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Abstract

This thesis is intended to develop the theory of coalgebras over an endofunctor by in-
vestigating coalgebraic structure of BL-algebras via two functors. The first assigns every
BL-algebra to its MV-center, and the second assigns every local BL-algebra to its quo-
tient by its unique maximal filter. Functorial coalgebras have been mainly studied on
the category of sets, topological spaces and also in arbitrary categories. Our aim is to
prove that the categories of logical algebras are also good candidates as base categories
of coalgebras.

We study some categorical properties of BL-algebras and show that BL-algebras have
good properties enough to obtain a rich structure of coalgebra on them ((co)completeness,
adequate factorization structure, coreflective subcategory) .

We introduce the MV-functor, and investigate its coalgebras. We characterize ho-
momophisms , subcoalgebras, bisimulations and prove that the category of coalgebras of
the MV-functor is complete and cocomplete. Moreover, we add a topological structure
based on filters of the underlined BL-algebras and obtain topological MV-coalgebras. We
construct an inverse system in the category of MV-coalgebras and show that the category
of topological MV-coalgebras is complete, cocomplete and strong-monotopological over
the category of MV-coalgebras.

We also introduce ∏-coalgebras over local BL-algebras ( which are BL-algebras with a
unique maximal filter) and local BL-frames. We show that the corresponding categories
are isomorphic, establishing a link between coalgebras over BL-algebras and modal logic.

Keywords: Coalgebra, BL-algebra, filter, Modal logic, Topological space. .
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Résumé

Cette thèse vise à développer la théorie des coalgèbres sur un endofoncteur en explorant la
structure coalgébrique des BL-algèbres à travers deux foncteurs. Le premier qui à toute
BL-algèbre associe son MV-centre, et le second qui à toute BL-algèbre locale associe
son quotient par son unique filtre maximal. Les coalgèbres fonctorielles ont toujours été
étudiées principalement sur la catégorie des ensembles , celle des espaces topologiques ou
encore sur des catégories arbitraires. Notre but est de prouver que les catégories d’algèbres
logiques sont aussi des bons candidats comme catégories de base de coalgèbres.

Nous étudions des propriétés catégoriques des BL-algèbres et nous démontrons qu’elles
admettent de bonnes propriétés ((co)complétude, système de factorization adéquat, sous
catégories coreflexives ) pour obtenir une riche structure de coalgèbre sur elles.

Nous présentons le MV-foncteur et étudions les coalgèbres correspondantes. Nous
caractérisons les homomorphismes, les sous-coalgebres, les bisimulations pour ces coal-
gebres et démontrons que la catégorie des MV-coalgèbres est complète et cocomplète.
D’autre part, nous munissons ces coalgèbres d’une structure topologique et obtenons les
MV-coalgèbres topologiques. Nous construisons un système inverse dans la catégorie des
MV-coalgèbres topologiques et démontrons que la catégorie correspondante est complète,
cocomplète et monotopologique forte sur celle des MV-coalgèbres.

Nous introduisons les ∏-coalgèbres sur les BL-algèbres locales (ce sont des BL-algèbres
qui ne possèdent qu’un seul filtre maximal) et les environnements BL-locaux. Nous dé-
montrons que les catégories correspondantes sont isomorphes, établissant ainsi le lien entre
les coalgèbres sur les BL-algèbres et la logique modale.

Mots clés: Coalgèbre, BL-algèbre, filtre, logique modale, espace topologique.

2



INTRODUCTION

Theoretical computer science is a subset of general computer science and mathematics
that focuses on mathematical aspects of computer science such as the theory of compu-
tation, lambda calculus, and type theory. It covers a wide variety of topics including
algorithms, data structures, computational complexity, parallel and distributed compu-
tation, probabilistic computation, quantum computation, automata theory, information
theory, cryptography, program semantics and verification, machine learning, computa-
tional biology, computational economics, computational geometry, and computational
number theory and algebra. Work in this field is often distinguished by its emphasis on
mathematical technique and rigor.

In the last decades, coalgebra has arisen as a prominent candidate for a mathematical
framework to specify and reason about computer systems. It has found its usefulness
as mathematical and categorical presentations of state based systems such as automata.
There are several introductory articles to the view of "coalgebras as state based systems"
such as Aczel 1989 [1], Barr 1996 [7], Rutten 2000 [49]. We refer to them for a historical
account of the field. Coalgebras arise naturally, as Kripke models for modal logic, as
objects for object oriented programming languages in computer science, etc. Till now
coalgebras have been mainly studied on the category SET of sets and mappings (see e.g.
Adamek 2010 [3], Gumm 2001 [24], Gumm 2002 [21], Gumm 2005 [22]), on topological
spaces (mesurable spaces [50], Haussdorf spaces [34], Stone spaces [40]) and also arbitrary
categories (see, Adámek 2005 [4], Hughes (2001) [32], Kianpi 2020 [36]).

In his thesis [41], Alexander Kurz pointed out the importance of the study of coalgebras
over various specific categories. One reason is to provide examples for the general study of
coalgebras, another is the construction of a large variety of predicate liftings for coalgebraic
logics and many more type of automata. In [14] Cabrera and al defined a new kind of
coalgebras named ND-coalgebras which allows to formalize non-determinism and show
that several concepts, widely used in computer science, are indeed ND-coalgebras. In
[16] Davey and Galati gave a coalgebraic view of the restricted Priestley duality between
Heyting algebras and Heyting spaces.

One of the aims of this thesis is to argue that, besides SET and T OP the category of
topological spaces, the categories of logical algebras in general, and that of BL-algebras in
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particular are interesting base categories for coalgebras. For this purpose, we investigate
the category of coalgebras over this algebraic structure, both for a deterministic and a
non deterministic cases.

BL-algebras were invented by Petr Hájek (1998) [27] in order to prove the completeness
theorem of basic fuzzy logic, BL-logic in short. The language of propositional Hájek’s basic
logic contains the binary connectives ◦ and⇒ and the constant 0̄ . Axioms of basic fuzzy
logic are:

(A1) (ϕ⇒ ψ)⇒ ((ψ ⇒ ω)⇒ (ϕ⇒ ω))

(A2) (ϕ ◦ ψ)⇒ ϕ

(A3) (ϕ ◦ ψ)⇒ (ψ ◦ ϕ)

(A4) (ϕ ◦ (ϕ⇒ ψ))⇒ (ψ ◦ (ψ ⇒ ϕ))

(A5a) (ϕ⇒ (ψ ⇒ ω))⇒ ((ϕ ◦ ψ)⇒ ω)

(A5b) ((ϕ ◦ ψ)⇒ ω)⇒ (ϕ⇒ (ψ ⇒ ω))

(A6) ((ϕ⇒ ψ)⇒ ω)⇒ (((ψ ⇒ ϕ)⇒ ω)⇒ ω))

(A7) 0̄⇒ ω.

Soon after Cignoli et al. (2000) [15] proved that Hájek’s logic really is the logic of
continuous t-norms as conjectured by Hájek in [27]. At the same time, started a systematic
study of BL-algebras (see Turunen (2001) [50], Di Nola (2003) [18], Haveshki 2008 [29],
Turunen (2011) [52]), mainly via deductive systems, also called filters, which correspond
to subsets closed under modus ponens. The main objective of this thesis, is to investigate
BL-algebras with coalgebraic techniques.

For an efficient study of coalgebras over a category, we must have enough information
on the latter ( (co)completeness, special morphisms, factorization systems, subcategories)
in order to be able to deduce some properties of the corresponding categories of coalgebras.
In chapter 2, we study the category of BL-algebras and BL-morphisms as a concrete
category over SET , and prove that it has very nice properties such as essential algebraicity.
Howewer, we also show that this category fails to be cartesian closed and topological.
Moreover, we investigate the relation between the category of BL-algebras and two of
its most studied subcategories, namely the category of MV-algebras and the category of
Gödel-algebras.

In [24] , [25] and [23] H. P. Gumm et al. have introduced, in the setting of SET , some
SET -functors preserving weak pullbacks as they provide the basis of an rich structure
theory of coalgebras. In chapter 3, we show that this kind of results also hold on coalgebras
over BL-algebras by presenting a limit-preserving non-trivial endofunctor on the category
of BL-algebras and BL-morphisms and characterize the corresponding coalgebras.

4



Introduction

The connection of coalgebra with modal logic is one of the main reasons why coalgebras
are studied. Indeed, since coalgebras can be seen as a very general model of state based
systems, and modal logics as logic for dynamical systems, there is a tight relation between
modal logic and coalgebras. It is well known that the category of Kripke frames and p-
morphisms is isomorphic to the category of coalgebras of the covariant powerset functor
(see, e.g Bezhanishvili 2010 [9] and [10]). In [40] Kupke et al. prove that the category
of descriptive general frames is isomorphic to the category of coalgebras of the Vietoris
functor. In chapter 4, we show a similar result for coalgebras over local BL-algebras.

The outline of this thesis is as follows:
Chapter 1: In this chapter, we introduce basic results about BL-algebras and the

categorical definition of coalgebra. We also present some basic properties of modal logic
and topological algebras which we will used in our work.

Chapter 2: This chapter is devoted to the study of the category of BL-algebras as
a concrete category. We show how some limits and colimits are constructed and prove
that the category of BL-algebras is essentially algebraic, but is neither topological nor
cartesian closed. Moreover, we establish a hierarchy for some types of momomorphisms
on the one hand and for some types of epimorphisms on the other hand. Finally, we
study the relations between the category of BL-algebras and two of its subcategories: we
show that the category of Gödel-algebras is an isomorphism-closed subcategory of the
category of BL-algebras, and the category of MV-algebras is a coreflective subcategory of
the category of BL-algebras.

Chapter 3: In this chapter, we introduce MV-coalgebras, which are coalgebras of the
functor which assigns to every BL-algebra its MV-center. We prove the (co)completeness
of the category of MV-coalgebras and characterize homomorphisms, MV-subcoalgebras
and bisimulations. Moreover, we investigate topological MV-coalgebras and construct an
inverse system in the category of MV-coalgebras.

Chapter 4: This chapter is devoted to the link between BL-algebras and modal logic.
We introduce a new type of modal frames (models), namely local BL-frames and show
that the category of local BL-frames is isomorphic to the category of ∏-coalgebras over
local BL-algebras.
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Chapter 1

PRELIMINARIES

Our purpose in this chapter is to summarize, the relevant materials on category theory,
coalgebras and BL-algebras that are needed in the rest of the thesis. We also introduce
some basic facts on modal logic and topology.

1.1 Categorical notions
In this section, we present some basic category theoretic results notions and facts. Most
of them can be found in Adámek 1990 [2] or Maclane (1998) [43].

In addition to mathematical objects modern mathematics investigates more and more
the maps defined between them. One familiar example is given by sets. Besides the sets,
which form the mathematical objects in set theory, the set maps are very important.
Much information about a set is available if only the maps into this set from all other
sets are known. For example, the set containing only one element can be characterized
by the fact that, from every other set, there is exactly one map into this set. Let us first
summarize in a definition those properties of mathematical objects and maps.

1.1.1 Categories
Definition 1.1.1. A category is a quadruple C = (Ob(C), Hom, id, ◦) consisting of

1. a class Ob(C), whose members are called C-objects,

2. for each pair (A,B) of C-objects, a set Hom(A,B), whose members are called C-
morphisms from A to B (the statement ”f ∈ Hom(A,B)” is expressed more graph-
ically by using arrows; e.g., by statements such as ”f : A −→ B is a morphism ” or
”A f−→ B is a morphism”),

3. for each C-object A, a morphism A
idA−→ A, called the A-identity on A,

4. a composition law associating with each C-morphism A
f−→ B and each A-morphism

B
g−→ C a C-morphism A

g◦f−→ C, called the composite of f and g, subject to the
following conditions:

6



1.1 Categorical notions

(a) composition is associative; i.e., for morphisms A f−→ B, B g−→ C, C h−→ D,
the equation h ◦ (g ◦ f) = (h ◦ g) ◦ f holds,

(b) A-identities act as identities with respect to composition; i.e., for C-morphisms
A

f−→ B, we have idB ◦ f = f and f ◦ idA = f ,
(c) the sets Hom(A,B) are pairwise disjoint.

Example 1.1.2. The following are categories:

1. The category SET whose object class is the class of all sets; Hom(A,B) is the set
of all functions from A to B.

2. The following constructs; i.e., categories of structured sets and structure-preserving
functions between them :

(a) VEC with objects all real vector spaces and morphisms all linear transforma-
tions between them.

(b) GRP with objects all groups and morphisms all homomorphisms between them
(c) T OP with objects all topological spaces and morphisms all continuous func-

tions between them.
(d) REL with objects all pairs (X, ρ), where X is a set and ρ is a (binary) relation

on X. Morphisms f : (X, ρ) −→ (Y, µ) are relation-preserving maps; i.e., maps
f : X −→ Y such that xρy implies f(x)µf(y).

1.1.2 Functors and natural transformations
If C and D are categories, then a functor F from C to D is a function that assigns to
each C-object A a D-object F (A), and to each C-morphism A

f−→ B a D-morphism
F (A) F (f)−→ F (B), in such a way that

(i) F preserves composition, i.e., F (f ◦g)) = F (f)◦F (g) whenever f ◦g is defined, and

(ii) F preserves identity morphisms, i.e., F (idA) = idF (A) for each C-object A.

Definition 1.1.3. (i) A functor F : C −→ D is called faithful provided that all the
hom-set restrictions

F : homC(A,A′) −→ homD(F (A), F (A′))

are injective.

(ii) A functor F : C −→ D is called an isomorphism provided that there is a functor
G : D −→ C such that G ◦ F = idC and F ◦G = idD.

7



Chapter 1 : PRELIMINARIES

(iii) The categories C and D are said to be isomorphic provided that there is an isomor-
phism F : C −→ D.

Let F,G : C −→ D be two functors, a transformation η : F −→ G is a class of
morphisms (ηX : F (X) −→ G(X))X∈C in D, called components of the transformation.
Saying mono, epi or iso about a transformation, we mean a component-wise such. Every
morphism f : X −→ Y in C gives rise to a square in D called the transformation square
for f :

F (X) ηX //

F (f)
��

G(X)
G(f)
��

F (Y ) ηY // G(Y )

.

η is called natural in case it is commutative, i.e. G(f) ◦ ηX = ηY ◦ F (f). When the
natural transformation η is iso, then F and G are said naturally isomorphic and it is
denoted by F ∼= G.

Definition 1.1.4. A functor L : C −→ D is said to be left adjoint to a functor R : D −→ C
if there exists a natural isomorphism HomD(L(−),−) ∼= HomC(−, R(−)), i.e., for any C-
object A and D-object B, there is a natural bijection

φA,B : HomD(L(A), B) −→ HomC(A,R(B)).

In this case, L is a left adjoint functor. A right adjoint functor is the dual notion, so a
functor is left adjoint if it has a right adjoint and vice versa. We use the notation L a R
to express "L is left adjoint to R".

Example 1.1.5. 1. For any category C, there is the identity functor IdC : C −→ C
defined by IdC(A

f−→ B) = A
f−→ B.

2. For any of the constructs C mentioned above (Example 1.1.2) there is the forgetful
functor (or underlying functor) U : C −→ SET , where in each case U(A) is the
underlying set of A, and U(f) = f is the underlying function of the morphism f .
This forgetful functor is an example of faithful and adjoint functor.

3. The covariant power-set functor P : SET −→ SET is defined by

P (A f−→ B) = P (A) P (f)−→ P (B)

where P (A) is the power-set of A;i.e. the set of all subsets of A; and for each X ⊆ A,
P (f)(X) is the image f(X) of X under f .
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1.1 Categorical notions

1.1.3 Some special morphisms
Most of the main definitions and results in chapter [2] and chapter [3] of this thesis are
based on special morphisms. In this subsection, we define them and give some properties
thereof. They can be found in Adámek 1990 [2] for instance.

Definition 1.1.6. Let C be a category.

1. A source in C is a pair (A, (fi)i∈I) consisting of a C-object A and a family of C-
morphisms fi : A −→ Ai with domain A, indexed by some class I. A is called the
domain of the source and the family (Ai)i∈I is called the codomain of the source .

2. A source (A, (fi)i∈I) is called a mono-source provided that for all pair r, s : B −→ A
of C-morphisms,

fi ◦ r = fi ◦ s for each i ∈ I implies r = s.

3. Let U : C −→ D be a functor. A source S = (A fi−→ Ai)I in C is called U - initial
provided that for each source T = (B gi−→ Ai)I in C with the same codomain as
S and each D-morphism UB

h−→ UA with UT = US ◦ h, there exists a unique
C-morphism B

h̄−→ A with T = S ◦ h̄ and h = Uh̄.

B

h̄
��

gi

&&
A

fi
// Ai

UB

Uh̄=h
��

Ugi

''
UA

Ufi
// UAi

Definition 1.1.7. Let C be a category.

1. A morphism f : A −→ B in C is called a regular epimorphism if it is a coequalizer
of some parallel pair of C-morphisms.

2. A monomorphism m : C −→ D in C is called:

(i) strong provided that for all epimorphism e : A −→ B and all morphisms
f : A −→ C and g : B −→ D such that g ◦ e = m ◦ f , there exists a unique
morphism d : B −→ D such that d ◦ e = f and m ◦ d = g.

(ii) extremal provided that whenever f = m ◦ e, where e is an epimorphism, then
e must be an isomorphism.

3. The concepts of strong (extremal) epimorphism and regular monomorphism in C are
define dually.

9
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4. The kernel equivalence of a morphism is the pullback of that morphism with itself.

5. Let Ω be a class of morphisms in C. A functor F : C −→ D is said to

(i) preserve morphisms of the class Ω, if F (f) is in Ω whenever f is.
(ii) create morphisms of the class Ω if for any D-morphism in g in Ω, there exists

a unique C-morphism f in Ω such that F (f) = g.

1.1.4 Factorization structures
In this section we present factorization structures for sources. These notions will be mainly
used in chapter 2.

Definition 1.1.8. Let E be a class of morphisms and let M be a conglomerate of sources
in a category C. (E,M) is called a factorization structure on C, and C is called an
(E,M)-category provided that:

1. each of E and M is closed under compositions with isomorphisms
(ii) C has (E,M)-factorizations (of sources); i.e., each source S in C has a factorization

S = M ◦ e, with e ∈ E and M ∈M.
(iii) C has the unique (E,M)-diagonalization property; i.e., whenever A e−→ B and

A
f−→ C are C-morphisms with e ∈ E and (S = B

gi−→ Di)I and (M = C
mi−→ Di)I

are sources in C with M ∈ M such that M ◦ f = S ◦ e, then there exists a unique
diagonal, i.e., a morphism B

d−→ C such that for each i ∈ I the diagram

A
e //

f
��

B
d

xx

gi
��

C mi
// Di

commutes.

Example 1.1.9. 1. Every category is an (Iso, Source)-category. This factorization
structure is called trivial. Also, every category has the (unique) (RegEpi, Mono-
Source)-diagonalization property.

2. SET is an (Epi, Mono-Source)-category. For Set this is the only nontrivial factor-
ization structure.

3. VEC and GRP are (RegEpi, Mono-Source)-categories.

Remark 1.1.10. [2] If (E,M) is a factorization structure on C andM is the class of those
C-morphisms that (considered as 1-sources) belong to M, then (E,M) is a factorization
structure for morphisms on C.

10
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It is well known (see e.g. [2], Corollary 7.63) that in any category, regular monomor-
phisms are extremal and by [[2], exercise 14C.f] we have:

Lemma 1.1.11. If C is (Epi,M)-structured for some class M of monomorphisms, then
strong monomorphisms in C are precisely extremal monomorphisms.

1.1.5 Limits and colimits
A diagram in a category C is a functor D : I −→ C with codomain C. The domain, I, is
called the scheme of the diagram. A diagram with a small (or finite) scheme is said to be
small (or finite).

Definition 1.1.12. Let D : I −→ C be a diagram.

(i) A C-source (A fi−→ Di)i∈Ob(I) is said to be natural for D provided that for each
I-morphism i

d−→ j, the triangle

A

fj

��

fi

��
Di Dd

// Dj

commutes.
(ii) A limit of D is a natural source (L li−→ Di)i∈Ob(I) for D with the (universal )

property that each natural source (A fi−→ Di)i∈Ob(I) for D uniquely factors through
it; i.e., for every such source there exists a unique morphism f : A −→ L with
fi = li ◦ f for each i ∈ Ob(I).

Definition 1.1.13. A functor F : C −→ D is said to preserve a limit L = (L li−→
Di)i∈Ob(I) of a diagram D : I −→ C provided that FL = (FL Fli−→ FDi)i∈Ob(I) is a limit
of the diagram F ◦D : I −→ D.

Definition 1.1.14. A category C is said to be complete if for each small diagram in C
there exists a limit.

Colimits and cocompleteness are defined dually.

Example 1.1.15. A (initial) terminal object is a particular of (co)limit.
An object A is called a terminal (resp. initial) object provided that for each object B

there is exactly one morphism from B to A (resp. A to B).

1. Every singleton set is a terminal object for Set.

11
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2. Frequently for constructs, there is only one structure on the singleton set, and in these
cases the corresponding object is a terminal object. This is the case, for example, in
VEC, GRP and T OP .

3. The empty set ∅ is the unique initial object for Set SET .
4. Every one-element group is an initial object for GRP ; likewise for VEC.

1.2 Coalgebras
In this section, we introduce the main notion of the thesis and give some basic insights
thereof.

1.2.1 Definition and examples
Definition 1.2.1. Let F : C −→ C be a functor from the category C to itself. A coalgebra
of type F is a pair A = (A,α), consisting of a C-object A and a C-morphism α : A −→ FA.
A is called the carrier and α is called the structure morphism of A. If A = (A,α) and
B = (B, β) are F -coalgebras, then a map f : A −→ B is called a homomorphism, if
β ◦ f = F(f) ◦ α, i.e. such that the following diagram commutes:

A
f //

α
��

B

β
��

FA
Ff

// FB

Coalgebras of type F and homomorphisms between them form a category which will
be denoted by Coalg(F). Below are some examples of coalgebras.

Example 1.2.2. When C = SET ,
1. The identity functor is the functor Id : SET −→ SET defined by Id(X) = X and

Id(f) = f for every set X and every map f : X −→ Y . Id-coalgebras are just pairs
(X,α) where α : X −→ X is a map.

2. Let P be the covariant powerset functor defined by P(X) := {A | A ⊆ X}, and for
all map f : X −→ Y , P(f) : P(X) −→ P(Y ) where P(f)(A) = f(A). P-coalgebras
are called non-deterministic transition systems. P-coalgebras are just pairs (X,α)
where α : X −→ P(X) is a unary hyperoperation.

3. We take this example from Gumm 2001 [24]. Let X be a set. A filter on P(X) is a
collection U ⊆ P(X) if U is closed under finite intersections and supersets. In other
words, U is a filter on P(X) just in case

- If S, T ∈ U , then S ∩ T ∈ U , and
- If If S ∈ U and S ⊆ T , then If T ∈ U .

12
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We define a functor F : SET −→ SET taking each set X to the collection of filters
on X. If f : X −→ Y is a map in SET, then for each A ∈ F(X), F(f)(A) is the
filter generated by F(f)(X). F is called the filter functor on SET. Each topological
space (X, τX) gives rise to an F-coalgebra, as follows. We define the structure map
α : X −→ FX on elements x ∈ X by

α(x) = {A ⊆ X | ∃U ∈ τX , x ∈ U ⊆ A} .

4. An important example of coalgebras are labeled transition systems consisting of a
state set Q and transitions q s−→ q̄ for q, q̄ ∈ Q and s ∈ ∑ (where ∑ is the set
of possible actions). More precisely, for every action s a binary relation s−→ is
given on Q. This can be viewed as a coalgebra for the functor P(∑×−). In fact,
define α : Q −→ P(∑×−) by assigning to every state q the set α(q) of all pairs
(s, q̄) ∈ ∑×Q with q s−→ q̄. Coalgebra homomorphisms f : (Q,α) −→ (Q′, α′) are
precisely the functions which preserve and reflect transitions.

Example 1.2.3. Let T op denote the category of topological spaces and continuous maps,
and Stone the category of Stone spaces and continuous maps (recall that a topological
space X = (X, τ) is a Stone space if it is compact Hausdorff and has a basis of clopen
sets.):
1. Hughes 2001 [32] Consider the functor Γ(A) = Z×A on the category T op, where Z is

a fixed T1 space (so points are topologically distinguishable). A Γ-coalgebra consists
of a pair (A,α) where A is a topological space and α : A −→ ΓA is continuous. Let
I be the unit interval [0, 1]. Then a Γ-coalgebra with carrier I is just a path in the
space Z × I.

2. Let X = (X, τ) be a topological space. We let K(X) denote the collection of all
closed subsets of X. Define for any subset U of X the sets

Û := {F ∈ K(X) | F ⊆ U}

and
Ǔ := {F ∈ K(X) | F ∩ U 6= ∅} .

Given a subset Q ⊆ P(X) , define

VQ =
{
Û | U ∈ Q

}
∪

{
Ǔ | U ∈ Q

}
.

The Vietoris Space V(X) associated with X is given by the topology υX on K(X)
which is generated by Vτ as subbasis. The Vietoris functor V : Stone −→ Stone
assigns each Stone space to its Vietoris Space and every continuous morphism f :
X −→ X’ to V(f) : K(X) −→ K(X’) by

V(f)(F ) := f(F ).

Coalgebras of the Vietoris functor are called Vietoris-coalgebras. It follows from the
duality between Coalg(V) and the categoryMA of modal algebras (see Kurz (2000)
[41]) that Coalg(V) provides an adequate semantic for finitary modal logics.

13



Chapter 1 : PRELIMINARIES

1.2.2 Limits and colimits in the category of coalgebras
In what follows, some results about the construction of limits and colimits in categories
of coalgebras are introduced. They can be found in Hughes (2001) [32], Adámek (2005)
[4] .

Just as in algebraic semantics the initial algebra plays a central role, in coalgebra
the terminal coalgebras (i.e., terminal objects of the category of coalgebras) are of major
importance. Recall that a terminal F-coalgebra is a coalgebra T ε−→ FT such that for
every coalgebra Q α−→ FQ, there exists a unique homomorphism λ : Q −→ T .

Theorem 1.2.4. The coalgebraic forgetful functor U : Coalg(F) −→ C creates colimits
and all limits preserved by F.

This yields the following consequence:

Corollary 1.2.5. Let C be an arbitrary category.
1. If C is cocomplete, then so is Coalg(F).
2. A homomorphism in Coalg(F) is an isomorphism (resp. epimorphism) iff its under-

lying morphism is an isomorphism (resp. an epimorphism).

