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Résumé

Dans cette thèse nous étudions la dynamique non linéaire de l’adénosine monophos-

phate cyclique (AMPc) et son rôle dans le processus d’agrégation des amibes dictyostelium

discoideum (dd). Ce phénomène d’agrégation demeure un défi majeur non seulement

pour les chimistes (chimiotaxie) et les biologistes (différenciation cellulaire), mais aussi

pour les physiciens (propagation d’onde). Ce profond intérêt est suscité d’une part par

l’importance biologique de cette macromolécule, et d’autre part par le fait que la molécule

d’AMPc soit à l’origine une entité dynamique, de par les phénomènes de régulation et de

transcription. A cet effet, les modèles de Martiel-Goldbeter et FitzHugh-Nagumo mod-

ifier permettent de comprendre l’impact de certains paramètres dans l’environnement.

Grâce à la méthode des échelles multiples, nous réduisons les équations génériques, à

l’équation de Ginzburg-Landau complexe. Cette dernière est explorée dans l’analyse de

la stabilité linéaire conduisant ainsi à la dérivation de l’amplitude critique ou du gain

d’instabilité modulationnelle. La méthode de Runge-Kutta d’ordre quatre nous permet

d’intégrer numériquement nos modèles génériques afin de vérifier la validité des résultats

analytiques. Les résultats suggèrent que l’absence et la présence d’écoulement dans le

processus d’agrégation fait apparaître des motifs comme : les ondes quasi-périodiques, les

grains en spirales et les motifs chaotiques. Un autre résultat intéressant est la mise en év-

idence de deux régimes de fréquence qui régissent théoriquement la dynamique d’AMPc.

Le régime haute fréquence caractérisé par la formation des ondes spirales et le régime

basse fréquence responsable des ondes circulaires. Plus remarquablement encore, nous

montrons que le phénomène d’interaction à longue portée contribue à l’ajustement de la

communication cellule-cellule avec l’apparition des structures asynchrones en forme de

spirales.

Mots clés: cAMP; amibe Dictyostelium discoideum; advection; Conduit d’écoulement;

modèle de Martiel-Goldbeter; modèle de FitzHugh-Nagumo; propagation d’onde; insta-

bilité modulationnelle; formation des motifs; équation complexe de Ginzburg-Landau.
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Abstract

In this thesis we study the nonlinear dynamics of the cyclic adenosine monophosphate

(cAMP) and its role in the process of aggregation of the amoebas dictyostelium discoideum (dd).

This phenomenon of aggregation remains a major challenge not only for the chemists (chemotaxy)

and the biologists (cellular differentiation), but also for physicists (wave propagation). This

deep interest is caused on the one hand by the biological importance of this macromolecule,

and on the other hand by the fact that the molecule of cAMP is in the beginning a dynamic

entity, from the phenomena of regulation and of transcription. To this end, the models Martiel-

Goldbeter and FitzHugh-Nagumo to modify makes it possible to understand the impact of certain

parameters in the environment. Thanks to the method of multiple scales, we reduce the generic

equations, with the complex Ginzburg-Landau equation. This last is explored in the analysis of

the linear stability thus leading to derivation of the critical amplitude or the profit of modulational

instability. The method of Runge-Kutta of order four enables us to integrate our generic models

numerically in order to check the validity of the analytical results. The unstable formation of

the reasons for lead to flow of cAMP reveals reasons like: Quasi-periodic waves, spiral seeds

and chaotic patterns. Another interesting result is the highlighting of two frequency regimes

which theoretically govern the cAMP dynamics. The high frequency mode characterized by the

formation of waves spirals and the low frequency mode responsible for circular waves. more

remarkably again, we show that the phenomenon of long-range interaction contributes to the

adjustment of cell-cell communication with the appearance of asynchronous spiral structures.

Keywords: cAMP; Dictyostelium discoideum amoeba; advection; Flow-driven; Martiel-

Goldbeter model; FitzHugh-Nagumo model; wave propagation complex Ginzburg-Landau equa-

tion; pattern formation; modulational instability
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General Introduction

The aggregation process of dictyostelium discoideum (dd) amoeba is a very complex biologi-

cal phenomenon, which involves the dynamics of cAMP waves. The cAMP signaling system that

controls aggregation is also capable of excitable behavior, which consists in the transient amplifi-

cation of suprathreshold pulses of extracellular cAMP. To understand how D.d amoebae interact

within a aggregation surface, simplified mathematical models are used, which aim to apprehend

the essence of their underlying dynamics. The three-dimensional Martiel-Goldbeter (MG) model

and FitzHugh-Nagumo (FHN) model falls into this class of simplified cAMP models. This models

are able to describe oscillations in the cAMP level in cell suspensions as well as cAMP WP in a

dispersed cell population through a system of ODEs where the main variable is the cAMP con-

centration extracellular. When this model is subjected to natural influences, therefore analytical

and numerical techniques can be applied to study the phenomena of spatio-temporal pattern

formation.

0.1 Context of the thesis

Many different models of cell-to-cell communication in Dictyostelium have been proposed over

the years. The most famous include Goldbeter and Segel (GS) model [1], Martiel and Goldbeter

(MG) model [2], Monk-Othmer (MO) model [3], Tang-Othmer (TO) model [4] and The FitzHugh-

Nagumo (FHN) model [5–7]. Of all the cAMP mathematical models, MG and TO models

have a biophysical meaning not only because their parameters are experimentally measurable

but also because they allow to investigate questions related to the excitability, adaptation and

oscillation by Dictyostelium cells [8]. In contrast they have either a great number of variables

or a large number of parameters which are expressed by hyperbolic or exponential functions

endowed with infinite and increasing nonlinearity. This makes them analytically less tractable,

or computationally more expensive. However, the MG and FHN models are known in principle,

to produce all different types of firing pattern that have been shown to exist in aggregation

surface of D.D. cells [5, 6, 9].

Beyond its role in controlling cell aggregation after starvation, the cAMP signaling system in
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0.1 Context of the thesis 2
D.d provides a prototype for the onset of a biological rhythm in the course of development.The

notion of a developmental path suggests that aggregation centers are those cells that are the

first to enter into the domain of sustained of cAMP-O [10]. In the absence of oscillations,

when the steady state is stable, it is possible to trigger a pulse of cAMP if the initial effect

of the extracellular signal is to lower instantaneously the level of intracellular cAMP below

the steady state level. Then, if the steady state is a stable focus, the system responds to a

decrease of cAMP by making a loop in the phase plane before returning to steady state. The

wavelike patterns observed during dd. aggregation represent one of the most beautiful and best

understood examples of spatiotemporal self-organization at the cellular level. The wavelike nature

of aggregation results from the existence of a cellular rhythm in the production of cyclic AMP

(cAMP), the molecule that controls chemotaxis in the course of aggregation [11]. cAMP-O soon

became a topic of choice for theoretical modeling. The oscillations and waves of cAMP in the

slime mold D.D. represent one of the most striking examples of spatiotemporal self-organization

at the cellular level, and provide a prototype for pulsatile intercellular communication in higher

organisms, for example, pulsatile hormone secretion. Dictyostelium also represents an organism

of choice for studying development and differentiation [12–14].

Transport-coupled nonlinear dynamics is fundamental to most types of spatiotemporal self-

organization. The rich physics of these processes is not only of basic interest, but holds the key

to understanding biological phenomena such as cell motion, embryogenesis, dynamical diseases,

and patterns in bacterial systems [15–19]. Important examples are found in reaction-diffusion

media, which have provided valuable insights into systems as diverse as the patterned shells of

mollusks, neuronal networks, and the human heart [20, 21]. Usually in these reaction-diffusion

systems transport coupling in the form of molecular diffusion or diffusionlike electric processes is

considered. In contrary, transport coupling by fluid flow has received little attention, with experi-

ments focusing mainly on the Belousov-Zhabotinsky (BZ) reaction [22–25]. In reactionŰdiffusion

systems, an advective flow can induce unique emergent phenomena. One well known example

is the differential flow induced chemical instability (DIFICI) that destabilizes an otherwise spa-

tially homogeneous state of a system. The basic idea behind DIFICI is that the reacting species

flow at different speeds. This differential transport can initiate instabilities of the homogeneous

steady state that induce propagating wave trains moving in the flow direction. Instabilities in

the homogeneous distribution can arise if phytoplankton and zooplankton move with different

velocities, regardless of which one is faster. This mechanism of generating spatial structures

is free from the restrictions of the Turing mechanism [26], which requires a large difference in

diffusion coefficients of the two species involved.

In the natural environment, d.d. cells can be exposed to an external fluid flow which would

be expected to significantly change the wave generation processes. Recently, Gholamie et al have
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0.1 Context of the thesis 3
conducted experiments and performed numerical simulations to study flow-driven waves in a

biological system, namely quasi one-dimensional colonies of signaling amoeba D. discoideum [27].

In these experiments with chemotactically competent D. discoideum cells, a straight flow-through

microfluidic channel was used. Starved cells were allowed to settle on the substrate before a

laminar flow of buffer was switched on. The flow advected extracellular cAMP downstream but

was not strong enough to detach the cells from the substrate. This differential transport of

extracellular cAMP induced macroscopic wave trains that had a unique period and propagated

with a velocity proportional to the imposed flow velocity downstream. This behavior was studied

theoretically [28, 29] using the two-component reaction- diffusion model proposed by Martiel-

Goldbeter [2] for the production and relay of cAMP. While the theoretical results could explain

much of the experimental observations, there were still open questions regarding the generation

of a self supporting wave train at the inlet of the microfluidic channel and only small flow rates

of up to 5 mm/min were studied. Furthermore, the state of the cells was assumed to be constant

in the convectively unstable regime, lacking a way to verify this experimentally. The effects

of an external electric field on pulse waves have been widely studied in the chemical excitable

system formed by the Belousov-Zhabotinski (BZ) reaction medium both experimentally and by

means of mathematical modelling [31–36]. The effects include both the decrease and increase of

the pulse propagation velocity, annihilation of the pulse, breaking of continuous circular pulses

into fragments, enhancement or suppression of spiral wave formation, the drift of spiral centers

through the system, and phenomena resulting from a modified refractoriness of the medium,

namely the reversal of the direction of the pulse propagation and pulse splitting (i.e., the back

firing of new pulses from the back of the existing one). Effects of an external electric field on the

propagation of excitable cAMP pulses in aggregating cells of D.D. have been studied by Linder

et al [37]. There is a growing interest in understanding the way electric field interact with the

cells, especially their effect on some fundamental immunitary functions.

In all these cases, it appears that pulsatile signals can be encoded in terms of their frequency

on the basis of desensitization in target cells. Low frequency (LF) oscillations modulate activities

over broad spatial areas and across long temporal windows, while high frequency (HF) oscilla-

tions are restrained to small regions and short temporal windows. Besides pulsatile patterns

of hormone secretion [38], the best example of pulsatile signaling in intercellular communica-

tion is that of cyclic AMP (cAMP) signals which control aggregation and differentiation of the

cellular slime mold Dictyostelium discoideum [12]. Pulsatile cAMP signals of appropriate fre-

quency prove more effective than constant stimuli in promoting Dictyostelium development [11]

Thus, cAMP pulses applied at 5-6 min intervals are effective , in contrast to pulses given every

2 min or at random intervals [39, 40]. experimental findings indicate that the phenomenon of

pulsatile signaling observed in Dictyostelium is a general property shared by many, if not most,
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0.1 Context of the thesis 4
hormones, that might also extend to a number of growth factors. In all these cases, it appears

that desensitization in target cells allows for the frequency encoding of signals in intercellular

communication. As evidenced by pulsatile hormonal therapy , this conclusion is also of clinical

relevance for chronopharmacology as it bears on the search for optimal patterns of drug deliv-

ery [41,42]. Using one-dimensional model, it has not been possible, to the best of our knowledge,

to differentiate LF and HF modes. In this regard, it is widely accepted that cAMP, in order

to discern their collective behaviors, should be connected in networks. the FHN model will be

developed to describe the oscillations of cAMP in frequency mode.

In the most biological systems, long-range cell-to-cell interaction appears to be a trustwor-

thy pathway for a perfect intercellular communication [43–45]. Paolo and its coworkers [46]

have showed that local cell-to-cell coupling in social Dd amoebae via secreted chemicals may

be tuned into a critical value, resulting in emergent long-range communication and heightened

sensitivity. This issue has been demonstrated by means of cell-cell correlations showing evidence

of self-organization at the onset of aggregation. In the same direction, Singer et al. [47] have

argued that propagating cAMP not only control the initial aggregation process but continue to

be the long-range cell-cell communication mechanism guiding cell movement during multicellular

Dictyostelium morphogenesis at the mound and slugs stages. Agreengly, cAMP waves not only

propagate through local coupling for relaying nearest-neighbor cellto- cell information, but also

across global coupling necessary for long-range intercellular communication. However some phys-

ical situations that highlight global effect of long-range parameter deserve to be well-understood.

The modulational instability (MI) technique is nowadays well-documented as it has been

extensively applied to a broad range of physical settings including nonlinear optics [48], hydro-

dynamics [49], biophysics [50–53], just to name a few. The phenomenon of wave modulation

appears by taking account of the space-time , and both are useful in the understanding appear-

ance of the structures space-time in the systems out of equilibrium in the nature. The evidence

that these waves are nonlinear being well-established, it remains however important to clearly

elucidate the conditions and mechanisms leading to their formation and propagation during ag-

gregation of D.d cells. In some recent contributions, wave modulation, through the activation of

MI, has been addressed by Tabi et al. [54], there is a strong relationship between the MI process

and the emergence of spiral waves in a FHN model that includes intracellular magnetic flow

effects, with application to cardiac excitations. Therefore, MI is one of the direct mechanisms

that lead to the formation of solitons and train of waves in systems where there are competitive

effects between nonlinearity and dispersion [45,49,51–53,55].
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0.2 Problematic and objectives of the thesis

Communication of amoebae D.D by cAMP signaling results to the formation of localized

nonlinear waves and appearance of patterns. However, the analytical and numerical research

of such structures is even less considered. In this thesis, the combination of analytical and

numerical methods is used to study waves propagation and the aggregation phenomena in the

context of the transport and transfer of S-cAMP in colony of amoebae DD. This implies the

development of new cAMP mathematical models, the MG model that reproduces the essential

properties of the signaling system, such as excitability, oscillation, and adaptation. The model

present of an external flow, the extracellular cAMP spreads out in the extracellular medium by

both molecular diffusion and advection, the FHN model, these equations are commonly used

to describe a prototype excitable medium. Some analytical techniques such as multiple scaling

method and linear stability analysis of plane waves will be then applied. The multiple scales

method in the discrete approximation will lead to a complex Ginzburg-Landau (CGL) equations.

Through these, we derive a reductive partial differential equations, find instability criteria and

elaborate analytical expressions of MI growth rates. Finally numerical solutions will be presented

using the fourth-order Runge-Kutta (RK4) computational scheme.

0.3 Organization of the Thesis

This thesis is divided into three chapters that are outlined as follows:

z The first chapter focuses on the structure and properties of cAMP in colony of amoeba

D.D as a basic unit of communication processing and moovement cellular by chemiotatic as

macroscopic structures for the transport and transfer of S-cAMP. In this chapter some of the

most prominent cAMP signaling models in amoeba are presented and resulting in the choice of

the MG model whose properties are well discussed and the FHN model discrete.

z The second chapter presents the improved mathematical models developed in this thesis

as well as the analytical and numerical methods used. Some immediate applications are made

in order to facilitate the understanding of the used methods. Interestingly, a complex Ginzburg-

Landau (CGL) equations are derived from generic model and allow to find analytical expression

of some MI functions such as critical amplitude or MI gain along with instability criterion.

z The third chapter is devoted to results and interpretations. We first discuss the effects of

flow in the aggregation process of Dictyostelium discoideum Then the low and high frequency

modes are studied in a discrete model of two-dimensional FHN network. We end with the study

of Long-range interaction of multi-spiral cAMP waves in Dictyostelium discoideum aggregation.

The thesis ends with a general conclusion including the summary of the main results and the
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futures orientations.
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Chapter 1

Literature review on Cyclic AMP, cyclic

AMP in dictyostelium discoideum

amoebas and cyclic AMP models

Introduction

Due to its action as second messenger of the intracellular hormones and the control exerted on

the activity of certain genes,cyclic adenosine 3’ -5’ Monophosphate (cAMP) appears as a relevant

molecule for investigations the laboratories. cAMP is elaborate in various fields such as chemistry

(chemotaxis), biology (transmission of the hormonal signal), and biophysics (oscillation of the

waves) [56]. In the amoebas dictyostelium discoideum, the aggregation centers emit signals

of cAMP for few minutes. Each cAMP signal is relayed and starts a chemotaxis response.

Consequently, the amoebas incorporate themselves around the centers by forming a wave of

cellular motion for each pulsation of cAMP. The microscopic scale observations show that these

waves can be concentric or of spiral forms. The waves of cellular movement of the amoeba

dictyostelium are superimposed on the waves of cAMP. These waves are due to the pulsating

secretion of cAMP by the centers of aggregation and to the relay of these signals which propagate

through the area of aggregation. The cAMP waves astonishingly resemble the chemical waves

observed in absence of mixture, on a solid frame, in the Belousov-Zhabotinsky reaction; one of

the well known examples of oscillating chemical reaction. The interaction of the cAMP waves

in the area of aggregation with the waves of cellular motion generates oscillations which lead

to the patterns formation. The understanding of biological as well as chemical formation of

patterns provides us with information that nature hides in the macroscopic scale as in microscopic

one alike. This information allows us to understand the temporal evolution of the cells, how
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they differentiate themselves from one to another and their modes of communication with each

other. The oscillation of cAMP secreted by the amoeba dictyostelium discoideum in the area

of aggregation is one of the phenomena which explain the formation of the patterns in biology.

This mechanism initially explains the identification of the variables and their interactions. Once

the variables are identified, one investigates the reason of their growth or decrease in the course

of time. The essential point is the derivation of a model which describes cAMP oscillations in

suspensions of cells as well as the propagation of wave of cAMP in a population of the dispersed

cells.

Many mathematical models were derived to understand the dynamics of the cAMP waves

in the colony of the amoebas dictyostelium discoideum during their aggregation. The kinetic

mechanism of the concentration of cAMP is presented firstly in the form of an oscillating reaction.

An oscillating reaction is a reaction in which the concentrations of the various reagents are

functions of time. Thus the study of the nonlinear kinetics of the reaction allows, on the one

hand, to check the validity of the model and on the other hand, to predict the dynamic properties

of the reaction like the period of the oscillations and the duration of the phenomenon. The kinetic

equations giving the concentration of the reagents with respect to time are differential equations.

In the second place the diffusion of the elements in all the system, it is this displacement which

produces the waves. The development of these mathematical models of the indication of cAMP,

gives a clear comprehension finally studied its behavior.

This work is divided into three principal parts. The first part is devoted to cAMP, a presenta-

tion of its structure, its various functions and its modes of indication. The second part relates to

the behavior of cAMP in the colony of the amoebas dictyostelium discoideum, namely the effects

cAMP in the differentiation of amoebas D.D. chemotaxis and the cellular movement. Finally

a comment clarifies mathematical models in their quantitative and qualitative forms in view of

describing the wave propagation of cAMP in the colony of amoebas dictyostelium discoideum.

1.1 cAMP

1.1.1 Anatomie of the cAMP system

Cyclic adenosine monophosphate (cAMP) is a second messenger molecule comprised of an

adenine ribonucleotide bearing a phosphate group bound to the oxygen molecules at the 3’ and

5’ positions of the sugar moiety (see Fig. 1.1). Cyclic AMP, which is synthesized from ATP by

the intracellular enzyme adenylate cyclase, modulates the activity of several hormone-dependent

signal transduction pathways.
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Figure 1.1: Structure of cyclic AMP, with chimical formula C10H11N5O6P and molar

mass=329.206 g/mol [57]

1.1.1.1 Effectors and signaling pathways

• Phosphodiestrase (PDE)

The PDE are the enzymes responsible for the hydrolysis of the cyclic nucle otides (cAMP and

cGMP) Although in certain cells like the cardiomyocytes, cAMP can be transported out of the

cell by channels of the family of the MRP (Multidrug Protein Resistance), the catalytic activity

of the PDE constitutes the only way of elimination of cAMP in the majority of cellular types. It

is mainly the activity of the PDE which will bring a dimension space-time of the cAMP signal.

Described for the first time in 1962 by Butcher and Sutherland [58], the superfamilly of

the PDE contains currently more than 90 members gathered into 11 families according to their

structural, enzymatic, pharmacological properties like their regulation of mode. Each family is

coded by 1 to 4 genes which can undergo alternative splicing, which explains the 96 listed PDE.

A nomenclature was proposed in order to classify different the isoformes, one can thus identify

the family of PDE, coding gene for the isoforme as well as the alternative splicing. With titre

this example the PDE 4 D3 corresponds has the PDE of family 4, coded by the gene D and

produced by the alternate third épissage of the ARN resulting from this same gene.

The PDE of families 4,7 and 8 are capable of degrader selectively cAMP, where as the

isoformes of family 5, 6 and 9 are specific of cGMP. Families 1, 2, 3,10 and 1 can to hydrolyze

two cyclic nucleotides indifferently. From a structure point of view, the PDE divide a common

structural organization container: a catalytic field preserves of a family has the other and locates

has the end C-final and of the fields of regulation and addressing locate primarily in the part

N-final. The majority of the PDE function out of dimer or oligomer [59].

The D.d amoebas also have will PDE, which of degrade cAMP. Two forms coexist. First is

intracellular, while second is secreted by the cells in the extracellular medium. If the two shapes

of the enzyme degrade cAMP, the function of the extracellular PDE is significant because it

makes it possible to avoid its accumulation in the exterior medium.

• cAMP effectors
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Parallel to the canonical way implying the PKA like principal effector, two other effector of

this way were described. It is about protein EPAC as well as channels ionic CNG and HCN.

Together or separately, these various branches of indication cAMP, tend to modulate various

cellular functions.

-Protein Kinase A (PKA)

In the inactive state, the PKA is a formed heteromastigate of 4 sub-units: 2 sub-units catalytic

(c) and 2 pennies regulating units (r) cAMP while binding to under - units R, dissociates and

releases the sub-units C which become active. The sub-units C of the PKA have for function of

phosphorated the proteins target on the level of a reason whose sequence is made of two aa basic

followed by a neutral aa then of a serine or a threonine phosphorylase: RRXS / T. The ATP is

here the donor of phosphate and energy.

-The EPAC exchange factor

The discovery of protein EPAC like new intracellular target of cAMP suggest that the mech-

anism of indication of cAMP is much more complex than than one believed before. Thus, most

of the effects induced by cAMP, which were allotted with the only action of the PKA, are partly

ascribable with EPAC and does not imply branch PKA cAMP way. To date, it was shown

that protein EPAC is implied in one multitude of cellular functions as cellular adhesion [60,61],

the junctions cell-cell [62], the exocytosis and secretion [63], differentiation [64], and cellular

proliferation [65].

-The channels regulated by cyclic nucleotides: CNG et HCN

Channels CNG are expressed mainly in the photoreceptor of the retina and olfactory neurons.

The functional forms are heterotetramere composed of two under unit α and two pennies unit

β [66]. The opening of these channels is controlled as well by the connection of a molecule of

cAMP like cGMP. During the fixing of the one from these two nucleotides cyclic, the pore of the

channel becomes permeant with calcium and the monovalent cations. Thus the opening of this

channel induces a depolarization of the membrane plasmic of the cell leading to a massive entry

of ions calcium. It the last by binding the calmodulin module of many intracellular targets of

which channels CNG them even. This feedback negative, constitutes with the PDE the principal

mechanism of regulation negative of channels CNG.

1.1.1.2 cAMP signal compartmentalization

It is increasingly allowed that the various protagonists of the way of indication cAMP are not

distributed in a diffuse way within the plasmic membrane or in the cytosol but are gathered in

signalosome thanks to AKAP (A - Kinase Anchoring Protein) [67]. Signalosome can thus gather

all the partners of indication: PDE, AKAP, AC, and PKA or the EPAC [68]. This complex

provides one thus space control of the effector of cAMP in addition to the temporal control of
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indication via one specific cytosolic distribution of PDE [68–70].

• AKAP importance

The family of the AKAP counts about fifty member today. Members of this family share of

advantage a common function that a common structure. In spite of this structural diversity, to be

regarded as a AKAP, a protein must answer 3 criteria. All the AKAP present a field of connection

to under regulating unit of the PKA. Then, AKAP presents a field of specific addressing which

imposes one to him " bulk-heading " has a cellular compartment gives. With titred’ example,

the AKAP 79/150 present a peptide sequence which enables him to interact with phospholipids

of the membrane plasmic, whereas the AKAP - WAVE1 (WisKott- Aldrich VErprolin-homology

protein 1) interacts with the cytosquelette of actine or the membranes mitochondrials Lastly,

AKAP must be able to interact with many proteins of indication cAMP (proteins phosphatases,

GSK, protein Kinase...) and thus Co-locate the effector of way (PKA or EPAC) with these

various partners within " signalosome ". The AKAP thus seem to act like platforms of anchoring

of the different protagonists of indication, at the same time those implied in transduction and

those which induce the stop, that they maintain has proximity from/to each other [71].

1.1.2 Functions

Adenosine 3’-5’ monophosphate (cAMP) is the second messenger of the action of the polypep-

tide hormones at the higher organizations, but also an essential effector of cellular operation at

all alive beings, of the most elementary, nucleate unicellular organization or not (yeast, protist,

bacterium) with the most complex eucaryote. cAMP thus seems a major regulator of the ex-

pression genes, able to control at the same time their transcription and the activity proteins for

which they code [72].

1.1.2.1 cAMP and enzymatic activity

Work of Sutherland made it possible to identify cAMP like the second messenger of the action

of many hormones [73]. The first messenger is the hormone it even. The cells targets are cells

which have in their plasmic membrane of the receivers for this hormone. The connection of the

hormone with its specific receptor led to the activation of the AC which is, it also, related to

the membrane. This activation is not direct, it is transmitted by a regulating protein binding

the GTP, the protein G. cAMP is then formed from the ATP. Thus, the hormone does not

have to penetrate in the cell to play its biological role. But how cAMP exerts it its effects? It

is striking to note that the mechanism of action of cAMP is common to all the organizations

eucaryotes and appears accurately preserved during the evolution. cAMP activates a protein

kinase capable to phosphorylate of proteins. In the case of the metabolism hepatic, the protein
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cAMP kinase dependent phosphoryl as well enzymes of the glycolysis and of glycogenosynthesis

(that it inactive) that those of the glycogenolyses and of the gluconeogenesis (that it activates).

It in results an integrated biological effect in response to glucagon (via cAMP) at the time of

the fast: mobilization hepatic glycogen and inhibition of its synthesis, saves and production of

glucose by ů the liver for the peripheral bodies. The mechanism of activation of protein kinase

by cAMP is maintaining well-known. This enzyme consists of two types sub-units, regulator

from 49 to 52 kcal which can to bind to cAMP, and of the sub-unit catalytic of 38 kcal. In the

absence of cAMP, sub-units regulating and catalytic, form a complex R2C2, deprived of activity

enzymatic. The connection of cAMP with the regulating sub-units conduit with the dissociation

of the complex R2C2 in a dimer R2 related to 4 molecules of cAMP and in 2 sub-unit C These

catalytic sub-units free are then endowed with activity enzymatic [73]. Thus, there connection

of cAMP to the sub-units regulating inhibition raises that these last exerted on the sub-unit

catalytic (see Fig. 1.2)

Figure 1.2: Activation of the proteins dependent cAMP kinase by the cyclic AMP. The

cyclic AMP activates the proteins kinase by dissociating the complex of under units reg-

ulating and catalytic. [72]

1.1.2.2 cAMP in the bacteria

One has just seen how cAMP stimulate or inhibits the activity of enzymes implied in the

metabolism glycogen by modifications post-translation of these enzymes. If the researchers have

summer put on the track of other levels of regulation by cAMP, the merit in be allocated to

the microbiologists. Those know since some years already that cAMP, product by the bacteria

when they are deprived of glucose, is able of to stimulate the transcription of some genes which
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contribute to the exploitation other sources of energy [74]. In this case, the activation of the tran-

scription bacterial genome by cAMP is not mediated by one protein dependent cAMP kinase: at

the bacterium indeed, cAMP synthesized in the absence of glucose bind to the CAPE (Catabolite

Gene Activating Protein) or CRP (ACMcP Receptor Protein) which is a protein dimeric (sub-

unit = 22 kdal). The CAP-cAMP complex (but not the CAPE only) stimulates the transcription

while binding to a sequence (containing the element in particular TGTGA) located upstream

of the promoter who controls the expression of the catabolic opéron. Moreover, one change in

the sequence consensus TGTGA or in the genes which code for the adenylate cyclase or CRP

breaks down the transcription of catabolic gene in the absence of glucose [74]. It is thought now

that there sequence consensus TGTGA is it site of connection of one of the sub-units from the

CAPE with the ADN, the second sub-unit recognizing another sequence located 6 bases further,

sometimes symmetrical, sometimes very different first. The distance who separates the sequence

consensus TGTGA of the site of initiation of transcription is very variable of one opéron catabolic

with the other. In the case of let us operate inducible by cAMP, the sequence consensus is found

far upstream from the site of initiation transcription (enters - 100 and - 60). The connection

of the ARN polymerase with the promoter, very weak in the absence of cAMP, is considerably

increased in presence CAP-cAMP complex. There transcription is then initiated and it gene

takes a configuration known as opened. The connection of the complex CAP-cAMP with the

ADN does not lead not with an unfolding of the ADN nor with a unmasking of the sites cryptic

but the formation of one allows complex stable and highly closely connected ARN polymerase

with the promoter bacterial most powerful. However the model of activation transcriptional by

cAMP must to take into account the fact that one do not find in the promoters of let us operate

inducible by cAMP there Pribnow Box, homologous with sequence consensus TATA of eucaryotes

(see médecine/sciences, 1985; 1: 48). These facts, joints with discovered remarkable interactions

protein-protein enters it complex CAP-cAMP and the ARN polymerase, give rise to think that

this complex, once fixed on gene, provides itself the sites necessary to the interaction of the ARN

polymerase with the ADN thus with the initiation of the transcription [74].

1.1.2.3 cAMP and lymphocyte function

• Lymphocyte T

The role of cAMP like inhibitor of the lymphocyte T was very indeed shown [75–77]. More

precisely, the intracellular increase in cAMP in these cells induces an inhibition of their activation

[76] and of their proliferation [78]. Results showed that, in T mature, the increase intracellular

cAMP induced by one cascade implying kinase Csk (COOH-terminal Src Kinase) lead to a

inactivation of cascade of indication downstream from the TCR [79].

cAMP decreases also the cytotoxic activity of T thanks to a significant reduction of production
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of many cytokines, such as IL 2, the TNF-α and the IFN -γ by the Th1 lymphocytes (Th→

Lymphocyte T helper; Th1 and Th2: under populations 1 and 2 differentiated on the basis from

cytokines secreted [80].

