UNIVERSITE DE YAOUNDE I

UNIVERSITY OF YAOUNDE I

FACULTE DES SCIENCES

FACULTY OF SCIENCE

DEPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE ANIMALES DEPARTMENT OF ANIMAL BIOLOGY AND PHYSIOLOGY

LABORATOIRE D'HYDROBIOLOGIE ET ENVIRONNEMENT LABORATORY OF HYDROBIOLOGY AND ENVIRONMENT

Evaluation de l'efficacité des désinfectants sur la viabilité des formes de résistance des helminthes intestinaux isolés des eaux usées et des boues de vidange à Yaoundé

THESE

Présentée et soutenue le 08 juillet 2022 en vue de l'obtention du diplôme de Doctorat/PhD en Biologie des Organismes Animaux

> Option : **Hydrobiologie et Environnement** Par

FOTSEU KOUAM Arnold Landry Matricule : 11Q0233 Maître ès-Sciences

Devant le jury composé de :

Président : NJIOKOU Flobert, Professeur

Rapporteur : AJEAGAH Gideon AGHAINDUM, Professeur Membres : ZEBAZE TOGOUET Serges Hubert, Professeur PAYNE Vincent KHAN, Maître de Conférences NOLA Moïse, Professeur Université de Yaoundé I Université de Yaoundé I Université de Yaoundé I Université de Dschang Université de Yaoundé I

Année : 2022

NNNNNNNNNNNNNNNNNNNNNNN

REPUBLIQUE DU CAMEROUN Paix - Travail – Patrie

UNIVERSITE DE YAOUNDE I FACULTE DES SCIENCES

> B.P. 812 Yaoundé Tél: (237) 242239584 Fax: (237) 242234496

xaminat

REPUBLIC OF CAMEROON Peace – Work – Fatherland

UNIVERSITY OF YAOUNDE I FACULTY OF SCIENCE

P.O. BOX 812 Yaounde Phone: (237) 242239584 Fax: (237) 242234496

DEPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE ANIMALES DEPARTMENT OF ANIMAL BIOLOGY AND PHYSIOLOGY

ATTESTATION DE CORRECTION

Nous soussignés, membres du jury de soutenance de la Thèse de Doctorat/Ph.D en Biologie des Organismes Animaux, Option : Hydrobiologie et Environnement, de Monsieur FOTSEU KOUAM Arnold Landry, matricule 11Q0233, soutenance autorisée par la correspondance N° 221809/UYI/VREPDTIC/DAAC/DEPE/SPD/CB-AP du Recteur de l'Université de Yaoundé I en date du 28 juin 2022 sur le sujet intitulé : « Evaluation de l'efficacité des désinfectants sur la viabilité des formes de résistance des helminthes intestinaux isolés des eaux usées et des boues de vidange à Yaoundé », attestons que les corrections exigées au candidat lors de cette évaluation, qui a eu lieu le vendredi 08 juillet 2022 dans la salle S01/02 du bloc pédagogique de la Faculté des Sciences, ont réellement été effectuées et que le présent document peut être déposé sous sa forme actuelle.

En foi de quoi la presente attestation lui est délivrée pour servir et valoir ce que de droit.

Chef de Département les Félix Bilong Bilong Professeur

Le Président du Jury

UNIVERSITÉ DE YAOUNDÉ I

Faculté des Sciences

Division de la Programmation et du

Suivi des Activités Académiques

THE UNIVERSITY OF YAOUNDE I

Faculty of Science

Division of Programming and Follow-up

of Academic Affaires

LISTE DES ENSEIGNANTS PERMANENTS

LIST OF PERMANENT TEACHING STAFF

LISTE PROTOCOLAIRE DE LA FACULTÉ DES SCIENCES

ANNÉE ACADEMIQUE 2021/2022

(Par Département et par Grade)

DATE D'ACTUALISATION 22 septembre 2021

ADMINISTRATION

DOYEN : TCHOUANKEU Jean- Claude, *Maître de Conférences*

VICE-DOYEN / DPSAA : ATCHADE Alex de Théodore, Maître de Conférences

VICE-DOYEN / DSSE : NYEGUE Maximilienne Ascension, Professeur

VICE-DOYEN / DRC : ABOSSOLO Monique, Maître de Conférences

Chef Division Administrative et Financière : NDOYE FOE Florentine Marie Chantal, *Maître de Conférences*

Chef Division des Affaires Académiques, de la Scolarité et de la Recherche DAASR : AJEAGAH Gideon AGHAINDUM, *Professeur*

	1- DÉPARTEI	MENT DE BIOCHIMIE (BC) (3	37)
N°	NOMS ET PRÉNOMS	GRADE	OBSERVATIONS
1	BIGOGA DAIGA Jude	Professeur	En poste
2	FEKAM BOYOM Fabrice	Professeur	En poste
3	FOKOU Elie	Professeur	En poste
4	KANSCI Germain	Professeur	En poste
5	MBACHAM FON Wilfried	Professeur	En poste
6	MOUNDIPA FEWOU Paul	Professeur	Chef de Département
7	NINTCHOM PENLAP V. épse BENG	Professeur	En poste
8	OBEN Julius ENYONG	Professeur	En poste
9	ACHU Merci BIH	Maître de Conférences	En poste
10	ATOGHO Barbara Mma	Maître de Conférences	En poste
11	AZANTSA KINGUE GABIN BORIS	Maître de Conférences	En poste
12	BELINGA née NDOYE FOE F. M. C.	Maître de Conférences	Chef DAF / FS
13	BOUDJEKO Thaddée	Maître de Conférences	En poste
14	DJUIDJE NGOUNOUE Marceline	Maître de Conférences	En poste
15	EFFA ONOMO Pierre	Maître de Conférences	En poste
16	EWANE Cécile Annie	Maître de Conférences	En poste
17	MOFOR née TEUGWA Clotilde	Maître de Conférences	Inspecteur de Service MINESUP
18	NANA Louise épouse WAKAM	Maître de Conférences	En poste

19	NGONDI Judith Laure	Maître de Conférences	En poste
20	NGUEFACK Julienne	Maître de Conférences	En poste
21	NJAYOU Frédéric Nico	Maître de Conférences	En poste
22	TCHANA KOUATCHOUA Angèle	Maître de Conférences	En poste
23	AKINDEH MBUH NJI	Chargé de Cours	En poste
24	BEBEE Fadimatou	Chargée de Cours	En poste
25	BEBOY EDJENGUELE Sara Nathalie	Chargé de Cours	En poste
25	DAKOLE DABOY Charles	Chargé de Cours	En poste
26	DJUIKWO NKONGA Ruth Viviane	Chargée de Cours	En poste
27	DONGMO LEKAGNE Joseph Blaise	Chargé de Cours	En poste
28	FONKOUA Martin	Chargé de Cours	En poste
29	KOTUE TAPTUE Charles	Chargé de Cours	En poste
30	LUNGA Paul KEILAH	Chargé de Cours	En poste
31	MANANGA Marlyse Joséphine	Chargée de Cours	En poste
32	MBONG ANGIE M. Mary Anne	Chargée de Cours	En poste
33	Palmer MASUMBE NETONGO	Chargé de Cours	En poste
34	PECHANGOU NSANGOU Sylvain	Chargé de Cours	En poste
33	FOUPOUAPOUOGNIGNI Yacouba	Assistant	En poste
34	KOUOH ELOMBO Ferdinand	Assistant	En poste
35	MBOUCHE FANMOE Marceline Joëlle	Assistante	En poste
36	OWONA AYISSI Vincent Brice	Assistant	En poste
37	WILFRIED ANGIE Abia	Assistante	En poste

2- DÉPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE ANIMALES (BPA) (51)

1	AJEAGAH Gideon AGHAINDUM	Professeur	DAARS/FS
2	BILONG BILONG Charles-Félix	Professeur	Chef de Département
3	DIMO Théophile	Professeur	En Poste
4	DJIETO LORDON Champlain	Professeur	En Poste
5	DZEUFIET DJOMENI Paul Désiré	Professeur	En Poste
6	ESSOMBA née NTSAMA MBALA	Professeur	Vice Doyen/FMSB/UYI
7	FOMENA Abraham	Professeur	En Poste
8	KAMTCHOUING Pierre	Professeur	En poste
9	KEKEUNOU Sévilor	Professeur	En poste
10	NJAMEN Dieudonné	Professeur	En poste
11	NJIOKOU Flobert	Professeur	En Poste
12	NOLA Moïse	Professeur	En poste
13	TAN Paul VERNYUY	Professeur	En poste
	TCHUEM TCHUENTE Louis Albert	Ductore	Inspecteur de service
14		Professeur	Coord.Progr./MINSANTE
15	ZEBAZE TOGOUET Serge Hubert	Professeur	En poste
16	BILANDA Danielle Claude	Maître de Conférences	En poste
17	DJIOGUE Séfirin	Maître de Conférences	En poste
10	JATSA BOUKENG Hermine épse		Fig. Da sha
18	MEGAPTCHE	Maitre de Conferences	En Poste
19	LEKEUFACK FOLEFACK Guy B.	Maître de Conférences	En poste
20	MEGNEKOU Rosette	Maître de Conférences	En poste
21	MONY Ruth épse NTONE	Maître de Conférences	En Poste
22	NGUEGUIM TSOFACK Florence	Maître de Conférences	En poste
23	TOMBI Jeannette	Maître de Conférences	En poste

24ALENE Désirée ChantalMaître de ConférencesEn poste25NGUEMBOKMaître de ConférencesEn poste26MBENOUN MASSE Paul SergeMaître de ConférencesEn poste27ATSAMO Albert DonatienChargé de CoursEn poste28BELLET EDIMO Oscar RogerChargé de CoursEn poste29DONFACK MireilleChargé de CoursEn poste30ETEME ENAMA SergeChargé de CoursEn poste31GOUNOUE KAMKUMO RacelineChargé de CoursEn poste32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargé de CoursEn poste38NOAH EWOTI Olive VivienChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christel				
25NGUEMBOKMaître de ConférencesEn poste26MBENOUN MASSE Paul SergeMaître de ConférencesEn poste27ATSAMO Albert DonatienChargé de CoursEn poste28BELLET EDIMO Oscar RogerChargé de CoursEn poste29DONFACK MireilleChargé de CoursEn poste30ETEME ENAMA SergeChargé de CoursEn poste31GOUNOUE KAMKUMO RacelineChargé de CoursEn poste32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NIJUA Clarisse YafiChargé de CoursEn poste38NOAH EWOTI Olive VivienChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO Legran	24	ALENE Désirée Chantal	Maître de Conférences	En poste
26MBENOUN MASSE Paul SergeMaître de ConférencesEn poste27ATSAMO Albert DonatienChargé de CoursEn poste28BELLET EDIMO Oscar RogerChargé de CoursEn poste29DONFACK MireilleChargé de CoursEn poste30ETEME ENAMA SergeChargé de CoursEn poste31GOUNOUE KAMKUMO RacelineChargé de CoursEn poste32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargé de CoursEn poste38NOAH EWOTI Olive VivienChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAss	25	NGUEMBOK	Maître de Conférences	En poste
27ATSAMO Albert DonatienChargé de CoursEn poste28BELLET EDIMO Oscar RogerChargé de CoursEn poste29DONFACK MireilleChargé de CoursEn poste30ETEME ENAMA SergeChargé de CoursEn poste31GOUNOUE KAMKUMO RacelineChargé de CoursEn poste32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargé de CoursEn poste38NOAH EWOTI Olive VivienChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistant	26	MBENOUN MASSE Paul Serge	Maître de Conférences	En poste
28BELLET EDIMO Oscar RogerChargé de CoursEn poste29DONFACK MireilleChargé de CoursEn poste30ETEME ENAMA SergeChargé de CoursEn poste31GOUNOUE KAMKUMO RacelineChargé de CoursEn poste32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargé de CoursEn poste38NOAH EWOTI Olive VivienChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantE	27	ATSAMO Albert Donatien	Chargé de Cours	En poste
29DONFACK MireilleChargée de CoursEn poste30ETEME ENAMA SergeChargé de CoursEn poste31GOUNOUE KAMKUMO RacelineChargé de CoursEn poste32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	28	BELLET EDIMO Oscar Roger	Chargé de Cours	En poste
30ETEME ENAMA SergeChargé de CoursEn poste31GOUNOUE KAMKUMO RacelineChargé de CoursEn poste32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargé de CoursEn poste38NOAH EWOTI Olive VivienChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	29	DONFACK Mireille	Chargée de Cours	En poste
31GOUNOUE KAMKUMO RacelineChargée de CoursEn poste32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargé de CoursEn poste38NOAH EWOTI Olive VivienChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	30	ETEME ENAMA Serge	Chargé de Cours	En poste
32KANDEDA KAVAYE AntoineChargé de CoursEn poste33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargé de CoursEn poste38NOAH EWOTI Olive VivienChargé de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	31	GOUNOUE KAMKUMO Raceline	Chargée de Cours	En poste
33MAHOB Raymond JosephChargé de CoursEn poste34MOUNGANG Luciane MarlyseChargé de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargée de CoursEn poste38NOAH EWOTI Olive VivienChargée de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	32	KANDEDA KAVAYE Antoine	Chargé de Cours	En poste
34MOUNGANG Luciane MarlyseChargée de CoursEn poste35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargée de CoursChef Div. UBA38NOAH EWOTI Olive VivienChargée de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistantEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	33	MAHOB Raymond Joseph	Chargé de Cours	En poste
35MVEYO NDANKEU Yves PatrickChargé de CoursEn poste36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargée de CoursChef Div. UBA38NOAH EWOTI Olive VivienChargée de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	34	MOUNGANG Luciane Marlyse	Chargée de Cours	En poste
36NGOUATEU KENFACK Omer BébéChargé de CoursEn poste37NJUA Clarisse YafiChargée de CoursChef Div. UBA38NOAH EWOTI Olive VivienChargée de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	35	MVEYO NDANKEU Yves Patrick	Chargé de Cours	En poste
37NJUA Clarisse YafiChargée de CoursChef Div. UBA38NOAH EWOTI Olive VivienChargée de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	36	NGOUATEU KENFACK Omer Bébé	Chargé de Cours	En poste
38NOAH EWOTI Olive VivienChargée de CoursEn poste39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	37	NJUA Clarisse Yafi	Chargée de Cours	Chef Div. UBA
39TADU ZephyrinChargé de CoursEn poste40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistantEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	38	NOAH EWOTI Olive Vivien	Chargée de Cours	En poste
40TAMSA ARFAO AntoineChargé de CoursEn poste41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistanteEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	39	TADU Zephyrin	Chargé de Cours	En poste
41YEDEChargé de CoursEn poste42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistanteEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	40	TAMSA ARFAO Antoine	Chargé de Cours	En poste
42BASSOCK BAYIHA Etienne DidierChargé de CoursEn poste43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistanteEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistantEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	41	YEDE	Chargé de Cours	En poste
43FEUGANG YOUMSSI FrançoisChargé de CoursEn poste44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistanteEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistanteEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	42	BASSOCK BAYIHA Etienne Didier	Chargé de Cours	En poste
44AMPON NSANGOU IndouAssistantEn poste45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistanteEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistanteEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	43	FEUGANG YOUMSSI François	Chargé de Cours	En poste
45ESSAMA MBIDA Désirée SandrineAssistanteEn poste46FOKAM Alvine Christelle Epse KEGNEAssistanteEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistanteEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	44	AMPON NSANGOU Indou	Assistant	En poste
46FOKAM Alvine Christelle Epse KEGNEAssistanteEn poste47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistanteEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	45	ESSAMA MBIDA Désirée Sandrine	Assistante	En poste
47GONWOUO NONO LegrandAssistantEn poste48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistanteEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	46	FOKAM Alvine Christelle Epse KEGNE	Assistante	En poste
48KOGA MANG DOBARAAssistantEn poste49LEME BANOCK LucieAssistanteEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	47	GONWOUO NONO Legrand	Assistant	En poste
49LEME BANOCK LucieAssistanteEn poste50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	48	KOGA MANG DOBARA	Assistant	En poste
50NWANE Philippe BienvenuAssistantEn poste51YOUNOUSSA LAMEAssistantEn poste	49	LEME BANOCK Lucie	Assistante	En poste
51 YOUNOUSSA LAME Assistant En poste	50	NWANE Philippe Bienvenu	Assistant	En poste
	51	YOUNOUSSA LAME	Assistant	En poste

3- DÉPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE VÉGÉTALES (BPV) (31)

1	AMBANG Zachée	Professeur	Chef Division/UYII
2	BELL Joseph Martin	Professeur	En poste
3	DJOCGOUE Pierre François	Professeur	En poste
4	MBOLO Marie	Professeur	En poste
5	MOSSEBO Dominique Claude	Professeur	En poste
6	YOUMBI Emmanuel	Professeur	Chef de Département
7	ZAPFACK Louis	Professeur	En poste
8	ANGONI Hyacinthe	Maître de Conférences	En poste
9	BIYE Elvire Hortense	Maître de Conférences	En poste
10	MALA Armand William	Maître de Conférences	En poste
11	MBARGA BINDZI Marie Alain	Maître de Conférences	CT/ MINESUP
12	NDONGO BEKOLO	Maître de Conférences	CE / MINRESI
13	NGODO MELINGUI Jean Baptiste	Maître de Conférences	En poste
14	NGONKEU MAGAPTCHE Eddy L.	Maître de Conférences	En poste
15	TONFACK Libert Brice	Maître de Conférences	En poste
16	TSOATA Esaïe	Maître de Conférences	En poste
17	DJEUANI Astride Carole	Chargé de Cours	En poste
18	GOMANDJE Christelle	Chargée de Cours	En poste
19	MAFFO MAFFO Nicole Liliane	Chargé de Cours	En poste
20	MAHBOU SOMO TOUKAM. Gabriel	Chargé de Cours	En poste

21	NGALLE Hermine BILLE	Chargée de Cours	En poste
22	NNANGA MEBENGA Ruth Laure	Chargé de Cours	En poste
23	NOUKEU KOUAKAM Armelle	Chargé de Cours	En poste
24	ONANA JEAN MICHEL	Chargé de Cours	En poste
25	GODSWILL NTSOMBOH NTSEFONG	Assistant	En poste
26	KABELONG BANAHO Louis-Paul-	Accistant	En poste
20	Roger	ASSISTANT	
27	KONO Léon Dieudonné	Assistant	En poste
28	LIBALAH Moses BAKONCK	Assistant	En poste
29	LIKENG-LI-NGUE Benoit C	Assistant	En poste
30	TAEDOUNG Evariste Hermann	Assistant	En poste
31	TEMEGNE NONO Carine	Assistant	En poste

4- DÉPARTEMENT DE CHIMIE INORGANIQUE (CI) (32)

1	AGWARA ONDOH Moïse	Professeur	Chef de Département
2	DJOUFAC WOUMFO Emmanuel	Professeur	En poste
3	Florence UFI CHINJE épouse MELO	Professeur	Recteur Univ.Ngaoundere
4	GHOGOMU Paul MINGO	Professeur	Ministre Chargé de Miss. à la PR
5	NANSEU Njiki Charles Péguy	Professeur	En poste
6	NDIFON Peter TEKE	Professeur	CT MINRESI
7	NDIKONTAR Maurice KOR	Professeur	Vice-Doyen Univ. Bamenda
8	NENWA Justin	Professeur	En poste
9	NGAMENI Emmanuel	Professeur	DOYEN FS UDs
10	NGOMO Horace MANGA	Professeur	Vice Chancelor/UB
11	ACAYANKA Elie	Maître de Conférences	En poste
12	EMADACK Alphonse	Maître de Conférences	En poste
13	KAMGANG YOUBI Georges	Maître de Conférences	En poste
14	KEMMEGNE MBOUGUEM Jean C.	Maître de Conférences	En poste
15	KONG SAKEO	Maître de Conférences	En poste
16	NDI NSAMI Julius	Maître de Conférences	En poste
17	NJIOMOU C. épse DJANGANG	Maître de Conférences	En poste
18	NJOYA Dayirou	Maître de Conférences	En poste
19	TCHAKOUTE KOUAMO Hervé	Maître de Conférences	En poste
20	BELIBI BELIBI Placide Désiré	Chargé de Cours	CS/ ENS Bertoua
21	CHEUMANI YONA Arnaud M.	Chargé de Cours	En poste
22	KENNE DEDZO GUSTAVE	Chargé de Cours	En poste
23	KOUOTOU DAOUDA	Chargé de Cours	En poste
24	MAKON Thomas Beauregard	Chargé de Cours	En poste
25	MBEY Jean Aime	Chargé de Cours	En poste
26	NCHIMI NONO KATIA	Chargé de Cours	En poste
27	NEBAH Née NDOSIRI Bridget NDOYE	Chargée de Cours	CT/ MINPROFF
28	NYAMEN Linda Dyorisse	Chargée de Cours	En poste
29	PABOUDAM GBAMBIE A.	Chargée de Cours	En poste
30	NJANKWA NJABONG N. Eric	Assistant	En poste
31	PATOUOSSA ISSOFA	Assistant	En poste
32	SIEWE Jean Mermoz	Assistant	En Poste

5- DÉPARTEMENT DE CHIMIE ORGANIQUE (CO) (40)

1	DONGO Etienne	Professeur	Vice-Doven/FSE/UYI

2	GHOGOMU TIH Robert Ralph	Professeur	Dir. IBAF/UDA
3	NGOUELA Silvère Augustin	Professeur	Chef de Département UDS
4	NYASSE Barthélemy	Professeur	En poste
5	PEGNYEMB Dieudonné Emmanuel	Professeur	Directeur/ MINESUP/ Chef de Département
6	WANDJI Jean	Professeur	En poste
7	Alex de Théodore ATCHADE	Maître de Conférences	Vice-Doyen / DPSAA
8	AMBASSA Pantaléon	Maître de Conférences	En poste
9	EYONG Kenneth OBEN	Maître de Conférences	En poste
10	FOLEFOC Gabriel NGOSONG	Maître de Conférences	En poste
11	FOTSO WABO Ghislain	Maître de Conférences	En poste
12	KEUMEDJIO Félix	Maître de Conférences	En poste
13	KENMOGNE Marguerite	Maître de Conférences	En poste
14	KOUAM Jacques	Maître de Conférences	En poste
15	MBAZOA née DJAMA Céline	Maître de Conférences	En poste
16	MKOUNGA Pierre	Maître de Conférences	En poste
17	MVOT AKAK CARINE	Maître de Conférences	En poste
18	NGO MBING Joséphine	Maître de Conférences	Sous/Direct. MINERESI
19	NGONO BIKOBO Dominique Serge	Maître de Conférences	C.E / MINESUP
20	NOTE LOUGBOT Olivier Placide	Maître de Conférences	C.S/ MINESUP
21	NOUNGOUE TCHAMO Diderot	Maître de Conférences	En poste
22	TABOPDA KUATE Turibio	Maître de Conférences	En poste
23	TAGATSING FOTSING Maurice	Maître de Conférences	En poste
24	TCHOUANKEU Jean-Claude	Maître de Conférences	Doyen /FS/ UYI
25	TIH née NGO BILONG E. Anastasie	Maître de Conférences	En poste
26	YANKEP Emmanuel	Maître de Conférences	En poste
27	ZONDEGOUMBA Ernestine	Maître de Conférences	En poste
28	KAMTO Eutrophe Le Doux	Chargé de Cours	En poste
29	NGNINTEDO Dominique	Chargé de Cours	En poste
30	NGOMO Orléans	Chargée de Cours	En poste
31	OUAHOUO WACHE Blandine M.	Chargée de Cours	En poste
32	SIELINOU TEDJON Valérie	Chargé de Cours	En poste
33	MESSI Angélique Nicolas	Assistant	En poste
34	MUNVERA MFIFEN Aristide	Assistant	En poste
35	NONO NONO Éric Carly	Assistant	En poste
36	OUETE NANTCHOUANG Judith Laure	Assistante	En poste
37	TCHAMGOUE Joseph	Assistant	En poste
38	TSAFFACK Maurice	Assistant	En poste
39	TSAMO TONTSA Armelle	Assistante	En poste
40	TSEMEUGNE Joseph	Assistant	En poste

6- DÉPARTEMENT D'INFORMATIQUE (IN) (25)

1	ATSA ETOUNDI Roger	Professeur	Chef Div.MINESUP
2	FOUDA NDJODO Marcel Laurent	Professeur	Chef Dpt ENS/Chef IGA.MINESUP
3	NDOUNDAM Réné	Maître de Conférences	En poste
4	ABESSOLO ALO'O Gislain	Chargé de Cours	En poste
5	AMINOU Halidou	Chargé de Cours	Chef de Département
6	DJAM Xaviera YOUH - KIMBI	Chargé de Cours	En Poste
7	DOMGA KOMGUEM Rodrigue	Chargé de Cours	En poste
8	EBELE Serge Alain	Chargé de Cours	En poste

9	ΚΟυΟΚΑΜ ΚΟυΟΚΑΜ Ε. Α.	Chargé de Cours	En poste
10	MELATAGIA YONTA Paulin	Chargé de Cours	En poste
11	MONTHE DJIADEU Valery M.	Chargé de Cours	En poste
12	MOTO MPONG Serge Alain	Chargé de Cours	En poste
12	OLLE OLLE Daniel Claude Delert	Chargó do Cours	Directeur adjoint Enset.
12	OLLE OLLE Daniel Claude Deloi t	Charge de Cours	Ebolowa
14	TAPAMO Hyppolite	Chargé de Cours	En poste
15	TINDO Gilbert	Chargé de Cours	En poste
16	TSOPZE Norbert	Chargé de Cours	En poste
17	WAKU KOUAMOU Jules	Chargé de Cours	En poste
18	BAYEM Jacques Narcisse	Assistant	En poste
19	EKODECK Stéphane Gaël Raymond	Assistant	En poste
20	HAMZA Adamou	Assistant	En poste
21	JIOMEKONG AZANZI Fidel	Assistant	En poste
22	MAKEMBE. S. Oswald	Assistant	En poste
23	MESSI NGUELE Thomas	Assistant	En poste
24	MEYEMDOU Nadège Sylvianne	Assistante	En poste
25	NKONDOCK. MI. BAHANACK.N.	Assistant	En poste

7- DÉPARTEMENT DE MATHÉMATIQUES (MA) (35)

1	AYISSI Raoult Domingo	Professeur	Chef de Département
2	EMVUDU WONO Yves S.	Professeur	Inspecteur MINESUP
3	KIANPI Maurice	Maître de Conférences	En poste
4	MBANG Joseph	Maître de Conférences	En poste
5	MBEHOU Mohamed	Maître de Conférences	En poste
6	MBELE BIDIMA Martin Ledoux	Maître de Conférences	En poste
7	NKUIMI JUGNIA Célestin	Maître de Conférences	En poste
8	NOUNDJEU Pierre	Maître de Conférences	Chef service des programmes & Diplômes/FS/UYI
9	TCHAPNDA NJABO Sophonie B.	Maître de Conférences	Directeur/AIMS Rwanda
10	TCHOUNDJA Edgar Landry	Maître de Conférences	En poste
11	BOGSO ANTOINE MARIE	Chargé de Cours	En poste
12	AGHOUKENG JIOFACK Jean Gérard	Chargé de Cours	Chef Cellule MINPLAMAT
13	CHENDJOU Gilbert	Chargé de Cours	En poste
14	DJIADEU NGAHA Michel	Chargé de Cours	En poste
15	DOUANLA YONTA Herman	Chargé de Cours	En poste
16	FOMEKONG Christophe	Chargé de Cours	En poste
17	KIKI Maxime Armand	Chargé de Cours	En poste
18	MBAKOP Guy Merlin	Chargé de Cours	En poste
19	MENGUE MENGUE David Joe	Chargé de Cours	En poste
20	NGUEFACK Bernard	Chargé de Cours	En poste
21	NIMPA PEFOUKEU Romain	Chargée de Cours	En poste
22	POLA DOUNDOU Emmanuel	Chargé de Cours	En poste
23	TAKAM SOH Patrice	Chargé de Cours	En poste
24	TCHANGANG Roger Duclos	Chargé de Cours	En poste
25	TETSADJIO TCHILEPECK M. E.	Chargé de Cours	En poste
26	TIAYA TSAGUE N. Anne-Marie	Chargée de Cours	En poste
27	BITYE MVONDO Esther Claudine	Assistante	En poste
28	FOKAM Jean Marcel	Assistant	En poste
29	LOUMNGAM KAMGA Victor	Assistant	En poste
30	MBATAKOU Salomon Joseph	Assistant	En poste

31	MBIAKOP Hilaire George	Assistant	En poste
32	MEFENZA NOUNTU Thiery	Assistant	En poste
33	OGADOA AMASSAYOGA	Assistant	En poste
34	TCHEUTIA Daniel Duviol	Assistant	En poste
35	TENKEU JEUFACK Yannick Léa	Assistant	En poste

8- DÉPARTEMENT DE MICROBIOLOGIE (MIB) (21)

1	ESSIA NGANG Jean Justin	Professeur	Chef de Département
2	NYEGUE Maximilienne Ascension	Professeur	VICE-DOYEN / DSSE
3	NWAGA Dieudonné M.	Professeur	En poste
4	ASSAM ASSAM Jean Paul	Maître de Conférences	En poste
5	BOYOMO ONANA	Maître de Conférences	En poste
6	KOUITCHEU MABEKU Epse KOUAM Laure Brigitte	Maître de Conférences	En poste
7	RIWOM Sara Honorine	Maître de Conférences	En poste
8	SADO KAMDEM Sylvain Leroy	Maître de Conférences	En poste
9	BODA Maurice	Chargé de Cours	En poste
10	BOUGNOM Blaise Pascal	Chargé de Cours	En poste
11	ESSONO OBOUGOU Germain G.	Chargé de Cours	En poste
12	NJIKI BIKOÏ Jacky	Chargée de Cours	En poste
13	TCHIKOUA Roger	Chargé de Cours	En poste
14	ESSONO Damien Marie	Assistant	En poste
15	LAMYE Glory MOH	Assistant	En poste
16	MEYIN A EBONG Solange	Assistante	En poste
17	MONI NDEDI Esther Del Florence	Assistante	En poste
18	NKOUDOU ZE Nardis	Assistant	En poste
19	SAKE NGANE Carole Stéphanie	Assistante	En poste
20	TAMATCHO KWEYANG Blandine Pulchérie	Assistante	En poste
21	TOBOLBAÏ Richard	Assistant	En poste

9. DEPARTEMENT DE PYSIQUE (PHY) (44)

1	BEN- BOLIE Germain Hubert	Professeur	En poste
2	DJUIDJE KENMOE épouse ALOYEM	Professeur	En poste
3	EKOBENA FOUDA Henri Paul	Professeur	Vice-Recteur. UN
4	ESSIMBI ZOBO Bernard	Professeur	En poste
5	KOFANE Timoléon Crépin	Professeur	En poste
6	NANA ENGO Serge Guy	Professeur	En poste
7	NANA NBENDJO Blaise	Professeur	En poste
8	NDJAKA Jean Marie Bienvenu	Professeur	Chef de Département
9	NJANDJOCK NOUCK Philippe	Professeur	En poste
10	NOUAYOU Robert	Professeur	En poste
11	PEMHA Elkana	Professeur	En poste
12	TABOD Charles TABOD	Professeur	Doyen FS Univ/Bda
13	TCHAWOUA Clément	Professeur	En poste
14	WOAFO Paul	Professeur	En poste
15	ZEKENG Serge Sylvain	Professeur	En poste
16	BIYA MOTTO Frédéric	Maître de Conférences	DG/HYDRO Mekin

 BODO Bertrand ENYEGUE A NYAM EYEBE FOUDA Jear FEWO Serge Ibraïd 	épse BELINGA n sire l	Maître de Conférences Maître de Conférences Maître de Conférences Maître de Conférences Maître de Conférences	En poste En poste En poste En poste En poste
18ENYEGUE A NYAM19EYEBE FOUDA Jear20FEWO Serge Ibraïd	épse BELINGA n sire l César	Maître de Conférences Maître de Conférences Maître de Conférences Maître de Conférences	En poste En poste En poste
19EYEBE FOUDA Jeau20FEWO Serge Ibraïc21HOMMA I	n sire I	Maître de Conférences Maître de Conférences Maître de Conférences	En poste En poste
20 FEWO Serge Ibraïc	l César	Maître de Conférences Maître de Conférences	En poste
	César	Maître de Conférences	En noste
21 HONA Jacques	César		LII poste
22 MBANE BIOUELE C		Maître de Conférences	En poste
23 MBINACK Clément	I	Maître de Conférences	En poste
24 NDOP Joseph		Maître de Conférences	En poste
25 SAIDOU		Maître de Conférences	Chef de centre/IRGM/MINRESI
26 SIEWE SIEWE Mar	tin	Maître de Conférences	En poste
27 SIMO Elie		Maître de Conférences	En poste
28 VONDOU Derbetir	i Appolinaire	Maître de Conférences	En poste
29 WAKATA née BEYA	A Annie	Maître de Conférences	Directeur/ENS/UYI
30 ABDOURAHIMI		Chargé de Cours	En poste
31 CHAMANI Roméo		Chargé de Cours	En poste
32 EDONGUE HERVA	S	Chargé de Cours	En poste
33 FOUEDJIO David		Chargé de Cours	Chef Cell. MINADER
34 MBONO SAMBA Y	ves Christian U.	Chargé de Cours	En poste
35 MELI'I Joelle Lariss	a	Chargée de Cours	En poste
36 MVOGO ALAIN		Chargé de Cours	En poste
37 OBOUNOU Marce		Chargé de Cours	DA/Univ Inter Etat/Sangmalima
38 WOULACHE Rosali	ie Laure	Chargée de Cours	En poste
39 AYISSI EYEBE Guy	François Valérie	Assistant	En poste
40 DJIOTANG TCHOT	CHOU Lucie A.	Assistante	En poste
41 LAMARA Maurice		Assistant	En poste
42 OTTOU ABE Marti	n Thierry	Assistant	En poste
43 TEYOU NGOUPOU	Ariel	Assistant	En poste
44 WANDJI NYAMSI V	Villiam	Assistant	En poste

10- DÉPARTEMENT DE SCIENCES DE LA TERRE (ST) (42)

1	BITOM Dieudonné	Professeur	Doyen / FASA / UDs
2	FOUATEU Rose épse YONGUE Professeur		En poste
3	NDAM NGOUPAYOU Jules-Remy	Professeur	En poste
4	NDJIGUI Paul Désiré	Professeur	Chef de Département
5	NGOS III Simon	Professeur	En poste
6	NKOUMBOU Charles	Professeur	En poste
7	NZENTI Jean-Paul	Professeur	En poste
8	ABOSSOLO née ANGUE Monique	Maître de Conférences	Vice-Doyen / DRC
0	RISSO Dioudonná	Maître de Conférences	Directeur/Projet Barrage
9	BISSO Dieudonne		Memve'ele
10	EKOMANE Emile	Maître de Conférences	En poste
11	GANNO Sylvestre	Maître de Conférences	En poste
12	GHOGOMU Richard TANWI	Maître de Conférences	CD/Uma
13	MOUNDI Amidou	Maître de Conférences	CT/ MINIMDT
14	NGUEUTCHOUA Gabriel	Maître de Conférences	CEA/MINRESI
15	NJILAH Isaac KONFOR	Maître de Conférences	En poste
16	NYECK Bruno	Maître de Conférences	En poste
17	ONIANIA Viz cont louront	Maîtro do Confároncos	Chef service Maintenance & du
11/			Matériel/UYII

18	TCHAKOUNTE J. épse NUMBEM	Maître de Conférences	Chef.cell / MINRESI
19	TCHOUANKOUE Jean-Pierre	Maître de Conférences	En poste
20	TEMDJIM Robert	Maître de Conférences	En poste
21	YENE ATANGANA Joseph Q.	Maître de Conférences	Chef Div. /MINTP
22	ZO'O ZAME Philémon	Maître de Conférences	DG/ART
23	ANABA ONANA Achille Basile	Chargé de Cours	En poste
24	BEKOA Etienne	Chargé de Cours	En poste
25	ELISE SABABA	Chargé de Cours	En poste
26	ESSONO Jean	Chargé de Cours	En poste
27	EYONG JOHN TAKEM	Chargé de Cours	En poste
28	FUH Calistus Gentry	Chargé de Cours	Sec. D'Etat/MINMIDT
29	LAMILEN BILLA Daniel	Chargé de Cours	En poste
30	MBESSE CECILE OLIVE	Chargée de Cours	En poste
31	MBIDA YEM	Chargé de Cours	En poste
32	METANG Victor	Chargé de Cours	En poste
33	MINYEM Dieudonné-Lucien	Chargé de Cours	CD/Uma
34	NGO BELNOUN Rose Noël	Chargée de Cours	En poste
35	NGO BIDJECK Louise Marie	Chargée de Cours	En poste
36	NOMO NEGUE Emmanuel	Chargé de Cours	En poste
37	NTSAMA ATANGANA Jacqueline	Chargé de Cours	En poste
38	TCHAPTCHET TCHATO De P.	Chargé de Cours	En poste
39	TEHNA Nathanaël	Chargé de Cours	En poste
40	TEMGA Jean Pierre	Chargé de Cours	En poste
41	FEUMBA Roger	Assistant	En poste
42	MBANGA NYOBE Jules	Assistant	En poste

Répartition chiffrée des Enseignants de la Faculté des Sciences de l'Université de Yaoundé I

		NOMBRE D'ENSEIG	NANTS		
DÉPARTEMENTS	Professeurs	Maîtres de Conférences	Chargés de Cours	Assistants	Total
BCH	8 (01)	14 (10)	13 (05)	05 (02)	40 (18)
BPA	15 (01)	8 (06)	18 (05)	10 (03)	51 (15)
BPV	07 (01)	9 (01)	8 (06)	07 (01)	31 (9)
CI	10 (01)	09 (02)	10 (02)	03 (0)	32 (5)
CO	6 (0)	21 (05)	05 (02)	08 (02)	40 (9)
IN	2 (0)	1 (0)	14 (01)	08 (01)	25 (2)
MAT	2 (0)	8 (0)	15 (01)	09 (02)	34 (7)
MIB	3 (0)	5 (03)	06 (01)	06 (02)	20 (6)
PHY	15 (0)	14 (02)	09 (03)	08 (03)	46 (8)
ST	7 (1)	15 (01)	18 (05)	02 (0)	42 (7)
Total	75 (5)	104 (30)	116 (31)	66 (16)	361 (86)
Soit u	n total de	3	61 (86) dont :		
	- Professeurs	7	/5 (5)		

n total de	361 (86) do
- Professeurs	75 (5)
- Maîtres de Conférences	104 (30)
- Chargés de Cours	116 (31)

- Chargés de Cours - Assistants

() = Nombre de Femmes

66 (16)

86

DEDICACE

À

MES PARENTS

KOUAM MICHEL

&

NGAINTCHOU MARIE NOËL

POUR LES EFFORTS CONSENTIS & MON ÉDUCATION

REMERCIEMENTS

Je ne saurais trouver les mots justes pour remercier le Directeur de cette Thèse le Professeur AJEAGAH Gideon AGHAINDUM, qui a mis à ma disposition tous les réactifs et les ouvrages scientifiques. Sa rigueur, son esprit de collaboration dans la recherche font de lui un élément important dans le domaine scientifique. C'est grâce à ses conseils pertinents et à sa disponibilité à chaque fois que ce travail a été réalisé.

J'exprime ma grande reconnaissance envers les Professeurs KHALLAAYOUNE Kalid Chef de Département de Pathologie et de Santé Publique à l'Institut Agronomique et Vétérinaire Hassan II au Maroc, ETCHEPARE Ramiro du Département d'Hydraulique de l'Université Fédéral Parana au Brasil, LINDSAY David Professeur du Département des Sciences Biomédicales et de Pathobiologie à Virginia Maryland College of Veterinary Medicine et AMOAH Dennis de l'Institut Technologique de l'Université de Durban, pour l'assistance apportée lors des analyses moléculaires, les précieux conseils, la documentation et le protocole détaillé de l'analyse de la viabilité des helminthes qu'ils ont mis à ma disposition.

Qu'il me soit permis de remercier par anticipation tous les éminents membres du jury qui me font le grand honneur de juger ce travail et qui ont accepté d'y consacrer une part importante de leur précieux temps pour apporter leurs observations pertinentes.

Je remercie également les enseignants du Département de Biologie et Physiologie Animales notamment les Professeurs BILONG BILONG Charles Félix, DJIETO Lordon Champlain, ESSOMBA NTSAMA Claudine, FOMENA Abraham, MIMPFOUNDI Rémy, KEKEUNOU Sévilor, NJIOKOU Flobert, NOLA Moïse, TCHUEM TCHUENTE Louis Albert, ZEBAZE TOGOUET Serge Hubert, FOTO MENBOHAN Samuel, MBENOUN MASSE Paul Serge et les Docteurs, ATSAMO Albert Donatien, ETEME ENAMA Serge, KANDEDA KAVAYE Antoine, MOUNGANG Luciane Marlyse, NOAH EWOTI Olive Vivien, pour leurs enseignements et leurs encouragements durant mon parcours académique.

Je tiens à remercier les Docteurs TCHAKONTE Siméon, ASI Quiggle ATUD, ENAH Dickson, KAPSO Mireille, NYAMSI Nectaire, MBOUOMBOUO MAMA, NGAKOMO ANANGA Rose, LETAH NZOEUBETH, BIRAM A GON Erick, NANA Paul Alain, TUEKAM KAYO Raoul, ZANGA Adalbert Donatien, CHINCHE Sylvie, KENGNE TENKEU Janvier, METSOPKENG Claire, MOGUE Gwladys, MOUSSIMA YAKA Diane Armelle, pour l'aide qu'ils m'ont apporté lors de la mise en place du protocole et la correction des différentes publications scientifiques.

Qu'il me soit permis de remercier infiniment mes ainés de laboratoire notamment Mesdames, OKOA AMOUGOU Thérèse Nadège, MADIESSE Nelly, TCHOUAPPI Yvonne, MBANGA MEDJO Pascale, TCHIEDJO Marie Laure, Messieurs KAMDJO Raoul Joël, KODA Stéphane, MVONDO Narcisse, NJIAWOUO POUNTIGNI Eric, DZAVI Jean, NGUIEMA Cédric, POUNTOUGNIGNI OUMAROU Farikou, KOUEDEUM Eric et TEFOUET Armel, pour l'assistance, les conseils, les remarques, les encouragements. Qu'ils trouvent dans ces quelques mots l'expression de ma profonde gratitude. Mes sincères remerciements s'adressent également à tous mes camarades de la promotion Symbiose 2015, plus particulièrement ceux de l'option Hydrobiologie et Environnement il s'agit de : DJOUDJO Yolande, DJOKO TOUKAM Gaëlle, FOPESSI TCHEUTCHOUA Chanceline, GWOS HIOMOCK Serge, KAMGAING GUEMKAM Patricia, KAONODJI Solngar, KOUTCHEP BISSONG Mavis, MATCHEUTUM Gisèle, MBAINAISSEM Serge, MOUAFFO TAMNOU Edith, NGALAMO YOUANE Karelle, NOUGOUE Brigitte, NYAME Donald, OWONA EDOA François, TAKAM Wilfried, TAYOU Blandine, TCHOUAPPE Franck, MVOGO Yves, SINKAM Yannick, MAFOEDONG Modestie SOB Boris et ZAMBO Gabriel Bertrand, pour l'aide qu'ils m'ont apporté sur le terrain et lors de l'analyse des paramètres physico-chimiques au laboratoire.

Mes remerciements s'adressent aussi à mes frères et sœurs, KONCHOU Fabrice, TCHEUWAK Edwige, NONO Arlette, GOUNOU Alvine, mes oncles et tantes, mes cousins et cousines, mes neveux et nièces qui m'ont toujours accordé leur soutien moral et financier. Un grand merci au Docteur TSOMENE NAMEKONG Pierre, qui a toujours été présent et disponible à chaque fois que j'ai sollicité son aide pour m'accompagner sur le terrain.

Je remercie également Messieurs FAI Didimus, ACHA Yanick, MOANONO Patrick, NANFACK Rodrigue, NWAHA Mathias, SOB Bertrand et Mesdames NGONO Francine, BOUDEM Cécile, YONGUI Synthia, pour l'aide apporté lors de la mesure des paramètres physico-chimiques.

Je remercie du fond du cœur mes camarades du Lycée d'ANGUISSA promotion 2011, avec qui j'ai fait mes premiers pas dès mon entrée à l'Université de Yaoundé I, il s'agit de : EBANDA NDI, ENGUENE Apollinaire, GOUDJOU Miclange, KAPTOUM Daglich, KENGNE Olivier, DANTIO Christian, KAMGAING Dane, DJOUKA Sorel et TATAN Brice.

Comment terminer cette rubrique sans remercier ma compagne NTOODUAH Diane Philomène, qui a toujours été là, à chaque fois pour me réconforter et me donner la force d'avancer. Son soutien indéfectible, ses conseils précieux, ont toujours été pour moi une source de motivation supplémentaire.

SOMMAIRE

LISTE PROTOCOLAIRE DE LA FACULTÉ DES SCIENCES	i
DEDICACE	X
REMERCIEMENTS	xi
SOMMAIRE	xiii
LISTE DES FIGURES	XV
LISTE DES TABLEAUX	xvi
LISTE DES ANNEXES	xviii
LISTE DES ABREVIATIONS ET	
ACRONYMESxxi	
RESUME	xxi
i	
ABSTRACT	xxiv
INTRODUCTION	1
I. REVUE DE LA LITTERATURE	
I.1. Généralités sur les eaux usées et boues de vidange	
I.1.1. Eaux usées	
I.1.2. Boues de vidange	5
I.2. Pollution des boues de vidange et eaux usées	6
I.2.1. Pollution physique	6
I.2.2. Pollution chimique	7
I.2.3. Pollution biologique	7
I.3. Paramètres d'évaluation de la qualité des eaux usées et boues de vidange	7
I.3.1. Variables physico-chimiques	7
I.3.2. Variables Biologiques;;	11
I.4. Généralités sur les helminthes intestinaux	12
I.4.1. Cycle de vie et formes de résistance de quelques helminthes intestinaux présents	3
dans les eaux usées et boues de vidange	12
I.4.2. Mode de transmission des helminthiases	22
I.4.3. Techniques de diagnostic des helminthes dans l'eau	23
I.4.4. Tests de viabilité des Helminthes	24
I.4.5. Prophylaxie	25
I.5. Généralités sur les désinfectants utilisés pour traiter les eaux	25

I.5.1. Facteurs affectant l'activité des désinfectants	26
I.5.2. Quelques désinfectants couramment utilisés	26
II. MATERIEL ET METHODES	39
II.1. Matériel	39
II.1.1. Cadre géographique	39
II.1.2. Description des stations d'échantillonnage	42
II.1.3. Préparation des différents désinfectants	44
II.2. Méthodologie	46
II.2.1. Echantillonnage pour analyses physico-chimiques et biologiques	46
II.2.2. Dispositif expérimental	46
II.2.3. Mesure des paramètres physico-chimiques	47
II.2.4. Paramètres Biologiques	50
II.2.5. Analyses statistiques des variables physico-chimiques et biologiques	55
III. RESULTATS ET DISCUSSION	57
III.1 Résultats	57
III.1.1. Effet des désinfectants sur les œufs d'helminthes	57
III.1.2. Variation du nombre d'œufs dénombrés par les techniques morphologiques	62
III.1.3. Variation du nombre d'œufs dénombrés par la Technique moléculaire de	
Réaction de Polymérase en Chaine	62
III.1.4. Pourcentage de viabilité des formes de résistance	66
III.1.5. Variation du nombre d'œuf viable dénombré après application des désinfectants	67
III.1.6. Caractéristiques physico-chimiques des échantillons bruts avant désinfection	86
III.1.7. Caractéristiques physico-chimiques des paramètres mesurées au cours de la	
désinfection	87
III.1.8. Rendements d'efficacité des différents désinfectants	124
III.1.9. Isotherme d'adsorption du Charbon Actif	115
III.1.10. Modélisation statistiques des variables biologiques	117
III.2. Discussion	129
III.2.1. Caractéristiques physico-chimiques des eaux usées et boues de vidange	129
III.2.2. Caractéristiques morphologiques et moléculaires des helminthes identifiés	130
III.2.3. Influence des désinfectants sur la viabilité des œufs	133
III.2.4. Influence des désinfectants sur les paramètres physico-chimiques évalués	138
III.2.5. Hiérarchisation des différents désinfectants utilisés et influence des variables	
considérées	140

CONCLUSION, RECOMMANDATIONS ET PERSPECTIVES	141
REFERENCES BIBLIOGRAPHIQUES	143
ANNEXES	163

LISTE DES FIGURES

Figure 1 : Cycle de développement d'Ascaris lumbricoïdes	14
Figure 2 : Structure de la paroi de l'oeuf d'Ascaris	16
Figure 3 : Cycle de développement de Trichuris trichiura	17
Figure 4 : Cycle de développement des Ancylostomes	19
Figure 5 : Cycle de développement de Strongyloides stercoralis	20
Figure 6 : Cycle de développement d'Hymenolepis nana	22
Figure 7 : Schéma des macropores et mesopores du Charbon Actif	31
Figure 8 : Classification des isothermes selon Brunauer	33
Figure 9 : Agrégation et sédimentation des microorganismes et particules par le Moringa	ı36
Figure 10 : Carte des stations d'échantillonnage	41
Figure 11 : Vue partielle des stations d'échantillonnage :	43
Figure 12 : Représentation de quelques désinfectants utilisés	45
Figure 13 : Dispositif expérimental : élimination des œufs non viables (A),	
homogénéisation entre les parasites et les désinfectants (B), test de	
viabilité par incubation (C)	47
Figure 14 : Œuf d'Ascaris spp. non fertile (A), œuf d'Ascaris spp. fertiles (B),	
œuf d'Ascaris spp. encours de développement (C), œuf viable contenant	
une larve mobile (D).	58
Figure 15 : Œuf non viable d'Ancylostoma duodenale (A), œuf en cours de	
développement (B), œuf viable contenant une larve mobile (C), œuf	
non viable et incolore, œuf viable et coloré au rouge neutre	59
Figure 16 : Œuf de Necator amricanus : œuf non viable (A), œufs en segmentation	
(B et C), œufs viables contenant une larve mobile (D)	60
Figure 17 : Œufs non viables (A et B) et viables (C) de <i>Trichuris trichiura</i>	60
Figure 18 : Larves viables (A et C) et larves non viables (B et D) de <i>Strongyloides</i>	
stercoralis	61

Figure 19 : Œufs d'Hymenolepis nana avant incubation (A et B), œuf viable contenant la
larve mobile (C), œufs non viables (D, E, F et G), œuf non viable
incolore (H), œuf viable coloré au rouge neutre (I)
Figure 20 : Différentes classes et espèces d'helminthes identifiées pendant l'étude 62
Figure 21: Variation spatiales des œufs viables et non viables d'Ascaris spp. (A) et
Necator americanus (B)
Figure 22 : Variations spatiales des larves viables et non viables de Strongyloides
stercoralis (A) et des œufs viables et non viables Trichuris trichiura (B) 64
Figure 23 : Variations spatiales des œufs viables et non viables d'Ancylostoma
duodenale (A) et Hymenolepis nana (B) 65
Figure 24 : Pourcentage d'occurrence des différentes espèces d'helminthes
identifiées par Réaction en Polymérase de Chaine65
Figure 25 : Variation de la densité des espèces d'helminthes identifiées par Réaction
en Polymérase de Chaine66
Figure 26 : Variation de la densité des œufs viables d'Ascaris spp. dénombrés avant
et après désinfection69
Figure 27: Variation de la densité des œufs viables de Necator americanus dénombrés
avant et après désinfection72
Figure 28 : Variation de la densité des larves viables de Strongyloides stercoralis
dénombrées avant et après désinfection76
Figure 29 : Variation de la densité des œufs viables de Trichuris trichiura dénombrés
avant et après désinfection78
Figure 30 : Variation de la densité des œufs viables d'Ancylostoma duodenale dénombrés
avant et après désinfection81
Figure 31 : Variation de la densité des œufs viables d'Hymenolepis nana dénombrés avant
et après désinfection
Figure 32 : Variation des valeurs de la couleur mesurées avant et après désinfection
Figure 33 : Variation des valeurs de la turbidité mesurées avant et après désinfection91
Figure 34 : Variation des valeurs des Matières en Suspension mesurées avant
et après désinfection92
Figure 35 : Variation des valeurs des TDS mesurées avant et après désinfection94
Figure 36 : Variation des valeurs de la Conductivité Electrique mesurées avant
et après désinfection96

Figure 37 : Variation des valeurs des Nitrates mesurées avant et après désinfection98
Figure 38 : Variation des valeurs de l'azote ammoniacal mesurées avant et après
désinfectionn100
Figure 39 : Variation des valeurs de l'Orthophosphate mesurées avant et après
désinfection102
Figure 40 : Variation des valeurs de l'Oxydabilité mesurées avant et après désinfection104
Figure 41 : Variation des valeurs de la Salinité mesurées avant et après désinfection106
Figure 42 : Variation des valeurs de l'alcalinité mesurées avant et après désinfection108
Figure 43 : Variation des valeurs du pH mesurées avant et après désinfection110
Figure 44 : Courbes d'adsorptions des paramètres physico-chimiques et biologiques 110
Figure 45 : Analyse de Classification Hiérarchique montrant les similarités entre les
stations d'échantillonnage 124
Figure 46 : Analyse en Composantes Principales montrant les affinités entre les stations
d'échantillonnage et les variables mesurées124
Figure 47 : Analyse de Classification Hiérarchique montrant les similarités entre les
concentrations utilisées12:
Figure 48 : Analyse de Classification Hierachique montrant les affinités entre les
désinfectants utilisés126
Figure 49 : Analyse de Classification Hierachique et Analyse en Composantes
Principales des différents désinfectants128

LISTE DES TABLEAUX

Tableau I :	Sources d'eaux usées	3			
Tableau II :	Quelques espèces d'helminthes intestinaux retrouvées dans les eaux usées				
	et les boues de vidange	12			
Tableau III :	Principales familles des désinfectants couramment utilisés	26			
Tableau IV :	Amorces utilisée pour l'amplification des séquences ITS-1 des différentes				
	espèces de parasites	53			
Tableau V :	Pourcentage de viabilité des œufs et larves identifiés	67			
Tableau VI :	Variation des paramètres physico-chimiques mesurés avant désinfection	87			

Tableau VII :	Taux d'abattement des différents désinfectants sur les variables	
	biologiques	113
Tableau VIII	: Taux d'abattement des différents désinfectants sur quelques paramètres	
	physico-chimiques	115
Tableau IX :	Corrélations entre l'abondances des œufs viables et les désinfectants	
	utilisés	117
Tableau X :	Corrélations entre les différents œufs durant le traitement à	
	l'Hypochlorite de Sodium	117
Tableau XI :	Corrélations entre la densité des œufs viables dénombrés sur les	
	échantillons traités à l'Eau Oxygénée.	118
Tableau XII :	Corrélations entre la densité des œufs viables dénombrés sur les	
	échantillons traités au Hand	118
Tableau XIII	: Corrélations entre la densité des œufs viables dénombrés sur les	
	échantillons traités au Moringa	119
Tableau XIV	Corrélations entre la densité des œufs viables dénombrés sur les	
	échantillons traités au Charbon	119
Tableau XV :	Corrélation entre la densité des œufs viables dénombrés sur les	
	échantillons traités au Chlorure de Sodium	119
Tableau XVI	Corrélations entre la densité des œufs viables dénombrés sur les	
	échantillons traités au Moringa associé au Chlorure de Calcium	120
Tableau XVII	: Corrélations entre la densité des œufs viables dénombrés sur les	
	échantillons traités aux Rayonnements Lumineux	120
Tableau XVII	I : Corrélations entre la densité des œufs viables dénombrés sur les	
	échantillons traités au Gypse	121
Tableau XIX	Corrélations entre la densité des œufs viables dénombrés sur les	
	échantillons traités au Chlorure de Calcium	121

LISTE DES ANNXES

Annexe 1 : Variation du nombre d'œufs viables observé pendant l'étude163
Annexe 2 : Calcul du pourcentage de viabilité des œufs164
Annexe 3 : Variations des paramètres physico-chimiques mesurés avant et après
désinfection sur les échantillons de la Cité Universitaire et la Prison Centrale165
Annexe 4 : Variations des paramètres physico-chimiques mesurés avant et après
désinfection sur les échantillons de Nomayos et Biyem-Assi167
Annexe 5 : Variations des œufs viables d'Ascaris sp. dénombrés avant et après
désinfection sur les échantillons de la Cité Universitaire et Prison Centrale169
Annexe 6 : Variations des œufs viables d'Ascaris sp. dénombrés avant et après
désinfection sur les échantillons de Nomayos et Biyem-Assi170
Annexe 7 : Variations des œufs viables de Necator americanus dénombrés avant et après
désinfection sur les échantillons de la Cité Universitaire et Prison Centrale171
Annexe 8 : Variations des œufs viables de Necator americanus dénombrés avant et après
désinfection sur les échantillons de Nomayos et Biyem-Assi172
Annexe 9 : Variations des larves viables de Strongyloides stercoralis dénombrées avant
et après désinfection sur les échantillons de la Cité Universitaire
et Prison Centrale173
Annexe 10 : Variations des larves viables de Strongyloides dénombrées avant et après
désinfection sur les échantillons de Nomayos et Biyem-Assi174
Annexe 11 : Variations des œufs viables de Trichuris dénombrés avant et après
désinfection sur les échantillons de la Cité Universitaire et Prison Centrale175
Annexe 12 : Variations des œufs viables de Trichuris trichiura dénombrés avant et
après désinfection sur les échantillons de Nomayos et Biyem-Assi176
Annexe 13 : Variations des œufs viables d'Ancylostomes dénombrés avant et après
désinfection sur les échantillons de la Cité Universitaire et Nomayos177
Annexe 14 : Variations des œufs viables d'Hymenolepis nana dénombrés avant et après
désinfection sur les échantillons de la Cité Universitaire et Prison Centrale178
Annexe 15 : Variations des œufs viables d'Hymenolepsis nana dénombrés avant et après
désinfection sur les échantillons de Nomayos et Biyem-Assi179
Annexe 16 : Variation des paramètres physico-chimiques adsorbés par le Charbon Actif180
Annexe 17 : Variation des paramètres biologiques adsorbés par le Charbon Actif181

Annexe 18 : Corrélations entre la salinité et les œufs viables dénombrés avant
et après désinfection182
Annexe 19 : Corrélations entre les TDS et les œufs viables dénombrés avant et après
désinfection183
Annexe 20 : Corrélations entre la Conductivité électrique et les œufs viables dénombrés avant
et après désinfection184
Annexe 21 : Corrélations entre le pH et les œufs viables dénombrés avant et après
désinfection185
Annexe 22 : Corrélations entre la turbidité et les œufs viables dénombrés avant
et après désinfection186
Annexe 23 : Corrélations entre la couleur et les œufs viables dénombrés avant et après
désinfection187
Annexe 24: Corrélations entre les Nitrates et les œufs viables dénombrés avant et après
désinfection
Annexe 25: Corrélations entre les MES et les œufs viables dénombrés avant et après
désinfection
Annexe 26: Corrélations entre l'alcalinité et les œufs viables dénombrés avant et après
désinfection
Annexe 27: Corrélations entre l'oxydabilité et les œufs viables dénombrés avant et après
désinfection191
Annexe 28: Corrélations entre l'azote ammoniacal et les œufs viables dénombrés avant
et aprdésinfection192
Annexe 29: Corrélations entre l'orthophosphate et les œufs viables dénombrés avant
et après désinfection193
Annexe 30 : Taux d'efficacité (%) des désinfectants sur la réduction de la viabilité
des œufs identifiés194
Annexe 31 : Taux d'efficacité (%) des désinfectants sur l'abattement des paramètres
physico-chimiques196
Annexe : 32 : Planches de l'Organisation Mondiale de la Santé pour identification des
helminthes

LISTE DES ABREVIATIONS ET ACRONYMES

- APHA: American Public Health Association
- BTB : BeerTime Brasseurs
- CDC: Centers for Disease Control and Prevention
- CEAEQ : Centre d'Expertise en Analyses Environnementales du Québec
- CIPR : Commission Internationale pour la Protection du Rhin
- CSHPF : Conseil Supérieur d'Hygiène Publique de France
- CSSRI: Central Soil Salinity Research Institute
- DBO₅: Demande Biologique en Oxygène
- FTU: Formazine Turbidity Units
- GDPC : Guide pour le choix des Désinfectants Produits de Désinfection Chimique
- GPS: Global Positioning System
- GSS : Grande Saison Sèche
- INC : Institut National de Cartographie
- INRA : Institut National de la Recherche Agronomique
- MES : Matières en suspension
- OCDE : Organisation de Coopération et de Développement Economiques
- ODD : Objectif Durable pour le Développement
- PCD: Plan Communal de Développement
- PNUD : Programme des Nations Unies pour le Développement
- PSP : Petite Saison de Pluie
- PSS : Petite Saison Sèche
- PSU: Practical salinity Unit
- SIC : Société Immobilière du Cameroun
- SPSS : Statistical Packages for Social Sciences

RESUME

Les helminthiases représentent de nos jours un véritable problème de santé publique, elles impactent négativement sur le développement socio-économique et causent de nombreux décès. L'un des facteurs de résurgence de ces maladies est la persistance des formes de résistance dans les milieux aquatiques. Ces parasitoses seraient très résistants aux techniques couramment utilisées pour le traitement des eaux, leur présence dans les eaux usées constitue le véritable facteur de contrainte lié à la réutilisation des eaux usées. Pour limiter la contraction des helminthiases intestinales il est indispensable d'optimiser les techniques de traitement des eaux, c'est dans cette optique qu'une étude visant à mettre en évidence l'efficacité de dix désinfectants (Hypochlorite de Calcium, Hypochlorite de Sodium, Eau Oxygénée, Gypse, Moringa, Charbon Actif, Chlorure de Sodium, Rayons Lumineux, « *Hand Disinfectant* », et Moringa associé à l'Hypochlorite de Calcium) sur la viabilité des formes de résistance des helminthes a été menée en microcosme au Laboratoire d'Hydrobiologie et Environnement de l'Université de Yaoundé I.

Quatre stations d'échantillonnage ont été retenues pour cette étude soient trois stations des eaux usées (Camp Sic Biyem-Assi, Cité Universitaire et Prison Centrale de Yaoundé) et une station des boues de vidange (Nomayos). La première phase de cette étude qui a duré 4 mois (de mai à août 2018) a consisté à des séries de tests sur plusieurs types de désinfectants de concentrations variées, en vue de déterminer les désinfectants à utiliser et les gammes de concentrations appropriées. La deuxième phase qui s'est déroulée de septembre 2018 à décembre 2019 a consisté en des prélèvements des échantillons de boues de vidange dans des récipients stériles puis transporté au laboratoire en enceinte réfrigérée pour la quantification des œufs d'helminthes à l'aide des protocoles standards. Sur le terrain les échantillons ont été préalablement tamisés pour éliminer les macro particules en suspension dans l'eau. Au laboratoire les œufs non viables ont été éliminés par aspiration grâce au pouvoir de flottaison du n-butanol, le culot obtenu a été soumis aux analyses parasitologiques à travers les techniques de concentrations morphologiques (Sédimentation, Kato Katz) et moléculaires par Réaction en Chaine Polymérase (PCR).

Pour chaque désinfectant, un dispositif comprenant 6 erlenmeyers correspondant aux six concentrations utilisées (0,1g/L; 0,2 g/L; 0,3 g/L; 0,4 g/L; 0,5 g/L et 0,6 g/L) a été réalisé, puis 500 mL d'échantillon ont été introduits dans chaque erlenmeyer, ensuite les désinfectants préalablement pesés ou mesurés ont été introduits dans chaque erlenmeyer. Les échantillons ont ensuite été homogénéisés pour permettre une mise en contact parfaite entre les désinfectants et les parasites. Ensuite 5 ml de culot ont été prélevés dans chaque échantillon, puis lavés à 2 reprises à l'eau distillée et au Thiosulfate de Sodium afin de neutraliser l'excès de désinfectant dans l'échantillon. L'ensemble

ainsi obtenu a été soumis aux tests de viabilité par incubation et par coloration. Les paramètres physico-chimiques ont été mesurés avant (échantillon témoin) et après (échantillon essai) application de chaque désinfectant. Il ressort des analyses que les boues et les eaux étudiées sont faiblement basiques (7,28±0,87 U.C), faiblement oxygénée 35,75±22,32%, ces eaux sont riches en Matières en Suspension, en turbidité, couleur (3122,5±372,25 mg/L ; 47.10⁴±940 FTU ; 22.10⁵±434 Pt.Co) et en Nitrates (41.10³±818 mg/L). L'analyse morphologique a permis l'identification de 6 espèces d'helminthes (*Strongyloides stercoralis, Ancylostoma duodenale, Necator americanus, Trichuris trichiura, Hymenolepis nana et Ascaris* spp.) avec des pourcentages de viabilité variant de 98,44±0,3 (*Strongyloides stercoralis*) à 56,47±4,716% (*Ascaris* spp.).

L'analyse moléculaire réalisée par la suite grâce à la technique de Réaction de Polymérase en Chaine a permis de faire une différenciation entre les œufs d'Ascaris suum et Ascaris lumbricoides, ainsi que l'espèce Taenia solium, dont l'identification par les techniques morphologiques n'a pas été possible. Sur les dix désinfectants utilisés, le Moringa oleifera associé à l'Hypochlorite de Calcium a présenté la plus grande efficacité avec une inactivation de la quasi-totalité des œufs identifiés. Cette forte efficacité a été démontrée à travers la capacité du Moringa oleifera à faire sédimenter les œufs et par la capacité de la Quiercétine et du Chlorure de Calcium à oxyder la paroi des œufs et à inactiver le contenu cytoplasmique. Les analyses statistiques réalisées ont permis de démontrer que les micros particules et la matière organique peuvent significativement influencer le traitement de l'eau en adsorbant le désinfectant d'une part ou d'autre part en constituant une barrière physique empêchant un contact permanent entre les désinfectants et les microorganismes, de même l'Analyse en Composantes Principales et l'Analyse en Classification Hiérarchique réalisées ont permis d'hiérarchiser les désinfectants en trois groupes en fonction de leur efficacité. Le premier groupe formé du Chlorure de Sodium et du Hand qui ont présenté la plus faible efficacité, le deuxième groupe formé du Moringa oleifera associé à l'Hypochlorite de Calcium présente la plus grande efficacité et le troisième groupe formé des autres désinfectants (Eau Oxygénée, Charbon, Moringa oleifera, Rayons Lumineux, Gypse l'Hypochlorite de Sodium et le Chlorure de Calcium). Cette étude a permis de montrer la grande résistance des œufs et larves d'helminthe par rapport aux désinfectants couramment utilisés pour le traitement des eaux.

Mots clés : Helminthes, Œufs, Larves, Désinfectants, Eaux Usées, Boues de Vidange, Traitement.

ABSTRACT

Helminthiasis is a major public health problem nowaday, negatively affecting the socioeconomic development and causing high death rates. These parasitic infections particularly affect tropical regions of the world, and one of the factors that favor dissemination and contamination of people is the resistance of environmental forms in aquatic environments. These parasites are thought to be highly resistant to the techniques commonly used for water treatment, and their presence in wastewater is the real constraint on wastewater reuse. In order to limit the contraction of intestinal helminthiasis, it is essential to optimize the techniques used for water treatment. Optically the study carries out is to highlight the efficiency of ten disinfectants (Calcium Chloride, Sodium Hypochlorite, Hydrogen Peroxide, Gypsum, Moringa, Activated Carbon, Sodium Chloride, Light Rays, "Hand Disinfectant", and Moringa combined with Calcium Chloride) on the viability of helminth resistance forms, it was conducted in microcosm at the Laboratory of Hydrobiology and Environment of the University of Yaoundé I.

Four sampling stations were selected for this study, with three stations of sewage sludge (Camp Sic Biyem-Assi, Cité Universitaire and Yaoundé Central Prison) and one dumping area of fecal sludge (Nomayos). The first phase of this study which lasted 4 months (from May to August 2018) consisted of streaming tests on several types of disinfectants of various concentrations, which consisted to determining the disinfectants to be used and the appropriate concentration ranges. The second phase took place from September 2018 to December 2019 and consisted of collecting samples in sterile containers and then transported to the laboratory in a refrigerated chamber for the quantification of helminth eggs using standard protocols. In the field, samples were pre-sieved to remove macro particles suspended in the water. In the laboratory, the non-viable eggs were eliminated by suction thanks to the flotation power of n-butanol, and the pellet obtained was subjected to parasitological analyses using morphological concentration techniques (sedimentation, Kato Katz) and molecular analysis by Polymerase Chain Reaction (PCR).

For each disinfectant, we set up a device comprising 6 Erlenmeyer flasks corresponding to the six concentrations used (0.1 g/L; 0.2 g/L; 0.3 g/L; 0.4 g/L; 0.5 g/L and 0.6 g/L), then 500 mL of sample were introduced into each Erlenmeyer flask, then the disinfectants, previously weighed or measured, were introduced into each flask. The samples were then homogenized to allow perfect contact between the disinfectants and the parasites. Then 5 ml of the pellet were taken from each sample and washed twice with distilled water and sodium thiosulphate to

neutralize the excess disinfectant in the sample. The resulting set was subjected to viability tests by incubation and staining. The physico-chemical parameters were measured before (control sample) and after (test sample) application of each disinfectant. The test was repeated for all disinfectants and all concentration ranges, except for the samples treated with light rays where the sample was exposed to light rays for 6 hours. The analysis showed that the sludge and wastewater studied were weakly basic (7.28 \pm 0.87 U.C), weakly oxygenated (35.75 \pm 22.32%), rich in suspended solids, organic matter, turbidity and color (3122.5 \pm 372.25 mg/L; 47.10⁴ \pm 940 FTU; 22.10⁵ \pm 434 Pt.Co) and Nitrates (41.10³ \pm 818 mg/L). The morphological analysis allowed the identification of 6 helminth species (*Strongyloides stercoralis, Ancylostoma duodenale, Necator americanus, Trichuris trichiura, Hymenolepis nana* and *Ascaris* spp.) with viability percentages ranging from 98.44 \pm 0.302 (*Strongyloides stercoralis*) to 56.474 \pm 4.716% (*Ascaris* spp.).

Molecular analysis using the polymerase chain reaction technique allowed differentiation between the eggs of Ascaris suum and Ascaris lumbricoides, as well as the species Taenia soolium which could not be identified by morphological techniques. Of the ten disinfectants used, Moringa combined with Calcium Hypochlorite showed the highest efficacy with inactivation of almost all the eggs identified. This high efficacy was demonstrated by the ability of Moringa to sediment the eggs and the ability of Quiercetin and Calcium Chloride to oxidize the egg wall and inactivate the cytoplasmic content. Statistical analysis showed that micro particles and organic matter can significantly influence water treatment either by adsorbing the disinfectant or by constituting a physical barrier preventing permanent contact between the disinfectants and the microorganisms, and the Principal Component Analysis and Hierarchical Classification Analysis carried out allowed to classify the disinfectants into three groups according to their efficiency. The first group was made up of Sodium Chloride and Hand, which presented the lowest efficiency, the second group was formed by Moringa associated with Calcium Hypochlorite, which presented the highest efficiency, and the third group was comprised of other disinfectants (Hydrogen Peroxide, Carbon, Moringa, Light Rays, Gypsum, Sodium Hypochlorite and Calcium Chloride). This study showed the high resistance of helminth eggs and larvae to the disinfectants commonly used for water treatment.

Key words: Helminths, Eggs, Larvae, Disinfectants, Wastewater, Sewage Sludge, Treatment, Polymerase Chain Reaction.

INTRODUCTION

L'eau est nécessaire à l'homme pour l'alimentation, les activités domestiques et industrielles après utilisation elle est rejetée sous forme d'eaux usées. Celles-ci contiennent des polluants chimiques très variés, ainsi que de très nombreux micro-organismes d'origine humaine et animale (Bolong *et al.*, 2009).

La qualité de l'eau et sa disponibilité entrent dans les Objectifs Durables pour le Développement (ODD) (Ajeagah et Karie 2018 ; Otim *et al.*, 2020). Les deux tiers de la population mondiale vivent actuellement dans des zones qui souffrent de manque d'eau pendant au moins un mois par an et environ 500 millions de personnes vivent dans des régions où la consommation d'eau est deux fois plus élevée que les ressources hydriques renouvelables locales (Mekonnen *et al.*, 2015). Dans les pays en développement l'accès à une eau de bonne qualité reste très difficile (Ngakomo *et al.*, 2019). L'eau contaminée peut affecter directement l'homme ou indirectement à travers les activités économiques consommatrices d'eau, telles que la production industrielle, l'agriculture, la pêche, l'aquaculture et le tourisme (Aagaard-Hansen *et al.*, 2010).

En 2012, environ 842 000 décès dans les pays à revenu moyen et faible ont été provoqués par de l'eau contaminée, des installations de lavage des mains inadéquates et des services d'assainissement inappropriés ou inadéquats (OMS, 2014 ; Alemi *et al.*, 2022). Les maladies hydriques empêchent les hommes de travailler et d'aller à l'école, toutes choses qui renforcent le cycle de la pauvreté (Sanchez, 2018). Améliorer l'assainissement et le traitement des eaux usées constitue également une stratégie d'intervention clé pour combattre et enrayer de nombreuses autres maladies dont le choléra et certaines maladies tropicales négligées, telles que la dengue, la dracunculose, la filariose lymphatique, la schistosomiase, le trachome et les helminthiases transmises par le sol (Aagaard-Hansen *et al.*, 2010).

Dans le monde, plus d'un milliard de personnes sont infectées par des œufs d'helminthes transmis par l'eau ou le sol (Crompton, 2008). On observe le plus grand nombre de cas d'helminthiases en Afrique (193 millions) (Adu-Gyasi *et al.*, 2018 ; Haymanot et Kaba 2022 ; Zerdo *et al.*, 2022). Les helminthiases sont présentes dans de nombreux pays tropicaux comme le Nigéria (Adedotun odesegun *et al.*, 2013) et le Cameroun (Ajeagah *et al.*, 2014). Ils peuvent rester viables sous climat tropical pendant 12 mois (Sanguinetti *et al.*, 2005). Au Cameroun, les helminthiases font parties des maladies parasitaires les plus chroniques (Tchuem Tchuenté *et al.*, 2001). La plupart des helminthiases sont contractées lors de la consommation des eaux souillées, le contact permanant entre l'eau et la matière fécale est à l'origine de cette pollution (Keraita et Amoah, 2011 ; Irma *et al.*, 2020 ; Anyolitho *et al.*, 2022). Cette forte prépondérance

est également due à la résistance que présente ces pathogènes vis-à-vis des désinfectants couramment utilisés lors du traitement des eaux (Amal *et al.*, 2021). La résistance des œufs d'helminthes est due à leur coque externe très dure et à leur structure de base (Bandala *et al.*, 2012). Les œufs d'helminthes, sont doués d'une grande résistance pouvant dépasser 5 ans dans la nature (Abdelqader, 2008). La présence des œufs d'Helminthes dans les boues et eaux usées augmente les risques d'infestation directe des Hommes ou indirectement à travers la réutilisation des boues à des fins agricoles (Khadra *et al.*, 2021), surtout si les œufs sont ingérés à un stade infestant. Les helminthes présents dans les eaux usées et l'environnement sont plus résistants que ceux présents dans les selles. Ils ont tendance à se développer dans les zones qui présentent des conditions socio- structurelles déficientes et dans les plans d'eau (Fitte *et al.*, 2018).

Les eaux usées contaminées sont un moyen permanent de transmission de ces parasitoses. Les études réalisées jusqu'ici sur les helminthes présents dans les eaux usées se sont intéressées majoritairement aux identifications, aux caractérisations (Ajeagah et al., 2014, Ben Ayed, 2017; Ajeagah et al., 2019; Mbouombouo et al., 2020; Okoa Amougou et al., 2020) et à l'étude de la viabilité des helminthes dans les eaux usées (Keffala et al., 2012 ; Amoah, 2017a ; Khadra et al., 2021). Très peu d'études ont été réalisées sur la désinfection des eaux et l'efficacité des désinfectants sur les formes de résistance des helminthes. Cette étude a été menée avec pour objectif principal de mettre en évidence en microcosme l'efficacité de dix désinfectants (Chlorure de Calcium, Hypochlorite de Sodium, Eau Oxygénée, Gypse, Moringa, Charbon Actif, Chlorure de Sodium, Rayonnements Lumineux, « Hand Disinfectant », et Moringa oleifera associé au Chlorure de Calcium) sur la viabilité des œufs et larves d'helminthes intestinaux isolés des eaux usées et des boues de vidange à Yaoundé. Comme objectifs spécifiques, il s'est agit d'évaluer les paramètres physico-chimiques de quelques points d'eaux usées et des boues de vidange de la ville de Yaoundé ; de réaliser une analyse morphologique et moléculaire des d'helminthes présents dans ces milieux ; de tester en microcosme l'effet de quelques désinfectants sur la morphologie et le développement des œufs d'helminthes ; d'évaluer l'influence de quelques paramètres physicochimiques de l'eau sur l'efficacité des désinfectants.

Cette thèse est divisée en trois chapitres. Le chapitre I constitue la revue de la littérature. Le chapitre II est une présentation du matériel et des méthodes expérimentales utilisées. Le chapitre III présente les principaux résultats obtenus, l'interprétation et la discussion, suivi d'une conclusion et de quelques recommandations et perspectives.

CHAPITRE I REVUE DE LA LITTERATURE

I. REVUE DE LA LITTERATURE

I.1. Généralités sur les eaux usées et boues de vidange

I.1.1. Eaux usées

Les eaux usées, aussi appelées « effluents liquides » sont des « eaux polluées », constituées de toutes les eaux de nature à contaminer, par des polluants physiques, chimiques ou biologiques, les milieux dans lesquels elles sont déversées.

La gestion des eaux usées diffère en fonction du niveau des pays. L'Afrique héberge 15 % de la population mondiale, mais ne dispose que de 9 % des ressources en eau renouvelables, réparties de manière inégale dans l'ensemble de la région (Wang et al., 2014). En Afrique, 695 millions de personnes ne disposent pas d'installations sanitaires de base et aucun pays de l'Afrique subsaharienne n'a atteint la cible des objectifs durables pour le développement concernant l'assainissement (Otim et al., 2020; Mwenda et al., 2021). Cet état de choses complique la situation dans les pays pauvres, en particulier dans les bidonvilles, qui sont souvent directement exposés aux eaux usées en raison du manque d'eau et de services d'assainissement. Ces estimations vont dans le sens de l'appréciation souvent citée selon laquelle il est probable que plus de 80% des eaux usées du monde soient rejetées sans traitement (Patil et al., 2014). L'émission d'eaux usées non traitées demeure une pratique courante, surtout dans les pays en développement, en raison du manque d'infrastructures, de capacités techniques, institutionnelles et de financement. Si 2,1 milliards de personnes ont obtenu un accès à des installations d'assainissement améliorées depuis 1990, environ 2,4 milliards n'y ont pas encore accès et presque 1 milliard de personnes dans le monde pratiquent encore la défécation en plein air (Patil et al., 2014).

I.1.1.2. Différents types d'eaux usées

En fonction de leurs sources et de leurs origines les eaux usées peuvent être diverses (Tableau I),

Tableau I	I: Sourc	es d'	eaux usées	générées	et différentes	composantes	(Zhang	et al.,	2022)
-----------	----------	-------	------------	----------	----------------	-------------	--------	---------	------	---

Composants Origine des eaux usées	Composants types des eaux usées
Eaux usées domestiques	Excréments humains (microorganismes pathogènes), nutriments et
-	matieres organiques. Peuvent egalement contenir des polluants

	émergents (par exemple, produits pharmaceutiques, médicaments et
	perturbateurs endocriniens).
	Très large éventail de contaminants tels que microorganismes
Eaux usées municipales	pathogènes, nutriments, matières organiques, métaux lourds et
	polluants émergents.
	Très large gamme de contaminants, notamment : produits de
	combustion incomplète (par exemple les hydrocarbures aromatiques
	polycycliques et le carbone noir/la suie provenant de la combustion de
Eau de ruissellement urbain	combustibles fossiles), caoutchouc, huile moteur, métaux lourds,
	déchets non dégradables/organiques (surtout les matières plastiques
	des routes et des espaces de parking), matières en suspension, et
	engrais et pesticides (provenant des pelouses).
	Microorganismes pathogènes, nutriments provenant des engrais
Eau de ruissèlement agricole	appliqués sur les sols, et pesticides et insecticides issus des activités
	agricoles.
	Charges organiques (souvent très élevées) et résidus de médicaments
Production de bétail	vétérinaires (par exemple antibiotiques et hormones de croissance
	artificielles).
	Les effluents provenant des bassins de sédimentation sont
Aquaculture terrestre	généralement riches en matières organiques, matières en suspension
	(particules), nutriments dissous, métaux lourds et polluants émergents.
Four usées industrialles	Les contaminants dépendent du type d'industrie (voir tableau 6.4 pour
Eaux usees industrienes	plus de détails).
	Le drainage des résidus contient souvent des matières en suspension,
	des niveaux élevés d'alcalinité ou d'acidité, des sels dissous, du
Activités minières	cyanure et des métaux lourds. Il peut également contenir, selon
	l'activité minière, des éléments radioactifs (voir tableau 6.4 pour plus
	de détails).
	L'eau produite dans le secteur de l'énergie est souvent une source de
	pollution thermique (eau chaulée) et content généralement de l'azote
Production a energie	(c'est-à-dire de l'ammoniac et des Nitrates), des matières dissoutes
	totales, du sulfate et des métaux lourds
	Contaminants organiques et inorganiques, avec potentiellement de
Lexiviat des décharges	fortes concentrations de métaux et de produits chimiques organiques
	dangereux.

