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Abstract

Transmission delays are inherent to the propagation of nerve pulses across neural net-
works. For example, delays due to the relaxation time lead to finite propagation speeds along
the neuron. In this thesis, we examined the effect of the time of relaxation on the stability
and wave properties of a hyperbolic Fitzhugh-Nagumo neuron. We considered variants of
the latter such as the continuous, discrete versions, and photosensitive variants.

We used multiple methods to establish the existence of delay-induced oscillations and
study the effect of the time of relaxation on the wave properties of the system. We analyzed
Hopf bifurcations and other relevant bifurcations using the center manifold theory, normal
form reductions, and numerical continuation methods where suitable. Continuous hyperbolic
models were discretized using finite differences. Analytical techniques were used to derive
explicit solutions for fronts and oscillons of the wave system and study the influence of
the time of relaxation on their profiles. Numerical simulations were used to study the
synchronization of hyperbolic photosensitive neurons under different coupling schemes.

Our results can be summarized as follows: In the absence of diffusion, the time of
relaxation induced Hopf bifurcations beyond a certain threshold. With diffusion in the system,
the time of relaxation induced Hopf bifurcations of homogeneous and inhomogeneous-type.
Furthermore, negative diffusion induces pitchfork bifurcations. The squared phase velocity
of periodic and solitonic waves varies inversely with the time of relaxation. We showed
that the amplitude of front waves is inversely proportional to the delay while that of the
oscillon is directly proportional.The analyses of the discrete models showed that the local
bifurcations exhibited by the continuous models are conserved by the corresponding discrete
models. Results on the synchronization of hyperbolic photosensitive neurons showed that
the prevalence of burst synchronization depends on the coupling scheme.

Keywords: Delay-induced oscillations, Relaxation time, Fitzhugh-Nagumo neuron,
Patterns and waves
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Résumé

Les retards de transmission sont inhérents à la propagation des impulsions nerveuses
dans les réseaux neuronaux. Par exemple, les retards dus au temps de relaxation conduisent à
des vitesses de propagation finies le long du neurone. Dans cette thèse, nous avons examiné
l’effet du temps de relaxation sur la stabilité et les propriétés ondulatoires d’un neurone
hyperbolique de Fitzhugh-Nagumo. Nous avons considéré des variantes de ce dernier telles
que les versions continues, discrètes, et les variantes photosensibles.

Nous avons utilisé plusieurs méthodes pour établir l’existence d’oscillations induites par
le retard et étudier l’effet du temps de relaxation sur les propriétés ondulatoires du système.
Nous avons analysé les bifurcations de Hopf et d’autres bifurcations pertinentes à l’aide
de la théorie des collecteurs centraux, des réductions de la forme normale et des méthodes
de continuation numérique, le cas échéant. Les modèles hyperboliques continus ont été
discrétisés à l’aide de différences finies. Des techniques analytiques ont été utilisées pour
dériver des solutions explicites pour les fronts et les oscillons du système d’ondes et étudier
l’influence du temps de relaxation sur leurs profils. Des simulations numériques ont été
utilisées pour étudier la synchronisation des neurones photosensibles hyperboliques sous
différents schémas de couplage.

Nos résultats peuvent être résumés comme suit : En l’absence de diffusion, le temps
de relaxation induit des bifurcations de Hopf au-delà d’un certain seuil. Avec la diffusion
dans le système, le temps de relaxation induit des bifurcations de Hopf de type homogène
et inhomogène. De plus, une diffusion négative induit des bifurcations de type fourche. La
vitesse de phase quadratique des ondes périodiques et solitoniques varie inversement au
temps de relaxation. Nous avons montré que l’amplitude des ondes frontales est inversement
proportionnelle au délai alors que celle de l’oscillon est directement proportionnelle.Les
analyses des modèles discrets ont montré que les bifurcations locales exhibées par les
modèles continus sont conservées par les modèles discrets correspondants. Les résultats sur
la synchronisation des neurones photosensibles hyperboliques ont montré que la prévalence
de la synchronisation des salves dépend du schéma de couplage.

Mots clés : Oscillations induites par le retard, temps de relaxation, neurone de Fitzhugh-
Nagumo, motifs et ondes.
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General introduction

In this thesis, we study the effect of the time of relaxation, induced by the finite speed of
propagation, on the dynamics of a hyperbolic Fitzhugh-Nagumo (FHN) nerve model. More
precisely, we study its role in the emergence of diverse bifurcation phenomena connected
to traveling and stationary waves, mixed-mode oscillations, bistability, chaos, and a host of
other dynamics. Furthermore, the effect of this time lag on the velocity profiles of traveling
waves in the oscillatory and excitable regimes of the modified nerve model is studied. The
aforenamed dynamics are conserved in a corresponding nerve model with space and time
discretizations.

Signal transmission in spatially extended systems or systems with feedback is often
accompanied by delays in transmission[1]. Shortly after scientists were successful in mod-
eling natural phenomena via dynamical systems, it became necessary, where applicable, to
extend these models to take into account delays. Such extensions often yield more realistic
models which go beyond the simple qualitative description of the phenomenon at hand. In
the propagation of action potentials across a network of neurons, delays occur naturally,
during signal transmission along the nerve cable and during transmission at the synapse.
Time delays are also present in networks of neurons in the peripheral nervous system such
as the balance control system[2]. Delays may also occur when populations of neurons
communicate with each other. Experiments reports that the magnitude of the delays between
different regions of the brain is of the order of 10ms or more [3]. This value may vary
depending on the conduction distance and velocity of propagation. Bigger delays may be
involved in nonlocal interactions such as long-range coupling observed in neurons [4–6]
and in propagation in unmyelinated intracortical neurons [7]. Roughly 20-40% of axons
have a fine or absent myelin coating [8]. Demyelination in axons can sometimes result in a
pathology known as multiple sclerosis (MS), where the lower conduction velocities lead to
large propagation delays and ultimately propagation failure [9, 3]. Other pathologies related
to propagation delays include Parkinson’s disease and epilepsy. As such models of spatially
extended neurons with delays may be suitable in modeling the dynamics of intracortical
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neurons where lack of myelination leads to lower propagation velocities and ultimately larger
delays.

A known phenomenon associated with delayed systems is delay-induced instability [8]:
An occurrence whereby the steady solutions of the dynamical system become unstable to
oscillatory and stationary bifurcations, beyond a threshold value of delay. Delay-induced
instability is well-known in dynamical systems where it often leads to a Hopf bifurcation [10].
This corresponds to the appearance of a pair of purely imaginary roots of the characteristic
equation. Multiple methods have been developed to determine the direction of the Hopf
bifurcation and as a result, the stability of the periodic orbit[11–13]. Throughout most of this
thesis, we make principal use of the center manifold reduction[14, 15] to assess the stability
of the periodic orbit. A simple demonstration of delay-induced oscillations was studied
by Plant et al.[16] who studied a delayed Fitzhugh-Nagumo (FHN) model with recurrent
feedback. Junyi et al.[17] studied the critical values of delay for a system of two coupled FHN
models. Delay-induced oscillations may also depend on the network architecture[18]. Time
delays may also lead to the death of oscillations—a phenomenon known as amplitude death,
multistability, delay-induced chaotic oscillations, and much more [8]. The mechanisms
underpinning the creation of Periodic oscillations either in the form of large-amplitude
periodic action potentials or small-amplitude waves are important in helping neuroscientists
understand brain function and dysfunction. Small-amplitude oscillations—typical of those
born via a supercritical Hopf bifurcation, play a vital role in synchronization by increasing
the firing probability of neurons via subthreshold depolarization[19].

Classical models of delay differential equations are inherently infinite-dimensional and
their solutions exist in some continuous function space. As a result, their analysis is quite
involved. In this thesis, we study the impact of delay on an infinite-dimensional delay
differential equation of hyperbolic type. In this case, the infinite-dimensional character arises
only due to the diffusion term. The hyperbolic formulation is based on the Maxwell-Cattaneo
modification of wave propagation [20], with finite speed effects. Although hyperbolic models
of nerve propagation have been around for a long time[21], there seems to be a renewed
interest in them as evidenced in recent publications[22–24], wherein the effect of the time
of relaxation (delay) on the profile and stability of the action potential has been addressed.
However, in these studies, the authors did not examine the effect of the relaxation time on
the stability of fixed points of the system— the main subject of this thesis.

The general objectives for our research were as follows: firstly, we studied the impact of
the time of relaxation and diffusion on the stability of the hyperbolic Fitzhugh-Nagumo model.
Secondly, we assessed the nature and stability of these bifurcations including bifurcations of
codimension-1 and -2. Thirdly, discretized the hyperbolic model to verify if the bifurcations
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detected in the continuous model were preserved in the corresponding discrete models. Lastly,
we investigate the impact of the time of relaxation on the profiles of front and oscillon waves
of the system.

The outline of the rest of this thesis is as follows: In Chapter 1 we review the structure and
function of neurons, neural coupling, as well as action potential generation and propagation.
This is followed by a review of the classical Fitzhugh-Nagumo(FHN) model, hyperbolic
formulation of diffusion, classical modeling of delays, and multiple local bifurcations of
codimension-one and two, relevant to this thesis. We conclude this chapter with a brief
review of bursting dynamics near a Bautin bifurcation. In Chapter 2 we review the hyperbolic
Fitzhugh-Nagumo model and its variants. We also review the main methods (Analytical
and numerical) used throughout this thesis and their applications. In Chapter 3 we present
the main results of this thesis. These include results on the Hopf and Pitchfork bifurcations,
exact front and oscillon solutions of the hyperbolic Fitzhugh-Nagumo model, and burst
synchronization in two coupled photosensitive hyperbolic Fitzhugh-Nagumo models. We
summarize our main findings in a general conclusion immediately after Chapter 3, in which
we provide an outlook for future research our the applicability of our results.
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Chapter 1

Review of models of neural spiking,
bifurcations and normal forms

In this chapter, we review the neuron as the structural and functional unit of the nervous
system. We provide a brief summary of the mechanism of generation of action potentials and
their transmission from one neuron to the next. We also review briefly, some of the classical
mathematical models of neurons from the point of view of dynamical systems, and discuss
some of the bifurcation mechanism leading to periodic spiking, bursting, and traveling waves.
Our discussion is restricted to conductance based models similar to the Hodgkin-Huxley(HH)
model. We give a brief account of the properties of the Fitzhugh-Nagumo (FHN) model in
relation to its oscillatory and excitability properties. We review the hyperbolic formulation
of diffusion based on the Maxwell-Cattaneo formulation.

This chapter is structured as follows: In section 1.1, we give a brief literature review of
the subject of modeling neurons and consider the state-of-the art. Section 1.2 gives a review
of the structure of the neuron and the mechanisms of generation of action potentials. Section
1.3 considers the celebrated Hodgkin-Huxley (HH), and the classical Fitzhugh-Nagumo
(FHN) models. This section also features a discussion on classical ways of modeling delays
and the significance of the time of relaxation. Section 1.4 reviews the main bifurcations of
codimension-one and -two, encountered in this thesis and concludes by discussing common
mechanisms of bursting in neurons. A conclusion to the chapter is provided in section 1.5.

1.1 Introduction and background

The topic of mathematical modeling neurons via dynamical systems is very old and dates
back to the early 1990’s. It was midway into that century, precisely in 1952, that a successful
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1.1 Introduction and background

quantitative description of nerve impulse generation was given. This was the fruit of the
works of Hodgkin and Huxley [25]. Following the success of the Hodgkin-Huxley model,
a wealth of vector field-based models have been developed to address different qualitative
(quantitative) features of neural spiking. These models can generally be classified as integrate
and fire models [26], resonate and fire models [27], spike rate and mean field models [28].
Based on their bifurcation to periodic spiking, models of neurons may further be classified
as models of bifurcation-type 1 and models of bifurcation-type 2 [29]. Models of neurons
have also been modified to take into account stochastic phenomena [30–32] and recently
delays have been included into these models to give a more realistic perspective on signal
propagation in neural networks [33, 34]. It is often handy to reduce the dimension of the
vector field of a given neural model. This is especially true if the vector field consists of
hundreds or more, coupled neurons. Such reductions may lighten the computational burden
of simulating such a system or ease analytical manipulations. In fact, the Fitzhugh-Nagumo
model was proposed as a lower dimensional reduction of the Hodgkin-Huxley model, making
it more tractable to mathematical manipulations. A common pattern employed over the
decades has been the amplitude [35] and phase reduction [36] approaches in which the
system is reduced to a lower dimensional manifold with the amplitude or phase as the main
dynamical variable. In such a setting, the dynamics of the higher dimensional manifold can
be inferred in the lower dimensional system. Near a bifurcation, a system can generally be
reduced to a lower dimensional manifold known as the normal form of that bifurcation.

Bursting is a behavior sometimes exhibited by neurons in which groups of action poten-
tials (spikes) are fired in quick succession followed by periods of quiescence[37]. Believed
to have greater chances of crossing a synapse than a single spike, and to be a vehicle for
complex information encoding, neural bursting continues to be an active area of research
[38]. From a physiological standpoint, the transition from repetitive spiking to quiescence
can be construed as a hyperpolarization current that gradually strengthens during spiking or
a depolarization current that weakens during spiking. Examples of such currents include:
the calcium-dependent currents [39], and M-current [40]. From a dynamical systems point
of view, bursting is a manifestation of bistability in a system in which a system switches
from a limit cycle motion to a fixed point. If this happens periodically then periodic bursting
occurs. A standard model used to demonstrate spiking and bursting in neurons in which one
of the aforementioned currents have been taken into account is the Hindmarsh-Rose neuron
model[41]. Bursting may be initiated via a plethora of dynamical scenarios[29], correspond-
ing to different types of bursting, some of which have been observed experimentally[42].
In this thesis, we focus on bursting around the Bautin bifurcation[43]; often called elliptic
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Figure 1.1 Caricature of a typical neuron, showing its main parts.

bursting. Here, bursting is initiated via a subcritical Hopf bifurcation and terminated via a
fold bifurcation.

1.2 The neuron, structure and function

The brain is and for a long time, has been one of the most complex human organs ever
studied by man. The average human brain consist of approximately one hundred billion
neurons and a smaller number of glial cells [37]. Although the neurons in the brain represent
a large chunk of all neurons in the nervous system, neurons are found almost everywhere
in the body where sensitivity to stimulus is present. Ramon Cajal, in the nineteenth century
[44], was the first to observe and describe the structure of the neuron. The neuron as we
know it today is made up of three major parts; the cell body, axon, and dendrites (see Fig.1.1).
Four major ions bathe in the intra- and extracellular contents of the neuron; sodium (Na+),
(K+), calcium (Ca2+), and chloride (Cl−) ions. In the absence of a stimulus, the distribution
of these ions across the cell membrane of the axon is uneven. This is in part due to passive,
and active diffusion. Ions diffuse across the membrane via selective ion channels, some
of which are specific to a single ion type. While passive diffusion occurs as substances
naturally diffusive down their concentration gradients, active diffusion, is mediated by ion
pumps located at various ion channels. The difference in concentrations of ions across the
membrane results in a potential difference across the cell known as the resting potential.
Fig.1.2 shows the concentration of ions across the membrane at rest. The concentrations
of the various ions is as follows: [Na+]ex ≫ [Na+]in, [K+]ex ≪[k+]in, [Cl+]ex ≫[Cl+]in,
and [Ca2+]ex ≫ [Ca2+]in. Here [X ]ex,in refers to the concentrations in the extracellular and
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1.2 The neuron, structure and function

Figure 1.2 Distribution of ions across the membrane of the neuron at rest

intracellular contents of the species X . The numerical value of the resting potential of a
typical neuron at rest is estimated to be −70mV ; mV denoting millivolts.

The neuron is classified as an excitable cell because its membrane potential may ex-
perience brief voltage spikes in the presence of stimuli of sufficient strength. Such large
excursions of the membrane potential, from the rest potential are called action potentials.
Skeletal muscle cells, cardiac cells, and sensory cells are other examples of excitable cells.
Because the stimulus must be of sufficient strength to elicit a spike in voltage, such cells are
often referred to as “all-or nothing” cells. Fig.1.3 depicts the main steps involved in action
potential generation and propagation in time. The generation of an action potential can be
summarized in the following five steps:

1. Resting: At this stage, the cell is at the resting potential, −70mV .

2. Depolarization: When the cell is stimulated, the membrane potential may become
more negative or positive. A stimulus is said to be depolarizing when it increases the
membrane potential and hyperpolarizing, if it makes the membrane potential more
negative. If a depolarizing signal drives the membrane potential past the threshold
potential (approximately −55mV ), Na+ rush into the cell causing the potential to
become more depolarized till it reaches a peak value of approximately 40mV . This
phase is known as the depolarization phase.

3. Repolarization: During this phase, Na+ channels close and K+ channels open and K+

rushes out of the cell, hyperpolarizing the potential past the resting potential.

4. Hyperpolarization: At this stage, K+ channels close and the potential begins a slow
return to steady state. During this phase, the cell is unexcitable.

5. Return to rest: The potential returns to rest and the cell is once again excitable.

7



1.2 The neuron, structure and function

Figure 1.3 Main steps involved in action potential generation and propagation

Figure 1.4 Sketch of pre- and post-synaptic neurons showing synapse in the red dashed circle.

Action potentials are usually generated beside the cell body in a location known as the
axon hillock. Once they are generated, they travel down the length of the axon until they reach
the axon terminals. These terminals are usually in close contact with the dendrites of other
neurons. In such an arrangement, it is customary to refer to the neuron with the incoming
spike as the pre-synaptic neuron and the receiving neurons are the post-synaptic neurons.
The cleft between the axon terminals of one neuron and the dendrites of the next neuron is
called the synapse, see Fig.1.4. Action potentials transit from the pre- to the post-synaptic
neurons in two major ways; via chemical mediation or via direct contact. Synapses based on
the former mode are called chemical synapses while those based on the latter are known as
gap junction synapses. Chemical synapses depend on substances known as neurotransmitters
for their function. In general, the pre-synaptic action potentials may trigger an excitatory or
inhibitory response on the post-synaptic neuron. As such synapses are classified as excitatory
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or inhibitory depending on the type of neurotransmitter released. Examples of excitatory and
inhibitory synapses are glutamate and GABA (gamma-aminobutyric acid) respectively.

1.3 Conductance-based models of single neurons

Since the seminal work by Hodgkin and Huxley on the quantitative modeling of nerve
pulse propagation in the giant squid axon, dozens of models known as “conductance-based"
models have been proposed to model excitable cells in cardiac tissue, neurons, skeletal
muscles and many more. In such models the capacitance of the excitable membrane is due
to the charge separation across the membrane due to active and passive diffusion processes.
When combined with ionic currents from several gated channels, the entire setup can be
viewed as a capacitor in parallel with ionic channels, amenable to electrical circuit analysis.
The Hodgkin-Huxley(HH) model has been successfully extended to model other types of
neurons from the Reduced Traub-Miles Model (RTM), Wang-Buzsaki (WB) and Erisir
models of rodent brains [37] to bursting pacemaker neurons in mammals [45].
In the presence of space-clamping, conductance-based models take the form:

Cv̇ = Ig(v,n)+ Ib + Is(t) (1.1)

ṅ = G(v,n),

where C is the capacitance of the membrane, v is the transmembrane potential, Ig is the sum
of membrane currents, Ib is the constant baseline current, Is is the stimulating current, n is
the vector of gating variables and G is some vector field.
In the absence of space-clamping, the membrane membrane potential and gating variables
depend on space. In this case a depolarization at a given location —an increase in the
membrane potential, causes sodium channels in neighboring spatial locations to open while
they are closed at the original location with the opening of potassium channels. As a result
the membrane potential diffuses as a pulse. This diffusion is accounted for by the addition of
a spatial term vxx on the right hand side of Eq.(1.1). If the recovery phase of the membrane
potential is neglected, the depolarization travels as a front.
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1.3 Conductance-based models of single neurons

1.3.1 The classical Hodgkin-Huxley model

The celebrated Hodgkin-Huxley (HH) equations take the general form:

CV̇ = Ib + I(t)− ḡNah(V −VNa)m3 − ḡK(V −VK)n4 − ḡL(V −VL), (1.2)

ṁ = αm(V )(1−m)−βm(V )m, (1.3)

ḣ = αh(V )(1−h)−βh(V )h, (1.4)

ṅ = αn(V )(1−n)−βn(V )n, (1.5)

αm(V ) = 0.1(V +40)/(1− exp(−(V +40)/10)), (1.6)

βm(V ) = 4exp(−(V +65)/18), (1.7)

αh(V ) = 0.07exp(−(V +65)/20), (1.8)

βh(V ) = 1/(1+ exp(−(V +35)/10)), (1.9)

αn(V ) = 0.01(V +55)/(1− exp(−(V +55)/10)), (1.10)

βn(V ) = 0.125exp(−(V +65)/80). (1.11)

Here, VNa = 50mV , VK =−77mV , VL =−54.4mV are the reversal potentials of the sodium
, potassium and leakage channels respectively. ḡNa = 120mS/cm2, ḡK = 36mS/cm2, ḡL =

0.3mS/cm2 are their respective conductances. The membrane capacitance has value C =

1µF/cm2. It should be noted that the membrane potential as described in the original paper
by Hodgkin and Huxley is related to that of Eq.(1.1) by VHH =−v+Veq, where Veq is the
equilibrium potential. It is self evident that the HH model as is presented here does not
really lend itself to analytical manipulations. As such various two-dimensional reductions
are usually sought: the so-called “slow-fast reductions”. Examples of slow fast reductions
derived from the HH model include the 2D-Hodgkin-Huxley model [44] and the FHN model
which we explore in detail in the next subsection.

1.3.2 The classical Fitzhugh-Nagumo model

A popular two-dimensional neuron model derived from the HH model by exploiting the
existence of different time scales, is the Fitzhugh-Nagumo model [46, 47]. In its general,
dimensionless form, the FHN model takes the form:

u̇ = f (u,v)+ I (1.12)

v̇ = εg(u,v), (1.13)
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1.3 Conductance-based models of single neurons

where the variable u is known as the fast variable, v the slow variable, in reference to the
scaling factor ε in its vector field, and I the external stimulating current. The functions
f (u,v) and g(u,v) determine the dynamics of the model; their zeros determine the quality
and quantity of equilibria located in the system. The function f can vary depending on the
variant of the FHN model being considered. We note the classic form

f (u,v) = Au(u−α)(1−u)− v, (1.14)

with 0 < α < 1, as well as the McKean form :

f (u) = H(u−α)−u− v, (1.15)

where H is the Heaviside function. The latter form is suitable for a piece-wise construction
of analytical solutions. In this study we shall use the forms:

f (u,v) = u− u3

3
− v, (1.16)

g(u,v) = u+a−bv, (1.17)

from Ref.[48], where a and b are constants.
Although simpler than the HH model, the FHN can reproduce some of the key features of
the HH model, including propagation of nerve pulses in space. Other variants of the FHN
model include the Van der pol oscillator [49].
We shall briefly review some of the key behaviors of the classical FHN as a fucntion of I, and
its nullclines f (u,v) = 0 and g(u,v) = 0, by exploring its phase plane dynamics. Consider
the FHN model:

u̇ = u− u3

3
− v+ I, (1.18)

v̇ = ε(u+a−bv), (1.19)

with I = 0. Fig.(1.5) shows the three different ways in which the nullclines of the system
can intersect; corresponding to a maximum of up to three equilibria. The cubic (N-shaped)
nullcline corresponds to f (u,v) = 0 while the monotone nullcline corresponds to g(u,v) = 0.
For each intersection the system can have either mono(bi)- stable excitable or oscillatory
kinetics:

— In Fig.(1.5.a), the two nullcines intersect on the left side (but close to ) the minimum
of the cubic nullcline. If the resulting equilibrium is stable, then strong perturbations
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Figure 1.5 Nullclines of the classical FHN system showing three different ways in which the
curves f (u,v) = 0 and g(u,v) = 0 intersect. Setting: (a) a = 0.7, b = 0.8 could result in a
monostable excitable system , (b) a = 0.01, b = 1.4 with possible bistable excitable kinetics
and (c) a = 0.2, b = 0.4, may result in oscillatory kinetics. For all plots I = 0.
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around this equilibrium might drive the system into a large excursion around the phase
plane and back to the starting point. This excitable behavior might lead to a traveling
pulse (action potential) in the corresponding spatially extended system.