Monomorphisms in Coalg(F) are more difficult (dually to the diffculties with epi-
morphisms well known from General Algebra) to characterize in coalgebra theory. It is
clear that every homomorphism carried by a monomorphism in C is a monomorphism
in Coalg(F) (since U is faithful), but not conversely. for example, if C = SET , then
homomorphisms which are injective maps (i.e., are monomorphisms in A ) are precisely
the regular monomorphisms of Coalg(F), see Theorem 3.4 in Gumm (1999) [26];

A subcoalgebra of a coalgebra (A,α) is a strong subobject in Coalg(F), i.e., one rep-
resented by a strong monomorphism with codomain (A,α). This is substantiated by the
following:

Lemma 1.2.6. [4] If C has (epi, strong mono)-factorizations and F preserves strong
monomorphisms, then strong monomorphisms in Coalg(F) are precisely the morphisms
carried by strong monomorphisms in C .

1.2.3 Bisimulation
Motivating Example: Consider labelled transition systems as coalgebras of P(∑×−). The
concept of (strong) bisimulation goes back to R. Milner [44]: it is an equivalence between
states ”based intuitively on the idea that we wish to distinguish between two states if the
distinction can be detected by an external agent interacting with each of them”. Formally,
a state a1 in a labeled transition system A1 is bisimilar to a state a2 in A2 provided that
there exists a relation R between the state sets A1 and A2 such that:
(i) a1 is related to a2, i.e., a1Ra2

14
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(ii) for every related pair b1Rb2 and every transition b1
s−→ b′1 in A1 there exists a

transition b2
s−→ b′2 in A2 with b′1Rb′2 and

(iii) for every related pair b1Rb2 and every transition b2
s−→ b′2 in A2 there exists a

transition b1
s−→ b′1 in A1 with b1Rb

′
1. The conditions (ii) and (iii) can be elegantly

summarized by saying that there is a dynamics on the relation R, i.e., a function
R −→ P(R) for which both projections ri : R −→ Ai, i(i = 1, 2) become coalgebra
homomorphisms.

Definition 1.2.7. A bisimulation between F-coalgebras (A,α) and (B, β) is a relation
ri : R −→ Ai, (i = 1, 2) such that there exists a dynamics on R making both r1 and r2
homomorphisms of F-coalgebras.

Proposition 1.2.8. [4] Let C be a well-powered, complete category with coproducts, and let
F be an endofunctor preserving strong monomorphisms. Then for every pair of coalgebras
there exists a largest bisimulation between them.

Corollary 1.2.9. [4] If H moreover preserves weak pullbacks, then on every coalgebra
there exists a largest bisimulation which is an equivalence relation.

1.3 BL-algebras
BL -algebras were invented by P. Hajek [27] in order to provide an algebraic proof of
the completeness theorem of basic logic ( BL , for short), arising from the continuous
triangular norms, familiar in the fuzzy logic framework [15]. We present in this section
some basic facts about BL-algebras, which can be found in Turunen (1999) [51].

1.3.1 Definitions and examples
An algebraic structure (L,∧,∨, ∗,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a BL-algebra if
it satisfies the following conditions:

(BL1) (L,∧,∨, 0, 1) is a bounded lattice;
(BL2) (L, ∗, 1) is a commutative monoid;
(BL3) ∗ is a left adjoint of →, that is x ∗ z ≤ y if and only if z ≤ x→ y;
(BL4) x ∧ y = x ∗ (x→ y);
(BL5) (x→ y) ∨ (y → x) = 1.

A BL-algebra L is called a BL-chain if it is totally ordered and a Gödel algebra if x2 =
x ∗ x = x for every x ∈ L. L is called an MV-algebra if ¯̄x = x for all x ∈ L, where
x̄ = x → 0. The subset MV (L) = {x̄/x ∈ L} is called the MV-center of L. It is the
greatest MV-algebra contained in L.

The following holds in any BL-algebra L:

15
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Lemma 1.3.1. For all x, y, z ∈ L
(1) x ≤ y if and only if x→ y = 1;
(2) x ∗ y ≤ x ∧ y;
(3) x→ (y → z) = y → (x→ z);
(4) If x ≤ y then y → z ≤ x→ z and z → x ≤ z → y;
(5) x ≤ y → (x ∗ y); x ∗ (x→ y) ≤ y;
(6) x ∗ x̄ = 0;
(7) (x ∗ y)→ z = x→ (y → z);
(8) 1→ x = x; x→ 1 = 1; x→ x = 1; x ≤ y → x; x ≤ x; x = x;
(9) x ∨ y = ((x→ y)→ y) ∧ ((y → x)→ x);

(10) x→ ȳ = y → x̄ .

Let L1 and L2 be two BL-algebras, a map f : L1 −→ L2 is called a homomorphism of
BL-algebras (BL-morphism), if f(0) = 0 and

f(x ∝ y) = f(x) ∝ f(y) for all ∝∈ {∗,→}.

We obviously have f(1) = 1 for any BL-morphism f and it is shown that for any BL-
morphism f , f(x ∝ y) = f(x) ∝ f(y) with ∝∈ {∨,∧} and if x ≤ y then f(x) ≤ f(y).

The class of BL-algebras, equipped with BL-morphisms forms a category which will
be denoted by BL.

Example 1.3.2. BL-algebras with less than 3 elements:
- The one-element BL-algebra {0 = 1} is called the degenerate BL-algebra [[51], Re-
mark 8], we will denote it by G1. The two-element non degenerate BL-algebra {0, 1}
is called the trivial BL-algebra, we will denote it by G2. These two algebras are
examples of BL-algebras which are both Gödel-algebras and MV-algebras.

- The chain {0, x, 1}, with the operations ∗ and → defined by the following tables

∗ 0 x 1
0 0 0 0
x 0 x x
1 0 x 1

→ 0 x 1
0 1 1 1
x 0 1 1
1 0 x 1

is the unique Gödel-algebra with three elements and we will denote it by G3.
- The chain {0, x, 1}, with the operations ∗ and → defined by the following tables:

∗ 0 x 1
0 0 0 0
x 0 0 x
1 0 x 1

→ 0 x 1
0 1 1 1
x x 1 1
1 0 x 1
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is the unique MV-algebra with three elements and we will denote it by M3.

Let BL(L,L′) denote the set of BL-morphisms from L to L′. The following observa-
tions will be useful in the sequel:

Lemma 1.3.3. For G2,G3 and M3 defined as above we have:

(i) BL(G3,M3) is a singleton and BL(M3,G3) = ∅
(ii) MV (G3) = G2

Proof. (i) Let G3
f−→M3 be a map such that f(0) = 0, f(1) = 1. If f(x) = 0, then

f(x→ 0) = f(0) = 0 6= 1 = f(x)→ f(0)

and for f(x) = x,
f(x ∗ x) = f(x) = x 6= 0 = f(x) ∗ f(x).

Hence in the both cases f is not a BL-morphism. For f(x) = 1, it easily checked that f
preserves ∗ and → and so it is the unique BL-morphism from G3 to M3. With similar
computations, one proves that there is no BL-morphism from M3 to G3.

(ii) Straightforward.

Example 1.3.4. The set {0, a, b, c, d, 1}, with the operations ∗ and → defined by the
following tables:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 b b d 0 a
b 0 b b 0 0 b
c 0 d 0 c d c
d 0 0 0 d 0 d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 a c c 1
b c 1 1 c c 1
c b a b 1 a 1
d a 1 a 1 1 1
1 0 a b c d 1

is an example of finite BL-algebra which is not a chain.

Example 1.3.5. A t-norm is a binary operation ∗ on [0, 1] (i.e. ∗ : [0, 1]2 −→ [0, 1])
satisfying the following conditions: for all x, x′, y ∈ [0, 1]

(i) ∗ is commutative and associative
(ii) ∗ is non-decreasing in both arguments, i.e. x ≤ x′ implies x ∗ y ≤ x′ ∗ y and x ≤ x′

implies y ∗ x ≤ y ∗ x′

(iii) 1 ∗ x = x and 0 ∗ x = 0 for all x ∈ [0, 1].
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∗ is a continuous t-norm if it is a t-norm and is a continuous mapping of ∗ : [0, 1]2 −→ [0, 1]
(in the usual sense).

t-algebras ([0, 1] ,∧,∨, ∗t,→t, 0, 1), where ([0, 1] ,∧,∨, 0, 1) is the usual lattice on the
real unit interval [0, 1] and ∗t is a continuous t-norm, whereas →t is the corresponding
residuum are BL-algebras. The most known t-algebras are the following:

Gödel algebra: x ∗t y = min {x, y} , and x→t y =
{

1 if x ≤ y
y otherwise .

Product algebra: x ∗t y = xy, and x→t y =
{

1 if x ≤ y
y/x otherwise .

Lukasiewicz algebra: x ∗t y = max {0, x+ y − 1} , and x→t y = min {1, 1− x+ y}
These three examples are fundamental as any BL-algebra on the real unit interval [0, 1]

can be constructed by using them. Any BL-algebra is, up to isomorphism, a subdirect
product of linear BL-algebras (for details, see [27]).

Example 1.3.6. For any set X, define for A ⊆ X and B ⊆ X, A ∗ B = A ∩ B and
A → B = AC ∪ B. Then the structure (P (X),∩,∪, ∗,→, ∅, X) where P (X) is the
powerset of X is a BL-algebra called the power BL-algebra of X.

Example 1.3.7. It is well known that Z, the set of integer with its usual operations is a
Noetherian multiplication ring i.e. a Noetherian ring in which for every ideals I, J such
that I ⊆ J , there exists an ideal K of Z such that I = J ·K. Hence by Remark 2.5 in
[31], the lattice of ideals of Z, (Id(Z),∧,∨, ∗,→, {0} ,Z) is a BL-algebra, where

I ∧ J = I ∩ J, I ∨ J = I + J, I ∗ J = I · J, I → J = {n ∈ Z | nI ⊆ J} ,

for all I, J ∈ Id(Z). Such rings are called BL-rings and have been widely studied in the
litterature ( see, e.g. [8], [31], [46] ).

Example 1.3.8. Let (I,≤) be a totally ordered set. Consider a family ((Li,∧i,∨i, ∗i,→i

, 0, 1))i∈I of BL-chains such that for all i, j ∈ I with i 6= j, Li ∩ Lj = {1}. Then the
ordinal sum of the family (Li)i∈I , denoted by ⊕i∈ILi is a BL-algebra (L,∧,∨, ∗,→, 0, 1)
defined by the following:
• The base set is L = ⋃

i∈I Li

• The ordering is: x ≤ y iff
{
x, y ∈ Li and x ≤i y
x ∈ Li \ {1}, y ∈ Lj and i < j

for all x, y ∈ L.

• x→ y =


x→i y if x, y ∈ Li
y if x ∈ Li and y ∈ Lj with i > j
1 if x ∈ Li \ {1} and y ∈ Lj with i < j

for all x, y ∈ L.

• x ∗ y =


x ∗i y if x, y ∈ Li
y if x ∈ Li and y ∈ Lj \ {1} with i > j
x if x ∈ Li \ {1} and y ∈ Lj with i < j

for all x, y ∈ L.
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1.3.2 Filters in BL-algebras
Filters have been widely studied in BL-algebras namely to characterize fragments of Basic
fuzzy logic (see Haveshki (2008) [29] and Turunen (2011) [52]) or to construct topological
BL-algebras (see Haveshki (2007) [28] and Zahiri (2016) [56]). In logic they have a natural
interpretation as sets of provable formulas. In this section, we introduce some basic facts
about filter theory of BL-algebras.

A filter of L is a non empty subset F of L such that for all x, y ∈ L,

(F1) x, y ∈ F implies x ∗ y ∈ F ;
(F2) x ∈ F and x ≤ y imply y ∈ F .

A subset D of a BL-algebra L is called a deductive system (ds for short) if

(DS1) 1 ∈ D;
(DS2) x ∈ D and x→ y ∈ D imply y ∈ D.

Remark 1.3.9. In logic, deductive systems appear as sets of formulas stable under the
modus ponens. For a non-empty subset F of L, F is a deductive system if and only if it
is a filter.

The kernel of a BL-morphism f : L1 −→ L2 is the set

Ker(f) := {x ∈ L1 : f(x) = 1}.

Clearly, f is injective iff Ker(f) = {1}. Ker(f) is always a deductive system.

Definition 1.3.10. Let L be a BL-algebra.
(1) A deductive system F of L is proper if 0 /∈ F.
(2) A proper deductive systemM of L is said maximal if it is not contained in any other

proper deductive system.

For any deductive system D of a BL-algebra L = (L,∧,∨, ∗,→, 0, 1), we can define a
binary relation θD on L as follows: for all x, y ∈ L,

xθDy ⇐⇒ (x→ y) ∧ (y → x) ∈ D.

It is well known that θD is a congruence on L (see, e.g. [[27], Theo 2.7]) and since the class
of BL-algebras is a variety, the quotient structure L/θD is also a BL-algebra for which for
all x, y ∈ L, [x ∝ y]D := [x]D ∝ [y]D where ∝∈ {∧,∨, ∗,→}, and [x]D := [x]θD .

Example 1.3.11. (i) Let (L,∧,∨, ∗,→, 0, 1) be a BL-algebra. {1} and L are filters of
L called trivial filters.

(ii) For G3 and M3, {x, 1} is a non trivial filter.
(iii) ]0; 1] is a non trivial filter of the Lukasiewicz algebra.

19



Chapter 1 : PRELIMINARIES

1.4 Modal logic
Modal logics play an important role in many areas of computer science. In recent years,
the connection of modal logic and coalgebra received a lot of attention, see e.g. [53]. In
particular, it has been recognised that modal logic is to coalgebras what equational logic
is to algebras.

1.4.1 Algebraic counterpart of a logic
Logic is the science that studies correct reasoning. For a logic L, we write Γ `L ϕ if there
is a proof of ϕ from Γ, where ϕ is a formula and Γ is a set of formulas. A set of formulas
T is called a theory in L if it is closed under `L, that is, if for every formula ϕ such that
T `L ϕ, we have ϕ ∈ T .

Given a theory T of L, we can define the following binary relation θ(T ) between
formulas:

(ϕ, ψ) ∈ θ(T ) iff T `L ϕ↔ Ψ.
Then θ(T ) is a congruence relation on the formula algebra FmL. Each logic has an
algebraic counterpart called its Lindenbaum-algebra and defined as the quotient algebra
FmL/θ(T ).

Logic studies the notion of logical consequence. There are many kinds of logical
consequences, i.e. many different logics:
(1) Propositional classical logic whose Lindenbaum-algebras are Boolean algebras;
(2) Non classical logics:

• Modal logics whose Lindenbaum-algebras are modal algebras;
• Intuitionistic logic whose Lindenbaum-algebras are Heyting algebras;
• fuzzy logics whose Lindenbaum-algebras are semi linear residuated lattices;
• Basic fuzzy logic (A fragment of fuzzy logic) whose Lindenbaum-algebras are

BL-algebras;
• ...

1.4.2 Kripke frames and models
Modal logic is the logic of modalities, which indicate the mode in which a statement is said
to be true. These are not easily handled by the truth tables of classical logic, so logicians
have developped an augmented form called modal logic. There is a very strong link
between coalgebras and modal logic. In 1999, L. Moss [45] proposed Coalgebraic modal
logic, in order to provide a uniform framework to various semantics of modal logics using
the theory of coalgebra. This connection has been up to now intensively investigated (see,
e.g. Y. Venema (2007) [53] and Bezhanishvili (2020) [10]). In this section, we introduce
some basic features about modal logic wich will be useful in Chapter 4.

The language of modal logic have the following set of symbols:
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1.4 Modal logic

• A countably infinite set of letters, called propositional variables;
• the unary operators �, ♦, ¬;
• the binary operators ⇒, ∨, ∧;
• brackets ( and ) .

� and ♦ are modal operators.
In modal logic, ”necessary true” is read as true in all possible world. Under this

interpretation the truth of a statement is relative to the world in question. This means
that �P is defined to be true whenever P is true in all conceivable world.
♦P is similar, although in this case the modality is that of possibility. If P is true in

at least one accessible world, ♦P is true (true somewhere means not impossible).

Definition 1.4.1. Let W be a non empty set of what we will call ”possible worlds” .
Let R be a binary relation on W , which we call an accessibilty relation. Together, (W,R)
form a (Kripke) frame.

Let (W,R) and (W ′, R′) be two Kripke frames. A p-morphism is a function
f : W −→ W ′ satisfying

f([x]R) = [f(x)]R′ for all x ∈ W

.

Kripke frames and p-morphisms form a category denoted by KFr.

Definition 1.4.2. Let (W,R) be a frame and let |= be a binary relation between W and
the set of wff. Let Γ ∈ W , we will assume that |= obeys the following rules.
• For all propositional variable p, either Γ |= p or Γ |= ¬p ;
• If F is a wff, then (Γ |= ¬F ) iff ¬(Γ |= F );
• If F and G are wff, then (Γ |= F ∨G) iff (Γ |= F or Γ |= G);
• If F and G are wff, then (Γ |= F ∧G) iff (Γ |= F and Γ |= G);
• If F and G are wff, then (Γ |= F ⇒ G) iff (¬(Γ |= F ) or Γ |= G);
• If F is a wff, then (Γ |= �F ) iff (for any ∆ ∈ W , ΓR∆ implies ∆ |= F );
• If F is a wff, then (Γ |= ♦F ) iff (there exists ∆ ∈ W , such that ΓR∆ and ∆ |= F );
(W,R, |=) is called a model. definition
The logicians distinguish some particular collections of frames based on the properties

of R.

• The system K places no retsrictions on the frame;
• In the system D, R is serial ie For every world Γ ∈ W , there exists at least one

∆ ∈ W such that ∆ is accessible to Γ;
• In the system T R is reflexive;
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• In the system B , R is reflexive and symmetric;
• In the system K4, R is transitive;
• In the system S4, R is reflexive and transitive;
• In the system S5, R is reflexive, symetric and transitive.

1.4.3 Modal algebras
Modal logics have an algebraic semantics based on a Boolean algebra, but with additional
operators that model the modal operators.

Definition 1.4.3. A Boolean algebra is an algebraic structure (A,∧,∨,¬, 0, 1) of type
(2, 2, 1, 0, 0) , such that for all elements a, b and c of A, the following axioms hold:
• (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c) (associativity)
• a ∨ b = b ∨ a and a ∧ b = b ∧ a (commutativity)
• a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a (absortion)
• a ∨ 0 = a and a ∧ 1 = a (identity)
• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (distributivity)
• a ∨ ¬a = 1 and a ∧ ¬a = 0 (complements)

Definition 1.4.4. In algebra and logic, a modal algebra is a structure (A,∧,∨,¬, 0, 1,�)
such that:

• (A,∧,∨,¬, 0, 1) is a Boolean algebra.
• � is a unary operation on A satisfying �1 = 1 and �(x∧y) = �x�y, for all x, y ∈ A.

Modal algebras provide models of propositional modal logics in the same way as
Boolean algebras are models of classical logic. In particular, the variety of all modal
algebras is the equivalent algebraic semantics of the modal logic K in the sense of ab-
stract algebraic logic, and the lattice of its subvarieties is dually isomorphic to the lattice
of normal modal logics.

Example 1.4.5. (i) Let ({0, 1},∧,∨,¬0, 1) be the trivial Boolean algebra, defined by
the following tables:

∧ 0 1
0 0 0
1 0 1

0 1
0 0 1
1 1 1

a 0 1
¬a 1 0

Then ({0, 1},∧,∨,¬, 0, 1,�) is a modal algebra, where the operator � acts as iden-
tity.
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1.4 Modal logic

(ii) The power set P (S) of a set S, together with the operations of union, intersection
and complement, can be viewed as the prototypical example of a Boolean algebra.
Therefore, Let N be the set of all integers. Define for any integer n the set

n = {m ∈ N | m ≤ n}.

Then (P (N),∩,∪,¬, ∅,N,�) is a modal algebra, where for all subset X of N,

�X = {n ∈ N | n ⊆ X}.
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Chapter 2

ON CONCRETE CATEGORIES OF
BL-ALGEBRAS

Many familiar categories such as VEC and T OP are constructs (i.e., categories of struc-
tured sets and structure-preserving functions between them). If we regard such constructs
as purely abstract categories, some valuable information (concerning underlying sets of
objects and underlying functions of morphisms) is lost. Fortunately, category theory
enables us to retain this information by providing a means for a formal definition of con-
struct ( a construct being a pair (C, U) consisting of a category C and a faithful functor
U : C −→ SET ). A careful analysis reveals that, for instance, many of the interesting
properties of the constructs of vector spaces and topological spaces are not properties
of the corresponding abstract categories VEC and T OP but rather of the corresponding
constructs (VEC, U) and (T OP , V ), where U and V denote the obvious underlying func-
tors. In fact, they are often properties of just the underlying functors U and V . For
example, the facts that the construct of vector spaces is "algebraic" and the construct of
topological spaces is "topological" are very conveniently expressed by specific properties
of the underlying functors, rather than by properties of the abstract categories VEC and
T OP . This leads to the concept of concrete categories over a category X as pairs (C, U)
consisting of a category C and a faithful functor U : C −→ X . The concept of concrete
categories over arbitrary base categories provides a suitable language to carry out such
investigations. In this chapter, we investigate BL as a concrete category over SET . We
show how some limits and colimits are constructed and also that BL is essentially alge-
braic, but not topological nor cartesian closed. Moreover we present a hierarchy on some
special morphisms and the categorical relation between BL and the categories GOD and
MV of Gödel-algebras and MV-algebras respectively.

Definition 2.0.6. Given a category X , a concrete category over X is a pair (C, U), where
U : C −→ X is a faithful functor. Sometimes U is called the forgetful (or underlying)
functor of the concrete category and X is called the base category for (C, U). When
X = SET , (C, U) is called a construct.

We consider the concrete category (BL, U) over SET , where U is the standard forgetful
functor.
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Let (C, U) be a concrete category over X . The fibre of an X -object X is the preordered
class consisting of all C-objects A with U(A) = X ordered by:

A � B if and only if idX : UA −→ UB is (can be lifted to ) a C-morphism.

Example 2.0.7. In the concrete category (BL, U), M3 and G3 are in the fibre of the
set {0, x, 1}. Since by Lemma 1.3.3(i), id : {0, x, 1} −→ {0, x, 1} is not a BL-morphism
between M3 and G3, they are not comparable.

Definition 2.0.8. A concrete category (C, U) over X is said to be:
(i) fibre-discrete provided that its fibres are ordered by equality.
(ii) (uniquely) transportable provided that for every C-object A and every
X−isomorphism UA

f−→ X, there exists a (unique) C-object B with UB = X

such that A f−→ B, is a C-isomorphism. In that case U is said to be (uniquely)
transportable.

(iii) strongly complete if it is complete and has intersections;
(iv) is called wellpowered if no C-object has a proper class of pairwise non-isomorphic

subobjects.

Definition 2.0.9. Let C be a category.

Let A f−→ B and C
p //

q
// A be C-morphisms. (p, q) is called a congruence relation on

f if (C, p, q) is a pullback of (f, f).

Definition 2.0.10. Let (C, U) be a concrete category over X .

(i) A C-morphism A
f−→ B is called initial provided that for any C-object C an X -

morphism UC
g−→ A is an C-morphism whenever UC Uf◦g−→ UA is a C-morphism.

(ii) Let X be an object in X . A U -structured arrow with domain X is a pair (f, A)
consisting of an C-object A and a X -morphism f : X −→ UA.

(iii) A U -structured arrow (f, A) with domain X is called:

a. generating provided that for any pair of C-morphisms A
r //

s
// B , the equality

Ur ◦ f = Us ◦ f implies that r = s,
b. extremally generating provided that it is generating and whenever B m−→ A is a
C-monomorphism and (g,B) is a U -structured arrow with f = U(m) ◦ g, then
m is an C-isomorphism.

c. U -universal for A provided that for each U -structured arrow (g, C) with domain
B there exists a unique C-morphism A

f̄−→ C with g = U(f̄) ◦ f .

Definition 2.0.11. Let E be a class of morphisms and letM be a conglomerate of sources
in a category C:
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Chapter 2 : ON CONCRETE CATEGORIES OF BL-ALGEBRAS

(1) C has (E,M)-factorizations provided that each source S in C has a factorization
M ◦ e with e ∈ E and M ∈M.

(2) A functor U : C −→ X has (E,M)-factorizations provided that for each U -structured
source (X fi−→ UAi)I there exists X e−→ UA ∈ E and (A mi−→ Ai)I ∈ M such that
fi = Umi ◦ e for each i ∈ I.

Definition 2.0.12. A functor U : C −→ X is called:
(i) topological provided that every U -structured source (X fi−→ UAi)I has a unique

U -initial lift (A fi−→ Ai)I (i.e., there exists a unique U -initial source (A f̃i−→ Ai)I
such that for each i ∈ I, U(f̃i) = fi ).

(ii) essentially algebraic provided that it creates isomorphisms and is (Generating, Mono-
Source)-factorizable.

Definition 2.0.13. Let (C, U) be a concrete category.
(i) C is topological (essentially algebraic) provided that U is topological (essentially

algebraic).
(ii) C is called cartesian closed if it has finite products and for each C-object A the

functor A×− is left-adjoint.

2.1 Categorical properties of BL

2.1.1 Limits and colimits in BL
As a particular case of finitary algebraic category, BL is complete and cocomplete. In
this section, we show how some (co)limits are constructed in BL.

Proposition 2.1.1. In BL, the initial object is G2 and the final object is G1 ;

Proof. Let L be a BL-algebra. The unique BL-morphism from G2 to L is the one which
assigns 0 to 0 and 1 to 1. The unique morphism from L to G1 is the constant morphism.

Proposition 2.1.2. In BL, the equalizer of a pair L1

f //

g
// L2 of BL−morphisms is the

embedding E e−→ L1, where E = {x ∈ L1/f(x) = g(x)};

Proof. Let L1

f //

g
// L2 be a pair of BL-morphisms. Consider the set

E = {x ∈ L1 | f(x) = g(x)} .
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2.1 Categorical properties of BL

Then E is obviously a BL-subalgebra of L1 and f ◦ e = g ◦ e, where e : E −→ L1 is the
standard embedding. For another BL-morphism L′

e′
−→ L1, such that f ◦ e = g ◦ e , let

ϕ : L′ −→ L defined by ϕ(x) = e′(x). Clearly, ϕ is a BL- morphism and

e ◦ ϕ(x) = ϕ(x) = e′(x) for all x ∈ L′.

Now, let ψ be another morphism such that e◦ψ = e′. Since e is a mono, ψ = ϕ. Therefore,
E

e−→ L1 is an equalizer of f and g.

Proposition 2.1.3. In BL, the product of a family (Li)I of BL-algebras is the source
(P, P pi−→ Li)I where

P = {I f−→ Ui∈ILi/f(i) ∈ Li for all x ∈ I}

and P pi−→ Li is defined by pi(f) = f(i) for all i ∈ I.

Proof. P is clearly a BL-algebra and the mappings P pi−→ Li such that pi(f) = f(i) are
BL-morphisms. Let (Q qi−→ Li)I be a source. Then the map ϕ : Q −→ P such that for all
x ∈ Q, ϕ(x)(i) = qi(x), i ∈ I is a BL-morphism such that qi = pi ◦ϕ. For the uniqueness,
let ψ : Q −→ P be another BL-morphism such that qi = pi ◦ ψ. Let x ∈ Q, for all i ∈ I,

ϕ(x)(i) = pi ◦ ϕ(x) = pi ◦ ψ(x) = ψ(x)(i).

