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Abstract

We investigate the formation and propagation of gap-soliton bullets in fiber-Bragg-

gratings at frequencies close to the gap for Bragg reflection beyond the paraxial approx-

imation. With the help of the Maxwell’s equations, using a multiple-scales analysis, we

derive a two-dimensional (2D) nonlinear Schrödinger (NLS) equation with higher-order

correction terms that consider the nonparaxial regimes in the slowly-varying envelope

approximation. In addition, a fully numerical simulation of the newly derived model

equation is carried out based on the split-step Fourier method, with the initial condition

being a Townes soliton. We demonstrate that the mutual balancing Kerr effet, dimen-

sionality, higher-order dispersions and nonparaxiality allows shape-preserving propa-

gation of gap-soliton bullets in nonlinear periodic waveguides. Next, the modulational

instability of continuous-wave (CW) solutions of the 2D NLS equation with higher-order

correction terms is studied. The standard linear stability analysis is used to investigate

the stability of CW and to obtain the criterion for modulational instability. The analytical

predictions for plane wave stability are confirmed by exhaustive numerical simulations.

Keywords: Gap-soliton bullets, Fiber-Bragg-grating, 2D Nonlinear Schrödinger equa-

tion, Nonparaxial regime, Higher-order dispersion, Townes soliton, Modulational Insta-

bility, split-step Fourier method.
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Résumé

Nous étudions la formation et la propagation des balles de lumière de type solitons

de gap dans des réseaux de Bragg fibrés, à des fréquences proches du seuil de reflexion

de Bragg, au-delà de l’approximation paraxiale. A l’aide des équations de Maxwell, en

utilisant une analyse à plusieurs échelles, nous dérivons une équation de Schrödinger

non linéaire bidimentionnelle, avec des termes de correction d’ordre supérieur, qui con-

sidérent les régimes non-paraxiaux dans l’approximation de l’enveloppe à variation

lente. De plus, une simulation entièrement numérique de l’équation modèle, nouvelle-

ment dérivée, est effectuée sur la base de la méthode de Fourier à pas divisés, la condi-

tion initiale étant un soliton de Townes. Nous démontrons que l’équilibrage mutuel en-

tre l’effet Kerr, la dimensionalité, les dispersions d’ordre supérieur et la non-paraxialité

permettent la propagation, en préservant la forme, des balles de lumière de type solitons

de gap, dans des guides d’ondes périodiques non linéaires. Ensuite, l’instabilité mod-

ulationnelle des solutions d’ondes continues de l’équation de Schrödinger non linéaire

bidimentionnelle avec des termes de correction d’ordre supérieur est étudiée. L’analyse

de stabilité linéaire standard est utilisée pour étudier la stabilité de l’onde continue et

pour obtenir le critère d’instabilité modulationnelle. Les prédictions analytiques de la

stabilité des ondes planes sont confirmées par des simulations numériques exhaustives.

Mots clés: Balles de lumière de type soliton de gap, réseaux de Bragg fibrés, équation

de Schrödinger non linéaire bidimensionnelle, régime non paraxial, dispersion d’ordre

supérieur, soliton de Townes, instabilité modulationnelle, méthode de Fourier à pas di-

visés.

.
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General Introduction

The generation of solitons in optical fibers, predicted by Hasegawa and Tappert [1, 2],

has enabled the generation of stable picosecond and subpicosecond pulses in the near-

infrared. Verification of many of the predicted soliton pulse characteristics was carried

out in a series of experiments by Mollenauer et al. [4, 3, 5]. The field of temporal,

spatial, and spatiotemporal optical solitons emerged from the fundamental studies of

the interaction of intense laser beams with matter. Furthermore, various types of soliton

phenomena have been studied extensively in more nonlinear media, including electrical

transmission line [6], optical fibers [7, 8], Bose-Einstein condensation [9, 10], deep water

waves [11], Langmuir waves [12], DNA [13, 14], metamaterials [15, 16], spatial and vor-

tex solitons in photorefractive materials or waveguides, and cavity solitons in resonators

[17]. It has also been well-known that fiber Bragg gratings (FBGs) [18, 19, 20, 21, 22]

with Kerr nonlinearity can exhibit optical-soliton-like phenomena [23, 24, 25]. FBGs,

which are produced by periodically varying the refractive index along with an optical

fiber, have a large effective dispersion, resulting from the resonant coupling between

the forward- and backward-propagating waves due to the Bragg resonance, with mag-

nitude more significant than the underlying chromatic dispersion of the fiber [26, 27].

Considerable improvement in grating performance has shown that thermal annealing

of the gratings can reduce the loss coefficient smaller than the intrinsic diffraction loss

in the cavity gap required to accommodate the atom [28]. At sufficiently high intensi-

ties, the FBG-induced dispersion may be counterbalanced by nonlinearity resulting in

the formation of Bragg grating temporal [29] and spatiotemporal [30, 31] solitons, cre-

ated in second-harmonic-generating crystals. Indeed, analytical soliton solutions of the

standard FBG model, including exact periodic solutions expressed in terms of Jacobi’s

1



General Introduction 2

elliptic functions sn and cn [32], standing and moving pulses, were reported [23, 24, 33].

A general quantum theory applied to the case of FBG has been developed [34]. The

first experimental demonstration of the optical pulse compression has been presented

in a Bragg grating [35]. In a model of a lossy nonlinear fiber grating which combines

a local gain and an attractive perturbation of the refractive index, it has been demon-

strated that stable pinned pulses show persistent internal vibrations and emission of ra-

diation [36]. Exact solutions, expressed in terms of products of modified Bessel functions

with algebraic functions, describing bidirectional pulses propagating in FBGs have been

found [37]. It has been predicted that gratings permit robust signal amplification for

large wave vector mismatches between pump, signal, and idler [38]. Wavelength selec-

tive amplification and single-mode lasing have been discussed in chirped and apodized

FBGs influenced by parity and time-reversal symmetry [39]. Solitary-wave propaga-

tion in Bragg gratings with a fast saturable absorber [40] and in a FBG that is written

in a slow saturable fiber amplifier, such as an erbium-doped fiber amplifier [41], were

studied. The mean photon number, the second-order photon correlation function, and

the atomic excited-state population have been calculated in a weakly driven FBG cavity

[42]. The force, the friction coefficients, and the momentum diffusion of an atom moving

in a weakly driven FBG cavity have been obtained numerically and analytically [43]. A

gain controlled transition from superluminal to subluminal pulse reflection in pumped

asymmetric FBG below lasing threshold has been investigated analytically [44]. Mod-

ulational instability conditions have been identified in a FBG that is uniformly doped

with two-level resonant atoms [45]. The simultaneous presence of Raman gain, Kerr

nonlinearity, grating dispersion, and Bragg reflection leads to the formation of Raman

gap solitons in FBGs [46]. Moreover, the interplay between gain and loss and higher-

order nonlinearities tailors the formation of gap solitons in a highly nonlinear FBG with

cubic-quintic-septimal nonlinearities [47]. In the presence of the mismatch, the symme-

try breaking bifurcation of gap solitons was investigated in a model including two lin-

early coupled Bragg gratings [48]. The possibility to capture a moving Bragg soliton that

performs persistent oscillations in the cavity bounded by two repulsive defects has been

Ph.D. Thesis of Ambassa Otsobo J.A Laboratory of Mechanics, Materials and Structures



General Introduction 3

revealed [49]. Multifunctional capabilities such as the multiplexing, filtering, and lasing

in a short length of the FBG depending on the different operating regimes have been de-

scribed [50]. The effect and interplay of dispersive reflectivity, group velocity difference,

and the grating-induced coupling on the stability and interactions between quiescent

Bragg grating solitons with dispersive reflectivity have been systematically investigated

in a dual-core fiber [51, 52, 53, 54, 55]. In addition, 2D gap solitons in a Kerr nonlinear

2D waveguide with a Bragg grating in the propagation direction and homogeneous in

the transverse direction have been considered, where the mechanism of trapping at a

special class of nonlinear localized defect modes has been predicted [56].In quasi-one-

dimensional (1D) case, the evolution of envelope waves in nonlinear dispersive media

can be modeled, in the paraxial approximation, by a 1D nonlinear Schrödinger (NLS)

equation with cubic nonlinearity, leading to bright and dark stable soliton solutions,

when the dispersion and nonlinearity effects can effectively balance each other. Solu-

tions to the NLS equation with attractive or focusing nonlinearity, in contrast to repul-

sive, or defocusing nonlinearity, are unstable in three dimensions (3D) and are stable

in 1D. The critical dimensionality for the 2D NLS equation [57] has been derived. For

instance, in optics, propagation of a laser beam through a transparent medium is gov-

erned by the 2D NLS equation, and wave collapse occurs when nonlinear focusing, due

to the intensity-dependent refractive index, overcomes linear diffraction. It has been

shown experimentally that the spatial profile of a collapsing optical wave evolves into a

universal, self similar, circularly symmetric shape, known as the Townes profile, regard-

less of the shape of the initial profile [58, 59]. Thus, the Townes soliton is fundamental

to understanding the self-similar collapse of solutions to the 2D NLS [60] equation. A

great effort has been devoted to searching for systems with stable solitary waves due

to this well-known collapse property in multidimensional configurations. Some ideas

to prevent collapse have been proposed such as using a spatial modulation of the Kerr

coefficient [61, 62], time-dependent nonlinearity [63, 64, 65], modulation of dispersion

[66, 67, 68], addition of mutually incoherent fractions of Townes solitons that are stabi-

lized under the effect of a periodic modulation of the nonlinearity [69], saturation of the
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Kerr response [70], cubic-quintic [71, 72, 73, 74], cubic-quintic-septic [75, 76, 77, 78], and

quadratic [79, 80, 81] nonlinear media, self-induced transparency [82, 83, 84], confined

geometries [85, 86, 87], dipole-dipole interactions [88, 89, 90], feedback control of the

interatomic interactions [91], inclusion of the nonlinear dissipative term [92], gauge po-

tential [93], the Lee-Hung-Yang quartic term [94], magneto-optical control [95], orbital

angular momentum [96], thermal effects [97, 98], polarization coupling [99], parametric

coupling to a weakly radiating harmonic field [100], nonparaxiality. In the following, we

note that so far we have witnessed several research on the propagation of optical beams

in non-linear media which can be described by the parabolic scalar equation [101]. This

equation is derived from the Helmholtz equation in slowly varying amplitude approx-

imations and paraxial approximations. However, the paraxial model has many limita-

tions in realistic applications [102, 103], for example the paraxial approximation overes-

timates the change in nonlinear phase shift nonlinear phase shift for waveguides [102].

Collapses into a singularity (self-focusing point) over a finite distance, which is finite

distance, which is in contradiction with many practical problems [104], diffraction can

generally occur in the transverse and longitudinal directions in 2D media. Therefore,

the assumption of a paraxial beam is not valid. The non-paraxiality is particularly im-

portant when there is miniaturization of the devices. This shows the importance of

including the non-paraxial term in the NLS equation by considering the light propaga-

tions in nanophotonic waveguide devices. Recently, there has been much interest in the

context of the Lax et al. [103], especially on ultra-narrow beams [105] where the non-

paraxial NLS equation term is considered. Blair studied scalar and vector nonparaxial

nonlinear evolution equations for propagation in two dimensions. Temgoua and Kofane

studied nonparaxial scattering waves in optical Kerr media [106], where they demon-

strated that the non-paraxiality increases the intensity of scattering waves by increasing

the length and reducing the width of the peak simultaneously. They also shown that

the non-paraxial scattering waves are faster than those obtained from the standard NLS

equation, with non-paraxiality shifting the highest peak of the scelerate waves from the

center to the periphery. At the same time, non-paraxiality results in the reduction of
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the interaction of spurious waves. Chen, and Shi [107] studied one-dimensional spa-

tial optical solitons with nonlinearity. Then, they show how the degree of non-locality

can affect the width of the non-local soliton beams, but have no effect on their stabil-

ity. Chamorro-Posada et al. [108] studied non-paraxial spatial solitons, which could be

used in miniaturized nonlinear photonic devices. They found an exact solution of the

nonparaxial soliton from which the paraxial soliton is recovered with appropriate lim-

its. The studies of soliton in the non-paraxial limit continues to attract increased interest

from research in recent times, due to its fundamental and applied interest, particularly

in miniaturized photocells. The soliton being a structure that appears everywhere in

nonlinear physics, it could be a subject of great importance for advanced research, in-

tervening in several fields such as nonlinear fiber optics [109, 110, 111], matter waves in

Bose-Einstein condensates , shallow waves [112, 113], molecular biology [114], nonlin-

ear optics of ultrashort pulses [115, 116, 117]. Temporal, spatial and space-time solitons,

have applications in near all-optical routing, and transparencies, and the massive inte-

gration of optical operations in a fully 3D system. So far, we have recorded two different

types of envelope solitons, bright and dark, which can propagate in nonlinear disper-

sive media. In contrast to the bright soliton, which is a pulse on a background of zero

intensity, the dark soliton appears as a trough of intensity in a constant infinitely ex-

tended background. When linear effects (such as scattering, diffraction or diffusion) are

exactly balanced by non-linearity (automatic phase modulation, autofocusing or kinetic

properties, respectively), robust and self-trapped structures solitons can emerge as dom-

inant modes of the system dynamics [118]. We will focus on the process of modulation

instability (MI). The first experimental demonstrations of the implementation of MI in

an optical fiber date from the early 1980s [119]. This phenomenon is at the basis of many

complex nonlinear effects such as the generation of pulse trains [120].

The main objective:

By means of the multiple-scales analysis, we derive a new 2D nonlinear Schrödinger

equation with higher-order correction terms that consider the nonparaxial regimes in

the slowly varying envelope approximation at frequency close to the gap for Bragg re-
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flection. Specific objectives: − Investigating the formation and propagation of gap-

soliton bullets in nonlinear periodic waveguides at frequencies close to the gap for Bragg

reflection beyond the paraxial approximation.

− The standard linear stability analysis is used to investigate theoretically the stability

of continuons-wave solution and to obtain an expression for the modulational instabil-

ity gain spectrum.

− Direct numerical simulation of the new 2D nonlinear Schrödinger equation with

higher-order correction terms are performed to support the analitycal predictions.

To reach the above to mentioned aims, the remainder of this thesis is organized as fol-

lows: Chapter 1 is devoted to the review of the literature on generalities related to the

propagation of light in an optical fiber. The following concepts will thus be discussed:

different types of soliton and their importance, Bragg gratings, optical fiber, the optical

fiber in optical communication systems, linear and nonlinear effects, chromatic disper-

sion.

Chapter 2 is devoted to the models describing the wave dynamics in the fiber Bragg

gratings in the nonparaxial regime. We also present some analytical and numerical

methods used in our studies.

Chapter 3 presents the main results of this thesis. These results concern the self-

organization of the gap-soliton bullets in nonlinear periodic waveguides, modeled by

the 2D nonlinear Schrödinger equation beyond the paraxial approximation. Then, we

relate the formation of the gap-soliton bullets to the modulation instability of a uniform

state beyond de paraxial approximation. Direct numerical simulations of the 2D non-

linear Schrödinger equation beyond the paraxial approximation are performed and the

space-time evolution of wave amplitude is displayed, showing the generation of gap-

soliton bullets for modes predicted to be unstable The present thesis ends with a general

conclusion. We summarize our results and give some future directions that could be

investigated.
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CHAPTER I

LITERATURE REVIEW

I.1 Introduction

In this chapter, we describe the characteristic of the nonlinear optical fiber. In particular,

we present results about optical losses, chromatic dispersion, optical Kerr effect, tempo-

ral, spatial and spatiotemporal solitons. We focus on the propagation of light in fiber

Bragg gratings.

I.2 General information on optical fibers

The optical fiber is a dielectric waveguide, made primarily of fused silica (SiO2). Gen-

erally and schematically, an optical fiber is a very thin glass or plastic wire that has

the properties of being a conductor of light and is used in data transmission. It offer a

much higher information rate than coaxial cables, and can be used to support a network

through which television, telephone, video conferencing or computer data can be trans-

mitted. The principle of the optical fiber was developed during the 1970s in the labora-

tories of the American company Corning Glass Works (now Corning incorporated).An

optical fiber is made up of 3 concentric elements, represented on the Figure(1.1) a cylin-

drical core of a few meter, diameter (a) and optical index nc. It is in this area, made of

glass, that the light is guided and propagates along the optical fiber; an outer cladding

of larger diameter (b); and index ng, which is a layer of glass that surrounds the core,

while a protective plastic cladding wraps the whole. Light guidance into the fiber core

is provided by total reflexion at the core-cladding interface and obtained when the re-

fractive index is higher than that of the optical cladding. Since the core and cladding are

essentially fused silica, the difference in index between these two parts is achieved by

7
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Figure 1: Optical fiber
[121].

adding dopants. There are two types of optical fiber, among which the multimode fiber.

This type of fiber is said to be multimode because light propagates according to several

modes, i.e., it can follow several paths inside the core, then we have the single-mode

fiber; in this case, the optical fiber is said to be single-mode because, due to the very

small size of the core(9m), there is only one mode of light propagation.

