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Abstract 

   This thesis deals with the experimental and theoretical characterization of piezoelectric 

structures and their use as component in nonlinear electronic circuits for actuation, medicine 

and energy harvesting.  In each case the physical systems, their detailed description and their 

mathematical models are discussed. The appropriate mathematical formalisms (modal 

approximation, Harmonic balance method, Lyapunov exponent and Routh-Hurwitz criterion) 

and numerical methods are used to investigate the dynamics of proposed systems. The 

following main results are obtained:   

 An experimental frequency-impedance curve of the piezoelectric plate is obtained 

leading to the electric equivalent of the piezoelectric plate constituted of a capacitive 

branch in parallel with many RLC resonant branches. Vibration modes of the plate are 

used to justify qualitatively the resonant frequencies of the experimental curve. This 

result is confirmed by the direct numerical simulation of the coupled differential 

equations modeling the piezoelectric plate. Theoretical and experimental analyses 

show that a circuit consisting of a piezoelectric plate in series with a resistor 

presenting a nonlinear I − V characteristics having a negative slope exhibits 

autonomous oscillations of the Van der Pol type.  

 The dynamical behavior of a piezoelectric beam powered by two types of nonlinearity 

is considered: nonlinear dependence of the voltage on electrical charge and nonlinear 

dependence of the inductance on current.  The dynamical behaviors are characterized 

showing jump phenomena, amplitude jump phenomena and chaotic states. One 

proposes a model for the production of periodic patterns of pulse oscillations.  For 

each case, hints of applications for actuations and medical devices are discussed. 

 Submitted to fluid flow, mechanical structures can undergo self-sustained oscillations. 

This principle is used for an energy harvester system made of micro-beams with 

piezoelectric layers. The dynamical behavior of the harvester is analyzed and the 

electric power is plotted versus the fluid velocity, fluid force coefficient, frequency 

and load resistance. It was found that the time variation of the voltage and current 

displayed periodic behavior with sharp peaks and chaotic shapes.  

 

Keywords: Piezoelectric plate, Characterization, self-sustained oscillator, chaos, Electric 

equivalent, pulse ultrasounds behavior, actuators, nebulizer, echography, piezoelectric 

energy harvester. 
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Résumé 

   Cette thèse traite la caractérisation expérimentale et théorique des structures piézoélectriques et leurs 

utilisations comme composant dans des circuits électroniques non linéaire pour l'actionnement, la 

médecine et la récupération d'énergie. Dans chaque cas, les systèmes physiques, leur description 

détaillée et leur modèle mathématique sont présentés. Les formalismes mathématiques appropriés 

(approximation modale, exposant de Lyapunov et critère de Routh-Hurwitz) et des méthodes 

numériques sont utilisés pour étudier la dynamique des systèmes proposés. Les principaux résultats 

suivants sont obtenus. 

 Expérimentalement, la caractéristique fréquence-impédance de la plaque piézoélectrique 

conduisant à l'équivalent électrique de la plaque piézoélectrique constituée d'une branche 

capacitive en parallèle avec de nombreuses branches résonantes RLC est obtenue. Les modes 

de vibrations de la plaque sont utilisés pour justifier qualitativement les fréquences de 

résonnances obtenues expérimentalement ; chacune ayant sa propre fréquence de résonance. 

Ce résultat est confirmé par la simulation numérique directe du modèle d’équations 

différentielles couplés associé à la plaque piézoélectrique. Une étude théorique et 

expérimentale montrant que la mise en série de la plaque piézoélectrique avec une résistance 

présentant une caractéristique I - V non linéaire à pente négative, exhibe des oscillations 

autonomes de type Van der Pol est faite.  

 Le comportement dynamique d'une poutre piézoélectrique excitée par deux types de non-

linéarité est considéré: la dépendance non linéaire de la tension à la charge électrique et la 

dépendance non linéaire de l'inductance au courant. Les comportements dynamiques sont 

caractérisés par des phénomènes de sauts d'amplitude et des états chaotiques. Un modèle pour 

la production des salves d'impulsions périodiques est proposé. Pour chaque cas, des 

indications d'applications en actionnements et médecine sont discutés. 

 Soumises à l'écoulement des fluides, les structures mécaniques peuvent subir des oscillations 

auto-entretenues. Ce principe est utilisé pour un système de récupération d'énergie constitué 

de micro poutre à couches piézoélectriques. Le comportement dynamique du récupérateur 

d’énergie est analysé et la puissance électrique est tracée en fonction de la vitesse du fluide, du 

coefficient de force du fluide, de la fréquence et de la résistance de charge. Il est constaté que 

la variation temporelle de la tension et du courant présente un comportement périodique avec 

des pics pointus et des formes chaotiques.  

Mots clés: Plaques piézoélectriques, Caractérisation, Oscillateurs auto entretenus, chaos, 

Salves d’ultrasons, actionneur, nébuliseur, échographie, Récupérateur d’énergie 

piézoélectrique. 
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         Piezoelectric materials belong to the multifunctional materials which have the ability to 

generate an electric potential in response to applied mechanical stress [1]. The piezoelectric 

effect was discovered by Curie in 1880 [2]. Since the piezoelectric effect is reversible, 

materials those demonstrate the direct piezoelectric effect, which is the generation of 

electricity upon applied mechanical stress but, also demonstrate the converse piezoelectric 

effect, which is the generation of stress and strain as response to electric field [3]. In 1881, 

Lippman showed the existence of the indirect effect [4], which was experimentally 

highlighted by the Curie brothers the following year [2].  In 1910, Voigt published a rigorous 

study of the asymmetric crystal classes and their piezoelectric properties [5]. However, there 

are different types of piezoelectric materials, and some representative materials include quartz 

and Lead-Zirconate Titanate (PZT), which are a natural crystal and a man-made ceramic, 

respectively. Piezoelectric plates can be used as sensors and actuators, sounds transducers, 

medical tools and energy harvesters [6-9]. To design system with piezoelectric component, it 

is necessary to select not only a kind of piezoelectric material with required parameters, but 

also geometrical parameters of the transducer. Selecting all parameters of system it is possible 

to obtain required characteristics that describe its behavior and to obtain the maximum 

efficiency of the system’s operation. A condition that is necessary to design such kind of 

systems correctly is their precise description by an appropriate mathematical model that 

includes relations between all parameters of the system and also allows designing its 

characteristics, including influence of all parameters [10-13].  

   Silent and harmless to the body, a wide variety of ultrasounds are generated by the reverse 

piezoelectric effect [14]. In fact, over the past 80 years, ultrasound devices have become 

important diagnostic tools both for biological, chemical and physical bodies. Their potential 

as a leader in medical diagnostic imaging was recognized since the 1930s and 1940s, when 

Dussik and his brother Friederich attempted to use ultrasound to diagnose brain tumors [15]. 

Monitored by appropriate electrical signals, the piezoelectric beams or plates of different sizes 

can also be used as actuators for several technological devices such as loudspeakers, motors 

of different types, mirror positioners, acousto-optic modulators, inkjet printers, fuel injectors, 

vibration controllers, and so on.  Their motion can be tuned for a single action or can lead to 

periodic actions (periodic actuation mechanisms). Because of this large number of 

applications, research investigations have been engaged in order to sort new and special 

motions which can be exhibited by piezoelectric beams (or plates).  One of the objectives of 

this thesis is to present the dynamical behavior of a piezoelectric beam powered by some 

special nonlinear electronic circuits.     



3 
 

 

    In this thesis, three types of electric circuits are used: an electrical circuit having 

nonlinear capacitance, an electronic circuit with nonlinear characteristics in the flux-

current relation, and an electronic circuit mimicking a biological oscillator (the 

Hindmarsh-Rose oscillator).  An external sinusoidal voltage source is used in the case of 

the first two electrical circuits and in the third case, there is no external periodic source 

of energy, making the system self-oscillating. The main dynamical behaviors will be 

linked to applications in the actuation fields and in medical fields: nebulizers [16-19] and 

echography analysis [20-27].    

   After the study of the piezoelectric beam for actuations purpose and for medical 

device, we use it in an energy harvester with self-sustained behavior.  As showed in [28-

32], a range of vibration energy harvesting devices have been proposed. Energy harvesters 

transform available ambient energy into electrical energy through various mechanisms [33-

55]. This is an important source of energy for small electronic devices and for small batteries 

to enable remote operation [56]. Experiments by Simiu et al. [57], based on the Battista’s 

work [58], showed that vibration of bridge exhibits the typical dynamic behavior of a self-

excited oscillator due to a fluid-induced forcing function. The presentation given in this thesis 

follows an extension of this model to energy harvesting. Self-excited oscillators are used in 

many areas of scientific works [59-61]. Recently, Clair et al. in [35] proposed a concept for a 

micro power generator that uses self-excited limit cycle’s oscillations of a piezoelectric beam, 

to harness wind energy and maintain low power consumption devices.  

As indicated above, the thesis concentrates on the following objectives: 

 Experimental characterization of a piezoelectric plate and use of 

vibrations modes and parallel resonant branches in the electric equivalent 

model to justify the behavior of the piezoelectric plate, 

 Study of a piezoelectric plate based self-excited electronic oscillator and 

actuator, 

 Analysis of the dynamical behaviors of a piezoelectric beam powered by a 

nonlinear electrical circuits and self- sustained electronic oscillator and 

links to nebulizer and echography, 

 Study of a model of self-sustained piezoelectric energy harvester under 

fluid flow. 

     The present work is divided in three chapters.  
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   In chapter one, one firstly gives to the readers the information on piezoelectricity and 

piezoelectric structures, characterization of piezoelectric structures, applications of 

piezoelectricity and secondly, one redefines clearly the problem solved in the thesis.  

   Chapter two presents the methodology for the experimental and theoretical characterization 

of a piezoelectric structure, the mathematical formalisms, the numerical methods and the 

experimental procedure based on analog circuits, used to solve the problems of this thesis.  

   Chapter three deals with the presentation of the main results of the thesis. 

   The general conclusion ends the thesis with a summary of the main results and indications 

of perspectives for future works.  
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1.1  Introduction 

   The goal of this chapter is to give firstly the information about piezoelectricity and 

piezoelectric structure, characterization of piezoelectric structures, applications of 

piezoelectricity and secondly, to expose the work to be carried out in this thesis. Section 1.2 is 

devoted to the generalities on the piezoelectricity. In section 1.3, nonlinearities in 

electromechanical systems are presented. Section 1.4, is devoted to the recent investigations 

on nonlinear piezoelectric structures. Section 1.5 will give more details on the problems to be 

solved in this thesis and in section 1.6 will conclude the chapter. 

1.2  Generalities on the piezoelectricity 

1.2.1 Definition of the piezoelectricity 

     Any material that develops an electric charge or polarity on the application of an external 

mechanical stress, or vice versa is known as a piezoelectric material. The phenomenon of 

generation of the electrical charges in response to an external mechanical stress is known as 

the direct piezoelectric effect. Conversely, the phenomenon in which mechanical deformation 

occurs due to the application of an electric field is known as the reverse, or indirect, 

piezoelectric effect.  

   Figure 1 illustrates both the direct and indirect piezoelectric effect. Figure 1(a) shows the 

poling axis in a piezoelectric material. The poling axis of a piezoelectric material determines 

the polarity of the material under stress. The axis is defined during a polarization step during 

the manufacture of the material (see subsection 1.2.2). 

 

Figure 1: Example of the piezoelectric effect 

    As shown in Figure 1(b), if the material is compressed, a voltage of the same polarity (as 

the poling axis) appears between the electrodes. If stretched, a voltage of opposite polarity 

appears (see Figure 1(c)). Conversely, if a voltage is applied, the piezoelectric material will 

deform. A voltage with opposite polarity as the poling axis will cause the material to expand 

(shown in Figure 1(d)). A voltage with the same polarity will cause the material to compress, 
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as depicted in Figure 1(e). If an AC signal is applied, as shown in Figure 1(f), the material 

will vibrate at the same frequency as the signal. 

1.2.2 Piezoelectric structures (beam, plates, circular and others)  

       The piezoelectric materials available in the market can be classified into two classes: 

crystal and ceramic. Ceramic is an artificial piezoelectric material. It is a preferred 

piezoelectric material because of the ease with which it can be manufactured into a variety of 

shapes (beam, plate, circular and others) and sizes. The most commonly produced 

piezoelectric ceramics are PZT, Barium Titanate and Lead Titanate.  Their manufacturing 

cycle by solid route is illustrated in Figure 2. They do not become piezoelectric until after the 

final step of polarization which consists in the application of a continuous electric field of 

high value in order to orient the different polarization vectors in the same direction.    

 

Figure 2: Manufacturing cycle of PZT ceramics by solid process [6,9] 

1.2.3 Characterization of the piezoelectric structures 

  A powerful motivation for using equivalent circuits to characterize piezoelectric devices is 

that the equipment is often itself completely electrical in nature. The whole ensemble thus 

becomes subject to analysis or synthesis from a single perspective; etc., network theory. In 

this subsection, we describe a brief history of equivalents circuits.    

 Mechanical analogs were considered necessary in the last century for visualizing 

electromagnetic phenomena. The situation was reversed in 1914 when Butterworth first used 

an equivalent electrical circuit to represent a mechanically vibrating system. This was 

followed by Van Dyke's independent discovery in 1925 that the same circuit characterized the 

impedance behavior of a piezoelectric resonator.  
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The electric equivalent of the piezoelectric plate proposed by Van Dyke and recommended by 

the IEEE Standard on Piezoelectricity [62] is represented in Figure 3.  

 

                       

 

 

 

Figure 3: Van Dyke’s model for a piezoelectric element, were 0C
 
and 1C are the capacitances, 

1L  the inductor and 1R  the resistor. 

     Subsequently, Mason introduced in the 1930s [63], acoustic transmission lines, mechanical 

ports, and piezoelectric transformers, thereby extending the circuit to encompass 

electromechanical conversion devices of wide generality. Today, the Mason equivalent circuit 

is universally used for bulk and surface acoustic wave device characterizations. It has also 

given rise to a variety of alternative formulations such as analog networks and systems 

models. 

