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Résumé

Dans ce travail de recherche réalisé dans un domaine centré sur le Cameroun et ses en-

virons, nous avons calculé quelques indices climatiques relatifs aux précipitations. Les

résultats obtenus ont été soumis à des analyses spatiales et temporelles à partir des outils

mathématiques appropriés. Les données utilisées sont celles des précipitations provenant

de trois sources différentes: celles enregistrées dans 24 stations météorologiques du Camer-

oun, celles des simulations de quatre modèles climatiques de circulation générale (modèles

MPI-echam5, MRI-cgcm2.3.2a, BCCR-bcm2.0 et CSIRO-mk3.5) et les données du ’Cli-

matic Research Unit (CRU)’. Ces données s’étendent sur une période allant de 1951 à

2005. Pour les modèles climatiques, nous disposons en plus les données de projection

pour les deux dernières décennies du 21e siècle, simulées selon le scénario SRES A2 sur

l’émission des gaz à effets de serre. Le calcul des dates de début et de retrait de la

saison des pluies nous a permis de définir un zonage du domaine en trois grandes ré-

gions climatiques et d’établir un calendrier utile aux activités agricoles. Les résultats des

autres paramètres statistiques montrent que dans tout le domaine d’étude, la fréquence et

l’intensité des précipitations diminuent pendant que les pluies extrêmes deviennent plus

fréquentes. Les modèles climatiques CSIRO-mk3.5 et MPI-echam5 simulent mieux ces

indices et les meilleures corrélations sont obtenues par le modèle CSIRO-mk3.5. D’après

les projections des modèles pour l’horizon 2082-2098, le début et le retrait des pluies con-

naîtront des retards respectifs d’au moins 5 jours et d’au plus 2,5 jours dans les régions

du centre et du sud Cameroun, ce qui réduirait dans ces régions la durée de la saison des

pluies. Dans la zone sahélienne du pays, c’est la situation inverse qui est projetée avec

comme conséquence une augmentation de la durée des pluies. Les projections des autres

paramètres prévoient des modifications spatiales futures de la fréquence et de l’intensité

des pluies, à l’exception des régions autour du plateau de l’Adamaoua et dans la par-

tie Est du domaine. Dans la dernière partie du travail visant à poser les bases pour le

calcul de l’indice standardisé des précipitations au Cameroun, les précipitations ont été

premièrement ajustées par quatre fonctions de distributions statistiques (gamma, weibull,

xx



exponentielle et lognormale). La distribution appropriée pour chaque station a été ensuite

utilisée pour le calcul de cet indice. Il ressort que pour des précipitations cumulées sur

6-mois ou moins, la fonction gamma convient pour la distribution des précipitations de

la zone Sahélienne (>10◦N) et la fonction weibull pour celles des autres zones. Sur plus

de 6-mois, la répartition spatiale des fonctions de distribution devient inconsistante et

le nombre de stations montrant une préférence pour la loi lognormale augmente avec le

nombre de mois. L’analyse des résultats de l’indice standardisé des précipitations montre

qu’en générale la sécheresse survient rarement et que les décennies 1970 et 1980 ont été

les plus sèchent. Les calculs faits avec les données de précipitations de CRU donnent des

résultats similaires avec de bonnes performances pour les cumuls sur de courtes périodes.

L’étude des seuils opérationnels de sécheresse montre qu’ils varient avec l’espace et la

longueur de la période temporelle considérée et impose donc la nécessité d’une définition

objective pour l’utilisation en agriculture et en gestion des ressources hydrologiques.

Mots clés: Indices Climatiques; Variabilités climatiques; Changements Climatiques; Vali-

dation des Modèles Climatiques; Projections Climatiques; Fonctions de distributions statistiques;

Indice standardisé des précipitations; Cameroun.
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Abstract

In this work, some climatic indices related to precipitation were calculated over Cameroon

and some neighboring areas. Results underwent spatial and temporal analyses through

appropriate mathematical tools. We used three datasets: precipitation data from 24 mete-

orological stations in Cameroon, simulated precipitation from four general circulation cli-

mate models (namely MPI-echam5, MRI-cgcm2.3.2a, BCCR-bcm2.0 and CSIRO-mk3.5)

and CRU (Climatic Research Unit) gridded precipitation. These data cover different time

periods from the range 1951-2005. Model data are also available for the last two decades

of the 21st century, simulated under the SRES A2 emission scenario. The study of onset,

retreat and length of the rainy season led to the grouping of stations into three different

climatic zones and to the definition of an agricultural calendar. Results for other statis-

tical parameters show that over the entire domain, precipitation frequency and intensity

decreased while heavy rainfall increased. The two models CSIRO-mk3.5 and MPI-echam5

reproduce quite well observed patterns and gradients, however CSIRO-mk3.5 shows higher

correlations. For the future period 2082-2098, onset dates are expected to be later by one

pentad (5 days) or more and retreat dates later by less than half a pentad in most lo-

cations. This will lead to a slight decrease in the duration of the rainy season. The

situation is reverse in Sahelian zone, where the season will be longer. Model projections

for other statistical parameters show spatial variation in rainfall frequency and intensity

except around Adamawa Plateau and in the Eastern part of domain. In the last part of

the study aimed to lay a basis for the calculation of the Standardized precipitation index

(SPI), data were firstly fitted to four probability density functions (i.e. gamma, exponen-

tial, weibull and lognormal). The appropriate distribution for each station was afterwards

used for computation of the SPI. It appears that for short time scales (up to 6-month)

and for stations above 10◦N, the gamma distribution is the most frequent choice, while

below this belt, the weibull distribution predominates. For longer than 6-month time

scales, there are no consistent patterns of fitted distributions and the number of stations

showing bias to lognormal increases with the number of month. Results of SPI show that
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droughts were generally rarer than wetness. Long episodes of severe droughts and short

episode of extreme droughts are identified in the decades 1970 and 1980 in many stations.

Similar studies with CRU grid precipitation show good results with the best performances

on short time scales. The study of operational drought thresholds shows the necessity of

their objective definition because they change with space and with the considered time

period. This will be useful in agriculture and water resource management.

Keywords: Climatic indices; Climate variability; Climate Change; Climate Model vali-

dation; Climate Projection; Statistical distribution functions; Standardized precipitation index

(SPI); Cameroon.
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General Introduction

Variations in meteorological elements as a result of atmospheric processes, determine the

weather and the climate. In the coming decades, because of increases in atmospheric

greenhouse gases (GHGs) and aerosols affecting atmospheric components, the climate is

expected to change. A great challenge nowadays is the capability to translate this change

in terms of climatic indices such as weather start and end, weather sequences/frequencies

and extreme weather that may occur, so that these in turn can be translated into impacts

on various sectors of society, economy and human endeavor.

In sub-Saharan African Countries, agriculture is the main socio-economic activity. Ac-

cording to Tarhule et al. (2009), about 95% of the land used is devoted to agriculture

which is the main occupation of about 65% of the population. Good crop development

depends on precipitation to maintain the needed level of soil water reserve. Perturbations

of the hydrological cycle, in response to climate change, may involve perturbations of fre-

quency and intensity of precipitation and then, directly affect the availability and quality

of fresh water (Indrani et Abir 2011). Droughts are apparent after a long period with a

shortage of precipitation or without any precipitation (Sergio et al. 2009). In recent years,

severe droughts were recorded in the Sahel region in the decades 1970 and 1980, whereas

in the Horn of Africa, they have been even more frequent in the late 20th to early 21th

centuries. Another modification of the climate is observed in the perturbation of the rainy

season that has become unpredictable. Start and end dates are uncertain. There are long

dry spells in the middle of the rainy season. When rain comes, it can be so heavy that the

soil is washed away and crops are destroyed. For farmers, it is becoming more difficult to

know when to plant, or even what to plant. Substantial climate modifications as a result

of global warming will affect the onset and retreat of the rainy season which has become

irregular over the years (Salack et al. 2011), making it difficult for farmers to optimize

the seed planting period and adjust to the length of the growing season (Olaniran 1983a;

Mugalavai et al. 2008; Ndomba 2010). The sad consequences of these climate variabili-

ties will be the decrease of agricultural production and thus, wide-spread starvation and
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death (Leonard 2010; UNEP 2004). Extreme precipitation events are also among the main

causes of losses and injuries attributed to weather and climate in African countries. In the

subtropical zone, they are responsible for flooding, landslides, and collapse of houses, hail

damages to crops, etc. Rainfall must be taken into account in the design of some types in-

frastructures, especially in urban areas. Knowledge of the frequency, amount and spatial

distribution of rainfall can help in the forecast of catastrophes and the management of

water resources and related activities in agriculture, hydroelectric energy production and

tourism. Therefore, there is the need to better understand the precipitation indices and

to study their temporal and spatial variabilities under the current and future perturbed

climate, in order to guide vulnerability and adaptation assessment and measures.

Although the time scale of events leading to flooding and other weather related destruc-

tions is of the order of a few hours, most studies are based on the more readily available

daily data (Gordon et al. 1992; Jolliffe et Hope 1996; Osborn et al. 2000; Brunetti et al.

2001; Burgueño et al. 2004; Seleshi et Zanke 2004). In studies on Africa, only a limited

number of stations and data on short periods are available. The use of satellite data or

climate model outputs are alternative solutions to these issues. However, satellite data

are limited to recent periods while model outputs can cover longer periods in both the

present and the future. In view of the ongoing global warming and its consequences on

regional climate variability, the use of model outputs to investigate characteristics of the

rainy season (e.g. rainfall totals, rainy day frequencies, onset, retreat and length of the

rainy season) is necessary in order to assess future changes and guide adaptation measures

and long term planning. This is why much work has been devoted to developing model

projections at global (Emori et al. 2005) and regional scales (Jones et al. 1997). Climate

models project intensification of the water cycle and of extreme events as consequences

of the rising temperature (Zwiers et Kharin 1998; Voss et al. 2002).

Global and regional climate models with various IPCC emission scenarios have been

used by many authors for projecting future climate change. In the Iberian Peninsula, it

was found that 5/24 IPCC GCMs (MIROC3.2-HIRES, MPI-ECHAM5, GFDL-CM2.1,

BCCR-BCM2.0 and UKMO-HADGEM1) best reproduced current climate (Errasti et al.

2011) and could be used for future climate projections. Mkankam (2000) concluded

that two IPCC coupled atmosphere-ocean general circulation models (ECHAM4 and

HADCM2), simulated well the present climate in Cameroon and neighbouring areas.

Thus, he used their outputs to evaluate projected changes in rainfall and temperature re-

sulting from increased concentration of greenhouse gases in the atmosphere for the period

2040-2070. The results revealed changes in annual rainfall within the range of present
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climate variability while the projected temperature increases were larger than observed

variability. An evaluation of the ability of 18 GCMs to capture the West African mon-

soon system found that three models (amongst which MPI-ECHAM5) gave reasonable

simulations of the twentieth-century climate while others comprising CSIRO-Mk3.0 and

MRI-CGCM2.3.2 failed to do so (Cook et Vizy 2006). Errasti et al. (2011) found that all

IPCC models do not describe the present climate with similar accuracy. Furthermore, the

best models for a particular region of the earth do not always achieve the same degree of

performance in other regions. Additionally, the skill of the models is different according

to the meteorological variables examined.

Following the scientific challenge stated in the first paragraph, the contribution of this

work is to translate observed climatic variables into indices that characterize the climate

and to assess their future changes under a perturbed climate. Thus we will study spa-

tial and temporal variabilities of some precipitation indices under a current and future

climate. The study is done over Cameroon and some of its neighboring areas. The pre-

cipitation indices include: precipitation intensity and frequency; onset, retreat and length

of the rainy season; the standardized precipitation index (SPI). The work is organized as

follows: In chapter 1, literature review on climate change, climatic variabilities and cli-

mate models are presented. Chapter 2 is devoted to description of data and methodology

of investigation. The results are shown and discussed in chapter 3. The study ends with

general conclusion and perspectives.
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Chapter 1

Literature Review on Climate

Variability and Change

1.1 Climate Variability definition

Climate variability can be defined as the way climatic variables (such as temperature or

precipitation) depart from some average state, either above or below it. For illustration,

the average maximum temperature in July in a given region, may be 25◦C (averaged over

the last 30 years), but each year, July’s daily maximum average temperature will be less

than or greater than this long-term average value. Climate variability can be observed at

various time scales: daily, monthly, yearly or decadal.

1.2 Climate change definition and impacts

Climate change is a long-term (decadal or longer) modification in climate. It can be

defined as a trend in one or more climatic variables characterized by a fairly smooth

continuous increase or decrease of the average value during the period of record. As defined

in the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change

(IPCC 2001a), the concept of climate change detection is the process of demonstrating

that climate has changed in some defined statistical sense, without providing a reason

for that change. There are many alerts today about the changing of the weather. The

weather is the condition of the atmosphere in one area at a particular time. The report

of the IPCC (1995) has been taken as a starting point for the assessment of the scientific

knowledge concerning climate change and its impacts regarding the weather and weather

extremes in particular (Vellinga et van Verseveld 2000). Since 1995 many new observations
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and reports have become available.

1.2.1 Causes of climate change: greenhouse gases (GHG)

Greenhouse gases are atmospheric gases which allow direct sunlight (relative shortwave

energy) to reach the Earth’s surface unimpeded. They also contribute to the greenhouse

effect by absorbing infrared radiation produced by solar warming of the Earth’s surface

and this gradually increases the temperature of the Earth’s surface and the air in the

lower atmosphere.

Most of the observed increase in global average temperatures since the mid-20th century

is very likely due to the observed human induced increase in greenhouse gas concentrations

(IPCC 2007b). Human activities have contributed to a number of the observed changes in

climate. According to the IPCC (2007b), this contribution has principally been through

the burning of fossil fuels, which has led to an increase in the concentration of GHGs in

the atmosphere. Another human influence on the climate are sulfur dioxide emissions,

which are a precursor to the formation of sulfate aerosols in the atmosphere. They all

alter the amount of energy within the climate system and cause changes to the climate.

Illustration of the greenhouse gas effect on global warming

Let Ts be the surface temperature and Ta the temperature of the atmosphere (Figure 1).

Figure 1: Greenhouse effect in the energy balance models.

The surface emission is G = σT 4
s , where λ is the emissivity of the atmosphere (de-

pending on the strength of the greenhouse effect) and σ = 5.6697 × 10−3W.m−2.K−4 is

the Stephan-Boltzmann constant.

the following equations can be written in terms of the energy fluxes
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• for the surface

S + λA = G (1.1)

A is the emission from the atmosphere and S is the solar radiation

• for the atmosphere

λG = 2λA (1.2)

• for the planet

S = λA+ (1− λ)G (1.3)

Combining Equations 1.2 and 1.3, we deduce

G = σT 4
s =

S

(1− 0.5λ)
(1.4)

and then

Ts = [
S

σ(1− 0.5λ)
]1/4 (1.5)

This simple model readily determines the effect of changes in solar output or change of

earth albedo or effective earth emissivity on average earth temperature. It says nothing,

however about what might cause these things to change.

1.2.2 Sources of greenhouse gases

Many greenhouse gases occur naturally in the atmosphere, such as carbon dioxide (CO2),

methane (CH4), water vapor (H2O), and nitrous oxide (NOx), while others are purely

man made. These anthropogenic GHGs include the chlorofluorocarbons (CFCs), hydroflu-

orocarbons (HFCs) and Perfluorocarbons (PFCs), as well as sulfur hexafluoride (SF6).

Natural sources

The natural sources of the greenhouse gases are those that are continuously being recycled

in the atmosphere through biogeochemical cycles that operated for millions of years before

humans. These processes include:

* volcanism that produces GHG and aerosols (Aerosols are small particles present in

the atmosphere with widely varying sizes), and then increases their rate in the atmosphere

* increase in the sun’s radiation that increases the water vapor rate in the atmosphere

* animal and plant respiration that produces carbon dioxide
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Anthropogenic sources

Human activities accelerate the natural process by creating more greenhouse gases in the

atmosphere. These activities include:

* Fossil fuel combustion for electricity, heat, and transportation, raising the level of

carbon dioxide in the atmosphere

* Land-use changes that increase the levels of methane and nitrous oxide.

* Industrial processes that emit synthetic fluorinated gases: Hydrofluorocarbons, per-

fluorocarbons, and sulfur hexafluoride.

1.2.3 Recent climate trends

Trends have been observed in many climatic variables. The most sensible variables we

focus on are temperature, precipitation and sea level rise.

a) Temperature

The climate and the mean temperature on the Earth’s surface depend on the balance

between incoming (short wave) solar energy and outgoing energy (infrared radiation)

emitted from the Earth’s surface. Greenhouse gases trap some of the infrared radiation

emitted by the Earth and keep the planet warmer than it would be otherwise. The mean

global temperature, about 15◦C, would be far below zero without this natural greenhouse

effect (Vellinga et van Verseveld 2000).

It has been observed from the year 1880 to 2009 that the global mean surface tem-

perature has increased and will probably continue to increase during the coming years

(Hansen et al. 2010) (Figure 2).

Figure 2: Global mean surface temperature difference from the average for 1880-2009 (Hansen

et al. 2010.)
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Over the past 130 years, the mean temperature of the Earth’s surface has risen be-

tween 0.3 and 0.6◦C, as reported by IPCC (1995). More recent analysis, including the

temperature record up to 1999, indicates that the global average temperature has now

risen by about 0.6◦C over the whole period of record since 1860 (Wigley 1999; Kevin

et al. 2000). However, most of this temperature increase occurred during the last few

decades, when the global average temperature rose by about 0.2◦C per decade. The top

ten warmest years ever measured worldwide (over the last 120 years) all occurred after

1981 with the peak in the year 1998, the six warmest of these years occurred after 1990

(Vellinga et van Verseveld 2000).

The global temperature change is not equally distributed. The largest recent warming

is between 40◦N and 70◦N (Vellinga et van Verseveld 2000). In a few areas, such as the

North Atlantic Ocean, north of 30◦N, the temperature decreased during the last decades

(Houghton et al. 1995).

b) Precipitation

An increase in the average global temperature is very likely to lead to more evaporation

and precipitation. However, it is difficult to predict and measure the precise changes in

the hydrological cycle because of the complex processes of evaporation, transport, and

precipitation and also because of the limited quality of data, short periods of measure-

ments, and gaps in time series. In spite of these limitations, some specific changes in

the amounts and patterns of precipitation have been found over the last few decades. It

has been observed an increase in the mean precipitation from 30◦N to 70◦N and 0◦S to

70◦S while in the area between 0◦N and 30◦N (comprising our study domain 0◦-14◦N), a

general decrease in the mean precipitation has occurred (Houghton et al. 1995).

c) Sea level rise

Sea level has risen between 10-25 cm over last 100 years. It has risen most sharply over

the last 50 years (Vellinga et van Verseveld 2000). According to Vellinga et van Verseveld

(2000), the recent increase in the rate of sea level rise is related to the observed increase

of the Earth’s global temperature and the ocean sea surface temperature. The volume

of the ocean surface water layer expands per 0.1◦C warming of the surface layer of the

oceans, such that the sea level rises about 1 centimeter. Thus, the measured 0.6◦C−sea
surface temperature increase explains a 6 centimeters sea level rise. The observed melting

and retreating of glaciers and ice sheets indicates an additional sea level rise between 2
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and 5 centimeters.

Observations of other components of the climate system (Snow and Ice changes, Cir-

culation patterns, (Extra)-tropical cyclones, Observed changes in ecosystems, Extreme

weather events and damage cost) can be found in Vellinga et van Verseveld (2000). Recent

studies show that inter-annual and synoptic time and space scale processes affect weather

and climate extremes, such as tropical cyclones, El Niño effects, and extra-tropical storms

(Gerald et al. 2000).

The changing of the climate components as seen above is followed by the environmen-

tal impacts. The consequences are becoming more and more perceptible. Most of the

countries in the world are suffering from its devastating effects.

1.2.4 Impacts of climate change

The effects of emissions of CO2 and other greenhouse gases on the global climate are

becoming increasingly visible. The impacts of climate change and adaptation possibilities

are examined firstly by synthesizing knowledge from the scientific literature, and secondly

thanks to advice and expert report. Thus various impacts of the climate change has then

been reported (IPCC 1995; Vellinga et van Verseveld 2000):

1. More Severe or extreme weather events

Severe weather has always affected human activities and settlements as well as the

physical environment. It can damage property, cause loss of life and population

displacement, destroy or sharply reduce agricultural crop yields, and temporarily

disrupt essential services such as transportation, telecommunications, energy and

water supplies.

2. Droughts

Multiple droughts since 1971 resulted in dry streams, withered and abandoned crops,

dead fish, record low rivers and declining ground water levels. Between 2000 and

2005, Washington experienced two drought emergencies, resulting in drought dec-

larations by Governors Locke and Gregoire.

Droughts cause:

• Less summer water for farms, cities and forests.

• Less water for irrigation due to earlier high river flows and decreasing soil

moisture.
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• Less water for city municipal water sources, affecting industries, businesses and

homeowners.

• With a 3.6 degree warming, droughts will occur more frequently: what have

been historic 50-year droughts will now occur every 10 years, what have been

historic 10-year droughts will now occur about every 2 years.

• Increased forest fires: dry and dying trees are a set-up for forest fires. Large

forest fires (more than 500 acres) have increased from an average of 6 per

year in the 1970’s to 21 per year in the early 21st century. Forest fires release

greenhouse gases and destroy the trees that can absorb CO2 from the air.

3. Floods more extreme and often

Warmer temperatures result in more winter precipitation falling as rain rather than

snow throughout much of the Pacific Northwest. This change will result in:

• higher winter stream flows with more floods,

• less winter snow accumulation,

• earlier spring snowmelt especially in rivers that depend on snowmelt,

• earlier peak spring stream flow (already 10-30 days earlier than 1948) and

• lower summer stream flows. These trends have already been observed. In

contrast to more rain when we do not need it, there will be less water when we

do need it. Substantial reductions in summer stream flow will adversely affect

• farmers who rely on irrigation,

• resident and anadromous fish and

• summertime hydropower production.

These changes are likely to increase existing conflicts among competing water

users, made worse by a regional population increase.

4. More landslides

Rain-soaked soils are prone to slipping, which results in landslides affecting homes,

businesses, power lines and transportation routes. More rain could increase the risk

and frequency of landslides.

5. more pollution
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More precipitation falling as rain rather than snow quickly runs off the land, espe-

cially over paved surfaces, and areas cleared of forest or natural vegetation. In a

warmer climate, precipitation falling as rain could increase fall and winter flooding

in susceptible river basins.

• As water flows over the land, it carries with it all pollutants left on the ground

or flowing off paved surfaces (car oils, antifreeze, brake lining dust, pet and

farm waste, fertilizers and pesticides, etc).

6. Earlier river runoff

As the spring thaws come earlier and faster, the peak period for snow melt could

move back weeks or months. This would result in less summer water when it is

needed most for crops, fish, cities and hydropower generation. Urban water supply

systems that rely on storage of water in mountain snow pack will see less water

coming into their reservoirs in late spring/early summer. This will be combined

with an increased demand for water caused by higher temperatures. For some

systems, these impacts will be substantial.

7. Changing growing season

With a warming climate, the growing season for some plants may be extended. The

last frost would come earlier in the spring and first frost would come later in the fall.

However, this advantage can be erased if there is limited water to nourish forests

and crops during hot weather. Studies in Washington wine country conclude that

more frequent series of extreme hot or cold days can result in damage and loss,

even if the rest of the season is more moderate. Warmer winters allow forest and

crop pests to reproduce longer and suffer less winter die offs, so pest populations can

boom. This is already happening in Canada and even Washington forests where pine

bark beetles are rapidly devastating large tracts of forests. Ecosystem changes from

shifting seasons can break historic linkages between predator and prey migrations,

cause population booms or crashes that affect the rest of the system allow invasive

plants animals and insects to move into new territory, stress native species with

unusual weather and water conditions.

8. Impacts on Agriculture

According to Kevin et al. (2000), agricultural crops are mainly sensitive to fluctua-

tions in temperature and precipitation, although solar radiation, wind, and humidity
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are also important. In general a crop grows best and produces maximum yield for

some optimum value of the relevant climate variable; as conditions depart from the

optimum, the plants suffer stress.

9. Multiple emergency response needs

Extreme weather across the state can

• overtax the emergency response systems and funding for flood response,

• result in major storms and power outages,

• create landslides affecting buildings or transportation routes, and

• cause drought-related fires.

• Delayed emergency response can become more common.

The various impacts of the increase of global warming can be summarized as shown

the Figure 3 (IPCC 2001a). The five effets (threats to endangered species and unique

Figure 3: Risks and impacts of climate change ((IPCC 2001a).

systems, damages from extreme climate events, effects that fall most heavily on developing

countries and the poor within countries, global aggregate impacts) organized by the IPCC

(IPCC 2001b; IPCC 2001c; IPCC 2007a) show increased risks with the increase of global

warming.
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The poorest countries may be the first victims of climate change impacts. An effective

response must pass through both a reduction in emissions of greenhouse gases (to avoid

the unmanageable) and by a process of adaptation at the regional, national and local (to

manage the inevitable). To that end, we need to know how the climate may change in

the future. For this purpose, many models have been developed and experienced. They

are the only efficient tools to simulate present weather and extrapolate for representing

possible future climate states.

1.3 Modeling the climate

In order to determine how climate may change in the future, we need to know how the

concentrations of those atmospheric components which affect the Earth’s energy balance

may change. Gases such as water vapor, carbon dioxide, methane and nitrous oxide (the

greenhouse gases) absorb long-wave (heat) radiation emitted from the Earth’s surface

and re-emit this energy, ultimately resulting in raised surface temperatures. Whilst these

greenhouse gases occur naturally, human activities since the beginning of the industrial

revolution have resulted in large increases in the atmospheric concentrations of these gases

and it is now widely accepted that this has affected global climate.

It has been only since the early 1990s that climate models have started to be analyzed

to study possible changes of future weather and climate extremes (Houghton et al. 1995).

1.3.1 Introduction to climate models

Climate models are the principal tools for investigating potential future climate changes.

They attempt to simulate the behavior of the climate system and are based mainly on

the laws of physics, but also empirical techniques which use, for example, studies of

detailed processes involved in cloud formation. The ultimate objective of climate models

is to understand the key physical, chemical and biological processes that govern climate.

Through understanding the climate system, it is possible to obtain a clearer picture of past

climates by comparison with empirical observation, and predict future climate change.

Models can be used to simulate climate on a variety of spatial and temporal scales.

They are global climate models (GCMs) and regional climate models (RCMs) built

respectively on global and regional scale. GCMs have coarse spatial resolution between

250km×250km and 600km×600km. RCMs have spatial resolution of about 50km×50km
(Karen et al. 2011). An RCM is very similar to a GCM but covers a smaller spatial
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domain at a higher resolution, typically for every 3 or 6 hours, at the boundaries of

the RCM domain. RCMs provide both better topographical representations than GCMs

and better local or regional scale atmospheric dynamics. Because of the relatively coarse

spatial resolution of GCM output, many applications of GCMs require processing of the

GCM outputs to bring the effective scale of the data to a more local level (Karen et al.

2011). This process that consists in reducing the spatial scale of the GCM outputs is

called downscaling. However, all climate models show some limitations:

- processes defining an atmospheric system are very complex and difficult to be mod-

eled entirely and accurately (e.g., the treatment of aerosols by GCMs)

- the process is computationally intensive and there are biases or systematic errors

- More simplifications are done for modeling some complex processes (e.g., oceanic

circulation)

- input data at finer spatial resolution are not always available in some areas.

The most sophisticated computer models should simulate the entire climate system.

Confidence in models comes from their physical basis, and their skill in representing

observed climate and past climate changes (IPCC, Climate Change 2007b).

1.3.2 Climate models classifications

a) Energy Balance Models

Energy balance models (EBMs) simulate the two most fundamental processes govern-

ing the state of the climate: - the global radiation balance (i.e. between incoming solar

and outgoing terrestrial radiation), and - the latitudinal (equator-to-pole) energy trans-

fer. They balance incoming energy as short wave electromagnetic radiation (visible and

ultraviolet) to the earth with outgoing energy as long wave (infrared) electromagnetic

radiation from the earth. Any imbalance results in a change in the average temperature

of the earth.

b) Radiative-Convective Models

Radiative-convective models (RCMs) are 1-D or 2-D, with height the dimension that is

invariably present. RCMs simulate in detail the transfer of energy through the depth

of the atmosphere, including: - the radiative transformations that occur as energy is

absorbed, emitted and scattered, and - the role of convection, energy transfer via vertical

atmospheric motion in maintaining stability.
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The simplest case is to consider the two-stream approximation, in which there are

vertical fluxes (up-welling and down-welling) of thermal infra-red radiation only. The aim

is to deduce the temperature gradient (and thus the temperature at the surface, Ts) for

various cases (e.g. levels of insolation, optical thickness, etc).

c) Statistical-Dynamical Models

Statistical-dynamical models (SDMs) are generally 2-D in form, with usually one hori-

zontal and one vertical dimension, though variants with two horizontal dimensions have

been developed. Standard SDMs combine the horizontal energy transfer modeled by

EBMs with the radiative-convective approach of RCMs. However, the equator-to-pole

energy transfer is simulated in a more sophisticated manner, based on theoretical and

empirical relationships of the cellular flow between latitudes. Parameters such as wind

speed and wind direction are modeled by statistical relations whilst the laws of motion

are used to obtain a measure of energy diffusion as in an EBM. Hence the description

statistical-dynamical.

d) General Circulation Models

General circulation models (GCMs) use quantitative methods to simulate the interactions

of the atmosphere, oceans, land surface, and ice. They are systems of differential equa-

tions (Goosse et al. 2010) based on the basic laws of physics, fluid motion, and chemistry

(http : //celebrating200years.noaa.gov/breakthroughs/climate_model/welcome.html).

