has this new combined attribute.
Different scenarios have been discussed in [13]:

(∀): The object should satisfy each of the attributes that were combined.
(α): The object should satisfy at least a certain proportion of the attributes that were combined.
(∃): The object should satisfy at least one of the attributes that were combined.

By putting together some attributes we reduce the number of attributes and hope to also reduce the size of the concept
lattice. This is true for ∀-generalizations, but is not always the case for ∃-generalizations. In [13] some examples are
presented where the size increases by one after a ∃-generalization. Then it was asked whether the size can increase by
more than one element after putting solely two attributes together. The present paper gives answers to this question. It
provides a family of contexts where the increase is exponential in the size of the attribute set. It also gives the maximum
of increases that arise when two attributes are put together with the ∃-generalization.

Generalizing two attributes m1,m2 to get a new attribute m12 can be done in two steps: (i): adding m12 to the initial
context and (ii) removing m1,m2 from the context. In Section 2 we discuss the effect of adding a new attribute in a
context K. The main result here says that the maximum of the number of new concepts is |B(K)|. This means that adding
a new attribute to K can double the size of B(K). In Section 3 we present a family of contexts where the size increases
by more than one after putting two attributes together, and by then answer the question raised in [13]. Finally, we show
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in Section 4 that the increase from Section 3 is the maximum. The last section concludes the work and presents further
directions to be investigated.

2. Adding a new attribute into a context

When constructing concept lattices the incremental methods [9,17] consist in starting with one object (or attribute)
and adding the rest, one after another. In this section we study the effect of adding one attribute. Let K := (G,M, I) be a
context, and a /∈ M an attribute that can be shared by some elements of G. We set Ma := M ∪· {a} and Ka := (G,Ma, Ia)
where

Ia := I ∪ {(g, a) | g has the new attribute a}.

We call Ka the context obtained by adding the attribute a to K. To distinguish between the derivation on sets of objects in
K and in Ka we will use the name of the relation instead of ′. This is not necessary for the derivation on sets of attributes,
unless we are looking for their closures. That said we will write for A ⊆ G

AI = {m ∈ M | gIm, ∀g ∈ A} and AIa = {m ∈ M ∪ {a} | gIm, ∀g ∈ A}.

If a′
= G, then |B (Ka)| = |B(K)|. Each concept (A, B) of K has a corresponding concept (A, B ∪· {a}) in Ka, and

vice-versa. The above equality still holds even if a′
̸= G, but a′

= B′ for some B ⊆ M .

Proposition 1. Let K be a formal context and Ka the formal context obtained by adding the attribute a to K. Then the map
φa is injective.

φa : B(K) −→ B(Ka)

(A, B) ↦−→

{
(A, B ∪· {a}) if A ⊆ a′

(A, B) else.

Proof. The map φa is well defined. In fact, for a concept (A, B) ∈ B(K) with A ⊆ a′, we have (B ∪· {a})′ = B′
∩a′

= A∩a′
= A,

and AIa = AI∪{a} = B ∪· {a}. Thus (A, B ∪· {a}) is a concept of Ka. For a concept (A, B) ∈ B(K) with A ⊈ a′, we have B′
= A,

and AIa = AI = B, since a is not in AIa . The injectivity of φa is trivial. If two concepts (A1, B1) and (A2, B2) of K have the
same image under φa, then A1 and A2 are both included in a′ or both not included in a′, and should therefore be equal. □

After adding an attribute a to a context K, we will identify (A, B) ∈ B(K) with φa(A, B) ∈ B(Ka), and write
(A, B) ≡ φa(A, B). From Proposition 1 we get |B(K)| ≤ |B(Ka)|. Moreover, the increase due to adding a, which is the
difference |B(Ka)| − |B(K)|, can be computed as the number of concepts of Ka that cannot be identified (via φa) with a
concept in B(K).

Let (A, B) ∈ B(K) with A ⊈ a′. It holds: B(Ka) ∋ (A, B) ≡ (A, B) ∈ B(K). Moreover, A ∩ a′ is in Ext(Ka). If A ∩ a′ is also
in Ext(K), then

B(Ka) ∋

(
A ∩ a′, (A ∩ a′)Ia

)
≡

(
A ∩ a′, (A ∩ a′)I

)
∈ B(K).