— In Fig.(1.5.b), the nullclines intersect at three different points which are monotonically
increasing in the v-variable: v1 < v2 < v3. It is usually the case that the equilibria with
v1 and v3 are stable while that with v2 is unstable. In this case, a heteroclinic orbit may
be formed connecting v1 and v3or connecting v1(v3) and v2. This heteroclinic orbit
corresponds to a travelling front or shock wave.

— In Fig.(1.5.c), the nullcines intersect on the right side of the minimum of the cubic
nullcline. Under parameter variation, this equilibrium may become unstable and
surrounded by a stable limit cycle. This limit cycle corresponds to periodic oscillations
in the space-clamped model and to periodic traveling waves in the model with diffusion.

1.3.3 Modeling delays in neuron models

The evolution of a dynamical system need not only depend on the current state of the
system but could also depend on its history. For example, in a predator-prey system, the
growth rate of a species may depend on the current availability of food and also on the past
quantities of food [50]. Other systems where such a dependence may be obvious include:
feedback control systems [51], where information is processed and transmitted at finite
speeds, human motion control systems with reflex delays [52] and in neural networks [53].
The dependence of a system on its history is usually expressed as a delayed term. In order
to account for propagation delays, three main approaches have been adopted over the years:
The addition of a constant delay term through a hyperbolic time derivative due to Cattaneo
[54–56], the space dependent delay of neural fields [57, 58], and constant state dependent
delay [59]. The first approach has been extensively applied to model extended irreversible
thermodynamics [60], Bernard convection [61] and much more [62, 63]. Depending on the
nature of the delay term, the resulting delay differential equation may belong to one of the
following three types [64]: retarded functional differential equations (RFDE) or simply delay
differential equations (DDE), in which the rate of change of the system depends on past
states of the system; neutral functional differential equations (NFDE) in which the rate of
change of the system depends on its own past values and advanced functional differential
equations (AFDE) in which the rate of change depends on higher order derivatives of past
values. In this study we study the effect of delay introduced by finite speed of propagation in
a reaction-diffusion FHN model of advanced type.
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The generic form of a system of delayed coupled neurons take the form

Ẋi = F(Xi)+
N

∑
j=1

gi, j f (Xi,X j(t − τi, j)), (1.20)

where Xi (X j) represents the state of the ith ( jth)-neuron, gi, j is a coupling function and
N ∈ Z+ is the number of neurons in the network. τi, j =

χi−χ j
v is the delay introduced by a

propagation traveling at finite speed v between neuron i located at χi and neuron j, located
at χ j. We shall assume that all neurons are equidistant from one another so that we may
consider τi, j = τ .
For N-coupled FHN neurons with delay, Eq.(1.20) has the following representation:

u̇i = ui −
u3

i
3
− vi + I +D

N

∑
j=1

gi, j
[
u j(t − τ)−ui(t)

]
, (1.21)

v̇i = ε(ui +a−bvi), (1.22)

assuming local coupling of the membrane potentials via gap junctions.
Unlike differential equations without delay, there is a possibility that systems with delay may
experience oscillating solutions, induced by the delay. This phenomenon is widely known
and has been observed in many dynamical systems with delay [65, 66]. Detail analysis and
a survey of delay differential equations are covered in Refs.[64, 12]. In Ref.[18] delay in
Hopfield coupled neurons was shown to induce a supercritical Hopf bifurcation. Furthermore,
the occurrence of such oscillations was characterized in terms of the network topology.
Ref.[57] studied the onset of delay-induced instability in an integro-differential model of
intracortical neurons as well as the impact of delay on the pattern formation of the system. In
Ref.[17], the authors studied the effect of delay on the linear stability of system of coupled
FHN neurons of the kind shown in Eq.(1.22). Likewise it was shown that when the time delay
exceeds a certain threshold, a Hopf bifurcation occurs. The direction of the Hopf bifurcation
was computed using normal form and center manifold techniques. This thesis addresses a
problem similar to the aforementioned references but considers a semi-infinite-dimensional
system in contrast to the classical infinite dimensional delay systems. The main model we
use throughout this thesis is a hyperbolic delayed differential equation of advanced-type. The
latter also has the advantage of being tractable and computationally efficient to simulate.
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1.3.4 Hyperbolic diffusion and finite propagation speed effect

The previous subsection highlighted some of the traditional ways in which delays are
incorporated into models of spatially extended neurons. In this section, we explore delays
due to finite speed of propagation first proposed by Cattaneo. This effect is based on the fact
that the classical law of diffusion:

J(x, t) =−D∇u, (1.23)

known as Fick’ law, where J(x, t) represents the flux, u the diffusing species, and D a
diffusion matrix can be modified by considering that a finite time τ , known as the relaxation
time, is required for propagation to move from one spatial location to the nearest neighbor.
If J(x, t + τ) represents the actual flux of the diffusing quantity—in this case the membrane
potential, then it can be expanded in a Taylor series:

J(x, t + τ) = J(x, t)+ τ
∂J
∂ t

+O(τ2), (1.24)

assuming a small τ ≥ 0. This modification, when combined with Fick’s law and the continuity
equation:

∂u
∂ t

= f −∇.J, (1.25)

where f represents the location production of the field u, gives the hyperbolic reaction
diffusion equation

τ
∂ 2u
∂ t2 +

∂u
∂ t

= D∇
2u. (1.26)

Note that this equation resembles Maxwell’s equation of propagating waves in space where
the square of the speed of the waves is inversely proportional to the relation time. For this
reason, the hyperbolic formulation of diffusion is called the Maxwell-cattaneo equation, in
some academic spheres.

1.3.5 Significance of the relaxation time

Equation (1.26) is a second order wave equation with nonlinear forcing and damping. As
such this system supports damped waves propagating at speeds v ∝

1√
τ
. As τ → 0, the wave

speed approaches infinity while for a finite τ > 0, the wave speed is finite. Furthermore, let’s
consider an electrical analogy— the telegrapher’s equations [67]:

∂ 2V (x, t)
∂x2 −LC

∂ 2V (x, t)
∂ t2 = (RC+GL)

∂V (x, t)
∂ t

+GRV (x, t), (1.27)
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which represents the propagation of the potential V along a unit length of a cable of resistance
R, self capacitance C, self inductance L and leakage conductance G. We see that τ in Eq.(1.26)
plays the same role as inductance (inertia) and capacitance in Eq.(1.27). As such an increase
in τ corresponds to an increase in voltage inertia or an increase in the self capacitance of
the neuron. In each case, the net effect is a voltage which rises (falls) at a slower speed—
the wave propagates at a finite speed. When the inductance of the cable is neglected, we
recover the classical parabolic propagation. The time τ can also be shown to be related to
the relaxation time or time constant of fading memory [68]. That is, propagation media with
very small τ have extremely short memory — the flux at any moment t depends less on
flux from a previous time. Examples of such materials are pure metals or materials with a
homogeneous inner structure. On the other hand, media with long memory such as materials
with inhomogeneous inner structures, will have a very large τ . Most biological tissue fall
into the latter category. A full discussion on the scale of the relaxation time τ for various
materials and media can be found in Ref.[68].

1.4 Local bifurcations of vector fields

We begin our discussion of nonlinear oscillations and waves by reviewing some of the
bifurcation mechanisms that give rise to these states as well as their theoretical underpinnings.
We focus on bifurcations of a time-continuous vector field in the vicinity of some critical
parameter. A neuron can be regarded as a dynamical system with some initial and or boundary
constraints. In this setting, the membrane potential and other phenomenological variables
can be represented by a state space variable, whose evolution in space and time is dictated by
some differential equation of the form:

du
dt

= f (u,µ), (1.28)

where the unknown u is the time-dependent state variable, f (u,µ) the vector field, and µ is
some time-independent vector of system parameters of interest.

The stationary states or equilibria of Eq.(1.28) are given by the equilibrium manifold
f (u0,µ) = 0. The stability of an equilibrium is determined by the eigenvalues of the Jacobian
maxtrix A = d f

du (u0,µ), for an ordinary differential equation and by the eigenvalues of a
linear operator L , in some function space, if Eq.(1.28) is a partial differential equation. Let
n−, n+ and n0 be the eigenvalues of the linearized operator with negative, positive and zero
real parts respectively.
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1.4 Local bifurcations of vector fields

Definition 1. An equilibrium is said to be hyperbolic if n0 = 0. A hyperbolic saddle equilib-
rium is that for which n+n− ̸= 0.

Near a hyperbolic equilibrium, a system is topological equivalent to its linearization
(Hartman-Grobman Theorem). However by varying the parameter set µ , it is possible for
an equilibrium to become nonhyperbolic and lose its stability as µ crosses some critical
value with n0 ̸= /0. It follows that other attracting states may then emerge with qualitatively
different dynamics than former state.

Definition 2. The appearance of a topologically nonequivalent phase portrait under variation
of parameters is called a bifurcation.

Examples of attracting states that might be observed beyond criticality are: stationary,
periodic, quasi periodic and chaotic states. Near criticality, Eq.(1.28) may be reduced to a
simplified equation for critical amplitudes known as the normal form.

1.4.1 Codimension-one bifurcations

In what follows we will assume that µ is one-dimensional such that the stability properties
of u change only under the influence of one parameter. The bifurcations induced in this case
are known as codimension-one bifurcations. We shall also assume that u0 is the origin and
µc the corresponding critical parameter. When u0 is nontrivial, we may translate it to the
origin with the help of the transformation: u → u−u∗ . Furthermore let α = µ −µc, be the
distance to the bifurcation point.

Saddle-node and Pitchfork bifurcation

Assume the vector field in the neighborhood of (u,α) = (0,0) is of class Ck, k ≥ 2 with
the following properties:

f (0,0) = 0,
∂ f
∂u

(0,0) = 0. (1.29)

The first condition of Eq.(1.29) implies that the origin is an equilibrium at α = 0 while the
second signals a nonhyperbolic equilibrium with a zero eigenvalue. According to the implicit
function theorem [69], the equilibrium u0(α) is discontinuous in the neighborhood (0,0)
—that is a bifurcation takes place.

We now consider the first and simplest mode through which an equilibrium might lose its
hyperbolicity:
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1.4 Local bifurcations of vector fields

Figure 1.6 Saddle node bifurcation diagram as a function of normal form parameters. Solid
curves indicate stable equilibria while dashed curves denote unstable equilibria.

Definition 3. The appearance of a simple zero eigenvalue of the vector field upon variation
of a parameter is known as a fold or saddle-node bifurcation.

Close this this point, Eq.(1.28) has the normal form:

du
dt

= aα +bu2, (1.30)

where a and b are real constants. The equilibrium manifold of Eq.(1.30) are given by the
parabola α =−b

au2 and have the following properties depending on the values of a and b:

— If abα > 0, there are no equilibria.

— If α = 0, there exist one equilibrium

— If abα < 0 there exist two equilibria u =±
√

−aα

b .

The stability properties of the pair of equilibria which emerge beyond threshold are summa-
rized in Fig.(1.6). The fold bifurcation is popularly known as the “ blue sky bifurcation"
because it leads to the creation of a stable and unstable attractors out of no existing attractor.

18



1.4 Local bifurcations of vector fields

Figure 1.7 Pitchfork bifurcation diagram as a function of normal form parameters. Solid
curves indicate stable equilibria while dashed curves denote unstable equilibria.

Now suppose that in addition to the conditions in Eq.(1.29), the vetor field further
satisfies:

f (u,α) =− f (−u,α), (1.31)

∂ 2 f
∂α∂u

(0,0) ̸= 0
∂ f
∂u3 (0,0) ̸= 0. (1.32)

It follows that Eq.(1.28) in the neighborhood of (0,0) has the normal form:

du
dt

= aαu+bu3. (1.33)

The dynamics of the normal form as a function of its parameters is as follows:

— If abα ≥ 0, there is always one equilibrium point u0 = 0.

— If abα < 0 there exist two additional equilibria u =±
√

−aα

b with opposite stability to
u0.

These conditions indicate the presence of a Pitchfork bifurcation. When the emerging
equilibria are stable we refer to the bifurcation as supercritical Pitchfork and subcritical
Pitchfork, when the emerging equilibria are unstable. Refer to Fig.(1.7) for the full bifurcation
diagram of the Pitchfork bifurcation. The pitchfork bifurcation is commonly encountered in

19



1.4 Local bifurcations of vector fields

spatially extended systems with reflexive symmetry (u 7→ −u). Like the fold bifurcation, it is
associated with a simple zero eigenvalue of the vector field but unlike the fold bifurcation,
there exist an equilibrium u0 = 0 for all α so that the additional pair of equilibria is not
created out of thin air.

Hopf bifurcation

Definition 4. A Hopf bifurcation occurs when the linear operator of the vector field about an
equilibrium has a pair of purely imaginary eigenvalues as a parameter is varied.

The Hopf bifurcation generically occurs in systems in two dimensions [70] but can also
occur in dimensions greater than two [71]. Suppose the vector field of Eq.(1.28) is of class
Ck, k ≥ 5 and satisfies:

f (0,0) = 0,
∂ f
∂u

(0,0) ̸= 0, (1.34)

such that the linear operator has eigenvalues ±iω , ω > 0. In the neighborhood of (u,α) =

(0,0), Eq.(1.28) is topologically equivalent to the dynamics with normal form:

dz
dt

= iωz+aαz+bz|z|2, (1.35)

along with its conjugate counterpart. Note that here , a and b are complex numbers. The
real part of b(br) at α = 0 is also referred to as the first Lyapunov coefficient (l1(0)). The
corresponding bifurcation diagram can be deduced from the following conditions:

— If arbrα > 0, Eq.(1.28) has precisely one equilibrium u(α) which is stable for for
br < 0 and unstable for br > 0.

— If arbrα < 0, Eq.(1.28) has a unique periodic orbit which surrounds the unique equi-
librium u(α). The periodic orbit is stable for br < 0 and unstable for br > 0 while the
equilibrium has opposite stability.

— At α = 0 the unique equilibrium is unstable if br > 0 and is a focus if br < 0. The
former case is referred to as subcritical hopf bifurcation while the latter is termed
supercritical.

The bifurcation diagram of the normal form of Eq.(1.35) is similar to that of the Pitchfork
bifurcation shown in Fig.(1.7), if we replace a and b in Eq.(1.33) with ar and br respectively.
Equation.(1.35) is a canonical model for single and strongly coupled oscillators near a Hopf
bifurcation. For strongly coupled oscillators, this normal form is usually referred to as the
Stuart-Landau equation [72]. If the coupling between oscillators is weak, then diffusion
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1.4 Local bifurcations of vector fields

could play a significant role in which case the resulting normal form would be of the form

dz
dt

= iωz+aαz+bz|z|2 + ∂ 2z
∂ξ 2 , (1.36)

known as the complex Ginzburg-Landau (CGL) equation [72]. In this thesis, we derive this
equation from normal form arguments using the center manifold theory (see section2.3.1)
due to Iooss [73]. Note that the CGL may also be derived by realizing that the dynamics on
the center manifold is slower than on the remaining manifolds. This difference in time scales
may be exploited to derive reduced order models of a system near a bifurcation point. This
approach, known as the multiple scales perturbation method, is applied in section 3.5.

Local bifurcation of maps and cycles

Suppose Eq.(1.28) has some periodic solution corresponding to a limit cycle. It is possible
to study the stability of this cycle under parameter variations by considering the dynamics of
a Poincaré map across this orbit. let this map be of the form:

u 7→ f (u,α). (1.37)

A fixed point of such a map corresponds to a periodic orbit in Eq.(1.28) while its bifurcations
corresponds to bifurcations of the cycle. If u0 is a hyperbolic fixed point of Eq.(1.37) at some
α then the stability of u0 is determined by the Floquet multiplier µ1 = fx(u0,α).

Definition 5. The bifurcation associated with µ1 = 1 is called the saddle node of fixed points.

Remark 1. When the fixed point is a cycle, this bifurcation is referred to as limit point of
cycles (LPC). A Limit point of cycles implies the birth ( destruction ) of a stable and an
unstable limit cycle as a parameter is varied. The normal form of the fold of maps has the
same structure as Eq.(1.30):

u 7→ u+aα +bu2. (1.38)

Definition 6. The bifurcation associated with µ1 =−1 is called the flip or period-doubling
(PD) bifurcation of fixed points.

Remark 2. At the flip bifurcation of a cycle, a period-n cycle, n ∈N∗, switches to a period-2n
cycle. The flip bifurcation has normal form

u 7→ −(1+aα)u+bu3. (1.39)
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1.4 Local bifurcations of vector fields

Definition 7. The bifurcation associated with µ1,2 = e±θ0 , 0 < θ0 < π , and no other eigen-
values on the unit circle is called the Neimark–Sacker bifurcation.

Remark 3. A Neimark–Sacker (NS) bifurcation corresponds to the birth (destruction) of
an invariant circle or torus if the bifurcating fixed point is a cycle. The NS bifurcation has
normal form

z 7→ (1+α)eiθ0z+ c0
1z|z|2 +O(|z|4), (1.40)

where z ∈ C. Like Hopf bifurcations, NS bifurcations can be super- or subcritical depending
on the sign of c0

1.

1.4.2 Codimension-two bifurcations

If one relaxes the one-dimensional constraint imposed on the parameter vector α and
considers it to be two dimensional (α1,α2), then a host of new bifurcation phenomena
could be exhibited by Eq.(1.28) as the two parameters are varied simultaneously across the
(α1,α2)-plane. Detection and continuation of codimension-two (codim-2) bifurcations are
usually performed starting from a saddle node point or a Hopf point. Suppose at α = 0,
Eq.(1.28) has a eigenvalue λ1 = 0. Continuation of the saddle node curve along the (α1,α2)-
plane can yield the following bifurcations: Bogdanov-Takens bifurcation (λ1 = λ2 = 0),
fold-Hopf bifurcation ( λ1 = 0 and λ2,3 =±iω) and cusp bifurcation (b = 0). Now suppose
we begin the continuation from a Hopf bifurcation point instead (λ1,2 = ±iω), then the
following bifurcations may take place: Hopf-Hopf bifurcation (λ1,2 =±iω1, λ3,4 =±iω2 ),
and Bautin or generalized Hopf bifurcation (GH) bifurcation (br = 0). Across the GH point,
the Hopf bifuration switches from supercritcal to subcritical, along the Hopf curve. Due to its
relevance to our research, we shall focus only on the Bautin bifurcation and discuss the phase
portrait around this point. For a complete derivation and analysis of all the codimension-2
bifurcations listed above refer to Ref.[74]

Generalized Hopf (GH) bifurcation

Suppose system (1.28) has a pair of purely imaginary eigenvalues and a corresponding
normal with l1(0) = 0. Furthermore assume the second Lyapunov coefficient l2(0) ̸= 0 (See
Ref.[43]), then the system has normal form:

ż = (β1 + i)z+β2z|z|2 +β3z|z|4, (1.41)

where β1, β2, and β3 are real coefficients. We shall focus on the case with β3 = −1,
corresponding to the case with a negative second Lyapunov coefficient. The phase portrait
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GH

T

H+

H−

β2

β1

Figure 1.8 Bifurcation diagram of Bautin bifurcation. Blue curve represents the Hopf
bifurcation curve along which the equilibrium has eigenvalues λ1,2 = ±iω . H+ and H−

represents the subcritical and supercritical branches of the Hopf curve while GH represents
the Bautin bifurcation. The red curve represents the LPC curve along which a stable and
unstable cycles collide.

around the GH point can be traced by transforming Eq.(1.41) to polar coordinates z = ρeiφ :

ρ̇ = ρ(β1 +β2ρ
2 −ρ

4), (1.42)

φ̇ = 1. (1.43)

Eq.(1.43) has a trivial equilibrium and a maximum of two equilibria corresponding to cycles
(ρ = constant). These cycles branch from the trivial solution along the curves:

— H+ = {(β1,β2) : β1 = 0,β2 > 0}, corresponding to an unstable limit cycle and

— H− = {(β1,β2) : β1 = 0,β2 < 0}, corresponding to a stable limit cycle.

They collide and disappear in a saddle node bifurcation of cycles (LPC) along the curve:

T = {(β1,β2) : β
2
2 +4β1 = 0,β2 > 0}.

The GH point partitions the (β1,β2)-plane into three distinct regions depicted in Figure.(1.8).
The dynamics around the GH point is as follows:

— Crossing the curve H− from left to right, generates a unique stable limit cycle around
the trivial equilibrium.
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1.4 Local bifurcations of vector fields

— Crossing the curve H+ from left to right leads to the collision of an unstable cycle and
the trivial equilibrium, leading to an instability of the latter.

— Crossing the curve T from left to right ( resp. right to left), leads to the creation (resp.
annihilation) of a stable and unstable limit cycles.

Designing a burster around a GH point

Note that the parameter β1, in Eq.(1.41), controls the stability of the trivial equilibrium of
Eq.(1.41). The latter is stable (resp. unstable) for β1 < 0 (resp. β > 0). As such it is possible
to construct bursting dynamics around the GH point by having β1, or more variables of the
pair (β1,β2), periodically oscillate in time [75]. Up to four types of bursting[29] may be
constructed in this case:

— Hopf-Hopf bursting, in which variable oscillates along path 1 in Fig.1.9 while the other
is held fixed.

— SubHopf-fold bursting, in which one variable oscillates along path 2 while the other
constant.

— SubHopf-Hopf corresponding to the pair (β1,β2) oscillating along path 3.

— Hopf-fold corresponding to the pair (β1,β2) oscillating along path 4.

Of all possible bursting mechanisms, the SubHopf-Fold bursting also known as elliptic
bursting, is the most studied in relevant literature. This is because its dynamics is easily
amenable to analytical studies. The canonical form for such an elliptic burster is given by

ż = (u+ i)z+β2|z|2z+β3|z|4z

u̇ = η(s−|z|2),
(1.44)

where z contains information about the fast variable and fast current, u is analogous to the
slow adaptation current and η controls the ratio of the fast and slow times scales of bursting
with 0 < s < 1. Detail analysis and synchronization of elliptic bursters of this type have been
examined by Izhikevich [76] and Azad et al.[77], under different coupling schemes.

Codimension-two bifurcation of maps and cycles

There are far more codimension-two bifurcations of maps than there are in continuous
systems. This is true even for the simplest 1D maps. To name a few: the cusp (CP),
generalized period doubling (GPD), resonances, and Chenciner bifurcations. As we did for
the continuous case, we shall briefly discuss the bifurcations which are relevant to this thesis.
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1.4 Local bifurcations of vector fields

2

1

T

H+

H−

β2

β1

34

Figure 1.9 Illustration of different paths for bursting mechanisms in the neighborhood of a
GH point.

A full classification of codimension-two bifurcations of maps as well as their reduced and
full normal forms can be found in Ref.[78].

In discrete ODE’s, the equivalent of the GH bifurcation is the Chenciner bifurcation
(CH) or generalized Neimark-Sacker, with a similar bifurcation diagram. Surrounding this
bifurcation are two principal curves, the Neimark-Sacker curve and Limit point curve. Details
about the bifurcation diagram of this bifurcation can be found in Chapter 3 of Ref.[78]. The
generalized period doubling bifurcation (GPD) is the period doubling equivalent of the GH
and CH bifurcations. Table 1.1 summarizes the conditions on the multipliers and normal
form coefficients, necessary to observe these bifurcations.

Label Name Conditions

CH Chenciner µ1,2 = eiθ0 , c0
1 = 0

GPD Generalized period
doubling

µ1 =−1, b = 0

Table 1.1 Some codimension-two bifurcations of maps relevant to this thesis. Here, b and
c0

1 are given by Eq.(1.39) and Eq.(1.40) respectively, and play the role of the first Lyapunov
coefficient for maps.
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1.5 Conclusion

1.5 Conclusion

In summary, we have reviewed the main features of the neuron, action potential gen-
eration and propagation as well as some mathematical models that form corner stones of
mathematical neuroscience. Some elementary bifurcations that are common to most mathe-
matical neuron models and relevant to this thesis have also been reviewed. By considering a
neuron model as a vector field or a dynamical system, the mathematical theories of linear sta-
bility analysis, invariant manifolds, bifurcation theory and many more, may be appropriately
applied to study the qualitative and quantitative features of a neuron model.
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Chapter 2

Hyperbolic Fitzhugh-Nagumo models and
methods

This chapter is a review of the various mathematical models and methods used throughout
this thesis. A succinct description of the implementation of these methods is given, with
examples of applications provided where necessary. These methods, including analytical
and numerical methods, can be grouped into three main classes: analytical and numerical
methods for equilibria location and stability analysis, methods for reduction to normal-form,
and methods for building exact traveling wave solutions. This chapter is organized as follows:
Section 2.1 provides a brief survey of the literature on the different models and methods
used in this thesis. In section 2.2, we present the two main models used in this thesis notably
the hyperbolic FHN model in section 2.2.1, and the hyperbolic photosensitive FHN model
in section 2.2.2. In section 2.3, we review the main methods and their implementation. In
this section, analytical methods are considered in section 2.3.1 while numerical methods are
considered in section 2.3.2. In section 2.4 we give a summary of the chapter.

