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Résumé

Cette thèse décrit la dynamique, le mécanisme de génération et la manipulation des solitons

dans les condensats de Bose-Einstein à une ou plusieurs espèces d'atomes, avec interactions

interatomiques à deux et ou trois corps, con�nés dans des potentiels extérieurs ayant diverses

formes géométriques.

Nos investigations commencent avec des condensats con�nés dans un potentiel périodique

anharmonique variable dont la forme peut être modi�ée dans un large intervalle entre les deux

cas limites que sont le modèle de Kronig-Penney et son inverse, avec le réseau optique sinu-

soïdal comme cas intermédiaire. En appliquant l'approche variationnelle avec le critère de sta-

bilité de Vakhitov-Kolokolov, nous dérivons les conditions de stabilité des condensats de Bose-

Einstein dans des potentiels périodiques anharmoniques. Les simulations numériques directes

de l'équation de Gross-Pitaevskii corroborent les résultats obtenus par l'approche variationelle.

Considérant des versions modi�ées de l'équation de Gross-Pitaevskii, nous examinons an-

alytiquement et numériquement l'instabilité modulationnelle des condensats de Bose-Einstein

con�nés dans des potentiel complexes. Les impacts de certains e�ets tels que les �uctuations

quantiques, la réponse non linéaire retardée du système, et le potentiel linéaire sur l'apparition

de l'instabilité ainsi que sur la dynamique des solitons dans les condensats sont clari�és.

Nous considérons aussi l'équation de Gross-Pitaevskii où les interactions interatomiques à

deux et trois corps sont modulées dans le temps, avec des potentiels complexes. En utilisant

l'approche variationnelle, et la méthode dite 'F-extension method', nous construisons plusieurs

familles de solutions exactes de l'équation de Gross-Pitaevskii qui comprennent entre autres les

solitons, les solutions périodiques. La robustesse des solutions analytiques trouvées est con�rmée

par la persistance temporelle des solutions numériques. Nos solutions ont plusieurs paramètres

indépendants qui peuvent être utilisés pour gérer moult propriétés des condensats comme la

position, la largeur, la vitesse, l'accélération, et la densité.

Mots clés: Condensat de Bose-Einstein, équation de Gross-Pitaevskii modi�ée, interactions

interatomiques à deux et trois corps, approche variationnelle, instabilité modulationnelle, F-

expansion method, solutions exactes.

xxvii



Abstract

This thesis describes the dynamics and the underlying mechanism of generating and manip-

ulating solitons in single and mixtures of Bose-Einstein condensates with two- and or three-body

interatomic interactions, con�ned in di�erent external potentials. Our study is based on some

Gross-Pitaevskii equations (GPEs) that govern the evolution of Bose-Einstein condensates.

Our investigations start with single condensates loaded in a variable anharmonic periodic

potential which shape can be varied within a wide range between the two special limits of

the Kronig-Penney model and the inverse Kronig-Penney model, with the sinusoidal optical

lattice as an intermediate case. By applying the standard variational approach along with the

Vakhitov-Kolokolov criterion, we derive the stability conditions for Bose-Einstein condensates

in anharmonic periodic potentials. Full numerical simulations of the GPE �nally test the results

of the variational approach and show good agreements between both methods.

Considering some modi�ed versions of the GPE, we examine analytically and numerically the

modulational instability of Bose-Einstein condensates con�ned in a complex potential. Impor-

tant e�ects such as the quantum �uctuations around the mean-�eld approximation, the delayed

nonlinear response of the condensate, and the linear potential on the onset of instability as well

as the dynamics of solitons in Bose-Einstein condensates are clari�ed.

We also consider the dynamics of Bose-Einstein condensates with time-dependent two- and

three-body interatomic interactions con�ned in complex potentials. By means of the variational

approach in addition to the F-expansion method, we construct many families of exact solutions

of the GPE which include solitons, periodic solutions among others. The robustness of the

analytical solutions found is con�rmed by the long time behaviors of the numerical solutions.

Our solutions have many free parameters which can be used to manage many features of

matter waves in Bose-Einstein condensates such as the position, width, velocity, acceleration,

and density.

Keywords: Bose-Einstein condensates, modi�ed Gross-Pitaevskii equation, two- and three-

body interatomic interactions, variational approach, modulational instability, modi�ed lens-type

transformation, F-expansion method, exact solutions.
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General Introduction

In the recent past years, one of the major break-through in the �eld of atomic physics has

been the experimental realization of Bose-Einstein condensates in weakly interacting alkali gases

[1, 2, 3]. A Bose-Einstein condensate is a new state of matter which is very dilute and at very

low temperature, where a macroscopic fraction of the atoms occupy the same quantum level,

and behave as a coherent matter wave similar to the coherent light wave produced by a laser.

After �rst experimental production of condensates, there have been a plethora of experimental

and theoretical works devoted to the study of properties of these new quantum gases. Among

these properties, the physical mechanism of Bose-Einstein condensate solitons (stable solitary

waves which propagate in a nonlinear medium) is a relevant aspect, since it is believed that

the generation and evolution of Bose-Einstein condensate solitons are important for a number

of Bose-Einstein condensate applications such as the observation of quantum phase e�ects

[4, 5, 6], phase transitions from super�uids to Mott insulators [4], quantum computation and

quantum information [7], atomic number squeezing [5, 6, 8], transport of matter waves [5],

atom lasers [9] and so on. The generation and propagation of coherent matter waves in Bose-

Einstein condensates have become an active research topic at the forefront of atomic physics

with tremendous achievements both on the theoretical and experimental sides such as dark

solitons [10], bright solitons [11], dark-bright solitons [12], vortices [13], vortex lattices [14] just

to name a few.

Bose-Einstein condensates are achieved in experiments by con�ning the bosons of the atomic

cloud in external potentials which may take a wide range of geometries. These external trap-

ping potentials can be realized with magnetic �elds [15], or counter-propagating laser beams

[16] using the so-called optical dipole traps [17]. Magnetic traps that may be either repulsive

or attractive with time-dependent strengths are typically harmonic, while the form of optical

dipole trap is extremely versatile and manageable by the experimenter since the dipole trap is

proportional to the intensity of the laser beams [17]. The special case of light-induced periodic

potentials also called optical lattices is a relevant aspect that has been used to unveil rich and

interesting new phenomena in condensates [18, 19]. 'Optical supperlattice' potentials which are

characterized by two di�erent periods of the underlying laser beams can be realized experi-

mentally [20]. There is also the possibility to combine the magnetic and the optical dipole trap

potentials with each other [21, 22] or with other potentials [4, 22]. The external potentials also
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o�er many possibilities to precisely manipulate and control the dynamics of condensates.

The dynamical behavior of Bose-Einstein condensates at the mean-�eld limit, as the zero

temperature is approached, is governed by the three-dimensional GPE [23, 24] which can also

be considered as a nonlinear Schrödinger equation type with an external potential. Though the

very diluteness of a condensate gas, atom-atom interactions play a crucial role as they a�ect

the properties of the gas in a dramatic way leading to rich and interesting nonlinear e�ects.

Basically, the dynamics of Bose-Einstein condensates can be modeled by the cubic

GPE where the cubic nonlinearity is attributed to two-body atom-atom interactions.

The strength of the cubic nonlinearity is characterized by the s-wave scattering length which

can be positive or negative. It has been shown that the scattering length can be tuned to

the desired value, and its sign may be turned from a positive to a negative value by using

the Feshbach resonance management technique [25]. This has paved the way to manipulating

matter waves of condensates with an unprecedent control and enter regimes inaccessible in

other physical systems such as solid-state physics. The avenue of the management of

the scattering length suggests a way to reduce two-body interactions, and bring

the gas in a regime where the two-body binding energy may be close to zero, such

that the gas may approach the so-called E�mov limit, where three-body interatomic

interactions are important. In this case, the dynamics of Bose-Einstein condensates

can be modeled by the quintic GPE where the three-body interatomic interactions

are accounted by quintic nonlinearities .

In the recent past years, many works have been dedicated to the investigation of soliton

properties of Bose-Einstein condensates with time and or space modulations of the cubic and

quintic nonlinearities in con�ning potentials with di�erent shapes [26, 27]. On the other hand,

an important issue of solitons in condensates is their generation. The generation of solitons

in Bose-Einstein condensates through the activation of modulational instability has been pre-

dicted theoretically [28, 29] and observed experimentally [30, 31] in the framework of the cubic

GPE. Due to its potential applications, the modulational instability technique applied in Bose-

Einstein condensates has been paid increasing attention and has been studied for di�erent

trapping potentials [32, 33, 34].

Advances in trapping techniques for Bose-Einstein condensates have allowed to create multi-

component Bose-Einstein condensates where the same atoms with di�erent hyper�ne states [35]

or di�erent F-spin orientations [36], or di�erent atomic species [37] are currently con�ned. Many

important aspects of mixtures of condensates have been investigated and involved the structure

and dynamics of binary Bose-Einstein condensates [38], the formation of domain walls between

immiscible species [38, 39], bound states of dark-dark [40], or dark-bright [41], or coupled-vortex

[42], and modulational instability [43]. We recall that in some cases, dissipative Bose-Einstein

condensate models where a fraction of the atomic cloud is not condensed and which is coupled

to the condensed fraction have been reported. This situation results to a coupling between the
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Bose-Einstein condensate and a source of uncondensed atoms at the same temperature and

to a sink [44, 45, 46, 47]. One may also be interested in the search of solitons in dissipative

Bose-Einstein condensate models that may be applied to atom lasers [44, 45, 46].

In literature, many authors have examined the properties of solitons in single and binary

Bose-Einstein condensates in optical lattices [19, 48, 49, 50], however modulations of nonlin-

earities and lattice deformations are seldom taken into account. The generation and structure

dynamics of solitons have been studied in single Bose-Einstein condensates at the mean-�eld

level with cubic [27, 33] and cubic-quintic [34] nonlinearities con�ned in potentials with di�erent

shapes via the activation of modulational instability. However, the mean-�eld is no longer ap-

plicable when the density of the Bose-Einstein condensate is relatively high. In this case, some

authors have proposed some variant forms of the GPE that integrate quantum �uctuations

around the mean-�eld [51, 52]. In [52], in addition to quantum �uctuations, a shape-dependent

con�nement correction term stemming from the shape dependence on the interaction potential

are introduced in the equation that describes the dynamics of Bose-Einstein condensates. Most

previous works do not consider e�ects of quantum �uctuations and the shape-dependent con-

�nement correction term on the modulational instability of condensates. For multicomponent

condensates, especially binary condensates, many properties of solitons have been investigated

in systems with only two-body interatomic interactions [?]. E�ects of the three-body interac-

tions on the generation and structure dynamics of binary Bose-Einstein condensates are not

well understood up to now.

In this thesis, we investigate soliton properties of single and binary Bose-Einstein condensates

both analytically and numerically in the framework of the GPE, and modi�ed GPEs. We analyze

e�ects of lattice deformations on the stability diagrams of bright solitons in Bose-Einstein

condensates. We also study impacts of some important e�ects such as quantum �uctuations,

the dependence on the interaction potential induced by atom-atom interactions, and the three-

body interactions on the generation and structure dynamics of bright solitons in conserved and

slightly opened dissipative Bose-Einstein condensates. The work is organized as follows.

In chapter 1, we present the general theory and some ideas that are basic to our current

understanding of the phenomenon of Bose-Einstein condensation. An emphasis is made on the

mean-�eld regime where the GPE describing the dynamics of inhomogeneous interacting Bose-

Einstein gases on the basis of a classical description of the order parameter is derived. A brief

summary of methods for the cooling and the trapping of particles, including the laser cooling

and the magneto-optical trapping, used to achieve most condensates, is presented.

Chapter 2 describes the analytical and numerical methods used in the investigation of the

dynamics of solitons in Bose-Einstein condensates. As analytical methods, we present the varia-

tional approach [38, 50], the modi�ed lens-type transformation [34], the linear stability analysis

[34], and the F-expansion method [34]. Also are presented some numerical methods such as, the

normalized gradient �ow with backward Euler plus second-order centered �nite di�erence dis-
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cretization with imaginary time propagation scheme [53], the fourth-order Runge-Kutta scheme

in the interaction picture [54], the split-step Fourier method [55], and the MATLAB toolbox

PDEPE that have been used to numerically integrate di�erent model equations used in this

work.

In chapter 3, we present the main results of this thesis. By applying the variational approach,

we start by carefully analyzing the stability conditions of single Bose-Einstein condensates in

a variable anharmonic optical lattice which shapes may account for lattice deformations in

experiments.

In the framework of some modi�ed GPEs, we investigate analytically and numerically the

modulational instability of Bose-Einstein condensates in harmonic and complex potentials, in

addition to the delayed nonlinear response of the condensate system, and beyond the mean-�eld

approximation.

By means of the variational approach and the F-expansion method, we construct many

families of analytical solutions of GPEs with time modulations of the strengths of the two-

and three-body interatomic interactions. The stability of the solutions derived is analyzed with

the linear stability analysis, and with intensive numerical simulations of corresponding original

equations.
The present thesis ends with a general conclusion and provides some future directions that

could be investigated.
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Chapter 1

Generalities on Bose-Einstein

Condensation

1.1 Introduction

The phenomenon of Bose-Einstein condensation was �rst predicted in 1924 [56] by Einstein

who extended to massive particles a work of Satyendra Nath Bose on the statistics of a gas

of photons [57]. Einstein's prediction was made for an ideal gas of non-interacting particles

at zero temperature. The �rst evidence of Bose-Einstein condensation were reported in 1995

[1, 2, 3] in gases of weakly interacting alkalis. The behavior and properties of Bose-Einstein gases

are important since Bose-Einstein condensates become a natural ground to test fundamental

quantum theories, and may lead to a wide range of technological applications.

In this chapter, we start with the description of non-interacting, and interacting particles

boson gases. Then, using the mean-�eld theory, we present the mathematical formalism that

helps understand the dynamics of Bose-Einstein condensates. The time-dependent and time-

independent GPEs are derived for single and binary condensates. Some limitations of the mean-

�eld description are underlined and some models that go beyond the mean-�eld are discussed.

The chapter ends with the description of experimental procedures that lead to observations of

Bose-Einstein condensates.

1.2 Non-interacting and interacting particle Bose-Einstein gases

In classical mechanics, one could exactly follow the evolution of an ensemble of massive

particles with the knowledge of those particles' initial positions and momenta. The wavelike

nature of electromagnetic �elds was described with Maxwell's equations. At the end of the

nineteenth century, classical mechanics failed to explain some experimental observations such

as the photo-electric e�ect and the black-body radiation. The explanations of the latter experi-

mental features were made in the framework of a new mechanical formalism known as quantum
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mechanics. In quantum mechanics, massive particles and electromagnetic waves are uni�ed as

they are fundamentally described by a 'wavefunction'. In contrary to classical mechanics where

an individual particle has a well-de�ned phase-space trajectory, it is not possible to have at the

same time the position and momentum of a particle with certainty in quantum mechanics. The

wavefunction, Ψ(r, t), is interpreted as the amplitude probability that a massive or non-massive

particle is found in position r in space at time t.

For a system of N particles, the wavefunction description is extended to a 'many-body

wavefunction', Ψα1,α2...(r1, r2, ..., t), where each particle is labeled by its position rm and spin

αm. The many-body wavefunction describes the amplitude probability to �nd the particles

m at positions rm at time t. For the speci�c case of identical particles, those particles are

indistinguishable. The indistinguishability of particles implies that the interchange of particle

labels does not a�ect any physical observable of the system, and can at most introduce an

unmeasurable global phase rotation to the many-body wavefunction as

Ψ...,αm,...,αn,...(..., rm, ..., rn, ..., t) = exp(ıθ)Ψ...,αn,...,αm,...(..., rn, ..., rm, ..., t). (1.1)

If the same interchange of particle labels is repeated the original state must be recovered, hence

the global phase satis�es the relation exp(ıθ) = ±1 [55]. The two types of phases correspond to

two types of particles observed in nature: fermions which have an antisymmetric wavefunction

(exp(ıθ) = −1) and half-integer spin and bosons with a symmetric wavefunction (exp(ıθ) = +1)

and integer spin.

The nature of particles gives rise to dramatic di�erent behaviors. In statistical mechanics,

it can be shown that for an ensemble of identical particles at thermal equilibrium T , the mean

number of particles occupying a single quantum level k with energy ϵk is given by the general

expression

f(εk) =
1

Z−1 exp(βϵk) + ν
, (1.2)

where β = 1
kBT

, kB is the Boltzmann's constant, Z is the fugacity of the system de�ned by

Z = exp(βµ). The chemical potential µ represents the energy needed to add one particle or the

energy gained by the system as a result of the addition of a single particle at constant volume

and entropy [56]. The parameter ν is a constant that accounts for the indistinguishability of the

particles. For gases at very low temperatures, ν takes the values +1 in the quantum statistics

of fermions and −1 in the quantum statistics of bosons. At higher temperatures, ν = 0 and

Eq.(1.2) describes the 'Maxwell-Boltzmann' statistic. We present on Fig. 1 a sketch of the

distribution of particles for the two quantum statistics.

In the remainder of this work, we focus our attention on the case of gases of massive bosons.

Thus, as the chemical potential µ approaches the single-particle ground state energy from below

ε0, the population of the ground state increases macroscopically. This phenomenon is nowadays

known as Bose-Einstein condensation. Particles that macroscopically occupy the ground state

are named Bose-Einstein condensates.
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Figure 1: Sketch of quantum statistics: bosons versus fermions with weak interactions at T = 0

1.3 Bose-Einstein condensates in an ideal gas

A description of Bose-Einstein condensates in an ideal gas is available in many textbooks

on statistical mechanics [60]. It is important since it serves as a useful guide to the regime under

which Bose-Einstein condensation occurs.

Let us consider a gas of N non-interacting bosons with mass m in a box of volume Ω. The

total number of particles at thermal equilibrium can be written as

N =
∑
k

fBE(εk), (1.3)

where fBE corresponds to ν = −1 in Eq.(1.2), εk is the eigenenergy of the kth single-particle

state. Considering that the function fBE varies slowly compared to the energy spacing between

contiguous levels, we replace the discrete summation in Eq.(1.3) by the integral

N = N0 +

∫
g(ε)fBE(ε)dε, (1.4)

in which g(εk) is the density of states of the system and accounts for the number of quantum

levels in the range dε. The quantity N0 is the number of particles in the ground state of the

system. In the semiclassical approximation, the density of state for particles of mass m is given

by the following expression

g(ε) =
1

(2π)3

∫
dr

∫
dkδ(ε− V (r)− ~2K2

2m
), (1.5)

where V (r) represents the external potential, δ(z) is the Dirac delta function, and k is the

three-dimensional wavevector space. For an in�nite square well potential, Eq.(1.5) reduces to

g(ε) =
m3/2Ω√
2π2~3

√
ε. (1.6)
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It is easy to see from Eq.(1.2) that when µ→ 0−, the number of particles in the ground state

can become very large, i.e., N0 = Z
(1−Z) . In addition, Eq.(1.6) implies that g(ε0 = 0) = 0 (for

the square well), meaning that there is no particle in the ground state of the system. Thus, the

semiclassical treatment is not appropriate for the description of the ground state, and this is

the reason why the occupation number of the ground state of the system was separated from

the integral in Eq.(1.4). Combining the density of state of the square well with a binomial

expansion of the Bose-Einstein distribution fBE, then performing the integral (1.4) we obtain

N = N0 + Ω(
mKBT

2π~2
)3/2G3/2(Z). (1.7)

In Eq.(1.7), the second term represents the number of particles in the excited states N ex,

G3/2(Z) is the Bose-Einstein function de�ned by

G3/2(Z) =
∞∑
j=1

Zj

j3/2
, (1.8)

over the domain Z ϵ (−∞, 1] (so that N remains positive). Maxima of the Bose-Einstein

function occur at Z = 1. For instance, G3/2(1) = ζ(3/2) ≈ 2.612, where ζ(x) is the Riemann

zeta function. From Eq.(1.2), it is easy to see that for µ → 0, Z → 1, thus for a given

temperature T , there exists a maximum number of particles that can be contained within the

excited single-particles states that can be written as

N ex
max = 2.612Ω(

mKBT

2π~2
)3/2. (1.9)

If the total number of particles N exceeds N ex
max, all the remaining particles must therefore be in

the single-particle ground state and form a Bose-Einstein condensate. At higher temperatures,

almost all particles are excited. Nevertheless, as the system is cooled down, there is a

critical temperature TC at which N ex
max = N given by

TC =
2π~2

mKB

(
N

2.612Ω
)2/3. (1.10)

Introducing the constant n = N/Ω, and inserting Eq.(1.10) into Eq.(1.7), one �nds the variation

of the condensate fraction with the temperature

n0

n
= 1− (

T

TC
)3/2, (1.11)

where n0 = N0/Ω. The Bose-Einstein condensation phenomenon occurs if T ≤ TC.

A simple way to describe the physical signi�cance of Bose-Einstein condensation is to identify

the thermal de Broglie wavelength λdB =
√

2π~2
mKBT

of particles. The onset of Bose-Einstein

condensation becomes

nλ3dB ≤ 2.612. (1.12)
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Hence, the phenomenon of Bose-Einstein condensation occurs when the de Broglie

wave packets of particles starts overlapping, and their quantum nature become im-

portant.

In most Bose-Einstein condensate experiments, bosons are con�ned in an external harmonic

potential of the form

V (r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (1.13)

where ωx,y,z represent the trapping frequencies or strengths in the cartesian directions −x, −y,
−z, respectively. Using the semiclassical method [61], the number of particles reads

N = N0 + (
KBT

~ω
)3G3(Z), (1.14)

where ω = (ωxωyωz)
1/3 is the mean trap frequency. The critical temperature for the onset of

Bose-Einstein condensation is

TC =
~ω
KB

(
N

1.202
)1/3, (1.15)

and the Bose-Einstein condensate fraction is

n0

n
= 1− (

T

TC
)3. (1.16)

Equation (1.16) is similar to Eq.(1.11) meaning that the ideal BEC gas con�ned in an harmonic

potential and in a free space have analogous behaviors.

1.4 Bose-Einstein condensates of interacting particles

The presence of interactions between particles can profoundly modi�es the equilibrium

state of the system, principally by depleting the condensate fraction. In 1947, using the new

idea of second quantization in addition to the many-body �eld theory, Bogoliubov showed that

the introduction of weak particle interactions do not quantitatively have a profound impact on

the nature of the condensate [62]. Nevertheless, the low-lying excitations of the condensate were

signi�cantly altered, and the predicted phonon spectrum was exactly that assumed by Landau

which ensured the stability of the super�uid �ow [63].

There are mainly two types of interactions involved in weakly interacting Bose-Einstein

condensate gases: the two- and three-body interatomic interactions. The two-body interatomic

interactions come from atom-atom interactions and their intensity is characterized by the s-wave

scattering length as. Depending on the atomic specie that forms the Bose-Einstein condensate

gas, the scattering length can be positive for repulsive interactions between atoms (87Rb, 23Na),

or negative for attractive interactions between atoms (85Rb, 7Li). When the Bose-Einstein

condensate system is very diluted, the two-body interactions dominate over the three-body ones

[1, 2, 3]. However, in some experiments, the number of three-body interatomic interactions have

been increased by using a magnetic �eld [64, 65, 66, 67]. The three-body interatomic interactions
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may become important and are used to describe the dynamics of Bose-Einstein condensates in

the Tonks-Girardeau regime where the interatomic interactions are strong [68]. The strength

and sign of the scattering length can be varied in Bose-Einstein condensate experiments by

using the Feshbach resonance management technique. For Bose-Einstein condensates trapped

in magnetic potentials, the scattering length near the Feshbach resonance magnetic �eld B0 has

the form [64, 65, 66, 67, 69]

a(B) = as(1−
∆

B −B0

), (1.17)

where as is the value of the scattering length far from resonance, whereas ∆ represents the

width of the resonance. The scattering length can also be manipulated by means of optical lasers

when Bose-Einstein condensates are studied in optical lattices. In this case, the expression of

the scattering length is [70]

a(x) = as0 + g1I/(δ + I), (1.18)

where as0 is the scattering length in the absence of the light signal, g1 is a constant, δ which may

be either positive or negative, measures the resonance detuning. The quantity I = I0 cos
2(2πλx)

accounts for the light intensity with wavelength λ. The Feshbach resonance technique is a mech-

anism that can be used to manipulate the interatomic interactions in Bose-Einstein condensates.

1.5 Mean-�eld theory

The description of the dynamics of dilute Bose-Einstein condensed gases starts with the

second quantized many-body Hamiltonian for a system of identical bosons. The gas is assumed

to be diluted enough such that three-body collisions are rare, and to a good approximation

one only considers two-body (pairwise) collisions. The Hamiltonian is given by the well-known

Heisenberg picture Hamiltonian

Ĥ =

∫
d3r⃗Ψ̂†(r⃗, t)ĤspΨ̂(r⃗, t) +

1

2

∫
d3r⃗

∫
d3r⃗′Ψ̂†(r⃗, t)Ψ̂†(r⃗′, t)U(r⃗ − r⃗′)Ψ̂(r⃗, t)Ψ̂(r⃗′, t). (1.19)

The �rst term of the Hamiltonian of Eq.(1.19) is a non-interacting Hamiltonian corresponding

to an ideal gas and can be diagonalized exactly, while the second term describes two-body

interactions via the interatomic potential U(r⃗ − r⃗′). The �eld operators Ψ̂(r⃗, t) and Ψ̂†(r⃗, t)

annihilates and creates a single boson of mass m at position r⃗ and time t, respectively, and

satisfy the commutation rules[
Ψ̂(r⃗, t), Ψ̂(r⃗′, t)

]
=
[
Ψ̂†(r⃗, t), Ψ̂†(r⃗′, t)

]
= 0,[

Ψ̂(r⃗, t), Ψ̂†(r⃗′, t)
]
= δ(r⃗ − r⃗′).

(1.20)

The single particle Hamiltonian, Hsp, is expressed as

Ĥsp = −
~2

2m
∇2 + V (r⃗), (1.21)
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where V (r⃗) is the external potential in which bosons are con�ned. We normalize the �eld

operator as

N̂ =

∫
d3r⃗Ψ̂†(r⃗, t)Ψ̂(r⃗, t), (1.22)

where N̂ is the number �eld operator, and obeys the commutation rule
[
N̂ , Ĥ

]
= 0.

Using the Heisenberg picture

ı~
∂Â

∂t
=
[
Â, Ĥ

]
, (1.23)

and assuming that Â does not have any time dependence, we derive the equation of motion of

the �eld operator as

ı~
∂Ψ̂(r⃗, t)

∂t
= ĤspΨ̂(r⃗, t) +

∫
d3r⃗′Ψ̂†(r⃗′, t)U(r⃗ − r⃗′)Ψ̂(r⃗′, t)Ψ̂(r⃗, t). (1.24)

We expand the �eld operator on an in�nite orthonormal basis set such that

Ψ̂(r⃗, t) =
∑
n

ân(t)ϕn(t), (1.25)

where ân(t) annihilates a boson in mode n at time t, and satis�es the equal time boson com-

mutation relations [
âm, ân

]
=
[
â†m, â†n

]
= 0,

[
âm, â

†
n

]
= δmn, (1.26)

in which the time dependence is dropped for clarity. Inserting Eq.(1.25) into Eq.(1.19) and

considering that the set {ϕn} represents the eigenvectors of Ĥsp, we obtain

Ĥ =
∑
n

~ωnâ†nân +
1

2

∑
pqmn

< pq|U |mn > â†pâ
†
qâmân, (1.27)

with symmetric matrix elements de�ned as

< pq|U |mn > =
1

2

∫
d3r⃗

∫
d3r⃗′ϕ∗

p(r⃗)ϕ
∗
q(r⃗

′)U(r⃗ − r⃗′)ϕm(r⃗′)ϕn(r⃗)

+
1

2

∫
d3r⃗

∫
d3r⃗′ϕ∗

p(r⃗)ϕ
∗
q(r⃗

′)U(r⃗ − r⃗′)ϕn(r⃗′)ϕm(r⃗). (1.28)

Equation (1.28) represents direct as well as exchange collisions between bosons. We can then

write the Heisenberg equation of motion of an individual mode operator as

ı~
∂âp
∂t

= ~ωpâp +
∑
qmn

< pq|U |mn > â†qâmân. (1.29)

Now, we suppress the free evolution of the operators by setting

ãp = âp exp(ıωt), (1.30)

then, Eq.(1.29) becomes

ı~
∂ãp
∂t

=
∑
qpm

< pq|U |mn > ã†pãmãn exp[ı(ωp + ωq − ωm − ωn)t]. (1.31)
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The calculations of matrix elements < pq|U |mn > involve the evaluations of spatial inte-

grals over the bare two-body potential U(r⃗− r⃗′). In dilute gases, the requirement that only two

particles are involved in any single scattering event, is consistent with the assumption that the

characteristic length scales of the system are much larger than the range of the interparticle

scattering potential. Since in Bose-Einstein condensate gases one is interested in the

large scale behavior of the system, the microscopic details of the scattering trajec-

tories may be neglected provided that the macroscopic �eld dynamics are correctly

described. This means that one can replace the calculations of matrix elements by

another theory that correctly recovers the e�ects of the particle interactions at the

microscopic scale. Using the hard-sphere interaction approximation, Huang and Yang [71]

showed that many features of the scattering could be reproduced using a relatively simple pseu-

dopotential. For ultracold neutral atoms, this idea, to its lowest order, leads to the substitution

of the real scattering potential in the Hamiltonian of (1.19) by the zero-range contact potential

U(r⃗ − r⃗′)→ U0δ(r⃗ − r⃗′), (1.32)

where the interaction strength is [24]

U0 =
4π~2as
m

. (1.33)

However, the contact potential (1.32) is unphysical in the sense that high-energy particles are

scattered just as e�ciently as low-energy particles. Thus, momentum transfer between atoms

will vanish at high momenta. This situation results into ultraviolet divergences in Bose-Einstein

condensate theories if the contact potential is simply substituted into the Hamiltonian (1.19).

The problem of ultraviolet divergences is often circumvented by assuming that all the high-

energy states are unpopulated.

In order to avoid ultraviolet divergences, Morgan [72] has proposed a method that allows

the introduction of the contact potential as an approximation of the two-body T-matrix, rather

than the direct replacement of the contact potential in the Hamiltonian (1.19). In this approach,

the scattering terms of the two-body T-matrix, T2b, are interpreted as the amplitude probability

that a scattering event between two particles will lead to transitions into a particular set of

modes [73]. So, the scattering matrix elements in the Hamiltonian (1.27) are replaced by

< pq|U |mn >→ T2b(pq,mn) ≡< pq|T̂2b|mn >, (1.34)

where the two-body T-matrix governing transitions from modes p, q to modes m,n is de�ned

in terms of the two-body T-operator T̂2b. The two-body T-matrix is de�ned by the Lippmann-

Schwinger equation [72, 73]

T̂2b(z) = U + U
1

z − Ĥsp

T̂2b(z), (1.35)
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where z is the energy of the collision. Inserting a complete set of eigenfunctions of Ĥsp one

obtains

T̂2b(z) = U + U
∑
pq

|pq > 1

z − εp − εq
< pq|T̂2b(z), (1.36)

in which εp, εq are single particle energies, |pq > is a two-particle eigenstate describing an

intermediate state in a collision.

The mode space is now divided into two subspaces: the low-energy region L that contains

all the particles in the system forming our system of interest, and a high-energy region H that

contains all the remaining unoccupied levels which are accessed only as intermediate virtual

states within individual scattering events, and is supposed to be unpopulated. The boundary

is de�ned as the �nite energy cuto� εcut.

The T-matrix is most easily calculated within an homogeneous �eld, for which eigenfunctions

of Ĥsp are simple plane waves. In the limiting case where the volume of the system tends to

in�nity (Ω→∞), the T-matrix takes the form

T̂2b(K⃗ ′, K⃗, z) = U(K⃗ ′ − K⃗) +
1

(2π3)

∫
d3K⃗ ′′U(K⃗

′′ − K⃗ ′)T̂2b(K⃗ ′′, K⃗ ′, z)

z − (~K ′′)2/2m̃
, (1.37)

U(K⃗) =

∫
d3U(r⃗) exp(ıK⃗.r⃗),

T̂2b(⃗(K
′), K⃗, z) =

∫
d3r⃗′

∫
d3r⃗ exp(−ıK⃗ ′.K⃗)T̂2b(K⃗ ′, K⃗, z) exp(ıK⃗.r⃗), (1.38)

~K⃗, ~K⃗ ′ are the initial and �nal momenta of two colliding atoms. The parameter m̃ = m/2

is the reduced mass, the quantity z has been rede�ned to include the center of mass energy

of two colliding atoms. In the case where the energy and momenta of two colliding atoms are

conserved, the homogenous two-body T-matrix can be expanded in terms of the phase shifts

ϕl(K) induced by the interatomic potential for δ → 0 and K ′ → K as [73]

T̂2b(K⃗ ′, K⃗ ′, εK + ıδ) = −(4π~2/m)
∞∑
l=0

2l + 1

K
exp(ıϕl(K)Pl(cos(θ))), (1.39)

where εK = (~K)2/2m̃ and θ is the angle between K⃗ and K⃗ ′.

At low energy, i.e. Ka ≪ 1, only the s-wave scattering process is important. For a hard

sphere of radius a, the s-wave phase shift reads ϕ0(K) = −Ka, such that the quantity a is

understood as the scattering length. Hence, Eq.(1.39) reduces to

T̂2b(K⃗ ′, K⃗, εK + ıδ) =
4π~2as
m

+O(Ka). (1.40)

In terms of spatial coordinates, Eq.(1.40) is written as

T̂2b(r⃗′, r⃗, 0) =
4π~2as
m

δ(r⃗′ − r⃗)δ(r⃗). (1.41)
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The spatial T-operator (1.41) has the same form as the contact potential (1.32).

Considering that matrix elements of Eq.(1.31) containing only one high index tend to zero,

one retrieves the equation of motion of the low-energy state p

ı~
dãp
dt

=
L∑
qmn

< pq|U |mn > ã†qãmãn exp[ı(ωp + ωq − ωm − ωn)t]

+
L∑
q

H∑
mn

< pq|U |mn > ã†qãmãn exp[ı(ωp + ωq − ωm − ωn)t], (1.42)

where
∑H

mn means that the indices m and n are high, while L means that one uses low-energy

states in the summation. Focusing on the evolution of the low-energy state using adiabatic

elimination of high energy modes, Morgan has shown that it is possible to replace the second

term of the right-hand side of Eq.(1.31) by operators that act only on the low-energy states

[69]

ı~
dãp
dt

=
L∑
qmn

< pq|T̂H |mn > ã†qãmãn exp[ı(ωp + ωq − ωm − ωn)t]. (1.43)

In Eq.(1.43), the operator T̃H represents the restricted two-body T-matrix expressed as

T̂H = U +
H∑
pq

U |pq > −1
(εp + εq)

< pq|T̂H . (1.44)

Equation (1.44) only di�ers from the usual de�nition of the two-body T-operator of Eq.(1.35)

by the fact that the summation is restricted to the high-energy states only. If the cuto� energy

is su�ciently low such that Kcuta≪ 1 (Kcut = (1/~)(2mεcut)0.5), then T̃H ≈ T̃2b.

In order to avoid ultraviolet divergences due to direct replacement of the contact potential

into the Hamiltonian of Eq.(1.19), one has to divide the system into the subspaces H and L

as above, then replace in all matrix elements T̂2b by T̂H . The resulting e�ective Hamiltonian of

the condensate system is written as

Ĥeff =
L∑
n

~ωnâ†nân +
1

2

L∑
pqmn

< pq|T̂H |mn > â†pâ
†
qâmân. (1.45)

When the boundary energy between the subspaces H and L is su�ciently low, the e�ective

T-matrix is approximately the same as the full two-body matrix T2b which in turns is approxi-

mately the same as TH that leads to the same expression to the lowest order of the pseudopo-

tential of Huang and Yang [71]. The contact potential is introduced as an approximation of the

two-body T-operator, avoiding ultraviolet divergences.

1.5.1 Derivation of the GPE for single Bose-Einstein condensates

The GPE is a nonlinear equation of Schrödinger with an external potential that has been

a quite useful tool allowing to describe many static and dynamical properties of Bose-Einstein
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condensates at very low temperatures. Its usual derivation follows the mean-�eld approach

based on the Bogoliubov approximation �rst formulated in 1947 [62].

(a). Time-dependent GPE

According to [62], the boson �eld operator as is decomposed as

Ψ̂(r⃗, t) = ψ(r⃗, t) + δ̂(r⃗, t), (1.46)

where ψ(r⃗, t) =
[
< Ψ̂(r⃗, t) >

]
is the expectation value of the boson �eld operator and

is commonly called the macroscopic wavefunction. The quantity δ̂(r⃗, t) represents the non-

condensed part, which, at temperatures well below TC , is actually negligible and accounts for

the remaining quantum �uctuations of the �eld. Inserting Eq.(1.46) into Eq.(1.24) and making

use of the contact potential in addition to the fact that
⟨
δ̂(r⃗, t)

⟩
= 0, one obtains [74]

ı~
∂ψ

∂t
= Ĥspψ + U0|ψ|2ψ + U0[< δ̂†δ̂ > ψ+ < δ̂δ̂ > ψ∗+ < δ̂†δ̂δ̂ >], (1.47)

in which the space and time labels are dropped for clarity. The terms involving the operator

δ̂ can be interpreted as follows: (i) < δ̂†δ̂ > is the mean-�eld of the uncondensed par-

ticles acting on the condensate. This term is negligible in the case where almost all

particles are condensed; (ii) < δ̂δ̂ > represents a collision between two uncondensed

particles in which one of them is transferred to the condensate. This term is also

negligible when the majority of particles are condensed; (iii) < δ̂†δ̂δ̂ > represents

the modi�cation of the interaction between two condensate atoms due to virtual

processes in which they make transitions to excited states before returning to the

condensate. This term vanishes at T = 0 [74]. The latter approximation works well

at zero temperature, such that for T → 0, we retrieve the time-dependent GPE

ı~
∂ψ

∂t
= Ĥspψ + U0|ψ|2ψ. (1.48)

In Eq.(1.48), U0 is the strength of the two-body interatomic interaction U0|ψ|2ψ; in term of

the nonlinearity, U0|ψ|2ψ represents the cubic nonlinearity.

