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αch : is the Charnock parameter,

L. Fernand Mouassom xii Ph.D. in Physics



List of symbols

z0 : is roughness velocity,

k : is the wavenumber,

∇ : is nabla operator,

α : is the amplitude parameter, which measures the ratio of wave amplitude to undisterbed

fluid depth,

β : is the wavelenght parameter which measures the square of the ratio of fluid depth to

wavelenght,

τ : is the Bohm number (which are considered as the surface tension parameter in this work),

δ : is the viscosity parameter,

χ : is the wind parameter.

L. Fernand Mouassom xiii Ph.D. in Physics



List of acronyms

DNA : deoxyribonucleic acid,

fKdV : fifth-order Korteweg-De Vries,

gNNV : generalized Nizhnik-Novikov-Veselov,

KdV : Korteweg-De Vries,

KP : Kadomtsev-Petviashvili,

MI : modulational instability,

mKdV : modified Korteweg-De Vries,

mNV : modified Novikov-Veselov,

nKdV : ninth-order Korteweg-De Vries,

NLS : nonlinear Schrödinger,

NNV : Nizhnik-Novikov-Veselov,

NV : Novikov-Veselov,

sKdV : seventth-order Korteweg-De Vries,

SSE : Sasa-Satsuma equation,

UK : United Kingdom,

UNESCO : United Nations Educational, Scientific and Cultural Organization,

ZK : Zakharov-Kuznetsov,

L. Fernand Mouassom xiv Ph.D. in Physics



Abstract
This thesis is devoted to the theoretical study of the effects of viscosity, surface tension

and wind on hydrodynamic waves for shallow water. Various theories have been formulated

for the study of weakly damped free-surface flows. These theories have essentially focused

on forces relatively perpendicular to the fluid volume such as gravity forces, while neglecting

forces relatively parallel to the fluid volume such as pressure forces due to wind and shear forces

due to viscosity. In this work, some corrections due to viscosity are applied to the kinematics

boundary condition at the surface and the dynamics condition modeled by Bernoulli’s equation.

By using a linear approximation applied to the Navier-Stokes equation, we obtain a system of

equations for the potential flow that includes the dissipative effect due to visosity for right-

and left-moving waves. The pertubation theory applied to the Boussinesq system leads to some

new higher-order generalized Korteweg De Vries (KdV) equations with nonlinear, dissipative

and wind forcing terms. The wind effects are integrated into the model equations through

the expression of atmospheric pressure proposed by the Miles model in which only the terms

participating in the energy transfer (terms in phase quadrature with the surface elevation) are

considered. In the absence of wind effects, these model equations describe the propagation of

solitons in the viscous medium. We find the soliton solutions of each corresponding equation

and then investigate on the effects of surface tension, viscosity and wind on the waves dynamics.

The results show that such effects can strongly impact the group and phase velocities and the

soliton dynamics. We can conclude that, these new equations obtained in this thesis, can be

considered as improved versions of the KdV equation and can better describe the shallow water

soliton dynamics. In addition, these equations can lead to several applications in various fields

of nonlinear science.

Key words: Shallow water; KdV equation; Soliton; Viscosity; Surface tension;

Wind effect.
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Résumé
Cette thèse est consacrée à l’étude théorique des effets de la viscosité, de la tension de

surface et du vent sur les ondes hydrodynamiques en eaux peu profondes. Diverses théories

ont été formulées pour l’étude de l’écoulement des fluides faiblement amortis dans un canal à

surface libre. Ces théories se sont essentiellement concentrées sur les forces relativement per-

pendiculaires à un volume de fluide telles que les forces de gravité, tout en négligeant les forces

relativement parallèles à un volume de fluide telles que les forces de pression dues au vent et les

forces de cisaillement dues à la viscosité. Dans ce travail, des corrections dues à la viscosité sont

appliquées à la condition limite cinématique à la surface et aussi à la condition dynamique mod-

élisée par l’équation de Bernoulli. En utilisant une approximation linéaire appliquée à l’équation

de Navier-Stokes, nous obtenons un système d’équations pour un écoulement potentiel incluant

l’effet dissipatif dû à la viscosité pour les vagues se déplaçant à droite et à gauche. La théorie de

perturbation appliquée au system de Boussinesq conduit à de nouvelles équations de type Ko-

rteweg De Vries (KdV) généralisées d’ordre supérieur avec des termes non linéaires, dissipatifs

et de forçage du vent. Les effets du vent sont intégrés dans nos équations à travers l’expression

de la pression atmosphérique proposée par le modèle de Miles dans lequel seuls les termes par-

ticipant au transfert d’énergie (termes en quadrature de phase avec l’élévation de la surface)

sont considérés. En l’abscence des effets du vent, ces modèles décrivent la propagation des soli-

tons dans un milieu visqueux. Nous étudions les solutions de type solitons de chaque équation

et investiguons les effets de la tension de surface, de la viscosité et du vent sur la dynamique

des vagues. Les résultats montrent que de tels effets peuvent avoir un impact important sur les

vitesses de phase et de groupe et sur la dynamique des solitons. Nous pouvons conclure que,

ces nouvelles équations obtenues dans cette thèse, peuvent être considérées comme des versions

améliorées de l’équation de KdV et peuvent permettre de mieux décrire la dynamique des soli-

tons en eau peu profonde. De plus ces équations peuvent conduire à plusieurs applications dans

le domaines des sciences non linéaires.

Mots clés: Eau peu profonde; Equation de KdV; Soliton; Viscosité; Tension

superficielle; Effet du vent.
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General Introduction

Shallow water is defined as water whose the depth is such that propagating surface waves

are significantly affected by the bottom topography. In general, the depth of the water is less

than half the wavelength of the waves propagating in these medium. This type of configuration

is generally found in coastal or littoral areas. Today, according to UNESCO, about half of the

world’s population lives in coastal areas and this amount is expected to increase to 75% or

6.3 billion people in 2025 [1]. Human interactions with shallow waters are increasing due to

maritime trade, mass tourism and energy industries: oil, gas and renewable energy. In addition,

climate change and the intensification of human activities, services, and population in the

world’s coastal areas are leading to a gradual rise in sea level and a change in the physico-

chemical properties of waters in shallow areas. Infrastructure and human lives are regularly

endangered by hydrodynamic waves associated with extreme weather events such as cyclones

or storms. These extreme events mainly result in the formation of exceptional waves with a

strong rise in water level on the coast and inundation of the land. The human and material

damage caused by these types of waves can be considerable as the tsunami of December 26,

2004 in the Indian Ocean, which is undoubtedly the most deadly in history with more than

285,000 deaths. In shallow water, the wave motion is usually reflected in a visible deformation

on the water surface. These deformations give rise to exceptional waves of different natures

including tides, tsunamis, swells and many others. Thus, the understanding and modeling of

the propagation of hydrodynamic waves for shallow water, related to these extreme events is a

subject of great interest for the scientific community.

Among these exceptional hydrodynamic waves, the most interesting is the solitary wave

because it has several intriguing properties. Indeed, a solitary wave is a wave localized in space

with a very particular shape (regular and symmetrical), able to propagate with a constant

velocity over a long distance without changing its shape or amplitude [2]. Moreover, contrary

to all expectations, these waves emerge from a collision with each other keeping exactly their

initial shape and velocity [3]. The first observation of a wave with characteristics similar to

those of solitary waves was made in 1834 by John Scott Russell. He reproduced these waves
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General Introduction

experimentally and presented the results to the scientific community, which has been doubtful.

Indeed, it was hard to believe that a wave could exist with such properties, at that time there

were two types of models to explain the propagation of waves on the water surface. The first

model is linear dispersif and predicts that a wave with an initial profile localized in space will

tend to sag and generate ripples in its wake. The second model is nonlinear nondispersif and

predicts that an initial profile localized in space will tend to straighten out to create a shock

wave. However, these two type of models do not reproduce the results obtained by John Scott

Russell experiments. Several years later, Korteweg and de Vrie following the work of Boussinesq

and Rayleigh on solitary waves, have established the first descriptive equation called Korteweg-

de Vries (KdV) equation [4]. This equation has both nonlinear and dispersive terms. It should

be note that, it is the subtle balance between the nonlinear effect and the dispersif effect that

is at the origin of the solitary waves corresponding to John Scott Russell’s observation.

In the same line, several equations have been derived including, the Boussinesq equation [5],

the Kadomtsev-Petviashvili equation [6], the nonlinear Schrödinger equation [7], just name a

few. All these integrable equations provide remarkable solitary wave solutions which, have found

many applications in several fields of nonlinear sciences. For example, in optical fibers, solitons

can be used to transfer large amounts of information over long distances while minimizing errors

in the signal [8]. In biophysics, the storage of light and information in DNA is done by means of

waves, so a soliton will allow the long term storage of information patterns [9]. In the context

of shallow water, the KdV equation which describes the motion of small but finite amplitude

waves that propagate in the positive x-direction [10], has been the subject of intensive work.

Indeed, the KdV equation is obtained by applying the pertubation theory to the Boussinesq

system. Since the beginning of the 1990’s, many formulations have been developed to jointly

improve the nonlinear and dispersive properties. In that sense, several authors have improved

the KdV equation by introducing high-order terms, leading generally to near partially integrable

or integrable high-order equations with quasi-soliton solutions with new effects [11]. Fokou et

al. [12], with the help of the Boussinesq perturbation theory, have derived a higher-order KdV

equation. This equation contains many nonlinear and nonlocal terms that describe well the

long, small-amplitude, unidirectional wave motion in shallow water with surface tension. The

modification of the KdV equation by taking into account the viscosity has been also investigated

by Dias et al.[13], Depassier and Letelier [14] and Sajjadi and Smith [15], just to cite a few. As

result, these authors concluded that taking into account the effects of viscosity in the modeling

of the KdV equation can better describes the wave dynamics. In the same line, several works
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General Introduction

have been devoted to study the impact of the wind on the dynamics of nonlinear waves. The

Jeffreys model [16] assumes that, waves move in the opposite direction to the wind and thus

constitute a barrier to the wind flow. In this model, the windward side of the wave receives the

wind frontally, while the leeward side is sheltered. This creates a pressure difference and thus

a force exerted on the wave [17]. The model developed by Phillips [18], assumes that the fluid

flow is potential and the air flow is turbulent. The turbulence of the air creates random pressure

variations which create waves. The Miles model [19] is based on an analysis of the stability of

parallel flows in both air and water. It consider air to be incompressible and non-viscous, with

a logarithmic velocity profile [17].

During the 20th century, starting from one or the other of the overcited models, several

authors have studied the impact of wind on the dynamics of extreme waves. For example,

by using a pressure distribution over the steep crests given by the Jeffreys model, Kharif et

al. [20] have investigated experimentally and numerically the influence of wind on extreme

wave events in deep water. Touboul et al. [21] have used the Jeffreys model and investigated

experimentally without wind and in presence of wind the rogue wave formation due to the

dispersive focusing mechanism. The authors conclude that, the duration of the rogue wave

event increases with the wind velocity. In the same line, amplification of nonlinear surface

waves by wind have been investigated by Leblanc using the Miles’ model [22]. Despite all

these interesting works, the question of the interaction between wind and waves remains an

open subject. Indeed, all these works listed above have been carried out in order to study the

effects of wind on the dynamics of extreme waves such as rogue waves. Most of these works

deal only with the generalized nonlinear Schrödinger equations. Motivated by the obtained

results, we go beyond by extending the study to the generalized KdV equation in the context

of shallow water. We simultaneously combine the dissipation due to viscosity, surface tension

and wind effects and show that, in the context of wave motion in shallow water, an expansion

of the Boussinesq system can be decomposed into a set of coupled equation. We show that,

for any order of expansion, one of these equations depends only on the surface elevation for

the right-moving, while the other depends simultaneous on the surface elevation for the right-

and left-moving wave. These equation have been shown to better describes the propagation of

solitary waves in shallow water. The wave equation corresponding to the pure right-moving has

the form of a generalized KdV equation that includes higher diffusion and instability effects.

We solve this equation using Hirota’s bilinear method and the results show that, such effects

have considerable impacts on shallow water wave dynamics. The combination of such effects
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has never been studied in the literature to the best of our knowledge.

The rest of this dissertation is presented in three chapters organized as follows.

In chapter I, we present a literature review on hydrodynamic waves. We present some

categories of waves that can be encountered in shallow water. We recall their history, main

characteristics, conditions of existence and mechanisms of generation. We also present some

physico-chemical and atmospheric parameters that can have an impact on the wave dynamics.

In Chapter II, we present the basic equations related to the physical and mathematical

modeling of the equations describing the dynamics of waves propagating in shallow water.

Thereafter, we present the methodologies applied to derive the new generalized higher-order

KdV equations, taking into account the effects of viscosity, surface tension and wind.

In Chapter III, we present the main results of this thesis. We clearly present the effects of

viscosity, surface tension, and wind on phase and group velocities and on the solitons dynamics

in general. We show that, the physical parameters as mentioned above have a considerable

impact on solitons dynamics. We also demonstrate in this charter that, taking into account

such parameters leads to some improved versions of the KdV equation and then can better

describe the waves dynamics in shallow water.

The present thesis ends with a general conclusion. We summarize our results and give some

future directions that could be investigared.
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Chapter I

Literature review on hydrodynamic

waves

Introduction

The wave motion is usually reflected in a visible deformation on the water surface. These

deformations give rise to waves of different natures including tides, tsunamis, solitons and rogue

waves. This chapter presents the literature review on these hydrodynamic waves. In fact, we

present some categories of waves that can be encountered in shallow water. Theirs history,

main characteristics, conditions of existence and mechanisms of generation are recall. We also

presents some physico-chemical and atmospheric parameters that can have an impact on the

wave dynamics.

1.1 Hydrodynamic waves

Since man has been sailing, he has always been impressed by the presence and even the

nature of the waves encounters on the sea and ocean surface. Over the years, numerous testi-

monies of sailors referring to walls of water rising without reason in the middle of the sea, and

hitting the ships with extraordinary violence has been collected by the scientific community.

The increase of these testimonies gave more and more necessity to the study of the dynamics

of surface water waves. This is how hydrodynamics field became more and more interesting to

researchers. Hydrodynamics is the branch of science or physics that deals with the study of

fluid motion in relation to the forces that cause it. The study of hydrodynamic waves at the

water surface is very interesting because, it corresponds to many phenomena directly accessible

to observation. It include many different classes of waves depending on the boundary condi-

tions, ranging from nondispersive and linear waves to dispersive and nonlinear waves. There

are several types of hydrodynamic waves, the best known are the tsunamis. Indeed, since the

giant tsunami that occurred in the Indian Ocean on December 26, 2004, this phenomenon is

the object of particular interest. But the socalled rogue waves, solitary waves as well as tidal

waves are also hydrodynamic waves, certainly less publicized, but just as deadly.
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Literature review on hydrodynamic waves

1.1.1 Solitary waves

Solitary wave is a wave localized in space with a very particular shape (regular and sym-

metrical), able to propagate with a constant velocity over a long distance without changing

its shape or amplitude [2]. Moreover, contrary to all expectations, these waves emerge from a

collision with each other keeping exactly their initial shape and velocity [3].

1.1.1.1 History of Solitary waves

Since the 19th century, the scientific community has been greatly interested in the study

of natural phenomena not only from mathematics and physics point of view, but also from

the perspective of engineering and scientific sciences. One of these important and spectacular

phenomena provided by nature first called the “great Wave of Translation” or solitary wave,

was uncovered by the mathematician and naval engineering John Scott Russell. Indeed in the

1830s, the engineer John Scott Russell observed a strange wave on the Union Canal in Scotland

that didn’t disperse in the normal fashion but instead held its form as it traveled down the

canal. He tried to reproduce this type of wave experimentally and as illustrated in Figure 1.1

(takes in [2]) this partially successful attempt on the Union Canal presents a John Scott Russell

wave called solitary waves.

Figure 1.1: Soliton in water original 1834 phenomenon reproduced on the Scott Russell Aqueduct over

the Union Canal near Heriot-Watt University (UK), 12 July 1995.

His laboratory results show a wave localized in space with a very particular, regular and

symmetrical shape that moves at a constant velocity over a very long distance without changing

its shape. These results have been presented to the scientific community which, at first, was

doubtful to say the least. It was hard to believe that a wave could exist with such properties,
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because at that time there were two types of models to explain the propagation of waves on

the water surface. The first model is linear dispersif in the sense that, a component of the

flow frequency moves with a velocity that depends solely on the frequency of this component.

Indeed, this type of model predicts that a wave with an initial profile localized in space will

tend to sag and generate ripples in its wake as shown in Figure 1.2 (takes in [2]).

Figure 1.2: Evolution of a wave whose dynamics is governed by a linear and dispersive model.

The second model is nonlinear nondispersif in the sense that, a spatial component of the flow

moves with a velocity which depends only on the amplitude. Here, an initial profile localized in

space will tend to straighten out to create a shock wave as shown in Figure 1.3 (takes in [2]).

Figure 1.3: Evolution of a wave whose dynamics is governed by a nonlinear and nondispersive model

(Burgers equation).

It is therefore several years later that Korteweg and De Vries [4], following the work of

Rayleigh [23] and Boussinesq [5] (who showed that if dissipation is neglected, the increase in

local wave velocity associated with finite amplitude is balanced by the decrease associated with

dispersion, leading to a wave of permanent form) on the solitary waves, will establish the first

descriptive equation called KdV equation, having both a nonlinear and dispersive terms. It is

worth nothing that, it is the subtle equilibrium between the nonlinear effect and the dispersif

effect that is at the origin of the waves corresponding to John Scott Russell’s observation

(solitary waves). This balance is generally very stable, which explains the various applications
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of the solitons theory, even if the real physical situations are only approximately described by

the equations having soliton as solutions and in particular by the KdV equation [24].

For almost 70 years after the work of Korteweg and de Vries, the theory of solitary wave has

been considered a relatively unimportant research subject in the field of nonlinear wave theory.

Indeed, from a mathematical point of view, it was generally thought that the collision of two

solitary waves would leads to a strong nonlinear interaction and eventually destroy them. The

fact that this is not true has left many surprises for future workers in this field. Indeed, the

works of Zabusky and Kruskal [3] and Gardner et al. [25] proved that it is possible to create

explicit solutions of the KdV equation which behave as a superposition of two solitary waves

with variable amplitudes and thus with variable velocities generating solitary wave collisions.

They have shown therefore contrary to what was thought from the mathematical point of view

that, during the collision of two solitary waves, these two waves immerse from the collision

keeping exactly the same shape as shown in Figure 1.4 (takes in Soomere [26]). Thus, we only

retain from the collision between two solitary waves a certain change of phase which is explained

by the fact that their position in space is not rectilinear.

Figure 1.4: Illustration of the interaction between two solitons of different amplitudes

.It is fair to say that the study of nonlinear waves, during the first half of the 20th century, was

not considered as an important research field by many physicists or mathematicians. Because

during this period, the attention of the researchers was held by fields such as quantum mechanics

and nuclear physics. Practical applications of water waves were enhanced by activities during

second World War [10]. The resurgence of activity followed with the invention of the electronic

computer and the use of linear Fourier analysis to spectrally analyze the wave trains first

measured. However, the study of the solitary wave has remained an important and unfinished

field of research, with interesting applications in many areas of the nonlinear sciences.
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1.1.1.2 Modelling of solitary waves in shallow water: The KdV equations

Euler’s equation for an incompressible and non viscous fluid, bottom and surface boundary

conditions, and the assumption of irrotational flow lead to the classical KdV equation given as

1

c0

∂η

∂t
+
∂η

∂x
+

3η

2h

∂η

∂x
+
h2

6

∂3η

∂x3
= 0, (1.1)

where c0 =
√
gh is the velocity of propagation of linear waves in the limit large wavelengths, h

the depth and η the height of the liquid surface above its level of equilibrium. We notice that

the soliton resulting from the model of the KdV equation given by equation (1.1) is supersonic

because its propagation velocity is greater than the velocity c0 [2]. Thus, by performing the

transformation X = x − c0t and T = t, which will allow us to move to a moving frame of

reference at velocity c0, it is possible to eliminate the second term of the equation thus, we have

1

c0

∂η

∂T
+

3η

2h

∂η

∂X
+
h2

6

∂3η

∂X3
= 0. (1.2)

Since the study deals with small amplitude and long length waves, it is preferable to scale

the variables to avoid any ambiguity corresponding to a different physical situation. Thus, by

scaling the variables so that u = η/h, x = X/X0 and t = T/T0 (where X0 is the length and T0

the time), we can obtain the KdV equation in its standard form as follows

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0. (1.3)

The KdV equation (1.3) describes the motion of small but-finite amplitude shallow water waves

that propagate in the positive x-direction [10]. In recent years, various and powerful direct

methods such as Darboux transformation Bäcklund transformation, Inverse Scattering Trans-

formation, Hirota bilinear method, Symmetry method, just to cite a few, have been developed

to investigate the analytical solutions of KdV equation. In addition, some other constructive

approaches, which use the solutions of simple nonlinear differential equation namely ansätz to

express the corresponding solutions of complicated nonlinear wave equations have been also

constructed to investigate the analytical solutions of KdV equation. As example, there are

Similarity transformation, Riccati equation expansion method, Tanh method, Extended tanh

function method, Modified extended tanh function method, Generalized hyperbolic function

method, Tanh-coth method, Jacobi elliptic function expansion method, just to cite a few. All

these methods inform that, the KdV equation has among others, the following spatially localized
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solutions

u(x, t) = A sech2


√√√√A

2
(x− 2At)

 (A > 0), (1.4)

where A is a positive coefficient and the function sech(x) = 1/ cosh(x). A graphical represen-

tation of these solutions as shown in Figure 1.5 (takes in [10]) confirms that, these solutions

are in quantitative agreement with the observations of Jonh Scott Russell.

Figure 1.5: Graphical illustration of the soliton solution for the KdV equation

One of the particularities of this solution is the decrease of the width of the soliton with the

amplitude as shown in figure 1.6 (takes in [10]). If we go back to variable dimensions and in a

fixed reference frame, the corresponding solution is given by

η(x, t) = η0 sech2

 1

2h

√√√√3η0

h

x− c0

1 +
η0

2h

 t

 . (1.5)

It is clearly shown that, the velocity of the soliton is greater than the velocity c0, then confirm

the assumption stating that the KdV soliton is supersonic [10].

Figure 1.6: Comparison between two solutions of the KdV equation with different amplitude.
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1.1.1.3 Some apllications of solitary waves

The KdV equation established by Diederik Johannes Korteweg and Gustav de Vries appears

in many fields of physics, whenever waves can propagate in a weakly nonlinear and weakly

dispersive medium. Let us now consider some of the most typical solitary waves applications.

In the atmosphere, based on the similarity between the behavior of a shallow fluid with

a free surface and that of a shallow layer of cold air on which rests a deep layer of potentially

warmer air, Abdullah [27] was led to propose a hypothesis that solitary waves could exist in

the atmosphere. Because of their relatively very fast movements and their small dimensions,

it was difficult to detect these disturbances [27]. The first clear indication of the existence of

atmospheric solitary waves has been point out by Fawbush and Miller [28], who observed that

small migratory anticyclones, which they called “bubbles”, are sometimes observed in connection

with tornado formation. These authors have hypothesized that those “bubbles” are of the same

nature as the atmospheric solitary waves. Several studies [27, 29, 30] have been carried out

in order to propose the mechanism of formation of these atmospheric solitary waves. Thus,

these studies show that a stagnant inversion layer can be in contact with a stationary front.

The stationary front can move through this air by means of an impulse it receives from the

air behind it, and can stop after moving a short distance. A single rise can then be created

in the cold air that can move as a solitary wave. Abdullah [27] go further and shows that if,

during the formation of atmospheric solitary waves, the appropriate vertical accelerations are

produced, it can move a considerable distance without much change in shape. If the associated

vertical accelerations are negligible, the wave will eventually break up and behave as a small

pressure jump. We can therefore speak of two different types of atmospheric solitary waves: the

breaking wave and the permanent wave. Because a atmospheric solitary wave is an elevated

mass of cold air progressing on a layer of inversion, it is expected that it lifts the less dense air

which lies above that layer as it passes through it. Its effect may be, therefore, simulated to

that of a mountain which forces the wind to rise on its forward slope. Condensation may result

because of this lift if the lifted air contains enough humidity so that it may reach its lifting

condensation level while it is being raised. If the upper air is stable, the effect of a passing

solitary wave would be limited to the formation of a cloud which appears to move with the

same velocity as that of the solitary wave [29]. If the wave is of the breaking type the turbulence

caused during the process of breaking would result in convective type cumulus clouds, but if it

is of the permanent type the clouds tend to be of the stratus form and no turbulence may be

expected as long as the air remains stable [29].
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In optical fiber communication using linear pulses, dispersion and losses in the fiber limit

the information capacity which can be transported and the distance of transmission. Through

the work of Hasegawa and Tappert [8], it is now known that solitons can be used to transfer

large amounts of information over long distances while minimizing errors in the signal.

In biophysics, the storage of light and information in DNA is done by means of waves, so

a soliton will allows the long term storage of information patterns [31]. The soliton model in

neuroscience is a recent developed model that attempts to expalain how signals are conducted

within neurons. This model proposes that the signals travel along the cell’s membrane in the

form of pulse solitons [32].

In solid state physics, solitons allow the interpretation of the properties of dielectric mate-

rials. Moreover, magnetic materials are interesting examples to verify experimentally and in a

very precise way the theory of solitons at the atomic scale [33]. The concept of soliton in poly-

mer physics is a very nice case of interdisciplinary approach. Their appearance was suggested

in 1988 by theoretical physicists [34].

1.1.2 Rogue waves

Nowadays, the study of rogue waves attracts a great deal of interest from scientific commu-

nity, especially in nonlinear sciences. Rogue waves are giant single waves that may suddenly

appear in oceans [35]. These are also known as monstrous waves, deadly waves or extreme

waves. Their appearance can be quite unexpected and their origin is mysterious. Contrary to

the dispersive behaviour adopted by traditional waves of low amplitude, rogue waves are self-

reinforcing packets of solitary waves. The rogue wave phenomenon is not just a spectacular

event accessible to routine observations and satellite images but also a combination of complex

physical processes that occur under the accuracy conditions [36].

1.1.2.1 History and discovery of rogue waves

Among the legends that have long circulated within the community of sailors to testify the

disappearance and sinking of ships in the ocean, we find that of the rogue waves. Numerous

testimonies of sailors have long alluded to walls of water rising for no reason in the middle of the

sea and hitting the ships with extraordinary violence. It is in 1978 following the disappearance

of the cargot "Munchen" that all these stories have had a meaning. Indeed, this cargot, at the

cutting edge of naval technology, sank completely one night when the weather forecast had not

recorded any storm. Among the traces of the sinking, the rescue crew found a lifeboat which
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had been torn off violently 20 meters above the waterline. A rogue wave was a good candidate

to explain this sinking.

In 1980, Philippe Lijour, captain of the tanker "Esso Languedoc" put an end to supposi-

tions and superstitions by producing a photograph of an extraordinary wave, special and much

higher than the others, which had struck the tanker by surprise and broke over the deck. This

photograph was the first proof of the existence of rogue waves. From there, the testimonies

and the accounts of the events of rogue waves multiplied, providing precious information to the

scientific community to better understand this phenomenon. In this way, several studies were

born among which, those of Mallory [37] and Lavrenov [38] which lists a series of events that

occurred in the Agulhas Current, along the South-East African coast. Kharif and Pelinovsky

[39], on the other hand, relates testimonies from many parts of the world and in various condi-

tions of wind, current and depth. Figure (1.7) (takes in Touboul [21]) presents on a planisphere

some of these events, which occurred during the period 1968-1994.

Figure 1.7: Location of several collisions related to rogue waves that occurred during the period 1968-

1994.

In addition, the rapid development of the tanker industry and the improvement of obser-

vation methods in the ocean environment over the last thirty years have made it possible to

obtain new and increasingly reliable data [21]. Large tankers and platforms have been equipped

with numerous probes, allowing to record in a quasi-permanent way the rise of the sea level.

The best known example is certainly the recording of the Draupner platform, on January 15,

1995 presented in figure (1.8) (takes in Touboul [21]), reporting a wave whose crest-height was
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about 26 meters while the surrounding sea state had a significant height of about 12 meters.

Figure 1.8: Time record of the "New Year wave", recorded on 01/01/95 by the Draupner platform, in

the North Sea.

The existence of rogue waves is now universally recognized. Numerous images are available,

for example Figure (1.9) (takes in Touboul [40]) shows some of them and some examples of

damage caused by these waves. However, the understanding of the phenomenon, as well as its

prediction, are not completely mastered.

Figure 1.9: Examples of rogue waves in accordance with maritime legends, top line and examples of

damage caused by rogue waves, bottom line.
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1.1.2.2 Rogue waves properties

As we have previously mentioned, the rogue waves which were still particularly unknown

a few years ago have for a few decades been the subject of numerous works in order to bet-

ter understand their dynamics and properties. We present here the context, and the current

knowledge about rogue waves. Among the approaches to represent sea surface deformations,

the simplest is to consider waves as a sum of sinusoïdes of different amplitudes and phases. In

the linear approximation, a random sea state obeys a stationary Gaussian random distribution

[40]. The probability density of the sea surface elevations is then

f(η) =
1

2πσ
exp

(
−

η2

2σ2

)
, (1.6)

where σ2 represents the variance of the random variable η, which itself denotes the sea surface

elevation. The variance is obtained from the frequency spectrum, S(ω),

σ2 =< η2 >=

∫ ∞
0

S(ω). (1.7)

Traditionally, the wind sea spectrum is assumed to be a narrow band spectrum. Therefore,

the wave heights follow a Rayleigh distribution

f(H) =
H

2σ2
exp

(
−
H2

8σ2

)
. (1.8)

The probability density f(H) is shown in Figure 1.10(a) (takes in Touboul [40]). Assuming

that the associated probability distribution function (i.e., the probability that a wave, for a

given sea state, exceeds a certain height H∗) as shown in Figure 1.10(b) (takes in Touboul

[40]), can be put into the form

P (H > H∗) =

∫ ∞
H∗

f(H)dH = 2 exp

(
−
H∗2

8σ2

)
, (1.9)

we can therefore introduce the notion of significant height of a sea state noted Hs which is a

height commonly used in physical oceanography and coastal engineering. The notion of signif-

icant height Hs was introduced by Sverdrup [41], who defined it as the average of the higher

one-third of wave heights in time series. Indeed, it is the average of the heights (measured

between crest and trough) of the top third of waves. To calculate it from a surface elevation

record, the waves are ranked in order of height, and the average of the heights of the top third

gives the Hs. This historical definition comes from the estimation of wave height by visual ob-

servation, the significant height being close to that estimated by an observer. Using a Rayleigh
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distribution, Massel [42] showed that the significant height can be expressed as follows

Hs = 3
√

2π erfc(
√

ln(3) + 2
√

2 ln(3))σ ' 4σ, (1.10)

where erfc(.) denotes the complementary Gaussian error function. Indeed, the height H∗ of the

third of the highest waves is given by P (H > H∗) = 1/3, which thus means that

H∗ = 2
√

2 ln(3) σ. (1.11)

Thus, the average height of the considered waves can be written in the following form

Hs =

∫ ∞
H∗

Hf(H)dH. (1.12)

Figure 1.10: (a): Rayleigh distribution, corresponding to the probability density of wave heights of

waves. (b): Probability distribution function associated with this distribution.

The significant height is about four times the standard deviation. This height corresponds

approximately to the average height of a wave field estimated by the human eye. By introducing

this quantity, equation (1.9) is rewritten as follows

P (H > H∗) = exp

(2H∗2

H2
s

)
, (1.13)

In general, a wave can be considered as a rogue wave whenever its height H is greater than

twice the significant height Hs of the sea [39, 40, 43].

H > 2Hs. (1.14)

Statistically, this corresponds to the formation of a rogue wave every 16000 waves. There

would be a rogue wave every 44 hours if we consider a characteristic wave period of 10 seconds.
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1.1.2.3 Generation of rogue wave mechanisms

Rogue waves are events that occur in the middle of the oceans, at the coast, in the presence

of strong currents, or not, or with or without the action of strong winds. Therefore, it seems

impossible to establish a direct correlation between a particular geophysical phenomenon and

these waves. For this reason, many physical mechanisms have been advanced to explain the

formation of rogue waves. We focus here on presenting these different mechanisms, described

by Kharif and Pelinovsky [39].

• Spatio-Temporal Focusing

In linear theory, a given wave field can be interpreted as a sum of monochromatic sinu-

soïdal wave groups. Therefore, the geometry of the wave field may well lead to a constructive

interaction of these different components. In the two-dimensional setting, focusing is due solely

to the dispersive character of the waves. Considering at a given initial moment short waves

moving with a low group velocity and located in front of long waves which move with a large

group velocity, a spatio-temporal focusing can then occur. Indeed, in the development phase,

the long waves, which are faster, will catch up with the short waves, which are slower, leading

to a constructive interaction of these waves, generating a wave of much higher amplitude. Af-

terward, the long waves will be in front of the short waves, and the amplitude of wave train

will decrease. It is obvious, that a significant focusing of the wave energy can occur only if

all the quasi-monochromatic groups merge at a fixed location. As is well known, real wind

waves are not uniform in space and time, they correspond to wave groups with varying ampli-

tude and frequency (wave number). It means that specific locations of transitional wave groups

should sometimes occur, leading to the rogue wave formation. This scenario can also explain

why the rogue wave phenomenon is a rare event with short “life time”. Baldock et al. [44] have

experimentally studied the behavior of highly nonlinear waves obtained by dispersive focusing.

Johannessen and Swan [45] have reproduced these experiments numerically, obtaining more

details on the deviation from the linear theory of highly cambered waves. In the context of

rogue waves, more specifically, Pelinovsky et al.[46] have studied this scenario in the context of

shallow water theory.

• Geometric Focusing

In the three-dimensional case, geometric focusing can also be observed. The geometric focus-

ing is obtained from wave trains propagated in a beam of different directions. This phenomenon
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also exists in the natural state. Thus Whitham [47], have studied the evolution of the wave front

as a function of bathymetry, and showed that the topography curved the rays of propagation of

the wave, leading to the formation of caustics. In a natural environment, over variable bottoms,

the interactions between wave fields become much more complex, and can lead to the formation

of numerous focal points, as illustrated by Kharif and Pelinovsky [39]. This phenomenon can

justify the formation of rogue waves.

• The modulational instability

There is another mechanism for the formation of rogue waves corresponding to the modu-

lation of wave groups. Among the remarkable phenomena related to the nonlinearity of surface

waves, we can cite the modulational instability (MI) highlighted by Benjamin and Feir [48].

This MI, known as the Benjamin-Feir instability, corresponds to the progressive modulation of

a Stokes wave train. More clearly, we speak of MI when a wave of high intensity propagates

in a dispersive and non-linear medium. It results in an amplitude modulation of the wave at a

frequency determined by the characteristics of the medium, and which amplifies exponentially

during the propagation. If the incident wave is weakly modulated by a signal with an adequate

frequency shift, then the instability can exponentially amplify this modulation: we speak in this

case of a process of induced MI. On the other hand, if the incident wave is continuous, then the

modulation increases from the noise: we speak in this case of a spontaneous MI process. A wave

train subjected to this instability presents a modulation-demodulation cycle, the Fermi-Pasta-

Ulam recurrence. Many authors, such as Dysthe and Trulsen [49], Osborne et al.[50] and Calini

and Schober [51], have suggested that at the maximum modulation of the Fermi-Pasta-Ulam

recurrence a rogue wave could form.

• Wave and current interactions

Historically, the first confirmed observations of rogue waves were made in the Agulhas

current, along the east coast of South Africa. Indeed, as testified by Mallory [37], this area

which is very frequented by commercial shipping, has been the scene of several accidents. In

1976, Smith [52] suggested that these giant or rogue waves are formed where wave groups are

blocked by the current. This suggestion was observed and confirmed in 2004 by experimental

studies of Wu and Yao [53]. Using a more global linear approach, Lavrenov [38] showed that

the transformation of waves by the current led to the focusing of rays, forming caustics that

could justify the appearance of rogue waves.
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• Soliton collision

The Kadomtsev-Petviashvili (KP) equation, which is the generalization of the KdV equation

to the (2+1)-dimensional case, allows to represent the collision of two solitons propagating in

different directions. This equation is written

∂

∂x

∂η
∂t

+ c0

(
1 +

3η

2h

)∂η
∂t

+ c0

h2

6

∂3η

∂x3

 = −
c0

2

∂2η

∂y2
, (1.15)

where h is the depth and c0 =
√
gh is the velocity of the wave in which g is the acceleration

due to the gravity. This equation, integrable in the same way as the nonlinear Schrödinger

and Korteweg-De Vries equations, has been solved by Ohkuma and Wadati [54] and in even

more detail by Pelinovsky [55]. As results, they obtained a (2+1)-dimensional solution with the

evolution of two solitons given by

η(x, y, t) = h3
∂2log[1 + exp(ζ1) + exp(ζ2) + d exp(ζ1 + ζ1)]

∂x2
,

ζi = kix− piy − Vit, i = 1, 2,

Vi = cg(k
2
i + p2

i ) i = 1, 2,

d =
(k1 + k2)2 − (p1 − p2)2)

(k1 − k2)2 − (p1 − p2)2)
.

(1.16)

In the particular case where k1 = k2 and p1 = −p2, an interaction of two solitons of equal

amplitudes and velocities can be observed. This problem is similar to the problem of a soliton

reflecting on a wall located at y = 0, i.e. parallel to the longitudinal component of the wave

vector. Thus, the amplitude at the point of contact is given by

a

a0

=
4

1 +
√

1− 3a0
4htan2(θ)

, (1.17)

where a0 is the amplitude of the incident wave, and where θ denotes the angle between the

wave vector and the x axis. We observe that for small values of the angles, of the order of

the nonlinearity parameter a0/h, the amplification factor becomes significant. This result was

proved by Porubov et al. [56], who proposed another solution of the KP equation, and observed a

similar behavior in a more general framework. Peterson et al. [57] and Soomere and Engelbrecht

[58] suggested that N-soliton solutions of the KP equation explained the formation of (2+1)-

dimensional shallow water rogue waves very well. Figure 1.11 (takes in Peterson et al. [57])

represents different examples of these waves for different values of the angle of incidence. It

is important to note that these waves of extreme amplitudes have an infinite lifetime, and
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propagate at constant velocity. However, these solitons only exist at finite depths, and such

waves can only form in shallow areas. This approach is only applicable to coastal areas.

Figure 1.11: Waves of strong amplitudes (rogue waves) related to the interaction of solitons in shallow

water

1.1.3 Tsunamis

The tsunami can be defined as a giant ocean wave that due to the sudden movement of

a large mass of water, spreads and causes a tidal wave, (the term tsunami meaning "harbor

wave" in Japanese). This phenomenon can be broken down into three phases, (i) generation, (ii)

propagation and (iii) amplification and flooding (runup in English) [43]. A tsunami is not usually

created by the wind as the swell, but by other natural mechanisms of great magnitude such as

earthquakes, submarine landslides or sub-aerial, volcanic eruptions or the fall of asteroids. There

are, however, meteorological tsunamis, long waves caused by an atmospheric disturbance that

pushes the water and forces it to accumulate on one side of the basin, like water in a bathtub.

But in general, tsunamis are usually generated by strong submarine earthquakes (magnitude

>7) and very shallow (depth < 50 km). The intensity of the tsunami will depend on both the

magnitude of the earthquake and the geometry of the sea floor.

In 2004, following a magnitude 9.3 earthquake off Indonesia’s coast, the Indian Ocean was
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the starting point of the deadliest tsunami in history (more than 285,000 deaths), spread in

the oceans from East to West flooded the African coasts. Since then, all the seas of the world

have seen their levels change. After this spectacular and catastrophic event, countries bordering

oceans and seas such as Cameroun, South Africa, Benin and Togo, just to cite a few, are led to

assess such a wave’s risks. In general, tsunami waves are often modeled as soliton waves [43].

1.1.4 Tidal waves and Storm tides

A tidal wave is a regularly reoccurring shallow water wave caused by effects of the gravita-

tional interactions between the Sun, Moon, and Earth on the ocean. The term "tidal wave" is

often used to refer to tsunamis; however, this reference is incorrect as tsunamis have nothing

to do with tides. Indeed, the tidal wave is the variation of the sea level due to the gravitational

action of the Moon and the Sun. The gravitational attraction between the Moon and the Earth

acts in the opposite direction of the centrifugal force, due to the rotation of the Earth. On the

surface of the planet, these two forces do not compensate each other and their difference is at

the origin of the tides: when in a point, the centrifugal force is less intense than the gravita-

tional force, this point will tend to move towards the Moon; conversely, when in a point, the

centrifugal force is greater than the force exerted by the Moon, this point will tend to move

away. This is why there is a tide on Earth twice a day.

A storm surge or storm tide is a sudden inundation caused by wind and low pressure; it is

often associated with hurricanes, cyclones or typhoons. Storm surge is the most deadly aspect

of a hurricane, responsible for 90% of the deaths that result from it. The strong winds that

accompany a hurricane blow across the surface of the sea around the cyclonic core creating a

very strong current by friction, normally compensated at depth by a counter-current, beyond

50 to 60 meters depth. When the cyclone reaches the continental shelf or very close to land, this

counter-current no longer exists, only the surface current remains strongly established. There

is therefore a natural mechanical push of the surface water and its accumulation towards the

shores is all the more important as the continental shelf is marked. These winds push the water

rapidly, causing the formation of a huge wave. At the same time, the depression caused by the

cyclone causes the water level to rise in the lower pressure areas and the wells in the higher

pressure areas. This is the intumescence or inverted barometer effect. This accentuates the giant

wave generated by the wind. The "surcharge" is maximum in the part where all the effects are

combined. This "peak" can last a few tens of minutes, two hours maximum. In areas where there

is a large continental shelf, i.e. where the sea remains shallow for kilometers offshore, intense
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cyclones can cause a storm surge of 5, 6 or even 7 metres. And the victims are then counted

in thousands. This was the case in China in 1881 and in Bangladesh in 1970, when typhoons

killed more than 300,000 people each time, surprised by the sudden rise in water levels. The

largest reported storm surge occurred in 1899 with Cyclone Mahina, which hit Bathurst Bay,

Australia, with a tide of 13 meters. The largest in the United States was over 10 meters with

Hurricane Katrina in 2005 in St. Louis Bay.

1.2 Nonlinear evolution equations describing the dynamics of hydro-

dynamic waves

There are several differential and nonlinear equations that model the nonlinear propagation

dynamics of waves in physical systems, which vary according to the properties of the medium i.e.

dispersion and nonlinearity. In this section, we present some equations that admit soliton and or

rogue waves as solutions. The Korteweg and de Vries equation, the nonlinear Schrödinger equa-

tion, the Sasa-Satsuma equation, the Camassa-Holm equation and the sine-Gordon equation,

just to cite a few.

1.2.1 The Korteweg-De Vries (KdV) equation

Following the experimental observations of Scott Russell in 1834, many works such as the

theoretical work of Lord Rayleigh and Joseph Boussinesq in 1871 have seen the light of day with

the aim of physically modeling these observations. Finally in 1895, two Dutch scientists Diedrik

Korteweg and Gustav de Vries derived analytically a nonlinear partial differential equation that

describes the propagation of waves on the surface of a shallow water channel. Subsequently, the

equation was named after its discoverers by the Korteweg-de Vries (KdV) equation [4]. This

classical nonlinear dispersive equation was formulated by Korteweg and de Vries in the simplest

form:

ut + cux + βuux + γuxxx, (1.18)

where c is the wave velocity, γ is the dispersion coefficient and the parameter β represents the

nonlinear coefficient which can take any real number. The subscripts of the form “nx′′ denote

derivatives of the order n with respect to x and t, where x an t are the space and time variables.

Especially, in the limit case where β = ±1 and γ = ±6, we obtain the commonly used form

of this equation. The term ut characterizes the time evolution of the wave propagating in one

direction, the nonlinear term uux describes the resdess of the wave and the linear term uxxx

L. Fernand Mouassom 22 Ph.D. in Physics



Literature review on hydrodynamic waves

represents the spread or dispersion of the wave. This equation is a simple nonlinear equation

involving two effects: the nonlinearity represented by uux, and the linear dispersion represented

by uxxx. The nonlinearity tends to localize the wave while the dispersion extends the wave. The

subtle balance between the weak nonlinearity and the dispersion defines the soliton formulation.

The stability of solitons is a result of the perfect balance between the effect of nonlinearity and

the effect of dispersion.

The KdV equation has played an important role in soliton theory, however, the term "Soli-

ton" was only introduced in 1965 by Zabusky and Kruskal [3] who demonstrated that the KdV

equation reveals linear properties allowing a solution in the form of a solitary wave propagating

without profile change. The KdV equation models a variety of nonlinear phenomena, including

ion acoustic waves in plasmas, atmospheric waves and shallow water waves, just to cite a few.

This completely integrable has a solitary wave solution illustrated by the figure 1.12 (takes in

[3]) below and given by the following equation [59].

u(x, t) =
3c

β
sech2

[√c/γ

2
(x− x0 − ct)

]
, (1.19)

where x0 is an arbitrary integration constant.

Figure 1.12: Evolution of the Soliton solution of equation (1.19) with : γ = 0.5, β = 0.3 and c = 2.

1.2.2 The nonlinear Schrödinger (NLS) equation

The NLS equation governs the spatial and temporal evolution of the envelope of a weakly

nonlinear and weakly dispersive wave train. It was established in infinite depth by Zakharov

[7], then in finite depth by Hasimoto and Ono [60]. Davey and Stewartson [61] extended this

work in a three-dimensional model in 1973. They obtain a system of two coupled equations,
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which reduces to the single NLS equation when one dimension is removed. The commonly used

form of this equation is the following

i

(∂Ψ

∂t
+ vgr

∂Ψ

∂x

)
+ ϑ

∂2Ψ

∂x2
+ Λ|Ψ|2Ψ = 0, (1.20)

where vgr = ω0/2k0, ϑ − ω0/8k
2
0 and Λ = ωk2

0/2. The associated linear, deep-water dispersion

relation is given by ω2
0 = gk0. The function Ψ ≡ Ψ(x, t) is the complex envelope function of a

narrow-banded wave train whose amplitude is given by

η(x, t) =
1

2

[
Ψ(x, t)ei(k0x−ω0t) + c.c.

]
. (1.21)

By placing in a frame of reference that moves with the group velocity, and making the following

variable changes: T = −
ω0

8k2
0

t, X = x − vgr t and Q =
√

2 k2
0Ψ, the NLS equation can be put

into the following form:

iQT +QXX + 2|Q|2Q = 0. (1.22)

The equation (1.22) thus obtained is an integrable equation, this type of equation can be

solved by using the inverse scattering method [62]. Kuznetsov [62] and Ma [63] found a family

of solutions of the type pulsed soliton, periodic in time and tending to a plane wave when

X → ±∞ as shown in figure 1.13

QM(X,T ) =
cos (ΩT − 2iϕ)− cosh (ϕ) cosh (pX)

cos (ΩT )− cosh (ϕ) cosh (pX)
exp (2iT ), (1.23)

where Ω = 2 sinh (2ϕ) and p = 2 sinh (ϕ) and ϕ ∈ R.

Figure 1.13: Evolution of the Ma-Kuznetsov breather QM (X,T ) given by equation (1.23).
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Akhmediev and Korneev [64] have found another family of solutions, periodic in space, and

which tends to a plane wave when T → ±∞ as shown in figure 1.14

QA(X,T ) =
cosh (ΩT − 2iϕ)− cos (ϕ) cos (pX)

cosh (ΩT )− cos (ϕ) cos (pX)
exp (2iT ), (1.24)

where Ω = 2 sin (2ϕ) and p = 2 sin (ϕ) and ϕ ∈ R.

Figure 1.14: Evolution of the Akhmediev breather QA(X,T ) given by equation (1.24).

The pulsed soliton of Peregrine [65] corresponds to the limiting case of Ma and Akhmediev

when ϕ→ 0, i.e., when the time and space periods tend to infinity as shown in figure 1.15

QP (X,T ) = lim
ϕ→0

QM(X,T ) = lim
ϕ→0

QA(X,T ) =

(
1−

4(1 + 4iT )

1 + 4X2 + 16T 2

)
e2iT . (1.25)

Figure 1.15: Evolution of the Peregrine breather QP (X,T ) given by equation (1.25).
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1.2.3 The Sasa-Satsuma equation (SSE)

The SSE was established by Sasa and Satsuma in 1991 [66]. As one of the multiple extended

form of the nonlinear Schrödinger equation, this equation contains additional terms explaining

the third-order dispersion, the self-steepening and the self-frequency shift as often found in

many fields of physics. It contains the most essential contributions often found in important

physical applications, such as dynamics of deep and shallow water waves, pulse propagation in

optical fibers. According to the original work of Sasa and Satsuma [66], the equation can be

written in the form

iut +
1

2
uxx + |u|2u+ iε

[
uxxx + 3(|u|2)xu+ 6|u|2ux

]
= 0, (1.26)

where u ≡ u(x, t) is a complex function, x and t are two independent variables. The indications

in indices represent partial derivatives. The parameter ε is a real positive multiplying the higher

terms. The term 6|u|2ux represents the self-steepening, the term related to the self-frequency

shift, the term 3(|u|2)xu and the 3-rd order dispersion term is given by the term uxxx. When

ε = 0, equation equation (1.26) is reduced to the classical NLS equation. Many works have been

devoted to the construction of analytical solutions of the SSE, and the results revealed that

this equation has very rich dynamical behavior and can describe the propagation of nonlinear

waves in many fields of physics espacially in shallow water wave.

Among the above equations, one of the most important is the KdV equation because, the

study of their solitary wave solutions provide a significant help to explain the physical mech-

anism of some complex phenomena occurring in many areas of physics. Especially in the area

of shallow water waves, the KdV equation, which describes the motion of small but finite am-

plitude waves that propagate in the positive x-direction [10], has been the subject of intensive

works [10, 67, 68, 69], and experiments [12].