I.2.1 Optical losses

Light transmission through optical fibers uses the principle of total reflexion at the core-

cladding interface. Although today new technologies have greatly improved the min-

imization of guiding losses, there are inevitably intrinsic losses due to Rayleigh diffu-

sion of light by silica [123], due to localized variations in the refractive index, created

by changes in density or composition that appeared at the time of solidification of the

material. This diffusion results in the propagation of part of the incident energy in all

directions of space, this at any point of the optical fiber. If a power P0 is injected within
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Figure 2: Multimode fiber: here the light can follow paths inside the core
[122].

Figure 3: Single-mode fiber: in this case, there is only one mode of light propagation
[122].
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an optical fiber of length l, the power effectively transmitted PT will be expressed by

[124] :

PT = P0exp(−αlL), (I.1)

where αL denotes the linear loss coefficient of the fiber. The αL coefficient is usually

expressed in decibels per kilometer (dB/km), and is given by [125] :

αdβ = −10

L
log

(
PT
P0

)
≈ 4, 343αL. (I.2)

Fiber losses depend on the wavelength of light. Silica fiber exhibits a minimum loss

of about 0.2dB/km near 1, 55µm. It is found that the Rayleigh diffusion decreases with

wavelength in 1
λ4

. This imposes a fundamental limit on optical losses. Other factors

of optical losses can be the cause of intrinsic losses in the fiber, such as the presence of

OH− ions, due to the manufacturing process of impurities, which are responsible for an

absorption peak around 1400nm. The curvature of the fiber or various resonances can

also cause an increase of the losses in the fiber.

I.2.2 Chromatic dispersion

When an electromagnetic wave propagates in a dielectric material, it interacts with the

electrons bound to this material. The chromatic dispersion expresses the fact that the

response of this medium, and in particular, its refractive index n(ω) , depends on the

frequency of the incident wave. Far from the resonance frequencies of the material,

the dependence of the refractive index on the pulsation can be evaluated with a good

approximation thanks to the Sellmeier equations given by

n2(ω) = 1 +
m∑

j−1

βjω
2
j

ω2
j − ω2

= 1−
∑ βjλ

2

λ2 − λ2j
, (I.3)

where ωj , λj and βj represent the pulsation, the wavelength in vacuum, and the ampli-

tude of the jth resonance, respectively. As the speed of propagation of a monochromatic
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wave in a medium of index n(ω) is given by c
n(ω)

(with c : celerity of light in vacuum),

a light pulse composed of several spectral components and traveling within an optical

fiber will see its spectral components propagate at different speeds, to finally generate a

spread of the pulse. We see here the dramatic consequences that chromatic dispersion

can have on a system of transmission of information by optical fibers and the immediate

interest for the Telecom to find a way to overcome it. Traditionally, the scientific com-

munity accounts for the effects of dispersion by developing the constant of propagation

β(ω) in Taylor series around the frequency of the carrier ω(0), as follows

β(ω) =
ω

c
n(ω) = β0 + β1(ω − ω1)+

1

2
β2(ω − ω0)

2 +
1

6
β3(ω − ω0)

3 + ...,

(I.4)

where β0 = β(ω0) and βm =
(
∂mβ
∂ωm

)
ω=ω0

for m = 1, 2. We may notice that the parameters

β1 and β2 are intuitive physical quantities in the sense that β1 simply reflects the speed

at which the pulse energy propagates. Indeed β1 parameter has the inverse of the group

velocity vg and is expressed as:

β1 =
1

vg
=

1

c

(
n + ω

∂.n

∂ω

)
. (I.5)

The coefficient β2 represents the dependence of the speed of energy propagation on the

frequency of the wave. It is the chromatic dispersion parameter of order 2, essential data

for the characterization of optical fibers and essential for engineers designing telecom

systems. β2 is expressed in ps/km.nm and is given by:

β2 =
∂β

∂ω
= − 1

v2g

∂vg
∂ω

. (I.6)

β2, also represents the variation of the group velocity with respect to frequency. It is

commonly called the group velocity dispersion coefficient (GVD). However, the tele-

com scientific community prefers the parameter D which is expressed in ps/km.nm and
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replaces β2 in the literature. The two parameters are related by:

D = −2πc

λ2
β2. (I.7)

In general, D is the sum of two contributions: the chromatic dispersion of the material

Dm and the dispersion of the guide Dg [126]. For pure silica, the Dm dispersion cancels

out near a wavelength of 1.27m, while Dg depends essentially on the geometric charac-

teristics of the optical fiber. Howerver, the contribution of the guide only slightly shifts

the zero dispersion wavelength λ0 which is generally around 1.3m for standard index

hopping fibers. The zero dispersion wavelength then allows to define two propagation

regimes separated by λ0 . The first dispersion regime is qualified as abnormal (D > 0).

The spectral components of lower frequency then propagate faster than the high fre-

quency components and this conversely for the second regime, qualified as normal and

for which D < 0 . This value of λ0 can easily be modified by changing the nature and

quantity of the dopants (e.g. GeO2 or P2O5) introduced into the fiber during its man-

ufacture, but also by changing the fiber index profile. As a consequence, the current

scientific and technological knowledge allows manufacturers to have a very complete

range of optical fibers which allows them to design telecom systems with zero, positive

or negative dispersion fibers, but also to choose the sign of the dispersion slope.

I.2.3 Optical Kerr effect

The incident field induces a displacement of the charges and consequently a polarization

occurs within the material [127]. If this field is of low intensity compared to the atomic

field of the material and sufficiently far from its resonance frequencies, the response of

the medium is proportional to the incident field. We are then in the presence of a linear

response. That is to say that the polarization induced by the external field has the same

frequency as the field that gave rise to it, with an amplitude that is proportional to it.

As nature loves complexity, most observable phenomena can be qualified as nonlinear

if their origin is sufficiently important. In the case of a light wave, if the amplitude of the
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incident field becomes too large, the response of the material is no longer simply propor-

tional to the initial field but involves different harmonics and will therefore be qualified

as nonlinear. Assuming that the fiber is isotropic and that the initial electric field
−→
E is

rectilinearly polarized, the polarization resulting from the wave-matter interaction can

then be expressed as a power series expansion of
−→
E . This series is generally seen as

the sum of two contributions: a first term called linear
−→
PL , because it is proportional to

the incident field, and a second term called nonlinear
−−→
PNL, because it is proportional to

higher orders of
−→
E . The polarization finally takes the following form:

−→
P =

−→
PL +

−−→
PNL = ǫ0χ

(1)−→E +
3ǫ0
4
χ(3)|E|2−→E + ..., (I.8)

where χ(1) and χ(3) are the first- and third-order susceptibility tensors of fused silica, re-

spectively. We notice the absence of the second-order susceptibility tensor χ(2) in Eq. (I.8)

indeed, the optical fiber being composed of fused silica in the form of an amorphous

glass, there is no preferred direction of orientation of the molecules. Therefore, the mi-

croscopic susceptibility tensors of order 2 are randomly directed and compensated on

average, which cancels the macroscopic susceptibility tensor χ(2) . Finally, in a homo-

geneous optical fiber, the third-order susceptibility tensor χ(3) will be the source of the

smaller-order nonlinear effects. In order to highlight the linear and nonlinear effect, we

rewrite Eq. (I.8) as follows.

−→
P = ǫ0

[
χ(1) + ǫNL

]−→
E , (I.9)

with

ǫNL =
3

4
χ(3)|E|2. (I.10)

Knowing that the polarization and the refractive index are closely related by the follow-

ing Maxwell relation:

−→
D = n2−→E = ǫ0

−→
E +

−→
P , (I.11)
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we deduce that, at a given pulsation, the refractive index n is given by :

n2 = 1 + χ(1) + ǫNL = (n0 +∆nNL)
2 ∼= n2 + 2n0∆nNL. (I.12)

By using n0 =
√
1 + χ(1), it finally comes that, at a given pulse ω [128] :

n(ω, |E|2) = n0(ω) + n2|E|2, (I.13)

where n2 represents the nonlinear refractive index coefficient given by :

n2 =
3

8n0

χ(3). (I.14)

We can clearly see in Eq. (I.13) that the linear part of the polarization is responsible for

the dependence of the refractive index on frequency, while the nonlinear part generates

a dependence of the index on the intensity I, a phenomenon known as the optical Kerr

effect [129]. Knowing that I = aE2, with a = 1/2cn0ǫ0 , the refractive index can be

rewritten as follows:

n(ω, I) = n0(ω) + nI2I, (I.15)

with nI2 = n2/a ; For a standard Telecom fiber, nI2 is typically worth to 2.7 × 1020m2/ω

[130]. For an incident intensity of 1GW/cm2, ∆nNL will therefore be worth about 2.5 ×

10−7, which is still much lower in front of n0 = 1.45, for fused silica. The optical Kerr

effect or intensity dependence of the refractive index is ultimately responsible for many

of the effects that we will detail later, such as self-phase modulation, cross-phase modu-

lation, mixing at modulation instability or the existence of pulses.

I.3 Linear and nonlinear responses of the medium

A light wave is composed of an electric field and a magnetic field which vary sinu-

soidally at high frequency. When light propagates in a material medium, it will induce
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charge displacements within the material. In a dielectric medium, the charged particles,

which in this case are electrons, will oscillate in the applied electric field. They form

electric dipoles. The contributions of the magnetic field component of the wave and of

the quadrupoles are much smaller and are usually neglected. This is the electric dipole

approximation. The responses of the oscillating dipoles add up to the macroscopic po-

larization
−→
P , which describes the light-matter interaction. In a non-magnetic medium,

this vector can be written as functional
−→
P =

−→
P (

−→
E ). To account for this explicitly in the

development, the constitutive equations of the medium are introduced :

−→
D = ǫ0

−→
E +

−→
P ,

−→
B = µ0

−→
H.

(I.16)

When the wave is not very intense, i.e. for small amplitudes of the applied electric

field, the charges can follow almost exactly the oscillations of the field, and the relation

between the field
−→
E and the polarization

−→
P is essentially linear. In other words, the

effects are proportional to the causes. When the amplitude increases, the motion of the

charges will no longer be a replica of the applied field, and the nonlinear contributions

become important. As long as these new terms remain small compared to the linear

term, the polarization
−→
P can be developed as a power series of the electric field

−→
E . In

silica optical fibers, this expansion is given by:

−→
P (−→r , t) = −→

P 1(−→r , t) +−→
P 3(−→r , t), (I.17)

−→
P 1(r, t) = ǫ0χ

1−→E , (I.18a)

−→
P 3(r, t) = ǫ0χ

3...
−→
E
−→
E
−→
E . (I.18b)

This is indeed the case when each higher order term is much smaller than the lower

order terms preceding it. In the range of wavelengths of interest (typically 0.5µm to

0.2µm), this assumption is verified because we are far from the resonances of the medium.
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We can better understand the importance of polarization in the medium if we remem-

ber that any oscillating dipole also emits radiation, at its oscillation frequency. It thus

modifies the optical field which induces the polarization. Thus, the first term takes into

account the linear response of the medium, at the frequency of the applied field. The

quadratic term is zero here, because the silica has an inversion symmetry. The second

term of the developement is therefore cubic in field. It represents the nonlinear response

of silica, responsible in optical fibers for the four-wave mixing process and the Kerr ef-

fect. These two effects are of primary importance at any level in our thesis work. Finally,

higher order nonlinear terms are usually neglected because their effects are very small

far from the resonances. To account for causality (the response at time t affects the field

at time (t + τ) and the possible nonlocality of the response
−→
P (the response at a point

−→r affects points in −→r +−→ρ ), each term in the series (I.8) is in fact a double integral over

time (from −∞ to t) and over the spatial coordinate r (over a volume V around the point

under consideration). The response function of the medium is thus contained in the di-

electric susceptibility tensors χ(1) and χ(3) . A number of symmetries exists within the

susceptibility tensors, which lead to their simplification. The most important symmetry

is that of the medium because it imposes a specific symmetry on the optical response. In

particular, we have already pointed out that the nonlinear quadratic response (χ(2)) is

zero, since silica is a symmetric center medium. We will see later Eq. (I.5), the other

symmetries to be considered in optical fibers, and maintain for now the generality of

the tensor. We still assume that the light waves treated here can be considered as quasi-

monochromatic. In practice, this approximation is valid as long as the envelope of the

waves varies in a time of the order of 100fs at least [131]. The electric field of an elec-

tromagnetic wave whose spectrum is centered around the frequency ω and the linear

optical response can be written in terms of their complex spectral amplitudes
−→
E (−→r , ω)

and
−→
P (1)(−→r , ω):

−→
E (−→r , t) = 1

2

[−→
E (−→r , ω)

]
e−iωt +

1

2

[−→
E (−→r , ω)

]∗
eiωt, (I.19)
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−→
P (−→r , t) = 1

2

[−→
P (1)(−→r , ω)

]
e−iωt +

1

2

[−→
P (1)(−→r , ω)

]∗
eiωt. (I.20)

In this form, it immediately appears that the electric field
−→
E (−→r , ω) and the linear polar-

ization
−→
P (1)(−→r , ω) remain real quantities. In the spectral domain, we can then show that

[132] the spectral amplitude of the linear polarization becomes

−→
P

(1)
i (−→r , ω) =

[
χ
(1)
ij (ω)

]−→
E j(

−→r , ω) + Γ
(1)
ijz(ω)∇⊥

−→
E j(

−→r , ω), (I.21)

with χ
(1)
ij (ω) = ǫij(ω) − δij : δij is the Kronecker symbol and ∇⊥ defines a gradient in

the direction orthogonal to the propagation direction z. In this equation, the indices refer

to the spatial coordinates (x, y, z); repeated summation over all successive indices is in

order although it is not explicited here, in order to lighten the notations. We will keep

this notation in the following. In the linear constitutive equation (I.21), we have sepa-

rated the local response χ
(1)
ij (ω) from the nonlocal optical response Γ

(1)
ijz of the medium.

In silica, the local response results in temporal dispersive effects-chromatic dispersion-

and spatial dispersive effects-linear birefringence-, while the nonlocal response of the

medium is the cause of the optical activity or circular birefringence of the fiber, pose the

following equation:

−→
P (−→r , t) = 1

2

[−→
P (3)(−→r , ω)

]
e−iωt +

1

2

[−→
P (3)(−→r , ω)

]∗
eiωt. (I.22)

Similarly, it can be shown that the constitutive equations for the complex amplitude

components of the nonlinear polarization take the following form:

−→
P

(3)
i (−→r , ω) =

[
ǫ0χ

(3)
ijk(ω)

]−→
E j(

−→r , ω)−→E j(
−→r , ω)−→E k(

−→r , ω)−→E l(
−→r ,−ω) (I.23)

To obtain Equations (I.9) and (I.18), we made a number of assumptions. First, we re-

tained only the electric field components of the same frequency (unsigned). Only ω

terms and third harmonics in 3ω then remain. In Equation (I.21), we further assumed

that the latter terms oscillate rapidly and are therefore negligible (away from the phase
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tuning conditions,
−→
P

(3)
i ((−→r , 3ω) = 0). We performed a previously implicit summation

over all permutations of the frequencies ω and −ω of the components
−→
E j ,

−→
E k and

−→
E l

as long as they produce a response at frequency ω. Finally, we considered the nonlinear

response as instantaneous. The electronical contribution to the nonlinearity indeed has

an estimated response time of a few femtoseconds at most, while the delayed molecular

contribution that we neglect here has a time on the order of 60-70 fs in silica [133]. Fi-

nally, we have omitted the non-local contribution of the cubic nonlinear response, which

can be perfectly neglected in the present contexte. Then, using the constitutive equa-

tions for the linear and nonlinear polarizations, the propagation equation of the light

waves in the silica fibers can be rewritten for each component
−→
E i of the complex ampli-

tude of the electric field as follows:

∆
−→
E i(

−→r , ω) + ω2

c2
−→
E i(

−→r , ω) = −µ0ω
2−→P (n)

i (−→r , ω). (I.24)

I.4 Historical reminder (Bragg gratings)

The Bragg grating is a passive photo-induced filter in the core of an optical fiber, allow-

ing the selective reflection of wavelengths. It consists of a periodic longitudinal pertur-

bation of the refractive index of the fiber core. When the light propagates in the optical

fiber, the network reflects wavelengths that verify the relationship:

λ = 2neffΛ. (I.25)

Λ: is the period of the index modulation. This index modulation is obtained by expos-

ing the core of the fiber to an intense interference pattern, created from an ultraviolet

laser, which excites defects in the core of the optical fiber and modifies the glass. This

exposure has the effect of increasing the refractive index of the regions exposed to high

intensities. The first gratings inscribed inside an optical fiber were produced in 1978

in Ottawa at the Communications Research Center by Hill et al; [134, 135]. These re-
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searchers observed that the injection of a high power single mode argon ion laser into

a germanium doped fiber led, after a certain exposure time, to the partial reflection of

the injected light. By performing spectral measurements, they noticed that the reflection

of the grating was very selective and that the maximum reflection corresponded to the

wavelength of the injected laser. The inscribed grating was formed due to the presence

of a standing wave created by the injected light and the light reflected from the fiber tip.

