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Abstract

This thesis deals with the dynamics of electromechanical systems combining transla-

tional motion with rotational motion. The rotational motion is ensured either by a motor

or by a pendulum and the translational motion is ensured by a conducting rod free to

move on Laplace’s rails. The attention is focussed on the effects of the nonlinear spring

and the hysteretic iron-core inductor introduced in the mechanical and electrical parts

respectively. After the schematic representation and a detailed description of each proto-

type,the mathematical models are written and the appropriate theoretical methods are

used to investigate their dynamical behaviors. The following main results are obtained:

• In the case of rotational motor-translational rod, the dynamical study based on time

traces, phase portraits and bifurcation diagrams, shows that the device exhibits dif-

ferent behaviors like jump amplitude phenomenon, hysteresis phenomenon, periodic

and chaotic oscillations.

• In the case where the rotational motion is ensured by a pendulum, the periodic and

chaotic angular oscillations and rotations are obtained using both the mathematical

and numerical methods. Resonant, antiresonant and jump phenomena are obtained.

The bifurcation diagrams with the corresponding maximal Lyapunov exponent are

plotted versus different parameters of the system. In most cases, the transition from

periodic behavior to chaos appears suddenly.



Abstract xv

Keywords: Electromechanical system, hybrid translational/rotational motion, non-

linear spring, hysteretic iron-core inductor, chaos, rotation oscillations.
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Résumé

Cette thèse analyse la dynamique des systèmes électromécaniques combinant un mou-

vement de translation et un mouvement de rotation. La rotation est assurée soit par un

moteur, soit par un pendule et le mouvement de translation est assuré par une tige con-

ductrice se déplaçant sur des rails de Laplace. L’attention est portée sur l’effet du ressort à

réponse non linéaire introduit dans la partie mécanique et l’effet de la bobine non linéaire

avec noyaux de fer d’Young introduite dans la partie électrique. Après la représentation

schématique et la description de chaque prototype, les modèles mathématiques sont étab-

lis et les méthodes théoriques appropriées sont utilisées pour analyser la dynamique des

systèmes proposés. Les principaux résultats obtenus sont les suivants :

• Dans le cas du système moteur rotatif-support translatif, l’étude de la dynamique

basée sur la trace temporelle, les portraits de phase et les diagrammes de bifur-

cation montre que le système présente différents types de comportements tels que

les sauts d’amplitude, le phénomène d’hystéresis, les comportements périodiques et

chaotiques.

• Dans le cas où la rotation est assurée par un pendule, des oscillations angulaires et

des rotations périodiques et chaotiques sont obtenues à l’aide des méthodes mathé-

matiques et numériques. On obtient des phénomènes de résonance, d’antirésonance

et de saut d’amplitudes. Le diagramme de bifurcation et l’exposant de Lyapunov



Résumé xvii

correspondant sont tracés en fonction de différents paramètres du système. Dans

la plupart des cas, la transition du comportement périodique au chaos apparaît

soudainement.

Mots-clés: Système électromécanique, mouvement hybride de translation/rotation,

ressort non linéaire, inductance avec noyau de fer hystérétique, chaos, oscillations

de rotation.
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GENERAL INTRODUCTION

Electromechanical systems (EMSs) play an essential role in fulfilling the needs of mod-

ern technological applications. In recent years, many efforts have been focused on the

development and improvement of EMSs [1–7]. Due to their various configurations, their

robustness and reliability, EMSs are used in a variety of applications in industries and at

home. At home, EMSs are used as machine tools for some laborious tasks. For example,

the mixer or food processors are used to crush or to mash the seasoning, the vacuum

cleaner to clean the sitting room, the washing machine to clean the dress and the dish-

washer to clean the plates [3, 5, 7]. In industries, the EMSs as the conveyor belts and the

robot arms play an essential role in the automation of industrial processes.

Since several years, nonlinear electromechanical systems have been widely studied.

They can be found in a wide range of applications such as domestic equipments (mixers,

robots) [8,9], in biological organs (cardiovascular system) [10,11] and engineering devices

(shaker, production chains). In the modelling, nonlinear terms can arise from a mechanical

part (material, geometric or inertial nonlinearities), from an electrical circuit (nonlinear

inductor, nonlinear condenser, nonlinear resistance) and from the coupling (coupling be-

tween the electromagnets, saturation, hysteresis, nonlinear magnetic force, time delay).

This leads to complex dynamical behaviors such as the jump, the hysteresis, subharmonic

and superharmonic oscillations, frequency division or multiplication, multistability, graz-

ing, switching, quasi-periodicity and chaos. Some of these behaviors resulting from nonlin-
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ear dynamics can improve the processes in which the EMS are engaged such as industrial

mixing processes [12], industrial shaking processes [13] and monitoring compaction [14,15].

Despite their common presence in literature, pendulum systems continue to attract

a lot of attention for research and application since they exhibit many phenomena of

nonlinear dynamics [16–31]. The pendulum models comprise downward pendulum [21],

horizontal pendulum [22], rotating pendulum [23], inverted pendulum [24, 25] and they

can be coupled to the electrical part and become electromechanical pendulums which are

particularly interesting for applications in engineering devices, space exploration, manu-

facturing automation, construction, mining, hazardous operations, and many other areas.

This is due to some particular dynamic state (oscillation and chaos) that they can gener-

ate because of intrinsic angular nonlinearity or due to natural or introduced nonlinearities

in the electrical and mechanical parts [31–36]. Many works have been devoted to the study

of pendulum with a horizontal moving support because it is an actuated system that is

highly unstable and nonlinear. This system combines two motions which interact each

other: the translation of the support and the rotation of the pendulum [37,38]. Adding a

nonlinear component to this system which is already nonlinear can generate more complex

dynamics.

Almost all of the studies on EMS have paid attention either on EMS with only

translational motion or on EMS with only rotational motions. Other systems convert the

rotational movement into translational movement and vice versa. But, there are industrial

automation, domestic appliances and even medical tasks where the EMS actions required

simultaneously both rotation and translation. This might for instance be the case of some

mixers which may translate and rotate during the mixing processes in order to cover

the whole space occupied by the products to be mixed. Another application of interest

is an electromechanical perforator which has many applications in mechanical and civil
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engineering (for instance for the digging of wells for water, gas or petrol).

One of the objectives of this thesis is to design new electromechanical

devices which are able to perform both rotational and translational motions.

Same as it has been demonstrated that nonlinear dynamical behaviors present

some benefits in increasing the efficiency of some activities, one can expect that

mechanisms delivering combined complex rotational and translational motions

can improve the efficiency while performing the targeted tasks. In the same

line, the second objective of this work is to generate complex behaviours in

the dynamics of the designed EMS by adding nonlinear components.

The present work is therefore organized within 3 chapters as follows. In chapter

one, we present some generalities on EMS, research results on electromechanical systems

with nonlinearities, and on rotational and translational systems. Afterwards the objectives

and interest of the work are presented. In chapter two, we focus on the mathematical

formalism and numerical methods used to characterize the dynamical states of the physical

systems studied. Chapter three is devoted to results and discussions. We structure the

chapter in two main parts. In the first part, we consider an electromechanical mechanism

in which the rotational motion of a motor is combined to the translational motion of

a plate carrying the motor through Laplace’s rails. Here, we study the dynamics of the

system in the oscillatory state, and the complex behavior of the system in presence of

nonlinear spring and nonlinear inductance. In the second part, we deal with the complex

dynamics of a driven hybrid translational-pendulum electromechanical system subjected

to a nonlinear spring. The system and equations are given, the frequency response and

bifurcation diagrams are obtained and analysed. The conclusion ends with a general

conclusion where the main results of the work are summarized. The study also provides

a brief outline of possible future research directions.
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Chapter I

Litterature review

1.1 Introduction

This chapter is concerned with generalities on electromechanical systems (EMSs) and

literature review on studies on these systems with nonlinearities. In section 1.2, we present

the generalities on EMS. Attention is paid to the nonlinearities occurring in those systems

in section 1.3. Section 1.4 deals with the presentation of rotational and translational EMS.

Section 1.5 will give more details on the problems to be solved in this thesis. The conclusion

of the chapter appears in section 1.6.

1.2 Generalities on electromechanical systems

1.2.1 Definition of electromechanical systems

EMS refers to a mechanical element coupled to electrical circuits via electromechanical

transducers. The interest devoted to such a system is due to the fact that it is pervasive

in modern life. EMSs play an essential role in fulfilling the needs of modern technological

applications. They can be found out in a wide range of applications such as domestic

equipments (mixers, robots), in biological organs (cardiovascular system) and engineering

devices (shaker, chains of production). The electrical energy supplied to these systems is

transformed into mechanical energy with an efficiency of 80 percent by electric drives [39].
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In general way, according to the nature of excitation, EMSs can be divided into two

categories respectively autonomous and non-autonomous systems.

1.2.2 Autonomous EMSs

Autonomous EMSs are systems which can operate without an external generator.

This can considerably reduce the cost of manufacturing of such systems. In this per-

spective, some authors have used self-subtained oscillators such as Van der Pol, Duffing

and Rayleigh oscillators to control mechanical devices. Nowadays, the development of au-

tonomous EMS constitutes a big challenge for researchers. Nana Bonaventure and Woafo

Paul investigated the dynamics of an autonomous electromechanical pendulum like system

with experimentation [40]. Grassland Schimdt invented an Energy-autonomous electrome-

chanical wireless switch used as a service switch [41].

1.2.3 Non-autonomous EMSs

When there is a need of an external excitation to run the system, the EMS is said to be

a non-autonomous, forced or driven system. A disadvantage of forced EMS is the fact that

their different frequencies are concentrated around the frequency of the external voltage or

current sources. This reduces their potential application particularly as random number

generators and in telecommunications where some properties of chaotic signals are used

to secure communication [40]. Interesting works on forced systems were published. Let

us enumerate some of them. In Ref. [42] Simo and Woafo analyzed bursting oscillations

in a non-autonomous electromechanical systems consisting of a rigid beam coupled to

a double well forced Duffing oscillator. Jianping Cai and Meili Lin adopted adaptative

control technique to synchronize two identical non-autonomous system with unknown

parameters in finite time [43].
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1.2.4 Types of electromechanichal systems

Depending on their dimensions, EMSs are classified as follow: nanoelectromechanical

systems (NEMSs) with dimensions at nanometer range, microelectromechanical systems

(MEMSs) which generally range in size from 20 micrometres to a millimetre and macro-

electromechanical systems (MaEMSs) whose dimensions are bigger than the one of MEMS.

a) Nanoelectromechanical systems(NEMs)

NEMs are devices that integrate electrical and mechanical functionality at the nanoscale.

NEMs devices can theorically be applied in any electromechanical system. The first NEMs

was build by Dawon Kahng and Mohamed M. Atalla at Bell Labs in 1960. It was a

MOSFET(metal-oxide-semiconductor field effect transistor)with gate oxide hickness of

100nm.

NEMs has several fascinating attribues. It can provide access to fundamental fre-

quencies in the microwave range [44], active masses in the femtograms range, heat capac-

ities far below a yoctocalorie [45], mechanical quality factors, in the tens of thousands

(and quite possibly much higher) [46], force sensitivities at the attonewton level [47],

mass sensitivity at the levels of individual molecules. All these distinguished properties

of NEMs devices pave the way to applications such as force sensors, chemical sensors,

biological sensors and ultrahight frequency resonator. NEMs mostly contains apparatuses

like actuators, sensors, resonators, beams and motors.

b) Microelectromechanical systems (MEMs)

The integration of mechanical elements, sensors, actuators and electronics on common

silicon substrate through micro-fabrication technology leads to what is known as micro-

electromechanical systems. MEMs is a process technology used to create tiny integrated
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devices or systems that combine mechanical and electrical component. They are fabri-

cated using integrated circuit batch processing technics and can range in size from a few

micrometers. These systems can sense, control and activate mechanical processes on the

micro scale, and function individually or in arrays to generate effects on the macro scale.

MEMs are used in a wide range of sensors, actuactors, generators, energy sources,

biochemical and biomedical system and oscillator. Current MEMs devices include ac-

celerometers for airbag sensor, inkjet printer heads, computer disk drive read/ write heads,

projection display chip, blood pressure sensors, optical switches, microvalves, biosensors

and many other products that are all manufactured and shipped in high commercial

volume.

Some advantages of MEMs are: extremely scalable in manufacturing resulting in

very low unit costs when mass- produced, MEMs sensors possess extremely high sensitiv-

ity, MEMs switches and actuators can attain very high frequency, MEMs devices require

very low power consumption. Some disadvantages of MEMs are the following: very ex-

pensive during the research and development stage for any new MEMs design or devices,

fabrication and assembly unit costs can be very high for low quantities, testing equipment

to characterise the quality and performance can also be expensive.

c) Macroelectromechanical systems (MaEMS)

The devices of big sizes are called MaEMS. The macro systems however are very re-

quested in engineering and in many others branches of science. They are easily integrated

in engineering system with frequencies less than 100Hz such as industrial and domestic

shakers. They can be found in various field such as: domestic equipment’s manufacturing,

communication and energy production [48]. Mechanical motion is typicaly converted into

electrical energy and vice versa through various transducers mechanism such as piezo-
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electricity, electromagnetic induction, electrostatic, magnetostrictive and biological pro-

cesses [49].

1.3 Nonlinearities in electromechanical systems

Linearity is usually praised as a positive feature and property in many disciplines, and

even in common language. It is considered synonymous to and associate with ease of

use and predictability. In general, linear models are applicable only in a very restrictive

domain like when the vibration amplitude is very small. Unlike linearity, nonlinearity is

sometimes considered as a negative feature, as a hurdle, as an uncertainty and with a

lack of ease. Designing nonlinear systems can be harder because nonlinear interactions

or behaviours in the system must be taken into account. The behaviour of a nonlinear

systems can be sensitive to the parameters of the systems and the initial conditions of

the system. More specially, by changing a nonlinear system’s parameters, the behaviour

of the system can change qualitatively as well as quantitatively. The consequences of the

lack of linearity are fundamental and substantial, and nonlinear systems differ completely

from linear system.