Hence ϕ(x) = ψ(x) for all x ∈ Q and then ϕ = ψ. This proves that the source (P pi−→ Li)I
is a product of the family (Li)I .

Proposition 2.1.4. In BL, the pullback of the morphisms L1
f−→ L

g

←− L2 is the triple
(Pb(f, g), π1, π2) where Pb(f, g) = {(x, y) ∈ L1 × L2/f(x) = g(y)} and πi is the projection
on Li.

Proof. Let x, y ∈ Pb(f, g). We have f ◦ π1(x, y) = g ◦ π2(x, y). Let π′1 : X −→ L1 and
π′2 : X −→ L2 be two BL-morphisms such that f ◦π′1 = g◦π′2. Consider ϕ : X −→ Pb(f, g)
such that ϕ(x) = (π′1(x), π′2(x)). Then for any x ∈ X, f(π′1(x)) = g(π′2(x)) which implies
that ϕ is well defined. ϕ is a BL-morphism since so are π′1 and π′2.

Moreover, for all x ∈ X, π1 ◦ ϕ(x) = π′1(x) and π2 ◦ ϕ(x) = π′2(x). Let ϕ′ be another
BL-morphism such that π1 ◦ϕ′ = π′1 and π2 ◦ϕ′ = π′2, we have π1 ◦ϕ′(x) = π1 ◦ϕ(x) and
π2 ◦ ϕ′(x) = π2 ◦ ϕ(x), for all x ∈ X. Thus, ϕ = ϕ′. So ϕ is unique and we can conclude
that (Pb(f, g), π1, π2) is a pullback of f and g.

Proposition 2.1.5. In BL, the coequalizer of a pair L1

f //

g
// L2 of BL-morphisms is

the pair (L2/θ, L2
π−→ L2/θ) where θ is the smallest congruence on L2 containing the set

X = {(f(x), g(x)), x ∈ L1}, π is the canonical surjection and L2/θ is the quotient algebra.
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Proof. Let L1

f //

g
// L2 be a pair of BL-morphisms. We have for all x ∈ L1,

π ◦ f(x) = π ◦ g(x),

since
(f(x), g(x)) ∈ X ⊆ θ.

Moreover, let h : L2 −→ L3 be another BL-morphism such that h ◦ f = h ◦ g. For all
x ∈ L1, we have

h(f(x)→ g(x)) = h ◦ f(x)→ h ◦ g(x) = 1

and also
h(g(x)→ f(x)) = 1

which means that (f(x), g(x)) ∈ θh. So X ⊆ θh and then θ ⊆ θh. Consider ϕ : L2/θ −→
L3 such that ϕ([y]θ) = h(y). Then for y, y′ ∈ L2 such that [y]θ = [y′]θ, we have (y, y′) ∈
θ ⊆ θh. Hence

(h(y)→ h(y′)) ∧ (h(y′)→ h(y)) = 1

which means that h(y) = h(y′) and then ϕ is well defined. It is not difficult to check that
ϕ is a BL-morphism such that h = ϕ ◦ π. The uniqueness of ϕ follows from the fact that
π is an epimorphism.

We denote by BL the variety of BL-algebras and by FBL(X) the free BL-algebra over
the setX. Since BL is a nontrivial equational class, free BL-algebras exists in BL and it is
clear that these free BL-algebras are the free objects of the category BL. It is well known
that in such a category, the free functor FBL which assigns to each set X the free BL-
algebra FBL(X) generated by X and to each function X f−→ Y the BL-morphism FBL(f)
defined for each element (x1, x2, ..., xn) ∈ FBL(X) by FBL(f)(x1, x2...xn) = (f(x1), f(x2), ..., f(xn))
is the left adjoint to the forgetful functor. Since left adjoint functors preserves colimits,
in BL we have:

Proposition 2.1.6. (FBL(∑
I Xi), FBL(αi))I is the coproduct of the family of the free

algebras (FBL(Xi))I , where (∑
I Xi, αi)I is the coproduct of the family (Xi)I in SET .

Open problem: Construct the coproduct of an arbitrary family of BL-algebras.
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2.1.2 Properties of the forgetful functor
Remark 2.1.7. In a concrete category (C, U) over a category X , a lifting of an X -
morphism X

f−→ Y , whenever it exists, which will be denoted by f̄ is a C-morphism such
that U(f̄) = f . By the faithfulness of U we have:

(i) the lifting f̄ of an X -morphism UA
f−→ UB is unique and f̄ coincides with f in UA

if X = SET ;

(ii) for any X -morphisms X g−→ Y
f−→ Z, f ◦ g = f̄ ◦ ḡ, whenever f̄ and ḡ exist.

Now we establish the transportability of the concrete category of BL-algebras:

Theorem 2.1.8. (BL, U) is fibre-discrete and uniquely transportable.

Proof. Let X be a set and L = (X,∧,∨, ∗,→, 0, 1), L′ = (X,∧′,∨′, ∗′,→′, 0′, 1′) be two
BL-algebras in the fibre of X. Suppose that L � L′. Then for all x, y ∈ X we have
x ∝ y ∈ X since L is a BL-algebra, where ∝∈ {∧,∨, ∗,→}. Thus by Remark 2.1.7(i)

x ∝ y = idX(x ∝ y).

By the fact that idX is a BL-morphism, we obtain

x ∝ y = idX(x) ∝′ idX(y) = x ∝′ y

and we can conclude that L = L′. Conversely, if L = L′ then it is obvious that idL = idX .
Therefore, (BL, U) is fibre-discrete.

For the unique transportability, let (L,∧,∨, ∗,→, 0, 1) be a BL-algebra, X be a set
and L f−→ X be a bijective function. For y1, y2 ∈ X, define for ∝′∈ {∧′,∨′, ∗′,→′},

y1 ∝′ y2 = f(x1 ∝ x2) (∝∈ {∧,∨, ∗,→}),

where y1 = f(x1) and y2 = f(x2). Then L′ = (X,∧′,∨′, ∗′,→′, f(0), f(1)) is the unique
BL-algebra in the fibre of X such that L f−→ L′ is a BL-isomorphism.

The above Theorem and [[2], Proposition 5.8] lead to the following result:

Corollary 2.1.9. The forgetful functor U : BL −→ SET reflects identities.

In SET , mono-sources are exactely the point-separating sources, i.e., sources (X, fi)I
such that for any two different elements x and y of X there exists some i ∈ I with
fi(x) 6= fi(y). Since faithful functors reflect mono-sources [[2], Proposition 10.7], we have:

Lemma 2.1.10. In BL, point separating sources are mono-sources.

Lemma 2.1.11. The category BL has (Epi,Mono− Source)-factorizations.
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Proof. Let (L fi−→ Li)I be a source in BL. Consider the congruence θ defined by

(x, y) ∈ θ ⇐⇒ fi(x) = fi(y) for all i ∈ I

and let L π−→ L/θ be the canonical epimorphism. Then the map L/θ
mi−→ Li defined

by mi([x]θ) = fi(x) is the unique BL-morphism such that fi = mi ◦ π (since π is an
epimorphism). Let [x]θ and [y]θ be two distincts classes. Then fi(x) 6= fi(y) for some
i ∈ I, and so mi([x]θ) 6= mi([y]θ). It follows that (L/θ mi−→ Li)I is a point-separating
source and by Lemma 2.1.10 a mono-source.

The following summarizes a combination of Proposition 8.24 and Remark 13.26 from
[2].

Lemma 2.1.12. [2] The following hold:

(i) every universal arrow is extremally generating;

(ii) a functor creates isomorphisms if and only if it reflects isomorphisms and is uniquely
transportable;

Proposition 2.1.13. The forgetful functor U : BL −→ SET has (Generating,Mono −
Source)-factorizations.

Proof. Let (X fi−→ ULi)I be an U -structured source in BL. Since FBL(X) is a free object
in BL, there exists an universal arrow X

u−→ U(FBL(X)). Hence for each fi, there exists
a unique BL-morphism FBL(X) f̃i−→ Li such that fi = Uf̃i ◦ u. By Lemma 2.1.11, it
follows that for each i ∈ I,

f̃i = FBL(X) e−→ L
mi−→ Li

where e is an epimorphism and (L mi−→ Li)I is a mono-source in BL. Thus

fi = X
Ue◦u−→ UL

Umi−→ ULi.

Let’s show that Ue◦u is generating. Let L
r //

s
// L
′ be a pair of BL-morphisms such that

Ur ◦ (Ue ◦ u) = Us ◦ (Ue ◦ u).

Then by the fact that u is universal and so generating ( Lemma 2.1.12 (i)), we have
Ur ◦ Ue = Us ◦ Ue and since U is faithful, r ◦ e = s ◦ e. Thus r = s since e is an
epimorphism.

Theorem 2.1.14. The construct (BL, U) is essentially algebraic.
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Proof. Let L f−→ L′ be a BL-morphism such that U(f) is bijective. Then

f−1(0) = f−1(f(0)) = 0

and for any binary operation ∝, we have:

f−1(x ∝ y) = f−1(f(x′) ∝ f(y′)) = f−1 ◦ f(x′ ∝ y′) = x′ ∝ y′ = f−1(x) ∝ f−1(y)

since f is a BL-morphism and is surjective. Therefore f−1 is a BL-morphism and so U
reflects isomorphisms. Moreover, U is uniquely transportable (Theorem 2.1.8), it follows
from Lemma 2.1.12(ii) that U creates isomorphisms. Taking into account the Proposition
2.1.13, we conclude that U is essentially algebraic.

Essentially algebraic categories have some nice properties. For example, they inherit
some properties of the base category as we can see in the following proposition [2]:

Proposition 2.1.15. If (C, U) is essentially algebraic over C, then the following hold:
(i) If X is (strongly) complete, then C is (strongly) complete.
(ii) If X has coproducts, then C is cocomplete.
(iii) If X is wellpowered, then C is wellpowered.

Therefore, since SET is strongly complete and wellpowered, we have:

Proposition 2.1.16. BL is strongly complete and wellpowered.

Moreover, by [[2], Corollary 14.21], we have:

Corollary 2.1.17. BL is (ExtrEpi, Mono)-structured and (Epi, ExtrMono)-structured.

Concerning the topologicity of BL, we obtain the following result:

Proposition 2.1.18. Let POS denote the category of posets and order-preserving maps.
The forgetful functors BL V−→ POS and BL U−→ SET are not topological.

Proof. For the functor V , the morphism (1-source) f from the poset {0, z, x, y, 1}, with
z = x ∧ y to the poset {0, 1}, such that f(x) = 0 if x 6= 1 and f(1) = 1 cannot be lifted
to a BL-morphism. If it were the case we would have

f(x→ y) = f(x)→ f(y) = 0→ 0 = 1

which means that x → y = 1 and by Lemma 1.3.1(1) x ≤ y, which contradicts the
hypothesis.

For the functor U , for any U -structured 1-source {0, x, 1} g−→ UG2 such that g(0) = 1
and g(1) = 0, g cannot be lifted to a BL-morphism from G3 or M3 to G2.
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Proposition 2.1.19. BL is not cartesian closed.

Proof. Let L be a BL-algebra, and f, g : G2 ×G2 −→ L be two maps defined by:

f(a) = f(b) = 0, f(c) = f(d) = 1 and g(a) = g(c) = 0, g(b) = g(d) = 1

where a = (0, 0), b = (0, 1), c = (1, 0) and d = (1, 1). Then f and g are BL-morphisms.
It follows that the functor G2 × − doesn’t preserve initial object and hence, is not left
adjoint.

2.2 Some classes of morphisms in BL

2.2.1 Monomorphisms in BL

Definition 2.2.1. Let (C, U) be a concrete category. A C-morphism A
f−→ B is called

initial provided that for any C-object C, an X -morphism UC
g−→ UA is (i.e. can be lifted

to) a C-morphism whenever UC Uf◦g−→ UB is a C-morphism i.e. there exists C h−→ B such
that U(h) = Uf ◦g. A C-morphism is called a regular monomorphism if it is the equalizer
of some pair of C-morphisms.

In this section we consider the concrete category (BL, U) over SET , where U is the
standard forgetful functor.

Proposition 2.2.2. In BL, we have:

RegMono(BL) ⊆ ExtrMono(BL) = StrongMono(BL) ⊆Mono(BL)

and
Mono(BL) = Inj(BL) = Init(BL)

where (Reg, Strong, Extremal)Mono(BL), Init(BL) and Inj(BL) are the classes of (regu-
lar, Strong, Extremal)monomorphisms, initial and injective morphisms , respectively.

Proof. It is clear that every injective BL-morphism is a monomorphism and since U is right
adjoint and hence preserves monomorphisms [[2], Proposition 18.6], every monomorphism
is injective. HenceMono(BL) = Inj(BL). Let’s show that injective morphisms are initial
in BL. Let f : L1 −→ L2 be an injective BL-morphism. Let L3 be a BL-algebra and
g : UL3 −→ UL1 be a function. Suppose that Uf ◦ g : UL3 −→ UL2 is a BL-morphism.
Then for all x, y ∈ UL3, and ∝∈ {∗,→}, we have

Uf ◦ g(x ∝ y) = Uf ◦ g(x) ∝ Uf ◦ g(y)
and since x, y, x ∝ y ∈ UL3, we have by Remark 2.1.7(i)

Uf ◦ g(x ∝ y) = Uf ◦ g(x) ∝ Uf ◦ g(y)
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. Therefore, because g(x), g(y), g(x ∝ y) ∈ UL1 the same remark leads to:

f ◦ g(x ∝ y) = f ◦ g(x) ∝ f ◦ g(y)
= f(g(x) ∝ g(y)) (f is a BL-morphism).

Since f is injective, we obtain g(x ∝ y) = g(x) ∝ g(y). With similar arguments, we show
that g(0) = 0 and we conclude that g is a BL-morphism and so f is an initial morphism.
Conversely, suppose that f is an initial morphism. Let x, y ∈ L1 such that f(x) = f(y).
Define g : {0, 1} −→ L1 by

g(0) = 0 and g(1) = (x→ y) ∧ (y → x).

It is obvious that f ◦g(0) = 0 and f ◦g(1) = 1, which means that f ◦g is a BL-morphism.
By hypothesis, it follows that g is a BL-morphism and then g(1) = 1, which leads to

(x→ y) ∧ (y → x) = 1

and by Lemma 1.3.1(1), we obtain x = y. Therefore, inj(BL) = init(BL).
ExtrMono(BL) = StrongMono(BL) ⊆ Mono(BL) follows from Lemma 1.1.11 and

Corollary 2.1.17. RegMono(BL) ⊆ ExtrMono(BL) follows from [[2], Corollary 7.63].

2.2.2 Epimorphisms in BL
Since BL-algebras form a variety, L× L is a BL-algebra for any BL-algebra L. We recall
that for any BL-morphism L

f−→ L′, θf denote the congruence induced by the deductive
system Ker(f). It is easily checked that θf is a BL-subalgebra of L× L and we have the
following:

Lemma 2.2.3. For any BL-morphism L
f−→ L′, θf = {(x, y) ∈ L× L; f(x) = f(y)}.

Proof. Let (x, y) ∈ L× L.

(x→ y) ∧ (y → x) ∈ Ker(f) ⇔ f((x→ y) ∧ (y → x)) = 1
⇔ (f(x)→ f(y)) ∧ (f(y)→ f(x)) = 1
⇔ f(x)→ f(y) = 1 and f(y)→ f(x) = 1( by Lemma 1.3.1)
⇔ f(x) ≤ f(y) and f(y) ≤ f(x)( by Lemma 1.3.1)
⇔ f(x) = f(y).

The following result will be useful in the sequel:
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Lemma 2.2.4. If L f−→ L′ is a regular epimorphism in BL, then f is the coequalizer of

the pair θf
π1 //

π2
// L where π1(x1, x2) = x1 and π2(x1, x2) = x2.

Proof. Let L f−→ L′ be a regular epimorphism in BL. It follows from Lemma 2.2.3 and
Proposition 2.1.4 that (θf , π1, π2) is a pullback of (f, f). Thus (π1, π2) is a congruence
relation of f . Hence, by [[2], Proposition 11.22], f is a coequalizer of π1 and π2.

Proposition 2.2.5. In the construct (BL, U), we have:

RegEpi(BL) = Surj(BL) ( Epi(BL)

where (Reg)Epi(BL), and Surj(BL) are the classes of (regular)epimorphisms and sur-
jective morphisms, respectively.

Proof. Since faithfull functors reflect epimorphisms (see [[2], proposition 7.44]), every
surjective BL-morphism is an epimorphism in BL. The converse does not hold. Indeed,
consider L = {0, x, y, 1} and L′ = {0, z, x, y, 1}, where z = x ∨ y and x and y are not
comparable. Define ∗,�,⇁ and ⇀ as follows:

∗ 0 x y 1
0 0 0 0 0
x 0 x 0 x
y 0 0 y y
1 0 x y 1

⇀ 0 x y 1
0 1 1 1 1
x 0 1 y 1
y 0 x 1 1
1 0 x y 1

� 0 x y z 1
0 0 0 0 0 0
x 0 x 0 x x
y 0 0 y y y
z 0 x y z z
1 0 x y z 1

⇁ 0 x y z 1
0 1 1 1 1 1
x 0 1 y 1 1
y 0 x 1 1 1
z 0 x y 1 1
1 0 x y z 1

Then (L,∧,∨, ∗,⇀, 0, 1) and (L′,∧,∨,�,⇁, 0, 1) are BL-algebras. Consider the function
L

m−→ L′ such that m(t) = t for all t ∈ L. Then m is an epimorphism but it is not
surjective. Thus we have the strict inclusion Surj(BL) ⊂ Epi(BL).

Let L f−→ L′ be a surjective BL-morphism. Consider the pair θf
π1 //

π2
// L . Then we

have f ◦ π1 = f ◦ π2. Let L g−→ L′′ be another BL-morphism such that g ◦ π1 = g ◦ π2
and consider the map L′

u−→ L′′ such that for all y = f(x) ∈ L′, u(y) = g(x). Let
f(x1), f(x2) ∈ L′ such that f(x1) = f(x2). Then (x1, x2) ∈ θf . So we have

g ◦ π1(x1, x2) = g ◦ π2(x1, x2)
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i.e., g(x1) = g(x2) which means that

u(f(x1)) = u(f(x2))

and thus u is well defined. u is clearly a BL-morphism and we have u◦f = g. For another
BL-morphism v such that v ◦ f = g, we have u ◦ f = v ◦ f and so u = v since f is an

epimorphism. Hence f is the coequaliser of the pair θf
π1 //

π2
// L .

To complete the proof, we have to show that regular epimorphisms are surjective. Let
L

f−→ L′ be a regular epimorphism in BL. Then by Lemma 2.2.4, f is the coequalizer of

the pair θf
π1 //

π2
// L . For all (x, y) ∈ θf , we have

π ◦ π1(x, y) = [x]θf = [y]θf = π ◦ π2(x, y)

, where L π−→ L/θf is the canonical surjection. Thus there exists a unique BL-morphism
L′

ϕ−→ L/θf such that ϕ ◦ f = π. Since π is surjective, it is a regular epimorphism. So π

is the coequalizer of the pair θπ

π′
1 //

π′
2

// L . Let (x, y) ∈ θπ. Then π(x) = π(y) which means

that [x]θf = [y]θf and we get that f(x) = f(y). So f ◦ π′1 = f ◦ π′2 and thus there exists
an unique BL-morphism L/θf

φ−→ L′ such that φ ◦ π = f . Hence

(ϕ ◦ φ) ◦ π = ϕ ◦ (φ ◦ π) = ϕ ◦ f = π.

Since π is an epimorphism, we obtain ϕ ◦ φ = 1L/θf . Moreover

(φ ◦ ϕ) ◦ f = φ ◦ (ϕ ◦ f) = φ ◦ π = f.

Since f is a regular epimorphism, it is an epimorphism and we get φ ◦ ϕ = 1L′ . It follows
that φ is a BL-isomorphism and hence is surjective. Therefore f = φ ◦ π is surjective as
composition of such morphisms.

2.2.3 Some subcategories of BL
Let GOD and MV denote the categories of Gödel and MV-algebras respectively. We
present the relations between BL and the categories GOD andMV .

Let C be a category. A full subcategory D of C is said coreflective if the inclusion
functor i : D ↪→ C has a right adjoint R. In this case, R is called a reflector. A full
subcategory D of C is said isomorphism-closed if every object of C that is isomorphic to
a D-object is itself a D-object.

The morphisms in GOD and MV are exactly BL-morphisms. Thus these categories
are full subcategories of BL. Moreover, we have:
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Proposition 2.2.6. GOD andMV are isomorphism-closed subcategories of BL .

Proof. Let L be a BL-algebra isomorphic to a Gödel-algebra G. Then let L f−→ G be
that BL-isomorphism. For all x ∈ L, there exists y ∈ G such that x = f(y). We have

x ∗ x = f(y) ∗ f(y) = f(y ∗ y) = f(y) = x.

Thus L is a Gödel-algebra and so GOD is an isomorphism-closed subcategory of BL. By a
similar method, one can easily prove thatMV is also an isomorphism-closed subcategory
of BL.

Lemma 2.2.7. Let L and L′ be two BL-algebras. For all BL-morphism MV (L) f−→ L′,
Im(f) ⊆MV (L′)

Proof. Let MV (L) f−→ L′ be a BL-morphism and y ∈ Im(f). Then there exists x ∈
MV (L) such that y = f(x). By the definition of the MV-center, it means there exists
z ∈ L such that y = f(z) = f(z). So y ∈MV (L′).

Proposition 2.2.8. The correspondance MV : BL −→MV which assigns to every BL-
algebra its MV-center extends to a functor.

Proof. The Lemma 2.2.7 shows that MV is well defined. Let L f−→ L′
g−→ L′′ be two

BL-morphisms. Then for all x ∈MV (L), we have

MV(g ◦ f)(x) = g ◦ f(x) = MV(g) ◦MV(f)(x)

and
MV(1L)(x) = x = 1MV (L)(x).

In the sequel, this functor will be called theMV-functor.

Proposition 2.2.9. TheMV-functor is neither faithful nor conservative.

Proof. Let G4 be the BL-algebra defined by the following tables:

∗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1
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Consider now the functions G3

f //

g
//G4 such that f(0) = 0, f(x) = a, f(1) = 1 and

g(0) = 0, g(x) = b, g(1) = 1. Then it is easily checked that f and g are BL-morphisms.
We have MV(f) = MV(g), but f 6= g. Thus MV is not faithful. Moreover, MV(f) is a
BL-isomorphism but it is not the case for f . So MV is not conservative.

Theorem 2.2.10. MV is a coreflective subcategory of BL.

Proof. We first prove that the MV-functor is the right adjoint to the inclusion functor
i :MV ↪→ BL. Let M be an MV-algebra and L a BL-algebra. Consider the function

ΦM,L : BL(M,L) −→MV(M,MV (L))

M
f−→ L 7−→MV(f)

where BL(M,L) (respectivelyMV(M,MV (L))) denote the set of BL-morphisms fromM
to L (respectively from M to MV (L) ). Since MV (M) = M , by Lemma 2.2.7, ΦM,L(f)
is well defined. ΦM,L is bijective and its inverse Φ−1

M,L is defined by Φ−1
M,L(g)(x) = g(x) for

allMV-morphism g : M −→ MV (L). Moreover, for anyMV-morphism M ′ f−→ M , we
have for all M α−→ L and x ∈M ′:

MV(f,MV (L)) ◦ ΦM,L(α)(x) = ΦM,L(α) ◦ f(x)
= MV(α) ◦ f(x)
= α ◦ f(x)
= MV(α ◦ f)(x)
= ΦM ′,L(α ◦ f)(x)
= ΦM ′,L ◦ BL(f, L)(α)(x)

which proves the naturality of ΦM,L in the first variable. With similar computations, one
can easily checked that ΦM,L is also natural in the second variable. Therefore i a MV.
Moreover, sinceMV is a full subcategory of BL we have the result.

Since right-adjoint functors preserve limits, we have:

Corollary 2.2.11. TheMV-functor preserves limits.

2.2.4 Conclusion
In this chapter, we studied concrete categorical properties of BL-algebras. Although this
category is not cartesian closed or topological, we proved that it is essentially algebraic
over SET , meaning that many properties of SET , can be transferred to BL, in particular
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(Epi, ExtrMono)-factorization, which will be useful to define some coalgebraic notions in
next chapter. We also establish the hierarchy between monomorphisms on a hand and
epimorphisms in another hand in BL. We end the chapter by the relation between BL
and the categories of Gödel and MV- algebras respectively. We showed that MV is a
coreflective subcategory of BL. In the next chapter we will establish a coalgebraic lift of
this relation.
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Chapter 3

MV-COALGEBRAS

Coalgebras (Adamek (2005) [4], Jacobs (2016) [35], Rutten (2000) [49]) form a powerful
theory of state- based transition systems where definitions and results are formulated at a
high level of genericity that covers several families of systems at once, from deterministic
automata and Kripke frames to different kinds of probabilistic models. Traditionally,
these formulations are elaborated in a set-based context, i.e. no further structure in the
system’s state space than that of a set is assumed. In many cases, however, a switch
of context is needed. The projects on the coalgebraic foundations of stochastic systems,
where the Giry functor and measurable spaces have a central role (cf. Doberkat 2009 [18];
Panangaden (2009) [47]; Viglizzo (2005) [55] ), are evident examples of this. Research on
coalgebras over Stone spaces (e.g. Bezhanishvili (2010) [9] ; Kupke (2004) [40], Venema
(2014) [54]) and coalgebras over pseudometric spaces (Balan (2019) [5]) forms equally
important cases. In [40], [9] and [54], the aim is to provide a suitable coalgebraic semantics
for finitary modal logics by taking advantage of a Vietoris functor, while in Baldan (2018)
[6] and Balan (2019) [5] is to introduce a notion of distance between states.

In this chapter, we investigate MV-coalgebras, which are pairs (L, α) where L is a
BL-algebra and L α−→MV (L) is a BL-morphism. We show that the properties of BL are
good enough to obtain a rich coalgebraic structure on this category. We also use deductive
systems in BL to construct a topology and introduce topological MV-coalgebras.

3.1 The category of MV-coalgebras
The composite i ◦MV, where i :MV ↪→ BL is the inclusion functor shall also be denoted
by MV and it is a covariant BL-endofunctor, which has the preservation properties of the
MV-functor. In this section, we characterize homomorphisms, MV-subcoalgebras and
Bisimulations in the category of MV-coalgebras and prove its (co)completeness.

The following observations are easily checked:

Remark 3.1.1. Let (L, α) be an MV-coalgebra.