The fundamental physical quantities calculated by GCMs include Temperature (T), Pres-

sure (P), Winds (East-West = U, North-South = V), and the Specific Humidity (Q).

Differential equations are used to relate these fundamental quantities to each other.

The 3-D model formulation is based on the fundamental laws of physics:

• conservation of energy;

• conservation of momentum;

• conservation of mass, and;

• the Ideal Gas Law

The primitive equations are a set of nonlinear differential equations that are used to

approximate global atmospheric flow and are used in most atmospheric models. They

consist of three main sets of equations:
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1. Conservation of momentum: Consisting of a form of the Navier–Stokes equations

that describe hydrodynamical flow on the surface of a sphere under the assumption that

vertical motion is much smaller than horizontal motion and that the fluid layer depth is

small compared to the radius of the sphere

2. A thermal energy equation: Relating the overall temperature of the system to heat

sources and sinks

3. A continuity equation: Representing the conservation of mass.

In general, nearly all forms of the primitive equations relate the variables u (velocity

in the east/west direction tangent to the sphere called the zonal velocity), v (velocity in

the north/south direction tangent to the sphere called the the meridional velocity), ω (the

vertical velocity in isobaric coordinates), T (the temperature), P (the pressure), and their

evolution over space and time.

GCMs are computationally expensive. They can be considered to simulate reason-

ably accurately the global and continental-scale climate, but confidence is lacking in the

regional detail.

To run a model, scientists divide the planet into a 3-dimensional grid system (WAN

et al. 2013) (Figure 4

[http : //celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html]),

apply the basic equations, and evaluate the results.

Figure 4: Subdivision of the globe into grid cells.

[http : //celebrating200years.noaa.gov/breakthroughs/climate_model

/modeling_schematic.html (19/11/2013)].
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The number of cells in the grid system is known as the "resolution". The more grid

cells, the higher the resolution, and the more calculations that must be computed. In

general, GCMs are able to represent processes more realistically as they become higher

resolution, but the computing time required to do the calculations goes up roughly 10

times for every doubling of the resolution.

The physics equations and parameterizations are then calculated for each cell in the

grid over and over again, representing the march forward in time, throughout the simula-

tion.

The coupled atmosphere-ocean general circulation models (AOGCMs) (e.g. MIROC3.2,

CSIRO-MK3.0, UKMO-HadCM3, MPI-echam5, MRI-cgcm2.3.2a and BCCR-bcm2.0) rep-

resent the most sophisticated model that attempt to simulate the climate system. They

combine the two general circulation models, atmospheric and ocean, which are the basis

for sophisticated model predictions of future climate, such as are discussed by the IPCC.

AOGCMs are complex and represent the only tools that could provide detailed regional

predictions of future climate change.

1.3.3 Greenhouse gas emission scenarios for climate model

Given both the natural and anthropogenic emissions of the greenhouse gases, emissions

scenarios are estimates of how these greenhouse gas emissions and their accumulation

in the atmosphere might unfold over the next century. To make a true prediction of

future climate it is necessary to include all the human and natural influences known to

affect climate. Because future changes in several external factors, such as solar activity

and volcanism, are not known, these must be assumed to be constant until such time

as we are able to predict their changes (Kevin et al. 2000). The International Panel on

Climate Change (IPCC) has developed a suite of emissions scenarios that are widely used

to generate climate projections from GCMs. The first scenarios (IS92) were published

in 1992, and a revised version was published in 2000 in the IPCC Special Report on

Emissions Scenarios (SRES).

The IS92 emission scenarios

The first scenario developed by the Intergovernmental Panel on Climate Change (IPCC)

(IPCC 1992) was IS92a scenario that specifies equivalent greenhouse gas (GHG) concen-

trations and sulphate aerosol loadings from 1850 to 2100. Climate change simulations

based on this scenario have been performed by a number of climate modeling groups who
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have contributed to the IPCC Third Assessment Report. The IS92 scenarios reflected the

large uncertainty associated with, for example, the evolution of population and economic

growth, technological advances, technology transfer and responses to environmental, eco-

nomic or institutional constraints. There are six families of the IS92 emission scenario:

IS92a, IS92b, IS92c, IS92d, IS92e, IS92f.

IS92a: a middle of the range scenario in which population rises to 11.3 billion by 2100,

economic growth averages 2.3% year -1 between 1990 and 2100 and a mix of conventional

and renewable energy sources are used. Only those emissions controls internationally

agreed upon and national policies enacted into law, e.g., London Amendments to the

Montreal Protocol, are included.

IS92b: population rises to 11.3 billion by 2100 and the current emissions control

policies are enlarged to include stated policies beyond those legally adopted, e.g., the

world-wide ratification and compliance of the Montreal Protocol.

IS92c: economic growth averages 1.2% year-1 between 1990 and 2100 and population

is forecast to be 6.4 billion by 2100, with population decreasing in the 21st century. As

well as assuming lower growth than IS92a and IS92b, low oil and gas resource availability

results in higher prices which promote the expansion of nuclear and renewable energy.

Lower population growth results in slower deforestation rates.

IS92d: another low scenario, but more optimistic than IS92c. The trend is towards

increasing environmental protection but only actions that could be taken due to concerns

about local or regional air pollution and waste disposal are included. Population is forecast

to be 6.4 billion by 2100 and would be associated with lower natality, falling below the

replacement rate late in the 21st century. Low fossil fuel resource availability means that

there is greater market penetration of renewable energy and safe nuclear power. A 30%

environmental surcharge on fossil energy use is levied to meet the costs of more stringent

local pollution controls. Greater well-being is assumed to lead to voluntary actions to halt

deforestation, to adopt CFC substitutes with no radiative or other adverse effects and to

recover and efficiently use the methane from coal mines and land fills.

IS92e: results in the highest CO2 emissions. Economic growth averages 3% year-1,

between 1990 and 2100 and the population is forecast to reach 11.3 billion by 2100. Fossil

resources are plentiful but, due to assumed improvements in living standards, environ-

mental surcharges are imposed on their use. Nuclear energy is phased out by 2075 and,

although CFC substitute assumptions are the same as those of IS92d, the plentiful fossil

fuel resources discourage the additional used of coal mine methane for energy supply.

Deforestation proceeds at the same pace as IS92a.
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IS92f: falls below IS92e, has high population growth (17.6 billion by 2100), but lower

assumptions of improvements than IS92a. Other assumptions are high fossil fuel resource

availability, increasing costs of nuclear power and less improvement in renewable energy

technologies and costs.

The SRES emission scenarios

The SRES emission scenarios were developed in 1996 by the IPCC because the IS92 sce-

narios, have some well-recognized limitations (Wigley 1999). The most marked difference

between SRES scenarios and IS92 scenarios are the lower SO2 emissions in the SRES

scenarios. The resulting set of 40 scenarios cover a wide range of the main demographic,

economic and technological driving forces of future greenhouse gas and sulphur emissions.

There are four family of SRES emission scenario: SRES A1, SRES A2, SRES B1, SRES

B2 (Wigley 1999).

The A1 scenario family describes a future world of very rapid economic growth, global

population that peaks in mid-century and declines thereafter, and the rapid introduction

of new and more efficient technologies. Major underlying themes are convergence among

regions, capacity building and increased cultural and social interactions, with a substantial

reduction in regional differences in per capita income. The A1 scenario family develops

into three groups that describe alternative directions of technological change in the energy

system. The three A1 groups are distinguished by their technological emphasis: fossil

intensive (A1FI), non-fossil energy sources (A1T), or a balance across all sources (A1B)

(where balanced is defined as not relying too heavily on one particular energy source, on

the assumption that similar improvement rates apply to all energy supply and end-use

technologies).

The A2 scenario family describes a very heterogeneous world. The underlying theme is

self-reliance and preservation of local identities. Fertility patterns across regions converge

very slowly, which results in continuously increasing population. Economic development

is primarily regionally oriented and per capita economic growth and technological change

more fragmented and slower than other storyline.

The B1 scenario family describes a convergent world with the same global population,

that peaks in mid-century and declines thereafter, as in the A1 scenario family, but

with rapid change in economic structures toward a service and information economy,

with reductions in material intensity and the introduction of clean and resource-efficient

technologies. The emphasis is on global solutions to economic, social and environmental
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sustainability, including improved equity, but without additional climate initiatives.

The B2 scenario family describes a world in which the emphasis is on local solutions

to economic, social and environmental sustainability. It is a world with continuously

increasing global population, at a rate lower than A2, intermediate levels of economic

development, and less rapid and more diverse technological change than in the A1 and

B1. While the scenario is also oriented towards environmental protection and social equity,

it focuses on local and regional levels.

Figure 5 shows the specific values of the equivalent CO2 Concentration according to

the three most used scenarios for the period 1900-2100.

Figure 5: Specific values of the equivalent CO2 Concentration.

[http : //www.cccma.ec.gc.ca/data/cgcm/cgcmforcing.shtml (19/11/2013)].

Researchers are again working on refining the emissions scenarios to reflect the most

up-to-date information. This new set of scenarios will drive the next generation of climate

model projections and likely will be included in the next IPCC assessment report.

Projections of the climate takes into account the atmosphere with its constituents

affected by human activity (e.g., increased greenhouse gases, sulfate aerosols, etc.). The

physical processes of each of the future scenarios of forcing agents (e.g., greenhouse gases

and aerosols) are then incorporate in climate models algorithms in order to produce

probable results of the climate components during the considered future period.

1.3.4 Evaluating climate models

Forecast verification is the process of assessing the quality of forecasts. In the atmospheric

sciences, such an activity is sometimes called validation, or evaluation. Analysis of verifi-

cation statistics and their components can help in the assessment of specific strengths and
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weaknesses of forecasters or forecasting systems. On a fundamental level, forecast veri-

fication involves investigation of the properties of the joint distribution of forecasts and

observations (Murphy et Winkler 1987). That is, any given verification data set consists

of a collection of forecast/observation pairs whose joint behavior can be characterized

in terms of the relative frequencies of the possible combinations of forecast/observation

outcomes (Daniel 2006).

One way of testing the plausibility of climate model projections is to check their ability

to model current mean climate as well as its extremes (Fowler et Hennessy 1995; Gregory

et Mitchell 1995; Jones et al. 1997; Frei et al. 1998; Sadiki et Fischer 2005). Kevin

et al. (2000) suggested to first run a model for several simulated decades without pertur-

bations to the system. The quality of the simulation can then be assessed by comparing

the average, the annual cycle, and the variability statistics on different time scales with

observations. If the model seems realistic enough, it can then be run including perturba-

tions such as an increase in greenhouse-gas concentrations. The differences between the

climate statistics in the two simulations provide an estimate of the accompanying climate

change. These procedures are concerned in our study.

1.3.5 Expected future climates as prospected by climate models

The climate response to an increase in greenhouse gases and sulphate aerosols has been

compared with the observed patterns of temperature change by many different research

groups. Such studies show a clear similarity between the observed changes and the model

calculations.

The results of many models are known and reported to the world community through

structures such as the Intergovernmental Panel on Climate Change (IPCC)

Recent climate modeling results indicate that "extreme" weather events may become

more common. Rising average temperatures produce a more variable climate system.

Localized events could include windstorms, heat waves, droughts, storms with extreme

rain or snow, and dust storms.

According to IPCC (1995); IPCC (2007a), climate change is accompanied by:

• a disturbance of the water cycle,

• an increased frequency and intensity of natural disasters related to climate (droughts,

floods, storms, cyclones),
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• threat of loss of some coastal areas, particularly deltas, mangroves, coral reefs,

beaches of Aquitaine, etc..

• a decrease of 17.5 % of land area of Bangladesh, 1 % of that of Egypt,

• an increase risk of malaria, and the extension of infectious diseases such as cholera,

• accelerate the decline of biodiversity: the disappearance of animal and plant species,

For France, the simulations carried out by experts from Meteo France suggest that

climate change:

• increase the temperature with an average warming of around 2◦C,

• alter precipitation patterns: increase of 20% in winter, decrease of 15% in summer

• could lead to the disappearance of one-third or more of the mass of mountain glaciers

over the next hundred years,

• could result in substantially reduced snowpack in the Alps and the Pyrenees,

• could lead to a weakening of the Gulf Stream, resulting in a significant cooling of

our ocean frontage (-4◦C), bringing average temperatures in France at the level of

those achieved during the last glaciation.

Many models project the increase in the precipitation intensity in a future climate

with increased greenhouse gases in the atmosphere (Kothavala 1997; Hennessy et al.

1997; Zwiers et Kharin 1998). There are also some indications from observations that

such changes of precipitation intensity are already being seen in some regions (Karl et

Knight 1998).

Models used in the Fourth Assessment Report (AR4 2007) (IPCC 2007a) for project-

ing tropical cyclone changes are able to simulate present day frequency and distribution

of cyclones, but intensity is less well simulated. Simulation of extreme precipitation is

dependent on resolution, parameterization, and the thresholds chosen. In general, models

tend to produce too many days with weak precipitation (<10 mm day−1) and too little

precipitation overall in intense events (>10 mm day−1) (IPCC, Climate Change 2007b).

Recent climate modeling results indicate that "extreme" weather events may become

more common. Rising average temperatures produce a more variable climate system.

Projections of future climate change suggest further global warming, sea level rise, and

an increase in the frequency of some extreme weather events (IPCC 2007a).
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The models have improved enough over time to at least begin to look at such higher-

order features in more detail. This is a product of the rapid development of climate

modeling capabilities over the past 10 years, in concert with increased computer resources.

The current generation of global coupled climate models have improved resolution (grid

points typically every 2.5◦ of latitude and longitude), more detailed and accurate land

surface simulation schemes, and dynamical sea ice formulations (Gerald et al. 2000).

However they still have limitations in terms of spatial resolution, simulation errors, and

parameterizations that must represent processes that cannot yet be included explicitly in

the models, particularly dealing with clouds and precipitation (Gerald et al. 2000).

Summary of the chapter

This chapter has defined many concepts necessary to understand the topic of this

work and has presented a review of the literature related to the topic. The next chapter

is devoted to the presentation of data used and the methodology of investigation.
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Chapter 2

Data used and Methodology of

Investigation

2.1 Study domain

a) Brief geographical description

The study domain which encompasses the country of Cameroon is chosen in Equatorial

Central Africa and covers the area between 0-14◦N and 5-20◦E (Figure 6).

The southern part of the country is bordered to the west by the Atlantic Ocean. To

the northeast are savannas, which gradually give way to steppes near Lake Chad. There

are mangrove swamps along the coast. Countries of the domain have great variety and

abundance of wildlife.

b) Climate of the domain

The climate of the area is not uniform, varying from tropical humid in the south to semi-

arid and hot in the north. It varies, primarily because of the cooling effect of elevation

and the vastly differing amounts of rainfall regionally. The northern part has a dry to

arid Sahelian type climate depending on latitude. The southern part is covered by dense

rain forest. Annual rainfall decreases from roughly 4060 mm along the coast to less than

510 mm near Lake Chad. Mount Cameroon, with more than 10160 mm annually, is one

of the rainiest places in the world. Monthly temperatures throughout most of Cameroon

average about 24◦ to 27◦ C. Considerably higher averages occur in the far north.
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Figure 6: Study area with the geographical locations of rainfall stations indicated by numbers.

Grid positions are shown for CRU data (dots), MRI and BCCR models (triangles) and MPI and

CSIRO (stars). Topography is shaded.
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c) Monsoon circulation

Monsoon is a seasonal change in wind direction. This wind shift typically brings about

a marked change in local weather. Monsoon describes seasonal changes in atmospheric

circulation and precipitation associated with the asymmetric heating of land and sea

(Trenberth et al. 2000). In their simplest form, monsoons are caused by differences in

solar heating between the oceans and continents, and they are most likely to form where

a large continental land mass meets a major ocean basin. The major monsoon systems

of the world consist of the West African and Asia-Australian monsoons.

Monsoons are often associated with rainy seasons in the tropics (the areas of Earth

within 23.5◦ latitude of the equator) and the subtropics (areas between 23.5◦ and about

35◦ latitude, both north and south). Precipitation is enhanced across interior Africa where

warm, dry air from the Sahara intersects relatively moist air from the south (e.g., South

Atlantic Ocean) Tropical monsoon climates have monthly mean temperatures above 18◦C

in every month of the year and feature wet and dry seasons, as Tropical savanna climates

do.

The West African monsoon (WAM) is characterized by rainy periods in both the

northern and southern hemispheres across interior Africa. It impacts a wide region over

the continent from the West African coast right through central Africa to Ethiopia, with a

remarkably zonal orientation (Parker et al. 2005). During northern hemisphere summer,

this enhanced precipitation is found along the ITCZ, or near 10-15◦N, whereas during

northern hemisphere winter, this enhanced precipitation is found across south-central

Africa. Thus, in some regards, the WAM can be viewed as an enhancement to the ITCZ

across Africa during northern and southern hemisphere summer (Parker et al. 2005).

d) The Inter-Tropical Convergence Zone

The Inter-Tropical Convergence Zone (ITCZ) is located just south of the Sahel at about

10◦N, dumping rain on the region to the south of the desert. The location of the ITCZ

(Inter-Tropical Convergence Zone) varies throughout the year. The Inter-Tropical Con-

vergence Zone is a mobile region characterized by deep moist convection, associated with

the zone of maximum heating or thermal equator. Within the ITCZ, areas of convergence

and convection grow and decay, and the position and intensity of convergence varies, even

on a daily basis. The ITCZ shifts northward and southward on an annual cycle, following

the thermal equator, and brings the annual March of rains. There’s a diurnal cycle to

the precipitation in the ITCZ. Clouds form in the late morning and early afternoon hours
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and then by 3 to 4 p.m., the hottest time of the day, convectional thunderstorms form

and precipitation begins. These storms are generally short in duration. The position and

timing of movement of the ITCZ therefore have major implications for the onset and du-

ration of rains in Africa (especially in the Sahel), South America (the Amazon basin and

the Altiplano), Asia (including the monsoon systems of India and Indochina), Indonesia

and Australia (http : //www.st− andrews.ac.uk/ dib2/climate/tropics.html).
Economic activities in the area are based mostly on agriculture (practiced by about

75% of the population), generally at subsistence levels. Cacao, coffee, bananas, rubber,

palm oil, and cotton are the main cash crops grown by farmers. Main food crops are

cassava, corn, yams, sweet potatoes, and millet. Logging is another important resource

in Cameroon with heavy timber exportation. Most of these activities are rain-fed and the

use of irrigation is very marginal.

Electricity is produced at 97.3% by hydroelectric dam. It then depends on rainfall

and is most often vulnerable during the dry season.

2.2 Data used

Five data sets were used in this study: daily rainfall data from 24 measuring stations in

Cameroon and model simulated daily rainfall from Atmosphere-Ocean General Circulation

Model (AOGCM). Observed station rainfall data provided by the National Meteorological

Services of Cameroon (NMSC) are the same successfully used by Penlap et al. (2004).

They cover a 55-year period and extend from 1951 to 2005. The geographical positions of

the stations are shown in Figure 6. Table 1 indicates their names, locations and altitudes.

The percentage of missing values ranges from 0 to 12% and from 0 to 15.9% for monthly

and daily precipitation data respectively. Every region of the domain is home of at least

one station to ensure a good description of the represented pattern over the country.
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Table 1: Geographical positions and altitudes of the 24 rain-

fall stations used. Stations are grouped per defined climatic

zones. They are also assigned numbers used to represent them

in Figure 6. Percentages of missing data are shown for daily

and monthly data according to the corresponding study time

period.

% of missing data

(daily) (monthly)

Region N◦ Station name Lon (◦E) Lat (◦N) Alt (m) 1962− 93 1951− 2005

11 Bafia 11.25 4.73 500 12% 10.6%

12 Nanga-éboko 12.37 4.68 623 12% 9.3%

13 Bertoua 13.68 4.58 668 3% 2.5%

14 Batouri 14.37 4.47 650 0.8% 0.6%

17 Abong-mban 13.20 3.97 693 0% 0%

zone 1 18 Yaoundé 11.53 3.83 753 0% 0%

19 Akonolinga 12.25 3.77 671 6.5% 6%

20 Eséka 10.77 3.65 228 15.9% 12%

21 Yokadouma 15.10 3.52 534 3.1% 2.3%

22 Lomié 13.62 3.15 624 13.5% 10%

23 Kribi 09.99 2.95 10 3.1% 3.3%

24 Sangmélima 11.98 2.93 712 0% 0%

5 Ngaoundéré 13.57 7.35 1104 3.1% 2.3%

6 Meiganga 14.0 7.20 1027 0% 0.2%

7 Tibati 12.63 6.48 873 7.5% 7.9%

zone 2 8 Koundja 10.75 5.65 1210 3.1% 2.5%

9 Yoko 12.37 5.55 1027 6.3% 4.8%

10 Nkongsamba 09.93 4.95 816 0% 0%

15 Ngambé 10.62 4.23 610 3.1% 2.7%

16 Douala 09.73 04.00 5 0% 0.2%

1 Maroua 14.26 10.46 423 12.5% 9.3%

zone 3 2 Kaélé 14.45 10.10 386 0% 0%

3 Garoua 13.38 9.33 241 6.2% 5%

4 Poli 13.25 8.48 436 0.3% 3%

Mean percentage of missing data 4.7% 4.0%

AOGCM simulated rainfall were obtained from the World Climate Research Pro-

gram’s (WCRP’s) Coupled Model Inter-comparison Project phase 3 (CMIP3) multi-model

dataset at the Lawrence Livermore National Laboratory (LLNL), USA. These are out-

puts from the following four AOGCM: MPI-echam5, MRI-cgcm2.3.2a, BCCR-bcm2.0 and
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CSIRO-mk3.5. Echam5 is a model of the Max Planck Institute (MPI-echam5) for Mete-

orology in Germany (Roeckner et al. 1996) while cgcm2.3.2a and mk3.5 are respectively

from the Meteorological Research Institute (MRI-cgcm2.3.2a) in Japan (Yukimoto et al.

2006) and the Australian Commonwealth Science and Industrial Research Organization

(CSIRO-mk3.5) (Gordon et al. 2002). Model bcm2.0 is from the Bjerknes Centre for

Climate Research (BCCR-bcm2.0), University of Bergen, Norway (Furevik et al. 2003).

These runs were done for the IPCC 4th Assessment Report (4AR) (Meehl et al. 2007).

Grid points for each of the four IPCC 4AR models are shown in Figure 6. Echam5 and

Mk3.5 have the same grid spacing of 208 km while Cgcm2.3.2a and Bcm2.0 have spacings

of 310 km.

Thirty two years of simulated rainfall data for the current climate (1962-93) and a

seventeen years (2082-98) of the future climate projected under the SRES A2 emission

scenario were analyzed.

Monthly precipitation data used are computed from daily data of the same 24 measur-

ing stations. The record period now extends from 1951 to 2005 (55 years) with percentage

of missing as shown in Table 1.

CRU grid data have 0.25◦ × 0.25◦ spatial resolution and are downloadable free of

charge from the CRU website (http://badc.nerc.ac.uk/data/cru/).

2.3 Methods of variability studies or change detection

Consistent and comparable methods can be used to detect changes in some parameter

relating to climate.

• The use of anomalies

Anomaly is a pattern in the data that does not conform to the expected behavior

(mean behavior over a long time period). It also refers to as outliers, exceptions,

peculiarities or surprise. Anomalies are computed relative to a fixed reference period.

For a given long-term reference period of an atmospheric variable, the mean is taken

and the individual value for a date t of the time series of data is compared to that

mean. The gap between a single value of data series and the mean corresponds to

the anomaly. For example of application of the method, read Douville et Royer

(1996) and Angell (1994).

• The use of trends
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Linear trend coefficients is also a method for detecting changes in variables. But

convenient statistical tests need to be applied to the obtained trend at a given con-

fidence level. Trend gives information about a possible increase (positive significant

trends) or decrease (negative significant trends) of climatic conditions. Null trends

indicate stable climatic conditions. Among studies using these methods there are

Salack et al. (2011), Brunetti et al. (2001) and Karl et Knight (1998).

• The use of SPI (Standardized Precipitation Index)

This method is efficient for studying dryness or wetness variability. The Standard-

ized Precipitation Index (SPI) is a probability index that was developed by McKee

et al. (1993) to give a better representation of abnormal wetness and dryness. SPI

is normally distributed with zero mean and unit standard deviation. This index

is negative for drought, and positive for wet conditions. This method was used by

Bussay et al. (1998), Szalai et Szinell (2000) and Lloyd-Hughes et Saunders (2002)

• Comparison between model projection and present time observation

Climate models are tools used to reproduce and to predict climate. Climate models

have to be validated by efficient mathematical tools in order to determine their effi-

ciency level. When climate models best describe the climate of a reference present

period, more confidences are given to their projections. Taking the difference be-

tween future and present climatic variables, it may be possible to evaluate their

changes. Many studies use climate models for predictions and results are usually

represented as patterns of variation in space, time, or both (Mkankam 2000; Emori

et al. 2005; Guenang et Mkankam 2012).

2.4 Statistical definitions and formulas

2.4.1 Mean and standard deviation

Given a set of data (x1, x2, x3, x4, x5, ..., xn).

• The mean x̄ of these data is calculated by the formula

x̄ =
1

n

n∑
i=1

xi (2.1)

• The variance s2 is defined as

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (2.2)
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The square root of the variance, s, is known as the standard deviation.

2.4.2 Pearson correlation

Given two sets of data (x1, x2, x3, x4, x5, ..., xn) and (y1, y2, y3, y4, y5, ..., yn).

The Pearson correlation coefficient rxy between the two sets of data is given by the

relation

rxy =
1

n− 1

n∑
i=1

[
xi − x̄
sx

yi − ȳ
sy

]
(2.3)

where sx and sy are the respective standard deviations of the variables x and y.

The Pearson correlation has two important properties (Daniel 2006):

• Firstly, it is bounded by −1 and 1; that is, −1 ≤ rxy ≤ 1. If rxy = −1 there is

a perfect, negative linear association between x and y. That is, the scatter plot of

y versus x consists of points all falling along one line, and that line has a negative

slope. Similarly if rxy = 1, there is a perfect positive linear association. Note that

rxy = 1 says nothing about the slope of the perfect linear relationship between x

and y, except that it is not zero.

• Secondly, the square r2
xy of the Pearson correlation, specifies the proportion of the

variability of one of the two variables that is linearly accounted for, or described,

by the other. It is sometimes said that r2
xy is the proportion of the variance of one

variable explained by the other, but this interpretation is at best imprecise and can

be misleading.

2.4.3 Some rainfall statistical parameters

There are some statistical parameters useful to understand intensity and frequency of

rainfall distribution. In this subsection, we focus on the following parameters and their

derivatives:

1. The annual total amount

2. Rain day

A rain day is defined as a day when collected precipitation exceed a certain threshold

of 1 mm.day−1 (Nityanand et Ashwini 2009).

3. Dry spell
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A day is considered dry if the total precipitation recorded does not exceed the

threshold of 1 mm.day−1. Theoretically, let us consider j1 as the first dry day, j2,

j3, . . . , jn others consecutive dry days for the same year. When jn+1 is not a dry

day, then the n consecutive dry days constitute a dry spell (Ratan et Venugopal

2013; Nityanand et Ashwini 2009).

4. Ninetieth percentile of daily precipitations

Precj being rainfall corresponding to the jth day of the year. Let Precj (j=1, 2,

3, . . . , n) being a vector of n elements ranged in ascending order and grouped in

100 classes of equal intervals, with n the total number of rain days for the year.

The 90th percentile is defined as the value corresponding to the lower limit of the

ninetieth class.

5. Fraction of rain greater than the 90th percentile

For a given year, it is the quotient of the total daily precipitation whose values are

greater than the ninetieth percentile of daily precipitation and the total amount of

rainfall recorded during the same year.

2.4.4 Statistical distribution functions of data (gamma, exponen-

tial, lognormal and weibull functions)

a) The gamma distribution function

The probability density function of the gamma distribution is defined as

g(x) =
1

βαΓ(α)
xα−1e−x/β for x > 0 (2.4)

where α > 0 is a shape parameter, β > 0 is a scale parameter, x > 0 is the amount of

precipitation and Γ(α) is the gamma function (see Lloyd-Hughes et Saunders (2002) and

Guttman (1999) for more details).