1.3 Some parameters that influence the surface waves dynamics

Many of the laws known up to now do not always succeed in finding or accurately representing

the natural experiences or phenomena that occur in everyday life. It is therefore by taking into

account the properties of the interfaces, in particular the effects of surface tension, viscosity

and wind, that we come as close as possible to reality.

L. Fernand Mouassom 26 Ph.D. in Physics



Literature review on hydrodynamic waves

1.3.1 Surface tension

The assertion that a liquid always takes the shape of the container in which it is contained

is not entirely correcte. In fact, a small amount of liquid can take the form of a drop: a drop of

oil in water or a soap bubble forms a perfect sphere, smooth and very little deformable. These

examples show that the surface of a liquid is like a taut membrane, characterized by a surface

tension that opposes its deformations. The surface tension is a physico-chemical phenomenon

linked to the molecular interactions of a fluid. It results from the increase of energy at the

interface between two fluids. The system tends towards an equilibrium which corresponds to

the configuration of lower energy, it thus modifies its geometry to decrease the area of this

interface. The force ~R shown in figure 1.16 that maintains the system in this configuration is

proportional to the surface tension.

Figure 1.16: Forces exerted on a molecule within and at the surface of a liquid.

This force always tends to reduce the area of the interface, it is for example the basis of the

quasi-spherical shape of fine liquid droplets suspended in a gas. The surface tension generally

noted σ is expressed in units of force per unit length (N/m) and its value is relative to the

interface between two given fluids. Thus, the increasing of the pressure ∆p when crossing a

separation surface between two fluids whose radii of curvature are R and R′ is

∆P = Pint − Pext = σ

 1

R
+

1

R′

 . (1.27)

The surface tension have generally been ignored in the description of water waves around

large floating bodies, as its effect is considered significant only for rather short waves such as

ripples. However, gravity wave theory can produce very short waves that cannot be ignored

and pose substantial difficulties for their modeling. Since these singular and strongly oscillatory
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properties are clearly non-physical, surface tension is expected to play an important role in the

modeling of surface waves. Thus, Wehausen and Laitone [70] have been the first to introduce

an attempt to study the effects of surface tension in the surface wave dynamics. Crapper [71]

have studied the effect of surface tension on the dynamics of capillary gravity water waves.

Indeed the author considers only the case of infinite depth of water and shows that only for

very small speeds are the gravity waves changed appreciably by surface tension. In the same

line, Xiao et al. [72] show that, by taking into account the effect of surface tension, the wave

form strongly changes. Afterwards, several studies have been done in order to investigated the

effetcs of surface tension on the gravity wave dynamics. As results, these studies show that

taking into account the effects of surface tension in the description of water wave models has

an important impact on the surface wave dynamics.

1.3.2 Viscosity

In the same way as the density, the notion of viscosity of a fluid is the object of common

observation: everyone has indeed noticed that two fluids of different nature do not necessarily

flow with the same speed and that for some fluids (oils in particular), the temperature has a

great influence. Viscosity is linked to the existence of inter molecular forces that result in the

adherence of the fluid to a wall and in the resistance to the relative movement (sliding) of two

neighboring particles of fluid. This resistance, corresponding to a loss of kinetic energy of the

fluid, can be dissipated as heat within the fluid. The viscosity of a moving fluid is the property

that expresses its resistance to a tangential force. Let’s imagine a layer of fluid placed between

two plate, parallel and horizontal plates as shown in figure 1.17. One is fixed and the other is

in uniform motion with a velocity Vmax. In order for the velocity to occur, a force F must be

exerted on the upper plate.

Figure 1.17: Illustration of a viscous friction.
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This force is the resultant of the viscous friction forces, which is :

F = µA
dVmax

dy
, (1.28)

where the coefficients A[m2] and µ[N.s/m2] are the area of the plate and the viscosity, respec-

tively.

Consider this time two coaxial cylinders separated by a gap containing a fluid as shown in

figure 1.18. If we make the external cylinder rotate at a constant velocity (ω) while keeping the

internal cylinder fixed, the fluid in contact with the external cylinder will adhere and will thus

be animated by a linear velocity V . The fluid in contact with the fixed cylinder will have a zero

velocity. It occurs in the fluid shear forces or viscosity force due to the interaction between the

molecules of the fluid.

Figure 1.18: Cell of Couette.

This interaction gives rise to a frictional force that is measured by the torque M . Experiments

have shown that the torque M varies proportionally to the velocity.

In general, the introduction of a dissipative term due to viscosity is done strategically [73].

Chester [74] have been the first to introduce an attempt to study the effects of dissipation and

dispersion on nonlinear wave dyanmics. However, the first true formulation of nonlinear wave

equations with viscosity effect has been presented by Ott and Sudan [75]. In that direction,

Lundgren [76] and Dias et al. [77] have established a set of equations in the context of both

linearity and nonlinearity governing flow taking into account dissipation due to viscosity, just

to cite few. All these works prove that, taking into account the viscosity in the modeling of

nonlinear equations especially in the context of shallow water can highlight phenomena that

had not been relatively explored and therefore unknown and produce at the same time to the

scientific community interesting and innovative results.
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1.3.3 Wind

Everyone realizes by observing the sea on a stormy day that the energy of the wind can be

transmitted to the waves. In fact, the effect of wind blowing on surface wave packets is twofold:

it produces a variation in the pressure exerted on the surface which translates into a flow of

energy from the wind to the waves and it generates a rotational current in the water. It remains

to specify how this transfer occurs, and to measure this energy transfer as a function of wind

intensity and surface roughness. In recent years, several works have been devoted to study the

impact of the wind on the dynamics of nonlinear waves. Precise studies on this question began

in 1924 with Jeffreys [16] then continued in the 1950s with Phillips [18], and Miles [19].

The Jeffreys model assumes that, waves move in the opposite direction to the wind and thus

constitute a barrier to the wind flow. In this model, the windward side of the wave receives the

wind frontally, while the leeward side is sheltered. This creates a pressure difference and thus

a force exerted on the wave [17]. The air layers are generally laminar, but are deformed by the

presence of the waves and for a certain steepness, one can notice the existence of detachments

of the boundary layer on the side downwind of the waves. This detachment gives rise to an

overpressure whereas the attachment of the same layer on the windward side of the following

wave produces, on the contrary, an underpressure. The pressure difference thus created on the

surface of the waves produces a force which transmits the energy of the wind to the water flow.

Physical assumptions and dimensional analysis led to an expression for atmospheric pressure

given by

Pa = ρas(U∞ − vph)2
∂η

∂x
, (1.29)

where ρa is the air density, s the shelter coefficient, U∞ the wind speed, c the wave phase

velocity and η the surface elevation. At the beginning, this model did not seem to be in good

agreement with the experiments. Indeed, the differences in pressure created by the wind on a

rigid wave profile led to calculations of energy transfer whose order of magnitude did not match

the experiments. Moreover, this model does not explain the formation of waves when the wind

blows on a sea initially at rest. However, this mechanism is the first to explain the necessary

phase shift between atmospheric pressure and ocean surface elevation for energy transfer to

occur between wind and waves. Touboul [40] have modified Jeffreys’ theory by introducing

a critical threshold of wave slope beyond which the relation given by equation (1.29) can be

applied.

The model developed by Phillips is based on the assumption that the air flow is turbulent
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and the fluid flow is potential. The turbulence creates random pressure variations which in turn

create waves. Thus, the pressure variations have the same spatial frequency as the emerging

waves, hence a resonance phenomenon appears and an increase in amplitude. Experience has

confirmed that this model is quite good at quantitatively justifying wave formation, but once

the waves are formed, it no longer accurately accounts for the energy transferred between the

wind and the waves.

The Miles model is based on an analysis of the stability of parallel flows in air and wa-

ter. It considers air to be incompressible and non-viscous, with a logarithmic velocity profile.

One mechanism for wave formation and growth is the resonant interaction between waves and

induced pressure fluctuations. The wave amplification then follows an exponential law. Miles

reduced the calculation of the transfer of energy of wind to waves to the solution of a Rayleigh

equation, Thomas [17] has detailed the calculation leading to the model of Miles in his thesis.

The wave amplification rate is calculated as a function of the wind velocity profile. He assumes

that the airflow is a sheared current defined by the wind velocity as a function of altitude

U = U(z). The most common model to represent the reality while remaining quite simple and

manipulable is the logarithmic U(z) = U1 ln(z/z0). U1 is the characteristic velocity defined by

U1 = u∗/κ, where u∗ is the roughness velocity, κ the Von kármán velocity (which is about 0.4)

and z0 is the roughness length guiven by z0 = αchu
2
∗/g, where αch is the Charnock parameter

and g the acceleration due to the gravity. The Miles model proposes the following form for

atmospheric pressure

Pa = (ξ + iβ)ρaU
2
1kη, (1.30)

where ξ and β are two coefficients depending on both the wavenumber k. The coefficient ξ

that is in phase with the surface elevation η(x, t), does not participate in the energy transfer

between wind an wave and will therefore be neglected. The coefficient β is guiven by

β = −
π

k

U
′′
c

| U ′c |
ω2
c

U2
1 η

2
x

, (1.31)

where the overline mean an average over a spatial period and the subscripts c mean that the

corresponding quantities are evaluated at the altitude z = zc where we have the equality U = c,

celerity of the waves. This altitude, called critical height, intervenes in the Rayleigh equation

because it causes a singularity, hence the importance of its role in these formulas: it is at this

altitude that the energy transfer occurs. it is worth noting that for the transfer of energy from

the wind to the waves to be possible, it is necessary that U ′′c < 0 (second derivative evaluated

at z = zc ).
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The coefficient β provides a term in phase with iη and therefore in quadrature with the

surface elevation η(x, t), which induces its participation in the energy transfer. The possible

values of parameter β have been tabulated by Conte and Miles [78] by solving numerically the

Rayleigh equation in the context of a logarithmic profile. These values have been used in deep

water field by Kharif et al. [73] and it has been observed that for low frequency waves, a strong

wind is needed to maintain the modulational instability and that, the wind needs less force to

maintain this instability for higher frequency waves. From there, it is clearly seen that the wind

effects are very essential and important in the water wave dynamics. For a wave in one spatial

dimension, we have η(x, t) = Aei(kx−ct) (where c is the phase velocity and A is the amplitude)

which implies that ηx = ikη. Thus, the atmospheric pressure guiven by equation (1.30) can be

written in one spatial dimensions in the following forms

Pa = ληx where λ =
µρa
2κ2

u2
∗. (1.32)

The Jeffreys model and the Miles model are currently preferred by researchers, the first

being better suited to waves of larger amplitude and the second to waves of small amplitude.

During the 20th century, starting from one or the other of the overcited models, several authors

have studied the impact of wind on the dynamics of extreme waves. For example, by using a

pressure distribution over the steep crests given by the Jeffreys model, Kharif et al. [73], have

investigated experimentally and numerically the influence of wind on extreme wave events in

deep water. Touboul et al.[40] have used the Jeffreys model and investigated experimentally

without wind and in presence of wind the freak wave formation due to the dispersive focusing

mechanism. The authors conclude that, the duration of the freak wave event increases with

the wind velocity. In the same line, amplification of nonlinear surface waves by wind have been

investigated by Leblanc [22] using the Miles’ model. Despite all these interesting works, the

question of the interaction between wind and waves remains an open subject. Indeed, all these

works listed above have been carried out in order to study the effects of wind on the dynamics

of extreme waves such as rogue waves. Most of these works deal only with the generalized

nonlinear Schrödinger equations. Motivated by the results obtained, extending the study to

the context of shallow water and the KdV equation in particular becomes a necessity and a

very interesting research axis. In addition, the simultaneous combination of dissipation due

to viscosity, surface tension, and wind effects to show that the resulting model equation can

lead to a generalized KdV equation that includes higher diffusion and instability effects may

be an interesting study. Indeed, the combination of these effects has never been studied in the

literature to our knowledge. It will be important to show that these effects have a considerable
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impact on the wave dynamics in shallow water.

1.4 Evolution carried out in the modeling of the KdV equation

Following the discovery of the soliton and the formulation of the KdV equation, many models

aiming at improving jointly the nonlinear and dispersive properties have been developed. A

decisive advance was initiated by Agnon et al. [79] after which the authors concluded that, by

using Pade approximations, it is possible to double the order of the dispersion parameter. In

the same line, Madsen et al. [80, 81] show that by replacing the infinite series operators by finite

series approximations (of the Boussinesq type), the characteristics of linear and non linear waves

become very accurate up to very high wavenumbers. These models provide the same accuracy

of nonlinear properties as linear properties [80]. In general, the procedure is based on an exact

formulation of the boundary condition at the free surface and at the bottom, combined with an

approximate solution of the Laplace equation given in terms of a truncated series expansion.

In the literature, two different formulations have been developed either in terms of velocity

[81, 82] or in terms of velocity potential [83, 84]. The velocity potential formulation is the most

used because the computational effort is reduced by a simpler coupling of the model with other

potential flow solvers such that it is possible to use the boundary element method [84]. Based

on these advances, many models have been developed by various research we present in the

following some of the results obtained by these researchers and present in the literature

1.4.1 The third order KdV equation

The third order KdV equation can appear in different orders and forms, however, the general

form can be written in the following form

ηt + f(η)ηx + ηxxx = 0. (1.33)

Let us underline that the nonlinear terms f(η)ηx and the dispersive terms ηxxx can have

coefficients. The nonlinear term f(η) can take the following forms

f(η) =



αη;

αη2;

αηn;

αηx;

2αη − 3βη2;

αηn − βη2n.

(1.34)
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In the limit case where f(η) = ±6η, we find the standard KdV equation in the form

ηt ± 6ηηx + ηxxx = 0. It is also important to note that, considering the (+) sign we are in a

focusing case and in the case of the (-) sign, we are in a defocusing case.

In the limit case where f(η) = 6η2, we obtain the modified KdV (mKdV) equation in the

form

ηt + 6η2ηx + ηxxx = 0. (1.35)

In the same way as the KdV equation, this equation is fully integrable and can have N-solitons

as solution.

In the limit case where f(η) = αηn with n ≥ 3, equation (1.33) can turn to the generalized

KdV (gKdV) equation as follows

ηt + αηnηx + ηxxx = 0, n ≥ 3. (1.36)

Undercontrary to the KdV and the mKdV equation, the gKdV equation in not intergrable for

n ≥ 3, and as a consequence, does not yield a multiple-soliton solution.

For f(η) = αηx, we arrive at the potential equation for KdV, given by

ηt + α(ηx)
2 + ηxxx = 0. (1.37)

For f(η) = 2αη − 3βη2, we obtain the equation generally called the Gardner equation, or

the combined KdV-mKdV equation, which can be written in the following form

ηt + (2αη − 3βη2)ηx + ηxxx = 0. (1.38)

The Gardner equation, is widely used in various branches of physics, such as plasma physics,

fluid physics and quantum field theory, just to cite a few.

In the limit case where f(η) = αηn − βη2n, we get another generalized KdV equation with

two power of nonlinearities of the form

ηt + (αηn − βη2n)ηx + ηxxx = 0. (1.39)

This last equation describes the nonlinear propagation of long acoustic waves. For n = 1, we

find the equation known as the Gardner equation.

1.4.2 The fifth order KdV equation

The fifth-order KdV equation (fKdV) appears in multiple forms, but, the well known in its

standard form is the following

ηt + αη2ηx + βηxηxx + γηηxxx + ηxxxxx = 0, (1.40)
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where α, β and γ are real and abitrary parameters ( 6= 0). By changing the values of these

parameters, several forms of the fKdV equation can be constructed. These equations include,

for specific values of α, β and γ, the Lax, the Sawada-Kotera and the Kaup-Kupershmidt

equations.

1.4.3 The seventh order KdV equation

The seventh-order KdV equation (sKdV) takes the following form

ηt + 6ηηx + ηxxx − ηxxxxx + αηxxxxxxx = 0, (1.41)

where α is a non-zero constant. The sKdV equation was introduced by Pomeau et al.[85], to

discuss the structural stability of the KdV equation under singular perturbation. The sKdV

equation has the third-order dispersion term (η3x) and two other dispersion terms, the fifth-

order (η5x) and seventh-order (η7x) dispersion.

1.4.4 The ninth order KdV equation

The ninth-order KdV equation (nKdV) can be written in the following form

ηt + 6ηηx + η3x − η5x + αη7x + βη9x = 0, (1.42)

where α and β are arbitrary, non-zero constants. The nKdV equation has in addition third-order

(η3x), fifth-order (η5x) and seventh-order (η7x) dispersion terms, the ninth-order dispersion term

(η9x).

1.4.5 The KdV equation with variable coefficients

Starting from the fact that the soliton solutions have a variable propagation speed which

depends on the coefficients of the equation. Many studies have been conducted to propose

solutions to the KdV equation with variable coefficients. In an inhomogeneous and weakly

nonlinear medium, the wave propagation is governed by the variable coefficients KdV equation

can be written as follows

ηt + α(t)ηηx − β(t)η2ηx + µ(t)ηxx + δ(t)ηxxx = 0, (1.43)

where α(t), β(t), µ(t) and δ(t) are arbitrary functions of t. When β(t) = 0, α(t), µ(t) and

δ(t) are constants, (1.43) turns to KdV-Burgers equation, which mainly describes the flow of

air bladder in liquid and the flow of liquid within ballistic trajectory canal. When µ(t) = 0,
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α(t), β(t) and δ(t) are constants, (1.43) turns to KdV-MKdV equation, which is widely used in

solid physics, atom physics and quanta field theory etc. Some of the research can be referred to

Khater et al. [86] or Hirota et al. [87]. When β(t) = µ(t) = 0, α(t) and δ(t) are constants, it is

the case of Fan [88] and Wang [89]. The applicability of the variable coefficient KdV equation

(1.43) arises in many areas of physics, for example, the description of gravity-capillary and

interracial-capillary wave propagation, internal waves and Rossby waves.

1.4.6 The KdV equation modified by diffusion and instability effects

The convex fluids whose first instability from the static state is oscillatory have received

much attention recently. Such behavior is found, for example, in the convection of binary fluids’

and in the electrohydrodynamic convection in nematic liquid crystals. A common feature of

these two systems is that the transition occurs with a finite critical wavenumber and frequency.

General arguments, as well as an asymptotic expansion in particular cases, show that the

nonlinear behavior near the transition is governed by coupled Landau-Newell type equations.

The traveling waves are governed by the Ginzburg-Landau equation. Many works have been

devoted to the study of the behavior of the solutions of these equations and to their comparison

with experimental results. Aspe and Depassier [67] have studied the evolution of a system

which presents an oscillatory instability from the static state with a wave number and a vanity

frequency. They have shown that this instability corresponds to the appearance of long surface

waves. Moreover they showed that the nonlinear evolution of the system near the transition

can be governed by the perturbed Korteweg-de-Vries equation written in the following form

ηt + λ1ηηx + λ2ηxxx + ε

σR2

15
ηxx + λ3ηxxxx + λ4(ηηx)x

 = 0, (1.44)

where σ is the Prandtl number, R2 is the coefficient of the instability and ε is a small parameter

such that the excess of the Rayleigh number above its critical value is given by ε2R2. The

coefficients λi, with i = 1, ..., 4, are functions of the deparameters of the problem. The authors

study the evolution of long, shallow waves in a convective fluid by solving equation (1.44) when

the critical Rayleigh number slightly exceeds its critical value. As a result the authors show

that, the excess of the Rayleigh number above its critical value as well as nonlinear terms have

a destabilizing effect which is balanced by diffusion.

Subsequently, Depassier and Letelier [14] extended this work to the higher order by intro-
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ducing the effects of viscosity and obtain the following equation

ηt+6ηηx +

(
Λ1 + ε2R2Λ

′

1

)
ηxxx + ε

(
(6/5)R2ηxx + Λ2ηxxxx + Λ3(ηηx)x

)
+ ε2

(
3η2ηx + Λ4ηxxxxx + Λ5ηxηxx + Λ6ηηxxx

)
= 0,

(1.45)

where the coefficients Λi with i = 1, ..., 6 depend on parameter values, and the parameter R2

measures the excess of the Reynolds number over the critical value.

1.4.7 The KdV equation modified by the surface tension and extended to the

higher orders

In recent years, several authors have proposed improved versions of the generalized KdV

equation by taking into account surface tension effects. They have shown that taking these

effects into account can provide interesting nonlinear evolutionary models that describe the

motion of long, small-amplitude, unidirectional waves in shallow water. For example, Burde

[90] with the help of the Boussinesq perturbation expansion, have derived a fifth-order KdV

equation taking into account the effects of surface tension. This equation can be written in the

following form.

ηt + ηx + ε(α1ηηx + α2η3x) + ε2(β1η
2ηx + β2ηxη2x+ β3ηη3x + β4η5x) = 0, (1.46)

where the coefficients α2, β2, β3 and β4 depend on the Bond number τ .

In the same line, Fokou et al. [12] go beyond the fifth-order KdV equation derived by Burde

(equation (1.45)), for the rightward-moving wave assumed to have smaller amplitude 0(ε2).They

show that the wave amplitude dynamics for unidirectional long wave propagation over shallow

water assumed to have smaller amplitude 0(ε4), is governed by a KdV equation with nonlinear

and nonlocal terms given by

ηt + ηx + ε(α1ηηx + α2η3x) + ε2(β1η
2ηx + β2ηxη2x+ β3ηη3x + β4η5x) + ε3(γ1η

3ηx

+ γ2η
2η3x + γ3η

3
x + γ4ηηxη2x + γ5η2xη3x+ γ6ηxη4x+ γ7ηη5x + γ5η7x) + ε4(δ1η

4ηx
(1.47)

+ δ2ηη
3
x + δ3ηη

2
2x + δ4η

2ηxη2x + δ5η
2
xη3x + δ6ηη2xη3x + δ7η

3η3x + δ8η3xη4x + δ9ηηxη4x

+ δ10η2xη5x + δ11η
2η5x + δ12ηxη6x + δ13ηη7x + δ14η9x + δ15

∫
η3

2xdx+ δ16ηx

∫
η3
xdx

+ δ17

∫
η3
xdx+ δ18

∫
η2
xdx) = 0,

where the coefficients δi, (with i = 1, ..., 18) also depend on the Bond number τ .
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These last two equations were solved in the presence of the surface tension parameter.

As results, it was observed that the presence of the surface tension and of the perturbation

parameter ε involving the passage to higher orders strongly influenced the dynamics of the

soliton obtained as solutions.

1.4.8 Multidimensional forms of the KdV equation

The different results presented above in this section have been formulated in (1+1)-dimension,

more precisely in one spatial and one temporal dimension. The study of these equations has

led to interesting mathematical and physical results since the end of the 1960s. But the exten-

sion of these results to multidimensional soliton equations came after 1970. The KdV equation

describes nonlinear plane waves propagating in the x direction. During this time, starting from

the fact that sometimes waves do not always propagate unidirectionally, an obvious question

was asked: how is the propagation of waves when they move on a nonunidimensional surface?

To answer this question, extensive research work has been done in the development of models

with more than one dimension, in particular those in the (2+1) dimension, that is to say two

spatial dimensions and one temporal one [91]. Among the results obtained, the best known

two-dimensional generalizations of the KdV equation are: the Kadomtsov-Petviashivilli (KP)

equation [6], the Zakharov-Kuznetsov (ZK) equation [92] and the Novikov-Veselov (NV) equa-

tion [91, 93].

It should be noted that, the KP equation is integrable and describes the evolution of quasi-

onedimensional waves in shallow water when the effects of surface tension and viscosity are

negligible. As for the ZK equation, it is not integrable via inverse diffuse method and governs

the behavior of weakly nonlinear ion acoustic waves in a plasma comprising cold ions and

hot, isothermal electrons in the presence of a uniform magnetic field [94]. The NV equation is

fully integrable, and it is, mathematically speaking, the most natural generalization in (2+1)

dimension of the KdV equation. In what follows, we will present these three equations.

1.4.8.1 The Kadomtsev-Petviashvili equation

In 1970, two Russian physicists Kadomtsev and Petviashvili proposed a two-dimensional

nonlinear and dispersive wave equation to study the stability of the solitary wave under the

influence of weak perturbations, transverse to the direction of propagation. The Kadomtsev-

Petviashvili (KP) equation poses as the main model for certain physical systems with weak

nonlinearity, weak dispersion and quasi-two dimensionality. It admits several exact solutions
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called KP solitons, which are regular, non-decaying and located along distinct lines in the two-

dimensional "xy" plane [95]. The KP equation is relevant for most applications in which the

KdV equation arises. This equation takes the following form [6]

(ηt + 6ηηx + ηxxx)x + 3σ2ηyy = 0, (1.48)

where η ≡ η(x, y, t) and σ2 = ±1.

If σ2 = −1, the equation is called KP-I, and in the case where σ2 = +1 the equation is

called KP-II. For example, to model nonlinear dispersive waves on the surface of fluids, the KP-I

equation is used when the surface tension is large, while, the KP-II equation is used when this

tension is small. On the other hand, the KP-I equation is known to have a focusing effect and

the KP-II equation a defocusing effect [96]. Depending on the physical context, an asymptotic

derivation can result in either the KP-I or KP-II equation. In all cases, these equations describe

the propagation dynamics of weakly nonlinear and weakly dispersive waves whose wavelength

is large compared to its amplitude.

The principle led by Kadomtsev and Petviashvili consisted in searching for a weak transverse

perturbation of the one-dimensional wave equation

ηt + ηx = 0. (1.49)

This perturbation amounts to adding a non-local term, leading to

ηt + ηx +
1

2
∂−1
x ηyy = 0, (1.50)

where the operator ∂−1
x is defined by the following Fourier transform:

∂−1
x f(ξ) =

i

ξ1

, with ξ = (ξ1, ξ2). (1.51)

When this same procedure is applied to the KdV equation, written in the context of shallow

water waves, we obtain the following KP equation

ηt + ηx + ηηx + (1−
1

3
T )ηxxx +

1

2
∂−1
x ηyy = 0, (1.52)

Where T ≥ 0, is the Bond number measuring surface tensioneffects. By a change of values,

equation (1.52) reduces to equation KP-I if T > 1
3
, and to equation KP-II if T < 1

3
.

It is important to note that the same procedure could be applied to any one-dimensional

equation weakly dispersive and weakly nonlinear.
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1.4.8.2 The Zakharov-Kuznetsov equation

The KdV equation has played an important role in the development of soliton theory where

nonlinearity and dispersion dominate, while dissipation effects are small enough to be neglected.

However, the KdV equation is considered as a spatially one-dimensional model. One of the

known two-dimensional generalizations of the KdV equation is the Zakharov-Kuznetsov (ZK)

equation. The latter takes the following normalized form normalized form [92, 97].

ηt + aηηx +∇2ηx = 0, (1.53)

where ∇2 = ∂2
x + ∂2

y + ∂2
z is the isotropic Laplacian. This means that the two-dimensional

ZK equation dimensions is given by

ηt + aηηx + (ηxx + ηyy)x = 0. (1.54)

And three-dimensional by

ηt + aηηx + (ηxx + ηyy + ηzz)x = 0. (1.55)

The ZK equation governs the behavior of weakly nonlinear acoustic ion waves in a plasma

comprising cold ions is hot isothermal electrons in the presence of a uniform magnetic field

[98]. The ZK equation was first derived to describe weakly nonlinear acoustic ion waves in a

strongly magnetized plasma in two dimensions [92]. However, unlike the KP equation, the ZK

equation is not integrable by inverse diffuse method. A Painlevé analysis has been done for the

ZK equation [99] and it has been shown to have Painlevé properties, but there is no further

evidence that this equation is integrable.

In the context of plasma physics, another derivation of the ZK equation has been by Infeld

and Frycz [100] as follows

ηt + η1/2ηx + aηxxx = 0, (1.56)

and

ηt + (1 + bη1/2)ηx + aηxxx = 0. (1.57)

These equations describe acoustic ion waves in a cold ion plasma but the electrons do not

behave isothermally when the wave passes.
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1.4.8.3 The Novikov-Veselov equation

The Novikov-Veselov (NV) equation, like the KdV equation, has different forms. We will briefly

mention the most common forms of the NV equation

• The generalized NV equation

It is given by the following form [101, 102]

ηt + aηxxx + bηyyy + c(η∂−1
y ηx)x + d(η∂−1

x ηy)y = 0, (1.58)

where a, b, c and d are constant parameters. These parameters can be variable (according

to function of time), [101].

• The modified NV equation

The modified NV equation (mNV) is a natural generalization in (2+1) dimensions of the

modified KdV equation (mKdV). The mNV equation is given by Yu et al. [103] in the following

form

ηt = (ηzzz + 3ηzu+
3

2
ηuz) + (ηz̄z̄z̄ + 3ηz̄ū+

3

2
ηūz̄),

uz̄ = (η2)z.

(1.59)

Bogdanov [104] have shown that the equation is related to the NV equation in a manner

similar to the way in which the mKdV equation is related to the KdV equation.

• The Nizhnik-Novikov-Veselov equation

The Nizhnik-Novikov-Veselov (NNV) equation of (2+4)-dimensions is given by

ηt + ηxxx + ηyyy − 3(ηu)x − 3(ηv)y = 0,

uy = ηx,

vx = ηy.

(1.60)

The system equation (1.60) which represents the NNV equation is very similar to the NV

equation. The NNV equation is a model for incompressible fluids.

• The generalized Nizhnik-Novikov-Veselov equation
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The generalized NNV equation (gNNV) is a symmetric generalization of the KdV in (2+1)-

dimensions and is given by Kumar et al. [105]

ηt + aηxxx + bηyyy + cηx + dηy − 3a(uxη + uηx)− 3b(vyη + ηvy) = 0,

uy = ηx,

vx = ηy.

(1.61)

where a, b, c, and d are parameters. This equation is also known to be fully integrable.

• The Non-dispersive Novikov-Veselov equation

The non-dispersive Novikov-Veselov equation is given by Croke et al. [106]

ηt = (vη)z + (ηv̄)z̄,

vz̄ = −3ηz.
(1.62)

The dNV equation was derived in Konopelchenko and Moro [107] as the geometric optical

limit of Maxwell’s equations in an anisotropic medium. The model governs the propagation of

high frequency monochromatic electromagnetic waves. In particular, they consider nonlinear

media with a frequency dependent dielectric function and magnetic permeability of the Cole-

Cole type [108].

Conclusion

In this chapter,we have presented a literature review on the hydrodynamic waves. Indeed

the history, main characteristics, conditions of existence and mechanisms of generation of waves

encountered in shallow water have been presented. In the development of the theory of solitons,

we have highlighted the importance of the KdV equation and shown that, in order to consoli-

date the theoretical models with the experimental or natural observations, many authors have

proposed improved models of the KdV equation to the higher order taking into account some

new effects. It has been clearly shown that, considering such new effects can strongly influence

the dynamics of solitons. However, to the best of our knowledge, there is no KdV equation

that takes into account the combined effects of viscosity due to shear forces in a fluide, surface

tension due to molecular interactions of a fluide and wind due to atmospherical pressure. This

will be taken into account in our this work.
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Chapter II

Methodologies

Introduction

This chapter describes the methodologies applied to derive the new generalized higher-order

KdV equations, taking into account the effects of surface tension, viscosity and wind. It is also

present the basic equations related to the physical and mathematical modeling of the equations

describing the dynamics of waves propagating in shallow water.

2.1 Basic equations using in hydrodynamic waves modeling

Water surface waves are very interesting for the physicist because they correspond to many

phenomena directly accessible to observation (from waves at sea, ship wake waves to tidal waves)

and include very diverse classes of equations. In order to better understand the behavior of these

surface waves, several equations have been derived and taking into account in order to modeled

these phenomena.

2.1.1 Forces applying on a volume of fluid

Knowing that one of the objectives of fluid dynamics is to determine the position of material

particles or to study the motion under the action of the forces which solicit them, it is important

to define upstream the type of forces which can act on a volume of fluid. Indeed, we distinguish

two categories, the volume forces or distance forces and the surface forces or contact forces.

• Volume forces

Any fluid domain located in a force field (gravity, magnetic, electric and other) undergoes

actions at a distance proportional to the volume of the particle, these are volume forces. In fact,

if we consider an elementary volume of fluid dV on which an elementary force
−→
F is exerted,

we designate by volume force
−→
f (or force density per unit volume) the limit, if it exists, of the

quantity d
−→
F
dV

we note

−→
f = lim

dV→0

d
−→
F

dV
. (2.1)

L. Fernand Mouassom 43 Ph.D. in Physics



Methodologies

The density of forces exerted by gravity (gravitational force) on a continuous medium is one

of the most classical examples.

−→
f = dm−→g = ρgd

−→
V . (2.2)

• Surface forces

It manifests itself through the frictional forces exerted between the fluid particles in relative

motion. Combined with the pressure forces (normal to the surfaces), these frictional forces

form stresses with a normal component and a tangential component (parallel to the surface).

Reduced to an elementary surface dS of normal −→n , the force per unit area that exerts at a

point M is the stress noted
−→
Tn. We thus have :

d
−→
F =

−→
TndS, (2.3)

where the stress
−→
Tn has a different orientation than the normal −→n and the dimensions of this

stress are those of a pressure.

Using one or the other or a sum of these forces, many basic equations have been formulated.

In the rest of this chapter, we present some of them.

2.1.2 General continuity equation

Let us consider a volume of fluid or a parcel of fluid of mass m as follows

We consider that

dm = dmx + dmy + dmz, (2.4)
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where dmx = −
∂(ρu)

∂x
dxdydzdt, dmy = −

∂(ρv)

∂y
dxdydzdt and dmz = −

∂(ρω)

∂z
dxdydzdt and ρ

is the density. Remplacing dmx, dmy and dmz by thier expressions in equation (2.4), we obtain

dm =

[∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρω)

∂z

]
dxdydzdt. (2.5)

On the other hand,

dm =
∂ρ

∂t
dxdydzdt. (2.6)

Equating equations (2.4) and (2.6) and assuming that the fluid is incompressible, (ρ = cste

imply that ∂ρ/∂t = 0) we obtain the continuity equation as follows

∂u

∂x
+
∂v

∂y
+
∂ω

∂z
= 0. (2.7)

2.1.3 The Laplace equation

In a general way, to establish Laplace’s equation, consists in translating the conservation

of mass into an equation. The mass contained in a volume V bounded by the closed surface

S is
∫∫∫

V
ρ dτ where ρ is the density of the fluid. The mass which leaves (algebraically) this

volume during a unit of time is
∫∫

S
ρ −→u .−→n dσ, where −→n is the normal vector to the surface S,

unit and directed towards the outside. We deduce the conservation of mass equation

d

dt

∫∫∫
V

ρ dτ = −
∫∫

S

ρ −→u .−→n dσ. (2.8)

We use the flux-divergence theorem in the right member and the derivation under the sign

sum in the left one ∫∫∫
V

∂ρ

∂t
dτ = −

∫∫∫
V

−→
∇(ρ −→u ) dτ. (2.9)

We put everything in a single integral and this integral being null whatever the volume V

used, it remains
∂ρ

∂t
+
−→
∇(ρ −→u ) = 0. (2.10)

We develop the divergence
∂ρ

∂t
+−→u .

−→
∇(ρ) + ρ

−→
∇ .−→u = 0. (2.11)

We see appearing a material derivative
D

Dt
=

∂

∂t
+−→u .

−→
∇ and obtains

Dρ

Dt
+ ρ
−→
∇ .−→u = 0. (2.12)

L. Fernand Mouassom 45 Ph.D. in Physics



Methodologies

Assuming that the fluid is incompressible,
Dρ

Dt
= 0, it is clearly shows that

−→
∇ .−→u = 0. The

irrotationality of the flow allows us to assert the existence of a velocity potential, usually noted

φ, verifying by definition
−→u =

−→
∇φ. (2.13)

By transferring equation (2.13) into equation (2.12) we obtain the Laplace equation, verified

by the velocity potential, in the whole area occupied by the fluid as follows

∇2φ = 0. (2.14)

2.1.4 The Euler equation

The Euler equation is a mathematical equation that models the motion of an incompressible,

non-viscous fluid that is necessarily subject to external forces. Thus, in order to establish the

equation describing the motion of a fluid, we must obtain an initial reference system. We will

apply the second principle of fluid dynamics to a fluid parcel. Before doing so, it is important

to note that the expression of the acceleration of the fluid parcel as a function of a velocity

field according to the Euleurian approach will be considered as a function of time and space.

Following this approach, we have the following equation.

−→a =
d−→u
dt

=
∂−→u
∂t

+ (−→u .
−→
∇)−→u , (2.15)

where the term
−→
∇ is the gradient, −→u is the velocity field, d−→u

dt
is the total derivative and

represents the acceleration of the parcel. ∂−→u
∂t

is the partial derivative of the velocity field, it

represents the rate of change of velocity at fixed points in space.

Equation (2.15) clearly shows that the acceleration of the particle depends on two factors.

The first factor is the local acceleration (∂
−→u
∂t

). It highlights the acceleration due to the fact

that, at a given point in space, the velocity of a parcel passing through it can either increase or

decrease over time. The second is the advective term of acceleration ((−→u .
−→
∇)−→u ) which reflects

the acceleration due to the fact that, a parcel of fluid can move from a region of low velocity

to a region of high velocity and vice versa.

By applying the second principle of dynamics, we obtain an equation that provides an

expression for the acceleration of a parcel of fluid as follows

ρ
d−→u
dt

δxδyδz = ρ
−→
F δxδyδz, (2.16)
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where ρ is the density of the fluid, δxδyδz is the volume of the parcel such that dm = δxδyδz

with dm the mass,
−→
F the force per unit mass applied to the fluid. In accordance with the fact

that, the force of gravity is not altered by the motion, the remaining force especially the surface

pressure will be the subject of particular attention here because any change in the value of the

pressure with respect to its hydrostatic distribution will give rise to another form of motion.

In fact, it is difficult to think that as soon as a fluid starts moving, the stress forces acting

on it are deeply affected or disappear. It seems reasonable to assume that the structure of

the stresses acting on the parcel of fluid remains the same as that crossed in the hydrostatic

case, even for a fluid in motion. In other words, we must assume that the stresses between the

parcels are always normal to their separating surfaces and are independent of their orientation.

The symbol used to designate the scalar defining the magnetude of these forces will remain the

same as well as the name pressure or more exactly dynamic pressure, to indicate that now the

pressure varies not only in space, but also in time. In this sense, the expression of the force

acting on the parcel of fluid is written as a function of the hydrostatic pressure as follows

−→
F = −

1

ρ

−→
∇P +−→g . (2.17)

By introducing equation (2.17) into equation ((2.16) and using the expression of the equation

obtained in equation (2.15) we have

∂−→u
∂t

+ (−→u .
−→
∇)−→u = −

1

ρ

−→
∇P +−→g . (2.18)

This equation is known as the Euler equation, after the name of the author that derived

them for the first time. written in component form, it becomes

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −

1

ρ

∂P

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −

1

ρ

∂P

∂y
,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −

1

ρ

∂P

∂z
− g.

(2.19)

It turns out that this equation can describe the structure of the motion only in some cir-

cunstance. In many cases the solution is a good approximation of the real flow only in certain

regions of space but not in others. In others cases the real motion in completly different. The

simplest assumption we can make is that pressure forces are not the only forces present in a

fluid. Therefore, there must be other forces that certain types of motions could bring to light.
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2.1.5 The Navier Stockes equation

The time variation of the momentum of an elementary fluid of volume V bounded by a

surface S as illustrated in Figure (2.1) is given by the sum of three terms including:

- the net flow of momentum through the surface S

- the sum of the volume forces acting on V

- the sum of the surface forces acting on S.

The volume of fluid crossing the boundary S per unit area per unit time is −−→u .−→n and the

momentum carried per unit volume is ρ−→u . The momentum balance in the volume V is motion

in the volume V is therefore written :∫
V

∂ρ−→u
∂t

dV = −
∫
S

ρ−→u−→u .−→n dS +

∫
V

ρ
−→
f dV +

∫
S

−→
Tn.
−→n dS, (2.20)

where
−→
f is the volume force per mass unit (such as −→g ),

−→
Tn is the stress tensor and −→n is the

unit vector normal to S.

Applying the divergence theorem to equation (2.20), we obtain :∫
V

∂ρ−→u
∂t

dV +

∫
V

−→
∇ρ−→u−→u dV =

∫
V

ρ
−→
f dV +

∫
V

−→
∇ .
−→
Tn dV, (2.21)

such as

−→
∇ρ−→u−→u =

∂

∂xj
(ρuiuj) = ui

∂ρuj

∂xj
+ ρuj

∂ui

∂xj
,

−→
∇ .
−→
Tn =

∂Tij

∂xj
.

(2.22)

Since this equality holds regardless of the volume V , it can be written in local rather than

integral:

ρ
∂−→u
∂t

+−→u
∂ρ

∂t
+ (−→u

−→
∇).ρ−→u + ρ(−→u

−→
∇)−→u = ρ

−→
f +

−→
∇ .
−→
Tn. (2.23)

This equation can be rewritten as follows

ρ
∂−→u
∂t

+−→u

∂ρ
∂t

+
−→
∇(ρ−→u )

+ ρ(−→u .
−→
∇)−→u = ρ

−→
f +

−→
∇ .
−→
Tn. (2.24)

The conservation of mass of the fluid imposes: ∂ρ
∂t

+
−→
∇(ρ−→u ) = 0 and the equation for the

momentum motion therefore reduces to :

ρ
∂−→u
∂t

+ ρ(−→u .
−→
∇)−→u = ρ

−→
f +

−→
∇ .
−→
Tn. (2.25)
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The term in brackets in the left-hand member is the acceleration of a fluid particle. It

involves, on the one hand, the unsteady character of the flow by the temporal variation of

the Eulerian velocity field and, on the other hand, the convective acceleration due to the

spatial variation of the velocity field.Taking into account the expression of the stress tensor for

an incompressible Newtonian fluid,
−→
∇ .
−→
Tn is written: −

−→
∇P + η∆−→u and the equation for the

evolution of the momentum is the Navier-Stokes equation which is written, in vector notation

for the Eulerian velocity field −→u :

∂−→u
∂t

+ (−→u .
−→
∇)−→u = −

1

ρ

−→
∇P + ν∆−→u +

−→
f , (2.26)

where η is the dynamics viscosity, ν = η/ρ is the kinematics viscosity and
−→
f the external force

exerted on an element of volume of unit mass (gravity, electric, magnetic field...).

In index notation for the component i of velocity we can write:

∂ui

∂t
+ uj

∂ui

∂xj
= −

1

ρ

∂P

∂xi
+ ν

∂2ui

∂xi∂xj
, (2.27)

where the summation over the repeated indices is implicit, in this case :

uj
∂ui

∂xj
=

3∑
j=1

uj
∂ui

∂xj
. (2.28)

In cartesian coordinates (x, y, z), the three components of the Navier-Stokes equation are

written in the following form:

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂x
= −

1

ρ

∂P

∂x
+ ν

(∂2ux

∂x2
+
∂2ux

∂y2
+
∂2ux

∂z2

)
+ fx,

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂x
= −

1

ρ

∂P

∂y
+ ν

(∂2uy

∂x2
+
∂2uy

∂y2
+
∂2uy

∂z2

)
+ fy,

∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂x
= −

1

ρ

∂P

∂z
+ ν

(∂2uz

∂x2
+
∂2uz

∂y2
+
∂2uz

∂z2

)
+ fz.

(2.29)

It is important to note that, in a direction where there is no velocity component, the pressure

gradient in that direction is zero, in the absence of an external force.

2.1.6 Boundary conditions

In general, to solve the partial differential equations, it is necessary to define boundary

conditions in the fluid domain. The considered domain includes the free surface, two lateral

conditions and a bottom condition (figure 2.1). The boundary conditions must be set on each

of these surfaces. Several conditions can be used depending on the physical problem considered.

L. Fernand Mouassom 49 Ph.D. in Physics



Methodologies

Figure 2.1: Geometry of the problem

2.1.7 The dynamics condition

The dynamic condition consists in writing that the pressure is the same on both sides of

the free surface of the fluid.Thus, the free surface condition or dynamics condition is of great

importance for wave problems. It is obtained from Euler’s equation (2.18), from equation (2.13)

in the following way

∂φ

∂t
+

1

2
(
−→
∇φ)2 + gη = −

P

ρ
for z = η(x, y, t) (at the surface), (2.30)

where p is the atmospheric pressure, η(x, y, t) is the free surface elevation, and x, y and z

are the horizontal and vertical spatial coordinates respectively. This condition is known as the

dynamic condition. It is important to recall that in the presence of surface tension, this dynamic

condition is rewritten as

∂φ

∂t
+

1

2
(
−→
∇φ)2 + gη −

σ

R
= −

P

ρ
for z = η(x, y, t), (2.31)

with σ the surface tension coefficient and R the radius of curvature of the free surface. Moreover,

by expressing the radius of curvature is given as a function of the surface elevation, we can obtain

the dynamics condition in present of the surface tension as follows

∂φ

∂t
+

1

2
(
−→
∇φ)2+gη+σ

[(1 + η2
y)ηxx + (1 + η2

x)ηyy − 2ηxηxyηy]

(1 + η2
x + η2

y)
3
2

= −
P

ρ
for z = η(x, y, t), (2.32)

The position of the free surface is not known, so a second free surface condition is required.

The kinematic condition that each particle of the free surface remains at the free surface. This

condition corresponds to an impermeability condition.
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2.1.8 The kinematics condition

The kinematic condition expresses that a fluid particle located at a given time on the

surface cannot cross the surface; its velocity is therefore tangential. The surface is represented

for more convenience by S(x, y, z, t) = 0, it is enough for example to set

S(x, y, z, t) = η(x, y, t)− z. (2.33)

The normal velocity of a fluid particle is given by the relation:

Vn = −
1∣∣∣−→∇S∣∣∣

∂S

∂t
. (2.34)

This is the numerical velocity, measured on the normal directed outwards, i.e. generally

upwards. The velocity of water is u and at a point on the surface its normal component is

Un =

−→u .
−→
∇S∣∣∣−→∇S∣∣∣ . (2.35)

We write the kinematics condition in the form Un = Vn

1∣∣∣−→∇S∣∣∣
∂S

∂t
+

−→u
−→
∇S∣∣∣−→∇S∣∣∣ = 0⇔

∂S

∂t
+−→u .

−→
∇S = 0, (2.36)

and this equation is written simply
DS

Dt
= 0 where we note in this usual way the particle

derivative.

Recall that we write the equation of the surface in the form (2.30). The kinematics condition

or the boundary condition on the surface is then written as

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
− w = 0, (2.37)

and if we want to translate it for the velocity potential (see (2.13)), we obtain the equation

of the kinematic condition as follows

∂η

∂t
+
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y
−
∂φ

∂z
= 0. (2.38)

2.1.9 The condition at the bottom

Depending on the problem to be solved, we can consider two cases for the background

condition. In infinite depth the bottom condition is

∂φ

∂z
→ 0 when z → 0. (2.39)
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In the case of finite depth, it is written

∂φ

∂z
= 0, when z = −h(x, y), (2.40)

where z = −h(x, y) is the bottom equation.

2.1.10 Lateral conditions

The choice of the lateral condition also depends on the physical problem considered. We

consider here a closed geometry where the lateral surfaces are treated as solid and impermeable

walls. The impermeability condition is written as

∂φ

∂z
= V, (2.41)

where V is the wall velocity. This wall velocity can be taken equal to 0 in the case of immobile

walls, or can obey a temporal law to simulate a beater.

2.2 Derivation of the classical KdV equation

Before presenting the methodology we used to derive the different new versions of the

generalized KdV equation improved with the viscosity, surface tension and wind effects, it

is important to recall the different steps leading to the establishment of the classical KdV

equation. In fact, it has been shown that, the classical KdV equation can be derived using

Euler’s equation for an incompressible and nonviscous fluid, the bottom and surface boundary

conditions and the assumption of irrotational flows. These different phases are organized as

follows

2.2.1 Formulation of the problem

The KdV equation describes the propagation of long waves in shallow water. It is the

simplest equation that incorporates both nonlinearity and dispersion. The equation is derived

from Euler’s equations by assuming that the amplitude is small compared to the depth assumed

small compared to the wavelength. The mathematical theory of hydrodynamic waves goes back

to Stokes [109], who first wrote the equations of motion of a perfect and incompressible fluid,

subjected to a constant gravitational force, where the fluid has been bounded below by a rigid

bottom and above by a free surface. above by a free surface. If the motion is non-rotational,

then the velocity of the fluid can be written in terms of a velocity potential [110].

L. Fernand Mouassom 52 Ph.D. in Physics



Methodologies

Considering the movement in one dimension (x direction) of the waves of an incompressible

and non-viscous fluid (water), in a shallow channel of height h and sufficient width with a

uniform cross section, leading to the formation of a propagating under gravity. It is assumed

that the effect of surface tension is negligible. Let L be the length of the wave and A the

maximum value of its amplitude above the horizontal surface (Figure 2.2), which is represented

by η(x, t) [111]. Assuming that A << h (shallow water) and h << L (long waves), we can

introduce two small natural parameters into the problem ε and δ, which is defined by

ε =
A

h
<< 1 and δ =

h

L
<< 1. (2.42)

Figure 2.2: Motion of a one-dimensional wave in a shallow water channel

We choose the coordinates such that the movement of the fluid is two-dimensional. The

properties of the system are independent of the y coordinate and the component of the velocity

along y is zero. Then we assume that the velocity field inside the fluid is given by −→v (u, 0, w),

where u ≡ u(x, z, t),w ≡ w(x, z, t) and that the surface equation is given by z(x, t) = h+η(x, t),

where the function η(x, t) is the surface elevation, thus we can write

−→v (u, 0, w) = u(x, z, t)
−→
i + w(x, z, t)

−→
k , (2.43)

where
−→
i and

−→
k are the unit vectors along the horizontal and vertical directions, respectively.