(i) For all x ∈ L, α(x) = α(x);
(ii) If α is injective, then L is an MV-algebra;
(iii) For all x ∈ L, there exists z ∈ L such that α(x) = z.
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3.1.1 MV-homomorphisms
We introduce an arrow notation similar to transition system as in Gumm (2001) [24]. We
write

x
α→ y iff α(x) = y.

We say that a map (L, α) f−→ (L′, β):

(i) preserves transitions if for all x, y ∈ L, x α→ y =⇒ f(x) β→ f(y);

(ii) reflects transitions if for all x ∈ L and y ∈ L′, f(x) β→ y =⇒ x
α→ t, with f(t) = y.

The following results provides a chraracterization of MV-homomorphisms:

Proposition 3.1.2. Let (L, α) and (L′, β) be two MV-coalgebras and L
f−→ L′ be a

BL-morphism. The following are equivalent:

(i) f is a homomorphism;
(ii) For all x ∈ L, β ◦ f(x) = f(z) where z = α(x);
(iii) f preserves and reflects transitions.

Proof. (i)⇔ (ii) Suppose f is a homomorphism. Then for all x ∈ L such that α(x) = z,
we have

β ◦ f(x) = MV (f)(z) = f(z).
Since f is a BL-morphism, we obtain

β ◦ f(x) = f(z).

Conversely, suppose that β ◦ f(x) = f(z) where z = α(x), for all x ∈ L. Then

MV(f) ◦ α(x) = MV(f)(z) = f(z).

So β ◦ f(x) = MV(f) ◦ α(x).
(i) ⇒ (iii) suppose f is a homomorphism. Let x, y ∈ L such that x α→ y and z ∈ L

such that α(x) = z. Then z = y. Since f is a BL-morphism, f(z) = f(y) and by
hypothesis

α ◦ f(x) = f(y),
which proves that f preserves transitions. Moreover, let x ∈ L with z = α(x) and y ∈ L′.
Suppose f(x) α′

→ y. We have x α→ z and by hypothesis

f(z) = f(z) = β ◦ f(x) = y

Therefore, f reflects transitions.
(iii) ⇒ (ii) Suppose f preserves and reflects transitions. Let x ∈ L with α(x) = z.

Then x α→ z and by hypothesis, f(x) β→ f(z) which means that β ◦ f(x) = f(z).
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Example 3.1.3. Consider the BL-algebra G4 from the proof of Proposition 2.2.9 and
consider the function G3

f−→ G4 such that

f(0) = 0, f(x) = a, f(1) = 1.

Then it is easily checked that f is a BL-morphism. Define Gi
αi−→ G2 by

αi(0) = 0 and αi(x) = 1 for x 6= 0, i ∈ {3, 4}.

α3 and α4 are BL-morphisms and it is obvious that G2 = MV (Gi) for i ∈ {3, 4}. Let
x ∈ G3 with x 6= 0, 1. We have:

α4 ◦ f(x) = α4(a)
= 1
= MV(f)(1)
= MV(f) ◦ α3(x)

Hence f is a homomorphism of coalgebras between (G3, α3) and (G4, α4).
The category of MV-coalgebras and homomorphisms shall be denoted by BLMV.

3.1.2 MV-subcoalgebras
Since BL has (Epi, ExtrMono)=(Epi, StrongMono)-factorizations, and following [[4], page
171], we give the following definition of MV-subcoalgebra.
Definition 3.1.4. Let (L′, β) be an MV-coalgebra. An MV-subcoalgebra of (L′, β) is an
MV-coalgebra (L, α) together with a strong mono homomorphism (i.e. a homomorphism
which is a strong monomorphism in BL ) (L, α) m−→ (L′, β).
Proposition 3.1.5. Let (L, α) be an MV-coalgebra. Then (MV (L),MV (α)) is an MV-
subcoalgebra of (L, α).

Proof. Let i : MV (L) ↪→ L be the inclusion morphism. Let L′ e−→ L′′ be an epimorphism,
f and g are morphisms such that the following square commutes

L′
e //

f
��

L′′

g

ww
g

��
MV (L)

i
// L

Then f = i ◦ f = g ◦ e. Since g = i ◦ g, it follows that both triangles commute.
Therefore i is a strong-monomorphism. Moreover, for all x ∈MV (L),

MV(i) ◦MV(α)(x) = i ◦MV(α)(x) = i ◦ α(x).

Hence i is a homomorphism from (MV (L),MV(α)) to (L, α).
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We give now a characterization of BL-subalgebras of a BL-algebra which can be en-
dowed with a transition structure making them MV-subcoalgebras.
Proposition 3.1.6. Let (L′, β) be an MV-coalgebra. A BL-subalgebra L of L′ is an MV-
subcoalgebra of (L′, β) iff there exists a strong monomorphism L

m−→ L′ such that for all
x ∈ L, there exists z ∈ L such that m(x) β→ m(z).
Proof. Let L be a BL-subalgebra of L′. Suppose (L, α) is a subcoalgebra of (L′, β). Then
by definition, there exists a strong mono homomorphism (L, α) m−→ (L′, β). Let x ∈ L.
By Remark 3.1.1, there exists z ∈ L such that α(x) = z. It follows from Proposition 3.1.2
that β ◦m(x) = m(z) which means that m(x) β→ m(z).

Conversely, assume that there is a strong monomorphism m : L −→ L′ such that for
all x ∈ L, there exists z ∈ L with m(x) β→ m(z). Then observe that z is unique since m
is injective (Proposition 2.2.2) and define

α : L −→MV (L)
x 7−→ z

Let x, y ∈ L such that α(x) = z and α(y) = z′. If x = y then we have m(x) β→ m(z) and
m(x) β→ m(z′). It follows that m(z) = m(z′) and then m(z) = m(z′). Since m is a mono,
we obtain z = z′ i.e., α(x) = α(y). Therefore, α is well defined. Moreover,

β ◦m(0) = 0 (since β and m are BL-morphisms)
= 1( by Lemma 1.3.1(8) )
= m(1) (m, is a BL-morphism).

Thus m(0) β→ m(1) and so α(0) = 0. Let x, y ∈ L such that α(x ∝ y) = t, α(x) = z and
α(y) = z′, where ∝∈ {∗,→}. We have

m(x ∝ y) β→ m(t).
Since β ◦m is a BL-morphism, we obtain

β ◦m(x) ∝ β ◦m(y) = m(t).
So

m(z) ∝ m(z′) = m(t)
and therefore

m(z ∝ z′) = m(t).
Using the fact that m is injective (Proposition 3.22), we obtain z ∝ z′ = t and then,

α(x) ∝ α(y) = α(x ∝ y).
Hence α is a BL-morphism. It follows that α is a transition structure on L making m a
strong mono homomorphism.
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3.1.3 MV-bisimulations and (co)limits in BLMV

Definition 3.1.7. Let R be a strong relation between two MV-coalgebras (L1, α1) and
(L2, α2), that is, there is a strong-mono m : R ↪→ L×L′. R is called an MV-bissimulation
provided that there is a structure map on R making the projections πi : R −→ Li MV-
homomorphisms.
Proposition 3.1.8. In BLMV, bisimulations are precisely strong-mono relations.

Proof. Let R be a strong-mono relation on (L1, α1) and (L2, α2). Consider

δ : R −→MV(R)
(x, y) 7−→ (α1(x), α2(x))

Then δ is a BL-morphism since α1 and α2 are so. Moreover, for all (x, y) ∈ R,

α ◦ π1(x, y) = α1(x)
= MV(π1)(α1(x), α2(x))
= MV(π1) ◦ δ(x, y).

Thus π1 is an MV-homomorphism. Similarly, one can show that π2 is an
mathbbMV -homomorphism.

Proposition 3.1.9. The largest bissimulation between two MV-coalgebras (L, α) and
(L′, β) always exists. Moreover, when (L, α) = (L′, β) that largest bisimulation (called
the bisimilarity on (L, α)) is an equivalence relation.

Proof. BL is wellpowered, complete, cocomplete and the MV-functor preserves limits. It
follows from [[4], Proposition 5.5] that the largest bisimulation between any two MV-
coalgebras exists. The second part of the Proposition is a consequence of [[4], Corollary
5.6].

Lemma 3.1.10. Let FIX(MV) denote the class of fixed points of MV and MV the class
of MV -algebras. The following hold:
(i) FIX(MV) = MV.
(ii) (G1, idG1) is the final coalgebra for the functor MV.

Proof. (i) Since any MV-algebra is its ownMV-center, we just have to prove that FIX(MV) ⊆
MV. Let L ∈ FIX(MV) be a BL-algebra. Then there exists a BL-isomorphism
ϕ : L −→ MV (L). For any x ∈ L, there exists y ∈ MV (L) such that x = ϕ−1(y).
This means that

¯̄x = ϕ−1(y) = ϕ−1(¯̄y) = ϕ−1(y) = x,

since the converse ϕ−1 of ϕ is a BL-morphism. Therefore L is an MV-algebra.
(ii) follows from the fact that MV preserves final objects.
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Since MV preserves pullbacks, the composition of MV-bissimulations is again an MV-
bisimulation (see [[4], Example 5.4]). Therefore (or see [32], Theorem 2.5.7]), pullbacks
of MV-homomorphisms are MV-bisimulations. In that case, it is stated in [[4], Remark
5.8] for an arbitrary weak pullback preserving endofunctor that the largest bisimulation
on a given coalgebra is the kernel equivalence of the unique homomorphism from that
coalgebra to the final coalgebra. The following result comes from that observation:

Proposition 3.1.11. Let (L, α) be an MV-coalgebra. The largest bisimulation on (L, α)
is L× L.

Proof. By [[4], Remark 5.8], the largest bisimulation on (L, α) is the kernel pair of the
morphism (L, α) 1̃−→ (G1, idG1), which is clearly L× L.

It is well known (see, e.g., [[4], Proposition 4.3] or [[32], Theorem 1.2.4]) that the
forgetful functor from the category of coalgebras to the base category creates colimits.
It follows that BLMV has whatever colimit BL has. On the other hand, BLMV has all
limits preserved by MV. Since BL is complete, cocomplete and MV is a limit-preserving
functor, we have:

Theorem 3.1.12. BLMV is complete and cocomplete.

3.1.4 Coalgebraic relation between BL and MV
Every natural transformation η : F −→ G between two endofunctors (or types) of a
category C induces a functor between categories of coalgebras CF and CG. This was
already observed by Rutten in [49] for the category SET and other facts about natural
transformations and coalgebras were proved by Gumm in [22] and [21]. Our aim in this
subsection is to lift the coreflectivity ofMV to an coalgebraic one.

Let C and D be two categories, F : C −→ C and G : D −→ D be two functors. The
following result has been proven by Kianpi (2016) [37] in the case where C = D.

Proposition 3.1.13. Let H : C −→ D be a functor. Every natural transformation
η : H ◦ F −→ G ◦H induces a functor Hη : CF −→ DG defined as:

- for any F-coalgebra (A,α), Hη(A,α) = (H(A), ηA ◦H(α));

- For any homomorphism (A,α) f−→ (B, β), Hη(f) = H(f).
If H is faithful, then so is Hη.

Proof. Let A ∈ ob(C). Then

ηA ◦H(α) : H(A) H(α)−→ H ◦ F(A) ηA−→ G ◦H(A)

is a clearly aD-morphism and so, (H(A), ηA◦H(α)) is aG-coalgebra. Let (A,α) f−→ (B, β)
be a CF-morphism. Let show that Hη(f) is a DG-morphism.
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H(A) H(f) //

H(α)
��

H(B)
H(β)
��

H ◦ F(A)
H◦F(f)

//

ηA
��

H ◦ F(B)
ηB
��

G ◦H(A)
G◦H(f)

// G ◦H(B)

Since f is a homomorphism, we have β ◦ f = F(f) ◦ α. Since H is a functor, we obtain

H(β) ◦H(f) = H ◦ F(f) ◦H(α).

This shows that the up rectangle of the above diagram commutes. The naturality of
η yields the commutativity of the down rectangle. Thus the whole diagram commutes,
meaning that

ηB ◦H(β) ◦H(f) = G ◦H(f) ◦ ηA ◦H(A).

Therefore, H(f) is a homomorphism of G-coalgebras.
The functoriality and the faithfulness of Hη follows straightforwardly from that of

H.

Since theMV-functor is idempotent, the following diagram commutes:

BL MV //

MV
��

MV
IdMV
��

BL
MV

//MV

.

Therefore, IdMV : MV◦MV −→ IdMV ◦MV is obviously a natural transformation, which
will be denoted η in the sequel.

In Theorem 2.2.10 we showed that the MV-functor is right adjoint to the inclusion
functor i :MV ↪→ BL. In what follows, we lift this result to the categories of coalgebras.

Proposition 3.1.14. MV IdMV is a coreflective subcategory of BLMV

Proof. Let i∗ :MV IdMV ↪→ BLMV be the inclusion functor. By Proposition 3.1.13, MVη

is a functor, and we have for any MV-coalgebra (L, α), MVη(L, α) = (MV (L),MV(α)).
Let M = (M,α) ∈MV IdMV and L = (L, ε) ∈ BLMV. Define

Φ∗(M,L) : BLMV(M,L) −→ MVIdMV (M,MVη(L))

M f−→ L 7−→ M MVη(f)−→ (MV (L),MV(ε))
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Φ∗(M,L) is well defined since MVη is a functor. Moreover, for any f ∈ BLMV(M,L), we
have

Φ∗(M,L)(f) = MVη(f) = MV(f) = Φ(M,L)(f),

where Φ(M,L) is the map defined in the proof of Theorem [?]. Thus, the bijectivity and
the naturality of Φ∗(M,L) follows from that of Φ(M,L). Therefore, MVη is a right adjoint of
i∗.

3.2 Topological MV-coalgebras
According to the viewpoint of the School of Bourbaki, there are three mother structures
in mathematics from which all other mathematical structures can be generated and they
are not reducible from one to the other: algebraic structures, topological structures, and
order structures. The interaction between topological structures and order structures is a
stimulating topic in mathematics and computer science, e.g., in the theory of domains and
the theory of locales. Topologies and algebras naturally come in contact in representation
theory and topological groups . In recent decades, several researchers have proposed a
number of algebraic structures associated with logical systems equipped with topologies
(further details may be found in Di Nola (2003) [18], L. Leustean (2004) [42], Haveshki
(2007) [28], Borzooei (2011) [12] ). Recently Haveshki (2007) [28] and also Zahiri (2016)
[56] applied filter theory to construct a topology on BL-algebras. In this section, we
introduce and investigate topological MV-coalgebras. Moreover, we construct an inverse
system in the category of MV-coalgebras.

Definition 3.2.1. Let L = (L,∧,∨, ∗,→, 0, 1) be a BL-algebra with a topology τ . Then,
(L, τ) is called a topological BL-algebra if the operations ∧,∨, ∗,→ are continuous.

3.2.1 Some facts about deductive systems in BL-algebras
Definition 3.2.2. A ds D of a BL-algebra L is said Boolean if for all x ∈ L, x ∨ x̄ ∈ D.

Example 3.2.3. In Example 1.3.11 (the third case), for any x ∈ [0; 1], x̄ = 1 − x. So
x ∨ x̄ ≥ 1

2 . Thus
[

1
2 ; 1

]
is a Boolean filter of the Lukasiewicz-algebra.

These filters have been deeply studied by many authors (see, e.g. [ E. Turunen (2001)
[50], Haveshki (2008) [29], Turunen (2011) [52]]) and the following has been proved:

Proposition 3.2.4. In any BL-algebra, the following are equivalent:
(i) D is a Boolean ds;
(ii) L/D is a Boolean algebra;
(iii) If x̄→ x ∈ D, then x ∈ D.
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The following result will be useful in the sequel:

Lemma 3.2.5. Let D be a Boolean ds a BL-algebra L. For all x, y ∈ L,

ȳ → x̄ ∈ D implies x→ y ∈ D.

Proof. Let x, y ∈ L such that ȳ → x̄ ∈ D. Since D is Boolean, y ∨ ȳ ∈ D. Then by
Lemma 1.3.1(9),

y ∨ ȳ ≤ ((y → ȳ)→ ȳ) ∧ ((ȳ → y)→ y).
So (ȳ → y) → y ∈ D and since ¯̄y ≤ ȳ → y, we obtain (ȳ → y) → y ≤ ¯̄y → y. Thus,
¯̄y → y ∈ D implying [y]D =

[
¯̄y
]
D
. Therefore,

[x→ y]D = [x]D → [y]D
= [x]D →

[
¯̄y
]
D

= [ȳ]D → [x̄]D by Lemma 1.3.1(10)
= [ȳ → x̄]D .

It follows that (ȳ → x̄)→ (x→ y) ∈ D, which implies by hypothesis that x→ y ∈ D.

Lemma 3.2.6. Let D be a ds of L, L f−→ L′ be a BL-morphism. Then for all x ∈ L,
f([x]D) ⊆ [f(x)]f(D). The equality holds when x ∈ D.

Proof. Let y ∈ f([x]D). Then there exists z ∈ L such that

y = f(z) and (z → x) ∧ (x→ z) ∈ D.

We have

(y → f(x)) ∧ (f(x)→ y) = f(z → x) ∧ f(x→ z) = f((z → x) ∧ (x→ z)) ∈ f(D).

Hence y ∈ [f(x)]f(D). For the converse, suppose x ∈ D. Let y ∈ [f(x)]f(D). Then

(y → f(x)) ∧ (f(x)→ y) ∈ f(D).

Since f(D) is a ds of L, y ∈ f(D), that is, there exists z ∈ D such that y = f(z). Since
x and z are in D, (z → x) ∧ (x→ z) ∈ D. Thus z ∈ [x]D and so y ∈ f([x]D).

3.2.2 Topology on MV-coalgebras
Definition 3.2.7. Let (L, α) be an MV-coalgebra.
(i) Let τ be a topology on L. ((L, α), τ) is called a topological MV -coalgebra if (L, τ)

is a topological BL-algebra and α is continuous, i.e., for any x ∈ L and any subset V
of L containing α(x), there exists an open set U containing x such that α(U) ⊆ V .
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(ii) Let D be a ds of L. D is said α-stable if α(D) ⊆ D.

For any MV-coalgebra(L, α), the class of α-stable ds of L is not empty since it contains
{1}.

A poset (I,≤) is said to be upward directed provided that for any i, j ∈ I there exists
k ∈ I such that i ≤ k and j ≤ k. Let I be an upward directed set and D = {Di, i ∈ I} be
a family of dss of a BL-algebra L. Then D is called a system of dss or simply a system of
L if i ≤ j implies Dj ⊆ Di, for any i, j ∈ I. An inverse system in a category C, is a family
(Bi, ϕi,j)i,j∈I of objects indexed by an upward directed set I, with a family of morphisms
ϕi,j : Bi −→ Bj, for i ≤ j, satisfying the following conditions:
(1) ϕi,k = ϕj,k ◦ ϕi,j, for any k ≤ j ≤ i

(2) ϕi,i = idBi , for any i ∈ I.

Definition 3.2.8. Let (L, τ) be a topological space. The topology τ is called a linear
topology on L if there exists a base B for τ such that any element of B containing 1 is a
ds of L.

Theorem 3.2.9. Let (L, α) be an MV-coalgebra and D = {Di, i ∈ I} be a α-stable system
of L (i.e. each Di is a α-stable ds of L, i ∈ I). Then

(i) The set B = {[x]Di , x ∈ L, i ∈ I} is a base for a topology on L and τB, the topology
induced by B is linear.

(ii) ((L, α), τB) is a topological MV-coalgebra.

Proof. (i) For all x ∈ L, and i ∈ I, x ∈ [x]Di . So, L = ⋃
x∈L

{
[x]Di , i ∈ I

}
. Moreover

let x ∈ [y]Di ∩ [z]Dj , for some y, z ∈ L and i, j ∈ I. Since I is upward directed, there
exists k ∈ I such that i ≤ k and j ≤ k. So Dk ⊆ Di and Dk ⊆ Dj. Let t ∈ [x]Dk .
Then

(t→ x) ∧ (x→ t) ∈ Dk,

implying
(t→ x) ∧ (x→ t) ∈ Di

and
(t→ x) ∧ (x→ t) ∈ Dj.

So
t ∈ [x]Di = [y]Di

and
t ∈ [x]Dj = [z]Dj .

It follows that
t ∈ [y]Di ∩ [z]Dj

and then
[x]Dk ⊆ [x]Di ∩ {[y]Dj
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. Therefore, B is a base for a topology on L.
Moreover, let [x]Di ∈ B such that 1 ∈ [x]Di . Then [x]Di = [1]Di = Di. Thus [x]Di is
a filter of L and we can conclude that τB is linear.

(ii) Let first show that (L, τB) is a topological BL-algebra. Let x, y ∈ L and i ∈ I. Then
[x]Di × [y]Di is an open subset of L × L. Let z ∈ L such that (x, y) ∈ f−1

∗ ([z]Di),
i.e. x ∗ y ∈ [z]Di . For any (u, v) ∈ [x]Di × {[y]Di , since θDi is a congruence relation,
the compatibilty property leads to (x ∗ y;u ∗ v) ∈ θDi , which implies by transitivity
u ∗ v ∈ [z]Di , i.e. (u, v) ∈ f−1

∗ ([z]Di). So

[x]Di × {[y]Di ⊆ f−1
∗ ([z]Di).

It follows that f−1
∗ ([z]Di) is an open subset of L and so, f∗ is a continuous. The

continuity of f∝ is obtained in an analogue manner, for ∝∈ {∧,∨,→}. Therefore,
(L, τB) is a topological BL-algebra.
Now, we just have to show that α is continuous. Let x ∈ L, such that α(x) ∈ [z]Di ,
z ∈ L. For all y ∈ α([x]Di), we have by Lemma 3.2.6

(y → α(x)) ∧ (α(x)→ y) ∈ α(Di) ⊆ Di.

So y ∈ [α(x)]Di = [z]Di . Therefore, [x]Di is an open subset containing x such that
α([x]Di) ⊆ [z]Di . Thus α is continuous.

Theorem 3.2.10. Let (L, α) be an MV-coalgebra, D = {Di, i ∈ I} be a α-stable system
of Boolean filters of L. For each i ∈ I, define αi : L/Di −→ α(L/Di) by:

αi([x]Di) = [α(x)]Di

. Consider the family of maps (ϕij)i≤j∈I defined by ϕij : (L/Dj, αj) −→ (L/Di, αi) such
that for all x ∈ L,

ϕij([x]Dj) = [x]Di
. Then

(i) ((L/Di, αi)i∈I); (ϕij)i≤j∈I) is an inverse system in BLMV.

(ii) lim← ((L/Di, αi)i∈I); (ϕij)i≤j∈I) = ((X, ξ), φj), where

X =
{

([x]Di)i∈I ∈
∏
i∈I
L/Di | xi ∈ [xj]Dj , j < i

}
,

ξ : X −→MV (X)
([xi]Di)i∈I 7−→ ([α(xi)]Di)i∈I
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and

φj : X −→ L/Dj

([xi]Di)i∈I 7−→ [xj]Dj
.

Proof. (i) Let x ∈ L. By Remark 3.1.1, there exists z ∈ L such that α(x) = z̄. So for
all i ∈ I,

αi([x]Di) = [α(x)]Di = [z̄]Di = [z]Di .
Moreover, for x, x′ ∈ L such that [x]Di = [x′]Di . Then x→ x′ ∈ Di and x′ → x ∈ Di.
It follows that α(x → x′) ∈ Di and α(x′ → x) ∈ Di. So [α(x)]Di = [α(x′)]Di . Thus
each αi is well defined. Since α is a BL-morphism, it is easily checked that each αi
is a BL-morphism and therefore, for all i ∈ I, (L/Di, αi) is an MV-coalgebra.
Let i, j ∈ I such that i ≤ j. Since Fj ⊆ Fi, ϕij is well defined and is clearly a
BL-morphism. Moreover, let x ∈ L and let z ∈ L such that α(x) = z̄. Then for all
j ∈ I,

ϕij([z]Dj) = ϕij([z]Dj)
= ϕij([α(x)]Dj)
= [α(x)]Di
= αi([x]Di)
= αi ◦ ϕij([x]Dj).

Hence, by Proposition 3.1.2, ϕij is anMV-homomorphism. It is clear that ϕii = 1L/Di
and for i ≤ j ≤ k ∈ I,

ϕij ◦ ϕjk([x]Dk) = ϕjk([x]Dj) = [x]Dk = ϕik([x]Di).

Thus, ((L/Di, αi)i∈I); (ϕij)i≤j∈I) is an inverse system in BLMV.
(ii) It is easily checked that X is a BL-subalgebra of the product ∏

i∈I L/Di. Let show
that ξ is a BL-morphism. Let ([xi]Di)i∈I and ([yi]Di)i∈I in X such that [xi]Di = [yi]Di
for all i ∈ I. We have

ξ(([xi]Di)i∈I) = ([α(xi)]Di)i∈I
= (αi([xi]Di))i∈I
= (αi([yi]Di))i∈I
= ([α(yi)]Di)i∈I
= ξ(([yi]Di)i∈I).

Moreover, For all i ∈ I, there exists zi ∈ L such that α(xi) = zi. So

ξ(([xi]Di)i∈I) = ([zi]Di)i∈I = ([zi]Di)i∈I .
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Let j < i then xi ∈ [xj]Dj by definition of X. Hence,

(xi → xj) ∧ (xj → xi) ∈ Dj.

Since α is a BL-morphism, it follows from the stability of the dss that

(α(xi)→ α(xj)) ∧ (α(xj)→ α(xi)) ∈ Dj.

Thus,

(zi → zj) ∧ (zj → zi) ∈ Dj.

This leads by Lemma 3.2.5 to

(zi → zj) ∧ (zj → zi) ∈ Dj.

Hence zi ∈ [zj]Dj , implying that ([zi]Di)i∈I ∈ X. This means that ξ(([xi]Di)i∈I) ∈
MV (X) and so, ξ is well defined. Since α is a BL-morphism, ξ preserves the BL-
algebras operations and is therefore a BL-morphism.
It is easily checked that φj is a homomorphism of MV-coalgebras, for all j ∈ I. Let
i, j ∈ I, such that j < i. For any ([xi]Di)i∈I ∈ X, we have

ϕij ◦ φi([xi]Di)i∈I) = ϕij([α(xi)]Di)
= [xi]Dj
= [xj]Dj by definition of X
= φj(([xi]Di)i∈I)

Thus, ϕij ◦ φi = φj.
It remains to show the universal property. Let (X ′, ξ′) be a MV-coalgebra, and
(X ′ λi−→ L/Di)i∈I a family of homomorphisms of MV-coalgebras such that ϕij ◦λi =
λj, for all i, j ∈ I such that j < i. Define

λ : X ′ −→ X

x 7−→ (λi(x))i∈I

For any x ∈ X ′, λi(x) = [yi]Di with yi ∈ L for all i ∈ I. For any j ∈ I such that j < i,
we have ϕij ◦λi(x) = λj(x). So ϕij([yi]Di) = [yj]Dj , which implies that [yi]Dj = [yj]Dj
and then yi ∈ [yj]Dj , i.e. (λi(x))i∈I ∈ X. This proves that λ is well defined. Since λi
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is a BL-morphism, then so is λ. We obviously have φi ◦ λ = λi for all i ∈ I.