Note that (A ∩ a′)Ia = (A ∩ a′)I ∪· {a} and (A ∩ a′)I = (A ∩ a′)Ia ∩ M . Although (A, B) and (A ∩ a′, (A ∩ a′)I ∪· {a}) are two
different concepts of Ka, they are equivalent to two concepts of K when A ∩ a′ is an extent of K. A concept (A, B) of
K induces two concepts of Ka whenever A ⊈ a′. In the definition of φa in Proposition 1 we went for (A, B) instead of
(A ∩ a′, (A ∩ a′)I ∪· {a}). This choice is motivated by the injectivity of φa being straightforward. If A ⊈ a′ and A ∩ a′ is an
extent of K then the two concepts induced by (A, B) in Ka have their respective equivalents in B(K). Then adding a to K
will increase the size of the concept lattice only if there is A in Ext(K) such that A ∩ a′ is not in Ext(K).

Each extent of Ka is an extent of K or an intersection of an extent of K with a′. The concepts of Ka that cannot be
identified (via φa) with a concept of K are{(

A ∩ a′, (A ∩ a′)I ∪· {a}
)

| A ∈ Ext(K) and A ∩ a′ /∈ Ext(K)
}

.

Note that it is possible to have two different extents A1, A2 ∈ Ext(K) with A1 ∩ a′
= A2 ∩ a′ /∈ Ext(K). In this case we

say that the extents A1 and A2 coincide on a′. The increase is then less than or equal to |B(K)|. We can now sum up the
finding of the above discussion in the next proposition.

Proposition 2. Let Ka be a context obtained by adding an attribute a to a context K. We set

H(a) :=
{
A ∩ a′

| A ∈ Ext(K) and A ∩ a′ /∈ Ext(K)
}

and h(a) := |H(a)| .

1. The increase in the number of concepts due to adding the attribute a to K is

|B (Ka)| − |B(K)| = h(a) ≤ |B(K)|.
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Fig. 2. Two tables obtained by adding an attribute m to the context in Table 1, and their corresponding concept lattices.

2. The maximal increase is h(a) = |B(K)| and is reached if each A ∈ Ext(K) satisfies A ∩ a′ /∈ Ext(K) and no pairs
A1, A2 ∈ Ext(K) coincide on a′.

Before we continue with the discussion on the maximal increase, let us look at two examples, where an attribute
m is added to the context of Table 1. In the first case (left of Fig. 2) the concept lattice of Fig. 1 has been doubled and
the maximal increase is reached. In the second case (right of Fig. 2) only the concepts in the interval [∅

II
; {a, c}II ] of the

concept lattice of Fig. 1 has been doubled. Note that in both cases, g ∈ ∅
II

̸= ∅.
Based on the examples in Fig. 2 and Proposition 2, we can now discuss the maximal increase. Note that if A ∈ Ext(K)

and A ∩ a′ /∈ Ext(K), then A ⊈ a′. Moreover, if A ⊈ a′ for every extent A of K, then in particular ∅
II ⊈ a′. Thus there is

g ∈ ∅
II such that g /∈ a′. This element g is in every extent of K, but is not in a′. Conversely, if an element g is in ∅

II
\ a′,

then g is in every extent A of K, and g is not in A ∩ a′. Thus g ∈
(
A ∩ a′

)II and g /∈ A ∩ a′, i.e. A ∩ a′ is not closed in K.
Thus A ∩ a′ /∈ Ext(K) for each A ∈ Ext(K).

Proposition 3. Let K be a formal context and a an attribute added to K. The following are equivalent:

(i) ∀A ∈ Ext(K), A ∩ a′ /∈ Ext(K).
(ii) ∅

II
\ a′

̸= ∅.

Both contexts of Fig. 2 satisfy the above conditions (the added attribute a is m). Each extent of K generates two extents
of Km and one of these cannot be identified (via φm) with an extent of K. However, some of these new concepts can be
equal. In fact if two extents coincide on m′, then they generate the same new concept. To avoid coincidences on m′, it is
enough to have m′

= G \ {g}.

Corollary 1. Let K be a formal context such that ∅
II

̸= ∅ and Ka a context obtained by adding an attribute a to K such that
a′

= G \ ∅
II . Then we have

|B(Ka)| = 2 · |B(K)| .

Using these results we can now present some huge increases after generalizing only two attributes.