Parallel to these immunosuppresseurs effects, certain studies bring back effects rather opposite

contributing to a immunoactivation supported for example by an increase in the secretion of the

cytokines by Th2 under the action of cAMP [?, 81–84]. It also has highlighted a transitory

increase in cAMP at the center lymphocytes T, following their adhesion with DC. This increase

in cAMP [85] contributes to increase the sensitivity of the cell T to the antigens following the

contact Lymphocyte. DC describes by same team [86].

• Lymphocyte B

cAMP and its effector, PKA and EPAC, play a significant role in the regulation of the

activity of the lymphocyte B. The current data do not make it possible to formulate distinctly

the respective contribution of these effector but show a preferential share of the PKA on cellular

functions of the mature lymphocytes B and by the means of protein EPAC in immature cellular

forms. The use of the analogue of cAMP, sensitive PKA (6-Bnz-AMP), on mature lymphocytes

B of spleen of mouse, the way ERK1/2, that inhibits independently activation of S receivers

of lymphocyte B (BCR), which is reflected on the functions of these cells and conduit with a

reduction in the immunizing answer humoral [87,88].

With the difference of the mature lymphocytes B, the effect of cAMP in the immature forms

is rather dependant EPAC. In these cells, the increase in intracellular AMPc is translated by an

inhibition of way PKB and that independamment of the activation of the PKA. Moreover, it has

demontré summer that cAMP, by the means of protein EPAC, modulates the process of selection

negative of the immature lymphocytes B, with an effect mainly pro-apoptotic. Us let us know

that the response of the immature cells B has the activation of the BCR by a antigene depend

balance between signals pro-apoptotics, passing mainly by ERK1/2 [89, 90] and anti-apoptotics

passer by way PI3K/PKB [91,92].

• cAMP in the pathophysiology: Lymphocyte and HIV

Some studies carried out in vitro show that an infection of lines lymphocytaires by the HIV

leads has an increase in the cellular concentration of cAMP [93–95]. Moreover, of the studies

ex vivo show that cells T of seropositive patients contain twice more cAMP than those exits of

seronegative people [94, 95].

This increase in intracellular cAMP seems to pass by the activation of the PKA under influ-

ence of the glycoproteins gp 120 contained in the viral envelope [94, 96, 99]. The mechanism by

which this protein increases cAMP Concentration is still unknown. A study tends to associate

this effect with receivers chimiokinergic and more particularly with CXCR4 [96].

Several studies showed that the activation of the cAMP way in the infected cells T contribute
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to inhibit the immunizing answer and thus to support the infection. The adhesion of the virus by

the means of the gp 120 on the CXCR4 decreases significantly the proliferation of the lymphocytes

T CD4+ and T CD8+ This effect is in connection with an activation of the PKA and CREB

[94,96] With reverse, the reduction in cAMP restores there proliferation and cytotoxicity of these

cells [94,98], cAMP also acts on T regulators : during infection HIV, one attend a suppression of

the potentiation of these cells by an increase in the level of CTLA-4 (Cytotoxic T - L ymphocyte

A ntigen 4) [99]. This protein is known to be one controlled negative of immunity.

All of these studies describe cAMP signaling as a key component of process of infection of T

lymphocytes with HIV particularly by suppressing the response immune. Nevertheless, it seems

that its role is even more complex. Several studies report an inhibitory effect of cAMP on the

ability of the virus to replicate. A raise cAMP, either through activation of AC by FSK, or

after blockade of cAMP degradation by treatment with rolipram, a specific inhibitor of PDE4,

is correlated with a decrease in viral transcription as well as a decrease in the level of the HIV

p24Gag protein in T lymphocytes [100,101]. Similarly, a study shows that in naive T cells, cAMP

significantly decreases nuclear import, translocation and replication of viral DNA, by comparison

with memory T cells. An effect on the expression of HIV receptors is also reported, CCR5 and

CXCR4 [102,103].

Taken together, these data suggest that the cAMP / PKA pathway affects infection with

HIV on both the pre- and post-integration stages. Thus the role of cAMP during infection with

HIV and more generally in the immune response seems to go beyond the simple function of

immunosuppressant. This knowledge can help establish new therapeutic targets in antiretroviral

therapy or identify target molecules with immunoregulatory potential, which could help restore

immune dysfunction in this pathology.

1.2 cAMP in the Dictyostelium discoideum amoebae

1.2.1 Dictyostelium discoideum like model of study

Dictyostelium discoideum is a unicellular organization eucaryote discovered in the years 1930

by Raper [104](see Fig.1.3). The genome of this amoeba, haploid, was entirely sequenced [105]. It

is composed of 34 Megabases, distributed on 6 chromosomes, and contains approximately 12500

genes. By way of comparison, it is twice as much as the yeast Saccharomyses cerevisiae (6000

genes approximately), and almost as much as certain pluricellular organizations like Drosophila

melanogaster (14000 genes approximately). At the phylogenetic level, Dictyostelium discoideum

diverged after plant/animals separation, but before that between animals and mushrooms. Nev-

ertheless, because of an evolution slower, the distance between Dictyostelium and the man is less
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Figure 1.3: Diagram showing a Dictyostelium discoideum amoeba responds to cAMP.

1: cAMP reception at the cell membrane activates a G-protein. 2: G-protein stimulates

adenylate cyclase. 3: cAMP diffuses out of cell into. 4: Internal cAMP inactivates

the external cAMP receptor. 5: A different g-protein stimulates Phospholipase C. 6: IP3

induces calcium ion release. 7: Calcium ions act on the cytoskeleton to induc the extension

of pseudopodia. [106].

than that between the man and the yeast S. cerevisiae. In particular, about thirty genes orthol-

ogists to genes implied in human diseases were identified, of which 5 miss yeast genomes [105].

In nature, Dictyostelium discoideum lives in the basements timbered while being nourished

bacteria by phagocytosis. The stocks used at the laboratory underwent changes which them

also allow to nourish by macropinocytose medium axenic (not containing bacteria) [107]. In the

presence of nutriments, Dictyostelium exists and multiplies in the shape of cells insulated, of

approximately 10µm of diameter. This phase of growth of the cells is known as phase vegeta-

tive. In the event of nutritive deficiency, the cells cease dividing and engage in one process of

development (Fig. 1.4), for a review to see [108]: the cells produce and relay a signal of cAMP,
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Figure 1.4: The cycle of Dictyostelium discoideum. The starvation induced the synthesis

and the excretion of cAMP by amoeba. intervenes at all the stages of the pluricellular

phase: aggregation, slug, culmination, constitution of the spores [72].

and move towards the source of this signal by chemotactism. In this manner, aggregates of 105

cells approximately are formed between 5 and 10 hours after the beginning of the deficiency.

Each aggregate then will evolve/move to form a lengthened structure known as of snail, able

of to move. Within this structure, the cells are different in two distinct types, of cells known

as pre-stems (approximately 25 % of the cells) and pre-spores (approximately 75% of the cells).

Lastly, the snail will be raised to form final fructification: a stem of dead cells surmounted by

a cluster of cells known as spores, very resistant and likely to give again vegetative cells if the

nutritive conditions become again favorable.

During these different life cycles, the Dictyostelium amoeba is therefore able to move spon-

taneously or by chemotaxis (towards folic acid in the vegetative phase and towards cAMP in

the aggregative phase), to phagocyte particles, to differentiate into two types cells, and to form

organized structures.

We now will evoke the mechanisms which allow Dictyostelium of to drive.
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Figure 1.5: Model of the cycle of cellular movement for Dictyostelium cells. There gray ar-

row indicates the direction of movement. In gray, zones where the cell exerts forces (black

arrows) to deform its membrane. Points of adhesion with the substrate are represented

in black. according to [109].

1.2.2 Cellular Motility of Dictyostelium discoideum

The amoeba Dictyostelium discoideum is able to move on a surface at a speed of the order

of 10ìm/mn. This motility known as amoebic can be broken up into a cycle comprising three

phases (Fig. 1.5):

- The emission of protrusions to the face before cell (a and b)I.e. a deformation of

the membrane which can have various forms. The cell thus must to exert forces on the membrane

to move it. These forces are obtained thanks to the polymerization of filaments of actine.

- The adhesion of these protrusions on the substrate (c). The adhesion of protrusions

on the substrate makes it possible to exert forces to draw the cell forwards. The cellular adhesion

brings into play many molecular assemblies, among which proteins of the intégrine type.

- The detachment and the retraction of the face postpone cell (d and e). Once the

cell stretched well on surface, it must contract before being able to extend to new. This phase

requires to exert forces of contraction to the back of the cell. It puts more particularly concerned

assemblies of myosine II and filaments of actine. The three phases are not independent: temporal

and space coordination between various phases is an essential element so that the cell advances

correctly. To move, the cell must be able to push its membrane with before and to draw this one

with the back, and thus to exert forces. The existence of these forces can be put in obviousness

by depositing the cells on a deformable substrate [109]. In what follows, we will be interested in

the ways of indication which control and coordinate their actions.

ZAORO Rodax Nelson Ph.D.-Thesis



Literature review 19

1.2.3 Modes of cAMP signaling in dictyostelium discoideum cells

1.2.3.1 Excitable behavior

• The Mechanism and Role of Chemotaxis

The aggregation of Dictyostelium cells has been extensively studied and shown to involve

chemotaxis to 3’-5’cyclic AMP (cAMP), produced by the aggregating cells themselves.

Chemotaxis is the process by which cells move either up or down gradients of diffusible

signalling molecules. The mechanism of chemotaxis arose very early in evolution and was

used by primitive single celled organisms including bacteria to translocate to sources of

food. In multicellular organism chemotaxis is a key mechanism to generate complex cell mi-

gration patterns necessary to build complex structures during the embryonic development

of most animals. In eukaryotic cells movement involves cycles of pseudopod or lamellipod

extension at the front end of a migrating cell driven by localised actin filament formation,

coupled with retraction of the actin-myosin network in the rear end of the cell. During

chemotaxis cells measure gradients of the chemo-attractant along the length of the cell via

attractant specific cell surface receptors that signal to the actin-myosin cytoskeleton to re-

sult in directional movement. High concentrations of the attractant promote and stabilise

new protrusions in the direction of the increasing gradient and coordinate retraction of the

cell at the low end of the gradient, resulting in net translocation up the gradient giving

rise to directed cell movement [110].

• Starving Cells Are Produced and Respond to Pulses of the Chemo-Attractant

cAMP

Starvation triggers changes in gene expression that results in cells becoming able to detect

cAMP via specific transmembrane cAMP receptors and they also acquire the ability to

make and secrete cAMP using a specific starvation induced adenylate cyclase (ACA) [111].

cAMP is degraded by a secreted cAMP specific phosphodiesterase [112]. Cells in an ag-

gregation center start to periodically produce and secrete cAMP. This cAMP diffuses to

neighboring cells, which detect and amplify the signal and pass it on to their neighbours,

resulting in a periodic cAMP wave propagation process [113]. The cAMP waves propagate

from the aggregation center outwards and guide the chemotactic movement of the cells

towards the aggregation center resulting in the aggregation of up to hundreds of thou-

sands of cells. Although the underlying biochemistry of this excitable signalling system is

rather complicated, we will briefly describe the main process and components here [114].

Binding of cAMP to the seven transmembrane cAMP receptors results in stimulation of

a signal transduction cascade that leads to the activation of an ACA, that within tens
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of seconds produces cAMP part of which is secreted to the outside. The secreted cAMP

binds to the cAMP receptor and thus is part of an autocatalytic feedback loop resulting

in a rapid increase of cAMP production. However stimulation of the receptor also acti-

vates an adaptation process that, with a small time delay, results in inhibition of adenylyl

cyclase activity and thus in a cessation of cAMP production. Since cAMP diffuses away

into the extracellular medium and is also degraded by internal and secreted cAMP phos-

phodiesterase, this results in a drop in internal and external cAMP levels. This drop in

extracellular cAMP in turn results in de-adaptation of the cells (Fig. 1.6). This scheme has

been the basis for many mathematical models for the cAMP oscillator that can describe

key experimental results and the transition of excitable to oscillatory cAMP synthesis dur-

ing development [115]. The details of the underlying biochemistry of the cAMP oscillator

is rather complex and contains many components. Especially the biochemical basis for

adaptation is not yet completely understood in molecular detail [116].

1.2.3.2 From oscillations to waves of cAMP

The wavelike aggregation of D. discoideum cells after starvation provides a striking example

of spatiotemporal organization at the supracellular level. In their pioneering paper of 1970 Keller

and Segel showed that the initial homogeneous cell spatial distribution becomes unstable when

the rate of secretion of chemotactic factor by the cells exceeds a critical value. A key result

of this analysis, which applies particularly well to D. minutum, was that no heterogeneity in

cell function-i.e., no center-is needed to trigger aggregation. Not considered explicitly in this

first study was the wavelike nature of aggregation in D. discoideum cells. The periodic nature of

aggregation in this species is directly linked to the oscillatory synthesis of cAMP, which is released

in the form of periodic pulses by cells behaving as aggregation centers (Fig. 1.7). Experimental

observations indicate that aggregating cells form either concentric or spiral waves [11, 118, 119].

The waves of cellular movement are superimposed on waves of the chemoattractant, cAMP. Much

work has been devoted to understanding the onset of spatio-temporal self-organization [120] and

the transition from concentric to spiral patterns of wavelike aggregation, both experimentally

and theoretically [121–123]. Building on the notion of developmental path which was initially

proposed for the transitions in dynamic behavior observed for the cAMP signaling system, [124,

125] investigated the effect of desynchronization of cells following the developmental path in

parameter space. The results indicate that concentric waves of cAMP form first when cells enter

the domain of autonomous oscillations, while neighboring cells are in an excitable state and relay

these signals. However, the heterogeneity in parameter values, due to the distribution of cells on

the developmental path, creates defects that eventually lead to breaks in concentric waves. From
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Figure 1.6: Excitable cAMP signalling. a: Schematic of the extracellular space, above the

double red line (plasma membrane) and the inside of a containing the main components

to produce cAMP oscillations and cellmovement. b: schematic of temporal changes in

cAMPsynthesis and adaptation in response to a constant stimulus of cAMP (stippled

blue line) [117]

these defects spiral patterns arise, which are maintained even when all cells have become excitable

and no one is capable any more of sending out periodic pulses of cAMP. Besides desynchronization

other factors may favor the transition from concentric to spiral waves. The transition is likely

facilitated by the chemotactic movement of cells, which further amplifies heterogeneities within

the aggregation field [122].

1.2.3.3 Exact adaptation

In many sensory systems the response triggered by an external stimulus decreases in the

course of time and returns to basal levels even though the stimulus is maintained at a high

value. This physiological process is called adaptation. Adaptation can be partial or exact. In

the latter case, the system returns precisely to the same steady state regardless of the level
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Figure 1.7: Oscillations of cAMP in amoebae dictyostelium discoideum. The panel rep-

resents the periodic variation of intracellular cAMP within a suspension of synthesized

cells. The extracellular cAMP (not shown) varies with the same period [135].

of stimulation. Exact adaptation is observed in bacterial chemotaxis [126], and in the cAMP

relay response in Dictyostelium [127]. In the summer of 1985 Peter Devreotes and I joined Lee

Segel at the Weizmann Institute to work on this problem. Building on previous work devoted to

adaptation of the bacterial chemotactic response [128], we considered a two-state receptor model,

with a ligand that binds with different affinities to these two states, which are in conformational

equilibrium. We assumed that a certain activity is generated by a linear combination of the four

liganded or free receptor states to which an activity coefficient is attributed. The mathematical

problem was to determine whether, for a given set of parameter values, it is possible to find a set of

activity coefficients that would ensure that the total activity generated upon ligand binding to the

receptor returns to the same steady state, regardless of the magnitude of the stepwise increase

in ligand concentration. We found, to our delight, that a unique set of activity coefficients

satisfying this constraint indeed exists. Lee was instrumental in carrying out the mathematical

derivations that led to this surprising result [129] Alternative molecular mechanisms for exact

adaptation have since been proposed [130] . A recent modeling study was specifically devoted to

a detailed analysis of the intracellular biochemical events mediating the chemotactic response in

Dictyostelium cells [131].

Although the underlying biochemistry of this excitable signalling system is rather compli-
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cated, we will briefly describe the main process and components here [132]. Binding of cAMP to

the seven transmembrane cAMP receptors results in stimulation of a signal transduction cascade

that leads to the activation of anACA, that within tens of seconds produces cAMP part of which

is secreted to the outside (Fig. 1.6a). The secreted cAMP binds to the cAMP receptor and

thus is part of an autocatalytic feedback loop resulting in a rapid increase of cAMP production.

However stimulation of the receptor also activates an adaptation process that, with a small time

delay, results in inhibition of adenylyl cyclase activity and thus in a cessation of cAMP produc-

tion. Since cAMP diffuses away into the extracellular medium and is also degraded by internal

and secreted cAMP phosphodiesterases, this results in a drop in internal and external cAMP

levels. This drop in extracellular cAMP in turn results in de-adaptation of the cells (Fig. 1.6b).

This scheme has been the basis for many mathematical models for the cAMP oscillator that can

describe key experimental results and the transition of excitable to oscillatory cAMP synthesis

during development [133]. The details of the underlying biochemistry of the cAMP oscillator is

rather complex and contains many components. Especially the biochemical basis for adaptation

is not yet completely understood in molecular detail [134].

1.2.4 Waves of cAMP in dictyostelium discoideum cells

• Visualising cAMP Wave Propagation

During the synchronised chemotactic movement phase the cells elongate slightly, while dur-

ing the falling phase of the waves the cells stop moving and take on a less polarised shape.

These locally synchronised cell behaviours can be visualised as changes in light scattering

that reflect the propagating cAMP waves (Fig. 1.8) [118]. cAMP waves have also been

measured directly using isotope dilution fluorography and these measurements showed that

the optical density waves reflected the cAMP waves and that the concentrations varied be-

tween 10-9 and 10-6 M which is well within the Kd of the cAMP receptors [136]. Nowadays

cAMP dependent cell-cell signalling can be measured directly by dynamic measurements

of intracellular cAMP genetically engineered cAMP binding proteins using the principle

of Fluorescence Resonance Energy Transfer (FRET) [137]. Furthermore it is possible to

dynamically measure various components of the cAMP signal transduction machinery to

cAMP relay and the actin-myosin cytoskeleton in single cells but also at the population

level. These measurements can therefore not only be used to study the spatiotemporal dy-

namics of signal transduction but also to indirectly visualise the dynamics of cAMP wave

propagation. Most recently it has been shown that a transcription factor gatC shuttles

between the cytoplasm and the nucleus in response to cAMP stimulation and that this is

a key part of the mechanism of pulsatile induced gene expression [138].
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• Competition Between Aggregation Centres

Observation of wave forms during aggregation reveals that there are essentially two types

of waves that can be observed during aggregation. These are patterns of concentric waves

that are periodically initiated by the aggregation center and spiral waves (Fig. 1.8). In

both cases the cAMP waves propagate over a large distance of up to several centimeters

and pass over hundreds of thousands of cells. The period of the waves is initially quite long,

in the order of 8 min but gradually goes to down to ∼ 3min, while the wave propagation

speed is initially high (∼ 1mm/min) but then drops down as the cells come into closer

contact. Centres arise at different times and oscillate with different frequencies [118]. Due

to the fact that colliding waves annihilate each other faster oscillating centres can encroach

on slower oscillating centres and can finally wipe them out. It has been described that

spiral centres normally wipe out concentric centres [139]. Concentric centres can only exist

when the cells in the center are in an oscillatory mode, however spiral waves can exist both

in excitable and oscillatory systems. In spiral waves the waves rotate around a central core,

periodically re-stimulate themselves and are likely to run at the maximum frequency that

the excitable or oscillatory medium can sustain and therefore are likely to dominate [140].

Different strains show typically different types of waves during the aggregation stage. This

is likely dependent on the exact composition of the molecular components making up the

cAMP oscillatory machinery, which is not known in detail for all of the components in all

of the strains.

1.2.5 Frequency encoding of cAMP pulses in intercellular com-

munication

Key experiments published independently in 1975 by two groups showed that cAMP signals

in Dictyostelium are frequency encoded. In a mutant of D. discoideum unable to aggregate,

cAMP pulses administered at the physiological frequency of one pulse every 5 min are capable

of rescuing the mutant and lead to multicellular aggregation [141] . In contrast, continuous

stimulation by cAMP does not lead to aggregation. In the wild type, the administration of

cAMP pulses after starvation accelerates development in the phase leading to aggregation. This

effect is obtained with cAMP pulses delivered every 5 min but not when the interval between

pulses is reduced to 2min, or when the cAMP signal becomes continuous [39] . Pulses of cAMP

administered at random intervals in wild type are likewise less effective [144]. These observations

demonstrate the importance of the frequency of pulsatile cAMP signals.

The model based on receptor desensitization provides a unified explanation for these exper-

imental observations. It shows that when the pulse is given at regular intervals, the receptor
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Figure 1.8: Wave patterns observed during aggregation in wildtype and mutant strains.

Strain Ax3 shows spiral waves, strain DH1 makes many concentric waves, the cAR3 strain

is a mutant that expresses a lower affinity cAMP receptor and produces large spiral waves.

The N272 strain expresses even lower affinity cAMP receptors, makes chaotic waves. They

are not able to set up stable centres since the wave period is so slow that the cells disperse

between waves, see [142] for further details

has sufficient time to resensitize during a 5-min interval, but not during a 2-min interval. In

the latter case, when the next pulse arrives the amount of active receptor will not be sufficient

to produce a large-amplitude response. In these conditions the synthesis of cAMP elicited by

repetitive pulses of extracellular cAMP will be reduced, while it is nearly maximum when the

pulse is given every 5 min. For the same reason, continuous stimulation by cAMP causes receptor

desensitization and permanent attenuation of the cAMP response [2].

The model further predicts the existence of an optimal pattern of pulsatile stimulation by

cAMP, which maximizes cellular responsiveness, i.e. the amount of cAMP synthesized in a

given time in response to cAMP pulses. For the experimentally determined values of the rate

constants measuring receptor desensitization and resensitization, the model predicts that the

optimal pulsatile signal of cAMP should have a duration of about 4min, with an interpulse
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interval of about 3 min [145]. Increasing or decreasing the values of these rate constants should

change the characteristics of the optimal pattern of pulsatile stimulation, a subject that could

be easily explored with mutants.

The cAMP signaling system in Dictyostelium provides a useful prototype for pulsatile inter-

cellular communication in higher organisms. It can be viewed as a primitive hormonal commu-

nication system, in which cAMP plays the role of both the hormone and the intracellular second

messengerŮthis duality underlies the self-amplification property that is the hallmark of cAMP

synthesis in Dictyostelium. The link with hormonal signaling goes beyond this analogy. Most

hormones are indeed released in a pulsatile manner, and the frequency of pulsatile secretion often

governs the efficacy of the hormonal signal.

The study of a general model of a receptor undergoing reversible desensitization shows that

when the hormone that binds to the receptor is applied in a pulsatile manner, there exists an

optimal pattern of periodic stimulation that maximizes target cell responsiveness [146] . The

results account for the existence of such an optimal pattern of stimulation for the hormone

GnRH, which is secreted by the hypothalamus in the form of a 5-min pulse every hour. The

model further shows that the optimal periodic signal is more efficient than pulses delivered in a

random or chaotic manner [147]. This is very similar to Dictyostelium.

1.3 Mathematical cAMP models

Cellular slime moulds are unique organisms positioned between uni- and multi-cellular life

in the evolutionary tree. The amoebae of the cellular slime mould Dictyostelium discoideum

normally live as single cells in forest soil and feed on bacteria. They multiply by binary fission.

Cyclic adenosine monophosphate (cAMP) is the primary chemoattractant for the D. discoideum

cells during early aggregation. cAMP is emitted from the aggregation centers in a pulsatile man-

ner and surrounding cells detect it by highly specific cAMP receptors. Many different models

of cell-to-cell communication in Dictyostelium have been proposed over the years. The earli-

est models were necessarily a little crude because essential biochemical information about the

signaling system was lacking. Modeling cAMP wave propagation in agar-surface cultures intro-

duces spatial dependencies and is much more complicated than modeling oscillations and signal

relaying in cell-suspension cultures because as well as the signal-relaying system we now have to

account for random diffusion of cAMP in the extracellular milieu, and chemotactic motion of the

amoebae. The models in this category are able to describe oscillations in the cAMP level in cell

suspensions as well as cAMP wave propagation in a dispersed cell population.
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1.3.1 Goldbeter-Segel Model

There is general agreement that the cAMP signalling system in Dictyostelium contains the

following elements:

1. cAMP receptors on the exterior of the cell;

2. a coupling between the receptors and the membrane-bound enzyme adenylate cyclase;

3. synthesis of cAMP by the cyclase whose catalytic activity increases in response to exterior

CAMP signals;

4. a secretion of newly synthesized cAMP to the cell exterior where it is hydrolyzed by the

enzyme phosphodiesterase.

In the model, the receptor-enzyme complex is treated as a membrane-bound allosteric protein

with catalytic and regulatory (receptor) sites facing, respectively, the inside volume of the cell

and the extracellular medium.

In homogeneous conditions which correspond to the experiments in continuously stirred sus-

pensions of D. discoideum cells, the system is described by three ordinary differential equations:

dα

dt
= V − σφ− k′α, (1.1a)

dβ

dt
= qσφ− ktβ, (1.1b)

dγ

dt
= (ktβ/h)− kγ, (1.1c)

with

φ = α(1 + α)(1 + γ)2/[L+ (1 + α)2(1 + γ)2] (1.1d)

The variables α, β and γ denote the normalized concentrations of intracellular ATP, intracellular

CAMP, and extracellular cAMP divided, respectively, by Ks, Kp and Kp where Ks and Kp

are the Michaelis constant of adenylate cyclase for ATP and the dissociation constant of the

cAMP receptor. Also q = Ks/Kp while σ and V are the maximum cyclase activity and a

constant ATP input, divided by Ks. The apparent first order rate constants kt, and k relate

to the cAMP transport across the cell membrane and to the phosphodiesterase reaction, which

are both considered as linear processes (both the extracellular and membrane-bound forms of

phosphodiesterase are lumped together into parameter k); L is the allosteric constant of adenylate

cyclase; h is a dilution factor (see ref. [1] and [148] for further details). The term −kα in the

evolution equation for a represents a modification of the system originally considered in [1]. This

term relates to the utilization of ATP in reactions other than that catalyzed by adenylate cyclase.
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Alternatively, when combined with parameter V = kα0, it gives the term k(α0 − α) which can

be viewed as expressing a possible transport of ATP from a constant intracellular pool (α0) to

the site of cAMP synthesis at the membrane.

1.3.2 Martiel-Goldbeter Model

Martiel and Goldbeter (1987) proposed a model for cAMP signaling based on receptor de-

sensitization. This model incorporates both a positive and a negative feedback by extracellular

cAMP. Binding of cAMP to its receptor triggers the activation of adenylate cyclase as well as the

transition of the receptor into a desensitized (phosphorylated) state. In this three-variable model,

the explosive rise in cAMP synthesis is limited by the drop in the fraction of active receptor.

Desensitization begins as soon as the level of extracellular cAMP starts to increase. Once the

level of cAMP has dropped to a minimum, the receptor resensitizes through dephosphorylation.

A new cycle of oscillations begins upon binding of extracellular cAMP to the receptor in its active

state. As in the previous model, relay of suprathreshold pulses of cAMP occurs in a parame-

ter domain adjacent to the domain in which sustained oscillations occur. The dynamics of the

cAMP signaling system is then governed by the three differential, where the various functions

and parameters remain defined as:

∂tρ = −f1(γ)ρ+ f2(γ)(1− ρ), (1.2a)

∂tβ = qσαϕ(ρ, γ)/(1 + α)− β (1.2b)

∂tγ = (ktβ/h)− γ (1.2c)

with,

f1(γ) =
k1+k2γ
1+γ ; f2(γ) = k1L1+k2L2cγ

1+cγ ; ϕ(ργα) = α(λθ+ϵY 2)
1+αθ+ϵY 2(1+α)

; Y = ργ
1+γ

In the above equations, ρ denotes the total fraction of receptor in the active state; β and

γ denote the intracellular and extracellular concentrations of cAMP divided by the dissociation

constant KR; α is the intracellular ATP concentration. The constants kt, ke, q and ki, are rate

constants associated with the metabolism of cAMP, and h is the ratio of extracellular volume

to intracellular volume. The rate functions f1(γ) and f2(γ) describe the kinetics of the receptor

box, and ϕ(ργα) describes the activation of adenylate cyclase by bound and active receptor.

1.3.3 Monk-Othmer Model

The Monk-Othmer model developed previously for signal relay and adaptation in the cellular

slime mould Dictyostelium discoideum is shown to account for the observed oscillations calcium

and cyclic AMP in cellular suspensions.
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Magnitudes Definition

k1 Rate constant for modification step R → D

k2 Rate constant for modification step cAMPe−R → cAMPe−D.

k−1 Rate constant for demodification step D → R.

k−2 Rate constant for demodification step cAMPe−D → cAMPe−R.

KR Dissociation constant of cAMP-receptor complex in R state.

KD Dissociation constant of cAMP-receptor complex in D state.

Km,cyclase Michaelis constant of the form AC of adenylate cyclase.

K
′

m,cyclase Michaelis constant of the form IC of adenylate cyclase.

Vm,cyclase The rate of the maximum adenylate cyclase activity.

ki Apparent first-order rate constant for iPDE.

kt Apparent first-order rate constant for cAMP transport into extracellular medium.

h Ratio of extracellular to intracellular volumes.

Vm,PDE Maximum activity for ePDE.

Km,PDE Michaelis constant of ePDE for cAMP.

ATP The intracellular level of ATP.

k5 Catalytic constant of the form IC of adenylate cyclase.

k4 Catalytic constant of the form AC of adenylate cyclase.

ϵ Coupling constant for activation of IC by cAMPe-R.

Table 1.1: The meaning of the chemical magnitudes

The network of the major processes and the control pathways in the expended model is

shown in (Fig. 1.9). A qualitative argument is given which explains how the oscillations arise.