2.1 Introduction and background

The idea of a hyperbolic FHN model is not new and was initially derived decades ago
using arguments of internal variables[21], wherein the construct of a hyperbolic model of
nerve propagation is shown to be thermodynamically consistent. In that same study, the
authors demonstrated that such an equation still possesses solitonic and dissipative structures.
In recent times, the hyperbolic FHN model was studied in multiple studies [22–24] in the
context of existence and stability of traveling wave solutions. These studies demonstrated

27



2.1 Introduction and background

the existence of various stable solitonic structures admitting a maximum speed for nontrivial
values of the relaxation time.

External currents having the appropriate characteristics can stimulate a variety of dynam-
ical behaviors in neurons, sometimes in combination with other parameters. For example,
photosensitive neurons convert light signals into electrical pulses that fine-tune the spiking
activity of these neurons [79, 80]. While most experiments involving the effect of light on
neural spiking have been based on biological photosensitive neurons, recent attempts have
been made to this effect using models amenable to mathematical analysis and capable of
being implemented electronically. Using the celebrated Fitzhugh-Nagumo neuron[48] as
a basis, Liu et al. [81] proposed a novel photosensitive Fitzhugh-Nagumo neuron using
a phototube as a transducer. The photocurrent which drives the circuit or the model is
produced by the photoelectric effect [82, 83] taking place inside the phototube or a similar
photosensitive device. The idea of a photosensitive FHN model is quite new and could prove
relevant in future research. For this reason, we included this model in this thesis, modified
accordingly, to include the effects of hyperbolic diffusion.

Although most of the bifurcations covered in the Chapter 1 occur in generic systems of
finite dimension, equal to the dimension of the normal form equations, these bifurcations can
be shown to occur in systems with higher dimensions. In the case of the Hopf bifurcation, the
dynamics and stability of the periodic orbit can be assessed on a two dimensional manifold
known as the center or critical manifold. Formulas for orbital stability on such a manifold
have been derived since decades and are easy to implement [84]. However, when dealing
with systems of dimensions greater than two, a reduction of the asymptotic dynamics to
that of the center manifold is indispensable if one wishes to obtain information about the
stability of limit cycles. Such dimensional reduction at nonhyperbolic points can be achieved
using techniques such as the Lyapunov-Schmidt method [85], Hopf’s power series method,
averaging theory, Lyapunov functions [86] and center manifold theory [87]. For systems
in Jordan form, the application of the center manifold reduction is straightforward. Even
without reduction to the Jordan form, the projection method [74] may be applied to achieve
similar results. For a good introduction to the theory and proofs, refer to Refs.[88] and [89].

Solitary waves or solitons [90] are solutions of certain PDE’s which are uniformly
translating in space and maintain a fixed shape due to balances between dispersion and
nonlinearity for Hamiltonian systems or gain and loss for dissipative systems. In biological
neurons, solitons are traveling fronts and pulses (action potentials). Exact solitary solutions,
may be constructed directly from a PDE via analytical techniques such as the G′/G-method
[91, 92], Tanh-method [93], Hirota bilinear method [94] , direct integration method [95]
and many more. Exact solutions to solitary waves may also be obtained from canonical
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2.2 Modified Fitzhugh-Nagumo models

models such as the complex Ginzburg-Landau [36] of dissipative systems or the non-linear
Shrödinger equation (NLS) [96] of Hamiltonian systems. A popular method of deriving these
models is by reductive perturbation [97]. This consists of approximating the behavior of
the system, very close to a bifurcation point with a power series expansion in a perturbation
parameter, and studying different behaviors at different orders of this parameter. This
technique has been used extensively to construct solitary solutions in models of single
neurons [98–100].

Although nerve pulse propagation is traditionally modeled by continuous differential
equations, in some cases, it may be more appropriate to use a system of discrete equations.
For example, in myelinated axons, propagation occurs in a saltatory manner, from one node
of Ranvier to the next [101]. In this case, it makes sense to view the diffusion as discrete in
space. Such models, like continuous models, have been shown [102, 103] to bear traveling
wave solutions of the same quality as the continuous model. Another instance in which it
makes sense to use a discrete model is during modeling processes that change only after
discrete time intervals. For example, we may be interested in tracking the membrane potential
only after discrete time intervals. For instance, when performing parameter estimation from
experimental data [104]. An easy wave to implement discretizations in space and in time
is via finite difference approximations which are relatively easy to implement and provide
rapid convergence to the desired solutions (if implemented correctly).

Bifurcation analyses via analytical methods is quite an involved process for most differ-
ential equations. This complex analysis if further compounded by the nonlinearity present
in PDE’s describing real systems or practical scenarios. As a result, numerical bifurcation
analyses is often the preferred method for bifurcation analyses. Many software tools have
been developed to detect and continue various bifurcations of differential equations. These
software have mostly been developed for ordinary differential equations. Examples of such
software include: AUTO [105], MATCONT [106], XPPAUT, COCO and many others. Re-
cent software such as pde2path [107], based on MATLAB, have been developed to address
bifurcation analyses of PDE’s.

2.2 Modified Fitzhugh-Nagumo models

2.2.1 The hyperbolic FHN Model

The hyperbolic diffusion formulation described in Chapter 1 forms the basis for all
models used throughout this thesis. When applied to the classical FHN model (1.19), the
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result is the system of equations:

τutt +ut = duxx +u− u3

3
− v+ I in Ω = [0, ℓ],

vt = ε(u+a−bv), (2.1)

ux(0) = ux(ℓ) = vx(0) = vx(ℓ) = 0,

defined on a one-dimensional bounded domain Ω = [0, ℓ], representing a neuron of length
ℓ. ut and utt represent respectively first and second order partial time derivatives of u.
We impose suitable boundary conditions on the system, of Neumann-type. Here, d is the
diffusion coefficient. For analytical stability analysis, we neglect the term I.

We may further recast the system (2.1) as a system of autonomous differential equations
having the structure of Eq.(1.28), as follows:

ut = w,

wt =
1
τ
(duxx +u− u3

3
− v−w+ I) in Ω = [0, ℓ], (2.2)

vt = ε(u+a−bv),

ux(0) = ux(ℓ) = vx(0) = vx(ℓ) = 0,

where the new variable w = ut has been introduced to bring the equations to a parabolic form.
To use the center manifold reduction (detailed subsequently) on Eq.(2.2), we need

the equilibrium to be located at the origin (0,0,0). If the system is already at the origin,
the reduction is easier otherwise the nonhyperbolic equilibrium needs to be translated to
the origin. If the steady state of the system is independent of the bifurcation parameter,
the nontrivial equilibrium may be translated to the origin before bringing the system to a
nonhyperbolic equilibrium. Let U∗ = (u∗,w∗,w∗) denote a nontrivial steady state of Eq.(2.2).
We may translate the latter to the origin as : X = u−u∗, Z = v− v∗, Y = w−w∗. Secondly,
we may re-scale the length of the neuron by transforming the space variable x → π

ℓ x, to
obtain the matrix equation:

Ut = LU +F(U,δ ) Ω̂ = [0,π], (2.3)

Ux
∣∣
x=0 =Ux

∣∣
x=π

= 0,

30



2.2 Modified Fitzhugh-Nagumo models

where

U =

 X
Y
Z

 , F(U,δ ) =

 0
−δu∗U2

1 − δ

3U3
1

0

 ,

and L = D∆+A, is a formal linear operator ( ∆ being the laplacian operator). The terms D
and A are matrices defined as

D =

 0 0 0
dδπ2

ℓ2 0 0
0 0 0

 ,and A =

 0 1 0
δ (1−u∗2) −δ −δ

ε 0 −εb

 ,

where δ = 1
τ
.

The linear operator is defined such that

L : Y → X , (2.4)

with domain
D(L ) = {U ∈ Y , U ′(0) =U ′(π) = 0}, (2.5)

where

Y = (H2(Ω)∩H1(Ω))×R2, (2.6)

X = L2(Ω)×R2. (2.7)

The operator L defines a closed compact linear operator in the Hilbert space X . H2(Ω) and
H1(Ω) are respectively second and first order Sobolev spaces. L2(Ω) is the Hilbert space of
square integrable functions while R is the space of real numbers. The operator × defines the
direct product of two vector spaces.Precise definitions for these function spaces are found in
Appendix B.

Notice that D is an asymmetric diffusion matrix, A, the Jacobian of the system (2.3)
around the uniform steady state, and F(U,δ ) is assumed to be a smooth function with
D jF(U,δ ) = 0, | j| ≤ 1 . Furthermore, D is inversely proportional to the relaxation time
and length. As such, larger values of τ or large ℓ, will induce slow spatial variations and
vice-versa. If the diffusion is to be interpreted as local coupling between different interacting
oscillators then a large τ would mean the system approaches the limit of weakly coupled
oscillators. In this setting, the synchronous state can be lost to long wave perturbations.
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Figure 2.1 Schematic of photoelectric cell connected to the Fitzhugh-Nagumo setup showing
various relevant voltages, and components: Vs is the output of the photoelectric cell, V the
membrane potential across the neuron, C the membrane capacitance, and NR a nonlinear
resistance.

In the absence of diffusion (D = 0), Eq.(2.3) defines in a natural way, a dynamical
system in R3. In the presence of D, it has been shown that such a system defines an infinite
dimensional time-continuous dynamical system in X , a function space, see Ref.[74, 15].

2.2.2 A hyperbolic photosensitive neuron

The entire schematic for the classical FHN model coupled with a photosensitive device
and input resistance is displayed in Fig.2.1. According to kirchhoff’s law, the voltages and
currents in Fig.2.1 are related as follows:

C
dV
dt

= is − iL − iNR,

L
diL
dt

=V +E −RiL,
(2.8)

where Vs represents the voltage across the photoelectric cell, and is = Vs−V
Rs

, represents the
induced photocurrent. The latter is related to the intrinsic properties of the photoelectric cell
as

is =
2IH

π
arctan(Vs −Va),

where IH and Va are the saturation current and normalized parameter associated with the
photoelectric cell. The current iNR, through the nonlinear resistor is related to the voltage
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across it as follows [46]:

iNR =− 1
ρ

(
V − V 3

3V 2
0

)
, (2.9)

where ρ and V0 are normalization parameters of the nonlinear resistor.
From Eq.(2.8) the following nondimensionalized system is obtained

u̇ = f (u,v),

v̇ = g(u,v),
(2.10)

where u̇ and v̇ represent the time derivatives of the respective functions with

f (u,v) = u(1−ξ )− u3

3
− v+us,

g(u,v) = ε(u+a−bv),
(2.11)

where the following transformations have been employed:

u → V
V0

, v → ρiL
V0

, t → t
ρC

, a → E
V0

,

b → R
ρ
, ε → ρ2C

L
, ξ → ρ

Rs
, us →

ρVs

RsV0
.

If one considers an ensemble of photosensitive neurons coupled by diffusion, then the
local dynamics of each neuron may be described by a hyperbolic system of ODE’s, assuming
non-negligible relaxation time. It follows that Eq.(2.10) can be recast as

u̇ = h(u,w,v),

ẇ =
1
τ
( f (u,w,v)−w),

ẏ = g(u,w,v),

(2.12)

where h(u,w,v) = w = u̇.
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2.3 Methods and applications

2.3.1 Analytical methods

Equilibria and invariant sets

Quantitative and qualitative information about the equilibria of Eq.(2.2) can be obtained
from the equations

LU +F(U,δ ) = 0, (2.13)

Ux(0) =Ux(π) = 0. (2.14)

these equilibria can be spatially uniform or inhomogeneous. For example, the spatially
homogeneous equilibria, U0 are obtained by solving the system of equations:

w = 0,

u− u3

3
− v−w = 0, (2.15)

u−bv =−a,

which leads to the polynomial equation

u3 +
3(1−b)

b
u+

3a
b

= 0. (2.16)

This equation has up to three equilibria [47]. We used the following lemma, based on Vieta’s
formulas to obtain information about the quantitative nature of the different equilibria:

Lemma 1 ([108]). A cubic polynomial of the form: x3 +a2x2 +a1x+a0 = 0, x ∈ C1, has
discriminant

D = a2
2a2

1 −4a3
1 −4a3

2a0 −27a2
0 +18a2a1a0. (2.17)

Furthermore,
if D > 0, then the polynomial has three distinct real roots corresponding to three fixed points.
if D = 0, the polynomial has multiple roots.
if D < 0, the polynomial has a unique real root and two complex conjugate roots.

Linear stability analysis

In this thesis we were interested in the local stability of the system around a trivial
equilibrium. Linear stability analysis is ubiquitous in the study of dynamical systems and is
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a very powerful tool used to obtain information about the stability of dynamical states (fixed
point, limit cycle, solitary wave etc), in their neighborhood. In fact, the Hartman–Grobman
theorem [84] asserts that linearization about a hyperbolic equilibrium is sufficient to infer
its global stability. For nonhyperbolic equilibria, linearization may not provide useful
information about the local stability since nonlinear terms in Eq.(2.2) need to be taken into
account. Linearization in this case, may be used to infer information about the dimension of
the center manifold.

In the absence of diffusion the formal operator L is equivalent to the Jacobian around
the origin. In this case the linear stability of the system can be obtained from the equation

Ut = AU. (2.18)

Assuming eponentially growing or decaying solutions of the form U =Ueλ t , and substituting
this trial solution into Eq.(2.18) we obtain

det(A−λ I) = 0. (2.19)

In the presence of diffusion (D ̸= 0), Eq.(2.18) is equivalent to

LU = λU, (2.20)

where the solutions U are now of the form Uφkeλ t , φk being a function which satisfies the
boundary conditions, and k, the wavenumber. Eq.(2.20) is sometimes referred to as the
Sturm-Liouville problem; with the corresponding boundary conditions.

Eqs.(2.19) and (2.20), upon simplification, yield a polynomial eigenvalue problem of the
form

χ(λ ) = a0λ
n +a1λ

n−1 + · · ·+an, (2.21)

where a0 . . .an are constants with a0 > 0. Eq.(2.21) may be studied for sufficient and
necessary conditions for the Hopf bifurcation with an attracting center manifold. In this
thesis, we made use of the following useful theorem :

Theorem 1 ([109]). χ(λ ) has a pair of distinct roots, iω and −iω on the imaginary axis and
all other roots in the left half plane if and only if an > 0, ∆n−1 = 0 ∆n−2 > 0, . . . , ∆1 > 0,
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where ∆i represents the ith-order principal minor or ith Hurwitz determinant of H (χ)
given by

H(χ) =


a1 a3 a5 . . . . . .

a0 a2 a4 . . . . . .

0 a1 a3 a5 . . .

0 a0 a2 a4 . . .
. . .

 . (2.22)

Center manifold theory

In what follows, we briefly describe the center manifold theory and provide necessary
conditions for the existence of a center manifold. Due to its ease of implementation and
analytical tractability, we chose the center manifold reduction for the analysis of the stability
of nonhyperbolic fixed points, throughout this thesis.

Let Eq.(1.28) at a nonhyperbolic equilibrium (u,α)=(0,0) be written as

du
dt

= L u+F(u,α), (2.23)

where L and F(u,α) are operators.

Hypothesis 1. Assume L and F(u,α) satisfy the following:

1. L is a bounded linear operator in some Hilbert space H with domain D.

2. F(u,α) is a nonlinear function of class Ck, k ≥ 2, satisfying:

F(0,0) = 0 DF(0,0) = 0. (2.24)

Here, DF(0,0) represents the Jacobian of the vector field of Eq.(2.23) at (0,0).

Hypothesis 2. Consider the spetrum of L at criticality: σ = σ+∪σ0 ∪σ−,
where σ+, σ0 and σ− are respectively called unstable, center and stable spectrum such that
dim(σ+) = n+, dim(σ0) = n0, and dim(σ) = n−.

Remark 4. It follows that at criticality, the space H may be decomposed as

H = Ec ⊕Es ⊕Eu, (2.25)

where Ec, Es and Eu represents the vector spaces spanned by the eigenvectors of σ0, σ− and
σ+ respectively.
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Theorem 2. Assuming the above hypothesis hold, there exist a map y = y(uc,α), uc ∈ Ec

satisfying
y(0,0) = 0, Dy(0,0) = 0, (2.26)

and a neighborhood Nu×Nα = (0,0) in D×Rm such that for α ∈ Nα , the n0-dimensional
local manifold:

W c
loc(α) = {uc,y(uc,α)} ⊂D×Rm, (2.27)

has the following properties:

— W c
loc(α) is locally invariant. If u(t) is a solution of Eq.(2.23) satisfying u(0)∈Nu∩Nα

and u(t) ∈ Nu for all t ∈ [0,T ] then u(t) ∈W c
loc(α) for all t ∈ [0,T ].

— W c
loc(α) need not be unique.

— W c
loc(α) is locally tangent to Ec.

— W c
loc(α) contains the set of bounded solutions of Eq.(2.23) staying on Nu for all t.

— W c
loc(α) has finite smoothness as the vector field of Eq.(2.23) in some neighborhood

Nu ∩Nα of (0,0).

Remark 5. The function y(uc,α) is known as the reduction function. Its solutions are locally
exponentially decaying ( resp. growing) for n+ = 0 ( resp. n− = 0). For the case n+ = 0,
the manifold is globally attracting and the evolution on the center manifold or restriction
equation is given by

ż = Az+ f (uc,y(uc,α)), (2.28)

where A is a matrix whose eigenvectors span Ec. In this case, the stability of fixed points of
Eq.(2.28) corresponds to the stability of the fixed point of Eq.(2.23) to the O(e−γt), γ > 0:

u(t) = z(t)+O(e−γt). (2.29)

Normal form reduction without diffusion

Assume the diffusion D = 0 or that system (2.3) is made of identical, strongly coupled
units. Further assume that the system is at a nonhyperbolic equilibrium (Hopf bifuration
point) with the remaining eigenvalues in the left half of the complex plane. System Eq.(2.3)
can be written in the form

U̇ = AU +F(U,δc)+O(|U |4), (2.30)

where δc represents the critical value of δ but could also represent any critical parameter
value. To ease our notation, we represent δc at criticality simply as δ . For convenience, we

37



2.3 Methods and applications

may sometimes represent F(U,δ ) in the form:

F(U,δ ) =
B(U,U)

2
+

C(U,U,U)

6
, (2.31)

where B and C are multi-linear functions of two (three) planar vectors on the critical
eigenspace and defined by the following expressions:

Bi(x,y) =
3

∑
j,k=1

∂ 2Fi(ξ ,δ )

∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk,

Ci(x,y,ν) =
3

∑
j,k,l=1

∂ 3Fi(ξ ,δ )

∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykνl i = 1 . . .3. (2.32)

We now investigate the asymptotic dynamics on the center manifold of the system near
a Hopf bifurcation. To this end, we project the system onto the center manifold using the
generalized eigenvector, q and adjoint vector, p of A as outlined in the projection method
[74]. The vectors p and q satisfy the equations

Aq = iωq, (2.33)

AT p =−iω p, (2.34)

,and

⟨p,q⟩= 1, (2.35)

where ω is the frequency of the oscillations at the Hopf bifurcation. Note that the Jordan
form of A at the Hopf bifurcation is

A =

(
0 −ω

ω 0

)
. (2.36)

Theorem 3 (Normal form theorem). By introducing a complex variable U = zq+ z̄q̄+ y,
Eq.(2.30) can be written for sufficiently small |α| as a single equation

ż = iωz+
1
2

g20z2 +g11zz̄+
1
2

g02z̄2 +
1
2

g21z2z̄+ . . . , (2.37)

together with its conjugate counterpart. Here, α = δ −δc, and y = f (z, z̄) is a variable
from the space complementary to the critical eigen space such that ⟨p,y⟩= 0. The coefficients
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gi, j are given by:

g20 = ⟨p,B(q,q)⟩, (2.38)

g11 = ⟨p,B(q, q̄)⟩, (2.39)

g02 = ⟨p,B(q̄, q̄)⟩, (2.40)

g21 = ⟨p,C(q,q, q̄)⟩−2⟨p,B(q,s)⟩+ ⟨p,B(q̄,r)⟩+ 1
iω

g20g11 −
2

iω
|g11|2 −

1
3iω

|g02|2,

(2.41)

where r and s are generally complex matrices. Fulls details of the derivation of these formulas
can be found in Ref.[74]. Eq.(2.37) is the restriction equation governing the dynamics on
the center manifold. We may further reduce this equation to its pervasive form, the Poincaré
form using the following lemma:

Lemma 2. The equation

ż = λ z+ ∑
2≤k+l≤3

1
k!l!

gklzkz̄l +O(|z|4), (2.42)

where λ = λ (α) = µ(α)+ iω(α), µ(0) = 0, ω0 > 0 and gi j = gi j(α) can be transformed
by an invertible parameter-dependent change of complex coordinate, smoothly depending on
the parameter

z = w+
h20

2
w2 +h11ww̄+

h02

2
w̄2 +

h30

6
w̄3 +

h12

2
ww̄2 +

h03

6
w̄3, (2.43)

for all sufficiently small α into the equation

ẇ = λw+ c1|w|2w̄, (2.44)

where

c1 =
i

2ω

(
g20g11 −2|g11|2 −

1
3
|g02|2

)
+

g21

2
. (2.45)

Proof. :We attempt to eliminate the quadratic terms in Eq.(2.37) using the transformation

z = w+
h20

2
w2 +h11ww̄+

h02

2
w̄2. (2.46)
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As suggested in Ref.[74], we consider the following inverse quadratic transformation includ-
ing the resonant term

w = z− h20

2
z2 −h11zz̄− h02

2
z̄2 +

1
2
(3h11h20 +2|h11|2 + |h02|2)z2z̄. (2.47)

Taking the time derivative of Eq.(2.47), we get

ẇ = ż−h20ż ˙̄z−h11(żz̄+ z ˙̄z)−h02 ˙̄zz̄+
Γ

2
(2zż+ z2 ˙̄z), (2.48)

where Γ = 3h11h20+2|h11|2+ |h02|2. Next, we substitute the expressions of ż and ˙̄z obtained
from Eq.(2.37) into Eq.(2.48). After expanding the resulting equation and collecting terms in
z and z̄, we obtain

ẇ = λ z+(
g20

2
−λh20)z2 +(

g02

2
− λ̄h02)z̄2 +(−h11λ −h11λ̄ +g11)zz̄

+
(

Γ

2
(2λ + λ̄ )−g11h20 −

h11

2
g20 −h11 ¯g11 −

¯g02

2
h02 +

g21

2

)
z2z̄+ . . . (2.49)

Here, the three dots stand for terms of order three and higher, excluding the resonant term
(z2z̄). We now seek to approximate the terms z2, zz̄, z̄2 and z2z̄ with their expansions up to
the third order, excluding non-resonant terms at order three. These results in the following
order approximations:

z2 = w2 +2h11w2w̄+ . . . , (2.50)

zz̄ = ww11 +( ¯h11 +
h20

2
)w2w̄+ . . . , (2.51)

z̄2 = w̄2 + ¯h02w2w̄+ . . . , (2.52)

z2z̄ = w2w̄+ . . . . (2.53)

Substituting these relations into Eq.(2.49), collecting terms in w2, ww̄ and w̄2 and equating
their coefficients to zero yield the expressions

h20 =
g20

λ
, h11 =

g11

λ̄
, h02 =

g02

2λ̄ −λ
. (2.54)
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These equations can be used to selectively eliminate quadratic terms of the desired order.
Collecting terms in w2w̄ gives the coefficient

c1 =
3
2

h11h20(2λ + λ̄ )+(2λ + λ̄ )|h11|2 +
|h02|2

2
(2λ + λ̄ )− 1

2
g11h20 +

1
2

h11g20 −h11 ¯g11

− ¯g02

2
h02+

g21

2
−2λh11h20+

1
2

¯h02g02− λ̄ |h02|2−|h11|2(λ + λ̄ )+g11 ¯h11−
1
2

h11h20(λ + λ̄ ).