X ′

ξ′

��

λ

))
λi

// L/Di

αi

��

X
φi

oo

ξ

��
MV (X ′)

MV(λ)

55MV(λi)
//MV(L/Di) MV (X)

MV(φi)
oo

Let x ∈ X ′. We have:

MV(λ) ◦ ξ′(x) = λ ◦ ξ′(x)
= (λi(ξ′(x)))i∈I
= (αi ◦ λi(x))i∈I by commutativity of the first square
= (αi ◦ φi ◦ λ(x))i∈I
= (MV(φi) ◦ ξ ◦ λ(x))i∈I by commutativity of the second square
= (φi ◦ ξ ◦ λ(x))i∈I
= ξ ◦ λ(x).

Thus, λ is an MV-homomorphism.
Let λ′ : (X ′, ξ′) −→ (X, ξ) be another MV-homomorphism such that φi ◦λ′ = λi, for
all i ∈ I. Then φi ◦ λ′(x) = φi ◦ λ(x) for all x ∈ X ′. Suppose that λ(x) = ([yk]Dk)k∈I
and λ′(x) = ([y′k]Dk)k∈I . Then

φi(([yk]Dk)k∈I) = φi(([y′k]Dk)k∈I).

So [yi]Di = [y′i]Di for all i ∈ I. Therefore, λ = λ′.

Let ((L, α), τ) denote a topological MV -coalgebra where τ is the topology induced by
a system {Di, i ∈ I} of α-stable dss. Let C be the set of all Cauchy sequences on (L, τ)
and C1 the set of all sequences which converges to 1. It has been shown in Zahiri (2016)
[[56], Theorem 4.7 and proposition 4.8] that C is a BL-algebra and C1 is a filter of C.
Thus the quotient C/C1 is a BL-algebra called the completion of L with respect to the
topology induced by the system of dss. In what follows we equip the completion with a
structure morphism and show that the coalgebra obtained is isomorphic to the inverse
limit of the system defined above.

With the notations of Theorem 3.2.10, it has been shown in Zahiri (2016) [[56], The-
orem 4.11 ] that the following result holds:
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Lemma 3.2.11. Let f : X −→ C/C1 defined by: f(([(xi]Di)i) = [(xi)i]C1
. Then f is an

isomorphism of BL-algebras.

Theorem 3.2.12. Let (L, α) be an MV-coalgebra. With the notation of Theorem 3.2.10,
(X, ξ) is isomorphic to (C/C1, γ), where γ([(xi)i]C1

) = [(α(xi))i]C1
.

Proof. Since α is continuous, (α(xi))i is a Cauchy sequence. Now let (xi)i and (yi)i be
two Cauchy sequences such that [(xi)i]C1

= [(yi)i]C1
. Then ((xi)i → (yi)i) ∧ ((xi)i →

(yi)i) ∈ C1. By continuity of α and the fact that α is a BL-morphism, we have (α(xi))i →
(α(yi))i) ∧ (α(xi))i → (α(yi))i) ∈ C1. Thus γ is well defined. With similar arguments,
one proves that γ is a BL-morphism and thus, (C/C1, γ) is an MV-coalgebra.

Consider f : X −→ C/C1 defined by: f(([(xi]Di)i) = [(xi)i]C1
. It follows from Lemma

3.2.11 that f is an isomorphism of BL-algebras. Moreover, MV (f) ◦ ξ(([xi]Di)i∈I) =
f(([α(xi)]Di)i∈I) = [(α(xi))i]C1

= γ◦f(([xi]Di)i∈I). So f is a homomorphism of coalgebras.
Therefore, (X, ξ) and (C/C1, γ) are isomorphic.

Definition 3.2.13. A concrete category (C, U) over an (E,M)-category X is said to be
M-topological provided that every structured source in M has a unique initial lift. If for
example, M = Mono- Sources, the term monotopological is used.

The following properties of M-topological categories can be found in [ Herrlich (1974)
[30], Corollary 5.2, and Corollary 6.4, ]:

Lemma 3.2.14. Let C be a M-topological category over X . If X is (co)complete, then so
is C.

The following result can be found in Kianpi (2020) [36] and will be useful in the sequel.

Lemma 3.2.15. If C is an (Epi, StrongMono)-category and F preserves strong mono-
sources, then CF is an (Epi, StrongMono)-category with (Epi, StrongMono)- factoriza-
tions created by the forgetful functor UF .

It is well known (see, e.g. Brummer (1984) [13] ) that for any topological functor
V : C −→ SET , and any forgetful functor U : X −→ SET , Where X is a category of
universal algebra, the category CX with objects (A,X), (A ∈ ob(C), X ∈ ob(X )) such
that VA = UX is topological over X . This leads to the following result:

Lemma 3.2.16. Let T opBL be the category of topological BL-algebras with continuous
BL-morphisms. Then T opBL is topological over BL.

The question rising up from the above observation is: does the result holds if X is a
category of coalgebras over universal algebras? The following theorem is a partial answer,
in the setting of MV-coalgebras.

Theorem 3.2.17. The category T opBLMV of topological MV-coalgebras and continuous
MV-homomorphisms is strong mono-topological over BLMV.
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Proof. Since BL is an (Epi, StrongMono)-category and MV is limit-preserving, it follows
from Lemma 3.2.15 that BLMV is an (Epi, StrongMono)-category.

Let T : T opBLMV −→ BLMV and U : T opBL −→ BL be the standard forgetful
functors. We have to show that T is strong monotopological.

Let S = ((L, α) fi−→ T((Li, αi), τi))I be a T-structured strong monosource in BLMV.
Then (L fi−→ U(Li, τi))I is an U-structured source in BL. So, by Lemma 3.2.16 it admits a
unique U-initial lift (L, α) f̄i−→ (Li, τi))I . Let show that S′ = ((L, α), τ) f̄i−→ ((Li, αi), τi))I
is a T-initial lift of S. It is clear that S′ = TS.

Let x ∈ MV (L), and V a subset of MV (L) such that α(x) ∈ V . Since the following
diagram commutes, for all i ∈ I,

L
fi //

α
��

Li

αi
��

MV (L)
MV(fi)

//MV (Li)

and by the fact that αi and fi are continuous, we obtain that MV(fi) ◦ α is a continuous
function and MV(fi) ◦α(x) ∈ fi(V ) for all i ∈ I. Hence, there exists an open subset U of
L containing x such that

MV(fi) ◦ α(U) ⊆MV(fi)(V ) for all i ∈ I,

i.e. fi ◦ α(U) ⊆ fi(V ) for all i ∈ I. Since S is a strong monosource, we obtain α(U) ⊆ V .
Thus, α is continuous and therefore, ((L, α), τ) is a topological MV-coalgebra.

Let show now that S′ is T-initial. Let S′′ = ((L′, α′), τ ′) gi−→ ((Li, αi), τi))I . Let
(L′, α′) h−→ (L, α) be a MV-homomorphism such that TS′′ = TS′ ◦ h.Then h is a BL-
morphism from U(L′, τ ′) to U(L, τ) such that

U((L′, τ ′) gi−→ (Li, τi))I = U((L, τ) f̄i−→ (Li, τi))I ◦ h.

Since ((L, τ) f̄i−→ (Li, τi))I is initial, there exists h̄ (L′, τ ′) h̄−→ (L, τ) such that

((L′, τ ′) gi−→ (Li, τi))I = ((L, τ) f̄i−→ (Li, τi))I ◦ h̄

and h = Uh̄. h̄ is a MV-homomorphism since so is h; moreover, h̄ is continuous by
construction. Thus, h̄ is a T opBLMV-morphism. It is easily checked that S′ = S ◦ h̄ and
T h̄ = h. Therefore, S′ is a T -initial source. The unicity of S′ follows from the faithfulness
of T.

Since BLMV is complete and cocomplete, the above Theorem, combined with Lemma
3.2.14 leads to the following result:

Corollary 3.2.18. T opBLMV is complete and cocomplete.
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3.2 Topological MV-coalgebras

3.2.3 Conclusion
In this chapter, we proved that the category of MV-coalgebras is complete and cocom-
plete, meaning that a final MV-coalgebra exists. We also characterize homomorphisms,
subcoalgebras and bisimulations in the category BLMV. We established a coalgebraic lift
of the coreflectivity ofMV using an adequat natural transformation. Moreover, we con-
structed an inverse system in the category ofMV-coalgebras and show that the category of
topological MV-coalgebras is strong-monotopological over the category of MV-coalgebras.

55



Chapter 4

FRAME REPRESENTATION OF ∏-
COALGEBRAS

One of the main interests of the study of coalgebras is the development of coalgebraic
logical foundations over base categories, as a way of reasoning in a quantitive way about
transition systems. There is a strong link between coalgebras and modal logic (see [39]
or [48]). We investigate this link in the framework of BL-algebras. We introduce local
BL-frames based on local BL-algebras, and show that the category of local BL-frames is
isomorphic to the category of ∏-coalgebras, where ∏ is the endofunctor on the category of
local BL-algebras and BL-morphisms which assigns to each local BL-algebra its quotient
by its unique maximal filter.

In this chapter, the category of coalgebras of a functor F will be denoted by Coalg(F).

4.1 Some facts about local BL-algebras
In this section, we present some properties of local BL-algebras which are BL-algebras
with a unique maximal filter. We define a non trivial endofunctor of the category of local
BL-algebras and investigate the corresponding coalgebras.

4.1.1 Basic properties
Theorem 4.1.1 ( Turunen (2001) [50], Theorem 5). Let L be a BL-algebra. Define

D(L) = {x ∈ L/xn 6= 0 for all integer n} .

The following are equivalent:
(i) D(L) is a deductive system of L;
(ii) L is local;
(iii) D(L) is the unique maximal deductive system of L.

Example 4.1.2. (i) D(G3) = {x, 1}, D(M3) = D(G2) = {1} are deductive systems.
So by the above theorem, G3, M3 and G2 are local BL-algebras;
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4.1 Some facts about local BL-algebras

(ii) Consider A = ([0; 1] ,∧,∨, ∗,→, 0, 1) the BL-algebra such that for all x, y ∈ L ,
x ∗ y = x · y and x → y = 1 if x ≤ y and x → y = y

x
else. then D(A) =]0; 1] is a

deductive system of A. Thus A is a local BL-algebra.
(iii) G1 is not local.

Proposition 4.1.3 ( Di Nola (2003) [18], Proposition 1.10). Let f : L −→ L′ be a
BL-morphism. If M ′ is a maximal filter of L′, then f−1(M ′) is a maximal filter of L.

Lemma 4.1.4 (Di Nola (2003) [18], Lemma 1.9). Let L be a nontrivial BL-algebra and
M a proper deductive system of L. The following are equivalent:
(i) M is maximal;
(ii) for any x ∈ L, x /∈M ⇒ (xn)− ∈M for some integer n.

Lemma 4.1.5. Let f be a BL-morphism between two local BL-algebras L and L′ whose
maximal filters are M and M ′ respectively. If f is surjective, then f(M) = M ′.

Proof. Let f be a surjective morphism between two local BL-algebras L and L′. By
Proposition 4.1.3, f−1(M ′) = M . So, f(f−1(M ′)) = f(M). Since f is surjective we
obtain M ′ = f(M).

Lemma 4.1.6. Let L be a BL-algebra and F be a filter of L. Then θF is the unique
congruence on L induced by F .

Proof. Let θ be a congruence on L induced by F . We have to show that θF = θ. Let
(x, y) ∈ θF . Then x→ y ∈ [1]θ and y → x ∈ [1]θ. So by compatibility,

(x ∗ (x→ y), x ∗ 1) ∈ θ and (y ∗ (y → x), y ∗ 1) ∈ θ.

Hence by BL4 we obtain (x ∧ y, x) ∈ θ and (y ∧ x, y) ∈ θ. Since θ is symetric and ∧
commutative, it follows that (x, x ∧ y) ∈ θ and (x ∧ y, y) ∈ θ. By transitivity, we have
(x, y) ∈ θ. Conversely, Let (x, y) ∈ θ. Then (x→ y, y → y) ∈ θ and (y → x, y → y) ∈ θ.
So (x → y, 1) ∈ θ and (y → x, 1) ∈ θ. It follows that x → y ∈ F and y → x ∈ F and
therefore, (x, y) ∈ θF .

In the sequel we will denote L/θF by L/F and [x]θF by [x]F .
Let M be the maximal deductive system of a local BL-algebra L.Then by [Di Nola

(2003) [18], Proposition 1.13], since M is the unique maximal deductive system which
contains M , L/M is a local BL-algebra. Therefore we have:

Lemma 4.1.7. Let M be the maximal deductive system of a local BL-algebra L. Then
L/M is a local BL-algebra and D(L/M) = {M}.

Proof. We have Mn = [1]nM = [1]M 6= [0]M , which means that M ∈ D(L/M). Let [x]M ∈
D(L/M). Then [xn]M = [x]nM 6= [0]M , for all integer n. It follows that xn → 0 /∈ M , for
all integer n. Thus by Lemma 4.1.4, x ∈M ; That is, [x]M = M .
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Chapter 4 : FRAME REPRESENTATION OF ∏-COALGEBRAS

Local BL-algebras and BL-morphisms form a category which will be denoted by lBL.

Proposition 4.1.8. lBL is an isomorphism-closed subcategory of BL.

Proof. Let f : L −→ G be an isomorphism between a BL-algebra L and a local BL-algebra
G, whose inverse is g. Then by Proposition 4.1.3, f−1(M ′) is a maximal filter of L, where
M ′ is the unique maximal filter of G. Moreover, let H be another maximal filter of L.
Then g−1(H) = M ′ and so H = g(M ′) = f−1(M ′). Thus L is a local BL-algebra.

Remark 4.1.9. Let L and L′ be two local BL-algebras, M and M ′ their respectives
maximal filters. Then M × L′ and L×M ′ are maximal filters of L× L′. Thus, L× L′ is
not a local BL-algebra. It follows that lBL has no (co)products and therefore lBL is not
complete, nor cocomplete.

4.1.2 ∏-coalgebras
Proposition 4.1.10. Consider the correspondance ∏ such that ∏(L) = L/M for any
local BL-algebra L whose unique maximal filter is M and ∏(f) : L/M −→ L/M ′ such
that ∏

(f)([x]M) = [f(x)]M ′ .

Then ∏ is a covariant endofunctor on lBL.

Proof. By Lemma 4.1.7 and the fact that θM is a congruence, ∏ is well defined. Moreover,
let L f−→ L′ and L′ g−→ L′′ be two BL-morphisms. Let x ∈ L. We have∏

(g) ◦
∏

(f)([x]M) =
∏

(g)([f(x)]M ′) = [g ◦ f(x)]M ′ =
∏

(g ◦ f)([x]M)

and also ∏
(idL)([x]M) = [x]M = id∏

(L)([x]M).

Let Coalg(∏) be the category of ∏-coalgebras and ∏-homomorphisms. Let (L, α) be
a ∏-coalgebra. For any x, y in a BL-algebra L, we denote x α→ y by α(x) = [y]M . Then
one can observe that ∏-coalgebras mimic non deterministic transition systems, contrary
to MV-coalgebras.

Let (L, α) and (L′, α′) be two ∏-coalgebras. A BL-morphism f : L −→ L′ weakly
reflects transition systems if for all x ∈ L and y ∈ L′, f(x) α′

→ y implies x α→ t, with
f(t) ∈ [y]M , t ∈ L.

Proposition 4.1.11. Let (L, α) and (L′, α′) be two ∏-coalgebras, and f : L −→ L′ a
BL-morphism. The following are equivalent:
(i) f is a ∏-homomorphism;
(ii) for all x ∈ L, α′(f(x)) = [f(z)]M ′), whenever α(x) = [z]M ;

58



4.1 Some facts about local BL-algebras

(iii) f preserves and weakly reflects transitions.

Proof. (i) ⇔ (ii) Straightforward.
(ii) ⇒ (iii) Suppose for all x ∈ L, α′(f(x)) = [f(z)]M ′), whenever α(x) = [z]M . Let

x, y ∈ L such that x α→ y. then α(x) = [y]M . So by hypothesis, α′(f(x)) = [f(y)]M ′)
implying f(x) α′

→ f(y). So f preserves transitions. Moreover, Let x ∈ L and y ∈ L′ such
that f(x) α′

→ y. Then α′(f(x) = [y]M . Let z ∈ L such that α(x) = [z]M . Then x
α→ z

and by hypothesis, [f(z)]M ′ = α′(f(x)) = [y]M , so f(z) ∈ [y]M . Thus, f weakly preserves
transitions.

(iii) ⇒ (ii) Let x ∈ L, such that α(x) = [z]M . Then x
α→ z, which implies by

hypothesis that f(x) α′
→ f(z), i.e. α′(f(x)) = [f(z)]M ′).

Proposition 4.1.12. Let (L′, α′) be a ∏-coalgebra. A local BL-subalgebra L of L′ is a∏-subcoalgebra of (L′, α′) iff there exists a strong mono L m−→ L′, such that for all x ∈ L,
there exists z ∈ L such that for all x ∈ L, there exists z ∈ L such that m(x) α′

→ m(z).

Proof. Suppose that (L, α) is a ∏-subcoalgebra of (L′, α′), andm the corresponding strong
mono. Let x ∈ L. Since m is a ∏-homomorphism, it follows from Proposition 4.1.11 that
α′ ◦m(x) = [m(z)]M ′ , where α(x) = [z]M . So m(x) α′

→ m(z), z ∈ L.
Conversely, assume that there is a strong mono m : L −→ L′ such that for all x ∈ L,

there exists z ∈ L such that m(x) α′
→ m(z). Define α : L −→ ∏(L) by α(x) = [z]M , where

m(x) α′
→ m(z). Let x, x′ ∈ L such that α(x) = [z]M and α(x′) = [z′]M . If x = x′, then

α′ ◦ m(x) = α′ ◦ m(x′). So by Proposition 4.1.11 (ii), we obtain [m(z)]M ′ = [m(z′)]M ′ .
Hence

(m(z)→ m(z′)) ∧ (m(z′)→ m(z)) ∈M ′.

Thus
(z → z′) ∧ (z′ → z) ∈ m−1(M ′).

It follows from Proposition 4.1.3 that (z → z′) ∧ (z′ → z) ∈M . So [z]M = [z′]M . Thus α
is well defined. Moreover, since α′ and m are BL-morphisms, we have

α′ ◦m(0) = α′(0) = [1]M = [m(1)]M .

Hence m(0) α′
→ m(1) implying α′(0) = [1]M . On another hand, let x, y ∈ L such that

α(x ∝ y) = [t]M , α(x) = [u]M and α(y) = [v]M where ∝∈ {∗,→}. Then we have
m(x ∝ y) α′

→ m(t) i.e. α′ ◦m(x ∝ y) = [m(t)]M ′ . Since α′ ◦m is a BL-morphism, we have

α′ ◦m(x) ∝ α′ ◦m(y) = [m(t)]M ′ ,

i.e.
[m(u)]M ′ ∝ [m(v)]M ′ = [m(t)]M ′ .
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Chapter 4 : FRAME REPRESENTATION OF ∏-COALGEBRAS

Thus m([u]M ∝ [v]M) = m([t]M). Since m is a mono, [u]M ∝ [v]M = [t]M and so
α(x ∝ y) = α(x) ∝ α(y). Therefore, α is a BL-morphism. It follows that (L, α) is a∏-subcoalgebra of (L′, α′).

It follows from Remark 4.1.9 that lBL has no products and therefore bisimulations
cannot be defined on ∏-coalgebras in the sense of Definition 3.1.7. We will use in this case
a more general definition due to Aczel and Mendler (1989) and adapted to our setting:

Definition 4.1.13. A ∏-bisimulation between two ∏-coalgebras (L, α) and (L′, α′) is
a mono-source (R,R p−→ L,R

q−→)L′ in lBL such that there exists a BL-morphism
ρ : R −→ ∏

R making p and q homomorphisms of coalgebras.

In what follows we give a characterization of ∏-bisimulations by the means of the
arrows notation:

Proposition 4.1.14. Let (L, α) and (L′, α′) be two ∏-coalgebras. Let R be a local
BL-algebra with maximal ds N . A mono-source (R,R p−→ L,R

q−→ L′) in lBL is a
bisimulation iff there exists a BL-morphism ρ : R −→ ∏

R such that for all x ∈ R,
p(x) α→ p(z) and q(x) β→ q(z), where ρ(x) = [z]N , z ∈ R.

Proof. Suppose that (R,R p−→ L,R
q−→)L′ is a ∏-bisimulation between two ∏-coalgebras

(L, α) and (L′, α′). Let x ∈ R. Since ρ(x) ∈ ∏
R there exists z ∈ R such that ρ(x) = [z]N .

Since p and q are homomorphisms of coalgebras, we have α ◦ p(x) = ∏
p ◦ ρ(x) and

β ◦ q(x) = ∏
q ◦ ρ(x) i.e. α ◦ p(x) = ∏

p([z]N) and β ◦ q(x) = ∏
q([z]N). Hence α ◦ p(x) =

[p(z)]M and α ◦ q(x) = [q(z)]M ′ which means that p(x) α→ p(z) and q(x) β→ q(z). The
converse is straightforward.

Since limits and colimits in the categories of coalgebras are carried by limits and
colimits in the base categories, we obtain the following result:

Proposition 4.1.15. Coalg(∏) is not complete, nor cocomplete.

4.2 Local BL-frames as ∏-coalgebras
4.2.1 Local BL-frames and models
Definition 4.2.1. (1) A local BL-frame is a structure (L, θM) where L is a local BL-

algebra and M is the maximal filter of L;
(2) A local BL-model is a structure (L, θM , ν) where (L, θM) is a local BL-frame and

ν : Prop −→ ∏(L) is a compatible valuation, that is for all x, y ∈ L, we have
(i) ν−1({[x]M ∗ [y]M}) = ν−1({[x]M}) ∩ ν−1({[y]M});
(ii) ν−1({[x]M → [y]M}) = ν−1({[x]M})C ∪ ν−1({[y]M});
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4.2 Local BL-frames as ∏-coalgebras

(iii) ν−1({[0]M}) = ∅.

local BL-frames (models) and BL-morphisms form a category which will be denoted
by Fr(lBL) (Mod(lBL)).

Remark 4.2.2. It is well known that the normal modal logic S5 is characterized by the
class of reflexive, symmetric, and transitive Kripke frames, that is, the frames for S5 are
exactly that Kripke frames in which the accessibility relation is an equivalence relation.
Therefore S5 is sound and complete in the class of local BL-frames.

The validity of modal formulas at a world x in a local BL-model (L, θM , ν) is defined
recursively as:

M, x |= p iff x ∈ ν(p)
M, x |= ¬ϕ iff notM, x |= ϕ

M, x |= ϕ ∧ ψ iffM, x |= ϕ andM, x |= ψ

M, x |= ϕ ∨ ψ iffM, x |= ϕ orM, x |= ψ

M, x |= ϕ→ ψ iff notM, x |= ϕ orM, x |= ψ

M, x |= �ϕ iff for every y ∈ [x]M ,M, y |= ϕ

M, x |= ♦ϕ iff there exists y ∈ [x]M ,M, y |= ϕ

The truth set of a formula ϕ in a modelM is the set [[ϕ]]M = {x ∈ L/M, x |= ϕ}.
For any subset K of L, we define the operators / and �̃ by:

/K = L \K and �̃K = {x ∈ L/ [x]M ⊆ K}.

By checking the semantics clause above, we have the following result:

Lemma 4.2.3. For any lBL-modelM = (L, θM , ν),

(i) [[p]]M = ν(p);
(ii) [[¬ϕ]]M = / [[ϕ]]M;
(iii) [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M ;
(iv) [[�ϕ]]M = �̃ [[ϕ]]M.

The following result shows how to construct modal algebras with any lBL-model
M = (L, θM , ν):

Theorem 4.2.4. For any lBL-modelM = (L, θM , ν), define the set

τ(M) = {[[ϕ]]M , ϕ ∈ Prop}.

Then the structure (τ(M),∩,∪, /, ∅, L, �̃) is a modal algebra.
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Chapter 4 : FRAME REPRESENTATION OF ∏-COALGEBRAS

Proof. Using Lemma 4.2.3, it is easily checked that (τ(M),∩,∪, /, ∅, L) is a Boolean
algebra and that �̃L = L. We only show that �̃ preserves intersections. Let ϕ, ψ ∈ Prop.
We have

�̃([[ϕ]]M ∩ [[ψ]]M) = {x ∈ L/ [x]M ⊆ [[ϕ]]M ∩ [[ψ]]M} ⊆ �̃ [[ϕ]]M ∩ �̃ [[ψ]]M .

Conversely, let x ∈ �̃ [[ϕ]]M ∩ �̃ [[ψ]]M. Then [x]M ⊆ [[ϕ]]M and [x]M ⊆ [[ψ]]M. Thus
for all y ∈ [x]M , we haveM, y |= ϕ andM, y |= ψ. SoM, y |= ϕ ∧ ψ. By Lemma 4.2.3
we obtain y ∈ [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M. It follows that [x]M ⊆ [[ϕ]]M ∩ [[ψ]]M and so
x ∈ �̃([[ϕ]]M ∩ [[ψ]]M).

For each BL-algebra L, let L denote the carrier.

4.2.2 Categorical relations between local BL-frames and coalge-
bras over local BL-algebras

In what follows, we give a link between local BL-frames and well known Kripke frames:
Proposition 4.2.5. Let Fr(lBL)∗ be the category of local BL-frames with surjective
morphisms. Then the correspondance U : Fr(lBL)∗ −→ KFr which sends every (L, θM)
to (L, θM)) and acts on morphisms as identity is a faithful functor.

Proof. For any local BL-frame (L, θM), U((L, θM)) = (L, θM) is clearly a Kripke frame.
Let f : (L, θM) −→ (L′, θM ′) be a surjective morphism. In order to show that U is well
defined, we have to show that f is a p-morphism. Let x ∈ L and let y ∈ f([x]M). Then
y = f(z) with z ∈ [x]M . So

(z → x) ∧ (x→ z) ∈M.

Thus
f((z → x) ∧ (x→ z)) ∈ f(M).

It follows from Lemma 4.1.5 that

(y → f(x)) ∧ (f(x)→ y) ∈M ′.

So y ∈ [f(x)]M ′ and we have f([x]M) ⊆ [f(x)]M ′ . Moreover, let y ∈ [f(x)]M ′ . Since f is
surjective, there exists z ∈ L such that y = f(z) and we have

(f(z)→ f(x)) ∧ (f(x)→ f(z)) ∈M ′,

that is
(f((z → x) ∧ (x→ z)) ∈M ′

so that
(z → x) ∧ (x→ z) ∈ f−1(M ′) = M.