  The use of equivalent electrical networks to represent mechanical systems is pervasive 

today, particularly with respect to the depiction of piezoelectric resonators and transducers. 

This is a complete reversal of the situation existing less than one hundred years ago. One has 

only to read the works of Maxwell [64] and Kelvin [65] to see how mechanical explanations 

were sought for electrical phenomena. Other analogies are treated in references [66] and [67], 

where their contributions have been pervasive in the area of equivalent circuits of bulk and 

surface wave resonators and transducers.   

1.2.4     Applications of the piezoelectricity 

   Cell phones, diesel fuel injectors, acoustic guitar pickups, grill igniters, ultrasonic 

transducers, vibration sensors, certain printers, and musical greeting cards (Figure 4) all have 

in common, besides being electronic devices, piezoelectricity in some way.  

R1 

C0 

C1 L1 
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Figure 4: Top applications of piezoelectric materials in day to day life [3,6] 

1.2.3.1 Piezoelectric Sensors in Industrial Applications 

    The industrial sector often employs piezoelectric sensors for a variety of uses. Some 

common, uses include:  

- Pressure Sensors (Figure 4(a)): In nearly any application requiring the 

measurement of dynamic pressure changes, using piezoelectric pressure sensors 

yields more reliable results than using conventional electromechanical pressure 

sensors. This is because piezoelectric devices have a high frequency response 

and signal conversion without requiring any bellows, diaphragm, or any type of 

mechanical linkage in conjunction with a strain gage or displacement sensor. 

- Sonar Equipment (Figure 4(b)): Depth sounders and sonar equipment rely 

extensively on piezoelectric sensors to transmit and receive ultrasonic ―pings‖ in 

the 50-200kHz range. Besides having an ideal frequency response for such 

applications, piezoelectric transducers have a high power density that enables 

large amounts of acoustic power to be transmitted from a small package. For 

instance, a transducer that is only 4‖ (100 mm) in diameter may be capable of 

handling power output greater than 500 W.  

1.2.3.2 Uses of Piezoelectric Actuators in Industrial Applications 

   While piezoelectric sensors are highly valuable to the industrial sector, the industry also 

makes use of piezoelectric actuators for a variety of applications: 

- Diesel Fuel Injectors (Figure 4(c)): In the last decade, regulations on emissions 

from diesel engines have become increasingly stringent. Additionally, customers 

continue to demand quieter engines with improved power and torque curves. In 

https://www.americanpiezo.com/blog/transmitting-acoustic-signals-echo-sounding/
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order to meet these, engine manufacturers have resorted to using precisely timed 

and metered injections of fuel during the combustion process. This is the case of 

a single fuel injector may switch fuel flow with pressures exceeding 26,000 psi 

(1800 bar) on and off several times in rapid succession during a single power 

stroke. Such precise control of high-pressure fluid is made possible by using 

piezoelectric actuators controlling small valves within fuel injectors. 

1.2.3.3 Piezoelectric Actuators in Consumer Electronics 

  Piezoelectric actuators are used in consumer electronics.  

- Piezoelectric Printers 4(d): There are two main types of printers that use 

piezoelectric actuators; 

 a dot-matrix printer : In a piezoelectric dot matrix printer, piezoelectric 

actuators in the printer head move needle-like pins through a strip of ink 

tape (similar to a typewriter) against a piece of paper in various patterns 

to form characters. For most applications, the use of dot-matrix printers 

has been superseded by other technologies. However, a dot-matrix printer 

is the only printer technology capable of generating duplicate and 

triplicate carbon-copy printouts. 

 Inkjet printer: In a piezoelectric inkjet printer, piezoelectric actuators in 

the printer head act on small diaphragms or otherwise change the 

geometry of an inkwell so that ink droplets are forced out of an orifice 

onto paper. This is one of the dominant technologies in the printer market 

to date.  

- Piezoelectric Speakers: Piezoelectric speakers are featured in virtually every 

application that needs to efficiently produce sound from a small electronic 

gadget. These types of speakers are usually inexpensive and require little power 

to produce relatively large sound volumes. Thus, piezoelectric speakers are often 

found in devices such as the following: 

 Cell phones (see Figure 4 (e)) 

 Musical greeting cards (see Figure 4(f)) 

- Piezoelectric Buzzers: Piezoelectric buzzers are similar to piezoelectric 

speakers, but they are usually designed with lower fidelity to produce a louder 

volume over a narrower frequency range. Buzzers are used in a seemingly 

endless array of electronic devices, including:  

https://www.americanpiezo.com/standard-products/buzzers.html
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Intruder alarm, medical device, alarms clocks (see Figure 4(g)), fire alarm, carbon monoxide 

detectors, exercise equipment, microwave ovens, computer motherboards, ultrasonic insect, 

etc.  

-  Piezoelectric ignition (see Figure 4(h)): piezoelectric ignition is a type of 

ignition that is used in portable Camping stoves, gas grills, some lighters and 

potato cannons.  Piezoelectric ignition uses the principle of piezoelectricity, 

which, in short, is the electric charge that accumulates in some materials in 

response to high pressure. It consists of a small, spring-loaded hammer which, 

when a button is pressed, hits a PZT. This sudden forceful deformation produces 

a high voltage and subsequent electrical discharge, which ignites the gas. 

1.2.3.4 Piezoelectric Materials for the Musical Applications 

    Aside from technological and industrial applications, piezoelectricity also benefits the arts. 

There are a variety of musical applications that use piezoelectricity. 

 

Figure 5:  Instrument Pickups[3] 

- Instrument Pickups (Figure 5): Many acoustic-electric stringed instruments 

utilize piezoelectric pickups to convert acoustic vibrations to electric signals. 

Typically, a strip of piezoelectric material is placed between the instrument body 

and a structure that supports the strings. For instance, an acoustic-electric guitar 

usually houses its piezoelectric strip beneath the bridge and within the saddle. As 

the strings vibrate, the strip is agitated to generate an electric signal. Electric 

pickups on violins, violas, and cellos use the same concept, but the piezoelectric 

pickup may be clamped to the bridge or integrated within the bridge  

- Microphones: Some microphones (such as contact microphones for percussion 

instruments) use piezoelectric materials to convert sound vibrations to an 

electrical output. These microphones generally possess high output impedances 

that must be matched when designing their respective pre-amplifiers. 
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1.3   Nonlinearities in electromechanical systems  

    Electromechanical systems focus on all the devices which make electrical and mechanical 

systems work together. The electrical components (like diodes, resistances, capacitors and 

inductances) will be able to have nonlinear characteristics introduced in the electrical part by 

the user, while in the mechanical part; the nonlinear components are connected to the 

functioning of the device. Our aim in this section is to give some details on nonlinear 

components encountered in electromechanical systems. 

1.3.1 Introduced nonlinearities 

   The sources of nonlinearity can be introduced in several ways: In one way, the voltage of 

the capacitor is a nonlinear function of the instantaneous electrical charge [68] given for 

instance by 

                                             

  2 3

2 3

0

1
cV q q a q a q

C
     ,                                          (1.1) 

where 0C  is the value of the capacitance and ia are the nonlinear coefficients depending on the 

type of the capacitor in use. This is typical of nonlinear reactance components such as 

varactor diodes widely used in many areas of electrical engineering to design for instance 

parametric amplifiers, up-converters, mixers, low-power microwave oscillators, etc [69]. 

   Secondly, the nonlinear sources can also be obtained by using a resistor with nonlinear 

characteristics so that the I-V curve is given as: 

                                                             
3

NLRV aV bV  ,                                                     (1.2) 

where a  and b  are the coefficients depending the way the resistor is constructed. If 0a  and 

0b  such a resistor in an electric circuit could lead to self-sustained oscillations [70, 71]. 

   Thirdly, we also consider an electrical circuit in which the nonlinear oscillation takes place 

owing to the presence of nonlinear characteristics in the flux-current relation. The inductance 

of an inductor that contains a ferromagnetic material can be given by the following 

mathematical expression [72]: 
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     There are nine parameters appearing in Eq. (1.4) that are briefly presented below (for more 

detailed definitions, see ([73]). sB
 
is the saturation flux density, A  and 1l  are respectively the 

cross sectional area and the average length of the magnetic material. N is the number of turns, 

0 is the permeability of the free space, i is the current through the winding. Parameters  and 

 are function of the remanence  rB , the coercive magnetic field  cH and the saturation 

flux density sB , as mathematically defined below: 

                          

0

0

1
ln s r s c

c s r s c

B B B H

H B B B H






  
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  
 and ln s r

s r

B B

B B


 
  

 
                         (1.4) 

1.3.2 Materials and geometric nonlinearities 

   This type of nonlinearity generally appears in the components of the mechanical part, 

particularly to a spring. For hardening spring effect in mechanical problems, it is found 

experimentally that the stiffness is not constant but increases with the received stress. It is 

approximately defined by the relation: 

  2

0 1K x K K x  ,                                                                                                               (1.5)    

where 0K  is the is the stiffness for small stretching, x  the elongation and 1K  a coefficient of 

nonlinearity. An example of an electromechanical device with a nonlinear spring was studied 

by Chedjou et al. in refs. [70, 71] and Chembo et al. in ref. [74]. Let us note that other forms 

of   K x  can be found such as that of the soft spring.  

1.3.3 Useful and unfavorable effects of the nonlinearities 

     The presence of nonlinearity in science can have positive interests or negative effects. 

Nonlinear systems exhibit surprising and complex effects that would never be anticipated by a 

scientist trained only in linear techniques. Prominent examples of these are bifurcation, chaos 

and solitons. Nonlinearity has its most profound effects on dynamical systems and we 

currently not have general techniques (and very few special ones) for telling whether a 

particular nonlinear system will exhibit the complexity of chaos, or the simplicity of order. 

However, nonlinear science has applications to a wide variety of fields, ranging from physics, 

biology, and chemistry, to engineering, economics, and medicine. For instance, we note that 

undesired phenomena such as chaos are now applied to problems in many fields of science 

and engineering. In physics, chaos has been used to refine the understanding of planetary 

orbits, to conceptualize quantum level processes, and to forecast the intensity of solar activity. 
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In engineering, chaos has been used in the building of better digital filters, and to model the 

structural dynamics in such structures as buckling columns. In medicine, it has been used to 

study cardiac arrhythmias and patterns of disease communication. In psychology it has been 

used to study mood fluctuations, the operation of the olfactory lobe during perception, and 

patterns of innovation in organizations. In economics it is being used to find patterns and 

develop new types of econometric models from the stock markets to variations in good prices. 

    Other interesting phenomena resulting of the presence of non-linear components in science 

is the multi-stability, which is understood as coexistence between stability and instability 

phenomena encounted in various branches of science. It is usually described by discussing the 

possible steady-state solutions of some nonlinear process having a single variable and one or 

more control or bifurcation parameters. In this case, the system presents the well-known 

hysteresis phenomena with two stable harmonic oscillations with different amplitudes, 

resulting generally to the presence of the cubic nonlinearity.                                           

1.4   Recent investigations on the nonlinear piezoelectric systems 

      As indicated in subsection 1.3, nonlinearities in electromechanical systems can be 

introduced or be inherent to the structure (stretching effects, stiffness of a soft spring and 

boundaries conditions on the structure).  The use of piezoelectric materials in various 

applications, including the development of actuators, energy harvesters, vibration control, 

among others, has been investigated by several researchers over the last few decades. In most 

cases, linear piezoelectricity is assumed in modeling and analysis of such systems. However, 

the recent literature shows that non-linear manifestations of piezoelectric materials are 

relevant and can modify the electromechanical behavior.  

1.4.1 Actuation by piezoelectric structures with nonlinear components 

   Significant progress to understand the behavior of piezoelectric actuators has been achieved, 

in the past, by considering linear material models. However, the range of applicability of 

these models is rather limited to low electrical field and stress regimes.  In order to predict the 

actuator performance beyond the linear range of operation, or to account for phenomena such 

as hysteresis, sub-harmonic, multi-periodic, bursting mechanical oscillations, and chaotic 

behaviors, it is essential to formulate methods that are able to address nonlinearities. 

Numerous theoretical and experimental studies of the nonlinear behavior of piezoelectric 

actuators have been conducted. Royston and Houston [75] employed the Maxwell Resistive 

Capacitor (MRC) model, along with an experimental study, to characterize the nonlinear 

vibratory response of 1-3 piezocomposites. Zhao and Balachandran [76] investigated 
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theoretically and experimentally the influence of actuator nonlinearities on the response of 

panel-enclosure systems. The hysteresis effect was included in the nonlinear relationship 

between the free strain and applied the electrical field.  Sirohi and Chopra [77] conducted an 

experimental study to investigate the behavior of piezoelectric sheet actuators under different 

types of excitation and mechanical loading. Garcia et al. [78] formulated a model that extends 

the analysis of nonlinear piezoelectric behavior to any kind of nonlinear function.   

   Since piezoelectric structures are flexible and display nonlinear deformations under external 

static and dynamic excitations, several authors have studied analytically, as well as 

experimentally, different nonlinear behavior of piezoelectric actuators [79-84] such as the 

implementation of nonlinearity under high and low electric fields and strains, the frequency 

response and the dynamics of the vibration when operating in the resonant mode. Other 

authors have used finite element method (FEM) to model various piezoelectric material 

systems [85-89], developing the finite element model for static and dynamic analysis of 

piezoelectric composite plates, piezoelectric bimorphs as well as for stability.  

