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the University of Buéa for his support and guidance throughout the conduct of this study since
my Master degree. Working with him has allowed me to grow as a researcher and to explore my
potential as a graduate student. I am grateful for his tireless dedication, encouragements and
help on every aspect of this work along the way.

I would like to thank the hole Department of Physics at the Faculty of Science at the
University of Yaoundé I .

I would like also to acknowledge Doctor TONNANG ZEFACK Henri Edouard. He has
been as a mentor who taught me ecological modeling. My vision of the field has been deeply
shaped through our interactions.

I express my deepest gratitude to Doctor Frank NDJOMATCHOUA of the (IRRI), for his
contribution into this work. He had also helped me to understand the entomology and some
biological aspects of this thesis related to insect pests and Biological control.

I also thank Professor CHEMBO Yanne (CNRS Research Scientist) and Professor WOAFO
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PhD. Thesis of Djouda Sonkoué Byliole Laboratory of Mechanics, Materials and Structures



List of Abbreviations

EPF: EntomoPathogenic Fungi
BC : Biological Control
PLM : Population Level Model
RDM : Reaction- Diffusion Model
IPM : Integrated Pest Management
RK4 : Fourth-order Runge-Kutta
SA : Sensitivity Analysis
MC : Monte- Carlo Method
LHS : Latin Hypercube Sampling
PRCC : Partial Rank Correlation Coefficient
PCC : Partial Correlation Coefficient
CC Pearson : Pearson Correlation Coefficient
CC spearman or RCC : spearman Correlation or Rank Correlation Coefficient
CC : Correlation Coefficient
PGF : Probability Generating Functions
Pdfs : Probability density Functions
PSD : Power Spectrum density
mCGL : modified Complex Ginzburg-Landau
MI : Modulational Instability
FORTRAN : FORmula TRANslation
MATLAB : MATrix LABoratory

iv



Contents

Dedications i

Acknowledgements ii

List of Abbreviations iv

Table of Contents v

List of Figures viii

Abstract xii
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PhD. Thesis of Djouda Sonkoué Byliole Laboratory of Mechanics, Materials and Structures



List of Figures

Figure 1 life cycle of Entomopathogenic fungi, illustrating the saprophytic and
parasitic cycles [1, 2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2 Infection cycle of entomopathogenic fungi [3]. Arrow size indicates the
direction of interaction that is likely to be greatest in semi-natural habitats. 9

Figure 3 Insect immune system against fungal growth [4]. . . . . . . . . . . . . . . . 11
Figure 4 fungal growth within the insect’s hemocoel [2]. . . . . . . . . . . . . . . . . 13
Figure 5 The first line represent the pre-harvest pests damage on culture: a) Cab-

bages, b) Tomatoes, c) maize. The second line illustrates the crop devas-
tators harmful on stored grains: d)-e) beans, f) and dry maize. . . . . . . . 30

Figure 6 Flow diagram of BC model using EPF on insects pests . . . . . . . . . . . . 38
Figure 7 Scheme performed for sensitivity analysis with LHS and PRCC methods

[5],(A) Mathematical model specification (dynamical system, parameters,
output) and the corresponding LHS scheme. Probability density func-
tions (pdfs) are assigned to the parameters of the model (e.g. a, b, c).
We show an example with sample size N equal to 5. Each interval is di-
vided into five equiprobable subintervals, and independent samples are
drawn from each pdf (uniform and normal)The subscript represents the
sampling sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 8 Flow diagram of disease transmission between insects pests . . . . . . . . 52
Figure 9 Dispersion relation. Using the parameters values:a = 0.5, b = 0.02, v =

0.01, µ = 0.5, α = 0.25, β = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 10 Modulational instability According to Benjamin-Feir instability criterion

(a) P/Qr, (b) PQr. Using the parameters values in Fig. 9 with ω = 0.2612. 56
Figure 11 (a)Parameter space giving the stability analysis, the blue region corre-

sponds to couples of points satisfying the condition given by Eq.68. . . . . 59

Figure 12 a) Stability diagram of the homogeneous steady state. The colored zone
corresponds to stable region where tr (J) < 0 according to the biological
relevance conditions and thus, Turing instability can occurs in this region
when diffusion are taken into consideration. Others panels show Turing
instability parameters regions in the three parameters spaces b) k = 1; c)
d21 = 2.5; d) d = 1.2. Here, colored zone is also stable regions obtained
from a coupled of point with satisfy stability condition. Parameters val-
ues are ε = 10.0, β = 0.47, a = 0.05; q = 0.5; for each case . . . . . . . . . . 64

viii



LIST OF FIGURES ix

Figure 13 (a) stability analysis showing the complex part (red) and the real part
(blue) of the eigenvalues. (b) 1D Turing pattern formation, the parameters
values chosen is ε = 10.0, β = 0.47, a = 0.06, q = 0.3, d = 1.2, d21 = 2.5(c)
blue and red curves are two oscillations located at space x = 10 and
x = 12.5. (d) Displays the spatial amplitude modulation at the time given
in the legend; (e),(f) show the influence of the regeneration rate of the EPF
during growth (β = 0 in these case) . . . . . . . . . . . . . . . . . . . . . . 65

Figure 14 The processes of pattern formation of mycelia with parameters values
chosen identical as in Fig. 13. Times iterations: (a)100, (b)500, (c)1500,
(d) 4500, (e) 6500, (f) 8000. The colorbar shows the magnitude of the pop-
ulation density of mycelia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 15 Stationary spatial patterns of resources density obtained through simula-
tion of model Eq.9 on a squared spatial grid with no−flux boundary con-
ditions for non-temporal diffusion. Gives Pattern formation of resources
with parameters values (a) ε = 10.0, β = 0.47, a = 0.05; q = 0.5; d = 1.2;
d21 = 2.2; (b) ε = 10.0, β = 0.47, a = 0.05; q = 0.5; d = 1.2; d21 = 2.35.
Others panels give comparison patterns of the resources between two
probabilities q with parameters values: ε = 10.0, β = 0.47, a = 0.06; d21 =

2.25; d = 1.2.(c)q = 0.3, (d)q = 0.4. The colorbar shows the magnitude of
the population density of resources. . . . . . . . . . . . . . . . . . . . . . . 68

Figure 16 (a) stability boundaries region , (b) Transition curve between stability
and Turing instability with parameters values: ε = 10.0, β = 0.47, a =

0.05, q = 0.5, d21 = 2.5, b21 = 2, d = 1.2, b = 0.8, θ1 = θ2 = 0; (c) Inhibition
of Turing instability (both amplitude of perturbation tending to zero) ; (d)
Turing instability (both amplitude of perturbation grow). . . . . . . . . . . 69

Figure 17 Stability diagram of the endemic steady state, the colored zone corre-
sponds to stable region according to the biological relevance conditions
and the coupled of point with satisfy stability condition in the param-
eters spaces. b) Transcritical bifurcation at R0. Parameters values are
d1 = 0.05, b1 = 0.25, b2 = 0.15, d3 = 0.1, I2 = 0.05; for each case . . . . . . . 72

Figure 18 These panels show susceptible (ϕ), infected pest (φ) and pathogen (ψ)

population densities as a function of time ((a), (b) and (c) respectively)
for N = 10000 . The red line is the average of time series of 100 repli-
cations generated from the ILM (Eq.(17) to (Eq.20)) using Gillespie Al-
gorithm [6], the dashed dark line is the average of the species density
time series from 10000 replicates generated from the ILM and is almost
indistinguishable with the continuous blue line which corresponds to the
deterministic equations from mean-field approximation simulated with a
classical Runge-Kutta algorithm. The parameters used in the simulations
are:b2 = 0.15, d3 = 0.1, I1 = 0.25, d1 = 0.05, b1 = 0.25, I2 = 0.05. . . . . . . 74
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Abstract

Biological control is the beneficial application of natural enemies such as pathogens,
predators and parasites in managing insects pests and their damage. Entomopathogenic
fungi (EPF) have a crucial role in natural ecosystems and have been developed as an en-
vironmentally friendly alternative to the use and application of chemical insecticides
against insect pests. However, the dynamics of the entomopathogenic fungi within the
insect host is still not well understood; due to the complexity behind the interaction
between EPF, insects and their living environment which is really fluctuating.

To study the dynamics of this system, we subdivided our work in three main
points: in the first point host pathogen model is using to describe the intra-host dy-
namics of entomopathogenic fungi growth inside its host. The model is coupled with a
nonlinear dependence of the consumption of insect resources by the host, described by
the Holling and Powell type II functional responses. In the second point, a stochastic de-
mography model (often called individual based model) defining as a random variation
originating from the discrete nature of individuals is proposed to minic the outbreak of
EPF within insect’s pests population; the model includes stochastic character of events
like birth, death, infection and migration. Finally, the modified complex Ginzburg Lan-
dau equation (mGLCE) is used to model and to investigate the horizontal transmission
between infectious insects and susceptible one. These studies show that the behavior of
such system is rich in dynamics. Because the EPF growth is related to the instability of
the system, particular attention is given to the stability analysis in this study.

In the first part, the stability of system around the steady states is conducted with-
out taking the diffusion into account. When considering a small perturbation of the
stable singular point due to nonlinear diffusion, the conditions for Turing instability
occurrence are deduced. It is observed that the absence of the regeneration feature of
insect resources prevents the occurrence of such phenomena. The long time evolution
of our system enables us to observe both spot and stripe patterns. Moreover, when the
diffusion of mycelia is slightly modulated by a weak periodic perturbation, the Floquet
theory and numerical simulations allow us to derive the conditions in which diffusion
driven instabilities can occur.

In the second part of our study, the stability analysis shows that the system dy-
namics is strongly affected by the contagion rate between infectious insects and the sus-
ceptible hosts, where as the bifurcation analysis lead to a transcritical bifurcation when
the basic reproduction number is greater than one in local dynamics. When migrations

xii



of species are considered, Hopf-damped Turing behavior can occur for a threshold con-
tagion rate. However, sensitivity analysis of the extinction probability shows that the
persistence of EPF depends to the proportion of spores collected from insect cadavers as
well as their ability to be reactivated and create new infect insects.

Lastly, the Anderson-may model is modified by taking in account the migration
of infectious host. The model is transformed to a modified complex Ginzburg Lan-
dau equation (mGCLE) using the multiple scale method. The effect of environmental
conditionS is modeled in the infectious rate and the modulation instability (MI)of the
wave plane is investigated. The linear stability analysis allows observing two types of
modulation instabilities: Diffusion-driven instability or Turing instability and Paramet-
ric instability observed when environmental condition influence the infection rate. The
Floquet theory used in the latter case shown parametric resonance via the exhibition
of Arnold tongues. However, the increase of the proportion of insect which pass from
latent to infectious class increases the gain of the nonlinear instability and induced ir-
regular behavior of MI in the case of constant and periodic infection.

Keywords: Entomopathogenic fungi (EPF), Biological Control (BC), insect pests,
individual-based models (IBM), demographic stochasticity, bifurcation analysis,mean
field theory, multiple scale method, modified complex Ginzburg-landau equation, mod-
ulation instability, Floquet theory, Turing Pattern, parametric resonance.
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Résumé

La lutte biologique est l’application bénéfique d’ennemis naturels tels que les
agents pathogènes, les prédateurs et les parasites dans la gestion des insectes ravageurs
de culture et leurs degâts. Les champignons entomopathogènes (EPF) jouent un rôle
crucial dans les écosystèmes naturels et ont été développés comme une alternative écologique
à l’utilisation et à l’application d’insecticides chimiques contre les insectes nuisibles.
Cependant, la dynamique des champignons entomopathogènes au sein de l’insecte hôte
et de la population d’insecte n’est pas encore bien comprise; dû à la complexité des inter-
actions entre les EPF, les insectes et leur habitat qui est très influencé par les conditions
environmentales fluctuantes.

Pour mener à bien l’étude de la dynamique de ce système, nous avons segmentés
ce travail en trois pticipaux points: Au premier point nous utilisons un modèle d’hôte
pathogène couplé pour etudier la dynamique intra-hôte du champignon entomopathogènes.
Le model est couplée avec une dépen-dance non-linéaire de la consommation des ressources
de l’insecte par l’hôte, décrite par les réponses fonctionnelles de Holling et Powell de
type II. Au second point, nous developons un model individuel qui prend en compte
la stochasticité démographique (souvent appelée bruit démographique) pour mimer
l’évolution du champignons entomopathogènes au sein d’une population d’insectes
nusibles; ce modèle définit comme une variation aléatoire provenant de la nature discrète
des individus et du caractère stochastique d’événements tels que la naissance, la mort,
l’infection et la migration. Enfin, l’équation complexe de Ginzburg Landau modifiée
est utilisée pour modeliser et analyser la transmission horizontal de l’infection fongique
d’un insecte infecté à un insecte susceptible. L étude de ces systèmes montre qu’ils ex-
hibent une dynamique riche. Etant donné que la croissance de l’EPF est liée à l’instabilité
du système, une attention particulière est accordée à l’analyse de la stabilité le long de
cette étude.

La première partie de ce travail porte sur l’ étudié de la stabilité de l’état d’équilibre
sans tenir compte de la diffusion. En considérant une petite perturbation du point sin-
gulier stable, les conditions d’apparition de l’instabilité de Turing qui ici, provient du
terme de diffusion non-linéaire ont été déduites. Il est observé que l’absence de la
régénération des ressources chez l’insecte empêche l’apparition de tels phénomènes.
Une simulation de ce système au déla du temps transistoire montre différent formes
de motifs (circulaires et en bandes). De plus, lorsque la diffusion du mycélium est
légèrement modulée par une faible perturbation périodique, la théorie de Floquet et

xiv



les simulations numériques nous permettent de déduire les conditions pour lesquelles
l’instabilité dû à la diffusion se produit.

Dans la deuxième partie de notre étude, l’analyse de stabilité du système en ab-
sence des termes de diffusion montrent que la dynamique du système est fortement
influencée par le taux de contagion des insectes susceptibles par des insectes infectés,
tandis que l’analyse de la bifurcation prevoit la bifurcation transcitique lorsque le nom-
bre d’infections secondaires dû à une première infection est supérieure à 1 . Lorsque
l’on considère la migration de chaque espèce dans un ensemble de sites, les modes de
Hopf-Turing amortis peuvent apparaı̂tre pour un seuil de valeur du taux de contagion.
Cependant, l’analyse de sensibilité de la probabilité d’extinction montre que la persis-
tance d’un agent de lutte biologique dépend de la proportion de spores collectées sur
les cadavres d’insectes ainsi que de leur capacité à être réactivés et crée de nouvelles
infections.

Dans la dernière partie de ce travail, le modèle Anderson-May est modifié en
tenant compte de la migration de l’hôte infectieux, puis transformé en une équation
modifiée de Ginzburg - Landau complexe en utilisant la méthode des echelles à temps
multiples. L’effet des conditions environnementales est consideré sur le taux d’infection
et par la suite, une analyse de l’instabilité de modulation (MI) de l’onde plane est menée.
L’ analyse de la stabilité linéaire permet d’observer deux types d’instabilités de modula-
tion: L’instabilité due à la diffusion ou l’instabilité de Turing et l’instabilité paramétrique
observée lorsque les conditions environnementales influencent le taux d’infection. La
théorie de Floquet prévoit une résonance paramétrique via l’apparution des langues
d’Arnold. L’augmentation de la proportion d’insectes qui passent de la classe latente
à la classe infectieuse augmente le gain de l’instabilité non-linéaire et induit une dy-
namique irrégulière de l’IM.

Mots clés: Champignons entomopathogènes (EPF), lutte biologique (BC), insectes
nuisibles, modèles individuelles (IBM), stochasticité démographique, théorie des champs
moyens, analyse de la bifurcation, méthode d’expansion à échelle multiple, équation de
Ginzburg-Landau complexe modifiée, instabilité de modulation, théorie de Floquet, in-
stabilité de Turing, instabilité paramétrique.
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General Introduction

With a rapidly expanding population, there is growing demand for food and simul-

taneous need for higher environmental sustainability[7]. However, agricultural produc-

tion is facing several problems including the difficulty of controlling planting times due

to climate change, poor seed quality, poor soil quality, crop pests and so on. [8, 9, 10, 11,

12]. Insect pests are responsible for a loss of 18–26% of worldwide annual crop produc-

tion, which corresponds to an estimated value of 470 Dollars billion [13]. The greatest

part of the losses (13–16%) occurs in the field, before harvest [13]. Furthermore, post-

harvest pests constitute a major part of storage losses of agricultural products. About

50–60% of stored grains can be lost during the storage period due to insufficient con-

trol measures [14]. The intense use of chemicals has led to more than 500 species of

arthropod pests becoming resistant to one or more insecticide classes [14]. Addition-

ally, environmental and food regulations represent a barrier for the development of new

insecticides, in terms of both time and cost.

Crop protection by agrochemicals has been responsible for maintaining and in-

creasing the quality and quantity of crop production worldwide. However, their exten-

sive and often irresponsible use has resulted in pest resistance, resurgence of secondary

pests and a disruption or elimination of natural enemy complexes, thus reducing the

efficacy of natural control processes. These factors, coupled with concerns about the im-

pact on environment and human safety, have provided the momentum to develop more

environmentally safe strategies that are both cost-effective and reliable.

Assistance to realize this goal may, unexpectedly for many, come from biolog-

ical control of insect’s pests in agriculture. Empirical data suggest the utilization of

bio control agents in integrated pest management (IPM) can foster sustainable yields in

agricultural systems at lower costs than alternative non-sustainable methods based on

chemical pesticides [7], which can result in the build up of persistent chemicals in the
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environment or development of pesticide resistance. It is hoped that through a combi-

nation of theoretical and empirical studies. Biological control may provide an economi-

cally sustainable solution to pest control.

Despite the development of many mathematical models that have examined the

use of microorganisms as control agents. The role of entomopathogenic fungi has not

been investigated fully [15]. It surprising as these EPF have great potential as biological

controls agent of insects pest [15]. The aims of this thesis are then to develop mathemat-

ical models describing the EPF-host system in order to optimize their use as bio control

agents.

The present thesis is structured in three parts described as follows:

In the first chapter, we conducted a review of the scientific literature around the

theme of this thesis. We begin by presenting the infectious cycle of entomopathogenic

fungi, the different challenges faced by EPF by infecting it host. The chapter presents

subsequently the biology and ecology of the entomopathogenic fungi, a brief outlook on

insect pests and the impact of their damage in the field as well as the scientific problems

related to the study of this biological control agent. Furthermore, different methods and

concepts of modelling used in the literature to simulate the growth of entomopathogenic

fungi insight insect pests as well as their inadequacies are presented. Finally, methods

for coupling the spread, conidia dynamics and insect’s dynamics adopted in the past are

presented.

In Chapter 2, this thesis presents the approaches used to solve the problems men-

tioned in Chapter 1 and how they will be used in order to obtain the results. A reaction

diffusion system with a cross-diffusion term in the resource consumption has employed

to describe the intra-host (insect pests)-pathogen (entomopathogenic fungi (EPF)) inter-

actions. Assuming that the diffusion rate of mycelia depends on the diffusion rate of

the insect resource and time, the interaction between the resources from the insect pest

and the mycelia of EPF is represented by the Holling and Powell type II functional re-

sponses. The stability analysis and Floquet theory were used respectively to generate

the spatially localized Turing modes and to study the effect of temperature on the EPF

growth and spread using a reaction-diffusion model(RDM). In order to study the propa-
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gation and the persistence of EPF within insect’s host population, this chapter continues

with the presentation of advanced methods that are used to investigate epidemiological

model. The first sequence of analyzes consists of the construction of the mathematical

models (Individual based model (IBM) and it corresponding deterministic model called

Population level model (PLM)), the IBM which is inherently stochastic, is formulated as

a continuous time Markov’s process, which is then, decomposed into a deterministic dy-

namics using stochastic corrections and system size expansion. In order to evaluate the

temporal evolution and the spatial distributions of the global systems (insect suscepti-

ble to be infected, infected insects and spores collected on insects cadavers), and deduce

the mechanisms behind its dynamics; we compare both obtained models and to better

understand the interplay between deterministic and stochastic forces. The Latin hyper-

cube sampling (LHS) on combination with a partial rank correlation coefficient (PRCC)

is used to find the keys parameters for successful outbreak of EPF with insect pests

population. We finally, estimate the power spectral density (PSD) which describes the

stochastic fluctuations affecting each systems variable. The last part of this chapter, focus

on the transmission of the EPF disease between insects. Since EPF undergo latent period

within insect before beginning to produce infectious conidium (transmission stage), we

choose the susceptible, infected and infectious Anderson-May’s model and then mod-

ified by incorporating one dimensional spatial diffusion. Reaction-Diffusion model is

known to exhibit traveling wave behavior [16]. That means the disease outbreak within

insect population involve like wave across the field. The well know model describing

the evolution of the modulated wave is the Complex Ginzburg-Landau (CGL) equation,

which is well applied in the biological system [17, 18, 19]. We used the multiple scale

method to transform the reaction-diffusion model to a modified Complex Ginzburg-

Landau (mCGL) equation. By taking into account the periodic modulation on the in-

fection rate due to the abiotic conditions, we investigate the modulational instability.

The modulational instability is a ubiquitous phenomenon causing by the interplay be-

tween complex nonlinear process. From a mathematical point of view, the underlying

phenomenon refers also to the mechanism where a weak periodic perturbations of an

continuous wave (CW) grow exponentially [20, 21, 22, 23]
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The Chapter 3 is devoted to the presentation of the key obtained results and their

discussions.

The document ends up by a general conclusion summarizing the main findings

add, provides the futures directions.
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CHAPTER I

LITERATURE REVIEW AND BIOLOGICAL

BACKGROUND

I.1 Introduction

This chapter presents a brief overview on the biological systems and physical phenomena

studied in this thesis. It is organized as follows: section I.2 deals with the overview on Ento-

mopathogenic fungi (EPF), section I.4 is devoted to the advantages and disadvantages of the

use of EPF as biological control agents, in section I.5 the overview on modelling EPF growth on

insect pest is presented. Followed by a brief description of key existing models investigating the

Entomopathogenic fungi dynamics. The motivation of this research is given in Section I.7 and

the last section concludes this chapter.

I.2 Overview on Biological control: case of Entomopathogenic fungi

(EPF)

I.2.1 Generalities on insects pests and their damage

An arthropod pest is any species of arthropod that can be considered harmful to humans,

by being a pest of plants, plant products or animals [10]. Insects attacking crops has been a

problem since agriculture began. Crop pests can damage the plant above or below the ground,

through chewing, sucking, tunnelling, causing galls, removing parts of the plant or by increasing

the susceptibility to viral, bacterial or fungal pathogens [24]. These insects are then cause signifi-

cant damages during their immature and mature life stages. Young larvae of some species climb

plants and feed mainly on leaves, while older larvae eat into the stems and often sever them. In

fields with small hills or knolls, damage may first appear in the highest areas of the field. Oth-

ers inflict their damage on stored products mainly by direct feeding, causing loss of weight and
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I.2 Overview on Biological control: case of Entomopathogenic fungi (EPF) 6

quality [8, 9, 11, 12]. To keep damage low, fields should be examined regularly and applied the

controls when insect populations reach economic threshold levels. As mentioned above, crop

devastators are responsible for an average of 20 Percent of lost in agriculture [13], adding to the

part losses during harvest. Furthermore, post-harvest pests constitute a major part of storage

losses of agricultural products. About 50–60% of stored grains can be lost during the storage

period due to insufficient control measures [14]. Therefore, it becomes necessary to set up ap-

propriate pest management programs to control these insect pest populations. The harmfulness

of chemical insecticides to humans and to the environment has motivated the development of

biological mechanisms with pathogenic organisms that only target the insect [25].

I.2.2 Generalities on EPF

Entomopathogenic fungi (EPF) have a key role in natural ecosystems and are being devel-

oped as environmentally friendly alternatives to chemical insecticides for pests control [4]. They

causes many insect diseases and play important roles by regulating insect populations in na-

ture [25]. Those belonging to the Beauveria and Metarhizium have been widely used for the

control of various agricultural insect pests and vectors of human diseases [26]. More than 700

species of fungi are entomopathogenic, making them the most common insect pathogen [27, 28].

EPF are found in the divisions Zygomycota, Ascomycota, Deuteromycota, Chytridiomycota and

Oomycota [27]. Some of these fungi have a restricted host range while others have a wide host

range with different isolates being more specific to certain pests [27, 29]. Species and even iso-

lates within a species can act very differently in terms of their host range, infectivity, rate of

germination and optimum temperature [25, 30]. They have large potential as biopesticides un-

like bacteria and viruses they infect hosts through direct penetration of the cuticle, allowing

them to act as contact insecticides [4]. EPF possesses the ability to infect the host by ingestion

or by simple contact, therefore making insects vulnerable at any of their life stages [27, 28]. The

penetration process is the most important step in pathogenesis [31]. In contact with the insect’s

cuticle, conidia (the infectious fungus unit) germinates if conditions of temperature and humid-

ity are favorable (high humidity) [32], and penetrates through the integument of the insect by

combining mechanical and enzymatic pressures [25, 33]. After penetration, it proliferates as

hyphae (branching filamentous cell of a fungus collectively called ”mycelium”) into the insect

hemocoel, absorb nutrients, produce toxins, destroy host cells, and eventually kill the insect; and
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produce new infective spores, which are ejected toward the insect cuticle for immediate trans-

mission if the environmental conditions are favorable. These infectious spores are subsequently

dispersed in the environment by natural phenomena such as wind and rain, which then favor

their propagation to susceptible insects. In addition, this infection can be transmitted by a sim-

ple contact between infected and susceptible insects [3, 9, 29, 32] . However, the efficiency of

this method is good when the densities of the targeted insect populations are very high, thus en-

hancing contamination by abundant production and dissemination of spores in the saprophyte

phase. The insect immune system, the lack of recognition between the host and the pathogen,

and the inability of the spores to exploit resources from the insect cuticle can strongly influence

the pathogenicity of these natural enemies [33, 34]. To the best of our knowledge, the change of

morphology and components can reveal the connection between spores and mycelia (group of

hyphae), and provide a systems-level understanding of the cell. Despite its importance, only a

limited number of methodologies have been developed for morphology and species analysis [4].

I.2.3 Infection life cycle and morphology of entomopathogenic fungi

Infection process

Entomopathogenic fungi have a complex life cycle. The later can be divided in two main

parts (see Fig.1): a parasitic cycle where fungi growth on insect and use the insect body resource,

this part start from the attached on insect cuticle to the insect death or for some species to the

maturation of mycelia (agglomeration of hyphae body) and the saprophytic cycle which corre-

sponds to the sporulation after insect death (for some species since insects are infected, in that

specific case the resource extracted is under the harmful threshold) [1]. However, for a successful

infection, the fungi have to meet several host challenges in order to produce enough new infec-

tious spores. Firstly, successful transmission often requires the release of massive spore numbers

and/or sticky spore surfaces or substances that maximize adhesion in other ways [27]. Secondly,

spores should germinate and initiate penetration of the solid insect exoskeleton relatively quickly

or survive digestion after oral uptake[35]. Third, fungal cells must proliferate within the hemo-

coel, muscles, or other tissues of the host’s body to collapse the host’s immune system so that

its subsequently dies [35]. Fourth, the fungal pathogen should manage the host (or cadaver) to

optimize spore production and dispersal under prevailing environmental conditions [3]. Thus,

entomopathogenic fungi display several steps in the development of fungal infections.
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Figure 1: life cycle of Entomopathogenic fungi, illustrating the saprophytic and parasitic cycles
[1, 2]

• Spore attachment to the host cuticle

Pathogenicity starts with the attachment of the spore to the host (Fig.2(1a)) [3]. Although

some entomopathogenic fungi enter the gut or respiratory tract, the majority invade their

host through the external cuticle [25, 36]. The spore attachment process has two stages,

the initial absorption of the conidia to the cuticle surface by passive interactions involving

charged groups on both surfaces, followed by more specific attachment involving a short-

range stereo chemical interaction [27]. The process of adhesion appears to be strengthened

after germination with the production of more mucoid substances, presumably secreted by

the appressoria cells [27].

• Spore germination

The conditions on the cuticle surface determine whether or not germination will occur.

Some researchers reported that spore germination (see fig.2(1b)) is mostly dependent on

the environmental conditions, especially temperature and humidity [35, 37]. Fungal spores

require saturating humidity for germ tube development and its germination also depen-

dents on exogenous nutrients [28], which are obtained from cuticle and as a result of the

process of penetration [33]. Furthermore successful germination does not always lead to
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Figure 2: Infection cycle of entomopathogenic fungi [3]. Arrow size indicates the direction of
interaction that is likely to be greatest in semi-natural habitats.

infection [25, 33]. EPF use a combination of physical and enzymatic processes to degrade

the cuticle and enter the haemocoel, after a period of growth on the host surface, EPF

produce appressoria which permanently attaches the EPF to the insect [3]. Appressoria de-

velop penetration plugs which secrete a range of enzymes to facilitate cuticle penetration.

Invasion of the host body and hemolymph occurs when the EPF passes through the cuticle

via germ tubes, appressoria and penetration plugs; EPF like Beauvaria and Metarhizium

secrete a variety of enzymes to aid this invasion [28].

• Penetration of the cuticle

For the infection to be successful, the EPF must penetrate the insect cuticle. Making the

penetration of the cuticle (process from Fig.2(1b)) very important for virulence [38]. The

insect procuticle consists of chitin fibrils embedded in a protein matrix and penetration

appears to involve both mechanical and enzymatic components (which involved in cuticle

degradation) [31]. St Leger suggests that many enzymes are important determinants of vir-

ulence by enabling the pathogen to exist with the changing metabolic processes associated

with the host’s disease state [33]. Thus, successful penetration of the cuticle depends on

the ability of spore to adhere to the cuticle, to germinate and to penetrate [35]. The cuticle
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is divided into three sections: the envelope, underneath the envelope is the epicuticle, fol-

lowed by the procuticle (Fig.1). The epidermal cells are found at the base of the proticule

and hemocoel is underneath the epidermal cells (Fig.1). The way in which EPF penetrate

the insect depends also on the properties of the cuticle, such as thickness, sclerotization and

the presence of antifungal and nutritional substances. In addition to invading the insect via

cuticle areas and intersegmental membranes, fungal entomothogens have been reported to

invade insects through sense organs and spirales [39]. In that way, because higher humid-

ity is not a problem in digestive tract, spores can germinate rapidly in this environment,

although the digestive fluids can destroy them or degrade germination hyphae.

• Growth in the hemocoel and immune response of the host

Knowledge of the immune response of insects induced by fungal pathogens contributes

to the understanding of both insect defenses and the fungal pathogenicity that defeats it.

Ultimately uncovering fungal virulence determinants gives rise to opportunities to manip-

ulate these virulence factors to improve the success of biocontrol agents [4]. Growth of

penetrating EPF through the cuticle appears to vary. In many cases, the first reaction of the

insect to the invading fungus is a melanisation of the cuticle (see Fig. 2) [2, 28, 40]. This

reaction could be effective against pathogenic organisms, but it appears to occur too late

or in insufficient magnitude to stop highly pathogenic fungi [40]. More clearly, the main

immune reaction in the host tissue is the cellular encapsulation and phagocytosis of the

fungal propagules (see Fig.3), which are immediately melanised upon penetration into the

hemocoel [3]. Host defenses also include a phenoloxidase system which deposits oxidized

phenols (melanin) and protease inhibitors in the cuticle, and which may restrict pathogen

enzyme activity [3]. Many entomopathogenic fungi produce toxins to overcome the im-

munodefensive mechanism of the insect [29]. Destruxins, afrapeptins and oosporein are

compounds that were isolated and identified from cultures of Beauveria, Fusarium, Go-

liocladium, Cordyceps, Entomophthora, Verticillium, Metarhizium and Paecilomyces [28].

Destruxins are the only fungal toxins that have been detected in insects in sufficient quan-

tities to cause death [28]. However, after reaching the hemocoel, EPF develop it vegetative

form (commonly call hyphae) which change to yeast (entomophthorales)[32], and produce

blastospores (3), avoid recognition by circulating hemocytes in hemocoel [4]. The advan-

tages of this cellular form are probably the increase in nutrient acquisition rates and fungal
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cells can mutiply in the hemocoel without being detected by the insect immune system,

which uses cell wall as detectors [2, 25].

Figure 3: Insect immune system against fungal growth [4].

• Death and saprophytic development

When the hyphae attempt the insect hemolymph, the next step in the lifecycle is hy-

phal differentiation into blastospores/hyphal bodies in the hemolymph of the host [3].

EPF’s blastospores circulate inside the insect hemolymph producing toxins (see Fig.3) [3].

Growth of EPF within the host hemolymph is linked with secretion of toxins by the fun-

gus. Host colonization is associated with the ability to overcome the host immune defenses

and the extraction of nutrients from the host [3, 27, 28]. Furthermore fungi overcome host

defenses and extract nutrients from the host body [4]. The insect dies from toxicosis or

obstruction of organs. Once the hyphae have exhausted the nutrients available in the host

environment they penetrate out to the host cadaver surface (see Fig. 2(1e)) [3]. When tem-

perature and humidity conditions are favorable, the hyphae can cross the integument of

the insect again from insight, occuring to the emergence of the fungus towards the outside.

Generally, emergence occurs in the less sclerotic regions of the integument: such as the in-

tegumental membrane or spiracles depending to the host’s stage of development. Hyphae

crossing the integument can remain in the vegetative phase and begin the sporulation pro-
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cess within 24−48h [28]. The hyphae from conidiospores, giving rise to asexuel spores that

are infective units with dissemination function [27]. Sporulation normally occurs in cadav-

ers but can also occurs in live insects [41]. Conidia dispersal is passive, relying principally

on wind but other factors such as rain and interspecific competitions between species, can

play a role in dissemination [25, 42].

Morphology of entomopathogenic fungi

Fungal bodies are made up by filaments called hyphae. Hyphae that have walls between the

cells are called septate hyphae; hyphae that lack walls and cell membranes between the cells are

called nonseptate or coenocytic hyphae (Fig.4). The life cycle of EPF starts with the production

of spores which are infectious agents that germinate to form hyphae threads. Given that most

of these fungi are sessile, apical extension/growth of the hyphae ultimately results in the for-

mation and growth of the mycelia (hyphae network). Note that mycelia are a collection/bundle

of hyphae; they are more visible compared to hyphae that may not be visible. Mycelium (plu-

ral mycelia) plays an important role in reproduction, it’s corresponds to the vegetative parts of

fungi. So after reaching the hemocoel, EPF carry out a dimorphic transition, since they have

more than one appearance during their life cycle. This dimorphic character is very important for

infectivity. They are capable of changing their appearance in response to environmental changes

such as nutrient availability or fluctuations in temperature. This ability helps EPF to survive in

diverse environments [9].

I.2.4 Transmission of entomopathogenic fungi between insects and spatially hetero-

geneous environments

The key parameter that determines the rate of spread of entomopathogenic fungi within host

populations is called transmission. It defines the potential of pathogen to be use as a microbial

control agent [29]. This process can be view as the dispersal of infective propagules from an

infected host to a new host and is the most “perilous” part of the lifecycle of a fungal pathogen

[25]. Transmission can occurs in a vertical or a horizontal process. The horizontal transmission

is when an infected insect contaminated a susceptible one, here it is important to increase in-

teractions between insects by manipulating the density of the target pests population and thus

facilitate the dispersal of conidia. While the vertical transmission refers to the process where an
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Figure 4: fungal growth within the insect’s hemocoel [2].
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infected organism contaminates its offspring; In this specific case, some fungi species corrupt

their hosts’ sexual behaviors to increase their odd of transmissions [28, 29, 43, 44, 45, 46]. Move-

ment of entomopathogenic fungi by host and non-host invertebrates to susceptible hosts is one

of the most important mechanisms for transmitting to new habitats [3]. It is noteworthy that,

horizontal transmission between individuals of the same species (autodissemination) can occur

through direct contact between contaminated and uncontaminated individuals or indirectly via

conidia that have been deposited on the substrate [39]. However, direct transmission between

infected and susceptible insects is less variable and more efficient than indirect transmission via

conidia that have been deposited on the substrate, and can lead to high mortality rates even when

the number of contaminated individuals is low. Nevertheless, indirect transmission is important

to vector infective stages to new hosts and habitat at the soil surface through epigeal predators

which remove inoculum by consoming cadavers [3, 28, 29]. Some researchers proposed patched

model based on direct transmission between infected and susceptible hosts [30, 47]. Although,

we have explored similar models based on pathogens such as baculoviruses and many fungal

entomopathogens which infect by means of free-living infective stages, the conclusions are not

qualitatively different. They shown that, EPF-infected hosts have the ability to disperse and to

spread disease into new colonies as documented for aphid species [3]. Some specialist fungi such

as Strongwellsea spp. Sporulate from one or two holes on living hosts and conidia are dispersed

in this way [47].

I.2.5 Factors affecting the efficacy of fungi as bio-control agents

Biotic Factors

1. The Pathogen

The ability of entomopathogens to infect by producing epizootics on the host is influ-

enced by factors such as pathogen density, host range, genetics, dispersal, latency, viru-

lence and persistence [3, 34, 48]. For the fungus to kill the host, it is presumed that a thresh-

old number of propagules are necessary. High propagule density in the field increases the

chances of an insect coming in contact with enough or adequate number of propagules

that exceed the inoculum threshold [34]. The ability of EPF species to remain effective for

a longer time in an environment increases the probability of an insect coming into contact

with propagules to cause disease. Generally, EPF gain entry through penetration of the
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host cuticle using a combination of hydrolytic enzymes and mechanical force [27]. After

penetration to the hemocoel, the host dies due to a combination of toxin, obstruction of

blood circulation, nutrient depletion and invasion of organs [39].

2. The insect host

Most arthropods are hosts of fungi although host spectra vary widely, depending on

fungal species. Most studies have shown that B. bassiana and M. anisopliae have much

wider host ranges within the Arthropoda [12, 38]. The susceptibility of the insect pest to

entomopathogenic fungus is influenced by both physiological and morphological factors

[4]. Host population density and distribution, pest population growth characteristics, host

behavior and population composition are keys factors. It has also been reported that inad-

equate nutrition increases the susceptibility of the pest insect to the fungus [1]. Increased

host density, increases contact between the infected and uninfected populations hence

favors infection and also increases availability of substrate and nutrients for pathogen

growth and reproduction. This increases the quantity of inoculum available in the habi-

tat to further cause infection [29]. After the insect pests have been exposed to the fungus,

some insects tend to behave differently. For example, flies and locusts elevate body tem-

peratures to a level that is averse to the entomopathogenic fungus in the hemocoel. There

is also grooming in termites and summit disease syndrome in grasshoppers [42]. The cuti-

cle of some pests possess physicochemical properties that affect the infection process either

negatively or positively. As a defence mechanism, a range of immune responses are initi-

ated once the fungus reaches the hemolymph [4]. However, species M. anisopliae and B.

bassiana have shown capability of avoiding encapsulation in the hemocoel [33, 34].

Environmental factors

Environmental conditions are key component influencing the virulence, the persistence in the

soil surface or into foliar environments and the outbreak of EPF (Fig.2(2c-2e)).

1. Temperature

Furthermore, the impact of temperature, determined by environmental conditions and

insect thermoregulation, is probably the main factor affecting the performance of bio in-

secticides based on fungal entomopathogens, potentially reducing and/or delaying insect
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mortality [30, 49, 50, 51]. Temperature can affect the virulence of entomopathogenic fungi

at different phases of the infection process, with inter- and intra-specific variations in ther-

mal requirements mainly related to habitat, geographical origin, and even insect host (see

Fig.2 (2a )) [27]. Their hyphal growth and conidial germination under constant and fluc-

tuating temperature regimes, and virulence when insects can thermo regulate remain un-

known [52].

2. Relative humidity

This is also an important environmental factor influencing the potential of EPF. This is

because moisture stress can limit conidia germination and vegetative growth of the fungus

hence reducing the ability of the fungus to penetrate into the host [30, 49]. Many stud-

ies showed that daily high humidity is among the most crucial climatic constraints for

EPF. Although higher relative humidity (RH) is required for effective colonization, Some

of the techniques used to increase the RH are by using an appropriate formulation and

application of irrigation water as it improves the microclimate. For example, there was a

successful infection in desert locust at 20 − 30% RH under field condition using oil-based

conidial formulation [28].

3. Rainfall

Conidia/resting spore distribution and persistence at the soil surface are influenced by

abiotic factors such as rainfall that influence horizontal transmission by promoting coni-

dium formation on cadavers, mechanically dispersing conidia and potentially increasing

vectoring by other invertebrates (see Fig.2 (2a)). However, There are few studies show-

ing that rainfall affects the persistence of fungus on insects and on foliage, this could be

because it is difficult to study rainfall as a single factor due to available interaction from

other factors like solar radiation, which also affect the persistence of fungus. Rainfall has

positive implications towards fungal epizootics since it can dislodge and disperse conidia

from substrates .

I.3 Biological pest control

In nature the majority of living species are attacked by natural enemies such as parasites,

predators and pathogens which may regulate their population levels [53]. This is utilised in bio-

PhD. Thesis of Djouda Sonkoué Byliole Laboratory of Mechanics, Materials and Structures



I.4 EPF as biological control agents 17

logical pest control where the application of natural enemies, or their products, is used to reduce

the damage caused by pests to tolerable levels [3]. Biopestides used include microbial pesticides

such as bacteria, fungi, viruses and protozoans, entomopathogenic nematodes, carnivorous in-

sects and parasites [42]. Utilizing natural enemies, and their products, for the reduction of crop

and plant damage allows maintenance of biodiversity and protection of both farming and hu-

man health [10, 42].