This type of guided injection network has been called ”Hill’s network”. Further work on

the training of photo-induced structures in the fiber, using lasers emitting in the visible

range, demonstrated that the change in the refractive index was caused by the forma-

tion of defects and that this process was based on two-photon absorption. Over time,

several other grating methods have been developed to increase the efficiency and to of-

fer more flexibility in the choice of the spectral response of the gratings. Indeed, Hill’s

gratings only allowed to reflect the wavelength corresponding to the wavelength of the

laser used for the inscription. These methods use the ultraviolet transparency of the fiber

cladding to inscribe the grating by transverse exposure of the core. Thus, an ultraviolet

laser can be used for writing while still obtaining gratings that reflect wavelengths in

the infrared spectrum. It should also be noted that the use of the ultraviolet laser, with

a wavelength of 244 nm, allows the formation of defects in the glass matrix with a sin-

gle photon absorption. In this way, the defects no longer depend on the probability of

interaction between two photons to form the defects, which accentuates the number of

defects produced and consequently the change induced in the refractive index. These

types of gratings are called type 1 photo Bragg gratings. Typically, the interference pat-

tern used to write Bragg gratings is obtained with a diffractive element called a phase

mask. The use of this element offers the possibility to modify the period of the inscribed

grating without modifying the wavelength of the writing laser. This manufacturing

method has allowed the Bragg gratings to build a niche in the field of optical telecom-

munications, as they are very selective in wavelength. Different applications of these

filters have emerged such as: optical channel selector, external laser diode stabilizer,

chromatic dispersion compensator, gain equalizer external stabilizer of erbium optical
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Figure 4: Diagram of a Bragg grating and their spectra
[136].

amplifiers and different types of optical sensors.

I.4.1 Types of short step right Bragg gratings

Generally speaking, a Bragg grating is a periodic modulation of the index ∆neff(z) of

the fiber core. This index perturbation can be formulated as follows [137]:

∆neff(z) = ∆neff(z)

(
1 + v(z) cos(

2Π

Λ
(z) + θ(z))

)
. (I.26)

∆neff(z) is the average change in the visible refractive index, v(z) is the apodization of

the modulation, Λ is the period of the modulation, θ(z) is its phase. In this way, we can

identify simulations of different types of gratings whose index modulation is shown in

Figure 5.

a) Uniform gratings: ∆neff (z), θ(z) and v(z) are constants and do not vary with z.

b) Variable pitch (chirped) gratings: θ(z) is non-zero, the pitch of the grating varies with

z.

c) Variable amplitude gratings: ∆neff (z) varies as a function of z in a Gaussian fashion.

Ph.D. Thesis of Ambassa Otsobo J.A Laboratory of Mechanics, Materials and Structures



Literature review 21

Figure 5: : Index modulations of different types of networks. (a): Uniform network, (b):
Variable pitch network, (c): Variable amplitude network, (d): apodized network, (e):
Phase jump network, (f): Sampled network

[138].
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d) Apodized gratings: v(z) varies in a sinusoidal fashion and ∆neff(z) is constant.

e) Phase-skipped gratings: the phase θ(z) varies discontinuously in places, in bursts.

f) Sampled gratings : v(z) varies in a periodic manner. Several methods exist to describe

the behavior of Bragg gratings in order to characterize them and to calculate the reflec-

tivity of the Bragg grating fiber. Among them, we can cite:

⋆ Rouard’s method in which the grating is divided into several uniform planes (thin

layers) in order to calculate the reflectivity, even for complex shapes. Its main disad-

vantage being the very long computation time [139].

⋆ Gel’Fand-Levitan-Marchenko’s inverse scattering method, based on the coupled mode

theory, and which aims to design optical filters with specific properties [140].

⋆ The Bloch theory method which consists in finding the exact eigenmodes of the Bragg

grating [141],

⋆ The method of coupled modes associated with Marcuse [142], Snyder [143], Yariv

[144] and Kogelnik [145], which has been chosen for this work thanks to its index.

I.4.2 Modeling of fiber Bragg gratings (coupled mode theory)

To apply this theory in the case of Bragg gratings, it is necessary to consider that the

fiber is single mode, lossless and that the interaction takes place only between contra-

propagating modes. The difference between the refractive indices of the core and the

cladding being very small, we consider that the electric and magnetic fields propagate

in the optical axis of the fiber. The difference between the refractive indices of the core

and the cladding being very small, we consider that the electric and magnetic fields

propagate in the optical axis of the fiber, which allows us to neglect the polarization

effects due to the structure of the fiber [146]. Thus, we consider a Bragg grating with

L, the length of the grating, Λ, its pitch, neff , the refractive index of the guided mode,

and λβ the Bragg wavelength, schematically shown in Figure 6. They propagate in

the optical axis of the fiber, allowing polarization effects due to the fiber structure to

be neglected [147]. From the theory of coupled modes, we can derive the well-known
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system of equations describing the evolution of the amplitudes of the U(z) and V (z)

fields propagating in the Bragg grating given by :

dU

dz
= iσ(z)U(z) + ik(z)V (z), (I.27)

dV

dz
= −iσ(z)V (z)− ik(z)U(z), (I.28)

where k(z) = Π
λ
v(z)∆neff(z) represents the general coefficient of the alternating cou-

Figure 6: : Propagation of the fields through the Bragg grating
[148].

pling (AC), which determines the energy exchange between the modes such that: σ =

2πneff

(
1
λ
+ 1

λβ

)
+

2Π∆neff (z)

λ
− 1

2
dθ
dz

, which represents the general coefficient of the mean

coupling (DC). The first term gives the initial tuning (detuning wave vector) of the two

modes independent of z. The second term describes the absorption loss in the grating.

The third term is a possible chirp in the case of variable pitch gratings. The confinement

factor is considered to be 0.8 (case of a single mode optical fiber).
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I.5 Application of Bragg gratings to telecommunication

Photo inscribed Bragg gratings in optical fibers have become indispensable for amplifier

gain equalization, pump or source wavelength stabilization, and fiber lasers. Their ma-

jor advantages are low insertion loss, very low polarization sensitivity and extremely

flexible design. These advantages also make them very attractive candidates for com-

plex filtering or fine chromatic compensation applications.

I.6 Filtering and multiplexing

The reflection coefficient is proportional to the Fourier transform of the longitudinal

profile of the refractive index. The filtering spectrum can then be obtained, by adjusting

the grating period and the refractive index variation, for high adjacent channel rejects,

rectangular shape. Today, advanced FBG writing techniques allow the realization of al-

most any desired spectral shape by controlling the phase response. FBGs are therefore

excellent candidates for future complex WDM systems, but with inexpensive filters to

adapt to this design. An example of a previously demonstrated filter containing 25 or

12.5 GHz channel spacing simultaneously showing rectangular shapes and zero disper-

sion has been reported [149]. The short period Bragg grating reflects light near the

Bragg wavelength and remains transparent to others. To be used in a grating, the Bragg

grating must be associated with another component with multiple inputs and outputs to

extract the useful signal. Generally, this component is a circulator. However, circulators

are expensive and it is possible to replace them by fiber devices like a Mach-Zhender

interferometer, where the same Bragg grating is printed on both arms [150].

I.6.1 Optical filter

An example of the application of the Bragg grating as an optical filter, in association

with a Fabry-Perot, is described in this example:
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Filter composed of a Bragg grating

A filter is based on a Bragg network printed on fiber, on an optical circulator and on a

Fabry-Perot : the input signal is reflected by the FBG and directed through the circulator

to the Fabry-Perot. So, the global filter consists of the cascading of two independent

filters. Each is characterized by its own transfer function TFBG(f) and TFFP (f). The

global transfer function is: T (f) = TFBG(f)TFFP (f).

I.7 Observation of a solitary wave and its consequences

John Scott Russell is mainly a mathematical engineer and naval architect. But his name

is well-known today to mathematicians for his experimental discovery of the solitary

wave. He noted the propagation in a narrow and shallow channel of this ”translation

wave” over several kilometers. Following this observation, Russell carried out several

experiments using an artificial channel, testifying to his conviction of the unknown char-

acter of this phenomenon. He was able to determine the typical hyperbolic secant shape

of the solitary wave as well as the relationship between its speed and amplitude. Rus-

sell’s experimental work helped stimulate a renaissance in theoretical hydrodynamics

in Great Britain. George Green, George Airy, Philip Kelland and Samuel Earnshaw all

tried to describe the solitary wave theoretically, but without success. Airy objected to

Russell’s emphasis on his ”great primary wave”, arguing that it was neither great nor

primary, but just a consequence of the shallowness of the water. G. G. Stokes was more

cautious, but also doubted that a solitary wave could propagate without a change of

form. An approximate but nevertheless correct theory was finally given by Boussinesq

(1871) and Rayleigh (1876). But, it was not until the work of Korteweg and de Vries [151]

in (1895), who discovered the nonlinear equation describing the propagation of long

wavelength waves on the surface of a narrow, shallow channel, that this quarrel came

to an end. The full meaning of the solitary wave and its generalization were first estab-

lished in 1965 by Zabusky and Kruskal [152], who managed to show that the equation
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known as the Korteweg-de Vries equation admits soliton solutions which were the one

of Russell. Beyond this first and formidable observation of the hydrodynamic soliton,

many researchers turned to this new era of research: nonlinear physics. Benefiting from

mathematical tools which have become essential, they were able, from the beginning of

the 70’s, to explore this domain in all physical fields. Since the advent of the laser, new

optical effects, depending on the intensity of the light, have been demonstrated. They

are grouped under the term ”nonlinear optics”. In particular, they allow the interaction

between light beams through the media they pass through. They allow to imagine real-

izations of all-optical devices, in particular in the field of telecommunications and signal

processing.

I.7.1 The optical solitons

Any impulse or wave packet has a natural tendency to spread out during its propagation

in a medium. In optics, a wave localized in space or in time can undergo a spreading,

either of its temporal envelope or its spatial dimensions or even of both simultaneously.

For a temporal pulse, the spreading is due to chromatic dispersion: the different fre-

quency components, which constitute the pulse, travel at different speeds. Depending

on the nature of the dispersion itself (positive or negative), the front of the pulse will

therefore travel faster or slower than the back of the pulse, resulting in chromatic spread-

ing. A spatial pulse, preferably called a beam, will undergo spreading under the natu-

ral influence of diffraction. An optical soliton [153] is therefore simply the self-induced

compensation of these spreads. In a linear medium, various technological processes can

be used to remedy the natural dispersion, either temporal or spatial. Spatially, the most

common method is the use of waveguides. In such structures, characterized by a local

variation of the refractive index, the propagation behavior of a beam is modified by a to-

tal internal reflection at the boundary between a region with a high index and one with a

lower refractive index. Under certain conditions related to the constructive interference

between the different reflections, the trapped beam forms a guided mode. An example
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of a waveguide is the planar dielectric guide, which is commonly called a (1+1)-D or

1D guide, because in this case, we consider a propagation axis and a single transverse

guiding axis. An optical fiber is therefore a (2+1)-D guide. But, for some materials with

nonlinear optical qualities, i.e. whose properties (refractive index or absorption) can

be modified by the presence of light, the propagation of optical pulses (in space or in

time) can be altered. In particular, if the refractive index of the medium is modified by

the light, it is possible under certain conditions to eliminate the broadening temporal

or spatial of the pulse. This occurs when the effect of chromatic dispersion or diffrac-

tion is counterbalanced by the effect of the self-induced change in the refractive index.

We speak then of optical temporal solitons in the case of compensation of chromatic

dispersion and optical spatial solitons when the diffraction of the beam is neutralized.

Moreover, in linear optics, two beams or pulses can cross each other without interact-

ing. In nonlinear optics, it is quite different because the medium is sensitive to the total

intensity of the coupled field and therefore depends on the amplitudes of the different

components present. Solitons, although existing in the nonlinear regime, have the ex-

traordinary property of being able to survive a crossing by preserving their energy, their

momentum and their shape. This is an essential property of the soliton whose behav-

ior is similar to that of particles. Mathematically, this property is based on the fact that

the differential equations to which the propagation obeys are integrable. The integra-

bility in this sense defines an exact analytical solution. Note that in optics, this case

is restrictive to scalar Kerr solitons managed mathematically by the one-dimensional

Nonlinear Schrdinger (NLS) equation defined by Zakharov and Shabat [154] in 1972. It

is therefore necessary to remember that the set of other nonlinear equations which are

non-integrable, gathers the class of solitary waves as a solution, representing a much

larger family which does not benefit from a corpuscular type of stability, such as the in-

elastic collision of two entities. The difference between solitary wave and soliton wave

is generally made, but we will use the name ”soliton” during the whole manuscript to

describe a phenomenon which does not undergo a variation of its envelope during its

propagation and which benefits from stability properties.
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The temporal solitons

In the case of temporal solitons, it is a question of compensating for the natural dis-

persion of the propagation medium by means of the nonlinear effect : the dispersion

is become a way to protect against channel imperfections, because of its insensitivity

to small perturbations. On the other hand, this technique creates new problems due,

among others, to the coupling with the noise curves (modulation instability) or the po-

larization instability. Theoretically, the dynamics of the nonlinear propagation of tempo-

ral solitons is governed by the NLS equation, which belongs to the remarkable class of

integrable nonlinear equations, and which can be solved exactly for an arbitrary initial

state by means of the inverse scattering method. The solutions depend on the sign of the

dispersion β2, that is,

β2 = − 1

v2g

∂vg
∂ω

=
2

c

∂n

∂ω
+
ω

c

∂2n

∂ω2
, (I.29)

where vg is the group velocity, n is the effective index of the mode and ω the frequency

of the wave. This coefficient can be either positive (normal dispersion) or negative (ab-

normal dispersion). In the presence of a Kerr-type nonlinearity (of nonlinear index n2), a

pulse undergoes a nonlinear phase shift ∆ϕ = k.n2.I.L , after propagation over a length

L. This phase shift depends on the light intensity I and is therefore larger at the cen-

ter than at the front and back of the pulse. By definition, the derivative of this phase

shift gives the variation of the instantaneous frequency d∆ϕ
dt

= ∆ω, due to the nonlinear-

ity and thus, the frequency shift. It is therefore possible to obtain a soliton pulse if the

nonlinear frequency shift exactly compensates for the chromatic dispersion. There are

therefore two cases where we can observe temporal solitons. In the anomalous disper-

sion regime (β2 ≺ 0 ) in the presence of a positive nonlinearity. This is the most common

case encountered, in particular, in optical fibers that possess an anomalous dispersion

regime, for λ ≥ 1.3µm , in the transparency band, thanks to the contribution of modal

dispersion. The second combination that yields a temporal soliton corresponds to the

combination of a negative nonlinearity and a propagation medium of normal disper-

sion (β2 ≻ 0 ) [155]. In the other two cases, the nonlinearity only enhances. The linear
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dispersion results, in an even larger temporal broadening of the pulse. Figure 7 illus-

trates the temporal soliton principle in the case of anomalous dispersion. In the linear

regime (a), the higher frequencies in the spectrum propagate faster than the lower fre-

quencies so that the pulse arrives distorted after propagation.The nonlinear effect (b)

will produce a frequency shift resulting in the slowing down of high frequencies and

the acceleration of low frequencies (pulse front) We can see that the nonlinear phase

Figure 7: : Schematic diagram of soliton propagation in fibers. The non-linearity of
the fiber produces a frequency drift that exactly compensates the one produced by the
dispersion. The soliton pulse propagates without deformation

[158].

shift can compensate for the effect of dispersion. It is undoubtedly thanks to guided

optics, especially in optical fibers, that this property has not remained a curiosity of aca-

demic interest. In spite of a very low nonlinearity, the low propagation losses in optical

fibers allow to obtain important cumulative nonlinear phase shifts and thus to explore

this field of propagation in the soliton regime. Solitons themselves constitute an infor-

mation transport vector operating at high rates and over very large distances. Moreover,

the signal is no longer a relatively passive vector of information. An exact solution to
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NLS equation can be given in the following form:[159]

A(z, t) = N
√
P0sech

(
t

δ0

)
exp

(
iP0z

2γ

)
, (I.30)

where N is the order of the soliton given by:

N2 =
Ld
Lnl

=
γP0δ

2
0

|β2|
. (I.31)

This dimensionless parameter measures the relative importance of dispersive and non-

linear effects. The peak power to generate the fundamental soliton (N = 1) is deter-

mined by:Ld = Lnl, given by:

P0 =
|β2|
γδ20

. (I.32)

Only the fundamental temporal soliton (N = 1) propagates without deformation. All

the other higher-order solitons (N ≻ 1) undergo a recurrent deformation motion during

their propagation. Therefore, the fundamental temporal soliton is very attractive for the

transmission of information in optical communication systems. It can be excited in an

optical fiber for very low power levels available with laser diodes. For example, for a dis-

persion shifted fiber (|β2| ≈ 1ps/km), at wavelength λ0 = 1.55µm , with γ = 3ω−1km−1

and for δ0 = 10ps, we obtain the following peak power P0 = 3.3mω . It is worth not-

ing the invariant character of the intensity and the great stability of the solitonic pulse,

in particular, its temporal width, during propagation. This invariance of the pulse has

made it the ideal candidate for very high speed trans-oceanic transmissions. We are

at the heart of the technique of transmission by temporal solitons [161]. Thus, the pos-

sibility of self-compensation of the two effects during the namely, propagation, chro-

matic dispersion and phase self-modulation (a direct consequence of the Kerr effect),

will make it possible to escape from the logic specific to the design of these systems,

for which propagation is treated as a penalizing but unavoidable phenomenon. The

particular temporal soliton impulse guaranteeing this ideal equillibrium is the key.
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Figure 8: : Modeling of soliton propagation in a nonlinear medium
[160].