I.1.1.3. Traitement des eaux usées

Les pays à revenu élevé pratiquent le traitement environ 70% des eaux résiduelles municipales et industrielles qu'ils produisent. Ce pourcentage baisse à 38% dans les pays à revenu intermédiaire supérieur, et à 28% dans les pays à revenu intermédiaire inférieur (Sobsey et Bartram, 2003). Dans les pays à faible revenu, seuls 8% de ces eaux usées subissent un traitement (Sato *et al.*, 2013). En Afrique particulièrement, on estime que 51 % des eaux usées municipales et industrielles sont traitées. Dans les pays africains, le manque de ressources

financières pour développer des infrastructures de traitement des eaux usées constitue une contrainte majeure pour la gestion des eaux usées, tandis que 32 sur les 48 pays d'Afrique subsaharienne ne disposaient d'aucune donnée sur la production et le traitement des eaux usées (Sato *et al.*, 2013). Le niveau extrêmement bas du traitement des eaux usées dans les pays à faible revenu et à revenu intermédiaire inférieur indique qu'il est urgent de mettre en œuvre des solutions à bas coût et des alternatives de réutilisation de l'eau en toute sécurité, afin de soutenir la réalisation de la cible 6.3 des Objectifs Durables pour le Développement.

Le traitement des eaux usées comprend une combinaison de mesures physiques, chimiques et biologiques ayant pour finalité l'élimination des constituants des eaux usées. Les processus physiques permettent l'élimination de substances par l'utilisation de forces naturelles (la gravité), ainsi que des barrières physiques, telles que les filtres et les membranes ou rayons ultraviolets (UV), qui sont principalement utilisés pour la désinfection. L'utilisation des membranes augmente en raison de la grande qualité des effluents obtenus après le traitement avec une l'élimination optimale des micropolluants organiques, qu'ils soient issus des pesticides, des produits pharmaceutiques ou des produits de soins personnels (Liu *et al.*, 2009).

I.1.2. Boues de vidange

Les boues de vidange sont un mélange de matières fécales et d'urine de consistance variable collectées des systèmes d'assainissement non raccordés au réseau d'égouts (latrines, toilettes publiques, fosses septiques) (Krueger *et al.*, 2021). Les boues de vidange constituent un danger lorsqu'elles sont mal entreposées au sein de la concession elles peuvent contaminer la nappe phréatique. Au cas où la fosse est mal recouverte ou pas ventilée, il y a prolifération des vecteurs de maladies. Elles constituent également un véritable danger lorsqu'elles sont mal évacuées de l'enceinte vers les abords de la concession, vers les cours d'eau, ou dans les zones marécageuses (Velkushanova *et al.*, 2021).

I.1.2.1. Facteurs influençant la qualité des boues de vidange

Contrairement aux eaux usées ménagères, les boues de vidange présentent une variabilité élevée de leur différents constituants (Kone *et al.*, 2006). Les paramètres qui influencent la qualité des boues de vidange sont : la durée de stockage (de quelques mois à quelques années), la température, l'infiltration souterraine, le type d'installation (fosse septique, latrines traditionnelles), ses performances épuratoires, la composition des boues de vidange (présence ou non des graisses, des déchets alimentaires, des solides non biodégradables, des détergents), la technologie et le mode de vidange (Bolomey, 2003).

I.1.2.2. Valorisation des boues de vidange

Les Boues de vidange sont de plus en plus utilisées en agriculture car elles offrent de multiples avantages comparés à ceux offerts par les engrais minéraux (Krueger *et al.*, 2021). En effet, en plus de leur prix élevé, les engrais minéraux ont l'inconvénient d'avoir une fonction unique d'apport d'éléments minéraux. Par contre, outre la fonction minérale, les engrais organiques permettent de renouveler la couche d'humus et ont un effet positif sur la structure du sol, sur sa capacité à retenir l'eau et apportent une variété d'oligo-éléments.

I.1.2.3. Traitement des boues de vidange

Certains produits chimiques comme la chaux sont couramment utilisés dans le traitement des boues d'épuration pour diminuer les odeurs et réduire les germes pathogènes ainsi que la matière organique. Ces produits peuvent servir d'adjuvant pour la précipitation des métaux et du phosphore (Mendez *et al.*, 2002). Le mécanisme de désinfection repose sur la montée du pH, de la température (réactions d'oxydation exothermiques) et de la concentration en azote ammoniacal pendant la stabilisation alcaline (Pecson et Nelson, 2005). L'efficacité augmente avec le temps de séjour et la quantité de chaux injectée.

I.2. Pollution des boues de vidange et eaux usées

Les eaux usées et les boues de vidange renferment un certain nombre de constituants physiques, chimiques et biologique permettant de caractériser leur qualité et leur impacts potentiel sur la contamination des hydro systèmes et l'environnement lorsqu'elles sont mal gérées. S'il existe une défaillance dans le système d'évacuation des eaux usées ou dans le mode de collecte et de traitement des boues de vidange. L'arrivée de ces déchets dans le milieu externe pourra engendrer une pollution des milieux aquatiques. Les formes de pollution peuvent être regroupées en trois grandes catégories qui prennent en compte la nature des polluants. Il s'agit de la pollution physique, la pollution chimique et la pollution biologique (Abdelmadjid, 2006).

I.2.1. Pollution physique

La pollution physique concerne tous les apports de nature physique susceptibles de dégrader la qualité des eaux. Les agents concernés sont entre autres la température, les matières solides en suspension, la couleur ou la transparence. Les eaux usées d'origine diverses et les boues de vidanges chargées de matières en suspension responsables d'une pollution organique, augmentent la turbidité, diminuent sa transparence et réduisent le pouvoir de pénétration de la lumière (Leynaud et Vernel, 1980 ; Xiao *et al.*, 2022).

I.2.2. Pollution chimique

La pollution chimique est liée à un apport de substances nocives provenant des eaux usées et des boues de vidange qui sont déversées accidentellement ou de façon consciente dans les écosystèmes. Ces substances peuvent être des éléments dissous en solution comme les sulfates, les chlorures, le calcium, le magnésium, le potassium, le fluor, les formes d'azote et surtout les métaux lourds (Bouziane, 2000). Ces derniers constituent des éléments ne pouvant pas être dégradés biologiquement. Les eaux usées et les boues de vidange contiennent parfois des substances dissoutes qui altèrent considérablement leur composition chimique (Kominko *et al.*, 2022)

I.2.3. Pollution biologique

Les eaux usées et les boues de vidange hébergent divers microorganismes pathogènes tels que les bactéries, les protozoaires et les helminthes. Ces microorganismes constituent des contaminants particuliers et constituent une principale contrainte de réutilisation des eaux usées et des boues de vidange. Ces contaminants biologiques sont également les principaux polluants des écosystèmes terrestres et aquatiques. La ville de Yaoundé a connu ces dernières année une forte croissance démographique et face aux difficultés de logement cette forte croissance démographique a entrainé une sur occupation des logements sociaux. La production des déchets a connu également une augmentation considérable, entrainant une surutilisation des stations de traitement des eaux usées construits en aval des Camps Sic. De même les pénitenciers n'ont pas connus d'extension. Dans ces différents milieux on assiste à une production des tonnes de déchets par jours. La défaillance ou l'inexistence des systèmes de traitement conduit à un déversement des parasites dans les milieux aquatiques (Kapso, 2018 ; Iqbal *et al.*, 2022).

I.3. Paramètres d'évaluation de la qualité des eaux usées et boues de vidange

I.3.1. Variables physico-chimiques

Selon leurs origines, les eaux usées et boues de vidange se caractérisent par une grande variabilité de débits, mais aussi de composition. Elles peuvent contenir en concentrations variables : des matières en suspension plus ou moins facilement décantables ou coagulables, des matières colloïdales ou émulsionnées tels que les argiles les microorganismes, les macromolécules hydrophobes (organiques huiles, graisses, hydrocarbures), des matières en solution de nature organique ou minérale, ou sous forme de gaz dissous (Rodier, 2009).

I.3.1.1. Température (°C)
La température de l'eau (°C), est un paramètre essentiel à prendre en compte dans la caractérisation, le diagnostic la gestion et le traitement des eaux usées et des boues de vidange Massicotte (2009). Lors de la désinfection, la température joue un rôle important sur l'efficacité des produits. En effet, un accroissement de la température accélère la cinétique des réactions du chlore avec divers micro-organismes et donc augmente leur sensibilité à la désinfection (Van- Quan *et al.*, 2021). Pour un bon traitement des eaux, la température recommandée par le fabricant doit être respectée pour maximiser l'efficacité du produit. Le glutaraldéhyde et les composés d'ammonium quaternaire, par exemple, sont complètement inefficaces à des température plus élevée (de 37 à 50°C) peut réduire de 5 à 60 fois la concentration nécessaire du produit utilisé lors de la désinfection. On peut citer également en exemple l'eau de Javel qui perd de son efficacité lorsqu'elle est diluée dans l'eau chaude car le chlore s'évapore rapidement (Keyes *et al.*, 2022 ; Li *et al.*, 2022).

I.3.1.2. Matières en Suspensions (mg/L), Turbidité (FTU), Couleur (Pt.Co)

Les Matières en Suspension (MES), la turbidité et la couleur varient avec la nature et le type d'effluent, ce sont des paramètres à prendre en compte lors de la gestion et le traitement des effluents (Rodier, 2009). La turbidité des eaux usées est essentiellement causée par les Matières en Suspension d'origine organique ou minérale. La présence de ces matières en suspension dans l'eau réduit l'efficacité du traitement de désinfection de deux manières possibles : de façon physique en constituant pour les germes un support d'adsorption et d'agrégation ou de façon chimique par leur demande en substances désinfectantes. Les processus d'agrégation et d'adsorption des micro-organismes sur le matériel particulaire entrainent une protection accrue des germes à la chloration. Chevallier et al. (1988) constatent ainsi que l'attachement de microorganismes à des supports inertes, peut augmenter de 150 fois leur résistance au chlore libre, cette résistance serait due aux diverses propriétés protectrices. Lorsque la turbidité des eaux usées ou des boues de vidange augmente ceci accroit également la demande en substance désinfectante et par conséquent l'action de la quantité de désinfectant disponibles pour le traitement diminue (Chevallier et al., 1981). Lors du traitement par filtration, les concentrations élevées en Matières en Suspension peuvent accroître les risques de colmatage, la consistance des flocs peut jouer sur la rétention des solides en surface et les performances globales, et la distribution des tailles de particules affecte la performance étant donné que les petites particules ne sont pas retenues efficacement par ce mode de filtration.

I.3.1.3. Potentiel d'Hydrogène (U.C)

Le potentiel d'Hydrogène (pH) est une mesure de la concentration d'ions hydrogène dans l'eau. L'échelle de pH s'étend de l à 14. C'est une échelle dite « logarithmique inverse ». Ainsi, un pH de l correspond à la plus grande concentration d'ions hydrogène, concentration qui est par exemple dix fois celle d'un pH de 2 et 100 fois celle d'un pH de 3 (Massicotte 2009). Le pH de l'eau peut modifier l'efficacité des détergents et des désinfectants utilisés. A un pH inférieur à 5, une solution chlorée produit des dégagements gazeux d'une partie du chlore qui n'est plus alors disponible dans la solution pour agir comme désinfectant. L'action du pH sur les microorganismes peut être indirecte et se fait notamment par la modification du coefficient d'assimilation des différents composés nutritifs minéraux ou organiques, dont l'importance va dépendre de la tolérance des organismes vis-à-vis de l'acidité du milieu (Lacasse, 2004). Un abaissement du pH favorise l'élimination des bactéries et des virus (Harakeh. 1985). Il en est de même pour les kystes de protozoaires et les œufs d'helminthes. Cela est dû principalement à la prédominance dans la zone des pH acides de la forme non ionisée qui est la forme active. Le pH conditionne également l'action ovicide des œufs d'helminthes lors de la stabilisation des boues (Stien, 1989).

I.3.1.4. Salinité (PSU)

La salinité est un paramètre qui varie en fonction de l'origine de l'eau. Dans les eaux marines, la salinité semble jouer un rôle défavorable sur la survie des divers micro-organismes pathogènes excrétés (virus, bactéries, helminthes). Ainsi selon Prost (1987), 97 % des œufs *d'Ascaris* sont tués en 2 jours en eau de mer. L'augmentation du taux de sel en solution, permet une augmentation de l'effet ovicide sur les œufs d'helminthes (Stien, 1989).

I.3.1.5. Conductivité électrique (µS/cm) et TDS (mg/L)

La conductivité électrique et les solides totaux dissous (TDS), sont des variables chimiques et physiques qui renseignent sur le degré de minéralisation du milieu (Bazin, 1996). La caractérisation d'une eau usée se fait également par la mesure de la conductivité et des TDS ce qui permet d'évaluer la teneur en sels dissous. La conductivité électrique est proportionnelle à la quantité de sels ionisables dissous et sa mesure constitue une bonne indication du degré de minéralisation d'une eau.

I.3.1.6. Orthophosphate (mg/L) et formes d'azote (mg/L)

Dans les eaux usées, l'azote se trouve sous formes, d'azote ammoniacal (NH₄⁺), de nitrites (NO₂⁻), de nitrates (NO₃⁻), ou associée à d'autres composés. D'après CEAEQ (2007), la

teneur en ions NH₄⁺ est très élevée dans les eaux riches en matières organiques lorsque la teneur en oxygène est insuffisante pour assurer sa transformation. De plus, une augmentation excessive de la température transforme l'ion NH₄⁺ en NH₃ qui est toxique pour de nombreux organismes. Quant aux nitrites, c'est la forme intermédiaire de l'azote qui ne se maintient dans les eaux que lorsque le milieu est insuffisamment oxygéné. Leur rémanence indique un état de pollution organique. Les orthophosphates représentent la forme de phosphore biodisponible dans les eaux (CEAEQ, 2007). Une concentration élevée en orthophosphates dans les eaux naturelles est l'indice d'une pollution par les eaux usées et boues de vidange contenant des phosphates organiques et des détergents synthétiques (INRA, 2005).

I.3.1.7. Alcalinité (mg/L)

L'alcalinité d'une eau ou Titre Alcalimétrique Complet (TAC) correspond à la présence d'ions bicarbonates (HCO_3^{-}), d'ions carbonates (CO_3^{2-}) et d'ions hydroxydes (OH^{-}). La notion d'alcalinité est souvent confondue avec un pH basique. Lorsqu'on parle d'une solution alcaline, on fait référence effectivement à une solution basique. Le terme alcalinité, quant à lui, fait référence à une autre notion et il désigne en quelque sorte, le résultat de la présence de certains ions qui agissent comme un tampon permettant d'éviter de trop fortes variations de pH. Une alcalinité totale basse réduit l'efficacité des désinfectants (Tsuji *et al.*, 2020 ; Enke *et al.*, 2022).

I.3.1.8. Oxygène dissous (mg/L ou %)

L'oxygène dissous est une variable chimique dont la teneur a une signification propre relative à la qualité biologique du support aqueux. Rodier (2009) souligne que la teneur en oxygène dissous varie de façon subsidiaire avec celles des matières organiques fermentescibles, des hydrocarbures ainsi qu'avec le nombre d'organismes et de germes aérobies. La teneur en O_2 dissous est indicatrice de la pollution suite à la consommation au cours des processus d'oxydation biologique ou chimique, des matières organiques contenues dans l'eau (Liu *et al.*, 2022).

I.3.1.9. Oxydabilité (mg/L)

L'oxydabilité permet d'évaluer la concentration en matières organiques présentes dans l'eau. Une valeur élevée de l'oxydabilité indique une quantité excessive de matières organiques. Les matières organiques sont à l'origine de la surconsommation de désinfectants et de la formation de chloramines dans les eaux. Dans les milieux récepteurs, l'oxydabilité correspond à l'estimation globale de la concentration en matières organiques biodégradables, par l'évaluation de la quantité d'oxygène qu'elles enlèvent à un oxydant, le permanganate de potassium, dans des conditions précises de titration (Derwich *et al.*, 2010).

I.3.2. Variables Biologiques

Les eaux usées et les boues de vidange renferment des concentrations élevées des bactéries, protozoaires et helminthes. Le dénombrement des bactéries dans les eaux usées vise à estimer la densité de la population bactérienne et à caractériser son niveau de pollution. Ils sont utilisés comme un indicateur de pollution globale et renseignent aussi bien sur la microflore autochtone que sur la microflore allochtone apportée par la pollution (Kapso Tchouankep, 2018). Toutefois la présence des œufs d'helminthes dans les eaux usées et les boues de vidange est souvent assimilé à un risque permanant de contamination.

Les helminthiases sont souvent associées à l'utilisation des eaux usées, des boues ou des excrétas en agriculture. Les helminthiases sont transmises par l'ingestion d'œufs d'helminthes qui sont les œufs d'une grande variété de vers pathogènes et sont considérés comme les particules biologiques les plus résistantes dans le domaine de l'ingénierie de l'environnement (Jiménez, 2009). L'apparition d'œufs d'helminthes dans des eaux usées et des boues dans les pays en développement se distingue de celle des pays industrialisés en raison de la prévalence bien moins grande de ces infections dans ces derniers (Jiménez, 2009).

La présence d'œufs d'helminthes dans les eaux usées ou les boues ne peut pas être déduite de la présence ou de la concentration de coliformes fécaux qui sont seulement des indicateurs bactériens de contamination fécale. De plus, les coliformes fécaux se comportent différemment des œufs d'helminthes dans les systèmes conventionnels de désinfection. Par exemple, les œufs d'helminthes ne peuvent être facilement inactivés à l'aide de chlore, de rayons ultraviolets ou d'ozone (Jiménez, 2007). Les différences dans les conditions sanitaires signifient que la quantité d'œufs d'helminthes dans les eaux usées et les boues peut être de 7 à 80 fois plus élevée dans les pays en développement que dans les pays développés. L'Organisation Mondiale de la Santé (2006) a établi un critère limite de surveillance de moins d'un œuf d'helminthe par litre d'eaux usées utilisées pour l'irrigation et de 0 œuf/L pour les eaux de consommation. Dans les boues de vidange, l'OMS suggère une limite de 1 œuf d'helminthe/g de matières solides totales. Ces valeurs ont été établies sur la base des données épidémiologiques et non en utilisant des approches d'évaluation des risques (Navarro et al., 2009). Malheureusement, compte tenu des concentrations initiales élevées d'œufs d'helminthes dans les eaux usées et les boues de nombreux pays en développement, ces critères exigent une très grande efficacité des méthodes de traitement (99%), qui sont souvent inabordables.

I.4. Généralité sur les helminthes intestinaux

Les helminthes sont des vers multicellulaires plats (plathelminthes) ou ronds (némathelminthes). Ce sont, pour la plupart, des vers intestinaux, souvent rejetés avec les matières fécales sous forme d'œufs très résistants. La contamination se fait par ingestion ou par voie transcutanée (par fixation puis pénétration des larves à travers la peau). La dose minimale infectante varie entre 1-10 œufs d'helminthes viables. La majorité des virus, des bactéries et des protozoaires sont immédiatement infectieux. Par contre, la plupart des helminthes ont besoin d'une période de latence, soit au niveau de la maturation des œufs, soit par le passage obligé par un organisme hôte non humain (Pecson et Nelson, 2005 ; Jimenez, 2009). Le temps de maturation des helminthes représente le moment où le parasite est absorbé ou pénètre activement dans l'organisme et le moment où le diagnostic peut être affirmé par la découverte d'élément caractéristique dans les selles. Pour certains helminthes ce temps est imprécis. Les helminthes sont très résistants et peuvent conserver leur viabilité pendant des mois, voire des années. En effet, ces parasites peuvent former des structures résistantes dans l'environnement. La mise à sec, la chaleur, le froid, le manque de nourriture, la composition chimique du milieu font partie des facteurs qui conduisent à la résistance des œufs. Le retour à des conditions favorables induit rapidement le phénomène inverse. La faible dose minimale infestante des helminthes, leur importante capacité de survie dans le milieu extérieur et leur émission abondante dans les selles, en font des pathogènes particulièrement préoccupants (Ben Ayed et al., 2017).

I.4.1. Cycle de vie et formes de résistance de quelques helminthes intestinaux présents dans les eaux usées et boues de vidange

Les eaux usées et les boues de vidange peuvent renfermer et véhiculer un certain nombre d'helminthes en fonction du niveau de développement socioéconomique et des infrastructures de traitement elles sont responsables de nombreuses affections et maladies, le tableau III, présentent les espèces d'helminthes susceptibles d'être rencontrées dans l'environnement (Stien 1989).

Tableau II : Quelques espèces d'helminthes intestinaux retrouvées dans les eaux usées et lesboues de vidange (Stien, 1989 ; Crompton 2008 ; Benito *et al.*, 2020 ; Sabbahi *et al.*, 2022) :

Classes	Sous-Classes	Familles	Genres	Espèces	Hôte définitifs	Maladies
N E M	Nématodes	Ascarididae	Ascaris	Ascaris lumbricoides, Ascaris suum	Hommes, Porcs.	Ascaridiose
A T		Trichuridae	Toxocara, Toxascaris	Toxocara canis, Toxocara catis	Chien, Chats	Toxocarse
H E			Trichuris	Trichuris trichiura	Homme, Ruminants, Chien, Chat,	Trichocephalose
L				F (1)	Porc.	0
M I		Oxyridae	Enterobius	vermicularis	Rongeur, Cheval, Lapin.	Oxyurose
N T H		Ancylostomidae	Necator, Ancylostomes	Necator americanus, Ancylostoma duodenalo	Hommes	Ankylostomose
E S		Strongyloidae	Strongyloides	Strongyloides stercoralis	Hommes	Anguillulose
P L A	Cestodes	Hynenolepididae	Hymenolepis	Hymenolepis nana, Hymenolepis diminuta	Homme, rat, souris	
T E		Cyclophyllidae	Taenia	Taenia solium, Taenia saginata	Homme, chien, chat	Taeniasis
L		Pseudophyliidae	Diphyliobothrium	Diphyliobothrium	Mouton, Vache,	
М				latrum	Lapin, Homme,	
Ι	Trematodes	Schistosomidae	Schistosoma	Schistosoma	Chien, Chat	
N T H E				haematobium, Schistosoma mansoni, Schistosoma intercalatum	Hommes	Bilharziose
S		Fasciolidae	Fasciola, Dicrocoelium	Fasciola hepatica	Homme, Mouton, Homme, Mouton	Fasciolose

I.4.1.1. Ascaris lumbricoïdes

L'ascaridiose est une affection cosmopolite qui sévit essentiellement sur le mode endémique dans toutes les régions du tiers-monde. Elle touche environ un quart de la population mondiale. Sa prévalence reste élevée au niveau de toutes les tranches d'âge, de l'enfant à l'adulte, dans les zones pauvres suburbaines et les régions rurales tropicales, atteignant parfois jusqu'à 70 à 80% de la population (Dana *et al.*, 2022).

I.4.1.1.1. Cycle de vie

C'est un cycle simple, direct, sans hôte intermédiaire (Figure 1). Les femelles fécondées pondent des œufs qui sont éliminés dans le milieu extérieur (1) où ils s'embryonnent si l'oxygénation, l'humidité et la température sont optimales (28° à 32° C) (2). Après ingestion via les eaux de boisson, les légumes, les fruits souillés, chaque œuf donne naissance à une larve L₂ au niveau de l'intestin grêle (3). Les larves L₂ vont migrer par les vaisseaux portes jusqu'au foie (4) et aux poumons (5) et regagner l'intestin grêle par déglutition (6), où elles parviendront à maturité sexuelle (7). La ponte commence deux mois après l'ingestion des œufs infestants (OMS, 1987 ; Rohingam, 2008). Les espèces d'*Ascaris* sp. sont responsables des infections qualifiées d'ascaridiose.

Figure 1 : Cycle de développement d'Ascaris lumbricoïdes (CDC, 2007)

I.4.1.1.2. Ultrastructure des œufs d'Ascaris lumbricoïdes

Les œufs sont les formes de résistance des d'*Ascaris lumbricoïdes* en milieu externe. Un *Ascaris* mâle ne pond pas. Cette évidence biologique n'est pas toujours intellectuellement intégrée par les malades voire leur médecin clinicien. Parallèlement une femelle isolée peut ne pondre que des œufs non fécondés donc atypiques. Au microscope optique, l'œuf d'*Ascaris lumbricoïdes* est typique et ovoïde mesurant 70 µm de long sur 50 µm de large et possédant deux enveloppes, l'une externe, brune et mamelonnée et l'autre interne et lisse. Les œufs non fécondés sont difficiles à identifier et posent un problème au niveau du diagnostic.

L'ultrastructure de la paroi des œufs a apporté une meilleure connaissance de la structure de la coque des œufs d'helminthes (Figure 2) et également des mécanismes biochimiques présidant à la maturation des œufs *d'Ascaris lumbricoïdes* (Diosdado *et al.*, 2021). Fairbairn et Passey (1957) ont mis en évidence la structure tri lamellaire de la coque de l'œuf d'*Ascaris*. Ces couches sont de composition chimique différente : la couche externe est de nature protéique, 1a couche intermédiaire de nature chitineuse et la couche interne de nature lipidique. Les photographies des divers stades de développement des œufs en microscopie électronique semblent montrer que toutes les couches sont d'origine utérine avec pour 1a couche lipidique une origine plus précisément vitelline. L'ordre de formation des couches actuellement admis est le suivant : dans un premier temps, la couche chitineuses forme, ensuite apparaît la couche lipidique et la couche protéique la plus externe est synthétisée (Stien, 1989).

a) Couche externe (protéique)

Les limites externes de la couche protéique sont lisses chez l'œuf immature et mamelonnées pour l'œuf sorti du tractus génital de l'*Ascaris* femelle adulte. Ce mammelonnage résulterait à la fois de l'érosion du manteau protéique dans le milieu extérieur et de l'attaque de divers micro-organismes qui se fixent à la surface des œufs, cette surface granuleuse présente en microscopie électronique une organisation régulière de fibres protéiques dont l'arrangement confère sa rigidité à l'œuf d'*Ascaris lumbricoïdes* (Wharton, 1980). Dans les œufs matures, la limite entre cette couche et la suivante est franche et distincte. Elle est constituée par un matériel protéique réticulé et ramifié dans lequel Wharton (1980) met en évidence des granulés de 150 microns de diamètre qui seraient les précurseurs des fibres protéiques (Diosdado *et al.*, 2021).

b) Couche chitineuse (intermédiaire)

C'est une couche extrêmement dure qui est responsable de la très grande résistance de L'œuf dans le milieu extérieur (Fairbairn et Passey, 1957). Elle est constituée par un polymère à base d'ascarosides A, d'ascaroside B et de diascarosides, cette disposition sera responsable de la résistance de l'œuf aux acides et aux bases forts, ainsi qu'à diverses enzymes. La lyse de cette couche est réalisée par la larve qui possède une enzyme très spécifique, l'ascaridiase, lui permettant de franchir cette barrière avant l'éclosion (Dubinsky *et al.*, 1986). Cette couche d'une faible épaisseur (3 à 4 microns) est bordée d'une membrane interne contenant granulés et fibrilles formant un réticulum lâche et irrégulier. A la surface de cette couche au cours des premières étapes de formation de l'œuf, des projections membranaires en U sont observables qui vont durcir ultérieurement (Wharton 1980).

Figure 2 : Structure de la paroi de l'œuf d'Ascaris (Kefalla et al., 2012)

c) Couche lipidique

Sa structure est mal connue car elle est soluble dans les réactifs utilisés en microscopie électronique, seul un clivage de la couche chitineuse permettrait de l'atteindre par visualisation directe. Contrairement aux couches précédentes qui ont des fonctions de protection, son rôle serait de permettre les échanges gazeux entre le milieu extérieur de l'œuf.

I.4.1.2. Trichuris trichiura

I.4.1.2.1. Cycle de vie

C'est un cycle holoxène et simple (Figure 3). Les œufs non embryonnés sont éliminés dans le milieu extérieur via les selles (1). Très résistants, ils s'embryonnent au bout de 15 jours

à un mois et deviennent infestants (2). Après ingestion, ces œufs libèrent des larves L_1 dans la lumière de l'intestin grêle (3) ; les adultes qui en résultent se fixent au niveau du cæcum (4) où ils peuvent provoquer des trichocéphaloses. Le ver adulte peut survivre jusqu'à cinq ans dans son hôte (OMS, 1987).

Figure 3 : Cycle de développement de Trichuris trichiura (CDC, 2007)

I.4.1.2.2. Ultrastructures des œufs

Les œufs sont ovoïdes et mesurent environ 50 sur 23 µm. Ils possèdent une coque épaisse brune lisse et un bouchon muqueux clair à chaque extrémité, ce qui leur donne un aspect très caractéristique en « citron ». Les œufs ne contiennent qu'une seule cellule centrale lorsqu'ils sont émis dans le milieu extérieur (Nozais *et al.*, 1996). Les œufs sont résistants à tous les agents atmosphériques et chimiques grâce à la protection assurée par leur coque et mesurent environ 55 μ m (Golvan, 1983). Ils résistent plus de cinq ans sur le sol humide mais sont détruits par la dessiccation et le soleil qui inhibent leur développement embryonnaire (Nozais *et al.*, 1996).

I.4.1.3. Ancylostomes (Ancylostoma duodenale et Necator americanus)

I.4.1.3.1 Cycle de vie

Ancylostoma duodenale et Necator americanus sont les deux espèces d'ancylostomes qui parasitent l'homme et sont responsables d'infections qualifiées d'Ankylostomoses. Il est monoxène, possède une phase dans le milieu extérieur et une autre dans l'organisme de l'homme (Figure 4). Dans le milieu extérieur, les œufs émis par la femelle éclosent en 24 heures dans les conditions optimales (température de 16 à 20°C pour *Ancylostoma duodenale* et de 25 à 30°C pour *Necator americanus*, oxygénation suffisante, atmosphère humide et obscure) pour donner des larves (L1). Au troisième jour, la larve L1 subit une mue et libère la larve L2 non infestante. Vers le cinquième jour, la larve L2 mue et donne la larve infestante (L3) dont la longévité est de 3 à 6 semaines. Au contact d'une peau humaine, la larve L3 devient active et pénètre à travers le tégument. Elle gagne la circulation sanguine, les poumons au troisième jour et atteint la trachée au quatrième jour. Elle passe dans l'œsophage, l'estomac et atteint l'intestin (duodénum) au huitième jour. Dans l'intestin, les larves se transforment en adultes vers le trentième jour, s'accouplent et la ponte des œufs commence au quarantième jour environ après la contamination. Ces œufs seront éliminés dans les selles (Ambassa, 1980).

Lors d'une infection transcutanée, la larve migre en circulation dans les poumons et y mue pour atteindre l'état L4. Arrivées dans le pharynx par la trachée, les larves sont avalées dans le tube digestif, où ont lieu la dernière mue et la maturation. Une partie des stades larvaires qui atteignent les poumons ne poursuivent pas leur développement immédiatement, mais passent plutôt par la circulation dans les muscles, où ils descendent dans l'état hypobiotique. Une infection de chienne peut être transmise à trois portées ultérieures, lorsque les larves hypobiotiques sont devenues actives à la fin de la grossesse et ont migré vers la glande mammaire.

Lors d'une infection buccale, la larve peut pénétrer dans la muqueuse buccale et migrer de la même manière que dans une infection transcutanée, ou directement dans le tube digestif, où la maturation a lieu après une brève période de passage dans la paroi intestinale après le stade de développement.

Figure 4 : Cycle de développement des Ancylostomes (CDC, 2007)

I.4.1.3.2. Formes de résistance et Ultrastructure des œufs

Les œufs, ovales ou elliptiques sont segmentés à la ponte (4 blastomères chez *A*. *duodenale* contre 8 chez *N. americanus*). Ils présentent une coque fine, transparente et mesurent environ 60 µm sur 40 µm chez *A. duodenale* et 70 µm sur 40 µm chez *N. americanus* (Ambassa, 1980).

I.4.1.4 Strongyloides

Strongyloïdes est un vers cosmopolite qui touche plus de 50 millions de personnes dans le monde il est plus présent en Afrique subsaharienne, aux Antilles françaises, en Amérique Centrale et du Sud, en Asie du Sud-Est (Nicolas, 2005). L'anguillulose ou strongyloïdose est une parasitose intestinale due à un petit nématode remarquable par sa biologie. Les larves sont incapables de survivre en dessous de 8 °C et au-delà de 40 °C et la forme adulte est parasite. Chez l'homme, on connait seulement la femelle dite parthénogénétique (2,5 mm) elle peut se multiplier par scissiparité.

I.4.1.3.1. Cycle de vie

Le cycle évolutif est unique et complexe, se déroulant chez l'homme et dans le milieu extérieur. Après avoir franchi les téguments, la larve *Strongyloïde* infestante (L3), gagne le poumon par voie lymphatique ou sanguine. Après avoir traversé la paroi de l'alvéole pulmonaire, elle gagne les bronches puis la trachée (Figure 5). Elle est alors déglutie. Après avoir franchi le pylore et au terme de deux autres mues, elle devient une femelle parthénogénétique (autoreproduction de l'espèce en l'absence de mâle à partir d'un œuf non fécondé : on ne retrouve pas de mâle dans le cycle) qui va s'enfouir dans la muqueuse duodénale et commencer à pondre 1 mois après l'infestation une cinquantaine d'œufs par jour. De cet œuf éclot, *in situ* une larve rhabditoïde de première génération (LR1).

Figure 5 : Cycle de développement de Strongyloides stercoralis (CDC, 2007)

I.4.1.3.3. Formes de résistance

Dans l'intestin de l'homme on ne connaît que la femelle dite parthénogénétique, ver rond blanchâtre qui mesure 2 à 3 mm par 35 à 40 μ m. L'œsophage est cylindrique. Elle vit enchâssée dans la muqueuse duodéno-jéjunale. Dans la nature on rencontre uniquement des larves stercoraires libres car l'éclosion de l'œuf a lieu très rapidement dans l'intestin. Le vers mâle mesure 0,7 mm et la femelle 1,2 mm. L'œsophage qui présente un étranglement compris entre deux renflements piriformes est dit rhabditoïde. Elle a un stylet buccal court, une extrémité postérieure peu effilée. L'ébauche génitale est en principe bien visible.

I.4.1.5. Hymenolepis

C'est le plus petit des Taenias spécifiques de l'homme il parasite le tube digestif et mesure environ 1 à 10 cm, mais sa taille habituelle, dans les infestations massives, varie de 2 à 3 cm. Son scolex porte quatre ventouses et une couronne de 20 à 30 crochets sur un rostre rétractile ; il est suivi d'un cou très fin et d'une chaîne d'anneaux plus larges que hauts (au nombre de 100 à 200), à pores génitaux tous du même côté. L'hyménolépiose est principalement causée par *Hymenolepis nana* car *Hymenolepis diminuta* étant très rare chez l'homme.

I.4.1.5.1. Cycle de vie

Le mode habituel de contamination est direct : chez l'enfant parasité, les anneaux gravides, détachés de la chaîne, sont digérés pendant le transit et libèrent, dans la lumière intestinale, les œufs caractéristiques : hyalins, limités par une enveloppe externe ovoïde de $50 \,\mu\text{m}$ sur $40 \,\mu\text{m}$. Ils contiennent un petit embryon hexacanthe entouré par son embryophore en citron aux pôles munis des filaments. Ces œufs, rejetés à l'extérieur avec les selles du porteur, sont déglutis comme souillure des aliments ou des doigts (auto-réinfestation); dans le duodénum, sous l'action des sucs digestifs, les embryons hexacanthes sont libérés, ils pénètrent activement dans les villosités duodénales, s'y transforment en cysticercoïdes, font éclater la villosité puis libérés et se fixent à la muqueuse jéjunale pour redonner des vers adultes. Dans ce cycle, le développement du cysticercoïde au sein des villosités entraîne une réaction humorale que l'on ne retrouve pas dans le cycle indirect où tout se passe dans la lumière intestinale, donc à l'extérieur (Figure 6).

Figure 6 : Cycle de développement d'*Hymenolepis nana* (CDC, 2007)

I.4.1.5.2. Formes de résistance

Les œufs d'*Hymenolepis nana* possèdent une taille comprise entre 40 et 50 μ m sur 35 μ m, ils sont de formes légèrement ovalaires, avec deux coques. La coque externe est lisse, mince et incolore, la coque interne porte deux mamelons diamétralement opposés d'où partent 4 à 5 filaments ils contiennent un embryon hexacanthe. Les œufs *d'Hymenolepis diminuta* mesurent (60-80 μ m). Ils sont plus grands que ceux d'*Hymenolepis nana*. La coque externe, assez épaisse, présente une structure radiaire très fine. La coque interne n'est que rarement pourvue de mamelons et ne possèdent pas de filaments.

I.4.2. Mode de transmission des helminthiases

La transmission des helminthiases peut se faire principalement par voie orale, ou par pénétration transcutanée. Par la voie orale l'homme peut se contaminer par des aliments souillés (eau, crudités, etc.), par des déjections humaines ou animales contenant des œufs ou des larves. Un lavage soigneux des aliments et une désinfection de l'eau permettent d'éviter la plupart de ces parasitoses. Un autre mode de contamination par voie orale est l'ingestion de chair animale mal cuite, pour des raisons de traditions culinaires ou par goût personnel. Les régions du monde, où la viande est consommée peu cuite, ont une incidence importante. La contamination par pénétration transcutanée est un mode très fréquent de contamination, soit par inoculation passive du parasite par pénétration active d'une larve (larves *Strongyloïdes* ou d'Ancylostomes).

I.4.3. Techniques de diagnostic des helminthes dans l'eau

Le diagnostic d'orientation repose sur l'épidémiologie et la clinique, celui de la certitude sur la coprologie (Schaechter *et al.*, 1999). Les méthodes utilisées pour dénombrer des parasites dans les eaux usées sont semblables à celles employées en parasitologie courante : on utilise d'abord des méthodes de concentration pour ensuite rechercher les œufs d'helminthe au microscope. Mais la complexité des études parasitologiques des eaux usées explique pourquoi ces recherches ne sont pas réalisées en routine (Georges *et al.*, 1983). La méthode de diagnostic, la plus spécifique pour les parasitoses intestinales, est la mise en évidence du parasite au niveau des échantillons sous forme d'œufs, de larves ou même d'adultes. Néanmoins, la qualité d'un examen parasitologique est conditionnée par plusieurs facteurs. L'examen microscopique comprend un examen direct qui permet la mise en évidence des œufs les plus volumineux. En général, deux techniques de concentration de routine sont réalisées et permettent le diagnostic de la majorité des parasitoses digestives. D'autres techniques moléculaires ont été développées ces dernières années pour compléter les analyses morphologiques (Francis et Šlapeta, 2022).

I.4.3.1 Techniques d'identifications morphologiques

Les techniques courantes d'identifications morphologiques des œufs helminthes permettent une meilleure visibilité des œufs, l'identification des principales espèces d'œufs se fait grâce aux planches édictées par l'OMS (2003). La technique de bailenger qui est une technique diphasique utilisée pour le diagnostic des helminthiases dont le principe repose sur la mise en présence de deux phases non miscibles, l'action dissolvante des réactifs vis-à-vis de certains constituants des selles et la densité des éléments parasitaire supérieures à celle du liquide de dilution. La Technique de MCMaster est généralement utilisée pour l'analyse parasitaire des helminthes dans les boues de vidange (Krueger *et al.*, 2021). La technique de Kato-Katz (1970) permet d'identifier et de quantifier les œufs et les larves d'helminthes intestinaux présents dans les selles. La technique de concentration diphasique (Ritchie) permet la mise en présence de deux phases non miscibles l'une aqueuse, l'autre lipophile qui crée, pour chacune des particules fécales, un coefficient de partage leur permettant de s'orienter en fonction de leur équilibre hydrophile-lipophile. La technique de concentration par sédimentation consiste à diluer les selles dans un liquide de densité intermédiaire entre les parasites qui se déposent, les particules alimentaires non digérées et les cadavres microbiens qui surnagent ou restent en suspension. La méthode de Willis qui est une méthode physique de flottation, cette méthode repose sur le principe que les œufs ont une coque qui les protège pendant un certain temps de la pénétration de liquides plus denses, une dilution avec ces liquides aura tendance à les laisser flotter en surface tandis que les résidus plus lourds ou ceux qui s'imprègnent rapidement descendent dans le fond des récipients.

I.4.3.2. Techniques d'identifications moléculaires par Réaction de Polymérase en Chaine

De nos jours, le développement de techniques de phylogénie moléculaire permet d'affiner voire de réviser la classification et l'identification des parasites sur la base du polymorphisme de l'Acide DésoxyriboNucléique génomique ou des gènes, du polymorphisme de certaines enzymes des helminthes. La principale technique utilisée est la Réaction de Polymérase en Chaine elle correspond à l'amplification d'un fragment d'Acide DésoxyriboNucléique spécifique, grâce à l'utilisation d'un l'acide désoxyribonucléique polymérase (Taq Polymérase) et d'un couple d'Amorces (« primers ») spécifiques. L'intensité de l'amplification de l'acide désoxyribonucléique ainsi obtenue peut être représentée par une courbe d'allure sigmoïde, dépendante du nombre de cycles de Réaction en Chaine Polymérase (abscisse) et de l'intensité de la fluorescence émise (ordonnée). La fluorescence est obtenue par l'utilisation d'un agent intercalant : le SYBR Green I, colorant qui ne devient fluorescent que lorsqu'il se lie à l'acide désoxyribonucléique double brin. L'utilisation de ce colorant permet de s'abstenir de la conception de sondes spécifiques. Toutefois, la fluorescence mesurée peut alors provenir d'une amplification non spécifique, d'où l'intérêt de s'assurer de la spécificité du couple d'amorces utilisé ainsi que des produits de Réaction de Polymérase en Chaine (Lacroux, 2006).

I.4.4. Tests de viabilité des Helminthes

La présence des œufs d'helminthes n'est pas toujours synonyme de contamination pour qu'un œuf soit infestant il doit être viable. Chez *Ascaris* par exemple, seuls les œufs issus des femelles fécondés possèdent ce pouvoir de viabilité (Stien, 1989). Plusieurs techniques sont utilisées pour tester la viabilité des œufs d'helminthes. Les techniques de viabilité par coloration se font à travers l'utilisation des colorants vitaux qui en fonction de leur spécificité peuvent se fixer ou non sur les œufs viables. Les tests de viabilité par incubation pour certains parasites isolés des eaux usées et boue de vidange la viabilité est confirmée lorsque les œufs incubés aboutissent à au moins 8 blastomères (Stien, 1989). Pour d'autres parasites isolés de la matière fécale cette viabilité est confirmée après obtention d'une larve mobile (Amoah, 2017b). Il existe également les techniques d'incubation après culture sur gélose simple pour les échantillons de boues, après dilution convenable pour assurer la bonne lisibilité. Les œufs sont dénombrés et classés selon leur degré de segmentation de 0 à 32 blastomères. La méthode de Hubert et Kerboeuf (1984) est une technique qui permet de tester la viabilité des œufs d'helminthes sur boîte de Pétri après ajout d'un réactif à base d'extrait de levure et de solution de Earle (Stien,1989).

I.4.4.1. Influence des réactifs utilisés pour la concentration des parasites sur la viabilité des œufs

Les réactifs de concentration (formol, éther, acide acétique, acide sulfurique), plus ou moins toxiques, sont utilisés à des concentrations souvent élevées et dans ces conditions ont des effets sur la modification de la viabilité des œufs d'helminthes (Stien, 1989). Certaines méthodes souvent utilisées ne répondent pas pleinement aux objectifs recherchés à savoir s'appliquer à tous les types de prélèvements, quel que soit leur niveau de charge parasitaire sans manifester aucune action néfaste sur la viabilité des œufs isolés (Stien, 1989).

I.4.5. Prophylaxie

Le traitement médicamenteux (albendazole, mébendazole, Praziquantel et ivermectine) vise à réduire la morbidité en diminuant la charge helminthique (OMS, 2004). La prophylaxie au niveau collectif consiste à traiter les eaux usées, proscrire l'épandage des matières fécales, protéger les cultures maraîchères, désinfecter les selles des malades, dépister et traiter les porteurs sains. Au niveau individuel elle consiste à traiter l'eau de qualité douteuse avant toute utilisation, laver les fruits et légumes, bien cuire les viandes, éviter les aliments irritants pour l'intestin, se couper les ongles, laver les mains à la sortie des toilettes et avant de manger, éviter les bains en eau douce et éviter de marcher pieds nus dans la boue (Dupouy-Camet *et al.*, 2008).

I.5. Généralités sur les désinfectants utilisés pour traiter les eaux

Un désinfectant ou un détergent-désinfectant est une substance permettant la destruction des micro-organismes. Il doit posséder une activité antimicrobienne ou antiparasitaire létale dans les conditions d'emploi, il doit présenter une faible toxicité et doit être adapté à l'utilisation prévue, il est également indispensable de respecter le support sur lequel il est appliqué (Guide pour le choix des Désinfectants et Produits Chimique pour les dispositifs médicaux, 2015). Les désinfectants, sont composés de trois groupes principaux de constituants (détergent et/ou désinfectant, solvant et substances sans action détergente ni désinfectante) (Guide pour le choix

des Désinfectants et Produits Chimique pour les dispositifs médicaux, 2015). La désinfection est l'une des techniques chimiques couramment employées pour le maintien de la qualité microbiologique de l'eau lors du stockage en réservoir ou lors du transport à travers les réseaux de distribution. De nombreux produits sont efficaces contre les microorganismes, mais l'inactivation totale est rarement acquise et une recolonisation des réseaux est souvent observée dès l'arrêt du traitement. L'une des stratégies utilisées par les traiteurs et distributeurs d'eau pour préserver la qualité microbiologique de l'eau est de maintenir un résiduel de désinfectant en tous points des réseaux. Les produits chimiques les plus employés pour la désinfection de l'eau sont les biocides oxydants, notamment le chlore, le dioxyde de chlore et la monochloramine. Mais il existe un grand nombre de biocides non oxydants utilisés contre les parasites hydriques dans le domaine de l'eau. Les principales familles chimiques des désinfectants sont consignées dans le tableau III.

Désinfectants	Composition chimique
Oxydants	Acide peracétique (surfaces inertes) ; le peroxyde d'hydrogène (surfaces inertes, liquide ou gazeux) et l'ozone (surfaces inertes, gazeux surtout industriels) ;
Halogénés	Chlorés comme l'hypochlorite de sodium (eau de Javel), le dioxyde de chlore (surfaces inertes, liquide) et les chloramines (surfaces vivantes et surfaces inertes) ;
Alcools	Alcool éthylique à 70 ou 60 % (surfaces vivantes et inertes, liquides), isopropanol (surfaces inertes, liquides) ;
Ammoniums quaternaires et les amines	Ce sont des agents tensioactifs cationiques de surfaces dotés de propriétés germicides (surfaces inertes ou vivantes, liquides)
Biguanides	Chlorhexidine (surfaces vivantes et inertes, liquides) ;
Phénols	Alkyl et arylphénols (surfaces inertes, liquides) ;
Aldéhydes	Formaldéhyde (cancérigène) ; le glutaraldéhyde et l'orthophtalaldéhyde, utilisés dans quelques cas d'incompatibilité de l'acide peracétique ;
Métaux	Cuivre (surfaces inertes, liquides), Argent (surfaces vivantes et inertes ou incorporés dans des matériaux, liquides) et les organo-mercuriels (toxique), iode (surfaces vivantes et inertes, liquides).

Tableau III : Principales familles des désinfectants couramment utilisés (Drauch et al., 2020)

I.5.1. Facteurs affectant l'activité des désinfectants

L'activité des biocides ou des désinfectants peut être affectée par plusieurs facteurs liés à la qualité physico-chimique, l'état physiologique des microorganismes (helminthes) le temps de contact, la concentration de la solution désinfectante, le type de désinfectant la capacité du biocide à diffuser à travers la membrane de la cellule cible, la qualité des effluents et du type de pathogènes (WEF, 1996).

I.5.1.1. Influence de L'état physiologique des micro-organismes

L'état physiologique des germes peut fortement influencer leur réaction à la désinfection et leur susceptibilité à être détectés et dénombrés. Des facteurs tels que leur origine, la préexposition à des désinfectants ou les processus de stress et de reviviscence ont une grande influence sur l'efficacité réelle de la désinfection et sur son évaluation. En 1972, Carson *et al.* avaient montré que les germes pathogènes provenant de milieux naturels étaient systématiquement plus résistants à différents désinfectants que les souches qui avaient été cultivées pendant un grand nombre de générations au laboratoire.

I.5.1.2. Temps de contact et concentration utilisée

Le temps de contact se définit comme étant la durée nécessaire pour qu'un désinfectant inactive un organisme. On évalue ce temps en laboratoire. Lorsqu'un désinfectant est appliqué sur une surface, on doit donc suivre les recommandations du manufacturier. Souvent, le temps de contact lors des désinfections n'est pas respecté en raison de l'ignorance de l'importance de ce paramètre. On trouve également le même type de problématique lorsqu'un détergent est appliqué sur une surface. Il est nécessaire de lui donner le temps de réagir avec les salissures afin de pouvoir les déloger. La concentration est également l'un des facteurs clé en effet l'inactivation des microorganismes isolés des eaux usées est souvent rapportée à la concentration utilisée (Amoah *et al.*, 2017a).

I.5.2. Quelques désinfectants couramment utilisés

I.5.2.1. Chlore

Lors de la chloration, les désinfectants sont généralement utilisés sous forme de chlore (Cl_2) , d'hypochlorite de sodium (NaClO) et de dioxyde de chlore (ClO_2) à une dose de 2-10 mg/L (Lenntech, 2012). Un réacteur oxydant fort et très efficace pour la désactivation des microorganismes pathogènes cassant les liaisons chimiques de leurs molécules (Gouvernement du Québec, 2012). À partir du XIXe siècle, l'hypochlorite de sodium a été utilisé comme désinfectant de même que pour le traitement de l'eau potable (Joffin et Chevalier 2002). Son pouvoir désinfectant provient de ses propriétés oxydantes dues à la présence de l'ion hypochlorite ClO⁻ qui s'attaque à la membrane cytoplasmique. L'hypochlorite de sodium NaClO est un sel de sodium de l'acide hypochloreux HOCl.

I.5.2.1.1 Mode d'action de l'Hypochlorite sur les microorganismes

Il a été démontré qu'il agit sur les membranes des cellules et sur les constituants cytoplasmiques. L'un des sites d'action du chlore sur les membranes cellulaires sont les phospholipides. Les interactions peuvent être des réactions de N-halogénation au niveau des têtes hydrophiles des lipides ou des attaques électrophiles sur les doubles liaisons carbonecarbone, au niveau des chaînes latérales hydrophobes. Les réactions de N-halogénation donneront lieu à des chloramines qui peuvent induire la peroxydation des lipides. L'attaque sur les doubles liaisons conduira quant à elle, à la formation des lipides et des chlorohydrines (Spickett, 2007). Ces chlorohydrines peuvent déstabiliser la membrane cellulaire du fait de l'augmentation de leur polarité et peuvent aussi avoir un effet cytotoxique sur les cellules (Vissers *et al.*, 2001). Les études menées sur *E. coli* ont montré que le chlore sous sa forme HOCl⁻ réagissait avec les protéines membranaires et affectait ainsi certains processus métaboliques tels que l'activité ATP synthase (Barrette *et al.*, 2010) et la respiration (Albrich & Hurst, 1982 ; Barrette *et al.*, 1987).

I.5.2.2. Eau Oxygénée (H₂O₂)

Le peroxyde d'hydrogène de formule brute H_2O_2 est un composé polyvalent. Il peut aussi bien être utilisé pour l'air, le sol et l'eau. Il est parfois combiné avec d'autres agents, pour améliorer et accélérer les procédés. Les principales applications du peroxyde d'hydrogène sont l'oxydation pour l'aide au contrôle des odeurs et de la corrosion, l'oxydation organique, l'oxydation métallique et l'oxydation toxique.

I.5.2.2.1. Mode d'action sur les microorganismes

A de faibles concentrations, l'eau oxygénée inhibe les microorganismes en causant des lésions d'abord au niveau cellulaire qui suffisent pour provoquer la perte de l'intégrité membranaire. Ensuite, à de fortes concentrations, il provoquerait une coagulation des protéines et de l'Acide DésoxyriboNucléique cytoplasmique. L'eau oxygénée réagirait avec les phospholipides membranaires et provoquerait la perte de l'intégrité membranaire (Broxton *et al.*, 1984). Il a été montré que l'eau oxygénée serait d'abord attirée sur la membrane chargée négativement puis absorbé spécifiquement par les phosphates. Cette absorption induirait un début de perturbation de l'intégrité membranaire et par conséquent, une pénétration de la molécule vers la membrane interne et sa liaison aux phospholipides. Cette fixation va augmenter la perméabilité membranaire qui s'accompagnera d'effets statiques. Puis, il y aura

une perte complète des fonctions membranaires accompagnée de la précipitation des composés cytoplasmiques qui sont caractéristiques d'un effet biocide (McDonnell et Russell, 1999). L'inactivation des microorganismes passent par une modification de la structure des protéines et de l'ADN (Halliwell, 2006).

I.5.2.2.2. Modification des protéines

La carboxylation est une modification courante qui se produit pendant l'oxydation des protéines par les oxydants (H₂O₂). Elle donne naissance à des groupements carbonylés (RCHO, R-COR, R-CO-CO-R) facilement détectables (Levine *et al.*, 1994). L'hydroxyde est capable de générer ces groupements en oxydant les acides aminés tels que la cystéine l'histidine, la proline, l'arginine, la lysine et le tryptophane, mais les plus sensibles sont ceux qui possèdent un atome de soufre tels que la cystéine et la méthionine (Figure 7 A et B) (Stadtman, 1993 ; Levine *et al.*, 1994 ; Moller *et al.*, 2001). Les conséquences de ces modifications sur les protéines sont variées : fragmentation, formation des ponts disulfures, perturbation de leurs activités cataboliques ou augmentation de l'hydrophobicité. Plus de 31 enzymes de la matrice mitochondriale, incluant les enzymes de la chaîne respiratoire et les antioxydants, seraient, sensibles à l'oxydation par l'hydroxyde (Cabiscol *et al.*, 2000 ; Kristensen *et al.*, 2004).

I.5.2.2.3. Modification de l'Acide DésoxyriboNucléique

Les espèces réactives d'oxygène (EROs) peuvent modifier l'Acide DésoxyriboNucléique (ADN) par oxydation des bases azotées (guanine, cytosine, thymine) ou du sucre, le désoxyribose. Un grand nombre de lésions sont donc générées notamment lors de l'attaque radicalaire de l'ADN par OH⁻ sur les bases oxydées, il y a donc cassures simples ou doubles brins et formation des sites abasiques après pontages ADN-protéines (Favier, 2003 ; Evans et al., 2004). Toutes les espèces radicalaires n'ont pas la même réactivité vis à vis de l'ADN et leur site d'attaque peut être différent. L'hydroxyde agirait avec toutes les bases de l'ADN, O₂ aurait une forte réactivité avec la guanine alors que H₂O₂ et O₂⁻ seraient plus sélectifs (Wiseman et Halliwell, 1996). L'attaque de la liaison C6 et C5 de la thymine par OH⁻ génère le radical 6hydroxythymine qui, en présence de O₂, est transformé en thymine glycérol, une base oxydée inhibitrice de la réplication de l'ADN (Croteau et Bohr, 1997). La modification la plus étudiée est celle de l'attaque du C8 de la guanine par OH⁻. Cette réaction conduit au 8oxo7,8hydroxyguanine (8-oxoGua) responsable de mésappariements pendant la réplication, pouvant conduire à des mutations dans l'ADN (Evans et al., 2004). Toutes ces modifications sont susceptibles d'induire non seulement des mutations dans l'ADN mais aussi des changements dans la méthylation des cytosines qui ont un rôle très important dans la transcription des gènes.

I.5.2.3. Charbon Actif

Le Charbon Actif (CA) est un adsorbant connu depuis longtemps se caractérisant par, sa grande surface spécifique, sa structure poreuse et sa thermostabilité (Maarcia et al., 2004, Zhang et al., 2005, Chen et al., 2011). Il peut être préparé à partir de toute matière solide contenant une grande proportion de carbone, souvent par carbonisation suivie d'une activation physique ou chimique (Yang et al., 2003, Tseng et al., 2005, Ioannidou et al., 2007; Soleimani et al., 2008, Mahmoud Trachi et al., 2018). Cependant, un processus combinant les deux étapes peut être appliqué (Ioannidou et al., 2007). La carbonisation a essentiellement pour but d'enrichir la matière en carbone et créer les premiers pores, tandis que l'activation vise à développer une structure poreuse (Prakash et al., 2006). Le charbon actif résultant de ces traitements acquiert en conséquence une capacité absorbante (Rivera-Utrilla et al., 2011) et catalysante (Lee et al., 2006) très recherchée dans plusieurs domaines : pharmaceutique, agroalimentaire et industriel (Ioannidou et al., 2007). Le charbon actif est largement utilisé dans la purification des eaux. Il permet d'éliminer les matières organiques (pesticides, par exemple) et inorganiques (métaux lourds comme le Pb, par exemple) (Ahmedna et al., 2004). Les grains de charbon actifs permettent l'adsorption des helminthes grâce à la microporosité sur leur surface d'échange, cette adsorption se fait grâce aux échanges inter particulaires, à travers les composés phénoliques par physisorption (force de faible énergie) et par chimiosorption (force de forte énergie). Ils se présentent sous plusieurs formes selon les applications on distingue : le charbon actif en poudre de fines particules de taille comprise entre 1 et 100 cm. Il est généralement issu du procédé de fabrication chimique et est fréquemment utilisé pour le traitement d'effluents liquides, le charbon actif en grain ou en granulé formé de particules de 0,5 à 10 mm. Les caractéristiques physiques des granulés de charbon actifs varient considérablement selon les produits. Les granulés utilisés pour le traitement des gaz proviennent essentiellement d'une activation physique.

I.5.2.3.1 Différentes origines du Charbon Actif

La fabrication du charbon actif passe nécessairement par l'identification et le choix de la matière première. Les matières premières peuvent être obtenues à partir d'un grand nombre de matériaux contenant le carbone d'origine animale minéral ou végétal. Les charbons activés d'origine animale sont essentiellement obtenus à partir d'ossements d'animaux, mais aussi à

partir de leur sang voire de leur chair). Le charbon d'origine minérale est obtenu en grande majorité à partir de matériaux combustibles comme la houille, le coke ou la tourbe). Pour le charbon végétal qui est le plus courant il existe une multitude de produits d'origine végétale qui peuvent intervenir dans la synthèse des charbons actifs et sous différentes formes telles que les déchets agricoles non utilisables (noyaux de fruit, coque de noix de coco, bagasse de canne à sucre) (Valix *et al.*, 2004 ; Makuna *et al.*, 2004), les pailles et enveloppes de céréales (blé et riz), les arbres sous forme de copeaux ou de sciure de bois (Bouleau, eucalyptus, lignite) (Reinoso *et al.*, 1992 ; Rodriguez 1993, Makuna *et al.*, 2004).

I.5.2.3.2. Classification du Charbon Actif

En fonction de leur porosité les pores du charbon actif peuvent être classer en trois catégories (IUPAC), à savoir : les macropores, de taille supérieure à 50 nm ils agissent comme un agent de transport permettant aux molécules adsorbées d'atteindre les pores de plus petite taille situés à l'intérieur de la particule carbonée. Si les micropores ne sont pas importants quant à leur capacité à adsorber en grande quantité, ils interviennent de façon très importante sur la vitesse de diffusion vers les mésopores et les macrospores. Les mésopores, de taille comprise entre 2 et 50 nm qui découlent des macrospores, agissent comme intermédiaire entre ceux-ci et les pores de petite taille (Figure 7 B). Les macropores (Figure 7A) de taille inférieure à 2 nm constituent la plus grande part de la surface intérieure et de ce fait, la plupart de l'adsorption y est réalisée. On considère qu'au moins 90% de la surface active d'un charbon est microporeuse.

Figure 7 : Schéma des macropores (A) et mesopores (B) du Charbon Actif

I.5.2.3.3. Adsorption du Charbon Actif

Les isothermes d'adsorption sont utilisées pour comprendre les mécanismes d'équilibre entre adsorbat et adsorbant en traçant la quantité de soluté adsorbé en fonction de la concentration à l'équilibre. Elles peuvent être simulées par un modèle empirique de Freundlich, ou par un modèle théorique Langmuir. Le premier modèle nécessite deux hypothèses : les molécules sont distribuées sur la surface selon la loi de Boltzmann et les énergies d'adsorption sont très supérieures à l'énergie thermique. Les hypothèses du modèle de Langmuir sont telles que l'adsorption doit être monocouche avec une molécule par site à l'équilibre et où la vitesse d'une molécule pour s'adsorber est égale à la vitesse pour se désorber. Il est supposé que tous les sites soient équivalents et qu'il n'y a pas d'interactions latérales entre les molécules adsorbées. Le type d'isotherme obtenus permet de tirer des conclusions qualitatives sur les interactions entre les adsorbats et l'adsorbant (Jankowska, 1991).

Les isothermes de type I (Figure 8A) sont typiques d'une adsorption en monocouche, ou correspondant au remplissage de micropores avec saturation lorsque le volume à disposition est totalement rempli. Ce type d'isothermes est caractéristique pour l'adsorption sur les charbons microporeux et les zéolithes (Abdelbassat, 2002). Les isothermes de type II (Figure 10B), au contraire, correspondent en général à l'adsorption multicouche sur des surfaces ouvertes. Cependant, une isotherme de type II peut aussi résulter d'une somme d'isothermes I + II (remplissage de micropores suivi d'une adsorption multicouche sur une surface externe). Les isothermes de type III (Figure 8C) reflètent un manque d'affinité entre l'adsorbat et l'adsorbant et des interactions adsorbat-adsorbant relativement fortes. Les isothermes de type IV (Figure 8D) peuvent résulter de la combinaison d'une isotherme de type I (adsorption forte, mais limitée) et de type V. C'est le cas de l'eau sur les carbones riches en oxygène (Carrasco-Marin, 1997). Les isothermes de type V (Figure 8E), reflètent aussi une forte interaction entre les adsorbats. De plus, l'existence d'une hystérèse au cours de la désorption reflète la présence de mésopores dans lesquels la vapeur se condense en formant un ménisque de forte courbure. Les isothermes de type VI (Figure 8F) présentent des marches caractéristiques d'une adsorption multicouche sur une surface non-poreuse très homogène.

Figure 8 : Classification des isothermes selon Brunauer (International Union of Pure and Applied Chemistry, 1985)

I.5.2.4. Gypse

Le gypse est une roche minérale blanche, d'aspect mat, finement cristallin tendre rayable à l'ongle, de densité 2,3. Il est composé de sulfate dihydraté de calcium de formule chimique $CaSO_4 \cdot 2H_2O$ et de masse molaire moléculaire 172 ,17 g/mol. C'est un cristal assez fragile dont la taille varie du grain microscopique au géant de plus de 20 cm. Le phénocristal de gypse est d'une grande splendeur de par sa transparence, il se retrouve dans ses formes « rocheuses », tout particulièrement la sélénite (pierre de lune), belle pierre incolore d'aspect mystérieux, un peu perlé (Saint-Gobain 2019). Il ne réagit pas en solubilité avec l'acide et ne possède aucune activité radioactive (Hennane Kamel et Melle Ighil, 2007). Quelques traces jaunes de soufre peuvent apparaitre. Constitué en majeure partie de sulfate de calcium hydraté et cristallisé (Hennane Kamel et Melle Ighil, 2007).

I.5.2.4.1. Formation du Gypse

Le gypse se forme par dépôts de roches sédimentaires dite évaporitique qui se forme au niveau des lagunes, de l'eau salée se retrouve piégée et s'évapore rapidement, entraînant des dépôts de calcium et de sulfate. D'un point de vue chimique, on classe cette roche dans les sels (Saint-Gobain, 2019). Il peut également être synthétisé en laboratoire. En fonction du taux de solubilité de chaque minéral, les premiers composés à cristalliser et à se déposer sont les carbonates de calcium CaCO3, puis l'évaporation se poursuivant, il y a dépôt de gypse, puis de sel ou halite Chlorure de Sodium et de chlorure de potassium (Abreal, 2008).

I.5.2.4.2. Différents domaines d'utilisation du Gypse

Utilisation du gypse dans le traitement des eaux : Le gypse est utilisé pour clarifier les eaux troubles, lors de son injection sous forme de solution saturée. S'en suit une complexation et une élimination des polluants (Suez 2019). Il est également utilisé pour la purification des eaux de brasseries grâce à leur pouvoir floculant (Memento Roches, 2019; BTB, 2019). Dans le domaine pharmaceutique le gypse (sulfate de calcium) joue le rôle de charges dans les produits pharmaceutiques (comprimés, excipient inerte). Il est également présent dans les cosmétiques, dentifrices et autres pâtes (Guilhot, 1970). L'utilisation du sulfate de calcium en tant que substitut osseux est une alternative efficace à la greffe osseuse (Gutermann et al., 2013, Ulusoy et al., 2014). Dans le domaine d'industrie chimique, le sulfate de calcium peut être utilisé comme matières premières pour la fabrication de nombreux produit chimique d'application industrielle (SNIP, 1982), notamment dans la fabrication du ciment (Marteau, 1993). L'épandage de gypse broyé sur terrain agricole peut présenter plusieurs avantages sur le plan organique. En effet le gypse apporte une correction des sols salins ou alcalins se trouvent en région arides ou semi-arides et en bordure de mer, le gypse en solution permet un remplacement des cations Na⁺ par Ca⁺⁺, ce qui fait floculer les argiles et rend le sol plus aéré et léger, par ailleurs l'alcalinité est réduite et la teneur en calcium assimilable augmente (Marteau, 1993).

I.5.2.5. Chlorure de Sodium (NaCl)

Le Chlorure de Sodium permet de traiter de nombreux organismes dans les eaux, l'action inhibitrice sur les helminthes serait due à la diminution de l'activité de l'eau sur la paroi et à la déshydratation des œufs d'helminthes par Plasmolyse. Le sodium lui-même aurait un effet toxique sur les micro-organismes en se combinant avec les anions protoplasmiques des cellules. L'effet toxique de l'ion Cl⁻ bien qu'il soit fortement lié à l'ion Na⁺ formerait un complexe létal avec les protéines cellulaires. Le Chlorure de Sodium réduit la solubilité des gaz (donc de l'oxygène) et peut interférer avec certains systèmes enzymatiques par protéolytiques (Lozach, 2001).

I.5.2.6. Moringa oleifera

Le *Moringa oleifera* est un arbre originaire de l'Inde, aujourd'hui très largement répandu à travers le monde il est par ailleurs cultivé dans toutes les régions tropicales, notamment en Afrique où cette espèce suscite plus d'intérêts auprès des ONGs, des scientifiques et même des entrepreneurs (Olson et Carlquist 2001 ; Saint Sauveur et Broin 2006). Le Moringa peut se trouver dans des zones très arides comme le Sahara, mais cette espèce préfère les climats semitropicaux humides. Cet arbuste est retrouvé autour de la Mer rouge et la Mer Morte au Kenya, Namibie, Angola au Cameroun ainsi qu'en Asie notamment au Pakistan, en Inde et au Bangladesh (Olson et Carlquist 2001). Son introduction en Afrique de l'Est a eu lieu au début du vingtième siècle par le biais du commerce et des échanges maritimes (Foidl *et al.*, 2001).

I.5.2.6.1 Systématique et nomenclature du Moringa oleifera selon Laleye et al. (2015)

Moringa appartient à la famille mono-générique des arbustes et arbres des Moringaceae qui comprend 13 espèces avec *Moringa oleifera* comme espèce la plus connue (Foidl *et al.*, 2001 ; Mahmood *et al.*, 2010).

Règne :	Plantae (présence d'une paroi cellulaire contenant la chlorophylle)
Sous-règne	: Tracheobionta (présence des tissus vasculaires xylème et phloème)
Classe :	Magnoliopsida (plante à graine)
Ordre :	Capparales (plante à fleur)
Famille :	Moringaceae (production des fruits à 3 valves)
Genre :	Moringa (fleurs actinomorphs ou zygomorphes)
Espèce :	Moringa oleifera (folioles tripennées mesurant)

I.5.2.6.2 Utilisation du Moringa oleifera dans le traitement de l'eau

D'après Beth (2005) ; Houndji *et al.* (2013) ; Kwaambwa *et al.* (2015), le *Moringa* est utilisé pour le traitement des eaux grâce à sa richesse en poly-électrolytes cationiques actifs (Poumaye *et al.*, 2012). Il est souvent utilisé comme polypeptides naturels non toxiques et permet de neutraliser les matières colloïdales et provoquent la sédimentation des particules minérales et organiques (Foidl *et al.*, 2001). Les feuilles de *Moringa* disposent par ailleurs de nombreux nutriments parfaits pour les sportifs. Elles contiennent notamment des protéines et des vitamines. Ces éléments permettent de prolonger l'effort physique et de récupérer plus rapidement. Il permet l'agrégation des microorganismes et diverses particules qui vont par la suite sédimenter (Figure 9 A). Il est également riche en quercétine (Figure 9 B), un antioxydant particulièrement puissant pour l'inactivation des helminthes.

Formation des flocs

Sédimentation

Figure 9 : Agrégation et sédimentation des microorganismes et particules par le *Moringa oleifera* (A), Structure de la Quercétine (B)

I.5.2.7. Solution désinfectants-détergente

Sur le marché il existe une multitude de produits faits à base de désinfectants et détergents, ces produits présentent la double propriété d'être à la fois détergent et désinfectant (CSHPF, 1998). Leurs principes actifs sont ceux des détergents et des désinfectants (Darbord, 2004 ; Marty, 2010). Leur action consiste à détruire totalement les microorganismes sur les surfaces et dans les effluents résultants du traitement. L'action d'inactivation totale des substances détergentes-désinfectantes est évaluée selon le protocole standard de l'Agence Nationale de Sécurité du Médicament (2011).

I.5.2.8. Rayonnement Ultraviolet et Rayonnement Lumineux

Le traitement à base des rayons ultraviolets (UV) et rayonnement lumineux (RL) sont des techniques de désinfection d'eau usée, après traitement biologique des effluents bruts et décantés (GLS, 2012a). Les rayonnements Ultraviolet et Rayonnement Lumineux attaquent les helminthes à travers le cytoplasme et empêche la duplication de l'Acide DésoxyriboNucléique (ADN), désactive l'ADN et les acides nucléiques des microorganismes. Le traitement semble être une bonne alternative comme traitement de désinfection car il n'engendre aucun produit secondaire toxique de plus cette technologie est simple à exploiter et à maintenir (Gouv. du Québec 2012 ; OIEau, 2012). Cependant, la principale faiblesse du traitement par rayonnement agit ponctuellement et qu'il ne délaisse pas des résidus qui permettraient de continuer la désinfection par après. Or, si la dose n'est pas adéquate, certains micro-organismes sont capables de réparer les altérations de leur acide désoxyribonucléique causées par les UV. Ce phénomène est réalisé par la photoréactivation et la « réparation à l'ombre » (Hassen, 2000).

I.5.2.9. Chlorure de Calcium

Le Chlorure de Calcium a pour formule chimique $CaCl_2$, il a pour masse moléculaire 110,98 g/mol. Il est déliquescent et très soluble dans l'eau. C'est un sel solide à la température ambiante, qui se comporte comme un sel d'halogénure typique, avec notamment une bonne conductivité électrique à l'état liquide et des liaisons chimiques ioniques. Il est notamment utilisé dans des unités de réfrigération, pour le salage des routes par grands froids, ou dans les ciments. Il peut être obtenu directement à partir de la craie, mais il est également produit en grandes quantités comme produit secondaire de réactions mises en œuvre dans le procédé Solvay. C'est un matériau très hygroscopique qui doit donc être conservé dans des récipients bien fermés. Le chlorure de calcium agit en tant que produit anhydre il permet en effet de rendre les microorganismes incompétents en dégradant leurs lipopolysaccharides de surface.

I.5.2.10. Ozonation

L'Ozone est un très fort media d'oxydation, avec un temps de vie remarquablement court. Il s'agit de molécules de dioxygène avec un atome d'oxygène supplémentaire pour former O₃. Quand l'ozone rentre en contact avec les odeurs, les bactéries ou les virus, l'atome d'oxygène supplémentaire les décompose directement par oxydation. Le troisième atome d'oxygène de la molécule d'ozone est ainsi perdu et seule la molécule de dioxygène reste. Les coûts d'investissement et d'exploitation des techniques d'ozonation sont plus élevés que ceux liés à la chloration, en revanche il peut être un bon choix économique pour les grandes installations (Gouvernement du Québec, 2012). Les œufs d'helminthes et certains protozoaires offrent plus de résistance (Bahri *et al.*, 2011. Les performances dépendent de la qualité de l'eau et de la concentration initiale des microorganismes (OIEau, 2012). Les doses et temps de contact varient selon les caractéristiques des effluents à traiter. Cependant l'ozone a des faibles efficacités sur l'inactivation des œufs helminthes à des doses économiques (Bahri *et al.*, 2011), avec absence d'effet rémanent, reviviscence des microorganismes à l'aval du traitement (GLS, 2012b).

I.5.2.11. Acide Peracétique

Cette technologie est récente et est de plus en plus utilisée dans certains pays, L'acide peracétique est usuellement produit en concentration de 5 à 15%. L'activité de l'acide peracétique est fortement influencée par les composés organiques présents dans l'eau (Lenntech, 2012). L'Acide peracétique agit en oxydant les membranes externes des cellules des microorganismes en transférant les électrons elle désactive également les virus et des spores (Lenntech, 2012). Cette technique nécessite un faible coût d'investissement mais la formation des produits indésirables reste à évaluer davantage. Le pH et la température sont deux principaux paramètres pouvant influencer l'efficacité de l'acide peracétique. En effet, pour une efficacité optimale le pH doit être d'environ 7 et la température doit avoisiner 15°C (OIEau, 2012)

I.5.2.12. Acide Performique

Le traitement à base d'acide performique suscite beaucoup l'intérêt pour la désinfection des eaux usées, l'acide performique (CH₂O₃) est un oxydant très réactif formé par la combinaison du peroxyde d'hydrogène et de l'acide formique (Gehr *et al.*, 2009). Elle a une grande efficacité sur les microorganismes et doit être produite en continu et maintenue à 20°C (Bélanger, 2010 ; OIEau, 2012). Une désinfection totale peut s'obtenir avec une dose de 6 mg/L (Gehr *et al.*, 2009).

CHAPITRE II MATERIEL ET METHODES

II. MATERIEL ET METHODES

II.1. Matériel

II.1.1. Cadre géographique

Yaoundé capitale politique du Cameroun, située sur la bordure du plateau sudcamerounais à 750 m d'altitude entre le 3°30' et le 3°58' de latitude Nord, 11°20 et 11°40 de longitude Est (Suchel, 1987). Le climat qui y règne est de type équatorial chaud et humide (climat yaoundéen). Il est composé de quatre saisons inégalement réparties dans le temps comprenant : une grande saison sèche (GSS) qui s'étend de mi-novembre à mi-mars, une petite saison de pluies (PSP) qui va de mi-mars à fin mai, une petite saison sèche (PSS) qui va de juin à août, une grande saison de pluies (GSP) qui va de septembre à mi-novembre (Suchel, 1987).

La roche-mère qui constitue le substratum géologique des sols de Yaoundé dérive d'un matériau quartzo-feldspathique plus ou moins micacé (Peletier, 1969), d'où la forte acidité de ses sols avec un pH de 4,5 à 5,5 U.C dans les couches superficielles. La végétation dominante dans la ville de Yaoundé est de type intertropicale avec prédominance de la forêt humide méridionale (Wéthé *et al.*, 2003). Le réseau hydrographique est principalement constitué par le Mfoundi et ses affluents (l'Ekozoa, l'Abiergue, le Mingoa, le Djoungolo, l'Ebogo, l'Ewoué, l'Odza et le Nkié).

Selon une étude réalisée par le Plan Communal de Développement en 2018. La localité de Nomayos est située dans le Département de la Mefou et Akono, avec une population d'environ 3293 habitants. Cette localité est beaucoup plus connue de part le site de dépôt de décharge des boues de vidange. Le relief de cette Commune fait partie du vaste plateau sudcamerounais d'altitude comprises entre 650 et 900 mètres. Il est accidenté par endroits du fait des collines isolées ou des complexes de collines, de pentes variables et par la présence de quelques rochers pouvant être exploités comme gravier dans les constructions diverses.

Le climat est subéquatorial guinéen dominé par quatre (04) saisons d'inégales durées comprenant, une grande saison sèche de novembre à mi-mars ; une petite saison pluvieuse de mi-mars à mi-juin ; une petite saison sèche de mi-juin à mi-aout ; une grande saison pluvieuse de mi-août à fin octobre. Ce climat est caractérisé par des précipitations abondantes atteignant une moyenne annuelle de 2 000 mm de pluies. La température moyenne se situe autour de 22,5° Celsius. Cependant des perturbations relevées depuis plus de deux ans, ne permettent pas toujours d'avoir une démarcation nette de ces quatre saisons. La pluviométrie est de type bimodal permettant deux campagnes agricoles. Ce climat est favorable au développement de la forêt dense mais semi décidue favorisant la culture de rente (cacao) et des cultures vivrières

(manioc, macabo...). Deux principaux types de sols sont rencontrés dans cette localité à savoir les sols ferralitiques et les sols hydromorphes. Le réseau hydrographique est dense et constitué de nombreux cours d'eau (donc le principal est la Mefou). Ces cours d'eaux sont poissonneux, on y pratique des activités de pêche surtout en période d'étiage, de ramassage artisanal du sable (Ludeprena, 2017).

Cette étude s'est déroulée en deux phases et a duré 20 mois (de Mai 2018 à décembre 2019). La première phase de cette étude qui a duré 4 mois (de mai à août 2018) a consisté à des séries de tests sur plusieurs types de désinfectants de concentrations variées, en vue de déterminer les désinfectants à utiliser et les gammes de concentrations minimales à effet observables sur les formes de résistances des helminthes. Ce test a été réalisé sur des échantillons positifs aux œufs d'helminthes isolés des eaux usées et eaux vannes de certains Camps Sic de la ville de Yaoundé. A l'issu de ce test dix désinfectants (Chlorure de Calcium, Eau Oxygénée, Hypochlorite de Sodium, le Chlorure de Sodium, Rayonnements Lumineux, Charbon Actif, Moringa, « Hand », Gypse et le *Moringa oleifera* associé à l'Hypochlorite de Calcium) et 6 gammes de concentrations (0,1 ; 0,2 ; 0,3 ;0,4 ; 0,5 et 0,6) ont été retenues pour les analyses. Ces désinfectants ont été choisis en fonction de leur efficacité, leur utilité, leur disponibilité et de leur faible toxicité.

La deuxième phase s'est déroulée de septembre 2018 à décembre 2019. Les échantillons ont été prélevés sur quatre stations soit trois stations des eaux vannes de toilettes (Camp Sic Biyem-Assi, Cité Universitaire et Prison Centrale de Yaoundé) et une station des boues de vidange (Nomayos). Durant cette période deux séries d'échantillonnage ont été effectuées au niveau de chaque station et les tests de désinfection ont été menés en microcosme au laboratoire (Figure 10).

Figure 10 : Carte des stations d'échantillonnage (INC modifiée, 2019)

II.1.2. Description des stations d'échantillonnage

II.1.2.1. Prison Centrale (PC)

La Prison Centrale de Yaoundé est la plus grande prison du Cameroun, de coordonnées géographiques 3°51'19,87'' N et 11°32'37,5'' E, et d'altitude 679 m elle a été construite en 1968 pour environ 800 détenus mais elle compte aujourd'hui environ 5000 détenus, cette surcharge carcérale entraine également une surproduction des matières fécales qui sont évacués en permanence vers l'extérieur avec les effluents liquides à travers le canal qui borde le côté arrière de cette Prison les matières fécales produites sont ainsi diluées dans ces eaux usées et déversées dans le cour d'eau qui traverse le quartier Nkondengui (Figure 11A).

II.1.2.2. Effluent de la Cité Universitaire (CU)

De coordonnées géographiques 3°51'22,39'' N et 11°29'58,63'' E, et d'altitude 644 m. La Cité Universitaire (CU) de l'Université de Yaoundé I, est la plus grande cité Universitaire au Cameroun de par sa capacité elle abrite des milliers d'étudiants. Cette cité génère une grande quantité d'eau usées et matières fécales. Ces eaux sont raccordées à un canal souterrain qui permet de les acheminer vers une station de traitement de type lit bactérien, cette station est actuellement non fonctionnelle et ces eaux se retrouvent directement dans la nature sans traitement. Les échantillons ont été prélevés au niveau d'un regard prévu pour l'aération des eaux (Figure 11B).

II.1.2.3. Effluent du Camp SIC Biyem-Assi (BA)

De coordonnées géographiques 03°50'19,72'' N et 11°29'4,42'' E, et d'altitude 637m ce Camp SIC regroupe plus de 5000 personnes les eaux usées sont dirigées vers une station de traitement des eaux de type filtre planté, les échantillons destinés aux analyses ont été prélevés au niveau d'un canal d'aération des eaux usées avant leur arrivée à la station de traitement des eaux (Figure 11C).

II.1.2.4. Décharge de Nomayos (NO)

De coordonnées géographiques 03°47'09,31'' N et 11°27'15,48'' E et d'altitude 629 m la station de décharge des boues de vidange de Nomayos est située à la périphérie de Yaoundé, elle constitue actuellement l'unique point de décharge où sont évacués tous les déchets de toilettes de la ville de Yaoundé et ses environs. Les camions qui transportent les décharges vidangent leur contenu sur une surface qui leur a été attribuée par les autorités locales, ces décharges se retrouvent généralement dans le cours d'eau Avo'o situé en aval, les populations
riveraines au site de décharge pratiquent de nombreuses cultures maraichères et utilisent les boues séchées comme engrais (Figure 11D).

Figure 11 : Vue partielle des stations d'échantillonnage : effluent de la Prison Centrale (A), effluent de la Citée Universitaire (B), effluent du Camp Sic Biyem-Assi (C), effluent de Nomayos (D)

II.1.3. Préparation des différents désinfectants

II.1.3.1 Chlorure de Calcium et Hypochlorite de Sodium

Les fins cristaux de Chlorure de Calcium (CaCl₂) utilisés ont été pesés à l'aide d'une balance de marque Sartorius (0,1 g/L ; 0,2 g/L ; 0,3 g/L ; 0,4 g/L ; 0,5 g/L et 0,6 g/L) et introduit dans les différents échantillons (Figure 12 A). Pour cette étude nous avons choisi d'utiliser l'Hypochlorite de Sodium (NaClO) de marque Javel (Figure 12 B), la quantité utilisée a été mesurée à l'aide des éprouvettes et des pipettes graduées (0,1 dl/L ; 0,2 dl/L ; 0,3 dl/L; 0,4 dl/L ; 0,5 dl/L et 0,6 dl/L).

