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ABSTRACT

Since the formulation of the Lotka-Volterra model, which is nowadays considered as the first and

the basic model for interactions between two species, with one species (predators) eating the other

species (preys), many others models have been proposed by several researchers. The Leslie-Gower’s

models are among those models obtained by modifying some assumptions of the basic Lotka-Volterra

predator-prey models. In the literature, some modified Leslie-Gower predator-prey models incorpo-

rating different functional responses, additional fixed food, harvesting of species and optimal har-

vesting, discrete time delay(s), have been formulated and studied. In our thesis, two Leslie-Gower

predator-prey models are formulated and studied. The first model is formulated with the incorpo-

ration of a discrete time delay in the dynamic of the predators, the refuge for the preys species and

continuous threshold harvesting (with two thresholds) of the preys species. The aim of our work is

to study the combined effects of continuous harvesting and time delay on the dynamics of the mod-

ified newly formulated Leslie-Gower predator-prey model. We completely determine the existence

and local stability of equilibria of the system with or without the discrete time delay. Considering

the discrete time delay as the bifurcation parameter, we investigate the effect of delay on stability of

the coexisting equilibrium. It is observed that there are stability switches and a Hopf bifurcation oc-

curs when the delay crosses some critical values. By applying the normal form theory and the center

manifold theorem, the direction of the Hopf bifurcation and the stability of the bifurcated periodic

solution are determined. The optimal harvesting of the prey is also investigated. Theoretical analysis

are supported by some numerical simulations. The second model is also a modified Leslie-Gower

predator-prey model. It incorporates additional fixed food for predators, refuge for preys, harvesting

of preys through a continuous threshold policy, a discrete time delay in the dynamic of the predator

dynamic to take into account the maturity time. The aim is to study the impact of the prey refuge,

additional fixed food, harvesting and discrete time delay. A qualitative analysis of the model without

the discrete time-delay is carried out. The stability of equilibria of the non-delayed model is studied.

The impact of additional food, prey refuge and harvesting is studied using some constructed bifurca-

tion diagrams. Once more, considering the discrete time-delay as bifurcation parameter, we analyze

the stability of the coexistence equilibria and prove the system can undergo a Hopf bifurcation. The

direction of that Hopf bifurcation and the stability of the bifurcated periodic solution are determined

by applying the normal form theory and the center manifold theorem. Numerical simulations are

presented to illustrate our theoretical results.
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RESUMÉ

Depuis la formulation du modèle de Lotka-Volterra, considéré de nos jours comme le premier et

modèle de base traduisant les interactions entre deux espèces, dont l’une (prédateur) se nourrit de

l’autre (proie), plusieurs autres modèles ont été proposés par plusieurs chercheurs. Les modèles

proies-prédateurs de Leslie-Gower font partie de ces modèles. Dans la littérature, plusieurs modèles

modifiés de Leslie-Gower avec refuges pour les proies, différentes fonctions réponses, source additive

fixe de nourriture pour le prédateur, récolte de l’une ou des deux espèces, retard(s) discret(s) ont été

formulés et étudiés. Dans cette thèse, deux modèles proies-prédateurs de Leslie-Gower sont formulés

et étudiés. La formulation du premier modèle est faite avec les hypothèses suivantes : l’introduction

d’un retard discret dans la dynamique des prédateurs, la prise en compte d’un refuge pour les proies,

la récolte des proies à l’aide d’une fonction réponse définie avec deux seuils de récolte. Le but

de ce modèle est d’étudier l’impact du retard et de la récolte sur la dynamique du modèle de Leslie-

Gower. Une analyse de stabilité complète du modèle avec et sans retard est faite avec la détermination

des conditions d’existence des points d’équilibre et l’étude de leur stabilité locale. Considérant le

retard discret comme paramètre de bifurcation, nous étudions l’impact de ce retard sur la stabilité de

l’équilibre de coexistence. Nous observons la possibilité d’un changement de stabilité et l’existence

de valeurs critiques (de bifurcation) pour lesquelles il y’a apparition d’une bifurcation de Hopf. En

appliquant la théorie de la forme normale et le théorème de la variété centrale, nous déterminons la

direction de la bifurcation de Hopf et la stabilité de la solution périodique. Le problème de la récolte

optimale des proies est étudié à en appliquant la théorie du contrôle optimal dans le cas particulier

des modèles avec retard. Des simulations numériques sont faites pour une illustration graphique des

résultats obtenus par calculs. Le deuxième modèle quant à lui, est aussi formulé à partir du modèle

de Leslie-Gower. Il prend en compte les hypothèses suivantes : la présence d’une quantité fixe de

nourriture additive pour le prédateur, un retard discret prenant en compte le temps de maturité pour la

dynamique des prédateurs, la possibilité de refuge des proies, une récolte des proies par une fonction

récolte continue définie à l’aide d’un seul seuil. Une analyse qualitative du modèle sans retard est

faite. La stabilité des équilibres du modèle sans retard est étudiée. L’impact de la nourriture additive,

du refuge et de la récolte est étudié en exploitant des diagrammes de bifurcation construits à cet effet.

Comme dans le cas du premier modéle, l’étude de l’impact du retard discret est faite en considérant

le retard comme paramètre de bifurcation. La stabilté de l’équilibre de coexistence est étudiée. La

possibilité d’avoir une bifurcation de Hopf pour des valeurs critiques du retard est prouvée. Une fois

ix
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de plus, la direction de la bifurcation de Hopf et la stabilité de la solution périodique sont déterminées

en appliquant la théorie des formes normales et le théorème de la variété centrale. L’illustration des

résultats théoriques obtenus par calculs est faite par des simulations numériques.

Mots Clés : Proie-prédateur - Fonction réponse - Récolte - Bifurcation de Hopf - Contrôle optimal

avec retard - Analyse de stabilité - Variété centrale - Forme normale - Nourriture additive.
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GENERAL INTRODUCTION

In natural communities, we always have many different species. No species lives without interacting

with other species. Organisms interact when individuals enter into the live of others. Concerning

interactions among and between individuals of different species and according to M. Begon et al.

(2006)([14]), we distinguish five main categories which are competition, predation, parasitism, mutu-

alism and detritivory. In our thesis, we are interested in two of the five above categories of interactions,

competition and very particularly predation. According to M. Begon et al. (2006)([14]), competition

is an interaction in which one organism consumes a resource that would have been available to, and

might have been consumed by, another. One organism deprives another, and, as a consequence,

the other organism grows more slowly, leaves fewer progeny or is greater risk of death. The act

of deprivation can occur between two members of the same species and the competition is named

intraspecific competition or, between individuals of different species and the competition is called

interspecific competition. Predation between species can be defined as an interaction in which one

organism (predator) consumes another organism (prey) and in which the prey is alive when the preda-

tor first attacks it. This excludes detritivory, the consumption of dead organic matter. The following

situation are considered as predation. The situation in which one organism kills and eats another or-

ganism (such as a cat preying on a mouse). The situation in which the consumer takes only part of

its prey, which may then regrow to provide another bite another day (grazing). Herbivores (animals

eating plants) and carnivores (animals eating animals) can also been included.

In order to describe, to understand the dynamics of the interacting species, to provide useful predic-

tions and guidance so that better strategy for control and prevention can be established, mathematical

models have been and are still formulated. For the formulation of models concerning interactions

between predator and their preys, many assumptions are taken into account. The first of them is the

growth rate function which describes the growth of each single species. The first growth rate function

named the exponential or malthusian growth function has been introduced by Malthus (2012)([26]).

The second one named the logistic growth function, more realistic has been proposed by Verhulst

(2012)([26]). This logistic growth function has been generalized by Richards (1959)([145]). The

second assumption for the formulation of a model is the functional response of the predator, which is

defined as the number of preys consumed by the predator per unit of time. In the literature, there is two

different categories of functional responses. The first one is those depending only on the preys den-

sity called density-dependent functional responses (Holling type I, II, III, IV, Ivlev, . . .). The second

1
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one is those depending on predators and preys densities named ratio-dependent functional responses

(Beddington-DeAngelis, Crowley-Martin, . . .). The first predator-prey model is the Lotka-Volterra

model which has been proposed by Lotka (1925)([123]) and Volterra (1926)([176]). Models incor-

porating those different functional responses have been formulated and studied by several authors

([8], [97], [86], [85], [138], [148], [150], [186], [180], [193], [201]). The Lotka-Volterra model and

some other models of Lotka-Volterra type are formulated with the principle of conversion of biomass

for example. Leslie and Gower ([113], [114], [115]) have formulated predator-prey models without

taking into account the principle of the biomass conservation and, with logistic growth of predator in

which the carrying capacity is proportional to the preys density.

When it is possible and in order to avoid predation, the prey species often use refuge known as areas

where they are safe from their predators. In order to study effects of preys refuge on the dynamics of

interactions of predators and their preys, several authors ([87], [91], [98], [105], [124], [131], [140],

[171]) have formulated models by taking into account the hypothesis of prey refuge. Their studies

have revealed that preys refuge can have effects as reducing the prey mortality, stabilizing or destabi-

lizing the system and avoiding the extinction of the prey species.

Practical considerations such as harvesting for food and commercial purposes when it is possible for

the interacting species, have been incorporated in predator-preys models. Different harvesting func-

tions (constant, linear, non linear, continuous threshold policy) have been used for different predator-

prey models. But for the conservation of biodiversity, the balance between harvesting and conser-

vation remain a key problem in bioeconomic management of species in an ecological environment.

Optimal control theory is applied in predator-prey models incorporating harvesting, in order to ensure

the optimal harvest of the species being harvested while ensuring conservation of the non-harvested

one. ([23], [49], [56], [102], [111], [112], [132], [169], [173])

While taking into account the principle of causality, that is to say, the future state of the system is

determined by the current state only, while the past has no impact on the future with the present of the

current state, interactions between species are governed by ordinary differential equations. But due

to the fact that, for example, when a predator consumes a prey, the benefit is not immediate, it is nec-

essary and more realistic to take into account the maturation time by using a discrete or variable time

delay. Models incorporating discrete time delay(s) are then formulated with so-called retarded differ-

ential equations, which are different to ordinary differential equations. Many predator-prey models

have been formulated and studied by several authors ([5], [7], [11], [17], [25], [61], [106], [125],

[194], [193]) with discussion on the impact the discrete time delay. Models incorporating harvesting

and discrete time delay have been formulated and for some of them, optimal control theory especially

for models with delay has been applied ([169], [173]).

Because a predator can be provided with another source of food different to its preys, it is important

to take into account the assumption of providing additional food to the predator for the formulation of

a predator-prey model, in order to study the consequences of providing additional food and the effect

on the dynamic of the system. The assumption of providing additional food to the predator can be

motivated by conservation of species or control of the pest population. In literature, several articles
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on predator-prey models incorporating additional food for predator are proposed ([9], [73], [81], [82],

[83], [152], [163], [164], [165]).

In literature, we have not yet found a Leslie-Gower predator-prey model incorporating discrete time

delay for the predator, preys refuge and harvesting of preys by a continuous threshold policy har-

vesting function, and for which the problem of optimal harvesting has been solved. We have not

yet found a Leslie-Gower predator-prey model incorporating additional fixed food for predator, preys

refuge, discrete time delay for predators. Due to the fact that it is important and necessary to take into

account all those assumptions simultaneously, in order to formulate models which are close to the

reality, we have formulated and studied intensively two modified Leslie-Gower predator-prey models.

Outline of the thesis
The organization of this thesis is as follows :

The first chapter deals with some mathematical tools on existence and uniqueness of solution of an

ordinary differential equation, the normal from theory and the centre manifold method, stability anal-

ysis, Some types of bifurcations and optimal control theory. Notes on singles species models, how to

proceed for formulation of models of interacting species, some functional responses very necessary

for formulation of models are given in this chapter. Models formulated in this thesis, their analysis

and discussion on results must be easily readable and understandable. That is the aim of this chapter.

The second chapter is devoted to predator-prey models due to the fact that our thesis is done on

predator-prey interactions. Some predator-prey models are presented in order to recall what can be

effects of preys refuge, functional responses, additional food, harvesting and discrete time delay on

the dynamic of predator-prey model.

The third chapter is devoted to the optimal harvesting and the stability analysis of the newly for-

mulated Leslie-Gower predator-prey model. A brief literature review on Leslie-Gower predator-prey

models is presented. After some notes on the basic Leslie-Gower predator-prey models and their

historical, some modified Leslie-Gower predator-prey models are given in order to recall and illus-

trate effects of preys refuge, different functional responses, harvesting and discrete time delay on the

dynamic of a Leslie-Gower predator-prey model. A modified Leslie-Gower predator-prey model is

formulated by assuming that there is a preys refuge, preys are harvested through a continuous thresh-

old harvesting function with two thresholds and there is a discrete time delay for the predator dynamic.

The aim of this chapter is to study effects of discrete time delay and harvesting, and to solve if possible

the problem of optimal harvesting. We show that the model is biological meaningful because all the

solutions of the system are positive and uniformly bounded. The stability and bifurcation analysis are

done. We also solved the problem of optimal harvesting of preys while maintaining the coexistence

of the two species. Numerical simulations using Matlab are done in order to illustrate our theoretical

results.

The fourth and last chapter deals with Hopf bifurcation analysis in a delayed Leslie-Gower predator-

prey model incorporating preys refuge, harvesting of preys through a harvesting function defined

with one threshold and additional fixed food for predators. Some modified Leslie-Gower predator-
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prey models incorporating additional fixed food for predators are presented in order to recall effects

of that additional fixed food on the dynamic of a Leslie-Gower predator-prey model. Leslie-Gower

predator-prey models can be used to solve practical ecological problems concerning the predator-prey

interactions. That is why some applications of Leslie-Gower predator-preys models are presented.

The aim of this chapter is to study effects of additional fixed food, discrete time delay, refuge and

harvesting of preys. We prove the biological meaningfulness of our model. We carry out the stability

and the bifurcation analysis. With some bifurcation diagrams, we study effects of the strength of

refuge, the harvest limit value and preference rate for additional fixed food. Our theoretical results

are illustrated by some numerical simulations using Matlab.
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CHAPTER ONE

MATHEMATICAL NOTES AND

PREDATOR-PREY MODELLING

Abstract
In this chapter, some mathematical notes on existence and uniqueness of solution, the stability anal-

ysis of an ordinary differential equation, center manifold method, some types of bifurcations and

optimal control theory for time delayed models are given. The aim of this chapter is to provide some

mathematical tools and notes on predator-prey modelling in order to improve the readability, the com-

prehension of the models recalled and formulated in this thesis as well as their analysis and results.

The contents of this chapter is presented as follows : the first section is a brief summary of some theo-

retical mathematical elements which are usually used for the qualitative and quantitative analysis of a

mathematical model such as stability analysis (local and global), some types of bifurcations, optimal

control theory particularly especially for time delayed predator-prey models and for predator-prey

models with harvesting are recalled, in the second section, some notes on predator-preys modelling

are presented and finally, the third section is a non-exhaustive review of some functional responses.

1.1 Some mathematical notes

After the model formulation, one always has to analyze the model qualitatively and quantitatively,

one can study the impact of a particular parameter on the dynamic of the model. In the following

subsections, we recall some mathematical notes on existence and uniqueness of solutions of an ordi-

nary differential equation, stability analysis, some types of bifurcations, center manifold method and

optimal control theory.

1.1.1 Existence and uniqueness theorems

Let D be an open set in Rn+1 and f : D −→ Rn be continuous.

Consider an ordinary differential equation

ẋ = f(t, x), x ∈ Rn. (1.1)
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Definition 1.1. (Solution)([68])

x is a solution of (1.1) on an interval I ⊆ R if x is a continuously differentiable function defined on

I such that for all t in I , (t, x(t)) ∈ D and x satisfies (1.1) on I .

Definition 1.2. (Extended Solution)([45])

Let x1 and x2 be two solutions of (1.1) on interval I1 and I2 respectively. The solution x2 extends the

solution x1 if I1 ⊂ I2 and for all t ∈ I1, x1(t) = x2(t).

Definition 1.3. (Maximal Solution)([45])

A maximal solution of (1.1) defined on an interval I is a solution of (1.1) which does not admit an

extension on an interval J with I ⊂ J .

Theorem 1.1. (Peano-Existence)([68]).

If f is continuous in D, then for any (t0, x0) ∈ D, there is at least one solution of (1.1) passing

through (t0, x0).

Theorem 1.2. (Existence and uniqueness)([68]).

If f(t, x) is continuous in D and locally lipschitzian with respect to x in D, then for any (t0, x0) ∈
D, there exists a unique solution x(t, t0, x0), x(t0, t0, x0) = x0, of (1.1) passing through (t0, x0).

Furthermore, the domain E in Rn+2 of definition of the function x(t, t0, x0) is open and x(t, t0, x0) is

continuous in E.

1.1.2 Stability analysis

Consider a general autonomous vector field

ẋ = f(x), x ∈ Rn. (1.2)

Definition 1.4. (Equilibrium solution)([178])

An equilibrium solution of (1.2) is a point x such that f(x) = 0, i.e., a solution of (1.2) which does

not change in time.

Other terms often substituted for the term ”equilibrium solution” are fixed point, stationary point,

rest point, singularity, critical point or steady state.

Definition 1.5. (Hyperbolic Fixed Point)([178])

Let x = x be an equilibrium solution of (1.2). Then x is called a hyperbolic equilibrium solution if

none of the eigenvalues of Df(x) have zero real part, where Df denotes the derivative of f .

Definition 1.6. (Lyapounov stability)([178])

A solution x(t) of (1.2) is said to be Lyapounov stable or stable if given ε > 0, it exists a δ = δ(ε) > 0

such that for any other solution y(t) of (1.2) satisfying |x(t0)− y(t0)| < δ then |x(t)− y(t)| < ε for

t > t0, t0 ∈ R.

A solution which is not stable is said to be unstable.
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It means that x(t) is said to be stable if solutions of (1.2) starting ”close” to x(t) at a given time

remain close to x(t) for all later times.

Definition 1.7. (Asymptotic stability)([178])

A solution x(t) is said to be asymptotically stable if it is Liapunov stable and for any other solution,

y(t) of (1.2), there exists a constant δ > 0 such that, if |x(t0)−y(t0)| < δ then lim
x−→∞

|x(t)−y(t)| = 0.

It means that x(t) is asymptotically stable if nearby solutions not only stay close, but also converge

to x(t) as t −→ +∞.

Definition 1.8. (Dynamical system)([107])

A dynamical system is a triple {X,T, φt}, where T is a time set, X is a state space, and φt : X −→ X

is a family of evolution operators parametrized by t ∈ T and satisfying the following properties :

(i) φ0 = id

where id is the identity map on X .

The property means that the system does not change its state ”spontaneously”.

(ii) φt+s = φtoφs for all t, s ∈ T
The property states that the result of the evolution of the system in the course of t + s units of

time, starting at a point x ∈ X is the same as if the system were first allowed to change from

the state x over only s units of time, and then evolved over the next time t units of time from

the resulting state φsx.

In the continuous-time case, the family {φt}t∈T of evolution operators is called a flow. It is such

that for the pair (x, t) ∈ X×T , φtx when it is defined, is the solution of (1.2) at the time t with initial

value x (at t = 0).

Definition 1.9. (Topological equivalence)([18])

Two dynamical systems {X,T, φt} and {X,T, ψt} are topological equivalent if there is a homeomor-

phism h that maps the orbits of the first system onto orbits of the second one, preserving the direction

of time.

Definition 1.10. (Topological Conjugation)([18])

Two flows φ(x, t) and ψ(h(x), t) that correspond, respectively, to ordinary differential equations ẋ =

f(x) and ẏ = g(y) are said to be topologically conjugate if there exists a homeomorphism h such that

:

φ(x, t) = h−1(ψ(h(x), t)).

Theorem 1.3. (Hartman-Grobman)([18]).

The dynamics close to a hyperbolic equilibrium point are topologically equivalent to that of the system

linearized about that point.
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Theorem 1.4. (Stability of an equilibrium)([178])

Suppose all of the eigenvalues of Df(x) have negative real parts. Then the equilibrium solution x of

the nonlinear vector field (1.2) is asymptotically stable.

Theorem 1.5. (Lyapounov First Stability Theorem)([178])

Let x be an equilibrium solution of (1.2) and V : U −→ R a C1 function defined on some neighbor-

hood U of x such that :

(i) V (x) = 0 and V (x) > 0 if x 6= x.

(ii) V̇ (x) ≤ 0 in U \ {x}.

Then x is stable. Moreover, if

(iii) V̇ (x) < 0 in U \ {x}

then x is asymptotically stable.

Definition 1.11. (Lyapounov function)([178])

The function V defined in the above Lyapounvov first stability theorem satisfying the properties (i)

and (ii) is called a Lyapounov function.

1.1.3 Centre manifold method

The center manifold theory is important for the reduction of equations to ones of lower dimension.

Suppose that the origin is an equilibrium point of (1.2). If the linearization of f at the origin has no

pure imaginary eigenvalues, then the Hartman’s theorem states that the number of eigenvalues with

positive or negative real parts determine the topological equivalence of the flow near the origin. If

there are eigenvalues with zero real parts, then the flow near the origin can be quite complicated.

In general, the center manifold method isolated the complicated asymptotic behavior by locating an

invariant manifold tangent to the subspace spanned by the (generalized) eigenspace of eigenvalues on

the imaginary axis.

Theorem 1.6. (Center manifold theorem for flows)([62]).

Let f be a Cr vector field on Rn vanishing at the origin (f(0) = 0) and let A = Df(0). Divide the

spectrum of A into three parts σs, σc, σu with

Reλ





< 0 if λ ∈ σs,
= 0 if λ ∈ σc,
> 0 if λ ∈ σu.

Let the (generalized) eigenspaces of σs, σc, σu be Es, Ec and Eu respectively.

Then there exists Cr stable and instable invariant manifolds W u and W s tangent to Eu and Es at the

origin, and a Cr−1 center manifold W c tangent to Ec at the origin. The manifold W u, W s and W c are

all invariant for the flow of f. The stable and unstable manifolds are unique, but the center manifold

W c need not be.

PhD Thesis : MODIFIED LESLIE-GOWER PREDATOR-PREY MODELS 8 Maximilien ONANA c© F.S. UY1 2020



1.1. Some mathematical notes

For simplicity, and because it is the most interesting case physically, we assume that the unstable

manifold is empty and that the linear part of the bifurcating system is in the block diagonal form
{
ẋ = Bx+ f(x, y),

ẏ = Cy + g(x, y).
(1.3)

where (x, y) ∈ Rn×Rm,B andC are n×n andm×mmatrices whose eigenvalues have, respectively,

zero real parts and, negative real parts. f and g vanish along with the first derivatives, at the origin.

Since the center manifold W c is tangent to Ec, we can represent it as a (local) graph

W c = {(x, y) ∈ Rn × Rm, y = h(x), h(0) = Dh(0) = 0}

where h : U −→ Rm is defined on some neighborhood U ⊂ Rn of the origin.

Considering the projection of the vector field on y = h(x) onto Ec, we have :

ẋ = Bx+ f(x, h(x)) (1.4)

Theorem 1.7. (Stability)([62]).

If the origin of (1.4) is stable (asymptotically stable) (unstable) then the origin of (1.3) is also stable

(asymptotically stable) (unstable).

1.1.4 Some types of bifurcations

According to P. Glendinning (1994)([58]), the bifurcation theory describes the way that topological

features of a flow (properties such as the number of stationary points and periodic orbits) vary as one

or more parameters are varied.

Definition 1.12. (Bifurcation) ([107])

A bifurcation is a change of the topological type of a system depending on parameters as its parame-

ters pass through a (critical) value called bifurcation parameter.

There exist two types of bifurcations which are local and global bifurcations. Local bifurcations

are those detectable in any small neighborhood of a fixed point. Global bifurcations are those bifur-

cations that cannot be detected by looking at small neighborhoods of equilibrium (fixed) points or

cycles.

Remark 1.1. There are global bifurcations in which certain local bifurcations are involved. In such

cases, looking at the local bifurcation provides only partial information on the behavior of the system.

(e.g. Saddle-node homoclinic bifurcation ([107] p. 59).

In what follows, we recall particular bifurcations. We give only their normal forms and the impact

of the parameter of the system. But before, we give some notes on the normal form theory.
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The method of normal forms provides a way of finding a coordinate system in which the dynami-

cal system takes the simplest form. The method is local in the sense that, the coordinate transforma-

tions are generated in a neighborhood of a known solution, which is generally an equilibrium point. In

general, the coordinate transformations will be nonlinear functions of the dependent variables. How-

ever, the important point is that, these coordinate transformations are found by solving a sequence of

linear problems. The structure of the normal form is determined entirely by the nature of the linear

part of the vector field.

1. Saddle-node or Fold bifurcations.

The normal form for saddle-node bifurcations is given by the following first order differential

equation :

ẋ = µ± x2 x, µ ∈ R (1.5)

The sign of the parameter µ determines the number of fixed points. It is possible to have zero,

one or two fixed points. When two fixed points exist, one is stable and the other is unstable.

2. Transcritical bifurcations

The normal form for transcritical bifurcations is given by the following first order differential

equation :

ẋ = µx± x2 x, µ ∈ R (1.6)

Two fixed points always exist with one stable and the other unstable. Their stability change

with the sign of the parameter µ. Thus, an exchange of stability has occurred at µ = 0. This

type of bifurcation is also called ”change of stability bifurcation”.

3. Pitchwork or Flip bifurcations

The normal form for Pitchwork bifurcations is given by the following first order differential

equation :

ẋ = µx± x3 x, µ ∈ R (1.7)

It is possible to have one (x = 0) or three fixed points when the sign of the parameter varies.

When there exist three fixed points (including the origin), if the origin is stable (resp. unstable)

then the other fixed points are unstable (resp. stable).

In figure 1.1 , we have bifurcation diagrams of the above three types of bifurcations (saddle-

node bifurcation (ẋ = µ−x2), transcritical bifurcation (ẋ = µx−x2) and pitchwork bifurcation

(ẋ = µx− x3)).
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(a) (b)

(c)

Figure 1.1: (a) Bifurcation diagram of a saddle-node bifurcation in the phase-parameter space. (b)

Bifurcation diagram of transcritical bifurcation in the phase-parameter space. (c) Bifurcation diagram

of a pitchwork bifurcation in the phase-parameter space. Continuous line represents stable points

while discontinuous line represents unstable points. The arrows along the vertical lines represent the

flow generated by each equation along the x-direction.

4. The Poincaré - Andronov - Hopf bifurcation.

All the type of bifurcation discussed above have involved motion on a one-dimensional centre

manifold on which fixed points can exist or not as the parameter varies. The Hopf bifurcation

rather involves a non-hyperbolic fixed point for which the linearized system has purely eigen-

values, and thus a two-dimensional center manifold, and the bifurcating solutions are periodic

rather than stationary. In what follows, we give the so-called Hopf bifurcation theorem. But

before, let’s recall the definition of a limit cycle.

Definition 1.13. (Limit cycle) ([63])

A limit cycle is a closed trajectory in R2 which has the property that at least one other trajectory

spirals into it either as time approaches infinity or as time approaches negative infinity.

In other words, the limit cycle is an isolated trajectory (isolated in the sense that neighboring

trajectories are not closed, but they spiral either toward or away from the limit cycle).

If all neighboring trajectories approach the limit cycle, the limit cycle is said to be stable or

attractive, that is, all the neighboring trajectories approach the limit cycle as time approaches

infinity. Otherwise, the limit cycle is said to be unstable, that is, all neighboring trajectories

approach it as time approaches negative infinity.
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Figure 1.2: Illustration of stable, unstable and half-stable limit cycle. From Strogatz (1994) ([167])

Stable limit cycles are very important scientifically. They model systems that exhibit self-

sustained oscillations. In other words, these systems oscillate even in the absence of external

periodic forcing. Among the countless examples that could be given, we mention only a few:

the beating of a heart; the periodic firing of a pacemaker neuron; daily rhythms in human

body temperature and hormone secretion; chemical reactions that oscillate spontaneously; and

dangerous self-excited vibrations in bridges and airplane wings. In each case, there is a standard

oscillation of some preferred period, waveform, and amplitude. If the system is perturbed

slightly, it always returns to the standard cycle. (From Strogatz (1994) ([167]))

The following theorems are usually used to prove that a system of two ordinary differential

equations in the space R2 does not admit a limit cycle.

Theorem 1.8. (Bendixson’s negative criterion)([95])

Given the system ẋ = X(x, y), ẏ = Y (x, y). There is no closed paths in a simply connected

region of the phase plane on which
∂X

∂x
+
∂Y

∂y
is of one sign.

Theorem 1.9. (Dulac’s test)([95])

Given the system ẋ = X(x, y), ẏ = Y (x, y). There is no closed paths in a simply connected

region of the phase plane on which
∂ρX

∂x
+
∂ρY

∂y
is of one sign, where ρ(x, y) is any function

having continuous first partial derivatives.

For more details on the Poincaré-Bendixson theorem and its six corollaries on closed pathes,

one can refer to M. W. Hirsch et al. (2004)([77])

Theorem 1.10. (Hopf Bifurcation Theorem)([28])

Consider a second-order nonlinear autonomous ODE of the form

ẋ = f(x, µ), x ∈ R2, µ ∈ R, (1.8)

where f is a C1 nonlinear vector field.

Suppose that the nonlinear autonomous system (1.8) has an equilibrium point x = x∗(µ), and

that the associate Jacobian (Df)x=x∗ has a pair of complex eigenvalues λ1,2(µ) = α(µ)±β(µ).

Assume that there exists a critical value µ0 of µ such that :
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(i) α(µ0) = 0,

(ii) β(µ0) 6= 0,

(iii)
(
∂α(µ)

∂µ

)

µ=µ0

6= 0.

Then, if particularly,

(iv)
(
∂α(µ)

∂µ

)

µ=µ0

> 0,

the following results hold :

(a) when µ = µ0, there exists concentric trajectories around the equilibrium x∗(µ0) which is

then a center. The Hopf bifurcation is said to be degenerate.

(b) when µ = µ0, the equilibrium x∗(µ0) is asymptotically stable and there exists a value

µ > µ0 such that for any µ ∈]µ0, µ[, such that it exists around the unstable equilibrium

x∗(µ0), a limit cycle asymptotically stable with an amplitude proportional to
√
µ− µ0.

The Hopf bifurcation is said to be supercritical.

(c) when µ = µ0, the equilibrium x∗(µ0) is unstable and there exists a value µ > µ0 such

that for any µ ∈]µ0, µ[, such that there exists around the asymptotically stable equilibrium

x∗(µ0), a limit cycle unstable with an amplitude proportional to
√
µ− µ0. The Hopf

bifurcation is said to be subcritical.

Remark 1.2. If
(
∂α(µ)

∂µ

)

µ=µ0

< 0, then the conclusions of the above theorem are reversed.

Figures (1.3) and (1.4) are bifurcation diagrams of the following systems with one parameter α,[
ẋ1 = αx1 − x2 − x1(x2

1 + x2
2) , ẋ2 = x1 +αx2−x2(x2

1 +x2
2),
[
ẋ1 = αx1 − x2 + x1(x2

1 + x2
2) , ẋ2 =

x1 +αx2 +x2(x2
1 +x2

2). They illustrate the two different types (supercritical and subcritical ) of Hopf

bifurcations.

(a) (b)

Figure 1.3: (a)Bifurcation diagram for the system in the phase space. (b) Bifurcation diagram for the

system in the phase-parameter space. Supercritical Hopf bifurcation.
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(a) (b)

Figure 1.4: (a) Bifurcation diagram for the system in the phase space. (b) Bifurcation diagram for the

system in the phase-parameter space. Subcritical Hopf bifurcation.

In the following table, we give a list of the different types of one parameter’s bifurcations and

their normal forms.

Table 1.1: Different Types of bifurcations

Type of bifurcation Normal Form

Saddle-node ẋ = µ± x2 x, µ ∈ R
Transcritical ẋ = µx± x2 x, µ ∈ R
Pitchwork ẋ = µx± x3 x, µ ∈ R

Hopf ż = (α + i)z + βz2z z ∈ C, µ ∈ R

Some authors refer the Hopf bifurcation theorem as the Poincaré-Andronov-Hopf bifurcation the-

orem because, the Hopf bifurcation theorem is named after Hopf, who gave the first proof in Rn

in 1942. But the theorem had been proved by Andronov and Léontovich in the late 1930s using

techniques du to Poincaré and Bendixon.

Remark 1.3. In the above bifurcations, we have only one bifurcation parameter. There exists some

more complicated types of bifurcations with two bifurcation parameters. Among those bifurcations

with two parameters, we have the Cusp bifurcation, the Bautin (generalized Hopf) bifurcation, the

Bogdanov-Takens (double-zero) bifurcation, the Fold-Hopf (zero-pair) bifurcation and the Hopf-

Hopf bifurcation. For more details concerning those bifurcations, one can refer to Y. A. Kuznetsov

(1998)([107]).

1.1.5 Optimal control theory

Consider a system in some applications, where the dynamics are captured by a model, whether it is

by ordinary differential equations (ODEs), partial differential equations (PDEs), or discrete difference

equations. Assume also that this system has a variable, or variables, which can be controlled from

the outside. The question which naturally arises is how exactly to control this element in order to
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produce the best outcome, as measured by some predetermined goal or goals. The mathematical

theory behind answering these questions, often called optimal control theory or dynamic optimization,

has found applications in a myriad of fields, from the biological sciences, to economics, to business

and management, to physics and engineering. The objective of optimal control theory is to determine

the control signals that will cause a process to satisfy the physical constraints and at the same time

minimize (or maximize) some performance criterion. In this thesis, we apply optimal control theory

to a delayed predator-prey model. That is why in what follows, we shall just give the result on the

necessary optimality conditions for the delayed optimal control problem with mixed control-state

constraints ([172]).

Let [t0, tf ] be the time interval, and τ1 and τ2 two positive constants less than tf − t0. We consider

a retarded optimal control problem (ROCP) with two constants delays τ1 and τ2 in the state variable

x ∈ Rn. Without loss of generality, we assume that τ1 < τ2. The problem (ROCP) can be written as

follows: Minimize

J(u, x) = g(x(tf )) +

∫ tf

t0

L(t, x(t), x(t− τ1), x(t− τ2), u(t))dt, (1.9)

subject to the retarded differential equation, boundary conditions and mixed-control state inequality

constraints :

ẋ = f(t, x(t), x(t− τ1), x(t− τ2), u(t))dt, (1.10)

x(t) = ϕ(t), t ∈ [t0 − τ1, t0], (1.11)

x(t) = ψ(t), t ∈ [t0 − τ2, t0 − τ1], (1.12)

W (x(tf )) = 0, (1.13)

C(x(t), u(t)) ≤ 0, t ∈ [t0, tf ], (1.14)

where the functions :

g : Rn −→ R, L : [t0, tf ]× Rn × Rn × Rn × Rm −→ R, W : Rn −→ Rd,

L : [t0, tf ]× Rn × Rn × Rn × Rm −→ Rn, C : [t0, tf ]× Rn × Rm −→ Rp

are assumed to be twice continuously differentiable with respect to their arguments.

Definition 1.14. (Admissible pair)([172])

A pair p(.) = (u(.), x(.)) is an admissible pair for a given problem (ROCP) if the state x(.) and the

control u(.) satisfy conditions (1.10)-(1.14).

Definition 1.15. (Locally optimal pair)([172])

An admissible pair (û, x̂) is a locally optimal pair or weak minimum for a given problem (ROCP)

if the inequality J(û, x̂) ≤ J(u, x) holds for all (u, x) admissible in a neighborhood of (û, x̂) with

‖u(t)− û(t)‖ < ε and ‖x(t)− x̂(t)‖ < ε for t ∈ [t0, tf ] and ε sufficiently small.

Instead of considering a weak minimum, we could use the more general notion of Pontryagin mini-

mum, thus admitting neighborhood of (û, x̂) in the L1-norm.

PhD Thesis : MODIFIED LESLIE-GOWER PREDATOR-PREY MODELS 15 Maximilien ONANA c© F.S. UY1 2020



1.1. Some mathematical notes

Remark 1.4. In the absence of delays (i.e. τ1 = τ2 = 0), the initial value profiles given by conditions

(1.11) and (1.12) are omitted. Moreover, condition (1.13) is replaced by a general condition of mixed

type of the form w(x(t0), x(tf )) = 0. In this case, the Hamiltonian or Pontryagin function without

constraints (1.14) is given by :

H(t;x;u;λ) := L(t, x, u) + λ∗f(t, x, u). (1.15)

The augmented Hamiltonian is defined by adjoining the mixed control-state constraint (1.14) by mul-

tiplier µ ∈ Rp to the Hamiltonian (1.16), that is,

H(t;x;u;λ, µ) := L(t, x, u) + λ∗f(t, x, u) + µ∗C(t, x, u) (1.16)

where the symbol ”∗” denotes the transposition.

The following theorem deals with necessary optimality conditions for the optimal control of the

delayed differential system (1.10) with mixed control-state constraints (1.11)-(1.14).

Theorem 1.11. ([172])

Let (û, x̂) be locally optimal for a ROCP with two delays τ1 6= 0 and τ2 6= 0 such that
τ1

τ2

∈ Q for

(τ2 > 0) and
τ2

τ1

∈ Q for (τ1 > 0). Then, there exist an adjoint function λ̂ ∈ W 1,∞([t0, tf ],Rn),

a multiplier function µ̂ ∈ L∞([t0, tf ],Rp) and a multiplier ν̂ ∈ Rq such that for all t ∈ [t0, tf ], the

following conditions hold :

1. Adjoint differential equation :

˙̂
λ(t)∗ = −Hx(t, x(t), x(t− τ1), x(t− τ2), u(t))

−X[t0,tf−τ1](t)Hy(t+ τ1, x(t+ τ1), x(t+ τ1 − τ2), u(t+ τ1))

−X[t0,tf−τ2](t)Hz(t+ τ2, x(t+ τ2), x(t+ τ2 − τ1), u(t+ τ2)).

(1.17)

2. Transversality condition :

λ∗(tf ) = gx(x(tf )) + ν∗Wx(tf ). (1.18)

3. Minimum condition for Hamiltonian :

H(t, x̂(t), x̂(t−λ1), x̂(t−λ2), û(t), λ̂(t)) ≤ H(t, x̂(t), x̂(t−λ1), x̂(t−λ2), u(t), λ̂(t)), (1.19)

∀u ∈ Rm such that C(t, x(t), u) ≤ 0.

4. Local minimum for augmented Hamiltonian :

H(t, x̂(t), x̂(t− λ1), x̂(t− λ2), û(t), λ̂(t), µ̂(t)) = 0.

5. Nonnegativity of multiplier and complementarity condition :

µ̂(t) ≥ 0 and µ̂i(t)Ci(t, x̂(t), û(t)) = 0, ∀i = 1, ..., p. (1.21)
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1.2 Predator-prey modelling

In the first subsection of this section, we give the basic models for the growth of single species. Those

models are always used to formulate models for the interacting species. In the second subsection, we

give the basic Lotka-Volterra and logistic Lotka-Volterra models for interacting species (the case of

two populations) which are nowadays used for the formulation of most of the predator-preys models.

1.2.1 Simple single species models

1.2.1.1 Exponential Growth Population Model

The population density of a single species at time t will be denoted by x(t), where it is assumed that

x is everywhere differentiable, that is, x is a smooth function of t. Although unrealistic since x(t) is

an integer-valued function and thus not continuous, for populations with a large number of members,

the assumptions of continuity and differentiability provide reasonable approximations. In many bio-

logical experiments the population biomass, which one might expect to be more nearly described by

a smooth function than the population size, is often taken as the definition of x(t). The rate of change

of population density can be computed if the birth, death, and migration rates are known. A closed

population has, by definition, no migration neither into nor out of the population. In this case, the pop-

ulation size changes only through births and deaths and the rate of change of population size is simply

the birth rate minus the death rate. The formulation of a specific model requires explicit assumptions

on the birth and death rates. Ideally, these assumptions are made with the goal of addressing spe-

cific biological questions such as under what conditions will interference competition (competition

for hosts) and pathogen virulence lead to host-pathogen long-term coexistence. For micro-organisms,

which reproduce by splitting, it is reasonable to assume that the rate of birth of new organisms is

proportional to the number of organisms present. In mathematical terms, this assumption may be ex-

pressed by saying that if the population size at time t is x, then over a short time interval of duration

h from time t to time (t+ h), the number of births is approximately bhx for some constant b, the per

capita birth rate. Similarly, we may assume that the number of deaths over the same time interval is

approximately µhx for some constant µ the per capita death rate. Hence, the net change in population

size from time t to time (t+ h), which is x(t+ h)− x(t), may be approximated by [(bh− µh)]x(t).

The duration h of the time interval must be short to ensure that the population size does not change

very much and thus that the numbers of births and deaths are approximately proportional to x(t). We

obtain the approximate equality :

x(t+ h)− x(t) ≈ (b− µ)x(t)h. (1.22)

The division by h gives :
x(t+ h)− x(t)

h
= (b− µ)x(t), (1.23)

and passage to the limit as h tends to 0 gives :

dx(t)

dt
= (b− µ)x(t)) = rx(t), (1.24)
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where r = b − µ is the net growth rate. The equation (1.24) is called the exponential or Malthusian

population model.

The approximate equality in (1.22) means that the difference between the two sides of (1.22) is so

small that the result of dividing this difference by h gives a quantity that approaches zero as h tends

to 0. This differential equation has the infinite family of solutions given by the one parameter family

of functions x(t) = kert ; hence, this one parameter family gives a solution of (1.24) for every

choice of the constant k. The most convenient way to impose a condition that will describe the

population dynamics of a specific population is by specifying the initial population size at time t = 0

as x(t0) = x0. This choice selects the solution, x(t) = x0e
rt. When r > 0 (or equivalently b > µ)

implies that the population size will grow unboundedly as t tends to +∞, while r < 0 (or b < µ)

implies that the population size will approach zero as t tends to +∞.

1.2.1.2 Logistic Growth Population Model

The assumption that the rate of growth of a population is proportional to its size (linear assumption)

is usually unrealistic on longer time scales. In what follows, nonlinear assumptions are considered on

the rate of population growth rates. Those assumptions lead to quite different qualitative predictions.

It is assumed that total growth rates are not constants and depend on the size of the population. It is

assumed that the birth rate b = b0− bxx is a decreasing function of x and the death rate µ = µ0 +µxx

is an increasing function of x where b0 and µ0 are respectively the birth rate and the death rate when x

is too small. bx and µx are respectively the strength of density-dependant of the birth and death rates.

Replacing b = b0 − bxx and µ = µ0 + µxx in (1.24) gives :

dx(t)

dt
= r

(
1− x

K

)
x(t) (1.25)

where K =
r

bx + µx
=
b0 − µ0

bx + µx
and is called the carrying capacity of the environment, which is usu-

ally determined by the available sustaining resources. It represents the population size that available

resources can continue to support. The value r is called the intrinsic growth rate, because it repre-

sents the per capita growth rate achieved if the population size were small enough to ensure negligible

resource limitations. Equation (1.25) is called the logistic model for population growth. This model

was first studied by Belgian Mathematician Pierre François Verhulst in the middle of the 19th century.

In this model, like the exponential model, the only mechanisms for changing the population size are

births and deaths. There is nothing to account for migration into or out of the population.

Solving equation (1.25) with initial value x(t0) = x0 > 0 gives :

x(t) =
x0Ke

rt

K + x0(ert − 1)

with 0 < x0 < K.

The solution of the logistic initial value problem shows that the population size x(t) approaches the

limit K as t tends to +∞. The logistic model predicts rapid initial growth for 0 < x0 < K, then

a decrease in growth rate as time passes so that the size of the population approaches a limit. This
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behavior is in agreement with the observed behavior of many populations, and for this reason, the

logistic model is often used as a means of describing population size.

1.2.1.3 Generalized Logistic Growth Population Model

Although the logistic growth equation generates a curve that tends towards an exponential form at low

values, its maximum slope, or ”point of inflexion”, is always at half the value of the upper asymptote,
K

2
. This is unsatisfactory, because the factors that determine the density at which the species x grows

fastest are complex, so it is unlikely that all species grow fastest in monoculture when they are at half

their maximum standing crop. Introducing another parameter into the equation could allow the shape

of the upper part of the curve to be independent of the shape of the lower part, while still having

an equation that tends towards an exponential form at low values of x. One option is the following

generalized logistic growth population model or the Richards (1959)([145]) growth equation

dx(t)

dt
= r

(
1−

( x
K

)q)
x(t), (1.26)

where q is a constant that allows the shape of the sigmoid curve to be varied.

When q = 1 the Richards equation matches the logistic equation, but for q > 1 the maximum slope

of the curve is when x >
K

2
, and when q < 1 the maximum slope of the curve is when x <

K

2
. This

allows a wider range of curves to be produced, but as q tends towards zero, the lowest value of y at

the point of inflexion remains greater than
K

e
, where e represents the universal constant, the base of

the natural logarithm.

For q > 0, the integrated form of the Richards equation (1.26) is

x(t) = K
(

1 + exp(d− rqt)
)−1/q

,

where d is a parameter that indirectly defines the value of t (time) at which x = K
2

.

Let’s mention the fact that a new generalized logistic Sigmoid growth equation has been proposed by

C. P. D. . Birsch (1999)([22]), with a comparison to the Richards growth equation.

There exist in the literature some others growth equations for single species (The Gompertz growth

model, the model with Allee effects, . . .).

1.2.2 Models for interacting species

1.2.2.1 The Lotka-Volterra Predator-Prey Model

In 1925, Vito Volterra’s son-in-law named Dr. Umberto Ancona has a conversation with Volterra. Dr.

Umberto Ancona pointed out the fact that in the years following the First World War, the proportion

of predator fish caught in the Upper Adriatic was up from before, whereas the proportion of prey

fish was down. Inspired by his future son-in-law, Vito Volterra wrote a paper, entitled Fluctuations in

the abundance of a species considered mathematically. Voterra (1926)([176]) developed a model to

describe the interaction between a predator and a prey, based on the following assumptions :
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1. prey would multiply indefinitely (i.e. grow exponentially) in the absence of predators,

2. predator densities will decay exponentially to zero in the absence of the prey, due to starvation,

3. the proportional increase rate of the preys decreases as the number of predators increases,

4. the growth rate of predators increases when the number of preys increases.