The model described by the equations intracellular and extracellular dynamics are given by:

• The equations for the intracellular dynamics

The equations for the intracellular variables are independent of whethere or not the concen-

tration of extracellular cyclic AMP is clamped. the velocity of the transport intracellular

concentration is given by:

g2(Ca0, Co)− g1(Cai, Co) = R1(Co)
Ca0

KFCa + Cao
− Vpump

Caq4i
Kq4

pump + Caq4i
(1.3)

Where R1(Co) is an increasing function, the form:

R1(Co) = Vm1 =
(RI + kICo

1 + kICo

)(RI1 + kI1Co

1 + kI1Co

)
(1.4)
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L1 = k−1/k1 q = Km,cyclase/KR α = ATP/Km,cyclase

L2 = k−2/k2 σ = Vm,cyclase/Km,cyclase θ = Km,cyclase/K
′

m,cyclase

c = KR/KD ke = Vm,PDE/Km,PDE λ = k5/k4

Table 1.2: The expression of the parameters, appearing in (1.2), in terms of the chemical

magnitudes of Table 1.

The functions g1 and g2 are the rate of transport of cytoplasmic calcium to exterior com-

partment and exterior calcium to cytoplasm respectively. For the other parameters (see [3]).

• The equations for the extracellular dynamics

The dimensionless equations governing the concentration of extracellular cyclic AMP are

as follows:

dx1
dτ

= Rc

( ρ

1− ρ

)
(RHf2(x2)− VPO(

xα1
1 + xα1

) +HRH(RHx2 − x1)

− VPE(
x1

Re + x1
)

dx2
dτ

= V (x1, x3) +H(x1 −RHx2)− f2(x2)− VPI(
x2

1 + x2
)

dx3
dτ

= R1(x1)(
x6

KF + x6
)− VPU (

xq43
Kq5

PU + xq43
)

+ Vs(
RS +KSx2
1 +KSx2

)(x4 − x3)− VSA(
xq53

1 + xq53
)

dx4
dτ

= (
Rc

1−Rc
)(VSA(

xq53
1 + xq53

)− Vs(
Rs +Ksx2
1 +Ksx2

)(x4 − x3))

x6 = (
1

1− ρ
)(x6 −Rcρx3 − (1−Rc)ρx4)

(1.5)

Here x1, ..., x6 denote the dimensionless concentrations of extracellular cyclic AMP and

calcium. The definition of each of the dimensionless parameters in the above equations is

given in [3].

1.3.4 Tang-Othmer model

The Tang and Othmer model is based on signal transduction via G proteins for adaptation

of the signal relay process in the cellular slime mold Dictyostelium discoideum. The kinetic

constants involved in the model are estimated from Dictyostelium discoideum and other systems.
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Figure 1.9: A schematic of the Calcium-cyclic AMP control network in dictyostelium dis-

coideum proposed in (I) and (II) and modified herein. Solid arrows indicate the chimical

reaction and transport pathways, broken lines indicate the control pathways. Ac, adeny-

late cyclase; ATP, adenosine triphosphate; C0, concentration of extracellular cyclic AMP;

Ci, concentration of cytosol cyclic AMP; Ca0, concentration of extracellular calcium;

Ca1, concentration of cytosol calcium; Cas, concentration of sequestered intracellular cal-

cium; ePDE, extracellular free phosphodiesterase; iPDE, cytoplasmic phosphodiesterase;

mPDE, membrane bound extracellular phosphodiesterase.

A typical scheme for signal transduction is shown in (Figure 1.10) . Upon binding of agonist

to a receptor, the agonist-receptor complex HsRs catalyzes the conversion of Gs, from the inac-

tive GDP-binding state, to the active GTP-binding state, with the release of GDP and the βγ

subunits. Binding of the active Gs, protein, who is denote by G′
s or αsGTP , with the unactivated

adenylate cyclase, which we denote UC, converts the latter into the activated cyclase AC. αsGTP

is deactivated by the intrinsic GTPase activity of αs. Modulo the basal rate for the unactivated

cyclase, the rate at which CAMP is produced is proportional to the amount of agonist present,

and a constant level of stimulus can sustain a constant level of CAMP production in the absence

of adaptation.

• The differential equations for quantities in the stimulus pathway are:
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Figure 1.10: A schematic diagram of the activation of adenylate cyclase via Gs proteins.

Hs denotes the stimulus signal, Rs, the stimulus receptor, αsGDPβγ unactivated Gs,

protein, and UC unactivated adenylate cyclase. It is believed that upon binding of Hs,

with Rs, Gs, is activated by the HsRs complex. This involves the release of the βγ subunits

and the addition of GTP to the αs chain. αsGTP , which is denoted by α
′
s in this figure,

then activates adenylate cyclase, which catalyzes the conversion of ATP to CAMP.

dy1
dt

= k1Hzz1 − k−1y1 − k2y1z2 + (k−2 + k3)y2 − h4y1y8 + h5y9,

dy2
dt

= k2y1z2 − (k−2 + k3)y2,

dy3
dt

= k3y2 − k4y3z3 − k5y3,

dy4
dt

= k4y3z3 − (k5 + l1)y4 + (l−1 + l2)y11,

dy5
dt

= k5(y3 + y4)− k6y5z6,

(1.6)

• differential equations for quantities in the inhibitory pathway are:
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dy6
dt

= h1Hz4 − h−1y6 − h2y6z5 + (h−2 + h3)y7,

dy7
dt

= h2y6z6 − (h−2 + h3)y7,

dy8
dt

= h3y7 − h4y1y8 − h5y8 + h6y9,

dy9
dt

= −(h5 + h6)y9 + h4y1y8,

dy10
dt

= h5(y8 + y9)− h7y10z6

(1.7)

• The differential equations for the production and secretion of intracellular

CAMP are:

dy11
dt

= l1y4 − (l−1 + l2)y11,

dy12
dt

= l2y11 − l5y12 + l−3y13 − l3y12z7

dy13
dt

= −(l−3 + l4)y13 + l3y12z7,

dy∗14
dt

= l5y12

(1.8)

The definition of the concentration y1− y14 in the differential equations and other parameter

are given in [4]. The term asterisk (∗) is used to indicate the former.

1.3.5 FitzHugh-Nagumo Model

The FitzHugh-Nagumo (FHN) cyclic AMP model [5–7] is the equivalent reduced MG model.

These equations are commonly used to describe a prototype excitable medium. The theory of

nonlinear mechanics was used by the phase space method to obtain the derivative of FHN model.

The two-component FitzHugh-Nagumo model system:

ġ = D
(
gxx + gyy

)
− kgg

(
g − a

)(
g − 1

)
− krr, (1.9a)

ṙ =
(
g − r

)
/τ (1.9b)

The first equation describes the excitation of the medium, defined by the variable (g), over

time. This variable is linked to the extra cellular cAMP concentration. The second equation de-

fines the recovery process of the medium (r) and could be thought to describe the desensitisation
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of the cAMP receptors. D is the diffusion coefficient for cAMP; τ is a time scaling factor for the

variables r and g; kg and kr, define the rate of production and hydrolysis of cAMP by one cell

and a is a coefficient.

1.3.6 Difference and Similitude between the Various Models

Many different models of cell-to-cell communication in Dictyostelium have been proposed

over the years. The earliest models were necessarily a little crude because essential biochemical

information about the signaling system was lacking. For instance, before the kinetic properties

of the membrane receptor were characterized, Goldbeter and Segel (1980) suggested a model in

which intracellular ATP, intracellular cAMP, and extracellular cAMP were the essential dynam-

ical variables. the Goldbeter-Segel model was unable to account for adaptation of the cAMP

response to repeated stimulation of Dictyostelium cells by external application of cAMP. Then

model calculations agree in quantitative detail with experimental observations of the relay re-

sponse of Dictyostelium cells in suspension, of adaptation to constant stimulation, and of the

response of cells to periodic pulsatile and stepwise stimulation (Martiel and Goldbeter, 1987).

The models Martiel-Goldbeter (MG) and Goldbeter-Segel (GS) are not able to explain the oscil-

lations observed of calcium and the cyclic AMP in the cellular suspension. For that Monk and

Othmer (1989) developed a model for the calcium-cyclic-AMP control network in Dictyostelium

discoideum. In the enzymatic activity, Tang-Othmer (1995) proposed a model or the receptor

dependent activation of activating and inhibitory G proteins controls the periodic cAMP produc-

tion.The prototype FitzHugh-Nagumo (1997) system describe excitable and/or oscillatory media

and is very similar to the models precedent. This models were developed to describe mathe-

matically the cAMP relay kinetics of Dictyostelium amoebae. Some of them have biophysically

meaningful and measurable parameters(GS, MG, MO, TO), and the other although not having

biophysically meaningful, exhibit the most fundamental properties of the propagation waves of

cyclic AMP (FHN).

Conclusion

This chapter has allowed us to understand the anatomy and physiology of the cyclic AMP

signaling system in the amoebas dictyostelium discoideum. The good quantitative agreement

between theory and experiment on cAMP waves during aggregation of Dictyostelium amoebae

is very encouraging and provides reasonable cause for optimism in modeling the complete devel-

opmental process in this organism. Dictyostelium aggregation is in many respects a special case

in that it is a simple process organized by traveling waves and a process for which we have a
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good description of the kinetics of the biochemical reactions taking place. To explain a complex

developmental process, unfolding in space and time, it is necessary but not sufficient to study the

individual pieces of the molecular machinery. Eventually these pieces must be put together into

a mathematical model, and the model must be studied by analytical and numerical methods to

demonstrate that the mechanism really can account for the developmental process in quantitative

detail. The differents Mathematical models and numerical experimentation, of the sort we have

reviewed here, are becoming increasingly important in developmental biology. Their ultimate

success, however, will depend crucially on close interaction between biologists and theoreticians.

Therefore, in the rest of this work, we propose to study the pulsatile communication in the

amoebas dictyostelium discoideum.
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Chapter 2

Models of cAMP in

Dictostelium-discoideum and

methodologie

Introduction

For a logical understanding of the communication between cells in the colony of amoebas

dictyostelium discoideum, several models were proposed during years. The first models were too

rough because certain biochemical information essential for the system signaling missed. Gold-

beter and Segel [151] suggested a model in which intracellular adenosine triphosphate (ATP) and

intracellular and extracellular Adénosine Monophosphate cyclic (AMPc) was essential dynamic

variables. By assuming the positive feedback of extracellular cAMP on the activity of the cyclase

of adenylate, Goldbeter and Segel could show oscillations and announce the relay in the model

which was remarkably similar to the experimental observations in the well-stirred up suspension

of cells. Unfortunately, the model of Goldbeter-Segel could not explain the adaptation of the

cAMP response to the repeated stimulation of the cells of Dictyostelium by external application

of cAMP [153, 154]. Modeling cAMP wave propagation in agar-surface cultures introduces spa-

tial dependencies and is much more complicated than modeling oscillations and signal relaying

in cell-suspension cultures because as well as the signal-relaying system we now have to account

for random diffusion of cAMP in the extracellular milieu, random motion of the amoebae on

the agar surface, and chemotactic motion of the amoebae. Martiel and Goldbeter [2] developed

a complete model of cAMP signaling by adding several reactions recapitulating the synthesis

of cAMP by adenylate cyclase, the cAMP transport through the plasma membrane, and the

degradation of cAMP by the phosphodiestérase. By traditional methods of biochemical kinetics,
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Martiel and Goldbeter derived a set of equations describing the dynamics of rates of interactions

of intracellular cAMP, extracellular cAMP and the membrane receiver. For slightly different

values of parameter, the model predicts that the cells answer the external cAMP impulse by

amplifying the impulse of cAMP. The models for calculations are in agreement with the quanti-

tative time with experimental observations of the response of relay in suspension of the cells of

Dictyostelium, of adaptation to constant stimulation, and of the response of the cells to pulsatile

stimulation and by stages périodique. Little time later, the MG model undergoes improvements,

the extracellular diffusion of cAMP was injected by Tyson and its collaborateurs [9], the reaction-

diffusion-migration worked out by Linder et al. [155] , Gholami and its collaborators improved

by the addition of the advection in the model (reaction-diffusion-advection) [150]. These mod-

els are similar to the FitzHugh-Naguno prototype, often used in the excitable and oscillatoire

mediums [5].

Several studies were carried out to improve the models of AMPc waves propagation within

the colony the amoebas dictyostelium discoideum. This improvement of the models of AMPc

signaling in the suspension of cells are due to certain influences in nature such as instability

in pulsatile secretion of AMPc and the propagation of AMPc wave. The instability of the

AMPc waves in the process of aggregation of the amoebas dictyostelium discoideum can be

caused by various phenomena, the presence of an electric field in the area of aggregation of the

dictyostelium discoideum, when this area of dictyostelium discoideum aggregation is exposed

to a fluid flow (phenomenon of advection), etc. The modeling of the AMPc wave propagation

allows the analytical and numerical control of parameters with the aim of studying the natural

phenomena appearing in the process of aggregation of the dictyostelium discoideum and giving a

biophysics meaning. In experiments the random movement of the amoebas towards the centers

of aggregation while following the gradient of AMPc waves propagation presents coherent and

incoherent dualism [2]. The analytical and numerical study of this dualism could moreover

include the dynamics of the concentric and spiral waves of AMPc.

Highlighting experimental studies through the development of the mathematical models of

complex systems produces coherent information between the experiment and theory. The an-

alytical solutions of the elaborated mathematical models explicitly describe the temporal or

spatiotemporelle dynamics of the studied systems.Indeed compared to their complexities, these

generic models can be reduced to partial equations that give rise to specific soliton, and whose

solutions can be obtained using well known analytical methods such as the expansions on multi-

scales [156, 158, 159, 189] which lead to a generalized equation of Ginzburg-Landau [161–166].

Obtaining the reliable results which are in conformity with physical reality with these methods

depend on the user. Primarily these models were mathematically developed to describe the kinet-

ics of relay of AMPc of the amoebas dictyostelium discoideum. It is well-known that the model
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suggested by Martiel-Goldbeter which is elaborate on the assumption of activation/inactivation

of the receivers of AMPc plays an important role in this project, and the model established by

FitzHugh-Nagumo, which is generally used to describe the prototype of the excitable medium.

Both can describe the solitary wave propagation of AMPc as communication tool between cells.

These waves result from the interaction between the properties of the medium, nonlinearity and

dispersion. They very often involve the phenomenon of modulational instability (MI) which has

been studied in various fields of physics such as: Nonlinear optical system [167], Nonlinear hydro-

dynamics [168], Nonlinear transmission lines (NTLs) [169–171] and biophysics [45,51–53,172].

The linear stability method of analysis is used to study the phenomenon of MI, but the limit

of this method to envisage the manifestation of the long-term phenomena, called upon numerical

methods. However, the numerical methods such as the integration method of Runge-Kunta of

fourth order are generally exploited, to give not only validity to the analysis of linear stability, but

to also indicate the model patterns. In this chapter we will present the model of AMPc signaling

in a population of suspended cells of amoebas dictyostelium discoideum which we developed in

this thesis. Moreover we will apply the analytical and numerical methods not only to simplify

them, but to also solve them.

2.1 Mathematical modeling

2.1.1 Reaction-Diffusion Systeme

2.1.1.1 Generalities

The models of reaction diffusion type have received a lot of attention in the literature. This

has been reflected in a deep knowledge of the subject and in an overwhelming quantity of papers.

Some representative reviews and introductory books that treat this topic are [175–179, 226]. In

the following we will give a brief description of this type of models. Reaction-diffusion models

are systems of coupled partial differential equations (PDEs in the following) that can be written

in the following way:

∂tX
(
x, t) = g

(
X
(
x, t
))︸ ︷︷ ︸

reaction

+D∇2X
(
x, t
)︸ ︷︷ ︸

diffusion

, (2.1)

where X is a (column) vector field. In the context of chemical reactions, the elements of this

field represent the concentrations of different reactants. The functions in the vector g
(
X
(
x, t
))

are typically nonlinear. This portion of the Eq.(2.1) is usually called the reaction part. The
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System Activator Inhibitor

Dictyostelium discoideum cyclic AMP membrane receptor

BZ reaction bromous acid oxidized catalyst

CO oxidation coverage of the absorbed CO structural change of the surface

Neuromuscular tissue membrane potential ionic conductance

Epidemics infectious agent level of immunity

Spiral galaxies density of molecular cloud temperature of molecular cloud

Table 2.1: State variables of some representative excitable media [179,230]

diffusion matrix D is square and typically diagonal. This last portion of the Eq.(2.1) is called the

diffusion part and accounts for the diffusion of the reactants. In this Thesis we will concentrate on

cases where the physical space on which the reactants diffuse is one-dimensional. Consequently, in

the following we will substitute the Laplacian operator ∇2 by a one dimensional spatial (second)

derivative ∂2x.

2.1.1.2 Activator-Inibitor

A well studied subgroup of reaction-diffusion systems are the so called activator-inhibitor

models [175–177, 180, 226]. These models have been used in many different pattern forming

systems ranging from chemical reactions [177, 180] to biological problems [181, 226] (such as

population dynamics, epidemic spreading, and many others). The activator-inhibitor models

consist of two variables (i.e. X =
(
γ; ρ)Tr in Eq.(2.1)) which diffuse in the medium. The first

variable, γ, called activator and the second, ρ, inhibitor. The field γ is auto-catalytic. A small

amount of its concentration triggers the production of more of it. The growth of γ is inhibited

by the presence of a second field ρ.

The dynamics of the inhibitor ρ is such that the presence of a nonzero concentration of

activator γ stimulates the γ production, i.e. γ acts as a catalysator for the ρ production. On the

other hand a nonzero quantity of this second field ρ induces its decrease. Consequently a nonzero

quantity of γ activates the production of both γ and ρ and, conversely, a nonzero quantity of ρ

halts and reverses (i.e. inhibits) the production of both. This is the reason why the fields γ and

ρ are called activator and inhibitor respectively. So far this description corresponds to the linear

behavior. Typically (saturating) nonlinearities are introduced to limit the unbounded catalytic

process.
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2.1.2 Model and kinetic equations MG

2.1.2.1 Description of the Model

In the model proposed by Martiel and Goldbeter [2] (hereafter referred to as the MG model) it

is assumed that the cells contain a large number of receptors (105-106 molecules/cell) that might

be in either the active or desensitized state.The transition from active to desensitized state takes

place by means of the phosphorylation of the cAMP receptor Eq.(2.1). In the derivation of this

model several processes are assumed to play a role inside and outside the cell, namely:

R
 D (2.2a)

D + P 
 DP (2.2b)

RP 
 DP (2.2c)

2RP + C 
 E (2.2d)

E + S 
 ES 
 E + Pi (2.2e)

C + S 
 CS 
 C + Pi (2.2f)

Pi 
 (2.2g)

Pi 
 P 
 (2.2h)


 S 
 (2.2i)

The monomeric receptor, located on the outer face of the plasma membrane, exists in two

conformational states, R and D. Extracellular cAMP (P) binds to these two conformations with

different affinities (steps b and c). The transitions between the two states (steps a and d) may

represent a simple conformational change, or a process of covalent modification; in the latter

case, the modifying enzymes operate in the firstorder kinetic domain. Experimental evidence in

D. discoideum suggests that these transitions are associated with desensitization through phos-

phorylation of the cAMP receptor [182]. The hypothesis that upon diffusion in the membrane,

two molecules of active complex RP bind to adenylate cyclase (step e) and thereby activate

the enzyme. Whether such a process occurs in Dictyostelium remains a conjecture; however,

receptor dimerization required for activation of the cellular response has been demonstrated for

the gonadotropin-releasing hormone receptor [183]. The reason for considering such coopera-

tive process is that some form of nonlinearity is essential for oscillations (see, e.g., [184]). The

cooperativity of step e replaces here the one previously located at the level of cAMP binding

to a dimeric receptor [185]. Although positive cooperativity in binding is suggested by some
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Figure 2.1: Model based on receptor desensitization for the cAMP signaling system of

the slime mold Dictyostelium discoideum. Extracellular cAMP binds to the active state

(R) of the receptor and thereby activates adenylate cyclase (C) which produces cAMP

from intracellular ATP. The transition from the active to the desensitized state (D) of

the receptor may in principle occur through a simple conformational change or though

covalent modification. The latter situation appears to prevail in D. discoideum where

the R and D states correspond to the dephosphorylated and phosphorylated forms of

the cAMP receptor. Arrows indicate transport of cAMP into the extracellular medium

and cAMP hydrolysis by the intracellular and extracellular forms of phosphodiesterase.

The kinetics of the cAMP production in well-stirred suspensions of D. d. cells are well

described by the MG model [2], which is based on the relevant kinetic rate laws and the

interaction between cAMP and its membrane receptor

experiments [186], it is not apparent in the observations made with constant stimuli [187]. Both

types of cooperativity yield similar results.

A global step e without including a more detailed mechanism for adenylate cyclase activation

by the cAMP-receptor complex. This process likely involves a GTP-binding protein as in the

activation of adenylate cyclase in higher organisms [188]. The nonlinearity of step e may thus

be taken as reflecting also the amplification of the activation process due to interactions between

the GTP-binding protein and adenylate cyclase.

In view of the results obtained for the β-adrenergic receptor [189],the modified form DP of

the receptor cannot couple to the cyclase, and therefore represents an inactive, desensitized state.

Such a hypothesis holds with suggestions based on experimental observations [190]- [182]. To

account for the enhancement in cAMP synthesis that follows binding of extracellular cAMP, the

receptor-adenylate cyclase complex E (step f) has a larger affinity for the substrate ATP (S)

and/or a larger catalytic activity than the free form C of the enzyme (step g).
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Part of intracellular cAMP (Pi) is hydrolyzed by an intracellular phosphodiesterase (step h),

whereas part is transported across the plasma membrane into the extracellular medium where

it is hydrolyzed by the membrane bound and extracellular forms of this enzyme (step i). In

agreement with the experiments [191], these steps are each governed by an apparent first-order

rate constant. A final assumption is that the substrate ATP is synthesized at a constant rate

and used in a number of reactions besides that catalyzed by adenylate cyclase; a global rate

constant k′ characterizes the latter ATP consuming processes. The assumption of a constant

rate of utilization in these processes would yield similar results (the ATP level will, in fact, be

taken as constant after reduction of the model to a three-variable system).

2.1.2.2 Kinetic equations

The time evolution of the concentration of the various species appearing in the kinetic of

Eq.(2.1) is governed by the following differential equations (2.3) In these equations ρ = R/RT ,

δ = D/RT , x = RP/RT , e = E/ET , es = ES/ET , c = C/RT and cs = CS/RT , where

RT and ET represent the total amount of receptor and of adenylate cyclase; β and γ denote

respectively the concentration of intracellular and extracellular cAMP divided by the dissociation

constant KR = d1/a1; α is the intracellular level of ATP normalized by the Michaelis constant

Km = (d4 + k4)/a4. Moreover, L1 = k−1/k1 is the equilibrium ratio of the states R and D in

the absence of ligand, whereas L2 = k−2/k2; c = KR/KD with KD = d2/a2 is the nonexclusive

binding coefficient of extracellular cAMP for the two receptor states; υ = υi/Km; h is the dilution
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factor.

dρ

dt
= k1(−ρ+ L1δ) + d1(−ργ + x)

dδ

dt
= k1(ρ− L1δ) + d1(−cδγ + y)

dx

dt
= k2(−x+ L2y) + d1(ργ − x) + (2µ/h)d3(−ϵx2c+ e)

dc

dt
= d3(−ϵx2c+ e) + (d5 + k5)(−cαθ + cs)

de

dt
= d3(ϵx

2c− e) + (d4 + k4)(−eα+ es)

des

dt
= (d4 + k4)(eα− es)

dα

dt
= υ − k

′
α− σ(es+ λcs) + θE((d4 + k4)

(−eα+ es) + (d5 + k5)(−cαθ + cs))

dβ

dt
= qσ(es+ λcs)− (ki + kt)β

dγ

dt
= (ktβ/h)− ke + η(d1(−ργ + x) + d2(−cδγ + y))

(2.3)

In deriving Eq.(2.2), we made use of the two conservation relations for the receptor and for

adenylate cyclase:

RT = R+D +RP +DP + (2/h)(E + ES)

ET = E + ES + C + CS

(2.4)

The assumption that RT and ET remain constant holds in first approximation, given that the

time scale for the variation of these parameters is much longer than the time scale for relay and

oscillations. The conservation relations Eq.(2.3) take into account the fact that the receptor and

adenylate cyclase concentrations are defined with respect to the extracellular and intracellular
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volumes, respectively. Eq.(2.3) yield the following expressions for y and cs, which supplement

Eq.(2.2):

y = 1− ρ− δ − x− (2µ/h)(e+ es)

cs = 1− c− e− es

(2.5)

In the limit of fast binding of extracellular cAMP to both forms of the receptor and fast

association between RP and C, C and S, E and S, the following inequality on the rate constants

for the reaction steps I holds

(k1, k−1, k2, k−2, ki, kt, ke, σ, k
′
) ≪ (a1, d1, a2, d2, a3, d3, a4, d4, a5, d5)

(2.6)

As Eq.(2.2) contain both fast binding and slow modification terms, we introduce new variables

to separate the nine differential Eq.(2.2) into two sets, one associated with the slower time scale

governing the interconversion of the receptor forms, and another associated with the faster time

scale governing the binding reactions. Let us define PT and 6r as the total fractions of the

receptor in the active and inactive (modified) states, Y the total fraction of the receptor forms

bound to cAMP, A as the total concentration of intracellular ATP (free plus bound to the two

forms of adenylate cyclase), and r as the normalized total concentration of extracellular cAMP

(free plus bound to the two receptor states). These new variables are expressed as a function of

the old ones by Eq.(2.6).

ρT = 1− δT = ρ+ x+ (2µ/h)(e+ es)

Y = x+ y + (2µ/h)(e+ es)

A = α+ΘE(cs+ es)

Γ = γ + η(1− ρ− δ) = γ + ηY

(2.7)

The evolution equations for these new variables can now be obtained by taking their time

derivative from Eq.(2.6) and inserting into the resulting relations the relevant equations from

Eqs. Al. This procedure yields the new set of Eq.(2.7) in which the first four equations govern

the evolution of slower variables, while the remaining equations relate to fast variables (system

Eq.(2.7) can be complemented by one of the three equations for ρ, δ or x in (2.2) but these

equations contain both fast and slow terms and will therefore not be used in the subsequent

reduction).
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dρT
dt

= k1(−ρ+ L1δ) + k2(−x+ L2y)

dA

dt
= υ − k

′
α− σ(es+ λcs)

dβ

dt
= qσ(es+ λcs)− (ki + kt)β

dΓ

dt
= (ktβ/h)− ke

dY

dt
= k1(ργ − x) + d2(−cδγ − y)

dc

dt
= d3(−ϵx2c+ e) + (d5 + k5)(−cαθ + cs)

de

dt
= d3(ϵx

2c− e) + (d4 + k4)(−eα+ es)

des

dt
= (d4 + k4)(eα− es)(−eα+ es) + (d5 + k5)(−cαθ + cs))

(2.8)

where y and c are still given by Eq.(2.4). We now require that, after an initial transient phase,

the differential equations for the fastest variables Y , c, e and es reduce to algebraic equations

corresponding to the quasi-steady-state hypothesis for these receptor and enzyme forms. This

condition leads to Eq.(2.8).

d1(ργ − x) + d2(cδγ − y) = 0

eα− es = 0

cαΘ− cs = 0

ϵx2c− e = 0

(2.9)

In the first of these equations each of the two terms in parentheses vanishes since, when the

quasi-steady-state regime holds, the set relations (2.8) must remain independent of the actual

values of d, and d2. The five algebraic relations obtained from A7, plus the four kinetic equations
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for the slow variables in (2.7), correspond to the nine degrees of freedom of the initial system

(2.2. Taking into account the conservation relations (2.4) we obtain Eq.(2.9) for c as a function

of α and x; similar relations are obtained for e, es, and cs.

c = [1 + αΘ+ ϵx2(1 + α)]−1
(2.10)

The evolution equations for the remaining slow variables can now be transformed according

to relations (2.8) and (2.9), yielding the four-variable differential system (2.10):

dρT
dt

= k1(−ρ+ L1δ) + k2(−ργ + L2cδγ)

dA

dt
= υ − k

′
α− σα(λθ + ϵρ2γ2)/[1 + αΘ+ ϵρ2γ2(1 + α)]

dβ

dt
= qσα(λθ + ϵρ2γ2)/[1 + αΘ+ ϵρ2γ2(1 + α)]− (ki + kt)β

dΓ

dt
= (kt/h)β − keγ

(2.11)

To express in these equations the old variables in terms of the new ones, we use the definitions

(2.6) which take the form

ρT = ρ(1 + γ) + (2µ/h)[ϵρ2γ2(1 + α)]/[1 + αΘ+ ϵρ2γ2(1 + α)]

A = α+ΘE [α(θ + ϵρ2γ2)]/[1 + αΘ+ ϵρ2γ2(1 + α)]+

Γ = γ + η(ργ + cδγ) + (2µ/h)[ϵρ2γ2(1 + α)]/[1 + αΘ+ ϵρ2γ2(1 + α)].

(2.12)

As experimentally observed (see Tables I and II), the parameters (mu/h), ΘE and η are much

smaller than unity. Neglecting the terms multiplied by these factors in Eq.(2.11), we obtain the

simpler expressions for the new variables ρT . A, and Γ as a function of the original ones ρ, α,

and γ:

ρT = ρ(1 + γ);A = α; Γ = γ
(2.13)
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Inserting the expressions (2.8) into (2.12) and taking into account the conservation relations

(2.4), we get

ρ = ρT /(1 + γ); Γ = (1− ρT )/(1 + cγ)
(2.14)

The four-variable system (2.10) takes the final form (2.14):

dρT
dt

= −ρT [(k1 + k2)/(1 + γ)]

dα

dt
= υ − k

′
α− σΦ(ρT , γ, α)

dβ

dt
= qσαΦ(ρT , γ, α)− (ki + kt)β

dΓ

dt
= (kt/h)β − keγ

(2.15)

With Φ(ρT , γ, α) = α(θ+ ϵρ2γ2)/[1 + αΘ+ ϵρ2γ2(1 + α)]; Y = ρTγ/(1 + γ).These equations

are identical to the four-variable system (2) analyzed in the text. System 2 further reduces to

the three-variable system (3) when considering that the ATP level (a) does not vary in time.