The hypothesis that the flow is irrotational makes it possible to affirm the existence of a

velocity potential such that, −→v (x, z, t) =
−→
∇φ(x, z, t), where the horizontal and vertical velocity

components are given by u = φx and w = φz. The symbol ∇ is the Nabla operator. It should

be noted that, the Laplace equation ∇2φ = 0 verifies the velocity potential throughout the area

occupied by the fluid.
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Since the fluid density ρ = ρ0 = constant, and using Newton’s law for the rate of change of

momentum, the Euler equation (2.18) can de rewritten in the following form

d−→v
dt

=
∂−→v
∂t

+ (−→v .
−→
∇)−→v = −

1

ρ

−→
∇P + g

−→
k , (2.44)

where P = P (x, z, t) is the pressure at the point (x, z) and g is the acceleration due to gravity,

which acts vertically downwards (
−→
k is the unit vector in the vertical direction). Using the

assumption of irrotationality and thus the velocity potential as illustrated by equaton (2.13),

in (2.44), we obtain after integration the dynamics condition related to the problem in the

following form
∂φ

∂t
+

1

2
(
−→
∇φ)2 +

p

ρ
+ gz = 0. (2.45)

The two equations (2.44) and (2.45) for the velocity potential φ(x, z, t) of the fluid, must be

completed by the relations imposed by the appropriate boundary conditions.

Taking into account the fact that:

- The horizontal bottom at z = 0 is hard and impermeable,

- The upper boundary z = η(x, t) is a free surface.

As a result:

The vertical velocity cancels at z = 0

v(x, 0, t) = 0 which imply that φz(x, 0, t) = 0. (2.46)

Since the upper boundary of the liquid is free, we specify it by z = h+ η(x, t). Then at the

point x = x, z ≡ z(x, t), we can write:

dz

dt
=
∂η

∂t
+
∂η

∂x

dx

dt
= ηt + uηx = w. (2.47)

Given that w = φz and u = φx, the last two parts of (2.47) can be rewritten as:

φz = ηt + ηxφx. (2.48)

Similarly, at z = h+ η(x, t), the pressure P = 0. Then from (2.44), it follows that :

φxt + φxφxx + φzφzx + gηx = 0. (2.49)

By integrating once along x, we obtain the dynamics condition as follows

φt +
1

2
(φ2

x + φ2
z) + gη = 0. (2.50)
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Thus the problem to be solved is the Laplace equation with the kinematics, dynamics and

bottom conditions, namely

φ2x + φ2z = 0, 0 6 z 6 h+ η(x, t),

φz = 0, z = 0,

φz = ηt + ηxφx, z = h+ η(x, t),

φt +
1

2

(
φ2
x + φ2

z

)
+ gη = 0, z = h+ η(x, t).

(2.51)

Since our study deals with small amplitude and long waves, it is preferable to scale our variables

in order to avoid any ambiguity corresponding to a different physical situation. Thus, our

variables will be scaled in such a way that

t̃ =
t

t0
, x̃ =

x

L
, z̃ =

z

h
, η̃ =

η

A
, φ̃ =

φh

LA
√
gh
, (2.52)

where L is a typical wavelength of the surface waves thought the x-direction A is a typical

amplitude of a surface wave η, and t0 is a characteristic time, which will be used to measure

time in the x-direction.

The Laplace equation and the boundary conditions at the free surface and at the bottom

take the following form in which all the subscription "tilde" have been omitted:

φz = 0, z = 0,

βφ2x + φ2z = 0, 0 6 z 6 1 + αη,

ηt + αηxφx −
1

β
φz = 0, z = 1 + αη,

φt +
α

2

(
φ2
x +

1

β
φ2
z

)
+ η = 0, z = 1 + αη.

(2.53)

Our attention is particularly focused on low amplitude, weakly nonlinear waves in shallow

and viscous water, so the amplitude parameters α = A/h, which measures the ratio of wave

amplitude to undisturbed fluid depth, the wavelength parameters β = (h/L)2, which measures

the square of the ratio of fluid depth to wavelength are considered as small.

2.2.2 Formulation of the Boussinesq system

The approximation of the velocity potential φ satisfying the Laplace’s equation and the

boundary condition at the bottom, can be written in the form of the following Taylor series

φ(x, z, t) =
∞∑
k=0

z2k
(−1)kβk

(2k)!

∂2kf(x, t)

∂x2k
, (2.54)

L. Fernand Mouassom 55 Ph.D. in Physics



Methodologies

where the x-derivatives of the function f(x, t) represent the values of the velocity potential at

the bottom z = 0. If the wave regime is considered for the classical Stokes number S = α/β is

different from one, so the amplitude parameter α and the wavelength parameters β are treated

in the same order but are not equal. By limiting the development of (2.54) to order 2, we obtain

the following equation

φ(x, z, t) = f(x, t)−
1

2
βz2

∂2f(x, t)

∂x2
+

1

24
β2z4

∂4f(x, t)

∂x4
. (2.55)

Introducing equation (2.55) into the kinematics condition and using the relation z = 1+αη(x, t),

we obtain the following equations in which w(x, t) = ∂f(x,t)
∂x

and all terms greater than O(α),

O(β) and O(αβ) have been neglected.

ηt + wx + αηxw + αηwx −
1

6
βw3x = 0. (2.56)

Concerning the dynamics condition, a small transformation is necessary. We derive the

equation with respect to x and assuming that d(.)
dx

= ∂(.)
∂x

+ αηx
∂(.)
∂z

the dynamics condition can

be written as follows

φxt + αηxφzt + α(φxφxx +
1

β
φzφxz) + ηx = 0. (2.57)

Proceeding in the same way as in the case of kinematics condition above, we obtain the

following equation

ηx + wt + αwwx +
1

2
βw2xt = 0. (2.58)

The equations (2.56) and (2.58) represent the system of equations governing the propagation

of long waves in shallow water. These equations can be solved by a perturbative development

to arrive at the KdV equation. We first solve the system (2.56) and (2.58) in w(x, t) and η(x, t),

by a perturbative development [2]. At order 0, in α and β, the system (2.56) and (2.58) reduces

to

ηx + wt = 0 and ηt + wx = 0. (2.59)

The system of equation (2.59) admits the solution w = η, if wt +wx = 0. Since the parameters

α and β are small, we can make a perturbative development of w in the form

w = η + αA+ βB, (2.60)

where the coefficients A ≡ A(x, t) and B ≡ B(x, t) are arbitrary functions. These coefficients

will subsequently be determined by introducing (2.60) (the Boussinesq system) into equations
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(2.56) and (2.58), each time limited to the order of the small parameter corresponding to the

coefficient to be determined, to which we impose the condition on f deduced from the order 0.

At + Ax = 0 + θ(α, β), Bt +Bx = 0 + θ(α, β) and ηt + ηx = 0 + θ(α, β), (2.61)

where θ(α, β) represents the terms proportional to α and β.

Substituting (2.60) into (2.56) and (2.58), and neglecting the higher order terms of α and

β, we obtain the following system

ηt + ηx + αAx + 2αηηx + βBx −
1

6
βη3x = 0, (2.62)

ηt + ηx + αAt + αηηx + βBt −
1

2
βη2xt = 0. (2.63)

Subtracting (2.62) from (2.63), we obtain

α (Ax − At + ηηx) + β

Bx −Bt −
1

6
η3x −

1

2
η2xt

 = 0. (2.64)

Then applying the condition (2.61), we obtain the following equation

α (2Ax + ηηx) + β

2Bx −
2

3
η3x

 = 0. (2.65)

It is clearly observed that, the only condition that can satisfy the above equation is given by

2Ax + ηηx = 0 and 2Bx −
2

3
η3x = 0, (2.66)

for which the soluton is given by

A(x, t) = −
1

4
η2 and B(x, t) =

1

3
η2x. (2.67)

After integration, of equation (2.67) into equation (2.60), we get the expression of w as a

function of η as follows

w = η −
α

4
η2 +

β

3
η2x + αK1(t) + βK2(t), (2.68)

where K1(t) and K2(t) are integration constants and are functions of time only. Finally, replac-

ing equation (2.68) in equation (2.62), leads to the following equation

ηt + ηx +
3

2
αηηx +

1

6
βηxxx = 0. (2.69)
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This nonlinear equation describes the unidirectional propagation of waves in shallow water. This

last one takes a simpler and contemporary form if we make the following change of variables

t = τ
′

x = ξ + t. (2.70)

Taking this into account, equation (2.69) can be rewritten as follows

ητ ′ +
3

2
αηηξ +

1

6
βηξξξ = 0. (2.71)

Then by introducing the new variables

u =
αη

β
, and τ =

6τ
′

β
. (2.72)

The equation (2.71) becomes

uτ + 6uuξ + uξξξ = 0. (2.73)

By redefining the variables τ as t and ξ as x, for ease of notation, we arrive finally to the

ubiquitous form of the equation KdV

ut + 6uux + uxxx = 0. (2.74)

2.2.3 The properties of the classical KdV equation

The KdV equation is an equation that combines two fundamental properties namely non-

linear and dispersion. In order to determine the effects of each terms in the equation, we are

going to study the KdV equation as follows

ut + uux + uxxx = 0. (2.75)

In the limit case where the nonlinear is dominant, it is the nonlinear term uux that dominates

the equation

ut + uux = 0. (2.76)

The above equation has similarities with the Burger equation, which describes the propagation

of a wave in a nonlinear system without dispersion in the sense that, a spatial component of the

flow moves with a speed which depends only on the amplitude. The effect of nonlinearity tends

to make the different parts of a wave propagate with different velocities. It therefore induces a

tilt in the trailing part of the wave, generating a shock wave, as illustrates in Figure 2.3 (takes

in []), in which it is clearly observed an initial profile localized in space will tend to straighten

out to create a shock wave.
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Figure 2.3: Formation of a shock wave governed by the Burgers equation

Let us now consider the limit case where the dispersion dominates, in other words, it is the

term uxxx of equation (2.75) that dominates. The equation then becomes a linear equation

ut + uxxx = 0. (2.77)

By definition, a dispersive medium ensures that the different frequencies of a wave do not

propagate at the same velocity (group velocity). This variance generates a of the wave as shown

in figure 2.4 (takes in []). Equation (2.77) can be solved by assuming that the solution can be

Figure 2.4: Effect of dispersion on the propagation of a wave in a medium governed by the linearized

KdV equation

written as an ansatz namely u(x, t) = e(i(kx−ωt)), from which we obtain the so-called dispersion

relation ω = −k3. In this case, the phase velocity Cp = ω/k = −k2, is totally dependent on the

wavenumber k, and it is different from the group velocity Cg = dω/dk = −3k2, which means

that it is an equation of a dispersive medium.

L. Fernand Mouassom 59 Ph.D. in Physics



Methodologies

The soliton can exist if and only if there is a total and delicate balance between the linear

effect, in our case the dispersion, and the effect of the nonlinearity. For surface waves, the KdV

equation shows that dispersion and nonlinearity are governed by the depth h of the water.

The nonlinear term, proportional to 1/h increases for shallow water, while the dispersion,

proportional to h2 decreases. Although small fluctuations of h do not disturb the soliton, the

equilibrium between the two can be reached if h is approximately constant.

2.2.4 The solution of the classical KdV equation

Over the past few decades, the construction of exact solutions for a large class of nonlinear

equations including the KdV equation has been an extremely active area of research. Much of the

literature in nonlinear equation theory uses the soliton solution model of the KdV equation as an

example to introduce nonlinear theory. Many analytical methods for obtaining exact solutions

of the KdV equation have been presented. Hirota’s bilinear method, Backlund’s transformation,

tanh method, sin-cos method, Exponential function method, auxiliary equation method, Jacobi

elliptic function expansion method and many others. In what follows, we will present some

analytical methods for obtaining exact soliton-like solutions of the KdV equation.

2.2.4.1 The Hirota bilinear method

Hirota’s bilinear method, also called the direct method, was developed in 1971 by Hirota to

construct multi-soliton (N-soliton) solutions to nonlinear integrable evolution equations. Hirota

demonstrated the effectiveness of the method by finding N-soliton solutions to the KdV equation

[112]. The principle of Hirota’s direct method is to transform nonlinear evolution equations

into bilinear differential equations. To understand the method, we will take as an example the

take as an example the equation KdV in its form (2.74). To convert equation (2.74) into a

bilinear equation, Hirota used an approximation known as the Padé approximation, and that

is by replacing u(x, t) by G/F , where G and F are polynomials of exponential functions. By

proceeding in this way, we obtain

u =
G

F
,

ut =
GtF −GFt

F 2
,

ux =
GxF −GFx

F 2
,

(2.78)
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uxxx =
Gxxx

F
−

3GxxFx + 3GxFxx +GFxxx

F 2
+ 6

GxF
2
x +GFxxFx

F 3
−
GF 3

x

F 4
.

Replacing the terms of (2.78) in equation (2.74), we obtain an extremely complicated equa-

tion as follows

ut + 6uux + uxxx =
GtF −GFt

F 2
+ 6

GGxF −G2Fx

F 3
+ 6

FGxF
2
x + FGFxxFx −GF 3

x

F 4

+
F 2Gxxx − 3FGxxFx − 3FGxFxx − FGFxxx

F 3
= 0.

(2.79)

To simplify the equation, and that after some modifications of equation (2.79), Hirota intro-

duced a bilinear differential operator called the Hirota D-operator, and it is defined by Hietarinta

[113] in the following forms

Dn
xf.g = (∂x1 − ∂x2)nf(x1)g(x2)|x1=x2=x. (2.80)

With this Hirota operator-D, equation (2.79) reduces to a quadratic equation, also called the

Hirota bilinear form

u(x, t) = 2
ffxx − f 2

x

f 2
= 2(log f)xx. (2.81)

In other words, G = 2(ffxx − f 2
x) and F = f 2, where f(x, t) is given by

f(x, t) = 1 +
∞∑
k=1

εnfn(x, t). (2.82)

The KdV equation can be written, then, in the Hirota bilinear form, as

(DtDx +D4
x)f.f = 0. (2.83)

For a solution to a single soliton, we set

f(x, t) = 1 + εf1(x, t), (2.84)

where ε is an expansion parameter. For a 2-soliton solution, we set

f(x, t) = 1 + εf1(x, t) + ε2f2(x, t). (2.85)

The N-soliton solution is obtained from:

f(x, t) = 1 + εf1(x, t) + ε2f2(x, t) + ...+ εnfn(x, t). (2.86)

In the present work, we will limit ourselves to the search for the solution to a soliton. For

that, we will take f1 = exp(θ1), where θ1 = k1x + c1t, with k1 and c1 are constants, k1 is
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called the wave number. Substituting u(x, t) = exp(k1x + c1t) into the KdV equation (2.74),

the relationship between k1 and c1 namely the dispersion relation can be obtained as follows

c1 = −k3
1. (2.87)

And in view of this result we obtain

θ1 = k1x− k3
1t. (2.88)

Consequently, for the one-soliton solution, we set

f(x, t) = 1 + εf1(x, t) = 1 + ε exp (k1x− k3
1t), (2.89)

By setting ε = 1, the one soliton solution is obtained by recalling that u(x, t) = 2(ln f)xx,

therefore we obtain

u(x, t) =
2k2

1 exp (k1x− k3
1t)

(1 + exp (k1x− k3
1t))

2
, (2.90)

or equivalently

u(x, t) =
k2

1

2
sech2

[1

2

(
k1x− k3

1t

)]
. (2.91)

This soliton solution describes the long, small-amplitude, unidirectional wave motion in shallow

water.

2.2.5 The limits of the clssical KdV equation

The KdV equation is obtained by an approximate calculation (the multiple scale method

consists in working on limited developments). For incompressible, irrotational and non-viscous

fluids, the multiple scale method gives good results and has the advantage of being much easier

to use and of finding applications in multiple fields of nonlinear sciences. But as soon as the

physico-chemical and atmospheric parameters influencing the fluid flow such as surface tension,

viscosity or wind effects are no longer neglected, the results obtained by the KdV equation

do not accurately reflect the observations. Moreover, the KdV equation is obtained by a small

parameter expansion: they correspond to the lowest nonlinear approximation. However, nowa-

days, experiments are becoming more and more sensitive and precise, allowing the observation

of effects that could not be detected before. Moreover, nowadays, with climate change inducing

a global temperature increase, it will be unwise in our humble opinion to continue to neglect pa-

rameters such as surface tension and viscosity (which vary with temperature) and wind effects

in the modeling of physical phenomena.
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2.3 Derivation of the Generalized KdV equation with viscosity and

surface tension

In this section, we formulate new generalized shallow water wave equations both for unidi-

rectional and bidirectional wave motion taking into account the effects of viscosity and surface

tension. For this purpuse, we use the approximation of the velocity potential to formulate the

Boussinesq system and derive the generalized KdV equations for unidirectional waves motion

with the effects of surface tensions and viscosity. On the other hand, by using the non-uniqueness

of the decompositions of this Boussinesq system, we derive generalized equations for bidirec-

tional waves in shallow water, which also includes the surface tension and viscosity effects. The

methodology which allows to obtain these equations is formulated as follows.

2.3.1 Mathematical formulation

This section deals with the mathematical formulation of the shallow water wave problems.

We illustrate the correction of the kinematics, dynamics and boundary conditions by the viscos-

ity in non-dimensional variables. For this, we consider a layer of an incompressible and viscous

fluid, being above a horizontal plane located at altitude z = 0 with the mean depth the param-

eter h. We choose the coordinates such that the movement of the fluid is two-dimensional. The

properties of the system are independent of the y coordinate and the component of the velocity

along y is zero. Then we assume that the velocity field inside the fluid is given by −→v (u, 0, w),

where u ≡ u(x, z, t), w ≡ w(x, z, t) and that the surface equation is given by z(x, t) = h+η(x, t),

where the function η(x, t) is the surface elevation. The fluid is subjected to the action of forces

having perpendicular and parallel components. The perpendicular components are the pressure

Pa and the force
−→
f . The pressure Pa is variable and uniform in space and it dues to the gas

column above the fluid. The force
−→
f = ρ−→g per unit volume is due to gravity, where ρ is

the density of the fluid and g is the gravity field. For the parallel component, we consider the

viscosity force
−→
F = µ∆−→v per unit volume due to the friction of the fluid slices against each

other, where µ is the dynamics viscosity.

The Navier-Stokes equation governing the dynamics of the system can be written in the

form

wt + uwx + wwz = −
1

ρ
P − g − 2νwzz,

P = σ
ηxx

(1 + η2
x)

3
2

,

(2.92)
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where P is the pressure in the fluid, σ is the surface tension and ν = µ
ρ
is the kinematics

viscosity. Equation (2.92) has been obtained using the fundamental principe of dynamics to a

fluid particle, subject to its weight, the volumetric force of viscosity and the forces of pressure.

The boundary condition at the bottom indicates that the fluid is bounded underneath by a

rigid surface such that

u = 0 and w = 0, for z = 0. (2.93)

The procedure for establishing the kinematic boundary condition at the surface corrected

by viscosity has been argued demonstrated in [13]. It is given by

w = ηt + uηx − 2νηxx, for z = h+ η(x, t). (2.94)

The physical condition at the surface is given by

Pa − P = 0, for z = h+ η(x, t). (2.95)

These equations must be completed by the mass conservation requirement

ux + wz = 0. (2.96)

The hypothesis that the flow is irrotational makes it possible to affirm the existence of a

velocity potential such that, v(x, z, t) = ∇φ(x, z, t), where the horizontal and vertical velocity

components are given by u = φx and w = φz. The symbol ∇ is the Nabla operator. It should

be noted that, the Laplace equation ∇2φ = 0 verifies the velocity potential throughout the area

occupied by the fluid.

The kinematics condition can then be written as :

ηt + φxηx − 2νηxx − φz = 0, z = h+ η(x, t). (2.97)

Equation (2.92) can now be integrated to yield the dynamics boundary condition

φt+
1

2
(φ2

x + φ2
z) + gη + 2νφzz − σ

ηxx

(1 + η2
x)

3
2

= 0, z = h+ η(x, t). (2.98)

The characteristic time t0 = L/c0 used to measure the time is defined from the characteristics

length L in the x direction and speed c0 =
√
gh of the high wavelength waves. Since the study

deals with small amplitude and long waves, it is preferable to scale the variables in order to

avoid any ambiguity corresponding to a different physical situation. Thus, the variables will be

scaled in such a way that

t̃ =
t

t0
, x̃ =

x

L
, z̃ =

z

h
, η̃ =

η

A
, φ̃ =

φh

LA
√
gh
, (2.99)
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where A is a typical amplitude of a surface elevation η̃.

Introducing equation (2.99) in equations (2.93), (2.96), (2.97) and (2.98), the equations for

a fluid are written in a non-dimensionalized form such that



βφ̃2x̃ + φ̃2z̃ = 0, 0 ≤ z̃ ≤ 1 + αη̃,

φ̃z̃ = 0, z̃ = 0,

η̃t̃ + αη̃x̃φ̃x̃ −
1

β
φ̃z̃ − β

2Lν

c0h2
η̃x̃x̃ = 0, z̃ = 1 + αη̃,

φ̃t̃ +
1

2
α

φ̃2
2x̃ +

1

β
φ̃2

2z̃

− βση̃2x̃

ρgh2(1 + α2βη̃2
x̃)

3
2

+ η̃ +
2Lν

c0h2
φ̃2z̃ = 0, z̃ = 1 + αη̃,

(2.100)

where σ and ν are the surface tension and viscosity coefficients, respectively. The amplitude

parameter α = A
h
, measures the ratio of wave amplitude to undisturbed fluid depth. The

wavelength parameter β = ( h
L

)2, measures the square of the ratio of fluid depth to wave length.

We focus our attention on low amplitude, weakly nonlinear waves in shallow and viscous water,

then α and β can be considered as small parameters.

The parameters L, c0, h, g and ρ being constant, we can assumed that the Bond num-

ber written as follows τ(σ) = σ
ρgh2

represents our surface tension parameter and δ(ν) = 2Lν
c0h2

represents our viscisity parameter. Equation (2.100) can then be rewritten in the following

forms

βφ2x + φ2z = 0, 0 ≤ z ≤ 1 + αη,

φz = 0, z = 0,

ηt + αηxφx −
1

β
φz − βδηxx = 0, z = 1 + αη,

φt +
1

2
α

φ2
2x +

1

β
φ2

2z

− βτη2x

(1 + α2βη2
x)

3
2

+ η + δφ2z = 0, z = 1 + αη,

(2.101)

where the subscription (∼) have been omitted for the reason of simplicity.

2.3.2 Formulation of the Boussinesq system

The standard procedure in shallow water theory has a serious advantage in the sense that,

by writing the velocity potential function φ(x, z, t) in the form of power series of z, it does not

compromise the requirements of satisfying both the field equation and the boundary conditions

of the bottom and free surface. Thus, we start by setting the velocity potential φ as a formal
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expansion

φ(x, z, t) =
∞∑
i=0

fi(x, t)z
i. (2.102)

We assume that equation (2.102) formally satisfies the Laplace equation given by equa-

tion (first equation in (2.102)). We obtain the recurrent relation (i + 1)(i + 2)fi+2(x, t) =

−β(fi(x, t))2x. We set g(x, t) = f0(x, t), which indicates the velocity potential at the bottom

z = 0 and we obtain

f2k(x, t) =
(−1)kβk

(2k)!

∂2kg(x, t)

∂x2k
. (2.103)

Using the second equation of the system (2.102), the power series expansion used for the

approximation of the velocity potential φ is given by [12]

φ(x, z, t) =
∞∑
k=0

z2k
(−1)kβk

(2k)!

∂2kg(x, t)

∂x2k
. (2.104)

In this work, the wave regime is considered for the classical Stokes number S = α/β = 1, so

that the amplitude parameter α and the wavelength parameter β may be treated on an equal

footing such that α = β = ε.

By limiting the development of equation (2.104) to order 3, we obtain the following equation

φ(x, z, t) = g(x, t)−
1

2
βz2

∂2g(x, t)

∂x2
+

1

24
β2z4

∂4g(x, t)

∂x4
−

1

720
β3z6

∂6g(x, t)

∂x6
. (2.105)

By introducing equation (2.105) into the kinematics condition and using the relation z =

1 + αη(x, t), we obtain the following equation in which w(x, t) =
∂g(x, t)

∂x
and all terms greater

than O(ε3) have been neglected.

ηt + wx + ε

(
ηxw + ηwx −

1

6
w3x − δη2x

)
+ ε2

(
−

1

2
ηxw2x −

1

2
ηw3x +

1

120
w5x

)

+ ε3

( 1

24
ηxw4x −

1

2
η2w3x − ηηxw2x +

1

24
ηw5x −

1

5040
w7x

)
= 0.

(2.106)

Concerning the dynamics condition, a small transformation is necessary. We derive the equation

with respect to x and assuming that
d(.)

dx
=

∂(.)

∂x
+ αηx

∂(.)

∂z
, the dynamics condition can be

written as follows

φxt + αηxφzt + α

φxφxx +
1

β
φzφxz

+ ηx + δφxzz + αδηxφzzz − βτηxxx = 0. (2.107)
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Proceeding in the same way as in the case of kinematics condition above, we obtain the following

equation

ηx+wt + ε

(
wwx −

1

2
w2xt − τη3x − δw2x

)
+ ε2

(
− ηxwxt +

1

2
wxw2x − ηw2xt −

1

2
ww3x

+
1

24
w4xt +

1

2
δw4x

)
+ ε3

(
ηxw

2
x − ηηxwxt − ηxww2x +

1

6
ηxw3xt −

1

2
η2w2xt

− ηww3x +
1

12
w2xw3x −

1

8
wxw4x + ηwxw2x +

1

6
ηw4xt +

1

24
ww5x −

1

720
w6xt

+ δηw4x −
1

24
δw6x + δηxw3x

)
= 0,

(2.108)

where the notation for the small parameters β and α have been changed to ε and w(x, t) = ∂g(x,t)
∂x

is the scaled horizontal velocity at the bottom of the fluid.

It is worth noting that equations (2.106) and (2.108) constitute the generalized Boussinesq

system. To the best of our knowledge, these coupled Boussinesq equations include both viscosity

and surface tension effects are derived for the first time in the literature. When δ = 0, these

equations can be similar to those recently obtained by [12] in the absence of viscosity effect.

2.3.3 Equations for unidirectional waves

In the context of shallow water, it has been shown that, the KdV equation has been first

introduced as a model for the unidirectional propagation of long waves over shallow water

[114]. To derive the equations for unidirectional waves, we reduce the two equations (2.106)

and (2.108) into a single dependent equation of η. To do this, we follow the work of Whitham

[114] and assume that the relationship between the horizontal velocity at the mean height w

and the elevation η is given by w = η + εψ(η) where ψ is a function which will be determined

later. The right wave hypothesis imposes that at the lowest order of α and β, the Boussinesq

system is reduced to ηt + wx = 0 and wt + ηx = 0. Starting from there, it shows that w and η

satisfies the linear wave equation ηtt − ηxx = 0, which describes waves moving in one direction.

More precisely, for the lowest order O(ε = 0), w = η and ηx + ηt = 0. We assume w in the form

w = η + εA(η) + ε2B(η) + ε3C(η), (2.109)

where the coefficients A(η), B(η) and C(η) are arbitrary functions. These coefficients will

subsequently be determined by introducing equation (2.109) into equations (2.106) and (2.108)
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of the Boussinesq system, each time limited to the order of the small parameter corresponding

to the coefficient to be determined.

To determine the coefficient A(η) corresponding to the first order of the small parameter ε,

equation (2.109) is first introduced into equations (2.106) and (2.108). Neglecting the terms of

higher order than O(ε) in each equation, we obtain the following system

ηt+ηx + ε

(
Ax + 2ηηx −

1

6
η3x − δη2x

)
+O(ε2) = 0,

ηt+ηx + ε

(
At + ηηx −

1

6
η2xt − τη3x − δη2x

)
+O(ε2) = 0.

(2.110)

We look for the function A as it corresponds to the two equations (2.110) up to the first order

of ε. Using the lower order equation ηt + ηx = 0, it is easy to see that all the t-derivatives terms

of η can be expressed in terms of the x-derivatives such that ∂
∂t

= − ∂
∂x
. This allows us to reduce

the system (2.110) into a single equation as follows

Ax + 2ηηx −
1

6
η3x − δη2x = At + ηηx +

1

2
(1− 2τ)η3x − δη2x. (2.111)

A common approach is to use the lowest order relation between the time and space derivatives

(At = −Ax) in equation (2.111). After integration, we finally obtain

A(η) = −
1

4
η2 +

1

6
(2− 3τ)η2x, (2.112)

w = η + ε

[
−

1

4
η2 +

1

6

(
2− 3τ

)
η2x

]
+ ε2B(η) + ε3C(η), (2.113)

ηt + ηx + ε

[3

2
ηηx +

1

6

(
1− 3τ

)
η3x − δη2x

]
= 0. (2.114)

Setting δ = 0, X =
√

3
2
(x − t) and T = 1

4

√
3
2
(εt) equation (2.114) can be reduced to the

standard form of the KdV equation

ηT + 6ηηX + η3X = 0. (2.115)

To determine the coefficient B(η) corresponding to the second order of the small parameter

ε, equation (2.113) is introduced into equations (2.107) and (2.108). Neglecting the terms of

higher order than O(ε2) in each equation, all the t-derivatives of η are replaced by their ex-

pressions through the x-derivatives using the lowest order equation, namely (2.114). Upon the
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substitution, we obtain the following equations

ηt + ηx + ε

[3

2
ηηx +

1

6

(
1− 3τ

)
η3x − δη2x

]
+ ε2

[
Bx −

3

4
η2ηx +

( 1

12
−

1

2
τ

)
ηxη2x

−
( 1

12
+

1

2
τ

)
ηη3x +

(
−

17

360
+

1

12
τ

)
η5x

]
+O(ε3) = 0,

ηt + ηx + ε

[3

2
ηηx +

1

6

(
1− 3τ

)
η3x − δη2x

]
+ ε2

[
Bt +

1

2
δη2

x +
1

2
δηη2x −

1

2
δη2x

+

(11

6
+

7

4
τ

)
ηxη2x +

11

12
ηη3x +

1

4

(11

18
− τ − τ 2

)
η5x

]
+O(ε3) = 0.

(2.116)

The solution of the function B(η) can be expressed in terms of η and its x-derivatives. As a

result, we obtain

B(η) =
1

8
η3−

1

4
δηx+

1

16
(3+7τ)η2

x+
1

4
δηηx+

1

4
(2+τ) ηη2x+

1

120
(12−20τ−15τ 2)η4x. (2.117)

Inserting equation (2.117) into equation (2.113) and the first equation of equation (2.116), yields

in second order O(ε2), the equation

w = η + ε

[
−

1

4
η2 +

1

6

(
2− 3τ

)
η2x

]
+ ε2

[1

8
η3 −

1

4
δηx +

1

16
(3 + 7τ)η2

x

+
1

4
(2 + τ) ηη2x +

1

4
δηηx +

1

120
(12− 20τ − 15τ 2)η4x

]
+ ε3C(η),

(2.118)

ηt + ηx + ε

[3

2
ηηx +

1

6

(
1− 3τ

)
η3x − δη2x

]
+ ε2

[
−

3

8
η2ηx −

1

4
δη2x +

1

4
δηη2x

+
1

24

(
23 + 15τ

)
ηxη2x +

1

12

(
5− 3τ

)
+

1

4
δη2

x +
1

360

(
19− 30τ − 45τ 2

)
η5x

]
= 0.

(2.119)

Introducing equation (2.118) in equations (2.106) and (2.108) and proceeding as above, we

obtain

w =η + ε

[
−

1

4
η2 +

1

6

(
2− 3τ

)
η2x

]
+ ε2

[1

8
η3 −

1

4
δηx +

1

16
(3 + 7τ)η2

x +
1

4
δηηx

+
1

4
(2 + τ) ηη2x +

1

120
(12− 20τ − 15τ 2)η4x

]
+ ε3

[
−

5

64
η4 +

1

32

(
3− 21τ

)
ηη2

x

+
1

8
δηηx +

( 7

20
−

1

4
τ +

1

16
τ 2

)
ηη4x +

1

16

(
2− 3τ

)
η2η2x −

1

16

(
1 + 3τ

)
δη3x

(2.120)
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+

(1091

1440
+

1

3
τ +

21

32
τ 2

)
ηxη3x +

(163

360
+

29

48
τ +

7

16
τ 2

)
η2

2x −
1

8

(
1 + 2τ

)
δηxη2x

+
1

48

(
− 11 + 15τ

)
δηη3x −

11

32
δη2ηx +

( 61

1890
−

1

20
τ −

1

24
τ 2 −

1

16
τ 3

)
η6x

−
1

8
δ2η2

x +

( 3

16
−

3

16

)∫
η3
xdx+

1

16
δ

∫
η2
xdx+

1

16

(
5− 3τ

)
δ

∫
ηη4xdx

+
7

32
δ

∫
η2η2xdx

]
,

ηt + ηx + ε

[3

2
ηηx +

1

6

(
1− 3τ

)
η3x − δη2x

]
+ ε2

[
−

3

8
η2ηx +

1

24

(
23 + 15τ

)
ηxη2x

−
1

4
δη2x +

1

4
δηη2x +

1

12

(
5− 3τ

)
+

1

4
δη2

x +
1

360

(
19− 30τ − 45τ 2

)
η5x

]

+ ε3

[ 3

16
η3ηx −

1

16
δη2

x −
(13

32
+

13

32
τ

)
η3
x +

1

8

(
4− τ

)
η2η3x −

3

16
δηη2

x

(2.121)

+
1

8
δη2η2x −

1

8
δηη2x +

(11

16
+

29

6
τ

)
ηηxη2x +

(1079

1440
−

5

45
τ +

19

32
τ 2

)
ηxη4x

−
1

48

(
1 + 9τ

)
δη4x +

(19

80
−

5

24
τ −

1

16
τ 2

)
ηη5x −

1

4
(1 + τ)δη2

2x +

( 1

24
+

1

8
τ

)
δηη4x

−
1

4
δ2ηxη2x +

(
−

25

48
+

3

48
τ

)
δ ηxη3x +

(377

288
+

15

16
τ +

49

32
τ 2

)
η2xη3x

+

( 55

3024
−

19

720
τ −

1

48
τ 2 −

1

16
τ 3

)
η7x

]
= 0.

At the third order O(ε3), the correction function C(η) is given by

C(η) = −
5

64
η4 +

( 7

20
−

1

4
τ +

1

16
τ 2

)
ηη4x +

1

16
(2− 3τ)η2η2x +

1

32
(3− 21τ)ηη2

x

+

(1091

1440
+

1

3
τ +

21

32
τ 2

)
ηxη3x +

(163

360
+

29

48
τ +

7

16
τ 2

)
η2

2x −
1

16
(1 + 3τ)δη3x

+
1

8
δηηx +

1

48
(−11 + 15τ)δηη3x −

11

32
δη2ηx +

( 61

1890
−

1

20
τ −

1

24
τ 2 −

1

16
τ 3

)
η6x

−
1

8
(1 + 2τ)δηxη2x −

1

8
δ2η2

x +

( 3

16
−

3

16

)∫
η3
xdx+

1

16
δ

∫
η2
xdx+

7

32
δ

∫
η2η2xdx

+
1

16
(5− 3τ)δ

∫
ηη4xdx.

(2.122)
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2.3.4 Equations for bidirectional waves

The KdV equation and its extended versions including higher order corrections are commonly

derived from the Boussinesq system by specializing to a wave moving to the right. In the present

section, solutions of the Boussinesq system are considered, in which the surface elevation splits

into two components u and ξ(x, t) corresponding to the right- and left-moving waves (In a

similar manner, Mattioli [115] have derived the first order system of coupled KdV equations

for the right- and left-moving waves. Marchant [116], have considered the assumption that the

amplitude of the left-moving wave is of O(ε3 and obtained the interaction of solitary waves at

fourth order). In the present work, it is assumed that the amplitude of the left-moving wave

is of O(ε)) as compared with that of the right-moving wave. The procedure, similar to that

commonly used for the unidirectional waves to derive the KdV equation and its extended high

order versions, is applied to the Boussinesq equations to decompose them to a set of equations

consisting of a relation expressing the fluid velocity through u and ξ(x, t) and a system of two

coupled equations for u and ξ(x, t). It is shown that a non-uniqueness of such a decomposition

can be used to derive a system of equations for u and ξ(x, t), in which, to any order, one of the

equations is dependent only on the surface elevation u for the main right-moving wave while

the second equation includes both u and ξ(x, t). In addition, there are freedoms in choosing

the form of the equation for u, in particular, to any order, it can be put (at the expense of

an appropriate choice of the second equation form) into the form having the same differential

structure as the high order KdV equations arising in the unidirectional case but with arbitrary

coefficients in the high order differential polynomials. Thus, the derivation procedure of the

bidirectional wave equation in presence of viscosity, surface tension are clearly presented in

annex.

2.4 Derivation of the Generalized KdV equation with viscosity, sur-

face tension and wind effects

In this section, we simultaneous combine the dissipation due to viscosity, surface tension

and wind effects and show that the model equation can lead to a generalized KdV equation

that includes higher diffusion and instability effects. The combination of such effects has never

been studied in the literature to the best of our knowledge. We show that such effects have

considerable impacts on shallow water wave dynamics. The methodology which allows to obtain

these equations is formulated as follows.
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2.4.1 Mathematical formulation

It has been shown that, the KdV equation can be derived using Euler’s equation for an incom-

pressible and non viscous fluid, the bottom and surface boundary conditions and the assumption

of irrotational flow. In the present work, contrary to this approach, we use the dynamics and

kinematics boundary conditions both corrected by viscosity effect, the Navier-Stokes equation

and the incompressible and irrotational flow assumptions to investigate the dynamics of viscous

flowing shallow water waves. This approach has been used to better study the evolution of long

shallow wave dynamics [14, 67]. The goal is to determine the shape and dynamics of the (1+1)-

dimensional free surface flow of a fluid. We assume that the fluid is viscous, incompressible, and

in irrational motion. Then, we choose the velocity field inside the fluid in the form −→v (u, 0, w)

where u ≡ u(x, z, t) and w ≡ w(x, z, t). The function z = h0 + η(x, t) is the equation of the

surface, where h0 is the average depth of the channel containing the fluid and η(x, t) is the

elevation of the surface, where x is the horizontal coordinate, z the vertical coordinate and t is

the time. The hypothesis that the flow is irrotational makes it possible to affirm the existence of

a velocity potential such that, v(x, z, t) = ∇φ(x, z, t), where the horizontal and vertical velocity

components are given by u = φx and w = φz. The symbol ∇ is the Nabla operator. It should

be noted that, the velocity potential φ(x, z, t) satisfies the Laplace’s equation which is solved

in a domain bounded by the free surface, a horizontal solid bottom and two vertical solid walls

located at the ends of the domain. Thus the problem to be solved is the Laplace equation with

the kinematics, dynamics and bottom conditions, namely

φ2x + φ2z = 0, 0 6 z 6 h0 + η(x, t),

φz = 0, z = 0,

φz = ηt + ηxφx − 2νηxx, z = h0 + η(x, t),

φt +
1

2

(
φ2
x + φ2

z

)
+ gη = −

P

ρ
− 2νφzz, z = h0 + η(x, t),

(2.123)

where g is the acceleration due to the gravity, ν is the kinematic viscosity, P is the pressure in

the fluid and ρ is the density of the fluid.

In this work, we assume that the dynamics free surface condition states that the total

pressure at the surface z = h0 + η(x, t) can be split into two components P1 and P2 such as

P = P1 + P2, where P ≡ P (x, t), P1 ≡ P1(x, t) is the Laplace pressure and P2 ≡ P2(x, t) is the

wind pressure, which will be expressed following the Miles model [19]. Thus, the atmospheric
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pressure due to the wind can be written as follows

P2 = (ξ + iµ)kρa
u∗

κ
η, (2.124)

where ξ and µ are two coefficients depending on both the wavenumber k and phase velocity, ρa

is the density of air, u∗ the friction velocity and κ is the Von Kàrmàn constant. The coefficient

ξ that is in phase with the surface elevation η(x, t), does not participate in the energy transfer

between wind an wave and will therefore be neglected. The coefficient µ provides a term in

phase with iη and therefore in quadrature with the surface elevation η(x, t), which induces its

participation in the energy transfer. The possible values of parameter µ have been tabulated

by Conte and Miles [78] by solving numerically the Rayleigh equation in the context of a

logarithmic profile. These values have been used in deep water field by Kharif et al. [73] and

it has been observed that for low frequency waves, a strong wind is needed to maintain the

modulational instability and that, the wind needs less force to maintain this instability for

higher frequency waves. From there, it is clearly seen that the wind effects are very essential

and important in the water wave dynamics.

For a wave in one spatial dimension, we have η(x, t) = Aei(kx−ct) (where c is the phase

velocity and A is the amplitude) which implies that ηx = ikη. Thus, the wind pressure can be

written in one spatial dimensions in the following forms

P2 = ληx where λ =
µρa
2κ2

u2
∗. (2.125)

The Laplace pressure in one spatial dimension can be written as follows

P1 = σ
ηxx

(1 + η2
x)

3/2
. (2.126)

Since our study deals with small amplitude and long waves, it is preferable to scale our variables

in order to avoid any ambiguity corresponding to a different physical situation. Thus, our

variables will be scaled in such a way that

t̃ =
t

t0
, x̃ =

x

L
, z̃ =

z

h0

, η̃ =
η

A
, φ̃ =

φh0

LA
√
gh0

, (2.127)

where L is a typical wavelength of the surface waves thought the x-direction, A is a typical

amplitude of a surface wave η, and t0 is a characteristic time, which will be used to measure

time in the x-direction.
The Laplace equation, Navier Stokes equations and the boundary conditions at the free

surface and at the bottom take the following form in which all the subscription (∼) have been
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omitted

φz = 0, z = 0,

βφ2x + φ2z = 0, 0 6 z 6 1 + αη,

ηt + αηxφx − β
2Lν

c0h2
ηxx −

1

β
φz = 0, z = 1 + αη,

φt +
α

2

(
φ2x +

1

β
φ2z

)
+

2Lν

c0h2
φ2z + β

λL

gh0
ηx + η − βσ

ηxx

ρgh(1 + βα2η2x)
3/2

= 0, z = 1 + αη,

(2.128)

where σ and ν are the surface tension and viscosity coefficients, respectively. The amplitude

parameter α = A
h
, measures the ratio of wave amplitude to undisturbed fluid depth. The

wavelength parameter β = ( h
L

)2, measures the square of the ratio of fluid depth to wave length.

We focus our attention on low amplitude, weakly nonlinear waves in shallow and viscous water,

then α and β can be considered as small parameters.

The parameters L, c0, h, g and ρ being constant, we can assumed that the Bond number

written as follows τ(σ) = σ
ρgh2

represents our surface tension parameter, δ(ν) = 2Lν
c0h2

our viscisity

parameter and χ(λ) = λL
gh0

our wind parameter. Equation (2.128) can then be rewritten in the

following forms

φz = 0, z = 0,

βφ2x + φ2z = 0, 0 6 z 6 1 + αη,

ηt + αηxφx − βδηxx −
1

β
φz = 0, z = 1 + αη,

φt +
α

2

(
φ2
x +

1

β
φ2
z

)
+ δφ2z + βχηx + η − βτ

ηxx

(1 + βα2η2
x)

3/2
= 0, z = 1 + αη.

(2.129)

2.4.2 Formulation of the Boussinesq system

In this work, the wave regime is considered when the classical Stokes number (S = α/β) is equal

to one, so the amplitude parameter α and the wavelength parameters β in the x-directions

are treated in the same order and on an equal footing, such that we have α = β = ε. The

approximation of the velocity potential φ satisfying the Laplace’s equation and the boundary

condition at the bottom, can be written in the form of the following series

φ(x, z, t) =
∞∑
m=0

(−1)mβm

(2m)!
z2m

∂2m

∂x2m
g(x, t), (2.130)

where the function g(x, t) represent the values of the velocity potential at the bottom z = 0.

Introducing (2.130) in the kinematic and dynamic boundary conditions, we obtain system of

equations for η(x, t) and g(x, t) in the form of infinite series with respect to α or β. Then, we
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consider a truncated Taylor expansion to a finite number of terms with respect to β. Retaining

only the terms of the third order in small parameters, that is, at order O(ε3), we get the third-

order Boussinesq system of equations including terms due to viscosity, surface tension and wind

ηt+wx + ε(ηxw + ηwx −
1

6
w3x − δη2x) + ε2(−

1

2
ηxw2x −

1

2
ηw3x +

1

120
w5x)

+ ε3(
1

24
ηxw4x −

1

2
η2w3x − ηηxw2x +

1

24
ηw5x −

1

5040
w7x) = 0,

(2.131)

ηx+wt + ε(wwx −
1

2
w2xt − τη3x − δw2x + χη2x) + ε2(−ηxwxt +

1

2
wxw2x − ηw2xt

−
1

2
ww3x +

1

24
w4xt +

1

2
δw4x) + ε2(ηxw

2
x − ηηxwxt − ηxww2x +

1

6
ηxw3xt

−
1

2
η2w2xt − ηww3x +

1

12
w2xw3x −

1

8
wxw4x + ηwxw2x +

1

6
ηw4xt +

1

24
ww5x

−
1

720
w6xt + δηw4x −

1

24
δw4x + δηxw3x) = 0,

(2.132)

where the horizontal velocity at the bottom of the fluid component w represent the x-derivative

of a function g(x, t) such as w(x, t) = ∂g(x,t)
∂x

.

2.4.3 Unidirectional shallow water equations

In this section, along the lines of Whitham [47], we use special properties of solutions to lower-

order equations for w and η. To derive the first-, second- and third-order corrections of the

horizontal velocity components and the equations describing right-moving waves in higher or-

ders in ε, we can, reduce the Boussinesq system to an asymptotically equivalent set of equations

consisting of a relationship between the horizontal velocity w and the surface elevation η and

an evolution equation for the elevation. Thus in the lower order, the Boussinesq system of

equations (2.131) and (2.132) becomes

ηt + wx = 0, (2.133)

ηx + wt = 0. (2.134)

The right-moving wave assumption implies that the lowest order Boussinesq system (2.133)

and (2.134) are satisfied if w = η and ηx + ηt = 0. In the following order iteration, we assume

that w can be represented by an expansion of the form

w = η + εA(η) + ε2B(η) + ε3C(η), (2.135)
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where w is the velocity corrected at first order and the coefficients A(η), B(η) and C(η) are

arbitrary functions. These coefficients will subsequently be determined by introducing equations

(2.135) into equations (2.131) and (2.132) of the Boussinesq system, then retaining the terms

up to O(ε), O(ε2) and O(ε3), respectively. By proceeding in this way for the first order of the

small parameter ε, we obtain

ηt + ηx + ε(Ax + 2ηηx − δη2x −
1

6
η3x) = 0, (2.136)

ηt + ηx + ε(At + ηηx − δη2x + χηxx +
1

2
η2xt − τη3x) = 0. (2.137)

Then, we look for the function A(η) as it corresponds to the two equations (2.136) and

(2.137) up to the first order of ε. Using the lower order equation ηt + ηx = 0, it is easy to see

that all the t-derivatives terms of η can be expressed in terms of the x-derivatives such that
∂
∂t

= − ∂
∂x
. This allows us to reduce the system (2.136) and (2.137) into a single equation as

follows

Ax + 2ηηx − δη2x −
1

6
η3x = At + ηηx − δη2x + χηxx +

1

2
η3x − τη3x. (2.138)

A common approach is used the lowest order relation between their time and space deriva-

tives (At = −Ax) in equations (2.138). After integration, we finally obtain

A(η) = −
1

4
η2 +

1

2
χηx +

1

6
(2− 3τ) η2x. (2.139)

Thus, equation (2.135) can take a form corresponding to the first order of the horizontal com-

ponent of the corrected velocity taking into account viscosity, surface tension and wind effects

as follows

w = η + ε

(
−

1

4
η2 +

1

2
χηx +

1

6
(2− 3τ)η2x

)
. (2.140)

Substituting the velocity component given by equation (2.140) into equation (2.131), where,

only terms at O(ε) are considered, we obtain finally a new (1+1)-dimensional third-order evo-

lution equation including the terms due to viscosity, surface tension and wind effects

ηt + ηx + ε

(3

2
ηηx +

1

2
(χ− 2δ)η2x +

1

6
(1− 3τ)η3x

)
= 0. (2.141)

It is worth noting that, by setting δ = 0, χ = 0, X =
√

3
2
(x − t) and T = 1

4

√
3
2
(εt) equation

(2.141) can be reduced to the standard form of the KdV equation ηT + 6ηηX + η3X = 0. In the

same line, if we choose χ = 0 and δ 6= 0, equation (2.141) reduces to the third-order generalized

KdV equation, which have been described and established above.
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In the next order iteration, we assume that the horizontal component of the corrected

velocity w can be represented by an expansion having the form

w = η + ε

(
−

1

4
η2 +

1

2
χηx +

1

6
(2− 3τ)η2x

)
+ ε2B(η), (2.142)

where B(η) is unknown function of η and their derivatives. To determine these coefficients

corresponding to the second order of the parameter ε, equation (2.142) is first introduced into

equations (2.137) and (2.132) and neglecting the terms of higher order than O(ε2) in each

equation. Thus we obtain the following system in which all the t-derivatives terms of η can be

expressed in terms of the x-derivatives through the equation (2.141)

ηt + ηx + ε

[3

2
ηηx +

1

2
(χ− 2δ)η2x +

1

6
(1− 3τ)η3x

]
+ ε2

[
Bx −

3

4
η2ηx +

1

2
χηη2x

+
1

2
χη2

x +
1

12
(1− 6τ)ηxη2x −

1

12
(1 + 6τ)ηη3x −

1

12
χη4x −

( 17

360
−

1

12
τ

)
η5x

]
= 0

(2.143)

ηt + ηx + ε

[3

2
ηηx +

1

2
(χ− 2δ)η2x +

1

6
(1− 3τ)η3x

]
+ ε2

[
Bt −

1

4
(χ− 2δ)η2

x −
1

4
χ2η3x

+

(11

6
+

7

4
τ

)
ηxη2x +

11

12
ηη3x +

1

4
χ(1 + 2τ)η4x +

(11

72
−

1

4
τ −

1

4
τ 2

)
η5x

]
= 0

(2.144)

Following the same procedure that we have used at first order of perturbation, we obtain

B(η) =
1

8
η3 −

1

4
χηηx +

1

4
(2 + τ)ηη2x −

1

8
χ2η2x +

1

12
χ(2 + 3τ)η3x

+
1

16
(3 + 7τ)η2

x +
1

120
(12− 20τ − 15τ 2)η4x −

1

8
(χ− 2δ)

∫
η2
xdx.