Any physically realistic system involves nonlinearities. Indeed, interesting physi-

cal phenomena occur in structures in the presence of nonlinearities, which cannot be

explained by linear models. These phenomena include jumps, hysteresis, subharmonic,

superharmonic, and combination resonances, self-excited oscillations, modal interactions,

and chaos. In reality, no physical system is strictly linear and hence linear models of physi-

cal systems have limitations of their own. Thus, to accurately identify and understand the

dynamical behavior of structural systems under general loading conditions, it is essential

that nonlinearities present in the system should also be modeled and studied.
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Nonlinear phenomena have applications to a wide variety of fields, ranging from

mathematics, physics, biology, and chemistry, to engineering, economics and medicine.

One of the fields where nonlinearities can have positive interests is electromechanical

engineering. However, the understanding of such electromechanical devices in nonlinear

regime is essential for the improvement of industrial and domestic product.

The source of nonlinearities can be material or constitutive, geometric, inertia, body

forces or friction. The constitutive nonlinearity occurs when the stresses are nonlinear

functions of the strains. The geometric nonlinearity is associated with large deformations

in solids, such as beams, plates, frames and shell, resulting in nonlinear strain displacement

relation (mid-plane stretching, large curvatures of structural elements, large strains and

large rotations of elements). The inertia nonlinearity may because by the presence of

concentrated or distributed masses. The nonlinear body forces are essentially magnetic and

electric forces. The friction nonlinearity occurs because of the displacement and velocity,

such as dry friction and Backlash.

As far as EMSs are concerned, nonlinearity can be of electrical or mechanical ori-

gin. It can arise from various sources such as spring and damping mechanisms, resistive,

inductive, and capacitive circuit elements.

1.3.1 Nonlinearity in the mechanical subsystem

a) Spring with nonlinear response

A nonlinear spring has a nonlinear relationship between force and displacement.The

schematic representation of the spring force is displayed in figure 1.1.

The spring system comprises a longitudinal spring with linear stiffness kv which is

connected at point P with two linear springs with identical stiffness k0 and initial length
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Figure 1.1: Schematic representation of the spring system [50].

l0 mo unted obliquely. The two springs are initially inclined with a slope of angle θ0 from

the horizontal plane and hinged at points M and N respectively. The loading point P is

initially located at height h0 above the points M, N and at horizontal distance a0 apart

from these points. The elastic force f can be written as it was given in [50]:

f = kvX − 2k0X

(
l0√

a2
0 +X2

− 1

)
+ kvh0 (1.1)

b) Nonlinear stiffness

For hardening spring effect in mechanical problems, it is found experimentally that the

stiffness is not constant but increases with the received constraint. It is approximately

defined by the relation:

k(x) = k0 + k1x
2 (1.2)

k0 is the stiffness for small stretching, x the elongation and k1 a coefficient of non-

linearity. An example of an electromechanical device with a nonlinear spring has been

studied recently by Notué et al in ref. [51].
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1.3.2 Nonlinearity in electrical subsystem

Because the circuit element namely resistors, capacitors and inductors can be either

linear or nonlinear depending upon their characteristic curves, the sources of nonlinearity

in electrical subsystem can be introduced in three ways.

a) Capacitor

In nonlinear capacitor, capacitance value changes as voltage is applied, do the energy

or stored charge is different from what was expected. The voltage of a capacitor is a

nonlinear function of the instantaneous electrical charge:

v(q) =
1

C0

q + a2q
2 + a3q

3 + ... (1.3)

where C0 is the linear value of C and ai are the nonlinear coefficients depending of the type

of capacitor in use. This is typical of nonlinear reactance components such as varactor

diodes widely used in many areas of electrical engineering to design for instance parametric

amplifiers, up-converters, mixers, low-power microwave oscillators...This type of capacitor

has been use in [52,53].

b) Resistor

Nonlinear resistors are those types of resistors where the electric current flowing through

it changes with the exchange applied voltage or temperature and does not change accord-

ing to Ohm’s law. The voltage and current values vary depending upon other factors like

temperature and light, but they may not be linear. There are several types of nonlinear

resistors, but the most commonly used are varistor resistors.

If a resistor is characterized by a v − i curve other than a straight line through

the origin, it is called a nonlinear resistor. The characteristic curve of a typical nonlinear
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resistor is given as:

v(i) = Raia

[
−
(
i

ia

)
+

1

3

(
i

ia

)3
]

(1.4)

where Ra and ia are respectively the normalization resistance and current, i is the value

of current corresponding for the limit resistor voltage. In this case, the model have the

property to exhibit self-excited oscillations. This is due to the presence of the nonlinear

resistor whose current-voltage charateristic curve shows a negative slope and the fact that

the model incorporate through its nonlinear resistance a dissipative mechanism to damp

oscillations that grow too large and a source of energy to pump up those that become small.

Because of this particular behavior, we can qualify our physical system with nonlinear

resistor as a self-sustained oscillator. The nonlinear resistance is successfully use to get

specific features like sensors, limiters, ESD protection, self-balancing stabilisation etc.

using still a relatively simple and reliable passive component. The nonlinear resistor can

be also realized using a block consisting of two transistors.

c) Inductor

• Inductor with ferromagnetic material

Nana et al in [54] demonstrated experimentally that under some conditions, the

inductance of an inductor with a magnetic core can depend on the current and has

the following mathematical expression:

L =
µ0N

2A

l
+
BsNA

i
tanh

(
αNi

2l
− δ

2

)
(1.5)

with δ = βsign
(
di
dt

)
.

Bs is the saturation flux density. A and l are respectively the cross sectional area

and the average length of the magnetic material. N is the number of turns, µ0 is the

magnetic permeability of the free space, i is the current through the winding, α and
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β are two constant parameters. As demonstrated in [54], neglected the parameter δ

has no significant effect on the behavior of the circuit. Thus, to simplify the analysis

during this work, the parameter δ will be taken equal to zero.

• Inductor without ferromagnetic material

When the magnetic circuit can be subjected to the magnetic flux more than its

ability, its inductance follows a nonlinear behaviour, and its expression is:

L = L0

[
(1 + γ)− γ tanh2

(
i

i0

)]
(1.6)

with L0 the normalization inductance, γ the saturation parameter and i0 the nor-

malization current [55, 56].

1.3.3 Mathematical modelling of QZS mechanism

The Quazi Zero Stiffness (QZS) mechanism under consideration is schematically shown

in Figure 1.1, where the device to be isolated is not included. The system comprises

a vertical spring with linear stiffness kv which is connected at point P with two linear

springs with identical stiffness and initial length L0 mounted obliquely. The two springs are

initially inclined with a slope of an angle θ0 from the horizontal plane and hinged at points

M and N respectively. Consider a loading force f at point P downwards. The loading

point P is initially located at height h0 above the points M , N and at horizontal distance

a0 apart from these points respectively. It is assumed that L0 ≥ a0. The application of the

force f causes a vertical displacement Y0 and when the system is loaded with a suitably

force, the springs are compressed from the initial unloaded position P to the equilibrium

position O where the oblique springs are compressed in the horizontal position and the

static load is only supported by the vertical spring. When kv and k0 match, the positive
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stiffness of the vertical spring and negative stiffness formed by the oblique springs will

cancel with each other to achieve zero stiffness at the equilibrium position. In this way

the system is developed into a QZS system. The geometry of the system is defined by

the parameters a0 and h0. Provided the coordinate Y0 defines the displacement from the

initial unloaded position, a loading force f given by the following equation, leads to a

resulting displacement Y0 [50, 57–59].

f = fv + f0 (1.7)

where the term fv denotes the contribution from the vertical spring and the term f0

denotes the contribution from the two oblique sprigs given as follows:

fv = kvY0 (1.8)

and

f0 = 2k0(L0 − L) sin θ0 (1.9)

where sin θ0 = (h0−Y0)
L

. It should be noticed that when θ0 = 0 the springs lie horizontally

and do not exert any vertical force, i.e f0 . Thus, the force-displacement relationship can

be rewritten as:

f0 = 2k0(h0 − Y0)(
L0

L
− 1). (1.10)

It can also be seen that

L =
√
a2

0 + (h0 − Y0)2 (1.11)

f0 = 2k0(h0 − Y0)

(
L0√

a2
0 + (h0 − Y0)2

− 1

)
(1.12)

If the variable Y defines the downward displacement of the slider from the equilibrium

position, when the oblique springs are placed horizontally after applying the loading force

f can be rewritten as:

f = kvY − 2k0Y

(
L0√
a2

0 + Y 2
− 1

)
+ kvh0. (1.13)
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1.4 Rotational and translational electromechanical sys-

tems

1.4.1 Rotational electromechanical systems

Rotational electromechanical systems are widely used in many domains due to the

fact that they are capable to operate in a large power range: from microwatt power

to gigawatt power [60]. Amoung those systems we can found rotary electric motor and

electromechanical pendulum.

a) Rotary electric motor

A rotary electric motor or rotary electric actuator (REA) consists of two mechanical

parts: the stator which is fixed and the rotor which moves. It also has two electrical

components, magnets set and an armature, one of them is attached to the stator and

the other to the rotor, together making a magnetic circuit. One distinguish two principle

types: Direct Current motors (DC motors) and alternating Current motors (AC motors).

Numerous devices including home appliances and industrial automation systems function

with AC/DC motors with a large variety of delivered output power.

• DC motor

DC motors take electrical power through direct current and convert this energy into

mechanical rotation. It use magnetic fields that occur from the electrical currents

generated, which powers the movement of a rotor fixed within the output shaft. By

the manner to connect the stator with rotor, one distinguishes many type of DC

motor among them one distinguishes separately-excited DC motors (SEDC) which
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is of interest since we can obtain the other from it changing simply the manner to

connect the rotor with stator. The schematic representation of SEDC motor is shown

in figure 1.2 where La and Ra are respectively the self-inductance and resistance of

the rotor, Ua(t) is the external voltage and ia(t) the current across the roor. θ(t) is

the angular displacement of rotor and ω(t) its angular velocity. Φ(t) = kf if (t) is the

magnetic inductor flux, i(t) is the current across the inductor and kf a constant.

Using the Kirchhof’s voltage law, the equation of the electrical part is given by the

following relation [61]:

Figure 1.2: Schematic representation of SEDC motor [61].

La
dia
dt

+Raia + em(t) = ua(t) (1.14)

where, in the left, the first term is the voltage across the inductor, the second term is

the ohmic voltage and the third term em(t) = kEΦf (t)w(t) is the back electromotive

force (BEF) which represents the coupling term between the electrical part and

mechanical part of the device and kE the BEF constant. Using the Newton second
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law of dynamics for rotary motions and taking into account the Laplace force, the

equation of the mechanical part is obtained as:
dθ(t)
dt

= w(t)

Jr
dw(t)
dt

+ Cvw(t) + Tfsign(w(t)) = Tem(t)− TL
(1.15)

where Jr is the rotor inertia coefficient, Cv the viscous friction coeffcient, Tf the

dry friction torque and Tem(t) = kTΦf (t)ia the electromagnetic torque due to the

Laplace force, kT the torque constant and TL the load torque. Tem(t) represents also

the coupling term between the mechanical part and the electrical part of the device.

Using Kirchhoff’s voltage law for the electrical part and Newton second Law

of dynamics for rotating motions and taking into account Laplace force for the

mechanical part, the electromechanical equations of the SEDC motor are written

as: 

dθ(t)
dt

= w(t)

La
dia
dt

+Raia + kEΦf (t)w(t) = ua(t)

Jr
dw(t)
dt

+ Cvw(t) + Tfsign(w(t)) = kTΦf (t)ia − TL

(1.16)

• AC motor

An AC motor is an electric motor drive by an alternating current motor. There

are two type of AC motor which are synchronous and induction. In a synchronous

motor, the rotation of the shaft is at the same place as the frequency of the applied

current with multiphase AC electromagnets on the stator that produce a rotating

magnetic field. An induction motor or asynchronous motor is a single excited motor

where current is applied to one part of the motor, the stator. Flux from the stator

circuited coil in the rotor, which feels torque that makes the rotor rotate. AC motor
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are power source for a wide variety of applications due to their flexibility, efficiency

and noiseless operation. They are used on pumps, water, heaters, garden equipment

and are commonly found in many appliances, equipment and tools.

b) Electromechanical pendulum

Pendulum system is a simple mechanical system made with a thin rod which supports

a proof mass and a fixed point at its terminal. It is capable on back-and-forth or complete

rotation according to the chosen parameter values. They can be coupled to the electri-

cal part and become electromechanical pendulums. Electromechanical pendulums is the

subject of interest for several scientist since they have important applications in many

engineering objects and in space exploration, manufacturing automation, construction,

mining, hazardous operations, and many other areas.

Researchers use the analytical, numerical and experimental tools to analyse the time evo-

lution characteristics of the pendulum electromechanical systems in several configuration.

Amongst them:

• Notué and al [62], studied the dynamics and control of an electromechanical robot

arm manipulator pushing periodically a load. The pendulum is coupled to an elec-

trical part through an electromagnetic link. The author investigated firstly the effect

of a periodic impulsive force due to the instantaneous shock between the pendulum

arm and external load masses arriving periodically. Secondly he evaluated the criti-

cal electrical signal amplitude leading to the displacement of the mass, afterward a

pulse like activation signal acts periodically on the pendulum arm in view of opti-

mizing the action of the pendulum arm by counterbalancing the collision effects due

to the arriving loads and finally an adaptive back stepping method, based on the

automatic variation of an intrinsic parameter, has been developed. See figure 1.3.
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Figure 1.3: Schematic representation of the electromechanical system [62].

• Nana Bonaventure and al [63] investigated the dynamic of an EMS consisting of

DC motor, a physical pendulum with the repulsive magnets. The author investiga-

tions show that both periodic and chaotic behaviors are observed, depending on the

frequency and amplitude of the driver and the distance between the two magnets.

Amplitude jumps, hysteresis and bistable states occur for a range of frequencies near

the natural frequency of the physical system are also observed. See figure 1.4

Figure 1.4: a)Schematic representation of the pendulum system and b) schematic repre-

sentation of the motor with windings to measure the angular velocity and the rotational

angular of the rotor [63].
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• Kouam and al [64] investigated the dynamics of an EMS consisting of a DC motor-

driving arm within a circular periodic potential created by three permanent magnets.