(b). Time-independent GPE

At zero temperature, a stationary condensate is described by the GPE, its density is

time invariant; thus the Bose-Einstein condensate wavefunction has a spatially uniform phase

rotation due to the its energy. The time dependence lies in the global phase, and may be

separated from the spatial dependence by using the transformation

ψ(r⃗, t) = ψ(r⃗) exp(−ıλt/~). (1.49)

Substituting (1.49) into (1.48) yields the time-independent GPE

λψ(r⃗) = Ĥspψ(r⃗) + U0|ψ(r⃗)|2ψ(r⃗), (1.50)
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where the constant λ represents the eigenvalue of the condensate. The external potential hidden

in Ĥsp must be time-independent. The parameter λ is the energy required to add or remove

the last particle to the condensate whilst ensuring that the normalization condition n0 =∫
d3r|ψ(r, t)|2 is satis�ed. The parameter λ is sometimes called the chemical potential and

written µ. Rigorously, λ is not the chemical potential. When the condensate is at equilibrium

with n0 particles, one has the following relation

λ = µ+KBT ln(1 + 1/n0). (1.51)

As T → 0, the two chemical potentials are equal, i.e., λ = µ.

(c) The Thomas-Fermi solution

For highly populated Bose-Einstein condensates, the kinetic energy is much smaller than

the interaction energy or the potential energy due to the external potential. Hence, neglecting

the kinetic energy, the ground state solution of the time-independent GPE (1.50) reads

ψ(r) =

√
λ− V (r)

U0

λ > V (r), (1.52)

and zero elsewhere. The Thomas-Fermi wavefunction is most accurate where the condensate's

density is high, and least accurate toward the system edges, where the kinetic energy dominates.

Considering an harmonic con�nement

V (r) =
m

2
(ωxx

2 + ωyy
2 + ωzz

2), (1.53)

and taking into account the fact that the wavefunction is normalized to N , we �nd the Thomas-

Fermi relationship between the condensate eigenvalue and the number of atoms in the system

λ = (
15NU0

64π~ω̄
)2/5(

2mω̄

~
)3/5, (1.54)

where ω̄ = (ωxωyωz)
1/3. Equation (1.52) implies that the spatial extent of the Thomas-Fermi

wavefunction, where the condensate density vanishes, corresponds to λ = Uext, and the surface

thus de�ned is expected to be a good measure of the size of the corresponding time-independent

GPE eigenstate. The extent of the condensate which is half of the surface of the edge of the

Thomas-Fermi wavefunction along each axis is found to be

ri = (
2λ

mωi
)1/2, (1.55)

with i ϵ {x, y, z}.

(d). Cubic-quintic GPE

It is well known that the three-body interactions become important not only for large

values of the scattering length, but also for small values close to the ideal gas regime. Moreover,

16



the three-body interactions also play a crucial role in understanding the E�mov regime, where

three bosons form a bound state. Using an e�ective �eld theory, the strength of the three-body

interactions, which e�ectively arises from the two-body interactions was derived in [72] and

takes the form 384π~2a4/m(4π − 3
√
3)
[
ln(κa) + B

]
, in which κ is a wave number and B a

constant calculated numerically. It is shown in [75] that κ is an arbitrary value that can be

chosen in order to �t experimental data. The constant B in general is a complex number, but its

imaginary part is very small in comparison to the real one [22, 23]. The case of a Bose-Einstein

condensate at the mean-�eld regime requires that the strength of the quintic nonlinearity be

smaller than the scattering length [75]. The cubic-quintic GPE has the form

λψ(r⃗) = Ĥspψ(r⃗) + U0|ψ(r⃗)|2ψ(r⃗) + U1|ψ(r⃗)|4ψ(r⃗). (1.56)

The coe�cient U1 represents the strength of the three-body interactions. The cubic-quintic

GPE has been useful in the study of the dynamics of Bose-Einstein condensates [34].

1.5.2 GPE for binary Bose-Einstein condensates

After �rst observations of Bose-Einstein condensates made of identical atomic species,

mixtures of condensates, the so-called multicomponent condensates have been achieved exper-

imentally. The realization of mixtures of condensates gives rise to investigations in the physics

of interacting quantum matter-wave �uids, where interspecies interactions play a major role.

These interspecies interactions which characterize the coupling between di�erent condensates in

the mixture are amenable to produce new features not observable in single condensates. Among

these features, we have complex phase diagrams [36, 77], metastable states [78], vortex transfer

dynamics [13, 79], symmetry breaking instabilities [36, 80] and modulational instability [81].

The dynamics of binary Bose-Einstein condensates can be described in the framework of the

coupled GPE. In the mean-�eld picture, the coupled GPE has the following form

ı~
∂ψj(r, t)

∂t
= − ~2

2mj

∇2ψj(r, t) + Vj(r)ψj(r, t) +
2∑
l=1

Ujl | ψl(r, t) |2 ψj(r, t), j = 1, 2. (1.57)

where Ujl = 2π~2ajl/µjl (j, l = 1, 2), µjl = mjml/(mj +ml) being the reduced mass of an atom

j and an atom l. Parameters ajl account for the two-body interactions between like and unlike

atoms. The strengths of the two-body intraspecies interactions are denoted Ujj = Uj, while the

strengths of the two-body interspecies interactions are denoted Ujl = g (j ̸= l). This implies

that U12 = U21 = U . Equation (1.57) is the generalization of Eq.(1.48) to two-component

condensates and can be derived in a similar way.
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1.6 Limitations of the GPE

1.6.1 Bose-Einstein condensates at �nite temperatures

In the latter section, the equation describing the dynamics of Bose-Einstein condensates,

i.e., the GPE, is derived from the mean-�eld picture with two major assumptions: (i) the gas is

su�ciently diluted and, (ii) the temperature is zero (T → 0), meaning that almost all the gas

is in the condensed state. However, in real physical experiments, the temperature is no longer

zero. This means that real Bose-Einstein condensate experiments are conducted at �nite tem-

peratures where the thermal cloud is present. There are some regimes where the impact of the

thermal cloud on the dynamical behavior of the condensate becomes important; for example,

the problem of the condensate growth, the heating of the gas under strong external perturba-

tions, or the phase �uctuations exhibited by the condensate in low-dimensional systems. It is

believed that future applications of Bose-Einstein condensates such as narrow atomic micro-

fabricated waveguides, integrated atom-interferometry-based sensing devices would also bene�t

from a good understanding of the behavior of condensates at �nite temperatures. Therefore,

theoretical models of condensates at �nite temperatures are highly needed [82].

1.6.2 GPE beyond the mean-�eld pseudopotential approximation

In deriving the GPE, the contact potential was also assumed to be a constant. This as-

sumption leads to a constant pseudopotential, with many terms neglected. Improved theoretical

calculations require that quantum corrections around the mean-�eld also be taken into account.

These quantum corrections bring us to regimes where the constant pseudopotential approxima-

tion of the GPE becomes less valid. Many theories that go beyond the GPE have focused on

quantum �uctuations. Braaten and Nieto [51] have shown that for a trapped Bose-Einstein gas

in the ground state, quantum corrections to the number density n are dominated by quantum

�uctuations with wavelengths of order 1/
√
nas. Using di�usion Monte Carlo calculations, Blume

and Greene [54] demonstrated that the addition of an e�ective potential term in the mean-�eld

equation, which accounts for quantum �uctuations leads to a greatly improved description

of trapped Bose-Einstein gases. Nevertheless, Cowel et al. [83] proved that for homogeneous

systems, di�erent potentials having the same scattering length can lead to a vastly di�erent

ground-state energy. More, for an inhomogeneous system and for atoms under strong con�ne-

ment or with a large scattering length, the shape-independent approximation becomes less

applicable [84], thus a better description of atom-atom interaction beyond the pseudopotential

approximation is needed. Willing to obtain more accurate theoretical predictions, Fu, Wang

and Gao [85] introduced a modi�ed form of the GPE which takes into account quantum �uc-

tuations and the shape-dependent con�nement correction term that lead to better agreements

with di�usion Monte Carlo results. The modi�ed GPE derived by Fu, Wang and Gao [85] has
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the following form

ı~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) + V (r)ψ(r, t)

+U0|ψ(r, t)|2ψ(r, t) + U1|ψ(r, t)|3ψ(r, t)
+U2∇2(|ψ(r, t)|2)ψ(r, t), (1.58)

where U1 = g 32
3
√
π
a

3
2
s and the last term accounts for the shape-dependent con�nement correction

on the interaction potential with U2 =
2
3
a2gs .

1.7 Experimental realization of Bose-Einstein condensates

Bose-Einstein condensed gases are nowadays routinely produced in many laboratories

around the world. Although each experimental group has its own experimental setup and

details, the broad outline is similar. There are three main steps towards the formation of a

Bose-Einstein condensate in the laboratory which are (i) laser cooling, (ii) magnetic trapping,

and (iii) evaporative cooling. In this section, we give an overview of the experimental procedure

in the achievement of Bose-Einstein condensates in experiments.

1.7.1 Laser cooling

In this part, we are only interested to the use of a laser light in the cooling of an atomic gas

rather than the creation and properties of the laser light itself. In 1975, Hänsch and Schawlow

proposed the use of the laser light in order to cool down neutral atoms. The basic idea was

to use the momentum transfer resulting from the collision between an atom and a photon to

reduce the velocity of the atom.

An atom that absorbs a photon of frequency ν loses a momentum of an amount of p = hν/c

(h is the Planck's constant and c is the velocity of light). An atom gains a momentum of the

same magnitude when it emits a photon with frequency ν. For two counter-propagating lasers

with the same direction acting on an atomic gas sample, the resulting momenta due to many

fast absorption and emission events are not the same. This is mainly due to the fact that

�uorescent photons are emitted in all directions and their sum averages to zero. Therefore, the

momentum of an atom of the gas sample is reduced. The laser cooling is e�ective provided

the Doppler e�ect is used such that only atoms moving in the laser beam absorb photons.

The lasers are tuned to the absorption line (detuning), thus atoms moving counter to a laser

beam feel photons of the laser Doppler-shifted into resonance. These atoms lose momentum,

i.e. speed, and are cooled down. On the contrary, atoms moving along with the detuned laser

are Doppler-shifted far away from resonance and do not absorb any photon, so that they are

not cooled down. Figure 2 illustrates the principle of laser cooling.

The cooling of an atomic gas in three dimensions needs the use of three counter-propagating

laser beams in the three directions −x, −y, and −z. The three dimensional laser cooling is often
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(a) (b) (c)

Figure 2: Laser cooling of atoms. (a) An atom illuminated by a laser beam absorbs and scatters many photons. (b)

Laser frequency tuned below the atom resonance line, the atom moving counter to the laser beam 'feels' a Doppler-shifted

frequency laser, absorbs low-energy photons of the laser, emits higher-energy photons at the resonance frequency from

its transition line and is slow down. (c) An atom moving along the direction of the laser beam 'feels' the laser frequency

Doppler-shifted far away from its maximum absorption line, absorbs few photons and is not cooled down.

referred to as optical molasses because the behavior of atoms in optical molasses is similar to

their behavior in viscous liquids. The laser cooling mechanism is limited because the cooling

rate reduces with the loss of speed of atoms. The laser cooling stops when the velocity gains

by an atom as it emits a photon compensates the loss of velocity due to the scattering process.

There are many other cooling mechanisms that can be used instead of the laser cooling such

as the Zeeman slowing process. The reader interested in further details of laser cooling and

trapping is referred to one of the following review papers [86].

1.7.2 Magnetic trapping

After pre-cooling, atoms are transferred into a magnetic trap. The most common used

magnetic trap in condensate experiments is the magneto-optical trap potential �rst realized in

1987 by Ketterle, Davis, Martin, and Pritchard [87].

Though the laser cooling can bring the atomic sample to very low temperatures, due to

random Brownian motion, atoms can escape out of the laser regions. The Magneto-optical

trap combines the optical molasses with an appropriate external magnetic �eld which induces

a spatial force that pushes back atoms to the center of the trapping potential. This process

enables to maintain atoms in the external trap.

The magneto-optical trap consists of three pairs of counter-propagating laser beams, slightly

red-detuned below the atomic resonance with opposite circular polarisations that create the

optical molasses within a vacuum chamber. The laser beams are superimposed on a magnetic

quadrupole �eld produced by a pair of anti-Helmholtz coils outside the optical molasses. The

quadrupole magnetic �eld vanishes at the center of the two coils. The magnetic �eld gradient

linearly increases from the trap center in any direction. The trap works because the Zeeman

sublevels of an atom displaced from the center of the trap are shifted by the local magnetic �eld

in such a way that the atom tunes into resonance with the laser �eld moving in the opposite

direction. The net force resulting onto the atom is thus always towards the origin. Due to the

Doppler shift, it appears a velocity-dependent force. The result is to cool and trap a sample
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of atoms in the region at the center of the magnetic �eld. In addition to cool the atoms, the

magneto-optical trap also con�nes the atoms and compresses them to higher densities. Figure

3 displays a schematic of the magneto-optical trap and the principle used to con�ne neutral

atoms. In panel (b) of Fig. 3, a laser beam polarized σ+, causes a transition of an atom from

(a) (b)

Figure 3: (a) Schematic of the magneto-optical trap. (b) Sketch of energy diagram indicating why trapping of atoms

occurs.

the ground state |0, 0 > to the excited state |1, 1 >, while the laser beam polarized σ− brings

an atom from the ground state to the excited state |1,−1 >. The presence of the magnetic

�eld produced by the anti-Helmholtz magnetic coils (see Fig. 4(a)) shifts the degeneracy of the

Zeeman sublevels of the atom. When an atom moves away from the center of the magnetic

trap, for example to the left, the laser beam polarized σ− enters to resonance with the atomic

substate |1,−1 > such that it preferentially absorbs polarized σ− photons over polarized σ+

photons arriving from the counter direction. The atom feels a pressure due to the two counter

propagating laser beams which pushes the atom back towards the center of the trap. A similar

behavior is observed if the atoms moves out in any direction from the center of the trap. The

magnetic trap is symmetric such that the atoms remain con�ned at the center of the trap.

There are many trapping potentials that can be realized in order to produce Bose-Einstein

condensates. A review of these can be found in [88].

1.7.3 Evaporative cooling

Evaporative cooling is done by continuously removing the high-energy tail of the thermal

distribution from the trap. The evaporated atoms carry away more than the average energy,

which means that the temperature of the remaining atoms decreases.

The magnetic trap works on diamagnetic atoms which are polarized in the Zeeman substate

|m = −1 >. On the contrary, paramagnetic atoms polarized in the Zeeman substate |m = 1 >

will be attracted to the higher magnetic �elds outside the trapping region. A radio-frequency

�eld acting onto the cold atomic sample can be used to induce transitions between magnetic

substates and converts atoms into a high-�eld seeking state, and thus be selectively ejected

from the system. The frequency of the radio-frequency �eld is chosen such that only atoms with

enough energy move to the edge of the magnetic potential well come into resonance with the

radio-frequency �eld. Figure 4 displays a sketch of the principle of evaporative cooling technique.
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Figure 4 shows that the most energetic atoms are removed from the magnetic trap. In fact, atoms

(a) (b)

Figure 4: (a) Atomic Zeeman sublevels. (b) Principle of evaporative cooling.

in the magnetic trap are diamagnetic, i.e., in the Zeeman sublevel |m = 1 >, since have lower

energy in weaker magnetic �elds. Hence, such atoms are attracted to weaker magnetic �elds.

On the contrary, atoms in the Zeeman sublevel |m = −1 > are paramagnetic, i.e., are attracted

to higher magnetic �elds. When most energetic atoms in the Zeeman sublevel (|m = 1 >)

come into resonance with a radio-frequency �eld with frequency ν0, they undergo transitions

from the substate |m = 1 > to |m = 0 >, and from |m = 0 > to |m = −1 >. The most

diamagnetic atoms are selectively transformed into paramagnetic atoms, then removed from

the magnetic trap. After many binary elastic collisions, the remaining atoms in the magnetic

trap rethermalize and undergo a lower temperature towards the formation of a Bose-Einstein

condensate.

However, the evaporative cooling presents a pitfall because at the center of the magneto-

optical trap the magnitude of the magnetic �eld is zero. Thus, at the center of the trap, magnetic

substates are not Zeeman-split, so, polarized atoms can undergo spontaneous Majorana spin-�ip

transitions to untrapped mF states. The problem is worse at lower temperatures as cold atoms

spend more time at the center of the trap where the magnetic �eld vanishes. To overcome

this problem, two approaches were implemented. The time-orbiting potential was developed

at the Joint Institute Laboratory of Astrophysics [89]. In the time-orbiting potential trap, a

rapidly rotating bias �eld is added to the static quadrupole �eld, so that on average the atoms

experience a harmonic potential. At any time the zero of the magnetic �eld circulates about

the center of the trap, removing hot atoms rather than cold ones. The second approach has

been implemented at the Massachusetts Institute of Technology, where an Io�e-Pritchard type

trap with no region with vanishing magnetic �eld was built [90]. We display in Fig. 5 an image

of the �rst condensate obtained by the team of Wieman and Cornell [1].
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Figure 5: Images of the velocity distribution of rubidium atoms during Bose-Einstein condensation. The left frame

corresponds to a gas at a temperature just above condensation; the center frame, just after the appearance of the

condensate; the right frame, after further evaporation leaves a sample of nearly pure condensate

1.8 Conclusion

We have dealt with generalities on Bose-Einstein condensation in this chapter. At �rst,

we have described both non-interacting, and interacting particles boson gases. Then, using

the mean-�eld theory, the time-dependent, and time-independent GPEs for single and binary

condensates have been derived. Some limitations of the mean-�eld description, and discussions

about some models that go beyond the mean-�eld picture have also been presented. At the

end of the chapter, we have presented an overview of experimental procedures that lead to

observation of Bose-Einstein condensates.

In this thesis, we are interested in the generation via modulational instability and the dy-

namics of coherent matter waves in Bose-Einstein condensates. The next chapter is devoted to

the description of some analytical and numerical methods used to investigate the dynamics of

solitons in Bose-Einstein condensates.
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Chapter 2

Analytical and Numerical Methods for

the Quest of Solitons

2.1 Introduction

The experimental observation of Bose-Einstein condensates of trapped atomic vapors has

allowed investigations of some fundamental concepts of atomic physics and condensed matter

physics [91]. There has been an increase of experimental and theoretical activities devoted to the

quest of nonlinear excitations in Bose-Einstein condensates such as Josephson oscillations and

macroscopic quantum tunneling [92], Faraday waves [93], compactons [94], solitons [10, 11, 12],

vortices [13] and vortex lattices [14], grey solitons [95], gap solitons [27], rogue waves [96] and

so on. The phenomenon of Bose-Einstein condensation provides unique opportunities to study

many quantum properties of matter waves. Among these properties, the physical mechanism

of Bose-Einstein condensate soliton is a relevant aspect, since it is believed that the generation

and evolution of solitons in condensates are important for a number of condensates applications

[4, 5, 6, 7, 8]. The generation and structure dynamics of solitons in condensates may be done via

the modulational instability mechanism [26, 28, 32, 33, 34]. In addition, many soliton properties

of condensates may be explained with exact analytical solutions of the GPE. So, �nding exact

solutions of the GPE is a task of relative importance. For example, exact solutions may (i)

help to choose appropriate experimental parameters, (ii) provide a way of probing the validity

of the GPE at higher densities, (iii) help to analyze the stability of condensates, (iv) check

the numerical analysis of the GPE, and (v) help to explain the formation and the propagation

of di�erent kind of patterns in condensates as well as their long-time evolution. However, The

validity of exact analytical solutions found by mathematical means should be con�rmed by some

numerical integrations of the original equation. Thus, the investigation of dynamical properties

of Bose-Einstein condensates requires both analytical and numerical treatments.

The generation of bright solitons in Bose-Einstein condensates is usually studied with the

linear stability analysis [26, 28, 32, 33, 34]. Numerous analytical methods have been used to
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exactly solve the GPE. Among these methods are the inverse scattering transform method [97],

the Darboux transformation method [98], the Hirota bilinear method [99], the Painlevé analysis

[100], the (G
′

G
)-expansion method [101], the homotopy analysis method [102], the variational

approach [38, 50], the F-expansion method which includes the tanh-function and the extended

tanh-function methods [34], and many others.

This chapter describes the analytical and numerical methods used in the investigation of the

dynamics of solitons in Bose-Einstein condensates. We present the variational approach, the

modi�ed lens-type transformation [34], the linear stability analysis, the F-expansion method.

The numerical methods presented include the normalized gradient �ow with Backward Euler

centered �nite di�erence scheme [53], the split-step Fourier method [55], the fourth order Runge-

Kutta in the interaction picture method [54], and the MATLAB toolbox PDEPE.

2.2 The variational approach

The study of solitons in nonlinear partial di�erential equations is strongly related to the

inverse scattering transform theory. The inverse scattering transform introduces two types of

solutions of nonlinear partial di�erential equations which are solitons and radiations [103]. The

radiations are dispersing and decaying type solutions. Nevertheless, true physical examples

of exact solitons found with the inverse scattering transform are uncommon since an exact

soliton is usually embedded with a signi�cant fraction of radiation [104]. Hence, in real physical

situations, it is necessary to develop an approximation that leads to su�ciently accurate explicit

results.

The corresponding variational approach was �rst introduced in the quest of solitons in plasma

physics by Bondeson, Lisak and Anderson [105]. The latter paper paved the way to investiga-

tions of soliton dynamics in many areas of physics such as �ber optics [106]. A review of the

variational approach with its applications in di�erent media was proposed by Malomed [107].

The Variational approach is an approximate method whose objective is to reduce the complex

dynamics described by partial di�erential equations to a relatively simple system of a few or-

dinary di�erential equations. In applying the variational approach, one �rst has to reformulate

the underlying equation (here Eq.(2.1)) in a variational form, then choose an ansatz of the �eld

con�guration sought for. The ansatz has some unknown variables which are allowed to be func-

tions of the evolutional variable, and characterize important features of the solution looked for.

The set of ordinary di�erential equations for the unknown variables is derived via the standard

variational approach procedure by minimizing the action functional S(U,U∗). The action has

the form S =
∫
Ldϱ, ϱ being the evolution variable, and L the e�ective lagrangian. L may be

written in term of the lagrangian density ℓ as L =
∫
ℓdϱ′, where ϱ′ is the transverse coordinate.
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Let us consider the one dimensionless GPE described as

ı
∂ψ(x, t)

∂t
+
∂2ψ(x, t)

∂x2
+ 2a|ψ(x, t)|2ψ(x, t)− (αx2 + λx)ψ(x, t) = ıγψ(x, t)

= R(ψ, ψ∗). (2.1)

The left-hand side of Eq.(2.1) is the conservative part, while in the right-hand side R represents

the dissipative part. In Eq.(2.1), t and x are measured in units of 2
ω⊥

and a⊥, respectively. The

quantities a⊥ =
√

~
mω⊥

and ω⊥ represent the harmonic oscillator length and frequency in the

two orthogonal directions, respectively. The parameterm is the atomic mass. The quantity 2a is

the strength of the two-body interatomic interactions. The parameter α represents the strength

of the harmonic potential, while the term λx may take into account some linear potentials.

The quantity γ is a parameter related to the exchange of atoms between the condensate and

the uncondensed fraction of the thermal cloud. Positive values of γ correspond to the physical

situation where atoms are fed into the condensate from the thermal background or injected

into the condensate from a reservoir by a pumping mechanism [45]. Negative values of γ are

related to atoms escaping out of the condensate due to dipolar relaxation. In this case, the

magnetic dipole-dipole interaction between the magnetic moments of two colliding atoms makes

one or both atoms emerge from the collision in a di�erent spin state, a process that induces

an increase of the temperature of the condensate resulting to the expulsion of many atoms

out of the trap. Generally speaking, the dissipative mechanism corresponding to γ negative is

spatially dependent. The speci�c case where the rate of exchange of atoms is constant means

that the size of the uncondensed fraction of atoms is larger than that of the condensate. The

rate of exchange of atoms is characterized by a temporal scale ζ which is the time interval

between subsequent events of adding or removing individual atoms from the atomic ensemble.

The mean-�eld approximation remains valid if ζ is negligible, i.e., ζω⊥ ≪ 1, which is veri�ed

for typical con�gurations where ω⊥ = 2π × 360 Hz and ζ ∼ 4µs. This means that |γ| is small.

In order to apply the VA, we choose an ansatz with a Gaussian form

ψ(x, t) = A(t) exp(− x2

2W (t)2
+ ı(k(t)x+

b(t)x2

2
+ ϕ(t))), (2.2)

where A, W , k, b, and ϕ represent the amplitude, width, linear phase shift, chirp, and homo-

geneous phase, respectively, and stand for the variational parameters. Equation (2.1) may be

formulated in a variational form corresponding to the Lagrangian density ℓ = ℓC + ℓR, where

ℓC =
ı

2
[ψ(x, t)∗tψ(x, t)− ψ(x, t)tψ(x, t)∗] + |ψ(x, t)|2 − a|ψ(x, t)|4 + (αx2 + λx)|ψ(x, t)|2, (2.3)

corresponds to the Lagrangian density of the conservative part, and ℓR has the property

δℓR/δψ
∗ = −R(ψ(x, t), ψ(x, t)∗). By applying the Euler-Lagrange equation to ℓ with respect to

ψ∗, we obtain

[
∂ℓ

∂ψ∗ −
d

dt
(
∂ℓ

∂ψ∗
t

)] = [
∂ℓC
∂ψ∗ −

d

dt
(
∂ℓC
∂ψ∗

t

)]−R(ψ, ψ∗) = 0, (2.4)
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which leads to Eq.(2.1). The variational principle that corresponds to Eq.(2.4) is

δ

∫ t

0

L′dt = δ

∫ t

0

(LC + LR)dt = 0, (2.5)

with LC =
∫
dxℓC , L′, and LC being the e�ective Lagrangian corresponding to ℓ and ℓC ,

respectively. The variational equations are calculated from the formula

d

dt

∂LC
∂Qt

− ∂LC
∂Q

= −
∫
[R
∂ψ(x, t)∗

∂Q
+R∗∂ψ(x, t)

∂Q
]dx, (2.6)

where Q stands for a variational parameter (A,W , k, b, and ϕ). Inserting Eq.(2.2) into Eq.(2.3)

and integrating over the spatial coordinate yield the explicit expression of the conservative

e�ective Lagrangian

LC = N [ϕt + k2 +
1

4
(bt + 2b2 + 2α)W 2 +

1

2W 2
− aN√

2πW
]. (2.7)

The parameter N =
∫
|Ψ(x, t)|2dx =

√
πWA2 is the number of atoms in the condensate. Substi-

tuting Eq.(2.2) and Eq.(2.7) into Eq.(2.6) leads to the following system of ordinary di�erential

equations

b =
Wt

2W
+ γ,

k = 0,

Wtt + 4γWt =
4

W 3
− 4γ2W − 4aN√

2πW 2
− 4αW,

ϕt =
2aN√
2πW

− 1

2W 2
− k2 − 1

4
(bt + 2b2 + 2α)W 2. (2.8)

Looking for soliton solutions, Wt =Wtt = 0, the residual variational equations become

b = γ

k = 0

π
√
3aWN + π

√
6π(α+ γ2)W 4 − π

√
6π = 0 (2.9)

ϕt =
2aN√
2πW

− 1

2W 2
− 1

2
(γ2 + α)W 2.

Solitons are stable if the Vakhitov-Kolokolov criterion is satis�ed, i.e., −dϕt
dN

< 0. Thus, the

stability criterion (for γ = 0) may be written as

− 2a√
2πW

< 0. (2.10)

As an approximate method, the results obtained with the variational approach should be

compared with direct numerical integrations of the underlying model equation. The comparison

is necessary for only some important variational parameters. In other words, the validity of the

variational approach is tested by a comparison with a direct numerical simulation of the original
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partial di�erential equation(s). This issue is important in the study of the stability of solitons

for two main reasons: the shape of the ansatz chosen may miss at least one unstable mode in

such a way that the variational approach prediction is numerically unstable; in addition, in some

cases, the variational approach introduces a 'false instability' that the soliton does not have in

reality. Though its drawbacks, the variational approach remains a very e�cient technique for

producing analytical or semi-analytical results for complex dynamical models [107].

2.3 The modi�ed lens-type transformation

The lens transformation is the optics appellation of the mathematical pseudo-conformal

transformation used to study symmetries of nonlinear Schrödinger equation types [108]. The

lens transformation and its variant forms have also been used to hide the space dependence

of external �elds in order to facilitate the study of modulational instability in Bose-Einstein

condensates [32, 34], and to derive the integrability condition of the GPEs [99, 34]. The standard

lens transformation has been widely used, hence we present here a variant form that is useful

for GPEs with complex external potentials.

We consider the GPE described by Eq.(2.1), and introduce the modi�ed lens-type transfor-

mation [34]

ψ(x, t) =
1√
l(t)

Φ(X,T ) exp[η(t) + ıf(t)Z(x, t)], (2.11)

where T (t), η(t), σ(t), and f(t) are real scaling functions of time t to be determined later, X =
x
l(t)

, and Z(x, t) = x2+σ(t)x. The transformation (2.11) is analogous to the lens transformation

[32, 99] and has been used in some Bose-Einstein condensate problems [32, 34, 100] and mainly

di�ers from the lens transformation because of the inclusion of the functions η(t) and σ(t). For

simplicity and without loss of generality we choose t0 = 0 (initial time), l(0) = 1, η(0) = 0. The

function l(t) helps to preserve the scaling. By setting [34, 100]

dT

dt
=

1

l2(t)
,

dl

dt
= 4f(t)l(t),

df

dt
= −4f 2(t)− α(t),

dσ

dt
=
−λ(t) + σ(t)α(t)

f(t)
,

dη

dt
= γ.

(2.12)

Equation (2.1) in terms of the new variables X and T is converted to

ı
∂Φ(X,T )

∂T
= −∂

2Φ(X,T )

∂X2
− 2ıf(t)l(t)σ(t)

∂Φ(X,T )

∂X
+ f 2(t)l2(t)σ2(t)Φ(X,T )

−2a(t)l(t) exp(2η(t))|Φ(X,T )|2Φ(X,T ). (2.13)
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We recall that the spatial dependence of the external potential is hidden in Eq.(2.13). This

equation is relatively simple to manipulate than Eq.(2.1) with the external potential.

The modi�ed lens-type transformation is e�ective when one has explicit expressions of the

functions T (t), f(t), l(t), σ(t), η(t). The set of ordinary di�erential equations (2.12) is rather

di�cult to solve analytically, so we restrict ourselves to the simple case where the functions

α(t), λ(t), σ(t) are non-vanishing constants, respectively. In this case, the solution of the last

equation of the set (2.12) is σ = λ
α
, meaning that σ is the ration of the strength of the linear

potential over the strength of the quadratic potential. The solution of the last equation of

the set (2.12) is η(t) = λt. The solutions of the �rst three equations of the set (2.12) depend

on the sign of the strength of the external potential α, and may be found with a computer

algebra software such as MAPLE. For positive values of α, the explicit solutions of the �rst

three equations of the set (2.12) are

f(t) = −
√
α

2
tan(2

√
αt),

l(t) = | cos(2
√
αt)|, (2.14)

T (t) =
1

2
√
α
tan(2

√
αt).

In the case of negative values of α, explicit expressions of the functions f(t), T (t), and l(t) are

given by

f = ±1

2

√
−α

l(t) = exp(2ft) (2.15)

T (t) =
1− exp(−8ft)

8ft
.

The expression of f(t) in Eq.(2.14) implies that the presence of the quadratic potential in-

duces the creation of a periodic nonlinear frequency shift. One then concludes that the function

f(t) characterizes the periodic oscillations of the nonlinear phase coming from the presence of

the quadratic potential. This leads to the creation of a current. Due to the similarity transfor-

mation (2.11) and the constraints (2.12), the solution f(t) in Eq.(2.14) induces a time-periodic

driving term in Eq.(2.1) with frequency 4
√
α, which is the oscillation frequency naturally fol-

lowing from the Ehrenfest theorem. According to Eq.(2.14), these oscillations have singularities

at each time tn = (2n+1)π
4
√
α

, (n is a positive or negative integer). For each tn, there is a phase di-

vergence that could be understood from the Ehrenfest theorem. The presence of the quadratic

potential induces a current which periodically changes its direction as a consequence of the

Ehrenfest theorem. The change of the current direction is accompanied by the phase singu-

larity [32]. We circumvent these singularities by taking into account only real physical times

belonging to the interval [0, π
4
√
α
[.

The modi�ed lens-type transformation is related to all experimental parameters of the exter-

nal potential, i.e., α, λ, and γ. The explicit expressions of the function variables of the modi�ed
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lens-type transformation allow to shu�e between the real and the rescaled variables, respec-

tively. The modi�ed lens-type transformation may also be used to analyze the integrability

condition of the GPEs [34, 109].

2.4 The linear stability analysis

In this section, we present the linear stability analysis of plane waves in the framework

of Eq.(2.1), with the objective to derive the modulational instability criterion. The aim of the

linear stability analysis is to slightly perturb the envelop of a continuous plane wave and check

if this perturbation increases or not. So, let us consider the following ansatz

Φ = (Φ0 + δΦ) exp[−ı
∫ T

0

Θ(T ′)dT ′], (2.16)

where, Θ(T ) = f 2(t)l2(t)σ2(t) + Φ2
0(2a(t) exp(2η(t))− 12Φ2

0τ exp(4η(t))), accounts for the non-

linear frequency shift, δΦ(X,T ) is the complex amplitude of the perturbation and Φ0 is a real

constant. We insert Eq.(2.16) into Eq.(2.13) and keep only �rst-order terms in δΦ and its com-

plex conjugate δΦ∗. After a little algebra, the governing equation describing the dynamics of

the perturbation is

ı
∂δΦ

∂T
= −∂

2δΦ

∂X2
− 2ıf(t)l(t)σ(t)

∂δΦ(X,T )

∂X
+∆(t)(δΦ + δΦ∗) + ∂δΦ∗

∂X
), (2.17)

with △(t) = −2aΦ2
0(t)l(t) exp(2η(t)). We suppose that the functions U and V are the real and

the imaginary parts of the perturbation (δΦ = U + ıV ), respectively, and take the forms [34]

U = Re{U0 exp[−ı(KX −
∫ T

0

Ω(T ′)dT ′)]}

V = Im{V0 exp[−ı(KX −
∫ T

0

Ω(T ′)dT ′)]}, (2.18)

where KX −
∫ T
0
Ω(T ′)dT ′ represents the phase of the modulation, K is the wave number, and

Ω(T ) is the frequency of the modulation. Inserting Eq.(2.18) into Eq.(2.17) then, separating

the real and the imaginary parts give rise to a system of two coupled equations in U and V ,

respectively. The determinant of the system provides the dispersion relation

Ω2 − 4Kf(t)l(t)σ(t)−K2(K2 + 2∆(t)− 4f 2(t)l2(t)σ2(t))Φ2
0 = 0. (2.19)

If the frequency of the modulation is a complex number, the system becomes unstable un-

der modulation, and the gain of instability is exp(Ωi), where Ωi is the imaginary part of Ω.

This implies that the discriminant of Eq.(2.19) is negative. Hence, the modulational instability

criterion is

|K| < 2 exp(η(t))Φ0

√
a(t)l(t) + 8τ exp(2η(t))Φ2

0. (2.20)

30



We can evaluate the gain of modulational instability with the formula

G = ℜ(
√
K2(4a(t)l(t) exp(2η(t))Φ2

0 −K2)). (2.21)

It may take a certain period of time after which the instability ceases to be dominant in the

system. The critical time tC after which an instability is no longer dominant in the system is

the solution of the following implicit equation K2 − 4a(tC)l(tC) exp(2η(tC))Φ
2
0 = 0. The value

of tC may be obtained with MAPLE. With the linear stability analysis just performed, one

needs explicit expressions of the functions f , l, T , and σ. These expressions are provided in the

previous section.

The linear stability analysis is a successful tool in deriving the modulational instability

criterion and growth rate, thus regions of parameters where solitons are likely to be observed.

Nevertheless, the linear stability analysis becomes less valid at larger times far from the initial

state. This can be understood because one has to neglect higher order terms by keeping only

linear ones in the linear stability analysis theory. The linear stability analysis fails to provide

any dynamical information beyond the instability points. For this reason, direct numerical

integrations of the original equation should be carried in order to investigate the properties of

the solitons generated at longer times.

2.5 The F-expansion method

The F-expansion method [34, 111] is a powerful technique used to construct analytical

solutions of nonlinear partial di�erential equations. First we give an outline of the method.

Let us consider a nonlinear partial di�erential equation with dependent variable u, and

independent variables x = (x1, x2, ...xl, t) of the form

P (u, ux, ut, uxx, uxt, utt, ...) = 0. (2.22)

First step: Seek traveling solutions of Eq.(2.22) by taking

u(x) = u(ξ), ξ = k1x1 + k2x2 + ...+ klxl + ωt, (2.23)

where k1, k2,..., kl, and ω are constants to be determined later. Substituting Eq.(2.23) into

Eq.(2.22) leads to an ordinary di�erential equation for u(ξ)

P (u, u′, u′′, ...) = 0. (2.24)

Second step: Assume a solution u(ξ) of the form

u(ξ) = a0 +
n∑
i=1

aiF
i(ξ). (2.25)

The function F (ξ) satis�es a nonlinear ordinary di�erential equation which has known exact

solutions referred to as auxiliary equation. There are many types of auxiliary equations that
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may be used such as the Riccati equation u′ = A + u3, auxiliary ordinary equation u′2 =

Bu2 + Cu2 + Du4, �rst kind elliptic equation u′2 = A + Bu2 + Du4, the generalized Riccati

equation u′ = r+ pu+ qu2 and so on [111]. The types of the solutions of the auxiliary equation

give their names to particular methods. For example, if the auxiliary equation admits tanh

functions as solutions, the method could be referred to as the tanh-function method [112],

or the Jacobi elliptic functions method if one considers the Jacobi function solutions of the

auxiliary equation [103]. The F-expansion method can be thought of as a generalization of the

Jacobi function method [114]. Recently, di�erent extensions of the F-expansion method have

been proposed [34, 114, 115]. In the generalized F-expansion method the solution is sought for

a traveling solution of the form

u(ξ) = a0 +
n∑

i=−n

aiF
i(ξ). (2.26)

Third step: Insert the trial solution of Eq.(2.25) into Eq.(2.24) and determine the value of

n by balancing the highest nonlinear term with the highest partial derivative of u.