Eqs.(2.14) are valid in the limit of negligible (µ/h), ΘE , and η (see Eqs.(2.12)). The values

of the two first pararameters are generally smaller than that of the latter, which may reach 200

(see Table II). It may therefore be of interest to determine the behavior of the system when the

cAMP bound to the receptor is taken into account (this amounts to keeping the term η[ργ+ cδγ]

in Eqs.(2.11)). In the limit (µ/h) → 0, ΘE → 0 and finite η we obtain, instead of Eqs.(2.12):
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dρT
dt

= −ρT f1(γ) + (1− ρT )f2(γ)

dα

dt
= υ − k

′
α− σΦ(ρT , γ, α)

dβ

dt
= qσΦ(ρT , γ, α)− (ki + kt)β

dΓ

dt
= (kt/h)β − keγ

(2.16)

With Φ(ρT , γ, α) = α(θ + ϵρ2γ2)/[1 + αΘ + ϵρ2γ2(1 + α)]; Y = ρTγ/(1 + γ); f1(γ) =

(k1 + k2γ)/(1 + γ); f2(γ) = (k1L1 + k2L2cγ)/(1 + cγ); Γ = γ + η(ργ + cδγ) + (2µ/h)[ϵρ2γ2(1 +

α)]/[1+αΘ+ϵρ2γ2(1+α)]. γ is given by the unique positive root of the third-degree polynomial:

− cγ3 + (cΓ− 1− ηc)γ2 + [(1 + c)Γ− 1− ηc− ηρT (1− c)]γ + Γ = 0
(2.17)

To simplify this system of nine differential equations, we consider all binding reactions 2.1b,

2.1c, 2.1e-2.1g as much more rapid than the slow transitions between the unmodified and mod-

ified receptor states in steps 2.1a and 2.1d. Due to the simultaneous presence of fast and slow

terms in some of the Eq.(2.1), the obtainment of the quasi-steady-state equations is not straight-

forward. This property allows us to further reduce the number of variables by considering a

as a parameter in Eq.(2.15). The dynamics of the cAMP signaling system is then governed by

the three differential Eq.(2.17), where the various functions and parameters remain defined as in

Eq.(2.15).

dρT
dt

= −ρT f1(γ) + (1− ρT )f2(γ)

dβ

dt
= qσΦ(ρT , γ, α)− (ki + kt)β

dγ

dt
= (kt/h)β − keγ

(2.18)
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Eqs.2.17 can be further reduced to a two-variable system for large values of q, kt and ki.

Then a quasi-steady-state hypothesis for ,β can indeed be made. The advantage of a two-

variable system is that the link between relay and oscillations can be demonstrated by phase

plane analysis. As the experimental values available for kt, and ki, relative to q, are too low for

such reduction to hold rigorously, we shall use the three-variable system governed by Eq.(2.17)

for studying the dynamics of the signaling system.

2.1.3 Two-component MG model with advection

The MG Model is based on receptor desensitization for the cAMP signaling system of the

slime mold Dictyostelium discoideum. The model takes into account both the desensitization of

the cAMP receptor by reversible phosphorylation and the activation of adenylate cyclase that

follows binding of extracellular cAMP to the unmodified receptor. The dynamics of the signaling

system is studied in terms of three variables, namely, intracellular and extracellular cAMP, and

the fraction of receptor in active state. Tyson et al. extended the model [9] and advection in the

system is added by A. Gholami et al [150].

The main equations of the model in its three component version are as follows, where ρ stands

for the percentage of active receptors on the cell membrane, γ, the extracellular concentration of

cAMP, and β, the intracellular amount of cAMP. The receptor dynamics are given by

∂tρ = −k1f1(γ)ρ+ k1f2(γ)(1− ρ), (2.19)

with

f1(γ) =
1 + κγ

1 + γ
, f2(γ) =

L1 + κL2cγ

1 + cγ
, (2.20)

where f1 controls the receptor desensitization (change from active to inactive state) and f2,

the resensitization. The intracellular cAMP is increased by the cAMP production, which in turn

depends on the extracellular cAMP and the active receptors. This production is tuned through

the rate σ at which the activated ACA produces cAMP. The intracellular cAMP is diminished

through degradation by intracellular phosphodiesterase at a rate ki and passive transport outside

of the cell at a rate kt.

∂tβ = qσαϕ(ρ, γ)/(1 + α)− (ki + kr)β (2.21)

with

ϕ(ρ, γ) =
λ1 + Y 2

λ2 + Y 2
, Y =

ργ

1 + γ
. (2.22)
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λ2 = (1 + αθ)/(ϵ(1 + α)) and λ1 = λθ/ϵ. The extracellular concentration of cAMP γ is

degraded at a rate ke by the extracellular phosphodiesterase and is increased by the transport of

cAMP from the intracellular medium

∂tγ = D∇2γ + υ · ∇γ + ktβ/h− keγ, (2.23)

We nondimensionalize the system by introducing dimensionless time and space as t′ = t× k1

and x′ = x × k1/
√
keD Dropping primes and setting ϵ1 = k1/ke, ϵ′ = k1/(ki + kt) and υ is the

dimensionless flow velocity υ = Vf/
√
keD,where Vf is the dimensional velocity. we arrive at

∂tρ = −f1(γ)ρ+ f2(γ)(1− ρ), (2.24a)

ϵ′∂tβ = qσαϕ(ρ, γ)/(1 + α)− β (2.24b)

∂tγ = ϵ1∇2γ + υ · ∇γ + (ktβ/(hke)− γ)/ϵ1 (2.24c)

Finally, we reduce this system to a two component model which simplifies its theoretical treat-

ment. For this, we assume ϵ′ small, which means that the intracellular cAMP is instantaneously

transmitted to the outside media. We then arrive at the two component Martiel-Goldbeter,

∂tγ = ϵ1∇2γ + υ⃗ · ∇⃗γ +
1

ϵ1
[sϕ(ρ, γ)− γ], (2.25a)

∂ρ = −f1(γ)ρ+ f2(γ)(1− ρ), (2.25b)

where s = qktασ/ke(kt + ki)h(1 + α), for a discussion on the validity of this approximation,

refer [9]- [150]).By combining Eqs.(2.19)-(2.21)-(2.23) followed with some simplifications without

the loss of generality, we get:

∂γ

∂t
= a0 + a1γ + a2γ

2 − γ3 + a3(γρ)
2 + a4γ(γρ)

2 + υ∇γ + ϵ1∇2γ, (2.26a)

∂ρ

∂t
= L1 − b1ρ+ b2γ + b3γ

2 + b4γρ+ b5γ
2ρ, (2.26b)

where the constant parameters (ai)i=0,4 and (bj)j=1,5 are given in Appendix A. Nonlinear

velocity of reactions together with conditions at the edges null or periodic flow, this system

equations has a stationary and homogeneous solution (γ0, ρ0). This solution corresponds to the

branch stable towards which the system in the absence of instability will evaluate. Let us consider

now an open engine in which this uniform stationary state undergoes a small local perturbation

(γ1, ρ1) of the concentration of intermediaries. Correspondingly we set

γ = γ0 + γ1, (2.27a)
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ρ = ρ0 + ρ1, (2.27b)

to obtain the dynamical equations in γ1 and ρ1 as follow:

γ̇1 = c0 + c1γ1 + c2γ
2
1 + c3γ

3
1 + c4γ1ρ1 + c5ρ1 + c6ρ

2
1 + c7γ

2
1ρ1 + c8γ1ρ

2
1 + υγ1x + ϵ1△γ1, (2.28a)

ρ̇1 = d0 + d1ρ1 + d2γ1 + d3γ
2
1 + d4γ1ρ1 + d5γ

2
1ρ1, (2.28b)

where the new constant parameters (ci)i=0,8 and (dj)j=0,5 are given in Appendix B. Let

us now differentiate Eq.(3.1a) with respect to the time in order to eliminate the variable ρ1

and keep only the variable γ1. This is achieved by replacing ρ̇1 and ρ1 by their corresponding

expression extracted in Eqs.(3.1b) and (3.1a), respectively. Thus we obtain the following second

order differential equation:

ψ̈ +Ω2
0ψ + e1ψ

2 + e2ψ
3 +

[
ε2f0 + f1ψ + f2ψ

2
]
ψ̇ +

[
g0 + g1ψ

]
ψ̇2 + g2ψ̇

3+[
ε2h0 + h1ψ + h2ψ

2 + h3ψ̇ + h4ψ̇
2 + h5ψψ̇

]
ψ′ +

[
i0 + i1ψ + i2ψ̇

]
(ψ′)2 + e0

=
[
D0 +D1ψ +D2ψ

2 +D3ψ̇ +D4ψ̇
2 +D5ψψ̇ +D6ψ

′ +D7ψψ
′ +D8ψ̇ψ

′]ψ′′+[
H0 +H1ψ +H2ψ̇

]
(ψ′′)2 + ε2λ0ψ̇

′ + ε2µ0ψ̇
′′,

(2.29)

To further proceed, we assume γ1 = εψ, where parameters f0, h0, λ0 and µ0 have been

considered to be perturbed at order ε2, ε being a parameter smaller than 1 (ε≪ 1). In Eq.(2.28)

γ′1 = ∇γ1 and γ′′1 = ∇2γ1 and the constant parameters are given in Appendix C. It is important

to stress that the above transformation does not fundamentally affect the original system, instead

the approach allows us to conveniently write Eq.(2:24) in a Liénard form that is a second-

order differential equation with a small damping term. Eq.(2:29) describes the dynamics of the

cAMP concentration. However, some nearly-exact solutions may be obtained using perturbation

methods. In the following, the system of Eq.(2:29) will be reduced into a CGL equation by

applying the continuum approximation, while the version (2.24) will be numerically simulated

using the RK4 method. Globally, the models will be used to show the existence of cAMP

oscillations in Dictostelium-discoideum medium.

2.1.4 Two-dimensional FHN model

A paradigmatic example of an activator-inhibitor model is the so called FitzHugh-Nagumo

system (FHN) [175, 176, 226]. This model was initially proposed independently by R. FitzHugh

[195] and Nagumo et al. [196] as a mathematically tractable model for propagation of electrical

signals in neurons (for a short introduction to this topic see Section 6.5 in [226] and references

therein). The FHN model represents one of the simplest descriptions of an excitable media,
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consequently it has been used as simplified or toy model in many other areas (see e.g. [175,222]).

A crucial feature that distinguishes the FHN model is that nonlinearities appear only in the

dynamics of the activator field g. This saturating nonlinearity term has the form of a cubic

function in g. A generic FHN model is given by:

ġ = D
(
gxx + gyy

)
− kgg

(
g − a

)(
g − 1

)
− krr, (2.30a)

ṙ =
(
g − r

)
/τ (2.30b)

The first equation describes the excitation of the medium, defined by the variable (g), over

time. This variable is linked to the extra cellular cAMP concentration. The second equation

defines the recovery process of the medium (r) and could be thought to describe the desensitisa-

tion of the cAMP receptors. Dxx and Dyy are the diffusions coefficients for cAMP ; τ is a time

scaling factor for the variables r and g; kg and kr, define the rate of production and hydrolysis

of cAMP by one cell and a is a coefficient. their values numerical are given by: kg = 4.72,

a = 0.05, kr = 1.5, τ = 5, and D = 1. It is worth to notice that Eq.(2.30) only describes the

propagation of cAMP withim a single cell. In order to investigate the cell-cell communication

via the release-receiving cAMP process in a colony of amoebae, includes an external stimulus is

proposed here and reads

ġn,m = Dx

(
gn+1,m − 2gn,m + gn−1,m

)
+Dy

(
gn,m+1 − 2gn,m + gn,m−1

)
− kg

(
gn,m − a

)(
gn,m − 1

)
− krrn,m +R,

(2.31a)

ṙn,m = µ
(
gn,m − rn,m

) (2.31b)

Where µ = 1/τ and the discrete index n,m = 1, N denotes the number of cell in a ring of

N total cells. The positive real R have been introduced to excite these cells in order to initiate

cAMP waves in the extracellular medium. The first step of this process consists in differentiating

Equation (2a) with respect to time, and substituting the derivative ṙn,m, into the obtained

second-order ordinary differential equation. This leads to

g̈n,m + kgaġn,m − 2kg(1 + a)gn,mġn,m + 3kgg
2
n,mġn,m + kr ṙn,m = Dx(ġn+1,m − 2ġn,m + ġn−1,m)

Dy(ġn,m+1 − 2ġn,m + ġn,m−1)

(2.32)
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As we can note, Equation (2.32) still contains some terms with ṙn,m. To get rid of them,

we slightly perturb Equation (2:31) by considering gn,m → ϵgn,m and rn,m → ϵrn,m, where ϵ

is a parameter smaller than 1. We then extract the variable rn,m at order ϵ1. Finally, going

back to Equation (2:32) and replacing the variable rn,m by its expression lead to a second-order

differential-difference equation which can be handled using a perturbation approach. For this

purpose, we introduce a new variable gn,m = ϵGn,m, where ϵ is a small parameter that measures

the strength of nonlinearity.

G̈n,m +Ω2
0Gn,m +Ω1G

2
n,m +Ω2G

3
n,m + [ϵ2γ0 + γ1Gn,m + γ2G

2
n,m]Ġn,m =

D0X(Gn+1,m − 2Gn,m +Gn−1,m) +D0Y (Gn,m+1 − 2Gn,m +Gn,m−1)+

ϵ2D1X(Ġn+1,m − 2Ġn,m + Ġn−1,m) + ϵ2D1Y (Ġn,m+1 − 2Ġn,m + Ġn,m−1)

(2.33)

With

Ω2
0 = µ(kr + kga); Ω1 = −µkg(1 + a); Ω2 = µkg; γ0 = kga+ µ; γ1 = −2kg(1 + a); γ2 = 3kg;

D0X = µDX ; D0Y = µDY , D1X = DX and D1X = DX .

Moreover, since we are interested in wave propagation in a weakly dissipative medium, we

assume the parameters γ0, D1X and D1Y perturbed at the order ϵ2.

The nonlinear Eq.(2:32) describes the spatiotemporal dynamics of cAMP signaling in a given

network and may be useful in understanding of some mechanisms such as aggregation of Dd

amoebae which utilize cAMP signaling to communicate among them.

2.1.5 Long-range diffusive FHN model

Here the model is considered for N identical cAMP concentration mutually coupled not only

to their nearest neighbors, but also to distant ones via LR interaction. In that framework, the

dynamics of the nth cAMP concentration is described by the system:

ġn,m = −kg
(
gn,m − a

)(
gn,m − 1

)
− krrn,m+

∞∑
n̸=m

Dnm(xn − xm)
(
gn+j,m + gn−j,m + gn,m+j + gn,m−1 − 4gn,m) +A0 sin(2πf0t),

(2.34a)

ṙn,m = µ
(
gn,m − rn,m

) (2.34b)
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Where µ = 1/τ and the discrete index 1 ≤ n ≤ N and 1 ≤ m ≤ M denotes the number of

cell in a ring of N and M total cells. Here A0 sin(2πf0t) is a weak periodic signal, with A0 and

f0 being the amplitude and frequency of the signal, respectively. The positive real A0 have been

introduced to excite these cells in order to initiate cAMP waves in the extracellular medium. The

above FHN model is generalized due to the presence of the term
∑∞

n̸=mDnm(xn − xm). Dn,m is

then restricted to take a fixed value when amoebae m and n are coupled, and 0 otherwise. In

our situation, values for Dn,m are assumed to satisfy a power-law formula, which generalizes the

prime idea and consider one amoebae to be coupled to all the other in the network except to

itself. The coupling parameter in these conditions is then written

Dn,m =
D

| n−m |s
(2.35)

where D characterizes the coupling strength, s is a parameter introduced to cover different phys-

ical scenarios including the nearest-neighbor approximation (s = ∞), quadrupole-quadrupole

interaction (s = 5), dipole-dipole interaction (s = 3), Coulomb interaction (s = 1) [198–200].

The distance-dependant coupling strength Dn,m is restricted to the constant parameter D. Fur-

ther simplifications can be brought to the model by considering j = n −m, which reduces the

diffusive term to
∑∞

j=1D | j |−s
(
gn+j,m + gn−j,m + gn,m+j + gn,m−1 − 4gn,m) while all the other

equations do not change. Index n, m and j are respectively, cAMP concentration number se-

cret by amoebaes D.d on longitudinal (n), transversal (m) axial, and the range of interaction.

Explicitly,j = 1 corresponds to interaction between amoebae n on longitudinal axial and amoebae

m on transversal axial, and its nearest neighbors n±1 and m±1, j = 2 translate the interaction

between amoebae n on longitudinal axial and amoebae m on transversal axial with its second

neighbors n ± 2 and m ± 2 and so on. This does not change the substance of Eq.(2.31), but

clearly picture the way cAMP interact and also facilitates numerical calculations. In summary,

the model of FHN with power-law LR diffuse interaction is fully described by the following set

of equations:

ġn,m = −kg
(
gn,m − a

)(
gn,m − 1

)
− krrn,m+

∞∑
j=1

D | j |−s
(
gn+j,m + gn−j,m + gn,m+j + gn,m−1 − 4gn,m) +A0 sin(2πf0t),

(2.36a)

ṙn,m = µ
(
gn,m − rn,m

) (2.36b)

Eq.(2.33) which contains nonlinear and long-range dispersive
(∑∞

j=1D | j |−s
(
gn+j,m +

gn−j,m + gn,m+j + gn,m−1 − 4gn,m)
)

terms in Eq.(2:36a) constitute the long-range diffuse two-
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dimensional FHN model. In the next paragraphs, it will numerically be studied in order to seek

different spatiotemporal patterns shapes induced by the LRI.

2.2 Analytical and Numerical methods

2.2.1 Multiple scale expansion in the continuum approximation

with derivation of two-dimensional CGL equation

Some natural processes have more than one characteristic length or time scales associated

with them, for example, the turbulent flow consists of various length scales of the turbulent

eddies along with the length scale of the objects over which the fluid flows. The failure to rec-

ognize a dependence on more than one space/time scale is a common source of nonuniformity in

perturbation expansions. The method of multiple scales (also called the multiple-scale analysis)

comprises techniques used to construct uniformly valid approximations to the solutions of per-

turbation problems in which the solutions depend simultaneously on widely different scales. This

is done by introducing fast-scale and slow-scale variables for an independent variable, and subse-

quently treating these variables, fast and slow, as if they are independent. More specifically, the

method generates a hierarchy of (small) scales for the space and time variations of the envelopes

of a fundamental (linear) plane wave and all the overtones. The scale is moreover directly related

to the (small) amplitude of the wave itself. The multiple scale method is quite appropriate for

the study of boundary value problems and leads to a CGL equation (with reversed space-time),

the goal being the study of a nonlinear dispersive chain with dispersion relation ω(k) where ω

represents the wave frequency and k the wavenumber of the carried wave. The physical problem

we are concerned with is the following: the first particle of the chain (say x = 0) is given an

oscillation (or is submitted to an external force) at frequency ω. The principle of this method

can be summarized as follow: given a continue differential equation in the form

F (U̇(t), U(t), Uxx(t), Uyy(t), Ux(t), Uy(t), U
2(t), U3(t)...) = 0

(2.37)

With U = (γ, ρ) . One first seeks a solution of Eq.(2.29) in the form of a Fourier expansion in

harmonics of the fundamental Al(x, t) = eil(kx−ωt), where the Fourier components are developed

in a Taylor series in power of the small parameter . measuring the amplitude of the initial wave,

that is to say γ(x, y, t)

ρ(x, y, t)

 =

 γ0

ρ0

+

∞∑
p=1

ϵp
+∞∑

l=−∞

 ψ
(p)
l (ξ, η, τ)

ϕ
(p)
l (ξ, η, τ)

Al (x, t) , (2.38)
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Note that the above serie includes all overtones Al(x, t) = eil(kx−ωt) up to order p. These

are generated by the nonlinear terms which explain that the corresponding coefficients are of

maximum order ϵp. Here we have the realvaluedness condition

(ψ
(p)
l (ξ, η, τ)) = (ψ

(p)
l (ξ, η, τ))∗

(ϕ
(p)
l (ξ, η, τ)) = (ϕ

(p)
l (ξ, η, τ))∗

(2.39)

with the asterisk denoting complex conjugations. The slow variables ξ = ε(x− vgt), η = εy and

τ = ε2t

We then insert solution (2.37) into Eq.(2.29) to obtain a linear homogeneous system for

ψ
(p)
l (ξ, η, τ) and ϕ(p)l (ξ, η, τ) polynomial in Al(x, t). Finally we can proceed to collect and solve

different orders of ϵp and harmonics l, order (p, l) in the obtained equation or system of equations.

Note that it is enough to consider l > 0 as negative values follow from the reality condition

(2.36). The culminating stage comes from order (3,1) where the cubic CGL equation is derived.

In addition, the general formulas of this method are given as follows:

• The spatial derivative operators are given by:

∂

∂x
=

(
ϵ
∂

∂ξ
+ ilk

)
∂

∂y
= ϵ

∂

∂y

∂2

∂x2
=

(
ϵ2
∂2

∂ξ2
+ 2iϵlk

∂

∂ξ
− l2k2

)
∂2

∂y2
= ϵ2

∂2

∂y2

(2.40)

• The temporal derivative operators are given by:

∂

∂t
=

(
ϵ2
∂

∂τ
− ϵυg

∂

∂ξ
− ilω

)
∂2

∂t2
=

(
ϵ2υ2g

∂2

∂ξ2
− 2ilωϵ2

∂

∂τ
+ 2ilωϵυg

∂

∂ξ
− l2ω2

) (2.41)

• The spatio-temporal derivative operators are given by:

∂2

∂x∂t
=

(
ilkϵ2

∂

∂τ
− ϵ2υg

∂2

∂ξ2
− ilωϵ

∂

∂ξ
− ilωϵυg

∂

∂ξ
+ l2kω

)
∂3

∂x2∂t
=

(
−lωϵ2 ∂

∂τ
− l2k2ϵ2

∂

∂τ
− 2ilϵ2υg

∂

∂2ξ2
+ 2l2kωϵ

∂

∂ξ
+ l2k2ϵυg

∂

∂ξ
+ il3k2ω

) (2.42)
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By substitution of solution (2.38) into (2.24) who leads to the form (2.28), we obtain a linear

homogeneous system ψ
(l)
p (ξ, η, τ) polynomial A(l)(x, t) in Appendix D. When one expand the

terms in exponential until the third order, it is possible from Eq.(2.46) to obtain the coefficients

of the constant at different orders of ϵ:

ϵ : ψ
(0)
1 = 0;

ϵ2 : ψ2
0 =

2

Ω2
0

[g0ω
2 + h3 +H0k

4 − e1 − i0k
2 −D1k

2]|ψ(1)
1 |2 = m1|ψ(1)

1 |2

ϵ3 : ψ3
0 = 0

(2.43)

The coefficients of A(1), at different order of ϵ, give:

ϵ : ω2 = Ω2
0 +D0k

2;

ϵ2 : υg =
D0k

ω

ϵ3 : −iωψ(3)
1 − υg

∂ψ
(2)
1

∂ξ
+
∂ψ

(1)
1

∂τ
+Ω2

0ψ
(3)
1 + 2e1

(
ψ
(2)
0 ψ

(1)
1 + ψ

(2)
2 ψ

(1)
−1

)
+ 3e2|ψ(1)

1 |2ψ(1)
1 + if0ωψ

(1)
1

− if1ωψ
(2)
0 ψ

(1)
1 − if2ω|ψ(1)

1 |2ψ(1)
1 + 2g0ω

2ψ
(2)
2 ψ

(1)
−1 − 3g1ω

2|ψ(1)
1 |2ψ(1)

1 − 3g2ω
3|ψ(1)

1 |2ψ(1)
1 + ih0kψ

(1)
1 +

ih1kψ
(2)
0 ψ

(1)
1 + ih2k|ψ(1)

1 |2ψ(1)
1 − h3kωψ

(2)
2 ψ

(1)
−1 − ih4kω

2|ψ(1)
1 |2ψ(1)

1 − h5kω|ψ(1)
1 |2ψ(1)

1 + 4i0k
2ψ

(2)
2 ψ

(1)
−1

+ i1k
2|ψ(1)

1 |2ψ(1)
1 − 3ii2k

2ω|ψ(1)
1 |2ψ(1)

1 +D0k
2ψ

(3)
1 − 2iD0k

∂ψ
(2)
1

∂ξ
−D0

∂2ψ
(1)
1

∂ξ2
+D0

∂2ψ
(1)
1

∂η2
− 3D1k

2×

ψ
(2)
2 ψ

(1)
−1 + 3D2k

2|ψ(1)
1 |2ψ(1)

1 − 6iD3k
2ωψ

(2)
2 ψ

(1)
−1 + 3D4k

2ω2|ψ(1)
1 |2ψ(1)

1 − iD5k
2ω|ψ(1)

1 |2ψ(1)
1 + iD7k

3×

|ψ(1)
1 |2ψ(1)

1 −D8k
3ω|ψ(1)

1 |2ψ(1)
1 − 3H1k

4 + iH2k
4ω|ψ(1)

1 |2ψ(1)
1 + 6iD6k

3ψ
(2)
2 ψ

(1)
−1 − 4H0k

4ψ
(2)
2 ψ

(1)
−1 − λ0×

kωψ
(1)
1 − iµ0k

2ωψ
(1)
1 = 0

(2.44)

The coefficients of A(2), at different order of ϵ2, give:

ψ
(2)
2 = (mr + imi)(ψ

(1)
1 )2

mr =
1

3(ω2 −D0k2)

(
e1 − g0ω

2 + h3kω +D1k
2 −H0k

4 − i0k
2

)
;

mi =
1

3(ω2 −D0k2)

(
h1k +D3ω

2k2 +D6k
3 − ωf1

)
(2.45)

ZAORO Rodax Nelson Ph.D.-Thesis



models of Martiel-Goldbeter and methodologies 58
With the expression of ψ(2)

2 and ψ2
0, Eq.(2.36) becoms

i
∂ψ

∂τ
+
P1

2

∂2ψ

∂ξ2
+
P2

2

∂2ψ

∂η2
+ (Qr + iQi) | ψ |2 ψ + i

(Rr + iRi)

2
ψ = 0, (2.46)

where the coefficient P1, P2, Qr, Qi, Rr, Ri are given by

P1 =
1

ω
(D0 − υ2g), P2 =

D0

ω
,

Qr =
1

2ω
[3g1ω

2 + h5kω + 3D4k
2ω2 +D8k

3ω + 3H1k
4 − 3e2 − 3D2k

2

− 2e1m1 + (2h3kω + 3D1k
2 + 4H0k

4 − 2e1 − 2g0ω
2 − 4i0k

2)mr

+ 6mi(D6k
3 −D3k

2ω)],

Qi =
1

2ω
[ωf2 + 3g2ω

3 + h4kω
2 + 3i2k

2ω

+ D5k
2ω − h2k −D7k

3 −H2k
4ω + (ωf1 − h1k)m1

+ (2h3kω + 3D1k
2 + 4H0k

4 − 2e1 − 2g0ω
2 − 4i0k

2)mi + 6mr(D3k
2ω −D6k

3)]

Rr =
ωf0 − h0k + µ0k

2ω

ω
, Ri = λ0k. (2.47)

The frequency ω and the corresponding group velocity vg are plotted in Fig.(2.2) versus the

wavenumber k, for different values of the degradation rate of the intracellular cAMP ke. For

k = 0, we have ω = Ω0 which is not sensitive to the change in ke. However, when k ̸= 0,

the frequency decreases with increasing ke due to the parameter D0 which depends on system

parameters (see Fig.(2.2a). Although vg = 0 for k = 0, its value is also found to be sensitive to

the change in ke for k > 0. Fig.(2.2b) shows that vg is a decreasing function of the degradation

rate of the intracellular cAMP.

Except for P1, P2 all the other parameters are complex and the subscripts r and i denote their

real and imaginary parts, respectively. They are plotted in Fig. 2.3, versus the wavenumber k,

and show different features when ke changes. In fact, except Qr and Qi that have some negative

values, the rest of the coefficients remain positive. This shows that the found CGL equation

remains linked to system parameters and gives credit to the linear stability analysis that will be

performed. The CGL equation is a universal model that gives the possibility to predict pattern

formation in reaction-diffusion models [192]. The applicability of the CGL equations goes far

beyond reaction-diffusion systems to cover other research areas actually related to superconduc-

tivity, nonlinear optics, plasmas, Bose-Einstein condensates, and quantum field theories [193].

2.2.2 Semi-discrete approximation with derivation of two-Dimensional

CGL equations for two different frequency modes

The SDA is a perturbation technique in which the carrier waves are kept discrete while the

amplitude is treated in the continuum limit. Applying this method allows one to study the
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Figure 2.2: The angular wave frequency ω and the group velocity υg are plotted against

the wavenumber k. The influence of the degradation rate of extracellular cAMP by the

enzyme phosphodiesterase ke is studied for a fixed value σ = 0.2 min−1 of the production

rate of intercellular cAMP.

modulation of a plane wave caused by nonlinear effects. Its principle is almost identical to the

full-discrete approximation, but the derived amplitude equations are either the NLS type or the

generalized CGL. In practice, having a nonlinear differential equation as in Eq.(2.12), one seeks

solutions in the form:

gn(t) = G(ξ, τ)eiθn +G∗(ξ, τ)e−iθn + ϵ[H(ξ, τ) + I(ξ, τ)e2iθn + I∗(ξ, τ)e−2iθn ], (2.48)

where the slow variables ξ and τ are related to fast ones n and t as

ξ = ϵ(n− vgt) and τ = ϵ2t (2.49)

with 0 < ϵ << 1 and θn = kn − ωt. Note that index n denotes the cell number. Parameters k,

vg and ω, respectively stand for the wavenumber, group velocity and angular frequency and they

are known to be related by the dispersion relation, or the solvability condition that determines

the group velocity as.

vg =
∂ω

∂k
(2.50)

Then such solution (2.48) is inserted into model of Eq.(2.33) which yields a linear homogeneous

system for G, H and I polynomial in eilθn , l = 0, 1, 2 that will be solve later. In order to evaluate

the diffusion term gn+j(t)−gun(t)+gn−j(t), it is worthy to treat amplitudes G, H and I like the

continuum functions such that G(ξn±j , τ), H(ξn±j , τ) and I(ξn±j , τ) are developed up to order

ϵ2 in Taylor serie as

G(ξn±j , τ) = G(ξ, τ)± ϵj
∂G(ξ, τ)

∂ξ
+
ϵ2j2

2

∂2G(ξ, τ)

∂ξ2
+O(ϵ2). (2.51)
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Figure 2.3: Variations of the coefficients of the CGL Eq. (2.46) versus the wavenumber

k, with changing the degradation rate of extracellular cAMP by the enzyme phosphodi-

esterase ke. The dispersion coefficient P1, P2, as well the dissipative coefficients Rr and

Ri remain positive for any k and ke. However, the real and imaginary parts of the non-

linearity coefficient Qr and Qi are positives for some values of k and negatives for others.

All the panels have been plotted for a fixed value σ = 0.2 min−1 of maximum activity of

adenylate cyclase.
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Therefore, we obtain the following formula

gn+j − 2gn + gn−j =

(
2G
(
cos(jk)− 1

)
+ 2ijϵ sin(jk)

∂G

∂ξ
+ ϵj2 cos(jk)

∂2G

∂ξ2

)
eiθn

+

(
2ϵI
(
cos(2jk)− 1

)
+ 2ijϵ2 sin(2jk)

∂I

∂ξ

)
e2iθn + c.c.+O(ϵ3)

(2.52)

furthermore the temporal derivative operators are given by

∂

∂t
=

(
ϵ2
∂

∂τ
− ϵvg

∂

∂ξ
− ilω

)
,

∂2

∂t2
=

(
ϵ2v2g

∂2

∂ξ2
− 2ilωϵ2

∂

∂τ
+ 2ilωϵvg

∂

∂ξ
− l2ω2

)
+O(ϵ3).