(2.55)

The above expression reduces to a rather simple form, using the relations of Eq.(2.54), with
λ = iω , giving us

c1 =
ig20g11

2ω
− i|g11|2

ω
− i|g02|2

6ω
+

g21

2
. (2.56)

At this point, any remaining third order terms in Eq.(2.49) can be eliminated similarly using
lemma (3.5) of Ref.[74], which concludes the proof.

Normal form reduction with diffusion, projection method

Assume the formal linear operator (L ) of system (2.3) has a pair of purely imaginary
eigenvalues λ = iω and all other eigenvalues lie on the left half of the complex plane. That is

L q = iωq, (2.57)

where q represents the critical eigenvector belonging to wave mode k. Note also that the
linear operator is a function of k. Vector q has the form q =V coskx, V ∈ C3. We define an
adjoint linear operator L ∗ defined such that

L ∗p =−iω p, (2.58)

such that p = W coskx, defines the adjoint eigenvector with W ∈ C3. The normalization
condition ⟨p,q⟩= 1 is carried out in an appropriate function space on which L is compact
and bounded.

Assume system (2.3) at criticality can be decomposed as

U = zq+ z̄q̄+ y(z, z̄), (2.59)

where q and q̄ ∈ Ec, the center subspace and y ∈ Es, the linear stable subspace. y is the
reduction function satisfying ⟨p,y⟩= 0.

41



2.3 Methods and applications

It follows that

z = ⟨p,U⟩, (2.60)

and y =U −⟨p,U⟩q−⟨p̄,U⟩q̄. (2.61)

Taking the time derivative of the previous two equations transforms Eq.(2.3) into

ż = iωz+ ⟨p,F(zq+ z̄q̄+ y,δ )⟩, (2.62)

ẏ = L y+F(zq+ z̄q̄+ y,δ )−⟨p,F(zq+ z̄q̄+ y,δ )⟩q
−⟨p̄,F(zq+ z̄q̄+ y,δ )⟩q̄, (2.63)

from which the center manifold takes the form y = f (z, z̄), satisfying y(0,0) = 0 and
D jy(0,0) = 0, | j| ≤ 1. So we may choose y such that

y =
r20

2
z2 + r11zz̄+

r02

2
z̄2 +O(|z|3). (2.64)

Substituting Eq.(2.64) into Eq.(2.63) and equating terms of the same power we obtain the
following boundary value problems:

(D
d2

dx2 +A−2iωE)r20 =−H20, (2.65)

(D
d2

dx2 +A)r11 =−H11, (2.66)

(D
d2

dx2 +A+2iωE)r02 =−H02, (2.67)

dri, j

dx

∣∣
x=0 =

dri, j

dx

∣∣
x=π

= 0, (2.68)

where,

Hi, j =
∂ i+ j

∂ zi∂ z̄ j F(zq+ z̄q̄,δ )
∣∣∣
z=0

−Gi, jq− Ḡ j,iq̄ , i+ j = 2 (2.69)

Gi, j =
∂ i+ j

∂ zi∂ z̄ j ⟨p,F(zq+ z̄q̄,δ )⟩
∣∣∣
z=0

, i+ j ≥ 2. (2.70)

Using the Taylor series decomposition of F(zq+ z̄q̄+y,δ ) or its multilinear forms, Eq.(2.32),
all vectors Hi, j and Gi, j can be computed. Eqs.(2.65-2.67) are systems of second order
linear ordinary differential equations and as such, their solutions are linear combinations of a
general and particular solution. When these functions are determined, so is the reduction

42



2.3 Methods and applications

function Eq.(2.64). Substituting the reduction function into Eq.(2.62) yields the restricted
equation on the center manifold from which the first Lyapunov coefficient can be computed.

Normal form reduction with diffusion: weakly coupled system

In this subsection, we consider a system of weakly coupled oscillators near a Hopf bifur-
cation and derive the restricted dynamics in this neighborhood. Consider small perturbations
around the homogeneous state of the form δ = δc+α , and U =U0+V where δc = δc(k = 0).
Under these transformations, Eq.(2.3) becomes

Vt = (µ2D̃∆+ Ã)V +F(U0 +V,δc +α) Ω̃ = [0,µπ], (2.71)

αt = 0,

µt = 0,

where D̃ = Dδc+α , Ã = Aδc+α and µ > 0 is a small parameter introduced to re-scale the
spatial variable and diffusion coefficient using the transformation x → µx. Because the
diffusion is now scaled by a small parameter, we are now in the weakly coupled limit.
Close to the Hopf bifurcation of the homogeneous mode, the infinite dimensional center
manifold takes the form y(z, z̄,α,µ2). The corresponding spectral decomposition becomes

U = zq+ z̄q̄+ y(z, z̄,α,µ2) . (2.72)

It follows that the reduced equation on the center manifold has normal form

∂ z
∂ t

= iω0z+ f1αz− f2z|z|2 +µ
2 f3∆z+ . . . , (2.73)

where

f1 = ⟨p,
∂ Ã
∂α

∣∣∣
α=0

q⟩, (2.74)

f2 =−⟨p,B(q,y1100)+B(q̄,y2000)+
1
2

C(q,q, q̄)⟩, (2.75)

f3 = ⟨p,Dδcq⟩, (2.76)
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in which,

y1100 =−L −1B(q, q̄), (2.77)

y2000 =−1
2
(L −2iω0)

−1B(q,q), (2.78)

B(q̄,y2000) =

 0

−2δcu∗q̄1y(1)2000

0

 , (2.79)

B(q̄,y1100) =

 0

−2δcu∗q1y(1)1100

0

 , (2.80)

where y(n)i jkl represents the nth-component of yiklm. Here, B(U,V ) and C(U,V,W ) are sym-
metric multilinear functions defined according to Eqs.(2.32). Note that in this case, L and
the eigenfunctions q and p are evaluated at k = 0 and α = 0. For more information on the
derivation of these operators and other useful formulas consult Appendix A.1.

By introducing the following scaling transformations t → µ2t, z → zeiω0t and setting
α =−µ2 we obtain the CGL as

∂ z
∂ t

=− f1z− f2z|z|2 + f3∆z, (2.81)

ignoring higher order terms. The choice of α =−µ2 is by assumption that the direction of
instability is α < 0. For a supercritical Hopf bifurcation of mode k = 0, the exact form of the
CGL will be of cubic form without quintic or higher order terms which must be present if
the bifurcation is subcritical. Further assume f1r < 0 and f3r > 0. With another set of set

of transformations namely: t →− f1rt, x →
√

− f1r
f3r

x and z → − f1r
f2r

ei f1i
f1r

tz, Eq.(2.81) can be
rewritten in its pervasive form:

∂ z
∂ t

= z− (1+ ic2)|z|2z+(1+ ic1)∆z, (2.82)

with c2 =
f2i
f2r

and c1 =
f3i
f3r

.

The G′/G expansion method

The G′/G expansion method is a popular method used to obtain exact traveling wave
solutions to certain class of nonlinear partial differential equations (PDE’s). It is relatively
easy to implement on simple PDE’s and was our method of choice to obtain front wave
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solutions for the hyperbolic FHN model, without the recovery variable. The classical FHN
model in addition to pulse or periodic wave solutions, possesses front wave solutions in
the absence of the recovery variable [93]. By neglecting the recovery variable, boundary
conditions and I in Eq.(2.1) (v = 0), we obtain a single partial differential equation of the
form:

P(u,ux,ut ,uxx,uxt ,utt , . . .) = 0 (2.83)

The G′/G expansion method can be used to find exact solitary solutions of Eq.(2.83) in the
form of trigonometric or hyperbolic trigonometric functions as follows:

— Step 1: Introduce a change of variables by letting u(x, t) = u(ξ ), where ξ = x− ct.
This transforms Eq.(2.83) into an ordinary differential equation:

Q(c,u′,u′′,u′′′, . . .) = 0. (2.84)

— Step 2: We seek solutions of Eq.(2.84) as a power series of the function G′/G as
follows:

u(ξ ) = ∑
m=0

αm(
G′

G
)m + . . . , (2.85)

where αm ̸= 0 and the . . . represent terms of order m−1 and lower. G(ξ ) is assumed
to be the solution of the second order ordinary differential equation:

G′′+λG′+µG = 0, (2.86)

where λ and µ are constant to be determined. The integer m is determined by balancing
terms in the highest order derivative and highest order nonlinear terms in Q(u(ξ )).

— Step 3: Substituting Eq.(2.85) into Eq.(2.84), making use of Eq.(2.86) and collecting
like terms of order (G′

G ) (setting each of these terms to zero), we obtain a system of
equations with unknowns, αm, c, λ , and µ .

— Step 4: Next we use a computer algebraic software such as MAPLE to solve the
system of equations obtained in step 3 and substitute the solutions into Eq.(2.86). We
then find the general solutions of this equation which we replace into Eq.(2.85), to
obtain traveling waves solutions.

The direct integration method

The direct integration approach is a simple method used to find exact solutions to
equations similar to Eq.(2.84) by simply integrating this equation a number of timse and
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setting the integration constants to zero. We used this method to find exact solutions to
oscillons of the CGL similar to that obtained in Eq.(2.73). To demonstrate this method, let
us assume we are precisely at the critical Hopf bifurcation point (α = 0) and that Eq.(2.73)
has been rescaled to remove the frequency(ω). That is, We consider the CGL of the form

iAt +PAξ ξ +Q|A|2A = 0, (2.87)

where P and Q are generally complex coefficients. We assume solutions of this equation of
the form

A(ξ , t) = f (z)ei(mξ−nt), z = ξ +Vt (2.88)

where m and n are parameters and V is the speed of the wave. Substituting this into Eq.(2.87),
we obtain

i(V f ′− in f )+(Pr + iPi)
[

f ′′+2im f ′−m2 f
]
+(Qr + iQi) f 3 = 0, (2.89)

where, f ′ = ∂ f
∂ z . This equation further be separated into real and imaginary parts as

n f +Pr( f ′′−m2 f )−2mPi f ′+Qr f 3 = 0, (2.90)

V f ′+2m f ′Pr +Pi( f ′′−m2 f )+Qi f 3 = 0. (2.91)

Eliminating f ′ from this two equations, we obtain

(n−Prm2 − γPim2) f +(Pr + γPi) f ′′+(γQi +Qr) f 3 = 0, (2.92)

with γ = 2mPi
2mPr+V . Multiplying by f ′ and integrating once, we obtain

−F f 2 +G f ′2 +
H
2

f 4 = c1, (2.93)

where, c1, is a constant of integration which we set to zero, in requirement with properties of
a solitary solution. The constants F , G, and H are given by

F = m2(Pr + γPi)−n2, (2.94)

G = Pr + γPi, (2.95)

H = γQi +Qr. (2.96)
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Making f ′ the subject in Eq.(2.93), we have

√
2G f ′

f (
√

2F −H f 2)
= 1, (2.97)

where, 2F−H f 2

2G > 0. Letting 2F −H f 2 = g2, this equation can be transformed into the
following (relatively easier to integrate) equation

√
2Gg′

2F −g2 =−1. (2.98)

The latter can be integrated by partial fraction technique by separating in the form√
G
F

(
1

(
√

2F +g)
+

1
(
√

2F −g)

)
g′ =−2. (2.99)

After integration and simplification, we obtain

g =−
√

2Ftanh

(
√

2Fc2 +

√
F
G

z

)
, (2.100)

where, c2 is a constant of integration. Expressing f in terms of g, we have

f =

√
2F
H

sech

(
√

2Fc2 +

√
F
G

z

)
, (2.101)

and the solitary solution

A =

√
2F
H

sech

(
√

2Fc2 +

√
F
G

z

)
ei(mξ−nt). (2.102)

The multiple scale expansion method

The multiple scale expansion method is a reductive method similar to the center manifold
reduction method. This method exploits the fact that the dynamics on the center manifold
is generally slower than the dynamics on the complementary space. As a result, a time
separation can be imposed on the system in the neighborhood of a nonhyperbolic equilibrium.
Spatial variations are also assumed to be slow on this manifold.

We introduce slow time and space variables as follows

ξ = δx, T = δ t, τ̃ = δ
2t, (2.103)
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where δ << 1 is a small parameter which represents a small deviation from the steady state
of Eq.(2.1). Next, we expand the membrane potential and recover variables , in a Fourier and
power series of unstable modes in δ of the form:

U =
3

∑
n=1

δ
nUp̃

neip̃ϕ , (2.104)

where U = (u,v)T , −2 ≤ p̃ ≤ 2, p̃ ∈ Z, and ϕ = kx−ωt. Here, ϕ represents the phase of
the propagating wave, p̃ its harmonic, k its wavenumber, and ω its frequency.
We consider the most unstable mode at threshold to be a slowly moving wave, having the
following ansatz

U = U1(ξ ,T, τ̃)eiϕ + c.c, (2.105)

where U1 as well as U p̃
n are functions of the slow time and space variables. In terms of the

slow variables, the time and space derivatives of Eq.(2.1) take the form:

Uxx =−k2 p̃U +2δUxξ +δ
2Uξ ξ ,

Ut =−iω p̃U +δUT +δ
2Uτ̃ , (2.106)

Utt =−ω
2 p̃2U +2δUTt +Uτ̃t +2δ

3UT τ̃ +δ
2UT T +δ

4Uτ̃ τ̃ .

Substituting Eqs.(2.106) into system (2.1) and collecting terms of different orders of δ , we
can obtain information about the linear stability of the wave state and obtain other useful
information. At higher orders of this procedure, we obtain the complex Ginzburg-Landau
(CGL) equation from which we can easily build exact solitary solutions. Full details about the
approach used here can be found in Ref.[97]. The advantage of the multiple scale expansion is
that it yields the CGL naturally without reference to bifurcation points, boundary conditions
and other critical parameters. We have therefore used this technique to find analytical
solutions to oscillons.

2.3.2 Numerical methods

Finite difference approximation of the hyperbolic FHN

One of the desirable attributes of a discrete model, obtained from a continuous one, is its
ability to conserve the quality and quantity of solutions, and bifurcations of the continuous
mode. This is because discretization often induces new bifurcations and solutions that differ
from those of the original system. As such we considered two discretization schemes for the
hyperbolic FHN model, given in Eq.(2.2). First, a discretization in space to reproduce the its
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2.3 Methods and applications

main bifurcations, followed by a discretization in time to mimic the temporal behavior of the
model without diffusion (D = 0).

Discretization in space

Here, we discretize the diffusion term uxx in Eq.(2.2) using a centered finite difference
scheme as

uxx =
ui+1 −2ui +ui−1

h2 . (2.107)

We consider a neuron of length ℓ= 1, discretized using N ≥ 3, nodal points with space step
h = 1/N −1. Next we discretize the boundary conditions on Ω = [0, ℓ] with a second order
scheme as

ux|x=0 =
4u1 −u2 −3u0

2h
,

ux|x=1 =
4uN−2 −uN−3 −3uN−1

2h
,

(2.108)

where u0 and uN−1 represent the potential at the leftmost and right nodes respectively. Details
for the formulas in Eq.(2.108) can be found in Ref.[110]. Setting the right hand sides of
Eq.(2.108) to zero, we obtained the expressions of the boundary nodal voltages u0 and u30.
Putting everything together, Eq.(2.2) becomes

u′i = wi in Ω = [0,1],

w′
i =

1
τ

(
d(ui+1 −2ui +ui−1)

h2 +ui −
u3

i
3
− vi −wi

)
,

v′i = ε(ui +a−bvi) for i = 1 . . .N −2,

u0 =
4u1 −u2

3
,

uN−1 =
4uN−2 −uN−3

3
,

(2.109)

where as before, we set u′i = wi, where the primes denote differentiation with respect to time.
Additionally, the boundary conditions imposed on u also apply to v.
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Discretization in time

We now consider Eq.(2.2), ignoring the effect of diffusion and boundary conditions. We
discretize the time variable as follows:

u j+1 = u j +wdt,

w j+1 = w j +
dt
τ
(u j −

u3
j

3
− v j −w j + I),

v j+1 = v j + εdt(u j +a−bv j),

(2.110)

where dt is the time step for the forward Euler method.

Numerical bifurcation and continuation software

In this thesis we used MATCONT, version 7.1, as the only too for numerical bifurcation
and continuation analysis of the various models encountered throughout this thesis. MAT-
CONT is a MATLAB based toolbox for the numerical bifurcation bifurcation analysis of
ODE’s featuring standard protocols for numerical bifurcation analysis. Examples of these
protocols, those used in this thesis include:

— Fixed point location via methods such Newton’s method and variants.

— Fixed point stability analysis.

— Codimension one bifurcation analysis.

— Codimension two bifurcation analysis.

Full details about the implementation of these protocols in the software , MATCONT can be
found in Chapter 10, Ref.[74] for ODE’s and in Ref.[78] for maps or discrete differential
equations.

2.4 Conclusion

In this chapter we have reviewed both the hyperbolic FHN model and a photosensitive
variant of this model. We provided detailed descriptions of their structure, boundary condi-
tions and derived where applicable the governing equations from first principles. We also
reviewed the main methods (analytical and numerical) applied to both models in this thesis.
The center manifold theorem, underpinning most of this thesis was reviewed in this chapter as
well as corresponding methods allowing for the reduction of the dynamics to such invariant
manifolds. A brief review of a few relevant analytical methods in constructing exact solitary
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solutions was also conducted. These methods were selected on the basis of their suitability
to the problem at hand and their ease of implementation.
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Chapter 3

Results and discussions

In this chapter, we present the following results: bifurcation analysis of the continuous
and discrete hyperbolic FHN models with and without diffusion, analysis of the front and
oscillon solutions of the hyperbolic FHN model, and lastly, burst synchronization in two
coupled photosensitive hyperbolic FHN models; under different coupling schemes.

The first part of these results concerns the bifurcation analysis of the local kinetic system
of the hyperbolic FHN model with the relaxation time as the principal bifurcation parameter.
This analysis reveals a threshold of the relaxation constant beyond which a supercritical
Hopf bifurcation occurs. Analytical estimates of the first Lyapunov coefficient are confirmed
via numerical simulations. A codimension-two bifurcation diagram of the relaxation time
and the excitable current reveals: regions of bistability ( with the possibility of two types of
bursting), quiescence, periodic firing with periods one, two, three, and four. Chaotic regions
are also present at higher values of the relaxation time. Despite the addition of the hyperbolic
time derivative, the hyperbolic model is shown to preserve the typical bifurcation diagrams
of the classical FHN model, at subthreshold values of the relaxation time.

The second part of our results is on the bifurcation analysis of the hyperbolic FHN model
with the diffusion parameter. We obtain general results for the Pitchfork and Hopf bifurcation
in terms of the diffusion parameter, length of the neuron, wavenumber, and relaxation time.
The first Lyapunov coefficient is computed analytically for the mode k = 1, assuming a strong
diffusion coefficient. For the weakly coupled case, numerical simulation of the nonlinear
wave states of the system shows that the uniform oscillatory state is stable against long-wave
perturbations, indicating full synchronization. Pitchfork bifurcations are independent of the
relaxation time and induced by negative diffusion. For all wave modes, it is shown that the
square of the wave speed varies inversely with the relaxation time, in contrast to the classical
FHN model.
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Part three of the results concerns the bifurcation analysis of the discrete FHN model
with space and time discretizations. We show that most of the bifurcations induced in the
continuous model persist in the discrete model. For the discretiztion in space, a centered
finite difference was used while the simple Euler method was used for discretizations in time.
In both cases, the discrete system obtained is an ODE whose bifurcations are faithful to the
continuous model.

Part four of this chapter presents results on the analysis of front and pulse solutions of the
hyperbolic FHN model. The effect of the time of relaxation on the profiles of these solutions
is analyzed via analytical and numerical methods. We construct exact front solitary solutions
using the G′/G− method and the direct integration for the oscillon. For both solitary waves,
analytical estimates suggest that a maximum speed of propagation exists, and corresponds to
the speed at vanishing relaxation time. As with periodic waves the square of the speeds of
solitary waves vary inversely with the increasing magnitude of the relaxation time.

The last part of our results concerns the analysis of the origin of bursting in the photosen-
sitive hyperbolic FHN model, and burst synchronization between two coupled photosensitive
neurons through different coupling schemes. We establish in two-dimensional parameter
space, regions of quiescence, periodic spiking, and bursting. We show that two types of
bursting are possible for such a system as per the unfolding in the neighborhood of a Bautin
bifurcation. By focusing on elliptic bursting, we establish via numerical simulations, regions
of coupling strengths favorable to burst synchronization using electrical, excitatory, or in-
hibitory synaptic coupling. This synchronization may involve either in-phase or anti-phase
spike synchronization, depending on the type of coupling used. Furthermore, we observe
that certain intervals of coupling strength induce amplitude death, and burst destruction.

This rest of this chapter is organized as follows: Section 3.1 reviews some key terms and
previous results or studies relevant to the results obtained in this thesis. Section 3.2 presents
results on the bifurcation analysis of the hyperbolic FHN model, in the absence of diffusion.
In section 3.3 we include the diffusion term and present results on the Hopf and Pitchfork
bifurcations of the hyperbolic model. Section 3.4 discusses the results of the bifurcation
analysis of the hperbolic FHN model with discrete time and space dynamics. The effect
of the time of relaxation on the properties of fronts and oscillons is presented in section
3.5. Results on bursting and burst synchronization in two coupled light sensitive hyperbolic
neurons is presented in section 3.6. A conclusion to the chapter is presented in section 3.7.
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3.1 Introduction and background

Stability analysis in dynamical systems plays a key role in predicting under what param-
eter ranges qualitatively distinct behaviors emerge and the system’s asymptotic behavior.
The emergence of periodic or oscillatory behaviors seems to be of particular interest due to
their wide range of applications. The pervasiveness of oscillations in brain circuitry and its
importance cannot be overstated. Oscillations in neurons play diverse roles in the nervous
system, from trivial cell-to-cell communications via action potentials to more complex spatial
organization tasks such as the formation of Hebbian cell assemblies, believed to be the basic
unit of information storage in the brain as pointed out in Ref.[37]. The most common route
leading to periodic behavior, and often encountered in excitable systems, is the Hopf bifurca-
tion ( section 1.4.1), extensive treatise of which can be found in Refs.[111, 112]. Seminal
works on the Hopf bifurcation can be traced back to the works of Poincaré , Andronov ,
Hopf and others [111]. The limit cycle born (destroyed) from the Hopf bifurcation may
be stable or unstable. If the cycles emerge before the critical parameter value, the Hopf
bifurcation is termed subcritical. If on the contrary, the cycles emerge post-critical value, we
say a supercritical Hopf bifurcation has taken place. Subcritical Hopf bifurcations may be
undesirable in some systems as they tend to be irreversible and lead to large excursions from
steady states. Hence assessing the direction of the Hopf bifurcation is of prime importance,
from a structural stability standpoint.

Based on the nature of the bifurcation at a critical parameter value, models of single neu-
rons can be compartmentalized into two main types (see Ref.[113]), the so-called bifurcation
types -1 and -2 neurons [29]. A bifurcation of type-1 generally occurs when the equilib-
rium loses stability via a saddle-node bifurcation on an invariant circle. Bifurcation type-2
neurons, also called resonators, lose stability via Hopf bifurcations. They fire in response
to stimulating frequencies equal to their resonant frequency [114, 27]. In addition to their
sensitivity to the frequency of an external stimulation , one feature, common to bifurcation
type-2 neurons , in contrast to type-1 neurons, and which we shall observe subsequently, is
their ability to fire post-inhibitory pulses [27]. This is the result of the unstable manifold
being warped around the stable equilibrium making it more likely for small perturbations to
drive the system into instability.

As discussed in Chapter 1.4.1, a limit cycle can undergo bifurcations of its own such as
fold or limit point of cycle bifurcation, flip or period-doubling bifurcation, Neimark-Sacker
bifurcation of cycles (bifurcations on an invariant torus), and canard explosions [115]. The
latter corresponds to a rapid transition in the period of a limit cycle, from a small value to
a large value over a very small range of the bifurcation parameter. The period-doubling
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bifurcation (See section 1.4.1) is one of the most studied routes to chaos; via period-doubling
cascades. This bifurcation has been observed in other variants of the FHN model[116, 117].

