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ABSTRACT

An array of nanoelectromechanical beams driven by an electrical line of Josephson junctions

equivalent models is firstly studied in this thesis. It is found that a single electromechanical

system displays oscillations under a critical value of the DC bias current. In the case of an array

of the electromechanical systems constituted of a series of coupled discrete Josephson junction

with a beam placed at each node, the numerical simulation shows that as the electric signal

flows in the discrete array, each beam executes a pulse-like motion coming back at each resting

state as the electrical signal passes the node. When the bias current increases, the amplitude

and period of the pulse-like shapes increase. One also notes the increase of the amplitude of the

pulse-like shape when the magnetic field increases. The electromechanical system analyzed can

be seen as a model for periodic nano-actuation processes or as a model of legs in a millipede

system.

Secondly, the analysis of an array of electromechanical systems driven by an electrical line

of Fitzhugh-Nagumo neurons is performed. It is shown theoretically and experimentally that

a single electromechanical system can display different dynamical behaviors such as single and

multiple pulse generation, transient and permanent chaos, and antimonotonicity according to

the system parameters. In the case of an array of the electromechanical system constituted of

a series of coupled discrete Fitzhugh-Nagumo neurons, the numerical simulation shows that as

the action potential flows in the discrete array, each electromechanical system executes a pulse-

like motion coming at each resting state as the electrical signal passes the node. Furthermore,

this line can also carry an envelope of action potential and can be useful for various kinds of

information processing systems.

Keywords: Electrical line, Nanoelectromechanical, Josephson junction, neuron, Fitzhugh

Nagumo, pulse signal, antimonotonicity.
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RESUME

Dans cette thèse, une rangée de nanopoutres actionnée par une ligne électrique de jonctions

Josephson est premièrement étudiée. Nous constatons qu’un seul système électromécanique

constitué d’une nanopoutre actionnée par une jonction Josephson effectue des oscillations au

dessus d’une valeur critique du courant de polarisation. Dans le cas d’une ligne de jonctions

Josephson discrète contenant une nanopoutre à chaque nœud, la simulation numérique montre

que lorsque le signal électrique circule dans la ligne, chaque nanopoutre exécute un mouve-

ment de type impulsion et revient à sa position initiale lorsque le signal électrique a passé le

nœud. Lorsque le courant de polarisation augmente, l’amplitude et la période des impulsions

générées augmentent. On note également l’augmentation de l’amplitude de la forme impulsion-

nelle lorsque le champ magnétique augmente. Le système électromécanique analysé peut être

considéré comme un modèle pour les processus d’actionnement périodique à l’échelle macro-

scopique, microscopique ou nanoscopique. Et également comme un modèle de pattes d’un robot

de mille-pattes.

Ensuite, une rangée de bras électromécaniques couplée à une ligne électrique de neurones

Fitzhugh-Nagumo est analysée. Nous avons montré théoriquement et expérimentalement qu’un

bras électromécanique alimenté par un neurone de Fitzhugh-Nagumo peut afficher en fonction

des paramètres du système différents comportements dynamiques tels que: les impulsions sim-

ples et multiples, le chaos transitoire et permanent et l’antimonotonie. Dans le cas d’une ligne

de neurones de Fitzhugh-Nagumo discrète ayant à chacun de ses nœuds un bras électromé-

canique, la simulation numérique montre que lorsque le potentiel d’action passe dans la ligne

discrète, chaque bras exécute un mouvement de type impulsion et revient à sa position initiale.

De plus, cette ligne peut également faire propager une enveloppe de potentiel d’actions et peut

par conséquent être utile pour divers types de systèmes de traitement de l’information.

Mots clés: Ligne électrique, électromécanique, jonction Josephson, Neurone, Fitzhugh

Nagumo, impulsion, antimonocité.
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GENERAL INTRODUCTION

Different types of oscillators can be used to actuate mechanical arms, among which we

can name the Josephson junction oscillator and Fitzhugh-Nagumo oscillator. One particular

interest in the Josephson junction is its potential to generate high-frequency signals ranging

from Gigahertz to Terahertz [1, 2]. Thus, it is generally considered as a microwave radiation

source and can be used for practical applications such as Superconducting Quantum Interference

Devices (SQUIDs), detectors, digital logic circuits, and voltage standards [3–6]. Because of its

large range of frequency variation and the high values of the frequencies, one can think of

supplying some actuation processes at the nano level using a Josephson junction. This will

lead to high-frequency nanoelectromechanical systems.

The usefulness of the Fitzhugh-Nagumo model is its ability to generate low and moderate

frequency signals. Being most used because of its simplicity and its small equivalent circuit [7],

Fitzhugh-Nagumo model is a relaxation oscillator [8]. It is also well known as a generalization

of the Van der Pol equations that are used to model the behavior of excitable systems [9].

The excitability represents the fact that from his resting state, if an excitable cell receives a

stimulus (small perturbation) at a brief time interval, the membrane potential of the cell reaches

a threshold value and generates an action potential before returning to its resting state [10–12].

For the actuation tasks, we will analyze a system where the Fitzhugh-Nagumo neuron is used

to control a mechanical arm. This is similar to the coupling between a biological neuron and a

muscle. In fact, when the brain decides to move part of the body and gives the command to the

motor neurons to execute this movement, it is the muscles at the end of the chain of command

that ultimately contract to move the body part concerned. To transmit this command, the

axons of these motor neurons, emerging from the spinal cord, form a nerve that extends to

the muscles. Where the tip of each axon comes into proximity with a muscle fiber, it forms a

synapse with that fiber.

Another way is to consider an electrical line in which an electrical signal propagates steadily

with a constant shape. This requires some special electrical lines such as nonlinear electrical

transmission lines which are able to propagate special electrical signals such as solitons [13–17].

In these electrical transmission lines, the signal can be inserted periodically at one entrance
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General Introduction

node. Each signal introduced in the line will propagate along the line. An example of such

electrical transmission lines, representing a discrete model of myelinated nerve fibers has been

used to power an array of electromechanical systems [18].

Thus, many research activities have considered arrays of Josephson junctions [2, 19–24] in

order to appreciate the output power. This is not the case with a single Josephson junction

which is unable to deliver high power. It is well known that Josephson junction equivalent model

and Fitzhugh-Nagumo model have been widely studied as nonlinear electrical transmission lines

where long Josephson junctions and arrays of discrete Josephson junctions exhibit soliton-like

excitations [25, 26]. Likewise, Fitzhugh-Nagumo neuron displays the nerve impulse during its

propagation evolve from cell to cell by keeping their shape [27–30]. As the nano-actuation is

concerned, scientists and engineers are interested in the design of a large ensemble of nano-

actuators. This can be obtained by coupling several nanoelectromechanical systems through

their mechanical parts or through the electrical parts with different types of coupling. In the

same manner, the legs of millipedes can be viewed as an array of Fitzhugh-Nagumo neurons

coupled each to an electromechanical system. Thus, following the idea of Ref. [18], we consider

in this thesis the dynamical behavior of an array of electromechanical devices, each of which is

placed at a node of the discrete array. such an electromechanical system can be used model for

macro, micro, and nano-actuation, but also a model for the legs of artificial millipedes. Indeed,

millipedes move their legs in a wave-like undulation along their body propelling themselves

forward (or backward) against the substrate [31,32].

The research leads to three important contributions to the field of electromechanical systems.

− The first purpose of our thesis was to study the dynamical behavior of nano-beams motion

in an array constituted of coupled discrete Josephson junctions.

− The second main aim of the thesis was to analyze the dynamical behavior of an array of

electromechanical systems powered by an array of Fitzhugh-Nagumo neurons.

− The third purpose of our work was to study experimentally the system constituted of one

single Fitzhugh-Nagumo neuron coupled magnetically to a mechanical arm.

The present work is divided into three chapters and organized as follows:

Chapter one is concerned with the literature review on networks of electromechanical sys-

tems, discrete Josephson junction transmission lines, and Fitzhugh- Nagumo neuron. We will

conclude this chapter by recalling the problems to be solved in this thesis.

The physical description and mathematical models of the systems analyzed in this thesis are

presented in chapter 2. Here, the theoretical and experimental methods are also investigated.

The types of equipment and components used during our experimental work are presented.

KOUAMI MBEUNGA Nadine 2 PhD, UYI



General Introduction

In Chapter 3, we present our obtained analytical and simulation results. We analyze the

effects of some parameters on the behavior of the system. The comparisons are then made

between the theoretical results and experimental ones.

We end this thesis with a general conclusion where the work is summarized and perspectives

for future investigations are proposed.
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Chapter 1

LITERATURE REVIEW AND
PROBLEM STATEMENT

Introduction

For several decades, biomimetics and bioengineering contribute to significant progress in

the technology of multilegged locomotion. This thesis is embedded in biomimetics, in partic-

ular electromechanical systems which are focused on the research question of how to techni-

cally mimic the behavior of many legs. Some information about networks of electromechanical

systems is given in this chapter. Discrete Josephson junction transmission lines as well as

Fitzhugh-Nagumo neuron are also presented. The problem statement of the thesis is discussed

at the end of this chapter.

1.1 NETWORKS OF ELECTROMECHANICAL SYSTEMS

1.1.1 Definition of electromechanical systems

The electromechanical system focuses on the interaction of electrical and mechanical

systems as a whole and how the two systems interact with each other. This interaction is

done through a coupling. the coupling between the electrical part and the mechanical part can

be an electromagnetic [33], a piezoelectric [34], a piezoresistive, or a capacitive coupling [35].

According to their size, Electromechanical systems (EMSs) are classified into three domains as

follows:

a) Macro-electromechanical systems

Macroelectromechanical system (MaEMS) is classified in the category of big sizes EMS

[36]. They can be found in various fields such as domestic equipment, manufacturing, com-

munication, and energy production. Mechanical motion is typically converted into electrical

energy and vice versa through various transducers mechanisms. However, although conversion

can have place through many converters, magnetic coupling is generally used in experiments as

in most practical devices. In these devices, MaEMSs thus consist of a subsystem (an electric
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1.1 NETWORKS OF ELECTROMECHANICAL SYSTEMS

circuit), a magnetic subsystem (magnetic field), and a mechanical subsystem. The magnetic

subsystem fits between the electrical and mechanical subsystems and acting in the energy con-

version. When coupled with an electric circuit, the magnetic flux interacting with the current

in the circuit would produce a force on a mechanical part. On the other hand, the motion of

the mechanical arm in the magnetic field causes an induced electromotive force in the circuit.

b) Microelectromechanical systems

Microelectromechanical system (MEMS) is a process technology used to create tiny

integrated devices or systems that combine mechanical and electrical components. They can

range in size from a few micrometers to millimeters [37]. These devices (or systems) can

sense, control, and actuate on the micro-scale, and generate effects on the macro scale. They

are used in fields as varied as automotive, aeronautics, medicine, biology (BioMEMS), and

telecommunications. applications have gone into production while in others, they remain in

the field of research and development. Although MEMS can be manufactured aseptically and

hermetically. Biology and medicine are areas where MEMS are very interesting. It is quite

possible to create autonomous systems that can diagnose and act within the human body.

c) Nanoelectromechanical systems

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and

mechanical functionality on the nanoscale. The system is extremely small in size (dimension

less than one cubic micrometer) [38]. Unlike MEMS, NEMS are an emerging technology. NEMS

have long been tools devoted to fundamental studies to probe mesoscopic physical mechanisms.

Their extremely small size makes them extremely sensitive to any external stimulus. NEMS are

interesting both in terms of fundamentals and applications. They often have high mechanical

resonance frequencies typically from (1 to 100 MHz) and dissipate low quantities of energy

(mechanical and electrical). They are sensitive enough to enable mass measurements to be

realized at the single molecular level (molecule counting), to count electrons or phonons one

by one, or to measure forces approaching the pico-Newton. In other words, NEMS respond

to requests as fast as the size of the nanobeam is small. It is, therefore, possible to actuate

high-frequency NEMS with a thermomechanical force, something that was not possible with

microsystems. This also means that a NEMS sensor can be used to detect fast phenomena.

The mechanical part can be of various nature (rigid or flexible arm). It can also be consisting

of springs, movable rods, pendulums, discs... EMS can be linear or nonlinear. It is considered

linear when the equations that model the behavior of the electrical and/or mechanical parts

are linear. It is nonlinear if at least one of the two parts is nonlinear. Nonlinearity in the

mechanical part may be due to the behavior of several components: damping coefficient, elastic
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coefficient, high-value deformation giving rise to geometric nonlinearity, etc. The electrical part

is generally consisting of resistors, capacitors, potentiometers, coils, relays, diodes, transistors,

and integrated circuits. Nonlinearity in the electrical part is generated by the presence of

nonlinear components such as capacitors, resistors, or coils. many works have been carried out

to investigate their different dynamical states by building the electrical circuits on the base of

the components mentioned above [33,36].

1.1.2 Dynamical behavior of single Electromechanical system with

nonlinear components

Many essential works of which the list is non-exhaustive have already been done in

the case of single nonlinear EMS. The interesting results on the dynamic behavior have been

observed and have improved the quality of electromechanical devices in modern life. Mogo and

Woafo [39] investigated the dynamics modeling of a cantilever arm magnetically coupled to a

nonlinear electric circuit. It is shown that the nonlinearity is from the capacitor component.

Moreover, they found that the system presents various types of nonlinear behaviors including

chaos. Chedjou et al. [40] studied the dynamics of a self-sustained electromechanical system

consisting of an electrical Van der pol oscillator coupled to a mechanical Duffing oscillator.

They observed that the system can exhibit harmonic oscillators, quenching phenomena, and

Shilnikov chaos. Other researchers are Kitio and Woafo [36, 41, 42] who studied analytically,

numerically, and experimentally some self-sustained electromechanical systems. The systems

considered in these works are made up of an electrical implementation consisting of different

types of oscillators such as (Van der pol-Duffing oscillator, Rayleigh-Duffing oscillator) actuating

a mechanical arm (rigid and flexible). The authors showed that these systems exhibit periodic

oscillations, quenching phenomena, bifurcation, and chaos oscillations. Yamapi et al. [43–

47] in their studies, have performed several works on a single electromechanical system for

which many dynamics behaviors have been observed. By the method of harmonic balance and

the Floquet theory, they obtained the frequency responses and stability boundaries, and also

reported various types of bifurcation sequences. The transition to chaotic behavior is found

using numerical simulations. The canonical feedback controllers have been used to drive the

electromechanical device from a chaotic trajectory to a regular target orbit. Ngueuteu and

Woafo [48] included a Fractional-order to describe an electromechanical system and detailed

attention is granted to the bifurcations that can occur in the dynamics of a single uncoupled

electromechanical system as the fractional order varies.
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1.1.3 Networks of electromechanical systems

A great interest devoted to networks of the electromechanical systems is investigated

several decades ago. A network of the electromechanical systems is constituted of several cou-

pled electromechanical systems. It is inspired by the connectivities between cells which are

frequently observed in nature and applied to many branches of electromechanical engineering

and many other disciplines. An important element in the dynamics of a network is the coupling

phenomenon. It can lead to a failure of signal propagation or transmission signal in the system

depending on the strength of coupling. The coupling schemes can be divided into two quali-

tatively different groups. The first one is a global coupling where all oscillators are connected

with each other directly [49, 50]. The second type is a local coupling where the single node is

connected to oscillators in its nearest neighborhood [51,52]. Such coupling can be bidirectional

or unidirectional. In a bidirectional local coupling, the signal is transmitted and received si-

multaneously by all connected systems while in a unidirectional local coupling, the signal is

transmitted in one direction from one to another.

Due to interactions between nodes in networks, there exist different types of configuration

networks: a ring, a chain, a star, or a random configuration.

A ring configuration network is a type of network where the node is exactly connected to two

other nodes, forward and backward thus forming a single continuous path for signal propagation.

Many researchers performed their works in this type of network. Ngueuteu et al. studied the

stability of a synchronized network of N chaotic electromechanical devices, coupled through a

linear capacitor and resistance, connected in series [53]. Yamapi and Woafo investigated the

dynamics of a ring of four mutually coupled identical self-sustained electromechanical devices

both in their autonomous and non-autonomous chaotic states. By varying the coupling strength,

the transition boundaries that can occur between instability and complete synchronization

states have been performed [54]. Furthermore, Taffoti and Woafo studied the synchronization

in a ring of mutually coupled electromechanical devices. In this work, each device consisted

of an electrical Duffing oscillator coupled magnetically with a linear mechanical oscillator.

They found the ranges for cluster and complete synchronization in the regular state or in

the chaotic state [55]. Tchakui et al. in their works [56] studied the bifurcation structures

in three unidirectionally coupled nonlinear electromechanical systems with no external signal.

They found that the magnetic field and the damping coefficient control the appearance of Hopf

bifurcation. Also, they found that for the small delay and generative process strength, the

system remains motionless, leading to periodic oscillation at critical value.

Concerning a chain configuration network, it is an opened ring with an infinite number of
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elements. In This configuration, the last unit is not connected to the first one. It is described

in the same way as the ring configuration. The particularity of this case lies in its boundary

conditions. Some works have been done in a chain configuration network [57–59].

Finally, a network of mutually coupled EMS following a star configuration is a configuration

in which unit 1 is coupled to all the other units of the network and all the other units are coupled

only to unit 1 [57].

1.2 DISCRETE JOSEPHSON JUNCTION TRANSMIS-

SION LINES

1.2.1 Generalities on nonlinear electrical transmission lines

Nonlinear electrical transmission line (NLETL) is an ordinary transmission line whose

electrical characteristics are functions of local voltages and currents. Its structure usually

consists of repeated identical subcircuits made up of lumped elements. This structure can be

either discrete or continuous. Nonlinear electrical transmission lines are interconnected. Since

pioneering works by Hirota and Suziki [60] on electrical line simulating Toda lattices [61], a

growing interest has been devoted to the use of the NLETLs in general for the study of the

nonlinear modulated wave, pulse solitons, envelope pulse (bright) solitons, hole (dark) solitons

[62,63], intrinsic localized modes also called breathers [64,65], modulational instability [66,67],

in particular for the study of nonlinear wave propagation [68,69].

Over the past decade, the nonlinear propagation of signals in NLETLs was investigated

theoretically and experimentally [70–72] by studying linear stability and the higher-order so-

lutions in NLETL. These nonlinear electrical transmission lines serve as nonlinear dispersive

media where electrical solitons can propagate in the form of voltage waves without changing

their shape. A balancing mechanism between nonlinearity and dispersion is responsible for

the appearance of soliton phenomena [73]. Solitons can propagate over long distances and

survive collisions. These are highly localized solutions in space of nonlinear partial differential

equations. They have infinite support due to the exponential decrease of their profile at large

distances [74]. The studies of NLETLs have progressed in both the theoretical field [75] and

technology [76–78] and are used in a variety of applications: Indeed, NLETLs have proven to

be extremely useful in pulse generation and shaping using nonlinear phenomena having a wide

range of frequencies from DC to 100 GHz [79,80].

There exist many mathematical models of nonlinear electrical transmission lines to inves-
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tigate the propagation of solitons such as nonlinear Schrodinger equation [81, 82], Kordeweg-

de-Vries (KdV) equation [83], Sine-Gordon equation (long Josephson Junctions) [84], to name

just a few. In the reaction-diffusion equations, a mathematical model of nonlinear electrical

transmission lines are Hodgkin-Huxley equation [85], Fitzhugh-Nagumo equation [86], Morris

Lecar equation [87] and so on.

1.2.2 Short Josephson junction

Brian David Josephson in 1962 predicted theoretically the Josephson effect [88] and

in 1963 it was for the first time experimentally observed by Anderson and Rowell [89]. The

principle of the Josephson effect is that the phase difference ϕ between superconductors 1 and

2 in Figure 1.1 generates a cooper pair current passing through the insulating barrier. This

barrier is also called Junction. Thus, the Josephson junction is a device that consists of two

superconductors weakly separated by a thin insulating barrier [90, 91] as illustrated in Figure

1.1. ψL and ψR are macroscopic wave functions of cooper pairs in the first and second electrodes

respectively.

Figure 1.1: Schematic diagram of a Josephson Junction [92].

If The insulating barrier is thick, the electron pairs can not get through; but if the layer is

thin enough (approximately 10 nm) there is a probability for electron pairs to the tunnel. This

effect became known as Josephson tunneling. The tunnel effect is one of the most emblematic

phenomena of mechanics quantum. Conventionally, a given energy barrier is impassable by any

particle whose energy is lower. Tunneling junctions have an SIS (Superconductor-Insulator-

Superconductor) type structure. Josephson effects can be studied on various contact types

besides the tunnel contact such as Superconductor-Normal Metal-Superconductor (SNS), micro

bridges, proximity effect bridge, point contact, bloc-type junction [93], Figure 1.2.

The conducting region of the two last types of weak links is shown schematically in the

circle on the bottom. S stands for Superconductor, S ′ for the Superconductor with reduced

critical parameters, N for Normal metal or alloy, SE for Semiconductor (usually highly doped),
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Figure 1.2: Different types of structures where the Josephson effect can take place. (a) tunnel junction, (b)

Sandwich, (c) proximity effect bridge, (d) ion implanted bridge, (e) microbridge, (f) variable thickness bridge,

(g) point contact; (h) blob-type junction [91].

I stands for Insulator. Normal metal barriers typically have thicknesses between 10 nm and

100 nm [94]. The first dynamics Josephson effect equation is:

i(t) = Ic sin(ϕ(t)), (1.1)

where ϕ = ϕR − ϕL is the phase difference between the macroscopic wave functions that de-

scribe the paired electrons of the two electrodes, Ic is a function parameter called the critical

current, that is the maximum current that can pass through the junction. It depends on the

temperature, the applied magnetic field, the geometry of the superconductors and the barrier,

and the materials used. i(t) is a cooper current through the Josephson Junction. The second

dynamics Josephson effect equation is:

dϕ

dt
=

2e

~
v. (1.2)

In the above equation, v is the potential difference across the junction, the physical constant

ϕ0 =
~
2e

is the magnetic flux quantum where ~ denotes the reduced Planck’s constant and e

the electron charge. These equations define the relation between the Josephson current ı and

the voltage v using the phase ϕ as an intermediary [95,96].

There are three main effects predicted by Josephson according to the Josephson equations:

• The DC Josephson effect:
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In the absence of a voltage, the supercurrent flow between the two superconductors separated

by a thin insulating barrier and may take values between −Ic and Ic.

• The AC Josephson effect:

In the presence of a constant voltage, the Josephson current will oscillate at a frequency

f =
2ev

h
called the Josephson frequency where 2e

h
= 483.6 GHz/mV.

• The inverse AC Josephson effect:

If an alternating current of radian frequency ω is applied to the junction terminals by

microwave irradiation, the current of cooper pairs tends to synchronize with this frequency (and

its harmonics) and a direct voltage appears at the junction terminals. This synchronization

is revealed in the current-voltage characteristics by the appearance of voltage steps at integer

multiples of the value V =
h

2e
f .

Josephson junctions are theoretical and applied devices extensively studied in the field of

nonlinear dynamics and materials sciences [97–100]. Different models to study the dynamics

of a single Josephson junction are performed such as RCSJ (Resistance Capacitive shunted

junction) [101, 102]. This model was first explored by Stewart [103] and Mc Cumber [104]. In

this model, conduction through the junction includes three independent components: an ideal

Josephson junction which carries a supercurrent, a superconducting current due to the tunneling

of quasiparticles, and a displacement current associated with the junction capacitance. Thus,

the equivalent circuit of a Josephson junction base on the RCSJ model is shown in Figure 1.3.

Here quasiparticle conduction is represented by the linear resistance R, displacement current by

the capacitance C, and pair tunneling by an ideal Josephson element JJ, indicated by a cross.

IS is an external current source necessary to bias the junction. RCLSJ (Resistance, Capacitive,

Inductance shunted junction) [97,99,105,106]. This model is found more appropriate to generate

chaotic oscillation with external DC bias only. It is noted that a refinement of the RCSJ model

exists in which the resistance R is assumed to be nonlinear and is a function of the applied

voltage [107]. This model is theoretically more suited to SNS (Superconductor- Normal metal-

Superconductor) or weak links. In our work, we will focus on the RCSJ model where R is

linear.

Several investigations in the nonlinear dynamics by using a single Josephson junction

based on RCSJ have been widely explored. Valkering and al. [109] have investigated analytically

and numerically the dynamics of two capacitively coupled Josephson junctions based on the

RCSJ model. The work revealed that below a certain value of the coupling capacitance, the

dynamics take place on a two-dimensional torus in the phase space. Furthermore, The authors

of ref. [110] have worked on the bifurcation and transition to chaos in a Josephson junction.
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Figure 1.3: Equivalent circuit of a Josephson Junction according to the RCSJ model [108].

They observed that the system can show chaotic behavior in some regions of the parameter

space both the DC and AC current are applied to the junction.

1.2.3 Josephson junction transmission lines

A Josephson junction is a high-frequency oscillator with high-frequency applications

[1, 22]. Two major problems are encountered in the application of the Josephson junction: the

power generated by a single junction is too small and secondly the linewidth of the emitted

radiation is undesirable. [2]. To solve those problems, it is important to note that the appli-

cation of Josephson junctions as high-frequency oscillators crucially depends on achieving high

enough output power. The possibility to increase the power transmitted and to increase the

radiation output power is through the Josephson transmission line which is supposed to be a

large number of Josephson oscillators. Josephson junction transmission line (JJTL) is a long

Josephson junction in which a vortex (fluxons or soliton) can propagate freely [111]. It can

be constructed in different geometries, and the junction geometry has a significant effect on

the junction dynamics. The most extensively studied geometries are the overlap geometry, the

inline geometry, and the annular geometry [112], depicted in Figure 1.4.

The first two are somewhat similar in that they consist of finite length, quasi-one-dimensional

strips; the essential difference between them is how the bias current is applied to them. In the

overlap geometry, the current is applied perpendicular to the long dimension of the junction,

whereas, in the inline geometry, it is applied parallel to the long dimension. The annular ge-

ometry, instead is qualitatively different, consisting of a strip closed upon itself in an annular.

Although somewhat more difficult to construct and control from the point of view of fabrication

technology, the annular geometry junction offers the interesting possibility of studying soliton

dynamics in the absence of boundary reflection effects. The structure of Josephson junction

transmission line equivalent circuit has been shown in ref. [114]. Several studies have used
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Figure 1.4: Different geometries of Josephson Junction devices: a) Overlap, b) Inline, c) Annular geometry

[113].

Josephson junction transmission lines in the concept of new designs such as information stor-

age, processing circuity, using Josephson transmission line by employing flux quantum (fluxon)

as information bit [115–117]. The Josephson junction transmission line in one dimension is

described by the normalized nonlinear partial differential equation of ref. [114,117–119].

1.2.4 Josephson discrete transmission lines

Josephson discrete transmission lines (JDTLs) have attracted considerably high interest,

both as an excellent laboratory for nonlinear dynamics and because of their relatively wide

area of applications. The JDTL belongs to the basic element set of a quickly developing

family of superconducting digital circuits, rapid single flux quantum electronics (RSFQ) [120].