II.1.3.2. Moringa oleifera et Moringa oleifera associé au Chlorure de Calcium

Pour cette étude nous avons utilisé des extraits aqueux des feuilles de *Moringa oleifera* (Figure 12 C) pesé à l'aide d'une balance de marque Sartorius à des concentrations (0,1 g/L ; 0,2 g/L ; 0,3 mg/L ; 0,4 g/L ; 0,5 g/L et 0,6 g/L). Le *Moringa* associé au chlorure de Calcium a été préparé à partir d'un mélange à des proportions égales des cristaux chlorure de calcium à différentes concentrations (0,1 g/L ; 0,2 g/L ; 0,3 mg/L ; 0,4 g/L ; 0,5 g/L et 0,6 g/L) et des extraits aqueux des feuilles de Moringa aux concentrations 0,1 g/L ; 0,2 g/L ; 0,3 g/L ; 0,4 g/L ; 0,5 g/L et 0,6 g/L, pesé à l'aide d'une balance de marque Sartorius.

II.1.3.3. Gypse et Chlorure de Sodium (NaCl)

Le Gypse (CaSO₄·2H₂O) a été préalablement broyé puis tamisé à l'aide d'un tamis (Figure 12 D). Le Chlorure de Sodium utilisé est celui couramment présent sur le marché sous forme de sel de cuisine (Figure 12 E). Le Gype et le Chlorure de Sodium utilisés ont été pesés à l'aide d'une balance de marque Sartorius à différentes concentrations (0,1 g/L ; 0,2 g/L ; 0,3 g/L ; 0,4 g/L ; 0,5 g/L et 0,6 g/L).

II.1.3.4. Eau Oxygénée (H2O2) et « Hand Disinfectants »

L'eau Oxygénée ou Peroxyde d'hydrogène que nous avons utilisé est de marque Solvay et de concentration 30% (Figure 12 F). C'est une eau couramment présente sur le marché et régulièrement utilisée par les populations pour le traitement des eaux. Pour cette étude nous avons également choisi une solution désinfectante « Hand Disinfectants » couramment utilisé dans les manifestations et les grandes surfaces pour désinfecter les mains à la sortie des toilettes ou après contact avec tout objets souillés, cette substance est généralement faite à base de produits désinfectants et de substance détergente qui lui confère une odeur agréable (Figure 12 G). Pour ces deux désinfectants, la quantité de volume utilisée a été mesurée à l'aide des éprouvettes et des pipettes graduées (0,1 dl/L ; 0,2 dl/L ; 0,3 dl/L; 0,4 dl/L ; 0,5 dl/L et 0,6 dl/L).

II.1.3.5. Charbon Actif et Rayonnement Lumineux

Le charbon actif un adsorbant une nouvelle alternative de plus en plus utilisée par les sociétés et les populations pour le traitement des eaux. Nous avons utilisé les particules de charbon d'origine végétal (Maarcia *et al.*, 2004, Zhang *et al.*, 2005), qui ont été broyées en fine particules puis lavée avec de l'eau distillée, séchée, puis tamisée (figure 12 H). L'activation a été réalisée chimiquement à l'aide de l'acide et la base. Tout d'abord les cristaux de charbon ont été trempés dans la solution d'acide sulfurique (H₂SO₄) à 98% (déshydratant, oxydant et agent d'élimination des matières minérales) pendant 24 h puis lavée avec l'eau distillée jusqu'à atteindre un pH 6 dans le liquide résiduel. Dans un second temps 25 g de charbon actif ont été immergée dans 100 ml de KOH, le tout a été porté sous agitation à 85 °C pendant 2 h. Le liquide obtenu a ensuite été séparé par filtration les fins cristaux de charbon obtenus ont été séchée à 120 °C pendant 24 h (Mahmoud Trachi *et al.*, 2018). Les masses utilisées lors de la désinfection ont été pesées à l'aide d'une balance (0,1 g/L ; 0,2 g/L ; 0,3 g/L ; 0,4 g/L ; 0,5 g/L et 0,6 g/L).

Le traitement à base de Rayonnement Lumineux s'est fait à l'aide des flacons de 0,5L, en effet les échantillons à traiter ont été introduits dans un flacon en PET puis exposé aux Rayonnements Lumineux pendant 6H.

Figure 12 : Représentation de quelques désinfectants utilisés : Chlorure de Calcium (A), Hypochlorite de Sodium (B), *Moringa oleifera* (C), Gypse (D), Nacl (E), Eau Oxygénée (F), « Hand Disinfectant » (G), Charbon Actif (H).

II.2. Méthodologie

II.2.1. Echantillonnage pour analyses physico-chimiques et biologiques

Les coordonnées géographiques et les altitudes des stations ont été obtenues sur le terrain à l'aide d'un GPS de marque GARMIN. Le prélèvement des échantillons d'eaux usées et boues de vidange ont été réalisés suivant les recommandations de Rodier *et al.* (2009) pour les analyses physico-chimiques et suivant l'approche proposée par Stien (1989), Keffala *et al.* (2012) pour l'analyse biologique. Ainsi, 30L d'échantillons ont été prélevés à l'aide des flacons stériles, puis ramenés au laboratoire. Pour les eaux vannes l'échantillonnage s'est fait directement sur l'effluent provenant des toilettes. Tandis que pour les boues de vidange, l'échantillon a été prélevé directement après décharge par les camions.

II.2.2. Dispositif expérimental

Pour l'analyse biologique, sur le terrain les échantillons ont été tamisés afin d'éliminer les macro particules en suspension dans l'eau. Au laboratoire nous avons procédé à l'élimination des œufs non viables par flottaison (Figure 13 A), en effet 5ml de n-butanol ont été ajoutés dans 1L d'échantillon, pour permettre aux œufs non viables (provenant des femelles non fécondés) de flotter (Stien 1989). Puis le surnageant contenant les œufs non viables a été éliminé par aspiration et le culot obtenu a été soumis aux analyses parasitologiques à travers les techniques de concentrations (Dessouli *et al.*, 2001).

Pour chaque désinfectant, un dispositif comprenant 6 erlenmeyers correspondant aux six concentrations utilisées (0,1g/L ; 0,2 g/L ; 0,3 g/L ; 0,4 g/L ; 0,5 g/L et 0,6 g/L) a été réalisé. Puis 500 mL d'échantillon ont été introduit dans chaque erlenmeyer, ensuite le désinfectant préalablement pesé ou mesuré a été introduit dans chaque erlenmeyer. Les échantillons ont ensuite été homogénéisés pour permettre une mise en contact parfaite du désinfectant et des parasites (Figure 13 B). Un temps de contact de 36 h (Akam *et al.*, 2005) a été observé pour chaque échantillon ceci pour permettre aux désinfectants d'agir. A la fin du temps de contact 1ml de thiosulfate de sodium a été ajouté à chaque échantillon pour neutraliser l'excès de désinfectants.

Ensuite 5 ml de culot ont été prélevés dans chaque échantillon, ces 5 ml du culot ont été lavés à l'eau stérile et au thiosulfate de sodium (1ml) à 2 reprises afin de neutraliser l'excès désinfectant dans l'échantillon (Stien, 1989; Amoah 2017a), ensuite l'eau distillée et le thiosulfate ont été éliminés par aspiration après centrifugation de l'échantillon. L'ensemble ainsi obtenu a été soumis aux tests de viabilité par incubation et par coloration (Figure 13 C).

Les paramètres physico-chimiques et biologiques ont été mesurés avant (échantillon témoin) et après (échantillon essai) application de chaque désinfectant. Le test a été répété pour tous les désinfectants et pour toutes les gammes de concentration, à l'exception des échantillons traités aux rayons lumineux où un seul échantillon a été exposé aux rayonnements pendant 6h.

Figure 13 : Dispositif expérimental : élimination des œufs non viables (A), homogénéisation entre les parasites et les désinfectants (B), test de viabilité par incubation (C)

II.2.3. Mesure des paramètres physico-chimiques des eaux usées et des boues de vidange

Les paramètres physico-chimiques évalués au cours de cette étude ont été mesurés suivant les techniques conventionnelles décrites par Rodier *et al.* (2009) avec les réactifs appropriés. Les paramètres mesurés sont entre autres, la température l'oxygène, le pH, la salinité, la conductivité électrique, les solides totaux dissous, l'azote ammoniacal, le nitrates, les orthophosphates, les Matières en Suspension, la couleur, la turbidité, l'oxydabilité et l'intensité lumineuse.

II.2.3.1. Température

La température de l'eau a été mesurée *in situ*, à l'aide d'un thermomètre à mercure gradué au 1/10°C, elle a été mesurée uniquement sur l'échantillon témoin. Le thermomètre a été plongé dans l'eau au 2/3 pendant 2 à 3 minutes. La montée du mercure correspond à la valeur de la température en degré Celsius (°C).

II.2.3.2. Conductivité électrique

La conductivité électrique exprimée en μ S/cm a été mesurée à l'aide de l'électrode du multi-paramètre portatif de marque HANNA modèle 9839. Elle a été mesurée avant et après application de chaque désinfectant.

II.2.3.3. pH (potentiel d'Hydrogène)

Le potentiel d'hydrogène (pH) a été mesuré à l'aide du multi-paramètre portatif de marque HANNA modèle 9839. Les résultats sont exprimés en unité conventionnelle (UC) avec une précision de 1/10e. Il a été mesuré avant et après application de chaque désinfectant.

II.2.3.4. Solides Totaux Dissous (TDS)

Les solides totaux dissous (STD en mg/L) ont également été mesurés à l'aide du multiparamètre portatif de marque HANNA modèle 9839. Pour ce faire, l'appareil de mesure préalablement calibré a été mis sous tension, la sonde a été ensuite plongée dans l'eau et le paramètre à mesurer a été sélectionné ce qui a permis d'obtenir la valeur de celui-ci sur l'écran d'affichage. Ils ont été mesurés avant et après application de chaque désinfectant.

II.2.3.5. Oxygène (O₂) dissous

Le taux de saturation en oxygène dans l'eau estimé en pourcentage a été mesuré à l'aide d'un oxymètre portatif de marque HANNA modèle 9839. Ce paramètre a été mesuré uniquement sur l'échantillon témoin avant désinfection et exprimé en mg/L.

II.2.3.6. Gaz carbonique (CO₂) dissous

La mesure de la teneur de l'eau en CO_2 dissous s'est faite en deux étapes : sur le terrain, le CO_2 a été fixé en introduisant dans une fiole jaugée de 200 mL, 20 mL de NaOH N/20, 2 ou 3 gouttes de phénolphtaléine et l'échantillon d'eau jusqu'au trait de jauge. Le mélange obtenu de coloration rose a été transvasé dans un flacon en polyéthylène de 250 mL à double bouchage. Au laboratoire, 50 mL de cet échantillon ont été titrés avec du HCl N/10 jusqu'à décoloration complète. La teneur en CO_2 a été mesurée uniquement sur les échantillons témoins. La teneur de l'eau en CO_2 exprimée en mg/L a ensuite été déterminée par la formule ci-après :

 $CO_2 (mg/L) = (descente burette témoin - descente burette échantillon) \times 17,6$

II.2.3.7. Matières en Suspension (MES)

Les MES ont été mesurées par colorimétrie au spectrophotomètre HACH DR 2900 à la longueur d'onde λ = 810 nm. Après calibrage de l'appareil, une cellule spectrophotométrique de 10 mL contenant l'échantillon a été introduite dans le spectrophotomètre et les teneurs de MES ont été exprimées en mg/L. Les MES ont été mesurés avant et après application des désinfectants.

II.2.3.8. Turbidité

La turbidité a été mesurée par colorimétrie au spectrophotomètre HACH DR 2900 à la longueur d'onde λ = 450 nm. Après étalonnage et lecture sur l'échantillon de la turbidité, les valeurs ont été exprimées en FTU. La turbidité a été mesurés avant et après application des désinfectants.

II.2.3.9. Couleur

La couleur a été mesurée par colorimétrie au spectrophotomètre HACH DR 2900 à la longueur d'onde λ = 455 nm. Les valeurs ont été exprimées unité Pt-Co. La couleur a été mesurés avant et après application des désinfectant.

II.2.3.10. Nitrates (NO₃⁻)

Les mesures de la teneur de l'eau en nitrate (NO₃⁻) se sont faites au spectrophotomètre HACH DR 2900. Les nitrates ont été mesurées sur 10 ml d'échantillon avec comme réactif le Nitraver V à la longueur d'onde $\lambda = 507$ nm. Les résultats ont été exprimés en mg/L de NO₃⁻. Les nitrates ont été mesurés avant et après application des désinfectants.

II.2.3.11. Azote ammoniacal (NH4⁺)

La concentration en azote ammoniacal (exprimée en mg/L de NH_4^+) a été mesurée par la méthode de Nessler sur 10 mL d'échantillon d'eau brute en présence du sel de Rochelle (et du réactif de Nessler et la lecture a été faite à la longueur d'onde $\lambda = 425$ nm. L'azote ammoniacal a été mesuré avant et après application des désinfectants.

II.2.3.12. Orthophosphates (PO₄³⁻)

Les teneurs en orthophosphates (PO₄³⁻) ont été mesurées au spectrophotomètre HACH DR 3900 sur 10 mL d'échantillon avec comme réactif le Phosver III. Les résultats ont été exprimés en mg/L de (PO₄³⁻) à la longueur d'onde $\lambda = 530$ nm. La teneur en orthophosphate a été mesurée avant et après application des désinfectants.

II.2.3.13. Alcalinité

L'alcalinité a été déterminée par volumétrie en titrant 50 mL d'échantillon d'eau avec de l'acide sulfurique N/50, en présence du rouge vert de méthyl-bromocrésol comme indicateur coloré. L'alcalinité a été mesurée avant et après application des désinfectants. Les résultats exprimés en mg/L de HCO₃⁻ ont été obtenus par la formule ci-après :

Alcalinité (mg/L de HCO₃⁻) = (descente de burette de l'échantillon) $\times 20$.

II.2.3.14. Oxydabilité

L'oxydabilité a été mesurée par volumétrie. Dans un erlenmeyer de 500 ml, on introduit 200 mL d'échantillon, puis 2 mL de carbonate monosodique (CO₃NaH), l'ensemble est porté à ébullition. Dès le début de l'ébullition, 20 mL de KMnO4 N/80 ont été ajoutés. Dix minutes après le début de l'ébullition, l'échantillon a été refroidi à l'eau courante, puis 5 mL de H₂SO₄ 25 % et 20 mL de sel de Mohr y ont été ajoutés. L'échantillon décoloré a ensuite été titré par le KMnO4 N/80 jusqu'à la coloration rose. Le témoin est réalisé dans les mêmes conditions, mais en remplaçant l'échantillon par de l'eau distillée. L'oxydabilité a été mesurée avant et après application des désinfectants. L'oxydabilité exprimée en mg/L de KMnO4 s'obtient par la formule :

Oxydabilité (mg/L de KMnO4) =((q-qo))/2 × 3.95 avec q= descente burette de l'échantillon, qo = descente burette du témoin.

II.2.3.15. Intensité lumineuse

La luminosité a été mesurée à l'aide, d'un luxmètre de marque Testo 450 et d'un Thermo-hydromètre de marque Testo 610. A cet effet le luxmètre a été mis en marche et placé tout près des échantillons à traiter, la valeur de l'intensité est émise par les rayonnements solaires est enregistrée par les capteurs de luxmètre et s'affiche automatiquement sur l'écran

II.2.4. Paramètres Biologiques

II.2.4.1 Techniques de Concentration

Pour cette étude nous avons exclu toutes les techniques utilisant les réactifs susceptibles d'influencer la viabilité et le développement des œufs. Ainsi les techniques de Kato-Katz, sédimentation et la technique de Mc Master ont permis de concentrer les éléments parasitaires afin de garantir un meilleur dénombrement. L'observation des œufs et des larves d'helminthes s'est faite au microscope Yvemen, à un grossissement 40 X.

II.2.4.1.1 Technique de Kato-Katz

Cette technique a été décrite par Katz *et al.* (1970) ; elle permet d'identifier et de quantifier les œufs et les larves d'helminthes intestinaux présents dans les selles. Mais nous l'avons adapté à ce travail en remplaçant les selles tamisées par le culot issu d'une centrifugation à 500 tours/min pendant 5 minutes (Ajeagah *et al.*, 2014).

La solution de Kato-Katz a été préparée en mélangeant 100 mL d'eau distillée, 100 mL de glycérine et 1 mL de vert de Malachite 3% (ou 1 mL de bleu de méthylène 3%). Les

rectangles de papier cellophane ont été trempés dans cette solution 24 heures avant usage. Un fragment de culot a été prélevé et déposé au centre d'une lame. Sur cette dernière, un rectangle de papier cellophane imbibé de glycérol a été déposé et à l'aide d'un tube à essai, le culot a été étalée entre la lame et la cellophane en un frottis. La préparation ainsi obtenue a été directement observée au microscope optique pour l'identification des œufs d'Ancylostomes et à partir de 30 minutes pour ceux des autres parasites.

II.2.4.1.2. Technique de Mc Master

La cellule utilisée pour 1a quantification des œufs est celle de Mc Master décrite par Ihitlock et Gordon (1939). Le volume de lecture d'un réseau est de 0,15 m1. Le comptage s'effectue au grossissement 100 X. Par convention, ont été pris en compte les œufs situés à l'intérieur du réseau, ainsi que ceux chevauchant les côtés a et b de la cellule. Le nombre d'œufs par litre est calculé à l'aide de la formule ci-dessous :

N = AX/PV (Sengupta *et al.*, 2011) Où:

N = nombre d'œufs par litre d'échantillon

A = nombre d'œufs comptés sur la lame Mc Master ou moyenne des nombres trouvés dans deux ou trois lames

X = volume du produit final (ml)

P = Contenance de la lame McMaster (0,3 ml)

V = volume de l'échantillon initial (litres)

II.2.4.1.3. Méthode de l'USEPA modifiée (Schwartzbrod, 1998 ; USEPA, 2004)

Cette méthode a été utilisée pour l'analyse parasitaire des helminthes dans les boues de vidange (Krueger *et al.*, 2021). La méthode de détermination utilisée a été celle de l'identification des principales espèces d'œufs d'helminthes elle s'est faite grâce aux planches édictées par l'OMS (2003). La concentration des œufs par litre est obtenue en appliquant la formule ci-après :

$$N = \frac{Y \times M}{C \times V} \times 1000$$

Avec :

N = nombre d'œufs par litre d'échantillon Y = nombre d'œufs moyen dans la cellule de Mac Master C = volume de la cellule de Mac Master

V = volume de l'échantillon

M = volume estimé du ménisque

II.2.4.1.4. Concentration par Sédimentation

Cette technique consiste à diluer 5 ml de boues d'eaux usées dans l'eau distillée, Le mélange a été parfaitement agité puis centrifugé à 500 tours/min pendant trois minutes à l'aide d'une centrifugeuse de modèle MSE Minor 35. Apres centrifugation les parasites se déposent au fonds, les particules alimentaires non digérées et les cadavres microbiens qui surnagent ou restent en suspension ont été éliminé par aspiration (Mbouombouo *et al.*, 2020).

Le nombre (X) d'œufs d'helminthes parasites dans 1 L d'échantillon a été séterminé en utilisant la formule suivante (Ajeagah *et al.*, 2010) :

$$\mathbf{X} = \frac{\mathbf{y} \cdot \mathbf{v} \mathbf{x}}{\mathbf{v} \mathbf{y}}$$

Avec : Vx= volume du culot dans 1 L d'échantillon, Vy= volume du culot utilisé pour observation, y= nombre d'œufs observés dans Vy.

II.2.4.2. Technique d'identification par Réaction de Polymérase en Chaine quantitative (qPCR)

Les échantillons destinés aux analyses moléculaires ont été concentrés dans des flacons en polystirène de 100 ml. Ces flacons ont par la suite été acheminés au laboratoire des eaux et eaux usées de l'Université de Durban en Afrique du Sud.

II.2.4.2.1. Isolement de l'Acide DésoxyriboNucléique (ADN)

Chaque échantillon d'eaux usées (100 ml) a été filtré à travers un filtre stérile 0,2 μ m Sterivex (Millipore, USA) et l'ADN génomique (ADNg) a été extrait des filtres à l'aide d'un kit d'isolement de l'ADN Sterivex PowerWater (MOBIO Laboratories, Californie, USA). Les réactifs témoin d'extraction (ExCs ; n = 6) ont été inclus à côté de chaque lot d'extraction d'ADNg. L'ADN purifié a été stocké à -20 °C avant les analyses moléculaires.

II.2.4.2.2. Extraction, Amplification et Séquençage

Pour la préparation de la bibliothèque et le séquençage le protocole de préparation de la bibliothèque a été suivi, avec seulement des modifications mineures aux PCR de la première étape, les échantillons ont été chauffés à 90°C pendant 10 minutes et centrifugé à 14 000 Tours pendant 10 minutes. La fraction soluble a ensuite été extraite à l'aide d'un kit d'extraction de l'ADN Sterivex PowerWater. La région Ist du gène a été amplifiée à l'aide des amorces spécifiques conçues à l'aide du logiciel Primer Express, version 3.1 (Tableau IV). Le séquençage a consisté à déterminer l'ordre d'agencement des nucléotides, fusionner les lectures par paire, ajuster les amorces et éliminer les singletons. La détermination taxonomique au

niveau de l'espèce a été réalisée par la recherche des séquences sur la base des données du NCBI.

Tableau IV Amorces utilisée pour l'amplification des séquences ITS-1 des différentes

 espèces de parasites (Mejia *et al.*, 2013)

	Sequence d'amorce initial 🖞 🛚 3 ^t	-	no. D'accession GenBank
Parasites	Sequence d'amorce inverses 53^{c}		
	Sequence de la sonde(FAM)35	Region ciblée	
Ascaris lumbricoides ⁴	TGCACATAAGTACTATTTGCGCGTAT CCGCCGACTGCTATTACATCA GAGCCACATAGTAAATT	ITS-1	AB571301.1
Ascaris suum	TTT TTT GGT CAT CCT GAG GTT TAT-3′ 5′ACA TAA TGA AAA TGA CTA ACA AC	IST-1	JN786328 FJ664617
Ancylostoma duodenale ³	GAATGACAGCAAACTCGTTGTTG ATACTAGCCACTGCCGAAACGT ATCGTTTACCGACTTTAG	ITS-2	EU344797.1
Necator americanus ³	CTGTTTGTCGAACGGTACTTGC ATAACAGCGTGCACATGTTGC CTGTACTACGCATTGTATAC	ITS-2	AJ001599.1
Strongyloides stercoralis ³	GAATTCCAAGTAAACGTAAGTCATTAGC TGCCTCTGGATATTGCTCAGTTC ACACACCGGCCGTCGCTGC	185 rRNA	AF279916.2
Trichuris trichiura	TCCGAACGGCGGATCA CTCGAGTGTCACGTCGTCCTT TTGGCTCGTAGGTCGTT	ITS-1	FM991956.1
Hymenolepis nana	GTTACTAATCAT GGTATTATTATGCCAAAATAA TGCATAGGAAAA	IST-1	Gb/MK133141.1
Taeni solium	ATGACGGCGGTGCGGAATTCTG TCGTGTATTTGTCGTGCGGGTCTAC	Tso31	DQ861410

Information sur la sequence des parasites testés à l'aide d'une Réaction de Polymérase en Chaine quantitative en temps réel

Légende : *ITS = intretoise interne transcrites; rRNA = ribosomal RNA. ; 5' 3' = séquence d'amorce initial ; 3' 5' = séquence d'amorce inversée ; FAM = séquence de la sonde

II.2.4.3. Analyse de la viabilité des parasites

La présence des œufs d'helminthes n'est pas toujours synonyme de contamination car pour qu'un œuf soit infestant il doit être viable. Seuls les œufs issus des femelles fécondés possèdent ce pouvoir de viabilité. La viabilité des œufs d'helminthes a été testée par incubation et par coloration à travers le rouge neutre qui est un colorant spécifique capable de se fixer sur les œufs viables (Merward *et al.*, 2011 ; Karkashan *et al.*, 2015).

II.2.4.3.1. Test de viabilité par incubation

Pour la technique d'incubation, les 5 ml de culot obtenus après neutralisation du désinfectant ont été incubés sur boîtes de Pétri dans une étuve à 30°C pendant 30 jours (Pecson et al., 2007 ; Massara et al., 2001). Après l'incubation le processus de réduction de viabilité des œufs a été mis en évidence, à travers la formation des blastomères et la mobilité de l'embryon ou de la larve en fonction des espèces. Puis les œufs ont été examinés en microscopie, ainsi chez les œufs non viables la segmentation s'est arrêtée tandis que les œufs viables ont continué leur segmentation et développement jusqu'à la formation d'au moins 8 blastomères pour les œufs d'Ascaris et d'Ancylostomes (Stien, 1989; Keffala et al., 2012) ou par la mobilité de l'embryon hexancanthe ou de la larve pour les œufs de Trichuris et Hymenolepis ou par la capacité à s'embryonner (Hajjami et al., 2013). L'identification s'est faite à travers l'analyse morphologique de la forme de taille et du contenu des œufs (Řežábkováa et al., 2019). Les modifications des blastomères, de l'oncosphère et de l'embryon hexacanthe ont été mises en évidence au microscope optique aux objectif 40X et 100X (Allen et al., 1965). Les mensurations ont été faites à l'aide d'un micromètre oculaire et les photos ont été prises grâce à un dispositif photographique de modèle Xploview relié à un des oculaires du microscope. Les observations ont été répétées deux fois (Khallaayoune et Fatiha 1995 ; Amoah, 2017 b).

II.2.4.3.2. Test de viabilité par coloration

Le rouge neutre est le colorant vital qui a été choisi pour cette étude en effet le rouge neutre a la capacité de se fixer sur les structures des œufs viables et les colorer en rouge. Après concentration des éléments parasitaires 1 ml de colorant a été ajouté dans chaque 5 ml d'échantillon, après 10 min, ces échantillons ont été montés entre lame et lamelle pour observation, les œufs et larves colorés en rouge par le colorant ont été considérés comme viables et les œufs et larves non colorés ont été considérés comme potentiellement non viables (Sarvel *et al.*, 2006).

II.2.4.4. Détermination des isothermes d'adsorption du charbon

L'isotherme du charbon est une courbe qui représente la relation entre la quantité d'impuretés adsorbées par unité de masse de charbon activé et la concentration d'impuretés en solution. On obtient une telle courbe à partir des résultats d'essais de laboratoire effectués à une température constante. Pour ce faire, on introduit des quantités connues de charbon activé dans les volumes d'eau à traiter et après un temps de contact donné, on mesure la concentration résiduelle d'impuretés adsorbées à l'aide de l'équation : X = (Co - C) B

où Co: concentration initiale d'impuretés (g/l), C :concentration finale d'impuretés (g/l), B :volume de solution et X: masse d'impuretés adsorbées (g).

II.2.4.5. Détermination des rendements des désinfectants.

Les rendements d'efficacité des différents désinfectants sur l'inaction des formes de résistance des helminthes et sur l'abattement de certains paramètres physico-chimiques ont été calculés à partir de la formule suvante :R= [(valeur initiale – valeur résiduelle) / Valeur initiale] × 100

II.2.5. Analyses statistiques des variables physico-chimiques et biologiques

II.2.5.1. Corrélation de rang de Spearman (r)

Les corrélations ont été calculées entre les densités moyennes des œufs viables obtenues avant et après désinfection les concentrations utilisées et les moyennes des variables physico-chimiques obtenues. Ce calcul a permis d'évaluer les relations probables entre les différentes variables physicochimiques et biologiques. Deux séries de variables sont plus ou moins fortement liées selon que r est plus ou moins proche de 1. Le coefficient de corrélation des rangs de Spearman a été calculé pour mesurer les degrés de liaison entre les variables physico-chimique d'une part, entre les variables biologiques et entre les variables physico-chimiques et biologiques d'autre part. L'analyse a été effectuée à l'aide du programme SPSS version 20.0 après vérification de la distribution des données.

II.2.5.2. Tests H de Kruskal-Wallis

Le test non paramétrique de Kruskal-Wallis (test H) a été utilisé pour vérifier, la signification des différences (ou similarités) de variances des paramètres abiotiques et des densités des valeurs obtenues avant et après désinfection. Ce test a également été utilisé pour comparer, les paramètres physico-chimiques mesurés avant et après traitement. Pour se faire, deux hypothèses ont été émises : une hypothèse nulle selon laquelle les médianes des échantillons à comparer ne différent pas significativement et une seconde hypothèse alternative selon laquelle il existe une différence significative entre les médianes des échantillons à comparer. L'analyse a été effectuée à l'aide du programme SPSS version 20.0 et du logiciel R, qui nous donne la valeur de p (p-value). Si cette valeur est inférieure à 0,05 (p < 0,05), l'hypothèse nulle est rejetée. Dans le cas contraire, (p \ge 0,05) elle est vérifiée. Les variables étant quantitatives, ce test de rang est mesuré avec au moins une échelle ordinale (rangs). Chaque fois que le test de Kruskal-Wallis a montré une différence significative entre les variances des échantillons comparés, le test de comparaison multiple de rangs ou le test U de Mann-Whitney a été utilisé pour une comparaison deux à deux, afin d'isoler les échantillons qui diffèrent significativement.

II.2.5.3. Analyse de Classification Hiérarchique (ACH)

L'objectif de l'Analyse de Classification Hiérarchique (ACH) est de rassembler les moyennes des variables dans des classes de plus en plus larges, sur la base de certaines mesures de similarité. Les résultats de ce type de classification sont habituellement représentés sous forme de dendrogramme. Cette méthode se distingue de toutes les autres par le fait qu'elle utilise une analyse de la variance approchée afin d'évaluer les distances entre les classes (Ward, 1963). Dans cette étude, l'ACH a été utilisée pour regrouper les stations en fonction d'une part, de leurs similarités abiotiques, et d'autre part, en fonction de leur sensibilité aux désinfectants. Ce test a été réalisé à partir du logiciel XLSTAT 2007.

II.2.5.4. Analyse en Composantes Principales (ACP)

L'Analyse en Composantes Principales a été utilisée pour établir une caractérisation des désinfectants sur la base de l'ensemble des variables mesurées. Cette méthode de statistique factorielle descriptive a pour objectif de présenter sous forme graphique, le maximum d'information contenue dans un tableau de données de taille importante. La matrice de données est composée des échantillons « n » en ligne sur lesquels sont mesurés des variables quantitatives « p » disposées en colonnes. La matrice utilisée dans cette étude est une base ayant subi une transformation logarithmique « Log (X + 1) » pour avoir une normalité approximative puis standardisée pour obtenir une échelle comparable des variables (Michael *et al.*, 2004). Le tableau de données « n » × « p » forme ainsi un nuage de « n » points dans un espace à « p » dimensions. Chaque composante principale (dimension) explique une quantité plus ou moins importante de l'information de départ. Les composantes principales sont classées par ordre décroissant de la quantité d'information qu'elles expliquent.

En général, les deux à trois premières composantes principales suffisent pour expliquer 60 à 70% de l'information contenue dans la matrice de départ (Ouro-Boya, 2004). Les composantes principales sont obtenues par la diagonalisation d'une matrice qui, suivant la nature des variables initiales, est soit la matrice des corrélations, soit la matrice des covariances (Legendre et Legendre, 1979). Dans le cadre de cette étude, c'est la matrice de corrélation qui a été utilisée. La phase finale de l'ACP consiste en une représentation graphique qui permet alors d'avoir un aperçu des résultats. Il existe deux types de représentation ; le diagramme de dispersion des variables qui est un cercle de corrélation et le diagramme de dispersion des sites. Le pourcentage d'information initiale expliquée par chaque composante principale est illustré sous forme d'histogramme. L'ACP a été réalisé à l'aide du logiciel XLSTAT 2007.

CHAPITRE III

RESULTATS ET DISCUSSION

III. RESULTATS ET DISCUSSION

III.1. Résultats

III.1.1. Evaluation de l'effet des désinfectants et description morphologique des œufs et larves d'helminthes

L'analyse de l'effet des désinfectants a été faite sur les œufs et larves de six espèces d'helminthes à savoir *Ascaris* spp., *Necator americanus, Trichuris trichiura, Strongyloïdes stercoralis, Ancylostoma duodenale et Hymenolepis nana.* Au cours du processus de désinfection le développement des œufs a été suivi par microscopie optique.

III.1.1.1. Ascaris spp.

Au cours de cette étude deux espèces d'*Ascaris* spp. ont été identifiées (*Ascaris lumbricoïdes* et *Ascaris suum*), ces espèces d'*Ascaris* ont des tailles qui varient de 45 à 85 µm, avec une triple membrane, la plus externe étant mamelonnée et les deux internes lisses. Les œufs non fertiles (Figure 14A) provenant des femelles non fécondées ont été éliminés au préalable par flottaison grâce au pouvoir flottant du n-butanol, ces œufs non fertiles sont caractérisés par leur forme allongée atypique, une grande taille d'environ 85 µm et des extrémités aplaties. Les œufs fertiles (Figure 14 B), caractérisés par leurs formes classiques, une taille variant de 45 à 65 µm une membrane externe bien visible, avec une coque épaisse et des extrémités arrondies. Après traitement ces œufs ont été soumis aux tests de viabilité, au cours de ce test de viabilité les désinfectants ont inactivé certains œufs et leur développement s'est arrêté (Figure 14 B). Par contre les œufs potentiellement viables vont poursuivre leurs processus de segmentation aboutissant à la formation de 32 blastomères (Figure 14 C), ces blastomères vont se creuser d'une cavité pour former la larve mobile au bout de 30 jours (Figure 14 D). La larve formée va ensuite libérer une enzyme spécifique appelée ascaridiase, cette enzyme va permettre la lyse de la couche interne pour favoriser l'émission de la larve dans le milieu extérieur.

III.1.1.2. Ancylostoma duodenale

Les œufs d'*Ancylostoma duodenale*, identifiés mesurent entre 50 et 60 µm avec une coque fine. Les œufs non viables présentent un contenu inerte avec absence des blastomères (Figure 15A). Après incubation les œufs commencent leur développement avec formation de 4 blastomères la paroi plus fine se dédouble clairement et les deux membranes sont bien visibles (Figure 15 B). Ces blastomères vont aboutir à la formation d'une larve au bout de 30 jours (Figure 15C). Lors du test de coloration les œufs non viables restent incolores (Figure 15D) tandis que le colorant va se fixer sur les œufs viables (Figure 15E).

Figure 15 : Œuf non viable d'*Ancylostoma duodenale* (A), œuf en cours de développement (B), œuf viable contenant la larve mobile (C), œuf non viable incolore (D), œuf viable et coloré au rouge neutre (E)

III.1.1.3. Necator amricanus

Les œufs de *Necator americanus* ont également une coque fine, transparente mais sont plus grands de tailles que ceux d'*Ankyslostoma duodenale* 70 à 75 µm. Au cours de l'incubation, les œufs inactivés par le désinfectant vont cesser de se développer et le contenu cytoplasmique inactivé va se désagréger (Figure 16A). Par contre les œufs potentiellement viables vont poursuivre leur segmentation aboutissant à la formation de 8 blastomères bien individualisés (Figure 16B), si les conditions sont favorables (dose désinfectante insuffisante) le processus de segmentation va se poursuivre aboutissant successivement à 16, 32, 64 blastomères (Figure 16C), ces blastomères vont se creuser par la suite d'une cavité pour former la larve mobile au bout de 30 jours (Figure 16 D).

Figure 16 : Œuf de *Necator amricanus* : œuf non viable (A), œufs en segmentation (B et C), œuf viable contenant la larve mobile (D)

III.1.1.4. Trichuris trichiura

Les œufs de *Trichuris trichiura* identifiés sont ovoïdes et mesurent environ 50 µm, avec une coque épaisse lisse et un bouchon muqueux clair à chaque extrémité. Les œufs non viables contiennent une masse embryonnaire immobile (Figure 17A). Les œufs non viables restent incolores (Figure 17B), alors que les œufs viables obtenus après incubation possèdent une paroi bien lisse et claire et un embryon hexacanthe mobile (Figure 17 C).

Figure 17 : Œufs non viables (A et B) et viables (C) de Trichuris trichiura

III.1.1.5. Strongyloides stercoralis

Les larves de *Strongyloides stercoralis* observées au cours de cette étude sont caractérisées par leur nature filiforme et leur taille variant de 200 à 400 µm. Les larves viables obtenues après incubation sont extrêmement mobiles et se déplacent en faisant des mouvement ondulatoires (Figure 18A), alors que les larves non viables sont immobiles et allongées (Figure 18B). Les larves viables obtenues après le test de viabilité par coloration présentent un contenu rouge (Figure 18C), alors que les larves non viables sont incolores (Figure 18 D).

Figure 18 : Larves viables (A et C) et larves non viables (B et D) de Strongyloides stercoralis

III.1.1.6. Hymenolepis nana

Avant incubation, les œufs d'*Hymenolepis nana* présentent une morphologie typique (Figures 19A et 19B), caractérisée par une double membrane permettant de protéger le contenu cytoplasmique et le matériel génétique. Après incubation, la masse embryonnaire commence à se développer, l'œuf suit le processus d'embryogenèse et après plusieurs segmentations, il atteint le stade de la blastula puis de la gastrula et donne une larve mobile après un mois d'incubation (Figure 19C). Les œufs exposés aux concentrations optimales pour leur inactivation perdront leur viabilité, de sorte que la membrane extérieure sera soumise à la pression oxydante du désinfectant et commencera à se tordre (Figure 19D), puis elle se rompt, augmentant ainsi la porosité de l'œuf (Figure 19E). À mesure que le nombre de pores de la membrane extérieure augmente, le passage du désinfectant de l'extérieur vers intérieur de l'œuf s'accroît. L'entrée importante d'une forte concentration de désinfectant endommagera l'oncosphère et le matériel nucléaire et provoquera l'inactivation de l'œuf (Figure 19F), le contenu cytoplasmique sera libéré dans l'environnement externe sous forme de simples inclusions non pathogènes (Figure 19G). Après la coloration des œufs viables, le colorant rouge est adsorbé par les œufs viables (Figure 19I), tandis que les œufs non viables restent incolores (Figure 19H).

Figure 19 : Œufs d'*Hymenolepis nana* avant incubation (A et B), œuf viable contenant la larve mobile (C), œufs non viables (D, E, F et G), œuf non viable incolore (H), œuf viable coloré au rouge neutre (I).

III.1.2. Variation du nombre d'œufs dénombrés par les techniques morphologiques

Au cours de cette étude 142108 œufs et larves d'helminthes ont été identifiés soit 135203 œufs et larves de Nématodes (95%) et 6905 œufs de Cestodes (5%) aucun œuf de Trématode n'a été identifié (Figure 20 A). Ces œufs et larves appartiennent principalement à 06 espèces à savoir : 40169 œufs d'*Ascaris lumbricoïdes*, 29175 œufs de *Necator americanus*, 19170 larves de *Strongyloides stercoralis*, 21860 œufs de *Trichuris trichiura*, 17924 œufs de *Ancylostoma duodenale* et 6905 œufs *Hymenolepis nana* (Figure 20 B).

Figure 20 : Différentes classes et espèces d'helminthes identifiées pendant l'étude

III.1.2.1. Variation spatiale des œufs d'Ascaris spp. et Necator americanus

La figure 21A présente les variations spatiales des densités des œufs d'*Ascaris* spp. identifiés durant l'étude. Ces densités oscillent entre 5100 et 1750 œufs/L dans la station Cité Universitaire, de 3849 à 2010 œufs/L dans la station Prison Centrale, de 12540 à 3030 œufs/L dans la station Nomayos et de 3590 à 1750 œufs/L dans la station Biyem-Assi. Dans l'ensemble, les fortes densités d'œufs viables ont été observées durant l'essai 1, excepté à la station Biyem-Assi. La plus forte densité (7500 œufs/L) d'œufs viables d'*Ascaris* a été obtenue à la station Nomayos (essai 1) tandis que les plus faibles densités (1750 œufs/L) d'œufs viables ont été obtenues aux stations Cité Universitaire (essai 2) et Biyem-Assi (essai 1).

La figure 21B présente les variations spatiales des densités des œufs *Necator americanus* identifiés durant la période d'étude. Ces densités oscillent entre 2680 et 1010 œufs/L dans la station Cité Universitaire, de 6000 à 3782 oeufs/L dans la station Prison Centrale, de 6610 à 1792 œufs/L dans la station Nomayos et de 3105 à 2000 œufs/L dans la station Biyem-Assi. Dans l'ensemble, les fortes densités d'œufs viables ont été observées durant l'essai1, excepté la station Prison Centrale. La plus forte densité (4500 œufs/L) d'œufs viables *Necator americanus* a été obtenue à la station Nomayos (essai 1) tandis que la plus faible densité (1010 œufs/L) d'œufs viables a été obtenue à la station Cité Universitaire (essai 2).

Figure 21: Variations spatiales des œufs viables et non viables d'Ascaris spp. (A) et Necator americanus (B)

III.1.2.2. Variation spatiale des larves de Strongyloides stercoralis et des œufs de Trichuris trichiura

La figure 22A présente les variations spatiales des densités des larves de *Strongyloides stercoralis* identifiées durant l'étude. Ces densités oscillent entre 3080 et 1070 larves/L dans la station Cité Universitaire, de 4480 à 3782 larves/L dans la station Prison Centrale, de 3000 à 1500 larves/L dans la station Nomayos et de 1150 à 750 larves/L dans la station Biyem-Assi. Dans l'ensemble, les fortes densités de larves viables ont été observées durant l'essai 2, excepté

à la station Nomayos. La plus forte densité (4420 larves/L) des larves mobiles de *Strongyloides stercoralis* a été obtenues à la station Prison Centrale durant l'essai 2, tandis que la plus faibles densité (750 larves/L) a été obtenue à la station Biyem-Assi durant l'essai 1.

La figure 22B présente les variations spatiales des densités des œufs de *Trichuris trichiura* identifiés durant l'étude. Ces densités oscillent entre 10680 et 1010 œufs/L dans la station Cité Universitaire, de 1748 à 934 œufs/L dans la station Prison Centrale, de 3056 à 973 œufs/L dans la station Nomayos et de 1254 à 840 œufs/L dans la station Biyem-Assi. La plus forte densité (8500 œufs/L) d'œufs viables de *Trichuris trichiura* a été obtenue à la station Cité Universitaire tandis que la plus faibles densité (840 œufs/L) a été obtenue à la station Biyem-Assi durant l'essai 1.

Figure 22 : Variations spatiales des larves non viables et viables de *Strongyloides stercoralis* (A), des œufs viables *et* non viables et *Trichuris trichiura* (B)

III.1.2.3. Variation spatiale des œufs de d'Ancylostoma duodenale et Hymenolepis nana

La figure 23A présente les variations spatiales des densités des œufs *Ancylostoma duodenale*. Ces densités oscillent entre 1854 et 740 œufs/L dans la station Cité Universitaire, de 8090 à 4730 œufs/L dans la station Nomayos aucun œuf n'a été dénombré dans les stations de la Prison Centrale et Biyem-Assi. Dans l'ensemble, les fortes densités d'œufs viables ont été observées durant l'essai 1. La plus forte densité d'œuf viable (6350 œufs/L) a été observée à la station Nomayos durant l'essai 1et la plus faible densité d'œufs viable (740 œufs/L) a été obtenue à la station Cité Universitaire durant l'essai 2.

La figure 23B présente les variations spatiales des densités des œufs *Hymenlepis nana* identifiés durant l'étude. Ces densités oscillent entre 2090 et 285 œufs/L dans la station Cité Universitaire, de 1273 à 357 œufs/L dans la station Prison Centrale, de 940 à 450 œufs/L dans la station Nomayos et de 750 à 300 œufs/L dans la station Biyem-Assi. Dans l'ensemble, les fortes densités d'œufs viables ont été observées durant l'essai 2. La station Cité Universitaire présente la plus grande densité d'œufs viables (1700 œufs/L), durant l'essai 2, de même la plus faible

densité (225 œufs/L) d'œufs viables a été également obtenue à la station Cité Universitaire durant l'essai 1.

Figure 23 : Variations spatiales des œufs viables et non viables d'*Ancylostoma duodenale* (A) et *Hymenolepis nana* (B)

III.1.3. Variation du nombre d'œufs dénombrés par la Technique moléculaire de Réaction de Polymérase en Chaine

L'analyse moléculaire réalisée a permis de mettre en évidence la présence de huit espèces d'helminthes à des pourcentage d'occurrence variable à savoir *Ascaris lumbricoïdes* (29,80%), *Necator americanus* (24,36%), *Trichuris trichiura* (14,26%), *Taenia solium* (9,22%), *Strongyloïdes stercoralis* (8,73%), *Ascaris suum* (8,04%), Les autres parasites (5,56%) sont représentés pas les espèces *Ancylostoma duodenale* et *Hymenolepis nana* (Figure 24).

Figure 24 : Pourcentage d'occurrence des différentes espèces d'helminthes identifiées par Réaction en Polymérase de Chaine

Les densités obtenues varient significativement d'une espèce à une autre (Figure 25), *Ascaris lumbricoides* présente la plus forte densité (3645 oeufs/100 ml), suivie de *Necator americanus* (2980 œufs/100 ml), de *Trichuris trichiura* (1744 œufs/100 ml), *Taenia solium* (1128 œufs/100 ml), *Stongyloides stercoralis* (1068 Larves/100 ml), *Ascaris suum* (984 œufs/100 ml) et *Hymenolepis nana* et *Ancylostoma duodenale* (580 œufs/100 ml).

Figure 25 : Variation de la densité des espèces d'helminthes identifiées par Réaction de Polymérase en Chaine

III.1.4. Pourcentage de viabilité des formes de résistance

Le tableau V, présente les moyennes des variations du pourcentage de viabilité des œufs et larves dans les différentes stations d'étude. Globalement les moyennes les plus élevées des pourcentages de viabilité ont été obtenues dans les stations Cité Universitaire, Prison Centrale et Biyem-Assi, alors que les plus faibles pourcentages de viabilité ont été obtenus à la station Nomayos. Pour les œufs d'Ascaris lumbricoides les pourcentages de viabilité oscillent de 63,306 %±7,525 (Cité Universitaire) à 56,474 %±4,716 (Nomayos). Pour ce qui est des œufs de Necator americanus le pourcentage le plus élevé (80,516%±5,163) a été obtenu à la station Cité Universitaire, tandis que le plus faible pourcentage de viabilité a été obtenu à la station Nomayos (70,912%±4,872). Les pourcentages de viabilité des larves de Strongyloides stercoralis oscillent entre 97,565%±0,413 (Cité Universitaire) et 77,451%±15,251 (Nomayos). Le pourcentage le plus élevé (77,298%±7,521) des œufs de Trichuris trichiura a été obtenu à la station Biyem-Assi tandis que le plus faible pourcentage (68,599%±5,293) a été obtenu à la station Nomayos. Les pourcentages de viabilité des œufs d'Ancylostoma duodenale oscillent entre 78,597±3,265% (Cité Universitaire) et 72,984%±7,790 (Nomayos), le pourcentage le plus élevé (80,144%±1,692) des œufs de Hymenolepis nana a été obtenu à la station Cité Universitaire tandis que le plus faible pourcentage $(63,384\% \pm 3,639)$ a été obtenu à la station Nomayos.

Espèces		Cité	Prison	Nomeyos	Biyem-Assi
		Universitaire	Centrale	Nomayos	
Ascaris spp.	% essai 1	68,6	61	59,8	60,3
	% essai 2	57,9	57,9	53,1	64,1
	Moyenne	63,3±7,5	59,4±2,2	56,5±4,7	62,2±2,6
Necator americanus	% essai 1	76,8	82,9	67,5	80,5
	% essai 2	84,2	73,6	74,3	78,3
	Moyenne	80,5±5,1	78,3±6,5	70,9±4,9	79,4±1,5
Strongyloides stercoralis	% essai 1	97,3	98,2	66,7	92,6
	% essai 2	97,8	98,6	88,2	94,8
	Moyenne	97,5±0,4	98,4±0,3	77,4±15,2	93,7±1,5
Trichuis. trichiura	% essai 1	79,6	74,9	64,8	71,9
	% essai 2	74	79,5	72,34	82,6
	Moyenne	76,8±3,9	77,2±3,2	68,6±5,2	77,2±7,5
Ancylostoma duodenale	% essai1	80,9		78,5	
	% essai 2	76,9	-	67,4	-
	Moyenne	78,6±3,2		72,9±7,7	
Hymenolepis nana	% essai 1	78,9	85,6	60,8	73,1
	% essai 2	81,3	66,7	65,9	78,7
	Moyenne	80,1±1,7	76,2±13,3	63,9±3,64	75,9±3,9

Tableau V : Pourcentage de viabilité des œufs et larves identifiés par localité

III.1.5. Variation du nombre d'œuf viable dénombré après application des désinfectants III.1.5.1. Variation du nombre d'œuf d'*Ascaris lumbrioïdes*

La figure 26 présente la variation des densités des œufs viables d'*Ascaris* spp. en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 2625 œufs/L, après application des désinfectants, les valeurs diminuent en fonction de l'augmentation de la concentration des désinfectants, les valeurs les plus élevées (supérieures à 500 œufs/L) obtenues après désinfection ont été observées sur l'échantillon traité au Hand, la plus petite valeur (66 œufs/L) a été obtenue sur l'échantillon traité au *Moringa oleifera* associé au Chlorure de Calcium à la concentration C6 (Figure 26A).

La valeur témoin de la densité des œufs viables d'*Ascaris* spp. obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 1553 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires à l'exception des échantillons traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 91 œufs/L. Les plus petites valeurs (0 œufs/L) ont été obtenues respectivement sur les échantillons traités au *Moringa oleifera*, Chlorure de Calcium et *Moringa oleifera* associé au Chlorure de Calcium à la concentration C6 (Figure 26B).

La valeur témoin de la densité des œufs viables d'Ascaris spp. obtenue avant application des désinfectants sur l'effluent de Nomayos est de 5265 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires à l'exception des échantillons

traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 850 œufs/L. La plus petite valeur (16 œufs/L) a été obtenue sur l'effluent traité avec au Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 26C).

La valeur témoin de la densité des œufs viables d'*Ascaris* spp. obtenue avant application des désinfectants sur l'effluent du Camp Sic Biyem-Assi est de 2025 œufs/L. Les densités des œufs d'*Ascaris* spp. obtenues après désinfection sur l'effluent du camp sic Biyem-Assi, présentent des profils similaires, avec une diminution croissante des teneurs des densités en fonction de l'augmentation de la concentration des désinfectants, à l'exception des échantillons traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 722 œufs/L. La plus petite valeur (51 œufs/L) a été obtenue sur l'effluent traité avec aux Rayons Lumineux C6 (Figure 26D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs des œufs d'Ascaris spp. obtenues aux différentes concentrations ($p=1,1510^{-16}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C3 (p=0,002), C1 et C4 (p=2,01.10⁻⁵), C1 et C5 (p=1,12.10⁻⁵), C1 et C6 (p=8,42.10⁻¹²), C2 et C4 (p=7,23.10⁻³), C2 et C5 (p=2,72.10⁻⁷), C2 et C6 (p=2,44.10⁻¹⁰), C3 et C5 (p=0,0008), C3 et C6 (p=1,95.10⁻⁶), C4 et C5 (p=0,009), C4 et C6 (p=7,89.10⁻⁵), C5 et C6 (p=0,02). De même il existe une différence significative entre les valeurs de la densité des œufs d'Ascaris spp. obtenues sur l'échantillon témoin et celles obtenues sur les échantillons traités avec le Gypse (p=5,2.10⁻³), le Chlorure de Calcium (p=9,5.10⁻³), l'Eau Oxygénée (p=0,0034), le Moringa (p=7,8.10⁻³), le Charbon (p=5,2.10⁻³), le Moringa associé au Chlorure de Calcium (p=3,4.10⁻³), les Rayonnements Lumineux (p=0,03). Il existe une différence significative entre les Rayonnement Lumineux et le Gypse (p=0,016); entre les Rayonnements Lumineux et le Chlorure de Calcium (p=0,02), les Rayonnement Lumineux et le Chlorure de Sodium (p=0,016), entre les Rayonnements Lumineux et l'Eau Oxygénée (p=0,023), les Rayonnements Lumineux et le Hand (p=0,016), entre les Rayonnements Lumineux et le Moringa (p=0,02), les Rayonnements Lumineux et le Charbon (p=0,0022), entre les Rayonnements Lumineux et le Chlorure de Sodium (p=0,03). Il existe également une différence significative entre le Moringa associé au Chlorure de Calcium le Gypse (p=0,019); entre le Moringa associé au Chlorure de Calcium et le Chlorure de Calcium (p=0,033), le Moringa associé au Chlorure de Calcium et l'Hypochlorite de Sodium (p=0,017) ; entre le Moringa associé au Chlorure de Calcium et l'Eau Oxygénée (p=0,015), le Moringa associé au Chlorure de Calcium et le Hand (p=0,012.10⁻⁵), le Moringa associé au Chlorure de Calcium et le Charbon (p=9,6.10⁻³), entre le Moringa associé au Chlorure de Calcium et le Chlorure de Sodium ($p=0,027.10^{-5}$).

Il existe une différence significative entre le Chlorure de Sodium et le Gypse (p=2,6.10⁻³), entre le Chlorure de Sodium et le Chlorure de Calcium (p=0,0071), entre le NaCl et le l'Hypochlorite de Sodium (p=1,7.10⁻³), entre le Chlorure de Sodium et l'Eau Oxygénée (p=8,5.10⁻³), entre le Chlorure de Sodium et le Moringa (p=8,6.10⁻⁴), entre le Chlorure de Sodium et le Charbon (p=0,0028). Il existe également une différence significative entre le Hand et le Gypse (p=6,6.10⁻⁴), entre le Hand et le Chlorure de Sodium (p=3,3.10⁻⁴), entre le Hand et l'Eau Oxygénée (p=2.10⁻⁴), entre le Hand et le Hand et le Moringa (p=9,6.10⁻⁴), entre le Hand et le Charbon (p=2,6.10⁻⁴), entre le Hand et le Moringa (p=9,6.10⁻⁴), entre le Hand et Charbon (p=2,6.10⁻³).

Légende : C1=0,1 ; C2=0,2 ; C3=0,3 ; C4=0,4 ; C5=0,5 ; C6=0,6 ; Te=Témoin; CaCl₂=Chlorure de Calcium; NaClO=Hypochlorite de sodium; H₂O₂=Eau Oxygénée; NaCl=Chlorure de sodium; Mo+CaCl₂=Moringa associé au Chlorure de Calcium; RL=Rayonnements Lumineux.

Figure 26 : Variation des densités des œufs viables d'*Ascaris lumbrioïdes* dénombrés avant et après désinfection en fonction des désinfectants : Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.5.2. Variation du nombre d'œuf de Necator americanus

La figure 27 présente la variation des densités des œufs viables *Necator americanus* en fonction des concentrations et des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 1535 œufs/L, après application des désinfectants, les valeurs diminuent considérablement à partir de la concentration C4, les valeurs les plus élevées (supérieures à 1200 œufs/L) obtenues après désinfection ont été observées sur les échantillons traités au Hand, au Chlorure de Sodium et à l'Hypochlorite de Sodium. La plus

faible densité (0 œuf/L) d'œufs viables a été obtenue sur l'échantillon traité au Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 27 A).

La valeur témoin de la densité des œufs viables *Necator americanus* obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 2179 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires à l'exception des échantillons traités au Hand et au Chlorure de sodium dont les valeurs obtenues après désinfection sont supérieures à 195 œufs/L. Aucun œuf viable n'a été dénombré sur les échantillons traités au Moringa (C5 et C6), au Chlorure de Calcium (C6), au Gypse (C6), au Charbon (C6) et au Moringa associé au Chlorure de Calcium (C4, C5, C6) (Figure 27B).

La valeur témoin de la densité des œufs viables de *Necator americanus* obtenue avant application des désinfectants sur l'effluent de Nomayos est de 3146 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires à l'exception des échantillons traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 475 œufs/L. Les plus petites valeurs (11 et 39 œufs/L) ont été obtenues respectivement sur les échantillons traités aux Rayonnements Lumineux et au Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 27 C).

La valeur témoin de la densité des œufs viables de *Necator americanus* obtenue avant application des désinfectants sur l'effluent du Camp Sic Biyem-Assi est de 2250 œufs/L, les densités des œufs de *Necator americanus* obtenues après désinfection présente des profils similaires, avec une diminution croissante des densités en fonction de l'augmentation de la concentration, à l'exception des échantillons traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 900 œufs/L. Aucun œuf viable n'a été observé sur les échantillons traités au Moringa (C6), au Chlorure de Calcium (C6) et au Moringa associé au Chlorure de Calcium (C5, C6) (Figure 27D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs des œufs de *Necator americanus* obtenues aux différentes concentrations ($p=1,63.10^{-20}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C3 ($p=1,7.10^{-4}$), C1 et C4 ($p=7,08.10^{-8}$), C1 et C5 ($p=2,36.10^{-10}$), C1 et C6 ($p=2,4.10^{-10}$), C2 et C4 ($p=6,45.10^{-6}$), C2 et C5 ($p=3,11.10^{-9}$), C2 et C6 ($p=1,82.10^{-7}$), C3 et C5 ($p=9,51.10^{-5}$), C3 et C6 ($p=1,5.10^{-7}$), C4 et C5 ($p=4,2.10^{-3}$), C4 et C6 ($p=3,76.10^{-6}$), C5 et C6 ($p=4,4.10^{-3}$).

De même il existe une différence significative entre les valeurs de la densité des œufs *Necator americanus* obtenues sur l'échantillon témoin et celles obtenues avec le Gypse $(p=2,27.10^{-3})$, le Chlorure de Calcium $(p=2,3.10^{-3})$, l'Eau Oxygénée $(p=6,7.10^{-5})$, le Hand $(p=9,5.10^{-3})$, le Moringa $(p=1,8.10^{-3})$, le Charbon $(p=2,2.10^{-3})$ le Chlorure de Sodium (p=0,011),

le Moringa associé au Chlorure de Calcium ($p=1,7.10^{-3}$), les Rayonnements Lumineux (p=0,03). Il existe également une différence significative entre les Rayonnements Lumineux et le Gypse ($p=4,3.10^{-3}$), entre les Rayonnements Lumineux et le Chlorure de Calcium (p=0,01), les Rayonnements Lumineux et le l'Hypochlorite de Sodium (p=0,0043), entre les Rayonnements Lumineux et le Hand ($p=1,8.10^{-3}$), entre les Rayonnements Lumineux et le Moringa (p=0,023), entre les Rayonnements Lumineux et le Charbon ($p=7.10^{-3}$), entre les Rayonnements Lumineux et le Chlorure de Sodium ($p=1,8.10^{-3}$).

Il existe une différence significative entre les densités des œufs de *Necator americanus* obtenue après traitement au le Moringa associé au Chlorure de Calcium et le Gypse (p=9,8.10⁻⁴), entre le Moringa associé au Chlorure de Calcium et le Chlorure de Calcium (p=0,012), entre le Moringa associé au Chlorure de Calcium et l'Hypochlorite de Sodium (p=6,1.10⁻⁴), entre le Moringa associé au Chlorure de Calcium et l'Eau Oxygénée (p=1,5.10⁻³), entre le Moringa associé au Chlorure de Calcium et le Hand (p=4,04.10⁻⁷), entre les Rayonnements Lumineux et le Moringa (p=0,048), entre le Moringa associé au Chlorure de Calcium et le Chlorure de Calcium et le Charbon (p=8.10⁻³), entre le Moringa associé au Chlorure de Calcium et le Chlorure de Sodium (p=5,37.10⁻⁸).

Il existe une différence significative entre les œufs traités au Chlorure de Sodium et au Gypse (p=0,012), entre le Chlorure de Sodium et le Chlorure de Calcium (p=0,7.10⁻³), entre le Chlorure de Sodium et le l'Hypochlorure de Sodium (p=0,4.10⁻³), entre le Chlorure de Sodium et l'Eau Oxygénée (p=0,7.10⁻³), entre le Chlorure de Sodium et le Moringa (p=4,04.10⁻⁷), entre le Chlorure de Sodium et le Chlorure de Sodium (p=1,3.10⁻³), entre le Hand et au Gypse (p=3.10⁻³), entre le Hand et le l'Hypochlorure de Sodium (p=2,9.10⁻³), entre le Hand et l'Eau Oxygénée (p=4,4.10⁻⁴), entre le Hand et le Moringa (p=2,05.10⁻⁵), entre le Hand et Charbon (p=0,8.10⁻³).

Figure 27: Variation de la densité des œufs viables de *Necator americanus* dénombrés avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D) ; Te=Témoin; CaCl₂=Chlorure de Calcium; NaClO=Hypochlorite de sodium; H₂O₂=Eau Oxygénée; NaCl=Chlorure de sodium; Mo+CaCl₂=Moringa associé au Chlorure de Calcium; RL=Rayonnements Lumineux.

III.1.5.3. Variation du nombre de larves de Strongyloides stercoralis

La figure 28 présente la variation des densités des larves viables de *Strongyloides stercoralis* en fonction de la concentration et des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 2042 larves/L, après application des désinfectants, les valeurs diminuent en fonction de l'augmentation de la concentration des désinfectants. Les valeurs les plus élevées (supérieures à 980 larves/L) obtenues après désinfection à la concentration C6 ont été observées sur l'échantillon traités au Hand et au Chlorure de Sodium, la plus petite valeur (9 larves/L) a été obtenue sur l'échantillon traité aux Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 28A).

La valeur témoin de la densité des larves viables de *Strongyloides stercoralis* obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 4101 larves/L, les valeurs obtenues après application des désinfectants présentent des profils similaires à l'exception des échantillons traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 700 larves/L. La plus petite valeur (0 larve/L) a été obtenue sur les échantillons traités, au Moringa associé au Chlorure de Calcium aux concentrations C5 et C6 et sur les échantillons traités au Rayonnements Lumineux (Figure 28B).

La valeur témoin de la densité des larves viables *Strongyloides stercoralis* obtenues avant application des désinfectants sur l'effluent de Nomayos est de 1750 larves/L, les valeurs obtenues après

application des désinfectants présentent des profils similaires à l'exception des échantillons traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 250 larves/L. La plus petite valeur (0 larves/L) a été obtenue sur le échantillons traités à l'Hypochlorite de Sodium, au Chlorure de Calcium (C6) et au Moringa associé au Chlorure de Calcium aux concentrations C5 et C6 (Figure 28C).

La valeur témoin de la densité des larves viables *Strongyloides stercoralis* obtenue avant application des désinfectants sur l'effluent du Camps Sic Biyem-Assi est de 920 larves/L. Les densités des larves de *Strongyloides stercoralis* obtenues après désinfection, présentent des profils similaires, avec une diminution croissante des densités en fonction de l'augmentation de la concentration, à l'exception des échantillons traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 200 larves/L. La plus petite valeur (0 œufs/L) a été obtenue sur les échantillons traités à l'Hypochlorite de Sodium (C6), au Chlorure de Calcium (C5, C6), au Gypse (C6) et au Moringa associé au Chlorure de Calcium (C5, C6) (figure 28 D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs des larves de *Strongyloides stercoralis* obtenues aux différentes concentrations ($p=8,24.10^{-17}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C3 ($p=2,7.10^{-3}$), C1 et C4 ($p=2,79.10^{-6}$), C1 et C5 ($p=4,56.10^{-9}$), C1 et C6 ($p=1,36.10^{-10}$), C2 et C4 ($p=3,1.10^{-4}$), C2 et C5 ($p=1,7810^{-4}$), C2 et C6 ($p=2,07.10^{-9}$), C3 et C4 (p=0,045), C3 et C5 ($p=2,5.10^{-4}$), C3 et C6 ($p=3,2.10^{-7}$), C4 et C5 (p=0,028), C4 et C6 ($p=4,07.10^{-5}$), C5 et C6 (p=0,02).

De même il existe une différence significative entre les valeurs de la densité des larves de *Strongyloides stercoralis* obtenues sur l'échantillon témoin et celles obtenues après traitement au Gypse (p=9,5.10⁻³), au Chlorure de Calcium (p=0,0137), à l'Hypochlorite de Sodium (p=0,016), à l'Eau Oxygénée (p=0,013), au Moringa (p=0,013), au Charbon (p=0,014), au Moringa associé au Chlorure de Calcium (p=2,7.10⁻³) et aux Rayonnements Lumineux (p=0,051). Il existe également une différence significative entre les Rayonnements Lumineux et le Hand (p=6,1.10⁻³), entre les Rayonnements Lumineux et le Chlorure de Sodium (p=9,7.10⁻³).

Il existe une différence significative entre les valeurs obtenues sur les échantillons traités au Moringa associé au Chlorure de Calcium et ceux traités au Gypse ($p=5,6.10^{-3}$), entre le Moringa associé au Chlorure de Calcium et le Chlorure de Calcium (p=0,048), le Moringa associé au Chlorure de Calcium et l'Hypochlorite de Sodium (p=0,0108), entre le Moringa associé au Chlorure de Calcium et l'Eau Oxygénée ($p=5,5.10^{-3}$), entre le Moringa associé au Chlorure de Calcium et le Hand ($p=1,35.10^{-7}$), entre les Rayonnements Lumineux et le Moringa (p=0,0108), entre le Moringa associé au Chlorure de Calcium et le Chlorure de

sur les échantillons traités au Chlorure de Sodium et le Gypse ($p=2,5.10^{-4}$), entre le Chlorure de Sodium et le Chlorure de Sodium ($p=3,7.10^{-4}$), entre l'Hypochlorite de Sodium et le Chlorure de Sodium ($p=2,3.10^{-3}$), entre le Chlorure de Sodium et l'Eau Oxygénée (p=0,001), entre le Chlorure de Sodium et le Moringa (p=0,001), entre le Chlorure de Sodium et le Charbon ($p=9.10^{-4}$). Il existe également une différence significative entre le Hand et le Gypse ($p=3,56.10^{-5}$), entre le Hand et l'Eau Oxygénée ($p=1,4.10^{-4}$), entre le Hand et le Moringa ($p=8,56.10^{-5}$) et entre le Hand et Charbon ($p=1,5.10^{-4}$).

Figure 28: Variation de la densité des larves viables de *Strongyloides stercoralis* dénombrées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.5.4. Variation du nombre d'œuf de Trichuris trichiura

La figure 29 présente la variation des densités des œufs viables de *Trichuris trichiura* en fonction des concentrations des désinfectant utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 4755 œufs/L. Après application des désinfectants, les valeurs diminuent en fonction de l'augmentation de la concentration des désinfectants, les valeurs les plus élevées (supérieures à 550 œufs/L) obtenues après désinfection à la concentration C6 ont été observées sur l'échantillon traités au Hand et au Chlorure de Sodium, la plus petite valeur (0 œuf/L) a été obtenue sur l'échantillon traité aux Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 29A).
La valeur témoin de la densité des œufs viables *Trichuris trichiura* obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 1162 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires à l'exception des échantillons traités aux Gypse, au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 144 œufs/L. La plus petite valeur (0 œuf/L) a été obtenue sur les échantillons traités au Chlorure de Calcium (C6), au Moringa associé au Chlorure de Calcium à la concentration C5 et C6 (Figure 29B).

La valeur témoin de la densité des œufs viables *Trichuris trichiura* obtenue avant application des désinfectants sur les échantillons de Nomayos est de 1478 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires, aucun œuf viable n'a été observé sur les échantillons traités au Chlorure de calcium (C5, C6), à l'Hypochlorite de Sodium (C5, C6), à l'Eau Oxygénée (C4, C5, C6), au Charbon (C5, C6), au Moringa (C5) et au Moringa associé au Chlorure de Calcium (C4, C5, C6), par contre les œufs viable de *Trichuris trichiura* sont encore présents après traitement au Gypse (12 œufs/L, C6), aux Rayonnements Lumineux (18 œufs/L), au Hand (295 œufs/L, C6) et au Chlorure de Sodium (312 œufs/L, C6) (Figure 29C).

La valeur témoin de la densité des œufs viables *Trichuris trichiura* obtenue avant application des désinfectants sur les échantillons de Biyem-Assi est de 938 œufs/L les valeurs obtenues après application des désinfectants présentent des profils similaires, aucun œuf viable n'a été observé sur les échantillons traités au Chlorure de calcium (C4, C5, C6), à l'Hypochlorite de Sodium (C6), à l'Eau Oxygénée (C6) , au Charbon (C6), au Moringa (C5, C6) et au Moringa associé au Chlorure de Calcium (C4, C5, C6), par contre les œufs viables de *Trichuris trichiura* sont encore présents après traitement au Gypse (145 œufs/L, C6), aux Rayonnements Lumineux (37 œufs/L), au Hand (315 œufs/L, C6) et au Chlorure de Sodium (345 œufs/L, C6) (Figure 29D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs des œufs de *Trichuris trichiuria* obtenues aux différentes concentrations ($p=4,22.10^{-14}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C2 (p=0,028), C1 et C3 ($p=4,5.10^{-3}$), C1 et C4 ($p=7,56.10^{-6}$), C1 et C5 ($p=4,14.10^{-8}$), C1 et C6 ($p=1,46.10^{-10}$), C2 et C4 (p=0,0027), C2 et C5 ($p=1,7.10^{-5}$), C2 et C6 ($p=1,4.10^{-8}$), C3 et C5 (p=0,0013), C3 et C6 ($p=1,85.10^{-6}$), C4 et C6 ($p=1,09.10^{-3}$).

De même il existe une différence significative entre les valeurs de la densité des œufs de *Trichuris trichiura* obtenues sur l'échantillon témoin et celles obtenues avec le Gypse (p=0,0028), le Chlorure de Calcium (p=0,002), l'Hypochlorite de Sodium (p=0,013), l'Eau Oxygénée (p=4,2.10⁻³), le Moringa (p=0,011), le Charbon (p=0,023), le Chlorure de Sodium (p=4,5.10⁻³), le Moringa

associé au Chlorure de Calcium ($p=1,5.10^{-3}$). Il existe également une différence significative entre les Rayonnements Lumineux et le Hand (p=0,045).

Il existe une différence significative entre le Moringa associé au Chlorure de Calcium le Gypse $(p=1,1.10^{-4})$, le Moringa associé au Chlorure de Calcium et l'Hypochlorite de Sodium (p=0,015), entre le Moringa associé au Chlorure de Calcium et l'Eau Oxygénée $(p=8,3.10^{-3})$, le Moringa associé au Chlorure de Calcium et le Rayonnements Lumineux et le Moringa $(p=9,8.10^{-3})$, entre le Moringa associé au Chlorure de Calcium et le Calcium et le Calcium et le Calcium et le Moringa ($p=9,8.10^{-3}$), entre le Moringa associé au Chlorure de Calcium et le Calcium et le Calcium et le Moringa ($p=9,8.10^{-3}$), entre le Moringa associé au Chlorure de Calcium et le Calcium ($p=7,29.10^{-8}$).

Il existe une différence significative entre le Chlorure de Sodium et le Gypse ($p=5,1.10^{-4}$), entre le Chlorure de Sodium et l'Hypochlorite de Calcium ($p=1,87.10^{-7}$), entre le Chlorure de Sodium et l'Eau Oxygénée ($p=2,7.10^{-4}$), entre le Chlorure de Sodium et le Moringa ($p=3,4.10^{-4}$), entre le Chlorure de Sodium et le Chlorure de Sodium et le Charbon ($p=1,5.10^{-4}$). Il existe également une différence significative entre le Hand et le Gypse ($p=8.10^{-4}$), entre le Hand et le Chlorure de Calcium ($p=2,09.10^{-7}$), entre le Hand et l'Hypochlorite de Sodium ($p=2.10^{-4}$), entre le Hand et l'Eau Oxygénée ($p=2,3.10^{-4}$), entre le Hand et le Moringa ($p=2.10^{-4}$), entre le Hand et Charbon ($p=1,7.10^{-4}$).

Figure 29 : Variation de la densité des œufs viables de *Trichuris trichiura* dénombrés avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.5.5. Variation du nombre d'œuf d'Ancylostoma duodenale

La figure 30 présente la variation des densités des œufs viables d'*Ancylostoma duodenale* en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 1120 œufs/L, après application des désinfectants, les valeurs diminuent en fonction de l'augmentation de la concentration des désinfectants, les valeurs les plus élevées (supérieures à 420 œufs/L) obtenues après désinfection à la concentration C6 ont été observées sur les échantillons traités au Hand et au Chlorure de Sodium, aucun œuf viable n'a été observé sur l'échantillon traité aux Moringa associé au Chlorure de Calcium à la concentration C6. L'Hypochlorite de Calcium (4 œufs/L), l'Eau Oxygénée (4 œufs/L), le Moringa (5 œufs/L), l'Hypochlorite de Sodium (6 œufs/L), le Charbon (7 œufs/L), le Gypse (39 œufs/L) et les Rayonnements Lumineux (34 oeufs/L) présentent également des faibles valeurs. Par contre le Chlorure de Sodium (427 œufs/L) et le Hand (533 œufs/L), présentent des valeurs élevées (Figure 30A).

La valeur témoin de la densité des œufs viables d'*Ancylostoma duodenale* obtenue avant application des désinfectants sur les échantillons de Nomayos est de 5540 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires, aucun œuf viable n'a été observé sur les échantillons traités au Gypse au Chlorure de Calcium (C5, C6), à l'Hypochlorite de Sodium (C6), à l'Eau Oxygénée (C6), au Charbon (C5, C6), au Moringa (C5, C6) et au Moringa associé au Chlorure de Calcium (C4, C5, C6). Par contre les œufs viables d'*Ancylostoma duodenale* sont encore présents après traitement aux Rayonnements Lumineux (105 œufs/L), au Hand (1015 œufs/L, C6) et au Chlorure de Sodium (812 œufs/L, C6) (Figure 30B).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs des œufs d'*Ancylostoma duodonale* obtenues aux différentes concentrations ($p=1,2.10^{-8}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C3 (p=0,043), C1 et C4 ($p=4.10^{-4}$), C1 et C5 ($p=6,13.10^{-5}$), C1 et C6 ($p=1,63.10^{-5}$), C2 et C4 (p=0,002), C2 et C5 ($p=2,53.10^{-4}$), C2 et C6 ($p=4,06.10^{-5}$), C3 et C4 (p=0,035), C3 et C5 ($p=1,126.10^{-3}$), C3 et C6 ($p=8,77.10^{-5}$), C4 et C5 (p=0,047), C4 et C6 (p=0,01).

De même il existe une différence significative entre les valeurs de la densité des œufs d'*Ancylostoma duodenale* obtenues sur les échantillons traités aux Rayonnements Lumineux au Chlorure de Sodium (p=0,036) et au Hand (p=0,036). Il existe également une différence significative entre le Moringa associé au Chlorure de Calcium et l'échantillon témoin (p=0,03), entre le Moringa associé au Chlorure de Calcium et le Gypse (p= 7.10^{-3}), entre le Moringa associé au Chlorure de Sodium (p=0,02), entre le Moringa associé au

Chlorure de Calcium et le Hand ($p=3,18.10^{-5}$), entre le Moringa associé au Chlorure de Calcium et le Chlorure de Sodium ($p=3,18.10^{-5}$).

Il existe une différence significative entre le Chlorure de Sodium le Gypse (p=0,01), entre le Chlorure de Sodium et le Chlorure de Calcium (p= 4.10^{-4}), entre le Chlorure de Sodium et l'Hypochlorite de Sodium (p= 3.10^{-3}), entre le Chlorure de Sodium et l'Eau Oxygénée (p= $1,3.10^{-3}$), entre le Chlorure de Sodium et le Moringa (p= $1,6.10^{-3}$), entre le Chlorure de Sodium et le Charbon (p= $2,4.10^{-3}$), il existe également une différence significative entre le Hand le Gypse (p=0,01), entre le Hand et le Chlorure de Calcium (p= 3.10^{-4}), entre le Hand et le l'Hypochlorite de Sodium (p= $1,3.10^{-3}$), entre le Hand et l'Eau Oxygénée (p= $1,1.10^{-3}$), entre le Hand et le Moringa (p= $1,1.10^{-3}$), entre le Hand et le Charbon (p= 2.10^{-3}).

Figure 30 : Variation de la densité des œufs viables d'*Ancylostoma duodenale* dénombrés avant et après désinfection, Cité Universitaire (A), Prison Centrale (B)

III.1.5.6. Variation du nombre d'œuf de Hymenolepis nana

La figure 31 présente la variation des densités des œufs viables d'*Hymenolepis nana* en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur les échantillons de la Cité Universitaire avant désinfection est de 963 œufs/L. Après application des désinfectants, les valeurs diminuent en fonction de l'augmentation de la concentration des désinfectants, les valeurs les plus élevées (supérieures à 120 œufs/L) obtenues après désinfection à la concentration C6 ont été observées sur les échantillons traités à l'Hypochlorite de Sodium, au Gypse, au Hand et au Chlorure de Sodium, tandis que les plus petites valeurs ont été obtenues sur les échantillons traités au Moringa (71 œufs/L, C6) aux Rayonnements Lumineux (53 œufs/L), à l'Eau Oxygénée (35 œufs/L, C6), au Charbon (33 œufs/L, C6), au Chlorure de Calcium (21 œufs/L, C6) et au Moringa associé au Chlorure de Calcium (6 œufs/L, C6) (Figure 31A).

La valeur témoin de la densité des œufs viables d'*Hymenolepis nana* obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 604 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires à l'exception des échantillons traités au Hand et au Chlorure de Sodium dont les valeurs obtenues après désinfection sont supérieures à 170 œufs/L. Aucun œuf viable n'a été observé sur les échantillons traités au Moringa (C6) et au Moringa associé au Chlorure de Calcium (C5 et C6), tandis que 23 œufs/L ont été dénombrés sur les échantillons traités aux Rayonnements Lumineux et 16 œufs/L ont été dénombrés sur l'échantillon traité à l'Eau Oxygénée (Figure 31B).

La valeur témoin de la densité des œufs viables d'*Hymenolepis nana* obtenue avant application des désinfectants sur les échantillons de Nomayos est de 535 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires, aucun œuf viable n'a été observé sur les échantillons traités au Chlorure de Calcium (C6) et au Moringa associé au Chlorure de Calcium (C5, C6). Par contre les œufs viables d'*Hymenolepis nana* sont encore présents après traitement au Gypse (65 œufs/L, C6), aux Rayonnements Lumineux (12 œufs/L), au Hand (137 œufs/L, C6), au Chlorure de Sodium (122 œufs/L, C6), à l'Hypochlorite de Sodium (39 œufs/L, C6), à l'Eau Oxygénée (17 œufs/L, C6) et au Moringa (54 œufs/L, C6) (Figure 31C).

La valeur témoin de la densité des œufs viables d'*Hymenolepis nana* obtenue avant application des désinfectants sur les échantillons de Biyem-Assi est de 445 œufs/L, les valeurs obtenues après application des désinfectants présentent des profils similaires, aucun œuf viable n'a été observé sur les échantillons traités au Moringa associé au Chlorure de Calcium (C6). Par contre les œufs viables d'*Hymenolepis nana* sont encore présents après traitement au Gypse (140 œufs/L, C6), aux Rayonnements Lumineux (30 œufs/L), au Hand (197 œufs/L, C6), au Chlorure de Sodium (210 œufs/L, C6), au Chlorure de Calcium (30 œufs/L), à l'Hypochlorite de Sodium (66 œufs/L), à l'Eau Oxygénée (79 œufs/L), au Charbon (54 œufs/L, C6) et au Moringa (23 œufs/L), (Figure 31 D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs des œufs des œufs d'*Hymenolepis nana* obtenues aux différentes concentrations (p=6,68.10⁻²¹), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C2 (p=4,1.10⁻⁴), C1 et C3 (p=3,1.10⁻⁴), C1 et C4 (p=5,17.10⁻⁸), C1 et C5 (p=4,97.10⁻¹¹), C1 et C6 (p=3,1.10⁻¹²), C2 et C3 (p=0,04), C2 et C4 (p=3,7.10⁻⁵), C2 et C5 (p=9,56.10⁻⁹), C2 et C6 (p=5,74.10⁻¹¹), C3 et C5 (p=8,62.10⁻⁵), C3 et C6 (p=6,95.10⁻⁸), C4 et C5 (p=0,011), C4 et C6 (p=2,56.10⁻⁶), C5 et C6 (p=7.10⁻³).

De même il existe une différence significative entre les valeurs de la densité des œufs d'*Hymenolepis nana* obtenues sur l'échantillon témoin et celles obtenues après traitement au Gypse ($p=6,4.10^{-3}$), au Chlorure de Calcium ($p=5,2.10^{-3}$), à l'Hypochlorite de Sodium (p=0,01), à l'Eau Oxygénée ($p=5,2.10^{-3}$), au Moringa (p=0,0052), au Charbon ($p=6,4.10^{-3}$), au Chlorure de Sodium ($p=7,8.10^{-3}$), au Moringa associé au Chlorure de Calcium ($p=5,2.10^{-3}$), aux Rayonnements Lumineux ($p=5,2.10^{-3}$). Il existe également une différence significative entre les Rayonnements Lumineux et le Hand (p=0,03).

Il existe une différence significative entre les valeurs de la densité des œufs d'Hymenolepis nana obtenues sur les échantillons traités aux Rayonnements Lumineux et la densité obtenue sur les échantillons traités au Chlorure de Sodium (p=0,036) et au Hand (p=0,036). Il existe aussi une différence significative entre le Moringa associé au Chlorure de Calcium et le Gypse (p=6,4.10⁻⁴), entre le Moringa associé au Chlorure de Calcium et l'Hypochlorite de Sodium (p=0,015), entre le Moringa associé au Chlorure de Calcium et l'Eau Oxygénée (p=8,8.10⁻⁴), entre le Moringa associé au Chlorure de Calcium et le Hand (p=4,07.10⁻⁶), entre le Moringa associé au Chlorure de Calcium et le Charbon (p=0,01), entre le Moringa associé au Chlorure de Calcium et le Chlorure de Sodium (p=1,17.10⁻⁵), Il existe également une différence significative entre le Chlorure de Sodium et le Gypse (p=0,04), entre le Chlorure de Sodium et le Chlorure de Calcium (p=0,0052), entre le Chlorure de Sodium et l'Eau Oxygénée (p=0,04), entre le Chlorure de Sodium et le Moringa (p=1,1.10⁻³), entre le Chlorure de Sodium et le Charbon (p=0,015). Afin il existe aussi une différence significative entre le Hand et le Gypse (p=3,2.10⁻³), entre le Hand et le Chlorure de Calcium (p=04.10⁻³), entre le Hand et l'Hypochlorite de Sodium (p=8,8.10⁻³), entre le Hand et l'Eau Oxygénée ($p=2,05.10^{-3}$), entre le Hand et le Moringa ($p=1,2.10^{-4}$), entre le Hand et Charbon $(p=1,4.10^{-3}).$

Figure 31 : Variation de la densité des œufs viables d'*Hymenolepis nana* dénombrés avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.6. Caractéristiques physico-chimiques des échantillons bruts avant désinfection

La caractérisation physico-chimique des paramètres a porté sur les variables telles que la luminosité, les Matières en Suspension, la turbidité, la couleur, des TDS, la conductivité électrique les Nitrates, l'azote ammoniacal les orthophosphates, l'oxydabilité, la salinité, le pH, l'alcalinité, la température, l'oxygène dissous la résistivité et le CO₂.