During the same year, Alfred James Lotka (1925)([123]) published a book entitled Elements of Phys-

ical Biology in which he discussed the Volterra model for predator-prey interactions. It is safe to

assume, of course that, the two was completely unaware of each other’s work. It is this model that is

known as the Lotka-Volerra predator-prey model. Taking into account the above assumptions made

by V. Volterra, the Lotka-Volerra predator-prey model is governed by the following set of ordinary

differential equations : {
ẋ(t) = rx− axy,
ẏ(t) = εaxy − µy.

(1.27)

In those equations x(t) and y(t) denote the abundance of preys (food) and predators (consumers)

at the time t, respectively. The parameter r represents the exponential growth rate of prey in the

absence of the predator, while µ represents the death or mortality rate of the predators in the absence

of prey. The parameter a represents the attack rate of predators, which equals the area or volume that

a predator searches through during a single unit of time. The parameter ε represents the conversion

efficiency, i.e. the efficiency with which predators convert consumed prey into offspring.

The analysis of model (1.27) ([147]) leads to the following results :

1. The two species fluctuate periodically in abundance, the period only depending on the coef-

ficients of increase and of destruction of the two species, and on the initial numbers of the

individuals of the two species.

2. The average numbers of the two species tend to constant values, whatever the initial may have

been, so long as the coefficients of increase or of destruction of the two species and also the

coefficients of protection and attack remain constant.

3. If we try to destroy individuals of both species uniformly and proportionally to their number,

the average number of individuals of the eaten species grows and the average number of the

eating species diminishes. But increased protection of the eaten species increases the average

numbers of both.

Despite the brevity of the document and the modest closing sentence, Volterra established with his

study a corner-stone for the theory about predator-prey interactions. The Lotka-Volterra predator-prey

model, as it has been referred to since Volterra’s contribution, forms a basis on which most if not all

models of such interactions have been founded. In addition, it has become clear that predator-prey in-

teractions are one of the most important causes of oscillations in species abundance. Hence, not only

the model that Volterra studied, but also the fluctuations he reported are to the present day important
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focal points for studying the dynamics of interacting species.

The Lotka-Volterra model represented one of the triumphs of early attempts at mathematical mod-

elling in population biology. However, it turns out that there are serious flaws in the model. Any

attempt at refinement by introducing self-limiting terms in the per capita growth rates such as in the

logistic equation for single populations will lead to qualitatively different behavior of the solutions,

orbits that spiral in toward the equilibrium rather than periodic orbits. The price of refinement of

the model is loss of agreement with observation. In order to construct a model that predicts periodic

solutions, we will have to assume nonlinear per capita growth rates for the two species.

1.2.2.2 The Logistic Lotka-Volterra Predator-Prey Model

The Lotka-Volterra predator-prey model assumes that, in the absence of predators, the prey population

grows exponentially. This Malthusian growth is not realistic. Populations are often limited by their

environment and usually use particular means to reach their carrying capacities respectively. So, it

can be better to modify the Lotka-Volterra model by replacing the exponential growth of preys by

a logistic growth. Hence, if we assume that, in the absence of predation, the growth of the prey

population follows the logistic model, we obtain the following model :




ẋ(t) = r
(

1− x

K

)
x− axy,

ẏ(t) = εaxy − µy,
(1.28)

where K is the carrying capacity of the prey population. One can remark that for large value of the

carrying capacity K, this model is a small perturbation of the Lotka-Volterra model.

Let’s set Kc =
µ

εa
and Ks =

µ

εa

(
1

2
+

1

2

√
1 +

r

µ

)
. Regarding the dynamic of the logistic Lotka-

Volterra predator-prey model, the following conclusions hold ([147]) :

1. For K < Kc, the maximum prey abundance is insufficient to allow predators to persist. The

internal steady state
( µ
εa
,
r

a

(
1− µ

εaK

))
adopts negative and hence biologically irrelevant

values. The prey-only equilibrium (K, 0) is a stable node.

2. For Kc < K < Ks, the internal steady state
( µ
εa
,
r

a

(
1− µ

εaK

))
is biologically feasible and

is a stable node. The prey-only equilibrium (K, 0) is a saddle point.

3. ForK > Kc, the internal steady state
( µ
εa
,
r

a

(
1− µ

εaK

))
is still the only biologically feasible

and stable steady state, but it has become a stable spiral. Hence, the approach to the steady state

is always oscillatory.

Discussions
With respect to the two important predictions that were derived from the basic Lotka-Volterra predator-

prey model, the model with logistic prey growth does not change the prediction that steady-state prey

abundances are completely controlled by life-history characteristics of the predator. However, incor-

porating a logistic prey growth stabilizes the internal steady state, such that oscillation are not to be
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expected any longer. Even for very larger values of the prey carrying capacity the internal steady

state is ultimately approached slowly. The slightest amount of density dependence in the prey growth

hence stabilizes the oscillations of the basic Lotka-Volterra model. Because a very small perturbation

of the model structure (i.e. adding even a tiny amount of density dependence in prey growth) changes

the neutral stability of the steady state and the neutrally stable oscillations, the basic Lotka-Volterra

model is not considered structurally stable.

In figure (1.5), we give an example of phase portraits of the Lotka-Volterra model (Ṅ = rNN −
λNNP , Ṗ = αNNP−mP ) and that of the logistic Lotka-Volterra model (Ṅ = rN(1− N

KN
)−λNNP ,

Ṗ = αNNP −mP ).

(a) (b)

Figure 1.5: (a) Phase portrait of the Lotka-Volterra model where rN = 2, λN = 0.6,αN = 0.5,

m = 1.5 with initial conditions (0.5, 4), (1, 4), (1.5, 4), (2.5, 4), (b) Phase portrait of the logistic

Lotka-Volterra model with rN = 2, rP = 1.5, λN = 0.6,αN = 1, KN = 10, m = 3. From M. T.

Alves ([3])

1.3 Functional Responses

After the modification of the Lotka-Volterra model by replacing the exponential growth of preys by

the logistic growth, interactions between one population (predators) and another population (preys)

eaten by the first one have been generalized by taking into account some assumptions. The set of

ordinary differential equations for the dynamics of the interacting populations are then modified.

In what follows, we recall assumptions and features for predator-prey models. Consider the class

of predator-prey models that take as state variables the two total densities of the two populations,

regarded as spatially homogeneous and without regard for age or size, and whose dynamics is based

on continuous time. Considering the classical Gause type predator-prey system for the modelling of

interacting species, the so-called Holling type functional responses are given in the first subsection

and in the second subsection of this section, we give some others functional responses.

Let x(t) and y(t) denote densities of preys and predators at time t, respectively. The classical Gause
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type predator-prey system takes the following form ([50]) :
{
ẋ(t) = xg(x,K)− yp(x),

ẏ(t) = y(−d+ cq(x)),
(1.29)

where :

1. g(x,K) is a continuous and differentiable function describing the specific growth rate of the

preys in the absence of predators and satisfying the following conditions :

(i) g(0, K) = r > 0

(ii) g(K,K) = 0

(iii) gx(K,K) < 0

(iv) gx(x,K) ≤ 0

(v) gK(x,K) > 0

where gx and gK are respectively the partial derivative of the function g with respect to x and

K respectively.

2. p(x) is the functional response of predators to the preys. It describes the change in the density

of the prey attacked per unit time per predator as the prey density changes. It is continuous

and differentiable and satisfies p(0) = 0. In general, it depends on many factors, for example,

the various prey densities, the efficiency with which predators can search out and kill the prey,

the handling time, etc. Some functional responses extensively used in modelling population

dynamics will be given in a subsection below.

3. q(x) is the numerical response. It describes how predators convert the consumed prey into

the growth of predators. In most classical predator-prey models, q(x) = p(x) (conversion of

biomass law).

4. The parameter c indicates the efficiency of predators in converting consumed prey into their

growth.

5. The parameter d is the predator mortality rate.

An interesting case is when the predator growth function is different from the predator predation

function. Moreover, the predator growth term is described by a function of not the prey density

only, instead it is assumed to be dependent on the ratio of predators and their prey
y

x
. We study

intensively the Leslie-Gower predator-preys models which are examples of those particular models,

in the third chapter. In what follows, we recall some particular functional responses used for predator-

prey modelling.

PhD Thesis : MODIFIED LESLIE-GOWER PREDATOR-PREY MODELS 23 Maximilien ONANA c© F.S. UY1 2020



1.3. Functional Responses

1.3.1 Holling type Functional responses

In order to describe the change in the rate of consumption of prey by a predator when the density of

prey varies, Holling introduced the term functional response in his papers on predator-prey dynamics

([78], ([79])). In the literature, there exist some functional responses with the name of Holling and,

some other functional responses without Holling’s name. In what follows, we give a non-exhaustive

list of some functional responses.

1.3.1.1 The Holling type I functional response

It is given with the assumption that the number of preys eaten by a predator depends linearly to the

density of the preys. This assumption is unrealistic due to the fact that, it is not possible for a predator

to exceed a certain number of preys even if there is abundance of preys. The saturation effect needs to

be taken into account. The Holling type I functional response which is also called the Lotka-Volterra

functional response is given by :

p(x) = ax (1.30)

where a is the handling rate of the predator and x denotes the density of preys.

The other Holling type functional responses have been formulated with the following assumptions :

1. The saturation effect of predator is taken into account. It means that a predator can eat preys up

to a certain number which cannot be exceed even if preys are abundant.

2. A predator divides its time for two activities. The predator has to look for preys so he needs

searching time for it. After that, he needs handling time used to hunt , to catch, to kill and to

eat the prey.

1.3.1.2 The Holling type II functional response

Also called Michaelis-Menten functional response, the Holling type II response function is given by

the following equalities :

p(x) =
Bαx

1 +Bβx
=

ax

x+D
, (1.31)

where :

1. α is the searching time of preys for the predator

2. β is the handling time of preys for the predator

3. B is the predation rate per unit of time

4. a =
α

β
is the maximal growth rate of the predator. It is also the rate of saturation constant.

5. D =
1

Bβ
is the rate of half saturation constant.
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1.3.1.3 The Holling type III functional response

The Holling type III functional response is given by the following equalities :

p(x) =
Bαx2

1 +Bβx2
=

ax2

x2 +D
, (1.32)

where the parameters α, β, B, a, D are the same used for the Holling type II functional response

(1.31) with the same meanings.

The Holling type III functional response can be generalized ([89]) by the following equality (1.33)

and we have the so-called Generalized Holling type III or sigmoidal functional response:

p(x) =
mx2

ax2 + bx+ 1
(1.33)

where m, a are positive constants and b a constant satisfying b > −2
√
a (so that ax2 + bx+ 1 > 0 for

all x ≥ 0 and hence p′(x) > 0 for x > 0).

One can remark that when x approaches infinity, there exists a saturation constant
m

a
for predators.

When b < 0, the predation increases to a maximum and then decreases, thus p(x) describes the

situation where the preys can better defend or disguise themselves when their population density

becomes large enough. When b ≥ 0, the predators increase their feeding rates until some saturation

level is reached.

1.3.1.4 The Generalized Holling type VI functional response

Also called the Monod-Haldane ([148]) functional response, the generalized Holling type IV ([171])

functional response is given by the following equality :

p(x) =
mx

ax2 + bx+ 1
(1.34)

where m, a are positive constants and b a constant. When b = 0, the function is called the Holling

type IV ([116]) functional response in the literature.

The generalized Holling type III functional response with b < 0 and the generalized Holling type IV

functional response are nonmonotone functions.

Some other functional responses without the Holling name can be found in the literature with the

name of authors. In the following subsection, we give some of them.

1.3.2 Some Other Functional Responses

1.3.2.1 The Ivlev functional response

The Ivlev type functional response is a prey-dependent functional response suggested by Ivlev (1961)([92]).

It is both monotonically increasing and uniformally bounded. It is given by the following equality :

p(x) = a(1− e−γx), (1.35)
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where the parameters a and γ are positive constants standing respectively for the maximal growth rate

of the predators or the saturation constant and the efficiency of the predators for capturing preys.

Many authors([10], [103], [168]) have studied predator-prey models with the Ivlev type functional

response.

1.3.2.2 The Hassell-Varley functional response

Most of the functional responses are functions depending only on the prey density. That is why they

are called prey-dependent functional responses. But there exists in the literature some functional

responses which are functions depending on both predator and prey densities called ratio-dependent

functional responses. For example, Arditi and Ginzburg (1989)([4]) have proposed the following

functional response (1.36) by modifying the well-known Holling type II functional response.

p(x, y) =
ax

x+Dy
, (1.36)

where the parameters a and D are positive constants which stand respectively for capturing rate and

half saturation constant.

The Hassell-Varley functional response is a ratio-dependent functional response proposed by Hassell

and Varley (1969)([75]) by the following equality :

p(x, y) =
ax

xγ +Dy
, (1.37)

where the positive constant γ is called the Hassell-Varley constant.

In a typical predator-prey interaction where predators do not form groups, one can assume that γ = 1,

producing the so-called ratio-dependent predator-prey dynamics. For terrestrial predators that form a

fixed number of tight groups, it is often reasonable to assume that γ =
1

2
. For aquatic predators that

form a fixed number of tight groups, γ =
1

3
may be more appropriate. Since most predators do not

form a fixed number of tight groups, it can be argued that for most realistic predator-prey interactions,

γ ∈ [1
2
, 1). A predator-prey model with Hassell-Varley type functional response has been studied by

S. B. Hsu et al. (2008)([85]).

1.3.2.3 The Beddington-DeAngelis functional response

The Beddington-DeAngelis functional response is a ratio-dependent functional response proposed by

Beddington and DeAngelis ([13], [44]). It is given by the following equality :

p(x, y) =
mx

a+ bx+ cy
, (1.38)

where :

1. m represents the maximum number of prey population that predator population can eat per

time,

2. a represents the prey density, where the attack rate is half-saturated,
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3. b is a positive constant which denotes the effect of handling time for predators,

4. c is a positive constant and measures the magnitude of interference among predators.

It is obvious that two cases are possible as following. One case is that, if b = 1, c = 0 and a > 0,

then it reduces to a Holling type II functional response (or Michaelis-Menten functional response).

The other case is that, if b = 0, c = 0 and a > 0, then it reduces to a linear mass-action functional

response (or Holling type I functional response).

1.3.2.4 The Crowley-Martin functional response

The Crowley-Martin type functional response is classified as one of predator-dependent functional re-

sponses, i.e., that are functions of both prey and predator abundance because of predator interference.

It is assumed that predator-feeding rate decreases by higher predator density even when prey density

is high, and therefore the effects of predator interference in feeding rate remain important all the time

whether an individual predator is handling or searching for a prey at a given instant of time.

There may be a situation that an increase of consumer (predator) density implies the decrease in

feeding rate of predator due to mutual interference among individual of predators. In this functional

response, the predators do not interfere with one anothers activities. So the competition among preda-

tors for food comes from the depletion of preys. But the functional response in prey-predator models

must be predator dependent. Crowley and Martin (1989)([41]) proposed a predator-dependent func-

tional response of the form :

p(x, y) =
αx

1 + ax+ by + abxy
, (1.39)

where :

1. α is a positive parameter that describes the effects of capture rate,

2. a is a positive parameter that represents handling time,

3. b is a positive parameter which stands for the magnitude of interference among predators on the

feeding rate.

The intuitive and experimental observations infer that a decrease in feeding rate of consumers (preda-

tors) per unit consumer is due to mutual interference among predators. This is a function of both prey

and predator due to predator interference. If the prey density is high, then the predator feeding rate

can decrease by higher predator density. Therefore, the effects of predator interference on feeding

rate remain important all the time whether an individual predator is handling or searching for a prey

at a given instant of time ([202]).

This represents the per capita feeding rate of predator. Depending on parameters a and b, the following

cases arise :

(i) When a > 0, b = 0, the Crowley-Martin type of functional response is simplified to Michaelis-

Menten (or Holling type II) functional response;
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(ii) When a = 0, b > 0, it expresses a saturation response;

(iii) When a = 0, b = 0, the Crowley-Martin type of functional response is simplified to a linear

mass action function response (or Holling type I).

In table (1.2), we summarize the functional responses listed in the section.

Table 1.2: Different Types of Predators Functional Responses

Holling I ax

Holling II
Bαx

1 +Bβx
=

ax

x+D

Holling III
Bαx2

1 +Bβx2
=

ax2

x2 +D

Generalized Holling III
mx2

ax2 + bx+ 1

Holling IV
Bαx

1 +Bβx2
=

ax

x2 +D

Generalized Holling IV
mx

ax2 + bx+ 1
Ivlev a(1− e−γx)

Crowley-Martin
αx

1 + ax+ by + abxy

Hassel-Varley
ax

xγ +Dy

Beddignton-DeAngelis
mx

a+ bx+ cy
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CHAPTER TWO

EFFECTS OF PREY REFUGE, FUNCTIONAL

RESPONSES, ADDITIONAL FOOD,
HARVESTING AND TIME DELAY ON

PREDATOR-PREY MODELS

Abstract
In this chapter, a brief literature review on predator-prey models is done. Based on the basic Lotka-

Volterra predator-prey model, many others predator-prey models have been proposed by several au-

thors using different assumptions, in other to have more realistic models which are close to the reality.

The aim of this chapter is to recall results on effects of a prey refuge, a functional response, additional

fixed food for predators, harvesting and time delay(s) on the dynamic of a predator-prey model. In

what follows, we recall some predator-prey models incorporating a prey refuge and effects of prey

refuge in the first section. Some models studied using different functional responses and effects of a

functional response are presented in the second section. In the third section, some predator-prey mod-

els incorporating additional fixed food for predators and effects of additional fixed food for predators

are presented. In the fourth section, some models incorporating different types of harvesting func-

tions and effects of harvesting are given. In the fifth and last section, some predator-prey models

incorporating discrete time delay(s) and effects of discrete time delay(s) are presented.

2.1 Effects Of Preys Refuge on Predator-Prey Models

In the presence of predator population, prey population shows a variety of defense mechanisms, such

as changes in life history, morphological and behavioral traits. Among them, behavioral changes,

e.g., migration and refuge are the most effective defense strategies observed in the prey population

(Laforsch and Tollrian, (2004)([108]); Hanazoto et al. (2001) ([69]); Dodson (1988) ([48]); Lampert

(1989) ([109]); Samanta et al. (2011) ([156]) (2013) ([157]); Samanta and Chattopadhyay (2013)

([157]); Abrams (2008) ([1]); Collings (1995) ([35]); Gonzalez-Olivares and Ramos-Jiliberto (2003)

([60])).

29



2.1. Effects Of Preys Refuge on Predator-Prey Models

In the presence of predators, prey population often moves to areas where they are safe from their

predators, which is better known as prey refuge. For example, mite predator-prey interactions of-

ten exhibit spatial refugia which afford the prey some degree of protection from predation (Collings

(1995) ([35])). Zooplankton use macrophytes as day-time refuge areas when trying to escape from

pelagic predators (Sagrario G. (2009) ([153])). Huffaker and Kennett (1956) ([90]) noted that straw-

berry plants provide physical barriers protecting part of the population of cyclamen mites, Tarsone-

mus pallidus Banks, from predation by Typhlodromus mites. Huffaker (1958) ([91]) experimentally

showed that prey refuge in Eotetranychus sex maculatus Riley reduces the chance of extinction due to

predation by Metaseiulus occidentalis Nesbitt. The effect of prey refuge on the dynamics of interact-

ing populations is governed by the hypothesis that hiding behavior of prey reduces the prey mortality

due to reduction in predation success (Gonzalez-Olivares and Ramos-Jiliberto, (2003) ([60])). In or-

der to study effects of preys refuge on a predator-prey model, the following model (2.1) has been

proposed using the generalized Gause formulation (1.29) for interactions between predators and their

preys : {
ẋ(t) = xg(x− xR, K)− yp(x),

ẏ(t) = y(−d+ cq(x− xR)),
(2.1)

where xR is a quantity of prey population which incorporates refuges and which can be considered

from two alternative points of view. The first one is when the quantity of hiding prey is proportional

to the density of prey (xR = βx). The parameter β ∈ [0, 1[ stands for the rate of refuge of prey

population or the strength or prey refuge. This means that when β = 0, all the preys are available

for predation. βx(t) models the capacity of the refuge at the time t and so (1 − β)x(t) of the preys

are available for predation. The second one is when the quantity of hiding prey is a constant number

(xR = R). R is a fixed number of preys using refuge. It means that if we have R preys protected

by the refuge, il will remain x(t) − R preys available for predation at the time t. Obviously, we

have 0 ≤ R < x(t). In the literature, most of predator-prey models incorporating preys refuge are

presented with the logistic growth for preys. In what follows, we present some predator-prey models

incorporating prey refuges and effects of prey refuges.

2.1.1 Some predator-prey models incorporating prey refuges

2.1.1.1 The Z. Ma et al. model (2009)

Z. Ma et al. (2009)([124]) have studied the role of prey refuges on some predator-prey models. In

their models, the refuges are considered as two types : a constant proportion of prey and a fixed

number of preys using refuges. For applications, they used the Rosenzweig, the Ivlev and the Holling

types functional responses.

1. A constant proportion of prey using refuges
When there is a constant proportion of preys using refuges (xR = βx), the Ma et al. model is
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the following set of ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− pϕ(x− βx)y,

ẏ(t) = (qϕ(x− βx)− d)y,
(2.2)

where r, K, p, q, d are all positive constants which have biological meanings accordingly. r

is the intrinsic per capita growth rate of the prey population, K is the environmental carrying

capacity of the prey population, p is the maximal per capita consumption rate of predators,

d is the per capita death rate of predators, and q is the efficiency with which predators con-

vert consumed preys into new predators. The term ϕ represents the functional response of the

predator population. The following models have been obtained for the three different functional

responses.

(a) Case of Rosenzweig functional response

For this case, the model is given by the following ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− p(1− β)axay,

ẏ(t) = (q(1− β)axa − d)y,
(2.3)

where 0 < a < 1.

(b) Case of Ivlev functional response

For this case, the model is given by the following ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− p(1− e−a(1−β)x)y,

ẏ(t) = (q(1− e−a(1−β)x)− d)y.
(2.4)

(c) Case of Holling functional response

For this case, the model is given by the following ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− p(1− β)γxγy

a+ (1− β)γxγ
,

ẏ(t) =

(
q(1− β)γxγ

a+ (1− β)γxγ
− d
)
y.

(2.5)

2. A constant number of prey using refuges

(a) Case of Rosenzweig functional response

For this case, the model is given by the following ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− p(x−R)ay,

ẏ(t) = (q(x−R)a − d)y,
(2.6)

where 0 < a < 1.
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(b) Case of Ivlev functional response

For this case, the model is given by the following ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− p(1− e−a(x−R))y,

ẏ(t) = (q(1− e−a(x−R))− d)y.
(2.7)

(c) Case of Holling functional response

For this case, the model is given by the following ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− p(x−R)γy

a+ (x−R)γ
,

ẏ(t) =

(
q(x−R)γ

a+ (x−R)γ
− d
)
y.

(2.8)

2.1.1.2 The T. K. Kar model (2005)

T. K. Kar (2005)([98]) consider a prey-predator model with Holling type II response function incorpo-

rating a constant proportion prey refuge. His model which is then a modified Rosenzweig-MacArthur

predator-prey model is the following one :




ẋ(t) = αx
(

1− x

K

)
− β(1−m)xy

1 + a(1−m)x
,

ẏ(t) =

(
c(1−m)x

1 + a(1−m)x
− γ
)
y.

(2.9)

Here a denotes the intrinsic growth rate and K the carrying capacity of preys; γ is the death rate of

predators;
β

a
is the maximum number of preys that can be eaten by each predator in unit time;

1

a
is the

density of preys necessary to achieve one half that rate; c is the conversion factor denoting the number

of newly born predators for each captured prey. The term
βx

1 + ax
denotes the functional response of

predators. The model incorporates refuge protecting mx of the preys, where m ∈ [0; 1) is constant.

This leaves (1−mx) of the prey available to predators.

2.1.1.3 The Y. Huang et al. model (2006)

Y. Huang et al. (2005)([98]) have proposed and studied a model by modifying a predator-prey model

with the Holloing type III functional response. They incorporated a constant proportion refuge of

preys. Their model is given by the following set of two ordinary differential equations :




ẋ(t) = ax− bx2 − α(1−m)2x2y

β2 + (1−m)2x2
,

ẏ(t) =

(
kα(1−m)2x2

β2 + (1−m)2x2
− c
)
y.

(2.10)

Here a denotes the intrinsic growth rate, b is the strength of competition among individual of preys

(such that
a

b
is the carrying capacity of the prey), c is the death rate of predators, α is the maximal

growth rate or the saturation constant, β the half saturation constant, k is the conversion factor denot-

ing the number of newly born predators for each captured prey. The term
α(1−m)2x2

β2 + (1−m)2x2
denotes
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the Holling type III functional response of predators with the incorporation of the prey refuge.

According to the analysis of the above models regarding effects of prey refuges on the dynamic of a

predator-prey model, the following effects have been obtained.

2.1.2 Fluctuating population densities effects

From the analysis of the Z. Ma et al. (2009)([124]), we have the following conclusions :

1. The equilibrium density of prey population increases as refuges used by prey increases, while

that of predators firstly increases and then decreases with prey refuges. In fact, it is easy to show

that there is an increase in the equilibrium density of both prey and the predator population as

the refuges increase under a very restricted set of conditions. This occurs when the equilibrium

density of preys population is less than K
2

for either a constant proportion or a fixed number of

preys using refuges.

2. When the refuges using by preys are high enough, prey population reaches its maximum envi-

ronmental carrying capacity and predator population can go extinct.

According to T. K. Kar (2005)([98]), increasing the amount of refuge can increase preys densities and

lead to populations outbreaks. So a refuge can be important for the biological control of a pest.

2.1.3 Stabilizing and destabilizing effects

For Z. Ma et al. (2009)([124]), the effects of prey refuges play an important role in determining the

stability of the interior equilibrium point of the considered model. On the one hand, under a very

restricted condition, the refuges used by preys have a stabilizing effect, that is, increases the local

stability of the interior equilibrium. Here, stabilization or increase of stability refers to cases where

an interior equilibrium point changes from repeller to an attractor due to changes in the value of a

control parameter. On the other hand, the refuges have a destabilizing effect on the stability of the

positive equilibrium point when a given assumption holds. In their paper, destabilization or decrease

of stability is with regard to cases where a positive equilibrium point changes from locally stable state

to an unstable state due to changes in the value of the controlled parameter.

According to Y. Huang et al. (2005)([98]), The prey refuge has a stabilizing effect on prey-predator

interactions. If a small refuge is added to the model which is considered, the refuge will not alter the

dynamical stability of the neutrally stable Lotka-Volterra model, adding a large refuge to the model

replaced the oscillatory behavior with a stable equilibrium.

Remark 2.1. Comparing the conclusions obtained from analyzing stability properties of two types

of refuges using by preys, Z. Ma et al. (2009)([124]) have obtained that the refuges which protect a

constant number of preys have a stronger stabilizing effect on population dynamics than the refuges

which protect a constant proportion of preys.
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2.1.4 Appearance of limit cycles

According to T. K. Kar (2005)([98]), the following results hold :

1. If m = 1 +
γa+ cβ

ka(γa− cβ)
, then system (2.9) enters into Hopf type small amplitude periodic

solutions (limit cycles) near the interior equilibrium.

2. If m ≤ 1 +
γa+ cβ

ka(γa− cβ)
, then system (2.9) has exactly one limit cycle which is globally

asymptotically stable.

3. If cβ > γa, the interior equilibrium exists if +
γa+ cβ

ka(γa− cβ)
< m < +

γ + cβ

k(γa− cβ)
and a

globally stable limit cycle exists when m ≤ 1 +
γa+ cβ

ka(γa− cβ)
.

The following results has been obtained by Y. Huang et al. (2005)([98])from the model (2.10) :

1. If m < 1 +
2bcβ

a(kα− 2c)

√
c

kα− c , then system (2.10) admits at least one limit cycle.

2. If 0 < m < 1 +
2bcβ

a(kα− 2c)

√
c

kα− c , then system (2.10) admits only one limit cycle which is

globally asymptotically stable.

2.2 Effects Of Functional Response on Predator-Prey Models

2.2.1 Some predator-prey models with different functional responses

2.2.1.1 Predator-prey model with Holling type II functional response

The predator-prey model with logistic growth for preys and a Holling type II functional response is

also called the Roseinzweig-MacArthur predator-prey model. Interactions between prey and predator

populations with the Holling type II functional response and logistic growth for preys are governed

by the following set of ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− axy

1 + ahx
,

ẏ(t) =

(
cax

1 + ahx
−m

)
y,

(2.11)

whereK is the environmental capacity, a is the prey capture rate, h is the capture time,m is the preda-

tors intrinsic mortality, and c denotes the conversion efficiency of ingested preys into the predators.

2.2.1.2 Predator-prey model with Holling type III functional response

A predator-prey model with logistic growth for preys and Holling type III functional response has

been studied by C. Jun-Ping and Z. Hong-De (1986)([97]). Their model is the following one :




ẋ(t) = ax− bx2 − αx2y

x2 + β2
,

ẏ(t) =

(
k2

x2 + β2
− c
)
y.

(2.12)
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where the parameters a, b, c, α, β and k are positive constants standing respectively for the intrinsic

growth rate of the preys, the strength of competition among individual of preys (such that
a

b
is the

carrying capacity of the prey), the death rate for the predators, the maximal growth rate or the satura-

tion constant, the half saturation constant, the conversion factor denoting the number of newly born

predator for each captured prey.

2.2.1.3 Predator-prey model with Holling type IV functional response

S. Ruan and D. Xiao (2001)([148]) have considered a predator-prey system with nonmonotonic func-

tional response. They considered only the system with the simplified Monod-Haldane or Holling type

IV function p(x) =
mx

a+ x2
. Their model is the following one :





ẋ(t) = rx
(

1− x

K

)
− xy

a+ x2
,

ẏ(t) =

(
µx

a+ x2
−D

)
y.

(2.13)

After S. Ruan and D. Xiao (2001)([148]), J. C. Huang and D. Xiao (2004)([86]) have studied the

dynamics of a predator-prey system with the original Monod-Haldane or Holling type-IV function

p(x) =
mx

a+ bx+ x2
. Their model is given by the following set of two ordinary differential equations:





ẋ(t) = rx
(

1− x

K

)
− xy

a+ bx+ x2
,

ẏ(t) =

(
µx

a+ bx+ x2
−D

)
y,

(2.14)

where K > 0 is the carrying capacity of the prey population and D > 0 is the death rate of the

predator population, and r > 0 is the maximum growth rate of the preys, µ > 0 is the maximum

predation rate , and a > 0 is the so-called half-saturation constant. The parameter b is such that the

denominator of above system does not vanish for non-negative x and b > −2
√
a.

2.2.1.4 Predator-Prey Model with Ivlev type functional response

The Ivlev type functional response is among those functional responses which do not belong to the

set of Holling type functional response. In an article on the dynamics of predator-prey models with

the Ivlev type functional response, K. Ryu (2015)([150]) has studied the following model :
{
ẋ(t) = rx(1− x)− (1− e−ax)y,
ẏ(t) = ((1− e−ax)−D)y,

(2.15)

where r, a and D are positive constants that stand for the prey’s intrinsic growth rate, the efficiency

of the predator for capturing prey and the predator death rate, respectively. Here x(t) and y(t) are the

population densities of prey and predator populations at time t, respectively.
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2.2.1.5 Predator-Prey Model with Hassel-Varley type functional response

The Hassel-Varley functional response is one of those ratio-dependent functional response different

from density dependent functional responses, which have been built for predator-prey interactions.

The Hassel-varley type functional response has been used by SZE-Bi Hsu et al. (2008)([85]) in a

model with logistic growth for preys. They argued that predator-prey models with Hassell-Varley

type functional response are appropriate for interactions where predators form groups. Their model

is the following set of two ordinary differential equations :




ẋ(t) = rx
(

1− x

K

)
− cxy

x+myγ
,

ẏ(t) =

(
fx

x+myγ
−D

)
y,

(2.16)

where γ ∈ (0, 1) is the Hassell-Varley constant, the constants r, K, c, m, f , D are positive that stand

for prey intrinsic growth rate, carrying capacity, capturing rate, half saturation constant, maximal

predator growth rate, predator death rate, respectively.

2.2.2 Bifurcating effects and appearance of limit cycles

F. Wu and Y. Jiao (2019)([180]) have studied the model (2.11) with the following results :

Setting X =
x

rK
, Y =

y

hKr2
and T = rt. Then model (2.11) becomes :





Ẋ(T ) = X(1−X)− XY

X + α
,

Ẏ (T ) =

(
RX

X + α
− σ

)
Y,

(2.17)

with α =
1

ahKr
, σ =

m

r
and R =

c

hr
,

1. System (2.17) enters transcritical bifurcation around R = (1 + α)σ.

2. Let us assume R > σ(α + 1) and α < 1. If a(R0) < 0 ([180], p.9), the periodic solution of

the Hopf bifurcation from the positive equilibrium point E∗(x∗, y∗) is asymptotically stable, the

Hopf bifurcation is subcritical. If a(R0) < 0 ([180], p.9), the periodic solution of the bifurcation

is unstable, and the Hopf bifurcation is supercritical.

C. Jun-Ping and Z. Hong-De (1986)([97]) have proposed a qualitative analysis of the model (2.12)

and give conditions for the existence and uniqueness of limit cycles around the positive equilibrium

point. They concluded that if kα − c > 0, kα
2
< c < kα and a > 2bcβ

2c−kα
√

c
kα−c , then there is a

stable limit cycle around the positive equilibrium point E∗(x∗, y∗), where x∗ = β
√

c
kα−c and y∗ =(

a− bβ
√

c

kα− c

)
kβ√
c(kα−c)

.

S. Ruan and D. Xiao (2001)([148]) have shown that the model (2.13) exhibits the Bogdanov-Takens

bifurcation. They have also shown that, by choosing the carrying capacity of the preys and the death

rate of the predators as bifurcation parameters, the system (2.13) undergoes a series of bifurcations
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including the saddle-node bifurcation, the supercritical and subcritical Hopf bifurcations, and the

homoclinic bifurcation.

After S. Ruan and D. Xiao (2001)([148]), J. C. Huang and D. Xiao (2004)([86]) have studied the

dynamics of a predator-prey system with the original Monod-Haldane or Holling type-IV function

p(x) =
mx

a+ bx+ x2
. The qualitative analysis of the model (2.14) indicates that it has a unique stable

limit cycle. The bifurcation analysis of the system (2.14) exhibits static and dynamical bifurcations

including saddle-node bifurcation, Hopf bifurcation, homoclinic bifurcation and bifurcation of cusp-

type with codimension two (ie, the Bogdanov-Takens bifurcation), and it also exists codimension

three degenerated equilibrium and homoclinic orbit.

In an article on the dynamics of predator-prey models with the Ivlev type functional response, K.

Ryu (2015)([150]) has studied the existence and the uniqueness of limit cycles. He has shown that if

D < 1− e−a and a > − (2D+(1−D)ln(1−D))ln(1−D)
D+(1−D)ln(1−D)

, then system (2.15) has a unique stable limit cycle.

The Hassel-varley type functional response has been used by SZE-Bi Hsu et al. (2008)([85]) in a

model with logistic growth for preys. For terrestrial predators that form a fixed number of tight

groups, they have shown that the existence of an unstable positive equilibrium in the predator-prey

model (2.16) implies the existence of an unique nontrivial positive limit cycle.

2.3 Effects Of Additional Food on Predator-Prey Models

2.3.1 Predator-Prey Models incorporating additional food

2.3.1.1 The P. D. N. Srinivasu et al. model (2007)

P. D. N. Srinivasu et al. (2007)([163]) has formulated a model representing predator-prey dynamics,

when the predator is provided with some additional food, by modifying a predator-prey model with

Holling type II functional response. They assumed that the predator is provided with additional food

of constant biomass A, which is distributed uniformly in the habitat as in the case with the prey as

well as the predator in the habitat. They also assume that the number of encounters per predator with

the additional food is proportional to the density of the additional food. Here, the proportionality

constant characterizes the ability of the predator to identify the additional food. The aim of their

research is to study the consequences of providing additional food on the system dynamics. Thus

their model representing predator-prey dynamics when the predator is provided with additional food

is the following coupled differential system :




ẋ(t) = rx
(

1− x

K

)
− e1xy

1 + e1h1x+ e2h2A
,

ẏ(t) =
n1e1xy + n2e2Ay

1 + e1h1x+ e2h2A
−my,

(2.18)

where h1 (h2), e1 (e2), n1(n2) respectively represent the handling time of the predators per unit quan-

tity of preys (additional food), ability for the predator to detect the preys (additional food) and the

nutritional value of the prey (additional food).
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Setting c =
1

h1

, b = n1c, η =
n2e2

n1e1

and α =
n1h2

n2h1

, system (2.18) becomes :





ẋ(t) = rx
(

1− x

K

)
− cxy

a+ x+ αηA
,

ẏ(t) =
b(x+ ηA)

a+ x+ αηA
−my,

(2.19)

Setting X =
x

a
, T = rt, Y =

cy

ar
and replacing X by x, Y by y and T by t, system (2.19) becomes :





ẋ(t) = [g(x, α, ξ)− y]f(x, α, ξ),

ẏ(t) =

[
βf(x, α, ξ)

(
1 +

ξ

X

)
− δ
]
y,

(2.20)

with f(x, α, ξ) =
x

1 + αξ + x
, g(x, α, ξ) = (1 + αξ + x)

(
1− x

γ

)
where γ =

K

a
, β =

b

r
, δ =

m

r

and ξ =
ηA

a
.

2.3.1.2 The B. S. R. V. Prasad et al. model (2013)

Considering the Beddington-DeAngelis model representing the predator-prey dynamics with mutual

interference among predators, and assuming that the predators are provided with additional food

of biomass A, which is uniformly distributed in the habitat and that the number of encounters per

predator with the additional food is proportional to the density of the additional food, B. S. R. V.

Prasad et al. (2013)([143]) formulated the following model :




ẋ(t) = rx
(

1− x

K

)
− cxy

a+ x+ αηA+ ρy
,

ẏ(t) =
b(x+ ηA)

a+ x+ αηA+ ρy
−my,

(2.21)

where c =
1

h1

stands for maximum rate of predation. a =
1

e1h1

is the normalization coefficient

that relates the densities of the predator and prey populations (in the absence of additional food)

to the environment in which they interact. ρ =
e2h2

e1h1

measures the strength of mutual interference

among the predators. b = εc the maximum growth rate of the predators. α =
hA
h1

(the ratio between

the handling times towards the additional food and the preys) denotes the quality of the additional

food relative to the preys. h1, h2 and hA represent the handling time of the predators per prey item,

interaction time between predators and the handling time of the predator per unit quantity of the

additional food respectively. e1, e2 and eA represent respectively constants that would depend on

factors such as the predators movement rate while searching to detect preys or other predators and

the constant that signifies the predators movement rate while searching to detect the additional food.

ε ∈ (0, 1) represents the efficiency with which the food consumed by the predator gets converted into

predator biomass. Here, authors term the additional food to be of low quality if the ratio of handling

times between additional food and preys is greater than the ratio between the maximum predator

growth rate and its death rate and it termed as high quality food if the above inequality reverses.
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Thus the quality of the additional food is decided by the value of α relative to the ratio
β

α
. From the

definition of η =
eA
e1

authors infer that it represents effectual ability of the predator to detect additional

food relative to the prey. Thus, the term ηA represents quantity of additional food perceptible to the

predator relative to prey.

SettingX =
x

a
, T = rt, Y =

cy

ar
and replacingX by x, Y by y and T by t, system (2.19) becomes the

following non-dimensionless model which reduce the number of parameters as well as the complexity

associated with the analysis :




ẋ(t) = x

(
1− x

γ

)
− xy

1 + αξ + x+ εy
,

ẏ(t) =
β(x+ ξ)y

1 + αξ + x+ εy
− δy,

(2.22)

where γ =
K

a
, β =

b

r
, δ =

m

r
, ε =

ρ

c
and ξ =

ηA

a
.

Here it is pertinent to note that the parameter ξ represents the normalized quantity of additional food

perceptible to predator relative to prey.

2.3.2 Distraction effect

From the analysis of their models (2.18-2.19-2.20), Srinivasu et al. (2007)([163]) have concluded

that:

If the handling time for the additional food is supposed to be higher than that of preys. Here, they

find that, if the predators population goes extinct in the absence of additional food, it is not possible

to bring in eventual predator-prey coexistence by providing additional food to predators. Therefore,

if in the absence of additional food, the births due to consumption of preys are not compensating the

deaths, then adding any amount of additional food cannot improve the situation. This is due to the

distraction effect caused by the addition of low-quality food which takes more time to consume when

compared with that of a prey item and the predators are time limited. Thus, in this situation biological

control is not possible through additional food.

From the analysis of their models (2.21-2.22), B. S. R. V. Prasad et al. (2013)([143]) have concluded

that :

When the strength of mutual interference is assumed to be greater than unity (signifying stronger

mutual interference), it is possible to control and limit the prey population by the predators with

provision of high quality additional food to predators. However, the high mutual interference in

predators deters the prey from going extinct. This is due to distraction effect caused on predators due

to higher mutual interference and availability of large quantities of high quality additional food. It is

noted worthy that in the absence of additional food, if the prey can not support the predators towards

coexistence due to its poor nutritive value, it is possible to bring in stable coexistence by provision of

high quality food to predators, and thus control the preys in the system although it can not be driven

to extinction.
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2.3.3 Fluctuating individual populations effect

From the analysis of their models (2.21-2.22), B. S. R. V. Prasad et al. (2013)([143]) have concluded

that :

1. In the case where the interference between the predators is weak (less than 1), along with

bringing in coexistence and controlling the preys by providing additional food to predators, it

becomes possible to eradicate the preys from the system by appropriate choice on quality and

quantity of additional food and strength of interference between predators. In this case, pro-

viding the predators with additional food may either cause an increase in the eventual predator

population, and decrease eventual prey population or it may even bring in oscillations into the

system depending on the characteristics of the high quality additional food.

2. In the considered models (2.21-2.22), the additional food of high quality acts as supplement

to the predators, enhancing their growth at low prey concentrations. But, because of the self-

limiting behavior of the predators, this growth is limited. Thus, the provision of additional food

(of high quality) stabilizes the system at low prey populations. With further increase in the

quantity of the high quality additional food, the predators eradicate the prey from the system

and get stabilized on the predator axis. In this case the eradication becomes possible due to the

ability for the predators to spend more time with the high quality additional food, which results

in numerical abundance of predators and loosing less time due to mutual interference.

From the analysis of their models (2.18-2.19-2.20), Srinivasu et al. (2007)([163]) have concluded

that:

If the ratio between the handling times of the additional food and the preys is less than the ratio

between the maximum predator growth rate and its starvation rate, several subcases are possible.

If the predator population goes extinct in the system without additional food, then we can bring in

coexistence of predators and preys by providing the predators with additional food with concentration

level belonging to a specified interval. Here, the additional food increases the consumption of the

predator population which reflects in the numerical abundance of the predator which in turn increases

the per capita consumption of preys. As a result, there is a decrease in the equilibrium prey population.

2.3.4 Stabilizing effect

From the analysis of their models (2.18-2.19-2.20), Srinivasu et al. (2007)([163]) have concluded

that:

If in the absence of additional food, the system admits an interior equilibrium, then introduction of

additional food leaves the prey equilibrium level unaltered and the predator equilibrium increases

with food supply. The nature of the equilibrium depends on the nature of the interior equilibrium in

the absence of additional food. If it is asymptotically stable when there is no food supply, then it will

continue to be asymptotically stable with increase in food supply. On the other hand, if it is unstable
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when there is no food supply, then the amplitude of the oscillations due to instability of the interior

equilibrium decreases with increase in the food level and after a critical food level, the equilibrium

turns asymptotically stable and it will remain in that state for all higher food levels.

From the analysis of their models (2.21-2.22), B. S. R. V. Prasad et al. (2013)([143]) have concluded

that :

For a chosen high quality additional food, if the population cycles eventually, then by increasing the

quantity of additional food, not only the amplitude of these cycles can be reduced but the system can

be stabilized at low prey population. This observation is in contrast to the other classical predator-prey

models with Holling type II functional response, where in the interior equilibrium exhibits instability

nature at low prey population density, which induces limit cycles in the system dynamics [32,83,88].

The occurrence of limit cycles in these cases can be accounted for, by the fact that the predators are

not able to reproduce enough at lower prey concentrations.

2.3.5 Appearance of limit cycles

For Srinivasu et al. (2007)([163]), and according to the analysis of their models (2.18-2.19-2.20) :

If, in the absence of additional food, the system has stable coexistence, then providing additional food

may either cause monotonic increase in the eventual value of the predator while maintaining stability,

or it may bring in oscillations into the system when the supply goes beyond a specified level, leading

to a stable limit cycle. These cycles move towards the predator axis with increase in the additional

food supply. Beyond a certain level of food supply, the prey population goes extinct and predators are

solely supported by the additional food. Even in the case where the eventual predator population is

monotone with respect to food supply, the prey gets eradicated beyond a specific level of food supply.

At this stage the predators can also be eliminated by with-drawing the additional food supply to the

predators.

2.4 Effects Of Harvest On Predator-Prey Models

Predators and preys are ecological resources. So, they can be used either for human being needs or

for commercial industries. It can then be exploited and harvested in fishery, forestry and wildlife

management. There is a wide range of interest in the use of bioeconomic models to gain insight

into the scientific management of the renewable resources like fisheries and forestries. To study

effects of harvesting in the dynamic of relationship between species, some harvesting functions have

been considered by several researchers. While incorporating harvesting of one or both species in the

generalized Gause formulation of predator-preys models (1.29), the new model takes the following

form : {
ẋ(t) = xg(x,K)− yp(x)− ϕ(x(t)),

ẏ(t) = y(−d+ cq(x))− ψ(y(t)),
(2.23)
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where ϕ(x(t)) and ψ(y(t)) are respectively the harvesting functions for the prey and the predator

populations. When only preys are harvested, we have ϕ(x(t)) = 0 and when only predators are

harvested we have ψ(y(t)).

In the literature, it exists some harvesting functions :

1. Constant harvesting functions. For such functions, a constant number of individuals being

harvested are harvested per unit of time.

2. Linear harvesting functions. It means that the number of individuals harvested per unit of

time is proportional to the current population. Thus if ϕ(x) = qEx where q is the catchabil-

ity coefficient, E is the effort applied to harvest individuals x, which is measured in terms of

number of (standard) vessels being used to harvest the individual population. It has been no-

ticed that the proportionate harvesting embodies several unrealistic features like random search

for the harvested population and equal likelihood of being captured for every species of the

harvested population.