(2.145)

Thus, equation (2.135) can take a form corresponding to the second order of the horizontal

component of the corrected velocity taking into account viscosity, surface tension and wind

effects as follows

w = η + ε

[
−

1

4
η2 +

1

2
χηx +

1

6
(2− 3τ)η2x

]
+ ε2

[1

8
η3 −

1

4
χηηx +

1

4
(2 + τ)ηη2x

−
1

8
χ2η2x +

1

16
(3 + 7τ)η2

x +
1

12
χ(2 + 3τ)η3x +

1

120
(12− 20τ − 15τ 2)η4x

−
1

8
(χ− 2δ)

∫
η2
xdx

]
.

(2.146)
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Substituting the velocity component given by equation (2.146) into equation (2.131), where,

only terms at O(ε) and O(ε2) are considered, we obtain finally a new (1+1)-dimensional fifth-

order evolution equation including the terms due to viscosity, surface tension and wind effects

ηt + ηx + ε

[3

2
ηηx +

1

2
(χ− 2δ)η2x +

1

6
(1− 3τ)η3x

]
+ ε2

[
−

3

8
η2ηx +

1

8
(χ+ 2δ)η2

x

+
1

4
χηη2x +

1

24
(23 + 15τ)ηxη2x −

1

8
χ2η3x +

1

12
(5− 3τ)ηη3x +

1

12
χ(1 + 3τ)η4x

+
1

360
(19− 30τ − 45τ 2)η5x

]
= 0.

(2.147)

In the next order iteration, we assume that the horizontal component of the corrected velocity

w can be represented by an expansion having the form

w = η + ε

[
−

1

4
η2 +

1

2
χηx +

1

6
(2− 3τ)η2x

]
+ ε2

[1

8
η3 −

1

4
χηηx +

1

4
(2 + τ)ηη2x

−
1

8
χ2η2x +

1

16
(3 + 7τ)η2

x +
1

12
χ(2 + 3τ)η3x +

1

120
(12− 20τ − 15τ 2)η4x

−
1

8
(χ− 2δ)

∫
η2
xdx

]
+ ε3C(η),

(2.148)

where C(η) is unknown function of η and their derivatives. To determine this coefficient corre-

sponding to the third order of the parameter ε, equation (2.148) is first introduced into equations

(2.131) and (2.132) and neglecting the terms of higher order than O(ε3) in each equation. Thus

we obtain the following system in which all the t-derivatives terms of η can be expressed in

terms of the x-derivatives through the equation (2.147)

ηt + ηx + ε

[3

2
ηηx +

1

2
(χ− 2δ)η2x +

1

6
(1− 3τ)η3x

]
+ ε2

[
−

3

8
η2ηx +

1

8
(χ+ 2δ)η2

x

+
1

4
χηη2x +

1

24
(23 + 15τ)ηxη2x −

1

8
χ2η3x +

1

12
(5− 3τ)ηη3x +

1

12
χ(1 + 3τ)η4x

+
1

360
(19− 30τ − 45τ 2)η5x

]
+ ε3

[
Cx +

1

2
η3ηx +

1

8
(2δ − 5χ)ηη2

x +
1

16
(5 + 7τ)η3

x

−
1

4
χη2η2x −

1

8
χ2ηxη2x +

1

8
(8 + 11τ)ηηxη2x −

1

12
(δ − 2χ)η2

2x +
1

16
(3 + 4τ)η2η3x

−
1

8
χ2ηη3x −

1

48
(4δ − 6χ− 12τχ)ηxη3x −

1

48
(27 + 29τ)η2xη3x −

1

24
χ(1 + 6τ)ηη4x

−
( 43

120
+

3

16
τ +

1

8
τ 2

)
ηxη4x +

(
−

9

80
+

1

24
τ −

1

8
τ 2

)
ηη5x −

1

720
χ(17 + 30τ)η6x

(2.149)

L. Fernand Mouassom 78 Ph.D. in Physics



Methodologies

+
1

48
χ2η5x +

(
−

71

5040
+

17

720
τ +

1

48
τ 2

)
η7x −

1

8
(χ− 2δ)ηx

∫
η2
xdx

]
= 0,

ηt + ηx + ε

[3

2
ηηx +

1

2
(χ− 2δ)η2x +

1

6
(1− 3τ)η3x

]
+ ε2

[
−

3

8
η2ηx +

1

8
(χ+ 2δ)η2

x

+
1

4
χηη2x +

1

24
(23 + 15τ)ηxη2x −

1

8
χ2η3x +

1

12
(5− 3τ)ηη3x +

1

12
χ(1 + 3τ)η4x

+
1

360
(19− 30τ − 45τ 2)η5x

]
+ ε3

[
Ct −

1

8
η3ηx −

1

16
(6δ − 5χ)ηη2

x +
1

8
(7− 10τ)η3

x

+
1

8
χη2η2x +

1

16
(8δχ− 8δ2 + 9χ2)ηxη2x −

(13

24
δ +

5

8
δτ +

23

48
χ+

25

16
τχ

)
η2

2x

+
1

8
(15− 16τ)ηηxη2x −

(7

6
δ +

1

4
δτ −

1

4
χ+

15

8
τχ

)
ηxη3x +

1

16
(7− 2τ)η2η3x

+

(199

72
+

119

48
τ +

49

16
τ 2

)
η2xη3x −

1

24
(δ − 3χ3)η4x +

(1337

720
−

1

48
τ +

21

16
τ 2

)
ηxη4x

+
1

24
χ(11− 6τ)ηη4x −

1

16
χ2(1 + 2τ)η5x +

( 1

24
δ +

11

144
χ+

1

24
τχ+

1

8
τ 2χ

)
η6x

+

(47

80
−

11

24
τ

)
ηη5x +

( 109

2160
−

11

144
τ −

1

16
τ 2 −

1

8
τ 3

)
η7x −

1

8
(χ− 2δ)ηx

∫
η2
xdx

]
= 0.

(2.150)

Following the same procedure that we have used at first and second order of perturbations,

we obtain

C(η) = −
5

64
η4 +

1

16
(2− 3τ)η2η2x +

1

32
(3− 21τ)ηη2

x +

(163

360
+

29

48
τ +

7

16
τ 2

)
η2

2x

+
3

16
χη2ηx −

(11

48
δ +

5

16
δτ +

31

96
χ+

25

32
τχ

)
ηxη2x +

( 7

20
−

1

4
τ +

1

16
τ 2

)
ηη4x

+

(
−

5

16
δ +

37

96
χ−

9

32
τχ+

3

16
τδ

)
ηη3x +

( 1

48
δ +

1

20
χ+

1

24
τχ+

1

16
τ 2χ

)
η5x

+
1

64

(
8δχ− 8δ2 + 11χ2

)
η2
x −

1

48

(
δ − 3χ3

)
η3x +

1

16
χ2

∫
ηη3xdx−

1

48
χ2(2 + 3τ)η4x

+
1

16
(3− 3τ)

∫
η3
xdx+

(1091

1440
+

1

3
τ +

21

32
τ 2

)
ηxη3x +

1

32
(9χ− 10δ)

∫
ηη2

xdx

+

( 61

1890
−

1

20
τ −

1

24
τ 2 −

1

16
τ 3

)
η6x +

( 5

16
δ −

13

96
χ+

1

32
τχ−

3

16
τδ

)∫
ηη4x.

(2.151)

Thus, equation (2.135) can take a form corresponding to the third order of the horizontal
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component of the corrected velocity taking into account viscosity, surface tension and wind

effects as follows

w = η + ε

[
−

1

4
η2 +

1

2
χηx +

1

6
(2− 3τ)η2x

]
+ ε2

[1

8
η3 −

1

4
χηηx +

1

4
(2 + τ)ηη2x −

1

8
χ2η2x

+
1

16
(3 + 7τ)η2

x +
1

12
χ(2 + 3τ)η3x +

1

120
(12− 20τ − 15τ 2)η4x −

1

8
(χ− 2δ)

∫
η2
xdx

]

+ ε3
[
−

5

64
η4 +

3

16
χη2ηx +

1

32
(3− 21τ)ηη2

x +

(163

360
+

29

48
τ +

7

16
τ 2

)
η2

2x +
1

16
(2− 3τ)η2η2x

+

(
−

5

16
δ +

37

96
χ−

9

32
τχ+

3

16
τδ

)
ηη3x +

( 1

48
δ +

1

20
χ+

1

24
τχ+

1

16
τ 2χ

)
η5x

+
1

64

(
8δχ− 8δ2 + 11χ2

)
η2
x −

1

48
χ2(2 + 3τ)η4x +

(1091

1440
+

1

3
τ +

21

32
τ 2

)
ηxη3x

+
1

16
χ2

∫
ηη3xdx+

( 61

1890
−

1

20
τ −

1

24
τ 2 −

1

16
τ 3

)
η6x +

1

16
(3− 3τ)

∫
η3
xdx

+
1

32
(9χ− 10δ)

∫
ηη2

xdx−
(11

48
δ +

5

16
δτ +

31

96
χ+

25

32
τχ

)
ηxη2x −

1

48

(
δ − 3χ3

)
η3x

+

( 7

20
−

1

4
τ +

1

16
τ 2

)
ηη4x +

( 5

16
δ −

13

96
χ+

1

32
τχ−

3

16
τδ

)∫
ηη4x.

]
.

(2.152)

Substituting the velocity component given by equation (2.152) into equation (2.131), where,

only terms at O(ε), O(ε2) and O(ε3) are considered, we obtain finally a new (1+1)-dimensional

seventh-order evolution equation including the terms due to viscosity, surface tension and wind

efects

ηt + ηx + ε

[3

2
ηηx +

1

2
(χ− 2δ)η2x +

1

6
(1− 3τ)η3x

]
+ ε2

[
−

3

8
η2ηx +

1

8
(χ+ 2δ)η2

x

+
1

4
χηη2x +

1

24
(23 + 15τ)ηxη2x −

1

8
χ2η3x +

1

12
(5− 3τ)ηη3x +

1

12
χ(1 + 3τ)η4x

+
1

360
(19− 30τ − 45τ 2)η5x

]
+ ε3

[ 3

16
η3ηx −

1

32
(2δ + 5χ)ηη2

x +
1

32
(19− 13τ)η3

x

−
1

16
χη2η2x −

1

32
(8δ2 − 8δχ− 7χ2)ηxη2x −

1

32
(10δ + 10δτ + 5χ+ 25τχ)η2

2x

+
1

16
(23− 5τ)ηηxη2x +

1

16
(5 + τ)η2η3x +

(317

288
+

15

16
τ +

49

32
τ 2

)
η2xη3x

(2.153)
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−
1

16
(10δ + 2δτ − 3χ+ 13τχ)ηxη3x +

(19

80
−

5

24
τ −

1

16
τ 2

)
ηη5x +

5

24
χηη4x

−
1

16
χ2ηη3x +

(1079

1440
−

5

48
τ +

19

32
τ 2

)
ηxη4x +

( 1

48
δ +

19

720
χ+

1

16
τ 2χ

)
η6x

−
1

48
χ2(1 + 3τ)η5x −

1

48
(δ − 3χ3)η4x +

( 55

3024
−

19

720
τ −

1

48
τ 2 −

1

16
τ 3

)
η7x

−
1

8
(χ− 2δ)ηx

∫
η2
xdx

]
= 0.

Therfore, this equation is a generalization of the KdV equation for the seventh-order non-

linear evolution. This equation taking into account the effects of viscosity, surface tension and

wind can provide better results in modeling the movement of unidirectional waves.

Conclusion

In this chapter, we have presented the basic equations related to the physical and mathe-

matical modeling of the equations describing the waves dynamics in shallow water. Thereafter,

the methodology applied to reach our goals has been presented. In fact, with the help of linear

approximation applying on the Navier-Stokes equations, we have obtained a system of equations

for potential flow which includes viscosity, surface tension and wind. The correction due to the

viscosity have been applied not only to the kinematics boundary condition on the surface, but

also to the dynamics condition modeled by Bernoulli’s equation. The effects of wind and sur-

face tension are introduce in ours models through the Miles’s model and the Laplace pressure,

respectively. We have applied the perturbation theory to the Boussinesq system and derived

higher third-, fifth- and seventh-order nonlinear evolution equations modelling unidirectional

wave motion in (1+1)-dimensions for viscous shallow water waves with surface tension effects

in first instance and the combination of surface tension and wind effects in second times.
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Chapter III

Results and discussion

Introduction

This chapter presents the main results obtained throughout this thesis. We present the

effects of some physical parameters such as viscosity, surface tension, and wind on hydrodynamic

wave for shallow water. In fact, we investigate the soliton-like solutions of the new KdV-type

equations obtained in Chapter II and clearly present the effects of such physical parameters

on the phase and group velocities and on the solitons dynamics. We show that the viscosity,

surface tension and wind effects can have a considerable impact on hydrodynamic waves and on

the solitons dynamics. We also demonstrate that taking into account such parameters leads to

some improved versions of the KdV equation and then can better describe the waves dynamics

in shallow water.

3.1 The generalized KdV equation with viscosity and surface tension

effects

Since the discovery of solitons, the shallow water wave theory has been the subject of

very interesting works. The KdV equation, which describes the motion of small but finite

amplitude waves that propagate in the positive x-direction [10], has been the subject of intensive

works, and experiments. Several phenomena and studies in the field of nonlinear science are

described with general coefficients or with higher-order nonlinear and dissipative terms allowing

to observe new effects [12]. In that sense, several authors have improved the KdV equation by

introducing high-order terms, leading generally to near partially integrable or integrable high-

order equations with quasi-soliton solutions [90]. In these study, it has been shown that, the

KdV equation can be derived using Euler’s equation for an incompressible and non viscous

fluid, the bottom and surface boundary conditions and the assumption of irrotational flow.

In our work, instead of this approach, we have used the dynamics and kinematics boundary

conditions both corrected by viscosity effect, the Navier-Stokes equation and the incompressible
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and irrotational flow assumptions to study the dynamics of viscous flowing shallow water waves.

This approach has been shown to better describe the evolution of long shallow wave dynamics

[14, 67]. We simultaneous combine the dissipation due to viscosity and surface tension effects

and show that the obtained model equations can lead to some new generalized KdV equations

that include higher diffusion and instability effects. Such effects have been shown to have an

impact on the dynamics of shallow water waves [14, 67].

We go beyond the fifth order evolution equation for long wave dissipative solitons derived by

Depassier and Letelier [14] (for dissipative wave supposed to have a lower amplitude O(ε2)). We

show that the dynamics of the wave amplitude for the unidirectional propagation of long waves

over shallow water can have a lower amplitude O(ε3), and can be governed by new generalized

KdV equations for a viscous flowing shallow water waves given by :

ut + ux + ε(a1uux + a2u3x + a3u2x) + ε2(b1u
2ux + b2u2x + b3uxu2x + b4uu2x + b4u

2
x

+ b5uu3x + b6u5x) + ε3(c1u
3ux + c2u

2
x + c2u

2u2x + c3u
3
x + c4uu

2
x + c5uu2x + c6uuxu2x

+ c7u
2u3x + c8uxu4x + c9uu5x + c10u2xu3x + c11u4x + c12u

2
2x + c13uxu3x + c14uu4x

+ c15u7x) = 0,

(3.1)

where the coefficients ai(i = 1, 2, 3), bi(i = 1, ..., 6) and ci(i = 1, ..., 15) depend on some pa-

rameters. The parameter ε is a non-dimensional measure of the small wave amplitude. The

subscripts of the form ”nx” denote derivatives of the order n with respect to x and t, where x

an t are the space and time variables.

It is worth noting that, after the degeneration of each coefficient of equation (3.1), this

equation can be reduced to some well-known equations. For example, if bi(i = 1, ..., 6) = 0,

ci(i = 1, ..., 15) = 0, ε 6= 0 and ai(i = 1, 2, 3) 6= 0, equation (3.1) can be reduced to the

generalized third-order KdV equations [117]. Especially, in the limit case where ε = 1, a1 =

6, a2 = 1 and a3 = 0, this equation can be turned to the standard KdV equation [4]. If

ci(i = 1, ..., 15) = 0 and ai(i = 1, 2, 3), bi(i = 1, ..., 6) and ε are real and arbitrary parameters,

equation (3.1) can be reduced to the fifth-order KdV equations, including the Lax equation

[118], the Sawada-Kotera equation [119] and the Kaup-Kupershmidt equation [120], just to cite

a few. Similarly, if ai(i = 1, 2, 3), bi(i = 1, ..., 6), ci(i = 1, ..., 15) and ε are real and arbitrary

parameters, we obtain the seventh-order KdV equations such as the one introduced by Pomeau

et al. [85]. It is therefore clear that equation (3.1) can be similar to many equations well-known

to the scientific community and can describes many physical situations. This equation can

therefore better describes the dynamics of nonlinear waves in shallow water.

Replacing the parameters ai(i = 1, 2, 3), bi(i = 1, ..., 6) and ci(i = 1, ..., 15) by their expres-
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sions for viscosity and surface tension, we obtain the equation to be solved given by equation

(2.121) in Chapter 2 as follows

ηt + ηx + ε

[3

2
ηηx +

1

6

(
1− 3τ

)
η3x − δη2x

]
+ ε2

[
−

3

8
η2ηx +

1

24

(
23 + 15τ

)
ηxη2x

−
1

4
δη2x +

1

4
δηη2x +

1

12

(
5− 3τ

)
+

1

4
δη2

x +
1

360

(
19− 30τ − 45τ 2

)
η5x

]

+ ε3

[ 3

16
η3ηx −

1

16
δη2

x −
(13

32
+

13

32
τ

)
η3
x +

1

8

(
4− τ

)
η2η3x −

3

16
δηη2

x

+
1

8
δη2η2x −

1

8
δηη2x +

(11

16
+

29

6
τ

)
ηηxη2x +

(1079

1440
−

5

45
τ +

19

32
τ 2

)
ηxη4x

−
1

48

(
1 + 9τ

)
δη4x +

(19

80
−

5

24
τ −

1

16
τ 2

)
ηη5x −

1

4
(1 + τ)δη2

2x +

( 1

24
+

1

8
τ

)
δηη4x

−
1

4
δ2ηxη2x +

(
−

25

48
+

3

48
τ

)
δ ηxη3x +

(377

288
+

15

16
τ +

49

32
τ 2

)
η2xη3x

+

( 55

3024
−

19

720
τ −

1

48
τ 2 −

1

16
τ 3

)
η7x

]
= 0.

(3.2)

This equation is a new generalization of the KdV equation to seventh-order. We show in

the rest of our work that it has soliton-like solutions and can be used to better describe the

dynamics of waves in shallow water in the presence of surface tension and viscosity effects.

3.1.1 Soliton solutions of the generalized KdV equation with viscosity and surface

tension

In this section, by using Hirota’s bilinear method, we investigate the soliton solutions of the

generalized KdV evolution equation (3.2) which describes the dynamics of shallow water waves.

A variety of powerful methods for finding soliton solutions in complex physical systems have

been developed, such as Darboux transformation, Bäcklund transformation, inverse scattering

transformation, Hirota bilinear method, symmetry method, and similarity transformation, juste

to cite a few. Among the different methods available to investigate soliton solutions in various

equations, the Hirota bilinear method has several advantages according to other methods. The

method obtains the results directly, quickly, and needs simple algorithms in programming. The

method also allows testing if a certain equation satisfies the necessary requirements to admit

soliton solutions [12]. Here, we apply Hirota’s bilinear method to look for the soliton type
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solutions of equation (3.2). For this, we assume that the general form of solution is given by

η(x, t) = D
∂2

∂x2
ln(f(x, t)) = D

ff2x − f 2
x

f 2
. (3.3)

The parameter D is a constant to be determined and f(x, t) is the auxiliary function which can

be written in the form of a traveling wave solution such that

f(x, t) = 1 + f1(x, t) = 1 + exp (θ), (3.4)

where θ = kx − ωt + ξ0 and the parameters k, ω and ξ0 are the wave number, the angular

frequency and the phase shift, respectively.

First of all, the substitution of

η(x, t) = exp (θi) where θi = kix− ωit i = 1, 2, ...., N, (3.5)

into the linear terms of (3.2) we obtain the dispersion relation between the wave number ki

and the pulsaton ωi as follows

ω =
1

15120

[
15120k + ε

[
(2520− 7560τ) k − 15120δ

]
k2 + ε2

[
(798− 1260τ

− 1890τ 2)k3 − 3780δ

]
k2 + ε3

[
(275− 399τ − 375τ 2 − 945τ 3)k3 − 2835τδ

]
k4

]
.

(3.6)

To determine the constant D, we introduce equation (3.3) into equation (3.2) where, f(x, t) is

taken as

f(x, t) = 1 + exp

{
kx−

1

15120

[
15120k + ε

[
(2520− 7560τ)k − 15120δ

]
k2

+ ε2

[
(798− 1260τ − 1890τ 2)k3 − 3780δ

]
k2 + ε3

[
(275− 399τ − 375τ 2

− 945τ 3)k3 − 2835τδ

]
k4

]
t

}
.

(3.7)

Equating the coefficients of the different powers of exp (θ) to zero yields a system of polynomial

equations, after solving this system with Mathematica, we find D = 2. This means that the

soliton solution is given by

η(x, t) =
2k2 exp (kx− ωt)

(1 + exp (kx− ωt))2
=

k2

1 + cosh (kx− ωt)
. (3.8)
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Using equation (3.6) and after some transformations, we obtain

η(x, t) =
k2

2
sech2

{
k

2
x−

1

30240

[
15120k + ε

[
(2520− 7560τ)k − 15120δ

]
k2

+ ε2

[
(798− 1260τ − 1890τ 2)k3 − 3780δ

]
k2 + ε3

[
(275− 399τ − 375τ 2

− 945τ 3)k3 − 2835τδ

]
k4

]
t

}
.

(3.9)

This soliton solution describes the long, small-amplitude, unidirectional wave motion in shallow

water with surface tension and viscosity effects.

3.1.2 Phase and group velocity

The Phase and group velocities are two important and related concepts in wave dynamics.

In fact, the wave is a perturbation that propagates through a medium so we can associate such

a wave two velocities including the ohase velocity and the group velocity which are mostly (but

not always) different. To clearly understand the difference between phase and group velocities

of waves, consider the following analogy. A group of people, say city marathon runners start

from the starting at the same time. Initially it would appear that all of them are running at the

same velocity. As the time passes, group spreads out (disperses) simply because each runner in

the group is running with different velocity. If you think of phase velocity to be like the velocity

of an individual runner, then the group velocity is the velocity of the entire group as a whole.

Obviously and most often, individual runners can run faster than the group as a whole. to

stretch this analogy, we note that the phase velocity vph of waves are typically larger than the

group velicty vgr of waves. However, this really depends on the properties of the medium. The

media in which vgr = vph is called the non-dispersive medium. But the media in which vgr < vph

is called normal dispersion. The media in which vgr > vph is called anomolous dispersive media.

It must be emphasised that dispersion is a property of the medium in which a wave travels. It

is not the property of the waves themselves.

The relation between phase and group velocities is given by

vgr =
dω

dk
= vph − λ

dvph

dλ
, (3.10)

where λ is the wavelength. Generally, ω(k) is called thye dispersion relation and indicates the

dispersion properties of a medium. As (3.10) predicts, if the phase velocity does not depends
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on the wavelength of the propagating wave, then vgr = vph. For example, sound waves are non-

dispersive in air, i.e, all the individual components that make up the sound wave travel at same

velocity. Phase velocity of sound waves is independent of the wavelength when it propagates in

air. We propose to evaluate in the following the phase and group velocities of waves modeled

by the obtained equation (3.2).

3.1.2.1 Phase velocity

The phase velocity of a wave is the rate at which the wave propagates in any medium. This

is the velocity at which the phase of any one frequency component of the wave travels. For such

a component, any given phase of the wave (for example, the crest) will appear to travel at the

phase velocity given as follows

vph =
ω

k
, (3.11)

where ω is the angular frequency and k the wave number. Thus, from equation (3.6), we can

easily deduce that the phase velocity of the wave is given by

vph =
ω

k
=

1

15120
(15120 + ε[(2520− 7560τ) k − 15120δ]k + ε2[(798− 1260τ

− 1890τ 2)k3 − 3780δ]k + ε3[(275− 399τ − 375τ 2 − 945τ 3)k3 − 2835τδ]k3).

(3.12)

We notice that the phase velocity is not constant, but depends on k, which implies that we

are in a dispersive medium, so waves of different frequencies propagate at different velocities.

If we consider a wave packet consisting of three waves of neighboring pulses initially in phase

at a date t, we will find after a time ∆t that the wave packet will have widened, and that it

will have propagated at a velocity lower than the velocity of its fastest component.

3.1.2.2 Group velocity

The group velocity is the velocity with which the envelope of a pulse propagates in a medium,

it corresponds to the velocity with which the information is transported in the wave and there-

fore cannot exceed the velocity of light. The expression of the group velocity can be obtained

from the dispersion relation as follows

vgr =
∂ω

∂k
, (3.13)

L. Fernand Mouassom 87 Ph.D. in Physics



Results and discussion

where ω is the angular frequency and k the wave number. Thus, from equation (3.6), we can

easily deduce that the group velocity of the soliton can be written in the following form

vgr =
∂ω

∂k
=

1

15120
(15120 + 2ε[(2520− 7560τ) k − 15120δ]k + ε(2520− 7560τ)k2

+ 3ε2(798− 1260τ − 1890τ 2)k4 + 3ε3(275− 399τ − 375τ 2 − 945τ 3)k6

+ 2ε2[(798− 1260τ − 1890τ 2)k3 − 3780δ]k + 4ε3[(275− 399τ − 375τ 2 − 945τ 3)k3

− 2835δτ ]k3).

(3.14)

We notice that the group velocity is not constant, but depends on k, which implies that we

are in a dispersive medium, so waves of different frequencies propagate at different velocities.

By observing the equation (3.6), it is clearly observed that in the limit case where ε = 0,

the pulsation is directly proportional to the wave number (ω = k). This means that the phase

velocity is independent of the pulsation. Moreover, the phase velocity is equal to the group

velocity (vgr = vph). In this case, the medium is called non-dispersive. This regime corresponds

to the behavior of the oscillator chain when it is crossed by a wave of very long wavelength.

The wave perceives the chain as a continuous medium, and does not distinguish the masses

from each other.

3.1.3 Effects of viscosity and surface tension on the solitons dynamics, phase and

group velocities

For physical application, it is important to discuss about the influence of surface tension and

viscosity on the dynamics of the obtained soliton solutions. However, it is well known that in the

context of shallow water, the average height of the fluid and the length of the channel must be

considered in the order of meters (m) [121, 122]. Therefore, the possible values of surface tension

(τ) and viscosity (δ) reducing to the order 10−7−10−6 are negligible. Thus, to study the effects

of surface tension and viscosity on the dynamics of our solution, we choose our parameters

τ and δ in the interval [0.1 − 0.6] which implies that the height of the fluid and the length

of the channel are of the order of millimeters (mm). Moreover, the choice of these parameters

imposes that the forms of equilibrium taking by the fluid result from a competition between the

forces of gravity (gravitational or inertial) and the forces of surface tension of the liquid, also

called capillary forces [123]. Regarding the small perturbation parameters ε, the choice of the

values of this parameter has been guided by previous analytical, numerical and experimental

works. For example, Do-Carmos et al. [122] have investigated numerically the propagation of
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surface waves in shallow water by choosing ε = 0.1 and ε = 0.25. They confirmed their results

both analytically and experimentally. Along the same line, Renouard et al. [121] have studied

experimentally the generation, Dampening and reflection of a solitary wave by choosing ε in the

range values [0.114− 0.485]. Chambarel et al. [123] have numerically investigated the influence

of wind on extreme wave events in shallow water by choosing A = 0.20m and h = 1m which

implies that ε = A
h

= 0.20. Just recently, Karczewska et al. [11] have studied the dynamics of

solitons in shallow water beyond KdV by using ε in the range values [0.1− 0.3], just to cite a

few.

3.1.3.1 Effects of viscosity and surface tension on the phase and group velocities

The k-dependence of the phase velocity is shown in figures 1-(a) and 1-(b). Both figures

1-(a) and 1-(b) show that, the phase velocity is an increasing function of the wave number.

The figure 1-(a), shows the influence of the viscosity (parameter δ) on the phase velocity curve.

Indeed, we plot the phase velocity as a function of the wave number for three values of δ. We

see that when the value of the parameter δ increases, the phase velocity weakly decreases. We

have also investigated the impact of the surface tension (parameter τ) on the phase velocity.

We plot the phase velocity as a function of the wave number for three values of τ . The result

illustrated in figure 1-(b) clearly shows that the phase velocity strongly decreases when the

value of the parameter τ increases. In conclusion, both viscosity and surface tension have the

same effect on the phase velocity. However, the effect of the surface tension is very greater than

that of the viscosity.

The k-dependence of the group velocity is shown in figures 1-(c) and 1-(d). These figures

show that, the group velocity is an increasing function of the wave number. The figure 1-(c),

shows the influence of the viscosity (parameter δ) on the group velocity curve. Indeed, we plot

the group velocity as a function of the wave number for three values of δ. We see that when

the value of the parameter δ increases, the group velocity decreases very weakly. We have also

investigated the impact of the surface tension (parameter τ) on the group velocity. We plot the

group velocity as a function of the wave number for three values of τ . The result illustrated

in figure 1-(d) clearly shows that the group velocity strongly decreases when the value of the

parameter τ increases. In conclusion, both viscosity and surface tension have the same effect

on the group velocity. However, the effect of the surface tension is very greater than that of the

viscosity.

Furthermore, by carefully observing Figures 3.1-(a) and 3.1-(b) or Figures 3.1-(c) and 3.1-
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(d), it can be seen that the magnitude of the group velocity is greater than that of the phase

velocity (vgr > vph). This fact could mean that, the dispersion is anomalous, the wave regresses

inside a packet, from the head to the tail of this one.

Figure 3.1: Variation of the phase and group velocities, with ε = 0.1 for different values of viscosity

and surface tension parameters: The panels (a) and (b) illustrate the behavior of phase velocity under

the effects of viscosity, (Blue line): δ = 0.1, (Black dashed line): δ = 0.3, (Red dashed line): δ = 0.6

and surface tension, (Blue line): τ = 0.1, (Black dashed line): τ = 0.2, (Red dashed line): τ = 0.3,

respectively. The panels (c) and (d) illustrate the behavior of group velocity under the effects of

viscosity, (Blue line): δ = 0.1, (Black dashed line): δ = 0.3, (Red dashed line): δ = 0.6 and surface

tension, (Blue line): τ = 0.1, (Black dashed line): τ = 0.2, (Red dashed line): τ = 0.3, respectively.

To better investigate the effect of viscosity on the phase and group velocities, we plot both

phase and group velocities as a function of the viscosity parameter δ. Figure 3.2 [(a), (b), (c),

(d), (e) and (f)] shows that, both phase velocity (blue line) and group velocity (dashed red line)

decrease when the viscosity increases. It is clearly shows the influence of the surface tension
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τ on the group and phase velocities as a function of the viscosity curves. Thus, regarding the

effect of surface tension, the results presented in Figure 3.2 are the same as those presented in

Figure 3.1.

In fact, we see that in the interval of τ values [0.0, 0.2, 0.3, 0.4], the two velocities have the

same sign (positve). This can mean that, the wave packet envelope and a given phase point

both move to the right.

In the interval of τ values [0.0, 0.2, 0.3] and δ < 0.3, the amplitude of the group velocity is

greater than that of phase velocity. Thus, for these parameter values, the dispersion is anoma-

lous. The wave packet moves faster than a given phase point and although going in the same

direction (right) as the wave packet, a given phase point seems to regress within a packet and

propagate from the head to the tail.

In figure 3.2-(c), for τ = 0.3 and δ = 0.3, the two velocities have same values, in other

words, the envelope of the wave packet and a given phase point move at the same velocity. In

this case, the medium is nondispersive regime, all given points of the phase within the wave

packet, move as a block the wave propagates without changing its shape. However, for δ > 0.3

and for τ values in the interval [0.3, 0.4, 0.5, 0.6], the phase velocity is greater than the group

velocity (vph > vgr), a given point of the phase moves faster than the wave packet. This fact

could means that, the dispersion is normal and a given point of the phase progresses, within a

wave packet, from the tail to the head.

In figure 3.2-(e), for τ = 0.5 and δ ' 0.32, the group velocity is zero (vgr = 0), the wave

packet does not propagate, which means that the wave is unable to carry energy. In this case,

the superposition of two waves of the same pulsation and the same amplitude propagating in

two opposite directions produces a stationnary wave. However, for τ = 0.5 and δ > 0.32 and

figure 3.2-(f), the two velocities have different signs. In fact the group velocity changes sign

and becomes negative while the phase velocity remains positive. In this case, the wave is said

to be backpropagating, that is to say that, the wave packet and a given point of the phase

propagate in the opposite direction. More clearly, the wave wave packet propagates along the

negative x-direction and a given point of the phase propagates along the positive x-direction.

3.1.3.2 Effects of surface tension, viscosity on the soliton dynamics

The effect of viscosity or surface tension in the study of wave dynamics at the water surface

is a very interesting subject which is nowadays the object of more and more interesting works.

In fact, the study of one or the other of these parameters on the dynamics of the waves in various
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Figure 3.2: Phase (Blue line) and group (Red dashed line) velocities as a function of the viscosity

parameter, for ε = 0.3 and different values of surface tension parameter: (a): τ = 0.0, (b): τ = 0.2,

(c): τ = 0.3, (d): τ = 0.4, (e): τ = 0.5, (f): τ = 0.6.
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fields of the nonlinear sciences were carried out and interesting results have been produces. For

example, Li [124] studied the performance of centrifugal pumps using water and viscous oil as

working fluids. The results show that, high viscosity leads to a rapid increase in disc friction

losses on the outer faces of the impeller liner and hub, as well as hydraulic losses in the pump

flow channels. It also shows that, the flow patterns near the impeller outlet are little affected by

fluid viscosity, but those near the impeller inlet are strongly affected by viscosity. In the same

sense, Gaver et al. [125] studied airway opening in a tabletop model designed to mimic bronchial

walls held in apposition by airway lining fluid. They measured the relationship between airway

opening velocity and applied airway opening pressure in thin-walled polyethylene tubes of

different radii using lining fluids of different surface tensions and viscosities. The results show

that when the capillary number is low, the opening pressure acts as an apparent "yield pressure"

that must be exceeded before airway opening can begin. the capillary number is high (greater

than 0.5), the viscous forces significantly increase the overall opening pressures. Based on these

results, the authors made predictions about airway opening times. The results suggest that,

airway closure can persist for a considerable portion of inspiration when the viscosity or surface

tension of the lining fluid is high. Thus, along the same idea, we investigate in the followingthe

effects of the viscosity, the surface tension and the amplitude parameter on the soliton dynamics.

The effects of the viscosity on the soliton dynamics are illustrated in figures 3.3, 3.4 and 3.5.

It is shown in figure 3.3 [(a), (b), (c) and (d)] that, for the same value of the small parameter

ε, the viscosity strongly impact the width of the soliton. Indeed, we plot the soliton solution

given by equation (3.9) for four different values of viscosity parameter. The result show that,

when the values of viscosity parameter δ increases, the width of the soliton also increases, but

its amplitude remains constant. This result is in agreement with the dissipative character of

viscosity. In this case, the wave obtained is a dissipative soliton and propagates by losing energy.

Figure 3.4 shows the 2-dimensional plot of the soliton under the effects of the viscosity.

Indeed, in figure 3.5, by comparing the width of the soliton represented by the blue (δ = 0.6),

red (δ = 1.5), purple (δ = 3.0) and black (δ = 4.0) lines, it is clear that the width of the soliton

increases with the value of the viscosity parameter. This may therefore suggests that a soliton

propagating to the right in a viscous medium tends to increase (respectively decrease) in width

if the viscosity of medium increases (respectively decreases).

Figure 3.5 [(a), (b), (c) and (d)] illustrates the impact of the amplitude parameter ε on the

soliton dynamics. It is revealed that, the growth of ε amplifies the effects of viscosity while

keeping the amplitude of soliton constant.
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Figure 3.3: Effect of viscosity on the soliton solutions of the generalized inhomogeneous KdV equation

(3.2) without effect of surface tension (τ = 0), with k = 0.5, ε = 0.3 and different values of the

viscosity parameter : (a): δ = 0.6; (b): δ = 1.5; (c): δ = 3.0 and (d): δ = 4.0.

Figure 3.4: 2D-plot of the soliton solutions of the generalized inhomogeneous KdV equation (3.2)

without effect of surface tension (τ = 0), with ε = 0.3, t = 0.5, k = 0.5, for different values of viscosity

parameter: (Blue line): δ = 0.6, (Red line): δ = 1.5, (Purple line): δ = 3.0, (Black line): δ = 4.0.
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Figure 3.5: Effect of viscosity and the small parameter ε on the soliton solutions of the generalized

inhomogeneous KdV equation (3.2) without effect of surface tension (τ = 0), with k = 0.5, and different

values of the viscosity parameter : (a): ε = 0.1, δ = 0.6; (b): ε = 0.1, δ = 4.0; (c): ε = 0.3, δ = 0.6

and (d): ε = 0.3, δ = 4.0.

Figures 3.6, 3.7 and 3.8 illustrate the behavior of the soliton solution of equation (3.2) under

the effect of surface tension. In figure 3.6, we fix the value of the parameter ε and vary the value

of τ . It is clearly shows that as the case of viscosity, the width of the soliton increases when the

value of the surface tension parameter increases when the wave amplitude remains constant.

However, the comparison between the effects of viscosity and surface tensionreveals that the

effects of the viscosity on the width of soliton are greater important than that of surface tension.

In order the better illustrate the effect of surface tension, the 2-dimensional plot of the

soliton under the effects of the surface tension is shows in figure 3.7. By comparing the width

of the soliton represented by the blue (τ = 0.6), red (τ = 2.5), purple (τ = 4.0) and black

(τ = 6.0) lines, we observe that, the width of the soliton is an increasing function of the surface

tension parameter.

Figure 3.8 [(a), (b), (c) and (d)] shows the impact of the amplitude parameter ε on the soliton

dynamics. For this, we plot the soliton solution for two values of parameter ε and surface tension

parameter, the result reveals that, the growth of ε amplifies the effects of surface tension.
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Figure 3.6: Effect of surface tension on the soliton solutions of the generalized inhomogeneous KdV

equation (3.2) without effect of viscosity (δ = 0), with k = 0.5, ε = 0.3 and different values of the

tension surface parameter : (a): τ = 0.6; (b): τ = 1.5; (c): τ = 3.0 and (d): τ = 6.0.

Figure 3.7: 2D-plot of the soliton solutions for the generalized inhomogeneous KdV equation (3.2)

without effect of viscosity (δ = 0), with ε = 0.3, t = 0.5, k = 0.5, for different values of surface tension

parameter: (Blue line): τ = 0.6, (Red line): τ = 2.5, (Purple line): τ = 4.0, (Black line): τ = 6.0.
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Figure 3.8: Effect of surface tension and the small parameter ε on the soliton solutions of the generalized

inhomogeneous KdV equation (3.8) without effect of viscosity (δ = 0), with k = 0.5, and different values

of the surface tension parameter : (a): ε = 0.1, τ = 0.6; (b): ε = 0.1, τ = 6.0; (c): ε = 0.3, τ = 0.6

and (d): ε = 0.3, τ = 6.0.

In figures 3.9, 3.10 and 3.11, we take into account both the effects of viscosity and surface

tension. It is seen that the effects of viscosity are strongly amplified by the effects of surface

tension.

Figure 3.9: Combined effect of viscosity and surface tension on the soliton solutions for the generalized

inhomogeneous KdV equation (3.2) with k = 0.5, ε = 0.3 and different values of surface tension and

viscosity parameters : (a): τ = 0.6, δ = 0.6; (b): τ = 1.5, δ = 1.5; (c): τ = 3.0, δ = 3.0 and (d):

τ = 6.0, δ = 4.0.
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Figure 3.10: 2D-plot of the soliton solutions for the generalized inhomogeneous KdV equation (3.2)

with ε = 0.3, t = 0.5, k = 0.5, for different values of surface tension and viscosity parameters: (Blue

line): δ = 0.6, τ = 0.6, (Red line): δ = 1.5, τ = 1.5, (Purple line): δ = 2.5 τ = 2.5, (Black line):

δ = 3.0, τ = 3.0.

Figure 3.11: Combined effect of viscosity, surface tension and that of the small parameter ε on the

soliton solutions of the generalized inhomogeneous KdV equation (3.2) with k = 0.5, and different

values of the surface tension and viscosity parameters : (a): ε = 0.1, τ = 0.6, δ = 0.6; (b): ε = 0.1,

τ = 6.0, δ = 4.0; (c): ε = 0.3, τ = 0.6, δ = 0.6 and (d): ε = 0.3, τ = 6.0, δ = 4.0.
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3.2 The generalized KdV equation with viscosity, surface tension and

wind effects

Several works have been devoted to study the impact of the wind on the dynamics of

nonlinear waves. The Jeffreys model [16] assumes that, waves move in the opposite direction

to the wind and thus constitute a barrier to the wind flow. In this model, the windward side

of the wave receives the wind frontally, while the leeward side is sheltered. This creates a

pressure difference and thus a force exerted on the wave [17]. The model developed by Phillips

[18] assumes that, the fluid flow is potential and the air flow is turbulent. The turbulence of

the air creates random pressure variations which create waves. The Miles model [19] is based

on an analysis of the stability of parallel flows in both air and water. It consider air to be

incompressible and non-viscous, with a logarithmic velocity profile [17].

During the 20th century, starting from one or the other of the overcited models, several

authors have studied the impact of wind on the dynamics of extreme waves. For example,

by using a pressure distribution over the steep crests given by the Jeffreys model, Kharif et

al. [73] have investigated experimentally and numerically the influence of wind on extreme

wave events in deep water. [40] have used the Jeffreys model and investigated experimentally

without wind and in presence of wind the rogue wave formation due to the dispersive focusing

mechanism. The authors conclude that, the duration of the rogue wave event increases with

the wind velocity. In the same line, amplification of nonlinear surface waves by wind have been

investigated by Leblanc [22] using the Miles’ model. Despite all these interesting works, the

question of the interaction between wind and waves remains an open subject. Indeed, all these

works listed above have been carried out in order to study the effects of wind on the dynamics

of extreme waves such as rogue waves. Most of these works deal only with the generalized

nonlinear Schrödinger equations. Motivated by the obtained results, we extend the study to the

generalized KdV equation. This equation have been shown to better describes the propagation

of solitary waves in shallow water. We simultaneous combine the dissipation due to viscosity,

surface tension and wind effects the combination of such effects has never been studied in the

literature to the best of our knowledge. We show that such effects have considerable impacts on

shallow water wave dynamics and that the model equation can lead to some generalized KdV

equations that includes higher diffusion and instability effects given by

For the first-order expansion of the small parameter ε. This equation will be called the

generalized third-KdV equation with viscosity, surface tension and wind effects in the rest of
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our work

ηt + ηx + ε

(3

2
ηηx +

1

2
(χ− 2δ)η2x +

1

6
(1− 3τ)η3x

)
= 0. (3.15)

And for the second-order expansion of the small parameter ε. This equation will be called

the generalized fifth-KdV equation with viscosity, surface tension and wind effects in the rest

of our work

ηt + ηx + ε
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2
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]
+ ε2

[
−
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8
η2ηx +
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+
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4
χηη2x +

1

24
(23 + 15τ)ηxη2x −

1

8
χ2η3x +

1

12
(5− 3τ)ηη3x +

1

12
χ(1 + 3τ)η4x

+
1

360
(19− 30τ − 45τ 2)η5x

]
= 0.

(3.16)

These two equations are new generalizations of the KdV equation to the third- and fifth-

order. We show in the rest of our work that they have soliton-like solutions and that they can

be used to better describe the dynamics of solitary waves in shallow water in the presence of

wind effets, surface tension and viscosity.

3.2.1 Soliton solutions of the generalized third-KdV equation with viscosity, sur-

face tension and wind effects

In order to investigate the soliton solutions of the above equation, we apply Hirota’s bilinear

method. For this, we assume that the general form of solution is given by

η(x, t) = R
∂2

∂x2
ln(f(x, t)) = R

ff2x − f 2
x

f 2
, (3.17)

where R is some function to be determined and f(x, t) is the unknown function namely the

auxiliary function. Usually, the function f(x, t) has the form of a traveling wave given by the

perturbation expansion

f(x, t) = 1 +
N∑
n=0

υnfn(x, t), (3.18)

where υ is a bookkeeping nonsmall parameter and fn(x, t), n = 1, 2, ...., which are independent

of υ, are unknown real functions to be determined. In the case of single soliton solution (N = 1),

we assume that f1(x, t) = exp (θ) such a way that
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f(x, t) = 1 + f1(x, t) = 1 + exp (θ), (3.19)

where θ = kx−ωt, the parameters k and ω are the wave number along the x-direction and the

angular frequency, respectively.

Substituting η(x, t) by exp (θ) into the linear terms of (3.15) leads the dispersion relation

given by

ω = k + ε

(1

2
k2(χ− 2δ) +

1

6
k3(1− 3τ)

)
. (3.20)

To determine the function R, we introduce equation (3.17) intoequation (3.15) where, the

f(x, t) is taken as

f(x, t) = 1 + exp

[
kx−

[
k + ε

(1

2
k2(χ− 2δ) +

1

6
k3(1− 3τ)

)]
t

]
. (3.21)

Equating the coefficients of the different powers of exp (θ) to zero yields a system of poly-

nomial equations, after solving this system with Mathematica, we find the following two values

of R

R11 =
4(k − 2δ − 3kτ + χ)

3k
and R12 =

2(2k + 2δ − 6kτ − χ)

3k
. (3.22)

This means that the soliton solution is given by

η1i(x, t) =

R1ik
2 exp

(
kx−

[
k + ε

(1

2
k2(χ− 2δ) +

1

6
k3(1− 3τ)

)]
t

)
(

1 + exp

(
kx−

[
k + ε

(1

2
k2(χ− 2δ) +

1

6
k3(1− 3τ)

)]
t

))2
. (3.23)

After some transformations, we obtain

η1i =
k2

4
R1isech2

[
1

2

(
kx−

[
k + ε

(1

2
k2(χ− 2δ) +

1

6
k3(1− 3τ)

)]
t

)]
, (3.24)

where the different values of the parameter R1i(i = 1, 2) are given by equation (3.22).

This soliton solution describes the (1+1)-dimensional long, small-amplitude, unidirectional

wave motion in shallow water with the effects of wind, surface tension and viscosity.

L. Fernand Mouassom 101 Ph.D. in Physics



Results and discussion

3.2.2 Phase and group velocity

The wave is a perturbation that moves through a medium. It is therefore possible to

associate it with two wave velocities, namely the phase velocity and the group velocity, which

are sometimes different. We propose to evaluate in the following the phase and group velocities

of waves modeled by the obtained equation (3.15).

3.2.2.1 Phase velocity

The phase velocity of a wave is the velocity with which the phase of a wave moves. For

such a component, any given phase of the wave (for example, the crest) will appear to travel

at the phase velocity given as follows

vph =
ω

k
, (3.25)

where ω is the angular frequency and k the wave number. Thus, from equation (3.20), we can

easily deduce that the phase velocity of the soliton is given by

vph = 1 + ε

(1

2
k(χ− 2δ) +

1

6
k2(1− 3τ)

)
. (3.26)

We notice that the phase velocity is not constant, but depends on k, which implies that we

are in a dispersive medium, so waves of different frequencies propagate at different velocities.

If we consider a wave packet consisting of three waves of neighboring pulses initially in phase

at a date t, we will find after a time ∆t that the wave packet will have widened, and that it

will have propagated at a velocity lower than the velocity of its fastest component.

3.2.2.2 Group velocity

Waves can be in a group and such group are called waves packets, so the velocity with

which a wave packet moves is called group velocity. The expression of the group velocity can

be obtained from the following dispersion relation

vgr =
∂ω

∂k
, (3.27)

where ω is the dispersion relation and k the wave number. Thus, from equation (3.20), we can

easily deduce that the group velocity of the soliton can be written in the following form

vgr = 1 + ε

(
k(χ− 2δ) +

1

2
k2(1− 3τ)

)
. (3.28)
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We notice that the phase velocity is not constant, but depends on k, which implies that we

are in a dispersive medium, so waves of different frequencies propagate at different velocities.

By observing the equation (3.26), it is clearly observed that in the limit case where ε = 0,

the pulsation is directly proportional to the wave number (ω = k). This means that the phase

velocity is independent of the pulsation. Moreover, the phase velocity is equal to the group

velocity. In this case, the medium is called non-dispersive regime. This regime corresponds to

the behavior of the oscillator chain when it is crossed by a wave of very long wavelength. The

wave perceives the chain as a continuous medium, and does not distinguish the masses from

each other.

3.2.3 Effects of viscosity, surface tension and wind on the solitons dynamics, phase

and group velocities

For physical application, it is important to discuss about the influence of surface tension

and viscosity on the dynamics of the obtained soliton solutions. For that, it will be a question

of giving different values to our parameters and deduce their effects on the studied dynamics,

the justification of the choice of the range of values of our parameters τ and δ have been given

above. However, given the lack of literature concerning the improvement of the KdV equation

taking into account the effects of the wind in the context of shallow water, we have chosen the

theorical values of the wind parameter χ so that they are be of the same order as those of the

viscosity (δ) and surface tension (τ) parameters in order to balance the different forces acting

on the fluid. In this way, the results discussed in the rest of this work with the used values of

τ , δ and χ in the interval [0.1− 0.6] are applicable to gravity-capillary waves.

3.2.3.1 Effects of viscosity, surface tension and wind on the phase and group velocities

The k-dependence of the phase and group velocities are shown in figures-3.12. In this figure, it

is clearly observed that the results are the same as those obtained above (the growth of these

speeds when the wave number increases). The effects of viscosity and surface tension on the

phase and group velocities are also similar to the results obtained above (the decrease of these

velocities when viscosity or surface tension increases).