Les valeurs de l'intensité lumineuse enregistrées au cours du traitement par Rayonnement Lumineux variait de 2500 à 3600 lux avec une moyenne de 2940 ± 516 lux. Les valeurs de la température ont très peu varié au cours de cette étude, elles oscillent entre 24 °C (Prison Centrale) et 26 °C (Nomayos et Biyem-Assi), avec une moyenne de $25,25\pm0,9$ °C. Le pourcentage de saturation en oxygène a considérablement varié d'une station à l'autre, la valeur la plus élevée a été obtenue à la station Biyem-Assi (55%), tandis que la plus faible valeur (5%) a été obtenue à la station (Nomayos), ces valeurs oscillent autour d'une moyenne de $35,75\pm22,3\%$. Le taux de CO₂, mesuré au cours de cette étude varie de 13,4 mg/L à 23 mg/L avec une moyenne de $21,56\pm9,2$ mg/L (Tableau VI).

Concernant la Salinité, les TDS et la conductivité électrique les valeurs les plus élevées (1,04 PSU, 919 mg/L, 2063 μ S/cm) ont été obtenues à la station de la Prison Centrale, tandis que les plus faibles valeurs ont été obtenues à la station de la Cité Universitaire (0,33 PSU, 343 mg/L, 685 μ S/cm), ces valeurs oscillent autour d'une moyenne de 0,832±0,4 PSU ; 754,25±276,4 mg/L ; 1564,25±606,8 μ S/cm respectivement pour la salinité les TDS et la conductivité électrique. Par contre la valeur la plus élevée de la résistivité a été obtenue à la station de la Cité Universitaire (1460 Ohm/cm) et la valeur la plus faible a été obtenue à la station de la Prison Centrale (4370hm/cm) ces valeurs tournent autour d'une moyenne de 759,75±471,5 ohm/cm (Tableau VI).

Les valeurs les plus élevées de l'alcalinité (310 mg/L) et du pH (8,14 U.C) ont été obtenues aux stations Nomayos et Prison Centrale respectivement, tandis que les plus faibles valeurs de l'alcalinité (40mg/L) et du pH (6,17 U.C) ont été obtenues à la station Biyem-Assi. Ces valeurs oscillent autour d'une moyenne de 135±120,1 mg/L (alcalinité) et de 7,2875±1 U.C (pH) (Tableau VI).

Les valeurs les plus élevées de l'azote ammoniacal (48 mg/L) et des nitrates (16.10⁴ mg/L) ont été obtenues à la station Nomayos tandis que les plus faibles valeurs de l'azote ammoniacal (3,5 mg/L) ont été enregistrée à la station de la Prison Centrale la plus faible valeur des nitrates (2,2 mg/L) a été obtenue à la station Biyem-Assi (Tableau VI).

Les valeurs de la turbidité de la couleur et des MES varient significativement d'une station à l'autre les valeurs les plus élevées (19.10⁵ FTU, 87.10⁵ Pt.Co, 8600 mg/L) ont été

obtenues à la station Nomayos, tandis que les plus faibles valeurs ont été obtenues à la station Biyem-Assi soient 560 FTU, 1940 Pt.Co, 2600 mg/L, ces valeurs oscillent autour d'une moyenne de $47.10^4 \pm 940$ FTU ; $22.10^5 \pm 434$ Pt.Co ; $3122,5 \pm 372,25$ mg/L respectivement pour la turbidité, couleur et les MES. Le taux de matières oxydables varie de 450 mg/L (Nomayos) à 69,125 mg/L (Prison Centrale) ces valeurs oscillent autour d'une moyenne de 219,06±164,3 mg/L (Tableau VI).

	Cité	Prison		Biyem			
Paramètres	Uiversitaire	Centrale	Nomayos	Assi	Moyenne	Min	Max
Température (°C)	25	24	26	26	25,25±0,9	24	26
Luminosité (lux)	3100	2500	3600	2560	2940±516	2500	3600
Oxygène dissous (%)	34	49	5	55	35,7±22,3	5	55
CO ₂ (mg/L)	23	15,84	34	13,4	21,56±9,2	13,4	34
Azote ammoniacal (mg/L)	16,2	3,5	48	14,3	20,5±19,2	3,5	48
Salinité (PSU)	0,33	1,04	0,86	1,1	0,832±0,4	0,33	1,1
TDS (mg/L)	343	919	842	913	754,25±276,4	343	919
Conductivité (µS/cm)	685	2063	1683	1826	1564,25±606,8	685	2063
Résistivité (Ohm/Cm)	1460	437	594	548	759,75±471,5	437	1460
Ph	7,05	8,14	7,79	6,17	7,2875±0,9	6,17	8,14
Turbidité (FTU)	2920	3100	19.10 ⁵	560	$47.10^4 \pm 940$	560	19.10 ⁵
Couleur (Pt.Co)	9880	6100	87.10 ⁵	1940	22.10 ⁵ ±434	1940	87.10 ⁵
Orthophosphate (mg/L)	15,67	23,45	16,7	6,36	15,545±7	6,36	23,45
Nitrate (mg/L)	148	74	16.10^4	2,2	$41.10^3 \pm 818$	2,2	16.10^{4}
MES (mg/L)	1640	1990	8600	260	3122,5±372,3	260	8600
Alcalinité (mg/L)	80	110	310	40	135±120,1	40	310
Oxydabilité (mg/L)	148,1	69,1	450	209	219,1±164,3	69,125	450

Tableau VI : Variation des paramètres physico-chimiques mesurés avant désinfection

Légende : Min= minimum, Max= maximum

III.1.7. Caractéristiques physico-chimiques des paramètres mesurées au cours de la désinfection

La caractérisation physico-chimique des paramètres a porté sur les variables telles que les Matières en Suspension, la turbidité, la couleur, les TDS, la conductivité électrique, les Nitrates, l'azote ammoniacal, les orthophosphates, l'oxydabilité, la salinité, le pH et l'alcalinité.

III.1.7.1. Variation des valeurs de la Couleur mesurée en fonctions des différents désinfectants

Le degré de coloration mesuré au cours de cette étude varie considérablement en fonction de la nature des désinfectants et des concentrations utilisées. La valeur témoin de la couleur obtenue avant application des désinfectants sur l'échantillon de la Cité Universitaire est de 9880 Pt.Co, après application des désinfectants la valeur la plus élevée (8640 Pt.Co) a été obtenue sur l'effluent traité au Chlorure de Calcium à la concentration C3, une réduction significative de la coloration se fait ressentir à partir de la concentration C4 et la plus petite valeur 200 Pt.Co a été obtenue sur l'effluent traité avec le Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 32 A). La valeur témoin de la couleur obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 6100Pt.Co, après application des désinfectants la valeur la plus élevée (3097Pt.Co) a été obtenue sur l'échantillon traité à l'Hypochlorite de Sodium à la concentration C1 et la plus petite valeur (70Pt.Co) a été obtenue sur l'effluent traité au le Charbon à la concentration C6 (Figure 32 B).

La valeur témoin de la couleur obtenue avant application des désinfectants sur l'effluent de Nomayos est de (87.10⁵ Pt.Co), après désinfection, toutes les valeurs obtenues sont inférieures à 88.10³ Pt.Co toutefois la plus petite valeur (354 Pt.Co) a été obtenue sur l'effluent traité avec le Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 32 C). Contrairement aux trois autres stations le taux de coloration mesuré après désinfection sur l'effluent du camp sic Biyem-Assi ne varie pas considérablement, en effet la valeur obtenue sur l'effluent témoin avant désinfection est de 1940 Pt.Co, après désinfection, seul les échantillons traités aux Moringa, au Charbon, au Moringa associé au Chlorure de Calcium inférieures à 350 Pt.Co (Figure 32D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs obtenues aux différentes concentrations ($p=413.10^{-6}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C4 et C1 ($p=5,7.10^{-4}$), C4 et C2 (p=0,021), C5 et C1 ($p=4,1.10^{-4}$), C5 et C2 ($p=2,1.10^{-3}$), C5 et C3 (p=0,027), C6 et C4 ($p=7,9.10^{-3}$), C6 et C3 ($p=2,7.10^{-3}$), C6 et C2 ($p=5,1.10^{-4}$), C6 et C1 ($p=2,7.10^{-4}$). De même il existe une différence significative entre les valeurs de la couleur obtenues sur l'échantillon témoin et celles obtenues avec le Gypse (p=0,016), le Chlorure de Calcium (p=0,032), le Moringa (p=0,01), le Chlorure de Sodium (p=0,03), le Moringa associé au Chlorure de Calcium (p=0,032). Il existe une différence significative entre les Rayonnements Lumineux et le Chlorure Calcium (p=0,013), entre les Rayonnements Lumineux et le Moringa (p=0,032).

Figure 32 : Variation des valeurs de la couleur mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.2. Variation des valeurs de la Turbidité en fonctions des différents désinfectants

La quantité de matières turbides présentes dans les échantillons varient en fonction des désinfectants et des concentrations utilisées, ainsi sur l'effluent de la Cité Universitaire la valeur témoin enregistrée est de 2920 FTU, les valeurs obtenues après application des désinfectants présentent des profils similaires, la plus petite valeur (83FTU) a été obtenue sur l'échantillon traité au Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 33A).

La valeur témoin de la turbidité obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 3100 FTU, toutes les valeurs obtenues après application des désinfectants sont inférieures à 330 FTU, excepté les échantillons traités au Gypse. La plus petite valeur (34FTU) a été obtenue sur les échantillons traités au le Charbon à la concentration C6 (Figure 33B).

La valeur témoin de la turbidité obtenue avant application des désinfectants sur l'effluent de Nomayos est de 19.10⁵ FT. Après désinfection, le profil de variation des différents désinfectants est presque similaire, ces valeurs chutent considérablement à partir de la concentration C2, la plus petite valeur (130 FTU) a été obtenue sur les échantillons traités à l'Eau Oxygénée à la concentration C6 (Figure 33C).

Contrairement aux trois autres stations les valeurs de la turbidité mesurées après désinfection sur l'effluent du Camp Sic Biyem-Assi ne varient pas considérablement, en effet la valeur obtenue sur l'effluent témoin avant désinfection est de 560 FTU, après désinfection, la petite valeur (27 FTU) a été obtenue sur l'échantillon traité aux Rayonnements Lumineux (Figure 33 D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs obtenues aux différentes concentrations (p=155.10⁻⁶), le test de Mann-Whitney montre que cette différence existe entre les concentrations C2 et C1 (p=0,01). C 3 et C1 (p=0,024), C4 et C1 (p=0,003), C4 et C2 (p=0,021), C5 et C1 (p=4,1.10⁻⁴), C5 et C2 (p=3,1.10⁻³), C6 et C4 (p=7,9.10⁻³), C6 et C1 (p=4,1.10⁻⁴), C6 et C 3 (p=1,42.10⁻²). De même il existe une différence significative entre les valeurs de la turbidité obtenues sur l'échantillon témoin et celles obtenues sur les échantillons traités au Gypse (p=0,045), au Chlorure de Calcium (p=0,025), à l'Eau Oxygénée (p=0,038), au Hand (p=0,04), au Moringa (p=0,03), au Charbon (p=0,03), au Chlorure de Sodium (p=0,03286), au Moringa associé au Chlorure de Calcium (p=0,04) et aux Rayonnements Lumineux (p=0,03). Il existe une différence significative entre les Rayonnements Lumineux et le Hand (p=0,4).

Figure 33 : Variation des valeurs de la turbidité mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.3. Variation des valeurs des Matières en Suspension en fonctions des différents désinfectants

La figure 34 présente la variation des Matières en Suspensions en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 1640 mg/L, après application des désinfectants, les valeurs chutent considérablement à partir de la concentration C3, la plus petite valeur 42 mg/L a été obtenue sur l'échantillon traité au Charbon à la concentration C6 (Figure 34 A).

La valeur témoin des Matières en Suspensions obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 1990 mg/L, les valeurs obtenues après application des désinfectants chutent considérablement à partir de la concentration C2. La plus petite valeur 20 mg/L a été obtenue sur les échantillons traités à l'Eau Oxygénée et au Moringa à la concentration C6 (Figure 34B).

La valeur témoin des Matières en Suspensions obtenue avant application des désinfectants sur l'effluent de Nomayos est de 8600 mg/L, après désinfection, le profil de variation des différents désinfectants est presque similaire, le taux de Matières en Suspensions diminue en fonction de l'augmentation de la concentration et la plus petite valeur (190 mg/L) a été obtenue sur l'effluent traité avec le Gypse à la concentration C6 (Figure 34C).

Contrairement aux trois autres stations les valeurs des Matières en Suspensions mesurées après désinfection sur l'effluent du Camp Sic Biyem-Assi ne varie pas considérablement, en effet la valeur obtenue sur l'échantillon témoin avant désinfection est de 260 mg/l, après désinfection, la petite valeur (19 mg/L) a été obtenue sur l'échantillon traité au Moringa associé au Chlorure de Calcium (Figure 34 D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs des Matières en Suspensions obtenues aux différentes concentrations $(p=1,32.10^{-6})$, le test de Mann-Whitney montre que cette différence existe entre les concentrations C2 et C1 $(p=4,7.10^{-3})$. C 3 et C1 (p=0,004), C4 et C1 $(p=4,1.10^{-4})$, C4 et C2 (p=0,015), C5 et C1 $(p=4,1.10^{-4})$, C5 et C2 $(p=3,5.10^{-3})$, C6 et C1 $(p=4,1.10^{-4})$, C6 et C2 (p=0,0038), C6 et C 3 (p=0,04). De même il existe une différence significative entre les valeurs des Matières en Suspensions obtenues sur l'échantillon témoin et celles obtenues sur les échantillons traités au Gypse (p=0,013), au Chlorure de Calcium (p=0,045), au Chlorure de Sodium (p=0,023) et au Moringa associé au Chlorure de Calcium (p=0,06).

Figure 34 : Variation des valeurs des Matières en Suspension mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.4. Variation des valeurs des Solides Totaux Dissous en fonctions des différents désinfectants

La figure 35 présente la variation des Solides Totaux Dissous (TDS) en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 343 mg/L, après application des désinfectants, les valeurs des Solides Totaux Dissous obtenues sur les échantillons traités avec le l'Hypochlorite de Sodium, l'Eau Oxygénée, le Moringa le Chlorure de Sodium et le Moringa associé au Chlorure de Calcium augmentent de manière considérable, seul les échantillons traités au Gypse, au Chlorure de Calcium, au Hand, au Charbon et aux Rayonnements Lumineux restent inférieurs à 500 mg/L (Figure 35A).

La valeur témoin des Solides Totaux Dissous obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 919 mg/L, les valeurs obtenues après application des désinfectants oscillent autour de la valeur témoin à l'exception des échantillons traités au Chlorure de Sodium qui présentent des valeurs très élevées avec un pic à la concentration C6 (28280 mg/L) (Figure 35B).

Les valeurs témoins des Solides Totaux Dissous obtenues avant désinfection sont de 842 mg/L (Nomayos) et 913 mg/L (Biyem-Assi), après application des désinfectants, Les profils de variation des Solides Totaux Dissous pour ces deux échantillons sont presque similaires, les valeurs obtenues après traitement au Chlorure de Sodium sont largement supérieures à celles des autres désinfectants, avec des pics de 17520 mg/L (Nomayos) et 25089 mg/L (Biyem-Assi) (Figure 35 C et D).

Le test de Kruskal-Wallis montre qu'il n 'existe pas de différence significative entre les valeurs des Solides Totaux Dissous obtenues aux différentes concentrations (p>0,05), Par contre il existe une différence significative entre les valeurs des Solides Totaux Dissous obtenues sur l'échantillon témoin et celles obtenues avec l'Hypochlorite de Sodium (p=0,003), le Chlorure de Sodium (p=0,01). De même les valeurs des Solides Totaux Dissous obtenues après traitement au Chlorure de Sodium diffèrent significativement de celles obtenues avec Gypse (p=4,94.10⁻⁶), le Chlorure de Calcium (p=6,61.10⁻⁶), l'Hypochlorite de Sodium (p=0,0029), l'Eau Oxygénée (p=1,67.10⁻⁶), le Hand (p=5,14.10⁻⁶), le Moringa (p=2,23.10⁻⁶), le Charbon (p=1,15.10⁻⁷). Les valeurs des Solides Totaux Dissous obtenues après traitement de celles obtenues avec Gypse (p=0,01), le Chlorure de Calcium (p=0,01), l'Hypochlorite de Sodium (p=0,01), l'Hypochlorite de Sodium (p=7,78.10⁻⁸). Les valeurs des Solides Totaux Dissous obtenues après traitement à l'Hypochlorite de Sodium diffèrent significativement de celles obtenues avec Gypse (p=7,64.10⁻⁵), le Chlorure de Calcium (p=2,7.10⁻⁴). Les valeurs des Solides Totaux Dissous obtenues après traitement à l'Hypochlorite de Sodium (p=2,1.10⁻³), l'Hypochlorite de Solides Totaux Dissous obtenues après traitement au Charbon diffèrent significativement de celles obtenues avec Gypse (p=0,001), le Chlorure de Calcium (p=2,1.10⁻³), l'Hypochlorite de Solides Totaux Dissous obtenues après traitement au Charbon diffèrent significativement de celles obtenues avec Gypse (p=0,001), le Chlorure de Calcium (p=2,1.10⁻³), l'Hypochlorite de Solides Totaux Dissous obtenues après traitement au Charbon diffèrent significativement de celles obtenues avec Gypse (p=0,001), le Chlorure de Calcium (p=2,1.10⁻³), l'Hypochlorite de Solides Totaux Dissous obtenues après traitement au Charbon diffèrent significativement de celles obtenues avec Gypse (p=0,001), le Chlorure de Calcium (p=2,1.10⁻³), l'Hypochlorite

Oxygénée et le l'Hypochlorite de Sodium ($p=3,3.10^{-6}$), entre le Moringa et l'Hypochlorite de Sodium ($p=2,66.10^{-7}$), entre le Moringa associé au Chlorure de Calcium et l'Hypochlorite de Sodium ($p=1,23.10^{-7}$), entre les Rayonnements Lumineux et l'Hypochlorite de Sodium ($p=2,2.10^{-3}$).

Figure 35 : Variation des valeurs des TDS mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.5. Variation de la Conductivité Electrique en fonctions des différents désinfectants

La figure 36 présente les variations de la conductivité électrique en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 685 μ S/cm, après application des désinfectants, les valeurs de la conductivité électrique obtenues sur les échantillons traités avec le l'Hypochlorite de Sodium, l'Eau Oxygénée, le Moringa, le Chlorure de Sodium et le Moringa associé au Chlorure de Calcium augmentent de manière considérable, seul les échantillons traités au Gypse, au Chlorure de calcium, au Hand, au Charbon et aux Rayonnements Lumineux restent inférieurs à 1000 μ S/cm (Figure 36 A).

La valeur témoin de la conductivité électrique obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 2063 μ S/cm, les valeurs obtenues après application des désinfectants oscillent autour de la valeur témoin à l'exception des échantillons traités au Chlorure de Sodium qui présentent des valeurs très élevées avec un pic à la concentration C6 (56560 μ S/cm) (Figure 36B).

Les valeurs témoins de la conductivité électrique obtenues avant désinfection sont de 1683 μ S/cm (Nomayos) et 1826 μ S/cm (Biyem-Assi), après application des désinfectants, les profils de variation de la conductivité électrique pour ces deux échantillons sont presque similaires (Figure 36 C et D), les valeurs obtenues après traitement au Chlorure de Sodium sont largement supérieures à celles obtenues avec les autres désinfectants, avec des pics de 35040 μ S/cm (Nomayos) et 50178 μ S/cm (Biyem-Assi).

Le test de Kruskal-Wallis montre qu'il n 'existe pas de différence significative entre les valeurs de la conductivité électrique obtenues aux différentes concentrations (p>0,05), Par contre il existe une différence significative entre les valeurs de la conductivité électrique obtenues sur l'échantillon témoin et celles obtenues avec l'Hypochlorite de Sodium (p=9,4.10⁻³), le Chlorure de Sodium (p=0,01). De même les valeurs de la conductivité électrique obtenues après traitement au Chlorure de Sodium diffèrent significativement de celles obtenues avec le Gypse (p=4,9.10⁻⁶), le Chlorure de Calcium (p=6,62.10⁻⁶), l'Hypochlorite de Sodium (p=6,4.10⁻⁴), l'Eau Oxygénée (p=4,05.10⁻⁶), le Hand (p=6,37.10⁻⁷), le Moringa (p=2,21.10⁻⁶), le Charbon (p=3,15.10⁻⁷). Les valeurs de la conductivité électrique obtenues après traitement de celles obtenues avec le Gypse (p=0,01), l'Hypochlorite de Sodium (p=4,92.10⁻⁸). Les valeurs de la conductivité électrique obtenues après traitement à l'Hypochlorite de Sodium (p=4,92.10⁻⁸). Les valeurs de la conductivité électrique obtenues après traitement à l'Hypochlorite de Calcium (p=8,19.10⁻⁵). Les valeurs de la conductivité électrique obtenues après traitement au Charbon diffèrent significativement de celles obtenues avec le Gypse (p=2,06.10⁻⁵), le Chlorure de Calcium (p=2,2.10⁻⁸). Les valeurs de la conductivité électrique obtenues après traitement au Charbon diffèrent significativement de celles obtenues avec le Gypse (p=2,06.10⁻⁵), le Chlorure de Calcium (p=2,2.10⁻³), l'Hypochlorite de Sodium (p=6,06.10⁻⁹), l'Eau Oxygénée (p=0,044). Il existe également (p=2,2.10⁻³), l'Hypochlorite de Sodium (p=6,06.10⁻⁹), l'Eau Oxygénée (p=0,044). Il existe également

une différence significative entre l'Eau Oxygénée et le l'Hypochlorite de Sodium (p=1,02.10⁻⁶), entre le Hand et l'Hypochlorite de Sodium (p=4,92.10⁻⁸) entre le Moringa et l'Hypochlorite de Sodium (p=1,53.10⁻⁷), entre le Moringa associé au Chlorure de Calcium et l'Hypochlorite de Sodium (p=8,75.10⁻⁶), entre les Rayonnements Lumineux et l'Hypochlorite de Sodium (p=2,2.10⁻³).

Figure 36 : Variation des valeurs de la Conductivité Electrique mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.6. Variation des valeurs des Nitrates en fonctions des différents désinfectants

La figure 37 présente la variation des teneurs en nitrate en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 148 mg/L, après application des désinfectants, les valeurs chutent progressivement, la plus petite valeur (2 mg/L) a été obtenue sur l'échantillon traité à l'Hypochlorite de Sodium à la concentration C6 (Figure 37 A).

La valeur témoin des Nitrates obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 74 mg/L, les valeurs obtenues après application des désinfectants chutent considérablement à partir de la concentration C2. La plus petite valeur (1 mg/L) a été obtenue sur les échantillons traités au Charbon à la concentration C6 (Figure 37B).

La valeur témoin des Nitrates obtenue avant application des désinfectants sur l'effluent de Nomayos est de 16.10^4 mg/L, après désinfection, le profil de variation des différents désinfectants est presque similaire, les teneurs en Nitrate diminuent en fonction de l'augmentation de la concentration et la plus petite valeur (12 mg/L) a été obtenue sur l'effluent traité avec au Charbon à la concentration C6 (Figure 37C).

Contrairement aux trois autres stations les valeurs des Nitrates mesurées après désinfection sur l'effluent du Camp Sic Biyem-Assi ne varient pas considérablement. La petite valeur (0,001 mg/L) a été obtenue sur l'échantillon traité à l'Hypochlorite de Sodium à la concentration C6 (Figure 37D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre la valeur des Nitrates obtenue aux différentes concentrations ($p=5,788.10^{-5}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C4 ($p=1,5.10^{-3}$). C 1 et C5 ($p=5,7.10^{-4}$), C1 et C6 ($p=4,1.10^{-4}$), C2 et C5 ($p=1,1.10^{-2}$), C2 et C6 ($p=2,7.10^{-3}$), C3 et C5 (p=0,04), C3 et C6 ($p=5,5.10^{-3}$), par contre il n'existe pas différence significative entre les valeurs des nitrates obtenues sur l'échantillon témoin et celles obtenues après traitement aux différents désinfectants (p=0,058).

Figure 37 : Variation des valeurs des Nitrates mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.7. Variation des valeurs de l'Azote Ammoniacal en fonction des différents désinfectants

La figure 38 présente la variation des teneurs en azote ammoniacal en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 16,2 mg/L, après application des désinfectants, les valeurs chutent progressivement, les plus petites valeurs (0,29 mg/L et 0,47 mg/L) ont été obtenues respectivement sur les échantillons traités à l'Hypochlorite de Sodium et aux Rayonnements Lumineux (Figure 38A).

La valeur témoin de la teneur en azote ammoniacal obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 3,5 mg/L, les valeurs obtenues après application des désinfectants chutent considérablement à partir de la concentration C4. La plus petite valeur (0,13 mg/L) a été obtenue sur les échantillons traités au Gypse à la concentration C6 (Figure 38B).

La valeur témoin de l'azote ammoniacal obtenue avant application des désinfectants sur l'effluent de Nomayos est de 48 mg/L, après désinfection, le profil de variation des différents désinfectants est presque similaire, la teneur en azote ammoniacal diminue en fonction de l'augmentation de la concentration et les plus petites valeurs (0,4 mg/L et 0,47 mg/L) ont été obtenues respectivement sur les échantillons traités au Moringa associé au Chlorure de Calcium à la concentration C6 et au Rayonnements Lumineux (Figure 38C).

Les teneurs en azote ammoniacal mesurées après désinfection sur l'effluent du Camp Sic Biyem-Assi présentent des profils similaires, la valeur obtenue sur l'effluent témoin avant désinfection est de 14,3 mg/l, après désinfection, la petite valeur (0,99 mg/L) a été obtenue sur l'échantillon traité au Chlorure de Sodium à la concentration C6 (Figure 38D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre la valeur de l'azote ammoniacal obtenues aux différentes concentrations ($p=2,028.10^{-4}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C2 (p=0,01), C 1 et C3 ($p=6,2.10^{-3}$), C1 et C5 ($p=7,8.10^{-4}$), C1 et C6 ($p=1,9.10^{-3}$). Il existe également une différence significative entre les valeurs de l'azote ammoniacal obtenues sur l'échantillon témoin et celles obtenues avec le Gypse (p=0,017), le Chlorure de Calcium (p=0,012), le Hand (p=0,04), le Charbon (p=0,04), le Moringa associé au Chlorure de Calcium (p=0,04) et les Rayonnements Lumineux (p=0,03).

De même les valeurs de l'azote ammoniacal obtenues après traitement au Rayonnements Lumineux diffèrent significativement de celles obtenues avec Gypse (p=0,023), le Chlorure de Calcium (p=0,016), l'Eau Oxygénée (p=0,02), le Hand (p=4,7.10⁻³), le Moringa (p=0,027), le Charbon (p=0,045) et le Chlorure de Sodium (p=0,03).

Figure 38 : Variation des valeurs de l'azote ammoniacal mesurées avant et après désinfectionn, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.8. Variation des valeurs des Orthophosphates en fonction des différents désinfectants

La figure 39 présente la variation des teneurs en orthophosphate en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 15,67 mg/L, après application des désinfectants, les valeurs évoluent de manière irrégulière, la plus petite valeur (0,39 mg/L) a été obtenue sur l'échantillon traité au Chlorure de Calcium à la concentration C6 (Figure 39A).

La valeur témoin des teneurs en orthophosphate obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 23,45 mg/L, les valeurs obtenues après application des désinfectants chutent considérablement. Les courbes présentent les profils similaires à l'exception des échantillons traités au Hand donc les valeurs obtenues après désinfection restent supérieures à 10 mg/L, tandis que les plus petites valeurs (0,02 et 0,109 mg/L) ont été obtenues respectivement sur les échantillons traités à l'Hypochlorite de Sodium et au Moringa à la concentration C6 (Figure 39B).

La valeur témoin d'orthophosphate obtenue avant application des désinfectants sur l'effluent de Nomayos est de 16,7 mg/L, après désinfection, le profil de variation des différents désinfectants est presque similaire, les teneurs en orthophosphate diminuent en fonction de l'augmentation de la concentration, excepté les échantillons traités au Gypse où les valeurs d'orthophosphate restent supérieures à 11 mg/L. Les plus petites valeurs (1,7 mg/L et 3 mg/L) ont été obtenues respectivement sur les échantillons traités avec au Charbon et à l'Eau Oxygénée à la concentration C6 (Figure 39C).

Les teneurs en orthophosphate mesurées après désinfection sur l'effluent du Camp Sic Biyem-Assi, présentent des profils similaires, avec une diminution croissante des teneurs en orthophosphate en fonction de l'augmentation de la concentration, la valeur obtenue sur l'effluent témoin avant désinfection est de 6,36 mg/l, après désinfection, la petite valeur (0,99 mg/L) a été obtenue sur l'échantillon traité au Chlorure de Sodium à la concentration C6 (Figure 39D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre la valeur des orthophosphates obtenues aux différentes concentrations ($p=5,81.10^{-5}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C3 (p=0,01217), C 1 et C4 ($p=7,9.10^{-4}$), C1 et C5 ($p=4,1.10^{-4}$), C2 et C4 (p=0,013), C2 et C5 ($p=2.10^{-3}$), C2 et C6 ($p=3.10^{-3}$). Il existe également une différence significative entre les valeurs des orthophosphates obtenues sur l'échantillon témoin et celles obtenues avec le Gypse (p=0,03), le Chlorure de Calcium (p=0,03), l'Hypochlorite de Sodium (p=0,019), l'Eau Oxygénée (p=0,01) le Moringa (p=0,02), le Charbon ($p=5,2.10^{-3}$), le Chlorure de Sodium ($p=9,5.10^{-3}$), le Moringa associé au Chlorure de Calcium (p=0,01).

De même les valeurs des orthophosphates obtenues après traitement au Hand diffèrent significativement de celles obtenues avec Gypse (p=0,01), le Chlorure de Calcium (p=0,0085), l'Eau

Oxygénée ($p=7,20.10^{-5}$), l'Hypochlorite de Sodium (p=0,005). Une différence significative a également été obtenue entre le Gypse et le Charbon ($p=4,5.10^{-3}$), le Gypse et le Chlorure de Sodium (p=0,03).

Figure 39 : Variation des valeurs de l'Orthophosphate mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.9. Variation des valeurs de l'Oxydabilité en fonction des différents désinfectants

La figure 40 présente la variation des teneurs des matières Oxydables en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 148,1 mg/L, après application des désinfectants, les valeurs diminuent de façon progressive, la plus petite valeur (1,97 mg/L) a été obtenue sur l'échantillon traité aux Rayonnements Lumineux (Figure 40A).

La valeur témoin des matières oxydables obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 69,125 mg/L, les valeurs obtenues après application des désinfectants présentent des profils similaires. Les plus petites valeurs (0, 0,22 mg/L) ont été obtenues respectivement sur les échantillons traités au Moringa associé au Chlorure de Calcium et au Chlorure de Sodium à la concentration C6 (Figure 40B).

La valeur témoin des matières oxydables obtenue avant application des désinfectants sur l'effluent de Nomayos est de 450 mg/L, après désinfection, le profil de variation des différents désinfectants est presque similaire, les teneurs en oxydabilité diminuent en fonction de l'augmentation de la concentration. La plus petite valeur (3,6 mg/L) a été obtenue sur l'effluent traité au Gypse à la concentration C6 (Figure 40C).

Les teneurs en oxydabilité mesurées après désinfection sur l'effluent du Camp Sic Biyem-Assi, présentent des profils similaires, la valeur obtenue sur l'effluent témoin avant désinfection est de 209 mg/l, après désinfection, les plus petites valeurs (2,7 mg/L et 3,2 mg/L) ont été obtenues respectivement sur les échantillons traités aux Rayonnements Lumineux et au Moringa associé au Chlorure de Calcium à la concentration C6 (Figure 40 D).

Le test de Kruskal-Wallis montre qu'il existe une différence significative entre les valeurs d'oxydabilité obtenues aux différentes concentrations ($p=1,3.10^{-4}$), le test de Mann-Whitney montre que cette différence existe entre les concentrations C1 et C3 ($p=9,7.10^{-3}$), C 1 et C4 ($p=4,7.10^{-3}$), C1 et C5 ($p=1,1.10^{-3}$), C2 et C4 ($p=3.10^{-3}$), C2 et C5 (p=0,01), C2 et C6 ($p=1,1.10^{-3}$). Il existe également une différence significative entre les valeurs de l'oxydabilité obtenues sur l'échantillon témoin et celles obtenues avec le Gypse ($p=5,4.10^{-3}$), le Chlorure de Calcium (p=0,02), l'Hypochlorite de Sodium (p=0,02), l'Eau Oxygénée (p=0,02) le Moringa (p=0,07), le Charbon (p=0,01), le Chlorure de Sodium (p=0,032) et le Moringa associé au Chlorure de Calcium ($p=1,5.10^{-2}$).

De même les valeurs d'oxydabilité obtenues après traitement aux Rayonnements Lumineux diffèrent significativement de celles obtenues avec le Gypse (p=0,03), le Chlorure de Calcium (p=0,028), l'Hypochlorite de Sodium (p=0,01654), l'Eau Oxygénée (p=0,02) le Hand (p=0,04), le Moringa (p=0,02), le Charbon (p=0,03).

Figure 40 : Variation des valeurs de l'Oxydabilité mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.10. Variation des valeurs de Salinité en fonction des différents désinfectants

La figure 41 présente la variation de la salinité en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 0,33 PSU, après application des désinfectants, les valeurs de la salinité enregistrées sont inférieures à 0,5 PSU, excepté les échantillons traités à l'Hypochlorite de Sodium, à l'Eau Oxygénée, au Moringa à Chlorure de Sodium et au Moringa associé au Chlorure de Calcium dont les valeurs augmentent progressivement (Figure 41 A).

La valeur témoin de la salinité obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 1,03 PSU). Les valeurs obtenues après application des désinfectants oscillent autour de la valeur témoin à l'exception des échantillons traités au Chlorure de Sodium qui présentent des valeurs très élevées avec un pic à la concentration C6 (38 PSU) (Figure 41B).

Les valeurs témoins de la salinité obtenues avant désinfection sont de 0,86 PSU (Nomayos) et 1,1 PSU (Biyem-Assi), après application des désinfectants, les profils de variation de la salinité pour ces deux échantillons sont presque similaires (Figure 41 C et D), les valeurs obtenues après traitement au Chlorure de Sodium sont largement supérieures à celles obtenues avec les autres désinfectants, on note des pics de 22,08 PSU (Nomayos) et 24,8 PSU (Biyem-Assi).

Le test de Kruskal-Wallis montre qu'il n'existe pas de différence significative entre les valeurs de la salinité obtenues aux différentes concentrations (p=0,4939). Par contre il existe une différence significative entre les valeurs de salinité obtenues sur l'échantillon témoin et celles obtenues après traitement à l'Hypochlorite de Sodium (p=0,0076), à l'Eau Oxygénée (p=0,049), et au Chlorure de Sodium (p=0,0077).

De même les valeurs de salinité obtenues après traitement au Chlorure de Sodium diffèrent significativement de celles obtenues avec le Gypse ($p=3,2.10^{-7}$), le Chlorure de Calcium ($p=3,2.10^{-7}$), l'Hypochlorite de Sodium ($p=3,2.10^{-7}$), l'Eau Oxygénée ($p=3,2.10^{-7}$) le Hand ($p=5,29.10^{-7}$), le Moringa ($p=3,2.10^{-7}$), le Charbon ($p=3,2.10^{-7}$). De même il existe une différence significative entre le l'Eau Oxygénée et le Gypse (p=0,014), le Chlorure de Calcium ($p=1,3.10^{-3}$), l'Hypochlorite de Sodium ($p=3,17.10^{-7}$). Une différence significative existe également entre l'Hypochlorite de Sodium et le Gypse ($p=3,17.10^{-7}$), entre l'Hypochlorite de Sodium et le Chlorure de Calcium ($p=7,54.10^{-5}$). Une différence significative existe également entre le Moringa, l'Hypochlorite de Sodium ($p=3,01.10^{-6}$) et l'Eau Oxygénée (p=0,023). Une différence significative existe également entre le Moringa le Chlorure de Calcium ($p=7,1.10^{-3}$) et l'Hypochlorite de Sodium ($p=6,19.10^{-7}$). Une différence significative existe également entre le Moringa le Chlorure de Calcium ($p=7,1.10^{-3}$) et l'Hypochlorite de Sodium ($p=6,19.10^{-7}$). Une différence significative existe également entre le Moringa associé au Chlorure de Calcium le Chlorure de Calcium (p=0,03) et l'Hypochlorite de Sodium ($p=3,18.10^{-7}$). Une différence significative existe également entre le Gypse (p=0,039).

Figure 41 : Variation des valeurs de la Salinité mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.11. Variation des valeurs de l'alcalinité en fonction des différents désinfectants

La figure 42 présente la variation des valeurs de l'alcalinité en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 80 mg/L, après application des désinfectants, les valeurs restent inférieures à 20 mg/L, excepté les échantillons traités aux Moringa, la plus petite valeur (6 mg/L) a été obtenue sur l'échantillon traité au Chlorure de Calcium au Chlorure de Sodium à la concentration C6 (Figure 42A).

La valeur témoin de l'alcalinité obtenue avant application des désinfectants sur l'effluent de la Prison Centrale est de 110 mg/L, les valeurs obtenues après application des désinfectants présentent des profils similaires pour tous les types des désinfectants utilisés. La plus petite valeur (6 mg/L) a été obtenue sur les échantillons traités au Gypse à la concentration C6 (Figure 42B).

La valeur témoin de l'alcalinité obtenue avant application des désinfectants sur l'effluent de Nomayos est de 310 mg/L, après désinfection, les profils de variation des différents désinfectants sont presque similaires, les teneurs en alcalinité obtenues à partir de la concentration C4 sont inférieures à 100 mg/L, la plus petite valeur (7,5 mg/L) a été obtenue sur l'échantillon traité avec à l'Eau Oxygénée à la concentration C6 (Figure 42C).

Les valeurs de l'alcalinité mesurées après désinfection sur l'effluent du Camp Sic Biyem-Assi varient de manière irrégulière, en effet la valeur obtenue sur l'effluent témoin avant désinfection est de 40 mg/l, après désinfection, la petite valeur (0,7 mg/L) a été obtenue sur l'échantillon traité à l'Eau Oxygénée à la concentration C3 (Figure 42D).

Le test de Kruskal-Wallis montre qu'il n'existe pas de différence significative entre les valeurs de l'alcalinité obtenues aux différentes concentrations (p=0,4129). Par contre il existe une différence significative entre les valeurs de l'alcalinité obtenues sur l'échantillon témoin et celles obtenues avec le Gypse (p=4,26.10⁻³), le Chlorure de Calcium (p=0,014), l'Hypochlorite de Sodium (p=0,05), l'Eau Oxygénée (p=7,8.10⁻³) le Hand (p=6,4.10⁻³), le Moringa (p=0,01), le Charbon (p=7,8.10⁻³), le Chlorure de Sodium (p=0,023), le Moringa associé au Chlorure de Calcium (p=0,023) et les Rayonnements Lumineux (p=0,03).

Figure 42 : Variation des valeurs de l'alcalinité mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.7.12. Variation des valeurs du pH en fonction des différents désinfectants

La figure 43 présente la variation des valeurs du pH en fonction des concentrations des désinfectants utilisés. La valeur témoin enregistrée sur l'effluent de la Cité Universitaire avant désinfection est de 7,05 U.C, les valeurs obtenues après traitement au Chlorure de Calcium et à l'Hypochlorite Sodium tendent vers une légère basicité, celles obtenues après traitement aux Rayonnements Lumineux et au Chlorure de Sodium tendent vers la neutralité les autres désinfectants à savoir Gypse, l'Eau Oxygénée, le Moringa, le Hand et le Moringa associé au Chlorure de Calcium ont une forte tendance vers l'acidité (Figure 43A).

La valeur témoin du pH obtenue avant application des désinfectants sur l'échantillon de la Prison Centrale est de 8,14 U.C, les valeurs obtenues après application des désinfectants tendent vers une légère basicité à l'exception de celles obtenues sur les échantillons traités au Gypse, à l'Eau Oxygénée et au Hand donc les valeurs tendent vers l'acidité (Figure 43B).

La valeur témoin du pH obtenue avant application des désinfectants sur l'effluent de Nomayos est de 7,79 U.C, les valeurs obtenues après application des désinfectants tendent vers une légère basicité à l'exception des échantillons traités au Gypse dont les valeurs tendent vers une légère acidité et ceux traités au Hand et au Chlorure de Calcium dont les valeurs tendent vers la neutralité (Figure 43C).

La valeur du pH mesurée sur l'échantillon témoin du Camp Sic Biyem-Assi avant désinfection est de 6,17 U.C. Toutes les valeurs obtenues après désinfection tendent vers la basicité à l'exception des échantillons traités au Charbon et au Chlorure de Sodium dont les valeurs obtenues après désinfection tendent vers la neutralité (Figure 43D).

Le test de Kruskal-Wallis montre qu'il n'existe pas de différence significative entre la valeur du pH obtenues aux différentes concentrations (p=0,98). Par contre il existe une différence significative entre les valeurs du pH obtenues sur l'échantillon témoin et celles obtenues avec le Gypse (p=0,032), le Chlorure de Calcium (p=9,25.10⁻⁶), l'Hypochlorite de Sodium (p=3,14.10⁻⁶), l'Eau Oxygénée (p=4,3.10⁻³), le Hand (p=8,4.10⁻⁴), le Moringa (p=2,58.10⁻⁵), le Charbon (p=3,9.10⁻⁵), le Chlorure de Sodium (p=1,7.10⁻⁴), le Moringa associé au Chlorure de Calcium (p=5,6.10⁻⁶) et les Rayonnements Lumineux (p=0,011). Il existe également une différence significative entre les valeurs de pH obtenues avec l'Hypochlorite de Sodium et celles obtenues avec le Chlorure de Calcium (p=0,025), l'Eau Oxygénée (p=0,014), le Hand (p=0,012), le Charbon (p=4,2.10⁻³), le Chlorure de Sodium (p=1,16.10⁻⁵). De même il existe également une différence significative entre le Moringa associé au Chlorure de Calcium et le Chlorure de Sodium (p=0,013).

Figure 43 : Variation des valeurs du pH mesurées avant et après désinfection, Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

III.1.8. Rendements d'efficacité des différents désinfectants

III.1.8.1. Rendements d'efficacité des différents désinfectants sur les œufs d'helminthes

Les rendements d'inactivation des œufs d'Ascaris spp. varient en fonction des désinfectants et des échantillons. Globalement, le Moringa associé au Chlorure de Calcium présente le rendement le plus élevé (98,9 \pm 1,2%), tandis que le faible rendement 72,897 \pm 17,6% a été obtenu sur l'échantillon traité au Hand. Pour le Gypse ces rendements varient de 99,5% (Prison Centrale) à 94% (Cité Universitaire) avec une moyenne de 95,9±2%. Pour le Chlorure de Calcium ces valeurs varient de 100% (Prison Centrale) à 95,6% (Nomayos) avec une moyenne de 97,1±2%. Pour l'Hypochlorite de Sodium ces valeurs varient de 99,4% (Prison Centrale) à 89,9 (Cité Universitaire) avec une moyenne de 93,1±4,4%. Pour l'Eau Oxygénée ces valeurs varient de 100 (Prison Centrale) à 92% (Biyem-Assi) avec une moyenne de 94,7±3,6%. Pour le Hand ces valeurs varient de 91,9% (Prison Centrale) à 56% (Biyem-Assi) avec une moyenne de 72,9±17,578%. Pour Moringa ces valeurs varient de 100% (Prison Centrale) à 95,3% (Cité Universitaire) avec une moyenne de 97,8±1,9%. Pour le Charbon ces valeurs varient de 98,8% (Prison Centrale) à 91,3% (Cité Universitaire), avec une moyenne de 94,7±3,4%. Pour le Chlorure de Sodium ces valeurs varient de 94,1% (Prison Centrale) à 64,3% (Biyem-Assi) avec une moyenne de 80,7±12,8%. Pour le Moringa associé au Chlorure de Calcium ces valeurs varient de 100% (Prison Centrale) à 97,9% (Cité Universitaire) avec une moyenne de 98,9±1,2%. Pour les Rayonnements Lumineux ces valeurs varient de 99,4% (Nomayos) à 93,4% (Cité Universitaire) avec une moyenne de 97,1±2,6% (Tableau VII).

Les rendements d'inactivation des œufs de *Necator americanus* varient en fonction des désinfectants et des échantillons. Globalement, le Moringa associé au Chlorure de Calcium présente le rendement le plus élevé (99,9 \pm 0,2%), tandis que le plus faible rendement (74,4 \pm 31,2%) a été obtenu sur l'échantillon traité au Hand (Tableau VII).

Les rendements d'inactivation des œufs de *Trichuris trichiura* varient en fonction des désinfectants et des échantillons, globalement le Moringa associé au Chlorure de Calcium présente le rendement le plus élevé ($100\pm0\%$), tandis que le faible rendement ($69,6\pm16,9\%$) a été obtenu sur l'échantillon traité au Chlorure de Sodium. (Tableau VII).

Les rendements d'inactivation des larves de *Strongyloides stercoralis* varient en fonction des désinfectants et des échantillons, globalement le Moringa associé au Chlorure de Calcium présentent le rendement le plus élevé (99,9 \pm 0,2%), tandis que le faible rendement (66,8 \pm 17,7%) a été obtenu sur l'échantillon traité au Hand. (Tableau VII).

Les rendements d'inactivation des œufs d'Ancylostoma duodenale varient en fonction des désinfectants et des échantillons, globalement le Moringa associé au Chlorure de Calcium

présente le rendement le plus élevé (100%), tandis que le faible rendement (67,1±20,7%) a été obtenu sur l'échantillon traité au Hand. Tous les échantillons de Nomayos présentent des taux d'efficacité de 100% avec les désinfectants utilisés en dehors des échantillons traités au Hand au Chlorure de Sodium et aux Rayonnements Lumineux, par contre seuls les échantillons de la Cité Universitaire traités au Moringa associé au Chlorure de Calcium présentent un rendement de 100% tandis que les échantillons traités au Hand et au Chlorure de Sodium ont des rendements inférieurs à 62% (Tableau VII).

Les rendements d'inactivation des œufs d'*Hymenolepis nana* varient en fonction des désinfectants et des échantillons, globalement le Moringa associé au Chlorure de Calcium présente le rendement le plus élevé (99,8 \pm 0,3%), tandis que le faible rendement (64,6 \pm 9,7%) a été obtenu sur l'échantillon traité au Hand (Tableau VII).

Tableau	VII:	Taux	d'abatten	nent ('	%)) des	différents	désinfectants	sur	les	variables	bio	logi	ques
				· · · ·									<u> </u>	

Désinfectants											
Variables		a	a a	N. CIO				<i>a</i>			D.
biologiques	Stations	Gypse	CaCl ₂	NaClO	H_2O_2	Hand	Moringa	Charbon	NaCl	Mo+CaCl ₂	RL
	CU	94	95,8	89,9	92,8	60	95,3	91,3	86,7	97,5	93,5
	PC	99,5	100	99,5	100	91,9	100	98,8	94,1	100	98,1
	Nomayos	95,5	95,6	90,5	94	83,6	98,2	96	77,5	99,7	99,4
	BA	94,6	97,1	92,7	92	56	97,5	92,8	64,3	98,3	97,4
	Moyenne	95,9	97,1	93,1	94,7	72,9	97,8	94,7	80,7	98,9	97,1
Ascaris spp. (œufs/L)	Ecart type	2,5	2	4,4	3,6	17,6	1,9	3,4	12,8	1,2	2,6
	CU	96,9	98,6	93,4	97,6	93,6	98,8	98,6	96,4	100	99,6
	PC	100	100	99,9	99,9	91	100	100	68,4	100	99,3
	Nomayos	93,1	97	94,7	96	84,9	95,5	95,6	77,1	99,7	98,8
	BA	90,7	100	97,9	98	28	100	97,8	59,8	100	99,3
Necator	Moyenne	95,2	98,9	96,5	97,9	74,4	98,6	98	75,4	99,9	99,3
<i>americanus</i> (œufs/L)	Ecart type	4,1	1,4	3	1,6	31,2	2,2	1,8	15,6	0,2	0,4
	CU	96	99,4	98,7	98,5	71,0	98,6	97,8	88,4	100	75,1
	PC	87,6	100	97	94,2	70,1	95,5	96,6	58,6	100	96,6
	Nomayos	99,2	100	100	100	80	100	100	78,9	100	98,8
	BA	84,5	100	100	100	66,4	100	100	52,6	100	96,1
	Moyenne	91,8	99,8	98,9	98,2	71,9	98,5	98,6	69,6	100	91,7
Trichuris trichiura (œufs/L)	Ecart type	6,9	0,3	1,4	2,7	5,8	2,1	1,7	16,9	0	11,1
	CU	97,9	99,1	94,7	96,7	49,3	97,2	98,1	52	99,6	96,7
	PC	98,5	98,4	99,9	98,5	82,7	99,1	97,3	81,2	100	100
	Nomayos	98,2	100	100	99,1	81,4	98,2	98,9	85,7	100	98,3
	BA	100	100	100	97,9	53,9	100	96	77,9	100	96,4
Strongyloides	Moyenne	98,7	99,4	98,6	98	66,8	98,6	97,6	74,2	99,9	97,8
stercoralis (Larves/L)	Ecart type	0,9	0,8	2,6	1,0	17,7	1,2	1,2	15,1	0,2	1,7
Ancylostomes	CU	96,5	99,7	99,5	99,6	52,5	99,6	99,4	61,9	100	97
duodenale (œufs/L)	Nomayos Moyenne	100 98,3	100 99,8	100 99,7	100 99.8	81,7 67,1	100 99,8	100 99,7	85,4 73,6	100 100	98,1 97.6
------------------------------	--------------------	-------------	-------------	-------------	-------------	--------------	-------------	-------------	--------------	------------	--------------
	Ecart type	2,5	0,2	0,4	0,3	20,7	0,3	0,4	16,6	0	0,8
	CU	83,8	97,8	86	96,3	56,9	92,6	96,6	87,2	99,4	94,6
	PC	89,9	95,6	90	97,4	71,5	100	92,8	68,4	100	96,2
	Nomayos	87,9	100	92,8	96,8	74,4	90	97,9	77,3	100	97,9
	BA	65,5	93,3	85,2	82,4	55,7	94,8	88	52,9	100	93,4
	Moyenne	81,8	96,7	88,5	93,2	64,6	94,4	93,8	71,5	99,8	95,5
Hymenolepis nana (œufs/L)	Ecart type	11,1	2,9	3,6	7,3	9,7	4,2	4,4	14,5	0,3	2

Légende : PC=Prison Centrale ; BA=Biyem-Assi ; CU=Cité Universitaire ; CaCl₂= Chlorure de Calcium ; NaClO= Hypochlorite de Sodium ; H₂O₂=Eau Oxygénée ; NaCl= Chlorure de Sodium ; Mo+CaCl₂= Moringa associé au chlorure de Calcium ; RL=Rayonnement Lumineux.

III.1.8.2. Rendements d'efficacité des différents désinfectants sur les paramètres physicochimiques

Le Tableau VIII présente la variation des rendements d'efficacité des différents désinfectants (Gypse, Chlorure de Calcium, Hypochlorite de Sodium, Eau Oxygénée, Hand, Moringa, Chlorure de Sodium, Moringa associé au Chlorure de Calcium et Rayonnements Lumineux) à la concentration C6. Les rendements de la Couleur varient en fonction des désinfectants et des échantillons. Le Moringa associé au Chlorure de Calcium présentent le rendement le plus élevé (97,7 \pm 2%), tandis que le faible rendement 85,2 \pm 21% a été obtenu sur l'échantillon traité au Hand. (Tableau VIII). Pour la turbidité, les Rayonnements Lumineux présentent le rendement le plus élevé (96,8 \pm 2,3%), tandis que le faible rendement (78,2 \pm 31%) a été obtenu sur l'échantillon traité à l'Eau Oxygénée. (Tableau VIII).

Les rendements des Matières en Suspension varient en fonction des désinfectants et des échantillons, globalement le Moringa associé au Chlorure de Calcium présente le rendement le plus élevé (94,3 \pm 4,3%), tandis que le faible rendement 83,2 \pm 19,4% a été obtenu sur l'échantillon traité Chlorure de Sodium (Tableau VIII). Pour l'azote ammoniacal, les Rayonnements Lumineux présentent le rendement le plus élevé (95 \pm 4%), tandis que le plus faible rendement 76,4 \pm 31,2% a été obtenu sur l'échantillon traité au Moringa (Tableau VIII). Pour les Nitrates l'Hypochlorite de Sodium présente le rendement le plus élevé (98,9 \pm 1,4%), tandis que le faible rendement (75,9 \pm 21,2%) a été obtenu sur l'échantillon traité au Hand (Tableau VIII).

Les rendements des Orthophosphates varient en fonction des désinfectants et des échantillons, globalement le Chlorure de Sodium présente le rendement le plus élevé (91,2±7,9%), tandis que le plus faible rendement 61±20,2% a été obtenu sur l'échantillon traité au Hand (Tableau VIII). Pour l'oxydabilité les Rayonnements Lumineux présentent le rendement

le plus élevé (97,1±2,5%), tandis que le plus faible rendement 90,1±8,4% a été obtenu sur l'échantillon traité au Moringa (Tableau VIII).

Tableau VIII : Taux d'abattement (%) des différents désinfectants sur quelques paramètres physico-chimiques

Désinfectans											
Variables		_									
PC	Stations	Gypse	CaCl ₂	NaClO	H_2O_2	Hand	Moringa	Charbon	NaCl	Mo+CaCl ₂	RL
	CU	97,8	96,3	96,4	96,5	95,2	94,2	97,6	95,7	98	95,3
	PC	96,7	97,1	98	98,3	91,1	97,8	98,9	98,2	98	96,5
	Nomayos	99,8	100	99	100	99,8	99,9	98,7	99,7	99,8	100
	BA	55,5	60,7	72,2	68,6	54	82,2	95,3	62,3	95,1	93,2
Couleur	Moyenne	87,5	88,5	91,4	90,8	85	93,5	97,6	89	97,7	96,3
(Pt.Co)	Ecart type	21,4	18,6	12,9	14,9	21	7,9	1,7	17,9	2	2,8
	CU	95,5	92,5	90,4	79,8	88	96,9	93,8	94,2	97,2	94,9
	PC	99,4	98,2	98,9	99,1	96,1	98,8	98,9	98,9	98,4	97,1
	Nomayos	100	100	99,9	100	99,9	100	100	100	100	100
	BA	62,5	53,6	60,7	33,9	44,1	57,1	51,4	82,7	85	95,2
Turbidité	Moyenne	89,4	86,0	87,5	78,2	82	88,2	86	93,9	95,1	96,8
(FTU)	Ecart type	18,0	21,9	18,4	31	25,8	20,8	23,2	7,9	6,8	2,4
	CU	97	83,5	94,5	80,5	84,1	94,6	97,4	83,4	97,2	78,7
	PC	98,8	98,4	98,8	99	95,4	99	99,1	98,8	98,3	97,5
	Nomayos	97,8	95,7	88,7	92,8	91	93,8	83,4	94,9	89,1	94,2
Matières En	BA	74,2	62,7	81,5	61,2	66,2	58,1	62,7	55,8	92,7	87,6
Suspension	Moyenne	91,9	85,1	90,9	83,4	84,2	86,4	85,7	83,2	94,3	89,5
(mg/L)	Ecart type	11,8	16,3	7,5	16,7	12,9	19,0	16,9	19,4	4,3	8,3
	CU	92,6	94,4	98,2	80,9	82,1	29,6	75,3	25,9	91,8	97,1
	PC	96,3	90,3	95,1	91,7	90,6	91,1	94,0	90,3	95,4	91,4
	Nomayos	97,3	91,3	94,8	93,3	87,1	92,7	96,7	94,2	99,2	99
Azote	BA	90,2	88,1	93,7	85,3	82,5	92,3	96,5	95,8	75,5	92,3
Ammoniacal	Moyenne	94,1	91	95,5	87,8	85,6	76,4	90,6	76,5	90,5	95
(mg/L)	Ecart type	3,3	2,6	1,9	5,8	4	31,2	10,3	33,8	10,4	3,7
	CU	93,9	93,2	98,6	67,6	53,4	70,8	97,2	95,9	86,8	41,2
	PC	98,5	95,3	97	93,1	86,5	98,2	98,6	96,8	95,3	94,1
	Nomayos	100	100	100	99,9	100	100	100	100	100	100
	BA	72,7	54,5	100	77,3	63,6	72,7	99,5	59,1	50,0	60
Nitrates	Moyenne	91,3	85,8	98,9	84,5	75,9	85,4	98,8	87,9	83,0	73,8
(mg/L)	Ecart type	12,6	21,0	1,4	14,7	21,2	15,8	1,2	19,3	22,7	28,0
	CU	53,4	97,5	92,9	75,4	73,8	68,9	85,1	96,7	69,8	63,4
	PC	98,0	98	99,9	98,6	59,9	99,5	98,9	99,4	98,6	98,8
	Nomayos	55,7	50,9	50,9	82	32,7	59.3	89.8	84,4	72,5	46,1
	BA	77,4	44,7	28,0	77,5	77,4	54,7	83,8	84,4	53,9	68,7
Orthophophate	Moyenne	71,1	72,8	67,9	83,4	61	70,6	89,4	91,2	73,7	69,3
(mg/L)	Ecart type	20,9	29,0	34,3	10,5	20,3	20,2	6.8	7,9	18,5	21,9
	CU	91.9	98.2	88.3	97	94.4	92.3	97.0	98.2	94.2	98.4
	PC	97.4	91.9	96	93.1	96.6	98.0	94	99.7	100	97.7
	Nomavos	99.2	95 7	911	91 3	93.9	78.2	93 5	67.6	93.2	93.4
	RA	92.5	95,7	93 /	94 Q	94 3	91 Q	95,5 95 6	96.1	98.5	98.7
Oxydabilitá	Movenne	92,5 95 7	05 7	93, 1 97.7	0/ 1	0/ 8	00 1	95,0 Q5	90,1 90.7	96,5	90,7 07 1
(mg/I)	Foart type	36),2)6	33	ידע, 1 ר ר 2	ידע,0 1 ס	20,1 & 1	16	15 3	2 2	25
(111 <u>5</u> /L)	Leantype	5,0	∠,0	5,5	∠,+	1,4	0,4	1,0	10,0	5,5	∠,J

Légende : PC=Prison Centrale ; BA=Biyem-Assi ; CU=Cité Universitaire ; $CaCl_2$ = Chlorure de Calcium ; NaClO= Hypochlorite de Sodium ; H₂O₂=Eau Oxygénée ; NaCl= Chlorure de Sodium ; Mo+CaCl₂= Moringa associé au chlorure de Calcium ; RL=Rayonnement Lumineux ; PC= Physicochimiques.

III.1.9. Isotherme d'adsorption du Charbon Actif

La figure 44 présente la variation des valeurs du logarithme en base 10 des isothermes d'adsorption des paramètres physico-chimiques (azote ammoniacal, turbidité, orthophosphates, nitrates, couleur, oxydabilité et Matières en Suspension) et biologiques (*Ascaris* spp., *Necator americanus Ancylostoma duodenale, Trichuris trichiura, Strongyloides stercoralis, Hymenolepis nana*). Il ressort des paramètres physico-chimiques que la courbe d'adsorption de la turbidité présente les pics plus élevés par rapport aux autres paramètres (Figure 44A). Concernant les paramètres biologiques, la courbe d'adsorption des larves de *Strongyloides stercoralis* est la plus élevée et celle *Hymenolepis nana* est la moins élevée (Figure 44B). Les isothermes obtenus sont de type I caractérisant une adsorption en monocouche, correspondant au remplissage des micropores avec saturation lorsque le volume à disposition est totalement rempli.

Légende : Tur= Turbidité, MES= Matièrs en Suspension, Coul= Couleur, Oxy= Oxydabilité

Figure 44 : Courbes d'adsorptions des paramètres physico-chimiques (A) et biologiques (B) par les microspores du Charbon Actif

III.1.10. Modélisation statistiques des variables biologiques

III.1.10.1 Corrélations « r » de Spearman entre les abondances des œufs et les désinfectants utilisés

Les coefficients de corrélation « r » de Spearman entre les abondances des œufs viables et les désinfectants utilisés sont présentés dans le tableau IX. Il en ressort que dans la majorité des cas, les désinfectants utilisés favorisent significativement (P < 0,01 et P < 0,05), la diminution des abondances des œufs viables des différentes espèces. L'exception n'est faite que pour les œufs d'*Ascaris* spp. traités au Chlorure de Calcium (CaCl₂) et les œufs d'*Ancylostoma duodenale* traités au Moringa.

Tableau IX : Corrélations entre les abondances des œufs viables et les désinfectants utilisés

Espèces	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Désinfectans	spp.	americanus	stercoralis	trichiura	duodenale	nana
Gypse	-0,786**	-0,860**	-0,923**	-0,906**	-0,933**	-0,758**
Chlorure de Calcium	-0,786 ^{ns}	$-0,860^{**}$	-0,923**	-0,906**	-0,933**	-0,758**
Hypochlorite de Sodium	-0,744**	-0,913**	-0,836**	-0,863**	-0,956**	-0,948**
Eau Oxygénée	-0,726**	-0,895**	-0,730**	-0,833**	-0,933**	-0,768**
Hand	-0,670**	-0,899**	-0,786**	-0,864**	-0,933**	-0,895**
Moringa	-0,698**	-0,592**	-0,564**	-0,885**	-0,565 ^{ns}	-0,631**
Charbon	-0,807**	-0,885**	-0,811**	-0,914**	-0,899**	-0,865**
Chlorure de Sodium	-0,800**	-0,860**	$-0,860^{**}$	-0,861**	-0,913**	-0,835**
Moringa+Chlorure de Calcium	-0,768**	-0,923**	-0,585**	-0,923**	$-0,664^{*}$	-0,836**
Rayonnements Lumineux	-0,753**	-0,867**	-0,865**	-0,915**	-0,935**	-0,934**

Légende : *Significatif à 5%, ** Significatif à 1%, ns = différence non significative, D=désinfectants

III.1.10.1.1. Corrélations entre les différentes abondances œufs durant le traitement à l'Hypochlorite de Sodium

Durant le traitement à l'Hypochlorite de Sodium les corrélations enregistrées entre les abondances des différents œufs sont significativement positives (P < 0,01 et P < 0,05), par contre il n'existe pas de corrélations significatives entre le nombre d'œufs d'*Ascaris* spp. et de *Trichuris trichiura*, entre les œufs d'*Ancylostoma duodenale* et *Hymenolepis nana*, entre les œufs d'*Ancylostoma duodenale* et les larves de *Strongyloides stercoralis* (Tableau X).

Tableau X : Corrélations entre les abondances des œufs durant le traitement à l'Hypochlorite de Sodium

	NaClO	NaClO	NaClO	NaClO	NaClO	NaClO
	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Hypochlorite de Sodium/Ascaris	1,000	0,847**	0,551**	0,401 ^{ns}	$0,706^{*}$	0,651**
Hypochlorite de Sodium/ <i>Necator</i>		1,000	0,698**	0,722**	0,734**	0,796**
Hypochlorite de Sodium/Strongyloides			1,000	0,863**	0,524 ^{ns}	0,909**
Hypothonic de Sodium/strongytotaes				1,000	0,729**	0,868**
Hypochlorite de Sodium/Trichuris				,	1 000	0 572 PS
Hypochlorite de Sodium/Ancylostoma					1,000	0,573
Hypochlorite de Sodium/Hymenolepis						1,000

III.1.10.1.2. Corrélations entre les abondances œufs durant le traitement à l'Eau Oxygénée (H2O2)

Les corrélations enregistrées entre les abondances des œufs sur les échantillons traités à l'Eau Oxygénée sont significativement positives (P < 0,01 et P < 0,05), excepté les œufs d'*Ascaris* spp. et d'*Ancylostoma dudenale* qui ne présentent aucune corrélation significative (Tableau XI).

Tableau XI : Corrélations entre les abondances des œufs viables dénombrés sur les échantillons traités à l'Eau Oxygénée.

	H_2O_2	H_2O_2	H_2O_2	H_2O_2	H_2O_2	H_2O_2
	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Eau Oxygénée/Ascaris	1,000	0,827**	0,505*	$0,\!418^{*}$	0,462	0,734**
Eau Oxygénée/Necator		1,000	$0,728^{**}$	0,724**	$0,720^{**}$	0,916**
Eau Oxygénée/Strongyloides			1,000	0,766**	$0,587^{*}$	0,834**
Eau Oxygénée/Trichuris				1,000	$0,859^{**}$	0,803**
Eau Oxygénée/Ancylostoma					1,000	$0,748^{**}$
Eau Oxygénée/Hymenolepis						1,000

III.1.10.1.3. Corrélations entre les abondances des œufs durant le traitement au Hand

Durant le traitement au Hand les corrélations enregistrées entre les abondances des œufs sont significativement positives (P < 0,01 et P < 0,05), par contre il n'existe pas de corrélations significatives entre le nombre d'œufs d'*Ascaris* spp. et les larves de *Strongiloides stercoralis*, entre le nombre d'œufs *Necator americanus* et les larves de *Strongiloides stercoralis* entre les œufs d'*Ancylostomes duodenale* et *Necator americanus*, entre les œufs d'*Ancylostoma duodenale* et les larves de *Strongyloides stercoralis*, entre les œufs d'*Ancylostoma duodenale* et *Trichuris*, entre les œufs d'*Ancylostoma duodenale* et *Hymenolepis nana* (Tableau XII).

Tableau XII : Corrélations entre les abondances des œufs viables dénombrés sur les échantillons traités au Hand

	Hand	Hand	Hand	Hand	Hand	Hand
	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Hand/ Ascaris	1,000	$0,410^{*}$	0,290 ^{ns}	0,635**	0,594*	0,563**
Hand /Necator		1,000	0,143 ^{ns}	$0,\!406^{*}$	-0,217 ns	$0,414^{*}$
Hand /Strongyloides			1,000	0,830**	-0,371 ^{ns}	$0,880^{**}$
Hand /Trichuris				1,000	0,224 ^{ns}	$0,860^{**}$
Hand /Ancylostoma					1,000	-0,364 ^{ns}
Hand /Hymenolepis						1,000

III.1.10.1.4. Corrélations entre les abondances des œufs durant le traitement au *Moringa* oleifera

Les corrélations enregistrées entre les abondances des œufs sur les échantillons traités au *Moringa oleifera* sont significativement positives (P < 0,01 et P < 0,05), excepté les œufs d'*Ascaris* spp. et d'*Ancylostoma duodenale* qui ne présentent aucune corrélation significative (Tableau XIII).

Tableau XIII : Corrélations entre la densité des œufs viables dénombrés sur les échantillons traités au *Moringa oleifera*

	Moringa	Moringa	Moringa	Moringa	Moringa	Moringa
	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Moringa /Ascaris	1,000	0,863**	$0,872^{**}$	$0,698^{**}$	0,571	0,974**
Moringa/ Necator		1,000	0,671**	$0,679^{**}$	0,722**	$0,897^{**}$
Moringa /Strongyloides			1,000	$0,829^{**}$	$0,669^{*}$	0,863**
Moringa/ Trichuris				1,000	0,935**	$0,753^{**}$
Moringa /Ancylostoma					1,000	$0,697^{*}$
Moringa /Hymenolepis						1,000

III.1.10.1.5. Corrélations entre les abondances des œufs durant le traitement au Charbon

Les corrélations enregistrées entre les abondances des œufs sur les échantillons traités au charbon sont toutes significativement et positivement corrélées entres elles (P < 0,01 et P < 0,05) (Tableau XIV).

Tableau XIV : Corrélations entre les abondances des œufs viables dénombrés sur les échantillons traités au Charbon

	Charbon	Charbon	Charbon	Charbon	Charbon	Charbon
	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Charbon /Ascaris	1,000	$0,900^{**}$	$0,700^{**}$	$0,584^{**}$	$0,701^{*}$	0,865**
Charbon /Necator		1,000	0,681**	0,610**	$0,816^{**}$	$0,810^{**}$
Charbon/ Strongyloides			1,000	0,911**	$0,\!680^{*}$	0,891**
Charbon /Trichuris				1,000	0,839**	$0,809^{**}$
Charbon /Ancylostoma					1,000	$0,644^{*}$
Charbon/ Hymenolepis						1,000

III.1.10.1.6. Corrélations entre les abondances des œufs durant le traitement au Chlorure de Sodium

Les corrélations enregistrées entre les abondances des œufs sur les échantillons traités au Chlorure de sodium sont significativement positives (P < 0,01 et P < 0,05), excepté les œufs d'*Ascaris* spp. et les larves *Strongyloides stercoralis*, les œufs d'*Ascaris* spp. et *Hymenolepis nana* et *Ancylostoma duodenale*, qui ne présentent aucune corrélation significative (Tableau XV).

Tableau XV : Corrélations entre les abondances des œufs viables dénombrés sur les

échantillons traités au Chlorure de Sodium

	NaCl	NaCl	NaCl	NaCl	NaCl	NaCl
	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Chlorure de Sodium /Ascaris	1,000	0,816**	0,311 ^{ns}	0,729**	0,881**	0,401 ^{ns}
Chlorure de Sodium /Necator		1,000	$0,468^{*}$	$0,817^{**}$	0,636*	$0,709^{**}$
Chlorure de Sodium /Strongyloides			1,000	0,744**	-0,161	$0,656^{**}$
Chlorure de Sodium /Trichuris				1,000	0,573	$0,790^{**}$
Chlorure de Sodium /Ancylostoma					1,000	0,259 ^{ns}
Chlorure de Sodium /Hymenolepis						1,000

III.1.10.1.7. Corrélations entre les abondances des œufs durant le traitement au *Moringa oleifera* associé au Chlorure de Calcium

Les corrélations enregistrées entre les abondances des œufs sur les échantillons traités au Moringa associé au Chlorure de Calcium (Mo+CaCl₂) sont toutes significativement et positivement corrélées entres elles (P < 0,01 et P < 0,05) (Tableau XVI).

Tableau XVI : Corrélations entre les abondances des œufs viables dénombrés sur les

échantillons traités au Moringa associé au Chlorure de Calcium

	Mo+CaCl ₂					
	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Moringa+Chlorure de Calcium/ Ascaris	1,000	0,820**	0,850**	0,637**	0,638*	0,805**
Moringa+Chlorure de Calcium/ Necator		1,000	0,735**	0,730**	$0,899^{**}$	0,903**
Moringa+Chlorure de Calcium/ Strongyloides			1,000	0,828**	$0,654^{*}$	0,841**
Moringa+Chlorure de Calcium/ Trichuris				1,000	$0,960^{**}$	0,813**
Moringa+Chlorure de Calcium/ Ancylostoma					1,000	0,885**
Moringa+Chlorure de Calcium/ Hymenolepis						1,000

III.1.10.1.8. Corrélations entre les abondances des œufs durant le traitement aux Rayons Lumineux

Les corrélations enregistrées entre les abondances œufs sur les échantillons traités aux Rayonnements Lumineux (RL) sont toutes significativement et positivement corrélées entres elles (P < 0,01 et P < 0,05), excepté les œufs d'*Ascaris* spp. et *Trichuris trichiura*, *Necator americanus* et *Hymenolepis nana* (Tableau XVII).

Tableau XVII : Corrélations entre les abondances des œufs viables dénombrés sur les

échantillons traités aux Rayonnements Lumineux

	RL	RL	RL	RL	RL	RL
	Ascaris	Necator	Strongyloides	Trichuris	Ancylostoma	Hymenolepis
Rayonnements Lumineux /Ascaris	1,000	$0,800^{**}$	1,000**	-0,400 ^{ns}	-1,000**	$0,800^{**}$
Rayonnements Lumineux /Necator		1,000	$0,800^{**}$	-0,800**	-1,000**	0,400 ^{ns}
Rayonnements Lumineux /Strongyloides			1,000	-0,400 ^{ns}	-1,000**	$0,800^{**}$
Rayonnements Lumineux /Trichuris				1,000	-1,000**	0,200 ^{ns}
Rayonnements Lumineux /Ancylostoma					1,000	-1,000**
Rayonnements Lumineux /Hymenolepis						1,000

III.1.10.1.9. Corrélations entre les abondances des œufs durant le traitement au Gypse

Les corrélations enregistrées entre les abondances des œufs sur les échantillons traités au Gypse sont toutes significativement et positivement corrélées entres elles (P < 0,01 et P < 0,05), excepté les œufs d'*Ancylostoma duodenale* et *Hymenolepis nana* (Tableau XVIII).

Tableau XVIII : Corrélations entre la densité l'abondance des œufs viables dénombrés sur les échantillons traités au Gypse

	Gypse	Gypse	Gypse	Gypse	Gypse	Gypse
	Ascaris	Ascaris	Ascaris	Ascaris	Ascaris	Ascaris
Gypse /Ascaris	1,000	0,902**	$0,750^{**}$	0,674**	0,699*	0,809**
Gypse/ Necator		1,000	0,693**	0,699**	$0,902^{**}$	0,715**
Gypse /Strongyloides			1,000	$0,917^{**}$	0,811**	$0,798^{**}$
Gypse/ Trichuris				1,000	$0,860^{**}$	0,765**
Gypse /Ancylostoma					1,000	0,524 ^{ns}
Gypse /Hymenolepis						1,000

III.1.10.1.10. Corrélations entre les abondances des œufs durant le traitement Chlorure de Calcium

Le tableau XIX présente les corrélations enregistrées entre les abondances des œufs sur les échantillons traités au Chlorure de Calcium (CaCl₂). Toutes ces paramètres sont significativement et positivement corrélées entres elles (P < 0,01 et P < 0,05).

Tableau XIX : Corrélations entre les abondances des œufs viables dénombrés sur les

échantillons traités au Chlorure de Calcium

	CaCl ₂					
	Ascaris	Ascaris	Ascaris	Ascaris	Ascaris	Ascaris
Chlorure de Calcium /Ascaris	1,000	0,902**	0,471*	0,530**	0,862**	$0,784^{**}$
Chlorure de Calcium /Necator		1,000	0,705**	$0,748^{**}$	0,949**	$0,877^{**}$
Chlorure de Calcium /Strongyloides			1,000	0,935**	0,834**	0,761**
Chlorure de Calcium /Trichuris				1,000	0,951**	$0,769^{**}$
Chlorure de Calcium /Ancylostoma					1,000	0,911**
Chlorure de Calcium /Hymenolepis						1,000

III.1.10.2. Corrélations entre l'abondances des œufs viables identifiés après désinfection et la teneur des paramètres physico-chimiques mesurés après désinfection

Les œufs identifiés présentent des corrélations significativement positives et négatives au seuil 1% et 5% selon la nature des paramètres physico-chimiques mesurés. Les corrélations obtenues avec la salinité sont pour la plupart significativement et négativement corrélées avec le nombre d'œufs viables obtenu après traitement, excepté les teneurs de la salinité obtenues sur l'échantillon traité aux Rayonnements Lumineux qui présentent des corrélations positives avec les œufs d'*Ancylostoma duodenale*, celles obtenues également sur les échantillons traités au Chlorure de Sodium et au Moringa présentent des corrélations significativement positives respectivement avec le nombre d'œufs viables de *Trichuris trichiura* et *Ascaris* spp.

Les corrélations obtenues avec les TDS et la conductivité électrique sont pour la plupart significativement et négativement corrélées avec le nombre d'œufs viables obtenu après traitement, excepté les teneurs obtenues sur l'échantillon traité aux Rayonnements Lumineux qui présentent des corrélations positives avec le nombre d'œuf d'*Ancylostoma duodenale*, celles

obtenues également sur les échantillons traités au Charbon et au Moringa présentent des corrélations significativement positives respectivement sur le nombre d'œufs viables de d'*Ancylostoma duodenale* et d'*Ascaris* spp.

Les corrélations obtenues avec le pH sont pour la plupart significativement et négativement corrélées avec le nombre d'œufs viables obtenu après traitement, excepté les valeurs du pH obtenues sur les échantillons traités aux Rayonnements Lumineux, au Hand et au Chlorure de Sodium qui présentent des corrélations positives avec le nombre d'œuf d'*Ancylostomea duodenale*.

Les corrélations obtenues avec la turbidité sont pour la plupart significativement et positivement corrélées avec le nombre d'œufs viables obtenu après traitement, excepté les valeurs de la turbidité obtenues sur l'échantillon traité aux Rayonnements Lumineux qui présentent des corrélations significativement négatives avec le nombre d'œuf d'*Ancylostoma duodenale* et *Trichuris trichiura*.

Les corrélations obtenues avec la couleur et les nitrates sont pour la plupart significativement et positivement corrélées avec le nombre d'œufs viables obtenu après traitement excepté, les valeurs obtenues sur l'échantillon traité aux Rayonnements Lumineux qui présentent des corrélations significativement négatives avec le nombre d'œuf d'*Ancylostoma duodenale*.

Les corrélations obtenues avec les Matières En Suspension sont pour la plupart significativement et positivement corrélées avec le nombre d'œufs viables obtenu après traitement excepté, les valeurs obtenues sur les échantillons traités aux Rayonnements Lumineux et à l'Eau Oxygénée qui présentent des corrélations significativement négatives respectivement avec le nombre d'œuf d'*Ancylostoma duodenale* et *Trichuris trichiura*.

Les corrélations obtenues avec l'alcalinité sont pour la plupart significativement et positivement corrélées avec le nombre d'œufs viables obtenu après traitement excepté, les valeurs obtenues sur les échantillons traités aux Rayonnements Lumineux et au hand qui présentent des corrélations significativement négatives respectivement avec les œufs d'*Ankylostomea duodenala* et *Necator americanus*.

Les corrélations obtenues avec l'oxydabilité sont pour la plupart significativement et positivement corrélées avec le nombre d'œufs viables obtenu après traitement excepté, les valeurs obtenues sur les échantillons traités aux Rayonnements Lumineux qui présentent des corrélations significativement négatives avec le nombre de larves de *Strongyloides stercoralis*.

Les corrélations obtenues avec l'azote ammoniacal, les orthophosphates sont pour la plupart significativement et positivement corrélées avec le nombre d'œufs viables obtenu après

traitement excepté, les valeurs d'orthophosphates obtenues sur les échantillons traités aux Rayonnements Lumineux qui présentent des corrélations significativement négatives avec les œufs d'*Ancylostoma duodenale*. De même les valeurs d'azote ammoniacal obtenues sur les échantillons traités aux Rayonnements Lumineux présentent des corrélations négatives avec les œufs de *Trichuris trichiura*.

III.1.10.2. Analyse de Classification Hiérarchique et Analyse en Composantes PrincipalesIII.1.10.2.1 Analyse de Classification Hiérarchique (ACH) et Analyse en ComposantesPrincipales (ACP) des stations d'étude en fonction des paramètres mesurées avant désinfection

La hiérarchisation des stations d'étude sur la base des paramètres physico-chimiques et biologiques mesurés sur les échantillons témoin avant application des désinfectants est présenté dans le dendrogramme de la figure 45, les variables mesurées permettent de regrouper les stations en deux noyaux, le noyaux I qui regroupe les stations Prison Centrale et Biyem-Assi liés à 87 %, le noyau II, regroupe les stations Cité Universiatire et Nomayos liés à 72 %. Une Analyse en Composantes Principales a été faite par la suite pour déterminer les paramètres biologiques et physico-chimiques caractéristiques des différents groupes formés. L'essentiel de la variance totale est fourni sur les deux premiers axes factoriels F1 (54,00 %) et F2 (32,78 %) qui cumulent à 86,78 % de l'inertie totale (Figure 46). Les variables mesurées avant désinfection se regroupent en trois noyaux, le noyau I est caractérisé par les faibles valeurs de l'oxygène et de la salinité et des fortes valeurs des TDS et la conductivité électrique ces valeurs sont caractéristiques des stations Prison Centrale et Biyem-Assi. Le noyaux II est caractérisé par une corrélation significativement positive entre les valeurs élevées des paramètres physico-chimiques (température, alcalinité, Matières en Suspension, couleur, turbidité, azote ammoniacal, CO₂, pH) et biologiques (Ancylostoma duodenale, Ascaris spp.) ces valeurs sont caractéristiques de la station Nomayos. Le troisième noyau regroupe les valeurs moyennes de la résistivité, les valeurs élevées des orthophodphates et les fortes densités des œufs d'Hymenolepis nana et Trichuris trichiura.

Figure 45 : Analyse de Classification Hiérarchique montrant les similarités entre le stations d'échantillonnage

Figure 46 : Analyse en Composantes Principales montrant les affinités entre les stations d'échantillonnage et les variables mesurées

III.1.10.2.2. Analyse de Classification Hiérarchique des Concentrations utilisées au cours du traitement

La hiérarchisation des concentrations sur la base des paramètres physico-chimiques et biologiques mesurés avant et après application des désinfectants est présentée dans le dendrogramme de la figure 47, les variables mesurées permettent de regrouper les concentrations en 2 noyaux, le noyaux I qui regroupe les concentrations C1 et C2 liées à 97 %, le noyau II regroupe les concentrations C3, C4 C5 et C6 liées à 90 %. L'échantillon témoin s'éloigne significativement des valeurs obtenues après traitements (Figure 47).