1.4.2 Nonlinear piezoelectric structures for the energy harvesting 

    A conventional piezoelectric energy harvester (PEH) is generally designed to operate at one 

resonant frequency, which may lead to a narrow operating bandwidth [90-95]. In order to 

overcome this limitation, several strategies [95-99] have been proposed, among which 

exploiting nonlinear magnetic force that becomes a promising technique for implementing 

broadband energy harvesters. Diverse nonlinear harvesters realized by introducing magnets to 

the conventional PEHs have been developed, and their improved performance in the 

bandwidth has been validated both theoretically and experimentally [100-104]. The 

motivation of using nonlinear PEH extends beyond bandwidth enhancement, and it can be 

used to improve overall power density as well as responsiveness towards noisy or shock 

excitations. Furthermore, Duffing models and bistability are the most well-known nonlinear 

PEH. Recently, several researchers such as Ando et al. [105] proposed a nonlinear PEH that is 

structured by two piezoelectric cantilever beams coupled by magnets to harness vibration 

energy bi-directionally. In [106-107], the Duffing oscillator model has been used for many 

energy harvesting simulations, with the addition of electromechanical coupling for the 

harvesting circuit. In the context of broad-band energy harvesting, bifurcations and chaotic 

vibrations have been studied in several papers [108-109]. In [110], the authors have 

investigated the effect of combined nonlinearities from mechanical aspects (tristable 

harvester) and from electrical side (nonlinear switching interface consisting of a synchronous 
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discharge of the piezoelectric element), providing coupled nonlinearities through the 

electromechanical conversion. Theoretical developments, confirmed by experimental results, 

demonstrated that, especially in the case of highly coupled, lightly damped structures, the 

backward coupling yields degraded performance in terms of bandwidth.  From these works, it 

is worth to note that chaotic vibrations are, in most cases, characterized by moderate 

amplitude of vibrations and simultaneously give continuous spectrum of frequency, which can 

be useful to increase mechanical resonator durability.  

1.4.3 Piezoelectric sensors, actuators, motors and controlers 

    Many studies show that, when MEMSs are submitted to AC signals, through a nonlinear 

electrical circuit, they show very complex behaviors [111, 112]. This complexity is a 

consequence of nonlinearities in the mechanical and transducing parts. They also show that, 

these complex behaviors found applications in medicine, engineering, sensors, actuator, 

energy harvester and others.  

1.4.3.1 Uses of the piezoelectric ultrasounds 

 

Figure 6: Ultrasound imaging and procedures [19-22] 

- Ultrasonic welding: Many plastics can be joined together using a process 

known as ultrasonic welding. This type of process requires ultrasonic waves to 

be transmitted to a focused area where they can cause pieces of plastic to fuse 

together. Frequently, piezoelectric actuators are used to accomplish this task. 
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- Ultrasound imaging (Figure 6): Piezoelectric transducers are often used in 

medical ultrasound equipment. Advances in equipment over the decades have 

enabled improved monitoring of pregnancies and facilitated minimally invasive 

surgical procedures. 

- Ultrasonic medical procedures (figure 6): Some non-invasive medical 

procedures rely on the use of focused ultrasonic waves to break up kidney stones 

or destroy malignant tissue. Additionally, the advent of the harmonic scalpel has 

enabled surgeons to simultaneously incise and coagulate tissue during a surgical 

procedure without the need for cauterization. This leads to less tissue damage, 

less blood loss, and faster healing times.  

1.4.3.2 Uses of Piezoelectricity in actuator 

- Stripe actuators: Two strips of piezoelectric material may be sandwiched 

together in a configuration that is similar to a bimetallic strip. In this 

configuration, the electric input causes one strip to expand while the other strip 

simultaneously contracts, causing a deflection. 

- Piezoelectric relays: Piezoelectric elements may be implemented to actuate 

electromechanical relays or switches. For these applications, either stripe 

actuators or stack actuators may be used to open and close electrical contacts. 

Such devices are maintenance-free and last through many cycles without 

noticeable wear. As an additional benefit, using piezoelectric actuators to operate 

electrical contacts enables fast and precise control in small packages that are 

either difficult or impossible to achieve with electromagnetic relays.  

- Microelectronic mechanical mystems (MEMS): MEMS devices have become 

more commonplace as more integrated capabilities are required in smaller 

packages, such as cell phones, tablet computers, etc. The advantage of MEMS 

devices is that gyroscopes, accelerometers, and inertial measuring devices can be 

integrated into chip-sized packages. In order to accomplish such a feat, 

piezoelectric actuators and sensors are often used. 

1.4.3.3 Using Piezoelectricity in micro robotics 

     In the field of small robotics, small power-efficient mechanical actuators and sensors are 

needed. With the use of piezoelectric actuators, building something as small as a robotic fly 

that can crawl and fly is technically feasible. This is the case of small drones of the size of 

https://www.americanpiezo.com/blog/medical-applications-of-ultrasonic-transducers/
https://www.americanpiezo.com/blog/history-of-ultrasound-technology/
https://www.americanpiezo.com/standard-products/stripe-actuators.html
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insects or birds that fly using flapping wings. They control surfaces just as birds and insects 

do. They are based piezoelectric actuators. 

 

Figure 7: Robot micro air vehicles [113] 

    Recently, DARPA invented a caliber bullet that can change course in mid-flight. The bullet 

uses an optical sensor that is mounted on its nose in conjunction with a control system and 

moveable tail fins to steer itself toward a laser-illuminated target. Although DARPA dis not 

revealed much about their Extreme Accuracy Tasked Ordinance (EXACTO) bullet, the most 

likely means of manipulating the tail fins probably involves piezoelectric actuators. 

1.4.3.4 Piezoelectric motors 

    One advantage of using piezoelectric materials is that their characteristics are precise and 

predictable. Figure 8 show an example of a piezoelectric motor. Expansion and contraction of 

a piezoelectric actuator can be precisely controlled as long as the supply voltage is controlled. 

Some motor designs take advantage of this fact by using piezoelectric elements to move a 

rotor or linear element in precise increments. Precision on the order of nanometers can be 

achieved with some piezo motor designs. Piezo motors work at a wide range of frequencies 

but typically work best in a low frequency range. 

 

Figure 8: piezoelectric motor [113] 

https://www.darpa.mil/Our_Work/TTO/Programs/Extreme_Accuracy_Tasked_Ordnance_%28EXACTO%29.aspx
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1.4.3.5 Vibration control using the piezoelectric structures 

    Different teams of researchers have been investigating ways to reduce vibrations in 

structures by attaching piezoelectric elements to the structure [114-121]. The principle is the 

following: when the structure is bent by a vibration in one direction, the vibration-reduction 

system responds to the bend and sends electric power to the piezoelectric element to bend in 

the other direction [122-125].  

1.5   Problems of the thesis 

  As presented in section 1.2.3 above, many equivalent electrical circuit models of the 

piezoelectric plates have been developed based on electrical representation of the coupled 

electrical and mechanical systems. But most of the time, they are limited to small values of 

frequencies. Little information is known when we increase the frequency range. We 

consider in this study a frequency range
5 50 Hz ;  2.5 10  Hz   . In this range of 

frequency, we propose an equivalent circuit having one capacitive branch associated to 

three parallel resonant branches. From the resonant and anti-resonant frequencies 

observed experimentally, the values of the electric components of each branch are 

obtained. We justify the existence of these many resonant branches by use the vibration 

mode of the plate. The second objective is to analyze the self-sustained electronic 

oscillator and self-sustained piezoelectric actuator.  

  As mentioned above in sections 1.2.3 and 1.4.3, piezoelectric structures are used in 

engineering and medical tools. Because of this large numbers of applications, research 

investigations have been engaged in order to sort new and special motions which can be 

exhibited by piezoelectric beams or plates.  The third objective is to analyze the dynamical 

behaviors of a piezoelectric beam powered by two types of nonlinear electrical 

oscillators for actuation purpose, but also and possibly for the improvement of the 

functioning of ultrasonic nebulizers. For the fourth objective, we propose a model for 

the production of periodic patterns of pulse oscillations or patterns of bursting 

oscillations which can also find applications in the actuation engineering but also can 

improve the functioning of echography. 

   The fifth and last objective considers a piezoelectric energy harvesting beam 

undergoing self-excited oscillations when the beam is submitted to the permanent action 

of a fluid flow. 
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1.6   Conclusion 

   In this chapter, we provided some background on piezoelectricity, piezoelectric structures 

and characterization of piezoelectric structures.  Applications of piezoelectricity systems with 

nonlinearities such as energy harvesting, actuators and sensors have been presented. The 

problems that we will have to solve in this thesis have also been presented. The following 

chapter will be devoted to the methods used in the thesis to solve the problems enumerated 

above.  
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2.1 Introduction 

   This chapter presents the methodology for the experimental characterization of a 

piezoelectric structure, the mathematical formalisms, the numerical methods and experimental 

procedure based on analog circuits, used to solve the problems of this thesis, Section 2.2 is 

devoted to the methodology for the experimental characterization of a piezoelectric structure. 

In section 2.3, the mathematical formalisms are presented. Section 2.4, is devoted to the 

numerical methods. Section 2.5 will present some models use in this thesis. Section 2.6 will 

give more details on experimental procedure based on analog circuits. In section 2.7 will 

conclude the chapter.  

2.2   Experimental characterization of a piezoelectric plate 

2.2.1 Presentation of the piezoelectric plate 

    The piezoelectric plate considered for this study is of the PZT type. The physical 

parameters associated to the PZT type are given in Table 1 [126], in which 33( / )d m V  is the 

piezoelectric constant, 33k  is the electromechanical coupling factor of the material,  
33 ( )EY Pa  

is the Young’s modulus, and 
33( / )T F m  is the dielectric constant.  

Table 1: Parameters of the PZT specimen 

Coefficients Values Coefficients Values 

33( / )d m V  
128.85 10  

33k  0.72  

33 ( )EY Pa  9169 10  33( / )S F m  99,57 10  

Thickness ph ( )m  6200 10  a  ( )mm and b  ( )mm  20 and 20 

 

2.2.2  Experimental method 

    The method consists to experimentally plot the frequency-impedance characteristics of the 

piezoelectric plate, propose an electric equivalent circuit, and finally determine the values of 

the electric components of the electric circuit.  For this aim, the piezoelectric plate is mounted 

in series with a low resistance 0R and powered by a low frequency generator (LFG) delivering 

a maximum voltage of 1 V (Figure 9). Since the voltage delivered by the LFG is sinusoidal, 

we obtain for each frequency a value of the impedance given by 

                                                       

max

maxI

PZU
Z                                                        (2.1)                                                                                                                                     

where maxPzU  and maxI  are respectively the amplitude of the maximal voltage and amplitude 

of the maximal current. 
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Figure 9: Experimental diagram of a piezoelectric plate in series with a resistance   and 

powered by a low frequency generator (LGF). 

    By varying the frequency of the LGF, the voltages across the resistor 0R  are taken through 

the oscilloscope and the PZT for each value of the frequency. The LGF being digital, the 

frequency of the signal delivers is read directly on its display.    

2.2.3  Theoretical expression of the impedance      

    The impedance of the Van Dyke’s circuit can be given as: 
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1 1

1
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1 0
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
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1

P
P

L
Q

R


 .   

where s is the series resonance frequency, p is the parallel resonance frequency, sQ  is the 

series resonance quality factor and pQ is the quality factor of parallel resonance. 

2.3 Mathematical formalisms  

    The modeling of the linear and non-linear beam (or plate) leads to PDEs and to solve them, 

one needs some mathematical formalisms.   

2.3.3 Modal approximation 

       The modal approximation is based on the Galerkin decomposition, in order to 

transform the system of PDEs to a system of ODEs.  The procedure consists to 
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approximate the solution (deflection) w  by a series of time varying function  ,n m t  and 

linear undamped mode shape  , ,n m x y  of the form:  

                              
     , ,

1 1

, , ,
N M

n m n m

n m

w x y t t x y 
 

                                             (2.3) 

for the plate, and  

                         
1

, ( )
N

n n

n

w x t t x 


                                                              (2.4) 

for the beam. N and M represent the number of modes retained in the solution 

respectively along x and y directions. 

   Substituting Eq. (2.3) or Eq. (2.4), multiplying by  , ,n m x y  (or  n x for the beam) in 

the PDEs of different structures and integrating over the surface of the plate (or the length 

of the beam), one obtains the ODEs.    

2.3.4 Harmonic balance method 

      The harmonic balance method is an approximation method used to estimate periodic 

solutions of nonlinear ODEs. Consider the following differential equation: 

                                             
 , ,x x f x x t                                                                (2.5)                  

where the function f satisfies the following condition    , , , ,f x x t T f x x t  . 

The harmonic solution of equation (2.5) is expressed as follows: 

                               
  1 2sin sin cosx A t A t A t                                         (2.6)                                                                 

where 
2 2

1 2A A A   is the amplitude of oscillations,   the pulsation of the sinusoidal 

excitation and  the phase at the origin. 

Expression (2.6) is inserted in equation 2.5 to obtain A  and   or 1A and 2A . In this 

procedure, terms containing cosn t and sin n t with 1n   are discarded.  

2.3.5 Routh-Hurwitz criterion 

   The Routh-Hurwitz criterion can be defined as algebraic criterion which allows 

evaluating the stability of a system from the coefficients of the characteristic equation. Let 

us consider the following characteristic equation 
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1

0 1 1.... 0n n

n na p a p a p a

                                                (2.7) 

   The determination of the signs of the real parts of the roots p can be carried out by 

making use of the Routh-Hurwitz criterion [127,128]. Applying this criterion, we 

constructs firstly, a set of n determinants set up from the coefficients of the thn  degree 

characteristic equation Eq. (2.8). These determinants are given as follows 

1 0

3 2 1 0

1 0

1 0 5 4 3 2

1 1 2 3 3 2 1

3 2

5 4 3

0 0 ... 0

... 0
0

... 0
,   ,   ,   .....,  

.. .. .. .. ... 0

.. .. .. .. ... 0

0 0 0 0 ...

n

n

a a

a a a a
a a

a a a a a a
a a a a

a a
a a a

a

             (2.8) 

  The Routh-Hurwitz criterion states that the real parts of the roots are negative provided 

that all coefficients 0 1, ,....., na a a  are positive and that all the determinants are positive 

also. Since the bottom row of the determinant n is composed entirely of zeros, except for 

the last element  na , it follows that 1 n n na    . Thus, for stability it is required that both 

0na  and 1 0n  . 