Two different forms of input signal are used: DC and AC voltage sources. The author

studied the condition under which the mechanical arm can perform a complete

rotation. The result have shown that for voltage lower than a critical value, the

mechanical arm oscillates and then stabilizes at the equilibrium position in the case

of DC voltage while in the case of AC voltage, the arm exhibits oscillations with

amplitude less than one turn. When the voltage amplitude is higher than the critical

value, the mechanical arm undergoes large amplitude motion (complete rotation) for

DC voltage source and displays angular oscillations with amplitude greater than one

turn for AC source. The bifurcation diagrams have shown that the system exhibit

chaotic dynamics. See figure 1.5.

Figure 1.5: a)Schematic representation of the DC motor arm and (b) geometric represen-

tation of the magnetic forces acting on DC motor arm (in red) [64].
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1.4.2 Translational electromechanical systems

Translational electromechanical systems move along a straight line. Many if not most

applications require translational motion as the end product. Some searchers have studied

those systems. We can list:

• Yamapi and al [65] have studied the electromechanical device which is composed

of an electrical part coupled magnetically to a mechanical part. The coupling is

realized through the electromagnetic force due to a permanent magnet. It creates

a Laplace force in the mechanical part and the Lenz electromotive voltage in the

electrical part. The electrical part is a self-excited electrical system described by the

Rayleigh-Duffing oscillator, consisting of a nonlinear resistor NLR, a condenser C

and an inductor L, all connected in series, while the mechanical part is composed

of a mobile beam which can move along the z-axis on both sides. Rod T, which has

a similar motion, is bound to a mobile beam with a spring. See figure 1.6.

Figure 1.6: Self-sustained electromechanical device [65].

• Tchetchoua and Woafo [66] studied the dynamic of an electromechanical device
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consisting of a mobile plate with variable contents fixed to a spring and activated

by an induction motor. The asynchronous motor used is a three-phase one with

two parts: a stator (inductor) and a rotor mobile around a revolution axis. The

electromagnetic torque which is produced by the electromotor is transmitted to the

plate by the connecting-track rod system which is mechanically fixed to the rotor.

See figure 1.7.

Figure 1.7: Self-sustained electromechanical device [66].

1.5 Problem statement of the work

The main purpose of this thesis is to design and study the dynamics of different elec-

tromechanical systems which combine both translational and rotational motion. Ours

models consist on one hand to the rotational motion of a motor combined to the transla-

tional motion of a plate carrying the motor through Laplace’s rails and in another hand

to the rotational motion of a pendulum combined to the translation of a rod free to move

on Laplace’s rails to which it is connected. To induce the chaotic dynamic in our system,
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we have introduced the nonlinear spring in the mechanical part and the hysteretic iron-

core inductor in the electrical parts. Therefore, studying the dynamical response, both

theoretically and numerically, of these structural components would help in understand-

ing and explaining the behavior of more complex real structures for various applications.

The complex behaviors of this device can find applications in various branches of elec-

tromechanical engineering such as boring machine and drilling machine. They can also

find application in the sieving and actuation processes

1.6 Conclusion

We have reported in this chapter a review of literature on EMS. Starting by some gener-

alities on autonomous and non-autonomous electromechanical systems, we have presented

different types of electromechanical system and we have ended by stating the problem of

this thesis. The next Chapter will be devoted to the mathematical and numerical methods

used to analyze the dynamical states of physical devices proposed in this work.
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Chapter II

Mathematical formalism, numerical methods and

modelling of the mechanical systems

2.1 Introduction

This chapter focuses on the mathematical formalism, numerical methods and modelling

of the electromechanical sytems studied in this thesis. Section 2.2 and section 2.3 deal

respectively with mathematical analysis and numerical methods used to solve the equa-

tions obtained from the mathematical modeling. In section 2.4 numerical tools used to

study the dynamical behaviors of the devices proposed are presented. In section 2.5, we

describe the different EMSs of this work. Section 2.6 concludes the chapter.

2.2 Mathematical formalism

2.2.1 Lagrange’s formalism

A complex system dynamic can be described in efficient way using Lagrange’s equation.

The complicated vector analysis that needed for describing forces applied on a mechanical

system can be reduced by Langrange’s equation [67].

A set of generalised coordinate q = {q1, .., qi, .., qn} is a representation of the funda-

mental principle of Lagrange’s equation, where qi is an independent degree of freedom of

the system which combines the constraints unique to the system, i.e., the communication
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between parts of the system. The total generalised coordinates is do noted by nn.

The Lagrange’s equation is expressed by the system’s kineticK and potential energy

P which described as follows:

L = K (q, q̇)− P (q) (2.1)

where the function of kinetic energy in terms of the generalised coordinate q and q̇ its

derivative . The function of potential energy is described in terms of only the generalised

coordinate q.

The equations of desired motion are derived using

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
+
∂Df

∂q̇i
= Qi (2.2)

where Qi shows the external force that applied in term of qi coordinate and Df designates

the energy dissipated by friction. This method is used in chapter 3 for the establishment

of the equation of the system dynamic.

2.2.2 Linear Stability analysis of ordinary differential equations

Equilibria are not always stable. Since stable and unstable equilibria play quite different

roles in the dynamics of a system. That is why the study of stability analysis of steady

state solutions and fixed point is an important issue for any dynamical systems. Linear

Stability analysis tells us how a system behaves near an equilibrium point. The stability

describes the way in which the system reacts to a small perturbation that moves the

system slightly away from its steady state. Toward this end, suppose that we have a set

of first order autonomous ordinary differential equation, written in vector form

dY (t)

dt
= F (Y (t), µ) (2.3)

where Y (t) = (y1(t), y2(t), ..., yn(t)) is the vector of the n dynamical variables of the

system, a set of parameters µ and F = (F1, F2..., Fn) is a differentiable vector function.
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Suppose that Y0 is the steady state or fixe point. The linear stability analysis is based

on analyzing the time-dependent trajectory of a system slightly perturbed from a steady

state Y0. Therefore, the solution Y (t) can be represented as a sum of the steady state Y0

and a small perturbation δY (t):

Y (t) = Y0 + δY (t) (2.4)

Inserting (2.4) in (2.3) and linearizing around the steady state Y0 leads to the variational

equation for the variable δY (t).

dδY (t)

dt
= JδY (t) (2.5)

where J is nY n matrix of the partial derivatives called the Jacobian matrix. The eigen-

values of the linear system of the equations (2.4) can be found from the following charac-

teristic equation of the system

det(λI − J) = 0 (2.6)

where I is the unit matrix and λ are the eigenvalues of the system (2.6) and roots of

the characteristic equation. The stability of the steady state X0 is determined by the

eigenvalues of the system (2.6), as follows:

• If all eigenvalues of the Jacobian matrix have real parts less than zero, then the

steady state is stable;

• If at least one eigenvalues of the Jacobian matrix has real part greater than zero,

then the steady state is unstable.

This mathematical formalism is the basic principle of linear stability analysis for ODEs.
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2.2.3 Principle of Harmonic Balance Methods

Harmonic balance method is widely used in the literature for analyzing the periodic

solutions of nonlinear differential equation of nonlinear mechanical system. Let consider

the following differential equation [68,69].

ẍ+ x = µf(x, ẋ, t) (2.7)

where the dot over x refers to differentiation with respect to time t the function f(x, ẋ, t)

contains explicitly the time t.

f(x, ẋ, t+ T ) = f(x, ẋ, t) (2.8)

The harmonic solution of this equation is expressed in the form

x = A cos(wt+ ϕ). (2.9)

where A is the maximum amplitude of oscillations and ϕ the phase difference. Replacing

equation (2.9) into equation (2.8) and equating separately the coefficient of sine and

cosine terms which have the same harmonics, one obtains (neglecting harmonics order

greater than one) a system of algebraic equations which are the amplitude equations.

This procedure is the basic principle of harmonic balance. It will be used in chapter 3 to

obtain the amplitude and frequency response curves of the devices.

2.3 Numerical Methods

2.3.1 Fourth-order Runge-Kutta method for ordinary differential

equations

To solve numerically ordinary differential equations, there exists several numerical anal-

ysis techniques as the Verlet method, Euler method, Taylors method, Adams-Bashforth
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methods, Runge Kutta metods just to name a few. The Runge Kutta methods is widely

used because of its stability. It has been elaborated for the first time in 1894 by Carle

Runge and has been improved by Martin W. Kutta in 1901. Modern developments are

mostly due to John Butcher in the 1960s. This methods combines both trapezium nu-

merical integration and Simpson methods. Such methods use discretization to calculate

the solutions in small steps. The approximation of the next step is calculated from the

previous one, by adding terms. Consider the ordinary first order differential equation as

dy

dt
= f(t, y) (2.10)

with the initial condition y(t0) = y0.

The aims of the RK4 is to find solutions after each time step, the next solution as a

function of the previous one. This method establishes the relations [70,71]:

y(t+ h) = y(t) +
1

6
(K1 + 2K2 + 2K3 +K4) (2.11)

The coefficients K1, K2, K3 and K4 are express as follows:

K1 = hf(t, y(t))

K2 = hf(t+ h
2
, y(t) + K1

2
)

K3 = hf(t+ h
2
, y(t) + K2

2
)

K4 = hf(t+ h, y(t) +K3)

(2.12)

This iteration procedure needs only the initial value y0 , to calculate all the other values

taken by the function y at other times separated by the time step h.

In the case of second-order differential equation :
d2y
dt2

= f(t, y, dy
dt

)

y(t0) = y0,
dy
dt
|t=t0 = y0

(2.13)
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It can be divided in order to obtain two first order equations written as follows,

dy
dt

= z

dz
dt

= f(t, y, z)

y(t0) = y0, z(t0) = z0

(2.14)

The fourth Order Runge Kutta iterations are given by the following relations:
y(t+ h) = y(t) + 1

6
(K1 + 2K2 + 2K3 +K4)

z(t+ h) = Z(t) + 1
6
(L1 + 2L2 + 2L3 + L4)

(2.15)

where

K1 = hz(t)

L1 = hf(t, y, z)

K2 = h(z(t) + L1

2
)

L2 = hf(t+ h
2
, y(t) + K1

2
, z(t) + L1

2
)

K3 = h(z(t) + L2

2
)

L3 = hf(t+ h
2
, y(t) + K2

2
, z(t) + L2

2
)

K4 = h(z(t) + L3)

L4 = hf(t+ h
2
, y(t) +K3, z(t) + L3)

(2.16)

2.3.2 Hardware and software

During the course of this work, we used a Laptop computer running Windows 10 oper-

ating system and two major software’s: Fortran and Matlab.

2.4 Numerical tools for characterization of the dynam-

ical states

Dynamical states of the nonlinear systems are usually investigated with a number of

numerical tools such as the time histories diagram, phase portraits diagrams, Poincare
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section, Power spectrum, bifurcation diagrams and Lyapunov exponent. In this section,

we present brief information on the numerical tools which are used for characterizing

different dynamical states of nonlinear plate in the different study cases considered in this

thesis.

2.4.1 Time traces and phase portrait

The first approach of the detection of different dynamics states is visual and it is based

to the computer simulation of nonlinear ordinary differential equations(NODE). The time

trace of a dynamical system is a representation of the system evolution state in time.

Phase portrait is a geometric representation of the trajectories of a dynamical system in

the phase plane. Each set of initial conditions is represented by different curve or point.

Phase portraits are an invaluable tool in studing dynamical systems. They consist of a

plot of typical trajectories in the state space. This reveals information such as whether,

an attractor, a limit cycle is present for the chosen parameter values. This reveals infor-

mation such as whether an attractor, a repellor or limit cycle is present for the chosen

parameter value. However the drawback of this computational tool is that it can be hard

to distinguish the quasi-periodicity and chaos phenomena by using the phase portrait

diagram.

2.4.2 Bifurcation Diagram

Varying the parameter values of NODE, one observes carefully the time histories and

phase portraits. The chaotic behavior is distinguished from others by its extremely irreg-

ularity. Another approach of the detection of dynamical states is the bifurcation diagram.

Bifurcation diagram is helpful to understand how the long term behavior of a model

changes as parameter values change [72]. Points on the diagram that represent change in
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the behavior are called bifurcation points. The method consists in representing in abscissa

on a diagram the values of one parameter of the system and the projection on a vertical

straight line the figurative symbols of amplitudes points of the corresponding Poincare

section [73]. In the bifurcation phenomena, attractors may appear, disappear or be re-

placed by another one. Bifurcation diagrams help us to visualize these transitions. We can

identify various routes to chaos taken by dynamical systems. The most common are: the

period doubling route, the quasi-periodic route and intermittency route. But the Achilles

heel of this method is the confusion between the quasi-periodicity and chaos phenom-

ena. The most reliable indicator of chaos phenomenon is the Lyapunov exponent or the

Lyapunov number.

2.4.3 Lyapunov exponent

Chaotic behavior needs to be properly identified in dynamical systems. In this regard,

diagnostic tools are essential and system invariants are good alternative for this aim.

Attractor dimension and Lypunov exponent are usually employed to identified chaos.

Lyapunov exponent evaluates the sensitive dependence on initial conditions estimating

the exponential divergence of nearby orbit. These exponents have been used as the most

useful diagnostic tool for chaotic system analysis and can also been used for the calculation

of other invariant quantities as the attractor dimension. The signs of these exponents

provide a qualitative picture of the system’s dynamics. The existence of positive Lyapunov

exponents defines directions of local instabilities in the system dynamics and any system

containing at least one positive exponent presents chaotic behavior. When the Lyapunov

exponent is negative or vanishes, trajectories do not diverge. On the other hand, when

the exponent is positive, it indicates that trajectories diverge, characterizing chaos. The
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maximum one-dimensional Lyapunov exponent is defined as:

λmax = lim

{
(
1

t
) ln [D(t)]

}
, (2.17)

with

D(t) =
√
δ2

1 + δ2
2 + δ2

3, (2.18)

Where D(t) is the distance between neighbouring trajectories. It is computed from the

variationally equations obtained by pertubing the solutions of equations as follows:

x→ x+ δ1, y → y + δ2, ẏ → ẏ + δ3 (2.19)

2.5 Modelling of the mechanical systems

2.5.1 Systems delivering rotation and translation motion

a) Presentation and functionning

The electromechanical device represented in Figure 2.1 consists of an electrical motor

(inductance L2 and internal winding resistor R2) carried by a plate which is fixed to

a mobile and conducting rod. Two parallel and straight conducting rails of negligible

resistance handle both ends of the mobile rod. These rails are linked to their ends by a

resistor R, an inductor L, all connected in series with a sinusoidal voltage source. The

mobile rod is free to move along the rails due to the effect of the Laplace’s force. The

whole system is immerged in a magnetic field ~B. A special spring mechanism is fixed

to the plate carrying the motor. This spring mechanism consists of an horizontal spring

with linear stiffness kv connected at the point P to two other linear springs of identical

stiffness k0 and initial length l0 mounted so that during the motion, they occupy oblique

configuration. The current, delivered by the generator flows through the two rails, the
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mobile rod and the motor. The parameters values and units of this system are listed in

tables 2.1, 2.2, 2.3 and 2.4.