I.4 EPF as biological control agents

There are many advantages of using EPF for biological pest control, including their speci-

ficity, absence of undesirable effects on food chains and on human health, reduced probability

of insects developing resistance and they may persist for long periods in some environments

which could provide long term control effects [27]. Disadvantages of using EPF include that it

takes longer to kill insects with fungi than with chemical insecticides and application needs to be

timed for high relative humidity, low temperature and low pest numbers; Fungal isolates vary

in virulence towards different hosts. Virulent strains generally express spore-bound proteases,

produce and release exoenzymes during penetration of the cuticle and produce toxins during

colonization of target hosts [3]. Furthermore environmental conditions and insect behavior in-

fluence fungal activity and these factors need to be taken into account when selecting suitable

strains and inoculums for biological control [28]. To resume:

1. Benefits of using entomopathogenic fungi

(a) Their residues have no known adverse effects on the environment.

(b) EPF are little or non-toxic to non-target organisms.

(c) They have narrow area of toxic action, mostly specific to a single group or few species.

(d) They can be used in combination with synthetic chemical insecticides.

(e) They are self-perpetuating under ideal environmental conditions.

(f) Reduce chemical insecticide use.

(g) Protects biodiversity in managed ecosystem.

(h) Potential development of pest resistance to EPF is less common or may develop more

slowly due to unique mode of action.
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2. Limitations of entomopathogenic fungi

(a) They need specific environmental conditions to germinate and cause infection.

(b) Can be very costly to produce for commercial use.

(c) They have short shelf life

(d) The pest must be present before the pathogen can be usefully applied thus making

preventive treatment difficult.

(e) Lack of persistence and low rate of infection under challenging environmental condi-

tions.

(f) Often slow acting and require high application rate and thorough spray coverage.

3. Methods for persistence of EPF

When host numbers are low and/or environmental conditions are not favourable, most

EPF species produce resting spores which can arise from asexual reproduction and persist

in soil for long periods of time. For insure a successful control, EPF can be employed under

three broad biological control strategies, namely classical biological control, augmentation

or conservation [27, 28].

(a) Classical biological control

Classical biological control is generally accepted to be the use of natural enemies

against a host which is exotic in an area and has established without its full guild of

natural enemies. Surveys are made in the centre of origin of the insect pest to iden-

tify suitable candidate natural enemies which are then released in its newly expanded

range [41]. The aim of classical biological control is to provide long-term sustainable

and economic control of a target insect pest [41]. Often natural enemies of the tar-

get pest are present at too low a level to limit crop damage, in this instance natural

enemies can be augmented by either inoculation or inundation.

(b) Augmentation

In many situations natural enemies are present in indigenous pest populations,

but they are either too few or active too late to limit crop damage. In these cases

the natural enemies can be augmented. There are two approaches to augmentation;

inoculation and inundation. In an inoculative approach the fungus is applied, often

PhD. Thesis of Djouda Sonkoué Byliole Laboratory of Mechanics, Materials and Structures



I.4 EPF as biological control agents 19

in small amounts, early in the season of the crop, with the expectation that it will

repeatedly cycle (i.e. establish epizootics) in pest populations and spread over a pe-

riod of time, thereby maintaining the pest population below the economic threshold.

Inundative augmentation involves applying the fungus, often in large amounts, for

rapid short-term control with no expectation of secondary infection [41]. In this way,

the fungus is used in a similar way to a chemical insecticide. The terms “mycopes-

ticide” or “mycoinsecticide” have been used to describe this approach. For fungi,

augmentation usually involves adding in vitro-produced mycelia or conidia in aque-

ous suspensions to a field or glasshouse crop, often in combination with synthetic

materials, which are formulation components to enhance persistence and/or infec-

tivity [27, 28, 41]. Hyphomycete fungi have great potential as inundative biocontrol

agents, since they are relatively easy to massproduce and formulate for use with con-

ventional spray application equipment. Several commercial products are available for

insect control in different agricultural operations [41].

Three examples are given on the use of commercial or semi-commercial products

containing isolates of hyphomycete fungi. Verticillium lecanii is used in Europe for

control of aphids and related insects in glasshouses; Beauveria bassiana is available

for use against a wide range of insect pests and largely sold in North America; finally,

Metarhizium anisopliae var. acridum has recently gained approval for use against

locust and grasshopper pests in Africa[27, 28, 41].

(c) Conservation

This strategy involves the modification of farming practices to enhance the activity

of an entomopathogen population [27, 41]. Biological control through conservation

seeks to identify effective indigenous natural enemies and adopt management prac-

tices which conserve and promote them in the field. Management practices which

favor entomopathogenic fungi may include provision of increased moisture, e.g. by

irrigation, reduction in pesticide use and provision of overwintering sites of alterna-

tive hosts. In a looser definition, we can also include the development of “ inaction

thresholds ” which determine the population size of the fungus in addition to the pest

to determine whether the fungus can control the pest population without the require-

ment for insecticides [41].
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I.5 Overview on modelling EPF growth on insect Pest

I.5.1 Review of literature

Entomopathogenic fungi (EPF) play a vital role in insect population dynamics making it the

earliest insect pests control agents. Earliest farmers rely on the actions of predators, pathogens

and host plant resistance for the control of insect pests until the discovery of insecticide. The

first groundbreaking field trials with EPF started with a Russian microbiologist, Elie Metch-

nikoff in 1888, who later became a Nobel Prize winner and named Metarhizium anisopliae [54].

Metchnikoff mass produced fungal conidia on sterilized brewer’s mash and combine cultures

with sand granules for spreading on field crops. Though results were inconsistent, the work

of Metchnikoff ignited curiosity around the world and led to programs in Europe and United

States for experimentation with fungi against insect pests [55]. Boverin, a Beauveria bassiana-

based mycoinsecticide for the control of Colorado potato beetle and codling moth in the former

USSR, was developed in 1965 [56]. The first formal and published proposal for microbial control

came with John LeConte’s suggested use of microsporidia to control grape phylloxera, Daktu-

losphaira vitifoliae (Fitch). The study presented visionary ideas for an effective and economic

alternative method of pest control and paved the way for future scientists to study EPF. Studies

on EPF was quiet after the World War II when affordable synthetic chemical insecticides became

available for insect pests control. Recent developments on EPF show that they can serve as an

integral part of integrated pest management strategy. Many insect pathogenic fungi based bioin-

secticides have been formulated and commercially manufactured [57]. The application of EPF in

biological control is increasing largely because of greater environmental awareness, food safety

concerns and the failure of conventional chemicals due to an increasing number of insecticide

resistant species [58]. These ”ready to use” formulations are available in many developed and

developing countries of Europe, Asian, Africa and the West.

The behavioral response of an insect to a fungal pathogen has a direct effect on the effi-

cacy of the fungus as a biological control agent. In this thesis we take into account two processes

that have a significant effect on the interactions between insects and entomopathogenic fungi:

(a) the ability of target insects to detect and avoid fungal pathogens and (b) the transmission

of fungal pathogens between host insects. The behavioral interactions between insects and en-

tomopathogenic fungi are described for a variety of fungal pathogens ranging from commer-
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cially available bio-pesticides to non-formulated naturally occurring pathogens. The artificial

manipulation of insect behavior using dissemination devices to contaminate insects with ento-

mopathogenic fungi have been described [9]. Models were used in the literature to study the

density dependence and spatial structure in the dynamics of insect pathogens [9]. A simplest

theoretical models describing pathogen dispersal within a host population are based on the pro-

cess of diffusion and provide a moderately good description of dispersal at small spatial scales

has be proposed by G. Dwyer and collaborators [59]. The spread analysis of the contagious dis-

ease caused by Beauveria bassiana (EPF) in pest (Russian Wheat Aphid) population, and the

study of the effect of conidial dispersal of fungal pathogen on the survival of its host have been

carried out [32]. A recent study has proposed a model to explain the dynamical evolution of EPF

on insects by addressing simple life history questions such as the allocation of resources to either

mycelia growth or spore production [1]. The authors assumed that the insect was under a nu-

tritive stress, and their analysis ignored the spatial aspects of the population dynamics and EPF

propagation [1]. However, the results of the nonspatial analysis are usually applied to the case of

spatially homogeneous and well-mixed populations, which implies that the corresponding habi-

tat is sufficiently small, and the impact of spatial dimensions is, therefore, ignored in a somewhat

more exotic case where the individuals of a given species are assumed to remain fixed in space at

any time and in any generation [60, 59]. Spatial simulation can overcome such limitations via the

link of process and scales [61]. Neglecting the spatial component in such an ecological problem

is misleading and thus limits the understanding of ecological relationships which are essential

for the occurrence of spatial patterns, and are also inevitable for studying contagious processes

[62, 48]. In contrast to the experimental literature on viral entomopathogens [16], there are no

studies directly examining heterogeneity in transmission of fungal entomopathogens. Hetero-

geneity in transmission is expected; however, due to individual differences in host susceptibility

observed in the laboratory [3], and the heterogeneous distribution of infective conidia in the field

[38]. Such heterogeneity in natural-enemy attack rates is strongly stabilizing [63], and produces

stable cycles for a range of parameter values in host-pathogen models [24]. However, Hess de-

veloped a host-pathogen model from the classical Levins metapopulation model to explore the

conditions under which hosts and pathogens may persist in a fragmented landscape [64]. In

this paper, they concluded that host dispersal between patches enhanced the spread of disease

and thus could lead to host extinction. Fungus-infected hosts are then, able to disperse and to
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spread disease into new colonies. This is possible for some special fungi such as Strongwellsea

spp. which sporulate from one or two holes on living hosts and disperse conidia. In previous

studies, a framework to consider a generalist pathogen, the abundance of which is maintained in

a second host species which acts as a reservoir has been developed [3]. In contrast to Hess [64],

they concluded that greater landscape connectance enhanced the stability of the host-pathogen

interaction. Habitat corridors allow host species to disperse and escape pathogens, effectively

creating a form of refuge. However, complete connectance is equivalent to a homogenous habi-

tat; and a degree of habitat partitioning actually promotes coexistence of host species by, for ex-

ample, relaxing apparent competition mediated by a shared natural enemy. A general principle

that emerges from these and other studies is that the spatial complexity of population structure

is a source of heterogeneity that can promote the coexistence of hosts and pathogens.

However, the precise dynamics will depend upon the spatial distribution of hosts, the

productivity of patches (in terms of host growth rates), the life history characteristics of the

pathogens and the mobility patterns of hosts and pathogens [3]. Consequently, the response

of fungal entomopathogens to habitat fragmentation would be best explored in specific host

populations using models of intermediate complexity that have been adapted to incorporate

species specific information.

Furthermore, In previous experimental studies, external infectious stages ensured that the

fungi persists during periods of low host population density when the horizontal transmission

is insufficient to maintain the prevalence in the host population [3]. This hypothesized that EPF

could potentially regulate, and cause cycles in insect’s pest’s population. In order to address

important issues about the biological control and pest eradication problems in applied ecology,

numerous mathematical models were suggested [62, 41, 65].

Referring to preview researches, this contagious phenomenon (transmission) among infec-

tious insects and susceptible one are essential for successful of biological control [28, 29, 43, 44, 45,

46]. The movement of entomopathogenic fungi is really important mechanisms for transmitting

to new habitats. This movement is regulating by host and non-host invertebrates to susceptible

hosts [28, 29]. Although, the transmission from infectious insects to susceptible one is less vari-

able, it is more efficient than indirect transmission via conidia deposited on the substrate [29, 25].

Even when the number of infected individuals is low, transmission by contagion is sufficient to

insure the EPF outbreak and lead to high insect mortality [28, 29]. This can be explain by the
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density dependent nature of transmission, high host density lead to high contact rates between

individuals and by then give rise to high number of secondary infection R0 [25, 28].

There is a large body of research shown in the one side that vertical transmission occurs

in very few case and on other side that high vertical transmission rate might make the condition

for efficient EPF growth less rigorous [28, 29, 43]. In addition, it has been shown that horizon-

tal transmission (auto-dissemination) and dispersal are essential for long-term management of

destructive insects, such that investigate the EPF transmission become really interesting since,

it raises questions about dispersion and pathogen outbreak within insects population [66]. This

explained our focus on the horizontal transmission. Previous researches evaluate the effects of

various factors such as temperature, relative humidity, and UV light exposure on the effective-

ness of entomopathogenic fungi and underlying the fact EPF efficiency is strongly influences by

environmental fluctuations [53].

Many theoretical and/or experimental models exploring the potentials of EPF to regulate

insects pests population has been proposed: a patched model investigating the best strategy for

EPF to manage the resource extracted from insect [67], spatial heterogeneity in EPF outbreak

within insect host population [68, 16]. Recently, a model describing the interaction between

EPF and insect immune response has been proposed [69]. The latter model show the impact of

abiotic conditions on the fungi growth within insect body, and have also through Turing pattern

formation show the different morphological state that EPF can take insight the host according to

the allocation of the resource extracted and the ability of insect immune system to protect itself

against the pathogen. Previous researchers shown the interplay between species and/or their

habitat; and predicted the dynamics, the extinction and the persistence of individuals by using

bifurcation and stability analysis theory [70, 71, 72, 73, 74, 75, 76, 77]. The underlying theories

demonstrated relevant results in the context of predators-prey models [70, 71, 72, 73, 74, 75, 76,

77, 78, 79], in context of disease transmission [65, 80], in population dynamics [81] and so on.

Anderson et Al [82], proposed a general host-pathogen model showing the impact of the

pathogenic microorganisms on the dynamics of insects populations. Authors assumed that the

models can be used for all host-pathogen system with minor modification [82]. But this model

cannot well used in the context of biological control (BC) since it only describe the temporal

evolution of host density. This is not stringent for the biological control, which aims to spatially

spread the disease with pest population and then, the transmission. It is also demonstrated in
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previous experimental research that, transmission of EPF to hosts is affected by environmental

conditions [29]. However, there is no mathematical model investigating this point.

Since Reaction-Diffusion model is known to exhibit traveling wave behavior [16]. Previ-

ous studies show that the well know model describing the evolution of the modulated wave is

the Complex Ginzburg-Landau (CGL) equation. It has been shown that this kind of equation

through the nonlinear instability can be used in a large variety of physical systems such as bio-

logical system [17, 18, 19], nonlinear optics, plasma physics, fluid mechanics, nerves cells and so

on [17, 18, 19, 20, 83]. Previous work show in context of nonlinear optics that the periodic mod-

ulation in MI give rise to the parametric instability which is opposed to the Turing instability

observed in absence of the periodic perturbations of the parameters [84, 22, 85, 86]. Theoretical

and experimental investigation on the MI carried out in dispersion oscillating fiber ring cavities

[23, 84, 22, 85, 86].

I.5.2 Stochasticity in epidemiological system

Entomopathogenic Fungi (EPF) are convenient for use in biological control (BC) and in in-

tegrated pest management to reduce crop devastators damages, because it can generate a sec-

ondary infection after the initial spray via the production of spores by first infected individuals

during their interactions, depending on temperature, humidity degree and dispersion by natu-

ral phenomenon such as wind, rain, and interspecific competitions between species [28, 68]. As

mentioned above, the infection of a pest occurs in two ways: (1) direct contamination by spores,

(2) contamination by infected insects (contagious phenomenon) giving an epidemiological prop-

agation [29]. For such diseases, theory has shown that pathogen persistence time in the envi-

ronment is an important determinant of whether an epidemic will occur [87], but applications of

the theory require estimates of persistence probability. Estimating persistence probability from

observations of disease spread in insect population is difficult, on the one side because losses

due to pathogen breakdown may be outweighed by gains due to pathogen particles produced

from new infections [81], making it hard to distinguish persistence from infectiousness. In the

second side due to the stochastic demography (often called demographic noise), defined as a

random variation originating from the discrete nature of individuals and stochastic character as-

sociated to birth, death, infection, immigration, and emigration of insects assuming the physical

environment constant.
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However, in experimental studies accurate measurement of prevalence of the fungi with-

out biased sampling of either susceptible or diseased insects can be difficult and some challenges

are specific to fungal entomopathogens [3]. A truly accurate assessment of prevalence can only

be achieved by sampling all stages of the host in a life table analysis but this is rarely possible.

Two methods are usually employed to estimate prevalence (1) sampling living individuals only,

followed by laboratory incubation until death when infection can be confirmed by phenotypic

characteristics and (2) sampling both living, dead and dying individuals, followed by laboratory

incubation and identification [3].

An important approach to model this is individual-based models (or individual level mod-

els (ILMs)) which include demographic noise effects. This is a useful approach to understand

how biological and ecological systems evolve over time while considering the behavior and the

interactions among species and, deduct the associated emerging patterns when the population

is well mixed [78, 88]. This approach was successfully applied in predicting: rift valley fever

inter-epidemic activities and outbreak patterns [65], predator-prey cycles from resonant ampli-

fication from demographic stochasticity [89, 90, 91], stochastic amplification in epidemics [91],

demographic noise and resilience in a semi-arid ecosystem [80], impact of human mobility on

the periodicity and mechanisms underlying diseases dynamics [92], demographic stochastic-

ity and heterogeneity in transmission of infection [93], and stochastic Turing’s patterns [90, 94].

Clearly any model which hopes to capture these epidemic dynamics needs to include stochastic-

ity. Formulating a stochastic model with random variation is straightforward and depending on

assumptions can qualitatively capture the correct dynamics of both entomopathogenic fungi and

crop devastators. The ILM approach is promising and it was hypothesized that it can provide

good insight when applied in the context of biological control modeling.

I.5.3 Individual based models

Challenge in epidemic modeling is to form a model which captures the observed dynam-

ics but also elucidates the mechanisms behind them [95, 96, 97]. There are many different ap-

proaches which can capture the dynamics, but they offer little understating of the mechanisms.

A major factor in the debate over the role of stochasticity in recurrent epidemics is the domi-

nant modeling paradigm which exists in the field and to a large extent in theoretical ecology

in general. The most popular approach tends to have two steps: first to create a suitable pop-
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ulation level model (PLM), usually in terms of ordinary or partial differential equations which

are deterministic. Next the corresponding individual based model (IBM) is formed, and then

simulated, to investigate any stochastic properties [98, 95]. In this thesis, logically the procedure

should be reversed: real populations are finite and the PLM is always an approximation to the

underlying IBM [96, 99]. Usually it is assumed that the PLM will be accurate in the limit of large

populations, but what is meant by large must first be defined [99]. Clearly the IBM, rather than

the PLM, should be adopted as the starting point of an investigation. Once an IBM has been

defined, it is usually studied using computer simulations. However simulations are still inferior

in at least one respect to the analysis that can be carried out on PLMs: general results valid over

a wide range of models and parameters cannot in general be established. In addition, many in-

sights and a deeper understanding can frequently be obtained from analytical studies than can

be found from computer simulation. Knowledge of the mathematics required to analyze stochas-

tic models has lagged behind that used to study non-linear differential equations. Recently, more

effort has been put into this area [90, 82, 100], although the lack of analytical studies of IBMs has

held back the study of stochastic, and other effects, in models of epidemics. We take the IBM

approach in this thesis, but as well as simulating the models we also use an analytic approach to

derive the emergent population level dynamics. The novel aspect of this work is that we applied

this method in the context of biological control, to predict the behavior of the EPF insight crop

devastator’s population, and calculate the power spectrum of the oscillations analytically and

compare the results with stochastic simulations. We do this by formulating the model as a mas-

ter equation which can then be studied using van Kampen’s expansion in the inverse system size

[99]. The macroscopic dynamics can then be viewed as a sum of a deterministic and a stochastic

part. The value of the analytic approach is that we can more easily deduce the mechanisms be-

hind the dynamics and better understand the interplay between the deterministic and stochastic

forces.

I.6 Existing models describing the Entomopathogenic Dynamics

I.6.1 General Model of Fungal Growth within a Patch [1]

• The model description

Gilchrist and collaborators [1] formulated the within-patch model by first assuming that
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every patch has the same initial density of resources, r0 and that each spore germinates and

leads to the same initial density of mycelial cells, m0. In addition, they assumed that: (1)

The density of fungal mycelium m decays at a constant rate γ.

(2)The fungus extracts resources from the patch at a rate proportional to its own size, m,

and the resource density of the patch, r.

Resources extracted from the patch by the fungus can be allocated to the production of ei-

ther spores (Z in the patch array model) or mycelium cellsmwhich form the hyphae within

the patch. Whereas spore production leads to a direct contribution to the expected spore

production of a patch, p increasing mycelium density, m can lead to an indirect contribu-

tion to p via greater future resource extraction and, subsequently, greater spore production.

The resource allocation level, u (a) , describes the proportion of extracted resources which

are allocated to spore production. Because u (a) is a proportion, it is constrained to be

between zero and one. The model is given by following coupled equations:

dm

da
= m (c1εr (1− u)− γ) ,

dr

da
= −εmr.

(1)

Where a is the fungal age, ε represent the resource extraction rate and c1 is the conversion

rate for resources into mycelia biomass. Assuming that the spore production rate of the

fungus p is proportional to the amount of resources allocated to spore production by the

fungus provides a link between this within patch model and the expected spore production

of a fungus. It follows that, p = uc2εmr , c2 defined the conversion rate for resources into

spore biomass.

• A brief description of limit around this model

Although this model is well described the fungi and resource patch dynamics, we find

a number of limitations. It is not close to the reality to assume that after infection, insect

is under a nutritive stress [28]. The model is derived from the epidemiology literature, the

spread and persistence of a saprophytic fungus within an array of resource patches, the

spread and persistence of a disease within a population of hosts should be consider. In this

model, space scale is not taking into account, forgetting that successful growth appears

when fungi colonize the insect hemocoel. So, neglecting space means there is a critical
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density of uncolonized patches required for a fungal strain to be able to establish itself

within an array of resource patches.

I.6.2 Model of EPF outbreaks

• The model description

To model changes in insect populations whose densities may be driven by disease out-

breaks, Anderson and May [82] used a system of ordinary differential equations based on

standard epidemiological models. In traditional epidemiological models, the host popu-

lation is divided into infected and susceptible classes, with one differential equation rep-

resenting each class [59, 24]. What made Anderson and May’s model innovative was the

introduction of an additional class representing the population of infectious pathogen par-

ticles in the environment. These particles are found in widely divergent taxa of invertebrate

pathogens, including viruses, fungi, and microsporidia [82], and they allow pathogens to

survive in the environment for several decades [28]. Anderson and May’s presented one

of the first simple mathematical models for the dynamics of insect pathogens [82]. Their

model is:
dS

dT
= r (S + I)− νPS,

dI

dT
= νPS − αI,

dP

dT
= λI − (µ+ ν (S + I))P,

(2)

where S is the density of susceptible hosts, I is the density of infected hosts, P is the density

of pathogen particles, r is the reproductive rate of the host, ν is the transmission coefficient,

α is the rate of disease-induced mortality, λ is the rate of production of pathogen particles

by infected hosts, µ is the decay rate of the virus, and T is time.

• A brief description of limit around this model

This model includes only a small number of processes: host density-independent repro-

duction and death, host disease-induced death, pathogen production by infected hosts, the

breakdown of the pathogen in the environment, consumption of the pathogen by the host,

vertical disease transmission and no horizontal disease transmission (contagious process

which is a key transmission in epidemiological disease). The model thus ignores much of

what biologists have discovered can influence the course of a virus or pathogen disease in
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an individual host. For example, contagion affects the susceptibility and the disease out-

break within individual hosts [39]. Moreover, temperature can affect the time between host

infection and death [28, 29]. Since, for insect pathogen, transmission occurs either when

the host accidentally consumes the pathogen on contaminated foliage, or when the host

probably hit infected host; the transmission must be affected by host behavior or migra-

tion.

I.7 Motivation

Agriculture is one of the pillars of the economy of sub-Saharan Africa and particularly of

Cameroon. It is mostly practiced at a small scale and depends largely on family’s labor, with

about 70 Percent of the active population of this country engaged in it. This sector is responsi-

ble for providing food security to both the rural and urban populations of this country via local

production [101]. One can note the high involvement in agriculture in Cameroon especially the

culture of maize and bean which are widely grown crop and one of the most affordable cereals in

terms of market price and cost of seeds in sub-Saharan Africa and the culture of vegetable crops

such as cabbage, carrots, tomatoes, celery, pepper and onions [101, 102]. The cultivation of these

crops usually based in countryside of Cameroon, has brought an increase in agricultural produc-

tion used to feed families and the nation. Among various economic and social benefits, market

gardening has a vital and multifaceted role in providing food security, meeting the demands of

consumer markets, utilizing labor and generating income. The income generated from market

gardening also provides indirect socio-economic benefits for market gardeners, such as greater

access to household items (televisions, chairs, school fees, health care) and other goods. Yield

and quality are central to sustainable agricultural production. If not properly managed, pests

and diseases can dramatically reduce crops (see Fig.5) [101, 102]. However, when evade crop

devastators in the field, people also face problem of preserving harvested food due to the post-

harvest insect-pests some of these stored product insects are acquired from the field to storage

where their populations rapidly build up during storage period. Post-harvest food insect-pests

which include the ”field-to-store” and the ”store” pests are a major constraint to food security

and income generation in Sub-Saharan Africa in general; they cause significant post-harvest

losses in quantity and grain quality degradation [101, 102]. To reduce the damage inflicted by

these different pests, farmers have resorted to using various methods, using an integrated pest’s
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management. However, most farmers in sub-Saharan Africa have limited resources, coupled

with low education and therefore do not have the means or skills and knowledge to obtain and

handle pesticides appropriately. For instance most farmers in most areas of Cameroon when

using insecticides often do not use appropriate protective clothing, nose masks and do not re-

spect pre-harvest interval stipulated by manufacturers. Farmers need to resort to safe and more

environmentally friendly methods of managing pre- and post-harvest pests. This gave reason

for this work to be carried out to develop a mathematical model to better understand the ento-

mopathogenic fungi growth on insect, improve its use and give practical strategies to the farm-

ers.

Figure 5: The first line represent the pre-harvest pests damage on culture: a) Cabbages, b) Toma-
toes, c) maize. The second line illustrates the crop devastators harmful on stored grains: d)-e)
beans, f) and dry maize.

I.8 Conclusion

This chapter has set the biological background for the rest of this thesis, and the existing

literature on the models mimicking the interaction between insects and EPF. Its different limits

and highlight of our contributions have been provided. Moreover, we gave an appearance of the

damage and lost cause by the insect pest, the importance of EPF as biological control agents. The

challenges related to the modeling of the EPF growth insight insect pest in general have been

presented. Finally, we highlighted the problems and challenges encountered in coupling the

insect pest dynamic and epidemiological models. In the next chapter, we presented the different

analytic and numerical approaches used to investigate these different problems in this study.
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CHAPTER II

MODELING AND MATHEMATICAL

METHODS

II.1 Introduction

The entomopathogenic fungi (EPF) regulate insect population as well as their abundance and

the persistence in the surrounding environment [3]. The first challenge is to accurately under-

stand how fungi (EPF) are in both hosts and the surrounding environment. This chapter present

a brief overview on the techniques used to investigate the dynamics of EPF. It is structured in

two main parts: the intra host dynamics of EPF based on a Reaction-diffusion models and on it

epidemiological outbreak within a host population. The chapter is closed by a conclusion.

II.2 Within host dynamics of EPF

II.2.1 Model description

The model presented by Gilchrist et al. [1] was reformulated by introducing functional re-

sponses, logistic growth on resources, and spatial inhomogeneity using the phenomenon of dif-

fusion to characterize the mobility of species. Consideration was given to the most important

morphological states of the fungus, which are the mycelia (M) and the spores (S) [1], while tak-

ing into account the magnitude and characteristics of the quantity of resources (R) that the insect

contains. The system can, thus, be described by the following set of coupled partial differential

equations (PDE):

Rt = DR∇2R− F (R) M + αR

(
1− R

K

)
,

Mt = DM∇2M + C1 (1− q)F (R)M − γM +DMR∇ (M∇R) .
(3)

31
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where t is simply the independent time variable and ∇ is the Nabla operator. α corresponds

to the linear birth regeneration rate of resources and K is defined to be the carrying capacity

[103]. DR and DM are the diffusion rates of resources and mycelium, respectively, on the one

hand, DMR is the nonlinear diffusion rate on the other hand. It is assumed that the density of

mycelium (M) can decay naturally at γ · dt between the instants t and t + dt and that resources

extracted from the insects by fungi are allocated to the mycelium growth and spore production.

The coefficient C1 represents the conversion rate of the resources into mycelium [1], and q · dt

is defined as the probability that the extracted resources are allocated to the sporulation in the

presence of the mycelium between the instants t and t+ dt . The spore production density of the

fungus S, is assumed to be proportional to the amount of resources allocated to spore production

by the fungus, and can be written as:

S = C2qF (R)M.

where, C2 defines the conversion rate of the resources into spores. The infestation function is

represented by a Holling and Powell type-II functional responses defined by [89, 104, 105, 106]

F (R) =
AR

B +R
. (4)

This function F (R) has been considered to model the nonlinear interaction between species,

and more clearly, it is worth the amount of resources extracted per insect’s cell per unit time.

Here, B is the quantity of resources that leads the functional response to half-saturation, and

A is the maximum amount of resources that can be extracted per cell and per unit time. A

corresponds also to the value of F (R) when R is very large. In reality, mycelia are switching to

resources at different moments with different efficiencies. As most of the mycelia usually switch

to resources that are significantly abundant [107], mycelia pressure is expected to increase more

than linearly with resource density over the initial range. Therefore, the nonlinear diffusion term

DMR∇ (M∇R) is applied for modeling the tendency of resources congregation (immune system)

R to protect itself from the attack of the mycelia M . In order to predict with a good accuracy the

behavior of insects during EPFs’ infestation or the efficiency of EPF, this switching behavior of

the mycelia is modeled by a time-periodic function [107, 108, 109, 110, 111].

It is worth mentioning that, in the case of insect–fungi interaction, daily environmen-
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tal conditions such as temperature, relative humidity, and solar radiation affect the insect ther-

moregulation, mycelia growth, and the virulence strategy of fungus entomopathogens [3, 25, 28].

Thus, it becomes obvious that they equally affect the multiplication and the dispersal of infec-

tious propagules within an insect’s body [3]. It has been demonstrated that the diffusion coeffi-

cient of cells’ biology changes with temperature shifts. Because of our focus on mycelia growth,

we neglect the influence of this temperature variation on the resource of insects. A rough analogy

with the transmembrane proteins diffusion coefficient in bacteria dynamics shows that diffusion

coefficient is proportional to temperature and, consequently, time [112, 113]. Such that,

D = D0T (5)

where, T is temperature, and D0 is function of the number of transmembrane domains, the fluid

viscosity, the Boltzmann constant, the membrane thickness, the membrane viscosity and so on.

In view of the fact that living organisms maintain their membranes in a fluid state, diffusion

coefficient can be made time dependent [112, 113]. Since, To study the effect of fluctuating tem-

peratures on insect development, often some researchers have shown that, diurnal temperature

can be approximated by a periodic time dependent function where time is a fractional part of the

day [114, 105]. So, temperature can be modeled as a sinusoidal curve with a period of 24 hours

of the form

T (t) = Tmean +
(Tmax − Tmin)

2
sin

(
2π

24
t

)
(6)

here, Tmean, Tmax and Tmin are mean, maximal and minimal daily temperature, respectively.

t is time in hours. This allow to write diffusion coefficient as potentially vary with respect to

time. A typical example of this is oceanic diffusion [115]. This important phenomenon has

also been taken into account in an ecological model for predator–prey planktonic species, and

in a population pathogen model, in order to study the impact of constant and time varying

diffusion terms on the disease dominated ecological population [115, 116]. In these studies, a

sinusoidal variation of diffusion with respect to time was employed to represent seasonal and

daily variation, environmental factors and various intrinsic factors that are inherently internal in

nature [116]. In our case, the diffusion coefficient of the resources,DR is assumed to be a constant
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and, DM and DMR are functions of time t and are given by the expressions:

DM = DR (d+ b sin (ωt)) ,

DMR = DR (D21 +B21 sin (ωt+ ϕ)) ,
(7)

where d > 1, d > |b| , D21 > 1, D21 > |B21|. The model is defined in a bounded fixed domain.

The following dimensionless quantities are introduced in order to simplify the equation:

∂

∂τ
= γ−1 ∂

∂t
,M = γ

B

A
m,R = γ

B

C1A
r, S = γ2

C2B

C1A
s, b21 = γ

B21B

C1A
, β =

α

γ
,

a = γ
1

C1A
, d21 = γ

D21B

C1A
, x =

√
γ

DR
x′,Ω =

ω

γ
.

(8)

and the master equations (3) become

ṙ = βr
(
1− r

ε

)
− mr

1+ar +∇′2r,

ṁ = (1− q)
mr

1 + ar
−m+ (d+ b sin(Ωτ))∇′2m+ (d21 + b21 sin(Ωτ + ϕ))∇′ (m∇′r) .

(9)

with

s = q
mr

1 + ar
.

The homogeneous Neumann boundary conditions are used, assuming that no external input is

imposed on the system.

II.2.2 Stability analysis and Turing instabilities (case b = b21 = 0)

It was considered that, there exists a set of stationary, spatially uniform solutions of (9). This

allowed us obtain three singular points. The only endemic equilibrium point is

(r0,m0) =

(
1

1− q − a
,
(−1 + q)β (ε (a+ q − 1) + 1)

ε(a+ q − 1)2

)
,

which has a biological relevance only if (q + a) < 1, ε (1− a− q) > 1, conditions that will be

applied throughout the rest of this section. Linearizing the system of (9) in the neighborhood of

the steady state (r0,m0) [117, 118], the following equation is obtained:

wt = Jw +D∇2w, (10)
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where

w =

 r − r0

m−m0

 ,

J =

 −
β
(
a2ε+ (1 + ε (−1 + q)) a− q + 1

)
((−1 + q) ε (a+ q − 1))

1

−1 + q

−β (ε (a+ q − 1) + 1)

ε
0

 ,

and

D =

 1 0

d21m0 d

 .

Since detJ =
β (ε (a+ q − 1) + 1)

ε (−1 + q)
is always negative, the only way for the endemic singu-

lar point to become unstable if tr (J) > 0. The parameter space (a, q) shows the zone where

the steady state is stable and, thus, diffusion-driven instability can develop. To find Turing

instability with spatial wavenumber k, we search eigenvalues λ of the matrix λ of the ma-

trix A (k) = J − k2D (the expressions of J and D are given in above). When the real part

of the dominant eigenvalue λ crosses the imaginary axis for some k ̸= 0, the spatially homo-

geneous equilibrium is destabilized by a periodic perturbation of wavelength 2π/k, and the

perturbations will exponentially grow with time. If each eigenvalue has a negative real part

(Re (λi (k)) < 0, ∀k, i = 1, 2), the homogeneous state is stable: every perturbation will eventually

die out and no pattern will develop. Turing bifurcation happens at the critical value

dc21 =
(a+ q − 1)2

(1− q) detJ

(
−tr(J)d+ 2

√
detDdetJ

)
,

which corresponds to the critical wavenumber

k2c =

√
detJ

d
.

II.2.3 Time-dependent diffusivities (case b ̸= 0 and b21 ̸= 0)

This section analyzes the time-dependent diffusivities using Eq.11 that admits a periodic so-

lution. The stability of the system is studied by superimposing a small perturbation of the form

aj(t) exp(ikx), (j = 1, 2) and by then applying the theory of Floquet [109]. In this expression,

k corresponds to the wavenumber. By spatially linearizing the inhomogeneous system in the
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neighborhood of the endemic equilibrium point, we obtained the following first order system:

at = A(k, t)a, (11)

where a = (a1, a2)
T represents the amplitude of the perturbation affecting r and m respectively;

(.)T stands for a transposed vector, A(k, t) is a 2-dimensional matrix defined by

A (k, t) =

 a11 − k2 a12

a21 −m0k
2 (d21 + b21 sin (Ωt+ ϕ)) a22 − k2 (d+ b sin (Ωt))

 (12)

where the coefficients aij , (i, j = 1, 2) are the elements of the Jacobian matrix given above in

subsection (II.2.2). A(k, t) is periodic with a minimal period of 2π/Ω, Ω being the frequency of

the perturbation. The stability of this system is defined by the eigenvalues of the monodromy

matrix. According to the Floquet theory [119, 120], the solutions of this system a (t) obey the

formula

a (t) = µa

(
t+

2π

Ω

)
,

where µ is any eigenvalue of the constant matrix E transforming a fundamental matrix Φ (t) of

the system into its translate Φ
(
t+ 2π

Ω

)
. The stability of this system is defined by the eigenvalues

of the monodromy matrix E. If µ = 1 then, the system has periodic solutions. For µ < 1 the

system has a stable solutions; and if any eigenvalue µ is such that µ > 1, then an unstable

behavior appears. It is known that the product of characteristic multipliers is given by:

µ1µ2 = exp

 2π/Ω∫
0

trA (k, t) dt

 = b, (13)

with b = exp

{
2π

Ω

(
tr (J)− k2 (1 + d)

)}
< 1. Considering the Cardano’s relationship, the char-

acteristic multipliers of the monodromy matrix are solutions of the equation:

µ2 − h (k,Ω)µ+ b = 0.

Based on the fact that b ∈ [0, 1], the form of h (k,Ω) is not required, only their interval of vari-

ations are needed [109]. However, it exists in the (k,Ω) - plane curves that separate zones
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where the amplitudes have different qualitative behaviors (see Appendix A). Because the func-

tion h (k,Ω) is not explicitly defined, we searched for the (k,Ω) - couples of values describing

these variations by using Fourier series. Let’s assumed that:

 a1

a2

 =
+∞∑

n=−∞

 Ane
ant

Bne
bnt

 . (14)

By substituting (Eq.14) into (Eq.9), and using the identity sin θ =
(
eiθ − e−iθ

)
/2i, we get

n=+∞∑
n=−∞

(
k2 − a11 + an

)
Ane

ant − a12
n=+∞∑
n=−∞

Bne
bnt = 0,

n=+∞∑
n=−∞

(
k2d+ bn

)
Bne

bnt +
n=+∞∑
n=−∞

(
k2m0d21 − a21

)
Ane

ant − i
k2m0b21

2
eiϕ

n=+∞∑
n=−∞

Ane
an+1t

+i
k2m0b21

2
e−iϕ

n=+∞∑
n=−∞

Ane
an−1t − i

k2b

2

n=+∞∑
n=−∞

Bne
bn+1t + i

k2b

2

n=+∞∑
n=−∞

Bne
bn−1t = 0.

(15)

For nontrivial solutions, the determinant of the matrix obtained from Eq.15 must be null. Since

the determinant is infinite, the first and second sections of Eq.15 are divided by
(
k2 − a11 − 4m2

)
and

(
k2d− 4m2

)
respectively, for the convergence. By considering the lower-order Hill determi-

nant (six rows and six columns) and setting it equal to zero, the following nonlinear algebraic

equation is obtained

∆H = F4 (k) Ω
4 + F3 (k) Ω

3 + F2 (k) Ω
2 + F1 (k) Ω + F0 (k) = 0, (16)

where the coefficients Fi (k) (i = 0, .., 4) are given in Appendix B. This equation can be solved

numerically by the bisection method or by the Newton-Raphson algorithm.

II.3 EPF outbreaks within host population

II.3.1 Model description

In this section, an individual-based stochastic model, which considers all essential features of

the interactions between EPF and insect pests, is formulated. This model investigates a biological

control using entomopathogenic fungi to target insect pests population when their size is large
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but finite. This work focused solely on the pathogen particle populations, assuming that they

are implicitly dispersed in the environment by natural phenomena such as wind or rain. An

additional transmission pathway is simple contacts between infected and susceptible insects

dependent to the species of entomopathogenic fungi [29, 51], assuming this can be ignored in

the particular case where spores are produced by insect’s cadavers. It is assumed that insect’s

individuals exist in two discrete states: susceptible, or infected. To simplify the analyses, it

was supposed that for same specie every individual has identical probability for birth, death,

migration or acquiring infection. New insects produced at a birth rate b1 are susceptible to be

infected. They undergo natural death at the rate d1. A susceptible insect is infected by a previous

infected insect or by pathogen particle at probabilities I1 and I2 respectively. Infected insects die

and product either more infective conidia with the probability b2. if environmental conditions

are not favorable spores become inactivate at the rate d3. The carrying capacity N , defined the

maximum number of individuals allowed per site is kept constant. In this framework, n denotes

the number of insects susceptible to be infected S, m the number of infected insects species

I , l the number of pathogen particle species C. A fourth class, E denoting empty (describe

the possibility to receive new individual in the patch) is introduced. It is supposed that the

population dynamics of the system can be essentially described by four processes:

b1

d1 b2 d3

I2

I1 b2

Figure 6: Flow diagram of BC model using EPF on insects pests

1. Infection:

A spore species may come into contact with a susceptible insect giving rise to one infected

pests. This is assumed to take place at a rate I2. A susceptible insect may also be infected

by an infected (that is, from the environment, reproduction) for certain species of ento-

mopathogenic fungi at the rate I1 giving rise to two infected pest. So, to generalize this

study, there are two mechanisms written as: CS → CI and IS → II . The case where

spores emerge on their host cuticle only after insect death, correspond to the case the sec-

ond mechanisms does not exist.
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2. Death:

To describe more realistic epidemiological model, it is assumed that each of the three types

of individuals has its specific death rate. These are represented by S → E and C → E

at the rate d1 and d3 respectively. The death of spore means the resting process (inactive

stage). The death of infected insect is affected to the case 4.

3. Birth:

In regards of the potential of EPF to rapidly kill their host, it is assumed here that there is

not offspring for infected insects. Their only give rise to the new spores generation. Thus,

the mechanisms SE → SS occurs for susceptible insects at the rate b1.