3. Nonlinear harvesting functions. For example ([65]), we have the Michaelis-Menten ϕ(x) =
qEx

m1E +m2x
where q is the catchability coefficient,E is the effort applied to harvest individuals

which is measured in terms of number of (standard) vessels being used to harvest the individ-

ual population and m1, m2 are suitable positive constants. The nonlinear harvesting function

exhibits saturation effects with respect to both the stock abundance and the effort-level. The

parameter m1 is proportional to the ratio of the stock-level to the harvesting rate (catch-rate) at

higher levels of effort, and m2 is proportional to the ratio of the effort-level to the harvesting

rate (catch-rate) at higher stock-levels.

4. Continuous Threshold Harvesting functions. For this family of harvesting functions, it is

assumed that harvesting which starts at t = 0, independently of the population size, is not very

realistic. In this regard, threshold policy (TP) harvesting considers starting harvesting only

when a population x has reached a certain threshold value T . Those harvesting functions are

usually defined with constant, linear or nonlinear functions when the harvested population is

greater than the threshold T . Such harvesting functions are defined as ([23]) :

ϕ(x) =

{
0 if x < T,

h if x ≥ T.
(2.24)

ϕ(x) =





0 if x < T,
h(x− T )

h+ x− T if x ≥ T.
(2.25)

ϕ(x) =





0 if x < T1,
h(x− T1)

T2 − T1

if T1 ≤ x ≤ T2,

h if x > T2.

(2.26)
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2.4.1 Predator-prey models incorporating harvesting

2.4.1.1 The P. Lenzini and J. Rebaza model (2010)

P. Lenzini and J. Rebaza ([112]) have formulated and studied a ratio-dependent predator-prey model

with two different non-constant harvesting functions depending on the predator population. The first

harvesting policy involves a linear harvesting rate in terms of the predator species. The model is the

following one : 



ẋ(t) = x(1− x)− axy

x+ y
,

ẏ(t) =

(
bx

x+ y
− d
)
y − hy,

(2.27)

Where x and y denote the prey and predator populations, respectively, a is the capture rate of the

prey, b is the prey conversion rate, d is the natural death rate of the predator and h represents a

constant harvesting effort. As the abundance of the predator species increases, the number of predator

harvested will increase linearly.

In a more realistic approach, P. Lenzini and J. Rebaza take into account the assumption of diminishing

marginal returns of the harvesting organization. This gives the second harvesting policy which is a

rational harvesting rate in terms of the predator species :




ẋ(t) = x(1− x)− axy

x+ y
,

ẏ(t) =

(
bx

x+ y
− d
)
y − hy

c+ y
,

(2.28)

Where x and y denote the prey and predator populations, respectively, a is the capture rate of the prey,

b is the prey conversion rate, d is the natural death rate of the predator, h is the maximum harvesting

rate of the predator species and c is the number of predator species it takes to reach one-half of

the maximum harvesting rate. This model characterizes the behavior of a commercial harvesting

company when their decision to harvest depends on both the revenue and cost of harvesting. As more

species become available, harvesting more at a linear rate might not be profitable, due to supply and

demand factors.

2.4.1.2 The T. K. Kar and K. Chakraborty model (2010)

T. K. Kar and K. Chakraborty ([101]) study is mainly concerned with a predator-prey model, the

ecological set up of which is as follows. There is a prey which is harvested continuously and a

predator living on the prey. It is assumed that the predator is not harvested and hence harvesting does

not affect the growth of the predator population directly. However, there is a conflict for common

resource i.e. prey between predators and harvesting agency though the predators have competition

among themselves for their survival. The growth of prey is assumed to be logistic. Let us assume x

and y are respectively the size of the prey and predator population at time t. Keeping these in view,
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the model proposed and studied by T. K. Kar and K. Chakraborty is the following one :




ẋ(t) = rx
(

1− x

K

)
− αxy

a+ x
− h(t),

ẏ(t) =

(
−d+

βαx

a+ x

)
y − γy2,

(2.29)

where r is the intrinsic growth rate of the prey, K is the environmental carrying capacity of prey, α is

the maximal relative increase of predation, a is Michaelis-Menten constant, h(t) is the harvesting at

time t, d is the death rate of predator, β is conversion factor (we assume 0 < β < 1, since the whole

biomass of the prey is not transformed to the biomass of the predator). Density dependent mortality

rate γy2 describes either a self limitation of consumers or the influence of predation. Self limitation

can occur if there is some other factor (other than food) which becomes limiting at high population

densities.

T. K. Kar and K. Chakraborty take the harvest rate h(t) in the form :

h = mqxE

where q is the catchability coefficient, E is the effort used to harvest the population and m (0 < m <

1) is the fraction of the stock available for harvesting.

T. K. Kar and K. Chakraborty extend the model system (2.30), assuming that fishery effort E itself is

a dynamic variable that satisfies :

dE

dt
= Ė(t) = λ(pmqx− c)E

where c is the constant fishing cost per unit effort, p is the constant price per unit biomass of landed

fish and ¸ λ is stiffness parameter.

Thus,the final model becomes :




ẋ(t) = rx
(

1− x

K

)
− αxy

a+ x
−mqxE,

ẏ(t) =

(
−d+

βαx

a+ x

)
− dy − γy2,

Ė(t) = λ(pmqx− c)E

(2.30)

2.4.1.3 The L. Chen et al. model (2011)

Recently Haque ([70]) modified the prey-dependent Michaelis-Menten or Holling type II functional

response p(x) =
bx

1 + Ax
in the classical Bazykin’s model to the ratio-dependent functional response

p(
x

y
) =

bx

y + Ax
proposed by Arditi and Ginzburg ([4]) by modifying the Holling type II functional

response. Haque ([70]) obtained the following system :




ẋ(t) = ax− bxy

y + Ax
− ex2,

ẏ(t) = −cy +
dxy

y + Ax
− fy2,

(2.31)
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where x and y are scaled prey and predator population densities, respectively. Parameter a > 0 is the

prey natural growth rate, b/A > 0 is the prey maximal consumption rate by predators, d/A > 0 is

the maximal growth rate of predators, 1/A > 0 is the half-saturation constant of predators, e > 0 and

f > 0 are the prey and predator intraspecies competition rates, respectively, and c > 0 is the predator

natural mortality rate.

Both harvesting and predation are processes in which members of a population are removed by an

external agency, sometimes for population management, but more often for the benefit of the har-

vester from the point of view of human needs. Hence, the exploitation of biological resources and

the harvesting of populations are commonly practiced in fishery, forestry, and wildlife management,

which is related to the optimal management of renewable resources.

L. Chen et al. ([30]) have formulated and studied a model assuming that the prey population is sub-

jected to harvesting at a constant rate in model (2.31) as follows :




ẋ(t) = ax− bxy

y + Ax
− ex2 −H,

ẏ(t) = −cy +
dxy

y + Ax
− fy2,

(2.32)

where H > 0 is a constant harvesting rate.

For simplicity, L. Chen et al. ([30]) rescaled the state and time variables of model (2.31) as follows :

t = at, x = (
e

a
)x, y = (

be

ad
)y

Dropping the bars, they obtained the following system :




ẋ(t) = x− εxy

αx+ y
− x2 − h,

ẏ(t) = −γy +
εxy

αx+ y
− δy2,

(2.33)

where

γ = c/a, α = Ab/d, ε = b/a, δ = fd/be, h = He/a2.

2.4.1.4 The J. Bohn et al. model (2011)

J. Bohn et al. ([23]) proposed a modified predator-prey model with Michaelis-Menten functional

response and continuous threshold policy harvesting functions on preys. They also assumed that

preys are harvested by using the continuous threshold policy defined by equations (2.25) and (2.26).

Their model is given by :




ẋ(t) = x(1− x)− axy

1 +mx
− ϕ(x(t)),

ẏ(t) =

(
bx

1 +mx
− d
)
y(t),

(2.34)

Where x and y denote the prey and predator populations, respectively. The parameters a, b, d, m are

all positive constants : a is the capture rate of the prey, b is the prey conversion rate, d is the natural

death rate of the predator. The term
x

1 +mx
is known as a Holling type II functional response. ϕ is

the continuous threshold policy defined by equations (2.25) and (2.26).
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2.4.1.5 The Belkhodja et al. model (2018)

Recently, Chiboub et al. (2012)([31]) proposed a new functional response, in order to explain the

influence of changing water level fluctuations in an artificial lake on fish predator-prey dynamics.

In the studied lake, two interdependent species are considered; the pike (brochet in French) which

is the most important predator and the roach (gardon in French) which is the prey. This functional

response is based on the following general considerations. When a predator attacks a prey, it has

access to a certain quantity of food depending on the water level. When the water level is low, during

the autumn, the predator is more in contact with the prey, and the predation increases. Conversely,

when the water level is high, in the spring, it is more difficult for the predator to find a prey and the

predation decreases. Chiboub et al. (2012)([31]) assumed that the accessibility function b(t) for the

prey is continuous and 1-periodic, the minimum value b1 is reached in spring and the maximum value

b2 is attained during autumn. The predator needs a quantity γ as food, but it has access to a quantity

g(x, y) =
b(t)x

y +D
which depends on the water level, where D measures other causes of mortality

outside of predation. Thus, if g(x, y) ≥ γ, then the predator will be satisfied with the quantity γ of

his food. Otherwise, if g(x, y) < γ, the predator will content himself with g(x, y) =
b(t)x

y +D
. To

summarize, the quantity of food received per predator and per unit of time is min
(
b(t)x

y +D
, γ

)
.

Chiboub et al. (2012)([31]) proposed and studied the following predator-preys model :




ẋ(t) = rx
(

1− x

K

)
−min

(
b(t)x

y +D
, γ

)
y(t),

ẏ(t) =

(
emin

(
b(t)x

y +D
, γ

)
− d
)
y(t),

(2.35)

where r, e, d are positive constants.

In order to investigate the effects of harvesting on the prey-predator ecosystem, Belkhodja et al.

(2018)([15]) incorporate a linear harvest of preys in the model (2.35) proposed by Chiboub et al.

(2012)([31]). Belkhodja et al. (2018)([15]) focused on the autonomous case and use as predation

rate, the mean function b =

∫ 1

0

b(1 + 0.5cos(2πt))dt. Belkhodja et al. (2018)([15]) aimed to obtain

some results which are theoretically beneficial to maintaining the sustainable development of the prey-

predator system as well as keeping the economic interest of harvesting at an ideal level. Therefore,

they studied the following prey-predator model :




ẋ(t) = rx
(

1− x

K

)
−min

(
bx

y +D
, γ

)
y(t)− qEx(t),

ẏ(t) =

(
emin

(
bx

y +D
, γ

)
− d
)
y(t).

(2.36)

Assuming that b < min

(
γ(y0 +D)

x0

,
4aγDd

K(a+ d− qE)2

)
, with x0 = x(0) and y0 = y(0), the model

(2.36) becomes the following reduce model :




ẋ(t) = rx
(

1− x

K

)
− bxy

y +D
− qEx(t),

ẏ(t) =

(
e
bxy

y +D
− d
)
y(t),

(2.37)
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where q is the catchability coefficient of the prey species and E denotes the effort devoted to the

harvesting.

2.4.2 Fluctuating in individual population effect

Belkhodja et al. (2018)([15]) have concluded that, the presence of harvesting can impact the exis-

tence and the behavior of the positive equilibrium, that is for 0 ≤ E ≤ a

q

(
1− dD

ebK

)
, the two fish

populations can be maintained at an appropriate equilibrium level in the habitat. As harvesting be-

comes larger than the level
a

q

(
1− dD

ebK

)
, overharvesting can lead to the extinction of the predators.

Indeed, the density of the prey population decreases with increasing effort used to harvesting, which

leads to a more difficult situation for the predator to find a prey, and to possible extinction.

J. Bohn et al. ([23]) have shown that when the harvesting function (2.26) is used, the predator popula-

tion density increases as h increases if the prey conversion rate b and the predator death rate d satisfy

the relation T1b > (mT1 + 1)d. The predator population decreases if the inequality is reversed.

2.4.3 Stabilizing effect

J. Bohn et al. ([23]) have shown that harvesting has a stabilizing effect on the ecosystem. A stable

equilibrium remains to be stable when threshold harvesting is applied, and an unstable equilibrium

becomes stable for some sets of parameters. With the harvesting function (2.25), a stable focus of

the system without harvesting, moves to the stable focus of the system with harvesting. An unstable

focus moves to a stable node. With the harvesting function (2.26), a stable focus of the system without

harvesting moves to a stable node and an unstable focus moves to a stable focus.

2.4.4 Bifurcating effects and appearance of limits cycles

J. Bohn et al. ([23]) have proved that when the harvesting function (2.26) is used, it is possible to

have saddle-node and transcritical bifurcations for some values of the parameter h. And when the

two different type of harvesting functions (2.25) and (2.26) are used, it is possible to have subcritical

and supercritical Hopf bifurcations around the coexistence equilibria when those equilibria satisfy the

conditions that permit them to be of center-type.

According to P. Lenzini and J. Rebaza ([112]), system (2.27) undergoes a transcritical bifurcation

involving the two equilibria (The coexistence equilibrium and the one without predators). The trans-

critical bifurcation occurs when the predator conversion rate b matches the sum of its death rate d and

the harvesting rate h. P. Lenzini and J. Rebaza ([112]) have also shown that, under certain conditions

for the coexisting equilibrium to be a center, the system (2.27) exhibits subcritical and supercritical

Hopf bifurcations. According to P. Lenzini and J. Rebaza ([112]), a pitchfork bifurcation is detected

for the parameter value h = 1/3 for the system (2.28).

It is proved by L. Chen et al. ([30]) that their model (2.32) can undergo Hopf bifurcation and
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Bogdanov-Takens bifurcation near the corresponding positive equilibrium as some parameters of the

model vary.

2.5 Effects Of Discrete Time Delay On Predator-Prey Models

For reasons like maturating time, gestation time or capturing time, time delays of one type or another

have been incorporated into predator-prey models. It has been shown that, generally delay differential

equations can exhibit much more complicated dynamics than ordinary differential equations.

Time delays can be incorporated into the generalized Gause-type predator-prey model (1.29) (assum-

ing that p(x) = q(x)) in five different ways as follows :

1. A time delay τ standing for maturation time for prey population in the prey specific growth

term g(x(t), K), that is,
{
ẋ(t) = x(t)g((x− τ), K)− yp(x),

ẏ(t) = y(t)(−d+ cp(x)).
(2.38)

2. A time delay τ standing for gestation time or reaction time of predator population in the predator

response term p(x(t)) in the predator equation, that is,
{
ẋ(t) = x(t)g(x(t), K)− yp(x),

ẏ(t) = y(t)(−d+ cp(x(t− τ))).
(2.39)

3. A time delay τ in the interaction term y(t)p(x(t)) of the predator equation, assuming that

the change rate of predators depends on the number of prey and of predators present at some

previous time, that is,
{
ẋ(t) = x(t)g(x(t), K)− yp(x),

ẏ(t) = −dy(t) + cy(t− τ)p(x(t− τ)).
(2.40)

The last two models are obtained by incorporating one delay for the prey dynamic and another

one for the predator dynamic. The two delays can be assumed different or equal.

4. A time delay τ1 standing for maturation time for prey population and a time delay τ2 represent-

ing gestation time or reaction time of predator population
{
ẋ(t) = x(t)g(x(t− τ1), K)− yp(x),

ẏ(t) = y(t)(−d+ cp(x(t− τ2))).
(2.41)

5. A time delay τ1 representing maturation time for prey population and a time delay τ2 assuming

that the change rate of predators depends on the number of prey and of predators present at

some previous time
{
ẋ(t) = x(t)g(x(t− τ1), K)− yp(x),

ẏ(t) = −dy(t) + cy(t− τ2)p(x(t− τ2)).
(2.42)
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In what follows, four examples of modified predator-prey models incorporating one or two discrete

time delays are proposed, with different functional responses taking into account density-dependence

and ratio-dependence.

2.5.1 Predator-prey models incorporating discrete time delay

2.5.1.1 The S. Gakkhar et al. model (2009)

S. Gakkhar et al. ([52]) have formulated a Beddington-DeAngelis ratio-dependent predator-prey

model with discrete time delay. The delay terms occur in growth as well as in interaction terms.

For this, they assumed that the prey takes time τ1 to convert the food into its growth, whereas the

predator takes time τ2 for the same. Their delayed predator-prey model is the following one :




ẋ(t) = x(t)

(
1− x(t− τ1)− a1x(t)y(t)

a+ x(t) + by(t)

)
,

ẏ(t) = d1y(t)

(
−d+

aax(t− τ2)

a+ x(t− τ2) + by(t− τ2)

)
.

(2.43)

The model (2.43) has been studied by S. Gakkhar et al. with the assumption that τ1 = τ2. The case

τ1 6= τ2 has been studied later by C. Xu and P. Li ([185]).

2.5.1.2 The Z. Jiang et al. model (2010)

A delayed predator-prey system with Holling II functional response has been formulated and studied

by Z. Jiang et al. ([94]) for the stability, local Hopf bifurcation the global Hopf bifurcation. Their

model is the following one :





ẋ(t) = x(t)

(
r1 − a11x(t− τ)− a12y(t)

1 +mx(t)

)
,

ẏ(t) = y(t)

(
−r2 +

a21x(t)

1 +mx(t)
− a22y(t)

)
.

(2.44)

Where x(t) and y(t) denote the density of prey and predator at time t, respectively. m denotes the

search rate multiplied by the handling time; r1 denotes the intrinsic growth rate of prey; r2 denotes

the death rate of the predator; a11 denotes the intraspecific competitions rate of the prey; a12 denotes

the capturing rate of the predator;
a21

a12

is the conversion rate of nutrients into the reproduction of the

predator; a22 is the interspecies competitions rate of the prey and predator; τ is the generation time of

the prey species. In biological terms,τ , ri, aij (i, j = 1, 2) are positive constants.

2.5.1.3 The H. Zhao et al. model (2013)

H. Zhao et al. (2013) ([200]) incorporates two discrete time delays in a predator-prey model with a

ratio-dependent Holling type III functional response. By means of an iteration technique, they have

obtained sufficient conditions for the global attractiveness of the positive equilibrium. By comparison

arguments, they address the global stability of the semi-trivial equilibrium. By using the theory of
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functional equation and Hopf bifurcation, they have obtained conditions on which positive equilib-

rium exists and the quality of Hopf bifurcation. Using a global Hopf bifurcation result of Wu (1998)

for functional differential equations, they have also obtained the global existence of the periodic so-

lutions. Their model is the following set of two ordinary differential equations :




ẋ(t) = x(t)

(
r1 − a11x(t)− a12x(t)y(t− τ2)

my2(t− τ2) + x2(t)

)
,

ẏ(t) =
a21x

2(t− τ1)y(t)

my2(t) + x2(t− τ1)
− r2y(t).

(2.45)

From the biological sense, we assume that x2 + y2 6= 0. r1, r2, a11, a12, a21, and m are positive

constants, in which r1 denotes the intrinsic growth rate of the prey, a11 is the intraspecific competition

rate of the prey, a12 is the capturing rate of the predator,
a21

a12

describes the efficiency of the predator in

converting consumed prey into predator offspring, m is the interference coefficient of the predators,

and r2 is the predator mortality rate. The delay τ1 ≥ 0 denotes the gestation period of the predator

and τ2 ≥ 0 is the hunting delay of the predator to prey.

2.5.1.4 The B. Barman and B. Ghosh models (2019)

Two well known Lotka-Volterra type and Rosenzweig-MacArthur predator-prey models have been

modified by B. Barman and B. Ghosh (2019) ([12]) in their paper on explicit impacts of harvesting

in delayed predator-prey models. They have incorporated time delay into the logistic growth term of

preys for each model. Authors have analyzed the dynamics of both the models, by considering the

time delay as the bifurcation parameter. The two models proposed and analyzed are the following :




ẋ(t) = rx(t)

(
1− x(t− τ)

K

)
− αx(t)y(t),

ẏ(t) = βx(t)y(t)−my(t).

(2.46)





ẋ(t) = rx(t)

(
1− x(t− τ)

K

)
− αx(t)y(t)

h+ x(t)
,

ẏ(t) =
βx(t)y(t)

h+ x(t)
−my(t),

(2.47)

2.5.2 Stability switching effect

B. Barman and B. Ghosh (2019) ([12]) have proved that time delay can induce instability, for some

critical value, and the instability persists if the delay exceeds the critical threshold. Hence, stability

switching is not the only phenomenon in Lotka-Volterra type and Rosenzweig-MacArthur models.

In addition, they observed that time delay certainly causes instability in Lotka-Volterra type system.

However, Martin and Ruan (2001)([128]) and Kar and Pahari (2006)([100]) proved that there exists

parametric condition, for which, time delay does not change the asymptotic stability behavior of

the coexisting equilibrium. Here, they have shown that such a parameter condition is not possible

in Rosenzweig-MacArthur model, for which steady state remain stable for increasing time delay.

Likewise, the Lotka-Volterra model, Rosenzweig-MacArthur model also experiences instability for
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some critical value and the coexisting equilibrium stays unstable for larger time delay. Therefore,

authors can suggest that both the models have qualitatively similar dynamics under time delay.

C. Xu and P. Li ([185]) have proved that when some conditions depending on parameters of model

(2.43) are saisfied, there exists some critical values for the discrete time delay. For the parameters

values greater or smaller than those critical values, the stability of the coexistence equilibrium can

switch.

2.5.3 Bifurcating effect and Appearance of limit cycles

The bifurcation analysis done by S. Gakkhar et al. ([52]), C. Xu and P. Li ([185]), Z. Jiang et al.

([94]), H. Zhao et al. (2013) ([200]), B. Barman and B. Ghosh (2019) ([12]) have revealed that there

exist critical values of the discrete time delay for which, the formulated and studied models undergo

Hopf bifurcations around the possible coexistence equilibrium and, consequently it is possible to have

the existence of some limit cycles.

2.5.4 Fluctuating in individual population effect

From theoretical analysis of their model (2.45), H. Zhao et al. (2013) ([200]) have shown that the

larger values of gestation time delay cause fluctuation in individual population density and hence the

system becomes unstable.

2.6 Conclusion

At the end of this chapter, we can conclude that the refuges used by preys can have a stabilizing

effect, that is, increases the local stability of the interior equilibrium. The prey refuge can induce

a destabilizing impact on the stability of the positive equilibrium point. Adding a small refuge to a

predator-prey model, the refuge will not alter the dynamical stability of the neutrally stable Lotka-

Volterra model, adding a large refuge to the model replaced the oscillatory behavior with a stable

equilibrium. By comparing the conclusions obtained from analyzing stability properties of two types

of refuges used by preys, we can conclude that the refuges which protect a constant number of preys

have a stronger stabilizing effect on population dynamics than the refuges which protect a constant

proportion of preys. The refuges used by preys can induce appearance of limit cycles.

Replacing the Holling type I functional response by any other functional response in a predator-prey

model can induce appearance of different types of bifurcation and limit cycles.

Talking about providing additional fixed food to predator, It has been shown that incorporating ad-

ditional fixed food for predators can induce distraction effect, fluctuation of individual populations,

stabilizing effects and appearance of limit cycles.

The presence of harvesting of prey species, predator species or both prey and predator species can

induce fluctuating in individual population effect, stabilizing effect, bifurcating effects with different
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type of bifurcations and appearance of limits cycles.

In most of the delayed predator-preys models, the effect of the delay is studied by considering the

time delay as the bifurcation parameter. It is proved that the time delay can induce instability for

some critical values, and the instability persists if the delay exceeds the critical thresholds. Incorpo-

rating a discrete time delay in a predator-prey model can also induce appearance of Hopf bifurcation

and limit cycles.
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CHAPTER THREE

OPTIMAL HARVESTING AND STABILITY

ANALYSIS IN A LESLIE-GOWER DELAYED

PREDATOR-PREY MODEL

Abstract
A delayed Leslie-Gower predator-prey model with continuous threshold prey harvesting is formulated

and studied. Existence and local stability of the positive equilibrium of the system with and without

the discrete time delay are completely determined in the parameter plane. Considering the discrete

time delay as parameter, we investigate the effect of delay on stability of the coexisting equilibrium. It

is observed that there are stability switches and a Hopf bifurcation occurs when the delay crosses some

critical values. Applying the normal form theory and the centre manifold theorem, the direction and

stability of the Hopf bifurcations are explicitly determined by the parameters of the system. Optimal

harvesting is also investigated and some numerical simulations are given to support and extend our

theoretical results.

3.1 Introduction

Leslie has introduced a predator-prey model ([113]), including support capability that the environment

provides predators is proportional to the number of prey. Leslie advances that the growth rate of

predators and preys admits an upper limit which can be approached under certain conditions : for the

predator when the number of prey is high, for the prey when predator numbers (can be also the number

of prey) is low ([113], [114]). The Leslie-Gower term means in absence of preys, the predators have

an oscillatory behavior. There are many predator-prey models in the literature with Leslie-Gower

term or a modified Leslie-Gower term and Holling type II functional response ([84], [80], [187],

[64], [191]). Some of them analyze bifurcations ([84], [194], [66]), persistence ([139]) or seasonally

varying parameters ([51]). The Leslie-Gower predator-prey model has not yet been analyzed as in this

chapter, considering optimal harvest and response function of type III. Profit, over-exploitation and

extinction of a species being harvested are primary concerns in ecology and commercial harvesting

industries. Thus, current research incorporates a harvesting component in mathematical models to
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study the effects it has on one or multiple species. This has attracted interest from the commercial

harvesting industry and from many scientific communities including biology, ecology, and economics.

Most predator-prey models in the literature consider either constant or linear harvesting functions

([93], [99], [111], [182]). Recently, Tchinda et al., Tankam et al. ([173], [169]) considered a system

of delay differential equations modelling the predator-prey dynamics with continuous threshold prey

harvesting and Holling response function of type III. In ([173]), the model system was given by :

{
ẋ(t) = ϕ(x(t))−mp(x(t))−H(x(t)),

ẏ(t) = [−d+ cmp(x(t− τ))]y(t),
(3.1)

where x(t) and y(t) denote the population of preys and predators at tim t respectively. The parameter

d is the natural mortality rate of predators. Parameters c and m are positive constants. The function

ϕ(x) = rx
(

1− x

K

)
(3.2)

models the behavior of preys in absence of predators, where r denote the growth rate of preys when

x is small, and K is the capacity of the environment to support the preys. The functions H(x) and

p(x) which are the harvesting function of the preys and the response function of predators to preys

respectively, are defined by

H(x) =





0 if x < T,
h(x− T )

h+ x− T if x ≥ T.
(3.3)

and

p(x) =
x2

ax2 + bx+ 1
(3.4)

where a is a positive constant and b is a nonnegative constant. This function is one of potential

response function of predators to preys, modelling the consumption of preys by predators. It reflects

very small predation when the number of preys is small , and a group of advantage for the preys when

the number of prey is hight (p(x) tends to
1

a
when x tends to infinity). For the harvesting function, T

is the threshold value. In this way, once the prey population reaches the size x = T , then harvesting

starts and increases smoothly to a limit value h. Here, a discrete time delay τ is in the predator

response term p(x(t)) in the predator equation. This delay can be regarded as a gestation period or

reaction time of the predators. In ([169]), System (3.1) has been investigated, but with a piecewise

linear threshold policy harvesting given by

H(x) =





0 if x < T1,
h(x− T1)

T2 − T1

if T1 ≤ x ≤ T2,

h if x > T2.

(3.5)

This piecewise linear threshold policy harvesting has been previously introduced in ([23]) in a

predator-prey model without discrete time delay where a Holling response function of type II was

considered. In these models, global qualitative and bifurcation analysis are combined to determine
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the global dynamics of the model. But, note that, all those models do not take into account the fact

that reduction in a predator population has a reciprocal relationship with per capita availability of its

preferred food. This assumption leads the Leslie-Gower formulation. On the other hand, time delay

plays an important role in many biological dynamical systems, being particularly relevant in ecology,

where time delays have been recognized to contribute critically to the stable or unstable outcome

of prey densities due to predation. The introduction of time delay into the population model is more

realistic to model the interaction between the predator and prey populations and the population models

with time delay are of current research interest in mathematical biology ([106], [149]). There is

extensive literature about the effects of delay on the dynamics of predator-prey models. In this chapter,

we consider a delayed Leslie-Gower predator-prey model both with refuge and the piecewise linear

threshold policy harvesting given by (3.5). The Leslie-Gower formulation is based on the assumption

that reduction in a predator population has a reciprocal relationship with per capita availability of its

preferred food. Indeed, Leslie introduced a predator-prey model where the carrying capacity of the

predator environment is proportional to the number of prey ([113], [114]). He stresses the fact that

there are upper limits to the rates of increase of both prey x and predator y, which are not recognized in

the Lotka-Volterra model. This chapter is organized as follows. In the second section, a brief literature

of the Lesie-Gower predator-prey models and effects of prey refuge, different functional responses,

harvesting and discrete time delay are given. In the third section, we give a description of the newly

formulated model. In the fourth section, some preliminary results on the boundedness of solutions

for System (3.28) with the harvesting function (3.5) is given. Existence and stability of equilibria of

the non-delayed model are investigated in the fifth section. The sixth section deals with the linear

stability and the Hopf analysis of the model system with discrete time delay. In the seventh section,

direction and stability of Hopf bifurcation are presented. In the eighth section, optimal harvest policy

of population model is derived. Numerical results to illustrate the analytical findings are presented in

the ninth section and, finally, a summary is presented in the tenth section.

3.2 Leslie-Gower predator-prey models and Modified Leslie-Gower

predator-prey models

3.2.1 Leslie-Gower predator-prey models

The Leslie-Gower predator-prey model is one of those modified predator-prey models from the basic

one proposed by Lotka (1920)([122]) and Volterra (1931)([177]) for relationship between predator

and their preys. A dynamic of predators is proposed by Leslie after an analysis of some results

obtained by Gause (1934) ([54]). In fact, Gause (1934)([54]) has studied the growth of two pro-

tozoa named Paramecia Caudatum and Paramecia Aurelia. The two protozoa have been cultivated

separately on the buffered medium (Half loop and One loop) concentration of bacteria. The main ob-

servation which has been used by Leslie is that when the two protozoa are cultivated separately, their
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growth is logistic and the maximal number of each protozoa depends on the concentration of what is

considered as their food. So according to that observation, Leslie concluded that one can modelled

interactions between predator and preys, by assuming that the dynamic of predators can be modelled

by a logistic growth in which the carrying capacity of the predator depends directly on its source of

food. The carrying capacity of the predator’s environment is proportional to the number of preys.

This interesting formulation for the predator dynamics has been discussed by Leslie and Gower in

(1960)([115]) and by Pielou in (1969)([141]). In the formulation of his model, Leslie stresses the

fact that there are upper limits to the rate of increase of both predators and their preys populations.

This hypothesis is not recognized in the Lotka-Volterra model. Predators and their preys can reach

to those upper limits in presence of favorable conditions which can be : for the predator, when the

number of preys per predator is large and for the prey when the number of predators is small. When

all those considerations are taken into account and in the case of continuous time, we have the so

called Leslie-Gower predator-prey models as follows :





ẋ(t) = (r1 − a1y(t))x(t),

ẏ(t) =

(
r2 −

a2y(t)

x(t)

)
y(t),

(3.6)

and





ẋ(t) = (r1 − a1y(t)− b1x(t))x(t),

ẏ(t) =

(
r2 −

a2y(t)

x(t)

)
y(t),

(3.7)

where x(t) and y(t) represent respectively the preys and the predators populations at the time t.

The parameters r1 and r2 are the intrinsic growth rates of the prey and the predator respectively, b1

measures the strength of competition among individuals of preys, a2 is a measure of the food quantity

that the prey provides converted to predator birth. The quantity
r1

b1

is the carrying capacity of the

prey in the absence of predation. The term
y

x
is the Leslie-Gower term which measures the loss in

the predator population due to the fact that its favorite food becomes rare. Those systems are known

respectively as the first and the second Leslie-Gower predator-prey models. In the first model, the

influence of the within-species competition on the prey population is negligible (b1 = 0). So the first

model is the simplification of the second one.

Setting K =
r1

b1

and α =
r2

a2

which represent respectively the environmental carrying capacity of

preys and the measure of the food quality that the preys provides towards the predator births, the

Leslie-Gower predator-prey models (3.6) and (3.7) take the following forms (3.8) and (3.9) which are

often used by some authors.




ẋ(t) = (r1 − a1y(t))x(t),

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t),

(3.8)

and
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



ẋ(t) = r1

(
1− x(t)

K

)
x(t)− a1x(t)y(t),

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t),

(3.9)

Table 3.1: Parameter of the Leslie-Gower predator-prey model

Parameter Interpretation (Definition)

r1 Intrinsic growth rate of preys

r2 Intrinsic growth rate of preys

a1 Predation rate per unit of time

a2 The food quantity that the prey

provides converted to predator birth

b1 Strength of competition among individuals of preys

K = r1
b1

Environmental carrying capacity of preys

α The food quality that the preys

provides towards the predator births

The Leslie-Gower predator preys models has some particularities. They are models without pro-

portionality between the functional response and the numerical response, the principle of the biomass

conversion is not taken into account ([20], [57]). Those models are also among models considering

that during predation, preys are not always killed. So predation can only reduce the growth of the

fecundity of preys ([19]). For example, parasites and herbivorous as predators eat their preys without

killing them.

A. Korobeinikov (2001) ([104]) has established the global stability of the unique coexisting equilib-

rium of the Leslie-gower predator-prey models by defining a Lyapounov function. The Leslie-Gower

predator-prey models do not admit any limit cycle.
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(a) (b)

Figure 3.1: (a) Paramecium Caudatum (1), (b) Paramecium Aurelia (2), (b) The growth of the

”volume” in Paramecium Caudatum and Paramecium Aurelia cultivated separately on the buffered

medium (”half-loop” and ”one-loop” concentrations of bacteria). From G. F. Gause ([54])

In figure (3.2.1), we have the phase portrait of the Leslie-Gower model

Ṅ = rN(1− N
KN

)− λNNP , Ṗ = rN(1− P
αNN

)

Figure 3.2: Phase protrait of the Leslie-Gower model with rN = 2, rP = 1.5, λN = 1,αN = 0.8,

KN = 3. From M. T. Alves ([3])

3.2.2 Modified Leslie-Gower predator-prey models

3.2.2.1 The Leslie-Gower predator-prey model incorporating prey refuge

The F. Chen et al. model (2009)
Prey refuge usually plays two important roles, serving both to reduce the chance of extinction due

to predation and to damp prey-predator oscillations. Theoretical studies of prey refuge in interactive

populations have shown that it has a stabilizing effect on the system dynamics and the addition of

prey refuge substantially reduces the risk of prey extinction (Taylor (1984) ([171]); Krivan (1998)

([105]); Sih (1987) ([159]); Kar (2005) ([98]); Huang et al. (2006) ([87]); Ma et al. (2009) ([124]).
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Hassell (1978) ([76]) shows that adding a sufficiently large refuge to a discrete-time Nicholson-Bailey

model (Nicholson (1933) ([136]); Nicholson and Bailey, 1935 ([137])) stabilizes the system from os-

cillations to stable equilibrium. Many other empirical studies have also suggested that refuges for

prey are crucial in explaining prey persistence (Huffaker (1958) ([91]); Gause et al., (1936) ([55]);

Connell (1970) ([36]); Macan, (1976) ([126])). Prey refuge is potentially important for increasing

species richness in natural communities and of stabilizing population sizes, biomass and productivity

(Pal and Samanta, (2013) ([140])).

In contrast, McNair (1986) ([131]) showed that refuge can exert a locally destabilizing effect and

create large-amplitude oscillations. Ma et al. (2009) ([124]) showed that if the refuge used by prey is

high enough, then the prey population reaches its maximum environmental carrying capacity, and the

predators go extinct.

The following modified Leslie-Gower predator-prey model incorporating prey refuge has been pro-

posed and studied by F. Chen et al. (2009) ([29]).





ẋ(t) = (r1 − a1(1−m)y(t)− b1x(t))x(t),

ẏ(t) =

(
r2 −

a2y(t)

(1−m)x(t)

)
y(t),

(3.10)

where the parameter m stands for the measure of the strength of refuge (0 ≤ m < 1). When

m = 0, all the preys are available to predation. mx(t) models the capacity of a refuge at the time t.

So if mx(t) represents the population of preys that are protected by the refuge, it remains (1−m)x(t)

of preys that are available to predation.

Influence of prey refuge in a Leslie-Gower predator-prey model
F. Chen et al. (2009) ([29]) have investigated the influence of prey refuge in a Leslie-Gower predator-

prey model. The mathematic analysis of their model (3.10) has shown that increasing the amount of

refuge can increase prey densities. As far as the predator species is concerned, when the assumption

a1r2 ≤ a2b1 holds, increasing the amount of prey refuge can decrease the predator densities; when

the assumption a1r2 > a2b1 holds, there exists a threshold m∗, such that for the prey refuge smaller

than this threshold, increasing the amount of prey refuge can increase the predator densities and if

the prey refuge is larger than the threshold, increasing the amount of prey refuge can decrease the

predator densities.

3.2.2.2 Leslie-Gower predator-prey models with different functional responses

Some modified Leslie-Gower predator-prey models have been formulated and studied, by incorporat-

ing a functional response different from the Holling type I, in order to investigate effects of the func-

tional response on the dynamic of the Leslie-Gower predator-preys model. In this section, modified

Leslie-Gower predator-prey with Holling type II, III, IV, Crowley-Martin and Beddington-DeAngelis

functional responses, and effects of those functional responses are given.

The Holling-Tanner (1959-1975) model.
Holling-Tanner model for predator-prey interactions is a modified Leslie-Gower predator-prey model
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proposed by (1975)([170]) by replacing the functional response in the Leslie-Gower model by a

Holling type II functional response. The Holling-Tanner predator-prey model is governed by the

following nonlinear coupled ordinary differential equations :





ẋ(t) = r1

(
1− x

K

)
x− λxy

A+ x
,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t),

(3.11)

The parameter λ denotes the maximal predator per capita consumption rate. A is a saturation

value which corresponds to the number of prey necessary to achieve one half the maximum rate λ.

The ratio-dependent Holling-Tanner (2007) model.
Z. Liang and H. Pan (2007) ([117]) have done a qualitative analysis of a ratio-dependent Holling-

Tanner model. Their model with ratio-dependance is the following :




ẋ(t) = r1

(
1− x

K

)
x− λxy

Ay + x
,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t),

(3.12)

The M. A. Aziz-Alaoui and M. D. Okiye model (2003).
M. A. Aziz-Alaoui and Okiye (2003) ([8]) have proposed a Leslie-Gower predator-prey model with

the Holling type II fonctional response. The difference between their model and the Holling-Tanner

model (3.11) is on the predator dynamic. In the Holling-Tanner model (3.11), the carrying capacity

of the predator is proportional to prey abundance (C = αx where α is the conversion factor of prey

into predators). The term
y

αx
of the predator dynamic of (3.11) is called the Leslie-Gower term. It

measures the loss in the predator population due to rarity (per capita
y

x
) of its favorite food. In the

case of severe scarcity, y can switch over to other populations but its growth will be limited by the

fact that its most favorite food (x) is not available in abundance. This situation can be taken care of

by adding a positive constant d to the denominator. Hence, the second equation of (3.11) becomes

ẏ(t) = r2

(
1− y(t)

αx(t) + d

)
y(t) =

(
r2 −

r2

α

y(t)

x(t) + d/α

)
y(t).

Then, the model proposed and studied by M. A. Aziz-Alaoui and Okiye (2003) ([8])is the following

two-dimensional system of ordinary differential equations :




ẋ(t) =

(
r1 − b1x−

a1y

x+ k1

)
x,

ẏ(t) =

(
r2 −

a2y(t)

x+ k2

)
y,

(3.13)

where x and y denotes the population densities at time t; r1, a1, b1, k1, r2, a2, and k2 are model

parameters assuming only positive values. These parameters are defined as follows : r1 is the growth

rate of prey x, b1 measures the strength of competition among individuals of species x, a1 is the

maximum value which per capita reduction rate of x can attain, k1 (respectively, k2) measures the

extent to which environment provides protection to prey x (respectively, to predator y), r2 describes
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the growth rate of y, and a2 has a similar meaning to a1.

Effects of the Holling type II functional response.
Replacing the linear functional response of the Leslie-Gower model by the Holling type II functional

response can have effects on the dynamic of the Leslie-Gower predator-prey model. The Holling-

Tanner model has been studied by May (1973) ([129]), Tanner (1975), Murray (1989) ([135]) and

Gasull et al. (1997) ([53]). With the Holling type II functional response, there is no more any global

asymptotically stable equilibrium and limit cycles can exist (Methods of Coppel (1991) ([38]) and

some critical transformations have been used to show the existence of a unique limit cycle for (3.12)).

The J. Huang et al. model (2014).
The model proposed and analyzed by J. Huang et al. (2014) ([89]) is a predator-prey system of Leslie

type with generalized Holling type III or sigmoidal functional response. Their model is governed by

the following nonlinear coupled ordinary differential equations :




ẋ(t) = r1

(
1− x

K

)
x− λx2y

Ax2 +Bx+ 1
,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t),

(3.14)

Effects of the Holling type III functional response.
J. Huang et al. (2014) ([89]) have shown that when the Holling type I functional response is replaced

by the Holling type III functional response, the newly formulated model (3.14) has very rich and com-

plicated dynamics. There exist a stable limit cycle enclosing two non-hyperbolic positive equilibria, a

stable limit cycle enclosing an unstable homoclinic loop, two limit cycles enclosing a hyperbolic pos-

itive equilibrium, or one stable limit cycle enclosing three hyperbolic positive equilibria. The model

(3.14) also undergoes degenerate focus type Bogdanov-Takens bifurcation of codimension 3, and it is

possible to have the coexistence of three stable states (two stable equilibria and a stable limit cycle).

The Y. Li and D. Xiao model (2007).
A Leslie type model with a simplified Holling type IV functional response has been proposed and

studied by Y. Li and D. Xiao (2007)([183]). Their model is the following one :





ẋ(t) = r1

(
1− x

K

)
x− λxy

x2 +B
,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t),

(3.15)

Effects of the Holling type IV functional response.
The study of the model (3.15) has shown that replacing the Holling type I functional response by a

Holling type IV functional response has some effects on the dynamics of the model. It is possible to

have a stable limit cycle enclosing two equilibria, a unstable limit cycle enclosing a hyperbolic equi-

librium, a unstable homoclinic loop enclosing a hyperbolic equilibrium, or two limit cycles enclosing

a hyperbolic equilibrium by choosing different values of parameters. However, the model never has

two limit cycles enclosing a hyperbolic equilibrium for all values of parameters.

The N. Ali and M. Jazar model (2013).
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N. Ali and M. Jazar (2013)([2]) have considered and studied a predator-prey model which incorpo-

rates a modified version of the Leslie-Gower with Crowley- Martin functional response. Their model

is the following : 



ẋ(t) = a1

(
1− x

K

)
x− bxy

(1 + cx)(1 + dy)
,

ẏ(t) =

(
a2 −

ey

x+ f

)
y(t),

(3.16)

where x and y denotes the population densities at time t ; a1, a2, b, c, d, e, f and K are model pa-

rameters assuming only positive values and are defined as follows : a1 and K are the intrinsic growth

rate and the carrying capacity of prey population x respectively. The constants b, c and d are the

saturating Crowley-Martin type functional response parameters, in which c measures the magnitude

of interference among preys. Further, a2 describes the growth rate of predator y; e is the maximum

value which per capita reduction rate of y can attain, f measures the extent to which environment

provides protection to predator y.

Effects of the Crowley- Martin functional response.
Replacing the Holling type I functional response by the Crowley- Martin functional response can

induce the existence of Hopf-bifurcation of nonconstant periodic solutions surrounding the interior

equilibrium. Under suitable conditions, it is possible to establish the existence and non-existence of

periodic solutions.

The S. Yu model (2014).
Based on the model proposed and analyzed by Alaoui (2003) ([8]), the model studied by S. Yu (2014)

([192]) incorporates the Beddington-DeAngelis functional response and can be considered as a gen-

eralization of the Alaoui et al. model. The model studied by S. Yu is the following set of two ordinary

differential equations :




ẋ(t) =

(
r1 − px(t)− αy(t)

a+ bx+ cy

)
x(t),

ẏ(t) =

(
r2 −

βy(t)

x(t) + k

)
y(t),

(3.17)

where x and y denotes the population densities at time t; r1, r2, p, α, β, a, b, c and k are model param-

eters assuming only positive values. These parameters are defined as follows : r1 is the growth rate

of prey x, p measures the strength of competition among individuals of species x, a1 is the maximum

value which per capita reduction rate of x can attain, k measures the extent to which environment

provides protection to predator y, r2 describes the growth rate of y, and a2 has a similar meaning to

a1.

Effects of the Beddington-DeAngelis functional response.
The author discuss the structure of nonnegative equilibria and their local stability. Also, the per-

manence of the system is investigated. By applying the fluctuation lemma, qualitative analysis and

Lyapunov direct method, respectively, three sufficient conditions on the global asymptotic stability of

a positive equilibrium have been obtained.
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3.2.2.3 Leslie-Gower predator-prey models with harvesting

Predators and preys can be harvested for human being needs or for commercial reasons. In what

follows, and in order to study effects of harvesting, modified Leslie-Gower predator-preys models

incorporating constant harvesting, linear harvesting and nonlinear harvesting of one species (predator

or prey) or both species (predator and prey) studied by different authors are presented.

The C. Zhu and K. Lan model (2010).
C. Zhu and K. Lan (2010) ([203]) considered a Leslie-Gower predator-preys model with a positive

constant harvesting rate h. They assume that preys are continuously harvested at the constant rate h

by a harvesting agency and the predators are not of commercial importance. Their model is of the

form :





ẋ(t) = r1

(
1− x

K

)
x− λxy − h,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t),

(3.18)

Effects of constant harvesting of preys.
C. Zhu and K. Lan (2010) ([203]) have proved that when preys are continuously harvested at the

constant rate h, and when the positive equilibria on the x-axis exists, there are saddle-nodes, saddles

or unstable nodes depending on the choices of the parameters involved, while the interior positive

equilibria in the first quadrant are saddles, stable or unstable nodes, foci, centers, saddle-nodes or

cusps. C. Zhu and K. Lan (2010) ([203]) have shown that there are two saddle node bifurcations and

by computing the Liapunov numbers and determining its signs, the existence of the supercritical or

subcritical Hopf bifurcations and limit cycles for the weak centers are proved.