2.3.6 Cardano’s method 

  The Cardano method is used to solve a third-order polynomial equations [129]. Let us 

consider the following equation: 

3 2 0ax bx cx d                                                                                                              (2.9) 

Considering
3

b
x z

a
  , we obtain the canonical equation below: 

                                                        
3 0z pz q                                                           (2.10) 

where 

2

23

b c
p

a a
   and 

2

2

2 9

27

b b c d
q

a a c a

 
   

 
                                                            (2.11) 

According to the sign of the discriminant 2 34

27
q p   , the solutions of equations (2.11) are 

obtained: 

- If 0 , the equation possesses one real 0z and two complexes 1z  and 2z  , all 

solutions of them given below: 
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
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                                                                                              (2.12) 

where 3 3
1 3

;  and 
2 2 2 2

q q
j i u v

     
      

- If 0  , the equation possesses two real solutions, one simple 0z  and one double 

1z . 

     

3 3
0

3 3
1 2

2 2 3
2 2

3

2 2 2

q p q
z

p

q p q
z z

p

 
  

 
      

                                                                    (2.13) 

- If 0 , the equation possesses three real solutions, 0 1 2, ,  z z z . 

3

1 27 2
2 cos cos  1,2,3

3 3 2 3
k

p q k
z ar k

p

  
         

                             (2.14) 

   This method is used to solve the third order polynomial equation, for equilibrium and 

instability studies. 

2.4   Numerical methods 

   After using the modal approximation, one needs to solve numerically the ODEs and PDEs 

using appropriate methods. 

2.4.1 Finite differences method 

   The modelling of a plate and beam dynamics led us to two dimensional partial 

differential equations which can be solved directly using the finite differences method. 

For the time differentiations, the forward difference formula is used and one writes  

                                                 

1 1

, ,

1 12
, , ,

2 2

2

2

k k

i j i j

k k k

i j i j i j

w ww

t h

w w ww

t h

 

 






 




                                                   (2.15) 

where k  runs  for time  incrementation, i  and j  run for space  increment variables x and y .  

   For the spatial derivatives, one uses the following formulas: 
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(2.16)    

where h  is the time step of time, x and y are respectively the difference step along x and y 

directions. 

2.4.2 Fourth-order Runge-Kutta method  

2.4.2.1     For first-order differential equation 

     Runge-Kutta methods are an important family of implicit and explicit iterative methods 

for the approximation of solutions of ODEs. These techniques have been elaborated for 

the first time in 1894 by Carle Runge and have improved by Martin W. Kutta in 1901 

[130,131]. 

Let us consider the following ODE: 

                           

 
  

dx
,

d

t
f x t t

t
       with   0 0x t x                                        (2.17) 

where f
 
is a function with the unknown variable  x t . 

The RK4 scheme for this problem is given by: 

                                      

  1 1 2 3 4

1
2 2 ,

6

,

i ix x L L L L

t t h

     

                                             (2.18)

 

where  
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                                     (2.19) 

2.4.2.2     For m-order differential equation 

   In the case of m-order differential equation, we have: 
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 ,                                           (2.20)       

  With successive variables change, the equation (2.20) can be written under the following 

form: 
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                                   (2.21) 

  With this general vectorial form, iterations can be performed to determine all the values of 

y  and its derivative at different time separated by the time step h  using: 

                          
      

1 2 43

1
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6

k k k k

k ku t h u t L L L L                                   (2.22) 

where  
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  This generalized form can also serve to solve numerically first-order coupled ODEs. 

2.4.3 Numerical tools for the characterization of the dynamical states of non-linear 

systems 

       Many numerical tools such as times series, phase portraits, Poincare section and 

bifurcation diagrams are usually used to analyze the dynamical states of nonlinear systems. In 

this section, we present brief information on the numerical tools which are used for 

characterizing different dynamical states of nonlinear dynamics of plates in the different study 

cases considered in this thesis. 

2.4.3.1     Phase portrait 

   The phase portrait of a dynamical system is a geometric representation of their trajectories 

in the phase plane: a coordinate plane with axes being the values of the two state variables of 

dynamical system. Phase portraits reveal information such as whether an attractor or a limit 

cycle is observed for the chosen parameter value. However, the distinction between the quasi-

periodicity and chaos phenomena is the drawback of this numerical tool. To solve this 

problem, the most reliable numerical tool is the bifurcation diagram with the Lyapunov 

exponent.  

2.4.3.2      Bifurcation diagrams 

    A bifurcation is a phenomenon in which, the properties of a dynamical system changes 

qualitatively when a control parameter of the system is varied. In order to plot the bifurcation 

diagram of continuous dynamical systems, a set of consecutive maxima of variable 

representing the attractor must be obtained or a periodic capture of the variable after each 

period when the period is known. In the bifurcation phenomena, attractors may appear, 

disappear or be replaced by another one. Bifurcation diagrams help us to visualize these 

transitions. Thus, one can identify the fixed points, periodic orbits, or chaotic attractors. One 

can also identify various routes to chaos taken by dynamical systems. The most common are: 

the period doubling route, the quasi-periodic route and intermittency route 
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2.4.3.3      Lyapunov exponent 

     The bifurcation diagram is accompanied by the variation of the Lyapunov exponent’s 

spectra or that of the largest Lyapunov exponent. To calculate the largest Lyapunov exponent 

we must consider a small derivation from the process  x t  for example noted by x , which 

satisfies the equation  x J x  . J is a Jacobian matrix of the dynamic equation with respect 

of the state variable  x t . Then the largest Lyapunov exponent is calculated as:  

                                                     
1

lim log
t

Lya x
t




                                                          (2.24) 

2.5   Some models use in this thesis  

2.5.1 Model for the vibrations modes of the plate 

2.5.1.1 Physical model and equation 

Because of the difficulty of the values of all the parameters of the piezoelectric plate, the 

development that follows will only tackle the question of giving a qualitative explanation of 

the many resonant branches in the electric equivalent of the piezoelectric plate. We consider 

an amorph piezoelectric plate as presented in Figure 19. It is constituted of a PZT layer 

perfectly bonded to a substructure layer.  A resistive load 0R  is connected to the plate.  The 

system is excited by a low frequency generator that delivers a maximum voltage of 1 V as in 

the previous section. 

 

              Figure 10: Presentation of the piezoelectric plate under a sinusoidal excitation. 

   In reference [126], one established that the plate deflection, the voltage and current in the 

piezoelectric plate are described by the following set of partial differential equations 
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(2.25)                

where w is the deflection, 1 ( )p ph h     (ρ being the density of the thin plate of thickness 

h, and 
p   the density of the PZT with thickness hp), λ is the damping coefficient for 

mechanical vibration. The other coefficients are defined as follows:  

  

3 3 3 2 2

11 3111
112

11 12 11 12

31 3112
31

11 0 33 33 11 12

(8 ) (4 )
,  ,   ,  

12(1 ) 24 8

,  ,  ,  ,  

E E
Es b b

p E E E E
p

E
p p p pc

E s s E E

p

E h c h h e h hs
D D c

hs s s s

C h h e h ds
e

s D R ab ab S S




   
 

 
   

  


    



  E

ijS
 
are elastic compliances at constant electric field and T

ij are dielectric coefficients at 

constants stress. Es is the Young’s modulus and ν the Poisson ratio. a and b are the lengths of 

the plate. ( )x  and H(x) are respectively the Dirac delta function and the Heaviside function.   

The boundaries conditions are given as: 
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                                                     (2.26) 

Which express that the displacement and flexural moment vanish at the boundaries of the 

plate.  

The values of other parameters of the piezoelectric system used in this paper are presented in 

Table 4 [126,132]. 
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Table 4: Geometric, material and electro-mechanical parameters of the substructure and of the 

piezoelectric layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.1.2 Modal equation 

    With the boundary conditions and making use of the Galerkin decomposition method, we 

set the transversal deflection of the plate in the following form. 
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If , ( )n m   are the amplitudes of the ( ,  )n m  modes. Substituting Eq. (2.27) into Eq. (2.25) and by 

means of the Galerkin’s method, one obtains 
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                                               (2.28)            

Coefficients                Values                 Coefficients                Values 

Length 
                                                                                     

 

Width  
                                                                                     

Thickness 
                                                                                    

   

Damping  
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Density                                                                                
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  ,T n m  is the natural period of vibration to the substructure. 

2.5.1.3 Analytical treatment 

       The differential Eq. (2.27) can be solved analytically by making use of the harmonic 

balance method for which one writes  
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     Inserting Eqs. (2.30) into Eqs. (2.27), equating the coefficients sin  and cos  , show 

that the amplitude ,  rv  and ri obeys to the followings linear algebraic equation 
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2.5.1.4 Finite difference scheme 

  By applying the central spatial and temporal discretization with space and temporal steps 

adequately chosen to avoid numerical instability. Consequently, (2.27) become:  
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The boundary conditions are given as follows: 
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2.5.2 Model for the self-sustained actuator of the plate 

      The self-sustained piezoelectric actuator has the same structure as in Figure 20. But, the 

resistance and external generator is replaced by a nonlinear resistor which is the one used to 

generate Van der Pol type oscillations (see Figure 11). The idea here is to transform the 

electric part so that it behaves like a Van der Pol oscillator. To achieve this, we add a coil in 

parallel to the nonlinear resistance (NLR). It is expected that the system will lead to self-

sustained electrical oscillations and mechanical vibrations. We first consider the electric 

signature with a theoretical and experimental study and then the analysis of the mechanical 

vibration is conducted theoretically using the partial differential equations of the system. 
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Figure 11: Presentation of the piezoelectric plate in parallel with a coil and a non-linear 

resistance 

Considering Figure 11, and applying the Kirchhoff's laws, one can write 

                            p L RI I I                                                                                         (2.35) 
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   The above relations lead to the following differential equation satisfied by the voltage 

across the piezoelectric plate:  
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Hence the self-sustained piezoelectric plate equations are in the following form: 
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Substituting Eq. (3.4) into Eq. (3.28) and by means of the Galerkin’s method, we obtain the 

following dimensionless differential equations:  
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where vT  is the proper period of the self-sustained electrical part. 

It can be shown that the only equilibrium point (0,0,0,0) from Eqs.2.38 is unconditionally 

unstable. 

2.6   Experimental procedure based on analog circuits 

2.6.1 Principle of analog simulation 

   The elementary operations of the analog simulation are direct consequences of physics laws 

[132]. Among these elementary operations, we have: summation, multiplication, integration 

and derivation.  To design these operations, one needs to combine the basic electrical 

components such as resistors, capacitors, inductances and diodes with operational amplifier 

and analog multiplier. 

 Operations using Op-Amps 
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Figure 12: Some basic linear operations with Op-Amp. 

 Analog multipliers 

    An analog multiplier is a device which takes two analog signals and produces an output 

which is their product. Such circuits can be used to implement the polynomial nonlinear 

functions. In the trade, one can find different types of analog multipliers. However, the most 

used is the AD633 analog device. The functional block diagram of AD633 is represented in 

Figure 11 

 

                           

Figure 13: (a) Example of analog multiplier AD633JN and (b) electrical equivalent of the 

analog multiplier. 

   The multiplication of the voltage differences  1 2X X  and  1 2Y Y  over 10 Volts is added 

to the voltage Z  and the sum is supplied through the output voltage  W .  The relation below 

gives its transfer function:  

                                         
   1 2 1 2

10

X X Y Y
W Z

 
                                                         (2.39) 

2.6.2 Electronics component and equipment 

(a) (b) 
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    To design electronically the mathematical operations (addition, subtraction, derivatives, 

integrals and multiplications), one needs to combine the basic electrical components such as 

resistors, capacitors and inductances with operational amplifiers and analog multipliers. 

2.6.2.2 Electronics components 

    The Operational Amplifier (Op-Amp) is an integrated circuit which amplifies an input 

through a very high gain. The Op-Amp contains several transistors. An operational amplifier 

has two input terminals used for polarization. It has also two inputs which are the non-

inverting and inverting inputs. Figure 14(a) presents an example of operational amplifier. 

Finally it has one terminal output used to obtain the output signal (see figure 14(b)).  

 

(a) (b) 

Figure 14: (a) Operational amplifier component and (b) electrical equivalent of the 

operational amplifier. 

    Other electronic components that we can have and generally linked to the Op-Amp are 

resistors and capacitors (see Figure 15). 

 

Figure 15: (a) Resistors and (b) Capacitors 

2.6.2.3     Electronic equipment 

    Some measuring equipment will be necessary for the accomplishment of the experimental 

work.  
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a- Generators 

   A LFG of type Voltcraft ( 08112875), with a maximal frequency of 2 MHz sweep and 10 V 

for the voltage (see Figure 16(a)) and allowing to power our circuits.  

b- Oscilloscopes 

  A Rigol oscilloscope of type DS1102E, of bandwidth 100 MHz (see Figure 16(b)) and 

allowing the visualization of oscillator electrical signals and electrical voltage across the 

piezoelectric plate.  

c- Multimeters  

An industrial Multimeter of type EXTECH (140508148) (figure 16 (c)) was used to measure 

the values of the components and to do the continuity test of our circuits. 

d- Stabilized DC power  

   A stabilized DC power supply (PS2303) with two variable outputs (0-30 V) and a fixed 

output of 12 V (see Figure 16(d)), is used to bias the electronic components (Opamps and 

multipliers) 

   

 

                                                                             

 

Figure 16: Some additional materials used: (a) LGF generator;; (b) Rigol oscilloscope; (c) 

Industrial MultiMeters; (d) DC power supply. 

 

 

(c) (d) 

(a) (b) 
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2.7   Conclusion 

   The aim of this chapter was to present the methods used in this thesis: the experimental 

characterization of a piezoelectric structures, mathematical formalisms, numerical methods 

and experimental procedure based on analog circuits. In the first part, methodology for the 

experimental characterization of piezoelectric structures and the modal approximation, 

Cardano’s method and the Routh-Hurwitz criterion were presented. Then the numerical 

methods for the simulation of ODEs and PDEs were presented. Finally, we presented the 

analog electronic components, necessary for the construction of the different types of 

oscillators. All of these methods will be used in Chapter 3 which is devoted to the 

presentation of the main results of this thesis. 
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Chapter 3: Results and discussion 
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3.1    Introduction 

    This chapter deals with the presentation of the main results of the thesis. In section 3.2, the 

electrical characterization of piezoelectric plate is presented. Section 3.3 is devoted to the  

piezoelectric plate based self-excited oscillator. Section 3.4 is devoted to dynamical states of 

piezoelectric beam with nonlinear electric components and applications. In section 3.5, 

bursting like oscillations by a piezoelectric beam and applications is presented. Section 3.6 is 

devoted to the analysis of Self-sustained energy harvesting from micro beam under fluid flow. 