The basic dynamic properties of such lines were recently a subject of several studies [120–

123]. JDTL is known as Josephson junction array and the need to generate high power as

a continuous long Josephson transmission line (JTL). The advantages of JDTL have over a

Josephson transmission line are that the vortex velocity of JDTL can be higher so that higher

frequencies are accessible and that parameters can over leaving more freedom when designing

circuits [124]. Also, long JTL shows very promising attributes but the JDTL has demonstrated

to have superior properties for microwave applications and electronics due to its [125]. The

works have been done by using DJTL [126–128]
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1.3 FITZHUGH-NAGUMO NEURON

1.3.1 Neuron cell structure

The fundamental task of the nervous system is to communicate and process information.

Animals, including humans, perceive, learn, think, deliver motion instructions, and are aware of

themselves and the outside world through their nervous systems. The basic structural units of

the nervous system are individual neurons. There are approximately 100 billion neurons in the

human brain [129] and each is linked to thousands of other neurons. They have two physiological

properties: excitability and conductivity which are characterized by their function such as the

sensory neurons respond to stimuli such as touch, sound, or light that affect the cells of the

sensory organs and they send signals to the spinal cord or brain.

Motor neurons receive signals from the brain and spinal cord and then carry them to the

outside to control the movement of muscles and the activities of glands. Interneuron sends

messages from one neuron to another. Different types of neurons show great diversity in size

and shape, which makes sense given the tremendous complexity of the nervous system and the

huge number of different tasks it performs. Some examples are Pyramidal cells (neurons with

triangular soma), Purkinje cells (huge neurons in the cerebellum, Basket cells (interneurons,

found in the cortex and cerebellum), Spiny cells (most neurons in the corpus striatum) [130,131].

A typical neuron possesses a cell body (the soma), dendrites, and an axon as illustrated in Figure

1.5

Figure 1.5: Schematic drawing of a neuron [132].

− Cell body

Also known as soma, the cell body carries genetic information, maintains the structure of

the neuron, and provides energy to drive activities. Like other cell bodies, a neuron’s soma
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contains a nucleus and specialized organelles. The diameter of the cell body is in the order of

5 to 100 micrometers.

− Dendrites

Dendrites receive and process signals from the axons of other neurons. Neurons can have

more than one set of dendrites, known as dendritic trees. They can receive many thousands of

input signals.

− Axons

An axon is a tube-like structure that propagates the integrated signal to specialized endings

called axon terminals. These terminals communicate with adjacent neurons, muscles, or target

organs. Some axons are covered with myelin, which acts as an insulator to minimize the

dissipation of the electrical signal as it travels down the axon, greatly increasing the speed of

conduction. The axon or nerve fibre has a diameter between 1 and 15 micrometer. Its length

varies from, millimeters to more than one meter. Along the axon, there are periodic gaps in the

myelin sheath. These gaps are called nodes of Ranvier and are sites where electrical impulses

travel along the axon. The unmyelinated spaces are about one micrometer long.

There are three types of neurons according to their structure. The first type is called

unipolar neurons and they have only one structure that extends away from the soma. The

second type named bipolar neurons has one axon and one dendrite extending from the soma.

Finally, the multipolar neurons contain one axon and multiple dendrites.

Every neuron contains charged ions whose concentration is different inside and outside the

cell. This difference is called the membrane potential. The permeability of the axon membrane

to sodium Na+ and potassium K+ ions includes ion channels that permit electrically charged

ions to flow across the membrane and ion pumps that chemically transport ions from one side

of the membrane to the other.

The movement of ions across the nerve membrane is governed by two opposing forces:

concentration gradient and electrical gradient. Concentration gradient means the difference in

the distribution of ions between the inside and the outside membrane. And these concentration

differences are caused by active pumps. The further electrical gradient is the difference in

positive and negative charges across the membrane. The membrane potential at which these

two opposing forces are balanced is called the equilibrium potential [133].

a)Resting potential

A neuron at rest is negatively charged: the inside of a cell is approximately 70 millivolts

more negative than the outside (70 mV, note that this number varies by neuron type and by

species). This voltage is called the resting membrane potential presented in Figure 1.6.
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Figure 1.6: The resting membrane concentrations and potential [134].

It is caused by differences in the concentrations of ions inside and outside the cell. At rest,

the neuron is said to be in a polarized state. The difference in the number of positively charged

potassium ions K+ inside and outside the cell dominates the resting membrane potential. When

the membrane is at rest, K+ ions accumulate inside the cell due to a net movement with the

concentration gradient. The negative charge within the cell is created by the cell membrane

being more permeable to potassium ion movement than sodium ion movement. In neurons,

potassium ions are maintained at high concentrations within the cell while sodium ions are

maintained at high concentrations outside of the cell.

The cell possesses potassium and sodium leakage channels that allow the two cations to

diffuse down their concentration gradient. However, the neurons have far more potassium

leakage channels than sodium leakage channels. Therefore, potassium diffuses out of the cell

at a much faster rate than sodium leaks in. Because more cations are leaving the cell than are

entering, this causes the interior of the cell to be negatively charged relative to the outside of

the cell. The actions of the sodium-potassium pump help to maintain the resting potential,

once established. Recall that sodium-potassium pumps bring two K+ ions into the cell while

removing three Na+ ions per ATP consumed.

b)Action potential

When we talk about neurons "firing" or being "active", we are talking about the action

potential: a brief, positive change in the membrane potential along a neuron’s axon. When an

action potential occurs, the neuron sends the signal to the next neuron in the communication

chain, and, if an action potential also occurs in the next neuron, then the signal will continue

being transmitted. When a neuron receives a signal from another neuron, the signal causes a

change in the membrane potential on the receiving neuron.
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The signal causes the opening or closing of voltage-gated ion channels, channels that open or

close in response to changes in the membrane voltage. The opening of voltage-gated ion channels

causes the membrane to undergo either a hyperpolarization, where the membrane potential

increases in magnitude (becomes more negative), or a depolarization, where the membrane

potential decreases in magnitude (becomes more positive). Whether the membrane undergoes

a hyperpolarization or a depolarization depends on the type of voltage-gated ion channel that

opened.

Not all depolarizations result in an action potential. The signal must cause a depolarization

that is large enough in magnitude to overcome the threshold potential or the specific voltage

that the membrane must reach for an action potential to occur. The threshold potential is

usually about −55 mV, compared to the resting potential of about −70 mV. If the threshold

potential is reached, then an action potential is initiated at the axon hillock in the following

stages:

− Depolarization.

Voltage-gated sodium channels open quickly after depolarization past the threshold poten-

tial. As sodium rushes into the axon (influx), the inside becomes relatively electrically positive

(approximately +30 mV, compared to the initial resting potential of approximately −70 mV).

− Repolarization

Shortly after the initial depolarization, the voltage-gated sodium channels close and remain

closed (and cannot be opened) for about 1 − 2 ms. Voltage-gated potassium channels then

open, allowing potassium to rush out of the axon (efflux), causing the membrane to repolarize

(become more negative).

− Hyperpolarizaton

Potassium continues leaving the axon to the point that the membrane potential dips below

the normal resting potential. Sodium channels return to their resting state, meaning they are

ready to open again if the membrane potential again exceeds the threshold potential.

− Reset resting potential

The sodium-potassium pump and potassium leak channels reset the locations of sodium

and potassium ions, reestablishing the membrane potential to allow another action potential

to fire.

Action potentials always proceed in one direction only, from the cell body (soma) to the

synapse(s) at the end of the axon. Action potentials never go backward, due to the refractory

period of the voltage-gated ion channels, where the channels cannot re-open for a period of 1−2

ms after they have closed. The refractory period forces the action potential to travel only in
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Figure 1.7: Formation of an action potential [134].

one direction. Action potentials do not vary in magnitude or speed; they are "all-or-nothing".

When a given neuron fires, the action potential always depolarizes to the same magnitude

and always travels at the same speed along the axon. There is no such thing as a bigger or

faster action potential. The parameter that can vary is the frequency of action potentials, or

how many action potentials occur in a given amount of time. Action potentials travel down

the axon by jumping from one node to the next. This jumping is called saltatory conduction.

The image above shows a trace of an action potential at a single point in the membrane of an

axon; the same pattern repeats down the entire length of the axon until it reaches the synapse.

c)Synaptic transmission

The synapse or "gap" is the place where information is transmitted from one neuron

to another. Synapses usually form between axon terminals and dendritic spines, but this is

not universally true. There are also axon-to-axon, dendrite-to-dendrite, and axon-to-cell body

synapses. The neuron transmitting the signal is called the presynaptic neuron, and the neuron

receiving the signal is called the postsynaptic neuron. Note that these designations are relative

to a particular synapse. Most neurons are both presynaptic and postsynaptic. The synaptic

connection between neurons and skeletal muscle cells is generally called neuromuscular Junction,

and the connections between neurons and smooth muscle or glands are known as neuroreffector

junctions. Action potentials can trigger both chemical and electrical synapses.

− Chemical synapses

In a chemical synapse, action potentials affect other neurons via a gap between neurons

called a synapse. Synapses consist of a presynaptic ending, a synaptic cleft, and a postsynaptic

ending. Presynaptic cells are ending axon of one neuron, postsynaptic cells are dendrites and cell
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body of another cell and synaptic cleft which is the tiny gap between the pre-and postsynaptic

cell as shown in Figure 1.8.

Figure 1.8: Schematic drawing of a synapse between two neurons [134].

When an action potential is generated, it is carried along the axon to a presynaptic ending.

This triggers the release of chemical messengers called neurotransmitters. These molecules

cross the synaptic cleft and bind to receptors in the postsynaptic ending of a dendrite. Synaptic

between neurons are either excitatory or inhibitory. It means that Neurotransmitters can excite

the postsynaptic neuron, causing it to generate an action potential of its own. Alternatively,

they can inhibit the postsynaptic neuron, in which case it doesn’t generate an action potential.

−Electrical synapses

Electrical synapses can only excite. They occur when two neurons are connected via a gap

junction. This gap is much smaller than a synapse and includes ion channels that facilitate

the direct transmission of a positive electrical signal. As a result, electrical synapses are much

faster than chemical synapses. However, the signal diminishes from one neuron to the next,

making them less effective at transmitting.

1.3.2 Fitzhugh-Nagumo model

The Fitzhugh-Nagumo (FN) model is a mathematical model of neuronal excitability

developed by Richard FitzHugh in 1961 as a reduction of the Hodgkin and Huxley(HH) model

of action potential generation in the squid giant axon [135]. In 1962, Nagumo et al. subsequently

designed, implemented, and analyzed an equivalent electric circuit [136]. In its basic form, the

model consists of two coupled, nonlinear ordinary differential equations, one of which describes

the fast evolution of the neuronal membrane voltage, the other representing the slower recovery
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action of sodium channel deactivation and potassium channel deactivation. v̇ = α [f(v)− w + I(t)]

ẇ = β [g(v)− w]
(1.3)

where v is the membrane potential and w is the flow of ions through the membrane. I(t)

is the stimulation current. α and β are positive constants, f is a cubic function of v whereas

g is a linear function of v. There are three types of behavior well reproduced by this model:

resting potential, spiking, and bursting behaviors [137,138].

1.3.3 Dynamical behavior

The Fitzhugh-Nagumo (FN) model is commonly used in neuroscience, chemistry, physics,

and other disciplines as simple models of excitable dynamics, relaxation oscillations, and

reaction-diffusion wave propagation. Various dynamics behaviors based on the FN model have

been investigated. In order to reproduce the spiking and bursting behavior of real neurons,

Zhilong et al. [139] established and analyzed a new hybrid biological neuron model by combin-

ing the FN neuron model, the threshold for spike initiation, and the state-dependent impulsive

effects. They obtained some sufficient criteria for the existence and stability of order 1 or order

2 periodic solution to the impulsive neuron. The presented bifurcation diagrams describe the

phenomena of a period-doubling route to chaos which implies that the dynamic behavior of

the neuron model becomes more complex due to impulsive effects. Anderson Hoff et al. [140]

studied numerically the dynamical behavior of two coupled FN oscillators. By the bifurcation

curves and Lyapunov diagrams, they show that the system presents multistability in the planes

of the basin of attractions. Muhammad et al. [141] studied the synchronization of two FN sys-

tems coupled with gap junctions. They found that synchronization is achieved by stabilizing

the error dynamics. Moreover, another study on the phenomenon of vibrational multiresonance

in a delayed FN system that is excited by two-frequency periodic signals is investigated. They

found that time delay feedback induced in the system the quasi-periodic and periodic vibra-

tional resonances, and also the firing pattern of the neuron can be regulated by modulating the

delay parameter [142]. Finally, Valenti et al. analyzed the dynamics of a FN system subjected

to autocorrelated noise. They investigated the role of the colored noise on the neuron dynamics

by finding that, strongly correlated noise, efficiency enhance the neuronal response [143].
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1.3.4 Discrete transmission lines mode of Fitzhugh-Nagumo model

The modeling of these nerve fibers has been subjected by the pioneering works of Hodgkin

and Huxley [144] who have modeled the dynamics of the nervous impulse by a complex system of

nonlinear partial differential equations. Inspired by this work, a chain of electrical circuits of FN

has been taken into account where the diffusion term has been added as a means of propagation

of signals in nerve fibers. And this has allowed to obtain FN partial differential equations model

[145–148]. However, electrically, nerve fibers behave as spatially discrete periodic structures.

This is due to the periodically spaced active channels (nodes of Ranvier) in the myelin insulation

[149]. Thus, when studying the propagation of electrical signals through nerve fibers, it turns

out to be more natural to study the discrete system instead of its continuous counterpart.

Most researchers have made the investigations on FN model as a discrete transmission line,

such as Irmantas and Pyragas [150] who have investigated the effect of a homogeneous high-

frequency stimulation on a one-dimensional chain of coupled excitable elements governed by the

FN equations. They showed that depending on the amplitude of high-frequency stimulation,

the high-frequency stimulation can either enhance or suppress pulse propagation. [151, 152]

investigated a discrete chain of coupled bistable reaction-diffusion modeled by the Nagumo

equations. They determined propagation front initial conditions. They also obtained the critical

coupling constant above which propagation is possible and determined the propagation speed.

Furthermore, some authors [153] studied the effect of random long-range connections on signal

propagation in an array of coupled FN neurons. They showed that when the first neuron is

subjected to external stimuli, it fires and excites its connected neighbors, such that the neural

signal may propagate along the chain favored by the shortcuts. Also, that disorder in the neural

network may play a vital role in helping information processing in living systems.

1.4 PROBLEM STATEMENT OF THE THESIS

The study of multi-legged locomotion has increased exponentially in recent years. This

concept of legged locomotion relating the biological and engineered system offers potential

solutions to unsolved problems in daily life. Numerous studies have been carried out and

have shown the advantages of the use of many legs. The legged locomotion is quite rich

due to the variety of morphologies, gaits, and body sizes and due to the complexity of the

environment where these multi-legged characters move: overcoming objects, crossing uneven

terrain via coordination of their numerous legs, avoiding moving obstacles [154]. This allowed

the development of a multi-legged robot that enables one to traverse rough terrain where
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wheeled mobile robots cannot move around; eg. higher bumps, trenches, deep ruts, and so

on [155].

For assembly line work, networks of electromechanical systems are increasingly recom-

mended in the industry. In addition, to optimize their operation, it is advisable to supply

such networks with electrical devices that allow impulse responses of the electromechanical sys-

tems. In addition to being used as the transmission lines, such systems can be used to mimic

the movement of animals with multiple legs (centipedes and millipedes) [18]. Also, most of the

work presented up to date in coupling between biological neuron and electromechanical system

have been mainly theoretical [18, 34, 54, 54, 156] with some numerical verifications. According

to these reasons our study is based on the dynamics of electromechanical devices powered by

nonlinear electrical transmission lines.

Conclusion

In this chapter, we have presented some generalities on networks of electromechanical

systems. Information on discrete Josephson junction transmission lines as well as on Fitzhugh-

Nagumo are also given. This has enabled us to state the problem solved in this thesis.
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Chapter 2

METHODOLOGY AND MATERIALS

Introduction

In this chapter, the physical descriptions of all the systems analyzed in this thesis are

presented. Their corresponding mathematical models are then derived. The analytical and

numerical methods used to analyze the differential equations found in the thesis are explained

here. The experimental methods to analyze electrical circuits are also provided and finally, all

the materials and components used during our experimental investigations are presented.

2.1 NANOELECTROMECHANICAL BEAM DRIVEN BY

A SINGLE JOSEPHSON JUNCTION

2.1.1 Description of the system

The circuit diagram of the Josephson junction model coupled magnetically to a nano-

beam is shown in Figure 2.1.

Figure 2.1: A single Josephson junction circuit coupled to a nanoelectromechanical beam and its correspond-

ing symbol.
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It is made of an electrical part which is constituted by a Josephson junction circuit model

whose components are respectively: JJ denotes the Josephson junction element, C the junction

capacitance and R the junction resistance. Ie is an external current source necessary to bias

the junction. The mechanical part is made of a nano-beam (parallel to
−→
k ) on which is placed

a winding and the whole is in magnetic field
−→
B (parallel to

−→
i ).

2.1.2 Mathematical model of a nanoelectromechanical beam driven

by a single josephson junction

Let V be the voltage across the Josephson junction and i1 the current through the

junction. The relations between V , the phase difference ϕ across the Josephson barrier and i1

are given as [157]:

V =
~
2e

dϕ

dτ
, (2.1)

i1 = Ic sin (ϕ) , (2.2)

where e is the electron charge, ~ denotes the reduced Plank’s constant and Ic is the critical

current of the junction. The application of the Kirchhoff laws leads to the following differential

equations:

C
dV

dτ
+
V

R
+ i1 + ib = Ie, (2.3)

L
dib
dτ

+ rib = V + ef . (2.4)

In equation (2.4), ib is the current flowing through the winding located on the surface of

the nano-beam. L and r are respectively the inductance and resistance of the winding and ef

is the induced electromotive voltage provided by the winding moving in the magnetic field, τ

is the time. To obtain the equation of the nano-beam, let U be the deflection of nano-beam

and ℓ the length of the wire loop located on the surface of the nano-beam. If we assume the

nano-beam to be isotropic, uniform and flexible, then equation (2.5) is the transversal vibration

of the Euler-Bernoulli beam [158,159]:

ρS
∂2U

∂τ 2
+ λ

∂U

∂τ
+ EI

∂4U

∂Z4
= FL , (2.5)

where S is the cross-sectional area of the beam, ρ, λ, E, I and FL are respectively the density,

damping coefficient, Young’s modulus, the second moment of area and the Laplace force. We

have considered a thin beam and we neglect the axial and torsional vibrations compared to
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the flexible vibrations. The induced electromotive voltage and the Laplace force acting on the

whole nano-beam due to the magnetic coupling are given as:

ef = −Bℓ∂U
∂τ

, (2.6)

FL = Bℓib. (2.7)

Introducing equations (2.1), (2.2) and (2.6) into equations (2.3) and (2.4), and equation

(2.7) into equation (2.5), it comes that the system is described by the following three coupled

differential equations:

C~
2e

d2ϕ

dτ 2
+

~
2eR

dϕ

dτ
+ Ic sinϕ+ ib = Ie, (2.8)

L
dib
dτ

+ rib −
~
2e

dϕ

dτ
+Bℓ

dU

dτ
= 0, (2.9)

ρS
∂2U

∂τ 2
+ λ

∂U

∂τ
+ EI

∂4U

∂Z4
−Bℓib = 0. (2.10)

For the cantilever beam, the following boundary conditions are added to the equation (2.10):

i) the fixed end (Z = 0) must have zero displacement and zero slope because of the clamp:

U (0, τ) = 0 and
∂U (0, τ)

∂Z
= 0, (2.11)

ii) the free end (Z = L1) cannot have a shearing force nor a bending moment:

∂2U (L1, τ)

∂Z2
= 0 and

∂3U (L1, τ)

∂Z3
= 0. (2.12)

L1 represents the length of the nano-beam. One now introduce a set of dimensionless

variables u, x and z. We normalize the variables as u =
U

L1

, x =
ib
Ic

and z =
Z

L1

. The time τ

is normalized as t = ωcτ , where ωc is the characteristic radian frequency of the Junction. The

set of equations (2.8) to (2.10) can then be rewritten in the following dimensionless form:

βc
d2ϕ

dt2
+
dϕ

dt
+ sinϕ+ x = ie, (2.13)

dx

dt
+ µx− η

dϕ

dt
+ ε1

∂u

∂t
= 0, (2.14)

∂2u

∂t2
+ α

∂u

∂t
+ ω2

1

∂4u

∂z4
= γ1x. (2.15)

With the new introduced parameters defined as

ωc =
2eRIc
~

, βc =
2eIcR

2C

~
, ie =

Ie
Ic
, µ =

r

Lωc

, η =
~

2eLIc
, ε1 =

BℓL1

LIc
,

α =
λ

ρSωc

, ω1 =
1

L2
1ωc

√
EI

ρS
and γ1 =

BℓIc
ρSL1ω2

c

.

(2.16)
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JUNCTION

βc represents the Stewart-McCumber parameter. The dimensionless of boundary conditions

become

u (0, t) = 0 and
∂u (0, t)

∂z
= 0, (2.17)

∂2u (1, t)

∂z2
= 0 and

∂2u (1, t)

∂z3
= 0. (2.18)

Equation (2.15) is a partial differential equation. In order to obtain an equivalent ordinary

differential equation, on use the Galerkin’s method to have the modal equation [158]. For that

purpose, the deflection of the nano-beam can be written as:

u (z, t) =
∞∑
p=1

φp (z) yp (t). (2.19)

where yp (t) is the function of time at pth mode and φp (z) is the spatial function. Resolving

equation (2.15) without damping force and Laplace force and also taking into account of the

boundary condition, the spatial function φp (z) is given by:

φp (z) =
sin (Kp) + sinh (Kp)

cos (Kp) + cosh (Kp)
[cosh (Kpz)− cos (Kpz)] + [sin (Kpz)− sinh (Kpz)] . (2.20)

Substituting equation (2.20) into equation (2.19) which is then multiplied by φm(z) and

integrating from 0 to 1 for the first mode of vibration, see below.∫ 1

0

φmφpdz = 1,

∫ 1

0

φm(z)dz = c1 and
∫ 1

0

φm(z)
∂4φp

∂z4
dz = c2. (2.21)

After some mathematical manipulations, one obtains Kp = 1.8751, where Kp is the solution

of the equation cosKp coshKp = −1, c1 = 1.066 and c2 = 22.939. As consequence, the set

of equations (2.13) to (2.15) is reduced to the following system of three ordinary differential

equations where the third equation is the modal equation of nano-beam with y the displacement

of the nanoelectromechanical beam at the first mode.
βcϕ̈+ ϕ̇+ sinϕ+ x = ie,

ẋ+ µx− ηϕ̇+ εẏ = 0,

ÿ + αẏ + ω2y − γx = 0,

(2.22)

where ω = ω1
√
c2, γ = c1γ1 and ε =

ε1
c1

. The set of equations (2.22) can be transformed to five
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first order differential equations convenient for numerical simulation as follows:

ϕ̇ = v,

v̇ = − 1

βc
(v + sinϕ+ x− ie) ,

ẋ = ηv − µx− εz,

ẏ = z,

ż = γx− ω2y − αz.

(2.23)

2.2 ELECTROMECHANICAL ARM POWERED BY A

FITZHUGH-NAGUMO NEURON

2.2.1 Physical description of the system

We consider an equivalent circuit of Fitzhugh-Nagumo neuron coupled magnetically to

a mechanical arm, as shown in Figure 2.2.

a) b)

Figure 2.2: a) Equivalent circuit of Fitzhugh-Nagumo neuron coupled to an electromechanical arm. b)

Internal structure of the electromechanical subsystem.

In the equivalent circuit of Figure 2.2a), Is represents the external electrical stimulation

current source, C is the membrane capacitance, G is the membrane conductance, L and r

represent respectively the inductance and resistance of the membrane. The block MS represents

our mechanical arm and its internal structure is shown in Figure 2.2b).

The coil is positioned in the air gap of the magnet and a beam is rigidly attached to the coil.

Besides, one spring is added to avoid the movement of the mobile beam away from the balanced

position established when the system was assembled. The interaction of the current through

the windings and the magnetic field produces mechanical vibrations of the mobile beam. The
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coupling between both parts is realized through the electromagnetic force due to a permanent

magnet which creates a Laplace force in the mechanical part and the Lenz electromotive voltage

in the electrical part.

Two different strategies are responsible for electrical communication between neurons. One

is the consequence of low resistance intercellular pathways, called "gap junctions". The second

occurs in the absence of cell-to-cell contacts and is a consequence of the extracellular electrical

fields generated by the electrical activity of neurons. In the same manner, the capacitance Cm

is used to realize the coupling between the neuron and the electromechanical system.

2.2.2 Mathematical model of the system

In this model, the conductance G is the only nonlinear element, and its voltage-current

characteristics is given in equation (2.24):

iG = αv (v − µ1) (v − µ2) , (2.24)

where iG and v are the current through and voltage across the conductance respectively. µ1

and µ2 are respectively the threshold voltage and the diffusion potential of the neuron. Finally,

α is a fitting parameter and is a function of the potentials of different ions present in the

neuron. The Fitzhugh-Nagumo model of nonlinear conductance shown in equation (2.24) can

be simulated by a different nonlinear electric circuit, using a tunnel diode or a nonlinear resistor

with a smooth cubic v − i characteristic.

The application of the Kirchhoff laws to the circuit shown in Figure 2.2a) leads to the

following differential equations:

C
dv

dt
+ i+ im + αv (v − µ1) (v − µ2) = Is, (2.25)

L
di

dt
+ ri = v, (2.26)

Lm
dim
dt

+ rmim + u− v = −Bℓdx
dt
, (2.27)

Cm
du

dt
= im. (2.28)

Lm and rm are respectively the inductance and resistance of the windings, v represents the

membrane potential of the cell, namely the voltage across the membrane capacitance C, i is the

current through the inductance L, and represents biologically the recovery variable related to

the inactivation of the sodium channels. im is the current flowing through the winding, u is the

voltage across the capacitance Cm and represents the electrical synaptic potential or coupling

potential, and t is the time.
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Since there is no contact between the magnet and the moving windings, the friction effects

are neglected here. The mechanical subsystem used in this work has been modeled mathemati-

cally by many authors [160–162] and the experimental verification of the theoretical results has

been made using a motion detector and an accelerometer [40, 41]. During their experimental

works, Kitio et al. found excellent agreement between the experimental and theoretical results

when the friction forces are not taken into account [40, 41]. The equation of motion of the

mobile beam of mass m is given by:

m
d2x

dt2
+ β0

dx

dt
+Kx = Bℓim, (2.29)

where β0 is the damping coefficient, and K is the spring constant. ℓ is the total length of

the conductor used in the winding. The term −Bℓdx
dt

represents the induced voltage in the

winding, while the term Bℓim represents the Laplace force acting on the conducting wire in the

magnetic field. Equation (2.29) is valid for displacements of small amplitudes in the mechanical

subsystem. In case of high magnitude displacements, it is necessary to take into account the

nonlinear response of the spring [160,161].

Introducing the news variables and the following dimensionless parameters:

i = w, im = z, τ = ω0t, a =
1

Cω0

, b =
1

Lω0

, d =
1

Lmω0

, γ = Bℓω0, β =
β0
mω0

,

ε =
K

mω2
0

, σ =
Bℓ

mω2
0

, and q =
1

Cmω0

,
(2.30)

we obtain that the dimensionless equations governing the dynamics of the whole system are

thus: 

v̇ = a (Is − w − z − αv (v − µ1) (v − µ2)) ,

ẇ = b (v − rw) ,

ẍ = −βẋ− εx+ σz,

ż = d (v − u− rmz − γẋ) ,

u̇ = qz.