(2.53)

Here, we will attempt to apply the technique of the SDA on the model of Eqs.(2.33) whose

trial solutions are given by:

Gn,m = G(ξ, η, τ)eiθn,m +G∗(ξ, η, τ)e−iθn,m + ϵ(H(ξ, η, τ)+

I(ξ, η, τ)e2iθn,m + I∗(ξ, η, τ)e−2iθn,m)
(2.54)

where the change of variables ξ = ϵ(n − vgt), η = ϵm and τ = ϵ2t has been applied, with vg

being the group velocity that will be defined later. We should however notice that according to

the new variables, the direction n is the dominant one. In solutions (2.54), θn,m = kn+ qm−ωt

is the phase of the carrier wave and c.c. represents the complex conjugate. We insert solution

(2.54) into Eqs.(2.33) and we collect the coefficients of epiθn,m (p = 0, 1, 2) at different orders of

ϵ. The orders ϵ0eiθn,m and ϵ1eiθn,m give

ω2 = Ω2
0 + 4D0X sin2

(
k

2

)
+ 4D0Y sin2

(q
2

)
, (2.55a)

vg =
D0X sin(k)

ω
, and sin(q) = 0, (2.55b)

where vg = ∂ω
∂k is the group velocity in the n-direction. From Eq.(2.55b), the wavenumber q

should fulfill some conditions for the investigated solutions to exist. Therefore, sin q = 0 implies

that the group velocity in the m-direction is null, therefore reinforcing that the direction n has

priority over them−direction for the nerve impulse propagation. In other words, the wavenumber

q is such that q = ql = lπ (l ∈ Z), and one can get a simplified expression for the frequency as

ω2
l0 = Ω2

0 + 4D0X sin2
(
k

2

)
+ 2D0Y

[
1− (−1)l0

]
, (2.56)

where l0 = 1 for ql = (2l+1)π and l0 = 2 for ql = 2lπ. It is therefore obvious that Eq.(2.56) defines

two frequencies for the same wavenumber k, in the n-direction, and two different wavenumbers

q = (2l + l0)π|l0=1 and q = (2l + l0)π|l0=2, in the m-direction. The case l0 = 1 corresponds to
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Figure 2.4: The angular wave frequency ω and the group velocity υg are plotted against

the wavenumber p. In all the figures, the blue line represents the HF mode and the red

dashed-line pictures the low-frequency mode. We have fixed kg = 4.7, kr = 1.5, a = 0.05

and D0X = D0Y = 2.

the HF mode, while l0 = 2 is related to the LF mode. This also implies that each of the frequen-

cies modes has its corresponding group velocity. Both of then are shown in Fig.2.4 versus the

wavenumber k, where we have considered two cases. One of the most obvious behaviors is that be-

tween the two frequencies there is a gap. In general, from Eq. (2.56), the lower cutoff frequencies

are obtained for k = 0, i.e., ωmin
l0

= ωl0(k = 0) =
√

Ω2
0 + 2D0Y [1− (−1)l0 ] and the upper cutoff

frequencies are found for k = π, i.e., ωmax
l0

= ωl0(k = π) =
√

Ω2
0 + 4D0X + 2D0Y [1− (−1)l0 ].

We have considered the cases D0X = D0Y = 2 and D0X = D0Y = 0.05. Comparing them, we

observe that the gap between the two frequencies has increased for D0X = D0Y , making possible

a better understanding of the difference between the two modes. The same phenomenon is visible

for the group velocities, which are higher for the LF regimes. Under these considerations, the

other coefficients of solutions (2.42) are obtained as follows:

H =
−2Ω1

Ω2
0

| G |2
(2.57)

I =
1

3Ω2
0 + 16D0Xsin4(

p
2) + 8D0Y Zl0

(−Ω1 + iγ1ω)G
2

(2.58)

By making use of all the previous steps, canceling the third-order equations, withe ϵ3eiθn,m

,we finally get the 2D-CGL the equation.
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Figure 2.5: The panels show the variations the coefficients of the CGL Eq.(2.59) versus

the wavenumber p. The dispersion coefficient P l0
1 , P l0

2 , as well the dissipative coefficients

and Rl0 remain positive for any p. The two modes are considered: the high-frequency

mode (solid blue line) and the HF mode. We have fixed kg = 4.7, kr = 1.5, a = 0.05 and

D0X = D0Y = 2.

i
∂G

∂τ
+
P l0
1

2

∂2G

∂ξ2
+
P l0
2

2

∂2G

∂η2
+ (Ql0

r + iQl0
i ) | G |2 G+ i

Rl0

2
ψ = 0 (2.59)

Eq.(2.59) is the 2D-CGL equation, with the parameters P l0
1 , P l0

2 , Ql0 , and Rl0 given by

P l0
1 = 1

ω3 (D0Xcosq −D2
0Xsin

2p),

P l0
2 = (−1)l0

ωl0
,

Ql0
r = 1

2ω (
4Ω2

1

Ω2
0
+

2Ω2
1

3Ω2
0+16D0Xsin4( p

2
)+8D0Y Zl0

− Ω2),

Ql0
i = γ2

2 − γ1Ω1

Ω2
0

− γ1Ω1

3Ω2
0+16D0Xsin4( p

2
)+8D0Y Zl0

,

Rl0 = γ0 + 4D1Xsin
2 p
2 + 2D1Y Zl0

Beforehand, we initially examine the variations of each coefficient of Equation (2.59) with

respect to the wavenumber p and this, because the formation of solitonic structures in such

systems depends essentially on the sign of their coefficients. This is done in Fig(2.5), where

for each of the coefficients, plots corresponding to the two available modes of propagation are

compared. In general, Ql0
r and Rl0 are positive coefficients in both regimes. However P l0

1 has

positive and negative values, respectively for p < 0.45π and p > 0.45π. P l0
2 is positive for the

LF mode and negative for the HF mode. In the HF and LF regime, Ql0
i is exclusively negative
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values and Ql0

r positif values.

2.2.3 Linear stability analysis

Linear stability analysis is a technique that can analytically predict the development of MI

phenomenon in a nonlinear and dispersive dynamical system. Generally performed on integrable

equations, the procedure differs, however, when we move from discrete equations to continuous

ones.

In a particular case of CGL equations, the linear stability analysis is usually carried out by

means of the following scheme. First, we have to find an equilibrium state of the system of

equations under investigation, which is simple and exact monochromatic wave solutions. Second,

we have to add a small perturbation on the equilibrium state with a perturbation wavenumber

and frequency, which are much smaller than those of the carrier wave. The small perturbation

functions satisfy a set of equations from which one deduces the nonlinear dispersion relation. The

latter is analyzed to obtain a complex frequency, revealing the growth of the amplitudemodulated

wave packet. Finally the instability growth rate is derived such that MI appears in some privileged

areas of space in which instability growth rate is different from zero and disappears elsewhere.

2.2.3.1 Linear stability analysis on the 2D CGL equations

Here, we perform the linear stability analysis on Eq.(2:38) that describes amplitude evolution

of envelop soliton in two dimensions. A plane wave ψ(ξ, η, τ) = ϕ0e
i(q1ξ+q2η−ϖτ) is assumed to be

solution of the generalized equation Eq.(2.43), where the wavenumber q1 and q2, the frequency

ϖ and the amplitude ϕ0, after separating the real and imaginary parts, satisfy the relations

ϖ =
P1

2
q21 +

P2

2
q22 +

Ri

2
−Qrϕ

2
0, and Qiϕ

2
0 +

Rr

2
= 0. (2.60)

Usually, a solution is said to be stable if it remains unchanged in the presence of small per-

turbations. For our particular case, the perturbed solution is taken to be ψ(ξ, η, τ) = [ϕ0 +

Φ(ξ, η, τ)]ei(q1ξ+q2η−ϖτ+µ(ξ,η,τ)), where Φ(ξ, η, τ) and µ(ξ, η, τ) are respectively the perturbation

amplitude and the perturbation phase considered to be small in comparison to both amplitude

and phase of the plane wave. Further replacing ψ by its perturbed expression into Eq.(2.43), and

after splitting the real and imaginary parts, we obtain the following equations that govern the

perturbations Φ and µ

−ϕ0µτ +
P1

2
Φξξ +

P2

2
Φηη − P1q1ϕ0µξ − P2q2ϕ0µη + 2Qrϕ

2
0Φ = 0 (2.61a)

ϕτ +
P1

2
ϕ0µξξ +

P2

2
ϕ0µηη + P1q1Φξ + P2q2Φη −RrΦ = 0 (2.61b)
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Solutions to the above equations can be assumed in the form Φ(ξ, η, τ) = Φ0e

i(K1ξ+K2η−ντ) +

cc., µ(ξ, η, τ) = µ0e
i(K1ξ+K2η−ντ)+cc., with σ and δ being respectively the wavenumbers of the

perturbations, in the K1 and K2 directions, and ν their respective angular frequencies. Making

use of these, one finally gets to the homogeneous system (
2Qrϕ

2
0 − P1

2 K
2
1 − P2

2 K
2
2

)
iϕ0 (ν − P1q1K1 − P2q2K2)

(Rr + i(ν − P1q1K1 − P2P2q2K2))
ϕ0

2

(
P1K

2
1 + P2K

2
2

)
 Φ0

µ0

 =

 0

0


(2.62)

in Φ0 and µ0. The determinant of the system matrix should be null for non-trivial solutions to

exist. This leads to the nonlinear dispersion relation

X2 − iRrX − P1K
2
1 + P2K

2
2

4

(
1− 4Qrϕ

2
0

P1K2
1 + P2K2

2

)
= 0, (2.63)

with X = ν − P1q1K1 − P2q2K2. For MI to develop in the model, the angular frequency

should be complex, with a non-zero imaginary part. More precisely, the discriminant ∆ =(
P1K

2
1+P2K

2
2

)(
1− 4Qrϕ2

0

P1K2
1+P2K2

2

)
−R2

r of Eq. (2.68), should be negative, so that the condition for

instability Qr

P1K2
1+P2K2

2
> 0 be fulfilled. The corresponding solution will then be X = iR

l0
r
2 +i

√
−∆
2 ,

i.e.,

ν = P1q1K1 + P2q2K2 + i

(
Rr

2
+

√
−∆

2

)
, (2.64)

and one easily gets the growth rate of MI in the form

Γ(K1,K2) =
1

2

[
Rr +

√
R2

r + (P1K2
1 + P2K2

2 )

(
4Qrϕ20

P1K2
1 + P2K2

2

− 1

)]
(2.65)

It is then obvious that for Γ to be positive, we should have 4Qrϕ2
0

P1K2
1+P2K2

2
− 1 > 0, and this will be

possible only if the wave amplitude exceeds its threshold value ϕ0,cr, i.e.,

ϕ20 > ϕ20,cr =
P1K

2
1 + P2K

2
2

4Qr
. (2.66)

2.2.3.2 Linear stability analysis on the 2D CGL equations for two different

frequency modes

In order to study the stability of the plane wave G(ξ, η, τ) = ϕ0e
i(pξ+qη−ϖτ) solution of Equa-

tion (2.59), where the wavenumbers p and q, and the angular frequency ϖ verify the dispersion

relations

ϖ =
P l0
1

2
p2 +

P l0
2

2
q2 −Ql0

r ϕ
2
0

Ql0
i ϕ

2
0 +

Rl0
r

2
= 0

(2.67)
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one can introduce small perturbations in its amplitude or phase, or in both. In general, there

are regions where such a plane wave gets unstable, giving rise to a phenomenon known as MI.

When the amplitude and the phase are both perturbed, the corresponding solution writes

G(ξ, η, τ) = [ϕ0 +Φ(ξ, η, τ)]ei(pξ+qη−ϖτ+µ(ξ,η,τ)) (2.68)

where Φ(ξ, η, τ) and µ(ξ, η, τ) are respectively the perturbation amplitude and the perturba-

tion phase. These two perturbations are small compared to the amplitude and the phase of the

unperturbed plane wave. Inserting Equation (2.68) into Equation (2.59), and linearizing around

the unperturbed plane wave solution lead to the set of equations

− ϕ0µτ +
P l0
1

2
Φξξ +

P l0
2

2
Φηη − P l0

1 pϕ0µξ − P l0
2 qϕ0µη + 2Ql0

r ϕ
2
0Φ = 0

ϕτ +
P l0
1

2
ϕ0µξξ +

P l0
2

2
ϕ0µηη + P l0

1 pΦξ + P l0
2 qΦη −Rl0

r Φ = 0

(2.69)

Solutions to the above equations can be assumed in the form; Φ(ξ, η, τ) = Φ0e
i(K1ξ+K2η−ντ)+

cc... ; µ(ξ, η, τ) = µ0e
i(K1ξ+K2η−ντ) + cc..., with K1 and K2 being respectively the wavenumbers

of the perturbations and ν thier respective angular frequencies. Making use of these, one finally

gets to the homogeneous system in Φ0 et µ0.

 (2Ql0
r ϕ

2
0 −

P
l0
1
2 K2

1 − P
l0
2
2 K2

2 )Φ0 iϕ0(ν − P l0
1 pK1 − P l0

2 qK2)µ0

(Rl0
r + i(ν − P l0

1 pK1 − P l0
2 qK2)Φ0

ϕ0

2 (P l0
1 K

2
1 − P l0

2 K
2
2 )µ0

 = 0 (2.70)

The determinant of the system matrix should be null for non-trivial solutions to exist. This

leads to the nonlinear dispersion relation

X2 − iRrX − P l0
1 K

2
1 + P l0

2 K
2
2

4
(1− 4Ql0

r ϕ
2
0

P l0
1 K

2
1 + P l0

2 K
2
2

) = 0 (2.71)

WithX = ν−P l0
1 pK1−P l0

2 qK2. For MI to develop in the model, the angular frequency should

be complex, with a nonzero imaginary part. More precisely, the discriminant Σ =

(
P l0
1 K

2
1 +

P l0
2 K

2
2

)(
1 − 4Q

l0
r ϕ2

0

P
l0
1 K2

1+P
l0
2 K2

2

)
− (Rl0

r )
2 of Eq.(14), should be negative, so that the condition for

instability Q
l0
r

P
l0
1 K2

1+P
l0
2 K2

2

> 0 be fulfilled. The corresponding solution will then be

X = P l0
1 pK1 + P l0

2 qK2 + i

(
Rl0

r

2
+

√
−∆

2

)
(2.72)

and one easily gets the growth rate of MI in the form
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Γ(K1,K2) =
1

2
[Rl0

r +

√
(Rl0

r )2 + (P l0
1 K

2
1 + P l0

2 K
2
2 )(

4Ql0
r ϕ20

P l0
1 K

2
1 + P l0

2 K
2
2

− 1)] (2.73)

It is then obvious that for Γ to be positive, we should have 4Q
l0
r ϕ2

0

P
l0
1 K2

1+P
l0
2 K2

2

− 1 > 0, and this will

be possible only if the wave amplitude exceeds its threshold value ϕ0,cr, i.e.,

ϕ20 > ϕ20,cr =
P l0
1 K

2
1 + P l0

2 K
2
2

4Ql0
r

. (2.74)

2.2.3.3 Bifurcation theory

The fundamental aspect of the study of dynamical systems is the bifurcation notion. A term

that was introduced by Henri Poincaré at the beginning of the XXe century in this work on

differential systems. For certain critical values of control parameters of the system, the diagonal

solution of the equation changes qualitatively: we say that there is a bifurcation. A first approach

to the study of systems dynamics consists in finding the points of equilibrium, that is to say the

stationary solutions which do not present the temporal evolution. The next step is to vary the

system control settings. We watch as the points of equilibrium become, especially those that

were stable before changing the system settings and bifurcations that appear. For the values

of the parameters at which such qualitative changes appear, so-called bifurcation values, the

construction of the portrait of phase requires adopted tools [194].

Mathematical models of deterministic physical systems typically consist of dynamical sys-

tems. These dynamical systems usually contain parameters. These parameters take explicitly

into account the influence of either the internal properties of the system or other external features.

Often, some subgroup of these parameters can be changed at will by varying some properties

of the physical process or by other means. Such parameters are called control parameters. Fre-

quently, as these control parameters are varied, the qualitative structure of the solutions of the

dynamical system change. These changes are called bifurcations and the values of the control

parameters for which they happen are called bifurcation values. Here we will concentrate our

attention on numeric resolution of eqs (2.24) for obtain the bifurcatoin values.

2.2.4 Runge-Kutta numerical intégration method.

Numerical solution of ordinary differential equations is the most important technique in

continuous time dynamics. Since most ordinary differential equations are not soluble analytically,

numerical integration is the only way to obtain information about the trajectory. Many different

methods have been proposed and used in an attempt to solve accurately various types of ordinary

differential equations. However there are a handful of methods known and used universally
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(i.e., Runge-Kutta, Adams-Bashforth and Backward Differentiation Formula methods). All these

methods discretize the differential system to produce a discrete system of equation or map. The

methods obtain different maps from the same differential equation, but they have the same

aim; that the dynamics of the map should correspond closely to the dynamics of the differential

equation. In this work, we use the fourth order Runge-Kutta algorithm and other numerical

methods which depend on what we want to find.

The fourth order Runge-Kutta is a much more locally accurate method. Let’s consider

the following problem:

The fourth order Runge-Kutta is a much more locally accurate method. Let’s consider

the following problem 
dy

dt
= f(t, y)

y(t0) = α

; (2.75)

and define h to be the normalized integration time step size and set ti = t0 + ih. Then the

following sequence of operations

U0 = α,

Ui+1 = Ui +
h

6
(k1 + 2k2 + 2k3 + k4), for i = 0, 1, ...,n− 1

(2.76)

computes an approximate solution, that is Un ≈ y(tn). k1, k2, k3 and k4 are the coefficients which

have to be evaluated in each stage of the loop (of the fourth order Runge-Kutta algorithm) by

the formulas below:

k1 = f(ti, Ui),

k2 = f(ti +
h

2
, Ui +

h

2
k1),

k3 = f(ti +
h

2
, Ui +

h

2
k2),

k4 = f(ti + h,Ui + hk3).

(2.77)

In the case of differential equation of Filippov’s type of which we are particularly concerned

with in the framework of this dissertation, the above algorithm is slightly modified to take into

account the piecewise definition of the differential equation. Consider the following Filippov type

equation


dy

dt
= f(t, y) =

 f−(t, y), if y < β

f+(t, y), if y > β

y(0) = α

; (2.78)
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where y = β defined the switching boundary, that is the manifold of the state space on which the

right-hand side (f(t, y)) of Eq.(2.75) changes discontinuously. The algorithm used to obtained

the approximate solution of this equation (Eq.(2.75)) is given as follows:

U0 = α,

Ui+1 =


Ui +

h

6

(
k−1 + 2k−2 + 2k−3 + k−4

)
, if Ui < β,

Ui +
h

6

(
k+1 + 2k+2 + 2k+3 + k+4

)
, if Ui > β,

for i = 0, 1, ..., n− 1
(2.79)

where
kj1 = f j(ti, Ui),

kj2 = f j(ti +
h

2
, Ui +

h

2
k1),

kj3 = f j(ti +
h

2
, Ui +

h

2
k2),

kj4 = f j(ti + h,Ui + hk3),

j ∈ {−,+} .

(2.80)

The Runge-Kutta method is very widely favored as:

• It is easy to use and no equations need to be solved at each stage;

• It is highly accurate for moderate h values;

• It is a one step method, that is; Ui+1 only depends on Ui;

• It is easy to start and easy to code.

In the special case when f(t, y) = f(t), we have

y(t) =

∫ t

to

f(t)dt+ y(t0) (2.81)

and the task of evaluating this integral accurately is called quadrature. To solve any differential

equation with the fourth order Runge-Kutta algorithm, we need to put it into the standard form

given by Eq.(2.75).

Conclusion

This chapter was devoted,on the one hand, to the modeling three improved to describe oscil-

lations in the cAMP level in cell suspensions as well as cAMP wave propagation in a dispersed

cell population including of the two-component MG model in the presence of diffusion and ex-

ternal flow, FHN model with frequency mode , FHN model with LRI and on the other hand,

in addition, the analytical methods such as the multiple scale expansion, the linear stability

analysis and the RK4 numerical integration method furnished the second part of the chapter.
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Thanks to the SDA and DA, we have been able to reduce the insolvent generic equations to

a CGL equations whose solutions have been extensively developed in the literature. Then the

analysis of the linear stability led us either to the determination of the critical amplitude above

which the plane wave would become unstable or to the derivation of the instability growth rate

which predicts the manifestations of the phenomenon of MI under some instability criteria that

have also been established. We are therefore interested not only in the various patterns induced

by the MI phenomena, but also in the study of the different phenomena that are associated

withe oscillations in the cAMP level in cell suspensions as well as cAMP wave propagation in a

dispersed of D.D.
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Chapter 3

Results and Discussion

Introduction

In the previous chapters, we have provided the generalities on the collective behavior of D.

discoideum. During starvation, D. discoideum amoeba release periodic spikes of cAMP in re-

sponse to extracellular cAMP levels and interact by propagating cAMP waves throughout space.

We have also shown that the reaction-diffusion equations modeling the chemical cAMP concen-

tration and cAMP receptors, can be reduced to a CGL equation. In the present chapter, we bring

out our results on the study of the cAMP waves patterns during aggregation of Dictyostelium

discoideum cells : Here we study communication within an amoebas colony through the MI tech-

nique, the effects of advection on the nonlinear patterns are investigated both analytically and

numerically In Section 3.1 the effect of factors like the degradation rate of extracellular cAMP

(ke) and the production rate of cAMP (σ) is studied in presence of the flow on the emergence

of nonlinear patterns is discussed analytically, via the MI. Some features of MI growth rate will

be discused in term of the wavenumber for different values of the control parameters. Then

numerical simulations of the model of Eqs. (2.25), the feature of patterns formation by using

MI, additionally to the time series and phase portraits of cAMP concentration. To direct by the

bifurcation method, the values of (ke) and (σ) are explicitly selected. A relationship between

the formation of self-modulated waves using MI will be established, and a strong correlation

between analytical and numerical results, in presence of the flow. We examine in section 3.2 the

two frequency regimes namely the HF and the LF, detected in a two-dimensional FHN model

will be explored. The different features of MI gain, given by Eq.(2.73), will be studied. The

various profiles of numerical solution will also be investigated with using the synchronization

factor, along with their propagation in the two frequency regimes. In Section 3.3, we also study

through numerical computations LR diffusive effects in a discrete FHN amoebae network. Their

impact on the emergence of target and multi-spiral waves is discussed. Moreover, the main fea-
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tures of cAMP waves are found to be qualitatively and quantitatively altered by the change of

the long-range parameter.

3.1 Unstable cAMP wave patterns during aggregation

of Dictyostelium discoideum

Here we study Flow-driven formation of unstable patterns of cyclic adenosine monophosphate

(cAMP) through the MI technique. In that respect, effects of some parameters such as the the

change of the extracellular cAMP degradation rate (ke), the production rate of cAMP (σ) and

the advection flow velocity (Vf ). on the nonlinear patterns are investigated both analytically

and numerically.

3.1.1 Analytical analysis of MI

Analytical study has revealed under the activation of MI phenomenon, the existence of the

instability domain in a two-dimensional Martiel-Golbeter, also analytical expression of instability

growth rate has been derived. In this section, we present the instability diagrams from the

function which represents the MI gain Γ(K1,K2).

3.1.1.1 The MI growth rate versus the wavenumbers of perturbations

This part we discuss the parameters where cAMP waves are unstable by the MI features

obtained from Eq.(2.45). In order for Γ to be positive, we should have 4Qrϕ2
0

P1K2
1+P2K2

2
− 1 > 0,

which will be possible only if the amplitude goes beyond a threshold ϕ20,cr =
P1K2

1+P2K2
2

4Qr
. When

values for ϕ0 are suitably chosen, we obtain the MI growth rate shown in Fig. 3.1, where panels

(aj)j=1,2,3 corresponds to σ = 0.2min−1, panels (bj)j=1,2,3 to σ = 0.3min−1 and panels (cj)j=1,2,3

gives the MI growth rate for σ = 0.6min−1. In the (K1,K2)−plane, it is obvious from the two

sets of diagrams that the area of instability, i.e., where Γ(K1,K2) > 0, gets expanded with

increasing ke. However, regions of instability are more larger for σ = 0.6min−1 than for the other

values. This shows that both the production and degradation rates of cAMP may deeply influence

pattern formation. However, for ke = 3.1min−1, there is marginal instability, which corresponds

to what is shown in Fig. 3.1(c3). There are several regions of instability and this confirms the

results of the previous investigation on amoeba communication in during aggregation.
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Figure 3.1: The MI growth rate Γ(K1, K2) versus the wavenumbers K1 and K2. Panels

(aj)j=1,2,3 corresponds to σ = 0.2min−1, panels (bj)j=1,2,3 to σ = 0.3min−1 and panels

(cj)j=1,2,3 gives the MI growth rate for σ = 0.6min−1. From top to bottom, the different

rows have been, respectively, computed for ke = 2.6min−1 (j = 1), 2.8min−1 (j = 2) and

3.1min−1 (j = 3).
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Figure 3.2: The MI growth rate Γ(K1, K2) versus the longitudinal wavenumber K1, with

K2 = 0.1π. Each panel corresponds to a fixed value of σ, while Γ is plotted for three

different values of ke. Panel (a) corresponds to σ = 0.2min−1 and panel (b) to σ = 0.6

min−1. Γ > 0 is delimited by the intervals 0 < K1 < K1,cr, where the plane wave is

expected to be unstable under slight modulation.

3.1.1.2 The MI growth rate versus the longitudinal wavenumber of pertur-

bations

In this part we are interested in the features of the MI growth rate Γ(K1,K2) plotted in lon-

gitudinal wavenumber K1. Fixing K2 = 0.1π, the same regions are clearly depicted in Fig. 3.2,

where Γ is plotted versus K1. Fig. 3.2(a) shows results for σ = 0.2min−1, and Γ > 0 is delimited

by the intervals 0 < K1 < K1,cr, where the plane wave becomes unstable under slight modula-

tions. K1,cr, in Fig. 3.2(a), increases when ke takes the respective value 2.6 min−1, 2.8 min−1

and 3.1 min−1. The same behaviors appear for σ = 0.6min−1.

In summary, both the production rate of intercellular cAMP and degradation rate of extra-

cellular cAMP influence the stability features of the system dynamics studied, but in the two

detected cases, there are common regions of stability and instability, which is possible for specific

values of the wavenumber k. Moreover, this also suggests that the two detected regimes might

display different dynamical behaviors, depending of course on the value of the range parameter

ke, the extracelllar and σ the intracellular parameters.
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Dimensionless parameter Numerical value Parameter Numerical value

L1 10 k1 0.4min−1

L2 0.1 k2 0.004 min−1

c 100 σ 0.1− 0.4 min−1

q 4000 ki 1.7 min−1

h 5 kt 0.9 min−1

α 3 ke 2.5− 12 min−1

λ 0.01 D 0.024 mm2min−1

θ 0.01

ϵ 1

Table 3.1: The numerical values of the parameters considered in the model

3.1.2 Numerical analysis of MI

Here we seek to show that cAMP oscillation and MI phenomena are in perfect correlation.

According to the above analytical results based on linear stability analysis, the stability condition

of an extended plane wave has been determined for the CGL equation (2.38) which is only an

approximate description of the generic equation (2.24). The linear stability analysis cannot tell

us the long-time evolution of a modulated extended nonlinear wave. Therefore, in order to check

the validity of our analytical approach and to determine the evolution of the system taking

into account the instability zone, we have performed numerical simulations of the MG model

of Eqs.(2.24)with a given initial condition being the perturbed plane waves, with wavenumbers

K1 = 0.4π and K2 = 0.1π belonging to the instability areas depicted in Figs. 3.1 and 3.2. No-

flux boundary conditions have been considered in the Merson modification of the Runge-Kutta

computational scheme, with a time step ∆t = 10−4min and spatial meshes ∆x = ∆y = 0.01mm.

We chose as the initial condition a linear wave with a slightly modulated amplitude [201–203].

γ(t = 0) = ϕ0
[
1 + 0.01cos(0.01cos(K1x+K2y))

]
cos(kx) (3.1a)

ρ(t = 0) = ϕ0
[
1 + 0.01cos(0.01cos(K1x+K2y))

]
cos(kx) (3.1b)

The numerical values of the parameters are given in (Tab.3.1)

3.1.2.1 Bifurcation-like behaviors of the MG model

Simulation results giving lower and higher threshold values of ke which support cAMP pattern

formation via MI process are shown in the bifurcation diagram of Fig. 3.3, with red regions being
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Figure 3.3: The bifurcation diagrams of cAMP extracellular concentration γ(50, 50) in

the (ke, t)−plane with increasing σ (i.e, higher activity of the enzyme adenylate cyclase)

as: σ = 0.1 min−1 in panel (a), σ = 0.15 min−1 in panel (b) and σ = 0.2 min−1 in panel

(c). The diagrams allow to find the threshold value ke above which the dynamical activity

of D. discoideum is switched on.

where wave patterns are expected. The bifurcation behaviors of the system show clearly that

the interval for active ke is very sensitive to the change in σ, as expected, since the activity of

adenylate cyclase, which produces intracellular cAMP, controls the rate at which the extracellular

cAMP gets degraded. The balance between the two parameters may then play an important role

in the occurrence of wave patterns.

3.1.2.2 Dynamic Media

A great deal of effort has been devoted to the study of complex spatiotemporal patterns

during the last few years, which appear when a nonlinear system is driven away from the equi-

librium. A variety of systems have been studied, in such diverse contexts as classical mechanics,

hydrodynamics, chemistry, material science, biophysics and solid state physics [175,179,204–206].

All these systems are referred to as active media, among which excitable media are particularly

important for describing many spatiotemporal patterns in biological systems. In this party, we

introduce a classification of active media for the both generic features of excitable media and

osscillatory, using the cAMP concentration in the colony of D.d as an example system.

The partial differential equations (2.25) describe reaction-diffusion-advection active media,

which can be further classified as excitable, or oscillatory, depending on their stationary states

[206]. In excitable media, each component typically has a single stationary state that is stable

under small perturbations. If the perturbation exceeds a certain threshold, however, this compo-
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nent produces a strong burst of activity. It undergoes a sequence of transitions and later returns

to the initial state of rest. An oscillatory medium consists of elements that typically have one

unstable steady state and perform stable limit-cycle. oscillations.