Parameters α and β of the gamma probability density function are estimated from

sample data. This can be done using an approximation for maximum likelihood given by

Thom (1958):

α̂ =
1

4A

(
1 +

√
1 +

4A

3

)
(2.5)

β̂ =
x̄

α̂
(2.6)
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where A is given by

A = ln(x̄)−
∑
ln(x)

n
(2.7)

n is the number of observations with actual precipitation and x̄ the mean precipitation

per event.

Under some conditions, α and β can be better estimated using an iterative procedure

suggested by Wilks (1995).

The cumulative probability G(x) of an observed amount of precipitation is expressed

after integrating the probability density function (the shape and the scale values α and β

are incorporated) with respect to x:

G(x) =

∫ x

0

g(x) dx =
1

β̂α̂ Γ(α̂)

∫ x

0

xα̂e−x/β̂dx (2.8)

Letting t = x/β̂, reduce the cumulative probability to the following equation called

the incomplete gamma function

G(x) =
1

Γ(α̂)

∫ x

0

tα̂−1e−1 dt (2.9)

When accounting for the fact that the probability of zero precipitation q = P (x = 0)

is greater than zero, the cumulative density function takes the form

H(x) = q + (1− q)G(x) (2.10)

b) The exponential distribution function

The general formula for the exponential probability distribution function is (Ahmad et

Bilal 2010)

f(x) =
1

β
e−(x−µ)/β for x ≥ µ and β > 0 (2.11)

where µ is the location parameter and β is the scale parameter. The rate parameter

λ is sometimes used in place of the scale, with λ = 1/β. β is called the constant failure

rate or failures per unit of measurement.

c) The lognormal distribution function

In probability theory, a positive random variable x follows the log-normal (µ, σ2) distri-

bution if the logarithm of the random variable is normally distributed.
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The probability density function of a log-normal distribution is defined as (Bartošová

2006; Diana 2012):

fX(x;µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , x > 0 (2.12)

where x > 0, −∞ < µ < +∞ and σ > 0.

µ is the scale parameter that stretch or shrink the distribution and σ is the shape pa-

rameter that affects the shape of the distribution. They are determined by the maximum

likelihood estimators:

fL(x;µ, σ) =
n∏
i=1

(
1

x i

)
fN(lnx;µ, σ) (2.13)

where fL is the probability density function of the log-normal distribution and fN that of

the normal distribution.

Using the same indexes to denote distributions, we can write the log-likelihood function

as

`L(µ, σ|x1, x2, . . . , xn) = −
∑
k

lnxk + `N(µ, σ| lnx1, lnx2, . . . , lnxn) (2.14)

= constant +`N(µ, σ| lnx1, lnx2, . . . , lnxn). (2.15)

Thus, `L and `N are maximized by the same value of their maximum likelihood esti-

mators (MLE) µ and σ. Estimators area

µ̂ =

∑
k lnxk
n

(2.16)

σ̂2 =

∑
k (lnxk − µ̂)2

n
. (2.17)

d) The weibull distribution function

The probability density function of a Weibull random positive variable x is (Shuo-Jye

2002; Haniyeh et Saeid 2011) is:

f(x;α, β) = αβxα−1e−βx
α

(2.18)

where α and β are the shape and the scale parameters, respectively.

Its complementary cumulative distribution function is a stretched exponential func-

tion. The Weibull distribution is related to a number of other probability distributions; in
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particular, it interpolates between the exponential distribution (k = 1) and the Rayleigh

distribution (k = 2).

There are no closed-form expressions of the parameters α̂ and β̂. So there are estimated

by maximizing the log-likelihood expression of equation (2.21) (Haniyeh et Saeid 2011).

2.4.5 Fitting functions to data: the Maximum Likelihood (ML)

method of parameter estimation

The maximum-likelihood (ML) method can be used to estimate the parameters of a given

statistical function. When applied to a data set, it provides estimates of the function’s

parameters. It is a versatile and an important alternative that seeks to find values of

the distribution parameters that maximize the likelihood function (Wilks 2006). This

method indeed maximizes the probability of the observed data under the resulting selected

distribution.

To determine the maximum likelihood estimators of a given distribution, suppose

a sample of n independent and identically distributed observations xi (i = 1, . . ., n),

coming from a population with an underlying probability density function f(.|θ0). θ0 is

the unknown distribution parameter. From the sample of n observation xi, it is desirable

to find an estimator θ̂ which would be as close to the true value θ0 as possible. Both the

observed variables x and the parameter θ0 can be vectors.

The joint density function for an independent and identically distributed sample, is

defined as

f(x1, x2, . . . , xn | θ) = f(x1|θ)× f(x2|θ)× · · · × f(xn|θ). (2.19)

If xi are fixed parameters of this function and θ the function’s variable allowed to vary

freely, then the function will be called the likelihood function:

L(θ |x1, . . . , xn) = f(x1, x2, . . . , xn | θ) =
n∏
i=1

f(xi|θ). (2.20)

In practice, the log-likelihood is more convenient. It is the logarithm of the likelihood

function so that

lnL(θ |x1, . . . , xn) =
n∑
i=1

ln f(xi|θ), (2.21)

The average log-likelihood can also be used:
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ˆ̀=
1

n
lnL. (2.22)

The hat over ` indicates that it an estimator. ˆ̀ estimates the expected log-likelihood

of a single observation in the model.

The maximum likelihood method estimates θ0 by finding a value of θ that maximizes
ˆ̀(θ|x). It defines a maximum-likelihood estimator (MLE) of θ0 as

{θ̂mle} ⊆ {arg max
θ∈Θ

ˆ̀(θ |x1, . . . , xn)}. (2.23)

2.4.6 Linear regression

Regression is most easily understood in the case of simple linear regression, which describes

the linear relationship between two variables, say x and y. Conventionally the symbol x is

used for the independent, or predictor variable, and the symbol y is used for the dependent

variable, or predictand.

Essentially, simple linear regression seeks to summarize the relationship between two

variables, shown graphically in their scatter-plot, by a single straight line. The regression

procedure chooses the line producing the least error for predictions of y given observations

of x.

Given a data set of (x, y) pairs, the problem is to find the particular straight line,

Y = a+ bX (2.24)

minimizing the squared vertical distances (thin lines) between it and the data points.

The vertical distances between the data points and the line (Figure 7) are also called

errors or residuals.

Figure 7: Illustration of the simple linear regression method.
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The residuals are given by

ei = yi − Y (xi). (2.25)

There is a separate residual ei for each data pair (xi, yi).

Combining Equations 2.24 and 2.25 for each data i, yields the regression equation,

yi = Y (xi) + ei = a+ bxi + ei (2.26)

In order to minimize the sum of squared residuals,

n∑
i=1

(ei)
2 =

n∑
i=1

(yi − Yi)2 =
n∑
i=1

(yi − [a+ bxi])
2 (2.27)

it is only necessary to set the derivatives of Equation (2.27) with respect to the pa-

rameters a and b to zero and solve. The solutions are

b̂ =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

(2.28)

and

â = ȳ − bx̄ (2.29)

Thus, the calculated â and b̂ are the ML estimators of a an b (Bretscher 1995). The

parameter b̂ quantifies the difference between variables.

2.4.7 Statistical significance or Confidence test

There is an interest of measuring the absolute quality of a climate model forecast. Sci-

entists collect data in order to learn about the processes and systems the data represent.

Often they have prior ideas, called hypotheses, of how the systems behave (Helsel et

Hirsch 2002). One of the primary purposes of collecting data (e.g the precipitation data)

is to test whether those hypotheses can be substantiated, with evidence provided by the

data. Statistical tests are the most quantitative ways to determine whether hypotheses

can be substantiated, or whether they must be modified or rejected outright.
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a) Statistical hypothesis testing

A statistical hypothesis test is a method of making decisions using data from a scientific

study. In statistics, a result is called statistically significant if it has been predicted

as unlikely to have occurred by chance alone, according to a pre-determined threshold

probability, the significance level. The tests of significance are used in determining what

outcomes of a study would lead to a rejection of the predefined null hypothesis (called H0)

for a pre-specified level of significance (called α); this can help to decide whether results

contain enough information to cast doubt on conventional wisdom establishing the null

hypothesis. The critical region of a hypothesis test is the set of all outcomes which cause

the null hypothesis to be rejected in favor of the alternative hypothesis.

A confidence interval gives an estimated range of values which is likely to include an

unknown population parameter, the estimated range being calculated from a given set

of sample data. If independent samples are taken repeatedly from the same population,

and a confidence interval calculated for each sample, then a certain percentage (confidence

level) of the intervals will include the unknown population parameter. Confidence intervals

(1 − α) are usually calculated so that this percentage is 90%, 95%, 99.9% (or whatever)

confidence intervals for the unknown parameter. White area below the curve in Figure 8

represent a confidence interval in the case where data follow a normal distribution.

Figure 8: Illustration of a confidence interval for normal distribution. White area below the

curve represent the confidence interval and shaded area the critical region. Zc is the critical value

of the variable Z from which chosen hypothesis is rejected.

The width of the confidence interval gives some idea about how uncertain we are about

the unknown parameter (precision). A very wide interval may indicate that more data

should be collected before anything very definite can be said about the parameter.

Confidence intervals are more informative than the simple results of hypothesis tests
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(where we decide "reject H0" or "don’t reject H0") since they provide a range of plausible

values for the unknown parameter.

b) Procedure Used to test for Significance

The following steps are necessary to Test for Significance (Lehmann et Romano 2005):

- define an initial research hypothesis of which the truth is unknown.

- state the relevant null and alternative hypotheses.

- consider the statistical assumptions being made about the sample in doing the test;

for example, assumptions about the statistical independence or about the form of the

distributions of the observations.

- Decide which test is appropriate, and state the relevant test statistic T.

- Derive the distribution of the test statistic under the null hypothesis from the as-

sumptions. In standard cases this will be a well-known result. For example the test

statistic may follow a Student’s t distribution or a normal distribution.

- Select a significance level (α) defining a probability threshold below which the null

hypothesis will be rejected. Common values are 5% and 1%.

- The distribution of the test statistic under the null hypothesis partitions the possible

values of T into those for which the null-hypothesis is rejected, the so called critical region,

and those for which it is not. The probability of the critical region is α.

- Compute from the observations the observed value tobs of the test statistic T.

- Decide to either reject the null hypothesis in favor of the alternative or not reject

it. The decision rule is to reject the null hypothesis H0 if the observed value tobs is in the

critical region, and to accept or "fail to reject" the hypothesis otherwise.

c) Evaluation of the test Statistic

In statistical significance testing, the p-value is the probability of obtaining a test statis-

tic at least as extreme as the one that was actually observed, assuming that the null

hypothesis is true.

If the p-value is less than the required significance level (equivalently, if the observed

test statistic is in the critical region), then we say the null hypothesis is rejected at

the given level of significance (Goodman 1999). Rejection of the null hypothesis is a

conclusion.

If the p-value is not less than the required significance level (equivalently, if the ob-

served test statistic is outside the critical region), then the test has no result. The evidence
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is insufficient to support a conclusion.

2.4.8 Some useful statistical test applied in this study

a) Non-parametric Mann-Kendall test for linear correlation

Non-parametric tests are generally distribution-free, thus do not depend on the underlying

distribution. They detect trend or change, but do not quantify the size of the trend or

change. They are very useful because most hydrological time series data are not normally

distributed, especially when the period range is short (Daniel 2006).

The Mann-Kendall test (Mann 1945) can be stated as a test for whether values Y

(precipitation series for example) tend to monotonically increase or decrease with time

represented by the variable X.

To perform the test, Kendall’s S statistic is computed (Alan et Justin 2003; Helsel et

Hirsch 2002) as:

S =
n−1∑
j=1

n∑
i=j+1

sgn(Yi − Yj) (2.30)

where sgn is the sign (positive, negative, zero) of the expression (Yi − Yj) and n the

total number of elements in X vector array (number of time). To test the significance, a

statistic closely approximated by the standard normal distribution is developed:

ZS =


S−1
σS

if S > 0

0 if S = 0

S+1
σS

if S < 0

(2.31)

σS is the standard deviation on S defined by the expression

σS =

[
n(n− 1)(2n+ 5)

18
− 1

18

q∑
j=1

mj(mj − 1)(2mj + 5)

] 1
2

(2.32)

where q is the number of tied groups and mj is the number of observation in the jth

group.

The test statistic S following a Student-t distribution with n-2 degrees of freedom

under the null hypothesis is defined as

S = b/σ (2.33)

where
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σ =

√√√√√√12
n∑
i=1

(Yi − a− bXi)

n(n− 2)(n2 − 1)
(2.34)

b) The Anderson-Darling statistical test

The Anderson-Darling statistic measures how well a given data sample Yi (i = 1, . . . , n)

follow a particular distribution function F . For a given data set and distribution, the

better the distribution fits the data, the smaller this statistic will be.

The Anderson-Darling statistic (A2) is defined as follows (Anderson et Darling 1952;

Anderson et Darling 1954):

A2 = −n− 1

n

n∑
i=1

(2i− 1)[ln(F (Yi)) + ln(1− F (Yn+1−i))] (2.35)

The hypothesis regarding the distributional form is rejected at the chosen significance

level (α) if the test statistic, A2 is greater than the critical value obtained from a table.

In this case no parameters are estimated in relation to the distribution function F .

c) The Kolmogorov-Smirnov statistical test

• Definition

The Kolmogorov–Smirnov test (K–S test) is a nonparametric test for the equality

of continuous, one-dimensional probability distributions that can be used to com-

pare a sample with a reference probability distribution (one-sample K–S test), or to

compare two samples (two-sample K–S test). It quantifies a distance between the

empirical distribution function of the sample and the cumulative distribution func-

tion of the reference distribution, or between the empirical distribution functions of

two samples (Figure 9).

Figure 9: Illustration of the Kolmogorov-Smirnoff statistic. Red line is cumulative density

function (CDF), blue line is an empirical cumulative density function (ECDF), and the black

arrow is the K-S statistic.
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The null distribution of this statistic is calculated under the null hypothesis that

the samples are drawn from the same distribution (in the two-sample case) or that

the sample is drawn from the reference distribution (in the one-sample case). In

each case, the distributions considered under the null hypothesis are continuous

distributions but are otherwise unrestricted.

The Kolmogorov–Smirnov test can be modified to serve as a goodness of fit test. In

the special case of testing for normality of the distribution, samples are standardized

and compared with a standard normal distribution. This is equivalent to setting

the mean and variance of the reference distribution equal to the sample estimates.

The Kolmogorov–Smirnov statistic for a given cumulative distribution function F (x)

is defined as

Dn = supx|Fn(x)− F (x)| (2.36)

where n is the number of observations in the population x and supx is the supremum

of the set of distances between the empirical cumulative distribution function Fn(x)

and the theoretical cumulative distribution function F (x).

Dn converges to 0 almost surely, when the sample comes from distribution F (x).

• Hypothesis Testing and interpretation

The null and the alternative hypotheses are:

H0: the data follow the specified distribution;

HA: the data do not follow the specified distribution.

The hypothesis regarding the distributional form is rejected at the chosen signif-

icance level (α) if the test statistic, D, is greater than the critical value obtained

from a table. The fixed values of (0.01, 0.05 etc.) are generally used to evaluate

the null hypothesis (H0) at various significance levels. A value of 0.05 is typically

used for most applications, however, in some critical industries, a lower value may

be applied. The standard tables of critical values used for this test are only valid

when testing whether a data set is from a completely specified distribution. If one

or more distribution parameters are estimated, the results will be conservative: the

actual significance level will be smaller than that given by the standard tables, and

the probability that the fit will be rejected in error will be lower.
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The P-value (which is another parameter yielded by the test), in contrast to fixed

values, is calculated based on the test statistic, and denotes the threshold value of

the significance level in the sense that the null hypothesis (H0) will be accepted

for all values of less than the P-value. For example, if P-value=0.025, the null

hypothesis will be accepted at all significance levels less than P-value (i.e. 0.01 and

0.02), and rejected at higher levels, including 0.05 and 0.1.

The P-value can be useful, in particular, when the null hypothesis is rejected at

all predefined significance levels, and we need to know at which level it could be

accepted.

2.5 Determination of onset, retreat and length of the

rainy season

Various methods have been developed to determine onset and retreat dates of the rainy

season. Odekunle (2006) classified these methods into five main categories: 1) Inter-

tropical Discontinuity (ITD)-rainfall model (Ilesanmi 1972a), 2) rainfall-evapotranspiration

relation model (Benoit 1977), 3) percentage cumulative mean rainfall model, based on

rainfall data alone (Ilesanmi 1972b; Adejuwon et al. 1990; Adejuwon 2006), 4) wind shear

model (Omotosho 1990a; Omotosho 1990b), 5) the theta-E technique (Omotosho 2002).

The percentage cumulative mean rainfall is the most used method. It has the advantage

of depending only on rainfall data that are readily available from direct measurements

rather than other rainfall-associated factors (Odekunle et al. 2005). This method was

used by Olaniran (1983a) to study the onset of rains and the start of the growing season

in Nigeria. The results revealed that there is no significant difference between the mean

onset date obtained and the mean start of the growing season.

The method adopted in this study for the determination of onset and retreat dates

was the cumulative percentage mean rainfall amount (Ilesanmi 1972a). Daily rainfall data

for each year were grouped into 5-day means (pentads). This grouping was performed on

non-overlapping 5-day means starting at pentad 1 (1-5 January) and ending at pentad

73 (27-31 December). In the first step of the method, the percentage of mean annual

rainfall was determined at 5-day intervals. Next, cumulative percentages were calculated

for the full year. Finally, the mean timings of the accumulation of 7 to 8 percent and of

90 percent of the annual rainfall were taken as onset and retreat of rains respectively. The

length of the rainy season was defined simply as the period between onset and retreat
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dates. According to the method adopted here, the monsoon rainy season, between onset

and retreat accounts for 83.5% of annual rainfall.

In the first part of the analysis, the temporal mean onset and retreat dates of the

rainy season were first calculated for each station of the domain. Secondly, the following

criteria were used to divide the study domain into sub-domains or zones: stations where

both onset and retreat dates are different by 4 pentads at most were assigned to a common

climatic zone. The 4 pentad interval appeared to be the one giving reasonable separate

zones (stations spatially grouped) as compared to interval of 1, 2 or 3 pentads (Figures

shown in appendices). For model outputs, zone definitions were extended to neighboring

areas of Cameroon in order to increase the number of grid points used. Some studies

on domains comprising our study area (Olaniran 1989; Olaniran 1983b) can justify this

extension. Next, observed and simulated data were analyzed in every zone by calculating

for each year and at each station (grid point) onset and retreat dates and length of the

rainy season. Annual results were averaged for stations (grid points) within each zone

giving a 32-year time series per zone for both observations and model outputs. Finally,

means, standard deviations and inter-annual variability were analyzed and compared.

Statistics on how each model reproduces the observed parameters (onset and retreat dates

and duration of the rainy season) were estimated as the ratio of the observed number of

parameters simulated correctly to the total number of cases.

Climate change evaluations were based on comparisons between current climate and

future SRES A2 scenario perturbed climate. The A2 scenario recognized as the most

severe (Cook et Vizy 2006) assumes strong CO2, CH4, and SO2 increases throughout the

twenty-first century (except for SO2, which declines after 2030) (IPCC 2001a). Knowledge

about how models respond to these changes are useful for predictions of economic impacts.

2.6 Analysis of rainfall statistical parameters

We also examined the ability of the models to simulate spatial distributions and inter-

annual trends of current climate at daily, intra-annual and annual time scales using various

rainfall statistical parameters: total amounts, annual number of rain days, ratio of the

90th percentile of daily to mean daily precipitation, fraction of annual total contributed

by daily events above the 90th percentile value and maximum length of dry spells. Spatial

distribution and inter-annual trends of observed and modeled parameters were analyzed.

A day with precipitation less than 1 mm was considered to be dried.

In order to compare the spatial representation of observed and modeled data, the
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station precipitations were specialized using standard gridding methods (kriging). This

led to highly smoothed observed fields. Given that the annual total amounts of MPI-

echam5 and CSIRO-mk3.5 seemed complementary, they were averaged to form a 2 member

ensemble for some of the analysis.

For trend study, a parametric (student’s t-statistic) and a non-parametric (Mann-

Kendall statistic) test were used for the detection of significant trend in time series.

Trend magnitudes were also estimated and model results were compared to observation.

The null hypothesis H0 is that there is no trend.

For the Mann-Kendall statistic, we reject the H0 hypothesis at significance level α =

0.05 if |ZS| > Zα
2
, where Zα

2
is the critical value from standard normal distribution.

The t-student statistic is also used at 0.05 significant level and the results are compared

to those from the Mann-Kendall statistic. According to Woodward et Gray (1993), the

goal is to test whetherH0 : b = 0 based on the fact that b/SE(b) is distributed as Student’s

t with (n-2) degrees of freedom when H0 is true. b (the magnitude of the trend) is the

slope of the linear regression model defined as in Equation (2.28) and a, the intercept is

estimated as in Equation (2.29) so that the linear equation can be stated by

Y = bX + a+ ε (2.37)

where ε is the residual.

The linear regression test assumes that the data are normally distributed and that the

errors (deviations from the trend) are independent and follows the same normal distribu-

tion with zero mean.

For projected future climate, it was found useful to calculate the ratio for a given

rainfall statistical parameter of the mean future climate to the mean present climate. CP
being some rainfall statistical parameter under the present climate and CF its value in

the future climate, its relative change is CF−CP
CP

= r − 1, where r is ratio of CF over CP .

2.7 The Standardized Precipitation Index (SPI)

2.7.1 Calculation procedure

The method used for SPI computation was developed by McKee et al. (1993) and Ed-

wards et McKee (1997) to study relative departures of precipitation from normality. It has

been widely applied in many studies (Vicente-Serrano 2006; Sergio et al. 2009). It uses

monthly precipitation aggregates at various time scales (e.g. 1-, 3-, 6-, 12-, 18-, 24-month,
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etc). As an illustration of the procedure, for 3-month time scale, precipitation accumula-

tion from the j − 2 to the j months are summed up and attributed to the j month. At

this time scale, the first two months of data time series are missing. Similar treatment

were applied on data over other time scale. Next follows the normalization procedure,

where the long-term time series of aggregated precipitation are first fitted with an ap-

propriate probability distribution function (gamma, exponential, weibull and lognormal).

Then the chosen distribution is used to calculate the cumulative probabilities of the data

points, which are finally transformed into standardized normal variates. This is repeated

for all needed time scales. Because the processes generating rainfall in our study domain

vary in time and in space, many distributions may be needed. The maximum likelihood

estimation method (MLE) was used to fit four probability density functions (i.e. gamma,

exponential, weibull and lognormal) to the data. This method is widely used to estimate

the parameters of statistical distributions. It is the most popular method to estimate the

distribution parameters from an empirical sample. It finds the model parameters that

maximize the likelihood of the observed data with respect to the theoretical model. The

distribution with the lowest value of the Anderson-Darling goodness of fit test statistic

(Anderson et Darling 1952; Anderson et Darling 1954) was retained as best suited to

represent the underlying distribution of the data. Finally, the appropriate probability

distribution function was used to fit the corresponding long-term time series of precipita-

tion accumulation and the results were transformed into a normal distribution given the

SPI so that the mean SPI for a given station and for the considered period is zero.

Using the approximate conversion provided by Abramowitz et Stegun (1965), the

normal variable Z in the case where gamma is used to fit distribution, is expressed by the

formula

Z = SPI = −
(
t− c0 + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3

)
for 0 < H(x) ≤ 0.5 (2.38)

Z = SPI = +

(
t− c0 + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3

)
for 0.5 < H(x) < 1 (2.39)

where

H(x) = q + (1− q)G(x) (Equation 2.10) is the cumulative density function

t =

√
ln

[
1

(H(x))2

]
for 0 < H(x) ≤ 0.5 (2.40)
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t =

√
ln

[
1

(1−H(x))2

]
for 0.5 < H(x) < 1 (2.41)

and c0, c1, c2, d1, d2 and d3 the constants such that

c0 = 2.515517 c1 = 0.802853 c2 = 0.010328

d1 = 1.432788 d2 = 0.189269 d3 = 0.001308
(2.42)

2.7.2 SPI interpretation and operational drought definition

The SPI, often called the z-score is the number of standard deviations from the mean at

which an event occurs. Generally speaking, high, medium and low SPI values represent

high, normal (medium) and low precipitation events respectively. Thus, the 3-month

SPI value provides a comparison of accumulated precipitation over that specific 3-month

period concerned, with the mean precipitation total for the same 3-month time period,

calculated over the full study period. This applies to any n-month SPI value, where n,

the number of months of accumulation, is the time scale. Short time scales of the order

of three months may be important for agricultural applications, whereas long time scales

of up to many years are of more interest in water supply management (Guttman 1998).

Many classification of dryness and wetness events based on SPI exist in the literature,

an example is shown in Table 2 (Lloyd-Hughes et Saunders 2002).

Table 2: Drought classification by SPI value (Lloyd-Hughes

et Saunders 2002).

SPI value Class

2.00 or more Extremely wet

1.50 to 1.99 Severely wet

1.00 to 1.49 Moderately wet

0 to 0.99 Mildly wet

0 to -0.99 Mild drought

-1.00 to -1.49 Moderate drought

-1.50 to -1.99 Severe drought

-2 or less Extreme drought
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To use indices such as SPI for operational monitoring, it is necessary to define drought

levels for various preventive or corrective actions. Goodrich et Ellis (2006) proposed using

preselected percentiles of the drought index to determine thresholds, based on the fitted

parametric statistical distribution. Contrary to Goodrich et Ellis (2006) who simply used

empirical distributions, Quiring (2009) used percentiles values from the best of four tested

distributions to define more objective drought levels. Table 3 shows the five-category

drought definition from the U.S. Drought Monitor (USDM), with their description and

corresponding percentiles (Svoboda et al. 2002).

Table 3: USDM drought definitions (Svoboda et al. 2002).

Category Description Percentile

D0 Abnormally dry 21% - 30%

D1 Moderate drought 11% - 20%

D2 Severe drought 6% - 10%

D3 Extreme drought 3% - 5%

D4 Exceptional drought < 2%

After Calculating SPI for all stations, the results were submitted to the Kolmogorov-

Smirnov test of normality at 5% significant level. Similar study was done using CRU

precipitation at grid points nearest the station locations and results were compared to

observations.

Operational drought thresholds were also calculated in the similar way as in Quiring

(2009):

• fitting the five PDF (gamma, weibull, exponential, lognormal and normal) to SPI

data.

• Applying the Kolmogorov-Smirnov (KS) test to select the appropriate PDF fitting

the SPI. The PDF with the lowest KS value was chosen as the appropriate.

• Using preselected percentiles as defined by Svoboda et al. (2002) (Table 3) and

applying them to the SPI (normalized with the appropriate PDF) to determine

drought thresholds.

Analyses of some SPI time series focused on four stations (Kaele, Ngaoundere, Bertoua

and Kribi), representing the four different observed climatic zones of the study domain.

These stations are distant and content less missing data than others of the same zone.
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The station of Kaele is located north of the domain in the Sahelian zone, Ngaoundere

in the Adamawa plateau, the middle part of the domain, Bertoua in the eastern part in

dense forest and Kribi in the south-western part closest to the Atlantic Ocean. .

2.8 Data processing aspects

Such a tedious study cannot be completed without a high level of computational algo-

rithm and plotting method. Computation of each parameter requires a considerable time

as it has to be done for (each station)×(total number of stations) and for (each grid

point)×(total number of grid points)×(number of models) multiplied by the number of

years according to the period considered.

Softwares used to perform algorithms and to draw plots are Fortran 90, Surfer 7.0,

NCL (The NCAR Command Language) and R command language. NCL is a product

of the Computational and Information Systems Laboratory at the National Center for

Atmospheric Research (NCAR) and sponsored by the National Science Foundation. It

is a free interpreted language designed specifically for scientific data processing and vi-

sualization. NCL has robust file input and output. It can read and write netCDF-3,

netCDF-4 classic, HDF4, binary, and ASCII data, and read HDF-EOS2, GRIB1, GRIB2,

and OGR files (shapefile, MapInfo, GMT, TIGER). The graphics are world class and

highly customizable. The R software were particularly used for statistical aspect of the

study.

Summary of the chapter

This chapter has given a description of the study domain and the data used for the

study. It has also presented mathematical tools, defined calculated indices and described

the methodology. The next chapter (Chapter 3) shows results of our investigation and

related analysis and discussion.
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Chapter 3

Results and Discussions

3.1 Validation of model rainfall outputs in the present

time climatology (1962-1993)

3.1.1 Onset, retreat and length of the rainy season for the period

1962-1993

a) The cumulative percentage of mean rainfall amount

The cumulative percentage of mean rainfall amounts for each year and for each dataset

was calculated and the results were shown in Figure 10.