Thus z ∈ [x]M . Therefore y ∈ f([x]M). Hence f([x]M) = [f(x)]M . So U is well defined.
The functoriality and the faithfulness of U are straightforward.
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We present now the result which allows to see local BL-frames as ∏-coalgebras:

Theorem 4.2.6. Fr(lBL) is isomorphic to Coalg(∏).

Proof. Consider the correspondance F which assigns to each local BL-frame (L, θM) the
pair (L,L αL−→ L/M) such that α(x) = [x]M for all x ∈ L and to each BL-morphism
f : L −→ L′, F(f) = f . Let (L, θM) be a local BL-frame. Since θM is a congruence, α is a
BL-morphism and so (L,L αL→ L/M) is a ∏-coalgebra. Moreover, let (L, θM) f−→ (L′, θM ′)
be a BL-morphism. For all x ∈ L,

α′ ◦ f(x) = [f(x)]M ′ =
∏

(f)([x]M) =
∏

(f) ◦ α(x).

So f is a ∏-homomorphism between (L,L αL−→ L/M) and (L′, L′ αL−→ L′/M ′) . Hence, F
is well defined. By spelling out the definitions, one shows that F preserves composition
and identity. Thus F : Fr(lBL) −→ Coalg(∏) is a covariant functor.

Moreover The correspondance G which assigns to each ∏-coalgebra (L,L αL−→ L/M)
the local BL-frame (L, θM) and which acts as identity on homomorphisms is functorial.
Finally, Lemma 3.7 allows to prove that the two functors above statisfy the identities
F ◦G = idCoalg(

∏
) and G ◦ F = idFr(lBL). So Fr(lBL) and Coalg(∏) are isomorphic.

It follows from Lemma 4.1.6 that the categories Fr(lBL) and lBL are isomorphic.
Therefore, the above theorem yields to the following consequence:

Corollary 4.2.7. lBL and Coalg(∏) are isomorphic.

4.2.3 conclusion
After the study of a deterministic transition system in the previous chapter, we introduced∏-coalgebras over local BL-algebras, which are non deterministic ones. In spite the fact
that the category of local BL-algebras is not complete, nor cocomplete, it offers coalgebraic
semantics for the normal modal logic S5.
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Concluding remarks and further
research

In this thesis, we have showed that the category of BL-algebras is relevant for the study
of coalgebras. We first study BL-algebras in a categorical perspective, showed that it
is essentially algebraic over the category of sets and mapping. We also show that the
category of MV-algebras is a coreflective subcategory of BL.

We introduced in the sequel the MV-functor, which is a limit-preserving functor
and a coreflector on the category of BL-algebras, and prove that the category of the
corresponding MV-coalgebras is complete and cocomplete, so the final MV-coalgebra
exists. Final coalgebras are of special interest because they have number of pleasant
properties as for instance, they allow inductive proofs which is a very good feature for
proof theorists. We also established the relation topology and show that the category of
topological MV-coalgebras is strong-monotopological over the category of MV-coalgebras,
generalising the result of Brummer on categories of universal algebras. Moreover, we lift
the coreflectivity of the category of MV-algebras in BL shown in the previous chapter to
a coalgebraic one using the identity functor on the category of MV-algebras.

We ended this work by introducing the fucntor ∏ on local BL-algebras and show that∏-coalgebras are suitable coalgebraic semantics for the normal modal logic S5.
We plan in a future work, to investigate how coinduction could be define on coalgebras

over BL-algebras in order to obtain some applications in automata theory.
In another hand, it will be interessant to find a cartesian closed category of logical

algebras which allow a deeper investigation of the notion of the notion of bisimulation, in
order to present some new coalgebraic semantics of certain fuzzy modal logics.

Another interesting research line is the study of a dual notion of filter (of a BL-
algebras) in coalgebras over BL-algebras, for an arbitrary endofunctor and observe their
impact on the corresponding coalgebraic logics.
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Abstract
Weestablish some concrete properties of the category ofBL-algebras and use them to introduceMV-coalgebras, the coalgebras
of the functor which assigns each BL-algebra to its MV-centre. Homomorphisms of MV-coalgebras, sub-MV-coalgebras
and bisimulations are characterized, and we show that the final MV-coalgebra exists. Moreover, we applied this notion in
topology and constructed an inverse system in the category of MV-coalgebras.
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1 Introduction

Coalgebras were introduced by Aczel and Mendler (1989)
to model various types of transition system. They offer a
rich field of mathematics since they arise as Kripke models
for modal logic, as automata and objects for object oriented
programming languages in computer sciences, etc. This the-
ory is usually investigated in a set-based context. However,
research on structured sets is becoming an important research
line. For example, Doberkat (2009) and Kupke et al. (2004)
studied coalgebras onmeasurable spaces, Bezhanishvili et al.
(2010), Hofmann et al. (2019) studied coalgebras over Stone
spaces, and Haveshki and Eslami (2008) investigated coal-
gebras over arbitrary topological spaces. The aim of these
generalizations is mainly to provide coalgebraic semantics
to some modal logics.

This paper introduces coalgebras over BL-algebras. BL-
algebras are the Lindenbaum–Tarski algebras of the basic
logic (BL for short), the logic arising from the continuous
triangular norms familiar in the frameworkof fuzzy set theory
(Cignoli et al. 2000). These algebras have very important
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algebraic properties (see, for example, Gumm 1999; Hughes
2001; Panangaden 2009).

In particular, we study coalgebras whose underlying func-
tor is the MV-functor which is the correspondence which
assigns to every BL-algebra its MV-centre. We characterize
homomorphisms, subcoalgebras and bisimulations on MV-
coalgebras and show that the final MV-coalgebra exists.
We also apply this notion to topology and introduce topo-
logical MV-coalgebras. The paper is organized as follows:
in Sect. 2, we recall some definitions and facts about BL-
algebras and coalgebras that we use in the sequel. Section 3
is devoted to the study of the category of BL-algebras as
a concrete category over the category of sets and map-
pings: we show that the forgetful functor is transportable,
essentially algebraic, but not topological. This essential
algebraicity is used in the next section to show that this
category has a good factorization system enough to define
bisimulation on sub-MV-coalgebras in an easy manner. In
Sect. 4,we introduceMV-coalgebras and characterize homo-
morphisms, sub-MV-coalgebras and bisimulations in the
category of MV-coalgebras and show that the category of
MV-coalgebras is complete and cocomplete. The last section
is devoted to topologicalMV-coalgebras: we use a system of
filters compatible with the coalgebraic structure to construct
a topology on MV-coalgebras and an inverse system in the
category of MV-coalgebras.
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2 Preliminaries

We recall some definitions and basic results; some of them
can be found in Adámek et al. (1990), Gumm (1999) and
Hughes (2001).

Analgebraic structure (L,∧,∨, ∗,→, 0, 1)of type (2, 2, 2,
2, 0, 0) is called aBL-algebra if it satisfies the following con-
ditions:

(BL1) (L,∧,∨, 0, 1) is a bounded lattice;
(BL2) (L, ∗, 1) is a commutative monoid;
(BL3) ∗ is a left adjoint of →, that is x ∗ z ≤ y if and only

if z ≤ x → y;
(BL4) x ∧ y = x ∗ (x → y);
(BL5) (x → y) ∨ (y → x) = 1.

A BL-algebra L is called a Gödel algebra if x2 = x ∗ x = x
for every x ∈ L . L is called an MV-algebra if ¯̄x = x for all
x ∈ L ,where x̄ = x → 0.The subset MV (L) = {x̄ | x ∈ L}
is called the MV-centre of L . It is the greatest MV -algebra
contained in L .

The following properties holds in any BL-algebra L:

Lemma 2.1 For all x, y, z ∈ L

(1) x ≤ y if and only if x → y = 1;
(2) x ∗ y ≤ x ∧ y;
(3) x → (y → z) = y → (x → z);
(4) If x ≤ y then y → z ≤ x → z and z → x ≤ z → y;
(5) x ≤ y → (x ∗ y); x ∗ (x → y) ≤ y;
(6) x ∗ x̄ = 0;
(7) (x ∗ y) → z = x → (y → z);
(8) 1 → x = x; x → 1 = 1; x → x = 1; x ≤ y → x;

x ≤ x; x = x.

A filter of L is a non-empty subset F of L such that for
all x, y ∈ L ,

(F1) x, y ∈ F implies x ∗ y ∈ F ;
(F2) x ∈ F and x ≤ y imply y ∈ F .

A subset D of a BL-algebra L is called a deductive system
(ds for short) if

(DS1) 1 ∈ D;
(DS2) x ∈ D and x → y ∈ D imply y ∈ D.

Deductive systems have been widely studied in BL-
algebras namely to characterize fragments of basic fuzzy
logic (see Hájek 1998; Panangaden 2009); it is obvious that
for a non-empty subset F of L , F is a deductive system if
and only if it is a filter.

Let L1 and L2 be two BL-algebras, a map f : L1 −→ L2

is called a homomorphism of BL-algebras (BL-morphism), if
f (0) = 0 and f (x ∝ y) = f (x) ∝ f (y) for all ∝∈ {∗,→}.
We obviously have f (1) = 1 for any BL-morphism f and
it is shown in Turunen (1999) that for any BL-morphism f ,
f (x ∝ y) = f (x) ∝ f (y) with ∝∈ {∨,∧} and if x ≤ y
then f (x) ≤ f (y).

The kernel of a BL-morphism f : L1 −→ L2 is the set
Ker( f ):= {x ∈ L1 | f (x) = 1}. Clearly, f is injective iff
Ker( f )= {1}. Ker( f ) is always a deductive system.

For any deductive system D of a BL-algebra L =
(L,∧,∨, ∗,→, 0, 1), we can define a binary relation θD on
L as follows: for all x, y ∈ L,

xθD y ⇐⇒ x → y, y → x ∈ D.

It iswell known that θD is a congruence relation on L (see e.g.
Hájek1998, Theorem 2.7) and since the class of BL-algebras
is a variety, the quotient structure L/θD is also a BL-algebra
for which for all x, y ∈ L , [x ∝ y]D := [x]D ∝ [y]D where
∝∈ {∧,∨, ∗,→}, and [x]D := [x]θD .

The one-element BL-algebra {0 = 1} is called the degen-
erate BL-algebra (Turunen 1999, Remark 8), we will denote
it byG1. The two-element non-degenerate BL-algebra {0, 1}
is called the trivial BL-algebra, we will denote it by G2.
These two algebras are examples of BL-algebras which are
both Gödel-algebras and MV-algebras. It is easily checked
that the chain {0, x, 1}, with the operations ∗ and → defined
by the following tables

∗ 0 x 1
0 0 0 0
x 0 x x
1 0 x 1

→ 0 x 1
0 1 1 1
x 0 1 1
1 0 x 1

is the unique Gödel-algebra with three elements and we will
denote it by G3. The chain {0, x, 1}, with the operations ∗
and → defined by the following tables:

∗ 0 x 1
0 0 0 0
x 0 0 x
1 0 x 1

→ 0 x 1
0 1 1 1
x x 1 1
1 0 x 1

is the unique MV-algebra with three elements and we will
denote it by M3.

Let BL(L, L ′) denote the set of BL-morphisms from L to
L ′. The following observations will be useful in the sequel:

Lemma 2.2 For G2,G3 and M3 defined as above we have:

(1) BL(G3,M3) is a singleton and BL(M3,G3) = ∅
(2) MV (G3) = G2
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Proof (i) Let G3
f−→ M3 be a map such that f (0) = 0,

f (1) = 1. If f (x) = 0, then f (x → 0) = f (0) = 0 = 1 =
f (x) → f (0) and for f (x) = x , f (x ∗ x) = f (x) = x =
0 = f (x) ∗ f (x). Hence, in the both cases f is not a BL-
morphism. For f (x) = 1, it easily checked that f preserves
∗ and → and so it is the unique BL-morphism from G3 to
M3. With similar computations, one proves that there is no
BL-morphism fromM3 to G3.

(i i) Straightforward. ��

The class of BL-algebras equipped with the class of BL-
morphisms form a category which will be denoted by BL.

Let F : C −→ C be a functor from the category C to itself.
A coalgebra of type F is a pair A = (A, α), consisting of a
set A and a map α : A −→ F A. A is called the carrier set
and α is called the structure map of A. If A = (A, α) and
B = (B, β) are F -coalgebras, then a map f : A −→ B is
called a homomorphism, if β ◦ f = F( f ) ◦ α.

A monomorphism m is called extremal if it satisfies
the following extremal condition: If m = f ◦ e, where
e is an epimorphism, then e must be an isomorphism.
Extremal epimorphisms are defined dually. A C-morphism
is called a regular mono if it is the equalizer of some pair of
C-morphisms. A C-morphism is called a regular monomor-
phism if it is the equalizer of some pair of C-morphisms. A
monomorphismm is called strong in a category C if for every
epimorphism e and every commutative square

e

f
d g

m

there exists a diagonal d such that g = m ◦d and f = d ◦e. It
is well known (see e.g. Adámek et al. 1990, Corollary 7.63)
that in any category, regular monomorphisms are extremal
and by Adámek et al. (1990, exercise 14C.f) we have:

Lemma 2.3 If C is (Epi, M)-structured (see Adámek et.al
1990, Definition14.1)) for some class M of monomorphisms,
then strong monomorphisms in C are precisely extremal
monomorphisms.

The kernel equivalence of a morphism is the pullback
of that morphism with itself. As a particular case of fini-
tary algebraic category, BL is complete and cocomplete. By
using standard computations, (see, for example, Ghita 2009;
Ghorbani et al. 2009), one can easily check the following:

Proposition 2.4 In the category BL,

(1) The initial object is G2 and the final object is G1 ;

(2) The equalizer of a pair L1

f

g
L2 of BL−morphisms

is the embedding E
e−→ L1, where E = {x ∈ L1 |

f (x) = g(x)};
(3) the product of a family (Li )I of BL-algebras is the source

(P, P
pi−→ Li )I where

P = {I
f−→ Ui∈I Li | f (i) ∈ Li for all x ∈ I }

and P
pi−→ Li is defined by pi ( f ) = f (i) for all i ∈ I ;

(4) The pullback of the morphisms L1
f−→ L

g
←− L2

is the triple (Pb( f , g), π1, π2) where Pb( f , g) =
{(x, y) ∈ L1 × L2 | f (x) = g(y)} and πi is the projec-
tion on Li .

(5) The coequalizer of a pair L1

f

g
L2 ofBL-morphisms

is the pair (L2/θ, L2
π−→ L2/θ) where θ is the

smallest congruence on L2 containing the set X =
{( f (x), g(x)) | x ∈ L1}, π is the canonical surjection
and L2/θ is the quotient algebra.

3 Some properties ofBL

3.1 Concrete categories of BL-algebras

Definition 3.1 Given a category X , a concrete category over
X is a pair (C, U ), where U : C −→ X is a faithful functor.
Sometimes U is called the forgetful (or underlying) functor
of the concrete category and X is called the base category
for (C, U ). When X = SET , (C, U ) is called a construct.

We consider the concrete category (BL, U ) over SET ,
where U is the standard forgetful functor.

Let (C, U ) be a concrete category over X . The fibre of an
X -object X is the preordered class consisting of all C-objects
A with U (A) = X ordered by:

A � B if and only if idX : U A

−→ U B is (can be lifted to ) a C-morphism.

Example 3.2 M3 and G3 are in the fibre of the set {0, x, 1}.
Since by Lemma 2.2(1), id : {0, x, 1} −→ {0, x, 1} is not a
BL-morphism betweenM3 andG3, they are not comparable.

Definition 3.3 A concrete category (C, U ) over X is said to
be:

(1) Fibre-discrete provided that its fibres are ordered by
equality.
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(2) (Uniquely) transportableprovided that for everyC-object
A and every X−isomorphism U A

f−→ X , there exists a

(unique) C-object B with U B = X such that A
f−→ B,

is a C-isomorphism. In that caseU is said to be (uniquely)
transportable.

(3) Strongly complete if it is complete and has intersections;
(4) Is called well powered if no C-object has a proper class

of pairwise non-isomorphic subobjects.

Definition 3.4 Let C be a category.

Let A
f−→ B and C

p

q
A be C-morphisms. (p, q) is

called a congruence relation on f if (C, p, q) is a pullback
of ( f , f ).

Definition 3.5 Let E be a class of morphisms and letM be a
conglomerate of sources in a category C:

(1) C has (E,M)-factorizations provided that each source S
in C has a factorization M ◦ e with e ∈ E and M ∈ M.

(2) A functor U : C −→ X has (E,M)-factorizations pro-

vided that for each U -structured source (X
fi−→ U Ai )I

there exists X
e−→ U A ∈ E and (A

mi−→ Ai )I ∈ M
such that fi = Umi ◦ e for each i ∈ I .

Definition 3.6 A functor U : C −→ X is called:

(1) Topological provided that every U -structured source

(X
fi−→ U Ai )I has a unique U -initial lift (A

fi−→ Ai )I

(i.e. there exists a unique U -initial source (A
f̃i−→ Ai )I

such that for each i ∈ I , U ( f̃i ) = fi ).
(2) Essentially algebraic provided that it creates isomor-

phisms and is (Generating, Mono-Source)-factorizable.

Definition 3.7 Let (C, U ) be a concrete category.

(1) C is topological (essentially algebraic) provided that U
is topological (essentially algebraic).

(2) C is called Cartesian closed if it has finite products and
for each C-object A the functor A × − is left-adjoint.

Remark 3.8 In a concrete category (C, U ) over a category

X , a lifting of an X -morphism X
f−→ Y , whenever it

exists, which will be denoted by f̄ is a C-morphism such
that U ( f̄ ) = f . By the faithfulness of U , we have:

(1) The lifting f̄ of an X -morphism U A
f−→ U B is unique

and f̄ coincides with f in U A if X = SET ;

(2) For any X -morphisms X
g−→ Y

f−→ Z , f ◦ g = f̄ ◦ ḡ,
whenever f̄ and ḡ exist.

Now, we establish the transportability of the concrete cat-
egory of BL-algebras:

Theorem 3.9 (BL, U ) is fibre-discrete and uniquely trans-
portable.

Proof Let X be a set and L = (X ,∧,∨, ∗,→, 0, 1), L ′ =
(X ,∧′,∨′, ∗′,→′, 0′, 1′) be two BL-algebras in the fibre of
X . Suppose that L � L ′. Then for all x, y ∈ X we have
x ∝ y ∈ X since L is a BL-algebra, where∝∈ {∧,∨, ∗,→}.
Thus, by Remark 3.8(1) x ∝ y = idX (x ∝ y). By the fact
that idX is a BL-morphism, we obtain x ∝ y = idX (x) ∝′
idX (y) = x ∝′ y and we can conclude that L = L ′.
Conversely, if L = L ′, then it is obvious that idL = idX .
Therefore, (BL, U ) is fibre-discrete.

For the unique transportability, let (L,∧,∨, ∗,→, 0, 1)

be a BL-algebra, X be a set and L
f−→ X be a bijective func-

tion. For y1, y2 ∈ X , define for ∝′∈ {∧′,∨′, ∗′,→′}, y1 ∝′
y2 = f (x1 ∝ x2) (∝∈ {∧,∨, ∗,→}), where y1 = f (x1)
and y2 = f (x2). Then L ′ = (X ,∧′,∨′, ∗′,→′, f (0), f (1))

is the unique BL-algebra in the fibre of X such that L
f−→ L ′

is a BL-isomorphism. ��
The above theorem and Adámek et al. (1990, Proposition

5.8) lead to the following result:

Corollary 3.10 The forgetful functor U : BL −→ SET
reflects identities.

In SET , mono-sources are exactly the point-separating
sources, i.e. sources (X , fi )I such that for any two different
elements x and y of X there exists some i ∈ I with fi (x) =
fi (y). Since faithful functors reflect mono-sources (Adámek
et al. 1990, Proposition 10.7), we have:

Lemma 3.11 In BL, point separating sources are mono-
sources.

Lemma 3.12 The category BL has (Epi, Mono − Source)-
factorizations.

Proof Let (L
fi−→ Li )I be a source in BL. Consider

the congruence θ defined by (x, y) ∈ θ ⇐⇒ fi (x) =
fi (y) for all i ∈ I and let L

π−→ L/θ be the canoni-

cal epimorphism. Then, the map L/θ
mi−→ Li defined by

mi ([x]θ ) = fi (x) is the unique BL-morphism such that
fi = mi ◦π (sinceπ is an epimorphism). Let [x]θ and [y]θ be
two distinct classes. Then, fi (x) = fi (y) for some i ∈ I , and

so mi ([x]θ ) = mi ([y]θ ). It follows that (L/θ
mi−→ Li )I is a

point-separating source and by Lemma 3.11 a mono-source.
��

The following summarizes a combination of Proposition
8.24 and Remark 13.26 from Adámek et al. (1990).

Lemma 3.13 The following hold:
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(1) every universal arrow is extremally generating;
(2) a functor creates isomorphisms if and only if it reflects

isomorphisms and is uniquely transportable;

Proposition 3.14 The forgetful functor U : BL −→ SET
has (Generating, Mono − Source)-factorizations.

Proof Let (X
fi−→ U Li )I be an U -structured source in BL.

Since FBL(X) is a free object inBL, there exists an universal
arrow X

u−→ U (FBL(X)). Hence for each fi , there exists

a unique BL-morphism FBL(X)
f̃i−→ Li such that fi =

U f̃i ◦ u. By Lemma 3.12, it follows that for each i ∈ I ,

f̃i = FBL(X)
e−→ L

mi−→ Li where e is an epimorphism

and (L
mi−→ Li )I is amono-source inBL. Thus, fi = X

Ue◦u−→
U L

Umi−→ U Li . Let us show that Ue ◦ u is generating. Let

L
r

s
L ′ be a pair ofBL-morphisms such thatUr ◦(Ue◦

u) = Us ◦ (Ue ◦ u). Then, by the fact that u is universal and
so generating (Lemma 3.13 (1)), we haveUr ◦Ue = Us◦Ue
and since U is faithful, r ◦ e = s ◦ e. Thus, r = s since e is
an epimorphism. ��

Theorem 3.15 The construct (BL, U ) is essentially alge-
braic.

Proof Let L
f−→ L ′ be a BL-morphism such that U ( f ) is

bijective. then f −1(0) = f −1( f (0)) = 0 and for any binary
operation ∝, we have:

f −1(x ∝ y) = f −1( f (x ′) ∝ f (y′)) = f −1 ◦ f (x ′ ∝ y′)
= x ′ ∝ y′ = f −1(x) ∝ f −1(y)

since f is a BL-morphism and is surjective. Therefore, f −1

is a BL-morphism and so U reflects isomorphisms. More-
over, U is uniquely transportable (Theorem 3.9), it follows
from Lemma 3.13(2) that U creates isomorphisms. Taking
into account the Proposition 3.14, we conclude that U is
essentially algebraic. ��

Essentially algebraic categories have some nice proper-
ties. For example, they inherit some properties of the base
category. Indeed, since SET is strongly complete and well
powered, we have by Adámek et al. (1990, Proposition
23.12):

Proposition 3.16 BL is strongly complete and well powered.

Moreover, by Adámek et al. (1990, Corollary 14.21), we
have:

Corollary 3.17 BL is (ExtrEpi, Mono)-structured and (Epi,
ExtrMono)-structured.

Proposition 3.18 Let POS denote the category of posets and

order-preserving maps. The forgetful functorsBL V−→ POS
and BL U−→ SET are not topological.

Proof For the functor V , the morphism (1-source) f from
the poset {0, z, x, y, 1}, with z = x ∧ y to the poset {0, 1},
such that f (x) = 0 if x = 1 and f (1) = 1 cannot be
lifted to a BL-morphism. If it were the case, we would have
f (x → y) = f (x) → f (y) = 0 → 0 = 1 which means
that x → y = 1 and by Lemma 2.1 x ≤ y, which contradicts
the hypothesis.

For the functorU , for anyU -structured1-source {0, x, 1} g−→
UG2 such that g(0) = 1 and g(1) = 0, g cannot be lifted to
a BL-morphism from G3 or M3 to G2. ��
Proposition 3.19 BL is not Cartesian closed.

Proof Let L be a BL-algebra, and f , g : G2 ×G2 −→ L be
two maps defined by:

f (a) = f (b) = 0, f (c) = f (d) = 1 and

g(a) = g(c) = 0, g(b) = g(d) = 1

where a = (0, 0), b = (0, 1), c = (1, 0) and d = (1, 1).
Then, f and g are BL-morphisms. It follows that the functor
G2 ×− does not preserve initial object and hence, is not left
adjoint. ��

3.2 Some classes of morphisms inBL

Next, we investigate the relationship between some classes of
monomorphisms (epimorphisms) in BL. Since BL-algebras
form a variety, L × L is a BL-algebra for any BL-algebra L .

We recall that for any BL-morphism L
f−→ L ′, θ f denote

the congruence induced by the deductive system K er( f ). It
is easily checked that θ f is a BL-subalgebra of L × L , and
we have the following:

Lemma 3.20 For any BL-morphism L
f−→ L ′, θ f =

{(x, y) ∈ L × L; f (x) = f (y)}.
Proof Straightforward ��
Definition 3.21 Let (C, U ) be a concrete category. A C-
morphism A

f−→ B is called initial provided that for any

C-objectC , anX -morphismUC
g−→ U A is (i.e. canbe lifted

to) a C-morphism whenever UC
U f ◦g−→ U B is a C-morphism,

i.e. there exists C
h−→ B such that U (h) = U f ◦ g. A

C-morphism is called a regular monomorphism if it is the
equalizer of some pair of C-morphisms.

In this section, we consider the concrete category (BL, U )

over SET , where U is the standard forgetful functor.
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Proposition 3.22 In BL, we have:

RegMono(BL) ⊆ ExtrMono(BL) = StrongMono(BL)

and

StrongMono(BL) ⊆ Mono(BL) = I n j(BL) = Init(BL),

where (Reg, Strong, Extremal)Mono(BL), Init(BL) and
Inj(BL) are the classes of (regular, strong, extremal) monomor-
phisms, initial and injective morphisms, respectively.

Proof It is clear that every injective BL-morphism is a
monomorphism and since U is right adjoint and hence pre-
serves monomorphisms (Adámek et al. 1990, Proposition
18.6), everymonomorphism is injective.Hence Mono(BL) =
I n j(BL). Let us show that injective morphisms are initial in
BL. Let f : L1 −→ L2 be an injective BL-morphism. Let
L3 be a BL-algebra and g : U L3 −→ U L1 be a function.
Suppose that U f ◦ g : U L3 −→ U L2 is a BL-morphism.
Then, for all x, y ∈ U L3, and ∝∈ {∗,→}, we have

U f ◦ g(x ∝ y) = U f ◦ g(x) ∝ U f ◦ g(y) and since
x, y, x ∝ y ∈ U L3, we have by Remark 3.8(1) U f ◦
g(x ∝ y) = U f ◦ g(x) ∝ U f ◦ g(y). Therefore, because
g(x), g(y), g(x ∝ y) ∈ U L1 the same remark leads to:

f ◦ g(x ∝ y) = f ◦ g(x) ∝ f ◦ g(y)

= f (g(x) ∝ g(y)) ( f is a BL-morphism).