The spatial solitons

Spatial solitons correspond to optical beams whose natural diffraction has been exactly

compensated by the nonlinear effect of the intensity-sensitive propagation medium. The

lensing effect, optically induced by the index modification, will allow the beam to self-

focus during propagation. When the self-focusing exactly counterbalances the beam

broadening due to natural diffraction, observation of a spatial soliton will be possible.

Two simple concepts help to understand the formation of a spatial soliton. A geometric

model of the self-induced guide: a beam of limited width propagates by obeying the

laws of diffraction characterized by the Rayleigh length :

Ld ≈ r/θD ≈ Πn0r
2/λ, (I.33)

where r is the radius of the aperture, n0 the linear index of refraction and λ, the optical

wavelength. This is the propagation length after which the beam diameter has been

doubled. In the case where a medium of positive nonlinearity is placed to the right of

the aperture, the beam induces an increase in index, proportional to the intensity. The
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critical angle of total reflexion between the two media, θc =
√

2∆n/n0, allows one to

define a characteristic self-focusing length in the small angle approximation :

LNL = r/θc = r/
√
2∆n/n0. (I.34)

A spatial soliton corresponds to a balance between diffraction and self-focusing, i.e., ver-

ifying the equality: LD = LNL, leading to θD = θC . Compared to temporal solitons, spa-

tial solitons exploit the nonlinearity of massive, or planar, materials over much shorter

propagation distances on the order of centimeters. Since the accumulation of nonlinear

effect is no longer feasible (compared to the lengths of the optics fibres ), high powers

from pulsed laser sources were necessary in order to generate the first spatial solitons,

namely the Kerr solitons. It is also conceivable to use materials exhibiting a stronger

nonlinear response. As such, considerable efforts on material improvement have been

made. Since then, the demonstration of photo-refractive space solitons using low power

continuous sources and even using white sources (incandescent lamp) has revolution-

ized this field of research. The physics of spatial solitons remains richer because, due to

the difference with temporal solitons, trapping occurs in one or two transverse dimen-

sions and in nonlinear materials of different types. The spatial soliton is all the more

fascinating because it has different aspects, which find no equivalent in its temporal

counterpart, e.g., the self-focusing in 1D configuration, spirality [181], the existence of

optical vortices, the formation of complex patterns or localized structures in cavities, all

of which can be observed thanks to stable 2D configurations. These multiple aspects of

spatial solitons have greatly stimulated interest in this field of research, as evidenced by

the flourishing number of results published over the last decade or so. Briefly, we will

describe some key examples from this field of research to illustrate the richness of these

phenomena, both in the variety of physics exploited and in the particular configurations

thanks to which, it is possible to envisage a large number of applications.
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Spatio-temporal solitons

At the cross roads of spatial and temporal solitons, space-time solitons add to the al-

ready rich diversity of solitons. The propagation of an intense, focused optical pulse is

governed by the interplay between diffraction, group velocity dispersion and the dif-

ferent nonlinear processes present. Under certain conditions, the nonlinearities can be

used to compensate for both diffraction and group velocity dispersion, and thus, simul-

taneously produce a soliton in space and time. A (2+1)-D invariant propagation could

thus be conceivable, in a saturating nonlinear medium, with the addition of a time di-

mension. Beyond their scientic interest, these real ”light bullets” constitute a source

of potential applications, in particular in all-optical information processing (ultrafast

switching, trajectory control, logic operations) in three dimensions [162]. To succeed

in meeting such a scientific challenge, i.e., to generate a stable and localized (energy

finished) space-time soliton, the following conditions must be met: self-focusing non-

linearity, anomalous dispersion, one or two processes that can prevent a collapse of the

pulse (saturating nonlinearity, for example). At this stage of research, some work is

directed toward materials with quadratic properties to benefit from saturating nonlin-

earity. This field of research is in full expansion, since the very first space-time soliton

observation was made by Liu et al. [163] in 1999, on a single transverse dimension,

exploiting a quadratic process.

I.8 Different types of optical solitons according to their

physical origin

The three types of solitons mentioned above (temporal, spatial and spatiotemporal) can

be created by various nonlinearities, laser sources and structures. This diversity has gen-

erated the creation of different categories of solitons from their physical origin such as:

Kerr solitons, solitons in liquid crystals, quadratic solitons, cavity solitons or photore-

fractive solitons (Bragg solitons).
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I.8.1 Kerr solitons

Kerr soliton physics relies on an ideally local (spatial locality) and instantaneous (tem-

poral locality) modification of the refractive index, linearly proportional to the optical

intensity, which is reflected by the relation:

∆n = n2I. (I.35)

This is referred to as optical Kerr effect by analogy with the traditional electro-optical

Kerr effect for which, the refractive index can vary proportionally to the intensity of a

static electric field. The microscopic origin of such an effect lies in an induced anisotropy

of the polarizability of the medium. It can be electronic (deformation of the periph-

eral electronic cloud of atoms or +molecules), molecular (reorientation of an anisotropic

molecule). If we can consider that one of the first observations of solitonic phenomena

in optics was that of Garmire et al. [164], its 2D character and the use of a Kerr medium

did not allow the stabilization of the propagation, as we have already explained. This

is why it was necessary to wait until 1985 and the ingenuity of Barthlemy, Maneuf and

Froehly, from the Institute of Research in Optical and Microwave Communications (IR-

COM, Limoges), to demonstrate the propagation of a spatial soliton in a Kerr medium.

The authors succeeded in fact to be deleted the modulational instability transverse di-

mension of the 1D soliton - in practice, a laser beam with a strongly elliptical envelope

- and thus show its existence despite the absence of frustration of one of the transverse

dimensions. To do this, the beam, localized along the soliton dimension (minor axis of

the ellipse), was modulated by interference bangs along the homogeneous transverse

dimension (major axis of the ellipse corresponding to an LD diffraction length much

greater than the length of the medium). By ensuring that the power contained in each

bright fringe did not exceed Pcr , the modulation instability was inhibited. Following the

other dimension, a soliton propagation then became observable over several diffraction

lengths, the approximation of a 1D propagation having been realized.
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I.8.2 Solitons in liquid crystals

Liquid crystals are also a worthy medium for solitons. The modification of the refrac-

tive index, in this type of material, occurs either by molecular reorientation under the

effect of an applied electric field, or by thermo-optical effect. The nonlinearity here is

nonlocalized and saturating. The experimental observation of a 2D soliton in a liquid

crystal was obtained by Karpierz [165]. Soliton interactions in this material have been

studied by Chen [166]. The propagation of this kind of soliton over lengths of the order

of centimeters was observed by Hutsebaut et al [167].

I.8.3 Solitons in fiber Bragg gratings

Solitons in fiber Bragg gratings (Gap solitons) are optical nonlinear bands, realized by

the balance between nonlinearity and dispersion of the FBG, such that the periodicity

of the refractive index creates a photonic band gap whose light cannot propagate in this

area. In the presence of nonlinear Kerr effect, the intensity of the light waves modifies

the nonlinear refractive index to create a shift of the wave toward the forbidden region

(into the Gap) and allows the propagation of a pulse, called a gap soliton. Sipe and De

Sterke showed that the propagation of these solitons is described by the standard non-

linear Schrödinger (NLS) equation, which can be derived from the coupled-mode equa-

tions, supplemented with terms representing the nonlinear contribution to the propaga-

tion (self-phase and intermodulation). Bright solitons that propagate without deforma-

tion can therefore exist in the normal fiber dispersion regime, since the lattice dispersion

overrides the material dispersion[169]. When the nonlinear response of the fiber is taken

into account, wave propagation in FBGs is profoundly modified. Soliton solutions can

exist at frequencies close to, but outside the band gap. Moreover, solitary wave struc-

tures can still propagate in the so-called Gap soliton band gap. In the following sections,

we will present these ”Gap solitons” as pulse propagation in the band gap then, char-

acterize these soliton waves and finally solve the equation with coupled modes in the

band gap and outside this band to find the Bragg solitons [170].
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I.9 Conclusion

In this chapter, we have presented a general study on optics fibers and then, we have

talked about Bragg gratings and we can say that they are components present in telecom-

munication systems. They are ideal when used in combination with fiber lasers, fiber

amplifiers or laser diodes. In addition, their high flexibility and design make them very

interesting for user-specific applications, such as gain equalization or chromatic disper-

sion compensation. Their high spectral efficiency makes them the almost unique solu-

tion for very low channel spacing, and even for future high capacity systems requiring

control, such as dispersion . Finally, we have closed this chapter on solitons, whose

discovery has been of considerable benefit to the scientific community, in that it has

allowed to explain several phenomena that were previously poorly understood. Thus,

after several attempts to explain the translation wave that John Scott Russell had to ob-

serve, researchers finally discovered that the soliton phenomenon arises from a delicate

balance between two effects including nonlinearity and medium dispersion. These ef-

fects are essentially the self-phase modulation and the anomalous dispersion. We have

seen that the soliton can be either temporal or spatial or both. Indeed, if the refractive

index of the medium is modified by the intermediary of the light, it is then possible, in

certain circumstances, to suppress the temporal or spatial broadening of the pulse. We

speak then of temporal soliton in the case of compensation of chromatic dispersion and

spatial soliton in the neutralization of beam diffraction. When we manage to eradicate

both dispersion and diffraction, we speak of space-time soliton. Besides the conservative

solitons, there are solitons in dissipative systems. In this case, in addition to the balance

between dispersion and nonlinearity, the nonlinear losses and gains must be compen-

sated. The study of dissipative time-domain solitons has been of great interest both for

fundamental science and for high-speed optical telecommunications.
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CHAPTER II

MODEL AND METHODOLOGY

II.1 Introduction

Over time, we find that most of the work done on the optical fiber uses optical

solitons as a transfer wave, preferably nonlinear. This may be due to the fact that the

solitons are almost complete waves seen as degree of reliability in the field. Transport

of the message from one point to another without change or deformation that is, in a

few words, why many researchers have embarked on the study of this wave, but the

researchers have not stopped to propagate the wave just in the bands allowed. We real-

ized that there were magnificent results when we propagated the wave in the forbidden

bands of light. This is where the term ”gap soliton” comes, from which was materi-

alized by the coupled mode equations. The method of solving torque mode equations

was first proposed and used by Christodoulides and Joseph [171], in the case where the

injected waves exactly satisfy the Bragg condition, that is, when their frequency is at the

center of the linear band gap. Aceves and Wabnitz then extended the method to search

for solutions corresponding to all frequencies [172] or all wavenumbers [173] within.

In order to improve the previous research, we have considered nonparaxial approx-

imation to the nonlinear coupled mode equations. This model has been illustrated for

the first time in this thesis. To derive this model, we have used certain method such

as slowly varing envelope approximation, which allowed us to include the parameter

of nonparaxiality in the nonlinear coupled mode equation in (2+1)D. Thereafter, we de-

rived this equation using mathematical methods, such as multiple scales and numerical

method, namely, the split-step Fourier method, leading to a nonparaxial equation. The

MI gain spectrum has been derived in the first part, we present the light pulses in the
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FBG. In the second part of our chapter, we review some analytical methods that will

be useful in deriving our model equation in nonparaxial regime. Finally, in the third

part, we will describe the numerical methods which have made numerical simulations

possible.

II.2 The nonlinear nonparaxial coupled mode equation

II.2.1 Propagation of light pulses in fiber Bragg gratings

The propagation of electromagnetic radiation in FBG is governed by the wave equation

obtained from Maxwell’s equations, which describe the fundamental laws for the elec-

tric field
−→
E , electrical displacement

−→
D , the magnetic field

−→
H , and magnetic induction

−→
B

interacting with the environment [174, 176]:

−→∇.−→D = 0, (II.1)

−→∇ ×−→
E = −∂

−→
B

∂t
, (II.2)

−→∇.−→B = 0, (II.3)

−→∇ ×−→
H =

∂
−→
D

∂t
. (II.4)

By combining these equations, we obtain, in the time domain:

∆
−→
E =

1

c2
∂2
−→
D

∂t2
, (II.5)

Equation Eq.(II.5) can be rewritten as :

∂2
−→
E

∂z2
+
∂2
−→
E

∂x2
− n2

c2
∂2
−→
E

∂t2
= µ0

∂2
−−→
PNL
∂t2

. (II.6)
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The parameter c = 1√
µ0ǫ0

is the speed of light in vacuum with permeability µ0 and per-

mittivity ǫ0. In a waveguide grating, the electrical field
−→
E is confined in only one trans-

verse direction (y), and it diffracts in the transverse direction (x), with a Bragg resonant

periodic structure in the direction of propagation (z). In fact, the linear part n(x, z) of the

refractive index is a periodic perturbation in z given by:

n2(x, z) ≈ n2(x) + 2ǫn(x)∆n(z) (II.7)

with 0 < ǫ ≪ n(x), where its variation from the average index is assumed to be small.

Here, n(x) ≈ 1 is the average and

∆n(z) = n1cos(
2Πz

ΛB
), (II.8)

is the oscillating part, n1 being the amplitude of the periodic index modulation for a

shallow grating. ΛB is the spatial period (the Bragg modulation period) of the index

grating. As it is well known, strong back reflection occurs at the Bragg resonance condi-

tion for which the period of ∆n(z) is chosen to be half that of the carrying plane waves

ei(kBz−ΩBt) , where kB = Π
ΛB

is the Bragg wavenumber, and ΩB is the Bragg angular

frequency. Therefore, if we consider the propagation of a monochromatic field [177]

−→
E (x, z, t), at the optical frequency Ω close to the Bragg frequency ΩB , the electric field

distribution inside the FBG can be expressed as a sum of two counter-propagating mod-

ulated modes under the two-mode approximation:

−→
E (x, z, t) = U(y)(E+(x, z, t)exp[i(k0x+ k0z−Ωt)]+E−(x, z, t)exp[−i(k0x+ k0z−Ωt)])−→x ,

(II.9)

where the envelope functions E+(x, z, t) and E−(x, z, t) describe the electric fields in

the forward and backward directions, in the slowly varying envelope approximation,

−→x is the polarization direction and U(y) is the transverse mode of the fiber. Intensity-
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dependent refractive index changes are described by the nonlinear polarization term:

−−→
PNL(x, z, t) = ǫ0χ

(3)|−→E |2−→E , (II.10)

where χ(3) is the third-order nonlinear optical susceptibilities.

II.2.2 Paraxial coupled mode theory

In this case, we will just consider a linear susceptibility, without taking the nonlinear

polarization into account anyway, and modeling the refractive index of the Fiber Bragg

Grating by the expression:

n(z) = n + δn(x,z) cos(2k0x) cos(2k0z). (II.11)

With k0 = π
Λ

, being the spacial frequency. When we use the relationship between the

refractive index n(x, z) and the dielectric function ǫ(x, z), we obtain:

ǫ(x, z) = n2(x, z). (II.12)

Thus, we find that the dielectric function for a Bragg fibre is given by:

ǫ(x, z) = n2 + 2nδn cos(2k0x) cos(2k0z). (II.13)

We neglected the terms of order δn2, because, in the FBG, δn ≪ n. The development of

the dielectric function by the Fourier series gives :

ǫ(x, z) = ǫ̂0 + 2n̄δn cos(2k0x) cos(2k0z), (II.14)

ǫ̂0 = n2. (II.15)

The theory of coupled modes states that if the index modulation δn is very small, the so-

lution of the nonlinear wave equation takes the form of Eq.(II.9). Introducing Eq.(II.9)
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into Eq.(II.6) leads to

(
∂2E+

∂z2
+ ik0

∂E+

∂z
− k20E−)e

−i(Ωt−k0x−k0z) + (
∂2E+

∂z2
− ik0

∂E2
−

∂z2
− k20E+)e

i(Ωt−k0x−k0z)+

(
∂2E+

∂x2
+ ik0

∂E+

∂x
− k20E−)e

−i(Ωt−k0x−k0z) + (
∂2E+

∂x2
− ik0

∂E−
∂x

− k2xE+)e
i(Ωt−k0x−k0z)

−n
2 − 2nδn cos 2k0z

c2
(
∂2E+

∂t2
− iΩ

∂E+

∂t
− Ω2E+)e

−i(Ωt−k0x−k0z)

−n
2 + 2nδn cos 2k0z

c2
(
∂2E−
∂t2

+ IΩ
∂E−
∂t

− Ω2E−)e
i(Ωt−k0x−k0z)

−n
2 − 2nδn cos 2k0z

c2
(
∂2E+

∂t2
− iΩ

∂E+

∂t
− Ω2E+)e

−i(Ωt−k0x−k0z)

−n
2 + 2nδn cos 2k0z

c2
(
∂2E−
∂t2

+ iΩ
∂E−
∂t

− Ω2E−)e
i(Ωt−k0x−k0z)

(II.16)

All the terms to the non-derivatives and of factor δn will cancel, because they are solu-

tions of the unperturbed wave equation. We will assume that the envelopes (E+, E−)

change slowly with time and space and more clearly, we will use the following slowly

varying envelope approximation:

|ik0
∂E±
∂x

| ≪ ∂2E±
∂x2

|iΩ∂E±
∂t

| > ∂2E±
∂t2

|ik0
∂E±
∂z

| ≃ ∂2E±
∂z2

(II.17)

Here, all second derivatives will be neglected. After some algebraic transformations

and certain simplifications, we then obtain:

(
∂2E+

∂z2
+ i(

n

c

∂E+

∂z
+
∂E+

∂t
) + κE− +

∂2E+

∂x2
+ κE+e

2ik0z

)
e−i(Ωt−k0x−k0z) = 0,

(
∂2E+

∂z2
− i(

n

c

∂E−
∂z

− ∂E−
∂t

) + κE+ +
∂2E−
∂x2

− κE−e
2ik0z

)
e−i(Ωt+k0x+k0z) = 0.