Figure 47 : Analyse de Classification Hiérarchique montrant les similarités entre les concentrations utilisées

III.1.10.2.3. Analyse de la Classification Hiérarchique et Analyse en Composantes Principales des Désinfectants utilisés

La Hiérarchisation des désinfectants sur la base des paramètres physico-chimiques et biologiques est présentée par les dendrogrammes des figures 48 et 49. Pour la station Cité Universitaire, le regroupement donne trois noyaux à savoir le noyaux I qui renferme les Rayonnements Lumineux, l'Hypochlorite de Sodium, le Gypse, l'Eau Oxygénée, le Moringa, le Chlorure de Calcium et le Charbon liés à 82 %. Le noyau II qui renferme le Hand et le Chlorure de Sodium liés à 78%. Le noyau III qui regroupe les éléments du noyau I et II et le Moringa

associé au Chlorure de Calcium liés à 64% (Figure 48A). Pour la station Prison Centrale, le regroupement donne trois noyaux à savoir le noyaux I qui renferme les échantillons témoin et ceux traités au Hand et le Chlorure de Sodium liés à 70%. Le noyau II renferme les Rayonnements Lumineux, le Chlorure de Calcium, l'Hypochlorite de Sodium, le Gypse, l'Eau Oxygénée le Moringa et le Charbon liés à 72 %. Le noyau III regroupe les éléments du noyau II et le Moringa associé au Chlorure de Calcium à 60% (Figure 48B).

Pour la station Biyem-Assi, le regroupement donne trois noyaux à savoir le noyau I qui renferme les échantillons témoin et ceux traités au Hand, aux Rayonnements Lumineux, au Chlorure de Sodium liés à 80%. Le noyau II renferme le Chlorure de Calcium, l'Hypochlorite de Sodium, l'Eau Oxygénée, le Moringa, le Charbon et le Moringa associé au Chlorure de Calcium liés à 80 %. Le noyau III regroupe les éléments du noyau II et le Gypse liés à 74% (Figure 48C).

Pour la station Nomayos, le regroupement donne trois noyaux à savoir le noyau I renferme le Chlorure de Calcium, l'Hypochlorite de Sodium, l'Eau Oxygénée, le Moringa, le Charbon, le Gypse et le Moringa associé au Chlorure de Calcium liés à 85 %. Le noyaux II renferme les échantillons traités au Hand, aux Rayonnements Lumineux et au Chlorure de Sodium liés à 80%. Le noyau III regroupe les éléments du noyau II et l'échantillon témoin liés à 70% (Figure 48D).

Pour les 4 stations combinées, le regroupement donne trois noyaux à savoir le noyau I qui renferme le Chlorure de Calcium, l'Hypochlorite de Sodium, l'Eau Oxygénée le Moringa et le Charbon liés à 98 %. Le noyaux II renferme deux sous-groupes (Hand, Rayonnements Lumineux) et Gypse liés à 88%. Le noyau III regroupe les éléments du noyau I, II et le Moringa associé au Chlorure de Calcium 67% (figure 49A), la valeur témoin ne présente aucune affinité avec les autres désinfectants. Une Analyse en Composantes Principales (ACP) a été faite par la suite pour déterminer l'influence significative des désinfectants sur les variables considérées. L'essentiel de la variance totale est fourni sur les deux premiers axes factoriels F1 (71,58 %) et F2 (19,80 %) qui cumulent 91,39 % de l'inertie totale (Figure 49B). Les variables mesurées se regroupent en deux noyaux, le noyau I est caractérisé par les fortes valeurs de la salinité, des TDS et conductivité électrique ces valeurs sont caractéristiques du Chlorure de Sodium. Le noyau II est caractérisé par une corrélation significativement positive entre les paramètres physicochimiques (température, alcalinité, matières en suspension, couleur, turbidité, azote ammoniacal, CO₂, pH, nitrates, Oxydabilité) et biologiques (Ancylostoma duodenale, Ascaris spp., Trichuris trichiura, Hymenolepis nana, Strongyloides stercoralis, Necator americanus) ces valeurs sont caractéristiques des neufs autres désinfectants utilisés (Moringa associé au Chlorure de Calcium, Chlorure de Calcium, Rayonnements Lumineux, Charbon, Moringa, Eau Oxygénée, Hand, Gypse, Hypochlorite de Sodium).

Figure 48 : Analyse de Classification Hierachique montrant les affinités entre les désinfectants utilisés Cité Universitaire (A), Prison Centrale (B), Nomayos (C), Biyem-Assi (D)

Figure 49 : Analyse de Classification Hierachique (A) et Analyse en Composantes Principales (B) des différents désinfectants

III.2. Discussion

III.2.1. Caractéristiques physico-chimiques des eaux usées et boues vidange

Les résultats obtenus montrent que les eaux usées et les boues étudiées ont une composition physico-chimique très variables (Tableau VI), ceci due au fait que les hydrosystèmes sont souvent les principaux réceptacles de tous les polluants déversés dans l'environnement (Ajeagah *et al.*, 2018a). De plus cette variabilité et hétérogénéité des eaux usées et des boues au sein d'une même ville ont été montrée par plusieurs auteurs (Bassan *et al.*, 2013 ; Kone *et al.*, 2016 ; Ndiaye *et al.*, 2018). Ceci est due aux habitudes alimentaires, aux pratiques des usagers des ouvrages d'assainissement non collectif et au climat (Brun *et al.*, 2017). La valeur moyenne de la température obtenues est de 25,25±0,96°C, cette valeur est comprise dans la gamme de température recommandée (inférieure à 60°C) pour le rejet des eaux usées et des boues de vidange dans l'environnement (Moussa, 2005). Cette valeur est légèrement supérieure à celle (24,8°C) obtenue par Yovo *et al.* (2017), dans les eaux usées Agla au Bénin. L'augmentation de la température dans les stations Nomayos et Biyem-Assi (26°C) favorise l'auto épuration et accroît la vitesse de sédimentation, ce qui peut présenter un intérêt dans les stations d'épuration.

La valeur moyenne de l'oxygène $(35,75\pm22,32\%)$ obtenue traduit que ces rejets sont très anoxiques, la plus faible valeur obtenue sur l'échantillon des boues de vidange de Nomayos (5%)est due au fait que ces boues déversées proviennent généralement des fosses septiques closes et le faible échange avec le milieu extérieur ne permet pas réoxygénation de celles-ci. Toutefois les valeurs enregistrées (55%) au Camp Sic Biyem-Assi sont supérieures à celles obtenues (15%)par Ajeagah *et al.* (2018b) sur les effluents du Camp Sic Messa. Les valeurs moyennes des TDS (754,25 mg/L) et de la conductivité électrique $(1564,25 \ \mu\text{S/cm})$, traduisent une minéralisation élevée de ces eaux. Cette forte minéralisation est due au fait que l'usage domestique de nombreuses substances riches en ions contribuent à augmenter le degré de minéralisation des rejets exogènes, les valeurs enregistrées sont inférieures à celles obtenues $(4180 \ \mu\text{S/cm})$ par Yovo *et al.* (2017) sur les eaux usées Agla au Bénin, ces valeurs sont également inferieures (2740 μ S/cm) à celles obtenues par Moussa (2005) sur les eaux résiduaires des tanneries à Bamako.

A l'exception de la stations Biyem-Assi, les valeurs du pH obtenues dans les autres stations tendent vers la basicité avec une moyenne de 7,2875 U.C. Cette légère basicité serait due à un apport des substances allogènes de natures alcaline. En effet les eaux vannes reçoivent en permanence des substances basiques provenant des détergents et des savons utilisés lors des bains, de la lessive et la vaisselle. Selon Monchalin et Aviron (2000) l'état alcalin des eaux usées peut être dû à la présence des matières organiques qui sont riches en azote, source de l'ammoniac.

Ces valeurs sont proches de celles (7,5 U.C) obtenues par Driss Belghyti *et al.* (2009) sur les usées d'abattoir de la ville de Kénitra au Maroc.

Les valeurs moyennes élevées de la turbidité ($47.10^4 \pm 940$ FTU), de la couleur ($22.10^5 \pm 434$ Pt.Co) et des Matières en Suspension ($3122,5\pm372$ mg/L) sont dues aux différentes particules insolubles contenues dans les boues de vidange et les eaux usées. Hèzouwè *et al.* (2020) affirment d'ailleurs que les fortes concentrations en MES peuvent être dues à la nature pâteuse des effluents analysés. Les valeurs des Matières en Suspension restent inférieures à celles obtenues dans les eaux vannes des toilettes de la ville d'Accra (52500 mg/L) par Jiménez Cisneros (2011), par contre ces valeurs sont supérieures à celles obtenues (275 mg/l) par Mounia *et al.* (2022) et à celles obtenues (482 mg/L) par Driss Belghyti *et al.* (2009) respectivement sur les eaux usées brutes de la ville d'Oujda et de Kénita au Maroc.

Les valeurs de l'azote ammoniacal obtenues tournent autour de $20,5\pm19,17$ mg/l, cette valeur est inférieure à celles obtenues (11-64 mg/L) dans certaines grandes villes comme Indore (CSSRI, 2004), au Nagpur (55-68 mg/L), à Accra (3300 mg/L), à Aného (4000 mg/L) (Kaul *et al.*, 2002 ; Jiménez Cisneros, 2011 ; Hèzouwè *et al.*, 2020). Cette faible concentration en azote ammoniacal obtenue durant l'étude par rapport à celles obtenues dans d'autres métropoles, seraient dues au processus de nitrification des eaux et des boues. En effet l'oxygénation des eaux et boue va entrainer une transformation de l'azote ammoniacal en nitrate, ce qui expliquerait la valeur moyenne (41.10³±818 mg/L) élevée de nitrate obtenue durant l'étude, ces valeurs sont très élevées par rapport à celles préconisées (50 mg/L) pour le rejet des eaux usées dans l'environnement (OMS, 2006). Elles sont également supérieures à celles obtenues par Driss Belghyti *et al.* (2009) (1,74 mg/L (±2,7) et par Hèzouwè *et al.* (2020) (450 mg/L) respectivement sur les eaux usées brutes de la ville de Kénita et Aného au Maroc.

Les valeurs de l'orthophosphate obtenues oscillent autour d'une valeur de 15,545±7,03 mg/l, ces fortes valeurs s'expliqueraient par la présence des substances détergentes provenant de divers usages. La valeur moyenne enregistrée est supérieure à celle obtenue (16,55 mg/L) par Mounia *et al.* (2002) et aux valeurs (2800 mg/L) obtenues par Hèzouwè *et al.* (2020) respectivement sur les eaux usées brutes de la ville d'Oujda et de Aného.

III.2.2. Caractéristiques morphologiques et moléculaires des helminthes identifiés

L'analyse morphologique montre une forte densité des œufs et larves d'helminthes (Figure 24). La forte densité des nématodes (30% des œufs d'Ascaris spp., 22% œufs de Necator americanus, 14% larves de Strongyloides stercoralis, 16% œufs de Trichuris trichiura, 13% œufs de Ancylostoma duodenale) est due au fait que les nématodes ont un cycle direct, donc la

contamination ne nécessite pas la présence d'un hôte intermédiaire. Une seule espèce appartenant aux cestodes a été identifiée (5% des œufs d'*Hymenolepis nana*). Contrairement aux nématodes, les cestodes nécessitent généralement la présence d'un hôte intermédiaire pour faciliter leur dissémination. L'absence des œufs de trématode durant cette étude est due au fait qu'ils sont majoritairement présents dans les effluents d'abattoirs, des résultats similaires ont été obtenus par Dessouli *et al.* (2001) dans les eaux usées de la ville d'Oujda. La large répartition des œufs d'*Ascaris* spp. est due au fait que *Ascaris lumbricoides* est une espèce cosmopolite à large répartition géographique de plus leur triple membrane leur permettent de résister aux stress environnementaux et aux procédés de traitement des eaux usées (Okoa Amougou *et al.*, 2021).

Sur le plan spatial les densités les plus élevées ont été obtenues sur les échantillons provenant des boues de vidange de Nomayos, cette forte densité par rapport aux trois autres stations (Prison Centrale, Biyem-Assi et Cité Universitaire) est due fait que la station Nomayos constitue le lieu de décharge des boues stockées dans des fosses septiques pendant longtemps et donc le stokage des boues favorise également l'accumulation des parasites, par contre dans les trois autres stations les parasites sont évacués en permanence avec les eaux vannes. Les boues déversées dans la localité de Nomayos sont utilisées par les populations riveraines comme engrais pour dans les plantations agricoles ce qui constitue un véritable danger. En effet L'Organisation Mondiale de la Santé (OMS, 1989) a souligné la gravité du risque sanitaire lié aux œufs d'helminthes et principalement les nématodes intestinaux lors de la réutilisation des eaux usées et boues de vidange en agriculture à cause de leur résistance et de leur longue survie dans l'environnement. De nombreuse études épidémiologiques ont également démontré l'existence d'un risque réel lié aux infections helminthiques lors de la réutilisation agricole des eaux usées (Bouhoum *et al.*, 1994).

L'analyse de la viabilité des parasites montre que les parasites issus des eaux vannes ont des pourcentages de viabilité plus élevés que ceux issu des boues de vidange (Tableau V), cette viabilité élevée observée sur les eaux vannes est due au fait que les parasites prélevés dans les eaux vannes proviennent fraichement des selles et n'ont pas encore subit de stress environnementaux. Par contre les parasites issus de la station Nomayos ont subi un temps de stockage dans les fosses septiques, durant ce temps de stockage les helminthes ont été exposés aux facteurs (température, substances détergentes) pouvant permettre une réduction de leur viabilité. Ahmed *et al.*, (2019) affirment que les helminthes peuvent rester viables dans l'environnement pendant 12 mois au dela duquel on observe une réduction progressive du taux de viabilité.

Sur le plan spécifique, bien que les œufs d'Ascaris spp. ont été les plus abondants. L'analyse de la viabilité des différents parasites identifiés montre que les œufs d'Ascaris spp. ont les plus faibles pourcentages de viabilité (Tableau V), cette faible viabilité observée par rapport aux autres espèces serait due au fait que chez Ascaris les œufs contenus dans l'utérus des femelles doivent être fécondés par les males pour d'acquérir leur fertilité, de ce fait les femelles non fécondés vont émettre les œufs non fertiles dans l'environnement ces œufs ne pourront donc par se développer par la suite. Par contre les pourcentages de viabilité les plus élevés observés chez Strongyloides stercoralis pourraient s'expliquer par le fait, que Strongyloides stercoralis est émise dans l'environnement sous formes de larve et a donc simplement besoin de réinfecter un hôte pour continuer son développement (Araujo *et al.*, 2006).

Contrairement à l'analyse morphologique où 6 espèces d'helminthes ont été identifiées, l'analyse moléculaire quant à elle a permis l'identification de 8 espèces d'helminthes (Ascaris lumbricoïdes, Necator americanus, Trichuris trichiura, Taenia solium, Strongyloïdes stercoralis, Ascaris suum, Ancylostoma duodenale et Hymenolepis nana) a des densités très élevées. Ce nombre élevé d'espèces observée pourrait s'expliquer par le fait que l'analyse moléculaire a permis de faire une différenciation entre les œufs de Ascaris lumbricoïdes et Ascaris suum, or cette différenciation ne pouvant pas se faire sur le plan morphologique car les deux parasites présentent une organisation morphologique similaire d'où le recours aux analyses moléculaires. Selon Mejia et al., (2013) l'analyse moléculaire permet de détecter l'ADN de n'importe quel stade du cycle de vie, alors que la microscopie est généralement plus efficace pour détecter les œufs et les larves. L'absence des œufs de *Tænia* lors des analyses morphologiques est due au fait que le diagnostic morphologique réalisé était basé sur la recherche des formes de résistances (œufs), or la présence de Tænia solium lors des analyses moléculaires s'explique par le fait que lors de la dévagination des œufs de Tænia dans l'organisme, les scolex issus de cette dévagination peuvent être émis via les fèces, ces scolex peuvent donc être pris en compte lors du diagnostic des Tænia par la Réaction en Chaine Polymérase, ce qui n'est pas possible lors des examens morphologiques car basées uniquement sur la recherche des œufs. La sensibilité des tests moléculaires pourrait donc expliquer les fortes densités observées lors des analyses moléculaires (Merward et al., 2011; CDC, 2015).

La présence des helminthes parasites est une principale contrainte pour la réutilisation des eaux usées à cause de leur dose infectante faible et leur longue survie dans l'environnement (OMS, 1989). De plus ils sont sources d'une morbidité importante avec des conséquences non négligeables sur le développement nutritionnel (anémie) et psychomoteur des populations concernées. Les années de vie perdues en raison d'un décès prématuré ou d'une incapacité liée

aux helminthiases sont au premier rang chez les enfants de 5 à 14 ans dans les pays en développement et ce devant les maladies infectieuses habituelles (Dupouy-Camet, 2007).

III.2.3. Influence des désinfectants sur la viabilité des œufs

L'Hypochlorite de Sodium est le désinfectant le plus couramment utilisé pour le traitement des eaux son action sur les œufs d'Helminthes reste très limité. Les rendements d'efficacité obtenus varient significativement en fonction de la nature des œufs et des concentrations utilisées. Globalement ces rendements augmentent en fonction de la concentration. Les moyennes de rendement d'efficacité obtenues sur l'inactivation des œufs sont de $94\pm4,37$ (*Ascaris* spp.), 96,977 $\pm2,96$ (*Necator americanus*), 98,92 $\pm1,4$ (*Trichuris trichiura*), 98,64 $\pm2,6$ (*Strongyloides stercoralis*), 99,73 $\pm3,37$ (*Ancylostoma duodenale*), 88,48 $\pm3,56$ (*Hymenolepis nana*). La présence des œufs viables après désinfection pourrait s'expliquer par le fait que l'efficacité de l'Hypochlorite de Sodium n'apparaît pas réelle lors du traitement des micros organismes dans les eaux (Akam *et al.*, 2005). Des observations similaires avaient été faites par Keffala *et al.* (2012), de plus Chevallier *et al.* (1988) ont démontré que l'attachement des helminthes à des supports inertes, peut augmenter de 150 fois leur résistance au chlore libre. Le dioxyde de chlore pénètre par leurs parois cellulaires et s'attaque aux acides aminés essentiels dans le cytoplasme de la cellule.

Le Gypse est un produit couramment utilisé par les populations pour traiter les eaux de manière traditionnelle son action sur les micros organismes présents dans l'eau n'a pas encore fait l'objet d'études apprfondies. Les moyennes des rendements d'efficacité obtenus sur l'inactivation des œufs sont de 95,912±2,496 (*Ascaris* spp.), 95,193±4,08 (*Necator americanus*), 91,817±6,89 (*Trichuris trichiura*), 98,66±0,92 (*Strongyloides stercoralis*), 98,259±2,46 (*Ancylostoma duodenale*), 81,76±11,12 (*Hymenolepis nana*). En effet, il clarifie les eaux troubles, lors de son injection sous forme de solution saturée. Il s'en suit une complexation des helminthes.

L'Eau Oxygénée est également l'un des principaux désinfectants couramment utilisés pour le traitement des eaux, Les moyennes de rendement d'efficacité obtenus sur l'inactivation des œufs sont de 94,67±3,64 (*Ascaris*), 97,87±1,59 (*Necator americanus*), 98,17±2,72 (*Trichuris trichiura*), 98,03±1,04 (*Strongyloides stercoralis*), 99,82±0,25 (*Ancylostoma duodenale*), 93,23±7,26 (*Hymenolepis nana*). La présence des œufs et larves viables après traitement démontrent l'action limité de l'Eau Oxygénée sur les œufs helminthes à doses usuelles utilisées pour le traitement des eaux. Akam *et al.* (2005) avaient observé l'inefficacité de l'Eau Oxygénée sur les microorganismes à des faibles concentrations (3%). Il change et endommage l'Acide DésoxyriboNucléique des microorganismes, entraine une perturbation de l'intégrité membranaire et par conséquent, une pénétration de la molécule vers la membrane interne et sa liaison aux phospholipides. Cette fixation va augmenter la perméabilité membranaire

Le Chlorure de Calcium présente une efficacité considérable sur la réduction de la viabilité des œufs. Les moyennes de rendement d'efficacité obtenus sur l'inactivation des œufs sont de $97,14\pm2,01\%$ (*Ascaris* spp.), $98,91\pm1,4\%$ (*Necator americanus*), $99,84\pm0,32$ % (*Trichuris trichiura*), $99,37\pm0,78$ % (*Strongyloides stercoralis*), $99,84\pm0,22$ % (*Ancylostoma duodenale*), $96,67\pm2,89$ % (*Hymenolepis nana*). Ces rendements sont supérieurs à 96 %. En effet l'exposition prolongée aux désinfectants augmente la perméabilité de l'œuf (Clarke & Perry 1998). Toutefois à des concentrations très élevées le chlore présente l'inconvénient de réagir avec la matière organique induisant ainsi une formation des composés organohalogénés à toxicité chronique (Rook, 1974). Ces résultats sont similaires à ceux obtenus par Bandela *et al.* (2012) en associant le chlorure et les Rayonnements Ultraviolets pour la désinfection des œufs d'helminthes. Il permet en effet de rendre les microorganismes inactifs en dégradant leurs lipopolysaccharides de surface.

Les moyennes de rendement d'efficacité obtenus avec le Moringa sur l'inactivation des œufs sont de 97,72±1,93% (*Ascaris* spp.), 98,57±2,57% (*Necator americanus*), 98,53±2,11 % (*Trichuris trichiura*), 98,63±1,19 % (*Strongyloides stercoralis*), 99,77±0,31 % (*Ancylostoma duodonale*), 94,36±4,24 % (*Hymenolepis nana*). Ce superaliment est également riche en Quercétine, un antioxydant particulièrement puissant, c'est cette substance qui permet au Moringa d'être efficace contre les microorganismes il neutralise les matières colloïdales et provoquent la sédimentation des particules minérales et organiques (Foidl *et al.*, 2001).

Les moyennes des rendements d'efficacités obtenus avec le Charbon sur l'inactivation des œufs sont de 94,72±3,36% (*Ascaris* spp.), 97,99±1,81% (*Necartor americanus*), 98,61±1,66 % (*Trichuris trichiura*) ; 97,56±1,24 % (*Strongyloides stercoralis*) ; 99,68±0,44 % (*Ancylostoma duodenale*) ; 93,79±4,43 % (*Hymenolepis nana*). Le taux d'helminthes viables diminue en fonction de l'augmentation de la concentration du Charbon Actif, les effets similaires ont été observés par Ariadna *et al.* (2016) sur le traitement des œufs d'*Ascaris*. Marquez et Costa (1996) ont également obtenu des résultats similaires sur les helminthes isolés des eaux usées. Cette grande efficacité du Charbon Actif est également due à son mode d'action, en effet lors du processus d'adsorption il y a oxydation des polypeptides, ce mécanisme est irréversible ce qui entraine l'inactivation des œufs d'helminthes (Imlay, 2008), de plus il n'entraine pas la formation des sous-produits de désinfection souvent toxique pour l'organisme (Li *et al.*, 2017 ; Zheng *et al.*, 2017). L'efficacité du Charbon Actif est également influencée par le phénomène de blocage

des pores qui peut limiter l'adsorption. Pelekani et Snoeyink (2000) ont montré que l'augmentation du volume poreux de l'adsorbant et du nombre de supermicropores (de 8 à 20 Å) diminue les effets de la compétition. Yang *et al.* (2010) montrent quant à eux des effets compétitifs liés aux propriétés chimiques des adsorbants en observant que la quantité adsorbée sur des nanotubes de carbone d'une molécule non polaire (naphtalène) dépend de la forme dissociée ou non de la molécule en compétition (2,4- dichlorophénol et 4-chloroaniline). La quantité adsorbée de molécules en mélanges binaires dépend de la densité de la couche adsorbée et donc de l'orientation des molécules dans la porosité (Masson, 2006).

Les isothermes obtenus sont de type I caractérisant une adsorption en monocouche, correspondant au remplissage des micropores avec saturation lorsque le volume à disposition est totalement rempli. Ce type d'isothermes est caractéristique pour l'adsorption sur les charbons microporeux et les zéolithes (Abdelbassat, 2002).

Les moyennes des rendements d'efficacité obtenus avec le Hand sur l'inactivation des œufs sont de 72,89±17,57% (*Ascaris* spp.) ; 74,37±31,13% (*Necator americanus*), 71,89±5,77 % (*Trichuris trichiura*), 74,19±15,12 % (*Strongyloides stercoralis*), 73,61±16,6 % (*Ancylostoma duodenale*), 71,45±14,53 % (*Hymenolepis nana*). Ce sont des substances détergentes qui permettent de déloger jusqu'à 80% des micros organismes, mais cette substance détergente ne permet pas d'inactiver l'Acide DésoxyriboNucléique, l'utilisation des désinfectants est donc complémentaire à son action.

Les moyennes des rendements d'efficacité obtenus avec le Chlorure de Sodium sur l'inactivation des œufs sont de 80,66±12,83% (*Ascaris* spp.), 75,43±15,64% (*Necator americanus*), 69,62±16,85 % (*Trichuris trichiura*) 98,63±1,19 % (*Strongyloides stercoralis*), 99,77±0,31 % (*Ancylostoma duodenale*), 94,36±4,24 % (*Hymenolepis nana*). Il permet de traiter de nombreux organismes dans les eaux, la concentration élevée en sel permet l'oxydation de la paroi des microorganismes, ensuite ces sels vont oxyder les enzymes.

Les moyennes de rendement d'efficacité obtenus avec Les Rayonnements Lumineux sur l'inactivation des œufs sont de 97,1±2,56% (*Ascaris* spp.), 99,25±0,35% (*Necator americanus*), 91,65±11,08 % (*Trichuris trichiura*), 97,84±1,66 % (*Strongyloides stercoralis*), 97,55±0,77 % (*Ankylostma duodenale*), 95,49±1,95 % (*Hymenolepis nana*). Les Rayonnements Lumineux attaquent les microorganismes à travers le noyau de la cellule et empêchent la duplication de l'Acide DésoxyriboNucléique, désactive l'Acide DésoxyriboNucléique et les acides nucléiques des microorganismes. Ces résulats sont similaires à ceux obtenus par Amal *et al.* (2021) qui avaient démontré que les rayonnements solaires pouvaient entrainer une inactivation des œufs d'helminthes à l'exception des œufs d'*Ascaris* qui peuvent présenter une légère résistance. Le Moringa oleifera associé au Chlorure de Calcium a présenté la plus grande efficacité sur la réduction de la viabilité des œufs. Les moyennes des rendements d'efficacité obtenus sur l'inactivation des œufs et des larves sont de 98,86±1,18% (*Ascaris* spp.), 99,91±0,17% (*Necator americanus*), 100±0 % (*Trichuris trichiura*), 99,89±0,2 % (*Strongyloides stercoralis*), 100±0 % (*Ancylostoma duodenale*), 99,84±0,31 % (*Hymenolepis nana*). La grande efficacité observée du Moringa associé au Chlorure de Calcium par rapport aux autres désinfectants utilisés, serait due au fait que nous avons associé deux désinfectants (Moringa et Chlorure de Calcium) à des proportions égales, l'action combinée des deux désinfectants favoriserait donc une oxydation des membranes des œufs. Selon Amal *et al.* (2021) l'action synergique de la combinaison de plusieurs désinfectants permet une plus grande inactivation des œufs d'helminthes.

Quand la concentration en œufs d'helminthes dans l'effluent est élevée, plusieurs processus doivent être combinés pour atteindre les limites recommandées (Keffala et al., 2012). La grande efficacité du Moringa associé au Chlorure de Calcium présente une bonne alternative pour le traitement efficace des eaux, en effet le Chlorure de Calcium n'a pas permis d'inactiver tous les œufs d'helminthes or selon l'Organisation Mondiale de la Santé, un seul œuf d'helminthes est suffisant pour déclencher la maladie (Dessouli, 2004). Le Chlorure de Calcium étant une substance chimique son augmentation à des fortes doses n'est pas très conseillé lors du traitement des eaux. Par contre le Moringa qui est un désinfectant biologique ne présente pas d'effets nocifs sur la santé et est utilisé comme complément alimentaire. L'utilisation rationnelle du Chlorure de Calcium associé au Moringa est une bonne alternative pour le traitement optimal des helminthes dans les eaux. Le Moringa ne produit pas des sous-produits dangereux et fournit une plus grande biodégradabilité (Déborah et al., 2018). Cette efficacité du Moringa avait déjà été démontré sur l'alumine par Kwaambwa et al. (2015), sur la silice par Kwaambwa et al. (2010), sur la réduction de la turbidité de l'eau par Arantes et al. (2012), également sur l'ajustement du pH (Abdulsalam et al., 2007 ; Amagloh et al., 2009). L'activité d'un principe actif est évidemment fonction de sa concentration et de la nature des produits mélangés avec le ou les principes actifs comme les excipients ou les solvants (Darbord, 2004 ; CIPR, 2010).

L'œufs d'*Ascaris* spp. est le plus résistant des parasites testés ceci serait due à sa triple membrane qui protège le matériel génétique. Cette triple protection leurs permettent de résister aux différents procédés de désinfection utilisés dans le monde (Rosypal, 2007). Cette résistance est due à la présence d'une cuticule composée de plusieurs couches (trois à quatre). Cette superposition de cuticule empêche le passage de certaines substances comme les acides, les bases fortes, les oxydants, les agents réducteurs et les détergents (Wharton 1983). La perméabilité de l'œuf est limitée au passage de l'eau, de certains solvants et gaz (Keffala *et al.*, 2012). En effet

les œufs d'*Ascaris* représentent les helminthes les plus résistants à la désinfection, l'inactivation complète des œufs d'*Ascaris* dans les eaux peut suggérer que tous les autres œufs d'helminthes présents dans le milieu sont inactivés (Kato *et al.*, 2003 ; Paulsrud *et al.*, 2004). La forte résistance des œufs d'*Ascaris* spp. est due à un polymère à base d'ascarosides A, d'ascaroside B et de diascarosides qui permet aux œufs de résister aux acides et aux bases fortes, ainsi qu'à diverses enzymes.

L'inactivation des œufs d'*Ascaris* spp., nécessite une grande action des principes actifs des désinfectants pour oxyder des trois membranes qui protègent le matériel génétique des œufs d'*Ascaris* et permettre une destruction ou une inactivation de l'Acide DésoxyriboNucléique et les acides nucléiques. Les études menées par Massara *et al.* (2003) ont révélé qu'un seul désinfectant sur 16 testés sur les œufs d'*Ascaris* avait complètement inhibé la segmentation des œufs. Goulart *et al.* quant à eux n'ont observé aucun effet inhibiteur sur l'embryonation des œufs d'*Ascaris lumbricoïdes* et de *Trichuris trichiura*. Les œufs d'*Ascaris* ont une faible charge de surface négative (Capizzi et Schwartzbrod, 2001), ce qui permet aux protéines Moringa de se lier à la surface de l'œuf et de faciliter leur inactivation.

Par contre les œufs d'*Ankyslostoma duodenale* et *Trichuris trichiura* possèdent une double membrane et sont de ce fait plus exposés que les œufs d'*Ascaris*. De plus la fragilité des œufs de *Trichuris trichiuria* pourrait être due à la présence des bouchons muqueux à leur extrémité, qui peuvent constituer des points de fragilité ou des sites de contact facilitant la pénétration du désinfectant dans l'œuf, en effet les bouchons muqueux de certains œufs peuvent se décoller lorsque les œufs de *Trichuris trichiura* sont exposés à des fortes concentrations de désinfectant.

La résurgence des Taenias à *Hymenolepis* s'expliquerait également par la résistance que présente ces parasites au praziquantel (Beshay, 2018). Le traitement de cette parasitose a été mené par divers auteurs McKay *et al.* (2010), Merward *et al.* (2011), Merward *et al.* (2011), JirkůPomajbíková *et al.* (2018), qui ont observé une rupture de l'oncosphère des œufs d'*Hymenolepis diminuta* à une pression de 400 Mpa. La résistance de ces parasites aux différents désinfectants pourrait s'expliquer par le fait qu'il s'agit des parasites isolés dans les eaux usées et donc l'exposition aux stress environnementaux leur ont permis d'être plus virulent. L'inactivation des œufs d'*Hymenolepis nana* à travers les dix désinfectants utilisés n'ont pas permis d'atteindre les normes de l'Organisation Mondiale de la Santé (moins d'un œuf viable par litre) malgré l'augmentation des concentrations. En effet plusieurs paramètres physicochimiques peuvent influencer le processus d'inactivation des microorganismes dans l'eau.

La résistance des organismes est principalement liée à la composition de la membrane cytoplasmique qui est à la fois un obstacle physique et chimique. Les désinfectants pour être efficaces, doivent donc être en mesure de s'attaquer à la membrane cytoplasmique ou au contenu de la cellule. Ces modes d'action sont basés sur les interactions moléculaires entre les désinfectants et les composantes cellulaires. La membrane cytoplasmique possède une partie qui aime l'eau (polaire), dite hydrophile et une partie composée de lipides, dite hydrophobe (qui n'aime pas l'eau ou non polaire). Cette dernière nécessite l'utilisation de désinfectants qui attaquent les graisses (lipides).

III.2.4. Influence des désinfectants sur les paramètres physico-chimiques

Le pH est un paramètre qui influence significativement le traitement de l'eau à base des produits chlorés (Rodier 2009). En générale la quasi-totalité des valeurs de pH obtenues après traitement au chlore tendent vers la basicité ce qui influence le traitement des helminthes (Gaspard et Schwartzbrod, 2003). Dans l'eau, le chlore réagit en établissant un équilibre acide/base entre l'acide hypochloreux et l'ion hypochlorite. L'acide hypochloreux est l'élément du chlore le plus actif sur les microorganismes. Cet équilibre est fortement influencé par le pH de l'eau. Les valeurs de pH basiques obtenues vont entrainer une faible production d'acide hypochloreux. Ceci influencera négativement l'inactivation des micros organismes (Rodier, 2009). En plus de la dose des produits utilisés, le mécanisme de désinfection efficace des boues de vidange repose sur la montée du pH et de la concentration en azote ammoniacal pendant la stabilisation alcaline (Pescon et Nelson, 2005). En effet la nature du pH et des adjuvants influencent l'efficacité du traitement (Qingyun, 2018). Les valeurs du pH obtenues avant et après traitement, au Charbon restent basiques (Figure 47), ce qui montre que le Charbon Actif n'a pas significativement modifié le pH du milieu. Ce pH alcalin aurait favorisé l'adsorption des microorganismes. Selon Appels et al. (2008) l'état alcalin d'une solution favorise mieux l'adsorption des microorganismes par rapport à l'état l'acide.

Après désinfection on note une réduction significative de la teneur en nitrate, azote ammoniacal, orthophosphate et matières oxydables, avec des rendements d'abattement maximum de 91,24±7,94 % pour l'orthophosphate (Chlorure de Sodium), 73,8 ±27,97% pour le nitrate (Moringa associé au Chlorure de Calcium), 98,9±1,39 pour l'azote ammoniacal (Hypochlorite de Sodium), 97,06±,46 % pour l'oxydabilité (Rayonnements Lumineux). Cette forte concentration des différents désinfectants ont permis une oxydation significative de la matière organique, de plus certains désinfectants à base du chlore réagissent en solution avec l'azote pour former des composés secondaires comme la chloramine. Malgré ces pourcentages d'abattement obtenus, les Nitrates, l'azote ammoniacal et les matières oxydables restent élevées même après application des désinfectants, ce qui pourrait influencer significativement le

traitement des microorganismes. En effet l'ammoniac est un paramètre à prendre en compte lors du traitement des eaux (Pecson et Nelson, 2005 ; Fidjeland *et al.*, 2015). Les corrélations significatives et positives observées entre l'azote ammoniacal, les nitrates et les œufs viables dénombrés confirme le rôle joué par la matière organique en effet, au cours du processus de désinfection, la matière organique peu absorber le désinfectant et rendre instable la quantité de désinfectant nécessaire pour inactiver les microorganismes.

Après désinfection on note une réduction significative des valeurs des Matières en Suspension de la couleur et la turbidité avec des rendements d'abattement optimum de 97,69±1,96 % pour la couleur (Moringa associé au Clorure de Calcium), 96,78±2,35 % pour la turbidité (Rayonnements Lumineux). 94,31±4,25 % pour les Matières en Suspension. La présence des valeurs des Matières en Suspension, des particules colloïdales et turbides favorise la protection des microorganismes contre l'action biocide des désinfectants. Des corrélations significatives et négatives ont été observées entre les Matières en Suspensions, la turbidité, la couleur et le nombre d'œufs viables observés après application des désinfectants. Selon Ajeagah et al., (2016) les parasites intestinaux peuvent adhérer aux micro particules pour assurer leur dissémination. Le pouvoir germicide du chlore diminue fortement quand la turbidité de l'eau est supérieure à 5 FTU. En effet lors de la désinfection les particules présentent dans l'eau constituent une barrière potentielle empêchant le contact permanent entre les œufs et le désinfectant (Shimizu et al., 1997 ; Bougrier et al., 2005). L'action limitée observée entre les différents désinfectants utilisés et les œufs pourraient s'expliquer par ces fortes concentrations enregistrées à toutes les stations. L'Organisation Mondiale de la Santé recommande une turbidité moyenne de 1 FTU pour les eaux destinées au traitement. White et al. (1981) soulignent que lorsque la charge en carbone organique de l'effluent est trop élevée il devient difficile d'atteindre les taux d'abattement souhaités.

Ces micro particules influencent également le traitement au Charbon, car elles sont également adsorbées à travers les pores du Charbon Actif. Des corrélations significatives et négatives ont été observées entre les Matières en Suspension, la turbidité, la couleur et le nombre d'œufs viables (r=-0,985). En effet lors de la désinfection les particules présentent dans les boues constituent une barrière potentielle pouvant obstruer les pores du Charbon Actif. Les particules en suspension peuvent empêcher le contact permanent entre les œufs et les produits de désinfection (Shimizu *et al.*, 1997 ; Bougrier *et al.*, 2005).

III.2.5. Hiérarchisation des différents désinfectants utilisés et influence des variables considérées

La hiérarchisation des désinfectants est fonction de leur efficacité sur les variables biologiques, cette efficacité serait influencée par les paramètres physico-chimiques. Globalement l'Analyse en Composantes Principales et l'Analyse de Classification Hierachique présentent un regroupement des désinfectants en trois classes hiérarchiques. La première renferme le Moringa associé au Chlorure de Calcium caractérisé par une très grande efficacité comparée aux autres désinfectants, la deuxième classe referme le Chlorure de Calcium, l'Hypochlorite de Sodium, l'Eau Oxygénée, Rayonnements Lumineux, le Moringa, le Charbon et le Gypse avec une efficacité moyenne et la troisième classe caractérisée par Hand, Chlorure avec une efficacité faible comparé aux autres désinfectants.

Au cours de cette étude il a été démontré que l'augmentation de la concentration des différents désinfectants entrainent une baisse significative du nombre d'œufs viables, des corrélations significativement négatives ont d'ailleurs été obtenues entre l'augmentation de la concentration et la diminution du nombre d'œufs viables (Tableau IX). A cet effet l'augmentation de la concentration au cours des procédées de traitement entraine une inactivation des parasites.

La présence de plusieurs espèces différentes augmente les difficultés de traitement des corrélations significativement positives ont été observées entre les œufs des différentes espèces, ceci traduirait le fait que lorsque plusieurs espèces sont présentes à des densités élevées, la quantité de désinfectant utilisée peut avoir une action limitée ce qui va entrainer une faible inactivation des œufs des différentes espèces.

Des corrélations significativement positives ont été obtenues entre les œufs viables, la couleur, les Matières en Suspension, la turbidité, l'azote ammoniacal, l'orthophosphate, l'oxydabilité et les nitrates ce qui pourrait traduire que ces éléments s'ils sont présents après désinfection peuvent influencer l'inactivation des œufs. A contrario les TDS, la conductivité électrique et la salinité présentent des corrélations significativement négatives avec le nombre d'œufs viables ce qui pourrait s'expliquer par le fait que l'utilisation des différents désinfectants augmentent la quantité d'ions présents en solution ce qui augmente également la perméabilité des œufs et entraine leur inactivation.

CONCLUSION, RECOMMANDATIONS, ET PERSPECTIVES

Conclusion, recommandations et perspectives

Cette étude avait pour but d'évaluer l'efficacité de dix désinfectants sur les formes de résistance des helminthes intestinaux isolés des eaux usées et des boues de vidange à Yaoundé. Les échantillons utilisés ont été isolés de quatre stations, soient trois pour les eaux usées (Camps Sic Biyem-Assi, Cité Universitaire et Prison Centrale de Yaoundé) et une station pour les boues de vidange (Nomayos). Les analyses physico-chimiques réalisées montrent que les échantillons étudiés présentent une faible oxygénation avec des concentrations élevées en Matières en Suspension, Couleur, Turbidité, Orthophosphate et Matières azotées. La station Nomayos présente des concentrations significativement élevées par rapport aux trios autres stations (Camps Sic Biyem-Assi, Cité Universitaire et Prison Centrale de Yaoundé).

L'analyse morphologique réalisée a permis de recenser des œufs et larves de 6 espèces d'helminthes appartenant aux nématodes (30% *Ascaris* spp., 22% œufs de *Necator americanus*, 14% larves de *Strongyloides stercoralis*, 16% œufs de *Trichuris trichiura*, 13% œufs de *Ancylostoma duodenale*) et aux cestodes (5% œufs *Hymenolepis nana*). *Ascaris* spp. présente la plus forte densité tandis que la station Nomayos est la plus polluée.

L'analyse moléculaire réalisée par la suite grâce à la technique de Réaction de Polymérase en Chaine a permis de mettre en évidence 8 espèces d'helminthes (*Ascaris lumbricoïdes, Necator americanus, Trichuris trichiuria, Taenia solium, Strongyloïdes stercoralis, Ascaris suum, Ancylostoma duodenale* et *Hymenolepis nana*) dans les échantillons analysés. Cette analyse moléculaire a ainsi permis de faire une différenciation entre les œufs d'*Ascaris suum* et *Ascaris lumbricoïdes*, ainsi que *Taenia solium*. dont l'identification par les techniques morphologiques n'a pas été possible. L'analyse de la viabilité réalisée par suite montre que ces parasites peuvent rester viables dans l'environnement pendant longtemps, toutefois les parasites isolés des boues de vidange sont moins viables par rapport à ceux isolés des eaux usées. Sur toutes les espèces identifiées *Strongyloides stercoralis* présente le plus grand pourcentage de viabilité par rapport aux autres espèces. Les concentrations élevées des helminthes dans ces eaux couplées à une forte concentration des matières azotés et phosphatés constituent un risque sanitaire car ces eaux sont généralement déversées dans la nature sans traitement préalable entrainant une dégradation des hydrosystèmes.

Le traitement de ces échantillons réalisé en microcosmes à l'aide de 10 désinfectants a permis de mettre en évidence la forte résistance des œufs d'helminthes, ces désinfectants traversent difficilement la double ou triple membrane des œufs d'helminthes. Les œufs d'*Ascaris* spp. présentent une plus grande résistance par rapport aux autres œufs. De tous les désinfectants utilisés le Chlorure de Sodium et le Hand ont présenté la plus faible efficacité tandis que le

Moringa oleifera associé au Chlorure de Calcium présente la plus grande efficacité avec une inactivation de la quasi-totalité des œufs identifiés. Cette forte efficacité a été démontrée à travers la capacité du *Moringa oleifera* à faire sédimenter les œufs et à la double action de la Quiercétine contenue dans le Moringa et au Chlorure de Calcium à oxyder la paroi des œufs et à inactiver le contenu cytoplasmique. Les autres désinfectants couramment utilisés (Eau Oxygénée, Hypochlorite de Sodium, Chlorure de Calcium, Charbon, *Moringa oleifera*, Rayonnements Lumineux, Gypse) ne sont donc pas appropriés pour une élimination de la quasi-totalité des œufs.

Cette étude a également permis de démontrer que le traitement des échantillons d'eaux et de boues dépend la concentration du désinfectant car plus elle est élevée plus les parasites sont inactivés, ce traitement dépend également de la nature physico-chimique car plus une eau est chargée en Matière en Suspension et matière organique plus elle devient difficile à traiter. Nous pouvons donc recommander :

Aux gestionnaires des stations de traitement des eaux usées d'une part d'améliorer les procédés de traitement des eaux en combinant plusieurs techniques et d'autres part de procéder à l'élimination des particules solides avant le traitement biologique.

Aux pouvoirs publics : de restaurer les stations de traitements des eaux usées non fonctionnelles de la ville de Yaoundé et de construire de nouvelles stations afin d'empêcher le déversement des eaux usées non traités dans l'environnement. A la Camwater de limiter l'usage excessif des produits chimiques et d'utiliser d'avantage le traitement biologique.

Aux populations : de cesser d'utiliser abusivement les produits chlorés, d'éviter d'utiliser les eaux usées et les boues de vidange non traitées pour amender les plantations, de se laver correctement les mains aux sortis des toilettes à l'aide de l'eau courante et d'y associer une solution désinfectante par la suite.

Pour des projets d'études futures nous envisageons : réaliser la formulation scientifique *Moringa oleifera* associé au Chlorure de Calcium afin de mettre à la disposition des usagers ; évaluer le potentiel de reprogrammation de l'ADN chez les helminthes exposés aux différents désinfectants.

REFERENCES BIBLIOGRAPHIQUES

Références Bibliographiques

- Aagaard-Hansen J. et Chaignat C. L. 2010. Neglected tropical diseases: Equity and social determinants.
 E. Blas and A. S. Kurup (eds). Equity, Social Determinants and Public Health Programmes.
 Rapport Organisation mondiale de la santé Genève, Suisse, 135P.
- Abdelbassat Slasli Mohammed 2002. Modélisation de l'adsorption par les charbons microporeux : Approches théorique et expérimentale. Thèse de Doctorat, Université de Neuchâtel, 134P.
- Abdelmadjid N. 2006. Traitement biologique des eaux usées par les bactéries anaérobies butyriques (*Clostridium butyricum*) qui produisent de l'hydrogène. Laboratoire de Polyclinique Central d'El Bayadh, 2IWH. *Ghardaïa-Algeria*, 2: 27-29.
- Abdelqader A., Gauly M., Wollny C. B. A., Abo-Shehada M. N. 2018. Prevalence and burden of gastrointestinal helminthes among local chickens, in northern Jordan. *Preventive Veterinary Medicine*, 15 (85): 17-22.
- Abdulsalam S., Gital A. A., Misau I. M. Suleiman M. S, 2007. Water clarification using *Moringa* oleifera seed coagulant: Maiduguri raw water as a case study. *Journal of Food Agriculture* and Environnment, 5: 302–306.
- Adedotun odesegun odenusi, Thomas O., Sunday Odeyoga 2013. Human intestinal parasite in nonbiting synantropic flies in ogun state, Nigéria. *Medecine and Infections Desease*, 11 (3): 181-189.
- Adu-Gyasi Dennis, Kwaku poku Asante, Frempong Margaret, Konadu Gyasi Dennis, Iddrisu Louisa, Ankrah Love, Dosso David, Elisha Adenji, Oscar agyei, Stephaney Gyaase, Seeba Amenga, Ben Gyan, Seth Owusu 2018. Epidemiology and soil transmitted Helminth infection in the middle-belt of Ghana, Africa. *Parasite Epidemiology and Control*, 3: 2405-6731.
- Ajeagah G. A., Njine T., Bilong Bilong C. F., Foto S. M., Wouafo N. M., Nola M., Di G. D., Huw S. 2010. Seasonal Distribution of Enteric Opportunistic *Cryptosporidium* spp. Oocysts and *Giardia* spp. Cysts in a tropical water basin. *Cameroon Water*, 2:44-57.
- Ajeagah G. A., Foto M. S., Talom S. N., Ntwong M. M., Tombi J., Nola M., Njine T. 2014. Propriété physico-chimique et dynamique d'abondance des formes de dissémination des helminthes intestinaux dans les eaux usées et de surface à Yaoundé (Cameroun). *European Journal of Scientific Research*, 1 (120): 44 - 63.
- Ajeagah G. A., Chumtchoua A. L., Mbouombouo M., Foto Menbohan S., Njine T. 2016. Évaluation de l'abondance des kystes des protozoaires flagellés dans les eaux usées exploitées pour

l'agriculture maraîchère en zone urbaine : Cas de Yaoundé, Cameroun. *Journal of Applied Biosciences*, 107:10450-10459.

- Ajeagah G. A. et Karie Mouncharou Jean E. 2018. Dynamique de l'abondance des oocystes d'Isospora belli dans un milieu aquatique en zone tropicale (Cameroun). *Hydroécologie Appliquée*, 20 : 83–99.
- Ajeagah G. A., Mbainaissem Mbaimou Serge, Njiawouo Pountignigni, Ngakomo Rose 2018a. Caractérisation physico-chimique et biologique des eaux en zone périurbaine en Afrique équatoriale : cas de Ngoumou au Centre du Cameroun. *International Journal of Innovation* and Applied Studies, 23(1) : 33-43.
- Ajeagah G. A., Serge Biyong Mbondo, Mireille Tchouankep Kapso 2018b. Dynamique des formes de résistance des amibes entéropathogènes en milieu aquatique pollué (Yaoundé, Cameroun). *Revue d'Ecologie* (Terre et Vie), 73 (3) : 1-13.
- Ajeagah G. A., Asi Quiggle Atud, Okoa Amougou Thérèse Nadège 2019. Implication of soils around domestic water points in the spread of intestinal parasites in the city of Yaounde (Cameroon). *Journal of Water and Health*, 17(2): 318-328.
- Akam A., Kaidi R., Khelef D., Touaright N., Şuteu E., Cozma V. 2005. Effet des désinfectants sur la viabilité des oocystes de *Cryptosporidium parvum* d'origine bovine. *Scientia Parasitologica*, 1 (2) : 35-42.
- Alemi S., Nakamura K., Seino K., Hemat S. 2022. Status of water, sanitation, and hygiene and standard precautions in healthcare facilities and its relevance to COVID-19 in Afghanistan. *Environmental Health and Preventive Medicine*, 27(0):6.
- Allen K. I., Bentzen I., Voge M. 1965. In vitro hatching of onchospheres of four hymenolepid cestodes. *Journal of Parasitoly*, 51: 235–242.
- Amagloh F. K., Benang A. 2009. Effectiveness of Moringa oleifera seed as coagulant for water purification. African Journal of Agricultural Research, (4): 119–123.
- Amal An- Nori, Loubna El Fels, Amine Ezzariai, Bouchra El Hayani, Khalid El Mejahed, Mohamed El Gharous, Mohamed Hafidi 2021. Effectivrness of Helminth eggs reduction by solar drying and liming of sewage sludge. *Environmental Sciences and pollution Research International*, 28 (11) : 14080-14091.
- Ambassa P. 1980. Profils épidémiologiques et thérapeutiques des ankylostomoses urbaines et rurales au Cameroun. Essai thérapeutique au flubendazole. Thèse de Doctorat de médecine, Université de Yaoundé, 64 p.

- Amoah Isaac Dennis, Gulshan Singh, Thor Axel Stenström, Poovendhree Reddy 2017a. Detection and quantification of soil-transmitted helminths in environmental samples: A review of current state-ofthe-art and future perspectives. *Acta Tropica*, (169): 187-201.
- Amoah Isaac Dennis, Poovendhree Reddy, Thor Axel Stenström 2017b. Effect of reagents used during detection and quantification of *Ascaris suum* in environmental samples on egg viability. *Journal of Water Science and Technology*, 76 (9) : 2389-2400.
- Anyolitho MK., Poels K., Huyse T., Tumusiime J., Mugabi F., Tolo U., Masquillier C., Nyakato N. 2022. Knowledge, attitudes, and practices regarding schistosomiasis infection and prevention: A mixed-methods study among endemic communities of western Uganda. *PLOS Neglected Tropical Diseases*, 23 :16(2).
- Appels L., Baeyens J., Degrève J., Dewil R. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. *Progress in Energy Combustion Sciences*, 34 (6): 755–781.
- Arantes C. C., Ribeiro T. A. P., Paterniani J. E. S. 2012. Processing of Moringa oleifera seeds using different equipments to obtain coagulant solution. Revista Brasileira Engenharia Agricola Ambiental, 16 (6): 661–666.
- Araujo De J. V., Freita B. W., Vieira T. C., Compos A. K. 2006. Evaluation of Nematode predacious fugus duddingtonia flagrans on infective Haemonchus contortus and *Strongyloides papillosus* larvae of goats. *Revue Brasilian of Parasitology*, 15 (2): 76-79.
- Ariadna A. Morales-Pérez, Pablo Maravilla, Myriam Solís-López, Rafael Schouwenaars, Alfonso DuránMoreno and Rosa-María Ramírez-Zamora 2016. Use of activated Charcoal for the inactivation of Ascaris eggs. Water Sciences and Technology, 73 (5): 1000-1010.
- Bahri A., Drechsel P., Scott C., Raschid L., Redwood M. 2011. L'irrigation avec des eaux usées et la santé. *Presses de l'Université du Québec*, 479 p.
- Bandela Eric, Gonzalez Liliana, Jose louis sanchez, Jordana S. 2012. Inactivation of Ascaris eggs in water using sequential solar driven photo-fenton and free Chlorine. Journal of Water and Health, 10 (1): 20-31.
- Bassan M., Tchonda T., Yiougo L., Zoellig H., Mahamane I., Mbéguéré M., Strande L. 2013. Characterization of faecal sludge during dry and rainy seasons in Ouagadougou, Burkina Faso, IN: Shaw, R.J. (ed). Delivering water, sanitation and hygiene services in an uncertain environment: Proceedings of the 36th WEDC International Conference, Nakuru, Kenya, 1-5, 6p.
- Bélanger P. 2010. Analyse écotoxicologique de l'effluent traité des eaux usées de la ville de montréal.
 Canada, Centre Universitaire de Formation en Environnement Thèse Université de Sherbrooke, 85 p.

- Ben Ayed Layla, Zoubeir Alouini, Myriem Jeml, Sonia Sabbah 2017. Évaluation de la qualité parasitologique des eaux usées et des boues résiduaires en Tunisie. *Environnement, Risques et Santé*, 6 (6) : 433-442.
- Benito M., Menacho C., Chueca P., Ormad M., P., Goñi P. 2020. Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. *Journal of Environment and Management* 261 (1) :110268.
- Beshay E. V. N. 2018. Therapeutic efficacy of Artemisia absinthum against Hymelopis nana : in vitro and in vitro and in vivo studies in comparison with the anthelmintic praziquantel. Journal of Helminthology, 92 (3): 298-308.
- Beth D. 2005. Moringa Water Treatment. An ECHO Technical Note. Internet: www. echotech. org/mambo/images/DocMan/MorWaterTreat. *Random House Digital* (consulté le 1 mars 2020).
- Bolomey S. 2003. Amélioration de la gestion des boues de vidange par le renforcement du secteur privé local : Etudes et outils. Cas de la Commune VI du District de Bamako, EAWAG/SANDEC, 50 p.
- Bolong N., Ismail A. F., Salim M. R., Matsuura T. 2009. A review of the effects of emerging contaminants in wastewater and options for their removal. *Desalination*, 239 (1-3) : 229-246.
- Bouaziane 2000. L'eau, de la pénurie aux maladies. Edition Iben Khldoune. Paris 2, 17 p.
- Bougrier C., Carrère H., Delgenès J. P. 2005. Solubilisation of waste-activated sludge by ultrasonic treatment. *Chemical Engineering Journal*, 106 (2): 163–169.
- Bouhoum K., Habbari K., Jana M., Schwartzbrod J. 1994. Étude épidémiologique des helminthiases intestinales chez l'enfant de la zone d'épandage des eaux usées de la ville de Marrakech. Actes du colloque international sur la conception, naissance et petite enfance au Maghreb. Marrakech. *Revue des Sciences de l'Eau*, 275-295.
- Brun Florent, Anne Delmaire, Qiong He, Steve Joncoux, Rémy Bayard 2017. Caractérisation des pratiques et des impacts de la gestion des matières de Toilettes Sèches Mobiles. [Rapport de recherche] Toilettes Du Monde, ffhal-01803134, 2017.
- BTB (BeerTime-Brasseurs) Fiche d'actualité pour les amoureux de la bière artisanale. Disponible sur: https://www.happybeertime.com/blog/2016/02/18/chimie-de-leau-contenu-mineral-deleaudebrassage-22/ (consulté le 14 novembre 2020).
- Cabiscol E., Tamarit J., Ros J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. *International Microbiology*, 3 (1): 3-8.

- Capizzi S., et Schwartzbrod J. 2001. Surface properties of *Ascaris suum* eggs: hydrophobic potential and Lewis acidebase interactions. Colloids and Surfaces B: *Biointerfaces*, 22 (2): 99-105.
- Carlson L. A., Favero M. S., Blond W. W., Petersen N. J. 1972. Factors affecting comparative resistance of naturally occuring and subcultured *Pseudomonas aeruginosa* to desinfectants *Applied and Environmntal and Microbiology*, 5 (23): 863-869.
- Carrasco-Marin F., Mueden A., Centeno T. A., Stoeckli F., Moreno Castilla C. J. 1997. Water adsorption on acticated carbon with different degrees of oxidation. *Chemical Society Faraday Transaction*, 93 (12) : 2211-2215.
- CDC (Center for Disease Control) 2007. *Acanthamoeba* keratitis multiple states, 2005-2007. *Mortality and Morbidity Weekly Report*, 56 (1): 532-534.
- CDC (Centers for Disease Control and Prevention) 2015. Notes from the field: identification of a Taenia tapeworm carrier–Los Angeles County. *MMWR Morb Mortal WklyRep.* 64 (3):74.
- CEAEQ (Centre d'Expertise en Analyses Environnementales du Québec) 2007. Détermination des Orthophosphates dans l'eau : méthode calorimétrique automatisée à l'acide ascorbique.
 MA. 3030-P1.0, Rapport du Ministère du Développement Durable, de l'Environnement et des Parcs du Québec (MDDEPQ)12 p.
- Charpentier Louis, Damiens Nicolas, de Laitre Louis, Ginzburg Anna, Girard Guillaume, Lefort Colombe, Letrillart Charlotte, Piroelle Pauline, Rouer Nicolas, Thomassin Laly 2018. Valorisation du Gypse Rapport de projet, Université de Loraine 35P.
- Chen Y., Yanchao Z., Zichen W., Ying Li., Wang L. Xiaoyan G. Yuejia M. 2011. Application studies of activated carbon derived from rice husks produced by chemical thermal process-A review. *Advances in Colloid and Interface Science*, 163 (1): 39- 52.
- Chevallier Le M.W., Evans J. M., Seidler R. J. 1981. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water. *Applied Environmntal and Microbiology*, 42 : 159-167.
- Chevallier Le M. W., Cawthon C. D., Lee R. G. 1988. Factors promoting survival of bacteria in chlorinated water supplies. *Applied Environmental Microbiology*, 54. 649-654.
- CIPR (Commission Internationale pour la Protection du Rhin) 2010. Rapport d'évaluation sur les biocides et les produits anticorrosifs, Rapport n° 183, 2010.
- Clarke A. J., et Perry R. N. 1998. The induction of permeability in egg-shells of *Ascaris suum* prior to hatching. *International Journal for Parasitology*, 18 (7): 987–990.
- Crompton D. W. T. 2008. Chimio prévention des helminthiases chez l'homme : utilisation coordonnée des médicaments anthelminthiques pour les interventions de lutte : manuel a l'intention des professionnels de la santé et des administrateurs de programmes. Genève: OMS. 56P.
- Croteau, D. L. and Bohr, V. A. (1997). Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. *Journal Of Biological Chemistry*, 272 : 25409-25412.
- CSHPF 1998. (Conseil Supérieur d'hygiène Publique de France), Ministère de l'Emploi et de la Solidarité Comité Technique des Infections Nosocomiales. Désinfection des dispositifs médicaux, guide des bonnes pratiques, 133 p.
- CSSRI (Central Soil Salinity Research Institute) (2004). « Use of urban and industrial effluent in agriculture », *Annual Progress Reports* (2000-2003), Karnal, NATP-MM Project, 2P.
- Dana D., Roose S., Vlaminck J., Ayana M., Mekonnen Z., Geldhof P., Levecke B. 2022. Longitudinal assessment of the exposure to *Ascaris lumbricoides* through copromicroscopy and serology in school children from Jimma Town, Ethiopia. *Plos Neglected Tropical Diseases*, 18:16(1).
- Darbord J. C. 2004. Guide pratique : Désinfection et stérilisation dans les établissements de soins, *Masson, Paris*, 16 (18) : 124-132.
- Déborah L., Villaseñor-Basulto, Pablo D., Astudillo-Sánchez, Jorge del Real-Olvera, Erick R. B. 2018.
 Wastewater treatment using *Moringa oleifera* Lam seeds. *Journal of Water Process* Engineering, 23: 151–16.
- Derwich E., Benaabidate L., Zian A., Sadki O., Belghity D. 2010. Caractérisation physicochimique des eaux de la nappe alluviale du haut Sebou en aval de sa confluence avec oued Fès. *Larhyss Journal*, 8 (0): 101-112.
- Dessouli Khadija, Hassan El Halouani, Mohamed Kharboua 2004. Elimination des œufs d'helminthes parasites des usées par décantation. *Revue des Sciences de l'Eau*, (2): 77-82.
- Diosdado, A. ; Simón, F.; Morchón, R.; González-Miguel, J. 2021. Host-Parasite Relationships in Porcine Ascariosis : Anticoagulant Potential of the Third Larval Stage of Ascaris suum as a Possible Survival Mechanism. Animals, 11 (804) : 1-13.
- Drauch V., Ibesich C., Vogl C., Hess M., Hess C. 2020. In vitro testing of bacteriostatic and bacterialcidal efficacy of commercial disinfectants against *Salmonella* infantis reveals substantial difference between products and bacterial stains. *International Journal of Food Microbiology*, 2 (328): 108660.
- Driss Belghyti, Youssef El Guamri1, Ghizlane Ztit, My. Lahcen Ouahidi, My Brahim Joti, Abdelatif Harchrass, Hammou Amghar, Ouafae Bouchouata, Khadija El Kharrim et Hamid Bounouira 2009. Caractérisation physico-chimique des eaux usées d'abattoir en vue de la mise en œuvre d'un traitement adéquat : cas de Kénitra au Maroc. *Afrique Science*, 05 (2) : 199-216.

- Dubinsky P., Rybos M., Turcekova L. 1986. Properties and localization of chitin synthase in *Ascaris* suum eggs. Parasitology, 92 : 2I9-22.
- Dupouy-Camet J., 2007, Helminthoses parasitaires et Santé Publique, Université Paris Descartes, 6p.
- Dupouy-Camet J., Yera H., Raccurt C. 2008. Classification et mode de transmission des parasites, EMC. *Maladies Infectieuses*, 1-11.
- Enke N., Brinkmann L., Südekum H., Tholen E., Gerken M. 2022. Sensitivity of ponies to sodium in the drinking water. *Journal of Animal Science*, 93(1): 13697.
- Evans, M. D., Dizdaroglu, M. et Cooke, M. S. 2004. Oxidative DNA damage and disease: induction, repair and significance. *Mutation Research*, 567: 1-61.
- Fairbairn D., Passey R. F. 1957. Occurence and d'istributionof trehalose and glycogen in the eggs and tissues of *Ascaris lumbricoides*. *Experimntal Parasitology*, 6: 566-57
- Fidjeland J., Nordin A., Pecson B. M., Nelson K. L., Vinnerås B. 2015. Modeling in inactivation of *Ascaris* eggs as a function of ammonia Concentration and temperature, *Water Reseach*. 83 : 153-160.
- Fitte B., Robles M. R., Dellarupe A., Unzaga J. M., Navone G. T. 2018. *Hymelopis diminuta* and *Rodentolepis nana* (Hymelopididae Cyclophyllidea) in urban roden of Gran La Plata: association with socio-environmental conditions. *Journal of Helminthology*, 2018 92 (5).
- Foidl N., Makkar H., and Becker K. 2001. "Potentiel de Moringa oleifera en agriculture et dans l'industrie." Potentiel de développement des produits de Moringa. Daes Salaam, Tanzanie Rapport du 29 octobre au 2 Novembre 2001, 5P.
- Francis EK., Šlapeta J. 2022. A new diagnostic approach to fast-track and increase the accessibility of gastrointestinal nematode identification from faeces: Fecpak egg nemabiome metabarcoding. *International Journal for Parasitology*, 52(6):331-342.
- Gaspard P. G. et Schwartzbrod J. 2003. Parasite contamination (helminth eggs) in sludge treatment plants: definition of a sampling strategy. *International Journal of Hygiene and Environmental Health*, 206 (2) : 117-122.
- GDPC. 2015. Guide pour le choix des désinfectants Produits de Désinfection Chimique pour les dispositifs médicaux, les sols et les surfaces, 22 (6) ISSN 1249-0075.
- Gehr R., Chen D., Moreau M. 2009. Performic acid: Tests on an advanced primary effluent show promising disinfection performance. *Water Science and Technology*, 59 (1): 89–96.
- Georges P., Lesavre J., Barbier O., Festy B. 1983. Efficacité biologique de six procédés de désinfection appliqués au traitement tertiaire des eaux résiduaires urbaines. *Journal Français d'Hydrologie*, 14 : 283-298.

- GLS a, 2012. L'utilisation des UV pour le traitement de l'eau : Memotec N° 28. Société d'ingénierie et de conseils. Disponible sur Internet : http://gls.fr, (Consulté le 05/11/2020).
- GLS b, 2012. Désinfection des eaux résiduaires urbaines : Memotec N° 5. Société d'ingénierie et de conseils. Disponible sur Internet : http://gls.fr, (Consulté le 05/11/2020).
- Golvan Y. J. 1983. Eléments de Parasitologie médicale. 4ème édition. Flammarion, Paris 18 p.
- Gouvernement du Québec, Ministère du développement durable, de l'environnement et des parcs, 2012. Désinfection des eaux usées traitées. Disponible sur Internet : http://www.mddep.gouv.qc.ca/eau/eaux-usees/position.htm, (Consulté le 04/11/2012).
- Gutermann, L. Roy, S. Begue, T. 2013. Substituts osseux synthétiques : quelles spécificités ? John Libbey Eurotext, (32) 2. Disponible sur : <u>http://www.jle.com/fr/revues/jpc/edocs/</u> substituts_osseux_synthetiques_quelles_specificites_297004/article.phtml?tab=texte (consulté le 06/05/2020).
- Hajjami K., Ennaji M. M., Fouad S., Cohen N. 2013. Détection, numération des œufs de parasites et évaluation de leur viabilité dans les boues d'épuration de la station d'épuration de Settat. *European Jouranl Water Quality*, 1 (44):55-66.
- Halliwel B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. *Plant Physiology*, 141 (2): 312-322.
- Harakeh M. S., Berg J. O., Hoff J. C., Matin A. 1985. Susceptibility of chemostat grown Yersinia enterocolitica and Klebsiella pneumoniae to chlorine dioxyde. Appleid Environmental and Microbiology, 49: 69-72.
- Haymanot F., Kaba T. 2022. Prevalence and associated factors of gastrointestinal helminthiasis of lactating cow and effect of strategic deworming on milk quantity, fat, and protein in Kucha, Ethiopia. *Veterinary Research*,18(1):150.
- Hennane Kamel et Melle Ighil Lamia 2007. (Etude et analyse physico-chimique de la matière première (Gypse) et de ses impuretés de la carrière de Boudjellil), Université de Bejaia 57P.
- Hèzouwè Poromna, Ftimbé Lare, Seyram K. Sossou, Messanh Kangni-dossou, Kissao Gnandi, and Yaovi Ameyapoh 2020. Quantification et caractérisation des boues de vidange dans la ville d'Aného au Togo pour le choix d'un traitement approprié. *International Journal of Innovation and Scientific Research*, (49) 2 : 288-300.
- Houndji B. V. S., Bodjrenou S., Londji S., Ouetchehou R., Acakpo A., Amouzou K. 2013.
 "Amélioration de l'état nutritionnel des enfants âgés de 6 à 30 mois à Lissèzoun (Centre-Bénin) par la poudre de feuilles de *Moringa oleifera* (Lam.)." *International Journal of Biological and Chemical Sciences*, 7(1): 225-235.

- Imlay J. 2008. Cellular defences against superoxide and hydrogen peroxide. Annual Review of Biochemistry, 77, 755–776.
- INC (Institut National de Cartographie) 2019. Carte topographique de la région de Yaoundé au 1/200000. Yaoundé : 2 p.
- INRA (Institut National de la Recherche Agronomique) 2005. L'émergence d'une ingénierie écologique des milieux aquatiques. - 147, rue de l'université – 75338. Paris, Cedex 07. Direction de l'Information et de la Communication, 11 p.
- Ioannidou O. et Zabaniotou A., 2007. Agricultural residues as precursors for activated carbon production. A review. *Renewable Sustainable Energy Review*. 11: 1966-2005.
- Iqbal A., Zan F., Siddiqui A., Nizamuddin S., Chen G. 2022. Integrated treatment of food waste with wastewater and sewage sludge: Energy and carbon footprint analysis with economic implications. *Science of the Total Environment*, 825:154052.
- Irma Robles, Emmanuel Becerra, Barrios J. A., Maya C., Jimenez B., Francisco Rodríguez-Valadez J., Fernando Rivera, Josue García-Espinoza D., Luis Godínez A. 2020. Inactivation of helminth eggs in an electro-Fenton reactor: Towards full electrochemical disinfection of human waste using activated carbon. *Chemosphere*, 250: 126-260.
- Jankowska H., Swiatkowski A. and Choma J. 1991. «Active Carbon». Military Technical Academy, Warsaw, Polan. *Aiche Journal*, 12 (38) : 280p.
- Jiménez B. 2009. « Helminth ova control in wastewater and sludge for agricultural reuse », dans W.
 O. K. Grabow (dir.), Encyclopaedia of Biological, Physiological and Health Sciences, Water and Health, Oxford, UNESCO/EOLSS Publishers Co. Ltd. 2, 429-449.
- Jiménez Cisneros Blanca, Pay Drechsel, Doulaye Koné, Akiça Bahri, Liqa Raschid-Sally, Manzoor Qadi 2011. Utilisation des eaux usées, des boues et des excrétas dans les pays en développement. International Water Management Institute. Presse de l'Université du Québec, 479.
- Jirků Pomajbíková K., Jirků M., Levá J., Sobotková K., Morien E., Parfrey L. W. 2018. The benign helminth *Hymenolepis diminuta* ameliorates chemically induced colitis in a rat model system. *Parasitology*, 145 (10): 1324–1335.
- Joffin J. N., Chevalier B. 2002. « Hypochlorites et eaux de Javel : unités de concentration, préparation des solutions désinfectantes. » (<u>http://membres.lycos.fr/microbio/actualites/Javel/_corps.html</u>).
- Kapso Tchouankep M. 2018. Dynamique d'abondance des amoebidés dans les milieux aquatiques à Yaoundé (Cameroun). Thèse de Doctorat Faculté des Sciences, Université de Yaoundé I, 180 P.

- Karkashan A., Khallaf B., Morris J., Thurbon N., Rouch D., Smith, S. R., Deighton M. 2015. Comparison of methodologies for enumerating and detecting the viability of *Ascaris* eggs in sewage sludge by standard incubation-microscopy, the BacLight Live/Dead viability assay and other vital dyes. *Water Research* 68, 533–544.
- Kato S., Fogarty E. A., Bowman D. 2003. Effect of aerobic and anaerobic digestion on the viability of *Cryptosporidium parvum* oocysts and *Ascaris suum* eggs. *International Journal of Environment and Health Research*, 13: 169-179.
- Katz K., Coelho P M Z., Pellegrino J. 1970. Evaluation of kato's quantitative method through the recovery of *Schistosoma mansoni* eggs added to human feaces. *Journal of Parasitology*, (56): 1032-1033.
- Keffala C., Harerimana C., Vasel J. L. 2012. Œufs d'helminthes dans les eaux usées et les boues de station d'epuration : enjeux sanitaires et intérêt du traitement par lagunage. *Environnement Risque et Santé*, 11 (6) : 511-20.
- Keraita B. et Amoah I. D., 2011. Fecal Exposure Pathways in Accra: A Literature Review with Specific Focus on IWMI's Work on Wastewater Irrigated Agriculture (IWMI). Centre for Global Safe Water, Emory University. *Literature Review Report*, 43P.
- Keyes M., Jamal Z., Thibodeau R., Dakin Solution. 2022. Treasure Island (FL): *Stat Pearls Publishing*, PMID: 29939693.
- Khadra Ahmed, Amine Ezzariai, Lamfeddal Kouisnic and Mohamed Hafidi 2021. Helminth eggs inactivation efficiency by sludge co-composting under arid climates. *International Journal of Environmental Health Research*, 31 (5):530-537.
- Khallaayoune Khalid et Fatiha Fethi 1995. Viabilité des œufs d'Ascaris dans les boues résiduaires. Actes Institut Agronomique et Vétérinaire (Maroc), 15 (4): 15-19.
- Kominko H., Gorazda K., Wzorek Z. 2022. Effect of sewage sludge-based fertilizers on biomass growth and heavy metal accumulation in plants. *Journal of Environmental Management*, 1, 305 :114417.
- Kone Martine, Yacouba Ouattara, Paul Ouattara, Lucien Bonou, Pierre Joly 2016. « Caractérisation des boues de vidange dépotées sur les lits de séchage de zagtouli (Ouagadougou) ».
 International. *Journal of Biological and Chemical Sciences*, 10 (6): 132-146.
- Kristensen B. K., Askerlund P., Bykova N. V., Egsgaard H. et Moller I. M. 2004. Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two dimensional liquid chromatography-tandem mass spectrometry. *Phytochemistry*, 65: 1839-1851.

- Krueger Benedict C., Fowler Geoffrey D., Templeton Michael R., 2021. Critical analytical parameters for faecal sludge characterisation informing the application of thermal treatment processes. Journal of Environmental Management, 280 : 0301-4797.
- Kwaambwa Habauka M., Maja Hellsing S., Adrian Rennie R., Robert Barker 2015. Interaction of Moringa oleifera seed protein with a mineral surface and the influence of surfactants. Journal of Colloid and Interface Science, 448: 339–346.
- Lacasse D. 2004. Introduction à la microbiologie alimentaire. Edition Saint-Martin, Québec, 771 p.
- Lacroux Caroline 2006. These de doctorat Régulation des populations de Nématodes gastro-intestinaux (*Haemonchus contortus* et *Trichostrongylus colubriformis*) dans deux races ovines, INRA 401 et Barbados Black Belly, Institut National Polytechnique De Toulouse, 110P.
- Lee J., Kim J. et Hyeon T. 2006. Recent progress in the synthesis of porous carbon materials. *Advance Mater*ial, 18 : 2073-2094.
- Legendre L., Legendre P. 1979. Ecologie Numérique. Masson (Eds), Paris (France), 1-2, 247 p
- Lenntech 2012. Water Treatment Solution : désinfectants. Disponible sur Internet : www.lenntech.fr, (Consulté le 09/12/2012).
- Levine R. L., Williams J. A., Stadtman E. R., Shacter E. 1994. Carbonyl assays for determination of oxidatively modified proteins. *Methods in Enzymology*, 233: 346-357.
- Leynaud G., Verrel J. L. 1980. Modification du milieu aquatique sous l'influence des pollutions. In : Pesson (édition). La pollution des eaux continentales. Influence sur les biocénoses aquatiques. Paris Gauthier Villars, 28 p
- Li N., Liu Z., Wang P., Suman K., Zhang J., Song Y. 2022. Effects of sodium hypochlorite treatment on the chlorophyll fluorescence in photosystem II of microalgae. *Science of the Total Environment*, 12; 833:155192.
- Li Z., Chen T., Cui F., Xie Y., Xu W. 2017. Impact of chitosan and polyacrylamide on formation of carbonaceous and nitrogenous disinfection by-products. *Science of The Total Environment* 132-140.
- Liu D., Paul L., Morgan T., Liu G. 2022. Effects of oxygen fertilization on damage reduction in flooded snap bean (*Phaseolus vulgaris* L.). *Scientific Reports*, 12(1):4282.
- Liu Z., Kanjo Y. et Mizutani S. S. 2009. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment – Physical means, biodegradation, and chemical advanced oxidation. *Science of The Total Environment*, 407 (2): 731–748.
- Ludeprena 2017. «Diagnostic de l'Espace Urbain Communal de Mbankomo.» Yaoundé. Rapport du Diagostic Communal, 12P.

- Maarcia-Agullo J. A., More B. C., Cazorla-amoros and Linares-Solano 2004. Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. *Carbon*, 42(7): 1367-1370.
- Mahmood K. T., Mugal T., et Haq I. U. 2010. "Moringa oleifera: A natural gift-A review." Journal of Pharmaceutical Sciences and Research, 1(2): 775-781.
- Mahmoud Trachi, Nassima Bourfs, Salem Benamara, Hassina Gougam 2014. Préparation et caractérisation d'un charbon actif à partir de la coquille d'amande (*Prunus amygdalus*) amère. *Biotechnology Agronomy Sociology and Environnement*, 18(4), 492-502.
- Marquez M.C et Costa C. 1996. Biomass concentration in pact process. *Water Res*earch, 30: 2079-2085.
- Marteau Pascale 1993. (Mémento roches et minéraux industriels / le Gypse et anhydride), bureau de recherches géologiques et minières France Orléans : BRGM 1993.
- Massara Cristiano Lara, Rafaela Salgado Ferreira, Henrique Leonardo Guerra, Omar dos Santos Carvalho 2001. In vitro study on thiabendazole action on viability of Ascaris lumbricoides (Lineu, 1758) eggs. Revista da Sociedade Brasileira de Medicina Tropical, 34(4): 319-322.
- Massara Cristiano Lara, Rafaela Salgado Ferreira, Luiz Dias de Andrade, Henrique Leonardo Guerra,
 Omar dos Santos Carvalho 2003. Effects of detergents and disinfectants on the
 development of Ascaris lumbricoides eggs Cad. Saúde Pública, Rio de Janeiro, 19(1): 335-340.
- Masson Sylvain 2006. Étude de l'adsorption de micropolluants émergents sur des tissus de carbone activé, Thèse de Doctorat, Université de Grenoble Alpes, 198P.
- Mbouombouo Mama, Ajeagah Gideon Aghaindum, Ibrahim Tchakala, Dickson Enah, Tomkouani Kodom, Yao Patrick Hoekou, Baba Gnon 2020. Biodynamique des œufs et larves d'helminthes dans les eaux de surface de Bamenda, Région du Nord-Ouest, Cameroun : impact sanitaire et influence des paramètres physico-chimiques. *Afrique Science*, 16(5) : 55 -68.
- McKay D. M. 2010. The immune response to and immunomodulation by *Hymenolepis diminuta*. *Parasitology*, 137 (3): 385–394.
- Mejia Rojelio, Yosselin Vicun, Nely Broncano, Carlos Sandoval, Maritza Vaca, Martha Chico, Philip Cooper J., Thomas B. Nutman 2013. A Novel, Multi-Parallel, Real-Time Polymerase Chain Reaction Approach for Eight Gastrointestinal Parasites Provides Improved Diagnostic Capabilities to Resource-Limited At-Risk Populations Am. *Journal of Tropical Medicine and Hygiene*, 88(6): 1041–1047.

- Mekonnen M. M., Pahlow M., Aldaya M. M., Zarate E. et Hoekstra A. Y. 2015. « Sustainability, effciency and equitability of water consumption and pollution in Latin America and the Caribbean ». *Sustainability*, 2 (7) : 2086 -2112.
- Mémento Roches et minéraux industriels- Gypse et anhydrite [en ligne] Disponible sur: http://infoterre.brgm.fr/rapports/RR-37722-FR.pdf (consulté le 14 novembre 2017).
- Mendez J. M., Jimenez B. E., Barrios J. A. 2002. Improved Alkaline Stabilization of Municipal Wastewater Sludge. *Water Science and Technology*, 46: 139-146.
- Merward M. A., Mitchell S. M., Jajac A. M., Flick G. J., Linsay D. S., 2011. Effet of high pressure processing on hatching of eggs of the zoonotic rat tapeworm *Hymenolepis diminuta*. *Veterinary Parasitology*, 176(2-3): 185-188.
- Michael S., Ian S., Litay R., Robert A., Claire N.W., Albania G., Mark C. 2004. Relationship between Macroinvertebrate fauna and environmental variables in small streams of the Dominican Republic. *Water Research*, 38: 863-874.
- Moller I. M. 2001. Plant Mitochondria and Oxidative Stress : Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. *Annual Review of Plant Physiology and Plant Molecular Biology*, 52: 561-591
- Monchalin G., Aviron-Violet J. 2000. Réutilisation des eaux usées après traitement, 38 p. En ligne : <u>http://www.abhatoo.net.ma/maalama-textuelle/</u>developpementdurable/environnement/ eaudouce/approvisionnementen-eau-potable/traitement-de-l-eau/reutilisation-des-eauxueesaprestraitement-lien valide le 13 juillet 2020.
- Mounia Abouelouafa, Hassan El Halouani, Mohammed Kharboua et Abdel Basset Berrichi 2002. Caractérisation physico-chimique et bactériologique des eaux usées brutes de la ville d'oujda : canal principal et oued bounaïm. *Actes Institut Agronomique et Vet*érinaire (Maroc), 22 (3): 143-150.
- Moussa Moumouni Djermakoye Hamsatou 2005. Eaux résiduaires des tanneries et des teintureries, Thèse de Doctorat Faculté de Médecine de Pharmacie et d'Odonto-Stomatologie, Université de Bamako, 135P.
- Mwenda JM., Tate JE., Parashar UD. 2021. Epidemiology of intussusception in sub-Saharan Africa. *Pan Africa Medical Journal*, 39 (1) :1.
- Navarro I. Jimenez B., Lucario S., Cifuentes E. 2009. Application of helminth ova infection dose curve to estimate the risks associated with biosolid application on soil. *Journal of Water and Health*, 7(1): 31-44.