4. Death / Conidia production:

Each death of infected insects give rises to the sporulation. This transition is represents by

I → C and occurs at the rate b2.

II.3.2 Local dynamics

Small population size

The transition probability, per unit time step of the local system of individuals from state σ =

(n,m, l) to the state σ′ = (n′,m′, l′) is noted T (σ′ |σ ). The process occurring in this framework is

conceptualized by the following events:

1. Birth

T (n+ 1,m, l |n,m, l ) = 2b1
n

N
(N − n−m− l) , (17)

2. Infection

T (n− 1,m+ 1, l |n,m, l ) = 2I1nm

N
+

2I2nl

N
, (18)

3. Death

T (n− 1,m, l |n,m, l ) = d1n,

T (n,m, l − 1 |n,m, l ) = d3l.
(19)
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4. Death/ Conidia production

T (n,m− 1, l + 1 |n,m, l ) = b2m. (20)

The factor of 2 in Eqs.(17-18)come from the fact that the choices AB and BA are identical; A,B

illustrate different species. The rate of occurrence (transition rate) depends only on the present

state and could be for a species A defined as the number of this type at the time t divided by

the total number of possibility to draw individuals, Thus the coefficients b1 and Ii (with i = 1, 2)

are scaled by a factor (N − 1), b2 and di by a factor N . The system (17)-(20) is simulated using

Gillespie Algorithm [6].

System size expansion

The master equation describing the time evolution of the system is defined to be a sum of tran-

sition probabilities giving rise to change in the probability distribution function P (n,m, l, t) =

P (σ, t) with time, take the following form [99, 121, 122]

dP (σ, t) /dt =
∑
σ ̸=σ′

(
T
(
σ|σ′

)
P
(
σ′, t

)
− T

(
σ′
∣∣σ)P (σ, t)

)
, (21)

where t represent the time since the first infection, for more details the reader is referred to Ap-

pendix C. This equation is too complicated to solve exactly and as proposed in previous research

[97, 99, 123, 124], it can be analyzed in the limit of large system size. Van Kampen’s approxima-

tion transforms the system to a deterministic equations associated with its stochastic corrections

[97, 99, 123]. Defined in terms of the populations ϕ = lim
N→∞

n/N,φ = lim
N→∞

m/N,ψ = lim
N→∞

l/N ,

these equations are explicitly given by

ϕ̇ = rϕ(1− ϕ
k )− α1ϕφ− β1ϕψ,

φ̇ = α2ϕφ+ θϕψ − b2φ,

ψ̇ = b2φ− d3ψ.

(22)

in these equations, the dot above the average state variable represents the first order derivative

with respect to the time, and the coefficients are given by: r = 2b1 − d1, k = 1 − d1
2b1

, α1 =

2 (b1 + I1) , β1 = 2 (b1 + I2) , α2 = 2I1 and θ = 2I2.
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Stability analysis

It was considered that there exists a set of stationary, spatially uniform solutions of (22). This

system has to be analyzed with the set of initial conditions ϕ > 0, φ > 0 and ψ > 0. This system

possesses three different equilibrium points: (i) E0 = (ϕ = 0, φ = 0, ψ = 0) species free equilib-

rium, (ii) E1 = (ϕ = k, φ = 0, ψ = 0) infected insects and spores free equilibrium, and (iii) and

the only endemic equilibrium point isESIC = (ϕs, φs, ψs), which has a biological relevance if and

only if k (θb2 + α2d3)− b2d3 > 0. This biological relevance condition is thus giving the threshold

for the basic reproduction number defined the expected number of secondary infection caused

by a single infection such that R0 − 1 > 0 where

R0 =
k (θb2 + α2d3)

b2d3
, (23)

obtained from the existence of the endemic equilibrium method. According to previous re-

searches, there exist many analytical methods for evaluating the basic reproduction number.

Such as the next generation method, the survival function [125, 126], the eigenvalues of the ja-

cobian matrix around the free-disease equilibrium [65], the constant term of the characteristic

polynomial of the free-disease equilibrium, the existence of the endemic equilibrium [125, 126],

the number of susceptible at the endemic steady state, the average age of infection, the final size

equation and the intrinsic growth rate [80]. However, the same results can be obtained when

using the constant term of the characteristic polynomial around the free-disease equilibrium, the

average life time. By using the latter method, the basic reproduction number can be decomposed

as follows:

R0 = Rin sec ts
0 +Rspores0 , (24)

, where Rin sec ts
0 is the number of secondary infections from infected insects and Rspores0 corre-

sponds to the number of secondary infections cause by a single spore. The average number of

insects that can be infected by a single infected insect during its life period (1/b2) is α2k. So

a single infected insect will give rise to an average Rin sec ts
0 = α2k/b2. Similarly a new gener-

ated spore will give rise an average new infections Rspores0 = θk/d3 during its life period (1/d3)

time units. Adding both expression, lead to expression Eq.(23). So the equilibrium ESIC can be

rewrite as ϕs =
k

R0
, φs =

d3r (R0 − 1)

R0 (α1d3 + b2β1)
, ψs =

b2r (R0 − 1)

R0 (α1d3 + b2β1)
.
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• The species free equilibrium point E0: The jacobian matrix is triangular matrix with eigen-

values (r,−d3,−b2). Because (r > 0, d3 > 0, b2 > 0). E0 is always a saddle point, so its

stability does not change.

• The infected insects and conidia free equilibrium Es: This point is stable if and only if

0 < −r (kθb2 + kα2d3 − b2d3) ,

0 < −kα2 + b2 + d3 + r, and

0 < −r (kα2 − b2 − d3)− kθb2 − kα2d3 + b2d3 + r (kθb2 + kα2d3 − b2d3) / (−kα2 + b2 + d3 + r) .

or we restrict the analysis here to the case where 0 < (kθb2 + kα2d3 − b2d3) holds true in

condition to the property that all parameter values are positive. Because r > 0, the first

condition can not be satisfy then Es is also a saddle point for the three dimensional equi-

librium point. However the characteristic polynomial obtained from the Jacobian matrix

around the free-disease steady state is a cubic polynomial with coefficient 1, A,B,C, where

A = −kα2 + b2 + d3 + r,B = (A− r) r − (R0 − 1) , C = − (R0 − 1) rb2d3 .

Such that for C = 0 meaning that R0 = 1 the system exhibits transcritical bifurcation and

is stable for R0 < 1.

• The epidemic equilibrium: The characteristic polynomial obtained from the Jacobian ma-

trix around the endemic steady state is a cubic polynomial with coefficient 1, A,B,C. So,

for A > 0, B > 0 and C > 0 for R0 > 1 the steady state exists. Thus the polynomial equa-

tion has no root which is positive or zero (Descartes’ rule of sign). This equation will only

have negative roots or complex roots with negative real part if and only if AB − C > 0

according to the (Routh-Hurwitz criteria). Thus the system is stable about the infectious

equilibrium point ESIC whenever it exists and AB − C > 0 (condition we plot to obtain

the stability diagram), with A = d3 +
kθb2 + d3r

d3R0
> 0, for R0 > 1

B =
r

R0

(
α1b2d3 (R0 − 1)

α1d3 + b2β1
− b2d3α2

θb2 + α2d3
+ b2 + d3

)
,

C =
rb2d3 (R0 − 1)

R0
for R0 > 1. If C = 0 thus R0 = 1, the system exhibits transcritical

bifurcation and the endemic point is stable for R0 > 1.

In our model, in addition to AB − C > 0. when R0 < 1, the endemic equilibrium point do not

have a biological relevance and the EPF population density will die out with time and cannot

reduce the pest population; whereas for R0 > 1, the introduction of EPF can lead to a targeted
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spread, the endemic equilibrium point exists and can be stable/unstable. Because R0 and I1

are proportional, R0 can be sufficient to describe dynamics of the systems [47]. The sensitivity

analysis of the basic reproduction numberR0, is conducted by a Latin hypercube sampling (LHS)

on combination with a partial rank correlation coefficient (PRCC) [127]. This method is useful

to identify parameters that affect the quantity . The input models parameters k, θ, α2 or I1, b2, d3

from whichR0 depends are randomly and uniformly distributed between their lower and higher

values into Q-equal probability intervals and subsequently used to compute the LHS matrix

of five (number of input parameters) columns with Q lines. The basic reproduction number

R0 is evaluated as a corresponding output matrix. These matrices are rank - transformed to

calculate the partial rank correlation coefficient (PRCC) which gives the sensitive index of R0

associated to each parameter [127]. The parameters which have the sensitivity indexes closer to,

±1 should significantly affect R0. The more a parameter is tending to minus one, the more it has

a reductive effect on R0 and the parameters for which the PRCC is close to one increase the basic

reproduction number.

Probability of extinction and coexistence

In epidemic models, the main concern is to find conditions under which a pathogen agent in-

troduced into a community will develop into a large outbreak, while coexistence of populations

was never observed [5]. It has been shown that the epidemic outbreak is not always guaranteed

by having R0 greater than one: stochastic extinction can occur during the period immediately

following the introduction, when there are few infectious individuals within the system [93, 6].

Rather than the major outbreak that would be expected based on the behavior of the determin-

istic model, only a minor outbreak might occur. During this early period after EPF introduction,

little depletion of susceptible insect will have occurred and so invasion probabilities can be de-

rived using the linear model that arises by assuming that the populations are entirely susceptible

[93, 122]. A more challenging question is to calculate the probability that the infection persists

or extinct through the trough that follows the initial epidemic [5]. It is noteworthy to mention

that, infection of insect pest occurs in two range: one is the transmission of infection by direct

contact between infected and susceptible insects [29]. The other is refers to the transmission

from pathogen particle (spore) to susceptible individuals. In many disease models, it is assumed

that a constant rate of death for the hosts and a constant death rate for resting spore, leading
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to the duration of infection, for both hosts and pathogen, being exponentially distributed [122].

Assuming the secondary infections arise independently at a constant rate over these infectious

periods [93, 122], extinctions probabilities taken as s1 and s2 for host and EPF respectively, start

from a single individual of the same type, is found by calculating the smallest positive root of

the equationG1 (G2 (s1)) = s1 andG2 (G1 (s2)) = s2, respectively. WhereGi, (with i=1,2) denotes

the probability generating functions (PGF). The subscript 1 is used for insect species and 2 for

pathogen particle. Their distributions of secondary infections of each type can be summarized

by the two generating functions, Gi (s1, s2) =
∑
k1,k2

sk11 s
k2
2 P (Xi1 = k1, Xi2 = k2). Here, i is equal

to 1 or 2 and Xij is the random variable giving the number of secondary infections of the type j

that arise from an individual of type i.

Assuming that the number of spores it very small, thus l = 1 ; A spore only infects healthy

insects according to a Poisson process with the intensity θ during their on life period 1/d3 in

which it exponentially distributed. In this case, the probability of generating function offspring

producing by a single spore during on infectious period t is estimated as:

G2 (s1, s2) =
∑
k1,k2

sk11 s
0
2P (X21 = k1, X22 = 0) since there is not a transmission between spores.

This given: G2 (s1) =
∑
k1

sk11 P (X21 = k1) =
∑
k1

sk11

+∞∫
0

d3e
−d3t

(
(θt)k1e−θt

k1!

)
,

= d3
+∞∫
0

e−(d3+θ)t

(
+∞∑
k1=0

(s1θt)
k1

k1!

)
dt,

= d3
+∞∫
0

e−(d3+θ−s1θ)tdt.

G2 (s1) =
1

1 +R12 (1− s1)
, (25)

with R12 =
θ

d3
.

In addition, an infected pest infects a susceptible and also give rise to new propagules accord-

ing to a Poisson process at the intensity α2 and b2 respectively, within it infectious period 1/b2.

Take a single infected insect in their exponential distributions, we have found the probability of

generating function as:

G1 (s1, s2) =
∑
k1,k2

s01s
k2
2 P (X11 = 0, X12 = k2) ,
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rearranging the latter, the following expression is obtained:

G1 (s2) =
1

1 +R21 (1− s2)
, (26)

where R21 =
b2 + α2

b2
.

In stochastic models the terms R12 and R21 denoted the distributions of secondary infections for

EPF-to-insect and insect-to-EPF transmission respectively. The probability of extinction follow-

ing introduction of a single spore is found by calculating the positive roof of equationG1 (G2 (s1)) =

s1, which corresponds to

s1 =
1

1 +R21

(
1− 1

1 +R12 (1− s1)

) ,
(27)

that lead to

(1− s1) [1 +R12 −R12 (1 +R21) s1] = 0,

which is a square polynomial in s1, note that s1 = 1 is always a solution. The other solution is

always positive and is smaller than 1 if and only if R12R21 is greater than 1. Estimation of the

extinction probability following the introduction of a single spore required to find the smallest

non-negative root of G1 (G2 (s1)) = s1 after rearranging the above equation and solving, we

obtained two positive solutions, s1 = 1 is always a solution. The other solution is given by

s1 =
1 +R12

R12 (1 +R21)
, (28)

Sensitivity analysis

Sensitivity analysis (SA) is a method for quantifying uncertainty in any type of complex

model. The objective of SA is to identify critical inputs (parameters and initial conditions) of

a model and quantifying how input uncertainty impacts model outcome(s). When input fac-

tors such as parameters or initial conditions are known with little uncertainty, we can examine

the partial derivative of the output function with respect to the input factors. This sensitivity

measure can easily be computed numerically by performing multiple simulations varying input

factors around a nominal value. This technique is called a local SA because it investigates the

impact on model output, based on changes in factors only very close to the nominal values. In
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biology, input factors are often very uncertain and therefore local SA techniques are not appro-

priate for a quantitative analysis; instead global SA techniques are needed. These global tech-

niques are usually implemented using Monte-Carlo(MC) simulations and are, therefore, called

Sampling-based methods. In this study sensitivity analysis is performed with LHS and par-

tial rank correlation coefficient (PRCC) methods, The LHS method assumes that the sampling is

performed independently for each parameter, although a procedure to impose correlations on

sampled values has also been developed [5]. The sampling is done by randomly selecting values

from each pdf (Fig. 7(A)). Each interval for each parameter is sampled exactly once (without

replacement), so that the entire range for each parameter is explored (Fig. 7(A)). A matrix is

generated (which we call the LHS matrix) that consists of N rows for the number of simulations

(sample size) and of k columns corresponding to the number of varied parameters (Fig. 7(B)).

The LHSmatrix (X) is then built by assembling the samples from each pdf. Each row of the LHS

matrix represents a unique combination of parameter values sampled without replacement. The

hypothetical model (in our case a parameter) is then evaluated, the corresponding output gener-

ated and stored in the matrix (Y). Each matrix is then rank transformed (XR and YR). N model

solutions are then simulated, using each combination of parameter values (each row of the LHS

matrix, (Fig. 7(B))). The rank-transformed LHS matrix (X) and the output matrix (Y) are used

to calculate the CCPearson, Spearman or rank correlation coefficient (RCC) and the partial rank

correlation coefficient (PRCC)(Fig7(C)). Correlation provides a measure of the strength of a linear

association between an input and an output. A CC between xj and y is calculated as follows:

rxj ,y =
Cov (xj , y)√

V ar (xj)V ar (y)
=

N∑
i=1

(xij − x̄) (yi − ȳ)√
N∑
i=1

(xij − x̄)2
N∑
i=1

(yi − ȳ)2

, (29)

with j = 1, 2..., k and rxj ,y varies between −1 and 1, Cov (xj , y) represents the covariance be-

tween xj and y while V ar (xj) and V ar (y) are respectively the variance of xj and y. If the data

xj and y have not been analyzed, then the coefficient r is called sample or Pearson CC (Fig7(C)).

If the data are rank transformed, thus the result is a Spearman or rank correlation coefficient

(also refers to Fig7(C)). Partial correlation characterizes the linear relationship between input xj

and output y after the linear effects on y of the main inputs are discounted. note that, the PCC

between xj and y is the CC between the two residuals
(
xj −

⌢
xj
)

and
(
y − ⌢

y
)
, where ⌢

xj and ⌢
y
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Figure 7: Scheme performed for sensitivity analysis with LHS and PRCC methods [5],(A) Mathe-
matical model specification (dynamical system, parameters, output) and the corresponding LHS
scheme. Probability density functions (pdfs) are assigned to the parameters of the model (e.g.
a, b, c). We show an example with sample size N equal to 5. Each interval is divided into five
equiprobable subintervals, and independent samples are drawn from each pdf (uniform and
normal)The subscript represents the sampling sequence.
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are the following linear regression models:


⌢
xj = a0 +

k∑
p=1

apxp,

⌢
y = b0 +

k∑
p=1

bpxp.

(30)

with p ̸= j

similarly to PCC, partial rank correlation (PRC) performs a partial correlation on rank-transformed

data: xj and y are first rank transformed, and then the linear regression models defined ⌢
xj and

⌢
y are built. PRCC is a robust sensitivity measure for nonlinear but monotonic relationships be-

tween xj and y, as long as little to no correlation exists between the inputs.

Periodicity and stochastic amplification

As mentioned previously, the ILM model discussed here lead to the existence of stochastic

cycles (also called quasi-cycles) because it does not have a single period, but a distribution of

period centered on an average value corresponding to the maximal amplitude of fluctuations.

Therefore, a power spectrum density (PSD) of frequency distribution is essential for adequately

capture the quasi-periodicity. A description of the stochastic fluctuations of the system requires

consideration of higher-order terms in the Van Kampen expansion. In particular, a very good

approximation is obtained only if the next to leading order is considered. In this way, we obtain

linear Fokker-Planck equations given by:

∂Π

∂t
= −

3∑
i,j=1

aij
∂ (ζjΠ)

∂ζi
+

1

2

3∑
i,j=1

bij
∂2Π

∂ζi∂ζj
. (31)

The coefficients aij and bij are given in appendix. The corresponding Langevin’s equations for

the temporal evolution of the normalized fluctuations of susceptible, infectious individuals and

pathogen particle around equilibrium values (ξ, η, ϑ respectively) are

dζi
dt

=

3∑
j=1

aijζj + λi (t) , (i, j = 1, 2, 3) . (32)

Where ζi (i = 1, 2, 3) denotes the random deviation of system from the mean fields and λi (t) (i = 1, 2, 3)

the Gaussian white noise with zero mean and a correlation function given by ⟨λi (t)λj (t′)⟩ =

bijδ (t− t′) .
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By Fourier transformation of these Langevin’s equations, we are able to analytically cal-

culate the power spectral densities (PSD) corresponding to the normalized fluctuations, which,

is no longer dependent on the community size N . After averaging, the three expected forms of

these PSD of susceptible pests, infected pests and spores around endemic equilibrium are given

by

Pϕ (ω) =
〈
|ξ (ω)|2

〉
=
b11ω

4 + Γϕω
2 + κϕ

|D (ω)|2
,

Pφ (ω) =
〈
|η (ω)|2

〉
=
b22ω

4 + Γφω
2 + κφ

|D (ω)|2
,

Pψ (ω) =
〈
|ϑ (ω)|2

〉
=
b33ω

4 + Γψω
2 + κψ

|D (ω)|2
.

(33)

The complete derivations of these PSDs and detailed descriptions about the functions κi, bij ,Γi

and D (ω) depend on model parameters and defined in appendix C.

II.3.3 Spatial dynamic

Here, It is supposed that the population dynamics of the system cannot be only described in a

local space. Thus to make the model more realistic we also suppose that individuals are allowed

to migrate to nearest-neighbor patches if space is available. In addition to the processes describe

in the non-spatial model, an individual is moved from the patch i to another patch label j at the

constant rate as:

• Susceptible pest: SiEj → EiSj , EiSj → SiEj at the rate µ1.

• Infected pest: IiEj → EiIj , EiIj → IiEj at the rate µ2.

• A given spore can be displaced by rain, wind,or spray by another insect, animal: CiEj →

EiCj , EiCj → CiEj at the rate µ3.

Small population size

In this section, we proposed a spatial stochastic version of the model. The mechanisms cor-

responding to birth, death, and infections describe above are assumed to be local that is only

involved in a particular site, here the possibility of migration between nearest-neighbor patches

is taken into consideration. It is also assumed that the inhabited patches, labeled by i = 1, ...,Ω,

and are defined as sites of a d-dimensional hypercubic lattice [121]. For applications, we are
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interested in the case of a square lattice in two dimensions but we prefer to work with general

d. One reason is that it is not any more complicated to do so, another justification is because

our stochastic simulations have been carried out in d = 1 in order to achieve higher accuracy.

Each patch possesses a finite carrying capacity, N which is the maximum number of individ-

uals allowed per site. The number of susceptible, infected pests and spores in the patch i will

be denoted by ni,mi and li respectively. There are therefore (N − ni −mi − li) empty or vacant

spaces,E, in the patch i . The transitions rate is given in two groups: the local part, corresponds

to the transition probability given in Eqs. (17)-(20) adding a subscription i and scaled by Ω. And

the migratory part is given by:

T (ni + 1, nj − 1 |ni, nj) =
µ1nj (N − ni −mi − li)

zΩN
,

T (ni − 1, nj + 1 |ni, nj) =
µ1ni (N − nj −mj − lj)

zΩN
,

T (mi + 1,mj − 1 |mi, mj) =
µ2mj (N − ni −mi − li)

zΩN
,

T (mi − 1,mj + 1 |mi, mj) =
µ2mi (N − nj −mj − lj)

zΩN
,

T (li + 1, lj − 1 |li, lj) =
µ3lj (N − ni −mi − li)

zΩN
,

T (li − 1, lj + 1 |li, lj) =
µ3li (N − nj −mj − lj)

zΩN
.

(34)

Here, z denotes the coordination number of the lattice that is the number of nearest neighbors of

any given site. It needs to be included since it represents the choice of nearest neighbor j , once

a patch i has been chosen.

System size expansion and stochastic amplification

The master equation is rewritten in two main contributions: the first part defined local mech-

anisms which correspond to the form given in non-spatial case adding a subscript iwith a scaled

Ω calling T loci and the second one take migration into consideration Tmigij .

Tmigij =
(
ε−1
xi εxj − 1

)
T (ni + 1, nj − 1 |ni, nj) +

(
εxiε

−1
xj − 1

)
T (ni − 1, nj + 1 |ni, nj)

+
(
ε−1
yi εyj − 1

)
T (mi + 1,mj − 1 |mi, mj) +

(
εyiε

−1
yj − 1

)
T (mi − 1,mj + 1 |mi, mj)

+
(
ε−1
zi εzj − 1

)
T (li + 1, lj − 1 |li, lj) +

(
εziε

−1
zj − 1

)
T (li − 1, lj + 1 |li, lj) .

(35)
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Such that

dPn,m (t)

dt
=

Ω∑
i=1

T loci Pn,m (t) +
∑
j∈i

Tmigij Pn,m (t)

, (36)

where the notation j ∈ i means that j is the nearest neighbor of i. The deterministic models is

written as the 3Ω macroscopic equations given by

ϕ̇ = rϕ(1− ϕ
k )− α1ϕφ− β1ϕψ + µ1

(
∇2ϕ+ ϕ∇2φ− φ∇2ϕ+ ϕ∇2ψ − ψ∇2ϕ

)
,

φ̇ = α2ϕφ+ θϕψ − b2φ+ µ2
(
∇2φ+ φ∇2ϕ− ϕ∇2φ+ φ∇2ψ − ψ∇2φ

)
,

ψ̇ = b2φ− d3ψ + µ3
(
∇2ψ + ψ∇2ϕ− ϕ∇2ψ + ψ∇2φ− φ∇2ψ

)
.

(37)

where i = 1, ...,Ω and the symbols (.) and ∇2 denote the time derivation (scaled τ = t/Ω) and

Laplacian operator (see appendix E for more details). The power spectral density is obtained by

replacing aij by αk,ij , and bij by Bk,ij in Eq.33, Details on αk,ij and Bk,ij are given in appendix E.

II.4 Transmission of disease between hosts (for some specific EPF)

II.4.1 Model description

The model presented by Anderson and May [82] describe the temporal changes in host and

disease transmission based on the fact that, many pathogens undergo latent period within host

before starting to produce transmission stage for horizontal transmission or infect their unborn

offspring (vertical transmission) [82]. In our case where the vertical transmission is neglected,

the new born is count in susceptible class. By adding spatial spread of infectious host the model

can be rewrite as
∂X

∂t
= a (X +M + Y )− bX − βXY,

∂M

∂t
= βXY − (b+ v)M,

∂Y

∂t
= vM − (α+ b)Y + µ

∂2Y

∂x2
.

(38)

WhereM (t, x) denotes the latent class (infected but not yet infectious) at the time t in the location

x, Y (t, x) represents the number of infected insects spreading the infection. Insects are assumed

to pass from latent into infectious class at a constant rate v. Susceptible Insects X (t, x) become

infected at the rate β, the birth process whereby new born are recruited in susceptible class

occurs at the rate a, note that the offspring of infected hosts pass directly into infected class if
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it is infected. Natural death are also assumed to die at the rate b, whereas µ is the spreading

coefficient of infectious insects see Fig.(8). With some transformation Eq.38 takes the form

Figure 8: Flow diagram of disease transmission between insects pests

∂2Y

∂t2
− (λ1X + λ2)Y − λ3

∂2Y

∂x2
− λ4X − λ5

∂X

∂t
− µ

∂3Y

∂x2∂t
= 0,

∂2X

∂t2
+ (γ1X+γ2)Y+(βY+γ3)

∂X

∂t
+

(
β
∂Y

∂t
+γ4

)
X−a∂Y

∂t
= 0.

(39)

where

λ1=
βv (a−α−2b−v)

a
, λ3= − (α+ b)µ, γ2= −a (b+ v) , λ5= −v (α+2b+ v)

a
,

λ4 =
v
(
aα+ 2ab+ av − αb− 2b2 − bv

)
a

, γ4 = −ab− av + b2 + bv,

γ1= −β (a− b− v) , γ3= −a+ 2b+ v, λ2=α
2 + 2αb+ αv + b2 + 2bv + v2.

Global analysis is really difficult by using linear methods or direct numerical simulation.

To better analyze this equation, we need to transform and make some simplification to obtain a

most useful and manageable equation. This can be done using multiple scale method [17, 18, 19,

128]. The idea is to introduce fast and slow variables into the equation Eq.39. In order to find

solution in a weakly dissipation medium, the parameters λ2, λ5, µ, a, and γ3 are also considered

to be perturbed at the order ε2 such that

∂2Y

∂t2
−
(
λ1X + ε2λ2

)
Y − λ3

∂2Y

∂x2
− λ4X − ε2λ5

∂X

∂t
− ε2µ

∂3Y

∂x2∂t
= 0,

∂2X

∂t2
+ (γ1X + γ2)Y +

(
βY + ε2γ3

) ∂X
∂t

+

(
β
∂Y

∂t
+ γ4

)
X − ε2a

∂Y

∂t
= 0.

(40)

Let assume a low-amplitude oscillation of the density of the individuals, such that

Y → εφ,X → εψ. (41)
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Where, ε << 1 is a small perturbation. Using Eq.41, Eq.40 becomes

−ψφελ1 − φε2λ2 − ε2λ5
∂ψ

∂t
− ε2µ

∂3φ

∂x2∂t
− λ4ψ − λ3

∂2φ

∂x2
+
∂2φ

∂t2
= 0,(

∂φ

∂t

)
ψβε− ε2a

∂φ

∂t
+ ψφεγ1 + φ

(
∂ψ

∂t

)
βε+

(
∂ψ

∂t

)
ε2γ3 + ψγ4 + φγ2 +

∂2ψ

∂t2
= 0.

(42)

II.4.2 Multiple scale expansion

In order to study the modulation of a wave plane caused by nonlinear effects, we apply the

method of multiple scale expansion to transform Eq.42. In this method one proceeds further by

making a change of variables according to the new time and space scales Xi = εix and Ti = εit,

ε is a small perturbation, thus we obtain a perturbation series of operators from independent

variables:
∂

∂t
→ ∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
, (43)

∂

∂x
→ ∂

∂X0
+ ε

∂

∂X1
. (44)

We look for modulated wave solution of the form

φ = Aeiθ +A∗e−iθ + ε
(
C +Be2iθ +B∗e−2iθ

)
+O

(
ε2
)
,

ψ = Eeiθ + E∗e−iθ + ε
(
D + Fe2iθ + F ∗e−2iθ

)
+O

(
ε2
)
.

(45)

Where the amplitudes A,B,E, F as well as their respective corresponding complex conjugates

A∗, B∗, E∗, F ∗ and C,D are functions of (T1, T2, X1); and θ = (kX0 − ωT0), where k is the wave

vector and ω is the frequency of the wave. Substituting Eqs. (43),(44), and (45) into Eq. (42) and

grouping terms in order of perturbation ε0, ε1 and ε2, we obtain the following results:

At the zeroth-order of approximation ε0, annihilation of terms in e±iθ gives the dispersion rela-

tion of the form

ω4 +
(
−k2λ3 − γ4

)
ω2 + k2γ4λ3 + λ4γ2 = 0, (46)

and

E =
γ2A

ω2 − γ4
. (47)

The dispersion relation gives the form in Fig. 9 if and only if k2 (α+ b)µ < v (α+ 2 b+ v).
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Figure 9: Dispersion relation. Using the parameters values:a = 0.5, b = 0.02, v = 0.01, µ =
0.5, α = 0.25, β = 0.25.

The first order of approximation ε1, annihilation of terms in e±iθ and e±2iθ gives respectively,

C = −2
A∗A (γ1λ4 − γ4λ1)

(ω2 − γ4)λ4
, (48)

D = −2
λ1γ2AA

∗

(ω2 − γ4)λ4
, (49)

∂A

∂T1
+

(
kλ3
ω

)
∂A

∂X1
= 0, (50)

∂E

∂T1
= 0, (51)

B = −
γ2A

2
(
2 iβ ω λ4 − 4ω2λ1 − γ1λ4 + γ4λ1

)
(16 k2ω2λ3 − 4 k2γ4λ3 − 16ω4 + 4ω2γ4 − γ2λ4) (ω2 − γ4)

, (52)

and

F = −
γ2A

2
(
8 iβ k2ω λ3 − 8 iβ ω3 − 4 k2γ1λ3 + 4ω2γ1 − λ1γ2

)
(16 k2ω2λ3 − 4 k2γ4λ3 − 16ω4 + 4ω2γ4 − λ4γ2) (ω2 − γ4)

. (53)

At the second order of perturbation, the terms e±iθ gives the following relation

iAk2µω − iEωλ5 + CEλ1 + λ1DA+A∗Fλ1 + E∗Bλ1

+λ2A+
∂2A

∂X1
2λ3 + 2iω

∂A

∂T2
− ∂2A

∂T1
2 = 0.

(54)

Using the new scales ξi = Xi − vgTi and τi = Ti, with velocity vg and the above relation (Eq.54),
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we get the modified complex Ginzburg–Landau equation.

i
∂A

∂τ2
+
P

2

∂2A

∂ξ21
+Q|A|2A+

1

2
iRA = 0 (55)

where the coefficients P , Q and R are given by

P = −
λ3
(
k2λ3 − ω2

)
ω3

, Q = Qr + iQi, R = Rr + iRi (56)

Qr, Qi, Rr and Ri represent the real and imaginary parts of the non-linearity coefficient and the

dissipation coefficient respectively.

Qr =

(
−(−δγ4 + ρλ4) γ2δ

ω(ω2 − γ4)
2λ4

− δ2γ2
ω (ω2 − γ4)λ4

)
β2

+
β2δγ2

(
2k2ω2ρλ3 − 2k2ργ4λ3 − 2ω4ρ+ 5/2δω2γ2 + 2ω2ργ4 − δγ2γ4 + 1/2ργ2λ4

)
(ω2 − γ4)

2 (16k2ω2λ3 − 4k2γ4λ3 − 16ω4 + 4ω2γ4 − λ4γ2)ω
,

Qi = −
γ2β

2δ
(
4 k2ω2λ3 − 4 k2γ4λ3 − 4ω4 + 4ω2γ4 + λ4γ2

)
(ω2 − γ4)

2 (16 k2ω2λ3 − 4 k2γ4λ3 − 16ω4 + 4ω2γ4 − λ4γ2)
,

Rr = µk2 − λ5γ2
ω2 − γ4

,

Ri =
λ2
ω
.

(57)

Without loss the generality, Eq.55 can be rewritten as Eq.58.

i
∂A

∂τ2
+
P

2

∂2A

∂ξ21
+ β (τ2)Q|A|2A+

1

2
iRA = 0, (58)

where β (τ2) is periodic time dependent infection rate defined by the following equation

β (τ2) = βav + βm sin

(
2π

T
τ2

)
(59)

The periodic modulation modeled the impact of daily environmental condition on the EPF growth,

germination, virulence and infection [29, 25, 3]. The variations of constants P/Qr and PQr with

respect to the wave vector k are represented in Fig. 10. Since the dispersion coefficient is real,

if the infection rate (β2) is constant or positive, the modulation instability depends on the sign
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of PQr. The system is then stable for negative values of PQr, while it is unstable for positive

values.

Figure 10: Modulational instability According to Benjamin-Feir instability criterion (a) P/Qr, (b)
PQr. Using the parameters values in Fig. 9 with ω = 0.2612.

II.4.3 Linear stability analysis

The steady states of Eq. (58) can be destabilize through the exponential growth ∝ exp (g (k) ξ1)

of the periodic modulations where k defined the spatial frequency. This perturbation can lead

to parametric instability or Turing instability. We thus distinguished two cases meaning two

types of modulation instability, in one side uniform transmission for all insects; this case is char-

acterized by Turing instability. The other case refers to the parametric instability links to the

parametric resonance due to the seasonal forcing.

For both case we considered the evolution of the perturbed solution A (ξ1, τ2) = A0 +

η (ξ1, τ2), with the assumption |η| << |A0| and writing η = p+ iq with p and q real functions, we

obtain the following linear system:


− ∂q

∂τ2
+
P

2

∂2p

∂ξ1
2 −

(
β (τ2)QiA0

2 +
Rr
2

)
q +

(
3β (τ2)QrA0

2 − Ri
2

)
p = 0,

∂p

∂τ2
+
P

2

∂2q

∂ξ1
2 +

(
β (τ2)QrA0

2 − Ri
2

)
q +

(
3β (τ2)QiA0

2 + Rr
2

)
p = 0.

(60)

Defining the perturbations as

p̃ (ξ1, τ2) =
1√
2π

∫
p (ξ1, τ2) e

ikξ1dξ1, q̃ (ξ1, τ2) =
1√
2π

∫
q (ξ1, τ2) e

ikξ1dξ1.

and using the Fourier transform of this system in the space variable ξ1, we obtain the following
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ordinary differential equation in frequency domain:

∂

∂τ2

 p̃

q̃

 =

 −h1 (τ2) −h2 (τ2)

g1 (τ2) −g2 (τ2)


 p̃

q̃

 , (61)

with h1 (τ2) = 3β (τ2)QiA0
2 + 1/2Rr, h2 (τ2) = β (τ2)QrA0

2 − 1/2Ri − 1/2Pk2, g1 (τ2) =

3β (τ2)QrA0
2 − 1/2Ri − 1/2Pk2, and g2 (τ2) = β (τ2)QiA0

2 + 1/2Rr.

The case of uniform disease infection (βm = 0)

In the case of uniform disease transmission (β2 (τ2) = βav and βm = 0). The underlying case

refers to the situation where the impact of environmental conditions on the EPF development is

neglected, meaning that the infection rate is the same at each time. Here, Eq.(61) is similar to a

damped harmonic oscillator. And the eigenvalues with respect to the time variations is given by

λ1,2 = −2βavQiA0
2 − 1/2Rr ± iΩav (62)

where

Ωav =

((
Pk2

2 − 2βavQrA0
2 + Ri

2

)2
− βav

2A0
4
(
Qi

2 +Qr
2
))1/2

,

is the average angular frequency. This expressions are used to determine the condition for the

modulation instability. When Qr is sufficiently high Ωav can become imaginary for certain range

of k. In this case if |Ωav | > 2βavQiA0
2 + 1/2Rr the perturbations grow exponentially with the

growth rate

g (k) = −2βavQiA0
2 − 1/2Rr +Ωav (63)

The case of periodically modulated disease infection (βm ̸= 0)

We now consider the impact of all environmental fluctuations of EPF infection, such that the

infection rate β (τ2) is modulated by periodical forcing referring to the temperature fluctuations.

The stability analysis corresponds here, to the stability analysis of Eq.(61) based on Floquet The-

ory since the system is τ2-periodic with the period T . Thus, the stability depends on the so-called

characteristic exponents or Floquet multipliers. The later are obtained by constructing the fun-
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damental matrix M defined by

 p̃ (T )

q̃ (T )

 = M

 p̃ (0)

q̃ (0)

 , (64)

using identity matrix as initial conditions. According to this theory, the dynamics is unstable

only if there is one eigenvalue of the matrix M (Floquet multipliers) satisfying |λ| > 1. However,

the equation (Eq. 61) cannot be solved analytically and some approximated results can be found,

and provide an overview on the stability for small variation of βm which, is necessary holds valid

regardless of the specific shape of the forcing [129]. To do so, we considered the unperturbed

case (β2 (τ2) = βav, βm = 0), When switching on the periodic infection rate (for small βm) the

eigenvalues are close to the eigenvalues in the unperturbed case. Remark that, (Eq. 61) is similar

to the damped harmonic oscillator. By using an adequate change of variables, after integration,

we obtained the eigenvalues of the Floquet map

λav = e±iTΩav , (65)

Under resonant condition, Ωav = mπ/T and the corresponding spatial frequency is given by

km =

(
1

P
(4A0

2Qrβav −Ri + 2(βav
2A0

4
(
Qi

2 +Qr
2
))

+
π2m2

T 2
)1/2))1/2, (66)

and defined the condition for parametric resonance. We then distinguished two case: on the one

side the resonant case (Ωav = mπ/T ), the system has two equal eigenvalues (λ+av = λ−av = ±1),

the lower and upper sign holds for m odd or even respectively. Both lie on the real axis. Under

small perturbation, two eigenvalues can be obtained, one greater than one, one less than one in

absolute value, meaning that the system (Eq.61) remains unstable. However, under very peculiar

perturbations, the eigenvalues might also move along the circle. This imply that the system

remains stable. whereas for(Ωav ̸= mπ/T ), the system is under off-resonance. we obtained two

distinct and complex conjugate eigenvalues (λ+av = (λ−av)
∗), both lie on the unit circle, away from

the real axis. Under small perturbation they remain on the unit circle, since they cannot move

into the complex plane away from the unit circle, implying that the system remains stable. To

resume when the infection rate is periodically modulated, the perturbation grow under resonant
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condition. Returned to the original equation (Eq.61), the Floquet multipliers is giving by

δav = exp
(
T
(
−4βavQiA0

2 −Rr
)
/2
)
λav . (67)

The eigenvalues (λ) of (Eq.61) might either moves inside the unit circle if

exp
(
T
(
−4βavQiA0

2 −Rr
)
/2
)
< 1, (68)

or outside if not. The blue colored region of Fig. 11 gives the couples (α, v) for which this

Figure 11: (a)Parameter space giving the stability analysis, the blue region corresponds to cou-
ples of points satisfying the condition given by Eq.68.

condition is satisfying. The eigenvalues lie on the circle of radius r = eT(−4βavQiA0
2−Rr)/2λav .

In order to study the effect of the modulation βm on the system stability, we considered through

the rest of this paper the case (Eq.68) is satisfied. Then, the unperturbed eigenvalues (δav ) lie in

the complex plane either on the circle of radius eT(−4βavQiA0
2−Rr)/2 < 1 (in off-resonance) or are

two equal eigenvalues δ+av = δ−av = ±exp
(
T
(
−4βavQiA0

2 −Rr
)
/2
)

(on-resonance).

In this specific case the unstable wave number can lead to parametric modulation instabil-

ity with the growth rate or gain G (k) is given by

G (k) =
ln (max |λ±|)

T
(69)
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II.5 A bref comment with related work

This thesis modeled species in an ecological or biological system where the interaction between

individuals of species is of the predator-prey type. Furthermore, both individuals based mod-

els and deterministic models we have proposed are type of reaction-diffusion equation which

have been extensively explored in chemical reaction [130], semiconductor transport [131], and

in condensed matter physics which study the interaction of discrete entities for example, atoms,

molecules or spins [121]. In these different studies, the model is a two-component reaction-

diffusion equation of activator -inhibitor type displaying rich dynamics as well as spatiotempo-

ral chaos, Turing instability and Hopf-Turing bifurcation [121, 130, 131]. However, In our knowl-

edge the underlying mechanisms involving concepts such as nonlinear dynamics, instabilities

can be view as a link between biology and physical sciences.

II.6 Numerical simulations

II.6.1 Nonlinear differential and partial differential equation

Considering a set of initial values, we can use an iterative scheme for approaching numerically

the solution of the systems of nonlinear differential equations; to do so, we used the following

generic form:

ẋ(t) = f(x, t),

x = (x1(t), x2(t), ..., xn(t))
(70)

and, determine the solution over the time interval [0, T ]. In this study, we used the 4th Runge-

kutta method to solve this equation. It reposes on the following numerical scheme:

x(k+1) = x(k) +
h

6
(L1 + 2L2 + 2L3 + L4) (71)

with
L1 = f(x, t),

L2 = f
(
x+ L1

2 , t+
h
2

)
,

L3 = f
(
x+ L2

2 , t+
h
2

)
,

L4 = f (x+ L3, t+ h) .