The onset and retreat of the rainy season are the dates corresponding to the intersec-

tion between the patterns and the horizontal lines at 7-8% and 90% respectively. Results

for all stations were then used for the classification.

b) Classification of rainfall stations in climatic zones

A total of 3 zones were defined in the study domain (Figure 11) using the criteria presented

in chapter 2, section 2.5. These zones are similar to those defined using other criteria

(Olaniran 1989; Olaniran 1983b). Thus we can consider:

1. The equatorial forest zone (zone 1) mostly covered by dense forests and having two

rainy seasons;

2. The Midland zone (zone 2) which predominantly covers highlands where topography

effectively extends the length of the humid period, due to localized convection and

orographic effects (Olaniran 1983b);
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Figure 10: Cumulative percentage of rainfall amounts for the full year and for zones 1, 2 and 3

respectively.
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3. The Sahelian zone (zone 3), where the tropical continental air mass predominates,

except during the Monsoon season when the tropical maritime air mass covers the

area for 3 to 5 months at most (Olaniran 1983b).

Figure 11: Study area with the geographical locations of rainfall stations (indicated by numbers.

See Table 1 for the names, longitudes and latitudes of stations corresponding to numbers) and of

climate models grid points (BCCR-bcm2.0, CSIRO-mk3.5, MPI-echam5 and MRI-cgcm2.3.2a).

Grid point locations for each model are indicated by a specific marker. Dashed lines show delimited

zones.

Table 4 shows the range of mean onset and mean retreat dates for each zone. These

ranges were obtained by averaging on yearly mean onset and retreat dates per zone de-
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duced from the Figure 10. The standard deviations to the various averages were also

calculated.

Table 4: Range of mean onset and retreat dates of the rainy

season for each zone. Results are given in pentad number and

the corresponding calendar dates are in parentheses. The first

pentad is the period from Jan 1 to Jan 5.

Sub-domain Onset date range Retreat date range

zone 1 15th-17thPentad (12 Mar-26 Mar) 60th-62ndPentad (23 Oct-6 Nov)

zone 2 19th-21stPentad (1 Apr-15 Apr) 55th-59thPentad (22 Sep-22 Oct)

zone 3 25th-29thPentad (1 May-25 May) 52nd-54thPentad (13 Sep-27 Sep)

c) Mean onset and retreat dates and lengths of the rainy season

Mean onset and retreat dates and lengths of the rainy season as well as associated standard

deviations for each zone are shown in Table 5 for observed and simulated data.

As expected, rainfall onset and retreat follow the northward move of the ITD during

the months of March to August and its southward retreat between September and Octo-

ber, respectively. Similar spatial migrations of onset and retreat dates were observed in

many African countries, for example in Nigeria, Senegal and western Kenya (Odekunle

2004; Mugalavai et al. 2008; Salack et al. 2011). Retreat is more abrupt as it takes only

8 pentads compared to 12 for onset. This rapid retreat was also observed in neighboring

Nigeria (Ayoade 1974; Odekunle 2006). Earliest onset is in zone 1, south of the study

domain, on the 16th pentad of the year (17th − 21st March), followed by zone 2 four pen-

tads (20 days) later, and latest onset, close to 2 months (11 pentads) after zone 1, is in

the northernmost stations (Table 5 (a)). Retreat starts in the North and moves South

(Table 5 (b)) and time lags between zones are less than for onset dates. Uncertainties

are higher (higher standard deviations) on onset than on retreat dates. The length of

the rainy season (Table 5 (c)) decreases from South to North: 25 consecutive pentads (4

months) in zone 3, 37 (6 months) in zone 2 and 45 (7.5 months) in zone 1. This is in

agreement with annual rainfall amounts observed in theses areas. The spatial variation in

duration affects the choice of crop types and farming techniques, depending on zones in

order to avoid losses due to insufficient number of rainy days. That is why in Kenya where

the maximum length of the growing season is about 4 months, irrigation is recommended

during the short rainy season as a way of supplementing the limited rainfall (Mugalavai
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et al. 2008). The increase in the length of the rainy season from zone 3 to zone 1 may

be explained by the annual migration of the ITD, which controls the Monsoon influx of

humid maritime air into the continent. This favorable rainfall-producing factor has the

least residence period over zone 3.

Of the four general circulation models, only MPI-echam5 has an onset date within

one standard deviation of observations in all the three zones. A similar analysis shows

that CSIRO-mk3.5 gives good onset in zones 1 and 2, while BCCR-bcm2.0 and MRI-

cgcm2.3.2a succeed in only one zone. Based on this criterion, three models have the

right simulation in zone 3 and two in the other zones. Because there is less dispersion on

retreat dates (standard deviation of 1), no model is on target in zone 1, one is in zone 2

and two are in zone 3. For both onset and retreat, boxplot diagrams (Figure 12 (a) and

(b)) indicate that dispersion between models is low, the models tending to agree more

among them than with observations. Their poor performance on retreat dates translates

into poor results for the length of the season (Figure 12 (c)) which are mostly off target

in zone 1 but slightly better in zones 2 and 3. It is also to be noted that MRI-cgcm2.3.2a

is often even out of the range of extreme observations.

A quantitative verification of the model simulations is needed in order to objectively

analyze and compare their performances. In Figure 12, numbers expressed in percentages

and represented below each model boxplots are statistical probabilities for models to

capture the observed parameters (onset and retreat dates and length of the rainy season).

In zone 1, CSIRO-mk3.5 and MPI-echam5 show better results than the other two

models. While their statistical probabilities for predicting onset date are greater than

50% (61% for CSIRO-mk3.5 and 58% for MPI-echam5), they give poor results for retreat

date and duration (less than 10%). In zone 2, CSIRO-mk3.5 shows best results and

also has the greatest statistical probability (100% for both onset date and duration, 81%

for retreat date). The second best performance is by MPI-echam5 for onset (94% of

statistical probability for prediction) and by BCCR-bcm2.0 for duration (85%). Other

models show poorer results (less than 50%). In zone 3, the best statistical probability

for prediction is by MPI-echam5 for onset date (74%), CSIRO-mk3.5 for retreat date

(75%) and BCCR-bcm2.0 for duration of the rainy season (78%). For onset and retreat

dates, the second best is BCCR-bcm2.0. Overall, CSIRO-mk3.5 shows highest combined

statistical probability for prediction of onset and retreat dates and duration of the rainy

season, followed by MPI-echam5. MRI-cgcm2.3.2a shows lowest statistical probability.
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Figure 12: Onset date, retreat date and duration of the rainy season for observation and models

simulations. Numbers expressed in percentage and presented below each model boxplot represent

the statistical probability for each model to forecast the observed onset date (a), retreat date (b)

and duration of the rainy season (c).
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Table 6: Correlation coefficients of models to simulate observed interannual variabilities of onset

and retreat dates of the rainy season for the current climate (1962-93).

Onset date Retreat date

Data zone 1 zone 2 zone 3 zone 1 zone 2 zone 3

BCCR-bcm2.0 0.12 -0.11 -0.17 -0.44 -0.22 -0.20

CSIRO-mk3.5 -0.09 0.18 0.05 0.12 0.10 0.25

MPI-echam5 0.17 -0.19 -0.12 0.13 0.24 -0.41

MRI-cgcm2.3.2a 0.25 0.05 0.20 -0.12 0.03 -0.13

d) Interannual variability

The value of standard deviation of a time series can be used to elucidate temporal vari-

ability (Syed et al. 2010). For onset date, observed standard deviations of 2 pentads in

zone 1 and 3 pentads in zones 2 and 3 indicate that interannual variability of this param-

eter is lower in the Equatorial forest zone. Retreat dates and lengths of the rainy season

in all the three zones show lower amplitudes of fluctuations than onset dates (Figure 13).

These amplitudes decrease from zone 3 in the Sahelian zone to zone 1 south of domain.

Figure 13 below indicates the interannual variabilities of onset and retreat dates of

the rainy season for zone 1, 2 and 3 respectively.

Extreme values (minima and maxima) observed in the interannual variability of onset

dates are much farther from their means, compared to retreat and duration of the rainy

season. Table 6 shows correlation coefficients between models and observation for onset

and retreat dates of the rainy season. In general, correlation coefficients are low and those

of the onset date of the rainy season are lower. Models outputs poorly reproduce these

interannual variations (correlation coefficient |r| < 0.5) (Table 6). However MPI-echam5

in most cases do the best job.

e) Interannual trends

Regression lines of the interannual trends of onset and retreat dates of the rainy season

for the period 1962-93 are shaded on Figure 13. Their slopes are recapitulated on Tables

7 and 8 for onset and retreat dates respectively.

Onset date of the rainy season has known a slight positive tendency (slope of the regres-

sion line greater than zero) in all zones (Table 7). Observed trends in yearly onset dates

are higher in the Sahelian zone and decreases southwards. All models fail to represent

these trends, but signs are well simulated in zone 1 by BCCR-bcm2.0 and MPI-echam5,
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Figure 13: Interannual variabilities of onset and retreat dates of the rainy season for observation

and models in zone 1 (Figure (a)), zone 2 (Figure (b)) and zone 3 (Figure (c)). Regression line

for each curve is shaded.
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in zone 2 by MPI-echam5 and in zone 3 by BCCR-bcm2.0 and CSIRO-mk3.5.

Table 7: Slope of the regression line of inter-annual trend of

onset date for the period 1962-93 and for the three zones.

Slope for Onset date (mm/year). t-value in brackets.

Region 0bservation BCCR-bcm2.0 CSIRO-mk3.5 MPI-echam5 MRI-cgcm2.3.2a

zone 1 0.52 (tv=2.83) 0.04 (tv=0.34) -0.07 (tv=-0.40) 0.01 (tv=0.07) -0.10 (tv=-0.65)

zone 2 0.24 (tv=1.18) -0.37 (tv=-2.35) -0.00 (tv=-0.02) 0.05 (tv=0.37) -0.32 (tv=-1.78)

zone 3 0.02 (tv=0.08) 0.13 (tv=0.44) 0.052 (tv=0.36) -0.12 (tv=-0.61) -0.32 (tv=-1.61)

Table 8: Slope of the regression line of inter-annual trend of

retreat date for the period 1962-93 and for the three zones.

Slope for Retreat date (mm/year). t-value in brackets.

Region 0bservation BCCR-bcm2.0 CSIRO-mk3.5 MPI-echam5 MRI-cgcm2.3.2a

zone 1 0.01 (tv=0.13) -0.09 (tv=-1.16) -0.11 (tv=-1.18) 0.13 (tv=1.22) 0.06 (tv=0.61)

zone 2 -0.04 (tv=-0.39) -0.12 (tv=-0.97) 0.03 (tv=0.34) 0.11 (tv=1.06) -0.01 (tv=-0.07)

zone 3 -0.40 (tv=-1.42) -0.01 (tv=-0.07) 0.07 (tv=0.69) 0.07 (tv=0.54) 0.08 (tv=0.86)

As for retreat date, observed trends are weaker compared to onset date. Positive

trend is observed in zone 1 while negative trends are observed in zones 2 and 3, with

the amplitude increasing southwards (table 8). All models well capture the observed low

trends. Right signs of slopes are well simulated in zone 1 by MPI-echam5 and MRI-

cgcm2.3.2a, in zone 2 by BCCR-bcm2.0 and MRI-cgcm2.3.2a and in zone 3 only by

BCCR-bcm2.0. But, they all fail to represent amplitudes of tendencies.

3.1.2 Spatial distribution and tendencies of rainfall statistical pa-

rameters for the period 1962-1993

a) Spatial distribution

Here we focus on the spatial patterns of rainfall statistical parameters.

Mean annual total amounts

Mean annual precipitation for the period under study (1962-1993) ranges from 3600 mm

on the South Western Atlantic coast to 800 mm in the Northernmost region (Figure
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14 (a)). This range of values comprises a strong West-East gradient near the coastal

region and a generally South-North negative gradient over the rest of the country, with

a vast area extending from 2◦ to 9◦N, where annual precipitation varies little between

1600 and 1100 mm. This is followed in the Sahel region by a faster decrease to values of

800 mm at 10◦N (i.e. 200 mm/degree latitude). MPI-echam5 (Figure 14 (b)) reproduces

observed pattern and the different gradients, except around the coastal atlantic area where

it slightly underestimates rainfall intensities. As for MRI-cgcm2.3.2a (Figure 14 (d)), the

only right patterns are in the northern part of the country particularly above 8◦ of latitude

and intensities are strongly underestimated around the coastal Atlantic area. The model

BCCR-bcm2.0 (Figure 14 (e)) represents patterns and intensities above 8◦N and fails

below it by underestimating rainfall intensities around the coastal Atlantic area and by

not showing the west-east gradient. CSIRO-mk3.5 (Figure 14 (c)) well represents pattern

and intensity in the southern part of the country (below 8◦N) and fails in the northern

part by overestimating rainfall intensities. In general, some models underestimate rainfall

intensities while others overestimate on the same areas. This suggest that ensemble means

of model outputs may give better overall results. The mean annual total amounts of

combined outputs of CSIRO-mk3.5 and MPI-echam5 (Figure 14 (f)) shows improved

results in pattern and intensities while other combinations such as Mk3.5-Cgcm2.3.2a,

Echam5-Cgcm2.3.2a and Mk3.5-Echam5-Cgcm2.3.2a (Figures not shown) do not suit as

well for annual total amounts.

A seasonal analysis (not shown) reveals that MPI-echam5 has best results in the

March-April-May (MAM) and JJA seasons, but underestimates September-October-December

(SON) total amounts in the coastal Atlantic area by a factor of about 2. This failure is

compensated in the DJF season by an overestimation of same proportion. CSIRO-mk3.5

and MRI-cgcm2.3.2a give good spatial representation in the MAM and SON seasons, but

both fail to simulate the right JJA seasonal amount and overestimate DJF as compensa-

tion especially south of 7◦N of the latitude.

The mean annual cycle is represented (Figure 15) for 3 zones representing 3 different

climate regimes: the Sahelian zone (zone 3) from 8◦N to 13◦N where the annual pre-

cipitation cycle is unimodal, the equatorial forest zone (zone 1) from 1◦N to 5◦N (the

annual precipitation cycle is bimodal) and the intermediate zone (zone 2) characterized

by high lands and bimodal annual precipitation cycle. All models more or less represent

the shape of the mean annual cycle and best results are obtained for the Sahelian zone

(Figure 15 (a)). MPI-echam5 and MRI-cgcm2.3.2a show worst results by underestimating

rainfall intensities during rainy periods (August-November) in all zones. The two other
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Figure 14: Mean annual total amounts for current climate. (a) observation, (b) MPI-echam5,

(c) CSIRO-mk3.5, (d) MRI-cgcm2.3.2a, (e) BCCR-bcm2.0., (f) model ensemble CSIRO-MPI
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models (BCCR-bcm2.0 and CSIRO-mk3.5) overestimate rainfall intensities in zones 1 and

2 during the rainy periods. Dry periods are well simulated by all models.

Figure 15: Mean annual cycle per zone.
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Mean annual number of rain day.

A day is considered rainy if the measured precipitation is 1 mm or more. The spatial

pattern of the mean annual number of rain days (Figure 16) is similar to that of mean

annual totals, for both observed (Figure 16 (a)) and simulated precipitation (Figure 16

(b), (c), (d) and (e)). MPI-echam5 overestimates this parameter by a factor of 2 above

10◦N and slightly less than 2 elsewhere. CSIRO-mk3.5 simulated spatial patterns and

intensity are close to those of MPI-echam5 while MRI-cgcm2.3.2a patterns are similar to

BCCR-bcm2.0. The later two both overestimate mean annual number of rain days by a

factor of about 2 in the southern part of the domain and of 1 in the Sahelian zone. The

model ensemble CSIRO-MPI (Figure 16 (f)) better represents observed pattern of the

parameter than individual model, but estimations are overestimated by a factor of 2.

Maximum length of dry spells.

Mean maximum length of dry spells increases with latitude (positive South-North gradi-

ent) giving zonally oriented patterns (Figure 17 (a)). Extreme Southern area is the least

dry with an average annual maximum dry spell of 20 days, while the Sudano Sahelian area

is the driest (95 consecutive dry days per year). Seasonal analysis reveals that the annual

lengths of dry spell coincide with the dry season (DJF). The four CMIP3 dataset represent

well the spatial pattern of this parameter (Figures 17 (b), (c), (d) and (e)). CSIRO-mk3.5

and MPI-echam5 furthermore give the right intensities over the entire domain while other

models only succeed below 8◦N and overestimate elsewhere. The model ensemble CSIRO-

MPI (Figure 17 (f)) shows improved results but slightly fails to reproduce patterns south

of domain.

Ninetieth percentile of daily precipitations

This parameter is an indicator of extremes and can also inform on the shape of the

distribution of daily precipitations. Figure 18 represents the ratio of the 90th percentile

of daily precipitations to the mean daily precipitation. The isolines of Figure 18 (a) are

very close in orientations to those of Figure 14 (a). South of 8◦ North, the gradient of this

parameter has a sign opposite to that of mean precipitation, but it is sufficiently weak for

the entire area to be considered homogeneous. Above 8◦ North, the values of the parameter

fall off from 3.4 to 2.6. When looking at the fraction of annual precipitation contributed

by events above the 90th percentile (Figure 19 (a)), we also note that the Southern part

of the domain is homogeneous with values around 0.7, whereas in the North we have
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Figure 16: Mean annual number of rainy day for current climate. (a) observation, (b) MPI-

echam5, (c) CSIRO-mk3.5, (d) MRI-cgcm2.3.2a, (e) BCCR-bcm2.0 and (f) model ensemble

CSIRO-MPI.
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Figure 17: Maximum length of dry spells. (a) observation, (b) MPI-echam5, (c) CSIRO-mk3.5,

(d) MRI-cgcm2.3.2a, (e) BCCR-bcm2.0 and (f) model ensemble CSIRO-MPI.
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a positive gradient and higher values (0.9). These patterns indicate that there are two

different rainfall regimes. In the Northern Sahelian region, annual rainfall are contributed

by very few intense events (related to the passage of African Easterly Waves). In the

Southern regions, the intensity of convective activities has a wider spectrum.

Modeled spatial pattern from MPI-echam5 and CSIRO-mk3.5 are similar to observed

showing two gradients with different directions, latitudinal in the north and zonal in

the south (Figures 18 (b) and (c)). But the amplitudes of the 90th percentile related

parameters are not well captured. Spatial pattern for BCCR-bcm2.0 and MRI-cgcm2.3.2a

both show a single south-north gradient. MPI-echam5, BCCR-bcm2.0 and CSIRO-mk3.5

show wrong signs of gradient for the northern part of the country for the ratio of the 90th

percentile of daily precipitations to the mean daily precipitation (Figures 18 (b), (c) and

(e)) and right signs for the fractions of annual precipitations contributed by daily events

above the 90th percentile of daily values (Figures 19 (b), (c) and (e)). MRI-cgcm2.3.2a

shows the right signs for the two extreme parameters. For the ratio of the 90th percentile

of daily precipitations to the mean daily precipitation, all models underestimate values

bellow 8◦ and overestimate them above. They also all underestimate over the entire

domain the fraction of annual precipitations contributed by daily events above the 90th

percentile of daily values. Overall, the models tend to underestimate amplitudes of the

ratio of the 90th percentile of daily precipitation to the mean daily precipitation and of

the fraction of annual precipitation contributed by events above the 90th percentile.

The model ensemble CSIRO-MPI generally fails to represent gradients and patterns

south of domain.
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Figure 18: Ratio of the 90th percentile of daily precipitations to the mean daily precipitation.

(a) observation, (b) MPI-echam5, (c) CSIRO-mk3.5, (d) MRI-cgcm2.3.2a, (e) BCCR-bcm2.0

and (f) model ensemble CSIRO-MPI.
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Figure 19: Fraction of annual precipitations contributed by daily events above the 90th Percentile

of daily values. (a) observation, (b) MPI-echam5, (c) CSIRO-mk3.5, (d) MRI-cgcm2.3.2a, (e)

BCCR-bcm2.0 and (f) model ensemble CSIRO-MPI.
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b) Trends in observed and simulated current climate

Temporal variability in observed data was first studied for each station. Trends for the

1962-93 period, represented by the slope of their linear regression against time were calcu-

lated for each rainfall statistical parameter. This study were done for the three different

zones defined in section 3.1.1: the Equatorial forested region (zone 1), the Sahelian region

(zone 3) and a transition zone (zone 2) from around 5◦ to 8◦N. Trends were tested for

significance using student’s t-test at 95% confidence level. The results are summarized in

Figure 20. Non-significant trends were not represented. The two tests (student’s t-statistic

and Mann-Kendall) are discordant on very few cases (21 out of 90). In these cases, the

considered trends are from the statistic for which more stations (higher percentage) have

contributed to the trend.

In all zones, negative trends for annual total amounts are observed (Figure 20 (ai)) and

annual number of rain day (Figure 20 (bi)) and positive trends for the fraction of annual

precipitations contributed by daily events above the 90th percentile of daily values (Figure

20 (di)). So over the entire domain, precipitation frequency and intensity decreased while

heavy rainfall increased, i.e precipitation became rare but heavier when they did occur.

The ratio of the 90th percentile of daily precipitation to the mean daily precipitation

(Figures 20 (c1) and (c3)) showed negatives trends in all zones and the maximum length

of dry spells (Figures 20 (e1) and (e3)) showed positive trends in zones 1 and 2. These

last results showed that dried periods increased in Sahelian and transition zones (zones 1

and 2) during the 20th century. On the other hand, intense precipitation decreased in the

same zones. The transition zone is then influenced by the increase of dried periods of the

Equatorial forest zone (zone 1) and by the decrease of intense rains of the Sahelian zone

(zone 3).
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BCCR-bcm2.0 and CSIRO-mk3.5 simulation showed the right trend in all three zones

for the fraction of annual precipitations contributed by daily events above the 90th per-

centile of daily values and only BCCR-bcm2.0 does well for annual numbers of rain days

in the three zones. For other rainfall statistical parameters, very few models showed con-

sistent results in all three zones, succeeding at best in one zone. Therefore we undertake

a simple statistical count of the successes and failures of each model to simulate trends of

considered rainfall parameters. Results are summarized in table 9. BCCR-bcm2.0 shows

best score while MPI-echam5 has the worst score.

Table 9: statistical count of the model performance to simu-

late signs of trends of the five rainfall statistical parameters.

Deduced from Figure 20.

Region Number of succeeded simulated trend over number of parameters

BCCR-bcm2.0 CSIRO-mk3.5 MRI-cgcm2.3.2a MPI-echam5

zone 1 3/5 5/5 0/5 1/5

zone 2 5/5 3/5 1/5 2/5

zone 3 4/5 3/5 4/5 1/5

total 12/15 11/15 5/15 4/15

Trend magnitudes were estimated as the slope of the linear regression line. They were

tested at 90% confidence level using student t statistic. The models evaluated in this

part are BCCR-bcm2.0 and CSIRO-mk3.5 because they show best results in the trend

detection, especially for mean annual total amounts and fraction of annual precipitations

contributed by daily events above the 90th percentile of daily values. Interannual variabil-

ity associated with regression line for chosen models and rainfall statistical parameters

(Figures shown in annexe) leads to establish Tables 10 and 11 of trend magnitude respec-

tively for mean annual total amounts and fraction of annual precipitations contributed

by daily events above the 90th percentile. Observed trend magnitudes for annual total

amounts (Table 10) show a slight decrease in zone 3 (-2.46 mm/year) and larger decrease

in zone 2 (-8.31 mm/year) and 1 (-9.03 mm/year). The two models underestimate these

magnitudes with largest values below -4 mm/year. The fraction of annual precipitations

contributed by daily events above the 90th percentile of daily values (Table 11) has pos-

itive but negligible trends of the order of 10−3 mm/year. We can thus consider that no

70



Figure 20: Recapitulated tendencies of rainfall statistical parameters, according to student’s

t-statistic and Mann Kendall statistic. The H0 hypothesis has been rejected at 0.05 significant

level. Non-significant trends are not represented.
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significant trend was found in this parameter.

Table 10: Interannual trend magnitudes of mean annual total

amounts for the period 1962-93 (in mm/year).

zone Observed CSIRO-mk3.5 BCCR-bcm2.0

1 -9.03 -0.34 -2.76

2 -8.31 -2.50 -0.37

3 -2.46 0.92 -3.63

Table 11: Interannual trend magnitudes of fraction of an-

nual precipitations contributed by daily events above the 90th

percentile for the period 1962-93 (in mm/year).

zone Observed CSIRO-mk3.5 BCCR-bcm2.0

1 0.00 -0.00 5.90

2 0.00 0.00 0.00

3 0.00 0.00 0.00

3.2 Projections of models rainfall outputs under a per-

turbed climate (2082-2098)

3.2.1 Future onset, retreat and length of the rainy season for the

period 2082-2098

Projected mean onset and retreat dates and length of the rainy season

To assess the effect of increased greenhouse gas (GHG) concentration in the atmosphere

on onset and retreat dates and length of the rainy season, projected dates for the period

2082-98 were analyzed. These were determined from the outputs of GCM simulations

using the same methodology presented earlier.
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Results under the perturbed climate of a given GCM were compared to its own sim-

ulation of current climate. Differences in onset and retreat dates of the rainy season and

in duration between future and present climates are shown in Figures 21 (a), (b) and (c)

respectively.

Figure 21: Gap between mean future and mean current climate dates for onset (a)), retreat (b))

and differences in the duration (c)) of the rainy season. Vertical axis are graduated in pentads.
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Surprisingly there are no great changes in either onset or retreat dates. Three of the

models (MPI-echam5, BCCR-bcm2.0 and MRI-cgcm2.3.2a) show late onset of one pentad

in all zones, while CSIRO-mk3.5 has approximately normal start in zones 1 and 2 and

early start of about one pentad in zone 3. Retreat occurs mostly earlier, but by less than

one pentad, except for MRI-cgcm2.3.2a in zone 3 where it is almost 2 pentads earlier.

Rainy seasons are shorter by approximately one pentad in zones 1 and 2 and longer in

zone 3 by up to 2 pentads. These changes are all within the range of variability of current

climate simulated by each model and could not be considered significant. This result

corroborates that of Mkankam (2000) given the strong relationship between onset and

rainfall attributes (Stewart 1991; Ati et al. 2002). The shortening of the rainy season

is one of the most feared result of anthropogenic climate change. But projections under

the SRES A2 scenario by the four models used here indicate that to the end of the 21st

century, no major perturbations of the seasons are expected, and it will be possible to

continue growing the same crops as at present time in Cameroon.

Projected interannual variability

Figures 22 shows models projections of rainfall onset and retreat dates variabilities over

the period 2082-98. Comparing to the present time simulation, it is expected lower fluc-

tuations in onset and retreat date. There will likely be a lot of inconsistencies between

the two models in zones 1 and 2. Most of the models project for all the three zones no

tendency in the future interannual retreat date and a slight positive trend in onset date.

In many cases, CSIRO-mk3.5 is not part of the consensus.

3.2.2 Future spatial distribution of rainfall statistical parameters

for the period 2082-2098

The perturbed climate is represented by projections for the period 2082-2098 under IPCC

SRES A2 emission scenario from four IPCC AR4 AOGCM. SRES A2 (Special Report on

Emissions Scenarios A2) (IPCC, Climate Change 2007a; IPCC, Climate Change 2007c)

assumes a strong, but regionally oriented economic growth and fragmented technological

change with an emphasis on human wealth. It projects slightly lower GHG emissions

than the IS92a scenario (IPCC 1992), but also slightly lower aerosol loadings, thus the

warming response differs little from that of IS92a. For each model the projected climate

is compared with the base climate simulated by the same model for the period 1962 to

1993. Only models and parameters they represented well in current climate are used.
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Figure 22: Projected interannual variabilities (2082-2098) of onset and retreat dates of the rainy

season for observation and models in zone 1 (Figure (a)), zone 2 (Figure (b)) and zone 3 (Figure

(c)). Regression line for each curve is shadded.
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Thus, MPI-echam5 and CSIRO-mk3.5 are considered for mean annual total amounts,

mean annual number of rain days, the maximum length of dry spells and the fraction of

annual precipitations contributed by daily events above the 90th percentile of daily values.

Figure 23 shows the spatial patterns of the ratio of the mean future climate to the mean

current climate for above parameters. More confidence is given to projections for which

the two models show similar results.

For the annual total amounts (Figure 23 (a)), the two models CSIRO-mk3.5 and MPI-

echam5 project positive gradients from the border of domain to its center. CSIRO-mk3.5

shows a belt of ratio 1 arount Adamowa and East part of domain. It is projected a ratio

of 1.16 inner this belt and 0.98 outer. Therefore, according to CSIRO-mk3.5, annual

total amounts is expected to increase from 16% (1.16 − 1) East of domain, constant

around Adamawa Plateau and Centre-East while a decrease of 2% (0.98− 1) is expected

elsewhere. As for MPI-echam5, the increase of this parameter concerns a wider area with

a rate ranging from 4% (1.04− 1) and 16% (1.16− 1) around the limites of the Cameroon

territory to the heard of the country and a decrease of 2% in a smaller area (Western part

of the northernmost of domain).