- Ndiaye Mamadou Camara, Hamadou Boucari, Mariama Sagna, Cheikh Sidia Toure 2018. Caractérisation de la charge polluante des boues de vidange dans les pays d'Afrique subsaharienne. *Cabinet EDE, International,* 10P.
- Ngakomo Ananga Rose Pulcherie, Ajeagah Gideon Aghaindum, Zeinab Abou Elnaga, Ngassam Pierre 2019. An Ecological Assessment of the Physico-chemical and Biological Water Quality in a Sub-urban Area in Cameroon: Case of the Ngoumou Rural Council. *International Journal of Natural Resource Ecology and Management*, 4 (6) : 198-204.
- Nicolas X., Chevalier B., Klotz F. 2005. Anguillule et anguillulose Strongyloides and strongyloidiasis EMC-*Maladies Infectieuses*, 2 : 42–58
- Nozais J P., Datry A., Danis M. 1996. Traité de Parasitologie médicale. Pradel, 36 p.
- OCDE (Organisation de Coopération et de Développement Economiques). 2012. OECD Environmental Outlook to 2050: The Consequences of Inaction. Key Facts and Figures. Paris, Éditions OCDE. www.oecd.org/env/indicators-modelling-outlooks/49910023.pdf.
- Okoa Amougou Thérèse Nadège, Gideon Ajeagah Aghaindum, Quiggle Asi Atud, Arnold Landry Fotseu Kouam, Yvonne Laure Tchouapi, François Désiré Owona Edouard 2020. Bioévaluation des formes de résistance des helminthes intestinaux dans les puits et les sources dans une zone rurale de la région du Centre, Mbalmayo, Cameroun. *Afrique Science*, 17(5): 210 -219.
- Okoa Amougou Thérèse Nadège, Ajeagah Gideon Aghaindum, Asi Quiggle Atud 2021. Cosmopolitan Nature of the Eggs of *Ascaris lumbricoïdes* Identified in Wells Water Destined for Domestic Usage in Sub-Urban Areas in the Center Region of Cameroon. *International Journal of Science*, 10 (2): 2410-4477.
- Olson M., and Carlquist S. 2001. "Stem and root anatomical correlations with life form diversity, ecology, and systematics in Moringa (Moringaceae)." *Botanical Journal of the Linnean Society*, 135(4): 315-348.
- OMS 1987. Lutte contre les parasitoses intestinales : rapport d'un comité OMS d'expert. Organisation Mondiale de la Santé, Genève, série de rapport technique OMS, 749 p.
- OMS 1989. L'utilisation des eaux usées en agriculture : Recommandations à visées sanitaires. *Rapport Technique* 666:162.
- OMS 2006. Guidelines for the Safe Use of Wastewater, Excreta and Greywater, Volume 2: Wastewater Use in Agriculture, Genève, Organisation Mondiale de la Santé.
- OMS 2014. Preventing Diarrhoea through Better Water, Sanitation and Hygiene: Exposures and Impacts in Low- and Middle-income Countries. Genève, Suisse, OMS. apps.who.int/iris/bitstream/10665/150112/1/9789241564823_eng.pdf.

- Otim M. E, Almarzouqi A. M., Mukasa J. P., Gachiri W. 2020. Achieving Sustainable Development Goals (SDGs) in Sub-Saharan Africa (SSA): A Conceptual Review of Normative Economics Frameworks. *Front Public Health*, 16 (8): 547-584.
- Ouro-Boya B.S. 2004. Evaluation de l'état d'une eau de rivière par l'analyse multidimensionnelle utilisant des paramètres caractéristiques de la matière organique dissoute. Thèse de Doctorat, Université de Poitiers, France, 216 p
- Patil S. R., Arnold B. F., Salvatore A. L., Briceno B., Ganguly S., Colford J. M. Jr., Gertler P. J. 2014. The effect of India's total sanitation campaign on defecation behaviors and child health in rural Madhya Pradesh: a cluster randomized controlled trial. *PLoS Med*icine, 11(8): 100-170.
- Paulsrud B., Gjerde B., Lundar A. 2004. Full scale validation of helminth ova (Ascaris suum) inactivation by different sludge treatment processes. Water Sciences and Technology, 49: 139–146.
- PCD (Plan Communal de Développement) 2018. Rapport diagnostic de la commune de Bankomo, 248P.
- Pecson B. M., Nelson K. L. 2005. Inactivation of *Ascaris suum* eggs by ammonia. *Environmntal Sciences and Techenology*, 39 (20): 7909-7914.
- Pecson B. M., Barrios J. A., Jimenez B. E., Nelson K. L. 2007. The effects of temperature, pH, and ammonia concentration on the inactivation of *Ascaris* eggs in sewage sludge. *Water Research*, 41(13): 2893–2902.
- Pelekani C., Snoeyink V. L. 2000. Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution. *Carbon*, 38 : 1423–1436.
- Peletier J. L. 1969. Données générales sur la répartition des principaux types de sol de la région de Yaoundé. Document ORSTOM.
- PNUD (Programme des Nations Unies pour le Développement) 2006. Rapport sur le développement humain: Au-delà de la pénurie : pouvoir, pauvreté et crise mondiale de l'eau New York, PNUD. hdr.undp.org/sites/default/fles/hdr_2006_fr_complet.pdf I.2.1.
- Poumaye N., Mabingui J., Lutgen P., Bigan M. 2012. "Contribution to the clarification of surface water from the *Moringa oleifera*: Case M'Poko River to Bangui, Central African Republic." *Chemical Engineering Research and Design*, 90(12): 2346-2352.
- Prakash Kumar B. G., Shivakamy K., Miranda L. R., Velan M. 2006. Preparation of steam activated carbon from rubberwood sawdust (*Hevea brasiliensis*) and its adsorption kinetics. *Journal of Hazardous Materials*, 136 : 922-929.

- Prost A. 1987. Les dangers de maladies infectieuses liés à la réutilisation des eaux usées. Bulltin International de la Qualité des Eaux, 12: 78-83
- Qingyun He, Piao Xu, Chen Zhang, Guangming Zeng, Zhifeng Liu, Dongbo Wang, Wangwang Tang, Haoran Dong, Xiaofei Tan et Abing Duan 2018, Influence of surfactants on anaerobic digestion of waste activated sludge: acid and methane production and pollution removal. *Critical Reviews in Biotechnology* 13P ISSN: 0738-8551.
- Řežábkováa Lucie, Jan Brabeca, Milan Jirkůa, Marc Dellerbad, Roman Kuchtaa, David Modrýa, William Parkerf, Kateřina Jirků Pomajbíkováa 2019. Genetic diversity of the potentially therapeutic tapeworm *Hymenolepis diminuta* (Cestoda: Cyclophyllidea). *Parasitology International*, 71 :121-125.
- Rivera-Utrilla J., Sanchez Polo, Gomez-Serrano V., Alvarez P. M., Alvim-Ferraz M. C., Dias J. M. 2011. Activated carbon modifications to enhance its water treatment applications. An overview. *Journal of Hazardous Materials*, 187 (3) : 1-23.
- Rodier J. 2009. L'analyse de l'eau. 9^e édition, Dunod, Paris, 1579 p.
- Rohingam D. 2008. Fréquence des parasitoses intestinales dépistées à la Société de Laboratoire d'Analyses Biomédicales de Guinée (SOLABGUI). Thèse de Doctorat, Université Gamal Abdel Nasser de Conakry, 32 p.
- Rook J. 1974. Formation of haloforms during chlorination of natural waters. *Journal of Water Treatment* and *Examination*, 23, 234- 243.
- Rosypal Alexa C., Dwight Bowman D., Daniel Holliman, George Flick J., David Lindsay S. 2007, Effects of high hydrostatic pressure on embryonation of Ascaris suum eggs Veterinary Parasitology, 145 (2): 86–89.
- Sabbahi S., Ben Ayed L., Trad M., Berndtsson R., Karanis P. 2022. Parasitological Assessment of Sewage Sludge Samples for Potential Agricultural Reuse in Tunisia. *International Journal* of Environmental Research and Public Health, 31 ;19(3):1657.
- Saint Sauveur De A., and Broin, M. 2006. "L'utilisation des feuilles de *Moringa oleifera* contre les carences alimentaires : un potentiel encore peu valorisé." Atelier international « *Moringa* et autres végétaux à fort potentiel nutritionnel : Stratégies, normes et marchés pour un meilleur impact sur la nutrition en Afrique ».
- Saint-Gobain 2019. Placoplatre [en ligne]. Disponible sur : Source http://www.placoplatre.fr/l environnement/ Le-gypse/L-extraction-du-gypse (consulté le 15 mai 2020).
- Sanguinetti G. S., Tortul C., Garcia M. C., Ferrer V., Montangero A., Strauss M. 2005. Investigating helminth eggs and Salmonella sp. in stabilization ponds treating septage. *Water Sciences Technology*, 51 (12): 239–247.

- Sarvel A. K., Kusel J. R., Araújo N., Coelho P., Katz N. 2006. Comparison between morphological and staining characteristics of live and dead eggs of *Schistosoma mansoni*. *Memórias do Instituto Oswaldo Cruz*, 101, 289–292.
- Sato T., Qadir M., Yamamoto S., Endo T., Zahoor A. 2013. Global, regional, and country level need for data on wastewater generation, treatment, and use. *Agricultural Water Management*, 130: 1-13.
- Schaechter M., Medoff G., Barry I., Eusentein 1999. Microbiologie et pathologie infectieuse. Paris-Bruxelle, 1000 p.
- Sengupta M. E., Thamsborg S. M., Andersen T. J., Olsen A., Dalsgaard A. 2011. Sedimentation of helminth eggs in water. *Water Research*, 45(15): 4651-4660.
- Shimizu Y., Uryu K., Okuno Y., Ohtubo S. et Watanabe A. 1997. Effect of particle size distributions of activated sludges on cross-flow microfiltration flux for submerged membranes. *Journal* of Fermentation and Bioengineering, 83 (6): 583–589.
- SNIP 1982. Syndicat National des Industries des Plâtres, (le plâtre physico-chimique), fabrication et emploi, Edition eyrolles 8P.
- Sobsey M. D., Bartram S. 2003. Water quality and health in the new millennium: the role of the World Health Organization Guidelines for Drinking-Water Quality. *Forum of Nutrition*, 56: 396-405.
- Soleimani M. et Kaghazchi T. 2008. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones. An agricultural waste. *Bioresource Technology*, 99: 5374-5383.
- Spickett C. M. 2007. Chlorinated lipids and fatty acids: an emerging role in pathology. *Pharmacology and Therapeutics*, 115(3): 400-409.
- Stadtman E. R. 1993. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. *Annual Review of Biochemistry*, 62: 797-821.
- Stien J. L. 1989. Œufs d'helminthes et environnement : le modèle d'œufs d'*Ascaris* Thèse de Doctorat Université de Metz Mention "Chimie et Microbiologie de l'Eau 170 P.
- Suchel J. B. 1987. Les climats du Cameroun, Thèse de Doctorat d'Etat, Université Bordeaux III, 1186 p.
- Suez Memento Degremont 2019. Traitement de l'effluent de désulfuration des fumées des centrales thermiques [en ligne] Processus industriels et traitement des effluents résiduaires Disponible sur: https://www.suezwaterhandbook.fr/procedes-et-technologies/processus-industriels-ettraitementsdes-effluents-residuaires/centrales-thermiques/traitement-de-l-effluent-dedesulfuration-des-fumeesdes-centrales-thermiques (consulté le 09/12/2020).

- Tchuem Tchuemté L. A., Southgate V. R., Vercruysse J. 2001. La bilharziose et les géo helminthiases dans l'Arrondissement de Makénéné, Province du Centre, Cameroun. Le Bulletin de Liaison et de Documentation de l'OCEAC, 34: 19-22. http://hdl.handle.net/1854/LU-145912.
- Tseng R. L. and Tsng S. K., 2005. Pore structure performance of the KOH-activated carbons prepared from corncob. *Journal of Coloids and Interface Science*, 287 (2) 428-437.
- Tsuji K., Tsujimura T., Sakai S., Suzuki T., Yoshihara M., Nagoya K., Magara J., Satoh Y., Inoue M. 2020. Involvement of capsaicin-sensitive nerves in the initiation of swallowing evoked by carbonated water in anesthetized rats. *American Journal of Physiology Gastrointestinal* and *Liver Physiology*, 1 ;319(5): 564-572.
- Ulusoy A. T., Bayrak S., Bodrumlu E. H. 2014. Clinical and radiological evaluation of calcium sulfate as direct pulp capping material in primary teeth. Pubmed, [en ligne]. Disponible sur https://www.ncbi.nlm.nih.gov/pubmed/25102461 (consulté le 06/05/2018).
- USEPA 2004. Guidelines for Water Reuse. Municipal Support Division Office of Wastewater Management Office of Water. Washington, DC, p. 478.
- Valix M., Cheung W. H., et Mckay G. 2004. Preparation of activated carbon using low temperature carbonizationand physical activation of high ash raw bagasse for acid dye adsorption. *Chemophere*, 56 (5) : 493-501.
- Van Quan Tran, Hoang-Long Nguyen, Dong Van Dao Benoit, Hilloulin 2021.Effect of temperature on the chloride binding capacity of cementitious materials. *Magazine of Conrecte Research*, 15 (75): 771-784.
- Velkushanova K., Strande L., Ronteltap M., Koottatep T., Brdjanovic D. and Buckley C. 2021. Methods for Faecal Sludge Analysis. Published by IWA Publishing, London, UK 395p.
- Vissers M. C., Carr A. C. et Winterbour C. 2001. Fatty acid chlorohydrins and bromohydrins are cytotoxic to human endothelial cells. *Redox Report*, 6(1): 49-55.
- Wang H., Wang T., Zhang B., Li F., Toure B., Omosa I. B., Chiramba T., Abdel-Monem M. and Pradhan M. 2014. Water and wastewater treatment in Africa – Current practices and challenges. *Clean – Soil, Air, Water*, 42 (8): 1029-1035.
- WEF (Water Environment Federation) 1996. Wastewater Disinfection, Manual of Practice No. FD-10, Alexandria.
- Wéthé J., Radoux M., Tanawa E. 2003. Assainissement des eaux usées et risques sociosanitaires et environnementaux en zones d'habitat planifié de Yaoundé (Cameroun). *Revue en Science de l'Environnement*, 5 (4): 23 - 25.
- Wharton D. A. 1980. Nematode eggs. Parasitology, 81: 447-463

- Wharton D. A. 1983. The production and functional morphology of helminth egg-shells. *Parasitology* 1983; 86: 85-97.
- Wiseman H. et Halliwell B. 1996. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. *The Biochemical Journal*, 313 (1), 17-29.
- Xiao Y., Raheem A., Ding L., Chen WH., Chen X., Wang F., Lin SL. 2022. Pretreatment, modification and applications of sewage sludge-derived biochar for resource recovery- A review. *Chemosphere*, 287(1):131969.
- Yang K., Wu W., Jing Q., JiangW., Xing B. 2010. Competitive adsorption of naphthalene with 2,4dichlorophenol and 4-chloroaniline on multiwalled carbon nanotubes. *Environment Sciences and Technology*, 44, 3021–3027.
- Yang T. et Lua A. C. 2003. Characteristics of activated carbons prepared from pistachionut shells by physical activation, *Journal of Colloid and Interface* Sciences, 267(2), 408 417.
- Yovo Franck, Biaou Dimon, Eléonore Yayi, Fidèle Suanon, Ignace Agani, Valentin Wotto, Dominique Sohounhloue, Coff Azandegbe E. 2017. Caractérisation d'eaux usées des quartiers déshérités du sud du Bénin : cas du quartier Agla, *Déchets Sciences et Techniques* (74), 8p.
- Zerdo Z., Bastiaens H., Anthierens S., Massebo F., Masne M., Biresaw G., Shewangizaw M., Tunje A., Chisha Y., Yohannes T., Van Geertruyden P. 2022. Prevalence, intensity and endemicity of intestinal schistosomiasis and soil-transmitted helminthiasis and its associated factors among school-aged children in Southern Ethiopia. *Scientific Reports*, 12 (1): 4586.
- Zhang K., Cheung W. H., and Valix M. 2005. Roles of physical and chemical properties of activated carbon in the adsorption of lead ions. *Chemosphere*, 60(8): 1129-40.
- Zhang M., Wang X., Yang J., Wang D., Liang J., Zhou L. 2022. Nitrogen removal performance of high ammonium and high salt wastewater by adding carbon source from food waste fermentation with different acidogenic metabolic pathways. *Chemosphere*, 292: 133512.
- Zheng J., Lin T., Chen W. 2017. Removal of the precursors of N-nitrosodiethylamine (NDEA), an emerging disinfection byproduct, in drinking water treatment process and its toxicity on adult zebrafsh (Danio rerio). *Chemosphere*, 191: 1028-1037.

LISTE DES ANNEXES

LISTE DES ANNEXES

		Cité Universitaire	Prison Centrale	Nomayos	Biyem-Assi
	essai1	3500	2348	7500	1750
Ascaris sp.	essai2	1750	2010	3030	2300
(œufs/L)	moyenne	2625	2179	5265	2025
	écart-type	1237,43687	239,002092	3160,76731	388,90873
	essai1	2060	3782	4500	2500
Necator	essai2	1010	4420	1792	2000
(œufs/L)	moyenne	1535	4101	3146	2250
	écart-type	742,46212	451,134126	1914,84516	353,553391
	essai1	1070	3782	2000	750
Strongyloides	essai2	3014	4420	1500	1090
(Larves/L)	moyenne	2042	4101	1750	920
	écart-type	1374,61558	451,134126	353,553391	240,416306
	essai1	8500	934	1982	840
Trichuris	essai2	1010	1390	973	1036
(œufs/L)	moyenne	4755	1162	1477,5	938
	écart-type	5296,22979	322,440692	713,470742	138,592929
	essai1	1500		6350	
A.nkylostoma	essai2	740		4730	
(œufs/L)	moyenne	1120		5540	
	écart-type	537,401154		1145,51299	
	essai1	225	357	450	300
Hymenolepis	essai2	1700	850	620	590
(œufs/L)	moyenne	962,5	603,5	535	445
	écart-type	1042,9825	348,603643	120,208153	205,060967

Annexe 1 : Variation du nombre d'œufs viables observé pendant l'étude

			CU	PC	No	BA
		NTO	5100	3849	12540	2900
		NOV	3500	2348	7500	1750
	essai1	%	68,627451	61,0028579	59,8086124	60,3448276
		NTO	3018	3470	5702	3590
Ascaris spp		NOV	1750	2010	3030	2300
(œufs/L)	essai2	%	57,9854208	57,925072	53,1392494	64,0668524
		NTO	2680	4557	6670	3105
		NOV	2060	3782	4500	2500
	essai1	%	76,8656716	82,9931973	67,4662669	80,5152979
		NTO	1200	6000	2410	2553
Necator		NOV	1010	4420	1792	2000
(œufs/L)	essai2	%	84,1666667	73,6666667	74,3568465	78,3392088
		NTO	1100	3850	3000	810
		NOV	1070	3782	2000	750
	essai1	%	97,2727273	98,2337662	66,6666667	92,5925926
~		NTO	3080	4480	1700	1150
Strongyloides		NOV	3014	4420	1500	1090
(Larves/L)	essai2	%	97,8571429	98,6607143	88,2352941	94,7826087
		NTO	10680	1246	3056	1167
		NOV	8500	934	1982	840
	essai1	%	79,588015	74,9598716	64,8560209	71,9794344
		NTO	1364	1748	1345	1254
Trichuris trichiura		NOV	1010	1390	973	1036
(œufs/L)	essai2	%	74,0469208	79,5194508	72,3420074	82,61563
		NTO	1854		8090	
		NOV	1500		6350	
	essai1	%	80,9061489		78,4919654	
		NTO	970		7010	
Ancylostoma duodenale		NOV	740		4730	
(œufs/L)	essai2	%	76,2886598		67,4750357	
		NTO	285	417	740	410
		NOV	225	357	450	300
	essai1	%	78,9473684	85,6115108	60,8108108	73,1707317
		NTO	2090	1273	940	750
Hymenolenis nana		NOV	1700	850	620	590
(œufs/L)	essai2	%	81,3397129	66,7714061	65,9574468	78,6666667

Annexe 2 : Calcul du pourcentage de viabilité des œufs

Légende : NTO= Nombre Total d'œufs ; NOV= Nombre d'œufs Viables

				Cité	Universi	itaire					Pr	ison Cent	rale		
		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
	Те	16,2							3,5						
	Gypse		13,4	5,2	1,9	2,1	1,7	1,2		2	1,9	0,11	0,9	0,11	0,13
	CaCl2		11.7	7	2.1	1.9	1.1	0.9		2.4	2.1	0.46	1.1	0.33	0.34
	NaClO		9	67	41	4.8	0.89	0.29		1 77	14	0.15	0.21	0.18	0.17
	H _a O ₂		122	10.8	7.2	7	4 1	3.1		1,77	1.55	0.16	1	0.31	0.29
NH^+ (mg/L)	Hand		12,2	8 1	2.1	27	2.2	2.0		3.4	2.0	2 71	11	0,31	0,27
$1 \times 11^{4} (\text{IIIg/L})$	Moringo		14.2	12.1	2,1	2,7	2,2	2,9		2.0	2,9	2,71	0.27	0,77	0,33
	Charbon		14,5	12,1	0,5	9,0	27	11,4		2,9	1,/	0,3	0,37	0,29	0,31
	Charbon N-Cl		14	0,7	1,0	4,1	5,7	4		27	2,1	0,22	0,22	0,2	0,21
	NaCi		14,9	11.0	12,5	10	11	1.22		2,7	0.77	0,10	0,52	0,55	0,54
	Mo+CaCl ₂		14,2	11,9	3,3	5,1	4	1,33		1,6	0,77	0,28	0,28	0,22	0,16
	RL				0,4	47						0	,3		
	Te	0,33							1,04						
	Gypse		0,34	0,32	0,34	0,41	0,3	0,4		1	1,11	1,15	1,13	1,13	1,14
	CaCl ₂		0,32	0,37	0,39	0,52	0,49	0,53		0,56	1,12	0,78	1,63	0,99	1,05
	NaClO		1	0,97	1,2	1,2	0,98	1,96		1,34	1,77	2	2,03	2,08	2,07
Salinitá	H_2O_2		0,47	0,67	0,58	0,92	0,93	0,97		1,03	1	0,69	1,01	1,06	1,07
	Hand		0,4	0,01	0,02	0,19	0,2	0,2		0,99	1,03	0,88	0,99	0,73	0,85
(FSU)	Moringa		0,97	0,97	1,47	1,81	2	2,3		1,02	0,99	0,7	0,76	0,67	0,78
	Charbon		0,32	0,19	0,23	0,23	0,22	0,24		1,03	1,91	1	0,99	1,08	1,06
	NaCl		0,38	0,66	0,9	1	1,33	1,33		7	13,8	22,86	31,8	32	38
	Mo+CaCl2		0.49	0.33	0.63	0.72	1	1.42		1.3	0.77	0.68	1.08	0.99	0.93
	RL		- / -	- /	0.1	2.1		,		7-		0	89	- ,	- ,
	Те	343							919						
	Gypse		347	346	350	374	402	423		990	999	1030	1055	1070	1066
	CaCla		352	357	398	399	508	534		920	840	773	1010	1028	1034
	NaClO		909	1047	1176	1234	1602	1869		1440	1780	1956	2429	3150	3282
	HaClo		/02	521	523	804	905	955		820	790	714	990	1050	1048
TDS(mg/I)	Hand		187	100	212	201	200	208		020	885	868	866	850	847
1DS(IIIg/L)	Moringa		5/3	752	057	087	1275	1/10		800	766	781	741	600	687
	Charbon		202	222	229	220	246	255		040	269	257 257	741	090 852	676
	NaCl		492	661	230	040	1040	1202		12092	15092	12000	21724	25800	20200
	NaCI		465	401	691	940	1040	1295		12085	13983	18090	21/54	23890	28280
	Mo+CaCl ₂		399	401	630	988	1011	1381		/64	827	6/9	864	919	920
	RL T	605			I?	1/			20.62			9	19		
	Te	685	60.0	<i>c</i> o o			001	0.50	2063	1000	1000	20.00	2110	21.10	2122
	Gypse		690	692	705	750	804	860		1980	1999	2060	2110	2140	2132
	CaCl ₂		704	714	797	800	1012	1068		1840	1681	1547	2019	2056	2068
	NaClO		1818	2094	2368	2468	3204	3740		2880	3560	3912	4850	6300	6560
Conductivité	H_2O_2		984	1042	1050	1608	1810	1905		1640	1580	1428	1980	2100	2069
Électrique	Hand		375	400	425	402	418	416		1810	1770	1736	1732	1700	1695
(µS/Cm)	Moringa		1086	1504	1915	1974	2550	2841		1780	1532	1562	1482	1380	1374
	Charbon		604	462	477	460	492	509		1880	1736	1714	1532	1706	1352
	NaCl		966	1202	1784	1880	2080	2587		24166	31906	36180	43468	51780	56560
	Mo+CaCl ₂		794	802	1043	1976	2022	2770		1528	1654	1358	1728	1838	1844
	RL				20)9						18	356		
	Те	7,05							8,14						
	Gypse		4	4,1	4,41	4,4	4,43	4,43		6,13	5,59	5,52	5,43	4,79	4,64
	CaCl ₂		7,28	7,27	7,29	7,3	7,31	7,33		7,71	7,34	7,66	7,67	7,71	7,59
	NaClO	1	7,78	7,78	7,76	7.66	7.61	7,52	1	7.22	7.25	7.21	7.74	7.67	7.78
	H ₂ O ₂	1	6.2	5.9	5.7	4.8	4	3.36	1	6.74	6.66	7.21	6.71	6.21	5.62
pH	Hand		6.5	5.9	5.8	5.55	5.47	5.37		6.88	6.75	6.71	6.73	6.81	7
(U.C)	Moringa	1	7	6.9	6.16	6.12	6.09	6.05		7.43	7.31	7.44	7.51	7.33	7.63
	Charbon		5.9	6.76	6.83	6,99	7.1	7		7.71	7.74	7.74	7.69	7.69	7.94
	NaC1		7.08	7.11	7.14	7.19	7.23	7.28		7.32	7.41	7.48	7.43	7.53	7.55
	Mo+CaCl2		7.1	6.99	6.75	6.67	5.87	5.86		7.51	7.37	7.44	7.47	7,35	7.43
	RL		.,1	-,- /	71	03	2,07	2,00		.,01	.,.,,	7	.78	.,55	.,
	Те	2920			<i>'</i> ,'	~~			3100			,			
	Gypse	_/20	1040	750	250	2.52	180	130	2100	910	909	45	37	24	19
	CaCla	1	1034	804	220	220	223	220	1	304	104	53	55	55	57
Turbidité	NaClO		1250	1114	1100	840	429	280		204	88	48	43	37	34
(FTI)	HaCio		1990	1940	1640	1420	880	590		188	94	61	63	36	27
(Hand		1340	890	340	320	348	350		307	294	181	177	148	122
	Moringa		1770	345	258	120	90	90		246	89	62	57	44	36
	Charbon	1	1290	660	420	421	270	180		330	123	64	34	32	34
								~~							

Annexe 3 : Variations des paramètres physico-chimiques mesurés avant et après désinfection sur les échantillons de la Cité Universitaire et la Prison Centrale

	NaCl		1240	880	540	430	190	170		102	91	41	38	33	34
	Mo+CaCl ₂		2910	1080	400	270	140	83		124	88	53	54	50	51
	RL Te	9880			1;	50			6100			8	9		
	Gypse	7000	4090	790	310	309	299	214	0100	2039	965	365	303	267	199
	CaCl ₂		5903	7908	8640	980	568	364		1940	844	503	229	186	174
	NaClO		6789	4567	3760	1076	378	351		3097	1098	297	184	154	125
Couleur	H ₂ O ₂	-	5897	4942	4790	2780	1234	348		905	407	220	124	108	106
(Pt.Co)	Hand Moringa		2380	2398	1340	1010	534 678	477 576		2709	8/18	19/	5/6	535 148	137
	Charbon		3548	2849	810	908	345	240		670	208	83	79	73	70
	NaCl		4590	458	360	349	458	420		708	437	122	126	112	108
	Mo+CaCl ₂		3479	2890	2530	589	420	200		376	298	207	186	131	123
	RL	155			40	52			22.15			2	11		
	Gypse	15,7	12.7	11	5 47	83	64	73	23,45	3.4	1 0	1 364	11	0.0	0.473
	CaCl2		12,7	14.4	3,47	1.2	0.99	0.39		2.3	1,983	1,036	0.99	0,5	0,468
	NaClO		10.2	9.3	3.03	2.8	1.99	1.11		1.2	0.67	0.152	0.143	0.142	0.02
Orthophosphate	H_2O_2		14,1	8	5,16	4,8	3,99	3,85		2,73	0,83	0,603	0,198	0,1	0,321
(mg/L)	Hand		15	14,8	16,6	9	4,9	4,1		13,24	12,23	10,62	10,49	10,398	9,395
(111g/22)	Moringa		13,8	9,02	3,47	4,1	4	4,88		1,45	0,981	0,61	0,428	0,208	0,109
	NaCl		97	33	0,48	3,2	2,99	2,33		0,343	0,242	0,116	0,219	0,208	0,269
	Mo+CaCl2		12.4	8.1	5.89	6.09	3.04	4.73		1.67	1,03	0.659	0,57	0,23	0.328
	RL		,.	~,-	5,	73	2,01	.,		-,	2,02	0,2	287	-,	0,0-0
	Те	148				1			74						
	Gypse		150	143	216	56	54	9		16	12	3,5	3,2	2,98	1,1
	CaCl ₂		149	98	270	45	19	10		12,63	8,73	4,6	4,926	2,82	3,5
	H.O.		123	47	175	122	9 79	2 		16,73	9,83	4,4	3,923	5.28	2,2
Nitrate	Hand		123	78	40	35	65	69		56.37	23.37	12.9	11.64	10.726	10
(mg/L)	Moringa		145	78	49	48	45	43,2		18,83	9,37	3,4	2,82	1,99	1,3
	Charbon		78	34	10	9	4	4,2		8,2	7,63	2	2,1	1,38	1
	NaCl	-	95	63	53	46	22	6		5,27	6,1	3,9	3,83	2,92	2,4
	Mo+CaCl ₂		134	121	104	84	34	19,5		26	14,63	5,73	4,73	3,92	3,5
	KL Te	1640			8	1			1990			4	,4		
	Gypse	1010	937	89	50	52	50	50	1770	540	103	34	31	23	24
	CaCl ₂		790	438	280	280	282	270		571	122	38	37	33	31
	NaClO		1289	908	730	489	183	90		534	124	35	29	23	23
MES	H ₂ O ₂	-	1280	980	740	380	322	320		382	177	46	34	31	20
(mg/L)	Hand		1890	289	160	166	180	260		863	274	132	124	108	92
	Charbon		1011	789	160	140	80	42		139	83	22	36	20	17
	NaCl		973	669	300	289	248	272		176	72	31	29	23	24
	Mo+CaCl ₂		657	432	280	193	78	46		461	274	54	47	43	34
	RL				35	50			110			5	0		
	Te Gynse	80	16.4	16.5	16	163	17	20	110	65	54	14	15	17	6
	CaCl2		10,4	10,5	8	7.2	6	6		64	34	14	21	19	20
	NaClO		13,6	14	12	11	8,3	8		95	62	16	17	15	8
Alcalinité	H_2O_2		14,2	13,6	12	11,9	12	12		68	42	16	21	10	14
(mg/L)	Hand		12	13	8	13	14	16		76	66	32	23	17	10
(8)	Moringa		16	18	30	33	32	34		54	17	22	21	16	14
	NaCl		10,1	10	13	14	12,1	10		87	61	34	30	35	38
	Mo+CaCl2		13	14.1	12	11.2	11	10		72	27	10	14	14	12
	RL			,	1	4						1	8		
	Те	148				1			69,13						
	Gypse	-	125	82	11,8	19,9	17	11,7		61	33,63	17,1	8,12	4,54	1,78
	CaCl ₂		91	70	5,9	4,3	5,1	2,3		57	41	27,6	16,4	5,72	5,6
	HaCiO		40	32 19	30	14,5	15,6	1/		45,6	10,/ 41.6	9,72	8	4,585	2,76 4 74
Oxydabilité	Hand		28,3	20	15.8	14	8,73	7.9		33.7	24,38	9,56	7	3,7525	2,37
(mg/L)	Moringa	1	81	31	23,7	32	21	11		31,7	29,7	17	12,7	10,665	1,38
1	C 1 1	1	31	99	5.9	5.4	5.17	4.1		38,7	23,54	19,7	10	7,9	4,14
	Charbon		51	,,,	- ,-	- /	e,=.	.,=							
	Charbon NaCl		41	31,1	17,7	8,9	7	2,3		13,72	11	9,875	4,37	2,63	0,22
	Charbon NaCl Mo+CaCl2		41 72	31,1 60	17,7 59	8,9 59,2	7 37	2,3 8,24		13,72 15,62	11 7,71	9,875 4,54	4,37 2,63	2,63 1,2	0,22

Annexe 4 : Variations des paramètres physico-chimiques mesurés avant et après désinfection sur les échantillons de Nomayos et Biyem-Assi

					Nomayos			1		T	1	Biyem-As	si		
	T	C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
	Te	48	27	14.0	0.6	4.1	2.2	1.2	14,3	0.6	5.2	2.4	27		1.4
	Gypse	-	27	14,6	9,6	4,1	3,3	1,3	-	8,6	5,3	3,4	2,7	2	1,4
	CaCl ₂	-	29,1	19,8	10,2	5,4	5,1	4,2		11,2	6,4	4,3	2,7	1,9	1,/
	NaCio	-	19,7	23	16,6	9	4,2	2,5	-	10,7	9,8	3,1	4,1	1,/	0,9
$NH^{+}4$	Hand		29	21,1	11.0	9,7	4,1	5,2		12.1	7.0	65	0,1	21	2,1
(mg/L)	Moringa		24 9	13.7	91	4.9	3.7	3.5		12,1	9.5	0,3	53	3,1	2,3
	Charbon		31	22.4	9	11.1	3,7	1.6		6.4	3.7	2.7	4	1.6	0.5
	NaCl		31.9	28.5	15.2	7.4	4.1	2.8		9.7	6	3.6	3	2.7	0.6
	Mo+CaCl2		18,9	11,9	8,5	3,3	2	0,4		14	12,1	8,1	5,1	4,1	3,5
	RL				0,4	47						1	,1	<u> </u>	. <u> </u>
	Те	0,86					-		1,1						
	Gypse		0,73	0,67	0,66	0,77	0,89	0,86	-	1	0,73	0,74	0,79	0,8	0,89
	CaCl ₂		0,89	0,9	0,8	1,77	2,01	2,11	-	0,92	0,89	0,82	1,7	2	2,1
	NaClO		1,9	2,2	2,27	3	3,03	3,71		2	2	2,3	1,77	2,9	3,01
Salinité	H ₂ O ₂	-	0,83	0,68	0,7	0,69	0,64	0,64	-	0,69	0,71	0,58	0,41	0,3	0,31
(PSU)	Hand		0,87	7,6	0,7	0,69	0,68	0,65		0,97	0,93	0,84	0,69	0,57	0,62
	Charbon	-	0,99	0,84	0,84	2,2	0,91	0,93	-	0.80	0,91	0,77	1,9	0,89	0,92
	NaCl	1	63	0,79	21.35	0,78	0,09	22.08		0,89	0,75	0,57	21	20.9	24.8
	MailCaCla		1	0.97	0.91	0.92	0.76	0.78		0.68	0.87	0.78	0.81	0.99	0.64
	RL.		- 1	0,77	0,71	79	0,70	0,70		0,00	0,07	0,78	64	0,77	0,04
TDS	Te	842			0,	//			913				01		
(mg/L)	Gypse		840	855	867	917	910	957		923	942	950	956	970	973
	CaCl ₂		849	910	913	1010	1200	1992		970	972	970	985	996	1050
	NaClO		930	1480	2143	2790	3019	3388		930	930	945	947	953	955
	H_2O_2		852	810	701	689	655	645		931	935	930	942	950	963
	Hand		847	777	701	669	649	650		931	925	961	950	937	944
	Moringa		831	841	831	823	790	759	-	866	836	823	735	725	710
	Charbon		810	807	771	772	776	778		920	909	836	826	821	747
	NaCl	-	10673	13893	17140	17404	18450	17520	-	9867	10/46	11789	14760	17834	25089
	Mo+CaCl ₂	-	845	/56	902	804	809	/99	-	925	929	85/	83/	/39	647
	Te	1683			13	<i>7</i> 0			1826	[50	57		
	Gypse	1005	1680	1710	1734	1835	1820	1914	1020	1846	1884	1902	1913	1940	1946
	CaCl ₂		1698	1820	1826	2020	2400	3984		1941	1947	1946	1970	1992	2100
	NaClO		1860	2960	4286	5580	6038	6776		1860	1863	1890	1916	1993	2100
Conductivité	H_2O_2		1704	1620	1402	1338	1310	1290		1862	1870	1860	1884	1902	1928
Électrique	Hand		1694	1554	1403	1338	1298	1300		1862	1850	1922	1900	1870	1889
(µS/Cm)	Moringa		1662	1682	1662	1646	1580	1519		1732	1672	1646	1470	1450	1410
	Charbon	_	1619	1614	1542	1544	1552	1557		1840	1818	1674	1554	1643	1556
	NaCl	-	21346	27788	34280	34808	36900	35040	-	19734	21492	23578	29520	35668	50178
	Mo+CaCl ₂		1690	1512	1804	1608	1618	1598	ł	1850	1858	1714	1674	1478	1294
	KL To	7.70			15	80			6 17			10	014		
	Gypse	1,19	6.61	673	5 60	5.41	5 33	4 10	0,17	7 1 5	7 17	7 80	7/3	7 51	7 58
	CaClo	1	7 1	6.99	6.82	7.21	6.68	6.93	1	8.19	8.09	8	7.44	7,71	7,38
	NaClO	1	7.47	7.45	7.47	7.51	7.33	7.41	1	8.24	8.22	8.31	8.33	8.51	8.29
	H ₂ O ₂	1	7,51	7,49	7,47	7,55	7,37	7,31	1	8,31	8	8,28	8,09	8,19	8,29
pH (DCID)	Hand]	7,01	6,99	<u>7,</u> 93	7,61	7,02	7]	8,21	<u>8,</u> 19	8,31	8,41	8,29	8,3
(PSU)	Moringa		7,33	7,34	7,4	7,49	7,51	7,6		8,15	8,13	8,1	8,32	8,26	8,03
	Charbon		7,51	7,49	7,5	7,33	7,29	7,5		7,21	7,34	7,19	7,39	7,51	7,08
	NaCl	1	7,21	7,45	7,35	7,36	7,04	7,03	1	7,11	7,21	7,21	7,01	7,21	7,13
	Mo+CaCl ₂	4	7,99	7,83	7,85	7,71	7,63	7,88		8,01	8,33	8,09	8,31	7,99	8,79
	RL	20.00			7.	,6			5.00			7,	67		
	1e Gyneo	2E+06	1E+06	07725	80000	3500	1049	420	560	200	240	227	222	212	210
	CaCla	1	8E+00	87634	47082	1383	08/	420	1	560	240	237	233	213	210
Turbidité	NaClO	1	1E±06	07034 1E±05	+1982	5873	204	1210	1	410	320	333	301	200	200
(FTU)	HaOa	1	76987	54983	34783	1847	345	1210	1	400	410	407	370	367	370
()	Hand	1	1E+06	88739	54783	3487	1748	1100	1	440	450	340	337	330	313
	Moringa	1	67345	76345	37890	27378	874	240	1	440	360	356	237	242	240
	Charbon	1	8E+05	67893	27903	3189	1074	398		472	375	328	283	254	272
	-											-			

Mode Corp		NaCl		1E+06	9E+05	65982	4367	2873	550		388	318	284	217	123	97
RL 9700 9		Mo+CaCl ₂		8E+05	34658	31783	9831	2341	840		245	231	198	163	127	84
Image Annu 6479 7320 659 1450 1500 <th< td=""><td></td><td>RL T-</td><td>97040</td><td></td><td></td><td>43</td><td>34</td><td></td><td></td><td>1040</td><td></td><td></td><td>2</td><td>7</td><td></td><td></td></th<>		RL T-	97040			43	34			1040			2	7		
Calch (hC.s) Signal (hC.s) Signal (h		Gypse	87040	65479	37380	6839	4782	1270	1360	1940	1750	1550	1570	1453	1345	864
NAC100 (PLO)NAC100 (100)NAC1		CaCl ₂		38478	24685	10873	3456	973	415		1960	1770	1670	1699	1028	763
Controm (PLC) Hod Moninga Moni		NaClO		78640	67389	43784	19874	13784	8720		1560	1340	1540	1324	983	540
(pl.Ca) Hnad Charlos Singel (1287) 1284 1	Couleur	H ₂ O ₂		13784	9073	7893	1387	980	402		1799	1674	1493	1028	932	610
Name Name <th< td=""><td>(Pt.Co)</td><td>Hand</td><td></td><td>87903</td><td>45678</td><td>12886</td><td>76572</td><td>1298</td><td>2164</td><td></td><td>1640</td><td>1600</td><td>1480</td><td>908 592</td><td>1012</td><td>892</td></th<>	(Pt.Co)	Hand		87903	45678	12886	76572	1298	2164		1640	1600	1480	908 592	1012	892
Nacl.		Charbon		12897	11234	934	12876	11267	11400		1920	1900	1210	1102	983	92
Morical RefMorical RefMorical RefMorical RefMorical RefNationNati		NaCl		54789	23678	19675	9876	3689	2860		1732	1583	1293	1019	1212	732
RL GrypeRL GrypeF F CaC2F F CAC3F CAC3F CAC4G CAC4 <th< td=""><td></td><td>Mo+CaCl₂</td><td></td><td>67896</td><td>54876</td><td>24876</td><td>9873</td><td>2456</td><td>1860</td><td></td><td>1029</td><td>982</td><td>712</td><td>625</td><td>241</td><td>96</td></th<>		Mo+CaCl ₂		67896	54876	24876	9873	2456	1860		1029	982	712	625	241	96
Te 16.0 Te Te 5.8 Te 5.8 CaC1: 15.6 11.5.4 10.33 9.18 8.1 8.2 6.33 5.21 4.10 2.3 1.428 NaC0 115.6 11.5.4 10.33 9.18 8.11 8.2 6.33 5.32 5.21 4.10 2.35 1.458 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.45 1.55 1.55 1.55 1.45 1.55 1.55 1.45 1.55 1.45 1.55 1.45 1.55 1.45 1.55 1.45 1.55 1.45 1.55 1.45 1.55 1.45 1.55 1.45 1.55 1.55 1.45 1.55 1.55 1.55 1.45 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 <td></td> <td>RL</td> <td></td> <td></td> <td></td> <td>35</td> <td>54</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.</td> <td>32</td> <td></td> <td></td>		RL				35	54						1.	32		
bits bits <th< td=""><td></td><td>Te</td><td>16,7</td><td>12.62</td><td>10.72</td><td>0 202</td><td>0</td><td>0 1</td><td>74</td><td>6,36</td><td>6.22</td><td>5 20</td><td>5</td><td>1 16</td><td>2.22</td><td>1 / 20</td></th<>		Te	16,7	12.62	10.72	0 202	0	0 1	74	6,36	6.22	5 20	5	1 16	2.22	1 / 20
Section (mg/L) Section		CaCla		12,02	10,75	0,202	0 9 1 8 9	8.13	8.2		6.02	5.99	5 21	4,40	2,25	3 52
		NaClO		13,03	13.64	12,73	8.36	8.31	8,2		6.03	6.1	5,99	5.23	5.01	4.58
Hundy (mg/L) Hund Moringa Charbon Frait 15.3 15.2 10.27 9.7 17.24 6.59 5.66 5.71 5.23 2.24 2.88 Charbon NaC1 9.7 7.52 3.63 2.34 1.9 1.71 5.91 5.02 5.23 4.36 3.43 3.43 3.64 9.90 0.90 0.90 0.91 0.90 0.90 0.91 0.90 0.90 0.90 0.91 0.90 0.90 0.90 0.90 0.91 0.90 <		H ₂ O ₂		8,723	7,7	6,365	4,37	4,37	3		5,13	5,03	4,49	3,638	2,735	1,43
Mongan NacCa NaCa 8,9 7 7.92 7.26 6,99 6,8 5,7 5,22 3,23 2,34 1,9 1,7 6,09 5,32 3,23 2,23 1,0 Mo:CaCy NaCa 9,73 9 7,267 5,72 3,66 2,34 1,0 1,0 1,0 2,33 3,64 2,23 1,0 4,60 5,32 3,53 3,64 1,90 0,90 6,21 5,23 3,53 3,64 1,90 0,90 6,21 5,23 4,36 1,90 0,90 6,21 5,23 4,36 1,0<1	Orthophosphate (mg/L)	Hand		16,3	15	12,9	10,27	9,7	11,24		6,47	5,99	5,66	5,71	5,21	1,44
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(IIIg/L)	Moringa		8,9	7	7,92	7,26	6,99	6,8		5,42	5,19	5,02	3,73	2,82	2,88
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Charbon		5,37	5,2	3,62	2,34	1,9	1,7		6,09	5,38	5,282	4,63	2,23	1,03
		Mo+CaCl2		9,73	11	8 272	7 723	4,50	2,0		4,033	5 234	4 763	3 739	3.61	2.93
Te 2E+05 5		RL RL		10,12	11	0,272)	5,05	4,0		0,21	5,254	4,705	99	5,01	2,75
Singe (ng.L) Gype (ac): NaClO H4O; (ng.L) 1673 (ac): NaClO H4O; (ng.L) 1673 (ac): NaClO Moringa 1673 (ac): (ac): Mark 1673 (ac): (ac): Mark 1673 (ac): (ac): Mark 1673 (ac): (ac): Mark 1673 (ac): (ac): Mark 1673 (ac): (ac): Mark 1673 (ac): Mark 1783 (ac): Mark 1783 (ac		Те	2E+05							2,2			-,			
MES (mg/L) Ca(1) Ho(2) Hand Orninga 14876 11983 1002 721 283 52 Hand (mg/L) Ho(2) Hand Orninga 15678 13873 963 728 309 104 1 1.0 0.02 0.023 0.001 Moringa 1578 13873 963 728 309 104 1.1 1.0.6 0.1 0.20 0.001 0.02 0.021 0.001 0.02<		Gypse		16734	2374	1082	962	107	16		1,5	1,33	1	0,81	0,7	0,6
Nitrate (mg/L) NaCl Had Moringa Charbon 992/ Hand Moringa 992/ (mg/L) 1092/ (mg/L) 928/ (mg/L) 601/ (mg/L) 0.2 0.02 0.02 0.02 0.02 0.01 0.2 0.02 0.01 0.2 0.01 0.2 0.02 0.01 0.2 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <t< td=""><td></td><td>CaCl₂</td><td></td><td>14876</td><td>11983</td><td>1092</td><td>721</td><td>283</td><td>52</td><td></td><td>1,4</td><td>1,31</td><td>1,23</td><td>1,01</td><td>1</td><td>1</td></t<>		CaCl ₂		14876	11983	1092	721	283	52		1,4	1,31	1,23	1,01	1	1
Nitrate (mg/L) Had Moringa Charbon Librio / L		NaClO		9927	1092	928	601	57	26		1	0,6	0,1	0,2	0,023	0,001
	Nitrate	H_2O_2		10823	15875	1542	871	128	30		0,3	0,9	1,4	1,1	1 01	0,3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(mg/L)	Moringa		15782	1832	1081	872	217	38		1,9	0,9	0,91	0,9	0,81	0,6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Charbon		1092	1072	962	273	87	12		1,237	1,193	0,982	0,827	0,013	0,012
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NaCl		12831	1036	1289	1027	39	33		2,1	1,94	1,04	1,1	0,94	0,9
RL 8600 3456 1076 876 352 100 Gype 2345 1876 1076 876 352 100 NaClO 4377 1387 984 653 370 214 207 188 173 123 97 NaClO 4377 1765 1287 982 753 620 236 221 209 183 102 48 Hand 1276 1187 1983 1975 862 440 707 236 221 209 112 95 88 Moringa 3765 3176 2367 2467 1653 1430 111 123 112 91 188 173 119 97 236 221 209 112 95 88 Moringa RL 2673 2091 1763 1098 1063 940 112 93 101 87 56 68 34 91		Mo+CaCl ₂		14987	10982	962	761	281	51		2,1	1,73	1,183	1,193	1,13	1,1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		KL Te	8600			4	9			260			0,	88		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Gypse	0000	3456	1876	1076	876	352	190	200	213	209	183	120	105	67
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		CaCl ₂		2349	1975	1387	984	653	370		214	207	188	173	123	97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NaClO		4578	3765	1965	1487	986	970		244	237	210	128	102	48
$ (mg/L) = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MES	H ₂ O ₂		4387	1765	1287	982	753	620		251	201	183	116	97	101
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(mg/L)	Hand Moringa		3465	2653	1093	953	987	530		230	221	209	112	95 108	109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Charbon		3765	3176	2367	2467	1653	1430		215	207	183	153	119	97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NaCl		2764	1367	1083	975	862	440		219	186	173	181	117	115
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mo+CaCl ₂		2673	2091	1763	1098	1063	940		112	93	101	87	25	19
$ \begin{array}{ c c c c c c } \mbox{Mcainite} & 1e & 310 & & & & & & & & & & & & & & & & & & &$	A1 1 1. 1.	RL	210			49	98			40			3	2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Alcalinite (mg/L)	Te Gypse	310	78	43	20	21	15	14	40	12	10	8	7	8	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(IIIg/L)	CaCl ₂		201	103	74	73	76	72		21	10	11	9	8	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		NaClO		245	183	82	93	89	80		11	13	9	9	7	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		H_2O_2		182	78	58	28	19	7,5		0,9	1	0,7	5	6	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Hand		87	56	68	34	19	13		14	14	11	9	10	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Moringa		235	1/3	/1	51	<u> </u>	0.48		0,8	1,4	1,2	6	5,4	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NaCl		283	173	52	47	42	^{9,40}		39	19	10	9	11	7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mo+CaCl2		230	197	144	91	54	14		32	17	3,2	12	9	3
Oxydabilité (mg/L) Te 450 209 Gypse 92,7 46,35 37 28 4 3,6 CaCl2 273,5 183 177,6 92 14 19,3 NaClO 406 362 251 103 54 40 H2O2 420,3 370,3 209,6 152 62 39 Hand 392 298,5 183,3 142,5 122 27,4 Moringa 435 398 293 201,2 164 98 NaCl 407 397 273,7 199,7 148,6 146 Moringa 407 397 273,7 199,7 148,6 146 Mo+CaCl2 209 165 110,4 97,2 120 30,4 RL 209 165 110,4 97,2 120 30,4 7 48 28,3 29 17,6 8,1 189 173,9 92,6 </td <td></td> <td>RL</td> <td></td> <td></td> <td></td> <td>2</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td>		RL				2	1		1				1	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Oxydabilité	Те	450		1	1			1	209			1			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(mg/L)	Gypse		92,7	46,35	37	28	4	3,6		133	77	81	62,7	16,8	15,7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CaCl ₂		2/3,5	183	1//,6	92	14	19,3		99,83	67,63	56,63	17,73	27.81	12.81
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		H ₂ O ₂		400	370.3	209.6	103	62	39		123	98	57	29.73	16.65	10.61
Moringa 435 398 293 201,2 164 98 Charbon 189 173 94 84,6 70 29,2 99 76,82 34,63 17,1 12 9,1 NaCl 407 397 273,7 199,7 148,6 146 77 48 28,3 29 17,6 8,1 Mo+CaCl ₂ 209 165 110,4 97,2 120 30,4 81 73 16 9,2 4 3,2 RL 29.6 2.7		Hand		392	298,5	183,3	142,5	122	27,4		127,9	97,72	47,6	27,3	14,29	11,87
Charbon 189 173 94 84,6 70 29,2 99 76,82 34,63 17,1 12 9,1 NaCl 407 397 273,7 199,7 148,6 146 77 48 28,3 29 17,6 8,1 Mo+CaCl ₂ 209 165 110,4 97,2 120 30,4 81 73 16 9,2 4 3,2 RL 29.6 2.7		Moringa		435	398	293	201,2	164	98		163	157,7	71	61	14	17
NaCl 40/ 39/ 2/3/ 199/ 148.6 146 7/ 48 28.3 29 17.6 8,1 Mo+CaCl2 209 165 110,4 97,2 120 30,4 81 73 16 9,2 4 3,2 RL 29.6 2.7 2.7 2.7 2.7 2.7 2.7		Charbon		189	173	94	84,6	70	29,2		99	76,82	34,63	17,1	12	9,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NaCl Mat CaCl		407	397	273,7	199,7	148,6	146		01	48	28,3	29	17,6	8,1
		RL		209	105	110,4	97,2 29.6	120	30,4		81	13	2	9,2 .7	4	3,2

Annexe 5 : Variations des œufs viables d'*Ascaris* sp. dénombrés avant et après désinfection sur les échantillons de la Cité Universitaire et la Prison Centrale.

Ascaris	CU								PC						
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
	essai1	3500							1756						
Témoin	essai2	1750							1350						
	Moy	2625							1553						
	ET	1237,4							287,09						
		4													
Gypse	essai1		3030	2910	1980	1340	540	178		1670	790	240	88	34	8
	essai2		1710	1580	1370	1360	545	136		500	348	123	56	12	6
	Moy		2370	2245	1675	1350	542,5	157		1085	569	181,	72	23	7
												5			
	ET		933,38	940,45	431,34	14,14	3,54	29,70		827,31	312,54	82,7	22,6	15,5	1,41
												3	3	6	
CaCl ₂	essai1		2920	2400	2360	2160	216	102	_	1300	438	105	87	22	0
	essai2	_	1570	1230	1130	1170	435	117	_	234	127	73	12	0	0
	Moy	_	2245	1815	1745	1665	325,5	109,5	_	767	282,5	89	49,5	11	0
	ET		954,59	827,31	869,74	700,04	154,86	10,61		753,78	219,91	22,6	53,0 3	15,5 6	0,00
NaClO	essai1		1508	1278	1023	750	450	390	1	1450	763	124	122	34	17
	essai2	1	1630	1830	1670	1420	946	142	1	384	301	127	72	14	0
	Mov	1	1569	1554	1346.5	1085	698	266	1	917	532	125.	97	24	8.5
												5		- ·	2,0
	ET		86,27	390,32	457,50	473,76	350,72	175,36		753,78	326,68	2,12	35,3 6	14,1 4	12,0 2
H_2O_2	essai1		3008	2020	1900	1950	1850	235		1610	548	113	97	22	0
	essai2		1860	1100	1290	1440	1004	144		728	342	88	45	18	0
	Moy		2434	1560	1595	1695	1427	189,5		1169	445	100,	71	20	0
	-											5			
	ET		811,76	650,54	431,34	360,62	598,21	64,35		623,67	145,66	17,6	36,0	2,83	0,00
								10.17				8	0		
Hand	essail	_	3450	3261	3267	2987	2544	1065	_	1704	1634	1290	790	204	163
	essai2	_	1779	1760	1678	1450	1435	1035		1302	1102	943	294	173	88
	моу		2614,5	2510,5	2472,5	2218,5	1989,5	1050		1503	1368	5	542	188,	125,
	ET		1181.5	1061.3	1123.5	1086.8	784.18	21.21	-	284.26	376.18	245	350	21.9	53.0
			8	7	9	2	,	,				37	72	2	3
Moringa	essai1		3180	2900	2660	2480	248	120		1510	1100	660	72	14	0
6	essai2		1610	1560	1540	1260	326	126		540	346	100	76	0	0
	Moy		2395	2230	2100	1870	287	123		1025	723	380	74	7	0
	ET		1110,1	947,52	791,96	862,67	55,15	4,24		685,89	533,16	395,	2,83	9,90	0,00
			6									98			
Charbon	essai1		2900	1980	1870	1700	640	342		1490	1150	507	100	88	22
	essai2		1820	1540	1520	1140	221	114		345	173	98	63	34	14
	Moy		2360	1760	1695	1420	430,5	228		917,5	661,5	302, 5	81,5	61	18
	ET		763,68	311,13	247,49	395,98	296,28	161,22	-	809,64	690,84	289,	26,1	38,1	5,66
NoC1	00001		2240	2070	1760	1580	1402	540		1672	1400	21	6	8	127
maci	essai?	-	1840	1580	1710	1600	328	160	-	10/5	1490	873	800	263	45
	Mov	-	2590	2275	1735	1590	910.5	350	-	1455 5	1281 5	954	885	358	91
	Widy		2570	2215	1755	1570	J10,5	550		1455,5	1201,5	754	5	550	71
	ET		1060,6	982,88	35,36	14,14	823,78	268,70		307,59	294,86	114,	19,0	134,	65,0
			6									55	9	35	5
Mo+CaCl ₂	essai1		3060	2500	2300	2120	208	94	1	1060	115	80	45	0	0
	essai2	4	1830	1260	775	508	108	38		243	148	12	0	0	0
	Moy	_	2445	1880	1537,5	1314	158	66		651,5	131,5	46	22,5	0	0
	ET		869,74	876,81	1078,3 4	1139,8 6	70,71	39,60		577,71	23,33	48,0 8	31,8 2	0,00	0,00
RL	essai1	1	400	1	<u>.</u>	. ~	1	1		44	1	1 ~		.1	.1
	essai2		143						1	15					
	Moy		271,5						1	29,5					
	ET		181,73						1	20,51					

Annexe 6 : Variations des œufs viables d'Ascaris sp. dénombrés avant et après désinfection

sur les échantillons de Nomayos et Biyem-Assi.

Ascaris	Nom	ayos								Biyem-A	ssi				
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Témoin	essai1	7500							1750						
	essai2	3030							2300						
	Moy	5265							2025						
	ET	3160,77							388,91	-					
Gypse	essai1		1250	1030	970	840	547	344		1550	1407	1260	620	460	120
	essai2		1000	972	836	638	348	134		1200	940	420	398	302	98
	Moy		1125	1001	903	739	447,5	239		1375	1173,5	840	509	381	109
	ET		176,78	41,01	94,75	142,84	140,71	148,49		247,49	330,22	593,97	156,98	111,72	15,56
CaCl ₂	essai1		7500	970	690	800	638	263		1230	1120	880	540	230	94
	essai2	-	1002	983	780	672	273	199		1800	1750	1201	840	130	22
	Moy	-	4251	976,5	735	736	455,5	231		1515	1435	1040,5	690	180	58
	ET		4594,78	9,19	63,64	90,51	258,09	45,25		403,05	445,48	226,98	212,13	70,71	50,91
NaClO	essai1		1200	1230	1170	1110	872	762		1220	1370	1310	800	321	128
	essai2		983	872	729	872	517	234		2000	1209	540	208	210	167
	Moy		1091,5	1051	949,5	991	694,5	498		1610	1289,5	925	504	265,5	147,5
	ET		153,44	253,14	311,83	168,29	251,02	373,35		551,54	113,84	544,47	418,61	78,49	27,58
H ₂ O ₂	essai1		1120	1470	1000	840	652	538		1360	1400	1009	706	267	116
	essai2		937	836	653	128	263	98	1	2091	1750	970	510	312	210
	Moy		1028,5	1153	826,5	484	457,5	318	1	1725,5	1575	989,5	608	289,5	163
	ET		129,40	448,31	245,37	503,46	275,06	311,13		516,90	247,49	27,58	138,59	31,82	66,47
Hand	essai1		6137	6130	6137	1729	1283	1010		1760	1460	1610	1550	1320	970
	essai2		3290	2732	2019	1823	983	715		2100	1750	1230	1200	1032	810
	Moy		4713,5	4431	4078	1776	1133	862,5		1930	1605	1420	1375	1176	890
	ET		2013,13	2402,75	2911,87	66,47	212,13	208,60	1	240,42	205,06	268,70	247,49	203,65	113,14
Moringa	essai1		1100	850	790	940	527	167		1250	810	360	155	87	32
	essai2		290	100	98	72	88	18		1300	913	620	316	122	68
	Moy		695	475	444	506	307,5	92,5		1275	861,5	490	235,5	104,5	50
	ET		572,76	530,33	489,32	613,77	310,42	105,36		35,36	72,83	183,85	113,84	24,75	25,46
Charbon	essai1		1290	1240	1020	760	568	327		1350	1270	916	371	136	105
	essai2		1682	782	348	823	124	98		1823	1283	561	428	216	188
	Moy		1486	1011	684	791,5	346	212,5		1586,5	1276,5	738,5	399,5	176	146,5
	ET		277,19	323,85	475,18	44,55	313,96	161,93		334,46	9,19	251,02	40,31	56,57	58,69
NaCl	essai1		5148	5134	5140	3106	2390	1983		1710	1620	1180	1410	972	622
	essai2		1029	1037	938	564	394	384		2160	1792	1287	1192	987	822
	Moy		3088,5	3085,5	3039	1835	1392	1183,5		1935	1706	1233,5	1301	979,5	722
	ET		2912,57	2897,02	2971,26	1797,47	1411,39	1130,66		318,20	121,62	75,66	154,15	10,61	141,42
Mo+CaCl ₂	essai1		192	174	160	59	28	23		1270	872	134	87	63	32
	essai2		182	283	98	17	22	9		1032	528	107	86	57	38
	Moy		187	228,5	129	38	25	16		1151	700	120,5	86,5	60	35
	ET		7,07	77,07	43,84	29,70	4,24	9,90		168,29	243,24	19,09	0,71	4,24	4,24
RL	essai1				4	3						3	8		
	essai2				1	7						6	7		
	Moy				3	0						52	.,5		
	ET				18	,38						20,	,51		

Annexe 7 : Variations des œufs viables de Necator americanus dénombrés avant et après

désinfection sur les échantillons de la Cité Universitaire et Prison Centrale.

Necator	Cité Un	iversitaire							Prison C	entrale					
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Témoin	essai1	2060						1	2348			1			
	essaiz	1010							2010						
	Moy	1535							2179						
~	ET	742,46		1001					239,00						
Gypse	essail		1472	1034	853	683	173	62		1450	845	120	70	88	0
	essai2		750	500	450	330	95	33		1090	763	230	45	38	0
	Моу		510.52	767	651,5	506,5	134	47,5		1270	804	175	57,5	63	0
<i>a</i> . <i>a</i> .	EI		510,53	377,60	284,96	249,61	55,15	20,51		254,56	57,98	77,78	17,68	35,36	0
CaCl ₂	essai1		740	1220	1020	920	00	22		1000	010	/0	40	0	0
	essai2		1140	003	450	202	198	20		1270	198	88 175	40	0	0
	ET		565.60	911,5	133	507 70	02.24	21		601.04	004 201.22	1/3	37,3	05	0
NaClO	E1 eccail		1080	430,28	403,03	1382	93,34 231	1,41		873	1203	12,75	4,24	73	0
NaCIO	essai1		1980	950	752	710	120	71		073	845	345	233	54	4
	Mov		1/05	930	1086.5	1046	120	101		923	1024	414	263	54 63.5	0
	FT		685.80	554 37	1080,5	1040	78.40	101		35 36	253.14	414	239	13.44	2 2 83
HaOa	essai1		1038	782	482	598	109	50		1700	1403	110	80	54	2,05
H2O2	essai?		500	450	250	253	98	25		583	123	9/	0	0	0
	Mov		769	616	366	425.5	103.5	37.5		898	1024	414	259	63.5	2
	FT		439.75	385.88	333.25	324.00	50.31	34.18		789.84	905.10	11 31	56 57	38.18	2
Hand	essail		2014	1930	1893	1632	751	123		1900	1902	839	640	372	293
Thund	essai2		1050	970	930	730	350	73		1730	1032	972	589	234	98
	Mov		1532	1450	1411.5	1181	550.5	98		1815	1467	905.5	614.5	303	195.5
	ET		681.65	678.82	680.94	637.81	283.55	35.36		120.21	615.18	94.05	36.06	97.58	137.89
Moringa	essai1		700	620	580	580	40	21		1540	645	75	60	0	0
U	essai2		250	230	241	152	65	15		300	263	144	75	0	0
	Moy		475	425	410,5	366	52,5	18		920	454	109,5	67,5	0	0
	ET		318,20	275,77	239,71	302,64	17,68	4,24		876,81	270,11	48,79	10,61	0,00	0,00
Charbon	essai1		1760	1430	649	471	143	21		1650	1100	95	45	33	0
	essai2		502	470	330	239	76	23		347	62	54	43	0	0
	Moy		1131	950	489,5	355	109,5	22		998,5	581	74,5	44	16,5	0
	ET		889,54	678,82	225,57	164,05	47,38	1,41		921,36	733,98	28,99	1,41	23,33	0,00
NaCl	essai1		1943	1802	1548	1371	643	34		2016	1600	1000	900	723	645
	essai2		972	951	893	770	350	77		1890	1683	946	583	483	732
	Moy		1457,5	1376,5	1220,5	1070,5	496,5	55,5		1953	1641,5	973	741,5	603	688,5
	ET		686,60	601,75	463,15	424,97	207,18	30,41		89,10	58,69	38,18	224,15	169,71	61,52
Mo+CaCl ₂	essai1		520	480	360	165	16	0		270	149	75	0	0	0
	essai2		25	24	15	0	0	0		153	66	0	0	0	0
	Moy		272,5	252	187,5	82,5	8	0		211,5	107,5	37,5	0	0	0
	ET		350,02	322,44	243,95	116,67	11,31	0		82,73	58,69	53,03	0	0	0
RL	essai1				1	1						2	23		
	essai2				0								7		
	Moy				5,	5							15		
	ET				7,7	/8						11	,31		

Annexe 8 : Variations des œufs viables de Necator americanus dénombrés avant et après

Necator	Nomayo	S							Biyem	-Assi					
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Témoin	essai1	4500		1		1	1		2500			1	1		1
	essai2	1792							2000						
	Moy	3146							2250						
	ET	1915							353,6						
Gypse	essai1		1000	803	703	708	382	287		1700	1680	1130	630	258	194
	essai2		1200	1928	983	234	156	145		1398	982	863	546	473	223
	Moy	1	1100	1366	843	471	269	216		1549	1331	996,5	588	366	208,5
	ET		141,4	795,5	198	335,2	159,8	100		213,5	493,5605	188,798	59,4	152	20,51
CaCl ₂	essai1		1750	1600	400	250	149	98		1720	1210	980	470	84	0
	essai2		1290	980	638	517	94	88		1540	762	362	61	0	0
	Moy	1	1520	1290	519	383,5	121,5	93		1630	986	671	265,5	42	0
	ET		325,3	438,4	168,3	188,8	38,89	7,07		127,3	316,7838	436,992	289,2	59,4	0
NaClO	essai1		1050	900	800	810	598	263		1900	1720	1380	760	327	63
	essai2		400	193	102	98	76	71		1278	982	563	328	138	32
	Moy		725	546,5	451	454	337	167		1589	1351	971,5	544	233	47,5
	ET		459,6	499,9	493,6	503,5	369,1	136		439,8	521,8448	577,706	305,5	134	21,92
H ₂ O ₂	essai1		1000	800	750	600	572	162		1710	1540	970	400	271	22
	essai2		300	391	283	281	163	88		1800	1380	739	450	321	68
	Moy		650	595,5	516,5	440,5	367,5	125		1755	1460	854,5	425	296	45
	ET		495	289,2	330,2	225,6	289,2	52,3		63,64	113,1371	163,342	35,36	35,4	32,53
Hand	essai1		1092	900	853	843	763	667		2490	2350	2384	2239	2102	1938
	essai2		1300	1293	870	499	392	283		1892	1736	1590	1384	1250	1304
	Moy		1196	1097	861,5	671	577,5	475		2191	2043	1987	1812	1676	1621
	ET		147,1	277,9	12,02	243,2	262,3	272		422,8	434,1636	561,443	604,6	602	448,3
Moringa	essai1		750	739	602	492	382	198		1329	1300	620	221	182	0
	essai2		293	219	172	138	132	88		1483	1092	730	361	283	0
	Moy		521,5	479	387	315	257	143		1406	1196	675	291	233	0
	ET		323,1	367,7	304,1	250,3	176,8	77,8		108,9	147,0782	77,7817	98,99	71,4	0
Charbon	essai1		1820	900	750	370	273	172		1840	1400	1100	820	427	32
	essai2		619	260	273	173	98	102		2309	982	723	328	237	68
	Moy		1220	580	511,5	271,5	185,5	137		2075	1191	911,5	574	332	50
	ET		849,2	452,5	337,3	139,3	123,7	49,5		331,6	295,5706	266,579	347,9	134	25,46
NaCl	essai1		3704	1973	1730	1732	1273	928		1730	1750	1530	1330	1310	967
	essai2	-	1300	1283	982	782	634	512		1850	1710	1650	1108	980	840
	Moy	-	2502	1628	1356	1257	953,5	720		1790	1730	1590	1219	1145	903,5
	ET		1700	487,9	528,9	671,8	451,8	294		84,85	28,28427	84,8528	157	233	89,8
Mo+ CaCla	essai1		830	639	410	50	61	22		990	660	430	132	0	0
	essai2		429	371	278	162	66	0		657	348	122	98	0	0
	Moy		629,5	505	344	106	63,5	11		823,5	504	276	115	0	0
	ET		283,5	189,5	93,34	79,2	3,536	15,6		235,5	220,6173	217,789	24,04	0	0
RL	essai1				53							25			
	essai2				24							8			
	Moy				38,5							16,5			
	ET	1	1		20,51	1			1	1		12,0208	1		

désinfection sur les échantillons de Nomayos et Biyem-Assi.

Annexe 9 : Variations des larves viables de *Strongyloides stercoralis* dénombrées avant et

après désinfection sur les échantillons de la Cité Universitaire et Prison Centrale.

Strongyloides	Cité Ur	niversitai	re						Prison	Centrale					
stercoralis															
(Larves/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Те	essai1	1070							3782						
	essai2	3014							4420						
	Moy	2042							4101						
	ET	1375							451						
Gypse	essai1		909	500	520	250	60	25		1083	864	654	108	84	38
	essai2		2015	1470	1350	702	209	60		2200	1092	832	548	163	84
	Moy		1462	985	935	476	134,5	42,5		1642	978	743	328	124	61
	ET		782,1	685,9	586,9	319,6	105,4	24,7		789,8	161,22	125,87	311,1	55,9	32,5
CaCl ₂	essai1		800	250	204	109	46	10		1509	1500	876	346	127	46
	essai2		1900	650	514	290	140	25		1673	1568	983	343	145	88
	Moy		1350	450	359	199,5	93	17,5		1591	1534	929,5	344,5	136	67
	ET	1	777,8	282,8	219,2	128	66,47	10,6		116	48,0833	75,66	2,121	12,7	29,7
NaClO	essai1		994	900	750	600	182	60		1580	1420	520	400	167	12
	essai2	1	2982	2234	2100	1650	513	155		1628	983	493	274	24	0
	Moy		1988	1567	1425	1125	347,5	108		1604	1201,5	506,5	337	95,5	6
	ET		1406	943,3	954,6	742,5	234,1	67,2		33,94	309,006	19,092	89,1	101	8,49
H ₂ O ₂	essai1		802	750	604	400	96	40		1560	1300	1200	380	88	34
	essai2		2350	1550	1260	815	182	96		2901	1739	1938	583	245	92
	Moy		1576	1150	932	607,5	139	68		2231	1519,5	1569	481,5	167	63
	ET		1095	565,7	463,9	293,4	60,81	39,6		948,2	310,42	521,84	143,5	111	41
Hand	essai1		900	806	805	714	650	600		2520	1980	1100	1250	1019	546
	essai2	-	2907	2503	2650	2189	1654	1472		3560	3029	2919	1500	1293	869
	Moy		1904	1655	1728	1452	1152	1036		3040	2504,5	2009,5	1375	1156	708
	ET	-	1419	1200	1305	1043	709,9	617		735,4	741,755	1286,2	176,8	194	228
Moringa	essai1		950	900	705	400	152	40		1092	1220	400	209	239	73
	essai2	-	2987	2754	1569	983	264	74		1000	867	654	40	0	0
	Mov		1969	1827	1137	691.5	208	57		1046	1043.5	527	124.5	120	36.5
	ET	1	1440	1311	610.9	412.2	79.2	24		65.05	249.609	179.61	119.5	169	51.6
	essai1		803	600	450	250	95	25		1492	1359	1283	220	183	93
	essai2	1	2348	1687	1983	650	153	54		1593	1503	943	459	222	127
	Mov	1	1576	1144	1217	450	124	39.5		1543	1431	1113	339.5	203	110
	ET	1	1092	768.6	1084	282.8	41.01	20.5		71.42	101.823	240.42	169	27.6	24
NaCl	essai1		1000	950	800	750	810	750		1500	1400	1392	1083	984	743
	essai2	1	2983	2759	2514	2189	2188	1209		2739	1839	1208	983	872	803
	Mov		1992	1855	1657	1470	1499	980		2120	1619.5	1300	1033	928	773
	ET	1	1402	1279	1212	1018	974.4	325		876.1	310.42	130.11	70.71	79.2	42.4
Mo+CaCl2	essai1		800	250	150	50	25	5		1468	822	115	22	0	0
	essai2	1	2168	650	310	142	65	12		1283	729	83	34	0	0
	Mov	1	1484	450	230	96	45	8.5		1376	775.5	99	28	0	0
	ET	-	967.3	282.8	113.1	65.05	28.28	4.95		130.8	65,7609	22,627	8,485	0	0
RL	essai1			,0	32	,	-0,20	.,,,,		100,0	00,7007	0	0,.00	L	Ľ
	essai?	-			102							0			
	Mov	-			67							0			
	ET	-			49.5							0			
1		•			, .	1				•		- ···	•		

Annexe 10 : Variations des larves viables de *Strongyloides* dénombrés avant et après désinfection sur les échantillons de Nomayos et Biyem-Assi.

Strongyloides stercoralis	Nomay	os							Biyem	-Assi					
(Larves/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Те	essai1	2000							750						
	essai2	1500							1090						
	Moy	1750							920						
	ET	353,55							240,4						
Gypse	essai1		1200	600	490	250	120	32		660	644	290	65	22	0
	essai2		1400	130	90	60	30	30		910	720	330	145	43	0
	Moy		1300	365	290	155	75	31		785	682	310	105	32,5	0
	ET		141,42	332,34	282,84	134,35	63,64	1,41		176,78	53,74	28,28	56,57	14,8	0
CaCl ₂	essai1		304	205	134	108	70	0		500	490	140	15	0	0
	essai2		288	130	94	47	0	0		300	249	98	20	0	0
	Moy		296	167,5	114	77,5	35	0		400	369,5	119	17,5	0	0
	ET		11,31	53,03	28,28	43,13	49,50	0		141,42	170,41	29,7	3,54	0	0
NaClO	essai1		305	145	122	103	45	0		235	220	104	45	12	0
	essai2		207	160	102	64	30	0		437	402	183	75	19	0
	Moy		256	152,5	112	83,5	37,5	0		336	311	143,5	60	15,5	0
	ET		69,30	10,61	14,14	27,58	10,61	0		142,84	128,69	55,86	21,21	4,95	0
H ₂ O ₂	essai1		260	205	140	100	45	30		590	380	160	29	33	12
	essai2		200	103	98	34	22	0		400	320	193	122	97	27
	Moy		230	154	119	67	33,5	15		495	350	176,5	75,5	65	19,5
	ET		42,43	72,12	29,70	46,67	16,26	21,21		134,35	42,43	23,33	65,76	45,3	10,6
Hand	essai1		1200	1045	920	920	740	450		720	690	580	450	402	309
	essai2		1075	920	590	670	290	200		1030	928	810	722	702	540
	Moy		1137,5	982,5	755	795	515	325		875	809	695	586	552	425
	ET		88,39	88,39	233,35	176,78	318,20	176,78		219,2	168,29	162,63	192,3	212	163
Moringa	essai1		322	300	206	154	48	24		480	370	100	33	0	0
	essai2		254	154	102	102	56	38		300	291	132	95	12	0
	Moy		288	227	154	128	52	31		390	330,5	116	64	6	0
	ET		48,08	103,24	73,54	36,77	5,66	9,90		127,28	55,86	22,63	43,84	8,49	0
Charbon	essai1		340	220	147	102	73	0		650	420	390	300	98	62
	essai2		347	308	292	132	83	38		980	719	320	65	47	12
	Moy		343,5	264	219,5	117	78	19		815	569,5	355	182,5	72,5	37
NaCl	ET		4,95	62,23	102,53	21,21	7,07	26,87		233,35	211,42	49,5	166,2	36,1	35,4
NaCi	essail		1300	1270	934	630	220	220		660	541	420	375	208	198
	essai2		1080	945	810	734	354	280		983	839	854	503	391	209
	Moy		1190	1108	872	682	287	250		821,5	690	637	439	300	204
MaxCaCla	ET		155,56	229,81	87,68	73,54	94,75	42,43		228,4	210,72	306,88	90,51	129	7,78
MO+CaCl ₂	essail		80	60	30	30	0	0		1/5	75	30	12	0	0
	essai2		40	48	32	15	0	0	•	302	94	43	21	0	0
	моу	-	60	54	31	15	0	0	-	238,5	84,5	36,5	16,5	0	0
RI	EI ······		28,28	8,49	1,41	21,21	0	0		89,8	13,44	9,19	6,36	0	0
	essai1	-			6	0			-			13			
	essai2	1			(-			22.5			
	Moy	4			3	10			-			33,5			
	ET				42	,43						28,99			

Trichuris trichiura	Cité Un	iversitair	e						Prison	Centrale					
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Témoin	essai1	8500		L		1	1	1	934				1	1	1
	essai2	1010	1						1390						
	Moy	4755							1162						
	ET	5296							322						
Gypse	essai1		1207	1301	1809	972	872	360		873	740	382	372	134	100
	essai2	-	129	125	98	57	40	23		1023	1090	548	502	382	189
	Moy		668	713	953,5	514,5	456	192		948	915	465	437	258	145
	ET		762,3	831,6	1210	647	588,3	238		106,07	247,48	117,38	91,92	175	62,9
CaCl ₂	essai1		1600	400	670	370	320	61		548	493	428	293	88	0
	essai2	1	103	73	74	54	64	0		1029	583	189	243	0	0
	Moy		851,5	236,5	372	212	192	30,5		788,5	538	308,5	268	44	0
	ET		1059	231,2	421,4	223,4	181	43,1		340,12	63,64	169	35,36	62,2	0
NaClO	essai1		7000	6532	2392	943	1010	91		910	922	719	348	128	33
	essai2		1000	843	893	156	91	34		1093	839	564	349	143	36
	Moy		4000	3688	1643	549,5	550,5	62,5		1001,5	880,5	641,5	348,5	136	34,5
	ET		4243	4023	1060	556,5	649,8	40,3		129,4	58,69	109,6	0,71	10,6	2,12
H ₂ O ₂	essai1		2008	1740	1493	1294	943	134		834	653	127	89	54	50
	essai2		479	291	183	91	53	12		1293	763	348	283	129	84
	Moy		1244	1016	838	692,5	498	73		1063,5	708	237,5	186	91,5	67
	ET		1081	1025	926,3	850,6	629,3	86,3		324,56	77,78	156,27	137,2	53	24
Hand	essai1		8100	8242	7500	7302	7100	2300		903	910	812	634	234	202
	essai2		987	730	720	699	613	459		1293	1203	1029	983	693	492
	Moy		4544	4486	4110	4001	3857	1380		1098	1056,5	920,5	808,5	464	347
	ET		5030	5312	4794	4669	4587	1302		275,77	207,18	153,44	246,8	325	205
Moringa	essai1		7343	5739	2639	1625	1634	125		150	273	129	88	50	22
	essai2		103	45	26	37	13	5		548	381	329	149	122	82
	Moy		3723	2892	1333	831	823,5	65		349	327	229	118,5	86	52
	ET]	5119	4026	1848	1123	1146	84,9		281,43	76,3675	141,42	43,13	50,9	42,4
Charbon	essai1		6238	4638	2379	2910	193	202		769	245	382	283	183	45
	essai2]	989	947	764	292	83	4		1202	370	403	274	203	33

Annexe 11 : Variations des œufs viables de *Trichuris* dénombrés avant et après désinfection sur les échantillons de la Cité Universitaire et Prison Centrale.

Moy

ΕT

essai1

essai2

Moy

ET

essai1

essai2

Moy

essai1

essai2

Moy

ET

ΕT

NaCl

Mo+

CaCl₂

RL

338,7

544,5

572,5

579,1

49,5

11,5

16,26

77,78

5,66

835,8

985,5

306,18

968,5

85,56

224,86

307,5

88,39

870,5

67,18

200,5

53,03

392,5

14,85

8,49

29,70

278,5

6,36

650,5

194,5

52,5

28,99

39,5

12,02

14,1

8,49

45,3

Annexe 12 : Variations des œufs viables de *Trichuris trichiuria* dénombrés avant et après

désinfection sur	les échantillons	de Nomayos	et Biyem-Assi.
------------------	------------------	------------	----------------

Trichuris	Nomay	os							Biyer	m-Assi					
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Témoin	essai1	1982							840						
	essai2	973							1036						
	Moy	1478							938						
	ET	713,5							138,6						
Gypse	essai1		1928	983	273	88	62	24		602	420	401	293	239	192
	essai2		736	156	162	44	26	0		723	666	402	231	129	98
	Moy		1332	569,5	217,5	66	44	12		662,5	543	401,5	262	184	145
	ET		842,9	584,8	78,49	31,11	25,46	17		85,5599	173,9483	0,70711	43,84	77,8	66,47
CaCl ₂	essai1		726	198	97	62	0	0		322	122	44	0	0	0
	essai2		374	93	18	0	0	0		234	98	16	0	0	0
	Moy		550	145,5	57,5	31	0	0		278	110	30	0	0	0
	ET		248,9	74,25	55,86	43,84	0	0		62,2254	16,97056	19,799	0	0	0
NaClO	essai1		417	198	48	0	0	0		340	129	98	65	44	0
	essai2		257	182	97	34	0	0		577	303	423	129	68	0
	Moy		337	190	72,5	17	0	0		458,5	216	260,5	97	56	0
	ET		113,1	11,31	34,65	24,04	0	0		167,584	123,0366	229,81	45,25	17	0
H ₂ O ₂	essai1		638	426	88	0	0	0		522	419	329	78	0	0
	essai2		123	98	33	0	0	0		980	423	416	322	98	0
	Moy		380,5	262	60,5	0	0	0		751	421	372,5	200	49	0
	ET		364,2	231,9	38,89	0	0	0		323,855	2,828427	61,5183	172,5	69,3	0
Hand	essai1		1827	873	767	801	568	402		710	710	650	540	329	308
	essai2		823	760	561	423	329	188		980	730	640	512	423	322
	Moy		1325	816,5	664	612	448,5	295		845	720	645	526	376	315
	ET		709,9	79,9	145,7	267,3	169	151		190,919	14,14214	7,07107	19,8	66,5	9,899
Moringa	essai1		1723	432	192	88	40	0		234	122	98	73	0	0
	essai2		428	322	137	23	0	0		198	122	94	62	0	0
	Moy		1076	377	164,5	55,5	20	0		216	122	96	67,5	0	0
	ET		915,7	77,78	38,89	45,96	28,28	0		25,4558	0	2,82843	7,778	0	0
Charbon	essai1		563	283	91	22	0	0		329	122	84	64	0	0
	essai2		342	98	24	0	0	0		426	312	198	122	43	0
	Moy		452,5	190,5	57,5	11	0	0		377,5	217	141	93	21,5	0
	ET		156,3	130,8	47,38	15,56	0	0		68,5894	134,3503	80,6102	41,01	30,4	0
NaCl	essai1		1729	1573	1283	1023	983	623		782	720	682	540	498	392
	essai2		762	513	283	62	0	0		912	888	720	654	512	498
	Moy		1246	1043	783	542,5	491,5	312		847	804	701	597	505	445
	ET		683,8	749,5	707,1	679,5	695,1	441		91,9239	118,7939	26,8701	80,61	9,9	74,95
Mo+ CaCl2	essa11		122	99	41	0	0	0		280	144	0	0	0	0
Cuci2	essai2		94	61	3/	0	0	0		122	302	/5	44	0	0
	моу		108	80	39	0	0	0		201	225	57,5	22	0	0
DI	E1		19,8	20,87	2,828	U	U	0		111,723	111,7229	33,033	31,11	U	U
KL	essa11				12							32			
	essai2 Merri				12							42			
	ET				17,5							3/			
	E1	1	1	1	1,118	1	1		1	1	1	7,07107	1		1

Annexe 13 : Variations des œufs viables d'Ancylostomes dénombrés avant et après

désinfection sur les échantillons de la Cité Universitaire et Nomayos.