Fourth Step: Insert Eq.(2.25) along with the auxiliary equation into Eq.(2.24) and collect

all coe�cients of F ′(ξ)F j(ξ). Setting all coe�cients to zero yields a set of over-determined

ordinary di�erential equations for the coe�cients of the auxiliary equation. Then, solve this set

of over-determined equations with MAPLE.

Fifth step: Use the solutions of the auxiliary equation, and insert them along with the

solutions of the set of ordinary di�erential equations found in the fourth step to get analytical

solutions of the nonlinear partial di�erential equation (2.23).

Let us illustrate the above algorithm with the following cubic-quintic nonlinear Schrödinger

equation

ı
∂Ψ(x, t)

∂t
= −c∂

2Ψ(x, t)

∂x2
− (±) | Ψ(x, t) | 2Ψ(x, t) + χ0 | Ψ(x, t) | 4Ψ(x, t). (2.27)

Equation (2.27) may be derived by applying a modi�ed lens-type transformation to a cubic-

quintic GPE with time varying coe�cients [34]. The parameters c and χ0 are real constants.

We assume that Ψ(x, t) has the amplitude-phase form and may be written as

Ψ(x, t) = Q(ξ) exp[iθ(x, t)], (2.28)

where Q represents the amplitude part and θ accounts for the phase part. The new variables ξ

and θ have the forms

ξ = k0x− ω0t, θ(x, t) = kx− ωt. (2.29)

Parameters k0, k, ω0, and ω are real constants which account for width, linear frequency shift,

velocity, homogenous phase of the wavefunction Ψ(x, t), respectively. Substituting Eqs.(2.28)-

(2.29) into Eq.(2.27), then separating the real and the imaginary parts, respectively reads the
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following set of ordinary di�erential equations with respect to Q

(ω − ck2)Q+Q3 − χ0Q
5 + ck0

d2Q

dξ2
= 0, (2.30)

(ω0 − 2ckk0)
d2Q

dξ2
= 0. (2.31)

Assuming the constraint

ω0 = 2ckk0, (2.32)

means that we only need to solve Eq.(2.30). Thus, in the following, we focus our attention on

deriving solutions of Eq.(2.30). Assuming that the function Q has the following form

Q(ξ) =
M∑
i=0

aiF
i(ξ), (2.33)

where M is a positive integer, and the function F is the solution of the general Bernoulli equation

(which is the auxiliary equation)

dF

dξ
= aF (ξ) + bF λ(ξ), (2.34)

parameters a, b, λ being real constants which will be determined later, with λ ̸= 1. Introducing

Eq.(2.34) into Eq.(2.27) and using the homogeneous balance between the highest order deriva-

tive and nonlinear terms, respectively, yield λ = 2M + 1. Since λ ̸= 1, then M ≥ 1. Let us

consider the simple case where M = 1, and λ = 3, we have

Q(ξ) = a0 + a1F (ξ),
dF

dξ
= aF (ξ) + bF 3(ξ). (2.35)

Inserting Eq.(2.35) into Eq.(2.27) and collecting coe�cients of powers F i(ξ), then setting each

coe�cient to zero, yield a set of over-determined algebraic equations for the unknowns a0, a1,

a, b, and ω. Solving this set of over-determined equations with the aid of MAPLE leads to the

following solutions

a0 = 0, (2.36)

a =
−
√
3

4k0
√
c
√
χ0

, (2.37)

b = ±
a21
√
χ0

k0
√
3c
, (2.38)

ω =
−3 + 16ck2χ0

16χ0

. (2.39)

Equations (2.36)-(2.39) imply that c > 0, and χ0 > 0. Using the solutions of the general

Bernoulli equation (2.28) for λ = 3 given in the Appendix A [115], we derive analytical solutions

of Eq.(2.27)

Ψ1j(x, t) = a1F1j(ξ) exp[ıθ(x, t)], j = 1, 2, 3. (2.40)
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The F-expansion method and extended F-expansion methods are powerful techniques used

to construct analytical solutions of nonlinear partial di�erential equations that appear in math-

ematical physics. In the next chapter, we will employ the F-expansion method with di�erent

auxiliary equations, i.e., the Ricatti equation, the Lenard equation, the hyperbolic equation

whose solutions are given in the Appendices B, C, D, and E, respectively.

2.6 Numerical methods

The linear stability analysis becomes less valid at lager times because the amplitudes of the

carrier waves may exponentially grow in the unstable region. Approximate analytical solutions

such as those constructed with methods like the variational approach, the F-expansion method

and extended F-expansion methods, always have practical limits since as approximate solutions,

these ones neglect some aspects of the exact solution. Besides, in real physical experiments, there

are some imperfections that shall perturb the system under consideration. These imperfections

shall induce a small amount of perturbation that may destroy exact unstable solutions, which

will not be observed in experiments. For these reasons, the and approximate analytical solutions

are compared with exact numerical solutions of the nonlinear partial di�erential equation under

study. In this thesis, we have used di�erent numerical methods in order to integrate model

equations of GPE type under investigation.

2.6.1 The continuous normalized gradient �ow with backward Euler centered �-

nite di�erence

We begin with the presentation of the continuous normalized gradient �ow with Backward

Euler centered �nite di�erence scheme developed by Bao and Du [53] for integration of the

GPE of types

ıΨt(x, t) = −
1

2
△Ψ(x, t) + V (x, t)Ψ(x, t) + β|Ψ(x, t)|2Ψ(x, t), t > 0, xϵΘ ⊆ Rd (2.41)

where △ represents the Laplacian in d-dimensions, with the initial condition Ψ(x, t) = 0, x ϵ

Ξ = ∂Θ, t ≥ 0. The term Θ represents a subset of Rd, V (x, t) accounts for an external potential

with free geometry, and β is a real constant. It is shown in [53] that the continuous normalized

gradient �ow for a stationary solution of Eq.(2.41), Ψ(x, t) = ϕ(x, t) exp(−ıµt), where µ is the

chemical potential, has the form

ϕt(x, t) =
1

2
△ϕ(x, t)− V (x, t)ϕ(x, t)− β|ϕ(x, t)|2ϕ(x, t) + µϕ(t)ϕ(x, t), x ϵΘ, t > 0,

ϕ(x, t) = 0, xϵΘ, ϕ(x, 0) = ϕ0(x), xϵΞ. (2.42)

The term µϕ(t) =
1

||ϕ(.,t)||2
∫
Θ
[1
2
|∇ϕ(x, t)|2 + V (x)ϕ2(x, t) + βϕ4(x, t)]. Let us de�ne the spatial

mesh size h = ∆x > 0 as h = (b − a)/M , M being an even positive integer. The time step

is k = ∆t > 0, and the grid points and time steps are xj = a + jh, j = 0, ...,M , tn = nk,
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n = 0, 1, .... Then, the backward Euler for time discretization and second-order centered �nite

di�erence for spatial derivatives are used. The detail scheme is

ϕ∗
j − ϕnj
k

=
1

2h2
[ϕ∗
j+1 − 2ϕ∗

j + ϕ∗
j−1] + V (xj)ϕ

∗
j − β(ϕnj )2ϕ∗

j j = 1, ...,M − 1

ϕ∗
0 = ϕ∗

M = 0, ϕ0
j = ϕ0(xj), j = 0, 1, ...,M

ϕn+1
j =

ϕ∗
j

||ϕ∗||
, j = 0, ...,M, n = 0, 1, ... (2.43)

The norm is de�ned as ||ϕ∗||2 = h
∑M−1

j=1 (ϕ∗
j)

2.

The normalized gradient �ow with backward scheme has been proven to be more e�cient in

computing the Bose-Einstein condensate ground state solution than other methods such as the

Cranck-Nicholson scheme [53].

2.6.2 The split-step Fourier method

The split-step Fourier method is a pseudo-spectral numerical method which is used to solve

nonlinear partial di�erential equations. In this numerical scheme, the solution is computed in

small steps, and the linear and the nonlinear parts are treated separately. In addition, it is

necessary to compute two Fourier transforms with this numerical scheme. In order to describe

the split-step Fourier method, we consider the following dimensionless GPE

ı
∂Ψ(x, t)

∂t
= C

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) + g|Ψ(x, t)|2Ψ(x, t), (2.44)

where C, V (x), and g are allowed to take real values. However, the method remains e�cient

for complex values of C, V (x), and g. The method consists of splitting the equation to solve

into a linear and a nonlinear parts. So we rewrite (2.44) in terms of two operators as

∂Ψ

∂t
= [D̂ + N̂ ]Ψ. (2.45)

The operator D̂ is the linear part. In fact, the operator D̂ contains all spatial derivative terms

with respect to the linear dependent variable Ψ. The operator N̂ represents the nonlinear part

of the equation under study. Equation (2.45) may be split in two di�erent parts. A linear part

∂ΨD

∂t
= D̂ΨD. (2.46)

In the case of Eq.(2.45), we have the relation ∂ΨD

∂t
= −ıC ∂2Ψ(x,t)

∂x2
= D̂ΨD. The second part is

the nonlinear one which is
∂ΨN

∂t
= N̂ΨN . (2.47)

The form of the nonlinear operator in Eq.(2.45) is N̂ = −ı(V (x) + g|Ψ(x, t)|2).
Equations (2.46) and (2.47) taken separately have analytical solutions, but Eq.(2.45) does

not in general have any analytical solutions. However, taking a 'small' step in time, dt, then the
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two parts may be treated separately with only a 'small' numerical error. Therefore, one may

�rst take a small nonlinear step,

ΨN(x, t+ dt) = exp[−ı(V (x) + g|Ψ|2)dt]ΨN(x, t), (2.48)

which is the analytical solution of Eq.(2.47) at time t + dt, starting from a known solution at

time t. The analytical solution of Eq.(2.48) is �rst computed in the frequency domain such that

one �rst applies a Fourier transform

Ψ̃D(ω, t) =

∫ +∞

−∞
ΨD exp[ı(ω − ω0)dt], (2.49)

where ω0 is the center frequency of the pulse solution. The solution of Eq.(2.46) at time t+ dt

reads

Ψ̃D(ω, t+ dt) = exp[ıC(ω − ω0)
2dt]Ψ̃D(ω, t). (2.50)

One derives ΨD(ω, t+ dt) by taking the inverse fourier transform of Ψ̃D(ω, t+ dt).

The formal solution of Eq.(2.45) is written as

Ψ(x, t) = exp[ı(D̂ + N̂)t]Ψ(x, 0). (2.51)

The operators D̂ and N̂ do not commute in general. Applying the Baker-Hausdor� formula up

to the second order for a small step dt, Eq.(2.51) becomes

Ψ(x, t+ dt) ≈ exp(ıD̂dt) exp(ıN̂)dt)Ψ(x, t). (2.52)

One should notice that the operator D̂ is always computed in the frequency domain, while N̂

may be computed in the real physical space at time t. To advance the solution in time to a step

dt, one �rst computes the Fourier transform of exp(ıN̂)dtΨ(x, t), then calculates the product

involving D̂ and N̂ in the frequency domain, applies the inverse fourier transform in order to

come back to the real physical space. The algorithm of the method is the following

Ψ(x, t+ dt) = F−1[exp−ıdtωF [exp(ıN̂)Ψ(x, t)]]. (2.53)

The Fourier transform of the dispersion part may be computed with the fast Fourier trans-

form algorithm. This allows the split-step Fourier method to be faster than �nite di�erence

methods. The split-step Fourier method is accurate to the second order of the step size dt.

There are modi�cations of the split-step Fourier method that may be used to improve the

accuracy such as the symmetrized split-step Fourier method [55].

2.6.3 The fourth order Runge-Kutta in the interaction picture method

The fourth order Runge-Kutta in the interaction picture method [54] is a numerical scheme

used for nonlinear partial di�erential equations that combines the fourth order Runge-Kutta

method with the Fourier method [54]. The solution is advanced in time with the fourth order
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Runge-Kutta method, with all spatial derivatives computed in the frequency domain by the

Fourier transform of derivatives.

The fourth order Runge-Kutta method is a numerical method appropriate for ordinary

di�erential equations [54, 55]. Let us consider the following ordinary di�erential equation

du(x, t)

dt
= A(u(x, t), x, t). (2.54)

Equation (2.54) is associated with the initial condition u(x, 0). The algorithm of the fourth

order Runge-Kutta scheme is

u(x, t+ dt) = u(x, t) + [L1 + 2L2 + 2L3 + L4]/6,

L1 = A(u(x, t), x, t)dt,

L2 = A(u(x, t) + L1/2, x, t+ dt/2)dt, (2.55)

L3 = A(u(x, t) + L2/2, x, t+ dt/2)dt,

L4 = A(u(x, t) + L3, x, t+ dt)dt.

The implementation of the fourth order Runge-Kutta scheme is straightforward. In order to set

the fourth order Runge-Kutta scheme for partial di�erential equations, one has to �nd a way of

evaluating the spatial derivatives by numerical means. The fast Fourier transform algorithm is

a very fast means of calculating spatial derivatives and is accurate for machine precision. The

Fourier transform of a derivative Ψ(n)(x) is F [Ψ(n)(x)] = (ıω)nψ(ω).

The algorithm of the fourth order Runge-Kutta in the interaction picture method for non-

linear partial di�erential equations of types ∂Ψ
∂t

= (D̂ + Ĝ)Ψ, is

ΨI ← = D̂(Ψ),

L1 ← = D̂[Ĝ(Ψ, t)],

t← = t+ dt/2,

L2 ← = [Ĝ(Ψ + L1/2, t)],

L3 ← = [Ĝ(Ψ + L2/2, t)], (2.56)

t← = t+ dt/2,

L4 ← = Ĝ[D̂(ΨI + L3, t)],

Ψ← = D̂ΨI + [L1 + 2(L2 + L3)]/6 + L4/6.

The operator D̂ is the di�erential operator part of the nonlinear partial di�erential equation

under study, while the operator Ĝ is the normal part of the nonlinear partial di�erential equation

and may contain nonlinear terms.

The basic algorithm for the fourth order Runge-Kutta in the interaction picture method

has been developed by Ballagh and coworkers in [54] where a detail description of the method

can be found. The fourth order Runge-Kutta in the interaction picture method has a certain
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number of advantages which are: fourth order in step size, stable, relatively few fast fourier

transforms, relatively low memory consumption. The fourth order Runge-Kutta in the inter-

action picture method applies only to nonlinear partial di�erential equations with diagonal

dispersion operators D̂.

2.6.4 The PDEPE MATLAB toolbox

PDEPE is the MATLAB toolbox for the numerical integration of initial-boundary value

problems for systems of parabolic and elliptic partial di�erential equations in the one space

variable and time. PDEPE solves partial di�erential equations of the form

C(x, t, u, ux)ut = x−m
∂

∂x

[
xmF (x, t, u, ux)

]
+ S(x, t, u, ux), (2.57)

in which the time and space variables lie the regions t0 ≤ t ≤ tf and a ≤ x ≤ b (a and b being

�nite real numbers), respectively. In Eq.(2.57), F is the �ux term, S the source term, and the

parameter m = 0, corresponding to a slab symmetry, i.e., to no symmetry (neither cylindrical

nor spherical). The initial condition for all t = t0 is u(x, t0) = u0(x0). For all t and either x = a

or x = b, the solution satis�es boundary conditions of the form

p(x, t, u) + q(x, t)f(x, t, u, ux) = 0, (2.58)

where elements of q are either identically zero or never zero. The PDEPE toolbox does not

admit neither complex numbers nor complex variables. If one wants to solve a nonlinear partial

di�erential equation where the dependent variable or the coe�cients are complex numbers,

the �rst step is to express the dependent variable as the sum of the real and imaginary parts

as u = uR + ıuI . Taking this in consideration gives rise to a coupled system of equations for

Eqs.(2.57)-(2.58), and for the initial condition.

The PDEPE toolbox uses a time step adaptive Runge-Kutta Feldberg algorithm. PDEPE

has many options and may be used to solve many types of partial di�erential equations. A

detail of what can be done with PDEPE can be found in the MATLAB help for PDEPE.

2.7 Conclusion

In this chapter, we have presented some analytical and numerical methods used in the

study of the dynamics of Bose-Einstein condensates. Among the analytical methods described

are the variational approach, the modi�ed lens-type transformation, the linear stability analysis,

and the F-expansion method. We have shown that the variational approach allows to construct

approximate analytical solutions of partial di�erential equations such as the GPE, and if com-

bined with the Vakhitov-Kolokolov criterion leads to the stability criterion of solutions. It is

also demonstrated that the modi�ed lens-type transformation allows to transform the original

GPE with an explicit space dependence of the trapping potential to a more tractable form in
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which the spatial dependence of the external potential is hidden. The linear stability analysis

presented here helps to investigate the modulational instability of plane waves. The F-expansion

method is a powerful tool that may be used to construct many families of analytical solutions

of nonlinear partial di�erential equations such as the GPE. The results obtained with the ana-

lytical methods need to be compared to exact numerical simulations of the original equations.

Exact numerical solutions can be constructed by means of di�erent numerical schemes. We have

outlined some numerical methods for partial di�erential equations such as the normalized gra-

dient �ow with backward Euler centered �nite di�erence scheme, the split-step Fourier method,

the fourth order Runge-Kutta in the interaction picture method, and the MATLAB toolbox

PDEPE.

In the following, we will apply the latter methods in order to elucidate some important

e�ects like the in�uence of the quantum �uctuations around the mean �eld, the nonlinear

delayed response of the condensates have on the dynamics of solitons in condensates.
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Chapter 3

Results and Discussion

3.1 Introduction

The phenomenon of Bose-Einstein condensation provides unique opportunities to test fun-

damental quantum theories, and to study many quantum properties of matter waves. For exam-

ple, Bose-Einstein condensates can be used for the dramatic slowing down of a light pulse [118]

in view of storage of coherent optical information with application to quantum information

processing [119]. Recently, a condensate made of photons has been realized [120]. It is believed

that the possibility of producing photon Bose-Einstein condensates could help further shrink of

electronic devices. In 2011, an experience proved the possibility (in term of precise control) of

starting and stopping at will, the rotation of the super�uid state in a toroidal sodium conden-

sate medium [121]. The frictionless rotating quantum matter wave actually simulates the role of

electrons (Cooper pairs) in superconductivity, and thus opens the door for possible utilization of

condensates as essential circuit elements for future means to a�ord the e�cient transformation

and transmission of energy. Bose-Einstein condensed gases in optical lattices are also claimed to

be good candidates in the route to quantum computers [122, 123, 124, 125]. Condensates provide

an unprecedent opportunity to study properties of collective excitations of quantum matter in

a macroscopic scale. Further, coherent structures in condensates are good candidates for many

applications such as matter-wave transport, atomic number squeezing, atomic chips made of

condensates, creation of coherent matter-wave structures and so on. Solitons can be created in

condensates [10, 11, 12, 27, 95] and are an active �eld of research [49, 126, 127, 128, 129, 130].

In this chapter, we investigate the stability of solitons of single and binary Bose-Einstein

condensates with two- and or three-body interatomic interactions modulated in time. In Sect.

I, by means of the variational approach, we analyze the stability of bright solitons in single

condensates loaded in linear optical lattices. Then, the structure dynamics of bright solitons in

single and binary condensates are studied in detail via the modulational instability process in

Sect. II. E�ects of some important physical aspects like quantum �uctuations, the three-body

interatomic interactions, on the stability of condensate are examined. Approximate analytical
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solutions of single condensates with time-variations of the two- and three-body interatomic

interactions, con�ned in a time-dependent complex potential are constructed in Sec. III.

3.2 Stability of matter-wave condensates in optical lattices

3.2.1 Model and analytical results

In this section, we study the stability of bright solitons of the one dimensional cubic GPE

with a variable anharmonic nonsinusoidal optical lattice of the form [131, 132, 133]

V (x) = V0[1 + s− (1− s2)(cos(2kx) + s cos(4kx) + ...+ sn−1 cos(n2kx))]

= V0[1 + s− (1− s2)
∑
n=1

sn−1 cos(n2kx)]. (3.1)

This particular potential presents a number of advantages for analysis. First, its shape may be

scaled by the parameter s, with −1 < s < 1, while the maximum amplitude remains constant

at 2V0. Second, for s > 0, the nonsinusoidal potential has the shape of sharp wells separated

by �at wide barriers (see Fig. 6(a), for s = 0.8, s = 0.5, s = 0.3), the potential reduces to the

familiar sine-wave potential through a continuous variation when the parameter s goes to zero

(see Fig. 6(b), for s = 0), while for s < 0, it has �at bottoms separated by thin barriers (see

Fig. 6(c), for s = −0.8, s = −0.5, s = −0.3). The parameter k in this case is the wave number

of the optical lattice.
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Figure 6: Deformability of the periodic potential, Eq.(3.1), with respect to the shape parameter for (a) s = 0.8 (solid

line), s = 0.5 (dotted line), s = 0.3 (dash-dotted line); (b) s = 0. (c) s = −0.8 (solid line), s = −0.5 (dotted line),

s = −0.3 (dash-dotted line), with V0 = 1 and k = 1.

We consider the one dimensional cubic dimensionless GPE with the external potential of

Eq.(3.1)

ı
∂ψ(x, t)

∂t
= [−1

2

∂2

∂x2
+ V (x) + g1D|ψ(x, t)|2]ψ(x, t). (3.2)

In Eq.(3.2), g1D is the strength in one dimension of the cubic nonlinearity related to the s-wave

scattering length as through g1D = 2 |as|
a0
. Here a0 =

√
~

mω⊥
is the transverse harmonic oscillator

length, while ω⊥ represents the harmonic oscillator in the transverse directions. Equation (3.2)

is obtained by introducing the rescaled variables x ← kx, t ← (~k2/2m)t, V0 ← V0(~2k2/2m),

41



ψ ← ψ/
√
n0, where n0 is the density of the condensate, then the dimensional reduction is done

as in [134].

We focus our attention to stationary solutions of Eq.(3.2), to this end, we follow the standard

procedure and introduce a chemical potential µ to account for nonlinearity-induced phase shift

of the stationary solutions. Assuming that ψ(x, t) = ϕ(x) exp(−ıµt), Eq.(3.2) becomes

[−1

2

∂2

∂x2
+V0[1+s−(1−s2)(cos(2kx)+s cos(4kx)+...+sn−1 cos(n2kx))]+g1D|ϕ|2]ϕ(x, t) = µϕ(x, t).

(3.3)

In order to derive the stability criterion of stationary bright soliton solutions of Eq.(3.3), we

resort the variational approach presented in the former chapter and choose the following ansatz

ϕ = A(t) exp[− x2

2W 2(t)
+ ı(ϕ(t) +

b(t)x2

2
)]. (3.4)

The e�ective Lagrangian is

L1D = N1D[−ϕ̇−
1

4

1

W 2
− 1

4
W 2(ḃ+b2)− 1

2
√
2
A2g1D−V0[1+s−(1−s2)

∑
n=1

sn−1 exp(−n2k2W 2)]].

(3.5)

Using the Euler-Lagrange equations, we derive the variational equations [133]

N1D = A2
√
πW,

g1DN1D√
2π

= 4V0(1− s2)k2W 3
∑
n=1

sn−1n2 exp(−n2k2W 2)− 1

W
,

ϕ̇ = −µ1D = −[g1DN1D√
2πW

+
1

4W 2
+ V0[1 + s− (1− s2)

∑
n=1

sn−1 exp(−n2k2W 2)]].

(3.6)

A noteworthy property of the last equation of the set (3.6) is that there exists a minimal norm

N1Dmin, that depends on the value of the shape parameter s, for a given strength V0 of the

linear optical lattice. The value of W, Wmin, that minimizes the norm is obtained by solving

the following implicit equation

4V0k
2(1− s2)W 4

∑
n=1

sn−1n2(3− 2k2n2W 2) exp(−n2k2W 2) + 1 = 0. (3.7)

Considering the second equation of the set (3.6), a stationary solution exists provided that the

norm N1D is positive; for a �xed value of the shape parameter s, we determine the critical

strength of the linear optical lattice as

V0crit =
1

4k2W 4
min(1− s2)

∑
n=1 s

n−1n2 exp(−n2k2W 2
min)

. (3.8)

In fact, for too large or too small values of the shape parameter s, if V0 < V0crit, there is one

localized state and if V0crit < V0, there are three localized states, one unstable and two stable,

some of them present a gap region where there is no solution as V0 increases (V0crit < V0).
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For all other values of the shape parameter s, if V0 < V0crit, there are three localized states,

one unstable and two stable, and for V0crit < V0, there are three localized states with a gap

region where the solution does not exist. This gap region gradually increases with V0 (in the

case V0crit < V0). We display in Fig. 7 the variation of the number of atoms N1D as a function

of the width W for �xed values of the shape parameter s.
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Figure 7: (a) V0crit = 3.5 > V0 = 1, stable soliton for very large or small widths. (b) V0 = 7 > V0crit = 3.5, 2 stable and

one unstable regions. (c) V0 = 14. (d)-(f) V0 = 0.4 < V0crit = 0.62, medium values of s. (d) if V0 < V0crit 2 stable and

one unstable regions. (e) V0 > V0crit, 2 stable and one unstable regions, and a gap region with no soliton. The width of

the gap region enlarges with V0 as in (f). Other parameters are g1D = −0.1, k = 1.

From the second equation of the set (3.6), it is expected that the branches of N1D(W )

with negative slopes are stable, i.e., W < Wmin, has negative slopes and therefore are stable.

The other branches (W > Wmin) appear to be unstable [11] (Sakaguchi and Malomed). More

precisely, for s = ±0.98, when V0 < V0crit ≈ 3.5, V0 = 1 (see Fig. 7(a)), there is one localized

state that is stable, and when V0crit < V0, there are three localized states: with V0 = 7 (see

Fig. 7(b)), two branches of solution are stable (W < 1.53 and W > 2.29) and one is unstable

(1.53 < W < 2.29); with V0 = 14 (see Fig. 7(c)), there are three localized states with a gap

region. For s = 0.98 (see Fig. 7(c)), one branch of solution is unstable (1.71 < W < 2.56) and

two branches are stable (W < 1.03 andW > 2.56). For s = −0.98 (see Fig. 7(c)), one branch of

solution is unstable (1.18 < W < 2.56) and two branches are stable (W < 1.18 and W > 2.56).

Considering intermediate values of s, there are always three localized states with a gap region

increasing with V0 as one can see in Figs. 7(d)-(f) where s = ±0.5. For V0 < V0crit ≈ 0.62,

there are three localized states; with V0 = 0.4 (see Fig. 7(d)), the branch of solution with

1.51 < W < 2.4 is unstable, while the others (W < 1.51 and W > 2.4) are stable; when

V0crit < V0, there are three localized states: s = 0.5, with V0 = 1, (see Fig. 7(e)), the branch

of solution with 1.93 < W < 2.68 is unstable, while the others (W < 0.87 and W > 2.68) are

stable; with V0 = 6, (see Fig. 7(f)), the branch of solution with 2.58 < W < 3.12 is unstable,
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while the others (W < 0.36 andW > 3.12) are stable; s = −0.5, with V0 = 1 (see Fig. 7(e)), the

branch of solution with 1.93 < W < 2.68 is unstable, while the others (W < 1 and W > 2.68)

are stable; with V0 = 6, (see Fig. 7(f)), the branch of solution with 2.58 < W < 3.12 is unstable,

while the others (W < 0.63 and W > 3.12) are stable.

An additional evidence for the existence of solitons can be obtained from the second equation

of the set (3.6) which can be considered as describing the motion of a unit-mass particle with

the coordinate W (t) in the e�ective potential

U(W ) =
1

2W 2
+
g1DN1D√
2πW

+ 2V0(1− s2)
∑
n=1

sn−1 exp(−n2k2W 2). (3.9)

Now, we discuss the e�ective potential structures of the attractive condensate. Figure 3 shows

some results for di�erent values of the shape parameter s, with the values of V0, k, g1D, and N1D

�xed. Solitons in the attractive condensate exist if the e�ective potential (Eq.(3.9)) possesses

a local minimum. In particular, for V0 = 1, k = 1 and g1D = −0.1, the e�ective potential (see
Fig. 8) possesses a local minimum both for s < 0 (Fig. 8(a)) and for s > 0 (Figs. 8(b)-(c)).

One also realizes in Fig. 8(a) where s < 0 that with the increase of the shape parameter s,

the e�ective potential wells' depths gradually reduce. This means that small negative s more

stabilized the system that larger ones. Regarding the shape of the linear linear optical lattice

in Fig. 6(c), the stabilization of a soliton requires a more con�ning external potential.
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Figure 8: E�ective potential versus width. (a) (s < 0), N1D = 100. (b) (s > 0), N1D = 50. (c) (s > 0), N1D = 100. Small

negative s more stabilize the soliton. For s > 0, if s ≥ 0.735 and N1D ≤ 70, the stability of the soliton increases with

increasing values of s. For s < 0.735 and N1D > 70, the stability increases with decreasing values of s. Other parameters

are g1D = −0.1, k = 1, V0 = 1.

Things are slightly di�erent in the case where s > 0. For medium values of N1D (N1D lower

or around ≈ 70), with the decrease of the value of the shape parameter s, the e�ective potential

wells' depths gradually reduce (see Fig. 8(b)). Hence, for medium values of the number of atoms

N1D, large values of the shape parameter s increase the stability of the system. But, as well as

the number of atoms N1D becomes large (N1D ≥ 100), for s < 0.735, with the increase of the

shape parameter s, the e�ective potential wells' depths gradually reduce, while for s ≥ 0.735,

with the decrease of the shape parameter s, the e�ective potential wells' depths gradually reduce

(see Fig. 8(b)). For positive values of s, the stability of bright solitons is sensitive to the number

of atoms in the condensate. The results obtained in Fig. 3 are in good agreement with those of
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Fig. 7. From the above stability analysis, there are two important features of the linear optical

lattice that can be used to stabilize the system: the shape parameter s, and the strength of the

linear optical lattice V0. These parameters can be controlled externally in current condensate

experiments.

The above stability analysis does not include the dependence µ(N). Although µ is not a

directly observable quantity, these dependences are important too. According to the Vakhitov-

Kolokolov criterion, solutions families which meet the condition

dµ1D

dN1D

=
g1D√
2πW

< 0, (3.10)

may be stable, while the others with dµ1D
dN1D

> 0 should be unstable. From, the Vakhitov-Kolokolov

criterion of Eq.(3.10), all solutions are stable.

3.2.2 Numerical simulations

We test the predictions obtained with the variational approach by comparisons with the

exact numerical solution of Eq.(3.2). The numerical scheme used is the normalized gradient

�ow with backward Euler centered �nite di�erence with imaginary time propagation [53]. A

key point is the use of absorption on the boundaries of the spatial domain of integration. In

our study, the spatial grid is x = [−24, 24] with 512 points, and a time step ∆t = 0.0027. A

small amount of random white noise is inserted in order to detect any instability that may be

seeded in a solution. We insert into Eq.(3.2) the solution given by Eq.(3.4) at initial time t = 0.

Presented in Fig. 9(a) (s = 0.98) and Fig. 9(b) (s = −0.98) are the spatiotemporal evolutions

of the wavefunction for parameters corresponding to those in Fig. 7(a). The initial condition

0 100 200 300 400 500
−20

−10

0

10

20  

t

 

x

2

4

6

8

10

12

(a)
0 100 200 300 400 500

−20

−10

0

10

20  

t

 

x

2

4

6

8

10

12

(b)

0 100 200 300 400 500
−20

−10

0

10

20  

t

 

x

2
4
6
8
10
12
14

(c)
0 100 200 300 400 500

−20

−10

0

10

20  

t

 

x

2

4

6

8

10

12

14

(d)

Figure 9: Spatiotemporal evolution of stable solitons. (a) s = 0.98, W = 2, N1D = 11.95, V0 = 1. (b) s = −0.98, W = 2,

N1D = 11.95, V0 = 1. (c) s = 0.5, W = 4, N1D = 6.26, V0 = 0.4. (d) s = −0.5, W = 4, N1D = 2.26, V0 = 0.4. In all

panels g1D = −0.1.

evolves with time without any dispersion nor disintegration; it maintains its shape and lasts
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longer. We can then say that the exact numerical solutions of Figs. 9(a)-(b) are linearly and

dynamically stable. These results are in full agreement with the prediction of the variational

approach. We also display in Fig. 9(c) (s = 0.5) and Fig. 9(d) (s = −0.5) the numerical

solutions for parameters chosen as in Fig. 7(d) with W = 4, N1D = 6.26 that correspond to

the second stable region. Once again, the agreement between the variational approach and the

exact numerical solutions is quite good.

3.3 Modulational instability of single and binary Bose-Einstein con-

densates

3.3.1 Modulational instability of Bose-Einstein condensates beyond the Fermi

pseudopotential

(a). Theoretical Model and linear stability analysis

Only a few works have studied the modulational instability of condensates beyond the

mean-�eld picture [135]. In order to investigate e�ects of the quantum �uctuations and the

complex potential [136] on the modulational instability in condensates, our starting point is

the modi�ed three-dimensional GPE introduced by Fu et al. [137]

ı~
∂ψ̄(x̄, ȳ, z̄, t̄)

∂t̄
= − ~2

2m
∇2ψ̄(x̄, ȳ, z̄, t̄) + V (x̄, ȳ, z̄)ψ̄(x̄, ȳ, z̄, t̄)

+g|ψ̄(x̄, ȳ, z̄, t̄)|2ψ̄(x̄, ȳ, z̄, t̄) + g1|ψ̄(x̄, ȳ, z̄, t̄)|3ψ̄(x̄, ȳ, z̄, t̄)
+ g2∇2(|ψ̄(x̄, ȳ, z̄, t̄)|2)ψ̄(x̄, ȳ, z̄, t̄), (3.11)

where g = 4π~2as
m

, m being the mass of atoms. The fourth term on the right-hand side of Eq.(3.11)

represents the inclusion of quantum �uctuations with g1 = g 32
3
√
π
a

3
2
s and the last term accounts

for the shape-dependent con�nement correction on the interaction potential with g2 = 2
3
a2sg.

The external potential is [138]

V (x̄, ȳ, z̄, t̄) =
1

2
m(ω2

x̄α
2
1(t̄)x̄

2 + ω2
ȳα

2
2(t̄)ȳ

2 + ω2
z̄α

2
3(t̄)z̄

2)

+
1

2
ω
√
m~ω(λ1(t̄)x̄+ λ2(t̄)ȳ + λ3(t̄)z̄) +

ı~ω
2
γ(t̄), (3.12)

where α1(t̄), α2(t̄), α3(t̄) represent the strengths of the parabolic background; λ1(t̄), λ2(t̄), λ3(t̄)

characterize the Earth's gravitational �eld or some linear potentials, and ωx̄ ≡ α1(t̄)ω, ωȳ ≡
α2(t̄)ω, ωz̄ ≡ α3(t̄)ω are the angular frequencies, in the −x̄, −ȳ, −z̄ directions, respectively, ω

being the angular frequency. The parameter related to feeding or loss of atoms is γ(t). It is con-

venient to manipulate Eq.(3.12) in its dimensionless form. Thus, in terms of the dimensionless

variables x = x̄
a
, y = ȳ

a
, z = z̄

a
, t = ω

2
t̄, ψ̄(x, y, z, t)→

√
2a3

N
ψ̃ (N =

∫
|ψ|2dxdydz is the number
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of atoms in the condensate), a =
√

~
mω

(harmonic oscillator length), Eq.(3.11) becomes

ı
∂ψ̃

∂t
= [−∇2 + α2

1(t)x
2 + α2

2(t)y
2 + α2

3(t)z
2 + λ1(t)x+ λ2(t)y + λ3(t)z + ıγ(t) +

g̃|ψ̃|2 + g̃1|ψ̃|3 + g̃2∇2(|ψ̃|2)]ψ̃, (3.13)

with g̃ = 4πN as
a
, g̃1 = 128

√
π

3
√
2
N

3
2 (as

a
)
5
2 , and g̃2 = 8πN

3
(as
a
)3. In the case where the condensate is

strongly con�ned in the transverse directions de�ned here by the plane (y, z), Eq.(3.13) reduces

to a quasi-one dimensionless form. In order to derive the one dimensional form of Eq.(3.13), we

assume that the condensate remains con�ned to the ground state in the transverse directions

and consider the ansatz [138]

ψ̃(x, y, z, t) = ψ(x, t)ψ0(y)ψ0(z) exp[−ı(α2 + α3)], (3.14)

with ψ0(y) = (α2

π
)
1
4 exp(−α2y2

2
), ψ0(z) = (α3

π
)
1
4 exp(−α3z2

2
), ψ0(y) and ϕ0(z) being normalized to

unity. Introducing Eq.(3.14) into Eq.(3.13), then multiplying by the left by ψ0(y) and ψ0(z)

and integrating over y and z in space yield the dimensionless one dimensional form of Eq.(3.11)

ı
∂ψ

∂t
(x, t) = [− ∂2

∂x2
+ α2

1(t)x
2 + λ1(t)x+ ıγ(t) + g′|ψ(x, t)|2 + g′1|ψ|3 + g′2

∂2

∂x2
(|ψ(x, t)|2)]ψ(x, t),

(3.15)

where

g′ = 2N
as
a

√
α2α3[1−

2

3
(
as
a
)2(α2 + α3)]

g′1 =
128
√
2

15π
N

3
2 (
as
a
)
5
2 (α2α3)

3
4

g′2 =
4N

3
(
as
a
)3
√
α2α3. (3.16)

Making the changes α2
1(t) = α(t) and λ1(t) = λ(t), Eq.(3.15) can be rewritten as

ı
∂ψ

∂t
(x, t) = [− ∂2

∂x2
+α(t)x2+λ(t)x+ ıγ(t)+g′|ψ(x, t)|2+g′1|ψ(x, t)|3+g′2

∂2

∂x2
(|ψ(x, t)|2)]ψ(x, t).