Much of what we know about the brain comes from experimental measurement, achieved
via electroencephalogram (EEG) and related techniques. This technique consists of mapping
a given spatially coherent brain activity to a specific brain function or pathology [118, 119].
As such, if one desires to study more intricate brain functions, and the collective behavior of
neurons, one must take into account the spatial coupling of neurons via diffusive effects. The
interaction of diffusing species in extended systems often leads to complex and interesting
spatial patterns with specific implications. The study of such patterns forms the core of the
subject— pattern formation. Pattern formation in spatially extended systems has been the
source of intense research over the last century [35, 120, 121], and the mathematical methods
which emerged from its study have been successfully applied to explain the dynamics of
oscillatory and stationary patterns in chemical and biological systems. Pattern formation in
biological systems continues to be an active area of research as evidenced by recent studies:
The effect of magnetic flow [122, 123], temperature fluctuations [124], diffusion [125, 126]
, on a network of spatially coupled FHN units have been addressed. Hopf and Pitchfork
bifurcations in two-dimensional coupled bulk surfaces of general reaction diffusion systems
were recently addressed in Ref.[127]; just to name a few.

Models of discrete time or space dynamics commonly called maps, have been the subject
of multiple studies in dynamical systems theory. Maps are sometimes derived in situations
where a continuous approximations seems inadequate. For example, changes in population
sizes are best described by discrete time dynamics. Although maps share similar bifurcations
with continuous models, they typically have very complex bifurcation scenarios, even for the
simplest one dimensional maps[78]. Numerical bifurcation analysis of the time discrete FHN
model was conducted by Jing et al.[128]. In that study, the authors used a forward Euler
discretization on the time variable. The nearly exact discretization (NEDS) in time, recently
proposed by Kwessi et al.[129], was used to study the continuous FHN model [130]. They
showed that NEDS preserved the quantitative and qualitative dynamics of the continuous
FHN.

The clasical FHN possesses solitary waves or different types: fronts, pulse, pulse with
oscillatory tails, and much more[74]. In Refs.[22, 23, 23], the authors studied pulse solitary
waves of the hyperbolic FHN model and showed that this model does not allow for solitons
of infinite speeds to propagate. That is, for any given value of the relaxation time, there is
an upper limit of possible wave speeds for soliton propagation. Using the G′/G-method,
Muhammad et al.[131] built exact front solutions for a hyperbolic diffusion model known
as the generalized telegraph equation. Ebadi et al.[132] and Elagan et al. [133] built exact
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solution for the FHN model with nonlinear source terms. However, analytical solutions for
fronts and pulse solutions of the telegraph FHN model are currently not available, to the best
of our knowledge. Solitary waves may also become unstable via a Hopf bifurcation to form a
jumping soliton (oscillon) with oscillating amplitude [134, 135]. The exact solutions and the
effect of the time of relation on the profiles of the fronts and the oscillons of the hyperbolic
FHN model have not been researched at this time.

The classical photosensitive FHN neuron proposed by Liu and colleagues [81] allows
for the fine tuning of the complex firing pattern of the model by light-dependent signals.
The authors were able to show that the photocurrents induced in the phototube could induce
various spiking dynamics in the neuron such as chaotic, periodic spiking, and bursting. In a
follow-up study [136], they showed that networks of spiking photosensitive neurons could
synchronize within certain values of the coupling strength, light intensity, and frequency.
However, the full range of parameter values within which the aforementioned dynamical
behaviors may be observable was not specified. Furthermore, the authors did not address the
issue of burst synchronization in coupled photosensitive neurons.

Synchronization of coupled systems and neurons has been studied extensively over
the years [137]. The goal has been to understand how such systems collectively process
and transmit information. A key factor in this understanding is the knowledge of how the
properties of a given neuron are affected by the external signal. Such a signal may be from
background noise, other neurons’ activities, electromagnetic radiation [138, 139], injected
current, or some other current source. Furthermore, this signal may be constant, periodic,
or aperiodic. Also of great importance is the notion of burst synchronization[29]. Although
much more difficult to analyze analytically, burst synchronization in elliptic bursters happens
to be amenable to analytical analysis. Izhikevich [76] studied burst synchronization in weakly
coupled elliptic bursters, using the normal form of the Bautin bifurcation. Azad et al. [77]
extended this analysis to higher-order normal form terms. From the previous two references,
it was found that burst synchronization was easier to achieve for electrical and other synaptic
coupling schemes (excitatory or inhibitory). Spike synchronization on the other hand was
possible only under certain coupling schemes. Synchronization in elliptic bursters has also
been studied under nonlinear coupling [140] and a host of other schemes [141]. However
the synchronization of light dependent elliptic bursters has not been addressed in previous
research studies, to the best of our knowledge.
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3.2 Linear stability and Hopf bifurcation in the absence of
diffusion

3.2.1 Linear stability analysis and Hopf bifurcation for k = 0

We consider the modified FHN model given by Eq.(2.2), in the absence of the diffusion
term (and boundary conditions). In the absence of stimulation I, this model is equivalent to
the system of three autonomous ODE’s:

ut = w,

τwt = u− u3

3
− v−w,

vt = ε(u+a−bv).

(3.1)

The equilibria of this system correspond to the spatially homogeneous equilibria, Eq.(2.15).
Applying lemma 1 to Eq.(2.16), we obtain the discriminant

D =
−108(1−b)3 −243a2b

b3 . (3.2)

For the sake of simplicity, we shall consider the unique stable equilibrium for the study of
Hopf bifurcations. Eq.(3.2) under lemma 1, implies that system (3.1) possesses a unique
equilibrium, satisfying 108(1−b)3 +234a2b > 0. Choosing 0 < b < 1, ∀a ≥ 0 is enough to
guarantee this condition.
Notice that the location of the steady state is independent of τ , our chosen bifurcation
parameter which makes it ideal for the reduction to the center manifold as demonstrated
subsequently.

Eq.(3.1) can be put in the form

Xt = Y,

Yt = δ

[
(1−u∗2)X −u∗X2 − X3

3
−Y −Z

]
,

Zt = ε(X −bZ),

(3.3)

where X = u− u∗, Y = w−w∗, Z = v− v∗, and δ = 1
τ

. Here, (u∗,w∗,v∗) represent the
unique uniform steady state. We are interested in the onset of nonlinear oscillations in
system (3.1), under the influence of the relaxation constant. Since we are in IR3 and generic
Hopf bifurcations are analytically defined for two-dimensional systems, we make use of the

57



3.2 Linear stability and Hopf bifurcation in the absence of diffusion

reduction techniques from the center manifold theory to prove that Hopf bifurcations do exist
for our system at large values of the relaxation constant. We follow the guidelines of the
projection method in the absence of the diffusion (see section 2.3.1).

Consider the Jacobian (A) of system (3.1):

A =

 0 1 0
δ (1−u∗2) −δ −δ

ε 0 −εb

 . (3.4)

Its characteristic polynomial is obtained as

λ
3 +(bε +δ )λ 2 +(bε +u∗2 −1)δλ +(bu∗2 −b+1)εδ = 0. (3.5)

Applying Theorem 1 to Eq.(3.5), we obtain a3 > 0, ∆2 = 0 and ∆1 > 0 as three conditions
necessary for a Hopf bifurcation to occur in the system under study. Its easy to verify the
first and third relations by inspection. Applying the second condition (∆n−1 = 0) to the third
2nd-order Hurwitz determinant of Eq.(3.5), we obtain

bε(εb+u∗2 −1)− ε(bu∗2 −b+1) = 0, (3.6)

and after a short algebraic manipulation, we arrive at the critical value

δc =
ε −b2ε2

Λ
, (3.7)

where Λ = εb+ u∗2 − 1. Let α = δ − δc be the distance away from the bifurcation point,
then we can say, at α = 0, a Hopf bifurcation takes place. We will show that a stable limit
cycle indeed bifurcates from the unique stable fixed point for values of α < 0 while the origin
maintains its equilibrium for α > 0.

To establish the frequency of these limit cycle oscillations, we proceed as follows. We
substitute λ = iω into Eq.(3.5) and separate the resulting equation into real and imaginary
parts, to obtain

bεδ (u∗2 −1)− (bε +δ )ω2 +δε = 0, (3.8)

ω
3 −Λδω = 0, (3.9)
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with Λ = εb+u∗2 −1 > 0. From these two equations, we obtain

δc =
ω2

Λ
, and ω

2 = ε −b2
ε

2. (3.10)

The first equation on the left corresponds to the value of δc predicted by Theorem 1 while the
second equation is the frequency of the resulting oscillations (ω > 0). Under these conditions,
Eq.(3.5) can be written as

(λ +bε +δc)(λ
2 +ω

2) = 0, (3.11)

which is then solved for the third eigenvalue of A, at the critical point, having solution

λ3 =−(bu∗2 −b+1)ε
Λ

< 0, (3.12)

which predicts that all asymptotic solutions converge on the center manifold.

3.2.2 Direction of Hopf bifurcation for k = 0

To begin investigations of orbital stability on the center manifolds, we express the
Jacobian of the system at the critical point, in terms of δc. Let us call this matrix A(ω)

A(ω) =

 0 1 0
ω2(1−u∗2)

Λ
−ω2

Λ
−ω2

Λ

ε 0 −εb

 . (3.13)

Using the notation of section 2.3 on the center manifold theory, we associate to matrix A(ω),
the integers : n0 = 2, n+ = 0, n− = 1, such that for sufficiently small α , Theorem 2, predicts
the existence of a two dimensional local attracting center manifold W c

loc(0). The resulting
manifold is obviously dependent on δ .

Given the slightly complex nature of matrix A(ω), we use MAPLE software to find its
eigenvectors. It follows that

q =


εb2−1

iω(1−εb2+iωb)
εb2−1

1−εb2+iωb
1

 and p̃ =


Λ+iω

1−εb2−iωb
−Λ

iω(1−εb2−iωb)

1

 . (3.14)

In order to satisfy the normalization condition, we choose a constant ν = ⟨p̃,q⟩ such that
⟨p,q⟩= 1. Where ⟨,⟩ is the standard scalar product in C3. Hence we can take p = 1

ν̄
p̃.
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3.2 Linear stability and Hopf bifurcation in the absence of diffusion

At δc, we can express system (3.1) in the form given by Eq.(2.30). Using the multilinear
functions, Eq.(2.32), we evaluate:

B(q,q) =

 0
−2δu∗q2

1

0

 , B(q, q̄) =

 0
−2δu∗q1q̄1

0

 , (3.15)

B(q̄, q̄) =

 0
−2δu∗q̄1

2

0

 , and C(q,q, q̄) =

 0
−2δq2

1q̄1

0

 .

The normal form coefficients of Eq.(2.37) then become

g20 =−2δu∗ p̄2q2
1, (3.16)

g11 =−2δu∗ p̄2q1q̄1, (3.17)

g02 =−2δu∗ p̄2q̄1
2, (3.18)

g21 =−2δ p̄2q2
1q̄1 +4δu∗ p̄2q1s1 −2δu∗ p̄2q̄1r1 +

1
iω

g20g11 −
2

iω
|g11|2 −

1
3iω

|g02|2.

(3.19)

Matrices r and s are 3×1 matrices given by

s = A(ω)−1B(q, q̄), and r = (2iωE −A(ω))−1B(q,q), (3.20)

with matrix E being the identity matrix in IR3. The inverse matrix A(ω)−1 has the form

A(ω)−1 =


−b

b(u∗2−1)+1
−bΛ

ω2(b(u∗2−1)+1)
1

ε(b(u∗2−1)+1)

1 0 0
−1

b(u∗2−1)+1
−Λ

ω2(b(u∗2−1)+1) − u∗2−1
ε(b(u∗2−1)+1)

 . (3.21)

Since matrices B and C happen to be in a simplified form, r and s will also simplify to

s =


2bu∗q1q̄1

b(u∗2−1)+1

0
2u∗q1q̄1

b(u∗2−1)+1

 , and r =
−2u∗q2

1ζ̄

|ζ |2

 (2iω + εb)
2iω(2iω + εb)

ε

 , (3.22)

where ζ is a complex number expressed as

ζ = 2i(2iω + εb)(2iΛ+ω)+(2iω + εb)(u∗2 −1)+ ε. (3.23)
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3.2 Linear stability and Hopf bifurcation in the absence of diffusion

To determine whether the ensuing oscillations are supercritical (subscritical), we compute
the first Lyapunov coefficient from the reduced normal form coefficient c1 from Eq. (2.56).
This coefficient is related to the first Lyapunov coefficient l1(δc) as

l1(δc) =
Re(c1)

ω
,

=
1

2ω
Re [⟨p,C(q,q, q̄)⟩−2⟨p,B(q,s)⟩+ ⟨p,B(q̄,r)⟩]

=
1

2ω
Re
(
−2δ p̄2q2

1q̄1 +4δu∗ p̄2q1s1 −2δu∗ p̄2q̄1r1
)
. (3.24)

In order to keep τ within a range consistent with the Taylor series approximation from,
section 1.3.4, we need to keep its value very small compared to t. We may take t = 0 as the
origin of time and choose 0 < τ < 1. That is, in Eq.(3.7), we can choose ε , u∗ and b such that

εb+ ε
2b2 < 1−u∗2 + ε. (3.25)

For a = 0.7, ε = 0.8 and b = 0.4 the unique equilibrium of system 3.1 is located at u∗ ≈
−0.966,w∗ = 0,v∗ ≈−0.665, see Fig.3.1. The critical value of relaxation constant for this
case is

τc ≈ 0.363. (3.26)

The corresponding estimate of the first Lyapunov coefficient at τc is

l1(δc)≈−0.5023 < 0, (3.27)

which predicts that the resulting oscillations ensuing from this Hopf bifurcation are stable
(supercritical Hopf).

3.2.3 Numerical analysis

Hopf bifurcation and canard phenomenon

System (3.1) has equilibria which are independent of τ . This implies that the projection of
the equilibrium curve onto the (u,τ)-plane is a straight line u = u∗ when we consider system
(3.1), otherwise, the curve X = 0, if we consider system (3.3). However, the equilibrium
may loose stability as τ is varied. Numerical simulation and continuation of system (3.1)
and its subsequent bifurcations were performed on MATCONT [106]. Bifurcations of the
mono-stable equilibrium was performed in two stages. First, we varied τ by keeping I at its
rest value I = 0 and then we varied I, while keeping τ very close to zero. In the first study, a
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3.2 Linear stability and Hopf bifurcation in the absence of diffusion

Figure 3.1 Intersecting nullclines of the system 3.1. The unique equilibrium (E) is located at
the point of intersection of the green, blue planes, and the red line; representing the three
nullclines of the system. Note that blue and red nullclines actually lie on the (u,v)-plane.
System parameters were set as a = 0.7, ε = 0.8, b = 0.4 and I = 0.

supercritical Hopf (sH) bifurcation occurred at τ ≈ 0.363, which confirms results obtained
from our previous analysis. Continuation of limit cycles born from this point is shown in
Fig.3.2a. Here, sH represents a supercritical Hopf point beyond which, stable limit cycles
emerge. System parameters used for this figure were a = 0.7, b = 0.4, ε = 0.8 and I = 0.
Figure 3.2b shows the equilibrium curve in the presence of an external stimulating current I.
Here, uH1 and uH2 are subcritical Hopf points with blue(stable) and red(unstable). These
correspond to values Ic1 ≈ 0.327, and Ic2 ≈ 1.423 respectively. Unlike in the previous
case, where τ was varied, these Hopf points are subcritical in nature. As I approaches uH1

from the left, several stable and unstable cycles are born through a limit point of cycles
bifurcation (LPC). The unstable cycles are generally contained within the stable cycle. As I
is increased further, the unstable cycle coalesces with the fixed point in a subcritical Hopf
bifurcation. This leaves an unstable fixed point and single stable limit cycle within the
range Ic1 < I < Ic2. This is confirmed by continuation of the cycles born from uH1. The
results are plotted in Fig.3.2c. Here, we observe a family of periodic orbits of slightly
different geometry (rectangular) than those of sH. These cycles correspond to large amplitude
limit cycles in contrast to those obtained from a supercritical Hopf bifurcation. In neurons,
action potentials are primarily birthed via subcritical Hopf bifurcations. Even though the
limit cycles born from a supercritical Hopf bifurcation do not lead to full-blown action
potentials, they nonetheless play a crucial role in cell-cell communications especially when
coupled via electrical synapses[142]. The location of the various LPC points, being very
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Figure 3.2 (a) Bifurcation of the equilibrium of system 3.1, in the absence of stimulating
current. The straight line represents the equilibrium curve: stable( blue) and unstable(red).(b)
Shows the equilibrium curve and its bifurcations in the presence of I. Limit cycles bifurcating
from these points are shown in panel (c) as well as limit point of cycle points LPC. Panel (d)
shows the variation of the period of these cycles with stimulating current I.
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3.2 Linear stability and Hopf bifurcation in the absence of diffusion

close to Ic1 and Ic2, and their multiplicity suggests that a small region of bistability exists
and canard explosion occurs at these locations, see cycles colored in red in Fig.3.2c. For
Figs.3.2a,3.2b, and 3.2c, system parameters were a = 0.7, b = 0.8, ε = 0.08 and τ = 0.1.
The canard phenomenon is a distinct feature of the Van-der-Pol oscillator. For the analysis of
canards in the FHN, see Ref. [47]. This suggests that the new model presented here, bears
features reminiscent of other FHN models, as observed in Ref.[143], wherein a formula for
calculating the location of these canards is given for a model in canonical form. The period
of the ensuing limit cycles has been plotted against I and the results are displayed in Fig.3.2d.
From the pattern depicted, we observe the occurrence of Homoclinic bifurcations near both
critical values of current.

Codimension-two bifurcations

We have shown in the previous subsections that both τ and I can give rise to oscillations
beyond certain critical values. We have not however, explored the combined effect of these
two parameters, the analysis of which we have reserved for this subsection. The classical
FHN model is known to exhibit two main codimension-two bifurcations, the Bogdanov-
Takens (BT) and generalized Hopf (GH) bifurcations. For a full picture of the phase portraits
around GH points, refer to Fig.1.8 from section 1.4.2. Figure 3.3 captures all relevant co-
dimension two bifurcations of the system without diffusion, observed on the (I,τ)-parameter
plane. Only the regions for which τ > 0 are biologically meaningful. Completion of the
green curve was limited by the continuation software. System parameters for continuation
were a = 0.7, b = 0.8 and ε = 0.08. Four principal curves partition the parameter space into
four distinct regions corresponding to topologically different features of the phase plane:

Regions A and B : The system is in a quiescent state with the origin as a stable
focus. Figures. 3.4a and 3.4c show the corresponding phase portrait and time series
obtained by numerical integration. In this region, it is possible however for very strong
perturbations to excite the hyperbolic neuron.

Region C : In this region, the Jacobian of the system has a pair of purely complex
conjugate eigenvalues, the stable origin loses its stability and a stable limit cycle is
born in the process. Figures. 3.4b and 3.4d, show the corresponding numerical plots for
the phase plane and time series. It is worth noting that the system can fire even when
the excitation I < 0, provided τ is sufficiently large; a salient quality of resonators.
Thus we can think of an increment in τ as resulting in the shrinking of the stable basin
of attraction to a point and a corresponding increase in the unstable basin of attraction.
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3.2 Linear stability and Hopf bifurcation in the absence of diffusion

(a)

(b)

Figure 3.3 Codimension-two bifurcations of system 3.1, as seen on (I,τ)-parameter plane
and phase space. (a) The blue curve represents the projection of the Hopf curve on the
(I,τ)-plane, the red curve is a limit point of cycle curve (LPC), green and black curves are
period doubling curves. (b) Magnification of a portion of the codimension-two plane. GH
are Bautin bifurcation points while GPD are generalized period doubling points.
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3.2 Linear stability and Hopf bifurcation in the absence of diffusion

Regions D, E, F and G (Bistability) : In these regions, which are typically bounded
by Hopf and LPC curves, the system is active (excitable) in a bi-stable sense. That is,
a smaller unstable limit cycle is born inside the larger and stable cycle from region C.
Points outside of the unstable cycle are attracted to the stable cycle but points within it
are attracted to the origin, the origin regains its stability. Essentially this means the
cell can either be in quiescent or firing mode depending on the degree of stimulation.
As current is varied in the system, the unstable cycle grows and collides with the
stable cycle, giving rise to LPC bifurcations. Further increases in current leads to
the annihilation of both cycles and the system returns to a quiescent state . Fig.3.5
captures the bistable dynamics obtained numerically, for different initial conditions.
The bistability observed in the neighborhood of this region can lead to two main types
of bursting dynamics: Hopf-Hopf and SubHopf-fold bursting( see section 3.26 and
Ref.[29]) as illustrated in Fig.3.6.

Regions H and I (Period-doubling): Within these regions, delimited by the period
doubling curves, it is possible to find cycles of period-2 and -4 respectively. Since H, I
⊂ C, the origin is unstable in this region and the emergent cycles are stable in nature.
Period-2 cycles are born when a period-1 cycle undergoes a period doubling bifurcation.
When the latter undergoes an additional period-doubling bifurcation, a period-4 cycle
is born. Numerical simulations of the current model show that region I actually consists
of period-3 and -4 cycles coexisting with chaotic attractors. Examples of period-2 and
-3 and -4 orbits and their respective time series are shown in Figs.3.7. Fig.3.8 depicts
the bifurcation diagrams across portions of these regions as τ is varied, supplemented
with their respective maximum Lyapunov exponents. For the computation of the latter,
a total of 13501 data points from the time series were used, under a time step of 0.0667.
It can be seen that the aforementioned regions consist of marginally stable attracting
sets interrupted by chaotic windows. An example of a chaotic set and its respective
time series is shown in Figs.3.8e and 3.8f. While period-4 cycles can be explained in
terms of successive period doubling bifurcations, period-3 cycles are often born out
of tangent bifurcations similar to that of the logistic map demonstrated in [144, 145].
Indeed several tangent bifurcations (fold-flip) bifurcations were detected (Not shown)
during the continuation of the period-doubling curve (green) and could explain the
origin of the period-3 cycles.
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3.2 Linear stability and Hopf bifurcation in the absence of diffusion

(a) τ = 0.1 and I = 2 (b) τ = 0.2 and I = 1.3
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Figure 3.4 Phase plane portrait (top row) and corresponding time series (bottom row) in
regions A, B( column 1) and C(column 2), of the (τ, I) parameter plane. System parameters
were a = 0.7, b = 0.8 and ε = 0.08.
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Figure 3.5 Phase plane portrait (top row) and corresponding time series (bottom row) in the
bistable regions D, E, F and G, using different initial conditions. System parameters were
a = 0.7, b = 0.8 and ε = 0.08.
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3.2 Linear stability and Hopf bifurcation in the absence of diffusion

(a) τ = 2.5, I = 0.5+ sin0.01t (b) τ = 12, I = 2+1.8sin0.01t

Figure 3.6 Bursting dynamics of neuron showing: (a) Hopf-Hopf bursting, and (b) SubHopf-
fold bursting, observed in the neighborhood of the bistable regions for periodic external
stimuli. System parameters were a = 0.7, b = 0.8 and ε = 0.08.
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Figure 3.7 Phase plane (row 1) and corresponding time series (row 2) in period doubling
regions I and H showing: (a) a period-two orbit in H, (b) period-three, and (c) period-four
orbit in I with their respective time series in panels (d), (e) and (f). System parameters were
a = 0.7, b = 0.8 and ε = 0.08.
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(a) I = 0.25 (b) I = 0.5
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Figure 3.8 Bifurcation of local extrema of membrane potential um (row 1) with τ and
corresponding variation of maximum Lyapunov exponent (row 2). Red dashed line marks
the transition from stable to chaotic behavior. (e) Example of chaotic attractor in region I and
(f) its corresponding time series. System parameters were a = 0.7, b = 0.8 and ε = 0.08.
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3.3 Linear stability analysis and Hopf bifurcation with diffusion

3.2.4 Discussions

It should be noted that, while delays in reality can be very large such as observed in
Fig.3.3, the Taylor series approximation used section 1.3.4 to obtain the hyperbolic diffusion
allows us to study make accurate predictions on the actual neuronal dynamics only within
small values of τ , typically less than 1. That is, as τ gets larger, the dynamic behavior
observed in Fig.3.3, might not accurately describe that of the parabolic model with delay
which it tries to model. This is because, larger values of τ will impose higher order derivatives
in Eq.(1.24), and Eq.(1.26), which might lead to qualitatively different dynamics from that of
the original system with delay. However if these higher order derivatives or their coefficients
are very small or zero then higher values of τ might be justified. A full discussion of
approximations of delay systems with Taylor series is given in Ref.[146]. Nonetheless, the
dynamics captured by Fig.3.3 especially in the higher τ regions is interesting.