3.1.2.3 Excitable Dynamics

An excitable medium is a spatially distributed system of locally excitable elements. The in-

teraction of neighboring elements by diffusive coupling can produce a number of distinctive types

of wave propagation. If a local region of space is perturbed beyond the excitability threshold,

then the autocatalytic production of the propagator species γ in that region causes its concentra-

tion to increase. Diffusing out into neighboring regions, it will cause the neighboring regions to

exceed the threshold and thus cause the excitation to spread out. In one spatial dimension, one

would observe a wave train of impulses. Two-dimensional excitable media exhibit two topologi-

cally distinct patterns: expanding concentric circular waves, called target patterns, and rotating

spiral waves. In three dimensions, the corresponding spatiotemporal structures are expanding

concentric spherical waves and rotating scroll waves.

There are many examples of excitable media, which support propagating waves of chemi-

cal, physical or biological activity. The most famous is the axonal membrane [207], which can

support propagating electrical signals and was first characterized by Hodgkin and Huxley [208].

Other examples of biological excitable media include cardiac muscle [209–211,222], among which

epicardial, ventricular, and atrial muscle are useful for the study of the mechanism of fibril-

lation and tachycardia. Neuronal tissue supporting waves of spreading depression, which has

been studied in rat cerebral cortex [213] and chicken retina [214], has provided insights into the

mechanism of migraine disorder [215]. Another example of biochemical media includes the social

amoebae Dictyostelium discoideum [216–218], a slime mold that supports waves of cyclic adeno-

sine 3Š,5Š-monophosphate (cyclic AMP) activity. Another biological example is the Xenopus

laevis oocyte [219], an intracellular milieu for studying Ca2+ signaling. Examples of chemical

excitable systems including the BZ reaction [175,179,204–206,220,221] and the CO oxidation on

single crystal Pt(110) [222,223], which give rise to many kinds of spatiotemporal patterns in the

excitable media. There are also many examples of macroscopic excitable media such as epidemic

spreading in population biology [224–226] and spiral galaxies in the celestial system, whose rotat-

ing arms can be treated as traveling waves of star formation in an excitable medium of interstellar

gas and dust [227–229]. Table 3.1 shows a comparison of some of the examples of excitable media

by identifying their characteristic state variables, u and v [179,230]. Among these excitable me-

dia, the biochemical systems have been most extensively used to study the properties of excitable

media. One of the main advantages of biochemical systems is their ability to be controlled and

their simplicity in comparison with biological or celestial systems. Among biochemical systems,
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Figure 3.4: The phase portraits in the (γ, ρ)−plane are depicted in panels (aj)j=1,2. Time

series for cAMP concentration γ are displayed in panels (bj)j=1,2, while time series for the

fraction of receptors in the active state ρ are shown in panels (cj)j=1,2. The features are

obtained in absence of the advective flow, with σ = 0.2min−1 and ke taking the values

2.8min−1 (j = 1) and 3.1min−1 (j = 2).

the D.d aggregation is the most widely studied excitable biochemical medium.

Based on the results of Fig. 3.3, the time series and phase diagrams describing the dynamics

of both the cAMP concentration γ and the fraction of receptors in the active state ρ are depicted

in Figs. 3.4 and 3.5. In order to get the results of Fig. 3.4, we have fixed σ = 0.2min−1,

and values for ke have been picked from the active region of Fig. 3.3. In this regard, Panels

(a1), (b1) and (c1) of Fig. 3.4 have been obtained ke = 2.8min−1, while panels (a2), (b2) and

(c2) were obtained for ke = 3.1min−1. The dynamics of γ and ρ is in general quasi-periodic,

but with increasing the degradation rate of cAMP, the wave frequency drops. On the other

hand, when the production rate of intercellular cAMP is increased to σ = 0.25min−1, the wave

frequencies for γ and ρ increase, although there is some wave modulation for ke = 2.8min−1,

as depicted in Figs. 3.5(b1) and (c1), in the time interval 12min<t<18min, followed by quasi-

periodic oscillations of the concentration γ and ρ for t < 18min. These modulations disappear

when ke increases to 3.1min−1, and the wave amplitude decreases and becomes constant at

t > 12min (see Figs. 3.5(b2) and (c2)). This shows the effect of each of the parameters, which

may contribute to balance nonlinear and dispersive effects for nonlinear modes to emerge in the

system. In the rest of this letter, we fixed σ = 0.3 min−1 and used different values of ke. Also,

most of the simulations were recorded at time t = 60min.
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Figure 3.5: The phase portraits in the (γ, ρ)−plane are depicted in panels (aj)j=1,2. Time

series for cAMP concentration γ are displayed in panels (bj)j=1,2, while time series for the

fraction of receptors in the active state ρ are shown in panels (cj)j=1,2. These results have

been obtained in the absence of the advective flow, with σ = 0.25min−1 and ke taking the

values 2.8min−1 (j = 1) and 3.1min−1 (j = 2).

3.1.2.4 cAMP oscillations in absence of the advective flow

In absence of the advective flow, i.e., Vf = 0, typical examples of simulation results are

given in Fig. 3.6, where panels (a), (b) and (c) correspond to the respective values 2.6 min−1,

2.8min−1 and 3.1min−1 of ke. Initially, as predicted by the linear stability analysis on the 2D

CGL equation, the plane wave solution breaks up into wave patterns in panel (a), then forms

localized patterns that are a mixed-up of unstable patterns and spiral seeds (see Fig. 3.6(b)).

The later scenario tends to disappear when the degradation rate ke increases, leading to erratic

structures and sporadic bands along the boundaries of the system (see Fig. 3.6(c)). Also, one

can still see some spots of high cAMP concentration that confirm the robust tendency of the

amoeba to aggregate under any starvation situation.

Spiral wave is a unique self-organized and self-sustained pattern. The dynamics of the spiral

wave is basically determined by its center (seed). As soon as a spiral seed emerges in the

aggregation surface, the spiral wave starts to travel along expanding circular paths with some

particular properties and capabilities. Since the dynamics of spiral wave is determined by its

central part known as the spiral seed, we apply different values of degradation rate of extracellular

cAMP (ke ) the spiral seeds in three limited areas, specified in the previous section (Fig. 3.6).

In this way, the maintenance or suppression of the existed spiral waves under degradation rate
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Figure 3.6: The panels show the manifestation of MI through pattern formation in absence

of the external flow, for different values of the degradation rate of the intracellular cAMP

ke: (a) ke = 2.6min−1, (b) ke = 2.8min−1 and (c) ke = 3.1min−1, with σ = 0.3min−1. All

the panels have been recorded at time t = 60min.

of extracellular cAMP (ke) can be investigated.The results confirm that continuance of rotating

spiral seeds suffer from higher amplitude.

3.1.2.5 cAMP oscillations in present of the advective flow

We now consider a flow that goes from left to right, in the x−direction. Figs. 3.7(aj)j=1,2,3

show the corresponding spatiotemporal behaviors of the dimensionless concentration of cAMP

for ke = 2.6min−1, which corresponds to the case of Fig. 3.6(b). Panels (aj)j=1,2,3 have been

recorded, respectively, from left to right, for the flow velocities Vf = 0.2mm.min−1, 1mm.min−1

and 1.8mm.min−1. Obviously, the disintegration of the initial plane wave importantly depends on

the imposed flow velocity. For example, in Fig. 3.7(a1), cooperative patterns appear in the system

for Vf = 0.2mm.min−1, with large spots of high cAMP concentration. By increasing the flow

velocity to 1mm.min−1, one obtains the wave patterns of Fig. 3.7(a2), characterized by trains of

upstream peaks with flat tops, followed by a zone of erratic patterns of high cAMP concentration.

Additionally, one can notice the disappearance of the spiral seeds, which corroborate the fact

that advective flows are not favorable to spiral wave formation. This gets more pronounced in

Fig. 3.7(a3), with Vf = 1.8mm.min−1. This phenomenon, to our modest opinion, may be due

to the fact that the production rate of cAMP being unchanged, the degradation rate which is

increased, along with the flow velocity, brings about important changes in the balance between

nonlinear and dispersive effects, and therefore affects the process of MI. This suitably agrees

with the patterns of Figs. 3.7(bj)j=1,2,3, where the degradation rate ke has been increased to 3.1
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Figure 3.7: Two-dimensional patterns of cAMP concentration γ(x, y, t). Panels (aj)j=1,2,3

show results for ke = 2.6min−1 and panels (bj)j=1,3 correspond to ke = 3.1min−1. From

left to right, panels in each set correspond respectively to Vf = 0.2mm.min−1, 1mm.min−1

and 1.8mm.min−1, with σ = 0.3min−1 and t = 60min.

min−1. As in the previous case, the flow velocity takes the same values and increases from left

to right. This case corresponds to Fig. 3.6(c), in absence of the advection flow. Obviously, the

propagating cAMP waves respond to the flow. In this case, the spectrum of behaviors obtained

in Fig. 3.7 remains, except that the trains of upstream peaks acquire a triangular shape, as a

response to the high velocity of the flow. This was already predicted numerically by Edwards [231]

and confirmed experimentally by Leconte et al. [232] in the case of an autocatalytic reaction. In

general, when the flow velocity increases, the wave patterns are restrained to the left area of the

medium, where there are probably multiple interactions between the upstream peaks and other

types of patterns that are due to the instability of the initial plane wave solutions. Remarkably,

all such modes of oscillation can be obtained through the activation of MI, but their long-time

behaviors cannot be predicted by the linear stability analysis. However, when wave parameters

are well-chosen in the area of instability, one expects some correlation between the analytical

and numerical calculations, which is, once more, satisfactorily confirmed by the above-discussed

results.
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3.1.3 Concluding remarks

In this letter, the collective behavior of D. discoideumwas studied. During starvation, D.

discoideum amoeba release periodic spikes of cAMP in response to extracellular cAMP levels

and interact by propagating cAMP waves throughout space. Starting with the pioneering work

by Martiel and Goldbeter [2], there has been several contributions on modeling the D. discoideum

signaling network. We have considered the same model in the present work. We have shown that

the reaction-diffusion equations modeling the chemical cAMP concentration and cAMP receptors,

can be reduced to a CGL equation, on which we conducted the linear stability analysis of MI.

Regions of parameters that support the MI process have been discussed via the MI growth

rate. Additionally, numerical simulations have been performed in a square channel and two

oscillation cases have been considered:(i)cAMP oscillations in absence of the advective flow and

(ii) in presence of the flow. In the absence of the flow, we considered as control parameters the

production rate of intercellular cAMP (σ) and degradation rate of extracellular cAMP (ke) that

are among important parameters governing the system dynamics. In the first case, in agreement

with the calculations on the CGL equation, the plane wave solutions were found to disintegrate

into wave patterns, that are very sensitive to the change in control parameters. In that con-

text, we obtained erratic patterns and spiral seeds. On the other hand, in presence of the flow,

especially when the flow velocity was increased, an instability appeared, which generated wave

trains upstream, followed again by erratic patterns. For some values of the degradation rate

of extracellular cAMP, one obtained upstream traveling peaks of different shapes, which is in

agreement with several experiments. In fact, Gholami and coworkers already obtained such

results either through experiment [27] or through direct numerical simulation [28]in straight

microfluidic devices, where flow-driven waves with a parabolic and triangular flow profiles were

reported. Under fast advective flows, Eckstein et al. [30] compared numerical and experimental

results on pattern formation of self-organizing D. discoideumamoeba in a microfluidic setup,

using a modified MG model, for a better understanding of the aggregation process, through waves

patterns of cAMP of D. discoideumin its natural environment. However, our approach has shown

that MG equations, when parameters related to MI are well-chosen, the same wave patterns of

D. discoideum aggregation can be retrieved, which once more confirms their robustness in the

studied system, and may give some substantial hint in this research field. In the next Section,

we study different mode frequency in process aggregation of dictyostelium discoideum cells.
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3.2 Complex patterns in Dictyostelium discoideum cells

with frequency mode excitations

The linear stability analysis being carried out on the CGL Eq.(2.59) has revealed the exis-

tence of two frequency regimes in a two-dimensional FitzHugh-Nagumo Dictyostelium discoideum

amoebae model , under the activation of MI phenomenon. In this section, we present the anal-

itycal solutions instability diagrams from the function Γ(K1,K2) which represents the MI gain,

also the numerical solutions for two frenquency mode.

3.2.1 Analytical features of MI

In this part we are interested in the features of the MI growth rate Γ(K1,K2), in Fig.3.8, we

plot the growth rate of instability in the plane (K1,K2) both for the HF and LF regimes. The

panels ((aj) − (bj)j=1,2) correspond to HF MI. For both cases, we have fixed p = 0.25π and,

on changing kg. In the HF regime,for kg = 4.7 and kg = 5, increasing the region of instability

in form X-shape. The panels ((cj) − (dj)j=1,2) correspond to LF MI. the region of instability

increasing in form circular for both kg values. One common behavior appears for kg = 4.7

growth rate rather displays circular unstable regions, also unstable wave patterns are expected

for −0.29π < K2 < 0.29π and −0.11π < K1 < 0.11π (see Fig.3.8(c1) − (d1)). On increasing

kg = 5 the region of instability increasing for −0.31π < K2 < 0.31π and −0.12π < K1 < 0.12π

(see Fig.3.8(c2) − (d2)). This show that the patterns formation depend of frequency mode and

the production rate of cAMP extracellular.

3.2.2 Numerical analysis of MI

From the linear stability analysis, we have performed direct numerical simulations. However,

the analysis give a clear idea on the regions of parameters where pattern formation may be

observed. The two dimensional FitzHugh-Nagumo model of Eqs. (2a) and (2b) has been used in

the simulations, with the initial conditions being the perturbed plane waves, with wavenumbers

K1 = 0.18π and K2 = 0.52π belonging to the instability areas depicted in Figs. 3.8 These

equations have been integrated using the fourth-order Runge- Kutta computational scheme, with

a time step ∆t = 5 × 10−2 and space step ∆x = ∆y = 1 × 10−1, no-flux boundary conditions

have been considered in the Merson modification. The reason for choosing such initial conditions

is to observe the dynamics imposed to the system by the MI of two frequency regime.
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Figure 3.8: The MI growth rate instability Γ(K1, K2) versus the waves number K1 and

K2. Panels ((aj)− (bj)j=1,2) and ((cj)− (dj)j=1,2) corresponding for HF and LF regimes.

We have fixed p = 0.25π, ϕ0 = 0.1 kr = 1.5, a = 0.05 and D0X = D0Y = 2, with

kg taking respectively the values 4.7 ((a)1 − (c)1) and 5 ((a)2 − (c)2), the same for the

stability/instability diagrams, where red regions are for instability and the blue ones are

those where the plane wave solution is expected to remain stable under modulation.
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3.2.2.1 The synchronization factor R

The synchronous and asynchronous behavior of a system, is one phenomenon significant in

physics for understanding waves in different mediums. Here we numerically analyze the behavior

of certain parameter according to the synchronization factor R. In this framework the spatial

synchronization factor R [233–235] is adopted and calculated as follow:

R =
⟨F 2⟩ − ⟨F ⟩2

1
N

∑N
n=1[⟨xn(t)2⟩ − ⟨xn(t)⟩2]

(3.2)

With F = 1
N

∑N
n=1 xn(t)

where ⟨·⟩ denotes the time averaging. The value of R is between 0 and 1, and it increases

with decreasing average cAMP concentration errors. That is to say, perfect synchronization is

realized when the synchronization factor is close to 1 and non-perfect synchronization is reached

when the factor of synchronization is close to 0. Recently, much of the studies carried out to

understand coordination between the amoebas through the diffusion to synchronize of cAMP

oscillation [236, 237]. Here, in order to study the stability of spiral waves, the synchronization

factor R is highlighted according to certain parameters of control for know the fields of appearance

of the spirals waves , when a value close to zero of this function suggests the emergence of spiral

waves in the medium, whereas a value of R close to unity supposes the absence of blocking waves

to the detriment of synchronous patterns in the network [238].

Fig.3.9, we plot synchronization factor R versus parameter kg for the HF and LF regimes. The

panel Fig.3.9(a) correspond to HF regime, R tend to 0 although for some values kg ∈ [4.7− 5.15]

of this parameter. In this interval the oscillations of the cAMP concentrations of n-cell become

asynchronous, while for kg > 5.15 R tend to 1 the patterns tend to synchronize itself. In the LF

regime R tend to 1 for different values of kg ≥ 4.7, The oscillations of the cAMP concentrations

show synchronous behavior.

Figure 5 and 6 describes different features of the cAMP concentration, both for the HF and

LF modes. In figure 5, The Figure 6 the time series is plot to the LF mode, the panels ((a)-(c))

display a behavior quasi-synchronous in times, this that produces target waves in the region of

aggregation.

3.2.2.2 Patterns cAMP waves in HF mode

In this part, the behavior of cAMP waves represented in HF frequency mode. we plot Time

series of cAMP concentration g(n,m, t) according to the HF mode at various node (200,200) for

line blue and (350,350) line red; the periods and amplitudes of waves propagating varying when
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Figure 3.9: Bands diagrams of synchronisation factor R versus the rate of cAMP pro-

duction kg for both HF (a) and LF (b) modes. (a) when kg ∈ [4.7 − 5.15] the feature

illustrates asynchrony state of oscillations cAMP concentration as R decreases towards

0, at kg > 5.15 the cAMP oscillations stretch at this synchronized when R increasing.

(b) synchronisation factor R is raising the cAMP oscillations illustrates the values syn-

chronous in their propagating. We have fixed k = 0.25π, kr = 1.5, a = 0.05, τ = 4.8,

Dx = 2 and Dy = 2.

kg decreasing (see fig 3.10(a-c)), this predicts that an initial target wave would encounter an

obstacles in the region of aggregation, which leads to the birth of multi-spiral waves. In Fig.3.11,

the spatiotemporal structures of cAMP waves are depicted in the (n, t)-plane for different values

of the cell number m = 100, 200 and 350, corresponding respectively to panels 3.11((A)-(I))

in HF mode. Therein, we observe the emergence of nonlinear asynchronous patterns which are

scattered in the cAMP concentration. Such asynchronous structures could be considered as

the true precursors of spiral waves. How do planes waves break up to form spirals ? When

cAMP waves collide they annihilate, since cells on both sides of a wave are refractory to cAMP

stimulation. Thus, collision between two waves cannot explain the origin of spirals. Rather, they

form when a new pulse is emitted shortly after a wave has passed. When this happens, double

spirals form Fig.3.12. The features of Fig.3.12 show how the multi-spirals waves are developed

in the region of aggregation through the spatiotemporal dynamics of cAMP waves in the (n,m)-

plane at different time in FH mode. When we vary the production rate of g(n,m, t) with time we

observe a different excitability: kg = 5 in 3.12((A)-(C)), kg = 4.86 in 3.12((D)-(F)) and kg = 4.7

in 3.12((G)-(I)).
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Figure 3.10: Time series of cAMP concentration g(n,m, t) according to the HF mode at

various node (200,200) for line blue and (350,350) line red. We varying the parameter kg

from top to bottom as: (a) kg = 5, (b) kg = 4.86, (c) kg = 4.7. We have fixed k = 0.25π,

kr = 1.5, a = 0.05, τ = 4.8, Dx = 2 and Dy = 2.

3.2.2.3 Patterns cAMP waves in LF mode

In order to be convinced of the existence of such patterns, the time series of cAMP concentra-

tion in node (200,200) for line blue and (350,350) line red displayed in Fig. 3.13 in LH mode. the

periods and amplitudes of waves propagating varying when kg decreasing (see fig 3.13(a-c)). We

observed the nonlinear patterns in the cAMP concentration. the fig.3.14 confirmed the diagrams

of fig.3.13, what show the reappearance of a nonlinear patterns no break in times and suggests

the absence of spiral waves within the system, while target waves are expected(see. fig.3.14((A)-

(I))). In panels 3.15 The patterns in the LF mode forme the unstable and target waves when kg

with time vary (see. Fig.3.15((A)-(I))). kg = 5 in 3.15((A)-(C)), kg = 4.86 in 3.15((D)-(F)) and

kg = 4.7 in 3.15((G)-(I)).

3.2.3 Concluding remarks

In summary this study focused on the propagation of cAMP waves in two-dimensional FHN

model. For this purpose, we have shown using the analytical analysis that, there are two propaga-

tion frequency regimes of the cAMP waves in colony of Dd amoebae, the HF and the LF regimes.

Key experiments published independently in 1975 by two groups showed that cAMP signals in

Dictyostelium are frequency encoded. In a mutant of D. discoideum unable to aggregate, cAMP

pulses administered at the physiological frequency of one pulse every 5 min are capable of rescu-
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Figure 3.11: Space-time plots of cAMP concentration gn,m(t) in (n, t)− plane according

to the HF mode, under the change of the m− space in the tranverse direction as m = 100

in columns (A), m = 200 in columns (B) and m = 350 in columns (c). We have fixed

k = 0.25π, kr = 1.5, a = 0.05, τ = 4.8, Dx = 2 and Dy = 2. We varying the parameter kg
from top to bottom as: line (A) kg = 5, line (D) kg = 4.86, line (G) kg = 4.7.
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Figure 3.12: Space-temporal patterns of cAMP concentration gn,m(t) in 400 × 400 ac-

cording to the HF mode array at different times: t = 100 in columns (A), t = 500 in

columns (B) and t = 900 in columns (c). We have fixed k = 0.25π, kr = 1.5, a = 0.05,

τ = 4.8, Dx = 2 and Dy = 2. We varying the parameter kg from top to bottom as: line

(A) kg = 5, line (D) kg = 4.86, line (G) kg = 4.7.

Figure 3.13: Time series of cAMP concentration g(n,m, t) according to the LF mode at

various node (200,200) for line blue and (350,350) line red. We varying the parameter kg

from top to bottom as: (a) kg = 5, (b) kg = 4.86, (c) kg = 4.7. We have fixed k = 0.25π,

kr = 1.5, a = 0.05, τ = 4.8, Dx = 2 and Dy = 2.
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Figure 3.14: Space-time plots of cAMP concentration gn,m(t) in (n, t)− plane according

to the LF mode, under the change of the m− space in the tranverse direction as m = 100

in column (A), m = 200 in column (B) and m = 350 in column (c). We have fixed

k = 0.25π, kr = 1.5, a = 0.05, τ = 4.8, Dx = 2 and Dy = 2. We varying the parameter kg
from top to bottom as: line (A) kg = 5, line (D) kg = 4.86, line (G) kg = 4.7.
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Figure 3.15: Space-temporal patterns of cAMP concentration gn,m(t) in 400 × 400 ac-

cording to the LF mode array at different times: t = 100 in columns (A), t = 500 in

columns (B) and t = 900 in columns (c). We have fixed k = 0.25π, kr = 1.5, a = 0.05,

τ = 4.8, Dx = 2 and Dy = 2. We varying the parameter kg from top to bottom as: line

(A) kg = 5, line (D) kg = 4.86, line (G) kg = 4.7.

ing the mutant and lead to multicellular aggregation [240]. In contrast, continuous stimulation

by cAMP does not lead to aggregation. In the wild type, the administration of cAMP pulses after

starvation accelerates development in the phase leading to aggregation. This effect is obtained

with cAMP pulses delivered every 5 min but not when the interval between pulses is reduced

to 2 min, or when the cAMP signal becomes continuous [39]. Pulses of cAMP administered at

random intervals in wild type are likewise less effective [40]. These observations demonstrate the

importance of the frequency of pulsatile cAMP signals. In fact, cAMP oscillations are electrical

activities that take place by the receptors cells of cAMP at different frequencies divided into

two bands: LH and HF bands. Moreover, we found that under some conditions and values of

generic parameters, the two regimes might share a few common instability/stability regions. In

this respect, the cAMP concentration, in the HF and LF regimes, has been found to display

not only envelopes and asymmetric envelopes solitons, but also trains of waves, whose biological

implications in aggregation process has been discussed. The effect of the kg parameters has also

been debated, and the solutions found have appeared to be sensitive to two-dimensional diffusive

effects. Our results suggest that in the aggregation process of dictyostelium discoideum amoeba

the chemotaxis movement of cells through cAMP pulsation occurs in two frequency modes. HF

mode produces multi-spiral waves (medium more excited) and LH mode gives unstable or target

waves (medium less excited).
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3.3 Long-range interaction of multi-spiral cAMP waves

in Dictyostelium discoideum aggregation.

The long-rang interaction of cAMP spiral waves is studied in the process of aggregation of

dictyostelium discoideum cells. Numerically, we find the values range of external periodic signal

that support the formation of long-range instabilities patterns within the network. Moreover,

the main features of cAMP waves are found to be qualitatively and quantitatively altered by the

change of the long-range parameter.

3.3.1 Numerical results

Our numerical computations were performed on the generic model (2.33) using the fourth-

order Runge-Kutta computational scheme with, N ×M = 200 × 200 the total number of Dd

amoebae cells in the network, J = 10 the interaction range, ∆t = 0.05 the time step and no-flux

boundary conditions, g(N + j,m) = g(N + j − 1,m), g(1 − j,m) = g(2 − j,m), g(n,M + j) =

g(n,M+j−1), g(n, 1−j) = g(n, 2−j) have been adopted as well as for the variable r of indexes n,

m and j. Throughout the simulations, we fix f0 = 1, A0 and kg = 4.72 and We use the parameter

s as the bifurcation parameter. The values of the parameters kg, s and A0 in the interval where

the system is in an asynchronous state is obtained by using the synchronization factor [239,241].

Fig.3.16 diagrams synchronization factor R versus parameters kg (Fig.3.16a), s (Fig.3.16b) and

A0 (Fig.3.16c). Fig.3.16a shows that the synchronization factor R decreases when the value of

kg increases. Explicitly the value of kg in the interval of [4− 6] presents an asynchronous system

in the cAMP concentration. the LR parameter s shows a weak synchronization factor when s

varies in the interval [2−10], an increase for s = 1, which leads to an asynchronous state diffused

completely in the cAMP concentration (see Fig.3.16b). In Fig.3.16c when A0 ∈ [0.25− 0.65] the

feature illustrates asynchrony state of oscillations cAMP concentration as R decreases towards 0,

the cAMP oscillations stretch at this synchronized when R increasing for kg < 0.25 and kg > 0.65.

3.3.1.1 stability of multi-spiral waves under effects of weak LRI

Here, we fix the long-range parameters s = 10. In the weak LRI the results suggests that

by the voice of cAMP signalization, the amoebas communicate thanks to the nearest-neighbor

connections, in various sites of aggregation. The time series of extracellular cAMP concentration

displayed in Fig.3.17 are consistent with the results of Fig.3.16, the curves of cAMP concentration

at the different nodes (100, 100) and (150, 150) displays oscillations shape without any change,

but with varying periods and amplitudes. Fig.3.17(D) the feature shows for a weak LR parameter
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Figure 3.16: Bands diagrams of synchronisation factor R versus the rate of cAMP

production kg panel (A), long-range interaction parameter s panel (B) and amplitude

of periodic signal A0 panel (C). We have fixed f0 = 1, kg = 4.72 kr = 1.35, a = 0.05,

τ = 4.82,and D = 0.26.
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Figure 3.17: Time series of cAMP concentration gn,m(t) recorded for node (100,100)

for line blue and (150,150) line red. We varying the long-range parameter s from top to

bottom as: (A) s = 0, (B) s = 1, (C) s = 3, (D) s = 10. We have fixed A0 = 0.38, f0 = 1,

kg = 4.72, kr = 1.35, a = 0.05, τ = 4.82, and D = 0.26. The values of A0 and kg were

selected in agreement with the synchronization diagrams of FIG.1.
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Figure 3.18: The phase portraits show the evolution of the cAMP concentration g versus

the the number of desensitized cAMP receptors r while considering node (100,100). We

varying the long-range parameter s from top to bottom as: (A) s = 0, (B) s = 1, (C)

s = 3, (D) s = 10. We have fixed A0 = 0.38, f0 = 1, kg = 4.72, kr = 1.35, a = 0.05,

τ = 4.82, and D = 0.26. The obtained features reflect the same scenarios as in FIG.2.

The chaotic attractorlike profiles of these features highly predict the asynchronous states

within amoebae population.
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Figure 3.19: Spatiotemporal patterns of cAMP concentration gn,m(t) in (n,t)-plan under

the change of the cell number m in the transverse direction as m = 50 in panel (A), m

= 100 in panel (B), m = 150 in panel (C) and m = 180 in panel (D). The features are

obtained in the case of strong LR s = 10. We observe the emergence of nonlinear patterns

by random pulsations.

s = 10, shows a variation of the period of different the nodes oscillates in an asynchronous stat.

The panel of Fig.3.18(D) depicting the phase portraits in g−r plane allow to predict the collective

dynamical behavior of one hundred cells in the network under the same scenarios as in Fig.3.17.

The obtained irregular attractors which is especially sensitive to the change of parameter s

predict the asynchronous states in the network. In Fig.3.19, Spatiotemporal structures of cAMP

concentration gn,m(t) in (n,t)-plan for different values of the cell number m = 50, 100, 150, 180

corresponding respectively to panels (A), (B), (C) and (D). Therein, we observe the emergence

of nonlinear asynchronous patterns which are scattered in the network. Such asynchronous

structures could be considered as the true precursors of multi-spiral waves. In Fig.20(A)-(D), the

features show evolution at times of multi-spirals waves cAMP concentration gn,m(t) for s = 0. In

fact, weak LRI produces the emergence of multi-spiral waves-like patterns which from randomly

firing amoebae [242]

3.3.1.2 stability of multi-spiral waves under effects of Coulomb LRI

In this section we consider successively the Coulomb LRI, i.e s = 3. The time series of extra-

cellular cAMP concentration displayed in Fig.3.17 C are consistent with the results of Fig.3.16

C, the curves of cAMP concentration at the different nodes (100, 100) and (150, 150) displays

oscillations shape without any change, but with varying periods and amplitudes. Fig.3.17(C) the

feature shows for a weak LR parameter s = 3, shows a variation of the period of different the
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Figure 3.20: Evolution of multi-spirals waves cAMP concentration gn,m(t) in 200× 200

cells array at different times:(A) t = 500 , (B) t = 1000, (C) t = 1500 and (D) t = 1800 .

The features are obtained in the case of weak interaction s = 10. We have fixed f0 = 1,

kr = 1.35, a = 0.05, τ = 4.82, D = 0.26. As time increases, the spatiotemporal dynamics

of cAMP concentration in medium becomes more excitable.

nodes oscillates in an asynchronous stat. The panel of Fig.3.18(C) depicting the phase portraits

in g− r plane allow to predict the collective dynamical behavior of one hundred cells in the net-

work under the same scenarios as in Fig.3.17. In Fig.3.21, Spatiotemporal structures of cAMP

concentration gn,m(t) in (n,t)-plan for different values of the cell number m = 50, 100, 150, 180

corresponding respectively to panels (A), (B), (C) and (D). Therein, We observe the emergence

of asynchronous structures which are localized in some space regions over the time. In Fig.22(A)-

(D), the features show as time increases, we observed inhibition in the excitable medium of cAMP

concentration. gn,m(t) for s = 3, the Wavelength tend at increasing.