3. Number of concepts generated by an ∃-generalization

Let K := (G,M, I) be a formal context. A generalized attribute of K is a subset s ⊆ M . We denote by S the set of
generalized attributes of K. Since the final goal is to reduce the size of the lattice, we assume that S forms a partition of
M .1 Then at least the number of attributes is reduced. For a ∃-generalization, an object g has the generalized attribute s
iff g has at least one of the attributes in s; i.e. s′ =

⋃
{m′

| m ∈ s}. We get a relation J on G × S defined by:

gJs ⇐⇒ ∃m ∈ s such that gIm.

1 It is possible to allow some attributes to appear in different groups. In that case the number of generalized attributes can be larger than in the
initial context.
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Fig. 3. B(K1
2) (left) and B(K1

2ge) (right), as defined by (1) with n = 2.

Table 2
Examples of increases after a ∃-generalization.
n 2 3 4 5 10 20⏐⏐B(K1

n)
⏐⏐ 7 13 25 49 1537 1572865⏐⏐B(K1

nge)
⏐⏐ 8 16 32 64 2048 2097152⏐⏐B(K1

nge)
⏐⏐ −

⏐⏐B(K1
n)

⏐⏐ 1 3 7 15 511 524287

In this section we look at a very simple case, where two attributes a, b ∈ M are generalized to get a new one, s. This
means that from a context (G,M, I), we remove the attributes a and b from M and add an attribute s /∈ M to M , with
s′ = a′

∪ b′. In particular we show that the number of concepts of (G, (M \ {a, b}) ∪· {s}, Is) can be very much larger than
that of (G,M, I).

By Sn we denote a set with n elements where n ≥ 2, and write for simplicity Sn := {1, 2, . . . , n}. We define a context
K1

n by:

K1
n := (Sn ∪· {g1}, Sn ∪· {m1,m2}, I) with

gIm : ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
g,m ∈ Sn and g ̸= m, or
g = g1 and m ∈ Sn, or
g = 1 and m = m1, or
g ∈ Sn \ {1} and m = m2.

(1)

We generalize the attributes m1 and m2 to get m12 and denote the resulting context by
K1

nge := (Sn ∪· {g1}, Sn ∪· {m12}, I) with m′

12 = m′

1 ∪ m′

2. For the case n = 2, the contexts and their concept lattices are
displayed in Fig. 3.

We want to compare the numbers of concepts of K1
nge and that of K1

n. Table 2 shows the difference in the size of these
concept lattices.

We denote by I the restriction of the incidence relation of K1
n on any subcontext of K1

n, and also by I the incidence
relation in the generalized context K1

nge. We set

K00 :=(Sn ∪· {g1}, Sn, I),
K02 :=(Sn ∪· {g1}, Sn ∪· {m2}, I),
K01 :=(Sn ∪· {g1}, Sn ∪· {m1}, I),

K0s :=(Sn ∪· {g1}, Sn ∪· {m12}, I) = K1
nge,

K12 :=(Sn ∪· {g1}, Sn ∪· {m1,m2}, I) = K1
n.

The context K00 has 2n concepts since g1 is a reducible object in K00 and the remaining context after removing g1 is
(Sn, Sn, ̸=). The context K1

n is obtained by adding successively m2 to K00 to get K02, and then m1 to K02. The generalized
context is obtained by adding s = m12 to K00 (see Fig. 4).
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Fig. 4. (a) B (K00), (b) B (K02), (c) B (K12) and (d) B (K0s), for n = 3.

What happens when m2 is added to K00? Every extent A of K00 is of the form A = A1 ∪· {g1} with A1 ⊆ Sn and
satisfies A ∩ m′

2 /∈ Ext (K00). It therefore generates two concepts in K02. The extents A with A1 ⊆ m′

2 = {2, . . . , n} do
not coincide on m′

2, and therefore generate 2n−1 concepts in K02 that cannot be identified (via φm2 ) with a concept of
K00. If A is an extent of K00 containing 1 then A \ {1} is also an extent of K00, and both extents coincide on m′

2. Thus by
Proposition 2 we get |B (K02)| = 2n

+ 2n−1. Now adding m1 to K02 generates at most two concepts, since m′

1 = {1}
and H(m1) ⊆ {A ∩ m′

1 | A ∈ Ext (K02)} = {∅,m′

1}. The extents generated by {1} in K00 and in K02 are equal to
{1, g1}. Thus {1, g1} ∩ m′