(72)
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Note that h is the time step and k is the index related to the temporal increment. Once the set

of initial values x(0) are provided, the solutions are deduced from the iterative scheme given in

Eq. (71). The other nonlinear partial differential Equations Eq. (9) and Eq. (37) have been solved

using the RK4 method with a finite-difference approach on space. In this thesis, the algorithms

were written in MATLAB or FORTRAN.

II.6.2 Monte-Carlo simulation / Gillespie algorithm

In 1976 Daniel T. Gillespie proposed an algorithm to exactly simulate the stochastic dynamics

of chemical reactions [6, 132]. To describe this method, let us defined by P (τ, j |n, t) dτ the

probability that the next event or reaction will occur in the interval (t+ τ, t+ τ + dτ) and will be

of type j [6, 132]. We defined the propensity function for each mechanism as,

ak (n) = T (n+ vk |n) (73)

Where vk is a vector representing the change in state caused by the k’th process. So for example

for infection process (Eq. 18) a3 (n,m) =
2I1nm

N
+

2I2nl

N
and v3 = (−1,+1). Assuming there are

a total of q events (processes/ mechanisms), the probability that no event will happen by time τ

is exp
(
−
∑
k

ak (n) τ

)
[6, 132], then

P (τ, j |n, t) = aj (n) exp

(
−

q∑
k=1

ak (n) τ

)
(74)

From this one can then use Monte-Carlo methods to generate a random pair (τ, j) according to

the distribution P (τ, j |n, t), which gives the time to the next event and the type. The simplest

scheme for this is called Gillespie’s direct method or the stochastic simulation algorithm [6, 132].

One step of the algorithm involves drawing a pair of uniform [0, 1] random numbers, (r1, r2).

The time to the next reaction is then given by

τ =
1

a0
ln(1/r1) (75)
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where a0 =
∑
k

ak (n). Next we find j ∈ [1, ..., q] from,

j−1∑
k=1

ak < r2a0 ≤
j∑

k=1

ak (76)

Finally, at t = t+ τ and the state n, and propensities are updated to reflect the chosen event. This

method is sufficient for simulating the stochastic model defined in the section I.4. The algorithm

can be summed up as:

Step 0: Define each transition probability and the corresponding propensity.

Step 1: Calculate putative waiting times, tk = (1/ak) ln(1/rk), for each reaction, where rk is a

uniform random number ]0, 1]. This is essentially drawing times from an exponential dis-

tribution.

Step 2: Let j be the event whose putative time is least and set τ = min {tk}.

Step 3: Update t→ t+∆tj , update n, recalculate ak (n).

Step 4: If t < tstop repeat from step 1, otherwise terminate the calculation.

II.7 Conclusion

In this chapter, first of all, we established and proposed nonlinear equations and a stochastic

model which can well describe the dynamics of entomopathogenic fungi on the one side within

insect host and, on the other side, within a pest population. After that, we gave different theoret-

ical and numerical methods used for the analysis of both case studies. And the results obtained

by using all these mathematical and numerical techniques are presented in chapter 3 and subse-

quently discussed.
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CHAPTER III

RESULTS AND DISCUSSIONS

III.1 Introduction

This chapter present the main results obtained in this thesis. It is subdivided in three parts

based on the intra-host dynamics of EPF, the temporal and spatio-temporal modelling of the EPF

dynamics within a given host population with demographics noise effects. And finally analyze

the interaction between infected pest population dynamic and disease growth dynamics.

III.2 within host dynamics of EPF

III.2.1 Spatiotemporal dynamics (1D simulations)

Figs.12(b)-(d) present the Turing instability parameter regions. For d21 > dc21, the unstable

wavenumber resides between two critical values. This linear analysis of the homogeneous state

enables us to determine whether the resulting wave is steady or oscillatory when we look at the

imaginary part of the eigenvalues Im (λi (k)). Steady patterns correspond to Im (λi (k)) = 0 for

all unstable modes k, in which case the instability is called Turing instability. However, when

Im (λi (k)) ̸= 0 for an unstable mode at a nonzero k, the system is said to undergo wave instabil-

ity, and the resulting pattern consists of traveling waves, but this behavior does not occur in this

system. The system was numerically solved using a fully explicit Euler method with a finite-

difference approach on space and a temporal step size of 0.01t.u. (time units). No-flux boundary

condition and positive random initial condition with amplitude of 0.01 over the endemic steady

state were employed. The nonlinear diffusion term was approximated by a second-order finite

difference algorithm. Spatiotemporal patterns were observed during simulations. The system

shows stationary Turing patterns. This behavior is presented in Figs. 13. In panel (a) of this

figure, the dispersion relation is plotted and it shows diffusion-driven instability. This behavior

is modulated by stationary waves, whereas the space-time structures displayed in Figs. 13(b)

are regular stationary stripes. The density of resources oscillates over time and it is reported in

63
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Figure 12: a) Stability diagram of the homogeneous steady state. The colored zone corresponds
to stable region where tr (J) < 0 according to the biological relevance conditions and thus, Tur-
ing instability can occurs in this region when diffusion are taken into consideration. Others
panels show Turing instability parameters regions in the three parameters spaces b) k = 1; c)
d21 = 2.5; d) d = 1.2. Here, colored zone is also stable regions obtained from a coupled of point
with satisfy stability condition. Parameters values are ε = 10.0, β = 0.47, a = 0.05; q = 0.5; for
each case
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Fig. 13(c) at two different points of space. The amplitude of the density of resources oscillates

periodically in space (see Fig. 13(d)). In order to observe the role of the term of the birth re-

generation rate of the resources on the system, the dynamics of the endemic equilibrium point

was simulated in the absence of the logistic growth rate of resources. It can be noted that, when

β = 0 (see Figs. 13(a),(e)-(f)), the resource density decreases and there is no pattern formation

over time, whereas if β ̸= 0, the species density varies at each site of space as t evolves, as shown

in Fig. 13(b).

Figure 13: (a) stability analysis showing the complex part (red) and the real part (blue) of the
eigenvalues. (b) 1D Turing pattern formation, the parameters values chosen is ε = 10.0, β =
0.47, a = 0.06, q = 0.3, d = 1.2, d21 = 2.5(c) blue and red curves are two oscillations located at
space x = 10 and x = 12.5. (d) Displays the spatial amplitude modulation at the time given in
the legend; (e),(f) show the influence of the regeneration rate of the EPF during growth (β = 0 in
these case)
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III.2.2 Spatial evolution of fungi within insects hemocoel (2D simulations)

In this section, the dynamics of EPF within their host is explored. The numerical simulations

by using the fourth-order Runge–Kutta scheme in a two-dimensional grid with a grid spacing

of 0.0625 and a time step of 0.001 were considered. Fig. 14 shows the temporal transients of the

regular Turing pattern of the mycelia population at different evolution times. In Fig. 14(a), the

oscillatory instability seems to emerge after perturbation of the steady state. After a few itera-

tions, the formation of stripes was observed, but hot spots (isolated zones with a high density

of mycelia) also occur (Figs. 14(b) and (c)). For a large number of iterations, we observed a for-

mation of interlaced stripes with a high and low density of mycelia population (see Figs. 14(d)

and (e)). The panel (f) of Fig. 14 shows more regular patterns with hot spots (isolated zones

with a high density of mycelia) and cold stripes (isolated zones with a low population density

of mycelia). This means that at a point in space, the density of species fluctuates in time. It was

noticed that when the density of the spores is stationary, the density of mycelia and resources are

also stationary but not equal; so the EPF impose their dynamics on the insect. After discarding

the transients subsequent to a long time evolution of their dynamical systems, we could reach

some specific Turing structures that are effectively heterogeneous stationary pattern (with per-

manent or fixed, or non evolving spatial profiles). Fig. 15 shows the stationary spatial pattern

of resource density. Fig. 15(a) shows double spots connected two by two with stripes, whereas

an increase in the cross diffusion coefficient gives in Fig. 15(b) a pattern composed by single

spots (see Fig. 15(b)). But Figs. 15(c) and (d) give the Turing pattern of resource density for two

different values of probability that the extracted resources are allocated to the sporulation in the

presence of the mycelium such that the panel (Fig. 15(c)) has regular structures composed by hot

spots showing a hexagonal form. But by increasing the probability , high stripes connecting cold

spots occurs (see Fig. 15(d)).

III.2.3 Time-dependent diffusivities (case b ̸= 0 and b21 ̸= 0)

This section analyzes the time-dependent diffusivities using Eq.9 that admits a periodic solution.

To analyze the stability, we first plot in Fig. 16(b) the sum of the floquet’s characteristic multipli-

ers as a function of their products. In this figure the colored zone give the stability zone. By using

the Newton–Raphson algorithm, we solve the polynomial equation in and thus plot the stability

boundaries in the (Ω, k)- plane for the sets of the system parameters represented in Fig. 16(b),
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Figure 14: The processes of pattern formation of mycelia with parameters values chosen identical
as in Fig. 13. Times iterations: (a)100, (b)500, (c)1500, (d) 4500, (e) 6500, (f) 8000. The colorbar
shows the magnitude of the population density of mycelia.
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Figure 15: Stationary spatial patterns of resources density obtained through simulation of model
Eq.9 on a squared spatial grid with no−flux boundary conditions for non-temporal diffusion.
Gives Pattern formation of resources with parameters values (a) ε = 10.0, β = 0.47, a = 0.05; q =
0.5; d = 1.2; d21 = 2.2; (b) ε = 10.0, β = 0.47, a = 0.05; q = 0.5; d = 1.2; d21 = 2.35. Others panels
give comparison patterns of the resources between two probabilities q with parameters values:
ε = 10.0, β = 0.47, a = 0.06; d21 = 2.25; d = 1.2.(c)q = 0.3, (d)q = 0.4. The colorbar shows the
magnitude of the population density of resources.
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where I and III regions are stable domains. At first, the values are chosen and then, with the same

parameter values used to derive Figs. 16(b) and fig11(c)shows that the perturbation is inhibited

because both amplitudes of perturbation are tending to zero, and modulation by the diffusion

periodicity can easily be observed. Second, if are taken in region II with the same parameter

values, there is an increase in the amplitude of the perturbation. The system then exhibits diffu-

sion driven instability (Fig. 16(d)), with the modulation through the periodicity of the diffusive

coefficients. Our main objective here was to indicate via a stability analysis approach that, even

in the case of periodic driven system, diffusion-driven instabilities can occur. This study enables

us to say that in these conditions, Turing patterns could possibly occur. The occurrence of these

patterns is not systematic. However, the diffusion-driven instability conditions, as obtained in

Fig. 16(b) provide necessary but not sufficient conditions for these Turing profiles to emerge.

Figure 16: (a) stability boundaries region , (b) Transition curve between stability and Turing
instability with parameters values: ε = 10.0, β = 0.47, a = 0.05, q = 0.5, d21 = 2.5, b21 = 2, d =
1.2, b = 0.8, θ1 = θ2 = 0; (c) Inhibition of Turing instability (both amplitude of perturbation
tending to zero) ; (d) Turing instability (both amplitude of perturbation grow).
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III.2.4 Discussions

A mathematical model (patch array model) based on the age of the resource allocation matrix

to evaluate the effectiveness, in the biological control, of a group of fungi exploiting discrete re-

source spots in their hosts using the bang-bang resource allocation strategy with the assumption

that the insect undergoes a nutritive stress has been developed [1]. studying the fitness of the

spores, it was possible to establish that there is a link between the propagation and the persis-

tence of the entomopathogenic fungus [1].The study proved that the success of the employed

method depends on the types of fungus and the host species. The literature has revealed some

established conditions in which the fungi behave like parasites in their host [1].

However, the study did not account for the interactions between the fitness of components.

To improve the model presented in Ref. [1], a functional response, birth regeneration terms,

constant, and time dependent diffusion terms were included in both insect and EPF evolution

equations. The proposed model exhibits Turing instability. The nonlinear cross-diffusion term

describes the tendency of the mycelia to move in response to a spatially decreasing resource

density to maximize resource suppression. As presented in Ref. [133], Turing pattern can occur

when cross-diffusion is taken into account.Note that its nonlinear diffusion rate must verify the

threshold condition.

In the past, biological control models assumed that either only the spores disperse or the

host population (infected and susceptible larvae) change their state [24, 134]. However, these

studies show that the simplifications underlying the discrepancy between some of their theo-

retical results and the experimental results were mainly due to the presence of the diffusion

coefficient on a certain species [24, 134]. To illustrate this, in ecology, when a species invades the

territory of another species, the invader interacts with the native species and moves in response

to external influences or the medium crowding;there is, therefore, a natural displacement of each

species [62]. This is the reason why we asked ourselves the following question: “ what would

happen if mycelia (m) and the resources (r) are able to disperse simultaneously?” In order to in-

vestigate possible outcomes of such a situation, the proposed model took into account not only

the reaction between these species but also the dissemination into the insect hemocoel.

In the presence of nonlinear diffusion, the models analyzed here show a destabilization

of the homogenous distribution of mycelia and resources, and Turing pattern formation, which

have important biological significance. In previous studies, similar phenomena were observed
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in reaction–diffusion models applied to predator–prey dynamics [135, 136, 90, 137]. However,

the proposed model presents additional features with three equilibrium points. When the en-

demic point is stable and the terms of spatial in-homogeneity are introduced,two cases can be

distinguished: the case in which the system remains stable, and the situation in which the dif-

fusion drives the instability. Such results corroborate well with what is found in the literature

[98, 136].

Previous studies have shown that varying the key parameters of a system can induce the

formation of rich patterns. In predator–prey models, increasing the value of prey growth rate

generates similar behavior [90]. This is unlike our case, where PDE ( Eq.9, bi = 0) exhibits Tur-

ing structures only in the presence of a nonzero intrinsic growth rate (of resource) such that the

system changes from a stable to an unstable steady state when the regeneration rate (β) passes

through zero. A numerical simulation of the system shows the space and space-time plot of den-

sity for β = 0, which indicates a stable behavior of the resource species. For β ̸= 0, the graph

exhibits the oscillations of the species populations arising out of instability. It has also been

shown that as time evolves, the spatial dynamics of fungus presents more regular structures.

Some studies have shown that temporally periodic perturbations introduced in the diffusion

rate have a weak stabilizing effect.Since such a phenomenon has been observed in predator–prey

systems(with two species), it shows that the interval of the dispersal rate in which instability oc-

curs is reduced when the variability is included in the diffusion coefficient [108, 116]. On the

contrary, the developed model always exhibits stable and unstable regions, but both amplitudes

of perturbation do not rapidly tend to zero in the case of stability. Furthermore, it can be noticed

that varying the diffusion coefficient has a strong stabilizing effect. The temporal forcing param-

eters k and Ω in the problem provide a transition zone for the occurrence of Turing instability.

It appears that in addition to destabilizing the equilibrium points, a periodic perturbation of the

diffusion coefficient provides a better optimization of biological control in the sense that it could

be better oriented from this new variation. Therefore, it is possible that the reaction–diffusion

models between infected and uninfected larvae and spores are insufficient to determine more

precisely the conditions for the success of this spatio-temporal biological control [24, 134], be-

cause optimizing the spatial growth of the EPF ensures good control.

Turing instability corresponds to the growth of the EPF and,therefore, to the death of

the insect host. Naturally, if the regeneration rate of the insect’s resources is nil, the density of
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resources decreases to a threshold, but does not necessarily induce the death of insects. However,

the inability of mycelia to use these resources can lead to a failure of biological control [42],

thus explaining why in the situation where the mycelia density decreases, there is no intra-host

growth. In the case of the two-dimensional spatial domain,different behaviors of the system are

observed at different times when parameters are varied in Turing regions. In particular, it is

proved that the presence of the nonlinear diffusion term produces instability in cases only where

there is space and time modulation.

III.3 EPF outbreaks within host population

III.3.1 Extinction probability of insects pests and persistence of EPF

It was considered that there exists a set of stationary, spatially uniform solutions of (17)-(20). This

allowed us to obtaining three singular points. The only endemic equilibrium point is ESIC =

(ϕs, φs, ψs) which has a biological relevance only if k (θb2 + α2d3)− b2d3 > 0 conditions that will

be applied throughout the rest of this study.

Figure 17: Stability diagram of the endemic steady state, the colored zone corresponds to stable
region according to the biological relevance conditions and the coupled of point with satisfy
stability condition in the parameters spaces. b) Transcritical bifurcation atR0. Parameters values
are d1 = 0.05, b1 = 0.25, b2 = 0.15, d3 = 0.1, I2 = 0.05; for each case

To make this analysis more easy, the basic reproduction number R0 defining the expected

number of secondary infections caused by a single infected case, is introduced from the rele-

vance biological conditions(see details in Appendix A). In our model, when R0 < 1, the endemic

equilibrium point do not have a biological relevance and the EPF population density will die out

with time and cannot reduce the pest population; whereas for R0 > 1, the introduction of EPF
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can lead to a targeted spread, the endemic equilibrium point exists and can be stable/unstable.

The color zones of Fig17 (a) display stability region of the steady state according to the relevance

of the conditions given above. The parameter space (R0,I1)show the zone where the steady state

exists and are unstable, so that EPF can invade insects pest population. Fig17 (c) shows that,

transcritical bifurcation occurs at R0 = 1 and changes the stability from the trivial steady state

(disease free equilibrium E1) to the endemic equilibrium. More clearly when R0 < 1, E1 is

stable. The underlying steady state becomes unstable for R0 > 1 corresponding to the black

colored area of panel (a). At threshold basic reproduction number R0 = 1 the infected insect

population can invade the susceptible population, and the resulting free disease equilibrium

system becomes unstable. Because R0 and I1 are proportional, R0 can be sufficient to describe

dynamics of the systems [?]. Therefore, the fundamental question here is: How to maintain R0

always greater than one? To answer this question, the sensitivity analysis of the basic repro-

duction number R0, is conducted by a Latin hypercube sampling (LHS) on combination with

a partial rank correlation coefficient (PRCC) [5]. This method is useful to identify parameters

that affect the quantity R0. The input models parameters k, θ, α2orI1, b2, d3 from which R0 de-

pends are randomly and uniformly distributed between their lower and higher values into Q -

equal probability intervals and subsequently used to compute the LHS matrix of five (number

of input parameters) columns with Q lines. The basic reproduction number R0 is evaluated as a

corresponding output matrix. These matrices are rank - transformed to calculate the partial rank

correlation coefficient (PRCC) which give the sensitive index of R0 associated to each parameter

[5]. The parameters which have the sensitivity indexes closer to, ±1 should significantly affect

R0. The more a parameter is tending to minus one, the more it has a reductive effect on R0 and

the parameters for which the PRCC is close to one increase the basic reproduction number. So,

the resting rate of spore d3 decrease the basic reproduction number Fig18(a). It is also easy to see

that, the carrying capacity and the fraction of susceptible insect pest have the most important

augmentative effect on the basic reproduction number. This affects the logistic growth of others

species in this BC systems. This is in agreement with the investigation [60], where it is showed

that in the BC using entomopathogenic against nematodes pests can be efficiently used to control

the host population only if the host’s reproductive rate is also regulated in a density-dependent

manner. A comparison between ILM and deterministic systems equations obtain in van Kam-

pen approximation, shown through a numerical simulation, sustained oscillations of all species
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(Fig.18 red line). Whereas the deterministic equations models showed damped oscillations (see

Fig18(dark and blue dotted line)), similar result was observed [65, 81, 138, 87]. It is the expected

long-term behavior for host- vectors models [65].

Figure 18: These panels show susceptible (ϕ), infected pest (φ) and pathogen (ψ) population
densities as a function of time ((a), (b) and (c) respectively) for N = 10000 . The red line is
the average of time series of 100 replications generated from the ILM (Eq.(17) to (Eq.20)) using
Gillespie Algorithm [6], the dashed dark line is the average of the species density time series
from 10000 replicates generated from the ILM and is almost indistinguishable with the contin-
uous blue line which corresponds to the deterministic equations from mean-field approxima-
tion simulated with a classical Runge-Kutta algorithm. The parameters used in the simulations
are:b2 = 0.15, d3 = 0.1, I1 = 0.25, d1 = 0.05, b1 = 0.25, I2 = 0.05.

In order to find required conditions under which the pathogen agent goes to large out-

break within insect population, we make the sensitivity analysis of the basic reproduction num-

ber R0 and the extinction probability of EPF I1. The Parameters which have the sensitivity in-

dexes closer to, ±1 should significantly affect the main parameter (R0 or/and I1). The more a

parameter is tending to minus one, the more it has a reductive effect on the main parameter and

the parameters for which the PRCC is close to one increase R0/I1. So, the resting rate of spore

d3 decrease the basic reproduction number Fig. 19(a). It is also easy to see that, the carrying

capacity and the fraction of susceptible insect pest have the most important augmentative effect
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on the basic reproduction number. This affects the logistic growth of others species in this BC

systems. This is in agreement with the investigation [62], where it is showed that in the BC using

entomopathogenic nematodes pests can be efficiently used to control the host population only

if the host’s reproductive rate is also regulated in a density-dependent manner. However, the

sensitivity analysis of the probability of pest extinction is given in Fig. 19(b). In contrast to

other parameters, the sensitivity indexes for α2, θ are negative; meaning that they are decreasing

on s1. It is easy to remark that the proportion of infected pest’s death b2 and the rate d3 of spore

become resting stage have a large effect on increasing extinction probability because these spores

have ability to be reactivate when conditions are favorable.

III.3.2 stochastic fluctuations

A description of the stochastic fluctuations of the system requires analyzing the power spectrum

density. In Fig. 19(c), one can remark a very large amplification of these stochastic fluctuations

for the infected host species. The system has tendency to oscillate at greater amplitude at some

frequencies rather than at others. Internal noise arises from demographic stochasticity contained

in the individual’s processes and leads to the resonant effect. By using the expression for the PSD

for the infected insects, the basic reproduction number effects on the periodicity of the pest’s

outbreaks is examined. The Fig. 19(d) shows that as R0 moves from unity, the amplitude of

PSD decrease whereas the width increases. The width is important as it shows how coherent the

cycles are: the smaller the width is, the longer cycles remain in phase. So, for R0 tending to one

the power spectra present a large peak at a preferred frequency different to zero corresponding

to the irregular dynamics. In Fig19 (c), the very large amplification of these fluctuations is

remarkable and almost exceptionally important for the infected host species. The system has

tendency to oscillate at a greater amplitude at some frequencies rather than at others. Internal

noise arises from demographic stochasticity contained in the individual’s processes and leads

to the resonant effect. By using the expression for the PSD for the infected insects, the basic

reproduction number effects on the periodicity of the pest’s outbreaks is examined. The Fig19(d)

and (e) shows that as R0 moves from unity, the amplitude of PSD decrease whereas the width

increase. The width is important as it shows how coherent the cycles are: the smaller the width

is, the longer cycles remain in phase. So, for R0 tending to one the power spectra present a large

peak at a preferred frequency different to zero which corresponds to the irregular dynamics. This
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Figure 19: a) Sensitivity analysis of the number of secondary infections (R0) results, b) Sensitivity
analysis of the number of secondary infections (S1) results. Sample size Q = 1000. The symbol
(∗) denotes PRCCs that the p-values are significantly different from zero, c)numerical and the-
oretical predictions of the power spectral density of infected insects Eq.?? for a total number of
species using the same parameters values five in Fig. 18, d)effect of the basic reproduction num-
ber on the power spectral density of infected insects
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increase stochasticity in the smaller systems, but also the fade-out boundary, where extinction

and re-colonization events start to have an impact on the dynamics [87]. However, the PSD of

the deterministic case show that when R0 increases the amplitude of the power spectral density

decreases. And a light shift of resonant frequency is observed.

III.3.3 Influence of Spatial dynamics on the EPF dynamics

When migration of species is considered, we first make the stability analysis to anticipate

on the system dynamic. The linear analysis of the homogeneous state is also able to determine

whether the resulting wave is steady or oscillatory by looking at the imaginary part of the eigen-

values Im (λi (q)). Steady patterns correspond to Im (λi (q)) = 0 for all unstable modes q, the

case in which the instability is called a Turing instability. When Im (λi (q)) ̸= 0 for an unstable

mode at a nonzero q, the system exhibit a wave instability as the resulting pattern will consist of

traveling waves, or at the zero q, this conditions leads to bifurcation [88, ?]. The present study

also suggests that the total size of the population can have a relevant effect in the oscillation fea-

tures. The dispersion relation is shown in Fig20. The Fig20(a) show that adding the migration

processes lead the systems to go over three possible dynamics. Region (I), at zero wave num-

ber the eigenvalues is positive and thus is above the threshold Re (λ (q = 0)) = 0. The system

exhibits Hopf bifurcation mode. In region II, the real part of the dominant eigenvalues is nega-

tive and defined a stable dynamics. With oscillation frequency defining by Im (λ (q)) ̸= 0. The

region III pass through the condition for Turing instability but with Re (λ (q)) < 0 describing

damped Turing modes. From region I to II, there is a bifurcation point satisfying the condition

Re (λ (q)) = 0 and Im (λ (q)) ̸= 0 with q ̸= 0. The latter condition gives the threshold of Hopf-

Turing bifurcation. These unstable modes occur for selected parameter values (see Fig.20(b)).

Unlike to the temporal model (17)-(20) Hopf-damped Turing bifurcation dynamics occurs for

the contagion rate threshold I1 = 0.305. By using Gillespie algorithm mentioned above and the

fully explicit Euler method with a three-point approximation with no-flux boundary conditions,

we compare numerically the stochastic model (17)- (20) and (22) and the deterministic model

(37). As shown in Fig.21, the same phenomenon of sustained oscillations and damped oscilla-

tions observed above in local dynamics occurs here, from mathematical perspective the similar

behavior appear in the [90]. The discrete version seems to exhibit slower dynamic compared to

its continuous analog.
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These space components also have a large influence on the power spectral density. It is clear

that the migration contributions make a significant different in the both spectra. It is observed

that in infected insects pest’s spectra especially, there are a large peak at a nonzero value of ω

depending to the k-values as shown in Fig. 22. So, resonant behavior still occurs in this spatial

model just as it did in the non-spatial case. The more k increases, the peak decreases although

the migration rate differs among all the three species. The present study also suggests that the

total size of the population can have a relevant effect in the oscillation features. When varying

the total number of population, it is observed in Fig. 23 that, there exists a spatial amplification;

secondly, when the population’s size increases, the pathogenesis period is shifted to lower cen-

tral frequencies. It is observed that in infected insects pest’s spectra especially, there are a large

peak at a nonzero value of ω depending to the q-values as shown in Fig22. So resonant behavior

still occurs in this spatial model just as it did in the non-spatial case. The more q increases, the

peak increases although the migration rate differs among all the three species.

The results presented in Fig23 and Fig24 aim to show the effect of total population size on

the power spectra and it spatial distribution respectively. These figure show the PSD of infected

insects pests obtained from direct analytic calculations with N = 500, 1000, 5000 and N = 15000.

The population size has an effect on the power spectra in two ways: at first, the existence of a

spatial amplification; second, when the population size increase, the pathogenic period is shifted

to lower central frequencies. This means that the frequency of oscillation depends on the total

number of individuals.

III.3.4 Discussions

This study proposed a model to understand the entomopathogenic fungi outbreak within

insect population. Based to the fact that demographic processes are inherently random, an in-

dividual level model is proposed here, in comparison to the deterministic model, in order to

determine the most appropriate or useful approach which better mimic the dynamic occurs be-

tween the both species. In addition, because the outbreak of EPF is related to the instability and

the persistence of EPF within the insect habitat, stability conditions and the extinction probability

are investigated.

Natural population dynamic is controlled by random fluctuations. These fluctuations

among individuals within populations are often caused by birth and death events and usually
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Figure 20: Linear stability analysis showing (a) the complex part (red) and the real part (blue) of
the eigenvalues. H: Hopf-bifurcation with Re (λ (q)) > 0 and Im (λ (q)) > 0 at q = 0, DT: damped
Turing with Re (λ (q)) < 0 and Im (λ (q)) = 0 at q ̸= 0 (b) the real part of the eigenvalues for five
different values of I1. (c) Linear stability analysis around the endemic steady state. (d) Linear
stability analysis around the free-disease steady state. Using the same parameters values:Ω =
500, N = 15000, b2 = 0.15Ω, d3 = 0.1Ω, I1 = 0.31Ω,I2 = 0.05Ω,d1 = 0.05Ω, b1 = 0.25Ω, µ1 =
0.6Ω,µ2 = 0.4Ω, µ3 = 0.2Ω.
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Figure 21: Comparison of the spatio-temporal dynamics of the species density in the stochastic
model (panel b) with that in the corresponding deterministic approximation (panel a) for the
line patches defined as a continuous space in mean-field approximation. A comparison of the
temporal dynamics of the species density in the stochastic model (panel d)) with that in the
corresponding deterministic approximation (panel c)) at the same selected patch. The uninfected
insect pest (ϕ), infected pest (φ) and pathogen (ψ) are plotted in green, blue and red respectively.
The zoomed curves are purposely displayed for highlighting oscillation persistence. While the
deterministic approximation leads to stabilization, the full stochastic model recovers. The color
bar gives the density of infected insects. The capacity and the number of patches wereN = 10000
and Ω = 100. The parameters used in the simulations are:b2 = 0.15Ω, d3 = 0.1Ω, I1 = 0.25Ω,
I2 = 0.05Ω, d1 = 0.05Ω, b1 = 0.25Ω, µ1 = 0.6Ω,µ2 = 0.4Ω, µ3 = 0.2Ω.
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Figure 22: Theoretical predictions of the power spectral density (PSD) for a system composed
of Ω = 500 sites occupied by N = 15000 species for different size populations using the same
parameters values:b2 = 0.15Ω, d3 = 0.1Ω, I1 = 0.25Ω,I2 = 0.05Ω,d1 = 0.05Ω, b1 = 0.25Ω,
µ1 = 0.6Ω,µ2 = 0.4Ω, µ3 = 0.2Ω.

Figure 23: Theoretical predictions of the power spectral density (PSD) for a system composed
of Ω = 500 sites occupied by a) N = 500, b) N = 1000, c) N = 5000, d) N = 15000 species
for different size populations using the same parameters values:b2 = 0.15Ω, d3 = 0.1Ω, I1 =
0.25Ω,I2 = 0.05Ω,d1 = 0.05Ω, b1 = 0.25Ω, µ1 = 0.6Ω,µ2 = 0.4Ω, µ3 = 0.2Ω.
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Figure 24: Spatial distributions of the power spectral density (PSD) for a system composed of
Ω = 500 sites occupied by a) N = 500, b) N = 1000, c) N = 5000, d) N = 15000 species
for different size populations using the same parameters values:b2 = 0.15Ω, d3 = 0.1Ω, I1 =
0.25Ω,I2 = 0.05Ω,d1 = 0.05Ω, b1 = 0.25Ω, µ1 = 0.6Ω,µ2 = 0.4Ω, µ3 = 0.2Ω.

called demographic stochasticity [78, 139]. This latter occurs independently among individuals

and lead the population growth in large populations or to reduce in size. Understanding the

processes that influence demographic stochasticity and its potential effect of the pathogen is

therefore important when attempting to explain patterns of extinction of pest and success of

biological control method.

A large body of biological research was devoted to the biological control using EPF to

target crop devastators [78, 140]. The mechanism identified as most important in this interac-

tion is the contagiousness among pest individuals, which permits propagation of the EPF within

the insect population. In order to understand this mechanism, we begun by the investigation

of the dynamics between EPF and insects pests in the local patch, following by the interaction

on a larger collection of patches. The approach is totally different from what is found in the

literature as majority of studies focused only on either individual level [62], or on a well-mixed

populations [78, 140]. Most existing models on the population dynamics of host/parasitoid or

predator/prey include a type II functional response. It used experimental data to describe rela-

tionship between the host density and number of host attacked per natural enemy per unit of

time; and showed that the parasitoid/pathogen does not really create a stable pest enemy equi-
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librium during the growing season of a crop, but that it suppresses the insect population and

subsequently prevent the pest from causing yield losses [62]. However, the same phenomena are

observed here without any functional response. A number of models described how insects and

their fungal pathogens could be used in a framework to exploring metapopulation theory [28];

in addition, they lack realism because all ecological and biological phenomenon are inherently

random [88, 97]. The challenge in modeling the complexity of fungal entomopathogens in pop-

ulations of insects is thoroughly discussed in [28], these authors emphasize on the heterogeneity

of individuals should be incorporated; they further demonstrated the explicit consideration of

stochastic demography is crucial. In order to provide a framework for evaluating different en-

sembles of life history and demographic properties favoring the success of biological control

based EPF, the present study complements experimental and theoretical approaches through the

use and application of individual-level model (ILM). The model assumed that insect hosts do

not acquire immunity to their pathogens and therefore do not include a resistant class of hosts

immune to further infection [28], insect is also assumed to be infected only by a single spore,

multiple infection are not considered in this model.

By comparing the IBM and it corresponding population level model (PLM), it observed

that most of the existing models for EPF-pest interactions which are mean-fields, failed to ad-

equately capture the resilience and oscillations sustainability of the pathogenesis without any

external reservoir [1, 24, 133, 134]. Our analytical results pertain to self-maintained of species

(pest and the pathogen population) dynamics in the absence of seasonality, thus reflecting the

role of individual (discrete) behaviors of EPF in regulating the populations of insect’s pests and

vice-versa.

In previous studies, external infectious stages ensured that the fungi persists during peri-

ods of low host population density when the horizontal transmission is insufficient to maintain

the prevalence in the host population [28]. It was hypothesized that EPF could potentially reg-

ulate, and cause cycles in each species [16, 28], which corroborates the quasi-cycles persistence

predicted by our model. By assuming that naturals selections drive the rates of transmission

through altered host susceptibility [16, 81, 141, 142] , it was found that stochasticity induces cy-

cles even at a high rate of heterogeneity during transmission. By considering natural selection as

a pure demographic stochasticity, we were able to characterize the quasi-cycle amplitudes and

frequency distribution which is not the case in the literature [16, 81, 141, 142]. It was demon-

PhD. Thesis of Djouda Sonkoué Byliole Laboratory of Mechanics, Materials and Structures



III.3 EPF outbreaks within host population 84

strated that the control ability of EPF is strongly dependent on the average number of secondary

infections produced by a single infectious unit of EPF (conidia) [62].

With the aims to maintain R0 greater than one, a sensitivity analysis is performed in or-

der to determine which parameters can make the basic reproductive number growth. We also

assess the relative importance of different factors responsible for pests and EPF growth to bet-

ter determine how to reduce the harmfulness of insect devastator. In contrast to the present

study, the basic reproduction number reported in previous epidemiological researches describ-

ing insect-EPF dynamics, but did not highlighted the relevance on the degree self-limitation of

the susceptible insects on the proportion of spore entering in the inactive stage and their impor-

tant effects on EPF invasion [138, 140]. If the population grows according to a birth and death

process, then BC agents might survive forever and the number of spores increases at a slower

speed than the population does, so the fraction of infected individuals goes to zero. It is also

possible that the pest population and conidia reach equilibrium and the fraction of infectious in-

dividuals converges to a constant as defined by BC. However, although EPF may suppress a pest

below its carrying capacity, most systems could show prolonged oscillations[81]. The fraction of

susceptible insect exposed to be contaminated by infected insects, therefore, the contagious event

is primordial [133]. So, in this study where the desired results is to obtain an important number

of infected pests for a successful BC (increases of the basic reproductive number), the suggested

strategy must be to increase the carrying capacity, apply the EPF in large area to optimize the

chance for infecting a large number of insect pest host. Some models are proposed to investi-

gate this density dependence and spatial pattern dynamics of EPF [24], to investigate the spread

of infections through dispersion of conidia by considering the behavior of susceptible and in-

fected host [9, 32, 134]. The potential of fungi to regulate insect populations will depend on their

abundance in the host population (prevalence) as well as their abundance and persistence in the

surrounding environment. Because this abundance is strongly controlled by the contagion phe-

nomenon another suggested strategy would be to develop a control method by increasing the

host individual to get the propensity of having more physical contacts.

However, one of the most powerful tools for analyzing such oscillations is the power

spectrum. This determines how the periodicity of the stochastic system that makes up the time-

series is distributed. We derived the PSD of the fluctuations around equilibrium using a large N

expansion method due to Van Kampen.
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In the case, where pest was not influenced by any external regulation, pathogens could be

responsible for population cycles [28, 142]. However, the largely sustained oscillations, which

replace the deterministic predictions of damped oscillations behavior, have a single preferred

frequency at which resonant stochasticity occurs.

The results obtained show that coexistence or extinction probabilities of species can have

a complex relationship when spreading parameters are varied. It is demonstrated that the ex-

tinction probability of host is strongly susceptible to be amplified by the death rate of insect pest

during the infectious period. Furthermore, the proportion of spores entering in inactivate stage

reduces the number of susceptible hosts, by their potential to survive in the soil and on dormant

or mummified pest [62]. These spore control the persistence of BC, by their ability to be reacti-

vated, alternatively infected hosts and produce another conidium [62]. Unfortunately, EPF takes

a lot of time to suppress pest populations whereas chemical pesticides provide immediate results

[15]. Moreover, this BC agent is used to reduce the population density but not often give rise to

total extinction. Another limit is that sometimes it needs to be sprayed more than one time in the

field [65].

Entomopathogenic fungi are relatively immobile compared with the hosts but could be

migrated by water, wind, rain and so on, thus any spatial refuge may be vital in allowing hosts

to escape parasitism [28]. So, populations may regularly pass through a series of localized ex-

tinctions and re-colonize from neighboring populations shown that, increasing the spatial wave-

length of perturbation gives rise to the large possible oscillation frequency that increases the

maximal infectious period. In order to illustrate the role of the non-local interaction term, the

temporal evolution of each species is computed at a single patch for the stochastic and determin-

istic approach, this model verify as assumed in the intra-host dynamic that a nonlinear diffusion

is well appropriate to describe biological systems. It is observed that with diffusion coefficient

system start to exhibit chaotic behavior for the contagions rate smaller than in the homogeneous

case.

The phenomenon of sustained oscillations observes in the stochastic approach remain

when patches interact. Many researchers compared the stochastic model and the deterministic

analog in spatial-temporal dynamics, and shown in certain case that deterministic system predict

an extinction [80]; here it is observed a discrete behavior slows evolution of dynamics and predict

self-maintained oscillations.
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Reilly and collaborators [143], showed that depending on the threshold of insect popula-

tion size and amount of bio control, the system may display large-amplitude cycles, steady states

or a range of intermediate behaviors. The present study further complements previous results by

illustrating that an increase of the possibility of having contact between host populations reduces

the width of the PSD and consequently, the extension of the infection period for the EPF persists

to large periods. The interest in this result stems from observed epidemic oscillations in EPF and

insects pests. Despite sustained oscillations could be produced in deterministic models by intro-

ducing various complications (external seasonal forcing or nonlinear dissipation for instance),

in contrast to what is reported in the literature on insect pest–BC interactions [16, 81, 141, 142].,

here it is shown that cycles result from coherence between random variations and damped os-

cillations [78]. The oscillations of stochastic model presented here have a frequency distribution,

evidenced by the power spectral density of infected insects and stochastically varying amplitude.

This phenomenon, in which random fluctuations sustain nearly periodic oscillations in a system

which has a stable constant equilibrium in the deterministic limit, has been called coherence res-

onance or autonomous stochastic resonance [91]. From numerical study, we can understand that

the mobility of the species within their habitat increase the possibility of disease transmission

and lead to a chaotic behavior. When increase the infection rate, the magnitude of the onset of

instability through Hopf-bifurcation increase

III.4 Transmission of disease between host

III.4.1 Modulation instability: case of uniform disease infection

Figure. 25 shows how the modulation instability involves. In order to have the right appreciation

of the kind of MI occurring here, the stability diagram is reported in Fig.26 (c). One can remark

that the MI generates mechanism of the Turing pattern but only in a subset of the unstable region

(Re (λ) > 0); since the real part of the dominant eigenvalue is positive for some k ̸= 0, and the

imaginary part is null. In Fig. 26 (a)-(b), the range of values for which the later occurs are

illustrated for the parameter space (v, a) with (a > b) . Fig.26 (e) show the grow of perturbation

and local form corresponding to spatio-temporal Turing pattern formation, that means that the

waveform is the almost same for all stationary dynamics (see Fig. 26 (f)). Numerical simulations

were carried out using a fully explicit Euler method with a finite-difference approach with No-
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flux boundary condition. The initial conditions were taken in the form of the CW to which a

small periodic perturbation was added

A (ξ1, 0) = A0 + a0 cos (ω0ξ1) (77)

where a0 and ω0 defining a small perturbation and its frequency respectively.

Figure 25: The MI gain spectra:case of uniform transmission. Using the parameters values a =
0.5, b = 0.02, v = 0.01, µ = 0.2, α = 0.25, βav = 0.25.