In section 3.7 will conclude the chapter.   

3.2   Electrical characterization of piezoelectric plate   

3.2.1   Frequency-impedance characteristics of a piezoelectric plate 

    As indicated in chapter 2 (figure 8), a piezoelectric plate has been placed in a circuit 

containing in series a resistor and a low frequency generator. Using a voltage of 1 V , we have 

varied the frequency of the LFG and measured the impedance of the piezoelectric plate. Figure 

17 presents the variation of the impedance versus the frequency. One can observe anti-

resonances (points where the impedance is relatively minimal) and resonances (points where the 

impedance is relatively maximal). More precisely three anti-resonances appear at 82 kHz, 115 

kHz and 215 kHz while the three resonances appear at 95 kHz, 120 kHz and 235 kHz.  

 

Figure 17: Experimental evolution of the impedance of the piezoelectric part as a function of 

frequency 

3.2.2 Equivalent electric model of the piezoelectric plate 

3.2.2.1 The Van Dyke model 

   As it known from the IEEE standard on piezoelectricity, the equivalent circuit of a 

piezoelectric plate is given in figure 3.  
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  Considering this figure, equation 1.5 can be rewritten as: 
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             

.                                   (3.1) 

where,  

 sf  correspond to a series resonance frequency for amplitude corresponding to the frequency 

at which the impedance Z at  the terminals of the piezoelectric plate is at its first minimum 

Zmin1,  

 Pf  correspond to a parallel resonance frequency corresponding to the frequency at which 

impedance Z  at the terminals of the piezoelectric plate is at its first maximum Zmax1,  

  From these values and the corresponding values of the impedance, one can determine the 

values of C0, R1 and C1. At fs1, Zmin1= R1, while at fp1, Z=Zmax1.  

  Thus after some simplification, one can write: 
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        (3.2) 

Since both quality factors are generally very large, it is possible to simplify the expression of 

max1Z  supposing: 
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1 1

1SP
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ff
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f f
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This leads to: 
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Considering the fact that min1 1Z R  and taking into account the equality
1
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1 2 11
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   Consequently,    
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.                                                    (3.5)                                  

     From the analysis conducted and considering the experimental curve of Figure 17, one arrives 

at the Table 3 which presents the calculated values of the electric components of the Van Dyke 

circuit. 

 Table 3: Parameter values of the electrical model equivalent at two branches 

Electric component t        0C   1R  1L  1C  

Value 358.92 nF  1.00   30.70 H  122.82 nF  

    From the values of Table 3, the real value of the Van Dyke’s circuit impedance can be 

expressed in terms of frequency. Its frequency variation is then superposed to the one 

obtained experimentally (curve in blue in Figure 18). 

 

Figure 18: Superposition of the two impedances: Van Dyke’s circuit impedance in red and the 

experimental curve in blue. 

    we observes a good agreement between the theoretical impedance and the one obtained 

experimentally for frequencies below the first resonance. Indeed, a perfect frequency 
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agreement between the two curves at the first anti-resonance at the frequency fS1 = 82 kHz 

and at the first resonance at the frequency fP1 = 96 kHz. But after the first resonance, the 

impedance from the Van Dyke’s model decreases in a monotonous manner while the 

experimental result presents other resonances and anti-resonances. This might be explained by 

the fact that at large frequencies, the Van Dyke’s model is limited in explaining the equivalent 

circuit of the piezoelectric plate. 

3.2.2.2 Three parallel branches model  

   By adding a third RLC resonant branch, the equivalent model is presented in Figure 19 

 

 

 

 

Figure 19: Electric equivalent model of piezoelectric plate with three branches. 

   The impedance of this equivalent circuit with three branches is given by the following 

expression: 
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(3.6)  

   Using some mathematical transformations and physics considerations (see Appendix 1), 

this model leads to the values of the electric components which are listed in Table 4. 

 Table 4: Parameters values of the new electric equivalent model of the piezoelectric plate 

Electric component 
0( )C nF  1( )R   1( )L H  1( )C nF  

2 ( )R   2( )L H  2( )C nF
 

Value     358.92  1.00     30.70  122.82  4.40  100.13  19.13  

 

   With the values in Table 3, we evaluate the shape of the impedance given in Eq. (3.6) 

versus the frequency and we superpose to the experimental curve. This appears in Figure 18.  

C1 R1 
L1 

C0 

R1 
C2 L2 R2 
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And one notes the more accurate agreement for frequencies above the first resonant 

frequency. 

 

Figure 20: Impedance of the new equivalent model in red and the experimental results in blue. 

    But, despite this agreement, it is remarkable that there is a resonance in the experimental 

curve which is not explained by the new model. It is expected that the adding of new resonant 

branch will be more accurate. 

3.2.2.3 Generalization 

    A generalization can be proposed as in Figure 21 where the number of branches depends on 

the frequencies range. 

 

 

Figure 21: Generalized equivalent model with i parallel branches. 

 

    The model constituted of several RLC branches can be understood if one has in mind that 

submitting the piezoelectric plate to a sinusoidal electrical voltage will, as the results of the 
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reverse piezoelectric effects, create vibrations in the plate. These vibrations can be described 

by a 2-dimensional partial differential equation which can be converted into a set of modal 

differential equations. Each of these modal differential equations has its own resonant 

frequency [125].  

Consequently the coupling with the electric part of the piezoelectric plate will lead to resonant 

states equivalent to electric resonant branches. The section below qualitatively confirms what 

is indicated here.  

3.2.3 Vibrations modes justification of the impedance variation  

 

To determine the impedance characteristics, we take n and m varying from 1 to 3 and write  
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n m
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                                   (3.7) 

We stay at the center of the piezoelectric plate ; ;
2 2
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
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. Witch would amount to writing 

Eq.(3.14) in the form :   
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And therefore 
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One gets the impedance for nine vibration modes defined by 
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Plotting this expression versus the frequency, one obtains Figures 20 which gives the 

frequency-impedance characteristics of the piezoelectric structure presented in Figure 8a.  

   From Figure 22 we can observe the phenomenon of anti-resonance and resonance of 

impedance characteristics as we observed experimentally.  The appearance of a peak of 

resonance and anti-resonance is related to the mode of vibration chosen. More precisely, we 

have resonances at the frequencies,17.94 kHz ,101.7 kHz , and 144.1 kHz . And for anti-

resonances,15.88 kHz ,99.73 kHz ,103.4 kHz , 143.3 Hz and 145.2 kHz .  Thus, the figure 22 

explains that the resonant branches of the electric equivalent model of the piezoelectric plate 

are due to the vibration modes of the piezoelectric plate.  To end this section, we mention that 

the intent here was only to have a qualitative agreement between the results obtained 

experimentally and those obtained from the modal approach of the plate dynamics.  

 

Figure 22: The frequency-impedance characteristics obtained from the vibration modes 

approach 

    In order to validate the proposed model, a direct numerical simulation of partial differential 

equation Eq (2.25) is explored using the method of lines [134-135]. The central finite 

difference formula is applied to discretize the nonlinear differential equation with the 

appropriate space step dx . 

 

3.2.3.1 Numerical simulation of the PDEs 
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       For obtaining a numerical solution of Eqs (2.25), we use the finite difference scheme 

[136-137] by applying the central spatial and temporal discretization with space and temporal 

steps adequately chosen to avoid numerical instability.  

 

Figure 23: The frequency-impedance characteristics obtained from the vibration modes 

approach: in blue the finite difference method, in red the modal approach and in black the 

analytical method. 

   In Figure 23 we have plotted the evolution of the amplitude of impedance in function of the 

excitation frequency. There is a fairly good agreement of first pic with simulation of modal 

equation, analytical approach and simulation of partial differential equation. But when the 

frequency is increased, one observes the appearance of other pic when the full partial 

differential equation is simulated numerically using the finite difference scheme as described 

above.  

3.3  Piezoelectric plate based self-excited oscillator 

   As indicated in the introduction, one of the applications of piezoelectric plates is the 

development of an electronic oscillator or its corresponding actuator with periodic 

deformation (lengthening or shortening). These oscillators may be set into motion because of 

an external periodic voltage. However, thanks to some special electronic components, self-

sustained oscillations can take place. This section considers such self-sustained oscillations 

having the piezoelectric plate as one component of the circuit. 

3.3.2  Electrical equivalent and self-sustained oscillations 

  The corresponding electronic circuit is presented in Figure 24 and is constituted of three 

parallel branches. The first one is an electronic setup behaving as a nonlinear resistor having 
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both positive and negative slopes. This is the usual electronic setup of nonlinear resistor used 

in Van der Pol oscillators. Its I − V characteristics is given by the following equation 

                                                
3

0 0i a V b V                                                      (3.14) 

with 0 0a  and 0 0b .  

 

 

 

 

 

Figure 24: Electronic circuit of a piezoelectric plate based self-sustained oscillator. 

  The second branch is made of a coil with inductance L . Moreover, the third branch is just 

the piezoelectric plate represented by its electric equivalent circuit.  

  By applying Kirchhoff’s laws in Figure 24 and after some mathematical transformations, it 

is found that the circuit is described by the following set of differential equations. 
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Where the dot over a variable is the derivative with respect to the dimensionless time 0t   (t 
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The only equilibrium point from equation (3.15) is (0,0,0,0,0,0) . The characteristics equation 

obtained from this equilibrium point is  
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Where the coefficients ia are given below 
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      Using the Routh-Hurwitz criterion [126,127], it can be demonstrated that this single 

equilibrium point is unconditionally unstable.  From the numerical simulation, it is found that 

any trajectory starting at the neighborhood of this point leads to a limit cycle whose shape 

depends on the values of the system parameters (e.g; on the value of A).  For instance, Figure 

24 presents the temporal signal and the phase portrait for x , obtained for two values of A.   

 Temporal evolution 

by use equivalent 

electrical circuit  

Temporal evolution by use laws 

of plate theory  

Phase portrait with 

equivalent electrical 

circuit  
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Figure 25: Time traces and phase portrait of the voltage x  across the piezoelectric plate for 
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two values of A for
52

0 4.3 11 0   ; 0.00077B  ; 1 0.0258D  ; 2 0.00542D  ; 1E 0.48644 ;

2E 0.1493 ; 1 0.075  ; 2 0.1018  ; 1 1.192  ; 1 21.192; 1.673   and 2 1.673  . 

    To verify the theoretical results, we have conducted an experimental test with electronic 

circuit presented in Figure 26.   

3.3.3 Experimental signature of the self-sustained oscillations  

   The circuit is constituted of three parallel branches: nonlinear resistance block, coil of 

inductance L and the piezoelectric plate. 

 

 

 

 

 

 

Figure 26: Self-sustained electronic oscillator made of a piezoelectric plate 

   From Figure 26, it is found that the coefficients 0a  and 0b  in Eq. (3.19) are approximated 

by the following expressions derived from the diode I-V characteristics [138]. 
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where 0 100 i A , is the reverse saturation current in nonlinear resistance and 0 26 V mV , 

is the thermal tension.  For 0a  to be positive, the following condition should be satisfied  
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(3.19) 

   From the expression of A Eq. (3.16) and that of the coefficient 0a above, one notes that A  

can be varied experimentally by adjusting the values of the resistances 26 36,R R  and 3mR . 

However, we choose to fix 26 64 R   , 3 641 mR   , and vary only 36R . Figure 27 presents 

the experimental time traces of the voltage across the piezoelectric plate. As found in the 
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theoretical results in Figure 27, the voltage temporal shape moves from the well-known 

periodic sinusoidal oscillations to shapes close to relaxation oscillations when A  or 36R  

increases. At the same time, it is found that the frequency is a decreasing function of A .   

36R  ou A  

Temporal variation of the 

voltage across the 

piezoelectric plate 

Phase portrait 
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Figure 27: Time plot and phase portrait of the voltage across the piezoelectric plate 

3.3.4 Results from the partial differential equations model 

3.3.4.1 Numerical results 

         Eq. (2.37) has been solved numerically and the time traces of the mechanical vibration 

are presented in Figure 28.  It is found that the electrical signal presents the classical 

sinusoidal shape for ε0=0.1 (not shown) while the mechanical vibration has a shape similar to 

that of mixed modes oscillations where one finds high frequency small amplitude oscillations 

superimposed on low frequency high amplitude oscillations. By increasing the parameter of 

the VdP oscillator in order to subject the piezoelectric plate to relaxation oscillations (ε0=4), 

Figure 28 shows that the mechanical arm still exhibits mixed mode oscillations, but with 

larger amplitudes. 
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Figure 28: Temporal evolution of the plate deflection for   (left curve) and for 

0 4 
 (right curve) with an inductance coil 41 H . 

3.4   Dynamical states of piezoelectric beam with nonlinear electric 

components and applications  

3.4.2 Piezoelectric beam powered by a circuit with a nonlinear capacitance for 

production of periodic and chaotic ultrasounds 

  In this subsection, nonlinear dependence of the voltage on electrical charge is use to 

constitute a circuit for powered a piezoelectric beam.  

3.4.2.1 Physical structure and its equations 

   Consider an Euler–Bernoulli mechanical beam of width 550 10  mb   , thickness

55 10sh m  , length
5300 10  ml   , density

37165 kg/m  , bending stiffness sE I (where 

9129 10  PaSE   and 
18 45.21 10  mI   ) and the viscosity 400 Ns/m   (see Figure 29).    

Using the laws of mechanics, the equation of motion of the beam is given by 

                                           

2 4

2 4
0s s

w w w
h b E I

t t X
 

  
  

  
                                   (3.20) 

  Now, consider Figure 29 which is a simply uniform composite Euler–Bernoulli beam 

consisting of a PZT layer of thickness
6200 10  mph   , Young modulus 

966 10  PapE    

density
37800  kg/mp  .  