(II.18)

with, n
c
= cg. The problematic terms are those with e±2ik0z. These terms, however, can

be neglected because they have little effect on ±E. We are interested in light at fre-

quencies around Ω, with the corresponding spatial frequency k0. Since we assume that

the envelope changes slowly, one can imagine that the effects of the k0 = π
Λ

spatial fre-
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quency terms can be brought out. This kind of approximation is known as the Rotating

Wave Approximation (RWA). So, when we neglect these higher frequency terms and

use the plane wave orthogonality, we finally obtain the linear coupled mode equations

(LCMEs):

∂2E+

∂z2
+ i(

∂E+

∂T
+ cg

∂E+

∂z
)(T, x, z) +

∂2E+

∂x2
(t, x, z) + κE− = 0,

∂2E−
∂z2

+ i(
∂E−
∂T

− cg
∂E−
∂z

)(T, x, z) +
∂2E−
∂x2

(t, x, z) + κE+ = 0.

(II.19)

In the spectral domain, the coupled mode equations are written as follows:

−i∂
2Ẽ+

∂z2
(x, z, ω) +

∂Ẽ+

∂z
(x, z, ω) +

∂Ẽ+

∂x
(x, z, ω) = iq(ω)Ẽ+(x, z, ω) + iκẼ−(x, z, ω),

−i∂
2Ẽ+

∂z2
(x, z, ω)− ∂Ẽ−

∂z
(x, z, ω) +

∂Ẽ−
∂x

(x, z, ω) = iq(ω)Ẽ−(x, z, ω) + iκẼ+(x, z, ω),

(II.20)

q(ω) = cgΩ = β(ω)− ββ

and

Ω = ω − ωβ

(II.21)

II.2.3 Relation of linear dispersion

In this paragraph, we will search for continuous solutions of frequency ω to the linear

coupled mode Eq.(II.19). For that, we will first of all consider the following equations

[178]:

Ẽ+(x, z) = f1e
i(Kzz+Kxx) + f2e

−i(Kzz+Kx), (II.22)

Ẽ−(x, z) = b1e
i(Kzz+Kxx) + b2e

−i(Kz+Kx), (II.23)

where the constant coefficients f1, f2, b1, b2 are determined by the initial conditions and

where K(Ω) is the contribution of the network to the propagation constant. Introducing

this solution into the coupled Eq.(II.19), we see that the constant coefficients satisfy the
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following relations:

(Kz +Kx − q)f1 = κb1,

(Kz +Kx + q)b1 = κf1,

(Kz +Kx − q)f2 = κf2,

(Kz +Kx + q)f2 = −κb2.

(II.24)

For the system Eq.(II.19) to have non-trivial solutions, it is necessary that K verifies the

following dispersion relation:

Kz +Kx = ±
√
q2 − κ2 ⇒ Ω(Kz +Kx) = ± c

n

√
κ2 +K2

z +K2
x. (II.25)

The shape of this relation is shown in Figure (9). Obviously, this equation has only one

band gap at which is centered at Ω = 0, and its width is given by ∆Ω = 2κ c
n
= Πδnc

n2Λ

(see figure 9).In the particular case where only the traveling wave propagates initially in

the grating, we can easily calculate the solution in the time domain by inverse Fourier

transform of the solution Eq.(II.24) and Eq.(9).On the basis of the relations Eq.(II.26)

and the following relations Eq.(II.27)

E+(x, z, t) = f1e
i(kz+kx−Ωt),

E−(x, z, t) = r(K)f1e
i(kz+kx−Ωt).

(II.26)

Then, |r(K)|2 which expresses the amount of energy that is transferred from the pro-

gressive wave to the regressive wave, reflected by the Bragg grating, is given by

r(K) =
K − q

k
= − k

K + q
. (II.27)

In Figure (10), we present, as an illustration, the reflection characteristic of a FBG, which

has become a stantard fiber component in fiber optic telecommunication systems. This

function is obtained by solving the linear coupled equations in the frequency domain
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Figure 9: Dispersion relationship showing a periodic Bragg grating band
[179].
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Figure 10: Intensity reflectivity of a fibered Bragg grating, whose parameters are: length
L = 8mm and κ = 5cm−1 or δn ≈ 10−6 if the length of Bragg λβ = 1550nm .The maximum
reflectivity maxR can reach values higher than 95, when κL ≥ 2 , and is ≈ 100 (κL = 4)

[180].
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from appropriate initial conditions [181]. We observe that the reflection of a finite grat-

ing is very large and relatively uniform over a range of reduced frequencies 2κ, corre-

sponding to the width of the band gap. The waves, at the wavelength Λβ, but also at

neighboring wavelengths undergo the Bragg reflection. The global reflectivity R of the

FBG is all the higher that the length L of the network or the variation of index δn is big.

Moreover, it can be shown that the range of wavelengths (or frequencies) affected by the

grating, which is proportional to κ, widens when the modulation depth δn increases. δn

thus appears to be a measure of the efficiency of the FBG to reflect the energy of a wave

injected into it, i.e. to transmit the energy of a progressive wave towards a regressive

wave. The description of the properties of FBGs has so far been limited to the linear ef-

fects of light-matter interaction. When the nonlinear response of the fiber is taken into

account, the wave propagation in FBGs is deeply modified.

II.2.4 Theory of nonlinear coupled modes

The theory of coupled modes has the simplicity that it can easily be extended for non-

linear systems. We start from the nonlinear propagation Eq. (II.6) knowing that
−→
E and

−→
P are odd vectors under inversion symmetry. The second degree coefficient χ(2), must

vanish in any material, because the second order microscopic susceptibility tensors are

randomly directed and mean-compensating, which cancels the macroscopic susceptibil-

ity tensor χ(2). We further assume a weak nonlinearity. So, we consider only the main

nonlinear term of order 3, that is, χ(3). With this assumption, the nonlinear polarization

will be simplified as given in the first paragraph of this chapter. Using this nonlinear

polarization, we arrive at the nonlinear wave equation:

∂2
−→
E (x, z, t)

∂x2
+
∂2
−→
E (x, z, t)

∂z2
− ǫ(z, x)

c2
∂2
−→
E (x, z, t)

∂t2
=
χ(3)

c2
∂2
−→
E 3(x, z, t)

∂t2
. (II.28)
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The second member of this equation can be put in the following form:

χ(3)

c2
∂2
−→
E 3(x, z, t)

∂t2
=
χ(3)

c2


−→
E 2∂

2−→E (x, z, t)

∂t2
+ 2

−→
E (x, z, t)

(−→
E (x, z, t)

∂t

)2

 . (II.29)

Inserting the ansatz Eq.(II.9) into the Eq.(II.28) yields many terms, but since we assume

the weak nonlinearity and the approximation of the slowly varying the slowly varying

envelope Eq.(II.29), we obtain the equation:

3χ(3)ω2
0

c2
[(|E+|2E+ + |E−|2E+)e

−(Ωt−kxz−k0x) + (2|E+|2E− + |E−|2E−)e
−(Ωt+k0z+k0x). (II.30)

By putting together the two equations, Eq.(II.30) and Eq.(II.19), finally, we find the

nonlinear equations of coupled modes:

∂2
−→
E+

∂z2
+ i(

∂

∂T
+ cg

∂

∂z
)E+(T, x, z) + κE− +

∂2
−→
E +

∂x2
+ Γ(|E+|2 + 2|E−|2)E+ = 0,

∂2
−→
E −
∂z2

+ i(
∂

∂T
− cg

∂

∂z
)E−(T, x, z) + κE+ +

∂2
−→
E −
∂x2

+ Γ(|E−|2 + 2|E+|2)E− = 0,

(II.31)

with the nonlinear coupling coefficient Γ =
3χ(3)ω2

0

c2
and κ = ω0δn

2c
. The nonlinear terms

with 2 in front of them is called cross-phase Modulation and the other is called auto-

phase modulation.

II.2.5 On the Townes soliton

We consider the following NLS equation:

iψτ (τ, x, y) + ∆y + |ψ|2ψ = 0, (II.32)

we will take;

ψ(τ, r) = expiτ R(r), (II.33)
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when we replace Eq.(II.33) in Eq.(II.32) we obtain:

i
∂ expiτ

∂τ
R(r) + ∆expiτ R(r) + expiτ |R|2σR = 0. (II.34)

Translating the Laplacian into a spherical coordinate we obtain :

i× iR(r) + (
∂2

∂r2
+

1

r2
∂2

∂θ2
+

1

r2
∂

∂r
)R(r) + expiτ |R|2σR = 0, (II.35)

with ⇒ σ = 1 we arrive at

−R(r) + (
∂2

∂r2
+

1

r

∂

∂r
)R(r) +R3 = 0, (II.36)

this equation, can still be written :

∆R− R +R3 = 0. (II.37)

The reader can see the sketch of the behavior of the Townes soliton on the figures below;

[183], in the first proposition when ǫ/k ≪ 1, the self-focusing of the lowest term is

reduced to :

Lττ (τ) = − β

L3
, (II.38)

βτ (τ) = − ǫ

k
CGS

Nc

2M
(
1

L2
)τ , (II.39)

Nc =

∫
R2rdr ≈ 1, 86, (II.40)

M =
1

4

∫
r2R2rdr ≈ 0, 55. (II.41)

II.3 Analytical method

In this section, we will illustrate the different methods analitycal used for the solution

of our nonlinear non-paraxial coupled equation. So, we will first start with the multiple

space and time method that which will allow us to reduce the nonlinear non paraxial
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coupled mode equation to a 2D NLS. In a second step, we will study the modulational

instability (MI) of plane waves on this equation.

II.3.1 The Method of Multiple Scales

Any asymptotic expansion of must equations simultaneously describe the decreasing

and oscillatory behavior of the solution, in order to be uniformly valid in t = O(1/ǫκ).

The Poincaré-Lindstedt method is a method that is close to this one, but it cannot pro-

vide better results than the multiple time and space method. The Poincaré-Lindstedt

method provides a way to construct asymptotic approximations of periodic solutions,

but it cannot be used to obtain solutions that evolve aperiodically on a slow time scale.

The multiple scale method is a more general approach that involves two key tricks.

The first is the idea of introducing scaled spatial and temporal coordinates to capture

the slow modulation of the pattern, and treating them as separate variables in addi-

tion to the original variables that must be retained to describe the state of the pattern

itself. This is essentially the idea of multiple scales. The second is the use of what

are called solvability conditions in the formal derivation. We note from the analyti-

cal solution, that the functional dependence of x on t and ǫ is not disjoint, because x

depends on the combination of ǫt as well as on individual t and ǫ. Thus, instead of

x = x(t; ǫ), we write x = x̂(t, ǫt, ǫ). We return to the regular expansion and rewrite it as

x(t) = cos t+ǫ sin t−ǫt cos t [184]. As in the case of analytical solution, regular expansion

also shows that x depends on the combination of ǫt as well as on the individual t and ǫ.

The trouble with the naive regular expansion is that the small damping changes both the

amplitude of the oscillation on a time scale ǫ−1 and the phase of the oscillation on a time

scale ǫ−2 by the slow accumulation of small effects. Thus, the oscillator has three pro-

cesses acting on their on time scales. First, there is the basic oscillation on the time scale

of 1 from the inertia causing the restoring force to overshoot the equilibrium position.

Then, there is a small drift in the amplitude on the time scale of ǫ−1 and finally, a very

small drift in the phase on the time scale of ǫ−2due to the small friction. We recognize
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these three time scales by introducing three time variables: T0 = t is the fast time of the

oscillation. T1 = ǫt is the slower time of the amplitude drift. T2 = ǫ2t is even slower

time of the phase drift. The rapidly changing features will then be combined into factors

which are functions of T0, while the slowly changing features will then be combined

into factors which are functions of T1 and T2. Thus, we look for a solution of the form

x(t; ǫ) = x(T0, T1, T2; ǫ). In general, if we choose n time scales for the expansion, we look

for a solution of the form x(t; ǫ) = x(T0, T1, T2...Tn; ǫ), where the time scales are defined

as T0 = t, T1 = ǫt, T2 = ǫ2t ...,Tn = ǫnt. Thus, instead of determining x as a function of t,

we determine x as a function of T0, T1, ..., Tn. Note that as real time t increases, the fast

time T0 increases at the same rate, while the slower time Ti increase slowly. Using the

chain rule, we have

d

dt
=

∂

∂T0

∂T0
∂t

+
∂

∂T1

∂T1
∂t

+
∂

∂T2

∂T2
∂t

+ ...

=
∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ ...

(II.42)

d2

dt2
=

∂2

∂T 2
0

+ 2ǫ
∂2

∂T0∂T1
+ ǫ2(

∂2

∂T0∂T2
+

∂2

∂T 2
1

) + ... (II.43)

Hence, becomes

∂2x

∂T 2
0

+ 2ǫ
∂2x

∂T0∂T1
+ ǫ2(

∂2x

∂T0∂T2
+
∂2x

∂T 2
1

) + 2ǫ(
∂x

∂T0
+ ǫ

∂x

∂T1
+ ǫ2

∂x

∂T2
) + x+ ... = 0 (II.44)

x = 1,

∂x

∂T0
+ ǫ

∂x

∂T1
+ ǫ2

∂x

∂T2
+ ... = 0,

for

T0 = T1 = T2... = 0.

(II.45)

We note that when t = 0, all T0, T1, etc. are zero. The benefits of introducing the multiple

time variables are not yet apparent. In fact, it appears that we have made the problem

harder since the original ordinary differential equation has been turned into a partial

differential equation. This is true, but experience with this method has shown that the
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disadvantages of including this complication are far outweighed by the advantages.

It should be pointed out that the solution of [184] is not unique and that we need to

impose more conditions for uniqueness on the solution. This freedom will enable us to

prevent secular terms from appearing in the expansion (at least over the time scales we

are using). We now seek an asymptotic approximation for x of the form:

x(t) = x(T0, T1, ...Tn; ǫ) ∼ x0(T0, T1, ..., Tn)+

ǫx1(T0, T1, ..., Tn) + ǫ2x2(T0, T1, ..., Tn) + ...

(II.46)

It must be understood that there are actually only two independent variables, t and ǫ,

in Eq.(II.46) ; Ti are functions of these two, and so is not independent. Nevertheless,

the principal steps in finding the coefficients xn are carried out as though T0, T1,,Tn and

ǫ were independent variables. This is one reason why these steps cannot be justified

rigorously in advance, but are merely heuristic. Secondly, it must Eq.(II.45) enters both

through the gauges (which are just the powers of ) and also through the coefficients

xn by way of Ti. Although there is no general theorem allowing the differentiation of

a generalized asymptotic expansion term by term, it is nevertheless reasonable to con-

struct the coefficients on the assumption that such differentiation is possible, and then

to justify the resulting series by direct error estimation afterwards.