Since f is injective, we obtain g(x ∝ y) = g(x) ∝ g(y).
With similar arguments, we show that g(0) = 0 and we
conclude that g is a BL-morphism and so f is an initial
morphism.Conversely, suppose that f is an initialmorphism.
Let x, y ∈ L1 such that f (x) = f (y). Define g : {0, 1} −→
L1 by g(0) = 0 and g(1) = (x → y) ∧ (y → x). It is
obvious that f ◦ g(0) = 0 and f ◦ g(1) = 1, which means
that f ◦ g is a BL-morphism. By hypothesis, it follows that
g is a BL-morphism and then g(1) = 1, which leads to
(x → y) ∧ (y → x) = 1 and by Lemma 2.1 we obtain
x = y. Therefore, in j(BL) = ini t(BL).

Extr Mono(BL) = StrongMono(BL) ⊆ Mono(BL)

follows fromLemma2.3 andCorollary3.17. RegMono(BL) ⊆
Extr Mono(BL) follows from Adámek et al. (1990, Corol-
lary 7.63). ��

The following result will be useful in the sequel:

Lemma 3.23 If L
f−→ L ′ is a regular epimorphism in BL,

then f is the coequalizer of the pair θ f

π1

π2

L where

π1(x1, x2) = x1 and π2(x1, x2) = x2.

Proof Let L
f−→ L ′ be a regular epimorphism in BL.

It follows from Lemma 3.20 and Proposition 2.4 (iv) that

(θ f , π1, π2) is a pullback of ( f , f ). Thus, (π1, π2) is a
congruence relation of f . Hence, by Adámek et al. (1990,
Proposition 11.22), f is coequalizer of π1 and π2. ��
Proposition 3.24 In the construct (BL, U ), we have:

RegEpi(BL) = Surj(BL) � Epi(BL)

where (Reg)Epi(BL), and Surj(BL) are the classes of (reg-
ular)epimorphisms and surjective morphisms, respectively.

Proof Since faithful functors reflect epimorphisms (see
Adámek et al. 1990, proposition 7.44), every surjective BL-
morphism is an epimorphism in BL. The converse does
not hold. Indeed, consider L = {0, x, y, 1} and L ′ =
{0, z, x, y, 1}, where z = x ∨ y and x and y are not compa-
rable. Define ∗,�,⇁ and ⇀ as follows:

∗ 0 x y 1
0 0 0 0 0
x 0 x 0 x
y 0 0 y y
1 0 x y 1

⇀ 0 x y 1
0 1 1 1 1
x 0 1 y 1
y 0 x 1 1
1 0 x y 1

� 0 x y z 1
0 0 0 0 0 0
x 0 x 0 x x
y 0 0 y y y
z 0 x y z z
1 0 x y z 1

⇁ 0 x y z 1
0 1 1 1 1 1
x 0 1 y 1 1
y 0 x 1 1 1
z 0 x y 1 1
1 0 x y z 1

Then, (L,∧,∨, ∗,⇀, 0, 1) and (L ′,∧,∨,�,⇁, 0, 1) are
BL-algebras. Consider the function L

m−→ L ′ such that
m(t) = t for all t ∈ L . Then, m is an epimorphism
but it is not surjective. Thus, we have the strict inclusion
Sur j(BL) ⊂ Epi(BL).

Let L
f−→ L ′ be a surjective BL-morphism. Consider

the pair θ f

π1

π2

L . Then, we have f ◦ π1 = f ◦ π2. Let

L
g−→ L ′′ be another BL-morphism such that g ◦ π1 =

g ◦ π2 and consider the map L ′ u−→ L ′′ such that for all
y = f (x) ∈ L ′, u(y) = g(x). Let f (x1), f (x2) ∈ L ′ such
that f (x1) = f (x2). Then (x1, x2) ∈ θ f . So we have g ◦
π1(x1, x2) = g◦π2(x1, x2), i.e. g(x1) = g(x2)which means
that u( f (x1)) = u( f (x2)) and thus u is well defined. u is
clearly a BL-morphism and we have u ◦ f = g. For another
BL-morphism v such that v ◦ f = g, we have u ◦ f = v ◦ f
and so u = v since f is an epimorphism. Hence f is the

coequalizer of the pair θ f

π1

π2

L .

To complete the proof, we have to show that regular

epimorphisms are surjective. Let L
f−→ L ′ be a regular

123



OnMV-coalgebras over the category of BL-algebras

epimorphism in BL. Then, by Lemma 3.23 f is the coequal-

izer of the pair θ f

π1

π2

L . For all (x, y) ∈ θ f , we have

π ◦ π1(x, y) = [x]θ f = [y]θ f
= π ◦ π2(x, y), where

L
π−→ L/θ f is the canonical surjection. Thus, there exists

a unique BL-morphism L ′ ϕ−→ L/θ f such that ϕ ◦ f = π.

Since π is surjective, it is a regular epimorphism. So π is the

coequalizer of the pair θπ

π ′
1

π ′
2

L . Let (x, y) ∈ θπ . Then,

π(x) = π(y) which means that [x]θ f = [y]θ f
and we get

that f (x) = f (y). So f ◦ π ′
1 = f ◦ π ′

2 and thus there exists

an unique BL-morphism L/θ f
φ−→ L ′ such that φ ◦π = f .

Hence (ϕ ◦ φ) ◦ π = ϕ ◦ (φ ◦ π) = ϕ ◦ f = π. Since
π is an epimorphism, we obtain ϕ ◦ φ = 1L/θ f . Moreover
(φ ◦ ϕ) ◦ f = φ ◦ (ϕ ◦ f ) = φ ◦ π = f . Since f is a regular
epimorphism, it is an epimorphism and we get φ◦ϕ = 1L ′ . It
follows that φ is a BL-isomorphism and hence is surjective.
Therefore, f = φ ◦ π is surjective as composition of such
morphisms. ��

Now, we present the relations between BL and the cate-
gories of Gödel-algebras and MV-algebras.

3.3 Some subcategories ofBL

Let C be a category. A full subcategory D of C is said core-
flective if the inclusion functor i : D ↪→ C has a right adjoint
R. In this case, R is called a reflector. A full subcategory D
of C is said isomorphism-closed if every object of C that is
isomorphic to a D-object is itself a D-object.

Let GOD and MV denote the categories of Gödel and
MV-algebras, respectively. The morphisms in these cate-
gories are exactly BL-morphisms. Thus, GOD and MV are
full subcategories of BL. Moreover, we have:

Proposition 3.25 GOD and MV are isomorphism-closed
subcategories of BL .

Proof Let L be a BL-algebra isomorphic to a Gödel-algebra

G. Then, let L
f−→ G be that BL-isomorphism. For all x ∈

L , there exists y ∈ G such that x = f (y). We have x ∗ x =
f (y) ∗ f (y) = f (y ∗ y) = f (y) = x . Thus, L is a Gödel-
algebra and so GOD is an isomorphism-closed subcategory
of BL. By a similar method, one can easily prove that MV
is also an isomorphism-closed subcategory of BL.
Lemma 3.26 Let L and L ′ be two BL-algebras. For all BL-

morphism MV (L)
f−→ L ′, I m( f ) ⊆ MV (L ′)

Proof Let MV (L)
f−→ L ′ be a BL-morphism and y ∈

I m( f ). Then, there exists x ∈ MV (L) such that y = f (x).
By the definition of the MV-centre, it means there exists
z ∈ L such that y = f (z) = f (z). So y ∈ MV (L ′).

Proposition 3.27 The correspondence MV : BL −→ MV
which assigns to every BL-algebra its MV-centre extends to
a functor.

Proof Lemma 3.26 shows that MV is well defined. Let

L
f−→ L ′ g−→ L ′′ be two BL-morphisms. Then, for all

x ∈ MV (L), we have MV(g ◦ f )(x) = g ◦ f (x) =
MV(g) ◦ MV( f )(x) and MV(1L)(x) = x = 1MV (L)(x).

In the sequel, this functor will be called the MV-functor.

Proposition 3.28 The MV-functor is neither faithful nor
conservative.

Proof Let G4 be the BL-algebra defined by the following
tables:

∗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

Consider now the functions G3

f

g
G4 such that f (0) =

0, f (x) = a, f (1) = 1 and g(0) = 0, g(x) = b, g(1) = 1.
Then it is easily checked that f and g are BL-morphisms.
We have MV( f ) = MV(g), but f = g. Thus, MV is not
faithful. Moreover,MV( f ) is a BL-isomorphism but it is not
the case for f . So MV is not conservative. ��
Theorem 3.29 MV is a coreflective subcategory of BL.

Proof We first prove that theMV-functor is the right adjoint
to the inclusion functor i : MV ↪→ BL. Let M be an MV-
algebra and L a BL-algebra. Consider the function

�M,L : BL(M, L) −→ MV(M, MV (L))

M
f−→ L �−→ MV( f )

where BL(M, L) (respectively, MV(M, MV (L))) denote
the set of BL-morphisms from M to L (respectively, from M
to MV (L)). Since MV (M) = M , by Lemma 3.26�M,L( f )

is well defined. �M,L is bijective and its inverse �−1
M,L is

defined by �−1
M,L(g)(x) = g(x) for all MV-morphism g :

M −→ MV (L). Moreover, for anyMV-morphism M ′ f−→
M , we have for all M

α−→ L and x ∈ M ′:

MV( f , MV (L)) ◦ �M,L(α)(x) = �M,L(α) ◦ f (x)

= MV(α) ◦ f (x)

= α ◦ f (x)

= MV(α ◦ f )(x)
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= �M ′,L(α ◦ f )(x)

= �M ′,L ◦ BL( f , L)(α)(x)

which proves the naturality of �M,L in the first variable.
With similar computations, one can easily checked that�M,L

is also natural in the second variable. Therefore, i � MV.
Moreover, since MV is a full subcategory of BL, we have
the result. ��

Since right-adjoint functors preserve limits, we have:

Corollary 3.30 The MV-functor preserves limits.

4 MV-coalgebras

The composite i◦MV, where i : MV ↪→ BL is the inclusion
functor shall also be denoted by MV and it is a covariant
BL-endofunctor, which has the preservation properties of
the MV-functor. AnMV-coalgebra is a pair (L, α) where L

is a BL-algebra and L
α−→ MV (L) is a BL-morphism.

In this section, we characterize homomorphisms, MV-
subcoalgebras and bisimulations in the category of MV-
coalgebras and prove its (co)completeness.

The following observations are easily checked:

Remark 4.1 Let (L, α) be an MV-coalgebra.

(1) For all x ∈ L , α(x) = α(x)

(2) If α is injective, then L is an MV-algebra.
(3) For all x ∈ L , there exists z ∈ L such that α(x) = z

4.1 MV-homomorphisms

We introduce an arrow notation similar to transition system
as in Gumm (2001). We write

x
α→ y iff α(x) = y.

We say that a map (L, α)
f−→ (L ′, β):

(1) Preserves transitions if for all x, y ∈ L x
α→ y �⇒

f (x)
β→ f (y);

(2) Reflects transitions if for all x ∈ L and y ∈ L ′ f (x)
β→

y �⇒ x
α→ t, with f (t) = y.

The following results provides a characterization ofMV-
homomorphisms:

Proposition 4.2 Let (L, α)and (L ′, β)be twoMV-coalgebras

and L
f−→ L ′ be a BL-morphism. The following are equiv-

alent:

(1) f is a homomorphism;
(2) For all x ∈ L, β ◦ f (x) = f (z) where z = α(x);
(3) f preserves and reflects transitions.

Proof (i) ⇔ (i i) Suppose f is a homomorphism. Then
for all x ∈ L such that α(x) = z, we have β ◦ f (x) =
MV ( f )(z) = f (z). Since f is a BL-morphism, we obtain
β ◦ f (x) = f (z). Conversely, suppose that β ◦ f (x) =
f (z) where z = α(x), for all x ∈ L. Then, MV ( f )◦α(x) =
MV ( f )(z) = f (z). So β ◦ f (x) = MV ( f ) ◦ α(x).
(i) ⇒ (i i i) suppose f is a homomorphism. Let x, y ∈ L

such that x
α→ y and z ∈ L such that α(x) = z. Then, z = y.

Since f is a BL-morphism, f (z) = f (y) and by hypothesis
α ◦ f (x) = f (y) which proves that f preserves transitions.
Moreover, let x ∈ L with z = α(x) and y ∈ L ′. Suppose
f (x)

α′→ y. We have x
α→ z and by hypothesis

f (z) = f (z) = β ◦ f (x) = y

Therefore, f reflects transitions.
(i i i) ⇒ (i i) Suppose f preserves and reflects transitions.

Let x ∈ L with α(x) = z. Then x
α→ z and by hypothesis,

f (x)
β→ f (z) which means that β ◦ f (x) = f (z). ��

Example 4.3 Consider the BL-algebra G4 from the proof of

Proposition 3.28 and consider the function G3
f−→ G4 such

that f (0) = 0, f (x) = a, f (1) = 1. Then, it is easily

checked that f is a BL-morphism. Define Gi
αi−→ G2 by

αi (0) = 0 and αi (x) = 1 for x = 0, i ∈ {3, 4}. α3 and α4

are BL-morphisms and it is obvious that G2 = MV (Gi ) for
i ∈ {3, 4} . Let x ∈ G3 with x = 0, 1. We have:

α4 ◦ f (x) = α4(a)

= 1

= MV ( f )(1)

= MV ( f ) ◦ α3(x)

Hence, f is a homomorphismof coalgebras between (G3, α3)

and (G4, α4).

The category of MV-coalgebras and homomorphisms
shall be denoted by BLMV.

4.2 MV-subcoalgebra

Since BL has (Epi, ExtrMono)=(Epi, StrongMono)- factor-
izations, and following (Adámek 2005, p 171), we give the
following definition of MV-subcoalgebra.

Definition 4.4 Let (L ′, β) be an MV-coalgebra. An MV-
subcoalgebra of (L ′, β) is anMV-coalgebra (L, α) together
with a strong mono homomorphism (i.e. a homomorphism
which is a strongmonomorphism inBL ) (L, α)

m−→ (L ′, β).
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Proposition 4.5 Let (L, α) be an MV -coalgebra. Then,
(MV (L), MV (α)) is an MV -subcoalgebra of (L, α).

Proof Let i : MV (L) ↪→ L be the inclusion morphism. Let
L ′ e−→ L ′′ be an epimorphism, f and g be morphisms such
that the following square commutes

L ′ e

f

L ′′
g

g

MV (L)
i

L

Then, f = i◦ f = g◦e. Since g = i◦g, it follows that both
triangles commute. Therefore, i is a strong-monomorphism.
Moreover, for all x ∈ MV (L),

MV (i) ◦ MV (α)(x) = i ◦ MV (α)(x) = i ◦ α(x).

Hence i is a homomorphism from (MV (L), MV (α)) to
(L, α). ��

We give now a characterization of BL-subalgebras of a
BL-algebra which can be endowed with a transition structure
making them subcoalgebras.

Proposition 4.6 Let (L ′, β) be an MV-coalgebra. A BL-
subalgebra L of L ′ is an MV-subcoalgebra of (L ′, β) iff

there exists a strong monomorphism L
m−→ L ′ such that

for all x ∈ L, there exists z ∈ L such that m(x)
β→ m(z).

Proof Let L be a BL-subalgebra of L ′. Suppose (L, α) is a
subcoalgebra of (L ′, β). Then, by definition, there exists a
strong mono-homomorphism (L, α)

m−→ (L ′, β). Let x ∈
L . By Remark 4.1, there exists z ∈ L such that α(x) = z. It
follows from Proposition 4.2 that β ◦ m(x) = m(z) which

means that m(x)
β→ m(z).

Conversely, assume that there is a strong monomorphism
m : L −→ L ′ such that for all x ∈ L , there exists z ∈ L

with m(x)
β→ m(z). Then observe that z is unique since m

is injective (Proposition 3.22) and define

α : L −→ MV (L)

x �−→ z

Let x, y ∈ L such that α(x) = z and α(y) = z′. If x = y

then we have m(x)
β→ m(z) and m(x)

β→ m(z′). It follows
that m(z) = m(z′) and then m(z) = m(z′). Since m is a
mono, we obtain z = z′ i.e. α(x) = α(y). Therefore, α is
well defined. Moreover,

β ◦ m(0) = 0 (since β and m are BL-morphisms)

= 1( by Lemma 2.1(8))

= m(1) (m, is a BL-morphism).

Thus,m(0)
β→ m(1) and so α(0) = 0.Let x, y ∈ L such that

α(x ∝ y) = t , α(x) = z and α(y) = z′, where ∝∈ {∗,→}.
We have m(x ∝ y)

β→ m(t). Since β ◦ m is a BL-morphism,
we obtain

β ◦ m(x) ∝ β ◦ m(y) = m(t). So m(z) ∝ m(z′) = m(t)
and therefore m(z ∝ z′) = m(t). Using the fact that m is
injective (Proposition 3.22), we obtain z ∝ z′ = t and then,
α(x) ∝ α(y) = α(x ∝ y). Hence, α is a BL-morphism.
It follows that α is a transition structure on L making m a
strong mono homomorphism. ��

4.3 MV-bisimulations and (co)limits inBLMV

Definition 4.7 Let R be a strong relation between two MV-
coalgebras (L1, α1) and (L2, α2), that is, there is a strong-
mono m : R ↪→ L × L ′. R is called an MV-bisimulation
provided that there is a structure map on R making the pro-
jections πi : R −→ Li MV-homomorphisms.

Proposition 4.8 InBLMV , bisimulations are precisely strong-
mono relations.

Proof Let R be a strong-mono relation on (L1, α1) and
(L2, α2). Consider

δ : R −→ MV(R)

(x, y) �−→ (α1(x), α2(x))

Then, δ is a BL-morphism since α1 and α2 are so. Moreover,
for all (x, y) ∈ R,

α ◦ π1(x, y) = α1(x)

= MV(π1)(α1(x), α2(x))

= MV(π1) ◦ δ(x, y).

Thus π1 is anMV-homomorphism. Similarly, one can show
that π2 is an MV-homomorphism. ��
Proposition 4.9 The largest bisimulation between two MV-
coalgebras (L, α) and (L ′, β) always exists. Moreover, when
(L, α) = (L ′, β) that largest bisimulation (called the bisim-
ilarity on (L, α)) is an equivalence relation.

Proof BL is well powered, complete, cocomplete and the
MV-functor preserves limits. It follows fromAdámek (2005,
Proposition 5.5) that the largest bisimulation between any
twoMV-coalgebras exists. The secondpart of the proposition
is a consequence of Adámek (2005, Corollary 5.6). ��
Lemma 4.10 Let F I X(MV) denote the class of fixed points
of MV and MV the class of MV -algebras. The following
hold:
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(1) F I X(MV) = MV.
(2) (G1, idG1) is the final coalgebra for the functor MV.

Proof (i) Since any MV-algebra is its own MV-centre, we
just have to prove that F I X(MV) ⊆ MV. Let L ∈
F I X(MV) be a BL-algebra. Then, there exists a BL-
isomorphism ϕ : L −→ MV (L). For any x ∈ L , there
exists y ∈ MV (L) such that x = ϕ−1(y). This means
that

¯̄x = ϕ−1(y) = ϕ−1( ¯̄y) = ϕ−1(y) = x,

since the converse ϕ−1 of ϕ is a BL-morphism. There-
fore, L is an MV-algebra.

(ii) follows from the fact that MV preserves final objects.
��

Since MV preserves pullbacks, the composition of MV-
bisimulations is again an MV-bisimulation (see Adámek
(2005, Example 5.4)). Therefore (or see Hofmann et al.
(2019, Theorem 2.5.7)), pullbacks of MV-homomorphisms
are MV-bisimulations. In that case, it is stated in Adámek
(2005,Remark 5.8) for an arbitraryweak pullback preserving
endofunctor that the largest bisimulation on a given coalgebra
is the kernel equivalence of the unique homomorphism from
that coalgebra to the final coalgebra. The following result
comes from that observation:

Proposition 4.11 Let (L, α)be anMV-coalgebra. The largest
bisimulation on (L, α) is L × L.

Proof By Adámek (2005, Remark 5.8), the largest bisimula-

tion on (L, α) is the kernel pair of the morphism (L, α)
1̃−→

(G1, idG1), which is clearly L × L . ��

It is well known (see e.g. Adámek (2005, Proposition 4.3)
or Hofmann et al. (2019, Theorem 1.2.4)) that the forgetful
functor from the category of coalgebras to the base category
creates colimits. It follows that BLMV has whatever colimit
BL has. On the other hand, BLMV has all limits preserved
by MV. Since BL is complete, cocomplete and MV is a
limit-preserving functor, we have:

Theorem 4.12 BLMV is complete and cocomplete.

5 Topological MV-coalgebras

Topological BL-algebras have been studied bymany authors,
see e.g. Zahiri and Borzooei (2016). In this section, we intro-
duce and investigate topologicalMV-coalgebras. Moreover,
we construct an inverse system in the category of MV-
coalgebras.

Lemma 5.1 Let D be a ds of L, L
f−→ L ′ be a BL-morphism.

Then, for all x ∈ L, f ([x]D) ⊆ [ f (x)] f (D). The equality
holds when x ∈ D.

Proof Let y ∈ f ([x]D). Then, there exists z ∈ L such that
y = f (z) and (z → x) ∧ (x → z) ∈ D. We have

(y → f (x)) ∧ ( f (x) → y) = f (z → x) ∧ f (x → z)

= f ((z → x) ∧ (x → z)) ∈ f (D).

Hence, y ∈ [ f (x)] f (D). For the converse, suppose x ∈ D.
Let y ∈ [ f (x)] f (D). Then, (y → f (x)) ∧ ( f (x) → y) ∈
f (D). Since f (D) is a ds of L , y ∈ f (D), that is, there
exists z ∈ D such that y = f (z). Since x and z are in
D, (z → x) ∧ (x → z) ∈ D. Thus, z ∈ [x]D and so
y ∈ f ([x]D). ��
Definition 5.2 Let (L, α) be an MV-coalgebra.

(1) Let τ be a topology on L . ((L, α), τ ) is called a topologi-
cal MV -coalgebra if (L, τ ) is a topological BL-algebra
and α is continuous, i.e. for any x ∈ L and any sub-
set V of L containing α(x), there exists an open set U
containing x such that α(U ) ⊆ V .

(2) Let D be a ds of L . D is said α-stable if α(D) ⊆ D.

For any MV-coalgebra(L, α), the class of α-stable ds of
L is not empty since it contains {1}.

A poset (I ,≤) is said to be upward directed provided that
for any i, j ∈ I there exists k ∈ I such that i ≤ k and j ≤ k.
Let I be an upward-directed set and D = {Di , i ∈ I } be a
family of dss of a BL-algebra L . Then, D is called a system
of dss or simply a system of L if i ≤ j implies D j ⊆ Di , for
any i, j ∈ I . An inverse system in a category C, is a family
(Bi , ϕi, j )i, j∈I of objects indexed by an upward-directed set
I , with a family of morphisms ϕi, j : Bi −→ B j , for i ≤ j ,
satisfying the following conditions:

(1) ϕi,k = ϕ j,k ◦ ϕi, j , for any k ≤ j ≤ i
(2) ϕi,i = idBi , for any i ∈ I .

Definition 5.3 Let (L, τ ) be a topological space. The topol-
ogy τ is called a linear topology on L if there exists a base
B for τ such that any element of B containing 1 is a ds
of L .

Theorem 5.4 Let (L, α) be an MV-coalgebra and D =
{Di , i ∈ I } be a α-stable system of L (i.e. each Di is a
α-stable ds of L, i ∈ I ). Then

(1) The set B = {[x]Di , x ∈ L, i ∈ I } is a base for a
topology on L and τB, the topology induced by B is
linear.

123



OnMV-coalgebras over the category of BL-algebras

(2) ((L, α), τB) is a topological MV-coalgebra.

Proof (1) Similar to the proof of Zahiri and Borzooei (2016,
Lemma 3.3)

(2) It follows from Zahiri and Borzooei (2016, Theorem
3.4), that (L, τB) is a topological BL-algebra. We just
have to show that α is continuous. Let x ∈ L , such that
α(x) ∈ [z]Di , z ∈ L . For all y ∈ α([x]Di ), we have by
Lemma 5.1 (y → α(x)) ∧ (α(x) → y) ∈ α(Di ) ⊆ Di .
So y ∈ [α(x)]Di

= [z]Di . Therefore, [x]Di is an open
subset containing x such that α([x]Di ) ⊆ [z]Di . Thus, α
is continuous.

��
Theorem 5.5 Let (L, α) be an MV-coalgebra, D = {Di , i ∈
I } be a α-stable system of filter of L. For each i ∈ I ,
define αi : L/Di −→ α(L/Di ) by: αi ([x]Di ) = [α(x)]Di

.
Consider the family of maps (ϕi j )i≤ j∈I defined by ϕi j :
(L/D j , α j ) −→ (L/Di , αi ) such that for all x ∈ L,
ϕi j ([x]D j ) = [x]Di . Then, ((L/Di , αi )i∈I ); (ϕi j )i≤ j∈I ) is
an inverse system in BLMV.

Proof Let x ∈ L . ByRemark 4.1, there exists z ∈ L such that
α(x) = z̄. So for all i ∈ I , αi ([x]Di ) = [α(x)]Di

= [z̄]Di =
[z]Di . Moreover, for x, x ′ ∈ L such that [x]Di = [x ′]Di .
Then, x → x ′ ∈ Di and x ′ → x ∈ Di . It follows that α(x →
x ′) ∈ Di and α(x ′ → x) ∈ Di . So [α(x)]Di = [α(x ′)]Di .
Thus, each αi is well defined. Since α is aBL-morphism, it is
easily checked that each αi is a BL-morphism and therefore,
for all i ∈ I , (L/Di , αi ) is an MV-coalgebra.

Let i, j ∈ I such that i ≤ j . Since Fj ⊆ Fi , ϕi j is well
defined and is clearly a BL-morphism. Moreover, let x ∈ L
and let z ∈ L such that α(x) = z̄. Then, for all j ∈ I ,

ϕi j ([z]D j ) = ϕi j ([z]D j )

= ϕi j ([α(x)]D j
)

= [α(x)]Di

= αi ([x]Di )

= αi ◦ ϕi j ([x]D j ).

Hence, by Proposition 4.2, ϕi j is anMV-homomorphism. It
is clear that ϕi i = 1L/Di and for i ≤ j ≤ k ∈ I ,

ϕi j ◦ ϕ jk([x]Dk ) = ϕ jk([x]D j ) = [x]Dk = ϕik([x]Di ).