The figure 3.12-(c) shows the influence of the wind (parameter χ) on the phase velocity

curve. Indeed, we plot the phase velocity as a function of the wave number for four values of

χ. We see that when the value of the parameter χ increases, the phase velocity increases. Thus

we can say that the presence of wind increases the phase velocity of the wave. This observation
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confirms the hypothesis that, the energy of the wind can be transferred to the wave.

In figure 3.12-(f), we observe the effects of wind (parameter χ) on the group velocity. Indeed,

we plot the group velocity as a function of the wave number for four values of the parameter χ.

It is shown that when the value of the parameter χ increases, the group velocity also increases.

This could mean that, a wave packet propagating in a windy environment will receive additional

energy due to the influence of the wind.

Moreover, by carefully observing Figures 3.12-(c) and 3.12-(f), it can be seen that the

magnitude of the group velocity is greater than that of the phase velocity (vgr > vph). This

fact could mean that, the dispersion is anomalous, the wave regresses inside a packet, from the

head to the tail of this one.

Figure 3.12: Phase and group velocities variation given by equations (3.26) and (3.28) with ε = 0.003,

for different values of viscosity, surface tension and wind parameters: The panels (a), (b) and (c)

illustrate the behavior of phase velocity under the effects of viscosity, (Black line): δ = 0.0, (Green

dashed line): δ = 0.1, (Blue dashed line): δ = 0.2, (Red dashed line): δ = 0.3, surface tension, (Black

line): τ = 0.0, (Green dashed line): τ = 0.1, (Blue dashed line): τ = 0.2, (Red dashed line): τ = 0.3 and

wind, (Black line): χ = 0.0, (Green dashed line): χ = 0.1, (Blue dashed line): χ = 0.2, (Red dashed

line): χ = 0.3, respectively. The panels (d), (e) and (f) illustrate the behavior of group velocity under

the effects of viscosity, (Black line): δ = 0.0, (Green dashed line): δ = 0.1, (Blue dashed line): δ = 0.2,

(Red dashed line): δ = 0.3, surface tension, (Black line): τ = 0.0, (Green dashed line): τ = 0.1, (Blue

dashed line): τ = 0.2, (Red dashed line): τ = 0.3 and wind, (Black line): χ = 0.0, (Green dashed line):

χ = 0.1, (Blue dashed line): χ = 0.2, (Red dashed line): χ = 0.3, respectively.
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3.2.3.2 Effects of viscosity, surface tension and wind on the soliton dynamics

The study of the effect of wind on the dynamics of waves is still an open subject and is

not fully mastered. Numerous works on the effect of wind on wave dynamics in deep water

have led to valuable and interesting results. Thus, taking into account the wind in the study of

wave dynamics at the water surface is a very interesting subject. In the following, we describe

the shape and motion of the soliton solution, from the expressions of equation (3.23), which

have been explicitly constructed by using the Hirota’s bilinear method. We also investigate the

effects of wind, viscosity and surface tension on the soliton dynamics.

The effects of the viscosity on the soliton dynamics are illustrated in figures 3.13 and 3.14. In

figure 3.13 [(a); (b); (c) and (d)], we observe that, for the same value of the small parameters ε,

the viscosity strongly impacts the amplitude of the soliton. Indeed, when the values of viscosity

parameter δ increases, the amplitude of the soliton decreases.

Figure 3.14 shows the 2-dimensional plot of the soliton under the effects of the viscosity.

Thus, by comparing the amplitude of the soliton represented by the Black (δ = 0.0), Green

dotted (δ = 0.10), Blue dashed (δ = 0.20) and Red dashed (δ = 0.30) lines, it is clear that the

viscosity has an important effect on the amplitude of the soliton.

In figure 3.15 and 3.16, we graphically investigate the influence of the surface tension on

the soliton dynamics. In figure 3.16 [(a), (b), (c) and (d)], we observe that the amplitude of

the soliton is a decreasing function of surface tension parameter (parameter τ). Indeed, we plot

the soliton solution with four values of parameter τ , it is shown that when the value of the

parameter τ increases, the amplitude of the soliton decreases. The 2-dimensional plot of the

soliton under the effects of the surface tension (Black (τ = 0.0), Green dotted (τ = 0.10), Blue

dashed (τ = 0.20) and Red dashed (τ = 0.30) lines), is illustrated in figure 3.16. It is clear that,

the amplitude of the soliton decreases with the value of the surface tension parameter, but its

structure remains unchanged. The results obtained here are in agreement with the definition

of surface tension.

The influence of wind on the soliton dynamics is presented in figures 3.17 and 3.18. We

observe in figure 3.17 [(a), (b), (c) and (d)] that, the wind strongly impacts the amplitude of

the soliton. It has been shown that when the value of the parameter χ increases, the amplitude

of the soliton also increases. The 2-dimensional plot of the soliton under the effects of the wind

(Black (χ = 0.0), Green dotted (χ = 0.10), Blue dashed (χ = 0.20) and Red dashed (χ = 0.30)

lines), is illustrated in figure 3.18. It is clear that, the amplitude of the soliton is an increasing

function of wind parameter χ, while its structure remains unchanged.
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Figure 3.13: Effect of surface tension on the soliton solutions of the third-order generalized KdV

equation (3.15) without viscosity (δ = 0) and wind (χ = 0) effects, with k = 1, ε = 0.003 and different

values of the surface tension parameter : (a): τ = 0.0; (b): τ = 0.1; (c): τ = 0.2 and (d): τ = 0.3.

Figure 3.14: 2D-plot of the soliton solutions of the third-order generalized KdV equation (3.15) without

surface tension (τ = 0) and wind (χ = 0) effects, with k = 1, ε = 0.003 and different values of the

viscosity parameter: (Black line): δ = 0.0, (Green dashed line): δ = 0.1, (Blue dashed line): δ = 0.2,

(Red dashed line): δ = 0.3.
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Figure 3.15: Effect of viscosity on the soliton solutions of the third-order generalized KdV equation

(3.15) without surface tension (τ = 0) and wind (χ = 0) effects, with k = 1, ε = 0.003 and different

values of the viscosity parameter : (a): δ = 0.0; (b): δ = 0.1; (c): δ = 0.2 and (d): δ = 0.3.

Figure 3.16: 2D-plot of the soliton solutions of the third-order generalized KdV equation (3.15) without

surface tension (τ = 0) and wind (χ = 0) effects, with k = 1, ε = 0.003 and different values of the

viscosity parameter: (Black line): δ = 0.0, (Green dashed line): δ = 0.1, (Blue dashed line): δ = 0.2,

(Red dashed line): δ = 0.3.
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Figure 3.17: Effect of wind on the soliton solutions of the third-order generalized KdV equation (3.15)

without viscosity (δ = 0.0) and surface tension (τ = 0.0) effects, with k = 1, ε = 0.003 and different

values of the wind parameter : (a): χ = 0.0; (b): χ = 0.1; (c): χ = 0.2 and (d): χ = 0.3.

Figure 3.18: 2D-plot of the soliton solutions of the third-order generalized KdV equation (3.15) without

viscosity (δ = 0) and wind (χ = 0) effects, with k = 1, ε = 0.003 and different values of the surface

tension parameter: (Black line): τ = 0.0, (Green dashed line): τ = 0.1, (Blue dashed line): τ = 0.2,

(Red dashed line): τ = 0.3.
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3.2.4 Soliton solutions of the generalized fifth-KdV equation with viscosity, sur-

face tension and wind effects

Substituting η(x, t) by exp (kx− ωt) into the linear terms of (3.16) leads the dispersion relation

given by

ω =k + ε

(1

2
k2(χ− 2δ) +

1

6
k3(1− 3τ)

)
+ ε2

(
−

1

8
k3χ2 +

1

12
k4χ(1 + 3τ)

+
1

360
k5(19− 30τ − 45τ 2)

)
.

(3.29)

To determine the function R, we introduce equation (3.17) into equation (3.16) where, the

f(x, t) is taken as

f(x, t) =1 + exp

{
kx−

[
k + ε

(1

2
k2(χ− 2δ) +

1

6
k3(1− 3τ)

)

+ ε2
(
−

1

8
k3χ2 +

1

12
k4χ(1 + 3τ) +

1

360
k5(19− 30τ − 45τ 2)

)]
t

}
.

(3.30)

Equating the coefficients of the different powers of exp (kx− ωt) to zero yields a system of

polynomial equations, after solving this system with Mathematica, we find the following four

values of R

R21 = −
4(−12k + 24δ − 19k3ε+ 36kτ − 30k3ετ + 45k3ετ 2 − 12χ− 14k2εχ− 42k2ετχ+ 9kεχ2)

3k(12 + 11k2ε+ 2kδε+ 3k2ετ + 3kεχ)
,

R22 = −
4(−12k + 12δ − 19k3ε+ 36kτ + 30k3ετ + 45k3ετ 2 − 6χ+ 11k2εχ+ 33k2ετχ+ 9kεχ2)

3k(12 + 11k2ε+ 2kδε+ 3k2ετ + 3kεχ)
,

R23 = −
1

18k3ε
(−36k + 225k3ε+ 6k2δε+ 9k3ετ + 21k2εχ± A),

(3.31)

R23 = −
1

18k3ε
(36k − 225k3ε+ 6k2δε− 9k3ετ + 21k2εχ±B),

where the coefficients A and B are given by
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A =

[
(36k − 225k3ε− 6k2δε− 9k3ετ − 21k2εχ)2 + 36k3ε(−48k + 240δ + 380k3ε

+ 144kτ − 600k3ετ − 900k3ετ 2 − 120χ+ 76k2εχ+ 228k2ετχ+ 36kεχ2)

]1/2

,

B =

[
(−36k + 225k3ε− 6k2δε+ 9k3ετ − 21k2εχ)2 − 36k3ε(48k + 144δ − 380k3ε

− 144kτ + 600k3ετ + 900k3ετ 2 − 72χ+ 84k2εχ+ 252k2ετχ− 36kεχ2)

]1/2

.

This means that the soliton solution is given by

η2i(x, t) =
R2ik

2 exp (kx− ωt)
(1 + exp (kx− ωt))2

. (3.32)

After some transformations, we obtain

η2i =
k2 R2i

4
sech2

[
1

2
(kx− ωt)

]
, (3.33)

where the parameters R2i(i = 1, 2, 3, 4) are given by equation (3.31) and the parameter ω is

given by equation (3.29).

This soliton solution describes a (1+1)-dimensional unidirectional motion of long, low am-

plitude waves in shallow water, taking into account the effects of wind, surface tension and

viscosity.

3.2.5 Phase and group velocity

The wave is a perturbation that moves through a medium. It is therefore possible to

associate it with two wave velocities, namely the phase velocity and the group velocity, which

are sometimes different. We propose to evaluate in the following the phase and group velocities

of waves modeled by the obtained equation (3.16)

3.2.5.1 Phase velocity

Starting from equation (3.29), it is possible to obtain the phase velocity of the soliton as follows

vph =
ω

k
= 1 + ε

(1

2
k(χ− 2δ) +

1

6
k2(1− 3τ)

)

+ ε2
(
−

1

8
k2χ2 +

1

12
k3χ(1 + 3τ) +

1

360
k4(19− 30τ − 45τ 2)

)
.

(3.34)
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We notice that the phase velocity is not constant, but depends on k, which implies that we

are in a dispersive medium.

3.2.5.2 Group velocity

Starting from equation (3.29), it is possible to obtain the group velocity of the soliton as follows

vgr =
∂ω

∂k
= 1 + ε

(
k(χ− 2δ) +

1

2
k2(1− 3τ)

)

+ ε2
(
−

3

8
k2χ2 +

1

3
k3χ(1 + 3τ) +

1

72
k4(19− 30τ − 45τ 2)

)
.

(3.35)

3.2.6 Effects of viscosity, surface tension and wind on the solitons dynamics, phase

and group velocities

The k-dependence of the phase and group velocities is shown in figures-3.19. These figures

show that, the behavior of the phase and group velocities for the fifth-order generalized KdV

equation under the effects of viscosity, surface tension and wind are identical to that of the

phase velocity for the third-order generalized KdV equation.

Similarly, the effects of viscosity, surface tension, and wind on the soliton solution of the

fifth-order generalized KdV equation are the same as those for the third-order generalized KdV

equation. Therefore, we have deemed it necessary not to present their graphical illustration.

Conclusion

In this chapter, we have presented the different soliton solutions of the obtained new KdV

equations improved by the effects of viscosity, surface tension and wind. We have investigated

the effects of viscosity, surface tension and wind on the phase and group velocities of the

waves and on the solitons dynamics, by varying the values of each corresponding parameter.

The results have been revealed that such parameters can strongly influence the dynamics of

hydrodynamic waves in shallow water.
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Figure 3.19: Phase and group velocities variation given by equations (3.34) and (3.35), respectively,

with ε = 0.003, for different values of viscosity, surface tension and wind parameters: The panels (a),

(b) and (c) illustrate the behavior of phase velocity under the effects of viscosity, (Black line): δ = 0.0,

(Green dashed line): δ = 0.1, (Blue dashed line): δ = 0.2, (Red dashed line): δ = 0.3, surface tension,

(Black line): τ = 0.0, (Green dashed line): τ = 0.1, (Blue dashed line): τ = 0.2, (Red dashed line):

τ = 0.3 and wind, (Black line): χ = 0.0, (Green dashed line): χ = 0.1, (Blue dashed line): χ = 0.2,

(Red dashed line): χ = 0.3, respectively. The panels (d), (e) and (f) illustrate the behavior of group

velocity under the effects of viscosity, (Black line): δ = 0.0, (Green dashed line): δ = 0.1, (Blue dashed

line): δ = 0.2, (Red dashed line): δ = 0.3, surface tension, (Black line): τ = 0.0, (Green dashed line):

τ = 0.1, (Blue dashed line): τ = 0.2, (Red dashed line): τ = 0.3 and wind, (Black line): χ = 0.0,

(Green dashed line): χ = 0.1, (Blue dashed line): χ = 0.2, (Red dashed line): χ = 0.3, respectively.
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In this thesis, we have studied the effects of viscosity, surface tension and wind on hydrody-

namic waves for shallow water. The thesis have been organized in three parts. In Chapter I, we

have presented a literature review on the hydrodynamic waves. Indeed, the history, main charac-

teristics, conditions of existence and mechanisms of generation of waves encountered in shallow

water have been presented. In Chapter II, we have presented the basic equations related to the

physical modeling of the equations describing the wave dynamics in shallow water. Thereafter,

the methodology applied to reach our goals has been presented. In Chapter III, the results of

our investigations have been presented. The soliton-like solutions of the obtained equations and

the impact of viscosity, surface tension and wind on the phase and group velocities of the waves

and on the soliton dynamics in general have been investigated.

The results have shown that the approximation of the Navier-Stocks equation, the correction

of the kinematics boundary condition at the surface and bottom by the viscosity, the Laplace

pressure, the Mile model and the assumption of an incompressible and irrotational flow, lead

to the formulation of a new Boussinesq system which takes into account the effects of the phys-

ical parameters mentioned above. The results of the perturbation theory applied to Boussinesq

system have led to new generalized KdV-type equations depending on the order of the pertur-

bation theory. The results have also revealed that a non-uniqueness of the decomposition of

the Boussinesq system can be used to derive a system of equations for the surface elevation

for right- and left-moving waves. One of the equations depends only on the surface elevation

for the main right-moving wave while the second equation includes both surface elevation for

right- and left-moving waves.

The solitons solutions of the obtained equations have been constructed and the effects

of viscosity, surface tension and wind on the solitons dynamics have been investigated. The

results have shown that, when the values of the viscosity parameter δ and the surface tension

parameter τ increase, the width of the solitons increases. This results may therefore suggests

that, solitons propagating in a viscous medium tends to increase (respectively decrease) in

width if the viscosity of medium increases (respectively decreases). It have been also shown

L. Fernand Mouassom 113 Ph.D. in Physics



General Conclusion and Perspectives

that, when the value of the wind parameter χ increases, the amplitude of the solitons also

increases. This suggests that, during the propagation of solitons, if a strong wind occurs its

energy can be transmitted to the solitons.

The effects of these physical parameters on the phase and group velocities of the waves have

been also investigated. It has been revealed that, when the values of the viscosity parameter δ

and the surface tension parameter τ increase, the phase and group velocities decrease. However,

the effect of the surface tension has been found very greater important than that of the viscosity.

When the value of the wind parameter χ increases, the amplitudes of the phase and group

velocities increase.

The results obtained in this thesis predict a behavior of nonlinear waves that propagate in

shallow water. These results can confirm the idea that, physical parameters such as viscosity,

surface tension and wind are very important to improve the understanding and modeling of

wave dynamics in shallow water.

Perspectives
Several points related to this topic remain unsolved or unexplored, and then may be the

subject for future investigations.

� In this work, the perturbation theory applied to the Boussinesq system have been done

in (1+1)-dimension. However, several phenomena and studies in the field of nonlinear physics

are described in higher dimensions. Thus, our work can be extended and investigated in (2+1)-

dimensions.

� In general, the KdV equation is derived under the assumption of flat bottom of the chan-

nel. This assumption is not realistic for most of the situations in the real world, bottoms of

rivers, seas or oceans are non-flat. In the future, the assumption of the non-flat bottom of the

channel will be considered.

� The study of the effects of variable coefficients on the waves dynamics has continuously

attracted considerable attention over the last two decades. For future, the effects of space and

time variable coefficients for the KdV models will be investigated.
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Annex

Derivation of equations for bidirectional waves

In the field of shallow water, through the non-uniqueness of the Boussinesq decomposi-

tion, it has been shown that waves also propagate in two directions [90]. To derive the equations

for bi-directional waves, the approach is to split the surface elevation η(x, t) into two compo-

nents, namely u(x, t) and ξ(x, t) corresponding to the right- and left-moving waves respectively.

The left-moving wave is of the order O(ε) smaller than that of the right-moving wave. Thus,

one can assume:

η(x, t) = u(x, t) + εξ(x, t),

w(x, t) = w+(x, t) + εw−(x, t),
(3.36)

where w+(x, t) = u(x, t) + εR(x, t) and w−(x, t) = εS(x, t) are the scaled horizontal velocity

at the bottom of the fluid to the right- and left-moving respectively. As for the equations for

unidirectional waves, we applied the same procedure. Then, at the lowest order we imposes

that the Boussinesq system is reduced to ut + w+
x = 0 and ux + w+

t = 0, which are satisfied

by the right-moving wave ux + ut = 0 and the corresponding equation for the left-moving wave

ξx − ξt = 0. We express w in the form

w = u+ εR + εS = u+ εQ, (3.37)

where Q = (R + S) is arbitrary function of x and t. This function will subsequently be deter-

mined by introducing equation (3.37) and the first equation of equation (3.36) into equations

(2.106) and (2.108). Neglecting the terms of higher order than O(ε) in each equation, we obtain

the following system

ux + ut + ε(Qx + ξx + 2uux − δu2x −
1

6
u3x) = 0,

ux + ut + ε(Qt + ξx + uux − δu2x +
1

2
u3x − τu3x) = 0,

(3.38)
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Proceeding in the same way as in [90], we assume that the two equations in (3.37) are identical

and can take the form ux + ut + ε(k1uux + k2u2x + k3u3x) = 0. Thus, we obtain

Qx =− (ξx + 2uux − δu2x −
1

6
u3x) + k1uux + k2u2x + k3u3x,

Qt =− (ξx + uux − δu2x +
1

2
u3x − τu3x) + k1uux + k2u2x + k3u3x.

(3.39)

We perform a partial derivation of these two equations with respect to t and x respectively. We

then substitute ut by −ux and ξt by ξx, and subtract the equations, we obtain

(3− 2k1) (u2
x + uu2x)− 2(k2 + δ)u3x +

(
1

3
(1− 3τ)− 2k3

)
u4x = 0. (3.40)

The equation (3.40) is satisfied by k1 = 3/2, k2 = −δ and k3 = (1/6)(1 − 3τ). Thus, both

equations in (3.38) take the form

ux + ut + ε

(3

2
uux − δu2x +

1

6
(1− 3τ)u3x

)
= 0, (3.41)

which coincides with the same order equation for η(x, t) in the pure right-moving wave case.

Substituting the coefficients ki(i = 1, 2, 3) by their expressions in the first equation of (3.39),

and integrating once with respect to x leads to

Q = −ξ −
1

4
u2 +

1

6
(2− 3τ)u2x. (3.42)

To determine the equation corresponding to the second order O(ε2), we assume that the

equations for the horizontal velocity w and the left-moving wave ξ, can be written in the form

w = u+ ε

(
− ξ −

1

4
u2 +

1

6
(2− 3τ)u2x

)
+ ε2M,

ξt = ξx + εHx,

(3.43)

where H ≡ H(x, t) andM ≡M(x, t) are free functions. To determine the functions H(x, t) and

M(x, t), equation (3.43) is introduced into equations (2.106) and (2.108). Neglecting the terms

of higher order than O(ε2) in each equation, all the t-derivatives of u and ξ are replaced by their

expressions through the x-derivatives using the lowest order equation, namely equation (3.41)

and the second equation of equation (3.43). Upon these substitutions, we obtain the following
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equations

ux + ut + ε

(3

2
uux − δu2x +

1

6
(1− 3τ)u3x

)
+ ε2

(
Mx +Hx − δξ2x +

1

6
ξ3x −

3

4
u2ux

+
1

12
(1− 6τ)uxu2x −

1

12
(1 + 6τ)uu3x −

1

360
(17− 30τ)u5x

)
= 0,

ux + ut + ε

(3

2
uux − δu2x +

1

6
(1− 3τ)u3x

)
+ ε2

(
Mt −Hx − ξux − uξx + δξ2x +

1

2
δu2

x

+
1

2
(1− 2τ)ξ3x +

11

12
uu3x +

(11

6
+

7

4
τ

)
uxu2x +

(11

72
−

1

4
τ −

1

4
τ 2

)
u5x

)
= 0.

(3.44)

The next step consists to assume from the requirement that the both equations (3.44) can take

the form

ux+ut+ε

(3

2
uux−δu2x+

1

6
(1−3τ)u3x

)
+ε2(b1u5x+b2uu3x+b3uxu2x+b4u

2ux+b5u
2
x) = 0, (3.45)

which implies that

Mx = −Hx + δξ2x −
1

6
ξ3x +

1

4
(3 + 4b4)u2ux +

1

12
(1 + 6τ + 12b2)uu3x

−
1

12
(1− 6τ − 12b3)uxu2x +

1

360
(17− 30τ + 360b1)u5x + b5u

2
x,

Mt = Hx + ξux + uξx − δξ2x −
1

2
(1− 2τ)ξ3x +

1

2
(2b5 − δ)u2

x −
(11

6
+

7

4
τ − b3

)
uxu2x

+ b4u
2ux −

1

12
(11− 12b2)uu3x −

(11

72
−

1

4
τ −

1

4
τ 2 − b1

)
u5x.

(3.46)

Integrating the first equation of equation (3.46) with respect to x leads to

M = −H + δξx −
1

6
ξ2x +

1

12
(3 + 4b4)u3 +

1

12
(1 + 6τ + 12b2)uu2x

−
1

12
(1 + 2b2 − 6b3)u2

x + b5

∫
u2
x +

1

360
(17− 30τ + 360b1)u5x.

(3.47)

Substituting equation (3.47) into the second equation of equation (3.46) yields

Hx +Ht = −ξux − uξx + 2δξ2x +
1

3
(1− 3τ)ξ3x − 2

(
b4 +

3

8

)
u2ux +

1

2
(δ − 4b5)u2

x

− 2

[
+

(
b3 −

5

8
τ −

23

24

)
uxu2x +

(
b1 −

19

360
+

1

12
τ +

1

8
τ 2

)
u5x

+

(
b2 −

5

12
+

1

4
τ

)
uu3x

]
.

(3.48)
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To find the solution H(x, t) of equation (3.48), we sum its derivatives with respect to x and t

and obtain

H = −
1

2
(πu)x + δπ2x +

1

6
(1− 3τ)π3x +G. (3.49)

By replacing H by its expression in (3.49) we obtain

M =−G+
1

2
uξ +

1

2
uxπ −

1

6
(2− 3τ) ξ2x +

1

12
(1 + 6τ + 12b2)uu2x +

1

12
(3 + 4b4)u3

+ b5

∫
u2
xdx−

1

12
(1 + 2b2 − 6b3)u2

x +
1

360
(17− 30τ + 360b1)u5x,

(3.50)

such that ξ = πx and G satisfies the following equation

Gx +Gt = −2

[(
b4 +

3

8

)
u2ux +

(
b2 −

5

12
+

1

4
τ

)
uu3x −

1

4
(δ − 4b5)u2

x

+

(
b3 −

5

8
τ

23

24

)
uxu2x +

(
b1 −

19

360
+

1

12
τ +

1

8
τ 2

)
u5x

]
.

(3.51)

Introducing equation (3.49) into the second equation of equation (3.43) and integrating with

respect to x leads to equation in terms of the left-moving wave for the first order O(ε) as follows

πt − πx + ε

(1

2
(πu)x − δπ2x −

1

6
(1− 3τ)π3x −G

)
= 0. (3.52)

Introducing equations (3.49) and (3.50) into equation (3.44), we obtain

ux + ut + ε

(3

2
uux − δu2x +

1

6
(1− 3τ)u3x

)
+ ε2

(
−Gx + ξux +

1

2
uξx +

1

2
δu2

x − δξ2x

+
1

2
πu2x −

1

6
(1− 3τ)ξ3x + b1u5x + b2uu3x + b3uxu2x + b4u

2ux + b5u
2
x

)
= 0.

(3.53)

To establish the equation corresponding to the third order O(ε3), we assume that the equations

for the horizontal velocity ω and the left-moving wave ξ can be written in the form

w = u+ε

(
− ξ −

1

4
u2 +

1

6
(2− 3τ)u2x

)
+ ε2

(
−G+

1

2
uξ +

1

2
uxπ −

1

6
(2− 3τ) ξ2x

+
1

12
(1 + 6τ + 12b2)uu2x +

1

12
(3 + 4b4)u3 −

1

12
(1 + 2b2 − 6b3)u2

x + b5

∫
u2
x

+
1

360
(17− 30τ + 360b1)u5x

)
+ ε3P,

ξt = ξx + εHx + ε2Lx,

(3.54)
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where the free functions L ≡ L(x, t) and P ≡ P (x, t) will be determined later. Introducing

equation (3.54) into equations (2.106) and (2.108), we obtain the following equations

ux + ut + ε

(3

2
uux − δu2x +

1

6
(1− 3τ)u3x

)
+ ε2

(
−Gx + ξux +

1

2
uξx +

1

2
δu2

x − δξ2x

−
1

6
(1− 3τ)ξ3x + b1u5x + b2uu3x + b3uxu2x + b4u

2ux + b5u
2
x

)
+ ε3

[
Px + Lx − uGx

−Gux + ξuux − 2ξξx +
1

2
πu2

x +
1

4
ξxu

2 +
1

2
πuu2x −

(2

3
+

1

2
τ

)
ξxu2x +

1

6
G3x

−
1

6
(1− 3τ)ξ2xux −

1

2
(1 + τ)ξu3x −

1

12
πu4x +

1

12
(1 + 6τ)uξ3x +

( 17

360
−

1

12
τ

)
ξ5x

+
1

2
(δ + 2b5)uu2

x −
( 1

12
+

1

2
b2 −

1

2
b3 +

1

3
b4

)
u3
x +

1

3
(3 + 4b4)u3ux −

(1

3
b5 +

1

6
δ

)
u2

2x

−
(1

3
b5 +

1

6
δ

)
uxu3x −

(3

4
− b2 − b3 + b4 − τ

)
uuxu2x −

( 7

24
− b2 +

1

6
b4 −

1

2
τ

)
u2u3x

−
( 1

72
+

1

6
b2 +

1

2
b3 +

1

3
τ

)
u2xu3x −

( 9

80
− b1 +

1

3
b2 +

1

6
b3 +

1

12
τ

)
uxu4x

+

(
−

23

240
+ b1 −

1

6
b2 +

1

12
τ

)
uu5x +

1

2
(δ + 2b5)ux

∫
u2
xdx−

( 1

189
+

1

6
b1 −

7

720
τ

)
u7x

]
= 0,

(3.55)

ux + ut + ε

(3

2
uux − δu2x +

1

6
(1− 3τ)u3x

)
+ ε2

(
−Gx + ξux +

1

2
uξx +

1

2
δu2

x − δξ2x +
1

2
πu2x

−
1

6
(1− 3τ)ξ3x + b1u5x + b2uu3x + b3uxu2x + b4u

2ux + b5u
2
x

)
+ ε3

[
Pt − Lx −

1

2
uGx −Gux

+
3

4
ξuux −

1

4
πu2

x +
1

2
u2ξx + ξξx −

3

2
δξxux + δG2x −

1

2
πuu2x − δξu2x −

(1

3
+ τ

)
ξxu2x

−
(2

3
+

1

2
τ

)
uxξ2x +

(5

4
−

1

4
τ

)
ξu3x +

11

12
uξ3x +

1

12
πu4x +

(11

72
−

1

4
τ −

1

4
τ 2

)
ξ5x −

2

3
b4u

3ux

−
1

6
(2− 3τ)G3x +

(7

6
+ b2 − b3 −

4

3
b4 − b4τ

)
u3
x +

(1

2
b5 − δ − 2b4δ

)
uu2

x − (2b5δ + δ2)uxu2x

+
1

2
(δ + 2b5)ux

∫
u2
xdx+

(1

4
− b2 −

5

6
b4 +

1

4
τ

)
u2u3x +

(191

240
− b1 −

5

6
b2 − τ +

1

4
τ 2

)
uu5x

+

(85

18
− 15b1 −

5

6
b2 − 2b3 −

1

8
τ −

3

2
b3τ +

1

2
τ 2

)
u2xu3x −

(4

3
b5 −

2

3
δ − b2δ + b3δ + b5τ

)
u2

2x

(3.56)
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+

(231

80
−

13

2
b1 −

7

6
b2 −

5

6
b3 −

37

24
τ −

3

2
b2τ

)
uxu4x −

(4

3
b5 −

1

3
δ + 2b2δ + b5τ + δτ

)
uxu3x

+

(31

12
−

7

2
b2 − b3 − 4b4 −

7

4
τ − 3b4 τ

)
uuxu2x +

( 83

1080
−

5

6
b1 −

41

240
τ −

1

24
τ 2

)
u7x

]
= 0.

In the next step, we assume the requirement that both equations (3.55) can be written in the

following forms

ux + ut + ε

[3

2
uux − δu2x +

1

6
(1− 3τ)u3x

]
+ ε2

[
−Gx + ξux +

1

2
uξx +

1

2
δu2

x − δξ2x

+
1

2
πu2x −

1

6
(1− 3τ)ξ3x + b1u5x + b2uu3x + b3uxu2x + b4u

2ux + b5u
2
x

]
+ ε3

[
c1u7x

+ c2uu5x + c3uxu4x + c4u
2u3x + c5u2xu3x + c6uuxu2x + c7uxu3x + c8u

3
x + c9ux

∫
u2
x

+ c10u
3ux + c11uu

2
x + c12u

2
2x + c13uxu2x

]
= 0.

(3.57)

The expressions for the x- and t-derivatives of P must be then written as

Px = −Lx + uGx +Gux − ξuux + 2ξξx −
1

2
πu2

x −
1

4
ξxu

2 −
1

2
πuu2x +

(2

3
+

1

2
τ

)
ξxu2x

+
1

6
(1− 3τ)ξ2xux −

1

6
G3x +

1

2
(1 + τ)ξu3x +

1

12
πu4x −

1

12
(1 + 6τ)uξ3x −

( 17

360
−

1

12
τ

)
ξ5x

−
1

2
(δ + 2b5 − 2c11)uu2

x −
1

3
(3 + 4b4 − 3c10)u3ux −

1

2
(δ + 2b5 − 2c9)ux

∫
u2
xdx

+

(1

3
b5 +

1

6
δ + c12

)
u2

2x +

(1

3
b5 +

1

6
δ + c7

)
uxu3x +

(3

4
− b2 − b3 + b4 − τ + c6

)
uuxu2x

+ c13uxu2x +

( 7

24
− b2 +

1

6
b4 −

1

2
τ + c4

)
u2u3x +

( 1

72
+

1

6
b2 +

1

2
b3 +

1

3
τ + c5

)
u2xu3x

+

( 9

80
− b1 +

1

3
b2 +

1

6
b3 +

1

12
τ + c3

)
uxu4x +

( 1

12
+

1

2
b2 −

1

2
b3 +

1

3
b4 + c8

)
u3
x

−
(
−

23

240
+ b1 −

1

6
b2 +

1

12
τ − c2

)
uu5x +

( 1

189
+

1

6
b1 −

7

720
τ + c1

)
u7x,

(3.58)

Pt = Lx +
1

2
uGx +Gux −

3

4
ξuux +

1

4
πu2

x −
1

2
u2ξx − ξξx +

3

2
δξxux − δG2x +

1

2
πuu2x + δξu2x

+

(1

3
+ τ

)
ξxu2x +

(2

3
+

1

2
τ

)
uxξ2x −

(5

4
−

1

4
τ

)
ξu3x −

11

12
uξ3x −

1

12
πu4x +

1

6
(2− 3τ)G3x
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−
(11

72
−

1

4
τ −

1

4
τ 2

)
ξ5x −

(7

6
+ b2 − b3 −

4

3
b4 − b4τ − c8

)
u3
x +

(2

3
b4 + c10

)
u3ux

−
1

2
(δ + 2b5 − c9)ux

∫
u2
xdx−

(1

2
b5 − δ − 2b4δ − c11

)
uu2

x + (2b5δ + δ2 + c13)uxu2x

−
(31

12
−

7

2
b2 − b3 − 4b4 −

7

4
τ − 3b4 τ − c6

)
uuxu2x −

(191

240
− b1 −

5

6
b2 − τ +

1

4
τ 2 − c2

)
uu5x

+

(4

3
b5 −

1

3
δ + 2b2δ + b5τ + δτ + c7

)
uxu3x +

(4

3
b5 −

2

3
δ − b2δ + b3δ + b5τ + c12

)
u2

2x

−
(1

4
− b2 −

5

6
b4 +

1

4
τ − c4

)
u2u3x −

(85

18
− 15b1 −

5

6
b2 − 2b3 −

1

8
τ −

3

2
b3τ +

1

2
τ 2 − c5

)
u2xu3x

−
(231

80
−

13

2
b1 −

7

6
b2 −

5

6
b3 −

37

24
τ −

3

2
b2τ − c3

)
uxu4x −

( 83

1080
−

5

6
b1 −

41

240
τ −

1

24
τ 2 − c1

)
u7x.

(3.59)

Integrating equation (3.57) with respect to x, we obtain

P = −L+ uG−
1

2
πuux −

1

4
πxu

2 + π2
x −

1

6
G3x −

1

12
(1 + 6τ)π3xu+

1

4
π2xux +

1

12
(5 + 6τ)πxu2x

+
1

12
πu3x −

( 17

360
−

1

12
τ

)
π5x +

1

12
(3c10 − 4b4 − 3)u4 +

( 23

240
− b1 +

b2

6
−

τ

12
+ c2

)
uu4x

+

(b1

3
+
δ

6
+ c7

)
uxu2x +

(
c1 +

b1

6
+

1

189
−

7

720
τ

)
u6x +

(
c12 − c7

)∫
u2

2xdx

+

(
c11 − b5 −

δ

2

)∫
uu2

xdx+

(
c8 + c4 −

c6

2

)∫
u3
xdx+

( 7

24
− b2 +

b4

6
−
τ

2
+ c4

)
u2u2x

+
1

12
c13u

2
x +

(b2

6
+
b3

6
+
τ

6
+ c3 − c2 +

1

60

)
uxu3x +

(b3

6
+

τ

12
+
c2

2
+
c5

2
−
c3

2
−

1

720

)
u2

2x

+

(b2

2
+
b4

3
+
c6

2
−
b3

2
− c4 +

1

12

)
uu2

x +

(
c9 − b5 −

δ

2

)∫ (
ux

∫
u2
xdx

)
dx.

(3.60)

Introducing equation (3.59) into the equation (3.58) yields

Lx + Lt =
3

4
uuxπx +

1

4
u2
xπ +

1

4
u2π2x + 3πxπ2x −

3

2
δuxπ2x − δu2xπx −

1

6
(1 + 3τ)u2xπ2x

−
1

3
uxπ3x +

1

12
(11− 9τ)u3xπx +

1

6
(5− 3τ)uπ4x −

3

2
uGx − 2Gux + δG2x −

1

6
(1− 3τ)G3x

+

( 19

180
−
τ

6
−
τ 2

4

)
π6x +

(9

2
−

5

2
b2 − 2b3 − 3b4 − 2c6 +

τ

2
− 3b4τ

)
uuxu2x +

1

2
(2b5 + δ − 2c9)µ
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−
(b1

3
+

2

3
b5 + 2c7 + 2b2δ + b5τ + δτ

)
uxu3x +

(1

4
−

4

3
b4 − 2c10

)
u3ux +

1

2
(2b5 + δ − 2c9)λ

+

(98

45
−

11

2
b1 −

5

6
b2 −

2

3
b3 − 2c3 −

5

3
τ −

3

2
b2τ

)
uxu4x −

(c13

6
+ 2b5δ + c13δ + δ2

)
uxu2x

−
(1

3
b1 +

2

3
b5 + 2c12 −

1

3
δ − b2δ + b3δ + b5τ

)
u2

2x +

(11

12
− 2b2 −

2

3
b4 − 2c4 +

1

4
τ

)
u2u3x

−
(1

2
b5 + 2c11 + 2b4δ

)
uu2

x +
1

2
(2b5 + δ − 2c9)ν +

(4

3
+

1

2
b2 −

1

2
b3 − b4 − 2c8 − b4τ

)
u3
x

+

(2

3
− 2b1 −

2

3
b2 − 2c2 − τ

)
uu5x +

( 17

315
−

2

3
b1 − 2c1 −

2

15
τ

)
u7x

+

(65

18
− 15b1 −

2

3
b2 −

3

2
b3 − 2c5 − τ −

3

2
b3τ +

τ 2

2

)
u2xu3x,

(3.61)

where

ν =

∫
(u2x

∫
u2
xdx)dx, λ = ux

∫
u2
xdx, µ =

∫
u3
xdx.

To find the solution L(x, t) of equation (3.61), we sum its derivatives with respect to x and t

and obtain

L =
3

8
uuxπ +

1

8
u2πx −

1

6
uxπ2x −

3

4
δuxπx +

3

4
π2
x −

δ

2
u2xπ +

1

24
(11− 9τ)u3xπ

+
1

12
(5− 3τ)uπ3x −

1

12
(1 + 3τ)u2xπx +

1

8
u2
x

∫
πdx+

1

360
(19− 30τ − 45τ 2)π5x +K,

(3.62)

where the function K satisfies the following equation

Kx +Kt = −
3

2
uGx − 2Gux + δG2x −

1

6
(1− 3τ)G3x −

(c13

6
+ 2b5δ + c13δ + δ2

)
uxu2x

+
1

2
(2b5 + δ − 2c9)µ+

(98

45
−

11

2
b1 −

5

6
b2 −

2

3
b3 − 2c3 −

5

3
τ −

3

2
b2τ

)
uxu4x

+

(9

2
−

5

2
b2 − 2b3 − 3b4 − 2c6 +

τ

2
− 3b4τ

)
uuxu2x −

(b1

3
+

2

3
b5 + 2c7 + 2b2δ + b5τ + δτ

)
uxu3x

+

(1

4
−

4

3
b4 − 2c10

)
u3ux +

1

2
(2b5 + δ − 2c9)λ−

(1

2
b5 + 2c11 + 2b4δ

)
uu2

x +
1

2
(2b5 + δ − 2c9)ν

−
(1

3
b1 +

2

3
b5 + 2c12 −

1

3
δ − b2δ + b3δ + b5τ

)
u2

2x +

(4

3
+

1

2
b2 −

1

2
b3 − b4 − 2c8 − b4τ

)
u3
x

(3.63)
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+

(11

12
− 2b2 −

2

3
b4 − 2c4 +

1

4
τ

)
u2u3x +

(2

3
− 2b1 −

2

3
b2 − 2c2 − τ

)
uu5x

+

(65

18
− 15b1 −

2

3
b2 −

3

2
b3 − 2c5 − τ −

3

2
b3τ +

τ 2

2

)
u2xu3x +

( 17

315
−

2

3
b1 − 2c1 −

2

15
τ

)
u7x.

By replacing L by its expression in (3.60), we obtain

P =−K + uG−
1

6
G2x −

3

8
u2πx −

7

8
πuux +

3

4
δuxπx +

1

4
π2
x +

1

12
c13u

2
x +

5

12
uxπ2x +

1

2
δu2xπ

−
1

4
(2 + τ)uπ3x +

1

4
(2 + 3τ)u2xπx +

1

2
(2c11 − 2b5 − δ)

∫
uu2

xdx−
3

8
(1 + τ)πu3x

−
( 1

10
−

1

6
τ −

1

8
τ 2

)
π5x +

(
c4 + c8 −

c6

8

)
µ−

(1

4
−
b4

3
−
c10

4

)
u4 + (c12 − c7)

∫
u2

2xdx

−
1

8
u2
x

∫
πdx+

( 1

12
−
b3

2
+
b4

3
− c4 +

c6

2

)
uu2

x +

(
−

1

720
+
b3

6
+
c2

2
−
c3

2
+
c5

2
+

τ

12

)
u2

2x

+

( 7

24
− b2 +

b4

6
+ c4 −

τ

2

)
u2u2x +

( 1

60
+
b2

6
+
b3

6
− c2 + c3 +

τ

6

)
uxu3x

+

( 23

240
− b1 +

b2

6
+ c2 −

τ

12

)
uu4x +

1

2
(2c9 − 2b5 − δ)

∫
ux

(∫
u2
x

)
dx

+

(b1

3
+ c7 +

δ

6

)
uxu2x +

( 1

189
+
b1

6
+ c1 −

7

720
τ

)
u6x.

(3.64)

Introducing equation (3.62) in the second equation of equation (3.54) and integrating with

respect to x leads to the equation of the right- and left-moving wave for the second order O(ε2)

as follows

πt − πx + ε

[1

2
(πu)x − δπ2x −

1

6
(1− 3τ)π3x −G

]
+ ε2

[
−

3

8
uuxπ −

1

8
u2πx +

1

6
uxπ2x

+
3

4
δuxπx +

δ

2
u2xπ −

1

12
(5− 3τ)uπ3x −

1

24
(11− 9τ)u3xπ −

3

4
π2
x +

1

12
(1 + 3τ)u2xπx

−
1

8
u2
x

∫
πdx−

1

360
(19− 30τ − 45τ 2)π5x −K

]
= 0,

(3.65)

where the functions G and K satisfy equations (3.51) and (3.63) respectively. The function
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u(x, t) corresponds to the pure right-moving wave equation and can be written as

ux + ut + ε

[3

2
uux − δu2x +

1

6
(1− 3τ)u3x

]
+ ε2

[
b1u5x + b2uu3x + b3uxu2x + b4u

2ux

+ b5u
2
x

]
+ ε3

[
c1u7x + c2uu5x + c3uxu4x + c4u

2u3x + c5u2xu3x + c6uuxu2x + c7uxu3x

+ c8u
3
x + c9ux

∫
u2
x + c10u

3ux + c11uu
2
x + c12u

2
2x + c13uxu2x

]
= 0.

(3.66)
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Abstract. The research of rogue wave solutions of the nonlinear Schrödinger (NLS) equations is still an open
topic. NLS equations have received particular attention for describing nonlinear waves in optical fibres, photonics,
plasmas, Bose–Einstein condensates and deep ocean. This work deals with rogue wave solutions of the chiral NLS
equation. We introduce an inhomogeneous one-dimensional version, and using the similarity transformation and
direct ansatz, we solve the equation in the presence of dispersive and nonlinear coupling which are modulated in
time and space. As a result, we show how a simple choice of some free functions can display a lot of interesting
rogue wave structures and the interaction of quantum rogue waves. The results obtained may give the possibility of
conducting relevant experiments in quantum mechanics and achieving potential applications.

Keywords. Rogue waves; chiral nonlinear Schrödinger equation; modulated coefficients; quantum mechanics.
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1. Introduction

Nowadays, the study of rogue waves attracts a great
deal of interest from scientific community, especially in
nonlinear sciences. Rogue waves are giant single waves
that may suddenly appear in oceans [1]. These are also
known as monstrous waves, deadly waves or extreme
waves. Their appearance can be quite unexpected and
their origin is mysterious. The rogue wave phenomenon
becomes more and more popular for describing nonlin-
ear waves in other fields such as in nonlinear optics [2–4]
and atmosphere [5], just to cite a few. Contrary to the dis-
persive behaviour adopted by traditional waves of low
amplitude, rogue waves are self-reinforcing packets of
solitary waves. The rogue wave phenomenon is not just a
spectacular event accessible to routine observations and
satellite images but also a combination of complex phys-
ical processes that occur under the accuracy conditions
[6]. This complex combination of physical processes can
be well described by the nonlinear Schrödinger (NLS)
equations.

NLS equations are prototypical dispersive nonlinear
partial differential equations which have been derived
and analysed in various branches of physics such as
nonlinear optics [7], photonics [8], Bose–Einstein con-
densates [9] and nonlinear oceanography [10,11]. It has

been found that rogue waves are analytical solutions
of some integrable NLS equations [12–15], Benjamin–
Ono equation [16] and Hirota equation [17].

In recent years, it has been shown that the nonuni-
form physical systems are more suitable candidates for
achieving the required controlling mechanisms [18].
The physical medium with defects or inhomogeneities
always has some irregular changes, which are related to
the realistic understanding of the nonlinear phenomena
[19]. Along the same idea, experiment has shown that
the inhomogeneity of a medium plays an important role
in the generation of optical rogue waves, and the inho-
mogeneity is usually described by nonlinear differential
equations with variable or inhomogeneity coefficients
[20].

Many works have been devoted to the construction
of analytical solutions of the NLS equations with inho-
mogeneity coefficients [21–26], and the results revealed
that the generation of rogue waves can be well controlled
through the management and the choice of variable coef-
ficients [23–26].

Although significant progress has been made in that
sense, it remains really difficult to relate all the char-
acteristics of rogue waves to a specific NLS model
equation. Motivated by these considerations, our aim
in this work is to present a systematic theoretical study

0123456789().: V,-vol
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for considering inhomogeneity coefficients in the chiral
NLS equation and explore the effect of inhomogeneities
of the underlying dynamics. The chiral NLS equa-
tion plays a fundamental role in developing quantum
mechanics, especially in the field of quantum Hall effect,
where chiral excitations are known to appear. In this
paper, we consider the inhomogeneous chiral NLS equa-
tion of the form

∂ψ

∂t
+ β(t, x)

∂2ψ

∂x2 − iσ(t, x)

×
(

ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

∂x

)
ψ = 0, (1)

where ψ ≡ ψ(t, x) is the complex function of space
x and time t . The parameter β(t, x) is the dispersion
coefficient and σ(t, x) is the nonlinear coupling coef-
ficient. The symbol * refers to the complex conjugate.
The particular case, when β(t, x) and σ(t, x) are con-
stant coefficients, was studied in [27–30] where both
bright and dark soliton solutions were investigated. In
this work, we investigate the analytical rogue wave solu-
tions of the inhomogeneous chiral NLS equation (1).

The rest of the paper is organised as follows: In §2,
we investigate the first-order and second-order rational-
like solutions as the rogue wave solutions of eq. (1) using
direct ansatz and by applying similarity transformations
[23,25,31]. In §3, the paper ends with the summary of
the results achieved.

2. Similarity transformations and rogue wave
solutions

We consider the inhomogeneous chiral NLS equation
(1). In order to investigate its analytical rogue wave
solutions, we first assume the function ψ(t, x) in the
following form [23,25,31]:

ψ(t, x) = [φR(t, x) + iφI(t, x)]e
iϕ(t,x), (2)

where φR(t, x) and φI(t, x) are the real part and the
imaginary part of ψ(t, x), respectively. The function
ϕ(t, x) is the phase. Introducing eq. (2) into eq. (1),
we obtain the following system of equations:

φR,t − ϕtφI + β(t, x)

2
[φI,xx + 2ϕxφR,x − ϕ2

xφI

+ϕxxφR] + 2σ(t, x)[φIφRφI,x + ϕxφ
3
I

− φ2
I φR,x + ϕxφIφ

2
R] = 0, (3a)

−φI,t − ϕtφR + β(t, x)

2
[φR,xx − 2ϕxφI,x − ϕ2

xφR

−ϕxxφI] + 2σ(t, x)[−φIφRφR,x + ϕxφ
3
R

+ φ2
RφI,x + ϕxφRφ2

I ] = 0. (3b)

Introducing the new variables η(t, x) and τ(t, x), we
further utilise the following similarity transformations
for the real functions φR(t, x), φI(t, x) and the phase
ϕ(t, x):

φR(t, x) = A(t) + B(t)P(η(t, x), τ (t)),

φI(t, x) = C(t)Q(η(t, x), τ (t)),

ϕ(t, x) = χ(t, x) + μτ(t), (4)

where μ is a constant and the real variables η(t, x),
χ(t, x), P(η, τ ), Q(η, τ ), τ(t), A(t), B(t) andC(t) will
be determined later. Introducing (4) into (3), we obtain

At + Bt P + Bηt Pη + Bτt Pτ − (χt + μτt )CQ

+ β(t, x)

2
[Cηxx Qη + Cη2

x Qηη + 2χxηx BPη

− χ2
x CQ + χxx (A + PB)]

+ 2σ(t, x)([(A + PB)Qη − BQPη]C2Qηx

+ χxCQ[(CQ)2 + (A + PB)2]) = 0, (5a)

−Ct Q − Cηt Qη − Cτt Qτ − (χt + μτt )(A + PB)

+ β(t, x)

2
[Bηxx Pη + Bη2

x Pηη − 2χxηxCQη

− χ2
x (A + PB) − χxx (CQ)]

+ 2σ(t, x)([(A + PB)Qη − BQPη]C(A + PB)ηx

+ χx (A + PB)[(CQ)2 + (A + PB)2]) = 0. (5b)

From (5), we obtain the following similarity reduc-
tions:

ηxx = 0, (6a)

2χt + β(t, x)χ2
x = 0, (6b)

ηt + β(t, x)ηxχx = 0, (6c)

2θt + β(t, x)χxxθ = 0, θ = A, B,C, (6d)

(A + PB)Qη − BQPη = 0, (6e)

Bτt Pτ − μτtCQ + β(t, x)

2
Cη2

x Qηη

+ 2σ(t, x)χxCQ[(CQ)2 + (A + PB)2] = 0, (6f)

−Cτt Qτ − μτt (A + PB) + β(t, x)

2
Bη2

x Pηη

+ 2σ(t, x)χx (A+PB)[(CQ)2+(A+PB)2]=0.