II.3.2 Modulational instability phenomenon

Modulation instability (MI) implies that an intense CW beam can be converted into a

train of pulses as it passes through a fiber array. Experimental observation of this phe-

nomenon is difficult when a CW beam is used because the input power required is too

large to be realistic. MI is a ubiquitous phenomenon in physics, corresponding to the

growth of a weakly modulated continuous wave in a nonlinear medium and leading

to the generation of a periodic wave train of large amplitude. In space, it transforms

weakly modulated plane waves into spatially periodic patterns. In the frequency do-

main , MI is the result of energy transfer from a strong single spectral component to
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sidebands. While the linear stability analysis predicts a limited band of unstable mod-

ulation frequencies, recent developments, based on nonlinear theory, have revealed the

existence of MI beyond this limited frequency range. These experimental studies are the

first experimental demonstrations of the ”extraordinary” phenomenon of MI. Realized

at the same time in optics and in hydrodynamics, they clearly underline the interdisci-

plinarity . of this process. For the illustration, we consider the non-paraxial equation

∂A

∂ξ
=
i

2

∂2A

∂S2
+ ia

∂2A

∂ξ2
+ i|A|2A, (II.47)

where s and ξ (x and z ) stand for the scaled (unscaled) transverse and longitudinal

coordinates, respectively; ξ = z
kx20

, s =
√
2 x
x0

,A = kx0
n2

n0
φ. Here, x0 is arbitrary space

width, φ is unscaled field envelope, n2 is Kerr coefficient and a is non-paraxial parameter

given by

a =
1

(kx0)2
. (II.48)

The following study on the propagation stability of non-paraxial beams is based on the

linear stability approach. The steady-state solution of Eq.(II.47) is given by:

A(s,Φ) =
√
p0exp(iΦnl), (II.49)

where the nonlinear phase shift Φnl is related to the incident power p0 as

Φnl = (p0 − ap20)ξ. (II.50)

To study whether the steady-state solution is stable against small perturbations, we in-

troduce the perturbed field of the form

A(s, ξ) = [
√
p0 + ξA1(s, ξ)]exp[i(p0 − ap20)ξ] (II.51)
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where a is a small quantity. By substituting Eq.(II.51) into Eq.(II.47), and neglecting

higher-order terms of, we get the liniearized equation

∂A1

∂ξ
=
i

2

∂2A1

∂s2
+ ip0(A1 + A∗),

−ia
4

∂4A1

∂s4
− i2ap0

∂2A1

∂s2
− i2ap20(A1 + A∗),

(II.52)

where ∗ denotes complex conjugate. We assume a general solution of the form:

A1(ξ, s) = c cos(Kξ − Ωs) + id sin(Kξ − Ωs), (II.53)

where K and Ω are the wave number and the frequency of perturbation. Inserting

Eq.(II.53) into Eq.(II.52) and separating real and complex parts, we obtain a set of

two homogeneous equations for c and d. From the solutions of the dispersion relation,

we investigate the stability of the steady-state solutions by determining the MI gain. MI

occurs only when at least one of the eigenvalues of the linearized equation possesses

a nonzero and negative imaginary part, which results in an exponential growth of the

amplitude with the perturbation. MI is measured by the power gain and is defined as

G± = 2Im(Ω±) > 0, (II.54)

where Im(Ω±) denotes the imaginary part of Ω±.

II.4 Numerical method

As the non-paraxial nonlinear Schrödinger equation is generally not easy to solve, with

the help of analytical methods, some numerical methods used in this thesis are pre-

sented in this section.
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II.4.1 Split-step Fourier method

In numerical analysis, the split-step Fourier method is a pseudo-spectral numerical

method used to solve nonlinear partial differential equations like the NLS equation. The

name arises for two reasons. First, the method relies on computing the solution in small

steps, and treating the linear and the nonlinear steps separately (see below). Second, it

is necessary to Fourier transform back and forth, because the linear step is made in the

frequency domain, while the nonlinear step is made in the time domain. An example

of usage of this method is in the field of light pulse propagation in optical fibers, where

the interaction of linear and nonlinear mechanisms makes it difficult to find general an-

alytical solutions. However, the split-step method provides a numerical solution to the

problem. Another application of the split-step method that has been gaining a lot of

attention since the 2010s is the numérical simulation of Kerr frequency comb dynamics

in optical microresonators [185]. The relative ease of implementation of the Lugiato-

Lefever equation with reasonable numerical cost, along with its success in reproducing

experimental spectra as well as predicting soliton behavior in these microresonators has

made the method very popular. Consider, for example, the NLS equation:

∂A

∂z
= −iβ2

2

∂2A

∂t2
+ iγ|A|2A = [D̂ + N̂ ]A, (II.55)

where A(t, z) describes the pulse envelope in time t, at the spatial position z. The equa-

tion can be split into a linear part,

∂AD
∂z

=
iβ2
2

∂2A

∂t2
= D̂A, (II.56)

and a nonlinear part,

∂AN
∂z

= iγ|A|2A = N̂A. (II.57)

Both the linear and the nonlinear parts have analytical solutions. However, if only a

small step h is taken along z, then, the two parts can be treated separately with only a
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small numerical error. One can, therefore, first take a small nonlinear step,

AN(t, z + h) = exp[iγ|A|2h]A(t, z), (II.58)

using the analytical solution. The dispersion step has an analytical solution in the fre-

quency domain, so it is first necessary to Fourier transform AD using

ÃD(ω, z) =

∫ +∞

−∞
AD(t, z)exp[i(ω − ω0)t]dt, (II.59)

where ω0 is the center frequency of the pulse. It can be shown that using the above

definition of the Fourier transform, the analytical solution to the linear step is

ÃD(ω, z + h) = exp[i
β

2
(ω − ω0)

2h]AD(ω, z). (II.60)

By taking the inverse Fourier transform of ÃD(ω, z + h), one obtains AD(t, z + h); the

pulse has thus been propagated a small step h. By repeating the above N times, the

pulse can be propagated over a length of Nh.

The above shows how to use the method to propagate a solution forward in space.

However, many physics applications, such as studying the evolution of a wave packet

describing a particle, require one to propagate the solution forward in time rather than

in space. The nonlinear Schrödinger equation, when used to govern the time evolution

of a wave function, takes the form

i
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
+ γ|ψ|2ψ = [D̂ + N̂ ]A, (II.61)

where D̂ = − ~2

2m
∂2ψ
∂x2

, and N̂ = γ|ψ|2ψ, and that, m is the mass of the particle and ~ is

Planck’s constant.

The formal solution to this equation is a complex exponential

ψ(x, t) = eit(D̂+N̂)ψ(x,0). (II.62)
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Since D̂ and N̂ are operators, they do not in general commute.

exp(hD̂)exp(hN̂), (II.63)

and

exp(hN̂)exp(hD̂), (II.64)

and Strang’s formulas :

exp(hD̂/2)exp(hN̂)exp(hD̂/2), (II.65)

and

exp(hN̂/2)exp(hD̂)exp(hN̂/2). (II.66)

Of Lie formulas, follows the Fourier Split-Step method, in which a formal solution is

given

ψ(z + h, t) = exp(h(D̂ + N̂))ψ(z, t),

≈ exp(hD̂) exp(hN̂)ψ(z, t).

(II.67)

The symmetrical Fourier Split-Step method is one of the most widely used pseudo-

spectral methods for studying the propagation of pulses in nonlinear and dispersive me-

dia [186]. In this method, the propagation length is subdivided into intervals of lengths

h. If the value of h is sufficiently low, we can approximate the solution by assuming that

along each interval, the operators of dispersion D̂ and nonlinear N̂ act independently.

From the Strangs formula Eq.(II.65) and Eq.(II.66), the dispersion effects act con-

tinuously on the two parts of the length segment h: [z, z + h/2[ and ]z + h/2, z + h];

while the nonlinear effects are inserted at the point z+h/2 in the middle of the segment.

In this way, the variations of the nonlinear operator N̂ in the meantime [z + h] can be

overlooked. The formal solution of the amplitude of the variable field ψ(z + h, t) as a

function of ψ(z, t), is given by the equation:
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ψ(z + h, t) = exp(
hD̂

2
) exp(hN̂) exp(

hD̂

2
)ψ(z, t). (II.68)

The dispersion operator, comprising partial time derivatives Eq.(II.67) will be calcu-

lated in the spectral domain using the Fourier transforms. The differential operator ∂
∂t

is

replaced by iω and we calculate each partial derivative of order n as follows: ∂n

∂tn
F↔ (iω)n,

where F denotes the Fourier transform. The same calculation principle is applied to the

last two terms of the nonlinear operator Eq.(II.68), which represents the Raman effect

and which also have time derivatives. However, since N depends on z through ψ(z, t), it

is then replaced, along a segment, by its integral which can be approximated using the

trapezoid method:

z+h∫

z

N̂ (z′)dz′ ≈ h

2

[
N̂ (z) + N̂ (z + h)

]
. (II.69)

Note that ψ(z + h, h) is not known when we want to calculate N̂(z). We must therefore

proceed by iterations in order to estimate N̂(z + h) and we have several possibilities for

choosing the initial value. This is what will bring us to the proposition and to the study

of two implementations. Further, an algorithm based on split-step Fourier method-S is

developed for solving NLS equation and the soliton switching is studied in the fiber.

II.4.2 Fourth-order Runge-Kutta method

Runge-Kutta method is a numerical technique used to solve ordinary differential

equation of the form:

dy

dx
= f(x, y), (II.70)

with y(x0) = y0.

Runge-Kutta 4th was first developed to solve first-order ordinary differential equa-
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Figure 11: Schematic illustration of the split-step Fourier method
[187]

tion. Later, it was adapted to solve higher-order ordinary differential equations or cou-

pled (simultaneous) differential equations. It is based on the following

yi+1 = yi + (a1k1 + a2k2 + a3k3 + a4k4), (II.71)

where knowing the value of y = yi at xi, we can find the value of y = yi+1 at xi+1, and

h = xi+1 − xi.

Equation Eq.(II.70) is equivalent to the first five terms of Taylor series

dy
dx

= yi +
dy
dx

∣∣
xi,yi

(xi+1 − xi) +
1
2!
d2y
dx2

∣∣∣
xi,yi

(xi+1 − xi)
2 + 1

3!
d3y
dx3

∣∣∣
xi,yi

(xi+1 − xi)
3

+ 1
4!
d4y
dx4

∣∣∣
xi,yi

(xi+1 − xi)
4

(II.72)

Knowing that dy
dx

= f(x, y) and h = xi+1 − xi,

yi+1 = yi + hf(xi, yi) +
h2

2!
f ′(xi, yi) +

h3

3!
f ′′(xi, yi) +

h4

4!
f ′′′(xi, yi).. (II.73)
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Based on equating Eq.(II.72) and Eq.(II.73), the solutions are obtained such as

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4), (II.74)

where

k1 = f(xi, yi), (II.75a)

k2 = f(xi +
h

2
, yi +

hk1
2

), (II.75b)

k3 = f(xi +
h

2
, yi +

hk2
2

), (II.75c)

k4 = f(xi + h, yi + hk3). (II.75d)

The RK4 method makes four estimates of f(x, y) per segment, each estimate is re-

fined by the previous one; the first at the starting point x, the second and the third at the

point x+ h/2, from the middle of the segment and the last at the end point x+ h.

II.5 Conclusion

In this chapter, we have presented the coupled linear and nonlinear mode equations

with a nonparaxiality terms that appear in the nonparaxial regime, leading to the pres-

ence of the second derivative with respect to 2 in the nonlinear wave equation. Thanks

to the multiple scale and time method, we will be able to reduce it to a new 2D NLS

equation. Then , using standard linear stability analysis, the instability criteria for MI

has been proposed. Some numerical method, Runge-kutta method of order 4, have been

presented and to the use in the next chapter
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CHAPTER III

RESULTS AND DISCUSSIONS

III.1 Introduction

In this chapter, we study the propagation of gap-soliton bullets in nonlinear pe-

riodic waveguides, at frequencies close to the Bragg gap reflection, beyond the parax-

ial approximation. Using a multi-scale analysis, we derive a (2D) NLS equation with

higher-order correction terms that consider non-paraxial regimes in the slowly vary-

ing envelope approximation. In addition, a fully numerical simulation of the newly

derived model equation demonstrates that mutual balancing between Kerr, dimension-

ality, higher-order dispersions and non-paraxiality allows wave propagation, while re-

taining the shape of the gap-soliton bullets in a lattice waveguide. Subsequently, we will

study the modulational instability (MI) of the CW in the model equation. For a normal

dispersion, we find a finite threshold instability. The role of non-paraxiality between

layers of the FBG in the MI is identified.

III.2 Derivation a 2D NLS equation with higher-order cor-

rection terms in the nonparaxial regimes.

Difficulty in describing the nonparaxial propagation of an electromagnetic field using

a parabolic wave equation arises whenever the beam waist and the diffraction length

become comparable [186], or when the spectral width of a pulse is much smaller than

the pulse central frequency [187]. As is well-known, implementing the non-paraxial

interference modeling under arbitrary spatial correlation is mathematically hard chal-

lenging. In addition, the local and non-local kernel features have physical implications
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on the spatial behavior of the optical waves and quantum particles in the setup volume,

that the paraxial approached models cannot account for. It has been shown that the

propagation equation of the first order for non-paraxial beams and ultra-short pulses

is equivalent to a generalized uncertainty principle deformed free particle Schrödinger

equation [188, 189]. Furthermore, by using the mathematical analogy between a non-

paraxial optical system and the generalized Schrödinger equation deformed by the ex-

istence a minimal measurable length, the Feynman path integral method for nonparax-

ial optics has been constructed and the ultrafocused optical pulses can be used as an

optical analog of quantum gravity [190]. In the context of nonlinear optical devices,

a non-paraxial NLS equation has been derived to describe spatial solitons in 2D Kerr

media that includes ultra-narrow soliton beams. Here, the nonparaxiality arises from

linear 2D diffraction [191]. The non-paraxial theory of self-focusing and self-trapping

of the Hermite cosh-Gaussian laser beam in a rippled density plasma with relativistic

nonlinearity has been analyzed, where the variation of beam width parameter with the

distance of propagation has been studied by solving coupled second-order nonlinear

differential equation for different modes with varying parameters [192]. The standard

scalar paraxial parabolic (Fock-Leontovich) propagation equation has been generalized

to include all-order non-paraxial corrections in the smallness parameter in a tensorial

refractive-index perturbation on a homogeneous isotropic background [193, 194]. A 2D

NLS equation that includes the combined effect of small-time dispersion and nonparax-

iality on self-focusing has been derived and the regimes in which each mechanism dom-

inates have been identified [195]. Most of the problems related to beam propagation in

optics are treated in the so-called paraxial approximation which is only valid for light

rays very close to the optical axis. Within this framework, the evolution of the beam in

the presence of a small refractive index variation is described by the parabolic (or Fock-

Leontovich) wave equation. This equation is valid if we use the slowly varying approx-

imation and if one neglects the polarization-scrambling term [196, 197], and the validity

of the paraxial approximation has been questioned by numerous authors previously

[198], and even with respect to optical vortices interacting with atoms [199]. However,
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devices at micro and nano scales are currently developed in optical and quantum tech-

nology. At these scales, non-paraxial propagation of waves and particles as well as ef-

fects due to the two-point correlation are unavoidable. So, the nonparaxial description is

required because of the short propagation distances, significantly shorter than the limit

distance that assures the validity of the paraxial approach. For the theoretical interpre-

tation of the experimental results, nonparaxial optics is an interesting branch of research,

which is a generalization of the standard paraxial optics, with applications for the gen-

eration of subwavelength anti-diffracting beams to obtain super-resolved microscopy

[200, 201]. The energy, momentum, and propagation of the Laguerre-Gaussian (cylindri-

cal coordinates) beam modes, Hermite-Gaussian (Cartesian coordinates) beam modes

and Ince-Gaussian (elliptical coordinates) beam modes of the paraxial wave equation in

an apertured nonparaxial regime have been investigated [202]. The filamentation of a

laser beam and modifications of the plasma density profile in the plane transverse to the

beam axis as well as the propagation characteristics of the wave propagating in a hot col-

lisionless plasma in the non-paraxial region has been studied [203]. It has been shown

that the microscopic interaction of the spin-orbit of the two-component Bose-Einstein

condensate with the nonparaxial Laguerre-Gaussian beams will not only provide en-

hanced Rabi frequencies due to increased intensity but also will generate different chan-

nels of transitions along with their external control mechanism [204]. In particles car-

rying orbital angular momentum, when the beams are focused to a spot with a size

comparable to a characteristic scale of a problem, more realistic wave-packet treatment

beyond the paraxial approximation is needed, in particular, for proper study of the spin-

orbit phenomena and scattering problems in atomic and high-energy physics, especially

when the quantum interference and coherence play a notable role [205, 206]. The opti-

mal focal distance of a planar-convex lens has been determined beyond the paraxial

approximation within the context of geometrical optics [207]. Three-dimensional non-

paraxial accelerating fields have been generated by suitably shaped mirrors [208, 209].