1 = m′

1 /∈ Ext (K02). However, ∅ ∈ Ext (K02) and ∅ ∩ m′

1 = ∅. Therefore H(m1) = {m′

1} and
|B(K12)| = 2n

+2n−1
+1. The context (Sn ∪· {g1}, Sn ∪· {m12}, I) is isomorphic to (Sn+1, Sn+1, ̸=). The object g1 is identified

with n + 1 and the attribute m12 with n + 1. Thus generalizing m1 and m2 to m12 leads to a lattice with 2n+1 concepts.
The increase is then 2n+1

−
(
2n

+ 2n−1
+ 1

)
= 2n−1

− 1 which is exponential in the number of attributes of the initial
context. We can summarize the discussion above in the following proposition:

Proposition 4. Let n ≥ 2 and (Sn ∪· {g1}, Sn ∪· {m1,m2}, I) defined by (1). Putting the attributes m1 and m2 with a
∃-generalization increases the size of the concept lattice by 2n−1

− 1.

In the above construction of K1
nge the idea is to construct a context (E, E, ̸=) from the initial context, via a

∃-generalization. The objects in Sn are split between m1 and m2 with no overlap. We can choose a split that assigns
k objects of Sn to m1 and the other n− k to m2. Let Kk

n := (Sn ∪ {g1}, Sn ∪ {m1,m2}, I) be such a context, where I is defined
by

gIm : ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
g,m ∈ Sn and g ̸= m, or
g = g1 and m ∈ Sn or
g ∈ {1, 2, . . . , k} and m = m1 or
g ∈ Sn \ {1, 2, . . . , k} and m = m2

(2)

Then the existential generalization of the attributes m1 and m2 to m12 leads to the generalized context
Kk

nge := (Sn ∪ {g1}, Sn ∪ {m12}, I) ∼= (Sn+1, Sn+1, ̸=). To get the cardinality of B(Kk
n), we observe that
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(i) K00 := (Sn ∪ {g1}, Sn, I) has 2n concepts. The extents of K00 are of the form A ∪· {g1}, A ⊆ Sn.
(ii) K02 := (Sn ∪ {g1}, Sn ∪ {m2}, I) has 2n

+ 2n−k concepts. They are of the form (A ∪· {g1}, Sn \ A) with A ⊆ Sn or
(A, (Sn \ A) ∪· {m2}) with A ⊆ m′

2.
(iii) K01 := (Sn ∪ {g1}, Sn ∪ {m1}, I) has 2n

+ 2k concepts, which are of the form (A ∪· {g1}, Sn \ A) with A ⊆ Sn or the form
(A, (Sn \ A) ∪· {m1}) with A ⊆ m′

1.

We get K12 := (Sn ∪ {g1}, Sn ∪ {m1,m2}, I) from K02 by adding m1. To compute H(m1) with respect to K02 we take
A ∈ Ext(K02) and distinguish two cases:

(i) If g1 /∈ A, then A ⊆ m′

2, and A ∩ m′

1 = ∅ is an extent of K02. No new concept is generated.
(ii) If g1 ∈ A, then the extent A is of the form A = A1 ∪· {g1} with A1 ⊆ Sn. Since m′

1 ∩ m′

2 = ∅, we get
A1 ∩ m′

1 /∈ Ext (K02) ⇐⇒ A1 ∩ m′

1 ⊈ m′

2. Thus the number of additional concept generated is⏐⏐{A ∩ m′

1 | A ∈ Ext (K02) and A ∩ m′

1 ⊈ m′

2

}⏐⏐
Among the extents of K02 with A ∩ m′

1 ⊈ m′

2, there are 2k
− 1 that do not coincide on m′

1, for example those with
∅ ̸= A1 ⊆ m′

1. This means that adding m1 to K02 will generate 2k
− 1 new concepts that cannot be identified with

concepts in K02. Therefore Kk
n has 2n

+ 2n−k
+ 2k

− 1 concepts.

Proposition 5. Let n ≥ 2, 1 ≤ k < n and Kk
n defined by (2).

(a) The context Kk
n has 2n

+ 2n−k
+ 2k

− 1 concepts.
(b) Generalizing m1 and m2 increases the number of concepts by

fn(k) := 2n
− 2k

− 2n−k
+ 1.