(3.17)

The three-dimensional equation (3.11) is the modi�ed GPE beyond the mean-�eld picture,

however since we are interested in its one dimensional form, in the remainder of the work

Eq.(3.17) is referred to as the modi�ed GPE I.

Now, we examine the modulational instability of the modi�ed GPE I. Following the method

adopted in chapter 2, we use the modi�ed lens-type transformation given by Eq.(2.11) with the

constraints of Eq.(2.12) to cast Eq.(3.17) in the new rescaled variables X and T

ı
∂Φ

∂T
= − ∂

2Φ

∂X2
− 2ık(t)

∂Φ

∂X
+ k2(t)Φ + g′(t)|Φ|2Φ + g′1(t)|Φ|3Φ + g′2(t)|Φ|2XXΦ, (3.18)

with k(t) = f(t)l(t)σ(t), g′(t) = g′l(t) exp(2η(t)), g′1(t) = g′1
√
l(t) exp(3η(t)) and g′2(t) =

g′2
l(t)

exp(2η(t)).
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We proceed by performing a linear stability analysis with the ansatz of Eq.(2.16) and taking

into account the fact that

Θ(T ) = k2(t) + Φ2
0[g

′(t) + Φ0g
′
1(t)], (3.19)

leads to the equation describing the dynamics of the perturbation

ı
∂δΦ

∂T
= −∂

2δΦ

∂X2
− 2ık(t)

∂Φ

∂X
+∆(t)(δΦ + δΦ∗) + g′2(t)Φ

2
0(
∂δΦ

∂X2
+
∂δΦ∗
∂X2

). (3.20)

In Eq.(3.20) ∆(t) = Φ2
0[g

′(t) + 3
2
g′1(t)Φ0]. Then, with the perturbation given by Eq.(2.18) we

retrieve the time-dependent dispersion relation

Ω2 − 4k(t)KΩ + 4k2(t)K2 −K4∆′(t)− 2K2∆(t) = 0. (3.21)

The modulational instability criterion reads

K2[K2∆′(t) + 2∆(t)] < 0, (3.22)

and the gain of modulational instability G is

G = |Im(
√
K2[K2∆′(t) + 2∆(t)])|. (3.23)

The explicit expressions of the functions f(t), l(t), T (t) are given by Eq.(2.14). In the case

where the condensate loses atoms (γ < 0), the modulational instability growth rate increases

with increasing γ, for a �xed value of α. This means that the atoms loss enhances the modu-

lational instability of the condensate. One can see this behavior in Figs. 10(a)-(b) where the

modulational instability growth rate is plotted as a function of the wave number K, for three

negative values of γ. In Fig. 10(a) we realize that the gain increases as γ increases. Furthermore,

for small enough values of γ, the amplitude of the gain of the modulational instability globally

decreases with time as shown in Fig. 10(b). But, for large enough values of γ, our model, as it

will be shown below, fails to �t the numerical results and the modulational instability growth

rate is deeply a�ected by the atoms loss.

In the case where the condensate gains atoms (γ > 0), the feeding of atoms enhances the

loss of stability of the condensate. This behavior is depicted in Fig. 10(c) where the gain of

instability is drawn as a function of the wave number K, for three di�erent values of γ, and

α being �xed. The gain increases with increasing values of γ. A comparison of Figs. 10(a)-(b)

and Fig. 10(c) shows that the amplitude of the gain is larger for a condensate in the feeding

regime than when the condensate loses atoms. This implies that adding atoms to the condensate

enhances the instability than removing atoms from the condensate.

(b). Numerical simulations of the modi�ed GPE I

In order to con�rm our previous analytical results, we integrate numerically the full mod-

i�ed GPE I with the split-step Fourier method. The initial condition is

ψ(x, 0) = ϕTF [Φ0 + ε cos(Kx)], (3.24)
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Figure 10: Gain of instability versus K. (a) α = 0.00001 (weak con�nement) for small values of γ, γ = −0.01 dotted

line, γ = −0.012 dash-dotted line, γ = −0.015 solid line, N = 5, Φ0 = 10, t = 60. (b) α = 0.001 (strong con�nement),

γ = −0.019 dotted line, γ = −0.015 dash-dotted line, γ = −0.012 solid line, N = 20, Φ0 = 40, t = 30. (c) α = 0.001

(strong con�nement), γ = 0.008 solid line, γ = 0.004 dash-dotted line, γ = 0.001 dotted line, Φ0 = 40, N = 20, t = 35.

Other parameters are as = −2.75 nm, a = 1.576.103 nm.

where ϕTF ≃ 1 − 1
2
αx2 is the background wavefunction in the Thomas-Fermi approximation

[108, 128, 131].

The detection of the occurrence of instability may be done by investigating the maxima

amplitude of the initial plane wave. We �rst emphasize on the impact of the exchange of atoms,

thus we turn o� the linear potential (λ = 0). Let us �rst consider the case where the condensate

loses atoms. Figure 6 (parameters correspond to those in Figs. 5) represents temporal evolutions

of the maxima amplitude, Maxx|ψ(x, t)|2, for three di�erent values of γ. In Fig. 11(a), the

density of the condensate increases with γ but, globally reduces with time increasing. The

amplitude of the condensate �rst gradually varies and then starts oscillating at random, thus

giving an account of instability. This result is in good agreement with the analytical predictions.

The modulational instability sets in at a critical time tC = 18. For large enough values of γ, Fig.

11(b) shows that the density of the condensate increases with increasing values of γ. A result

that does not corroborate its theoretical counterpart, as mentioned above. Thus, the linear

stability analysis is not su�cient for the description of the modulational instability growth rate
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Figure 11: Temporal evolution of the maxima amplitude Maxx|ψ(x, t)|2 for three di�erent values of γ, when the

condensate loses atoms. (a) α = 0.00001 (small values of γ) γ = −0.01 solid line, γ = −0.012 dotted line, γ = −0.015

dash-dotted line, N = 5. (b) α = 0.00001 (large enough values of γ) γ = −0.004 solid line, γ = −0.003 dotted line,

γ = −0.002 dash-dotted line, N = 5. (c) α = 0.001, γ = −0.019 solid line, γ = −0.015 dotted line, γ = −0.012

dash-dotted line, N = 20. Other parameters are λ = 0, as = −2.75 nm, a = 1.576.103 nm, K = 1.5, ε = 0.001.

for larger values of γ. For a too large value of γ, the generated pulses are destroyed after a shorter

time of propagation. This means that for too large values of the parameter characterizing the

loss of atoms, the generated solitons will propagate with shorter lifetimes. Hence, one may infer

from Fig. 11(b) that the atoms loss does not reduce the number of atoms in the condensate for

too large values of γ. This may be due to the fact that quantum �uctuations are more important

since in the absence of quantum �uctuations, it was proved in [139] that the amplitude of the

condensate reduces with time when the condensate loses atoms. Moreover, Fig. 8(b) proves that

the instability sets in at a critical time tC = 16, while for too large values of γ, tC = 18 in Fig.

11(a), con�rming that the increase of γ enhances the loss of stability. When the strength of the

external potential is strong, the condensate is compressed at the beginning of the propagation,

then, after a gradual variation, the maximal amplitude starts oscillating randomly and globally

decreases with time. Figure 11(c) depicts this behavior that is in good accordance with the

analytical study. In order to investigate the dynamics of the condensate, one should plot the

spatiotemporal evolution of the original wavefunction given by Eq.(3.17). As assumed in the
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theoretical study, the initial plane wave transforms into a train of solitons. Figures 12(a)-(b)

display some samples of trains of pulses. However, the magnitude of the pulses globally decreases
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Figure 12: Spatiotemporal evolution of modulated plane waves, in the loss regime. (a) α = 0.00001 (weak con�nement,

for small value of γ) γ = −0.01, N = 5. (b) α = 0.00001 (weak con�nement, for a large value of γ) γ = −0.001, N = 5.

(c) α = 0.001 (strong con�nement) γ = −0.01, N = 20. Other parameters are λ = 0, as = −2.75 nm, a = 1.576.103 nm,

K = 1.5, ε = 0.001.

with time in Fig. 12(a), where γ is relatively small. The number of pulses increases with time,

due to the collisions among pulses. The train of solitons is symmetric around the center of the

spatial coordinate x = 0. In Fig. 12(b), γ is relatively large and we observe that the magnitude

of the wave increases with time. The train of solitons has a shorter lifetime than in the case

where γ is small. Hence, a proper choice of the value of γ, that should be relatively small,

may enhance the lifetime of a train of solitons. Figure 12(c) also portrays the spatiotemporal

evolution of the condensate submitted to a stronger con�nement; in this case, the train of

solitons oscillates around the spatial axis' center x = 0 and the number of pulses grows with

time.

We proceed by considering the case where the condensate is fed with atoms, γ > 0. Feeding

atoms to the condensate has three major e�ects on the structure dynamics of solitons: (i) a

reduction of the lifetime of solitons, (ii) an enhancement of the occurrence of modulational

instability, and (iii) an increase of the magnitude of the wavefunctions of solitons generated.
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Figure 13(a) (γ = 0.001, tC = 16) and Fig. 13(b) (γ = 0.01, tC = 14) exhibit these features.

An increase of γ enhances the occurrence of solitons and shortens their lifetime.

−50

0

50 10

20

30

40

50

60

70

80

90

100

t

x

1

2

3

4

5

6

7

(a)

−50

0

50 10

20

30

40

50

60

70

80

90

100

t

x
2

4

6

8

10

12

(b)

Figure 13: Spatiotemporal evolution of modulated solitary plane waves, in the the case where the condensate gains

atoms. (a) γ = 0.001, (b) γ = 0.01. The other parameters are α = 0.00001, λ = 0, as = −2.75 nm, a = 1.576.103 nm,

K = 1.5, ε = 0.001.

Our analytical development fails to provide any information about e�ects of the linear po-

tential. However, further numerical simulations show that the linear potential brings three new

e�ects which are the deviation of the trail of trains of solitons, an enhancement of the occur-

rence of instability, and a reduction of the lifetime of solitons generated for large values of λ.

In Figs. 14(a)-(b) ((a): deviation of the trail of solitons backward with λ = 0.01, (b) deviation

forward of the trail of solitons with λ = −0.01) tC = 4, while tC = 18 when λ = 0 in Fig.

12(a). Figures 14(c)-(d) show evidence of the reduction of the lifetime of solitons that emerge

due to modulational instability. In Figs. 14(c)-(d) the harmonic con�nement and the exchange

of atoms are switched o� to facilitate interpretations. It is clear that large values of λ shorten

the lifetime of solitons.

3.3.2 Delayed nonlinear response of condensates with three-body interatomic in-

teractions

(a1). Theoretical model and analytical results

In order to introduce the model, we start with a one dimensional cubic GPE with harmonic

con�nement [140]

ı
∂q(x, t)

∂t
+
∂2q(x, t)

∂x2
+ 2a(t)|q(x, t)|2q(x, t)− αx2q(x, t) = 0, (3.25)

where the time t and the spatial coordinate x are measured in units of 2
ω⊥

and a⊥, ω⊥ and a⊥
being the harmonic oscillators frequency and length in the transverse directions, respectively.

The strength of the harmonic con�nement α which can be positive (attractive potential) or

negative (repulsive potential) satis�es |α| 12 = |ω0|
ω⊥

<< 1, where ω0 is the harmonic oscillator
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Figure 14: E�ects of the linear potential on the dynamics of solitons. α = 0.00001 for (a) λ = 0.01 and (b) λ = −0.01.

α = 0 for (c) λ = 0.01 and (d) λ = 0.1. Other parameters are α = 0.00001, λ = 0, as = −2.75 nm, a = 1.576.103 nm,

K = 1.5, ε = 0.001, N = 5.

frequency in the axial direction, and m represents the mass of an atom. The time dependent

s-wave scattering length a(t) has the form: a(t) = a0 exp(λt), with α = λ2

4
, a0 > 0 [141]

representing the attractive two-body interatomic interaction strength in the absence of time

modulation of atom-atom interactions.

Recently, using an appropriate additional phase imprint on the wavefunction, Kumar, Radha,

and Wadati [140] (see Eq.(3.35) below) derived a new GPE

ı
∂ψ(x, t)

∂t
+
∂2ψ(x, t)

∂x2
+ 2a(t)|ψ(x, t)|2ψ(x, t)− αx2ψ(x, t) + 12τ |ψ(x, t)|4ψ(x, t)

+ 4ı
√
τ(|ψ(x, t)|2)xψ(x, t) = 0

(3.26)

where τ is the strength of the three-body interatomic interactions and is a real number here.

The three-body interatomic interactions may be attractive (τ > 0) or repulsive (τ < 0). Here,

we focus on attractive three-body interatomic interactions. The last term of the right hand side

of Eq.(3.26), (|ψ(x, t)|2)xψ(x, t), represents the delayed nonlinear response of the condensate

system [140]. In the following, Eq.(3.26) is referred to as the modi�ed GPE II. In the context

of nonlinear �ber optics, the delayed nonlinear response term is the stimulated Raman scatter-

ing [118] term which has been intensively studied [118, 142], and has many applications. For

instance, the Stimulated Raman scattering process may be used to realize longer transmission
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distances in optical �bers [118, 142], and �ber ampli�ers [142]. More, the Stimulated Raman

scattering process may also be used for lumped and for distributed ampli�cation in communica-

tion systems, as well as a wavelength conversion [142]. Another application of Stimulated Raman

scattering in nonlinear optics is the realization of �ber-based Raman lasers which can be tuned

over a wide range of frequencies [118]. The atomic counterpart of the laser, the so-called 'atomic

laser', has been paid much attention due to the experimental realization of Bose-Einstein con-

densates [1, 2, 3]. There is also an atomic version of the Stimulated Raman scattering process

which was observed or used in some condensate experiments [143, 144, 145, 146]. Nevertheless,

the delayed nonlinear response term in the modi�ed GPE II does not accounts for the atomic

Stimulated Raman scattering process, but is part of the three-body interatomic interactions

term in addition to the quintic term.

We are interested in the modulational instability of the modi�ed GPE II. So, the spatial

dependence of the external potential is hidden by using the modi�ed lens-type transformation

of Eq.(2.11) [32, 147] with η(t) = σ(t) = 0, such that Eq.(3.26) becomes

ı
∂Φ(X,T )

∂T
= −∂

2Φ(X,T )

∂X2
+ g(t)|Φ(X,T )|2Φ(X,T )− 12τ |Φ(X,T )|4Φ(X,T )

−4ı
√
τ(|Φ(X,T )|2)XΦ(X,T ), (3.27)

with g(t) = −2a(t)l(t). Our rescaled equation is a cubic-quintic GPE with an additional term,

−4ı
√
τ(|ϕ(X,T )|2)Xϕ(X,T ), representing the delayed nonlinear response. The next step con-

sists of performing a linear stability analysis using Eq.(2.16), in this case, Θ(T ) = Φ2
0(g(t) −

12τΦ2
0), while the perturbation satis�es the relation

ı
∂δΦ

∂T
= −∂

2δΦ

∂X2
+∆(t)(δΦ + δΦ∗)− 4ı

√
τΦ2

0(
∂δΦ

∂X
+
∂δΦ∗

∂X
), (3.28)

where △(t) = Φ2
0(g(t) − 24τΦ2

0). Assuming the complex form described by Eq.(2.18) for the

amplitude of the perturbation, the dispersion relation is obtained

Ω2 − 8
√
τϕ2

0KΩ−K2(K2 + 2∆(t)) = 0. (3.29)

The modulational instability criterion reads

K2 − 4a(t)l(t)ϕ2
0 − 32τϕ4

0 < 0, (3.30)

while the gain of instability is

G = |
√
K2(4a(t)l(t)ϕ2

0 + 32τϕ4
0 −K2)|. (3.31)

A straightforward analysis of Eqs.(3.30)-(3.31) shows that the unstable modes domain enlarges

and the gain of instability increases when one takes into account the three-body interatomic

interactions (τ ̸= 0). Thus, the three-body interatomic interactions destabilize the condensate.

On the other hand, setting the strength of the two-body interatomic interactions to a minimum
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value in Eq.(3.31) may have a stabilizing e�ect on the condensate system. This result is consis-

tent with exact solutions of the modi�ed GPE II reported in [140]. It is important to remind

as pointed out in [136] that the instability occurs in the rescaled variables coordinates X and

T . So, we analyze the modulational instability in the new coordinates X and T .

(a1.1). Modulational instability of the modi�ed GPE II in an attractive potential (α > 0)

The explicit expressions of the functions f(t), l(t), T (t) used to characterize the modulational

instability criterion and growth rate are given by Eq.(2.14). For positive values of λ with time

increasing scattering length (a(T ) = a0 exp(λT ), λ > 0), the gain of instability increases. Hence,

the increase of the scattering length more destabilizes the condensate. On the contrary, a time

reduction of the scattering length (a(T ) = a0 exp(λT ), λ < 0), softens the instability. The

external potential also alters the loss of stabilitily of the system. When the scattering length is

constant, i.e., a(T ) = a0, small values of λ enhance the instability of the condensate as shown

in Fig. 15.
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Figure 15: In�uence of the attractive potential on the instability gain. (a) Attractive potential (α < 0). (b) Repulsive

potential (α > 0). Other parameters are a = a0 exp(λT ), λ > 0 at T = 5, a0 = 0.001, ϕ0 = 1, λ = 0.02 (dotted line),

λ = 0.05 (dash-dotted line), λ = 0.08 (solid line).

(a1.2). Modulational instability of the modi�ed GPE II in a repulsive potential (α < 0)

The explicit expressions of the functions f(t), l(t), T (t) used to characterize the modulational

instability criterion and growth are given by Eq.(2.15). First, let us consider the case where f is

negative. The gain of instability is a constant that is not a�ected by the strength of the external

potential nor to time T . This result is not con�rmed by the direct numerical simulations as we

will see below. The linear stability analysis is not su�cient to explain the gain of instability

when f < 0. For positive values of f , Fig. 15(b) implies that small positive values of f increase

the instability of the condensate.
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(b). Numerical simulations of the modi�ed GPE II

Our numerical simulations were performed both in the absence and the presence of the

three-body interatomic interactions. Di�erent diagrams are obtained, showing the in�uence

of the three-body interaction on the modulational instability of the condensate system. The

numerical scheme used is the split-step Fourier method.

(b1). Impact of the three-body interatomic interactions in the case of an attractive potential

We start our numerical simulations by inserting through the system the initial condition

given by Eq.(3.27). It appears from a comparison of Figs. 16(a)-(b) where the maxima ampli-

tude Maxx|ψ(x, t)|2 are plotted versus time t that the inclusion of the three-body interatomic

interactions enhances the instability and its occurrence in the condensate. Furthermore, the

increase of the strength of the two-body interatomic interactions plays a destabilizing role

(compare Fig. 16(a) a(t) = a0, and Fig. 16(b) a(t) = a0 exp(λt)). These e�ects of the two- and

three-body interatomic interactions recover well the analytical ones as mentioned above.
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Figure 16: Temporal evolution of the maxima amplitude for 3 di�erent values of τ , with λ = 0.02. (a) Constant

scattering length. (b) Time increasing scattering length. τ = 0 (dotted line), τ = 0.01 (dash-dotted line), τ = 0.07 (solid

line). Other parameters are a0 = 0.001, ϕ0 = 1, K = 0.01, and ε = 0.001.

We check the impact of the three-body interatomic interactions on the long time dynam-

ics of solitons that emerge through the activation of modulational instability by plotting the

spatiotemporal evolution of the original wavefunction. Figure 17 displays the evolution of the

condensate's density. A parallel between Fig. 17(a) (τ = 0) with 12 solitons created and Fig.

17(b) (τ = 0.01) shows that the inclusion of the three-body interatomic interactions drastically

modi�es the trail of the train of solitons generated and increases their lifetime. Increasing the

strength of the three-body interatomic interactions induces a growth of the number of solitons,

meanwhile reducing the average distance between two neighbor solitons of the train as can be

seen in Fig. 17(c) (τ = 0.07). Another e�ect of including the three-body interatomic interac-

tions is that it straightens all solitons created via modulational instability (see Figs. 17(a)-(c)).
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Figure 17: Spatiotemporal evolution of the condensate's density. (a) a = a0 exp(λt), λ > 0, τ = 0. (b) a = a0 exp(λt), λ >

0, τ = 0.01. (c) a = a0 exp(λt), λ > 0, τ = 0.07. (d) a = a0, τ = 0.01. Other parameters are a0 = 0.001, Φ0 = 1, K = 0.01,

and ε = 0.001.
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Comparing Fig. 17(c) (16 solitons created) and Fig. 17(d) (a(t) = a0, only 13 solitons created),

we deduce that the time increasing scattering length has a destabilizing e�ect on the system.

The external potential also destabilizes the condensate as depicted in Fig. 18, where one also

realizes that stronger con�nement of the condensate enhances the onset of instability.
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Figure 18: Time evolution of the maxima amplitude, τ = 0.0001 with a = a0 exp(λt), λ = 0.02 (dotted line), λ = 0.05

(dash-dotted line), λ = 0.08 (solid line). Other parameters are a0 = 0.001, Φ0 = 1, K = 0.01, and ε = 0.001.

(b2). Impact of the three-body interatomic interactions in the case of a repulsive potential

For the case of a repulsive trapping potential, we employ the following initial condition

[32, 129]

ψ(x, 0) = (Φ0 + εcos(Kx)) exp(ıfx2). (3.32)

Let us begin with the case of f < 0. The overall behavior of the time variation of maxima

amplitude in Fig. 19(a) teaches us that small values of the expulsive potential, with f < 0, more

destabilize the condensate. This result is not in accordance with the linear stability analysis

as mentioned above. An explanation is that, due to the presence of the external potential, the

dynamics of the external potential mixes with the original wave number of the perturbation

[32, 33], a process called excitation of modulational unstable modes [141].

For f < 0, the gain of instability increases as the strength of the trapping potential reduces.

Nevertheless, a comparison of Figs. 19(a)-(b) (f > 0) leads to the fact that negative values of f

more enhance the instability than positive ones. Once the condensate is set into motion, Figs.

19(c)-(d) show that solitons generated are distributed over all the axial axis, evolve asymmet-

rically, and their number is higher than in the previous cases. By increasing the strength of the

external potential, the three-body interatomic interactions only deviate the trail of the train

of solitons forward (towards +x-direction) on the axial potential (compare Fig. 19(d) where

λ = 0.002, τ = 0.0001 with Fig. 19(e) where λ = 0.002 and τ = 0). Moreover, for larger values

of the strength of the external potential, reducing the strength of the external potential induces

the reduction of the density of the condensate as well as the number of solitons created as can
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Figure 19: Time evolution of maxima amplitude for a = a0 exp(λt), λ > 0, τ = 0.0001, λ = 0.02 (dotted line), λ = 0.04

(dash-dotted line), λ = 0.06 (solid line), (a) f < 0, (b) f > 0. (c)-(f) Spatiotemporal evolution of the density. (c)

λ = 0.002, τ = 0.0001. (d) λ = 0.002, τ = 0. (e) λ = 0.006, τ = 0.0001. Other parameters are a0 = 0.001, Φ0 = 1,

K = 0.01, and ε = 0.001.
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be seen in Fig. 19(f) (λ = 0.006).

3.3.3 Three-body interatomic interactions beyond the GPE

(a). Theoretical model and analytical results

In most models of Bose-Einstein condensates that go beyond the mean-�eld limit, only cor-

rections around the mean-�eld are taken into account [51, 52, 72, 74, 75], but the three-body

interatomic interactions are not considered. As already mentioned, the three-body interatomic

interactions can play an important role in the description of the static and the dynamic prop-

erties of condensates. Therefore, inclusion of the three-body interatomic interactions to the

governing equation of condensates beyond the mean-�eld limit is necessary.

In order to derive our modi�ed GPE, we start with the unidimensional reduction of the

three-dimensional GPE with two-body interatomic interactions obtained by Tiofack et al. [135]

which is a reduced version of Eq.(3.17)

ı
∂q(x, t)

∂t
= [− ∂2

∂x2
+ α(t)x2 + g′|q(x, t)|2 + g′1|q(x, t)|3 +

g′2
∂2

∂x2
(|q(x, t)|2)]q(x, t). (3.33)

We introduce an additional phase imprint into the wavefunction q(x, t) as [133]

ψ(x, t) = q(x, t) exp(2ıθ(x, t)), (3.34)

in which θ(x, t) is the phase imprint on the old wave function q(x, t). The phase imprint is then

engineered as [133]

∂θ(x, t)

∂x
= −

√
τ |ψ(x, t)|2,

∂θ(x, t)

∂t
= ı
√
τ(ψ(x, t)

∂ψ(x, t)∗

∂x
− ψ(x, t)∗∂ψ(x, t)

∂x
) + 4τ |ψ(x, t)|4. (3.35)

The parameter τ as in Eq.(3.27) describes the strength of the three-body interatomic interac-

tions. Inserting Eqs.(3.34)-(3.35) into Eq.(3.33), we derive for the new wavefunction ψ(x, t), the

new modi�ed GPE [149]

ı
∂ψ(x, t)

∂t
=

[
− ∂2

∂x2
+ α(t)x2 + g′|ψ(x, t)|2 + g′1|ψ(x, t)|3 + g′2

∂2

∂x2
(|ψ(x, t)|2)

−12τ |ψ(x, t)|4 − 4ı
√
τ
∂

∂x
(|ψ(x, t)|2)

]
ψ(x, t). (3.36)

Equation (3.36) is a modi�ed GPE that goes beyond the mean-�eld picture and contains both

the two- and three-body interatomic interaction terms. In the following, Eq.(3.36) is referred

to as the modi�ed GPE III. One has noticed that in Eq.(3.36), the three-body interatomic

interactions consist of a quintic term plus the delayed nonlinear response of the condensate.
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Willing to study the modulational instability of the modi�ed GPE III, we follow the pro-

cedure adopted above. First, the modi�ed lens-type transformation given by Eq.(2.11) (η(t) =

σ(t) = 0) with the constraints of Eq.(2.12) are invoked to ease the calculations. Equation (3.36)

in terms of the rescaled variables X and T reads

ı
∂Φ(X,T )

∂T
=

[
− ∂2

∂X2
+ g(t)|Φ(X,T )|2 + g1(t)|Φ(X,T )|3

+g2(t)
∂2

∂X2
(|Φ(X,T )|2)− 12τ |Φ(X,T )|4

−4ı
√
τ
∂

∂X
(|Φ(X,T )|2)

]
Φ(X,T ), (3.37)

with g(t) = g′l(t), g1(t) = g′1
√
l(t), and g2(t) =

g′2
l(t)

. The linear stability analysis is then per-

formed with the ansatz of Eq.(2.16). The perturbation in this case obeys the partial di�erential

equation

ı
∂δΦ

∂T
= −∂

2δΦ

∂X2
+∆(t)(δΦ + δΦ∗) + g2(t)Φ

2
0(
∂δΦ

∂X2
+
∂δΦ∗
∂X2

)− 4ı
√
τΦ2

0(
∂δΦ

∂X

+
∂δΦ∗

∂X
). (3.38)

The parameter ∆(t) = (g(t) + 3
2
g1(t)Φ0 − 24τΦ2

0)Φ
2
0. Then, considering that the perturbation

is a complex quantity, the dispersion relation calculated is

Ω2 − 16
√
τΦ2

0KΩ−K2(K2(1− g2(t)Φ2
0) + 2∆(t)) = 0. (3.39)

The modulational instability criterion is expressed as

K2(K2(1− g2(t)ϕ2
0) + 2∆(t)) < 0, (3.40)

while the gain of instability is given by

G =
√
K2[K2(−1 + g2(t)Φ2

0)− 2∆(t)]. (3.41)

(a1). Modulational instability of the modi�ed GPE III with attractive con�nement

The solution given by Eq.(2.14) is inserted into Eq.(3.41). We visualize in Fig. 20 the variation

of the gain of instability against the unstable modes K, at time t = 5. Analyzing Fig. 20, we

understand from panel (a) that the three-body interatomic interactions favor the instability

of the system, while from panel (b) we deduce that small attractive con�nements enhance the

instability of the condensate. However, in Fig. 20 the unstable modes region is restricted to a

�nite interval, while all modes were found to be modulationally unstable for the modi�ed GPE

I. Therefore, inclusion of the three-body interatomic interactions corresponding to the modi�ed

GPE III stabilizes the system. A similar result was reported in [34, 150].
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Figure 20: Modulational unstable growth rate as a function of modes K. (a) t = 5, α = 0.00001, τ = 0 dotted line,

τ = 0.04 dashed-dotted line, τ = 0.07 solid line. The instability increases with the strength of the three-body interactions.

(b) t = 30, τ = 0.001, α = 0.0001 dotted line, α = 0.00015 dashed-dotted line, α = 0.0002 solid line. The instability is

much pronounced with small values of α. Other parameters are as = −2.75 nm, a = 1.576.103 nm, ε = 0.001, N = 5.

(a2). Modi�ed GPE III for a trapless condensate or a condensate in a repulsive potential

In the latter subsection, the gain of instability depends on the explicit form of the function

l(t) which, depends on the particular solution of the Riccati equation df
dt

= −4f 2 − α (see

Eq.(2.12)). In fact, the general form of the Riccati equation is [144]

df

dt
= a0 + a1f + a2f

2, (3.42)

where a0, a1, a2 ϵ R, and a2 ̸= 0 are real constants. Equation (3.40) reduces to the special

Riccati equation of the set (2.12) if one chooses a0 = −α, a1 = 0, and a2 = −4. In this case,

the general solution of Eq.(3.42) is [144]

f1 = − 1

−4t+ t0
, α = 0

f21 =
ζ
√
−α
2

, α < 0

f22 =

√
−α
2

tanh(2
√
−αt− ζ ln(t0)

2
), t0 > 0, α < 0

f23 =

√
−α
2

coth(2
√
−αt− ζ ln(−t0)

2
), t0 > 0, α < 0

f31 = −
√
α

2
tan(2

√
αt+ t0), α > 0

f32 =

√
α

2
tan(2

√
αt+ t0), α > 0, (3.43)
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where ζ = ±1, and t0 is an arbitrary real constant. Solving the second equation of the set (2.12)

yields the following explicit expressions of the function l(t)

l1(t) = | C1(4t− t0) |, α = 0

l21(t) = | C2 exp(−2ζ
√
−αt) |, α < 0

l22(t) = | C3 cosh(2
√
−αt− ζ ln(t0)

2
) |, t0 > 0, α < 0

l23(t) = | C4√
coth(2

√
−αt− ζ ln(−t0)

2
)− 1

|, t0 > 0, α < 0

l31(t) = | C5 cos(x+ t0) |, α > 0

l32(t) = | C6 sin(x+ t0) |, α > 0, (3.44)

coe�cients Ci (i = 1, 2, 3, 4, 5, 6) being arbitrary real constants. The solutions given by Eq.(3.43)

with Eq.(3.44) provide a systematic set of solutions of the modulational instability gain, for a

condensate trapped in an attractive or in a repulsive potentials. Besides, the �fth equation of

the set (3.44) reduces to the solution obtained above when the free parameters are C5 = 1, and

t0 = 0. In the previous works [32, 33, 34, 135, 138, 147], the case where the external potential

is turned o� cannot be investigated analytically, since the solution of the Riccati equation used

is the same as above. In the next, we restrict our study to two relevant special cases: (i) the

external potential is switched o�, (ii) the external potential is repulsive (α < 0).

We �rst consider the situation where the external potential is turned o�, i.e., α = 0. In

this case, l(t) = l1(t). In the absence of the three-body interactions, the condensate remains

stable, while the inclusion of the three-body interactions destabilizes the system. This feature

is depicted in Fig. 21(a). For a condensate in a repulsive potential, we select the case where
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Figure 21: Instability gain versus K. τ = 0 dotted line, τ = 0.04 dashed-dotted line, and τ = 0.07 solid line. (a) Absence

of an external con�nement α = 0, C3 = 1, t0 = 1. (b) Presence of attractive potential α = 4. Other parameters are

as = 5.77 nm, a = 300.103 nm. ε = 0.001, N = 5, C1 = 1.

l(t) = l22(t), with C3 = 1. The amplitude of the gain of instability does not change, but the
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unstable modes region shrinks as can be seen by comparing Fig. 21(b) (instability gain versus

unstable modes K, with α = −4, t = 2, t0 = 1) and Fig. 21(a).

(b). Numerical simulations of the modi�ed GPE III

In this part, we make full numerical integrations of the modi�ed GPE III with the split-step

Fourier method in order check the accuracy of the linear stability analysis and investigate the

time evolution of solitons generated via modulational instability.

Let us start with the case where the external potential is attractive. We use Eq.(3.24) as

initial condition and insert it through Eq.(3.36). An examination of Fig. 22(a) (parameters

correspond to Fig. 20(a)) where the time evolution of maxima amplitude are plotted for three

di�erent values of τ reveals that the inclusion of the three-body interatomic interactions en-

hances the loss of stability as predicted by the linear stability analysis. A parallel between Fig.
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Figure 22: (a) Temporal evolution of maxima amplitude for τ = 0 dotted line, τ = 0.04 dashed-dotted line, τ = 0.07

solid line. (b)-(c) Spatiotemporal evolution of the density. (b) τ = 0. (c) τ = 0.04. Other parameters are the same as in

Fig. 20(a) with K = 0.0001.

22(b) (τ = 0) and Fig. 22(c) (τ = 0.04) shows that the three-body interatomic interactions re-

duces the lifetime, their appearance, and the number of solitons generated due to modulational

instability. In Fig. 22(b) tC = 13 with 23 solitons, while tC = 6.6 with 28 solitons in Fig. 22(c).
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The results obtained for modulational instability is sensitive to the type of initial condition

used. One important aspect of the study of modulational instability is the possibility to create

many solitons at the same time. In order to increase the number of solitons generated, we

introduce a new initial condition given by [142]

ψ(x, 0) = (1− 1

2
αx2)(100 tanh(Kx) cos(x) + 0.001 cos(x)). (3.45)

The factor, 100 in front of the expression tanh(Kx) cos(x) is used only for convenience. Fig-

ure 23(a) portrays the spatiotemporal evolution of the magnitude of the wavefunction for

α = 0.0001, τ = 0.001. In comparison with previous results, the number of solitons generated
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Figure 23: Spatiotemporal evolution of the magnitude of the wavefunction corresponding to the initial condition (3.43).

(a) α = 0.0001, (b) α = 0.0009. Other parameters are the same as in Fig. 20(a) with, τ = 0.001, K = 0.0001.

has signi�cantly increased. Nevertheless, an increase of the strength of the external potential

shortens the lifetime of solitons created (see Fig. 23(b) with α = 0.0009, τ = 0.001).

We continue by investigating numerically the modulational instability of the modi�ed GPE

III in the absence of external potential, and in the presence of a repulsive. The initial condition

for the numerical simulations is ψ(x, 0) = 10−6(1− 1
2
αx2)(100 tanh(Kx) cos(x) + 0.001 cos(x)).

For a trapless condensate, analyzing Fig. 24(a) (time variation of maxima amplitude), we deduce

that the three-body interatomic interactions favor the loss of stability and the appearance of

solitons. Once again, the linear stability analysis and the numerical results agree well. In the

case of a repulsive con�ning potential, all solitons generated correspond to straight lines. Thus,

we infer that the repulsive potential straightens solitons created.

3.3.4 Modi�ed GPE II with complex potential

The modi�ed GPE II is a derivative GPE type which has recently emerged, and its solitonic

properties are not largely studied. We resort the analytical method of the �rst section and apply

it to the modi�ed GPE II with the complex potential corresponding to Eq.(3.12). We focus on

the cases of attractive and repulsive condensates with constant scattering length, the harmonic
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Figure 24: (a) Temporal evolution of maxima amplitude for τ = 0 dotted line, τ = 0.04 dashed-dotted line, and τ = 0.07

solid line, α = −4. (b) Spatiotemporal evolution of the wavefunction, α = −4, τ = 0.07.

part of the complex potential being attractive. An important aspect of modulational instability

is the critical time tC after which an instability ceases to be dominant. It is obtained by solving

the following implicit equation with MAPLE [152]

K2 − 4a(tC)l(tC) exp(2γtC)ϕ
2
0 − 32τ exp(4γtC)ϕ

4
0 = 0. (3.46)

The modulational instability criterion is

|K| < 2 exp(γt)ϕ0

√
a(t)l(t) + 8τ exp(2γt)ϕ2

0, (3.47)

and the gain of instability is given by

G = ℜ(
√
K2(4a(t)l(t) exp(2γt)ϕ2

0 + 32τ exp(4γt)ϕ4
0 −K2)). (3.48)

Figure 25 displays the variation of the critical time tC as a function of unstable modes K.

For a condensate receiving atoms (see Fig. 25(a)), the critical time increases with decreasing

values of K. Besides, for a �xed value of K, tC increases with decreasing values of γ. This

observation means that smaller values of γ allow instability to develop for relatively longer

times, in opposition to larger ones. Similar e�ects are also observed when the condensate looses

atoms (see Fig.25(b)).

The analytical study also predicts the occurrence of modulational instability in repulsive

condensates. E�ects of the exchange of atoms are qualitatively the same with the case of

attractive condensates [152]. The critical time in repulsive condensates increases with increasing

values of K. Yet, the development of instability is shorter in attractive condensates. One notices

this feature by making a comparison between Fig. 25(c) (a < 0) and Fig. 25(a) (a > 0).