(2.31)

The action of the electrical subsystem on the electromechanical part is visualized through the

parameter σ while the effect of the electromechanical system in the electrical block is measured

through the product dγ. If σ ≫ dγ, the electrical subsystem is viewed as a voltage source by

the mechanical part. In contrast, if σ ≪ dγ, the power provided by the electrical part will be

less than the power required by the mechanical part. The moderated values of σ and dγ are

then required for the subsystems to influence each other.
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2.3 MATHEMATICAL MODEL OF ARRAY OF ELEC-

TROMECHANICAL SYSTEMS

2.3.1 Array of nanoelectromechanical beams driven by a discrete ar-

ray of Josephson junctions

In this subsection, we analyze the behavior of a system consisting of nano-beams fixed

at each node of a discrete line of coupled Josephson junctions. The coupling between two

neighborhood elements is made by an inductance Lc as illustrated in Figure 2.3.

Figure 2.3: Schematic representation of the array of Josephson junctions circuit coupled to nanoelectrome-

chanical beams.

Let ϕn, Vn, ibn, and Un be respectively the phase, the junction voltage, the current through

the winding and the deflection of the nth nano-beam. Using the Kirchhoff’s laws, the circuit

equations for the line are given by:

C~
2e

d2ϕn

dτ 2
+

~
2eR

dϕn

dτ
+ Ic sinϕn + ibn = Ie +

~
2eLc

(ϕn+1 − 2ϕn + ϕn−1) ,

L
dibn
dτ

=
~
2e

dϕn

dτ
− ribn −Bℓ

∂Un

∂τ
,

ρS
∂2Un

∂τ 2
+ λ

∂Un

∂τ
+ EI

∂4Un

∂Z4
n

= Bℓibn.

(2.32)

Using the dimensionless parameters and the Galerkin transformations presented in above

section, it is found that the line circuit is described by the following system of coupled ordinary

differential equations:
βcϕ̈n + ϕ̇n + sinϕn + xn = ie + k (ϕn+1 − 2ϕn + ϕn−1) ,

ẋn + µxn − ηϕ̇n + εẏn = 0,

ÿn + αẏn + ω2yn − γxn = 0.

(2.33)
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This is the set of differential equations describing the propagation of electrical signal and

the motion of N nano-beams. In this set of equations, the coupling parameter k between

neighboring nodes is defined as k =
√

~
2eLcIc

. The other parameters are defined as in equation

(2.34).

ωc =
2eRIc
~

, βc =
2eIcR

2C

~
, ie =

Ie
Ic
, µ =

r

Lωc

, η =
~

2eLIc
, ε1 =

BℓL1

LIc
,

α =
λ

ρSωc

, ω1 =
1

L2
1ωc

√
EI

ρS
and γ1 =

BℓIc
ρSL1ω2

c

.

(2.34)

2.3.2 Array of electromechanical arms powered by an array of Fitzhugh

Nagumo neurons

The other goal of this subsection is to analyze the behavior of a system consisting of

an electromechanical system fixed at each node of a discrete line of coupled Fitzhugh-Nagumo

type oscillator. The coupling between two neighborhood elements is made by a resistance Rc

as illustrated in Figure 2.4.

Figure 2.4: Schematic representation of the array of Fitzhugh Nagumo coupled to electromechanical arms.

As mentioned previously, the block MS represents the electromechanical system. Rc is an in-

tercellular resistance that represents the coupling resistance between the cells. n = 1, 2, · · · , N ,

where N = 6000 is the total number of cells. Let vn and un be respectively the voltages drop

across the capacitances C and Cm in the nth cell. Still in the nth cell, in and imn are respectively

the currents through the inductances L and Lm and xn is the mechanical displacement of the

mobile beam. The application of the Kirchhoff’s and Newton laws to the complete system leads
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to the following differential equations:

C
dvn
dt

+ in + imn + αvn (vn − µ1) (vn − µ2)−
1

Rc

(vn+1 − 2vn + vn−1) = Isn ,

L
din
dt

+ rin = vn,

Lm
dimn

dt
+ rmimn + un − vn +Bℓ

dxn
dt

= 0,

m
d2xn
dt2

+ λ
dxn
dt

+Kxn = Bℓimn ,

Cm
dun
dt

= imn .

(2.35)

We will proceed as we have done in the previous section. Then, considering the dimensionless

variables introduced in the previous section: vn, wn, zn, un and xn, the overall system is

described by the following nonlinear ordinary differential equations:

v̇n = a

(
Isn − αvn (vn − µ1) (vn − µ2)− wn − zn +

1

Rc

(vn+1 − 2vn + vn−1)

)
,

ẇn = b (vn − rwn) ,

żn = d (vn − un − rmzn − γẋn) ,

ẍn = −βẋn − εxn + σzn,

u̇n = qzn.

with 1 6 n 6 N

(2.36)

Let us first recall some interesting results when the mechanical part is not connected and

the membrane inductance is neglected (L = 0 H) in the equivalent circuit. The coupling term in

the first equation of system (2.36) can be approximated with partial derivatives with respect to

distance, x′, assuming that the spacing between two adjacent units is small. If we assume that

the voltage v varies slowly from one unit section to the other, the discrete spatial coordinate n

can be replaced by a continuous one x′, the network is then described by the following diffusion

equation:

1

Rc

∂2v

∂x′2
+

1

a

∂v

∂t′
− v

r
− αv (v − µ1) (v − µ2) = 0. (2.37)

We start the analysis by looking for wave solutions of equation (2.37) in the form of

v (t′, x′) = V (ξ) where ξ = x′−V0t′ is a traveling wave variable. This assumption of a traveling

wave converts the partial differential equation (2.37) into the second order ordinary differential

equation

1

Rc

d2V

dξ2
− V0

a

dV

dξ
− V

r
− αV (V − µ1) (V − µ2) = 0. (2.38)
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In the above ordinary differential equation, the traveling wave speed V0 is an unknown

parameter that must be obtained by the analysis. The corresponding traveling wave solution

and the traveling wave speed are given by

V (ξ) =
µ1 + µ2 + A

4
+

√
2B

4
tanh

(√
αRcB

4
ξ

)
and V0 =

a

4

√
2α

Rc

(µ1 + µ2 − 3A) , (2.39)

where the newly introduced parameters A and B are worth

A = −
√

(µ1 + µ2)
2 − 4

αr
and B = µ2

1 + µ2
2 + (µ1 + µ2)A− 2

αr
. (2.40)

Next, let us consider the influence of the recovery term in the system (2.36), where the

inductance L and the mechanical part are included. There are no analytical expressions so far,

and the results will be achieved in the following sections only through the computer simula-

tions. Nevertheless, the expressions obtained in equations (2.39) and (2.40) can provide some

ideas. Looking at an understanding of the underlying physical processes and possible technical

applications, we additionally study the influence of circuit parameters on the signal waveform.

2.4 ANALYTICAL METHODS

The primary advantage of analytical methods is that they are very cost effective and

they are also reasonably effective to analyze the behavior of dynamical systems. Analytical

procedure as a substantive test reduces the time taken in determining the future course of

action.

2.4.1 Routh-Hurwitz stability criterion

In control system theory, the Routh-Hurwitz stability criterion is a mathematical test

that is a necessary and sufficient condition for the stability of a linear time invariant control

system. The Routh test is an efficient recursive algorithm to determine whether all the roots of

the characteristic polynomial of a linear system have negative real parts. Hurwitz independently

proposed to arrange the coefficients of the polynomial into a square matrix, called the Hurwitz

matrix, and showed that the polynomial is stable if and only if the sequence of determinants

of its principal submatrices are all positive.

The two procedures are equivalent, with the Routh test providing a more efficient way to

compute the Hurwitz determinants than computing them directly. A polynomial satisfying

the Routh-Hurwitz criterion is called a Hurwitz polynomial. The importance of the criterion

is that the roots s of the characteristic equation of a linear system with negative real parts
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represent solutions est of the system that are stable (bounded). Thus the criterion provides

a way to determine if the equations of motion of a linear system have only stable solutions,

without solving the system directly.

A tabular method can be used to determine the stability when the roots of a higher order

characteristic polynomial are difficult to obtain. For an nth-degree polynomial

D (s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s+ a0. (2.41)

the table has n+ 1 rows and the following structure:

an an−2 an−4 an−6 · · ·
an−1 an−3 an−5 an−7 · · ·
b1 b2 b3 b4 · · ·
c1 c2 c3 c4 · · ·
...

...
...

... . . .

. (2.42)

where the elements bi and ci can be computed as follows:

bi =
an−1an−2i − anan−(2i+1)

an−1

and ci =
b1an−(2i+1) − an−1bi+1

b1
. (2.43)

When completed, the number of sign changes in the first column will be the number of non-

negative roots.

2.4.2 General oscillation startup condition

The Barkhausen criterion has been widely used to determine the oscillation startup

condition. However, it is only partially correct [163]. The general oscillation condition and the

oscillation frequency related to the general oscillation startup condition are presented in this

subsection. Assume the characteristic polynomial of a certain system has the following form:

a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + · · ·+ ans

n = 0. (2.44)

The corresponding system will oscillate if s is a purely imaginary number. Let s = jω where

j2 = −1 and ω is the radian frequency of the system. Hence equation (2.44) is equivalent to a0 − a2ω
2 + a4ω

4 + · · · = 0,

a1 − a3ω
2 + a5ω

4 + · · · = 0.
(2.45)

The first equation of system (2.45) is often used to derive the oscillation start-up condition while

the second equation of system (2.45) allows the determination of the oscillation frequency.

KOUAMI MBEUNGA Nadine 34 PhD, UYI



2.4 ANALYTICAL METHODS

In practice, an oscillator needs exponentially increasing amplitude to get the oscillation start

up. So the general oscillation condition of a feedback oscillator can be assumed as following:

There is at least one root of (2.44) lying in the right half of the s plane or a double roots on

the imaginary axe.

2.4.3 Cardano’s Method

Cardano’s method provides a technique for solving the general cubic equation:

ax3 + bx2 + cx+ d = 0, (2.46)

in terms of radicals, as with the quadratic equation, it involves a "discriminant" whose sign

determines the number of real solutions. However, its implementation requires substantially

more technique than does the quadratic formula. For example, in the "irreducible case" of

three real solutions, it calls for the evaluation of the cube roots of complex numbers. In outline,

Cardano’s methods involves the following steps:

1) "Eliminate the square term" by the substitution x =
y − b

3a
. Rather than keeping track of

such a substitution relative to the original cubic, the method often begins with an equation in

the reduced form

y3 − 3λy + 2q = 0, (2.47)

where λ = b2 − 3ac and q = b3 − 9abc− 27a2d

2
.

2) Letting y = u+ v, rewrite the above equation as

u3 + v3 + 3 (uv − λ) (u+ v) + 2q = 0. (2.48)

3) The above equation becomes the following system of equations:u3 + v3 = −2q,

u3v3 = λ3.
(2.49)

Since this system specifies both the sum and product of u3 and v3, it enables us to determine

a quadratic equation whose roots are u3 and v3. This equation is(
u3
)2

+ 2qu3 + λ3 = 0 and
(
v3
)2

+ 2qv3 + λ3 = 0, (2.50)

The simplified discriminant of the equations (2.50) is given as

∆ = q2 − λ3. (2.51)
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According to the sign of the discriminant ∆, we have the following cases:

− If ∆ > 0, equation (2.46) has one real solution given as

x =
1

3a

(
−b+ 3

√
−q −

√
∆+

3

√
−q +

√
∆

)
. (2.52)

− If ∆ 6 0, equation (2.46) has three real solutions and in this case, we have to find the cube

roots of complex numbers. After some mathematical transformations, the three real roots are

given as

x1 =
−b− 2

√
λ cos

(
θ−2π
3

)
3a

, x2 =
−b− 2

√
λ cos

(
θ
3

)
3a

, x3 =
−b− 2

√
λ cos

(
θ+2π
3

)
3a

where θ = arctan

(√
−∆

q

)
.

(2.53)

2.5 SIMULATION METHODS

2.5.1 Fourth order Runge-Kutta method

This method was developed for the first time by the mathematician C. Runge in 1894

and improved by Mr. W. Kutta in 1901. Let us solve a system of three first-order differential

equations given as follows:
ẋ = g1 (x, y, z) ,

ẏ = g2 (x, y, z) ,

ż = g3 (x, y, z) .

(2.54)

The Runge-Kutta method allows to find the variables x, y and z at successive time intervals

∆t = h. The iterative scheme of the RK4 method is given by the following relationships:
xn+1 = xn +

ℓ1 + 2 (ℓ2 + ℓ3) + ℓ4
6

,

yn+1 = yn +
k1 + 2 (k2 + k3) + k4

6

zn+1 = zn +
p1 + 2 (p2 + p3) + p4

6

where n = 0, 1, 2, 3, · · · . (2.55)

x0, y0 and z0 are the known as the initial conditions. The Runge-Kutta coefficients ℓ1, ℓ2, ℓ3,

KOUAMI MBEUNGA Nadine 36 PhD, UYI



2.5 SIMULATION METHODS

ℓ4, k1, k2, k3, k4, p1, p2, p3 and p4 are given as

ℓ1 = hg1 (t, x, y, z) , k1 = hg2 (t, x, y, z) , p1 = hg3 (t, x, y, z) ,

ℓ2 = hg1
(
t+ h

2
, x+ ℓ1

2
, y + k1

2
, z + p1

2

)
,

k2 = hg2
(
t+ h

2
, x+ ℓ1

2
, y + k1

2
, z + p1

2

)
,

p2 = hg3
(
t+ h

2
, x+ ℓ1

2
, y + k1

2
, z + p1

2

)
,

ℓ3 = hg1
(
t+ h

2
, x+ ℓ2

2
, y + k2

2
, z + p2

2

)
,

k3 = hg2
(
t+ h

2
, x+ ℓ2

2
, y + k2

2
, z + p2

2

)
,

p3 = hg3
(
t+ h

2
, x+ ℓ2

2
, y + k2

2
, z + p2

2

)
,

ℓ4 = hg1 (t+ h, x+ ℓ3, y + k3, z + p3) ,

k4 = hg2 (t+ h, x+ ℓ3, y + k3, z + p3) and

p4 = hg3 (t+ h, x+ ℓ3, y + k3, z + p3) .

(2.56)

2.5.2 Finite difference methods

Finite difference methods(FDM) are well-known numerical methods to solve differential

equations by approximating the derivatives using different difference schemes [164,165]. Many

science and engineering models involve nonlinear and nonhomogeneous differential equations,

and solutions of these equations are sometimes beyond the reach of analytical methods. In

such cases, FDM may be found to be practical, particularly for regular domains. To apply the

difference method to find the solution of a function U(x), let us divide this interval [AB] into

equal division ∆x = h where h is the increment in step size. Consider x0 = a, xi+1 = xi + h

and xn = b with i = 0, 1, 2, 3, 4, .....n− 1.

The approach used to obtain finite difference equations is Taylor’s series:

U(x0 + h) = U(x0) + hf
′
(x0) +

1

2!
h2f

′′
(x0) +

1

3!
h3f

′′′
(x0) + 0(h)4 (2.57)

U(x0 − h) = U(x0)− hf
′
(x0) +

1

2!
h2f

′′
(x0)−

1

3!
h3f

′′′
(x0) + 0(h)4 (2.58)

Where 0(h4) is the error introduced by truncating series. Using a forward difference formula

for the first derivative of U at x and central difference formula for the second derivative at x,

we get respectively

Ux =
Ui+1 − Ui

h
and Uxx =

Ui+1 − 2Ui + Ui−1

h2
, (2.59)
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2.6 EXPERIMENTAL METHODS

2.6.1 Operational amplifier

The operational amplifier is the essential component in the design of the inverter, adder

and integrator circuits. We will use the operational amplifier of type LF356. These amplifiers

feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled

with offset adjust, which does not degrade drift or common-mode rejection. The devices are

also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage

and current noise. The pin assignment, the physical symbol, and the actual appearance of the

component are shown in Figure 2.5a), Figure 2.5b), and Figure 2.5c) respectively.

a) b) c)

Figure 2.5: Operational amplifier, a) Pin configuration, b) Physical symbol and c) Picture of the component.

In figures 2.5b), pins 1 and 5 are used for offset compensation. Pins 2 and 3 are the

inverting and non-inverting inputs respectively, pins 4 and 7 are used for the negative and

positive polarizations and pin 6 is the circuit output.

2.6.2 Integrator circuit

The diagram of one input integrator circuit is shown in Figures 2.6.

The application of the Kirchhoff laws to the above circuit gives the output voltage v0 as a

function of the input voltage vin.

vo = − 1

RC

∫
vindt. (2.60)

We have to notice that the integrator does not work so ideally. In fact, the low input

current of the amplifier produces in the resistor R a voltage drop which is also integrated:

the output becomes saturated because the capacitor remains charged. To obtain a satisfactory
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Figure 2.6: Integrator circuit.

integration, the time constantRC must be neither too weak to saturate the operational amplifier

nor too large to distort the integration. In this work, we will use it to integrate the electrical

signal(acceleration) delivered by the sensor in speed then in position.

2.6.3 Inverter and non inverting circuits

The inverter circuit is shown in Figure 2.7 where ve and vs are the input and output

voltages respectively.

Figure 2.7: Inverter circuit.

The application of the Kirchhoff laws leads to the following relation:

vs = −R2

R1

ve. (2.61)

The negative sign in the equation indicates an inversion of the output signal with respect to

the input as it is out of phase. This is due to the feedback being negative in value. The equation

for the output voltage also shows that the circuit is linear in nature for a fixed amplifier gain.

A non-inverting amplifier shown in Figure 2.8 is an operational amplifier circuit configuration

that produces an amplified output signal and this output signal of the non-inverting operational

amplifier is in-phase with the applied input signal.
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Figure 2.8: A non-inverting amplifier circuit.

A non-inverting amplifier also uses a negative feedback connection, but instead of feeding

the entire output signal to the input, only a part of the output signal voltage is fed back

as input to the inverting input terminal of the op-amp. The high input impedance and low

output impedance of the non-inverting amplifier make the circuit ideal for impedance buffering

applications. The application of the Kirchhoff laws to the circuit gives the output voltage as a

function of the input voltage.

vs =

(
1 +

R1

R2

)
ve. (2.62)

When a positive-going input signal is applied to the non-inverting input terminal, the output

voltage will shift to keep the inverting input terminal equal to that of the input voltage applied.

Hence, there will be a feedback voltage developed across resistor R2. In the design of our

analogue device, we need it to understand first the operating principle of the inverting and

non-inverting circuits.

2.6.4 Negative resistance

Strictly speaking, there are not true negative resistors exactly as there are not true energy

sources since they will violate thermodynamics laws; there are only energy converters. Whereas

positive resistors consume energy from circuits, the equivalent true negative resistors add the

same energy to circuits. For example, if the same current i flows through a positive resistor and

through an negative resistor with the same absolute resistance R, the positive resistor subtracts

a voltage drop v = Ri from while the negative resistor adds voltage v = Ri to the circuit.

The two-terminal negative resistance circuit shown in Figure 2.9 is an operational amplifier

implementation of an "absolute" negative resistor.
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Figure 2.9: A negative impedance converter with current inversion acting as a negative resistor.

The two resistors R2 and R3 and the operational amplifier constitute a non-inverting am-

plifier that serves as the dynamic voltage source needed. It amplifies the input voltage v across

the two input circuit terminals and applies it through the resistance R1 back to the input. For

a positive input voltage, the current i is given as

i = − R2

R1R3

v. (2.63)

The relation between the current i and voltage v is reversed and "pushed" back the current into

the input source instead to be drawn from it as in the case of positive resistance. The circuit as

though converts the "positive resistance" R =
R1R3

R2

into negative one by inverting the current

direction; thus the name negative impedance converter with current inversion. This will allow

us to understand the concept of negative resistance and to be able to build the equivalent circuit

of the nonlinear FitzHugh Nagumo’s resistance.

2.6.5 Ground load voltage to current converter

Most commonly in parallel circuits, current sources are used in preference to voltage

sources, because current signals are exactly equal in magnitude throughout the series circuit loop

carrying current from the source to the load. In order to use current as an analog representation

of a physical quantity, we have to have some way of generating a precise amount of current

within the signal circuit. Our aim to use a voltage-current converter is due to the fact that

Fitzhugh-Nagumo circuit which inductance, capacitance and resistance are connected in parallel

needs a current source. The voltage to current converter shown in Figure 2.10 delivers a well-

regulated current to a load which can be connected to a voltage greater than the operational

amplifier supply voltage.
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Figure 2.10: The voltage to current converter.

The circuit accepts an input voltage e(t) and converts it to a current i. The application of

the Kirchhoff current law at the node v leads to the following expression of i:

i =
R5R7

R4R5R7 +RL (R5R7 −R4R6)
e (t) . (2.64)

Thus, we can conclude from the above equation that if R5R7 = R4R6 the current i is related

to the voltage, e(t) and the resistor, R4 as follows:

i =
e (t)

R4

. (2.65)

The circuit of Figure 2.10 represents a voltage-current converter. Because the output current

provides by the circuit is proportional to the input voltage e(t) as well as to R−1
4 and independent

of those elements of the circuit.

2.7 COMPONENTS AND MATERIALS USED

2.7.1 The accelerometer

An accelerometer is a tool that measures proper acceleration. Proper acceleration is the

acceleration of a body in its own instantaneous rest frame; this is different from coordinate

acceleration, which is acceleration in a fixed coordinate system. The picture of the multi-axis

accelerometer used in this thesis is shown in Figure 2.11.

Single- and multi-axis accelerometers can detect both the magnitude and the direction of

the proper acceleration, as a vector quantity, and can be used to sense orientation (because the

direction of weight changes), coordinate acceleration, vibration, shock, and falling in a resistive

medium.
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Figure 2.11: Multi-axis accelerometer.

2.7.2 The electrical components

In addition to the components mentioned in the previous section, we have used resis-

tors, ceramic capacitors, electrolytic capacitors, inductors, potentiometers and rectified diodes.

Figure 2.12 presents the pictures of these components.

Resistors, ceramic capacitors and inductors have two symmetrical terminals. They can thus

be connected easily in the circuits. Electrolytic capacitors and diodes are polarized components

due to their asymmetrical construction and must be operated with a higher voltage on the anode

than on the cathode at all times. For this reason the anode terminal is marked with a plus sign

and the cathode with a minus sign. On the other hand, the potentiometer has three terminals.

To use them as a variable resistor, we must connect the terminal in the middle and one other.

The screw above the potentiometer allows to vary its resistance. We will need these electrical

components for the experimental study of our system.

2.7.3 Function generator

A function generator is usually a piece of electronic test equipment or software used to

generate different types of electrical waveforms over a wide range of frequencies. Some of the

most common waveforms produced by the function generator are the sine wave, square wave,

triangular wave and sawtooth shapes. These waveforms can be either repetitive or single-shot.

Integrated circuits used to generate waveforms may also be described as function generator ICs.

In addition to producing sine waves, function generators may typically produce other repet-

itive waveforms including sawtooth and triangular waveforms, square waves, and pulses. An-

other feature included on many function generators is the ability to add a DC offset. The

picture of the function generator used during our experimental investigations (LW-1641) is

shown in Figure 2.13.
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a) b) c)

d) e) f)

Figure 2.12: a) Resistors, b) Ceramic capacitors, c) Electrolytic capacitors, d) Potentiometers, e) Inductors

and f) Rectifier diodes.

Although function generators cover both audio and RF frequencies, they are usually not

suitable for applications that need low distortion or stable frequency signals. When those traits

are required, other signal generators would be more appropriate. We will use to generate the

waveform of the external excitation and some range of frequencies.

2.7.4 Power supply

A dual electric power supply is important for several reasons. Not only does it ensure a

stable power supply to a device, but it also helps prevent system damage. It allows for multiple

usages of power by increasing output power. In short, it ensures a regular direct current power

supply. Our different circuits have been powered by a variable dual 0 − 30V/3A and 5V/3A

fixed Benchtop Supply. The picture is shown in Figure 2.14. We will use electrical power supply

to bias the operational amplifier as well as to generate the constant voltage.
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Figure 2.13: Function generator of type LW-1641.

Figure 2.14: Power supply of type LS1330.

2.7.5 Breadboard and stripboard

A breadboard is a construction base for prototyping electronics. Originally the word

referred to a literal breadboard, a polished piece of wood used for slicing bread. We have used

both the solderless breadboard and stripboard shown in figures 2.15a) and 2.15b) respectively.

Because the solderless breadboard does not require soldering, it is reusable. This makes it

easy to use for creating temporary prototypes and experimenting with circuit design. For this

reason, solderless breadboards are also popular with students and in technological education.

Older breadboard types did not have this property. A stripboard (Veroboard) and similar

prototyping printed circuit boards, which are used to build semi-permanent soldered prototypes

or one-offs, cannot easily be reused. We will use the breadboard for the assembly of our device.
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a) b)

Figure 2.15: a) Solderless breadboard and b) stripboard.

2.7.6 Multimeter

A multimeter or a multitester, is an electronic measuring instrument that combines

several measurement functions in one unit. A typical multimeter can measure voltage, current,

and resistance. Analog multimeters use a microammeter with a moving pointer to display

readings. Digital multimeters (DMM, DVOM) have a numeric display, and may also show a

graphical bar representing the measured value. We have used a digital multimeter of type

DM664 as shown in the picture of figure 2.16.Also, multimeter can serve to check the reliability

of the assembly on the breadboard.

2.7.7 Oscilloscope

An oscilloscope which is used for the purpose of digitally storing and analyzing instead of

using the analog techniques is referred to as a digital storage oscilloscope. A complex electronic

device, it is composed of various electronic hardware software and modules. These are known

to work in unity to capture, process, store and display data which represents the signal of

interest that the operator possesses. For all our measurements, a digital oscilloscope of type

Lw-2102CEL 100MHz Bandwith 2 Channel Digital Storage shown in Figure 2.17 has been used.

Oscilloscopes are used to view the signals coming directly from devices such as sound cards,

allowing the real-time display of waves. They are used to test circuits and troubleshoot elec-
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Figure 2.16: Picture of the digital multimeter used during this work.

Figure 2.17: Picture of the Lw-2102CEL 100MHz Bandwith 2 Channel Digital Storage.

tronic devices. Oscilloscopes with storage features allow signals to be captured, retrieved, and

analyzed for later use. This oscilloscope will allow us to visualize the curses delivered by our

device.

2.7.8 Electromagnetic speakers

Loudspeaker, also called speaker, in sound reproduction, device for converting electrical

energy into acoustical signal energy. This definition of a loudspeaker excludes such devices as

buzzers, gongs, and sirens, in which the acoustical signal energy does not correspond in form to

the electrical signal. Most loudspeakers as presented in Figure 2.18 are of the electromagnetic,

or dynamic, variety, in which a voice coil moves in the gap of a permanent magnet when a
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time-varying current flows through the coil.

Figure 2.18: Electromagnetic speakers.

The magnet is generally in the shape of a "W" or a ring. The diaphragm, or cone, of such

a loudspeaker moves with the coil, converting the electric current in the coil into a pressure

wave. A lit candle placed in front of a loudspeaker cone that is oscillating can render the sound

wave "visible," as the flame vibrates back and forth longitudinally with the air. The internal

structure of an electrodynamics loudspeaker is presented in Figure 2.19.