III.4.2 Modulation instability: case of periodic disease infection

The unstable dynamic still occurs under resonant conditions, but only if the amplitude of the

seasonal forcing βm is sufficiently large to push the maximal eigenvalues in absolute value out-

side the unit circle (see Fig. 28 (a)). In this specific case the unstable wave number can lead to

parametric modulation instability with the growth rate or gain G (k) is given by

G (k) =
ln (max |λ±|)

T
(78)

Figure27(b) shows Floquet multiplier spectra showing instability due to on-resonance. In Fig.27(c)

the parametric gain spectrum as a function of the modulation of infection rate (βm) and the spa-

tial frequency, obtained numerically on one period (T = 1) is given. This figure show many

branches of MI, usually called Arnold tongues [84, 23, 129], which in general are characteristic
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Figure 26: (a)-(b)Parameter space giving the stability analysis, the blue region corresponds to
couples of points satisfying the stability condition. (c) Stability analysis showing the complex
part (red) and the real part (blue) of the eigenvalues. (d) Turing pattern formation (in one space
dimension) originated from MI, the color bar give the magnitude of |A|2. (e) |A|2 evolution of a
localize wave form for ξ1 = 18. And (f) |A|2 space profile for τ2 = 5. Using the parameters values
a = 0.5, b = 0.02, v = 0.01, µ = 0.2, α = 0.25, βav = 0.25.
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Figure 27: (b) Floquet multiplier spectra (in red the unit circle and the blue point gives Floquet
multipliers). (c) Color level plot of modulation instability (MI) gain in the plane (k, βm) of spatial
frequency and infection rate shift. (d) MI gain for βm = 0.9. (e) MI gain for some k. (e) and (f)
MI gain for α = 0.03 and v = 0.0155 Using the same parameters values.
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of parametric instability sustained by periodic modulation unlike to Turing-type of MI observed

in subsection III.3.2. Fig.27(e) gives the evolution of gain when (βm) change for the three Arnold

tongues spatial frequency (corresponding to the On-resonance case) whereas the evolution pro-

file of the gain with respect to the wavenumber for βm = 0.9 is given in Fig.27(d). Fig.27(f)

and (g) show the effect of the infected mortality rate (α) and the change class rate (the proba-

bility to pass from latent into infectious class) v. When α decreases the third Arnold tongues

is amplify and a fourth tongues occurs but instability appears for more large spatial frequency

(Fig.27(f)). However, when v increases the number of Arnold tongues increase considerably

(Fig.27(g)). Contrary to the spatio-temporal waveform observed in the Turing mechanism, the

spatio-temporal pattern when the modulation is switched on, show hot and cold vertical stripes

(Fig.28(a)). The system dynamic is better observed in Fig.28(c), one can observed the modulated

waveform, the great difference is observed in the temporal evolution where periodic modula-

tion is observed (Fig.28(b)). When βm increases only the amplitude of oscillation increase (see

Fig.28(d), (e)). Lastly, increasing v leads the MI evolution to a chaotic state, as shown in Fig. 29

III.4.3 Discussions

Anderson and May provide a simple mathematical including: susceptible, infected (but not yet

infectious) and infectious species. In the present study, we modified the anderson-May model by

including host displacement. For some simplification, we only add the spatial spread of infec-

tious insects. According to previous researches, spatial spread allows to understand long-term

insect disease dynamics [16, 68, 69]. The resulting Reaction-Diffusion model is then transformed

to the modified complex Ginzburg-Landau equation using multiple scale method. The modi-

fied complex Ginzburg-Landau equation appear in various area of research, in nonlinear optics

[21, 20], nerves networks [18, 128, 19], biomembres and nerves [17, 18] . This study show that the

modified complex Ginzburg-Landau equation can be apply in the domain of Biological control

and is able to describe the bio control agent outbreak in general, and the EPF spread in par-

ticular. The spread of EPF is then associated to the system instability here called modulation

instability. In the aims to make the model more realistic, the influence of environmental condi-

tion on the infection rate is considered. And consequently lead us to a modified CGL equation

with periodic cubic term. We then observed two types of modulation instability: the modula-

tion instability due to diffusion (also called Turing mechanism) and the parametric instability
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Figure 28: (a) Spatio-temporal evolution illustrating the parametric instability (in one space di-
mension) for βm = 0.05, the color bar give the magnitude of |A|2. (b) |A|2 temporal evolution for
ξ1 = 18. (c) |A|2 spatial evolution for τ2 = 5. Spatio-temporal evolution for: (d) βm = 0.08 and
(e) βm = 0.15.

PhD. Thesis of Djouda Sonkoué Byliole Laboratory of Mechanics, Materials and Structures



III.4 Transmission of disease between host 92

Figure 29: Creation of spatio-temporal irregular evolution by the modulation instability, the color
bar give the magnitude of |A|2. The first line corresponds to the case βm = 0 and the second line
for βm ̸= 0, the column is obtained for v = 0.01528, v = 0.0155 and v = 0.016 respectively. For
βm = 0.15.
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due to parametric resonance. Similar results have been observed in fibers optics particularly in

oscillating fibers ring [22, 84, 86]. By apply the concept of linear stability analysis, we verified

the occurrence of the modulation instability (MI) shown by the Benjamin-Feir instability analysis

and computed the MI gain spectrum. The Floquet theory allow to determine with good preci-

sion the position of multiple MI sidebands. Although there is a threshold of βm from which the

parametric resonance appears, no explicit expression of gain can be derived due to the fact that

the value of the threshold differs for each resonant condition. In the limit of uniform infection

rate (βm = 0, β (τ2) = βav) the system exhibit Turing instability. This observation is a proof of

disease spread through the field and by then underlying the importance of including diffusion or

migration in host-pathogen models when aiming to improve the use of EPF in biological control.

Most ecological or diseases models are local and no adequately mimic the population dynamic

[3, 15, 32], since arthropod species move naturally to new habitat with climate change or to feed.

Many mathematical model describing pathogen spread in host population based on the diffusion

of species, have provided good insights [16, 68, 51] All these studies show that spatial distribu-

tion promote heterogeneity and coexistence of species. However, the underlying dynamics is

known to be strongly affected by abiotic factors [3, 15, 32]. We explored a wide spectrum of

theoretical host-EPF models but any one included thermal conditions and consequently are not

the full appropriate analytically framework to mimic the EPF outbreak. [16, 68, 51]. Including

the effects of abiotic conditions on the disease spread lead us to obtain a periodically modu-

lated infection rate. In this situation, the EPF outbreak within a host population is related to the

parametric instability due to parametric resonance. The latter can be shows on the gain spectra

which contrary to the uniform infection case is periodically modulated. When varying key pa-

rameters (as v), the form of pattern, the magnitude and the pattern periodicity change. The gain

spectrum which accurately predicts the spontaneous growth of MI bands change considerably,

similar results are observed in biomenbranes and nerves [19]. Increasing the probability (v) of

insect to pass from latent class to infectious class increases the number of spatial frequency for

which the parametric resonance occurs. This can be explained by the fact that, when (v) increases

the number of infectious host growth; it is noteworthy to mention that each infectious host can

be consider as a focal point of disease transmission making the number of secondary infection

important. However, the number of spatial resonant frequency reduces when the dead rate of

infected insects increases; since the number of focal point of disease transmission decreases. And
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can be extend to other epidemiological disease outbreak
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Main results

In summary, this study attempted to improve the use of entomopathogenic fungi a bio control

agent use to reduce insect pest in agriculture. This work led to conclude that the EPF outbreaks

within pest’s population could be achieved by a wave plane among the insects habitat. The

approach used here has the potential to be generalized to any type of pathogen-host physical

system.

The generalities on EPF, its interaction with the insects pests and the existing models dy-

namics were presented in the first chapter. Much attention was devoted to the behavioral dy-

namics within host and host habitat, affected by environmental change, particularly the arrival

of new species (either host or fungus), climate change, habitat fragmentation and/or alteration

will have differential effects across this community.

In chapter two, we first of all, make a mathematical modeling of EPF dynamics in three

steps:

• The intra-host growth of the EPF by considering some physical hypothesis of hemocoel

dynamics.

• The EPF growth within a pest population based on the demographic stochasticity.

• The epidemiological aspect of EPF within host population underlying by the contact be-

tween infectious insect and susceptible insect. By integrating the latent category.

And we end with three types of nonlinear equations. In the intra-host dynamics, the effects of

temperature on the diffusion rate considered, and we end with a reaction-diffusion model. The

second model was based on the markov process including demographic random variations and

lead to the ILM, then by using a mean field theory, we obtain a PLM representing by an ODE

in the local dynamics and by A PDE when migration of species is taking into account. The last

model is the modified complex Ginzburg-Landau equation meaning that the contagions process
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between insect can involve as a solitonic wave. To end, we presented the materials and both

numerical and theoretical methods that permit to analyze these models.

The third chapter is devoted to the presentation of different results obtained in our work.

The results we have presented were mainly based on analytical calculations and numerical sim-

ulations of the three models mentioned above.

• The proposed model differs from others by including the functional response to de-

scribe nonlinear interactions between the host and the EPF and also by introducing constant and

time dependent diffusion and cross-diffusion terms in both the insect and EPF, in one hand to

adequacy capture the effect of environmental conditions on the fungi growth and on the other

side to model the ability of insect immune system to protect itself against the pathogen. The

study started by analyzing the stability of the system, establishing conditions for the diffusion

driven instability of an in-homogeneous distribution system,and understanding the type of per-

turbations of the system that lead to equilibrium states and can allow the occurrence of Turing

instability. It was observed that cross-diffusion has a remarkable impact on Turing patterns,

clearly the Turing patterns appears only for a threshold values of the cross-diffusion. The results

showed that the birth regeneration rate is an important parameter that leads to the occurrence of

patterns (diffusion driven instability). According to the fact that, the growth of EPF is related by

the instability, we can say that the model assuming that after infection the insects undergoes a

nutritive stress failed to adequacy capture the within host dynamics of EPF. The Floquet theory

permits us to predict and determine the transition curves in the parameter space that demarcate

the region’s leading to stable and unstable solutions when diffusion and cross-diffusion are de-

scribed as temporal periodic functions. This study is important for understanding and obtaining

the Turing instability in biological control using EPF, which describe the different morphologi-

cal states of fungus growth within their host. The obtained outcomes help to better understand

the spatial structures of the mycelia relative to the spatial distribution of the insect resources

and their persistence while manipulating the quantity of insect resource used by fungus and the

ability of host to protect itself.

• This model describes biological control developed in order to understand EPF persis-

tence mechanism in a pest’s population by taking into consideration the random variation of

demographic parameter. It is shown that, when increase the contagions rate, the system ex-

hibit transcritical bifurcation in local and Hopf-damped Turing bifurcation in spatial dynamics.
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Meaning that, the optimal control strategy depends on the success of establishing more contact

between infected and susceptible host. This remark is also underlying by the sensitivity analysis

of the basic reproduction number. The assumption made in the experimental studies that, the

EPF is more efficient in for large host population size, has been verify by this study. The model

predicted the existence one endemic equilibrium when the basic reproduction number (R0) is

greater than unity. The present study leads us to conclude that R0 should be maintained above

this threshold to guaranty fungi invasion into the insect host population. The cost-effective

strategy for performing the spread of infection unit is also determined. By the application of

Van Kampen approximation, the deterministic analysis of the proposed model is performed. It

allowed examining the period of the cycle occurrence in the biological system by the power spec-

trum in both nonspatial and spatial considerations. For control variables to be handled in order

to maximize the number of infected hosts by then, the total number of pathogen collected on in-

sect’s cadavers: (1) carrying capacity on host population, (2) the contagions rate, (3) the number

of pest death and/or (4)the number of resting conidia.

•In summary, the last model investigate the development of different kinds of instabilities

in biological control (case study of EPF) with periodic variation of the infection transmission rate.

We presented an improve version of the well known of Anderson-May model adapted for the

description of EPF within insects pest populations. Quite remarkably, we demonstrated that this

equation can lead to a modified Complex Ginzburg-Landau equation using the multiple scale

method. We reviewed the theory of Turing (modulation) and Faraday (parametric) instability by

means of Floquet theory. We reported the numerical demonstration of the generation of stable

Turing and Faraday patterns in the same device, which can be controlled by changing the disease

transmission rate and/or the latent period
(
1

v

)
. It is also observed that Turing and Parametric

instabilities not only differ by their characteristic frequency but also by their dynamical behavior.

In summary, this work can serve as a tool for understanding the complexity of the fungus

developmental processes and growth dynamics that take place in insects as well as in insect’s

population and that can be generalized to other microorganism with appropriate modulation.

Perspectives

Like future work based in this thesis,

It is noteworthy to remember that, although the entomopathogenic fungi are important agents
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to reduce the negative harmful less of crop’s devastators. High humidity and low temperature

are main factors limiting the use of entomopathogenic fungi. However, the required conditions

strongly depend to the high degrees of pluviometry. It is important to note that, rain have a

negative impact on the adherence of conidia on pest and also cause their loss. The effects of

certain factors on the viability of conidia have been extensively studied as temperature, the ef-

fect of humidity and the effect of solar radiation on the inactivation of the infective inoculums

[3, 29, 30, 32]. In a future work, One could study:

• The dynamics of entomopathogens with predatory insect to reduce pest’s populations.

• Including allee effect on the insect population and may be the delay between EPF and

insects predators.

• Use systems Thinking techniques to adequately capture all agents which impact the

systems dynamics.
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Appendix A: Temporal diffusion case

The polynomial equation

µ2 − h (k,Ω)µ+ η = 0

have for solutions

µ =
1

2

(
h±

√
h2 − 4η

)
. For distinct values of µ (Eq.11) has two linearly independent solutions of the form ςi =

pi (τ) exp (ρiτ), (i = 1, 2) where exp (ρiT ) = µi(i = 1, 2), and pi are function of period T . The

general solution of (Eq.11)(the first component of ς) is given by

a1 = p1 (τ) e
ρ1τ + p2 (τ) e

ρ2τ (79)

The stability or otherwise of the periodic solution of (Eq.11) will be determined by the behavior

of a in (Eq.11). The system is stable if Re (ρ1) < 0 and Re (ρ2) < 0. This is equivalent to µ1 < 1

and µ2 < 1. Analysis can be split in three cases.

1. h2 > 4η, µ1 and µ2 are both real and positive, or both real and negative according to the

sign of h: in both cases µ2 < µ1. If they are both positive, then the periodic solution is

stable if µ1 =
(
h+

√
h2 − 4η

)
/2 < 1, or h < 1 + η. According to the fact that η ∈ [0, 1],

this lower bound is always greater than 2
√
η. The region between h = 1 + η and h = 2

√
η

(hatched region in h > 0 on Fig. 7(a) ) are a stable region. Similarly if h < −2
√
η, then the

stability boundaries are h = −1− η and h = −2
√
η.

2. h2 = 4η, then there exists a unique double eigenvalue µ1 = µ2 = h/2 = ±√
η, stable

solution arise. And are periodic for the negative eigenvalues.

3. h2 < 4η, µ1 and µ2 are complex conjugates given by (h± iθ) /2, where θ =
√

4η − h2 . The
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system is therefore stable if |h| < 2. In addition to the “natural oscillations” with frequency

Ω, there appear new oscillations. By plotting this boundaries regions, Fig. 4(a) is obtained,

a stable behavior occurs in a colored region.

Appendix B: Hill determinant

Equating each of the coefficients of the exponential functions to zero yields of (Eq.15), the

following infinite set of linear, algebraic, homogeneous equations for Am and Bm:

(
k2 − a11 + am

)
Am − a12Bm = 0,(

k2d+ bm
)
Bm +

(
k2m0d21 − a21

)
Am − i

k2m0b21
2

eiϕAm−1 + i
k2m0b21

2
e−iϕAm+1

−ik
2b

2
Bm−1 + i

k2b

2
Bm+1 = 0.

(80)

For nontrivial solutions, the determinant of the matrix obtained from Eq.80 must be null. Since

the determinant is infinite, the first and second sections of Eq.80 are divided by
(
k2 − a11 − 4m2

)
and

(
k2d− 4m2

)
respectively, for the convergence. And thus, obtained the lower Hill’s determi-

nant given by,

∆H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆11 ∆12 0 0 0 0

∆21 ∆22 ∆23 ∆24 0 0

0 0 ∆33 ∆34 0 0

∆41 ∆42 ∆43 ∆44 ∆45 ∆46

0 0 0 0 ∆55 ∆56

0 0 ∆63 ∆64 ∆65 ∆66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (81)

where,

∆11 =
k2 − a11 + θ1 − iΩ

k2 − a11 − 4
,∆12 = − a12

k2 − a11 − 4
,∆21 = −−m0k

2d21 + a21
k2d− 4

,∆22 =
k2d+ θ2 − iΩ

k2d− 4
,

∆23 = i
k2m0b21e

(−iϕ)

2k2d− 8
,∆24 = i

k2b

2k2d− 8
,∆33 =

k2 − a11 + θ1
k2 − a11

,∆34 = − a12
k2 − a11

,∆41 = −i
m0b21e

(iϕ)

2d
,

∆42 = −i
b

2d
,∆43 = −−m0k

2d21 + a21
k2d

,∆44 =
k2d+ θ2
k2d

,∆45 = i
m0b21e

(−iϕ)

2d
,∆46 = i

b

2d
,

∆55 =
k2 − a11 + θ1 + iΩ

k2 − a11 − 4
,∆56 = − a12

k2 − a11 − 4
,∆63 = −i

k2m0b21e
(iϕ)

2k2d− 8
,∆64 = −i

k2b

2k2d− 8
,

∆65 = −−m0k
2d21 + a21

k2d− 4
,∆66 =

k2d+ θ2 + iΩ

k2d− 4
.
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By rearranging this determinant, the form following equation is obtained

∆H = F4 (k) Ω
4 + F3 (k) Ω

3 + F2 (k) Ω
2 + F1 (k) Ω + F0 (k) , (82)

with Fi (k) (i = 0, .., 4) defined by,

F4 =

(
dk4 + ((−a11 + θ1) d+ d21m0a12 + θ2) k

2 − a11θ2 − a12a21 + θ1θ2
)

(k2 − a11 − 4)2(k2d− 4)2 (k2 − a11) k2d
,

F3 = − 1

2(k2 − a11 − 4)2(k2d− 4)2 (k2 − a11) d

(
a12bk

2m0b21 sin (φ)
)
,

F2 =
1

2(k2 − a11 − 4)2(k2d− 4)2 (k2 − a11) k2d
(m0ba12k

4b21
(
(−d+ 1) k2 + θ1 − θ2 − a11

)
cos (φ)

+
(
2d21m0(d− 1)2a12 + (2θ1 − 2a11) d

3 + 6θ2d
2 −

(
b2 − 6

)
(θ1 − a11) d+

(
−b2 + 2

)
θ2

)
k6

+(m0
2
(
−4d21

2 + b21
2
)
a12

2 − (4d− 4)
(
−d21m0a11 + θ1d21m0 − θ2d21m0 +

1
2da21 −

1
2a21

)
a12

+6θ2 (θ1 − a11) d
2 +

(
6θ2

2 + 6(θ1 − a11)
2
)
d− θ2

(
b2 − 6

)
(θ1 − a11))k

4 + (8d21m0a21a12
2

+(2θ1 − 2θ2 − 2a11) (−d21m0a11 + θ1d21m0 − θ2d21m0 + 2da21 − 2a21)a12

+(2θ1 − 2a11)
(
3θ2

2 + (θ1 − a11)
2
)
d+

(
2θ2

2 + 6(θ1 − a11)
2
)
θ2)k

2

+
(
4a12a21 + 2θ2

2 + 2(θ1 − a11)
2
)
(−a12a21 + θ2 (θ1 − a11))) +

(
−b2d+ 2d3 + 2d

)
k8

F1 =
sin (φ) b21bm0k

2a12
(
dk4 + ((−a11 + θ1) d+ d21m0a12 + θ2) k

2 − a11θ2 − a12a21 + θ1θ2
)

2(k2 − a11 − 4)2(k2d− 4)2 (k2 − a11) d
,

F0 = − 1

2(k2 − a11 − 4)2(k2d− 4)2 (k2 − a11) k2d

(
k4d+ ((θ1 − a11) d+ d21a12m0 + θ2) k

2
)

(θ2 (θ1 − a11)− a12a21) (2bb21k
4m0a12

(
k2 − a11 + θ1

)
cos (φ) +

(
b2 − 2d2

)
k8

+
(
(−4θ1 + 4a11) d

2 + (−4d21a12m0 − 4θ2) d+ 2b2 (θ1 − a11)
)
k6

(−2(θ1 − a11)
2d2 + ((−8θ1 + 8a11) θ2 − 4a12 (−d21m0a11 + θ1d21m0 − a21)) d− 2θ2

2 − 4θ2d21m0a12

+b2a11
2 − 2b2θ1a11 +m0

2
(
−2d21

2 + b21
2
)
a12

2 + b2θ1
2)k4 − (−4a12a21 + 4θ2 (θ1 − a11))

((θ1 − a11) d+ d21a12m0 + θ2) k
2 − 2(−a12a21 + θ2 (θ1 − a11))

2)

(83)

Appendix C: Mean Field theory

In the beginning of this appendix, details of the mean-field versions of the stochastic models

are given. In the second part, the stability analysis of the equilibrium state derived from the

deterministic model. The master equation which completely defined time evolution of the non-

spatial system is given by:
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dP (n,m, l, t)

dt
= T (n,m, l|n− 1,m+ 1, l)P (n− 1,m+ 1, l, t) + T (n,m, l|n− 1,m, l)P (n− 1,m, l, t)

+T (n,m, l|n+ 1,m, l)P (n+ 1,m, l, t) + T (n,m, l|n,m− 1, l + 1)P (n,m− 1, l + 1, t)

+T (n,m, l|n,m, l − 1)P (n,m, l − 1, t)− [T (n− 1,m+ 1, l|n,m, l) + T (n− 1,m, l|n,m, l)

+T (n+ 1,m, l|n,m, l) + T (n,m− 1, l + 1|n,m, l) + T (n,m, l − 1|n,m, l)]P (n,m, l, t).

(84)

Using step operators ε±1
x , ε±1

y and ε±1
z defined in function of n, m and l such that:

ε±1
x f(n,m, l) = f(n± 1,m, l)

ε±1
y f(n,m, l) = f(n,m± 1, l)

ε±1
z f(n,m, l) = f(n,m, l ± 1)

(85)

Equation92 can be rewritten as follows:

dP (n,m, l, t)

dt
=
((
εxε

−1
y − 1

)
T (n− 1,m+ 1, l|n,m, l) + (εx − 1)T (n− 1,m, l|n,m, l)

+
(
ε−1
x − 1

)
T (n+ 1,m, l|n,m, l) +

(
εyε

−1
z − 1

)
T (n,m− 1, l + 1|n,m, l)

+ (εz − 1)T (n,m, l − 1|n,m, l))P (n,m, l, t).

(86)

By transforming stochastic variables σ = (n,m, l) to a new stochastic variable ζ = (ξ, η, ϑ) such

that.

n = Nϕ(t) +N1/2ξ,

m = Nφ(t) +N1/2η,

l = Nψ(t) +N1/2ϑ.

(87)

The probability distribution function defined by P (n,m, l, t) = Π(ξ, η, ϑ, t) is written as:

dP

dt
=
∂Π

∂t
−N1/2dϕ

dt

∂Π

∂ξ
−N1/2dφ

dt

∂Π

∂η
−N1/2dψ

dt

∂Π

∂ϑ
, (88)
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with ϕ = lim
N→∞

n/N,φ = lim
N→∞

m/N,ψ = lim
N→∞

l/N the step operators defined in Eq. (93) in terms

involving the new variables is gives by:

ε±1
x = 1±N−1/2 ∂

∂ξ
+

1

2
N−1 ∂

2

∂ξ2
+ · · · ,

ε±1
y = 1±N−1/2 ∂

∂η
+

1

2
N−1 ∂

2

∂η2
+ · · · ,

ε±1
z = 1±N−1/2 ∂

∂ϑ
+

1

2
N−1 ∂

2

∂ϑ2
+ · · · ,

εxε
−1
y = 1 +N−1/2

(
∂

∂ξ
− ∂

∂η

)
+

1

2
N−1

(
∂

∂ξ
− ∂

∂η

)2

+ · · · ,

εyε
−1
z = 1 +N−1/2

(
∂

∂η
− ∂

∂ϑ

)
+

1

2
N−1

(
∂

∂η
− ∂

∂ϑ

)2

+ · · · ,

(89)

Replacing these expressions and transitions rates in Eq.(94), the follows list given contributions,

at the order N0 and N2 is obtained:

1.
(
εxε

−1
y − 1

)(2I1nm

N
+

2I2nl

N

)
,

N0 : (I1ϕφ+ I2ϕψ)
∂2

∂ξ2
, (I1ϕφ+ I2ϕψ)

∂2

∂η2
,−2 (I1ϕφ+ I2ϕψ)

∂2

∂ξ∂η
, 2I1ϕ

∂

∂ξ
η,

(2I1φ+ 2I2ψ)
∂

∂ξ
ξ,− (2I1φ+ 2I2ψ)

∂

∂η
ξ, 2I2ϕ

∂

∂ξ
ϑ,−2I1ϕ

∂

∂η
η,−2I2ϕ

∂

∂η
ϑ,

N1/2 : 2 (I1ϕφ+ I2ϕψ)
∂

∂ξ
,−2 (I1ϕφ+ I2ϕψ)

∂

∂η
.

2. (εx − 1) d1n,

N0 : d1
∂

∂ξ
ξ,
d1
2
ϕ
∂2

∂ξ2
,

N1/2 : d1ϕ
∂

∂ξ
.

3. (εz − 1) d3l,

N0 : d3
∂

∂ϑ
ϑ,
d3
2
ψ
∂2

∂ϑ2
,

N1/2 : d3ψ
∂

∂ϑ
.

4.
(
ε−1
x − 1

)
2b1

n

N
(N − n−m− l) ,

N0 : 2b1ϕ
∂

∂ξ
ξ, 2b1ϕ

∂

∂ξ
η, 2b1ϕ

∂
∂ξϑ,−2b1 (1− ϕ− φ− ψ) ∂

∂ξ ξ, b1ϕ (1− ϕ− φ− ψ)
∂2

∂ξ2
,

N1/2 : −2b1ϕ (1− ϕ− φ− ψ)
∂

∂ξ
.

5. (
(
εyε

−1
z − 1

)
b2m,

N0 : b2φ
∂2

∂η2
, b2φ

∂2

∂ϑ2
,−2b2φ

∂2

∂ϑ∂η
, b2

∂

∂η
η,−b2 ∂

∂ϑη,

N1/2 : b2φ
∂

∂η
,−b2φ

∂

∂ϑ
.

Substituting these terms on Eq.(94) and identifying the terms of order N1/2 on the resulting

equation to the equation (88), we obtained macroscopic equation given by Eq.(28). The terms of
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order N0 lead to a Fokker-Planck equation for a fluctuations variables ζ = (ξ, η, ϑ) :

∂Π

∂t
= −

3∑
i,j=1

aij
∂ (ζjΠ)

∂ζi
+

1

2

3∑
i,j=1

bij
∂2Π

∂ζi∂ζj
(90)

the coefficients aij and bij are given by:

a11 = −2b1ϕ
s − d1 + 2b1 (1− ϕs − φs − ψs)− (2I1φ

s + 2I2ψ
s) , a12 = −2 (b1 + I1)ϕ

s,

a13 = −2 (b1 + I2)ϕ
s, a21 = 2 (I1φ

s + I2ψ
s) , a22 = (−b2 + 2I1ϕ

s) ,

a23 = 2I2ϕ
s, a31 = 0, a32 = b2, a33 = −d3, b11 = 2I1ϕ

sφs + 2I2ϕ
sψs + d1ϕ

s

+2b1ϕ
s (1− ϕs − φs − ψs) , b23 = −2b2φ

s, b22 = 2I1ϕ
sφs + 2I2ϕ

sψs + 2b2φ
s,

b33 = 2b2φ
s + d3ψ

s, b12 = −4I1ϕ
sφs − 4I2ϕ

sψs.

(91)

At the non-trivial steady state.

Appendix D: Power spectral analysis

The power spectra of the fluctuations in the neighborhood of the equilibrium state, is evalu-

ated from the temporal Fourier transform of the Langevin equation which describes fluently the

stochastic behavior of the system [65, 98, 121]. The latter corresponding to the Fokker-Planck

equation (Eq.(90)) are

dζi
dt

=

3∑
j=1

aijζj + λi (t) , (i, j = 1, 2, 3) (92)

Where ζi (i = 1, 2, 3) denotes the random deviation of system from the mean fields and λi (t) (i = 1, 2, 3)

the Gaussian white noise with zero mean and a correlation function given by ⟨λi (t)λj (t′)⟩ =

bijδ (t− t′) . Taking the temporal Fourier transform ζ̃i (ω) =
+∞∫
−∞

e−iωtζi (t) dt of Eq.(92) lead to

−iωζ̃i (ω) =
3∑
j=1

aij ζ̃j (ω) + λ̃i (ω) , (93)

with
〈
λ̃i (ω) λ̃j (ω

′)
〉
= bij (2π) δ (ω + ω′). The obtained system corresponds now to a three cou-

pled linear algebraic equations which can be used to derive a closed form expression for the

power spectra. Therefore, solving equation Eq.(92) we obtain:
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ξ̃(ω) =
(a23a32−a22a33)λ̃1+(a12a33−a13a32)λ̃2+(a13a22−a12a23)λ̃3+λ̃1ω2+iω(−(a33+a22)λ̃1+λ̃2a12+λ̃3a13)

D(ω) ,

η̃(ω) =
(a21a33−a23a31)λ̃1+(a31a13−a11a33)λ̃2+(a11a23−a13a21)λ̃3+λ̃2ω2+iω(a21λ̃1−(a11+a33)λ̃2+λ̃3a23)

D(ω) ,

ϑ̃(ω) =
(a22a31−a21a32)λ̃1+(a32a11−a12a31)λ̃2+(a12a21−a11a22)λ̃3+λ̃3ω2+iω(a31λ̃1+a32λ̃2−(a11+a22)λ̃3)

D(ω) ,

where

the denominator is given by

D (ω) = (iω)3 + tra(iω)2 +Θ(iω) + deta,

with
tra = a11 + a22 + a33,

Θ=a11a22 + a11a33 − a12a21 + a22a33 − a23a32 − a13a31,

and

deta=a11a22a33 − a11a23a32 − a12a21a33 + a13a21a32 + a31a12a23 − a13a22a31.

We recall that the power spectra corresponds to the squared moduli average ζ̃i (ω). Using the

expression 〈
λ̃i (ω) λ̃j

(
ω′)〉 = bij (2π) δ

(
ω + ω′)

, we obtained

Pϕ (ω) =
〈
|ξ (ω)|2

〉
=
b11ω

4 + Γϕω
2 + κϕ

|(ω)|2
,

Pφ (ω) =
〈
|η (ω)|2

〉
=
b22ω

4 + Γφω
2 + κφ

|D (ω)|2
,

and

Pψ (ω) =
〈
|ϑ (ω)|2

〉
=
b33ω

4 + Γψω
2 + κψ

|D (ω)|2
.

(94)
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Where

|D (ω)|2 =
(
ω3 −Θω

)2
+
(
deta− traω2

)2
,

Γϕ = a12
2b22 + 2a12a13b23 − 2a12a22b12 − 2a13a32b12 − 2a12a23b13 + a13

2b33 − 2a13a33b13 + a22
2b11

+2a23a32b11 + a33
2b11,

κϕ = a12
2a23

2b33 − 2a12
2a23a33b23 + a12

2a33
2b22 − 2a12a13a22a23b33 + 2a12a13a22a33b23

+2a12a13a23a32b23 − 2a12a13a32a33b22 + 2a12a22a23a33b13 − 2a12a22a33
2b12

−2a12a23
2a32b13 + 2a12a23a32a33b12 + a13

2a22
2b33 − 2a13

2a22a32b23 + a13
2a32

2b22

−2a13a22
2a33b13 + 2a13a22a23a32b13 + 2a13a22a32a33b12 − 2a13a23a32

2b12

+a22
2a33

2b11 − 2a22a23a32a33b11 + a23
2a32

2b11,

Γφ = a11
2b22 − 2a11a21b12 − 2a13a21b23 + 2a31a13b22 + a21

2b11 + 2a21a23b13 + a23
2b33

−2a23a31b12 − 2a23a33b23 + a23
2b22,

κφ = a11
2a23

2b33 − 2a11
2a23a33b23 + a11

2a33
2b22 − 2a11a13a21a23b33 + 2a11a13a21a33b23

+2a11a13a23a31b23 − 2a21a23a31a33b11 − 2a11a13a33a31b22 + 2a11a21a23a33b13

−2a11a21a33
2b12 − 2a11a23

2a31b13 + 2a11a23a31a33b12 + a13
2a21

2b33 + a13
2a31

2b22

−2a13
2a21a31b23 − 2a13a21

2a33b13 + 2a21a13a23a31b13 + 2a21a13a31a33b12

−2a13a23a31
2b12 + a21

2a33
2b11 + a23

2a31
2b11,

κψ = a11
2a22

2b33 − 2a11
2a22a32b23 + a11

2a32
2b22 − 2a11a12a21a22b33 + 2a11a12a21a32b23

+2a11a21a22a32b13 + 2a11a12a21a32b23 + 2a11a12a22a31b23 − 2a11a12a31a32b22

−2a11a21a32
2b12 − 2a11a22

2a31b13 + 2a11a22a31a32b12 + a12
2a21

2b33 − 2a12a21
2a32b13

−2a12
2a21a31b23 + a12

2a31
2b22 + 2a21a12a22a31b13 + 2a21a12a31a32b12 − 2a12a22a31

2b12

−2a21a22a31a32b11 + a22
2a31

2b11 + a21
2a32

2b11,

Γψ = a11
2b33 − 2a11a31b13 + 2a12a21b33 − 2a12a31b23 − 2a21a32b13 + a22

2b33 − 2a22a32b23

+a31
2b11 + 2a31a32b12 + a32

2b22.

(95)

Appendix E: System size expansion in spatial dynamic

Now the master equation is written in two contributions: the first part defined local mecha-

nisms which correspond to the form given in non-spatial case adding a subscript with a scaled
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Ω calling and the second take migration into account Tmigij . The latter is given by:

Tmigij =
(
ε−1
xi εxj − 1

)
T (ni + 1, nj − 1 |ni, nj) +

(
εxiε

−1
xj − 1

)
T (ni − 1, nj + 1 |ni, nj)

+
(
ε−1
yi εyj − 1

)
T (mi + 1,mj − 1 |mi, mj) +

(
εyiε

−1
yj − 1

)
T (mi − 1,mj + 1 |mi, mj)

+
(
ε−1
zi εzj − 1

)
T (li + 1, lj − 1 |li, lj) +

(
εziε

−1
zj − 1

)
T (li − 1, lj + 1 |li, lj) .

(96)

To obtain its contribution on the master equation, we carry out the same procedures doing on

the local contribution in subsection 1. So, the operator expressions listed below are required, for

the other parameters change u = (x, y, z) and ζ = (ξ, η, ϑ)

ε−1
ui εuj − 1 = N−1/2

(
∂
∂ζj

− ∂
∂ζi

)
+ 1

2N
−1
(

∂
∂ζi

− ∂
∂ζj

)2
+ · · · ,

εuiε
−1
uj − 1 = N−1/2

(
∂
∂ζi

− ∂
∂ζj

)
+ 1

2N
−1
(

∂
∂ζi

− ∂
∂ζj

)2
+ · · · ,

(97)

Replacing these expressions and transitions rates in Tmigij , the follows list given contributions, at

the order N0 and N1/2 is obtained:(
ε−1
xi εxj − 1

)
T (ni + 1, nj − 1 |ni, nj) :

N0 :

−ϕj
(
∂

∂ξj
− ∂

∂ξi

)
(ξi + ηi + ϑi) , (1− ϕi − φi − ψi)

(
∂
∂ξj

− ∂
∂ξi

)
ξj ,

1

2
ϕj (1− ϕi − φi − ψi)

(
∂

∂ξj
− ∂

∂ξi

)2

(98)

N1/2 :

ϕj (1− ϕi − φi − ψi)

(
∂

∂ξj
− ∂

∂ξi

) (99)

The contributions of the terms are
(
εxiε

−1
xj − 1

)
T (ni − 1, nj + 1 |ni, nj) obtained by interchang-

ing i and j. So adding the terms in order N1/2 together and identified ∂Π/∂ξi for each i with the

corresponding term on the left-hand side of the master equation, it lead to

−2µ1
zΩ

∑
j

(ϕj − ϕi) +
∑
j

(ϕiφj − ϕjφi)+
∑
j

(ϕiψj − ϕjψi)


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Using the discrete Laplacian operator ∆fi = (2/z)
∑
j∈i

(fj − fi), the following equation is ob-

tained.

−µ1
Ω

(∆ϕi + ϕi∆φi − φi∆ϕi + ϕi∆ψi − ψi∆ϕi) (100)

A similar analysis may be carried out for the terms(
ε−1
yi εyj − 1

)
T (mi + 1,mj − 1 |mi, mj),

(
εyiε

−1
yj − 1

)
T (mi − 1,mj + 1 |mi, mj)

and
(
ε−1
zi εzj − 1

)
T (li + 1, lj − 1 |li, lj),

(
εziε

−1
zj − 1

)
T (li − 1, lj + 1 |li, lj)

to obtain

−µ2
Ω

(∆φi + φi∆ϕi − ϕi∆φi + φi∆ψi − ψi∆φi) (101)

and

−µ3
Ω

(∆ψi + ψi∆φi − φi∆ψi + ψi∆ϕi − ϕi∆ψi) (102)

respectively. Identifying Eq.100, Eq.101, Eq.102 to the left-hand side of the master equation, lead

to a deterministic equations defined by

The stochastic contributions of the terms
(
ε−1
xi εxj − 1

)
T (ni + 1, nj − 1 |ni, nj) are given by

the two first terms of N0 :

µ1
zΩ

∑
i,j

(
∂
∂ξj

− ∂

∂ξi

)
(−ϕj (ξi + ηi + ϑi) + (1− ϕi − φi − ψi) ξj) (103)

Adding with the contributions from
(
εxiε

−1
xj − 1

)
T (ni − 1, nj + 1 |ni, nj) lead to

−µ1
Ω

∑
i

∂

∂ξi
(Di,11ξi +Di,12ηi +Di,13ϑi)Π (104)

where

Di,11 = ∆− (φi + ψi)∆ + (∆ (φi + ψi))

Di,12 = Di,13 = ϕi∆− (∆ϕi)
(105)

To obtain the stochastic contributions given from the terms concerning by the migration of in-
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fected pests and spores just interchanging:

For infected pest:µ1 → µ2, ϕi → φi and ξi → ηi

For spore: µ1 → µ3, ϕi → ψi and ξi → ϑi

So, this give respectively,

−µ2
Ω

∑
i

∂

∂ηi
(Di,21ξi +Di,22ηi +Di,23ϑi)Π (106)

and

−µ3
Ω

∑
i

∂

∂ϑi
(Di,31ξi +Di,32ηi +Di,33ϑi)Π (107)

with

Di,21 = Di,23 = φi∆− (∆φi) ,

Di,22 = ∆− (ϕi + ψi)∆ + (∆ (ϕi + ψi)) ,

Di,33 = ∆− (φi + ϕi)∆ + (∆ (φi + ϕi)) ,

Di,31 = Di,32 = ψi∆− (∆ψi) .

(108)

The deterministic models is written as the 3Ω macroscopic equations given by

ϕ̇i = rϕi(1−
ϕi
k
)− α1ϕiφi − β1ϕiψi + µ1 (∆ϕi + ϕi∆φi − φi∆ϕi + ϕi∆ψi − ψi∆ϕi) ,

φ̇i = α2ϕiφi + θϕiψi − b2φi + µ2 (∆φi + φi∆ϕi − ϕi∆φi + φi∆ψi − ψi∆φi) ,

ψ̇i = b2φi − d3ψi + µ3 (∆ψi + ψi∆ϕi − ϕi∆ψi + ψi∆φi − φi∆ψi) .

(109)

where i = 1, ...,Ω and the symbols (.) and ∆ denote the time derivation (scaled τ = t/Ω) and

discrete Laplacian operator ∆fi = (2/z)
∑
j∈i

(fj − fi). In this sum z corresponds to the total of first

neighbors. the limit Ω → ∞ corresponds to shrink the lattice spacing d to zero and so leading to

the continuum mean-field description. In this limit, the system (109)converge to

ϕ̇ = rϕ(1− ϕ

k
)− α1ϕφ− β1ϕψ + µ1

(
∇2ϕ+ ϕ∇2φ− φ∇2ϕ+ ϕ∇2ψ − ψ∇2ϕ

)
,

φ̇ = α2ϕφ+ θϕψ − b2φ+ µ2
(
∇2φ+ φ∇2ϕ− ϕ∇2φ+ φ∇2ψ − ψ∇2φ

)
,

ψ̇ = b2φ− d3ψ + µ3
(
∇2ψ + ψ∇2ϕ− ϕ∇2ψ + ψ∇2φ− φ∇2ψ

)
.

(110)

The terms given in Eq. 108 are the diffusion contribution of the first terms of Fokker-Planck
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equations, such that it can be defined by

∂Π

∂t
= −

Ω∑
i=1

∂ (Ai [ζ (t)] Π)

∂ζi
+

1

2

∑
i,j

∂2 [Bij (t)Π]

∂ζi∂ζj
(111)

where, fluctuations variables ζi = (ξi, ηi, ϑi) are introduced. The function Ai (ζ) is given by

Ai,1 = αi,11ξi + αi,12ηi + αi,13ϑi,

Ai,2 = αi,21ξi + αi,22ηi + αi,23ϑi,

Ai,3 = αi,31ξi + αi,32ηi + αi,33ϑi.

(112)

where αi,jk (j, k = 1, 2, 3) are exactly the coefficients found adding element aij given in Appendix

C (Eq.91) with subscript i with diffusion terms defined by Eq.105 and Eq.108 at an equilibrium

state and can be also deduced from stability analysis of the spatial equation given by Eq. (110).