   The beam is also connected to an electrical circuit through the electrodes, which bracket the 

PZT layer. The electrodes are assumed to be perfectly conductive and they cover the entire 

surface of the PZT at the bottom and at the top so that the electric field is uniform over the 

length of the beam. Subjected to an external electric field whose direction is that of the 
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polarization of the PZT, it lengthens. If the direction of the external electric field is reversed, 

it becomes shorter. Once associated with a deformable structure, the whole flexes because the 

substructure which is associated with PZT can neither lengthen nor shorten. The nonlinear 

electrical circuit consists of a resistive load in series with an inductance, a capacitor with 

nonlinear capacitance and an external applied voltage ( 0( ) sinU t u t ). 

 

Figure 29: Piezoelectric cantilever system connected to a nonlinear electric circuit. 

   The voltage charge characteristics of the NLC satisfies the following  

3( )CV q q q                                                                                                         (3.21) 

where  and   are positive parameters. 

   Using mechanics and electricity laws, the piezoelectric cantilever beam connected to 

nonlinear circuit is described by the following set of differential equations (see Appendix 2) 
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
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 

    
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    



     

 

   (3.22) 

with the following boundaries conditions 
2 3

2 3

(0, ) ( ,0) ( ,0)
(0, ) 0

w t w l w l
w t

X X X

  
   

  
 

In order to put the equations in a dimensionless form, we use the following quantities:  

                         0

( , ) ( , ),  ,     = ,   x=sp

n

q t X
w X t h y x

q T l
    ,  

where sp s ph h h  and 

4
2

'

total
n n

l
T k

E I


 , the undamped natural period of the nth mode. 
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The system of equations in dimensionless form is thus as follows: 
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1 22 332 4
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   (3.23) 

with the associated dimensionless boundary conditions 
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

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. 

The dimensionless parameters appearing in Eqs. (3.33) are defined as follows: 
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3.4.2.2 Modal equation analysis 

   Assuming that the beam response is composed or an infinite number of oscillation modes, 

the displacement y can be decomposed in 

                                        
0

( , ) ( ) ( )n n

n

y x x  


    (3.24) 

  where ( )n  is the time-dependent modal-displacement for the mode n  and  ( )n x is the 

position dependent modal shape. Substituting Eq. (3.24) in the associated beam equation 

2 4

2 4
0

y y

x

 
 

 
 and taking in to account the boundary conditions, one obtains for the 

thn mode 

the followings expression [141]:  

                              
 ( ) cosh cos (sinh sin )n n n n n n nx C x x x x        

  (3.25) 

   Where n is the dimensionless frequency numbers obtained from the characteristic equation 

given by 

                                                 1 cos cosh 0       (3.26) 

And r  is expressed as 

                                            

sinh sin

cosh cos

r r
r

r r


  


  

          (3.27) 
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    Substituting Eq. (3.24) in to the first equation of system (3.22), multiplying by ( )n x , 

integrating over the length of the beam and using the optionality of eigen functions, we get 

the following set of linear ordinary differential equations 

                                                       

2

1 2 32
( ) 0n n

n

d d

d d
    

 

 
      (3.28) 

  Considering the second equation of the system, multiplying by ( )n x , integrating over the 

length of the beam, we obtain 

                                                        

2
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1 2 3 42
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b b b b E

d d

 
  

 
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 Consequently, the modal equations of the PZT beam deflection are described by the 

following set of coupled differential equations 
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with 2 22 1I  ; 3 33 2I  and 4 44 3b b I ,  
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.  

   In references [142-143], the authors compared the result obtained from a finite 

difference simulation of the partial differential equations similar to Eqs. (3.23) to those 

from the one-mode approximation in the case of self-sustained electromechanical system 

with clamped-free cantilever arm and the conclusive remark was that the fundamental 

mode is able to capture all the essential behavior of the system effectively and accurately 

for some selected frequency range. For this reason, in our analysis, we consider only the 

fundamental mode of vibration, assuming that, higher modes have negligible effects on 

the system response. 

3.4.2.3 Dynamical behaviors and actuation purpose 

The values of other parameters of the piezoelectric system used in this thesis are presented 

in Table 5 [144]. 
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Table 5: Geometric, material and electro-mechanical parameters of the substructure and of the 

piezoelectric layer. 

 

 

 

 

 

a- Oscillation states 

    Eqs. (3.23) present in the absence of the input voltage ( )U t , a single stationary point 

( 0,  0,  0,  0)
d d

d d




 


     which is stable. The presence of the sinusoidal input gives 

rise to oscillatory steady-states that can be approximated by using the harmonic balance 

method [34] of the form 1( ) sin( )B       and 2( ) sin( )A      . By replacing 

these relations in to Eqs. (3.43), equating the sine and cosine terms separately to find the 

amplitudes A and B , we obtain the following equations: 

                                        
6 4 2

1 2 3 0a A a A a A GE                                          (3.31) 

                                                

2
2 23a

B A
G

                                                                            (3.32)  

  The coefficients ia  and G are given as: 
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    Figure 30 presents the frequency curves of A and B obtained analytically (Eq. 3.33) and 

numerically by solving Eq.  (3.30) using the fourth order Runge-Kutta algorithm.  One 

observes the anti-resonance peak in the electrical part and resonance peak in the mechanical 

part at 3.95 MHz . We can also see that, in the electrical part, two resonance peaks appear 

at 3.16 MHz and 4.93 MHz .  

 

Figure 30: Amplitudes of electrical part (a) and mechanical part (b) as function of the 

normalized frequency. Curve of harmonic balance approximation (black) and curves from the 

direct numerical simulation of modal’s equations (blue). 

b- Chaotic behavior 

   The aim here is to use the Runge Kutta algorithm to solve numerically the dimensionless 

differential Eqs. (3.33) and mark the regions where the system appears periodic and chaotic. 

The bifurcation and Lyapunov exponent diagrams are used.  

    In Figure 31, the bifurcation diagram is plotted in the term of dimensionless deflection , 

dimensionless electrical charge  and the control parameter is the dimensionless voltage . 
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Figure 31: Bifurcation diagram (a) and Lyapunov exponent (b) against with the parameter of 

table 5. 

   As E increases, from         0;2.397 3.057;5.592 8.612;9.392 11.36;15.00E    , the structure 

oscillates and generates periodic ultrasounds. For     2.397;3.057 5.592;6.265E  , these 

ultrasounds are multi-periodic. However, when 8.315E  , 8.665E  and  9.392;11.36E , chaotic 

ultrasounds appear.  

3.4.3 Electromechanical device with a ferro resonant inductor 

   The aim of this subsection is to analyze the dynamics of a piezoelectric beam powered by a 

RLC series circuit with a ferromagnetic core inductor. 

3.4.3.1 Electromechanical equations  

Figure 32 presents the system under study. r  is the resistance of the inductor and R  is an 

additional resistor needed both to reduce the amplitude of current through the inductor.

 

Figure 32: System with ferromagnetic core inductor. 

    The inductance of an inductor that contains a ferromagnetic material is given by the 

following mathematical expression [143] 
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                              (3.34)                                                         

with s
di

ign
dt

 
 

  
 

                                                                

    There are nine parameters appearing in Eq. (3.45) that are briefly presented below (for 

more detailed definitions, see [144]). sB is the saturation flux density, A  and 1l  are 

respectively the cross sectional area and the average length of the magnetic material. N is the 

number of turns, 0 is the permeability of the free space, i is the current through the winding. 
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Parameters  and  are function of the remanence  rB , the coercive magnetic field  cH and 

the saturation flux density sB , as mathematically defined below: 
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 Proceeding as in the preceding section, equations (18) are obtained. 
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3.4.3.2 Dynamical behavior of the device 

  The values of other parameters of the system used in this subsection are presented in Table 6  

[143,144]. 

 

 

 

 Table 6: The values of parameters use in this subsection. 

 

 

 

 

 

 

  In reference [143], it was demonstrated that the parameter  has no significant effect on the 

behavior of the circuit. Thus, to simplify the analysis during this investigation, the parameter 

Coef.       Values   Coef.     Values      Coef.        Values           Coef.            

Values                      
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 is now neglected. Knowing that,   21 cosh 2cosh
2
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, Eqs. (3.36) can be written as:   
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                                  (3.37)  

    Using the harmonic balance method as before, it is found that the amplitudes A, B and C of 

the current flowing through the circuit, mechanical deflection of the PZT and the electric 

voltage trough the capacitor respectively satisfy the following set of nonlinear algebraic 

equations:   
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where coefficients ia and G  are given as:  
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   Figure 33 depicts the variations of A and B when the frequency varies.  One observes 

the appearance of hysteresis and jump phenomena at frequency close to 1   (or in 

dimensions to3.40 MHz ).  
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Figure 33: Amplitudes of electrical part (a) and mechanical part (b) as function of 

normalized frequency. Curve of harmonic balance approximation (Blue) and curves from the 

direct numerical simulation of modal equations (black) for   130 sB mT and 28.86 10
sBE    

   The bifurcation diagrams versus the saturation parameter, the amplitude and the frequency 

of the external excitation are plotted in Figure 34.   One observes chaos oscillations for

      0.01;0.11 0.16;0.46 0.54;1.23sB    with 0.5
sBE   and 0.51  ;    for 

          0.09;0.29 0.36;0.39 0.42;0.59 0.858;1 1.31;3
sBE       with 130 sB mT and 

0.151 and for       0.049;0.189 0.301;0.63 0.83;0.91   with 0.5
SBE  and 

130  sB mT
 

 

Figure 34: Bifurcation diagram (a) and Lyapunov exponent (b) against (saturation 

parameter) for  and ; bifurcation diagram (c),  Lyapunov exponent (d) 

against  for and ; bifurcation diagram (e) and Lyapunov exponent (f) 

against for  and with the parameter of table 6. 

sB

0.5
SBE  0.51

sBE 130 sB mT 0.51

 0.5
SBE  130 sB mT
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3.4.3.3 Applications 

a- Periodic and chaotic actuation 

    The field of application of periodic and chaotic actuators extends over mass production 

applications.    Indeed, when ultrasounds are generated as conventional sinusoidal signals, 

they constituted the basic signals for periodic actuators like sound transmitters, ultrasonic 

power transducers and sensors, bending actuators for textile machines, ink print heads, beam 

benders in valves, in braille displays, in optical systems and newly as monolithic multilayer 

actuators for automotive injection system. The chaotic actuators offer efficient and rapid 

mixing and sieving processes [145-147].  

b- Nebulizers 

    The nebulizer consists of an ultrasonic source (piezoelectric crystal) [148] and a tank 

containing the liquid to be nebulized (Figure 36). Nebulized aerosols can be designed for oral 

inhalation to the lungs, nasal inhalation to the upper respiratory tract, or both though the use 

of sized face masks. The piezoelectric crystal vibrates in the frequency range 1 to 4 MHz 

thanks to an alternating electric field produced by an electronic oscillator [149]. We have 

sketched in Figure 35 how the nebulizer structure looks like.  

 

Figure 35: Schematic representation of the ultrasonic nebulizer. 

    The device operates almost silently; the deformed crystal transmits the vibrations to the 

liquid to be nebulized via a liquid coupling. The drug is deposited in a hemispherical cup 

partially submerged in a water tank placed above the crystal: the water serves as a 

transmission fluid. During the operation, a liquid fountain forms in the nebulization tank, like 

a geyser. Large droplets are emitted at the top while fine particles are at the bottom. Pressure 

waves follow one another closely and generate gas bubbles in the liquid (of the order of m  

diameter) which implodes on the surface and are then inhaled by the patient. 
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    The results presented in section 2.2 are interesting since the piezoelectric beam generates 

vibration in the frequency range1 4 MHz .  When the vibrations are periodic as obtained by 

the harmonic balance method, one observes a periodic nebulization of the drug.  

   As it has been shown in recent years, the chaotic vibration offers efficient and rapid mixing 

and sieving processes [145-147]. It is expected that in the ranges of parameters (frequency, 

amplitude of the external excitation and saturation coefficient) where one observes chaotic 

vibrations of the piezoelectric beam, the nebulization process will take less time. This needs 

to be verified experimentally. This is important for patient receiving a nebulization treatment.  

3.5   Bursting like oscillations by a piezoelectric beam and applications 

3.5.2 Generating bursting like oscillations in the piezoelectric beam 

    In recent years, the question of making mechanical arms vibrate in a pulse-like and 

bursting-like manners has been considered using magnetic and capacitive coupling [149,150]. 

These electrical sources were made of electrical circuit mimicking the behavior of biological 

and chemical oscillators. In this section, the electric signals are generated by an electronic 

circuit inspired by the Hindmarsh-Rose oscillator (H-R) [149,150].   This biological oscillator 

is described by the following set of three coupled differential equations [151]:    
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   (3.41)                                                                                  

  where xV represents the membrane potential of a neuron, yV the fast current through the 

membrane, zV
 
the slow current and I  the applied external current. This phenomenological 

neuron model, which has been proposed by H-R, is one of the most interesting neuron models 

used for studying the neuronal activities. The main parameter which modulates the response 

of the H-R oscillator is the applied DC current I whose variation leads the system to exhibit 

several dynamical behaviors such a bursting oscillations with several pulses staring at 1.5I  . 

The number of pulses in each bursting package increases with I  [149,151].  
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    To make the piezoelectric beam generated bursting packages, we use the structure 

presented in Figure 36 in which the piezoelectric beam is submitted to electrical signals 

generated by the an electronic oscillator circuit for the H-R equations.   

 

Figure 36: Self-sustained electromechanical system 

   Knowing that the PZT is in series with the load resistance R , we obtain the following 

coupled equations constituted of one partial differential equations and four first order 

differential equations: 
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            (3.42) 

    After dimensionless reduction and use of the modal approach and simplification, it is found 

that the one mode approximation of the device presented in Figure 38 is described by the 

following set of differential equations:  
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with the following parameters : 
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where 1I , 2I and 3I  are given after equation (3.23). 

The values of other parameters of the system used in this section are presented in Table 7 

[138]. 

Table 7: Geometric, material and electro-mechanical parameters of the substructure and of the 

piezoelectric layer. 

 

 

 

 

  The set of Eqs. (3.53) is solved numerically using the fourth order Runge-Kutta method. The 

control parameter is the bias current I  which is varied to find regions where the piezoelectric 

beam exhibits bursting-like behaviors.  Figure 37 presents the voltage xv  and the deflection 

Y versus time for two values of the control parameter.   It is found that the bursting patterns 

(Fig. 37(a)) of the Hindmarsh-Rose oscillator are transferred to the piezoelectric beam (Fig. 