Figure 2.19: Schematic of the electrodynamic loudspeaker.

It consists of three parts:

− electrical which is represented by the voice coil resistance rm and inductance Lm.

− transducer represented by a gyrator with gyration constant Bℓ (called also force factor)

where B is the magnetic field provided by the magnet and ℓ is the length of the conductor coil.

− mechanical represented by mass of the moving system m, stiffness k of the spider and
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mechanical resistance β. The loudspeaker will be used as the electromechanical arm in the

realization of the device.

Conclusion

This chapter aimed to present the description and modeling, mathematical analysis,

numerical methods for the dynamics of electromechanical systems. We started by presenting

the mathematical modeling of single devices, then we established the mathematical modeling

of an array of devices. Methods of mathematical analysis have been presented such as the

modal approximation, Routh-Hurwitz criterion, Barkhausen criterion, Cardano’s method. The

numerical methods for the simulation of ordinary differential equations(ODE) and partial dif-

ferential equations(PDE) are also given. Finally, the experimental methods, the materials and

components used during the experimental work are presented.
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Chapter 3

RESULTS AND DISCUSSIONS

Introduction

In the previous chapter, we saw the mathematical study of the electromechanical systems.

This chapter is devoted to the presentation of the results and their interpretation. We will first

present the theoretical results obtained when nanoelectromechanical beams are driven by an

electrical line of Josephson junctions. This is followed by the case where electromechanical arms

are powered by a Fitzhugh-Nagumo neuron. Finally, we will present our obtained experimental

results and the theoretical results are then compared to the experimental ones.

3.1 NANOELECTROMECHANICAL BEAM DRIVEN BY

A SINGLE JOSEPHSON JUNCTION

This section is devoted to the dynamical behavior of a system constituted of one na-

noelectromechanical beam driven by a single josephson junction. The values of the physical

parameters used in this system are given in Table 3.1.

According to the experimental parameters giving in Table 3.1, we kept constant with the

exception of Ie (ie) the following numerical parameters: βc = 11.39 · 10−3, η = 94.07 · 10−2,

µ = 37.36 · 10−3, ε = 9.38, γ = 14.65 · 10−3, ω = 20.28 · 10−2 and α = 0.183.

3.1.1 Stability of the system

The form of the differential equations reveals that the system can have two equilibrium

points G1 (arcsin ie, 0, 0, 0, 0) and G2 (π − arcsin ie, 0, 0, 0, 0) if the condition ie 6 1 is satisfied.

Otherwise, there is no equilibrium point. The Jacobian matrix of the system (2.23) at G =
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Parameters Symbols Values

Junction capacitance C 3.0 µF

Junction resistance R 5 µΩ

Critical current of the junction Ic 50 mA

Young’s modulus of the nano-beam E 200 Gpa

Density of the nano-beam ρ 8050 kg/m3

Area of the nano-beam S 0.224 · 10−18 m2

Second moment of area I 14 · 10−46 m4

Length of the nano-beam L1 3.5 nm

Damping coefficient λ 2.5 · 10−7 Ns/m

Magnetic flux intensity B 0.05 T

Resistance of the winding r 0.2 µΩ

Inductance of the winding L 7.0 · 10−15 H

Length of the wire in the magnetic field ℓ 20 µm

Coupling inductance Lc 6.0 · 10−15 H

Table 3.1: Values of the physical parameters used when nanoelectromechanical beams are considered.

(Φ0, 0, 0, 0, 0) where Φ0 = arcsin ie or Φ0 = π − arcsin ie is expressed as

J =



0 1 0 0 0

− cosΦo

βc
− 1

βc
− 1

βc
0 0

0 η −µ 0 −ε
0 0 0 0 1

0 0 γ −ω2 −α


(3.1)

The eigenvalues of the Jacobian matrix J are solutions of the following fifth order algebraic

equation in s:

s5 + a4s
4 + a3s

3 + a2s
2 + a1s+ a0 = 0, (3.2)
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where

a4 = α + µ+
1

βc
,

a3 = αµ+ γε+ ω2 +
cosΦ0 + α + µ+ η

βc
,

a2 = µω2 +
αµ+ εγ + αη + ω2 + (α + µ) cosΦ0

βc
,

a1 =
(µ+ η + cosΦ0)ω

2 + (αµ+ εγ) cosΦ0

βc
,

a0 =
µω2 cosΦ0

βc
.

(3.3)

The determinants of all Hurwitz matrices using the coefficients ai of the characteristic

equation (3.2) are given as:

d1 = a4,

d2 = a4a3 − a2,

d3 = −a24a1 + a4a3a2 + a4a0 − a22,

d4 = −a24a21 − a4a
2
3a0 + a4a3a2a1 + 2a5a1a0 + a3a2a0 − a22a1 − a20,

d5 = −a24a21a0 − a4a
2
3a

2
0 + a4a3a2a1a0 + 2a4a1a

2
0 + a3a2a

2
0 − a22a1a0 − a30.

(3.4)

According to the Routh-Hurwitz criteria, the system is stable if and only if the coefficients

ai and di are all positive. That is, the eigenvalues of the characteristic polynomial have strictly

negative real parts. After analysis, we found that the equilibrium point G1 is unconditionally

stable while the point G2 is unstable.

3.1.2 Oscillation condition and oscillation frequency of the system

For ie greater than 1, the Josephson junction circuit coupled to the electromechanical

block provides asymmetric oscillations as shown in Figure 3.1.

According to the experimental values given in Table 3.1, the natural frequency fb of the

nano-beam and the natural frequency fj of the Josephson junction can be approximated as

follows:

fb =
1

2π

(
1.8751

L1

)2
√
EI

ρS
= 18.0 MHz,

fj =
2eRIc
2π~

v = 135.23 MHz.

(3.5)

These given values are of the order of MHz. The Characteristic frequency of the Josephson

junction circuit used here is compatible with those of Nb-Au-Nb Josephson junction [166,167].
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Figure 3.1: Different waveforms of the system for ie = 1.5 a) junction voltage v, b) current through the

winding x and c) displacement of the nanoelectromechanical beam y.

Since the two frequencies are in the same range, both subsystems can affect each other when the

Josephon junction is used to power the nano-beam. When the nano-beam and the Josephson

junction are connected as shown in the circuit of Figure 2.1, their common frequency is f = 3.8

MHz as shown in the curves of Figure 3.1.

3.1.3 Dynamical behavior of the system

At this level, it is interesting to analyze the effect of the input current on the amplitude

of the oscillations. Figure 3.2a) shows that the amplitude of the mechanical vibration is an

increasing function of ie.
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Figure 3.2: a) Amplitude of the mechanical vibration, b) Peak-peak value of the mechanical vibration and

c) frequency of the system, all as function of ie.

One can notice from the graph that for ie ≤ 1, the amplitude is equal to 0 (no oscillation)
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while it increases with ie for ie greater than 1. It is interesting to note that at just after ie = 1,

the amplitude jumps to a finite value and then increases steadily with ie. Figure 3.2b) shows

the behavior of the peak-peak value of y as function of ie. As the graph reveals, the peak-peak

value (Ymax − Ymin) of the mechanical vibration is a decreasing function of ie. We have also

found during our investigations that the frequency of the system increases almost linearly with

ie. This effect is illustrated by the graph of Figure 3.2c).

According to all the information just mentioned above, the current x through the winding

and the mechanical displacement y converge to a DC signal for large values of ie. This effect is

well visualized in the curves of Figures 3.3a), 3.3b) and 3.3c) where the mechanical displacement

y is plotted for three different values of ie.
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Figure 3.3: Mechanical displacement y as function of time and for different values of ie. a) ie = 1.5, b)

ie = 10.0 and c) ie = 15.0.

The curves of Figures 3.3a), 3.3b) and 3.3c) are plotted for ie = 1.5, ie = 10.0 and ie = 15.0

respectively. We can notice from the curves that, the corresponding frequencies 3.8 MHz, 20.2

MHz and 75.9 MHz increase with ie. We can also notice that the peak-peak value is a decreasing

function of the input current.

3.2 DYNAMICAL BEHAVIOR OF AN ARRAY OF NA-
NOELECTROMECHANICAL BEAMS DRIVEN BY
A DISCRETE ARRAY OF JOSEPHSON JUNCTIONS

This section deals with the array of a nano-beams driven by an array of Josephson

Junctions. We analyze numerically the effect of some parameters on the displacement process.

As done in the previous section, the values of the physical parameters used in this system are
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given in Table 3.1.

3.2.1 Propagation of the signal and motion of the nanoelectrome-

chanical beams

One of the most interesting effects of the discrete Josephson junctions line is its capacity

to propagate topological solitons called fluxons (antifluxons) or kinks (antikinks). These topo-

logical solitons propagate steadily in the line without changing their shape. The mathematical

form of the antikink (or antifluxon) [168] is given by the following expression

ϕ (n, t) = 4 arctan exp

(
−n− νt− n0√

1− ν2

)
, (3.6)

where ν is the velocity and n0 is the initial node where the center of the antikink is located.

With n0 = 100 and ν = 0.5, the antikink profile is plotted in Figure 3.4.
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Figure 3.4: The antikink profile centered at n0 = 100.

In this section, the set of discrete differential equations (2.33) is solved numerically using

the fourth order Runge-Kutta algorithm with a time step ht = 5 · 10−3 [169]. For the initial

conditions, we insert the mathematical form (3.6) in the discrete equation at site n0 = 100.

Periodic boundary conditions are used by setting ϕ (n = 0) = ϕ (n = N)+2π and ϕn (n = 0) =

ϕn (n = N), N is the total number of cells and is equal to 300. Figure 3.5 displays the antikink

propagation in the discrete line as well as the behavior of the nano-beams when the antikink

propagates in the Josephson junction line.

Figures 3.5a), 3.5b) and 3.5c) show respectively the propagation of the antikink, the current

x through the winding and the displacement y of the nanoelectromechanical beam as function

of the number of cells.
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Figure 3.5: Different waveforms of the system as function of number of cells at different times for ie = 0.5:

a) phase ϕ, b) current x through the winding and c) displacement y of the nanoelectromechanical beam.

As it appears in Figure 3.5, the antikink shape is preserved during the propagation and

each nano-beam exhibits a pulse-like behavior moving from its rest state, then increases till a

maximal value and then decreases to the rest state. This is interesting since it indicates the

nano-beam executes an actuation work and then returns back to its rest state.

If the antikink is periodically inserted in the line, the nano-beam will periodically exhibits

pulse-like behavior. The periodic insertion of antikinks in the transmission lines is ensured

by the periodic boundary conditions which indicates that the kink periodically passes at one

point after propagating all over the discrete line. We have found that the amplitude and the

frequency of the nano-beam displacement increase with the intensity of the magnetic field as it

appears in Figures 3.6a), 3.6b) and 3.6c) plotted respectively for B = 0.01 T, B = 0.05 T and

B = 0.09 T.
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Figure 3.6: The time evolution of the nanoelectromechanical beam for different values of the magnetic field

recorded at the cell n = 130.a) B = 0.01 T, b) B = 0.05 T and c) B = 0.09 T.
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3.2.2 Effect of the bias current on the nanoelectromechanical beams

dynamics

We have simulated the system for different values of ie (0.7, 0.8, 1.0). It appears that a

given nano-beam periodically exhibits pulse-like behavior as it can be seen in Figure 3.7 where

one observes the displacement of the nano-beam at the cell number n = 130.
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Figure 3.7: The time evolution of the nanoelectromechanical beam for different values of the bias current

recorded at the cell n = 130.(a ie = 0.5, (b) ie0.7 and (c) ie = 1.0.

As ie increases, the vibration frequency increases moving from almost 208 kHz (for ie = 0.5)

to 245 kHz (for ie = 0.7) and then 925 kHz (for ie = 1.0). The increase of the frequency can be

understood by the fact the antikink velocity increases proportionally with ie [170,171]. Because

of this increase of velocity and the boundary conditions, the antikink turns round the line as

quickly as ie increases. Consequently, each nano-beam is periodically excited and then delivers

periodic pulse-like behavior.

As one observes in Figure 3.7, the amplitude of the nano-beam pulse-like behavior also

increases with ie. Our numerical simulations have also shown that the amplitude depends of

the resistance r of the winding. This fact is more detailed in Figure 3.8 where the amplitude

of the mechanical displacement is plotted versus ie and for different values of r.

3.3 DYNAMICAL BEHAVIOR OF AN ELECTROMECHAN-
ICAL ARM POWERED BY A FITZHUGH-NAGUMO
NEURON

We present in this section the dynamical behavior of one single Fitzhugh-Nagumo neuron

coupled magnetically to a mechanical arm. The stability of the system, the oscillation condi-
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Figure 3.8: Variation of the n = 120 nano-beam displacement amplitude as function of the bias current ie

for different values of r: r = 0.08 µΩ (full line), r = 0.2 µΩ (dot line) and r = 0.7 µΩ (square line).

tion and the corresponding frequency are presented. The effects of some parameters on the

dynamical behavior of the system are also analyzed.

3.3.1 Stability analysis

Assume E (v0, w0, z0, u0, y0, x0) is the equilibrium point of the system. From the

system of equations (2.31), we have w0 =
v0
r

, z0 = 0, u0 = v0, y0 = 0, and x0 = 0 while v0 is

the solution of the following third-order algebraic equation:

v30 − (µ1 + µ2) v
2
0 +

(
µ1µ2 +

1

αr

)
v0 −

Is
α

= 0. (3.7)

To derive solutions of equation (3.7), let us consider the following parameters δ and σ1 and

determinant ∆:

δ = (µ1 + µ2)
2 − 3

(
µ1µ2 +

1

αr

)
, σ1 = (µ1 + µ2)

(
9

2αr
− µ2

1 − µ2
2 +

5

2
µ1µ2

)
− 27Is

2α

and ∆ = σ2
1 − δ3.

(3.8)

As odd degree polynomial, equation (3.8) can have one or three real solutions according to

the values of the above parameters, and the sign of ∆.

If ∆ > 0, equation (3.8) has one real solution and the system has a single equilibrium point.

v0 =
1

3

(
µ1 + µ2 −

3

√√
∆+ σ1 +

3

√√
∆− σ1

)
. (3.9)

If ∆ ≤ 0, equation (3.8) has three real solutions, namely:

v0n =
1

3

(
µ1 + µ2 + 2

√
δ cos

(
θ + 2nπ

3

))
with n = −1, 0, 1 and θ = arctan

(√
−∆

σ1

)
.
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(3.10)

In this case, the system has three equilibrium points.

The values of the parameters used in this work are the following: β0 = 0.05 Ns/m, m = 20

mg, K = 10 N/m, B = 0.8 T, C = 60 µF, L = 240 mH, µ1 = 0.14 V, µ2 = 1.0 V, r = 2.5 Ω and

Cm = 4700 µF. Is and ℓ are used as control parameters with 0 6 Is 6 200 mA and 0 6 ℓ 6 10

m. With the variation of ℓ, the winding resistance (in Ω) and the winding inductance (in mH)

are given as: rm = 1.5ℓ and Lm = 1.25ℓ2.

Using the parameters given above, the evolution of the equilibrium potential v0 is plotted

as a function of the stimulation current Is in Figure 3.9, and for two different values of the

parameter α.
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Figure 3.9: Equilibrium potential v0 as a function of the stimulation current Is. The curve with dashed line

is obtained for α = 1, while the curve with full line is obtained for α = 2.

For the graph of Figure 3.9, we have considered ℓ = 1 m. The curve with a dashed line

and the curve with a full line are obtained respectively for α = 1 and α = 2. As predicted

analytically, the system can present one equilibrium potential or three equilibrium potentials

depending on the values of the parameters. As noticed from the graph, for α = 2, the case of

three equilibrium points arrives here for values of the stimulation currents between 17.01 mA

and 60.815 mA.

The unstable (or stable) branch connecting the two stable (or unstable) states of the hys-
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teresis cycle extends from Is− to Is+ given respectively as

Is∓ = αv∓

(
v2∓ − (µ1 + µ2) v∓ + µ1µ2 +

1

αr

)
where v∓ =

µ1 + µ2

3
∓

√(
µ1 + µ2

3

)2

− µ1µ2

3
− 1

3αr
.

(3.11)

From equation (3.10), we can conclude that the system will present three equilibrium points if

the parameter α satisfies the following condition:

α > αmin =
3

r (µ2
1 + µ2

2 − µ1µ2)
. (3.12)

For α 6 αmin we have a mono system while for α > αmin the curve of Figure 3.9 presents a

bistable system. According to Tlidi et al., there must be a critical alpha of nascent bistability

[172].

The stability of the system is determined by the eigenvalues of the Jacobian matrix at

equilibrium points E given by :

J =



−aχα −a 0 0 −a 0

b −br 0 0 0 0

0 0 0 1 0 0

0 0 −ε −β σ 0

d 0 0 −dγ −drm −d
0 0 0 0 q 0


, (3.13)

with χ = 3v20 − 2 (µ1 + µ2) v0 + µ1µ2.

Its eigenvalues are solutions of the characteristic polynomial in λ of the linearization at E,

namely:

λ6 + a5λ
5 + a4λ

4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0. (3.14)

Here the coefficients an, with 0 ≤ n ≤ 5 are given respectively as:

a5 = aαχ+ β + drm + br,

a4 = (aαχ+ β) (br + drm) + brdrm + dγσ + ε+ dq + aαχβ + a (b+ d) ,

a3 = (ε+ aαχβ) (br + drm) + aβ (b+ d) + abd (r + rm) + brdrm (β + aαχ) + brdγσ+

+aαχ (ε+ dγσ) + dq (β + br + aαχ) ,

a2 = brdrm (ε+ aαχβ) + abdβ (r + rm) + abdγσ + aαχε (br + drm) + braαχdγσ+

+aε (b+ d) + εdq + bdrq (β + aαχ) + adq (b+ αχβ) ,

a1 = abdε (r + rm + αaχrrm) + dqb (εr + aβ) + aαχdq (ε+ brβ) ,

a0 = abεdq (1 + αrχ) .
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We have used the Routh-Hurwitz criterion to analyze the stability of the equilibrium points.

Using the parameters given above, the stability boundary of the system is plotted in Figure

3.10a) and Figure 3.10b) for α = 1 and α = 2 respectively.
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Figure 3.10: Stability domain in the plane (Is, ℓ). In the Black area, the system is stable around the single

equilibrium point while in the white area, the system is unstable. In the blue area, the system has one stable

equilibrium point amount three. a) α = 1 and b) α = 2.

In Figure 3.10a), we have two colored regions, while in Figure 3.10b) we have three colored

regions. If a coupled of values Is and ℓ is chosen in the black regions, the system is stable

around the single equilibrium point. However, if a coupled of values Is and ℓ is chosen in the

white regions, the system is unstable. In the blue region of Figure 3.10b), the system has three

equilibrium points, and one of these is stable.

3.3.2 Limit cycle prediction

Although precise knowledge of the waveform of a limit cycle is usually not mandatory,

knowledge of the existence of a limit cycle, and its approximate amplitude and frequency, is

a prerequisite to good system design. The limit cycle phenomenon deserves special attention

since it is apt to occur in any nonlinear physical system. A limit cycle is desirable here since

it provides a real situation where all the variables are not constant. We will apply the linear

theory to the quasi-linearized system, and points of neutral stability are sought. Any undamped

oscillations so arrived at are interpreted as limit cycles in the original nonlinear system.

If we consider the solution of equation (3.14) to be of the form of λ = jω, where j2 = −1

and ω is the natural radian frequency of the system, then the following radian frequencies and

the condition for self-starting are obtained:
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ω1 =

√
a3 −

√
a23 − 4a1a5
2a5

and ω2 =

√
a3 +

√
a23 − 4a1a5
2a5

. (3.15)

a23− 4a1a5 > 0 and
(
a1a5 − a23 − a2a

2
5 + a3a4a5

)
ω2
n+

(
a0a

2
5 + a1a3 − a1a4a5

)
= 0, n = 1, 2.

(3.16)

During our investigations, we have found that for large values of the parameter ℓ, the system

oscillates with the radian frequency ω1 while it oscillates with the radian frequency ω2 for small

values of ℓ. With the stimulation current Is varies from 0 mA up to 200 mA, we have found the

corresponding values of ℓ that satisfy the set of equations (3.16) and our result is presented in

the graph of Figure 3.11a). The corresponding value of the frequency obtained from equation

(3.15) is plotted in Figure 3.11b).
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Figure 3.11: a) The oscillation condition satisfied by the parameter ℓ as a function of Is, b) the natural

frequency of the system as a function of Is.

The curves of Figure 3.11 are obtained for α = 1 and the values of ℓ < 10 m have been

considered. We can notice from the graph that, as the stimulation current increases, the

value of ℓ that satisfies the oscillation condition given by equation (3.16) can be found if 31.83

mA≤ Is ≤ 159.1 mA.

3.3.3 Oscillation boundaries

Using the Routh-Hurwitz coefficients, we have determined the oscillation boundaries of

the system and our results are presented in Figure 3.10a). If the values of Is and ℓ are chosen
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in the black areas of Figure 3.10a), the system will converge towards the equilibrium point.

Otherwise, the system will fall in the oscillation. For example, with ℓ = 1 m we find that the

system will oscillate for 33.7 mA≤ Is ≤ 154.0 mA. To verify this result, we have consider the

following three values of Is: Is = 30 mA, Is = 90 mA and Is = 160 mA. The corresponding

time series of the membrane potential and the mechanical displacement are plotted respectively

in Figure 3.12 and Figure 3.13.
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Figure 3.12: Different time series of the membrane potential v for different values of Is. a) Is = 30 mA, b)

Is = 90 mA and c) Is = 160 mA.
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Figure 3.13: Different time series of the mechanical displacement x for different values of Is. a) Is = 30

mA, b) Is = 90 mA and c) Is = 160 mA.

As shown on the graphs of Figure 3.12 and Figure 3.13, when the stimulation current is

less than 33.7 mA or greater than 154.0 mA, the system converges toward the single stable

equilibrium point. While if the stimulation current is between 33.7 mA and 154.0 mA, the

system provides oscillating signals. The frequency of the signal plotted in the graph of Figures

3.12b) and 3.13b) is 3.704 Hz. The obtained numerical results are in good agreement with our

analytical predictions.
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3.3.4 Effect of some parameters

It is interesting at this level to see how some parameters affect the dynamics of the system,

specially the amplitude and frequency of the mechanical displacement. This element can be

important to fix the parameters of the system. We will first analyze the effect of the length

ℓ of the conductor used in the winding. Therefore, we plot the amplitudes of the membrane

potential and the mechanical displacement as a function of ℓ and this for two different values

of the spring constant as presented in Figure 3.14.
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Figure 3.14: a) Amplitude of the membrane potential Vm as function of ℓ, b) Amplitude of the mechanical

displacement Xm as function of ℓ. Full line (K = 10 N/m) and dashed line (K = 20 N/m).

For both Figures 3.14a) and 3.14b), the full lines and the dashed lines are plotted respectively

for K = 10 N/m and K = 20 N/m. As revealed by the graphs, when the system oscillates, the

amplitude of the membrane potential is closed to unity while the amplitude of the mechanical

displacement is a decreasing function of ℓ. Otherwise, the system converges to the equilibrium

point. The mechanical displacement reaches its maximum value when ℓ ≃ 2 m. As mentioned in

the previous section and clearly confirmed by these graphs, the system presents large oscillation

regions for small values of the spring constants. This is because electromechanical systems

generally oscillate at low frequencies, which means small values of the spring constants. We

can also notice from the graphs that the equilibrium points are not a function of the spring

constant K and the length ℓ of the conductor used in the winding, and this has been observed

during our analytical investigations presented previously. Finally, the graphs show that the

amplitude of the mechanical displacement and the oscillation domain are decreasing functions

of the spring constant.

Furthermore, we analyze the dynamical behavior of the system using the stimulation current
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Is as the control parameter. The amplitude responses of electrical and mechanical subsystems

are respectively shown in Figure 3.15a) and Figure 3.15b) for two values of ℓ.
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Figure 3.15: a) Amplitude of the membrane potential Vm as a function of Is, b) Amplitude of the mechanical

displacement Xm as a function of Is. Full line (ℓ = 1 m) and dashed line (ℓ = 2 m).

For both Figures 3.15a) and 3.15b), the curves with the full line are plotted for ℓ = 1 m, while

the curves with dashed lines are plotted for ℓ = 2 m. Three regions can be identified in these

figures. Firstly, for the stimulation current less than approximatively 30 mA (depending on the

length of the conducting wire), the action potential is not produced, hence no oscillation of the

mechanical system. Secondly, when 30 mA ≤ Is ≤ 162 mA, an action potential is generated

and we have oscillation of the mechanical system. In the third region, the mechanical system

is at equilibrium even if an action potential has been generated in the electrical system. We

can notice from the graphs that when the system falls in the oscillation, the amplitude of the

membrane potential and the amplitude of the mechanical displacement are not affected by the

input current Is. The figures also show that the amplitudes remain constant (no oscillation) as

the stimulation current Is increases until a critical value from where both amplitudes increase

abruptly.

3.3.5 Transient chaos in the system

The appearance of chaos with finite lifetime is known as transient chaos and provides an

example of a "nonequilibrium state" that is different from the asymptotic state, and cannot thus

be understood from the asymptotic behavior alone. In such case, one observes a moving around

of the system in an apparently chaotic manner and then, often rather suddenly, a settling down

to a steady state which is either a periodic or a chaotic motion (but of different type than the
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transients). Studying only the asymptotic behavior of such dynamics would mean loosing the

interesting, chaotic part contained in the transients. Figure 3.16 shows the phase portraits of

the action potential v illustrating the transient chaos in the system.
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Figure 3.16: a) Chaotic attractor in the time interval 28.28 s ≤ t ≤ 29.7 s. b) Period-one attractor in the

time interval 282.84 s ≤ t ≤ 284.25 s.

The curves of Figure 3.16 are plotted when Cm = 4700 mF, ℓ = 4 m and L = 6 mH. We

found during our investigation that, the transient chaos appears in the system for high values

of the coupling capacitance and for small values of the coil inductance.

3.3.6 Chaotic behavior

The characteristic dynamical behaviors are finally investigated by varying the type of the

input current source. We have done many simulations, but a part of transient chaos [173,174],

permanent chaotic behavior has not been found in the autonomous system. Hence, the constant

current source is replaced here by a sinusoidal current source of amplitude Im and frequency f

defined as

is = Is + Im sin (ωt) where ω =
2πf

ω0

, (3.17)

where Is represents the DC component and ω is the normalized radian frequency of the external

source. We will study the dynamics of the system keeping constant the following parameters:

ℓ = 4 m, L = 7.0 mH and f = 780.72 Hz. For Is equals successively 3 mA, −3.4 mA, −5 mA,

−7 mA, −12 mA and −15 mA, the bifurcation diagrams v versus Im and the corresponding

Lyapunov exponent versus Im are shown in Figure 3.17.