Figure 2.1: Schematic representation of the electromechanical system

Table 2.1: Values of the electrical components in the circuit

Parameters Notation Value Unit

Inductance L0 323.18× 10−3 H

Resistance R 5 Ω

Table 2.2: Values of the spring constants, lengths and that of the rails

Parameters Notation Value Unit

Horizontal sprint stiffness kv 10 N.m

Oblique sprint stiffness k0 9 N.m

Initial length of the oblique springs l0 0.1 m

Distance between the two rails lr 0.134 m

Viscous damping λ 0.4× 10−2 N.s/m

The middle distance between the two rails a0 0.067 m
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Table 2.3: Values of the motor parameters

Parameters Notation Value Unit

Height of the rotor h 9.85× 10−2 m

Diameter of the rotor D 8.12× 10−2 m

Magnetic field intensity B 0.73 T

Relative permeability µr 985

Thickness of the winding lg 5× 10−3 m

Resistivity of the wire ϕ 1.72× 10−8 Ωm

Diameter of the wire in the winding d 0.15× 10−3 m

Number of turns N 20

Rotor inertia moment Jr 9.5× 10−7 Kg.m2

Back electromotive force constant KE 2.8× 10−5 V.s/rad

Torque constant KT 2.8× 10−5 N.m/A

Viscous friction coefficient Cv 0.2× 10−3 N.s

Mass of the motor, the plate and rod M 0.068 kg

Table 2.4: Parameter of the nonlinear inductance

Parameters Notation Value Unit

Cross sectional area A 176.71 mm2

Saturation flux density Bs 130× 10−3 T

Number of turns N 1000

Parameter α 88.23× 10−4 m/A

Parameter β 88.42× 10−2

For the electrical circuits, the values come from the experimental work conducted by

Nana et al in [63]. For the mechanical systems, we have considered values of DC motors

and the physical dimensions are fixed by us. For the nonlinear spring system, it has

been used for several investigations both for theoretical and experimental investigations

(see [50, 74]).
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b) Equations of motion

In regard to the mechanical part, the motion is studied with two dimensions respectively,

x the translational displacement of the mobile rod and, θ the rotor angular displacement.

According to the Newtown’s second law for translational motion, the dynamical equation

of the mobile rod is written as:

M
d2x

dt2
= −Fr + Fl (2.20)

where Fr is the resistance force of the rod due to the spring and Fl is the Laplace force.

Both force can be expressed as:

Fr = λẊ + kvX − 2k0X

(
l0√

a2
0 +X2

− 1

)
+ kvh0 (2.21)

Let us consider in Figure 2.1 that the initial position of the system is taken when the

oblique springs are transversal to the longitudinal spring. Then the elastic force becomes:

Fr = λẊ + kvX − 2k0X

(
l0√

a2
0 +X2

− 1

)
(2.22)

And

Fl = Bilr (2.23)

Equation (2.20) can be written taking into account equations (2.22) and (2.23) as follows:

M
d2X

dt2
+ λ

dX

dt
+ kvX − 2k0X

(
L0√

a2
0 +X2

− 1

)
−Bilr = 0 (2.24)

Using to the Newtown’s second law for rotational motion, the second equation for the

mechanical part is given by:

Jr
d2θ

dt2
+ Cv

dθ

dt
−KT i = 0 (2.25)

where: Jr : [kg.m2] is the rotor inertia coefficient, Cv : [n.m.s] the viscous friction coeffi-

cient, and KT the torque constant. However, the equation of the electrical part is obtained

by applying the Kirchhoff’s voltage law to the electrical circuit. It is given by:
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L0

(1− η) +
2η

1 + cosh
(
i
i0

)
+ L2

 di

dt
+(R +R2) i+Blr

dX

dt
+KE

dθ

dt
= u(t) (2.26)

In this equation, from left to right the first term is the voltage across the inductor, the sec-

ond term is the ohmic voltage and the third term is the back electromotive force (BEF)

which represents the coupling term between the electrical part and mechanical part of

the device and KE the back electromotive force constant. u(t) is the external excitation

source considered as sinusoidal u(t) = e0 cos(ωt). The parameters η, L2 and R have the

following expressions:

η = βsα
2µ0+βsα

;L2 = µ0µrN2hD
lg

;R = 8ϕ(h+D)N
πd2 .

µr is the relative permeability of the rotor, lg is the thickness of the winding, ϕ and

d are respectively the resistivity and diameter of the wire used in the winding, N is the

number of turns, h and D are respectively the height and diameter of the rotor, µ0 is the

permeability of vacuum.

The resulting electromechanical equations which govern the system are given as:



(
L0

(
(1− η) + 2η

1+cosh
(
i
i0

)
)

+ L2

)
di
dt

+ (R +R2) i+Blr
dX
dt

+KE
dθ
dt

= u(t)

M d2X
dt2

+ λdX
dt

+ kvX − 2k0X

(
l0√
a2

0+X2
− 1

)
−Bilr = 0

Jr
d2θ
dt2

+ cv
dθ
dt
−KT i = 0

(2.27)

The following dimensionless quantities are used in this part of work:

x1 = i
i0
, x3 = X

l0
, y = θ

θ0
, t = τ

w0
.
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where i0 and θ0 are respectively the normalization current and angular displacement. Let

us consider x4 = dx3

dτ
and z = dy

dτ
respectively as the translational and angular velocity of

the rod.

2.5.2 Hybrid translational-pendulum electromechanical system

with a nonlinear spring

a) Presentation and functionning

The system is depicted in Figure 2.2. It is an electromechanical system consisting of

a pendulum attached to a mobile-conducting rod (support). The system bathes in a

magnetic field ~B. A special spring mechanism is fixed to the mobile rod. This spring

mechanism consists of an horizontal spring with linear stiffness kv connected at the point

P to two other linear springs of identical stiffness k0 and initial length l0 mounted so that

during the motion, they occupy oblique configuration. Due to the effect of the Laplace’s

force, the rod is free to displace itself along two parallel and straight conducting rails of

negligible resistance. These rails are connected at their ends by an electrical part of the

system consisting of a resistor R and a sinusoidal voltage source, all connected in series.

The current, delivered by the generator flows through the two rails and the mobile rod.

The parameters values and units of this system are listed in tables 2.5.

b) Equations of motion

To determine the equations which derive from figure 2.2, we use Langrangian formalism.

Considering figure 2.2, the total kinetic energy of the system can be expressed as:

Ek =
1

2
Mtẋ

2 +
1

2
mpv

2
p (2.28)
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Figure 2.2: Schematic representation of the electromechanical device

Table 2.5: Parameter values

Parameters Notation Value Unit

Resistance R 5 Ω

Magnetic field intensity B 0.73 T

Mass of the pendulum mp 0.268 kg

Pendulum lenght l 0.3 m

Pendulum friction constant ε 5× 10−3 N.m.s/rad

Mass of the mobile rod Mt 0.5 kg

Viscous damping λ 5× 10−2 N.s/m

Distance between the two rails lr 0.198 m

The middle distance between the two rails a0 0.099 m

Oblique sprint stiffness k0 7 N/m

Horizontal sprint stiffness kv 10 N/m

Initial length of the oblique springs L0 0.1 m

Gravitational constant g 9.81 m/s2

where 1
2
Mtẋ

2 is the kinetic energy of the mobile support due to its linear motion and

1
2
mpv

2
p is the kinetic energy of the physical pendulum.
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Coordinate of the pendulum mass are:

xp = x+ l sin θ (2.29)

yp = l cos θ (2.30)

From (2.29) and (2.30) one obtains:

v2
p = (ẋ2

p + ẏ2
p) = ẋ2 + 2lθ̇ẋ cos θ + l2θ̇2 (2.31)

Therefore the kinetic energy becomes:

Ek =
1

2
ẋ2(Mt +mp) +mplθ̇ẋ cos θ +

1

2
mpl

2θ̇2 (2.32)

The potential energy of the system is defined as:

Ep = Ep1 + Ep2 (2.33)

where Ep1 is the potential energy of the pendulum and Ep2 the one of the mobile rod

EP1 = mpgl(1− cos θ) (2.34)

The elastic force f can be written as it was given in equation (2.22) thus

Ep2 =

∫
Frdx =

∫ (
kvx− 2k0x

(
l0√

a2
0 + x2

− 1

))
dx (2.35)

Hence the potential energy of the system can be writen as:

EP = mpgl(1− cos θ) +
1

2
kvx

2 − 2k0

(
l0
√
a2 + x2 − 1

2
x2

)
(2.36)

The Lagrangian of the entire system is given as:

L =
1

2
ẋ2(Mt+mp)+mplθ̇ẋ cos θ+

1

2
mpl

2θ̇2−mpgl(1−cos θ)−1

2
kvx

2+2k0

(
l0
√
a2 + x2 − 1

2
x2

)
(2.37)
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The Euler Lagrangian equation is given as:

ẍ(Mt+mp)+mplθ̈ cos θ−mplθ̇
2 sin θ+kvx−2k0x

(
l0√

a2 + x2
− 1

)
= −λẋ+Bilr (2.38)

mplẍ cos θ +mpl
2θ̈ +mpgl sin θ = −εθ̇ (2.39)

The equation of the electrical part is given as:

Ri+Blr
dx

dt
= u(t) (2.40)

Therefore the electromechanical equations which show the dynamic of the entire system

are given as:
ẍ(Mt +mp) +mplθ̈ cos θ −mplθ̇

2 sin θ + kvx− 2k0x
(

l0√
a2+x2 − 1

)
= −λẋ+Bilr

mpl
2θ̈ +mplẍ cos θ +mpgl sin θ = −εθ̇

Ri+Blrẋ = u(t)

(2.41)

where x is the displacement of the mobile conducting rod, θ is the pendulum angle and

i is the electric current. The external excitation source u(t) is considered as a sinusoidal

input voltage of the form u(t) = e0 cos(wt) ( e0, ω and t been respectively the amplitude,

frequency and time). By substituting in the first equation the current taken from the

last equation, the above equations can be reduced to a set of two coupled differential

equations:

ẍ(Mt +mp) + ẋ
(
λ+ 1

R
B2l2r

)
+ x

[
kv − 2k0

(
l0√
a2+x2 − 1

)]
+mplθ̈ cos θ −mplθ̇

2 sin θ = 1
R
Blru(t)

(2.42a)

ẍ cos θ + lθ̈ +
ε

mpl
θ̇ + g sin θ = 0 (2.42b)
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Let us use the following dimensionless parameters:

x3 =
x

l0
; y =

θ

θ0

; t =
τ

w0

; a =
a0

l0
;α =

k0

kv
; Ω =

w

w0

;w0 =

√
kv

(Mt +mp)

α1 =
1

w0(Mt +mp)
(λ+

1

R
B2l2r);α2 =

mplθ0

l0(Mt +mp)
;α3 =

mplθ
2
0

l0(Mt +mp)

β1 =
ε

mpl2w0

; β2 =
l0
θ0l

; β3 =
g

w2
0θ0l

;E =
Blre0

w2
0l0R(Mt +mp)

(2.43)

In this case, the system is modelled as follows:
ẍ3 + α1ẋ3 +

(
1− 2α

(
1√
a2+x2

3

− 1

))
x3 + α2ÿ cos(θ0y)− α3ẏ

2 sin (θ0y) = E cos(Ωτ)

ÿ + β1ẏ + β2ẍ3 cos (θ0y) + β3 sin (θ0y) = 0

(2.44)

2.6 Conclusion

In this chapter, we started by the presentation of the mathematical formalisms and the

numerical methods used to solve the differential equations as well as the hardware and

software used. We have elaborated some dynamical tools that will be useful in the next

chapter to characterize the dynamical states of the EMSs. We ended by the presentation

of the two electromechanical devices studied in this work and their mathematical models.

The next chapter will be based on the dynamic of those two devices.
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Chapter III

Results and discussion

3.1 Introduction

This chapter is devoted to the results and discussions on the work carried out in this

thesis. It is therefore organized as follows. Section 3.2 presents the dynamical behaviour

of an electromechanical system consisting of an electrical motor carried by a mobile con-

ducting rod (support). The attention is focussed on the effects of the nonlinear spring

and the hysteretic iron-core inductor introduced in the mechanical and electrical parts

respectively. In section 3.3, the dynamical study of a new model of device combining

translational and pendulum motion is presented. We end this chapter by a conclusion in

section 3.4.