The J. Huang et al. model (2013).
The effect of constant-yield predator harvesting on the dynamics of a Leslie-Gower predator-prey

model is studied by J. Huang et al. (2013) ([88]). Their model is the following one :




ẋ(t) = r1

(
1− x

K

)
x− λxy,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t)− h,

(3.19)

where h denotes the constant-yield predator harvesting.

Effects of constant harvesting of predators.
J. Huang et al. (2013) ([88]) have shown that when predators are continuously harvested at the con-

stant rate h, the newly formulated model (3.19) has a Bogdanov-Takens singularity (cusp case) of

codimension 3 or a weak focus of multiplicity two for some parameter values, respectively. It is

also possible to have saddle-node bifurcation, repelling and attracting Bogdanov-Takens bifurcations,

supercritical and subcritical Hopf bifurcations, and degenerate Hopf bifurcation as the values of pa-

rameters vary. Hence, there are different parameter values for which their model has a homoclinic

loop or two limit cycles. J. Huang et al. (2013) ([88]) concluded that their results indicate that the

dynamical behavior of the model is very sensitive to the constant-yield predator harvesting and the
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initial densities of both species. It requires careful management in the applied conservation and re-

newable resource contexts.

The N. Zhang et al. model (2011).
N. Zhang et al. (2011) ([198]) proposed and analyzed a Leslie-Gower predator-prey model with the

assumption that predator and prey species in their model are both of commercial importance. So, they

are subjected to constant effort harvesting. The parameters c1 and c2 measure the effort being spent

by a harvesting agency. Thus, they formulated the following system with linear harvesting function :




ẋ(t) = r1

(
1− x

K

)
x− λxy − c1x,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t)− c2y,

(3.20)

Effects of linear harvesting of preys and predators.
It has been shown by N.zhang et al. (2011) ([198]) that the unique positive equilibrium of the system

is globally stable, which means that suitable harvesting has no influence on the persistent property of

the harvesting system. They found that harvesting can have fluctuating effect on the predator density.

Under some suitable restriction, harvesting has no influence on the final density of the prey species,

while the density of predator species is strictly decreasing function of the harvesting efforts.

The R. P. Gupta et al. model(2012).
A modified version of the Leslie-Gower type predator-prey model is proposed and analyzed by R.

P. Gupta et al. (2012) ([65]). Their model is a bidimensional system of ordinary differential equa-

tion predator-prey model with a nonlinear prey-harvesting function, the Michaelis-Menten harvesting

function. Their model is the following set of two differential equations :




ẋ(t) = r1

(
1− x

K

)
x− qEx

m1E +m2x
,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t),

(3.21)

where q is the catchability coefficient, E is the effort applied to harvest individuals which is measured

in terms of number of (standard) vessels being used to harvest the individual population and m1, m2

are suitable positive constants.

Effects of nonlinear harvesting of preys.
R. P. Gupta et al. (2012) ([65]) have shown that the nonlinear harvesting of preys significantly mod-

ifies the dynamics of the system in comparison to the proportionate harvesting of prey. It is possible

to have bifurcating effects. The model (3.21) can have two, one or no interior equilibrium point in the

first quadrant, where two interior equilibria collapse to one interior equilibrium point and then disap-

pear through saddle-node bifurcation considering the rate of harvesting as bifurcation parameter. The

local existence of limit cycle appearing through local Hopf bifurcation is also possible.

The M. K. Singh et al. model (2016).
M. K. Singh et al. (2016) ([160]) have modelled a Leslie-Gower predator-prey model with Michaelis-

Menten type predator nonlinear harvesting. They have the study the stability and the bifurcation
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analysis of their following model :




ẋ(t) = r1

(
1− x

K

)
x− λxy,

ẏ(t) = r2

(
1− y(t)

αx(t)

)
y(t)− qEy

m1E +m2y
,

(3.22)

where q is the catchability coefficient, E is the effort applied to harvest individuals which is measured

in terms of number of (standard) vessels being used to harvest the individual population and m1, m2

are suitable positive constants.

Effects of nonlinear harvesting of predators.
M. K. Singh et al. (2016) ([160]) have shown that their proposed model exhibits the bistability for

certain parametric conditions. They have shown that nonlinear harvesting of predators can induced a

bifurcating effect. Their model (3.22) exhibits different kinds of bifurcations (e.g., the saddle-node

bifurcation, the subcritical and supercritical Hopf bifurcations, Bogdanov-Takens bifurcation, and

the homoclinic bifurcation) whenever the values of parameters of the model vary. Their analytical

findings and numerical simulations reveal far richer and complex dynamics in comparison to the

models with no harvesting and with constant-yield predator harvesting.

Figure 3.3: The attracting Bogdanov-Takens bifurcation diagram and corresponding phase portraits

of system (3.19). (a) Bifurcation diagram; (b) No equilibria when the parameters lies in region I;

(c) An unstable focus when the parameters lies in region II; (d) A stable homoclinic loop when the

parameters lies on the curve HL; (e) A stable limit cycle when the parameters lies in region III; (f) A

stable focus when the parameters lies in region IV. From J. Huang et al. ([88])
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Figure 3.4: Phase portraits of system (3.19) , (a) A stable homoclinic cycle enclosing an unstable

hyperbolic focus; (b) A stable limit cycle enclosing an unstable hyperbolic focus and arising from the

attracting homoclinic bifurcation (c) Two limit cycles enclosing a stable hyperbolic focus. From J.

Huang et al. ([88])

Figure 3.5: The repelling Bogdanov-Takens bifurcation diagram and corresponding phase portraits of

system (3.19). (a) Bifurcation diagram; (b) A cusp of codimension 2 for the value (0, 0) of parameters;

(c) No equilibria when the couple of parameters lies in region I; (d) An unstable focus when the couple

of parameters lies in region II; (e) An unstable limit cycle when the couple of parameters lies in region

III; (f) A stable focus when the couple of parameters lies in region IV. From J. Huang et al.([88])

With figures (3.3), (3.4) and (3.5), we can see how complex can become the dynamic of a Leslie-
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Gower predator-prey model incorporating a constant harvest of predators.

Figure 3.6: The Bogdanov-Takens bifurcation diagram and corresponding phase portraits of system

(3.22). (a) Bogdanov-Takens bifurcation diagram. (b) The equilibrium point is a cusp. (c) No interior

equilibrium point for parameters lying in region I. (d) An unstable focus for parameters lying in region

II. (e) An unstable limit cycle for parameters lying in region III. (f) A stable focus for parameters lying

in region IV. From M. K. Singh et al. ([160])

Figure (3.6) is an illustration of an example of complex dynamics that can arise from the incorpo-
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ration of nonlinear harvesting of predators.

3.2.2.4 Leslie-Gower predator-prey models with discrete time delay

In what follows, some modified Lesie-Gower predator-preys models incorporating discrete time de-

lay(s) are presented in order to recall the effect of discrete time delay on the initial Leslie-Gower

predator-prey models.

The E. Beretta and Y. Kuang model (1998).
A characteristic behavior of predator-prey dynamics is the often observed oscillatory phenomenon of

the population densities. A common mechanism to do this is to introduce time delays in the models,

which is, indeed, a more realistic approach to the understanding of the predator-prey dynamics. A

simple and natural way to do this is to incorporate a single discrete delay into the predator equations.

In their paper, E. Beretta and Y. Kuang (1998) ([17]) perform global qualitative analyses on some de-

layed ratio-dependent predator-prey systems. Although the ratio-dependent systems do have negative

feedbacks in the predator equations, they are not very helpful if one wants to use the traditional ap-

proaches of constructing Liapunov functionals or make use of suitable Razumikhin type arguments.

Their approach make use of a rather novel and nontrivial way of constructing proper Liapunov func-

tionals, used first in their recent work on the traditional Lotka-Volterra type predator-prey system with

a single discrete delay in the predator equation ([16]).

The following Leslie-Gower predator-prey model incorporating a discrete time delay is a particular

case of the models studied by E. Beretta and Y. Kuang (1998) ([17]).




ẋ(t) = r1

(
1− x

K

)
x− λxy,

ẏ(t) = r2

(
1− y(t− τ)

αx(t− τ)

)
y(t),

(3.23)

The S. Yuan and Y. Song model (2009).
S. Yuan and Y. Song (2009) ([194]) consider the following delayed Leslie-Gower predator-prey model





ẋ(t) = r1

(
1− x(t− τ)

K

)
x− λxy,

ẏ(t) = r2

(
1− y(t)

αx

)
y(t),

(3.24)

The S. Yuan and Y. Song model (2009).
S. Yuan and Y. Song (2009) ([195]) has proposed and studied a delayed LeslieGower predatorprey

system in which they assumed that the predator and the prey species have the same feedback delay to

their growth. Their model is the following one :




ẋ(t) = r1

(
1− x(t− τ)

K

)
x− λxy,

ẏ(t) = r2

(
1− y(t− τ)

αx

)
y(t),

(3.25)

The Y. Ma model (2012).
Y. Ma (2012) ([125]) has proposed the following model in which he has assumed that only an adult
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predator has the ability to predate. Using the time taken for digestion of the prey, he has introduced

the above Leslie-Gower model with two delays.




ẋ(t) = r1

(
1− x

K

)
x− λxy(t− τ1),

ẏ(t) = r2

(
1− y

αx(t− τ2)

)
y(t),

(3.26)

where τ1 denotes the maturation delay of the predator, while τ2 denotes the time taken for digestion

of the prey.

The W. Zhang et al. model (2013).
The model (3.27) proposed by W. Zhang et al. (2013) (zhang 2013) is a two species Leslie-Gower

predator-prey system with a discrete time delay (maturation time).




ẋ(t) = r1

(
1− x(t− τ)

K

)
x− λxy,

ẏ(t) = r2

(
1− y(t)

αx(t− τ)

)
y(t),

(3.27)

Effects of discrete time delay.
E. Beretta and Y. Kuang (1998) ([17]), S. Yuan and Y. Song (2009) ([195]), S. Yuan and Y. Song

(2009) ([195]), Y. Ma (2012) ([125]) and W. Zhang et al. (2013) (zhang 2013) have shown that

the discrete time delay can induced Hopf bifurcating effect, appearance of limit cycles and stability

switching of the positive equilibrium when the positive equilibrium is stable for the models without

the discrete time delay. Using the discrete time delay as a bifurcation parameter, their results show

that the positive equilibrium can only be asymptotically stable or unstable depending on the delays.

They have also obtained that Hopf bifurcations can occur as the delay crosses some critical values. In

addition, they have paid special attention to the global continuation of local Hopf bifurcations. Using

a global Hopf bifurcation result of Wu (1998) ([179]) for functional differential equations, they have

showed the global existence of periodic solutions and Hopf bifurcations are demonstrated.

3.3 Formulation of a Modified Leslie-Gower Predator-Prey Model

Considering the Leslie-Gower predator-prey model (3.7), we assume a possible constant proportion

of prey refuge xR = mx(t). m is such that 0 ≤ m < 1. This parameter is the rate of refuge of

prey population. This means that when m = 0, all preys are available for predation. mx(t) models

the capacity of a refuge at time t and so refuge protecting mx(t) of the prey population. It therefore

remains (1 − m)x(t) of the preys available for predation. We also assume that preys are harvested

with the continuous threshold harvesting function H(x(t)) (3.5) defined as follows :

H(x) =





0 if x < T1,
h(x− T1)

T2 − T1

if T1 ≤ x ≤ T2,

h if x > T2.
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Due to the fact that a time delay can play an important role in biological dynamical systems, where

it has been recognized to contribute critically to the stable or unstable outcome of prey densities due

to predation, we introduce a discrete time delay τ for the predator dynamic in order to take into

account the gestation or the maturation of the predator. So our newly formulated predator-prey model

incorporating prey refuge, discrete time delay and harvesting of preys, is given by the following set

of two ordinary differential equations :





ẋ(t) = (r1 − b1x(t))x(t)− a1(1−m)x(t)y(t)−H(x(t)),

ẏ(t) =

(
r2 −

a2y(t− τ)

(1−m)x(t− τ)

)
y(t),

(3.28)

Let us denote by R2
+ the nonnegative quadrant and by int(R2

+) the positive quadrant. For θ ∈ [−τ, 0],

we use the following conventional notation :

xt(θ) = x(t+ θ)

Then the initial conditions for system (3.28) take the form :
{
ẋ0(θ) = φ1(θ),

ẏ0(θ) = φ2(θ),
(3.29)

for all θ ∈ [−τ, 0], where (φ1, φ2) ∈ C([−τ, 0],R2
+), x(0) = φ1(0) > 0 and y(0) = φ2(0) > 0.

In model (3.28), x(t) denotes the prey population at time t and y(t) the predator population at time

t. All parameters are positive and Parameters r1 and r2 are the intrinsic growth rate of the preys and

predators respectively, a1 denotes the predation rate per unit of time,
r1

b1

is the carrying capacity of

the prey’s environment and
r2

a2

x(t) is the carrying capacity of the predator’s environment which is

proportional to the number of prey. Here, we incorporate a single discrete time delay τ > 0 in the

negative feedback of the predator’s density.

For ecological reason as in ([169]), we make the following assumptions:

(i) 0 < x(0) ≤ r1
b1
≡ K

(ii) T1 < T2 < K

In fact, the first assumption comes from the fact that it is not plausible to have an initial value of

the preys x(0) at time t = 0 which is greater than the carrying capacity K of the preys. Moreover

if T1 = T2, then the harvesting function becomes a discrete harvesting. In other hand, if we assume

T2 ≥ K, then we will not have some harvest after T2 since the first assumption leads to 0 ≤ x(t) ≤ K.

3.4 Positivity and Boundedness of solutions

3.4.1 Positivity of solutions

In what follows, we show that solutions of system (3.28-3.29) and system (3.5) that start in R2
+ will

remain there. Indeed, we have the following theorem.
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Theorem 3.1. Every solution of System (3.28) that starts in R2
+ will remain there.

Proof. Let (x0; y0) ∈ R2
+ be given and let us denote for each t ≥ 0, (x(t); y(t)) the orbit of System

(3.28) passing through (x0; y0) at t = 0. Then, we can find that (x(t); y(t)) ∈ R2
+ for all t ≥ 0. Thus,

every solution of System (3.28) that starts in R2
+ will remain there.

3.4.2 Boundedness of solutions

In the following theorem, we show that solutions of system (3.28-3.29) and system (3.5) are uniformly

bounded.

Theorem 3.2. Let Assumption (ii) holds. Then, every solution of System (3.28) is uniformly

bounded.

Proof. Let (x0; y0) ∈ R2
+ be given.

From the ẋ-equation of System (3.28), we have

ẋ(t) ≤
(
r1 − b1x(t)

)
x(t).

which implies

x(t) ≤ 1

b1

r1

+

(
1

x(0)
− b1

r1

)
e−r1t

for all t ≥ 0. Since 0 < x(0) ≤ r1

b1

from Assumption 2− (i), it follows that x(t) ≤ r1

b1

for all t ≥ 0.

Now, let us check for the boundedness of y(t).

From the predator equation, we have ẏ(t) ≤ r2y(t). Hence, for t > τ , y(t) ≤ y(t − τ)er2τ . This

equation is equivalent for t > τ , to

y(t− τ) ≥ y(t)e−r2τ . (3.30)

Moreover, for any δ > 1, there exists a positive Tδ such that for t > Tδ, x(t) < δ
r1

b1

. Eq.(3.30) gives

for t > Tδ + τ ,

ẏ(t) < y(t)


r2 −

a2e
−r2τ

δ(1−m)
r1

b1

y(t)


 ,

which implies, by the same arguments use for x, that

lim sup
t→+∞

y(t) <
r2

a2δ(1−m) r1
b1
er2τ

. The conclusion of this theorem holds for δ → 1.
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3.5 Equilibria of the model without delay and their stability

3.5.1 Equilibria of the model without delay

In this subsection we analyze some equilibria properties of System (3.5)-(3.28). These steady states,

which are determined analytically by setting ẋ = ẏ = 0, are independent of the delay τ . The following

results holds :

Theorem 3.3. :

1. System (3.5)-(3.28) has one, two or three equilibria with y = 0 (without predators).

• System (3.5)-(3.28) has one equilibrium in R∗+ × {0} which is :

– E1(x1, 0) if (r1 − b1T2)T2 > h, with x1 ∈
[
K

2
, K

]
if T2 ≤

K

2
, or x1 ∈ [T2, K] if T2 ≥

K

2
.

– F̃ (x̃, 0) if (r1 − b1T2)T2 ≤ h and T2 ≥
K

2
. x̃ ∈ [T1, T2].

• System (3.5)-(3.28) has two equilibria in R∗+ × {0} : F̃ (x̃, 0) and Ẽ
(
K

2
, 0

)
.

x̃ ∈ [T1, T2] under the conditions T2 ≤
K

2
, (r1 − b1T2)T2 ≤ h and

r1K

4
= h.

• System (3.5)-(3.28) has three equilibria in R∗+ × {0} : F̃ (x̃, 0), E1(x1, 0) and E2(x2, 0).

x̃ ∈ [T1, T2], x1 ∈
]
K

2
, K

]
, x2 ∈

[
T2,

K

2

]
under the conditions T2 ≤

K

2
, (r1 − b1T2)T2 ≤ h and

r1K

4
> h.

x1 and x2 are solutions of equation −b1x
2 + r1x− h = 0.

x̃ is a solution of equation −b1x
2 +

(
r1 −

h

T2 − T1

)
x+

hT

T2 − T1

= 0,

2. System (3.5)-(3.28) has one, two or three coexisting equilibria.

• System (3.5)-(3.28) has one coexisting equilibrium which is :

– G0

(
a2r1

a2b1 + r2a1(1−m)2
, y0

)
if

a2r1

a2b1 + r2a1(1−m)2
< T1.

– G(x∗, y∗) if
a2r1

a2b1 + r2a1(1−m)2
∈ [T1, T2]. x∗ ∈ [T1, T2] and y∗ =

r2(1−m)x∗

a2

.

– G1(x∗1, y
∗
1) if

a2r1

a2b1 + r2a1(1−m)2
≥ T2 and (r1−b1T2)T2 > h. x∗1 ∈

[
T2,

a2r1

a2b1 + r2a1(1−m)2

]

and y∗1 =
r2(1−m)x∗1

a2

.

• System (3.5)-(3.28) has two coexisting equilibria :

– G(x∗, y∗) ∈ [T1, T2]× R∗+
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– G̃0

(
a2r1

2(a2b1 + r2a1(1−m)2)
, ỹ0

)
when

a2r1

2(a2b1 + r2a1(1−m)2)
> T2,

(
a2r1 − (a2b1 + r2a1(1−m)2)T2

a2

)
T1 ≤ h and

(
a2r

2
1

4(a2b1 + a1r1(1−m)2)

)
= h.

• System (3.5)-(3.28) has three coexisting equilibria :

– G(x∗, y∗) ∈ [T1, T2]× R∗+

– G1(x∗1, y
∗
1) ∈

]
a2r1

2(a2b1 + r2a1(1−m)2)
,

a2r1

a2b1 + r2a1(1−m)2

]
× R∗+

– G2(x∗2, y
∗
2) ∈

[
T2,

a2r1

2(a2b1 + r2a1(1−m)2)

[
× R∗+ when

a2r1

2(a2b1 + r2a1(1−m)2)
> T2, (r1 −

b1T2)T2 ≤ h and
a2r

2
1

4(a2b1 + a1r1(1−m)2)
> h.

x∗1 and x∗2 are solutions of equation −a2b1 + a1r2(1−m)2

a2

x2 + r1x− h = 0.

x∗ is a solution of equation −a2b1 + a1r2(1−m)2

a2

x2 +

(
r1 −

h

T2 − T1

)
x+

hT

T2 − T1

= 0,

Remark 3.1. : Concerning parameters K =
r1

b1

b0 = b1 +
r2a1(1−m)2

a2

and K0 =
r1

b0

, we always

have K0 ≤ K.

Proof. : Let K =
r1

b1

, b0 = b1 +
r2a1(1−m)2

a2

, K0 =
r1

b0

, ϕ : x 7−→ (r1 − b1x)x and ϕ0 : x 7−→
(r1 − b0x)x.

An equilibrium S(x, y) of the model is solution of Eq.(3.31) when x < T1, Eq. (3.32) when T1 ≤
x ≤ T2 and Eq. (3.33) when x ≥ T2, where





(r1 − b1x)x− a1(1−m)xy = 0,

[
r2 −

a2y

(1−m)x

]
y = 0,

(3.31)





(r1 − b1x)x− a1(1−m)xy − h(x− T1)

T2 − T1

= 0,

[
r2 −

a2y

(1−m)x

]
y = 0,

(3.32)

and 



(r1 − b1x)x− a1(1−m)xy − h = 0,

[
r2 −

a2y

(1−m)x

]
y = 0.

(3.33)

From the second equation of System (3.31), System (3.32) or System (3.33), we have y = 0 or

y =
r2(1−m)x

a2

.

PhD Thesis : MODIFIED LESLIE-GOWER PREDATOR-PREY MODELS 73 Maximilien ONANA c© F.S. UY1 2020



3.5. Equilibria of the model without delay and their stability

When y = 0, the equilibria (0, 0) and
(
r1

b1

, 0

)
exist on [0, T1[. This is impossible since

r1

b1

=

K > T1. Moreover, we have the following equations,

(r1 − b1x)x− a1(1−m)x y − h(x− T1)

T2 − T1

= 0 on [T1, T2],

and

(r1 − b1x)x− a1(1−m)x y − h = 0 on [T2, K].

• On [T1, T2], the identity at the equilibrium gives equation −b1x
2 +

(
r1 −

h

T2 − T1

)
x +

hT1

T2 − T1

= 0

which admits a unique positive solution.

Let us consider f(x) = −b1x
2+
(
r1−

h

T2 − T1

)
x+

hT1

T2 − T1

. Then f(T1) > 0 and f(T2) = ϕ(T2)−h.

Hence, if ϕ(T2) ≤ h, a unique solution exists on [T1, T2].

• On [T2, K], the identity at the equilibrium gives equation −b1x
2 + r1x− h = 0. Its discriminant is

∆ = r2
1 − 4b1h = 4b1

(
ϕ(
K

2
)− h

)
.

Hence, if
K

2
> h, there are two positive solutions, which are both on [T2, K], when T2 <

K

2
and

ϕ(T2) ≤ h. Besides, when ϕ(T2) > h, just one of the solutions is on [T2, K].

Still according to the sign of the discriminant ∆, if ϕ(
K

2
) = h, x =

K

2
is the unique solution on

[T2, K] when
K

2
≥ T2.

There is no solution when
K

2
< T2.

When y 6= 0, from the second equation of System (3.31), System (3.32) and System (3.33), we

have y =
r2(1−m)

a2

x. Replacing it in the first equation gives (r1 − b0x)x − H(x) = 0. On [0, T1],

the unique solution of this equation is x = K0, which exists if and only if K0 ≤ T1. Moreover, we

have the following equations,

(r1 − b0x)x− h(x− T1)

T2 − T1

= 0 on [T1, T2]

and

(r1 − b0x)x− h = 0 on [T2, K].

• On [T1, T2], if K0 < T1, there is no equilibrium on [T1, T2]. Else, the identity at the equilibrium gives

equation −b0x
2 +

(
r1 −

h

T2 − T1

)
x+

hT1

T2 − T1

= 0 which admits a unique positive solution.

Let us consider f0(x) = −b0x
2 +

(
r1 −

h

T2 − T1

)
x +

hT1

T2 − T1

. Then f0(T1) = b0T1(K0 − T1) > 0

and f0(T2) = ϕ0(T2)− h. Hence, if ϕ0(T2) ≤ h, a unique solution exists on [T1, T2].

• On [T2, K], the identity at the equilibrium gives −b0x
2 + r1x − h = 0. Its discriminant is ∆0 =

r2
1 − 4b0h = 4b0

(
ϕ0(

K0

2
)− h

)
. Hence, when

K0

2
> h, there are two positive solutions, which

are both on [T2, K0], when T2 <
K0

2
and ϕ0(T2) ≤ h. Besides, when ϕ0(T2) > h, just one of the

solutions is on [T2, K] ( particularly on [T2, K0]).
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Still according to the sign of the discriminant, when ϕ0

(
K0

2

)
= h, x =

K0

2
is the unique solution

on [T2, K] when
K0

2
≥ T2. There is no solution when

K0

2
< T2.

Remark 3.2. : We summarize the results about equilibria in Fig. 3.7 and Fig. 3.8.

Figure 3.7: Existence and number of equilibria when y = 0.

Figure 3.8: Existence and number of equilibria when y 6= 0 and y∗(x∗) =
r2(1−m)x∗

a2

.
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3.5.2 Stability of Equilibria of the model without delay

The Jacobian matrix J(x, y) of System (3.28) at the equilibrium (x, y) when T1 ≤ x ≤ T2, is given

by 


ϕ′(x)− h

T2 − T1

− a1(1−m)y −a1(1−m)x,

a2y
2

(1−m)x2
r2 −

2a2y

(1−m)x



.

We notice that r2 ≥ 0 is always an eigenvalue of any equilibriumE(x, 0), which is therefore unstable.

Concerning stability of any equilibrium G(x∗, y∗) with y∗ 6= 0, the following theorem holds.

Theorem 3.4. : Let consider

∆1 =
[
ϕ′(x∗)− a1(1−m)y∗ − r2

]2

− 4
[
2a1(1−m)r2y

∗ − r2ϕ
′(x∗)

]
,

∆2 =
[
ϕ′(x∗)− a1(1−m)y∗ − h

T2 − T1

− r2

]2

− 4
[
2a1(1−m)r2y

∗ − r2[ϕ′(x∗)− h

T2 − T1

]
]
.

1. Let consider an equilibrium G(x∗, y∗) with x∗ ∈ [0, T1[∪]T2, K].

• If ∆1 > 0, then the equilibrium is a stable node when −ϕ′(x∗) + a1(1 − m)y∗ + r2 > 0 and

2a1(1−m)r2y
∗ − r2ϕ

′(x∗) > 0.

• If ∆1 = 0, then the equilibrium is a stable node when −ϕ′(x∗) + a1(1−m)y∗ + r2 > 0.

• If ∆1 < 0, then the equilibrium is a stable focus when −ϕ′(x∗) + a1(1−m)y∗ + r2 > 0.

• If −ϕ′(x∗) + a1(1 −m)y∗ + r2 = 0 and 2a1(1 −m)r2y
∗ − r2ϕ

′(x∗) > 0, then the equilibrium is a

center.

2. Let consider an equilibrium G(x∗, y∗) with x∗ ∈ [T1, T2].

• If ∆2 > 0, then the equilibrium is a stable node when −ϕ′(x∗) + a1(1 −m)y∗ +
h

T2 − T1

+ r2 > 0

and 2a1(1−m)r2y
∗ − r2(ϕ′(x∗)− h

T2 − T1

) > 0.

• If ∆2 = 0, then the equilibrium is a stable node when −ϕ′(x∗) + a1(1−m)y∗ +
h

T2 − T1

+ r2 > 0.

• If ∆2 < 0, then the equilibrium is a stable focus when −ϕ′(x∗) + a1(1−m)y∗ +
h

T2 − T1

+ r2 > 0.

• If −ϕ′(x∗) + a1(1 −m)y∗ +
h

T2 − T1

+ r2 = 0 and 2a1(1 −m)r2y
∗ − r2(ϕ′(x∗) − h

T2 − T1

) > 0,

then the equilibrium is a center.

Proof. : The Jacobian matrix J(x∗, y∗) of System (3.28) at the equilibrium (x∗, y∗) becomes



ϕ′(x∗)− a1(1−m)y∗ −H ′(x∗) −a1(1−m)x∗

r2
y∗

x∗
−r2,


 ,

PhD Thesis : MODIFIED LESLIE-GOWER PREDATOR-PREY MODELS 76 Maximilien ONANA c© F.S. UY1 2020



3.6. Hopf bifurcation and stability analysis of the delayed model

where H ′(x) = 0 for x ∈ [0, T1[∪]T2, K] and H ′(x) =
h

T2 − T1

for x ∈ [T1, T2].

Therefore, the eigenvalues are given by the following equation:

λ2 + λ
[
− ϕ′(x∗)) + a1(1−m)y∗ +H ′(x∗) + r2

]

+2a1(1−m)r2y
∗ − r2(ϕ′(x∗)−H ′(x∗)) = 0.

(3.34)

The discriminant of this equation is given by

∆=

[
ϕ′(x∗)− a1(1−m)y∗ −H ′(x)− r2

]2

−4
[
2a1(1−m)r2y

∗ − r2[ϕ′(x∗)−H ′(x)]
]
,

which is equal to ∆1 on [0, T1[∪]T2, K] and ∆2 on [T1, T2].

• When ∆ > 0, J(x∗, y∗) has two positive eigenvalues which are both negatives if −ϕ′(x∗) + a1(1 −
m)y∗ +H ′(x∗) + r2 > 0 and 2a1(1−m)r2y

∗ − r2(ϕ′(x∗)−H ′(x∗)) > 0.

• When ∆ = 0, J(x∗, y∗) has one positive eigenvalue which is negative if −ϕ′(x∗) + a1(1 −m)y∗ +

H ′(x∗) + r2 > 0.

• When ∆ < 0, J(x∗, y∗) has two conjugated complex eigenvalues with a positive real part equal to

ϕ′(x∗)− a1(1−m)y∗ −H ′(x)− r2.

• When −ϕ′(x∗) + a1(1−m)y∗ +H ′(x∗) + r2 = 0 and 2a1(1−m)r2y
∗ − r2(ϕ′(x∗)−H ′(x∗)) > 0,

J(x∗, y∗) has pure imaginary eigenvalues.

Hence, the conclusions follow.

Remark 3.3. : The importance of this section is due to the fact that, if an equilibrium of System

(3.5)- (3.28) is unstable for τ = 0, it remains unstable for τ > 0 ([42], [128]. Then, any equilibrim

of System (3.28) in the form E(x, 0) is unstable when τ > 0. Concerning stability of equilibria when

τ > 0, we only consider the coexistence equilibria.

3.6 Hopf bifurcation and stability analysis of the delayed model

In order to analyze the stability of coexistence equilibria G(x∗, y∗), let us define new variables u(t) =

x(t)− x∗ and v(t) = y(t)− y∗. Then the linearization of System (3.28) at G∗ gives




u̇(t) =
[
r1 − 2b1x

∗ − a1(1−m)y∗ −H ′(x∗)
]
u(t)

− a1(1−m)x∗v(t),

v̇(t) = −Ψ′(x∗)y∗2u(t− τ)− r2v(t− τ),

(3.35)

where H ′(x∗) = 0 for x∗ ∈ [0, T1[∪[T2, K], H ′(x∗) =
h

T2 − T1

for x∗ ∈ [T1, T2] and Ψ(x∗) =

a2

(1−m)x∗
.

PhD Thesis : MODIFIED LESLIE-GOWER PREDATOR-PREY MODELS 77 Maximilien ONANA c© F.S. UY1 2020



3.6. Hopf bifurcation and stability analysis of the delayed model

The characteristic equation of System (3.35) at G∗(x∗, y∗) is given by

λ2 − αλ+ r2λe
−λτ − r2

(
α− a1(1−m)y∗

)
e−λτ = 0, (3.36)

where α = r1 − 2b1x
∗ − a1(1−m)y∗ −H ′(x∗).

Note that for τ = 0, the characteristic equations (3.36) becomes

λ2 + (r2 − α)λ− r2

(
α− a1(1−m)y∗

)
= 0. (3.37)

Since the sum and product of roots are −(r2 − α) and −r2

(
α − a1(1−m)y∗

)
respectively, the two

roots of (3.37) are real and negative or complex conjugate with negative real parts if and only if

r2 − α > 0 and α− a1(1−m)y∗ < 0. (3.38)

Hence, in the absence of time delay, the system is locally asymptotically stable if and only if r2−α > 0

and α− a1(1−m)y∗ < 0.

Now, for τ > 0, if λ = iω is a root of equation (3.36), then we have

−ω2 + αω + r2iω
(

cosωτ − i sinωτ
)
− c
(

coswτ − i sinwτ
)

= 0,

where c = r2

(
α− a1(1−m)y∗

)
.

Separating real and imaginary parts gives

r2ω sinωτ − c cosωτ = ω2 and r2ω cosωτ + c sinωτ = αω. (3.39)

Eliminating τ by squaring and adding equations of (3.39), we get the algebraic equation

r2
2ω

6 +
[
c2 + r2

2(α2 − r2
2)
]
ω4 + c2(α2 − 2r2

2)ω2 − c4 = 0. (3.40)

Substituting ω2 = η in the above equation gives a cubic equation in η of the form

r2
2η

3 +
[
c2 + r2

2(α2 − r2
2)
]
η2 + c2(α2 − 2r2

2)η − c4 = 0. (3.41)

Observe that conditions (3.38) implies α < r2. Since r2
2 > 0 and −c4 < 0, if c2 + r2

2(α2 − r2
2) > 0 or

α2 − 2r2
2 < 0, then by Descartes’ rule of sign, Eq.(3.41) has at least one positive root.

If α ∈] − r2, r2[, then α2 − 2r2
2 < 0 and Eq.(3.41) has only one positive root. If α < −r2, then

c2 + r2
2(α2 − r2

2) > 0 and Eq.(3.41) has at least one positive root. So, for any cases, Eq.(3.41) has at

least one positive root.

The following theorem gives a criterion for the switching in the stability behavior of G∗(x∗, y∗)

in terms of the delay parameter τ .

Theorem 3.5. : Suppose thatG∗(x∗, y∗) exists and is locally asymptotically stable for System (3.28)

with τ = 0. Also let η0 = ω2
0 be a positive root of Eq.(3.41). Then there exists a value τ = τ0 such

that G∗ is locally asymptotically stable for τ ∈ (0, τ0] and unstable for τ > τ0. Furthermore, the

system undergoes a Hopf bifurcation at G∗ when τ = τ0.
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Proof. : Since ω0 is a solution of Eq.(3.40), the characteristic Eq.(3.36) has the pair of purely imagi-

nary roots ±iω0. From Eq.(3.39), τ 0
n for n = 0, 1, ... as a function of ω0 is given by

τ 0
n =

1

w0

arccos

{
w2

0(−c+ αr2)

c2 + r2
2w

2
0

}
+

2πn

w0

. (3.42)

For τ = 0, theorem 3.4 ensures thatG∗ is locally asymptotically stable. Hence, by Butler’s lemma

[27], G∗ remains stable up to the minimum value of τ 0
n , obtained here for n = 0, i.e. for τ < τ 0

0 , so

that τ 0 = min
n≥0

τ 0
n ≡ τ 0

0 . The theorem can be completely proved if we can show that

sign

{
d(Reλ(τ))

dτ
)

}∣∣∣∣
λ=iω0

> 0.

Differentiating equation (3.36) with respect to τ yields
[
2λ− α +

(
r2 − r2τλ+ cτ

)
e−λτ

]dλ
dτ

=
(
r2λ

2 − cλ
)
e−λτ , (3.43)

which gives
(
dλ(τ)

dτ

)−1

=
2λ− α +

(
r2 − r2τλ+ cτ

)
e−λτ

(
r2λ2 − cλ

)
e−λτ

,

= − 2λ2 − αλ
λ2(λ2 − αλ)

− r2

λ(c− r2λ)
− τ

λ
,

= − 1

λ2 − αλ −
1

λ2
− r2

λ(c− r2λ)
− τ

λ
.

Thus, µ0 = sign
{
d(Reλ(τ))

dτ
)
}∣∣∣

λ=iw0

is given by

µ0 = sign

{
Re

(
dλ(τ)
dτ

)−1
}∣∣∣∣

λ=iw0

,

= sign

{
Re

[
− 1

λ2 − αλ −
1

λ2
− r2

λ(c− r2λ)

]}∣∣∣∣
λ=iw0

,

= sign

{
w2

0

w4
0 + α2w2

0

+
1

w2
0

− r2
2w

2
0

r2
2w

4
0 + w2

0c
2

}

= sign

{
r2

2w
4
0 + 2c2w2

0 + α2c2

(w4
0 + α2w2

0)(r2w2
0 + c2)

}
> 0.

Hence, sign
{
d(Reλ(τ))

dτ
)
}∣∣∣

τ=τ0,λ=iω0

> 0. The transversality condition is satisfied and a Hopf bifur-

cation occurs at τ = τ 0. This achieves the proof.

3.7 Direction and stability of Hopf bifurcation

In this section, we give some properties of the Hopf bifurcation presented in Theorem (3.5). We also

analyze the stability of bifurcated periodic solutions occurring through Hopf bifurcations, by using

the normal form theory and the center manifold reduction for retarded functional differential equa-

tions (RFDEs) due to Hassard, Kazarinoff and Wan ([74]). We assume that System (3.28) undergoes
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Hopf bifurcation at the positive equilibrium G(x∗; y∗) for τ = τ j0 , (j = 0, 1, 2, ...) and then iω0

is corresponding purely imaginary roots of the characteristic equation. Let x1(t) = x(t) − x∗ and

x2(t) = y(t)− y∗. Then, system (3.5)-(3.28) is equivalent to :




ẋ1(t) = (r1 − 2b1x
∗ − a1(1−m)y∗)x1(t)−H ′(x∗)x1(t)− a1(1−m)x∗x2(t)

+f1(x1(t), x2(t)),

ẋ2(t) = −Ψ′(x∗)y∗2x1(t− τ)− r2x2(t− τ) + f2(x2(t), x1(t− τ), x2(t− τ)),

(3.44)

where

f1(x1(t), x2(t)) = −a1(1−m)x1(t)x2(t)− b1x
2
1(t)

and

f2(x2(t), x1(t− τ), x2(t− τ)) = r2(x2(t) + y∗)− (Ψ(x1(t− τ) + x∗)(x2(t− τ) + y∗)) (x2(t) + y∗)

+Ψ′(x∗)y∗2x1(t− τ) + r2x2(t− τ)

Let τ = τ 0
j + µ. Then, µ = 0 corresponds to Hopf bifurcation value of System (3.28) at the positive

equilibriumG(x∗; y∗). Since System (3.28) is equivalent to System (3.44), in the following discussion

we use System (3.44).

In System (3.44), let xk(t) = xk(τt) and drop the bars for simplicity of notation. Then, System (3.44)

can be rewritten as a system of RFDEs in C([−1, 0],R2) of the form :




ẋ1(t) = (τ 0
j + µ) (r1 − 2b1x

∗ − a1(1−m)y∗)x1(t)− (τ 0
j + µ)H ′(x∗)x1(t)

−(τ 0
j + µ)a1(1−m)x∗x2(t) + (τ 0

j + µ)f1(x1(t), x2(t)),

ẋ2(t) = −(τ 0
j + µ)Ψ′(x∗)y∗2x1(t− τ)

−(τ 0
j + µ)r2x2(t− τ)

+(τ 0
j + µ)f2(x2(t), x1(t− τ), x2(t− τ)),

(3.45)

Define the linear operator L(µ) : C −→ R2 and the nonlinear operator f(., µ) : C −→ R2 by:

Lµφ = (τ 0
j + µ)

(
J0 J1

0 0

)(
φ1(0)

φ2(0)

)
+ (τ0 + µ)

(
0 0

−Ψ′(x∗)y∗2 −r2

)(
φ1(−1)

φ2(−1)

)
, (3.46)

and

f(φ, µ) = (τ 0
j + µ)

(
f1(φ1(0), φ2(0))

f2(φ2(0), φ1(−1), φ2(−1))

)
, (3.47)

respectively, where φ = (φ1, φ2)T ∈ C, J0 = r1−2b1x
∗−a1(1−m)y∗−H ′(x∗), J1 = −a1(1−m)x∗.

By the Riesz representation theorem, there exists a 2× 2 matrix function η(θ, µ), −1 ≤ θ ≤ 0 whose

elements are of bounded variation such that :

Lµ(φ) =

∫ 0

−1

dη(θ, µ)φ(θ) for φ ∈ C([−1, 0],R2) (3.48)
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In fact, we can choose

η(θ, µ) = (τ 0
j +µ)

(
J0 J1

0 0

)(
φ1(0)

φ2(0)

)
δ(θ)+(τ 0

j +µ)

(
0 0

−Ψ′(x∗)y∗2 −r2

)(
φ1(−1)

φ2(−1)

)
δ(θ+1),

(3.49)

where δ is the Dirac delta function defined by

δ(θ) =

{
0 if θ 6= 0,

1 if θ = 0.
(3.50)

For φ ∈ C([−1, 0],R2), define

A(µ)φ =





dφ(θ)

dθ
, if − 1 ≤ θ < 0

∫ 0

−1
dη(θ, µ)φ(θ), if θ = 0

(3.51)

and

R(µ)φ =





(
0

0

)
, if − 1 ≤ θ < 0,

f(µ, φ), if θ = 0.

(3.52)

Then, System (3.45) is equivalent to

ẋ(t) = A(µ)xt +Rxt. (3.53)

where xt(θ) = x(t+ θ), θ ∈ [−1, 0].

For ψ ∈ C1([0, 1],R2, define

A?(µ)ψ =





−dφ(s)

ds
if 0 < s ≤ 1,

∫ 0

−1
dηT (s, µ)ψ(−s) if s = 0.

(3.54)

and a bilinear inner product

〈ψ, φ〉 = ψ(0).φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ
T

(ξ − θ)dη(θ)φ(ξ)dξ, (3.55)

where η(θ) = η(θ, 0).

In addition, by Theorem (3.5) we know that ±iω0τ
0
j are eigenvalues of A(0). Thus, they are also

eigenvalues of A∗. Let us assume that q(θ) is the eigenvector of A(0) corresponding to iω0τ
0
j and

q∗(s) is the eigenvector of A∗ corresponding to −iω0τ
0
j

Let q(θ) =
(

1, ν1

)T
eiω0τ0j θ and q∗(s) = D

(
1, ν∗1

)T
eiω0τ0j s. From the above discussion, it is

easy to know that A(0)q(0) = iω0τ
0
j q(0) and A∗(0)q∗(0) = −iω0τ

0
j q
∗(0). That is

τ 0
j




J0 J1

0 0


 q(0) + τ 0

j




0 0

−Ψ ′(x∗)y∗2 −r2


 q(−1) = iw0τ

0
j q(0)
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and

τ 0
j




J0 0

J1 −r2


 q∗(0) + τ 0

j




0 −Ψ ′(x∗)y∗2

0 −r2


 q∗(−1) = −iw0τ

0
j q
∗(0).

Thus, we can easily obtain

q(θ) =

(
1 ,

J0 − iω0

a1(1−m)x∗

)T
eiω0τ0j θ, (3.56)

q∗(s) = D

(
1 ,

J0 + iω0

Ψ ′(x∗)y∗2e−iω0τ0j

)T

eiω0τ0j s. (3.57)

In order to assure 〈q̄∗(s), q(θ)〉 = 1, we need to determine the value of D. From (3.55), we have

〈q∗(s), q(θ)〉 = q̄∗(0)q(0)−
∫ 0

−1

∫ θ

ξ=0

q̄∗(ξ − θ)dη(θ)q(ξ)dξ

= q̄∗(0)q(0)−
∫ 0

−1

∫ θ

ξ=0

D̄
(

1, ν̄∗1

)
e−iω0τ0j (ξ−θ)dη(θ)

(
1, ν1

)T
eiω0τ0j ξdξ

= q̄∗(0)q(0)− q̄∗(0)

∫ 0

−1

θeiω0τ0j θdη(θ)q(0)

= q̄∗(0)q(0)− q̄∗(0)τ 0
j




0 0

−Ψ ′(x∗)y∗2 −r2



(
− e−iω0τ0j

)
q(0)

= D̄
[
1 + ν1ν̄

∗
1 − τ 0

j e
−iω0τ0j ν̄∗1(Ψ ′(x∗)y?2 + r2)

]
.

Therefore, we have

D̄ =
1

1 + ν1ν̄∗1 − τ 0
j e
−iω0τ0j ν̄∗1(Ψ ′(x∗)y?2 + r2)

,

D =
1

1 + ν̄1ν∗1 − τ 0
j e

iω0τ0j ν∗1(Ψ ′(x∗)y?2 + r2)
.

(3.58)

Using the same notations as in [74], we first compute the coordinates to describe the center mani-

fold C0 at µ = 0. Let xt be the solution of Eq. (3.44) when µ = 0. Define

z(t) = 〈q∗ , xt〉,
W (t, θ) = xt(θ)− 2Re

(
z(t)q(θ)

)

= xt(θ)−
(
z(t)q(θ) + z̄(t)q̄(θ)

)
.

(3.59)

On the center manifold C0, we have

W (t, θ) = W (z, z̄, θ), (3.60)

where

W (z, z̄, θ) = W20(θ) z
2

2
+W11(θ)zz̄ +W02

z̄2

2
+W30(θ) z

3

6
+ · · · · , (3.61)
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z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note that W is real

if xt is real. We only consider real solutions. For solution xt ∈ C0 of Eq.(3.44), since µ = 0, we have

ż(t) = iω0τ
0
j z + q̄∗(0)f

(
0,W (z, z̄, 0) + 2Re

(
z(t)q(θ)

))

≡ iω0τ
0
j z + q̄∗(0)f0(z, z̄).