We perform numerical integrations of the modi�ed GPE II with the potential given by

Eq.(3.12) and compare the results with the predictions of the linear stability analysis. The

numerical scheme is the split-step Fourier method. We only focus on positive values of γ. For
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(a) (b) (C)

Figure 25: Critical time tC as a function of modes K. The condensate is attractive in (a) and (b), but repulsive in

(c). (a) γ = 0.001 dotted line, γ = 0.004 dash-dotted line, γ = 0.008 solid line. (b) γ = −0.003 dotted line, γ = −0.03

dash-dotted line, γ = −0.06 solid line. (c) a0 = −0.00049, Φ0 = 3.5, γ = 0.001 dotted line, γ = 0.004 dash-dotted line,

γ = 0.008 solid line. Other parameters are α = 0.0001, τ = 0.00001.

attractive condensates, the initial condition used is

ψ(x, t) = (Φ0 + 0.01 exp(−ıKx)). (3.49)

We have observed in our numerical calculations that the critical time tC increases with decreas-

ing values of γ [152]. We detect the value of tC as the time after which no more solitons emerge.

For the typical case of γ = 0.001 and K = 0.12, with other parameters corresponding to those

in Fig. 25(a), the numerical value of tC is 56, while the analytical prediction is ≈ 57.52. The

relative error in the determination of tC amounts to ≈ 2.64o/
o, a value su�ciently small, such

that the agreement between the numerical and the analytical predictions can be considered to

be quite good [152]. The exchange of atoms has dramatic e�ects on the behavior of solitons

generated. A parallel among Fig. 26(a) (γ = 0.001), Fig. 26(b) (γ = 0.04), and Fig. 26(c)

(γ = 0.08) shows that, large values of γ also a�ect the dynamics of the modulated solitons in

three di�erent ways: (i) the number of solitons created increases, (ii) a radical change of the

shape of solitons (that emerge due to modulational instability) which are all straightened, (iii)

a signi�cant reduction of the lifetime of solitons generated. The physical origin of the smallness
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Figure 26: Spatiotemporal evolution of the condensate's density. (a) γ = 0.001, (b) γ = 0.04, (c) γ = 0.08. Larger

values of γ straiten solitons emerging due to the development of MI (compare panels (a) and (b)). (c) Explosion of the

condensate due to high feeding rate. In all panels, other parameters are the same as in Fig. 25(a).

of the soliton lifetime at a high rate feeding regime may be explained as follows: many atoms
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are injected into the condensate such that its density 'exponentially' increases. The number of

collisions in the condensate 'exponentially' increase too, this process results in the rapid growth

of the temperature due to the thermal agitation, and the condensate �nally explodes when the

temperature exceeds the critical temperature needed for condensation. Thus, using a pumping

process, we can produce high density condensates which are important for some condensate

applications [153] such as atomic number squeezing, quantum tunneling. However, the rate of

the pumping process may not be too high (see Fig. 26(c)).

For repulsive condensates, direct numerical simulations allow us to observe the e�ects of

the repulsive atom-atom interactions. The initial condition implemented here is Eq.(3.24). We

can see in Fig. 27 the spatiotemporal evolution of the density of the original wavefunction. We
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Figure 27: Spatiotemporal evolution of the condensate's density. (a) generation of breather solitons. (b) deviation of

the trail of breather solitons to the right due to repulsive interactions in the condensate. Parameters are a0 = −0.00049,

Φ0 = 3.5, ε = 0.01, K = 0.12, τ = 0.00001, γ = 0.001

observe in Fig. 27(a) that a train of breather solitons is created, while Fig. 27(b) shows that the

trail of the train of bright solitons is deviated towards the right. Since parameters in Figs. 27(a)-

(b) are the same as in Fig. 25(a) except a0 = 0.003, we suggest that the repulsive two-body

interatomic interactions are responsible for the curvature to the right of the train of solitons

observed. This is a salient feature of repulsive condensates that shows a clear di�erence in the

dynamics with attractive condensates that move towards the left side of the axial potential.

With the inclusion of the linear potential, we understand that it can be used to alleviate, or

either stop the instability of the system arising due to the small perturbation. The initial envelop

wave only oscillates, but does not break up into a train of solitons. Figure 28(a) represents an

envelop wave stabilized by the linear potential. Hence, the linear potential can be used in the

management of the stability of matter waves. Nevertheless, the creation of solitons is possible,

although the linear stability analysis becomes less valid. We display in Fig. 28(b) a train of �ve

solitons created by a strong perturbation of the initial continuous wave. What is fascinating

with the train of solitons generated in Fig. 28(b), is that the dynamics of solitons are quite

similar with the dynamics of approximate analytical solutions obtained with the variational

analysis developed below.
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Figure 28: Spatiotemporal evolution of the condensate's density. (a) a0 = −0.00049, Φ0 = 3.5, ε = 0.01 λ = 2; the

linear potential alleviates the instability of an unstable continuous envelop wave. (b) a0 = −0.00049, ϕ0 = 1, ε = 0.5

λ = 2; generation of multiple solitons by a strong perturbation. Other parameters are the same as in Fig. 27(b).

3.3.5 Patterns formation in two-component condensates with three-body inter-

atomic interactions

(a). Model and analytical results

We consider two-component Bose-Einstein condensates with two- and three-body inter-

atomic interactions, in the framework of the coupled mean-�eld GPEs, for the macroscopic

wavefunctions of the two-species

ı
∂ψj(r, t)

∂t
= −η1j

2
∇2ψj(r, t) +

2∑
l=1

gjl | ψl(r, t) |2 ψj(r, t) +
2∑
l=1

χjl | ψl(r, t) |4 ψj(r, t)

+2χj(3−j) | ψ3−j(r, t) |2| ψj(r, t) |2 ψj(r, t), j = 1, 2. (3.50)

where ∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. Equations (3.50) have been reduced to a dimensionless form as in

[39] by setting ~ = 1. The energy and length units are ~ω1/2, and
√

~/(m1ω1), respectively.

The quantities ωj, and mj represent the frequencies of the traps and the mass of each specie,

respectively. The wave functions are normalized as Nj =
∫ +∞
−∞ | ψj(r, t) |2 dr, Nj being the

number of particles of the specie j. The two-body interatomic interaction coe�cients are gjl =

4π(ajl/
√

~/(m1ω1))(m1/µjl), with µjl = mjml/(mj +ml). Parameters ajl account for the two-

body interatomic interactions between like and unlike species. In the following, the strengths

of the two-body intraspecies interactions are denoted gjj = gj, while the strengths of the two-

body interspecies interactions are denoted gjl = g (j ̸= l). This implies that g12 = g21 = g. The

coe�cients χjl characterize the intensity of the quintic nonlinearities between like and unlike

species. For the sake of simplicity, the quintic intraspecies nonlinearities shall be written as

χjj = χj, and the quintic interspecies nonlinearities shall take the form χjl = χ (j ̸= l). This

means that χ12 = χ21 = χ. The external potentials in which each specie is con�ned are dropped

in Eqs.(3.50), meaning that the e�ects of the potentials on the boundaries are negligible [39, 43].

In such a situation, the size of the boundaries of the two condensates are much smaller than that

of the Thomas-Fermi radius [39, 43]. Equations (3.50) describe the dynamics of two-component

condensates with two- and three-body interatomic interactions. In the absence of the three-body
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interatomic interactions, the set (3.50) is reduced to the coupled cubic GPEs governing the

evolution of two-component condensates with only two-body interatomic interactions [39, 43].

In what follows, we consider that the two-component condensate is loaded in a one dimensional

setting, such that Eqs.(3.50) become

ı
∂ψ1(x, t)

∂t
= −1

2

∂2

∂x2
ψ1(x, t) + g1 | ψ1(x, t) |2 ψ1(x, t) + g | ψ2(x, t) |2 ψ1(x, t)

+χ1 | ψ1(x, t) |4 ψ1(x, t) + χ | ψ2(x, t) |4 ψ1(x, t)

+2χ | ψ1(x, t) |2| ψ2(x, t) |2 ψ1(x, t) (3.51)

ı
∂ψ2(x, t)

∂t
= −η

2

∂2

∂x2
ψ2(x, t) + g2 | ψ2(x, t) |2 ψ2(x, t) + g | ψ1(x, t) |2 ψ2(x, t)

+χ2 | ψ2(x, t) |4 ψ2(x, t) + χ | ψ1(x, t) |4 ψ2(x, t) +

2χ | ψ2(x, t) |2| ψ1(x, t) |2 ψ2(x, t),

where the mass ration is de�ned as η1j = m1/mj such that η11 = 1, η12 = η [43]. Equations

(3.49) can be derived from the Hamiltonian given by [154]

H = Hψ1 +Hψ2 +Hint, (3.52)

where

Hψ1 =

∫
(
1

2
|∇ψ1|2 +

1

2
g1|ψ1|4 +

1

3
χ1|ψ1|6)dr, (3.53)

Hψ2 has a same form as Hψ1 except that the �eld ψ1 is replaced by the �eld ψ2, and the

interaction part of the Hamiltonian takes the form

Hint =

∫
[−g|ψ1|2|ψ2|2 + χ(|ψ1|4|ψ2|2 + |ψ1|2|ψ2|4)]dr. (3.54)

In order to study the modulational instability of the coupled GPEs given by Eq.(3.51), we

consider perturbed plane wave solutions of each component of the form

ψj(x, t) = (| ψ0
j | +εj(x, t)) exp(ıϕj(t)), j = 1, 2, (3.55)

where | ψ0
j | (| ψ0

j |2= nj) is a real constant number, εj(x, t) accounts for a small complex

perturbation of the wave envelop with, εj(x, t) <<| ψ0
j |, and ϕj(t) is the time-dependent phase

shift. Performing a linear stability analysis with ϕj(t) = −(gjnj + gn3−j + χjn
2
j + χn2

3−j) [155],

we derive the partial di�erential equations of the perturbations

ı
∂εj
∂t

+
η1j
2

∂2

∂x2
εj − gjnj(εj + ε∗j)− gn

1/2
3−jn

1/2
j (ε3−j + ε∗3−j)− 2χjn

2
j(εj + ε∗j)

−2χn1/2
3−jn

1/2
j (n3−j + nj)(ε3−j + ε∗3−j)− 2χn3−jnj(εj + ε∗j) = 0, (3.56)

for j = 1, 2. Then, we assume that each perturbation satis�es the relation

εj = uj cos(Kx− Ωt) + ıvj sin(Kx− Ωt), (3.57)
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where uj and vj are real constants, and apply the procedure used above. The dispersion relation

yields

(Ω2 − E1)(Ω
2 − E2) = X2, (3.58)

with

Ej =
1

4
K2(K2 + 4gjnjη1j + 8n2

jη1jχj + 8χn3−jnj), j = 1, 2 (3.59)

X2 = 4n1n2ηK
4[
1

4
g2 + χ(n1 + n2)(g + χ(n1 + n2))].

The pure gain of instability is

G = [−1

2
(E1 + E2) +

1

2

√
(E1 + E2)2 + 4(X2 − E1E2)]

1/2. (3.60)

Equations (3.58) and (3.60) are the generalizations to cubic-quintic coupled GPEs of the disper-

sion relation and the purely growing instability gain, respectively, obtained in [43] in the case of

two-component condensates with only two-body interatomic interactions. Basically, the three-

body interatomic interactions may be attractive (χj < 0, χ < 0) or repulsive (χj > 0, χ > 0),

j = 1, 2. This means that, even in the absence of all the interspecies interactions, Ωj = ±
√
Ej

(j = 1, 2) may be a pure imaginary number. Hence, the inclusion of the three-body interatomic

interactions destabilizes the system.

For repulsive three-body intraspecies interactions, the pure gain vanishes when the strength

of the three-body interspecies interactions lies in the region [−χ1,+χ1] (the expression of χ1

is given in Appendix F). An inspection of Fig. 29(a) which displays the gain of instability as

(a) (b)

Figure 29: Instability gain versus K and χ, with repulsive three-body intraspecies interactions. (a) χ1 = χ2 = 0.1. (b)

χ1 = χ2 = 0.2. Other parameters are g1 = g2 = g = 0, n1 = n2 = 4, η = 1.

functions of the three-body intraspecies interactions χ and the wave numbers K, with χ1 =

χ2 = 0.1 shows that small attractive and large repulsive three-body interspecies interactions

enhance the instability of the two-component condensate, respectively. Furthermore, increasing

the strengths of the three-body intraspecies interactions not only reduces the amplitude of the

gain and the unstable wave numbers region, but also enlarges the gap region where the gain
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vanishes, as one can see in Fig. 29(b) (χ1 = χ2 = 0.3). Hence, repulsive three-body intraspecies

interactions alleviate the instability of the two-component condensate.

For the case where the three-body intraspecies interactions are both attractive, Fig. 30

presents the modulational instability gain for χ1 = χ2 = −0.1. A Comparison of Fig. 29(a) and

Fig. 30(a) and an analysis of Fig. 30(b) (χ1 = χ2 = −0.3) indicate that attractive three-body
intraspecies interactions appear to more destabilize the two-component condensate system than

repulsive ones.

(a) (b)

Figure 30: Instability versus K and χ, with attractive three-body intraspecies interactions. (a) χ1 = χ2 = 0.1. (b)

χ1 = χ2 = 0.2. Other parameters are g1 = g2 = g = 0, n1 = n2 = 4, η = 1.

A parallel between Figs. 30 and 31 con�rms that the competition between the two- and three-

body interatomic interactions drastically modi�es the modulational instability gain spectra.

Moreover, attractive two-body interspecies interactions enlarge the unstable modes region and

values of the three-body interspecies interactions for which the mixture is unstable (compare

Fig. 31(a) (g < 0) and Fig. 31(b) (g > 0)).

(a) (b)

Figure 31: (a) g = −1.6. (b) g = 1.6. Other parameters are the same as those in Fig. 24(a) except g1 = 1.1, g2 = 0.9.
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(b). Numerical simulations of two-component condensates with two- and three-body interatomic

interactions

Direct numerical integrations of Eqs. (3.51) are performed, with the MATLAB toolbox

PDEPE with vanishing �ux boundary conditions on the spatial domain of integration. The

initial conditions are uniform waves periodically perturbed

ψj(x, t) = 1 + ε cos(Kx), j = 1, 2. (3.61)

We plot in Fig. 32 the temporal evolution of the maxima amplitude, for four di�erent values

of the strengths of the three-body interspecies interactions, the values of the strengths of the

three-body intraspecies interactions being �xed. The global behavior of maxima amplitude in

Fig. 32(a) (χ1 = χ2 = 0.1) implies that small attractive three-body interspecies constants more

favor the loss of stability than large repulsive ones. Furthermore, a comparison of Figs. 32(a)-

(b) shows that an increase of the strength of the repulsive three-body intraspecies interactions

soften the instability. These results are in good agreement with their analytical counterparts.

In the case of binary condensates with attractive three-body intraspecies interactions (see Figs.

32(c)-(d)), since the magnitudes of maxima amplitude are higher than those in Figs. 32(a)-(b),

one deduces that attractive three-body intraspecies interactions increase the instability, while

repulsive ones soften the instability. This result once again corroborates the analytical pre-

diction. The modulational instability of the two-component condensate is also a�ected by the

inclusion of the two- and three-body interactions. In Fig. 32(e) where parameters correspond

to those in Fig. 31, the binary condensate is more destabilized with attractive two-body inter-

species coupling constants than with repulsive ones. A similar feature has been obtained with

the linear stability analysis.

Plotting the maxima amplitude one can identify the most unstable component of the mixture

as in Fig. 33 where parameters are the same as Fig. 29(a) except χ2 = −0.1. In Fig. 33(a) the

second component with attractive three-body intraspecies interactions is more unstable than

the �rst one with repulsive three-body intraspecies interactions. In Fig. 33(b) the component

with attractive two-body interactions is much unstable than the one with repulsive two-body

interspecies interactions. For parameters corresponding to Fig. 29, Fig. 34(a) (| ψ1(x, t) |2)
and Fig. 34(b) (| ψ1(x, t) |2) illustrate that the densities in each component of the mixture

have almost the same behavior, exhibit mutual interactions, and emerge after the critical time

tC ≈ 60. In the case where the three-body intraspecies interactions have opposite signs, the

instability of the system increases and solitons appear earlier (tC ≈ 37.24) as depicted by Figs.

34(c)-(d).

An observation of Fig. 35(a) where g1 = 1.1, g2 = 0.9, g = −1.6, χ1=χ2=χ=0, and Fig.

35(b) with same parameters as in Fig. 35(a) except χ1 = χ2 = 0.1, χ = 0, shows that the

inclusion of repulsive three-body intraspecies interactions not only induces the loss of stability

of the mixture, but also modi�es the trail of trains of solitons generated. At the beginning of
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Figure 32: Temporal evolution of maxima amplitude. (a) χ1 = χ2 = 0.1. (b) χ1 = χ2 = 0.2. (c) χ1 = χ2 = −0.1. (d)

χ1 = χ2 = −0.2. (a)-(b) Same parameters as in Fig. 29. (c)-(d) Same parameters as in Fig. 30. Other parameters in

panel (e) are as in Fig. 31.
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Figure 33: Temporal evolution of maxima amplitude Max|ψj(x, t)|2. The second component with χ2 = −0.1 appears

to be the most unstable. Other parameters selected are identical to those in Fig. 29(a).

(a) (b)

(c) (d)

Figure 34: Density |ψj(x, t)|2 plots of the two components of the binary condensate. (a) j = 1, (b) j = 2. (c) j = 2,

χ2 = 0.1. (d) j = 1, χ1 = 0.1. Other parameters used are the same as in Fig. 31(a).
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(a) (b)

(c)

Figure 35: Evolution of the density of component 1. (a) χ1 = χ2 = χ = 0. (b) χ1 = χ2 = −0.1, χ = 0. (c) χ1 = χ2 = 0.1,

χ = −0.4. In all panels, g1 = 1.1, g2 = 0.9, g = −1.6.

the evolution (see Fig. 35(a)), the train of solitons evolve symmetrically around the center of

the spatial domain, i.e., x = 0, and solitons are almost regularly spaced, while in Fig. 35(b), the

trail of the train of solitons is altered, and the number of solitons is higher. Solitons that are

near the center of the cigar-axis attract each others and collide elastically, their collisions yield

a soliton which amplitude increases with time. This process suggests a compression of solitons

that are near the position x = 0, due to multiple superpositions. For the solitons at the edges of

the train, they separate with their neighbors, and move away from the center of the train as time

increases. The inclusion of three-body interspecies interactions more destabilizes the mixture as

one can see in Fig. 35(c) where we have added χ = −0.4. A comparison of Figs. 35(a)-(c) shows

that the inclusion of three-body interspecies interactions breaks up the symmetry of the train

of solitons, and increases the number of solitons created. As time increases, solitons created

collide, the collisions giving rise to the superposition of wavefunctions, increasing the density

of the solitons created which number drastically reduces (see Fig. 35(c)).

In the previous cases, the mass ratio, η, was �xed at η = 1, meaning that the binary

condensate consists of two identical atomic species in two di�erent spin states. In a binary

condensate made of two-di�erent atomic species, η can be greater than 1. In such a case, a

scrutiny analysis of Fig. 36 where η = 2 proves that an increase of the mass ration brings non

trivial e�ects which are (i) a destabilization of the mixture, (ii) the distortion of the trail of
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the train of solitons emerging after the development of modulational instability. Similar results

have been reported in [43].

(a) (b)

Figure 36: E�ects of the mass ration η = 2 on the dynamics of the bright soliton structures. Contour plots of (a)

| ψ1(x, t) |2, (b) | ψ2(x, t) |2. Other parameters are as in Fig. 35(d).

The modulational instability induced patterns are highly sensitive to the intensity of the

two-body intraspecies interactions, though one takes into account the three-body interactions.

As depicted by Figs. 37(a)-(b) where g1 = 0.9, g2 = 1, and g = −1.6, a small change of

the strengths of the two-body intraspecies interactions signi�cantly modi�es the shape of the

train of solitons in comparison to that obtained in Fig. 36(b). Furthermore, changing the sign

of the two-body interspecies interactions induces a radical change on soliton patterns that

emerge due to modulational instability as con�rmed by the contour plot of the densities in

both the components displayed in Figs. 37(c)-(d). Besides, the competition between repulsive

and attractive three-body intraspecies interactions may straightens all the solitons created as

shown in Fig. 38, where g = −1.2, χ1 = 0.1, and χ2 = −0.1.
Equation (3.50) represents the general form of two- and three-body interactions in two-

component systems and was �rst introduced in [154] in the context of �ber optics. It has been

shown that solitons with equal masses always attract each other in two- and three-dimensional

geometries. This part of the work considers a one dimensional geometry, as one can see in

Figs. 35(d)-(f), in Fig. 33 as well as in Figs. 37(a)-(b), the interactions among solitons with the

same masses are attractive for solitons located near the center of the axial potential. A result

consistent with the prediction of [154]. In addition, according to the work of [154], the interaction

between two solitons with di�erent masses may be attractive or repulsive depending on sign of

the two-body interspecies interactions alias cross-phase modulation. The latter interaction is

attractive for a repulsive two-body cross-phase modulation, while it is repulsive for attractive

two-body cross-phase modulation. The three-body cross-phase modulation interactions are only

a small correction. Such a similar feature is observed in Fig. 35(d) where the interactions

between the heavy solitons at the border of the train with the light ones are repulsive (the two-
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(a) (b)

(c) (d)

Figure 37: (a) | ψ1(x, t) |2, g1 = 0.9, g2 = 1, g = −1.6, χ1 = χ2 = 0.1, χ = 0. (b) | ψ2(x, t) |2 with same parameters as

in (a). (c) | ψ1(x, t) |2, (d) | ψ2(x, t) |2, same parameters as in (a) except χ = 1.6.

(a) (b)

Figure 38: Contour plots of densities. (a) | ψ1(x, t) |2, (b) | ψ2(x, t) |2. Parameters are η = 1, K = 1
3
, g1 = g2 = 1,

χ1 = 0.1, χ2 = −0.1 g = −1.2, and χ = 0.
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body interspecies interactions are attractive). However, in some cases, the interaction between

heavy and light solitons does not follow the type of two-body interspecies interactions. In Fig.

36, the interactions between the light solitons at the edges of the train with the heavy soliton

at center of the train is attractive, though attractive two-body interspecies interactions. The

analytical results obtained in [154] is no longer valid. The same situation also applies for the

interactions among light and heavy solitons of Fig. 37. The three-body interactions signi�cantly

contribute to modify the type of interactions among solitons in the train. An explanation may be

the following: in [154] a linear superposition of solitons in each component is considered, while

in our numerical simulations, in the unstable regions, nonlinear perturbations are no longer

negligible. Indeed, perturbations arising from three-body interactions may grow and lead to a

profound modi�cation of the e�ective interaction potential between heavy and light solitons.

This issue needs more analytical clari�cations in future works.

3.4 Exact dynamics of Bose-Einstein condensates with two- and three-

body interatomic interactions

It is well known that the three-body interactions can play an important role on the dynamics

of condensates [33, 34, 156]. Since the seminal work of Serking and Hasegawa [157], many

works have been devoted to the construction of new soliton solutions of nonlinear Schrödinger

equation types with versatile time, space, or space-time nonlinearities [34, 119, 157, 158, 159].

3.4.1 Stable Bright solitons in the delayed nonlinear response of Bose-Einstein

condensates

We aim to construct analytical bright soliton solutions of the modi�ed GPE II with a

complex potential. To this end, we resort the variational approach presented in chapter 2 and

rewrite the modi�ed GPE II in the appropriate form

ı
∂ψ(x, t)

∂t
+
∂2ψ(x, t)

∂x2
+ 2a(t)|ψ(x, t)|2ψ(x, t)

− (αx2 + λx)ψ(x, t) + 12τ |ψ(x, t)|4ψ(x, t)
= ı(γ − 4

√
τ(|ψ(x, t)|2)x)ψ(x, t)

= R(ψ(x, t), ψ(x, t)∗).

(3.62)

The Lagrangian density of the conservative part of Eq.(3.62) is

ℓC =
ı

2
(ψ(x, t)∗tψ(x, t)− ψ(x, t)tψ(x, t)∗) + |ψ(x, t)|2 − a(t)|ψ(x, t)|4 − 4τ |ψ(x, t)|6

+(αx2 + λx)|ψ(x, t)|2. (3.63)
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Inserting Eq.(2.2) into Eq.(3.63) and integrating over the spatial coordinate yields the conser-

vative e�ective Langrangian

LC = N [ϕt + k2 +
1

4
(bt + 2b2 + 2α)W 2 +

1

2W 2
− aN√

2πW
− 4τN2

π
√
3W 2

]. (3.64)

Using the formula (2.6), we compute the variational equations

b = γ (3.65)

k =
4
√
τN√
πW

(3.66)

ϕt =
2aN√
2πW

+
12τN2

π
√
3W 2

− 1

2W 2
− 16τN2

πW 2
− 1

2
(γ2 + α)W 2. (3.67)

The number of particles is given by N = N0 exp(2γt), N0 being the number of particles at the

initial time. Equation 3.65 implies that the chirp is related to the ampli�cation or dissipation of

the soliton. From Eq.(3.66) and Eq.(3.67) one infers that the linear and homogeneous phases,

respectively, change with time and are related to the rate of exchange of atoms. Assuming a

�xed width W , the soliton is compressed in the feeding regime.

(a). Numerical stability of bright soliton solutions of the modi�ed GPE II

The numerical scheme used is the split-step Fourier method. A small amount of random white

noise is inserted in order to bring out any instability that may be embedded in the solution.

The numerical simulations begin by considering the case of attractive condensates, with the

linear potential being turned out. The initial condition inserted here is the bright soliton given

by Eq.(2.2) with the variational parameters selected as N = 13.82, W = 10, a0 = 0.0001.

We display in Figs. 39(a)-(b) a comparison between the variational solution and the exact

numerical one at speci�c times, and one realizes that both solutions agree very well. In addition,

the magnitude of the condensate increases with increasing values of γ as depicted in Fig.

39(c). These results well recover the variational solution, and was previously obtained with

modulated solitons obtained via modulational instability. The spatiotemporal evolution of the

condensate's density in Fig. 39(d) also reveals that our variational solution is dynamically stable.

This suggests the possibility of controlling the creation of high density condensates in current

experiments, without collapse. As well known, the variational approach becomes less valid for

very large solitons as shown in Fig. 40. Though the stability of the initial Gaussian soliton is

broken, there still remains a compensation between the dispersion and the nonlinearities, which

leads to the creation of a time periodic breather soliton. In the regime of loss of atoms, the

peaks of the breather soliton periodically form after the period P = 156 (see Fig. 40(a)), and

the breather soliton created is also dynamically stable and robust as one can see in Fig. 40(b).

Things are di�erent for a condensate in the feeding regime. The breathing behavior may be

observed for small widths (W = 15) and after a relatively shorter time of propagation (t ≈ 400)
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Figure 39: (a)-(b) Spatial comparisons between variational solution (solid line) and numerical solution (dotted line)

at di�erent times. (c) Feeding atoms to the condensate increases its density. (d) Stable dynamics of a bright soliton in

the feeding regime. Parameters are N = 13.82, W = 10, a0 = 0.0001, γ = 0.001. Other parameters are α = 0.0001,

τ = 0.00001.
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Figure 40: (a) Maxima amplitude of breather solitons for γ = −0.001, W = 15 dotted line N = 20.73, W = 20

dashed-dotted line N = 207.64, W = 25 solid line N = 34.54. (b) Sample of a dynamical stable breather for γ = −0.001,

W = 15. (c) Same parameter as in (a) except γ = 0.001. Other parameters are as in Fig. 39.
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(see Fig. 40(c)) the stability is lost. It is likely that, the feeding process plays an important

role in the formation of the breather soliton, when the width of the initial condition is large.

A soliton with a large width tends to spread due the dispersion, however, adding atoms to

the condensate increases its density, meaning a growth of the intensity of the two- and three-

body interatomic interactions. As time increases, the strengths of both the two- and three-body

interactions increase too, and compensate the dispersion, preventing the collapse of the soliton.

One pitfall of our variational solution is that it fails to provide any information about e�ects

of the linear potential on the properties of our solitons. However, some important e�ects of

the linear potential can be examined numerically. We turn on the linear potential and insert

the variational solution of Eq.(2.2) into the modi�ed GPE II with parameters corresponding

to Fig. 39. The linear potential induces a gradient �eld onto the condensate which constrains

the soliton to move to the left (−x-direction) part of the axial axis for positive values of λ,

while the soliton is shifted towards the right (+x-direction) for negative values of λ (see Fig.

41(a)). Moreover, the linear potential also induces time oscillations which period decreases with

increasing values of λ (see Fig. 41(a) where λ = 0.1, P = 72 and Fig. 41(b) where P = 30

and λ = 0.2). In the case where the width of the soliton is large, the linear potential alleviates
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Figure 41: E�ects of the linear potential on the dynamics of bright solitons in attractive condensates. (a) λ = 0.1, (b)

λ = 0.2. (c) W = 20, λ = 8. (d) W = 30, λ = 12. Other parameters as in Fig. 39(d).

the instability, and may completely remove it, when the value of λ is relatively high as can

be seen in Fig. 41(c) (W = 20, γ = 8) and Fig. 41(d) (W = 30, γ = 12); the initial waves

rapidly reshape and start oscillating due to the presence of the linear potential. Thus, the linear

potential o�ers the possibility to create stable large solitons. This is an important feature since

large solitons transport more energy than narrow ones.

We now confront our variational solution with the numerical exact one in the case of a
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repulsive condensate. In Fig. 42(a) (W = 10, N = 14) the initial condition remains stable

when starting with a relatively small density. On the contrary, Fig. 42(b) (W = 10, N = 139)

shows that the initial condition drastically changes its shape, width, and height as time evolves

when the initial density is relatively high. As in the attractive condensate case, the repulsive
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Figure 42: (a) W = 10, N = 14, λ = 0, stable low density condensate. (b) W = 10, N = 139, λ = 0, unstable high

density condensate. (c) W = 30, N = 14, λ = 0.8. (d) W = 30, N = 139, λ = 0.8. Stabilization of unstable large

solitons in repulsive condensates starting with low (c) and high (d) densities. In all panels, a0 = −0.00049, γ = 0.001,

τ = 0.00001.

condensate also presents a breathing mode behavior for large solitons. However, turning on the

linear potential softens the instability and may even lead to stabilization as depicted in Fig.

42(c) (W = 30, N = 14, λ = 0.8) and in Fig. 42(d) (W = 30, N = 139, λ = 0.8). Hence, the

linear potential is a powerful tool that can be used to stabilize large and high density bright

solitons in repulsive condensates.

3.4.2 Dynamics of Condensates with three-body interatomic interactions in a

complex potential

(a). Model and analytical solutions

At the mean-�eld level, the dynamics of one dimensional Bose-Einstein condensates with

both two- and three-body nonlinearities can be described by the following dimensionless GPE

[27, 153]

ıΨt(x, t) + Ψxx − g(t)|Ψ(x, t)|2Ψ(x, t)− χ(t)|Ψ(x, t)|4Ψ(x, t)− (λx+ ıγ)Ψ(x, t) = 0, (3.68)

where the spatial coordinate x and the time coordinate t are measured in units of ς = 1µm

(the characteristic length unit in this type of experiment) and mς2/~ respectively, with m
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being the mass per particle. The functions g(t) and χ(t) represent the strengths of the two-

and three-body interatomic interactions, respectively, while λ corresponds to the strength of

a linear potential (or the gravitational �eld), and γ is the rate of exchange of atoms with the

thermal cloud [123, 154].

In order to construct analytical solutions of Eq.(3.68), we use the F-expansion method pre-

sented in chapter 2, with the Lenard equation as auxiliary equation. So, we �rst choose the

following trial solution of Eq.(3.68)

Ψ(x, t) = h(t)ϕ(ξ) exp(ıθ(x, t)), (3.69)

where h(t) is a real function of time t, ξ = k(t)x+ η(t) is the traveling wave variable, with k(t)

controlling the width of the condensate. The overall phase is θ = Γ(t)x + Ω(t). The function

Γ(t) is the spatial frequency shift and Ω(t) is the homogeneous phase shift. Functions h(t),

k(t), η(t), Γ(t), Ω(t), ϕ(ξ), g(t), and χ(t) are unknown functions to be determined later. The

auxiliary equation is the Lenard equation

(
dϕ

dξ
)2 = b0 + b2ϕ

2 + b4ϕ
4 + b6ϕ

6. (3.70)

Following the steps of the F-expansion method described in the second chapter, Eq.(3.69) is

inserted into Eq.(3.68), collecting coe�cients of powers xnϕl (n = 0, 1, l = 0, 1, 2, 3, 4, 5) and√
b0 + b2ϕ2 + b4ϕ4 + b6ϕ6, then setting each of the coe�cients to zero yields the following set

of over-determined partial di�erential equations where the 'dot' denotes the derivative with

respect to time t

ḣ− γh = 0

h(η̇ + 2Γk) = 0

hk̇ = 0

h(−Ω̇ + k2b2 − Γ(t)2) = 0 (3.71)

h(Γ̇ + λ) = 0

h(2b4k
2 − g(t)h2) = 0

h(3k2b6 − χ(t)h4) = 0.
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The solutions of the set (3.71) are found with MAPLE

h(t) = C5 exp(γt) (3.72)

Γ(t) = −λt+ C4 (3.73)

k(t) = C3 (3.74)

g(t) =
2b4k

2(t)

h2(t)
(3.75)

χ(t) =
3b6k

2(t)

h4(t)
(3.76)

η(t) = −2C3(
−λt2

2
+ C4t) + C2 (3.77)

Ω(t) = −(λ
2t3

3
− C4λt

2) + (b2C
2
3 − C2

4)t+
C3

4

3λ
+ C1. (3.78)

Coe�cients C1, C2, C3, C4, C5 are free real constant parameters related to the initial condition

of the wave, such as initial coordinate, velocity, shape, amplitude, and overall phase. From

Eq.(3.73) and Eq.(3.78), one infers that the overall phase θ that is essential for reliable solu-

tions does not depend on the rate of exchange of atoms between the condensed and uncondensed

fractions. Adding or removing atoms from the condensate does not a�ect the direction of prop-

agation of solutions. On the contrary, the linear potential deeply a�ects the overall phase θ of

the condensate. Once the strength of the linear potential is �xed, as time evolves, the devia-

tion of the linear frequency shift from its initial value C4 is proportional to λ (see Eq.(3.73)),

meanwhile the variation of the homogenous phase clearly depends on λ (see Eq.(3.77)). The

parameter b2 is related to the solution pattern (see Appendix C). Once the solution pattern is

chosen, we can evaluate analytically the overall phase at each time from the initial condition.

Hence, Eqs.(3.73)-(3.74) tell us how to adjust the strength of the linear potential in order to

obtain a desired phase of the solution during evolution. Equations (3.72), (3.75), (3.76) imply

that the two- and three-body interatomic interactions are time-dependent and also depend on

the rate of exchange of atoms process with the thermal cloud. During evolution, the interplay

between the condensate and the uncondensed fraction modulates the intensity of both two- and

three-body interatomic interactions in the condensate. Furthermore, our solutions apply only

for speci�c time-dependent behavior of the strengths of the two- and three-body interatomic

interactions given by Eq.(3.75), and Eq.(3.76), respectively. Equation (3.75) is similar to the

expression of the scattering length obtained by Kengne and Talla [162] (g(t) = a0 exp(λt), a0
being a constant) that was derived from condensate experiments of Bradley, Sackett, Tollet,

and Hulet [2, 163] where bright solitons were produced. It has been shown by Li, Li, Li, and Fu

[141] that bright and dark solitons may be produced from the experiments of Khaykovich et al.

and Strecker, Partridge, Truscott, and Hulet [11], provided that the strength of the two-body

interatomic interactions takes a mathematical form close to that of Eq.(3.75). By inducing a

time modulation, the exchange of atoms process considerably alters the two- and three-body
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interatomic interactions. After selecting the values of b4 and b6 which are related to the solution

pattern needed (see Appendix C), the experimenter knows how to manage both the two- and

three-body interatomic interactions in the condensate. Therefore, we can know how to adjust

the related operations to control the evolution of the solutions' overall phase as well as the

two- and three-body interatomic interactions. We deduce from Eq.(3.74) that the width of a

solution, 1/C3, remains constant during evolution leading to the compression of the condensate

when atoms are added into the system, while an amplitude dissipation will be observed if atoms

are ejected out of the system. On the other hand, the choice of the free parameters b4 and b6
(b4 and b6 may take a wide range of values) and that of γ can be done in order to bring the

condensate in the range of parameters used in current condensate experiments. Our approach

may be used to found out exact solutions of the GPE with di�erent trap geometries, and may

also be generalized to higher dimensions as shown by Belobo Belobo, Ben-Bolie, and Kofane

[164]. Considering the solutions of the Lenard equation (Eq.(3.70)) given in the Appendix C,

we obtain a series of 22 families of exact solutions of Eq.(3.68) as

Ψjp(x, t) = h(t)ϕjp(ξ) exp[ı(Γ(t)x+ Ω(t))]. (3.79)

The integer j corresponds to a family of solutions of Eq.(3.68) and varies from 1 to 11, while

the integer p accounts for a particular solution of a speci�c family and may take the values 1,

2, and 3.

One important aspect is the control of the kinetics of analytical solutions. Setting the trav-

eling variable to zero, ξ = 0, enables to derive the position, velocity and the acceleration of the

center-of-mass of the matter wave as

x = −λt2 + 2C4t− C2/C3

ẋ = −2λt+ 2C4 (3.80)

ẍ = −2λ.

The set (3.80) tells us important things about the behavior at mean of the solution, starting

from the initial condition. First, the relevant physical parameters that a�ect the motion and

velocity of the solution are the strength of the linear potential λ and the solution's width.