3.2 Dynamical behaviours of a coupled system made of

rotary motor and mobile translating support

3.2.1 Oscillatory state in the linear case

In the linear case, it is assumed that the hysteretic inductor inductance is equal to

L0(η = 0) , and the two oblique springs are absent k0 = 0. In this case, the dimensionless
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equations describing the dynamics of the system are as follows:
ẋ1 + α1x1 + α2ẋ3 + α3ẏ = E0 cos(Ωτ)

ẍ3 + β1ẋ3 + x3 − β2x1 = 0

ÿ + γ1ẏ − γ2x1 = 0

(3.1)

with the following rescaling:

Ω = w
w0

;w0 =
√

kv
M

;α1 = (R+R2)
(L0+L2)w0

;α2 = Blrx0

(L0+L2)i0
;α3 = KEθ0

(L0+L2)i0

β1 = λ
Mw0

; β2 = Blri0
Mw2

0x0
; γ1 = cv

Jrw0
; γ2 = KT i0

Jrw2
0θ0

;E0 = e0
(L0+L2)w0i0

(3.2)

To derive the amplitude of the oscillatory states delivered by equation (3.1), let us

express its solution by the mathematical relations of the form

x1 = A cos(Ωτ − ϕ1), x3 = B cos(Ωτ − ϕ2), x4 = C cos(Ωτ − ϕ3),

y = D cos(Ωτ − ϕ4), z = E cos(Ωτ − ϕ5)

(3.3)

whereA,B, C,D and E are unknown maximal amplitudes, Ω the frequency and ϕi (i = 1, 2, 3, 4, 5)

the initial phases, all to be determined. Inserting equation (3.3) into equation (3.1) and

then equating separately the coefficients of sine and cosine terms, one obtains a set of

equations for A, B, C, D and E. This set of equations leads to:
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A2 =
E2

0[
α1+

α2β1γ2Ω2

β2
1Ω2+(1−Ω2)2

+
α3γ1γ2Ω2

Ω4+γ2
1Ω2

]2

+

[
Ω+

α2γ2Ω(1−Ω2)

β2
1Ω2+(1−Ω2)2

− α3γ2Ω3

Ω4+γ2
1Ω2

]2

B2 =
β2

2E
2
0

[β2
1Ω2+(1−Ω2)2]

[[
α1+

α2β1γ2Ω2

β2
1Ω2+(1−Ω2)2

+
α3γ1γ2Ω2

Ω4+γ2
1Ω2

]2

+

[
Ω+

α2γ2Ω(1−Ω2)

β2
1Ω2+(1−Ω2)2

− α3γ2Ω3

Ω4+γ2
1Ω2

]2
]

C2 =
Ω2β2

2E
2
0

[β2
1Ω2+(1−Ω2)2]

[[
α1+

α2β1γ2Ω2

β2
1Ω2+(1−Ω2)2

+
α3γ1γ2Ω2

Ω4+γ2
1Ω2

]2

+

[
Ω+

α2γ2Ω(1−Ω2)

β2
1Ω2+(1−Ω2)2

− α3γ2Ω3

Ω4+γ2
1Ω2

]2
]

D2 =
γ2

2E
2
0

(Ω4+γ2
1Ω2)

[[
α1+

α2β1γ2Ω2

β2
1Ω2+(1−Ω2)2

+
α3γ1γ2Ω2

Ω4+γ2
1Ω2

]2

+

[
Ω+

α2γ2Ω(1−Ω2)

β2
1Ω2+(1−Ω2)2

− α3γ2Ω3

Ω4+γ2
1Ω2

]2
]

E2 =
Ω2γ2

2E
2
0

(Ω4+γ2
1Ω2)

[[
α1+

α2β1γ2Ω2

β2
1Ω2+(1−Ω2)2

+
α3γ1γ2Ω2

Ω4+γ2
1Ω2

]2

+

[
Ω+

α2γ2Ω(1−Ω2)

β2
1Ω2+(1−Ω2)2

− α3γ2Ω3

Ω4+γ2
1Ω2

]2
]

(3.4)

Considering equation (3.4), we analyse the behaviours of A, B, C, D and E when

the frequency Ω of the external excitation is varied. The results are presented in Figure

3.1. As it appears in Figure 3.1, when the frequency increases from 0.0 to 3.0, A de-

creases progressively from the maximum amplitude to the amplitude equal to 0.26 (Ω = 1

), then increases a bit and finally decreases to a lower amplitude. In the mean-time the

amplitudes B and C increase from almost zero to a higher amplitude equal to 0.53 and de-

creases to small values. When the frequency is equal to 1, an anti-resonance phenomenon

in the electrical part and resonance phenomenon in the translation motion are observed

in (Figures 3.1a, 3.1b and 3.1c). The amplitude of the angular displacement D decreases

when the frequency increases. E have the same behavior as A. The anti-resonance in the

electrical current means that when the power dissipated by the Joule effect is minimum,

the displacement of the rod is maximal. Due to the linear form of equation (2.27), one
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Figure 3.1: Analytical (full line) and numerical (dot line) frequency-response curves: (a)

amplitude of the electrical current; (b) amplitude of the rod displacement; (c) amplitude of

the rod velocity; (d) amplitude of the angular displacement; (e) amplitude of the angular

velocity. With E0 = 0.39.
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also observes that the maximal dimensionless value of the translational, the angular dis-

placement and the electrical current increases linearly with the magnitude of the external

excitation (Figure not presented here).

3.2.2 Frequency response and bifurcation diagrams

a) Case of linear inductance with nonlinear spring

We remind that this case is described by the following set of equations

ẋ1 + α1x1 + α2ẋ3 + α3ẏ = E0 cos(Ωτ) (3.5a)

ẍ3 + β1ẋ3 + β2

[
1− 2α

(
1√

a2 + x2
3

− 1

)]
x3 − β3x1 = 0 (3.5b)

ÿ + γ1ẏ − γ2x1 = 0 (3.5c)

The new coefficients are given as follows:

α =
k0

kv
; a =

a0

l0
; β2 =

kv
Mw2

0

; β3 =
Blri0
Mw2

0l0
(3.6)

To conduct more analytical investigations, an approximate cubic expression of the

term, which contains the square root, is developed using a Taylor series expansion at the

static equilibrium position x3 = 0 . One obtains:[
1− 2α

(
1√

a2 + x2
3

− 1

)]
x3 ≈

[
1− 2α

(
1− a
a

)]
x3 +

α

a3
x3

3 (3.7)

Inserting Equation (3.7) in Equation (3.5b) and using Equations (3.3), the harmonic

balance method is applied. After some algebraic manipulations, it comes that the ampli-

tudes satisfy the following nonlinear algebraic equations:
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B2[β2
1Ω2+(F+ 3α

4a3 β2B2)2]
β2

3


[
α1 + α2Ω2β1β3

β2
1Ω2+(F+ 3α

4a3 β2B2)2 +G
]2

+[
Ω +

α2β3Ω(F+ 3α
4a3 β2B2)

β2
1Ω2+(F+ 3α

4a3 β2B2)2 − Ω
γ1
G
]2

− E2
0 = 0

A2 =
B2[β2

1Ω2+(F+ 3α
4a3 β2B2)2]

β2
3

C2 = Ω2B2

D2 =
γ2

2B
2

(Ω4+γ2
1Ω2)β2

3

[
β2

1Ω2 + (F + 3α
4a3β2B

2)2
]

E2 =
Ω2γ2

2B
2

(Ω4+γ2
1Ω2)β2

3

[
β2

1Ω2 + (F + 3α
4a3β2B

2)2
]

(3.8)

with

F = −Ω2 + β2

(
1− 2α

(
1−a
a

))
and G = α3γ1γ2Ω2

Ω4+γ2
1Ω2 .

Figure 3.2 presents the frequency-response curves for this nonlinear model. Both

the results from equations (3.8) and those obtained from the numerical simulation of

equations (3.5) are plotted. The curves show that the amplitude of the electrical current,

that of the angular displacement and that of the angular velocity decrease when the fre-

quency increases. Also notice the three values sometimes four of these amplitudes when

the frequency is between 0.65 and 1.85. This can be understood as two stable solutions

separated by an unstable solution. This effect generally leads to the jump phenomenon

and hysteresis as shown in the curves of figures 3.2b and 3.2c.

Numerical simulations are used to illustrate the dynamical behaviours of the system math-

ematically represented by equations (3.5) through bifurcation diagrams, Lyapunov expo-

nent, and phase portraits. In this subsection, the parameters E0 is chosen as the control
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Figure 3.2: Analytical (star line) and numerical (dot line) frequency-response of: (a) am-

plitude of the electrical current; (b) amplitude of the rod displacement; (c) amplitude of

the rod velocity; (d) amplitude of the angular displacement; (e) amplitude of the angular

velocity. With E0 = 0.39.
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parameter.

Figure 3.3: (a) Bifurcation diagram, (b) the corresponding Lyapunov exponent, versus the

amplitude of the excitation with the parameters of Tables 1,2,3,4 and Ω = 0.1.

From Figure 3.3, one can see that when the maximal value of the external excita-

tion increases, the translational motion of the device firstly presents a periodic and multi

periodic motion for 0 ≤ E0 ≤ 2.4 . After this range, the system responses exhibit an

alternation of chaotic and periodic motions. The chaotic behavior of the system starts

when E0 = 2.5 . To confirm the results in Figure 3.3, some phase portraits are plotted

in Figure 3.4 where one finds chaos (Figure 3. 4(c)) and periodic motions (Figures 3.4a,

3.4b and 3.4d).
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Figure 3.4: Phase portraits obtain with parameter of Figure 3.3 and (a)E0 = 0.1, (b)

E0 = 1.5, (c)E0 = 4 and (d)E0 = 5.
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b) Case of nonlinear inductance with nonlinear spring

This case is described by the the following equations:

(
1− η + 2η

1+cosh(x1)
+ α4

)
ẋ1 + α1x1 + α2ẋ3 + α3ẏ = E0 cos(Ωτ)

ẍ3 + β1ẋ3 + β2

[
1− 2α

(
1√
a2+x2

3

− 1

)]
x3 − β3x1 = 0

ÿ + γ1ẏ − γ2x1 = 0

(3.9)

with

α1 = (R+R2)
L0w0

;α2 = Blrl0
L0i0

;α3 = KEθ0
L0i0

;α4 = L2

L0
; β1 = λ

Mw0

β2 = kv
Mw2

0
; β3 = Blri0

Mw2
0L0

; γ1 = cv
Jrw0

; γ2 = KT i0
Jrw2

0θ0
;E0 = e0

L0w0i0

(3.10)

For analytical treatment, the nonlinear spring expression is developed as in Equation

(3.7) while

1

1 + cosh x1

≈ 1

2

(
1− x2

1

4

)
(3.11)

Inserting Equation (3.11) in Equation (3.9), we use the harmonic balance method

through Equation (3.3) to establish the equations characterizing the different maximal

amplitudes. The amplitudes A, B, C, D and E satisfy the following equations:

B2
[
β2

1Ω2 + (F + 3α
4a3β2B

2)2
]

1
β2

3



[
α1 + α2Ω2β1β3

β2
1Ω2+(F+ 3α

4a3 β2B2)2 +G
]2

+

 (1 + α4) Ω− ΩηB2(β2
1Ω2+(F+ 3α

4a3 β2B2)2)
16β2

3

+
α2β3Ω(F+ 3α

4a3 β2B2)

β2
1Ω2+(F+ 3α

4a3 β2B2)2 − Ω
γ1
G


2

− E
2
0 = 0;

A2 =
B2[β2

1Ω2+(F+ 3α
4a3 β2B2)2]

β2
3

;

C2 = Ω2B2;

D2 =
γ2

2B
2

(Ω4+γ2
1Ω2)β2

3

[
β2

1Ω2 + (F + 3α
4a3β2B

2)2
]

E2 =
Ω2γ2

2B
2

(Ω4+γ2
1Ω2)β2

3

[
β2

1Ω2 + (F + 3α
4a3β2B

2)2
]

(3.12)
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with

F = −Ω2 + β2

(
1− 2α

(
1−a
a

))
and G = α3γ1γ2Ω2

Ω4+γ2
1Ω2

Figure 3.5: Analytical (star line) and numerical (dot line) frequency-response of: (a) am-

plitude of the electrical current; (b) amplitude of the rod displacement; (c) amplitude of

the rod velocity; (d) amplitude of the angular displacement; (e) amplitude of the angular

velocity. With E0 = 0.39.

The frequency-response curves of the maximal amplitudes are represented in Fig-

ure 3.5. The frequency-response curve of the nonlinear mechanical system shows that

when frequency increases, the maximal amplitudes of the electrical current, the angular
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displacement and the angular velocity decrease. Multiple amplitudes domain is for fre-

quency between 0.65 and 1.5 and jump phenomenon and hysteresis appear in Figures 3.5b

and 3.5c.

The dynamical behaviors of the system mathematically presented by equations (3.9) are

illustrated using numerical simulation to present bifurcation diagrams, Lyapunov expo-

nent and phase portraits. In this subsection, parameters E0 and η are chosen as the control

parameters.

The bifurcation diagram versus E0 is plotted in Figure 3.6(a) in term of non-dimensional

displacement of the rod x3 as E0 is varies from 0 up to 15. Chaotic behavior of the sys-

tem begins when E0 = 9.7 . Before this value, the system presents a periodic motion for

0 ≤ E0 < 9.7. After this periodic motion, the system response alternatively comes into

chaotic and periodic dynamics as E0 varies. These behaviors are confirmed by Figure 3.6

(b) which presents the variation of the Lyapunov exponent. Figure 3.7 shows different

phase portraits of the rod motion. Period-nT motion is observed in Figure 3.7 (a) and 3.7

(b) while chaotic oscillations is presented in Figure 3.7(c).

Comparing these results to the previous one (see figures 3.3 and 3.4), one finds

that when the nonlinearity is introduced in the inductor, chaotic behaviour appears for

larger values of the external excitation (i.e. as from E0 = 9.5) than in the case of linear

inductance where the chaotic behaviour appears as from E0 = 2.5.

To analyse, the effects of the inductance hysteresis parameter η on the dynamics of the

device, a bifurcation diagram and the corresponding Lyapunov exponent are plotted in

Figure 3.8 as η varies. One observes that when η increases the system exhibits a chaotic

oscillation for 0 ≤ η < 1.3;1.37 ≤ η < 2.17 ; 2.23 ≤ η < 2.66 and 2.76 ≤ η < 3. Non-

chaotic behaviors are obtained in the other ranges. These behaviors are confirmed by the

phase portraits which present chaotic motions in Figure 3.9a, while Figure 3.9b presents
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Figure 3.6: ((a)Bifurcation diagram and (b) Lyapunov exponent diagram against the

amplitude of the excitation E with the parameter of Figure 3.6 and for Ω = 0.1.

Figure 3.7: Phase portraits with the parameter of Figure 3.6. (a)E0 = 0.1; (b) E0 = 1; (c)

E0 = 12.
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periodic-nT oscillations.

Figure 3.8: (a) Bifurcation diagram and (b) Lyapunov exponent diagram against the

control parameter with the parameter of Figure 3.8 and . With E0 = 12.