For the annual number of rain days (Figure 23 (b)), CSIRO-mk3.5 projects patterns

and values similar to that of annual total amounts. This model shows a direct link between

annual total amounts and annual number of rain days. The model MPI-echam5 for which

projections are reduced to the North-East area of domain agrees with CSIRO-mk3.5, but

the belt of ratio 1 where no change is expected is slightly displaced of about 1◦ towards

the North-East.

The maximum length of dry spells is shown in Figure 23 (c). The two models show

patterns with similar orientations. Furthermore, they show two negative gradients South-

North and North-South. They project an increase around 8% (1− 1.08) and 16% (1.16−
1) in the southern part of domain, especially below 5◦N and no change above. In the

intermediate zone (5◦N-10◦N), the two models are discordant, CSIRO-mk3.5 projecting a

decrease of about 2% (0.98− 1) and MPI-echam5 an increase of 2% (1.08− 1).

The projected spatial patterns for the fraction of annual precipitations contributed

by daily events above the 90th percentile of daily values (Figure 23 (d)) are not regular.

CSIRO-mk3.5 projects a decrease of 2% (0.98 − 1) in the South-Eastern part of domain

and an increase of 8% (1.08 − 1) elsewhere. However, there exist a line of direction

(North-West)-(South-East) with the label 1 (no change expected) crossing the domain.

MPI-echam5 projects an increase on the entire domain with a rate ranging from 8% right

of 12◦E to 16% on the left.
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Figure 23: Ratio of the mean future climate (2082-2098) to the mean present climate (1962-

1993). (a) Annual total amounts. (b) Annual number of rainy days. (c) Maximum length of dry

spells. (d) Fraction of annual precipitations contributed by daily events above the 90th percentile

of daily values.
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3.3 Computation of the Standardized Precipitation In-

dex (SPI) and its use to assess drought occurrences

in Cameroon over recent decades.

3.3.1 Suitable distribution functions for precipitation data

Distribution functions for station precipitation

Four statistical distribution functions (gamma, exponential, weibull and lognormal) were

fitted to station precipitation data aggregated at various time scales. Figures 24 and 25

show results of the cumulative density function for empirical precipitation and for each of

the trial distribution functions. Figures were shown for four stations (Kaele, Ngaoundere,

Bertoua and Kribi), at 3-month and 12-month time scales.
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Figure 24: Cumulative distribution functions for 3-month aggregated precipitation showing the

empirical cumulative distribution function (ECDF) and gamma, weibull, lognormal, and expo-

nential distributions fitted to the data. x represents precipitation values.
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Figure 25: Cumulative distribution functions for 12-month aggregated precipitation showing the

empirical cumulative distribution function (ECDF) and gamma, weibull, lognormal, and expo-

nential distributions fitted to the data. x represents precipitation values.
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The choice of the suitable distribution function describing precipitation data in each

case was based on the minimum value of the Anderson-Darling statistic, as illustrated in

Table 12 for 1-month and 12-month time scale. The exponential function shows worst

results as the number of months in time scale increase.

Table 12: Anderson-Darling statistic for all stations at 95%

confidence level. The letters g, w, e and ln indicate the distri-

bution functions gamma, weibull, exponential and lognormal

respectively. Bold characters indicate the smallest values of

the statistic and then the the corresponding distribution func-

tions are selected as the best.

Distribution function

For 3-month time scale For 12-month time scale

No Station g w e ln g w e ln

1 Maroua 8.12 9.24 11.16 18.72 1.48 9.45 184 1.13

2 Kaele 8.91 10.20 13.36 21.50 2.03 3.84 171 2.22

3 Garoua 13.10 12.19 14.08 25.52 1.58 9.31 195.8 1.04

4 Poli 18.88 18.35 18.58 35.65 1.08 3.46 207.7 1.59

5 Ngaoundere 24.21 23.20 24.43 41.22 4.84 1.36 218 6.76

6 Meiganga 17.36 16.08 18.51 34.30 1.03 6.96 223.9 0.91

7 Tibati 19.37 17.15 21.09 37.43 0.72 3.88 199.8 1.24

8 Koundja 16.22 12.87 22.70 35.21 0.90 4.35 223.8 1.12

9 Yoko 16.40 13.01 23.83 30.83 1.08 5.10 167.9 0.91

10 Nkongsamba 8.15 7.099 14.15 19.84 1.20 3.60 229 1.89

11 Bafia 20.55 13.62 45.14 36.81 1.81 5.99 200 2.24

12 Nanga-eboko 12.36 6.65 43.15 26.78 4.97 0.72 179 6.91

13 Bertoua 15.19 7.65 58.47 30.30 0.47 5.41 210.8 0.53

14 Batouri 11.48 6.02 49.79 21.08 1.21 2.68 165.9 1.57

15 Ngambe 5.50 4.18 12.81 14.85 2.35 3.09 172 2.59

16 Douala 4.62 4.32 14.37 10.63 3.58 4.15 213 3.9

17 Abong-mbang 10.99 5.02 54.07 22.15 1.46 5.78 183 2.03

18 Yaounde 11.41 5.69 58.96 22.46 0.51 4.24 217.7 0.96

19 Akonolinga 10.98 5.58 56.85 21.06 2.30 1.43 186 3.12

20 Eseka 11.61 5.37 58.21 22.31 0.81 7.75 183.7 0.48

21 Yokadouma 11.51 5.61 61.34 20.96 2.50 5.82 187 3.67

22 Lomie 8.04 3.12 58.36 15.48 1.03 8.48 161.7 1.05

23 Kribi 0.70 0.84 61.56 4.77 0.94 4.24 200 1.15

24 Sangmelima 6.25 1.63 70.84 13.34 0.86 10.6 184 0.56

Table 13 recapitulates the choices extended to all stations and for various time scales.
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Table 13: Suitable distribution functions of station precip-

itation data for various time scales (g=gamma; w=weibull;

e=exponential and ln=logormal). The selected distribution

functions are those minimizing the Anderson-Darling statis-

tic.

Best distribution for n-month time scale Number of CRU

No Station n=1 n=3 n=6 n=12 n=18 n=24 agreement out of 6

1 Maroua g g g ln w g 3

2 Kaele g g w g g ln 5

3 Garoua w w w ln w g 4

4 Poli w w w g g w 4

5 Ngaoundere w w w w g w 3

6 Meiganga w w w ln g ln 1

7 Tibati w w w g g w 5

8 Koundja w w w g g g 3

9 Yoko w w w ln g ln 3

10 Nkongsamba w w w g g g 4

11 Bafia w w w g g g 5

12 Nanga-eboko w w w w w w 3

13 Bertoua w w w g g w 5

14 Batouri w w w g g ln 6

15 Ngambe e w w g g w 4

16 Douala w w w g g ln 5

17 Abong-mbang w w g g g w 4

18 Yaounde w w g g g g 2

19 Akonolinga w w g w g g 4

20 Eseka w w g ln ln ln 2

21 Yokadouma w w w g g g 6

22 Lomie w w g g g g 5

23 Kribi w g ln g ln ln 3

24 Sangmelima w w g ln ln ln 3

It appears that for time scales equal to 6 months and less, distribution of station

precipitation show bias to the weibull function which are suitable for the highest number

of station (21 for both 1- and 3-month time scale and 16 for 6-month time scale) out

of the 24 studied stations. The gamma function outperforming in very few cases. One

exceptional case of exponential and lognormal are observed for 1-month and 6-month time

scale respectively. Above 6-month time scale, the number of station precipitation best

fitted by the weibull function decreases falling to 3 and 7 in the benefit of the gamma

function that is suitable for up to 18 stations at 18-month time scale. The number of

station precipitation following the lognormal function also increases with the number of

months in time scale, reaching 8 station out of 24.

Figure 26 shows the spatial pattern of the suitable distribution functions over the
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domain of study, for 3-month (Figure 26a), 6- and 12-month (Figure 26b) and 18- and

24-month time scales (Figure 26c).

Figure 26: Appropriate station distribution function for different time scales (g=gamma;

w=weibull; e=exponential and ln=logormal). In b) and c), the first letter refers to the first

time scales and the second letter to the second time scale.
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For not more than 3-month time scale (illustration for 3-month in Figure 26a)), the

gamma distribution function is suitable north of the domain (Sahelian region), particu-

larly above 10◦N while below, the weibull function is the best fit, except a single case

at the boundary of the Atlantic Ocean, showing bias to gamma. The weibull function

remains the most suitable at 6-month time scale between 4 and 10◦N which represent the

transition zone between the Sahelian and the equatorial forest zone. However, stations

of the equatorial forest zone, covering southern plateau (below 4◦N) mostly show bias to

gamma. At 12-month time scale and more, there is a mixture of gamma, lognormal and

weibull distributions in different zones leading to no apparent spatial organized pattern

(Figures 26b and 26c). Pattern for 18-month time scale looks more like that of 6-month

with gamma in place of weibull function. An almost equal number of gamma (9), lognor-

mal (8) and weibull (7) functions fit the 24-month time scale, with no particular spatial

organization. These apparent inconsistencies are due to the fact that in most cases, more

than one distribution were adequate and the Anderson-Darling statistics may not have

been significantly different. Between 18- and 24-month time scale, the number of station

data showing bias to lognormal function increases up to 8 in the South-Western part of

the domain (right of the Atlantic Ocean).

Distribution functions for CRU precipitation

Similar study with CRU precipitation data on the same time scale and at the grid points

nearest the stations show many cases of similarity. Results are recapitulated in Table

13 in which the last column indicates the number of cases out of the 6 various time

scales analyzed, where the same distribution functions fitted station and CRU data. The

highest number of agreements (no failure) across time scales between the two datasets is

obtained in the South-Eastern part of the domain (Batouri and Yokadouma stations). In

3 instances there was agreement on less than 3 time scales, i.e. Yaounde and Eseka in

the South and Ngaoundere on the Adamawa Plateau. Overall, stations and CRU gridded

precipitations are mostly fitted by the same functions.
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3.3.2 Analysis of the Standardized Precipitation Index (SPI) for

different time scales

Operational drought thresholds

The operational drought thresholds as described in section 2.7.2 were calculated for all

stations and for the five UDSM categories of Table 3 (column 3 to 5) and for 3- and

12-month time scales. They are useful for defining drought levels for various preventive

or corrective actions.

SPI data calculated for all stations were fit using gamma, weibulll, exponential, log-

normal and normal distributions (Figure 27 for illustration).
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Figure 27: Cumulative probability distribution for 3-month SPI showing the empirical distribu-

tion (EDF) and gamma, weibull, lognormal, exponential and normal distributions that were fit

to the data.
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Tables 14 and 15 show results of the KS statistic that was applied to evaluate how

well these distributions fit the SPI data.

Table 14: KS statistic for 3-month SPI after being fit using

various PDF (gamma, weibulll, exponential, lognormal and

normal). Bold characters indicate the minimum values.

No Station name gamma weibulll exponential lognormal normal

1 Maroua 0.11 0.09 0.43 0.11 0.10

2 Kaele 0.11 0.08 0.42 0.12 0.09

3 Garoua 0.14 0.09 0.41 0.15 0.11

4 Poli 0.16 0.12 0.39 0.17 0.13

5 Ngaoundere 0.16 0.12 0.39 0.16 0.14

6 Meiganga 0.13 0.10 0.40 0.14 0.11

7 Tibati 0.14 0.10 0.40 0.15 0.12

8 Koundja 0.12 0.08 0.41 0.14 0.09

9 Yoko 0.16 0.10 0.40 0.17 0.13

10 Nkongsamba 0.08 0.05 0.43 0.09 0.06

11 Bafia 0.15 0.09 0.40 0.17 0.12

12 Nanga-eboko 0.11 0.06 0.42 0.13 0.08

13 Bertoua 0.12 0.06 0.42 0.14 0.09

14 Batouri 0.11 0.06 0.42 0.13 0.09

15 Ngambe 0.09 0.046 0.43 0.10 0.054

16 Douala 0.07 0.05 0.45 0.08 0.06

17 Abong-mbang 0.10 0.05 0.42 0.12 0.08

18 Yaounde 0.11 0.05 0.42 0.13 0.08

19 Akonolinga 0.11 0.06 0.42 0.12 0.09

20 Eseka 0.11 0.05 0.41 0.12 0.08

21 Yokadouma 0.11 0.06 0.42 0.13 0.09

22 Lomie 0.10 0.05 0.43 0.12 0.08

23 Kribi 0.06 0.035 0.45 0.08 0.038

24 Sangmelima 0.09 0.04 0.43 0.10 0.06
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Table 15: KS statistic for 12-month SPI after being fit using

various PDF (gamma, weibulll, exponential, lognormal and

normal). Bold characters indicate the minimum value.

No Station name gamma weibulll exponential lognormal normal

1 Maroua 0.05 0.06 0.47 0.06 0.04

2 Kaele 0.07 0.07 0.48 0.08 0.06

3 Garoua 0.03 0.08 0.47 0.04 0.05

4 Poli 0.06 0.05 0.47 0.08 0.04

5 Ngaoundere 0.03 0.06 0.49 0.04 0.04

6 Meiganga 0.05 0.05 0.49 0.06 0.04

7 Tibati 0.05 0.039 0.46 0.06 0.035

8 Koundja 0.06 0.038 0.48 0.07 0.042

9 Yoko 0.04405 0.06 0.48 0.05 0.04397

10 Nkongsamba 0.07 0.03 0.46 0.08 0.04

11 Bafia 0.07 0.07 0.46 0.09 0.05

12 Nanga-eboko 0.05 0.05 0.49 0.06 0.04

13 Bertoua 0.04 0.06 0.48 0.05 0.03

14 Batouri 0.07 0.04 0.48 0.08 0.05

15 Ngambe 0.08 0.06 0.47 0.08 0.07

16 Douala 0.09 0.07 0.47 0.09 0.08

17 Abong-mbang 0.06 0.07 0.48 0.08 0.04

18 Yaounde 0.05 0.034 0.47 0.06 0.027

19 Akonolinga 0.0373 0.07 0.50 0.0372 0.05

20 Eseka 0.0254 0.06 0.48 0.035 0.0317

21 Yokadouma 0.11 0.07 0.50 0.15 0.06

22 Lomie 0.05 0.07 0.48 0.06 0.04

23 Kribi 0.04 0.04 0.49 0.05 0.03

24 Sangmelima 0.02781 0.06 0.48 0.04 0.02784

It appears that the weibull distribution fits the 3-month SPI well for all stations while

the 12-month SPI is well fitted with the normal distribution in most station and with other

distributions in very few cases. These SPI data fitted with The appropriate distribution

functions were used to determine the drought thresholds across Cameroon, especially in

the stations for which data were available for this study. All the values are shown in Table
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16 for 3- and 12-month time scales.

Table 16: Operational drought thresholds for various time

period and for all stations, calculated using 3- and 12-month

SPI.

No Station name Drought category for 3-month time scale Drought category for 12-month time scale

D4 D3 D2 D1 D0 D4 D3 D2 D1 D0

1 Maroua -2.03 -1.74 -1.5 -1.02 -0.59 -1.64 -1.47 -1.32 -0.94 -0.71

2 Kaele -2.08 -1.86 -1.47 -1.04 -0.62 -1.64 -1.47 -1.32 -0.94 -0.71

3 Garoua -2.25 -1.92 -1.49 -1.09 -0.51 -2.28 -1.61 -1.19 -0.74 -0.48

4 Poli -2.49 -2.21 -1.58 -0.91 -0.55 -1.64 -1.47 -1.32 -0.94 -0.71

5 Ngaoundere -2.55 -2.05 -1.69 -0.93 -0.49 -2.05 -1.63 -1.2 -0.73 -0.47

6 Meiganga -2.35 -1.9 -1.56 -0.99 -0.54 -1.64 -1.47 -1.32 -0.94 -0.71

7 Tibati -2.66 -1.99 -1.54 -0.9 -0.47 -1.64 -1.47 -1.32 -0.94 -0.71

8 Koundja -2.55 -1.83 -1.49 -0.9 -0.45 -1.57 -1.4 -1.24 -0.83 -0.61

9 Yoko -2.44 -1.91 -1.48 -0.91 -0.45 -1.64 -1.47 -1.32 -0.94 -0.71

10 Nkongsamba -1.97 -1.64 -1.45 -1.01 -0.55 -1.79 -1.57 -1.17 -0.83 -0.51

11 Bafia -2.36 -1.94 -1.44 -0.99 -0.32 -1.64 -1.47 -1.32 -0.94 -0.71

12 NangaEboko -2.27 -1.74 -1.38 -0.9 -0.45 -1.64 -1.47 -1.32 -0.94 -0.71

13 Bertoua -2.31 -1.77 -1.42 -0.9 -0.41 -1.64 -1.47 -1.32 -0.94 -0.71

14 Batouri -2.2 -1.74 -1.45 -0.88 -0.5 -1.64 -1.45 -1.28 -0.92 -0.6

15 Ngambe -1.98 -1.67 -1.37 -1 -0.54 -1.75 -1.61 -1.29 -0.85 -0.59

16 Douala -1.73 -1.5 -1.31 -0.97 -0.62 -1.76 -1.5 -1.19 -0.9 -0.63

17 AbongMbang -2.18 -1.71 -1.38 -0.84 -0.48 -1.64 -1.47 -1.32 -0.94 -0.71

18 Yaounde -2.16 -1.74 -1.45 -0.88 -0.49 -1.64 -1.47 -1.32 -0.94 -0.71

19 Akonolinga -2.13 -1.7 -1.4 -0.94 -0.47 -1.93 -1.7 -1.44 -0.88 -0.46

20 Eseka -2.06 -1.78 -1.46 -0.81 -0.46 -2.09 -1.65 -1.32 -0.85 -0.54

21 Yokadouma -1.97 -1.71 -1.41 -0.91 -0.46 -1.64 -1.47 -1.32 -0.94 -0.71

22 Lomie -1.94 -1.62 -1.32 -0.9 -0.51 -1.64 -1.47 -1.32 -0.94 -0.71

23 Kribi -1.82 -1.46 -1.27 -0.83 -0.55 -1.64 -1.47 -1.32 -0.94 -0.71

24 Sangmelima -1.85 -1.6 -1.24 -0.85 -0.52 -2.05 -1.58 -1.32 -0.85 -0.47

Considering the extreme drought category D4 for 3-month timescale, it is seen that

range from a maximum of −1.73 in the coastal city of Douala, to a minimum of −2.66

in Tibati on the Adamawa Plateau. The spatial distribution of D4 thresholds is quite

coherent, with values lower than −2.40 on the high grounds of the Adamawa Plateau.

Continental stations located between latitudes 2◦ and 7◦ north have thresholds between

−2.10 and −2.40. In the southern part of the domain and on the coastal area in the

south-west, values are higher than −2.0. Values for the three sahelian stations of Kaele,

Maroua and Garoua are respectively −2.08,−2.03 and −2.25. At this scale, extreme

drought category D3 follows the general pattern of D4. For 12-month SPI, most of the

stations have D4 threshold of −1.64, with only three stations below −2.0. From the

spatial analysis of the drought category D4, there is no strong dependence on topography

although most stations have very similar thresholds (−1.64) at 12-month time scale.
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Frequency of drought events

Objective drought thresholds were also used to examine frequency in SPI time series. In

Figure 28, appropriate D4 category threshold values are represented by dashed horizontal

lines and exceedances corresponding to drought occurrences.

For 3-month SPI (left column in Figure 28), each station had at lest one event of value

lower than −3. For the first 25 years of the study period, the four stations differ markedly

in D4 category drought frequency: 10 in Kaele, 6 in Kribi, only 2 in Ngaoundere and none

in Bertoua. Whereas in the second half of the period, these episodes are more frequent,

two stations had 13 events each and the two other had 8 events each. For 12-month

SPI (Figure 28 right), all categories of drought events are frequent, especially from the

mid-sisties. The dramatic drought episodes of the seventies and the eighties are clearly

visible, with each station recording at least one D4 event. Table 17 summarizes drought

occurrences in all categories, with the number of events and its percentage with respect

to the total number of time steps in the data.

Table 17: Number of drought events from 1951 to 2005 and

for the five drought categories (D0, D1, D2, D3 and D4).

Results in brackets represent the percentage of realization of

the event over the considered time period.

Number of events for 3-month time scale Number of events for 12-month time scale

Kaele Ngaoundere Bertoua Kribi Kaele Ngaoundere Bertoua Kribi

D4 21 (4%) 11 (1%) 14 (2%) 23 (3%) 9 (1%) 2 (0%) 3 (0%) 8 (1%)

D3 26 (5%) 32 (5%) 32 (4%) 36 (5%) 10 (1%) 3 (0%) 2 (0%) 14 (2%)

D2 39 (8%) 53 (9%) 41 (6%) 45 (6%) 13 (2%) 6 (0%) 7 (1%) 20 (3%)

D1 59 (12%) 76 (13%) 53 (8%) 55 (8%) 16 (2%) 21 (3%) 24 (3%) 21 (3%)

D0 81 (17%) 90(15%) 62 (9%) 66 (10%) 21 (3%) 32 (5%) 33 (5%) 27 (4%)

For 3-month time scale, this percentage is 1% to 2% for exceptional droughts, around

5% for extreme droughts. For 12-month scale, the percentage remains low for all cate-

gories, ranging from 1% fo D4 to 5% for D0 events.
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Figure 28: Station SPI time series for 3- and 12-month time scales. The horizontal dashed

lines indicate operational drought thresholds for exceptional drought category (D4).
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Station versus CRU SPI

Figure 29 presents 3- and 12-month scale SPI time series from CRU gridpoint nearest

each of the four observations stations of Figure 5. This choice is justified by the fact

that the angular distance weighted (ADW) interpolation technique used to construct the

CRU set gives more weight to the station nearest the gridpoint, thus making it the best

representative of the station. In the present analysis, we compare these time series to

those of the stations in Figure 28, in order to access how well the gridded data reproduce

drought characteristics obtained from station observations. For 3-month scale SPI, the

two time series agree overall, with some discrepancies occurring at dates that differ from

station to station: in Kaele in early 1950s, in the 1970s and late 1980s; in Bertoua in

late 1990s and in Kribi in late 1990s, except for the drought of 1997. Most strong events

present in at least three stations are reproduced in the gridded data, noticeably in 1962,

67, 83, 87, 97 and in 2004. Of more concern are the results of Kaele, where station

data show high year to year variability of drought intensities, with 6 events with SPI <

-3, when CRU has an excessively large number of events of magnitude -2. At the same

station, three strong events of early 1950s are much weaker on the gridded data, whereas

weak ones in the 1970s are amplified. In the other stations, CRU tends to show more

severe droughts. Thus for events with SPI values less than -3, there are 12 against 5 in

Bertoua, 11 against 7 in Ngaoundere but only 3 against 5 in Kribi. This reverse situation

in Kribi is due to the underestimation of strong drought events between 1997 and 2000.

For 12-month scale SPI, the main wet (1950s and late 1990s) and dry (1970s and 1980s)

periods show up in both time series. Most drought events last many years, and CRU

indicates more extreme values than do stations. The discrepancies noted at shorter time

scales tend to be amplified at this and higher scales. Thus in Kaele gridded data shows

wet (against dry) episode the mid-1960s and early 2000s, and the reverse in 1994. This

phase opposition between the two data sets is also found in late 1960s in Ngaoundere,

early 1970s and 1990s in Bertoua.

Amplification of disagreement between station and CRU data are better seen in Figure

30 (gray color indicates that data are missing at the corresponding area. This is always

the case at the beginning of the time series because the first (n−1) months are considered

missing, but have been used to calculate the first SPI value given that the precipitation

aggregated must be taken on the first n consecutive months) showing multi-time scales

SPI (The SPI calculated were submitted to the Kolmogorov-Smirnov test in other to check

and define their significant level. Many stations show normally distributed SPIs at 5%

90



Figure 29: 3- and 12-month scales SPI time series from CRU gridpoint nearest each of the

four chosen stations. The horizontal dashed lines indicate operational drought thresholds for

exceptional drought category (D4).
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significant level (Annexe C)). A case in point is the 1996 to 2000 period in Kribi. On

the 3-month scale (Figure 6), the 4 years of severe droughts indicated by the station are

underestimated by CRU. At the 12-month scale, the period is wet for both, and more so

for the station. This reversal is due to the strong wet peaks occurring in the same period

at the station, but not on the CRU grid, and that contributes to the longer scale SPI.

Overall, the CRU gridded data give a fair representation of drought events in the study

area, and can be used where no local station observations are available. The absence of

missing data points is an additional advantage. It may however be of interest to evaluate

the merits of using more than one grid point at a given site.

Figure 30 shows many additional information. For example, from the east (Bertoua

station) to the Sahelian zone (Kaele) and to the neighboring Atlantic Ocean (Kribi),

drought spells intensities have been increasing, reaching the highest values north of domain

while wet spell intensities follow the reverse gradients. In most cases, the results of the

SPI lead to divide the chronological time series into two periods. The first one before

1970 and the second one after 1970 characterized by a high frequency of severe/extremely

wet spells and severe/extreme dry spells respectively. Stations located inner the country

like Ngaoundere and Bertoua have known more intensive wet spells before 1970 and less

intensive dry spells after 1970 as compared to the two other stations. Normal climatic

conditions (SPI falling between -0.5 and 0.5), wet and dried spells usually alternate.

Particular extremely wet spells have been experienced in the neighboring area of the

Atlantic Ocean after 1990. This is clearly shown up at Kribi (30), where the SPI diagram

reveals that the preceded decades had registered more frequent drought events than at

other stations.

For long time scales (greater than 6-month), moderate/severe drought and extremely

wet episodes are reproduced with lower frequency (with a periodicity of about ten year)

than for short time scales. Extremely wet and extreme drought episodes last less and

are observed on decadal scale. Generally, the frequency of wet/drought event decreases

when increasing their intensification. Moderate and severe drought began effectively after

1970, excepted at the neighboring station of the Atlantic Ocean (Kribi), where they

began earlier (since 1960). Before the beginning of these drought episode, climate was

moderately wet, mixed with severe wet conditions. This was observed about twice on

a time period long of two decades. These observations lead to deduce that as time is

passing, droughts are becoming more frequent and intense showing the effect of climate

change that certainly had affected socio-economic sector negatively. Long episodes of

severe droughts and short episode of extreme droughts are identified in the decades 1970
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Figure 30: Station and CRU multiscalar SPI for Kaele, Ngaoundere, Bertoua and Kribi. Hor-

izontal dashed lines show focused time scales.
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and 1980 in all stations. When other stations recorded drought or wet conditions on long

time scale, Kribi experienced the opposite climate condition.

For time scales less than 6-month, it was recorded severe drought episode every year al-

ternated with moderately wet and mild climate conditions (mild drought/wet). Therefore,

there is a yearly periodicity of the reproductivity of climate events along the chronological

precipitation time series. It is noticed that these periodic droughts for short time scales

(less than 6-month) are becoming more intense after 1977 while moderate wet predom-

inated before. From this figure, it appears that below the 9-month time scale, drought

episodes are mostly intra-annual. They become multi-annual above, lasting up to five

years.

Figure 30 also shows that SPI calculated using CRU gridpoint data close to a station

properly identify wet and dry sequences over all timescales. The CRU precipitation de-

rived SPI has the added advantage of not having missing points. The similarity between

the two datasets were checked by the correlation coefficients shown in Figure 31. The

results reveal high correlation between observed and CRU precipitation and calculated

SPIs for time scale less than 9-month and between 15- and 21-month. Station of the

northern part of the domain (Kaele and Ngaoundere) having highest correlations (greater

than 0.8). Correlations on 12- and 24-month time scale are lower falling down to 0.35 at

Bertoua observatory.

Figure 31: Correlation coefficients between Stations and CRU for both precipitation and SPI.
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Discussion

It was found that the suitable distribution function fitting the data depends on station

location and on the length of the time interval used for aggregation of precipitation. The

weibull and gamma are the functions that best fit precipitation in the area. In most stud-

ies on SPI, the gamma distribution is chosen without any testing. The need for such an

evaluation is even clearer for longer time scales where weibull, gamma and lognormel dis-

tributions are found, with no discernable pattern. We also found that objective drought

thresholds are station specific for subannual scales, but the spatial distributions are quite

coherent. Thus, regional values can be defined. For longer scales (above 12-month), most

stations in the domain have the same threshold values. In most stations, drought mag-

nitude and duration increased with time for both short and long time scales. This can

be the consequences of a reduction in precipitation due to climate change as suggested

by Sergio et al. (2009). Such an increase in dryness probably affected crop development

and river runoff negatively. The SPI based only on precipitation can not explain the in-

fluence of temperature change in drought condition. Thus, Sergio et al. (2009) suggested

the calculation of a new index, the Standardized Precipitation Evapotranspiration Index

(SPEI) suited to detecting, monitoring, and exploring the consequences of global warming

on drought conditions. Further studies taking into account this approach are necessary

in other to better understand drought climatology. With the increase of global warming,

an increase in drought magnitude, duration and frequency is to be feared and studies

including climate models intended to guide adaptive measure also need to be done. CRU

precipitation distribution functions and derived SPI corroborate the results of many sta-

tions. Therefore it may be recommended for further investigations to use CRU data on

areas where observations are not possible or where they have high proportions of missing

data.