(3.62)

We rewrite this equation as

ż(t) = iω0τ
0
j z + g

(
z, z̄
)
, (3.63)

where

g
(
z, z̄
)

= g20(θ)
z2

2
+ g11(θ)zz̄ + g02

z̄2

2
+ g21(θ)

z2z̄

2
+ · · · (3.64)

Then, xt(θ) =
(
x1t(θ), x2t(θ)

)
and q(θ) =

(
1, ν1

)T
eiω0τ0j θ. So, from Eq.(3.59) and Eq.(3.61), it

follows that
xt(θ) = W (t, θ) + 2Re

(
z(t)q(θ)

)

= W20(θ) z
2

2
+W11(θ)zz̄ +W02

z̄2

2

+
(
1, ν1

)T
eiω0τ0j θz(t) +

(
1, ν̄1

)T
e−iω0τ0j θz̄(t) + · · ·

(3.65)

Then, we have

x1t(0) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ · · ·

x2t(0) = ν1z + ν̄1z̄ +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ · · ·

x1t(−1) = ze−iω0τ0j + z̄eiω0τ0j +W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ · · ·

x2t(−1) = ν1ze
−iω0τ0j + ν̄1z̄e

iω0τ0j +W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz̄ +W

(2)
02 (−1)

z̄2

2
+ · · ·

(3.66)

It follows together with Eq.(3.47) that
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g(z, z̄) = q̄∗(0)f0(z, z̄)

= q̄∗(0)f(0, xt) = τ 0
j D̄
(

1, ν̄∗1

)
×




−b1x
2
1t(0)− a1(1−m)x1t(0)x2t(0);

−Ψ ′(x∗)x2t(−1)x2t(0)

−Ψ ′(x∗)x1t(−1)x2t(−1)x2t(0);

−Ψ ′(x∗)y∗x1t(−1)x2t(−1)

−Ψ ′(x∗)y∗x1t(−1)x2t(0);

−Ψ ′′(x∗)

2
y∗x2

1t(−1)x2t(−1)

−Ψ ′′(x∗)

2
y∗x2

1t(−1)x2t(0);

−Ψ ′′(x∗)

2
y∗2x2

1t(−1)x2t(0)

−Ψ (3)(x∗)

6
y∗2x3

1t(−1)− · · ·




=
z2

2

{
2τ 0
j D̄[−b1 − ν1a1(1−m)− ν̄∗1(Ψ(x∗)ν2

1e
−iω0τ0j −Ψ ′(x∗)y∗ν1e

−2iω0τ0j

− y∗ν1e
−iω0τ0j − Ψ ′′(x∗)

2
y∗2e−2iω0τ0j

)]}

+
z̄2

2
{2τ 0

j D̄[−b1 − ν̄1a1(1−m)− ν̄∗1(Ψ(x∗)ν̄2
1e
iω0τ0j −Ψ ′(x∗)y∗ν̄1e

2iω0τ0j

− y∗ν̄1e
iω0τ0j − Ψ ′′(x∗)

2
y∗2e2iω0τ0j

)]}

+ zz̄{2τ 0
j D̄[−b1 −Re(ν1)a1(1−m)− ν̄∗1(Re(ν1ν̄1e

−iω0τ0j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

− y∗Re(ν1e
iω0τ0j )− y∗2Ψ ′′(x∗)

)]}

+
z2z̄

2

{
τ 0
j D̄
[
−b1

(
2W

(1)
20 (0) + 2W

(1)
11 (0)

)
− a1(1−m)(2W

(2)
11 (0) +W

(2)
20 (0) + ν̄1W

(1)
20 (0))

+ 2ν1a1(1−m)W
(1)
11 (0))− ν̄∗1Ψ(x∗)(2ν1W

(2)
11 (0) + ν̄1W

(2)
20 (0)eiω0τ0j )

+ ν̄∗1Ψ(x∗)(ν̄1W
(2)
20 (−1) + 2ν1W

(2)
11 (−1))− ν̄∗1Ψ ′(x∗)(2ν1ν̄1e

−2iω0τ0j )

+ ν̄∗1Ψ ′(x∗)(2ν1ν̄1 + 2ν2
1e
−2iω0τ0j )− ν̄∗1Ψ ′(x∗)y∗(2W (2)

11 (−1)e−iω0τ0j (1 + ν1)

+ ν̄∗1Ψ ′(x∗)y∗W (1)
20 (−1)eiω0τ0j (1 + ν̄1)− 2W

(2)
11 (0)e−iω0τ0j +W

(2)
20 (0)eiω0τ0j

+ ν̄1W
(1)
20 (−1) + 2ν1W

(1)
11 (−1))− ν̄∗1

Ψ ′′(x∗)y∗

2
(6ν1e

−iω0τ0j + 4ν1 + 2ν̄1e
−2iω0τ0j )

+ 4y∗ν̄∗1
Ψ ′′(x∗)y∗

2
W

(1)
11 (−1)e−iω0τ0j + 2y∗eiω0τ0jW

(1)
20 (−1)− ν̄∗1

Ψ ′′′(x∗)y∗

3

(
2e−iω0τ0j + eiω0τ0j

)
.

(3.67)
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Comparing the coefficient with Eq.(3.64) gives :

g20 = 2τ 0
j D̄(−b1 − ν1a1(1−m))− 2τ 0

j D̄ν̄
∗
1Ψ(x∗)ν2

1e
−iω0τ0j

− 2τ 0
j D̄Ψ ′(x∗)y∗ν1e

−2iω0τ0j − 2τ 0
j D̄y

∗ν1e
−iω0τ0j − 2τ 0

j D̄
Ψ ′′(x∗)

2
y∗2e−2iω0τ0j ,

g02 = 2τ 0
j D̄(−b1 − ν1a1(1−m))− 2τ 0

j D̄ν̄
∗
1Ψ(x∗)ν2

1e
−iω0τ0j − 2τ 0

j D̄Ψ ′(x∗)y∗ν1e
−2iω0τ0j

− 2τ 0
j D̄y

∗ν1e
−iω0τ0j − 2τ 0

j D̄
Ψ ′′(x∗)

2
y∗2e−2iω0τ0j ,

g11 = 2τ 0
j D̄(−b1 −Re(ν1)a1(1−m))− 2τ 0

j D̄ν̄
∗
1Re(ν1ν̄1e

−iω0τ0j )Ψ(x∗)− 2τ 0
j D̄ν̄

∗
1Re(ν̄1)y∗Ψ ′(x∗)

− 2τ 0
j D̄ν̄

∗
1y
∗Re(ν1e

iω0τ0j )− 2τ 0
j D̄ν̄

∗
1y
∗2Ψ ′′(x∗),

g21 = −τ 0
j D̄b1(2W

(1)
20 (0) + 2W

(1)
11 (0))− τ 0

j D̄a1(1−m)(2W
(2)
11 (0) +W

(2)
20 (0))

+ τ 0
j D̄ν̄1a1(1−m)W

(1)
20 (0) + 2ν1W

(1)
11 (0))− ν̄∗1Ψ(x∗)(2ν1W

(2)
11 (0) + ν̄1W

(2)
20 (0)eiω0τ0j )

+ ν̄∗1Ψ(x∗)(ν̄1W
(2)
20 (−1) + 2ν1W

(2)
11 (−1))− ν̄∗1Ψ ′(x∗)(2ν1ν̄1e

−2iω0τ0j + 2ν1ν̄1

− 2ν̄∗1Ψ ′(x∗)ν2
1e
−2iω0τ0j )− ν̄∗1Ψ ′(x∗)y∗2W (2)

11 (−1)e−iω0τ0j (1 + ν1)

+ ν̄∗1Ψ ′(x∗)y∗W (1)
20 (−1)eiω0τ0j (1 + ν̄1)− 2ν̄∗1Ψ ′(x∗)y∗W (2)

11 (0)e−iω0τ0j

+ ν̄∗1Ψ ′(x∗)y∗W (2)
20 (0)eiω0τ0j + ν̄1W

(1)
20 (−1) + 2ν̄∗1Ψ ′(x∗)y∗ν1W

(1)
11 (−1)

− ν̄∗1
Ψ ′′(x∗)y∗

2
(6ν1e

−iω0τ0j + 4ν1) + 2ν̄∗1
Ψ ′′(x∗)y∗

2
ν̄1e
−2iω0τ0j

+ 4ν̄∗1
Ψ ′′(x∗)y∗

2
y∗W (1)

11 (−1)e−iω0τ0j + 2y∗eiω0τ0jW
(1)
20 (−1)

− ν̄∗1
Ψ ′′′(x∗)y∗

3

(
2e−iω0τ0j + eiω0τ0j

)

(3.68)

Since there are W20(θ) and W11(θ) in g21, we still need to compute them. From Eq.(3.53) and

Eq.(3.59), we have
Ẇ = ẋt − żq − ˙̄zq̄

=





AW − 2Re

{
q̄∗(0)f0q(θ)

}
if θ ∈ [−1; 0),

AW − 2Re

{
q̄∗(0)f0q(θ)

}
+ f0 if θ = 0,

≡def AW +H
(
z, z̄, θ

)
,

(3.69)

where

H
(
z, z̄, θ

)
= H20(θ)

z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · (3.70)

Substituting the corresponding series into Eq.(3.69) and comparing the coefficients give

(A− 2iω0τ
0
j )W20(θ) = −H20(θ),

AW11(θ) = −H11(θ).

(3.71)
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From Eq.(3.69), we know that for θ ∈ [−1, 0),

H
(
z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ)

= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ).
(3.72)

Comparing the coefficient with Eq.(3.70) gives

− g20q(θ)− ḡ02q̄(θ) = H20(θ), (3.73)

− g11q(θ)− ḡ11q̄(θ) = H11(θ). (3.74)

From Eq.(3.71) and Eq.(3.73) and the definition of A, it follows that

Ẇ (θ) = 2iw0τ
0
jW20 + g20q(θ) + ḡ02q̄(θ). (3.75)

Notice that q(θ) =
(

1, ν1

)T
eiw0τ0j θ. Hence,

W20(θ) =
ig20

w0τ 0
j

q(0)eiω0τ0j θ +
iḡ02

3w0τ 0
j

q̄(0)e−iω0τ0j θ + E1e
2iω0τ0j θ, (3.76)

where E1 =
(
E

(1)
1 , E

(2)
1

)
∈ R2 is a constant vector.

Similarly, from Eq.(3.71) and Eq.(3.74), we obtain

W11(θ) = − ig11

w0τ 0
j

q(0)eiω0τ0j θ +
iḡ11

w0τ 0
j

q̄(0)e−iω0τ0j θ + E2, (3.77)

where E2 =
(
E

(1)
2 , E

(2)
2

)
∈ R2 is also a constant vector.

In what follows, we will seek appropriate E1 and E2. From the definition of A and Eq.(3.71), we

obtain ∫ 0

−1

dη(θ)W20(θ) = 2iω0τjW20(0)−H20(0), (3.78)

∫ 0

−1

dη(θ)W11(θ) = −H11(0), (3.79)

where η(θ) = η(0, θ). By Eq.(3.69), we have

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τ 0
j×



−b1 − ν1a1(1−m)

−Ψ(x∗)ν2
1e
−iω0τ0j −Ψ ′(x∗)y∗ν1e

−2iω0τ0j

−y∗ν1e
−iω0τ0j − Ψ ′′(x∗)

2
y∗2e−2iω0τ0j



,

(3.80)

H11(0) = −g11q(0)− ḡ11q̄(0) + 2τ 0
j×



−b1 −Re(ν1)a1(1−m)

−Re(ν1ν̄1e
−iω0τ0j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1e
iω0τ0j )− y∗2Ψ ′′(x∗)



.

(3.81)
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Substituting Eq.(3.76) and Eq.(3.80) into Eq.(3.78) and using the fact that

(
iω0τ

0
j I −

∫ 0

−1

eiω0τ0j θdη(θ)

)
q(0) = 0,

(
−iω0τ

0
j I −

∫ 0

−1

e−iω0τ0j θdη(θ)

)
q̄(0) = 0,

(3.82)

we obtain (
2iω0τ

0
j I −

∫ 0

−1

e2iω0τ0j θdη(θ)

)
E1 = 2τ 0

j×



−b1 − ν1a1(1−m)

−Ψ(x∗)ν2
1e
−iω0τ0j −Ψ ′(x∗)y∗ν1e

−2iω0τ0j

−y∗ν1e
−iω0τ0j − Ψ ′′(x∗)

2
y∗2e−2iω0τ0j



.

This leads to 


2iω0 − J0 −J1

Ψ ′(x∗)y∗2e−2iω0τ0j 2iω0 + r2e
−2iω0τ0j


E1 =

2




−b1 − ν1a1(1−m)

−Ψ(x∗)ν2
1e
−iω0τ0j −Ψ ′(x∗)y∗ν1e

−2iω0τ0j

−y∗ν1e
−iω0τ0j − Ψ ′′(x∗)

2
y∗2e−2iω0τ0j



.

Solving this system for E1 gives

E
(1)
1 =

2

σ

∣∣∣∣∣∣∣∣∣∣

−b1 − ν1a1(1−m) a1(1−m)x∗

e0 2iω0 + r2e
−2iω0τ0j

∣∣∣∣∣∣∣∣∣∣

,

where

e0 = −Ψ(x∗)ν2
1e
−iω0τ0j −Ψ ′(x∗)y∗ν1e

−2iω0τ0j − y∗ν1e
−iω0τ0j − Ψ ′′(x∗)

2
y∗2e−2iω0τ0j ,

E
(2)
1 =

2

σ

∣∣∣∣∣∣∣∣

2iω0 − J0 −b1 − ν1a1(1−m)

Ψ ′(x∗)y∗2e−2iω0τ0j e0

∣∣∣∣∣∣∣∣
,

where

σ =

∣∣∣∣∣∣∣∣∣∣

2iω0 − J0 a1(1−m)x∗

Ψ ′(x∗)y∗2e−2iω0τ0j 2iω0 + r2e
−2iω0τ0j

∣∣∣∣∣∣∣∣∣∣

.
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Similarly, substituting Eq.(3.77) and Eq.(3.81) into (3.79) gives



−J0 −J1

Ψ ′(x∗)y∗2 r2



E2 =

2




−b1 −Re(ν1)a1(1−m)

−Re(ν1ν̄1e
−iω0τ0j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1e
iω0τ0j )− y∗2Ψ ′′(x∗)



.

Therefore,

E
(1)
2 =

2

%

∣∣∣∣∣∣∣∣

−b1 −Re(ν1)a1(1−m) −J1

e1 r2

∣∣∣∣∣∣∣∣
,

where
e1 = −Re(ν1ν̄1e

−iω0τ0j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1e
iω0τ0j )− y∗2Ψ ′′(x∗)

E
(2)
2 =

2

%

∣∣∣∣∣∣∣∣

−J0 −b1 −Re(ν1)a1(1−m)

Ψ ′(x∗)y∗2 e1

∣∣∣∣∣∣∣∣
,

where

% =

∣∣∣∣∣∣∣∣∣∣

−J0 a1(1−m)x∗

Ψ ′(x∗)y∗2 r2

∣∣∣∣∣∣∣∣∣∣

.

Thus, we can determineW20 andW11 from Eq.(3.76) and Eq.(3.77). Furthermore, g21 in Eq.(3.68)

can be expressed in terms of parameters and delay. Thus, we can compute the following values

C1(0) =
i

2w0τ 0
j

(
g20g11 − 2|g11|2 −

|g02|2
3

)
+
g21

2
,

ν2 = − Re{C1(0)}
Re

{
λ′(τ 0

j )
} ,

β2 = 2Re{C1(0)},

T2 = −Im{C1(0)}+ ν2Im
{
λ′(τ 0

j )
}

w0τ 0
j

,

(3.83)
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which determine the qualities of bifurcating periodic solution in the center manifold at the critical

value τ 0
j .

Theorem 3.6. [74] In Eq. (3.83), the sign of ν2 determines the direction of the Hopf bifurcation.

Thus, if ν2 > 0, then the Hopf bifurcation is supercritical and the bifurcating periodic solution exists

for τ1 > τ 0
1 . If ν2 < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic solution

exists for τ1 < τ 0
1 . β2 determines the stability of the bifurcating periodic solution: The bifurcating

periodic solutions are stable if β2 < 0 and unstable if β2 > 0. T2 determines the period of the

bifurcating periodic solutions: the period increase if T2 > 0 and decrease if T2 < 0.

3.8 Bioeconomic equilibrium and optimal harvest policy

The first part of this section deals with the bionomic equilibrium of System (3.28) . The term bionomic

equilibrium is an amalgamation of the concepts of biological equilibrium and economic equilibrium.

As we already saw, a biological equilibrium is given by ẋ = 0 = ẏ. The economic equilibrium is

said to be achieved when TR (the total revenue obtained by selling the harvested biomass) equals

TC (the total cost for the effort devoted to harvesting). To discuss the bionomic equilibrium of the

prey-predator model, we consider the parameters such as c = cost per unit effort for prey; p = price

per unit biomass for the prey. The net economic rent or net revenue (R) at any time is given by :

R(x, h, t) =

(
p
x− T1

T2 − T1

− c
)
h if T1 ≤ x ≤ T2, (3.84)

and

R(x, h, t) = (p− c)h if x ≥ T2, (3.85)

The bionomic equilibrium is P∞(x∞, y∞, h∞) where x∞, y∞ and h∞ are the positive solutions of the

following simultaneous equations :




(r1 − b1x)x− a1(1−m)xy − h(x− T1)

T2 − T1

= 0 ,
(
r2 −

a2y

(1−m)x

)
y = 0 if T1 ≤ x ≤ T2 ,

(
p
x− T1

T2 − T1

− c
)
h = 0

(3.86)

and 



(r1 − b1x)x− a1(1−m)xy − h = 0 ,(
r2 −

a2y

(1−m)x

)
y if x ≥ T2 ,

(p− c)h = 0

(3.87)

It may be noted here that if c > p
x− T1

T2 − T1

when T1 ≤ x ≤ T2 or if c > p when x ≥ T2, i.e. if

the prey cost exceeds the revenue obtained from it, then the economic rent obtained from the prey

becomes negative. Hence the prey will be closed and no bionomic equilibrium exists. Therefore, for
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the existence of bionomic equilibrium, it is natural to assume c < p
x− T1

T2 − T1

when T1 ≤ x ≤ T2 and

c < p when x ≥ T2. Then for T1 ≤ x ≤ T2,

x∞ = T1 +
c

p
(T2 − T1), (3.88)

y∞ =
r2(1−m)x∞

a2

, (3.89)

h∞ =
p(r1 − b1x∞ − a1(1−m)y∞)x∞

c
, (3.90)

It is clear that h∞ > 0 if

r1 − b1x∞ − a1(1−m)y∞ > 0 (3.91)

Thus, the bionomic equilibrium P∞(x∞, y∞, h∞) exists if x∞ ≤ T2 and inequality (3.91) holds.

In what follows, our objective is to maximize the total discounted net revenues from the fishery. In

commercial exploitation of renewable resources, the fundamental problem from the economic point

of view, is to determine the optimal trade-off between present and future harvests. If we look at the

problem, it is observed that the marine fishery sectors become more important not only for domestic

demand but also from the imperatives of exports. Symbolically our strategy is to maximize the present

value J given by

J(h) =

∫ tf

0

R(x(t), h(t), t)e−δtdt (3.92)

where R(x(t), h(t), t) is defined by (3.84) and (3.85), and δ denotes the instantaneous annual rate of

discount. Our problem is to maximize J subject to the state System (3.28) by invoking Pontryagins

Maximum principle for retarded optimal control problem (2013)([172]). The control variable h(t) is

subjected to the constraints 0 ≤ h(t) ≤ K. So, in other words, our problem now is to find h∗ such

that

J(h∗) = max
h∈Ω

J(h) (3.93)

where Ω = {h ∈ L1(0; tf ); 0 ≤ h ≤ K}.
The existence of an optimal harvesting is due to the concavity of integrand of J with respect to h, a

boundedness of the state solutions (x(t); y(t)), and the Lipschitz property of the state system (3.28)

with respect to the state variables (see L. S. Pontryagin et al. ([142]).

Using the Pontryagins maximum principle for delayed control problem [[142], [172]], problem (3.93)

is reduced to maximize the HamiltonianH defined by :

H(x(t), y(t), x(t− τ), y(t− τ), h(t), (t)) = R(x(t), h(t), t)e−δt + λ1(t)ẋ(t) + λ2(t)ẏ(t)

= e−δtR(x(t), h(t), t) + λ1(t)((r1 − b1x(t)− a1(1−m)y(t))x(t)−H(x(t)))

+λ2(t)y(t)

(
r2 −

a2y(t− τ)

(1−m)x(t− τ)

)
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where λ(t) = (λ1(t), λ2(t)). By the maximal principle, there exists adjoint variables λ1(t) and

λ2(t) for all t ≥ 0 such that





dλ1

dt
(t) = − ∂H

∂x(t)
(t)−X[0,tf−τ ](t)

∂H
∂x(t− τ)

(t+ τ),

dλ2

dt
(t) = − ∂H

∂y(t)
(t)− ∂H

∂y(t− τ)
(t+ τ),

(3.94)

and
∂H
∂h(t)

(x(t), y(t), x(t− τ), y(t− τ), h(t), (t)) = 0 (3.95)

where X[0,tf−τ ](t) is the indicatrice function on [0, tf − τ ]. Therefore, we obtain the adjoint system :




λ̇1(t) = − ph

T2 − T1

e−δt + λ1(t)(−r1 + 2b1x(t))

+λ1(t)

(
a1(1−m)y(t) +

h

T2 − T1

)

−X[0,tf−τ ](t)
a2y(t+ τ)λ2(t+ τ)y(t)

(1−m)x2(t)
,

λ̇2(t) = −a1(1−m)x(t)λ1(t)− r2λ2(t)

+X[0,tf−τ ](t)
a2y(t+ τ)λ2(t+ τ)

(1−m)x(t)
,

(3.96)

The transversality conditions of system (3.96) are

λ1(tf ) = λ2(tf ) = 0

Since H is linear in the control variable h, the optimal control will be a combination of bang-bang

control and singular control. Let

σ(t) = e−δt
(
p(x− T1)

T2 − T1

− c
)
− λ1(t)

(
x− T1

T2 − T1

)

The optimal control h(t) which maximizesH must satisfy the following conditions :

h(t) = K if σ(t) > 0 (3.97)

equivalent to

eδtλ1(t) < p− c
x−T1
T2−T1

(3.98)

h(t) = 0 if σ(t) < 0 (3.99)

equivalent to

eδtλ1(t) > p− c
x−T1
T2−T1

(3.100)

where eδtλ1(t) is the usual shadow price ([33]) and p − c
x−T1
T2−T1

is the net economic revenue on a unit

harvest. This shows that h = K or zero according to the shadow price is less than or greater than the

net economic revenue on a unit harvest. Economically, condition (3.98) implies that if the profit after
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paying all the expenses is positive, then it is beneficial to harvest up to the limit of available effort.

Condition (3.100) implies that when the shadow price exceeds the fishermans net economic revenue

on a unit harvest, then the fisherman will not exert any effort.

When σ(t), i.e. when the shadow price equals the net economic revenue on a unit harvest, then the

Hamiltonian H becomes independent of the control variable h(t), i.e.
∂H
∂h

. This is the necessary

condition for the singular control h(t) to be optimal over the control set 0 ≤ h ≤ K. Thus, the

optimal harvesting policy is

h(t) =





0 if σ(t) < 0,

h∗ if σ(t) = 0,

K if σ(t) > 0.

Solving σ(t) = 0, we get

λ1(t) = e−δtp−
(

c
x−T1
T2−T1

)
(3.101)

Substituting equation (3.101) into system (3.96) gives :





λ̇1(t) = − ph

T2 − T1

e−δt + e−δt
(
p− c

x−T1
T2−T1

)
×

(
−r1 + 2b1x(t) + a1(1−m)y(t) +

h

T2 − T1

)

−X[0,tf−τ ](t)
a2y(t+ τ)λ2(t+ τ)y(t)

(1−m)x2(t)
,

λ̇2(t) = −a1(1−m)x(t)e−δt

(
p− c

x−T1
T2−T1

)
− r2λ2(t)

+X[0,tf−τ ](t)
a2y(t+ τ)λ2(t+ τ)

(1−m)x(t)
,

(3.102)

Using equilibrium conditions and integrating System (3.102), we obtain λ1(t) and λ2(t). Solving

equation

λ1(t) = p−
(

c
x−T1
T2−T1

)
;

we obtain the optimal harvesting efforts h∗.

3.9 Numerical simulations

In this section, we give some numerical simulations for a special case of System (3.28) with harvesting

function (3.5) to support our analytical results in this chapter. As an example, we consider systems

(3.28) and (3.5) with the coefficients r1 = 1.1, b1 = 1.1/300, which gives K = 300, m = 0.1,

a1 = 0.11, r2 = 0.2, a2 = 1, h = 0.2 ∗K, T1 = 60, T2 = 90 and t = 20. When there is no delay, we

choose x(0) = 40 and y(0) = 25. That is,



ẋ(t) =

(
1.1− 1.1

300
∗ x(t)

)
∗ x(t)− 0.11 ∗ (1− 0.1) ∗ x(t) ∗ y(t)−H(x(t)),

ẏ(t) =

(
0.2− 1.2 ∗ y(t− τ)

(1− 0.1) ∗ x(t− τ)

)
∗ y(t),

(3.103)
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In figure (3.9), we have ∆1 = 117.5377 > 0, −ϕ′(K0) + a1(1 − m)y0 + r2 = 11.2751 > 0 and

2a1(1 −m)r2y0 − r2ϕ
′(K0) = 2.3975 > 0. So the conditions of stability of equilibrium G0(K0, y0)

are satisfied and G0 is locally asymptotically stable.

Figure 3.9: The numerical approximations of (3.28) when τ = 0 and K0 = 51.1945 < T1. The

positive equilibrium G0(51.1945; 9.2150) is locally asymptotically stable.

Figure (3.10) shows that under some conditions, equilibrium G1(x∗1, y
∗
1) is the only equilibrium

of the model system (3.28) and is locally asymptotically stable. More precisely, we have x∗1 − T2 =

68.065, K0 − x∗1 = 83.28, ϕ(T2) − h = 9.3, ∆1 = 1.14 × 103, −ϕ′(x∗1) + a1(1 − m)y∗1 + r2 =

33.8253 > 0 and 2a1(1−m)r2y
∗
1 − r2ϕ

′(x∗1) = 0.3396 > 0. So, we have T2 < x∗1 < K0, ϕ(T2) > h.

Thus, all the conditions for the stability of equilibrium G1 are satisfied.

Figure 3.10: The numerical approximations of (3.28) when τ = 0, r2 = 0.01 andK0 = 51.1945 > T2.

The positive equilibrium G1(158.0658; 1.4226) is asymptotically stable.

Now, we present some numerical results of the system for different values of t. From the above

discussion, we may determine the direction of Hopf-bifurcation and the direction of bifurcating peri-

odic solution. We consider the system when the parameter values are given as in Figure (3.11). So, the
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model has a positive equilibrium G0(51.1945; 9.2150) which is locally asymptotically stable for τ =

0. When τ passes through the critical value τ = τ 0
0 = 95.2311 and d(Reλ(τ))

dτ
|λ=iω0,τ=τ01

= 7.6799 > 0,

the equilibrium G0 losses its stability and the system (3.28) experiences Hopf-bifurcation. From Sect.

7, we can determine the nature of the stability and direction of the periodic solution bifurcating from

the interior equilibrium at the critical point τ 0
1 .

Figure 3.11: Hopf bifurcation behavior of the system (3.28) around the interior equilibrium

G0(51.1945; 9.2150) when τ = τ 0
1 = 95.2311. The other parameter are the same as in Figure (3.9).

We obtain the existence of unstable supercritical bifurcating periodic solution around the interior

equilibrium G0 with the same parameter values as in Figure (3.9).

Using (3.83), we can computeC1(0) = 69.7625−28.9307i, ν2 = 968.6446 > 0, β2 = 139.5250 >

0 and T2 = −120.1525. Hence, the bifurcating periodic solution exists when τ crosses τ 0
1 from left to

right and the corresponding periodic solution is supercritical and unstable (as β2 > 0) as evident from

Figure (3.11) (a)−(b). The negative sign of T2 indicates the decreasing period of the periodic solution

of the system. Moreover, this system is locally asymptotically stable around the interior equilibrium

G0, which is clearly depicted from Figure (3.11)(a)− (b) for τ = 16 < τ 0
0 .
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Figure 3.12: System (3.28) is globally asymptotically stable around the interior equilibrium G0 at

τ = 16 < τ 0
0 = 95.2311. The other parameter values are given in the previous figure.

Figure (3.13) gives the optimal harvesting of prey in the presence of the two population. We

observe that the control increase the period of limit cycle (see Figure (3.13)(a)) and also increase

the predator and prey population (see Figure Figure (3.13)(b)-(c)). In order to obtain this result, the

harvesting will be made periodically (see Figure Figure (3.13)(d)). From this figure, it is clear that as

the time progresses the prey and predator populations fluctuate in different period depending on the

values of the optimal harvesting. We observe that when we harvest, the predator population decrease

quickly and the prey population starts to rise rapidly. On the other hand as the predator population

rises, the prey population descends speedily. This figure is obtained when p = 30, c = 35 and δ = 0.1.
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Figure 3.13: Trajectory of system (3.28) with and without control.

3.10 Conclusion

In this chapter, the properties of Hopf bifurcations in a Leslie-Gower Predator-Prey model with dis-

crete time delay in predators equation have been studied. We have also investigated optimal harvesting

when the harvesting is given by a continuous function in this model. Although bifurcations in a pop-

ulation dynamics without delay have been investigated by many researchers, there are few papers on

the bifurcations of a population dynamics with delay, which have shown direction of global Hopf-

bifurcation and optimal harvesting simultaneously. We have obtained sufficient conditions on the

parameters for which the delay-induced system is asymptotically stable around the positive equilib-

rium for all values of the delay parameter and if the conditions are not satisfied, then there exists a

critical value of the delay parameter below which the system is stable and above which the system is

unstable. By applying the normal form theory and the center manifold theorem, the explicit formulae

which determine the stability and direction of the bifurcating periodic solutions have been determined.

Our analytical and simulation results show that when the delay τ passes through the critical value τ 0
0 ,

the coexisting equilibrium G0 losses its stability and a Hopf bifurcation occurs, that is, a family of

periodic solutions bifurcate from G0. Also, the amplitude of oscillations increases with increasing t.

For the considered parameter values, it is observed that the Hopf bifurcation is supercritical and the

bifurcating periodic solution is unstable. The problem of optimal harvesting policy has been solved by

using the new result of retarded optimal control which is an extension of Pontryagins Maximal prin-

ciple theory. We hope that the theoretical investigations which have been carried out in this chapter
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will certainly help the experimental ecologists to do some experimental studies and as a consequence

the theoretical ecology may be developed to some extent. In this chapter, the modified Leslie-Gower

predator-preys model incorporates a harvested function with two thresholds. In the next chapter, I’ll

formulate a modified Leslie-Gower predator-prey model with additional fixed food for predators and

the harvesting functions used for harvesting of preys will be define with only one threshold.
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CHAPTER FOUR

HOPF BIFURCATION ANALYSIS IN A
DELAYED LESLIE-GOWER

PREDATOR-PREY MODEL INCORPORATING

ADDITIONAL FIXED FOOD FOR

PREDATORS

Abstract
In this chapter, we formulate and analyze a modified Leslie-Gower predator-prey model. Our model

incorporates refuge of preys, additional fixed food for predators, harvesting of preys through a contin-

uous threshold policy (CTP) and a time-delay as to account for predators maturity time. We first carry

out a qualitative analysis of the model without time-delay, showing existence of extinction, preys-free,

predators- free and coexistence equilibria. We further study their stability conditions. Relying only on

theoretical results of the model, we construct bifurcation diagrams involving refuge and and harvest

limit parameters. This led to summarize different scenarios for the model including elimination of

one species or competition of both species, that are proven possible. Furthermore, considering the

time-delay as bifurcation parameter, we analyze the stability of the coexistence equilibria and prove

the system can undergoes a Hopf bifurcation. The direction of that Hopf bifurcation and the stability

of the bifurcated periodic solution are determined by applying the normal form theory and the center

manifold theorem. Numerical simulations are presented to illustrate our theoretical results.

4.1 Introduction

Relationship between predators and their preys has been modelled by Lotka (1920) [122] and Volterra

(1931) [177]. Their model, which is nowadays considered as the simplest predator-prey model, has

been modified by authors like Leslie ((1948) [113], (1958) [114]). In their researches, they consid-

ered that a predator consumes only one type of prey and does not have another resource of food.

This hypothesis has been modified by several authors who considered that a predator can be provided
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with additional food. In this way, many experimentalists and theoreticians have studied the conse-

quences of providing a predator with additional food, the corresponding effects on the predator-prey

dynamics, its utility on controllability of ecosystems such as integrated pest management and species

conservation which employ biological control as one of the tools. Bilde and Toft (1998) [21], Coll

and Guershon (2002) [34], Harmon (2003) [72], Hardwood et al. (2005) [73], Murdoch et al. (1985)

[134], Sabelis and Van Rijn (2006) [151], Srinivasu et al. (2007) [163], Van Baalen et al. (2001)

[9], Van Rijn et al. ((2002) [146], (2005) [152]), H.M. Ulfa et al. (2017) [174] have investigated the

consequences of providing additional food to predators in a predator-prey system. Recently, Srinivasu

et al. (2011) [165] studied the qualitative behavior of a predator-prey system incorporating additional

food for the predator. The conclusion of their investigation was that handling times for the available

foods to the predator play a key role in the determination of the eventual state of the ecosystem. For

Haque and Greenhalgh (2010) [71], providing alternative food to predators can play an important

role in promoting the persistence of predator-prey systems. M. T. Alves (2013) [3] studied a model

with additional food and a preference rate of the predator for one or the other food. M. T. (2013) [3]

concluded that providing alternative fixed food to predator cause a distraction effect. That distraction

effect has been identified as a mechanism which can favor positive indirect effects on the principal

prey in the long term. For M. T. (2013) [3], due to the presence of alternative food, the predator does

not spend all its searching time on its favorite food, so its consumption of that favorite food is no

more at the maximal rate. Then there is a negative impact on the growth rate of the predator. Because

the use of spatial refuges by the prey population is one of the more relevant behavioral traits that

affect the dynamics of predator-prey system, F. Chen et al. (2009) [29], Y. Huang et al. (2006) [87],

T.K. Kar (2006) [99] have investigated the influence of prey refuge in predator-prey models. They

concluded that the prey refuge has a stabilizing effect on the predator prey relationship. It is more

realistic to assume that, after predating the prey, the reproduction of the predator is not instantaneous.

It is necessary to take into account the fact that the reproduction of predator is mediated through

some time lag which is required for gestation. The conversion of prey energy to predator energy is

not instantaneous. For the above reasons, models with delays are more realistic than those without

delays. For example, a time delay can cause the change of the stability of an equilibrium, making a

stable equilibrium to become unstable (For more details, see Brauer (1977) [25], Kar et al. (2011)

[102], Beretta et al. (1998) [17], Kuang (1993) [106], Gopalsamy (1992) [61], Azbelev et al. (2006)

[7], Balachandran et al. (2006) [11], Arino et al. (2006) [5] , C. Liu et al. (2016) [118], Q. Liu et al.

(2014) [120], J. Liu (2014) [119], J. liu et al. (2012) [121], Y. F. Ma (2012)[125], A.F. Nindjin et al.

(2006) [138], D. Xiao and W. Li (2003) [181], C. Xu et al. (2011) [188], R. Yafia et al. (2007) [186],

C. Xu et al. (2011) [188], X. Yan and W. Li (2006) [189], S. Yuan et al. (2009) [194], R. Yuan et al.

(2015) [193], S.L. Yuan and Y. L. Song (2009) [195], S. L. Yuan et al. (2009) [196], Zhang zi-zhen

and Yang hui-zhong (2013) [201]). Banshidhar Sahoo and Swarup Poria (2015) [155] has studied the

effects of additional food and time delay due to gestation time.

Predators and preys are ecological resources. So they can be used either for human being needs or

for commercial industries. It can then be exploited and harvested in fishery, forestry and wildlife
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management. There is a wide range of interest in the use of bioeconomic models to gain insight

into the scientific management of the renewable resources like fisheries and forestries. To study the

effect of harvesting in the dynamic of relationship between species, some harvesting functions have

been considered by researchers. We can cite constant harvesting function, linear harvesting functions,

quadratic harvesting functions (Leard et al. (2008) [111], Kar and al. (2006) [99], Kar et al. (2011)

[102], Gazi et al. (2008) [56], Lenzini et al. (2010) [112], Feng et al. (2006) [49], Liu et al. (2016)

[118]), M. Rayungsari et al. (2014) [144]) and the so-called continuous threshold policy (CTP) which

use one or more than one threshold and, with which the harvesting starts when the population of the

species being harvested has reached a certain threshold (Bohn et al. (2011) [23], R.S. Lashkarian and

D.B. Sharifabad (2016) [110], Meza and al. (2005) [132], Tankam et al. (2015) [169].

In what follows, we formulate and analyze a Leslie-Gower predator-prey model derived from the one

proposed by Mickael Teixeira Alves (2013) [3]. After the predation of preys, the reproduction of

the predator population is not an instantaneous phenomenon. The use of spatial refuges by the preys

population can affect the dynamic of a predator prey model system. Preys can be harvested either for

human being needs or for commercial industries. So, our model incorporates a time delay τ in the

predator equation which represents the time lag for gestation (or maturation) of predator, a refuge for

preys and a CTP harvesting function for preys.

The organization of this chapter is as follows : in the second section, some models incorporating

additional fixed food for predators and some applications of Leslie-Gower predator-prey models for

practical ecological problems concerning the predator-prey interactions are given. We formulate the

modified Leslie-Gower predator-prey model in the third section. In the fourth section, we prove that

each solution of the system is positive and bounded. The fifth section contains the equilibria of the

model without the time delay and their stability. The investigation for a Hopf bifurcation is done in

the sixth section. We analyze the stability and the direction of the existing Hopf bifurcation in the

seventh section. Numerical simulations results are supplied in the eighth section in support of the

theoretical analysis.

4.2 Leslie-Gower predator-prey models incorporating additional

food and some applications of Leslie-Gower predator-prey

models

In this section, two modified Leslie-Gower predator-prey models incorporating additional fixed food

for predators are given in order to have informations about effects of additional food on the dynamic of

the initial Leslie-Gower predator-prey model. Some applications of the Leslie-Gower predator-prey

models for concrete ecological problems are also presented in this section.
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4.2.1 The M. T. Alves (2013) model

M. T. Alves (2013) ([3]) has formulated a model from the Leslie-Gower predator-prey model by

assuming that, the predator is provided with additional food. He assumes that the additional food is not

dynamic but maintained at a constant level and the encounters between the predators and additional

food is proportional to the density of additional food. His model is the following two-dimensional

system of ordinary differential equations:




Ṅ(t) = rN

(
1− N

KN

)
N − qλNNP,

Ṗ (t) = rP

(
1− P

qαNN + (1− q)αAKA

)
P,

(4.1)

The variables N(t) and P (t) denote respectively the preys and predators populations at the time t.

The positive parameter q represents the preference rate of the predator due to the fact that the predator

has two sources of food. It means that if q = 0, the predator consumes only the additional food A.

Thus the carrying capacity of the predator is αAKA. If q = 1, the predator consumes only the prey

N . So the carrying capacity of the predator is αNN . If q ∈ (0, 1), the predator consumes the two

sources of food according to proportions defined by the parameter q. The carrying capacity of the

predator is qαNN + (1− q)αAKA according to the formalism of Stephens and Krebs (1986) ([166]).

The parameter αA is the measure of the amount of energy in the form of biomass of the additional

food assimilate into the predator’s energy in term of biomass and the parameter KA represents the

constant density of the additional food. Those three parameters have been introduced for additional

fixed food. The other parameters are those always present in a classical Leslie-Gower predator-prey

model.

The aim of his work on model (4.1) was to study the effects of shared predation, that is the situation in

which a predator has a choice between two sources of food. Such predation usually induces negative

indirect interactions between prey, or apparent competition, through an increase of predator density

and thus of predation pressure. Two mechanisms can however weaken apparent competition and lead

to equivocal signs of indirect interactions. On the one hand, predator distraction, which stems from

the difficulty to efficiently forage for different prey at the same moment in time and diminishes the

number of prey captured per predator. On the other hand, predator negative density dependence limits

predator growth. The following conclusions have been obtained by M. T. Alves.

1. Indirect effects of the additional fixed food A over the preys N strictly depend on equilibria of

the predator depending on preys (P ∗N = αNKN , P ∗A = αAKA, P ∗N =
rNαNKN

rN + αNKNλN
). The

distraction of the predator by the additional food can induce and favorite positive indirect effect

on the prey.

2. On the one hand, if the predator has a fixed preference its preys, a positif indirect effect of the

additional food A on the prey N is possible if P ∗A < (1 + 1
q
)P ∗N . Moreover, if P ∗A < 2P ∗N then

the positif indirect effect is possible for any value of the preference rate q.
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3. On the other hand, if the predator has an adaptative preference for its preys, a positif indirect

effect is possible if P ∗A > P ∗N . The additional fixed food A can cause a partial or a total

distraction on the predator. That distraction has a negative effect on the growth rate of the

predator.

4. Comparing the adaptative and the fixed preferences, the positive effect of the additional fixed

food A is easily achievable when the predator has an adaptative preference.

Let’s mention that M. T. Alves has also studied effect of additional fixed food by modifying the

Holling-Tanner predator-prey model. He has also studied effects of dynamic additional food. He has

formulated and study the following models.




Ṅ(t) = rNN −
qλNNP

1 + hNN
,

Ṗ (t) = rP

(
1− P

qαNN + (1− q)αAKA

)
P,

(4.2)





Ṅ(t) = rN

(
1− N

KN

)
N − qλNNP,

Ȧ(t) = rA

(
1− A

KA

)
A− (1− q)λAAP,

Ṗ (t) = rP

(
1− P

qαNN + (1− q)αAKA

)
P,

(4.3)

For more details on the study of models (4.2) and (4.3), the reader can refer to M. T. Alves (2013)

([3]).

4.2.2 The H. M. Ulfa et al. (2017) model

M. A. Aziz-Alaoui and M. D. Okiye (2003) ([8]) have formulated the following (4.4) modified Leslie-

Gower predator-prey model. The Holling type II functional response is used for predator functional

response. Their model is of the following set of two ordinary differential equations :




Ẋ(t) = (1−X)X − δXY

X +m
,

Ẏ (t) = β

(
1− Y

X + e

)
P,

(4.4)

The nature of actively moving predators becomes a reason that they can target on more than one prey

or switch to other food sources. Considering the limited prey population will require additional food

for predators, the M. A. Aziz-Alaoui and M. D. Okiye (2003) ([8]) model (4.4) is reconsidered. H.

M. Ulfa et al. have modified model (4.4) by including the additional food to predators in terms of the

handling time and the nutritional value of additional food. The Leslie-Gower predator- prey model

with additional food for predators is stated as :





Ẋ(t) = (1−X)X − δXY

X +m+ nA
,

Ẏ (t) = β

(
1− Y

X + e

)
P +

σnAY

X +m+ nA
,

(4.5)
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where δ, m, n, A, β, e and σ are positive parameters. The term nA represents quantity of additional

food perceptible to the predator relative to prey.

The following results hold for the H. M. Ulfa et al. model (4.5).

1. The Leslie-Gower predator-prey model with additional food for predator (4.5) is a permanence

system, indicating that the solution of system is bounded.

2. The model (4.5) has four equilibrium points, namely the extinction of both populations point

(E0), the extinction of predator point (E1), the extinction of prey point (E2), and both popula-

tions are able to survive (E3).

3. E0 and E2 are always unstable, whereas E1 and E3 are stable under certain conditions.

4. Increasing the coefficient of additional food for predator (n) may stabilize equilibrium E3 and

at the same time destabilize equilibrium E1.

4.2.3 Some applications of Leslie-Gower predator-prey models

Some Leslie-Gower predator-prey model have been used for practical ecological problems con-

cerning the predator-prey interactions. In what follows, I give two examples in which Leslie-

Gower predator-prey models are used.

4.2.3.1 Management of multispecies fisheries

Management of multispecies is the title of the R. M. May et al (1979) ([130]) paper’s on prob-

lems of fisheries as mentioned on the title. For R. M. May et al., with the overexploitation

of many conventional fish stocks, and growing interest in harvesting new kinds of food from

the sea, there is an increasing need for managers of fisheries to take into account of interac-

tions among species. ln particular as Antarctic krill-fishing industries grow, there is a need

to agree upon sound principles for managing the Southern Ocean ecosystem. Using simple

models (Leslie-Gower models), authors discuss the way multispecies (krills, baleen whales,

seals, cephalopods, sperms whales) food webs respond to the harvesting of species at different

trophic levels. The biological and economic insights are applied for a discussion of fisheries

in the Southern Ocean and the North Sea and to enunciate some general principles for harvest-

ing in multispecies systems. The very important study done by the authors have reached to

many conclusions. For more details on the models used, their analysis, studies with economics

(maximum sustainable yield (MSY)) and biological considerations, comparative conclusions,

the reader can refer to R. M. May et al. paper ([130]).
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4.2.3.2 Cats protecting birds : Modelling the mesopredator release effect

F. Courchamp et al. (1999) ([39]) have built a mathematical model of Leslie-Gower type de-

scribing a three-species system (prey-mesopredator-superpredator). The aim of their work is

to examine the fate of prey species (endemic birds) in an insular ecosystem in which a meso-

predator (rats) and a superpredator (feral cats) have been introduced. They have formulated the

fourth following models for their studies.

According to F. Courchamp et al. (1999) ([39]), the two models (4.6) and (4.7) consist of two

simple coupled differential equations each representing the dynamic of one population. Each

population is described by a simple logistic equation, modified to take into account its relation-

ship with the other species. It is assumed that all the prey species form a single ”bird” popula-

tion, with average characteristics.The carrying capacities of the environment for the mesopreda-

tor and superpredator populations are not constant, but depend partially (rats and omnivores)

or totally (cats and carnivores) on the number of available individual prey on which their pop-

ulations can feed at the time t. The carrying capacity is thus the quantity of non-avian food S

divided by the consumption rate ηS , plus the number of prey B divided by the mesopredator

predation rate ηb, S
ηS

+ B
ηb

, that is ηbS+ηSB
ηbηS

. Instead of ηbR, the predation rate of rats on birds is
BηbR
S+B

.