Since the Hopf bifurcation induced by τ on system (2.2) is supercritical, it seems reason-
able to think that the oscillations it induces would be relevant under subthreshold operating
conditions of the neuron. Subthreshold oscillations play a role brain processes such as action
potential timing control[147]— by increasing the firing probability of neurons[19], synaptic
plasticity [148] and much more. Furthermore, If one is interested in studying the temporal
resolution of neurons, one should consider delays in the analysis since certain neurons can
discriminate between signals based on the delay of the system. For example, dendritic and
axonal delays lead to spike-timing dependent plasticity (STDP)[149].

3.3 Linear stability analysis and Hopf bifurcation with dif-
fusion

3.3.1 Linear stability analysis, Hopf and pitchfork bifurcations for k ̸= 0

We now consider the following Sturm-Liouville problem (Eq.(2.20)) for system (2.3):

LU = λU, (3.28)

Ux
∣∣
x=0 =Ux

∣∣
x=π

= 0.

Solutions to this equation have the form U = ∑k Wkφkeλ t , k ∈ N, where φk = coskx and
Wk ∈C3, is an eigenvector of Lk = A−k2D corresponding to the eigenvalue λ . For the Hopf
and Pitchfork (stationary) bifurcations: λ =±iω , and λ = 0 respectively. The dot product
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3.3 Linear stability analysis and Hopf bifurcation with diffusion

of two eigenfunctions is defined as:

⟨ψ,φ⟩= ⟨ψ,φ⟩L2. (3.29)

The corresponding eigenvalue problem is then as follows:

χ(λ ) = λ
3 +T λ

2 +Mλ +R = 0, (3.30)

with,

T = (εb+δ ), (3.31)

M = (
ℓ2Λ+dπ2k2

ℓ2 )δ , (3.32)

R = (
ℓ2(bu∗2 −b+1)+dπ2k2b

ℓ2 )εδ , (3.33)

with Λ = εb+u∗2 +1.

Theorem 4 (Hopf bifurcation). The polynomial χ(λ ) in Eq.(3.30) has a pair of purely
imaginary eigenvalues, and system (2.2) undergoes a Hopf bifurcation if

T M−R = 0. (3.34)

Moreover, the third eigenvalue lies in the left half of the complex plane(LHCP) if R > 0 and
T > 0.

Proof. According to Vieta’s formulas, the roots of polynomial χ(λ ), β1, β2 and β3, are
related to its coefficients T , M and R by

β1 +β2 +β3 =−T,

β1β2 +β1β3 +β2β3 = M, (3.35)

β1β2β3 =−R.

it follows that,

T M−R = β
2
1 (β2 +β3)+β

2
2 (β1 +β3)+β

2
3 (β1 +β2)+2β1β2β3 (3.36)

= (β1 +β2)(β1 +β3)(β2 +β3). (3.37)
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3.3 Linear stability analysis and Hopf bifurcation with diffusion

Assume the system is at a Hopf bifurcation, then ∃ βi,β j, i ̸= j, ∋ Re(βi) = Re(β j) = 0 and
Im(βi) =− Im(β j) which implies that

βi +β j = 0. (3.38)

That is, one of the factors in the product (β1 + β2)(β1 + β3)(β2 + β3) is zero, whence
T M−R = 0, which concludes the first part of the proof.
To prove that the third eigenvalue is negative at the Hopf bifurcation, we assume the state-
ments R > 0 and T > 0 are true, then we can write R = |R| and T = |T |. This implies ∃ βl ,
l ̸= i, j such that the first and third equations of system (3.35) become

βl =−|T |, (3.39)

and βl|β j|2 =−|R|. (3.40)

From these two equations, we conclude that βl < 0, such that the third eigenvalue lies in the
LHCP, and concludes the proof.

Remark 6. It can be shown that the roots of χ(λ ) given by Eq.(3.30) all lie in the left half
of the complex plane, that is, the steady state is asymptotically stable if T > 0, R > 0 and
T M > R and unstable if T < 0, R < 0 and T M < R. Elements required to construct this
proof can be found in Ref.[150]. The condition for stationary bifurcations is given by the
condition R = 0. This condition is independent of τ and is a function of length and diffusion.

Theorem 5 ( Pitchfork bifurcation). System (2.2) has a Pitchfork (stationary) bifurcation,
independent of τ , when R = 0. This implies the diffusion and length of the system satisfy:

ℓ=

√
−dπ2k2b

bu∗2 −b+1
, and d < 0. (3.41)

A negative diffusion coefficient is admissible if a biological process, an external force, or
a diffusing species causes another species (in this case the membrane potential) to diffuse
against its concentration gradient. This can happen under two scenarios: In the first, and
very rare case, the uphill flux is induced by a species’s gradient. In the second and more
common case, negative diffusion is driven by the gradient of another species. The former
case is referred to as incongruent diffusion [151] and the latter case as uphill diffusion[152].
Diffusion of substances against their concentration gradients has been extensively studied in
multicomponent chemical systems [153], where they seem to be more prevalent. Although
we did not find strong evidence of such a phenomenon in the neuroscience literature, we do
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3.3 Linear stability analysis and Hopf bifurcation with diffusion

not rule out the possibility of such an observation being made in future experimental studies.
Thus at the moment, Theorem 5, can be regarded as pure mathematical speculation.
For the Hopf and Pitchfork bifurcations, the respective solutions to the linear system,
Eq.(3.28), also referred to as the order-one or most unstable mode at instability, take the
form:

UHop f =W0eiωt +W0e−iωt , (3.42)

UPitch f ork =Wkφk +W−kφ̄k, k ̸= 0. (3.43)

In what follows, we shall focus on the Hopf bifurcation, derive the respective amplitude
equations and study the dynamics of the restricted system. The Pitchfork bifurcation is to be
addressed numerically.
From Theorem 4, we conclude that at T M = R, system (2.2) exhibits a Hopf bifurcation and
χ(λ ) has a pair of purely imaginary roots λc =±iωk where

ω
2
k = (

ℓ2Λ+dπ2k2

ℓ2 )δ , (3.44)

and the critical value of τ for which this occurs is given by the reciprocal of

δc(k) =
ℓ2(ε − ε2b2)

ℓ2Λ+dπ2k2 , (3.45)

which, gives us

τc(k) = τ0 +
dπ2k2

(ε − ε2b2)ℓ2 , (3.46)

where τ0 =
Λ

ε−ε2b2 is the critical parameter value for the homogeneous case (k = 0). Fig.3.9
shows the variation of τ against the wavenumber (k).

Eq.(3.44) gives us the dispersion relation of the system from which we can obtain the
critical phase velocity

vph =

√
1

τk2
c
+

dπ2

ℓ2τ
. (3.47)

This velocity represents the phase velocity of the traveling waves at the onset of the Hopf
instability. Fig.3.10 and Fig.3.11 show the stability boundary for propagating traveling waves
in the (τ,vph) and (k,vph) planes respectively. Two main observations can be made from
these figures: as τ → 0, the critical propagation velocity tends to infinity, and for any given
τ there exist a critical velocity beyond which, an oscillatory instability sets-in. The first
observation can be understood in the sense that for τ ≈ 0, the current model behaves like the
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Figure 3.9 Critical curve for a continuous k, showing the Hopf bifurcation curve for system
2.3, in the (k,τ)-plane. System parameters were a = 0.7, b = 0.4, e = 0.8, d = 0.005,
u∗ =−0.966.

classical FHN which assumes an infinite velocity of propagation. However, for relatively
large delays, the critical velocity is finite and diminishes with increasing τ . Similar results
were obtained with models of intracortical neural fields of integrodifferential-type [57]. Also
note that, in the limit k → ∞, the wave system behaves like a non-dispersive system since vph

is independent of k.
Let α = δc(k)−δc(0) represent the distance to the Hopf bifurcation point. In the limit α → 0,

d → 0 (or ℓ→ ∞), all modes with k > 0 become simultaneously excited with approximately
the same frequency

ω
2
0 = ε − ε

2b2, (3.48)

corresponding to the spatially homogeneous oscillation frequency. These modes (k > 0, but
not too large), constitute the side-band and can be viewed as perturbations of the homoge-
neous mode. Each mode’s frequency in the band is shifted from the homogeneous frequency
as

ω
2
k −ω

2
0 =

dπ2k2

ℓ2 δc(k). (3.49)

Thus, in the limit under consideration, other spatially periodic wave states (traveling waves)
in the neighborhood of the spatially homogeneous one, propagate. These wave states are
discrete and countable in k, for a finite size domain and form a continuous band for an infinite
domain. Furthermore, they may induce long-wave instabilities, see Ref.[85]. The dynamics
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Figure 3.10 Stability boundaries of traveling waves of system 2.3 as seen on the (τ,vph)-
plane, vph being the phase velocity. The curve is plotted for different values of k shown in
the legend. Other parameters were ℓ= π and d = 0.01.
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Figure 3.11 Stability boundaries of traveling waves of system 2.3 as seen on the (k,vph)-plane.
The curve is plotted for different values of τ shown in the legend. Other parameters were
ℓ= π and d = 0.01.
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of the slowly varying amplitudes of these wave states, in the neighborhood of the Hopf
bifurcation, in the long-time, weakly-coupled limit or large spatial domain, can be modeled
by the corresponding CGL ((2.82)), from which the stability of the different Fourier modes
can be studied.

3.3.2 Direction of Hopf bifurcation for k = 1

In this section we compute the direction of the Hopf bifurcation for a specific wave mode
(k ∈ N) by evaluating the corresponding Lyapunov coefficient. We use the projection method
with diffusion (see section 2.3.1). For a similar application of the projection method to the
FHN in infinite-dimensional setting consult Ref.[154], and Ref.[155] for its application to
different reaction diffusion models. Since Ω is finite, Eq.(3.46) implies there is an increasing
sequence of values δk, for Eq.(2.2) has a pair of purely imaginary eigenvalues.

Theorem 6. At δ = δc and for mode k = 1, Eq.(2.2) has a two-dimensional parameter
dependent center manifold W c

δ
∈ X of the form,

y =
r20

2
z2 + r11zz̄+

r02

2
z̄2 +O(|z|3). (3.50)

Where ri j = ∑
2
m=1 γmeβmxν +∑

2
l=0 Bl cos lx, with, m ∈ N, γm, βm ∈ C1, and ν ,Bl ∈ C3.

Moreover, the respective first Lyapunov coefficient at the point of bifurcation is given by

l1(δ ) =
1
ω

Re
[
−3δ

8
W̄2V 2

1 V̄1 −2u∗δW̄2

∫
Ω̂

f (x)cos2 xdx
]
, (3.51)

where f (x) = (V1r11,1 +V̄1r20,1).

Proof. The existence of a center manifold in an infinite-dimensional reaction diffusion
system can be established following principles established in Refs.[156, 14] and examples of
applications in Ref.[15].

Suppose a hopf bifurcation occurs for some k, say k0, with all other wave modes being
stable. Then we can define an eigenfunction q =V cosk0x of L (δc), V ∈ C3, and an adjoint
eigenfunction p =W cosk0x, W ∈ C3, of L ∗(δc) =−k2

0DT (δc)+AT (δc). That is,

L (δc) =

 0 1 0
Θ −δ −δc

ε 0 −εb

 ,and L ∗(δc) =

 0 Θ ε

1 −δc 0
0 −δc −εb

 , (3.52)
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3.3 Linear stability analysis and Hopf bifurcation with diffusion

where Θ = δc(1−u∗2 −dk2
0), such that

L (δc)q = iωq, L ∗(δc)p =−iω p, and ⟨p,q⟩= 1. (3.53)

The normalization condition implies ⟨W,V ⟩
∫

Ω̂
cos2 k0x dx = 1 , from which it follows that

⟨W,V ⟩= 2
π
. (3.54)

For the remaining part of the proof, we consider the mode k0 = 1. Also, we shall represent
δc simply as δ , L (δc) as L , D(δc) as D, and A(δc) as A.

We wish to find the equation of the nonlinear center manifold for k = 1 as well as the
restricted dynamics to it. The spectral decomposition of the linear space at the critical point
becomes

U = zq+ z̄q̄+ y, (3.55)

and the reduction function as

y =
r20

2
z2 + r11zz̄+

r02

2
z̄2 +O(|z|3). (3.56)

Using the Taylor series decomposition of F(zq+ z̄q̄+y,δ ), we determine the expressions
Eq.(2.69) and Eq.(2.70) as

Hi, j = Ψi j cosx−Si j cos2 x, (3.57)

Ψi j = 2(αi jW̄2V +α jiW2V̄ )
∫

Ω̂

cos3 xdx, αi j =V i
1V̄ j

1 u∗δ , (3.58)

Si, j =

 0
2αi j

0

 , Gi+ j=2 =−2αi jW̄2

∫
Ω̂

cos3 xdx, (3.59)

and

G21 =−2δW̄2V 2
1 V̄1

∫
Ω̂

cos4 xdx. (3.60)

Using these expressions, we solve the system of equations : Eqs.(2.65-2.67). We describe the
procedure for Eq.(2.65); solutions to Eq.(2.66) and Eq.(2.67) are derived in a similar manner.
Consider the homogeneous problem:

(D
d2

dx2 +A−2iωE)r20 = 0, (3.61)

78



3.3 Linear stability analysis and Hopf bifurcation with diffusion

with the corresponding boundary conditions given by Eq.(2.68). We assume solutions of the
form:

rh
20 = aaaeηx, (3.62)

where aaa ∈ C3. Substituting Eq.(3.62) into Eq.(3.61), we obtain

(η2D−K)aaa = 0, (3.63)

where K = 2iωE −A. For a nontrivial solution, Eq.(3.63) represents a generalized eigenvalue
problem, with eigenvalue ηi corresponding to an eigenvector aaa. The two eigenvalues are
solutions to the quadratic matrix equation

det(η2D−K) = 0. (3.64)

It follows that,

δd(2iω + εb)η2 +δ (2iω + εb)(1−u∗2)−2iω(2iω + εb)(2iω +δ )−δε = 0. (3.65)

Once the two eigenvalues η1 and η2 have been obtained from Eq.(3.65), the homogeneous
solution can be written as

r(h)20 = (C1eη1x +C2eη2x)aaa. (3.66)

Using similar arguments, it is possible to construct the homogeneous solutions r(h)11 and r(h)02 .
Next, we obtain the particular solution to Eq.(2.65). In this case, the functions Hi, j can
be regarded as periodic forcing agents on the unperturbed system as such they can be
decomposed into a Fourier (trigonometric) series. That is,

Hi, j = Ψi j cosx− 1
2

Si j(1+ cos2x). (3.67)

For Eq.(2.65), we can thus choose a particular solution of the form

r(p)
20 = Bn cosnx, (3.68)

with n ∈N. Substituting this trial solution into Eq.(3.61) and comparing like terms, we obtain

B0 =
1
2
(A−2iωE)−1S20, (3.69)

B1 =−(−D+A−2iωE)−1
Ψ20, (3.70)

and B2 =
1
2
(−4D+A−2iωE)−1S20, (3.71)
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3.3 Linear stability analysis and Hopf bifurcation with diffusion

such that,
r(p)

20 = B0 +B1 cosx+B2 cos2x. (3.72)

Performing similar operations on the Eqs.(2.66) and (2.67), we obtain

r(p)
11 =

1
2

A−1S11 − (−D+A)−1
Ψ11 cosx+

1
2
(−4D+A)−1S11 cos2x, (3.73)

r(p)
02 =

1
2
(A+2iωE)−1S02−(−D+A+2iωE)−1

Ψ02 cosx+
1
2
(−4D+A+2iωE)−1S02 cos2x.

(3.74)
The general solution to Eqs.(2.65-2.67) then becomes

ri j = r(h)i j + r(p)
i j , (3.75)

which is of the form ri j = ∑
2
m=1 γmeβmxν +∑

2
l=0 Bl cos lx.

Subsequent application of the boundary conditions imposed on the vectors ri j, determines
the constants C1 and C2 of Eq.(3.66). We have

C2 = e(η1−η2)π , and C1 =−η2

η1
C2. (3.76)

Hence, the center manifold is uniquely determined. Substituting Eq.(3.75) into Eq.(3.56),
gives the dynamics on the nonlinear center manifold:

ż = iω0z+
1
2

G20z2 +G11zz̄+
1
2

G02z̄2 +
1
2

G21z2z̄+ ⟨G10,y⟩z+ ⟨G01,y⟩z̄+ . . . , (3.77)

with

Ḡ10,i =
∂ 2

∂yi∂ z
⟨p,F(zq+ z̄q̄+ y)⟩

∣∣
z=0,y=0, i = 1,2,3. (3.78)

Ḡ10 = (−2u∗δW̄2V1

∫
Ω̂

cos2 xdx,0,0), (3.79)

Ḡ01,i =
∂ 2

∂yi∂ z̄
⟨p,F(zq+ z̄q̄+ y)⟩

∣∣
z=0,y=0, (3.80)

and Ḡ01 = (−2u∗δW̄2V̄1

∫
Ω̂

cos2 xdx,0,0). (3.81)
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3.3 Linear stability analysis and Hopf bifurcation with diffusion

It follows that,

ż= iωz+
1
2

G20z2+G11zz̄+
1
2

G02z̄2+

(
1
2

G21 −2u∗δW̄2(V1r11,1 +V̄1r20,1)
∫

Ω̂

cos2 xdx
)

z2z̄ . . . ,

(3.82)
where, ri j,m represents the mth component of ri j. Since G20 = G11 = G02 = 0 by integration,
the first Lyapunov coefficient is expressed as

l1(δ ) =
1
ω

Re
[1

2
G21 −2u∗δW̄2

∫
Ω̂

f (x)cos2 xdx
]

=
1
ω

Re
[
−3δ

8
W̄2V 2

1 V̄1 −2u∗δW̄2

∫
Ω̂

f (x)cos2 xdx
]
, (3.83)

where f (x) = (V1r11,1 +V̄1r20,1).

Theorem 7. The Hopf bifurcation of any mode k0 from rest is supercritical if l1(δ )< 0 and
subcritical if l1(δ )> 0.

3.3.3 Numerical analysis

Spatio-temporal dissipative structures

In this subsection we simulate Eq.(2.2) together with the no-flux boundary conditions
using the method of lines. We consider a neuron of length ℓ= π , discretized over 100 points.
Setting ε = 0.8, b = 0.4, a = 0.7, ℓ = π and d = 0.005, we can estimate the sequence of
values τk for which system (2.2) exhibits a Hopf bifurcation. This is obtained from Eq.(3.46),
evaluated at different k values. For 0 ≤ k ≤ 3, the corresponding sequence τk is

τ0 = 0.3629,τ1 = 0.3701,τ2 = 0.3916,τ3 = 0.4274. (3.84)

The first unstable mode leading to spatial-temporal dissipative structures occurs at k = 0.
This mode, corresponds to the spatially homogeneous case or bulk oscillations for which,
all spatial points fire synchronously. Note that for this set of parameters, we do not expect
a Pitchfork instability. In each case, if τ < τ0 all modes converge to a uniform stationary
solution while some get excited if τ ≥ τ0. Fig.3.12 depicts the temporal evolution of u at x= 0,
for different initial conditions, below and above criticality. Noise for the simulations was
added using the MATLAB function : rand(size(n)). Here, initial values were w = w∗ = 0,
v = v∗ =−0.665 while other system parameters were ℓ= π , a = 0.7, d = 0.5, b = 0.4, and
ε = 0.8. Damped wave profiles propagate below criticality as shown in Fig.3.13. Here,
system initial values were w = w∗ = 0 and v = v∗ = −0.665 while other parameters were
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Figure 3.12 Temporal evolution of solution of membrane potential of system (2.2) at x = 0.
τ < τ0 in panels (a) and (b) while τ > τ0 as in panels (c) and (d). Initial conditions were
taken as u(x,0) = u∗+ 0.03× noise for (a) and (c), and as u(x,0) = u∗+ 0.1cos1x for (b)
and (d).
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Figure 3.13 (a) Space-time evolution of the wave mode cosx of system (2.2) for τ = 0.3
(< τc) and (b) Its temporal evolution at times indicated in the legend. Initial conditions were
taken as u(x,0) = u∗+0.1cos1x.

ℓ = π , a = 0.7, d = 0.005, b = 0.4, and ε = 0.8. Damping in the system is due to the
dissipation term ut in Eq.(2.2).

Fig.3.14 shows the space-time plot of the membrane potential at the Pitchfork instability
for two different values of the diffusion coefficient within the unstable range. Here, noise
was added using the MATLAB function: rand(size(n)) and other system parameters were
a = 0.7, b = 0.4, ε = 0.8, ℓ = π , and τ = 0.6. The stationary state displayed in the plot
consist of regular stripes interrupted by localized spatial defects that run vertically through the
figure. Spatially inhomogeneous stationary states represent regions of localized excitations
and have been liked to memory formation.

Stability of plane wave solutions of the CGL equation

In this subsection, we determine the stability of various wave modes of Eq.(2.1), using the
CGL(Eq.(2.82)) and we determine the stability of the homogeneous oscillations against side-
band instability. Using the parameter values: ε = 0.8, b = 0.4, and a = 0.7 (see section 3.2),
we obtain the steady state u∗ =−0.966, and the corresponding critical value and frequency
τ0 ≈ 0.363 and ω0 = 0.835 respectively. Additionally, when d = 0.5 and ℓ= 200, we find
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Figure 3.14 Space-time plot of membrane potential (left column) and a stationary wave at
t = 20 (right column). Panels show a stationary state of system (2.2) emerging from random
initial conditions u∗ = −0.966+ 0.03× noise, w∗ = 0 and v∗ = −0.665. The diffusion
coefficient was d =−0.5 for panels (a) and (b), and d =−1 for panels (c) and (d).
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(a) (b)

(c) (d)

Figure 3.15 Space-time plot of evolution of the (a) intensity |z|2 and (b) phase of the CGL
(Eq.(2.82)), and membrane potential of system (2.2) for (c) τ = 1.1τ0, and (d) τ = 1.7τ0. For
the CGL, initial conditions were z0+noise while those for system (2.2) were U =U0+noise.
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3.3 Linear stability analysis and Hopf bifurcation with diffusion

the coefficients of the CGl, Eq.(2.82), as

f1r =−3.434×10−2, f1i = 2.5094×10−2,

f2r = 6.629×10−2, f2i =−0.3783, (3.85)

f3r = 1.869×10−3, f3i =−1.366×10−3.

It follows that, c1 ≈−5.7068, c2 ≈−0.7307,
Plane wave solutions of Eq.(2.82) are of the form:

zk = ρkei(kx+ω̂t), (3.86)

with

|ρk|2 = 1− k2, ω̂k =−c2 +(c2 − c1)k2. (3.87)

Under these condition, the spatially homogeneous oscillatory state takes the form:

z0 = n0eiω̂0t , |ρ0|2 = 1, ω̂0 =−c2. (3.88)

Notice that its frequency (ω̂0) is strikingly similar to, that obtained from Eq.(3.48), using
the same parameters. That is, ω̂0 ≈ ω0 = 0.835. This is an illustration of the impressive
predictive power of the CGL. Furthermore, the homogeneous mode z0, will be stable since
the Benjamin-Feir condition i.e

1+ c1c2 > 0, (3.89)

is satisfied. This implies that a stable sideband 0 < k ≤ kE , surrounds the homogeneous state
[72, 157, 158], where

kE =

√
1+ c1c2

3+2c2
2 + c1c2

(3.90)

= 0.2674,

is the location of the Eckhaus instability [159, 160], beyond which plane waves become
unstable to phase perturbations. It follows that all simulations of wavenumber k, within the
existence band, will converge towards a wavestate |k| ≤ kE , in the neighbourhood of the
homogeneous mode k = 0. To simulate the stability of plane wave solutions (k ̸= 0), we use
initial conditions of the form

zk(x,0) = noise+
√

1− k2eikx, (3.91)
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(a) (b)

(c) (d)

Figure 3.16 Space-time plot of the intensity |z|2 (first column) and phase (second column)
of the CGL for two different initial traveling waves z0.1(Panels (a) and (b)), within and
z0.8(Panels (c) and (d)), outside the stable band, both subject to a small initial random
perturbation implemented using the MATLAB function rand(size(n)), of amplitude 0.1.
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and select wavenumbers within the stable and unstable ranges of the CGL as initial solutions
and simulate their space time evolution. Fig.3.15 shows the spatiotemporal evolution of the
homogeneous solutions of Eq.(2.2) and Eq.(2.82). Here, noise was added using the MATLAB
function rand(size(n)) while other system parameters were set as a = 0.7, b = 0.4, ε = 0.8,
d = 0.5 and ℓ= 200. It can be seen that both solutions converge to a spatially homogeneous,
temporally oscillating solution which remains stable in the long time limit and well above
threshold. The results for k > 0 are displayed in Fig.3.16. In the stable range with mode
z0.1, the amplitude converges to a value ≈

√
1−0.12, while the phase settles to a spatially

inhomogeneous state. Hence this mode is indeed stable against small perturbations and
corresponds to neurons that fire out of phase with a frequency close to ω̂0.1. For k ≫ kE , the
amplitude and phase undergo perturbations. The foregoing numerical results and discussion
suggests the homogeneous mode is stable to perturbations of wavenumber 0 < k ≤ kE .
Beyond the stable range (k > kE), plane waves become unstable. In all simulations, the
asymptotic solution has wave number in the range 0 < k ≤ kE .