The center-of-mass of the condensate describes a parabola in the plane (t, x) with a constant

acceleration, 2|λ|, which is twice the strength of the linear potential λ. Secondly, we can compute

the velocity and the acceleration of the center-of-mass of the solutions analytically. Thirdly,

according to the Newton's second law, the last equation of the set (3.80) formally corresponds

to the classical equation of motion of a particle moving in the e�ective potential 2λx with total

energy (1/2)ẋ2 + 2λx, its only equilibrium point being zero. Hence, the presence of the linear

potential induces an acceleration of the condensate. At mean, our solutions are set into motion

by the external potential which also induces a gradient on the condensate and �nally modi�es

its trajectory. Besides, the solution (3.79) presents many kinds of solutions with rather di�erent

shapes. Let us examine in details some of them.
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(a1). Periodic solutions

A periodic solution is obtained by setting j = 2 and p = 1 in Eq.(3.79) for b2 = −1, b4 = 3,

b6 = −2, γ = −0.001, λ = 0.001. The other parameters are C5 = 1, C4 = 0, C2 = 0, C1 = 0. The

condensate is repulsive since b4 > 0, and is in the regime of loss of atoms. We display in Fig. 43

the temporal variations of the strength of the two-body interatomic interactions (Fig. 43(a)),

and the strength of the three-body interatomic interactions (Fig. 43(b)). Figure 43 provides a
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Figure 43: Temporal evolutions of (a) repulsive two-body, (b) attractive three-body interactions. Parameters are γ =

−0.001, C3 = 0.1, b4 = 3, b6 = −2.

way to understand how to modulate the two- and three-body interatomic interactions in order

to obtain localized solutions. In Fig. 44(a), the spatiotemporal evolution of the condensate's

density shows a spatial periodic localized wave packet. The number of solitons, n, with the

width, Ws, available on the cigar-axis of length, L, can be determined with the formula

n = (
L

Ws

)α, (3.81)

where α is a real parameter used to scale the value of n. In Figure 44(b) where C3 = 0.008, the

number of solitons is twice that in Fig. 44(a), in full agreement with the prediction of Eq.(3.81).

It is possible to tune to the desired value the periodicity of the solution.

(a) (b)

Figure 44: Periodic solution of Eq.(3.79) for j = 2, p = 1, λ = 0.001, C3 = 0.004, b2 = −1, C5 = 1, C1 = C2 = C4 = 0.

(a) Spatiotemporal dynamics of the wave function in the regime of atoms loss, γ = −0.001. (b) Control of the number

of solitons, W = 0.008. Other parameters as in Fig. 43.
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(a2). Dark pro�le solutions

A dark solution is obtained if one �xes in Eq.(3.79) j = 11, b0 = −4, b2 = −4, b4 = 4

(repulsive condensate), b6 = 4, γ = 0.001, C3 = 0.1. Figure 45 exhibits the dynamics of dark

pro�le patterns for two di�erent values of the linear potential's strength λ (see panels (a) and

(b)). The condensate is drifted towards −x-direction when λ is positive (see Fig. 45(a) with

λ = 0.01), while the condensate evolves towards +x-direction for a negative value of λ (see Fig.

45(b) with λ = −0.01), in conformity with Eq.(3.79). In addition, our dark soliton solutions

(a) (b)

(c) (d)

Figure 45: Dark pro�le solutions of Eq.(3.79), with j = 11, b0 = −4, b2 = −4, b4 = 4, b6 = 4, γ = 0.001, C3 = 0.1. (a)

λ = 0.01, (b) λ = −0.01. (c) W = 2. (d) λ = 0, W = 2.

have small amplitude modulations as time increases. The amplitude modulations appear earlier

with smaller widths of the solitons. This feature is presented in Fig. 45(c) where W = 2. These

amplitude modulations are completely absent when the linear potential is turned out as depicted

in Fig. 45(d), where the same parameters as in Fig. 45(c) are used except λ = 0. In order to show

the in�uence the other free parameters have on the dynamics of our solutions, we turn out the

linear potential to facilitate interpretations. The parameter C4 not only a�ects the direction

of the solitions, but also induces small amplitude modulations as one can see in Fig. 46(a)

(C4 = 0.035), and in Fig. 46(b) (C4 = −0.035). The parameters C2 also changes the direction

of propagation of the solutions as shown in Fig. 46(c) (C2 = 5), and Fig. 46(d) (C2 = −5).
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(a) (b)

(c) (d)

Figure 46: (a) C4 = 0.035, (b) C4 = −0.035, prove that C4 deeply a�ects the direction of propagation of the wavefunc-

tion, and also induces a breathing mode behavior (C2 = 0). (c) C2 = 5, and (d) C2 = −5 illustrate the in�uence C2 has

on the direction of propagation of the wave function (C4 = 0).

(a3). Bright pro�le solutions

One can obtain bright soliton patterns as displayed in Fig. 47. In Fig. 47(a), in Eq.(3.79),

we choose j = 1 and p = 1, with b2 = 2, b4 = −3 (attractive condensate), b6 = −2, the other
parameters are the same as in Fig. 43. A bright structure describing a parabola in the plane (t,

x) is formed, and evolves at the constant acceleration ẍ = 0.002. Besides, Fig. 47(b) portrays

another bright matter-wave condensate obtained by setting j = 10, b2 = 2, b4 = 0, in Eq.(3.79),

the other parameters corresponding to those in Fig. 43.

(a) (b)

Figure 47: Spatiotemporal evolution of the density |Ψ(x, t)|2 of bright solitons. (a) In Eq.(3.79), j = p = 1, b2 = 2,

b4 = −3, b6 = −2. (b) In Eq.(3.79), j = 10, b2 = 2, b4 = 0. Other parameters as in Fig. 43, with λ = 0.001.
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(a4). Anti-kink and kink like pro�le solutions

Di�erent types of solutions patterns can further be obtained for j = 3, p = 1 in Eq.(3.79),

with b2 = 2, b4 = −4, b6 = b24/4b2, γ = 0.001, the other parameters taken as in Fig. 45(c). The

argument of the tanh function is −
√
b2ξ as in Fig. 48(a) for the anti-kink pattern, while it is√

b2ξ in Fig. 48(b) for the kink pattern.

(a) (b)

Figure 48: Spatiotemporal evolution of the density, |Ψ(x, t)|2 of solutions of Eq.(3.79). (a) Anti-kink-like solution. (b)

Kink -like solution. Parameters are j = 3, p = 1, b2 = 2, b4 = −4, b6 = b24/4b2, γ = 0.001, λ = 0.001, other parameters

are as in Fig. 45(c).

(a5). Linear stability analysis of analytical solutions

We analyze the stability of our solutions by linearizing the exact solution given by Eq.(3.79)

around a small perturbation. The perturbed solution of Eq.(3.68) is written as

Ψ(x, t) = (Ψ1(x, t) + Ψ2(x, t)) exp(ıθ(x, t)), (3.82)

where Ψ1(x, t) exp(ıθ(x, t)) is the exact solution of Eq.(3.68), and Ψ2(x, t) = R(x, t) + ıI(x, t)

represents a small perturbation, i.e. |Ψ2(x, t)|2 ≪ |Ψ1(x, t)|2. Inserting Eq.(3.82) into Eq.(3.68)
and linearizing around the perturbation, the following system of equations is derived

Rt = −Ixx + (θt + θ2x + g(t)Ψ1(x, t)
2 + χ(t)Ψ1(x, t)

4 + λx)I + (θxx + γ)R− 2θxxIx

(3.83)

It = Rxx − (θt + θ2x + 3g(t)Ψ1(x, t)
2 + 5χ(t)Ψ1(x, t)

4 + λx)R− (θxx − γ)I − 2θxxIx.

The analysis of the linear problem given by Eq.(3.83) is a nontrivial task, so we only focus on

solutions with zero spatial frequency shift, i.e. Γ(t) = 0, thus λ = 0, C4 = 0, ẍ = ẋ = 0, η = C2,

ξ(x, t) ≡ ξ(x) = C3x + C2, θt = 2b2C
2
3 , θx = θxx = 0. As in all solutions plotted above, we set

C1 = 0. Following the work of Bronski, Carr, Deconinck, and Kutz [4], we rewrite the set (3.83)

in the form (
Rt

It

)
= J

(
L+ −S
S L−

)(
R

I

)
. (3.84)
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In Eq.(3.84), J =

(
0 1

−1 0

)
, and

L− = − ∂2

∂x2
+ 2b2C

2
3 + g(t)Ψ1(x, t)

2 + χ(t)Ψ1(x, t)
4 + λx

L+ = − ∂2

∂x2
+ 2b2C

2
3 + 3g(t)Ψ1(x, t)

2 + 5χ(t)Ψ1(x, t)
4 + λx (3.85)

S = γ.

Assuming that the perturbation has the form

R(x, t) = r1(x) exp(βt)

(3.86)

I(x, t) = r2(x) exp(βt),

then substituting Eq.(3.86) into Eq.(3.84) yields the eigenvalue problem given by

J

(
L+ −γ
γ L−

)(
r1
r2

)
= β

(
r1
r2

)
. (3.87)

It is clear that our linear stability analysis can be applied to all families of solutions found

above. We consider as examples, the cases of the periodic, anti-kink, kink, and dark solitons

presented above. Exploiting theorems presented in the work of Bronski, Carr, Deconinck, and

Kutz [4] and applied by Bronski and co-workers in [48], we arrive at the following conclusions:

(i) Since in Eq.(3.79), for j = 2, p = 1 the function h(t)ϕ(ξ) > 0, the homogenous phase

periodic solution is linearly stable in a repulsive condensate, (ii) the homogenous anti-kink-like

and kink-like solitons are linearly stable in a repulsive condensate, (iii) the homogenous dark

soliton is linearly unstable in the attractive condensate.

(b). Numerical stability analysis of analytical solutions

The numerical method used to integrate Eq.(3.68) is the fourth order Runge-Kutta scheme in

the interaction picture with large spatial grid in order to prevent problems with the boundaries.

Initial solutions are perturbed with a small amount of random white noise. For the sake of

clarity, the width of solutions is set to W = 400 due to the width of the spatial grid.

We start our numerical simulations by considering the nontrivial phase solution displayed

in Fig. 44(a). At t = 0, this solution is inserted trough Eq.(3.74). In Figs. 49(a)-(b) one can

see a very good agreement between the exact numerical and the analytical solutions, which

represent the spatial variation of the density at di�erent times, while Fig. 49(c) displays the

spatiotemporal evolution of the linearly and dynamically stable periodic nontrivial phase solu-

tion of Fig. 44(a). We also test the validity of the nontrivial phase dark pro�le solution of Fig.

45(a). Figure. 50(a) proves that the nontrivial phase dark solution is linearly and dynamically
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Figure 49: (a)-(b) Spatial comparisons between the numerical, and the analytical periodical solutions of Eq.(3.79) for

j = 2, p = 1. (c) Stable density pro�le of the periodic solution. Same parameters as in Fig. 44(a), except W = 400.

stable. For the case of the dark trivial phase solution of Fig. 45(a), we follow the analytical

treatment developed above, and set λ = 0. Then we insert trough Eq.(3.68) the corresponding

initial condition with all free parameters selected as in Fig. 45(a). As depicted in Fig. 50(b),

the dark trivial phase solution preserves its shape as time increases. However, at the top of the

dark trivial phase solution, we observe benign random oscillations. This is a signature of the

presence of small instabilities which are consistent with the linear stability analysis carried out

above. However, these instabilities do not drastically develop such that the dark trivial phase

solution is numerically robust. Further, Fig. 51 proves that the nontrivial phase bright solution
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Figure 50: (a) Nontrivial phase dark solution. (b) Trivial phase solution. Same parameters as in Fig. 44(a), except

W = 400.

of Fig. 47(a) is linearly and dynamically stable. Other numerical simulations not shown here
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Figure 51: (a)-(b) Spatial comparisons between numerical, and analytical bright solutions of Eq.(3.79) for j = p = 1.

(c) Stable density pro�le of the bright solution. Same parameters as in Fig. 47(a), except W = 400.
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also prove that the nontrivial bright pro�le solution of Fig. 47(b) is also numerically stable. For

the nontrivial phase anti-kink-like (Fig. 52(a)) and the kink-like (Fig. 52(b)) solutions, though

the presence of small instabilities at the top of density pro�les, these solutions are dynamically

stable.
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Figure 52: Stable propagations of (a) anti-kink and (b) kink solutions. Same parameters in Fig. 43, except W = 400.

3.4.3 GPE with time-dependent two- and three-body interatomic interactions in

a complex potential

(a). Model and analytical solutions

Let us consider the dimensionless one dimensional GPE describing the dynamics of conden-

sates with two- and three-body interatomic interactions considered by Mohamadou, Wamba,

Lissouck, and Kofane [26]

ıΨt(x, t)+ cΨxx− g(t)|Ψ(x, t)|2Ψ(x, t)−χ(t)|Ψ(x, t)|4Ψ(x, t)− (αx2+ ıγ(t))Ψ(x, t) = 0, (3.88)

where the time t and the spatial coordinate x are scaled in the harmonic oscillator units. The

parameters α, g(t), χ(t), and λ are the strengths of harmonic con�nement, two- and three-body

interatomic interactions, and rate of exchange of atoms with its surroundings, respectively.

In order to �nd out analytical solutions Eq.(3.88), we follow Mohamadou, Wamba, Lissouck,

and Kofane [26] and transform it into a more tractable form with the following modify lens-type

transformation

Ψ(x, t) = D(t)Φ(X,T ) exp[η(t) + ıf(t)x2]. (3.89)

In Eq.(3.89), T is a function of time t, and X = x
l(t)

. The function f(t) represents the nonlinear

frequency shift, η(t) which takes into account the exchange of atoms between the condensate

and its surroundings represents the growth (η(t) > 0) or the loss (η(t) < 0) of atoms. The
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preservation of the scaling implies that dT
dt

= 1
l(t)2

. Further, we request that

df(t)

dt
= −4cf(t)2 − α(t),

dD(t)

dt
= −2cf(t)D(t),

dl(t)

dt
= 4cf(t)l(t),

dη(t)

dt
= γ(t).

(3.90)

Substituting Eq.(3.89) into Eq.(3.88) and taking into account Eq.(3.90) yield the reduced form

of Eq.(3.88) in the rescaled variables X and T [26]

ı
∂Φ(X,T )

∂T
= −c∂

2Φ(X,T )

∂X2
− P 2|Φ(X,T )|2Φ(X,T ) + χ0|Φ(X,T )|4Φ(X,T ), (3.91)

with D(t) = [|g(t)|l(t)2 exp[2η(t)]]− 1
2 , χ(t) = χ0g(t)

2l(t)2, P 2 = −sgn[g(t)]. The two-body

interatomic interactions are attractive if P 2 = +1, but are repulsive when P 2 = −1. Equation
(3.91) is a cubic-quintic GPE with constant parameters. The exact solution of Eq.(3.88) takes

the form [26]

Ψ(x, t) =
√
|G(t)|Φ(X,T ) exp{η(t) + ı[− 1

4c

d

dt
ln |G(t)|]x2}, (3.92)

where G(t) = g(t) exp[2η(t)], η(t) =
∫ t
0
γ(t′)dt′ + η0, η0 being a constant. The solution given by

Eq.(3.92) is obtained by assuming that l(t) = |G(t)|−1, T (t) =
∫ t
0
G(t′)2dt′, f(t) = 1

4c
d
dt
ln |G(t)|.

Analytical explicit solutions of Eq.(3.88) are obtained from the solution of Eq.(3.92) if the

explicit form of the function Φ(X,T ) is given. So, we search explicit expressions of Φ(X,T )

with the form

Φ(X,T ) = Q(ξ) exp[iθ(X,T )], (3.93)

where Q represents the amplitude part and θ accounts for the phase part. The new variables ξ

and θ have the forms

ξ = k0X − ω0T, θ(X,T ) = kX − ωT. (3.94)

Parameters k0, k, ω0, and ω are real constants which account for width, linear frequency shift,

velocity, homogenous phase of the wave function Φ(X,T ), respectively. Substituting Eqs.(3.93)-

(3.94) into Eq.(3.91), then separating the real and the imaginary parts, respectively read the

following set of ordinary di�erential equations with respect to Q

(ω − ck2)Q+Q3 − χ0Q
5 + ck0

d2Q

dξ2
= 0. (3.95)

(ω0 − 2ckk0)
d2Q

dξ2
= 0. (3.96)

Assuming the constraint

ω0 = 2ckk0, (3.97)

94



means that we only need to solve Eq.(3.95). So far, there are some important physical properties

that the complete solutions to be constructed will exhibit. For example, one may be interested in

the dynamics of the center-of-mass which characterizes the behavior at mean of the condensate

for a speci�c solution. In term of the dimensionless real physical variables, the position, velocity

and acceleration of the center-of-mass are xCM(t) = (ck/γ) sinh(2γt), ẋCM = 2ck cosh(2γt),

ẍCM = 4ckγ sinh(2γt), respectively. Hence, the behavior at mean of the condensate is a�ected

by the rate of exchange of atoms between the condensate fraction and the uncondensed fraction,

and by the linear frequency shift of the initial condition. At initial time, the center-of-mass of

the condensate is at the center of the trapping potential with the initial velocity 2ck without

any acceleration. As time increases, the velocity and acceleration of the center-of-mass increase

for negative and positive values of γ. This implies that the exchange of atoms with the thermal

background accelerates the center-of-mass, so that the temperature of the core increases with

time, and may lead to the collapse of the condensate. However, for small values of γ, the

acceleration and velocity of the core shall remain small so that the growth of the velocity

induced by the atoms pumping, or loss mechanisms shall be negligible, avoiding the collapse

of the condensate. The linear frequency k may also be used to control the acceleration and

velocity of the condensate's core. So, one has two powerful tools to avoid the collapse of the

condensate. The position of the center-of-mass as time evolves also depends on the sign of the

linear frequency k, so that the condensate moves towards the left side of the axial potential if

k < 0, while the condensate moves towards the right side of the potential for positive values

of k. According to the Newton's second law, the condensate can be considered as a classical

particle moving in the e�ective potential Ueff = (−2ck/γ) cosh(2γt), with total energy E =

2[ck cosh(2γt)]2−(2ck/γ) cosh(2γt), its only equilibrium point being located at the center of the

trap x = 0. This means that the solutions constructed in this part of the work are all moving

ones. In the following, we use speci�c auxiliary equations in deriving analytical solutions of

Eq.(3.88).

(a1). The Bernoulli equation as auxiliary equation

We suppose that the function Q can be written as

Q(ξ) =
M∑
i=0

aiF
i(ξ), (3.98)

where M is a positive integer, ai are real constants to be determined later. The function F is

the solution of the general Bernoulli equation

dF

dξ
= aF (ξ) + bF λ(ξ), (3.99)

parameters a, b, λ being real constants which will also be determined later, with λ ≠ 1. The

homogeneous balance yields λ = 2M + 1. Since λ ̸= 1, then M ≥ 1. Let us consider the simple
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case where M = 1, and λ = 3, we have

Q(ξ) = a0 + a1F (ξ),
dF

dξ
= aF (ξ) + bF 3(ξ). (3.100)

The explicit expressions of the unknowns are

a0 = 0, (3.101)

a =
−
√
3

4k0
√
c
√
χ0

, (3.102)

b = ±
a21
√
χ0

k0
√
3c
, (3.103)

ω =
−3 + 16ck2χ0

16χ0

. (3.104)

Equations (3.101)-(3.104) imply that c > 0, and χ0 > 0, meaning that solutions are valid only

for repulsive three-body interatomic interactions. One infers from Eqs.(3.103)-(3.104) that the

amplitude and the homogenous phase of the wavefunction are sensitive to the strength of the

three-body interatomic interactions χ(t). It is thus possible to tune to the desired values both

the amplitude and the phase of the condensate externally by means of the Feshbach resonance

technique. Inserting the solutions of the general Bernoulli equation (Eq.(3.99)) for λ = 3 given

in the Appendix A [116] into Eq.(3.100) leads to explicit expressions of Q. Hence, exact explicit

solutions of Eq.(3.88) derived by Belobo Belobo, Ben-Bolie and Kofane are [165]

Ψ1j(x, t) =
√
| G(t) |a1F1j(ξ) exp[ıθ(X,T )] exp{η(t) + ı[− 1

4c

d

dt
ln | G(t) |]x2}, j = 1, 2, 3.

(3.105)

Equations (3.100)-(3.104) and solutions of the Appendix A imply that the heights of solutions

given by Eq.(3.105) are proportional to the strength of the two-body interatomic interactions,

but inversely proportional to the strength of the three-body interatomic interactions. Therefore,

the experimenter knows how to manage the two- and three-body interatomic interactions in

order to obtain a solution with an assumed amplitude. The density of a solution is subjected

to a growth in the feeding regime, while the density decays when atoms are removed from the

condensate. This feature has been predicted in [26, 164]. Also, the behavior of the density of

the condensate is unchanged both for attractive and repulsive condensates. From Eq.(3.105),

one understands that we have constructed three bunches of solutions of Eq.(3.88). In order to

represent some samples of these solutions, we choose the following relevant physical parameters:

α(t) = −0.005, c = 0.5, γ(t) ≡ γ, η(t) = γt with η0 = 0, used in some experimental and

theoretical studies [26, 25, 165]. We display in Fig. 53(a) the dynamics of the condensate's

wavefunction, where we have set j = 2 in the solution of Eq.(3.105) with γ = −0.005, χ0 = 1/12,

k = 0.01. In this case, the solution given by Eq.(3.105) is an anti-kink soliton with initial velocity

0.01. The in�uence of the linear frequency shift on the direction of the condensate can be seen

in Fig. 53(b) where k = −0.5. The moving anti-kink soliton evolves towards the left side of
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(a) (b)

Figure 53: Spatiotemporal evolution of the wavefunction of Eq.(3.105) for j = 2 for k0 = 1, χ0 = 1
12
, a1 = 1, c = 0.5,

η0 = 0, g(t) = −1, γ = −0.005. (a) k = 0.01, density pro�le of an anti-kink soliton with initial speed 0.01. (b) k = −0.5,

e�ect of the linear frequency shift on the direction of the moving anti-kink soliton.

the cigar axis and its initial velocity amounts to 0.05. Kink and anti-kink solitons have been

predicted in single condensates with two-and three-body interatomic interactions in di�erent

trap geometries [26, 164] and in binary condensates with only two-body interatomic interactions

[50]. Other nonlinear media also allow the existence of kink and anti-kink solitons such as a

layer of binary liquid heated from below, where oscillatory convection sets in via a subcritical

bifurcation described by the cubic-quintic Ginsburg-Landau equation [166], optical �bers with

elliptical birefringence for the evolution of the state of polarization of counter-propagating waves

[167], the nonlinear dispersive �ber optics for the description of wave propagation by including

the e�ects of group-velocity dispersion, self-phase-modulation, stimulated Raman scattering,

and self-steepening [168]. The analytical expression of the anti-kink soliton solution found by

Mohamadou, Wamba, Lissouck, and Kofane [26] is di�erent from the solution obtained here by

using the Bernoulli auxiliary equation. Moreover, with only fewer parameters, i.e., k, and γ, we

can characterize the behavior of the condensate at mean.

(a2). The Riccati equation as auxiliary equation

We assume that the function Q takes the form

Q(ξ) =
N∑

i=−N

aiF
i(ξ), (3.106)

where the function F is the solution of the following Riccati equation [169]

dF

dξ
=MF λ(ξ) +

ε

1− λ
F 2−λ, ε = ±1. (3.107)

The homogenous balance gives λ = 2N + 1. We consider the simple case where N = 1, and

λ = 3. Equations (3.106)-(3.107) become

Q(ξ) = a0 + a1F (ξ) + a2F
−1(ξ),

dF

dξ
=MF 3(ξ)− ε

2
F (ξ). (3.108)
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Explicit expressions of the unknowns are

a11 =
1

8c
√
2k0

(
3c

χ0

)
3
4 , a21 =

√
k0
2
(
3c

χ0

)
3
4 , M1 =

3

128ck20χ0

, ω1 = ck2 +
3ε− 27

128χ0

,

a12 = −a11, a22 = −a21, M1, ω1,

a13 = −ıa11, a23 = ıa21, M1, ω1,

a14 = ıa11, a24 = −ıa21, M1, ω1,

a15 = a11, a25 = a21, −M1, ω2 = ck2 − (3ε+ 27)

128χ0

, (3.109)

a16 = −a11, a26 = −a21, −M1, ω2,

a17 = −ıa11, a27 = ıa21, −M1, ω2,

a18 = ıa11, a28 = −ıa21, −M1, ω2,

a0 = 0.

The fourth equation of the set (3.109) implies that c > 0, and χ0 > 0 (the three-body inter-

atomic interactions are repulsive). Using Eqs.(3.108)-(3.109), we derive new exact solutions of

Eq.(3.88)

Ψ2nm(x, t) =
√
| G(t) |[a1nF2m(ξ) + a2nF

−1
2m(ξ)] exp[ıθ(X,T )] exp{η(t) + ı[− 1

4c

d

dt
ln | G(t) |]x2},

(3.110)

where, n, m are integers, with n = 1, 8, and m = 1, 4 if ε = −1, m = 5, 7 if ε = +1, and m = 8

if ε = 0. The solutions of the Riccati equation are given in the Appendix B [169]. Equations

(3.109)-(3.110) imply that the amplitudes of solutions given by Eq.(3.110) deeply depend on

the values of the width, the strength of the three-body interatomic interactions which is also

related to the atoms feeding or loss parameter γ. The phases of solutions given by Eq.(3.110)

are characterized by χ0 and the free parameter k. Hence, after �xing the values of k0, χ0, and

γ, it is possible to predict the spatiotemporal evolution of the amplitude and the phase of

solutions given by Eq.(3.110). Since the latter parameter can be precisely controlled externally

in current condensate experiments, one infers that solutions given by Eq.(3.110) are likely to be

observed in current or future experiments with condensates. We visualize in Figs. 54(a)-(b) the

spatiotemporal evolutions of the wave function for two di�erent cases of solution of Eq.(3.110).

In Fig. 54(a), we have set in Eq.(3.110) n = 5, m = 7, ε = 1. We obtain a multiple bright

solitons solution periodically spaced on the axial potential. Multiple bright soliton solutions

are usually obtained in condensates via the modulational instability. In the case of Eq.(3.88),

multiple bright solitons were generated numerically by Mohamadou, Wamba, Lissouck, and

Kofane [26]. Here, we give an analytical expression of a multiple bright solitons solution in the

framework of Eq.(3.88). Figure 54(b) portrays the spatiotemporal evolution of a kink soliton

obtained for n = 5, m = 3, ε = −1. This is a novel kink soliton solution of Eq.(3.88) di�erent

from that derived by Mohamadou, Wamba, Lissouck, and Kofane [26].
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(a) (b)

Figure 54: (a) Density pro�le of a growing periodic solution for n = 5, m = 7, ε = +1. (b) Density pro�le of a moving

kink soliton for n = 5, m = 3, ε = −1. Other parameters are the same as in Fig. 48(a), except χ0 = 0.1, γ0 = 0.005.

(a3). The Lenard equation as auxiliary equation

We search a function Q with the form

Q(ξ) =
N∑
i=0

aiF
i(ξ), (3.111)

the function F satisfying the Lenard equation [170]

dF

dξ
=
√
b0 + b2F 2(ξ) + b4F 4(ξ) + b6F 6(ξ). (3.112)

Solutions of Eq.(3.112) are given in the Appendix C. The homogeneous balance leads to N = 1.

Explicit expressions of the unknown are

a11 =
√
k0(

cb6
χ0

)
1
4 , b4 = −

1

2ck0

√
2cb6
χ0

,

a12 = −a11, b4,

a13 = ıa11, −b4, (3.113)

a14 = −ıa11, b4,

a0 = 0, ω = ck2 − ck20b2.

The set (3.113) implies that k0 must be positive, both χ0 and b6 must have the same sign.

Inserting Eq.(3.113) into Eq.(3.111), yields explicit solutions of Q, which in turn are used to

obtain exact solutions of Eq.(3.88), that are

Ψ3nm(x, t) =
√
| G(t) |a1nF3,m(ξ) exp[ıθ(X,T )] exp{η(t) + ı[− 1

4c

d

dt
ln | G(t) |]x2}, (3.114)

where, n, m are integers, with n = 1, 4, and m = 1, 18 for b0 = 0, m = 19, 22 for b0 =
8b22
27b4

and b6 =
b24
4b2

. The �rst four relations of the set (3.113) mean that the amplitudes of solutions
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given by Eq.(3.114) depend on the values of k0 and χ0. The last equation of set (3.113) implies

that the phases of the solutions of Eq.(3.114) depend on the values of k and k0. After the

choice of the parameters bi (i = 0, 6) related to the solution pattern needed, it is possible to

precisely manipulate the amplitude and the phase of solutions only with the selection of the

values of the width (1/k0), the linear frequency k, the sign of χ0, and the rate of exchange γ

of atoms with the surroundings. There are many types of solutions of Eq.(3.88) that can be

derived from Eq.(3.114). We present in Fig. 55(a) a bright soliton solution of Eq.(3.114) for

n = 1, m = 1, with b2 = 2, b6 = −2, χ0 = −0.1, g(t) = 1. The other parameters are the same as

in Fig. 53(a). To the best of our knowledge, the bright soliton solution of Eq.(3.88) presented

in Fig. 55(a) is new. The parameter k0 plays two important roles in the characterization of

the solutions: (i) generally speaking, the width of the condensate is 1/k0, (ii) for each solution

derived from Eq.(3.114), the amplitude is proportional to
√
k0 as depicted by Eq.(3.113). A

comparison between Figs. 55(a) and (b) corroborates the latter e�ects due to k0.

(a) (b)

Figure 55: (a) Bright soliton solution derived from Eq.(3.114) for n = 1, m = 1 with k0 = 1, χ0 = −0.1, b2 = 2, b6 = −2.

(b) Same parameters as in panel (a) except k0 = 0.1. k0 a�ects both the width and the amplitude of the solution. Same

parameters as in Fig. 53(a).

One important class of physically relevant solutions of Eq.(3.88) is the Jacobi elliptic function

solutions that are missed in the above development. We need to remedy to this by including the

generalized Jacobian elliptic solutions. To this end, we resort the same procedure and consider

the following special solutions of the Lenard equation [171] which can be found in the Appendix

D. The generalized Jacobi exact solutions of Eq.(3.88) can then be expressed as follows

Ψ3nm(x, t) =
√
|G(t)|a1nF5,m(ξ) exp[ıθ(X,T )] exp{η(t) + ı[− 1

4c

d

dt
ln |G(t)|]x2}, (3.115)

where, n, m are integers, with n = 1, 4, and m = 18, 19. These solutions have to respect the

constraint imposed by the expression of b4 given by Eq.(3.105), and are valid only for negative

values of χ0. Thus, the generalized Jacobi function solutions of Eq.(3.115) are valid provided

that the three-body interatomic interactions are attractive, and share the same features with

solutions of Eq.(3.114) regarding the behavior of the amplitude and the phase. Subsequently, k0
can be written in terms of the periods k1 and k2 as k0 = − 1

2cb4

√
2cb6
χ0

, with b4 and b6 satisfying

Eq.(3.113). In other words, once two periods k1, k2, are �xed, the width 1/k0 and the strength
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of the three-body interatomic interactions are derived. It is interesting to notice that except the

atoms feeding or loss mechanisms that is controlled by γ, all important features of the solutions

described by Eq.(3.115) depend on the values of the periods k1, k2. We plot in Fig. 56(a) the

density pro�le of the generalized Jacobi cosine function, and in Fig. 56(b) the density pro�le of

the generalized Jacobi function of the third kind, in the feeding regime γ = 0.001, for repulsive

condensates g = 1. As periodic solutions, the generalized Jacobi elliptic function solutions may

(a) (b)

Figure 56: Spatiotemporal evolution of density pro�les of generalized Jacobi elliptic solutions of Eq.(3.115). (a)

c(ξ, k1, k2), (b) d1(ξ, k1, k2). Other parameters are k1 = 0.6, k2 = 0.2, χ0 = −k21k22, γ = 0.001, k = 0.1, g = 1.

be observed for condensates in optical lattices.

(a5). The Hyperbolic equation as auxiliary equation

The function Q is assumed to have the form

Q(ξ) =
N∑
i=0

ai sinh
i(F (ξ)), (3.116)

where the function F satis�es the Hyperbolic equation [165]

dF

dξ
= c0 + c2 sinh

2(ξ). (3.117)

The solutions of the Hyperbolic equation are presented in the Appendix E [172]. The homoge-

neous balance gives N = 1, and the unknowns are found to be

a11 =

√
k0c2(

3c

χ0

)
1
4 , ω1 = k0c2

√
3c

χ0

+ ck2 +
3ck20c

2
2

4
− 3

16χ0

, c01 =
−
√

3c
χ0
− 2ck0c2

4ck0
,

a12 = −a11, ω1, c01

a13 = ıa11, ω2 = −k0c2
√

3c

χ0

+ ck2 +
3ck20c

2
2

4
− 3

16χ0

, c02 =

√
3c
χ0
− 2ck0c2

4ck0
, (3.118)

a14 = −ıa11, ω2, c02,

a0 = 0.
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Proceeding in a similar way as above, we obtain exact solutions of Eq.(3.88)

Ψ4nm(x, t) =
√
| G(t) |a1n sinh1,m[F (ξ)] exp[ıθ(X,T )] exp{η(t) + ı[− 1

4c

d

dt
ln | G(t) |]x2},

(3.119)

where n,m = 1, 2, 3, 4. From Eqs.(3.118), one realizes that features of the solutions of Eq.(3.119)

are related to some experimental parameters such as the strength of the three-body interatomic

interactions, the rate of exchange of atoms with the thermal background γ, and the linear

frequency shift k. For instance, the amplitudes of solutions of Eq.(3.119) depend on the width

(1/k0), and the strength of the three-body interatomic interactions χ0 (that depends on the

interplay between the condensate and the thermal vapor), whereas the homogenous phase

depends on the width, linear phase and χ0. As already stated above, it is possible to control

the amplitude and phase of a solution in nowadays condensate experiments once 1/k0, k and γ

have been �xed. We expect the present work will motivate the quest of hyperbolic solutions in

condensate experiments and applications.

(b). Numerical stability analysis of solutions

The numerical scheme used is the split-step Fourier method. An initial reasonable small

amount of random perturbation is added in order to unveil any instability that may be seeded

during the time evolution. We restrict ourselves only on some cases of exact solutions found

above.

Let us start with the anti-kink soliton solution of Eq.(3.105) for j = 2. In the case where γ =

0, the number of atoms in the condensate is constant. Figure 57 proves that the initial condition

persists without destruction though the insertion of a small initial random perturbation. The

long time behavior of the solution displayed in Fig. 57 means that it is linearly and dynamically

stable. For a condensate in the regime of loss of atoms, there is also a very good agreement
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Figure 57: Spatiotemporal evolution of the stable anti-kink-like soliton of (3.105). Same parameters as in Fig. 53(a)

except γ = 0.

between the analytical prediction and numerical results as depicted by panels (a)-(b) of Fig. 58,

for γ = −0.005. Figure 58(c) shows that the disturbed initial condition remains stable during

evolution. One can then consider that such a solution is a robust physical object that can be

observed in a real experiment.
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Figure 58: (a)-(b) Comparisons between analytical (solid line) and numerical (dotted line) solutions at particular times

of the anti-kink-like soliton of Fig. 53(a). (c) Spatiotemporal evolution of the stable anti-kink-like soliton of Fig. 53(a).

Other parameters as in Fig. 53(a).

We continue with the kink soliton solution of Fig. 54(b). In Fig. 59(a) (γ = 0) the amplitude

of the condensate stays constant during evolution, while the amplitude increases with time in

the feeding regime as shown in Fig. 59(b) (γ = 0.005). From Figs. 59(a) and 59(b) (γ = 0.005),

one infers that the new derived kink-like soliton solution of Eq.(3.110) for n = 5,m = 3, ε = −1,
is a stable solution.
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Figure 59: (a) Spatiotemporal evolution of stable kink solution of Fig. 54(a), γ = 0. (b) Spatiotemporal evolution of

stable growing kink-like solution of Fig. 54(b), γ = 0.005. Other parameters as in Fig. 54(a).

The bright soliton solution of Fig. 55(b) obtained by using the Lenard equation is dy-

namically stable and accurately corroborates its analytical counterpart. Figure 60 displays the

agreement between the numerical and analytical solutions, as well as the long time robustness

of our bright soliton exhibited in Fig. 60(b).
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Figure 60: (a)-(b) Parallel between analytical (solid line) and numerical (dotted line) solutions at di�erent times of the

bright soliton of Fig. 55(b). (c) Spatiotemporal evolution of the stable bright soliton. Same parameters as in Fig. 55(b)

except γ = 0.005.

103



3.5 Conclusion

In conclusion, in this chapter we have dealt with analytical and numerical studies of mod-

ulational instability for di�erent models of condensates, and the dynamics of condensates with

two- and three-body interatomic interactions, con�ned in a complex potential.

The chapter begins with the study of condensates con�ned in a versatile anharmonic optical

lattice. Using the variational approach, we have generalized the stability criterion of bright

solitons in condensates to the general class of anharmonic periodic potential shapes. Then, full

numerical simulations have validated the results obtained analytically.

We have also examined the modulational instability of single trapped condensates, and

trapless two-component condensates with two- and three-body interatomic interactions. For

the case of single condensates, the external potential consists of a harmonic con�nement, a

linear part, and a complex one related to the exchange of atoms between the condensate and

the thermal background. Di�erent models describing the dynamics of single condensates beyond

the mean-�eld GPE picture are used. E�ects of some important quantum properties, such as the

quantum �uctuations around the mean-�eld, the three-body interatomic interactions, on the

modulational instability of condensates are considered. Using the linear stability analysis, we

have derived the modulational instability criterions and the formulas of the gains of instability.

E�ects of the complex potential, the quantum �uctuations around the mean-�eld, and the

three-body interactions on the modulational instability are elucidated analytically. Intensive

numerical simulations carried out have corroborated the analytical predictions. As far as binary

condensates are concerned, we have shown analytically and numerically the impact of the three-

body intraspecies and interspecies interactions on the modulational instability and the dynamics

of solitons generated.

We have also constructed analytical solutions of condensates for two model equations. The

�rst model is the modi�ed GPE II with a complex potential using the variational approach.