A natural question is to find out which Kk
n has a maximal increase. The function fn(k) is convex and its slope vanishes

at k =
n
2 . In fact,

d
dk

fn(k) = ln 2
(
−2k

+ 2n−k)
= 0 ⇐⇒ n = 2k.

d2

dk2
fn(k) = −(ln 2)2

(
2k

+ 2n−k) < 0.

The maximum is reached when the objects are evenly split; i.e. k ∈
{
⌊
n
2⌋, ⌈

n
2⌉

}
. The above diagram shows fn for n = 10

and n = 11. If n = 2q, then the maximal increase is f2q(q) = 22q
− 2 · 2q

+ 1 = (2q
− 1)2. If n = 2q+ 1, then the maximal

increase is f2q+1(q) = 22q+1
− 2q

− 2q+1
+ 1 = (2q

− 1)
(
2q+1

− 1
)
.

We could allow overlap in constructing Kk
n by using any covering of Sn with two proper subsets m′

1 and m′

2;
i.e. m′

1 ∪ m′

2 = Sn with ∅ ⊊ m′

1,m
′

2 ⊊ Sn. An ∃-generalization that puts m1 and m2 together to get m12, will also have
2n+1 concepts. However, the concept lattice of K12 will have more concepts when m′

1 ∩ m′

2 ̸= ∅ compared to when
m′

1 ∩ m′

2 = ∅. The minimal increase in that case is achieved with
⏐⏐m′

1

⏐⏐ = n − 2 =
⏐⏐m′

2

⏐⏐ and ⏐⏐m′

1 ∩ m′

2

⏐⏐ = n − 3.
Let K12 := (Sn ∪ {g1}, Sn ∪ {m1,m2}, I) with m′

1 ∩ m′

2 ̸= ∅. If m′

1 ⊆ m′

2 or m′

2 ⊆ m′

1 then putting m1 and m2 together
will not increase the size of the concept lattice. Therefore, we assume that m′

1 ∥ m′

2.
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Proposition 6. Let n > 2 and Ks the ∃-generalized context obtained from K12 by putting m1 and m2 together. Then:

1. The context K12 has 2n
+ 2|m′

2|
+ 2|m′

1|
− 2|m′

2∩m′
1| concepts.

2. After the generalization, the size of the initial lattice increases by

2n
− 2|m′

1|
− 2|m′

2|
+ 2|m′

1∩m′
2|.

Before we start with the proof we look at a concrete case with n = 3. Its context is isomorphic to

1 2 3 m1 m2

1 × × ×

2 × × × ×

3 × × ×

g1 × × ×

and has 23
+ 22

+ 22
− 21

= 14 concepts.

Proof. K12 := (Sn ∪· {g1}, Sn ∪· {m1,m2}, I) has 2n
+2|m′

1|
+H(m2) concepts, where H(m2) is to be determined with respect

to K01 := (Sn ∪ {g1}, Sn ∪ {m1}, I). The concepts of K01 are of the form (A1 ∪· {g1}, Sn \ A1) with A1 ⊆ Sn or of the form
(A1, (Sn \ A1) ∪ {m1}) with A1 ⊆ m′

1. Let A ∈ Ext (K01).

– If g1 /∈ A then A ⊆ m′

1 and A ∩ m′

2 is a subset of m′

1, and by then an extent of K01. No new concept is generated.
– If g1 ∈ A then A = A1 ∪· {g1} with A1 ⊆ Sn. Since all subsets of m′

1 are extents of K01 and the object g1 does not have
the attribute m2, we have

A ∩ m′

2 /∈ Ext(K01) ⇐⇒ A ∩ m′

2 ∈ P(m′

2) \ P(m′

1).

Thus, adding m2 to K01 will generate 2|m′
2|

− 2|m′
1∩m′

2| new concepts that cannot be identified (via φm2 ) with concepts in
K01. Then K12 has

2n
+ 2|m′

1|
+ 2|m′

2|
− 2|m′

1∩m′
2|

concepts. The increase of the size of the lattice is then

|B(K12)| − |B(K01)| = 2n+1
−

(
2n

+ 2|m′
1|

+ 2|m′
2|

− 2|m′
1∩m′

2|

)
= 2n

− 2|m′
1|

− 2|m′
2|

+ 2|m′
1∩m′

2| □

Remark 1. Note that n = |m′

1 ∪ m′

2| and the increase is

2|m′
1∪m′

2|
− 2|m′

1|
− 2|m′

2|
+ 2|m′

1∩m′
2|

which is a general formula that holds, even if m′

1 ∪ m′

2 ̸= Sn. The starting context is K00 := (Sn ∪· {g1}, Sn, I) and has
2n extents. After adding an attribute m1 to K00 we increase the number of extents by 2|m′