Thus, ((L/Di , αi )i∈I ); (ϕi j )i≤ j∈I ) is an inverse system in
BLMV. ��
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Abstract

We consider the category Coalg(
∏

) of
∏

-coalgebras
where

∏
is the endofunctor on the category of local

BL-algebras and BL-morphisms which assigns to each lo-
cal BL-algebra its quotient by its unique maximal filter
and we characterize homomorphisms and subcoalgebras
in Coalg(

∏
) . Moreover, we introduce local BL-frames

based on local BL-algebras, and show that the category
of local BL-frames is isomorphic to Coalg(

∏
).
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A Title

1 Introduction

Coalgebras were introduced by Aczel and Mendler [1] to model various type of transition systems.
Up to now, coalgebras were studied over the category of sets and mappings (see for example [5, 11]),
arbitrary categories (see for example [2, 7, 8]) or categories of topological spaces (see for example
[9]), but not specially on algebraic structures. It has been shown that Kripke frames can be seen
as coalgebras of the covariant powerset functor [16] and descriptive frames as coalgebras of the
Vietoris functor, the topological analogue of the powerset functor, on Stone spaces [9] . These
results provide a strong link between coalgebras and modal logic. The aim of this paper is to
further investigate this connection for coalgebras over BL-algebras.

Coalgebras over the category BL of BL-algebras and BL-morphisms were introduced in [10]
by the authors. They show that coalgebras of the MV-functor, which assigns each BL-algebra to
its MV-center have very nice properties. In this short paper, we establish the link between modal
logic and coalgebras over BL-algebras via a new type of logical frame, namely local BL-frame.

https://doi.org/10.52547/HATEF.JAHLA.2.4.5
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The outline of the paper is as follows: In Section 2, we recollect some definitions and results
which will be used throughout the paper. In Section 3, we state some facts about the category of
local BL-algebras and introduce coalgebras of the functor

∏
, which assigns each local BL-algebra

to its quotient by its maximal filter. We characterize homomorphisms and subcoalgebras of
∏

-
coalgebras and show that the corresponding category is not complete. In the last part of the
paper, we present local BL-frames and models and show that the categories of local BL-frames
and

∏
-coalgebras are isomorphic.

2 Preliminaries

BL-algebras were invented by P. Hájek [6] in order to provide an algebraic proof of the completeness
theorem of basic logic ( BL, for short) arising from the continuous triangular norms, familiar in
the fuzzy logic framework. The language of propositional Hájek basic logic contains the binary
connectives ◦ and ⇒ and the constant 0̄ . Axioms of BL are:

(A1) (φ ⇒ ψ) ⇒ ((ψ ⇒ ω) ⇒ (φ ⇒ ω))

(A2) (φ ◦ ψ) ⇒ φ

(A3) (φ ◦ ψ) ⇒ (ψ ◦ φ)

(A4) (φ ◦ (φ ⇒ ψ)) ⇒ (ψ ◦ (ψ ⇒ φ))

(A5a) (φ ⇒ (ψ ⇒ ω)) ⇒ ((φ ◦ ψ) ⇒ ω)

(A5b) ((φ ◦ ψ) ⇒ ω) ⇒ (φ ⇒ (ψ ⇒ ω))

(A6) ((φ ⇒ ψ) ⇒ ω) ⇒ (((ψ ⇒ φ) ⇒ ω) ⇒ ω))

(A7) 0̄ ⇒ ω.

We recall some definitions and basic results that can be found in [3, 6, 12, 16].
An algebraic structure (L,∧,∨, ∗,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a bounded commutative

residuated lattice if it satisfies the following conditions:

(BL1) (L,∧,∨, 0, 1) is a bounded lattice;

(BL2) (L, ∗, 1) is a commutative monoid;

(BL3) ∗ is a left adjoint of →, that is x ∗ z ≤ y if and only if z ≤ x → y.

A BL-algebra is a bounded commutative residuated lattice which satisfies the following:

(BL4) x ∧ y = x ∗ (x → y) (divisibilty);

(BL5) (x → y) ∨ (y → x) = 1 (prelinearity).

A BL-algebra L is called a Gödel algebra if x2 = x ∗x = x for every x ∈ L. In addition, L is called
an MV-algebra if ¯̄x = x for all x ∈ L, where x̄ = x → 0.

The following holds in any BL-algebra L:

Lemma 2.1. [13] For all x, y, z ∈ L
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(1) x ≤ y if and only if x → y = 1;

(2) x ∗ y ≤ x ∧ y;

(3) x → (y → z) = y → (x → z);

(4) If x ≤ y, then y → z ≤ x → z and z → x ≤ z → y;

(5) x ≤ y → (x ∗ y); x ∗ (x → y) ≤ y;

(6) x ∗ x̄ = 0;

(7) (x ∗ y) → z = x → (y → z);

(8) 1 → x = x; x → 1 = 1; x → x = 1; x ≤ y → x; x ≤ x; x = x.

A filter of L is a non-empty subset F of L such that for all x, y ∈ L,

(F1) x, y ∈ F implies x ∗ y ∈ F ;

(F2) x ∈ F and x ≤ y imply y ∈ F .

A subset D of a BL-algebra L is called a deductive system if

(DS1) 1 ∈ D;

(DS2) x ∈ D and x → y ∈ D imply y ∈ D.

Deductive systems have been widely studied in BL-algebras namely to characterize fragments
of Basic fuzzy logic (see [15]); it is obvious that for a non-empty subset F of L, F is a deductive
system if and only if it is a filter.

Let L1 and L2 be two BL-algebras, a map f : L1 −→ L2 is called a homomorphism of BL-
algebras (BL-morphism), if f(0) = 0 and f(x ∝ y) = f(x) ∝ f(y) for all ∝∈ {∗,→}. We obviously
have f(1) = 1 for any BL-homomorphism f and it is shown in [13] that for any BL-morphism f ,
f(x ∝ y) = f(x) ∝ f(y) with ∝∈ {∨,∧} and if x ≤ y, then f(x) ≤ f(y).

For any deductive system F of a BL-algebra L = (L,∧,∨, ∗,→, 0, 1), we can define a relation
θF on L as follows: for all x, y ∈ L,

(xθF y) ⇐⇒ ((x → y) ∧ (y → x) ∈ F ).

It is well known that θF is a congruence on L (see, e.g. [6]) and since the class of BL-algebras is
a variety, the quotient structure L/θF is also a BL-algebra for which for all x, y ∈ L, [x ∝ y] :=
[x] ∝ [y] where ∝∈ {∧,∨, ∗,→}, and [x] := [x]θF

. A congruence θ on L is called induced by F if
[1]θ = F . In addition, θF is clearly induced by F .

The class of BL-algebras equipped with BL-morphisms form a category. We will denote it by
BL. The one-element BL-algebra {0 = 1} is called the degenerate BL-algebra ( see [12], Remark 8
), we will denote it by G1. The two-element non-degenerate BL-algebra {0, 1} is called the trivial
BL-algebra, we will denote it by G2. These two algebras are examples of BL-algebras which are
both Gödel-algebras and MV -algebras.

Proposition 2.2. [10] There are only two non-degenerate BL-algebras with three elements:
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(i) The chain {0, x, 1}, with the operations ∗ and → defined by the following tables:

∗ 0 x 1

0 0 0 0
x 0 x x
1 0 x 1

→ 0 x 1

0 1 1 1
x 0 1 1
1 0 x 1

It is the unique Gödel-algebra with three elements and we will denote it by G3.

(ii) The chain {0, x, 1}, with the operations ∗ and → defined by the following tables:

∗ 0 x 1

0 0 0 0
x 0 0 x
1 0 x 1

→ 0 x 1

0 1 1 1
x x 1 1
1 0 x 1

It is the unique MV -algebra with three elements and we will denote it by M3.

Remark 2.3. For any set X, define for A ⊆ X and B ⊆ X, A∗B = A∩B and A → B = AC ∪B.
Then the structure (P (X),∩,∪, ∗,→, ∅, X) where P (X) is the powerset of X is a BL-algebra called
the powerBL-algebra of X.

A Kripke frame is a pair (X,R) where X is a set and R is a binary relation on X. For x ∈ X,
let [x]R = {y ∈ X | xRy} be the R-image of x. A p-morphism between two Kripke frames (X,R)
and (Y,R′) is a function f : X −→ Y satisfying f([x]R) = [f(x)]R′ for each x ∈ X. Kripke frames
and p-morphisms form a category denoted by KFr.

A Kripke model is a tuple (W,R, ν), where (W,R) is a Kripke frame and ν : Prop −→ P (L)
sends proposition letters to the set of states where they are true. A modal algebra is a structure
(L,∧,∨,¬, 0, 1,�) such that (L,∧,∨,¬, 0, 1) is a Boolean algebra and � preserves 1 and ∧.

Definition 2.4. Let C be a category.

(1) A full subcategory D of C is called isomorphism-closed provided that every C-object that is
isomorphic to some D-objects is itself a D-object.

(2) A coalgebra for an endofunctor F : C −→ C is a pair (A,α) where A is an object of C and
α : A −→ F (A) is a C-morphism.

(3) A homomorphism between two coalgebras (A,α) and (B, β) for F is a C-morphism f : A −→
B such that β ◦ f = F (f) ◦ α.

(4) Coalgebras for F and their homomorphisms form a category denoted by Coalg(F ).

3
∏

-coalgebras

In this section, we present some properties of local BL-algebras which are BL-algebras with a
unique maximal filter. We define a non-trivial endofunctor of the category of local BL-algebras
and investigate the corresponding coalgebras.

Definition 3.1. Let L be a BL-algebra.
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(1) A deductive system F of L is proper if 0 /∈ F.

(2) A deductive system M of L is called maximal if it is proper and not contained in any other
proper deductive system.

(3) L is local if it has a unique maximal deductive system.

Theorem 3.2. [13] Let L be a BL-algebra. Define

D(L) = {x ∈ L | xn ̸= 0 for all integers n} .

The following are equivalent:

(i) D(L) is a deductive system of L;

(ii) L is local;

(iii) D(L) is the unique maximal deductive system of L.

Example 3.3. (i) D(G3) = {x, 1}, D(M3) = D(G2) = {1} are deductive systems. So by the
above theorem, G3, M3 and G2 are local BL-algebras;

(ii) Consider A = ([0; 1] ,∧,∨, ∗,→, 0, 1) the BL-algebra such that for all x, y ∈ L, x ∗ y = x · y
and x → y = 1 if x ≤ y and x → y = y

x else. Then D(A) =]0; 1] is a deductive system of A.
Thus A is a local BL-algebra.

(iii) [[15], Proposition 11] Any BL-algebra such that MV (L) = {0, 1} is local.

(iv) [[15], Example 1] The chain {0, x, y, 1}, with the operations ∗ and → defined by the following
tables

∗ 0 x y 1

0 0 0 0 0
x 0 0 x x
y 0 x y y
1 0 x y 1

→ 0 x y 1

0 1 1 1 1
x x 1 1 1
y 0 x 1 1
1 0 x y 1

is a local BL-algebra such that MV (L) = {0, x, 1} .

(v) G1 is not local.

Proposition 3.4 ([4], Proposition 1.10). Let f : L −→ L′ be a BL-morphism. If M ′ is a maximal
deductive system of L′, then f−1(M ′) is a maximal deductive system of L.

Lemma 3.5 ([4], Lemma 1.9). Let L be a nontrivial BL-algebra and M a proper deductive system
of L. The following are equivalent:

(i) M is maximal;

(ii) for any x ∈ L, x /∈ M ⇔ (xn) ∈ M for some integer n.

Lemma 3.6. Let f be a BL-morphism between two local BL-algebras L and L′ whose maximal
deductive systems are M and M ′, respectively. If f is surjective, then f(M) = M ′.
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Lemma 3.7. Let L be a BL-algebra and F be a deductive system of L. Then θF is the unique
congruence on L induced by F .

Proof. Let θ be a congruence on L induced by F . We have to show that θF = θ. Let (x, y) ∈ θF .
Then x → y ∈ [1]θ and y → x ∈ [1]θ. So by compatibility,

(x ∗ (x → y), x ∗ 1) ∈ θ and (y ∗ (y → x), y ∗ 1) ∈ θ.

Hence by BL4 we obtain (x∧y, x) ∈ θ and (y∧x, y) ∈ θ. Since θ is symmetric and ∧ is commutative,
it follows that (x, x ∧ y) ∈ θ and (x ∧ y, y) ∈ θ. By transitivity, we have (x, y) ∈ θ. Conversely, let
(x, y) ∈ θ. Then (x → y, y → y) ∈ θ and (y → x, y → y) ∈ θ. So (x → y, 1) ∈ θ and (y → x, 1) ∈ θ.
It follows that x → y ∈ F and y → x ∈ F and therefore, (x, y) ∈ θF .

In the sequel we will denote L/θF by L/F and [x]θF
by [x]F .

Let M be the maximal deductive system of a local BL-algebra L. Then by ([4], Proposition
1.13), since M is the unique maximal deductive system which contains M , L/M is a local BL-
algebra. Therefore, we have:

Lemma 3.8. Let M be the maximal deductive system of a local BL-algebra L. Then L/M is a
local BL-algebra and D(L/M) = {M}.
Proof. We haveMn = [1]nM = [1]M ̸= [0]M , which means thatM ∈ D(L/M). Let [x]M ∈ D(L/M).
Then [xn]M = [x]nM ̸= [0]M , for all integer n. It follows that xn → 0 /∈ M , for all integer n. Thus
by Lemma 3.5, x ∈ M ; That is, [x]M = M .

Local BL-algebras and BL-morphisms form a category which will be denoted by lBL.

Proposition 3.9. lBL is an isomorphism-closed subcategory of BL.

Proof. Let f : L −→ G be an isomorphism between a BL-algebra L and a local BL-algebra G,
whose inverse is g. Then by Proposition 3.4, f−1(M ′) is a maximal filter of L, where M ′ is the
unique maximal filter of G. Moreover, let H be another maximal filter of L. Then g−1(H) = M ′

and so H = g(M ′) = f−1(M ′). Thus L is a local BL-algebra.

Remark 3.10. Let L and L′ be two local BL-algebras, M and M ′ their respectives maximal filters.
Then M × L′ and L ×M ′ are maximal filters of L × L′. Thus, L × L′ is not a local BL-algebra.
It follows that lBL has no (co)products and therefore lBL is not complete, nor cocomplete.

Proposition 3.11. Consider the correspondence
∏

: lBL −→ lBL such that
∏

(L) = L/M for
any local BL-algebra L whose unique maximal filter is M and

∏
(f) : L/M −→ L/M ′ such that

∏
(f)([x]M ) = [f(x)]M ′ .

Then
∏

is a covariant endofunctor on lBL.

Proof. By Lemma 3.7 and the fact that θM is a congruence,
∏

(L) is well defined. Moreover, let

L
f−→ L′ and L′ g−→ L′′ be two BL-morphisms. Let x ∈ L. We have

∏
(g) ◦

∏
(f)([x]M ) =

∏
(g)([f(x)]M ′) = [g ◦ f(x)]M ′ =

∏
(g ◦ f)([x]M )

and also ∏
(idL)([x]M ) = [x]M = id∏

(L)([x]M ).
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Let Coalg(
∏

) be the category of
∏

-coalgebras and
∏

-homomorphisms. Let (L,α) be a
∏

-
coalgebra. For any x, y in a BL-algebra L, we denote x

α→ y by α(x) = [y]M . Then one can observe
that

∏
-coalgebras mimic non-deterministic transition systems.

Let (L,α) and (L′, α′) be two
∏

-coalgebras. A BL-morphism f : L −→ L′ weakly reflects

transition systems if for all x ∈ L and y ∈ L′, f(x)
α′
→ y implies x

α→ t, with f(t) ∈ [y]M , t ∈ L.

Proposition 3.12. Let (L,α) and (L′, α′) be two
∏

-coalgebras, and f : L −→ L′ a BL-morphism.
The following are equivalent:

(i) f is a
∏

-homomorphism;

(ii) for all x ∈ L, α′(f(x)) = [f(z)]M ′, whenever α(x) = [z]M ;

(iii) f preserves and weakly reflects transitions.

Proof. (i) ⇔ (ii) Straightforward.
(ii) ⇒ (iii) Suppose for all x ∈ L, α′(f(x)) = [f(z)]M ′ , whenever α(x) = [z]M . Let x, y ∈ L such

that x
α→ y. Then α(x) = [y]M . So by hypothesis, α′(f(x)) = [f(y)]M ′ implying f(x)

α′
→ f(y). So f

preserves transitions. Moreover, let x ∈ L and y ∈ L′ such that f(x)
α′
→ y. Then α′(f(x)) = [y]M ′ .

Let z ∈ L such that α(x) = [z]M . Then x
α→ z and by hypothesis, [f(z)]M ′ = α′(f(x)) = [y]M ′ ,

i.e., so f(z) ∈ [y]M ′ . Thus, f weakly preserves transitions.

(iii) ⇒ (ii) Let x ∈ L, such that α(x) = [z]M . Then x
α→ z, which implies by hypothesis that

f(x)
α′
→ f(z), i.e. α′(f(x)) = [f(z)]M ′ .

Definition 3.13. [3] A monomorphism m is called strong in a category C if for every epimorphism
e and every commutative square

e //

f

��

d

wwo o o o o o o
g

��
m

//

there exists a diagonal d such that g = m ◦ d and f = d ◦ e.

Proposition 3.14. Let (L′, α′) be a
∏

-coalgebra. A local BL-subalgebra L of L′ is a
∏

-subcoalgebra
of (L′, α′) iff there exists a strong mono L

m−→ L′, verifying the following property: for all x ∈ L,

there exists z ∈ L such that m(x)
α′
→ m(z).

Proof. Suppose that (L,α) is a
∏

-subcoalgebra of (L′, α′), and m the corresponding strong mono.
Let x ∈ L. Since m is a

∏
-homomorphism, it follows from Proposition 3.12 that α′ ◦ m(x) =

[m(z)]M ′ , where α(x) = [z]M . So m(x)
α′
→ m(z), z ∈ L.

Conversely, assume that there is a strong mono m : L −→ L′ such that for all x ∈ L, there

exists z ∈ L such that m(x)
α′
→ m(z). Define α : L −→ ∏

(L) by α(x) = [z]M , where m(x)
α′
→ m(z).

Let x, x′ ∈ L such that α(x) = [z]M and α(x′) = [z′]M . If x = x′, then α′ ◦m(x) = α′ ◦m(x′). So
by Proposition 3.12 (ii), we obtain [m(z)]M ′ = [m(z′)]M ′ . Hence

(m(z) → m(z′)) ∧ (m(z′) → m(z)) ∈ M ′.

Thus
(z → z′) ∧ (z′ → z) ∈ m−1(M ′).
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It follows from Proposition 3.4 that (z → z′) ∧ (z′ → z) ∈ M . So [z]M = [z′]M . Thus α is well
defined. Moreover, since α′ and m are BL-morphisms, we have

α′ ◦m(0) = α′(0) = [1]M = [m(1)]M .

Hence m(0)
α′
→ m(1), implying α(0) = [1]M . On another hand, let x, y ∈ L such that α(x ∝ y) =

[t]M , α(x) = [u]M and α(y) = [v]M where ∝∈ {∗,→}. Then we have m(x ∝ y)
α′
→ m(t), i.e.

α′ ◦m(x ∝ y) = [m(t)]M ′ . Since α′ ◦m is a BL-morphism, we have

α′ ◦m(x) ∝ α′ ◦m(y) = [m(t)]M ′ ,

i.e.
[m(u)]M ′ ∝ [m(v)]M ′ = [m(t)]M ′ .

Thus m([u]M ∝ [v]M ) = m([t]M ). Since m is a mono, [u]M ∝ [v]M = [t]M and so α(x ∝ y) =
α(x) ∝ α(y). Therefore, α is a BL-morphism. It follows that (L,α) is a

∏
-subcoalgebra of

(L′, α′).

It follows from Remark 3.10 that lBL has no products and then bisimulations cannot be defined
on

∏
-coalgebras. Moreover, since limits and colimits in the categories of coalgebras are carried by

limits and colimits in the base categories, we obtain the following result:

Proposition 3.15. Coalg(
∏

) is not complete, nor cocomplete.

4 Local BL-frames as
∏

-coalgebras

Throughout this section, we fix a set Prop of proposition letters.

Definition 4.1. (1) A local BL-frame is a structure (L, θM ) where L is a local BL-algebra and
M is the maximal filter of L;

(2) A local BL-model is a structure (L, θM , ν) where (L, θM ) is a local BL-frame and ν : Prop −→∏
(L) is a compatible valuation, that is for all x, y ∈ L, we have

(i) ν−1({[x]M ∗ [y]M}) = ν−1({[x]M}) ∩ ν−1({[y]M});

(ii) ν−1({[x]M → [y]M}) = ν−1({[x]M})C ∪ ν−1({[y]M});

(iii) ν−1({[0]M}) = ∅.

Local BL-frames (models) and BL-morphisms form a category which will be denoted by
Fr(lBL) (Mod(lBL)).

Remark 4.2. It is well known that the normal modal logic S5 is characterized by the class of
reflexive, symmetric, and transitive Kripke frames, that is, the frames for S5 are exactly that
Kripke frames in which the accessibility relation is an equivalence relation. Therefore S5 is sound
and complete in the class of local BL-frames.

The validity of modal formulas at a world x in a local BL-model (L, θM , ν) is defined recursively
as:

M, x |= p iff x ∈ ν(p)



Modal representation of coalgebras over local BL-algebras 59

M, x |= ¬φ iff not M, x |= φ

M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= φ → ψ iff not M, x |= φ or M, x |= ψ

M, x |= �φ iff for every y ∈ [x]M ,M, y |= φ

M, x |= ♢φ iff there exists y ∈ [x]M ,M, y |= φ

The truth set of a formula φ in a model M is the set [[φ]]M = {x ∈ L/M, x |= φ}. For any
subset K of L, we define the operators ▹ and �̃ by:

▹K = L \K and �̃K = {x ∈ L/ [x]M ⊆ K}.

By checking the semantics clause above, we have the following result:

Lemma 4.3. For any lBL-model M = (L, θM , ν),

(i) [[p]]M = ν(p);

(ii) [[¬φ]]M = ▹ [[φ]]M;

(iii) [[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M ;

(iv) [[�φ]]M = �̃ [[φ]]M.

The following result shows how to construct modal algebras with any lBL-model M = (L, θM , ν):

Theorem 4.4. For any lBL-model M = (L, θM , ν), define the set

τ(M) = {[[φ]]M , φ ∈ Prop}.

Then the structure (τ(M),∩,∪, ▹, ∅, L, �̃) is a modal algebra.

Proof. Using Lemma 4.3, it is easily checked that (τ(M),∩,∪, ▹, ∅, L) is a Boolean algebra and
that �̃L = L. We only show that �̃ preserves intersections. Let φ,ψ ∈ Prop. We have

�̃([[φ]]M ∩ [[ψ]]M) = {x ∈ L | [x]M ⊆ [[φ]]M ∩ [[ψ]]M} ⊆ �̃ [[φ]]M ∩ �̃ [[ψ]]M .

Conversely, let x ∈ �̃ [[φ]]M ∩ �̃ [[ψ]]M. Then [x]M ⊆ [[φ]]M and [x]M ⊆ [[ψ]]M. Thus for all
y ∈ [x]M , we have M, y |= φ and M, y |= ψ. So M, y |= φ ∧ ψ. By Lemma 4.3 we obtain y ∈
[[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M. It follows that [x]M ⊆ [[φ]]M ∩ [[ψ]]M and so x ∈ �̃([[φ]]M ∩ [[ψ]]M).

For each BL-algebra L, let L denote the carrier.
In what follows, we give a link between local BL-frames and well known Kripke frames:

Proposition 4.5. Let Fr(lBL)∗ be the category of local BL-frames with surjective morphisms.
Then the correspondance U : Fr(lBL)∗ −→ KFr which sends every (L, θM ) to (L, θM )) and acts
on morphisms as identity is a faithful functor.
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Proof. For any local BL-frame (L, θM ), U((L, θM )) = (L, θM ) is clearly a Kripke frame. Let
f : (L, θM ) −→ (L′, θM ′) be a surjective morphism. In order to show that U is well defined, we
have to show that f is a p-morphism. Let x ∈ L and y ∈ f([x]M ). Then y = f(z) with z ∈ [x]M .
So

(z → x) ∧ (x → z) ∈ M.

Thus
f((z → x) ∧ (x → z)) ∈ f(M).

It follows from Lemma 3.6 that

(y → f(x)) ∧ (f(x) → y) ∈ M ′.

So y ∈ [f(x)]M ′ and we have f([x]M ) ⊆ [f(x)]M ′ . Moreover, let y ∈ [f(x)]M ′ . Since f is surjective,
there exists z ∈ L such that y = f(z) and we have

(f(z) → f(x)) ∧ (f(x) → f(z)) ∈ M ′,

that is
f((z → x) ∧ (x → z)) ∈ M ′

so that
(z → x) ∧ (x → z) ∈ f−1(M ′) = M.

Thus z ∈ [x]M . Therefore y ∈ f([x]M ). Hence f([x]M ) = [f(x)]M . So U is well defined. The
functoriality and the faithfulness of U are straightforward.

We present now the result which allows to see local BL-frames as
∏

-coalgebras:

Theorem 4.6. Fr(lBL) is isomorphic to Coalg(
∏

).

Proof. Consider the correspondance F which assigns to each local BL-frame (L, θM ) the pair

(L,L
αL−→ L/M) such that α(x) = [x]M for all x ∈ L and to each BL-morphism f : L −→ L′,

F(f) = f . Let (L, θM ) be a local BL-frame. Since θM is a congruence, α is a BL-morphism and

so (L,L
αL→ L/M) is a

∏
-coalgebra. Moreover, let (L, θM )

f−→ (L′, θM ′) be a BL-morphism. For
all x ∈ L,

α′ ◦ f(x) = [f(x)]M ′ =
∏

(f)([x]M ) =
∏

(f) ◦ α(x).

So f is a
∏

-homomorphism between (L,L
αL−→ L/M) and (L′, L′ αL−→ L′/M ′) . Hence, F is well

defined. By spelling out the definitions, one shows that F preserves composition and identity. Thus
F : Fr(lBL) −→ Coalg(

∏
) is a covariant functor.

Moreover The correspondance G which assigns to each
∏

-coalgebra (L,L
αL−→ L/M) the local

BL-frame (L, θM ) and which acts as identity on homomorphisms is functorial. Finally, Lemma
3.7 allows to prove that the two functors above statisfy the identities F ◦ G = idCoalg(

∏
) and

G ◦ F = idFr(lBL). So Fr(lBL) and Coalg(
∏

) are isomorphic.
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5 Conclusion

One of the main interests of the study of coalgebras is the development of coalgebraic logical
foundations over base categories, as a way of reasoning in a quantitive way about transition
systems. There is a strong link between coalgebras and modal logic. In this paper, we investigate
this relation in the framework of BL-algebras. After the characterization of

∏
-homomorphisms

and
∏

-subcoalgebras, where
∏

is the endofunctor on the category of local BL-algebras and BL-
morphisms which assigns to each local BL-algebra its quotient by its unique maximal filter, we
introduced local BL-frames based on local BL-algebras, and shown that the category of local
BL-frames is isomorphic to the category of

∏
-coalgebras.
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