Summary of the chapter

The principal results of our investigation were presented and discussed in this chapter.

We found that precipitation indices change with space and time and can be well simulated

by many climate models. For the future climate, it is projected a slight modification in

many indices due to the greenhouse gas effect.
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General Conclusion

The complex interactions and feedbacks that occur within Earth’s climate system make

it difficult to establish how large the human-induced effects will be or how soon we may

be able to detect the climate change. However, the increase of our understanding of the

natural variability of the climate system can help to built better climate models that more

explicitly and more accurately represent weather phenomena, and to reduce uncertainties

in predictions and adaptability. The present work contributes to this challenge. Using

daily precipitation data from 24 stations in Cameroon and from four general circulation

models (MPI-echam5, CSIRO-mk3.5, BCCR-bcm2.0 and MRI-cgcm2.3.2a), we analyzed

some rainfall statistical parameters, onset, retreat and length of the rainy season under

current and perturbed climates. The standardized precipitation index was also analyzed

using monthly precipitation from stations and CRU grids.

For the study of onset, retreat and length of the rainy season, climatic zones were

first defined, each of them characterized by stations with close onset and retreat dates of

the rainy season. Next, onset and retreat dates and lengths of the rainy season for the

current climate (1962-1993) calculated from both observations and IPCC model outputs

were studied and compared. Projections of impacts of climate change on onset and retreat

dates and length of the rainy season were assessed with these same models under the

SRES A2 greenhouse gas emission scenario over the period 2082-2098. Results show that

rainy season begins earliest and ends latest south of the domain while earliest retreat

dates are registered north of the domain. Thus, the length of the rainy season increases

southwards. Amplitudes of fluctuations are stronger for onset date than for retreat. Model

results for current climate are close to observations when they are considered with their

corresponding standard deviations. The climate models CSIRO-mk3.5 and MPI-echam5,

perhaps because of their higher spatial resolution, show the best performances and are

then more appropriate than the two other models for determining onset, retreat and length

of the rainy season over Cameroon and neighboring areas. The low spatial resolution of

BCCR-bcm2.0 and MRI-cgcm2.3.2a may have contributed to their poor results in most
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cases. For future climate (2082-2098) and according to three of the four climate models

results, onset and retreat dates are expected in most cases to be later by about 1 pentad

(5 days) than in the present climate and for the duration of the rainy season, an increase

of approximately 1 pentad (5 days) is expected in the northern part of the domain and a

decrease of the same range elsewhere.

As for annual total amounts, MPI-echam5 and CSIRO-mk3.5 well reproduce observed

pattern and trends, but precipitation intensities are slightly underestimated in the south-

ern part by MPI-echam5 and overestimated in the northern part by CSIRO-mk3.5. But

combining the two model outputs, simulation of the mean annual total amount is im-

proved. MRI-cgcm2.3.2a and BCCR-bcm2.0 are successful only in some parts of the

domain. MPI-echam5 shows best results during the seasons MAM and JJA while CSIRO-

mk3.5 and MRI-cgcm2.3.2a give good spatial representation during MAM and SON. All

models well simulate dry periods and overestimate the number of rainy days. The study

of the maximum length of dry spells shows that extreme southern area is the least dry

while the Sudano Sahelian area is the driest and the four models well represent spatial

pattern of this parameter. Only CSIRO-mk3.5 and MPI-echam5 succeed in represent-

ing intensities over the entire domain while other models do well only below 8◦N and

overestimate above. All models tend to underestimate extreme events. As concerned in-

terannual trends, most rainfall statistical parameters reflect a passage from the dry 1980

years to a wetter period. Orography and geographical position are some of the factors

causing inhomogeneity of spatial trends. The student’s t-statistic and the Mann-Kendall

statistic were used to test trends at 0.05 significant level. Studies reveal that the models

BCCR-bcm2.0 and CSIRO-mk3.5 show best results of signs of trends for the fraction of

annual precipitations contributed by daily events above the 90th percentile of daily values

and only BCCR-bcm2.0 succeed for annual number of rain days in the three zones. It

is noticed that models with high resolution (CSIRO-mk3.5 and MPI-echam5) show best

results of the mean current climate. Trend magnitude for mean annual total amounts is

best simulated by BCCR-bcm2.0 and the fraction of annual precipitation contributed by

daily events above the 90th percentile of daily values is best simulated by both BCCR-

bcm2.0 and CSIRO-mk3.5 at the order of 10−3. For the future climate in the late of 21st

century (2082-2098), no changes in rainfall statistical parameters are expected around

Adamawa Plateau and East of the domain. The results of this part reveal that high spa-

tial resolutions seem to positively impact simulations of general circulation models. This

points to the need in future investigations to assess the performances of regional climate

model. Being able to predict onset and retreat dates within days would be of more benefit
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to local farmers. Also, recasting results in terms of probabilities is necessary to evaluate

risks of false starts of rain which are problematic for the sowing season (Hess et al. 1995).

We also used four statistical distribution functions to fit precipitation data recorded in

24 observation stations in Cameroon. The Anderson-Darling statistic was used to choose

the best distribution function describing each station precipitation that was then used

for the calculation of the standardized precipitation index (SPI). It was found that the

best distribution changes with location and time scale. In most cases, the weibull and

the gamma distributions better fit empirical precipitation. For short time scale (equal

to 6 months or less), stations above 10◦N have the gamma distribution function as the

best fit while below this belt, stations show bias to the weibull distribution except for

very few cases. Above 6-month time scale, there is a lot of spatial inconsistencies of fitted

distributions. The results of the SPI show that droughts are generally rarer than wetness.

Long episodes of severe droughts and short episodes of extreme droughts are identified in

the decades 1970 and 1980 in many stations. Drought episodes are mostly intra-annual for

short time scale (9 months or less). They become multi-annual above, lasting up to five

years. CRU grid precipitation show good results of the SPI with the best performances on

short time scales. The necessity to objectively define the operational drought thresholds

in order to expect the triggering of true drought responses was shown.

The results of the current work, the observation of the climate and consensus of the

results produced by many models in many areas in the world show the evidence that

climate is changing and give an increased confidence in the credibility of the models.

Some forms of air pollution (e.g. emissions of CO2 and other greenhouse gases) resulting

from human activities significantly alter the climate, in the sense of global warming. The

risk of destabilizing the Earth’s climate system is growing every day with the increase

of the emissions of global warming gases as the world burns ever more coal, oil and gas

for energy. It is reported that for many areas on Earth, climate change causes significant

damage: sea level rise (Vellinga et van Verseveld 2000), accentuation of extreme weather

events (droughts, floods, hurricanes, ...), destabilization of forests, threats to freshwater

resources, agricultural problems, desertification, reduction of biodiversity, expansion of

tropical diseases, ecosystems, etc. (Vellinga et van Verseveld 2000). Improved forecasts

of regional climate change, aimed to better understand the responses of trees and char-

acterize the adaptive capacities of forestry sector, will provide new information on the

likely impacts of climate change on forests. This new information should be gradually

used by development policies in order to improve resilience of forests to future climates.

It is therefore important to disseminate knowledge on appropriate adaptation measures
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to all policymakers. Society should develop appropriate responses to help manage and re-

duce vulnerability to extreme meteorological events. It is likely that increasing frequency

and/or intensity of severe weather as a result of climate change will put more lives and

property at risk, particularly in coastal and inland areas close to coastlines. Around the

world, these areas have already become very vulnerable over the past several decades as

human populations and development have grown dramatically in coastal and near-coastal

regions (Kevin et al. 2000).
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Appendix

Annexe A: Grouping based on onset and retreat dates of the rainy
season

The following Figure (Fig. 32) were not inserted in the original manuscript, but they

were useful to define criteria of the grouping and to delimitate sub-domains of our study

domain. The 4 pentad interval (results on Fig. 4) appeared to be the one giving reasonable

separate zones (stations spatially grouped) as compared to interval of 1, 2 or 3 pentads.

These zones were then retained for the study.
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Figure 32: Classification of stations in different sub-domains. Stations where both onset and

retreat dates are different by 1 pentads at most (Figure top left), 2 pentads at most (Figure top

right), 3 pentads at most (Figure bottom left) or 4 pentads at most (Figure bottom right) were

assigned the same marker and constitute stations of a same zone.

111



Annexe B: Interannual trends magnitudes in mean annual total
amounts and fraction of annual precipitations contributed by daily
events above the 90th percentile

Figure 33: Interannual trends magnitudes in mean annual total amounts ((a.1), (a.2), (a.3))

and in fraction of annual precipitations contributed by daily events above the 90th percentile

((b.1), (b.2), (b.3)).
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Annexe C: Value of the Kolmogorov-Smirnov test statistic for the
normality of SPIs.

Table 18: Value of the Kolmogorov-Smirnov test statistic

for the normality of SPIs. Test were done at 5% signifi-

cant level. Bold characters indicate significant values and

underlined characters indicate that the H0 hypothesis were

accepted.

No Station Value of D for n-month time scale

values of n

1 3 6 12 18 24

1 Maroua 0.4095 0.2421 0.1388 0.0411 0.0675 0.0335

2 Kaele 0.4131 0.2392 0.1179 0.064 0.0473 0.0925

3 Garoua 0.4061 0.2391 0.1052 0.052 0.0542 0.0409

4 Poli 0.3546 0.1978 0.1001 0.0449 0.0597 0.0577

5 Ngaoundere 0.3105 0.162 0.0803 0.0402 0.0535 0.0544

6 Meiganga 0.223 0.1011 0.0748 0.0356 0.0444 0.0714

7 Tibati 0.2559 0.107 0.08 0.0353 0.0403 0.0537

8 Koundja 0.1916 0.0878 0.0846 0.0427 0.0561 0.0549

9 Yoko 0.1799 0.1199 0.0481 0.0395 0.0445 0.0386

10 Nkongsamba 0.0921 0.0635 0.0795 0.0441 0.053 0.0484

11 Bafia 0.1385 0.1103 0.0321 0.05 0.0359 0.0605

12 Nanga-eboko 0.115 0.0797 0.0319 0.0386 0.0313 0.0323

13 Bertoua 0.0915 0.0849 0.0252 0.0278 0.0463 0.0384

14 Batouri 0.0865 0.0855 0.0313 0.0487 0.0332 0.0541

15 Ngambe 0.0803 0.0532 0.0727 0.0708 0.0357 0.0495

16 Douala 0.048 0.0643 0.0815 0.0775 0.0312 0.0931

17 Abong-mbang 0.0898 0.073 0.0301 0.041 0.0389 0.0348

18 Yaounde 0.0674 0.0814 0.0322 0.0289 0.0322 0.0682

19 Akonolinga 0.0879 0.0868 0.0321 0.0457 0.0315 0.091

20 Eseka 0.0711 0.0722 0.023 0.0303 0.0315 0.0569

21 Yokadouma 0.0773 0.0894 0.0293 0.0561 0.0407 0.0289

22 Lomie 0.0691 0.076 0.0338 0.0397 0.0355 0.0452

23 Kribi 0.0195 0.0397 0.0278 0.0314 0.0271 0.0572

24 Sangmelima 0.0648 0.0595 0.0213 0.027 0.0268 0.0529
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Annexe D: GLOSSARY

Aerosol: Microscopic particles suspended in the atmosphere, originating from either

a natural source (e.g., volcanoes) or human activity (e.g., coal burning).

Albedo: The reflectivity of the Earth.

Anaerobic: Occurring in the absence of free oxygen; an example of an anaerobic

process is digestion in cattle.

Annual cycle: The sequence of seasons over a full year.

Anthropogenic climate change: Climate change arising from human influences.

Anticyclone: A high-pressure weather system. The wind rotates clockwise around

these in the Northern Hemisphere and counterclock- wise in the Southern Hemisphere.

They usually give rise to fine, settled weather.

Atmospheric chemistry: The science of the chemical composition of the atmo-

sphere.

Atmospheric instability: The growth of small disturbances into large disturbances

through internal processes.

Baroclinic instability: An atmospheric instability associated with horizontal tem-

perature gradients such as between the equator and the poles.

Biomass burning: The burning of organic matter from plants, animals, and other

organisms.

Carbon dioxide (CO2): A naturally occurring, colorless atmospheric greenhouse

gas. It arises in part from decay of organic matter. Plants take up carbon dioxide during

photosynthesis. Animals breathe it out during respiration. Humans contribute to carbon

dioxide concentrations in the atmosphere by burning fossil fuels and plants.

Chaos: In a technical sense, a process whose variations look random even though

their behavior is governed by precise physical laws.

Chlorofluorocarbon (CFC): One of a family of greenhouse gas compounds contain-

ing chlorine, fluorine, and carbon. CFCs do not occur naturally; all are made by humans.

They are generally used as propellants, refrigerants, blowing agents (for producing foam),

and solvents.

Climate: The average weather together with the variability of weather conditions for

a specified area during a specified time interval (usually decades).

Climate change: Long-term (decadal or longer) changes in climate, whether from

natural or human influences.
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Climate model: A computer model that uses the physical laws of nature to predict

the evolution of the climate system.

Climate system: The interconnected atmosphere-ocean-land-biosphere-ice compo-

nents of the Earth involved in climate processes.

Climate variation: A fluctuation in climate lasting for a specified time interval,

usually many years.

Cold front: A transition zone where a cold air mass advances, pushing warmer air out

of the way. Warm air is forced to rise, commonly creating convection and thunderstorms,

so that a period of “bad weather” occurs as the temperatures drop.

Composition of the atmosphere: The makeup of the atmosphere, including gases

and aerosols.

Convection: In weather, the process of warm air’s rising rapidly while cooler air

subsides, usually more gradually, over broader regions elsewhere to take its place. This

process often produces cumulus clouds and may result in rain.

Cumulus cloud: A puffy, often cauliflower-like, white cloud that forms as a result of

convection.

Cyclone: A low-pressure weather system. The wind rotates around cyclones in a

counter clockwise direction in the Northern Hemisphere and clockwise in the Southern

Hemisphere. Cyclones are usually associated with rainy, unsettled weather and may

include warm and cold fronts.

Dust Bowl era: The period during the 1930s when prolonged drought and dust

storms arose in the central Great Plains of the United States.

Dynamics: In climate, the study of the action of forces on the atmospheric and

oceanic fluids and their response in terms of winds and currents.

Ecosystem: A system involving a living community and its nonliving environment,

considered as a unit.

El Niño: The occasional warming of the tropical Pacific Ocean off South America.

Associated warming from the west coast of South America to the central Pacific typically

lasts a year or so and alters weather patterns around the world.

Electromagnetic spectrum: The spectrum of radiation at different wavelengths,

including ultraviolet, visible, and infrared rays.

Enhanced greenhouse effect: The increase in the greenhouse effect from human

activities.

Evapotranspiration: The evaporation of moisture from the surface together with

transpiration, the release of moisture from within plants.
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Feedback: The transfer of information on a system’s behavior across the system that

modifies behavior. A positive feedback intensifies the effect; a negative feedback reduces

the effect.

Fossil fuel: A fuel derived from living matter of a previous era; fossil fuels include

coal, petroleum, and natural gas.

General circulation model: A computer model, usually of the global atmosphere

or the oceans; GCMs are often used as part of even more complex climate models.

Glacier: A mass of ice, commonly originating in mountainous snow fields and flowing

slowly down-slope.

Global warming: The increasing heating of the atmosphere caused by increases

in greenhouse gases from human activities and their “entrapment” of heat. It produces

increases in global mean temperatures and an increased hydrological cycle. This phe-

nomenon is also popularly known as the greenhouse effect.

Greenhouse effect: The effect produced as certain atmospheric gases allow incoming

solar radiation to pass through to the Earth’s surface but reduce the escape of outgoing

(infrared) radiation into outer space. The effect is responsible for warming the planet.

Greenhouse gas: Any gas that absorbs infrared radiation in the atmosphere.

Groundwater: Water residing underground in porous rock strata and soils.

Hydrological cycle: The cycle by which water moves and changes state through the

atmosphere, oceans, and Earth. Evaporation and transpiration of moisture produce water

vapor, which is moved by winds and falls out as precipitation to become groundwater,

which in turn may run off in streams or in glaciers into the seas or become stored below

ground.

Infrared radiation: The longwave part of the electromagnetic spectrum, correspond-

ing to wavelengths of 0.8 microns to 1,000 microns. For the Earth, it also corresponds to

the wavelengths of thermal emitted radiation. Also known as longwave radiation.

Jet stream: The strong core of the midlatitude westerly winds, typically at about 8

to 10 km above the surface of the Earth, in each hemisphere.

Land surface exchange: An exchange of gases from the land surface into the atmo-

sphere or vice versa. The most common is evaporation of water into water vapor.

Little Ice Age: A prolonged cool period, especially in Europe, occurring primarily

in the 16th and 17th centuries.

Longwave radiation: See infrared radiation.

Mean: The average of a set of values.

Methane (CH4): A naturally occurring greenhouse gas in the atmosphere produced
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from anaerobic decay of organisms. Common sources include marshes (thus the name

marsh gas), coal deposits, petroleum fields, and natural gas deposits. Human activities

contribute to increased amounts of methane, which can come from the diges tive system

of domestic animals (such as cows), from rice paddies, and from landfills.

Natural greenhouse effect: The part of the greenhouse effect that does not result

from human activities.

Negative feedback: See feedback.

Net radiation: The sum of all the shortwave and longwave radiation passing through

a level in the atmosphere.

Nitrous oxide (N2O): A naturally occurring greenhouse gas in the atmosphere pro-

duced by microbes in the soil and ocean. Humans contribute to concentrations through

burning wood, using fertilizers, and manufacturing nylon.

Nonlinear: Not linear. Linear relationships between two variables can be plotted as

a straight line on a graph. Nonlinear relationships involve curved or more complex lines.

Normal distribution: A bell-shaped curve of the distribution of the frequency with

which values occur, defined by the mean and the standard deviation.

Ozone (O3): A molecule consisting of three bound atoms of oxygen. Most oxygen in

the atmosphere, consists of only two oxygen atoms (O2). Ozone is a greenhouse gas. It is

mostly located in the stratosphere, where it protects the biosphere from harmful ultravio-

let radiation. Human activities contribute to near-surface ozone through car exhaust and

coal-burning power plants; ozone in the lower atmosphere has adverse affects on trees,

crops, and human health.

Phenology: The study of natural phenomena that occur in a cycle, such as growth

stages in crops.

Photosynthesis: The process by which green plants make sugar and other carbohy-

drates from carbon dioxide and water in the presence of light.

Positive feedback: See feedback.

Runoff : Excess rainfall that flows into creeks, rivers, lakes, and the sea.

Scattering radiation: The dispersion of incoming radiation into many different

directions by molecules or particles in the atmosphere. Radiation scattered backwards is

equivalent to reflected radiation.

Solar radiation: Radiation from the sun, most of which occurs at wavelengths shorter

than the infrared.

Southern Oscillation: A global-scale variation in the atmosphere associated with

El Niño events.
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Stability: In meteorology, a property of the atmosphere, making it resistant to dis-

placements. The atmosphere is stable if a perturbation decays and it returns to its former

state. It is unstable if the perturbation grows.

Standard deviation: A measure of the spread of a distribution. For a normal

distribution, 68

Stratosphere: The zone of the atmosphere between about 10–15 and 50 kilometers

above the Earth’s surface. Most of the ozone in the atmosphere is in the stratosphere.

The stratosphere is separated from the troposphere below by the tropopause.

Temperature gradient: The differences in temperature across a specified region.

Thermal: A rising pocket of warm air.

Thermal radiation: Longwave (infrared) radiation from the Earth.

Transpiration: The giving off of water vapor through the leaves of plants.

Troposphere: The part of the atmosphere in which we live, ascending to about 15

km above the Earth’s surface, in which temperatures generally decrease with height. The

atmospheric dynamics we know as weather take place within the troposphere.

Urban heat island: The region of warm air over built-up cities associated with the

presence of city structures, roads, etc.

Visible radiation: Electromagnetic radiation, lying between wavelengths of 0.4 and

0.7 microns, to which the human eye is sensitive.

Warm front: A transition zone where a warm air mass pushes cooler air out of the

way over a broad region. The warm air tends to rise, often creating stratiform clouds and

rain as the temperatures rise.

Weather: The condition of the atmosphere at a given time and place, usually ex-

pressed in terms of pressure, temperature, humidity, wind, etc. Also, the various phe-

nomena in the atmosphere occurring from minutes to months.

Weather systems: Cyclones and anticyclones and their accompanying warm and

cold fronts.

Wind shear: Large differences in wind speed and/or direction over short distances.

118



Publications list

Publications

1. G. M. Guenang, F. Mkankam Kamga, (2012): Onset, retreat and length of the

rainy season over Cameroon, Atmospheric Science Letters of the Royal Meteorolog-

ical Society, 13: 120-127

2. G. M. Guenang, F. Mkankam Kamga, (2013) : Computation of the Standardized

Precipitation Index (SPI) and its use to assess drought occurrences in Cameroon over

recent decades, Journal of Applied Meteorology and Climatology of the American

Meteorology Society, 53 (10): 2310-2324

119



ATMOSPHERIC SCIENCE LETTERS
Atmos. Sci. Let. 13: 120–127 (2012)
Published online 22 February 2012 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/asl.371

Onset, retreat and length of the rainy season over
Cameroon
G. M. Guenang* and F. Mkankam Kamga
Laboratory for Environmental Modelling and Atmospheric Physics, Department of Physics, University of Yaounde 1, Yaounde, Cameroon

*Correspondence to:
G. M. Guenang, Laboratory for
Environmental Modelling and
Atmospheric Physics,
Department of Physics, University
of Yaounde 1, Yaounde,
Cameroon.
E-mail: merlin.guenang@yahoo.fr

Received: 30 July 2011
Revised: 28 December 2011
Accepted: 29 December 2011

Abstract
Observed precipitation from 24 stations in Cameroon during 1962–1993 were used to study
onset, retreat and length of the rainy season. Results were compared to control simulations
by four IPCC 4AR AOGCMs. CSIRO-mk3.5 and MPI-echam5 AOGCMs best captured
onset, retreat and duration of the rainy season. Projections for 2082–2098 under the SRES
A2 emission scenario were also analysed. For that period, onset dates are expected to be
later by 1 pentad or more than in the current climate and retreat by less than half a pentad
in zones 1 and 2. This will lead to a slight decrease in the duration of the rainy season.
The situation is reverse in zone 3, where the season will be longer. Copyright  2012 Royal
Meteorological Society

Keywords: rainfall onset; rainfall retreat; length of the rainy season; climate change;
Cameroon; climate projection

1. Introduction

Rainfall onset and retreat dates are important param-
eters in the agricultural calendar in most tropical
regions. As defined by Odekunle et al. (2005), the
rainfall onset is the period at the beginning of the
rainy season, when rainfall distribution has become
adequate for crop development, while rainfall retreat
refers to the period, towards the end of the rainy
season, when rainfall distribution may no longer sus-
tain crop growth. Many regions over the world are
expected to suffer substantial climate modifications as
a result of global warming. These changes will affect
the onset and retreat of the rainy season which has
become irregular over the years (Salack et al., 2011),
making it difficult for farmers to optimize the seed
planting period and adjust to the length of the grow-
ing season (Olaniran, 1983a; Mugalavai et al., 2008;
Ndomba, 2010). The immediate consequences are the
decrease of agricultural production and an increase
risk of hunger. Therefore, the determination of the
onset and retreat dates of the rainy season in various
regions throughout the world have become a challenge
for many researchers.

Various methods have been developed to deter-
mine onset and retreat dates of the rainy sea-
son. Odekunle(2006) classified these methods into
five main categories: (1) Intertropical Discontinuity
(ITD)-rainfall model (Ilesanmi, 1972a), (2) rainfall-
evapotranspiration relation model (Benoit, 1977),
(3) percentage cumulative mean rainfall model, based
on rainfall data alone (Ilesanmi, 1972b; Adejuwon
et al., 1990; Adejuwon, 2006), (4) wind shear model
(Omotosho, 1990a, 1990b), (5) the theta-E technique
(Omotosho, 2002). Odekunle(2006) used two differ-
ent methods based on rainfall data, to determine onset

and retreat dates of the rainy season in Nigeria. The
study established that both rainfall amount and rainy
days are equally effective in the determination of the
mean rainfall onset and retreat dates, but the latter
method is more efficient for individual year. Omo-
tosho(1992) proposed a simple empirical scheme for
predicting onset and retreat in the West African Sahel,
using upper atmosphere wind data. He considered that
the poleward retreat of the subtropical jet is linked
to the start of rain, whereas the destruction of the
wind shear is a forerunner to the cessation of rainfall.
The percentage cumulative mean rainfall is the most
used method. It has the advantage of depending only
on rainfall data that are readily available from direct
measurements rather than other rainfall-associated fac-
tors (Odekunle et al., 2005). This method was used
by Olaniran(1983a) to study the onset of rains and
the start of the growing season in Nigeria. The results
revealed that there is no significant difference between
the mean onset date obtained and the mean start of the
growing season.

Most studies on rainfall onset and retreat in African
countries were performed on a limited number of sta-
tions or on short time periods because of the lack
of complete data series in observation. The use of
satellite data or of models outputs are some palliative
solutions to this issue. However, satellite data are lim-
ited to recent periods while model outputs can cover
longer periods in both present and future. In view
of the present global warming and its consequences
on local climate variability, the use of model out-
puts to investigate characteristics of the rainy season
(e.g. rainfall totals, rainy day frequencies, onset, retreat
and length of the rainy season) is necessary in order
to assess future changes and guide adaptation mea-
sures. Global and regional climate models with various

Copyright  2012 Royal Meteorological Society
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IPCC emission scenarios have been used by many
authors for projecting future climate change. In the
Iberian Peninsula, it was found that 5/24 IPCC GCMs
(MIROC3.2-HIRES, MPI-ECHAM5, GFDL-CM2.1,
BCCR-BCM2.0 and UKMO-HADGEM1) best repro-
duce current climate (Errasti et al., 2011) and could
be used for future projections. Mkankam (2000) noted
that two IPCC-coupled atmosphere-ocean general cir-
culation models (ECHAM4 and HADCM2) simulated
well the present climate in Cameroon and neighbour-
ing areas. Thus, he used their outputs to evaluate
projected changes in rainfall and temperature result-
ing from increased concentration of greenhouse gases
(GHGs) in the atmosphere for the period 2040–2070.
The results revealed changes in annual rainfall within
the range of present climate variability while the pro-
jected temperature increases were larger than observed
variability. An evaluation of the ability of 18 GCMs to
capture the West African monsoon system, found that
three models (among them MPI-ECHAM5) gave rea-
sonable simulations of the twentieth-century climate
while others comprising CSIRO-Mk3.0 and MRI-
CGCM2.3.2 failed to do so (Cook and Vizy, 2006).
Errasti et al. (2011) revealed that all IPCC models do
not describe the present climate with similar accuracy.
Furthermore, the best models for a particular region
of the earth do not always achieve the same degree of
performance in other regions. Additionally, the skill of

the models is different according to the meteorological
variables examined.

The objectives of this paper are to evaluate the per-
formances of some IPCC-4AR model in reproducing
onset, retreat and length of the rainy season in the
study area, and to assess future changes under the
SRES A2 GHG emission scenario. Simulations of cur-
rent climate and of future perturbed climate under this
emission scenario were carried out for the IPCC 4th
Assessment Report (IPCC-4AR) using several GCMs.
The method of the percentage cumulative mean rain-
fall amount was used to determine present and future
climate rainfall onset and retreat dates over Cameroon.
Analyses for pertubed climate were extended to the
country’s neighbouring areas to increase the number
of model grid points used as theses areas have similar
climate (Figure 1).

The work is organized as follows. In Section 2,
the study area is described. In Section 3, we present
data used and define the methodology. The results on
stations grouping, the analysis of mean onset, retreat
and length of the rainy season for both current and
future climates, are in Section 4. Section 5 is devoted
to concluding remarks and perspectives.

2. Study area

The study domain is located in Equatorial Central
Africa between 1–13 ◦N and 7–18 ◦E. This area

Figure 1. Study area with the geographical locations of rainfall stations (indicated by numbers) and of climate models grid points
(BCCR-bcm2.0, CSIRO-mk3.5, MPI-echam5 and MRI-cgcm2.3.2a). Grid point locations for each model are indicated by a specific
marker. Dashed lines show delimited zones.