1|. After adding m2 to K00 we
increase the number of extents by 2|m′

2|. After adding an attribute s with s′ = m′

1 ∪ m′

2 to K00 we increase the extents
by 2|m′

1∪m′
2|. If we add an attribute t with t ′ = m′

1 ∩ m′

2 to K00 we will increase the extents by 2|m′
1∩m′

2|. However, these
extents ‘‘appear’’ already when m1 or m2 is added to K00, and are therefore counted twice when both m1 and m2 are added
to K00.

Remark 2. The counting with K12 has been made easy by the fact that each ‘‘subset’’ of Sn identifies an extent of K00.
If m′

1 ∩ m′

2 is not empty, then K12 has more concepts while the number of generalized concept remains the same. Then
the condition m′

1 ∩m′

2 = ∅ is necessary (but not sufficient) to get the maximal increase. For the contexts K12, putting m1

and m2 together can increase the size of the concept lattice by up to
(
2⌊

n
2 ⌋

− 1
)(

2⌈
n
2 ⌉

− 1
)
concepts. Is this the maximal

increase for contexts of similar size?

Remark 3. Note that all contexts K12 we have constructed are reduced. Requiring the contexts to be reduced is a fair
assumption. If not then we should first remove reducible attributes before processing with a generalization. This removal
does not affect the size of the concept lattice. However, putting together two reducible attributes will for sure not decrease
the size, but probably increases it.

Remark 4. B4 is the smallest lattice for which there are two attributes whose ∃-generalization increases the size
of the concept lattice. All lattices presented in this section contain a labeled copy of B4 (as subposet!). Is there any
characterization of contexts for which generalizing increases the size, for example in terms of forbidden subcontexts
or subposets?
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Fig. 5. A concept lattice for B4 .

Fig. 6. Generalizing m1 and m2 .

In this section we have found out that the size of the generalized concept lattice can be exponentially larger than that
of the initial concept lattice after an existential generalization. In the next section we will discuss the maximum of the
increase after a ∃-generalization (see Figs. 5 and 6).

4. Maximum increase after an existential generalization

In this section we investigate the maximal increase in the general case. This means that from a context K := (G,M, I)
which is attribute reduced, two attributes a, b are removed and replaced with an attribute s defined by s′ = a′

∪ b′. We
set M0 = M \ {a, b} and adopt the following notation:

K00 :=(G,M0, I), (removing a, b from K)
K01 :=(G,M0 ∪· {a}, I), (adding a to K00)
K02 :=(G,M0 ∪· {b}, I), (adding b to K00)
K0s :=(G,M0 ∪· {s}, I), (generalized context)
K12 :=(G,M0 ∪· {a, b}, I) = K. (initial context)

In general we get context K by adding a to K00 and get K01, and add b to K01. Recall that if an attribute m is added to
any context K, then the number of concepts increase by

h(m) = |{A ∩ m′
| A ∈ Ext(K) and A ∩ m′ /∈ Ext(K)}|

We denote by a∩ b the attribute defined by (a∩ b)′ := a′
∩ b′, and by a∪ b the attribute defined by (a∪ b)′ := a′

∪ b′
= s′.

We start from K00. Adding the attribute a to K00 increases its number of concepts by

h(a) = |{A ∩ a′
| A ∈ Ext(K00) and A ∩ a′ /∈ Ext(K00)}| ≤ 2|a′

|.

Adding the attribute b to K00 increases its number of concepts by

h(b) = |{A ∩ b′
| A ∈ Ext(K00) and A ∩ b′ /∈ Ext(K00)}| ≤ 2|b′

|.
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Adding the attribute a ∩ b to K00 increases its number of concepts by

h(a ∩ b) = |{A ∩ a′
∩ b′

| A ∈ Ext(K00) and A ∩ a′
∩ b′ /∈ Ext(K00)}| ≤ 2|a′

∩b′
|.

However, these concepts appear in H(a) and H(b) and will be counted twice. If a′
∩ b′ is empty then h(a ∩ b) ≤ 1.