The matrix Bij is defined as follow:

Bij,11 = (2I1ϕ
sφs + 2I2ϕ

sψs + d1ϕ
s + 2b1ϕ

s (1− ϕs − φs − ψs)

+4µ1ϕ
s (1− ϕs − φs − ψs)) δij − 4µ1

z ϕ
s (1− ϕs − φs − ψs) J⟨ij⟩,

Bij,23 = Bij,32 = −2b2φ
s,

Bij,22 = (2I1ϕ
sφs + 2I2ϕ

sψs + 2b2φ
s + 4µ1φ

s (1− ϕs − φs − ψs)) δij

−4µ2
z
φs (1− ϕs − φs − ψs) J⟨ij⟩,

Bij,13 = Bij,31 = 0,

Bij,12 = Bij,21 = −4I1ϕ
sφs − 4I2ϕ

sψs,

Bij,33 = (2b2φ
s + d3ψ

s + 4µ1ϕ
s (1− ϕs − φs − ψs)) δij −

4µ1
z
ϕs (1− ϕs − φs − ψs) J⟨ij⟩,

(113)

This term is found by using the elements defined in equations Eq.89 and the third terms of Eq.98.
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PhD. Thesis of Djouda Sonkoué Byliole Laboratory of Mechanics, Materials and Structures



BIBLIOGRAPHY 117

[62] B. D. Elderd, J. Dushoff, and G. Dwyer, “Host-pathogen interactions, insect outbreaks, and

natural selection for disease resistance,” The American Naturalist, vol. 172, no. 6, pp. 829–

842, 2008.

[63] A. E. Hajek, T. S. Larkin, R. I. Carruthers, and R. S. Soper, “Modeling the dynamics of en-

tomophaga maimaiga (zygomycetes: Entomophthorales) epizootics in gypsy moth (lepi-

doptera: Lymantriidae) populations,” Environmental entomology, vol. 22, no. 5, pp. 1172–

1187, 1993.

[64] G. Hess, “Disease in metapopulation models: implications for conservation,” Ecology,

vol. 77, no. 5, pp. 1617–1632, 1996.

[65] S. A. Pedro, S. Abelman, and H. E. Tonnang, “Predicting rift valley fever inter-epidemic

activities and outbreak patterns: Insights from a stochastic host-vector model,” PLoS ne-

glected tropical diseases, vol. 10, no. 12, p. e0005167, 2016.

[66] T. Y. Shin, M. R. Lee, S. E. Park, S. J. Lee, W. J. Kim, and J. S. Kim, “Pathogenesis-related

genes of entomopathogenic fungi,” Archives of Insect Biochemistry and Physiology, p. e21747,

2020.

[67] M. A. Gilchrist, D. L. Sulsky, and A. Pringle, “Identifying fitness and optimal life-history

strategies for an asexual filamentous fungus,” Evolution, vol. 60, no. 5, pp. 970 – 979, 2006.

[68] G. Dwyer, J. Dushoff, J. S. Elkinton, and S. A. Levin, “Pathogen-driven outbreaks in forest

defoliators revisited: building models from experimental data,” The American Naturalist,

vol. 156, no. 2, pp. 105–120, 2000.

[69] B. S. Djouda, F. Moukam Kakmeni, P. Guemkam Ghomsi, F. T. Ndjomatchoua, C. Tcha-

woua, and H. E. Tonnang, “Theoretical analysis of spatial nonhomogeneous patterns of

entomopathogenic fungi growth on insect pest,” Chaos: An Interdisciplinary Journal of Non-

linear Science, vol. 29, no. 5, p. 053134, 2019.

[70] S. Djilali and S. Bentout, “Spatiotemporal patterns in a diffusive predator-prey model with

prey social behavior,” Acta Applicandae Mathematicae, pp. 1–19, 2019.
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ABSTRACT

This paper presents the study of the dynamics of intrahost (insect pests)-pathogen [entomopathogenic fungi (EPF)] interactions. The interac-
tion between the resources from the insect pest and the mycelia of EPF is represented by the Holling and Powell type II functional responses.
Because the EPF’s growth is related to the instability of the steady state solution of our system, particular attention is given to the stability
analysis of this steady state. Initially, the stability of the steady state is investigated without taking into account di�usion and by considering
the behavior of the system around its equilibrium states. In addition, considering small perturbation of the stable singular point due to non-
linear di�usion, the conditions for Turing instability occurrence are deduced. It is observed that the absence of the regeneration feature of
insect resources prevents the occurrence of such phenomena. The long time evolution of our system enables us to observe both spot and stripe
patterns. Moreover, when the di�usion of mycelia is slightly modulated by a weak periodic perturbation, the Floquet theory and numerical
simulations allow us to derive the conditions in which di�usion driven instabilities can occur. The relevance of the obtained results is further
discussed in the perspective of biological insect pest control.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5043612

A biological control system based on entomopathogenic fungi
(EPF) has been developed as an environmentally friendly alter-
native to the use and application of chemical insecticides against
insect pests. However, the dynamics of the entomopathogenic
fungi within the insect host, which they eventually kill, is still
not well understood. Using a host pathogenmodel coupled with a
nonlinear dependence of the consumption of insect resources by
the host, described by the Holling and Powell type II functional
responses, this paper shows that the behavior of such a system is
rich in dynamics. The model represents a reaction di�usion sys-
tem of two equations with a cross-di�usion term in the resource
consumption.Assuming that the di�usion rate ofmycelia depends

on the di�usion rate of the insect resource and time, numerical
simulations reveal the case where mycelia grow successfully in
their host. This work can serve as a tool for understanding the
complexity of the fungus developmental processes and growth
dynamics that take place in insects and that can be generalized to
other hosts.

I. INTRODUCTION

A good number of insects represents a major pest in
agriculture.1–5 They can cause signi�cant damages during their
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immature and mature life stages.6–8 Therefore, it becomes necessary
to set up appropriate pest management programs to control these
insect pest populations. The harmfulness of chemical insecticides to
humans and to the environment has motivated the development of
biological mechanisms with pathogenic organisms that only target
the insect.9

Entomopathogenic fungi (EPF) are organisms that possess the
ability to infect the host by ingestion or by simple contact, there-
fore making insects vulnerable at any of their life stages.10,11 The
penetration process is the most important step in pathogenesis.12

In contact with the insect’s cuticle, conidia (the infectious fungus
unit) germinates if conditions of temperature and humidity are favor-
able (high humidity)13 and penetrates through the integument of the
insect by combining mechanical and enzymatic pressures.14,15 Fur-
thermore, hyphae proliferate into the insect hemocoel, secrete the
toxins to kill the insect, and produce new infective spores, which
are ejected toward the insect cuticle for immediate transmission if
the environmental conditions are favorable. These infectious spores
are subsequently dispersed in the environment by natural phenom-
ena such as wind and rain, which then favor their propagation to
noninfected insects. Moreover, this infection can be transmitted by
a simple contact between infected and noninfected insects.2,13,16,17

However, the e�ciency of this method is good when the densities
of the targeted insect populations are very high, thus enhancing con-
tamination by abundant production and dissemination of spores in
the saprophyte phase. Within the insect immune system, the lack of
recognition between the host and the pathogen, and the inability of
the spores to exploit resources from the insect cuticle can strongly
in�uence the pathogenicity of these natural enemies.18,19

The interaction between EPF and their host is very com-
plex. This justi�es why most studies have focused on experimental
approaches.17 The successful manipulation of EPF depends on the
understanding of their dynamical relationships and the spatiotempo-
ral congruence among the biological control agents and insect pests.17

As opposed to purely experimental approaches that are limited to
the conditions at which the studies are conducted, modeling can be
useful to simplify some aspects of the reality and to investigate what
are the key characteristics that are primordial to generate the spatial
properties of EPF. To illustrate this, models were used in the literature
to study the density dependence and spatial structure in the dynam-
ics of insect pathogens.20Another study used a model to describe the
behavior of infected and noninfected host and predicted the relevant
spatial scale during the spread of fungal pathogen.8 The spread anal-
ysis of the contagious disease caused by Beauveria bassiana (EPF) in
pest (RussianWheat Aphid) population2 and the study of the e�ect of
conidial dispersal of fungal pathogen on the survival of its host have
been carried out.13

A recent study has proposed a model to explain the dynamical
evolution of EPF on insects by addressing simple life history ques-
tions such as the allocation of resources to either mycelia growth or
spore production.21 The authors assumed that the insect was under a
nutritive stress,21 and their analysis ignored the spatial aspects of the
population dynamics and EPF propagation.21 However, the results
of the nonspatial analysis are usually applied to the case of spatially
homogeneous and well-mixed populations, which implies that the
corresponding habitat is su�ciently small, and the impact of spatial
dimensions is, therefore, ignored in a somewhat more exotic case

where the individuals of a given species are assumed to remain �xed
in space at any time and in any generation.8,22 Spatial simulation
can overcome such limitations via the link of process and scales.23

Neglecting the spatial component in such an ecological problem
is misleading and thus limits the understanding of ecological rela-
tionships which are essential for the occurrence of spatial patterns,
and are also inevitable for studying contagious processes.24,25 In the
presence of the enemy, the threatened population moves and forms
micro-partition to better �ght the threat; thus, the persistence of each
population is closely linked to di�usion.24,26,27 Based on an extension
of the model suggested in Ref. 21, a spatial model is developed in this
study by explicitly taking into account the di�usion problem between
species. Although there are numerous spatial methods like cellular
automata, patch model, and network techniques that well describe
the spatial interaction between a host and a pathogen, we opted
for the reaction–di�usion model, which has already been developed
and successfully applied to chemical systems28 and predator–prey
interactions.29–33 Note that dispersal is the key for the successful
formation of spatial structures during the dynamics of insect pest
population systems.24,34,35 This justi�es our choice of partial di�eren-
tial equations (PDE) via an addition of spatial di�usion terms in the
master equations described in Ref. 21. More speci�cally, the changes
are considered on the dispersion of the species in order to investigate
how di�usion a�ects the spatial and temporal evolutions of fungus in
the insects, and also, how instability due to di�usion can be used for
practical predictions in the context of EPF contaminating insects.

The formation of spatial and temporal patterns using the Tur-
ing stability approach was developed in physics36–38 and successfully
applied in spatial ecology to understand the role of the di�usion rate
in the predator–prey population stability and the formation of dif-
ferent spatial structures.29,31,32,36–40 Experimental studies of mycelium
and cell nutrients in hemocoel di�usion and response within the
insect immune system, as well as the self-organization of spatial pat-
terns and structures required for fungi development in the biological
organism, suggest that the reaction di�usionmodel, on the one hand,
and Turing patterns formation, on the other hand, are more appro-
priate to describe the mechanisms of evolution of fungi inside the
host.41–47

It was shown in a previous study that, cross di�usion is necessary
for pattern formation, especially in the case where classical di�usion
coe�cient is not su�cient to favor the occurrence of instability.48 In
certain classes of predator-prey systems, di�usion can be introduced,
speci�cally to capture the gradient of the density of one species that
induces the �ux of another species. Cross di�usion were employed
to model the congregation of preys in order to protect them from the
attack of predators.48–50 They have also been used in chemical reac-
tion and cell division in tumor growth.49 In the case of insect–fungi
interactions,51 the pest acquires defenses to protect itself against the
pathogen infections during host–parasite coevolution. The insect cel-
lular defense system is based on hemocytes circulating in the hemo-
coel, which are able to distinguish between a self and a nonself cellular
organism. In addition, the toxins secreted by hyphal bodies within
the insect hemocoel during their propagation have been shown to
inhibit the spreading of plasmotocytes. So, the number of circulating
hemocytes decreases during the propagation of hyphal bodies,52 and
this could be identi�ed as the inhibition of migration. Such a partic-
ularity is introduced in the model developed here by the nonlinear
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cross-di�usion term. The theory is applied with the aim of investi-
gating the reasons and conditions that are of capital importance for
the success and/or failure of the spatial and temporal biological con-
trol using the EPF. This is conducted through the modeling of the
within-host pathogen dynamics while focusing on the spores pro-
duced by the pathogen and the spores dynamics within the host. It is
worth mentioning here that the mechanism of pattern formation of
hyphae into the hemocoel has yet to be understood in detail.2,8,9,13,19,20

The present study tries to unveil this aspect as well.
The text is organized as follows: In Sec. II, themodel is described

with the underlying hypothesis, and the linear stability analysis is
conducted, and, subsequently, the Turing’s instability is investigated
in Sec. III. Section IV is devoted to the time-dependent di�usivities.
A discussion of the results is done in Sec. V, and Sec. VI is devoted
to the conclusion.

II. MODEL DESCRIPTION

The model presented by Gilchrist et al.21 was reformulated by
introducing functional responses, logistic growth on resources, and
spatial inhomogeneity using the phenomenon of di�usion to charac-
terize the mobility of species. Consideration was given to the most
important morphological states of the fungus, which are the mycelia
(M) and the spores (S),53 while taking into account the magnitude
and characteristics of the quantity of resources (R) that the insect
contains. The system can, thus, be described by the following set of
coupled partial di�erential equations (PDE):

Rt = DR∇2R − F (R)M − αR

(

1 −
R

K

)

,

Mt = DM∇2M + C1

(

1 − q
)

F (R)M − γM

+ DMR∇ (M∇R) ,

(1)

where t is simply the independent time variable and ∇ is the Nabla
operator. α corresponds to the linear birth regeneration rate of
resources and K is de�ned to be the carrying capacity.56 DR and DM

are the di�usion rates of resources andmycelium, respectively, on the
one hand, and on the other hand,DMR is the nonlinear di�usion rate.
It is assumed that the density of mycelium (M) can decay naturally at
γ · dt between the instants t and t + dt and that resources extracted
from the insects by fungi are allocated to the mycelium growth and
spore production. The coe�cient C1 represents the conversion rate
of the resources into mycelium,21 and q · dt is de�ned as the proba-
bility that the extracted resources are allocated to the sporulation in
the presence of the mycelium between the instants t and t + dt. The
spore production density of the fungus S, is assumed to be propor-
tional to the amount of resources allocated to spore production by
the fungus, and can be written as

S = C2qF (R)M.

In this equation, C2 de�nes the conversion rate of the resources into
spores. The infestation function is represented by Holling and Powell
type-II functional responses de�ned by27,39,54,55

F (R) =
AR

B + R
. (2)

This function F(R) has been considered tomodel the nonlinear inter-
action between species, and more clearly, it is worth the amount of
resources extracted per insect’s cell per unit time.Here,B is the quan-
tity of resources that leads the functional response to half-saturation,
and A is the maximum amount of resources that can be extracted
per cell and per unit time. A corresponds also to the value of F(R)

when R is very large. In reality, mycelia are switching to resources at
di�erent moments with di�erent e�ciencies. As most of the mycelia
usually switch to resources that are signi�cantly abundant,57 mycelia
pressure is expected to increasemore than linearlywith resource den-
sity over the initial range. Therefore, the nonlinear di�usion term
DMR∇ (M∇R) is applied formodeling the tendency of resources con-
gregation (immune system) R to protect itself from the attack of
the mycelia M. In order to predict with a good accuracy the behav-
ior of insects during EPFs’ infestation or the e�ciency of EPF, this
switching behavior of the mycelia is modeled by a time-periodic
function.57–60

It is worth mentioning that, in the case of insect–fungi inter-
action, daily environmental conditions such as temperature, rel-
ative humidity, and solar radiation a�ect the insect thermoreg-
ulation, mycelia growth, and the virulence strategy of fungus
entomopathogen.10,15,17 Thus, it becomes obvious that they equally
a�ect the multiplication and the dispersal of infectious propagules
within an insect’s body.10 It has been demonstrated that the di�usion
coe�cient of cells’ biology changes with temperature shifts. Because
of our focus on mycelia growth, we neglect the in�uence of this tem-
perature variation on the resource of insects. A rough analogy with
the transmembrane proteins di�usion coe�cient in bacteria dynam-
ics shows that di�usion coe�cient is proportional to temperature
and, consequently, time.61,62 In view of the fact that living organisms
maintain their membranes in a �uid state,61,62 di�usion coe�cient
can be made time dependent. To study the e�ect of �uctuating tem-
peratures on insect development, often some researchers have shown
that, diurnal temperature can be approximated by a periodic time
dependent function where time is a fractional part of the day.63,64

Also, in some previous research work, di�usivities have been shown
to potentially vary with respect to time. A typical example of this is
oceanic di�usion.65This important phenomenon has also been taken
into account in an ecological model for predator–prey planktonic
species, and in a population pathogen model, in order to study the
impact of constant and time varying di�usion terms on the disease-
dominated ecological population.57,65 In these studies, a sinusoidal
variation of di�usion with respect to time was employed to repre-
sent seasonal and daily variation, environmental factors and various
intrinsic factors that are inherently internal in nature.57 In our case,
the di�usion coe�cient of the resources, DR, is assumed to be a con-
stant and, DM and DMR are functions of time t and are given by the
expressions

DM = DR (d + b sin (ωt)) ,

DMR = DR (D21 + B21 sin (ωt + φ)) ,
(3)

where d > 1, d > |b| ,D21 > 1,D21 > |B21|. The model is de�ned in
a bounded �xed domain. The following dimensionless quantities are
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introduced in order to simplify the equation:

∂

∂τ
= γ −1 ∂

∂t
, M = γ

B

A
m, R = γ

B

C1A
r,

S = γ 2 C2B

C1A
s, b21 = γ

B21B

C1A
, β =

α

γ
,

a = γ
1

C1A
, d21 = γ

D21B

C1A
, x =

√

γ

DR

x′,� =
ω

γ
.

(4)

The master equations (1) become

ṙ = βr
(

1 −
r

ε

)

−
mr

1 + ar
+ ∇ ′2r,

(5)

ṁ =
(

1 − q
) mr

1 + ar
− m + (d + b sin(�τ))∇ ′2m

+ (d21 + b21 sin(�τ + φ)) ∇ ′ (m∇ ′r
)

,

with

s = q
mr

1 + ar
.

The homogeneous Neumann boundary conditions are used, assum-
ing that no external input is imposed on the system.

III. STABILITY ANALYSIS (CASE b = b21 = 0)

It was considered that there exists a set of stationary, spatially
uniform solutions of (5). This allowed us to obtaining three singular
points. The only endemic equilibrium point is

(r0,m0) =
(

1

1 − q − a
,
(−1 + q)β

(

ε
(

a + q − 1
)

+ 1
)

ε
(

a + q − 1
)2

)

,

which has a biological relevance only if
(

q + a
)

< 1, ε
(

1 − a − q
)

> 1, conditions that will be applied throughout the rest of the paper.
The color zones of Fig. 1(a) display the instability region of the steady
state according to the relevance of the conditions given above. The
parameter space

(

a, q
)

shows the zone where the steady state is sta-
ble and, thus, di�usion-driven instability can develop. To �nd Turing
instability with spatial wavenumber k, we search for the eigenvalues λ
of the matrix A (k) = J − k2D (the expressions of J and D are given
in Appendix A). When the real part of the dominant eigenvalue λ

crosses the imaginary axis for some k 6= 0, the spatially homogeneous
equilibrium is destabilized by a periodic perturbation of wavelength
2π/k, and the perturbations will exponentially grow with time. If
each eigenvalue has a negative real part (Re (λi (k)) < 0, ∀k, i = 1, 2),
the homogeneous state is stable: every perturbation will eventually
die out and no pattern will develop. Turing bifurcation happens at
the critical value

dc21 =
(

a + q − 1
)2

(

1 − q
)

det J

(

−tr(J)d + 2
√

detD det J
)

corresponding to the critical wavenumber

k2c =
√

det J

d
.

FIG. 1. (a) Stability diagram of the homogeneous steady state. Black line define
the boundary of the stable and unstable zones corresponding to tr (J) = 0. The
colored areas corresponds to stable region where tr (J) < 0. Turing instability
can occur in this region when diffusion is taken into consideration. Others panels
[(b) for k = 1; (c) for d21 = 2.5; (d) for d = 1.2] show parameter space colored
regions are also obtain for couples of points satisfying the stability conditions. The
other parameters values are given by ε = 10.0,β = 0.47, a = 0.05; q = 0.5; for
each case.

Figures 1(b)–1(d) present the Turing instability parameter regions.
For d21 > dc21, the unstable wavenumber resides between two critical
values. This linear analysis of the homogeneous state enables us to
determine whether the resulting wave is steady or oscillatory when
we look at the imaginary part of the eigenvalues Im (λi (k)). Steady
patterns correspond to Im (λi (k)) = 0 for all unstable modes k, in
which case the instability is called Turing instability [see in Fig. 2(a)].
When Im (λi (k)) 6= 0 for anunstablemode at a nonzero k, the system
is said to undergo wave instability, and the resulting pattern consists
of traveling waves, but this behavior does not occur in this system.

A. Spatiotemporal dynamics (1D simulations)

The system was numerically solved using a fully explicit Euler
method with a �nite-di�erence approach on space and a temporal
step size of 0.01 t.u. (time units). No-�ux boundary condition and
positive random initial condition with an amplitude of 0.01 over
the endemic steady state were employed. The nonlinear di�usion
termwas approximated by a second-order �nite di�erence algorithm.
Spatiotemporal patterns were observed during simulations. The sys-
tem shows stationary Turing patterns. This behavior is presented in
Fig. 2. In panel (a) of this �gure, the dispersion relation is plotted
and it shows di�usion-driven instability. This behavior is modulated
by stationary waves, whereas the space-time structures displayed in
Fig. 2(b) are regular stationary stripes. The density of resources oscil-
lates over time and it is reported in Fig. 2(c) at two di�erent points
of space. The amplitude of the density of resources oscillates periodi-
cally in space [see Fig. 2(d)]. In order to observe the role of the termof
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FIG. 2. (a) Stability analysis showing the complex part (red) and the real part (blue) of the eigenvalues. (b) 1D Turing pattern formation, the chosen parameter values are
ε = 10.0,β = 0.47, a = 0.06, q = 0.3, d = 1.2, and d21 = 2.5(c) blue and red curves are two oscillations located at space x = 10 and x = 12.5. (d) displays the spatial
amplitude modulation at the time given in the legend; (e) and (f) show the influence of the regeneration rate of the EPF during growth (β = 0 in these cases).

the birth regeneration rate of the resources on the system, the dynam-
ics of the endemic equilibrium point was simulated in the absence of
the logistic growth rate of resources. It can be noted that, when β = 0
[Figs. 2(a), 2(e), and 2(f)], the resource density decreases and there is
no pattern formation over time, whereas if β 6= 0, the species density
varies at each site of space as t evolves, as shown in Fig. 2(b).

B. Spatial evolution of fungi within insects hemocoel

(2D simulations)

In this section, the dynamics of EPF within their host is
explored. The numerical simulations by using the fourth-order
Runge–Kutta scheme in a two-dimensional grid with a grid spacing
of 0.0625 and a time step of0.001 were considered. Figure 3 shows
the temporal transients of the regular Turing pattern of the mycelia
population at di�erent evolution times. In Fig. 3(a), the oscillatory
instability seems to emerge after perturbation of the steady state.
After a few iterations, the formation of stripes was observed, but
hot spots (isolated zones with a high density of mycelia) also occur
[Figs. 3(b) and 3(c)]. For a large number of iterations, we observed a
formation of interlaced stripes with a high and low density of mycelia
population [see Figs. 3(d) and 3(e)]. The panel (f) of Fig. 3 shows
more regular patterns with hot spots (isolated zones with a high den-
sity of mycelia) and cold stripes (isolated zones with a low population
density of mycelia). This means that at a point in space, the density

of species �uctuates in time. It was noticed that when the density of
the spores is stationary, the density of mycelia and resources are also
stationary but not equal; so the EPF impose their dynamics on the
insect.

After discarding the transients subsequent to a long time evolu-
tion of their dynamical systems, we could reach some speci�c Turing
structures that are e�ectively heterogeneous stationary pattern (with
permanent or �xed, or nonevolving spatial pro�les). Figure 4 shows
the stationary spatial pattern of resource density. Figure 4(a) shows
double spots connected two by two with stripes, whereas an increase
in the cross di�usion coe�cient gives in Fig. 4(b) a pattern composed
by single spots [see Fig. 4(b)]. But Figs. 4(c) and 4(d) give the Tur-
ing pattern of resource density for two di�erent values of probability
that the extracted resources are allocated to the sporulation in the
presence of the mycelium such that the panel [Fig. 4(c)] has regular
structures composed by hot spots showing a hexagonal form. But by
increasing the probability q, high stripes connecting cold spots occurs
[see Fig. 4(d)].

IV. TIME-DEPENDENT DIFFUSIVITIES (CASE b 6= 0

AND b21 6= 0)

This section analyzes the time-dependent di�usivities using
Eq. (4) that admits a periodic solution. The stability of the sys-
tem is studied by superimposing a small perturbation of the form
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FIG. 3. Temporal transients of regular Turing pattern of the mycelia with the parameter values chosen being identical as in Fig. 2. Time iterations: (a) 100, (b) 500, (c) 1500,
(d) 4500, (e) 6500, and (f) 8000. The color bar shows the magnitude of the population density of mycelia.

aj(t) exp(ikx), (j = 1, 2) and by then applying the theory of Floquet.66

In this expression, k corresponds to the wavenumber. By spatially
linearizing the inhomogeneous system in the neighborhood of the
endemic equilibrium point, we obtained the following �rst order
system:

at = A(k, t)a, (6)

where a = (a1, a2)
T represents the amplitude of the perturbation

a�ecting r and m, respectively; (.)T stands for a transposed vector,
A(k, t) is a two-dimensional matrix de�ned by

A (k, t) =
(

a11 − k2 a12
a21 −m0k

2 (d21 + b21 sin (�t+φ)) a22 − k2 (d+ b sin (�t))

)

,

(7)

where the coe�cients aij, (i, j = 1, 2) are the elements of the Jaco-
bian matrix given above. A(k, t) is periodic, with a minimal period
of 2π/�, with � being the frequency of the perturbation. The sta-
bility of this system is de�ned by the eigenvalues of the monodromy
matrix. According to the Floquet theory,67 the solutions of this system
a (t) obey the formula

a (t) = µa

(

t +
2π

�

)

,

where µ is any eigenvalue of the constant matrix E transforming a
fundamental matrix 8 (t) of the system into its translate 8

(

t + 2π
�

)

.
The stability of this system is de�ned by the eigenvalues of the mon-
odromy matrix E. If µ = 1 then, the system has periodic solutions.
Forµ < 1, the system has a stable solution; and if any eigenvalueµ is

such that µ > 1, then an unstable behavior appears. It is known that
the product of characteristic multipliers is given by

µ1µ2 = exp

(∫ 2π/�

0

trA (k, t) dt

)

= b, (8)

with b = exp
{

2π
�

(

tr (J) − k2 (1 + d)
)}

< 1. Considering Cardano’s
relationship, the characteristic multipliers of the monodromy matrix
are solutions of the equation

µ2 − h (k,�) µ + b = 0.

Based on the fact that b ∈ [0, 1], the form of h (k,�) is not
required, only their interval of variations is needed.67A stable behav-
ior occurs in the colored region of Fig. 5(a). However, it exists
in the (k,�)—plane curves that separate zones where the ampli-
tudes have di�erent qualitative behaviors (see Appendix B). Because
the function h (k,�) is not explicitly de�ned, we searched for the
(k,�)—couples of values describing these variations by using Fourier
series. Let us assume that

(

a1
a2

)

=
+∞
∑

n=−∞

(

Ane
ant

Bne
bnt

)

, (9)

where an = θ1 + in�, bn = θ2 + in�, and the quantities θ1 and θ2 are
two complex numbers.68–70 By substituting Eq. (B1) into (Eq. 5), and
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FIG. 4. Stationary spatial Turing patterns of resource density obtained through
simulation of model (5) on a squared spatial grid with no-flux boundary condi-
tions for nontemporal diffusion. It shows some pattern formations of resources
with parameter values (a) ε = 10.0,β = 0.47, a = 0.05; q = 0.5; d = 1.2;
d21 = 2.2; (b) ε = 10.0,β = 0.47, a = 0.05; q = 0.5; d = 1.2; d21 = 2.35.
Other panels give comparison patterns of the resources between two prob-
abilities q with parameter values: ε = 10.0,β = 0.47, a = 0.06; d21 = 2.25;
d = 1.2. (c) q = 0.3, (d) q = 0.4. The color bar shows the magnitude of the
population density of resources.

using the identity sin θ =
(

eiθ − e−iθ
)

/2i, we get

n=+∞
∑

n=−∞

(

k2 − a11 + an
)

Ane
ant − a12

n=+∞
∑

n=−∞

Bne
bnt = 0,

(10)

n=+∞
∑

n=−∞

(

k2d + bn
)

Bne
bnt +

n=+∞
∑

n=−∞

(

k2m0d21 − a21
)

Ane
ant

− i
k2m0b21

2
eiφ

n=+∞
∑

n=−∞

Ane
an+1t

+ i
k2m0b21

2
e−iφ

n=+∞
∑

n=−∞

Ane
an−1t − i

k2b

2

n=+∞
∑

n=−∞

Bne
bn+1t

+ i
k2b

2

n=+∞
∑

n=−∞

Bne
bn−1t = 0.

For nontrivial solutions, the determinant of thematrix obtained from
Eq. (C1) must be null. Since the determinant is in�nite, the �rst
and second sections of Eq. (C1) are divided by

(

k2 − a11 − m2
)

and
(

k2d − m2
)

, respectively, for the convergence. By considering the
lower-order Hill determinant (six rows and six columns) and set-
ting it equal to zero, the nonlinear algebraic equation is obtained (see
Appendix C). This equation can be solved numerically by the bisec-
tion method or by the Newton–Raphson algorithm, thus leading to

FIG. 5. (a) Stability boundary region, (b) transition curve between stability
and Turing instability with parameter values: ε = 10.0,β = 0.47, a = 0.05,
q = 0.5, d21 = 2.5, b21 = 2, d = 1.2, b = 0.8, θ1 = θ2 = 0; (c) inhibition of the
perturbation (both amplitude of perturbation tending to zero); (d) diffusion driven
instability (both amplitudes of perturbation grow).

the stability boundaries in the (k,�)—plane for the sets of the system
parameters represented in Fig. 5(b), where I and III regions are stable
domains. At �rst, the values k = 0.2,� = 2.0 were chosen and then,
with the same parameter values used to derive Figs. 5(b) and 5(c)
shows that the perturbation is inhibited because both amplitudes of
perturbation are tending to zero, and modulation by the di�usion
periodicity can easily be observed. Second, if k = 0.6,� = 2.0 are
taken in region II with the same parameter values, there is an increase
in the amplitude of the perturbation. The system then exhibits di�u-
sion driven instability [Fig. 5(d)], with the modulation through the
periodicity of the di�usive coe�cients.

Our main objective here was to indicate via a stability analy-
sis approach that even in the case of our periodically driven system,
di�usion-driven instabilities can occur and spatial nonhomogeneous
patterns can appear. This study enables us to say that in these condi-
tions, Turing patterns could possibly occur. The occurrence of these
patterns is not systematic. However, the di�usion-driven instability
conditions, as obtained in Fig. 5(b) provide necessary but not suf-
�cient conditions for these Turing pro�les to emerge. A thorough
screening of region II of Fig. 5(b) may give suitable conditions for
these patterns to occur.

V. DISCUSSION

A mathematical model (patch array model) based on the age
of the resource allocation matrix to evaluate the e�ectiveness, in the
biological control, of a group of fungi exploiting discrete resource
spots in their hosts using the bang-bang resource allocation strategy
with the assumption that the insect undergoes a nutritive stress has
been developed.21 By studying the �tness of the spores, it was possi-
ble to establish that there is a link between the propagation and the
persistence of the entomopathogenic fungus.21 The study proved that
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the success of the employed method depends on the types of fungus
and the host species. The literature has revealed some established
conditions in which the fungi behave like parasites in their host.21

However, the study did not account for the interactions between the
�tness of components. To improve the model presented in Ref. 21,
a functional response, birth regeneration terms, constant, and time-
dependent di�usion terms were included in both insect and EPF
evolution equations. The proposed model exhibits Turing instabil-
ity. The nonlinear cross-di�usion term describes the tendency of
the mycelia to move in response to a spatially decreasing resource
density to maximize resource suppression. As presented in Ref. 48,
Turing pattern can occur when cross-di�usion is taken into account.
Note that its nonlinear di�usion rate must verify the threshold
condition.

In the past, biological control models assumed that either only
the spores disperse or the host population (infected and noninfected
larvae) change their state.8,20 However, these studies show that the
simpli�cations underlying the discrepancy between some of their
theoretical results and the experimental results were mainly due to
the presence of the di�usion coe�cient on a certain species.8,20 To
illustrate this, in ecology, when a species invades the territory of
another species, the invader interacts with the native species and
moves in response to external in�uences or the medium crowding;
there is, therefore, a natural displacement of each species.24 This is
the reason why we asked ourselves the following question: “what
would happen if mycelia (m) and the resources (r) are able to dis-
perse simultaneously?” In order to investigate possible outcomes of
such a situation, the proposed model took into account not only the
reaction between these species but also the dissemination into the
insect hemocoel.

In the presence of nonlinear di�usion, themodels analyzed here
show a destabilization of the homogenous distribution of mycelia
and resources, and Turing pattern formation, which have impor-
tant biological signi�cance. In previous studies, similar phenomena
were observed in reaction–di�usionmodels applied to predator–prey
dynamics.29,31,33,71,72 However, the proposed model presents addi-
tional features with three equilibrium points. When the endemic
point is stable and the terms of spatial inhomogeneity are intro-
duced, two cases can be distinguished: the case in which the system
remains stable, and the situation in which the di�usion drives the
instability. Such results corroborate well with what is found in the
literature.28,38,71,73

Previous studies have shown that varying the key parameters of
a system can induce the formation of rich patterns. In predator–prey
models, increasing the value of prey growth rate generates similar
behavior.33 This is unlike our case, where PDE [Eq. (C1), bi = 0]
exhibits Turing structures only in the presence of a nonzero intrinsic
growth rate (of resource) such that the system changes from a sta-
ble to an unstable steady state when the regeneration rate (β) passes
through zero. A numerical simulation of the system shows the space
and space-time plot of density for β = 0, which indicates a stable
behavior of the resource species. For β 6= 0, the graph exhibits the
oscillations of the species populations arising out of instability. It has
also been shown that as time evolves, the spatial dynamics of fungus
presents more regular structures.

Some studies have shown that temporally periodic perturba-
tions introduced in the di�usion rate have a weak stabilizing e�ect.

Since such a phenomenon has been observed in predator–prey sys-
tems (with two species), it shows that the interval of the dispersal rate
in which instability occurs is reduced when the variability is included
in the di�usion coe�cient.57,58On the contrary, the developedmodel
always exhibits stable and unstable regions, but both amplitudes of
perturbation do not rapidly tend to zero in the case of stability. Fur-
thermore, it can be noticed that varying the di�usion coe�cient has
a strong stabilizing e�ect. The temporal forcing parameters k and
� in the problem provide a transition zone for the occurrence of
Turing instability. It appears that in addition to destabilizing the equi-
librium points, a periodic perturbation of the di�usion coe�cient
provides a better optimization of biological control in the sense that
it could be better oriented from this new variation. Therefore, it is
possible that the reaction–di�usion models between infected and
noninfected larvae and spores8,20 are insu�cient to determine more
precisely the conditions for the success of this spatiotemporal biolog-
ical control, because optimizing the spatial growth of the EPF ensures
good control.

Turing instability corresponds to the growth of the EPF and,
therefore, to the death of the insect host. Naturally, if the regen-
eration rate of the insects resources is nil, the density of resources
decreases to a threshold, but does not necessarily induce the death
of insects. However, the inability of mycelia to use these resources
can lead to a failure of biological control,18 thus explaining why in
the situation where the mycelia density decreases, there is no intra-
host growth. In the case of the two-dimensional spatial domain,
di�erent behaviors of the system are observed at di�erent times
when parameters are varied in Turing regions. In particular, it
is proved that the presence of the nonlinear di�usion term pro-
duces instability in cases only where there is space and time
modulation.

VI. CONCLUSION

A study of the dynamics of the pathogenwithin the host (insect)
through the development of a model with the spatial inhomogeneity
was conducted. The proposed model di�ers from others including
the functional response to describe nonlinear interactions between
the host and the EPF and also by introducing constant and time-
dependent di�usion and cross-di�usion terms in both the insect and
EPF evolution equations to underscore the in�uence of the di�u-
sion of a species on another.8,20,74 In addition, particular attention
was given to the intrahost evolution of EPF. The study started by
analyzing the stability of the system, establishing conditions for the
di�usion driven instability of an inhomogeneous distribution system,
and understanding the type of perturbations of the system that lead to
equilibrium states and can allow the occurrence of Turing instability.
It was observed that cross-di�usion has a remarkable impact on Tur-
ing patterns; di�erent structures appear as time evolves. The results
showed that the birth regeneration rate is an important parameter
that leads to the occurrence of patterns. The Floquet theory permits
us to predict and determine the transition curves in the parame-
ter space that demarcate the regions leading to stable and unstable
solutions when di�usion and cross-di�usion are described as tem-
poral periodic functions. This work is important for understanding
and obtaining the Turing instability in biological control using EPF,
which describe the di�erent morphological states of fungus growth
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within their host. The obtained outcomes help to better understand
the spatial structures of the mycelia relative to the spatial distribu-
tion of the insect resources and their persistence while increasing
the time related to the physical contact between EPF’s population
and insect pests. Using a space component, biological control sys-
tems are de�ned as natural systems; therefore, it will be important to
study the in�uence of the Allee e�ect on resources or on EPF. It is
possible that time delay plays an important role in biological control
using EPF.
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APPENDIX A: CONSTANT DIFFUSION

Linearizing the system in the neighborhood of the steady state
(r0,m0),75,76 the following equation is obtained:

wt = Jw + D∇2w, (A1)

where

w =
(

r − r0
m − m0

)

,

J =





− β(a2ε+(1+ε(−1+q))a−q+1)
((−1+q)ε(a+q−1))

1
−1+q

− β(ε(a+q−1)+1)
ε

0



 ,

and

D =
(

1 0
d21m0 d

)

.

Since det J =
β
(

ε
(

a + q − 1
)

+ 1
)

ε
(

−1 + q
) is always positive according to

the biological relevance conditions, the only way for the endemic
singular point to become unstable is tr (J) > 0.

APPENDIX B: TEMPORAL DIFFUSION CASE

The polynomial equation

µ2 − h (k,�)µ + η = 0

have solutions for

µ =
1

2

(

h ±
√

h2 − 4η
)

.

For distinct values of µ, Eq. (4) has two linearly independent solu-
tions of the form ςi = pi (τ ) exp (ρiτ) (i = 1, 2), where exp (ρiT) =
µi (i = 1, 2) and pi are functions of period T. The general solution of

Eq. (4) (the �rst component of ς) is given by

a1 = p1 (τ ) eρ1τ + p2 (τ ) eρ2τ . (B1)

The stability or otherwise of the periodic solution of Eq. (4)
will be determined by the behavior of a in Eq. (4). The sys-
tem is stable if Re (ρ1) < 0 and Re (ρ2) < 0. This is equiva-
lent to µ1 < 1 and µ2 < 1. The analysis can be split into three
cases.

1. h2 > 4η, µ1 and µ2 are both real and positive, or both
real and negative according to the sign of h: in both cases,
µ2 < µ1. If they are both positive, then the periodic solution is

stable if µ1 =
(

h +
√

h2 − 4η
)

/2 < 1 or h < 1 + η. According

to the fact that η ∈ [0, 1], this lower bound is always greater than
2
√

η. The region between h = 1 + η and h = 2
√

η [hatched
region in h > 0 in Fig. 4(a)] is a stable region. Similarly, if
h < −2

√
η, then the stability boundaries are h = −1 − η and

h = −2
√

η.
2. If h2 = 4η, then there exists a unique double eigenvalue µ1 =

µ2 = h/2 = ±√
η, stable solution arise and are periodic for the

negative eigenvalues.
3. h2 < 4η,µ1 andµ2 are complex conjugates given by (h ± iθ) /2,

where θ =
√

4η − h2. The system is therefore stable if |h| <

2. In addition to the natural oscillations with frequency �,
there appear new oscillations. By plotting this boundary region,
Fig. 4(a) is obtained, where a stable behavior occurs in a colored
region.

APPENDIX C: HILL DETERMINANT

Equating each of the coe�cients of the exponential functions
to zero yields Eq. (7), the following in�nite set of linear, algebraic,
homogeneous equations for Am and Bm is obtained:

(

k2 − a11 + am
)

Am − a12Bm = 0,
(C1)

(

k2d + bm
)

Bm +
(

k2m0d21 − a21
)

Am − i
k2m0b21

2
eiφAm−1

+ i
k2m0b21

2
e−iφAm+1 − i

k2b

2
Bm−1 + i

k2b

2
Bm+1 = 0.

For nontrivial solutions, the determinant of thematrix obtained from
Eq. (C1) must be nil. Since the determinant is in�nite, the �rst and
second sections of Eq. (C1) are divided by

(

k2 − a11 − 4m2
)

and
(

k2d − 4m2
)

, respectively, for the convergence. Thus, the obtained
lower Hill determinant is given by

1H =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

111 112 0 0 0 0

121 122 123 124 0 0

0 0 133 134 0 0

141 142 143 144 145 146

0 0 0 0 155 156

0 0 163 164 165 166

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (C2)
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where

111 =
k2 − a11 + θ1 − i�

k2 − a11 − 4
, 112 = −

a12

k2 − a11 − 4
, 121 = −

−m0k
2d21 + a21

k2d − 4
, 122 =

k2d + θ2 − i�

k2d − 4
,

123 = i
k2m0b21e

(−iφ)

2k2d − 8
, 124 = i

k2b

2k2d − 8
, 133 =

k2 − a11 + θ1

k2 − a11
, 134 = −

a12

k2 − a11
, 141 = −i

m0b21e
(iφ)

2d
,

142 = −i
b

2d
, 143 = −

−m0k
2d21 + a21

k2d
, 144 =

k2d + θ2

k2d
, 145 = i

m0b21e
(−iφ)

2d
, 146 = i

b

2d
,

155 =
k2 − a11 + θ1 + i�

k2 − a11 − 4
, 156 = −

a12

k2 − a11 − 4
, 163 = −i

k2m0b21e
(iφ)

2k2d − 8
, 164 = −i

k2b

2k2d − 8
,

165 = −
−m0k

2d21 + a21

k2d − 4
, 166 =

k2d + θ2 + i�

k2d − 4
.