Very recently, 3D nonparaxial accelerating beams associated with different coordinate

systems have been experimentally realized [210].
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III.3 Asymptotic study of the dynamics of gap-soliton bul-

let in the nonparaxial regime

The existence of Bragg solitons, near (but outside) the band gap results from the com-

pensation of the grating dispersion by the nonlinearity of the fiber, where the Bragg grat-

ing is inscribed [212, 214].Sipe and de Sterke have shown that the propagation of these

solitons is described by a standard NLS equation, which can be derived from the cou-

pled mode equations, supplemented by terms representing the nonlinear contribution

to the propagation.Bragg solitons have been observed experimentally in FBGs [216] and

in semiconductor guides.Their main characteristic is that they can propagate at speeds

much lower than the speed of light in the fiber in the absence of the grating. We will

present the asymptotic study of the dynamics of Gap-soliton bullet in the FBGs. We will

use the multiple scale analysis method to reduce the system of coupled nonlinear non-

paraxial equations to an equation called the perturbed nonparaxial 2D NLS equation,

which describes the nonlinear nonparaxial propagation of the pulses at the edges of the

photonic band gap. We consider the following nonparaxial nonlinear coupled mode

equations:

∂2E+

∂z2
+ i( ∂

∂t
+ cg

∂
∂z
)E+ + κE− + ∂2E+

∂x2
+ Γ(|E+|2 + 2 |E−|2)E+ = 0,

∂2E−

∂z2
+ i( ∂

∂t
− cg

∂
∂z
)E− + κE+ + ∂2E−

∂x2
+ Γ(|E−|2 + 2 |E+|2)E− = 0,

(III.1)

This Fig. 12 illustrate the Gap soliton in 3D this solitons refer to intense nonlinear pulse

propagation in periodic variation fiber. We have shown the gap in this figure so that in

the continuation of the work we can advance by making propagate the ballets of light in

this zone of gap in nonparaxial regime

with the nonlinear coupling coefficient being Γ = 3χ(3)Ω2/c2 , and κ = Ωδn/2c. (|E+|2 +

2|E−|2)E+. The expressions (|E−|2 + 2|E+|2)E− are coupling terms that include cross-
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Figure 12: Dispersion relationship showing a periodic Bragg grating band
.
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phase modulation (multiplied by 2) and auto-phase modulation (with any coefficient).

In the linear case, i.e., Γ = 0, solutions for system of Eq. (III.1) are taken to be




E+

E−


 =




U+

U−


 ei(Ωt−kzz−kxx) + c.c. (III.2)

with Ω, kz, kx satisfying the dispersion relation (Ω2 − (k2x+ k2z))
2 = cgk

2
z + κ2 − 2ǫk2xk

2
z . In

the particular case where Ω = κ and kx = kz = 0, solutions (III.2) reduce to




E+

E−


 = c




1

−1


 e−iκT + c.c. (III.3)

We should note that solution (III.3) satisfy L




E+

E−


 = 0, where L is an operator given

by:

L =



i ∂
∂t

κ

κ i ∂
∂t




In the nonlinear equations of coupled modes, we find the solution of the above equation

in the linear case and then present the nonparaxial nonlinearity in the coupled mode

equations. Therefore, using the method of analysis at multiple scales method, we look

for solutions of the form:




E+

E−


 = ǫ1/2A(τ1, τ2, X, Z)




1

−1


 e−iκT + ǫU1 + ǫ3/2U2 + ǫ3U3 + ..., (III.4)

where τ1 = ǫt, τ2 = ǫ2t, X = ǫ1/2x, and Z = ǫ1/2z. We now solve for




E+

E−


 in suc-

cessive orders of ǫ, where the expansion as a function of term of O(ǫ) leads to the set of

Ph.D. Thesis of Ambassa Otsobo J.A Laboratory of Mechanics, Materials and Structures



Results and discussions 66

equations:

LU1 = −cg
∂A

∂z




1

1


 e−iκT . (III.5)

We notice that the solution to the above is linear and is obtained in the following form:

U1 = − cg
2κ

∂A

∂z




1

1


 e−iκT . (III.6)

In order to go to higher orders, we first need a careful calculation of nonlinear limits.

The development will be done in order θ(ε
3/2):

∣∣∣ε1/2A− iε cg
2k
.∂A
∂z

∣∣∣
2

=
(
ε
1/2A− iε cg

2k
.∂A
∂z

)(
ε
1/2A∗ − iε cg

2k
.∂A

∗

∂z

)

= ε |A|2 + ε
3/2 cg

2k

(
A∂A∗

∂z
− A∗ ∂A

∂z

)

.

(III.7)

Expanding the square modulus terms gives

2
∣∣∣ε1/2A+ iε cg

2k
∂A
∂z

∣∣∣
2

= 2
(
ε
1/2A+ iε cg

2k
∂A
∂z

)(
ε
1/2A∗ + iε cg

2k
∂A∗

∂z

)

= 2
(
ε |A|2 + iε

3/2 cg
2k
(A∂A∗

∂z
−A∗ ∂A

∂z
) + ε2

c2g
4k2

∂A
∂z

∂A∗

∂z

)

.

(III.8)

The nonlinear terms are

(
|E+|2 + 2 |E−|2

)
E+ =

(
3ε |A|2 + iε

3/2 cg
2k
(A∗ ∂A

∂z
− A∂A∗

∂z
) + 3ε2

c2g
4k2

∂A
∂z

∂A∗

∂z

)

×
(
ε
1/2A− iε cg

2k
∂A
∂z

)
e−iκT + c.c.

(III.9)

=




3ε |A|2A− iε2 cg
2k
(2 |A|2 ∂A

∂z
+ A2 ∂A∗

∂z
)

+ε
5/2(

c2g
2k2
A∂A
∂z

∂A∗

∂z
+

c2g
4k2
A∗(∂A

∂z
)2)− iε3

3c3g
8k3

(∂A
∂z
)2(∂A

∗

∂z
)


 e−iκT

+c.c.

(III.10)
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Similarly,

(
|E+|2 + 2 |E−|2

)
E− = −




3ε
3/2 |A|2A− iε2 cg

2k
(2 |A|2 ∂A

∂z
+ A2 ∂A∗

∂z
)

+ε
5/2(

c2g
2k2
A∂A
∂z

∂A∗

∂z
+

c2g
4k2
A∗(∂A

∂z
)2) + iε3

3c3g
8k3

(∂A
∂z
)2(∂A

∗

∂z
)


 e−iκT

+c.c.

(III.11)

Then, we continue the computation for high correction orders of (E+, E−). The expan-

sion of the order θ(ε
3/2) gives:

LU2 = −
(
i
∂A

∂τ1
+
∂2A

∂z2
+
cg
2κ

∂3A

∂z3
+
c2g
2κ

∂2A

∂z2
+
∂2A

∂2x2
+ 3Γ |A|2A

)



1

−1


 e−iκT + c.c

(III.12)

We should specify that the slow variation of the terms around U1 = − cg
2κ




1

−1


 e−iκT

is zero in space L. The physical condition will be given by

i
∂A

∂τ1
+
∂2A

∂z2
+
cg
2κ

∂3A

∂z3
+
c2g
2κ

∂2A

∂z2
+
∂2A

∂2x2
+ 3Γ |A|2A = 0. (III.13)

For higher-order effects, we continue the expansion at order 0(ε2) , and make the rescal-

ing τ2 = ε2t, so that:

LU3 = −




(i cg
2κ
Γ(4 |A|2 ∂A

∂z
+ 2A2 ∂A∗

∂z
) +

c3g
4κ2

∂3A
∂z3

+
c3g
4k2

∂4A
∂z4

)

+ cg
2κ
Γ(2 |A|2 ∂2A

∂z2
+ A2 ∂2A∗

∂z2
) + cg

2κ2
∂4A
∂z4

+ cg
2κ

∂5A
∂z5







1

−1


 e−iκT + c.c. (III.14)

The solution to the above equation is found in the form

U3 = −




i cg
4κ2

[
Γ(4 |A|2 ∂A

∂z
+ 2A2 ∂A∗

∂z
) +

c2g
2κ

∂3A
∂z3

+
c2g
2κ

∂4A
∂z4

]

+ cg
4κ2

[
Γ(2 |A|2 ∂2A

∂z2
+ A2 ∂2A∗

∂z2
) +

c2g
2κ

∂4A
∂z4

+ ∂5A
∂z5

]







1

−1


 e−ikT + c.c. (III.15)
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Calculation can be extended up to the order ,0(ε5/2) which leads to

LU4 = −




i ∂A
∂τ2

+
c2g
4κ2

(Γ4∂|A|
2

∂z
∂A
∂z

+ 2A2 ∂A∗

∂z
) +

c4g
8κ3

∂4A
∂z4

+
c4g
8κ3

∂5A
∂z5

+
c2gΓ

4κ2
2A∂3|A|2

∂z3
+ A∗(∂A

∂z
)2 +

c5g
8κ3

∂5A
∂z5

+
c3g
4κ2

∂6A
∂z6

+
c2g
4κ2

(Γ4∂
2|A|2
∂z2

∂A
∂z

+ 2∂
2A2

∂z2
∂A∗

∂z
) +

c3g
8κ3

∂5A
∂z5

+
c3g
8κ3

∂6A
∂z6

+
c2gΓ

4κ2
2A∂4|A|2

∂z4
+ ∂2A2

∂z2
∂2A∗

∂z2
) +

c3g
8κ3

∂6A
∂z6

+ cg
4κ2

∂7A
∂z7







1

−1


 e−iκT + c.c.

(III.16)

In general, when we consider higher-order effects, nonlinear perturbed terms are added

to the classical NLS equations. This is termed as the nonparaxial NLS equation. Sum-

ming up all the steps and defining the slow time τ1 + τ2 = t, one obtains the following

2D equation:

i
∂A

∂τ
+
∂2A

∂z2
+
∂2A

∂x2
+
c2g
2k

∂2A

∂z2
+ 3Γ |A|2A = −εF (A), (III.17)

with

F (A) = Γ
c2g
4k2

(
5A∗(∂A

∂z
)2 + 10A∂A

∂z
∂A∗

∂z
+ 4 |A|2 ∂2A

∂z2
+ 2A2 ∂2A∗

∂z2

)

+Γ
c2g
4k2

(
5∂

2A∗

∂z2
(∂A
∂z
)2 + 10∂

2A
∂z2

∂A
∂z

∂A∗

∂z
+ 4 |A|2 ∂3A

∂z3
+ 2A2 ∂3A∗

∂z3

)

+
c4g
8k3

∂4A
∂z4

+
c11g
8k3

∂5A
∂z5

+ (
c3g
4k2

+
c6g
8k3

)∂
6A
∂z6

+ cg
4k2

∂7A
∂z7

(III.18)

The above equation describes the nonparaxial nonlinear propagation of the pulses in a

periodic medium (Bragg grating) with higher-order effects outside the forbidden band.

Such higher-order effects include dispersion terms up to the seventh-order and nonlin-

ear derivative terms, while Aceves et al. [218] obtained a 2D NLS equation that was

including terms up to the fourth-order dispersion.

III.3.1 Numerical gap-soliton bullet stability under nonparaxiality ef-

fects

In the previous section, we derived the perturbed 2D NLS Eq.(III.17) in the slowly-

varying envelope approximation from the coupled-mode equations. A natural question

is whether its solutions can remain stable over propagation. Otherwise, what are the

values of the involved parameters and coefficients for its solutions to remain stable? In
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order to proceed with the answer to such a concern, we first need to make the change of

variables y =
√
2κ
cg
z, ψ =

√
3ΓA [197], which leads to the nondimensional equation

2κ
c2g

∂2ψ
∂y2

+ i∂ψ
∂τ

+∆⊥ψ + |ψ|2 ψ = − ǫ
12

(
5ψ∗ ∂ψ2

∂y
+ 10ψ

∣∣∣∂ψ∂y
∣∣∣
2

+ 4 |ψ|2 ∂2ψ
∂y2

+ 2ψ2 ∂2ψ∗

∂y2
+ 1

2
∂4ψ
∂y4

)

− ǫ
12
.2

√
κ

cg




5
√
2κψ∗ ∂3ψ2

∂y3
+ 102κ

cg

∂2ψ
∂y2

∣∣∣∂ψ∂y
∣∣∣
2

+ 4 |ψ|2 ∂3ψ
∂y3

+ 2∂
2ψ2

∂y2
∂3ψ∗

∂y3

+3
c8g√
2κ

∂5ψ
∂y5

+ 3
c4g

2κ
√
2κ

∂6ψ
∂y6

+ 12κ
c5g

∂7ψ
∂y7




(III.19)

where ∆⊥ = ∂xx+ ∂yy. Once more, it should be noted that when the coefficient ǫ
12
.2

√
κ

cg
→

0, the nonparaxiality effect is switched off and the remaining terms belong to the NLS

equation proposed in Ref. [217, 218, 219, 220]. Additonally, if ǫ → 0, one recovers the

equation proposed by Fibich [221, 222, 223, 224], who initially introduced nonparaxial-

ity in the Bragg grating to study the implications of such an effect on the beam width

and self-focusing. It should be noticed from the above that the terms contributing to

paraxiality and nonparaxiality have in common the small parameter ǫ, the parameter

κ, the group velocity cg that can be tuned for a suitable balance between dispersion

and nonlinearity, which is necessary for the Townes soliton to be stable. Moreover, we

solve Eq.(III.19) using the split-step Fourier method, with the initial condition being

a Townes soliton. To start, we display the propagation of the initial condition in the

medium in Fig.(13), for ǫ = 0.01, κ = −1 and cg = 0.5. Obviously, for this combination of

parameters, the propagation gives rise to a broad range of phenomena that characterize

the instability of the soliton. However, this instability gives rise to composite solitons,

made of several peaks, with a persisting background of the initial condition. Compared

to this previous case, the values ǫ = 0.025, κ = −1.2 and cg = 0.55 lead to a solitonic

structure that delocalized during propagation and split into several objects as time in-

creases. To remind, rows from top to bottom, respectively, correspond to instants t =

2, t = 3, t = 4 and t = 5. When values of parameters change to ǫ = 0.032, κ = −2.3,

and cg = 0.64, the initial condition rapidly evolves into asymmetric bullets, whose the

heart becomes symmetric as time increases and recombine to get the initial state back-

ground [see Fig.(15)]. However, like in the previous case of Fig.(14), the structures de-
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localize as time increases, which supports its propagation during disintegration and

recombination. Additionally, the first instant of the structures in Fig.(16), shows that

this state is unstable as the original symmetry is spontaneously broken. Nevertheless,

with the chosen values of the system parameters, the recombination process as time

evolves causes the intensity to increase, leading to the quasi-original form of the gap-

soliton bullet obtained in Fig. 16(c1). This last combination of parameters shows that

it is possible to get suitable parameters for which stable objects can be obtained from

the above system. Beyond such an objective, one should also be interested in the gener-

ated composite solitons, which to some extent may enrich the family of useful solitons

in optics and materials. However, one of the facts that should be of interest here is the

splitting-recombination phenomenon that can be useful in securing information during

transportation, as solitonic waves have drawn considerable attention in that direction.

In general, the increase of the dispersion strength reveals some hidden phenom-

ena of the system that did not appear when we were at lower orders. This can best

be understood either by showing the system’s stability or instability, which can later

lead to collapse. In this paper, we describe the phenomenon of division recombination

which appears thanks to the presence of the higher-degree terms due to nonparaxiality.

This process leads to an increase in the intensity of the incident light power to produce

shorter pulses. Additional nonlinear and higher-order scattering effects come into play

essentially altering the physical characteristics and stability of the optical soliton prop-

agating in the nonlinear non-paraxial medium. The system’s dynamics is described as

part of a non-paraxial nonlinear equation that includes higher-order dispersion terms.

To better illustrate the presence of higher-order terms in this contribution, unlike those

of Aceves, et al. [224, 225, 226, 227], whose Fig.(13) shows that the system remains sta-

ble throughout its evolution, we cannot talk about collapse. On the other hand, Fig.(16)

of the present thesis rather an unstable state and a spontaneous rupture of the system,

which could be translated into a collapse corresponding to the radical divisions of the

solitons as they propagate in the optical fiber. In addition, we observe an increase in

their intensity due to modification of system parameters related to nonparaxiality and
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Figure 13: Panels (a1), (b1), (c1) and (d1) show the intensity profiles for the propaga-
tion of the initial gap-soliton bullet at the respective instants t=0, t=2, t=3, t=4 and t=5,
with panels (a2), (b2), (c2) and (d2) corresponding to their contour plots. The third col-
umn,with index 3, from left displays the phase distribution at the respective instants,
with the other parameters being ǫ = 0.01, κ = −1 and cg = 0.5.
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Figure 14: Panels (a1), (b1), (c1) and (d1) show the intensity profiles for the propagation
of the initial gap-soliton bullet at the respective instants t=0, t=2, t=3, t=4 and t=5, with
panels (a2), (b2), (c2) and (d2) corresponding to their contour plots. The third column,
with index 3, from left displays the phase distribution at the respective instants, with
the other parameters being ǫ = 0.01, κ = −1 and cg = 0.5.
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the group speed. However, the terms of higher-order have allowed us to highlight the

phenomenon of division-recombination and observation of a collapse at precise times

and with certain values directly linked to our system. Subsequently, this collapse ended

up being reconstituted, with the soliton regaining its normal shape. This can then be ex-

plained by the presence of nonparaxiality which, at higher orders, maintains the system

stable even though it goes through several changes transient modes. More importantly,

previous works do not support system collapsing [228, 229, 230, 231], which to some

extent may be responsible for the generation of new states, with interesting features

and undeniable practical implications. The phenomena described in the present paper

bring forth the effectivity and efficiency of nonparaxiality, especially when solitons and

their stability are involved in coupled nonlinear systems. The stability can be affected

by such effects, with a strong impact on their intrinsic structure and width. This, how-

ever, does not prevent us from confirming the stability of the structures generated here,

partly due to the enhanced modeling features, in comparison to the work of Aceves et al

[232, 233, 234, 235]. Of course, such a confirmation may appear obsolete, which requires

further studies, which is not the aim of the present work.