(6g)

After some calculation, we obtain from eqs (6a)−(6d)
the following equations:
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η(t, x) = α(t)x + δ(t), A(t) = a0
√|α(t)|,

χ(t, x) = − αt

2β(t, x)α(t)
x2− δt

2β(t, x)α(t)
x+χ0(t),

B(t) = bA(t), C(t) = cA(t), (7)

where a0, b and c are arbitrary constants, α(t) is the
inverse of the wave width, and δ(t) and χ0(t) are free
functions of time t.

Proceeding to a more advanced reduction of eqs (6e)–
(6g), we end up with a system of partial differential
equations with constant coefficients and for that, we
require the conditions

τt = β(t, x)

2
η2
x and σ(t, x) = β(t, x)

4

η2
x

χx
GA(−2).

This can generate the constraints for the variable τ(t)
and the nonlinearity coefficient σ(t, x):

τ(t) = 1

2

∫ t

0
α2(u)β(u) du,

σ (t, x) = −Gβ2(t, x)α2(t)

4a2
0(αt x + δt )

. (8)

Replacing the expressions of τt and σ(t, x) given in (8),
we obtain from eqs (6f) and (6g) the following coupled
system of differential equations with constant coeffi-
cients:

bPτ − μcQ + cQηη

+ cGQ[(cQ)2 + (1 + bP)2] = 0, (9a)

−cQτ − μ(1 + pB) + bPηη

+G(1 + bP)[(cQ)2 + (1 + bP)2] = 0. (9b)

2.1 First-order rational-like solution

The first-order rational solution of (9) is obtained fol-
lowing [12,13,23,25]. It follows from (9) that we have
the solutions

P(η, τ ) = − 4

bH1(η, τ )

and

Q(η, τ ) = − 8τ

cH1(η, τ )

with H1(η, τ ) = 1 + 2η2 + 4τ 4 for μ = G = 1.
Then, the first-order rational-like solution of (1) can be
written as

ψ1(t, x) = a0
√|α(t)|

×
[
1 − 4+8iτ(t)

1+2[α(t)x+δ(t)]2+4τ 2

]

×ei[χ(t,x)+τ(t)], (10)

where χ(t, x) and τ(t) are given by (7) and (8) respec-
tively. Its intensity is given by the relation

|ψ1(t, x)|2

= a2
0 |α(t)| {2[α(t)x + δ(t)]2 + 4τ 2 − 3}2 + 64τ 2

{1 + 2[α(t)x + δ(t)]2 + 4τ 2}2
.

(11)

Let us choose some free functions of time to exhibit
the obtained rational-like solution (10) for the fixed
parameters α0 = 1 and χ0(t) = 0. For simplicity, we
choose the functions β and σ as modulated only in time
or both in time and space depending on the expected
behaviour.

(i) The free functions are chosen as polynomials of
time t , i.e. α(t) = 1, β(t) = t2/2. Figures 1a–1d
present the behaviour of rational solution (10) for dif-
ferent terms δ(t) = t, t2, respectively, for which the
coefficient σ(t, x) ≡ σ(t) in eq. (1) is given by

σ(t) = − t6

16
for δ(t) = t, (12a)

Figure 1. Rogue wave propagations (left column) with
dromion structure (a), chirped structure (c) and the corre-
sponding contour plots (right column), respectively, for the
intensity |ψ1(t, x)|2 of the first-order rational solution (10)
for a0 = 1, α(t) = 1, β(t) = 0.5t2. (a) and (b) δ(t) = t and
(c) and (d) δ(t) = t2.
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Figure 2. Rogue wave propagations (left column) with
dromion structure and contour plots (right column), for the
intensity |ψ1(t, x)|2 of the first-order rational solution (10)
for a0 = 1, α(t) = 1, β(t) = cos2(0.02t). (a) and (b)
δ(t) = e(1+0.1 sin(t)) and (c) and (d) δ(t) = sin2(t).

σ(t) = − t5

32
for δ(t) = t2. (12b)

For α(t) = 1, δ(t) = t and β(t) = t2/2, figures 1a
and 1b show a rogue wave with the dromion structure.
When α(t) = 1, δ(t) = t2 and β(t) = t2/2, we have
the propagation of a rogue wave with chirped structure
in the same symmetric time interval (figures 1c and 1d).

(ii) The free functions are chosen as periodic func-
tions of time such as trigonometric functions, i.e.
α(t) = 1, β(t) = cos2(0.02t). Figures 2a–2d show the
behaviour of rational solution (12) for different terms
δ(t) = e(1+0.1 sin(t)), sin2(t), respectively, for which the
coefficient σ(t) in eq. (1) is given by

σ(t) = −10
cos4(t/50)

cos(t)e(1+0.1 sin(t))

for δ(t) = e(1+0.1 sin(t)), (13a)

σ(t) = − cos4(t/50)

8 cos(t) sin(t)

for δ(t) = sin2(t). (13b)

For α(t) = 1, δ(t) = e(1+0.1 sin(t)) or δ(t) = sin2(t) and
β(t) = cos2(0.02t), figures 2a–2d show the rogue wave
propagations with the dromion structures.

Figure 3. Rogue wave propagations with chirped structure
and snaking behaviour (left column) and contour plots (right
column), for the intensity |ψ1(t, x)|2 of the first-order rational
solution (10) for a0 = 1.0, α(t) = 1, β(t) = sin2(0, 08t). (a)
and (b) δ(t) = 3 cos2(t) and (c) and (d) δ(t) = e1.2 cos(t).

(iii) The free functions are chosen as periodic func-
tions of time such as trigonometric functions, i.e. α =
1 and β(t) = sin2(0.08t). Figures 3a–3d show the
behaviour of rational solution (12) for different terms
δ(t) = 3 cos2(t), e(1.2 cos(t)), respectively, for which the
coefficient σ(t) in eq. (1) is given by

σ(t) = sin4(2t/25)

24 sin(t) cos(t)
for δ(t) = 3 cos2(t), (14a)

σ(t) = sin4(2t/25)

4.8 sin(t)e1.2 cos(t)
for δ(t) = e(1.2 cos(t)).

(14b)

For α(t) = 1, δ(t) = 3 cos2(t) or δ(t) = e(1.2 cos(t)) and
β(t) = sin2(0.08t), we have chirping rogue structures
with snaking behaviour propagating along the t-axis
(figures 3a–3d).

(iv) The free functions are chosen as periodic func-
tions of time such as Jacobian elliptic functions, i.e.
α(t)=dn(t,m) and β(t)=cn(t,m), wherem is the mod-
ule. Figures 4a–4d show the behaviour of rational solu-
tion (10) for different terms δ(t) = sn(t,m), cn(t,m),
respectively, for which the coefficient σ(t, x) in eq. (1)
is given by

σ(t, x) = − cn(t,m)dn2(t,m)

4
[−xm2sn(t,m) + dn(t,m)

]
for δ(t) = sn(t,m), (15a)
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Figure 4. Rogue wave propagations with chirped structure
and snaking behaviour (left column) and contour plots (right
column), for the intensity |ψ1(t, x)|2 of the first-order rational
solution (10) for a0 = 1.0, α(t) = dn(t,m), β(t) = cn(t,m).
(a) and (b) δ(t) = sn(t,m) and (c) and (d) δ(t) = cn(t,m),
with m = 0.707.

σ(t, x) = cn2(t,m)dn2(t,m)

4sn(t,m)[xm2cn(t,m) + dn(t,m)]
for δ(t) = cn(t,m). (15b)

For α(t)=dn(t,m), δ(t)=sn(t,m) or δ(t)=cn(t,m)

and β(t) = cn(t,m), where m = 0.707, we have chirp-
ing rogue structures with snaking behaviour propagating
along the t-axis (figures 4a–4d).

(v) The free functions are chosen as periodic functions
of time such as Jacobian elliptic functions, i.e. α(t) =
cn(t,m) and β(t) = dn(t,m). Figures 5a–5d give the
behaviour of rational solution (10) for different terms
δ(t) = sn(t,m), dn(t,m), respectively, for which the
coefficient σ(t, x) in eq. (1) is given by

σ(t, x) = − dn(t,m)cn2(t,m)

4[−xsn(t,m) + cn(t,m)]
for δ(t) = sn(t,m), (16a)

σ(t, x) = cn2(t,m)dn2(t,m)

4sn(t,m)[xdn(t,m) + m2cn(t,m)]
for δ(t) = dn(t,m). (16b)

For α(t)=cn(t,m), δ(t)=sn(t,m) or δ(t)=dn
(t,m) and β(t)=dn(t,m), where m=0.707, figures 5a–
5d show periodic rogue waves with chirped structures.

Figure 5. Periodic rogue wave propagations with chirped
structure (left column) and contour plots (right column), for
the intensity |ψ1(t, x)|2 of the first-order rational solution (10)
for a0 = 1.0, α(t) = cn(t,m), β(t) = dn(t,m). (a) and
(b) δ(t) = sn(t,m) and (c) and (d) δ(t) = dn(t,m), with
m = 0.707.

2.2 Second-order rational-like solution

In this case, we have [12,13,23,25]

P(η, τ ) = R2(η, τ )

bH2(η, τ )

and

Q(η, τ ) = B2(η, τ )

cH2(η, τ )
,

where

H2(η, τ ) = 1

12
η6 + 1

2
η4τ 2 + η2τ 4 + 2

3
τ 6 + 1

8
η4

+ 9

2
τ 4 − 3

2
η2τ 2 9

16
η2 + 33

8
τ 2 + 3

32
,

R2(η, τ ) = −1

2
η4 − 6η2τ 2 − 10τ 4

− 3

2
η2 − 9τ 2 + 3

8
,

B2(η, τ ) = −τ

[
η4+4η2τ 2+4τ 4−3η2+2τ 2− 15

4

]
.

(17)



   10 Page 6 of 8 Pramana – J. Phys.           (2020) 94:10 

Figure 6. Rogue wave propagations (left column) with
dromion structure (a), chirped structure (c) and the corre-
sponding contour plots (right column), respectively, for the
intensity |ψ2(t, x)|2 of the second-order rational solution (18)
for a0 = 1.0, α(t) = 1, β(t) = 0.5t2. (a) and (b) δ(t) = t
and (c) and (d) δ(t) = t2.

On the basis of similarity transformations, we obtain
the second-order rational solution of eq. (1) in the fol-
lowing form:

ψ2(t, x) = a0
√|α(t)|

[
1 − R2(η, τ ) + i B2(η, τ )

H2(η, τ )

]

×ei[χ(t,x)+τ(t)], (18)

where the intensity is given by

|ψ2(t, x)|2

= a2
0 |α(t)| [H2(η, τ ) + R2(η, τ )]2 + B2

2 (η, τ )

H2
2 (η, τ )

.

(19)

Here η ≡ η(t, x), τ ≡ τ(t) and χ ≡ χ(t, x).
The corresponding behaviour of second-order ratio-

nal solution is illustrated in figures 6–10 for the
fixed parameters α0 = 1 and χ0(t) = 0. We choose: (i)
α(t) = 1, β(t) = t2/2and δ(t) = t, t2 in figures 6a–6d,
(ii)α(t) = 1,β(t) = cos2(0.02t) and δ(t) = e(1+0.1 sin(t)),

sin2(t) in figures 7a–7d, (iii) α(t) = 1, β(t) = sin2

(0.02t) and δ(t) = 3 cos2(t), e1.2 cos(t) in figures 8a–
8d, (iv) α(t) = dn(t,m), β(t) = cn(t,m) and δ(t) = sn
(t,m), cn(t,m) in figures 9a–9d and (v) α(t) = cn
(t,m), β(t) = dn(t,m), and δ(t) = sn(t,m), dn(t,m)

in figures 10a–10d.

Figure 7. Rogue wave propagations (left column) with
dromion structure and contour plots (right column), for the
intensity |ψ2(t, x)|2 of the second-order rational solution (18)
for a0 = 1.0, α(t) = 1, β(t) = cos2(0.02t). (a) and (b)
δ(t) = e(1+0.1 sin(t)) and (c) and (d) δ(t) = sin2(t).

Figure 8. Rogue wave propagations with chirped struc-
ture and snaking behaviour (left column) and contour
plots (right column), for the intensity |ψ2(t, x)|2 of the
second-order rational solution (18) for a0 = 1.0, α(t) = 1,
β(t) = sin2(0, 08t). (a) and (b) δ(t) = 3 cos2(t) and (c) and
(d) δ(t) = e1.2 cos(t).

Figures 6–10 show that although the same func-
tions, as those in figures 1–5, are chosen respectively,
the waves have double structures compared to the
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Figure 9. Rogue wave propagations with dromion structure
and snaking behaviour (left column) and contour plots (right
column), for the intensity |ψ2(t, x)|2 of the second-order
rational solution (18) for a0 = 1.0, α(t) = dn(t,m), β(t)
= cn(t,m). (a) and (b) δ(t) = sn(t,m) and (c) and (d)
δ(t) = cn(t,m), with m = 0.707.

Figure 10. Periodic rogue waves with dromion structure (left
column) and contour plots (right column), for the inten-
sity |ψ2(t, x)|2 of the second-order rational solution (18)
for a0 = 1.0, α(t) = cn(t,m), β(t) = dn(t,m). (a) and
(b) δ(t) = sn(t,m) and (c) and (d) δ(t) = dn(t,m), with
m = 0.707.

former single ones, and now with higher amplitude.
Similar behaviours have been found in [12]. Further-
more, figures 6–10 depict the fascinating dynamical

interactions of modified rogue waves known as
rogons [23].

3. Conclusion

In this work, we presented the analytical solutions in
terms of rational-like functions of the chiral nonlinear
Schrödinger equation with inhomogeneous coefficients
using a similarity transformation and a direct ansatz.
We obtained the first and second order of rational solu-
tions. In particular, by choosing some free functions
of time, we showed that the system can exhibit the
snake propagation traces and the fascinating interac-
tions of modified rogue waves known as rogons [23].
The results obtained in this paper are similar to those
found on the possible formation mechanisms for the
optical rogue wave phenomenon in optical fibres, the
oceanic rogue wave phenomenon in the deep ocean and
the matter rogue wave phenomenon in Bose–Einstein
condensates. To date, chiral effects have been almost
completely ignored in efforts to explain the possible
formation mechanism of rogue waves in some inho-
mogeneous NLS equation. The results presented in this
paper may be important to describe the possible for-
mation mechanisms for rogue wave phenomenon in the
development of quantum mechanics.
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1. Introduction 

In this work, we consider (2+1)-dimensional Sasa-Satsuma 

equation (SSE) 

iu t + 

1 

2 

(u xx + u yy ) + | u | 2 u + iε[ u xxx + u yyy + 3((| u | 2 ) x u + (| u | 2 ) y u ) 

+6(| u | 2 u x + | u | 2 u y )] = 0 , (1) 

where u ≡ u ( t, x, y ) is a complex function and t, x and y are three 

independent variables. The indications in indices represent par- 

tial derivatives. The parameter ε is a real positive multiplying the 

higher terms. In (2+1)-dimensions, the term 6 
(| u | 2 u x + | u | 2 u y 

)
rep- 

resents the self-steepening, the term related to the self-frequency 

shift, the term 3 
(
(| u | 2 ) x u + (| u | 2 ) y u 

)
and the 3rd order dispersion 

term is given by the term (u xxx + u yyy ) . When ε = 0 , Eq. (1) is 

reduced to the classical two-dimensional nonlinear Schrödinger 

equation (NLS) equation. In (1+1)-dimensions, | u | 2 u y = (| u | 2 ) y u = 

u yyy = 0 . For the (1+1)-dimensional case, the generalized NLS equa- 

tions with higher-order dispersive and nonlinear terms were pre- 

sented and their novel solutions were found [1,2] . The effects of 

higher-order terms have been also considered in [3–8] . 

The SSE was established by Sasa and Satsuma in 1991 [5] . As 

one of the multiple extended form of the nonlinear Schrödinger 

equation, this equation contains additional terms explaining the 

third-order dispersion, the self-steepening and the self-frequency 

shift as often found in many fields of physics, for example, ultra- 

short pulse propagation in optical fibers [9,10] and dynamics of 

deep water waves [11] . 

∗ Corresponding author. 

E-mail address: layon32@yahoo.com (L.F. Mouassom). 

In recent years, the SSE has been the subject of inten- 

sive works [12–15] . Various methods such as Darboux trans- 

formation [16,17] , extended trial equation method and general- 

ized Kudryashov method [18] , Riemann problem method [13] , in- 

verse scattering transform [5,12] , Bäcklund Transformation [19] , 

new auxiliary equation method [20] and unified transform 

method [21] have been used to investigate the analytical solutions 

of SSE in one dimension. However, several phenomena and studies 

in the field of nonlinear science are described in higher dimensions 

[22] . Malomed et al. [22] reported an interesting study on spa- 

tiotemporal solitons related with experimental and theoretical re- 

sults of higher-dimensional physical systems. Along the same idea, 

Wang et al. [23] used a new source generalization procedure to 

obtain determinant solutions of the (2+1)-dimensional SSE. By us- 

ing a modified direct method, exact solutions of (2+1)-dimensional 

generalized SSE have been derived [24] . Variable separation solu- 

tion for 2D dimensional generalised SSE was obtained by using 

truncated painlevé analysis [25] . The Jacobi elliptic function expan- 

sion method [26–35] has several advantages according to other 

traditional methods. The envelope transform and Jacobi elliptic 

function expansion method had been well extended to the higher- 

dimensional generalized NLS equations to investigate localized and 

periodic wave solutions [36] , and rogue wave solutions [37] . It is 

worthwhile to mention that the proposed method is reliable and 

effective, and gives more solutions. In this work, we implement the 

method and obtain exact solitary wave solutions of the 2D SSE. The 

solutions include bright-dark and breather solitary wave solutions. 

The rest of this paper is organized as follows. In Section 2 , 

the general form of solution is obtained by using the method. In 

Section 3 , some solutions are obtained. Finally, some conclusions 

are given in Section 4 . 

https://doi.org/10.1016/j.chaos.2020.109657 
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2. The general form of solution 

To solve the governing model (1) , we first consider the following envelope transform of the function u ( t, x, y ) in the form [16] : 

u (t, x, y ) = ϕ(η) e i ( ξ+ υ(η) ) , (2) 

where υ = υ(η) , and ϕ = ϕ(η) are real functions, ξ = kx + hy + lt + ξ0 , η = ax + by + ct + η0 , and a, b, c, k, h, l , ε0 , η0 are constant pa- 

rameters. 

We introduce (2) into (1) and then separate the imaginary and real parts. We then obtain the following system of equations: 

2(a 3 + b 3 ) ϕ 

′′′ + 

[
(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 ) 

]
ϕυ ′′ + 2 

[
(a 2 + b 2 ) − 2 ε(ka 2 + hb 2 ) 

]
ϕ 

′ υ ′ + 24 ε(a + b) ϕ 

2 ϕ 

′ 
+2 

[
(ka + hb + c + 6 ε(ka 2 + hb 2 ) 

]
ϕ 

′ − 2 ε(a 3 + b 3 ) ϕ 

′ (υ ′ ) 2 − 4 ε(a 3 + b 3 ) ϕ 

′ υ ′ υ ′′ = 0 , 
(3a) 

[
(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 ) 

]
ϕ 

′′ − 2(ka + hb + c) ϕυ ′ − (k 2 + h 

2 + 2 l) ϕ − (a 2 + b 2 ) ϕ(υ ′ ) 2 − 12 ε(a + b) ϕ 

3 υ ′ 
+2(1 − 6 ε(k + h )) ϕ 

3 − 4 ε(a 3 + b 3 ) ϕ 

′′ υ ′ − 4 ε(a 3 + b 3 ) ϕ 

′ υ ′′ − 2 ε(a 3 + b 3 ) ϕυ ′′′ = 0 , 
(3b) 

where ϕ 

′ = 

dϕ 
dη

and υ ′ = 

dυ
dη

. 

According to Eq. (2) , we can write υ(η) = q 0 ln (| ϕ(η) | ) , where q 0 is constant to be determined. Replacing υ(η) by its expression in 

each equation of the system (3) above, we obtain the following sytem: 

2(a 3 + b 3 ) ϕ 

3 ϕ 

′′′ + q o [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] ϕ 

3 ϕ 

′′ − 4 q 2 o ε(a 3 + b 3 ) ϕ (ϕ 

′ ) 2 ϕ 

′′ + q o (a 2 + b 2 ) ϕ 

2 (ϕ 

′ ) 2 
−2 q 2 o ε(a 3 + b 3 ) ϕ(ϕ 

′ ) 3 + 24 ε(a + b) ϕ 

5 ϕ 

′ + 4 q 2 o ε(a 3 + b 3 )(ϕ 

′ ) 4 + 2[ ka + hb + c + 6 ε(ka 2 + b 2 )] ϕ 

3 ϕ 

′ = 0 , 
(4a) 

[(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] ϕ 

2 ϕ 

′′ − [8 q o ε(a 3 + b 3 ) − 6 q o ε] ϕ ϕ 

′ ϕ 

′′ − q 2 o (a 2 + b 2 ) ϕ (ϕ 

′ ) 2 − 12 q o ε(a + b) ϕ 

4 ϕ 

′ 
−2 q o (ka + hb + c + ε(a 3 + b 3 )) ϕ 

2 ϕ 

′ − (k 2 + h 

2 + 2 l) ϕ 

3 + 2(1 − 6 ε(k + h )) ϕ 

5 = 0 . 
(4b) 

By means of Jacobi elliptic function expansion method, we introduce an auxiliary function 

ϕ(η) = 

n ∑ 

k =0 

a k F 
k (η) , (5) 

where a k , (k = 0 , 1 , 2 , . . . , n ) are constants to be determined and F ( η) satisfies the following differential equation: 

(F ′ (η)) 2 = P F 4 (η) + QF 2 (η) + R, (6) 

where F ′ = 

dF 
dη

. By balancing the highest-order derivative terms and the highest-order nonlinear term in (4b) , we obtain n = 1 . Then, 

(5) has the following form: 

ϕ(η) = a 0 + a 1 F (η) . (7) 

Introducing the expression υ(η) = q 0 ln (| ϕ(η) | ) in (2) , we have the general form of solution of Eq. (1) in the form: 

u = e i (kx + hy + lt+ μ0 ) 

( 

∣∣∣∣∣
2 ∑ 

k =0 

a k F 
k (ax + by + ct + η0 ) 

∣∣∣∣∣
) 

iq 0 

( 

2 ∑ 

k =0 

a k F 
k (ax + by + ct + η0 ) 

) 

. (8) 

It should be noted that, the expression of the function F depends directly on the choice of the value of the parameters P, Q, R . For 

example, for certain values of these parameters the expressions of the function F are grouped in the following Table 1 . 

In the limit r → 0 or r → 1, the expression of the function F is reduced to either a trigonometric function or a hyperbolic function. 

They are grouped in the following Table 2 . 

3. Exact solitary wave solutions for the 2D SSE 

To obtain solitary wave solutions of equation (1) , we substitute (9) and (10) into (7) and we collect the terms with identical powers of 

F k ( η) and F k (η) 
√ 

(P F 4 + QF 2 + R ) . We then equate each coefficient to zero, and obtain a set of algebraic equations for a, b, c, k, h, l, q 0 , a 0 , 

a 1 , namely: 

4 a 4 1 P 
2 q 2 0 ε(a 3 + b 3 ) = 0 , 

8 a 0 a 
3 
1 P 

2 q 2 0 ε(a 3 + b 3 ) = 0 , 

12 a 4 1 P (a 3 + b 3 ) − 2 a 4 1 P q 
2 
0 ε(a 3 + b 3 ) + 24 a 6 1 ε(a + b) = 0 , 

36 a 0 a 
3 
1 P (a 3 + b 3 ) − 2 a 0 a 

3 
1 P q 

2 
0 ε(a 3 + b 3 ) + 120 a 0 a 

5 
1 ε(a + b) = 0 , 

a 4 1 q 0 (a 2 + b 2 ) − 4 a 4 1 P Qq 2 0 ε(a 3 + b 3 ) + 2 a 4 1 P q 0 [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

2 a 0 a 
3 
1 P q 0 (a 2 + b 2 ) − 12 a 0 a 

3 
1 P Qq 2 0 ε(a 3 + b 3 ) + 6 a 0 a 

3 
1 P q 0 [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

6 a 2 0 a 
2 
1 Q(a 3 + b 3 ) − 2 a 4 1 Rq 2 0 ε(a 3 + b 3 ) + 120 a 2 1 a 

4 
0 ε(a + b) + 6 a 2 0 a 

2 
1 [ ka + hb + c + 6 ε(ka 2 + hb 2 )] = 0 , 

2 a 1 a 
3 
0 Q(a 3 + b 3 ) − 2 a 0 a 

3 
1 Rq 2 0 ε(a 3 + b 3 ) + 24 a 5 0 a 1 ε(a + b) + 2 a 3 0 a 1 [ ka + hb + c + 6 ε(ka 2 + hb 2 )] = 0 , 

a 2 0 a 
2 
1 P q 0 (a 2 + b 2 ) + a 4 1 Qq 0 (a 2 + b 2 ) + a 4 1 Qq 0 [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] + 6 a 2 0 a 

2 
1 P q 0 [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

2 a 4 1 Q(a 3 + b 3 ) + 36 a 2 0 a 
2 
1 P (a 3 + b 3 ) − 2 a 4 1 Qq 2 0 ε(a 3 + b 3 ) + 240 a 2 0 a 

4 
1 ε(a + b) + 2 a 4 1 [ ka + hb + c + 6 ε(ka 2 + hb 2 )] = 0 , 

6 a 0 a 1 Q(a 3 + b 3 ) + 12 a 3 0 a 1 P (a 3 + b 3 ) − 2 a 0 a 
3 
1 Qq 2 0 ε(a 3 + b 3 ) + 240 a 3 0 a 

3 
1 ε(a + b) + 6 a 0 a 

3 
1 [ ka + hb + c + 6 ε(ka 2 + hb 2 )] = 0 , 
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Table 1 

Expression of F( η) for the special chosen values of P, Q and R [38,39] . 

P Q R F 

r 2 −(1 + r 2 ) 1 sn, cd 

−r 2 2 r 2 − 1 1 − r 2 cn 

−1 2 − r 2 r 2 − 1 dn 

1 −(1 + r 2 ) r 2 ns, dc 

1 − r 2 2 r 2 − 1 −r 2 nc 

r 2 − 1 2 − r 2 −1 nd 

1 − r 2 2 − r 2 1 sc 

−r 2 (1 − r 2 ) 2 r 2 − 1 1 cd 

1 2 − r 2 1 − r 2 cs 

1 2 r 2 − 1 −r 2 (1 − r 2 ) ds 

− 1 

4 

r 2 + 1 

2 
− (1 − r 2 ) 2 

4 
r cn ± dn 

1 

4 

− 2 r 2 + 1 

2 

1 

4 
ns ± cs 

1 − r 2 

4 

r 2 + 1 

2 

1 − r 2 

4 
nc ± sc 

1 

4 

r 2 − 2 

2 

r 4 

4 
ns ± ds 

r 2 

4 

r 2 − 2 

2 

r 2 

4 
sn ± i cn, 

dn √ 

1 − r 2 sn ± cn 
1 

4 

1 − 2 r 2 

2 

1 

4 
r cn ± i dn, 

sn 

1 ± cn 
r 2 

4 

r 2 − 2 

2 

1 

4 

sn 

1 ± dn 
r 2 − 1 

4 

r 2 + 1 

2 

r 2 − 1 

4 

dn 

1 ± r sn 
1 − r 2 

4 

r 2 + 1 

2 

1 − r 2 

4 

cn 

1 ± sn 
(1 − r 2 ) 2 

4 

r 2 + 1 

2 

1 

4 

sn 

dn ± cn 
r 4 

4 

r 2 − 2 

2 

1 

4 

cn √ 

1 − r 2 ± dn 

Table 2 

Jacobi elliptic functions in the limit r → 0 and r → 1 [38,39] . 

r → 0 r → 1 r → 0 r → 1 

sn ( ε, r ) sin ( ε) tanh ( ε) dc ( ε, r ) sec (ε) 1 

cn ( ε, r ) cos ( ε) sech ( ε) nc ( ε, r ) sec (ε) cosh ( ε) 

dn ( ε, r ) 1 sech ( ε) sc ( ε, r ) tan ( ε) sinh ( ε) 

cd ( ε, r ) cos ( ε) 1 ns ( ε, r ) csc (ε) coth (ε) 

sd ( ε, r ) sin ( ε) sinh ( ε) ds ( ε, r ) csc (ε) csch ( ε) 

nd ( ε, r ) 1 cosh ( ε) cs ( ε, r ) cot (ε) csch ( ε) 

2 a 0 a 
3 
1 Qq 0 (a 2 + b 2 ) − 8 a 0 a 

3 
1 P Rq 2 0 ε(a 3 + b 3 ) − 4 a 0 a 

3 
1 Q 

2 q 2 0 ε(a 3 + b 3 ) 

+ 2 a 1 a 
3 
0 P q 0 [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] + 3 a 0 a 

3 
1 Qq 0 [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

4 a 4 1 QRq 2 0 ε(a 3 + b 3 ) + a 2 0 a 
2 
1 Qq 0 (a 2 + b 2 ) + a 4 1 Rq 0 (a 2 + b 2 ) + 3 a 2 0 a 

2 
1 Qq 0 [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

2 a 0 a 
2 
1 Rq 0 (a 2 + b 2 ) − 4 a 0 a 

3 
1 QRq 2 0 ε(a 3 + b 3 ) + a 1 a 

3 
0 Qq 0 [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

a 2 0 a 
2 
1 Rq 0 (a 2 + b 2 ) + 4 a 4 1 R 

2 q 2 0 ε(a 3 + b 3 ) = 0 , 

2 a 5 1 (1 − 6 ε(k + h )) − a 3 1 P q 
2 
0 (a 2 + b 2 ) + 2 a 3 1 P [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

10 a 0 a 
4 
1 (1 − 6 ε(k + h )) − a 0 a 

2 
1 P q 

2 
0 (a 2 + b 2 ) + 4 a 0 a 

2 
1 P [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

72 a 2 0 a 
3 
1 q 0 ε(a + b) + 2 a 3 1 q 0 [ ka + hb + c + ε(a 3 + b 3 )] + a 3 1 Q[8 q 0 ε(a 3 + b 3 ) − 6 q 0 ε] = 0 , 

10 a 1 a 
4 
0 (1 − 6 ε(k + h )) − a 3 1 Rq 2 0 (a 2 + b 2 ) − 3 a 1 a 

2 
0 (k 2 + h 

2 + 2 l) + a 1 a 
2 
0 Q[(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

20 a 2 0 a 
3 
1 (1 − 6 ε(k + h )) − a 3 1 (k 2 + h 

2 + 2 l) − a 3 1 Qq 2 0 (a 2 + b 2 ) + a 3 1 Q[(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] 

+ 2 a 1 a 
2 
0 P [(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 , 

2 a 5 0 (1 − 6 ε(k + h )) − a 0 a 
2 
1 Rq 2 0 (a 2 + b 2 ) − a 3 0 (k 2 + h 

2 + 2 l) = 0 , 

12 a 5 1 q 0 ε(a + b) + 2 a 3 1 P [8 q 0 ε(a 3 + b 3 ) − 6 q 0 ε] = 0 , 

48 a 0 a 
4 
1 q 0 ε(a + b) + 2 a 0 a 

2 
1 P [8 q 0 ε(a 3 + b 3 ) − 6 q 0 ε] = 0 , 

48 a 2 1 a 
3 
0 q 0 ε(a + b) + 4 a 0 a 

2 
1 q 0 [ ka + hb + c + ε(a 3 + b 3 )] + a 0 a 

2 
1 Q[8 q 0 ε(a 3 + b 3 ) − 6 q 0 ε] = 0 , 

12 a 1 a 
4 
0 q 0 ε(a + b) + 2 a 1 a 

2 
0 q 0 [ ka + hb + c + ε(a 3 + b 3 ) = 0 , 

20 a 2 1 a 
3 
0 (1 − 6 ε(k + h )) − a 0 a 

2 
1 Qq 2 0 (a 2 + b 2 ) − 3 a 0 a 

2 
1 (k 2 + h 

2 + 2 l) + 2 a 0 a 
2 
1 Q[(a 2 + b 2 ) − 4 ε(ka 2 + hb 2 )] = 0 . 
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Solving the system above with Maple gives the following solutions : 

Case 1: 

a = − b, c = −b(12 P b 3 ε − 8 P b 2 εk + 6 a 2 1 bε − 12 a 2 1 εk + 2 P b 2 + a 2 1 ) 

2 ε(2 P b 2 + 3 a 2 
1 
) 

, 

h = − 4 P b 2 εk + 6 a 2 1 εk − 2 P b 2 − a 2 1 

2 ε(2 P b 2 + 3 a 2 
1 
) 

, q 0 = 0 , a 0 = 0 , (9) 

l = −(32 P 2 b 4 ε2 k 2 − 32 P Qa 2 1 b 
4 ε2 + 96 P a 2 1 b 

2 ε2 k 2 − 48 Qa 4 1 b 
2 ε2 − 16 P 2 b 4 εk + 72 a 4 1 ε

2 k 2 

− 32 P a 2 1 b 
2 εk + 4 P 2 b 4 − 12 a 4 1 εk + 4 P a 2 1 b 

2 + a 4 1 ) / 
(
8 ε2 (2 P b 2 + 3 a 2 1 ) 

2 
)
, 

where b, k , and a 1 are some real free constants. 

Case 2: 

h = 

8 a 2 ε2 k − 6 a 2 εk + 6 abεk − 6 b 2 εk − 2 a 2 ε − 2 b 2 ε + a 2 − ab + b 2 

2 ε(−4 b 2 ε + 3 a 2 − 3 ab + 3 b 2 ) 
, 

a 1 = ±
√ 

− P 

2 ε
(a 2 − ab + b 2 ) , q 0 = 0 , a 0 = 0 , 

c = − (−8 Qa 3 b 2 ε2 − 8 Qb 5 ε2 + 6 Qa 5 ε − 6 Qa 4 bε + 6 Qa 3 b 2 ε + 6 Qa 2 b 3 − 6 Qab 4 ε + 6 Qb 5 ε

+ 36 a 4 ε2 k − 36 a 3 bε2 k + 36 ab 3 ε2 k − 36 b 4 ε2 k − 12 a 2 b 2 ε2 + 8 a 2 bε2 k − 8 ab 2 ε2 k − 12 b 4 ε2 

+ 6 a 2 εk + 6 a 2 b 2 ε − 12 a 2 bεk − 6 ab 3 ε + 12 ab 2 εk + 6 b 4 ε − 6 b 3 εk − 2 a 2 bε − 2 b 3 ε

+ a 2 b − ab 2 + b 3 ) / (2 ε(−4 b 2 ε + 3 a 2 − 3 ab + 3 b 2 )) , (10) 

k = − (−192 Qa 4 b 2 ε4 k + 192 Qa 3 b 3 ε4 k − 192 Qab 5 ε4 k + 192 Qb 6 ε4 k + 144 Qa 6 ε3 k − 288 Qa 5 bε3 k 

+ 288 Qa 4 b 2 ε3 k − 288 Qa 2 b 4 ε3 k + 288 Qab 5 ε3 k − 144 Qb 6 ε3 k + 48 Qa 4 b 2 ε3 − 48 Qa 3 b 3 ε3 

+ 64 Qa 2 b 4 ε3 − 16 Qab 5 ε3 + 16 Qb 6 ε3 + 64 Qa 4 bε4 k 2 + 64 Qb 4 ε4 k 2 − 36 Qa 6 ε2 + 75 Qa 5 bε2 

− 120 a 4 b 2 ε2 + 96 Qa 3 b 3 ε2 − 72 Qa 2 b 4 ε2 + 24 Qab 5 ε2 − 12 Qb 6 ε2 − 96 a 4 ε3 k 2 + 96 a 3 bε3 k 2 

− 192 a 2 b 2 ε3 k 2 + 96 ab 3 ε3 k 2 − 96 b 4 ε3 k 2 − 32 a 4 ε3 k + 72 a 4 ε2 k 2 − 144 a 3 bε2 k 2 − 32 a 2 b 2 ε3 k 

+ 216 a 2 b 2 ε2 k 2 + −144 ab 3 ε2 k 2 + 72 b 4 ε2 k 2 + 40 a 4 ε2 k − 40 a 3 bε2 k + 64 a 2 b 2 ε2 k − 24 ab 3 ε2 k 

+ 24 b 4 ε2 k + 4 a 4 ε2 − 12 a 4 εk + 24 a 3 bεk + 8 a 2 b 2 ε2 − 36 a 2 b 2 εk + 24 ab 3 εk + 4 b 4 ε2 

− 12 b 4 εk − 4 a 4 ε + 4 a 3 bε − 8 a 2 b 2 ε + 4 ab 3 ε − 4 b 4 ε + a 4 − 2 a 3 b 

+ 3 a 2 b 2 − 2 ab 3 + b 4 ) / (8 ε2 (−4 b 2 ε + 3 a 2 − 3 ab + 3 b 2 ) 2 ) , 

where P < 0, (a 2 − ab + b 2 ) > 0 and a, b, k are some real free constants. 

Case 3: 

a = Ab, a 0 = 0 , q 0 = 0 , a 1 = ±
√ 

−2 

3 

P , k = 

B + 4 

4 Bε
, 

c = − b(64 AQb 2 ε3 + 128 Qb 2 ε3 + 216 Abε2 h − 144 Qb 2 ε2 + 288 bε3 h + 144 Abε2 

+ 96 bε3 − 432 bε2 h − 36 Abε + 36 Aεh − 48 bε2 + 48 ε2 h + 12 Aε − 18 bε − 72 εh 

+ 3 A + 12 ε − 9) / (12 Bε) , (11) 

l = − (4608 AQb 2 ε4 h + 3072 Qb 2 ε5 h − 5184 AQb 2 ε3 h − 6912 Qb 2 ε4 h + 384 AQb 2 ε3 + 256 Qb 2 ε4 

+ 5184 Qb 2 ε3 h + 144 AQb 2 ε2 + 1152 Aε3 h 

2 + 192 Qb 2 ε3 + 768 ε4 h 

2 − 1296 Aε2 h 

2 

− 720 Qb 2 ε2 − 1728 ε3 h 

2 + 1296 ε2 h 

2 + 72 Aε + 48 ε2 − 9 A 

− 12 ε − 15) / (96(ε2 (24 Aε + 16 ε2 − 27 A − 36 ε + 27))) , 

where P < 0, A = 

(
1 

2 
± 1 

6 

√ −27 + 48 ε

)
, B = (3 A + 4 ε − 6) , ε > 

27 

48 
and b, h are some real free constants. 

Combining the values of the parameters mentioned above with (8) , we can have the exact solitary wave solutions of Eq. (1) for all 

cases. 

In the case 1 . 
∗ For P = r 2 , Q = −(1 + r 2 ), R = 1 and F (η, r) = sn (η, r) from Table 1 , we have the general solution of the form 

u (t, x, y ) = a 1 sn (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) . 

In the limit case r → 1, from Table 2 , the solitary wave solution is given by 

u 1 . 1 (t, x, y ) = a 1 tanh (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) , (12) 

where c = − b(c 1 + c 2 ) 

c 3 
, h = − 4 b 2 εk + 6 a 2 

1 
εk − 2 b 2 − a 2 

1 

2 ε(2 b 2 + 3 a 2 
1 
) 

, a = −b, l = − l 1 + l 2 + l 3 

l 4 
, with c 1 = 12 b 3 ε − 8 b 2 εk + 6 a 2 

1 
bε, c 2 = −12 a 2 

1 
εk + 2 b 2 + 

a 2 
1 
, c 3 = 2 ε(2 b 2 + 3 a 2 

1 
) , 
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Fig. 1. Behavior of Re ( u 1.2 ) for the parameter values: a = k = 0 . 5 , b = −0 . 5 , a 1 = 0 . 25 , ε = 0 . 01 , y = 0 . 5 . The figure shows the solitary wave propagation with a dark structure. 

l 1 = 32 b 4 ε2 k 2 + 64 a 2 
1 
b 4 ε2 + 96 a 2 

1 
b 2 ε2 k 2 , l 2 = 96 a 4 

1 
b 2 ε2 − 16 b 4 εk + 72 a 4 

1 
ε2 k 2 − 32 a 2 

1 
b 2 εk, 

l 3 = 4 b 4 − 12 a 4 
1 
εk + 4 a 2 

1 
b 2 + a 4 

1 
, l 4 = 8 ε2 (2 b 2 + 3 a 2 

1 
) 2 . 

∗ For P = −r 2 , Q = 2 r 2 − 1 , R = 1 − r 2 and F (η, r) = cn (η, r) from Table 1 , we have the general solution as follows : 

u (t, x, y ) = a 1 cn (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) . 

In the limit case r → 1, from Table 2 , the solitary wave solution is given by 

u 1 . 2 (t, x, y ) = a 1 sech (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) , (13) 

where c = − b(c 1 + c 2 ) 

c 3 
, h = 

4 b 2 εk − 6 a 2 
1 
εk − 2 b 2 + a 2 

1 

2 ε(−2 b 2 + 3 a 2 
1 
) 

, a = −b, l = − l 1 + l 2 + l 3 

l 4 
, with c 1 = −12 b 3 ε + 8 b 2 εk + 6 a 2 

1 
bε, c 2 = −12 a 2 

1 
εk − 2 b 2 + 

a 2 1 , c 3 = 2 ε(−2 b 2 + 3 a 2 1 ) , 

l 1 = 32 b 4 ε2 k 2 + 32 a 2 
1 
b 4 ε2 − 96 a 2 

1 
b 2 ε2 k 2 , l 2 = −48 a 4 

1 
b 2 ε2 − 16 b 4 εk + 72 a 4 

1 
ε2 k 2 + 32 a 2 

1 
b 2 εk, 

l 3 = +4 b 4 − 12 a 4 
1 
εk − 4 a 2 

1 
b 2 + a 4 

1 
, l 4 = 8 ε2 (−2 b 2 + 3 a 2 

1 
) 2 . 

In Fig. 1 , we plot Re(u 1.2 ) for the parameter values: a = k = 0 . 5 , b = −0 . 5 , a 1 = 0 . 25 , ε = 0 . 01 , y = 0 . 5 . The figure shows the solitary 

wave propagation with a dark structure. It is important to mention that the dark solitons have no internal freedom and are solutions of 

the SSE for both defocusing and focusing cases [40] . 
∗ For P = 1 , Q = −(1 + r 2 ) , R = r 2 and F (η, r) = ns (η, r) from Table 1 , we have the general solution of the form 

u (t, x, y ) = a 1 ns (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) . 

In the limit case r → 1, from Table 2 , the solitary wave solution is given by 

u 1 . 3 (t, x, y ) = a 1 coth (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) , (14) 

where c = − b(c 1 + c 2 ) 

c 3 
, h = − 4 b 2 εk + 6 a 2 

1 
εk − 2 b 2 − a 2 

1 

2 ε(2 b 2 + 3 a 2 
1 
) 

, a = −b, l = − l 1 + l 2 + l 3 

l 4 
, with c 1 = 12 b 3 ε − 8 b 2 εk + 6 a 2 1 bε, c 2 = −12 a 2 1 εk + 2 b 2 + 

a 2 
1 
, c 3 = 2 ε(2 b 2 + 3 a 2 

1 
) , 

l 1 = 32 b 4 ε2 k 2 + 64 a 2 1 b 
4 ε2 + 96 a 2 1 b 

2 ε2 k 2 , l 2 = 96 a 4 1 b 
2 ε2 − 16 b 4 εk + 72 a 4 1 ε2 k 2 − 32 a 2 1 b 

2 εk, 

l 3 = 4 b 4 − 12 a 4 
1 
εk + 4 a 2 

1 
b 2 + a 4 

1 
, l 4 = 8 ε2 (2 b 2 + 3 a 2 

1 
) 2 . 

In Fig. 2 , we plot Re(u 1.3 ) for the parameter values: a = −0 . 5 , k = b = a 1 = 0 . 5 , ε = 1 , y = 0 . 01 . The figure shows the wave propagation 

with a periodic breather structure. This breather is localized in space and oscillates in time. The breather solution of the SSE has been also 

investigated by Xu et al. [17] using Darboux transformation, just to cite a few. 
∗ For P = 1 , Q = (2 − r 2 ) , R = 1 − r 2 and F (η, r) = cs (η, r) from Table 1 , we have the general solution of the form 

u (t, x, y ) = a 1 cs (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) . 

In the limit case r → 1, from Table 2 , the solitary wave solution is given by 

u 1 . 4 (t, x, y ) = a 1 csch (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) , (15) 

where c = − b(c 1 + c 2 ) 

c 3 
, h = − 4 b 2 εk + 6 a 2 1 εk + 2 b 2 − a 2 1 

2 ε(2 b 2 + 3 a 2 
1 
) 

, a = −b, l = − l 1 + l 2 + l 3 

l 4 
, with c 1 = 12 b 3 ε − 8 b 2 εk + 6 a 2 1 bε, c 2 = −12 a 2 1 εk + 2 b 2 + 

a 2 
1 
, c 3 = 2 ε(2 b 2 + 3 a 2 

1 
) , 

l 1 = 32 b 4 ε2 k 2 − 32 a 2 1 b 
4 ε2 + 96 a 2 1 b 

2 ε2 k 2 , l 2 = −48 a 4 1 b 
2 ε2 − 16 b 4 εk + 72 a 4 1 ε2 k 2 − 32 a 2 1 b 

2 εk, 

l 3 = 4 b 4 − 12 a 4 
1 
εk + 4 a 2 

1 
b 2 + a 4 

1 
, l 4 = 8 ε2 (2 b 2 + 3 a 2 

1 
) 2 . 
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Fig. 2. Behavior of Re ( u 1.3 ) for the parameter values: a = −0 . 5 , k = b = a 1 = 0 . 5 , ε = 1 , y = 0 . 01 . The figure shows the wave propagation with a periodic breather structure. 

Fig. 3. Behavior of Re ( u 1.4 ) for the parameter values: a = k = 2 , b = −2 , a 1 = 0 . 1 , ε = 0 . 05 , y = 0 . 1 . The figure shows the wave propagation with a breather structure whose 

amplitude varies in time. 

In Fig. 3 , we plot Re(u 1.4 ) for the parameter values: a = k = 2 , b = −2 , a 1 = 0 . 1 , ε = 0 . 05 , y = 0 . 1 . The figure shows the wave propaga- 

tion with a breather structure whose amplitude varies in time (standing breather). 

∗ For P = 

1 

4 
, Q = 

2 r 2 + 1 

2 
, R = 

1 

4 
and F (η, r) = (ns (η, r) ± cs (η, r)) from Table 1 , we have the general solution of the form 

u (t, x, y ) = a 1 [ ns (ax + by + ct + η0 ) ± cs (ax + by + ct + η0 )] e i (kx + hy + lt+ ξ0 ) . 

In the limit case r → 1 from Table 2 , the solitary wave solution is given by 

u 1 . 5 (t, x, y ) = a 1 [ coth (ax + by + ct + η0 ) ± csch (ax + by + ct + η0 )] e i (kx + hy + lt+ ξ0 ) , (16) 

where c = − b(c 1 + c 2 ) 

c 3 
, h = − b 2 εk + 6 a 2 1 εk − 1 

2 b 
2 − a 2 1 

2 ε( 1 2 b 
2 + 3 a 2 

1 
) 

, a = −b, l = − l 1 + l 2 + l 3 

l 4 
, with c 1 = 3 b 3 ε − 2 b 2 εk + 6 a 2 

1 
bε, c 2 = −12 a 2 

1 
εk + 

1 
2 b 

2 + a 2 
1 
, 

c 3 = 2 ε( 1 2 b 
2 + 3 a 2 1 ) , 

l 1 = 2 b 4 ε2 k 2 + 4 a 2 
1 
b 4 ε2 + 24 a 2 

1 
b 2 ε2 k 2 , l 2 = 24 a 4 

1 
b 2 ε2 − b 4 εk + 72 a 4 

1 
ε2 k 2 − 8 a 2 

1 
b 2 εk, 

l 3 = 

1 

4 
b 4 − 12 a 4 1 εk + a 2 1 b 

2 + a 4 1 , l 4 = 8 ε2 

(
1 

2 
b 2 + 3 a 2 1 

)
2 . 

∗ For P = 

r 2 

4 
, Q = 

r 2 − 2 

2 
, R = 

r 2 

4 
and F (η, r) = (sn (η, r) ± i cn (η, r)) from Table 1 , we have the general solution as follows : 

u (t, x, y ) = a 1 [ sn (ax + by + ct + η0 ) ± i cn (ax + by + ct + η0 )] e i (kx + hy + lt+ ξ0 ) . 

In the limit case r → 1, from Table 2 , the solitary wave solution is given by 

u 1 . 6 (t, x, y ) = a 1 [ tanh (ax + by + ct + η0 ) ± i sech (ax + by + ct + η0 )] e i (kx + hy + lt+ ξ0 ) , (17) 

where the coefficients a, c, h and l are the same as in (16) . 
∗ For P = 

1 
4 , Q = 

1 −2 r 2 

2 , R = 

1 
4 and F = 

sn (η,r) 
1 ±cn (η,r) 

from Table 1 , we have the general solution of the form 

u (t, x, y ) = a 1 

(
sn (ax + by + ct + η0 ) 

1 ± cn (ax + by + ct + η0 ) 

)
e i (kx + hy + lt+ ξ0 ) . 
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In the limit case r → 1 from Table 2 , the solitary wave solution is given by 

u 1 . 7 (t, x, y ) = a 1 

(
tanh (ax + by + ct + η0 ) 

1 ± sech (ax + by + ct + η0 ) 

)
e i (kx + hy + lt+ ξ0 ) , (18) 

where the coefficients a, c, h and l are the same as in (16) . 