In order to take into account the three species simultaneously, further assumptions have been

made for the third model (4.8). Taking as example a domestic cat which is an opportunist

predator which switches prey species according to their availability, the number of birds and

rats preyed upon by cats will depend on their respective numbers. Thus, instead of µbC and

µSC, one will find µbBC
B+R

and µrRC
B+R

. The cat carrying capacity is : B
µb

+ R
µc

The first one (4.6) representing interactions between the preys (birds) and mesopredators (rats)

is the following coupled ordinary differential equations :




Ḃ(t) = rbB

(
1− B

Kb

)
− ηbBR

S +B
,

Ṙ(t) = rrR

(
1− ηbηsR

ηbS + ηsB

)
,

(4.6)

The second one (4.7) representing interactions between the preys (birds) and superpredators

(cats) is the following coupled ordinary differential equations :




Ḃ(t) = rbB

(
1− B

Kb

)
− µbC,

Ċ(t) = rcC

(
1− µbC

B

)
,

(4.7)

The third one (4.8) stating for the dynamic between the three species preys (birds), mesopreda-

tors (rats) and superpredators (cats) is the following set of three ordinary differential equations
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: 



Ḃ(t) = rbB

(
1− B

Kb

)
− ηbBR

S +B
− µbBC

B +R
,

Ṙ(t) = rrC

(
1− ηbηsR

ηbS + ηsB

)
− µrRC

B +R
,

Ċ(t) = rcC

(
1− µbµrC

µrB + µbR

)
(4.8)

The fourth one (4.9) stating for the dynamic between the three species preys (birds), meso-

predators (rats) and superpredators (cats) and used for strategy control is the following set of

three ordinary differential equations :




Ḃ(t) = rbB

(
1− B

Kb

)
− ηbBR

S +B
− µbBC

B +R
,

Ṙ(t) = rrC

(
1− ηbηsR

ηbS + ηsB

)
− µrRC

B +R
− λrR,

Ċ(t) = rcC

(
1− µbµrC

µrB + µbR

)
− λcC

(4.9)

Figure 4.1: Compartmental representation of the mathematical model (4.9). The arrows represent the

flux within and are between compartments. Curved arrows are intrinsic rates. From F. Courchamp et

al. ([39])
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Table 4.1: Parameters and variables of models (4.6)-(4.7)-(4.8)-(4.9)

Variables/parameters Interpretation (Definition)

B Preys population (birds) at the time t

R Mesopredators population (rats) at the time t

C Superpredators population (cats) at the time t

rb Intrinsic growth rate of preys (birds)

rr Intrinsic growth rate of mesopredators (rats)

rc Intrinsic growth rate of superpredators (cats)

µb Predation rate of superpredators on preys

µr Predation rate of superpredators on mesopredators

ηb Predation rate of mesopredators on preys

ηs Predation rate of mesopredators on other foods

λr Control effort on the rat population

λc Control effort on the cat population

Kb Carrying capacity of the environment of preys

For more details for the formulation of the above models, the reader can refer to F. Courchamp

et al. ([39], [40]). The following conclusions hold for model (4.8 - 4.9) :

(a) The presence of one predator only is sufficient to induce the extinction of the endemic

prey.

(b) When both the mesopredator and the superpredator are present, seven situations may

arise, among which is the case where the three species are present with stable dynamics.

(c) Interestingly, there is a case where both predator species can coexist indefinitely, even

after the eradication of the prey species.

(d) More interestingly is the case where the superpredator causes the extinction of the meso-

predator but not of the prey.

(e) It has been shown that the presence of a superpredator may have a global positive effect

in insular ecosystems in which, an introduced mesopredator threatens an endemic prey.

(f) The presence of the superpredator may preclude the elimination of the prey by the meso-

predator.

(g) The eradication of the superpredator should be avoided, as a means to prevent what is

termed ” mesopredator release : a sudden burst of mesopredator, once the superpredator

pressure is suppressed”.
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(h) The study of the control strategy clearly shows that the fate of the prey will depend on

the superpredator control level. Although counterintuitive, if the superpredator control is

too high, the prey will disappear.

4.3 Formulation of a modified Leslie-Gower predator-prey

model

M. T. Alves (2013) [3] formulated and analyzed the following model :




ẋ(t) = r1

(
1− x(t)

K1

)
x(t)− qλ1x(t)y(t),

ẏ(t) = r2

(
1− y(t)

qα1x(t) + (1− q)αAKA

)
y(t),

(4.10)

where the variables x(t) and y(t) are respectively the preys and the predators populations at

time t. In the model (4.10), we have two categories of parameters. The parameters r1 and r2

are the intrinsic growth rates of preys and predators respectively. λ1 measures the strength of

competition among individuals of preys population, K1 is the carrying capacity of the preys

when there is no predation, α1 measures the amount of energy in the form of biomass of the

prey x(t) assimilate into the predator’s energy in the term of biomass.The parameters r1, r2,

λ1, α1 and K1 always exist in a Leslie-Gower predator-prey model. The parameters q, KA

and αA has been introduced by M.T. Alves (2013) [3] with the assumption of additional food

for predators. M.T. Alves (2013) [3] assumes that the predator is provided with additional

food of constant density KA. The parameter αA measures the amount of energy in the form

of biomass of the additional food assimilate into the predator’s energy in the term of biomass.

The parameter q is the preference rate of the predator due to the fact that the predator has two

sources of food. It means that if q = 0, the predator consumes only the additional food A. Thus

the carrying capacity of the predator is αAKA. If q = 1, the predator consumes only the prey x.

So the carrying capacity of the predator is α1x(t). If q ∈ (0, 1), the predator consumes the two

sources of food according to proportions defined by the parameter q. The carrying capacity of

the predator is given by qα1x(t) + (1 − q)αAKA according to the formalism of Stephens and

Krebs (1986) [166].

Our model, incorporating prey refuge, time delay and harvesting of preys, reads as :





ẋ(t) = r1

(
1− x(t)

K1

)
x(t)− qλ1(1−m)x(t)y(t)− ϕ(x(t)),

ẏ(t) = r2

(
1− y(t− τ)

qα1(1−m)x(t− τ) + (1− q)αAKA

)
y(t),

(4.11)

Due to the fact that the reproduction of the predator population after the predation of preys is

not an instantaneous phenomenon, we introduced a time delay τ in the predator equation which
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represents the time lag for gestation (or maturation) of predator.

The term m ∈ [0, 1) measures the strength of refuge. It means that mx(t) models the capacity

of a refuge at the time t and so refuge protecting mx(t) quantity of the prey population at the

time t, it remains (1−m)x(t) quantity of preys available to the predation.

ϕ(x(t)) denotes the continuous threshold prey harvesting function defined as follows:

ϕ(x) =





0 if x < T1,
h(x− T1)

h+ x− T1

if x ≥ T1.
(4.12)

In this way, if the prey population is less than the threshold T1, there is not harvesting of preys.

Once the prey population reaches the size x = T1, their harvesting starts and increases smoothly

to a limit value h. From both biological and practical point of views such harvesting function

is more sound that its constant or linear counterparts (Bohn et al. (2011) [23], Tankam et al.

(2015) [169]). For biological reason, it is natural to assume

T1 < K1 (K1 =
r1

b1

). (4.13)

Due to the fact that it is not plausible to have the number of preys (respectively the number

of predators) at time t = 0 greater than the carrying capacity K1 =
r1

b1

(respectively K2 =

qα1(1−m)K1 + αAKA) of preys (respectively predators), we assume :

0 ≤ x(0) <
r1

b1

. (4.14)

and

0 ≤ y(0) < qα1(1−m)K1 + αAKA. (4.15)

The initial conditions for the system (4.11)- (4.12) are chosen as :

x(0) ≥ 0, y(0) ≥ 0. (4.16)

For θ ∈ [−τ, 0], we use the notation :

xt(θ) = x(t+ θ) (4.17)

Then the initial conditions for the system take the form :

x0(θ) = φ1(θ), y0(θ) = φ2(θ), (4.18)

for all θ ∈ [−τ, 0], where (φ1, φ2) ∈ C([−τ, 0],R2
+), x(0) = φ1 > 0 and y(0) = φ2 > 0.

C = C([−τ, 0],R2
+) is the Banach space of continuous functions from the interval [−τ, 0] into

R2
+ = {(x, y) : x ≥ 0, y ≥ 0}.
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4.4 Positivity and Boundedness of solutions

4.4.1 Positivity of solutions

In this subsection, we prove that our model is biologically meaningful. It means that the variable

x(t) and y(t) which represent the population of preys and predators respectively are always

positive. We have the following theorem.

Theorem 4.1. When assumptions (4.14) and (4.15) hold, the positive quadrant R2
+ is invariant

for system (4.11)-(4.12).

Proof. We must show that for each solution (x, y) of system (4.11)-(4.12), defined and contin-

uous on [−τ, A[ where A ∈]0,+∞], x(t) > 0 and y(t) > 0 for all t ∈ [0, A[. Suppose that it

is not true. Then there exists a value of T in ]0, A[ such that for all t ∈ [0, T [, x(t) > 0 and

y(t) > 0, and either x(T ) = 0 or y(T ) = 0.

For all t ∈ [0, T [ and from equations of (4.11), we have,

x(t) > x(0)exp

(∫ t

0

(
r1 − b1x(s)− qλ1(1−m)y(s)− h

h+ x(s)− T1

)
ds

)

and

y(t) = y(0)exp

(∫ t

0

(
r2

(
1− y(s− τ)

qα1(1−m)x(s− τ) + (1− q)αAKA

))
ds

)

As x and y are defined and continuous on the compact [−τ, T ], there exists M ≥ 0 such that :

x(t) > x(0)exp

(∫ t

0

(
r1 − b1x(s)− a1(1−m)y(s)− h

h+ x(s)− T1

)
ds

)
≥ x(0)exp(−TM)

and

y(t) = y(0)exp

(∫ t

0

(
r2

(
1− y(s− τ)

qα1(1−m)x(s− τ) + (1− q)αAKA

))
ds

)
≥ y(0)exp(−TM)

Let us take the limit as t→ T , we get

x(T ) ≥ x(0)exp(−TM) > 0

and

y(T ) ≥ y(0)exp(−TM) > 0

which contradicts the fact that either x(T ) = 0 or y(T ) = 0. Then, a solution of system

(4.11)-(4.12) which starts in the positive quadrant R2
+ remains there.
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4.4.2 Boundedness of solutions

In this subsection, we prove that each solution of system (4.11) is bounded. The following

theorem holds.

Theorem 4.2. When the assumptions (4.14) and (4.15) hold, each solution of system (4.11)-

(4.12) is uniformly bounded.

Proof. Using the first equation of system (4.11), we always have

ẋ(t) ≤ r1x(t)

(
1− x(t)

K1

)

which implies

x(t) ≤ 1

1

K1

+

(
1

x(0)
− 1

K1

)
e−r1t

.

Using the assumption (4.14), we have x(t) ≤ K1, for all positive value of t. It means that x(t)

is bounded.

We use the second equation of system (4.12) to prove that y(t) is bounded.

For all t ≥ 0, we have

ẏ(t) ≤ r2y(t).

Integrating that differential inequality from t− τ to t gives :

y(t− τ) ≥ y(t)e−r2τ .

Using the fact that x(t) ≤ K1, we have the following differential inequality

ẏ(t) ≤ r2y(t)

(
1− y(t)

K

)
,

where K =
(1−m)qα1K1 + (1− q)αAKA

e−r2τ
.

The above differential inequality with unknown y implies:

y(t) ≤ 1

1

K
+

(
1

y(0)
− 1

K

)
e−r2t

.

Using the assumption (4.15), we have y(t) ≤ K, for all positive value of t. Thus y(t) is

bounded. One can easily verify that, using assumption (4.15), the inequalities x(t) ≤ K1 and

er2τ ≥ 1, we have y(0) ≤ K.

4.5 Equilibria of the model without delay and their stability

4.5.1 Equilibria of the model without delay

In the following theorem, we give equilibria of system (4.11)-(4.12).
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Theorem 4.3.

(a) When x < T1, the system (4.11)-(4.12) has four equilibria which are :

• E0
1(0, 0) which means that both predators and preys are absent.

• E0
2(0, (1− q)αAKA) for which there is no prey while the predator population reaches its

carrying capacity.

• E0
3(K1, 0) for which there is no predator and the prey population reaches its carrying

capacity.

• E0
4

(
r1 − λ1(1−m)q(1− q)αAKA

b1 + q2λ1α1(1−m)2
,
r1α1(1−m)q + (1−m)b1αAKA

b1 + q2λ1α1(1−m)2

)
.

The coexistence equilibrium E0
4 is biologically meaningful if r1 > λ1(1 − m)q(1 −

q)αAKA.

(b) When x ≥ T1, the system (4.11)-(4.12) is such that :

• Eϕ
1 (xϕ1 , 0) is an equilibrium for which there is no predator and the number xϕ1 of preys is

a positive solution on the interval [T1, K1] of equation (4.19) :

− b1x
3 + (r1 − b1(h− T1))x2 + (r1(h− T1)− h)x+ hT1 = 0. (4.19)

• Eϕ
2 (xϕ2 , y

ϕ
2 ) is an equilibrium where yϕ2 = (1−m)qα1x

ϕ
2 + (1− q)αAKA and the number

xϕ2 of preys is a positive solution on the interval [T1, K1] of equation (4.20).

Aϕ1x
3 + Aϕ2x

2 + Aϕ3x+ hT1 = 0, (4.20)

where :

Aϕ1 = −b1 − q2λ1α1(1−m)2,

Aϕ2 = r1 − q(1− q)(1−m)λ1αAKA − (h− T1)(b1 + q2λ1α1(1−m)2),

Aϕ3 = (r1 − q(1− q)(1−m)λ1αAKA)(h− T1)− h.

Proof. A couple of variables (x, y) is an equilibrium of system (4.11)-(4.12) if it is a solution

of the following systems on [0, T1]× R+ and on [T1, K1]× R+ respectively.




r1

(
1− x(t)

K1

)
x(t)− qλ1(1−m)x(t)y(t) = 0,

r2

(
1− y(t)

qα1(1−m)x(t) + (1− q)αAKA

)
y(t) = 0,

(4.21)





r1

(
1− x(t)

K1

)
x(t)− qλ1(1−m)x(t)y(t)− h(x− T1)

h+ x− T1

= 0,

r2

(
1− y(t)

qα1(1−m)x(t) + (1− q)αAKA

)
y(t) = 0,

(4.22)
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Firstly, we solve the system (4.21) on [0, T1]×R+. Using the first equation of the system (4.21),

we have x = 0 or x =
r1 − qλ1(1−m)y

b1

.

Replacing x by 0 in the second equation of the system (4.21) gives y = 0 or y = (1− q)αAKA.

Then we have the equilibria E0
1 and E0

2 .

Replacing x by
r1 − qλ1(1−m)y

b1

in the second equation of the system (4.21) gives y = 0 or

y = (1−m)qα1x+(1−q)αAKA. If y = 0, we have x =
r1

b1

. If y = (1−m)qα1x+(1−q)αAKA,

we have x =
r1 − λ1(1−m)q(1− q)αAKA

b1 + q2λ1α1(1−m)2
and y =

r1α1(1−m)q + (1−m)b1αAKA

b1 + q2λ1α1(1−m)2
.

Then we have the equilibria E0
3 and E0

4 .

Secondly, we solve the system (4.22) on [T1, K1]× R+.

Using the second equation of system (4.22) gives y = 0 or y = (1−m)qα1x+ (1− q)αAKA.

If y = 0, we find that x is a solution of equation (4.19). Moreover if we consider the function

f defined by f(x) = −b1x
3 + (r1 − b1(h − T1))x2 + (r1(h − T1) − h)x + hT1, then we have

f(T1) = hT1(r1−b1T1) > 0 using assumption (4.13). We also have f(K1) = −h(K1−T1) < 0

because T1 < K1. Thus, by the intermediate value theorem (H. Boualeu et al. (2007) [24], F.

Moulin et al. (2007) [133]), it exists at least one solution of equation (4.19). So we have

the equilibria Eϕ
1 . If y = (1 − m)qα1x + (1 − q)αAKA, x is a solution of equation (4.20).

Moreover, if we consider the function g defined by g(x) = Aϕ1x
3 + Aϕ2x

2 + Aϕ3x + hT1,

we have g(T1) = hT1(r1 − b1T1 − qλ1(1 − m)(1 − q)αAKA + qα1(1 − m)T1). We have

g(K1) = −(K1(K1−T1) +hT1)(qλ1(1−m)(1− q)αAKA + q2λ1α1K1(1−m)2) < 0 because

T1 < K1. Thus, if r1−b1T1−qλ1(1−m)(1−q)αAKA+q(1−m)α1T1 > 0 then g(T1) > 0. By

the intermediate value theorem (H. Boualeu et al. (2007) [24], F. Moulin et al. (2007) [133]),

(4.20) has at least one solution in [K1, T1]. Thus we have the equilibrium Eϕ
2 .

Note that if (CONDEX(xϕ2 )) below holds

CONDEX(xϕ2 ) : r1 − b1T1 − qλ1(1−m)(1− q)αAKA + q(1−m)α1T1 > 0

then equation (4.20) will have at least one solution in the interval [T1, K1]. So, we have a

sufficient condition for the existence of the coexistence equilibrium Eϕ
2 .

Discussion

In what follows, we make a discussion on the results in terms of the rate preference q, the

threshold of harvesting T1 and the intrinsic growth rate of preys r1. The aim of that discussion

is to analyze the impact of the preference rate q, the threshold of harvesting T1 and the intrinsic

growth rate of preys r1 on the equilibria of the model. As it has been done in the theorem, we

distinguish two cases:

(a) Case 1 : x < T1, there is no harvesting of preys.

1.1. q = 0, the predator consumes only the additional food A.
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• Equilibria E0
1 and E0

3 remain unchanged.

• The equilibriumE0
2 = (0, αAKA) is such that the predator reaches its carrying

capacity.

• The coexistence equilibrium

E0
4 = (K1, (1−m)αAKA) always exists (the condition of its existence given

in the theorem is satisfied), the preys x which are not consumed reach their

carrying capacity while the predator also reaches its carrying capacity taking

into account the refuge of the preys x.

1.2. q = 1, the predators consume only the preys.

• Equilibria E0
1 and E0

3 remain unchanged.

• The predator population does not more reach its carrying capacity when the

predators consume only the preys. The equilibrium E0
2 = (0, 0) = E0

1 .

• The coexisting equilibrium

E0
4

(
r1

b1 + λ1α1(1−m)2
,
r1α1(1−m) + (1−m)b1αAKA

b1 + λ1α1(1−m)2

)
always exists (the

condition of its existence r1 > λ1(1−m)q(1− q)αAKA given in the theorem

is satisfied). Preys and predators do not more reach their carrying capacities

as when q = 0.

We remark that when the predators consume only one source of food, the coexisting

equilibrium always exists.

1.3. q ∈ (0, 1), the predators consume the two sources of food according to the prefer-

ence rate q.

• Equilibria E0
1 , E0

2 and E0
3 always exist with the possibility for the preys or the

predators to reach their carrying capacities.

• The coexisting equilibrium does not more always exits. Its existence depends

on the intrinsic growth rate r1 of preys, the density of additional fixed food

for predators KA, the amount of energy in the form of biomass of additional

food assimilate into the predator’s energy αA, the strength of refuge m and

the strength of competition among individuals of preys. So if

r1 ≥
λ1αAKA(1−m)

4
, then the coexisting equilibrium E0

4 always exists for

any value of the preference rate q in (0, 1). If r1 ≤
λ1αAKA(1−m)

4
, then

the coexisting equilibrium E0
4 exists only for the values of the preference rate

q in (0, q1] ∪ [q2, 1) where q1 =
1

2
− 1

2

√
1− 4r1

λ1αAKA(1−m)
and q2 =

1

2
+

1

2

√
1− 4r1

λ1αAKA(1−m)
.
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(b) Case 2 : x ≥ T1, there is harvesting of preys.

2.1. q = 0, the predator consumes only the additional food A.

• Equilibrium Eϕ
1 always exists.

• The coexisting equilibrium Eϕ
2 = (xϕ2 , αAKA) always exists (Using assump-

tion (4.13) gives r1 − b1T1 > 0 and CONDEX(xϕ2 ) holds), the predator

population reaches its carrying capacity.

2.2. q = 1, the predators consume only the preys.

• The equilibrium Eϕ
1 always exists.

• The coexisting equilibrium Eϕ
2 = (xϕ2 , (1 − m)α1x

ϕ
2 ) always exists (Using

assumption (4.13) gives r1 − b1T1 + (1−m)α1T1 > 0 and CONDEX(xϕ2 )

holds). Predators reach their carrying capacity.

2.3. q ∈ (0, 1), the predators consume the two sources of food according the preference

rate q.

• Equilibrium Eϕ
1 always exists.

• The coexisting does not always exist. Its existence can be discussed in terms

of the threshold of harvesting T1. Then, we have the following cases.

If T1 ≥
λ1αAKA

α1

, then using assumption (4.13) gives r1 − b1T1 − qλ1(1 −
m)(1 − q)αAKA + q(1 −m)α1T1 > r1 − b1T1 + (1 −m)α1T1 > 0. Thus,

CONDEX(xϕ2 ) holds and the coexisting equilibrium Eϕ
2 exists.

If T1 <
λ1αAKA

α1

and r1 ≥
λ1αAKA(1−m)

4
, then Eϕ

2 exists.

If T1 <
λ1αAKA

α1

and r1 <
λ1αAKA(1−m)

4
, then the coexistence equilibria

Eϕ
2 doesn’t always exist.

4.5.2 Stability of equilibria of the model without delay

The following theorem holds :

Theorem 4.4.

(a) The equilibrium E0
1 is an unstable node.

(b) The equilibrium E0
2 is a stable node if r1 < qλ1(1−m)(1− q)αAKA and a saddle (unstable) if

r1 > qλ1(1−m)(1− q)αAKA. We have a saddle-node bifurcation.

(c) The equilibrium E0
3 is a saddle (unstable).
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(d) The equilibrium E0
4 is locally asymptotically stable. More precisely, let us set :

∆E0
4

= (b1x
0
4 − r2)2 − 4(1−m)2α1r2q

2x0
4

• If ∆E0
4
> 0, then E0

4 is a stable node.

• If ∆E0
4
< 0, then E0

4 is a stable spiral.

• If ∆E0
4

= 0, then E0
4 is a stable degenerate node.

(e) The equilibrium Eϕ
1 is unstable. More precisely,

• if
h(xϕ1 − T1)2 − h2T1

xϕ1 (xϕ1 + h− T1)2
< b1x

ϕ
1 , then Eϕ

1 is a saddle.

• if
h(xϕ1 − T1)2 − h2T1

xϕ1 (xϕ1 + h− T1)2
> b1x

ϕ
1 , then Eϕ

1 is an unstable node.

(f) Let us set :

Tr(J(Eϕ
2 ) = −r2 − b1x

ϕ
2 +

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
,

|J(Eϕ
2 )| = −r2

(
−b1x

ϕ
2 +

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2

)
+ (1−m)2q2α1λ1r2x

ϕ
2 ,

∆Eϕ
2

=

(
r2 − b1x

ϕ
2 +

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2

)2

− 4(1−m)2q2λ1α1r2x
ϕ
2 .

i. When ∆Eϕ
2
> 0, the equilibrium Eϕ

2 is :

• a saddle if
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− b1x

ϕ
2 − (1−m)2q2λ1α1x

ϕ
2 > 0;

• a stable node if
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− b1x

ϕ
2 − (1−m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− r2 − b1x

ϕ
2 < 0;

• an unstable node if
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− b1x

ϕ
2 − (1 − m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− r2 − b1x

ϕ
2 > 0.

ii. When ∆Eϕ
2
< 0, the equilibrium xϕ2 is :

• a stable spiral if
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− b1x

ϕ
2 − (1−m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− r2 − b1x

ϕ
2 < 0;

• an unstable spiral if
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− b1x

ϕ
2 − (1 − m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− r2 − b1x

ϕ
2 > 0;
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• a centre if
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− b1x

ϕ
2 − (1−m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− r2 − b1x

ϕ
2 = 0.

iii. When ∆Eϕ
2

= 0, the equilibrium xϕ2 is :

• a degenerate stable node if
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− b1x

ϕ
2 − (1 −m)2q2λ1α1x

ϕ
2 < 0

and
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− r2 − b1x

ϕ
2 < 0;

• a degenerate unstable node if
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
−b1x

ϕ
2 − (1−m)2q2λ1α1x

ϕ
2 < 0

and
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
− r2 − b1x

ϕ
2 > 0.

Proof.

(a) The jacobian matrix of the system (4.11)-(4.12) at the equilibrium E0
1 is :

JE0
1

=

(
r1 0

0 r2

)
.

JE0
1

has two positive eigenvalues (r1 and r2). So the equilibrium E0
1 is an unstable node.

(b) The jacobian matrix of the system (4.11)-(4.12) at the equilibrium E0
2 is :

JE0
2

=

(
r1 − qλ1(1−m)(1− q)αAKA 0

r2(1−m)α1q −r2

)
.

JE0
2

has one negative eigenvalue (−r2). The stability of the equilibrium E0
2 depends on the

sign of the second eigenvalue r1 − qλ1(1 − m)(1 − q)αAKA. Moreover the discriminant of

the characteristic equation is ∆E0
2

= (r+r1 − qλ1(1 − m)(1 − q)αAKA)2 > 0. Thus if r1 <

qλ1(1−m)(1− q)αAKA, then the equilibrium E0
2 is stable node and the equilibrium E0

4 does

not exist. If r1 > qλ1(1−m)(1− q)αAKA, the equilibrium E0
2 is a saddle (unstable).

(c) The jacobian matrix of the system (4.11)-(4.12) at the equilibrium E0
3 is :

JE0
3

=

(
−r1 −qλ1(1−m)K1

0 r2

)
.

JE0
3

has one positive eigenvalue (r2). The equilibrium E0
3 is a saddle (unstable).

(d) The jacobian matrix of the system (4.11)-(4.12) at the equilibrium E0
4 is :

JE0
4

=

(
−b1x

0
4 −qλ1(1−m)x0

4

(1−m)α1r2q −r2

)
.

T r(JE0
4
) = −(b1x

0
4 + r2) < 0,
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|(JE0
4
)| = r2b1x

0
4 + (1−m)2α1λ1r2q

2x0
4 > 0.

Moreover the discriminant of the characteristic equation is ∆E0
4

= (b1x
0
4 − r2)2 − 4(1 −

m)2α1λ1r2q
2x0

4. Therefore, if ∆E0
4
> 0, then the equilibrium E0

4 is a stable node. If ∆E0
4
< 0,

then the equilibrium E0
4 is a stable spiral. If ∆E0

4
= 0, then the equilibrium E0

4 is a stable

degenerate node.

(e) The jacobian matrix of the system (4.11)-(4.12) at the equilibrium Eϕ
1 is :

JEϕ
1

=


 −b1x

ϕ
1 +

ϕ(xϕ1 )

xϕ1
− ϕ′(xϕ1 ) −qλ1(1−m)xϕ2

0 r2


 .

JEϕ
1

has one positive eigenvalue (r2). Thus the equilibrium Eϕ
1 is unstable. Moreover, if

−b1x1ϕ +
h(xϕ1 − T1)2 − h2T1

xϕ1 (xϕ1 + h− T1)2
< 0, then the equilibrium Eϕ

1 is a saddle.

If −b1x
ϕ
1 +

h(xϕ1 − T1)2 − h2T1

xϕ1 (xϕ1 + h− T1)2
> 0, then the equilibrium Eϕ

1 is an unstable node.

If −b1x
ϕ
1 +

h(xϕ1 − T1)2 − h2T1

xϕ1 (xϕ1 + h− T1)2
= 0, then the equilibrium Eϕ

1 is an unstable non hyperbolic

point.

(f) The jacobian matrix of the system (4.11)-(4.12) at the equilibrium Eϕ
2 is :

JEϕ
2

=


 −b1x

ϕ
2 +

ϕ(xϕ2 )

xϕ2
− ϕ′(xϕ2 ) −qλ1(1−m)xϕ2

(1−m)α1r2q −r2


 .

T r(JEϕ
2
) = −b1x

ϕ
2 − r2 +

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
,

|JEϕ
2
| = −r2

(
−b1x

ϕ
2 +

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2

)
+ (1−m)2q2α1λ1r2x

ϕ
2 .

The discriminant of the characteristic equation is :

∆Eϕ
2

=

(
r2 + b1x

ϕ
2 −

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2

)2

− 4(1−m)2q2α1λ1r2x
ϕ
2 .

Then using the signs of Tr(JEϕ
2
), |JEϕ

2
| and ∆Eϕ

2
, and the table given in (Jordan et al. (2007)

[95]), we have the type and the stability of the equilibriumEϕ
2 as in theorem (4.4). (For stability

of equilibria in the plane, one can also refer to Auger et al. (2010) [6], Hirsch et al. (2004) [77]).

Remark 4.1. When the equilibrium E2 is locally asymptotically stable, the equilibrium E4

doesn’t exists. When E4 exists, it is always locally asymptotically stable and E2 is unstable.

Remark 4.2. If
h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
≤ 0 or h ≥ (xϕ2 − T1)2

T1

, then the equilibrium Eϕ
2 is

always stable. More precisely, xϕ2 is a stable node if ∆Eϕ
2
> 0, a stable spiral if ∆Eϕ

2
< 0 and a

degenerate stable node if ∆Eϕ
2

= 0.
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4.6 Hopf bifurcation and stability analysis of the delayed model

In this section, we study the stability of system (4.11)-(4.12) for τ > 0. Before going further,

let us recall the fact that if an equilibrium is unstable for τ = 0, it remains unstable for τ > 0

(see Martin and al. (2001) [128], Culshaw et al. (2000) [42]). Thus, we shall study the stability

of the coexisting equilibrium without harvesting E0
4 which is always stable when it exists, and

the stability of the coexisting equilibrium with harvesting Eϕ
2 . Let us recall that Eϕ

2 exists if

CONDEX(xϕ2 ) is satisfied and is stable if

−b1x
ϕ
2 − r2 +

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2
< 0

and

−r2

(
−b1x

ϕ
2 +

h(xϕ2 − T1)2 − h2T1

xϕ2 (xϕ2 + h− T1)2

)
+ (1−m)2q2α1λ1r2x

ϕ
2 > 0.

We recall that the equilibrium E0
4 exists if,

r1 − λ1(1−m)q(1− q)αAKA > 0

To linearize system (4.11)-(4.12) around an equilibrium E(xe, ye) which can be E0
4 or Eϕ

2 , let

us set X = x − xe and Y = y − ye. Then the linearized system of system (4.11)-(4.12) reads

as :




Ẋ(t) =

(
−b1xe +

ϕ(xe)

xe
− ϕ′(xe)

)
X(t)− qλ1(1−m)xeY (t),

Ẏ (t) = r2(1−m)qα1X(t− τ)− r2Y (t− τ).

(4.23)

From the linearized system (4.23), we have the following characteristic equation :

λ2 + A1ϕλ+ r2λe
−λτ + A2ϕe

−λτ = 0, (4.24)

where

A1ϕ = b1xe −
h(xe − T1)2 − h2T1

xe(xe + h− T1)2
,

A2ϕ = A1ϕr2 + r2λ1α1q
2(1−m)2xe.

Now, let us investigate conditions under which the characteristic equation (4.24) has purely

imaginary roots λ = iω.

Replacing λ by iω in equation (4.24)gives :

− ω2 + A1ϕiω + A2ϕe
−iωτ + r2e

−iωτ iω = 0. (4.25)

Then separating the real and the imaginary parts in equation (4.25) gives :

− ω2 + A2ϕcosτω + r2ωsinτω = 0, (4.26)
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and

A1ϕω − A2ϕsinτω + r2ωcosτω = 0. (4.27)

From equations (4.26) and (4.27), we have :

cosτω =
(A2ϕ − r2A1ϕ)ω2

A2
2ϕ + r2

2ω
2

=
r2λ1α1q

2(1−m)2xe
A2

2ϕ + r2
2ω

2
(4.28)

and

sinτω =
A1ϕA2ϕω + r2ω

3

A2
2ϕ + r2

2ω
2

(4.29)

From equations (4.28) and (4.29) and using the equation cos2τω + sin2τω = 1, we obtain the

following equation :

r2
2ω

6 + (A2
2ϕ + r2

2A
2
1ϕ − r4

2)ω4 + (A2
1ϕA

2
2ϕ − 2r2

2A
2
2ϕ)ω2 − A4

2ϕ = 0. (4.30)

Setting W = ω2, equation (4.30) becomes :

r2
2W

3 + (A2
2ϕ + r2

2A
2
1ϕ − r4

2)W 2 + (A2
1ϕA

2
2ϕ − 2r2

2A
2
2ϕ)W − A4

2ϕ = 0,

which has, by the Descarte’s rule of sign at least one positive root because r2
2 > 0 and −A4

2ϕ <

0. Then, we have at least two opposite values ω0 > 0 and ω1 < 0 of ω.

Moreover, from (4.28) and (4.29) and for ω = ω0, we obtain :

τk =
1

ω0

arctan

(
A1ϕA2ϕω0 + r2ω

3
0

r2λ1α1q2(1−m)2xeω2
0

)
+
kπ

ω0

= τ0 +
kπ

ω0

, k ∈ Z,

where

τ0 =
1

ω0

arctan

(
A1ϕA2ϕω0 + r2ω

3
0

r2λ1α1q2(1−m)2xeω2
0

)
.

In order to see if a Hopf bifurcation can occur, we verify the transversality condition (Diekmann

et al. (1995) [46]) .

When differentiating equation (4.24) with respect to τ , we obtain :

[2λ+ A1ϕ − A2ϕe
−λττ + r2e

−λτ − r2λτe
−λτ ]

dλ

dτ
− (A2ϕ + r2λ)λe−λτ = 0,

from which we obtain,(
dλ

dτ

)−1

=
2λ+ A1ϕ − A2ϕe

−λττ + r2e
−λτ − r2λτe

−λτ

(A2ϕ + r2λ)λe−λτ

=
2λ+ A1ϕ − A2ϕe

−λττ

(A2ϕ + r2λ)λe−λτ
− τ

λ

= −2λ+ A1ϕ − A2ϕe
−λττ

λ(λ2 + A1ϕλ)
− τ

λ

= −1

λ

[
2λ+ A1ϕ − A2ϕe

−λττ

λ2 + A1ϕλ
+ τ

]
.

Following Cooke and Grossman (1982) [37], we therefore obtain by using (4.28) and (4.29),
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sign

{
d(Reλ)

dτ

}

λ=iω0

= sign

{
Re

(
dλ

dτ

)−1
}

λ=iω0

= sign

{
Re

(
−2λ+ A1ϕ − A2ϕe

−λττ

λ(λ2 + A1ϕλ)

)}

λ=iω0

= sign

{
r2

2ω
4
0 + 2ω2

0A
2
2ϕ + A2

1ϕA
2
2ϕ

(ω4
0 + A2

1ϕω
2
0)(A2

2ϕ + r2
2ω

2
0)

}
.

Hence, we have:

sign

{
d(Reλ)

dτ

}

λ=iω0

> 0.

It means that the transversality condition is satisfied. Then, a Hopf bifurcation can occur when

τ = τ0.

The following theorem holds for the stability of the coexisting equilibrium E of system (4.11)-

(4.12):

Theorem 4.5.

(a) If τ ∈ [0, τ0), then the equilibrium E(xe, ye) is locally asymptotically stable.

(b) If τ > τ0, then the equilibrium E(xe, ye) is unstable.

(c) If τ = τk with k ∈ Z, then the system (4.11)-(4.12) undergoes a Hopf bifurcation.

Proof. We proved that it is possible to have purely imaginary roots for the characteristic equa-

tion (4.24) and the transversality condition is satisfied. Thus we have the third item of theorem

(4.5). In what follows, we prove the first and the second items of theorem (4.5).

By Rouche’s theorem (1960) [47] and the continuity in τ , the characteristic equation (4.24) has

roots with positive real parts if and only if it has purely imaginary roots.

Let λ(τ) = µ(τ) + iω(τ) where µ and ω are reals depending on τ . For τ = 0, the equilibrium

E is stable. Thus we have µ(0) < 0. By continuity, if τ is sufficiently small, we still have

µ(τ) < 0 and E is still stable. The change of stability will occur for some values of τ for which

µ(τ) = 0 and ω(τ) 6= 0, it means that λ will be purely imaginary. Let τe be such that µ(τe) = 0

and ω(τe) = ωe 6= 0 with λ = iω(τe). In this case, the steady state loses stability and eventually

becomes unstable when µ(τ) becomes positive. In other words, if such a value ωe does not

exist, then the steady state E will remain stable for all τ .

4.7 Direction and stability of Hopf bifurcation

In this section, we compute some formulas by using the normal form theory and the center

manifold theorem introduced by Hassard et al. (1981) ([74]). These formulas are used to

determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic

solution of system (4.11)-(4.12) which occurs when the delay τ takes the critical value τ0.
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For convenience, let t = sτ , x(sτ) = x1(s), y(sτ) = x2(s) and τ = τ0 + µ, µ ∈ R so that

µ = 0 is the Hopf bifurcating value for system (4.11)-(4.12). Then the system (4.11)-(4.12)

becomes equivalent to the system :

u̇(t) = Lµ(ut) + f(µ, ut), (4.31)

where ut = (x1(t), x2(t))T ∈ C and ut(θ) = u(t+ θ) = (x1(t+ θ), x1(t+ θ))T ∈ C.

Lµ : C → R2 is defined as follows :

Lµφ = (τ0 + µ)

(
AAϕ BAϕ

0 0

)(
φ1(0)

φ2(0)

)
+ (τ0 + µ)

(
0 0

CAϕ DAϕ

)(
φ1(−1)

φ2(−1)

)
,

(4.32)

where AAϕ = −b1xe +
ϕ(xe)

xe
− ϕ′(xe), BAϕ = −qλ1(1 − m)xe, CAϕ = qr2α1(1 − m),

DAϕ = −r2.

f : R× C → R2 is defined as follows :

f(µ, φ) = (τ0 + µ)(f1, f2)T , (4.33)

where φ(θ) = (φ1(θ), φ2(θ))T ∈ C

f1 = a11φ
2
1(0) + a12φ1(0)φ2(0) + a13φ

3
1(0),

and

f2 = a21φ
2
1(−1) + a22φ1(−1)φ2(0) + a23φ1(−1)φ2(−1) + a24φ2(−1)φ2(0) + a25φ

3
1(−1)

+a26φ
2
1(−1)φ2(0) + a27φ

2
1(−1)φ2(−1) + a28φ1(−1)φ2(0)φ2(−1),

with,

a11 = −b1 +
h2

(xe + h− T1)2
, a12 = −qλ1(1−m), a13 =

h2

(xe + h− T1)4

a21 = −r2(1−m)2q2α2
1

ye
, a22 =

r2(1−m)qα1

ye
, a23 =

r2(1−m)qα1

ye
, a24 = −r2

ye
, a25 =

−r2(1−m)3q3α3
1

y2
e

, a26 = −r2(1−m)2q2α2
1

y2
e

, a27 = −r2(1−m)2q2α2
1

y2
e

, a28 =
r2(1−m)qα1

y2
e

.

Lµ is a one parameter family of bounded linear operators in C[−1, 0] → R2. Then by the

Riesz representation theorem, there exists a matrix whose components are bounded variation

functions η(θ, µ) in [−1, 0]→ R2 such that

Lµ(φ) =

∫ 0

−1

dη(θ, µ)φ(θ). (4.34)
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In fact, we can choose

η(θ, µ) = (τ0+µ)

(
AAϕ BAϕ

0 0

)(
φ1(0)

φ2(0)

)
δ(θ)+(τ0+µ)

(
0 0

CAϕ DAϕ

)(
φ1(−1)

φ2(−1)

)
δ(θ+1),

(4.35)

where δ is the Dirac function. Then equation (4.31) is satisfied.

For φ ∈ C1[−1, 0], let us define

A(µ)φ =





dφ(θ)

dθ
, if − 1 ≤ θ < 0

∫ 0

−1
dη(θ, µ)φ(θ), if θ = 0

(4.36)

and

R(µ)φ =





(
0

0

)
, if − 1 ≤ θ < 0,

f(µ, φ), if θ = 0.

(4.37)

The system (4.11)-(4.12) is then transformed into the operator equation of the form (4.38) as

follows, in order to study the Hopf bifurcation problem

u̇(t) = A(µ)ut +Rut. (4.38)

Define the adjoint operator for ψ ∈ C1([0, 1], (R2)?),

A?(µ)ψ(s) =




−dφ(s)

ds
if 0 < s ≤ 1,

∫ 0

−1
dηT (s, µ)ψ(−s) if s = 0.

(4.39)

In order to normalize the eigenvectors of the operator A and the adjoint operator A?, we need

to introduce the following bilinear form:

〈ψ, φ〉 = ψ(0).φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ
T

(ξ − θ)dη(θ)φ(ξ)dξ, (4.40)

where η(θ) = η(θ, 0).

By the discussion and the transformation t = sτ , we know that iτ0ω0 and−iτ0ω0 are the eigen-

values ofA(0) and other eigenvalues have strictly negative real parts. Hence they are also eigen-

values of A?. Now we are going to compute the eigenvectors of A(0) and A? corresponding to

their respective eigenvalues iτ0ω0 and −iτ0ω0. If we suppose that q(θ) = (q(1)(θ), q(2)(θ))T =

(1, q1)T eiτ0ω0θ is the eigenvector ofA(0) corresponding to the eigenvalue iτ0ω0, then by the def-

inition we have A(0)q(0) = iτ0ω0q(0). Then using the definition of A(0) and the expressions

given by (4.31), (4.33) and (4.34), gives :

τ0

(
AAϕ BAϕ

0 0

)
q(0) + τ0

(
0 0

CAϕ DAϕ

)
q(−1) = iτ0ω0q(0),
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or equivalently τ0

(
AAϕ BAϕ

0 0

)(
1

q1

)
+ τ0

(
0 0

CAϕ DAϕ

)(
1

q1

)
e−iτ0ω0 = iτ0ω0

(
1

q1

)

This implies

{
AAϕ +BAϕq1 = iω0,

(CAϕ +DAϕq1)e−iτ0ω0 = q1iω0,

and q1 =
CAϕ

−DAϕ + iω0eiτ0ω0
.

Thus, q(1)(θ) = eiτ0ω0θ and q(2)(θ) =
CAϕe

iτ0ω0θ

−DAϕ + iω0eiτ0ω0
.

Now let us compute the eigenvector q? ofA?. Suppose that we have q?(s) = GAϕ(1, q?1)T eiτ0ω0s, 0 ≤
s ≤ 1. Then we have the following relation

τ0

(
AAϕ 0

BAϕ 0

)
q?(0) + τ0

(
0 CAϕ

0 DAϕ

)
q?(−1) = −iτ0ω0q

?(0),

which is equivalent to τ0

(
AAϕ 0

BAϕ 0

)(
1

q?1

)
+ τ0

(
0 CAϕ

0 DAϕ

)(
1

q?1

)
e−iτ0ω0 = −iτ0ω0

(
1

q?1

)
.

This implies

{
AAϕ + CAϕq

?
1e
−iτ0ω0 = −iω0,

BAϕ +DAϕq
?
1)e−iτ0ω0 = −q?1iω0,

and q?1 = − BAϕ

DAϕ + iω0eiτ0ω0
.

Now let’s compute GAϕ by using the orthogonality condition 〈q?(s), q(θ)〉 = 1. By using

(4.39), we have :

〈q?(s), q(θ)〉 = q?(0).q(0)−
∫ 0

θ=−1

∫ θ

ξ=0

q?
T

(ξ − θ)dη(θ)q(ξ)dξ

= q?(0).q(0)−
∫ 0

θ=−1

∫ θ

ξ=0

GAϕ(1, q?1)e−iω0τ0(ξ−θ)dη(θ)(1, q1)T eiω0τ0ξ

= GAϕ

{
1 + q1q?1 − (1, q?1)

∫ 0

−1

θeiω0τ0θdη(θ)(1, q1)T
}

= GAϕ

{
1 + q1q?1 + τ0e

−iω0τ0(CAϕ +DAϕq1)q1
?.
}

Then,

GAϕ = [1 + q1q
?
1 + τ0e

iω0τ0(CAϕ +DAϕq1)q?1]−1.

Now, we are going to compute the coordinates to describe the center manifold C0 at µ = 0. Let

us define

z(t) = 〈q∗, ut〉 (4.41)

and

W (t, θ) = ut(θ)− 2Re{z(t)q(θ)}, (4.42)
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where ut is a solution of (4.37) when µ = 0.

On the center manifold C0, we have :

W (t, θ) = W (z(t), z(t), θ),

where,

W (t, θ) = W (z(t), z(t), θ) = W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ ... (4.43)

In (4.42), z and z represent the local coordinates of the centre manifold C0 in the direction of q

and q∗ respectively.

Now let us reduce equation (4.37) to an ordinary differential equation using a single complex

variable on the centre manifold. Since µ = 0 and for ut a solution of (4.37) belonging to the

centre manifold C0, we have :
ż(t) = 〈q∗, u̇(t)〉 = 〈q∗, Aut +Rut〉

= 〈q∗, Aut〉+ 〈q∗, Rut〉 = 〈A∗q∗, ut〉+ 〈q∗, Rut〉
= iτ0ω0z + q∗f0(z, z)

.

The following equation :

ż(t) = iτ0ω0z + q∗f0(z, z) (4.44)

can be rewritten as :

ż(t) = iτ0ω0z + g(z, z), (4.45)

where,

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ ... (4.46)

In what follows, we are going to expand g in powers of z and z in order to obtain from the first

three coefficients of this expansion, the value of µ2 which indicates the direction of the Hopf

bifurcation (that is to say if the Hopf bifurcation is supercritical or subcritical), and the value

of β2 which determines the stability. To do so, we use the algorithm presented by Hassard and

al.(Hassard and al. (1981) [74]).

A substitution of (4.37) in (4.45) leads to :
Ẇ (t) = u̇t − żq − żq

= A(µ)ut +Rut − [iτ0ω0z + q∗(0)f0(z, z)]q − [−iτ0ω0z + q∗(0)f 0(z, z)]q

= AW + 2ARe(zq) +Rut − 2Re[q∗(0)f0(z, z)q(θ)]− 2Re[iτ0ω0zq(θ)]

= AW − 2Re[q∗(0)f0(z, z)q(θ)] +Rut.
Then we obtain the following equations

Ẇ =

{
AW − 2Re[q∗(0)f0(z, z)q(θ)] if − 1 ≤ θ < 0,

AW − 2Re[q∗(0)f0(z, z)q(θ)] + f if θ = 0.
(4.47)

Equations (4.46) can be rewritten as :
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Ẇ = AW +H(z, z, θ), (4.48)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ ... (4.49)

Derivating W in (4.42) with respect to t, we have :

Ẇ = Wz ż +Wz ż. (4.50)

Then using (4.42), (4.47) and (4.48), gives :

(A− 2iτ0ω0)W20(θ) = −H20(θ), (4.51)

and

AW11(θ) = −H11(θ). (4.52)

Using equations (4.43) and (4.44) gives :

g(z, z) = q∗(0)f0(z, z) = τ0GAϕ

(
1

q?1

)(
f1

f2

)
= τ0GAϕ(f1 + q?1f2), (4.53)

where

f1 = a11x
2
1(t) + a12x1(t)x2(t) + a13x

3
1(t),

f2 = a21x
2
1(t−1)+a22x1(t−1)x2(t)+a23x1(t−1)x2(t−1)+a24x2(t−1)x2(t)+a25x

3
1(t−1)

+a26x
2
1(t− 1)x2(t) + a27x

2
1(t− 1)x2(t− 1) + a28x1(t− 1)x2(t)x2(t− 1),

and

x1t(0) = q(1)(0)z + q(1)(0)z +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+ ...

x2t(0) = q(2)(0)z + q(2)(0)z +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+ ...

x1t(−1) = q(1)(−1)z + q(1)(−1)z +W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz +W

(1)
02 (−1)

z2

2
+ ...

x2t(−1) = q(2)(−1)z + q(2)(−1)z +W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz +W

(2)
02 (−1)

z2

2
+ ...