In Figures 3.17a), 3.17b), 3.17c) and 3.17d), chaotic states are observed. The system follows

a period-doubling route to chaos. The bifurcation diagrams of these figures also undergo a
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Figure 3.17: Different Bifurcation diagrams v versus Im and the corresponding Lyapunov exponent versus

Im of the system for different values of the DC component: a) Is = 3 mA, b) Is = −3.4 mA, c) Is = −5 mA,

d) Is = −7 mA, f) Is = −12 mA and e) Is = −15 mA.

reverse period-doubling sequence. These forward and reverse period doubling sequences, as a

parameter of the system increases in a monotone way, are called antimonotonicity. While in

the bifurcation diagrams of Figures 3.17e) and 3.17f), only periodic states are observed. For

Is = −12 mA, the system undergoes the sequence: p1 → p2 → p4 → p2 → p1. For Is = −15

mA, the system undergoes the sequence: p1 → p2 → p1. These bifurcation diagrams show the

period bubble and the primer bubble respectively.

The study of the system (2.31) with the external current source given by equation (3.17)

reveals the existence of chaotic behavior, following the period-doubling route to chaos. Similar
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results can be obtained using a current source that provides a square signal with DC component

Is and frequency f . For illustration, phase portraits of the system in the chaotic state are shown

in Figures 3.18a) and 3.18b).
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Figure 3.18: Phase portraits when Is = 3.0 mA, and Im = 102.0 mA. a) w versus v and b) ẋ versus x.

3.4 DYNAMICAL BEHAVIOR OF AN ARRAY OF ELEC-
TROMECHANICAL ARMS POWERED BY AN AR-
RAY OF FITZHUGH NAGUMO NEURONS

We now analyze the dynamical behavior of an array of electromechanical arms powered

by an array of discrete excitable Fitzhugh Nagumo neurons. We present the effect of the

coupling strength on the mechanical arms displacement. The parameters used in the system

of equations (2.36) have been defined in the above section and we will consider ℓ = 4 m and

L = 240 mH.

3.4.1 Propagation of the signal and motion of the electromechanical
arms

The set of discrete differential equations describes the propagation of electrical signal

and the motion of N mechanical arms. To determine the propagation conditions, numerical

solution is obtained using a fourth order Runge-Kutta algorithm with a time step ∆t = 10−3.

The initial conditions are chosen as vn (0) = 0, wn (0) = 0, xn (0) = 0, ẋn (0) = 0, zn (0) = 0

and un (0) = 0 where n = 1, 2, · · · , N . The boundary conditions are considered for the first

and last nodes as v0 = v1, vN+1 = vN . The excitation is performed with a constant current

source applied just to the first cell, that is Isn = 0 mA for n ̸= 1.
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We will first fix the stimulation current Is1 = 10 mA and analyze the effect of the coupling

resistance Rc. After multiple simulations, we have found that the action potential is created

in the first cell and propagates through the other cells for 18.7 Ω 6 Rc 6 123.7 Ω. Figure 3.19

displays the signals propagation in the discrete line and the behavior of the mobile beams when

the action potential propagates in the line for Rc = 20 Ω.
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Figure 3.19: Time evolution of the system at different cells for Is1=10 mA and Rc = 20 Ω. a) Membrane

potential vn, b) Displacement of the mechanical arm xn. The rang of the corresponding cell is indicated in each

curve.

Figures 3.19a) and 3.19b) show respectively the propagation of the action potentials vn and

the displacement xn of the mobile beams as a function of time for different cells such as n = 50,

n = 250, n = 450, n = 650, n = 850, n = 1050. As shown in these Figures, the action potential

shape is preserved during the propagation and each electromechanical subsystem exhibits a

pulse-like behavior moving from its resting state, then increases to a maximal value and then

decreases to the resting state. This observation is interesting since it indicates that the mobile

beam executes an actuation work and then returns to its resting state. This profile is similar

to the use of legs of artificial millipedes.

During our numerical investigations, we found that the traveling wave speed decreases as the

coupling resistance increases. This fact is qualitatively in good agreement with the analytical

expression of V0 given in equation (2.39). For verification, the time evolution of the system at

different cells is presented in Figure 3.20 for Rc = 80 Ω.

The graphs in Figures 3.19 and 3.20 are plotted for the same values of the parameters except

that the first ones are plotted for Rc = 20 Ω and the second ones for Rc = 80 Ω. We can notice

that the traveling wave speed has decreased when the coupling resistance is increased from 20 Ω

to 80 Ω. A part of that traveling wave speed, the curves of Figures 3.19 and 3.20 have the same
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Figure 3.20: Time evolution of the system at different cells for Is1=10 mA and Rc = 80 Ω. a) Membrane

potential vn, b) Displacement of the mechanical arm xn. The rang of the corresponding cell is indicated in each

curve.

behavior.

3.4.2 Effect of the stimulation current

We continue our investigations by analyzing the behavior of the discrete line when the

stimulation current is increased to Is1 = 25 mA. We have then notice that, for certain values

of the coupling resistance, an envelope of action potential propagates in the line. Our results

plotted for Rc = 100 Ω are shown in Figure 3.21.
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Figure 3.21: Time evolution of the system at different cells for Is1=25 mA and Rc = 100 Ω. a) Membrane

potential vn, b) Displacement of the mechanical arm xn. The rang of the corresponding cell is indicated in each

curve.
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Figure 3.21a) and Figure 3.21b) show respectively the behavior of the nonlinear electrical

line and the behavior of some electromechanical systems for different cells such as n = 50,

n = 250, n = 450, n = 650, n = 850, n = 1050. A packet of three action potentials is provided

by the first cell and propagates through the line. Each mechanical arm exhibits a packet of

three pulse-like behavior before returning to rest.

3.4.3 Space-time evolution of mechanical arms

Finally, we present respectively in figure 3.22a) and 3.22b) the spatiotemporal evolution

of the mechanical arm and the spatiotemporal variation between displacements of the arm of

nearest-neighbor defined as shift(t)=xi(t)− xi+1(t).

a) b)

Figure 3.22: a) Spatiotemporal evolution of the mechanical arm and b) spatiotemporal variation of dy-

namical shift.

3.5 EXPERIMENTAL RESULTS

We present in this section the experimental results obtained when an electromechanical

arm is powered by a Fitzhugh-Nagumo neuron. The objective here is to verify if a Fitzhugh-

Nagumo neuron model can be practicaly used to power an electromechanical arm. In this case,

the used electromechanical arm is a loudspeaker with some specific parameters. The comparison

between our theoretical results and the experimental ones are then given here.
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3.5.1 Implementation of the nonlinear Fitzhugh-Nagumo resistance

In this subsection, we aim to implement the nonlinear Fitzhugh-Nagumo resistance. As

mentioned in chapter 2, the smooth cubic i − v characteristic of the nonlinear resistor of the

circuit of Figure 2.2a) is given by the following equation:

i = αv (v − µ1) (v − µ2) , (3.18)

where i and v are the current through and voltage across the nonlinear resistance respectively.

µ1, µ2 and α are normalization parameters.

Our proposed circuit to simulate the nonlinear resistance is shown in Figure 3.23 using

rectified diodes as nonlinear elements.

Figure 3.23: Equivalent circuit of the nonlinear Fitzhugh-Nagumo resistance.

The circuit of Figure 3.23 shows two blocks of three diodes connected in series. But in

our analysis, we will consider a number of Nd diodes connected in series. We model the i − v

characteristic of diodes D1 and D2 with an exponential function, namely

id = I0

[
exp

(
vd
V0

)
− 1

]
, (3.19)

where vd is the voltage across the diode and id the current through. I0 is the reverse saturation

current and V0 = 65 mV. Using the Kirchhoff laws and the above relation (3.19), it is found

that the circuit in Figure 3.23 is described by the following equation:

i = 2I0 sinh

(
v − E1

NdV0

)
− R2

R1R3

(v − E2). (3.20)
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For weak values of voltage v, and fixing the reversed saturation current I0, the voltage

sources E1 and E2 and the resistance R3 as

I0 = αV 2
0

√
9V 2

0 − (µ1 + µ2)
2, (3.21)

E1 =
V0
2
ln

(
3V0 + µ1 + µ2

3V0 − µ1 − µ2

)
, (3.22)

E2 =
2V 2

0 (µ1 + µ2)

6V 2
0 − µ1µ2

, (3.23)

R3 =
R2

αR1 (6V 2
0 − µ1µ2)

. (3.24)

equation (3.20) gives the following current-voltage characteristic:

i = αv (v − µ1) (v − µ2) . (3.25)

The current-voltage characteristic is represented in Figure 3.24a). It was obtained by ex-

perimental simulation on Pspice software and the values of the components used are as follows:

R1 = 10 Ω, R2 = 1000 Ω, R3 = 41.75 Ω, E1 = 435.14 mV, E2 = 402.21 mV and a recti-

fied diode of type IN4007. For comparison, the analytical result obtained by representing the

relation (3.25) is given in Figure 3.24b).
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Figure 3.24: Current-voltage- characteristic of nonlinear Fitzhugh-Nagumo resistance. a) Pspice simulation

obtained, b) numerical plot

As revealed by the curves of Figure 3.24, a good agreement is found between the theoretical

and experimental current-voltage characteristics, specially in the case where voltage has small

values. The point is that such a resistor can take both positive and negative values according

to the characteristics of the signal. This element acts like a normal resistor when the voltage

is high, but acts like a negative resistor if the voltage is low. Therefore the circuit pumps up

small oscillations (negative resistor effect) and drags down large oscillations (normal resistor

effect).
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3.5.2 The experimental set-up.

The circuit was built according to the complete scheme shown in Figure 3.25 using

(LF356) operational amplifiers, (IN4007) diodes, resistors, inductors and capacitors.

Figure 3.25: Complete circuit diagram of the Fitzhugh-Nagumo neuron coupled magnetically to a mechan-

ical arm and forced with a current source.

The overall circuit of the system presents four different blocks. The first block named Block

1 is our voltage to current converter circuit. Block 2 represents the mechanical subsystem,

while Block 3 and Block 4 represent respectively the Fitzhugh-Nagumo neuron and the

integrator network. S is the electrodynamic loudspeaker and represents our mechanical arm.

The internal inductance and the corresponding series internal resistance are respectively Lm

and rm. The membrane and the spider of the loudspeaker have an equivalent spring constant

K. An shown in the diagram, an accelerometer A is fixed on the membrane of the loudspeaker

to measure the acceleration va = f1(ẍ) of its movement. A cascade of two integrator circuits is

connected at the output of the accelerometer to determine respectively the velocity vb = f2(ẋ)

and the position vc = f3(x) of the membrane as a function of time. To well observe ẋ and x,

the parameters of each have been chosen in such a way that at the resonant radian frequency,

KOUAMI MBEUNGA Nadine 74 PhD, UYI



3.5 EXPERIMENTAL RESULTS

we have R8C1ω0 ≃ 1 and R9C2ω0 ≃ 1.

An experimental setup consisting of the Fitzhugh-Nagumo neuron coupled magnetically to

a mechanical arm (speaker) is shown in Figure 3.26.

Figure 3.26: Complete experimental setup of the Fitzhugh-Nagumo neuron coupled magnetically to a

mechanical arm.

To occupy less space, the ten diodes of each block are packed inside the isolated paper

as shown on the picture. The power supply is used as polarization voltage of the operational

amplifiers. The digital oscilloscope allows immediate viewing of the time series and phase space

plots of the membrane motion. The values of all the parameters are given in Table 3.2.

Parameters Values Parameters Values Parameters Values

U1, U2, U3, U4, LF356 Diodes IN4007 R1 10 Ω

R2 1000 Ω R3 41.75 Ω R4 10 Ω

R5 922.19 Ω R6 1.66 Ω R7 3.25 Ω

r 2.5 Ω L 7 mH, 240 mH Lm 40.58 mH

rm 7.5 Ω C 60 µF Cm 4700 µF

E1 435.14 mV E2 402.21 mV Nd 10

Bℓ 0.2 Tm K 10 N/m B 0.8 T

Table 3.2: Values of the physical parameters used in the circuit of Figure 3.25.
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3.5.3 System forced by a DC source

In this case, the input voltage source is a constant voltage source as e(t) = E and

L = 240 mH. The relation between the numerical parameter and the experimental one is given

as E = R4Is. In this subsection, we aim to visualize the dynamical behavior of the system as

the experimental control parameter E increases from 0 V up to 5 V.

We found during our experimental investigations that the system oscillates for 0.8 V 6 E 6
4.6 V. To verify this result, we have consider the following three values of the control parameter

E: E = 0.5 V, E = 1.5 V and E = 5 V. The corresponding time series of the membrane

potential and the mechanical displacement of the membrane are plotted respectively in Figure

3.27, Figure 3.28 and Figure 3.29.

a) b)

Figure 3.27: Time series of the system for E = 0.5 V. a) membrane potential v and b) mechanical

displacement x.

a) b)

Figure 3.28: Time series of the system for E = 1.5 V. a) membrane potential v and b) mechanical

displacement x.

When the input voltage is less than 0.8 V or greater than 4.6 V, the system converges

toward the single stable equilibrium point. Otherwise, if the control voltage is between 0.8 V
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a) b)

Figure 3.29: Time series of the system for E = 5.0 V. a) membrane potential v and b) mechanical

displacement x.

and 4.6 V, the system under analysis provides oscillating signals. The frequency of the signal

presented in the graph of 3.28)a) and 3.28b) is 8.57 Hz.

Even if we have not succeeded to determine some experimental parameters of the system

such as the magnetic field intensity B, the length of the conductor winding in the magnetic

filed ℓ and the damping coefficient β, we can find good qualitative agreements between the

numerical results presented in Figure 3.12 and Figure 3.13, and the experimental ones given in

Figure 3.27, Figure 3.28 and Figure 3.29.

3.5.4 System forced by a series combination of DC and AC sources

We aim is this subsection to verify if the chaotic state obtained in subsection 3.3.6 can

be confirmed experimentally. For that purpose, the inductance L equals 7.0 mH and the input

voltage is a series combination of the DC and AC sources as e (t) = E + Em sin

(
2πf

ω0

t

)
. The

relation between the experimental parameters and the numerical ones are given as E = R4Is

and Em = R4Im.

The experimental investigations of the systems showed that it can also exhibit regular and

irregular behaviors. To illustrate the chaotic behavior of the system, we choose E = 0.2 V and

Em = 1.0 V and the phase portrait of the electrical subsystem is shown in Figure 3.30a) while

the phase portrait of the mechanical subsystem is presented in Figure 3.30b).

The experimental frequency of the alternating source if f = 721 Hz. As revealed by the

graphs, the chaotic state of the system is confirmed by the experimental results. Nevertheless,

the chaotic signatures of the experimental results and the chaotic signatures of the theoretical

results shown in Figure 3.18 are different, explained by the fact that the parameters used in

experiment are not precisely those used theoretically. However, according to the periodicity,
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a) b)

Figure 3.30: Phase portraits when E = 0.2 V, and Em = 1.0 V. a) w versus v and b) ẋ versus x

they are confirmed quantitatively very well by the developed mathematical model and its

numerical simulations.

Conclusion

This chapter has presented and discussed the principal results obtained in this thesis.

The effects on input current on a single and an array of nanoelectromechanical beam driven by

a single and an array of Josephson junction are given. It appears that each nanobaem coupled

a each node of an array of coupled Josephson junction deliver a pulse like motion. Indeed, we

have noticed the effect of magnetic field on the amplitude of the beam. We have also analyzed

the effects of some parameters on the system concerning the case of a single device and the

case of an array devices. The experimental results are finally presented and the comparisons

with the theoretical results are given.
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GENERAL CONCLUSION

The dynamics of electromechanical devices powered by nonlinear electrical transmission

lines have been investigated theoretically and experimentally. We have first presented some gen-

eralities on networks of electromechanical systems. We have also presented discrete Josephson

junction transmission lines and Fitzhugh-Nagumo neuron.

Secondly, we have analyzed the dynamical behavior of a single nano-beam powered by

a Josephson junction and an array of nano-beams coupled to an array of discrete coupled

Josephson junctions. It has been demonstrated that a nano-beam powered by a Josephson

junction can deliver periodic vibration when a critical value of the DC bias current powering

the junction is attained. The amplitude of the beam vibration increases with the DC bias

current. In the case of an array of discrete Josephson junctions having a nano-beam at each

node, it has been seen that when the topological soliton (antikink) propagates in the discrete

line, each beam exhibits a pulse-like behavior whose amplitude increases with the magnitude of

the magnetic field. Because of the periodic boundary conditions and the fact that the antikink

velocity is proportional to the DC bias current, one observes that each nano-beam periodically

executes pulse-like displacement shape. The period of vibration of the beam decreases when

the DC bias current increases while the amplitude of the pulse-like nano-beam displacement

increases with the DC bias current. This constitutes an interesting dynamical electromechanical

system which can be used in nano-actuation processes.

We have thirdly analyzed theoretically and experimentally the dynamics of one single

Fitzhugh-Nagumo neuron coupled to a mechanical arm. In the theoretical case, we have pre-

sented the oscillation boundaries where we have shown that for certain values of stimulation

current, the system can converge towards the equilibrium point and for other values, the system

can fall in oscillation or display a limit cycle behavior. The oscillation frequency and the oscil-

lation conditions were determined. Forward period-doubling bifurcation sequences followed by

reverse period-doubling sequences, as a parameter is varied in a monotone way, antimonotonic-
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ity is observed in the system. During our experimental investigations, when we have forced our

system by a DC source, we have found that the system oscillates with a frequency for certain

values of experimental control parameter and converges toward the single stable equilibrium

point for other values. Furthermore, the experimental study has showed chaotic behavior when

we forced the system by a series combination of DC and AC sources. The comparison between

theoretical and experimental results has revealed a good qualitative agreements when the input

voltage source is a constant. Nevertheless, they are different when the input voltage is a series

combination of the DC and AC sources. That has been explained by the fact the parameters

which have been used in experiment are not precisely those which have been used theoretically.

Finally, the investigations of an array of electromechanical arms powered by an array of discrete

excitable Fitzhugh-Nagumo have been done. When the first cell is excited, the nerve impulse

propagates in the electrical line, and each mechanical arm displays a pulse-like behavior. It

was found that the train of three pulses can also propagate through the line according to the

coupling strength.

PERSPECTIVES

This work has opened interesting perspectives for future investigations:

− It would be interesting to study experimentally a single electromechanical system and an ar-

ray of electromechanical systems constituted of a series of coupled discrete Josephson junction/

Fitzhugh-Nagumo neurons with a nanobeam/rigid arm placed at each node.

− It would be interesting to investigate later the study of the control of electromechanical legs

when those are in a wet environment.

− It would be interesting to investigate later the study on the rotational movement of the legs.

KOUAMI MBEUNGA Nadine 80 PhD, UYI



Bibliography

[1] M. Darula, T. Doderer and S. Beuven, Millimetre and sub-mm wavelength radiation

sources based on discrete Josephson junction arrays, Supercond. Sci. Technol., 12, PP.

R1-R25, (1999).

[2] G. Filatrella, N. F. Perdersen, C. J. Lobb and P. Barbara, Synchronization of under-

damped Josephson-junction arrays, Eur. Phys. J. B 34, PP. 3-8, (2003).

[3] A. Uchida, H. Iida, N. Maki, M. Osawa and S. Yoshimori, Chaotic oscillations in Joseph-

son tetrode, IEEE Trans. Applied Supercond. 14, PP. 2064-2070, (2004).

[4] R. Kleiner, P. Muller, H. Kohlstedt, N. F. Pedersen and S. Sakai, Dynamic behavior of

Josephson-coupled layered structures, Phys. Rev. B, 50, PP. 3942-3952, (1994).

[5] D. Dominguez and H. A. Cerdeira, Order and turbulence in rf-driven Josephson junction

series arrays, Phys. Rev. Lett., 71, PP. 3359-3362, (1993).

[6] K. K. Likharev, Dynamics of Josephson junctions and Circuits-Gordon and Breach Sci-

ence Publishers, New-York, (1986).

[7] J. Cosp, S. Binczak, J. Madrenas and D. Fernandez, Realistic model of compact VLSI

FitzHughŰNagumo oscillators, Inter. J. Electr., 101, PP. 220-230, (2013).

[8] M. Armanyos and A. G. Radwan, 13th International Conference on Electrical Engineer-

ing/Electronics, Computer Telecommunications and information Technology (2016).

[9] J. P. Keener, Analog circuitry for the van der Pol and FitzHugh-Nagumo equations, IEEE

Trans. Syst. Man. Cybern., 13, PP. 1010-1014, (1983).

[10] J. G. Alford, Models of unidirectional propagation in heterogeneous excitable media,

Applied Maths. Comput., 216, PP. 1337-1348, (2010).

[11] A. Cattani, FitzHugh-Nagumo equations with generalized diffusive coupling, Maths. Bio-

sciences ∝ Engin., 11, PP. 203-215, (2014).

KOUAMI MBEUNGA Nadine 81 PhD, UYI



Bibliography

[12] J. G. Ojalvo, R. Bascones, F. Sagues, J. M. Sancho and L. S. Geier, Pulse Propagation

in Bistable Neural Models via noise induced resetting ,AIP Conference Proc., 665, PP.

35-42, (2003).

[13] D. L. Sekulic, M. V. Sataric, M. B. Zivanov and J. S. Bajic, Soliton-like Pulses along

Electrical Nonlinear Transmission Line, Electron. Electric. Engin., 121, PP. 53-58, (2012).

[14] M. Nguimdo, S. Noubissie and P. Woafo, Waves amplification in discrete nonlinear elec-

trical lines: direct numerical simulation, J. Phys. Soc. Jpn., 77, PP. 124006-1240010,

(2008).

[15] F. Kenmogne and D. Yemélé, Exotic modulated signals in a nonlinear electrical trans-

mission line: Modulated peak solitary wave and gray compacton, Chaos Solitons Fract.,

45, PP. 21-34, (2012).

[16] F. B. Pelap, J. H. Kamga, S. B. Yamgoue, S. M. Ngounou and J. E. Ndecfo, Dynamics

and properties of waves in a modified Noguchi electrical transmission line Phys. Rev. E,

91, PP. 022925-022934, (2015).

[17] T. Kuusela, J. Hietarinta, K. Kokko and R. Laiho, Soliton experiments in a nonlinear

electrical transmission line, Eur. J. Phys., 8, PP. 27-33, (1987).

[18] A. Mboussi Nkomidio, S. Noubissie and P. Woafo, Dynamics of arrays of legs powered by

a discrete electrical model of nerve, Phys. Lett. A, 378, PP. 857-862, (2014).

[19] N. Vogt, R. Schafer, H. Rotzinger, W. Cui, A. Feibig, A. Shairman and A. V. Ustinov,

One-dimensional Josephson junction arrays: Lifting the Coulomb blockade by depinning,

Phys. Rev. B, 92, PP. 045435-0454312, (2015).

[20] V. K. Kaplumenko, J. Mygind, N. F. Pedersen and A. V. Ustinov, Radiation detection

from phase-locked serial dc SQUID arrays, J. Applied. Phys., 73, PP. 2019-2023, (1993).

[21] B. H. Larsen and S. P. Benz, Stable phase locking in a two-cell ladder array of Josephson

junctions, Appl. Phys. Lett., 66, PP. 3209-3211, (1995).

[22] Y. Braiman, W. L. Ditto, K. Wiesenfeld and M. L. Spano, Disorder-enhanced synchro-

nization, Phys. Lett. A, 206, PP. 54-60, (1995).

[23] C. B. Whan, A. B. Cawthorne and C. J. Lobb, Synchronization and phase locking in two-

dimensional arrays of Josephson junctions, Phys. Rev. B, 53, PP. 12340-12345, (1996).

KOUAMI MBEUNGA Nadine 82 PhD, UYI



Bibliography

[24] S. Z. Lin, X. Hu and L. Bulaevsku, Synchronization in a one-dimensional array of point

Josephson junctions coupled to a common load, Phys. Rev. B, 84, PP. 104501-1045012,

(2011).

[25] G. Fautso Kuiate and P. Woafo, Fiske and Satellite Steps in a Twofold Stack Josephson

Junction, Physica. Scr., 71, PP. 556- 560, (2005).

[26] G. Fautso Kuiate and P. Woafo, IŰV Characteristics of an array of discrete Josephson

junction and effect of a localized defect, Physica C, 440, PP. 59-65, (2006).

[27] Z. Zheng and M. C. Cross, Defect-induced propagation, Internat. J. Bifur. Chaos, 13,

PP. 3125-3133, (2003).

[28] C. E. Elmer and E. S. Van Vleck, Spatially discrete Fitzhugh-Nagumo equations, Siam

J. Appl. Math., 65, PP. 1153-1174, (2005).

[29] Y. Klofäi, B. Z. Essimbi and D. Jäger, An MMIC implementation of Fitzhugh-Nagumo

neurons using a resonant tunneling diode nonlinear transmission line, Phys. Scr. 90, PP.

025002-025007, (2015).

[30] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells,

Siam J. Appl. Math., 47, PP. 556-572, (1987).

[31] S. P. Hopkin and H.J. Read, The Biology of millipedes, Oxford University Press, Oxford,

(1992).

[32] J. G. E. Lewis, The biology of Centipedes, Cambridge University press, Cambridge,

(1981).

[33] H. Simo and P. Woafo, Bursting oscillations in electromechanical systems, Mechanics

Research Commun., 38, PP. 537-541, (2011).

[34] V. Y. Taffoti Yolong and P. Woafo, The complete synchronization condition in a network

of piezoelectric micro-beams, Nonlinear Dyn., 57, PP. 261-274, (2009).

[35] K. Chembo Kouomou and P. Woafo, Stability and chaos control in electrostatic tranduc-

ers, Physica Scripta, 62, PP. 255-260, (2000).

[36] C. A. Kitio Kwuimy and P. Woafo, Experimental realization and simulations a self-

sustained macro electromechanical system, Mechanics Research commun., 37, PP. 106-

110, (2010).

KOUAMI MBEUNGA Nadine 83 PhD, UYI



Bibliography

[37] U. Simo Domguia, L. T. Abobda and P. Woafo, Dynamical behavior of a capacitive

microelectromechanical system powered by a Hindmarsh-Rose electronic oscillator, J.

Comput. Nonlinear Dyn., 11, PP. 051006-051013, (2016).

[38] M. P. Blencowe, Nanoelectromechanical systems, Comtemp. Phys., 46, PP. 249-264,

(2005).

[39] J. B. Mogo and P. Woafo, Dynamics of a cantilever arm actuated by a nonlinear electrical

circuit, Nonlinear Dyn., 63, PP. 807-818, (2011).

[40] J. C. Chedjou, P. Woafo and S. Domngang, Shilnikov chaos and dynamics of a self-

sustained electromechanical transducer. J. Vibrat. Acoust., 123, PP. 170-174, (2001).

[41] C. A. Kitio Kwuimy, B. Nana and P. Woafo, Experimental bifurcations and chaos in

a modified self-sustained macroelectromechanical system, J. Sound Vibrat., 329, PP.

3137-3148, (2010).

[42] C. A. Kitio Kwuimy and P. Woafo, Modeling and dynamics of a self-sustained electro-

static microelectromechanical system, J. Comput. Nonlinear Dyn., 5, PP. 021010-021017,

(2010).

[43] R. Yamapi and P. Woafo, Dynamics and synchronization of coupled self-sustained elec-

tromechanical devices, J. Sound Vibrat., 285, PP. 1151-1170, (2005).

[44] R. Yamapi, Dynamics of an electromechanical damping device with magnetic coupling,

Commun. Nonlinear Sci. Numer. Simulat., 11, PP. 907-921, (2006).

[45] R. Yamapi, J. B. Chabi Orou and P. Woafo, Harmonic Dynamics and transition to chaos

in a nonlinear electromechanical system with parametric coupling, Physica Scripta, 67,

PP. 269-275, (2003).