Figure 3.9: Phase portraits obtained with the parameters of figure 3.8 and (a) η = 0.3;

(b) η = 1.33

The results of the numerical simulation shows that chaotic behavior can be found

for very low values of the inductance hysteresis parameter η.
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3.3 Complex dynamics of a driven hybrid translational-

pendulum electromechanical system subjected to a

nonlinear spring

3.3.1 Frequency response

a) Case of linear springs

The dimensionless equations describing the dynamics of the system are as follows:
ẍ3 + α1ẋ3 + x3 + α2ÿ cos(θ0y)− α3ẏ

2 sin (θ0y) = E cos(Ωτ)

ÿ + β1ẏ + β2ẍ3 cos (θ0y) + β3 sin (θ0y) = 0

(3.13)

In order to obtain mathematically the approximate solutions of equations (3.13),

we use the following expansions considering the case of small and average amplitude of

vibrations:

cos θ0y ≈ 1; sin θ0y ≈ θ0y; ẏ2 ≈ 0 (3.14)

Replacing (3.14) in equations (3.13), one obtains equations (3.15).
ẍ3 + α2ÿ = −α1ẋ3 − x3 + E cos(Ωτ)

β‘2ẍ3 + ÿ = −β1ẏ − β3θ0y

(3.15)

One can therefore apply the linear approximation and then use the harmonic balance

method by writing:

x3 = A1 cos(Ωτ) + A2 sin(Ωτ); y = B1 cos(Ωτ) +B2 sin(Ωτ) (3.16)
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Hence, the unknown parameters A1, A2, B1 and B2 satisfy the following expression:

B1 = E
[

(1−Ω2)(−Ω2+β3θ0)
β2Ω2 − α1β1

β2
− α2Ω2

]/
(

(1−Ω2)(−Ω2+β3θ0)
β2Ω2 − α1β1

β2
− α2Ω2

)2

+
(
β1(1−Ω2)+α1(−Ω2+β3θ0)

β2Ω

)2


B2 = E

[
β1(1−Ω2)+α1(−Ω2+β3θ0)

β2Ω

]/
(

(1−Ω2)(−Ω2+β3θ0)
β2Ω2 − α1β1

β2
− α2Ω2

)2

+
(
β1(1−Ω2)+α1(−Ω2+β3θ0)

β2Ω

)2


A1 = 1

β2Ω2 (B1(−Ω2 + β3θ0) + β1ΩB2)

A2 = 1
β2Ω2 (B2(−Ω2 + β3θ0)− β1ΩB1)

(3.17)

We analyse the behaviours of A and B respectively the maximal amplitude of the

rod displacement and the angular displacement. These frequency-responses are plotted

for different values of the frequency ratio Q between the oscillation pendulum frequency

and the frequency ω0 due to the elastic coefficient kv. Q has the following expression:

Q =
1

w0

√
g

l
(3.18)

One finds the resonance and antiresonance phenomena. Figure 3.10 is plotted for

Q = 1.2. It appear that when the frequency increase 0.0 to 4.0 maximal amplitude A

and B increase progressively from a small value to an maximal one, afterward decrease to

an another small value where Ω = 1.2, increase ones more for an maximal amplitude and

finally decrease to an minimal value. These behaviours are usualy called resonance and

antiresonance. The antiresonance appears at Ω = 1.2 . From the figure, one finds that

the mathematical derivation of the amplitudes is good since there is a good agreement

with the numerical results. We have also plotted the frequency response curves for Q = 1

and Q = 0.8 (see figures 3.11 and 3.12). One finds that the antiresonance peak appear

when the frequency Ω is equal to the ratio Q . When the value of the frequency ratio Q

increases, the value of Ω where the first and second resonance pick appear increase too.
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Figure 3.10: Analytical (full line) and numerical (dot line) frequency-response curves:

(a) amplitude of the rod displacement;(b) amplitude of the angular displacement; (c)

amplitude of the rod velocity; (d) amplitude of the angular velocity. With and E0 = 0.07

and Q = 1.2.
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Figure 3.11: Analytical (full line) and numerical (dot line) frequency-response curves:

(a) amplitude of the rod displacement;(b) amplitude of the angular displacement; (c)

amplitude of the rod velocity; (d) amplitude of the angular velocity. With and E0 = 0.07

and Q = 1.
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Figure 3.12: Analytical (full line) and numerical (dot line) frequency-response curves:

(a) amplitude of the rod displacement;(b) amplitude of the angular displacement; (c)

amplitude of the rod velocity; (d) amplitude of the angular velocity. With and E0 = 0.07

and Q = 0.8.
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b) Case of nonlinear springs

We remind that this case is described by the following equations (2.44):


ẍ3 + α1ẋ3 +

(
1− 2α

(
1√
a2+x2

3

− 1

))
x3 + α2ÿ cos(θ0y)− α3ẏ

2 sin (θ0y) = E cos(Ωτ)

ÿ + β1ẏ + β2ẍ3 cos (θ0y) + β3 sin (θ0y) = 0

In order to obtain mathematically the approximate solutions of these equations,

we have considered the case of small and average amplitude of vibrations. The following

approximations can thus be used from the Taylor expansion formula:

cos(θ0y) = 1− θ2
0y

2

2
; sin(θ0y) = θ0y −

θ3
0y

3

6
(3.19a)[

1− 2α

(
1√

a2 + x2
3

− 1

)]
=

[
1− 2α

(
1− a
a

)
x3 +

α

a3
x3

3

]
(3.19b)

Replacing (3.19a) and (3.19b) in equations (2.44), one obtains equations (3.20)

ẍ3 + α2ÿ

(
1− θ2

0y
2

2

)
= −

(
1− 2α

(
1− a
a

))
x3 −

α

a3
x3

3 − α1ẋ3 + α3ẏ
2

(
θ0y −

θ3
0y

3

6

)
+ E cos(Ωτ)

(3.20a)

β‘2

(
1− θ2

0y
2

2

)
ẍ3 + ÿ = −β1ẏ − β3

(
θ0y −

θ3
0y

3

6

)
(3.20b)

The approximate solutions for oscillatory states are searched using the harmonic bal-

ance scheme which takes

x3 = A cos(Ωt− ϕ1) (3.21a)

y = B cos(Ωt− ϕ2) (3.21b)
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The amplitudes A and B satisfy the following algebraic equations:
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8
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3
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4
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A2 =

(
(−Ω2 + β3θ0 − 1

8
β3θ

3
0B

2)2 + β2
1Ω2
)(

β2Ω2 − β2θ2
0Ω2

4
B2
)2 B2 (3.22b)

To check the validity of the mathematical expressions of the oscillations amplitudes,

we have also solved numerically the set of equations (2.44) and calculated the amplitude

from the discrete data generated by the use of the 4th order Runge- Kutta algorithm.

Figure 3.13 presents the variations of the frequency- response for the translational and

pendulum oscillations. These frequency-responses are plotted for different values of the

frequency ratio Q between the oscillation pendulum frequency and the frequency ω0 due

to the elastic coefficient kv. One finds the resonance and antiresonance phenomena as

well as the hysteresis at the resonance branches. Figure 3.13 is plotted for Q = 1.2 and

the antiresonance appears at Ω = 1.2. From the figure, one finds that the mathematical

derivation of the amplitudes is good since there is a good agreement with the numerical

results. We have also plotted the frequency response curves for Q = 1 and Q = 0.8 (see

figures 3.14 and 3.15). One finds that the antiresonance peak appear when the frequency

Ω is equal to the ratio Q. When the value of the frequency ratio Q decreases, the value of Ω

where the first and second resonance pick appear decrease too. The hysteresis curve grad-

ually slopes more to the right and the resonance amplitude of the angular displacement

decreases as Q decreases.
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Figure 3.13: Analytical (star line) and numerical (dot line) frequency-response curves: (a)

amplitude of the rod displacement, (b) amplitude of the angular displacement with and

E0 = 0.07 and Q = 1.2.

Figure 3.14: Analytical (star line) and numerical (dot line) frequency-response curves: (a)

amplitude of the rod displacement, (b) amplitude of the angular displacement with and

E0 = 0.07 and Q = 1.
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Figure 3.15: Analytical (star line) and numerical (dot line) frequency-response curves: (a)

amplitude of the rod displacement, (b) amplitude of the angular displacement with and

E0 = 0.07 and Q = 0.8.

Figure 3.16 considers the case where the spring is linear α = 0 . It is plotted for

Q = 1. One also observed the resonances and antiresonance. There is also an hysteresis

branch, but less pronounced as in the case where the spring characteristics is nonlinear.

Figure 3.16: Analytical (star line) and numerical (dot line) frequency-response curves: (a)

amplitude of the rod displacement, (b) amplitude of the angular displacement with and

E0 = 0.07 and Q = 1.
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We have also analyzed how the nonlinear coefficient α affects the maximal ampli-

tude of oscillations of the translational and pendulum motions. This appears in Figure

3.17 where one finds that the amplitudes descrease when α increases. This descrease is

understandable since the increase of α means that the nonlinearity becomes more hard,

and consequently the amplitudes of motion become small.

Figure 3.17: Analytical (dot line) and numerical (star line) frequency-response curves:

(a) amplitude of the rod displacement, (b) amplitude of the angular displacement with

E0 = 0.17, Ω = 0.7 and Q = 0.8.

In order to have more information on the dynamical states of the system, bifurca-

tion diagrams have been used. Two control parameters are considered for the bifurcation

diagrams: the amplitude E of the voltage source and the ratio α between the constant of

the oblique spring and that of the horizontal spring. Q is taken to be equal to 1.

Figure 3.18 presents the bifurcation diagram and the corresponding Lyapunov exponent

versus the amplitude of the voltage source. One finds that the behavior of the device shows

a period-1T oscillation for 0 ≤ E < 1.9. Chaotic oscillations are obtained for E ≥ 1.9.

These behaviors are confirmed in Figure 3.19 where the corresponding phase potraits are

plotted. Figure 3.19 (a) shows a periodic motion and Figure 3.19 (b) chaotic oscillations.
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Figure 3.18: (a) Bifurcation diagram, (b) the corresponding Lyapunov exponent, versus

the amplitude of the excitation E with the parameters of Tables 1 and Ω = 2 and Q = 1.

Figure 3.19: Phase portraits obtain with parameter of Figure 3.18 and (a)E0 = 2, (b)

E0 = 10.
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Figure 3.20: (a) Bifurcation diagram, (b) the corresponding Lyapunov exponent, versus

the ratio with the parameters of Tables 1, E0 = 0.7, Ω = 2 and Q = 1.

Figure 3.21: Phase portraits obtain with parameter of Figure 3.20 and (a) α = 0.1,

(b)α = 1.2.

In order to find the range of α for which the device exhibits chaos, we present the

bifurcation diagram in Figure 3.20(a) and the corresponding variation of the Lyapunov
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exponent in Figure 3.20(b) as function of α . One finds that, when α ∈ [0, 1]U [1.29, 2]

the device shows period-1T oscillation. For α ∈ [1.05, 1.28] the behavior of the device

shows chaotic oscillations. Some phase portraits are plotted in Figure 3.21 to justify the

behavior found in figures 3.20. Figure 3.21(a) shows periodic behavior and figure 3.21 (b)

chaotic oscillations.

3.4 Conclusion

We have studied the dynamical behaviours of two electromechanical devices combining

rotational motion with translational motion. In the case of translational rod and rota-

tional electrical motor presented by section 3.2., in the nonlinear limit, the numerical

results show complex dynamical behaviors such as jump phenomenon, periodic motion

and chaos. It is seen that when the external excitation amplitude increases, the complex-

ity of the dynamical behaviors increases moving from period-nT oscillations to chaotic

oscillations. In presence of the inductance with nonlinear characteristics, it is found that

chaotic behaviors appear for larger values of the external excitation than in the case of

linear inductance. With the increase of the inductance hysteresis parameter η the be-

haviour change alternately from chaotic motion to periodic motion and chaotic motions

are observed even for very low value of η .

In the case of a driven hybrid translational-pendulum electromechanical system studied

in section 3.3, the frequency-response curves show that the rod and angular displacement

present resonant and antiresonant points as well as the hysteresis phenomena. When the

value of the frequency ratio Q decreases, the resonant hysteresis curve gradually slopes

more to the right and the resonance hysteresis amplitude of the angular displacement

decreases too. From the bifurcation diagrams, periodic and chaotic oscillations have been
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found for appropriate ranges of the amplitude of external voltage and of the spring non-

linear coefficient.

The complex behaviors of the first device can find applications in various branches of

electromechanical engineering such as boring machine and drilling machine. This device

can be also used in home as a mixer in which chaotic oscillations can improve its efficiency

while going up and down inside the products to be mixed. The mechanism analyzed in the

second work can find applications in the sieving process, but also on actuation processes

where one wants two complementary actuators, one being translational while the second

is of pendulum type.
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This thesis was motivated by the design of two electromechanical systems having two

main particularities. The first one is that they combine rotational and translational mo-

tions. The second one is related to the types of nonlinearities used. The first nonlinear

component is an inductor whose the current-inductance characteristics shows a highly

nonlinear relationship because of the hysteretic iron-core involved. The second nonlinear-

ity is of mechanical nature. It involves the association of three springs, two of which are

oblique while one follows the motion direction.

1. Summary of the mains results

Firstly, we have presented a new electromechanical system consisting of an electrical mo-

tor carried by a mobile conducting rod (support). We have studied the dynamical behavior

of the device in the linear and nonlinear states. Analytical and numerical investigations

have been undertaken to present the different dynamical behaviors which can take place

in such a complex electromechanical system.

• Assuming small amplitude motion, the nonlinear terms have been linearized to give

a set of equations analytically treatable. The mathematical expressions of the os-

cillations amplitudes have been obtained and the frequency-response curves show

that when the power dissipated through the Joule effect is small, the displacement

amplitude is high.
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• In the nonlinear limit, the numerical results show complex dynamical behaviors such

as jump phenomenon, periodic motion and chaos. It is seen that when the external

excitation amplitude increases, the complexity of the dynamical behaviors increases

moving from period-nT oscillations to chaotic oscillations. In presence of the induc-

tance with nonlinear characteristics, it is found that chaotic behaviors appear for

larger values of the external excitation than in the case of linear inductance. With

the variation of the inductance hysteresis parameter, the behaviour changes alter-

nately from chaotic motion to periodic motion and chaotic motions are observed

even for very low value of the hysteresis parameter.