By rearranging this determinant, the following equation is obtained:

1H = F4 (k) �4 + F3 (k)�3 + F2 (k)�2 + F1 (k) � + F0 (k), (C3)

with Fi (k) (i = 0, . . . , 4) de�ned by

F4 =
1

(k2 − a11 − 4)2(k2d − 4)2 (k2 − a11) k2d

(

dk4 + ((−a11 + θ1) d + d21m0a12 + θ2) k
2 − a11θ2 − a12a21 + θ1θ2

)

,

F3 = −
1

2(k2 − a11 − 4)2(k2d − 4)2 (k2 − a11) d

(

a12bk
2m0b21 sin (ϕ)

)

,

F2 =
1

2(k2 − a11 − 4)2(k2d − 4)2 (k2 − a11) k2d
(m0ba12k

4b21
(

(−d + 1) k2 + θ1 − θ2 − a11
)

cos (ϕ)

+
(

−b2d + 2d3 + 2d
)

k8 +
(

2d21m0(d − 1)2a12 + (2θ1 − 2a11) d
3 + 6θ2d

2 −
(

b2 − 6
)

(θ1 − a11) d +
(

−b2 + 2
)

θ2
)

k6

+ (m0
2
(

−4d21
2 + b21

2
)

a12
2 − (4d − 4)

(

−d21m0a11 + θ1d21m0 − θ2d21m0 +
1

2
da21 −

1

2
a21

)

a12 + 6θ2 (θ1 − a11) d
2

+
(

6θ2
2 + 6(θ1 − a11)

2
)

d − θ2
(

b2 − 6
)

(θ1 − a11))k
4 + (8d21m0a21a12

2 + (2θ1 − 2θ2 − 2a11) (−d21m0a11

+ θ1d21m0 − θ2d21m0 + 2da21 − 2a21)a12 + (2θ1 − 2a11)
(

3θ2
2 + (θ1 − a11)

2
)

d +
(

2θ2
2 + 6(θ1 − a11)

2
)

θ2)k
2

+
(

4a12a21 + 2θ2
2 + 2(θ1 − a11)

2
)

(−a12a21 + θ2 (θ1 − a11))),

F1 =
sin (ϕ) b21bm0k

2a12

2(k2 − a11 − 4)2(k2d − 4)2 (k2 − a11) d

(

dk4 + ((−a11 + θ1) d + d21m0a12 + θ2) k
2 − a11θ2 − a12a21 + θ1θ2

)

,

F0 = −
1

2(k2 − a11 − 4)2(k2d − 4)2 (k2 − a11) k2d

(

k4d + ((θ1 − a11) d + d21a12m0 + θ2) k
2 + θ2 (θ1 − a11) − a12a21

)

× (2bb21k
4m0a12

(

k2 − a11 + θ1
)

cos (ϕ) +
(

b2 − 2d2
)

k8 +
(

(−4θ1 + 4a11) d
2 + (−4d21a12m0 − 4θ2) d + 2b2 (θ1 − a11)

)

k6

× (−2(θ1 − a11)
2d2 + ((−8θ1 + 8a11) θ2 − 4a12 (−d21m0a11 + θ1d21m0 − a21)) d − 2θ2

2 − 4θ2d21m0a12 + b2a11
2 − 2b2θ1a11

+ m0
2
(

−2d21
2 + b21

2
)

a12
2 + b2θ1

2)k4 − (−4a12a21 + 4θ2 (θ1 − a11)) ((θ1 − a11) d + d21a12m0 + θ2) k
2

− 2(−a12a21 + θ2 (θ1 − a11))
2). (C4)
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ABSTRACT

In this study, an individual-based model is proposed to investigate the effect of demographic stochasticity on biological control using ento-
mopathogenic fungi. The model is formulated as a continuous time Markov process, which is then decomposed into a deterministic dynamics
using stochastic corrections and system size expansion. The stability and bifurcation analysis shows that the system dynamic is strongly
affected by the contagion rate and the basic reproduction number. However, sensitivity analysis of the extinction probability shows that the
persistence of a biological control agent depends to the proportion of spores collected from insect cadavers as well as their ability to be reacti-
vated and infect insects. When considering the migration of each species within a set of patches, the dispersion relation shows a Hopf-damped
Turing mode for a threshold contagion rate. A large size population led to a spatial and temporal resonant stochasticity and also induces an
amplification effect on power spectrum density.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019971

Entomopathogenic fungi (EPF) are more used as a biological con-
trol agent, with long and irregular periods between outbreaks.
However, the EPF outbreaks are strongly influenced by environ-
mental factors such as temperature and humidity. The ability of
EPF to persist in the insect habitat plays an important role in
fungi disease transmission. The first sequence of analyses consists
of the construction of the mathematical models [individual-based
model (IBM) and its corresponding deterministic model called
the population level model (PLM)]. The IBM that is inherently
stochastic is formulated as a continuous time Markov process,
which is then decomposed into a deterministic dynamics using
stochastic corrections and system size expansion; we deduce the
mechanisms behind the dynamics of the system in order to

understand the interplay between deterministic and stochastic
forces, and we compare the obtained models. This study suggests
that the persistence of EPF depends on the density of conidia,
which becomes resting and can be reactivated in favorable con-
ditions. Our results show that the contagious processes between
susceptible and infected insects and the maximum number of
species a patch may contain are more responsible factors of EPF
persistence and outbreaks. This study well describes EPF out-
breaks and disease transmission between insects and thus can be
served to understand the epidemiological characteristic of fun-
gal infections and to characterize the density species fluctuations
that are simply a result of an interaction between demographic
parameters.
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I. INTRODUCTION

A wide spectrum of animals, weeds, and diseases can be a bur-
den for agriculture and human health.1 As an alternative to chemical
control that is dangerous for the environment and for non-targeted
living organisms, the biological control is often preferred.1 This par-
ticular type of control consists of using living organisms to reduce
population density of another organism.2 Biological control schemes
use microbial agents (bacteria, viruses, and fungi), and predatory
insects and mites that parasite and kill other arthropods, weeds, or
nematodes.2

In order to address important issues about the biological con-
trol and pest eradication problems in applied ecology, numerous
mathematical models were suggested.1–17 However, the question
of how to study complex host-pathogen dynamics remains con-
tentious with several competing paradigms available.3,18 An impor-
tant approach is individual-based models [or individual-level mod-
els (ILMs)], which include demographic noise effects associated
with birth, death, immigration, and emigration assuming the phys-
ical environment constant.4,19 The stochastic demography (often
called demographic noise) is defined as a random variation origi-
nating from the discrete nature of individuals and stochastic char-
acter of these events, where birth/death rates are not affected by
external forcing.4,19 This is a useful approach to understand how
biological and ecological systems evolve over time while consid-
ering the behavior and interactions among species and deduct
the associated emerging patterns when the population is well
mixed.4,19 This approach was successfully applied in predicting rift
valley fever inter-epidemic activities and outbreak patterns,5 preda-
tor–prey cycles from resonant amplification from demographic
stochasticity,20–23 stochastic amplification in epidemics,24 demo-
graphic noise and resilience in a semi-arid ecosystem,6 impact of
human mobility on the periodicity and mechanisms underlying dis-
eases dynamics,7 demographic stochasticity and heterogeneity in
transmission of infection,25 and stochastic Turing’s patterns.26,27 The
approach is promising, and it was hypothesized that it can pro-
vide good insight when applied in the context of biological control
modeling.

In this paper, the interaction between susceptible and infected
insects, and spores of EPF is modeled. The role of stochasticity in
the dynamic between the both species is investigated by studying the
resilience and stochastic amplification. The spatial aspect of this sys-
tem was also explicitly considered in order to explain the dynamics,
which take place between individuals from different patches.

A considerable challenge for controlling pest via a biologi-
cal control is to understand how the parasite or the pathogen can
persist within the pest population without an external reservoir.1–4

However, most of the existing biological control models oper-
ating at an individual level included the stochasticity mostly by
random functions/parameters.3,8–11 The effect of individual vari-
ability on pathogen persistence is still undervalued in biologi-
cal control studies. The present study brings novelty by starting
with an individual-based model for biological control (BC), which
is inherently stochastic. Considering the case study of BC using
entomopathogenic fungi (EPF) already investigated in the determin-
istic and non-ILM approach,12–14 we moved forward and designed a
stochastic ILM model for BC and EPF to find how to optimize insect
pest extinction or a major outbreak of pathogen? Note that despite

the development of numerous mathematical models that have exam-
ined the use of micro-organisms and parasitoids as control agents,
the role of entomopathogenic fungi and the mechanisms underly-
ing host–pathogen relations that result from epizootics are not fully
investigated.3,15,18 Entomopathogenic Fungi (EPF) are convenient
for use in biological control (BC) and in integrated pest manage-
ment to reduce crop devastator damages because it can generate
a secondary infection after the initial spray via the production of
spores by first infected individuals during their interactions depend-
ing on temperature, humidity degree, and dispersion by natural
phenomenon (such as wind, rain).16,17 The number of secondary
infection also known as the measurement of the disease transmis-
sion has been investigated in the previous mathematical models.25

Previous researchers have shown their role on the interplay between
species and/or their habitat and predicted the dynamics, the extinc-
tion, and the persistence of individuals by using bifurcation and
stability analysis theory.28–35 The underlying theories demonstrated
relevant results in the context of predator–prey models,20,21,28–37 in
the context of disease transmission,5,25 in population dynamics,4 and
so on.

The infection of a pest occurs in two ways: (1) direct contami-
nation by spores38 and (2) contamination by infected insects (conta-
gious phenomenon) usually called horizontal transmission.38 How-
ever, the number of conidia resulting from the infectious insects or
cadavers is important to evaluate the persistence of EPF in the field
and sustain a resilience of the BC.17 In general, three factors were
highlighted as major determinants in the long-term dynamics of the
pathogen in the population: (1) the intrinsic biological properties
of EPF, (2) the life history traits and population parameters of pests,
and (3) spatial evolution of EPF within crop devastator’s population.
Thus, a very important property of spore causing long-term infec-
tiousness and persistence of a BC agent underlined in this study is
its ability to be rested on mummified insects and upon reactivation
causing pests to become infectious.39 The pathogen spread during
the ongoing epidemics is enhanced by a simple contact between
infected and susceptible insects during their reproduction, their
foraging, and intra/interspecific competition.15 It is noteworthy to
mention that for certain classes of EPF, spores emerged on their host
cuticle only after death.3,15 Note that parameters such as social group
size, recruitment rate, and mobility can also affect the persistence of
pathogen.19,23,40

This study is organized as follows: In Sec. II, the model is
described with the underlying hypothesis following by the stability
and bifurcation analysis. Other analyses such as the role of stochas-
ticity in the dynamics of the system and the condition at which
population coexists or goes to extinction are also investigated in
the same section. In Sec. III, the results obtained are discussed. The
conclusion is done in Sec. IV.

II. MATERIALS AND METHODS

A. Dynamical model

In this section, an individual-based stochastic model that con-
siders all essential features of the interactions between EPF and
insect pests is formulated. This model investigates a biological con-
trol using entomopathogenic fungi to target insect pest’s population
when their size is large but finite. This work focused solely on
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the pathogen particle populations, assuming that they are implic-
itly dispersed in the environment by natural phenomena such as
wind or rain. An additional transmission pathway is simple contacts
between infected and susceptible insects depending on the species
of entomopathogenic fungi,15,38 assuming this can be ignored in the
particular case where spores are produced by insect cadavers. It is
assumed that insect individuals exist in two discrete states: suscepti-
ble or infected. To simplify the analyses, it was supposed that for the
same species, every individual has an identical probability for birth,
death, migration, or acquiring infection.

New insects produced at a birth rate b1 are susceptible to be
infected. They undergo natural death at the rate d1. A susceptible
insect is infected by a previous infected insect or by a pathogen
particle at probabilities I1 and I2, respectively.41 Infected insects die
and produce either more infective conidia with the probability b2.
If environmental conditions are not favorable, spores become inac-
tivated at the rate d3.15 The carrying capacity N, defined as the
maximum number of individuals allowed per site, is kept constant.
In this framework, n denotes the number of insects susceptible to
be infected S, m the number of infected insect species I, and l the
number of pathogen particle species C. A fourth class E denoting
empty (describes the possibility to receive a new individual in the
patch) is introduced. It is supposed that the population dynamics of
the system can be essentially described by four processes:

1. Infection.
A spore species may come into contact with a susceptible insect
giving rise to one infected pests. This is assumed to take place
at a rate I2. A susceptible insect may also be infected by an
infected (that is, from the environment, reproduction) for a cer-
tain species of entomopathogenic fungi at the rate I1 giving rise
to two infected pests. Therefore, to generalize this study, there
are two mechanisms written as CS → CI and IS → II. The case
where spores emerge on their host cuticle only after insect death
corresponds to the case where the second mechanism does not
exist.

2. Death.
To describe a more realistic epidemiological model, it is
assumed that each of the three types of individuals has its spe-
cific death rate. These are represented by S → E and C → E at
the rate d1 and d3, respectively. The death of a spore means the
resting process (inactive stage). The death of an infected insect
is affected to case 4.

3. Birth.
In regard to the potential of EPF to rapidly kill their host, it
is assumed here that there is no offspring for infected insects.
They only give rise to the new spore generation. Thus, the
mechanisms SE → SS occur for susceptible insects at the rate
b1.

4. Death/conidia production.
Each death of infected insects gives rise to the sporulation. This
transition is represented by I → C and occurs at the rate b2.

1. Small population size

The transition probability per unit time step of the local system
of individuals from state σ =

(

n, m, l
)

to the state σ ′ =
(

n′, m′, l′
)

is noted T (σ ′ |σ ). The process occurring in this framework is
conceptualized by the following events:

1. Infection

T
(

n − 1, m + 1, l
∣

∣n, m, l
)

=
2I1nm

N
+

2I2nl

N
. (1)

2. Birth

T
(

n + 1, m, l
∣

∣n, m, l
)

= 2b1

n

N

(

N − n − m − l
)

. (2)

3. Death

T
(

n − 1, m, l
∣

∣n, m, l
)

= d1n,

T
(

n, m, l − 1
∣

∣n, m, l
)

= d3l.
(3)

4. Death/conidia production

T
(

n, m − 1, l + 1
∣

∣n, m, l
)

= b2m. (4)

The factor of 2 comes from the fact that the choices AB and BA
are identical. A and B illustrate different species. The rate of occur-
rence (transition rate) depends only on the present state and could
be for a species A defined as the number of this type at the time t
divided by the total number of possibility to draw individuals. Thus,
the coefficients b1 and Ii (with i = 1, 2) are scaled by a factor (N − 1)
and b2 and di by a factor N. The system (1)–(3) is simulated using the
Gillespie algorithm.42

2. System size expansion

The master equation describing the time evolution of the sys-
tem is defined to be a sum of transition probabilities giving rise
to a change in the probability distribution function P

(

n, m, l, t
)

= P (σ , t) with time and takes the following form:5,21,23

dP (σ , t) /dt =
∑

σ 6=σ ′

(

T
(

σ | σ ′) P
(

σ ′, t
)

− T
(

σ ′∣
∣ σ

)

P (σ , t)
)

, (5)

where t represents the time since the first infection; for more details,
the reader is referred to Appendix A. This equation is too compli-
cated to solve exactly, and as proposed in previous research,19,22,43

it can be analyzed in the limit of a large system size. Van Kam-
pen’s approximation transforms the system to deterministic equa-
tions associated with its stochastic corrections.19,22,43 Defined in
terms of the populations φ = limN→∞ n/N,ϕ = limN→∞ m/N,ψ =
limN→∞ l/N, these equations are explicitly given by

φ̇ = rφ(1 −
φ

k
)− α1φϕ − β1φψ ,

ϕ̇ = α2φϕ + θφψ − b2ϕ,

ψ̇ = b2ϕ − d3ψ .

(6)

The details about the mean-field theory are provided in Appendix A.
The dot above the average state variable represents the first order
derivative with respect to the time, and the coefficients are given by

r = 2b1 − d1, k = 1 − d1
2b1

,α1 = 2
(

b1 + I1

)

,β1 = 2
(

b1 + I2

)

,

α2 = 2I1, and θ = 2I2.
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B. Stability and bifurcation analysis

It was considered that there exists a set of stationary, spatially
uniform solutions of (6). This allowed us to obtaining three singular
points. The only endemic equilibrium point is ESIC = (φs,ϕs,ψ s),
which has a biological relevance only if k

(

θb2 + α2d3

)

− b2d3 >

0, the condition that will be applied throughout the rest of this
study.To make this analysis more easy, the basic reproduction num-
ber R0 defining the expected number of secondary infections caused
by a single infected case is introduced from the relevance biolog-
ical conditions (see details in Appendix A). In our model, when
R0 < 1, the endemic equilibrium point does not have a biological
relevance, and the EPF population density will die out with time
and cannot reduce the pest population; whereas for R0 > 1, the
introduction of EPF can lead to a targeted spread, and the endemic
equilibrium point exists and can be stable/unstable. The color zones
of Fig. 1(a) display the stability region of the steady state accord-
ing to the relevance of the conditions given above. The parameter
space (R0,I1) shows the zone where the steady state exists and is
unstable so that EPF can invade insect pest population. Figure 1(c)
shows that the transcritical bifurcation occurs at R0 = 1 and changes
the stability from the trivial steady state (disease free equilibrium
E1) to the endemic equilibrium. More clearly, E1 is stable when
R0 < 1. The underlying steady state becomes unstable for R0 > 1.
At the same time, the endemic point is stable for the contagious
rate corresponding to the black colored area of Fig. 1(a). At the
threshold basic reproduction number R0 = 1, the infected insect
population can invade the susceptible population, and the result-
ing free-disease equilibrium system becomes unstable. Because R0

and I1 are proportional, R0 can be sufficient to describe dynamics
of the systems.44 Therefore, the fundamental question here is How
to maintain R0 always greater than one? To answer this question,
the sensitivity analysis of the basic reproduction number R0 is con-
ducted by a Latin hypercube sampling (LHS) in combination with a
partial rank correlation coefficient (PRCC).45 This method is useful
to identify parameters that affect the quantity R0. The input model

parameters k, θ ,α2 or I1, b2, d3 from which R0 depends are randomly
and uniformly distributed between their lower and higher values
into Q equal probability intervals and subsequently used to com-
pute the LHS matrix of five (number of input parameters) columns
with Q lines. The basic reproduction number R0 is evaluated as a
corresponding output matrix. These matrices are rank-transformed
to calculate the partial rank correlation coefficient (PRCC), which
gives the sensitive index of R0 associated with each parameter.45 The
parameters that have the sensitivity indexes closer to ±1 should
significantly affect R0. The more a parameter is tending to minus
one, the more it has a reductive effect on R0, and the parameters
for which the PRCC is close to one increase the basic reproduc-
tion number. Therefore, the resting rate of spore d3 decreases the
basic reproduction number [Fig. 3(a)]. It is also easy to see that the
carrying capacity and the fraction of a susceptible insect pest have
the most important augmentative effect on the basic reproduction
number. This affects the logistic growth of other species in these
BC systems. This is in agreement with the investigation,3 where it
is shown that in the BC, using entomopathogenic against nema-
tode pests can be efficiently used to control the host population
only if the host’s reproductive rate is also regulated in a density-
dependent manner. A comparison between ILM and deterministic
system equations obtained in van Kampen approximation, shown
through a numerical simulation, sustained oscillations of all species
(Fig. 2, red line), whereas the deterministic equation models showed
damped oscillations [see Fig. 2 (dark and blue dotted lines)], a sim-
ilar result was observed.4,5,21,46 It is the expected long-term behavior
for host–vector models.5

C. Population extinction, coexistence, and stochastic

amplification

1. Probability of extinction and coexistence

In epidemic models, the main concern is to find conditions
under which a pathogen agent introduced into a community will

FIG. 1. Stability diagram of the endemic steady state. The colored zone corresponds to the stable region according to the biological relevance conditions and the coupled point
satisfies the stability condition in the parameter spaces. (b) Transcritical bifurcation at R0. Parameter values are d1 = 0.05, b1 = 0.25, b2 = 0.15, d3 = 0.1, andI2 = 0.05
for each case.
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FIG. 2. These panels show susceptible (φ), infected pest (ϕ), and pathogen (ψ) population densities as a function of time [(a), (b), and (c), respectively] for N = 10 000.
The red line is the average of time series of 100 replications generated from the ILM [Eqs. (1)–(3)] using the Gillespie algorithm,43 and the dashed dark line is the average of the
species density time series from 10 000 replicates generated from the ILM and is almost indistinguishable with the continuous blue line that corresponds to the deterministic
equations from mean-field approximation simulated with a classical Runge–Kutta algorithm. The parameters used in the simulations are b2 = 0.15, d3 = 0.1, I1 = 0.25,
d1 = 0.05, b1 = 0.25, and I2 = 0.05.

develop into a large outbreak, while coexistence of populations was
never observed.47 Therefore, the question asked here is Under which
conducive conditions the EPF may become endemic in a susceptible
insect pest population? It has been shown that the epidemic outbreak
is not always guaranteed by having R0 greater than one: stochastic
extinction can occur during the period immediately following the
introduction when there are a few infectious individuals within the
system.25,48 Rather than the major outbreak that would be expected
based on the behavior of the deterministic model, only a minor out-
break might occur. During this early period after EPF introduction,
little depletion of a susceptible insect will have occurred; therefore,
invasion probabilities can be derived using the linear model that
arises by assuming that the populations are entirely susceptible.5,25

A more challenging question is to calculate the probability that the
infection persists or extinct through the trough that follows the ini-
tial epidemic.48 It is noteworthy to mention that the infection of the

insect pest occurs in two range: one is the transmission of infection
by a direct contact between infected and susceptible insects38 and the
other refers to the transmission from the pathogen particle (spore)
to susceptible individuals. In many disease models, it is assumed that
a constant rate of death for the hosts and a constant death rate for a
resting spore, leading to the duration of infection, for both hosts and
pathogens are being exponentially distributed.25 Assuming the sec-
ondary infections arise independently at a constant rate over these
infectious periods,25,48 extinctions probabilities taken as s1 and s2

for host and EPF, respectively, start from a single individual of the
same type, are found by calculating the smallest positive root of the
equation G1 (G2 (s1)) = s1 and G2 (G1 (s2)) = s2, respectively, where
Gi (with i=1,2) denotes the probability generating functions (PGFs)
using subscript 1 for insect species and subscript 2 for a pathogen
particle. The sensitivity analysis of the probability of pest extinction
is given in Fig. 2(b). In contrast to other parameters, the sensitivity
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FIG. 3. (a) Sensitivity analysis of the number of secondary infection (R0) results. (b) Sensitivity analysis of the number of secondary infection (S1) results. Sam-
ple size Q = 1000. The symbol (∗) denotes PRCCs that the p-values are significantly different from zero. (c) Numerical and theoretical predictions of the
power spectral density of infected insects [Eq. (A11)] for a total number of species. (d) and (e) Numerical and analytic predictions of the impact of the basic
reproduction number on the power spectral density of infected insects [Eq. (A11)] for a total number of species using the same parameter values of five in
Fig. 2.

indexes for α2, θ are negative, meaning that they have a decreasing
effect on s1. It is easy to remark that the proportion of infected
pest’s death b2 followed by the rate d3 of a spore becoming a resting
stage has a large effect on increasing extinction probability because
these spores have the ability to be reactivated when conditions are
favorable.

2. Periodicity and stochastic amplification

As mentioned previously, the ILM model discussed here leads
to the existence of stochastic cycles (also called quasi-cycles) because
it does not have a single period, but a distribution of period centered
around an average value corresponding to the maximal amplitude of
fluctuations. Therefore, a power spectrum density of the frequency
distribution is essential to adequately capture the quasi-periodicity.
A description of the stochastic fluctuations of the system requires
consideration of higher-order terms in the Van Kampen expan-
sion. In particular, a very good approximation is obtained only
if the next-to-leading order is considered. In this way, we obtain
linear Fokker–Planck equations, which have their natural equiv-
alent to a set of Langevin’s equations for the temporal evolution
of the normalized fluctuations of susceptible, infectious individ-
uals and a pathogen particle around equilibrium values (ξ , η,ϑ ,
respectively). By Fourier’s transformation of these equations, we
are able to analytically calculate the power spectral densities (PSDs)

corresponding to the normalized fluctuations, which is no longer
dependent on the community size N. After averaging, the three
expected forms of these PSDs of susceptible pests, infected pests,
and spores around the endemic equilibrium are given by (A11).
The complete derivations of these PSDs and detailed descriptions
about the functions κi, bij,0i, and D (ω) depend on model parame-
ters (see Appendix A). In Fig. 3(c), the very large amplification of
these fluctuations is remarkable and almost exceptionally impor-
tant for the infected host species. The system has a tendency to
oscillate at a greater amplitude at some frequencies rather than at
others. Internal noise arises from demographic stochasticity con-
tained in the individual’s processes and leads to the resonant effect.
By using the expression for the PSD for the infected insects, the
basic reproduction number effects on the periodicity of the pest’s
outbreaks are examined. Figures 3(d) and 3(e) show that as R0

moves from unity, the amplitude of PSD decreases, whereas the
width increases. The width is important as it shows how coher-
ent the cycles are: the smaller the width is, the longer the cycles
remain in phase. Therefore, for R0 tending to one, the power spec-
tra present a large peak at a preferred frequency different from
zero, which corresponds to the irregular dynamics. This increases
stochasticity in the smaller systems but also the fade-out boundary,
where extinction and re-colonization events start to have an impact
on the dynamics.46 However, the PSD of the deterministic case
shows that when R0 increases, the amplitude of the power spectral
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density decreases. Also, a light shift of the resonant frequency is
observed.

D. Spatial dynamic

1. Small population size

In this section, we proposed a spatial stochastic version of
the model. The mechanisms corresponding to birth, death, and
infections described above are assumed to be local meaning that it
is only involved in a local site. Here, the possibility of migration
between nearest-neighbor patches is taken into consideration. It is
also assumed that the inhabited patches, labeled by i = 1, . . . ,�,
are located at the sites of a d-dimensional hypercubic lattice.23 For
applications, we are interested in the case of a square lattice in two
dimensions, but we prefer to work with general d. One reason is
that it is not any more complicated to do so. Another justification
is because our stochastic simulations have been carried out in d = 1
in order to achieve a higher accuracy. Each patch possesses a finite
carrying capacity, N, which is the maximum number of individuals
allowed per site. The number of susceptible pests, infected pests, and
spores in the patch i will be denoted by ni, mi, and li, respectively.
There are, therefore,

(

N − ni − mi − li
)

empty or vacant “spaces,”
E, in the patch i. These are necessary to allow the number of S, I,
and C individuals in patch i to independently vary with time. The
transition rate is given in two groups: locally, it corresponds to the
transition probability described in (1), (2), (3), and (4) adding a sub-
scription i and scaled by �. In addition to processes described in
the local model, an individual is moved from the patch i to another
patch label j at a constant rate as

• Susceptible pest: SiEj → EiSj, EiSj → SiEj at the rate µ1.
• Infected pest: IiEj → EiIj, EiIj → IiEj at the rate µ2.
• A given spore can be displaced by rain, wind, or spray by another

insect or animal: CiEj → EiCj, EiCj → CiEj at the rate µ3.

To summarize, the migratory transition rate is given by

T
(

ni + 1, nj − 1 |ni, nj

)

=
µ1nj

(

N − ni − mi − li
)

z�N
,

T
(

ni − 1, nj + 1 |ni, nj

)

=
µ1ni

(

N − nj − mj − lj
)

z�N
,

T
(

mi + 1, mj − 1 |mi, mj

)

=
µ2mj

(

N − ni − mi − li
)

z�N
,

T
(

mi − 1, mj + 1 |mi, mj

)

=
µ2mi

(

N − nj − mj − lj
)

z�N
,

T
(

li + 1, lj − 1
∣

∣li, lj
)

=
µ3lj

(

N − ni − mi − li
)

z�N
,

T
(

li − 1, lj + 1
∣

∣li, lj
)

=
µ3li

(

N − nj − mj − lj
)

z�N
.

(7)

Here, z denotes the coordination number of the lattice that is
the number of nearest neighbors of any given site. It needs to be
included since it represents the choice of nearest neighbor j once a
patch i has been chosen.

2. Stability analysis

The master equation is rewritten in two main contributions:
the first part defined local mechanisms that correspond to the form
given in a non-spatial case adding a subscript i with a scaled � call-

ing Tloc
i and the second one takes migration into consideration T

mig
ij .23

Therefore (see Appendix B),

dPn,m (t)

dt
=

�
∑

i=1



Tloc
i Pn,m (t)+

∑

j∈i

T
mig
ij Pn,m (t)



, (8)

where the notation j ∈ i means that j is the nearest neighbor of i. The
deterministic models are written as the 3� macroscopic equations
given by

φ̇i = rφi(1 −
φi

k
)− α1φiϕi − β1φiψi

+ µ1 (1φi + φi1ϕi − ϕi1φi + φi1ψi − ψi1φi) ,

ϕ̇i = α2φiϕi + θφiψi − b2ϕi

+ µ2 (1ϕi + ϕi1φi − φi1ϕi + ϕi1ψi − ψi1ϕi) ,

ψ̇i = b2ϕi − d3ψi

+ µ3 (1ψi + ψi1φi − φi1ψi + ψi1ϕi − ϕi1ψi) , (9)

where i = 1, . . . ,� and the symbols (.) and 1 denote the time
derivation (scaled τ = t/�) and the discrete Laplacian operator
1fi = (2/z)

∑

j∈i

(

fj − fi
)

, respectively.23 In this sum, z corresponds

to the total number of first neighbors. The limit � → ∞ corre-
sponds to shrinking the lattice spacing d to zero and so leading to
the continuum mean-field description. In this limit, the system (9)
converges to

φ̇ = rφ(1 −
φ

k
)− α1φϕ − β1φψ

+ µ1

(

∇2φ + φ∇2ϕ − ϕ∇2φ + φ∇2ψ − ψ∇2φ
)

,

ϕ̇ = α2φϕ + θφψ − b2ϕ

+ µ2

(

∇2ϕ + ϕ∇2φ − φ∇2ϕ + ϕ∇2ψ − ψ∇2ϕ
)

,

ψ̇ = b2ϕ − d3ψ

+ µ3

(

∇2ψ + ψ∇2φ − φ∇2ψ + ψ∇2ϕ − ϕ∇2ψ
)

. (10)

The eigenvalues of the associated Jacobian matrix defined by
Eq. (B19) in Appendix B give information about whether perturb-
ing the homogeneous solution leads to instability. If each eigenvalue
has a negative real part Re

(

λi

(

q
))

< 0∀q, (i = 1, 2, 3), the homo-
geneous state is stable: Every perturbation will eventually die out
and no pattern will develop. If, on the other hand, there is an
eigenvalue at a nonzero q with a positive real part, then a spatially
modulated instability occurs: A perturbation will grow in magni-
tude, taking the system from the homogeneous state to one with
the wave number defined by q . This growth will eventually be sat-
urated by the nonlinear terms leading to a spatial perturbation with
a characteristic wave number q. This linear analysis of the homoge-
neous state is also able to determine whether the resulting wave is
steady or oscillatory by looking at the imaginary part of the eigen-
values Im

(

λi

(

q
))

. Steady patterns correspond to Im
(

λi

(

q
))

= 0 for
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all unstable modes q, the case in which the instability is called a
Turing instability. When Im

(

λi

(

q
))

6= 0 for an unstable mode at
a nonzero q, the system exhibits a wave instability as the resulting
pattern will consist of traveling waves or at the zero q, this condi-
tion leads to bifurcation.27,49 The present study also suggests that the
total size of the population can have a relevant effect on the oscilla-
tion features. The dispersion relation is shown in Fig. 4. Figure 4(a)
shows that adding the migration processes leads the systems to
go over three possible dynamics. Region (I), at zero wave num-
ber, the eigenvalues are positive and thus are above the threshold
Re

(

λ
(

q = 0
))

= 0. The system exhibits a Hopf bifurcation mode.
In region II, the real part of the dominant eigenvalues is nega-
tive and defined a stable dynamics, with the oscillation frequency
defined by Im

(

λ
(

q
))

6= 0. Region III describes damped Turing

modes since Re
(

λ
(

q
))

< 0 and Im
(

λ
(

q
))

= 0 for q 6= 0. From
region I to II, there is a bifurcation point satisfying the condition
Re

(

λ
(

q
))

= 0 and Im
(

λ
(

q
))

6= 0 with q 6= 0. The latter condition

gives the threshold of the Hopf–Turing bifurcation. These unstable
modes occur for the selected parameter values [see Fig. 4(b)]. Unlike
the temporal model (6), Hopf-damped Turing bifurcation dynam-
ics occurs for the contagion rate threshold I1 = 0.305. By using the
Gillespie algorithm mentioned above and the fully explicit Euler
method with a three-point approximation with no-flux boundary
conditions, we compare numerically the stochastic model (1)–(4)
and (8) and the deterministic model (10). As shown in Fig. 5, the
same phenomenon of sustained oscillations and damped oscillations
observed above in local dynamics occurs here; from a mathematical
perspective, a similar behavior appears in Ref. 6. The discrete ver-
sion seems to exhibit slower dynamic compared to its continuous
analog. These space components also have a large influence on the
power spectral density. It is clear that the migration contributions
make a significant difference in both spectra since αq,ij 6= aij and
Bq,ij 6= bij. The analytic expressions of PSD are obtained by replac-
ing aij by αq,ij and bij by Bq,ij in Eq. (A11). It is observed that in

FIG. 4. Linear stability analysis showing (a) the complex part (red) and the real part (blue) of the eigenvalues. H: Hopf-bifurcation with Re (λ (q)) > 0 and Im (λ (q)) > 0
at q = 0, DT: damped Turing with Re (λ (q)) < 0 and Im (λ (q)) = 0 at q 6= 0. (b) The real part of the eigenvalues for five different values of I1. (c) Linear stability analysis
around the endemic steady state. (d) Linear stability analysis around the free-disease steady state. Using the same parameter values:� = 500, N = 15 000, b2 = 0.15�,
d3 = 0.1�, I1 = 0.31�, I2 = 0.05�, d1 = 0.05�, b1 = 0.25�, µ1 = 0.6�, µ2 = 0.4�, and µ3 = 0.2�.
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FIG. 5. Comparison of the spatiotemporal dynamics of the species density in the stochastic model [panel (b)] with that in the corresponding deterministic approximation
[panel (a)] for the line patches defined as a continuous space in mean-field approximation. A comparison of the temporal dynamics of the species density in the stochastic
model [panel (d)] with that in the corresponding deterministic approximation [panel (c)] at the same selected patch. The uninfected insect pest (φ), the infected pest (ϕ),
and the pathogen (ψ) are plotted in green, blue, and red, respectively. The zoomed curves are purposely displayed for highlighting the persistence of oscillations. While
the deterministic approximation leads to stabilization, the full stochastic model recovers. The color bar gives the density of infected insects. The capacity and the number
of patches were N = 10 000 and � = 100. The parameters used in the simulations are b2 = 0.15�, d3 = 0.1�, I1 = 0.25�, I2 = 0.05�, d1 = 0.05�, b1 = 0.25�,
µ1 = 0.6�, µ2 = 0.4�, and µ3 = 0.2�.

infected insect pest’s spectra especially, there is a large peak at a
nonzero value of ω depending on the q-values as shown in Fig. 6.
Therefore, resonant behavior still occurs in this spatial model just as
it did in the non-spatial case. The more the q increases, the peak
increases, although the migration rate differs among all the three
species.

The results presented in Figs. 7 and 8 aim to show the
effect of the total population size on the power spectra and its
spatial distribution, respectively. These figures show the PSD of
infected insect pests obtained from direct analytic calculations with
N = 500, 1000, 5000, and 15 000. The population size has an effect
on the power spectra in two ways: first, the existence of a spatial
amplification and second, when the population size increases, the
pathogenic period is shifted to lower central frequencies. This means

that the frequency of the oscillation depends on the total number of
individuals.

III. DISCUSSION

This study proposed a model to understand the ento-
mopathogenic fungi outbreak within an insect population. Based
on the fact that demographic processes are inherently random, an
individual-level model is proposed. The obtained results are com-
pared to its corresponding deterministic model in order to deter-
mine the most appropriate or useful approach, which better mimics
that the dynamic occurs between species. In addition, because the
outbreak of EPF is related to the instability and the persistence of
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FIG. 6. Theoretical predictions of the power spectral density (PSD) for a sys-
tem composed of � = 500 sites occupied by N = 15 000 species for different
size populations using the same parameters values: b2 = 0.15�, d3 = 0.1�,
I1 = 0.25�, I2 = 0.05�, d1 = 0.05�, b1 = 0.25�, µ1 = 0.6�, µ2 =
0.4�, and µ3 = 0.2�.

EPF within the insect habitat, stability conditions and the extinction
probability are investigated.

A. Non-spatial

Natural population dynamic is controlled by random fluctua-
tions. These fluctuations among individuals within populations are
often caused by birth and death events and usually called demo-
graphic stochasticity.50,51 The latter occurs independently among
individuals and leads to the population growth in large populations
or to reduce in size. Understanding the processes that influence
demographic stochasticity and its potential effect of the pathogen
is, therefore, important when attempting to explain patterns of
extinction of pest and success of the biological control method.

A large body of biological research was devoted to the biologi-
cal control using EPF to target crop devastators.3,18 The mechanism
identified as most important in this interaction is the contagious-
ness among pest individuals, which permits propagation of the EPF
within the insect population. In order to understand this mecha-
nism, we begin by the investigation of the dynamics between EPF
and insect pests in the local patch, followed by the interaction
on a larger collection of patches. The approach is totally differ-
ent from what is found in the literature as majority of studies
focused only on either an individual level3,8–10 or on well-mixed
populations.3,18 Most existing models on the population dynamics
of the host–parasitoid or predator–prey include a type II functional
response.52–55 It used experimental data to describe the relation-
ship between the host density and the number of host attacked
per natural enemy per unit of time and showed that the para-
sitoid/pathogen does not really create a stable pest’s enemy equilib-
rium during the growing season of a crop, but that it suppresses the
insect population and subsequently prevent the pest from causing
yield losses.3,8–10,52 However, the same phenomena are observed here
without any functional response. A number of models described

how insects and their fungal pathogens could be used in a frame-
work to exploring metapopulation theory;15 in addition, they lack
realism because all ecological and biological phenomena are inher-
ently random.4,19,56 The challenge in modeling the complexity of
fungal entomopathogens in populations of insects is thoroughly dis-
cussed in Ref. 15; these authors emphasize that the heterogeneity
of individuals should be incorporated; they further demonstrated
that the explicit consideration of stochastic demography is crucial.
In order to provide a framework for evaluating different ensem-
bles of life history and demographic properties favoring the success
of biological control based EPF, the present study complements
experimental and theoretical approaches through the use and appli-
cation of an individual-level model (ILM). The model assumed
that insect hosts do not acquire immunity to their pathogens and,
therefore, do not include a resistant class of hosts immune to fur-
ther infection,15 the insect is also assumed to be infected only by
a single spore, and multiple infections are not considered in this
model.

By comparing the IBM and its corresponding population level
model (PLM), it is observed that most of the existing models for
EPF–pest interactions are mean-fields and they failed to adequately
capture the resilience and oscillation sustainability of the patho-
genesis without any external reservoir.13,57–59 Our analytical results
pertain to self-maintenance of species (pest and the pathogen popu-
lation) dynamics in the absence of seasonality, thus reflecting the
role of individual (discrete) behaviors of EPF in regulating the
population of insect’s pests and vice versa.