[46] R. Yamapi, J. B. Chabi Orou and P. Woafo, Harmonic oscillations, stability and chaos

control in a nonlinear electromechanical system, J. Sound Vibrat., 259, PP. 1253-1264,

(2003).

[47] R. Yamapi and S. Bowong, Dynamics and chaos control of the self sustained electrome-

chanical device with and without discontinuity, commun. Nonlinear Sci. Numer. Simulat.,

11, PP. 355-375, (2006).

KOUAMI MBEUNGA Nadine 84 PhD, UYI



Bibliography

[48] G. S. Mbouna Ngueuteu and P. Woafo, Dynamics and synchronization analysis of coupled

fractional order nonlinear electromechanical systems, Mechanics Research Commun., 46,

PP. 20-25, (2012).

[49] M. G. Rosemblum and A. S. Pikovsky, controlling synchronization in an ensemble of

globally coupled oscillators, Phys. Rev. Lett., 92, PP. 114102-114106, (2004).

[50] P. AShwin, O. Burylko, Y. Maistrenko and O. Popvych, Extreme sensitivily to deturning

for globally coupled phase oscillators, Phys. Rev. Lett., 96, PP. 114102-114106, (2004).

[51] V. Anishchenko, S. Astakhov and T. Vadivasova, Phase dynamics of two coupled oscilla-

tors under external periodic force. Europhys. Lett., 86, PP. 30003-P1-30003-P5, (2009).

[52] J. Simonovic, Synchronization in coupled systems with different type of coupling elements,

Differ Equ Dyn Syst 21, PP. 141-148, (2013).

[53] G. S. Mbouna Ngueuteu, R. Yamapi and P. Woafo, Stability of synchronized network of

chaotic electromechanical devices with nearest and all-to-all couplings, J. Sound Vibrat.,

318, PP. 1119-1138, (2008).

[54] R. Yamapi and P. Woafo, Synchronized states in a ring of four mutually coupled self-

sustained electromechanical devices, Commun. Nonlinear Sci. Numer. Simulat., 11, PP.

186-202, (2006).

[55] V. Y. Taffoti Fondjo and P. Woafo, Synchronization in a ring of mutually coupled elec-

tromechanical devices, Physica Scripta, 74, PP. 591-598, (2006).

[56] M. V. Tchakui, V. Y. Taffoti Fondjo and P. Woafo, Bifurcation structured in three uni-

directionally coupled electromechanical systems with no external signal and with regen-

eratrice process, nonlinear Dyn., 84, PP. 1961-1972, (2016).

[57] G. S. Mbouna Ngueuteu, Rings and networks of elelctromechanical systems, PhD. Thesis,

Faculty of science, University of Yaoundé 1, Cameroon (2014).

[58] M. V. Tchakui, Complex behaviors, signal propagation and amplification in chaos of au-

tonomous electromechanical systems with unidirectional coupling, P.h.D. Thesis, Faculty

of science, University of Yaoundé 1, Cameroon (2019).

[59] M. V. Tchakui, P. Woafo and P. Colet, Signal bi-amplification in networks of unidirec-

tionally coupled MEMS, Eur. Phys. J. B, 89, PP. 1-9, (2016).

KOUAMI MBEUNGA Nadine 85 PhD, UYI



Bibliography

[60] R. Hirota and K. Suziki, Studies on lattice solitons by using electrical networks, J. Phys.

Soc. Jpn., 28, pp. 1366-1367, (1970).

[61] M. Toda, wave propagation in anharmonic lattices, J. Phys. Soc. Jpn., 23, pp. 501-506,

(1967).

[62] P. Marque, J. M. Bilbault and M. Remoissenet, Generation of envelope and hole solitons

in an experimental transmission line, Phys. Rev. E, 49, pp. 828-835, (1994).

[63] D. Yemélé, P. Marquié and J. Marie Bilbault, long time dynamics of modulated waves in

a nonlinear discrete LC Transmission line, Phys. Rev. E, 68, pp. 016605-016615, (2003).

[64] L. Q. English, R. Basu Thakur and R. Stearrett, Patterns of traveling intrinsic localized

modes in a driven electrical lattice, Phys. Rev. E, 77, pp. 066601-066605, (2008).

[65] B. Z. Essimbi and I. V. Barashenkov, Spatially localized voltage oscillations in an electrical

lattice, J. Phys. D: Appl. Phys., 35, pp. 1438-1441, (2002).

[66] L. Leon and M. Manna, Discrete instability in nonlinear lattices, Phys. Rev. Lett., 83,

pp. 2324-2327, (1999).

[67] F. Ndzana, A. Mohamadou, T. C. Kofané, Modulational instability in the cubic quintic

nonlinear Schrödinger equation through the variational approach, J. Phys., 40, pp. 3254-

3262, (2007).

[68] H. Nagashima and Y. Amagashi, Experiment on the Toda lattice using nonlinear trans-

mission lines, J. Phys. Soc. Jpn., 45, pp. 680-688, (1978).

[69] K. Muroya, N. Saitoh and S. Watanabe, Experiment on lattice soliton by nonlinear LC

Circuitobservation of a dark soliton, J. Phys. Soc. Jpn., 51, pp. 1024-1029, (1982).

[70] E. Kengne, B. A. Malomed, S. T. Chui and W. M. Liu, Solitary signals in electrical

nonlinear transmission line, J. Maths. Phys., 48, pp. 013508-0135013, (2007).

[71] P. Marquie, J. M. Bilbault and M. Remoissenet, Generation of enveloppe and hole solitons

in an experimental transmission line, Phys. Rev. E, 49, pp. 828-835, (1994).

[72] J. M. Bilbault, P. Marquié and B. Michaux, Modulational instability of two counter-

propagating waves in an experimental transmission line, Phys. Rev. E, 51, pp. 817-820,

(1995).

KOUAMI MBEUNGA Nadine 86 PhD, UYI



Bibliography

[73] D. L. Sekulic, M. V. Sataric, M. B. Zivanov and J. B. Bajic, Soliton-like pulse along

electrical nonlinear transmission lines electron, Electric. Engin., 121, pp. 53-58, (2012).

[74] F. Kenmogne and D. Yemélé, Exotic modulated peak solitary wave and gray compacton,

Chaos, Solitons and Fractals, 45, pp. 21-34, (2012).

[75] M. Remoissenet, waves called solitons, Springer-Verlag, Berlin, (1999).

[76] M. G. Case, Nonlinear transmission lines for picosecond pulse, Impulse and millimeter

wave harmonic generation, Santa Barbara: University of California, (1993).

[77] D.S. Ricketts, X. Li and D. Ham, Electrical soliton oscillator, IEEE Trans. Microw.

Theory Tech., 54, pp. 373-382, (2006).

[78] D. Ham, X. Li, S. A. Denenberg, T. H. Lee and D. S. Ricketts, Ordered and chaotic

electrical solitons: Communication perspectives, IEEE Communicat. Magaz., 44, pp.

126-135, (2006).

[79] M. V. Sataric, N. Bednar, B. MO Sataric and G. Stofanovic, Actin filaments as nonlinear

RLC transmission lines, Inter. J. Modern. Phys. B, 23, pp. 4697-4711, (2009).

[80] E. Afshari and A. Hajimiri, Nonlinear transmission lines for pulse shaping in silicon, IEEE

J. Solid-State Circuits, 40, pp. 744-752, (2005).

[81] E. Kengne and W. M. Liu, Exact solutions of the derivative nonlinear Schrödinger equa-

tion for a nonlinear transmission line, Phys. Rev. E, 73, pp. 026603-0266010, (2006).

[82] A. Houwe, M. Justin, D. Jerome, G. Betchewe, S. Y. Doka and T. C. Kofané, Wave

propagation of the perturbed nonlinear Schrödinger equation in the nonlinear left-handed

transmission line, Asian Europ. J. Maths., 12, pp. 2050035-2050048, (2020).

[83] T. Kuusela, J. Hietarinta, K. Kokko and R. Laiho, Soliton experiments in a nonlinear

electrical transmission line, Eur. J. Phys., 8, pp. 27-33, (1987).

[84] S. Abdoulkary, L. Q. English and A. Mohamadou, Envelope solitons in a left-handed

nonlinear transmission line with Josephson Junction, Chaos, Solitons and Fractals, 85,

pp. 44-50, (2016).

[85] M. J. Rempe and D. L. Chop, A predictor-corrector algorithm for reaction diffusion

equations associated with neural activity on branched strucrures, Siam. J. Sci. Comput.,

28, pp. 2139-2161, (2006).

KOUAMI MBEUNGA Nadine 87 PhD, UYI



Bibliography

[86] C. Zhang and A. Ke, B. Zheng, Patterns of interaction of coupled reaction-diffusion

systems of the Fitzhugh-Nagumo type, Nonlinear Dyn., 97, pp. 1451-1476, (2019).

[87] K. Keplinger and R. Wacherbauer, Transient spatiotemporal chaos in the Morris-Lecar

ring network, Chaos Interdisci. J. Nonlinear Science, 24, pp. 013126-0131215, (2014).

[88] B. D. Josephson, possible new effects in superconductive tunnelling, Phys. Lett., 1, pp.

251-253, (1962).

[89] J. R. Anderson and J. M. Rowell. probable Observation of the Josephson superconducting

tunnel effect, Phys. Rev. Lett., 10, pp. 230-232, (1963).

[90] R. L. Kautz, Noise, chaos, and the Josephson voltage standard, Rep. Prog. Phys., 59,

pp. 935-992, (1996).

[91] K. K. Likharev, Superconducting weak links, Rev. of modern Phys., 51, pp. 101-159,

(1979).

[92] A. Ergul, Nonlinear dynamics of Josephson junction chains and superconducting res-

onators, Stockholm, Sweden, (2013).

[93] M. Tinkham, Introduction to superconductivity, new york, 2nd edition, (1996).

[94] L. Yu, R. Gandikota, R. K. Singh, L. Gu, D. J. Smith, X. Meng, X. Zeng, T. V. Duzer, J.

M. Rowell and N. Newman, Internally shunted Josephsons with barriers tuned near the

metal insulator transition for RSFQ logic applications, Supercond. Sci. Technol., 19, pp.

719-731, (2006).

[95] K. K. Likharev, Dynamics of Josephson junctions and Circuits, New york, Gordon and

Breach Science, (1986).

[96] A. Barone and G. Paterno, Physics and aplications of the Josephson effect, New york,

John Wiley and Sons, (1982).

[97] C. B. Whan and C. J. Lobb, effect of inductance in externally shunted Josephson tunnel

junctions, J. Appl. Phys., 77, PP. 382-389, (1995).

[98] Y. Lei and R. Fu, Heteroclinic chaos in a Josephson junction system perturbed by di-

chotomous noise excitation, Lett. J. Exp., 112, PP. 60005-600013, (2015).

[99] S. K. Dana, D. C. Sengupta and K. D. Edoh, Chaotic dynamics in Josephson junction,

IEEE Trans. Circuits Syst., 48, PP. 990-996, (2001).

KOUAMI MBEUNGA Nadine 88 PhD, UYI



Bibliography

[100] E. M. Shahverdiev, L. H. Hashimova, P. A. Bayramov and R. A. Nuriev, Chaos synchro-

nization Between Josephson junctions coupled with time delays, J. Supercon. Nov. Magn.

27, PP. 2225-2229, (2014).

[101] T. V. Duzer and C. W. Turner, Principles of superconductive devices and circuits, second

ed. Prentice Hall PTR, Upper Saddle River, NJ. USA, (1998).

[102] T. A. Fulton and L. N. Dunkleberger, Lifetime of the zero- voltage state in Josephson

tunnel junctions, Phys. Rev. B, 9, pp. 4760-4769, (1974).

[103] W. C. Stewart, Current voltage characteristics of Josephson junctions, Appl. Phys. Lett.,

12, pp. 277-280, (1968).

[104] D. E. Mc Cumber, tunneling and weak-link superconductor phenomena having potential

device applications, J. Appl. Phys., 39, pp. 2503-2508, (1968).

[105] C. B. Whan and C. J. Lobb, Complex dynamical behavior in RCL-Shunted Josephson

tunnel junctions, Phys. Rev. E, 53, pp. 405-413, (1996).

[106] A. B. Cawthorne, C. B. Whan and C. J. Lobb, Complex dynamics of resistively and

inductively shunted Josephson junctions, J. Appl. Phys., 84, pp. 1126-1132, (1998).

[107] Y. Mizugaki and K. Nakajima, Numerical investigation and model approximation for the

hysteretic current-voltage characteristics of Josephson junctions with nonlinear quasipar-

ticle resistance, Jpn. J. Appl. Phys., 36, pp. 110-113, (1997).

[108] S. Sancho and A. Swarez, Frequency domain analysis of the periodically-forced Josephson-

Junction circuit, IEEE trans. on circuits and systems, 61, pp, 512-521, (2014).

[109] T. P. Valkering, C. L. A. Hooijer and M. F. Kroon, Dynamics of two capacitively coupled

Josephson junctions in the overlamped limit, Physica D, 135, PP. 137-153, (2000).

[110] M. Cirillo and N. F. Pederson, On bifurcation and transition to chaos in a Josephson

junction, Phys. Lett., 90, PP. 150-152, (1982).

[111] D. R. Gulevich and F. V. Kusmartsev, Flux cloning in Josephson transmission lines,

Phys. Rev. Lett., 97, PP. 017004-017008, (2006).

[112] N. F. Pedersen, Solitons in Josephson transmission lines modern Prob. Cond. Matter

Sciences, 17, pp. 469-501, (1986).

KOUAMI MBEUNGA Nadine 89 PhD, UYI



Bibliography

[113] T. Visser, Modelling and analysis of long Josephson Junctions, Twente University press,

Netherlands, (2002).

[114] H. S. Newman and K. L. Davis, fluxon propagation in Josephson junction transmission

lines coupled by resistive networks, J. Applied Phys., 53, PP. 7026-7032, (1982).

[115] T. A. Fulton, R. C. Dynes, P. W. Anderson, A Josephson junction shift register employing

single flux quanta, Proc. IEEE, 61, PP. 28-35 (1973).

[116] T. A. Fulton, R. C. Dynes, Single vortex propagation Josephson tunnel junctions, Solid

State Commun., 12, PP. 57-61, (1973).

[117] K. Nakajima, Y. Onodera and Y. Ogawa, Logic design of Josephson network, J. Applied

Phys., 47, PP. 1620-1627, (1976).

[118] N. F. Pedersen and A. V. Ustinov, Fluxons in Josephson transmission lines: new devel-

opments, supercond. Sci. Technol., 8, PP. 389-401, (1995).

[119] A. C. Scott, Y. F. Flora and S. A. Reible, Magnetic flux propagation on a Josephson

transmission line, J. Applied. Phys., 47, PP. 3272-3286, (1976).

[120] K. K. Likharer and U. K. Semenov, RSFQ logic/memory family: A new Josephson junc-

tion technology for sub-Terahertz-clock-frequency digital systems, IEEE Trans. Appl.

Supercond., 1, PP. 3-28, (1991).

[121] A. V. Ustinov and M. Cirillo, Fluxon dynamics in one-dimensional Josephson-junction

arrays, Phys. Rev. B, 47, PP. 8357-8360, (1993).

[122] H. S. J. Van der Zant, D. Berman and T. P. Orlando, Fiske modes in one-dimensional

parallel Josephson junction arrays, Phys. Rev. B, 49, PP. 12945-12952, (1994).

[123] A. V. Ustinov, M. Cirillo, B. H. Larsen, V. A. Obozvov, P. Carelli and G. Rotoli, Exper-

imental and numerical study of dynamic regimes in a discrete Sine-Gordon lattice, Phys.

Rev. B, 51, PP. 3081-3091, (1995).

[124] G. Fautso Kuiate and P. Woafo, I-V Characteristics of an array of discrete Josephson

junction and effect of a localized defect, Physica C, 440, PP. 59-65, (2006).

[125] H. R. Mohebbi and A. H. Majedi, Analysis of series connected discrete Josephson trans-

mission line, IEEE Trans. Microwave Theory Techn., 57, PP. 1865-1873, (2009).

KOUAMI MBEUNGA Nadine 90 PhD, UYI



Bibliography

[126] H. S. J. Van der Zant, M. Barahona, A. E. Duvel, E. Trias, T. P. Orlando, S. Watanabe,

S. Strogatz, Dynamics of one dimensional Josephson junction arrays, Physics D, 119, PP.

219-226, (1998).

[127] A. V. Ustinov, B. A. Malomed, S. Sakai, Bunched fluxon states in one-dimensional Joseph-

son junction arrays, Phys. Rev. B, 57, PP. 11691-11691, (1998).

[128] K. Nakajima, Y. Onodera, Logic design of Josephson network. II, J. Appl. Phys., 49, PP.

2958-2963, (1978).

[129] R. Lent, A. C. Azevedo, C. H. Andrade Moraes and V. O. Ana pinto, How many neurons

do you have? some dogmas of quantitative neuroscience under revision, European J.

neuroscience., 35, pp. 1-9, (2012).

[130] D. Johnston and S. M. Wu, Foundations of cellular neurophysiology, the MIT press,

(1994).

[131] S. K. Fisher and B. B. Boycott, Synaptic connexions made by horizontal cells within the

outer plexiform layer of the retina of the cat and the rabbit, Proc. R. Soc. Lond. B, 186,

pp. 317-331, (1974).

[132] R. F. Schmidt, Fundamentals of neurophysiology, Springer- Verlag, Heidelberg Berlin

New York, (1977).

[133] M. W. Barnett and P. M. Larkman, the action potential, Pract. Neurol., 7, pp. 192-197,

(2007).

[134] G. F. Striedter, Neurobiology: a functional approach, Oxford University press, (2016).

[135] R. Fitzhugh, Impluses and physiological state in theoretical models of nerve membrane,

J. Biophys., 1, pp. 445-466, (1961).

[136] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating

nerve axon, proceedings of the IRE., 50, pp. 2061-2070, (1962).

[137] E.M. Izhikevich, Neural excitability, spiking and bursting, Int. J. Bifurcation and Chaos.,

10, pp. 1171-1266, (2000).

[138] J. Rinzel and B. Ermentrout, Methods of Neural Modeling : From Synapses to Networks,

chapter Analysis of neural excitability and oscillations, MIT Press., 50, pp. 135-169,

(1989).

KOUAMI MBEUNGA Nadine 91 PhD, UYI



Bibliography

[139] Z. He, C. Li, L. Chen and Z. Cao, Dynamic behaviors of the Fitzhugh-Nagumo neuron

model with state-dependent impulsive effects, 121, PP. 497-511, (2020).

[140] A. Hoff, J. V. dos santos, C. Manchein and H. A. Albuquerque, Numerical bifurcation

analysis of two coupled Fitzhugh Nagumo oscillators, Eur. Phys. J. B, 87, PP. 1-9, (2014).

[141] M. Aqil, K. S. Hong and M. Y. Jeong, Synchronization of coupled chaotic Fitzhugh-

Nagumo systems, Commun Nonlinear Sci. Numer. Simulat., 17, PP. 1615-1627, (2012).

[142] D. Hu, J. Yang and X. Liu, Delay-induced vibrational multiresonance in Fitzhugh-

Nagumo system, Commun Nonlinear Sci. Numer. simulat., 17, PP. 1031-1035, (2012).

[143] D. Valenti, G. Augello and B. Spagnolo, Dynamics of a Fitzhugh-Nagumo system sub-

jected to autocorrelated noise, Eur. Phys. J. B, 65, PP. 443-451, (2008).

[144] A. L. Hodgkin and A. Huxley, A quantitative description of membrane current and its

application to conduction and excitation in nerve, J. Physiol., 117, pp. 500-544, (1952).

[145] S. Binczack and J. M. Bilbault, experimental propagation failure in a nonlinear electrical

lattice, Inter. J. Bifurc. Chaos, 14, PP. 1819-1830, (2004).

[146] J. Engelbrecht, T. Peets, K. Tamn, M. Laasmaa and M. Vendelin, on the complexity of

signal propagation in nerve fibres, proceedings of the estonian academy of sciences, 67,

PP. 28-38, (2018).

[147] I. Ratas and K. Pyragas, Effect of high-frequency stimulation on nerve pulse propagation

in the Fitzhugh-Nagumo model, Nonlinear Dyn., 67, PP. 2899-2908, (2012).

[148] A. Talidou, A. Burchard and I. M. Signal, Near pulse solutions of the Fitzhugh-Nagumo

equations on cylindrical surfaces, J. Nonlinear Sci., 57, PP. 1-39, (2021).

[149] L. A. Ranvier, Lecons sur l’histologie du système nerveux, par M. L. Ranvier, Recueillies

par M. Ed. Weber. F. savy, Paris (1878).

[150] I. Ratas and K. Pyragas, Pulse propagation and failure in the discrete FitzHugh-Nagumo

model subject to high-frequency stimulation, Phys. Rev. E 86, PP. 046211-046220, (2012).

[151] T. Erneux and G. Nicolis, propagating waves in discrete bistable reaction-diffusion sys-

tems, Physica D, 67, PP. 237-244, (1993).

[152] V. Booth and T. Erneux, mechanisms for propagation failure in discrete reaction-diffusion

systems, Physica A, 188, PP. 206-209, (1992).

KOUAMI MBEUNGA Nadine 92 PhD, UYI



Bibliography

[153] Z. J. Qian, H. Z. Huai and X. H. Wen, Neural signal Tuned by random long-range

coonctions in coupled FitzHugh Nagumo neurons systems, Chin. Phys. Lett. 23, PP.

2364-2367, (2006).

[154] A. A. Karim, T. Gaudin, A. Meyer, A. Buendia and S. Bouakaz, Procedural locomotion

of multi-legged characters in dynamic environments, Université de Lyon, CNRS, (2012).

[155] M. Shibata, T. Hoshizaki and M. Ito, development of multi-legged locomotion for fast

walking, IEEE, The International Power Electronics Conference, 15, pp. 2204-2209,

(2010).

[156] V. Y. Taffoti Yolong and P. Woafo, Dynamics of electrostatically actuated micro- electro-

mechanical systems: single device and arrays of devices, Int. J. Bifur., Chaos 19, pp.

1007-1022, (2009)

[157] G. Filatrella, V. Pierro, N.F. Pedersen and M.P. Sorensen, Negative Differential Resis-

tance due to Nonlinearities in Single and Stacked Josephson Junctions, IEEE Trans. Appl.

Supercond., 24, pp. 1800407, (2014).

[158] A. H. Nayfeh and D.T. Mook, Nonlinear oscillation, Wiley-Interscience, New York, (1979)

[159] S. P. Timoshenko, Theorie de la stabilité élastique, Dunod, Paris, (1966).

[160] J. C. Chedjou, P. Woafo and S. Domngang, Shilnikov chaos and dynamics of a self-

sustained electromechanical transducer, J. Vib. Acoust., 123, pp. 170-174, (2001).

[161] C. A. Kitio Kwuimy and P.Woafo, Dynamics, chaos and synchronization of self-sustained

electromechanical systems with clamped-free flexible arm, Nonlinear Dyn., 53, pp. 201-

214, (2008).

[162] R. Yamapi and M. A. Aziz-Alaoui, Vibration analysis and bifurcations in the self-

sustained electromechanical system with multiple Functions, Commun. Nonlinear Sci.

Numer. Simul., 12, pp. 1534-1549, (2007).

[163] F. He, R. Ribas, C. Lahuec and M. Jézéquel, Discussion on the general oscillation startup

condition and the Barkhausen criterion, Analog Integr. Circ. Sig. Process., 5, pp. 1-7,

(2008).

[164] J. D. Hoffman and S. Frankel, Numerical methods for engineers and scientists, New York:

CRC Press, (2001).

KOUAMI MBEUNGA Nadine 93 PhD, UYI



Bibliography

[165] R. B. Bhat and S. Chakraverty, Numerical Analysis in engineering. London: Alpha Science

International Ltd, (2007).

[166] S. E. Hebdoul and J. C. Garland, Radio-frequency spectral response of two-dimensional

Josephson-junction arrays, Phys. Rev. B, 43, pp. 13703-13706, (1991).

[167] S. E. Hebdoul and J. C. Garland, rf power dependence of subharmonic voltage spectra of

two-dimensional Josephson-junction arrays, Phys. Rev. B, 47, pp. 5190-5195, (1993).

[168] A. Scott, Nonlinear Science: emergence and dynamics of coherent structures. 2nd edition,

Oxford University Press Inc, New York, (2003).

[169] P. Woafo, Kink dynamics in the highly discrete and coupled sine-Gordon system, Phys.

Rev. B, 52, pp. 6170-6173, (1995).

[170] Y.S. Kivshar and B.A. Malomed, Dynamics of solitons in nearly integrable systems, Rev.

Mod. Phys., 61, pp. 763-915, (1989).

[171] R. Fokoua Tiwang, P. Woafo and T.C. Kofane, Dynamics of fluxons in a system of two

coupled Josephson transmission lines with local defects, J. Phys. Condens. Matter 6, pp.

9745-9753, (1994).

[172] M. Tlidi, P. Mandel and R. Lefever, Localized structures and localized patterns in optical

bistability. Physical review letters, 73, pp. 640-644, (1994).

[173] J.J. Shen, H. W. Yin, and J. H. Dai, Dynamical behavior, transient chaos, and riddled

basins of two charged particles in a Paul trap, Phys. Rev. A, 55, pp. 2159-2164, (1997).

[174] T. Tal, The joy of transient chaos. Chaos, 25, pp. 097619, (2015).

KOUAMI MBEUNGA Nadine 94 PhD, UYI



LIST OF PUBLICATIONS

1) N. M. Kouami, B. Nana and P. Woafo.: Analysis of nanoelectromechanical beams

driven by an electrical line of Josephson junctions, Physica C: Superconductivity and its

applications, 574, PP. 1353658,(2020).

2) N. M. Kouami, B. Nana and P. Woafo.: Dynamics of array mechanical arms coupled

each to a Fitzhug Nagumo neuron. Chaos soliton and fractals, 55, PP. 111484, (2021).

KOUAMI MBEUNGA Nadine 95 PhD, UYI



Contents lists available at ScienceDirect

Physica C: Superconductivity and its applications

journal homepage: www.elsevier.com/locate/physc

Analysis of array nanoelectromechanical beams driven by an electrical line
of Josephson junctions
N.M. Kouamia, B. Nanab, P. Woafoa,⁎

a Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaounde I, PO Box 812 Yaounde, Cameroon
b Department of Physics, Higher Teacher Training College, University of Bamenda, PO Box 39 Bamenda, Cameroon

A R T I C L E I N F O

Keywords:
Nanoelectromechanical systems
Josephson transmission lines
Nano-actuation
Fluxons

A B S T R A C T

An array of nanoelectromechanical beams driven by an electrical line of Josephson junctions equivalent models
is studied. It is found that a single electromechanical system displays oscillations under a critical value of the DC
bias current. In the case of an array of electromechanical system constituted of a series of coupled discrete
Josephson junction with a beam place at each node, the numerical simulation shows that as the electric signal
flows in the discrete array, each beam executes a pulse-like motion coming at each rest state as the electrical
signal passes the node. When the bias current increases, the amplitude and period of the pulse-like shapes
increase. One also notes the increase of the amplitude of the pulse-like shape when the magnetic field increases.
The electromechanical system analyzed can be seen as a model for periodic nano-actuation processes or as a
model of legs in a millipede system.