Copyright  2012 Royal Meteorological Society Atmos. Sci. Let. 13: 120–127 (2012)
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encompasses the Cameroon territory. GCMs results
are discussed on a wider domain including areas
bordering the country (Figure 1). The climate of the
area is not uniform, varying from tropical humid
in the south to semi-arid and hot in the north.
The southern part of the country is bordered in the
west by Atlantic Ocean and is covered by dense
rain forest. The northern part has a dry to arid
Sahelian type climate depending on latitude. Economic
activities in the area are based mostly on agriculture,
generally at subsistence levels. Cacao, coffee, bananas,
rubber, palm oil and cotton are the main cash crops
raised by farmers. Main food crops are cassava, corn,
yams, sweet potatoes and millet. Logging is another
important resource in Cameroon with heavy timber
exportation. More information on the country can be
found in Penlap et al. (2004). All these activities are
rainfed and almost no irrigation.

3. Data and methodology

3.1. Data used
Five data sets were used in the study: daily rain-
fall data from 24 measuring stations in Cameroon
and simulated daily rainfall from MPI-echam5, MRI-
cgcm2.3.2a, BCCR-bcm2.0 and CSIRO-mk3.5. Station
rainfall data provided by the Cameroon Meteorologi-
cal Services are the same successfully used by Penlap
et al. (2004). The geographical positions of the stations
are shown in Figure 1. Table I indicates their names,
locations and altitudes. Some stations have missing
values, representing at most less than 4% of total data.
Simulated rainfall were obtained from the World Cli-
mate Research Program’s (WCRP’s) Coupled Model
Inter-comparison Project phase 3 (CMIP3) multi-
model dataset at the Lawrence Livermore National
Laboratory, USA. They were produced for IPCC
4th Assessment Report (4AR) (Meehl et al., 2007).
Echam5 is a model of the Max Planck Institute (MPI-
echam5) for Meteorology in Germany (Roeckner
et al., 1996) while cgcm2.3.2a and mk3.5 are respec-
tively from the Meteorological Research Institute
(MRI-cgcm2.3.2a) in Japan (Yukimoto et al., 2006)
and the Australian Commonwealth Science and Indus-
trial Research Organization (CSIRO-mk3.5) (Gordon
et al., 2002). Model bcm2.0 is from the Bjerknes Cen-
tre for Climate Research (BCCR-bcm2.0), University
of Bergen, Norway (Furevik et al., 2003). A 32-year
data for the current climate (1962–1993) and a 19-year
(2082–2098) of the future climate under the SRES
A2 emission scenario were analysed. Grid points for
each of the four IPCC 4AR models are shown in
Figure 1. Echam5 and Mk3.5 have the same grid spac-
ing (208 km) while Cgcm2.3.2a and Bcm2.0 have
spacings of 310 km.

3.2. Methodological approach
The method adopted in this study for the determina-
tion of onset and retreat dates was the cumulative

Table I. Geographical positions and altitudes of the 24 rainfall
stations used. Stations are grouped per defined climatic zones.
They are also assigned numbers used to represent them in
Figure 1.

Region N◦ Station name
Lon
( ◦E)

Lat
( ◦N)

Alt
(m)

Zone 1 11 Bafia 11.25 4.73 500
12 Nanga-éboko 12.37 4.68 623
13 Bertoua 13.68 4.58 668
14 Batouri 14.37 4.47 650
17 Abong-mban 13.20 3.97 693
18 Yaoundé 11.53 3.83 753
19 Akonolinga 12.25 3.77 671
20 Eséka 10.77 3.65 228
21 Yokadouma 15.10 3.52 534
22 Lomié 13.62 3.15 624
23 Kribi 09.99 2.95 10
24 Sangmélima 11.98 2.93 712

Zone 2 5 Ngaoundéré 13.57 7.35 1104
6 Meiganga 14.0 7.20 1027
7 Tibati 12.63 6.48 873
8 Koundja 10.75 5.65 1210
9 Yoko 12.37 5.55 1027

10 Nkongsamba 09.93 4.95 816
15 Ngambé 10.62 4.23 610
16 Douala 09.73 04.00 5

Zone 3 1 Maroua 14.26 10.46 423
2 Kaélé 14.45 10.10 386
3 Garoua 13.38 9.33 241
4 Poli 13.25 8.48 436

percentage mean rainfall amount (Ilesanmi, 1972a).
Daily rainfall data for each year were grouped into
5-day means (pentads). This grouping was performed
on non-overlapping 5-day means starting at pen-
tad 1 (1 to 5 January) and ending at pentad 73 (27
to 31 December). In the first step of the method,
the percentage of mean annual rainfall was deter-
mined at 5-day intervals. Next, cumulative percent-
ages were calculated for the full year. Finally, the
timings of the accumulation of 7–8% and of 90%
of the annual rainfall were taken as onset and
retreat of rains respectively. The length of the rainy
season was defined simply as the period between
onset and retreat dates. According to the method
adopted here, the monsoon rainy season, between
onset and retreat accounts for 83.5% of annual
rainfall.

In the first part of the analysis, the temporal mean
onset and retreat dates of the rainy season were first
calculated for each station of the domain. Second,
the following criteria were used to divide the study
domain into sub-domains or zones: stations where both
onset and retreat dates are different by 4 pentads at
most were assigned to a common climatic zone. The
4-pentad interval appeared to be the one giving rea-
sonable separate zones (stations spatially grouped) as
compared to interval of 1, 2 or 3 pentads (Figures
not shown). For model outputs, zone definitions were
extended to neighbouring areas of Cameroon in order
to increase the number of grid points used. Some stud-
ies on domains comprising our study area (Olaniran,

Copyright  2012 Royal Meteorological Society Atmos. Sci. Let. 13: 120–127 (2012)
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1989, 1983b) can justify this extension. Next, observed
and simulated data were analysed in every zone by cal-
culating for each year and at each station (grid point)
onset and retreat dates and length of the rainy season.
Annual results were averaged for stations (grid points)
within each zone giving a 32-year time series per
zone for both observations and model outputs. Finally,
means, standard deviations and interannual variabil-
ity were analysed and compared. Statistics on how
each model reproduces the observed parameters (onset
and retreat dates and duration of the rainy season)
were estimated as the ratio of the observed number
of parameters simulated correctly to the total number
of cases.

Climate change evaluations were based on com-
parisons between current climate and future SRES
A2 scenario perturbed climate. The A2 scenario rec-
ognized as the most severe (Cook and Vizy, 2006)
assumes strong CO2, CH4 and SO2 increases through-
out the twenty-first century (except for SO2, which
declines after 2030) (IPCC, 2001). Knowledge about
how models respond to these changes are useful for
predictions of economic impacts.

4. Results and discussion

4.1. Grouping based on onset and retreat dates
of the rainy season

A total of three zones were defined in the study
domain (Figure 1) using the criteria presented in the
methodology section. These zones are similar to those
defined using other criteria (Olaniran, 1989, 1983b).
Thus we can consider:

(1) The equatorial forest zone (zone 1) mostly cov-
ered by dense forests and having two rainy
seasons;

(2) The Midland zone (zone 2) which predominantly
covers highlands where topography effectively
extends the length of the humid period, due
to localized convection and orographic effects
(Olaniran, 1983b);

(3) The Sahelian zone (zone 3), where the tropical
continental air mass predominates, except during
the Monsoon season when the tropical maritime
air mass covers the area for 3 to 5 months at most
(Olaniran, 1983b).

Table II shows the range of onset and retreat dates for
each zone.

4.2. Comparative study of mean onset and retreat
dates and lengths of the rainy season under
the current climate (1962–1993)

Mean onset and retreat dates and lengths of the rainy
season as well as associated standard deviations for
each zone are shown in Table III for observed and
simulated data. As expected, rainfall onset and retreat
follow the northward move of the ITD during the
months of March to August and its southward retreat
between September and October, respectively. Simi-
lar spatial migrations of onset and retreat dates were
observed in many African countries, for example
in Nigeria, Senegal and western Kenya (Odekunle,
2004; Mugalavai et al., 2008; Salack et al., 2011).
Retreat is more abrupt as it takes only 8 pentads
compared to 12 for onset. This rapid retreat was
also observed in neighbouring Nigeria (Ayoade, 1974;
Odekunle, 2006). Earliest onset is in zone 1, south
of the study domain, on the 16th pentad of the year
(17th–21st March), followed by zone 2 four pentads
(20 days) later, and latest onset, close to 2 months
(11 pentads) after zone 1, is in the northernmost sta-
tions (Table III(a)). Retreat starts in the North and
moves South (Table III(b)) and time lags between
zones are less than for onset dates. Uncertainties
are higher (higher standard deviations) on onset than
on retreat dates. The length of the rainy season
(Table III(c)) decreases from South to North: 25 con-
secutive pentads (4 months) in zone 3, 37 (6 months)
in zone 2 and 45 (7.5 months) in zone 1. This is in
agreement with annual rainfall amounts observed in
theses areas. The spatial variation in duration affects
the choice of crop types and farming techniques,
depending on zones in order to avoid losses due to
insufficient number of rainy days. That is why in
Kenya where the maximum length of the growing
season is about 4 months, irrigation is recommended
during the short rainy season as a way of supplement-
ing the limited rainfall (Mugalavai et al., 2008)). The
increase in the length of the rainy season from zone 3
to zone 1 may be explained by the annual migration
of the ITD, which controls the Monsoon influx of
humid maritime air into the continent. This favourable
rainfall-producing factor has the least residence period
over zone 3.

The value of standard deviation of a time series can
be used to elucidate temporal variability (Syed et al.,
2010). For onset date, observed standard deviations of
2 pentads in zone 1 and 3 pentads in zones 2 and 3
indicate that interannual variability of this parameter
is lower in the Equatorial forest zone. Retreat dates

Table II. Range of mean onset and retreat dates of the rainy season for each zone. Results are given in pentad number and the
corresponding calendar dates are in parentheses. The first pentad is the period from January 1 to January 5.

Sub-domain Onset date range Retreat date range

Zone 1 15th–17th pentad (12 March–26 March) 60th–62th pentad (23 October–6 November)
Zone 2 19th–21st pentad (1 April–15 April) 55th–59th pentad (22 September–22 October)
Zone 3 25th–29th pentad (1 May–25 May) 52nd–54th pentad (13 September–27 September)

Copyright  2012 Royal Meteorological Society Atmos. Sci. Let. 13: 120–127 (2012)
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and lengths of the rainy season in all the three zones
show lower amplitudes of fluctuations than onset
dates (Figures not shown). Extreme values (minima
and maxima) observed in the interannual variability
of onset dates are much farther from their means,
compared to retreat and duration of the rainy season.
In general, models outputs poorly reproduce these
interannual variations (correlation coefficient ).
However MPI-echam5 in most cases do the best
job.

Of the four general circulation models, only MPI-
echam5 has an onset date within one standard devia-
tion of observations in all the three zones. A similar
analysis shows that CSIRO-mk3.5 gives good onset
in zones 1 and 2, while BCCR-bcm2.0 and MRI-
cgcm2.3.2a succeed in only one zone. Based on this
criterion, three models have the right simulation in
zone 3 and two in the other zones. Because there is
less dispersion on retreat dates (standard deviation of
1), no model is on target in zone 1, one is in zone 2
and two are in zone 3. For both onset and retreat,
boxplot diagrams (Figure 2(a) and (b)) indicate that
dispersion between models is low, the models tending
to agree more among them than with observations.
Their poor performance on retreat dates translates into
poor results for the length of the season (Figure 2(c))
which are mostly off target in zone 1 but slightly better
in zones 2 and 3. It is also to be noted that MRI-
cgcm2.3.2a is often even out of the range of extreme
observations.

A quantitative verification of the model simulations
are needed in order to objectively analyse and compare
their performances. In Figure 2, numbers expressed in
percentages and represented below each model box-
plots are statistical probabilities for models to cap-
ture the observed parameters (onset and retreat dates
and length of the rainy season). In zone 1, CSIRO-
mk3.5 and MPI-echam5 show better results than the
other two models. While their statistical probabili-
ties for predicting onset date are greater than 50%
(61% for CSIRO-mk3.5 and 58% for MPI-echam5),
they give poor results for retreat date and duration
(less than 10%). In zone 2, CSIRO-mk3.5 shows best
results and also has the greatest statistical probabil-
ity (100% for both onset date and duration, 81% for
retreat date). The second best performance is by MPI-
echam5 for onset (94% of statistical probability for
prediction) and by BCCR-bcm2.0 for duration (85%).
Other models show poorer results (less than 50%).
In zone 3, the best statistical probability for predic-
tion is by MPI-echam5 for onset date (74%), CSIRO-
mk3.5 for retreat date (75%) and BCCR-bcm2.0 for
duration of the rainy season (78%). For onset and
retreat dates, the second best is BCCR-bcm2.0. Over-
all, CSIRO-mk3.5 shows highest combined statisti-
cal probability for prediction of onset and retreat
dates and duration of the rainy season, followed by
MPI-echam5. MRI-cgcm2.3.2a shows lowest statisti-
cal probability.
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Figure 2. Onset date, retreat date and duration of the
rainy season for observation and models simulations. Numbers
expressed in percentage and presented below each model
boxplot represent the statistical probability for each model
to forecast the observed onset date (a), retreat date (b) and
duration of the rainy season (c).

4.3. Onset and retreat dates and length
of the rainy season under a perturbed climate

To assess the effect of increased GHG concentration in
the atmosphere on onset and retreat dates and length
of the rainy season, projected dates for the period
2082–2098 were analysed. These were determined
from the outputs of GCM simulations using the same
methodology presented earlier.

Results under the perturbed climate of a given
GCM were compared to its own simulation of current
climate. Differences in onset and retreat dates of
the rainy season and in duration between future and
present climates are shown in Figure 3(a), (b) and (c),
respectively. Surprisingly there are no great changes

Figure 3. Gap between mean future and mean current climate
dates for onset (a), retreat (b) and differences in the duration
(c) of the rainy season. Vertical axis are graduated in pentads.
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in either onset or retreat dates. Three of the models
(MPI-echam5, BCCR-bcm2.0 and MRI-cgcm2.3.2a)
show late onset of 1 pentad in all zones, while CSIRO-
mk3.5 has approximately normal start in zones 1 and
2 and early start of about 1 pentad in zone 3. Retreat
occurs mostly earlier, but by less than 1 pentad,
except for MRI-cgcm2.3.2a in zone 3 where it is
almost 2 pentads earlier. Rainy seasons are shorter by
approximately 1 pentad in zones 1 and 2 and longer
in zone 3 by up to 2 pentads. These changes are
all within the range of variability of current climate
simulated by each model and could not be considered
significant. This result corroborates that of Mkankam
(2000) given the strong relationship between onset and
rainfall attributes (Stewart, 1991; Ati et al., 2002). The
shortening of the rainy season is one of the most
feared result of anthropogenic climate change. But
projections under the SRES A2 scenario by the four
models used here indicate that to the end of the twenty-
first century, no major perturbations of the seasons are
expected, and it will be possible to continue growing
the same crops as at present time in Cameroon.

5. Concluding remarks and perspectives

Daily precipitations for 24 meteorological stations in
Cameroon were used to define climatic zones in the
domain 1–13 ◦N and 7–18 ◦E located in Equatorial
Central Africa. Zones were defined, each of them
characterized by stations with close onset and retreat
dates of the rainy season. Next, onset and retreat dates
and lengths of the rainy season for the current climate
(1962–1993) calculated from both observations and
four IPCC 4AR AOGCMs (BCCR-bcm2.0, CSIRO-
mk3.5, MPI-echam5 and MRI-cgcm2.3.2a) outputs
were studied and compared for each zone. Projections
of impact of climate change on onset and retreat dates
and length of the rainy season were assessed with
these same models under the SRES A2 GHG emission
scenario over the period 2082–2098.

In general, the rainy season begins earliest and ends
latest south of the domain while earliest retreat dates
are seen north of the domain. Thus, the length of
the rainy season increases southwards. Amplitudes
of fluctuations are stronger for onset date than for
retreat. Model results for current climate are close
to observations when they were considered with the
corresponding standard deviations. CSIRO-mk3.5 and
MPI-echam5 perhaps because of their higher spatial
resolution, show the best performances and are then
more appropriate than the two other models for
determining onset, retreat and length of the rainy
season over Cameroon and neighbouring areas. The
low spatial resolution of BCCR-bcm2.0 and MRI-
cgcm2.3.2a may have contributed to their poor results
in most cases. For future climate (2082–2098) and
according to three of the four models results, onset
and retreat dates are expected in most cases to be later
by about 1 pentad (5 days) than in the present climate.

The CSIRO-mk3.5 and BCCR-bcm2.0 models are
not part of the consensus for onset and retreat dates
respectively. As for the duration of the rainy season,
an increase of approximately 1 pentad (5 days) is
expected in zone 3 and a decrease of the same range
elsewhere. MPI-echam5 in zone 3 and CSIRO-mk3.5
in zones 1 and 2 however disagree.

The results of this study reveal that high spatial
resolutions seem to positively impact simulations of
general circulation models. This point to the need in
future investigations to assess the performances of
regional climate model. Being able to predict onset
and retreat dates within days would be of more benefit
to local farmers. Also recasting results in terms of
probabilities is necessary to evaluate risks of false
starts of rain which are problematic for sowing season
(Hess et al., 1995).
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ABSTRACT

The standardized precipitation index (SPI) is computed and analyzed using 55 years of precipitation data

recorded in 24 observation stations in Cameroon along withUniversity of East Anglia Climate ResearchUnit

(CRU) spatialized data. Four statistical distribution functions (gamma, exponential, Weibull, and lognormal)

are first fitted to data accumulated for various time scales, and the appropriate functions are selected on the

basis of the Anderson–Darling goodness-of-fit statistic. For short time scales (up to 6 months) and for stations

above 108N, the gamma distribution is the most frequent choice; below this belt, the Weibull distribution

predominates. For longer than 6-month time scales, there are no consistent patterns of fitted distributions.

After calculating the SPI in the usual way, operational drought thresholds that are based on an objective

method are determined at each station. These thresholds are useful in drought-response decision making.

From SPI time series, episodes of severe and extreme droughts are identified atmany stations during the study

period. Moderate/severe drought occurrences are intra-annual in short time scales and interannual for long

time scales (greater than 9 months), usually spanning many years. The SPI calculated from CRU gridded

precipitation shows similar results, with some discrepancies at longer scales. ThusAU2 , the spatialized dataset can

be used to extend such studies to a larger region—especially data-scarce areas.

1. Introduction

Agriculture is the main socioeconomic activity in sub-

Saharan African countries. According to Tarhule et al.

(2009), about 95% of the used land is devoted to agri-

culture, which is the main occupation of about 65% of

the population. Good crop development depends on the

needed level of soil water reserve provided by pre-

cipitation. Perturbations of the hydrological cycle in

response to climate changemay involve perturbations of

the frequency and intensity of precipitation and then

directly affect the availability and quality of freshwater

(Pal and Al-Tabbaa 2011). Should there be severe or

recurrent droughts, major environmental and economic

damage would result, with negative impacts such as soil

degradation, decrease in agricultural production, and

less hydroelectric energy production. Severe droughts

were recorded in the Sahel region during the 1970s and

1980s and in many countries of the Horn of Africa,

where they were more frequent, and the situation has

persisted up to the first decade of the twenty-first cen-

tury (Kandji et al. 2006). The sad consequences are

usually widespread starvation and death (Druyan 2011;

UNEP 2002). Therefore, there is the need to better

understand droughts and to study their temporal and

spatial variabilities under the current and future per-

turbed climate so as to guide vulnerability and adapta-

tion assessments and measures.

Droughts are apparent after a long period with

a shortage of precipitation or without any precipitation

(Vicente-Serrano et al. 2010). Many definitions and re-

lated mathematical tools for their quantification have

been developed. Among the most widely used are the

traditional Palmer drought severity index (PDSI;

Palmer 1965) and the standardized precipitation index

(SPI; McKee et al. 1993). The PDSI is a soil moisture

algorithm that includes terms for water storage and

evapotranspiration, whereas the SPI is a probability

index that is based solely on precipitation. It was for-

mulated by McKee et al. (1993) to give a better repre-

sentation of abnormal wetness and dryness than does

the PDSI. The SPI can be defined as the number of

standard deviations by which a normally distributed
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random variable deviates from its long-term mean. For

precipitation, it is mostly used to quantify deficits

(droughts) on many time scales. The SPI has many ad-

vantages over the PDSI (Hayes et al. 1999). It depends

only on precipitation and can be used for both dry and

rainy seasons. It can describe drought conditions that

are important for a range of meteorological, agricul-

tural, and hydrological applications. Studies have shown

that the SPI is suitable for quantifying most types of

drought events (Bussay et al. 1998; Szalai and Szinell

2000). Calculated at various time scales (from 1 to n

months), SPI values can be efficient for the description

of streamflow (on 2–6-month time scales), agricultural

drought (on 2–3-month time scales), and groundwater

level (on 5–24-month time scales) (Lloyd-Hughes and

Saunders 2002). Some workers have stated that, because

it depends only on precipitation, the SPI is not affected

by topography (Hayes et al. 1999; Lloyd-Hughes and

Saunders 2002; Lana et al. 2001).

In recent decades, many studies using the SPI were

undertaken. Using the SPI extended to the Northern

Hemisphere, Bordi and Sutera (2001) showed that there

are some interesting spatially remote teleconnections

that link the tropical Pacific Ocean with the European

area. Lloyd-Hughes and Saunders (2002) found that

trends in SPI values indicate significant change in the

proportion of Europe experiencing extreme and/or

moderate drought conditions during the twentieth cen-

tury. SPI analysis satisfactorily explained the recurrent

floods in the past 25 years that have affected the

southern Cordoba Province in Argentina (Seiler et al.

2002). Livada and Assimakopoulos (2007) used the SPI

to detect spatial and temporal drought events over

Greece and found mild to moderate drought reduc-

tion from north to south and fromwest to east on 3- and

6-month time scales over the 51-yr time period of the

study. In that study, the frequency of occurrence of se-

vere and extreme drought conditions was very low on the

12-month time scale. The SPI was also used in China to

study drought/wetness episodes in the Pearl River basin,

and the results were helpful for basin-scale water re-

source management under a changing climate (Zhang

et al. 2009). Thus, the SPI iswidely used (Vicente-Serrano

2006). Its main weaknesses are dependence on the nor-

malization procedure (the probability density function

used) (Quiring 2009) and poor definition in arid regions

that experience many months with zero precipitation

(Wu et al. 2007). For Africa in particular, there are only

a few studies on drought monitoring by use of climate

indices. Ntale and Gan (2003) used the SPI as a drought

indicator in the East African region and compared its

performance with the PDSI and the Bhalme–Mooley

index. The identification of droughts in Zimbabwe by

Manatsa et al. (2008) on the basis of SPI estimation from

the regionally averaged rainfall for 1900–2000 revealed

that the most extreme droughts of the twentieth century

were recorded in 1991 and 1992. Yuan et al. (2013) more

recently used dynamical models to obtain probabilistic

seasonal drought forecasts in Africa. This low number of

past studies is one of the motivations of the current

study.

In many studies that use the SPI, the gamma distri-

bution is found to fit the precipitation data very well

(Lloyd-Hughes and Saunders 2002) and to provide the

best model for describing monthly precipitation. In the

study over Cameroon that is presented here, we will go

through the full process of distribution selection by fit-

ting many distribution functions to the data and will use

an appropriate statistical test to select the best fit for

calculating the SPI at time scales of 3, 6, 12, 18, and 24

months. This selection is carried out at every station and

at grid points for recorded and gridded University of

East Anglia (United Kingdom) Climatic Research Unit

(CRU) data. The ultimate purpose is to provide useful

information for monitoring and managing water re-

sources in agriculture, domestic/industrial uses, and hy-

droelectric energy production. The study can also help to

understand better the historical variability of drought

events and their relative intensity. We will also evaluate

the usefulness of a spatialized dataset (CRU gridded

precipitation) in reproducing station results and thus

guide their use in areas without measuring stations. This

paper is organized as follows: In the next section, the

study area and data used are described. Section 3 gives

details of SPI calculation and statistical distribution

functions used to fit the data. Section 3f describes the

method. Results are presented in section 4, and the paper

ends with discussion and concluding remarks in section 5.

2. Study domain and data used

a. Study domain

Cameroon is located in equatorial central Africa be-

tween 18 and 138N and between 78 and 188E. The south-

ern part of the country is bordered in the west by the

Atlantic Ocean and is covered by dense rain forest. The

northern part has a dry to arid Sahelian-type climate,

depending on latitude. The main economic activity in the

area is agriculture, generally at the subsistence level.

Cassava, corn, yam, sweet potato, and millet are grown

for food. Cacao, coffee, banana, rubber, palm oil, and

cotton are themain cash crops raised by farmers. Logging

is another important resource in Cameroon, with heavy

timber exportation. These activities are mostly rainfed,

and the use of irrigation is very marginal.
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b. Data used

Monthly precipitation data used in this study derive

from daily precipitation of 24 measuring stations in

Cameroon as provided by the CameroonMeteorological

Service. The geographical positions of these stations and

the topography of the domain are shown in FF1 ig. 1. The

precipitation record extends from 1951 to 2005 (55 yr).

Part of this dataset was used by Penlap et al. (2004) and

more recently byGuenang andMkankamKamga (2012).

Overall, approximately 8.6% of the values are missing.

One station (Nkongsamba) has no missing values, nine

(Douala, Meiganga, Kribi, Ngaoundéré, Koundja,
Bertoua, Poli, Yaoundé, and Garoua) have fewer than
4% of values that are missing, and seven (Abong-Mbang,
Yokadouma, Sangmélima, Batouri, Yoko, Ngambe, and
Lomié) are missing between 4% and 11% of their values.
Gridded precipitation data from the CRU were also used
to calculate the SPI on the study domain. Since many
stations of the domainwere used in the construction of the
CRU gridded precipitation, these two datasets are not
independent (New et al. 1999, 2000). Version 3.0 of the

CRU precipitation data (Harris et al. 2014) is available at

a monthly time scale on 0.58 3 0.58 longitude/latitude

spatial grids. These data are unrestricted and at the time

of writing were available for download from the Internet

(http://badc.nerc.ac.uk/data/cru/).

3. Method

a. Calculation procedure for the SPI

The method used for SPI computation was developed

by McKee et al. (1993) and Edwards and McKee (1997)

to study relative departures of precipitation from nor-

mality. It has been widely applied in many studies

(Vicente-Serrano 2006; Vicente-Serrano et al. 2010). It

uses monthly precipitation aggregates at various time

scales (1, 3, 6, 12, 18, and 24 months, etc.). As an illus-

tration of the procedure, for a 3-month time scale, the

precipitation accumulation from month j 2 2 to month

j is summed and attributed to month j. At this time scale,

the first two months of the data time series are missing.

Next follows the normalization procedure, in which an

appropriate probability density function is first fitted to

the long-term time series of aggregated precipitation.

Then the fitted function is used to calculate the cumu-

lative distribution of the data points, which are finally

transformed into standardized normal variates. This

procedure is repeated for all needed time scales. Be-

cause the processes that generate rainfall in our study

domain vary in time and in space, many distributions

may be needed to cover all time scales and stations. The

maximum-likelihood (ML) estimation method was used

to fit four probability distribution functions (i.e., gamma,

FIG. 1. Study area with the geographical locations of rainfall stations (indicated by numbers).

The topography is shaded.
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exponential, Weibull, and lognormal) to each time se-

ries. The one with the lowest value of the Anderson–

Darling goodness-of-fit test statistic (Anderson and

Darling 1952, 1954) was retained as representing the

underlying distribution of the data.

b. SPI interpretation and operational drought
definition

The SPI, often called the z score, is the number of

standard deviations from the mean at which an event

occurs. Thus, the 3-month SPI value provides a com-

parison of accumulated precipitation over that specific

3-month period with the mean precipitation total for the

same annual period as calculated over the full study

period. This applies to any n-month SPI value, where n,

the number of months of accumulation, is the time scale.

For precipitation, high positive values correspond to wet

sequences and high negative values correspond to

drought periods. For drought evaluation (negative SPI),

short time scales on the order of 3 months may be im-

portant for agricultural applications, whereas long time

scales of up to many years are of more interest in water-

supply management (Guttman 1998). Many classifica-

tions of dryness and wetness events as based on the SPI

have been proposed in the literature. An example is

shown in TT1 able 1 (Lloyd-Hughes and Saunders 2002).

To use indices such as the SPI for operational moni-

toring, it is necessary to define drought threshold levels

for preventive or corrective actions. Goodrich and Ellis

(2006) proposed using preselected percentiles of the

index to determine thresholds, as based on fitted em-

pirical distributions. Quiring (2009) improved on the

technique by using percentile values from distributions

fitted to the data to define more-objective drought

levels. Table 1 (columns 1 and 2) also shows the five-

category drought definition from the U.S. Drought

Monitor (USDM), with their description and corre-

sponding percentiles (Svoboda et al. 2002). Here, we use

the Quiring technique (Quiring 2009) and the percentile

intervals of this table to determine drought in our domain.

c. The ML estimation method

TheML estimationmethodmaximizes the probability

of the observed data under a selected distribution. Ap-

plied to a dataset, it provides values of the distribution

parameters that maximize the likelihood function

(Wilks 2006).