Secondly, we have considered the dynamical behaviour of an electromechanical sys-

tem which combines both the rotational motion of a pendulum and the translational

motion of a mobile rod on the Laplace’s rails. Apart from the intrinsic nonlinearity of

the pendulum system, a nonlinear spring component has been added in the mechanical

part. Mathematical and numerical investigations have been undertaken to present the

different dynamical behaviors which can take place in such a complex electromechanical

system. The mathematical expressions of the oscillations amplitudes have been obtained

and the frequency-response curves show that the rod and angular displacement present

resonant and antiresonant points as well as the hysteresis phenomena. When the value of

the frequency ratio Q decreases, the resonant hysteresis curve gradually slopes more to

the right and the resonance hysteresis amplitude of the angular displacement decreases

too. From the bifurcation diagrams, periodic and chaotic oscillations have been found

for appropriate ranges of the amplitude of external voltage and of the spring nonlinear

coefficient.

The complex behaviors of the first device can find applications in various branches

of electromechanical engineering such as boring machine and drilling machine. This device
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can be also used in home as a mixer in which chaotic oscillations can improve its efficiency

while going up and down inside the products to be mixed. The mechanism analyzed in the

second device can find applications in the sieving process and also on actuation processes

where one wants two complementary actuators, one being translational while the second

is of pendulum type.

2. Perspectives

In this thesis, some interesting results have been obtained and have opened interesting

perspectives for future investigations.

• To complement the results obtained in this thesis for applications purpose, an ex-

perimental study of each device must be made where the Laplace’s rails could be

replaced by two magnet coil in series.

• For the pendulum system, future investigation can concern the case where the pen-

dulum is inverted. The effect of the nonlinear spring on the dynamics of this system

will be investigated and a control could be applied to impose the desired dynamics

on the system.
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Abstract
Purpose In this paper, the dynamics of a mechanical mechanism, which combines the rotational motion of a motor 
and the translational motion of a plate carrying the motor through Laplace's rails is considered. The attention is 
focussed on the effects of the nonlinear spring and the hysteretic iron-core inductor introduced in the mechanical 
and electrical parts, respectively.
Methods The modelling of the system is conducted leading to nonlinear differential equations. These equations 
are solved both analytically and numerically using the harmonic balance method and the fourth-order Runge–
Kutta method. As software used for conducting simulations, FORTRAN 95 version PLATO is used for numerical 
simulation and MATLAB for plotting curves using the data generated from FORTRAN simulations.
Results and Conclusion The dynamical study, based on time traces, phase portraits and bifurcation diagrams, 
shows that the device exhibits behaviors like jump amplitude phenomenon, hysteresis phenomenon, periodic and 
chaotic oscillations. The mechanism can be useful for several tasks such as drilling and boring.

Keywords Laplace rail · Motor · Nonlinear spring · Hysteretic iron-core inductor · Chaos

Introduction

In recent years, many efforts have been focused on 
the development and improvement of electromechani-
cal systems (EMS) [1–7]. Due to their various con-
figurations, EMS are used in a variety of applications 
in industries and at home. At home, EMS are used as 
machine tools for some laborious tasks such as mixing 
and sieving processes [3, 5, 7]. In these EMS, nonlinear 
dynamics can result as the consequence of inherent 
or introduced nonlinear components. In the model-
ling, nonlinear terms can arise from a mechanical part 
(material, geometric or inertial nonlinearities), from an 
electrical circuit (nonlinear self, nonlinear condenser, 

nonlinear resistance) and from the coupling (coupling 
between the electromagnets, saturation, hysteresis, 
nonlinear magnetic force, time delay). This leads to 
complex dynamical behaviors such as the jump, the 
hysteresis, subharmonic and superharmonic oscilla-
tions, frequency division or multiplication, multista-
bility, grazing, switching, quasi-periodicity and chaos. 
Some of these behaviors resulting from nonlinear 
dynamics can improve the processes in which the elec-
tromechanical systems are engaged such as industrial 
mixing processes [8], industrial shaking processes [9] 
and monitoring compaction [10, 11].

Almost all of the studies on EMS have paid atten-
tion either on EMS with only translational motion or 
on EMS with only rotational motions. But, there are 
industrial automation, domestic appliances and even 
medical tasks where the electromechanical systems 
actions required both rotation and translation. This 
might for instance be the case of some mixers which 
may translate and rotate during the mixing processes 
to cover the whole space occupied by the products to 
be mixed. Another application of interest is an electro-
mechanical perforator which has many applications in 
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mechanical and civil engineering (for instance for the 
digging of wells for water, gas or petrol). As a research 
contribution, this paper presents a new electromechani-
cal device which undergoes both rotation and transla-
tion movement. One of the objective of this paper is to 
design a new electromechanical device which is able to 
perform both rotational and translational motion. Same 
as it has been demonstrated that nonlinear dynamical 
behaviors present some benefits in increasing the effi-
ciency of some activities, one can expect that mecha-
nisms delivering combined complex rotational and 
translational motions can improve the efficiency while 
performing the targeted tasks. In the same line, the 
second objective of this paper is to generate complex 
behaviours in the dynamics of the designed electrome-
chanical system.

Thus, this work aims to design and study the dynam-
ics of a new electromechanical mechanism which 
undergoes both translation and rotation. To generate 
nonlinear dynamical behaviors, two nonlinear compo-
nents are inserted in the system. A hysteretic iron-core 
inductor [12] where the inductance is a function of the 
electric current is introduced in the electric part. In the 
mechanical part, we insert a nonlinear spring mecha-
nism which was recently used for vibration control and 
termed as quasi-zero stiffness vibration mechanism 
[13–16]. The structure of the work is as follows: the 
next section deals with the materials and methods. The 
subsequent section deals with the results and discus-
sion. The final section concludes the paper.

Materials and Methods

Description of the Designed Electromechanical 
System

The electromechanical device represented in Fig.  1 
consists of an electrical motor (inductance L2 and inter-
nal winding resistor R2 ) carried by a plate which is 
fixed to a mobile and conducting rod. Two parallel and 
straight conducting rails of negligible resistance handle 
both ends of the mobile rod. These rails are linked to 
their ends by a resistor R, an inductor L, all connected 
in series with a sinusoidal voltage source. The mobile 
rod is free to move along the rails due to the effect of 
the Laplace’s force. The whole system is immerged in a 
magnetic field B⃗ . A special spring mechanism is fixed 
to the plate carrying the motor. This spring mechanism 
consists of an horizontal spring with linear stiffness kv 
connected at the point P to two other linear springs of 
identical stiffness k0 and initial length l0 mounted so 
that during the motion, they occupy oblique configu-
ration. The current, delivered by the generator f lows 
through the two rails, the mobile rod and the motor. 
Most of the studies so far undertaken do not consider 
such a hybrid motion mechanism which can be found 
or introduced in new equipment, for instance boring 
and drilling machines with automatically moving parts. 
It can also be inserted in mixers and improve its effi-
ciency while autonomously going up and down inside 
the products to be mixed in a regular or chaotic manner.

Nonlinear Components

Considering the device presented in Fig. 1, the inductor 
L and the spring system are the nonlinear components. 

Fig. 1  Coupled system made 
of rotary motor and mobile 
translating support
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The following subsections will present their mathemat-
ical expressions.

Inductor

Nana et al. in [12] demonstrated experimentally that 
under some conditions, the inductance of an inductor 
with a magnetic core can depend on the current and has 
the following mathematical expression:

with � = �sign
(

di

dt

)
,

Bs is the saturation flux density. A and l  are, respec-
tively, the cross-sectional area and the average length 
of the magnetic material. N is the number of turns, �0 
is the magnetic permeability of the free space, i is the 
current through the winding, � and � are two constant 
parameters. As demonstrated in [12], neglecting the 
parameter � has no significant effect on the behavior 
of the circuit. Thus, to simplify the analysis during 
this work, the parameter � will be taken equal to zero.

Spring with Nonlinear Response

The schematic representation of the spring force is dis-
played in Fig. 2.

As indicated above, the spring system comprises 
a longitudinal spring with linear stiffness kv which is 
connected at point P with two linear springs with iden-
tical stiffness k0 and initial length l0 mounted obliquely. 
The two springs are initially inclined with a slope of 

(1)L =
�0N

2A

l
+

BsNA

i
tanh

(
�Ni

2l
−

�

2

)

angle �0 from the horizontal plane and hinged at points 
M and N, respectively. The loading point P is initially 
located at height h0 above the points M, N and at hori-
zontal distance a0 apart from these points. The elastic 
force f  can be written as it was given in [12]:

Let us consider in Fig.  1 that the initial position 
of the system is taken when the oblique springs are 
transversal to the longitudinal spring. Then the elastic 
force becomes

System Modeling

Using the Kirchhoff’s voltage law and the Newton’s 
second law of dynamics for rotary and translational 
motions and taking into account the Laplace force, 
the electromechanical equations of the device are as 
follows:

where u(t) is the external excitation source considered as 
sinusoidal ( u(t) = e0 cos(�t)),t is the time, X the translational 
displacement of the rod, � is the rotor angular displacement.

(2)f = kvX − 2k0X

⎛
⎜⎜⎜⎝

l0�
a2
0
+ X2

− 1

⎞
⎟⎟⎟⎠
+ kvh0.

(3)f = kvX − 2k0X

⎛
⎜⎜⎜⎝

l0�
a2
0
+ X2

− 1

⎞
⎟⎟⎟⎠
.

(4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
L0

⎛⎜⎜⎜⎝
(1 − �) +

2�

1 + cosh

�
i

i0

�
⎞⎟⎟⎟⎠
+ L2

⎞⎟⎟⎟⎠
di

dt
+
�
R + R2

�
i + Blr

dX

dt
+ KE

d�

dt
= u(t)

M
d
2
X

dt2
+ �

dX

dt
+ kvX − 2k0X

⎛⎜⎜⎜⎝

l0�
a
2

0
+ X2

− 1

⎞⎟⎟⎟⎠
− Bilr = 0

Jr
d
2�

dt2
+ c

v

d�

dt
− KTi = 0,

Fig. 2  Schematic representation of the spring system

Table 1  Values of the electrical components in the circuit

Parameter Notation Value Unit

Inductance L0 323.18×10−3 H

Resistance R 5 Ω
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The parameters η , L2 and R have the following 
expressions:

� =
�s�

2�0+�s�
;L2 =

�0�rN
2hD

lg
;R =

8�(h+D)N

�d2
,

�r is the relative permeability of the rotor, lg is the 
thickness of the winding, � and d are, respectively the 
resistivity and diameter of the wire used in the wind-
ing, N  is the number of turns, h and D are respectively 
the height and diameter of the rotor, �0 is the perme-
ability of vacuum.

Values of the Parameters

Tables 1, 2, 3 and 4 give the values of the electrical 
and mechanical components of the systems. For the 
electrical circuits, the values come from the experi-
mental work conducted by Nana et  al. [17]. For the 

Table 2  Values of the motor parameters

Height of the rotor h 9.85×10−2 m

Diameter of the rotor D 8.12×10−2 m

Magnetic field intensity B 0.73 T

Relative permeability �r 985

Thickness of the winding lg 5×10−3 m

Resistivity of the wire � 1.72×10 - 8 Ω m

Diameter of the wire in the winding d 0.15×10−3 m

Number of turns N 20

Rotor inertia moment Jr 9.5×10−7 Kg m2

Back electromotive force constant KE 2.8×10−5 V s/rad

Torque constant KT 2.8×10−5 N m/A

Viscous friction coefficient Cv 0.2×10−3 N s

Mass of the motor, the plate and rod M 0.068 Kg

Table 3  Values of the spring constants, lengths and that of the rails

Horizontal sprint stiffness kv 10 N/m

Oblique sprint stiffness k0 9 N/m

Initial length of the oblique springs l0 0.1 m

Distance between the two rails lr 0.134 m

Viscous damping � 0.4×10−2 N s/m

The middle distance between the two rails a0 0.067 m

Table 4  Parameter of the nonlinear inductance

Cross sectional area A 176.71 mm2

Saturation flux density Bs 130×10−3 T

Number of turns N 1000
Parameter � 88.23×10−4 m/A

Parameter � 88.42×10−2

mechanical systems, we have considered values of DC 
motors and the physical dimensions are fixed by us. 
For the nonlinear spring system, it has been used for 
several investigations both for theoretical and experi-
mental investigations (see [13, 18]).

Dimensionless Form of the Equations

The following dimensionless quantities are used: 
x1 =

i

i0
 , x3 =

X

l0
 , y = �

�0
 , t = �

w0

,
where i0 and �0 are, respectively, the normalization 

current and angular displacement. Let us consider 
x4 =

dx3

d�
 and z = dy

d�
 respectively as the translational and 

angular velocity of the rod.

Linear Case

In the linear case, it is assumed that the hysteretic 
inductor inductance is equal to L0(� = 0) , and the two 
oblique springs are absent ( k0 = 0 ). In this case, the 
dimensionless equations describing the dynamics of 
the system are as follows:

with the following rescaling

Linear Inductance with Nonlinear Spring

Considering now the case where the inductance in 
series with the generator remains linear with the value 
L0 and the nonlinear spring mechanism is present 
(k0 ≠ 0) , the differential equations are given as

(5)

⎧⎪⎨⎪⎩

ẋ1 + 𝛼1x1 + 𝛼2ẋ3 + 𝛼3ẏ = E0 cos(Ω𝜏)

ẍ3 + 𝛽1ẋ3 + x3 − 𝛽2x1 = 0

ÿ + 𝛾1ẏ − 𝛾2x1 = 0

(6)

Ω = w
w0

;w0 =
√

kv
M

;�1 =
(

R + R2
)

(

L0 + L2
)

w0
;�2 =

Blrx0
(

L0 + L2
)

i0
;�3 =

KE�0
(

L0 + L2
)

i0

�1 =
�

Mw0
;�2 =

Blri0
Mw2

0x0
;�1 =

cv
Jrw0

;�2 =
KTi0
Jrw2

0�0
;E0 =

e0
(

L0 + L2
)

w0i0
.