37(b)).  

Coefficients              Values              Coefficients          Values                                    
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Figure 37: Time variation of the actuator response for two values of : in black   and  

blue   (with de parameter of table 7). 

     Looking at Figure 37 where for   2.0bI   (Figure 37(c) and 37(d)) the frequency of the 

wave increases and the length of the burst increases (6 peaks or oscillations for the blue 

curve) compared to the dynamics for 1.5bI   (Figure 37(a) and 3.37(b), black curves) which 

presents 3 peaks. 

   Now, let 1t  the period of appearance of the wave for 2.0bI  (Figure 38(a) and 38(b)) and 

2t  for the wave of 2.5bI 
 
(Figure 38(c) and 38(d)).  After calculation, we get 1 12.7t 

 
and 

2 11.0t  . Consequently, the frequency of the wave for 2.5bI   (Figure 38(d)) is greater than 

the frequency of the wave for 2.0bI  (Figure 38(b)).   Now let us call by 1T , the length of the 

wave with 2.0bI  and by 2T , the length for the wave with 2.5bI  .   We finds 1 77T  and

2 107T  . That is to say 2 1T T . In accordance with the principle of ultrasound generation, 

the red burst (Figure 38(d)) is longer than the blue (Figure 38(b)). Therefore, with the device 

bI 1.5bI 

2.0bI 
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presented in Figure 38, increasing the parameter bI , the frequency of vibration of the waves is 

not only increased but also their lengths (length of the burst).  

 

 

Figure 38: Actuator response for two values of: In blue for   and in red   

(with the parameters of Table 6). 

3.5.3 Applications 

3.5.3.1 Bursting like actuators 

   This type of oscillations can find applications in automation engineering where one wants 

the mechanical part to act for a very short time and return to its rest state. This can also give 

some hints in bio-engineering of the cardiovascular system as the electromechanics of the 

heart exhibits bursting phenomena. 

3.5.3.2 Applications for echography 

   From the literature review, we have presented in Figure 41 a schematic view of how signals 

are delivered for echography analysis.  It is a series of ultrasound bursts. Reference [152] 

gives additional comments on the matter.  In Figure 39(a), the frequency is lower than in 

Figure 39(b). It follows that the duration occupied by the burst (pulse), that is to say 1t  is 

greater than 2t , the time occupied by a burst emitted with a probe higher frequency. This is 

due to the fact that a burst is formed by the same number of cycles (number of peaks of 

2.0bI  2.5bI 
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oscillation per burst). It is noted that between two bursts, there are long silences (intervals of 

time without emission).  

 

Figure 39: Schematic representation of the generation of ultrasonic bursts according to the 

frequency of the probes. 

   The periods of silence are used to receive the echoes. However, the resolution of the image 

is based on two major points: the length of the burst and the lateral resolution. The length of 

the burst which will determine the axial resolution is defined as the ability to differentiate 

objects along the path of the wave. The number of waves per pulse is identical regardless of 

the frequency of the probe. On the other hand, the length of the burst generated decreases 

when the frequency increases and the wavelength decreases. For shorter wavelengths, better 

axial resolution is obtained. To improve the axial resolution, a high frequency is necessary. 

But since the penetration is inversely proportional to the frequency, it is the depth to be 

studied which guides the choice of the probe frequency. The lateral resolution characterizes 

the ability to discriminate two adjacent reflectors, but located at the same depth. It depends on 

the diameter of the ultrasound beam which varies with the frequency of the probe and the 

distance between the points to be viewed from the probe. 

      The results presented in Figures 37 and 38 can be linked to what is described above.  

Indeed, one can solve the problem of the reduction of the length of the bursts for echography 

and that of the wavelength for large frequencies for the ultrasounds applications. This appears 

in Figure 37 where one finds that the wave frequency and burst length increases (6 peaks or 

oscillations for the blue curve) for 2.0bI   (Figure 38(c) and 38(d)) while for 1.5bI   

(Figure 37(a) and 37(b), black curves), one observes only 3 peaks.  From the results presented 

in Figure 39, one can expect that by monitoring the PZT with an oscillator capable of bursting 

mechanical vibrations, one may obtain for large frequencies, not only a good axial resolution, 

but also an increase in the depth to be explored.  Indeed as demonstrated above, the period of 

appearance of bursting wave can be monitored by varying Ib. This is also the case for the 

wave length which depends on Ib.  In accordance with the principle of ultrasound generation, 
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the red burst (Figure 37(d)) is longer than the blue (Figure 38(b)). Therefore, with the device 

presented in Fig. 36, increasing the parameter bI , the frequency of vibration of the waves is 

not only increased but also their lengths (length of the burst). With these results, it is expected 

that for large frequencies, strong penetrations and a good axial and lateral resolution can be 

obtained. We would like to mention that the Hindmarsh-Rose oscillator can be simulated 

using the classical electronic circuits (analog or discrete components). And importantly, it can 

be simulated using microcontrollers, thus providing a good signal generator to monitor the 

piezoelectric beam with amplification if necessary. 

3.6   Self-sustained energy harvesting from micro beam under fluid flow   

3.6.2 Model of energy harvester and equations 

3.6.2.1 The physical structure and modeling  

    The physical model is a very small beam mounted as a suspension bridge. The beam is 

subjected to forces produced by a fluid or air flow. The flow is transversal to the beam 

direction as it is represented in (Figure 40). Piezoelectric layers are fixed at both ends of the 

beam so that the beam deformations led to the piezoelectric material deformation. 

Consequently, electricity can be generated. The piezoelectric layers are materialized by P in 

the figure (in yellow). The beam had a length L , width b, and thickness h. The load of 

resistance CR  is connected to the piezoelectric layers. The blue lines maintain the beam in 

suspension. These cables are present here because the model of harvesting energy is based on 

the existing bridge model. 

 

Figure 40:  Schematic diagram of the harvester system. P-piezoelectric element,  load 

resistance. 

    As represented in Figure 40, the fluid flows transversally to the direction of the beam. 

When the fluid flow pressure acts continuously on the beam, it happens that for some fluid 

flow characteristics, the beam undergoes self-sustained vibrations as is demonstrated below. 
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These self-sustained vibrations lead to the self-sustained production of electrical energy 

because of the self-sustained deformations of the piezoelectric layers. 

   Following mechanical laws and piezoelectric conversion mechanisms, it can be established, 

as in References [153-155], that the vibration of the electromechanical system in Figure 40 is 

described by the following set of partial differential equations: 
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         (3.44)                  

with the following boundary conditions 
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                                                     (3.45) 

    ( , )w X t  is transversal deformation of the beam in the direction of fluid flow. It is a function 

of time t  and the spatial coordinate X  along the beam. E  is the Young modulus; A  is the 

beam cross section;   is the beam mass density;   is the viscous damping; 0K  and 1K  are 

the piezoelectric coupling terms; pC  is the equivalent capacitance of the piezoelectric 

element; cR  is the resistive load; ( )v t  is voltage generated by the piezoelectric element; and 

( )i t  the current trough the resistive load. 
1 2( ) ( ) ( ) ( ) ( )f X H X H X X H X X H X L        is 

the spatial function used to specify that the piezoelectric patches are localized in the regions 

10 X X  and 2X X L , where ( )H  is the Heaviside step function. Finally, F  is the 

general fluid-induced forcing function per unit length of beam [156]. 

     In a more complete model, the fluid-induced forcing function for the interaction of the 

fluid flow with the micro-beam is given as follows [156]: 
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             (3.46)                               

    where 1Y  is a linear aeroelastic damping term, 2Y  is a nonlinear aeroelastic damping term, 

1J  is a linear aeroelastic stiffness term, 2J  is a nonlinear aeroelastic stiffness term. In essence, 

1Y  and 2Y represent the self-excitation and self-limitation characteristics of the response. 1J  
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represents the shift in the mechanical response frequency from the zero-fluid frequency. The 

set of Equation (3.64) can thus be rewritten as follows: 
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     Let us mention the introduction of the temporal excitation of frequency , which accounts 

for the fluid force coefficient of the transverse direction through the LC  coefficient, which is 

seen as the lifting coefficient. 

    In order to put the equations in a dimensionless form, we use the following quantities: 
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   where h  is the thickness of the beam and 
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T
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  is the beam natural period. The 

quantities 0i  and 0v  are, respectively, 0 1 Ai   and 0 1 v V . 

   The system of equations in dimensionless form is, thus, as follows: 
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3.6.2.2 Modal equations 

  The approximate solution of Equation (5) can be obtained through the Galerkin 

decomposition method by writing 

                                     0

( , ) ( )sin( )n

n

y x n x   


                                                    (3.49) 

  where ( )n   are the amplitudes of vibration and sin( )n x  are modal functions solutions of 

the beam linear natural equation with the associated boundary conditions. The Galerkin 

decomposition method can be truncated to the fundamental mode of vibration under some 

specific conditions (e.g., nearness of the mode frequency and the excitation frequency or the 

condition that almost all the energy is inside the single mode considered). Thus, in the 

modeling set of equations, equation (5) is transformed into the following equations where we 

consider only one mode with n  . 
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 Where the new constants are defined as follows: 
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    Looking at the first equation of the set of Equation (3.60), it appears as the Van der Pol-like 

equation, which presents a nonlinear damping varying alternatively from positive to negative 

value in one cycle, thus leading to self-oscillations (this is possible when ε and ε1 are positive; 

the case is considered here. As it also appears in the expressions of the dimensionless 

coefficients, the flow velocity affects many coefficients and will be considered as one of the 

main control parameters. 

3.6.3 The self- sustained energy harvester 

   In the absence of the vortex-shedding part of the fluid force (the temporal sinusoidal term), 

the first equation of system (3.60) is a Van der Pol-Duffing oscillator, which has many 

applications in science and engineering, as is the case of the Rayleigh oscillator [157-158]. It 

generates sinusoidal oscillations for low values of the coefficient 
1  and relaxation 
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oscillations for large values of this coefficient. In Figure 41, we have plotted some 

representatives of time traces of the deflection, voltage, and current for two values of the fluid 

flow velocity (meaning two different values of
1 ). One finds that when U  is small, the 

voltage, the current, and the displacement present shapes close to sinusoidal function. 

However, when U  becomes large, relaxation oscillations appear for displacement while the 

current and voltage present bursting dynamics characterized by sharp and rapid variation of 

their values. Let us mention that the results presented here and in the rest of the work come 

from the numerical simulation of the set of Equation (3.71) using the fourth-order Runge–

Kutta method. 

 

 

   

   

Figure 41: Time variation of the displacement, voltage, and current for two values of the 

flow velocity. (a-c) for  and (d-f) for  with . 

3.6.3.1 Variation of the electric power in the resistive load     

The power in the load is defined as   

                                    2

cp R i                                                                                          (3.51) 

 This expression eats can be rewritten as follows 

                                                 2 2

0c rP R i i                                                                            (3.52) 

0.25 /U m s 14.5 m/sU  50 cR  
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   The variation of the maximal power in the load versus the flow velocity and versus the 

resistance is plotted in Figure 3.42. One notes that the power increased with the flow velocity 

and the load resistance. Power of about 0.6411 W is found in Figure 42. 

  

Figure 42: Electric power versus: (a the velocity of the fluid ( ) for  and (b) the load 

resistance ( ) for    with the parameter of Table 8.  

Table 8: Geometric, material, and electro-mechanical parameters of the beam and of the 

piezoelectric patch [138,160]. 

Coefficients Values Coefficients Values 

Length L  (mm) 100 E (GPa) 169 

Width b  (mm) 20 D (mm) 25 

Thickness h  (µm) 20 CL (mm) Variable 

Damping λ (Ns/m) 400 ρ (kg/m
3
) 7500 

Density f  (kg/m
3
) 1000 D31 

12190 10   

Velocity ( / )U m s  Variable Load resistance  ( )cR     Variable 

Patch 1  ( )X mm  15 Patch 1  ( )X mm  15 

a- Analytical Approach 

   For some ranges of U, we found that some coefficients of the coupled differential equations 

are very small. For instance, for 0.25 /U m s , numerical values of the parameters of 

Equation (3.71) are: 

U 50 cR  

cR 0.5 /U m s
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2

2 2 4.715 10     , 
5

3 2.0398 10   , 4 1 62.08   , 1 40.682  , 2 75.71   ,  

2

1 1.78 10    , 
4

2 2.35 10    . 
 

   Since α3 is very small (coupling coefficient to χ), the first equation is not highly influenced 

by the other two equations. All the same, the coefficient of the cubic term in the first equation 

is small. Consequently the first equation can be solved solely with the cubic term discarded, 

as its coefficient is also very small. From the classical averaging method, this first equation 

approximated solution (in the absence of the sinusoidal excitation term) is: 

                                                 
0

2
cos  


                                                  (3.53)                                                                                                

with 
2

0 4 1w     

   Inserting Equation (3.63) in the two other equations of the set (3.60), one finally obtains that 

the dimensionless current is given as: 

                                             0 0sin cosri C D                                          (3.54)                                                                                 

  with 1 0
2 0

2
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   These relations between the coefficients A, B, C, and D permit us to write the analytical 

expression of the maximal electric power as: 

).( 222

0max DCiRP c    

   From the mathematical approach, one can find that the power increases with the load 

resistance up to the maximum value max 0.6411 P W corresponding at 980 cR    before 

decreasing for 980 cR  . This explains what is presented in Figure 43, where one finds an 

optimal point of the electric power versus cR , both from the analytical development and from 

the numerical simulation of the set of Equation (3.50). 
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Figure 43: Electrical power versus the load resistance (results from the analytical 

development and that of the numerical simulation). 

3.6.4 Influence of the fluid force coefficient on the energy harvesting 

3.6.4.1 Bifurcation diagram and Chaos 

   Generally, the fluid force coefficient (  cosf  ) in the transverse direction is neglected 

because it is generally smaller than the aerodynamic lift caused by the motion of the body 

[160]. In this section, this perturbation is considered. 