3.3.4 Discussions

In this section, we provided a framework to study delay and diffusion-induced instability
in a spatially extended neuron with homogeneous Neumann boundary conditions. Unlike
infinite-dimensional classical delayed reaction-diffusion systems, the current model is advan-
tageous in the sense that only the diffusion and not the delay generates infinite dimensional
character of the dynamical system. The latter approach is analytically and computationally
easier to study. The results presented here suggest that the Hopf bifurcation results in oscilla-
tory and traveling waves whose squared speeds are inversely proportional to the delay, are
finite for large τ and infinite for negligible τ . This is a confirmation of experimental studies
which suggests that axons without myelin sheath tend to propagate signals at relatively lower
speeds resulting in more delayed pulses. Due to the dissipative character of the system,
only damped traveling waves propagate in the system for small values of the relaxation
time. However, in the large τ limit, oscillatory waves corresponding to the homogeneous
mode dominate and are stable to side band instability. Our calculations also predicted a
Pitchfork instability induced by negative diffusion ( and independent of delay), although
there is currently no experimental evidence of negative diffusion in biological neurons, to the
best of our knowledge. Further research on the existence of this phenomenon is needed in
order to confirm this aspect of our results.
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3.4 Numerical bifurcation analysis of the discrete hyper-
bolic FHN model

Here, we present results on the bifurcation analysis of the discrete hyperbolic FHN model.
Numerical bifurcation analysis of systems (2.109) and (2.110) was performed in MATCONT.
For a review of essential bifurcations of maps see section 1.4.

For system (2.109) we used the following parameter set: N = 31, τ = 0.1, ε = 0.8,
b = 0.4, a = 0.7, h = 1/30 and d = 0.001. After locating a stable fixed point by numerical
integration we study its codimension-one bifurcation, taking τ as the bifurcation parameter.
The bifurcation diagram is displayed in Fig.3.17a with parameters set: d = 0.001, ε =

0.8, b = 0.4, and a = 0.7. We observe that as τ is increased, the first supercritical Hopf
bifurcation occurs corresponding to mode k = 0, followed by a sequence of supercritical
Hopf bifurcations presumably due to higher order modes (k > 0). Switching d from 0.001 to
0.1 and repeating the procedure above, we obtain the diagram for the pitchfork bifurcation
displayed in Fig.3.17b. Here, we set τ = 0.1 while other parameters were maintained at
ε = 0.8, b = 0.4, and a = 0.7. In this plot, we observe the occurrence of a stationary
bifurcation as d crosses zero from right to left. The first branch point corresponds to mode
k = 1 and is followed presumably by a sequence of branch point bifurcations. In both
codimension-one studies, the bifurcations obtained with system (2.2) are captured with good
precision by the corresponding discrete system, system (2.109).

Next, we study the bifurcations of system (2.110) in a manner similar to the previous
paragraph, by detecting the the codimension-one (codim 1) bifurcations. Fig.3.18a and 3.18b
shows respectively, the codim-1 bifurcations with τ and I as bifurcation parameters. Note
that these figures mirror those of system (2.2)(with d = 0), Figs.3.2a and 3.2b. Additionally,
we continue these bifurcations on the codimension-two plane and obtain Fig.3.19. Once
again, the essence of the codim-2 bifurcation diagram of system (2.2) (d = 0), Fig.3.3a has
been captured by Fig.3.19. Due to limitations in software, we were unable to continue the
detected Chenciner points.

3.4.1 Discussions

The motivation for studying the discrete FHN model stems from the fact that certain
nerve transmission phenomena may best be discrete by discrete dynamics. A good discrete
model which serves as an approximation to the corresponding continuous model should
maintain to a high degree the properties and solutions of the continuous model. Such is the
case with the discrete models we have proposed here. On the one hand, the model with
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Figure 3.17 Codimension-one bifurcation diagrams of system (2.109) with bifurcation pa-
rameter (a) τ and (b) d. sH denotes superciritcal Hopf bifurcations, BP denotes a branch
point or pitchfork bifurcation, and HN denotes a neutral saddle. The horizontal (vertical)
branch of equilibria bifurcating from BP represents spatially homogeneous (inhomogeneous)
stationary states.
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Figure 3.18 Codimension-one bifurcation diagrams of system(2.110) with bifurcation param-
eter (a) τ , and (b) I. sNs (uNs) denotes superciritcal (subcritical) Neimark-Sacker bifurcations.
Parameters sets used for these simulations were: (a) ε = 0.8, b = 0.4, a = 0.7, and dt = 0.01
(b) ε = 0.08, b = 0.8, a = 0.7, and dt = 0.01.
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Figure 3.19 Codimension-two bifurcations of system (2.110) as seen on the (τ, I)− plane.
Red curve is the NS curve while CH are nondegenerate Chenciner bifurcation. Parameter set
used for the simulation is : ε = 0.08, a = 0.7, b = 0.8, and dt = 0.01.
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discretizations in space replicated successfully, the primary bifurcations of the reaction-
diffusion equation studied in section 3.3. Although the exact locations of these bifurcations
in the discrete model were slightly off, relative to the continuous model, better accuracy
may be achieved by increasing the number of mesh points used to discretize the Laplacian.
Spurious bifurcations such as the neutral saddle (NS) were detected in the discrete model.
These are usually induced by discretizations in space but their multiplicity usually drops as
the discretization method is improved. On the other hand, discretizations in the time variable
(without diffusion) successfully replicated the dynamics observed in section 3.2. Here, no
spurious bifurcations were detected and high order accuracy was achieved even at moderately
high time steps (dt = 0.1).
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3.5 Dynamics of fronts and oscillons of the hyperbolic model

3.5.1 Analytical front solution by G′/G method

Assume the recovery variable of the neuron in system (2.1) is constant (vt = 0), which
without loss of generality, may be taken as zero. The corresponding system dynamics of the
membrane potential is then given by:

τutt +ut = u− u3

3
+uxx. (3.92)

In what follows we look for the analytical solution to this equation using the G′/G - expansion
method, described in section 2.3.1.

Letting u(x, t) = u(ξ ) with ξ = x− ct, It follows that

(1− τc2)u
′′
+ cu′+u− u3

3
= 0. (3.93)

Assume u(ξ ) can be expanded as

u(ξ ) = ∑
m=0

αm(
G′

G
)m, (3.94)

where G(ξ ) is the solution of Eq.(2.86).
We find a homogeneous balance between the terms u3 and u′′ in Eq.(3.93), where

u3(ξ ) = α
3
m(

G′

G
)m + . . . (3.95)

u
′′
(ξ ) = m(m+1)αm(

G′

G
)+ . . . . (3.96)

It follows from the homogeneous balance that: m+ 2 = 3m and thus m = 1. Hence the
desired solution is of the form:

u(ξ ) = α0 +α1(
G′

G
). (3.97)

Substituting the expansions of Eq.(3.97), its derivatives u′, u
′′

as well as that of the term u3

into Eq.(3.93), we group terms of like-powers of (G′

G ) together. Setting the coefficients of
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each power of (G′

G ) to zero, we obtain the following system of equations:

2α1(1− τc2)−
α3

1
3

= 0 (3.98)

3α1λ (1− τc2)−α1c−α
2
1 α0 = 0 (3.99)

(1− τc2)(2α1µ +α1λ
2)−α1λc+α1 −α1α

2
0 = 0 (3.100)

(1− τc2)α1λ µ −α1µc+α0 −
α3

0
3

= 0. (3.101)

Solving this system on Maple, we obtain fifteen different solutions: seven of which have a
constant velocity (independent of τ) and the rest with a velocity inversely proportional to the
relaxation time, τ . One of the eight solutions with dependence on the delay has the following
coefficients:

α0 =

√
3
2

[
1+

8µ

9τ +2
+

√
1+

16µ

9τ +2

] 1
2

. (3.102)

α1 =

√
6

4µ

(
8µ

9τ+2 −1−
√

1+ 16µ

9τ+2

)√
8µ +9τ +2−

√
(9τ +2)(16µ +9τ +2)

27τ +6−
√
(9τ +2)(16µ +9τ +2)

, (3.103)

with

c =
3√

9τ +2
(3.104)

λ =

√
16µ +9τ +2

2
, (3.105)

where µ is a real constant and λ 2 −4µ > 0. Substituting the general solution of Eq.(2.86)
for the case where λ 2 −4µ > 0, into Eq.(3.97) we obtain as solution:

u(ξ ) = α0 +

√
9τ +2

4
α1

(
C1 sinh

√
9τ+2
4 ξ +C2 cosh

√
9τ+2
4 ξ

C1 cosh
√

9τ+2
4 ξ +C2 sinh

√
9τ+2
4 ξ

)
. (3.106)

Letting C2 = 0 we obtain the familiar shock type solution:

u(ξ ) = α0 +

√
9τ +2

4
α1 tanh

√
9τ +2

4
ξ , (3.107)

or more explicitly written:

u(x, t) = α0 +

√
9τ +2

4
α1 tanh

(√
9τ +2x−3t

4

)
. (3.108)
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(a) (b)

Figure 3.20 Analytical front solution, Eq.(3.108) in space-time (left panel) at τ = 0.1, and
across the neuron (right panel) for τ = 0.1, τ = 0.2 and τ = 0.3 (resp. blue, black and red
lines). For all simulations µ = 0.9 and α0 = 0.

The constant α0 controls the vertical shift of the solution at t = 0 and may be taken as 0,
without loss of generality. The profile of the front solution is displayed in Fig. 3.20 while its
speed as a function of τ is plotted in Fig.3.22 .
To verify the analytical results obtained above, we simulate Eq. (3.92) using the method of
lines by first transforming it into the system:

ut = w (3.109)

τwt = u− u3

3
+uxx −w. (3.110)

The operator uxx was discretized using a mesh of 200 points and the initial profile was taken
from Eq.(3.108) as :

u(x,0) =
√

9τ +2
4

α1 tanh
(√

9τ +2x
4

)
. (3.111)

The results of the numerical simulation are shown in Fig. 3.21 which shows a localized front
solution. This solution can be made to agree with the analytical solution, Eq.(3.108), viewed
on the comoving frame.
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Figure 3.21 Numerical front solution of system (3.92), showing (a) space-time plot at τ = 0.1,
and (b) solution across the neuron for different values of τ : 0.1, 0.2 and 0.3 corresponding to
blue, black and red lines respectively.
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Figure 3.22 Variation of wave speed of front solution, Eq.(3.108), with relaxation time.
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Figure 3.23 (a) Shows the instability gain for system (2.1), Re(σ) against k for the mode
ω1 for τ = 0.1; the dashed line is a visual aid. (b) The dispersion relation for the modes ω1
at various values of τ and wavenumbers 0 < k < 5. Other system parameters were a = 0.7,
b = 0.8, ε = 0.

3.5.2 Wave properties of a propagating oscillon

Dispersion relations

Here, we use the method of multiple scales described in section 2.3.1 to reduce system
(2.1) to the Hopf normal form from which we build an oscillon solution.

Taking into account Eqs.(2.103) and (2.104), and expanding system (2.1) up to order δ 3

we obtain the following relations:
At order δ 1, terms in eip̃ϕ gives the following system

DU1 = 0, (3.112)

with

D =

(
−τω2 p̃2 − iω p̃+ k2 p̃2 −1 1

−ε εb− iω p̃

)
. (3.113)

For U1 ̸= 0, equating the determinant of the matrix D to zero, gives the following third order
characteristic equation

− τω
2 p̃2 − iω p̃+ k2 p̃2 +η −1 = 0, (3.114)
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3.5 Dynamics of fronts and oscillons of the hyperbolic model

with η = ε

εb−iω p̃ , εb ̸= iω p̃ .
The roots of Eq.3.114, represent different modes of wave propagation. An analytical search
for these roots is quite challenging. As such, only a qualitative description of the instabilities
will be done for the case ε = 0 while those for the third order polynomial is to be evaluated
numerically. In what follows, we shall also ignore multiple wave interactions by focusing on
the first harmonic (up̃

1 = 0 if p̃ ̸= 1,−1).

Case: ε = 0

When the recovery variable is ignored, the dispersion relation, Eq.(3.114) becomes

− τω
2 − iω + k2 −1 = 0. (3.115)

Assuming k ∈ R and a temporal representation of the dispersion relation with ω = ω(k)—a
complex function, solutions to Eq.(3.115) can be obtained easily as:

ω1,2 =
−i±

√
4τ(k2 −1)−1

2τ
. (3.116)

The eigenvalues ω1,2 are the modes of propagation of the signal. To understand their
physical significance, let us consider plane wave solutions of the form Uei(kx−ωt). This can
conveniently be represented as Ueikx−iωrt+ωit or simply as Ueikx+σt where, σ =−iω . Here
Re(σ) represents the gain or growth rate of the perturbation while Im(σ) is responsible for
the periodic behavior (Phase velocity) of the of the signal. For any wavenumber k, the plane
wave is temporally unstable (stable) if Re(σ)> 0 (Re(σ)≤ 0). The critical modes are those
for which Re(σ) = 0 or ωi = 0 and correspond to oscillating solutions. Defining the phase
velocity

vp =
Re(ω1,2)

k
,

we have that

vp =

0, k2 < 1
4τ

+1

±
√

4τ(k2−1)−1
2τ

, k2 ≥ 1
4τ

+1.
(3.117)

We conclude there exist a critical wavenumber kc1 =
1

4τ
+1 and that no plane waves exist

for k < kc1. Fig.3.23 shows the plot of Re(σ) and Im(σ) against k for mode ω1 for different
values of τ . For each case, we observe that when k < kc1 (k ≥ kc1), plane waves are temporally
unstable (stable). No periodic pattern is observed in the former case while damped waves,
propagating towards the left or right, may be observed in the latter case.

99



3.5 Dynamics of fronts and oscillons of the hyperbolic model

Case: ε ̸= 0

In this case, Eq.(3.114) can be put in the form of a polynomial with real coefficients as
follows

τσ
3 +(bτε +1)σ2 +(bε + k2 −1)σ + ε(b(k2 −1)+1) = 0. (3.118)

wherein we have made use of the substitution σ =−iω , with σ bearing the same definition
as before. Using a suitable Newton solver (the function roots(an,an−1, . . .), in MATLAB),
the roots of the polynomial dispersion relation given by Eq.(3.118) can computed. The results
for 0 ≤ k ≤ 2 are shown in Table 3.1. Mode σ1 has no wave solutions since Im(σ1) = 0 and
Re(σ1)< 0 ∀k > 0. Modes σ2,3, has wave solutions for some values of k with Im(σ2,3) ̸= 0.
The conjugate nature of σ2,3 at periodic states reflects propagation towards the left and right
directions.
An oscillatory periodic state is achieved when a pair of roots lie on the imaginary axis, this
corresponds to a Hopf bifurcation. Suppose Eq.(3.118) has a pair of roots on the imaginary
axis so that one root r1 is real and the others r2 and r3 = r̄2, are complex. Using Vieta’s
formulas, we obtain the following equations (relating the roots to the coefficients of the
polynomial equation):

r1 =−(1+ τbε)

τ
, (3.119)

|r2|2 =
εb+ k2 −1

τ
, (3.120)

r1|r2|2 =−ε(b(k2 −1)+1)
τ

. (3.121)

It follows that
(1+ τεb)(εb+ k2 −1) = τε(b(k2 −1)+1). (3.122)

from which we obtain the critical value

kc2 =
√

1+ ε(τ −b)− τb2ε2). (3.123)

Eq.(3.120) gives us the frequency of oscillation (ω) at the critical value. That is,

ωc =

√
bε + k2

c2 −1
τ

. (3.124)
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σ1 σ2 σ3

k=0 -10.9223 0.0174 0.8409
k=0.2 -10.8885 0.8032 0.0212
k=0.4 -10.7857 0.0355 0.6863
k=0.6 -10.6103 0.0787 0.4677
k=0.8 -10.3552 0.1456 + 0.1839i 0.1456 - 0.1839i
k=1.0 -10.0080 -0.0280 + 0.2813i -0.0280 - 0.2813i
k=1.2 -9.54801 -0.2580 + 0.2161i -0.2580 - 0.2161i
k=1.4 -8.93576 -0.1642 -0.9641
k=1.6 -8.08217 -0.1195 -1.8623
k=1.8 -0.10139 -6.6497 -3.3129
k=2.0 -0.09150 -4.9863 + 2.2057i -4.9863 - 2.2057i

Table 3.1 Roots of the polynomial, Eq.(3.118), obtained by numerical iteration of k within
the range 0 < k < 2 with a step size of 0.2. Three roots exist for each k, and represent the
three modes of propagation σ1,σ2 and σ3. Other parameters were τ = 0.1, ε = 0.08, b = 0.8
and a = 0.7

At order (δ 2) of the expansion, we have the following system of equations:

(−τω
2 p̃2 − iω p̃+ k2 p̃2)up̃

2 +(1−2iτω p̃)u1T −2ip̃kup̃
1ξ

= up̃
2 − v p̃

2 , (3.125)

−iω p̃vp̃
2 + vp̃

1T = εup̃
2 − εbvp̃

2 . (3.126)

Making use of the relation vp̃
1T = ηup̃

1T , obtained from System.(3.112) and the dispersion
relation Eq.(3.114), terms in u p̃

2 vanish and system (3.125) reduces to(
1−2iτω p̃− η2

ε

)
up̃

1T −2ip̃kup̃
1ξ

= 0. (3.127)

We let the coefficient of u1T in Eq.(3.127) be a complex frequency:

Ω =
1
2i

(
1−2iτω p̃− η2

ε

)
, (3.128)

whose full expression can be found in Appendix A.2. Eq.(3.127), at p̃ = 1, becomes

2iΩu1
1T −2iku1

1ξ
= 0. (3.129)
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Figure 3.24 Plot of the group velocity of traveling pulses given by relation (3.131) for k = 0.8
and ω =−0.1839+0.1456i. This frequency was obtained from table 3.1. Other parameters
were a = 0.7, ε = 0.08 and b = 0.8

which is the well known transport equation with solutions of the form

u1
1 = A(ξ +Vt), (3.130)

corresponding to the propagation of a left-moving traveling pulse (wave-packet) with group
velocity

V = Re(
k
Ω
). (3.131)

Figure (3.24) shows the plot of V as a function of τ . Notice that V stays finite even when τ → 0
in contrast wave propagation of periodic waves for which the phase velocity vp =

ωc
k → ∞ as

τ → 0.

Amplitude equations

We now derive the canonical model governing the system dynamics at the Hopf bifurca-
tion point. At order δ 3 of the perturbative expansion we get:

(−τω
2 p̃2 − iω p̃+ k2 p̃2 −1)up̃

3 +(1−2iτω p̃)up̃
2T +(1−2iτω p̃)up̃

1τ̃
+ τup̃

1T T −2ip̃kup̃
2ξ

−up̃
1ξ ξ

=−
Rp̃

3
3

− vp̃
3 . (3.132)
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where Rp̃
3 and vp̃

3 are given by

vp̃
3 = ηup̃

3 −η
2 up̃

2T
ε

−η
2 up̃

1τ̃

ε
+η

3 up̃
1T T
ε2 , (3.133)

and Rp̃
3 = ∑

h+l+m=p̃
u3

1. (3.134)

where, h, l , m take integer values in the set {−2,−1,0,1,2}. Making use of the dispersion
relation, Eq.(3.114) and relations, (3.133) and (3.134), Eqs.(3.132) for p̃ = 1 simplifies to

2iΩu1
2T −2iku1

2ξ
+2iΩA1τ̃ −A1ξ ξ +

(
τ +

η3

ε2

)
A1T T + |A|2A = 0. (3.135)

where we have made use of Eq.(3.128), Eq.(3.130) and the fact that R1
3 = 3|u1

1|2u1
1 , while the

terms in u1
3 cancel each other. Placing ourselves on the frame of motion of the wave-packet,

by using the transformations

ξ̃ = ξ +V T, and T̃ = T, (3.136)

Eq.(3.135) can be written as
∂T̃ u1

2 = Φ(ξ̃ ). (3.137)

Integrating this equation with respect to T̃ , we have

u1
2 = T̃ Φ(ξ̃ )+u1

2(0). (3.138)

At large values of T̃ , u1
2 becomes a secular term in the perturbation expansion Eq.(2.104) and

the latter breaks down. This can be removed by taking

lim
T̃→+∞

(
u1

2
T̃

)
= 0. (3.139)

That is, we set Φ(ξ̃ ) = 0, from which we get the following complex Ginzburg-Landau
equation (CGL)

2iΩAτ̃ +

[
k2

Ω2 (τ +
η3

ε2 )−1
]

A
ξ̃ ξ̃

+ |A|2A = 0, (3.140)

without the small parameter (δ ) and critical frequency ωc. This equation may be written in
the generalized form

iAτ +PAξ ξ +Q|A|2A = 0, (3.141)
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dropping the hats on τ and ξ . Here, P and Q are complex coefficients given by

P =
1

2Ω

[
k2

Ω2 (τ +
η3

ε2 )−1
]
, (3.142)

and Q =
1

2Ω
. (3.143)

Full expressions for these coefficients (Pr,Pi,Qr and Qi) can be found in Appendix A.2.
Equation (3.141) represents the slow evolution of the most unstable modes (A) on the center
manifold at the Hopf bifurcation point. The linear dispersive coefficient (P), leads the
spreading of the wave amplitude A, in space, while Q represents its nonlinear saturation.
Eq.(3.141) has traveling wave solutions [35], as well as solitary solutions[161, 162] of the
form:

A =

√
2F
H

sech

(
√

2Fc2 +

√
F
G

z

)
ei(mξ−nt), (3.144)

where

z = ξ +Vt (3.145)

F = m2(Pr + γPi)−n2, (3.146)

G = Pr + γPi, (3.147)

H = γQi +Qr, (3.148)

and γ =
2mPi

2mPr +V
, (3.149)

valid in the limit 2F−HA2

2G > 0,
√

F
G > 0 and

√
F
H > 0. This solution consist of a carrier wave

(ei(mξ−nt)) modulated by an envelop (sech). Details of the derivation of this solution by direct
integration of Eq.(3.141), is found in section 2.3.1. The coefficient c2 controls the position
of the solitary wave in 1D-space and can be conveniently set to zero.
The general solution of our system is obtained by substituting Eq.(3.144) into Eq.(2.105) to
obtain

u = 2

√
2F
H

eωitsech

(
√

2Fc2 +

√
F
G

x

)
× cos [(m+ k)x− (n+ωr)t] , (3.150)

which is the exact solution for the oscillon of Eq.(2.1) (see Fig.3.25a). The profile has
the shape of a “Mexican-hat"[163], indicating local excitation and lateral inhibition. This
profile is similar to that reported in Ref.[164], in which a neuron model with hyperbolic
based dynamics was studied. The amplitude of the envelope solution, Eq.(3.150), grows
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Figure 3.25 (a) Profile of oscillon given by relation (3.150) at t = 0 and (b) its evolution in
space-time (top-view). Simulation parameters were k = kc = 0.9714, ωr = 0.2755, ωi = 0,
m = 1, n = 3 , a = 0.7, b = 0.8, ε = 0.08, and c2 = 0.

exponentially for ωi > 0, decays if ωi < 0, and oscillates if ωi = 0. The spatio-temporal
evolution this oscillon is plotted in Fig.3.25b. Yang et al.[165], have studied the birth and
interaction of oscillons born from a subcritical Hopf bifurcation in a reaction diffusion system.