A. duodenale	Cité Univ	versitaire						Nomayos C0 C1 C2 C3 C4 C5							
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Témoin	essai1	1500							6350						
	essai2	740							4730						
	Moy	1120							5540						
	ET	537,4							1146						
Gypse	essai1		930	873	899	645	123	75		6093	4572	1983	374	82	0
	essai2		742	427	372	361	34	3		1832	673	192	88	0	0
	Moy		836	650	635,5	503	78,5	39		3962,5	2622,5	1087,5	231	41	0
	ET		132,9	315,4	372,6	200,8	62,93	50,9		3012,98	2757	1266,4	202,2	58	0
CaCl ₂	essai1		700	640	420	260	28	7		2831	728	186	40	0	0
	essai2		156	101	61	23	4	0		2731	345	98	34	0	0
	Moy		428	370,5	240,5	141,5	16	3,5		2781	536,5	142	37	0	0
	ET		384,7	381,1	253,9	167,6	16,97	4,95		70,71	270,82	62,23	4,24	0	0
NaClO	essai1		810	790	710	339	77	12		5369	2934	983	104	84	0
	essai2		203	183	199	65	12	0		345	104	98	42	0	0
	Moy		506,5	486,5	454,5	202	44,5	6		2857	1519	540,5	73	42	0
	ET		429,2	429,2	361,3	193,7	45,96	8,49		3552,5	2001,1	625,79	43,84	59,4	0
H ₂ O ₂	essai1		512	346	246	75	32	8		5483	1983	932	84	0	0
	essai2		97	67	54	34	22	0		393	583	129	98	31	0
	Moy		304,5	206,5	150	54,5	27	4		2938	1283	530,5	91	15,5	0
	ET		293,4	197,3	135,8	28,99	7,071	5,66		3599,17	989,95	567,81	9,9	21,9	0
Hand	essai1		1504	1300	1273	1019	982	723		6291	5281	3972	2731	2471	1083
	essai2		702	645	538	502	436	342		5092	4283	3982	3874	2834	947
	Moy		1103	972,5	905,5	760,5	709	533		5691,5	4782	3977	3303	2653	1015
	ET		567,1	463,2	519,7	365,6	386,1	269		847,82	705,69	7,07	808,2	257	96,2
Moringa	essai1		460	480	220	218	8	2		3892	2847	984	16	0	0
	essai2		208	128	80	42	24	8		1082	935	93	0	0	0
	Moy		334	304	150	130	16	5		2487	1891	538,5	8	0	0
	ET		178,2	248,9	98,99	124,5	11,31	4,24		1986,97	1352	630,03	11,31	0	0
Charbon	essai1		704	645	342	298	76	14		5281	2841	937	126	0	0
	essai2		303	188	102	74	32	0		3928	1932	156	98	0	0
	Moy		503,5	416,5	222	186	54	7		4604,5	2386,5	546,5	112	0	0
	ET		283,5	323,1	169,7	158,4	31,11	9,9		956,715	642,76	552,25	19,8	0	0
NaCl	essai1		1450	1376	1253	1062	982	732		6098	5613	5092	4621	1893	911
	essai2		723	654	523	439	342	122		4082	3892	4374	3749	983	712
	Moy		1087	1015	888	750,5	662	427		5090	4752,5	4733	4185	1438	812
	ET		514,1	510,5	516,2	440,5	452,5	431		1425,53	1216,9	507,7	616,6	643	141
Mo+	essai1		420	280	48	0	0	0		459	163	88	0	0	0
CaCl ₂	essai2		83	12	0	0	0	0		342	209	162	0	0	0
-	Moy		251,5	146	24	0	0	0		400,5	186	125	0	0	0
	ET		238,3	189,5	33,94	0	0	0		82,73	32,53	52,33	0	0	0
RL	essai1				45	5			ļ			188			
	essai2				22	2			ļ			22			
	Moy				33,	5						105			
	ET				16,2	26						117,38	3		

Annexe 14 : Variations des œufs viables d'Hymenolepis nana dénombrés avant et après

désinfection sur les échantillons de la Cité Universitaire et la Prison Centrale.

H. nana	Cité Universitaire								Prisor	n Centrale					
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Témoin	essai1	225							357						
	essai2	1700							850						
	Moy	962,5							604						
	ET	1043							349						
Gypse	essai1		127	117	123	110	98	73		144	50	140	136	88	50
	essai2		1392	1023	937	485	328	239		445	412	409	205	102	72
	Moy		759,5	570	530	297,5	213	156		294,5	231	274,5	170,5	95	61
	ET		894,5	640,6	575,6	265,2	162,6	117		212,84	255,973	190,21	48,79	9,9	15,6
CaCl ₂	essai1		141	83	97	63	22	8		145	126	87	76	34	22
	essai2		1200	920	537	122	93	34		756	235	123	94	82	31
	Moy		670,5	501,5	317	92,5	57,5	21		450,5	180,5	105	85	58	26,5
	ET		748,8	591,8	311,1	41,72	50,2	18,4		432,04	77,07	25,46	12,73	33,9	6,36
NaClO	essai1		121	107	102	107	98	87		150	150	159	124	98	33
	essai2		1503	1092	1284	762	345	183		519	410	408	388	100	88
	Moy		812	599,5	693	434,5	221,5	135		334,5	280	283,5	256	99	60,5
	ET		977,2	696,5	835,8	463,2	174,7	67,9		260,92	183,85	176,07	186,7	1,41	38,9
H ₂ O ₂	essai1		110	102	111	105	97	23		122	142	128	109	36	8
	essai2		1459	1029	734	235	187	48		642	418	319	207	88	23
	Moy		784,5	565,5	422,5	170	142	35,5		382	280	223,5	158	62	15,5
	ET		953,9	655,5	440,5	91,92	63,64	17,7		367,7	195,16	135,06	69,3	36,8	10,6
Hand	essai1		131	97	145	119	111	97		237	260	221	131	114	109
	essai2		1239	1023	980	971	835	732		810	729	628	617	518	235
	Moy		685	560	562,5	545	473	415		523,5	494,5	424,5	374	316	172
	ET		783,5	654,8	590,4	602,5	511,9	449		405,17	331,63	287,79	343,7	286	89,1
Moringa	essai1		132	115	116	108	35	18		148	131	99	81	22	0
	essai2		1267	872	879	350	122	124		300	253	109	54	16	0
	Moy		699,5	493,5	497,5	229	78,5	71		224	192	104	67,5	19	0
	ET		802,6	535,3	539,5	171,1	61,52	75		107,48	86,267	7,0711	19,09	4,24	0
Charbon	essai1		135	99	89	65	35	12		154	103	112	85	54	23
	essai2		1194	1039	822	734	345	54		610	342	243	209	176	64
	Moy		664,5	569	455,5	399,5	190	33		382	222,5	177,5	147	115	43,5
	ET		748,8	664,7	518,3	473,1	219,2	29,7		322,44	169,00	92,63	87,68	86,3	29
NaCl	essai1		105	102	129	81	66	18		140	134	117	108	102	88
	essai2		1599	1309	509	450	418	229		802	753	716	634	347	293
	Moy		852	705,5	319	265,5	242	124		471	443,5	416,5	371	225	191
	ET		1056	853,5	268,7	260,9	248,9	149		468,1	437,70	423,56	371,9	173	145
Mo+	essai1		105	102	76	48	14	0		122	119	93	55	0	0
CaCl2	essai2		1029	1109	168	98	36	12		345	123	62	0	0	0
	Moy		567	605,5	122	73	25	6		233,5	121	77,5	27,5	0	0
	ET		653,4	712,1	65,05	35,36	15,56	8,49		157,68	2,83	21,92	38,89	0	0
RL	essai1				32							34			
	essai2				73							12			
	Moy				52,5							23			
	ET				28,99							15,56			

Annexe 15 : Variations des œufs viables d'Hymenolepsis nana dénombrés avant et après

désinfection sur les échantillons de Nomayos et Biyer	n-Assi.
---	---------

H. nana	Nomayos								Biyem-A	Biyem-Assi					
(Œufs/L)		C0	C1	C2	C3	C4	C5	C6	C0	C1	C2	C3	C4	C5	C6
Témoin	essai1	450							300		-				
	essai2	620							590						
	Moy	535							445						
	ET	120,2							205,1						
Gypse	essai1		169	133	130	143	105	62		284	267	199	144	121	98
	essai2		245	209	187	120	93	68		412	398	322	291	218	209
	Moy		207	171	158,5	131,5	99	65		348	332,5	260,5	217,5	170	153,5
	ET		53,74	53,74	40,31	16,26	8,485	4,24		90,5	92,6	87,0	103,9	68,6	78,5
CaCl ₂	essai1		156	95	98	58	40	0		275	227	220	115	68	17
	essai2		609	492	138	98	64	0		391	422	273	211	118	43
	Moy		382,5	293,5	118	78	52	0		333	324,5	246,5	163	93	30
	ET		320,3	280,7	28,28	28,28	16,97	0		82,02	137,89	37,48	67,88	35,40	18,38
NaClO	essai1		167	89	108	107	82	43		275	230	242	182	145	71
	essai2		383	215	163	98	62	34		411	302	298	209	199	61
	Moy		275	152	135,5	102,5	72	38,5		343	266	270	195,5	172	66
	ET		152,7	89,1	38,89	6,364	14,14	6,36		96,17	50,91	39,60	19,09	38,20	7,07
H ₂ O ₂	essai1		174	158	136	79	34	18		243	281	225	218	189	112
	essai2		311	298	164	95	32	16		511	472	319	231	98	45
	Moy		242,5	228	150	87	33	17		377	376,5	272	224,5	144	78,5
	ET		96,87	98,99	19,8	11,31	1,414	1,41		189,51	135,06	66,47	9,19	64,3	47,38
Hand	essai1		247	278	229	199	129	102		309	283	294	270	217	202
	essai2		612	513	307	218	208	172		471	391	371	311	291	192
	Moy		429,5	395,5	268	208,5	168,5	137		390	337	332,5	290,5	254	197
	ET		258,1	166,2	55,15	13,44	55,86	49,5		114,551	76,37	54,45	28,99	52,3	7,07
Moringa	essai1		135	135	85	94	64	32		245	206	157	86	63	28
	essai2		325	183	172	106	98	75		471	381	182	98	72	18
	Moy		230	159	128,5	100	81	53,5		358	293,5	169,5	92	67,5	23
	ET		134,4	33,94	61,52	8,485	24,04	30,4		159,81	123,74	17,68	8,49	6,36	7,071
Charbon	essai1		154	153	116	111	91	23		283	245	170	121	141	45
	essai2		381	261	182	97	22	0		418	291	201	182	98	62
	Moy		267,5	207	149	104	56,5	11,5		350,5	268	185,5	151,5	120	53,5
	ET		160,5	76,37	46,67	9,899	48,79	16,3		95,46	32,53	21,92	43,13	30,4	12,02
NaCl	essai1		270	227	252	199	183	132		283	271	253	255	205	198
	essai2		428	273	192	188	126	111		489	427	401	383	283	221
	Moy		349	250	222	193,5	154,5	122		386	349	327	319	244	209,5
	ET		111,7	32,53	42,43	7,778	40,31	14,8		145,66	110,31	104,65	90,51	55,2	16,26
Mo+	essai1		120	119	92	43	22	0		152	99	57	44	0	0
CaCl ₂	essai2		419	291	189	192	14	0		171	122	98	51	31	0
CuCiz	Moy		269,5	205	140,5	117,5	18	0		161,5	110,5	77,5	47,5	15,5	0
	ET		211,4	121,6	68,59	105,4	5,657	0		13,44	16,26	28,99	4,95	21,9	0
RL	essai1				23							21			
	essai2				0							38			
	Moy				11,5							29,5			
	ET				16,26							12,02			

			Stations d'é	chantillonnage				
Paramètres	Concentation	Cité Universitaire	Prison Centrale	Nomayos	Biyem- Assi	Movenne	(x)	$\ln(x)$
Turumetres	0.1	14	3	31	6.4	13.6	3 45	1 238374
	0.2	87	21	22.4	3.7	9 225	5 6375	1 729441
	0.3	16	0.22	9	27	3 38	8 56	2 1471
	0,3	4.1	0.22	11.1	2,7	4 855	7 8225	2 057004
	0.5	3.7	0.2	33	16	2.2	9.15	2,007001
Azote ammoniacal	0,5	4	0.21	1.6	0.5	1 5775	9 46125	2 247205
(IIIg/L)	0,0	1290	330	756375	472	189616.8	141534.1	11 8603
	0.2	660	123	67893	375	17262 75	227711.1	12 33583
	0.3	420	64	27903	378	7178.75	232753 1	12,35773
	0,3	421	34	3189	283	981.75	235851.6	12,37096
	0.5	270	32	1074	254	407.5	236138.8	12,37217
Turbidité (FTL)	0,5	180	34	398	231	221	236232	12,37257
(110)	0,0	3548	670	15789	1892	5474 75	108302.6	11 59268
	0.2	2849	208	14897	1592	4886.5	108596.8	11 5954
	0,2	810	83	11786	1214	4226 333	108926.8	11 59843
	0,3	908	79	12876	1102	3741 25	109169.4	11,59045
	0,4	345	73	11267	983	3167	109456.5	11,00000
Couleur (Pt Co)	0,5	240	70	11/00	92	2950.5	109564.8	11,00320
(11.00)	0,0	8	0.343	5 37	6.09	4 95075	12 04713	2 /88826
	0,1	5	0,343	5.2	5 38	3 9555	12,04715	2,400020
	0,2	0.48	0,242	3.62	5 282	2 3745	13 33525	2,52)302
	0,3	3.2	0,110	2 34	1.63	2,3743	13 22388	2,590411
	0,4	2 00	0,219	1.0	2.23	1 832	13,22300	2,502024
Orthophosphate	0,5	2,55	0,200	1,7	1.03	1 33225	13,85638	2,010546
(IIIg/L)	0,0	78	8.2	1,7	1,03	204 8503	20360.6	0.021357
	0,1	34	7.63	1 103	1072	278 7058	20368 67	0.021753
	0,2	10	7,03	0.982	962	2/3,7055	20306,07	9,921733
	0,3	9	21	0,982	273	71 23175	20300,13	0.026833
	0,4		1 38	0.0134	87	23 09835	20472,41	9,920033
Nitrate (mg/L)	0,5	4.2	1,50	0.012	12	4 303	20505 87	9.928467
(IIIg/L)	0,0	1011	130	3765	215	1282.5	920	6 82/37/
	0,1	789	83	3176	213	1063 75	1029 375	6.936707
	0,2	160	22	2367	183	683	1210 75	7 106401
	0,5	140	26	2507	152	600	1217,75	7,100401
	0,4	20	20	1652	133	169	1211,73	7 100864
MES (mg/L)	0,5	42	17	1/20	07	206 5	1327,23	7 217442
(iiig/L)	0,0	42	38,7	1430	97	89,425	64,81565	4,171547
	0,2	9,9	23,54	173	76,82	70,815	74,12065	4,305694
	0,3	5,9 5 4	19,7	94 84.6	34,63	38,5575 29 275	90,2494 94 89065	4,502577
	0.5	5,167	7.9	70	12	23,76675	97,64478	4.581336
Oxydabilité (mg/L)	0,6	4,1	4,14	29,2	9,1	11,635	103,7107	4,641605

Annexes 16 : Variation des paramètres physico-chimiques adsorbés par le Charbon Actif

		~						
		Stat	10ns d'écha	ntillonnage	Biyom			
Paramètres	Concentration	Universitaire	Centrale	Nomayos	Assi	Movenne	(x)	$\ln(x)$
Tarametres	0.1	1586.5	1486	917 5	2360	1587.5	639 75	6 461077
	0.2	1276 5	1011	661 5	1760	1177 25	844 875	6 739189
	0.3	738.5	684	302.5	1695	855	1006	6.913737
	0.4	399.5	791.5	81.5	1420	673,125	1096.938	7.000277
Ascaris	0.5	176	346	61	430.5	253.375	1306.813	7,175346
(Œufs /L)	0.6	146.5	212.5	18	228	151.25	1357.875	7.213676
	0,1	1131	998,5	1219,5	2074,5	1355,875	460,8125	6,132991
	0,2	950	581	580	1191	825,5	726	6,58755
	0,3	489,5	74,5	511,5	911,5	496,75	890,375	6,791643
Maggian	0,4	355	44	271,5	574	311,125	983,1875	6,8908
americanus	0,5	109,5	16,5	185,5	332	160,875	1058,313	6,964431
(Œufs /L)	0,6	22	0	137	50	52,25	1112,625	7,014477
	0,1	1575,5	1542,5	4940	815	2218,25	869,3125	6,767703
	0,2	1143,5	1431	1038	569,5	1045,5	1455,688	7,283234
	0,3	1216,5	1113	919,5	355	901	1527,938	7,331674
Strongulaidas	0,4	450	339,5	367	182,5	334,75	1811,063	7,501669
stercoralis	0,5	124	202,5	128	72,5	131,75	1912,563	7,556199
(Larves /L)	0,6	39,5	110	57,5	37	61	1947,938	7,574526
	0,1	3613,5	985,5	452,5	377,5	1357,25	362,9375	5,894231
	0,2	2792,5	307,5	190,5	217	876,875	603,125	6,402124
	0,3	1571,5	392,5	57,5	141	540,625	771,25	6,648013
Trichuris	0,4	1601	278,5	11	93	495,875	793,625	6,676611
tichiura	0,5	138	193	0	21,5	88,125	997,5	6,905252
(Œufs /L)	0,6	103	39	0	0	35,5	1023,813	6,931289
	0,1	503,5	4604,5			2554	388	5,961005
	0,2	416,5	2386,5			1401,5	964,25	6,871351
	0,3	222	546,5			384,25	1472,875	7,294972
Ancvlostoma	0,4	186	112			149	1590,5	7,371804
duodenale	0,5	54	0			27	1651,5	7,409439
(Œufs /L)	0,6	7	0		1	3,5	1663,25	7,416529
	0,1	664,5	382	267,5	350,5	416,125	130	4,867534
	0,2	569	222,5	207	268	316,625	179,75	5,191567
	0,3	455,5	177,5	149	185,5	241,875	217,125	5,380473
Hymenlepis	0,4	399,5	147	104	151,5	200,5	237,8125	5,471483
nana	0,5	190	115	56,5	119,5	120,25	277,9375	5,627396
(Œufs /L)	0,6	33	43,5	11,5	53,5	35,375	320,375	5,769492

Annexe 17 : Variation des paramètres biologiques adsorbés par le Charbon Actif

Salinité		Témoin	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Мо	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	-0,6	-0,8	0	0	0,316	-0,8	0,8	-0,4	-0,4	0,4	-0,4
	Gypse	-0,8	-0,621**	-,601**	-0,540**	-0,244	-0,146	0,387	-0,289	-0,822**	-0,428*	-0,8
	CaCl ₂	-0,4	-0,642**	-,540**	-0,472*	-0,286	-0,164	0,394	-0,316	-0,798**	-0,368	-1,000**
	NaClO	-0,8	-0,647**	-,522**	-0,433*	-0,258	-0,149	0,416*	-0,311	-0,789**	-0,409*	-0,8
	H ₂ O ₂	-0,4	-0,669**	-,601**	-0,563**	-0,231	-0,204	0,473*	-0,389	-0,832**	-0,368	-1,000**
Ascaris spp.	Hand	-0,6	-0,719**	-,572**	-0,455*	-0,209	-0,117	0,353	-0,301	-0,721**	-0,2	-0,4
	Moringa	-0,4	-0,499	-,033	-0,595	-0,14	-0,095	0,402	-0,180	-0,823	-0,468 0,410*	-1,000
	NaCl	-0,4	-0,018	-,022	-0,339	-0,213	-0,123	0,421	-0,200	-0,834	-0,419	-1,000
	Mo+CaCl2	-0.8	-0.656**	- 734**	-0.722**	-0.162	-0.169	0.431*	-0.358	-0.893**	-0.36	-0.8
	RL	-0.4	-0.830**	487*	-0.420*	-0.477*	-0.762**	0.539**	-0.894**	-0.716**	-0.353	-1.000**
	Témoin	0,4	0,256	,681**	0,763**	-0,27	0,423*	-0,245	0,275	0,474*	0,14	0,4
	Gypse	0,4	-0,456*	-,420*	-0,37	-0,258	0,161	0,248	-0,105	-0,656**	-0,284	-0,4
	CaCl ₂	-0,4	-0,423*	-,540**	-0,531**	-0,065	0,154	0,305	0,01	-0,719**	-0,299	-1,000**
	NaClO	0,2	-0,351	-,473*	-0,507*	-0,191	0,164	0,239	-0,039	-0,678**	-0,421*	-0,8
Necator	H_2O_2	-0,4	-0,367	-,514*	-0,519**	-0,16	0,117	0,259	-0,047	-0,715**	-0,427*	-1,000**
americanus	Hand	0,4	-0,259	-0,29	-0,381	-0,412*	0,027	0,257	-0,309	-0,545**	-0,327	-0,6
	Moringa	0,2	-0,348	-0,393	-0,35	-0,237	0,183	0,214	-0,012	-0,633**	-0,321	-0,8
	NaCl	0,2	-0,458	-,454 432*	-0,408 0.447*	-0,200	0,059	0,323	-0,140	-0,742 0.662**	-0,319	-0,8
	Mo+CaCla	0,4	-0,333	-,432	-0,447	-0,103	0,238	0.245	-0.093	-0,002	-0,191	-0,4
	RL.	-0.8	-0.908**	-0.482^*	-0.315	-0 323	-0 741**	0.552**	-0 738**	- 689**	-0.237	-0.8
	Témoin	-0.4	0.245	-0.353	-0.412*	0.690**	0,7 11	-0.105	0.426*	0.022	0,172	0.4
	Gypse	-0,4	-0,183	-0,631**	-0,667**	0,184	0,264	0,13	0,208	-0,610**	-0,228	-0,4
	CaCl ₂	0	0,015	-0,582**	-0,620**	0,315	0,367	-0,027	0,342	-0,450*	-0,238	0,2
	NaClO	-0,4	-0,315	$-0,788^{**}$	-0,816**	0,218	0,033	0,216	-0,003	-0,696**	-0,227	-0,4
Strongulaides	H_2O_2	0	-0,084	-0,684**	-0,726**	0,227	0,207	0,052	0,185	-0,541**	-0,245	0,2
stercoralis	Hand	-0,4	-0,089	-0,693**	-0,761**	$0,448^{*}$	0,114	0,144	0,221	-0,494*	-0,047	0,4
	Moringa	-0,8	-0,328	-0,745**	-0,765**	0,165	0,053	0,244	0,046	-0,694**	-0,345	-0,2
	Charbon	-0,4	-0,11	-0,641	-0,6/2	0,131	0,24	0,035	0,186	-0,545	-0,352	-0,4
	NaCI Mat CaCla	-0,8	-0,518	-0,809	-0,839	0,387	-0,014	0,255	0,009	-0,038	-0,039	-0,2
	RI	-0,4	-0,284	-0,099	-0,749	-0.477*	-0.762**	0,207	-0.894**	-0,709	-0,341	-1,000**
	Témoin	-0,4	0.172	0.17	0.28	0.364	0.283	-0.162	0.506*	0.275	0.272	-1,000
	Gypse	-0,4	-0,063	-0,464*	-0,597**	0,093	0,362	0,033	0,228	-0,500*	-0,222	-0,4
	CaCl ₂	-0,4	-0,062	-0,557**	-0,591**	0,304	0,351	0,057	0,329	-0,496*	-0,114	0,4
	NaClO	0	0,054	-0,541**	-0,627**	0,171	0,355	-0,057	0,309	-0,425*	-0,226	0,2
Trichuris	H_2O_2	0,8	0,114	-0,368	-0,462*	0,193	0,601**	-0,109	0,421*	-0,325	-0,053	0
trichiura	Hand	-0,4	-0,227	-0,651**	-0,700**	0,19	0,25	0,175	0,168	-0,631**	-0,147	0,4
	Moringa	-0,2	-0,103	-0,523**	-0,512*	0,199	0,434*	-0,037	0,339	-0,430*	-0,152	0,8
	Charbon	0	0,001	-0,569**	-0,659**	0,235	0,345	-0,05	0,318	-0,439*	-0,138	0,2
	NaCl Mat CaCla	-0,8	-0,279	-0,607	-0,596	0,074	0,265	0,019	0,159	-0,5/1	-0,209	-0,2
	RI	0,4	-0,03	-0,420	-0,418	0,113	0,495	-0,09	0,311	-0,412	-0,107	1,000
	Témoin	1.000**	0.871**	0.869**	0.822**	-0.097	0.871**	-0.533	0.872**	0.871**	0.314	1.000**
	Gypse	1,000**	-0,154	-0,301	-0,326	-0,091	0,378	-0,393	0,291	-0,294	-0,098	1,000**
	CaCl ₂	-1,000**	-0,291	-0,438	-0,481	-0,144	0,204	-0,225	0,192	-0,498	-0,151	-1,000**
	NaClO	1,000**	-0,154	-0,301	-0,326	-0,091	0,378	-0,393	0,291	-0,294	-0,098	1,000**
Angulastoma	H ₂ O ₂	$1,000^{**}$	-0,126	-0,266	-0,287	-0,112	0,42	-0,379	0,333	-0,259	-0,07	1,000**
duodenale	Hand	$1,000^{**}$	$0,592^{*}$	0,462	0,431	-0,259	0,851**	-0,614*	0,821**	0,445	0,084	$1,000^{**}$
anouchare	Moringa	$1,000^{**}$	-0,27	-0,375	-0,407	-0,004	0,319	-0,334	0,234	-0,354	-0,028	1,000**
	Charbon	$1,000^{**}$	-0,207	-0,333	-0,351	-0,032	0,351	-0,327	0,286	-0,33	-0,046	1,000**
	NaCl Mat CaCla	1,000	0,476	0,329	0,301	-0,259	0,774	-0,575	0,719	0,312	0,028	1,000
	NIO+CaCI2 RI	1,000	-0,185	-0,551	-0,55	-0,303	0,299	-0,458	0,287	-0,303	-0,178	1,000
	Témoin	0800	-0.334	-0.676**	-0.658**	0.423*	-0.401	0.259	-0.118	-0.447^*	-0.024	-0.2
	Gypse	-0,4	-0,402	-0,697**	-0,740**	-0,184	-0,071	0,256	-0,257	-0,745**	-0,467*	-0,4
	CaCl ₂	-0,4	-0,282	-0,521**	-0,541**	-0,156	0,216	0,072	0,032	-0,596**	-0,276	-1,000**
	NaClO	-0,4	-0,329	-0,719**	-0,775**	-0,056	-0,055	0,243	-0,132	-0,737**	-0,389	-0,4
Have an alter:	H ₂ O ₂	-0,2	-0,318	-0,581**	-0,635**	-0,178	0,132	0,161	-0,073	-0,667**	-0,379	-0,8
nana	Hand	-0,4	$-0,460^{*}$	-0,843**	-0,890**	0,162	-0,132	0,35	-0,158	-0,801**	-0,182	-0,4
	Moringa	-0,4	-0,487*	-0,641**	-0,601**	-0,167	-0,019	0,317	-0,163	-0,794**	-0,455*	-1,000**
	Charbon	-0,2	-0,430*	-0,706**	-0,759**	-0,048	-0,01	0,233	-0,144	-0,758**	-0,375	-0,8
	NaCI	0,6	-0,015	-0,484	-0,635	0,014	0,289	-0,028	0,148	-0,452	-0,286	0,4
	MO+CaCl ₂	-0,/38	-0,388	-0,556 -0.587**	-0,510	-0,0/1	-0.602**	0,207	0,036	-0,642	-0,243	-0,211
1		-0,2	-0,504	-0,507	-0.044	-0,101	-0,005	0,000	-0,002	-0,009	-0,304	-0.0

Annexe 18 : Corrélations entre la salinité et les œufs viables dénombrés avant et après désinfection

TDS		Témoin	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Мо	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	-0,8	-0,8	0	0,4	-0,6	-0,6	0,8	-0,8	-0,4	0,4	-0,4
	Gypse	-1,000**	-0,726**	-0,649**	-0,651**	-0,619**	-0,288	0,401	-0,073	-0,834**	-0,221	-0,8
	CaCl ₂	-0,8	-0,757**	-0,585**	-0,673**	-0,586**	-0,279	0,393	-0,09	-0,818	-0,192	-1,000**
	NaClO	-1,000	-0,772	-0,565	-0,621 0.657**	-0,591	-0,316	0,439	-0,097	-0,816	-0,137	-0,8
Ascaris spp	H ₂ O ₂ Hand	-0,8	-0,730	-0,015	-0,037	-0,519	-0,294	0,494 0.455^*	-0,114	-0,807	-0,063	-1,000
Ascans spp.	Moringa	-0,8	-0,781 -0.640**	-0,000	-0,347	-0,558	-0,338	0,433	-0,173	-0,740	-0,139	-1 000**
	Charbon	-0.8	-0.746**	-0.682**	-0.635**	-0.627**	-0.321	0.429*	-0.083	-0.847**	-0.22	-1.000**
	NaCl	-0,8	-0,618**	-0,412*	-0,462*	-0,635**	-0,234	0,278	0,033	-0,550**	-0,286	-0,4
	Mo+CaCl ₂	-1,000**	-0,717**	-0,804**	-0,713**	-0,475*	-0,277	0,459*	-0,126	-0,902**	-0,156	-0,8
	RL	-0,8	-0,797**	-0,525**	-0,560**	-0,226	-0,385	0,32	-0,560**	-0,759**	0,005	-1,000**
	Témoin	0,2	0,215	0,630**	0,102	-0,011	0,393	-0,094	0,447*	0,452*	-0,054	0,4
	Gypse	-0,2	-0,522**	-0,472*	-0,709**	-0,443*	0,009	0,322	0,242	-0,681**	-0,203	-0,4
	CaCl ₂	-0,8	-0,561**	-0,605**	-0,592**	-0,532**	-0,171	0,388	0,165	-0,738**	-0,169	-1,000**
	NaClO	-0,4	-0,452	-0,555	-0,6/9	-0,498	-0,003	0,251	0,243	-0,699	-0,209	-0,8
Necator	H ₂ O ₂	-0,8	-0,485	-0,597	-0,001	-0,525	-0,055	0,501	0,205	-0,/1/	-0,208	-1,000
americanus	Moringa	-0.4	-0,237 -0.452^*	-0,50	-0,909	-0,047	0,398	0,141	0,51	-0,333	-0,174	-0,0
	Charbon	-0,4	-0.547**	-0.531**	-0.771**	-0,303 -0.447^*	-0.005	0,271	0,208	-0.748**	-0.206	-0,8
	NaCl	-0,2	-0,437*	-0,519**	-0,713**	-0,406*	0,046	0,304	0,273	-0,638**	-0,188	-0,4
	Mo+CaCl ₂	-0,4	-0,604**	-0,547**	-0,632**	-0,522**	-0,136	0,312	0,135	-0,713**	-0,163	-0,2
	RL	-1,000**	-0,948**	-0,533**	-0,199	-0,549**	-0,770**	0,423*	-0,716**	-0,711**	-0,054	-0,8
	Témoin	0,2	0,215	-0,285	$0,512^{*}$	-0,054	-0,393	-0,051	-0,178	0,086	0,011	0,4
	Gypse	-0,2	-0,311	-0,667**	-0,457*	-0,449*	-0,145	0,253	0,173	-0,587**	-0,23	-0,4
	CaCl ₂	0,4	-0,101	-0,586**	-0,31	-0,337	-0,079	0,17	0,256	-0,429*	-0,174	0,2
	NaClO	-0,2	-0,387	-0,816	-0,367	-0,431	-0,311	0,339	-0,06	-0,676	-0,158	-0,4
Strongyloides	H ₂ O ₂	0,4	-0,16/	-0,705	-0,397	-0,314	-0,09	0,199	0,166	-0,529	-0,186	0,2
stercoralis	Hand Moringa	-0.4	-0,149	-0,725 -0.789**	-0,107	-0,204	-0,308	0,235	-0,023	-0,438	-0,123	-0.2
	Charbon	-0,4	-0.204	-0.659**	-0.455*	-0,397	-0.05	0,321	0.202	-0.539**	-0.242	-0,2
	NaCl	-0,4	-0,364	-0,829**	-0,166	-0,364	-,0461*	0,306	-0,194	-0,593**	-0,138	-0,2
	Mo+CaCl ₂	-0,2	-0,386	-0,775**	-0,517**	-0,485*	-0,159	0,336	0,108	-0,704**	-0,215	-0,4
	RL	-0,8	-0,797**	-0,525**	-0,560**	-0,226	-0,385	0,32	-0,560**	-0,759**	0,005	-1,000**
	Témoin	0	0,065	0,164	0,668**	-0,355	-0,385	0,03	-0,022	0,318	-0,081	0,6
	Gypse	-0,2	-0,161	-0,551**	-0,604**	-0,22	0,11	0,109	0,292	-0,477*	-0,26	-0,4
	CaCl ₂	0,2	-0,186	-0,620**	-0,329	-0,356	-0,133	0,222	0,199	-0,459*	-0,214	0,4
	NaClO	0,4	-0,027	-0,591	-0,429	-0,251	0,098	0,079	0,319	-0,416	-0,256	0,2
Trichuris	H2O2 Hand	0,0	0,009	-0,379	-0,550	-0,011	0,354	0,1	0,572	-0,540	-0,046	0.4
trichiura	Moringa	0,2	-0,331	-0,740 -0 584**	-0,449	-0,419	-0,187	0,5	0,109	-0,005	-0,221	0,4
	Charbon	0,4	-0,091	-0,576**	-0,451*	-0,212	0,007	0,054	0,277	-0,436*	-0,219	0,0
	NaCl	-0,4	-0,369	-0,663**	-0,517**	-0,404	-0,124	0,207	0,174	-0,565**	-0,28	-0,2
	Mo+CaCl ₂	0,8	-0,114	-0,440*	-0,492*	-0,292	0,1	0,118	0,402	-0,411*	-0,239	1,000**
	RL	0,8	0,732**	0,132	-0,005	0,571**	0,574**	-0,339	0,425*	0,35	0,092	0,4
	Témoin	1,000**	0,869**	0,869**	0,531	0,097	0,869**	-0,29	0,869**	0,869**	0	1,000**
	Gypse	1,000**	-0,315	-0,336	-0,678*	-0,049	0,315	-0,14	0,196	-0,322	-0,329	1,000**
	CaCl ₂	-1,000	-0,483	-0,515	-0,830	-0,109	0,151	-0,14	0,102	-0,515	-0,448	-1,000
	NaCio	1,000	-0,315	-0,330	-0,078 0.642*	-0,049	0,315	-0,14	0,196	-0,322	-0,329	1,000
Ancylostoma	Hand	1,000	-0,200	-0,294	-0,043	-0,003	0.748**	-0,175	0.783**	0.448	-0,308	1,000
duodenale	Moringa	$1,000^{**}$	-0.378	-0.403	-0.718**	0.032	0.27	-0.046	0,144	-0.403	-0.266	1,000**
	Charbon	1,000**	-0,336	-0,368	-0,697*	-0,004	0,298	-0,088	0,172	-0,368	-0,301	1,000**
	NaCl	1,000**	0,315	0,301	-0,133	-0,112	0,692*	-0,413	$0,\!678^{*}$	0,329	-0,343	1,000**
	Mo+CaCl ₂	1,000**	-0,381	-0,396	-0,743**	-0,224	0,179	-0,36	0,280	-0,396	-0,526	1,000**
	RL	1,000**	0,869**	0,869**	0,531	0,097	0,869**	-0,29	0,869**	0,869**	0	1,000**
	Témoin	-0,4	-0,366	-0,638**	0,259	-0,312	-0,778**	0,197	-0,603**	-0,404	-0,005	-0,2
	Gypse	-0,2	-0,468*	-0,751	-0,726**	-0,386	-0,066	0,289	0,032	-0,776**	-0,221	-0,4
	CaCl2 NaClO	-0,8	-0,351	-0,363	-0,/21	-0,362	0,078	0,12	0,271	-0,601	-0,344	-1,000
	HaCiU	-0,2	-0,430	-0,793	-0,028 _0.727**	-0,401	-0,139	0,270	-0,007	-0,/3/	-0,222	-0,4
Hymenolepis	Hand	-0,4	-0.508*	-0,049	-0,727	-0,380	-0 381	0,181	-0 198	-0,079	-0,33	-0,8
nana	Moringa	-0.8	-0.621**	-0,709**	-0.660**	-0,589**	-0,211	0,384	0,033	-0,803**	-0.23	-1,000**
	Charbon	-0,4	-0,506*	-0,749**	-0,659**	-0,429*	-0,17	0,293	0,002	-0,761**	-0,214	-0,8
	NaCl	0,8	-0,083	-0,557**	-0,591**	-0,225	0,15	-0,033	0,289	-0,448*	-0,308	0,4
	Mo+CaCl ₂	-0,738	-0,510*	-0,637**	-0,523**	-0,568**	-0,172	0,277	0,103	-0,636**	-0,333	-0,211
	RL	-0,4	-0,431*	-0,574**	-0,512*	0,054	-0,197	0,156	-0,425*	-0,630**	0,059	-0,8

Annexe 19 : Corrélations entre les TDS et les œufs viables dénombrés avant et après désinfection
Conductivité		Té	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Мо	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	-0,8	-0,8	0	0,4	-0,6	-0,6	0,8	-0,8	-0,4	0,4	-0,4
	Gypse	-1,000**	-0,727**	-0,648**	-0,668**	-0,619**	-0,296	0,401	-0,091	-0,834**	-0,221	-0,8
	CaCl ₂	-0,8	-0,757**	-0,581**	-0,691**	-0,586**	-0,289	0,393	-0,112	-0,818**	-0,192	-1,000**
	NaClO	-1,000**	-0,773**	-0,563**	-0,637**	-0,591**	-0,323	0,439*	-0,11	-0,816**	-0,137	-0,8
	H ₂ O ₂	-0,8	-0,754**	-0,615**	-0,668**	-0,519**	-0,3	0,494*	-0,137	-0,867**	-0,063	-1,000**
Ascaris spp.	Hand	-0,8	-0,782**	-0,662**	-0,564**	-0,558**	-0,348	0,455*	-0,189	-0,740**	-0,159	-0,4
	Moringa	-0,8	-0,641	-0,/01	-0,588	-0,659	-0,304	0,404	-0,05	-0,803	-0,246	-1,000
	NaCl	-0,8	-0,747	-0,079	-0,034	-0,027	-0,529	0,429	-0,103	-0,847	-0,22	-1,000
	Mo+CaCla	-1.000**	-0,019	-0.806**	-0,481	-0,033	-0,244	0.459*	-0.134	-0,330	-0,280	-0,4
	RL	-0.8	-0.797**	-0.522**	-0.563**	-0.226	-0.388	0.32	-0.549**	-0.759**	0.005	-1.000**
	Témoin	0.2	0.215	0.635**	0,505	-0.011	0.388	-0.094	0.452*	0.452*	-0.054	0.4
	Gypse	-0,2	-0,525**	-0,470*	-0,720**	-0,443*	0,002	0,322	0,228	-0,681**	-0,203	-0,4
	CaCl ₂	-0,8	-0,561**	-0,606**	-0,614**	-0,532**	-0,18	0,388	0,137	-0,738**	-0,169	-1,000**
	NaClO	-0,4	-0,455*	-0,555**	-0,693**	-0,498*	-0,01	0,251	0,194	-0,699**	-0,209	-0,8
Necator	H_2O_2	-0,8	$-0,486^{*}$	-0,597**	-0,678**	-0,523**	-0,06	0,301	0,168	-0,717**	-0,208	-1,000**
americanus	Hand	0	-0,241	-0,36	-0,904**	-0,047	0,393	0,141	0,319	-0,553**	-0,174	-0,6
	Moringa	-0,4	-0,454*	-0,421*	-0,674**	-0,505*	0,016	0,271	0,263	-0,645**	-0,239	-0,8
	Charbon NaCl	-0,4	-0,548	-0,530	-0,788 0,726**	-0,447	-0,014	0,291	0,18	-0, /48	-0,206	-0,8
	NaCI Mat CaCla	-0,2	-0,439	-0,517	-0,720 0.651**	-0,400	0,037	0,304	0,203	-0,038	-0,188	-0,4
	RI	-1.000**	-0,000	-0,540	-0,051	-0,522	-0.775**	0,312	-0.711**	-0,713	-0.054	-0,2
	Témoin	0.2	0.215	-0.291	0.498^{*}	-0.054	-0.388	-0.051	-0.194	0.086	0.011	-0,8
	Gypse	-0,2	-0,313	-0,670**	-0,477*	-0,449*	-0,152	0,253	0,148	-0,587**	-0,23	-0,4
	CaCl ₂	0,4	-0,103	-0,593**	-0,325	-0,337	-0,082	0,17	0,238	-0,429*	-0,174	0,2
	NaClO	-0,2	-0,389	-0,821**	-0,385	-0,431*	-0,315	0,339	-0,087	-0,676**	-0,158	-0,4
Strongulaidas	H ₂ O ₂	0,4	-0,17	-0,710**	-0,413*	-0,314	-0,094	0,199	0,137	-0,529**	-0,186	0,2
stercoralis	Hand	0,2	-0,15	-0,730**	-0,124	-0,264	-0,311	0,235	-0,041	-0,438*	-0,123	0,4
stereorans	Moringa	-0,4	-0,441*	-0,792**	-0,394	-0,550**	-0,343	0,321	-0,041	-0,682**	-0,217	-0,2
	Charbon	-0,2	-0,208	-0,663**	-0,470*	-0,397	-0,053	0,163	0,167	-0,539**	-0,242	-0,4
	NaCl	-0,4	-0,365	-0,833	-0,189	-0,364	-0,463	0,306	-0,21	-0,593	-0,138	-0,2
	Mo+CaCl2	-0,2	-0,389	-0,779	-0,555	-0,485	-0,104	0,330	0,087	-0,704	-0,215	-0,4
	KL Témoin	-0,8	-0,797	-0,322	-0,303 0.654**	-0,220	-0,388	0,52	-0,349	-0,739	-0.081	-1,000
	Gypse	-0.2	-0.163	-0.558**	-0.619**	-0.22	0,102	0.109	0,032	-0.477*	-0.26	-0,4
	CaCl ₂	0,2	-0,187	-0,627**	-0,35	-0,356	-0,141	0,222	0,202	-0,459*	-0,214	0,4
	NaClO	0,4	-0,028	-0,598**	-0,447*	-0,251	0,094	0,079	0,288	-0,416*	-0,256	0,2
Tui chauni a	H ₂ O ₂	0,6	0,067	-0,385	-0,561**	-0,011	0,349	0,1	0,539**	-0,346	-0,046	0
trichiura	Hand	0,2	-0,354	-0,751**	-0,471*	-0,419*	-0,197	0,3	0,091	-0,603**	-0,221	0,4
menunu	Moringa	0,4	-0,237	-0,588**	-0,386	-0,383	-0,094	0,191	0,214	-0,430*	-0,233	0,8
	Charbon	0,4	-0,093	-0,585**	-0,472*	-0,212	0,003	0,054	0,251	-0,436*	-0,219	0,2
	NaCl	-0,4	-0,37	-0,666	-0,536**	-0,404	-0,133	0,207	0,168	-0,565**	-0,28	-0,2
	Mo+CaCl ₂	0,8	-0,118	-0,448	-0,502	-0,292	0,094	0,118	0,408	-0,411	-0,239	1,000
	KL Témoin	1.000**	0,752	0,124	0,005	0,371	0,381	-0,559	0,420	0,55	0,092	1.000**
	Gypse	$1,000^{**}$	-0.322	-0.336	-0.678*	-0.049	0.315	-0.14	0.196	-0.322	-0.329	$1,000^{**}$
	CaCl ₂	-1,000**	-0,49	-0,515	-,830**	-0,109	0,151	-0,14	0,102	-0,515	-0,448	-1,000**
	NaClO	1,000**	-0,322	-0,336	-,678*	-0,049	0,315	-0,14	0,196	-0,322	-0,329	1,000**
	H ₂ O ₂	1,000**	-0,273	-0,294	-0,643*	-0,063	0,357	-0,175	0,245	-0,28	-0,357	1,000**
Ancylostoma	Hand	$1,000^{**}$	0,441	0,434	-0,014	-0,091	$0,748^{**}$	-0,448	0,783**	0,448	-0,308	1,000**
uuouenuie	Moringa	$1,000^{**}$	-0,385	-0,403	-0,718**	0,032	0,27	-0,046	0,144	-0,403	-0,266	$1,000^{**}$
	Charbon	$1,000^{**}$	-0,343	-0,368	-0,697*	-0,004	0,298	-0,088	0,172	-0,368	-0,301	1,000**
	NaCl	1,000**	0,308	0,301	-0,133	-0,112	0,692*	-0,413	0,678*	0,329	-0,343	1,000**
	Mo+CaCl ₂	1,000	-0,396	-0,396	-0,743	-0,224	0,179	-0,355	0,28	-0,396	-0,526	1,000
	RL Támoin	1,000	0,869	0,869	0,531	0,097	0,869	-0,29	0,869	0,869	0.005	1,000
	Gypse	-0,4	-0,300	-0,041	-0 737**	-0,312	-0,773	0,197	-0,014	-0,404	-0,003	-0,2
	CaCl	-0.8	-0.352	-0.565**	-0.739**	-0.362	0.07	0.12	0.241	-0.601**	-0.344	-1.000**
	NaClO	-0.2	-0.432*	-0.797**	-0.647**	-0.401	-0.145	0.276	-0.037	-0.737**	-0.222	-0.4
	H_2O_2	-0,4	-0,372	-0,652**	-0,740**	-0,386	0,046	0,181	0,163	-0,679**	-0,35	-0,8
Hymenolepis	Hand	-0,2	-0,510*	-0,921**	-0,466*	-0,355	-0,387	0,382	-0,205	-0,776**	-0,143	-0,4
nana	Moringa	-0,8	-0,622**	-0,708**	-0,676**	-0,589**	-0,218	0,384	0,006	-0,803**	-0,23	-1,000**
	Charbon	-0,4	-0,507*	-0,753**	-0,675**	-0,429*	-0,176	0,293	-0,019	-0,761**	-0,214	-0,8
	NaCl	0,8	-0,084	-0,564**	-0,607**	-0,225	0,144	-0,033	0,261	-0,448*	-0,308	0,4
	Mo+CaCl ₂	-0,738	-0,509*	-0,637**	-0,547**	-0,568**	-0,18	0,277	0,072	-0,636**	-0,333	-0,211
	RL	-0,4	-0,431*	-0,576**	-0,512*	0,054	-0,194	0,156	-0,420*	-0,630**	0,059	-0,8

Annexe 20: Corrélations entre la Conductivité électrique et les œufs viables dénombrés avant et après désinfection

Ph		Té	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Mo	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	-0,2	0	-0,8	0,2	0	0	-0,6	-0,4	-0,4	0	-0,8
	Gypse	-0,4	-0,122	-0,193	0,067	0,036	-0,114	-0,269	-0,533**	-0,421*	-0,047	-1,000**
	CaCl ₂	-0,8	-0,083	-0,258	0,082	0,096	-0,043	-0,237	-0,548**	-0,476*	0,029	-0,8
	NaClO	-0,4	-0,112	-0,234	0,089	0,1	-0,057	-0,234	-0,597**	-0,448*	0,01	-1,000**
4	H_2O_2	-0,8	-0,13	-0,128	0,131	0,001	-0,133	-0,255	-0,617	-0,490	-0,064	-0,8
Ascaris spp.	Hand	-0,2	-0,04	-0,412	-0,055	0,044	-0,105	-0,37	$-0,440^{\circ}$	-0,227	-0,04	-0,8
	Charbon	-0,8	-0,184	-0,144	-0,065	-0,065	-0,255	-0,344	-0,407	-0,319	-0,173	-0,8
	NaCl	-0,8	-0,144	-0,223	-0.122	0,012	-0,10	-0,322	-0,342	-0,38	-0,082	-0,8
	Mo+CaCl2	-0.4	-0.12	-0.062	0,122	-0.11	-0.273	-0.384	-0.544**	-0.34	-0.182	-1.000**
	RL	-0.8	-0.232	-0.065	0.501*	-0.145	-0.202	-0.285	-0.913**	-0.621**	-0.197	-0.8
	Témoin	0	0,549**	-0,226	-0,135	0,759**	0,759**	0,592**	0,326	-0,067	0,778**	0,2
	Gypse	-0,8	0,193	-0,048	0,088	0,303	0,155	-0,027	-0,339	-0,342	0,234	-0,2
	CaCl ₂	-0,8	-0,032	-0,164	-0,106	0,082	-0,098	-0,259	-0,299	-0,252	-0,002	-0,8
	NaClO	-1,000**	0,075	0,032	0,081	0,176	0,018	-0,074	-0,321	-0,319	0,087	-0,4
Necator	H_2O_2	-0,8	0,039	0,016	0,051	0,136	-0,028	-0,13	-0,33	-0,296	0,03	-0,8
americanus	Hand	-0,8	$0,448^{*}$	$0,502^{*}$	$0,\!494^{*}$	0,420*	0,292	0,24	-0,368	-0,448*	0,357	0
	Moringa	-1,000**	0,142	-0,021	0,064	0,293	0,156	0,034	-0,281	-0,359	0,22	-0,4
	Charbon	-1,000	0,138	-0,013	0,152	0,244	0,107	-0,054	-0,374	-0,431	0,168	-0,4
	NaCI Maci Cl	-0,8	0,22	-0,013	-0,013	0,26	0,103	-0,08	-0,192	-0,214	0,19	-0,2
	Mo+CaCl ₂	-0,4	0,053	-0,194	0,01	0,19	0,058	-0,137	-0,369	-0,322	0,127	-0,4
	KL Témoin	-0,4	-0,528 -0.592**	-0,014	-0.523**	-0,339	-0,404	-0,371	-0,810	-0,488 0.569**	-0,383	-1,000
	Gypse	0,0	-0.121	-0.013	-0.23	-0,139	-0.32	-0.359	-0.058	0.033	-0.212	-0.2
	CaCl2	04	-0.141	0.148	-0.264	-0.204	-0.38	-0.325	0.062	0.185	-0.274	0.4
	NaClO	0	-0.318	0.021	-0.206	-0.413*	-0.597**	-0.559**	-0.22	0.041	-0.498*	-0.2
<i>a</i>	H ₂ O ₂	0,4	-0,16	0,193	-0,166	-0,263	-0,447*	-0,385	-0,043	0,112	-0,348	0,4
Strongyloides	Hand	0,8	-0,385	0,039	-0,37	-0,563**	-0,720**	-0,655**	0,03	0,329	-0,644**	0,2
siercoraiis	Moringa	0,4	-0,323	-0,089	-0,239	-0,323	-0,501*	-0,522**	-0,219	0,002	-0,411*	-0,4
	Charbon	0	-0,1	0,148	-0,11	-0,155	-0,304	-0,289	-0,069	0,037	-0,23	-0,2
	NaCl	0,4	-0,465*	-0,133	-0,341	-0,630**	-0,755**	-0,747**	-0,102	0,229	-0,687**	-0,4
	Mo+CaCl ₂	0	-0,142	0,044	-0,169	-0,178	-0,372	-0,382	-0,201	-0,07	-0,259	-0,2
	RL	-0,8	-0,232	-0,065	0,501*	-0,145	-0,202	-0,285	-0,913**	-0,621**	-0,197	-0,8
	Témoin	0,8	-0,318	-0,711	-0,814	-0,21	-0,202	-0,285	0,434	0,383	-0,186	0
	Gypse	0	0,12	0,100	-0,037	0,045	-0,120	-0,177	0,029	-0,001	-0,007	-0,2
	CaCl ₂	0,8	-0,123	0,001	-0,348	-0,100	-0,369	-0,410	0,008	0,187	-0,249	0,2
	HaCio	-0.4	0,004	0,238	-0,109	-0,090	-0,27	-0,201	0,111	0,129	-0,170	0,4
Trichuris	Hand	0,4	-0 124	-0.066	-0.29	-0.189	-0.411*	-0.452*	-0.06	0.08	-0.276	0,0
trichiura	Moringa	1.000^{**}	-0.003	-0.128	-0.325	-0.05	-0.217	-0.315	0.095	0.168	-0.106	0,2
	Charbon	0,4	-0,052	0,181	-0,115	-0,117	-0,288	-0,248	0,102	0,12	-0,171	0,4
	NaCl	0,4	-0,022	-0,084	-0,165	-0,048	-0,233	-0,355	-0,07	0,054	-0,123	-0,4
	Mo+CaCl ₂	0,8	0,128	0,156	-0,148	0,118	-0,066	-0,064	0,069	0,04	0,09	0,8
	RL	0,2	0,264	$0,808^{**}$	0,216	-0,032	0,024	0,275	$0,\!485^{*}$	0,397	-0,005	0,8
	Témoin	1,000**	$0,677^{*}$	-0,869**	-0,872**	0,869**	0,869**	0,869**	0,871**	0,193	0,869**	$1,000^{**}$
	Gypse	1,000**	0,364	-0,196	0,179	0,462	0,287	0	0,116	0,357	0,406	1,000**
	CaCl ₂	-1,000	0,182	0,014	0,362	0,326	0,07	-0,151	-0,065	0,277	0,273	-1,000
	NaClO	1,000	0,364	-0,196	0,179	0,462	0,287	0	0,116	0,357	0,406	1,000
Ancylostoma	H ₂ O ₂	1,000	0,399	-0,224	0,158	0,524	0,343	0,049	0,144	0,392	0,441	1,000
duodenale	Moringa	1,000	0,020	-0,785	-0,512	0,951	0,835	-0.123	0,030	0,238	0,888	1,000
	Charbon	$1,000^{**}$	0,317	-0.112	0.225	0,54	0.217	-0.067	0,1	0,382	0,330	$1,000^{**}$
	NaCl	1,000**	0,627*	-0,713**	-0,389	0,916**	0,804**	0,608*	0,518	0,287	0,797**	1,000**
	Mo+CaCl ₂	1,000**	0,138	-0,198	0,213	0,384	0,213	0,034	0,021	0,078	0,433	1,000**
	RL	1,000**	$0,677^{*}$	-0,869**	-0,872**	0,869**	0,869**	0,869**	0,871**	0,193	0,869**	1,000**
	Témoin	0,4	-0,845**	-0,323	-0,35	-0,953**	-0,961**	-0,878**	-0,229	0,2	-0,967**	-0,4
	Gypse	0	-0,047	0,207	0,189	-0,056	-0,244	-0,215	-0,426*	-0,308	-0,14	-0,2
	CaCl ₂	-0,8	0,162	0,091	0,114	0,188	0,03	-0,065	-0,161	-0,178	0,113	-0,8
	NaClO	0	-0,142	0,138	0,07	-0,171	-0,364	-0,337	-0,321	-0,191	-0,28	-0,2
Hymenolepis	H ₂ O ₂	-0,6	0,088	0,165	0,144	0,09	-0,094	-0,138	-0,272	-0,224	0,007	-0,4
nana	Hand	0	-0,35	-0,018	-0,131	-0,492*	-0,675**	-0,687**	-0,335	-0,006	-0,574**	-0,2
	Moringa	-0,8	-0,088	-0,096	-0,001	0,007	-0,171	-0,281	-0,432	-0,324	-0,082	-0,8
	Charbon NaCl	-0,6	-0,11	0,048	0,071	-0,123	-0,285	-0,336	-0,345	-0,207	-0,199	-0,4
	Mo+CaCla	0.105	-0.005	_0.299	-0.157	0,03	-0,155	-0,085	-0,003	-0,041	-0,044	-0 738
	RL	-0,6	-0,242	0,356	0,561**	-0,355	-0.38	-0,296	-0,668**	-0.343	-0,393	-0,4

Annexe 21 : Corrélations entre le pH et les œufs viables dénombrés avant et après désinfection

Turbidité		Té	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Мо	Char	NaCl	Mo+CaCl ₂	RL
I	Témoin	0,4	1,000**	0,8	1,000**	1,000**	0,949	0,8	1,000**	1,000**	1,000**	0,8
	Gypse	0	0,652**	$0,598^{**}$	0,610**	$0,718^{**}$	0,532**	0,665**	0,725**	0,654**	0,690**	0,6
	CaCl ₂	-0,6	0,685**	$0,679^{**}$	0,697**	$0,771^{**}$	0,620**	0,726**	$0,790^{**}$	0,741**	0,763**	0
	NaClO	0	0,677**	0,677**	0,704**	0,776**	0,657**	0,745**	0,795**	0,741**	0,760**	0,6
	H_2O_2	-0,6	0,540**	0,546**	0,581**	0,685**	$0,500^{*}$	0,591**	0,663**	0,600**	0,627**	0
Ascaris spp.	Hand	0,4	0,728**	0,744**	0,770**	0,900**	0,688**	0,753**	0,815**	0,777**	0,801**	0,8
	Moringa	-0,6	0,598	0,452	0,471	0,586	0,391	0,535	0,604	0,523	0,556	0
	Charbon NoCl	-0,6	0,657	0,606	0,628	0,744	0,558	0,069	0,/3/	0,670	0,694	0
	NaCI Mol CaCla	0,4	0,870 0.467^*	0,805	0,804	0,774	0,752	0,803	0,911	0,651	0,888	0,8
	DI	06	0,407	0,442	0,429	0,071	0,302	0,470	0,334	0,401	0,487	0,0
	Témoin	-0,0	0.474^*	0.501*	0,377 0.415^*	0,0086	0,337 0.495^*	0.547**	0.431*	0,355 0.436^*	0.447^*	0.2
	Gypse	-0,4	0,689**	0,705**	0,547**	0,640**	0,556**	0,743**	0,695**	0,600**	0,646**	-0,2
	CaCl ₂	-0,6	0,684**	0,584**	0,546**	0,621**	$0,508^{*}$	0,636**	0,678**	0,593**	0,631**	0
	NaClO	-0,8	0,547**	0,487*	0,374	$0,474^{*}$	0,366	0,543**	0,514*	0,440*	0,491*	-0,4
	H ₂ O ₂	-0,6	$0,570^{**}$	0,483*	0,382	$0,\!497^{*}$	0,363	0,552**	0,536**	$0,\!450^{*}$	$0,499^{*}$	0
necator	Hand	-1,000**	0,161	0,327	0,027	0,277	0,066	0,321	0,186	0,079	0,122	-0,8
americanas	Moringa	-0,8	0,663**	0,633**	$0,\!482^{*}$	0,519**	$0,502^{*}$	$0,704^{**}$	0,642**	$0,556^{**}$	0,603**	-0,4
	Charbon	-0,8	0,629**	0,641**	0,482*	0,595**	0,495*	0,666**	0,624**	0,547**	0,587**	-0,4
	NaCl	-0,4	0,690**	0,650**	0,450*	0,588**	0,451	0,664	0,627**	0,509*	0,565	-0,2
	Mo+CaCl ₂	0,2	,0701	0,729	0,614	0,694	0,628	0,744	0,740	0,672	0,695	0,4
	KL Támain	0	0,388	0,437	0,738	0,775	0,657	0,439	0,603	0,695	0,641	0,6
	Gypse	-0.4	-0,238 0.447^*	-0,377	-0,425	-0,500	-0,500	-0,37	-0,451	-0,447	-0,430	-0.2
	CaCla	-0,4	0.242	0,247	-0.055	0,044	-0.09	0,013	0,555	-0.007	0.05	-0,2
	NaClO	-0.4	0.242	0.015	0.056	0.282	-0.033	0.069	0.147	0.07	0.112	-0.2
	H ₂ O ₂	-0.2	0.143	-0.059	-0.1	0.123	-0.17	0.01	0.045	-0.059	-0.01	-0.4
Strongyloides	Hand	0.4	0.043	-0.229	-0.17	0.067	-0.253	-0.186	-0.094	-0.166	-0.136	0.2
stercoralis	Moringa	0,2	0,38	0,153	0,21	0,384	0,117	0,227	0,329	0,24	0,283	0,4
	Charbon	-0,4	0,27	0,079	0,006	0,188	-0,066	0,157	0,174	0,062	0,124	-0,2
	NaCl	0,2	0,173	-0,051	0,027	0,272	-0,073	-0,042	0,082	0,022	0,05	0,4
	Mo+CaCl ₂	-0,4	0,375	0,182	0,155	0,352	0,096	0,242	0,298	0,194	0,242	-0,2
	RL	-0,6	0,032	0,275	0,377	0,598**	0,337	0,24	0,302	0,355	0,312	0
	Témoin	1,000	0,463	0,124	0,355	0,038	0,315	0,186	0,302	0,334	0,334	0,8
	Gypse	-0,4	0,37	0,22	0,064	0,264	0,011	0,265	0,263	0,126	0,199	-0,2
	CaCl ₂	0,4	0,392	0,130	0,101	0,262	0,001	0,213	0,252	0,138	0,19	0,2
	HaCio	-0,2	0,134	-0,052	-0,148	0,044	-0,192	0,032	0,018	-0,092	-0,028	-0,4
Trichuris	H2O2 Hand	-0,8	0,203	0,13	-0,117	0,037	-0,008	0,173	0,074	0.234	0,018	-1,000
trichiura	Moringa	0,4	0.534**	0.342	0.255	0.377	0,100	0.387	0.424*	0.312	0.361	0.4
	Charbon	-0,2	0,205	0,074	-0,05	0,142	-0,079	0,111	0,118	0,001	0,06	-0,4
	NaCl	0,2	0,511*	0,388	0,314	$0,\!482^*$	0,258	0,442*	0,453*	0,352	$0,410^{*}$	0,4
	Mo+CaCl ₂	0,6	0,416*	0,29	0,102	0,228	0,171	0,375	0,292	0,169	0,226	0
	RL	-0,4	-0,678**	-0,668**	-0,942**	-0,749**	-0,902**	-0,706**	-0,819**	-,0910**	-0,867**	-0,8
	Témoin	1,000**	0,772**	0,535	,0821**	0,193	0,821**	0,677*	0,628*	0,772**	0,724**	1,000**
	Gypse	1,000**	0,685*	0,775**	0,643*	0,972**	0,531	0,764**	0,804**	0,692*	0,734**	1,000**
	CaCl ₂	-1,000	0,529	0,635	0,49	0,928	0,385	0,639	0,666	0,543	0,602	-1,000
	NaCIO	1,000	0,685	0,775	0,643	0,972	0,531	0,764	0,804	0,692	0,734	1,000
Ancylostoma	H2O2	1,000	0,720	0,817	0,685	0,986	0,587	0,806	0,832	0,734	0,7/6	1,000
duodenale	Moringa	1,000	0,980	0,632	0.539	0,071	0,957	0,905	0,944	0,995	0,980	1,000
	Charbon	1,000	0.627^*	0.727**	0.588*	$0,977^{**}$	0,497	0.716**	0.750**	0.634^*	0.687^*	$1,000^{**}$
	NaCl	1,000**	0,979**	0,901**	0,979**	0,755**	0,902**	0,984**	0,972**	0,993**	0,986**	1,000**
	Mo+CaCl ₂	1,000**	0,601*	0,662*	$0,586^{*}$	0,873**	0,534	0,695*	0,683*	0,627*	0,683*	1,000**
	RL	1,000**	0,772**	0,535	0,821**	0,193	0,821**	$0,677^{*}$	0,628*	0,772**	0,724**	$1,000^{**}$
	Témoin	0,2	-0,118	-0,34	-0,054	0,092	-0,175	-0,347	-0,129	-0,097	-0,118	0,4
	Gypse	-0,4	0,198	0,181	0,127	0,376	0,067	0,233	0,252	0,172	0,209	-0,2
	CaCl ₂	-0,6	$0,490^{*}$	0,494*	0,28	0,464*	0,27	0,523**	0,463*	0,351	0,413*	0
	NaClO	-0,4	0,209	0,11	0,097	0,335	-0,003	0,165	0,217	0,137	0,18	-0,2
Hymenolepis	H ₂ O ₂	-0,8	0,371	0,326	0,182	0,408*	0,15	0,384	0,344	0,243	0,303	-0,4
nana	Hand	-0,4	0,164	0,015	0,087	0,392	-0,011	0,037	0,139	0,088	0,107	-0,2
	Moringa	-0,6	0,568	0,472	0,463	0,601	0,406	0,559	0,596	0,521	0,552	
	NaCl	-0,8	0,572	0,292	-0.104	0,471	-0.122	0,555	0,391	-0.05	0,35	-0,4
	Mo+CaCla	0.632	0.700**	0.616**	0.506*	0.635**	0.481*	0.647**	0.658**	0.562**	0.607**	0.949
	RL	-0,8	-0,398	-0,194	-0,199	0,167	-0,24	-0,253	-0,215	-0,21	-0,232	-0,4

Annexe 22 : Corrélations entre la turbidité et les œufs viables dénombrés avant et après désinfection

Couleur		Té	Gypse	CaCl ₂	NaClO	H2O2	Hand	Мо	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	0,8	0,4	1,000**	1,000**	1,000**	0,8	0,4	0,8	0,8	1,000**	0,6
	Gypse	0,6	0,533**	0,831**	0,636**	0,862**	0,612**	0,928**	0,533**	0,434*	0,725**	0,8
	CaCl ₂	0	0,583**	$0,850^{**}$	0,703**	$0,897^{**}$	$0,650^{**}$	0,954**	0,585**	0,518**	$0,789^{**}$	0,4
	NaClO	0,6	0,562**	0,832**	0,690**	0,887**	0,650**	0,942**	0,612**	0,535**	0,787**	0,8
	H ₂ O ₂	0	0,443*	$0,719^{**}$	0,536**	0,817**	$0,\!490^{*}$	0,859**	$0,476^{*}$	0,401	0,642**	0,4
Ascaris spp.	Hand	0,8	,0617**	0,906**	0,712**	0,961**	0,634**	0,881**	0,658**	0,575**	0,822**	0,6
	Moringa	0	0,431*	0,723**	0,531**	0,720**	$0,508^{*}$	0,851**	0,399	0,281	0,611**	0,4
	Charbon	0	0,529**	0,831**	0,643**	0,857**	,0603**	0,940**	0,536**	0,431*	0,743**	0,4
	NaCl	0,8	$0,788^{**}$	0,943**	$0,870^{**}$	0,911**	0,837**	0,901**	$0,807^{**}$	0,712**	0,916**	0,6
	Mo+CaCl ₂	0,6	0,351	0,718**	$0,414^{*}$	0,774**	0,387	0,834**	0,352	0,239	0,525**	0,8
	RL	0	-0,065	0,301	0,118	$0,506^{*}$	-0,059	$0,407^{*}$	0,183	0,118	0,248	0,4
	Témoin	0,2	0,662**	0,275	$0,549^{**}$	0,172	$0,576^{**}$	0,102	0,528**	0,722**	0,404	-0,4
	Gypse	-0,2	0,734**	0,847**	$0,668^{**}$	0,819**	0,723**	$0,908^{**}$	0,538**	0,601**	0,698**	-0,4
	CaCl ₂	0	$0,608^{**}$	0,804**	0,642**	$0,786^{**}$	0,657**	0,925**	$0,514^{*}$	$0,450^{*}$	0,718**	0,4
	NaClO	-0,4	0,547**	$0,707^{**}$	$0,506^{*}$	0,674**	0,554**	0,830**	0,343	0,366	$0,588^{**}$	-0,2
Necator	H_2O_2	0	0,526**	0,731**	$0,510^{*}$	0,693**	0,554**	$0,840^{**}$	0,361	0,342	0,585**	0,4
americanus	Hand	-0,8	0,391	0,466*	0,137	0,437*	0,25	$0,512^{*}$	0,032	0,227	0,134	-0,4
umericanus	Moringa	-0,4	0,699**	$0,796^{**}$	0,656**	0,723**	0,727**	$0,876^{**}$	$0,\!484^{*}$	0,540**	0,685**	-0,2
	Charbon	-0,4	0,637**	$0,808^{**}$	$0,\!608^{**}$	$0,770^{**}$	0,645**	$0,892^{**}$	0,471*	$0,505^{*}$	0,650**	-0,2
	NaCl	-0,2	0,716**	0,811**	$0,599^{**}$	0,751**	0,693**	0,856**	$0,468^{*}$	0,522**	0,613**	-0,4
	Mo+CaCl ₂	0,4	0,689**	$0,848^{**}$	0,699**	0,838**	0,696**	0,918**	0,565**	$0,580^{**}$	0,776**	0
	RL	0,6	0,081	0,425*	0,463*	0,625**	0,188	0,522**	0,528**	0,334	0,576**	0,8
	Témoin	0,2	-0,522**	-0,393	0-,398	-0,431*	-0,371	-0,296	-0,420*	-0,657**	-0,35	0,4
	Gypse	-0,2	0,358	0,576**	0,339	0,503*	0,424*	0,684**	0,184	0,086	$0,419^{*}$	0,4
	CaCl ₂	-0,4	0,17	0,338	0,107	0,262	0,23	$0,\!478^{*}$	-0,032	-0,123	0,186	0
	NaClO	-0,2	0,05	0,363	0,093	0,37	0,114	0,516**	-0,02	-0,167	0,216	0,4
Strongulaidas	H_2O_2	-0,4	0,09	0,317	0,017	0,266	0,106	$0,445^{*}$	-0,117	-0,219	0,118	0
stercoralis	Hand	0,2	-0,144	0,131	-0,117	0,083	-0,073	0,247	-0,184	-0,392	-0,015	0,4
sicreorans	Moringa	0,4	0,201	0,522**	0,27	0,501*	0,29	0,642**	0,177	-0,026	0,397	0,8
	Charbon	-0,2	0,223	$0,450^{*}$	0,163	0,384	0,259	0,562**	-0,023	-0,086	0,255	0,4
	NaCl	0,4	-0,069	0,281	0,037	0,276	0,04	0,398	-0,035	-0,259	0,154	0,8
	Mo+CaCl ₂	-0,2	0,285	0,524**	0,258	$0,492^{*}$	0,308	0,662**	0,128	0,035	0,346	0,4
	RL	0	-0,065	0,301	0,118	$0,506^{*}$	-0,059	$0,407^{*}$	0,183	0,118	0,248	0,4
	Témoin	0,8	0,215	0,065	$0,420^{*}$	-0,01	0,35	0,019	0,398	0,248	0,355	0,4
	Gypse	-0,2	0,375	0,560**	0,252	,0473*	0,391	0,637**	0,114	0,072	0,289	0,4
	CaCl ₂	0,2	0,301	0,461*	0,253	0,371	0,365	0,560**	0,131	0,024	0,304	0,4
	NaClO	-0,4	0,182	0,344	0,044	0,237	0,184	0,430*	-0,119	-0,163	0,117	0
Trichuris	H_2O_2	-1,000**	0,375	0,39	0,119	0,283	0,32	0,496*	-0,047	0,056	0,163	-0,8
trichiura	Hand	0,2	0,323	0,547**	0,302	$0,\!490^{*}$	0,35	0,642**	0,187	0,083	0,39	0,4
memme	Moringa	0,4	0,473*	0,623**	0,419*	0,539**	0,492*	0,671**	0,275	0,194	0,475*	0,2
	Charbon	-0,4	0,235	0,403	0,111	0,312	0,26	0,484*	0,008	-0,078	0,201	0
	NaCl	0,4	0,457*	0,700**	0,429*	0,650**	0,492*	0,753**	0,303	0,221	0,521**	0,8
	Mo+CaCl ₂	0	0,486*	0,515*	0,329	0,403	0,503*	0,614**	0,186	0,236	0,34	-0,4
	RL	-0,8	-0,447*	-0,533**	-0,775**	-0,646**	-0,528**	-0,525**	-0,818**	-0,711***	-0,791**	-0,6
	Témoin	1,000***	0,772**	0,29	0,869**	0,193	0,676*	0,097	0,869**	0,774**	0,579*	-1,000**
	Gypse	1,000	0,671	0,951	0,587	0,993	0,657	0,895	0,531	0,574	0,839	-1,000
	CaCl ₂	-1,000	0,55	0,883	0,431	0,935	0,592	0,935	0,403	0,435	0,746	1,000
	NaClO	1,000**	0,671*	0,951**	0,587*	0,993**	0,657*	0,895**	0,531	0,574	0,839**	-1,000**
Ancvlostoma	H ₂ O ₂	1,000**	0,713**	0,958**	0,629*	0,986**	0,713**	0,881**	0,573	0,630*	0,881**	-1,000**
duodenale	Hand	1,000**	0,979**	0,720**	0,993**	0,678*	0,909**	0,601*	0,965**	0,928**	0,923**	-1,000**
	Moringa	1,000	0,592*	0,904	0,487	0,970**	0,585	0,851	0,438	0,512	0,760**	-1,000
	Charbon	1,000**	0,641	0,925	0,536	0,977**	0,648	0,872**	0,494	0,544	0,809**	-1,000
	NaCl	1,000**	0,944	0,811	0,958	0,755	0,888	0,678*	0,909	0,890	0,958	-1,000
	Mo+CaCl ₂	1,000**	0,642*	0,840	0,53	0,899**	0,627*	0,888	0,47	0,57	0,776**	-1,000
	RL	1,000	0,772**	0,29	0,869	0,193	0,676	0,097	0,869	0,774**	0,579*	-1,000
1	Temoin	0,4	-0,517	-0,151	-0,205	-0,05	-0,328	0,013	-0,183	-0,506	-0,075	0,8
1	Gypse	-0,2	0,199	0,515	0,16	0,536	0,178	0,639	0,063	-0,004	0,29	0,4
	CaCl ₂	0	0,566	0,765	0,455	0,667	0,564	0,774	0,306	0,312	0,519	0,4
	NaClO	-0,2	0,148	0,479*	0,135	0,486	0,156	0,599**	0,025	-0,084	0,267	0,4
Hymenolenis	H ₂ O ₂	-0,4	0,413*	0,665**	0,333	0,591**	0,423*	0,730**	0,162	0,158	0,409*	0,2
nana	Hand	-0,2	-0,027	0,366	0,055	0,408*	0,023	0,528**	-0,018	-0,196	0,189	0,4
1	Moringa	0	0,466*	0,761**	0,529**	0,757**	0,514	0,877**	0,391	0,307	0,628**	0,4
1	Charbon	-0,4	0,288	0,630	0,297	0,656	0,331	0,746	0,194	0,079	0,422*	0,2
1	INACI M. C. C.	-0,8	0,245	0,381	0,062	0,301	0,206	0,455	-0,054	-0,058	0,136	-0,6
1	Mo+CaCl ₂	0,95	0,638	0,849	0,640	0,757	0,681	0,843	0,501	0,437	0,701	0,74
	KL	-0,4	-0,436	-0,048	-0,388	0,108	-0,441	0,094	-0,345	-0,409	-0,242	0,2

Annexe 23 : Corrélations entre la couleur et les œufs viables dénombrés avant et après désinfection

Nitrate		Té	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Мо	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,6
	Gypse	0,6	0,524**	0,422*	$0,428^{*}$	0,369	0,394	0,441*	0,453*	0,473*	0,437*	0,8
	CaCl ₂	0	$0,550^{**}$	$0,\!468^{*}$	$0,458^{*}$	0,432*	0,431*	$0,\!488^{*}$	0,493*	0,503*	$0,\!479^{*}$	0,4
	NaClO	0,6	$0,548^{**}$	$0,462^{*}$	0,443*	0,391	0,434*	$0,482^{*}$	$0,\!488^{*}$	$0,\!498^{*}$	$0,470^{*}$	0,8
	H ₂ O ₂	0	0,433*	0,338	0,317	0,27	0,314	0,36	0,347	0,374	0,35	0,4
Ascaris spp.	Hand	0,8	0,703**	0,609**	0,594**	0,591**	0,610**	0,646**	0,609**	0,662**	0,628**	0,6
	Moringa	0	0,505	0,398	0,414	0,349	0,386	0,425	0,441	0,456	0,417	0,4
	Charbon NoCl	0	0,572	0,472	0,470	0,419	0,454	0,498	0,499	0,522	0,48/	0,4
	NaCi Mai CaCla	0,8	0,702	0,035	0,071	0,387	0,390	0,039	0,080	0,003	0,031	0,0
	RI	0,0	0,411	0,271	0,277	0,25	0,500	0,327	0,507	0,302	0,512	0,0
	Témoin	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	-0.4
	Gypse	-0,2	0,381	0,281	0,32	0,214	0,289	0,297	0,337	0,311	0,295	-0,4
	CaCl ₂	0	0,552**	0,450*	$0,489^{*}$	0,379	0,443*	0,473*	0,500*	0,494*	$0,467^{*}$	0,4
	NaClO	-0,4	0,309	0,2	0,249	0,14	0,191	0,222	0,263	0,25	0,214	-0,2
Magaton	H ₂ O ₂	0	0,348	0,235	0,277	0,174	0,232	0,261	0,3	0,291	0,251	0,4
americanus	Hand	-0,8	-0,258	-0,37	-0,347	-0,4	-0,327	-0,333	-0,319	-0,323	-0,354	-0,4
umericanias	Moringa	-0,4	0,35	0,265	0,312	0,192	0,258	0,269	0,331	0,281	0,271	-0,2
	Charbon	-0,4	0,327	0,227	0,255	0,177	0,241	0,253	0,289	0,268	0,242	-0,2
	NaCl	-0,2	0,399	0,29	0,344	0,235	0,323	0,312	0,353	0,332	0,309	-0,4
	Mo+CaCl ₂	0,4	0,508	0,418	0,444*	0,356	0,430*	0,446*	0,465	0,455*	0,434*	0
	RL Trí	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,8
	Cupso	0,2	0,2 0.460*	0,2	0,2 0.421^*	0,2	0,2	0,2	0,2	0,2 0.412*	0,2	0,4
	CoClo	-0,2	0,409	0,558	0.285	0,297	0,371	0,374	0,403	0,412	0,373	0,4
	NaClO	-0,4	0,305	0,195	0,285	0,12	0,22	0,207	0,247	0,25	0,212	04
	HaCio	-0,2	0,377	0,270	0,31	0,237	0,510	0,515	0,257	0,347	0.14	0,4
Strongyloides	Hand	0.2	0.357	0.248	0.297	0.23	0.313	0.287	0.268	0.327	0.275	04
stercoralis	Moringa	0.4	0.512*	0.388	0.442*	0.335	0.397	0.414*	0.418^{*}	0.470*	0.414*	0.8
	Charbon	-0,2	0,272	0,154	0,237	0,103	0,157	0,172	0,198	0,222	0,171	0,4
	NaC1	0,4	$0,509^{*}$	$0,407^{*}$	0,431*	0,39	$0,470^{*}$	0,441*	0,402	$0,\!480^{*}$	$0,\!428^{*}$	0,8
	Mo+CaCl ₂	-0,2	0,373	0,248	0,301	0,187	0,273	0,276	0,288	0,322	0,268	0,4
	RL	0	0	0	0	0	0	0	0	0	0	0,4
	Témoin	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,4
	Gypse	-0,2	0,25	0,137	0,229	0,084	0,137	0,148	0,194	0,199	0,155	0,4
	CaCl ₂	0,2	0,468*	0,357	0,439*	0,296	0,394	0,378	0,418*	0,419*	0,375	0,4
	NaClO	-0,4	0,149	0,03	0,132	-0,01	0,054	0,053	0,087	0,101	0,05	0
Trichuris	H_2O_2	-1,000**	0,005	-0,091	0,005	-0,16	-0,053	-0,08	-0,027	-0,053	-0,08	-0,8
trichiura	Hand	0,2	0,508	0,395	0,449	0,347	0,438	0,428	0,433	0,457	0,415	0,4
	Charbon	0,4	0,535	0,437	0,527	0,389	0,452	0,455	0,489	0,489	0,460	0,2
	NaCl	-0,4	0,237	0,139	0,244 0.477^*	0,087	0,175 0.415^*	0.423^*	0,191 0.439^*	0,200 0.462^*	0.423^*	0.8
	Mo+CaCl2	0,4	0.259	0,164	0.256	0.068	0.208	0.158	0.24	0.193	0.17	-0.4
	RL	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-0.6
	Témoin	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	-1,000**
	Gypse	1,000**	0,895**	0,722**	0,734**	0,748**	0,727**	0,797**	$0,678^{*}$	0,888**	0,769**	-1,000**
	CaCl ₂	-1,000**	0,795**	0,575	0,602*	$0,599^{*}$	$0,602^{*}$	0,648*	0,536	0,781**	$0,620^{*}$	1,000**
	NaClO	1,000**	0,895**	0,722**	0,734**	0,748**	0,727**	0,797**	$0,\!678^{*}$	$0,888^{**}$	0,769**	-1,000**
Angulastama	H ₂ O ₂	$1,000^{**}$	0,930**	0,764**	$0,776^{**}$	0,783**	$0,776^{**}$	0,832**	0,720**	0,916**	0,804**	-1,000**
duodenale	Hand	$1,000^{**}$	$0,874^{**}$	0,963**	$0,986^{**}$	0,923**	0,825**	0,895**	0,986**	$0,860^{**}$	0,958**	-1,000**
unouentate	Moringa	1,000**	0,816**	0,611*	0,637*	0,634*	0,658*	0,690*	0,571	0,816**	0,655*	-1,000**
	Charbon	1,000**	0,858**	0,660*	0,687*	0,683*	0,694*	0,732**	0,627*	0,865**	0,704*	-1,000**
	NaCl	1,000**	0,937**	0,988**	0,986	0,972**	0,874**	0,958	0,986**	0,909**	0,993**	-1,000**
	Mo+CaCl ₂	1,000	0,776	0,624	0,683	0,608	0,657	0,653	0,627	0,761	0,653	-1,000
	KL Támoin	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	-1,000
	Gynse	_0.2	0.144	0.011	0.035	-0.02	0.022	0.052	0,4	0,4	0,4	0,8
	CaCla	-0,2	0 301	0.18	0.259	0.142	0 199	0,052	0 237	0.234	0,033	0,4
	NaClO	-0.2	0.241	0.112	0.143	0.087	0.123	0.159	0.139	0.196	0.136	0.4
	H_2O_2	-0.4	0.221	0.094	0.153	0.055	0.099	0.116	0.144	0,159	0.109	0.2
Hymenolepis	Hand	-0.2	0.4	0.276	0.271	0.269	0.334	0.332	0.282	0.364	0.301	0.4
nana	Moringa	0,2	0,463*	0.356	0.371	0.301	0,341	0,381	0.397	0.413*	0,371	0.4
	Charbon	-0,4	0,355	0,223	0,267	0,183	0,217	0,253	0,247	0,297	0,248	0,2
	NaCl	-0,8	0,074	-0,057	0,053	-0,09	-0,019	-0,027	0,007	0,019	-0,029	-0,6
	Mo+CaCl ₂	0,95	0,611**	$0,506^{*}$	0,560**	$0,460^{*}$	0,529**	0,531**	0,553**	0,554**	0,524**	0,74
	RL	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	0,2