  With the presence of the periodic excitation, one expects different types of dynamical 

behaviors, which can be seen from the bifurcation diagram obtained after solving Equation 

(3.70) numerically. The bifurcation diagram helps to delimit domains of a control parameter 

corresponding to different types of dynamical behaviors, such as periodic and chaotic 

behaviors. The bifurcation diagram is accompanied by the variation of the Lyapunov 

exponents spectra or that of the largest Lyapunov exponent.  

    Figure 44 presents the bifurcation diagram (Figure 44(a)) with the corresponding maximal 

Lyapunov exponent (Figure 44(b)), considering the voltage as the variable and LC  as the 

control parameter. One finds that when LC  varied, the system moved from a state of regular 

motion to reach chaotic states. Indeed, as LC  increased from 0.01 mm to1.05 mm , regular 

motion persisted. Chaos appeared for 

     1.06 ;2.19 3.99 ;  4.44 4.47 ;  5.04 LC mm mm mm mm mm mm . Period-5 orbit appeared for 

   2.19 ;  3.99 4.44 ;  4.77 LC mm mm mm mm  while period-3 orbit took place for 

 5.04 ;  13.55 LC mm mm . Finally, period-1 orbit was present for 

 13.55 ;  15.00 LC mm mm . These transitions were confirmed by the variation of the 

maximal Lyapunov exponent (Figure 44(b)). A positive value of maximal Lyapunov 
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corresponded to the chaotic states and the negative value of maximal Lyapunov to the 

periodic states. 

 

Figure 44: Bifurcation diagram (a) and Lyapunov exponent (b) versus CL, the amplitude of 

the fluid force coefficient for 25 /U m s , 200 f kHz and 50 cR   . 

Figure 45 presents two chaotic states. Figure 45 (a), (d) present the phase portraits of the 

beam displacement and velocity for 2.18 LC mm  and 4.12 LC mm , respectively. The 

corresponding time variation of the voltage and current, respectively, appear in Figure 45 (b), 

(c) for 2.18 LC mm  and Figure 45 (e), (f) for 4.12 LC mm . 
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Figure 45: Phase portraits of the beam displacement and temporal trace of the voltage and 

current with the parameters of Figure 4 with , . , for (a-c) 

and  for (d-f). 

3.6.4.2 Variation of the Electric Power Versus the Frequency of the External Excitation  

    Figure 46 shows the evolution of the electric power versus the frequency for some values 

of the resistance. It first increased with the frequency and attained the maximal value at 

frequency 75 kf Hz . Then it decreased as the frequency increased and attained a relative 

minimal value before increasing to reach another peak from which it decreased slowly with 

the frequency. The maximal value increased with the value of the resistance. It was about 

0.22 W  for 200 cR   . 

 

Figure 46: Variation of the maximal value of the electrical power versus the frequency of the 

external excitation. 

3.7   Conclusion 

     In this chapter, the results of our work have been presented and discussed. We have carried 

out a theoretical and experimental characterization of the piezoelectric plate. We have also 

shown that, by making an appropriate choice of the geometric parameters of the piezoelectric 

micro beam, which is excited by a sinusoidal excited nonlinear oscillator, one can generate 

mechanical vibrations having periodic, bursting oscillations and chaotic shapes. At the end, 

we have studied the problem of self-sustained harvesting energy from fluid flow acting on a 

suspension beam (based on the model of a real bridge) having two piezoelectric patches at 

both ends.  

 

 

 

25 /U m s 50 cR   2.18 LC mm

4.12 LC mm



82 
 

 

 

 

 

 

 

 

 

 

General conclusion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

 

     The main purposes of this thesis were: (1): the use of experimental and theoretical 

approaches to characterize piezoelectric structures and use vibration modes of the 

piezoelectric plate and the direct simulation of the PDEs to justify qualitatively the resonance 

peaks from the experimental curve and use mathematical formalisms, numerical methods and 

experimental procedure based on analog circuits; (2): the study of a piezoelectric plate based 

self-excited oscillator; (3): the analysis of the piezoelectric micro beam powered by a circuit 

with a nonlinear components, which can generate mechanical vibrations having periodic, 

bursting oscillations and chaotic shapes; (4): based on the model of a real bridge, the 

modeling and analysis of a micro beam having two piezoelectric patches in both ends produce 

self-sustained energy harvester for fluid flow. The influence of fluid force coefficient has 

been study. 

 

Summary of the main results 

     Firstly, after obtaining the experimental curve of the impedance of a piezoelectric plate 

versus the frequency of a voltage delivered by a low frequency generator, an equivalent 

electric circuit for a piezoelectric plate has been proposed. This electric equivalent is 

constituted of an assembly of resonant branches in parallel; the number of resonant branches 

depending on the range of frequencies. Using the modal approach and appropriate 

mathematical techniques, we have justified the appearance of different branches in the electric 

equivalent of the piezoelectric plate by the appearance of vibrations modes exhibited by the 

piezoelectric plate when it is submitted to the action of a sinusoidal voltage. 

     Secondly, inserting a nonlinear resistance in series with the three branches electric 

equivalent of the piezoelectric plate, we have been able to demonstrate the generation of self-

sustained electrical oscillations whose signal shape moves from the periodic sinusoidal 

oscillations to relaxation oscillations as in the case of the Van der Pol oscillator. The 

theoretical results have been confirmed by an experimental circuit implementation; thus 

leading to a self-sustained electrical oscillator whose one component is the piezoelectric plate.  

Since the piezoelectric oscillator is also an electromechanical system delivering mechanical 

deformation, we have established theoretically the generation of mechanical deformation by 

transforming the partial differential equation describing the piezoelectric plate vibration into a 

set of ordinary differential equations (each differential equation corresponding to a vibration 

mode). To complete this last, we have simulate directly the PDEs. Low amplitude periodic 

deformations have been obtained, meaning that the self-sustained piezoelectric plate can serve 

as a periodic actuator. 
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     Thirdly, we have shown that by making an appropriate choice of the geometric parameters 

of the piezoelectric micro beam with a nonlinear electrical component and a sinusoidal 

voltage source, mechanical vibrations having periodic and chaotic shapes can be generated. 

These vibrations are at the origin of ultrasounds which can be used, as explained in the thesis, 

to improve the efficiency of ultrasonic nebulizers.. This is presumed having in mind recent 

scientific results which indicate that chaotic vibrations improve the efficiency of activities 

such as mixing, sieving and shaking. 

     By exciting the piezoelectric micro beam by an electronic signal delivered by a generator 

mimicking the behavior of the Hindmarsh-Rose oscillator, one finds that the generation of 

bursting patterns for different values of the control parameter.  We anticipate that these 

special ultrasonic waves can resolve some drawbacks of the classical echography device: 

image resolution and high penetration. 

     Finally, we have considered the problem of harvesting energy from fluid flow acting on a 

suspended beam having two piezoelectric patches at both ends. The modal approximation has 

led to a set of coupled differential equations, one of which is the Van der Pol oscillator. Both 

the analytical and numerical solutions of the differential equations have been conducted, and 

the shapes of voltages and current have been displayed, indicating sinusoidal form, bursting-

like shape with sharp peaks and chaotic shapes. The electric power in the load has been 

estimated versus the flow rate, the value of the load resistance, and the frequency of the 

external component of the fluid flow. 

 

Future works 

     In this thesis, some interesting results have been obtained and have opened interesting 

perspectives for future investigations. The future works concern specially: 

1. For the characterization of the piezoelectric plate, the quantitative agreement has not 

been obtained between the resonant peaks obtained through the vibration modes 

approach and the experiment. This was explained by the lack of the values of all the 

physical parameters of the piezoelectric plate. But it can also be due to the 

mathematical model describing the piezoelectric plate. These issues constituted 

questions for future investigations. 

2. For the study of the vibrations of the plate as actuator, an extension of this study can 

be the experimental investigation. 

3. For the study of piezoelectric micro-beam powered by nonlinear electrical oscillator 

for the production of periodic oscillations, chaotic shapes and patterns of bursting 
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oscillations for applications in engineering and medicine, experiments are needed for 

the confirmation of these theoretical findings. 

4. For the study of the vibrations of a micro beam as energy harvester, this analysis can 

be complemented by experimental investigation using wind tunnel set-up. 
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APPENDIX 1: Expressions of different parameters of the three 

RLC branches model. 
   Using the same development as above in the two branches, one arrives at the following 

relations 

2 min2R Z                                                                                                         (A1.1) 
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APPENDIX 2: Contribution of piezoelectric layer 
     In this appendix, we take into account the effect of the piezoelectric layer, we consider the 

device presented in Figure 28 and rewrite Eq. (3.25) in the form Eq. (A2.1). 

                                                

 22

2 2

,
0total

M X tw w
b

t t X
 

 
  
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                          (A2.1) 

  Where ( , )w X t is the transverse deflection of the beam relative to its base,

 total s p ph h    , with p , the density of the piezoelectric element, of thickness ph  and 

 ,M X t  the internal bending moment of the beam. 

The internal moment can be obtained by integrating the first moment of the stress distribution 

at a cross section over the cross sectional area. The piezoelectric constitutive relations give the 

stress-strain and electric field relations and they are expressed for the substructure and the 

PZT layers as 
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                                   (A2.2) 

  Where 1

ST  and 1

PT  represent respectively the stress in the structure and the PZT. 1

SS and 1

PS are 

respectively the strain in the structure and the PZT, SE et PE the Young modulus of the 

structure and the PZT ;
 

1

31

2190.0  m10 /Vd    , the piezoelectric constant. s and p  for 

structure and PZT respectively. 1 and 3 for x  and y  axis (where 1 is the direction of axial 

strain and 3 is the direction of polarization) respectively and 3E is the electrical field in the 

PZT du to the generated voltage. 

  With Eq. (A2.2), constitutive relation can be writing as: 

                                  
 1 1 1 1 1 31 3

s P s p

pT T T ES E S d E                                                (A2.3) 

With 1T  the sum of stress in the structure and the PZT 

By definition, the forces resulting from bending or moments of stresses ( , )M X t  are written: 

                                      
1 1( , )

hb hc
s p

ha hb
M X t T ydy T ydy                                           (A2.4) 

Where b is the width of the beam, ah is the position of the bottom of the substructure layer 

from the neutral axis, bh is the position of the bottom of the PZT layer therefore, top of the 

substructure layer from the neutral axis, and ch is the position of the top of the PZT layer from 
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the neutral axis (see fig 2.1). Expression the bending strain in terms of radius of curvature 

[161] we have: 

                        

   
2 2
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2 2
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ha hb hb

p

dw w
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   

      (A2.5) 

where the uniform electric field as a function of voltage ( )v t  across the piezoelectric element 

and the thickness ph  is defined by the relation(    3 pE t v t h  ). 

 

Figure 2.1: Cross section transformed 

   The goal here is to transform the cross section of the PZT assembly and the substructure 

(Figure 2.1(a)) to obtain a common cross section for both (Figure 2.1(b)). The transformed 

cross section depends only on the ratio of the two Young modules, namely S

P

E
n

E
 . The new 

section will be larger than the first if S PE E  and smaller for S PE E . 

  In the specific case of this work, the transformed section increases because S PE E . Once 

this Young's modulus ratio has been made, we multiply it to the width of the old section, 

hence the width of the new section defined by n b  as observed in Figure 2.1. We thus obtain 

the following expressions for three different heights appearing in Figure 15:   
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  This allows us to give the expressions of the different heights appearing in Eq. 3.30 in the 

form: 

a sah h   ; (which is always negative) 

b pa ph h h  ; (which positive or negative) 

c pah h  ; (which is always positive) 
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  Where ah  is the distance from the bottom of the position of the substructure to the neutral 

axis. 

bh  is the distance from the bottom of the position of the piezoelectric element (therefore from 

the top of the substructure) to the neutral axis. 

ch  is the distance from the top of the piezoelectric element to the neutral axis.  By evaluating 

Eq. 4, we obtain the expression of the moment in the form (A2.6) 
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Considering that the electrodes and the piezoelectric element completely cover the lower 

surface of the beam, it is necessary to rewrite Eq. A2.6 as follows: 
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                          (A2.7) 

Where  H  is the Heaviside function. We have 
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With the following boundary conditions: 
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                             (A2.9) 

Eq. (A2.8) is the equation of the mechanical part with the piezoelectric coupling.  

    In order to establish the equation of the electrical part, we consider the following 

constitutive equations 

                                         3 31 1 33 3

TD d T E                                                           (A2.10) 

  Where 3D  is the electric displacement and 
9

33 15.93 F/m10T    the permittivity at constant 

stress. If we rearrange Eq. (A2.2) to express the stress 1T   depending on the deformation 1S  and 

the Young's modulus of the piezoelectric element pE , and by reporting in Eq. (A2.10), the 

component of the permittivity becomes
2

33 33 31 3

S T d E  
 
[162]. After replacing the electric 

field as a function of the voltage across the piezoelectric element and the thickness ph  of the 

piezoelectric element, we get: 
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  The deformation
 1S  of the piezoelectric element can be expressed as a function of the 

distance pch  between the center of the piezoelectric element (according to the thickness) and 

the neutral axis of the beam according to the cross section modified to the expression: 
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Therefore Eq. (A2.12) becomes: 
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 Where 33

S  la permittivity at the constant stress and ph  thickness of PZT.  Note that  v t is the 

voltage generated by the PZT. 

   If we call 0E , the total electric field in the piezoelectric plate, then it is linked to the electric 

displacement by the relation 3 0 0D E  where 0  represents the permittivity of the vacuum. 

However, if we apply a voltage ( )V t  across the PZT, knowing that
0

( )

p

V t
E

h
 , the relation 

(A3.13) becomes: 
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By equalizing Eq. (A2.13) and Eq. (A2.14), we obtain 
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  Having a load resistance R in series with the PZT, a coil, a nonlinear capacitor and the 

external source ( )U t , this amounts to writing Eq. (A2.15) as follows: 
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where 
3( )CV q q q   the voltage through the nonlinear capacitor, and  ,   the positive 

parameter.The PZT being in series with the electrical components, we can write, 
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 , the capacitor of the PZT element. 
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