1. Introduction

Josephson junctions are theoretical and applied devices extensively
studied in the field of nonlinear dynamics and materials sciences [1–8].
One particular interest in the Josephson Junction is its potential to
generate high-frequency signals from the order of Gigahertz and Ter-
ahertz range [9,10]. Thus, it is considered as microwave radiation
source and can be used for practical applications such as Super-
conducting Quantum Interference Devices (SQUIDs), detectors, digital
logic circuits and voltage standards [11–14]. In order to appreciate the
power outputs, contrary to a single Josephson junction which is not
able to provide high power, many research activities have considered
arrays of Josephson junctions [10,15–20].

Because of its large range of frequency variation and the high values
of the frequencies, one can think of commanding some actuation pro-
cesses at the nano level using a Josephson junction. This will lead to
high frequency nanoelectromechanical systems. In the same line, as the
nano-actuation is concerned, scientists and engineers are interested in
the design of a large ensemble of nano-actuators. This can be obtained
by coupling several nanoelectromechanical systems through their me-
chanical parts or through the electrical parts with different types of
coupling. In this case, one can be interested by the synchronization
criteria [21].

Another way is to consider an electrical line in which electrical
signal propagates steadily with constant shape. This requires some
special electrical lines such as nonlinear electrical transmission lines
which are able to propagate special electrical signals such as solitons
[22–26]. In these electrical transmission lines, the signal can be inserted
periodically at one entrance node. Each signal introduced in the line
will propagate along the line. An example of such electrical transmis-
sion lines, representing a discrete model of myelinated nerve fibers has
been used recently to power an array of electromechanical systems
[27].

It is known that long Josephson junctions and arrays of discrete
Josephson point junctions exhibit soliton -like excitations, one of which
is of the topological nature [28,29]. Thus, following the idea of Ref.
[27], we consider in this work the behavior of an array of nano-beams,
each of which is placed at a node of the discrete array. As it is indicated
in Ref. [27], such an electromechanical system can be as models for
nano-actuation, but also model for the legs of artificial millipedes. In-
deed, millipedes move their legs in a wave like undulation along their
body propelling themselves forward (or backward) against the substrate
[30,31]. The study conducted here will also complement those con-
sidered in Ref. [32] where the authors studied the dynamics of nano-
beam coupled to two Josephson junctions.

Thus, the aim of this work is to study the dynamical behavior of
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nano-beams motion in an array constituted of coupled discrete
Josephson junctions. But, before considering the array, the dynamics of
a single nanoelectromechanical beam powered by the electric equiva-
lent of Josephson junction through a magnetic field will be considered.
In section 2, we describe the system constituted of one single Josephson
junction coupled magnetically to a nano- beam. The mathematical
model and the dynamical behavior of such unit cell are presented.
Section 3 deals with the array of nano-beams driven by an array of
Josephson Junctions. We analyze numerically the effect of some para-
meters on the displacement process. Finally, a summary is given in the
last section.

2. Nanoelectromechanical beam driven by a single Josephson
junction

2.1. Description of the system

The schematic circuit of the Josephson junction model coupled
magnetically to a nano-beam is shown in Figure 1.

It is made of an electrical part which is constituted by a Josephson
junction circuit model whose components are respectively: JJ denotes
the Josephson junction element, C the junction capacitance and R the
junction resistance. Ie is an external current source necessary to bias the
junction. The mechanical part is made of a nano-beam (parallel to k )
on which is placed a winding and the whole is in magnetic field B
(parallel to i ).

2.2. Equations of a single system

Let V be the voltage across the Josephson junction and i1 the current
through the junction. The relations between V, the phase difference φ
across the Josephson barrier and i1 are given as [33]:

=V
e

d
d2 (1)

=i I sin( )c1 (2)

where e is the electron charge, ℏ denotes the reduced Plank's constant
and Ic is the critical current of the junction. The application of the
Kirchhoff laws leads to the following differential equations:

+ + + =CdV
d

V
R

i i Ib e1 (3)

+ = +L di
d

ri V eb
b f (4)

In equation (4), ib is the current flowing through the winding lo-
cated on the surface of the nano-beam. L and r are respectively the

inductance and resistance of the winding and ef is the induced elec-
tromotive voltage provided by the winding moving in the magnetic
field, τ is the time. To obtain the equation of the nano-beam, let U be
the deflection of nano-beam and ℓ the length of the wire loop located on
the surface of the nano-beam. If we assume the nano-beam to be iso-
tropic, uniform and flexible, then equation (5) describes the transversal
vibration of the Euler-Bernoulli beam [34,35]:

+ + =S U U EI U
Z

F ,L
2

2

4

4 (5)

where S is the cross-sectional area of the beam, ρ, λ, E, I and FL are
respectively the density, damping coefficient, Young's modulus, the
second moment of area and the Laplace force. We have considered a
thin beam and we neglect the axial and torsional vibrations compared
to the flexible vibrations. The induced electromotive voltage and the
Laplace force acting on the whole nano-beam due to the magnetic
coupling are given as:

=e B U ,f (6)

=F B i .L b (7)

Introducing equations (1), (2) and (6) into equations (3) and (4),
and equation (7) into equation (5), it comes that the system is described
by the following three coupled differential equations:

+ + + =C
e

d
d eR

d
d

I sin i I
2 2

,c b e
2

2 (8)

+ + =L di
d

ri
e

d
d

B dU
d2

0,b
b (9)

+ + =S U U EI U
Z

B i 0.b
2

2

4

4 (10)

For the cantilever beam, the following boundary conditions are
added to the equation (10):

i) the fixed end =Z( 0) must have zero displacement and zero slope
because of the clamp:

= =U U
Z

(0, ) 0 and (0, ) 0, (11)

ii) ii) the free end =Z L( )1 cannot have a shearing force nor a bending
moment:

= =U L
Z

U L
Z

( , ) 0 and ( , ) 0.
2

1
2

3
1
3 (12)

L1represents the length of the nano-beam. One now introduces a set
of dimensionless variables u, x and z. We normalize the variables as

=u U
L1

, =x i
i
b
c

and =z Z
L1

. The time τ is normalized as =t c , where ωc

is the characteristic radian frequency of the junction. The set of equa-
tions (8) to (10) can then be rewritten in the following dimensionless
form:

+ + + =d
dt

d
dt

sin x i ,c e
2

2 (13)

+ + =dx
dt

µx d
dt

u
t

0,1 (14)

+ + =u
t

u
t

u
z

x.
2

2 1
2

4

4 1 (15)

With the new introduced parameters defined as

Figure 1. A single Josephson junction coupled to a nanoelectromechanical
beam and its corresponding symbol
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βc represents the Stewart-McCumber parameter. The dimensionless
boundary conditions become

= =u t u t
z

(0, ) 0and (0, ) 0,
(17)

= =u t
z

u t
z

(1, ) 0and (1, ) 0
2

2

2

3 (18)

Equation (15) is a partial differential equation. In order to obtain an
equivalent ordinary differential equation, one uses the Galerkin's
method to have the modal equations [34]. For that purpose, the de-
flection of the nano-beam can be written as:

=
=

u z t z y t( , ) ( ) ( )
p

p p
1 (19)

where yp(t) is the function of time at pth mode and ϕp(z) is the spatial
function. Resolving equation (15) without damping force and Laplace
force and also taking into account the boundary conditions, the spatial
function ϕp(z) is given by:

=
+
+

+

z
sin K sinh K
cos K cosh K

cosh K z cos K z

sin K z sinh K z

( )
( ) ( )
( ) ( )

[ ( ) ( )]

[ ( ) ( )].

p p

p p
p p

p p

p

(20)

Substitute equation (20) into equation (19) which is then multiplied
by ϕm(z) and integrate from 0 to 1 for the first mode of vibration, see
below.

= = =dz z dz c z
z

dz c1, ( ) , ( )m p m
p

0

1

0

1

1
0

1

m

4

4 2
(21)

After some mathematical manipulations, one obtains =K 1.8751p ,
where Kp is the solution of the equation =cosK coshK 1p p , =c 1.0661
and =c 22.9392 . As consequence, the set of equations (13) to (15) is
reduced to the following system of three ordinary differential equations
where the third equation is the modal equation of the nano-beam with y
the displacement of the nanoelectromechanical beam at the first mode.

+ + + =
+ + =
+ + =

sin x i
x µx y

y y y x

¨ ,
0,

¨ 0,

c e

2 (22)

where = c1 2 , = c1 1 and = c
1
1
. The set of equations (22) can be

transformed to five first order differential equations convenient for
numerical simulation as follows:

=
= + +

=
=
=

v
v v x i

x v µx z
y z
z x y z

( sin )e
1

2

c

(23)

The values of the physical parameters used in this work are given in
Table 1.

From the values of parameters given in Table 1, the following di-
mensionless numerical parameters are abtained:

= × = × = × =

= × = × =

µ

w

11.39 10 , 94.07 10 , 37.36 10 , 9.38 ,

14.65 10 , 2028 10 , 0.183

c
3 2 3

3 2

The current Ie(ie) is a control or variable parameter.

2.3. Dynamical behavior of the system

The form of the differential equations reveals that
the system can have two equilibrium
pointsG i i(arcsin , 0, 0, 0, 0)andG ( arcsin , 0, 0, 0, 0)e e1 2 if the condi-
tion ie ≤ 1 is satisfied. Otherwise, there is no equilibrium point. The
Jacobian matrix of the system (23) at =G ( , 0, 0, 0, 0)0 where

= iarcsin e0 or = iarcsin e0 is expressed as

=J µ

0 1 0 0 0
0 0

0 0
0 0 0 0 1
0 0

c
cos 1 1

2

o
c c

(24)

The eigenvalues of the Jacobian matrix J are solutions of the fol-
lowing fifth order algebraic equation in s:

+ + + + + =s a s a s a s a s a 0,5
4

4
3

3
2

2
1 0 (25)

where

= + + = + + + + + +

= + + + + + +

= + + + + =

a µ a µ µ
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2
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(26)

The determinants of all Hurwitz matrices using the coefficients ai of
the characteristic equation (25) are given as:

= = = + +
= + + +
= + + +

a a a d a a a a a a a a
d a a a a a a a a a a a a a a a a a a
d a a a a a a a a a a a a a a a a a

a a a a

d , d a ,
2

2

1 4 2 4 3 2 3 4
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1 4 3 2 4 0 2
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1
2

4 3
2
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1 0
2

5 4
2

1
2

0 4 3
2

0
2

4 3 2 1 0 4 1 0
2

3 2 0
2

2
2

1 0 0
3

(27)

According to the Routh-Hurwitz criteria, the system is stable if and
only if the coefficients ai anddi are all positive. That is, the eigenvalues
of the characteristic polynomial have strictly negative real part [36].
After analysis, we found that the equilibrium point G1 is un-
conditionally stable while the point G2 is unstable. For iegreater than 1,
the Josephson junction circuit coupled to the electromechanical block
provides asymmetric oscillations shown in Figure 2.

From the given values in Table 1; one can find that the natural
frequency fb of the nano-beam and the natural frequency fj of the Jo-
sephson junction can be approximated as follows:

Table 1
: Values of the physical parameters.

Parameters Symbols Values
Junction capacitance

Junction resistance
Critical current of the junction
Young's modulus of the nano-beam
Density of the nano-beam
Area of the nano-beam
Second moment of area
Length of the nano-beam
Damping coefficient
Magnetic flux intensity
Resistance of the winding
Inductance of the winding
Length of the wire in the magnetic field
Coupling inductance (in the array in section 3)

C
R
Ic
E
ρ
S
I
L1

λ
B
r
L
ℓ
Lc

3.0μF
5μΩ
50mA
200Gpa
8050kg/m3

m0.224·10 18 2

m14·10 46 4

3.5nm
Ns m2.5·10 /7

0.5T
0.2μΩ

H7.0·10 15

2μm
H6.0·10 15
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b
c
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These given values are of the order of MHz. The characteristic fre-
quency of the Josepshon junction circuit used here is compatible with
those of Nb-Au-Nb Josephson junctions [37,38]. Although they are not
very close to induce resonant oscillations, it is observed that the oscil-
lations amplitudes have values of the order of nanometer. The coupling
between the two subsystems leads to oscillations with the frequency

=f MHz3.8 (see the curves of Figure 2).
At this level, it is interesting to analyse the effect of the input cur-

rent on the amplitude of the oscillations. Figure 3 shows that the am-
plitude of the mechanical vibration is an increasing function of ie. One
can notice from the graph that for ie≺1, the amplitude is equal to 0 (no
oscillation) while it increases with ie for ie greater than 1. It is inter-
esting to note that at just after ie=1, the amplitude jumps to a finite

value and then increases steadily with ie.

3. Array of nanoelectromechanical beams driven by a discrete
array of Josephson Junctions

3.1. Description of the system and equations

As indicated in the introduction, the other goal of this manuscript is
to analyze the behavior of a system consisting of nano-beams fixed at
each node of a discrete line of coupled Josephson junctions. The cou-
pling between two neighborhood elements is made by an inductance Lc

as illustrated in Figure 4.
Let ϕn, Vn, ibn and Un be respectively the phase, the junction voltage,

the current through the winding and the deflection of the nth nano-
beam.

Using the Kirchhoff's laws, the circuit equations for the line are
given by:

+ + + = + +

=

+ + =

+I i I

L ri Bl

s EI Bli

sin ( 2 ),

,

.

C
e

d
d eR

d
d c n bn e eL n n n

di
d e

d
d bn

U

U U U
Z bn

2 2 2 1 1

2

n n
c

bn n n

n n n
n

2
2

2
2

4
4 (29)

Using the dimensionless parameters and the Galerkin transforma-
tions presented in the above section, it is found that the line circuit is
described by the following system of coupled ordinary differential
equations:

+ + + = + +
+ + =
+ + =

+x i k
x µx y
y y y x

¨ sin ( 2 ),
0,

¨ 0.

c n n n n e n n n

n n n n

n n n n

1 1

2 (30)

This is the set of differential equations describing the propagation of
electrical signal and the motion of Nnano-beams. In this set of equa-
tions, the coupling parameter k between neighboring nodes is defined
as =k

eL I2 c c
. The other parameters are defined as in equation (16).

3.2. Propagation of the signal and motion of the nanoelectromechanical
beams

One of the most interesting effects of the discrete Josephson

Figure 2. Different waveforms of the system for =i 1.5e a) Junction voltage v, b) current through the winding x and c) displacement of the nanoelectromechanical
beam y.

Figure 3. Amplitude curve of nano electromechanical beam as function of bias
current ie
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junctions line is its capacity to propagate topological solitons called
fluxons (antifluxons) or kinks (antikinks). These topological solitons
propagate steadily in the line without changing their shape. The
mathematical form of the antikink (or antifluxon) is given by the fol-
lowing expression

=n t n t n( , ) 4 arctan exp
1

o
2 (31)

where is the velocity and n0 is the initial node where the center of the
antikink is located. With n0=100 and = 0.5, the antikink profile is
plotted in Figure 5.

In this section, the set of discrete differential equations (30) is
solved numerically using the fourth order Runge-Kutta algorithm with a
time step =h 5. 10t

3[39]. For the initial conditions, we insert the
mathematical form (31) in the discrete equation at site n0=100. Peri-
odic boundary conditions are used by setting

= = = + = = =n n N n n N( 0) ( ) 2 n and ( 0) ( )n na , Nis the total
number of cells and is equal to 300. Figure 6 displays the antikink
propagation in the discrete line as well as the behavior of the nano-
beams when the antikink propagates in the Josephson junction line.

Figures 6a), 6b) and 6c) show respectively the propagation of the
antikink, the current x through the winding and the displacement yof
the nanoelectromechanical beam as function of the number of cells.

As it appears in Figure 6, the antikink shape is preserved during the
propagation and each nano-beam exhibits a pulse-like behavior moving
from its rest state, then increases till a maximal value and then de-
creases to the rest state. This is interesting since it indicates the nano-
beam executes an actuation work and then returns back to its rest state.

If the antikink is periodically inserted in the line, the nano-beam
will periodically exhibits pulse-like behavior. The periodic insertion of

antikinks in the transmission lines is ensured by the periodic boundary
conditions which indicates that the kink periodically passes at one point
after propagating all over the discrete line (see section 3.3). We have
found that the amplitude and the frequency of the nano-beam dis-
placement increase with the intensity of the magnetic field as it appears
in Figures 7a), 7b) and 7c) plotted respectively for = 0.008, =0.0147
and =0.07.

3.3. Effect of the bias current on the nanoelectromechanical beams
dynamics

We have simulated the system for different values of ie (0.7, 0.8,
1.0). It appears that a given nano-beam periodically exhibits pulse-like
behavior as it can be seen in Figure 8 where one observes the dis-
placement of the nano-beam at the cell number =n 130.

As ie increases, the vibration period decreases moving from almost
3949.0 (for =i 0.7e ) to 1769.0 (for =i 0.8e ) and then 987.3 (for

=i 1.0e ). The decrease of the period can be understood by the fact the
antikink velocity increases proportionally with ie [40,41]. Because of
this increase of velocity and the boundary conditions, the antikink turns
round the line as quickly as ie increases. Consequently, each nano-beam
is periodically excited and then delivers periodic pulse-like behavior.

As one observes in Figure 8, the amplitude of the nano-beam pulse-
like behavior also increases with ie. Our numerical simulations have also
shown that the amplitude depends of the resistance r of the winding. This
fact is more detailed in Figure 9 where the amplitude of the mechanical
displacement is plotted versus ie and for different values of r.

4. Conclusion

The aim of this work was first to analyze the dynamical behavior of
a single nano-beam powered by a Josephson junction and second to
analyze an array of nano-beams coupled to an array of discrete coupled
Josephson junctions. It has been demonstrated that a nano-beam
powered by a Josephson junction can deliver periodic vibration when a
critical value of the DC bias current powering the junction is attained.
The amplitude of the beam vibration increases with the DC bias current.

In the case of an array of discrete Josephson junctions having a
nano-beam at each node, it has been seen that when the topological
soliton (antikink) propagates in the discrete line, each beam exhibits a
pulse-like behavior whose amplitude increases with the magnitude of
the magnetic field. Because of the periodic boundary conditions and the
fact that the antikink velocity is proportional to the DC bias current, one
observes that each nano-beam periodically executes pulse-like dis-
placement shape. The period of vibration of the beam decreases when
the DC bias current increases while the amplitude of the pulse-like
nano-beam displacement increases with the DC bias current. This
constitutes an interesting dynamical electromechanical system which

Figure 4. Schematic representation of the array of Josephson junctions coupled to nanoelectromechanical beams.

Figure 5. The antikink profile centered at n0=100.
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can be used in nano-actuation processes.
However, the work was undertaken using a particular Josephson

junction showing characteristic frequency of the range of MHz. But, it is
known that most of the Josephson junctions present characteristic fre-
quency of the order of GHz or THz. The coupling to mechanical
structure whose natural frequency is of the order of MHz will not give
rise to appreciable vibrations. Moreover, as it is known, super-
conducting materials exist at very low temperature. At this range of
temperature, there might be a question on the mechanical properties of
the mechanical beam. Consequently, a challenge will be to see how the
device presented in Figure 1 behaves at very low temperature.
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In this work, an array of electromechanical systems driven by an electrical line of Fitzhugh-Nagumo neu- 
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haviors such as single and multiple pulse generation, transient and permanent chaos, and antimonotonic- 
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the action potential flows in the discrete array, each electromechanical system executes a pulse-like mo- 

tion coming at each resting state as the electrical signal passes the node. The electromechanical system 

analyzed can be seen as a model for multi-periodic actuation processes or a leg model in a millipede sys- 

tem. Furthermore, this line can also carry an envelope of action potential and can be useful for various 

kinds of information processing systems. 
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1. Introduction 

The study of wave propagation in systems of excitable biological 

cells is an important aspect of today’s cardio-physiology and neu- 

rophysiology [1] . One typical example is propagation failure, lead- 

ing to failure of these systems; this can be fatal in the case of the 

cardiac action potential. Biological neurons can produce a voltage 

in the forms of spikes due to their membranes which have voltage- 

dependent ionic channels [2] . It is shown that biological neurons 

can function either excitatory or inhibitory depending on the ex- 

citability threshold of the ion channels [3,4] . 

Inspired by the biological process, scientists have made efforts 

in neuroscience to understand through numerical simulations the 

electrical behavior of a real biological neuron. Among these mod- 

els used, Hodgkin-Huxley [5,6] , Hindmarsh Rose [7,8] , Morris Lecar 

[9,10] , and Fitzhugh Nagumo models [11,12] , to name a few, ex- 

hibit an interesting dynamics investigation neurons. Being most 

used because of its simplicity and small equivalent circuit [13] , 

Fitzhugh-Nagumo model is a relaxation oscillator [14] . It is also 

well known as a generalization of the Van der pol equations that 

are used to model the behavior of excitable systems [15] . The ex- 

citability represents the fact that from its resting state, if an ex- 

∗ Corresponding author. 

E-mail address: na1bo@yahoo.fr (B. Nana). 

citable cell receives a stimulus (small perturbation) at a brief time 

interval, the membrane potential of the cell reaches a threshold 

value and generates an action potential before returning to its rest- 

ing state [16–18] . Generally, in their dynamical behavior, Fitzhugh- 

Nagumo displays a solution that converges to a fixed point or a 

limit cycle [19,20] . 

The investigation of the behavior of the limit cycle has become 

an ongoing research topic [21–24] . For the actuation tasks, we will 

analyze a system where the Fitzhugh Nagumo neuron is used to 

control a mechanical arm. This is similar to the coupling between 

a biological neuron and a muscle. In fact, when the brain decides 

to put in motion a part of the body and gives the command to the 

motor neurons to execute this movement, it is the muscles at the 

end of the chain of command that ultimately contract to move the 

body part concerned. The axons of these motor neurons, emerging 

from the spinal cord, form a nerve that extends to the muscles to 

transmit this command. Where the tip of each axon comes into 

proximity with a muscle fibre, it forms a synapse with that fibre. 

This device can be used to explain the mechanical movement 

of the arm or the leg for example. Similarly, the legs of millipedes 

or centipedes can be viewed as an array of Fitzhugh-Nagumo neu- 

rons coupled each to an electromechanical system. It can also be 

used for the legs of artificial millipedes where they move their legs 

in a wave-like motion from the front to the back. For this reason, 

the excitable Fitzhugh-Nagumo neuron has been widely studied as 

an electrical nonlinear transmission line for the propagation wave 

https://doi.org/10.1016/j.chaos.2021.111484 
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phenomena [25–28] in which the nerve impulse during its prop- 

agation evolves from cell to cell by keeping its shape. It is men- 

tioned that the electrical Fitzhugh-Nagumo line can be viewed as 

a discrete medium [29–31] or as a continuous medium [32–34] . In 

our work, we will consider the discrete medium. 

Inspired by the topics of ref [35,36] , the main objective of 

this work is to analyze the dynamical behavior of an array 

of electromechanical systems powered by an array of Fitzhugh- 

Nagumo neurons. The outline of the paper is organized as fol- 

lows. Section 2 is devoted to the system constituted of one sin- 

gle Fitzhugh-Nagumo neuron coupled magnetically to a mechani- 

cal arm. The corresponding equations and their dynamical behavior 

are presented. Section 3 is concerned with the array of electrome- 

chanical arms powered by an array of discrete excitable Fitzhugh 

Nagumo neurons. We analyzed the effect of the coupling strength 

on the mechanical arms displacement. The paper ends with the 

conclusions presented in Section 4 . 

2. Electromechanical arm powered by a Fitzhugh-Nagumo 

neuron 

2.1. Description and mathematical model 

We consider an equivalent circuit of Fitzhugh-Nagumo neuron 

coupled magnetically to a mechanical arm, as shown in Fig. 1 . 

In the equivalent circuit of Fig. 1 a), I s represents the exter- 

nal electrical stimulation current source, C is the membrane ca- 

pacitance, G is the membrane conductance, L and r represent re- 

spectively the inductance and resistance of the membrane. In this 

model, the conductance G is the only nonlinear element, and its 

voltage-current characteristics is given in Eq. (1) : 

i G = αv ( v − μ1 ) ( v − μ2 ) , (1) 

where i G and v are the current through and voltage across the 

conductance respectively. μ1 and μ2 are respectively the threshold 

voltage and the diffusion potential of the neuron. Finally, α is a fit- 

ting parameter and is a function of the potentials of different ions 

present in the neuron. The Fitzhugh-Nagumo model of nonlinear 

conductance shown in Eq. (1) can be simulated by a different non- 

linear electric circuit, using a tunnel diode or a nonlinear resistor 

with a smooth cubic v − i characteristic. 

The block MS represents our mechanical arm and its internal 

structure is shown in Fig. 1 b). The coil is positioned in the air gap 

of the magnet and a beam is rigidly attached to the coil. Besides, 

one spring is added to avoid the movement of the mobile beam 

away from the balanced position established when the system was 

assembled. The interaction of the current through the windings 

and the magnetic field produces mechanical vibrations of the mo- 

bile beam. 

Two different strategies are responsible for electrical communi- 

cation between neurons. One is the consequence of low resistance 

intercellular pathways, called “gap junctions”. The second occurs 

in the absence of cell-to-cell contacts and is a consequence of the 

extracellular electrical fields generated by the electrical activity of 

neurons. In the same manner, the capacitance C m 

is used to realize 

the coupling between the neuron and the electromechanical sys- 

tem. 

The application of the Kirchhoff laws to the circuit shown in 

Fig. 1 a) leads to the following differential equations: 

C 
dv 
dt 

+ i + i m 

+ αv ( v − μ1 ) ( v − μ2 ) = I s , (2) 

L 
di 

dt 
+ ri = v , (3) 

L m 

di m 

dt 
+ r m 

i m 

+ u − v = −B� 
dx 

dt 
, (4) 

C m 

du 

dt 
= i m 

. (5) 

L m 

and r m 

are respectively the inductance and resistance of the 

windings, v represents the membrane potential of the cell, namely 

the voltage across the membrane capacitance C, i is the current 

through the inductance L , and represents biologically the recovery 

variable related to the inactivation of the sodium channels. i m 

is 

the current flowing through the winding, u is the voltage across 

the capacitance C m 

and represents the electrical synaptic potential 

or coupling potential, and t is the time. 

Since there is no contact between the magnet and the mov- 

ing windings, the friction effects are neglected here. The mechan- 

ical subsystem used in this work has been modeled mathemati- 

cally by many authors [37–39] and the experimental verification 

of the theoretical results has been made using a motion detector 

and an accelerometer [40,41] . During their experimental works, Ki- 

tio et al. found excellent agreement between the experimental and 

theoretical results when the friction forces are not taken into ac- 

count [40,41] . The equation of motion of the mobile beam of mass 

m is given by: 

m 

d 2 x 

dt 2 
+ β0 

dx 

dt 
+ Kx = B�i m 

, (6) 

where β0 is the damping coefficient, and K is the spring constant. � 

is the total length of the conductor used in the winding. The term 

−B� dx 
dt 

represents the induced voltage in the winding, while the 

Fig. 1. a) Equivalent circuit of Fitzhugh-Nagumo neuron coupled to an electromechanical arm. b) Internal structure of the electromechanical subsystem. 
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term B�i m 

represents the Laplace force acting on the conducting 

wire in the magnetic field. Equation (6) is valid for displacements 

of small amplitudes in the mechanical subsystem. In case of high 

magnitude displacements, it is necessary to take into account the 

nonlinear response of the spring [37,38] . 