3.6 Burst synchronization in two coupled photosensitive
hyperbolic FHN neurons

In this section, we present results on the codimension-two bifurcation diagram and burst
synchronization of system (2.12). Our results are based on the unique equilibrium of this
system which is the unique real root of the equation

u3 +3u
(1+b(ξ −1))

b
+3

a−bus

b
= 0, (3.151)

The unique real root is guaranteed under the constraints

D =
−108(1+b(ξ −1))3 −243b(a−bus)

2

b3 < 0,

b > 1,

ξ >
b−1

b
,

(3.152)
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where D is the discriminant of Eq.(3.151), defined according to lemma 1.

3.6.1 Numerical analysis

Codimension-two analysis of the photosensitve neuron

We compute numerically, the codimension-two bifurcations of Eq.(2.12) on the ξ ,us

plane. All detected bifurcations and continuations of system (2.12) were performed per-
formed using MATCONT [106]. We begin the codimension-two analysis of the system
by studying the primary bifurcation curve, taking us as the primary bifurcation parameter.
Starting from the unique steady state and detecting the Hopf bifurcations induced by us, we
continue this curve in the (us,ξ ) plane as a function of τ . The Codimension-two bifurcation
diagram as a function of τ is displayed in Fig.3.26. Parameter set used for this figure was
a = 0.7, b = 1.5, ε = 0.08, and ξ = 0.4. GH1 and GH2 are nondegenerate Bautin bifurcation
points with l2(0) < 0. Fig.3.27 shows the time series of the potential in different regions
of the codimension-two plane. To initiate bursting mechanisms, we fix us = u0 +Asinωt,
as a time-periodic sinusoidal output from the phototube. Here, u0, specifies the center of
oscillation of us, while A specifies the amplitude of oscillation from this center; ω being the
speed of oscillation. Assuming ξ is held fixed, two main bursting mechanisms are possible,
displayed in Fig.3.28 with parameter set as a = 0.7, ε = 0.08, τ = 0.1, and b = 1.5. Note
that as the parameter τ increases in Fig.3.26, the Bautin points shift towards the left of the
plane in the region with ξ < 0, corresponding to negative resistances. As such for positive ξ ,
the incidence of elliptic bursting within this range may reduce as τ increases, leaving only
Hopf-Hopf bursting as the only bursting mode. We observe that when the frequency of the
photocurrent increases, independent of the type of burst, the interburst interval decreases
while the number of spikes within each burst decreases. Note that the number of spikes
within each burst and the temporal evolution of the latter is believed to be a mechanism for
temporal information encoding in neurons [38].

Synchronization of elliptic bursters

In this subsection, we consider the synchronization of two elliptic bursters coupled via
different coupling schemes. It is known that two main modes of synchronization are possible
for coupled bursters: spike synchronization within bursts and burst synchronization[76]. Both
types of synchronization can be achieved with relative ease in elliptic bursters, compared
to other types of bursters such as circle-circle bursters. It has been shown [76] that for
weakly coupled elliptic bursters, spike synchronization depends crucially on the interspike
frequencies and coupling scheme between the bursters. For weakly coupled elliptic bursters,
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Figure 3.26 Codimension-two plane (ξ , us) of system (2.12), depicting different domains; W ,
T , Q, and P, with qualitatively distinct dynamics for (a) τ = 0, (b) τ = 0.1, (c) τ = 1, and (d)
τ = 1.5. Filled circles (crosses) denote stable (unstable) fixed points. Uninterrupted (dashed)
circles denote stable (unstable) periodic orbits. GH1,2 are nondegenerate Bautin bifurcation
points. Red(blue) curve corresponds to limit point of cycles (Hopf).
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Figure 3.27 Time series of membrane potential of system (2.12) in different regions of the
(ξ ,us)-codimension-two plane with (ξ ,us) in: (a) W , (b) Q, (c) P, and (d) T. The remaining
parameters were set as a = 0.7, ε = 0.08, τ = 0.1, and b = 1.5.
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Figure 3.28 Two types of bursting mechanisms of system (2.12) for periodic photocurrents
: Hopf-Hopf (left column) and SubHopf-Fold bursting (right column) with (a) us = 0.3+
0.1sin0.01t, ξ = 0.7, (b) with us = 0.6+0.1sin0.01t, ξ = 0.4, (c) us = 0.3+0.1sin0.02t,
ξ = 0.7, and (d) us = 0.6+0.1sin0.02t, ξ = 0.4.
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3.6 Burst synchronization in two coupled photosensitive hyperbolic FHN neurons

spike synchronization may occur only if the frequencies of the two oscillators are very close.
For excitatory (resp. inhibitory) coupling, the predominant mode of spike synchronization
is in-phase (anti-phase). On the other hand, burst synchronization depends on whether the
intrinsic oscillator is a resonator or integrator. The former may experience burst synchroniza-
tion independent sign of the synapse while the latter may synchronize only for excitatory
coupling [29]. Another feature common to elliptic bursters is their ability to experience
instantaneous burst synchronization due to the slow passage effect[166].

Let us first consider synchronization between two photosensitive elliptic bursters coupled
via gap junctions:

τ ü+ u̇i = ui(1−ξ )−
u3

i
3
− yi +us,i +αi, j(u j −ui),

ẏi = ε(xi +a−byi),

(3.153)

where, j = 1,2, and αi, j, represents the coupling between burster i and j, with αi, j = α j,i=α ,
and us,i = Ai sinωit. Different values of A, ω and initial conditions are chosen for the two
neurons and the effect of α on the synchronization is studied. Furthermore, we define as
error of synchronization the quantity:

es =
√
(u2 −u1)2 +(w2 −w1)2 +(v2 − v1)2. (3.154)

Fig.3.29 shows the results of synchronization in the presence of gap coupling as a func-
tion of the coupling strength. It can be observed that as α increases so does the de-
gree of burst and spike synchronization. Initial conditions used for the simulations were
(u1,w1,v1,u2,w2,v2)=(0,0.5,4,4,0,0) while other parameters were us1 = 0.6+0.1sin0.01t,
us2 = 0.6+ 0.2sin0.02t, ξ = 0.4, τ = 0.1, a = 0.7, ε = 0.08, and b = 1.5. Burst syn-
chronization appears almost instantaneously once the coupling is sufficiently strong and is
accompanied by in-phase spike synchronization as expected. Furthermore, for moderate
coupling strengths, the coupled system fires with a burst period greater than that of the
uncoupled systems. Similar observations were made in coupled neurons [167]. At strong
coupling strengths, synchronized bursts occur in two distinct phases.

Next we consider two bursters coupled via excitiatory or inhibitory synaptic coupling
[168, 169] as follows

ẋi = xi(1−ξ )−
x3

i
3
− yi +us,i + si, ju j,

ẏi = ε(xi +a−byi).

(3.155)
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Figure 3.29 Evolution of synchronization (Left column) and error of synchronization (right
column) of two elliptic photosensitive bursters (red and blue lines) coupled via electrical
synapse as a function of coupling strength : (a) α = 0, (b) α = 0.1, and (c) α = 0.5.
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Figure 3.30 Evolution of synchronization (left column) and error of synchronization (right
column) of two photosensitive bursters (red and blue lines) coupled via excitatory synapse as
a function of coupling strength : (a) s = 0, (b) s = 0.1, and (c) s = 0.5.
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where j = 1,2, and si, j represents the sign and strength of the synaptic coupling. Here,
we consider si, j = s j,i = s. For excitatory (resp. inhibitory) coupling, s > 0 (resp. s <
0). Fig.3.30 and Fig.3.31 show synchronization between the neurons coupled respec-
tively via excitatory and inhibitory coupling respectively. For Fig.3.30, initial condi-
tions were (u1,w1,v1,u2,w2,v2)=(0,0.5,4,4,0,0) while system parameters were us1 = 0.6+
0.1sin0.01t, us2 = 0.6+ 0.2sin0.02t, ξ = 0.4, τ = 0.1, a = 0.7, ε = 0.08, and b = 1.5.
For Fig.3.31,initial conditions were (u1,w1,v1,u2,w2,v2)=(0,0.5,4,4,0,0) while other pa-
rameters were us1 = 0.6+0.1sin0.01t, us2 = 0.6+0.2sin0.02t, ξ = 0.4, τ = 0.1, a = 0.7,
ε = 0.08, and b = 1.5. For excitatory coupling, moderately strong coupling is sufficient to
achieve in-phase spike and burst synchronization while higher couplings result in amplitude
death[170, 171]. Note that for this coupling strength, bursting occurs in two phases, similar to
the case with gap junction coupling. When using an inhibitory coupling, moderate coupling
strength yields anti-phase spike synchronization while destroying the bursts in both neurons.
Higher inhibitory coupling strengths resulted in amplitude death, similar to excitatory cou-
pling. The occurrence of amplitude death induced by coupling, among other factors, has
been observed in other dynamical systems[172]. For example, Ozden et al.[173] studied
coupling-induced amplitude death in a system of consisting of a biological neuron coupled
to an electrical one. Generally speaking, amplitude death may provide a pathway through
which unwanted oscillations, in this case bursting between neurons, may be terminated.

3.7 Conclusion

Generally speaking, models of nerve pulse propagation fall into two main categories:
Those which try as much as possible to account for all main electrophysiological parameters
and those which try to reduce the process to its essential features. The HH model leans
towards the first category while the classical FHN falls into the second category. The
hyperbolic FHN model on which the results presented in this chapter are based, takes the
classical FHN a little step closer towards the first category by adding to it some details of
physiological and physical relevance. It does so by realizing that finite speeds of propagation
in a network of spatially coupled neurons, necessarily induces propagation delays. These
delays vary with the length of the axon, the presence (lack) of myelination and the distance
between the interacting units of a system [174]. These delays can be as small as a few
milliseconds as well as over hundreds of milliseconds, and are especially relevant in non-
local interactions. As such they can be regarded as a new bifurcation parameter which can
significantly affect the dynamics of the system. Several approaches have been adopted to to
model these delays: The adoption of a second temporal derivative which we have explored in
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Figure 3.31 Evolution of synchronization (left column) and error of synchronization (right
column) of two photosensitive bursters (red and blue lines) coupled via inhibitory synapse as
a function of coupling strength : (a) s = 0, (b) s =−0.1, and (c) s =−0.5.
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this thesis, the space dependent delays common in neural fields[175] as well as the addition
of a constant delay[59].

By varying the relaxation time as the main bifurcation parameter, the results presented in
this chapter have demonstrated the presence of Hopf bifurcations induced by the relaxation
time, and pitchfork bifurcations, induced by negative diffusion. These bifurcations have been
shown to not only exist for the continuous model but also for the corresponding discrete
versions of the model. The Hopf bifurcations induced homogeneous oscillations in the
absence of diffusion and traveling waves in the presence of diffusive effects. Having a
structure similar to that of Maxwell’s propagation of electromagnetic waves, the hyperbolic
FHN supports damped traveling waves below the threshold and periodic waves at threshold
of the relaxation time. For both types of waves the square of the wave speed varied inversely
with the relaxation time.

Being a partial differential equation model and model in its own right, the hyperbolic
FHN also possesses solitary wave solutions. Two of such solutions: the front wave and the
oscillon have been constructed using analytical techniques. We showed that the amplitude
of the front wave scales inversely with increases in relaxation time, contrary to that of
the oscillon which increases with an increase in τ . Furthermore, these two waves admit a
maximum speed corresponds to τ = 0. We predict that this maximum speed correspond to
the speed of the solitary waves in the classical FHN model.

By adjusting the intrinsic properties of the hyperbolic FHN photosensitive neuron and
the properties of the photocurrent, we have established regions within codimension-two
parameter space, corresponding to tonic spiking, quiescence, and bistability. We have, via
the unfolding in the neighborhood of the Bautin bifurcation, explained the origin of bursting
in the photosensitive neuron and have identified two possible modes of bursting. Focusing
on elliptic bursting, we studied two coupled elliptic bursters under electrical and synaptic
couplings of excitatory and inhibitory types. For electrical and excitatory coupling, spike and
burst synchronization prevailed at moderately strong coupling. For both coupling schemes,
an increase in coupling strength increased the bursting period, while synchronized bursting
occurred in two distinct phases. When using an inhibitory coupling, moderately strong
coupling destroyed bursting while maintaining anti-phase synchronized spiking. For both
excitatory and inhibitory couplings, higher values of coupling strengths led to amplitude
death.
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General conclusion

In this thesis we have addressed the effect of the time of relaxation or delay due to finite
speed effect, on time-periodic oscillations and traveling waves of a hyperbolic FHN model.
Different bifurcations and their implications have been explored. Various critical values and
parameter ranges over which these bifurcations may be observed have been calculated. To
establish the nature of these bifurcations and other useful information in the neighborhood
of local bifurcations, we made extensive use of the center manifold theory, normal form
analysis, and other dimensional reduction techniques. We have shown that for small values
of the relaxation time the hyperbolic FHN model behaves very much like the classical FHN
model, conserving most of its essential bifurcations. However, new and interesting dynamics
are observable at large values of this delay. We have also made use of the hyperbolic model to
study the origin of bursting and synchronization in a hyperbolic photosensitive FHN neuron.

In Chapter 1, we reviewed the properties of the neuron concerning its function in generat-
ing and propagating action potentials. This was followed by a brief review of neural coupling
and coupling schemes in biological neurons. Following, was a review of two members of
the family of conductance-based models: the classical HH model and its lower-dimensional
counterpart— the FHN model. After a review of the essential features of the latter, we
discussed briefly, classical methods in modeling delays in coupled neurons followed by a
review of delays due to the finite speed of propagation due to Cattaneo and its consequences.
We concluded that chapter by reviewing the topological properties of the Hopf, pitchfork,
fold, Bautin bifurcations, and many other relevant codimension-one and -two bifurcations.
Detailed analysis of the Bautin bifurcation and the types of bursting dynamics around such
points was conducted.

In Chapter 2, we present a review and brief description of the models and methods
used throughout this thesis. The hyperbolic FHN model and its photosensitive variant are
presented in the early sections of the chapter. This is followed by a review of the analytical
and numerical methods relevant to this thesis. Under analytical methods, we reviewed the
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center manifold theory (a keystone method to this thesis), normal form reductions, multiple-
scale reductions, and methods for exact solitary wave solutions such as the G′/G− expansion
and the direct integration method. Under numerical methods, we reviewed the method of
finite differences and its application to the discretization of the hyperbolic FHN models.

In Chapter 3, we present the main findings of this thesis in four different parts. In the
first part of the results (sections 3.2 and 3.3), we demonstrated the existence of nonlinear
oscillations in the hyperbolic FHN model, emerging from Hopf bifurcations when the
relaxation constant, exceeds a certain threshold. For each Hopf bifurcation of a specific
wavenumber (k), we computed the direction of the Hopf bifurcation also known as the first
Lyapunov coefficient. We demonstrated that the dominant mode at the Hopf bifurcation is the
mode k = 0 which is stable against long-wave side-band instability. By varying the relaxation
time with the external stimulation current, we constructed the codimension-two bifurcation
diagram for the hyperbolic system showing regions of spiking of multiple periods (periods-
one, -two, three, and -four.), bursting, chaotic motion, and even post-inhibitory spiking.
Below the threshold, we showed that the hyperbolic model behaves similarly to the classical
FHN model. For periodic waves (k > 0), we demonstrate that the square of the wave speed
is inversely proportional to the relaxation time. The wave speed is shown to be unbounded
in the limit τ → 0, in good agreement with our expectations and theoretical predictions.
We also showed that pitchfork bifurcations lead to time stationary instabilities, induced by
a negative diffusion constant, and independent of the relaxation time. In the second part
of our results (Section 3.4) dedicated to the numerical bifurcation analysis of the discrete
versions of the hyperbolic FHN model, we show that the dynamics of the continuous models
are preserved by their discrete counterparts. Thus, we can generalize the results obtained
with the continuous models to the corresponding discrete models. Part three of our results
(Section 3.5) is dedicated to the analysis of the front and oscillon solutions of the hyperbolic
FHN model. We showed that the wave speed of fronts and oscillons generally increases
as τ → 0 but stays finite at τ = 0, corresponding to the maximum speed of the solitary
waves. Furthermore, we showed that the amplitude of the front wave scales inversely with
the relaxation time contrary to that of the oscillon wave which varies directly with relaxation
time. In the fourth and last part of our results (Section 3.6), we discussed the hyperbolic
photosensitive FHN in the context of bursting and burst synchronization built around a
Bautin bifurcation (elliptic bursting). We showed that at higher values of the relaxation
time, elliptic bursting may be destroyed under certain parameter ranges. Furthermore, when
considering gap junction coupling between two elliptic bursters, we observed that an increase
in coupling strength favors stronger burst and spike synchronization. However, for excitatory
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and inhibitory coupling, although synchronization may be achieved for moderate coupling
strengths, bursting and spiking may be destroyed at higher values of the coupling strengths.

In summary, our study has shown that the addition of the relaxation time, may lead
to periodic waves, which propagate at finite speeds. The addition of this term does not
significantly change the dynamics of the classical FHN model, provided that this delay
does not exceed some critical values which we have established via various analytical
and numerical techniques. Below criticality, only damped periodic waves are observed as
expected due to the hyperbolic nature of the modified model. Beyond critical values of
the relaxation time, oscillatory waves may propagate and new dynamics may be observed.
For example, higher values of this time may affect the occurrence of elliptic bursting in the
neuron. The qualitative and quantitative nature of the delay-induced bifurcations is preserved
by the corresponding discrete models. For soliton propagation (fronts and oscillons), a
maximum speed exists for which such waves may be observed—in good agreement with
results reported in recent similar studies.

We summarized some noteworthy similarities and differences between the hyperbolic
and classical FHN models in Table (3.2).

Outlook

The results presented in this thesis provide a sufficient overview of the dynamics of
the hyperbolic FHN and the effect of the relaxation time on the dynamics of the waves
propagating on the system. These results also demonstrate that the relaxation time can have
an impact on other variants of the hyperbolic FHN model. An example of such an impact
was observed in section 3.6 when using a photosensitive variant. These results are by no
means exhaustive in the sense that other studies relevant to the hyperbolic model could be
conducted as extensions of these results. To name a few possibilities:

In this study, we have not explored the effect of noise on the stability of synchrony and
burst synchrony in a network of more than two neurons. We predict that noise will reduce
the slow passage effect as noted in [77]. As such, burst synchronization may no longer be
instantaneous once the coupling is sufficiently strong. The simulations above have considered
coupled neurons driven by different photocurrents with different intensities and frequencies.
Under such conditions, synchronization still prevailed under moderate to strong coupling.
Thus we can expect that for neurons driven by nearly identical photocurrents, synchronization
may be possible at much lower coupling strengths. Furthermore, most of the results obtained
here may carry over to large networks of coupled bursters with nearest neighbor diffusive
coupling and elliptic bursters built around a global Bautin point.
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Property/attribute Classical FHN Modified FHN

Model description/control
parameters.

Two dimensional parabolic
ODE/ four control

parameters.

Two dimensional
hyperbolic system/ five

control parameters.

Recovery variable Not considered as an
internal variable.

Considered as an internal
variable with memory

effects.

Velocity of wave system Assumes infinite velocity
without delay.

Velocity is finite with delay.

Waves at non-oscillatory
points

Does not support waves at
non-oscillatory points.

Supports damped waves at
non-oscillatory points.

Frequency of oscillations Frequency does not depend
on τ .

Frequency depends on τ .

Hopf bifurcations Subcritical and superciritcal supercritical and subcritical
Hopf

Nature of Canard
explosions

Subcritical Subcritical

Table 3.2 Some noteworthy comparisons of the modified model and the classical model based
on a few attributes.
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Another way in which these results could be extended is by considering the control of
the oscillations induced by τ , using an external periodic signal. This could be achieved by
applying methods such as frequency response and Arnold-tongues at the threshold of the
parameter τ . The control of unwanted oscillations in neurons is a technique frequently used
for example in the treatment of epilepsy.
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Appendix A

Nonlinear coefficients of the CGL

A.1 Derivation of coefficients of the CGL and solvability

Using Eq.(2.72), Eq.(2.3) can be transformed as

(
q+

∂y(z, z̄,α,µ2)

∂ z

)
∂ z
∂ t

+
(

q̄+
∂y(z, z̄,α,µ2)

∂ z̄

)
∂ z̄
∂ t

= (µ2D̃∆+ Ã)(zq+ z̄q̄+ y(z, z̄,α,µ2))

+F(U0 + zq+ z̄q̄+ y(z, z̄,α,µ2))

(A.1)

Substituting Eq. (2.73) and the Taylor series expansion of y(z, z̄,α,µ2) about the point
(0,0,0,0) into Eq(A.1) and comparing terms of like order, we obtain:

O(α) : L y0010 = 0. (A.2)

O(αµ
2) : L y0011 +

∂

∂α
D̃
∣∣∣
α=0

∆y0010 = 0. (A.3)

O(z2) : (L −2iω)y2000 =−1
2

B(q,q). (A.4)

O(zµ
2) : (L − iω)y1001 = ( f3 − D̃|α=0∆)q. (A.5)

O(zα) : (L − iω)y1010 = f1q−B(q,y0010)−
∂ Ã
∂α

∣∣∣
α=0

q. (A.6)

O(zz̄) : L y1100 =−B(q, q̄). (A.7)

O(z2z̄) : (L − iω)y2100 =− f2q−B(q,y1100)−B(q̄,y2000)−
1
2

C(q,q, q̄). (A.8)

Note that the operators yi, j,k,l represents the coefficient of the term ziz̄ jαkµ2l in the Taylor
series expansion of y(z, z̄,α,µ2). Eqs.(A.2, A.3, A.4 and A.7) are solvable by inverse
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A.2 Complex nonlinear coefficients of the CGL

operations while Eqs.(A.5, A.6, and A.8) can be solved using the adjoint p. Note that
y0010 = 0, y0011 = 0 in this case and the expressions f1, f2 and f3 are easily obtained.

A.2 Complex nonlinear coefficients of the CGL

For p̃ = 1, w have the following coefficients:

Ω = Ωr + iΩi (A.9)

with

Ωr =−τωr +
ε(−2bεωr −2ωrωi)

2
[
(b2ε2 +2bεωi +ω2

i −ω2
r )

2 +(−2bεωr −2ωrωi)2
]

Ωi =−1
2
− τωi+

ε(b2ε2 +2bεωi +ω2
i −ω2

r )

2
[
(b2ε2 +2bεωi +ω2

i −ω2
r )

2 +(−2bεωr −2ωrωi)2
] (A.10)

Using these equations, the nonlinear coefficient Q can be written as

Qr =
Ωr

2|Ω|2
(A.11)

Qi =
−Ωi

2|Ω|2
(A.12)

The components of the complex number η can be expressed as

ηr =
ε(εb+ωi)(b2ε2 +2bεωi +ω2

i −3ω2
r )

(b2ε2 +2bεωi +ω2
i +ω2

r )
3 (A.13)

ηi =
εωr(3b2ε2 +6bεωi +3ω2

i −ω2
r )

(b2ε2 +2bεωi +ω2
i +ω2

r )
3 (A.14)

These equations can be used to simplify the expression of P as follows:

P = 4Q3k2(τ +ηr + iηi)−Q (A.15)

from which we obtain the components Pr and Pi:

Pr =
[
(τ +ηr)(−12QrQ2

i +4Q3
r )−ηi(−4Q3

i +12Q2
r Qi)

]
k2 −Qr (A.16)

Pi =
[
(τ +ηr)(12Q2

r Qi −4Q3
i )+ηi(−12QrQ2

i +4Q3
r )
]

k2 −Qi (A.17)
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Appendix B

Notations for function spaces

The following are some notations for function spaces used in some sections of this thesis:

— C 2(Ω,C3) represents the space of twice continuously differentiable complex-valued
vector functions on Ω, whose first derivative with respect to x vanish at x = 0 and x = ℓ.
On this space we define a norm

||ψ||=

(
1
κ

∫
Ω

∑
| j|≤2

|D j
ψ|2dx

) 1
2

.

where κ = 1+ k2 + k4, κ > 0, and D j, | j| ≤ 2, is the distributive derivative operator.

— H2(Ω) is a second order Sobolev space in L2(Ω) with the inner product ⟨U,V ⟩H2 =
1
κ ∑| j|≤2⟨D jU,D jV ⟩L2 . So H2(Ω) is the completion of C 2(Ω,C3) under its associated
norm.

— H1(Ω) is the first order Sobolev space in L2(Ω) with inner product ⟨U,V ⟩=∑| j|≤1⟨D jU,D jV ⟩.

— L2(Ω) is the space of complex-valued square-integrable functions on Ω with the scalar
product ⟨ f ,g⟩L2 = ∑

3
i=1
∫

Ω
f̄i(x)gi(x)dx.
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