The in�uence of the nature of condensates (attractive or repulsive), and the linear potential on

the dynamics of bright solitons are clari�ed in the variational sense. The second model equation

is the GPE with time modulation of the two- and three-body interatomic interactions, con�ned

in a complex potential. Using the F-expansion method, we have constructed many new families

of solutions. These solutions have many free parameters which may be used to manipulate

many condensate properties. The issue of stability of analytical solutions found here has been

addressed analytically and numerically. The numerical investigations conducted have con�rmed

the reliability and robustness of our solutions.
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General Conclusion

Summary and Contributions

In this thesis, the generation, structure dynamics, and stability of matter waves of Bose-

Einstein condensates, con�ned in external potentials with di�erent shapes, have been investi-

gated.

The �rst chapter is devoted to generalities on Bose-Einstein condensation. A description

of non-interacting and interacting Bose-Einstein condensed gases has been presented. Using

the mean-�eld theory, we have derived time-dependent and time-independent GPEs that have

been used to describe the dynamics of conservative condensates. Some limitations of GPEs have

been discussed and some models that go beyond the mean-�eld GPE have been presented. The

�rst chapter ended up with a description of experimental procedures that lead to experimental

observations of Bose-Einstein condensates.

In the second chapter, we �rst presented some analytical methods used to examine the

dynamics of solitons in condensates. These are the variational approach, the modi�ed lens-

type transformation, the linear stability analysis, and the F-expansion method. The variational

approach has been used to study the stability of bright solitons in condensates. The modi�ed

lens-type transformation and the linear stability analysis have been used to investigate the

modulational instability of matter waves in condensates. Some numerical methods that are

usually used to con�rm analytical results have been described. We presented the normalized

gradient �ow with backward centered �nite di�erence scheme, the split-step Fourier method,

the fourth order Runge-Kutta in the interaction picture method, and the MATLAB toolbox

PDEPE.

The main results and contributions of this thesis are presented in the third chapter. We

started by considering the cubic GPE for attractive condensates trapped in an optical lattice

which shape can be varied between the Kronig-Penney and its inverse. Applying the variational

approach along with the Vakhitov-Kolokolov criterion, a generalized stability criterion for bright

solitons in condensates has been derived. In fact, for too large or too small values of the shape

parameter s, we have shown that if V0 < V0crit, there is one stable localized state and if

V0crit < V0, there are three localized states, two stable and one unstable, some of them present

a gap region where there is no solution as V0 increases (V0crit < V0). We have also proved that
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for all other values of the shape parameter s, if V0 < V0crit, there are three localized states,

two stable and one unstable, and for V0crit < V0, there are three localized states with a gap

region where the solution does not exist. This gap region gradually increases with V0 (in the

case V0crit < V0).

Besides, we have also investigated the generation and structure dynamics of Bose-Einstein

condensates via the modulational instability process. Performing a modi�ed lens-type transfor-

mation with a linear stability analysis, modulational instability criterions and gains of instability

have been derived within each condensate model equation used. For the case of the modi�ed

GPE I, it has been shown analytically and con�rmed by numerical calculations that the quan-

tum �uctuations, the strength of the parabolic background, and the exchange of atoms with

the thermal cloud enhance the loss of stability. Further numerical integrations of the modi�ed

GPE I have shown that the linear potential deviates the trail of trains of solitons, enhances the

appearance of these trains and reduces the lifetime of the solitons when the absolute value of γ is

increased. For the case of the modi�ed GPE II, it has been shown analytically and numerically

that the three-body interatomic interactions and small values of the strength of the attractive

and the expulsive external potentials enhance the instability of the system. Additional numerical

simulations have shown that for condensates in an attractive trap, the three-body interatomic

interactions signi�cantly changes the trail of solitons generated, and enhances the occurrence

of instability, while for condensates in a repulsive potential, the three-body interatomic inter-

actions break up the symmetry of the trail of solitons created, increase the number of solitons

produced via the activation of modulational instability and also alter the lifetime of solitons.

The modi�ed GPE III has allowed to investigate e�ects of the quantum �uctuations and the

three-body interatomic interactions on the dynamics of condensates beyond the mean-�eld pic-

ture. A systematical theoretical study of the modulational instability of trapless condensates,

trapped condensates in attractive and repulsive harmonic potentials has been carried out. Our

study has revealed that the three-body interatomic interactions enhance the appearance of

solitons, increase the number of solitons generated as well as their lifetime. A new initial con-

dition has also been introduced and has allowed to increase the number of solitons generated

via modulational instability. Besides, in two-component condensates, we have thoroughly an-

alyzed the e�ects of the three-body interspecies and intraspecies interactions of the onset of

instability, and on the dynamics of solitons that emerged due to modulational instability. The

analytical study has revealed that small attractive and large repulsive three-body interspecies

interactions enhance the instability. Moreover, attractive three-body intraspecies interactions

more destabilize the binary system, while repulsive ones smoothen its instability. For repul-

sive three-body intraspecies interactions, the two-component condensate system remains stable

for −χ1 < χ < χ1. Numerical results have proven that two-body interatomic interactions are

dominant near the center of the train of solitons, while e�ects of the three-body interatomic

interactions become important at the borders of the trains.
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Using the variational approximation, the stability criterion of bright solitons of the modi�ed

GPE II with a complex potential has been derived. For attractive and repulsive condensates, the

bright soliton solution is stable if the width and the initial density remain relatively small. By

means of numerical simulations, it has been shown that the linear potential induces oscillations

of solitons and can be used to stabilize the system. We have also constructed analytical solutions

of the GPE with time-dependent two- and three-body interatomic interactions, for condensates

con�ned in complex potentials. The analytical method that has been used to �nd out new

matter wave solutions is the F-expansion method along with some auxiliary equations. Many

families of solutions have been found among periodic, dark, bright, anti-kink-like and kink-like

pro�le solutions, generalized Jacobi elliptic function solutions and many others. The stability

of analytical solutions found in this thesis has been addressed analytically and numerically.

Intensive numerical simulations performed have shown that our analytical solutions are robust

such that these solutions may be observed in condensate experiments.

Open problems and future directions

Though this thesis presents many interesting new results, there still remains numerous

important issues that need to be addressed in future works.

• In the GPE picture, the gas is at zero temperature where thermal e�ects are neglected.

In this case, the number of particles in the condensate is a conserved quantity. However,

condensate experiments are conducted at �nite temperatures, and in some regimes, thermal

e�ects are no longer small. Hence, a fraction of the atomic cloud is not condensed and

couples to the condensed fraction. This situation may results to a coupling between the

condensate and a source of uncondensed atoms at the same temperature and to a sink.

Thus, the dynamics of the condensate is described by a dissipative Ginsburg-Landau GPE

[44, 45, 46] type. The dissipative Ginsburg-Landau GPE describes the dynamics of opened

condensates and have been applied to study some properties of atom lasers [44, 45, 46],

solitons and vortices in polariton condensates [47]. The in�uence of some quantum aspects,

such as the quantum �uctuations around the mean-�eld on the dynamics of atom lasers,

polariton condensates in the realm of the dissipative Ginsburg-Landau GPE should be

investigated.

• There is an increase of interest in the properties of spinor condensates, where phenomena

such as spin domains and spin textures, bright, dark, gap, bright-dark vector solitons,

and modulational instability [173] are studied. The e�ects of the three-body interatomic

interactions on the latter phenomena in binary and spinor condensates shall be examined.

• The study of the dynamics of condensates in optical lattices is an important developing

issue. We have investigated the stability of bright solitons in a versatile linear continuous

optical lattice. Many soliton properties need more investigations in continuous as well as
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discrete media [174]. Among problems awaiting further development and analysis are the

search for stable soliton complexes and vortices in higher dimensional nonlinear lattices,

the study of the soliton mobility and collisions in optical lattices, the e�ects of the commen-

surability and incommensurability in mixed linear- nonlinear lattices, the soliton formation

in random and quasiperiodic nonlinear landscapes. Such problems can be examined using

the general variable optical lattice used above.

• With the experimental realization of condensates made of 52Cr where long-range dipolar

interactions are important [175], there has been a growing interest on the dynamics of

dipolar condensates. The dynamics of dipolar condensates in complex potentials and in

versatile optical lattices should be examined. Also, there has been an increasing interest in

the study of extreme waves described as rogue. Rogue waves have been studied in di�erent

media such as water, nonlinear optics, and recently in Bose-Einstein condensates [96] with

only two-body interactions. E�ects of the three-body interactions on the dynamics of rogue

waves should be investigated in future works.

• Bose-Einstein condensates have been realized in accelerated potentials [174] where some

important phenomena are observed like matter waves transport, transition from coherent

structures to chaos [176]. There is also the possibility to control the dynamics of solitons

in condensates by managing the dispersion, and or the two- and three-body interactions

in space or in time [174]. The e�ects of the quantum �uctuations on the latter phenomena

shall be examined in future works.
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APPENDICES

APPENDIX A: Solutions of the general Bernoulli equation

Solutions of the general Bernoulli equation are [158]:

(A1) F11(ξ) = (− a
2b
)
1
2 ;

(A2) ξ0 > 0: F12(ξ) = − a
2b
[tanh[aξ − ln(ξ0)

2
] + 1]

1
2 ;

A(3) ξ0 < 0: F13(ξ) = − a
2b
[coth[aξ − ln(−ξ0)

2
] + 1]

1
2 .

APPENDIX B: Solutions of the Ricatti equation

Solutions of the Ricatti equation are [162]:

(B1) F21(ξ) = {
√

−1
M(λ−1)

tanh[
√
−M(λ− 1)ξ]}

1
λ−1 ;

(B2) F22(ξ) = {
√

−1
M(λ−1)

coth[
√
−M(λ− 1)ξ]}

1
λ−1 ;

(B3) F23(ξ) = {
√

−1
M(λ−1)

[
√

−1
M(λ−1)

tanh[
√
−M(λ− 1)ξ]± ısech[

√
−M(λ− 1)ξ]]}

1
λ−1 ;

(B4) F24 = {
√

−1
M(λ−1)

[

√
2
√

−1
M(λ−1)

tanh[
√

−M(λ−1)ξ]±ısech[
√

−M(λ−1)ξ]]
√
2−sech[

√
−M(λ−1)ξ]

]}
1

λ−1 ;

(B5) F25(ξ) = {−
√

−1
M(λ−1)

tan[
√
−M(λ− 1)ξ]}

1
λ−1 ;

(B6) F26(ξ) = {
√

−1
M(λ−1)

cot[
√
−M(λ− 1)ξ]}

1
λ−1 ;

(B7) F27 = {−
√

−1
M(λ−1)

[

√
2
√

−1
M(λ−1)

tan[
√

−M(λ−1)ξ]±ı sec[
√

−M(λ−1)ξ]
√
2+

√
5 sec[
√

−M(λ−1)ξ]
]}

1
λ−1 ;

(B8) F28 = { 1
−M(λ−1)ξ+p

}
1

λ−1 .

p is an arbitrary real constant.

APPENDIX C: Solutions of the Lenard equation

The Lenard equation admits the following solutions [163]:

(C1) b2 > 0, b4 < 0, b6 < 0, δ = b24 − 4b2b6 > 0: F3,1 =
√

2b2sech2(
√
b2ξ)

2
√
δ−(

√
δ+b4)sech2(

√
b2ξ)

, F3,2 =√
2b2csch2(±

√
b2ξ)

2
√
δ+(

√
δ−b4)csch2(±

√
b2ξ)

;

(C2) b0 = 0, b2 < 0, b4 ≥ 0, b6 < 0, δ > 0: F3,3 =
√

−2b2 sec2(
√
−b2ξ)

2
√
δ−(

√
δ−b4) sec2(

√
−b2ξ)

, F3, 4 =
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√
2b2 csc2(±

√
−b2ξ)

2
√
δ+(

√
δ+b4) csc2(±

√
−b2ξ)

;

(C3) b6 =
b24
4b2

, b2 > 0, b4 < 0: F3,5 =
√

−b2
b4

[1 + tanh(±
√
b2ξ)], F3,6 =

√
−b2
b4

[1 + coth(
√
b2ξ)];

(C4) b2 > 0: F3,7 =
√

−b2b4sech2(
√
b2ξ)

b24−b2b6[1+tanh2(
√
b2ξ)]

, F3,8 =
√

b2b4csch2(
√
b2ξ)

b24−b2b6[1+coth2(
√
b2ξ)]

, F3,9 = 4
√

b2 exp(2
√
b2ξ)

exp(4
√
b2ξ−4C4)−64b2b6

;

(C5) b2 > 0: F3,7 = 4
√

b2 exp(2
√
b2ξ)

exp((2
√
b2ξ−4C4)2−64b2b6)

;

(C5) b2 > 0, δ > 0: F3,10 =
√

2b2√
δ cosh(2

√
b2ξ)−b4

;

(C6) b2 > 0, δ < 0: F3,11 = 2
√

2b2√
−δ sinh(2

√
b2ξ)−b4

;

(C7) b2 < 0, δ > 0: F3,12 =
√

2b2√
δ sin(2

√
−b2ξ)−b4

, F3,13 =
√

2b2√
δ cos(2

√
−b2ξ)−b4

;

(C8) b2 > 0, b6 > 0; F3,14 =
√

−b2sech2(
√
b2ξ)

b4+2
√
b2b6 tanh(

√
b2ξ)

, F3,15 =
√

b2csch2(
√
b2ξ)

b4+2
√
b2b6 coth(

√
b2ξ)

;

(C9) b2 < 0, b6 > 0: F3,16 =
√

−b2 sec2(
√
−b2ξ)

b4+2
√
−b2b6 tan(

√
−b2ξ)

, F3,17 =
√

−b2 csc2(
√
−b2ξ)

b4+2
√
−b2b6 cot(

√
−b2ξ)

;

(C10) b2 > 0, b4 = 0: F18 = 4
√

±b2 exp(2
√
b2ξ)

1−64b2b6 exp(4
√
b2ξ)

;

(C11) b2 < 0, b4 > 0: F3,19 =

√
−8b2 tanh

2(±
√

−b2
3
ξ)

3b4[3+tanh2(±
√

−b2
3
ξ)]
, F3,20 =

√
−8b2 coth

2(±
√

−b2
3
ξ)

3b4[3+coth2(±
√

−b2
3
ξ)]
;

(C112) b2 > 0, b4 < 0: F3,21 =

√
8b2 tan2(±

√
b2
3
ξ)

3b4[3−tan2(±
√

b2
3
ξ)]
, F3,22 =

√
8b2 cot2(±

√
b2
3
ξ)

3b4[3−cot2(±
√

b2
3
ξ)]
.

b0 = 0 corresponds to F3,1 − F3,18; b0 =
8b22
27b4

and b6 =
b24
4b2

correspond to F3,19 − F3,22.

APPENDIX D: Genaralized Jacobi elliptic function solutions of the

Lenard equation

Generalized Jacobi elliptic function solutions of the Lenard equation [164]:

(D1) b0 = 1− k21 − k22 + k21k
2
2, b2 = −1+ 2k21 +2k22 − 3k21k

2
2, b4 = −k21 − k22 +3k21k

2
2, b6 = −k21k22:

F23 = c(ξ, k1, k2);

(D2) b0 = −1+k21−k22+k−2
1 k22, b2 = 2−k21+2k22−3k−2

1 k22, b4 = −1−k22+3k−2
1 k22, b6 = −k−2

1 k22:

F24 = d1(ξ, k1, k2).

c(ξ, k1, k2) is the generalized Jacobi elliptic cosine function, and d1(ξ, k1, k2) is the generalized

Jacobi elliptic function of the third kind. The generalized Jacobi elliptic functions can be written

in terms of the standard Jacobi elliptic functions as:

c(ξ, k1, k2) = k3cn(k3ξ, k4)/
√
1− k22cn2(k3ξ, k4),

d1(ξ, k1, k2) =
√
k21 − k22dn(k3ξ, k4)/

√
k21 − k22dn2(k3ξ, k4),

with k3 =
√

1− k22, k4 =
√

(k21 − k22)/(1− k22), 0 ≤ k2 ≤ k1 ≤ 1. The generalized Jacobi

functions degenerate to traditional functions in some limiting cases. For instance, if k2 → 0,

one can obtain the usual Jacobi elliptic function solutions: c(ξ, k1, 0)→ cn(ξ, k1), d1(ξ, k1, 0)→
dn(ξ, k1). If k1 → 1, k2 → 0, one obtains hyperbolic solutions: c(ξ, 1, 0), d(ξ, 1, 0)→ sech(ξ). For

k1 → 0, k2 → 0, the generalized Jacobi elliptic functions degenerate to trigonometric solutions:
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c(ξ, 0, 0)→ cos(ξ), d1(ξ, 0, 0)→ 1.

APPENDIX E: Solutions of the hyperbolic equation

Some solutions of the hyperbolic equation [164]:

(E1) c2 > 0, c0c2 − c22 > 0, c2 − 2c0 + 2
√
c0(c2 − c0) tan(

√
[c0(c2 − c0)]ξ) > 0:

sinh11[F (ξ)] = {
[c0−
√
c0(c2−c0) tan[

√
(c0(c2−c0))ξ]]2

c2[c2−2c0+2
√
c0(c2−c0) tan[

√
(c0(c2−c0))ξ]]

} 1
2 ;

(E2) c2 > 0, c0c2 − c22 < 0, c2 − 2c0 + 2
√
c0(c2 − c0) cot[

√
[c0(c2 − c0)]ξ] > 0:

sinh12[F (ξ)] = {
[c0−
√
c0(c2−c0) cot[

√
[c0(c2−c0)]ξ]]2

c2[c2−2c0+2
√
c0(c2−c0) cot[

√
[c0(c2−c0)]ξ]]

} 1
2 ;

(E3) c2 > 0, c0c2 − c20 < 0, c2 − 2c0 − 2
√
c0(c2 − c0) coth[

√
−[c0(c2 − c0)]ξ] > 0:

sinh13[F (ξ)] = {
[c0+
√

−c0(c2−c0) coth[
√

−[c0(c2−c0)]ξ]]2

c2[c2−2c0−2
√

−c0(c2−c0) coth[
√

−[c0(c2−c0)]ξ]]
} 1

2 ;

(E4) c2 < 0, c0c2 − c20 < 0, c2 − 2c0 − 2
√
c0(c2 − c0) tanh[

√
−[c0(c2 − c0)]ξ] < 0:

sinh13[F (ξ)] = {
[c0+
√

−c0(c2−c0) tanh[
√

−[c0(c2−c0)]ξ]]2

c2[c2−2c0−2
√

−c0(c2−c0) tanh[
√

−[c0(c2−c0)]ξ]]
} 1

2 .

APPENDIX F: Expression of χ1

The expression of the parameter χ1 takes the form:

A1 = 2n1n2(4n
2
1η + 4n2

2η + 6n1n2η + n1n2 + n1n2η2)

A2 = g1n
2
1n2η−4gn2

1n2η+g2n1n
2
2η−g1n11n2η

2−4gn1n
2
2η+2χ1n

3
1n2η−2χ1n

3
1n2η

2−2χ2n
3
2n1+

2χn1n
3
2η − g2n1n2

2

A3 = −2g21n4
1n

2
2η

3+2g2n3
1n

3
2η

2−2g2n2
1n

4
2η−8χ2

1n
6
1n

2
2η

3−2g1gn4
1n

2
2η

2−4g1g2n3
1n

3
2η

2−2g1gn3
1n

3
2η

2

A4 = −8g1χ1n
5
1n

2
2η

3 + 8g1χ2n
3
1n

4
2η

2 − 2gg2n
3
1n

3
2η

2 + 2gg1n
4
1n

2
2η

3 − 4gχ1n
5
1n

2
2η

3 + 4gχ1n
5
1n

2
2η

3 +

4gχ2n
3
1n

4
2η

A5 = −4gχ2n3
1n

4
2η

2 + 2gg2n
3
1n

2
2η − 2gg2n

2
1n

4
2η

2 + 8g2χ1n
4
1n

3
2η

2 − 8g2χ2n
2
1n

5
2η + 2gg1n

3
1n

3
2η

3 −
4gχ1n

4
1n

3
2η

2

A6 = 4gχ1n
4
1n

3
2η

3 + 4gχ2n
2
1n

2
2η − 4gχ2n

2
1n

5
2η

2 + 2gg2n
2
1n

4
2η + 16χ1χ2n

4
1n

4
2η

2 + 8χ1χ2n
5
1n

3
2η

2 +

4g2χ1n
5
1n

2
2η

2

A7 = −4g2χ2n3
1n

4
2η+4g1χ2n

4
1n

3
2η

2+2g1g2n
4
1n

2
2η

2−4g1χ1n
6
1n2η

3+8χ1χ2n
3
1n

5
2η

2+4g2χ2n
3
1n

4
2η

2−
4g2χ2n1n

6
2η

A8 = 4g1χ2n
2
1n

5
2η

2 +2g1g2n
2
1n

4
2η

2− 4g1χ1n
4
1n

3
2η

3− 8χ2
2n

2
1n

6
2η− 4χ2

1n
7
1n2η

3− g21n5
1n2η

3− g22n3
1n

3
2η

A9 = −4χ2
2n

3
1n

5
2η − 4χ2

1n
5
1n

3
2η

3 − g21n3
1n

3
2η

3 − g22n1n
5
2η − 4χ2

2n1n
7
2η − g2n3

1n
3
2η − g2n3

1n
3
2η

3

χ1 = 1
A1
[A2 + 2(A3 + A4 + A5 + A6 + A7 + A8 + A9)

1
2 ]
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(Received 27 April 2014; revised manuscript received 25 July 2014; published 7 April 2015)

By using the F-expansion method associated with four auxiliary equations, i.e., the Bernoulli equation, the
Riccati equation, the Lenard equation, and the hyperbolic equation, we present exact explicit solutions describing
the dynamics of matter-wave condensates with time-varying two- and three-body nonlinearities. Condensates are
trapped in a harmonic potential and they exchange atoms with the thermal cloud. These solutions include the
generalized Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions.
In addition, we have also found rational function solutions. Solutions constructed here have many free parameters
that can be used to manipulate and control some important features of the condensate, such as the position, width,
velocity, acceleration, and homogeneous phase. The stability of the solutions is confirmed by their long-time
numerical behavior.

DOI: 10.1103/PhysRevE.91.042902 PACS number(s): 05.45.Yv, 03.75.Lm, 03.75.Kk, 34.20.Cf

I. INTRODUCTION

The dynamics of Bose-Einstein condensates (BECs)
trapped in a harmonic potential and exchanging atoms with
the thermal cloud has been a fascinating topic and has
attracted much attention in recent theoretical and experimental
works [1]. It is well known that the dynamical behavior
of a condensate in the mean-field limit is well described
by the Gross-Pitaevskii equation (GPE) [1], which is a
nonlinear Schrödinger equation with an external potential.
Basically, the GPE is a three-dimensional (3D) equation,
but in some cases, it may be reduced to a one-dimensional
(1D) form. This is possible when the condensate is frozen
in two transverse directions by a stronger potential. The
dimensionless governing equation of cigar-shaped (1D) BECs
with two- and three-body nonlinearities can be written as [1]

ı�t (x,t) + c�xx − g(t)|�(x,t)|2�(x,t)

−χ (t)|�(x,t)|4�(x,t) − (αx2 + ıγ )�(x,t) = 0. (1)

In Eq. (1), the time t and the spatial coordinate x are scaled
in the harmonic-oscillator units. The time-dependent cubic
nonlinearity coefficient g(t) characterizes the intensity of the
two-body interactions. The quintic nonlinearity coefficient
χ (t) characterizes the strength of the three-body interactions.
Generally speaking, χ (t) is a complex quantity, but its
imaginary part can be neglected since it is very small compared
to the real part [2,3]. Thus, in the following, we consider
that χ (t) is a real-valued expression. Time variations of
the cubic and the quintic nonlinearities can be realized in
condensates by magnetically or optically induced Feshbach
resonances [1]. The parameter α represents the strength of
the external magnetic or optical harmonic confinement. The
complex quantity ıγ , which is a nonconservative term, is

*Author to whom all correspondence should be addressed:
belobodidier@gmail.com

introduced phenomenologically in Eq. (1). It takes into account
the interaction between the condensate and the noncondensed
fraction of the atomic vapor. When γ > 0, the density of
the condensate grows due to an injection of atoms into the
condensate from the thermal background or by a pumping
mechanism from an atomic reservoir. For γ < 0, the density
of the condensate decays since atoms are expelled out of the
harmonic potential. This dissipative process can be explained
by inelastic collisions in the BEC due to dipolar relaxation [1].
Hence, γ accounts for the exchange of atoms between the pure
condensate and its surrounding thermal background. The rate
of exchange of atoms is characterized by a temporal scale ζ ,
which is the time interval between subsequent events of adding
or removing individual atoms from the atomic ensemble. The
mean-field approximation GPE for BECs is applicable if ζ

is negligible, i.e., ζω⊥ � 1, which is verified for typical
configurations where ω⊥ = 2π × 100 Hz and ζ ∼ 10 μs [4].
In the absence of the three-body interactions χ (t) = 0, Eq. (1)
coincides with the cubic GPE with a gain or loss term (γ )
employed in Refs. [5,6]. In Ref. [6], the cubic GPE with the
gain term has been used to model the condensate growth in a
trap, and it appears that as the condensate grows, its center
of mass oscillates in the trap. In addition, the cubic GPE
with the gain or loss term has been proposed to describe the
dynamics of atom lasers [7], or light waves in fiber optics in the
absence of harmonic confinement [8]. Some exact solutions
of the cubic GPE with the gain or loss term γ have been
reported [9]. In the case in which χ (t) = γ = 0, Eq. (1)
reduces to the well-known nonlinear Schrödinger equation.
In such a case, there exists many kinds of exact solutions with
the Hirota method, the inverse scattering method, the Darboux
transformation, and the Lax pairs technique for describing
bright-bright solitons, dark-dark solitons, bright-dark solitons,
and so on in the existing literature.

Equation (1) (and its variant forms) is a nonlinear evolution
equation, and it also appears in many fields in physics such
as nonlinear optics, biophysics, fluids mechanics, and so on.
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It is rather difficult to solve Eq. (1) analytically, but in recent
years many powerful and direct methods for finding exact
solutions of Eq. (1) have emerged. Among them are the
Bäcklund transformation [10], the tanh-function method [11],
the extended tanh-function method [12], the homogeneous
balance method [13], the auxiliary equation method [14], the
F-expansion method [15], just to name a few. Exact solutions
are of a relevant importance in physics in general, since as
mathematical models they provide better understandings of
physical models, and they may lead to physical applications.
In the context of BECs, Mohamadou et al. [16] have recently
derived exact solutions of Eq. (1) by using the extended-
tanh function method with special solutions of an auxiliary
equation, i.e., the Lenard equation. In addition, using the same
method developed in Ref. [16], exact solutions of Eq. (1) with
different geometrical traps have also been proposed by Wamba
et al. [17] and Belobo et al. [18]. We recall that in Ref. [17],
the trapping potential consists of a linear magnetic field and a
time-dependent laser field, while in Ref. [18] the condensate is
confined by a linear field and exchanges atoms with the thermal
cloud. If we want to better understand the dynamical behavior
of BECs trapped in a harmonic potential and exchanging atoms
with the thermal cloud, a detailed investigation of Eq. (1) using
more powerful methods to obtain more types of exact solutions
containing soliton solutions is needed. Hence, using another
method may lead to other solutions of Eq. (1).

The aim of this work is to construct exact solutions of Eq. (1)
in the framework of the F-expansion method, combined with
four types of auxiliary equations, i.e., the Bernoulli equation,
the Riccati equation, the Lenard equation, and the hyperbolic
equation.

The rest of the paper is organized as follows. In Sec. II, we
present the model. Section III is devoted to deriving exact
solutions of Eq. (1) by applying the F-expansion method,
combining it with four types of auxiliary equations. We
discuss some issues of our exact solutions in Sec. IV. Then,
we show that it is possible to significantly increase the
number of solutions obtained in Ref. [16] by using other
solutions of the Lenard equation. Finally, Sec. V concludes the
paper.

II. KINEMATICS OF THE CENTER OF
MASS OF THE CONDENSATE

To derive exact solutions of Eq. (1), we need to transform
Eq. (1) into a more tractable and manageable form. Toward
that end, we follow Ref. [16] and use the following modified
lens-type transformation:

�(x,t) = D(t)	(X,T ) exp[η(t) + ıf (t)x2], (2)

where T is a function of time t , and X = x
l(t) . The func-

tion f (t) represents the nonlinear frequency shift, and η(t)
(which takes into account the exchange of atoms between
the condensate and its surroundings) represents the growth
[η(t) > 0] or the loss [η(t) < 0] of atoms. The preservation
of the scaling implies that dT

dt
= 1

l(t)2 . Further, we request

that

df (t)

dt
= −4cf (t)2 − α(t), (3)

dD(t)

dt
= −2cf (t)D(t), (4)

dl(t)

dt
= 4cf (t)l(t), (5)

dη(t)

dt
= γ. (6)

Inserting Eq. (2) into Eq. (1) and using Eqs. (3)–(6) yields
the reduced form of Eq. (1) in the rescaled variables X and T

(see [16]),

ı
∂	(X,T )

∂T
=−c

∂2	(X,T )

∂X2
− P 2|�(X,T )|2	(X,T )

+χ0|	(X,T )|4	(X,T ), (7)

with D(t) = [|g(t)|l(t)2 exp[2η(t)]]−
1
2 , χ (t) = χ0g(t)2l(t)2,

P 2 = −sgn[g(t)]. The two-body interactions are attractive if
P 2 = +1, but they are repulsive when P 2 = −1. Equation (7)
is a cubic-quintic GPE with constant parameters. The exact
solution of Eq. (1) takes the form [16]

�(x,t) =
√

|G(t)|	(X,T )

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (8)

where G(t) = g(t) exp[2η(t)], η(t) = ∫ t

0 γ dt ′ + η0, η0 being
a constant. Solution (8) is obtained by assuming that l(t) =
|G(t)|−1, T (t) = ∫ t

0 G(t ′)2dt ′, f (t) = 1
4c

d
dt

ln |G(t)|.
Exact explicit solutions of Eq. (1) are obtained from the

solution (8) if the explicit form of the function 	(X,T ) is
given. To derive explicit expressions of 	(X,T ), we assume
that it takes the amplitude-phase form and can be written as

	(X,T ) = Q(ξ ) exp[iθ (X,T )], (9)

where Q represents the amplitude part and θ accounts for the
phase part. The variables ξ and θ have the forms

ξ = k0X − ω0T , θ (X,T ) = kX − ωT . (10)

Parameters k0, k, ω0, and ω are real constants that account for
width, linear frequency shift, velocity, and the homogenous
phase of the wave function 	(X,T ), respectively. Substituting
Eqs. (9) and (10) into Eq. (7), and then separating the real and
the imaginary parts, respectively, yields the following set of
ordinary differential equations with respect to Q:

(ω − ck2)Q + Q3 − χ0Q
5 + ck0

d2Q

dξ 2
= 0, (11)

(ω0 − 2ckk0)
d2Q

dξ 2
= 0. (12)

Assuming the constraint

ω0 = 2ckk0 (13)

means that we only need to solve Eq. (11). Thus, in the
following, we focus our attention on deriving solutions of
Eq. (11). We will assume that the function Q is expand-
able in a polynomial function F (ξ ), where F satisfies an
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auxiliary equation. So far, there are some important physical
properties that will be exhibited by the complete solutions
to be constructed. For example, one may be interested in
the dynamics of the center of mass of the condensate for a
specific solution. The properties of the center of mass help us
to understand the behavior of the condensate at mean. In the
rescaled frame, the position, velocity, and acceleration of the
condensate center of mass are XCM = 2ckT , ẊCM = 2ck, and
ẌCM = 0, respectively. In terms of the dimensionless physical
variables, the position, velocity, and acceleration of the center
of mass are xCM(t) = (ck/γ ) sinh(2γ t), ẋCM = 2ck cosh(2γ t),
and ẍCM = 4ckγ sinh(2γ t), respectively. Hence, the behavior
at mean of the condensate is affected by the rate of exchange of
atoms between the condensate fraction and the uncondensed
fraction, and by the linear frequency shift of the initial
condition. These features, that are nowadays manageable in
BEC experiments with a high accuracy, allow us to understand
the influence that the interplay between the condensate and the
uncondensed fraction has on the stability and the dynamics
of the condensate. At initial time, the center of mass of the
condensate is at the center of the trapping potential with the
initial velocity 2ck without any acceleration. As time increases,
the velocity and acceleration of the center of mass increase
for negative and positive values of γ . This implies that the
exchange of atoms with the thermal background accelerates the
center of mass, such that the temperature of the core increases
with time, and it may lead to the collapse of the condensate.
However, for small values of γ , the acceleration and velocity of
the core shall remain small such that the growth of the velocity
induced by the atoms pumping, or the loss mechanisms, will
be negligible, avoiding the collapse of the condensate. The
linear frequency k may also be used to control the acceleration
and the velocity of the condensate’s core. In this work, one
has two powerful tools to avoid the collapse of the condensate.
The position of the center of mass as time evolves also depends
on the sign of the linear frequency k, such that the condensate
moves toward the left side to the axial potential if k < 0, while
the condensate moves toward the right side of the potential
for positive values of k. The features of the parameters γ

and k may be used in some BEC applications such as the
realization of the atomic laser where the velocity of atoms can
be tuned by proper choices of the linear frequency and the
rate of rate of exchange of atoms between the condensate and
its surroundings. Another potential application is the transport
of the condensate in experiments driven by the parameters γ

and k. According to Newton’s second law, the condensate can
be considered as a classical particle moving in the effective
potential Ueff = (−2ck/γ ) cosh(2γ t), with total energy E =
2[ck cosh(2γ t)]2 − (2ck/γ ) cosh(2γ t), its only equilibrium
point being located at the center of the trap, x = 0.

III. EXACT SOLUTIONS

A. The Bernoulli equation as an auxiliary equation

We suppose that the function Q has the following form:

Q(ξ ) =
M∑
i=0

aiF
i(ξ ), (14)

where M is a positive integer, ai are real constants to be
determined later, and the function F is the solution of the
general Bernoulli equation,

dF

dξ
= aF (ξ ) + bFλ(ξ ), (15)

the parameters a, b, and λ being real constants that will be also
determined later, with λ �= 1. Introducing Eq. (14) into Eq. (11)
and using the homogeneous balance between the highest-order
derivative and nonlinear terms, respectively, yields λ = 2M +
1. Since λ �= 1, then M � 1. Let us consider the simple case
in which M = 1 and λ = 3. We have

Q(ξ ) = a0 + a1F (ξ ),
dF

dξ
= aF (ξ ) + bF 3(ξ ). (16)

Inserting Eq. (16) into Eq. (11) and collecting coefficients of
powers F i(ξ ), then setting each coefficient to zero, yields a set
of overdetermined algebraic equations for the unknowns a0,
a1, a, b, and ω. Solving this set of overdetermined equations
with the aid of MAPLE leads to the following solutions:

a0 = 0, (17)

a = −√
3

4k0
√

c
√

χ0
, (18)

b = ±a2
1
√

χ0

k0

√
3c

, (19)

ω = −3 + 16ck2χ0

16χ0
. (20)

Equations (17) and (18) imply that c > 0 and χ0 > 0, meaning
that solutions are valid only for repulsive three-body interac-
tions. One infers from Eqs. (19) and (20) that the amplitude
and the homogeneous phase of the wave function are sensitive
to the strength of the three-body interaction χ (t). It is thus
possible to tune to the desired values both the amplitude
and the phase of the condensate externally by means of the
Feshbach resonance technique. Inserting the solutions of the
general Bernoulli equation [Eq. (15)] for λ = 3 [19] given in
Appendix A into Eq. (16) leads to an explicit expression of Q.
Hence, exact explicit solutions of Eq. (1) are

�1j (x,t) =
√

|G(t)|a1F1j (ξ ) exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
,

j = 1,2,3. (21)

Equations (16)–(20) and the solutions of Appendix A imply
that the heights of solutions (21) are proportional to the
strength of the cubic nonlinearity, but inversely proportional
to the strength of the quintic nonlinearity. Therefore, the
experimenter knows how to manage the cubic and quintic
nonlinearities in order to obtain a solution with an assumed
amplitude. The density of a solution is subjected to a growth
in the feeding regime, while the density decays when atoms
are removed from the condensate. This feature has been
predicted in Refs. [16,18]. In addition, the behavior of the
density of the condensate is unchanged both for attractive and
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FIG. 1. (Color online) Spatiotemporal evolution of the wave
function of Eq. (21) for j = 2. The parameters selected are α =
−0.005, k0 = 1, χ0 = 1

12 , a1 = 1, c = 0.5, η0 = 0, g(t) = −1, and
γ = −0.005. (a) k = 0.01, density profile of an antikink soliton with
initial speed 0.01. (b) k = −0.5, effect of the linear frequency shift
on the direction of the moving antikink soliton. The initial speed of
the soliton is equal to |k|, and the direction of the soliton depends on
the sign of k.

repulsive condensates. From (21), one understands that we
have constructed three bunches of solutions of Eq. (1). To
represent some samples of the solutions (21), we choose the
following relevant physical parameters: α = −0.005, c = 0.5,
and η(t) = γ t with η0 = 0, used in some experimental and
theoretical studies [16–21]. (We remind the reader that a
slightly expulsive parabolic harmonic potential, negative value
of α was used in the experiments of Refs. [20,21] to produce
solitons in condensates.) We display in Fig. 1(a) the dynamics
of the condensate’s wave function, where we have set j = 2
in solution (21) with γ = −0.005, χ0 = 1/12, and k = 0.01.
In this case, the solution (21) is an antikink soliton with initial
velocity 0.01. The influence of the linear frequency shift on the
direction of the condensate can be seen in Fig. 1(b), where k =
−0.5. The moving antikink soliton evolves toward the left side
of the cigar axis and its initial velocity amounts to 0.05. Kink
and antikink solitons have been predicted in single condensates
with two- and three-body nonlinearities in different trap
geometries [16,17,18] and in binary condensates with cubic
nonlinearities [22]. Other nonlinear media also allow the
existence of kink and antikink solitons such as a layer of binary
liquid heated from below, where oscillatory convection sets in
via a subcritical bifurcation described by the cubic-quintic
Ginsburg-Landau equation [23], optical fibers with elliptical
birefringence for the evolution of the state of polarization of
counterpropagating waves [24], the nonlinear dispersive fiber
optics for the description of wave propagation by including the
effects of group-velocity dispersion, self-phase-modulation,
stimulated Raman scattering, and self-steepening [25]. The
analytical expression of the antikink soliton solution found in
Ref. [16] is different from the solution obtained in the present
work by using the Bernoulli auxiliary equation. Moreover,
with only fewer parameters, i.e., k and γ , we can characterize
the behavior of the condensate at mean.