An identification by using (4.43) and (4.52) gives us the following coefficients of g :

g20 = 2τ0GAϕ{a11(q(1)(0))2 + a12q
1(0)q(2)(0) + q∗1(a21(q(1)(−1))2 + a22q

(1)(−1)q(2)(0)

+a23q
(1)(−1)q(2)(−1) + a24q

(2)(0)q(2)(−1))},

g11 = τ0GAϕ{2a11q
(1)(0)q(1)(0) + a12(q(1)(0)q(2)(0) + q(1)(0)q(2)(0))

+q∗1(2a21q
(1)(−1)q(1)(−1) + a22(q(1)(−1)q(2)(0) + q(2)(0)q(1)(−1))

+a23(q(1)(−1)q(2)(−1) + q(2)(−1)q(1)(−1)) + a24(q(2)(−1)q(2)(0) + q(2)(0)q(2)(−1)))},
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g02 = 2τ0GAϕ{a11(q(1)(0))2 + a21q
1(0)q(2)(0) + q∗1(a21(q(2)(−1))2 + a22q

(1)(−1)q(2)(0)

+a23q
(1)(−1)q(2)(−1) + a24q

(2)(0)q(2)(−1))},

g21 = 2τ0GAϕ{a11(q(1)(0)W
(1)
20 (0) + 2q(1)(0)W

(1)
11 (0)) + a12(q(1)(0)W

(2)
11 (0) + 1

2
q(1)(0)W

(2)
20 (0)

+1
2
q(2)(0)W

(1)
20 (0) + q(2)(0)W

(1)
11 (0)) + 3a13(q(1)(0))2q(1)(0) + q∗1(a21(q(1)(−1)W

(1)
20 (−1)

+2q(1)(−1)W
(1)
11 (−1)) + a22(q(1)(−1)W

(2)
11 (0) + 1

2
q(1)(−1)W

(2)
20 (0) + 1

2
q(2)(0)W

(1)
20 (−1)

+q(2)(0)W
(1)
11 (−1)) + a23(q(1)(−1)W

(2)
11 (−1) + 1

2
q(1)(−1)W

(2)
20 (−1) + q(2)(−1)W

(1)
11 (−1)

+1
2
q(2)(−1)W

(1)
20 (−1)) + a24(q(2)(0)W

(2)
11 (−1) + 1

2
q(2)(0)W

(2)
20 (−1) + q(2)(−1)W

(2)
11 (0)

+1
2
q(2)(−1)W

(2)
20 (0)) + 3a25(q(1)(−1))2q(1)(−1) + a26((q(1)(−1))2q(2)(0)

+2q(1)(−1)q(1)(−1)q(2)(0)) + a27((q(1)(−1))2q(2)(−1) + 2q(1)(−1)q(1)(−1)q(2)(−1))

+a28(q(1)(−1)q(2)(0)q(2)(−1)) + q(1)(−1)q(2)(−1)q(1)(0) + q(2)(−1)q(1)(−1)q(2)(0))}.
Now we reach to the step of computation of W20(θ). Using (4.36) and (4.47)gives :

H(z, z, θ) = −2Re[q∗(0)f0(z, z)q(θ)] +Rut = −gq(θ)− gq(θ) +Rut

= −
(
g20

z2

2
+ g11zz + g02

z2

2

)
q(θ)−

(
g20

z2

2
+ g11zz + g02

z2

2

)
q(θ) +Rut, (4.54)

where

Rut = τ0

(
f1

f2

)
= 2τ0A

Aϕ z
2

2
+ τ0B

Aϕzz,

with,

AAϕ =

(
AAϕ11

AAϕ21

)
,

BAϕ =

(
BAϕ

11

BAϕ
21

)
,

Where,

AAϕ11 = a11(q(1)(0))2 + a12q
(1)(0)q(2)(0),

AAϕ21 = a21(q(1)(−1))2 + a22q
(1)(−1)q(2)(0) + a23q

(1)(−1)q(2)(−1) + a24q
(2)(−1)q(2)(0),

BAϕ
11 = 2a11q

(1)(0)q(1)(0) + a12(q(1)(0)q(2)(0) + q(1)(0)q(2)(0)),

BAϕ
21 = 2a21q

(1)(−1)q(1)(−1) + a22(q(1)(−1)q(2)(0) + q(1)(−1)q(2)(0))

+a23(q(1)(−1)q(2)(−1) + q(1)(−1)q(2)(−1)) + a24(q(2)(−1)q(2)(0) + q(2)(−1)q(2)(0)).

A comparison of the coefficients of equations (4.48) and (4.53) gives the following equalities :

H20(θ) =

{
−gq(θ)− gq(θ) if − 1 ≤ θ < 0,

−gq(θ)− gq(θ) + 2τ0A if θ = 0.
(4.55)

H11(θ) =

{
−gq(θ)− gq(θ) if − 1 ≤ θ < 0,

−gq(θ)− gq(θ) + τ0B if θ = 0.
(4.56)
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When we substitute (4.54) in (4.50) and (4.55) in (4.51) respectively, we obtain the following differ-

ential equations :

{
Ẇ20(θ) = 2iτ0ω0W20(θ) + g20q(θ) + g20q(θ),

Ẇ11(θ) = g11q(θ) + g11q(θ),
(4.57)

which have the following solutions :





W20(θ) =
ig20

τ0ω0

q(0)eiτ0ω0θ +
g02

3iτ0ω0

q(0)e−iτ0ω0θ + E1Aϕe
2iτ0ω0θ,

W11(θ) =
g11

iτ0ω0

q(0)eiτ0ω0θ +
g11

iτ0ω0

q(0)e−iτ0ω0θ + E2Aϕ,
(4.58)

where E1Aϕ = (E
(1)
1Aϕ, E

(2)
1Aϕ)T and E2Aϕ = (E

(1)
2Aϕ, E

(2)
2Aϕ)T are constant vectors belonging to R2.

Now, let us compute the constant vectors E1Aϕ and E2Aϕ by using (4.50) and (4.51). We have

∫ 0

−1

dη(θ)W20(θ) = 2iτ0ω0W20(0)−H20(0), (4.59)

and

∫ 0

−1

dη(θ)W11(θ) = −H11(0). (4.60)

Then, using the fact that, (
iτ0ω0I −

∫ 0

−1

eiτ0ω0θdη(θ)

)
q(0) = 0,

(
−iτ0ω0I −

∫ 0

−1

e−iτ0ω0θdη(θ)

)
q(0) = 0,

and, using the first equation of (4.57), equations (4.53) and (4.58), we have :
(

2iτ0ω0I −
∫ 0

−1

e2iτ0ω0θdη(θ)

)
E1 = 2τ0

(
AAϕ11

AAϕ21

)

which implies

(
2iω0 − AAϕ −BAϕ

−CAϕe−2iτ0ω0 2iω0 −DAϕe
−2iτ0ω0

)(
E

(1)
1Aϕ

E
(2)
1Aϕ

)
= 2

(
AAϕ11

AAϕ21

)

and finally




E
(1)
1Aϕ =

2BAϕA
Aϕ
21 + 2AAϕ11 (2iω0 −DAϕe

−2iτ0ω0)

(AAϕDAϕ −BAϕCAϕ)e−2iτ0ω0 − 2iω0DAϕe−2iτ0ω0 − 2iω0AAϕ − 4ω2
0

,

E
(2)
1Aϕ =

2AAϕ11 CAϕe
−2iτ0ω0 + 2AAϕ21 (2iω0 − AAϕ)

(AAϕDAϕ −BAϕCAϕ)e−2iτ0ω0 − 2iω0DAϕe−2iτ0ω0 − 2iω0AAϕ − 4ω2
0

.

(4.61)

Similarly, using the second equation of (4.57), (4.55) and (4.59), gives :

(∫ 0

−1

e−iτ0ω0dη(θ)

)
E2Aϕ = τ0

(
BAϕ

11

B
Aϕ

21

)
⇒
(
AAϕ BAϕ

CAϕ DAϕ

)(
E

(1)
2Aϕ

E
(2)
2Aϕ

)
= −

(
BAϕ

11

BAϕ
21

)
,
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and finally 



E
(1)
2Aϕ =

BAϕB
Aϕ
21 −DAϕB

Aϕ
11

AAϕDAϕ −BAϕCAϕ
,

E
(2)
2Aϕ =

CAϕB
Aϕ
11 − AAϕBAϕ

21

AAϕDAϕ −BAϕCAϕ
.

(4.62)

Finally, from (4.57), (4.59) and (4.61) we can now calculate values which are useful for the determi-

nation of the period of the bifurcating solution and its stability. We have the following values:

C1(0) =
i

2τ0ω0

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+

1

2
g21,

µ2 = − ReC1(0)

Re(dλ
dτ

(τ0))
,

β2 = 2ReC1(0),

T2 = −Im(C1(0)) + µ2Im(dλ
dτ

(τ0))

τ0ω0

.

The following result gives us a description of the Hopf bifurcating periodic solutions of equations

(4.11)-(4.12)

Theorem 4.6.

(a) The sign of µ2 determines the direction of the Hopf bifurcation. If µ2 > 0, then the Hopf

bifurcation is supercritical. If µ2 < 0, then the Hopf bifurcation is subcritical.

(b) The sign of β2 determines the stability of the bifurcating periodic solutions. If β2 > 0, then the

bifurcating periodic solutions are unstable. If β2 < 0, then the bifurcating periodic solutions

are stable.

(c) T2 determines the period of the bifurcating periodic solutions. If T2 > 0, then the period

increases. If T2 < 0, then period decreases.

4.8 Numerical simulations

In this section, some numerical simulations are provided in order to illustrate our theoretical analysis

and also to support our discussion. The values of the parameters r1, r2, α1, αA, K1, KA and q are

those which have been used for Fig.4.1 in ([3]). We recall that initial conditions values x(0) and

y(0) must satisfy (4.14) and (4.15) respectively. For our numerical treatments, we consider parameter

values summarized in Table 4.2. Note that for the cases without harvesting, we have used h = 0 and

for the impact of refuge strengthm, preference rate q and harvesting limit value h, we have used some

other values of those parameters.
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Table 4.2: Parameter values for the Leslie-Gower predator-prey model (4.11)-(4.12)

Parameter Value Reference

r1 2 M. T. Alves (2013) [3]

r2 1.5 M. T. Alves (2013) [3]

λ1 5 Assumed

α1 0.8 M. T. Alves (2013) [3]

h 1 Assumed

T1 2 Assumed

αA 1.2 M. T. Alves (2013) [3]

K1 3 M. T. Alves (2013) [3]

KA 3 M. T. Alves (2013) [3]

q 0.7 M. T. Alves (2013) [3]

m 0.7 Assumed

In figure 4.2, we have the bifurcation diagram and phase portraits of system (4.11)-(4.12) without the

time delay and without harvesting. We are interested in the effects of the prey refuge strength m and

the preference rate q on the dynamic of system (4.11)-(4.12) without the time delay. For some values

of m and q, it is possible to have either the extinction of the prey population or the coexistence of the

prey and predator populations.
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Figure 4.2: (a) Bifurcation diagram of the system (4.11)-(4.12) without harvesting and when the time

delay τ = 0. The red circles mean that the prey-free equilibrium E0
2 is unstable for the corresponding

values of the parameter m and q. For those values of m and q, the coexisting equilibrium E0
4 exists

and is locally asymptotically stable. The blue circles mean that the prey-free equilibrium E0
2 is locally

asymptotically stable for the corresponding values of the parameter m and q. For those values of m

and q, the coexisting equilibriumE0
4 doesn’t exist. (b) Phase portrait of system (4.11)-(4.12) when the

time delay τ = 0, m = 0.3, q = 0.7. The prey-free equilibrium E0
2(0; 1.08) is locally asymptotically

stable. (c) Phase portrait of system (4.11)-(4.12) when the time delay τ = 0, m = 0.85, q = 0.7.

The coexisting equilibrium E0
4(2.016; 1.2494) is locally asymptotically stable. Black bullets denote

the initial data while the red bullet denotes the equilibrium.

In figure 4.3, we have the bifurcation diagram and phase portraits of system (4.11)-(4.12) without the

time delay, with and without harvesting. We are interested in the effects of prey refuge strength m

and the limit value of harvesting h on the dynamic of system (4.11)-(4.12) without the time delay. For

a fixed value on the preference rate q and for some values of m and h, it is possible to have either the

extinction of the prey population or the coexistence of the prey and predator populations.
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Figure 4.3: (a) Bifurcation diagram of system (4.11)-(4.12) with harvesting and when the time delay

τ = 0. The green triangle means that the system (4.11)-(4.12) doesn’t have a coexisting equilibrium

but the prey-free equilibrium E0
2 of the model without harvesting exists and is locally asymptotically

stable. The red plus means that the system (4.11)-(4.12) doesn’t have a coexisting equilibrium but

the coexisting equilibrium E0
4 of the model without harvesting exists and is locally asymptotically

stable. The blue circle means that the system (4.11)-(4.12) has one coexisting equilibrium Eϕ
2 which

is locally asymptotically stable. (b) Phase portrait of system (4.11)-(4.12) when the time delay τ = 0,

m = 0.3, q = 0.7 et h = 1. (c) Phase portrait of the system (4.11)-(4.12) when the time delay τ = 0,

m = 0.7, q = 0.7 and h = 1. (d) Phase portrait of system (4.11)-(4.12) when the time delay τ = 0,

m = 0.85, q = 0.7 and h = 1. Black bullets denote the initial data while the red bullet denotes the

equilibrium.

In figure 4.4, we have the phase portraits of system (4.11)-(4.12) without and with the time delay.

We are interested in the effect of the time delay on the dynamic of system (4.11)-(4.12). Panel (b)

illustrates the fact that when the time delay τ = 0.8 < τ0 = 1.0088, the coexisting equilibrium

Eϕ
2 (2.0095; 1.2488) is always stable. Thus for this case, the time delay doesn’t have any effect on

the stability of the equilibrium. Panel (c) is an illustration of the existence of a Hopf bifurcation for

the critical value τ0 = 1.0088 of the time delay. We have a stable subcritical bifurcating periodic

solution around the coexisting equilibrium Eϕ
2 (2.0095; 1.2488) (β2 = 0.7056, µ2 = −0.5078 , T2 =

2.8505). With panel (d), one can see that for the value τ = 1.5 > τ0 = 1.0088, the coexisting

equilibrium become unstable. So for those values of the time delay τ , the coexisting equilibrium
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Eϕ
2 (2.0095; 1.2488) is destabilized.
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Figure 4.4: (a) Phase portrait of the system (4.11)-(4.12) when the time delay τ = 0, m = 0.85,

q = 0.7 and h = 1. (b) Phase portrait of the system (4.11)-(4.12) when the time delay τ = 0.8,

m = 0.85, q = 0.7 and h = 1. (c) Phase portrait of the system (4.11)-(4.12) when the time delay

τ = 1.0088, m = 0.85, q = 0.7 and h = 1. (d) Phase portrait of the system (4.11)-(4.12) when the

time delay τ = 1.5, m = 0.85, q = 0.7 and h = 1. Black bullets denote the initial data while the red

bullet denotes the equilibrium.

Table 4.3: values of xϕ2 and yϕ2 for system (4.11)-(4.12) for m = 0.7 and h = 1

value of q xϕ2 yϕ2

0.1 2.6308 3.3031

0.2 2.5253 3.0012

0.3 2.4467 2.6961

0.4 2.3930 2.3897

0.5 2.3623 2.0834

0.6 2.3532 1.7788

0.7 2.3650 1.4773

0.8 2.3972 1.1802

0.9 2.4498 0.8891
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According to Table 4.3, one can see that when the preference rate q increases, the number of predators

at the coexisting equilibrium of system (4.11)-(4.12) always decreases while we have a fluctuation of

the number of preys. The number of preys decreases up to a value of the preference rate q and begin

to increase after that value.

4.9 Conclusion

In this chapter, we have incorporated a time delay, a continuous threshold policy harvesting of preys

and a refuge of preys in a Leslie-Gower predator-prey model with additional fixed food . The the-

oretical analysis shows that when the threshold and the harvesting limit value satisfy a condition

depending on the preference rate of predators, the carrying capacity of the additional fixed food, the

refuge strength of preys, there always exists a coexistence equilibrium for the studied model. Consid-

ering the time delay as a bifurcation parameter, it has been shown that there exists a critical values of

the time delay depending on the threshold of harvesting and the rate of harvesting, the preference rate,

the carrying capacity of the additional fixed food. For those critical values of the time delay, a Hopf

bifurcation occurs around the coexistence equilibrium and for the values of the time delay greater than

that critical value, the coexistence equilibrium becomes unstable. An application of the normal form

theory and the center manifold theorem allowed us to study the stability and determine the direction of

the bifurcating periodic solutions. So the time delay as effect on the stability of the system around the

coexistence equilibrium. We also remark that increasing the preference rate of predators decreases the

numbers of predators but does not reach to extinction while the number of preys decreases firstly and

increases after. By using a bifurcation diagram, we also observe that the existence and the stability

of equilibria of the system without time delay depend on the refuge strength, the preference rate and

the harvesting limit value. According to our theoretical analysis, we can conclude that quantitatively,

taking into account harvesting increases the number of equilibria with at least one more coexistence

equilibrium which can be stable.

PhD Thesis : MODIFIED LESLIE-GOWER PREDATOR-PREY MODELS 133 Maximilien ONANA c© F.S. UY1 2020



GENERAL CONCLUSION

On earth, almost all single species lives with interacting with other species. It is the particular case of

predator-prey interactions. Using mathematical methods of modelling, Vito Volterra and A. J. Lotka

has formulated a mathematical model for interactions between predators and their preys. Their model

has been modified by several authors with many different functional responses for the number of

preys eaten by the predator per unit of time. Many other predator-prey models including two different

types of prey refuges, additional fixed food for predators, four different types of harvesting of preys,

predators or both species, discrete time delay(s) have been formulated from the basic Lotka-Volterra

predator-preys models. In this thesis, I have given a non-exhaustive list of functional responses, some

models with each of those functional responses, some models taking into account the two different

types of preys refuge, models with additional food, models with harvesting and models with discrete

time delay with different functional responses. It has been seen that formulating models including

assumptions in order to be close to the reality can be sometimes easily done but, one of the problem

after the formulation of those models is their theoretical analysis (stability or bifurcation) with math-

ematical tools. For all the models presented in the literature review of our thesis, theoretical analysis

reveal very rich, complex, interesting conclusions and results on effects of prey refuges, functional

responses, harvesting of species, discrete time delay and additional fixed food.

Among modified Lotka-Volterra predator-prey models, we have those particular predator-prey mod-

els named Leslie-Gower models. They are particular for reasons as the non-respect of the principle

of the biomass conversion, the carrying capacity of the predator which is proportional to the preys

population. Our brief literature review on Leslie-Gower predator-prey models has revealed that mod-

ified Leslie-Gower predator-prey models formulated with harvesting of species, don’t use harvesting

functions with threshold(s), some of those models with harvesting don’t study the problem of optimal

harvesting and, even when those modified models incorporate discrete time delay(s), the problem of

the direction and the stability of the bifurcating solution is not always solved. In the third chapter of

this these, we have formulated a Leslie-Gower predator-prey model incorporating continuous harvest-

ing function with two thresholds, prey refuge and discrete time delay for the dynamic of the predator

population. Preliminaries concerning the positivity and the boundedness have been done for biolog-

ical reasons. We have done the stability analysis of the newly formulated model, when the discrete

time delay is not taken into account, after a laborious work on the determination of equilibria of the
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model without the discrete time delay. Because the stability of equilibria of the model with discrete

time delay depends to that of the same equilibria for the model without discrete time delay, due to

the fact, an unstable equilibrium for the model without the time delay remains unstable for the model

with discrete time delay, we have studied the stability of only stable equilibria of the non-delayed

model. We have showed that, under sufficient conditions on the parameters, the delay-induced system

is asymptotically stable around the positive equilibrium for all values of the delay parameter and if

the conditions are not satisfied, then there exists a critical value of the delay parameter below which

the system is stable and above which the system is unstable. We conclude that the discrete time delay

have a destabilizing effect on the model. Considering the discrete time delay as the bifurcation pa-

rameter, we have done a bifurcation analysis of our model. We have showed the existence of critical

values of the discrete time delay such that when the delay passes through one of those critical values,

the coexisting equilibrium losses its stability and a Hopf bifurcation occurs. By applying the normal

form theory and the center manifold theorem, the explicit formulae for the stability and direction of

the bifurcating periodic solutions have been determined. We have also solved the problem of optimal

harvesting policy by using the new result of retarded optimal control which is an extension of Pon-

tryagins Maximal principle theory.

In the fourth and last chapter of our thesis, another modified Leslie-Gower predator-prey model in-

corporating additional fixed food for predators, discrete time delay in the predator equation, refuge

and continuous threshold (with one delay) harvesting of preys has been formulated and studied. For

biological reasons, we have proved that solutions of our model are always positive and uniformly

bounded. Trough a discussion based on the parameters of the newly formulated model, we have stud-

ied the existence and the stability of equilibria of the model without the discrete time delay. We have

studied effects of the prey refuge, harvesting, additional fixed food using respectively the strength of

refuge, the limit value of preys harvesting and the preference rate of the predator. With the help of

some bifurcation diagrams, we obtained that different scenarios for the model including elimination

of one species or competition of both species are possible. We also remark that increasing the pref-

erence rate of predators decreases the number of predators but does not reach to extinction while the

number of preys decreases firstly and increases after. Considering the time delay as a bifurcation pa-

rameter, we have shown the existence of critical values of the time delay depending on the threshold

of harvesting and the rate of harvesting, the preference rate, the carrying capacity of the additional

fixed food. For those critical values of the discrete time delay, a Hopf bifurcation occurs around the

coexistence equilibrium and for the values of the time delay greater than those critical values, the

coexistence equilibrium becomes unstable. So the discrete time delay has a destabilizing effect on the

model. Applying the normal form theory and the center manifold theorem, we obtained the stability

and the direction of the bifurcating periodic solutions.
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Perspectives

In this thesis, we have seen with our formulated models and all the models incorporating discrete

time delay(s) formulated by many others authors, for Lotka-Volterra predator-prey models type or

Leslie-Gower predator-prey models, that discrete time delay(s) can have effects as destabilizing an

equilibrium of the models. In the model formulated and studied in the third and fourth chapters of our

thesis, a discrete time delay has been incorporated in the predators equation for the predator dynamic.

Those models can be modified by incorporating a discrete time delay in the preys equation (in the

growth function of preys for example) for the dynamic of the prey population. We shall then have a

model with two discrete time delays and investigate effects of those discrete time delays.

It is well known that the choice of the functional response is very important for a model formulation,

because it has been proved that the functional response can induce effects on a model. So, our formu-

lated model can be modified by replacing the Lotka-Volterra functional response used in the models

by any other functional response of Holling type or not. It is possible to obtain results and conclusions

on effects of the functional response.

The model formulated in the last chapter incorporates fixed food for predators. Due to the fact that it is

also possible to provide predators with dynamic additional food, one can formulate a model assuming

that predators are provided with dynamic additional food, in order to study effects of that additional

food and even, make a comparison with results of the model with additional fixed food. If it is as-

sumed that there is incorporation of dynamic food for predators, harvesting of one of the species or

both species, discrete time delay(s), it is possible to formulate many others interesting models very

close to the existing reality.

Due to the fact that species (predators and preys) can move from one area to another, it can be more

realistic to formulate and study spatio-temporal predator-prey models by modifying the models for-

mulated in our thesis, in order to study effects of taking into account the spatial aspect.

The models formulated and studied in our thesis can be reformulated with the assumption of mature

and immature preys among the prey population. It is then possible to formulate the so-called staged

structured models and look for effects of taking into account the presence of mature and immature

preys.
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1. INTRODUCTION

Leslie has introduced a predator-prey model [1], including support capability that the en-

vironment provides predators is proportional to the number of prey. Leslie advances that the

growth rate of predators and preys admits an upper limit which can be approached under certain

conditions: for the predator when the number of prey is high, for the prey when predator num-

bers (can be also the number of prey) is low [1,2]. The Leslie-Gower term means in absence of

preys, the predators have an oscillatory behavior.

There are many predator-prey models in the literature with Leslie-Gower term or a modified

Leslie-Gower term and Holling type II functional response [3, 5–8, 11–13]. Some of them

analyze bifurcations [3,4,14], persistence [9] or seasonally varying parameters [10]. The Leslie-

Gower predator-prey model has not yet been analyzed as in this paper, considering optimal

harvest and response function of type III.

Profit, over-exploitation and extinction of a species being harvested are primary concerns in

ecology and commercial harvesting industries. Thus, current research incorporates a harvest-

ing component in mathematical models to study the effects it has on one or multiple species.

This has attracted interest from the commercial harvesting industry and from many scientific

communities including biology, ecology, and economics.

Most predator-prey models in the literature consider either constant or linear harvesting func-

tions [15, 16, 19, 20]. Recently, Tchinda et al., Tankam et al. [21, 23] considered a system of

delay differential equations modeling the predator-prey dynamics with continuous threshold

prey harvesting and Holling response function of type III. In [21], the model system was given

by

(1)





ẋ(t) = ϕ(x(t))−my(t)p(x(t))−H(x(t)),

ẏ(t) = [−d + cmp(x(t− τ))]y(t),

where x(t) and y(t) represent the population of preys and predators at time t respectively. The

parameter d is the natural mortality rate of predators. Parameters c and m are positive constants.

The function

(2) ϕ(x) = rx
(

1− x
K

)
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models the behavior of preys in absence of predators, where r denote the growth rate of preys

when x is small, and K is the capacity of the environment to support the preys. The functions

H(x) and p(x) which are the harvesting function of the preys and the response function of

predators to preys respectively, are defined by

(3) H(x) =





0 if x < T,

h(x−T )
h+ x−T

if x≥ T,

and

(4) p(x) =
x2

ax2 +bx+1
,

where a is a positive constant and b is a nonnegative constant. This function is one of potential

response function of predators to preys, modeling the consumption of preys by predators. It

reflects very small predation when the number of preys is small( p′(0) = 0), and a group of

advantage for the preys when the number of prey is hight (p(x) tends to 1
a when x tends to

infinity). For the harvesting function, T is the threshold value. In this way, once the prey

population reaches the size x = T , then harvesting starts and increases smoothly to a limit value

h. Here, a time delay τ is in the predator response term p(x(t)) in the predator equation. This

delay can be regarded as a gestation period or reaction time of the predators.

In [23], System (1) has been investigated, but with a piecewise linear threshold policy har-

vesting given by

(5) H(x) =





0 if x < T1,

h(x−T1)

T2−T1
if T1 ≤ x≤ T2,

h if x≥ T2.

This piecewise linear threshold policy harvesting has been previously introduced in [22] in a

predator prey model without delay where a Holling response function of type II was considered.
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In these models, global qualitative and bifurcation analysis are combined to determine the

global dynamics of the model. But, note that, all these models do not take into account the fact

that reduction in a predator population has a reciprocal relationship with per capita availability

of its preferred food. This assumption leads the Leslie- Gower formulation.

On the other hand, time delay plays an important role in many biological dynamical systems,

being particularly relevant in ecology, where time delays have been recognized to contribute

critically to the stable or unstable outcome of prey densities due to predation. The introduction

of time delay into the population model is more realistic to model the interaction between the

predator and prey populations and the population models with time delay are of current research

interest in mathematical biology [29,31]. There is extensive literature about the effects of delay

on the dynamics of predator-prey models.

In this paper, we consider a delayed Leslie-Grower predator-prey model both with refuge and

the piecewise linear threshold policy harvesting given by Eq. (5). The Leslie-Gower formula-

tion is based on the assumption that reduction in a predator population has a reciprocal relation-

ship with per capita availability of its preferred food. Indeed, Leslie introduced a predator-prey

model where the carrying capacity of the predator environment is proportional to the number of

prey [1, 2]. He stresses the fact that there are upper limits to the rates of increase of both prey x

and predator y, which are not recognized in the Lotka-Volterra model.

This paper is organized as follows. In the Section 2, we give a description of the model. In

Section 3, some preliminary results on the boundedness of solutions for System (6) when Eq.(5)

are given. Existence and unicity of equilibria are investigated. Section 4 deals with the linear

stability analysis of the model system with and without time delay. In Section 5, direction and

stability of Hopf bifurcation are presented. In Section 6, optimal harvest policy of population

model is derived. Numerical results to illustrate the analytical findings are presented in Section

7 and, finally, a summary is presented in Section 8.

2. THE MODEL

It is well known that time delay can play an important role in biological dynamical systems,

where it has been recognized to contribute critically to the stable or unstable outcome of prey

densities due to predation. Therefore, let us analyze the following delayed predator-prey model:
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(6)





ẋ(t) =
(

r1−b1x(t)
)

x(t)−a1(1−m)x(t)y(t)

− H
(
x(t)
)
,

ẏ(t) =
[
r2−

a2y(t− τ)
(1−m)x(t− τ)

]
y(t),

where x(t) denotes the Prey population at time t and y(t) the Predator population at time t.

All parameters are positive and m is such that 0 ≤ m < 1. This parameter is the rate of refuge

of prey population. This means that when m = 0, all preys are available for predation. mx(t)

models the capacity of a refuge at time t and so refuge protecting mx(t) of the prey population.

It therefore remains (1−m)x(t) of the preys available for predation. Parameters r1 and r2 are

the intrinsic growth rate of the preys and predators respectively, a1 denotes the predation rate

per unit of time,
r1

b1
is the carrying capacity of the prey’s environment and

r2

a2
x(t) is the carrying

capacity of the predator’s environment which is proportional to the number of prey. Here, we

incorporate a single discrete delay τ > 0 in the negative feedback of the predator’s density.

Let us denote by R+
2 the nonnegative quadrant and by int(R+

2 ) the positive quadrant. For

θ ∈ [−τ,0], we use the following conventional notation:

xt(θ) = x(t +θ).

Then the initial conditions for this system take the form

(7)





ẋ0(θ) = φ1(θ),

ẏ0(θ) = φ2(θ),

for all θ ∈ [−τ,0], where (φ1,φ2) ∈C([−τ,0],R2
+),x(0) = φ1(0)> 0 and y(0) = φ2(0)> 0.

For ecological reason, as in [23], we make the following assumption. We assume that:

: (i) 0 < x(0)≤ r1

b1
≡ K;

: (ii) T1 < T2 < K.

In fact, the first assumption comes from the fact that it is not plausible to have an initial value

of the preys x(0) at time t = 0 which is greater than the carrying capacity K of the preys.

Moreover if T1 = T2, then the harvesting function becomes a discrete harvesting. In other hand,
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if we assume T2 ≥ K, then we will not have some harvest after T2 since the first assumption

leads to 0≤ x(t)≤ K.

3. PRELIMINARY RESULTS

3.1. Boundedness of solutions. We start by showing that solutions of System (6) and System

(5) that start in R2
+ will remain there and are uniformly bounded. Indeed, we have the following

theorem.

Theorem 1. : Let Assumption 2-(i) holds. Then, every solution of System (6) that starts in R2
+

will remain there and is uniformly bounded.

Proof. : Let (x0,y0) ∈ R2
+ be given and let us denote for each t ≥ 0, (x(t),y(t)) the orbit of

System (6) passing through (x0,y0) at t = 0. Then, we can find that (x(t),y(t)) ∈ R2
+ for all

t ≥ 0. Thus, every solution of System (1) that starts in R2
+ will remain there. From the ẋ-

equation of System (6), we have

ẋ(t)≤
(

r1−b1x(t)
)

x(t).

Applying a differential inequality [28] gives

x(t)≤ 1
b1

r1
+

(
1

x(0)
− b1

r1

)
e−r1t

for all t ≥ 0. Since 0 < x(0)≤ r1

b1
from Assumption 2-(i), it follows that x(t)≤ r1

b1
for all t ≥ 0.

Now, let us check for the boundedness of y(t).

From the predator equation, we have ẏ(t)≤ r2y(t). Hence, for t > τ , y(t)≤ y(t−τ)er2τ . This

equation is equivalent for t > τ , to

(8) y(t− τ)≥ y(t)e−r2t .

Moreover, for any δ > 1, there exists a positive Tδ such that for t > Tδ , x(t)< δ
r1

b1
. Eq.(8) gives

for t > Tδ + τ ,

ẏ(t)< y(t)


r2−

a2e−r2τ

δ (1−m)
r1

b1

y(t)


 ,

which implies, by the same arguments use for x, that limsup
t→+∞

y(t) <
r2

a2δ (1−m) r1
b1

er2τ . The

conclusion of this lemma holds for δ → 1. �
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3.2. Equilibria of the model. In this section we analyze some equilibria properties of Sys-

tem (6)-(5). These steady states, which are determined analytically by setting ẋ = ẏ = 0, are

independent of the delay τ . The following results holds:

Proposition 1. : Let K =
r1

b1
, b0 = b1 +

r2a1(1−m)2

a2
, K0 =

r1

b0
, ϕ : x 7−→ (r1− b1x)x and

ϕ0 : x 7−→ (r1−b0x)x.

(1) System (6)-(5) has one or more equilibria with y = 0 (without predators).

• One equilibrium in R∗+×{0} under some conditions. More precisely,

– if ϕ(T2)> h, then E1(x1,0) is the unique equilibrium of the model with x1 ∈[
K
2
,K
]

if T2 ≤
K
2

, or x1 ∈ [T2,K] if T2 ≥
K
2

.

– if ϕ(T2)≤ h and T2 ≥
K
2

, then F̃(x̃,0) is the unique equilibrium of the model

with x̃ ∈ [T1,T2].

• Two equilibria F̃(x̃,0) and Ẽ
(

K
2
,0
)

in R∗+×{0}, where x̃ ∈ [T1,T2] under the

conditions T2 ≤
K
2

, ϕ(T2)≤ h and ϕ
(

K
2

)
= h.

• Three equilibria F̃(x̃,0), E1(x1,0) and E2(x2,0) in R∗+×{0}, where x̃ ∈ [T1,T2],

x1 ∈
]

K
2
,K
]

, x2 ∈
[

T2,
K
2

]
under the conditions T2 ≤

K
2

, ϕ(T2)≤ h and ϕ
(

K
2

)
>

h.

(2) Under some conditions, System (6)-(5) has one or more coexistence equilibria.

• A unique equilibrium in these different cases:

– if K0 < T1, then G0(K0,y0) is the equilibrium of the model.

– if K0 ∈ [T1,T2], then G(x∗,y∗) is the equilibrium of the model, with x∗ ∈
[T1,T2] and y∗ =

r2(1−m)x∗

a2
.

– if K0 ≥ T2 and ϕ(T2)> h, then G1(x∗1,y
∗
1) is the equilibrium of the model with

x∗1 ∈ [T2,K0] and y∗1 =
r2(1−m)x∗1

a2
.

• Two equilibria G(x∗,y∗)∈ [T1,T2]×R∗+ and G̃0

(
K0

2
, ỹ0

)
when

K0

2
> T2, ϕ0(T2)≤

h and ϕ0

(
K0

2

)
= h.

• Tree equilibria G(x∗,y∗)∈ [T1,T2]×R∗+, G1(x∗1,y
∗
1)∈

]
K0

2
,K0

]
×R∗+ and G2(x∗2,y

∗
2)∈

[
T2,

K0

2

[
×R∗+ when

K0

2
> T2, ϕ0(T2)≤ h and ϕ0

(
K0

2

)
> h.

Remark 1. : Concerning parameters K and K0, we always have K0 ≤ K.
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Proof. : An equilibrium S(x,y) of the model is solution of Eq.(9) when x < T1, Eq. (10) when

T1 ≤ x≤ T2 and Eq. (11) when x≥ T2, where

(9)





(r1−b1x)x−a1(1−m)xy = 0,

[
r2−

a2y
(1−m)x

]
y = 0,

(10)





(r1−b1x)x−a1(1−m)xy− h(x−T1)

T2−T1
= 0,

[
r2−

a2y
(1−m)x

]
y = 0,

and

(11)





(r1−b1x)x−a1(1−m)xy−h = 0,

[
r2−

a2y
(1−m)x

]
y = 0.

From the second equation of System (9), System (10) or System (11), we have y = 0 or

y =
r2(1−m)x

a2
.

When y = 0, the equilibria (0,0) and
(

r1

b1
,0
)

exist on [0,T1[. This is impossible since
r1

b1
= K > T1. Moreover, we have the following equations,

(r1−b1x)x−a1(1−m)xy− h(x−T1)

T2−T1
= 0 on [T1,T2],

and

(r1−b1x)x−a1(1−m)xy−h = 0 on [T2,K].

• On [T1,T2], the identity at the equilibrium gives equation −b1x2 +
(
r1−

h
T2−T1

)
x+

hT1

T2−T1
= 0 which admits a unique positive solution.

Let us consider f (x) = −b1x2 +
(
r1 −

h
T2−T1

)
x +

hT1

T2−T1
. Then f (T1) > 0 and

f (T2) = ϕ(T2)−h. Hence, if ϕ(T2)≤ h, a unique solution exists on [T1,T2].

• On [T2,K], the identity at the equilibrium gives equation −b1x2 + r1x− h = 0. Its dis-

criminant is

∆ = r2
1−4b1h = 4b1

(
ϕ(

K
2
)−h

)
.
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Hence, if
K
2

> h, there are two positive solutions, which are both on [T2,K], when

T2 <
K
2

and ϕ(T2)≤ h. Besides, when ϕ(T2)> h, just one of the solutions is on [T2,K].

Still according to the sign of the discriminant ∆, if ϕ(
K
2
) = h, x =

K
2

is the unique

solution on [T2,K] when
K
2
≥ T2. There is no solution when

K
2
< T2.

When y 6= 0, from the second equation of System (9), System (10) and System (11), we have

y =
r2(1−m)

a2
x. Replacing it in the first equation gives (r1−b0x)x−H(x) = 0. On [0,T1], the

unique solution of this equation is x = K0, which exists if and only if K0 ≤ T1. Moreover, we

have the following equations,

(r1−b0x)x− h(x−T1)

T2−T1
= 0 on [T1,T2]

and

(r1−b0x)x−h = 0 on [T2,K].

• On [T1,T2], if K0 < T1, there is no equilibrium on [T1,T2]. Else, the identity at the equi-

librium gives equation −b0x2 +
(
r1−

h
T2−T1

)
x+

hT1

T2−T1
= 0 which admits a unique

positive solution.

Let us consider f0(x) =−b0x2+
(
r1−

h
T2−T1

)
x+

hT1

T2−T1
. Then f0(T1) = b0T1(K0−

T1) > 0 and f0(T2) = ϕ0(T2)− h. Hence, if ϕ0(T2) ≤ h, a unique solution exists on

[T1,T2].

• On [T2,K], the identity at the equilibrium gives −b0x2 + r1x− h = 0. Its discriminant

is ∆0 = r2
1− 4b0h = 4b0

(
ϕ0(

K0

2
)−h

)
. Hence, when

K0

2
> h, there are two positive

solutions, which are both on [T2,K0], when T2 <
K0

2
and ϕ0(T2) ≤ h. Besides, when

ϕ0(T2)> h, just one of the solutions is on [T2,K] ( particularly on [T2,K0]).

Still according to the sign of the discriminant, when ϕ0

(
K0

2

)
= h, x =

K0

2
is the

unique solution on [T2,K] when
K0

2
≥ T2. There is no solution when

K0

2
< T2.

�

Remark 2. : We summarize the results about equilibria in Fig. 1 and Fig. 2.

4. STABILITY ANALYSIS
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FIGURE 1. Existence and number of equilibria when y = 0.

FIGURE 2. Existence and number of equilibria when y 6= 0 and y∗(x∗) = r2(1−m)x∗
a2

.

4.1. Stability of equilibria when τ = 0. The Jacobian matrix J(x,y) of System (6) at the

equilibrium (x,y) when T1 ≤ x≤ T2, is given by



ϕ ′(x)− h
T2−T1

−a1(1−m)y −a1(1−m)x,

a2y2

(1−m)x2 r2−
2a2y

(1−m)x



.

We notice that r2 ≥ 0 is always an eigenvalue of any equilibrium E(x,0), which is therefore

unstable.

Concerning stability of any equilibrium G(x∗,y∗) with y∗ 6= 0, the following theorem holds.

Theorem 2. : Let consider

∆1 =
[
ϕ ′(x∗)−a1(1−m)y∗− r2

]2
−4
[
2a1(1−m)r2y∗− r2ϕ ′(x∗)

]
,

∆2 =
[
ϕ ′(x∗)−a1(1−m)y∗− h

T2−T1
−r2

]2
−4
[
2a1(1−m)r2y∗−r2[ϕ ′(x∗)−

h
T2−T1

]
]
.

(1) Let consider an equilibrium G(x∗,y∗) with x∗ ∈ [0,T1[∪]T2,K].

• If ∆1 > 0, then the equilibrium is a stable node when−ϕ ′(x∗)+a1(1−m)y∗+r2 >

0 and 2a1(1−m)r2y∗− r2ϕ ′(x∗)> 0.
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• If ∆1 = 0, then the equilibrium is a stable node when−ϕ ′(x∗)+a1(1−m)y∗+r2 >

0.

• If ∆1 < 0, then the equilibrium is a stable focus when−ϕ ′(x∗)+a1(1−m)y∗+r2 >

0.

• If −ϕ ′(x∗) + a1(1−m)y∗+ r2 = 0 and 2a1(1−m)r2y∗− r2ϕ ′(x∗) > 0, then the

equilibrium is a center.

(2) Let consider an equilibrium G(x∗,y∗) with x∗ ∈ [T1,T2].

• If ∆2 > 0, then the equilibrium is a stable node when −ϕ ′(x∗) + a1(1−m)y∗+
h

T2−T1
+ r2 > 0 and 2a1(1−m)r2y∗− r2(ϕ ′(x∗)−

h
T2−T1

)> 0.

• If ∆2 = 0, then the equilibrium is a stable node when −ϕ ′(x∗) + a1(1−m)y∗+
h

T2−T1
+ r2 > 0.

• If ∆2 < 0, then the equilibrium is a stable focus when −ϕ ′(x∗) + a1(1−m)y∗+
h

T2−T1
+ r2 > 0.

• If −ϕ ′(x∗) + a1(1−m)y∗ +
h

T2−T1
+ r2 = 0 and 2a1(1−m)r2y∗ − r2(ϕ ′(x∗)−

h
T2−T1

)> 0, then the equilibrium is a center.

Proof. : The Jacobian matrix J(x∗,y∗) of System (6) at the equilibrium (x∗,y∗) becomes



ϕ ′(x∗)−a1(1−m)y∗−H ′(x∗) −a1(1−m)x∗

r2
y∗

x∗
−r2,


 ,

where H ′(x) = 0 for x ∈ [0,T1[∪]T2,K] and H ′(x) =
h

T2−T1
for x ∈ [T1,T2].

Therefore, the eigenvalues are given by the following equation:

(12)
λ 2 +λ

[
−ϕ ′(x∗))+a1(1−m)y∗+H ′(x∗)+ r2

]

+2a1(1−m)r2y∗− r2(ϕ ′(x∗)−H ′(x∗)) = 0.

The discriminant of this equation is given by

∆=

[
ϕ ′(x∗)−a1(1−m)y∗−H ′(x)− r2

]2

−4
[
2a1(1−m)r2y∗− r2[ϕ ′(x∗)−H ′(x)]

]
,

which is equal to ∆1 on [0,T1[∪]T2,K] and ∆2 on [T1,T2].

• When ∆> 0, J(x∗,y∗) has two positive eigenvalues which are both negatives if−ϕ ′(x∗)+

a1(1−m)y∗+H ′(x∗)+ r2 > 0 and 2a1(1−m)r2y∗− r2(ϕ ′(x∗)−H ′(x∗))> 0.
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• When ∆= 0, J(x∗,y∗) has one positive eigenvalue which is negative if−ϕ ′(x∗)+a1(1−
m)y∗+H ′(x∗)+ r2 > 0.

• When ∆ < 0, J(x∗,y∗) has two conjugated complex eigenvalues with a positive real part

equal to ϕ ′(x∗)−a1(1−m)y∗−H ′(x)− r2.

• When−ϕ ′(x∗)+a1(1−m)y∗+H ′(x∗)+r2 = 0 and 2a1(1−m)r2y∗−r2(ϕ ′(x∗)−H ′(x∗))>

0, J(x∗,y∗) has pure imaginary eigenvalues.

Hence, the conclusions follow. �

Remark 3. : The importance of this section is due to the fact that, if an equilibrium of System

(6)-(5) is unstable for τ = 0, it remains unstable for τ > 0 [24, 25]. Then, any equilibrium of

System (6) in the form E(x,0) is unstable when τ > 0. Concerning stability of equilibria when

τ > 0, we only consider the coexistence equilibria.

4.2. Stability of coexistence Equilibria for τ > 0 and Hopf Bifurcation. In order to analyze

the stability of coexistence equilibria G(x∗,y∗), let us define new variables u(t) = x(t)− x∗ and

v(t) = y(t)− y∗. Then the linearization of System (6) at G gives

(13)





u̇(t) =
[
r1−2b1x∗−a1(1−m)y∗−H ′(x∗)

]
u(t)

− a1(1−m)x∗v(t),

v̇(t) = −Ψ′(x∗)y∗2u(t− τ)− r2v(t− τ),

where H ′(x∗) = 0 for x∗ ∈ [0,T1[∪[T2,K], H ′(x∗) =
h

T2−T1
for x∗ ∈ [T1,T2] and Ψ(x∗) =

a2

(1−m)x∗
.

The characteristic equation of System (13) at G(x∗,y∗) is given by

(14) λ 2−αλ + r2λe−λτ − r2

(
α1−a1(1−m)y∗

)
e−λτ = 0,

where α = r1−2b1x∗−a1(1−m)y∗−H ′(x∗).

Note that for τ = 0, the characteristic equations (14) becomes

(15) λ 2 +(r2−α)λ − r2

(
α−a1(1−m)y∗

)
= 0.