(7a)ẋ1 + 𝛼1x1 + 𝛼2ẋ3 + 𝛼3ẏ = E0 cos(Ω𝜏),

(7b)

ẍ3 + 𝛽1ẋ3 + 𝛽2

⎡⎢⎢⎢⎣
1 − 2𝛼

⎛⎜⎜⎜⎝
1�

a2 + x2
3

− 1

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
x3 − 𝛽3x1 = 0,
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The new coefficients are given as follows

Nonlinear Inductance with Nonlinear Spring

Let us use the following dimensionless parameters:

In this more general case, the system is modelled 
as follows:

Mathematical and Numerical Methods

Harmonic Balance Method

To predict the behaviour of the system in terms of 
amplitude, the corresponding modelling equations are 
solved analytically using the harmonic balance method 
restricting to the first harmonics. In this spirit, assum-
ing that the device performs small angular and tranla-
tional displacement, the harmonic solutions of equa-
tions are expressed under the following form:

where A, B, C, D and E are unknown maximal 
amplitudes, Ω the frequency and �i(i = 1, 2, 3, 4, 5) 
the initial phases, all to be determined. Replacing 
Eq. (11), into the differential equations, then equat-
ing separately the coeff icient of sine and cosine 
terms, one obtains a system of algebraic equations, 
which give the values of the unknown amplitudes.

(7c)ÿ + 𝛾1ẏ − 𝛾2x1 = 0.

(8)� =
k0

kv
;a =

a0

l0
;�2 =

kv

Mw2

0

;�3 =
Blri0

Mw2

0
l0
.

(9)

�1 =

(
R + R2

)
L0w0

;�2 =
Blrl0

L0i0
;�3 =

KE�0

L0i0
;�4 =

L2

L0
;�1 =

�

Mw0

�2 =
kv

Mw2

0

;�3 =
Blri0

Mw2

0
L0

;�1 =
cv

Jrw0

;�2 =
KTi0

Jrw
2

0
�0

;E0 =
e0

L0w0i0
.

(10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
1 − 𝜂 +

2𝜂

1 + cosh
�
x1

� + 𝛼4

�
ẋ1 + 𝛼1x1 + 𝛼2ẋ3 + 𝛼3ẏ = E0 cos(Ω𝜏)

ẍ3 + 𝛽1ẋ3 + 𝛽2

⎡⎢⎢⎢⎣
1 − 2𝛼

⎛
⎜⎜⎜⎝

1�
a2 + x

2

3

− 1

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
x3 − 𝛽3x1 = 0

ÿ + 𝛾1ẏ − 𝛾2x1 = 0.

(11)

x1 = A cos(Ωt − �1), x3 = B cos(Ωt − �2), x4 = C cos(Ωt − �3),

y = D cos(Ωt − �4), z = E cos(Ωt − �5),

Numerical Methods for Differential Equation

To obtain numerically the dynamical behaviours 
of the electromechanical device, the fourth-order 
Runge–Kutta (RK4) algorithm is used to solve by com-
puter simulation the differential equations.

Bifurcation Diagram and Lyapunov Exponent

Bifurcation diagram and Lyapunov exponent help to 
characterize the different dynamical states in the sys-
tem. The Largest Lyapunov exponent is defined as

where D(t) =
√

�2
1
+ �2

2
+ �2

3
+ �2

4
+ �2

5
 , and is computed 

from the following variational equations:

Equation  (3) is obtained by adding some pertur-
bations on the solutions of Eqs.  (7a)–(7c) as fol-
lows:x1 → x1 + �1 , x3 → x3 + �2 , x4 → x4 + �3 , y → y + �4
,z → z + �5 . D(t) is thus the distance between neighbor-
ing trajectories. The hysteretic behavior of the induct-
ance was discarded when writing Eq. (13).

Results and Discussion

Frequency Response Curves in the Linear Case

In this case, we replace Eq. (11) into Eq. (5) and then 
equate separately the coefficients of sine and cosine 
terms, one obtains a set of algebraic Eq.  (14) where 
the unknowns are A, B, C and the phase φ1, φ2, and φ3.

(12)�max = lim
t→∝

[
1

t
ln(D(t))

]
,

(13)

�̇�1 = −𝛼1𝜉1 − 𝛼2𝜉3 + 𝛼3𝜉5, �̇�2 = 𝜉3,

�̇�3 = −𝛽1𝜉3 − 𝛽2𝜉2

⎡⎢⎢⎢⎣
1 − 2𝛼

⎛⎜⎜⎜⎝
1�

a2 + x
2

3

− 1

⎞⎟⎟⎟⎠
+

2𝛼x2
3

�
a2 + x

2

3

�3∕2

⎤⎥⎥⎥⎦
+ 𝛽3𝜉1,

�̇�4 = 𝜉5, �̇�5 = −𝛾1𝜉5 + 𝛾2𝜉1.

(14)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�1A cos�1 + ΩA sin�1 + �2ΩB sin�2 + �3ΩC sin�3 = E

−ΩA cos�1 + �1A sin�1 − �2ΩB cos�2 − �3ΩC sin�3 = 0

−BΩ2 cos�2 − �1ΩB sin�2 + B cos�2 − �2A cos�1 = 0

�1ΩB cos�2 − BΩ2 sin�2 + B sin�2 − �2A sin�1 = 0

−CΩ2 cos�3 + �1ΩC sin�3 − �2A cos�1 = 0

−�1ΩC cos�3 − CΩ2 sin�3 − �2A cos�1 = 0

.
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From this set of equations, one obtains the math-
ematical expressions of the unknown amplitudes as 
given in Eq. (15).

We analyse the behaviours of A,B,C and D when the 
frequency Ω of the external excitation is varied and the 
results are presented in Fig. 3.

As i t  appears in Fig.   3,  when the frequency 
increases from 0.0 to 3.0 , A decreases progressively 
from the maximum amplitude to the amplitude equal 
to 0.26 (  Ω = 1 ) ,  then increases a bit  and f inally 
decreases to a lower amplitude. In the mean time, 
the amplitudes B and C  increase from almost zero 

(15)
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E2

0[
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to a higher amplitude equal to 0.53 and decreases to 
small values. When the frequency is equal to 1, an 
anti-resonance phenomenon in the electrical part and 

resonance phenomenon in the translation motion are 
observed in (Fig. 3a–c). The amplitude of the angu-
lar displacement D decreases when the frequency 

Fig. 3  Analytical (full line) and 
numerical (dot line) frequency–
response curves: a amplitude of 
the electrical current; b ampli-
tude of the rod displacement; c 
amplitude of the rod velocity; 
d amplitude of the angular dis-
placement; e amplitude of the 
angular velocity. With E = 0.39
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increases. D has the same behavior as A . The anti-
resonance in the electrical current means that when 
the power dissipated by the Joule effect is minimum, 
the displacement of the rod is maximal.

Frequency Response Curves in the System 
with Linear Inductance and Nonlinear Spring

To conduct more analytical investigations, an approxi-
mate cubic expression of the term, which contains the 
square root, is developed using a Taylor series expan-
sion at the static equilibrium position x3 = 0 . One 
obtains:

Inserting Eq. (16) in Eq. (7b) and using Eq. (11), the 
harmonic balance method is used. After some algebraic 
manipulations, it comes that the amplitudes satisfy the 
following nonlinear algebraic equations:
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Fig. 4  Analytical (star line) and numerical (dot line) frequency–response of: a amplitude of the electrical current; b amplitude of the rod dis-
placement; c amplitude of the rod velocity; d amplitude of the angular displacement; e amplitude of the angular velocity. With E = 0.39
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Figure 4 presents the frequency–response curves for 
this nonlinear model. Both the results from Eq. (17) 
and those obtained from the numerical simulation of 
Eqs. (7a)–(7c) are plotted. The curves show that the 
amplitude of the electrical current, that of the angular 
displacement and that of the angular velocity decrease 
when the frequency increases. Also notice the three 
values sometimes four of these amplitudes when the 
frequency is between 0.65 and 1.85 . This can under-
stood as two stable solutions separated by an unstable 

solution. This effect generally leads to the jump phe-
nomenon and hysteresis as shown in the curves of 
Fig. 4b and c.

Frequency–Response Curves in the System 
with Nonlinear Inductance and Nonlinear Spring

For analytical treatment, the nonlinear spring expres-
sion is developed as in Eq. (16) while

Considering Eqs. (10) and (11), the amplitudes A, B, 
C, D and E satisfy the following equations:

(18)
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Fig. 5  Analytical (star line) and numerical (dot line) frequency–response of: a amplitude of the electrical current; b amplitude of the rod dis-
placement; c amplitude of the rod velocity; d amplitude of the angular displacement; e amplitude of the angular velocity. With E = 0.39
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The frequency–response curves of the maximal 
amplitudes are represented in Fig. 5.

The frequency–response curve of the nonlin-
ear mechanical system shows that when frequency 
increases, the maximal amplitudes of the electrical cur-
rent, the angular displacement and the angular velocity 
decrease. Multiple amplitudes domain is for frequency 
between 0.65 and 1.5 and jump phenomenon and hyster-
esis appear in Fig. 5b and c.

Bifurcation Diagram in the System with Linear 
Inductance and Nonlinear Spring

Numerical simulations are used to illustrate the 
dynamical behaviours of the system mathematically 
represented by Eqs. (7a)–(7c) through bifurcation dia-
grams, Lyapunov exponent, and phase portraits. In this 
subsection, the parameters E0 is chosen as the control 
parameter.

From Fig.  6, one can see that when the maximal 
value of the external excitation increases, the transla-
tional motion of the device firstly presents a periodic 
and multi periodic motion for 0 ≤ E0 ≤ 2.4 . After this 

range, the system responses exhibit an alternation of 
chaotic and periodic motions. The chaotic behavior of 
the system starts when E0 = 2.5 . To confirm the results 
in Fig. 6, some phase portraits are plotted in Fig. 7 
where one finds chaos (Fig. 7c) and periodic motions 
(Fig. 7a, b and d).

Bifurcation Diagrams in the System with Nonlinear 
Inductance and Nonlinear Spring

The dynamics of the system mathematically repre-
sented by Eq. (10) is analysed through bifurcation dia-
grams, Lyapunov exponent, and phase portraits.

Control Parameter E
0
.

The bifurcation diagram versus E0 is plotted in Fig. 8a 
in term of non-dimensional displacement of the rod 
x3 as E0 is varies from 0 up to 15. Chaotic behavior of 
the system begins when E0 = 9.7 . Before this value, 

Fig. 6  a Bifurcation diagram, b the corresponding Lyapunov expo-
nent, versus the amplitude of the excitation E0 with the parameters of 
Tables 1, 2, 3, 4 and Ω = 0.1

Fig. 7  Phase portraits obtain with parameter of Fig. 6 and a E0 = 0.1 , b E0 = 1.5 , c E0 = 4 , d E0 = 5

Fig. 8  a Bifurcation diagram and b Lyapunov exponent diagram 
against the amplitude of the excitation E with the parameter of Fig. 7 
and for Ω = 0.1
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the system presents a periodic motion for 0 ≤ E0 < 9.7 . 
After this periodic motion, the system response alter-
natively comes into chaotic and periodic dynamics as 
E0 varies. These behaviors are confirmed by Fig. 8b 
which presents the variation of the Lyapunov exponent. 

Figure  9 shows different phase portraits of the rod 
motion. Period-nT motion is observed in Fig. 9a and b 
while chaotic oscillations is presented in Fig. 9c.

Comparing these results to the previous one (see 
Figs. 6 and 7), one finds that when the nonlinearity is 
introduced in the inductor, chaotic behaviour appears 
for larger values of the external excitation (i.e. as from 
E0 = 9.5 ) than in the case of linear inductance where 
the chaotic behaviour appears as from E0 = 2.5.

Control Parameter �

To analyse, the effects of the inductance hysteresis 
parameter � on the dynamics of the device, a bifurca-
tion diagram and the corresponding Lyapunov exponent 
are plotted in Fig. 10 as � varies. One observes that 
when � increases the system exhibits a chaotic oscil-
lat ion for  0 ≤ � < 1.3;1.37 ≤ � < 2.17 ;  2.3 ≤ � < 2.66 
and 2.76 ≤ � < 3 . Non-chaotic behaviors are obtained 
in the other ranges. These behaviors are confirmed 
by the phase portraits which present chaotic motions 

Fig. 9  Phase portraits with the 
parameter of Fig. 8. a E0 = 0.1 ; 
b E0 = 1 ; c E0 = 12

Fig. 10  a Bifurcation diagram and b Lyapunov exponent diagram 
against the control parameter � with the parameter of Fig.  9 and 
E0 = 12

Fig. 11  Phase portraits obtained 
with the parameters off Fig. 10 
and a � = 0.3 ; b � = 1.33
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in Fig.  11a, while Fig.  11b presents periodic-nT 
oscillations.

The results of the numerical simulation show that 
chaotic behavior can be found for very low values of 
the inductance hysteresis parameter �.

Conclusion

In this work, the dynamics of an electromechanical 
device having two main particularities. The first one 
is that it combines rotational and translational motions 
indicating that the mechanical system rotates while 
undergoing translation. The second one is related to 
the types of nonlinearities used. The first nonlinear 
component is an inductor chose the current–induct-
ance characteristics show a highly nonlinear relation-
ship because of the hysteretic iron-core involved. The 
second nonlinearity is of the mechanical nature. It 
involves the association of three springs two of which 
are oblique while one follows the motion direction. 
Because of the oblique position, geometric nonlinearity 
appears in the system. Analytical and numerical inves-
tigations have been undertaken to present the different 
dynamical behaviors which can take place in such a 
complex electromechanical system.

Assuming small amplitude motion, the nonlinear 
terms have been linearized to give a set of equations 
analytically treatable. The mathematical expressions of 
the oscillations amplitudes have been obtained and the 
frequency–response curves show that when the power 
dissipated through the Joule effect is small, the dis-
placement amplitude is high.

In the nonlinear limit, the numerical results show 
complex dynamical behaviors such as jump phenom-
enon, periodic motion and chaos. It is seen that when 
the external excitation amplitude increases, the com-
plexity of the dynamical behaviors increases moving 
from period-nT oscillations to chaotic oscillations. In 
presence of the inductance with nonlinear characteris-
tics, it is found that chaotic behaviors appear for larger 
values of the external excitation than in the case of 
linear inductance. With the increase of the inductance 
hysteresis parameter � the behaviour change alternately 
from chaotic motion to periodic motion and chaotic 
motions are observed even for very low value of �.

These results are interesting since they give the 
parameter ranges where the device can be used either 
in the regular dynamics or in the chaotic states. The 
complex behaviors of this device can find applications 
in various branches of electromechanical engineering 
such as boring machine and drilling machine. This 
device can be also used in home as a mixer in which 

chaotic oscillations can improve its efficiency while 
going up and down inside the products to be mixed.
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