In previous studies, external infectious stages ensured that the
fungi persist during periods of low host population density when
the horizontal transmission is insufficient to maintain the preva-
lence in the host population.15 It was hypothesized that EPF could
potentially regulate and cause cycles in each species,15 which cor-
roborates the quasi-cycle persistence predicted by our model. By
assuming that natural selections drive the rates of transmission
through altered host susceptibility,60–63 it was found that stochas-
ticity induces cycles even at a high rate of heterogeneity during
transmission. By considering natural selection as a pure demo-
graphic stochasticity, we were able to characterize the quasi-cycle
amplitudes and the frequency distribution, which is not the case
in the literature.60–63 It was demonstrated that the control ability
of EPF is strongly dependent on the average number of secondary
infections produced by a single infectious unit of EPF (conidia).3

With the aim to maintain R0 greater than one, a sensitivity analy-
sis is performed in order to determine which parameters can make
the basic reproductive number growth. We also assess the rela-
tive importance of different factors responsible for pests and EPF
growth to better determine how to reduce the harmfulness of insect
devastator. In contrast to the present study, the basic reproduc-
tion number reported in previous epidemiological research studies
describing insect-EPF dynamics but did not highlight the relevance
on the degree self-limitation of the susceptible insects on the pro-
portion of spores entering the inactive stage and their important
effects on EPF invasion.12,14 If the population grows according to
a birth and death process, then BC agents might survive forever
and the number of spores increases at a slower speed than the
population does; therefore, the fraction of the infected individu-
als goes to zero.48 It is also possible that the pest population and
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FIG. 7. Theoretical predictions of the power spectral density (PSD) for a system composed of � = 500 sites occupied by (a) N = 500, (b) N = 1000, (c) N = 5000, and
(d) N = 15 000 species for different size populations using the same parameter values: b2 = 0.15�, d3 = 0.1�, I1 = 0.25�, I2 = 0.05�, d1 = 0.05�, b1 = 0.25�,
µ1 = 0.6�, µ2 = 0.4�, and µ3 = 0.2�.

conidia reach equilibrium and the fraction of infectious individu-
als converges to a constant as defined by BC. However, although
EPF may suppress a pest below its carrying capacity, most systems
could show prolonged oscillations.48 The fraction of the suscepti-
ble insect exposed is contaminated by infected insects; therefore,
the contagious event is primordial.58 Therefore, in this study where
the desired result is to obtain an important number of infected
pests for a successful BC (increase in the basic reproductive num-
ber), the suggested strategy must be to increase the carrying capac-
ity and apply the EPF in a large area to optimize the chance for
infecting a large number of insect pest host. Some models are
proposed to investigate this density dependence and spatial pat-
tern dynamics of EPF57 and to investigate the spread of infections
through dispersion of conidia by considering the behavior of sus-
ceptible and infected host.41,58,64 The potential of fungi to regulate
insect populations will depend on their abundance in the host
population (prevalence) as well as their abundance and persis-
tence in the surrounding environment.3,15 Because this abundance
is strongly controlled by the contagion phenomenon, another sug-
gested strategy would be to develop a control method by increasing
the host individual to get the propensity of having more physical
contacts.

However, one of the most powerful tools for analyzing such
oscillations is the power spectrum. This determines how the peri-
odicity of the stochastic system that makes up the time series is
distributed. We derived the PSD of the fluctuations around an
equilibrium using a large N expansion method due to Van Kampen.

In the case where the pest was not influenced by any external
regulation, pathogens could be responsible for population cycles.15,61

However, the largely sustained oscillations, which replace the deter-
ministic predictions of damped oscillation behavior, have a single
preferred frequency at which resonant stochasticity occurs.

The results obtained show that coexistence or extinction prob-
abilities of species can have a complex relationship when spreading
parameters are varied. It is demonstrated that the extinction proba-
bility of the host is strongly susceptible to be amplified by the death
rate of the insect pest during the infectious period. Furthermore, the
proportion of spores entering an inactivated stage reduces the num-
ber of susceptible hosts by their potential to survive in the soil and on
the dormant or mummified pest.65 These spores control the persis-
tence of BC by their ability to be reactivated and alternatively infect
hosts, and produce another conidium.3 Unfortunately, EPF takes a
lot of time to suppress pest populations, whereas chemical pesti-
cides provide immediate results.40 Moreover, this BC agent is used to
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FIG. 8. Spatial distributions of the power spectral density (PSD) for a system com-
posed of� = 500 sites occupied by (a) N = 500, (b) N = 1000, (c) N = 5000,
and (d) N = 15 000 species for different size populations using the same param-
eter values: b2 = 0.15�, d3 = 0.1�, I1 = 0.25�, I2 = 0.05�, d1 = 0.05�,
b1 = 0.25�, µ1 = 0.6�, µ2 = 0.4�, and µ3 = 0.2�.

reduce the population density but not often gives rise to total extinc-
tion. Another limit is that sometimes it needs to be sprayed more
than one time in the field.2

B. Spatial

Entomopathogenic fungi are relatively immobile compared
to hosts but could be migrated by water, wind, rain, and so on;
thus, any spatial refuge may be vital in allowing hosts to escape
parasitism.15 Therefore, populations may regularly pass through a
series of localized extinctions and re-colonize from neighboring
populations, which show that increasing the spatial wavelength of
perturbation gives rise to the large possible oscillation frequency
that increases the maximal infectious period. In order to illustrate
the role of the nonlocal interaction term, the temporal evolution
of each species is computed at a single patch for the stochastic
and determinist approach; this model verifies as assumed in our
previous study that a nonlinear diffusion is well appropriate to
describe biological systems.66 It is observed that the diffusion coef-
ficient system starts to exhibit Hopf modes when increasing the
contagions rate. The phenomenon of sustained oscillations observed
in the stochastic approach remains when patches interact. Many
researchers compared the stochastic model and the deterministic
analog in spatiotemporal dynamics and show in a certain case that
the deterministic system predicts an extinction;6 here, it is observed
that the discrete behavior slows evolution of dynamics and predicts
self-maintained oscillations.

Reilly and Elderd63 showed that depending on the threshold of
the insect population size and the amount of biocontrol, the sys-
tem may display large-amplitude cycles, steady states, or a range
of intermediate behaviors. The present study further complements

previous results by illustrating that an increase of the possibility
of having a contact between host populations reduces the width of
the PSD and consequently extends the infection period leading the
EPF to persist for large periods. The interest in this result stems
from observed epidemic oscillations in EPF and insect pests. Despite
sustained oscillations could be produced in deterministic models
by introducing various complications (external seasonal forcing or
nonlinear dissipation, for instance), in contrast to what is reported
in the literature on insect pest BC interactions,60–63 here, it is shown
that cycles result from the coherence between random variations and
damped oscillations.46 The oscillations of the stochastic model pre-
sented here have a frequency distribution, evidenced by the power
spectral density of the process of infective and stochastically varying
amplitude. This phenomenon, in which random fluctuations sustain
nearly periodic oscillations in a system that has a stable constant
equilibrium in the deterministic limit, has been called coherence
resonance or autonomous stochastic resonance.24

From a numerical study, we can understand that the mobility
of the species within their habitat increases the possibility of dis-
ease transmission by leading to a rich behavior. When increasing the
infection rate, the magnitude of the onset of instability through Hopf
bifurcation increases. In addition, stability analysis around the triv-
ial equilibrium, for example, shows that the species migration has a
stabilizing effect on the system dynamics.

A wide spectrum of theoretical models describing the fungal
dispersal and/or outbreaks within a given host insect population
based on the mechanism of reaction and reaction–diffusion has
been proposed.57,58,61,62 They concluded that diffusion of species
between habitats ensures the spread of the disease and could poten-
tially lead to insect’s extinction, which is translated mathemati-
cally by the instability of the pest–pathogen interaction.39 However,
many studies proved that the presence of diffusion is sufficient to
induce a rich dynamics through Hopf bifurcation, Turing patterns,
and Turing–Hopf bifurcation.28–35,66 Furthermore, the underlying
dynamics has been well applied in the context of population dynam-
ics of predator–prey models28–35 and intra-host growth of ento-
mopathogenic fungi.66 A rough analogy with these research studies
shows that Hopf bifurcation, Turing instability, and Turing–Hopf
bifurcation promise good description of the EPF outbreaks within a
pest population. However, our analysis shows a transcritical bifurca-
tion for local dynamics and a Hopf-damped Turing bifurcation in a
spatial case. Similar results have been obtained in the predator–prey
model34,35 and in the Brusselator model describing the competition
of two chemical species in a chemical reaction.67 To the best of our
knowledge, this specific bifurcation has not yet been obtained from
an individual-based model, particularly in biological control (BC).

IV. CONCLUSION

A model describing biological control developed in order to
understand the EPF persistence mechanism in a pest’s population by
taking into consideration the carrying capacity and the random vari-
ation of the demographic parameter is proposed. A similar approach
has been applied in the predator–prey system and in nonlocal mod-
els in other areas, such as epidemic spread or social dynamics, and
the authors obtained no Turing patterns and stochastic Turing pat-
terns, respectively.23,27 Here, using the same approach in epidemic
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spread, the deterministic spatial system exhibits Hopf-damped Tur-
ing bifurcation when increasing the infection parameters, whereas
the local dynamics exhibits transcritical bifurcation at the thresh-
old of the number of secondary infection. However, the optimal
control strategy depends on the success of establishing more con-
tact between the host and the relationship between the inoculum
size and the probability of spore entering in a resting stage. The
model predicted the existence of multiple endemic equilibria when
the basic reproduction number is greater than unity. The present
study leads us to conclude that R0 should be maintained above this
threshold to guarantee fungi invasion into the insect host popula-
tion. The cost-effective strategy for performing the spread of the
infection unit is also determined. By the application of Van Kampen
approximation, the deterministic analysis of the proposed model is
performed. It allowed examining the period of the cycle occurrence
in the biological system by the power spectrum in both non-spatial
and spatial considerations. Four control variables to be handled in
order to maximize the number of infected hosts and the total num-
ber of pathogen unit population are (1) carrying capacity on the host
population, (2) the number of uninfected, which could be contam-
inated by infected pests, (3) the number of pest death, and (4) the
number of resting conidia.
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APPENDIX A: LOCAL MODEL

1. Mean-field theory

At the beginning of this appendix, details of the mean-field
versions of the stochastic models are given. In the second part,
the stability analysis of the equilibrium state is derived from the
deterministic model. The details of the calculation of the power
spectral density are from a stochastic Fokker–Planck equation.5,22

The master equation that completely defined the time evolution of
the non-spatial system is given by

dP(n, m, l, t)

dt
= T

(

n, m, l|n − 1, m + 1, l
)

P(n − 1, m + 1, l, t)

+ T
(

n, m, l|n − 1, m, l
)

P(n − 1, m, l, t)

+ T
(

n, m, l|n + 1, m, l
)

P(n + 1, m, l, t)

+ T
(

n, m, l|n, m − 1, l + 1
)

P(n, m − 1, l + 1, t)

+ T
(

n, m, l|n, m, l − 1
)

P(n, m, l − 1, t)

− [T
(

n − 1, m + 1, l|n, m, l
)

+ T
(

n − 1, m, l|n, m, l
)

+ T
(

n + 1, m, l|n, m, l
)

+ T
(

n, m − 1, l + 1|n, m, l
)

+ T
(

n, m, l − 1|n, m, l
)

]P(n, m, l, t), (A1)

using step operators ε±1
x , ε±1

y , and ε±1
z defined in function of n, m,

and l such that

ε±1
x f(n, m, l) = f(n ± 1, m, l),

ε±1
y f(n, m, l) = f(n, m ± 1, l),

ε±1
z f(n, m, l) = f(n, m, l ± 1).

(A2)

Equation (A1) can be rewritten as follows:

dP(n, m, l, t)

dt
=

((

εxε
−1
y − 1

)

T
(

n − 1, m + 1, l|n, m, l
)

+ (εx − 1)T
(

n − 1, m, l|n, m, l
)

+
(

ε−1
x − 1

)

T
(

n + 1, m, l|n, m, l
)

+
(

εyε
−1
z − 1

)

T
(

n, m − 1, l + 1|n, m, l
)

+ (εz − 1)T
(

n, m, l − 1|n, m, l
))

P(n, m, l, t).

(A3)

By transforming stochastic variables σ =
(

n, m, l
)

to a new stochas-
tic variable ζ = (ξ , η,ϑ), we found that

n = Nφ(t)+ N1/2ξ ,

m = Nϕ(t)+ N1/2η,

l = Nψ(t)+ N1/2ϑ .

(A4)

The probability distribution function defined by P(n, m, l, t) =
5(ξ , η,ϑ , t) is written as

dP

dt
=
∂5

∂t
− N1/2 dφ

dt

∂5

∂ξ
− N1/2 dϕ

dt

∂5

∂η
− N1/2 dψ

dt

∂5

∂ϑ
, (A5)

with φ = limN→∞ n/N,ϕ = limN→∞ m/N, andψ = limN→∞ l/N.
The step operators defined in Eq. (A2) in terms of involving the new
variables are given by

ε±1
x = 1 ± N−1/2 ∂

∂ξ
+

1

2
N−1 ∂

2

∂ξ 2
+ · · · ,

ε±1
y = 1 ± N−1/2 ∂

∂η
+

1

2
N−1 ∂

2

∂η2
+ · · · ,

ε±1
z = 1 ± N−1/2 ∂

∂ϑ
+

1

2
N−1 ∂

2

∂ϑ2
+ · · · ,

εxε
−1
y = 1 + N−1/2

(

∂

∂ξ
−
∂

∂η

)

+
1

2
N−1

(

∂

∂ξ
−
∂

∂η

)2

+ · · · ,

εyε
−1
z = 1 + N−1/2

(

∂

∂η
−

∂

∂ϑ

)

+
1

2
N−1

(

∂

∂η
−

∂

∂ϑ

)2

+ · · · .

(A6)

Replacing these expressions and transition rates in Eq. (A3), the fol-
lowing list with given contributions at the order of N0 and N2 is
obtained:

1.
(

εxε
−1
y − 1

) (

2I1nm

N
+ 2I2nl

N

)

,

N0 : (I1φϕ + I2φψ)
∂2

∂ξ2 , (I1φϕ + I2φψ)
∂2

∂η2 ,

−2 (I1φϕ + I2φψ)
∂2

∂ξ∂η
, 2I1φ

∂

∂ξ
η, −2I1φ

∂

∂η
η,
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(2I1ϕ + 2I2ψ)
∂

∂ξ
ξ , − (2I1ϕ + 2I2ψ)

∂

∂η
ξ , 2I2φ

∂

∂ξ
ϑ ,

−2I2φ
∂

∂η
ϑ .

N1/2 : 2 (I1φϕ + I2φψ)
∂

∂ξ
, −2 (I1φϕ + I2φψ)

∂

∂η
.

2. (εx − 1) d1n,

N0 : d1
∂

∂ξ
ξ , d1

2
φ ∂2

∂ξ2 ,

N1/2 : d1φ
∂

∂ξ
.

3. (εz − 1) d3l,

N0 : d3
∂

∂ϑ
ϑ , d3

2
ψ ∂2

∂ϑ2 ,

N1/2 : d3ψ
∂

∂ϑ
.

4.
(

ε−1
x − 1

)

2b1
n
N

(

N − n − m − l
)

,

N0 : 2b1φ
∂

∂ξ
ξ , 2b1φ

∂

∂ξ
η, 2b1φ

∂

∂ξ
ϑ ,

−2b1 (1 − φ − ϕ − ψ) ∂

∂ξ
ξ , b1φ (1 − φ − ϕ − ψ) ∂2

∂ξ2 ,

N1/2 : −2b1φ (1 − φ − ϕ − ψ) ∂

∂ξ
.

5. (
(

εyε
−1
z − 1

)

b2m,

N0 : b2ϕ
∂2

∂η2 , b2ϕ
∂2

∂ϑ2 , −2b2ϕ
∂2

∂ϑ∂η
,

b2
∂

∂η
η, −b2

∂

∂ϑ
η,

N1/2 : b2ϕ
∂

∂η
, −b2ϕ

∂

∂ϑ
.

Substituting these terms in Eq. (A3) and identifying the terms
of order N1/2 on the resulting equation to Eq. (A5), we obtained the
macroscopic equation given by Eq. (6). The terms of order N0 lead
to a Fokker–Planck equation for fluctuation variables ζ = (ξ , η,ϑ),

∂5

∂t
= −

3
∑

i,j=1

aij

∂
(

ζj5
)

∂ζi

+
1

2

3
∑

i,j=1

bij

∂25

∂ζi∂ζj

; (A7)

the coefficients aij and bij are given by

a11 = −2b1φ
s − d1 + 2b1 (1 − φs − ϕs − ψ s)

− (2I1ϕ
s + 2I2ψ

s) ,

a12 = −2
(

b1 + I1

)

φs, a13 = −2
(

b1 + I2

)

φs,

a21 = 2 (I1ϕ
s + I2ψ

s) , a22 =
(

−b2 + 2I1φ
s
)

,

a23 = 2I2φ
s, a31 = 0, a32 = b2, a33 = −d3,

b11 = 2I1φ
sϕs + 2I2φ

sψ s + d1φ
s

+ 2b1φ
s (1 − φs − ϕs − ψ s) , b23 = −2b2ϕ

s,

b22 = 2I1φ
sϕs + 2I2φ

sψ s + 2b2ϕ
s,

b33 = 2b2ϕ
s + d3ψ

s,

b12 = −4I1φ
sϕs − 4I2φ

sψ s

(A8)

at the non-trivial steady state.

2. The basic reproduction number

According to previous research studies, there exist many ana-
lytical methods for evaluating the basic reproduction number such
as the next generation method,5,68 the survival function,68 the eigen-
values of the Jacobian matrix around the free-disease equilibrium,5,68

the constant term of the characteristic polynomial of the free-disease
equilibrium,68 the existence of the endemic equilibrium,68–70 the
number of susceptible at the endemic steady state, the average age

of infection, the final size equation, and the intrinsic growth rate.25

In this study, we have used the existence of the endemic equilib-
rium method. However, the same results can be obtained when
using the constant term of the characteristic polynomial around the
free-disease equilibrium and the average lifetime. By using the lat-
ter method, the basic reproduction number can be decomposed as
follows:

R0 = Rin sec ts
0 + R

spores
0 , (A9)

where Rin sec ts
0 is the number of secondary infections from an infected

insect and R
spores
0 corresponds to the number of secondary infections

caused by a single spore. The average number of insects that can be
infected by a single infected insect during its life period

(

1/b2

)

is
α2k. Therefore, a single infected insect will give rise to an average
Rin sec ts

0 = α2k/b2. Similarly, a new generated spore will give rise to
average new infections R

spores
0 = θk/d3 during its life period

(

1/d3

)

time units. By adding both expressions, we obtained

R0 =
k
(

α2d3 + θb2

)

b2d3

. (A10)

3. Stability and bifurcation analysis of the equilibrium

state

System (6) has to be analyzed with the set of initial condi-
tions φ > 0, ϕ > 0, and ψ > 0. This systems possesses three dif-
ferent equilibrium points: (i) E0 = (φ = 0,ϕ = 0,ψ = 0) species
free equilibrium, (ii) E1 =

(

φ = k,ϕ = 0,ψ = 0
)

infected insects
and spores free equilibrium, and (iii) the coexistence equilib-
rium of the pest, the infected insect, and the uninfected insect
ESIC = (φs,ϕs,ψ s), which has a biological relevance if and only
if k

(

θb2 + α2d3

)

− b2d3 > 0. This biological relevance condition
is thus giving the threshold for the basic reproduction number
defined as the expected number of secondary infections caused by
a single infection such that R0 − 1 > 0 where R0 is defined by Eq.
(A9) Therefore, the equilibrium ESIC can be rewritten as φs = k

R0
,

ϕs = d3r(R0−1)

R0(α1d3+b2β1)
,ψ s = b2r(R0−1)

R0(α1d3+b2β1)
.

• The species free equilibrium point E0: The Jacobian matrix
is a triangular matrix with eigenvalues

(

r, −d3, −b2

)

. Because
(

r > 0, d3 > 0, b2 > 0
)

, E0 is always a saddle point; therefore, its
stability does not change.

• The infected insects and conidia free equilibrium Es: This point is
stable if and only if 0 < −r

(

kθb2 + kα2d3 − b2d3

)

, 0 < −kα2 +
b2 + d3 + r, and0 < −r

(

kα2 − b2 − d3

)

− kθb2 − kα2d3 + b2d3

+ r
(

kθb2 + kα2d3 − b2d3

)

/
(

−kα2 + b2 + d3 + r
)

, or we restrict

the analysis here to the case where 0 <
(

kθb2 + kα2d3 − b2d3

)

(R0 > 1) holds true in condition to the property that all param-
eter values are positive. Because r > 0, the first condition can-
not be satisfied, and then, Es is also a saddle point for the
three dimensional equilibrium point. However, the character-
istic polynomial obtained from the Jacobian matrix around
the free-disease steady state is a cubic polynomial with coeffi-
cient 1, A, B, C, where A = −kα2 + b2 + d3 + r, B = (A − r) r −
(R0 − 1), and C = − (R0 − 1) rb2d3. Therefore, for C = 0 mean-
ing that R0 = 1, the system exhibits transcritical bifurcation and
is stable for R0 < 1.
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• The epidemic equilibrium: the characteristic polynomial obtained
from the Jacobian matrix around the endemic steady state is a
cubic polynomial with coefficient 1, A, B, C. Therefore, for A >
0, B > 0, and C > 0 for R0 > 1, the steady state exists. Thus,
the polynomial equation has no root, which is positive or zero
(Descartes’ rule of sign). This equation will only have negative
roots or complex roots with a negative real part if and only
if AB − C > 0 according to the Routh–Hurwitz criteria. Thus,
the system is stable about the infectious equilibrium point ESIC

whenever it exists and AB − C > 0 (under the condition, we
plot to obtain the stability diagram), with A = d3 + kθb2+d3r

d3R0
>

0 for R0 > 1, B = r
R0

(

α1b2d3(R0−1)

α1d3+b2β1
− b2d3α2

θb2+α2d3
+ b2 + d3

)

, and

C = rb2d3(R0−1)

R0
for R0 > 1. If C = 0, thus, R0 = 1; the system

exhibits transcritical bifurcation and is stable for R0 > 1 in addi-
tion to AB − C > 0.

4. Power spectral analysis

The power spectra of the fluctuations in the neighborhood
of the equilibrium state are evaluated from the temporal Fourier
transform of the Langevin equation, which describes fluently the
stochastic behavior of the system.5,22,23 The latter corresponding to
the Fokker–Planck equation [Eq. (A7)] is

dζi

dt
=

3
∑

j=1

aijζj + λi (t) ,
(

i, j = 1, 2, 3
)

, (A11)

where ζi (i = 1, 2, 3) denotes the random deviation of the sys-
tem from the mean fields and λi (t) (i = 1, 2, 3) is the Gaussian
white noise with zero mean and a correlation function given by
〈

λi (t) λj (t
′)
〉

= bijδ (t − t′) . Taking the temporal Fourier transform

ζ̃i (ω) =
∫ +∞

−∞ e−iωtζi (t) dt of Eq. (A11) leads to

− iωζ̃i (ω) =
3

∑

j=1

aijζ̃j (ω)+ λ̃i (ω) , (A12)

with
〈

λ̃i (ω) λ̃j (ω
′)
〉

= bij (2π) δ (ω + ω′). The obtained system cor-

responds now to three coupled linear algebraic equations, which
can be used to derive a closed form expression for the power
spectra. Therefore, by solving equation [Eq. (A11)], we obtain

ξ̃ (ω) = ((a23a32 − a22a33) λ̃1 + (a12a33 − a13a32) λ̃2 + (a13a22 − a12

a23) λ̃3 + λ̃1ω
2 + iω

(

− (a33 + a22) λ̃1 + λ̃2a12 + λ̃3a13

)

)/D(ω), η̃

(ω) = ((a21a33 − a23a31) λ̃1 + (a31a13 − a11a33) λ̃2 + (a11a23 − a13

a21) λ̃3 + λ̃2ω
2 + iω

(

a21λ̃1 − (a11 + a33) λ̃2 + λ̃3a23

)

)/D(ω), ϑ̃(ω)

= ((a22a31 − a21a32) λ̃1 + (a32a11 − a12a31) λ̃2 + (a12a21 − a11a22)

λ̃3 + λ̃3ω
2 + iω

(

a31λ̃1 + a32λ̃2 − (a11 + a22) λ̃3

)

)/D(ω), where the

denominator is given by
D (ω) = (iω)3 + tra(iω)2 +2(iω)+ det a, with tra = a11 +

a22 + a33,2=a11a22 + a11a33 − a12a21 + a22a33 − a23a32 − a13a31,
and det a=a11a22a33 − a11a23a32 − a12a21a33 + a13a21a32 + a31a12a23

− a13a22a31. We recall that the power spectra correspond to the

squared moduli average ζ̃i (ω). Using the expression
〈

λ̃i (ω) λ̃j (ω
′)
〉

= bij (2π) δ (ω + ω′), we obtained

Pφ (ω) =
〈

|ξ (ω)|2
〉

=
b11ω

4 + 0φω
2 + κφ

|D (ω)|2
,

Pϕ (ω) =
〈

|η (ω)|2
〉

=
b22ω

4 + 0ϕω
2 + κϕ

|D (ω)|2
,

and

Pψ (ω) =
〈

|ϑ (ω)|2
〉

=
b33ω

4 + 0ψω
2 + κψ

|D (ω)|2
,

(A13)

where

|D (ω)|2 =
(

ω3 −2ω
)2 +

(

det a − traω2
)2

,

0φ = a12
2b22 + 2a12a13b23 − 2a12a22b12 − 2a13a32b12

− 2a12a23b13 + a13
2b33 − 2a13a33b13 + a22

2b11

+ 2a23a32b11 + a33
2b11,

κφ = a12
2a23

2b33 − 2a12
2a23a33b23 + a12

2a33
2b22

− 2a12a13a22a23b33 + 2a12a13a22a33b23

+ 2a12a13a23a32b23 − 2a12a13a32a33b22

+ 2a12a22a23a33b13 − 2a12a22a33
2b12

− 2a12a23
2a32b13 + 2a12a23a32a33b12

+ a13
2a22

2b33 − 2a13
2a22a32b23 + a13

2a32
2b22

− 2a13a22
2a33b13 + 2a13a22a23a32b13

+ 2a13a22a32a33b12 − 2a13a23a32
2b12 + a22

2a33
2b11

− 2a22a23a32a33b11 + a23
2a32

2b11,

0ϕ = a11
2b22 − 2a11a21b12 − 2a13a21b23 + 2a31a13b22

+ a21
2b11 + 2a21a23b13 + a23

2b33

− 2a23a31b12 − 2a23a33b23 + a23
2b22,

κϕ = a11
2a23

2b33 − 2a11
2a23a33b23 + a11

2a33
2b22

− 2a11a13a21a23b33 + 2a11a13a21a33b23

+ 2a11a13a23a31b23 − 2a11a13a33a31b22

+ 2a11a21a23a33b13 − 2a11a21a33
2b12

− 2a11a23
2a31b13 + 2a11a23a31a33b12 + a13

2a21
2b33

− 2a13
2a21a31b23 + a13

2a31
2b22

− 2a13a21
2a33b13 + 2a21a13a23a31b13

+ 2a21a13a31a33b12 − 2a13a23a31
2b12

+ a21
2a33

2b11 − 2a21a23a31a33b11 + a23
2a31

2b11, (A14)
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κψ = a11
2a22

2b33 − 2a11
2a22a32b23 + a11

2a32
2b22

− 2a11a12a21a22b33 + 2a11a12a21a32b23

+ 2a11a21a22a32b13 + 2a11a12a21a32b23

+ 2a11a12a22a31b23 − 2a11a12a31a32b22

− 2a11a21a32
2b12 − 2a11a22

2a31b13

+ 2a11a22a31a32b12 + a12
2a21

2b33 − 2a12a21
2a32b13

− 2a12
2a21a31b23 + a12

2a31
2b22 + 2a21a12a22a31b13

+ 2a21a12a31a32b12 − 2a12a22a31
2b12

− 2a21a22a31a32b11 + a22
2a31

2b11 + a21
2a32

2b11,

0ψ = a11
2b33 − 2a11a31b13 + 2a12a21b33

− 2a12a31b23 − 2a21a32b13 + a22
2b33

− 2a22a32b23 + a31
2b11 + 2a31a32b12 + a32

2b22. (A15)

5. Extinction probability

We label types of individuals as 1 (for insects) and 2
(EPF); their distributions of secondary infections of each type
can be summarized by the two generating functions,4 Gi (s1, s2) =
∑

k1 ,k2
s
k1
1 s

k2
2 P

(

Xi1 = k1, Xi2 = k2

)

. Here, i is equal to 1 or 2 and Xij

is the random variable giving the number of secondary infections of
the type j that arise from an individual of type i.

Assuming that the number of spores is very small, thus,
l = 1; a spore only infects healthy insects according to a Pois-
son process with the intensity θ during their on life period 1/d3

in which it is exponentially distributed. In this case, the prob-
ability of generating function offspring produced by a single
spore during an infectious period t is estimated as G2 (s1, s2) =
∑

k1 ,k2
s
k1
1 s0

2P
(

X21 = k1, X22 = 0
)

since there is no transmission
between spores. This is given as

G2 (s1) =
∑

k1
s
k1
1 P

(

X21 = k1

)

=
∑

k1
s
k1
1

∫ +∞
0

d3e
−d3t

(

(θ t)k1 e−θ t

k1!

)

= d3

∫ +∞
0

e−(d3+θ)t
(

∑+∞
k1=0

(s1θ t)k1

k1!

)

dt = d3
∫ +∞

0
e−(d3+θ−s1θ)tdt,

G2 (s1) =
1

1 + R12 (1 − s1)
, (A16)

with R12 = θ

d3

In addition, an infected pest infects a susceptible and also
give rise to new propagules according to a Poisson process at
the intensity α2 and b2, respectively, within an infectious period
1/b2. Take a single infected insect in their exponential distribu-
tions, we have found the probability of generating function as

G1 (s1, s2) =
∑

k1 ,k2
s0
1s

k2
2 P

(

X11 = 0, X12 = k2

)

; rearranging the lat-
ter, we obtained

G1 (s2) =
1

1 + R21 (1 − s2)
, (A17)

where R21 = b2+α2
b2

.

In stochastic models, the terms R12 and R21 denote the distri-
butions of secondary infections for EPF-to-insect and insect-to-EPF

transmission, respectively. The probability of extinction following
introduction of a single spore is found by calculating the positive
roof of equation G1 (G2 (s1)) = s1, which corresponds to

s1 =
1

1 + R21

(

1 − 1
1+R12(1−s1)

) , (A18)

which leads to (1 − s1) [1 + R12 − R12 (1 + R21) s1] = 0, which is a
square polynomial in s1; note that s1 = 1 is always a solution. The
other solutions are given by

s1 = 1+R12
R12(1+R21)

.

It is shown that this solution is always positive and is smaller
than 1 if and only if R12R21 is greater than 1. Estimation of the extinc-
tion probability following the introduction of a single spore required
to find the smallest non-negative root5 of G1 (G2 (s1)) = s1 after rear-
ranging the above equation and solving, we obtained two positive
solutions; s1 = 1 is always a solution. The other solution is given by

par s1 = 1+R12
R12(1+R21)

.

APPENDIX B: SPATIAL MODEL

1. Mean-field theory

The master equation is written in two contributions: the first
part defined local mechanisms that correspond to the form given in
a non-spatial case adding a subscript with a scaled� calling Tloc

i and

the second takes migration into account T
mig
ij . The latter is given by

T
mig
ij =

(

ε−1
xi
εxj

− 1
)

T
(

ni + 1, nj − 1 |ni, nj

)

+
(

εxi
ε−1

xj
− 1

)

T
(

ni − 1, nj + 1 |ni, nj

)

+
(

ε−1
yi
εyj

− 1
)

T
(

mi + 1, mj − 1 |mi, mj

)

+
(

εyi
ε−1

yj
− 1

)

T
(

mi − 1, mj + 1 |mi, mj

)

+
(

ε−1
zi
εzj

− 1
)

T
(

li + 1, lj − 1
∣

∣li, lj
)

+
(

εzi
ε−1

zj
− 1

)

T
(

li − 1, lj + 1
∣

∣li, lj
)

. (B1)

To obtain its contribution on the master equation, we carry out
the same procedures doing on the local contribution. Therefore,
the operator expressions listed below are required for the other
parameters change u =

(

x, y, z
)

and ζ = (ξ , η,ϑ),

ε−1
ui
εuj

− 1 = N−1/2

(

∂

∂ζj

−
∂

∂ζi

)

+
1

2
N−1

(

∂

∂ζi

−
∂

∂ζj

)2

+ · · · ,

εui
ε−1

uj
− 1 = N−1/2

(

∂

∂ζi

−
∂

∂ζj

)

+
1

2
N−1

(

∂

∂ζi

−
∂

∂ζj

)2

+ · · · .

(B2)

Replacing these expressions and transition rates in T
mig
ij , the follow-

ing list gives contributions at the order N0 and N1/2
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(

ε−1
xi
εxj

− 1
)

T
(

ni + 1, nj − 1 |ni, nj

)

:

N0 :

− φj

(

∂

∂ξj

−
∂

∂ξi

)

(ξi + ηi + ϑi) ,

(1 − φi − ϕi − ψi)

(

∂

∂ξj

−
∂

∂ξi

)

ξj,

1

2
φj (1 − φi − ϕi − ψi)

(

∂

∂ξj

−
∂

∂ξi

)2

, (B3)

N1/2 :

φj (1 − φi − ϕi − ψi)

(

∂

∂ξj

−
∂

∂ξi

)

. (B4)

The contributions of the terms are
(

εxi
ε−1

xj
− 1

)

T
(

ni − 1, nj + 1

|ni, nj

)

obtained by interchanging i and j. Therefore, adding the
terms in order N1/2 together and identified ∂5/∂ξi for each i with
the corresponding term on the left-hand side of the master equation

lead to − 2µ1
z�

(

∑

j

(

φj − φi

)

+
∑

j

(

φiϕj − φjϕi

)

+
∑

j

(

φiψj − φjψi

)

)

.

Using the discrete Laplacian operator 1fi = (2/z)
∑

j∈i
(

fj − fi
)

, the following equation is obtained:

−
µ1

�
(1φi + φi1ϕi − ϕi1φi + φi1ψi − ψi1φi) . (B5)

A similar analysis may be carried out for the terms
(

ε−1
yi
εyj

− 1
)

T
(

mi + 1, mj − 1 |mi, mj

)

,
(

εyi
ε−1

yj
− 1

)

T
(

mi − 1, mj + 1 |mi, mj

)

,

and
(

ε−1
zi
εzj

− 1
)

T
(

li + 1, lj − 1
∣

∣li, lj
)

,
(

εzi
ε−1

zj
− 1

)

T
(

li − 1, lj + 1
∣

∣li, lj
)

to obtain

−
µ2

�
(1ϕi + ϕi1φi − φi1ϕi + ϕi1ψi − ψi1ϕi) (B6)

and

−
µ3

�
(1ψi + ψi1ϕi − ϕi1ψi + ψi1φi − φi1ψi) , (B7)

respectively. Identifying Eqs. (B5)–(B7) to the left-hand side of the
master equation leads to deterministic equations defined by Eq. (10).

The stochastic contributions of the terms
(

ε−1
xi
εxj

− 1
)

T
(

ni + 1, nj − 1 |ni, nj

)

are given by the two first terms of N0,

µ1

z�

∑

i,j

(

∂

∂ξj

−
∂

∂ξi

)

(

−φj (ξi + ηi + ϑi)

+ (1 − φi − ϕi − ψi) ξj

)

. (B8)

Adding with the contributions from
(

εxi
ε−1

xj
− 1

)

T
(

ni − 1, nj + 1 |ni, nj

)

leads to

−
µ1

�

∑

i

∂

∂ξi

(

Di,11ξi + Di,12ηi + Di,13ϑi

)

5, (B9)

where

Di,11 = 1− (ϕi + ψi)1+ (1 (ϕi + ψi)) ,

Di,12 = Di,13 = φi1− (1φi) .
(B10)

To obtain the stochastic contributions given from the terms con-
cerning the migration of infected pests and spores just interchang-
ing,

For infected pest: µ1 → µ2, φi → ϕi, and ξi → ηi

For spore: µ1 → µ3, φi → ψi, and ξi → ϑi.
Therefore, this gives, respectively,

−
µ2

�

∑

i

∂

∂ηi

(

Di,21ξi + Di,22ηi + Di,23ϑi

)

5 (B11)

and

−
µ3

�

∑

i

∂

∂ϑi

(

Di,31ξi + Di,32ηi + Di,33ϑi

)

5, (B12)

with

Di,21 = Di,23 = ϕi1− (1ϕi) ,

Di,22 = 1− (φi + ψi)1+ (1 (φi + ψi)) ,

Di,33 = 1− (ϕi + φi)1+ (1 (ϕi + φi)) ,

Di,31 = Di,32 = ψi1− (1ψi) .

(B13)

These terms are the diffusion contribution of the first terms of
Fokker–Planck equations such that it can be defined by

∂5

∂t
= −

�
∑

i=1

∂ (Ai [ζ (t)]5)

∂ζi

+
1

2

∑

i,j

∂2
[

Bij (t)5
]

∂ζi∂ζj

, (B14)

where fluctuation variables ζi = (ξi, ηi,ϑi) are introduced. The func-
tion Ai (ζ ) is given by

Ai,1 = αi,11ξi + αi,12ηi + αi,13ϑi,

Ai,2 = αi,21ξi + αi,22ηi + αi,23ϑi,

Ai,3 = αi,31ξi + αi,32ηi + αi,33ϑi,

(B15)

where αi,jk

(

j, k = 1, 2, 3
)

are exactly the coefficients found adding
element aij given in Eq. (A9) of Appendix A with subscript i with
diffusion terms defined by Eqs. (B10) and (B13) at an equilibrium
state and can also be deduced from stability analysis of the spa-
tial equation given by Eq. (10) in the main paper. The matrix Bij
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is defined as follows:

Bij,11 =
(

2I1φ
sϕs + 2I2φ

sψ s + d1φ
s

+ 2b1φ
s (1 − φs − ϕs − ψ s)

+4µ1φ
s (1 − φs − ϕs − ψ s)) δij

−
4µ1

z
φs (1 − φs − ϕs − ψ s) J〈ij〉,

Bij,23 = Bij,32 = −2b2ϕ
s,

Bij,22 =
(

2I1φ
sϕs + 2I2φ

sψ s + 2b2ϕ
s

+ 4µ1ϕ
s (1 − φs − ϕs − ψ s)) δij

−
4µ2

z
ϕs (1 − φs − ϕs − ψ s) J〈ij〉,

Bij,13 = Bij,31 = 0, (B16)

Bij,12 = Bij,21 = −4I1φ
sϕs − 4I2φ

sψ s,

Bij,33 =
(

2b2ϕ
s + d3ψ

s + 4µ1φ
s (1 − φs − ϕs − ψ s)

)

δij

−
4µ1

z
φs (1 − φs − ϕs − ψ s) J〈ij〉.

This term is found by using the elements defined in equations
[Eq. (A9)] and the third terms of Eq. (B3). See Ref. 23 for more
details and background.

2. Stability and bifurcation analysis of a

heterogeneous system

To study the stability of the heterogeneous steady state, we
consider a small perturbation of the initial homogeneous station-
ary state in the formula: φj = uj + φs,ϕi = vj + ϕs,ψi = wi + ψ s.
Equation (10) can be rewritten in a unified form as

u̇j = Auj, (B17)

with uj =
(

uj, vj, wj

)T
and A being a square 3 × 3 matrix of elements

αq,ij

(

i, j = 1, 2, 3
)

(defining the linearized matrix). By considering

the solutions, we form uj (τ ) ∝ exp
(

λτ + iaq.j
)

, with a defined a
lattice, where q corresponds to the vector of wave numbers and λ
denoted the frequency at which the perturbation occurs. These two
parameters defined the conditions

det (λI − A) = 0. (B18)

I is an identity 3 × 3 matrix, and A is defined by the elements

αq,11 = a11 + µ1 (1 − ϕs − ψ s)1q,αq,12 = a12 + µ1φ
s1q,

αq,13 = a13 + µ1φ
s1q,αq,21 = a21 + µ2ϕ

s1q,

αq,22 = a22 + µ2 (1 − φs − ψ s)1q,αq,23 = a23 + µ1ϕ
s1q,

αq,31 = a31 + µ3ψ
s1q,αq,32 = a32 + µ3ψ

s1q,

αq,33 = a33 + µ3 (1 − φs − ϕs)1q,

(B19)

where

1k =
2

d

d
∑

γ=1

[

cos
(

kγ a
)

− 1
]

(B20)

corresponds to the discrete Laplacian for a d-dimensional hyper-
cubic lattice; see Ref. 23. In the continuum limit 1q ≈ −q2, there-
fore, by using the continuum mean-field equation, the same results
are obtained. Instability could occur in this system if one of the
eigenvalues verify the conditions Re(λ

(

q
)

) > 0. More clearly,

• The species free equilibrium point E0: Eq. (B20) has three solu-
tions λ1 = −q2k + r, λ2 = −q2k − d3, and λ3 = −q2k − b2. The
system is unstable for q2k < r and becomes stable when the wave
number becomes sufficiently high.

• The infected insects and conidia free equilibrium Es: the linearized
matrix A is given by

AEs =





a11 a12 a13

0 a22 a23

0 a32 a33



 , (B21)

with a11 = −q2µ1 − r, a12 = −k
(

q2µ1 + α1

)

, a13 = −k
(

q2µ1

+β1) , a32 = b2, a22 = α2k − b2 − µ2(1 − k)q2, a23 = θk, a33

= −d3 − µ3(1 − k)q2. According to Routh–Hurwitz criteria,
this point is stable if − (a11 + a22 + a33) > 0, −a11a22a33 +
a11a23a32 > 0, a11a22 + a11a33 + a33a22 − a32a23 + (−a11a22a33

+a11a23a32) /a11 + a22 + a33 > 0, corresponding to the colored
zone of Fig. 4(d).

• The epidemic equilibrium: the eigenvalues are very large and,
therefore, are not reported here. However, the analysis has been
numerically computed. However, Eq. (B20) is a cubic polynomial
with coefficients 1, A

(

q
)

, B
(

q
)

, and C
(

q
)

, respectively. The sys-

tem is stable if and only if A
(

q
)

> 0, C
(

q
)

> 0, and A
(

q
)

B
(

q
)

−
C

(

q
)

> 0. These conditions are satisfied in the colored zone of
Fig. 4(c).

The bifurcation analysis of these steady states is well described
by the eigenvalues obtained from the dispersion relation given by
Eq. (B20). The sign of the real and imaginary parts of the dominant
eigenvalue (function of wavenumber q) derived from the underlying
equation defined the dynamics of the system. The positive Re

(

λ
(

q
))

defined the unstable dynamics, whereas the imaginary part gives the
frequency of oscillations.
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