Annexe 24 : Corrélations entre les nitrates et les œufs viables dénombrés avant et après désinfection

MES		Té	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Mo	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	0,4	0.8	1,000**	1,000**	1,000**	0,8	0,8	0,8	1,000**	1,000**	0,8
	Gypse	0	0,557**	0,624**	0,698**	0,680**	0,570**	0,642**	0,621**	0,613**	0,611**	0,6
	CaCl ₂	-0,6	0,614**	0,683**	0,757**	0,732**	0,602**	0,725**	$0,708^{**}$	0,690**	0,663**	0
	NaClO	0	0,606**	0,676**	0,747**	0,731**	0,614**	0,720**	$0,707^{**}$	0,697**	0,643**	0,6
	H ₂ O ₂	-0,6	0,493*	0,589**	0,629**	0,620**	$0,\!484^{*}$	$0,570^{**}$	0,544**	0,575**	$0,510^{*}$	0
Ascaris spp.	Hand	0,4	0,642**	$0,776^{**}$	0,793**	$0,808^{**}$	0,643**	0,724**	$0,698^{**}$	$0,770^{**}$	0,694**	0,8
	Moringa	-0,6	0,450*	0,526**	0,593**	0,590**	0,549**	0,512*	0,489*	0,495*	0,566**	0
	Charbon	-0,6	0,551**	0,644**	0,706**	0,705**	0,606**	0,653**	0,627**	0,641**	0,636**	0
	NaCl	0,4	0,802**	0,794**	0,887**	0,830**	0,745**	0,866**	0,862**	0,794**	0,840**	0,8
	Mo+CaCl ₂	0	0,376	0,481	0,502	0,539**	0,428*	0,427*	0,387	0,465	0,405	0,6
	RL ·	-0,6	0,2	0,4	0,4	0,4	0,2	0,2	0,2	0,4	0,4	0
	Témoin	0,4	0,8	0,4	0,4	0,4	0,8	0,8	0,8	0,4	0,4	0,2
	Gypse	-0,4	0,722	0,595	0,009	0,013	0,014	0,093	0,055	0,555	0,597	-0,2
	CaCl ₂	-0,0	0,000	0,002	0,072	0,049	0,039	0,028	0,005	0,334	0,073	0.4
	NaCIO	-0,8	0,510	0,391	0,502	0,440	0,500	0,500	0,487	0,339	0,504	-0,4
Necator	H2O2	-0,0	0,302	0,415	0,518	0,475	0,512	0,498	0,462	0,58	0,510	0
americanus	Moringa	-1,000	0,515	0,044	0,100	0,031	0,043	0,211	0,101	0,002 0.472^*	-0,031	-0,8
	Charbon	-0,8	0.634**	0,532	0,035	0,555	0,015	0,037	0,032	0.483*	0,534**	-0,4
	NaCl	-0.4	0.694**	0.551**	0.609**	0.563**	0.613**	0.616**	0.567**	0.457^*	0.577**	-0.2
	Mo+CaCl2	0.2	0.693**	0.639**	0.708**	0.680**	0.691**	0.728**	0.687**	0.619**	0.674**	0.4
	RL	0	0.4	0.8	0.8	0.8	0.4	0.4	0.4	0.8	0.8	0.6
	Témoin	0,4	-0,8	-0,4	-0,4	-0,4	-0,8	-0,8	-0,8	-0,4	-0,4	0,2
	Gypse	-0,4	0,306	0,335	0,383	0,388	$0,\!480^{*}$	0,29	0,248	0,231	0,471*	-0,2
	CaCl ₂	-0,2	0,102	0,097	0,144	0,153	0,324	0,057	0,013	-0,017	0,279	-0,4
	NaClO	-0,4	0,028	0,21	0,193	0,265	0,315	0,044	-0,003	0,113	0,26	-0,2
Strongsloides	H_2O_2	-0,2	0,004	0,047	0,074	0,103	0,221	-0,029	-0,075	-0,056	0,177	-0,4
stercoralis	Hand	0,4	-0,183	0,033	-0,022	0,084	0,19	-0,199	-0,246	-0,078	0,114	0,2
sicreorans	Moringa	0,2	0,176	0,328	0,357	0,399	$0,427^{*}$	0,221	0,182	0,26	0,423*	0,4
	Charbon	-0,4	0,139	0,12	0,195	0,187	0,289	0,108	0,071	0,028	0,29	-0,2
	NaCl	0,2	-0,061	0,235	0,159	0,285	0,319	-0,043	-0,097	0,127	0,247	0,4
	Mo+CaCl ₂	-0,4	0,245	0,287	0,318	0,344	0,419*	0,217	0,171	0,201	0,372	-0,2
	RL Trí	-0,6	0,2	0,4	0,4	0,4	0,2	0,2	0,2	0,4	0,4	0
	Temoin	1,000	0,2	0,4	0,4	0,4	0,2	0,2	0,2	0,4	0,4	0,8
	Gypse	-0,4	0,285	0,108	0,255	0,227	0,299	0,207	0,178	0,085	0,315	-0,2
	CaCl ₂	0,4	0,235	0,27	0,291	0,322	0,400	0,192	0,152	0,150	0,411	0,2
	NaCIO	-0,2	0,037	-0,010	0,048	0,030	0,192	-0,02	-0,055	-0,124	0,108	-0,4
Trichuris	H2O2	-0,8	0,237	0 251	0,079	0,021	0,239	0,104	0,005	-0,109	0,181	-1,000
trichiura	Moringa	0,4	0,279 0.411^*	0,331	0,337	0,401	0,490	0,231	0,207	0,237	0,441	0,2
	Charbon	-0.2	0.129	0,095	0.135	0.137	0,542	0.083	0,520	-0.012	0.235	-0.4
	NaCl	0.2	0.396	0.410*	0.464*	0.466*	0.494^*	0.393	0.352	0.33	0.507^*	0.4
	Mo+CaCl2	0.6	0.423*	0.249	0.308	0.283	0.494*	0.319	0.262	0.135	0.379	0
	RL	-0,4	-0,8	-1,000**	-1,000**	-1,000**	-0,8	-0,8	-0,8	-1,000**	-1,000**	-0,8
	Témoin	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**
	Gypse	1,000**	$0,676^{*}$	$0,697^{*}$	0,685*	0,839**	0,538	0,699*	0,552	0,720**	$0,587^{*}$	1,000**
	CaCl ₂	-1,000**	0,54	0,554	0,55	0,736**	0,466	$0,588^{*}$	0,417	$0,595^{*}$	0,431	-1,000**
	NaClO	1,000**	$0,676^{*}$	$0,697^{*}$	$0,685^{*}$	0,839**	0,538	0,699*	0,552	0,720**	$0,587^{*}$	1,000**
Angulastama	H ₂ O ₂	$1,000^{**}$	$0,704^{*}$	0,743**	0,727**	$0,874^{**}$	$0,\!580^{*}$	$0,748^{**}$	$0,601^{*}$	0,762**	0,629*	$1,000^{**}$
duodenale	Hand	$1,000^{**}$	$0,958^{**}$	0,963**	0,993**	0,937**	0,811**	$0,979^{**}$	0,986**	$0,979^{**}$	0,993**	$1,000^{**}$
unouentite	Moringa	1,000**	0,596*	0,614*	0,592*	0,757**	0,494	0,595*	0,445	0,623*	0,487	1,000**
	Charbon	1,000**	0,638*	0,649*	0,641*	0,799**	0,529	0,651*	0,501	0,680*	0,536	1,000**
	NaCl	1,000**	0,923	0,953	0,972**	0,965**	0,755**	0,979**	0,951	0,979**	0,958	1,000**
	Mo+CaCl ₂	1,000	0,650	0,645	0,642	0,806	0,642	0,649	0,496	0,683	0,53	1,000
	KL Támain	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	Gynse	0,2	-0,0	0 159	0.215	0 221	-0,0	-0,0	-0,0	0 138	0 169	0,4
	CaCla	-0,4	0.183*	0,139	0,213 0.444^*	0,221	0,185	0,178 0.457^*	0,137 0.407^*	0,138	0,109	-0,2
	NaClO	-0,0	0.087	0.158	0 204	0,379	0 203	0.11	0.083	0.119	0.203	-0.2
	H2O2	-0,4	0.0324	0.246	0,204	0,223	0,203	0 317	0,005	0.19	0,203	-0,2
Hymenolepis	Hand	-0.4	-0.03	0 222	0.17	0.29	0.263	0.012	-0.035	0.165	0.19	_0.2
nana	Moringa	-0,4	0.461*	0.489*	0.572**	0.563**	0.524**	0.518**	0,495*	0.478*	0.544**	-0,2
	Charbon	-0.8	0,252	0,316	0.374	0.375	0,315	0.289	0.253	0,261	0.35	-0.4
	NaCl	-0,4	0,126	-0,002	0,062	0,038	0,174	0,059	0,009	-0,095	0,124	-0,8
	Mo+CaCl ₂	0,63	0,606**	0,612**	0,659**	0,654**	0,678**	0,618**	0,572**	0,540**	0,672**	0,95
	RL	-0,8	-0,4	-0,2	-0,2	-0,2	-0,4	-0,4	-0,4	-0,2	-0,2	-0,4

Annexe 25: Corrélations entre les MES et les œufs viables dénombrés avant et après désinfection

Alcalinité		Té	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Mo	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	0,4	0,8	0,2	0,4	0,4	0,2	0,8	-0,8	0,2	0,8	0,4
	Gypse	0	0,309	0,064	0,236	0,043	0,024	0,122	0,171	0,056	0,369	0
	CaCl ₂	-0,6	0,302	0,112	0,273	0,06	0,023	0,169	0,18	0,073	0,377	-0,6
	NaClO	0	0,295	0,107	0,242	0,024	0,043	0,126	0,098	0,072	0,421*	0
4	H ₂ O ₂	-0,6	0,22	-0,078	0,098	-0,1	-0,069	0,063	0,02	-0,077	0,259	-0,6
Ascaris spp.	Hand	0,4	0,483	0,17	0,332	0,318	0,21	0,403	0,197	0,134	0,451	0,4
	Charbon	-0,0	0,505	0,037	0,27	0,108	0,103	0,143	0,29	0,032	0,332	-0,0
	NaCl	0,0	0,303	0.467^*	0.561**	0.354	0.298	0.351	0.263	0.413*	0.680**	0,0
	Mo+CaCl ₂	0	0,302	-0,16	0,054	0,008	-0,022	0,093	0,15	-0,128	0,192	0
	RL	-0,6	0	-0,8	-0,6	-0,6	-0,8	0	-0,8	-0,8	0	-0,6
	Témoin	0,4	0,2	0,8	0,4	0,4	0,8	0,2	0,2	0,8	0,2	0,4
	Gypse	-0,4	0,282	0,21	0,29	-0	0,136	0,019	0,245	0,242	$0,467^{*}$	-0,4
	CaCl ₂	-0,6	0,460*	0,289	0,431*	0,163	0,262	0,184	0,417*	0,3	0,546**	-0,6
	NaClO	-0,8	0,228	0,134	0,26	0,014	0,087	-0,094	0,363	0,146	0,367	-0,8
Necator	H_2O_2	-0,6	0,274	0,129	0,256	0,029	0,117	-0,041	0,342	0,145	0,382	-0,6
americanus	Hand	-1,000	-0,192	-0,343	-0,275	-,0504*	-0,263	-0,460*	-0,045	-0,258	-0,144	-1,000
	Moringa	-0,8	0,24	0,267	0,335	0,006	0,131	-0,031	0,318	0,285	0,478	-0,8
	NaCl	-0,8	0,233	0,127	0,207	-0,03	0,08	-0,043	0,220 0.417^*	0,132	0,380	-0,8
	Mo+CaCl2	-0,4	0,372	0.278	0.358	0.14	0,294	0.118	0.313	0.25	0.519**	-0,4
	RL	0,2	0,51	-0.4	0,550	0,11	-0.4	0,110	-1.000**	-0.4	0.6	0,2
	Témoin	0.4	0.2	0	0.4	0.4	0	0.2	0.2	0,1	0,0	0.4
	Gypse	-0,4	0,491*	0,246	0,448*	0,331	0,359	0,214	0,686**	0,282	0,435*	-0,4
	CaCl ₂	-0,2	0,405*	0,195	0,385	0,267	0,371	0,091	0,720**	0,252	0,346	-0,2
	NaClO	-0,4	0,453*	-0,072	0,22	0,233	0,222	0,197	0,519**	-0,035	0,158	-0,4
Strongvloides	H_2O_2	-0,2	0,36	-0,008	0,237	0,153	0,235	0,06	0,620**	0,046	0,149	-0,2
stercoralis	Hand	0,4	0,564**	-0,031	0,259	0,376	0,346	0,298	0,627**	0,028	0,138	0,4
	Moringa	0,2	0,488*	0,069	0,339	0,283	0,253	0,226	0,528**	0,1	0,329	0,2
	Charbon	-0,4	0,31	0,082	0,275	0,146	0,184	0,008	0,618**	0,124	0,243	-0,4
	NaCI Matter	0,2	0,619	-0,026	0,247	0,437	0,29	0,395	0,551	0,025	0,187	0,2
	MO+CaCl2	-0,4	0,393	0,031	0,234	0,172	0,221	0,11	0,491	0,09	0,234	-0,4
	Témoin	1 000**	08	-0,8	1 000**	1 000**	-0,8	0.8	-0,8	-0,8	0.8	1 000**
	Gypse	-0.4	0.34	0,192	0.32	0.172	0.242	0.032	0.617**	0.267	0.358	-0.4
	CaCl ₂	0,4	0,591**	0,305	0,513*	0,434*	0,517**	0,293	0,741**	0,356	0,453*	0,4
	NaClO	-0,2	0,286	0,103	0,258	0,148	0,229	-0,038	0,660**	0,175	0,193	-0,2
Tui chaunia	H ₂ O ₂	-0,8	0,197	0,215	0,238	0,014	0,25	-0,168	0,659**	0,318	0,317	-0,8
trichiura	Hand	0,4	0,564**	0,209	0,432*	0,425*	0,425*	0,311	0,669**	0,243	0,39	0,4
memura	Moringa	0,8	0,550**	0,441*	0,576**	$0,\!478^{*}$	$0,492^{*}$	0,331	0,753**	$0,459^{*}$	0,564**	0,8
	Charbon	-0,2	0,365	0,182	0,34	0,226	0,297	0,053	0,699**	0,246	0,316	-0,2
	NaCl	0,2	0,511	0,277	0,455*	0,337	0,344	0,234	0,653**	0,313	0,482	0,2
	Mo+CaCl ₂	0,6	0,326	0,324	0,415	0,214	0,392	0,015	0,639	0,403	0,461	0,6
	KL Támoin	-0,4	-0,8 1.000**	-0,2	-0,4	-0,4	-0,2	-0,8	1.000**	-0,2 1.000**	-0,8	-0,4
	Gypse	1,000	0.581*	0.518	0.497	0.718**	0 345	0.417	0.898**	0.476	0.629^*	1,000 $1,000^{**}$
	CaCl ₂	-1.000**	0.544	0.365	0.371	0.568	0.141	0.244	0.895**	0.361	0.476	-1.000**
	NaClO	1,000**	0,581*	0,518	0,497	0,718**	0,345	0,417	0,898**	0,476	0,629*	1,000**
	H ₂ O ₂	1,000**	0,623*	0,553	0,545	0,767**	0,38	0,438	0,926**	0,515	0,671*	1,000**
Ancylostoma	Hand	1,000**	0,466	$0,970^{**}$	0,958**	0,851**	0,669*	$0,592^{*}$	0,733**	0,928**	0,972**	1,000**
auoaenaie	Moringa	1,000**	0,604*	0,404	0,378	0,635*	0,303	0,37	0,831**	0,407	0,525	1,000**
	Charbon	1,000**	0,625*	0,449	0,434	0,663*	0,325	0,398	0,870**	0,446	0,574	1,000**
	NaCl	1,000**	0,515	0,935**	0,930**	0,904**	0,648*	0,613*	0,821**	0,851**	0,965**	1,000***
	Mo+CaCl ₂	1,000**	0,439	0,497	0,448	0,615*	0,173	0,168	0,852**	0,497	0,556	1,000**
	RL Támain	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	Gypse	_0.4	0,4	-0,4	-0.044	-0.15	-0,4	0,4 -0.154	-0,4	-0,4	-0.016	_0.4
	CaCla	-0,4	0.271	-0,208	0.29	0.081	0.123	-0.018	0.480*	0.207	-0,010	-0,4
	NaClO	-0.4	0.212	-0.175	0.047	0.009	-0.016	-0.023	0.347	-0.15	0.027	-0.4
	H2O2	-0.8	0.207	-0.014	0.168	-0.03	0.021	-0.097	0.408*	0.031	0.213	-0.8
Hymenolepis	Hand	-0.4	0.481*	-0.231	0.078	0.197	0.114	0.233	0.403	-0.188	0.028	-0.4
nana	Moringa	-0,6	0,31	0,067	0,258	0,091	0,093	0,094	0,329	0,061	0,335	-0,6
	Charbon	-0,8	0,285	-0,068	0,154	0,041	0,027	0,033	0,378	-0,031	0,216	-0,8
	NaCl	-0,4	0,165	0,022	0,174	0,057	0,135	-0,156	0,550**	0,084	0,139	-0,4
	Mo+CaCl ₂	0,63	0,518**	0,352	$0,\!497^{*}$	0,388	0,363	0,306	$0,509^{*}$	0,344	0,567**	0,63
	RL	-0,8	-0,4	-1,000**	-0,8	-0,8	-1,000**	-0,4	-0,4	-1,000**	-0,4	-0,8

Annexe 26 : Corrélations entre l'alcalinité et les œufs viables dénombrés avant et après désinfection

Oxydabilité		Té	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Мо	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	0,8	0	0,4	0,8	0,4	0,8	0,8	0,4	0,8	1,000**	0,8
	Gypse	0,4	$0,767^{**}$	0,542**	0,595**	0,346	$0,597^{**}$	0,598**	$0,417^{*}$	0,560**	0,712**	0,4
	CaCl ₂	0,2	$0,768^{**}$	0,557**	0,665**	0,403	0,659**	0,674**	$0,464^{*}$	0,631**	0,772**	0,2
	NaClO	0,4	0,747**	0,574**	0,677**	0,412*	0,663**	0,681**	$0,477^{*}$	0,637**	0,807**	0,4
	H ₂ O ₂	0,2	$0,706^{**}$	0,39	0,543**	0,225	$0,518^{**}$	0,557**	0,322	$0,467^{*}$	0,687**	0,2
Ascaris spp.	Hand	0,8	0,723**	0,600**	0,663**	$0,\!418^*$	0,660**	0,681**	$0,477^{*}$	0,641**	0,810**	0,8
	Moringa	0,2	0,724**	0,484*	0,468*	0,283	0,503*	0,491*	0,355	0,438*	0,610**	0,2
	Charbon	0,2	0,778**	0,563**	,0597**	0,357	0,602**	0,609**	0,427*	0,563**	0,736**	0,2
	NaCl	0,8	0,720**	0,798**	0,802**	0,679**	0,841**	0,845**	0,721**	0,849**	0,877**	0,8
	Mo+CaCl ₂	0,4	0,746**	0,374	0,412*	0,138	0,386	0,379	0,21	0,322	0,541**	0,4
	RL	0,2	-0,2	-0,4	0,2	-0,4	0,2	0,2	-0,4	0,2	0,4	0,2
	Témoin	0,8	0,8	$1,000^{**}$	0,8	1,000**	0,8	0,8	1,000**	0,8	0,4	0,8
	Gypse	0,8	0,880	0,727	0,756	0,590	0,745	0,689	0,638	0,652	0,695	0,8
	CaCl ₂	0,2	0,831	0,689	0,646	0,505	0,662	0,644	0,566	0,593	0,704	0,2
	NaCIO	0,4	0,850	0,632	0,563	0,456	0,586	0,540	0,511	0,503	0,556	0,4
Necator	H_2O_2	0,2	0,831	0,614	0,554	0,434	0,576	0,519	0,490	0,490	0,568	0,2
americanus	Hand	-0,2	0,767	0,313	0,345	0,19	0,311	0,207	0,245	0,1/4	0,165	-0,2
	Moringa	0,4	0,842	0,731	0,730	0,608	0,733	0,657	0,652	0,648	0,654	0,4
	NaCl	0,4	0,004	0,031	0,088	0,510	0,000	0,393	0,542	0,382	0,620	0,4
	NaCi Mol CoClo	1.000**	0,908	0,750**	0,080	0,591	0,700 0.741^{**}	0,020	0,031	0,570	0,024	1.000**
	NIO+CaCI2	1,000	0,005	0,759	0,750	0,390	0,741	0,717	0,020	0,078	0,738	1,000
	KL Témoin	-0.8	-0,4	-0,2	-0.8	-0,2	-0.8	-0.8	-0,2	-0.8	-0.4	-0.8
	Gypse	-0,8	0.683**	0.542**	0 298	0.286	0 351	-0,8	0 364	0.265	0 383	-0,8
	CaCla	-1 000**	0.542**	0,342 0.420^*	0,290	0,200	0,551	0.112	0.249	0,265	0,565	-1 000**
	NaClO	-0.8	0,542	0 224	0.02	-0.07	0.046	0.041	0.0249	-0.027	0,175	-0.8
	HaCo	-1 000**	0.550**	0.286	-0.003	0,07	0,040	0.004	0.098	-0.047	0.083	-1 000**
Strongyloides	Hand	-0.8	0,550	0.064	-0.225	-0.21	-0.181	-0 198	-0.134	-0.25	-0.044	-0.8
stercoralis	Moringa	-0.6	0.591**	0.384	0,223	0.09	0.221	0.225	0,134	0.174	0.367	-0.6
	Charbon	-0.8	0.626**	0.405^*	0.137	0.137	0.199	0,149	0.225	0.106	0.2	-0.8
	NaCl	-0.6	0.331	0.111	-0.106	-0.18	-0.09	-0.092	-0.123	-0.144	0.108	-0.6
	Mo+CaCl2	-0,8	0,703**	0,439*	0,235	0,157	0,274	0,247	0,243	0,178	0,33	-0,8
	RL	0,2	-0,2	-0,4	0,2	-0,4	0,2	0,2	-0,4	0,2	0,4	0,2
	Témoin	0,2	-0,2	0,4	0,2	0,4	0,2	0,2	0,4	0,2	0,4	0,2
	Gypse	-0,8	0,706**	0,520**	0,26	0,29	0,317	0,24	0,355	0,217	0,246	-0,8
	CaCl ₂	-0,8	0,585**	0,527**	0,204	0,264	0,262	0,213	0,338	0,177	0,273	-0,8
	NaClO	-1,000**	0,592**	0,399	0,057	0,126	0,107	0,026	0,205	0,019	0,037	-1,000**
<i>T</i> · 1 ·	H_2O_2	-0,4	0,713**	0,542**	0,307	0,388	0,315	0,205	$0,422^{*}$	0,165	0,133	-0,4
1 richuris trichiura	Hand	-0,8	0,657**	$0,510^{*}$	0,259	0,238	0,301	0,265	0,32	0,222	0,364	-0,8
тистити	Moringa	-0,4	0,671**	0,661**	0,382	0,441*	$0,\!450^{*}$	$0,409^{*}$	0,493*	0,369	0,429*	-0,4
	Charbon	-1,000**	0,628**	$0,466^{*}$	0,121	0,178	0,152	0,095	0,257	0,089	0,133	-1,000**
	NaCl	-0,6	$0,719^{**}$	0,616**	0,394	0,359	0,434*	0,39	0,435*	0,38	$0,469^{*}$	-0,6
	Mo+CaCl ₂	-0,2	$0,710^{**}$	0,691**	0,418*	0,481*	0,434*	0,339	0,533**	0,33	0,325	-0,2
	RL	-0,8	0	-0,4	-0,8	-0,4	-0,8	-0,8	-0,4	-0,8	-1,000***	-0,8
	Témoin	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,000**	1,0000**	1,000**	1,000**
	Gypse	1,000**	0,867**	0,741**	0,56	0,51	0,643*	0,566	0,643*	0,587*	0,720**	1,000**
	CaCl ₂	-1,000	0,886	0,641	0,419	0,368	0,49	0,396	0,49	0,431	0,56	-1,00
	NaClO	1,000	0,867	0,741	0,56	0,51	0,643	0,566	0,643	0,587	0,720	1,000
Ancylostoma	H_2O_2	1,000	0,874	0,790	0,616	0,559	0,685	0,594	0,685	0,629	0,741	1,000
duodenale	Hand	1,000	0,49	0,944	0,970	0,951	1,000	0,972	1,000	0,993	0,902	1,000
	Moringa	1,000	0,858	0,676	0,472	0,424	0,539	0,466	0,539	0,487	0,595	1,000
	Charbon NaCl	1,000	0,872	0,718	0,521	0,48	0,588	0,515	0,588	0,536	0,630	1,000
	NaCi Mat CaCh	1,000	0,373	0,937	0,942	0,909	0,979	0,925	0,979	0,938	0,944	1,000
	MO+CaCl2	1,000	0,844	0,724	1.000**	1.000**	1,000**	1,000**	0,380	1.000**	0,393	1,000
	KL Támoin	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	Gypse	-0,0	0.723**	0.296	0.195	0.013	-0,0	-0,0	0.117	0.133	0 277	-0,0
	CaCla	0,0	0.860**	0.673**	0.506*	0.439*	0.513*	0.420*	0.493*	0.443*	0 442*	-0,8
	NaClO	-0.8	0.653**	0.264	0.113	-0.03	0.13	0 107	0.08	0.073	0.23	-0.8
	H2O2	-0.4	0.803**	0.527**	0 359	0.258	0.37	0.292	0 329	0.296	0 331	-0,8
Hymenolepis	Hand	_0.8	0.483*	0,027	_0.033	_0.21	-0.038	-0.037	_0 123	-0.1	0.168	-0,4
nana	Moringa	-0,3	0.780**	0.541**	0.512*	0 329	0.530**	0.509*	0.405^{*}	0.471^*	0.616**	-0,8
	Charbon	-0.4	0.725**	0.381	0.267	0.106	0.29	0.281	0.206	0.23	0.403	-0.4
	NaCl	-0.8	0,705**	0,446*	0,099	0.157	0,142	0.074	0,234	0,072	0.071	-0.8
	Mo+CaCl2	0.63	0.820**	0,771**	0,605**	0.535**	0.634**	0.577**	0.575**	0.574**	0,640**	0.63
	RL	-0,4	-0,4	-0,8	-0,4	-0,8	-0,4	-0,4	-0,8	-0,4	-0,2	-0,4

Annexe 27 : Corrélations entre l'oxydabilité et les œufs viables dénombrés avant et après désinfection

Azote		Té	Gypse	CaCl ₂	NaClO	H ₂ O ₂	Hand	Mo	Char	NaCl	Mo+CaCl ₂	RL
	Témoin	1,000**	0,8	0,8	1,000**	1,000**	0,4	0,8	0,8	1,000**	0,8	0,32
	Gypse	0,8	0,773**	0,737**	$0,774^{**}$	0,782**	0,621**	0,758**	0,698**	0,721**	0,832**	0,32
	CaCl ₂	0,4	0,821**	$0,787^{**}$	$0,818^{**}$	0,835**	0,677**	0,815**	0,752**	0,771**	$0,868^{**}$	0,63
	NaClO	0,8	0,823**	0,800**	0,843**	0,866**	0,691**	0,830**	0,765**	0,788**	0,868**	0,32
	H ₂ O ₂	0,4	0,712**	0,653**	0,717**	0,752**	0,533**	0,774**	0,672**	0,711***	0,814**	0,63
Ascaris spp.	Hand	1,000**	0,837**	0,758**	0,823**	0,879**	0,676**	0,818**	0,840**	0,874**	0,854**	0,32
	Moringa	0,4	0,642	0,614	0,631	0,623	0,512	0,630	0,602	0,583	0,676	0,63
	Charbon NoCl	0,4	0,766	0,738	0,766	0,793	0,633	0,782	0,734	0,743	0,819	0,63
	MalCaCla	1,000	0,908	0,914	0,930	0,888	0,625	0,729	0,819	0,700	0,813	0,32
	RI	0,0	0,050	0,007	0,000	0.501*	0,400	0,745	0,025	0,079	0,780	0,52
	Témoin	0,4	0,31	0,202 0.490^*	0,304 0.450^*	0.277	0.536**	0.016	0.21	0,046	0,585	0.32
	Gypse	0,4	0,856**	0,836**	0,809**	0,772**	0,773**	0,728**	0,708**	0,642**	0,855**	0,95
	CaCl ₂	0,4	0,760**	0,765**	0,747**	0,733**	0,687**	0,718**	0,700**	0,656**	0,761**	0,63
	NaClO	0,2	0,701**	$0,698^{**}$	0,643**	0,617**	0,611**	0,596**	0,557**	0,473*	0,721**	0,95
Magatan	H_2O_2	0,4	$0,700^{**}$	0,683**	0,654**	0,618**	0,602**	0,604**	0,565**	$0,502^{*}$	0,723**	0,63
americanus	Hand	-0,4	$0,477^{*}$	0,396	0,357	0,342	0,379	$0,410^{*}$	0,293	0,197	0,653**	0,63
umericanus	Moringa	0,2	0,796**	0,813**	0,746**	0,681**	0,741**	0,634**	0,611**	0,535**	0,769**	0,95
	Charbon	0,2	0,806**	0,785**	0,738**	0,715**	0,723**	0,724**	0,665**	0,615**	0,840**	0,95
	NaCl	0,4	0,811**	0,766**	0,723**	0,659**	0,716**	0,647**	0,688**	0,552**	0,778**	0,95
	Mo+CaCl ₂	0,8	0,863	0,859**	0,817**	0,819	0,806	0,788**	0,778**	0,721**	0,846	0,63
	RL Trí	0,8	0,409	0,372	0,471	0,654	0,31	0,727	0,620	0,821	0,514	0,32
	Temoin	-0,4	-0,539	-0,512	-0,541	-0,509	-0,541	-0,393	-0,35	-0,288	-0,585	-0,9
	CoClo	-0,4	0,433	0,452	0,398	0,37	0,304	0,390	0,393	0,344	0,403	-0,3
	NaClO	-0,8	0,232	0,240	0,18	0,133	0,18	0,179	0,100	0,104	0,248	-0,0
	Hacio	-0,4	0,217	0,105	0,103	0,212	0,094	0,327	0,203	0,200	0,317	-0,5
Strongyloides	Hand	-0.4	-0.067	-0.095	-0.105	-0.06	-0.142	0.067	0.064	0.077	-0.002	-0.9
stercoralis	Moringa	0	0.365	0.35	0.353	0.373	0.255	0.406*	0.392	0.393	0.424*	-0.6
	Charbon	-0,4	0,316	0,302	0,254	0,229	0,207	0,252	0,212	0,182	0,375	-0,3
	NaCl	0	0,089	0,047	0,04	0,126	-0,025	0,267	0,237	0,315	0,161	-0,6
	Mo+CaCl ₂	-0,4	$0,405^{*}$	0,394	0,348	0,358	0,326	0,436*	0,401	0,354	$0,479^{*}$	-0,3
	RL	0,4	0,31	0,202	0,304	0,501*	0,159	0,646**	$0,415^{*}$	$0,592^{**}$	0,585**	0,63
	Témoin	0,4	0,03	0,159	0,121	0,038	0,148	-0,108	0,135	0,108	-0,288	-0,6
	Gypse	-0,4	0,449*	0,429*	0,383	0,328	0,337	0,347	0,306	0,247	0,506*	-0,3
	CaCl ₂	-0,4	0,325	0,348	0,283	0,252	0,301	0,295	0,319	0,249	0,323	-0,9
	NaClO	-0,8	0,197	0,201	0,112	0,081	0,156	0,135	0,097	0,03	0,263	-0,6
Trichuris	H_2O_2	-0,8	0,372	0,367	0,265	0,191	0,357	0,252	0,193	0,08	0,396	0,32
trichiura	Hand	-0,4	0,416	0,408*	0,346	0,361	0,347	0,431*	0,432*	0,384	0,448*	-0,9
	Moringa	-0,2	0,520	0,523	0,476	0,426	0,469	0,409	0,462	0,384	0,463	-0,9
	NaCl	-0,8	0,279	0,285	0,201	0,164	0,250 0.467^*	0,239	0,200	0,141 0.480^*	0,343	-0,6
	Mo+CaCla	-0.4	0,373 0.486^*	0,550	0,323	0,327	0,407	0 355	0.33	0,400	0.473^*	-0,0
	RL	-1.00**	-0.574**	-0.611**	-0.673**	-0.735**	-0.576**	-0.641**	-0.690**	-0.784**	-0.479^*	-0.3
	Témoin	1.000**	0.386	0.531	0.508	0.266	0.579*	-0.241	0.266	0,701	-0.073	0,0
	Gypse	1,000**	0,902**	0,811**	0,869**	0,956**	0,699*	0,741**	0,785**	0,909**	0,949**	-0,9
	CaCl ₂	-1,000**	0,820**	0,739**	0,761**	0,914**	0,613*	0,823**	0,756**	0,893**	0,961**	-0,6
	NaClO	1,000**	0,902**	0,811**	0,869**	0,956**	0,699*	0,741**	0,785**	0,909**	0,949**	-0,9
Anovlastoma	H ₂ O ₂	1,000**	0,916**	0,839**	$0,886^{**}$	$0,970^{**}$	0,727**	0,713**	0,806**	0,902**	0,935**	-0,9
duodenale	Hand	1,000**	0,832**	0,902**	0,876**	0,750**	0,846**	0,231	$0,658^{*}$	0,462	0,49	-0,3
unouchuic	Moringa	$1,000^{**}$	0,827**	0,739**	$0,789^{**}$	0,911**	$0,662^{*}$	0,795**	$0,760^{**}$	0,949**	0,944**	-0,9
	Charbon	1,000**	0,855**	0,774**	0,835**	0,935**	$0,697^{*}$	0,781**	0,795**	0,935**	0,937**	-0,9
	NaCl	1,000**	0,888**	0,916**	0,911**	0,820**	0,825**	0,308	0,697*	0,552	0,592*	-0,6
	Mo+CaCl ₂	1,000	0,844	0,844	0,738	0,882	0,743	0,791	0,705	,899	0,935	-0,8
	RL Támain	1,000	0,386	0,531	0,508	0,266	0,579	-0,241	0,266	0 192	-0,073	
	Gypse	04	-0,299	-0,321	-0,283	-0,12	-0,385	0,065	-0,005	0,185	-0,218	-0,0
	CaCla	-0,4	0,412	0,558	0,33	0,393	0.573**	0,407	0,344	0,547 434*	0,010	-0,5
	NaClO	_0.4	0.3/1	0.285	0,381	0 377	0.203	0,322	0 305	0.316	0,719	-0.3
	H2O2	-0,4	0.537**	0.519**	0.462*	0 465*	0.425*	0,423 0.472^*	0,303	0,310	0.652**	0 32
Hymenolepis	Hand	-0.4	0.196	0.129	0 143	0.256	0.059	0.437*	0.32	405*	0 368	-0.3
nana	Moringa	0.4	0.679**	0.656**	0.659**	0.661**	0.557**	0.672**	0.599**	.60.5**	0.752**	0.63
	Charbon	-0,2	0,523**	0,454*	0,475*	0,495*	0,329	0,532**	0,439*	,460*	0,653**	0,32
	NaCl	-1,000**	0,303	0,292	0,178	0,16	0,245	0,212	0,18	0,053	0,389	-0,3
	Mo+CaCl ₂	0,95	0,745**	0,741**	0,688**	0,674**	0,675**	0,621**	0,691**	,612**	0,697**	0
	RL	-0,2	-0,094	-0,229	-0,156	0,035	-0,264	0,275	0	0,159	0,253	0,32

Annexe 28 : Corrélations entre l'azote ammoniacal et les œufs viables dénombrés avant et après désinfection

Outbookcombot		Tá	Cumaa	C-Cl-	N ₂ ClO	ILO.	Hand	Ma	Char	N ₂ C1	Mat CaCl	DI
Orthophosphat		10	1 000**	CaCI2	NaCIO	П2О2 1.000**	Hallu	NIO 0.0		NaCi	$10+CaCl_2$	NL 1.00**
	Temoin	-0,2	1,000	0,8	0,8	1,000	0,6	0,8	0,4	0,8	1,000	1,00
	Gypse	-0,4	0,686	0,623	0,600	0,852	0,464	0,643	0,693	0,689	0,771	0,8
	CaCl ₂	-0,8	0,754**	0,684**	0,678**	0,898**	0,448*	0,718**	0,758**	0,757**	0,827**	0,4
	NaClO	-0,4	0,750**	0,677**	0,684**	0,907**	0,395	0,744**	0,774**	0,745**	$0,848^{**}$	0,8
	H ₂ O ₂	-0,8	0,663**	$0,512^{*}$	0,532**	0,813**	0,278	0,596**	0,731**	0,611**	0,713**	0,4
Ascaris spp.	Hand	-0,2	0,783**	0,662**	0,714**	$0,898^{**}$	$0,\!478^{*}$	0,715**	0,710**	0,735**	0,845**	$1,00^{**}$
	Moringa	-0,8	0,585**	0,493*	0,437*	0,723**	0,483*	0,524**	0,530**	0,575**	0,649**	0,4
	Charbon	-0,8	0,708**	0,618**	0,599**	0,862**	$0,\!487^{*}$	0,664**	0,690**	0,693**	0,787**	0,4
	NaCl	-0,2	0,769**	0,841**	0,829**	0,865**	0,618**	0,777**	0,677**	$0,907^{**}$	$0,879^{**}$	$1,00^{**}$
	Mo+CaCl ₂	-0,4	0,576**	$0,410^{*}$	0,411*	0,759**	0,36	$0,478^{*}$	0,627**	$0,487^{*}$	0,634**	0,8
	RL	-0.8	0.511*	0.191	0.307	0.592**	-0.258	0.447^{*}	0.592**	0.151	0.506*	0.4
	Témoin	0	0.14	0.530**	0.555**	0.108	0.024	0.334	0.199	0.549**	0.248	0.4
	Gypse	-0.8	0.577**	0.689**	0.662**	0.781**	0.393	0.621**	0.761**	0.780**	0.711**	0.4
	CaCla	-0.8	0.611**	0.606**	0.558**	0.766**	0.578**	0.586**	0.638**	0.706**	0.691**	0.4
	NaClO	-1 0**	0.441*	0.547**	0,350	0,760	0.419*	0.482*	0.617**	0.646**	0.571**	0.2
	HaCio	-1,0	0,441	0,547	0,450*	0,002	0,419	0,482*	0,017	0,040	0,571	0,2
Necator	H ₂ O ₂	-0,8	0,403	0,331	0,450	0,080**	0,440	0,462	0,390**	0,027	0,394	0,4
americanus	Hand	-0,8	0,100	0,285	0,233	0,385	-0,134	0,185	0,56/**	0,30	0,209	-0,4
	Moringa	-1,0**	0,509*	0,0/1**	0,598**	0,723***	0,444*	0,583***	0,070***	0,700**	0,051**	0,2
	Charbon	-1,0**	0,554***	0,041**	0,589**	0,700***	0,377	0,592**	0,735**	0,720**	0,075**	0,2
	NaCI	-0,8	0,513*	0,613**	0,555**	0,68/**	0,423*	0,532**	0,656**	0,724**	0,618**	0,4
	Mo+CaCl ₂	-0,4	0,666**	0,/16**	0,691**	0,848**	0,480*	0,/14**	0,//6**	0,805**	0,//6**	0,8
	RL	-0,4	0,829**	0,39	0,533**	0,732**	0,121	0,700**	0,522**	0,334	0,721**	0,8
	Témoin	0,8	-0,27	-0,525**	-0,608**	-0,409*	0,401	-0,463*	-0,641**	-0,528**	-0,441*	-0,4
	Gypse	0	0,31	0,31	0,19	0,463*	0,671**	0,241	0,27	0,413*	0,362	-0,4
	CaCl ₂	0,4	0,08	0,104	-0,039	0,231	0,586**	0,027	0,072	0,195	0,129	-0,8
	NaClO	0	0,244	0,05	-0,03	0,347	$0,506^{*}$	0,099	0,14	0,134	0,223	-0,4
C	H_2O_2	0,4	0,075	0,02	-0,108	0,223	0,511*	-0,026	0,072	0,118	0,11	-0,8
Strongyloldes	Hand	0,8	0,026	-0,2	-0,292	0,054	0,526**	-0,159	-0,181	-0,123	-0,032	-0,4
siercoraiis	Moringa	0,4	0,357	0,229	0,139	$0,477^{*}$	0,624**	0,241	0,235	0,303	0,373	0
	Charbon	0	0,13	0,169	0,029	0,337	0,570**	0,073	0,177	0,27	0,216	-0,4
	NaCl	0,4	0,232	-0.06	-0,119	0,258	0,589**	0,021	-0,01	-0,01	0,145	0
	Mo+CaCl2	0	0.31	0.241	0.145	0.463*	0.515*	0.227	0.312	0.333	0.343	-0.4
	RL	-0.8	0.511*	0.191	0.307	0.592**	-0.258	0.447^*	0.592**	0.151	0.506*	0.4
	Témoin	0,8	0.253	0.202	0,199	-0.01	0.592**	0.188	-0.291	0 194	0.118	0.4
	Gypse	0,0	0,255	0.284	0,152	0 381	0,592	0,100	0.274	0.379	0.278	-0.4
	CaCla	0.8	0,220	0,204	0,192	0,301	0,500	0,100	0,274	0,200	0,270	0,4
	CaCl ₂	0,8	0,229	0,218	0,090	0,321	0,085	0,152	0,119	0,299	0,202	-0,4
	Nacio	0,4	-0,02	0,079	-0,084	0,174	0,558	-0,008	0,003	0,10	0,002	-0,8
Trichuris	H ₂ O ₂	-0,4	-0,04	0,169	0,046	0,225	0,388	-0,001	0,289	0,309	0,098	-0,8
trichiura	Hand	0,8	0,335	0,264	0,172	0,450	0,646	0,237	0,248	0,365	0,357	-0,4
	Moringa	1,00	0,337	0,383	0,287	0,468	0,750	0,272	0,276	0,493	0,410	-0,2
	Charbon	0,4	0,088	0,167	0,015	0,262	0,609	0,038	0,154	0,242	0,151	-0,8
	NaCl	0,4	0,388	0,431	0,347	0,575	0,708	0,323	0,378	0,503	0,474	0
	Mo+CaCl ₂	0,8	0,193	0,387	0,261	0,39	0,548**	0,251	0,33	0,456*	0,3	-0,4
	RL	-0,4	0,226	0,144	0,420*	0,405*	0,048	0,016	0,323	-0,032	0,176	-1,00**
	Témoin	1,00**	0,145	0,338	0,579*	-0,05	0,169	0,29	0	0,579*	0,193	1,00**
	Gypse	1,00**	0,685*	0,727**	0,811**	0,911**	0,729**	0,559	0,783**	0,741**	0,881**	$1,00^{**}$
	CaCl ₂	-1,00**	0,673*	0,718**	0,711**	0,918**	0,775**	0,522	0,774**	0,651*	0,855**	-1,00**
	NaClO	$1,00^{**}$	0,685*	0,727**	0,811**	0,911**	0,729**	0,559	0,783**	0,741**	0,881**	$1,00^{**}$
Amoulostoma	H ₂ O ₂	$1,00^{**}$	$0,664^{*}$	0,755**	0,839**	0,900**	0,743**	$0,594^{*}$	0,769**	0,776**	$0,888^{**}$	$1,00^{**}$
Ancylosioma	Hand	$1,00^{**}$	0,559	0,748**	0,916**	0,522	0,567	0,629*	0,462	0,923**	$0,\!685^{*}$	$1,00^{**}$
auoaenaie	Moringa	$1,00^{**}$	0,637*	$0,669^{*}$	0,739**	0,872**	0,695*	0,501	0,795**	0,651*	0,827**	$1,00^{**}$
	Charbon	$1,00^{**}$	$0,658^{*}$	$0,704^{*}$	$0,774^{**}$	0,882**	0,716**	0,543	$0,788^{**}$	$0,694^{*}$	0,869**	$1,00^{**}$
	NaCl	$1,00^{**}$	$0,580^{*}$	0,762**	0,930**	0,627*	0,623*	0,643*	0,503	0,923**	$0,748^{**}$	$1,00^{**}$
	Mo+CaCl2	1.00^{**}	0.732**	0.844**	0.806**	0.924**	0.823**	0.679^{*}	0.773**	0.769**	0.855**	1.00^{**}
	RL	1.00^{**}	0.145	0.338	0.579^{*}	-0.05	0.169	0.29	0	0.579^{*}	0.193	1.00^{**}
	Témoin	0.4	0.178	-0.33	-0.328	0.032	0.355	-0.081	-0.269	-0.366	-0.032	0
	Gypse	0	0.28	0.237	0.164	0.517**	0.283	0.227	0.444^{*}	0.309	0.366	-0.4
	CaCla	-0.8	0.349	0.531**	0.423*	0,608**	0.543**	0.375	0.529**	0.605**	0.502*	0.4
	NaClO	-0,0	0.242	0.140	0.074	0.455*	0,545	0,575	0.212	0.051	0,302	0,4
	INACIO	0	0,263	0,168	0,074	0,455	0,403	0,157	0,313	0,251	0,323	-0,4
Hymenolenis	H_2O_2	-0,6	0,275	0,396	0,287	0,542	0,475	0,277	0,449	0,466	0,418	-0,2
nana	Hand	0	0,31	0,003	-0,032	0,397	0,445*	0,11	0,187	0,07	0,266	-0,4
	Moringa	-0,8	0,558**	0,517**	0,463*	0,759**	$0,505^{*}$	0,523**	0,584**	0,613**	0,659**	0,4
	Charbon	-0,6	0,386	0,325	0,251	0,594**	$0,\!478^{*}$	0,284	$0,\!452^*$	0,404	0,454*	-0,2
	NaCl	0,2	0,039	0,2	0,033	0,236	0,418*	0,036	0,217	0,245	0,122	-1,00**
	Mo+CaCl ₂	0,11	0,566**	0,625**	0,555**	0,716**	0,666**	0,561**	0,528**	0,701**	0,666**	0,95
	RL	-0.6	0.027	-0.27	-0.237	0.172	-0.331	-0.07	0.232	-0.291	0.022	-0.2

Annexe 29 : Corrélations entre l'orthophosphate et les œufs viables dénombrés avant et après désinfection

			C	Cité Univ	versitair	e				Prison (Centrale					Nom	ayos					Biyen	n-Assi		
Stations	Conc	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6
	Gypse	9,7	14,5	36,2	48,6	79,3	94,0	30,1	63,4	88,3	95,4	98,5	99,5	78,6	81,0	82,8	86,0	91,5	95,5	32,1	42,0	58,5	74,9	81,2	94,6
	CaCl ₂	14,5	30,9	33,5	36,6	87,6	95,8	50,6	81,8	94,3	96,8	99,3	100	19,3	81,5	86,0	86,0	91,3	95,6	25,2	29,1	48,6	65,9	91,1	97,1
	NaClO	40,2	40,8	48,7	58,7	73,4	89,9	41,0	65,7	91,9	93,8	98,5	99,5	79,3	80,0	82,0	81,2	86,8	90,5	20,5	36,3	54,3	75,1	86,9	92,7
	H ₂ O ₂	7,3	40,6	39,2	35,4	45,6	92,8	24,7	71,3	93,5	97,1	98,7	100	80,5	78,1	84,3	90,8	91,3	94,0	14,8	22,2	51,1	70,0	85,7	92,0
	Hand	0,4	4,4	5,8	15,5	24,2	60,0	3,2	11,9	28,1	65,1	87,9	91,9	10,5	15,8	22,5	66,3	78,5	83,6	4,7	20,7	29,9	32,1	41,9	56,0
	Moringa	8,8	15,0	20,0	28,8	89,1	95,3	34,0	53,4	75,5	95,2	99,5	100	86,8	91,0	91,6	90,4	94,2	98,2	37,0	57,5	75,8	88,4	94,8	97,5
	Charbon	10,1	33,0	35,4	45,9	83,6	91,3	40,9	57,4	80,5	94,8	96,1	98,8	71,8	80,8	87,0	85,0	93,4	96,0	21,7	37,0	63,5	80,3	91,3	92,8
	NaCl	1,3	13,3	33,9	39,4	65,3	86,7	6,3	17,5	38,6	43,0	76,9	94,1	41,3	41,4	42,3	65,1	73,6	77,5	4,4	15,8	39,1	35,8	51,6	64,3
Ascaris spp.	Mo+CaCl ₂	6,9	28,4	41,4	49,9	94,0	97,5	58,0	91,5	97,0	98,6	100	100	96,4	95,7	97,5	99,3	99,5	99,7	43,2	65,4	94,0	95,7	97,0	98,3
(Œufs /L)	RL			93	,5					98	3,1					99),4					97	7,4		
	Gypse	27,6	50,0	57,6	67,0	91,3	96,9	41,7	63,1	92,0	97,4	97,1	100	65,0	56,6	73,2	85,0	91,4	93,1	31,2	40,8	55,7	73,9	83,8	90,7
	CaCl ₂	25,7	40,6	52,1	63,5	91,4	98,6	41,7	63,1	92,0	97,4	97,1	100	51,7	59,0	83,5	87,8	96,1	97,0	27,6	56,2	70,2	88,2	98,1	100
	NaClO	2,6	12,6	29,2	31,9	88,6	93,4	58,8	53,0	81,0	88,1	97,1	99,9	77,0	82,6	85,7	85,6	89,3	94,7	29,4	40,0	56,8	75,8	89,7	97,9
	H ₂ O ₂	49,9	59,9	76,2	72,3	93,3	97,6	58,8	53,0	81,0	88,1	97,1	99,9	79,3	81,1	83,6	86,0	88,3	96,0	22,0	35,1	62,0	81,1	86,8	98,0
	Hand	0,2	5,5	8,0	23,1	64,1	93,6	16,7	32,7	58,4	71,8	86,1	91,0	62,0	65,1	72,6	78,7	81,6	84,9	2,6	9,2	11,7	19,5	25,5	28,0
	Moringa	69,1	72,3	73,3	76,2	96,6	98,8	57,8	79,2	95,0	96,9	100	100	83,4	84,8	87,7	90,0	91,8	95,5	37,5	46,8	70,0	87,1	89,7	100
	Charbon	26,3	38,1	68,1	76,9	92,9	98,6	54,2	73,3	96,6	98,0	99,2	100	61,2	81,6	83,7	91,4	94,1	95,6	7,8	47,1	59,5	74,5	85,2	97,8
Necator	NaCl	5,0	10,3	20,5	30,3	67,7	96,4	10,4	24,7	55,3	66,0	72,3	68,4	20,5	48,3	56,9	60,0	69,7	77,1	20,4	23,1	29,3	45,8	49,1	59,8
americanus	Mo+CaCl ₂	77,2	79,0	84,1	92,4	99,3	100	90,3	95,1	98,3	100	100	100	80,0	83,9	89,1	96,6	98,0	99,7	63,4	77,6	87,7	94,9	100	100
(Œufs $/L$)	RL			99	,6					99	9,3					98	3,8					99	9,3		
	Gypse	28,4	51,8	54,2	76,7	93,4	97,9	60,0	76,2	81,9	92,0	97,0	98,5	25,7	79,1	83,4	91,1	95,7	98,2	14,7	25,9	66,3	88,6	96,5	100
	CaCl ₂	33,9	78,0	82,4	90,2	95,4	99,1	61,2	62,6	77,3	91,6	96,7	98,4	83,1	90,4	93,5	95,6	98,0	100	56,5	59,8	87,1	98,1	100	100
	NaClO	2,6	23,3	30,2	44,9	83,0	94,7	60,9	70,7	87,6	91,8	97,7	99,9	85,4	91,3	93,6	95,2	97,9	100	63,5	66,2	84,4	93,5	98,3	100
	H ₂ O ₂	22,8	43,7	54,4	70,2	93,2	96,7	45,6	62,9	61,7	88,3	95,9	98,5	86,9	91,2	93,2	96,2	98,1	99,1	46,2	62,0	80,8	91,8	92,9	97,9
	Hand	6,8	19,0	15,4	28,9	43,6	49,3	25,9	38,9	51,0	66,5	71,8	82,7	35,0	43,9	56,9	54,6	70,6	81,4	4,9	12,1	24,5	36,3	40,0	53,9
	Moringa	3,6	10,5	44,3	66,1	89,8	97,2	74,5	74,6	87,1	97,0	97,1	99,1	83,5	87,0	91,2	92,7	97,0	98,2	57,6	64,1	87,4	93,0	99,3	100
	Charbon	22,8	44,0	40,4	78,0	93,9	98,1	62,4	65,1	72,9	91,7	95,1	97,3	80,4	84,9	87,5	93,3	95,5	98,9	11,4	38,1	61,4	80,2	92,1	96,0
	NaCl	2,5	9,2	18,9	28,0	26,6	52,0	48,3	60,5	68,3	74,8	77,4	81,2	32,0	36,7	50,2	61,0	83,6	85,7	10,7	25,0	30,8	52,3	67,4	77,9
Strngyloides stercoralis	Mo+CaCl ₂	27,3	78,0	88,7	95,3	97,8	99,6	66,5	81,1	97,6	99,3	100	100	96,6	96,9	98,2	99,1	100	100	74,1	90,8	96,0	98,2	100	100
(Larves /L)	RL			96	,7					10	0,0					98	3,3					96	5,4		
	Gypse	86,0	85,0	79,9	89,2	90,4	96,0	18,4	21,3	60,0	62,4	77,8	87,6	9,8	61,5	85,3	95,5	97,0	99,2	29,4	42,1	57,2	72,1	80,4	84,5
Trichuris trichiura	CaCl ₂	82,1	95,0	92,2	95,5	96,0	99,4	32,1	53,7	73,5	76,9	96,2	100	62,8	90,2	96,1	97,9	100	100	70,4	88,3	96,8	100	100	100
(Œufs /L)	NaClO	15,9	22,5	65,5	88,4	88,4	98,7	13,8	24,2	44,8	70,0	88,3	97,0	77,2	87,1	95,1	98,8	100	100	51,1	77,0	72,2	89,7	94,0	100

Annexe 30 : Taux d'efficacité (%) des désinfectants sur la réduction de la viabilité des œufs identifiés

	l																								
	H ₂ O ₂	73,8	78,6	82,4	85,4	89,5	98,5	8,5	39,1	79,6	84,0	92,1	94,2	74,2	82,3	95,9	100	100	100	19,9	55,1	60,3	78,7	94,8	100
	Hand	4,4	5,7	13,6	15,9	18,9	71,0	5,5	9,1	20,8	30,4	60,1	70,1	10,3	44,7	55,1	58,6	69,6	80,0	9,9	23,2	31,2	43,9	59,9	66,4
	Moringa	21,7	39,2	72,0	82,5	82,7	98,6	70,0	71,9	80,3	89,8	92,6	95,5	27,2	74,5	88,9	96,2	98,6	100	77,0	87,0	89,8	92,8	100	100
	Charbon	24,0	41,3	67,0	66,3	97,1	97,8	15,2	73,5	66,2	76,0	83,4	96,6	69,4	87,1	96,1	99,3	100	100	59,8	76,9	85,0	90,1	97,7	100
	NaCl	0,0	27,0	15,0	29,9	85,4	88,4	16,7	25,1	31,5	44,0	37,1	58,6	15,7	29,4	47,0	63,3	66,7	78,9	9,7	14,3	25,3	36,4	46,2	52,6
	Mo+CaCl ₂	82,7	88,0	98,0	99,8	99,9	100	55,7	82,7	94,2	95,5	100	100	92,7	94,6	97,4	100	100	100	78,6	76,2	96,0	100	100	100
	RL			75	,1					96	5,6					98	3,8					96	i,1		
	Gypse	21,1	40,8	44,9	69,1	77,9	83,8	51,2	61,7	54,5	71,7	84,3	89,9	61,3	68,0	70,4	75,4	81,5	87,9	21,8	25,3	41,5	51,1	61,9	65,5
	CaCl ₂	30,3	47,9	67,1	90,4	94,0	97,8	25,4	70,1	82,6	85,9	90,4	95,6	28,5	45,1	77,9	85,4	90,3	100	25,2	27,1	44,6	63,4	79,1	93,3
	NaClO	15,6	37,7	28,0	54,9	77,0	86,0	44,6	53,6	53,0	57,6	83,6	90,0	48,6	71,6	74,7	80,8	86,5	92,8	22,9	40,2	39,3	56,1	61,3	85,2
	H ₂ O ₂	18,5	41,2	56,1	82,3	85,2	96,3	36,7	53,6	63,0	73,8	89,7	97,4	54,7	57,4	72,0	83,7	93,8	96,8	15,3	15,4	38,9	49,6	67,8	82,4
	Hand	28,8	41,8	41,6	43,4	50,9	56,9	13,3	18,1	29,7	38,0	47,6	71,5	19,7	26,1	49,9	61,0	68,5	74,4	12,4	24,3	25,3	34,7	42,9	55,7
	Moringa	27,3	48,7	48,3	76,2	91,8	92,6	62,9	68,2	82,8	88,8	96,9	100	57,0	70,3	76,0	81,3	84,9	90,0	19,6	34,0	61,9	79,3	84,8	94,8
	Charbon	31,0	40,9	52,7	58,5	80,3	96,6	36,7	63,1	70,6	75,6	80,9	92,8	50,0	61,3	72,1	80,6	89,4	97,9	21,2	39,8	58,3	66,0	73,1	88,0
	NaCl	11,5	26,7	66,9	72,4	74,9	87,2	22,0	26,5	31,0	38,5	62,8	68,4	34,8	53,3	58,5	63,8	71,1	77,3	13,3	21,6	26,5	28,3	45,2	52,9
Hymenolepis nana	Mo+CaCl ₂	41,1	37,1	87,3	92,4	97,4	99,4	61,3	80,0	87,2	95,4	100	100	49,6	61,7	73,7	78,0	96,6	100	63,7	75,2	82,6	89,3	96,5	100
(Œufs /L)	RL			94	,6					96	5,2					97	7,9					93	,4		
	Gypse	25,4	42,0	43,3	55,1	93,0	96,5							28,5	52,7	80,4	95,8	99,3	100						
	CaCl ₂	61,8	66,9	78,5	87,4	98,6	99,7							49,8	90,3	97,4	99,3	100	100						
	NaClO	54,8	56,6	59,4	82,0	96,0	99,5							48,4	72,6	90,2	98,7	99,2	100						
	H ₂ O ₂	72,8	81,6	86,6	95,1	97,6	99,6							47,0	76,8	90,4	98,4	99,7	100						
	Hand	1,5	13,2	19,2	32,1	36,7	52,5							-2,7	13,7	28,2	40,4	52,1	81,7						
	Moringa	70.2	72.9	86.6	88.4	98.6	99.6							55.1	65.9	90.3	99.9	100	100						
	Charbon	55,0	62,8	80,2	83,4	95,2	99,4							16,9	56,9	90,1	98,0	100	100						
Angulastama	NaCl	3,0	9,4	20,7	33,0	40,9	61,9							8,1	14,2	14,6	24,5	74,0	85,4						
duodenale	Mo+CaCl2	77,5	87,0	97,9	100	100	100							92,8	96,6	97,7	100	100	100						
(Œufs /L)	RL			. 97	.0												3,1								

		Cité Universitaire					Prison Centrale						Nomayos							Biyem-Assi							
Stations	Conc	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6		
	Gypse	58,6	92,0	96,9	96,9	97,0	97,8	66,6	84,2	94,0	95,0	95,6	96,7	92,5	95,7	99,2	99,5	99,9	99,8	9,8	20,1	19,1	25,1	30,7	55,5		
	CaCl ₂	40,3	20,0	12,6	90,1	94,3	96,3	68,2	86,2	91,8	96,2	97,0	97,1	95,6	97,2	98,8	99,6	99,9	100	-1,0	8,8	13,9	12,4	47,0	60,7		
	NaClO	31,3	53,8	61,9	89,1	96,2	96,4	49,2	82,0	95,1	97,0	97,5	98,0	91,0	92,3	95,0	97,7	98,4	99,0	19,6	30,9	20,6	31,8	49,3	72,2		
	H ₂ O ₂	40,3	50,0	51,5	71,9	87,5	96,5	85,2	93,3	96,4	98,0	98,2	98,3	98,4	99,0	99,1	99,8	99,9	100	7,3	13,7	23,0	47,0	52,0	68,6		
	Hand	75,9	83,9	86,4	94,3	94,6	95,2	55,6	82,6	91,6	90,6	91,2	91,1	89,9	94,8	98,5	91,2	99,9	99,8	15,5	17,5	23,7	53,2	47,8	54,0		
	Moringa	65,0	75,7	80,6	89,8	93,1	94,2	84,1	86,1	96,8	97,1	97,6	97,8	98,5	98,7	99,9	99,9	99,9	99,9	1,0	2,1	37,6	69,9	81,4	82,2		
	Charbon	64,1	71,2	91,8	90,8	96,5	97,6	89,0	96,6	98,6	98,7	98,8	98,9	98,2	98,3	98,6	98,5	98,7	98,7	2,5	17,9	38,0	43,2	49,3	95,3		
	NaCl	53,5	95,4	96,4	96,5	95,4	95,7	88,4	92,8	98,0	97,9	98,2	98,2	93,7	97,3	97,7	98,9	99,6	99,7	10,7	18,4	33,4	47,5	37,5	62,3		
Couleur	Mo+CaCl ₂	64,8	70,7	74,4	94,0	95,7	98,0	93,8	95,1	96,6	97,0	97,9	98,0	92,2	93,7	97,1	98,9	99,7	99,8	47,0	49,4	63,3	67,8	87,6	95,1		
(Pt.Co)	RL	95,3					96,5						100,0						93,2								
	Gypse	64,4	74,3	91,4	91,4	93,8	95,5	70,6	70,7	98,5	98,8	99,2	99,4	47,0	94,8	95,7	99,8	99,9	100	30,4	57,1	57,7	58,4	62,0	62,5		
	CaCl ₂	64,6	72,5	92,5	92,5	92,4	92,5	90,2	96,6	98,3	98,2	98,2	98,2	59,4	95,3	97,5	99,9	99,9	100	0,0	42,9	40,5	41,6	48,6	53,6		
	NaClO	57,2	61,8	62,3	71,2	85,3	90,4	93,4	97,2	98,5	98,6	98,8	98,9	47,8	92,8	95,9	99,7	99,8	99,9	26,8	42,9	42,9	46,3	52,3	60,7		
	H ₂ O ₂	31,8	33,6	43,8	51,4	69,9	79,8	93,9	97,0	98,0	98,0	98,8	99,1	95,9	97,1	98,2	99,9	100	100	28,6	26,8	27,3	33,9	34,5	33,9		
	Hand	54,1	69,5	88,4	89,0	88,1	88,0	90,1	90,5	94,2	94,3	95,2	96,1	45,7	95,3	97,1	99,8	99,9	99,9	21,4	19,6	39,3	39,8	41,1	44,1		
	Moringa	39,4	88,2	91,2	95,9	96,9	96,9	92,1	97,1	98,0	98,2	98,6	98,8	96,4	95,9	98,0	98,5	100	100	21,4	35,7	36,4	57,7	56,8	57,1		
	Charbon	55,8	77,4	85,6	85,6	90,8	93,8	89,4	96,0	97,9	98,9	99,0	98,9	59,9	96,4	98,5	99,8	99,9	100	15,7	33,0	41,4	49,5	54,6	51,4		
	NaCl	57,5	69,9	81,5	85,3	93,5	94,2	96,7	97,1	98,7	98,8	98,9	98,9	46,9	51,8	96,5	99,8	99,8	100	30,7	43,2	49,3	61,3	78,0	82,7		
Turbidité	Mo+CaCl ₂	0,3	63,0	86,3	90,8	95,2	97,2	96,0	97,2	98,3	98,3	98,4	98,4	59,8	98,2	98,3	99,5	99,9	100	56,3	58,8	64,6	70,9	77,3	85,0		
(FTU)	RL	94,9						97,1						100,0							95,2						
	Gypse	42,9	94,6	97,0	96,8	97,0	97,0	72,9	94,8	98,3	98,4	98,8	98,8	59,8	78,2	87,5	89,8	95,9	97,8	18,1	19,6	29,6	53,8	59,6	74,2		
	CaCl ₂	51,8	73,3	82,9	82,9	82,8	83,5	71,3	93,9	98,1	98,1	98,3	98,4	72,7	77,0	83,9	88,6	92,4	95,7	17,7	20,4	27,7	33,5	52,7	62,7		
	NaClO	21,4	44,6	55,5	70,2	88,8	94,5	73,2	93,8	98,2	98,5	98,8	98,8	46,8	56,2	77,2	82,7	88,5	88,7	6,2	8,8	19,2	50,8	60,8	81,5		
	H ₂ O ₂	22,0	40,2	54,9	76,8	80,4	80,5	80,8	91,1	97,7	98,3	98,4	99,0	49,0	79,5	85,0	88,6	91,2	92,8	3,5	22,7	29,6	55,4	62,7	61,2		
	Hand	0,2	82,4	90,2	89,9	89,0	84,1	56,6	86,2	93,4	93,8	94,6	95,4	85,2	86,2	87,3	88,9	91,4	91,0	9,2	15,0	19,6	56,9	63,5	66,2		
	Moringa	39,6	65,4	92,6	92,7	94,3	94,6	90,6	96,1	98,0	98,2	98,5	99,0	59,7	69,2	85,2	79,9	88,5	93,8	11,5	11,2	17,7	50,4	58,5	58,1		
	Charbon	38,4	51,9	90,2	91,5	95,1	97,4	93,0	95,8	98,9	98,2	99,0	99,1	56,2	63,1	72,5	71,3	80,8	83,4	17,3	20,4	29,6	41,2	54,2	62,7		
	NaCl	40,7	59,2	81,7	82,4	84,9	83,4	91,2	96,4	98,4	98,5	98,8	98,8	67,9	84,1	87,4	88,7	90,0	94,9	15,8	28,5	33,5	30,4	55,0	55,8		
MES	Mo+CaCl ₂	59,9	73,7	82,9	88,2	95,2	97,2	76,8	86,2	97,3	97,6	97,8	98,3	68,9	75,7	79,5	87,2	87,6	89,1	56,9	64,2	61,2	66,5	90,4	92,7		
(mg/L)	RL	78,7						97,5						94,2							87,7						
Azote amoniacal (mg/L)	Gypse	17,3	67,9	88,3	87,0	89,5	92,6	42,9	45,7	96,9	74,3	96,9	96,3	43,8	69,6	80,0	91,5	93,1	97,3	39,9	62,9	76,2	81,1	86,0	90,2		
	CaCl ₂	27,8	56,8	87,0	88,3	93,2	94,4	31,4	40,0	86,9	68,6	90,6	90,3	39,4	58,8	78,8	88,8	89,4	91,3	21,7	55,2	69,9	81,1	86,7	88,1		
	NaClO	44,4	58,6	74,7	70,4	94,5	98,2	49,4	60,0	95,7	94,0	94,9	95,1	59,0	52,1	65,4	81,3	91,3	94,8	25,2	31,5	74,1	71,3	88,1	93,7		

Annexe 31 : Taux d'efficacité (%) des désinfectants sur l'abattement des paramètres physico-chimiques

	H_2O_2	24.7	33.3	55.6	56.8	74.7	80.9	59.7	55.7	95.4	71.4	91.1	91.7	64.6	56.0	75.0	79.8	91.5	93.3	23.1	44.1	58.0	57.3	79.0	85.3			
	Hand	32,1	50,0	87,0	83,3	86,4	82,1	2,9	17,1	22,6	68,6	78,0	90,6	41,7	51,7	75,2	85,2	87,3	87,1	15,4	44,8	54,5	69,2	78,3	82,5			
	Moringa	11,7	25,3	59,9	39,5	44,4	29,6	17,1	51,4	91,4	89,4	91,7	91,1	48,1	71,5	81,0	89,8	92,3	92,7	8,4	33,6	51,0	62,9	79,0	92,3			
	Charbon	13,6	46,3	90,1	74,7	77,2	75,3	14,3	40,0	93,7	93,7	94,3	94,0	35,4	53,3	81,3	76,9	93,1	96,7	55,2	74,1	81,1	72,0	88,8	96,5			
	NaCl	8,0	19,8	24,1	38,3	32,1	25,9	22,9	42,9	95,4	90,9	90,6	90,3	33,5	40,6	68,3	84,6	91,5	94,2	32,2	58,0	74,8	79,0	81,1	95,8			
	Mo+CaCl ₂	12,3	26,5	66,0	68,5	75,3	91,8	54,3	78,0	92,0	92,0	93,7	95,4	60,6	75,2	82,3	93,1	95,8	99,2	2,1	15,4	43,4	64,3	71,3	75,5			
	RL		97,1				91,4					99,0							92,3									
	Gypse	0,3	3,4	4,1	62,2	63,5	93,9	78,4	83,8	95,3	95,7	96,0	98,5	89,8	98,6	99,3	99,4	99,9	100	31,8	39,5	54,5	63,2	68,2	72,7			
	CaCl ₂	0,7	33,8	0,7	69,6	87,2	93,2	82,9	88,2	93,8	93,3	96,2	95,3	90,9	92,7	99,3	99,6	99,8	100	36,4	40,5	44,1	54,1	54,5	54,5			
	NaClO	33,1	68,2	84,5	91,2	93,9	98,6	77,4	86,7	94,1	94,7	95,0	97,0	93,9	99,3	99,4	99,6	100	100	54,5	72,7	95,5	90,9	99,0	100			
	H ₂ O ₂	16,9	2,0	8,8	17,6	46,6	67,6	53,1	85,5	88,2	92,4	92,9	93,1	90,4	91,5	99,4	99,6	99,8	100	77,3	59,1	36,4	50,0	54,5	77,3			
	Hand	6,8	47,3	73,0	76,4	56,1	53,4	23,8	68,4	82,6	84,3	85,5	86,5	93,4	99,0	99,1	99,5	99,9	100	36,4	45,5	50,0	54,5	54,1	63,6			
	Moringa	2,0	47,3	66,9	67,6	69,6	70,8	74,6	87,3	95,4	96,2	97,3	98,2	90,4	98,9	99,3	99,5	99,9	100	13,6	59,1	58,6	59,1	63,2	72,7			
Nitrates	Charbon	47,3	77,0	93,2	93,9	97,3	97,2	88,9	89,7	97,3	97,2	98,1	98,6	99,3	99,3	99,4	99,8	99,9	100	43,8	45,8	55,4	62,4	99,4	99,5			
	NaCl	35,8	57,4	64,2	68,9	85,1	95,9	92,9	91,8	94,7	94,8	96,1	96,8	92,2	99,4	99,2	99,4	100	100	4,5	11,8	52,7	50,0	57,3	59,1			
	Mo+CaCl ₂	9,5	18,2	29,7	43,2	77,0	86,8	64,9	80,2	92,3	93,6	94,7	95,3	90,9	93,3	99,4	99,5	99,8	100	4,5	21,4	46,2	45,8	48,6	50,0			
(mg/L)	RL	41,2						94,1						100,0						60,0								
	Gypse	19,0	29,8	65,1	47,0	59,2	53,4	85,5	91,9	94,2	95,3	96,2	98,0	24,4	35,8	50,4	52,1	51,5	55,7	0,5	16,4	21,4	29,9	64,9	77,4			
	CaCl ₂	-8,5	8,1	80,9	92,3	93,7	97,5	90,2	91,5	95,6	95,8	97,1	98,0	6,4	30,9	38,0	45,0	51,3	50,9	5,3	5,8	18,1	35,1	37,1	44,7			
	NaClO	34,9	40,7	80,7	82,1	87,3	92,9	94,9	97,1	99,4	99,4	99,4	99,9	18,8	18,3	23,8	49,9	50,2	50,9	5,2	4,1	5,8	17,8	21,2	28,0			
	H ₂ O ₂	10,0	48,9	67,1	69,4	74,5	75,4	88,4	96,5	97,4	99,2	99,6	98,6	47,8	53,9	61,9	73,8	73,8	82,0	19,3	20,9	29,4	42,8	57,0	77,5			
	Hand	4,3	5,6	-5,6	42,6	68,7	73,8	43,5	47,8	54,7	55,3	55,7	59,9	2,4	10,2	22,8	38,5	41,9	32,7	-1,7	5,8	11,0	10,2	18,1	77,4			
	Moringa	11,9	42,4	77,9	73,8	74,5	68,9	93,8	95,8	97,4	98,2	99,1	99,5	46,7	58,1	52,6	56,5	58,1	59,3	14,8	18,4	21,1	41,4	55,7	54,7			
	Charbon	48,9	68,1	96,9	79,6	80,9	85,1	98,5	99,0	99,5	99,1	99,1	98,9	67,8	68,9	78,3	86,0	88,6	89,8	4,2	15,4	16,9	27,2	64,9	83,8			
	NaCl	38,1	78,9	83,5	86,5	95,4	96,7	88,2	95,4	96,9	95,9	98,8	99,4	41,7	46,1	56,5	65,7	73,9	84,4	27,1	33,5	45,8	42,8	68,7	84,4			
Orthophosphate	Mo+CaCl ₂	20,9	48,3	62,4	61,1	80,6	69,8	92,9	95,6	97,2	97,1	98,2	98,6	39,4	34,1	50,5	53,8	66,3	72,5	2,4	17,7	25,1	41,2	43,2	53,9			
(mg/L)	RL	63,4						98,8						46,1						68,7								
	Gypse	15,6	44,5	91,8	86,3	88,3	91,9	11,8	51,3	75,3	88,3	93,4	97,4	79,4	89,7	91,8	93,8	99,1	99,2	36,4	63,2	61,2	70,0	92,0	92,5			
	CaCl ₂	38,5	52,6	95,8	96,8	96,3	98,2	17,5	40,7	60,1	76,3	91,7	91,9	39,2	59,3	60,5	79,6	96,9	95,7	52,2	67,6	72,9	91,5	94,4	95,1			
Oxydabilité	NaClO	72,8	78,2	86,9	90,1	89,2	88,3	36,9	75,8	85,9	88,4	93,7	96,0	9,8	19,6	44,2	77,1	88,0	91,1	34,0	48,8	67,5	82,3	86,7	93,4			
	H ₂ O ₂	84,2	86,9	97,1	97,2	97,5	97,0	15,4	39,8	78,3	83,4	92,6	93,1	6,6	17,7	53,4	66,2	86,2	91,3	41,1	53,1	72,7	85,8	92,0	94,9			
	Hand	80,7	86,3	89,1	90,3	93,9	94,4	51,2	64,7	86,2	89,9	94,6	96,6	12,9	33,7	59,3	68,3	72,9	93,9	38,8	53,2	77,2	86,9	93,2	94,3			
	Moringa	45,2	78,9	83,8	78,2	85,6	92,3	54,1	57,0	75,4	81,6	84,6	98,0	3,3	11,6	34,9	55,3	63,6	78,2	22,0	24,5	66,0	70,8	93,3	91,9			
	Charbon	78,9	93,1	95,8	96,1	96,3	97,0	44,0	65,9	71,5	85,5	88,6	94,0	58,0	61,6	79,1	81,2	84,4	93,5	52,6	63,2	83,4	91,8	94,3	95,6			
	NaCl	72,1	78,8	87,8	93,7	95,0	98,2	80,2	84,1	85,7	93,7	96,2	99,7	9,6	11,8	39,2	55,6	67,0	67,6	63,2	77,0	86,5	86,1	91,6	96,1			
	Mo+CaCl ₂	51,2	59,3	60,0	59,9	74,8	94,2	77,4	88,8	93,4	96,2	98,3	100	53,6	63,3	75,5	78,4	73,3	93,2	61,2	65,1	92,3	95,6	98,1	98,5			
(mg/L)	RL	98.4						97.7							93.4							98.7						

Annexe : 32 : Planches de l'Organisation Mondiale de la Santé pour identification des helminthes

CONFERENCES NATIONALES ET INTERNATIONALES

Participation aux Conférences Nationales et Internationales

1) **FOTSEU KOUAM Arnold Landry**, AJEAGAH Gideon and KAPSO Mireillle. Dynamique d'abndance des formes de résistance des Helminthes dans les zoones marécageuses. TES CONFERENCE at hotel Febe Mount of Yaounde on schistosomiasis, 2017; poster.

2) **FOTSEU KOUAM Arnold Landry**, AJEAGAH Gideon and KAPSO Mireillle. Gestion des zones marécageuses des villes africaines. International Conference of "Université des pluie" July 2017 Hotel Mount Febe Yaounde, Oral presentation.

3) **FOTSEU KOUAM Arnold Landry**, AJEAGAH Gideon and KAPSO Mireillle. Dynalique d'abndance des œufs d'*Ascaris* sp. dans les znes marécageuses. 24^{ième} Conference BIOSCIENCE November at the University of Buea, Cameroun, 2017, Oral presentation.

4) **FOTSEU KOUAM Arnold Landry** etAJEAGAH Gideon.Enjeux et défis d'un politique d'urbanisatin électrique et hydrique durable au Cameroun. Conference of City urbanization in Africa in Canada and China in 2018 at the Yaounde congress hall; oral presentation.

5) **FOTSEU KOUAM Arnold Landry**, AJEAGAH Gideon and KAPSO Mireillle. Déssémination des oeufs et larves d'helminthes dans quelques zones marécageuses de Yaoundé. Conference of the Cameroon Forum For Biological Sciences (CAFOBIOS), 2018; poster.

6) FOTSEU KOUAM Arnold Landry, AJEAGAH Gideon, 2019. Déssémination des oeufs et larves d'helminthes dans quelques zones marécageuses de Yaoundé. International PKFokam Conference on

Science & Technology $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$; 11 – 13 June 2019, Yaoundé-Cameroon, poster and oral presentation.

7) **FOTSEU KOUAM Arnold Landry**, AJEAGAH Gideon, 2019. Déssémination des oeufs et larves d'helminthes dans quelques zones marécageuses de Yaoundé. Conference BIOSCIENCE November at the University of Maroua, Cameroun, 2019, oral presentation.

8)DAAD Conference "Genome editing, Human Genetic Disorders and knowledge development in Sub-Saharan Africa June 08-10, 2020, participant.

9) **FOTSEU KOUAM Arnold Landry**, AJEAGAH Gideon, 2020. Effet of natural disinfectants (Moringa Olifera) and Chemical disinfectant (Calcium Choride) on Nematodes eggs: Bioefficiency and impact of physico-chmical variables. Conférence BIOSCIENCE Décembre 2020, Université de Yaoundé I Cameroun, Présentation orale.

10) **FOTSEU KOUAM Arnold Landry**, AJEAGAH Gideon, 2020. Effet of natural disinfectants (Moringa Olifera) and Chemical disinfectant (Calcium Choride) on Nematodes eggs: Bioefficiency and impact of physico-chmical variables. International Fair for Young African Researchers (IFYAR) December 2020, Ecopark Yaounde-Cameroon, oral presentation.

11) **FOTSEU KOUAM Arnold Landry,** AJEAGAH Gideon, 2021. Effet of natural disinfectants (Moringa Olifera) and Chemical disinfectant (Calcium Choride) on Nematodes eggs: Bioefficiency and impact of physico-chmical variables. Sub Saharan Africa, PhD and MSc. Student Seminar on Report n their research. Exceed Swindon, SSA Regional Network May 2021, oral presentation.

PUBLICATIONS SCIENTIFIQUES

Publications scientifiques

(1) Ajeagah G. A. et **Fotseu Kouam A. L**., 2019. Dissemination of the resistant forms of intestinal worms in the marshy area of the city of Yaounde (Cameroon): importance of some abiotic factor of the medium. *Applied Water Science-Springer*, (2019) 9:19 <u>https://doi.org/10.1007/s13201-019-0895-y.</u>

(2) Arnold Landry Fotseu Kouam and Gideon Aghaindum Ajeagah, 2020. Effect of natural disinfectant (Moringa oleifera) and a chemical disinfectant (calcium hypochlorite) on nematode eggs: bioefficiency and impact of physico-chemical variables. *Journal of Water, Sanitation and Hygiene for Development,* doi: 10.2166/washdev.2020.001.

(3) Fotseu Kouam A. L., Ajeagah G. A., Amoah I. D., Okoa A. T. N. and Tsomene N. P. 2021. Evaluation of the efficiency of some disinfectants on the viability of *Hymenolepis nana* eggs isolated from wastewater and faecal sludge in Yaounde (Cameroon): Importance of some abiotic variables. *Water Sciences and Technology*, doi: 10.2166/wst.2021.367.