III.4 Modulational instability growth rates in a 2D NLS

equation in nonparaxial regime

The starting point is based on the nonparaxial 2D NLSE equation.(III.19) [236, 237,

238]. In this subsection, we will show how the system becomes unstable and how the

nonparaxial parameters influence the dynamics of the system [239, 240, 241].
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Figure 15: Panels (a1), (b1) and (c1) show the intensity profiles for the propagation of the
initial light bullet at the respective instants t=0, t = 2, t = 3, and t = 5, with panels (a2),
(b2) and (c2) corresponding to their contour plots. The third column, with index 3, from
left displays the phase distribution at the respective instants, with the other parameters
being ǫ = 0.032, κ = −2.3, and cg = 0.64.
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Figure 16: Panels (a1), (b1) and (c1) show the intensity profiles for the propagation of the
initial light bullet at the respective instants t=0, t = 2, t = 3, and t = 5, with panels (a2),
(b2) and (c2) corresponding to their contour plots. The third column, with index 3, from
left displays the phase distribution at the respective instants, with the other parameters
being ǫ = 0.04, κ = −2.9, and cg = 0.69.
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III.4.1 The study of the linear stability analysis

Study of the instability of nonlinear, nonparaxial solitons is based on the linear stability

analysis of the model. The steady state solution of Eq.(III.19) is

ψ(y, x, τ) =
√
p0 exp(iQnl), (III.20)

where the nonlinear phase shift Qnl is related to the forward power p0 as:

Qnl = p0τ. (III.21)

To investigate the modulation stability of this solution , let us perturb the stationary

result of Eq.(III.19) in the following way:

ψ(y, x, τ) = [
√
p0 + ǫψ1(y, x, τ)] exp(ip0τ), (III.22)

where ψ1(y, x, τ) is an arbitrary small perturbation. When Eq.(III.22) is substituted into

Eq.(III.19) with higher-order terms in ψ1 dropped, we obtain the evolution equation

a1
∂2ψ1

∂y2
+ i∂ψ1

∂τ
+ p0(ψ1 + ψ∗

1) + ∆⊥ψ1 = 10bp0
∂ψ1

∂y
+ 4bp0

∂2ψ1

∂y2
+

2b1p0
∂2ψ∗

1

∂y2
+ b1

2
∂4ψ1

∂y4
+ 2cdp0

∂3ψ1

∂y3
+ 4cp0

∂3ψ1

∂y3
+ cf ∂

5ψ1

∂y5
+ cg ∂

6ψ1

∂y6
+

ch∂
7ψ1

∂y7
.

(III.23)

The different coefficient of the equation are given by: a1 =
2κ
c2g
; b1 =

ǫ
12
; c = − ǫ

12
2
√
κ

cg
; d =

5
√
2κ; e = 102κ

cg
; f =

3c8g
2
√
κ
; g =

3c4g
2κ

√
2κ
; h = 12κ

cg
.

We now assume that the spatial perturbation ψ1(y, x, τ) takes the form:

ψ1 = aei(kxx+kyy−Ωτ) + be−i(kxx+kyy−Ωτ) (III.24)

where K and ω are the wave number and spatial frequency of the perturbation wave,

respectively. Insert Eq.(III.24) into Eq.(III.23),we obtain a square matrix in cosine and
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sine as follows 


−k + a11 a12

a21 k + a22







a

b


 =




0

0


 , (III.25)

where

a11 = (a1 − 4b1p0 + 1)k2y − p0 + k2x + 10ib1p0ky + 2ip0(−cd− 2c)k3y+

b1
2
k4y + icfk5y − cgk6y − ichk7y ,

a12 = −p0 − 2b1p0ky,

a21 = −p0 − 2b1p0ky,

a22 = (a1 − 4b1p0 + 1)k2y − p0 − k2x − 10ib1p0ky + 2ip0(cd+ 2c)k3y+

b1
2
k4y − icfk5y − cgk6y + ichk7y

. (III.26)

The condition for the existence of nontrivial solution for the system Eq.(III.25) gives

rise to a second-order polynomial equation for the wave number K that represents the

dispersion law for the pertubation, i.e.,

K2 + sK + p = 0, (III.27)

in which s = a22−a11, and p = a21a12−a11a22. To investigate the modulational instability

process, we must study of the imaginary part of the roots of the dispersion equation

Eq.(III.27). Whenever K approaches non-zero imaginary part number, then the steady-

state solution becomes unstable. The dispersion equation has two roots given as follows:

K1,2 =
1

2
(−s±

√
s2 − 4p). (III.28)

The steady-state solution becomes unstable only when K has a non-zero imaginary

part, then the pertubation grows exponentially and the modulational instability occurs.
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When the above conditions are satisfied, with the contribution of the non-paraxial ap-

proximation we find that the propagation of solitons takes place but with different val-

ues of the nonparaxiality parameters that strongly affect the system, the presence of the

perturbation in this case will reveal us Growth rates. The general expressions of the

growth rates of the MI or the gain spectrum are defined as follows

G = Im [K1,2] (III.29)

III.4.2 Numerical solution of the 2D NLS equation in nonparaxial regime

It is interesting to follow the evolution of the growth rate of MI with variation of system

parameters, in particular the variation of the parameters of non-paraxiality ǫ, and cou-

pling coefficient κ. To elucidate the role of non-paraxiality parameters and wavenumber

K, in the expansion of the MI region. We focus first on the influence of the κ parameter

on MI gains G+ , respectively. Fig.(17), shows the evolution of modulation instability

gains for different values: cg = 5, eps = 1.3, p0 = 5.2, Ky = .1 gain G+ decreases with

increasing the coupling coefficient κ = 1×105. While there is no significant influence on

the width and amplitude of the G+ gain profile. Have found that the maximum gains

vary considerably according to the frequency variations, for Fig. 17(a) we can notice

that for the frequency Kx = −0.01. We have an evolution curve which becomes con-

stant as the frequency increases up toKx = 0.95. We have a linear line which means that

there is no variation of the system the soliton normally propagates in the fiber of bragg,

the MI does not affect the propagation of said soliton with this frequency. We can also

notify that here the gain reached is max, when we go further with very high frequencies

Kx = 4.8. We have no remarkable influence, further the frequencies drop considerably

up to Kx = −0.13. The gain is very low have observed not much at all the soliton is

flat. For the Fig. 17(b) we discuss according to the values of the coupling coefficient it-

self κ, and we note that we have several zones of instability. Initially G+ presents three

windows of instability according to Kx, for the value κ = −3 × 10−6. The soliton thus
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moves in three zones of instability without any time oscillate, secondly G+ presents a

window of instability according to Kx, for the value κ = −4.2× 10−7. The soliton prop-

agates in a zone of instability with oscillation. Thirdly G+ does not present any window

of instability according to Kx for κ = −3.81 × 10−8. There is no zone of instability. Fi-

nally, G+ presents two windows of instability according to Kx for κ = 1.52 × 10−5. We

have two zones of instability in which the soliton propagates without oscillation. For

Fig. 17(c), we have the gain G+ as a function of Kx for κ × 105. We have five windows,

therefore five areas of instability, where the soliton can propagate freely. Figure (18), we

have investigate the impact of the nonparaxiality parameter ǫ according to the following

values: cg = 5, p0 = 5.2, κ = 1 × 10−4, ǫ = 1.3. In Fig.18(a), we have the top view of Kx

as a function of Ky, where the shape changes completely. In Fig. 18(b), we have a repre-

sentation of the gain G+ as a function of Kx, for different values of frequencies Ky. We

have several curves which refer to different interpretations. For the red curve, we have

Ky = −0.0025. We can see that there are two lobes which cancel at zero, when we leave

the first lobe for the second. For the pink curve, we have Ky = −0.3. We also have two

lobes but they do not cancel at zero. For the blue curve, we have Ky = 0.2. We also have

two lobes that do not cancel at zero. Finally, the black curve are platted for Ky = 0.35.

We have three lobes that do not cancel at zero. In Fig. 18(c), we have a representation of

the gain G+ as a function of Ky, according to the different values of the frequencies Kx.

For the black curve the value isKx = −0.01. We have three peaks that cancel at zero after

the second peak. For the red curve, we have one peak that does not cancel. For the green

curve the value is Kx = −3.6. We have two peaks, but we notice that after the first peak,

it tends to cancel at zero before reconstituting itself, meaning that, at a certain point, this

soliton is determined at a certain value of the frequency. When we reach higher values,

this soliton reconstitutes itself. This reconstitution is due to the non paraxiality effect on

the NLS equation with a higher-order dispersion. Finally on the blue line we have use

Kx = 2.4. We have obtained three vortices among which, the first and the third which

tend to merge at the black line, where the solitons propagate, but the second vortex

does not join the green one in this case, the soliton is in an unstable state or sometimes,
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(a)

(b)

(c)

Figure 17: Growth rate of the modulational instability associated with solutions G+ of
Eq (III.29). Graph (a) shows the 3D representation of the gain G+ as functions of Kx and
κ ∗ 105.. Graph (b) shows the MI gain for different values of G+ as a function of Kx in
2D. Graph (c) shows the 2D representation of the gain G+ as a function of κ = 1 × 105

The other parameters used are: cg = 5, ǫ = 1.3, P0 = 5.2, Ky = 0.1 . It is obvious
that by increasing the value of kappa, the instability zone expands; this means that the
nonparaxiality parameter increases the MI in the FBG. It is shown that the growth rate
of instability G+ can be dramatically affected by the nonparaxiality parameter κ.
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cah lead to the appearance of the last blue peak. In Fig.(19), we have taken the negative

(a) (b)

(c)

Figure 18: Modulational instability gain associated with solutions G+ of Eq. (III.29).
Graph (a) shows kx as a function of Ky, and Graph (b) shows the gain spectrum G+ as
a function of Kx. Graph (c) shows the gain spectrum G+ as a function of Ky, for a fixed
ǫ = −1.3 value . The other parameters used are: cg = 5, p0 = 5.2, κ = 1× ǫ−4 .

value of ǫ = −1.3. In Fig. 19(a), we observe the representation of the top view of the

gain of G+ as a function of Ky. In Fig.19(b), we have the representation of the gain G+

as a function of Kx, for different values of frequencies Ky. For Ky = −0.0025, we have

the red curve that reveals two lobes that cancel at zero. For Ky = −0.3, the pink curve

reveals only one lobe, which cancels at two points between [−1.8; 1.8]. For Ky = 0.2.

For Ky = 0.35, we have two lobes that do not cancel out anywhere but oscillate. In Fig.

19(c), we have the representation of the gain G+ as a function of Ky. Here, we discuss

the different frequency values among which Ωx = −0.01, Ωx = −1.2, Ωx = −3.6, and
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Ωx = 2.4, respectively. We have several peaks that do not necessarily cancel each other.

We just have the black curve which cancels before zero and after zero, then the pink

curve which joins this one at zero. So, we can say that for low values frequency solitons

tend to be unstable before regaining their stability. For high frequency values, the soli-

ton propagates by remaining stable during its movement in the FBG. In the Fig.(19), we

(a) (b)

(c)

Figure 19: Modulational instability gain associated with solutions G+, of Eq. (III.29).
Graph (a) shows Kx as a function of Ky, Graph (b) shows the gain spectrum G+ as a
function of Kx. Graph (c) shows the gain spectrum G+ as a function of Ky, for a fixed
ǫ = −1.3 value . The other parameters used are: cg = 5, p0 = 5.2, κ = 1× ǫ−4 .

have plotted Kx versus p0, because we are looking for the effect of p0 on the dynamics

of soliton. We can say that increases the propagation width but the amplitude remains

constant. In the Fig.(20), we have plotted X versus Y for the behavior of solitons dur-
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Figure 20: Effect of p0 on the gain of modulational instability. Here, p0 takes high values.
The graph shows a curve of Kx versus p0. The other parameters used are: cg = 5, p0 = 6,
κ = 1× ǫ−4 .

ing of propagation according to different values of the propagation distance Z between

0 and 30. We observe that the peaks tend to decrease which means that the more the

propagation distance increases, the less peaks are observed along the Y axis. So this one

affects considerably the soliton during the propagation. In the Fig.(21) and Fig.(22), For

higher values of the propagation distance Z = 30at48, we can see that the peaks disap-

pear completely. We just have parallel lines that form along the Y axis, which proves

that the soliton is perfectly unstable.

III.5 Conclusion

Throughout this chapter, we can say that it was about deriving the analytical model

of the 2D NLS equation. We found the appearance of higher-order dispersion terms

caused by the effect of nonparaxiality. Then, we made a numerical study which led us

to interesting results concerning the stability of the gap-soliton bullet. We were able to

illustrate different graphs as a function of some important parameters of the system such

as the group velocity, the coupling coefficient κ, and the parameter of nonparaxiality ǫ.
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(a)

(b)

(c)

Figure 21: 2D representation of the evolution of solitons in an instability medium in the
nonparaxial regime. Z= 0 in Fig. 20(a), Z= 20 in Fig.20(b), and Z= 30 in Fig. 20(c). Other
parameters are: p0 = 1.0,k = −1, cg = 5, vg = 5, ǫ = 1.3, ǫ = −1.3, κ = 2 × 10−4, Initial:
input is U =

√
p0(1 + 10−4(cos(1.1× 2πx) + cos(1.5× 2.p0y))).
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Figure 22: 2D representation of the evolution of solitons in an instability medium in the
non-paraxial regime for Z=48, Z is considered here as a counter.

Finally, we have studied the modulational instability of our model, presenting the gain

of stability as a function of certain parameters such as the coupling coefficient κ, and

the nonparaxial parameter ǫ. We look into account the variation a function of other

parameter such as the wave number Kx and Ky, the group velocity cg, and the incident

power p0. We observe some instability zone when the coupling coefficient κ and the

wave number K vary considerably. This leads to formation of different lobes in the

course of the soliton propagation in the FBG, where the nonparaxiality has a great effect

on the propagation of solitons via the modulational instability.
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In this present thesis, after giving a general overview on FBGs, we have used the

multiple scales method combine with coupled wave equations model to derive a new

version of nonlinear nonparaxial wave equation, that we have named, a 2D NLS equa-

tion that includes nonparaxial correction terms. A complete numerical investigation

of gap-soluton bullets, using a Townes bullet soliton as the initial condition, has been

carried out. The impact of the nonparaxialiality terms on the stability of the Townes

soliton has been addressed using different combinations of system parameters known

as the group velocity, the coupling coefficient κ, and the nonlinearity parameter ǫ. Be-

yond such stability, granted by some values of such parameters, other classes of solitons

were debated along with the recombination capacity of the initial state upon propaga-

tion in the nonparaxial medium. Composite solitons with interesting dynamical features

have been described. This reveals the richness of the derived model, which may give

rise to more exotic patterns if suitable detection methods are used. Therefore, one of

the general methods that support soliton generation in most of the physical systems

in nature is modulational instability. The latter takes place when nonlinearity and dis-

persion are well-balanced. we have studied the propagation of a nonparaxial beam in

a nonlinear Kerr medium using the linear stability method. The expression of the MI

gain spectrum for the non-paraxial beam has been derived. The linear stability anal-

ysis of the plane waves, solutions of the amplitude equation, revealed the existence of

instability regions strongly influenced by the coupling parameters and the nonparaxi-

ality parameters. We have therefore constructed a typical dependence of the MI gain

on the perturbation wavenumbers and the system parameters. By solving the second

order polynomial, with nonlinearity in the nonparaxial approximation, obtained from
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the non-trivial solution condition, we have drawn MI gain regions. The results were

confirmed by numerical simulations, where the effects of the coupling coefficients on

the evolution of the MI gain have been studied in depth. On the other hand, the MI

growth rate and the instability region are sensitive to the coupling parameters. A judi-

cious choice of all these coupling parameters gives us the freedom to control of the MI

growth rate of instability. Moreover, we have also proved that the propagation distance

affects the gap-soliton bullet considerably during its propagation. The higher the value

of Z, the less peaks there are, and so on, until they tend to disappear to form lines that do

not tell us much about the propagation of the soliton. The future works are as follows:

− We will consider wave propagation in materials with a saturable refractive index.

− More accurate models should include vectorial effects and backs cattering.

− We will consider Gap solitons in Bragg gratings with dispersive reflectivity.

− Construct the bright and dark Bragg solitons in the upper and lower branches of

the dispersion curve, of our new model equation using the coupled amplitude-phase

method.

− We will also investigate the link between parametric gap solitons to chaos by means

of second-harmonic generation in Bragg grating.

− We will investigate, in the vicinity of the parity-time symetric periodic structure

band gap, the interaction of forward and backward propagating waves.
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