In the case 2. 

a 1 = ±
√ 

− P 

2 ε
(a 2 − ab + b 2 ) , (a 2 − ab + b 2 ) > 0 and P < 0. 

∗ For P = −r 2 , Q = 2 r 2 − 1 , R = 1 − r 2 and F = cn (η, r) from Table 1 , we have the general solution of the form 

u (t, x, y ) = ±
√ 

−r 2 
(−a 2 + ab − b 2 ) 

2 ε
cn (ax + by + ct + η0 ) e 

i (kx + hy + lt+ ξ0 ) . 

In the limit case r → 1 from Table 2 , the solitary wave solution is given by 

u 2 . 1 = ±
√ 

(−a 2 + ab − b 2 ) 

2 ε
sech (ax + by + ct + η0 ) e 

i (kx + hy + lt+ ξ0 ) , (19) 

where 

c = − (−8 a 3 b 2 ε2 − 8 b 5 ε2 + 6 a 2 ε − 6 a 4 bε + 6 a 3 b 2 ε + 6 a 2 b 3 ε − 6 ab 4 ε + 6 b 5 ε + 36 a 4 ε2 k − 36 a 3 bε3 k 

+ 36 ab 3 ε2 k − 36 b 4 ε2 k − 12 a 2 b 2 ε2 + 8 a 2 bε2 k − 8 ab 2 ε2 k − 12 b 4 ε2 6 a 2 εk + 6 a 2 b 2 ε − 12 a 2 bεk 

− ab 3 ε + 12 ab 2 εk + 6 b 4 ε − 6 b 3 εk − 2 a 2 bε − 2 b 3 ε + a 2 b − ab 2 + b 3 ) / (2 ε(−4 b 2 ε + 3 a 2 − 3 ab + 3 b 2 )) , 

h = 

8 a 2 ε2 k − 6 a 2 εk + 6 abεk − 6 b 2 εk − 2 a 2 ε − 2 b 2 ε + a 2 − ab + b 2 

2 ε(−4 b 2 ε + 3 a 2 − 3 ab + 3 b 2 ) 
, 

l = − (−192 a 4 b 2 ε4 k + 192 a 3 b 3 ε4 k − 192 ab 5 ε4 k + 192 b 6 ε4 k + 144 a 6 ε3 k − 288 a 5 bε3 k + 288 a 4 b 2 ε3 k 

− 288 a 2 b 4 ε3 k + 288 ab 5 ε3 k − 144 b 6 ε3 k + 48 a 4 b 2 ε3 − 48 a 3 b 3 ε3 + 64 a 2 b 4 ε3 − 16 ab 5 ε3 + 16 b 6 ε3 

+ 64 a 4 ε4 k 2 + 64 b 4 ε4 k 2 − 36 a 6 ε2 + 72 a 5 bε2 − 120 a 4 b 2 ε2 + 96 a 3 b 3 ε2 − 72 a 2 b 4 ε2 + 24 ab 5 ε2 

− 12 b 6 ε2 − 96 a 4 ε3 k 2 + 96 a 3 bε3 k 2 − 192 a 2 b 2 ε3 k 2 + 96 ab 3 ε3 k 2 − 96 b 4 ε3 k 2 − 32 a 4 ε3 k + 72 a 4 ε2 k 2 

− 144 a 3 bε2 k 2 − 32 a 2 b 2 ε3 k + 216 a 2 b 2 ε2 k 2 − 144 ab 3 ε2 k 2 + 72 b 4 ε2 k 2 + 40 a 4 ε2 k − 40 a 3 bε2 k 

+ 64 a 2 b 2 ε2 k − 24 ab 3 ε2 k + 24 b 4 ε2 k + 4 a 4 ε2 − 12 b 4 εk − 4 a 4 ε + 4 a 3 bε − 8 a 2 b 2 ε + 4 ab 3 ε

− 4 b 4 ε + a 4 − 2 a 3 b + 3 a 2 b 2 − 2 ab 3 + b 4 ) / (8 ε2 (−4 b 2 ε + 3 a 2 − 3 ab + 3 b 2 ) 2 ) . 

∗ For P = −1 , Q = 2 − r 2 , R = r 2 − 1 and F = dn (η, r) or P = − 1 
4 , Q = 

r 2 +1 
2 , R = 

(1 −r 2 ) 2 

4 and F = r cn (η, r) ± dn (η, r) from Table 1 , it is 

clearly seen that in the limit case r → 1, the solitary wave solution are the same as in (19) . 

In the case 3. 

a 1 = ±
√ 

− 2 

3 
P and P < 0. 

∗ For P = −r 2 , Q = 2 r 2 − 1 , R = 1 − r 2 and F = cn (η, r) from Table 1 , we have the general solution of the form 

u (t, x, y ) = ±
√ 

2 

3 

r 2 cn (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) . 

In the limit case r → 1, from Table 2 , the solitary wave solution is given by 

u 3 = ±
√ 

2 

3 

r 2 sech (ax + by + ct + η0 ) e 
i (kx + hy + lt+ ξ0 ) , (20) 

where 

a = Ab, k = 

B + 4 

4 Bε
, A = 

(
1 

2 

± 1 

6 

√ 

−27 + 48 ε

)
, B = (3 A + 4 ε − 6) , 

c = − (b(64 Ab 2 ε3 + 128 b 2 ε3 + 126 Abε2 h − 144 b 2 ε2 + 288 bε3 h + 144 Abε2 + 96 bε3 − 432 bε2 h 

− 36 Abε + 36 Aεh − 48 bε2 + 48 ε2 h + 12 Aε − 18 bε − 72 εh + 3 A + 12 ε − 9)) / (12 Bε) , 

l = − (4608 Ab 2 ε4 h + 3072 b 2 ε5 h − 5184 Ab 2 ε3 h − 6912 b 2 ε4 h + 384 Ab 2 ε3 + 256 b 2 ε4 

+ 5184 b 2 ε3 h + 144 Ab 2 ε2 + 1152 Aε3 h 

2 + 192 b 2 ε3 + 768 ε4 h 

2 − 1296 Aε2 h 

2 − 720 b 2 ε2 

− 1728 ε3 h 

2 + 1296 ε2 h 

2 + 72 Aε + 48 ε2 − 9 A − 12 ε − 15) / (96 ε2 (24 Aε + 16 ε2 − 27 A − 36 ε + 27)) , 

In Fig. 4 , we plot Re(u 3 ) for the parameter values: b = h = 0 . 5 , ε = 10 , y = 1 . The figure shows the wave propagation with a bright 

structure. Bright solitary waves are the most common solitonic solutions of the SSE and their has been investigated in one-dimension by 

various authors [15,17,20] . 

∗ For P = −1 , Q = 2 − r 2 , R = r 2 − 1 and F = dn (η, r) or P = − 1 

4 
, Q = 

r 2 + 1 

2 
, R = 

(1 − r 2 ) 2 

4 
and F = r cn (η, r) ± dn (η, r) . From Table 1 , 

it is clearly seen that in the limit case r → 1, the solitary wave solutions are the same as in (20) . 
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Fig. 4. Behavior of Re ( u 3 ) for the parameter values: b = h = 0 . 5 , ε = 10 , y = 1 . The figure shows the wave propagation with a bright structure. 

4. Conclusion 

We have presented the exact solitary wave solutions of the 

(2+1)-dimensional Sasa-Satsuma equation by using an envelope 

transform and Jacobi elliptic function expansion method. The 

method obtains the results directly, quickly, and needs simple algo- 

rithms in programming. As result, we obtained a series of solitary- 

wave solutions including bright-dark and breather solitary wave 

solutions. The results found in this work may be important in ex- 

plaining the physical meaning of some (2+1)-dimensional nonlin- 

ear equations arising in nonlinear sciences. For physical applica- 

tions, it is important to discuss about the stability of solutions. The 

stability procedure can be applied to all solutions of Eq. (1) . How- 

ever, one has to check the stability of each solution step by step 

since the functions ρ( η) are different. In physical situation, usually 

the envelope of soliton should be slowly varying, thus it is also 

important to check that the carrier wave frequency is sufficiently 

large. We can expect that the solutions found in this work might 

be stable. These subjects are left for future studies. 

Declaration of Competing Interest 

The authors declare that they have no known competing finan- 

cial interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

CRediT authorship contribution statement 

Alain Mvogo: Conceptualization, Investigation, Methodology, 

Writing - review & editing. L. Fernand Mouassom: Formal analy- 

sis, Investigation, Writing - original draft, Writing - review & edit- 

ing. F. M. Enyegue A Nyam: Validation, Writing - original draft. 

C. Bioule Mbane: Supervision, Validation. 

Acknowledgments 

The authors thank the anonymous referees for a careful read- 

ing of the paper and constructive suggestions, which helped to im- 

prove the paper. 

References 

[1] Yan Z . Envelope compact and solitary pattern structures for the GNLs (m, n, p, 

q) equations. Phys Lett A 2006;357(3):196–203 . 

[2] Yan Z . Localized analytical solutions and parameters analysis in the nonlinear 

dispersive Gross-Pitaevskii mean-field gp (m;n) model with space-modulated 
nonlinearity and pontential. Stud Appl Math 2014;132(3):266–84 . 

[3] Agrawal GP . Nonlinear fiber optics. In: Nonlinear science at the dawn of the 

21st century. Springer; 20 0 0. p. 195–211 . 
[4] Trippenbach M , Band Y . Effects of self-steepening and self-frequency shift- 

ing on short-pulse splitting in dispersive nonlinear media. Phys Rev A 
1998;57(6):4791 . 

[5] Sasa N , Satsuma J . New-type of soliton solutions for a higher-order nonlinear 
schrödinger equation. J Phys Soc Jpn 1991;60(2):409–17 . 

[6] Hirota R . Exact envelope-soliton solutions of a nonlinear wave equation. J Math 

Phys 1973;14(7):805–9 . 
[7] Anderson D , Lisak M . Nonlinear asymmetric self-phase modulation and self-s- 

teepening of pulses in long optical waveguides. Phys Rev A 1983;27(3):1393 . 
[8] Palacios S , Guinea A , Fernandez-Diaz J , Crespo R . Dark solitary waves in the 

nonlinear Schrödinger equation with third order dispersion, self-steepening, 
and self-frequency shift. Phys Rev E 1999;60(1):R45 . 

[9] Mihalache D , Truta N , Crasovan L-C . Painlevé analysis and bright solitary waves 

of the higher-order nonlinear Schrödinger equation containing third-order dis- 
persion and self-steepening term. Phys Rev E 1997;56(1):1064 . 

[10] Solli D , Ropers C , Koonath P , Jalali B . Optical rogue waves. Nature 
2007;450(7172):1054 . 

[11] Osborne AR . Nonlinear ocean wave and the inverse scattering transform. In: 
Scattering. Elsevier; 2002. p. 637–66 . 

[12] Mihalache D , Torner L , Moldoveanu F , Panoiu N-C , Truta N . Soliton solu- 
tions for a perturbed nonlinear Schrodinger equation. J Phys A Math Gen 

1993;26(17):L757 . 

[13] Mihalache D , Panoiu N-C , Moldoveanu F , Baboiu D-M . The Riemann prob- 
lem method for solving a perturbed nonlinear Schrodinger equation describing 

pulse propagation in optic fibres. J Phys A Math Gen 1994;27(18):6177 . 
[14] Wright III OC . Sasa-Satsuma equation, unstable plane waves and heteroclinic 

connections. Chaos Soliton Fract 2007;33(2):374–87 . 
[15] Gilson C , Hietarinta J , Nimmo J , Ohta Y . Sasa-Satsuma higher-order nonlinear 

Schrödinger equation and its bilinearization and multisoliton solutions. Phys 

Rev E 2003;68(1):16614 . 
[16] Chen S . Twisted rogue-wave pairs in the Sasa-Satsuma equation. Phys Rev E 

2013;88(2):23202 . 
[17] Xu T , Wang D , Li M , Liang H . Soliton and breather solutions of the Sasa–Sat- 

suma equation via the Darboux transformation. Phys Scr 2014(7):75207 . 
[18] Tuluce Demiray S , Pandir Y , Bulut H . New soliton solutions for Sasa–Satsuma 

equation. Waves Random Complex Medium 2015;25(3):417–28 . 

[19] Liu Y , Gao Y-T , Xu T , Lü X , Sun Z-Y , Meng X-H , et al. Soliton solution, bäcklund 
transformation, and conservation laws for the Sasa-Satsuma equation in the 

optical fiber communications. Z Nat A 2010;65(4):291–300 . 
[20] Khater MM , Seadawy AR , Lu D . Dispersive optical soliton solutions for higher 

order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary 
equation method. Superlatt Microstruct 2018;113:346–58 . 

[21] Xu J , Fan E . The unified transform method for the Sasa–Satsuma equation on 

the half-line. Proc R Soc A 2013;469(2159):20130068 . 
[22] Malomed BA , Mihalache D , wise F , Torner L . Spatiotemporal optical solitons. J 

Opt B 2005;7(5):R53 . 
[23] Wang H-Y , Hu X-B , Tam H-W . A (2+ 1)-dimensional Sasa–Satsuma equa- 

tion with self-consistent sources. Journal of the Physical Society of Japan 
20 07;76(2) . 0240 07–0240 07 

http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0023


A. Mvogo, L.F. Mouassom and F. M.E.A. Nyam et al. / Chaos, Solitons and Fractals 133 (2020) 109657 9 

[24] Chang-Cheng L , Yong C . Symmetry and exact solutions of (2+ 1)-dimensional 
generalized Sasa–Satsuma equation via a modified direct method. Commun 

Theor Phys 2009;51(6):973 . 
[25] Radha R , Lou S . Integrability and novel localized solutions in the (2+ 1) dimen- 

sional generalized Sasa-Satsuma equation. Phys Scr 2005;72(6):432 . 
[26] Mei J , Zhang H . New types of exact solutions for a breaking soliton equation. 

Chaos Soliton Fract 2004;20(4):771–7 . 
[27] Yan Z . Modified nonlinearly dispersive mk (m, n, k) equations: II. Jacobi elliptic 

function solutions. Comput Phys Commun 2003;153(1):1–16 . 

[28] Yan Z . A Sinh-Gordon equation expansion method to construct doubly pe- 
riodic solutions for nonlinear differential equations. Chaos Soliton Fract 

2003;16(2):291–7 . 
[29] Fan E , Dai H . A direct approach with computerized symbolic computation for 

finding a series of traveling waves to nonlinear equations. Comput Phys Com- 
mun 2003;153(1):17–30 . 

[30] Fu Z , Liu S , Liu S , Zhao Q . The Jefe method and periodic solutions of two 

kinds of nonlinear wave equations. Commun Nonlinear Sci Numer Simul 
2003;8(2):67–75 . 

[31] Yan Z . Extended Jacobian elliptic function algorithm with symbolic computa- 
tion to construct new doubly-periodic solutions of nonlinear differential equa- 

tions. Comput Phys Commun 2002;148(1):30–42 . 
[32] Fu-Quan D , Jian-An S , Wen-Shan D , Yu-Ren S , Ke-Pu L , Xue-Ren H . New modi- 

fied Jacobi elliptic function expansion method and its application to (3+ 1)-di- 

mensional kp equation. Commun Theor Phys 2006;45(6):1063 . 

[33] Yan Z . Abundant families of Jacobi elliptic function solutions of the (2+ 
1)-dimensional integrable Davey–Stewartson-type equation via a new method. 

Chaos Soliton Fract 2003;18(2):299–309 . 
[34] Yan Z . The extended Jacobian elliptic function expansion method and its appli- 

cation in the generalized Hirota–Satsuma coupled kdv system. Chaos Soliton 
Fract 2003;15(3):575–83 . 

[35] Yan Z . The new extended Jacobian elliptic function expansion algorithm and its 
applications in nonlinear mathematical physics equations. Comput Phys Com- 

mun 2003;153(2):145–54 . 

[36] Yan Z , Konotop W . Exact solutions to three-dimensional generalized nonlinear 
Schrödinger equations with varying potential and nonlinearities. Phys Rev E 

2009;80(3):36607 . 
[37] Yan Z , Konotop W , Akhmediev N . Three-dimensional rogue waves in nonsta- 

tionary parabolic potentials. Phys Rev E 2010;82(3):36610 . 
[38] Lai S , Lv X , Shuai M . The Jacobi elliptic function solutions to a generalized 

Benjamin–Bona–Mahony equation. Math Comput Model 2009;49(1–2):369–78 . 

[39] Hua-Mei L . New exact solutions of nonlinear Gross–Pitaevskii equation 
with weak bias magnetic and time-dependent laser fields. Chin Phys 

2005;14(2):251 . 
[40] Ohta Y . Dark soliton solution of Sasa-Satsuma equation. In: AIP Conference 

proceedings, 1212. AIP; 2010. p. 114–21 . 

http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0033
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0033
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0040
http://refhub.elsevier.com/S0960-0779(20)30056-4/sbref0040




Commun Nonlinear Sci Numer Simulat 102 (2021) 105942 

Contents lists available at ScienceDirect 

Commun Nonlinear Sci Numer Simulat 

journal homepage: www.elsevier.com/locate/cnsns 

Short communication 

Effects of viscosity and surface tension on soliton dynamics in 

the generalized KdV equation for shallow water waves 

L. Fernand Mouassom 

a , ∗, T. Nkoa Nkomom 

b , Alain Mvogo 

a , 
Cesar Biouele Mbane 

a 

a Department of Physics, Faculty of Sciences, University of Yaounde I, Yaounde, P.O. Box 812, Cameroon 
b Department of Physics, Higher Teachers Training College of Bertoua, University of Ngaoundere, Bertoua, P.O. Box 652, Cameroon 

a r t i c l e i n f o 

Article history: 

Received 1 March 2021 

Revised 26 May 2021 

Accepted 22 June 2021 

Available online 24 June 2021 

Keywords: 

Shallow water waves 

Generalized KdV equation 

Viscosity 

Surface tension 

Soliton solutions 

a b s t r a c t 

Various theories have been formulated for the study of weakly damped free-surface flows. 

These theories have been essentially focused on the forces relatively perpendicular to the 

fluid particle such as pressure forces, while neglecting forces relatively parallel to the fluid 

particle such as viscosity forces. In this work, with the help of linear approximation ap- 

plying on the Navier-Stokes equations, we obtain a system of equations for potential flow 

which includes dissipative effect due to viscosity. The correction due to the viscosity is 

applied not only to the kinematics boundary condition on the surface, but also to the dy- 

namics condition modeled by Bernoulli’s equation. We show that, in the context of wave 

motion in shallow water, an expansion of the Boussinesq system can be decomposed into 

a set of coupled equations. The first equation depends only on the surface elevation for 

the right-moving, while the other equation depends simultaneous on the surface elevation 

for the right- and left-moving waves. The wave equation corresponding to the pure right- 

moving has the form of a generalized inhomogeneous Korteweg de Vries (KdV) equation 

with higher-order nonlinear and dissipative terms. We then investigate the soliton solu- 

tions of this equation by using the Hirota’s bilinear method. The results show that, both 

group and phase velocities are a decreasing functions of the viscosity and surface tension 

parameters, δ and τ , respectively. The width of the soliton increases with the parameters 

δ and τ . The effects of viscosity on the soliton dynamics are more pronounced and are 

amplified by the surface tension effects. 

© 2021 Elsevier B.V. All rights reserved. 

1. Introduction 

Solitary waves (or solitons) uncovered by the mathematician and naval engineering John Scott Russell, can be defined 

as localized waves that propagate without change of their amplitude, shape and velocity properties [1] and can be stable 

against mutual collisions [2] . Nowadays, the solitary wave concept is an intriguing problem which has a great deal of interest 

in many fields of nonlinear sciences such as optical fibers [3–7] , biophysics [8–13] , atmosphere [14,15] , fluid mechanics 

[16,17] and shallow water [18–20] . Since the discovery of solitons, the shallow water wave theory has been the subject of 

very interesting works. For example, the problem of correspondence between symmetries and conservation laws for one- 

layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves have been investigated by Ya ̧s ar 
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et al. [21] . In the same line, the symmetry groups, symmetry reductions, optimal system, conservation laws and invariant 

solutions of the shallow water wave equation with nonlocal term have been studied by Rezvan et al. [22] . The mathematical 

models that describe the formation of solitary waves are based on the simplest nonlinear partial differential equations such 

as Boussinesq Eq. [23] , Kadomtsev-Petviashvili Eq. [24] , nonlinear Schrödinger (NLS) Eq. [25] and Korteweg de Vries Eq. [26] , 

just to cite a few. 

Among the above equations, one of the most important is the KdV equation because, the study of their solitary wave 

solutions provide a significant help to explain the physical mechanism of some complex phenomena occurring in many 

areas of physics [27–34] . Especially in the area of shallow water waves, the KdV equation, which describes the motion of 

small but finite amplitude waves that propagate in the positive x -direction [35] , has been the subject of intensive works 

[35–38] , and experiments [39] . 

Several phenomena and studies in the field of nonlinear science are described with general coefficients [40] or with 

higher-order nonlinear and dissipative terms allowing to observe new effects [39] . In that sense, several authors have im- 

proved the KdV equation by introducing high-order terms, leading generally to near partially integrable or integrable high- 

order equations with quasi-soliton solutions [41–45] . For example, in the context of shallow water wave dynamics, Fokou 

et al. [39,46–48] , with the help of the Boussinesq perturbation expansion, derived a higher-order KdV equation. This equa- 

tion contains many nonlinear and nonlocal terms that describe well the long, small-amplitude, unidirectional wave motion 

in shallow water with surface tension. 

In the same line, the modification of the KdV equation by viscosity has been also investigated [49–54] . In general, the in- 

troduction of a dissipative term due to viscosity is done strategically [55] . Chester [49] was the first to introduce an attempt 

to study the effects of dissipation and dispersion. However, the first true formulation of the KdV equation with viscosity 

effect has been presented by Ott and Sudan [50] . In that direction, Lundgren [51] and Dias et al. [52] have established a set 

of equations in the context of both linearity and nonlinearity governing flow taking into account dissipation due to viscosity. 

It has been shown that, the KdV equation can be derived using Euler’s equation for an incompressible and non viscous 

fluid, the bottom and surface boundary conditions and the assumption of irrotational flow. In the present work, instead 

of this approach, we use the dynamics and kinematics boundary conditions both corrected by viscosity effect, the Navier- 

Stokes equation and the incompressible and irrotational flow assumptions to study the dynamics of viscous flowing shallow 

water waves. This approach has been shown to better describe the evolution of long shallow wave dynamics [36,56] . We 

simultaneous combine the dissipation due to viscosity and surface tension effects and show that the model equation can 

lead to a generalized inhomogeneous KdV equation that includes higher diffusion and instability effects. Such effects have 

been shown to have an impact on the dynamics of shallow water waves [36,42,56,57] . 

We go beyond the fifth order evolution equation for long wave dissipative solitons derived by Depassier et al. [56] (for 

dissipative wave supposed to have a lower amplitude O (ε 2 ) ). We show that the dynamics of the wave amplitude for the 

unidirectional propagation of long waves over shallow water can have a lower amplitude O (ε 3 ) , and can be governed by a 

new generalized inhomogeneous KdV equation for a viscous flowing shallow water waves given by : 

u t + u x + ε ( a 1 uu x + a 2 u 3 x + a 3 u 2 x ) + ε 2 ( b 1 u 

2 u x + b 2 u 2 x + b 3 u x u 2 x + b 4 uu 2 x + b 4 u 

2 
x + b 5 uu 3 x 

+ b 6 u 5 x ) + ε 3 ( c 1 u 

3 u x + c 2 u 

2 
x + c 2 u 

2 u 2 x + c 3 u 

3 
x + c 4 uu 

2 
x + c 5 uu 2 x + c 6 uu x u 2 x + c 7 u 

2 u 3 x 

+ c 8 u x u 4 x + c 9 uu 5 x + c 10 u 2 x u 3 x + c 11 u 4 x + c 12 u 

2 
2 x + c 13 u x u 3 x + c 14 uu 4 x + c 15 u 7 x ) = 0 , (1) 

where the coefficients a i (i = 1 , 2 , 3) , b i (i = 1 , . . . , 6) and c i (i = 1 , . . . , 15) depend on some parameters. The parameter ε is a 

non-dimensional measure of the small wave amplitude. The subscripts of the form 

′′ nx ′′ denote derivatives of the order n 

with respect to x and t , where x an t are the space and time variables. 

It is worth noting that, after the degeneration of each coefficient of Eq. (1) , this equation can be reduced to some 

well-known equations. For example, if b i (i = 1 , . . . , 6) = 0 , c i (i = 1 , . . . , 15) = 0 , ε � = 0 and a i (i = 1 , 2 , 3) � = 0 , Eq. (1) can 

be reduced to the generalized third-order KdV equations [58–61] . Especially, in the limit case where ε = 1 , a 1 = 6 , a 2 = 1 

and a 3 = 0 , this equation can be turned to the standard KdV equation [26] . If c i (i = 1 , . . . , 15) = 0 and a i (i = 1 , 2 , 3) , 

b i (i = 1 , . . . , 6) and ε are real and arbitrary parameters, Eq. (1) can be reduced to the fifth-order KdV equations, includ- 

ing the Lax equation [62] , the Sawada-Kotera equation [63,64] and the Kaup-Kupershmidt equation [65] , just to cite a few. 

Similarly, if a i (i = 1 , 2 , 3) , b i (i = 1 , . . . , 6) , c i (i = 1 , . . . , 15) and ε are real and arbitrary parameters, we obtain the seventh- 

order KdV equations such as the one introduced by Pomeau et al. [66] . It is therefore clear that Eq. (1) can be similar 

to many equations well-known to the scientific community and can describes many physical situations. This equation can 

therefore better describes the dynamics of nonlinear waves in shallow water. 

The rest of our work is organized as follows. In Section 2 , we formulate the shallow water problem in non-dimensional 

variables. The correction of the kinematics and boundary conditions by the viscosity is illustrated. In Section 3 , the Boussi- 

nesq equations and the linear approximation of the Navier-Stokes equations are briefly described, from which two types 

of equations will be constructed. The first is the generalized inhomogeneous KdV equation depending only on the surface 

elevation for the right-moving viscous shallow water waves and containing higher-order nonlinear and dissipative terms 

corrections. The second is an equation that depends simultaneously on the surface elevation for the right- and left-moving 

wave. In Section 4, the soliton solutions are investigated by using the Hirota’s bilinear method and a discussion on the 

effects of some parameters on the soliton dynamics are shown. Section 5 concludes the work. 

2 
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2. Mathematical formulation 

This section deals with the mathematical formulation of the shallow water wave problems. We illustrate the correction 

of the kinematics, dynamics and boundary conditions by the viscosity in non-dimensional variables. For this, we consider a 

layer of an incompressible and viscous fluid, being above a horizontal plane located at altitude z = 0 with the mean depth 

the parameter h . We choose the coordinates such that the movement of the fluid is two-dimensional. The properties of 

the system are independent of the y coordinate and the component of the velocity along y is zero. Then we assume that 

the velocity field inside the fluid is given by 
−→ v (u, 0 , w ) , where u ≡ u (x, z, t) , w ≡ w (x, z, t) and that the surface equation 

is given by z(x, t) = h + η(x, t) , where the function η(x, t) is the surface elevation. The fluid is subjected to the action of 

forces having perpendicular and parallel components. The perpendicular components are the pressure P a and the force 
−→ 

f . 

The pressure P a is variable and uniform in space and it dues to the gas column above the fluid. The force 
−→ 

f = ρ
−→ 

g per 

unit volume is due to gravity, where ρ is the density of the fluid and g is the gravity field. For the parallel component, we 

consider the viscosity force 
−→ 

F = μ�
−→ v per unit volume due to the friction of the fluid slices against each other, where μ is 

the dynamics viscosity. 

The Navier-Stokes equation governing the dynamics of the system can be written in the form 

w t + uw x + ww z = − 1 

ρ
P − g − 2 νw zz , 

P = σ
ηxx 

(1 + η2 
x ) 

3 
2 

(2) 

where P is the pressure in the fluid, σ is the surface tension and ν = 

μ
ρ is the kinematics viscosity. Eq. (2) has been obtained 

using the fundamental principe of dynamics to a fluid particle, subject to its weight, the volumetric force of viscosity and 

the forces of pressure. 

The boundary condition at the bottom indicates that the fluid is bounded underneath by a rigid surface such that 

u = 0 and w = 0 , for z = 0 . (3) 

The procedure for establishing the kinematic boundary condition at the surface corrected by viscosity has been argued 

demonstrated in [52] . It is given by 

w = ηt + uηx − 2 νηxx , for z = h + η(x, t) . (4) 

The physical condition at the surface is given by 

P a − P = 0 , for z = h + η(x, t) . (5) 

These equations must be completed by the mass conservation requirement 

u x + w z = 0 . (6) 

The hypothesis that the flow is irrotational makes it possible to affirm the existence of a velocity potential such that, 

v (x, z, t) = ∇φ(x, z, t) , where the horizontal and vertical velocity components are given by u = φx and w = φz . The symbol 

∇ is the Nabla operator. It should be noted that, the Laplace equation ∇ 

2 φ = 0 verifies the velocity potential throughout 

the area occupied by the fluid. 

The kinematics condition can then be written as: 

ηt + φx ηx − 2 νηxx − φz = 0 , z = h + η(x, t) . (7) 

Eq. (2) can now be integrated to yield the dynamics boundary condition 

φt + 

1 

2 

(φ2 
x + φ2 

z ) + gη + 2 νφzz − σ
ηxx 

(1 + η2 
x ) 

3 
2 

= 0 , z = h + η(x, t) . (8) 

The characteristic time t 0 = L/c 0 used to measure the time is defined from the characteristics length L in the x direc- 

tion and speed c 0 = 

√ 

gh of the high wavelength waves. Since the study deals with small amplitude and long waves, it is 

preferable to scale the variables in order to avoid any ambiguity corresponding to a different physical situation. Thus, the 

variables will be scaled in such a way that 

t ′ = 

t 

t 0 
, x ′ = 

x 

L 
, z ′ = 

z 

h 

, η′ = 

η

A 

, φ′ = 

φh 

LA 

√ 

gh 

, (9) 

where A is a typical amplitude of a surface elevation η′ . 
Introducing Eq. (9) in Eqs. (3) , (6), (7) and (8) , the equations for a fluid are written in a non-dimensionalized form such 

that 

βφ′ 
2 x ′ + φ′ 

2 z ′ = 0 , 0 ≤ z ′ ≤ 1 + αη′ , (10) 

3 
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φ′ 
z ′ = 0 , z ′ = 0 , (11) 

η′ 
t ′ + αη′ 

x ′ φ
′ 
x ′ −

1 

β
φ′ 

z ′ − βδη′ 
x ′ x ′ = 0 , z ′ = 1 + αη′ , (12) 

φ′ 
t ′ + 

1 

2 

α

(
φ

′ 2 
2 x ′ + 

1 

β
φ

′ 2 
2 z ′ 

)
− βτη′ 

2 x ′ 

(1 + α2 βη
′ 2 
x ′ ) 

3 
2 

+ η′ + δφ′ 
2 z ′ = 0 , z ′ = 1 + αη′ . (13) 

The parameter τ = 

σ
ρgh 2 

is the Bond number and δ = 

2 Lν
c 0 h 

2 , where σ and ν are the surface tension and viscosity coeffi- 

cients, respectively. The amplitude parameter α = 

A 
h 

, measures the ratio of wave amplitude to undisturbed fluid depth. The 

wavelength parameter β = ( h L ) 
2 , measures the square of the ratio of fluid depth to wave length. We focus our attention on 

low amplitude, weakly nonlinear waves in shallow and viscous water, then α and β can be considered as small. 

Eqs. (10) - (13) can be rewritten in the following forms 

βφ2 x + φ2 z = 0 , 0 ≤ z ≤ 1 + αη, (14) 

φz = 0 , z = 0 , (15) 

ηt + αηx φx −
1 

β
φz − βδηxx = 0 , z = 1 + αη, (16) 

φt + 

1 

2 

α

(
φ2 

2 x + 

1 

β
φ2 

2 z 

)
− βτη2 x 

(1 + α2 βη2 
x ) 

3 
2 

+ η + δφ2 z = 0 , z = 1 + αη, (17) 

where the subscription ( ′ ) have been omitted for the reason of simplicity. 

3. Derivation of equations for shallow water waves 

In this section, we formulate new generalized shallow water wave equations both for unidirectional and bidirectional 

wave motion taking into account the effects of viscosity and surface tension. For this purpuse, we use the approximation 

of the velocity potential to formulate the Boussinesq system and derive the generalized KdV equations for unidirectional 

waves motion with the effects of surface tensions and viscosity. On the other hand, by using the non-uniqueness of the 

decompositions of this Boussinesq system, we derive generalized equations for bidirectional waves in shallow water, which 

also includes the surface tension and viscosity effects. 

3.1. Formulation of the Boussinesq system 

The standard procedure in shallow water theory has a serious advantage in the sense that, by writing the velocity po- 

tential function φ(x, z, t) in the form of power series of z, it does not compromise the requirements of satisfying both the 

field equation and the boundary conditions of the bottom and free surface [44,45] . Thus, we start by setting the velocity 

potential φ as a formal expansion 

φ(x, z, t) = 

∞ ∑ 

i =0 

f i (x, t) z i . (18) 

We assume that Eq. (18) formally satisfies the Laplace equation given by Eq. (14) . We obtain the recurrent relation (i + 

1)(i + 2) f i +2 (x, t) = −β( f i (x, t)) 2 x . We set g(x, t) = f 0 (x, t) , which indicates the velocity potential at the bottom z = 0 and 

we obtain 

f 2 k (x, t) = 

(−1) k βk 

(2 k )! 

∂ 2 k g(x, t) 

∂x 2 k 
. (19) 

Using Eq. (15) , the power series expansion used for the approximation of the velocity potential φ is given by [39,44,45] 

φ(x, z, t) = 

∞ ∑ 

k =0 

z 2 k 
(−1) k βk 

(2 k )! 

∂ 2 k g(x, t) 

∂x 2 k 
. (20) 

In this work, the wave regime is considered for the classical Stokes number S = α/β = 1 , so that the amplitude parameter 

α and the wavelength parameter β may be treated on an equal footing α = β = O (ε) . 

4 
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By limiting the development of Eq. (20) to order 3, we obtain the following equation 

φ(x, z, t) = g(x, t) − 1 

2 

βz 2 
∂ 2 g(x, t) 

∂x 2 
+ 

1 

24 

β2 z 4 
∂ 4 g(x, t) 

∂x 4 
− 1 

720 

β3 z 6 
∂ 6 g(x, t) 

∂x 6 
. (21) 

By introducing Eq. (21) into the kinematics condition and using the relation z = 1 + αη(x, t) , we obtain the following 

equation in which w (x, t) = 

∂ g(x, t) 

∂x 
and all terms greater than O (ε 3 ) have been neglected. 

ηt + w x + ε 
(
ηx w + ηw x −

1 

6 

w 3 x − δη2 x 

)
+ ε 2 

(
− 1 

2 

ηx w 2 x −
1 

2 

ηw 3 x + 

1 

120 

w 5 x 

)

+ ε 3 
( 1 

24 

ηx w 4 x −
1 

2 

η2 w 3 x − ηηx w 2 x + 

1 

24 

ηw 5 x −
1 

5040 

w 7 x 

)
= 0 . (22) 

Concerning the dynamics condition, a small transformation is necessary. We derive the equation with respect to x and 

assuming that 
d(. ) 

dx 
= 

∂ (. ) 

∂x 
+ αηx 

∂ (. ) 

∂z 
, the dynamics condition can be written as follows 

φxt + αηx φzt + α

(
φx φxx + 

1 

β
φz φxz 

)
+ ηx + δφxzz + αδηx φzzz − βτηxxx = 0 . (23) 

Proceeding in the same way as in the case of kinematics condition above, we obtain the following equation 

ηx + w t + ε 
(

ww x −
1 

2 

w 2 xt − τη3 x − δw 2 x 

)
+ ε 2 

(
− ηx w xt + 

1 

2 

w x w 2 x − ηw 2 xt −
1 

2 

ww 3 x + 

1 

24 

w 4 xt + 

1 

2 

δw 4 x 

)

+ ε 3 
(
ηx w 

2 
x − ηηx w xt − ηx ww 2 x + 

1 

6 

ηx w 3 xt −
1 

2 

η2 w 2 xt − ηww 3 x + 

1 

12 

w 2 x w 3 x 

−1 

8 

w x w 4 x + ηw x w 2 x + 

1 

6 

ηw 4 xt + 

1 

24 

ww 5 x −
1 

720 

w 6 xt + δηw 4 x −
1 

24 

δw 6 x + δηx w 3 x 

)
= 0 , 

(24) 

where the notation for the small parameters β and α have been changed to ε and w (x, t) = 

∂ g(x,t) 
∂x 

is the scaled horizontal 

velocity at the bottom of the fluid. 

It is worth noting that Eqs. (22) and (24) constitute the generalized Boussinesq system. To the best of our knowledge, 

these coupled Boussinesq equations include both viscosity and surface tension effects are derived for the first time in the 

literature. When δ = 0 , these equations can be similar to those recently obtained by Fokou et al. [39] in the absence of 

viscosity effect. 

3.2. Equations for unidirectional waves 

In the context of shallow water, it has been shown that, the KdV equation has been first introduced as a model for 

the unidirectional propagation of long waves over shallow water [67] . To derive the equations for unidirectional waves, we 

reduce the two Eqs. (22) and (24) into a single dependent equation of η. To do this, we follow the work by Whitham 

[67] and assume that the relationship between the horizontal velocity at the mean height w and the elevation η is given by 

w = η + εψ(η) where ψ is a function which will be determined later. The right wave hypothesis imposes that at the lowest 

order of α and β , the Boussinesq system is reduced to ηt + w x = 0 and w t + ηx = 0 . Starting from there, it shows that w 

and η satisfies the linear wave equation ηtt − ηxx = 0 , which describes waves moving in one direction. More precisely, for 

the lowest order O (ε = 0) , w = η and ηx + ηt = 0 . We assume w in the form 

w = η + εA (η) + ε 2 B (η) + ε 3 C(η) , (25) 

where the coefficients A (η) , B (η) and C(η) are arbitrary functions. These coefficients will subsequently be determined by 

introducing Eq. (25) into equations (22) and (24) of the Boussinesq system, each time limited to the order of the small 

parameter corresponding to the coefficient to be determined. 

To determine the coefficient A (η) corresponding to the first order of the small parameter ε, Eq. (25) is first introduced 

into Eqs. (22) and (24) . Neglecting the terms of higher order than O (ε) in each equation, we obtain the following system 

ηt + ηx + ε 
(

A x + 2 ηηx −
1 

6 

η3 x − δη2 x 

)
+ O (ε 2 ) = 0 , 

ηt + ηx + ε 
(

A t + ηηx −
1 

6 

η2 xt − τη3 x − δη2 x 

)
+ O (ε 2 ) = 0 . 

(26) 

We look for the function A as it corresponds to the two equations (26) up to the first order of ε. Using the lower order 

equation ηt + ηx = 0 , it is easy to see that all the t-derivatives terms of η can be expressed in terms of the x -derivatives 

such that ∂ 
∂t 

= − ∂ 
∂x 

. This allows us to reduce the system (26) into a single equation as follows 

A x + 2 ηηx −
1 

6 

η3 x − δη2 x = A t + ηηx + 

1 

2 

(1 − 2 τ ) η3 x − δη2 x . (27) 

5 
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A common approach is to use the lowest order relation between the time and space derivatives (A t = −A x ) in Eq. (27) . After 

integration, we finally obtain 

A (η) = −1 

4 

η2 + 

1 

6 

(2 − 3 τ ) η2 x , (28) 

w = η + ε 
[ 

− 1 

4 

η2 + 

1 

6 

(
2 − 3 τ

)
η2 x 

] 
+ ε 2 B (η) + ε 3 C(η) , (29) 

ηt + ηx + ε 
[ 3 

2 

ηηx + 

1 

6 

(
1 − 3 τ

)
η3 x − δη2 x 

] 
= 0 . (30) 

Setting δ = 0 , X = 

√ 

3 
2 (x − t) and T = 

1 
4 

√ 

3 
2 (εt) Eq. (30) can be reduced to the standard form of the KdV equation 

ηT + 6 ηηX + η3 X = 0 . (31) 

To determine the coefficient B (η) corresponding to the second order of the small parameter ε, Eq. (29) is introduced into 

Eqs. (22) and (24) . Neglecting the terms of higher order than O (ε 2 ) in each equation, all the t-derivatives of η are replaced 

by their expressions through the x -derivatives using the lowest order equation, namely (30) . Upon the substitution, we 

obtain the following equations 

ηt + ηx + ε 
[ 3 

2 

ηηx + 

1 

6 

(
1 − 3 τ

)
η3 x − δη2 x 

] 
+ ε 2 

[ 
B x −

3 

4 

η2 ηx + 

( 1 

12 

− 1 

2 

τ
)
ηx η2 x −

( 1 

12 

+ 

1 

2 

τ
)
ηη3 x 

+ 

(
− 17 

360 

+ 

1 

12 

τ
)
η5 x 

] 
+ O (ε 3 ) = 0 , 

ηt + ηx + ε 
[ 3 

2 

ηηx + 

1 

6 

(
1 − 3 τ

)
η3 x − δη2 x 

] 
+ ε 2 

[ 
B t + 

1 

2 

δη2 
x + 

1 

2 

δηη2 x −
1 

2 

δη2 x + 

(11 

6 

+ 

7 

4 

τ
)
ηx η2 x 

+ 

11 

12 

ηη3 x + 

1 

4 

(11 

18 

− τ − τ 2 

)
η5 x 

] 
+ O (ε 3 ) = 0 . 

(32) 

The solution of the function B (η) can be expressed in terms of η and its x -derivatives. As a result, we obtain 

B (η) = 

1 

8 

η3 − 1 

4 

δηx + 

1 

16 

(3 + 7 τ ) η2 
x + 

1 

4 

δηηx + 

1 

4 

(2 + τ ) ηη2 x + 

1 

120 

(12 − 20 τ − 15 τ 2 ) η4 x . (33) 

Inserting Eq. (33) into Eq. (29) and the first equation of Eq. (32) , yields in second order O (ε 2 ) , the equation 

w = η + ε 
[ 

− 1 

4 

η2 + 

1 

6 

(
2 − 3 τ

)
η2 x 

] 
+ ε 2 

[ 1 

8 

η3 − 1 

4 

δηx + 

1 

16 

(3 + 7 τ ) η2 
x + 

1 

4 

(2 + τ ) ηη2 x 

+ 

1 

4 

δηηx + 

1 

120 

(12 − 20 τ − 15 τ 2 ) η4 x 

] 
+ ε 3 C(η) , 

(34) 

ηt + ηx + ε 
[ 3 

2 

ηηx + 

1 

6 

(
1 − 3 τ

)
η3 x − δη2 x 

] 
+ ε 2 

[ 
− 3 

8 

η2 ηx −
1 

4 

δη2 x + 

1 

24 

(
23 + 15 τ

)
ηx η2 x 

+ 

1 

4 

δηη2 x + 

1 

12 

(
5 − 3 τ

)
+ 

1 

4 

δη2 
x + 

1 

360 

(
19 − 30 τ − 45 τ 2 

)
η5 x 

] 
= 0 . 

(35) 

By identifying Eqs. (1) and (35) , we find the expression of the coefficients a i (1 , 2 , 3) and b i (1 , . . . , 15) , which depend on τ
and δ. 

Introducing Eq. (34) in Eqs. (22) and (24) and proceeding as above, we obtain 

w = η + ε 
[ 

− 1 

4 

η2 + 

1 

6 

(
2 − 3 τ

)
η2 x 

] 
+ ε 2 

[ 1 

8 

η3 − 1 

4 

δηx + 

1 

16 

(3 + 7 τ ) η2 
x + 

1 

4 

δηηx + 

1 

4 

(2 + τ ) ηη2 x 

+ 

1 

120 

(12 − 20 τ − 15 τ 2 ) η4 x 

] 
+ ε 3 

[ 
− 5 

64 

η4 + 

1 

8 

δηηx + 

( 7 

20 

− 1 

4 

τ + 

1 

16 

τ 2 

)
ηη4 x + 

1 

16 

(
2 − 3 τ

)
η2 η2 x 

+ 

( 1091 

1440 

+ 

1 

3 

τ + 

21 

32 

τ 2 

)
ηx η3 x + 

1 

32 

(
3 − 21 τ

)
ηη2 

x + 

( 163 

360 

+ 

29 

48 

τ + 

7 

16 

τ 2 

)
η2 

2 x −
1 

16 

(
1 + 3 τ

)
δη3 x 

−1 

8 

(
1 + 2 τ

)
δηx η2 x + 

1 

48 

(
− 11 + 15 τ

)
δηη3 x −

11 

32 

δη2 ηx + 

( 61 

1890 

− 1 

20 

τ − 1 

24 

τ 2 − 1 

16 

τ 3 

)
η6 x 

−1 

8 

δ2 η2 
x + 

( 3 

16 

− 3 

16 

) ∫ 
η3 

x dx + 

1 

16 

δ
∫ 

η2 
x dx + 

1 

16 

(
5 − 3 τ

)
δ

∫ 
ηη4 x dx + 

7 

32 

δ
∫ 

η2 η2 x dx 

] 
, 

(36) 

6 
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ηt + ηx + ε 
[ 3 

2 

ηηx + 

1 

6 

(
1 − 3 τ

)
η3 x − δη2 x 

] 
+ ε 2 

[ 
− 3 

8 

η2 ηx −
1 

4 

δη2 x + 

1 

24 

(
23 + 15 τ

)
ηx η2 x 

+ 

1 

4 

δηη2 x + 

1 

12 

(
5 − 3 τ

)
+ 

1 

4 

δη2 
x + 

1 

360 

(
19 − 30 τ − 45 τ 2 

)
η5 x 

] 
+ ε 3 

[ 3 

16 

η3 ηx −
1 

16 

δη2 
x 

−
( 13 

32 

+ 

13 

32 

τ
)
η3 

x + 

1 

8 

(
4 − τ

)
η2 η3 x + 

(11 

16 

+ 

29 

6 

τ
)
ηηx η2 x −

3 

16 

δηη2 
x + 

1 

8 

δη2 η2 x −
1 

8 

δηη2 x 

+ 

(1079 

1440 

− 5 

45 

τ + 

19 

32 

τ 2 

)
ηx η4 x −

1 

48 

(
1 + 9 τ

)
δη4 x + 

( 19 

80 

− 5 

24 

τ − 1 

16 

τ 2 

)
ηη5 x −

1 

4 

(1 + τ ) δη2 
2 x 

+ 

( 377 

288 

+ 

15 

16 

τ + 

49 

32 

τ 2 

)
η2 x η3 x + 

(
− 25 

48 

+ 

3 

48 

τ
)
δ ηx η3 x + 

( 1 

24 

+ 

1 

8 

τ
)
δηη4 x −

1 

4 

δ2 ηx η2 x 

(37) 

+ 

( 55 

3024 

− 19 

720 

τ − 1 

48 

τ 2 − 1 

16 

τ 3 

)
η7 x 

] 
= 0 . 

At the third order O (ε 3 ) , the correction function C(η) is given by 

C(η) = − 5 

64 

η4 + 

( 7 

20 

− 1 

4 

τ + 

1 

16 

τ 2 

)
ηη4 x + 

1 

16 

(2 − 3 τ ) η2 η2 x + 

1 

32 

(3 − 21 τ ) ηη2 
x 

+ 

( 1091 

1440 

+ 

1 

3 

τ + 

21 

32 

τ 2 

)
ηx η3 x + 

( 163 

360 

+ 

29 

48 

τ + 

7 

16 

τ 2 

)
η2 

2 x −
1 

16 

(1 + 3 τ ) δη3 x + 

1 

8 

δηηx 

+ 

1 

48 

(−11 + 15 τ ) δηη3 x −
11 

32 

δη2 ηx + 

( 61 

1890 

− 1 

20 

τ − 1 

24 

τ 2 − 1 

16 

τ 3 

)
η6 x −

1 

8 

(1 + 2 τ ) δηx η2 x 

−1 

8 

δ2 η2 
x + 

( 3 

16 

− 3 

16 

)∫ 
η3 

x dx + 

1 

16 

δ
∫ 

η2 
x dx + 

1 

16 

(5 − 3 τ ) δ
∫ 

ηη4 x dx + 

7 

32 

δ
∫ 

η2 η2 x dx. 

(38) 

It should be noted that, the Eqs. (37) and (1) are the same where all the coefficients a i (i = 1 , 2 , 3) , b i (i = 1 , . . . , 6) and 

c i (i = 1 , . . . , 15) strongly depend on the viscosity and the surface tension parameters. 