B. The Riccati equation as an auxiliary equation

We assume that the function Q takes the form

Q(ξ ) =
N∑

i=−N

aiF
i(ξ ), (22)

where the function F is the solution of the following Riccati
equation [26]:

dF

dξ
= MFλ(ξ ) + ε

1 − λ
F 2−λ, ε = ±1. (23)

Inserting Eq. (22) into Eq. (11) and considering the homo-
geneous balance between the highest-order derivative and
nonlinear terms, respectively, we obtain λ = 2N + 1. Let us
now consider the simple case in which N = 1 and λ = 3.
Equations (22) and (23) become

Q(ξ ) = a0 + a1F (ξ ) + a2F
−1(ξ ),

dF

dξ
= MF 3(ξ ) − ε

2
F (ξ ). (24)

Introducing Eqs. (24) into Eq. (11), collecting coefficients of
powers F i(ξ ), and then setting each coefficient to zero, yields
a set of overdetermined algebraic equations for the unknowns
a0, a1, M , and ω. Solving these equations with the aid of
MAPLE, we obtain

a11 = 1

8c
√

2k0

(
3c

χ0

) 3
4

, a21 =
√

k0

2

(
3c

χ0

) 3
4

,

(25)

M1 = 3

128ck2
0χ0

, ω1 = ck2 + 3ε − 27

128χ0
,

a12 =−a11, a22 = −a21, M1, ω1, (26)

a13 = −ıa11, a23 = ıa21, M1, ω1, (27)

a14 = ıa11, a24 = −ıa21, M1, ω1, (28)

a15 = a11, a25 = a21, − M1, ω2 = ck2 − (3ε + 27)

128χ0
,

(29)

a16 = −a11, a26 = −a21, −M1, ω2, (30)

a17 = −ıa11, a27 = ıa21, −M1, ω2, (31)

a18 = ıa11, a28 = −ıa21, −M1, ω2, (32)

a0 = 0. (33)

Equation (28) implies that c > 0 and χ0 > 0 (the three-body
interactions are repulsive). Using Eqs. (24)–(33), we derive
exact solutions of Eq. (1),

�2nm(x,t) =
√

|G(t)|[a1nF2m(ξ ) + a2nF
−1
2m (ξ )] exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (34)

where n,m are integers, with n = 1,8, and m = 1,4 if ε =
−1, m = 5,7 if ε = +1, and m = 8 if ε = 0. The solutions
of the Riccati equation are given in Appendix B [26].
Equations (25)–(34) imply that the amplitudes of solutions (34)
are highly dependent on the values of the width and the strength
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FIG. 2. (Color online) Propagation of the matter wave conden-
sate of the solution given by Eq. (34). (a) Density profile of a growing
periodic solution for n = 5, m = 7, and ε = +1. (b) Density profile
of a moving kink soliton for n = 5, m = 3, and ε = −1. In both cases,
the other parameters are the same as in Fig. 1(a), except χ0 = 0.1,
γ0 = 0.005.

of the quintic nonlinearity, which is also related to the atom
feeding or loss parameter γ . The phases of solutions (34)
are characterized by χ0 and the free parameter k. Hence,
after fixing the values of k0, χ0, and γ , it is possible to
predict space-time evolution of the amplitude and the phase
of solutions (34). Since the latter parameters can be precisely
controlled externally in current BEC experiments, we infer
that solutions (34) are likely to be observed in current or
future experiments with condensates. We visualize in Figs. 2(a)
and 2(b) the spatiotemporal evolutions of the wave function
for two different cases of solution (34). In Fig. 2(a), we
have set in Eq. (34) n = 5, m = 7, and ε = 1. We obtain a
multiple bright soliton solution periodically spaced on the axial
potential. The dynamical characteristics of the center of mass
of this solution are the same as those of Fig. 1(a) since the
same parameters were used. Multiple bright soliton solutions
are usually obtained in condensates via the modulational
instability. In the case of Eq. (1), multiple bright solitons
were generated numerically in Ref. [27]. Here, we give an
analytical expression of a multiple bright soliton solution in
the framework of Eq. (1). Such moving periodic solutions may
be observed in optical lattices, and they can be used to insert
atoms onto optical devices, such as atom chips, waveguides,
and mirrors [18,28]. Figure 2(b) portrays the spatiotemporal
evolution of a kink soliton obtained for n = 5, m = 3, and
ε = −1. This is a kink soliton solution of Eq. (1) that is
different from that derived in Ref. [16].

C. The Lenard equation as an auxiliary equation

We search a function Q that has the form

Q(ξ ) =
N∑

i=0

aiF
i(ξ ), (35)

the function F satisfying the Lenard equation [29]

dF

dξ
=

√
b0 + b2F 2(ξ ) + b4F 4(ξ ) + b6F 6(ξ ). (36)

Solutions of (36) are given in Appendix C. Substituting
Eq. (35) into Eq. (11) and considering the homogeneous bal-
ance between the highest-order derivative and nonlinear terms,
respectively, we obtain N = 1. Inserting Q into Eq. (11),

collecting coefficients of powers F i(ξ ), and then equating each
coefficient to zero, yields a set of overdetermined algebraic
equations for the unknowns a0, a1, b4, and ω. Solving them
with MAPLE, we have

a11 =
√

k0

(
cb6

χ0

) 1
4

, b4 = − 1

2ck0

√
2cb6

χ0
, (37)

a12 = −a11, b4, (38)

a13 = ıa11, −b4, (39)

a14 = −ıa11, b4, (40)

a0 = 0, ω = ck2−ck2
0b2. (41)

Equation (37) implies that k0 must be positive, and both χ0

and b6 must have the same sign. Inserting Eqs. (37)–(41) into
Eq. (35) yields explicit solutions of Q, which in turn are used
to obtain exact solutions of Eq. (1), which are

�3nm(x,t) =
√

|G(t)|a1nF3,m(ξ ) exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (42)

where n,m are integers, with n = 1,4, and m = 1,18 for b0 =
0 and m = 19,22 for b0 = 8b2

2
27b4

and b6 = b2
4

4b2
. Relations (37)–

(40) mean that the amplitudes of solutions (42) depend on the
values of k0 and χ0. Equation (41) implies that the phases of
the solutions (42) depend on the values of k and k0. After the
choice of the parameters bi (i = 0,1,2,3,4,5,6) related to the
solution pattern needed, it is possible to precisely manipulate
the amplitude and the phase of solutions only with the selection
of the values of the width (1/k0), the linear frequency k, the
sign of χ0, and the rate of exchange γ . There are many types
of solutions of Eq. (1) that can be derived from Eq. (42).
We present in Fig. 3(a) a bright soliton solution of (42) for
n = 1, m = 1, with b2 = 2, b6 = −2, χ0 = −0.1, and g(t) =
1. The other parameters are the same as in Fig. 1(a). Bright
solitons have been reported in condensate experiments with
a constant two-body nonlinearity [20,21]. The dynamics of
the core of this soliton are the same as that of the solution
of Fig. 1(a). The parameter k0 plays two important roles in
the characterization of the solutions: (i) generally speaking,
the width of the condensate is 1/k0; (ii) for each solution

FIG. 3. (Color online) (a) Sample of a bright soliton solution
derived from solution (42) for n = 1, m = 1 with k0 = 1, χ0 = −0.1,
b2 = 2, and b6 = −2. (b) Same parameters as in panel (a) except
k0 = 0.1. The parameter k0 affects both the width and the amplitude
of the solution. The other parameters as the same as in Fig. 1(a).
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derived from Eq. (42), the amplitude is proportional to
√

k0

as depicted by Eq. (37). A comparison between Figs. 3(a)
and 3(b) corroborates the latter effects due to k0.

One important class of physically relevant solutions of
Eq. (1) is the Jacobi elliptic function solutions that are missed
in the above development. We need to remedy this by including
the generalized Jacobian elliptic solutions of Eq. (1). Toward
that end, we resort the same procedure and consider the
following special solutions of the Lenard equation [30–33],
which can be found in Appendix D. The generalized Jacobi
exact solutions of Eq. (1) can then be expressed as follows:

�3nm(x,t) =
√

|G(t)|a1nF5,m(ξ ) exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (43)

where n,m are integers, with n = 1,4 and m = 18,19. These
solutions have to respect the constraint imposed by the
expression of b4 given by Eq. (37), and they are valid only for
negative values of χ0. Thus, the generalized Jacobi function
solutions (43) are valid provided that the quintic interatomic
interactions are attractive, and they share the same features
with solutions (42) regarding the behavior of the amplitudes
and the phase. Subsequently, k0 can be written in terms of

the periods k1 and k2 as k0 = − 1
2cb4

√
2cb6
χ0

, with b4 and b6

chosen as in Eq. (37) or in Appendix D. In other words,
once two periods k1,k2 are fixed, the width 1/k0 and the
strength of the three-body interatomic interactions are derived.
It is interesting to notice that, except for the atom feeding
or loss mechanism that is controlled by γ , all important
features of the solutions (43) depend on the values of the
periods k1,k2. We plot in Fig. 4(a) the density profile of the
generalized Jacobi cosine function, and in Fig. 4(b) the density
profile of the generalized Jacobi function of the third kind,
in the feeding regime γ = 0.001, for repulsive condensates
g = 1. As periodic solutions, the generalized Jacobi elliptic
function solutions may be observed for BECs in optical
lattices [28]. Some particular solutions of (43), the Jacobi
elliptic function solutions, have been reported in Jacobian
elliptic potentials for condensates with constant cubic and
cubic-quintic nonlinearities [34].

FIG. 4. (Color online) Spatiotemporal evolution of density pro-
files of generalized Jacobi elliptic solutions of Eq. (1). (a) c(ξ,k1,k2),
(b) d1(ξ,k1,k2). Parameters are α = −0.005, k1 = 0.6, k2 = 0.2,
χ0 = −k2

1k
2
2 , γ = 0.001, k = 0.1, and g = 1.

D. The hyperbolic equation as an auxiliary equation

The function Q is assumed to have the form

Q(ξ ) =
N∑

i=0

ai sinhi[F (ξ )], (44)

where the function F satisfies the hyperbolic equation [35]

dF

dξ
= c0 + c2 sinh2(ξ ). (45)

The solutions of the hyperbolic equation [35] are presented
in Appendix E. Substituting Eq. (44) into Eq. (11) and
considering the homogeneous balance between the highest-
order derivative and nonlinear terms, respectively, we obtain
N = 1. Then, introducing the function Q into Eq. (11),
collecting all coefficients of powers sinhi[F (ξ )], and setting
each coefficient to zero yields a set of overdetermined algebraic
equations for the unknowns a0, a1, c0, and ω. Solving them
with MAPLE, we obtain

a11 =
√

k0c2

(
3c

χ0

) 1
4

,

ω1 = k0c2

√
3c

χ0
+ ck2 + 3ck2

0c
2
2

4
− 3

16χ0
, (46)

c01 =
−

√
3c
χ0

− 2ck0c2

4ck0
,

a12 = −a11, ω1, c01, (47)

a13 = ıa11, ω2 = −k0c2

√
3c

χ0
+ ck2 + 3ck2

0c
2
2

4
− 3

16χ0
,

c02 =
√

3c
χ0

− 2ck0c2

4ck0
, (48)

a14 =−ıa11, ω2, c02, (49)

a0 = 0. (50)

Proceeding in a similar way as above, we obtain exact solutions
of Eq. (1) as

�4nm(x,t) =
√

|G(t)|a1n sinh1,m[F (ξ )] exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (51)

where n,m = 1,2,3,4. From Eqs. (46)–(50), one can realize
that features of the solutions (51) are related to some
experimental parameters such as the strength of the quintic
interatomic interactions, the rate of exchange of atoms with
the thermal background γ , and the linear frequency shift
k. For instance, the amplitudes of solutions (51) depend on
the width (1/k0) and the strength of the quintic interatomic
interactions χ0 (which depends on the interplay between the
condensate and the thermal vapor), whereas the homogeneous
phase depends on the width, linear phase, and χ0. As already
stated above, it is possible to control the amplitude and phase
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of a solution in current condensate experiments once 1/k0, k,
and γ have been fixed. In addition, the kinematics of the center
of mass of the solutions (51) are also manageable externally in
experiments, as mentioned before. We expect that the present
work will motivate the quest of hyperbolic solutions in BEC
experiments and applications.

E. Discussions

In the latter section, we have constructed exact solutions
of Eq. (1) using a lens-type transformation with constraints
[Eqs. (3)–(6)] also used in Ref. [16]. However, due to the
method used in this work, the kinematics of the center of
mass of our solutions is rather different from that predicted in
Ref. [16]. In addition, we provide many types of solutions that
are related to important experimental parameters with BECs.
We have also proposed hyperbolic solutions and generalized
Jacobi function solutions.

It is well known that the inclusion of quintic nonlinearity
alters the behavior of matter-wave condensates. One important
issue is to show what effects the quintic nonlinearity has
on the formation of matter-wave condensates. To single out
these effects, we consider the solutions with and without
quintic nonlinearity for the four types of auxiliary equations.
In the limit case of vanishing three-body interactions, the
solutions found above actually have χ (t) = 0 counterparts,
since they exist for any arbitrary nonzero small values of
χ (t), however their counterparts for χ (t) = 0 cannot be
expressed analytically simply due to divergence to infinity
of some parameters [see Eqs. (18), (25), (37), and (46) for
example]. Therefore, we resolve Eq. (1) again with χ (t) =
0. For the case of the Bernoulli equation, the analytical
solution is given by Eq. (21), where a1F (ξ ) is replaced by
a0 + a1F (ξ ), with a0 = ±ck0a/

√−2c, a1 = ±√−2ck0b, and
ω = 1

2c(k2
0a

2 + 2k2), a and b being free real parameters. The
solutions exist only if the dispersion coefficient c is negative.
Such solutions do not describe the evolution of matter-wave
condensates, but they may rather describe the evolution of light
waves in fiber optics with application to telecommunication
transmissions. In addition, from Eq. (18) we know that the
solutions with nonzero quintic nonlinearity are valid only
for positive values of c. Due to the method adopted in the
present work, the influence of quintic nonlinearity on the
dynamics of waves cannot be determined because the solutions
obtained describe two distinct physical situations (positive

FIG. 5. (Color online) Evolution of the density of a dark soliton
of Eq. (1) obtained using the Bernoulli equation, with the same
parameters as in Fig. 1(a) except c = −0.5, a = 1, b = −1, and
χ (t) = 0.

FIG. 6. (Color online) (a) Evolution of the density of a periodic
solution of Eq. (1) obtained using the Riccati equation, with same
parameters as in Fig. 2(a) except M = −0.4, χ (t) = 0. (b) Evolution
of the density of a plane-wave solution of Eq. (1) derived using the
Riccati equation, with the same parameters as in Fig. 2(b), except
M = −0.4, χ (t) = 0.

dispersion coefficient c > 0 and negative dispersion coefficient
c < 0). A comparison between Fig. 5 [χ (t) = 0] and Fig. 1(a)
confirms that with the inclusion of quintic nonlinearity, the
dynamics of waves are different with regard to the shape of
the solution, which turns from a dark profile to an antikink
profile. When one uses the Riccati equation, the solution of
Eq. (1) is given by Eq. (34), where n = 1,5; m and ε have
the same signification. The coefficients are a11 = 0, a21 =√−2cεk0, ω1 = ck2 + 2ck2

0Mε; a12 = 0, a22 = −a11, ω2 =
ω1; a13 = −2ck2

0M
2, a23 = 0, ω3 = ω1; a14 = a13, a24 =

a21, ω4 = 6ck3
0M

2
√−2cε + ck2 + 2ck2

0Mε; a15 = a13, a25 =
−a24, ω5 = −6ck3

0M
2
√−2cε + ck2 + 2ck2

0Mε. M is a free
real parameter. The expressions of the coefficients a1i and
a2i show that only the coefficients for n = 3 correspond to
matter-wave solutions. The others with a negative dispersion
coefficient may rather describe the evolution of light in
fiber optics. A comparison between Fig. 6(a) [χ (t) = 0] and
Fig. 2(a) implies that the inclusion of quintic nonlinearity
modifies the top of the periodic solution. In addition, drawing
a parallel between Fig. 6(b) and Fig. 2(b), one realizes that
the inclusion of quintic nonlinearity may also induce the
localization of matter waves in BECs. Localized solutions are
due to a compensation between dispersion and nonlinearity. It
is likely that the quintic nonlinearity helps to attain a regime
of parameters where the nonlinearities balance the dispersion.
Resolving Eq. (1) for χ (t) = 0 with the hyperbolic equation,
the solutions are provided by Eq. (51) for the parameters a1 =
a2 = 0 and ω = −a2

0 + ck2, where a0 is a free parameter. Once
again, due to the reason mentioned above, quintic nonlinearity
also induces the localization of solutions since the cubic form

FIG. 7. (Color online) Evolution of the density of a bright solu-
tion of Eq. (1) obtained using the ordinary auxiliary equation, with
the same parameters as in Fig. 2(a) except M = −0.4, χ (t) = 0.
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FIG. 8. (Color online) Spatiotemporal propagation of the stable
antikink-like soliton of Fig. 1(a). Parameters are the same as in
Fig. 1(a) except γ = 0.

of Eq. (1) only admits plane-wave solutions (due to the fact that
a1 = a2 = 0.) Setting χ (t) = 0 in Eq. (1), the Lenard equation
reduces to the ordinary auxiliary equation since one must set
b6 = 0 [12]. In this case, it is difficult to check the impact
the quintic nonlinearity has on the formation of matter-wave
condensates because the ordinary auxiliary equation has dif-
ferent solutions, which are presented in Appendix F [23]. The
solutions of the cubic equation found by means of the ordinary
auxiliary equation are given by Eq. (43), where n = 1,2,
with a1 = ±√−2cb4k0 and ω = ck2 − ck2

0b2. The solutions
found may describe the evolution of matter-wave condensates
provided that c > 0, which implies that b4 < 0. The inclusion
of the quintic nonlinearity does not bring significant changes,
as can be seen by comparing Figs. 7, 3(a), and 3(b).

IV. NUMERICAL SIMULATIONS

An important issue concerning exact solutions found with
mathematical methods is their stability or robustness in real
physical experiments. The physical relevance of an exact

solution can be investigated by means of comparisons with
the exact numerical solution obtained by a direct integration
of the underlying Eq. (1). Here, the numerical method used
is the split-step Fourier method [36,37]. The spatial grid
is sufficiently large in order to prevent problems with the
boundaries [37]. An initial reasonably small amount of random
perturbation is added in order to unveil any instability that can
be seeded during the time evolution. We restrict ourselves to
some of the cases of exact solutions found above.

Let us start with the antikink soliton solution of (21) for
j = 2. In the case in which γ = 0, the condensate does not
exchange any atoms with a thermal background. Figure 8
proves that the initial condition persists without destruction
though the insertion of a small initial random perturbation.
For a condensate in the regime of a loss of atoms, there is
also very good agreement between the analytical prediction
and numerical results, as depicted by Figs. 9(a)–9(c), for
γ = −0.005. Figure 9(d) shows that the disturbed initial
condition remains stable during the propagation. One can then
consider that such a solution is a robust physical object that
can be observed in a real experiment.

Next, we look at the kinklike soliton solution of Fig. 2(b).
Two cases are considered, namely the feeding regime and the
regime where the condensate does not exchange any atom
with its surroundings. In Fig. 10(a) (γ = 0), the amplitude of
the condensate stays constant during the propagation, while
the amplitude increases with time in the feeding regime, as
shown in Figs. 10(b)–10(d) (γ = 0.005). From Figs. 10(a)
and 10(e) (γ = 0.005), one infers that the derived kinklike
soliton solution of (37) for n = 5, m = 3, and ε = −1 is a
stable solution.

The bright soliton solution of Fig. 3(b) obtained by using
the Lenard equation is dynamically stable and accurately
corroborates its analytical counterpart. Figure 11 displays the
agreement between the numerical and analytical solutions,
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FIG. 9. (Color online) (a)–(c) Comparison between analytical (solid line) and numerical (dotted line) solutions at particular times of the
antikink-like soliton of Fig. 1(a). (d) Spatiotemporal evolution of the stable antikink-like soliton of Fig. 1(a). Parameters are the same as in
Fig. 1(a).
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FIG. 10. (Color online) (a)–(c) Parallel between analytical (solid line) and numerical (dotted line) solutions at different times of the kinklike
soliton of Fig. 2(b). (d) Spatiotemporal propagation of the stable antikink-like soliton. Parameters are the same as in Fig. 2(a).

as well as the long-time robustness of our bright soliton
[Fig. 3(a)].

In the above discussions, we have shown that an analytical
solution for the case χ = 0 and c > 0 is not available for the

physical situation of matter waves in condensates if one uses
the Bernoulli equation as an auxiliary equation. To show how
far the qualitative behavior changes, we display in Fig. 12
the spatiotemporal evolution of the condensate density with
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FIG. 11. (Color online) (a)–(c) Parallel between analytical (solid line) and numerical (dotted line) solutions at different times of the bright
soliton of Fig. 3(b). (d) Spatiotemporal propagation of the stable bright soliton. Parameters are the same as in Fig. 3(b) except γ = 0.005.
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FIG. 12. (Color online) Spatiotemporal evolution of a stable kink
solution for χ = 0, c = 0.5. The solution is that of Fig. 5 with the
same parameters except that of c.

the same parameters as in Fig. 5, except c = 0.5. As one can
see, we obtain a stable kink profile solution, the maximum
density of which is 2.21. The analytical solution with c > 0
for a (vanishingly) small value of χ is an antikink solution
with very large density, confirming the previous analysis.

The dynamical stability of some trivial-phase dark, kink,
and antikink soliton solutions of Eq. (1) has been analyzed
mathematically and numerically in Ref. [10]. Here, the
dynamical stability of more valuable nontrivial phase solutions
is investigated numerically. The stability of the specific
solutions that were tested is well verified. Families of solutions
constructed here may also be applied in other physical media
where Eq. (1) also appears, such as nonlinear fiber optics.

V. CONCLUSION

In this paper, we have studied the GPE with time-dependent
two- and three-body nonlinearities, confined in a harmonic
potential and exchanging atoms with the thermal background.
By applying the F-expansion method, and taking advantage
of solutions of four types of auxiliary equations, i.e., the
Bernoulli equation, the Riccati equation, the Lenard equation,
and the hyperbolic equation, we have constructed 230 explicit
exact solutions of Eq. (1), distributed into 49 families. Among
these solutions, we have hyperbolic function solutions and
trigonometric functions solutions. Furthermore, we have also
found rational function solutions. In comparison with the
work done in Ref. [10], we have found more exact solutions
of Eq. (1) and we analyzed the stability of some nontrivial
phase soliton solutions numerically. The latter nontrivial phase
solitons appear to be dynamically stable. The effects of quintic
nonlinearity on the formation of matter-wave condensates are
also studied in certain cases. It appears that the inclusion of
quintic nonlinearity drastically modifies the shape of solutions
found with the Riccati and hyperbolic auxiliary equations, and
it could lead to localization of solutions. This localization can

come from the fact that the inclusion of quintic nonlinearity
alters the nonlinearities in such a way that they compensate
the dispersion.

When the parameter γ is not small, Eq. (1) formally
describes the evolution of condensates at finite temperatures
where the effects of the thermal cloud become important.
Many models have been developed in order to account for the
effects of the thermal cloud [38]. Indeed, through a recent self-
consistent investigation of the whole thermal cloud part (i.e.,
the noncondensed and the anomalous densities) by means of a
variational time-dependent Hartree-Fock-Bogoliubov theory,
the impact of the anomalous density in three- and two-
dimensional homogeneous Bose gases at finite temperatures
has been analyzed [39,40]. The parameter γ can be related
to the so-called Keldysh self-energy [41,42]. Comparisons
between some finite-temperature BEC models have been
performed in Ref. [42]. The dynamics of dark solitons within a
finite-temperature BEC model with only two-body interatomic
interactions has been reported in Ref. [43]. Nevertheless, many
finite-temperature BEC models rarely consider the effects of
three-body interactions. For instance, a study of the effects
of finite temperature (γ large) on the dynamics of solitons in
matter waves of BECs with two- and three-body interatomic
interactions should be carried out in future works.
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APPENDIX A: SOLUTIONS OF THE GENERAL
BERNOULLI EQUATION

The solutions of the general Bernoulli equation according
to Ref. [13] are found to be as follows:

F11(ξ ) =
(

− a

2b

) 1
2

; (A1)

ξ0 > 0:F12(ξ ) = − a

2b

[
tanh

(
aξ − ln(ξ0)

2

)
+ 1

] 1
2

; (A2)

ξ0 < 0 : F13(ξ ) = − a

2b

[
coth

(
aξ − ln(−ξ0)

2

)
+ 1

] 1
2

.

(A3)

APPENDIX B: SOLUTIONS OF THE RICATTI EQUATION

The solutions of the general Bernoulli equation according to Ref. [20] are found to be as follows:

F21(ξ ) =
{√

−1

M(λ − 1)
tanh[

√
−M(λ − 1)ξ ]

} 1
λ−1

; (B1)
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F22(ξ ) =
{√

−1

M(λ − 1)
coth[

√
−M(λ − 1)ξ ]

} 1
λ−1

; (B2)

F23(ξ ) =
⎛
⎝

√
−1

M(λ − 1)

⎧⎨
⎩

√
−1

M(λ − 1)
tanh[

√
−M(λ − 1)ξ ] ± ı sech[

√
−M(λ − 1)ξ ]

⎫⎬
⎭

⎞
⎠ 1

λ−1 ; (B3)

F24 =
⎧⎨
⎩

√
−1

M(λ − 1)

⎡
⎣

√
2
√

−1
M(λ−1) tanh[

√−M(λ − 1)ξ ] ± ı sech[
√−M(λ − 1)ξ ]

√
2 − sech[

√−M(λ − 1)ξ ]

⎤
⎦

⎫⎬
⎭

1
λ−1

; (B4)

F25(ξ ) =
{
−

√
−1

M(λ − 1)
tan[

√
−M(λ − 1)ξ ]

} 1
λ−1

; (B5)

F26(ξ ) =
{√

−1

M(λ − 1)
cot[

√
−M(λ − 1)ξ ]

} 1
λ−1

; (B6)

F27 =
⎧⎨
⎩−

√
−1

M(λ − 1)

⎡
⎣

√
2
√

−1
M(λ−1) tan[

√−M(λ − 1)ξ ] ± ı sec[
√−M(λ − 1)ξ ]

√
2 + √

5 sec[
√−M(λ − 1)ξ ]

⎤
⎦

⎫⎬
⎭

1
λ−1

; (B7)

F28 =
{

1

−M(λ − 1)ξ + p

} 1
λ−1

. (B8)

p is an arbitrary real constant.

APPENDIX C: SOLUTIONS OF THE LENARD EQUATION

The Lenard equation admits the following solutions [23]:

b2 > 0, b4 < 0, b6 < 0, δ = b2
4 − 4b2b6 > 0:F3,1 =

√
2b2sech2(

√
b2ξ )

2
√

δ − (
√

δ + b4)sech2(
√

b2ξ )
,

F3,2 =
√

2b2csch2(±√
b2ξ )

2
√

δ + (
√

δ − b4)csch2(±√
b2ξ )

; (C1)

b0 = 0, b2 < 0, b4 � 0, b6 < 0,δ > 0:F3,3 =
√

−2b2 sec2(
√−b2ξ )

2
√

δ − (
√

δ − b4) sec2(
√−b2ξ )

,

F3,4 =
√

2b2 csc2(±√−b2ξ )

2
√

δ + (
√

δ + b4) csc2(±√−b2ξ )
; (C2)

b6 = b2
4

4b2
, b2 > 0, b4 < 0:F3,5 =

√
−b2

b4
[1 + tanh(±

√
b2ξ )], F3,6 =

√
−b2

b4
[1 + coth(

√
b2ξ )]; (C3)

b2 > 0:F3,7 =
√

−b2b4sech2(
√

b2ξ )

b2
4 − b2b6[1 + tanh2(

√
b2ξ )]

, F3,8 =
√

b2b4csch2(
√

b2ξ )

b2
4 − b2b6[1 + coth2(

√
b2ξ )]

,

F3,9 = 4

√
b2 exp(2

√
b2ξ )

exp(4
√

b2ξ − 4C4) − 64b2b6
; (C4)

b2 > 0:F3,7 = 4

√
b2 exp(2

√
b2ξ )

exp[(2
√

b2ξ − 4C4)2 − 64b2b6]
; b2 > 0, δ > 0:F3,10 =

√
2b2√

δ cosh(2
√

b2ξ ) − b4

; (C5)

b2 > 0, δ < 0:F3,11 = 2

√
2b2√−δ sinh(2

√
b2ξ ) − b4

; (C6)
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b2 < 0, δ > 0:F3,12 =
√

2b2√
δ sin(2

√−b2ξ ) − b4

, F3,13 =
√

2b2√
δ cos(2

√−b2ξ ) − b4

; (C7)

b2 > 0, b6 > 0; F3,14 =
√

−b2sech2(
√

b2ξ )

b4 + 2
√

b2b6 tanh(
√

b2ξ )
, F3,15 =

√
b2csch2(

√
b2ξ )

b4 + 2
√

b2b6 coth(
√

b2ξ )
; (C8)

b2 < 0, b6 > 0:F3,16 =
√

−b2 sec2(
√−b2ξ )

b4 + 2
√−b2b6 tan(

√−b2ξ )
, F3,17 =

√
−b2 csc2(

√−b2ξ )

b4 + 2
√−b2b6 cot(

√−b2ξ )
; (C9)

b2 > 0, b4 = 0:F18 = 4

√
±b2 exp(2

√
b2ξ )

1 − 64b2b6 exp(4
√

b2ξ )
; (C10)

b2 < 0, b4 > 0:F3,19 =

√√√√√√ −8b2 tanh2
(±√

−b2
3 ξ

)
3b4[3 + tanh2

(±√
−b2

3 ξ
)
]
, F3,20 =

√√√√√√ −8b2 coth2
(±√

−b2
3 ξ

)
3b4[3 + coth2

(±√
−b2

3 ξ
)
]
; (C11)

b2 > 0, b4 < 0:F3,21 =

√√√√√√ 8b2 tan2
( ±

√
b2
3 ξ

)
3b4[3 − tan2

( ±
√

b2
3 ξ

)
]
, F3,22 =

√√√√√√ 8b2 cot2
( ±

√
b2
3 ξ

)
3b4[3 − cot2

( ±
√

b2
3 ξ

)
]
. (C12)

b0 = 0 corresponds to F3,1 − F3,18; b0 = 8b2
2

27b4
and b6 = b2

4
4b2

correspond to F3,19 − F3,22.

APPENDIX D: GENERALIZED JACOBI ELLIPTIC FUNCTION SOLUTIONS OF THE LENARD EQUATION

Some generalized Jacobi elliptic function solutions of the Lenard equation [25–27] are as follows:

b0 = 1 − k2
1 − k2

2 + k2
1k

2
2, b2 =−1 + 2k2

1 + 2k2
2 − 3k2

1k
2
2, b4 =−k2

1 − k2
2 + 3k2

1k
2
2, b6 =−k2

1k
2
2:F23 = c(ξ,k1,k2); (D1)

b0 =−1 + k2
1 − k2

2 + k−2
1 k2

2, b2 = 2 − k2
1 + 2k2

2 − 3k−2
1 k2

2, b4 =−1 − k2
2 + 3k−2

1 k2
2, b6 = −k−2

1 k2
2:F24 = d1(ξ,k1,k2).

(D2)

c(ξ,k1,k2) is the generalized Jacobi elliptic cosine function, and d1(ξ,k1,k2) is the generalized Jacobi elliptic function of
the third kind. The generalized Jacobi elliptic functions can be written in terms of the standard Jacobi elliptic functions as

follows: c(ξ,k1,k2) = k3cn(k3ξ,k4)/
√

1 − k2
2cn

2(k3ξ,k4), d1(ξ,k1,k2) =
√

k2
1 − k2

2dn(k3ξ,k4)/
√

k2
1 − k2

2dn2(k3ξ,k4), with k3 =√
1 − k2

2, k4 =
√

(k2
1 − k2

2)/(1 − k2
2), 0 � k2 � k1 � 1. The generalized Jacobi functions degenerate to traditional functions in

some limiting cases. For instance, if k2 → 0, one can obtain the usual Jacobi elliptic function solutions: c(ξ,k1,0) → cn(ξ,k1),
d1(ξ,k1,0) → dn(ξ,k1). If k1 → 1, k2 → 0, one obtains hyperbolic solutions: c(ξ,1,0), d(ξ,1,0) → sech(ξ ). For k1 → 0, k2 → 0,
the generalized Jacobi elliptic functions degenerate to trigonometric solutions: c(ξ,0,0) → cos(ξ ), d1(ξ,0,0) → 1.

APPENDIX E: SOLUTIONS OF THE HYPERBOLIC EQUATION

Some solutions of the hyperbolic equation [29]:

c2 > 0, c0c2 − c2
2 > 0, c2 − 2c0 + 2

√
c0(c2 − c0) tan{

√
[c0(c2 − c0)]ξ} > 0:

sinh11[F (ξ )] =
{

(c0 − √
c0(c2 − c0) tan{√[c0(c2 − c0)]ξ})2

c2(c2 − 2c0 + 2
√

c0(c2 − c0) tan{√[c0(c2 − c0)]ξ})
} 1

2

; (E1)

c2 > 0, c0c2 − c2
2 < 0, c2 − 2c0 + 2

√
c0(c2 − c0) cot{

√
[c0(c2 − c0)]ξ} > 0:

sinh12[F (ξ )] =
{

(c0 − √
c0(c2 − c0) cot{√[c0(c2 − c0)]ξ})2

c2(c2 − 2c0 + 2
√

c0(c2 − c0) cot{√[c0(c2 − c0)]ξ})
} 1

2

; (E2)
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c2 > 0, c0c2 − c2
0 < 0, c2 − 2c0 − 2

√
c0(c2 − c0) coth{

√
−[c0(c2 − c0)]ξ} > 0:

sinh13[F (ξ )] =
{

(c0 + √−c0(c2 − c0) coth{√−[c0(c2 − c0)]ξ})2

c2(c2 − 2c0 − 2
√−c0(c2 − c0) coth{√−[c0(c2 − c0)]ξ})

} 1
2

; (E3)

c2 < 0, c0c2 − c2
0 < 0, c2 − 2c0 − 2

√
c0(c2 − c0) tanh{

√
−[c0(c2 − c0)]ξ} < 0:

sinh13[F (ξ )] =
{

(c0 + √−c0(c2 − c0) tanh{√−[c0(c2 − c0)]ξ})2

c2(c2 − 2c0 − 2
√−c0(c2 − c0) tanh{√−[c0(c2 − c0)]ξ})

} 1
2

. (E4)

APPENDIX F: SOLUTIONS OF THE ORDINARY AUXILIARY EQUATION

The auxiliary equation admits the following solutions [23]:

b0 = κ2 − 1, b2 = 2 − κ2, b4 = −1:F3,1 = dn(ξ ); (F1)

b0 = 1 − κ2, b2 = 2κ2 − 1, b4 =−κ2:F3,2 = cn(ξ ); (F2)

b0 = −1, b2 = 2 − κ2, b4 = κ2 − 1:F3,3 = 1/dn(ξ ); (F3)

b0 = 1, b2 = 2κ2 − 1, b4 = κ2(−1 + κ2):F3,4 = sn(ξ )/dn(ξ ); (F4)

b0 =−2κ3 + κ4 + κ2, b2 = 6κ − κ2 − 1, b4 =−4/κ:F3,5 = κdn(ξ )cn(ξ )/[1 + κsn2(ξ )]; (F5)

b0 = 2 − 2κ1 − κ2, b2 =−6κ1 − κ2 + 2, b4 = −4κ1:F3,6 = κ2sn(ξ )cn(ξ )/[κ1 + dn2(ξ )]; (F6)

b0 = (κ2 − 1)/4
(
D2

3κ
2 − D2

2

)
, b2 = (κ2 + 1)/2, b4 = (

D2
3κ

2 − D2
2

)
(κ2 − 1)/4:

F3,7 =
√(

D2
2 − D2

3

)/(
D2

2 − D2
3κ

2
)
sn(ξ ); (F7)

b0 = (2κ − κ2 − 1)/D2
2, b2 = 2κ2 + 2, b4 = −D2

2κ
2 − D2

2 − 2D2
2κ

2:F3,8 = [κ2sn2(ξ ) − 1]/D2[κsn2(ξ ) + 1]; (F8)

b0 =−(2κ + κ2 + 1)/D2
2, b2 = 2κ2 + 2, b4 = −D2

2(κ2 + 1 + 2κ):F3,9 = [κsn2(ξ ) + 1]/D2[κsn2(ξ ) − 1]; (F9)

b0 = b4 = (κ2 − 1)/4, b2 = (κ2 + 1)/2:F3,10 = dn(ξ )/[1 ± κsn(ξ )], F3,11 = κsd(ξ ) ± nd(ξ ); (F10)

b0 = −(1 − κ2)/4, b2 = (κ2 + 1)/2, b4 = −1/4:F3,12 = κsd(ξ ) ± nd(ξ ); (F11)

b0 = 0, b2 > 0, b4 < 0:F3,13 =
√

−b2/b4sech(
√

b2ξ ); (F12)

where κ (0 < κ < 1) denotes the modulus of the Jacobi elliptic function, κ1 = √
1 − κ2, and D2, D3 (D2D3 �= 0), and D4 are

arbitrary constants.
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