Let xi (i5 1, . . . , n) be a sample of n independent and

identically distributed observations coming from a pop-

ulation with an underlying probability density function

f(. j u0), where u0 is the unknown distribution parameter.

It is desirable to find an estimator û that would be as

close to the true value u0 as possible.

The joint density function for an independent and

identically distributed sample is defined as

f (x1, x2, . . . , xn j u)5 f (x1 j u)3 f (x2 j u)3⋯3 f (xn j u) .
(1)

If xi are fixed parameters of this function and u is the

function’s variable that is allowed to vary freely, then the

function will be called the likelihood function:

L(u j x1, . . . , xn)5 f (x1, x2, . . . , xn j u)5P
n

i51

f (xi j u) .

(2)

In practice, the log-likelihood is more convenient. It is

the logarithm of the likelihood function so that

lnL(u j x1, . . . , xn)5 �
n

i51

lnf (xi j u) . (3)

The average log-likelihood can also be used:

‘̂5 n21 lnL . (4)

The term ‘̂ estimates the expected log-likelihood of

a single observation in the model. The ML method es-

timates u0 by finding a value of u that maximizes ‘̂(u j x).

TABLE 1. Drought classification by SPI value and USDM drought definition.

Drought classification by SPI value USDM drought definition (Svoboda et al. 2002)

SPI value Class Category Description Percentile

2.00 or more Extremely wet — — —

1.50–1.99 Severely wet — — —

1.00–1.49 Moderately wet — — —

0–0.99 Mildly wet — — —

From 0 to 20.99 Mild drought D0 Abnormally dry 21%–30%

From 21.00 to 21.49 Moderate drought D1 Moderate drought 11%–20%

From 21.50 to 21.99 Severe drought D2 Severe drought 6%–10%

22 or less Extreme drought D3 Extreme drought 3%–5%

— — D4 Exceptional drought ,2%
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d. Distributions used to fit the data

1) THE GAMMA DISTRIBUTION FUNCTION

The probability density function of the gamma dis-

tribution is defined as

g(x)5
1

baG(a)
xa21e2x/b for x. 0, (5)

where a . 0 is a shape parameter, b . 0 is a scale pa-

rameter, x. 0 is the amount of precipitation, and G(a) is
the gamma function. More detailed descriptions of the

gamma distribution can be found in Lloyd-Hughes and

Saunders (2002) and Guttman (1999).

To fit the distribution parameters, a and b are esti-

mated from the sample data. Using the approximation

forMLdefined by Thom (1958), they can be estimated as

â5
1

4A

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

4A

3

r !
and (6)

b̂5 x/â , (7)

where x is mean precipitation and A is given by

A5 ln(x)2 n21� ln(x) . (8)

Under some conditions, a and b can be better estimated

by using an iterative procedure as suggested by Wilks

(1995).

For a given month and time scale, the cumulative

probabilityG(x) of an observed amount of precipitation

is given by

G(x)5
1

b̂âG(â)

ðx
0
xâe2x/b̂ dx . (9)

Letting t5 x/b̂, we reduce the expression to the follow-

ing function, called the incomplete gamma function:

G(x)5
1

G(â)

ðx
0
t â21e21 dt . (10)

The gamma distribution is not defined for x5 0, and, the

probability of zero precipitation q 5 P(x 5 0) being

positive, the cumulative probability becomes

H(x)5 q1 (12 q)G(x) . (11)

2) THE EXPONENTIAL DISTRIBUTION FUNCTION

The general formula for the probability density

function of the exponential distribution is stated as

(Ahmad and Bhat 2010)

f (x)5
1

b
e2(x2m)/b for x$m and b. 0, (12)

where m is the location parameter and b is the scale pa-

rameter. The scale parameter is often referred to as l 5
1/b and is called the constant failure rate. The terms m

and b can be estimated from an independent and iden-

tically distributed sample x5 (x1, . . . , xn) drawn from the

variable using the ML estimation method (Ross 2009):

l̂5 1/x , (13)

where

x5 n21 �
n

i51

xi .

3) THE LOGNORMAL DISTRIBUTION FUNCTION

In probability theory, a positive random variable x

follows the lognormal (m, s2) distribution if the loga-

rithm of the random variable is normally distributed.

The probability density function of a lognormal distri-

bution is defined as (Bartosova 2006; Bilkova 2012)

f (x;m,s)5
1

xs
ffiffiffiffiffiffi
2p

p exp

"
2
(lnx2m)2

2s2

#
, x. 0, (14)

where x. 0,2‘,m,1‘, and s. 0. The term m is the

scale parameter that stretches or shrinks the distribu-

tion, and s is the shape parameter that affects the shape

of the distribution. They can be determined by the ML

estimators:

m̂5 n21�
k

lnxk and (15)

ŝ25 n21�
k

(lnxk2 m̂)2 . (16)

4) THE WEIBULL DISTRIBUTION FUNCTION

The probability density function of a Weibull random

positive variable x is (Wu 2002; Panahi and Asadi 2011)

f (x;a,b)5abxa21e2bxa , (17)

where a and b are the shape and scale parameters,

respectively. Its complementary cumulative distribu-

tion function is a stretched exponential function. The

Weibull distribution is related to a number of other

probability distributions; in particular, it interpolates

between the exponential distribution (k 5 1) and the

Rayleigh distribution (k5 2). There are no closed-form

expressions of the parameters â and b̂, and therefore

MONTH 2014 GUENANG AND MKANKAM KAMGA 5

JOBNAME: JAM 00#00 2014 PAGE: 5 SESS: 8 OUTPUT: Tue Sep 2 04:21:50 2014 Total No. of Pages: 15
/ams/jam/0/jamCD140032

Jo
ur

na
l o

f A
pp

lie
d 

M
et

eo
ro

lo
gy

 a
nd

 C
lim

at
ol

og
y 

 (P
ro

of
 O

nl
y)

132



they are estimated by maximizing the log-likelihood

expression of Eq. (3) (Panahi and Asadi 2011).

e. Statistical tests used

1) THE ANDERSON AND DARLING STATISTICAL

TEST

TheAnderson–Darling statisticA2 measures howwell

a given data sampleXi (i5 1, . . . , n) follows a particular

distribution function F. The statistic is defined as

(Anderson and Darling 1952, 1954)

A252n2 n21 �
n

i51

(2i2 1)fln[F(Xi)]

1 ln[12F(Xn112i)]g . (18)

For a given dataset and distribution function, the better

that the distribution fits the data, the smaller this statistic

will be. The hypothesis regarding the distributional form is

rejected at the chosen significance levela if the test statistic

A2 is greater than the critical value obtained from a table.

2) THE KOLMOGOROV–SMIRNOV GOODNESS

OF FIT

The Kolmogorov–Smirnov (K–S) test is a nonpara-

metric test that can be used to compare a sample with

a reference probability distribution or to compare two

samples. It quantifies a distance between the empirical

distribution function of the sample and the cumulative

distribution function of the reference distribution or be-

tween the empirical distribution functions of two samples.

For a given cumulative distribution function F(x), the

K–S statistic is defined as (Stephens 1970)

Dn5maxxjFn(x)2F(x)j , (19)

where n is the number of observations in the population

x, Fn(x) is the empirical cumulative distribution func-

tion, and F(x) is the theoretical cumulative distribution

function. The K–S test can be modified to serve as

a goodness-of-fit test. In the special case of testing for

normality of the distribution, samples are standardized

and are compared with a standard normal distribution.

f. Study steps

SPI time series were calculated for all stations and for

the CRU grid point nearest to each station. This pro-

cedure is expected to lead to normally distributed SPI,

but this is not always the case. Since the Quiring tech-

nique (Quiring 2009) requires fitting a statistical distri-

bution to the SPI, five distributions including the normal

were tested, and then the K–S goodness-of-fit test

FIG. 2. Cumulative distribution functions for 3-month aggregated precipitation showing the empirical cumulative

distribution function and gamma, Weibull, lognormal, and exponential distributions fitted to the data.
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statistic was used at the 5% significant level. In almost all

instances, the Weibull and normal distributions had the

lowest (and also close) K–S test statistics. Operational

drought thresholds were therefore calculated on the

basis of the normal distribution and on percentiles de-

fined by Svoboda et al. (2002) (Table 1). Analyses of the

results focused on four stations (Kaélé, Ngaoundéré,
Bertoua, and Kribi), one in each of four different known
climatic zones of the study domain. These zones are
characterized by similar rain and physical atmospheric
processes. Each station has the least amount of missing
data in its zone. The station ofKaélé is located north of the
domain in the Sahelian zone, Ngaoundéré is in the Ada-
mawa Plateau is in themiddle part of the domain, Bertoua
is in the eastern part in dense forest, and Kribi is in the
southwestern part closest to the Atlantic Ocean (Fig. 1).

4. Results

a. Suitable distribution functions for precipitation
data

1) DISTRIBUTION FUNCTIONS FOR STATION

PRECIPITATION

Four statistical distribution functions (gamma,

exponential, Weibull, and lognormal) were fitted to

station precipitation data aggregated at various time

scales. F F2igures 2 and 3 F3show results of the cumulative

distribution function for empirical precipitation and for

each of the trial distribution functions. Figures were

shown for four stations (Kaélé, Ngaoundéré, Bertoua,
and Kribi) at 3- and 12-month time scales. The choice of
the suitable distribution function describing pre-
cipitation data in each case was based on the minimum
value of the Anderson–Darling statistic, as illustrated

in T T2able 2 for 3- and 12-month time scales. The expo-

nential function shows worse results as the number of

months in the time scale increases. T T3able 3 re-

capitulates these results, extended to other stations and

to various time scales. The functions are represented by

letters [i.e., gamma (g), Weibull (w), exponential (e),

and logormal (ln)]. It appears that, for time scales equal

to 6 months and less, the distribution of station pre-

cipitation shows a bias for the Weibull function to be

suitable for the highest number of stations (21 for both

1- and 3-month time scales and 16 for 6-month time

scale) of the 24 studied stations. The gamma function

outperformed the others in very few cases. One ex-

ceptional case of exponential and lognormal being best

is observed for 1- and 6-month time scales, respectively.

Above the 6-month time scale, the number of station

precipitation distributions being best fitted by the

FIG. 3. As in Fig. 2, but for 12-month aggregated precipitation.
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Weibull function decreases, falling to three and seven

(three stations for 12 and 18 months, and seven for 24

months) to the benefit of the gamma function, which is

suitable for up to 18 stations at the 18-month time scale.

The number of station precipitation distributions fol-

lowing the lognormal function also increases with the

number of months in the time scale, reaching 8 stations

of 24.

FF4 igure 4 shows the spatial pattern of the suitable

distribution functions over the domain of study for

3- (Fig. 4a), 6-,and 12- (Fig. 4b), and 18- and 24-month

(Fig. 4c) time scales. For not more than a 3-month time

scale (illustration for 3 months in Fig. 4a), the gamma

distribution function is suitable north of the domain

(Sahelian region), particularly above 108N, while below

that the Weibull function is the best fit, except for

a single case at the boundary of the Atlantic Ocean that

shows a bias to the gamma function. The Weibull func-

tion remains the most suitable at the 6-month time scale

between 48 and 108N, which represents the transition

zone between the Sahelian and equatorial forest zones.

Stations of the equatorial forest zone, covering the

southern plateau (below 48N), mostly show a bias for the

gamma distribution. At a 12-month time scale and be-

yond, there is a mixture of gamma, lognormal, and

Weibull distributions in different zones, leading to no

apparent spatial organized pattern (Figs. 4b,c). The

pattern for the 18-month time scale looks more like

that of 6 months but with the gamma function in place

of the Weibull function. An almost equal number of

gamma [(9)], lognormal [(8)], and Weibull [(7)] func-

tions fit the 24-month time scale, with no particular

spatial organization. These apparent inconsistencies

are due to the fact that in most cases more than one

distribution was adequate and the Anderson–Darling

statistics may not have been significantly different. Be-

tween 18- and 24-month time scales, the number of

station data showing a bias for the lognormal function

increases up to 8 in the southwestern part of the domain

(right of the Atlantic Ocean).

2) DISTRIBUTION FUNCTIONS FOR CRU
PRECIPITATION

Distribution functions were also fitted to precipitation

time series of the CRU grid point that is nearest to each

station of the study domain. The results are in Table 3,

where the last column indicates the number of cases of

the six time scales analyzed for which the same distri-

bution functions fitted both station and CRU data. The

highest number of agreements across time scales be-

tween the two datasets is obtained in the southeastern

part of the domain (Batouri and Yokadouma stations).

TABLE 2. Anderson–Darling test statistics calculated at 95% confidence level for the four distributions and two time scales; the

distribution function key is given in the text. The smallest value at each station is in boldface.

For 3-month time scale For 12-month time scale

No. Station g w e ln g w e ln

1 Maroua 8.12 9.24 11.16 18.72 1.48 9.45 184 1.13

2 Kaélé 8.91 10.20 13.36 21.50 2.03 3.84 171 2.22

3 Garoua 13.10 12.19 14.08 25.52 1.58 9.31 195.8 1.04

4 Poli 18.88 18.35 18.58 35.65 1.08 3.46 207.7 1.59

5 Ngaoundéré 24.21 23.20 24.43 41.22 4.84 1.36 218 6.76

6 Meiganga 17.36 16.08 18.51 34.30 1.03 6.96 223.9 0.91
7 Tibati 19.37 17.15 21.09 37.43 0.72 3.88 199.8 1.24

8 Koundja 16.22 12.87 22.70 35.21 0.90 4.35 223.8 1.12

9 Yoko 16.40 13.01 23.83 30.83 1.08 5.10 167.9 0.91

10 Nkongsamba 8.15 7.099 14.15 19.84 1.20 3.60 229 1.89

11 Bafia 20.55 13.62 45.14 36.81 1.81 5.99 200 2.24

12 Nanga-Eboko 12.36 6.65 43.15 26.78 4.97 0.72 179 6.91

13 Bertoua 15.19 7.65 58.47 30.30 0.47 5.41 210.8 0.53

14 Batouri 11.48 6.02 49.79 21.08 1.21 2.68 165.9 1.57

15 Ngambe 5.50 4.18 12.81 14.85 2.35 3.09 172 2.59

16 Douala 4.62 4.32 14.37 10.63 3.58 4.15 213 3.9

17 Abong-Mbang 10.99 5.02 54.07 22.15 1.46 5.78 183 2.03

18 Yaoundé 11.41 5.69 58.96 22.46 0.51 4.24 217.7 0.96

19 Akonolinga 10.98 5.58 56.85 21.06 2.30 1.43 186 3.12

20 Eséka 11.61 5.37 58.21 22.31 0.81 7.75 183.7 0.48

21 Yokadouma 11.51 5.61 61.34 20.96 2.50 5.82 187 3.67

22 Lomié 8.04 3.12 58.36 15.48 1.03 8.48 161.7 1.05

23 Kribi 0.70 0.84 61.56 4.77 0.94 4.24 200 1.15

24 Sangmélima 6.25 1.63 70.84 13.34 0.86 10.6 184 0.56
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In three instances, there was agreement on fewer than

three time scales, that is, Yaoundé and Eseka in the
south and Ngaoundéré on the Adamawa Plateau.
Overall, stations and CRU gridded precipitation are
mostly fitted by the same functions.

b. Analysis of the SPI for different time scales

1) OPERATIONAL DROUGHT THRESHOLDS

The operational drought thresholds as described in

section 3 were calculated for all stations for the five

TABLE 3. Selected distribution functions for station precipitation data at various time scales. In the last column is the number of times the

same distribution fits both the station and the CRU data.

Best distribution for n-month time scale No. of CRU agreement

of six possibleNo. Station n 5 1 n 5 3 n 5 6 n 5 12 n 5 18 n 5 24

1 Maroua g g g ln w g 3

2 Kaélé g g w g g ln 5

3 Garoua w w w ln w g 4

4 Poli w w w g g w 4

5 Ngaoundéré w w w w g w 3

6 Meiganga w w w ln g ln 1

7 Tibati w w w g g w 5

8 Koundja w w w g g g 3

9 Yoko w w w ln g ln 3

10 Nkongsamba w w w g g g 4

11 Bafia w w w g g g 5

12 Nanga-Eboko w w w w w w 3

13 Bertoua w w w g g w 5

14 Batouri w w w g g ln 6

15 Ngambe e w w g g w 4

16 Douala w w w g g ln 5

17 Abong-Mbang w w g g g w 4

18 Yaoundé w w g g g g 2

19 Akonolinga w w g w g g 4

20 Eséka w w g ln ln ln 2

21 Yokadouma w w w g g g 6

22 Lomié w w g g g g 5

23 Kribi w g ln g ln ln 3

24 Sangmélima w w g ln ln ln 3

FIG. 4. Spatial pattern of chosen distribution function for (a) 3-month, (b) 6- and 12-month, and (c) 18- and 24-month precipitation; the

distribution key is given in the text. In (b) and (c), the first letter refers to the first time scale and the second letter to the second time scale in

the figure.
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USDM categories of Table 1 (columns 3–5) and for 3-

and 12-month time scales. All the values are shown in

TT4 able 4. In considering the extreme-drought category

D4 for the 3-month time scale, it is seen that there is

a range from a maximum of 21.73 in the coastal city of

Douala to a minimum of 22.66 in Tibati on the Ada-

mawa Plateau. The spatial distribution of D4 thresholds

is coherent, with values of lower than22.40 on the high

grounds of the Adamawa Plateau. Continental stations

located between latitudes 28 and 78N have thresholds

between 22.10 and 22.40. In the southern part of the

domain and in the coastal area in the southwest, values

are higher than 22.0. Values for the three Sahelian

stations of Kaélé, Maroua, and Garoua are respectively
22.08,22.03, and22.25. At this scale, extreme-drought

category D3 follows the general pattern of D4. For

the 12-month SPI, most of the stations have a D4

threshold of21.64, with only three stations below22.0.

From the spatial analysis of category D4, there is no

strong dependence on topography, although most sta-

tions have very similar thresholds (21.64) at a 12-month

time scale.

2) FREQUENCY OF DROUGHT EVENTS

Objective drought thresholds were also used to exam-

ine frequency in the SPI time series. In FF5 ig. 5, appropriate

D4-category threshold values are represented by dashed

horizontal lines and exceedances corresponding to

drought occurrences. For the 3-month SPI (left column

in Fig. 5), each station had at least one event with a value

that was lower than 23. For the first 25 yr of the study

period the four stations differ markedly in D4-category

drought frequency (10 in Kaélé, 6 in Kribi, only 2 in
Ngaoundéré, and none in Bertoua), whereas in the sec-
ond half of the period these episodes are more frequent
(two stations had 13 events each, and the other two had
8 events each). For the 12-month SPI, all categories
of drought events are frequent, especially from the
mid-1960s. The dramatic drought episodes of the 1970s
and 1980s are clearly visible, with each station re-
cording at least one D4 event. T T5able 5 summarizes

drought occurrences in all categories, with the number

of events and the percentage with respect to the total

number of time steps in the data. For the 3-month time

scale, this percentage is 1%–2% for exceptional

droughts and around 5% for extreme droughts. For the

12-month time scale, the percentage remains low for all

categories, ranging from 1% for D4 to 5% for D0

events.

3) STATION VS CRU SPI

F F6igure 6 presents 3- and 12-month scale SPI time se-

ries from the CRU grid point that is nearest to each of

the four observations stations of Fig. 5. This choice is

TABLE 4. Operational drought thresholds for various time periods and for all stations, calculated using 3- and 12-month SPI.

Drought category for 3 month Drought category for 12 month

No. Station name D4 D3 D2 D1 D0 D4 D3 D2 D1 D0

1 Maroua 22.03 21.74 21.5 21.02 20.59 21.64 21.47 21.32 20.94 20.71

2 Kaélé 22.08 21.86 21.47 21.04 20.62 21.64 21.47 21.32 20.94 20.71

3 Garoua 22.25 21.92 21.49 21.09 20.51 22.28 21.61 21.19 20.74 20.48

4 Poli 22.49 22.21 21.58 20.91 20.55 21.64 21.47 21.32 20.94 20.71

5 Ngaoundéré 22.55 22.05 21.69 20.93 20.49 22.05 21.63 21.2 20.73 20.47

6 Meiganga 22.35 21.9 21.56 20.99 20.54 21.64 21.47 21.32 20.94 20.71

7 Tibati 22.66 21.99 21.54 20.9 20.47 21.64 21.47 21.32 20.94 20.71

8 Koundja 22.55 21.83 21.49 20.9 20.45 21.57 21.4 21.24 20.83 20.61

9 Yoko 22.44 21.91 21.48 20.91 20.45 21.64 21.47 21.32 20.94 20.71

10 Nkongsamba 21.97 21.64 21.45 21.01 20.55 21.79 21.57 21.17 20.83 20.51

11 Bafia 22.36 21.94 21.44 20.99 20.32 21.64 21.47 21.32 20.94 20.71

12 Nanga-Eboko 22.27 21.74 21.38 20.9 20.45 21.64 21.47 21.32 20.94 20.71

13 Bertoua 22.31 21.77 21.42 20.9 20.41 21.64 21.47 21.32 20.94 20.71

14 Batouri 22.2 21.74 21.45 20.88 20.5 21.64 21.45 21.28 20.92 20.6

15 Ngambe 21.98 21.67 21.37 21 20.54 21.75 21.61 21.29 20.85 20.59

16 Douala 21.73 21.5 21.31 20.97 20.62 21.76 21.5 21.19 20.9 20.63

17 Abong-Mbang 22.18 21.71 21.38 20.84 20.48 21.64 21.47 21.32 20.94 20.71

18 Yaoundé 22.16 21.74 21.45 20.88 20.49 21.64 21.47 21.32 20.94 20.71

19 Akonolinga 22.13 21.7 21.4 20.94 20.47 21.93 21.7 21.44 20.88 20.46

20 Eséka 22.06 21.78 21.46 20.81 20.46 22.09 21.65 21.32 20.85 20.54

21 Yokadouma 21.97 21.71 21.41 20.91 20.46 21.64 21.47 21.32 20.94 20.71

22 Lomié 21.94 21.62 21.32 20.9 20.51 21.64 21.47 21.32 20.94 20.71

23 Kribi 21.82 21.46 21.27 20.83 20.55 21.64 21.47 21.32 20.94 20.71

24 Sangmélima 21.85 21.6 21.24 20.85 20.52 22.05 21.58 21.32 20.85 20.47
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justified by the fact that the angular distance–weighted

interpolation technique used to construct the CRU set

gives more weight to the station that is nearest to the

grid point, thus making it the best representative of the

station. In this analysis, we compare these time series

with those of the stations in Fig. 5 to access how well the

gridded data reproduce drought characteristics obtained

from station observations. For the 3-month-scale SPI,

the two time series agree overall, with some discrep-

ancies occurring at dates that differ from station to sta-

tion: in Kaélé in the early 1950s, the 1970s, and the late
1980s; in Bertoua in the late 1990s; and in Kribi in the
late 1990s, except for the drought of 1997. Most strong
events that are present in the observations for at least

FIG. 5. Station SPI time series for the (left) 3- and (right) 12-month time scales. The horizontal dashed lines indicate operational drought

thresholds for the exceptional-drought category (D4).
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three stations are reproduced in the gridded data, no-
ticeably in 1962, 1967, 1983, 1987, 1997, and 2004. Of
more concern are the results of Kaélé, where station data
show high year-to-year variability of drought intensities,
with six events with an SPI of less than 23, when CRU

has an excessively large number of events of magnitude

22. At the same station, three strong events of the early

1950s are much weaker in the gridded data, whereas

weak ones in the 1970s are amplified. For the other

stations, CRU tends to show more severe droughts.

Thus, for events with SPI values of less than 23, there

are 12 against 5 in Bertoua, 11 against 7 in Ngaoundéré,
but only 3 against 5 in Kribi. This reverse situation in
Kribi is due to the underestimation of strong drought
events between 1997 and 2000. For the 12-month-scale
SPI, the main wet (1950s and late 1990s) and dry (1970s
and 1980s) periods show up in both time series. Most
drought events last many years, and CRU indicates more
extreme values than do stations. The discrepancies noted
at shorter time scales tend to be amplified at this and
higher scales. Thus, in Kaélé, gridded data show a wet
(against dry) episode in the mid-1960s and early 2000s
and the reverse in 1994. This phase opposition between
the two datasets is also found for the late 1960s in
Ngaoundéré and the early 1970s and the 1990s in Bertoua.
Amplification of disagreement between station andCRU
data is better seen in FF7 ig. 7, which shows multitime-scale

SPI. A case in point is the 1996–2000 period in Kribi.

On the 3-month scale (Fig. 6), the four years of severe

droughts indicated by the station are underestimated by

CRU. At the 12-month scale, the period is wet for both

and more so for the station. This reversal is due to the

strong wet peaks occurring in the same period at the

station but not on the CRU grid, and that contributes to

the longer-scale SPI. Overall, the CRU gridded data give

a fair representation of drought events in the study area

and can be used where no local station observations are

available. The absence of missing data points is an ad-

ditional advantage. It may, however, be of interest to

evaluate the merits of using more than one grid point at

a given site.

5. Discussion and conclusions

We tested four statistical distribution functions on

precipitation data recorded at 24 stations in Cameroon

for the time period extending from 1951 to 2005. The

Anderson–Darling statistic was used to select the suit-

able distribution functions that were then used in the

calculation of the standardized precipitation index.

Results were compared with those obtained using CRU

grid precipitation. Operational drought thresholds were

also calculated for the five defined drought categories,

and results were used to study the frequency of drought

events at four stations that represent different climatic

zones in the study domain. Multiscalar SPI for both

station and CRU were finally compared to show the

usefulness of gridded data.

It was found that the suitable distribution function

underlying the data changes depended on station lo-

cation and on the length of the time interval used for

aggregation of precipitation. The Weibull and gamma

are the functions that best fit precipitation in the area.

In most studies on the SPI, the gamma distribution

is chosen without any testing. The need for such an

evaluation is even clearer for longer time scales where

Weibull, gamma, and lognormal distributions are

found, with no discernable pattern. We also found that

objective drought thresholds are station specific for

subannual scales but that the spatial distributions are

coherent. Thus, regional values can be defined. For

longer scales (above 12 months), most stations in the

domain have the same threshold values. For most sta-

tions, drought magnitude and duration increased with

time for both short and long time scales. This can be the

consequence of a reduction in precipitation resulting

from climate change as suggested by Vicente-Serrano

et al. (2010). Such an increase in dryness probably

affected crop development and river runoff negativ-

ely. The SPI, which is based only on precipitation,

cannot explain the influence of temperature change

on drought condition. Thus, Vicente-Serrano et al.

(2010) suggested the calculation of a new index—the

TABLE 5. Number of drought events from 1951 to 2005 and for the five drought categories (D0, D1, D2, D3, and D4). Results in

parentheses represent the percentage of realization of the event over the considered time period.

No. of events for 3-month time scale No. of events for 12-month time scale

Kaélé Ngaoundéré Bertoua Kribi Kaélé Ngaoundéré Bertoua Kribi

D4 21 (4%) 11 (1%) 14 (2%) 23 (3%) 9 (1%) 2 (0%) 3 (0%) 8 (1%)

D3 26 (5%) 32 (5%) 32 (4%) 36 (5%) 10 (1%) 3 (0%) 2 (0%) 14 (2%)

D2 39 (8%) 53 (9%) 41 (6%) 45 (6%) 13 (2%) 6 (0%) 7 (1%) 20 (3%)

D1 59 (12%) 76 (13%) 53 (8%) 55 (8%) 16 (2%) 21 (3%) 24 (3%) 21 (3%)

D0 81 (17%) 90(15%) 62 (9%) 66 (10%) 21 (3%) 32 (5%) 33 (5%) 27 (4%)
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standardized precipitation evapotranspiration index—

that is suited to detecting, monitoring, and explor-

ing the consequences of global warming on drought

conditions. Further studies taking into account this

approach are necessary to better understand the

climatological features of drought. With the increase in

global warming, an increase in drought magnitude,

duration, and frequency is to be feared, and studies that

include climate models and that are intended to guide

adaptive measures also need to be done. CRU pre-

cipitation distribution functions and derived SPI cor-

roborate the results of many stations, with some

discrepancies at longer scales. Therefore, it is recom-

mended that further investigations use CRU data for

FIG. 6. The (left) 3- and (right) 12-month-scale SPI time series from the CRU grid point that is nearest to each of the four chosen

stations.

MONTH 2014 GUENANG AND MKANKAM KAMGA 13

JOBNAME: JAM 00#00 2014 PAGE: 13 SESS: 8 OUTPUT: Tue Sep 2 04:21:58 2014 Total No. of Pages: 15
/ams/jam/0/jamCD140032

Jo
ur

na
l o

f A
pp

lie
d 

M
et

eo
ro

lo
gy

 a
nd

 C
lim

at
ol

og
y 

 (P
ro

of
 O

nl
y)

140



areas where observations are not possible or where

they have high proportions of missing data.
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