3.3.1.3 stability of multi-spiral waves under effects of strong LRI

In the case of strong LRI, i.e., s = 1.0, we obtain the features of Fig.17B, represent time series

of extracellular cAMP concentration where the number of spikes tends to decrease. The panels

of Fig.3.18B depicting the phase portraits in g − r plane. The chaotic attractor like profiles of

these features highly predict the asynchronous states within amoebae population. The change

in cAMP concentration behavior shows that in aggregation surface amoebaes communication is

sensitive to the effects of LRI as that has been proved previously [243]. Panels of Fig.23 exemplify

asynchronous spatiotemporal dynamics of cAMP concentration gn,m(t) in the (n, t)-plane, while
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Figure 3.21: Spatiotemporal patterns of cAMP concentration gn,m(t) in (n,t)-plan under

the change of the cell number m in the transverse direction as m = 50 in panel (A), m

= 100 in panel (B), m = 150 in panel (C) and m = 180 in panel (D). The features are

obtained in the case of strong LR s = 3. We observe asynchronous nonlinear patterns

show a collision between two or more waves followed by new pulsations in the cAMP

concentration.

Figure 3.22: Evolution of multi-spirals waves cAMP concentration gn,m(t) in 200× 200

cells array at different times:(A) t = 500, (B) t = 1000, (C) t = 1500 and (D) t = 1800 .

The features are obtained in the case for nearest neighbors interaction s = 3. We have fixed

f0 = 1, kr = 1.35, a = 0.05, τ = 4.82, D = 0.26. As time increases, the spatiotemporal

dynamics of cAMP concentration in medium show emergence of excitability.
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Figure 3.23: Spatiotemporal patterns of cAMP concentration gn,m(t) in (n,t)-plan under

the change of the cell number m in the transverse direction as m = 50 in panel (A), m

= 100 in panel (B), m = 150 in panel (C) and m = 180 in panel (D). The features are

obtained in the case for nearest neighbors interaction s = 1. We observe the emergence

of asynchronous structures which are localized in some space regions over the time.

panels of Fig.24 present the formation of double spirals by interaction of a new pulse with a

recently passed wave. Thus, a wave in the form of a half circle is created (Fig. 24a). The ends of

the half circle begin to curl inward, and a double spiral begins to form (Fig. 24b). The arms of

the doubles spirals continue to curl and eventually collide and annihilate one another. The ends,

however, survive (Fig. 24c-d) and again generate a new doubles spirals. The process repeats

itself. The resulting pattern are the doubles spirals in the center of concentric elliptical waves of

cAMP. Notice that the doubles spirals regenerates.

3.3.1.4 stability of multi-spiral waves under effects of ultra LRI

We have previously examined the effects of the ultra LRI on the stability of the multi-spiral

waves i.e the case s = 0. In Fig.3.17A, the time series of the cAMP concentration gn,m(t)

of node (100,100) displays the trains of extracellular cAMP concentration are consistent with

the results of Fig.3.16, the curves of cAMP concentration at the different nodes (100, 100) and

(150, 150) displays oscillations shape without any change, but with varying periods and ampli-

tudes. Fig.3.17(a) the feature shows for a ultra LRI parameter s = 0.0, shows a variation of

the period of different the nodes oscillates in an asynchronous stat. The panel of Fig.3.18(A)

depicting the phase portraits in g− r plane allow to predict the collective dynamical behavior of

one hundred cells in the network under the same scenarios as in Fig.3.17. The obtained irregular

attractors which is especially sensitive to the change of parameter s predict the asynchronous
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Figure 3.24: Evolution of multi-spirals waves cAMP concentration gn,m(t) in 200× 200

cells array at different times:(A) t = 500, (B) t = 1000, (C) t = 1500 and (D) t = 1800 .

The features are obtained in the case for strong interaction s = 1. We have fixed f0 = 1,

kr = 1.35, a = 0.05, τ = 4.82, D = 0.26. As time increases, we observed less excitation in

medium of cAMP concentration.

states in the network. In Fig.3.25, Spatiotemporal structures of cAMP concentration gn,m(t) in

(n,t)-plan for different values of the cell number m = 50, 100, 150, 180 corresponding respectively

to panels (A), (B), (C) and (D). Therein, the change of cell number m gives a qualitative insight

on the heterogeneous nature of the network, which remains asynchronous during a time, and

could be considered as the true precursors of multi-spiral waves. In Fig.26(A)-(D), the features

show evolution at times of multi-spirals waves cAMP concentration gn,m(t) for s = 0. This is

highlighted by the windows of Fig.26, where the spatial patterns of the cAMP concentration

are represented at different times. There, we observe the emergence of Multi-spiral-like turbu-

lence waves that become increasingly robust over the time.In short, ultra LRI can be useful for

increasing excitability in cAMP concentration.

3.3.2 Concluding remarks

In this section the dependence of Dictyostelium discoideum aggregation with long-range cell-

to-cell communication have been highlighted in an amoebae network. Based on the improved

FitzHugh-Nagumo type equations which describe with a high accuracy the spatiotemporal dy-

namics of cAMP signaling. Furthermore by changing the long-range parameter s in each panel,

various patterns with the same amplitudes but different phases and frequencies propagation are
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Figure 3.25: Spatiotemporal patterns of cAMP concentration gn,m(t) in (n,t)-plan under

the change of the cell number m in the transverse direction as m = 50 in panel (A), m

= 100 in panel (B), m = 150 in panel (C) and m = 180 in panel (D). The features are

obtained in the case of weak LR s = 0. The change of cell number m gives a qualitative

insight on the heterogeneous nature of the network, which remains asynchronous during

a time, and could be considered as the true precursors of multi-spiral waves.

Figure 3.26: Evolution of multi-spirals waves cAMP concentration gn,m(t) in 200× 200

cells array at different times:(A) t = 500 , (B) t = 1000, (C) t = 1500 and (D) t = 1800 .

The features are obtained in the case for global interaction s = 0. We have fixed f0 = 1,

kr = 1.35, a = 0.05, τ = 4.82, D = 0.26. As time increases, we observed a disintegration of

the multi-spiral wave in the spatiotemporal dynamics of cAMP concentration in medium.
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Figure 3.27: Simulation results of spatially extended multi-spiral waves at different

values of the parameters long-range interaction at time t = 1900. The features presents

influence of parameters long-range: (A) s = 10 (see Fig.8.D), (B) s = 3 (see Fig.9.D),

(C)s = 1 (see Fig.10.D), (D) s = 0(see Fig.11.D).

obtained. the long-range interaction carried influence on certain parameters such as: Decrease

the wavelength thus the excitability of the system and increases the speed of wave in the process

of aggregation (see Fig.3.27). We observe how the impulses emitted during weak and strong

long-range interaction experience a certain time delay relatively to those generated during ultra

long-range interaction. As well weak long-range interaction patterns also experiences a time de-

lay relatively to strong long range interaction patterns. Finally more the long-range interaction

is emphasized more a great number of cAMP impulses is generated in a given time period. These

findings suggest that more than weak long-range interaction which results from local coupling,

weak-and strong long range interaction which result from strong and ultra coupling could well

speed up the aggregation phenomenon in a starving Dd amoebae population.

3.4 Conclusion

In this chapter the transport and transfer of S-cAMP in the colony of D.D. amoebae are two

important physical phenomena that have been studied to better understand their aggregation
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processes in presence of flow-driven, HF frequency regimes and LRI. The phenomenon of MI

due to the combined effects between nonlinearity and the dispersion of the explored systems,

allowed to realize that the transport and the transfer of the S-cAMP can be ensured by a soliton-

like solitary wave, thus consolidating the theory on the solitonic essence of S-cAMP. Especially

we have shown that, the MI phenomenon is amplified, by the advective flow, HF frequency

regimes and strong LRI. It was shown that MI phenomenon and cAMP-O are complementary

phenomena since MI can be used analytically to predict the emergence of nonlinear patterns in

colony of D.D. Additionally, numerical simulations have been performed in a square channel and

different types oscillations were observed. Indeed, we have shown that in the case of aggregation

two oscillations possible, in the presence of flow and in the absence of flow. Different wave

models have been chosen which have biological meanings. Numerically, we have performed the

bifurcation theory analysis and unveiled the values range of external stimulus which activate

and sustain activity-dependence of starving amoebae. Then, we have shown these oscillations

obeyed in two frequency modes. We have studied numerically the long-range parameter effects

on non-linear models of cAMP. The values of certain parameters were obtained as a function

of the synchronization factor. The long-range parameter decrease, leads to some characteristics

of cAMP signaling. These results support that the accomplishment of Dd aggregation process

may be accurately improved during the long-range communication by a starving population of

amoebae.
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Summary

In this thesis, we have studied waves propagation and phenomena of aggregation of the

amoeba D.D in the context of transport and transfer of S-cAMP in the surface of aggregation in

order to highlight the complex dynamical behaviors of these systems as well as their biological

implications. Using the continuous version of the three-dimensional MG cAMP model and FHN

model. We have developed two discrete FHN models that provide an overview of the collective

dynamic of cAMP signaling. MG and FHN models were improved both analytically and numer-

ically, the cAMP dynamic under effects of flow external, frequency modes and LRI, not only for

a better understanding of the studied phenomena, but also to highlight the main properties of

the explored cAMP model.

To achieve our main goals, the work of this thesis has been subdivided into three chapters.

The first one has dealt with an overview on cAMP signaling in colony of amoeba D.D. Here

some generalities have been presented with emphasis on the functioning of cAMP as the that

chemoattractant in the processus of aggregation. cAMP plays a crucial role in differentiation

of a lower eukaryote, the amoeba D.D. The interest of this organism resides in the fact that

it is a simple system, differentiating itself synchronously in only two cell types in response to

cAMP. We have also reviewed some phenomenological mathematical of cAMP signaling models.

Among them, we found that only MG and FHN models are biophysically meaningful since they

were developed by means of experimentation procedures. Besides, both models are able to

describe oscillations in the cAMP level in cell suspensions as well as cAMP wave propagation in

a dispersed cell population. That why it was adopted in this thesis in order to better analyze

waves propagation and the phenomena of aggregation by chemotaxis.

In chapter 2, we have presented the improved MG mathematical model which have been

developed along with both analytical and numerical methods. The models investigated present :

a reaction-diffusion-advection system or one or more reacting species are advected downstream

with an externally imposed velocity. This advective flow can induce unique emergent phenomena.

Nonlinear modulated synchronous patterns were investigated taking into account effects of flow
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for the formation of such structures. Nonlinear modulated synchronous patterns were investigated

taking into account effects of the change of the extracellular cAMP degradation rate (ke), the

production rate of cAMP (σ) and the advection flow velocity (Vf ) for the formation of such

structures.The model of FHN was finally discretized to study the frequency mode as well as

LRI.The above model have been handled by means of some analytical and numerical methods.

In that context, the CGL equation describing the spatiotemporal dynamics of envelop soliton has

been derived in the DA expansion and SDA approximation. In LRI diffusive S-cAMP allowing

to investigate effects of, LR parameter s and stimulus A0 on, multi-spirals waves of cAMP. The

RK4 method with periodic boundary conditions has been used in the numerical simulations for

integrating of original models. As initial conditions usually are known to be influenced by CGL

equation coefficients, the comparison between both analytical and numerical analysis has been

done and suggests a perfect correlation between the found results

Chapter 3 presents the main results. Through MI phenomenon, the transport and the trans-

fer of the S-cAMP can be ensured by a soliton-like solitary wave. This phenomenon is sustained

by diffusion spatio-temporal of cAMP concentration and advective flow. This during the pul-

satile secretion of cAMP triggers a chemotaxic response and creates a wave of cellular movement.

These patterns can be concentric or spiral shaped. the influence of advective flow can generate

quasi-periodic waves, spiral grains and chaotic patterns. D.D amoeba cell movement waves are

superimposed on cAMP waves. These are due to the pulsatile secretion of cAMP by the aggre-

gation centers and to the relays of these signals which thus propagate through the aggregation

territory. The results of this study confirmed : (I) In aggregation under the influence of flow, the

shape of the cAMP waves changes with higher imposed flow speeds, transitioning from a planar

wave to a erratic patterns and spiral seeds . that becomes increasingly longer the higher the flow

rate. Since the cells move against cAMP gradients when aggregating, the shape of the cAMP

waves have an important role on the aggregation process, in regards to this, it is noteworthy

that even without the presence of wave centers such as target centers and spirals, the cells are

still capable of aggregation. This also shows the capability of D. discoideum to signal even in

extremely adverse conditions. (II) Moreover, cAMP activities are governed by two frequency

regimes where the HF regime is known to generate cAMP oscillations in the form of multi-spirals

waves. However the LF regime causes the formation of asymmetric patterns in the form of cAMP

oscillatin of trains or targets waves. (III) These results imply that the presence of LRI could

better regulate information processing between the cells-cells level long-range and then protect

some aggregation regions against the harmful effects of spiral waves in critical processes. This

work allows to explore the structures accompanying the cellular aggregation in order to predict

bacterial attacks, one of the technological doors being the design of micro-robots for endoscopic

medical practices.
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Future orientations

The work of this thesis has contributed to the improvement of mathematical MG and FHN

models to better understand the dynamics of cAMP oscillation across the aggregation territory.

Most of the investigations carried out aimed at studying the phenomena of wave propagation

and chemiotaxi as a function of certain parameters, the number of which is not exhaustive. That

is why we are prospecting other research directions that include:

• thermal fluctuations effects , during patterns formation of Dictyostelium discoideum

• Magnetic field effects during aggregation of Dictyostelium discoideum cells.

• Synchronized nonlinear patterns in colonies of dictyostelium discoideum with long-range

diffusive interactions.

• Patterns formation in process aggregation of dictyostelium discoideum under noise effects.
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APPENDIX A

a0 = λ1S/ϵ1λ2, a1 = 2 λ1S
ϵ1λ2

− 1, a2 =
λ1S
ϵ1λ2

− 2, a3 = S/ϵ1λ2, a4 = −1/λ2,

b1 = 1 + L1, b2 = L1 + κL2c, b3 = L2cκ, b4 = c+ κ+ L2cκ+ L1, b5 = cκ+ cL2κ.

APPENDIX B

c0 = a0 + a1γ0 + a2γ
3
0 − γ30 + a4γ

2
0ρ

2
0 + a4ρ

2
0γ

3
0 ;

c1 = a1 + 2a2γ0 + 3γ20 + 2a3γ0ρ
2
0 + 3a4γ

2
0ρ

2
0;

c2 = a2 − 3γ0 + a3ρ
2
0 + 3a4γ0ρ

2
0;

c3 = a4ρ
2
0 − 1;

c4 = 2a3γ0ρ0 + 4a4γ
2
0ρ0;

c5 = 2a3γ
2
0 + 2a4γ

3
0ρ0;

c6 = a3γ
2
0 + a4γ

3
0 ;

c7 = 2a3ρ0 + 4a4γ0ρ0;

c8 = 2a3γ0 + 3a4γ
2
0 ;

d0 = L1 − b1ρ0 + b2γ0 + b3γ
2
0 + b4γ0ρ0 + b5ρ0γ

2
0 ;

d1 = −b1 + b4γ0 + b5γ
2
0 ;

d2 = b2 + b4ρ0 + 2b5γ0ρ0 + 2b3γ0;

d3 = b3 + b5ρ0; d4 = b4 + 2b5γ0;

d5 = b5

APPENDIX C

Ω2
0 = (2c1c4d0c5

+ c1d1)− (c4d0 + c5d2);

e0 = −c5d0; e1 = c1c4d1
c5

+ c1d4 +
2c1c6d2

c5
+ 2c1c8d0

c5
− c4d2 − c5d3 −

2c21c6d1
c25

− c7d0;

e2 =
c1c4d4

c5
+ c1d5 +

2c1c6d3
c5

+
2c21c6d4

c25
+ c1c7d1

c5
+ 2c1c8d2

c5
− c4d2 − c7d2 −

2c21c8d1
c25

;
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f0 = −(c1 + d1 +

2c6d0
c5

); f1 = c1c4
c5

+ 4c1c6d1
c25

− 2c2 − c4d1
c5

− d4 − 2c6d2
c5

− 2c8d0
c5

;

f2 =
4c1c6d4

c25
+ 2c1c7

c5
+ 4c1c8d1

c25
− 3c3 − c4d4

c5
− d5 − 2c6d3

c5
− c7d1

c5
− 2c8d2

c5
− c21c8

c25
;

g0 = −( c4c5 + 2c6d1
c25

); g1 = 2c1c8
c25

− 2c7
c5

− 2c8d1
c25

− 2c6d4
c25

; g2 = − c8
c25

;

h0 = d1v +
2c6d0v

c5
; h1 = c4d1v

c5
+ d4v +

2c6d2v
c5

+ 2c8d0v
c5

− 4c1c6d1v
c25

;

h2 = c4d4v
c5

+ d5v + 2c6d3v
c5

+ c7d1v
c5

+ 2c8d2v
c5

− 4c1c6d4v
c25

− 4c1c8d1
c25

; h3 = c4v
c5

+ 4c6d1v
c25

; h4 = 2c8v
c25

;

h5 =
2c6d4v

c25
+ 2c7v

c5
+ 4c8d1v

c25
− 2c1c8v

c25
;

i0 = −2c6d1v2

c25
; i1 = −(2c6d4v

2

c25
+ 2c8d1v2

c25
); i2 = − c8v2

c25
;

D0 = −(ϵ1d1 +
2c6ϵ1d0

c5
); D1 =

4c1ϵ1c6d1
c25

− c4d1ϵ1
c5

− ϵ1d4 − 2c6d2ϵ1
c5

− 2c8d0ϵ1
c5

;

D2 =
4c1c6d4ϵ1

c25
+ 4c1c8d1ϵ1

c25
− c4d4ϵ1

c5
− d5ϵ1 − 2c8d1ϵ1

c5
− 2c6d3ϵ1

c5
− c7d1ϵ1

c5
;

D3 = −( c4ϵ1c5
+ 4c6d1ϵ1

c25
); D4 = −2c8ϵ1

c25
; D5 =

2c1c8ϵ1−4c6d4ϵ1−4c8d1ϵ1
c25

− 2c7ϵ1
c5
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D6 =
4c6d1vϵ1

c25
; D7 =

4c6d4vϵ1+4c8d1vϵ1
c25

; D8 =
2c8vϵ1

c25
; λ0 = v; µ0 = ϵ1;

H0 =
2c6d1ϵ21

c25
; H1 =

2c6d4ϵ21+2c8d1ϵ21
c25

; H2 =
c8ϵ21
c25

;
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Appendix D

∞∑
p=1

ϵp
+∞∑

l=−∞

(
− l2ω2ψ(l)

p (ξ, η, τ) + 2ilωυgε
∂

∂ξ
ψ(l)
p (ξ, η, τ) + ε2υ2g

∂2

∂ξ2
ψ(l)
p (ξ, η, τ)

− 2ilωε2
∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t) + Ω2

0

 ∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

+ e1×

 ∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

2

+ e2

 ∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

3

+

[
f0 + f1

 ∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

+ f2

( ∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)

A(l)(x, t)

)2] ∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
ψ(l)
p (ξ, η, τ)

+ ε2
∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t) +

[
g0 + g1

∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

]
×

( ∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
ψ(l)
p (ξ, η, τ) + ε2

∂

∂τ
ψ(l)
p (ξ, η, τ)

)
×

A(l)(x, t)

)2

+

[
h0 + h1

∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t) + h2

( ∞∑
p=1

ϵp
+∞∑

l=−∞
×

ψ(l)
p (ξ, η, τ)A(l)(x, t)

)2

+ h3

∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
ψ(l)
p (ξ, η, τ)

+ ε2
∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t) + h4

( ∞∑
p=1

ϵp
+∞∑

l=−∞
×

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
×

ψ(l)
p (ξ, η, τ) + ε2

∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t)

)2

+

(3.3a)
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h5

( ∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

)( ∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
×

ψ(l)
p (ξ, η, τ) + ε2

∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t)

)] ∞∑
p=1

ϵp
+∞∑

l=−∞

(
ilkψ(l)

p (ξ, η, τ) + ε
∂

∂ξ
×

ψ(l)
p (ξ, η, τ) + ε

∂

∂η
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t) +

[
i0 + i1

∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

+ i2

∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
ψ(l)
p (ξ, η, τ) + ε2

∂

∂τ
ψ(l)
p (ξ, η, τ)

)
×

A(l)(x, t)

]( ∞∑
p=1

ϵp
+∞∑

l=−∞

(
ilkψ(l)

p (ξ, η, τ) + ε
∂

∂ξ
ψ(l)
p (ξ, η, τ) + ε

∂

∂η
ψ(l)
p (ξ, η, τ)

)
×

A(l)(x, t)

)2

+ e0 =

[
D0 +D1

∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t) +D2

( ∞∑
p=1

ϵp×

+∞∑
l=−∞

ψ(l)
p (ξ, η, τ)A(l)(x, t)

)2

+D3

∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
ψ(l)
p (ξ, η, τ)

+ ε2
∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t) +D4

( ∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
×

ψ(l)
p (ξ, η, τ) + ε2

∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t)

)2

+D5

( ∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

)
×

( ∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
ψ(l)
p (ξ, η, τ) + ε2

∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t)

)

+D6

∞∑
p=1

ϵp
+∞∑

l=−∞

(
ilkψ(l)

p (ξ, η, τ) + ε
∂

∂ξ
ψ(l)
p (ξ, η, τ) + ε

∂

∂η
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t)

+D7

 ∞∑
p=1

ϵp
+∞∑

l=−∞
ψ(l)
p (ξ, η, τ)A(l)(x, t)

 ∞∑
p=1

ϵp
+∞∑

l=−∞

(
ilkψ(l)

p (ξ, η, τ) + ε
∂

∂ξ

ψ(l)
p (ξ, η, τ) + ε

∂

∂η
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t)

(3.3b)
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+D8

∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
ψ(l)
p (ξ, η, τ) + ε2

∂

∂τ
ψ(l)
p (ξ, η, τ)

)

A(l)(x, t)

∞∑
p=1

ϵp
+∞∑

l=−∞

(
ilkψ(l)

p (ξ, η, τ) + ε
∂

∂ξ
ψ(l)
p (ξ, η, τ) + ε

∂

∂η
ψ(l)
p (ξ, η, τ)

)
×

A(l)(x, t)

] ∞∑
p=1

ϵp
+∞∑

l=−∞

(
− l2k2ψ(l)

p (ξ, η, τ)A(l)(x, t) + 2ilkε
∂

∂ξ
ψ(l)
p (ξ, η, τ)A(l)(x, t)+

ε2
∂2

∂ξ2
ψ(l)
p (ξ, η, τ)A(l)(x, t) + ε2

∂2

∂η2
ψ(l)
p (ξ, η, τ)A(l)(x, t)

)
+

[
H0 +H1

∞∑
p=1

ϵp
+∞∑

l=−∞

ψ(l)
p (ξ, η, τ)A(l)(x, t) +H2

∞∑
p=1

ϵp
+∞∑

l=−∞

(
− ilωψ(l)

p (ξ, η, τ)− ευg
∂

∂ξ
ψ(l)
p (ξ, η, τ)

+ ε2
∂

∂τ
ψ(l)
p (ξ, η, τ)

)
A(l)(x, t)

]( ∞∑
p=1

ϵp
+∞∑

l=−∞

(
− l2k2ψ(l)

p (ξ, η, τ)A(l)(x, t)+

2ilkε
∂

∂ξ
ψ(l)
p (ξ, η, τ)A(l)(x, t) + ε2

∂2

∂ξ2
ψ(l)
p (ξ, η, τ)A(l)(x, t) + ε2

∂2

∂η2
ψ(l)
p (ξ, η, τ)×

A(l)(x, t)
))2

+ λ0

∞∑
p=1

ϵp
+∞∑
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(
ilkϵ2

∂
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ψ(l)
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∂2

∂ξ2
ψ(l)
p (ξ, η, τ)− ilωϵ

∂
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×

ψ(l)
p (ξ, η, τ)− ilωϵυg

∂
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ψ(l)
p (ξ, η, τ) + l2kωψ(l)

p (ξ, η, τ)

)
A(l)(x, t) + µ0

∞∑
p=1

ϵp
+∞∑
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×(

− lωϵ2
∂
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ψ(l)
p (ξ, η, τ)− l2k2ϵ2

∂
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ψ(l)
p (ξ, η, τ)− 2ilϵ2υg

∂

∂ξ2
ψ(l)
p (ξ, η, τ)+

2l2kωϵ
∂

∂ξ
ψ(l)
p (ξ, η, τ) + l2k2ϵυg

∂
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ψ(l)
p (ξ, η, τ) + il3k2ωψ(l)

p (ξ, η, τ)

)
A(l)(x, t)

(3.3c)

Appendix E: The leading order (1,l)

1∑
l=−1

l2ω2ψ1
l A

l(ξ, η, t) + Ω2
0

1∑
l=−1

l2Al(n, t) = −D0

1∑
l=−1

l2Al(ξ, η, t) (3.4a)
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Appendix F: The leading order (2,l)

1∑
l=−1

2ilωυg
∂ψ1

l

∂ξ
Al(ξ, η, t)−

1∑
l=−1

l2ω2ψ2
l A

l(ξ, η, t) + Ω2
0

1∑
l=−1

ψ2
l A

l(ξ, η, t)

e1

(
1∑

l=−1

ψ2
l A

l(ξ, η, t)

)(
1∑

l=−1

ψ2
l A

l(ξ, η, t)

)

+ f1

(
1∑

l=−1

ψ1
l A

l(ξ, η, t)

)(
1∑

l=−1

−ilωψ1
l A

l(ξ, η, t)

)
+ g0

(
1∑

l=−1

ilωψ1
l A

l(ξ, η, t)

)2

h1

(
1∑

l=−1

ψ1
l A

l(ξ, η, t)

)(
1∑

l=−1

ilkψ1
l A

l(ξ, η, t)

)

h3

(
1∑

l=−1

ilωψ1
l A

l(ξ, η, t)

)(
1∑

l=−1

ilkψ1
l A

l(ξ, η, t)

)
+ i0

(
1∑

l=−1

ilkψ1
l A

l(ξ, η, t)

)2

=

−Do

2∑
l=−2

l2k2ψ2
l A

l(ξ, η, t) +D0

1∑
l=−1

2ilk
∂ψ1

l

∂ξ
Al(ξ, η, t)

+D1

(
1∑

l=−1

ωψ1
l A

l(ξ, η, t)
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1∑
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−l2k2ψ1
l A

l(ξ, η, t)

)

+D3

(
1∑

l=−1

ilωωψ1
l A
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1∑
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l2k2ψ1
l A

l(ξ, η, t)

)
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(
1∑
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ilkωψ1
l A
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)(
1∑
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l2k2ψ1
l A

l(ξ, η, t)

)
−H0

(
1∑

l=−1

l2k2ψ1
l A

l(ξ, η, t)

)2

(3.5a)
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Appendix G: The leading order (3,l)

1∑
l=−1

υ2g
∂2ψ1

l

∂ξ2
Al(ξ, η, t) +

2∑
l=−2

2ilωυg
∂ψ1

l

∂ξ
Al(ξ, η, t)−

1∑
l=−1

2ilω
∂ψ1

l

∂τ
Al(ξ, η, t)

−
3∑
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l2ω2ψ3
l A

l(ξ, η, t) + Ω2
0
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ψ3
l A

l(ξ, η, t)

+ 2e1

(
1∑
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ψ1
l A

l(ξ, η, t)

)(
2∑
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ψ2
l A

l(ξ, η, t)

)
+ e2

(
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ψ1
l A

l(ξ, η, t)

)3

− f0

(
1∑
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ψ1
l A

l(ξ, η, t)

)
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[( 1∑
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ψ1
l A

l(ξ, η, t)
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2∑
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−ilωψ2
l A

l(ξ, η, t)

)
×

(
2∑
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ψ2
l A

l(ξ, η, t)

)(
1∑

l=−1

−ilωψ1
l A

l(ξ, η, t)

)]
+ f2

(
1∑

l=−1

ψ1
l A

l(ξ, η, t)

)2

×

(
1∑

l=−1

−ilωψ1
l A

l(ξ, η, t)

)
+ 2g0

(
1∑

l=−1

−ilωψ1
l A

l(ξ, η, t)

)(
2∑

l=−2

−ilωψ1
l A

l(ξ, η, t)

)

+ g1

(
1∑

l=−1

ψ1
l A

l(ξ, η, t)

)(
1∑

l=−1

−ilωψ1
l A

l(ξ, η, t)

)2
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(
1∑
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−ilωψ1
l A

l(ξ, η, t)

)3

+ h0

(
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l A
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×
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l A
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1∑
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l A
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(
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ψ1
l A

l(ξ, η, t)

)
×

(
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l A

l(ξ, η, t)

)
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l=−1
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l A

l(ξ, η, t)

)(
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(3.6a)
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h4
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Flow-driven formation of unstable patterns of cyclic adenosine monophosphate (cAMP) is investigated in 
the Martiel-Goldbeter (MG) model. This is predicted via a complex Ginzburg-Landau equation, derived 
from the MG model, under the so-called modulational instability process. Regions of parameters where 
patterns exist are discussed analytically and verified numerically. Quasi-periodic waves, spiral seeds and 
chaotic patterns are found to control information driven in a colony of homogeneously distributed 
Dictyostelium discoideum cells under the change of the extracellular cAMP degradation rate (ke), the 
production rate of cAMP (σ ) and the advection flow velocity (V f ). Our results suggest that these 
quantities play a key role in the efficient regulation of communication within an amoeba colony, and 
the presence of the flow makes it possible to understand pattern formation process among D. discoideum
cells under spontaneous fluid flow in their natural environment.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Biological pattern formation usually takes place as a conse-
quence of the interaction of individual cells to create multicellular 
structures. One of the fascinating dynamics of such entities, both 
for biologists and nonequilibrium physicists, is offered by the ag-
gregation of amoebae in Dictyostelium, a process which has some 
similarities with Belousov-Zhabotinsky reactions [1,2]. In fact, un-
der favorable conditions of life, such as the presence of food in the 
soil, Dictyostelium amoebae grow and divide individually. However, 
after a short period of starvation, they have to aggregate and create 
a multicellular slug, thanks to a substance that has been recog-
nized as cyclic adenosine 3′, 5′−monophosphate (cAMP) which is 
initially released by some of the amoebae and then relayed by the 
others, thus controlling chemotaxis in the course of aggregation. 
More precisely, there exists a cellular rhythm in the production of 
cAMP which supports the wave-like nature of aggregation in D. 
discoideum [3,4]. This represents one of the most striking examples 
of spiral waves and target patterns in nature which have attracted 
considerable attention from the pattern formation community. Re-
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cent experimental results on flow-driven waves in the signaling of 
the amoebae D. discoideum have shown that cAMP wave patterns 
may develop spontaneously under the effect of a flow and propa-
gate with a velocity proportional to the driving flow velocity [5]. 
Due to nature exposure, many factors are expected to significantly 
change the wave generation processes of D. discoideum, including 
advective flows [6], external magnetic forces during the early stage 
of D. discoideum morphogenesis [7], just to name a few.