Adding the attribute a ∪ b to K00 increases its number of concepts by

h(a ∪ b) = |{A ∩ (a′
∪ b′) | A ∈ Ext(K00) and A ∩ (a′

∪ b′) /∈ Ext(K00)}|

≤ 2|a′
∪b′

|
≤ 2|a′

|+|b′
|.

If h(a∪b) = 2|a′
|+|b′

| then a′
∩b′

= ∅ and no subset of a′
∪b′ is an extent of K00, but each subset of a′

∪b′ is the restriction
of an extent of K00 on a′

∪ b′. In this case h(a) = 2|a′
|, h(b) = 2|b′

| and h(a ∩ b) = 1.
We denote by h(a, b) the increase when two attributes a and b are both added to K00. Then we have

|B(K12)| = |B(K01)| + h(b) − h(a ∩ b)
= |B(K00)| + h(a) + h(b) − h(a ∩ b).

and h(a, b) = h(a) + h(b) − h(a ∩ b). The increase is then

|B(K0s)| − |B(K)| = h(a ∪ b) − h(a, b) = h(a ∪ b) − h(a) − h(b) + h(a ∩ b)

If h(a ∪ b) = 2|a′
|+|b′

| then the increase is

h(a ∪ b) − h(a) − h(b) + h(a ∩ b) = 2|a′
|+|b′

|
− 2|a′

|
− 2|b′

|
+ 1.

Now we are going to show that this increase is the least upper bound. Since we are interested in the maximal increase,
we assume that a′

∩ b′
= ∅. In fact K has more concepts when a′

∩ b′
̸= ∅, than when a′

∩ b′
= ∅; But the number of

concepts of K0s will remain the same in both cases. The increase |B(K0s)| − |B(K)| is then larger if |B(K)| is smaller.
There exists d1 ≤ 2|a′

| such that h(a) = 2|a′
|
− d1. In fact

d1 = |{A ⊆ a′
| A ∈ Ext(K00)}|.

Similarly, there exists d2 ≤ 2|b′
| such that h(b) = 2|b′

|
− d2. As above we have

d2 = |{A ⊆ b′
| A ∈ Ext(K00)}|.

Similarly, there exists d0 ≤ 2|a′
∪b′

| such that |H(s)| = 2|a′
∪b′

|
− d0 = 2|a′

|+|b′
|
− d0, with

d0 = |{A ⊆ a′
∪ b′

| A ∈ Ext(K00)}|.

Since we assume a′
∩ b′

= ∅, the following holds for any extent A ̸= ∅ of K00:

A ⊆ a′
∪ b′

⇐⇒ A ⊆ a′ xor A ⊆ b′ xor A ⊆ a′
∪ b′, A ⊈ a′ and A ⊈ b′.

where xor denotes the exclusive or. Therefore d1 + d2 ≤ d0 and the increase is then

|B(K0s)| − |B(K)| = h(a ∪ b) − h(a, b)
= h(a ∪ b) − h(a) − h(b) + h(a ∩ b)

=

(
2|a′

|+|b′
|
− d0

)
−

(
2|a′

|
− d1

)
−

(
2|b′

|
− d2

)
+ h(a ∩ b)

= 2|a′
|+|b′

|
− 2|a′

|
− 2|b′

|
+ h(a ∩ b) + d1 + d2 − d0  

≤0

≤ 2|a′
|+|b′

|
− 2|a′

|
− 2|b′

|
+ h(a ∩ b)

≤ 2|a′
|+|b′

|
− 2|a′

|
− 2|b′

|
+ 1,

since h(a ∩ b) ∈ {0, 1} when a′
∩ b′

= ∅.

Theorem 1. Let (G,M, I) be an attribute reduced context and a, b be two attributes such that their existential generalization
s = a ∪ b increases the size of the concept lattice. Then

(i) |B(G,M, I)| = |B(G,M \ {a, b}, I)| + h(a, b), with

h(a, b) = h(a) + h(b) − h(a ∩ b).

(ii) The increase after generalizing is

h(a ∪ b) − h(a) − h(b) + h(a ∩ b) ≤ 2|a′
|+|b′

|
− 2|a′

|
− 2|b′

|
+ 1.
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Remark 5. If generalizing a and b does not increase the size of the lattice, then the difference

h(a ∪ b) − h(a) − h(b) + h(a ∩ b)

is at most zero, and will describe the reduction in the number of concepts.