Introducing the news variables and the following dimensionless 

parameters: 

i = w, i m 

= z, τ = ω 0 t, a = 

1 

Cω 0 
, b = 

1 

Lω 0 
, d = 

1 

L m 

ω 0 
, γ = B�ω 0 , 

β = 

β0 

mω 0 
, ε = 

K 

mω 

2 
0 

, σ = 

B� 

mω 

2 
0 

, and q = 

1 

C m 

ω 0 
, (7) 

we obtain that the dimensionless equations governing the dynam- 

ics of the whole system are thus: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ v = a ( I s − w − z − αv ( v − μ1 ) ( v − μ2 ) ) , 
˙ w = b ( v − rw ) , 

ẍ = −β ˙ x − εx + σ z, 
˙ z = d ( v − u − r m 

z − γ ˙ x ) , 
˙ u = qz. 

(8) 

The action of the electrical subsystem on the electromechanical 

part is visualized through the parameter σ while the effect of 

the electromechanical system in the electrical block is measured 

through the product dγ . If σ � dγ , the electrical subsystem is 

viewed as a voltage source by the mechanical part. In contrast, if 

σ � dγ , the power provided by the electrical part will be less than 

the power required by the mechanical part. The moderated values 

of σ and dγ are then required for the subsystems to influence each 

other. 

2.2. Stability analysis 

Assume E ( v 0 , w 0 , z 0 , u 0 , y 0 , x 0 ) is the equilibrium point of 

the system. From the system of Eqs. (8) , we have w 0 = 

v 0 
r , z 0 = 0 , 

u 0 = v 0 , y 0 = 0 , and x 0 = 0 while v 0 is the solution of the following 

third-order algebraic equation: 

v 3 0 − ( μ1 + μ2 ) v 2 0 + 

(
μ1 μ2 + 

1 

αr 

)
v 0 − I s 

α
= 0 . (9) 

To derive solutions of Eq. (9) , let us consider the following pa- 

rameters δ and ν and determinant �: 

δ = ( μ1 + μ2 ) 
2 − 3 

(
μ1 μ2 + 

1 

αr 

)
, 

σ = ( μ1 + μ2 ) 

(
9 

2 αr 
− μ2 

1 − μ2 
2 + 

5 

2 

μ1 μ2 

)
− 27 I s 

2 α

and � = σ 2 − δ3 . (10) 

As odd degree polynomial, Eq. (9) can have one or three real 

solutions according to the values of the above parameters, and the 

sign of �. 

If � ≥ 0 , Eq. (9) has one real solution and the system has a 

single equilibrium point. 

v 0 = 

1 

3 

(
μ1 + μ2 −

3 
√ √ 

� + σ + 

3 
√ √ 

� − σ
)
. (11) 

If � < 0 , Eq. (9) has three real solutions, namely: 

v 0 n = 

1 

3 

(
μ1 + μ2 + 2 

√ 

δ cos 

(
θ + 2 nπ

3 

))

with n = −1 , 0 , 1 and θ = arctan 

(√ −�

σ

)
. (12) 

In this case, the system has three equilibrium points. 

The values of the parameters used in this work are the follow- 

ing: β0 = 0 . 05 Ns/m, m = 20 mg, K = 10 N/m, B = 0 . 8 T, C = 60 μF, 

L = 240 mH, μ1 = 0 . 14 V, μ2 = 1 . 0 V, r = 2 . 5 � and C m 

= 4700 μF. 

Fig. 2. Equilibrium potential v 0 as a function of the stimulation current I s . The 

curve with dashed line is obtained for α = 1 , while the curve with full line is ob- 

tained for α = 2 . 

I s and � are used as control parameters with 0 � I s � 200 mA and 

0 � � � 10 m. With the variation of � , the winding resistance (in 

�) and the winding inductance (in mH) are given as: r m 

= 1 . 5 � 

and L m 

= 1 . 25 � 2 . 

Using the parameters given above, the evolution of the equilib- 

rium potential v 0 is plotted as a function of the stimulation current 

I s in Fig. 2 , and for two different values of the parameter α. 

For the graph of Fig. 2 , we have considered � = 1 m. The curve 

with a dashed line and the curve with a full line are obtained re- 

spectively for α = 1 and α = 2 . As predicted analytically, the sys- 

tem can present one equilibrium potential or three equilibrium 

potentials depending on the values of the parameters. As noticed 

from the graph, for α = 2 , the case of three equilibrium points ar- 

rives here for values of the stimulation currents between 17.01 mA 

and 60.815 mA. 

The unstable (or stable) branch connecting the two stable (or 

unstable) states of the hysteresis cycle extends from I s − to I s + given 

respectively as 

I s ∓ = αv ∓
(
v 2 ∓ − ( μ1 + μ2 ) v ∓ + μ1 μ2 + 

1 
αr 

)
where v ∓ = 

μ1 + μ2 

3 
∓

√ (
μ1 + μ2 

3 

)2 − μ1 μ2 

3 
− 1 

3 αr 
. 

(13) 

From Eq. (13) , we can conclude that the system will present three 

equilibrium points if the parameter α satisfies the following con- 

dition: 

α � αmin = 

3 

r 
(
μ2 

1 
+ μ2 

2 
− μ1 μ2 

) . (14) 

For α � αmin we have a mono system while for α � αmin the curve 

of Fig. 2 presents a bistable system. According to Tlidi et al., there 

must be a critical alpha of nascent bistability [42] . 

The stability of the system is determined by the eigenvalues of 

the Jacobian matrix at equilibrium points E given by : 

J = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−aχα −a 0 0 −a 0 

b −br 0 0 0 0 

0 0 0 1 0 0 

0 0 −ε −β σ 0 

d 0 0 −dγ −dr m 

−d 
0 0 0 0 q 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (15) 

with χ = 3 v 2 
0 

− 2 ( μ1 + μ2 ) v 0 + μ1 μ2 . 

Its eigenvalues are solutions of the characteristic polynomial in 

λ of the linearization at E, namely: 

λ6 + a 5 λ
5 + a 4 λ

4 + a 3 λ
3 + a 2 λ

2 + a 1 λ + a 0 = 0 . (16) 

3 
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Fig. 3. Stability domain in the plane (I s , � ) . In the Black area, the system is stable around the single equilibrium point while in the white area, the system is unstable. In the 

blue area, the system has one stable equilibrium point amount three. a) α = 1 and b) α = 2 . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Here the coefficients a n , with 0 ≤ n ≤ 5 are given respectively 

as: 

a 5 = aαχ + β + dr m 

+ br, 

a 4 = ( aαχ + β) ( br + dr m 

) + brdr m 

+ dγ σ + ε + dq + aαχβ + a ( b + d ) , 

a 3 = ( ε + aαχβ) ( br + dr m 

) + aβ( b + d ) + abd ( r + r m 

) 

+ brdr m 

( β + aαχ) + brdγ σ + aαχ( ε + dγ σ ) 

+ dq ( β + br + aαχ) , 

a 2 = brdr m 

( ε + aαχβ) + abdβ( r + r m 

) + abdγ σ + aαχε ( br + dr m 

) 

+ braαχdγ σ + aε ( b + d ) + εdq + bdrq ( β + aαχ) + adq ( b + αχβ) , 

a 1 = abd ε ( r + r m 

+ αaχ rr m 

) + d qb ( εr + aβ) + aαχd q ( ε + brβ) , 

a 0 = abεdq ( 1 + αrχ) . 

We have used the Routh-Hurwitz criterion [36] to analyze the 

stability of the equilibrium points. Using the parameters given 

above, the stability boundary of the system is plotted in Fig. 3 a) 

and Fig. 3 b) for α = 1 and α = 2 respectively. 

In Fig. 3 a), we have two colored regions, while in Fig. 3 b) we 

have three colored regions. If a coupled of values I s and � is chosen 

in the black regions, the system is stable around the single equi- 

librium point. However, if a coupled of values I s and � is chosen 

in the white regions, the system is unstable. In the blue region of 

Fig. 3 b), the system has three equilibrium points, and one of these 

is stable. 

2.3. Limit cycle prediction 

Although precise knowledge of the waveform of a limit cycle is 

usually not mandatory, knowledge of the existence of a limit cy- 

cle, and its approximate amplitude and frequency, is a prerequi- 

site to good system design. The limit cycle phenomenon deserves 

special attention since it is apt to occur in any nonlinear physical 

system. A limit cycle is desirable here since it provides a real sit- 

uation where all the variables are not constant. We will apply the 

linear theory to the quasi-linearized system, and points of neutral 

stability are sought. Any undamped oscillations so arrived at are 

interpreted as limit cycles in the original nonlinear system. 

If we consider the solution of Eq. (16) to be of the form of λ = 

j ω, where j 2 = −1 and ω is the natural radian frequency of the 

system, then the following radian frequencies and the condition for 

self-starting are obtained: 

ω 1 = 

√ 

a 3 −
√ 

a 2 
3 

− 4 a 1 a 5 

2 a 5 
and ω 2 = 

√ 

a 3 + 

√ 

a 2 
3 

− 4 a 1 a 5 

2 a 5 
. 

(17) 

a 2 3 − 4 a 1 a 5 � 0 and 

(
a 1 a 5 − a 2 3 − a 2 a 

2 
5 + a 3 a 4 a 5 

)
ω 

2 
n 

+ 

(
a 0 a 

2 
5 + a 1 a 3 − a 1 a 4 a 5 

)
= 0 , n = 1 , 2 . (18) 

During our investigations, we have found that for large values 

of the parameter � , the system oscillates with the radian frequency 

ω 1 while it oscillates with the radian frequency ω 2 for small values 

of � . With the stimulation current I s varies from 0 mA up to 200 

mA, we have found the corresponding values of � that satisfy the 

set of Eqs. (18) and our result is presented in the graph of Fig. 4 a). 

The corresponding value of the frequency obtained from Eq. (17) is 

plotted in Fig. 4 b). 

The curves of Fig. 4 are obtained for α = 1 and the values of 

� < 10 m have been considered. We can notice from the graph that, 

as the stimulation current increases, the value of � that satisfies 

the oscillation condition given by Eq. (18) can be found if 31.83 

mA ≤ I s ≤ 159 . 1 mA. 

2.4. Oscillation boundaries 

Using the Routh-Hurwitz coefficients, we have determined the 

oscillation boundaries of the system and our results are presented 

in Fig. 3 a). If the values of I s and � are chosen in the black ar- 

eas of Fig. 3 a), the system will converge towards the equilibrium 

point. Otherwise, the system will fall in the oscillation. For exam- 

ple, with � = 1 m we find that the system will oscillate for 33.7 

mA ≤ I s ≤ 154 . 0 mA. To verify this result, we have consider the 

following three values of I s : I s = 30 mA, I s = 90 mA and I s = 160 

mA. The corresponding time series of the membrane potential and 

the mechanical displacement are plotted respectively in Fig. 5 and 

Fig. 6 . 

As shown on the graphs of Fig. 5 and Fig. 6 , when the stimula- 

tion current is less than 33.7 mA or greater than 154.0 mA, the sys- 

tem converges toward the single stable equilibrium point. While if 

the stimulation current is between 33.7 mA and 154.0 mA, the sys- 

tem provides oscillating signals. The frequency of the signal plotted 
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Fig. 4. a) The oscillation condition satisfied by the parameter � as a function of I s , b) the natural frequency of the system as a function of I s . 

Fig. 5. Different time series of the membrane potential v for different values of I s . a) I s = 30 mA, b) I s = 90 mA and c) I s = 160 mA. 

Fig. 6. Different time series of the mechanical displacement x for different values of I s . a) I s = 30 mA, b) I s = 90 mA and c) I s = 160 mA. 

in the graph of Figs. 5 b) and 6 b) is 3.704 Hz. The obtained numer- 

ical results are in good agreement with our analytical predictions. 

2.5. Effect of some parameters 

It is interesting at this level to see how some parameters 

affect the dynamics of the system, specially the amplitude and fre- 

quency of the mechanical displacement. This element can be im- 

portant to fix the parameters of the system. We will first analyze 

the effect of the length � of the conductor used in the winding. 

Therefore, we plot the amplitudes of the membrane potential and 

the mechanical displacement as a function of � and this for two 

different values of the spring constant as presented in Fig. 7 . 

For both Figs. 7 a) and 7 b), the full lines and the dashed lines 

are plotted respectively for K = 10 N/m and K = 20 N/m. As re- 

vealed by the graphs, when the system oscillates, the amplitude of 

the membrane potential is closed to unity while the amplitude of 

the mechanical displacement is a decreasing function of � . Other- 

wise, the system converges to the equilibrium point. The mechan- 

ical displacement reaches its maximum value when � 	 2 m. As 

mentioned in the previous section and clearly confirmed by these 

graphs, the system presents large oscillation regions for small val- 

ues of the spring constants. This is because electromechanical sys- 

tems generally oscillate at low frequencies, which means small val- 

ues of the spring constants. We can also notice from the graphs 

that the equilibrium points are not a function of the spring con- 

5 
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Fig. 7. a) Amplitude of the membrane potential V m as function of � , b) Amplitude of the mechanical displacement X m as function of � . Full line ( K = 10 N/m) and dashed 

line ( K = 20 N/m). 

Fig. 8. a) Amplitude of the membrane potential V m as a function of I s , b) Amplitude of the mechanical displacement X m as a function of I s . Full line ( � = 1 m) and dashed 

line ( � = 2 m). 

stant K and the length � of the conductor used in the winding, and 

this has been observed during our analytical investigations pre- 

sented previously. Finally, the graphs show that the amplitude of 

the mechanical displacement and the oscillation domain are de- 

creasing functions of the spring constant. 

Furthermore, we analyze the dynamical behavior of the system 

using the stimulation current I s as the control parameter. The am- 

plitude responses of electrical and mechanical subsystems are re- 

spectively shown in Fig. 8 a) and Fig. 8 b) for two values of � . 

For both Figs. 8 a) and 8 b), the curves with the full line are plot- 

ted for � = 1 m, while the curves with dashed lines are plotted for 

� = 2 m. Three regions can be identified in these figures. Firstly, 

for the stimulation current less than approximatively 30 mA (de- 

pending on the length of the conducting wire), the action poten- 

tial is not produced, hence no oscillation of the mechanical sys- 

tem. Secondly, when 30 mA ≤ I s ≤ 162 mA, an action potential is 

generated and we have oscillation of the mechanical system. In the 

third region, the mechanical system is at equilibrium even if an ac- 

tion potential has been generated in the electrical system. We can 

notice from the graphs that when the system falls in the oscilla- 

tion, the amplitude of the membrane potential and the amplitude 

of the mechanical displacement are not affected by the input cur- 

rent I s . The figures also show that the amplitudes remain constant 

(no oscillation) as the stimulation current I s increases until a criti- 

cal value from where both amplitudes increase abruptly. 

2.6. Chaotic behavior 

The characteristic dynamical behaviors are finally investigated 

by varying the type of the input current source. We have done 

many simulations, but a part of transient chaos [43,44] , permanent 

chaotic behavior has not been found in the autonomous system. 

Hence, the constant current source is replaced here by a sinusoidal 

current source of amplitude I m 

and frequency f defined as 

i s = I s + I m 

sin ( ωt ) where ω = 

2 π f 

ω 0 

, (19) 

where I s represents the DC component and ω is the normalized 

radian frequency of the external source. We will study the dynam- 

ics of the system keeping constant the following parameters: � = 4 

m, L = 7 . 0 mH and f = 780 . 72 Hz. For I s equals successively 3 mA, 

−3 . 4 mA, −5 mA, −7 mA, −12 mA and −15 mA, the bifurcation 

diagrams v versus I m 

are shown in Fig. 9 . 

In the bifurcation diagrams of Figs. 9 a), 9 b), 9 c) and 9 d), chaotic 

states are observed. The system follows a period-doubling route 
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Fig. 9. Different Bifurcation diagrams v versus I m of the system for different values of the DC component: a) I s = 3 mA, b) I s = −3 . 4 mA, c) I s = −5 mA, d) I s = −7 mA, f) 

I s = −12 mA and e) I s = −15 mA. 

Fig. 10. Phase portraits when I s = 3 . 0 mA, and I m = 102 . 0 mA. a) w versus v and b) ˙ x versus x . 

to chaos and also undergoes a reverse period-doubling sequence. 

These forward and reverse period doubling sequences, as a param- 

eter of the system increases in a monotone way, are called anti- 

monotonicity. While in the bifurcation diagrams of Figs. 9 e) and 

9 f), only periodic states are observed. For I s = −12 mA, the system 

undergoes the sequence: p 1 → p 2 → p 4 → p 2 → p 1 . For I s = −15 

mA, the system undergoes the sequence: p 1 → p 2 → p 1 . These bi- 

furcation diagrams show the period bubble and the primer bubble 

respectively. 

The study of the system (8) with the external current source 

given by Eq. (19) reveals the existence of chaotic behavior, follow- 

ing the period-doubling route to chaos. Similar results can be ob- 

tained using a current source that provides a square signal with 

DC component I s and frequency f . For illustration, phase portraits 

of the system in the chaotic state are shown in Figs. 10 a) and 10 b). 

3. Array of electromechanical arms powered by an array of 

fitzhugh nagumo neurons 

3.1. Description of the model and equations 

As mentioned in the introduction, the other goal of this work 

is to analyze the behavior of a system consisting of an electrome- 

chanical system fixed at each node of a discrete line of coupled 

Fitzhugh-Nagumo type oscillator. The coupling between two neigh- 

borhood elements is made by a resistance R c as illustrated in 

Fig. 11 . 

As mentioned previously, the block MS represents the elec- 

tromechanical system. R c is an intercellular resistance that repre- 

sents the coupling resistance between the cells. n = 1 , 2 , · · · , N, 

where N = 60 0 0 is the total number of cells. Let v n and u n be re- 
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Fig. 11. Schematic representation of the array of Fitzhugh Nagumo coupled to electromechanical arms. 

spectively the voltages drop across the capacitances C and C m 

in 

the n 

th cell. Still in the n 

th cell, i n and i m n are respectively the cur- 

rents through the inductances L and L m 

and x n is the mechanical 

displacement of the mobile beam. The application of the Kirch- 

hoff’s and Newton laws to the complete system leads to the fol- 

lowing differential equations: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C dv n 
dt 

+ i n + i m n + αv n ( v n − μ1 ) ( v n − μ2 ) − 1 
R c 

( v n +1 − 2 v n + v n −1 ) = I s n , 

L di n 
dt 

+ ri n = v n , 

L m 
di m n 

dt 
+ r m i m n + u n − v n + B� 

dx n 
dt 

= 0 , 

m 

d 2 x n 
dt 2 

+ λ dx n 
dt 

+ Kx n = B�i m n , 

C m 
du n 
dt 

= i m n . 

(20) 

We will proceed as we have done in the previous section. Then, 

considering the dimensionless variables introduced in the previous 

section: v n , w n , z n , u n and x n , the overall system is described by 

the following nonlinear ordinary differential equations: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ v n = a 
(
I s n − αv n ( v n − μ1 ) ( v n − μ2 ) − w n − z n + 

1 
R c 

( v n +1 − 2 v n + v n −1 ) 
)
, 

˙ w n = b ( v n − rw n ) , 
˙ z n = d ( v n − u n − r m 

z n − γ ˙ x n ) , 
ẍ n = −β ˙ x n − εx n + σ z n , 
˙ u n = qz n . 

with 1 � n � N (21) 

The parameters used in the system of Eqs. (21) have been de- 

fined in the above section and we will consider � = 4 m and L = 

240 mH. 

Let us first recall some interesting results when the mechanical 

part is not connected and the membrane inductance is neglected 

( L = 0 H) in the equivalent circuit. The coupling term in the first 

equation of system (21) can be approximated with partial deriva- 

tives with respect to distance, x ′ , assuming that the spacing be- 

tween two adjacent units is small. If we assume that the voltage v 
varies slowly from one unit section to the other, the discrete spa- 

tial coordinate n can be replaced by a continuous one x ′ , the net- 

work is then described by the following diffusion equation: 

1 

R c 

∂ 2 v 
∂x ′ 2 + 

1 

a 

∂v 
∂t ′ −

v 
r 

− αv ( v − μ1 ) ( v − μ2 ) = 0 . (22) 

We start the analysis by looking for wave solutions of 

Eq. (22) in the form of v 
(
t ′ , x ′ 

)
= V ( ξ ) where ξ = x ′ − V 0 t 

′ is a trav- 

eling wave variable. This assumption of a traveling wave converts 

the partial differential Eq. (22) into the second order ordinary dif- 

ferential equation 

1 

R c 

d 2 V 

dξ 2 
− V 0 

a 

dV 

dξ
− V 

r 
− αV ( V − μ1 ) ( V − μ2 ) = 0 . (23) 

In the above ordinary differential equation, the traveling wave 

speed V 0 is an unknown parameter that must be obtained by the 

analysis. The corresponding traveling wave solution and the travel- 

ing wave speed are given by 

V ( ξ ) = 

μ1 + μ2 + A 

4 

+ 

√ 

2 B 

4 

tanh 

(√ 

αR c B 

4 

ξ

)

and V 0 = 

a 

4 

√ 

2 α

R c 
( μ1 + μ2 − 3 A ) , (24) 

where the newly introduced parameters A and B are worth 

A = −
√ 

( μ1 + μ2 ) 
2 − 4 

αr 
and B = μ2 

1 + μ2 
2 + ( μ1 + μ2 ) A − 2 

αr 
. 

(25) 

Next, let us consider the influence of the recovery term in the 

system (21) , where the inductance L and the mechanical part are 

included. There are no analytical expressions so far, and the re- 

sults will be achieved in the following sections only through the 

computer simulations. Nevertheless, the expressions obtained in 

Eqs. (24) and (25) can provide some ideas. Looking at an under- 

standing of the underlying physical processes and possible techni- 

cal applications, we additionally study the influence of circuit pa- 

rameters on the signal waveform. 

3.2. Propagation of the signal and motion of the electromechanical 

arms 

The set of discrete differential equations describes the prop- 

agation of electrical signal and the motion of N mechanical arms. 

To determine the propagation conditions, numerical solution is ob- 

tained using a fourth order Runge-Kutta algorithm with a time 

step �t = 10 −3 . The initial conditions are chosen as v n ( 0 ) = 0 , 

w n ( 0 ) = 0 , x n ( 0 ) = 0 , ˙ x n ( 0 ) = 0 , z n ( 0 ) = 0 and u n ( 0 ) = 0 where 

n = 1 , 2 , · · · , N. The boundary conditions are considered for the 

first and last nodes as v 0 = v 1 , v N+1 = v N . The excitation is per- 

formed with a constant current source applied just to the first cell, 

that is I sn = 0 mA for n � = 1 . 

We will first fix the stimulation current I s 1 = 10 mA and analyze 

the effect of the coupling resistance R c . After multiple simulations, 

we have found that the action potential is created in the first cell 

and propagates through the other cells for 18 . 7 � � R c � 123 . 7 �. 

Fig. 12 displays the signals propagation in the discrete line and the 

8 



N.K. Mbeunga, B. Nana and P. Woafo Chaos, Solitons and Fractals 153 (2021) 111484 

Fig. 12. Time evolution of the system at different cells for I s 1 = 10 mA and R c = 20 �. a) Membrane potential v n , b) Displacement of the mechanical arm x n . The rang of the 

corresponding cell is indicated in each curve. 

Fig. 13. Time evolution of the system at different cells for I s 1 = 10 mA and R c = 80 �. a) Membrane potential v n , b) Displacement of the mechanical arm x n . The rang of the 

corresponding cell is indicated in each curve. 

behavior of the mobile beams when the action potential propa- 

gates in the line for R c = 20 �. 

Figs. 12 a) and 12 b) show respectively the propagation of the ac- 

tion potentials v n and the displacement x n of the mobile beams 

as a function of time for different cells such as n = 50 , n = 250 , 

n = 450 , n = 650 , n = 850 , n = 1050 . As shown in these Figures, 

the action potential shape is preserved during the propagation and 

each electromechanical subsystem exhibits a pulse-like behavior 

moving from its resting state, then increases to a maximal value 

and then decreases to the resting state. This observation is inter- 

esting since it indicates that the mobile beam executes an actua- 

tion work and then returns to its resting state. This profile is simi- 

lar to the use of legs of artificial millipedes. 

During our numerical investigations, we found that the travel- 

ing wave speed decreases as the coupling resistance increases. This 

fact is qualitatively in good agreement with the analytical expres- 

sion of V 0 given in Eq. (24) . For verification, the time evolution of 

the system at different cells is presented in Fig. 13 for R c = 80 �. 

The graphs in Figs. 12 and 13 are plotted for the same values 

of the parameters except that the first ones are plotted for R c = 

20 � and the second ones for R c = 80 �. We can notice that the 

traveling wave speed has decreased when the coupling resistance 

is increased from 20 � to 80 �. A part of that traveling wave speed, 

the curves of Figs. 12 and 13 have the same behavior. 

3.3. Effect of the stimulation current 

We continue our investigations by analyzing the behavior 

of the discrete line when the stimulation current is increased 

to I s 1 = 25 mA. We have then notice that, for certain values of 

the coupling resistance, an envelope of action potential propa- 

gates in the line. Our results plotted for R c = 100 � are shown in 

Fig. 14 . 

Fig. 14 a) and Fig. 14 b) show respectively the behavior of the 

nonlinear electrical line and the behavior of some electromechan- 

ical systems for different cells such as n = 50 , n = 250 , n = 450 , 

n = 650 , n = 850 , n = 1050 . A packet of three action potentials is 

provided by the first cell and propagates through the line. Each 

mechanical arm exhibits a packet of three pulse-like behavior be- 

fore returning to rest. 

3.4. Space-time evolution of mechanical arms 

Finally, we present respectively in Fig. 15 a) and 15 b) the spa- 

tiotemporal evolution of the mechanical arm and the spatiotem- 

poral variation between displacements of the arm of nearest- 

neighbor defined as shi f t (t ) = x i (t) − x i +1 (t) . 
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Fig. 14. Time evolution of the system at different cells for I s 1 = 25 mA and R c = 100 �. a) Membrane potential v n , b) Displacement of the mechanical arm x n . The rang of 

the corresponding cell is indicated in each curve. 

Fig. 15. a) Spatiotemporal evolution of the mechanical arm and b) spatiotemporal variation of dynamical shift. 

4. Conclusion 

We have firstly analyzed the dynamics of one single Fitzhugh- 

Nagumo neuron coupled to a mechanical arm. In this case, we have 

presented the oscillation boundaries where we have shown that 

for certain values of stimulation current, the system can converge 

towards the equilibrium point and for other values, the system can 

fall in oscillation or display a limit cycle behavior. The oscillation 

frequency and the oscillation conditions were determined. Forward 

period-doubling bifurcation sequences followed by reverse period- 

doubling sequences, as a parameter is varied in a monotone way, 

antimonotonicity is observed in the system. 

Secondly, the investigations of an array of electromechanical 

arms powered by an array of discrete excitable Fitzhugh-Nagumo 

have been done. When the first cell is excited, the nerve impulse 

propagates in the electrical line, and each mechanical arm dis- 

plays a pulse-like behavior. It was found that the train of three 

pulses can also propagate through the line according to the cou- 

pling strength. 
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