Many models have been used over the years to describe the 
cAMP patterns in D. discoideum [8–10]. Among these, the most 
widely utilized are Martiel-Goldbeter (MG) model [8], Monk-
Othmer model [11] and Tang-Othmer model [12]. Most of these 
are capable of accounting for the most important features of cAMP 
signals through the process of cell aggregation. Moreover, each 
particular model possesses its singular way of breaking the homo-
geneity and producing wave patterns. However, the MG model has 
been extensively used, under different contexts. Initially, the MG 
model was formulated as a set of three ordinary differential equa-
tions for intracellular cAMP, extracellular cAMP and the membrane 
receptors. The same kinetic laws were adopted and extended by 
Tyson and coworkers to a field of stationary signaling cells by tak-
ing into account spatial diffusion of cAMP through the extracellular 
medium [13]. Along the same line, the effect of advection on the 
pattern formation in a colony of homogeneously distributed D. dis-
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coideum cells was studied using the standard two-component MG 
model in one dimension. In order to address the experimentally 
reported flow-driven waves, the effect of the flow profile on the 
flow-driven waves was studied numerically, where the MG model 
was extended to its two-dimensional formulation through the fol-
lowing two-component set of equations [14]:

∂γ

∂t
= ε1∇2γ + −→υ · −→∇ γ + 1

ε1
[sφ(ρ,γ ) − γ ], (1)

∂ρ

∂t
= − f1(γ )ρ + f2(γ )(1 − ρ), (2)

with f1(γ ) = 1+κγ
1+γ , f2(γ ) = L1+κ L2cγ

1+cγ , φ(ρ, γ ) = λ1+Y 2

λ2+Y 2 , Y = ργ
1+γ , 

where ρ is the fraction of active receptors on the membrane, γ
is the dimensionless extracellular cAMP concentration and 

−→∇ =
∂
∂x

−→
i + ∂

∂ y

−→
j . ε1 = k1

ke
, ε2 = k1

ki+kt
, κ = k2

k1
, with k1 being the de-

sensitization rate of active receptors and ke , the degradation rate 
of extracellular cAMP. s = qktασ

ke(kt+ki)h(1+α)
depends on σ , the pro-

duction rate of cAMP. We should stress that the term −→υ · −→∇ γ
represents the effect of the external flow and was initially intro-
duced by Gholami et al. [14], as said so far. In this work, we also 
adopt the same model and we use the theory of modulational in-
stability (MI) to predict and characterize pattern formation of D. 
discoideum, which, to the best of our knowledge, has not yet been 
reported in the literature.

MI is in fact a process closely related to pattern and soli-
ton formation [15–18]. Thanks to the interplay between nonlinear 
and dispersion effects, self-induced modulation of the steady state 
emerges, causing a quasi-continuous wave pulse to disintegrate 
during propagation. Under a broad range of contexts, MI takes 
place both in continuous models and discrete systems that are 
usually described by the nonlinear Schrödinger (NLS) or the com-
plex Ginzburg-Landau (CGL) equations. Reaction-diffusion equa-
tions contain many parameters that are specific to each system, 
which renders the possibility of making general predictions of pat-
tern formation in oscillatory media very limited. However, it was 
shown by Kuramoto [19] that all reaction-diffusion systems, with a 
reaction dynamics close to the onset of oscillations, can be reduced 
to a universal envelope equation, with a great predictive power, 
which is the CGL equation with rich pattern formation. Therefore, 
many physical factors can affect the dynamics of the system com-
petitively or cooperatively such as diffusion, nonlinearity, inhomo-
geneities, advection and noise or thermal fluctuations, just to name 
a few. Recent contributions by Tabi and co-workers go that direc-
tions, with very good applications to neural networks [20], energy 
transport and storage in biomolecules [21] and blood flow in elas-
tic tubes [22]. In this letter, albeit in an approximate way, we relate 
all the coefficients of the CGL equation to the physical parameters 
of the MG model for pattern formation in D. discoideum, through 
an averaging method known as the multiple-scale expansion. The 
theory of MI is then used to predict the emergence of wave pat-
terns, followed by direct numerical simulation of the generic MG 
model. The effect of factors like the degradation rate of extracel-
lular cAMP (ke) and the production rate of cAMP (σ ) is studied. 
The whole work ends with some concluding remarks on the re-
sults and their biological implications.

2. CGL equation and linear stability analysis

In order to proceed, we first introduce dimensionless time and 
space as t → k1t′ and (x, y) → k1√

Dke
(x′, y′). Additionally, the di-

mensionless flow velocity is such that −→υ = (
V f /

√
ke D

)−→ex , where 
V f is dimensionless, with D = 0.024 mm2.min−1 being the dif-
fusion coefficient of cAMP. Values of other parameters are de-
tailed in Ref. [14], except the values of k1 = 0.09 min−1 and k2 =

1.665 min−1 which can be suitably adjusted to obtain waves with 
a period of approximately 5 min. In order to study nonlinear ef-
fects and obtain the corresponding CGL from Eqs. (1) and (2), trial 
solutions γ and ρ are decomposed as(

γ (x, y, t)
ρ(x, y, t)

)
=

(
γ0
ρ0

)
+

∞∑
p=1

εp
+∞∑

l=−∞

(
ψ

(p)

l (ξ,η, τ )

φ
(p)

l (ξ,η, τ )

)
Al (x, t) ,

(3)

where γ0 and ρ0 are steady-state solutions. Al(x, t) = eil(kx−ωt)

represents the carrier wave solution, with the frequency ω =√
�2

0 + D0k2. Spatial variables are scaled as ξ = ε(x − v gt), η = εy

and the slow time scale τ = ε2t has been applied, with v g = D0k
ω

being the group velocity. The frequency ω and the corresponding 
group velocity v g are plotted in Fig. 1 versus the wavenumber 
k, for different values of the degradation rate of the intracellular 
cAMP ke . For k = 0, we have ω = �0 which is not sensitive to 
the change in ke . However, when k �= 0, the frequency decreases 
with increasing ke due to the parameter D0 which depends on 
system parameters (see Fig. 1(a)). Although v g = 0 for k = 0, its 
value is also found to be sensitive to the change in ke for k > 0. 
Fig. 1(b) shows that v g is a decreasing function of the degradation 
rate of the intracellular cAMP. Using the multiple-scale expansion 
and after cumbersome and long calculations, the corresponding 
CGL equation that combines Eqs. (1) and (2) is obtained at order 
the order (ε3, A1) in the form

i
∂ψ

∂τ
+ P1

2

∂2ψ

∂ξ2
+ P2

2

∂2ψ

∂η2
+ (Q r + i Q i) | ψ |2 ψ

+ i
(Rr + iRi)

2
ψ = 0, (4)

where the coefficient P1, P2, Q r, Q i, Rr, Ri are given by

P1 = 1

ω
(D0 − υ2

g ), P2 = D0

ω
,

Q r = 1

2ω
[3g1ω

2 + h5kω + 3D4k2ω2 + D8k3ω + 3H1k4 − 3e2

− 3D2k2 − 2e1m1 + (2h3kω + 3D1k2 + 4H0k4 − 2e1

− 2g0ω
2 − 4i0k2)mr + 6mi(D6k3 − D3k2ω)],

Q i = 1

2ω
[ω f2 + 3g2ω

3 + h4kω2 + 3i2k2ω

+ D5k2ω − h2k − D7k3 − H2k4ω + (ω f1 − h1k)m1

+ (2h3kω + 3D1k2 + 4H0k4 − 2e1 − 2g0ω
2 − 4i0k2)mi

+ 6mr(D3k2ω − D6k3)]
Rr = ω f0 − h0k + μ0k2ω

ω
, Ri = λ0k. (5)

Except for P1, P2 all the other parameters are complex and the 
subscripts r and i denote their real and imaginary parts, respec-
tively (For detailed expressions of parameters, see Appendix). They 
are plotted in Fig. 2, versus the wavenumber k, and show dif-
ferent features when ke changes. In fact, except Q r and Q i that 
have some negative values, the rest of the coefficients remain pos-
itive. This shows that the found CGL equation remains linked to 
system parameters and gives credit to the linear stability analy-
sis that will be performed. The CGL equation is a universal model 
that gives the possibility to predict pattern formation in reaction-
diffusion models [23]. The applicability of the CGL equations goes 
far beyond reaction-diffusion systems to cover other research ar-
eas actually related to superconductivity, nonlinear optics, plasmas, 
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Fig. 1. The angular wave frequency ω and the group velocity υg are plotted against the wavenumber k. The influence of the degradation rate of extracellular cAMP by the 
enzyme phosphodiesterase ke is studied for a fixed value σ = 0.2 min−1 of the production rate of intercellular cAMP.

Fig. 2. Variations of the coefficients of the CGL Eq. (4) versus the wavenumber k, with changing the degradation rate of extracellular cAMP by the enzyme phosphodiesterase 
ke . The dispersion coefficient P1, P2, as well the dissipative coefficients Rr and Ri remain positive for any k and ke . However, the real and imaginary parts of the nonlinearity 
coefficient Q r and Q i are positives for some values of k and negatives for others. All the panels have been plotted for a fixed value σ = 0.2 min−1 of maximum activity of 
adenylate cyclase.

Bose-Einstein condensates, and quantum field theories [24]. Using 
Eq. (4), we want to predict the occurrence of nonlinear patterns, 
through the MI process, and their response to model parameters 
over long periods of time. We assume a plane wave ψ(ξ, η, τ ) =
φ0ei(q1ξ+q2η−�τ) to be solution of Eq(4), where the wavenumbers 
q1 and q2, the frequency � and the amplitude φ0, after sep-
arating the real and imaginary parts, satisfy the relations � =
P1
2 q2

1 + P2
2 q2

2 + Ri
2 − Q rφ

2
0 and Q iφ

2
0 + Rr

2 = 0. The solution is then 
perturbed as ψ(ξ, η, τ ) = [φ0 + �(ξ, η, τ )]ei(q1ξ+q2η−�τ+μ(ξ,η,τ )) , 
where �(ξ, η, τ ) and μ(ξ, η, τ ) are, respectively, the amplitude 
and phase perturbations, considered to be small with respect to 
the unperturbed amplitude and phase of the wave. This leads to 
a set of equations for the perturbations � and μ whose solutions 
are taken as �(ξ, η, τ ) = �0ei(K1ξ+K2η−ντ ) + cc and μ(ξ, η, τ ) =

μ0ei(K1ξ+K2η−ντ ) + cc, with K1 and K2 being the wavenumbers 
of the perturbations and ν their angular frequency. Making use of 
these leads to a homogeneous system for �0 et μ0 whose deter-
minant should be zero for non-trivial solution to exist. This gives 
a nonlinear dispersion relation for the perturbation frequency ν
from which the growth rate of MI is derived in the form

�(K1, K2)

= 1

2

⎡
⎣Rr +

√√√√R2
r + (P1 K 2

1 + P2 K 2
2 )

(
4Q rφ

2
0

P1 K 2
1 + P2 K 2

2

− 1

)⎤
⎦ . (6)

In order for � to be positive, we should have 4Q rφ
2
0

P1 K 2
1 +P2 K 2

2
− 1 > 0, 

which will be possible only if the amplitude goes beyond a thresh-
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Fig. 3. The MI growth rate � versus the wavenumbers K1 and K2. Panels (aj) j=1,2,3 corresponds to σ = 0.2 min−1, panels (bj) j=1,2,3 to σ = 0.3 min−1 and panels (cj) j=1,2,3
gives the MI growth rate for σ = 0.6 min−1. From top to bottom, the different rows have been, respectively, computed for ke = 2.6 min−1 ( j = 1), 2.8 min−1 ( j = 2) and 
3.1 min−1 ( j = 3).

Fig. 4. The MI growth rate �(K1, K2) versus the longitudinal wavenumber K1, with K2 = 0.1π . Each panel corresponds to a fixed value of σ , while � is plotted for three 
different values of ke . Panel (a) corresponds to σ = 0.2 min−1 and panel (b) to σ = 0.6 min−1. � > 0 is delimited by the intervals 0 < K1 < K1,cr , where the plane wave is 
expected to be unstable under slight modulation.

old φ2
0,cr = P1 K 2

1 +P2 K 2
2

4Q r
. When values for φ0 are suitably chosen, we 

obtain the MI growth rate shown in Fig. 3, where panels (aj) j=1,2,3

corresponds to σ = 0.2 min−1, panels (bj) j=1,2,3 to σ = 0.3 min−1

and panels (cj) j=1,2,3 gives the MI growth rate for σ = 0.6 min−1. 
In the (K1, K2)−plane, it is obvious from the two sets of dia-
grams that the area of instability, i.e., where �(K1, K2) > 0, gets 
expanded with increasing ke . However, regions of instability are 
more larger for σ = 0.6 min−1 than for the other values. This 
shows that both the production and degradation rates of cAMP 
may deeply influence pattern formation. Fixing K2 = 0.1π , the 
same regions are clearly depicted in Fig. 4, where � is plotted ver-
sus K1. Fig. 4(a) shows results for σ = 0.2 min−1, and � > 0 is 
delimited by the intervals 0 < K1 < K1,cr , where the plane wave 

becomes unstable under slight modulations. K1,cr , in Fig. 4(a), in-
creases when ke takes the respective value 2.6 min−1, 2.8 min−1

and 3.1 min−1. The same behaviors appear for σ = 0.6 min−1. 
However, for ke = 3.1 min−1, there is marginal instability, which 
corresponds to what is shown in Fig. 3(c3).

3. Unstable wave patterns of cAMP

In the following, our analysis and numerical simulations are 
focused on pattern formation in order to bring out the effect of 
the external flow on the spatiotemporal development of MI. The 
MG model of Eqs. (1) and (2) has been used in the simulations, 
with the initial conditions being the perturbed plane waves, with 
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Fig. 5. The bifurcation diagrams of cAMP extracellular concentration γ (50, 50) in the (ke, t)−plane with increasing σ (i.e., higher activity of the enzyme adenylate cyclase) 
as: σ = 0.1 min−1 in panel (a), σ = 0.15 min−1 in panel (b) and σ = 0.2 min−1 in panel (c). The diagrams allow to find the threshold value ke above which the dynamical 
activity of D. discoideum is switched on. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. The phase portraits in the (γ , ρ)−plane are depicted in panels (aj) j=1,2. Time series for cAMP concentration γ are displayed in panels (bj) j=1,2, while time series for 
the fraction of receptors in the active state ρ are shown in panels (cj) j=1,2. The features are obtained in absence of the advective flow, with σ = 0.2 min−1 and ke taking 
the values 2.8min−1 ( j = 1) and 3.1 min−1 ( j = 2).

wavenumbers K1 = 0.4π and K2 = 0.1π belonging to the insta-
bility areas depicted in Figs. 3 and 4. No-flux boundary conditions 
have been considered in the Merson modification of the Runge-
Kutta computational scheme, with a time step �t = 10−4 min 
and spatial meshes �x = �y = 0.01 mm. Simulation results giving 
lower and higher threshold values of ke which support cAMP pat-
tern formation via MI process are shown in the bifurcation diagram 
of Fig. 5, with red regions being where wave patterns are expected. 
The bifurcation behaviors of the system show clearly that the inter-
val for active ke is very sensitive to the change in σ , as expected, 
since the activity of adenylate cyclase, which produces intracellu-
lar cAMP, controls the rate at which the extracellular cAMP gets 
degraded. The balance between the two parameters may then play 
an important role in the occurrence of wave patterns. Based on the 
results of Fig. 5, the time series and phase diagrams describing the 

dynamics of both the cAMP concentration γ and the fraction of 
receptors in the active state ρ are depicted in Figs. 6 and 7. In or-
der to get the results of Fig. 6, we have fixed σ = 0.2 min−1, and 
values for ke have been picked from the active region of Fig. 5. In 
this regard, Panels (a1), (b1) and (c1) of Fig. 6 have been obtained 
ke = 2.8 min−1, while panels (a2), (b2) and (c2) were obtained 
for ke = 3.1 min−1. The dynamics of γ and ρ is in general quasi-
periodic, but with increasing the degradation rate of cAMP, the 
wave frequency drops. On the other hand, when the production 
rate of intercellular cAMP is increased to σ = 0.25 min−1, the 
wave frequencies for γ and ρ increase, although there is some 
wave modulation for ke = 2.8 min−1, as depicted in Figs. 7(b1) 
and (c1), in the time interval 12 min<t<18 min, followed by quasi-
periodic oscillations of the concentration γ and ρ for t < 18 min. 
These modulations disappear when ke increases to 3.1 min−1, and 
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Fig. 7. The phase portraits in the (γ , ρ)−plane are depicted in panels (aj) j=1,2. Time series for cAMP concentration γ are displayed in panels (bj) j=1,2, while time series for 
the fraction of receptors in the active state ρ are shown in panels (cj) j=1,2. These results have been obtained in the absence of the advective flow, with σ = 0.25 min−1 and 
ke taking the values 2.8 min−1 ( j = 1) and 3.1 min−1 ( j = 2).

Fig. 8. The panels show the manifestation of MI through pattern formation in absence of the external flow, for different values of the degradation rate of the intracellular 
cAMP ke : (a) ke = 2.6 min−1, (b) ke = 2.8 min−1 and (c) ke = 3.1 min−1, with σ = 0.3 min−1. All the panels have been recorded at time t = 60 min.

the wave amplitude decreases and becomes constant at t > 12 min 
(see Figs. 7(b2) and (c2)). This shows the effect of each of the 
parameters, which may contribute to balance nonlinear and dis-
persive effects for nonlinear modes to emerge in the system. In 
the rest of this letter, we fixed σ = 0.3 min−1 and used different 
values of ke . Also, most of the simulations were recorded at time 
t = 60 min.

In absence of the advective flow, i.e., V f = 0, typical examples 
of simulation results are given in Fig. 8, where panels (a), (b) and 
(c) correspond to the respective values 2.6 min−1, 2.8 min−1 and 
3.1 min−1 of ke . Initially, as predicted by the linear stability analy-
sis on the 2D CGL equation, the plane wave solution breaks up into 
wave patterns in panel (a), then forms localized patterns that are 
a mixed-up of unstable patterns and spiral seeds (see Fig. 8(b)). 
The later scenario tends to disappear when the degradation rate 
ke increases, leading to erratic structures and sporadic bands along 

the boundaries of the system (see Fig. 8(c)). Also, one can still see 
some spots of high cAMP concentration that confirm the robust 
tendency of the amoeba to aggregate under any starvation situa-
tion.

We now consider a flow that goes from left to right, in the 
x−direction. Figs. 9(aj) j=1,2,3 show the corresponding spatiotem-
poral behaviors of the dimensionless concentration of cAMP for 
ke = 2.6 min−1, which corresponds to the case of Fig. 8(b). Pan-
els (aj) j=1,2,3 have been recorded, respectively, from left to right, 
for the flow velocities V f = 0.2 mm.min−1, 1 mm.min−1 and 
1.8 mm.min−1. Obviously, the disintegration of the initial plane 
wave importantly depends on the imposed flow velocity. For ex-
ample, in Fig. 9(a1), cooperative patterns appear in the system for 
V f = 0.2 mm.min−1, with large spots of high cAMP concentration. 
By increasing the flow velocity to 1 mm.min−1, one obtains the 
wave patterns of Fig. 9(a2), characterized by trains of upstream 
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Fig. 9. Two-dimensional patterns of cAMP concentration γ (x, y, t). Panels (aj) j=1,2,3 show results for ke = 2.6 min−1 and panels (bj) j=1,3 correspond to ke = 3.1 min−1. From 
left to right, panels in each set correspond respectively to V f = 0.2 mm.min−1, 1 mm.min−1 and 1.8 mm.min−1, with σ = 0.3 min−1 and t = 60 min.

peaks with flat tops, followed by a zone of erratic patterns of high 
cAMP concentration. Additionally, one can notice the disappear-
ance of the spiral seeds, which corroborate the fact that advective 
flows are not favorable to spiral wave formation. This gets more 
pronounced in Fig. 9(a3), with V f = 1.8 mm.min−1. This phe-
nomenon, to our modest opinion, may be due to the fact that the 
production rate of cAMP being unchanged, the degradation rate 
which is increased, along with the flow velocity, brings about im-
portant changes in the balance between nonlinear and dispersive 
effects, and therefore affects the process of MI. This suitably agrees 
with the patterns of Figs. 9(bj) j=1,2,3, where the degradation rate 
ke has been increased to 3.1 min−1. As in the previous case, the 
flow velocity takes the same values and increases from left to right. 
This case corresponds to Fig. 8(c), in absence of the advection flow. 
Obviously, the propagating cAMP waves respond to the flow. In this 
case, the spectrum of behaviors obtained in Fig. 9 remains, except 
that the trains of upstream peaks acquire a triangular shape, as a 
response to the high velocity of the flow. This was already pre-
dicted numerically by Edwards [25] and confirmed experimentally 
by Leconte et al. [26] in the case of an autocatalytic reaction. In 
general, when the flow velocity increases, the wave patterns are 
restrained to the left area of the medium, where there are prob-
ably multiple interactions between the upstream peaks and other 
types of patterns that are due to the instability of the initial plane 
wave solutions. Remarkably, all such modes of oscillation can be 
obtained through the activation of MI, but their long-time behav-
iors cannot be predicted by the linear stability analysis. However, 
when wave parameters are well-chosen in the area of instability, 
one expects some correlation between the analytical and numer-
ical calculations, which is, once more, satisfactorily confirmed by 
the above-discussed results.

4. Conclusion

In this letter, the collective behavior of D. discoideum was 
studied. During starvation, D. discoideum amoeba release peri-
odic spikes of cAMP in response to extracellular cAMP levels and 
interact by propagating cAMP waves throughout space. Starting 
with the pioneering work by Martiel and Goldbeter [8], there has 
been several contributions on modeling the D. discoideum signal-
ing network. We have considered the same model in the present 
work. We have shown that the reaction-diffusion equations mod-
eling the chemical cAMP concentration and cAMP receptors, can 
be reduced to a CGL equation, on which we conducted the lin-
ear stability analysis of MI. Regions of parameters that support 
the MI process have been discussed via the MI growth rate. Ad-
ditionally, numerical simulations have been performed in a square 
channel and two oscillation cases have been considered: (i) cAMP 
oscillations in absence of the advective flow and (ii) in presence 
of the flow. In the absence of the flow, we considered as con-
trol parameters the production rate of intercellular cAMP (σ ) and 
degradation rate of extracellular cAMP (ke) that are among impor-
tant parameters governing the system dynamics. In the first case, 
in agreement with the calculations on the CGL equation, the plane 
wave solutions were found to disintegrate into wave patterns, that 
are very sensitive to the change in control parameters. In that con-
text, we obtained erratic patterns and spiral seeds. On the other 
hand, in presence of the flow, especially when the flow veloc-
ity was increased, an instability appeared, which generated wave 
trains upstream, followed again by erratic patterns. For some val-
ues of the degradation rate of extracellular cAMP, one obtained 
upstream traveling peaks of different shapes, which is in agree-
ment with several experiments. In fact, Gholami and co-workers 
already obtained such results either through experiment [5] or 
through direct numerical simulation [14,27] in straight microfluidic 
devices, where flow-driven waves with a parabolic and triangular 
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flow profiles were reported. Under fast advective flows, Eckstein 
et al. [6] compared numerical and experimental results on pattern 
formation of self-organizing D. discoideum amoeba in a microflu-
idic setup, using a modified MG model, for a better understanding 
of the aggregation process, through waves patterns of cAMP of D. 
discoideum in its natural environment. However, our approach has 
shown that MG equations, when parameters related to MI are well-
chosen, the same wave patterns of D. discoideum aggregation can 
be retrieved, which once more confirms their robustness in the 
studied system, and may give some substantial hint in this re-
search field. Our investigations have also raised many interesting 
questions, some of which have been discussed in this letter, and 
which require to be fully addressed when D. discoideum cells are 
exposed to some other physical factors such as thermal fluctua-
tions, time-delay, inhomogeneity of the medium, just to cite a few.
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Appendix

The following CGL equation has been obtained

i
∂ψ

∂τ
+ P1

2

∂2ψ

∂ξ2
+ P2

2

∂2ψ

∂η2
+ (Q r + i Q i) | ψ |2 ψ

+ i
(Rr + iRi)

2
ψ = 0, (7)

with the coefficient P1, P2, Q r, Q i, Rr, Ri being given by

P1 = 1

ω
(D0 − υ2

g ), P2 = D0

ω
,

Q r = 1

2ω
[3g1ω

2 + h5kω + 3D4k2ω2 + D8k3ω + 3H1k4 − 3e2

− 3D2k2 − 2e1m1 + (2h3kω + 3D1k2 + 4H0k4 − 2e1 − 2g0ω
2

− 4i0k2)mr + 6mi(D6k3 − D3k2ω)],
Q i = 1

2ω
[ω f2 + 3g2ω

3 + h4kω2 + 3i2k2ω

+ D5k2ω − h2k − D7k3 − H2k4ω + (ω f1 − h1k)m1

+ (2h3kω + 3D1k2 + 4H0k4 − 2e1 − 2g0ω
2 − 4i0k2)mi

+ 6mr(D3k2ω − D6k3)]
Rr = ω f0 − h0k + μ0k2ω

ω
, Ri = λ0k. (8)

The different intermediary coefficients due to the application of 
the multiple-scale expansion procedure are:

�2
0 =

(
2c1c4d0

c5
+ c1d1

)
− (c4d0 + c5d2), e0 = −c5d0,

e1 = c1c4d1

c5
+ c1d4 + 2c1c6d2

c5
+ 2c1c8d0

c5
− c4d2 − c5d3

− 2c2
1c6d1

c2
5

− c7d0

e2 = c1c4d4

c5
+ c1d5 + 2c1c6d3

c5
+ 2c2

1c6d4

c2
5

+ c1c7d1

c5
+ 2c1c8d2

c5

− c4d2 − c7d2 − 2c2
1c8d1

c2
5

f0 = −(c1 + d1 + 2c6d0

c5
), f1 = c1c4

c5
+ 4c1c6d1

c2
5

− 2c2 − c4d1

c5

− d4 − 2c6d2

c5
− 2c8d0

c5

f2 = 4c1c6d4

c2
5

+ 2c1c7

c5
+ 4c1c8d1

c2
5

− 3c3 − c4d4

c5
− d5 − 2c6d3

c5

− c7d1

c5
− 2c8d2

c5
− c2

1c8

c2
5

g0 = −(
c4

c5
+ 2c6d1

c2
5

), g1 = 2c1c8

c2
5

− 2c7

c5
− 2c8d1

c2
5

− 2c6d4

c2
5

,

g2 = − c8

c2
5

h0 = d1 v + 2c6d0 v

c5
,

h1 = c4d1 v

c5
+ d4 v + 2c6d2 v

c5
+ 2c8d0 v

c5
− 4c1c6d1 v

c2
5

h2 = c4d4 v

c5
+ d5 v + 2c6d3 v

c5
+ c7d1 v

c5
+ 2c8d2 v

c5
− 4c1c6d4 v

c2
5

− 4c1c8d1

c2
5

h3 = c4 v

c5
+ 4c6d1 v

c2
5

, h4 = 2c8 v

c2
5

,

h5 = 2c6d4 v

c2
5

+ 2c7 v

c5
+ 4c8d1 v

c2
5

− 2c1c8 v

c2
5

i0 = −2c6d1 v2

c2
5

, i1 = −(
2c6d4 v2

c2
5

+ 2c8d1 v2

c2
5

), i2 = − c8 v2

c2
5

D0 = −(ε1d1 + 2c6ε1d0

c5
),

D1 = 4c1ε1c6d1

c2
5

− c4d1ε1

c5
− ε1d4 − 2c6d2ε1

c5
− 2c8d0ε1

c5

D2 = 4c1c6d4ε1

c2
5

+ 4c1c8d1ε1

c2
5

− c4d4ε1

c5
− d5ε1 − 2c8d1ε1

c5

− 2c6d3ε1

c5
− c7d1ε1

c5

D3 = −(
c4ε1

c5
+ 4c6d1ε1

c2
5

), D4 = −2c8ε1

c2
5

,

D5 = 2c1c8ε1 − 4c6d4ε1 − 4c8d1ε1

c2
5

− 2c7ε1

c5

D6 = 4c6d1 vε1

c2
5

, D7 = 4c6d4 vε1 + 4c8d1 vε1

c2
5

, D8 = 2c8 vε1

c2
5
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λ0 = v, μ0 = ε1, H0 = 2c6d1ε
2
1

c2
5

, H1 = 2c6d4ε
2
1 + 2c8d1ε

2
1

c2
5

,

H2 = c8ε
2
1

c2
5

,

with c0 = λ1 S/ε1λ2 + (2 λ1 S
ε1λ2

− 1)γ0 + ( λ1 S
ε1λ2

− 2)γ 3
0 − γ 3

0 −
(1/λ2)γ

2
0 ρ2

0 (1 + γ0), c1 = (2 λ1 S
ε1λ2

− 1) + 2( λ1 S
ε1λ2

− 2)γ0 + 3γ 2
0 +

(2S/ε1λ2)γ0ρ
2
0 − (3/λ2)γ

2
0 ρ2

0 , c2 = ( λ1 S
ε1λ2

−2) −3γ0 + (S/ε1)λ2ρ
2
0 −

(3/λ2)γ0ρ
2
0 , c3 = (−1/λ2)ρ

2
0 −1, c4 = 2(S/ε1λ2)γ0ρ0 −(4/λ2)γ

2
0 ρ0, 

c5 = (2S/ε1λ2)γ
2

0 − (2/λ2)γ
3

0 ρ0, c6 = (S/ε1λ2)γ
2

0 − (1/λ2)γ
3

0 , 
c7 = (2S/ε1λ2)ρ0 − (4/λ2)γ0ρ0, c8 = 2(S/ε1λ2)γ0 − (3/λ2)γ

2
0 , 

d0 = L1 − (1 + L1)ρ0 + (L1 + κ L2c)γ0 + L2cκγ 2
0 + (c + κ + L2cκ +

L1)γ0ρ0 + (cκ + cL2κ)ρ0γ
2

0 , d1 = −(1 + L1) + (c + κ + L2cκ +
L1)γ0 + (cκ + cL2κ)γ 2

0 , d2 = L1 + κ L2c + (c + κ + L2cκ + L1)ρ0 +
2(cκ + cL2κ)γ0ρ0 + 2(L2cκ)γ0, d3 = L2cκ + (cκ + cL2κ)ρ0, d4 =
c + κ + L2cκ + L1 + 2(cκ + cL2κ)γ0, d5 = cκ + cL2κ .
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