3.3. Equations for bi-directional waves 

In the field of shallow water, through the non-uniqueness of the Boussinesq decomposition, it has been shown that 

waves also propagate in two directions [43,68,69] . To derive the equations for bi-directional waves, the approach is to split 

the surface elevation η(x, t) into two components, namely u (x, t) and ξ (x, t) corresponding to the right- and left-moving 

waves respectively. The left-moving wave is of the order O (ε) smaller than that of the right-moving wave. Thus, one can 

assume: 

η(x, t) = u (x, t) + εξ (x, t) , 
w (x, t) = w 

+ (x, t) + εw 

−(x, t) , 
(39) 

where w 

+ (x, t) = u (x, t) + εR (x, t) and w 

−(x, t) = εS(x, t) are the scaled horizontal velocity at the bottom of the fluid to the 

right- and left-moving respectively. As for the equations for unidirectional waves, we applied the same procedure. Then, at 

the lowest order we imposes that the Boussinesq system is reduced to u t + w 

+ 
x = 0 and u x + w 

+ 
t = 0 , which are satisfied by 

the right-moving wave u x + u t = 0 and the corresponding equation for the left-moving wave ξx − ξt = 0 . We express w in 

the form 

w = u + εR + εS = u + εQ, (40) 

where Q = (R + S) is arbitrary function of x and t . This function will subsequently be determined by introducing Eq. (40) and 

the first equation of Eq. (39) into Eqs. (22) and (24) . Neglecting the terms of higher order than O (ε) in each equation, we 

obtain the following system 

u x + u t + ε(Q x + ξx + 2 uu x − δu 2 x −
1 

6 

u 3 x ) = 0 , 

u x + u t + ε(Q t + ξx + uu x − δu 2 x + 

1 

2 

u 3 x − τu 3 x ) = 0 , 

(41) 

Proceeding in the same way as in [43] , we assume that the two equations in (40) are identical and can take the form 

u x + u t + ε(k 1 uu x + k 2 u 2 x + k 3 u 3 x ) = 0 . Thus, we obtain 

Q x = −(ξx + 2 uu x − δu 2 x −
1 

6 

u 3 x ) + k 1 uu x + k 2 u 2 x + k 3 u 3 x , 

Q t = −(ξx + uu x − δu 2 x + 

1 

2 

u 3 x − τu 3 x ) + k 1 uu x + k 2 u 2 x + k 3 u 3 x . 

(42) 

We perform a partial derivation of these two equations with respect to t and x respectively. We then substitute u t by −u x 
and ξt by ξx , and subtract the equations, we obtain 

(3 − 2 k 1 ) (u 

2 
x + uu 2 x ) − 2(k 2 + δ) u 3 x + 

(
1 
3 

(1 − 3 τ ) − 2 k 3 
)
u 4 x = 0 . (43) 

7 
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The Eq. (43) is satisfied by k 1 = 3 / 2 , k 2 = −δ and k 3 = (1 / 6)(1 − 3 τ ) . Thus, both equations in (39) take the form 

u x + u t + ε 
(3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

)
= 0 , (44) 

which coincides with the same order equation for η(x, t) in the pure right-moving wave case. 

Substituting the coefficients k i (i = 1 , 2 , 3) by their expressions in the first equation of (42) , and integrating once with 

respect to x leads to 

Q = −ξ − 1 

4 

u 

2 + 

1 

6 

(2 − 3 τ ) u 2 x . (45) 

To determine the equation corresponding to the second order O (ε2 ) , we assume that the equations for the horizontal 

velocity w and the left-moving wave ξ , can be written in the form 

w = u + ε 
(

− ξ − 1 

4 

u 

2 + 

1 

6 

(2 − 3 τ ) u 2 x 

)
+ ε 2 M, 

ξt = ξx + εH x , 

(46) 

where H ≡ H(x, t) and M ≡ M(x, t) are free functions. To determine the functions H(x, t) and M(x, t) , Eq. (46) is introduced 

into Eqs. (22) and (24) . Neglecting the terms of higher order than O (ε 2 ) in each equation, all the t-derivatives of u and ξ
are replaced by their expressions through the x -derivatives using the lowest order equation, namely Eq. (44) and the second 

equation of Eq. (46) . Upon these substitutions, we obtain the following equations 

u x + u t + ε 
(3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

)
+ ε 2 

(
M x + H x − δξ2 x + 

1 

6 

ξ3 x −
3 

4 

u 

2 u x 

+ 

1 

12 

(1 − 6 τ ) u x u 2 x −
1 

12 

(1 + 6 τ ) uu 3 x −
1 

360 

(17 − 30 τ ) u 5 x 

)
= 0 , 

u x + u t + ε 
(3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

)
+ ε 2 

(
M t − H x − ξu x − uξx + δξ2 x + 

1 

2 

(1 − 2 τ ) ξ3 x 

+ 

1 

2 

δu 

2 
x + 

11 

12 

uu 3 x + ( 
11 

6 

+ 

7 

4 

τ ) u x u 2 x + ( 
11 

72 

− 1 

4 

τ − 1 

4 

τ 2 ) u 5 x 

)
= 0 . 

(47) 

The next step consists to assume from the requirement that the both Eqs. (47) can take the form 

u x + u t + ε 
(3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

)
+ ε 2 (b 1 u 5 x + b 2 uu 3 x + b 3 u x u 2 x + b 4 u 

2 u x + b 5 u 

2 
x ) = 0 , (48) 

which implies that 

M x = −H x + δξ2 x −
1 

6 

ξ3 x + 

1 

4 

(3 + 4 b 4 ) u 

2 u x + 

1 

12 

(1 + 6 τ + 12 b 2 ) uu 3 x −
1 

12 

(1 − 6 τ − 12 b 3 ) u x u 2 x 

+ 

1 

360 

(17 − 30 τ + 360 b 1 ) u 5 x + b 5 u 

2 
x , 

M t = H x + ξu x + uξx − δξ2 x −
1 

2 

(1 − 2 τ ) ξ3 x + 

1 

2 

(2 b 5 − δ) u 

2 
x −

(11 

6 

+ 

7 

4 

τ − b 3 

)
u x u 2 x 

+ b 4 u 

2 u x −
1 

12 

(11 − 12 b 2 ) uu 3 x −
( 11 

72 

− 1 

4 

τ − 1 

4 

τ 2 − b 1 

)
u 5 x . 

(49) 

Integrating the first equation of Eq. (49) with respect to x leads to 

M = −H + δξx −
1 

6 

ξ2 x + 

1 

12 

(3 + 4 b 4 ) u 

3 + 

1 

12 

(1 + 6 τ + 12 b 2 ) uu 2 x −
1 

12 

(1 + 2 b 2 − 6 b 3 ) u 

2 
x 

+ b 5 
∫ 

u 

2 
x + 

1 

360 

(17 − 30 τ + 360 b 1 ) u 5 x . 

(50) 

Substituting Eq. (50) into the second equation of Eq. (49) yields 

H x + H t = −ξu x − uξx + 2 δξ2 x + 

1 

3 

(1 − 3 τ ) ξ3 x − 2 

[ (
b 4 + 

3 

8 

)
u 

2 u x + 

(
b 3 −

5 

8 

τ − 23 

24 

)
u x u 2 x 

+ 

(
b 2 −

5 

12 

+ 

1 

4 

τ
)

uu 3 x −
1 

4 

(δ − 4 b 5 ) u 

2 
x + 

(
b 1 −

19 

360 

+ 

1 

12 

τ + 

1 

8 

τ 2 

)
u 5 x 

] 
. 

(51) 
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To find the solution H(x, t) of Eq. (51) , we sum its derivatives with respect to x and t and obtain 

H = −1 

2 

(πu ) x + δπ2 x + 

1 

6 

(1 − 3 τ ) π3 x + G. (52) 

By replacing H by its expression in (50) we obtain 

M = −G + 

1 

2 

uξ + 

1 

2 

u x π − 1 

6 

(2 − 3 τ ) ξ2 x + 

1 

12 

(1 + 6 τ + 12 b 2 ) uu 2 x + 

1 

12 

(3 + 4 b 4 ) u 

3 + b 5 
∫ 

u 

2 
x dx 

− 1 

12 

(1 + 2 b 2 − 6 b 3 ) u 

2 
x + 

1 

360 

(17 − 30 τ + 360 b 1 ) u 5 x , 

(53) 

such that ξ = πx and G satisfies the following equation 

G x + G t = −2 

[ (
b 4 + 

3 

8 

)
u 

2 u x + 

(
b 2 −

5 

12 

+ 

1 

4 

tau 

)
uu 3 x 

−1 

4 

(δ − 4 b 5 ) u 

2 
x + 

(
b 3 −

5 

8 

tau 

23 

24 

)
u x u 2 x 

+ 

(
b 1 −

19 

360 

+ 

1 

12 

τ + 

1 

8 

tau 

2 
)

u 5 x 

] 
. (54) 

Introducing Eq. (52) into the second equation of Eq. (46) and integrating with respect to x leads to equation in terms of 

the left-moving wave for the first order O (ε) as follows 

πt − πx + ε 
(1 

2 

(πu ) x − δπ2 x −
1 

6 

(1 − 3 τ ) π3 x − G 

)
= 0 . (55) 

Introducing Eqs. (52) and (53) into Eq. (47) , we obtain 

u x + u t + ε 
(3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

)
+ ε 2 

(
− G x + ξu x + 

1 

2 

uξx + 

1 

2 

δu 

2 
x − δξ2 x + 

1 

2 

πu 2 x 

−1 

6 

(1 − 3 τ ) ξ3 x + b 1 u 5 x + b 2 uu 3 x + b 3 u x u 2 x + b 4 u 

2 u x + b 5 u 

2 
x 

)
= 0 . 

(56) 

To establish the equation corresponding to the third order O (ε 3 ) , we assume that the equations for the horizontal velocity 

ω and the left-moving wave ξ can be written in the form 

w = u + ε 
(

− ξ − 1 

4 

u 

2 + 

1 

6 

(2 − 3 τ ) u 2 x 

)
+ ε 2 

(
− G + 

1 

2 

uξ + 

1 

2 

u x π − 1 

6 

(2 − 3 τ ) ξ2 x + b 5 
∫ 

u 

2 
x 

+ 

1 

12 

(1 + 6 τ + 12 b 2 ) uu 2 x + 

1 

12 

(3 + 4 b 4 ) u 

3 − 1 

12 

(1 + 2 b 2 − 6 b 3 ) u 

2 
x + 

1 

360 

(17 − 30 τ + 360 b 1 ) u 5 x 

)
+ ε 3 P, 

ξt = ξx + εH x + ε 2 L x , 

(57) 
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where the free functions L ≡ L (x, t) and P ≡ P (x, t) will be determined later. Introducing Eq. (57) into Eqs. (22) and (24) , we 

obtain the following equations 

u x + u t + ε 
(3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

)
+ ε 2 

(
− G x + ξu x + 

1 

2 

uξx + 

1 

2 

δu 

2 
x − δξ2 x + 

1 

2 

πu 2 x 

−1 

6 

(1 − 3 τ ) ξ3 x + b 1 u 5 x + b 2 uu 3 x + b 3 u x u 2 x + b 4 u 

2 u x + b 5 u 

2 
x 

)
+ ε 3 

[ 
P x + L x − uG x − Gu x + ξuu x 

−2 ξξx + 

1 

2 

πu 

2 
x + 

1 

4 

ξx u 

2 + 

1 

2 

πuu 2 x −
(2 

3 

+ 

1 

2 

τ
)
ξx u 2 x −

1 

6 

(1 − 3 τ ) ξ2 x u x + 

1 

6 

G 3 x −
1 

2 

(1 + τ ) ξu 3 x 

− 1 

12 

πu 4 x + 

1 

12 

(1 + 6 τ ) uξ3 x + 

( 17 

360 

− 1 

12 

τ
)
ξ5 x + 

1 

2 

(δ + 2 b 5 ) uu 

2 
x −

( 1 

12 

+ 

1 

2 

b 2 −
1 

2 

b 3 + 

1 

3 

b 4 

)
u 

3 
x 

+ 

1 

3 

(3 + 4 b 4 ) u 

3 u x −
(3 

4 

− b 2 − b 3 + b 4 − τ
)

uu x u 2 x −
(1 

3 

b 5 + 

1 

6 

δ
)

u 

2 
2 x −

(1 

3 

b 5 + 

1 

6 

δ
)

u x u 3 x 

−
( 7 

24 

− b 2 + 

1 

6 

b 4 −
1 

2 

τ
)

u 

2 u 3 x −
( 1 

72 

+ 

1 

6 

b 2 + 

1 

2 

b 3 + 

1 

3 

τ
)

u 2 x u 3 x + 

1 

2 

(δ + 2 b 5 ) u x 

∫ 
u 

2 
x dx 

−
( 9 

80 

− b 1 + 

1 

3 

b 2 + 

1 

6 

b 3 + 

1 

12 

τ
)

u x u 4 x + 

(
− 23 

240 

+ b 1 −
1 

6 

b 2 + 

1 

12 

τ
)

uu 5 x −
( 1 

189 

+ 

1 

6 

b 1 −
7 

720 

τ
)

u 7 x 

] 
= 0 , 

u x + u t + ε 
(3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

)
+ ε 2 

(
− G x + ξu x + 

1 

2 

uξx + 

1 

2 

δu 

2 
x − δξ2 x + 

1 

2 

πu 2 x 

−1 

6 

(1 − 3 τ ) ξ3 x + b 1 u 5 x + b 2 uu 3 x + b 3 u x u 2 x + b 4 u 

2 u x + b 5 u 

2 
x 

)
+ ε 3 

[ 
P t − L x −

1 

2 

uG x − Gu x 

+ 

3 

4 

ξuu x −
1 

4 

πu 

2 
x + 

1 

2 

u 

2 ξx + ξξx −
3 

2 

δξx u x + δG 2 x −
1 

2 

πuu 2 x − δξu 2 x −
(1 

3 

+ τ
)
ξx u 2 x 

−
(2 

3 

+ 

1 

2 

τ
)

u x ξ2 x + 

(5 

4 

− 1 

4 

τ
)
ξu 3 x + 

11 

12 

uξ3 x + 

1 

12 

πu 4 x + 

( 11 

72 

− 1 

4 

τ − 1 

4 

τ 2 

)
ξ5 x −

2 

3 

b 4 u 

3 u x 

−1 

6 

(2 − 3 τ ) G 3 x + 

(7 

6 

+ b 2 − b 3 −
4 

3 

b 4 − b 4 τ
)

u 

3 
x + 

(1 

2 

b 5 − δ − 2 b 4 δ
)

uu 

2 
x − (2 b 5 δ + δ2 ) u x u 2 x 

+ 

1 

2 

(δ + 2 b 5 ) u x 

∫ 
u 

2 
x dx + 

(1 

4 

− b 2 −
5 

6 

b 4 + 

1 

4 

τ
)

u 

2 u 3 x + 

( 191 

240 

− b 1 −
5 

6 

b 2 − τ + 

1 

4 

τ 2 

)
uu 5 x 

+ 

(85 

18 

− 15 b 1 −
5 

6 

b 2 − 2 b 3 −
1 

8 

τ − 3 

2 

b 3 τ + 

1 

2 

τ 2 

)
u 2 x u 3 x −

(4 

3 

b 5 −
2 

3 

δ − b 2 δ + b 3 δ + b 5 τ
)

u 

2 
2 x 

+ 

(231 

80 

− 13 

2 

b 1 −
7 

6 

b 2 −
5 

6 

b 3 −
37 

24 

τ − 3 

2 

b 2 τ
)

u x u 4 x −
(4 

3 

b 5 −
1 

3 

δ + 2 b 2 δ + b 5 τ + δτ
)

u x u 3 x 

+ 

(31 

12 

− 7 

2 

b 2 − b 3 − 4 b 4 −
7 

4 

τ − 3 b 4 τ
)

uu x u 2 x + 

( 83 

1080 

− 5 

6 

b 1 −
41 

240 

τ − 1 

24 

τ 2 

)
u 7 x 

] 
= 0 . 

(58) 

In the next step, we assume the requirement that both equations (58) can be written in the following forms 

u x + u t + ε 
[ 3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

] 
+ ε 2 

[ 
− G x + ξu x + 

1 

2 

uξx + 

1 

2 

δu 

2 
x − δξ2 x + 

1 

2 

πu 2 x 

−1 

6 

(1 − 3 τ ) ξ3 x + b 1 u 5 x + b 2 uu 3 x + b 3 u x u 2 x + b 4 u 

2 u x + b 5 u 

2 
x 

] 
+ ε 3 

[ 
c 1 u 7 x + c 2 uu 5 x + c 3 u x u 4 x 

+ c 4 u 

2 u 3 x + c 5 u 2 x u 3 x + c 6 uu x u 2 x + c 7 u x u 3 x + c 8 u 

3 
x + c 9 u x 

∫ 
u 

2 
x + c 10 u 

3 u x + c 11 uu 

2 
x + c 12 u 

2 
2 x + c 13 u x u 2 x 

] 
= 0 . 

(59) 
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The expressions for the x - and t-derivatives of P must be then written as 

P x = −L x + uG x + Gu x − ξuu x + 2 ξξx −
1 

2 

πu 

2 
x −

1 

4 

ξx u 

2 − 1 

2 

πuu 2 x + 

(2 

3 

+ 

1 

2 

τ
)
ξx u 2 x 

+ 

1 

6 

(1 − 3 τ ) ξ2 x u x −
1 

6 

G 3 x + 

1 

2 

(1 + τ ) ξu 3 x + 

1 

12 

πu 4 x −
1 

12 

(1 + 6 τ ) uξ3 x −
( 17 

360 

− 1 

12 

τ
)
ξ5 x 

−1 

2 

(δ + 2 b 5 − 2 c 11 ) uu 

2 
x −

1 

3 

(3 + 4 b 4 − 3 c 10 ) u 

3 u x −
1 

2 

(δ + 2 b 5 − 2 c 9 ) u x 

∫ 
u 

2 
x dx 

+ 

(1 

3 

b 5 + 

1 

6 

δ + c 12 

)
u 

2 
2 x + 

(1 

3 

b 5 + 

1 

6 

δ + c 7 

)
u x u 3 x + 

(3 

4 

− b 2 − b 3 + b 4 − τ + c 6 

)
uu x u 2 x 

+ c 13 u x u 2 x + 

( 7 

24 

− b 2 + 

1 

6 

b 4 −
1 

2 

τ + c 4 

)
u 

2 u 3 x + 

( 1 

72 

+ 

1 

6 

b 2 + 

1 

2 

b 3 + 

1 

3 

τ + c 5 

)
u 2 x u 3 x 

+ 

( 9 

80 

− b 1 + 

1 

3 

b 2 + 

1 

6 

b 3 + 

1 

12 

τ + c 3 

)
u x u 4 x + 

( 1 

12 

+ 

1 

2 

b 2 −
1 

2 

b 3 + 

1 

3 

b 4 + c 8 

)
u 

3 
x 

−
(

− 23 

240 

+ b 1 −
1 

6 

b 2 + 

1 

12 

τ − c 2 

)
uu 5 x + 

( 1 

189 

+ 

1 

6 

b 1 −
7 

720 

τ + c 1 

)
u 7 x 

P t = L x + 

1 

2 

uG x + Gu x −
3 

4 

ξuu x + 

1 

4 

πu 

2 
x −

1 

2 

u 

2 ξx − ξξx + 

3 

2 

δξx u x − δG 2 x + 

1 

2 

πuu 2 x + δξu 2 x 

+ 

(1 

3 

+ τ
)
ξx u 2 x + 

(2 

3 

+ 

1 

2 

τ
)

u x ξ2 x −
(5 

4 

− 1 

4 

τ
)
ξu 3 x −

11 

12 

uξ3 x −
1 

12 

πu 4 x + 

1 

6 

(2 − 3 τ ) G 3 x 

−
( 11 

72 

− 1 

4 

τ − 1 

4 

τ 2 

)
ξ5 x −

(7 

6 

+ b 2 − b 3 −
4 

3 

b 4 − b 4 τ − c 8 

)
u 

3 
x + 

(2 

3 

b 4 + c 10 

)
u 

3 u x 

−1 

2 

(δ + 2 b 5 − c 9 ) u x 

∫ 
u 

2 
x dx −

(1 

2 

b 5 − δ − 2 b 4 δ − c 11 

)
uu 

2 
x + (2 b 5 δ + δ2 + c 13 ) u x u 2 x 

−
(31 

12 

− 7 

2 

b 2 − b 3 − 4 b 4 −
7 

4 

τ − 3 b 4 τ − c 6 

)
uu x u 2 x −

( 191 

240 

− b 1 −
5 

6 

b 2 − τ + 

1 

4 

τ 2 − c 2 

)
uu 5 x 

+ 

(4 

3 

b 5 −
1 

3 

δ + 2 b 2 δ + b 5 τ + δτ + c 7 

)
u x u 3 x + 

(4 

3 

b 5 −
2 

3 

δ − b 2 δ + b 3 δ + b 5 τ + c 12 

)
u 

2 
2 x 

−
(1 

4 

− b 2 −
5 

6 

b 4 + 

1 

4 

τ − c 4 

)
u 

2 u 3 x −
(85 

18 

− 15 b 1 −
5 

6 

b 2 − 2 b 3 −
1 

8 

τ − 3 

2 

b 3 τ + 

1 

2 

τ 2 − c 5 

)
u 2 x u 3 x 

−
(231 

80 

− 13 

2 

b 1 −
7 

6 

b 2 −
5 

6 

b 3 −
37 

24 

τ − 3 

2 

b 2 τ − c 3 

)
u x u 4 x −

( 83 

1080 

− 5 

6 

b 1 −
41 

240 

τ − 1 

24 

τ 2 − c 1 

)
u 7 x . 

(60) 

Integrating the first equation of Eq. (60) with respect to x , we obtain 

P = −L + uG − 1 

2 

πuu x −
1 

4 

πx u 

2 + π2 
x −

1 

6 

G 3 x −
1 

12 

(1 + 6 τ ) π3 x u + 

1 

4 

π2 x u x + 

1 

12 

(5 + 6 τ ) πx u 2 x 

+ 

1 

12 

πu 3 x −
( 17 

360 

− 1 

12 

τ
)
π5 x + 

1 

12 

(3 c 10 − 4 b 4 − 3) u 

4 + 

( 23 

240 

− b 1 + 

b 2 

6 

− τ

12 

+ c 2 

)
uu 4 x 

+ 

(b 1 

3 

+ 

δ

6 

+ c 7 

)
u x u 2 x + 

(
c 1 + 

b 1 

6 

+ 

1 

189 

− 7 

720 

τ
)

u 6 x + 

(
c 12 − c 7 

) ∫ 
u 

2 
2 x dx 

+ 

(
c 11 − b 5 −

δ

2 

)∫ 
uu 

2 
x dx + 

(
c 8 + c 4 −

c 6 

2 

) ∫ 
u 

3 
x dx + 

( 7 

24 

− b 2 + 

b 4 

6 

− τ

2 

+ c 4 

)
u 

2 u 2 x 

+ 

1 

12 

c 13 u 

2 
x + 

(b 2 

6 

+ 

b 3 

6 

+ 

τ

6 

+ c 3 − c 2 + 

1 

60 

)
u x u 3 x + 

(b 3 

6 

+ 

τ

12 

+ 

c 2 

2 

+ 

c 5 

2 

− c 3 

2 

− 1 

720 

)
u 

2 
2 x 

+ 

(b 2 

2 

+ 

b 4 

3 

+ 

c 6 

2 

− b 3 

2 

− c 4 + 

1 

12 

)
uu 

2 
x + 

(
c 9 − b 5 −

δ

2 

)∫ (
u x 

∫ 
u 

2 
x d x 

)
d x. 

(61) 

11 



L.F. Mouassom, T.N. Nkomom, A. Mvogo et al. Commun Nonlinear Sci Numer Simulat 102 (2021) 105942 

Introducing Eq. (61) into the second equation of Eq. (60) yields 

L x + L t = 

3 

4 

uu x πx + 

1 

4 

u 

2 
x π + 

1 

4 

u 

2 π2 x + 3 πx π2 x −
3 

2 

δu x π2 x − δu 2 x πx −
1 

6 

(1 + 3 τ ) u 2 x π2 x 

−1 

3 

u x π3 x + 

1 

12 

(11 − 9 τ ) u 3 x πx + 

1 

6 

(5 − 3 τ ) uπ4 x −
3 

2 

uG x − 2 Gu x + δG 2 x −
1 

6 

(1 − 3 τ ) G 3 x 

+ 

( 19 

180 

− τ

6 

− τ 2 

4 

)
π6 x + 

(9 

2 

− 5 

2 

b 2 − 2 b 3 − 3 b 4 − 2 c 6 + 

τ

2 

− 3 b 4 τ
)

uu x u 2 x + 

1 

2 

(2 b 5 + δ − 2 c 9 ) μ

−
(b 1 

3 

+ 

2 

3 

b 5 + 2 c 7 + 2 b 2 δ + b 5 τ + δτ
)

u x u 3 x + 

(1 

4 

− 4 

3 

b 4 − 2 c 10 

)
u 

3 u x + 

1 

2 

(2 b 5 + δ − 2 c 9 ) λ

+ 

(98 

45 

− 11 

2 

b 1 −
5 

6 

b 2 −
2 

3 

b 3 − 2 c 3 −
5 

3 

τ − 3 

2 

b 2 τ
)

u x u 4 x −
( c 13 

6 

+ 2 b 5 δ + c 13 δ + δ2 

)
u x u 2 x 

−
(1 

3 

b 1 + 

2 

3 

b 5 + 2 c 12 −
1 

3 

δ − b 2 δ + b 3 δ + b 5 τ
)

u 

2 
2 x + 

( 11 

12 

− 2 b 2 −
2 

3 

b 4 − 2 c 4 + 

1 

4 

τ
)

u 

2 u 3 x 

−
(1 

2 

b 5 + 2 c 11 + 2 b 4 δ
)

uu 

2 
x + 

1 

2 

(2 b 5 + δ − 2 c 9 ) ν + 

(4 

3 

+ 

1 

2 

b 2 −
1 

2 

b 3 − b 4 − 2 c 8 − b 4 τ
)

u 

3 
x 

+ 

(2 

3 

− 2 b 1 −
2 

3 

b 2 − 2 c 2 − τ
)

uu 5 x + 

( 17 

315 

− 2 

3 

b 1 − 2 c 1 −
2 

15 

τ
)

u 7 x 

+ 

(65 

18 

− 15 b 1 −
2 

3 

b 2 −
3 

2 

b 3 − 2 c 5 − τ − 3 

2 

b 3 τ + 

τ 2 

2 

)
u 2 x u 3 x , 

(62) 

where 

ν = 

∫ 
(u 2 x 

∫ 
u 

2 
x d x ) d x, λ = u x 

∫ 
u 

2 
x dx, μ = 

∫ 
u 

3 
x dx. 

To find the solution L (x, t) of Eq. (62) , we sum its derivatives with respect to x and t and obtain 

L = 

3 

8 

uu x π + 

1 

8 

u 

2 πx −
1 

6 

u x π2 x −
3 

4 

δu x πx + 

3 

4 

π2 
x −

δ

2 

u 2 x π + 

1 

24 

(11 − 9 τ ) u 3 x π + 

1 

12 

(5 − 3 τ ) uπ3 x 

− 1 

12 

(1 + 3 τ ) u 2 x πx + 

1 

8 

u 

2 
x 

∫ 
πdx + 

1 

360 

(19 − 30 τ − 45 τ 2 ) π5 x + K, 

(63) 

where the function K satisfies the following equation 

K x + K t = −3 

2 

uG x − 2 Gu x + δG 2 x −
1 

6 

(1 − 3 τ ) G 3 x −
( c 13 

6 

+ 2 b 5 δ + c 13 δ + δ2 

)
u x u 2 x 

+ 

1 

2 

(2 b 5 + δ − 2 c 9 ) μ + 

(98 

45 

− 11 

2 

b 1 −
5 

6 

b 2 −
2 

3 

b 3 − 2 c 3 −
5 

3 

τ − 3 

2 

b 2 τ
)

u x u 4 x 

+ 

(9 

2 

− 5 

2 

b 2 − 2 b 3 − 3 b 4 − 2 c 6 + 

τ

2 

− 3 b 4 τ
)

uu x u 2 x −
(b 1 

3 

+ 

2 

3 

b 5 + 2 c 7 + 2 b 2 δ + b 5 τ + δτ
)

u x u 3 x 

+ 

(1 

4 

− 4 

3 

b 4 − 2 c 10 

)
u 

3 u x + 

1 

2 

(2 b 5 + δ − 2 c 9 ) λ −
(1 

2 

b 5 + 2 c 11 + 2 b 4 δ
)

uu 

2 
x + 

1 

2 

(2 b 5 + δ − 2 c 9 ) ν

−
(1 

3 

b 1 + 

2 

3 

b 5 + 2 c 12 −
1 

3 

δ − b 2 δ + b 3 δ + b 5 τ
)

u 

2 
2 x + 

(4 

3 

+ 

1 

2 

b 2 −
1 

2 

b 3 − b 4 − 2 c 8 − b 4 τ
)

u 

3 
x 

+ 

( 11 

12 

− 2 b 2 −
2 

3 

b 4 − 2 c 4 + 

1 

4 

τ
)

u 

2 u 3 x + 

(2 

3 

− 2 b 1 −
2 

3 

b 2 − 2 c 2 − τ
)

uu 5 x 

+ 

(65 

18 
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2 

3 

b 2 −
3 

2 

b 3 − 2 c 5 − τ − 3 

2 

b 3 τ + 

τ 2 

2 

)
u 2 x u 3 x + 

( 17 

315 

− 2 

3 

b 1 − 2 c 1 −
2 

15 

τ
)

u 7 x . 

(64) 

By replacing L by its expression in (61) , we obtain 

P = −K + uG − 1 

6 

G 2 x −
3 

8 

u 

2 πx −
7 

8 

πuu x + 

3 

4 

δu x πx + 

1 

4 

π2 
x + 

1 

12 

c 13 u 

2 
x + 

5 

12 

u x π2 x + 

1 

2 

δu 2 x π

−1 

4 

(2 + τ ) uπ3 x + 

1 

4 

(2 + 3 τ ) u 2 x πx + 

1 

2 

(2 c 11 − 2 b 5 − δ) 
∫ 

uu 

2 
x dx − 3 

8 

(1 + τ ) πu 3 x 

−
( 1 

10 

− 1 

6 

τ − 1 

8 

τ 2 

)
π5 x + 

(
c 4 + c 8 −

c 6 

8 

)
μ −

(1 

4 

− b 4 

3 

− c 10 

4 

)
u 

4 + (c 12 − c 7 ) 
∫ 

u 

2 
2 x dx 

−1 

8 

u 

2 
x 

∫ 
πdx + 

( 1 

12 
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2 

+ 

b 4 

3 
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2 
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uu 
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+ 
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6 

+ 
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+ 
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2 

+ 

τ

12 

)
u 
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)
u 
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( 1 
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6 

+ 
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6 
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τ

6 
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+ 
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)
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2 
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( ∫ 
u 

2 
x 
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dx 
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δ

6 

)
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( 1 
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6 
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)
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(65) 
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Fig. 1. Variation of the phase and group velocities, with ε = 0 . 1 for different values of viscosity and surface tension parameters: The panels (a ) and (b) 

illustrate the behavior of phase velocity under the effects of viscosity, (Blue line): δ = 0 . 1 , (Black dashed line): δ = 0 . 3 , (Red dashed line): δ = 0 . 6 and 

surface tension, (Blue line): τ = 0 . 1 , (Black dashed line): τ = 0 . 2 , (Red dashed line): τ = 0 . 3 , respectively. The panels (c) and (d) illustrate the behavior of 

group velocity under the effects of viscosity, (Blue line): δ = 0 . 1 , (Black dashed line): δ = 0 . 3 , (Red dashed line): δ = 0 . 6 and surface tension, (Blue line): 

τ = 0 . 1 , (Black dashed line): τ = 0 . 2 , (Red dashed line): τ = 0 . 3 , respectively. 

Introducing Eq. (63) in the second equation of Eq. (57) and integrating with respect to x leads to the equation of the left- 

moving wave for the second order O (ε 2 ) as follows 

πt −πx + ε 
[ 1 

2 

(πu ) x − δπ2 x −
1 

6 

(1 − 3 τ ) π3 x − G 

] 
+ ε 2 

[ 
− 3 

8 

uu x π − 1 

8 

u 

2 πx + 

1 

6 

u x π2 x + 

3 

4 

δu x πx 

+ 

δ

2 

u 2 x π − 1 

12 

(5 − 3 τ ) uπ3 x −
1 

24 

(11 − 9 τ ) u 3 x π − 3 

4 

π2 
x + 

1 

12 

(1 + 3 τ ) u 2 x πx −
1 

8 

u 

2 
x 

∫ 
πdx 

− 1 

360 

(19 − 30 τ − 45 τ 2 ) π5 x − K 

] 
= 0 , 

(66) 

where the functions G and K satisfy Eqs. (54) and (64) respectively. The function u (x, t) corresponds to the pure right- 

moving wave equation and can be written as 

u x + u t + ε 
[ 3 

2 

uu x − δu 2 x + 

1 

6 

(1 − 3 τ ) u 3 x 

] 
+ ε 2 

[ 
b 1 u 5 x + b 2 uu 3 x + b 3 u x u 2 x + b 4 u 

2 u x + b 5 u 

2 
x 

] 

+ ε 3 
[ 

c 1 u 7 x + c 2 uu 5 x + c 3 u x u 4 x + c 4 u 

2 u 3 x + c 5 u 2 x u 3 x + c 6 uu x u 2 x + c 7 u x u 3 x + c 8 u 

3 
x 

+ c 9 u x 

∫ 
u 

2 
x + c 10 u 

3 u x + c 11 uu 

2 
x + c 12 u 

2 
2 x + c 13 u x u 2 x 

] 
= 0 . 

(67) 
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Fig. 2. Phase (Blue line) and group (Red dashed line) velocities as a function of the viscosity parameter, for ε = 0 . 3 and different values of surface tension 

parameter: (a): τ = 0 . 0 , (b): τ = 0 . 2 , (c): τ = 0 . 3 , (d): τ = 0 . 4 , (e): τ = 0 . 5 , (f): τ = 0 . 6 . 
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Fig. 3. Soliton solutions of the generalized inhomogeneous KdV Eq. (1) without effect of surface tension (τ = 0) , with k = 0 . 5 , ε = 0 . 3 and different values 

of the viscosity parameter: (a) : δ = 0 . 6 ; (b) : δ = 1 . 5 ; (c) : δ = 3 . 0 and (d) : δ = 4 . 0 . Here, the effect of viscosity on the soliton is illustrated. 

In the next section by using Hirota’s bilinear method, we investigate the soliton solutions of the generalized Kdv evolu- 

tion Eq. (1) which describes the dynamics of shallow water waves. The effects of viscosity and surface tension are also 

investigated. 

4. Soliton solutions of the generalized shallow water wave equations 

In this section, we investigate the analytical soliton solutions of the obtained generalized shallow water wave equations 

by using the Hirota’s bilinear method. We show that these equation can well describe the dynamics of unidirectional and 

bi-directional shallow water waves. We also discuss on the effects of surface tension and viscosity on the phase, group 

velocity and the soliton dynamics. Analytical solutions of the bi-directional evolution equation given by Eq. (66) , would be 

desirable to define more concretely the dynamics, and the nature of right- and left-moving waves. We have not addressed 

this problem here, because the different decompositions of the Boussinesq system into a system of equations for right- and 

left-moving waves reflect several different physical situations [68] . In addition, solving such an equation requires a method 

allowing to obtain reliable results describing a specific physical situation. This requires a lot of space [43] and very long 

algorithms that are not simple in programming. Thus, in this section we focus our attention only on the soliton solutions 

for the equation of the right-moving wave. 
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Fig. 4. Soliton solutions of the generalized inhomogeneous KdV Eq. (1) without effect of surface tension (τ = 0) , with k = 0 . 5 , and different values of the 

viscosity parameter: (a) : ε = 0 . 1 , δ = 0 . 6 ; (b) : ε = 0 . 1 , δ = 4 . 0 ; (c) : ε = 0 . 3 , δ = 0 . 6 and (d) : ε = 0 . 3 , δ = 4 . 0 . Here, the effect of viscosity and the small 

parameter ε on the soliton are illustrated. 

Fig. 5. (2D)-Plot of the soliton solutions of the generalized inhomogeneous KdV Eq. (1) without effect of surface tension ( τ = 0 ), with ε = 0 . 3 , t = 0 . 5 , 

k = 0 . 5 , for different values of viscosity parameter: (Blue line): δ = 0 . 6 , (Red line): δ = 1 . 5 , (Purple line): δ = 3 . 0 , (Black line): δ = 4 . 0 . 
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Fig. 6. Soliton solutions of the generalized inhomogeneous KdV Eq. (1) without effect of viscosity (δ = 0) , with k = 0 . 5 , ε = 0 . 3 and different values of the 

tension surface parameter: (a) : τ = 0 . 6 ; (b) : τ = 1 . 5 ; (c) : τ = 3 . 0 and (d) : τ = 6 . 0 . Here, the effect of surface tension on the soliton is illustrated. 

4.1. Soliton solutions for the equation of the right-moving wave 

A variety of powerful methods for finding soliton solutions in complex physical systems have been developed, such 

as Darboux transformation [70] Bäcklund transformation [71] , inverse scattering transformation [72] , Hirota bilinear method 

[73] , symmetry method [74] and similarity transformation [75,76] , juste to cite a few. Among the different methods available 

to investigate soliton solutions in various equations, the Hirota bilinear method has several advantages according to other 

methods. The method obtains the results directly, quickly, and needs simple algorithms in programming. The method also 

allows testing if a certain equation satisfies the necessary requirements to admit soliton solutions [39] . In this section, we 

apply Hirota’s bilinear method to look for the soliton type solutions of Eq. (1) . For this, we assume that the general form of 

solution is given by 

u (x, t) = D 

∂ 2 

∂x 2 
ln ( f (x, t)) = D 

f f 2 x − f 2 x 

f 2 
. (68) 

The parameter D is a constant to be determined and f (x, t) is the auxiliary function which can be written in the form of a 

traveling wave solution such that 

f (x, t) = 1 + f 1 (x, t) = 1 + exp (θ ) , (69) 
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Fig. 7. Soliton solutions of the generalized inhomogeneous KdV Eq. (1) without effect of viscosity (δ = 0) , with k = 0 . 5 , and different values of the surface 

tension parameter: (a) : ε = 0 . 1 , τ = 0 . 6 ; (b) : ε = 0 . 1 , τ = 6 . 0 ; (c) : ε = 0 . 3 , τ = 0 . 6 and (d) : ε = 0 . 3 , τ = 6 . 0 . Here, the effect of surface tension and the 

small parameter ε on the soliton are illustrated. 

where θ = kx − ωt + ξ0 and the parameters k , ω and ξ0 are the wave number, the angular frequency and the phase shift, 

respectively. Substituting u (x, t) = exp (θ ) into the linear terms of (1) we obtain the dispersion relation 

ω = 

1 

15120 

[
15120 k + ε 

[ 
( 2520 − 7560 τ ) k − 15120 δ

] 
k 2 + ε 2 

[ 
(798 − 1260 τ − 1890 τ 2 ) k 3 

−3780 δ
] 

k 2 + ε 3 
[ 
(275 − 399 τ − 375 τ 2 − 945 τ 3 ) k 3 − 2835 τδ

] 
k 4 

]
. 

(70) 

To determine the constant D , we introduce Eq. (68) into Eq. (1) where, f (x, t) is taken as 

f (x, t) = 1 + exp 

{
kx − 1 

15120 

[
15120 k + ε 

[ 
(2520 − 7560 τ ) k − 15120 δ

] 
k 2 + ε 2 

[ 
(798 − 1260 τ

−1890 τ 2 ) k 3 − 3780 δ
] 

k 2 + ε 3 
[ 
(275 − 399 τ − 375 τ 2 − 945 τ 3 ) k 3 − 2835 τδ

] 
k 4 

]
t 

}
. 

(71) 

Equating the coefficients of the different powers of exp (θ ) to zero yields a system of polynomial equations, after solving 

this system with Mathematica, we find D = 2 . This means that the soliton solution is given by 

u (x, t) = 

2 k 2 exp (kx − ωt) 

( 1 + exp (kx − ωt) ) 2 
= 

k 2 

1 + cosh (kx − ωt) 
. (72) 
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Fig. 8. (2D)-Plot of the soliton solutions for the generalized inhomogeneous KdV Eq. (1) without effect of viscosity ( δ = 0 ), with ε = 0 . 3 , t = 0 . 5 , k = 0 . 5 , 

for different values of surface tension parameter: (Blue line): τ = 0 . 6 , (Red line): τ = 2 . 5 , (Purple line): τ = 4 . 0 , (Black line): τ = 6 . 0 . 

Using Eq. (70) and after some transformations, we obtain 

u (x, t) = 

k 2 

2 

sech 

2 

{
k 

2 

x − 1 

30240 

[
15120 k + ε 

[ 
(2520 − 7560 τ ) k − 15120 δ

] 
k 2 + ε 2 

[ 
(798 − 1260 τ

−1890 τ 2 ) k 3 − 3780 δ
] 

k 2 + ε 3 
[ 
(275 − 399 τ − 375 τ 2 − 945 τ 3 ) k 3 − 2835 τδ

] 
k 4 

]
t 

}
. 

(73) 

This soliton solution describes the long, small-amplitude, unidirectional wave motion in shallow water with surface tension 

and viscosity effects. 

4.2. Phase and group velocity 

Soliton is a perturbation that moves through a medium. It is therefore possible to associate it with two wave velocities, 

namely the phase velocity and the group velocity, which are sometimes non equal. Thus, from Eq. (70) , we can easily deduce 

that the phase velocity of the soliton is given by 

v ph = 

ω 

k 
= 

1 

15120 

(
15120 + ε[ ( 2520 − 7560 τ ) k − 15120 δ] k + ε 2 [(798 − 1260 τ − 1890 τ 2 ) k 3 

−3780 δ] k + ε 3 [(275 − 399 τ − 375 τ 2 − 945 τ 3 ) k 3 − 2835 τδ] k 3 

)
. 

(74) 

The k -dependence of the phase velocity is shown in Figs. 1 -(a) and 1 -(b). Both Figs. 1 -(a) and 1 -(b) show that, the phase 

velocity is an increase function of the wave number. The Fig. 1 -(a), shows the influence of the viscosity (parameter δ) on 

the phase velocity curve. Indeed, we plot the phase velocity as a function of the wave number for three values of δ. We 

see that when the value of the parameter δ increases, the amplitude of the phase velocity decreases very weakly. We have 

also investigated the impact of the surface tension (parameter τ ) on the phase velocity. We plot the phase velocity as a 

function of the wave number for three values of τ . The result illustrated in Fig. 1 -(b) clearly shows that, the amplitude of 

the phase velocity strongly decreases when the value of the parameter τ increases. In conclusion, both viscosity and surface 

tension have the same effect on the phase velocity. However, the effect of the surface tension is very greater than that of 

the viscosity. 

The group velocity calculated from Eq. (70) can be written in the following form 

v gr = 

∂ω 

∂k 
= 

1 

15120 

(
15120 + 2 ε[ ( 2520 − 7560 τ ) k − 15120 δ] k + ε(2520 − 7560 τ ) k 2 

+3 ε 2 (798 − 1260 τ − 1890 τ 2 ) k 4 + 3 ε 3 (275 − 399 τ − 375 τ 2 − 945 τ 3 ) k 6 + 2 ε 2 [(798 − 1260 τ

−1890 τ 2 ) k 3 − 3780 δ] k + 4 ε 3 [(275 − 399 τ − 375 τ 2 − 945 τ 3 ) k 3 − 2835 δτ ] k 3 

)
. 

(75) 

The k -dependence of the group velocity is shown in Figs. 1 -(c) and 1 -(d). These figures show that, the group velocity is 

an increasing function of the wave number. In order to illustrate the effects of viscosity and surface tension on the group 
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Fig. 9. Soliton solutions for the generalized inhomogeneous KdV Eq. (1) with k = 0 . 5 , ε = 0 . 3 and different values of surface tension and viscosity param- 

eters: (a) : τ = 0 . 6 , δ = 0 . 6 ; (b) : τ = 1 . 5 , δ = 1 . 5 ; (c) : τ = 3 . 0 , δ = 3 . 0 and (d) : τ = 6 . 0 , δ = 4 . 0 . Here, the combined effect of surface tension and viscosity 

on the soliton is illustrated. 

velocity, we plot the group velocity for three values of parameters δ and τ , respectively. The result shows that, both effects 

of viscosity and surface tension on the group velocity are the same as those for phase velocity. However, by a carefully 

observation of Figs. 1 -(a) and 1 -(b) or Figs. 1 -(c) and 1 -(d), we see that the amplitude of group velocity is greater than that 

of phase velocity. 

To better investigate the effect of viscosity on the phase and group velocities, we plot both phase and group velocities 

as a function of the viscosity parameter δ. 

Fig. 2 [ (a ) , (b) , (c) , (d) , (e ) and ( f ) ] shows that, both phase velocity (blue line) and group velocity (dashed red line) 

decrease when the viscosity increases. It is clearly shows the influence of the surface tension τ on the group and phase 

velocities as a function of the viscosity curves. 

In fact, we see that in the interval of τ values [0.0, 0.2, 0.3, 0.4], the two velocities have the same sign. This can mean 

that, the wave packet envelope and the phase both move to the right. 

In the interval of τ values [0.0, 0.2], the amplitude of the group velocity is greater than that of phase velocity, meaning 

that, the envelope of the wave packet moves faster than the phase. 

In Fig. 2 -(c), for τ = 0 . 3 and δ = 0 . 3 , the two velocities have same values, in other words, the envelope of the wave packet 

and the phase move at the same speed. However, for τ = 0 . 3 and δ > 0 . 3 and for τ values in the interval [0.4, 0.5, 0.6], the 

amplitude of the phase velocity is greater than that of group velocity. Thus, the phase moves faster than the envelope of 

the wave packet. 
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Fig. 10. Soliton solutions of the generalized inhomogeneous KdV Eq. (1) with k = 0 . 5 , and different values of the surface tension and viscosity parame- 

ters: (a) : ε = 0 . 1 , τ = 0 . 6 , δ = 0 . 6 ; (b) : ε = 0 . 1 , τ = 6 . 0 , δ = 4 . 0 ; (c) : ε = 0 . 3 , τ = 0 . 6 , δ = 0 . 6 and (d) : ε = 0 . 3 , τ = 6 . 0 , δ = 4 . 0 . Here, the effect of small 

parameter ε and the combined effect of surface tension and viscosity on the soliton are illustrated. 

In Fig. 2 -(e), for τ = 0 . 5 and δ 
 0 . 32 , the group velocity is zero, meaning that the wave propagates without energy 

transfer. However, for τ = 0 . 5 and δ > 0 . 32 and Fig. 2 -(f), the two velocities have different signs. This leads to the fact that, 

when the wave packet envelope moves to the left, the phase moves to the right. 

4.3. Effects of surface tension, viscosity and amplitude parameter on the soliton dynamics 

In the following, we investigate the effects of the viscosity, the surface tension and the amplitude parameter on the soli- 

ton dynamics. It has been revealed that such effects can have an impact in the dynamics of shallow water waves [36,56,57] . 

The effects of the viscosity on the soliton dynamics are illustrated in Figs. 3 , 4 and 5 . It is shown in 

Fig. 3 [(a ) , (b) , (c) and (d)] that, for the same value of the small parameter ε, the viscosity strongly impact the width of 

the soliton. Indeed, when the values of viscosity paramer δ increases, the width of the soliton also increases, but its ampli- 

tude remains constant. 

Fig. 4 [(a ) , (b) , (c) and (d)] illustrates the impact of the amplitude parameter ε on the soliton dynamics. It is revealed 

that, the growth of ε amplifies the effects of viscosity while keeping the amplitude of soliton constant. 

Fig. 6 shows the 2-dimensional plot of the soliton under the effects of the viscosity. Indeed, in Fig. 6 , by comparing the 

width of the soliton represented by the blue (δ = 0 . 6) , red (δ = 1 . 5) , purple (δ = 3 . 0) and black (δ = 4 . 0) lines, it is clear 

that the width of the soliton increases with the value of the viscosity parameter. This may therefore suggests that a soliton 

propagating to the right in a viscous medium tends to increase (respectively decrease) in width if the viscosity of medium 

increases (respectively decreases). 

21 



L.F. Mouassom, T.N. Nkomom, A. Mvogo et al. Commun Nonlinear Sci Numer Simulat 102 (2021) 105942 

Fig. 11. (2D)-Plot of the soliton solutions for the generalized inhomogeneous KdV Eq. (1) with ε = 0 . 3 , t = 0 . 5 , k = 0 . 5 , for different values of surface 

tension and viscosity parameters: (Blue line): δ = 0 . 6 , τ = 0 . 6 , (Red line): δ = 1 . 5 , τ = 1 . 5 , (Purple line): δ = 2 . 5 τ = 2 . 5 , (Black line): δ = 3 . 0 , τ = 3 . 0 . 

Figs. 6, 7 and 8 illustrate the behavior of the soliton solution of Eq. (1) under the effect of surface tension. We ob- 

serve that, the effects of surface tension are the same as those of viscosity. However, the comparison between Fig. 5 and 

Fig. 8 reveals that the effects of the viscosity on the width of soliton are greater important than that of surface tension. 

Fig. 7 shows that, the growth of small parameter ε also amplifies the effects of surface tension while keeping the ampli- 

tude of the soliton unchanged. 

In Figs. 9 , 10 and 11 , we take into account both the effects of viscosity and surface tension. It is seen that the effects of 

viscosity are strongly amplified by the effects of surface tension. 

5. Conclusion 

The aim of this work was to study the dynamics of solitons in an incompressible and viscous fluid, flowing in right- 

and left-directions in a shallow channel. We have used the Boussinesq perturbation expansion and a linear approximation 

applied to the Navier-Stokes equations to derive a system of coupled equations for the scaled horizontal velocity w and 

the surface elevation η. The assumption of a one directional (right-moving) wave and a relationship between horizontal 

velocity at mean height and elevation were used to decouple the system. The results have led to a generalized KdV equa- 

tion including viscosity and surface tension effects. We have developed a procedure that reveals the non-uniqueness of the 

decomposition of the Boussinesq system expansion into a system of coupled equations for the surface elevation associ- 

ated with right- and left-moving waves. The right-moving wave evolution equation found here is applicable not only to the 

present problem, but also to other problems of long-wave oscillatory instability in dissipative systems, such as surface waves 

in convection fluids [36] , waves in plasmas [77] and others. The soliton solutions obtained by the Hirota bilinear method 

have been plotted for some parameter values. We have shown that these parameters can strongly impact the phase velocity, 

the group velocity and the width of the soliton. The results clearly revealed that, both surface tension and viscosity have 

strong effects on the dynamics of wave in shallow water. Our investigation can be extended to several physical interesting 

situations, such as (3+1)-dimensional water wave problems [47] . Work in this direction is under consideration and will be 

published in the future. 
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