5. Related works and conclusion

To the best of our knowledge generalized attributes were first considered by Srikant and Agrawal [14], as they discussed
the problem of mining generalized association rules. In fact they consider an is-a taxonomy on items to extract relevant
information in the form of association rules in transactions data. They called such rules generalized association rules. Note
that using an is-a taxonomy is equivalent to the ∃-generalization of some attributes. The following example from [14]
shows the added-value of generalizing attributes. If an is-a taxonomy is available and says for example that: Jacket is-a
Outwear, Ski Pants is-a Outwear, Outwear is-a Clothes, etc., then generating rules that span different levels of the
taxonomy could let to discovering interesting information, that were not possible without generalizing the attributes. A
rule like ‘‘people who buy Outwear tend to buy Hiking Boots’’ may be inferred from the fact that people bought Jackets
with Hiking Boots and Ski Pants with Hiking Boots. However, the rules ‘‘Jackets H⇒ Hiking Boots’’ and ‘‘Ski Pants
H⇒ Hiking Boots’’ might be non-relevant if their support is smaller than the fixed threshold. Although the papers [3,14]
present some applications of generalizing attributes, they do not discuss the size of the information discovered.

In the present work, we have shown a family of concepts lattices in which an existential generalization on a specific
pair of attributes increases the size of the lattice. We have also found the maximal increase when two attributes are put
together. We are planing to look at the numbers of rules that can be discovered after generalizing the attributes. If there
are some cases where the number of concepts as well as the number of rules increase after a generalization, then not
all is-a taxonomies are useful in terms of the size of extracted information. Therefore characterizing contexts where such
a generalization does not increase the number of extracted concepts/rules is a crucial pretreatment to make sure that
extracted information will not explode.

There are many other works dealing with the size of the concept lattice. In [1] the authors gave an upper bound
for the size of concept lattices. In fact they proved for finite contexts that |B(G,M, I)| ≤

∑k−1
i=0

(n
i

)
, with n = |G| and

k = min{|S| : (S, S, ̸=) is not isomorphic to a subcontext of (G,M, I)}. This upper bound is reached by the so-called
(n, k)-extremal concept lattices. We will investigate in future works what happens if we generalize two attributes of an
(n, k)-extremal concept lattice. Is it possible to get an (n, k + 1)-extremal lattice from an (n, k)-extremal lattice after an
existential generalization? The size of the concept lattice can be exponential in the size of the context. Moreover, it was
proved in [11] that the problem of determining the size of the lattice is #P-complete. This explains why it is difficult to
compute or estimate the size without computing the lattice. Deciding whether the number of concept increases after
generalizing would have been easy if counting the number of concept of a given lattice were straightforward. Since
counting the number of concept is #P-complete, it is worth to investigate whether the change in the number of concepts
after generalization can be accessed without computing the concept lattices.

To control the size of the lattice some authors have proposed to constrain the concept lattice by attribute dependencies
in the form of attribute implications [16] or in the form of attribute-dependency formulas [5]: i.e. to only select from the
initial lattice the concepts that satisfy these attribute dependencies. In these two situations, the attribute dependencies
are set in advance by an expert. The size of the constrained lattice is usually smaller than that of the initial lattice. In
the absence of the expert, putting some attributes together is an option. Moreover, an expert can also be part of this
pre-treatment by suggesting which attributes should be put together. Other authors working on pattern structures have
applied extensional projection on pattern structures [7] to obtained projected pattern structures having a smaller number
of pattern concepts than the initial pattern structures. However, projected patterns concepts are subsets of the set of
pattern concepts of the initial pattern structure, which is not always the case after generalizing attributes. In [10], the
discussion is on how to construct a concept lattice of a context resulting from another context with a known concept
lattice by removing exactly one incidence. Removing that incidence leads to the construction of a closure operator and an
interior operator such that if a concept of the initial context is a fix-point of both operators, then it is duplicated into two
different concepts in the new concept lattice, else it vanishes from the new concept lattice. Hence, removing an incidence
from a formal context may lead to a reduction or to an increase of the size of the initial concept lattice. This is similar
to the situation observed when generalizing attributes. Moreover, generalizing attributes can be seen as adding many
incidences to the initial context.

Generalizing attributes also has a close connection with boolean factorization [4], that we are studying now. Another
direction of interest is to look at efficiently computable similarity measures that discriminate attributes if putting these
together increases the number of concepts.
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