Since the sum and product of roots are −(r2−α) and −r2

(
α−a1(1−m)y∗

)
respectively, the

two roots of (15) are real and negative or complex conjugate with negative real parts if and only



OPTIMAL HARVESTING AND STABILITY ANALYSIS 13

if

(16) r2−α > 0 and α−a1(1−m)y∗ < 0.

Hence, in the absence of time delay, the system is locally asymptotically stable if and only if

r2−α > 0 and α−a1(1−m)y∗ < 0.

Now, for τ > 0, if λ = iω is a root of equation (14), then we have

−ω2 +αω + r2iω
(

cosωτ− isinωτ
)
− c
(

coswτ− isinwτ
)
= 0,

where c = r2

(
α−a1(1−m)y∗

)
.

Separating real and imaginary parts gives

(17) r2ω sinωτ− ccosωτ = ω2 and r2ω cosωτ + csinωτ = αω.

Eliminating τ by squaring and adding equations of (17), we get the algebraic equation

(18) r2
2ω6 +

[
c2 + r2

2(α
2− r2

2)
]
ω4 + c2(α2−2r2

2)ω
2− c4 = 0.

Substituting ω2 = η in the above equation gives a cubic equation in η of the form

(19) r2
2η3 +

[
c2 + r2

2(α
2− r2

2)
]
η2 + c2(α2−2r2

2)η− c4 = 0.

Observe that conditions (16) implies α < r2. Since r2
2 > 0 and −c4 < 0, if c2 + r2

2(α
2− r2

2)> 0

or α2−2r2
2 < 0, then by Descartes’ rule of sign, Eq.(19) has at least one positive root.

If α ∈]− r2,r2[, then α2−2r2
2 < 0 and Eq.(19) has only one positive root. If α <−r2, then

c2+ r2
2(α

2− r2
2)> 0 and Eq.(19) has at least one positive root. So, for any cases, Eq.(19) has at

least one positive root.

The following theorem gives a criterion for the switching in the stability behavior of G∗(x∗,y∗)

in terms of the delay parameter τ .

Theorem 3. : Suppose that G(x∗,y∗) exists and is locally asymptotically stable for System (6)

with τ = 0. Also let η0 = ω2
0 be a positive root of Eq.(19). Then there exists a value τ = τ0 such

that G is locally asymptotically stable for τ ∈ (0,τ0] and unstable for τ > τ0. Furthermore, the

system undergoes a Hopf bifurcation at G when τ = τ0.
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Proof. : Since ω0 is a solution of Eq.(18), the characteristic Eq.(14) has the pair of purely

imaginary roots ±iω0. From Eq.(17), τ0
n for n = 0,1, ... as a function of ω0 is given by

(20) τ0
n =

1
w0

arccos
{

w2
0(−c+αr2)

c2 + r2
2w2

0

}
+

2πn
w0

.

For τ = 0, theorem 2 ensures that G is locally asymptotically stable. Hence, by Butler’s

lemma [27], G remains stable up to the minimum value of τ0
n , obtained here for n = 0, i.e. for

τ < τ0
0 , so that τ0 = min

n≥0
τ0

n ≡ τ0
0 . The theorem can be completely proved if we can show that

sign
{

d(Reλ (τ))
dτ

)

}∣∣∣∣
λ=iω0

> 0.

Differentiating equation (14) with respect to τ yields

(21)
[
2λ −α +

(
r2− r2τλ + cτ

)
e−λτ

]dλ
dτ

=
(
r2λ 2− cλ

)
e−λτ ,

which gives

(
dλ (τ)

dτ

)−1

=
2λ −α +

(
r2− r2τλ + cτ

)
e−λτ

(
r2λ 2− cλ

)
e−λτ ,

= − 2λ 2−αλ
λ 2(λ 2−αλ )

− r2

λ (c− r2λ )
− τ

λ
,

= − 1
λ 2−αλ

− 1
λ 2 −

r2

λ (c− r2λ )
− τ

λ
.

Thus, µ0 = sign
{

d(Reλ (τ))
dτ )

}∣∣∣
λ=iw0

is given by

µ0 = sign
{

Re

(
dλ (τ)

dτ

)−1
}∣∣∣∣

λ=iw0

,

= sign
{

Re

[
− 1

λ 2−αλ
− 1

λ 2 −
r2

λ (c− r2λ )

]}∣∣∣∣
λ=iw0

,

= sign
{

w2
0

w4
0 +α2w2

0
+

1
w2

0
− r2

2w2
0

r2
2w4

0 +w2
0c2

}

= sign
{

r2
2w4

0 +2c2w2
0 +α2c2

(w4
0 +α2w2

0)(r2w2
0 + c2)

}
> 0.

Hence, sign
{

d(Reλ (τ))
dτ )

}∣∣∣
τ=τ0,λ=iω0

> 0. The transversality condition is satisfied and a Hopf

bifurcation occurs at τ = τ0. This achieves the proof. �
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5. PROPERTIES OF HOPF BIFURCATION

In this section, we give some properties of the Hopf bifurcation presented in Theorem 3 and

analyse the stability of bifurcated periodic solutions occurring through Hopf bifurcations by

using the normal form theory and the center manifold reduction for retarded functional differ-

ential equations (RFDEs) due to Hassard, Kazarinoff and Wan [17]. We assume that System (6)

undergoes Hopf bifurcation at the positive equilibrium G(x∗,y∗) for τ = τ0
j , ( j = 0,1,2, ...) and

then ±iω0 is corresponding purely imaginary roots of the characteristic equation.

Let x1(t) = x(t)− x? and x2(t) = y(t)− y?. Then, system (6)-(5) is equivalent to :

(22)





ẋ1(t) =
[
r1−2b1x∗−a1(1−m)y∗

]
x1(t)

−H ′(x∗)x1(t)−a1(1−m)x∗ x2(t)

+ f1
(
x1(t),x2(t)

)
,

ẋ2(t) =−Ψ′(x∗)y∗2 x1(t− τ)− r2x2(t− τ)

+ f2
(
x2(t),x1(t− τ),x2(t− τ)

)
,

where

f1
(
x1(t),x2(t)

)
=−a1(1−m)x1(t)x2(t)

−b1x2
1(t),

and

f2
(
x2(t),x1(t− τ),x2(t− τ)

)
= r2(x2(t)+ y?)

−
[
Ψ(x1(t− τ)+ x∗)(x2(t− τ)+ y∗)

](
x2(t)+ y?)

+Ψ′(x∗)y∗2 x1(t− τ)+ r2x2(t− τ).

Let τ = τ0
j + µ . Then, µ = 0 corresponds to Hopf bifurcation value of System (6) at the

positive equilibrium G(x?,y?). Since System (6) is equivalent to System (22), in the following

discussion we use System (22).
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In System (22), let x̄k(t) = xk(τt) and drop the bars for simplicity of notation. Then, System

(22) can be rewritten as a system of RFDEs in C
(
[−1,0],R2) of the form:

(23)





ẋ1(t) = (τ0
j +µ)

[
r1−2b1x∗−a1(1−m)y∗

]
x1(t)

− (τ0
j +µ)H ′(x∗)x1(t)

− (τ0
j +µ)a1(1−m)x∗ x2(t)

+ (τ0
j +µ) f1

(
x1(t),x2(t)

)
,

ẋ2(t) = −(τ0
j +µ)Ψ ′(x∗)y∗2 x1(t− τ)

− (τ0
j +µ)r2x2(t− τ)

+ (τ0
j +µ) f2

(
x2(t),x1(t− τ),x2(t− τ)

)
.

Define the linear operator L(µ) : C → R2 and the nonlinear operator f (·,µ) : C → R2 by:

(24)

Lµ(φ) = (τ0
j +µ)




J0 J1

0 0







φ1(0)

φ2(0)




+(τ0
j +µ)




0 0

−Ψ ′(x∗)y∗2 −r2







φ1(−1)

φ2(−1)




and

(25) f (φ ,µ) = (τ0
j +µ)




f1
(
φ1(0),φ2(0)

)

f2
(
φ2(0),φ1(−1),φ2(−1)

)




respectively, where φ = (φ1,φ2)
T ∈C , J0 = r1−2b1x∗−a1(1−m)y∗−H ′(x∗), J1 =−a1(1−

m)x∗.

By the Riesz representation theorem, there exists a 2×2 matrix function η(θ ,µ),−1≤ θ ≤ 0

whose elements are of bounded variation such that

(26) Lµ(φ) =
∫ 0

−1
dη(θ ,µ)φ(θ) for φ ∈ C

(
[−1,0],R2).
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In fact, we can choose

(27)

η(θ ,µ) = (τ0
j +µ)




J0 J1

0 0




δ
(
θ
)

+(τ0
j +µ)




0 0

−Ψ ′(x∗)y∗2 −r2


δ

(
θ +1),

where δ is the Dirac delta function defined by

(28) δ (θ) =





0 if θ 6= 0,

1 if θ = 0.

For φ ∈ C
(
[−1,0],R2), define

(29) A(µ)φ =





dφ(θ)
dθ

if θ ∈ [−1,0),

∫ 0

1
dη(µ,s)φ(s) if θ = 0,

and

(30) R(µ)φ =





0 if θ ∈ [−1,0),

f (µ,φ) if θ = 0.

Then, System (23) is equivalent to

(31) ẋ(t) = A(µ)xt +R(µ)xt ,

where xt(θ) = x(t +θ), θ ∈ [−1,0].
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For ψ ∈ C 1([0,1],R2), define

(32) A∗ψ =





−dψ(s)
ds

if s ∈ (0,1],

∫ 0

1
dη(t,0)φ(−t) if s = 0,

and a bilinear inner product

(33)
〈ψ(s),φ(θ)〉 = ψ̄(0)φ(0)

−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ −θ)dη(θ)φ(ξ )dξ ,

where η(θ) = η(θ ,0). In addition, by Theorem 3 we know that ±iω0 τ0
j are eigenvalues of

A(0). Thus, they are also eigenvalues of A∗. Let us assume that q(θ) is the eigenvector of A(0)

corresponding to iω0τ0
j and q∗(s) is the eigenvector of A∗ corresponding to −iω0τ0

j .

Let q(θ) =
(

1, ν1

)T
eiω0τ0

j θ and q∗(s) = D
(

1, ν∗1
)T

eiω0τ0
j s. From the above discus-

sion, it is easy to know that A(0)q(0) = iω0τ0
j q(0) and A∗(0)q∗(0) =−iω0τ0

j q∗(0). That is

τ0
j




J0 J1

0 0


q(0)

+τ0
j




0 0

−Ψ ′(x∗)y∗2 −r2


q(−1) = iw0τ0

j q(0)

and

τ0
j




J0 0

J1 −r2


q∗(0)

+τ0
j




0 −Ψ ′(x∗)y∗2

0 −r2


q∗(−1) =−iw0τ0

j q∗(0).
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Thus, we can easily obtain

(34) q(θ) =
(

1 ,
J0− iω0

a1(1−m)x∗

)T

eiω0τ0
j θ ,

(35) q∗(s) = D

(
1 ,

J0 + iω0

Ψ ′(x∗)y∗2e−iω0τ0
j

)T

eiω0τ0
j s.

In order to assure 〈q̄∗(s),q(θ)〉= 1, we need to determine the value of D. From (33), we have

〈q∗(s),q(θ)〉= q̄∗(0)q(0)

−
∫ 0

−1

∫ θ

ξ=0
q̄∗(ξ −θ)dη(θ)q(ξ )dξ

= q̄∗(0)q(0)

−
∫ 0

−1

∫ θ

ξ=0
D̄
(

1, ν̄∗1
)

e−iω0τ0
j (ξ−θ)dη(θ)

(
1, ν1

)T
eiω0τ0

j ξ dξ

= q̄∗(0)q(0)

−q̄∗(0)
∫ 0

−1
θeiω0τ0

j θ dη(θ)q(0)

= q̄∗(0)q(0)

−q̄∗(0)τ0
j




0 0

−Ψ ′(x∗)y∗2 −r2



(
− e−iω0τ0

j

)
q(0)

= D̄
[
1+ν1ν̄∗1 − τ0

j e−iω0τ0
j ν̄∗1 (Ψ

′(x∗)y?2 + r2)
]
.

Therefore, we have

(36)

D̄ =
1

1+ν1ν̄∗1 − τ0
j e−iω0τ0

j ν̄∗1 (Ψ ′(x∗)y?2 + r2)
,

D =
1

1+ ν̄1ν∗1 − τ0
j eiω0τ0

j ν∗1 (Ψ ′(x∗)y?2 + r2)
.

Using the same notations as in [17], we first compute the coordinates to describe the center

manifold C0 at µ = 0. Let xt be the solution of Eq. (22) when µ = 0. Define

(37)

z(t) = 〈q∗ , xt〉,
W (t,θ) = xt(θ)−2Re

(
z(t)q(θ)

)

= xt(θ)−
(

z(t)q(θ)+ z̄(t)q̄(θ)
)
.
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On the center manifold C0, we have

(38) W (t,θ) =W (z, z̄,θ),

where

(39)
W (z, z̄,θ) =W20(θ) z2

2 +W11(θ)zz̄+W02
z̄2

2

+W30(θ) z3

6 + · · · · ,

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note that W is

real if xt is real. We only consider real solutions. For solution xt ∈ C0 of Eq.(22), since µ = 0,

we have

(40)

ż(t) = iω0τ0
j z

+ q̄∗(0) f
(

0,W (z, z̄,0)+2Re
(
z(t)q(θ)

))

≡ iω0τ0
j z+ q̄∗(0) f0(z, z̄).

We rewrite this equation as

(41) ż(t) = iω0τ0
j z+g

(
z, z̄
)
,

where

(42)
g
(
z, z̄
)

= g20(θ) z2

2 +g11(θ)zz̄+g02
z̄2

2

+g21(θ) z2z̄
2 + · · ·

Then, xt(θ) =
(
x1t(θ),x2t(θ)

)
and q(θ) =

(
1,ν1

)T eiω0τ0
j θ . So, from Eq.(37) and Eq.(39), it

follows that

(43)

xt(θ) = W (t,θ)+2Re

(
z(t)q(θ)

)

= W20(θ) z2

2 +W11(θ)zz̄+W02
z̄2

2

+
(
1,ν1

)T eiω0τ0
j θ z(t)+

(
1, ν̄1

)T e−iω0τ0
j θ z̄(t)+ · · ·
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Then, we have

(44)

x1t(0) = z+ z̄+W (1)
20 (0)

z2

2
+W (1)

11 (0)zz̄

+ W (1)
02 (0)

z̄2

2
+ · · ·

x2t(0) = ν1z+ ν̄1z̄+W (2)
20 (0)

z2

2
+W (2)

11 (0)zz̄

+ W (2)
02 (0)

z̄2

2
+ · · ·

x1t(−1) = ze−iω0τ0
j + z̄eiω0τ0

j +W (1)
20 (−1)

z2

2

+ W (1)
11 (−1)zz̄+W (1)

02 (−1)
z̄2

2
+ · · ·

x2t(−1) = ν1ze−iω0τ0
j + ν̄1z̄eiω0τ0

j +W (2)
20 (−1)

z2

2

+ W (2)
11 (−1)zz̄+W (2)

02 (−1)
z̄2

2
+ · · ·

It follows together with Eq.(25) that

(45)

g(z, z̄) = q̄∗(0) f0(z, z̄)

= q̄∗(0) f (0,xt) = τ0
j D̄
(

1, ν̄∗1
)
×




−b1x2
1t(0)−a1(1−m)x1t(0)x2t(0);

−Ψ ′(x∗)x2t(−1)x2t(0)

−Ψ ′(x∗)x1t(−1)x2t(−1)x2t(0);

−Ψ ′(x∗)y∗x1t(−1)x2t(−1)

−Ψ ′(x∗)y∗x1t(−1)x2t(0);

−Ψ ′′(x∗)
2

y∗x2
1t(−1)x2t(−1)

−Ψ ′′(x∗)
2

y∗x2
1t(−1)x2t(0);

−Ψ ′′(x∗)
2

y∗2x2
1t(−1)x2t(0)

−Ψ (3)(x∗)
6

y∗2x3
1t(−1)−· · ·



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=
z2

2
{2τ0

j D̄[−b1−ν1a1(1−m)

− ν̄∗1 (Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

− y∗ν1e−iω0τ0
j − Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j

)]}

+
z̄2

2
{2τ0

j D̄[−b1− ν̄1a1(1−m)

− ν̄∗1 (Ψ(x∗)ν̄2
1 eiω0τ0

j −Ψ ′(x∗)y∗ν̄1e2iω0τ0
j

− y∗ν̄1eiω0τ0
j − Ψ ′′(x∗)

2
y∗2e2iω0τ0

j

)]}

+ zz̄{2τ0
j D̄[−b1−Re(ν1)a1(1−m)

− ν̄∗1 (Re(ν1ν̄1e−iω0τ0
j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

− y∗Re(ν1eiω0τ0
j )− y∗2Ψ ′′(x∗)

)]}

+
z2z̄
2

{
τ0

j D̄
[
−b1

(
(2W (1)

20 (0)+2W (1)
11 (0)

)

− a1(1−m)(2W (2)
11 (0)+W (2)

20 (0)+ ν̄1W (1)
20 (0))

+ 2ν1a1(1−m)W (1)
11 (0))

− ν̄∗1 Ψ(x∗)(2ν1W (2)
11 (0)+ ν̄1W (2)

20 (0)eiω0τ0
j )

+ ν̄∗1 Ψ(x∗)(ν̄1W (2)
20 (−1)+2ν1W (2)

11 (−1))

− ν̄∗1 Ψ ′(x∗)(2ν1ν̄1e−2iω0τ0
j )

+ ν̄∗1 Ψ ′(x∗)(2ν1ν̄1 +2ν2
1 e−2iω0τ0

j )

− ν̄∗1 Ψ ′(x∗)y∗(2W (2)
11 (−1)e−iω0τ0

j (1+ν1)

+ ν̄∗1 Ψ ′(x∗)y∗W (1)
20 (−1)eiω0τ0

j (1+ ν̄1)

− 2W (2)
11 (0)e−iω0τ0

j +W (2)
20 (0)eiω0τ0

j

+ ν̄1W (1)
20 (−1)+2ν1W (1)

11 (−1))

− ν̄∗1
Ψ ′′(x∗)y∗

2
(6ν1e−iω0τ0

j +4ν1 +2ν̄1e−2iω0τ0
j )

+ 4y∗ν̄∗1
Ψ ′′(x∗)y∗

2
W (1)

11 (−1)e−iω0τ0
j

+ 2y∗eiω0τ0
j W (1)

20 (−1)

− ν̄∗1
Ψ ′′′(x∗)y∗

3

(
2e−iω0τ0

j + eiω0τ0
j
)
.

Comparing the coefficient with Eq.(42) gives

g20 = 2τ0
j D̄(−b1−ν1a1(1−m))

− 2τ0
j D̄ν̄∗1 Ψ(x∗)ν2

1 e−iω0τ0
j

− 2τ0
j D̄Ψ ′(x∗)y∗ν1e−2iω0τ0

j

− 2τ0
j D̄y∗ν1e−iω0τ0

j

− 2τ0
j D̄

Ψ ′′(x∗)
2

y∗2e−2iω0τ0
j ,
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(46)

g02 = 2τ0
j D̄(−b1−ν1a1(1−m))

− 2τ0
j D̄ν̄∗1 Ψ(x∗)ν2

1 e−iω0τ0
j

− 2τ0
j D̄Ψ ′(x∗)y∗ν1e−2iω0τ0

j

− 2τ0
j D̄y∗ν1e−iω0τ0

j

− 2τ0
j D̄

Ψ ′′(x∗)
2

y∗2e−2iω0τ0
j ,

g11 = 2τ0
j D̄(−b1−Re(ν1)a1(1−m))

− 2τ0
j D̄ν̄∗1Re(ν1ν̄1e−iω0τ0

j )Ψ(x∗)

− 2τ0
j D̄ν̄∗1Re(ν̄1)y∗Ψ ′(x∗)

− 2τ0
j D̄ν̄∗1 y∗Re(ν1eiω0τ0

j )

− 2τ0
j D̄ν̄∗1 y∗2Ψ ′′(x∗),

g21 = −τ0
j D̄b1(2W (1)

20 (0)+2W (1)
11 (0))

− τ0
j D̄a1(1−m)(2W (2)

11 (0)+W (2)
20 (0))

+ τ0
j D̄ν̄1a1(1−m)W (1)

20 (0)+2ν1W (1)
11 (0))

− ν̄∗1 Ψ(x∗)(2ν1W (2)
11 (0)+ ν̄1W (2)

20 (0)eiω0τ0
j )

+ ν̄∗1 Ψ(x∗)(ν̄1W (2)
20 (−1)+2ν1W (2)

11 (−1))

− ν̄∗1 Ψ ′(x∗)(2ν1ν̄1e−2iω0τ0
j +2ν1ν̄1

− 2ν̄∗1 Ψ ′(x∗)ν2
1 e−2iω0τ0

j )

− ν̄∗1 Ψ ′(x∗)y∗2W (2)
11 (−1)e−iω0τ0

j (1+ν1)

+ ν̄∗1 Ψ ′(x∗)y∗W (1)
20 (−1)eiω0τ0

j (1+ ν̄1)

− 2ν̄∗1 Ψ ′(x∗)y∗W (2)
11 (0)e−iω0τ0

j

+ ν̄∗1 Ψ ′(x∗)y∗W (2)
20 (0)eiω0τ0

j + ν̄1W (1)
20 (−1)

+ 2ν̄∗1 Ψ ′(x∗)y∗ν1W (1)
11 (−1)

− ν̄∗1
Ψ ′′(x∗)y∗

2
(6ν1e−iω0τ0

j +4ν1)

+ 2ν̄∗1
Ψ ′′(x∗)y∗

2
ν̄1e−2iω0τ0

j

+ 4ν̄∗1
Ψ ′′(x∗)y∗

2
y∗W (1)

11 (−1)e−iω0τ0
j

+ 2y∗eiω0τ0
j W (1)

20 (−1)

− ν̄∗1
Ψ ′′′(x∗)y∗

3

(
2e−iω0τ0

j + eiω0τ0
j )
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Since there are W20(θ) and W11(θ) in g21, we still need to compute them. From Eq.(31) and

Eq.(37), we have

(47)

Ẇ = ẋt− żq− ˙̄zq̄

=





AW −2Re

{
q̄∗(0) f0q(θ)

}
if θ ∈ [−1;0),

AW −2Re

{
q̄∗(0) f0q(θ)

}
+ f0 if θ = 0,

≡def AW +H
(
z, z̄,θ

)
,

where

(48)
H
(
z, z̄,θ

)
= H20(θ)

z2

2
+H11(θ)zz̄

+H02(θ)
z̄2

2
+ · · ·

Substituting the corresponding series into Eq.(47) and comparing the coefficients give

(49)

(A−2iω0τ0
j )W20(θ) = −H20(θ),

AW11(θ) = −H11(θ).

From Eq.(47), we know that for θ ∈ [−1,0),

(50)
H
(
z, z̄,θ) =−q̄∗(0) f0q(θ)−q∗(0) f̄0q̄(θ)

=−g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ).

Comparing the coefficient with Eq.(48) gives

(51) −g20q(θ)− ḡ02q̄(θ) = H20(θ),

(52) −g11q(θ)− ḡ11q̄(θ) = H11(θ).

From Eq.(49) and Eq.(51) and the definition of A, it follows that

(53) Ẇ (θ) = 2iw0τ0
j W20 +g20q(θ)+ ḡ02q̄(θ).
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Notice that q(θ) =
(

1,ν1

)T
eiw0τ0

j θ . Hence,

(54)
W20(θ) =

ig20

w0τ0
j
q(0)eiω0τ0

j θ +
iḡ02

3w0τ0
j
q̄(0)e−iω0τ0

j θ

+E1e2iω0τ0
j θ ,

where E1 =
(

E(1)
1 ,E(2)

1

)
∈ R2 is a constant vector. Similarly, from Eq.(49) and Eq.(52), we

obtain

(55) W11(θ) =−
ig11

w0τ0
j
q(0)eiω0τ0

j θ +
iḡ11

w0τ0
j
q̄(0)e−iω0τ0

j θ +E2,

where E2 =
(

E(1)
2 ,E(2)

2

)
∈ R2 is also a constant vector.

In what follows, we will seek appropriate E1 and E2. From the definition of A and Eq.(49),

we obtain

(56)
∫ 0

−1
dη(θ)W20(θ) = 2iω0τ jW20(0)−H20(0),

(57)
∫ 0

−1
dη(θ)W11(θ) =−H11(0),

where η(θ) = η(0,θ). By Eq.(47), we have

(58)

H20(0) =−g20q(0)− ḡ02q̄(0)+2τ0
j×



−b1−ν1a1(1−m)

−Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

−y∗ν1e−iω0τ0
j −Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j



,

(59)

H11(0) =−g11q(0)− ḡ11q̄(0)+2τ0
j×



−b1−Re(ν1)a1(1−m)

−Re(ν1ν̄1e−iω0τ0
j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1eiω0τ0
j )− y∗2Ψ ′′(x∗)



.
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Substituting Eq.(54) and Eq.(58) into Eq.(56) and using the fact that

(60)

(
iω0τ0

j I−
∫ 0

−1
eiω0τ0

j θ dη(θ)
)

q(0) = 0,

(
−iω0τ0

j I−
∫ 0

−1
e−iω0τ0

j θ dη(θ)
)

q̄(0) = 0,

we obtain (
2iω0τ0

j I−
∫ 0

−1
e2iω0τ0

j θ dη(θ)
)

E1 = 2τ0
j×



−b1−ν1a1(1−m)

−Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

−y∗ν1e−iω0τ0
j −Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j



.

This leads to 


2iω0− J0 −J1

Ψ ′(x∗)y∗2e−2iω0τ0
j 2iω0 + r2e−2iω0τ0

j


E1 =

2




−b1−ν1a1(1−m)

−Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

−y∗ν1e−iω0τ0
j −Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j



.

Solving this system for E1 gives

E(1)
1 =

2
σ

∣∣∣∣∣∣∣∣∣∣∣∣

−b1−ν1a1(1−m) a1(1−m)x∗

e0 2iω0 + r2e−2iω0τ0
j

∣∣∣∣∣∣∣∣∣∣∣∣

,

where

e0 =−Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

−y∗ν1e−iω0τ0
j −Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j ,
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E(2)
1 =

2
σ

∣∣∣∣∣∣∣∣∣

2iω0− J0 −b1−ν1a1(1−m)

Ψ ′(x∗)y∗2e−2iω0τ0
j e0

∣∣∣∣∣∣∣∣∣
,

where

σ =

∣∣∣∣∣∣∣∣∣∣∣∣

2iω0− J0 a1(1−m)x∗

Ψ ′(x∗)y∗2e−2iω0τ0
j 2iω0 + r2e−2iω0τ0

j

∣∣∣∣∣∣∣∣∣∣∣∣

.

Similarly, substituting Eq.(55) and Eq.(59) into (57) gives



−J0 −J1

Ψ ′(x∗)y∗2 r2




E2 =

2




−b1−Re(ν1)a1(1−m)

−Re(ν1ν̄1e−iω0τ0
j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1eiω0τ0
j )− y∗2Ψ ′′(x∗)




.

Therefore,

E(1)
2 =

2
ρ

∣∣∣∣∣∣∣∣∣

−b1−Re(ν1)a1(1−m) −J1

e1 r2

∣∣∣∣∣∣∣∣∣
,

where
e1 =−Re(ν1ν̄1e−iω0τ0

j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1eiω0τ0
j )− y∗2Ψ ′′(x∗)

E(2)
2 =

2
ρ

∣∣∣∣∣∣∣∣∣

−J0 −b1−Re(ν1)a1(1−m)

Ψ ′(x∗)y∗2 e1

∣∣∣∣∣∣∣∣∣
,

where
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ρ =

∣∣∣∣∣∣∣∣∣∣∣∣

−J0 a1(1−m)x∗

Ψ ′(x∗)y∗2 r2

∣∣∣∣∣∣∣∣∣∣∣∣

.

Thus, we can determine W20 and W11 from Eq.(54) and Eq.(55). Furthermore, g21 in Eq.(46)

can be expressed in terms of parameters and delay. Thus, we can compute the following values

(61)

C1(0) =
i

2w0τ0
j

(
g20g11−2|g11|2−

|g02|2
3

)
+

g21

2
,

ν2 = − Re{C1(0)}
Re

{
λ ′(τ0

j )
} ,

β2 = 2Re{C1(0)},

T2 = −
Im{C1(0)}+ν2Im

{
λ ′(τ0

j )
}

w0τ0
j

,

which determine the qualities of bifurcating periodic solution in the center manifold at the

critical value τ0
j .

Theorem 4. [17]: In Eq. (61), the sign of ν2 determines the direction of the Hopf bifurcation.

Thus, if ν2 > 0, then the Hopf bifurcation is supercritical and the bifurcating periodic solution

exists for τ1 > τ0
1 . If ν2 < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic

solution exists for τ1 < τ0
1 . β2 determines the stability of the bifurcating periodic solution: The

bifurcating periodic solutions are stable if β2 < 0 and unstable if β2 > 0. T2 determines the

period of the bifurcating periodic solutions: the period increase if T2 > 0 and decrease if T2 < 0.

6. BIONOMIC EQUILIBRIUM AND OPTIMAL HARVEST POLICY

The first part of this section deals with the bionomic equilibrium of System (6). The term bio-

nomic equilibrium is an amalgamation of the concepts of biological equilibrium and economic

equilibrium. As we already saw, a biological equilibrium is given by ẋ = 0 = ẏ. The economic
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equilibrium is said to be achieved when TR (the total revenue obtained by selling the harvested

biomass) equals TC (the total cost for the effort devoted to harvesting).

To discuss the bionomic equilibrium of the prey-predator model, we consider the parameters

such as c = cost per unit effort for prey; p = price per unit biomass for the prey.

The net economic rent or net revenue (R) at any time is given by

(62) R(x,h, t) =
(

p
x−T1

T2−T1
− c
)

h if T1 ≤ x≤ T2,

and

(63) R(x,h, t) =
(

p− c
)

h if x≥ T2.

The bionomic equilibrium is P∞(x∞,y∞,h∞), where x∞, y∞ and h∞ are the positive solutions of

the following simultaneous equations

(64)





(r1−b1x)x−a1(1−m)xy− h(x−T1)

T2−T1
= 0,

[
r2−

a2y
(1−m)x

]
y = 0, if T1 ≤ x≤ T2

(
p

x−T1

T2−T1
− c
)

h = 0,

and

(65)





(r1−b1x)x−a1(1−m)xy−h = 0,
[

r2−
a2y

(1−m)x

]
y = 0, if x≥ T2

(
p− c

)
h = 0,

It may be noted here that if c > p
x−T1

T2−T1
when T1 ≤ x ≤ T2 or if c > p when x ≥ T2, i.e. if

the prey cost exceeds the revenue obtained from it, then the economic rent obtained from the

prey becomes negative. Hence the prey will be closed and no bionomic equilibrium exists.

Therefore, for the existence of bionomic equilibrium, it is natural to assume c < p
x−T1

T2−T1
when
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T1 ≤ x≤ T2 and c < p when x≥ T2. Then, for T1 ≤ x≤ T2,

x∞ = T1 +
c
p
(T2−T1),(66)

y∞ =
r2(1−m)x∞

a2
,(67)

h∞ =
p
(

r1−b1x∞−a1(1−m)y∞

)
x∞

c
.(68)

It is clear that h∞ > 0 if

(69) r1−b1x∞−a1(1−m)y∞ > 0.

Thus, the bionomic equilibrium P∞(x∞,y∞,h∞) exists if x∞ ≤ T2 and inequality (69) holds.

In what follows, our objective is to maximize the total discounted net revenues from the

fishery. In commercial exploitation of renewable resources, the fundamental problem from

the economic point of view, is to determine the optimal trade-off between present and future

harvests. If we look at the problem, it is observed that the marine fishery sectors become more

important not only for domestic demand but also from the imperatives of exports.

Symbolically our strategy is to maximize the present value J given by

(70) J(h) =
∫ t f

0
R
(
x(t),h(t), t

)
e−δ tdt,

where R(x,h, t) =
(

p
x−T1

T2−T1
−c
)

h if T1 ≤ x≤ T2, R(x,h, t) =
(

p−c
)

h if x≥ T2 and δ denotes

the instantaneous annual rate of discount. Our problem is to maximize J subject to the state

System (6) by invoking Pontryagin’s Maximum principle for retarded optimal control problem

[26]. The control variable h(t) is subjected to the constraints 0≤ h(t)≤ K. So, in other words,

our problem now is to find h∗ such that

(71) J(h∗) = max
h∈Ω

J(h),

where Ω = {h ∈ L1(0, t f );0≤ h≤ K}.
The existence of an optimal harvesting is due to the concavity of integrand of J with respect

to h, a boundedness of the state solutions (x(t),y(t)), and the Lipschitz property of the state

system (6) with respect to the state variables (see [32]).
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Using the Pontryagin’s maximum principle for delayed control problem [26, 30], problem

(71) is reduced to maximize the Hamiltonian H defined by:

H (x(t),y(t),x(t− τ),y(t− τ),h(t),λ (t)) =

e−δ tR(x(t),h(t), t)+λ1(r1−b1x(t))x(t)

+λ1

[
−a1(1−m)x(t)y(t)−H(x(t))

]

+λ2

[
r2y(t)− a2y(t− τ)y(t)

(1−m)x(t− τ)

]
,

where λ = (λ1,λ2). By the maximal principle, there exists adjoint variables λ1(t) and λ2(t) for

all t ≥ 0 such that

(72)





dλ1(t)
dt

= −χ[0,t f−τ](t)
∂H

∂x(t−τ)(t + τ),

− ∂H

∂x(t)
(t)

dλ2(t)
dt

= −χ[0,t f−τ](t)
∂H

∂y(t−τ)(t + τ),

− ∂H

∂y(t)
(t)

and

(73)
∂H

∂h(t)
(x(t),y(t),x(t− τ),y(t− τ),h(t),λ (t)) = 0,

where χ[0,t f−τ](t) is the indicatrice function on [0, t f − τ].

Therefore, we obtain the adjoint system:

(74)





λ̇1(t) = − ph
T2−T1

e−δ t +λ1(t)(−r1 +2b1x(t))

+ λ1(t)
(

a1(1−m)y(t)+
h

T2−T1

)

− χ[0,t f−τ](t)
a2y(t + τ)λ2(t + τ)y(t)

(1−m)x2(t)
,

λ̇2(t) = −a1(1−m)x(t)λ1(t)− r2λ2(t)

+ χ[0,t f−τ](t)
a2y(t + τ)λ2(t + τ)

(1−m)x(t)
.

The transversality conditions of System (74) are

λ1(t f ) = λ2(t f ) = 0.
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Since H is linear in the control variable h, the optimal control will be a combination of bang-

bang control and singular control. Let

σ(t) = e−δ t
(

p(x−T1)

T2−T1
− c
)
−λ1(t)

(x−T1)

T2−T1
.

The optimal control h(t) which maximizes H must satisfy the following conditions:

h(t) = K if σ(t)> 0(75)

i.e eδ tλ1(t)< p− c
x−T1
T2−T1

,(76)

h(t) = 0 if σ(t)< 0(77)

i.e eδ tλ1(t)> p− c
x−T1
T2−T1

,(78)

where eδ tλ1(t) is the usual shadow price [18] and p− c
x−T1
T2−T1

is the net economic revenue on a

unit harvest. This shows that h = K or zero according to the shadow price is less than or greater

than the net economic revenue on a unit harvest. Economically, condition (76) implies that if

the profit after paying all the expenses is positive, then it is beneficial to harvest up to the limit

of available effort. Condition (78) implies that when the shadow price exceeds the fisherman’s

net economic revenue on a unit harvest, then the fisherman will not exert any effort.

When σ(t)= 0, i.e. when the shadow price equals the net economic revenue on a unit harvest,

then the Hamiltonian H becomes independent of the control variable h(t), i.e. ∂H /∂h = 0.

This is the necessary condition for the singular control h(t) to be optimal over the control set

0≤ h≤ K. Thus, the optimal harvesting policy is

h(t) =





0 i f σ(t)< 0,

h∗ i f σ(t) = 0,

K i f σ(t)> 0.

Solving σ(t) = 0, we get

(79) λ1(t) = e−δ t

(
p− c

x−T1
T2−T1

)
.
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Substituting Eq(79) into System (74) gives

(80)





λ̇1(t) =−
ph

T2−T1
e−δ t + e−δ t


p− c

x−T1

T2−T1


×

(
−r1 +2b1x(t)+a1(1−m)y(t)+

h
T2−T1

)

−χ[0,t f−τ](t)
a2y(t + τ)λ2(t + τ)y(t)

(1−m)x2(t)
,

λ̇2(t) =−a1(1−m)x(t)e−δ t


p− c

x−T1

T2−T1




−r2λ2(t)+χ[0,t f−τ](t)
a2y(t + τ)λ2(t + τ)

(1−m)x(t)
.

Using equilibrium conditions and integrating System (80), we obtain λ1(t) and λ2(t). Solving

equation

λ1(t) = p− c
x−T1

T2−T1

,

we obtain the optimal harvesting efforts h∗.

7. NUMERICAL SIMULATIONS

In this section, we give some numerical simulations for a special case of System (6) with har-

vesting function (5) to support our analytical results in this paper. As an example, we consider

systems (6) and (5) with the coefficients r1 = 1.1, b1 = 1.1/300, which gives K = 300, m = 0.1,

a1 = 0.11, r2 = 0.2, a2 = 1, h = 0.2∗K, T1 = 60, T2 = 90 and τ = 20. When there is no delay,

we choose x(0) = 40 and y(0) = 25. That is,

(81)





ẋ(t) = (1.1− 1.1
300
∗ x)∗ x

− 0.11∗ (1−0.1)∗ x∗ y−H(x(t)),

ẏ(t) =

(
0.2− 1.2∗ y(t− τ)

(1−0.1)∗ x(t− τ)

)
∗ y(t).
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In Figure 3, we have ∆1 = 117.5377 > 0, −ϕ ′(K0)+ a1(1−m)y0 + r2 = 11.2751 > 0 and

2a1(1−m)r2y0−r2ϕ ′(K0)= 2.3975> 0. So, the conditions of stability of equilibrium G0(K0,y0)

are satisfied and G0 is locally asymptotically stable.
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FIGURE 3. The numerical approximations of system (6) when τ = 0 and K0 =

51.1945 < T1. The positive equilibrium G0(51.1945,9.2150) is a asymptotically

stable.

Fig. 4 shows that under some conditions, equilibrium G1(x∗1,y
∗
1) is the only equilibrium of

the model system (6) and is locally asymptotically stable. More precisely, we have x∗1−T2 =

68.065, K0− x∗1 = 83.28, ϕ(T2)−h = 9.3, ∆1 = 1.14×103,

−ϕ ′(x∗1)+a1(1−m)y∗1 + r2 = 33.8253 > 0
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and 2a1(1−m)r2y∗1− r2ϕ ′(x∗1) = 0.3396 > 0. So, we have T2 < x∗1 < K0, ϕ(T2) > h and all

conditions which give the stability of G1.
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FIGURE 4. The numerical approximations of system (6) when τ = 0, r2 = 0.01

and K0 = 241.35 > T2. The positive equilibrium G1(158.0658,1.4226) is a

asymptotically stable.

We now present some numerical results of the system for different values of τ . From the

above discussion, we may determine the direction of Hopf-bifurcation and the direction of

bifurcating periodic solution. We consider the system when the parameter values are given as

in Figure (3). So, the model has a positive equilibrium G0(51.1945,9.2150) which is locally

asymptotically stable for τ = 0. When τ passes through the critical value τ = τ0
1 = 95.2311

and d(Reλ (τ))
dτ )

∣∣∣
λ=iw0,τ=τ0

1

= 7.6799 > 0, the equilibrium G0 losses its stability and the system

(6) experiences Hopf-bifurcation. From Sect. 5 we can determine the nature of the stability and
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direction of the periodic solution bifurcating from the interior equilibrium at the critical point

τ0
0 .
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FIGURE 5. Hopf bifurcation behavior of the system (6) around the interior equi-

librium G0(51.1945,9.2150) when τ = τ0
0 = 95.2311. The other parameter are

the same as in Fig. (3). We obtain the existence of unstable supercritical bifurcat-

ing periodic solution around the interior equilibrium G0 with the same parameter

values as in Fig. (3).

Using (61), we can compute C1(0)= 69.7625−28.9307 i, ν2 = 968.6446> 0, β2 = 139.5250>

0 and T2 =−120.1525. Hence, the bifurcating periodic solution exists when τ crosses τ0
1 from

left to right and the corresponding periodic solution is supercritical and unstable (as β2 > 0)

as evident from Fig. 5 (a)-(b). The negative sign of T2 indicates the decreasing period of the
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periodic solution of the system. Moreover, this system is locally asymptotically stable around

the interior equilibrium G0, which is clearly depicted from Fig. 6(a).(b) for τ = 16 < τ0
0 .
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FIGURE 6. The system (6) is globally asymptotically stable around the interior

equilibrium G0 at τ = 16 < τ0 = 95.2311. The other parameter values are given

in the previous figure.

Figure (7) gives the optimal harvesting of prey in the presence of the two population. We

observe that the control increase the period of limit cycle (see Figure (7 a)) and also increase

the predator and prey population (see Figure (7 b and c)). In order to obtain this result, the

harvesting will be made periodically (see Figure (7 d)). From this figure, it is clear that as the

time progresses the prey and predator populations fluctuate in different period depending on the

values of the optimal harvesting. We observe that when we harvest, the predator population

decrease quickly and the prey population starts to rise rapidly. On the other hand as the predator
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population rises, the prey population descends speedily. This figure is obtained when p = 30,

c = 35 and δ = 0.1.

8. CONCLUSIONS

In this paper, the properties of Hopf bifurcations in a Leslie-Gower Predator-Prey model with

delay in predator’s equation have been studied. We have also investigated optimal harvesting

when the harvesting is given by a continuous function in this model. Although bifurcations

in a population dynamics without delay have been investigated by many researchers, there are

few papers on the bifurcations of a population dynamics with delay, which have shown di-

rection of global Hopf-bifurcation and optimal harvesting simultaneously. We have obtained

sufficient conditions on the parameters for which the delay-induced system is asymptotically

stable around the positive equilibrium for all values of the delay parameter and if the conditions

are not satisfied, then there exists a critical value of the delay parameter below which the system

is stable and above which the system is unstable. By applying the normal form theory and the

center manifold theorem, the explicit formulae which determine the stability and direction of

the bifurcating periodic solutions have been determined. Our analytical and simulation results

show that when the delay τ passes through the critical value τ0
0 , the coexisting equilibrium G0

losses its stability and a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcate

from G0. Also, the amplitude of oscillations increases with increasing τ . For the considered

parameter values, it is observed that the Hopf bifurcation is supercritical and the bifurcating

periodic solution is unstable. The problem of optimal harvesting policy has been solved by

using the new result of retarded optimal control which is an extension of Pontryagin’s Maximal

principle theory. We hope that the theoretical investigations which have been carried out in this

paper will certainly help the experimental ecologists to do some experimental studies and as a

consequence the theoretical ecology may be developed to some extent.
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FIGURE 7. Trajectory of the model system (6) with and without the control.
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Abstract In this paper, we formulate and analyze
a modified Leslie–Gower predator–prey model. Our
model incorporates refuge of preys, additional fixed
food for predators, harvesting of preys through a con-
tinuous threshold policy and a time delay as to account
for predators maturity time. We first carry out a quali-
tative analysis of the model without time delay, show-
ing existence of extinction, prey-free, predator-free and
coexistence equilibria. We further study their stabil-
ity conditions. Relying only on theoretical results of
themodel, we construct bifurcation diagrams involving
refuge and harvest limit parameters. This led to summa-
rize different scenarios for the model including elim-
ination of one species or competition of both species
that are proved possible. Furthermore, considering the
time delay as bifurcation parameter, we analyze the sta-
bility of the coexistence equilibria and prove the sys-
tem can undergoes a Hopf bifurcation. The direction
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of that Hopf bifurcation and the stability of the bifur-
cated periodic solution are determined by applying the
normal form theory and the center manifold theorem.
Numerical simulations are presented to illustrate our
theoretical results.

Keywords Hopf bifurcation · Center manifold ·
Delayed Leslie–Gower model · Normal form ·
Continuous threshold policy · Additional food

1 Introduction

Relationship between predators and their preys has
been modeled by Lotka [42] and Volterra [64]. Their
model, which is nowadays considered as the simplest
predator–preymodel, has beenmodified by authors like
Leslie [36,37]. In their researches, they considered that
a predator consumes only one type of prey and does not
have another source of food. This hypothesis has been
modified by authorswho consider that a predator can be
provided with additional food [49,54,55]. In this way,
many experimentalists and theoreticians have studied
the consequences of providing a predator with addi-
tional food, the corresponding effects on the predator–
prey dynamics, its utility on controllability of ecosys-
tems such as integrated pest management and species
conservation which employ biological control as one
of the tools [7,14,24,25,47,52,57,62]. Van Rijn et al.
[63], Sabelis andvanRijn [51]), andUlfa et al. [60] have
investigated the consequences of providing additional
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food to predators in a predator–prey system. Recently,
Srinivasu et al. [56] have studied the qualitative behav-
ior of a predator–prey system incorporating additional
food for the predator. The conclusion of their investiga-
tion was that handling times for the available foods to
the predator play a key role in the determination of the
eventual state of the ecosystem. For Haque and Green-
halgh [23], providing alternative food to predators can
play an important role in promoting the persistence of
predator–prey systems. Alves [1] studied a model with
additional food and a preference rate of the predator
for one or the other food. He concluded that providing
alternative fixed food to predator causes a distraction
effect. That distraction effect has been identified as a
mechanism which can favor positive indirect effects on
the principal prey in the long term. According to Alves
[1], due to the presence of alternative food, the predator
does not spend all its searching time on its favorite food,
so its consumption of that favorite food is no more at
the maximal rate. Then, there is a negative impact on
the growth rate of the predator [53].

Spatial refuges by the prey population is one of the
more relevant behavioral traits that affect the dynam-
ics of predator–prey system. Several authors, including
Chen et al. [11], Huang et al. [28] and Kar [30], inves-
tigated the influence of prey refuge in predator–prey
models. They concluded that the prey refuge has a sta-
bilizing effect on the predator–prey relationship. How-
ever, it is questionable to consider that prey consumed
is instantaneously converted into predator biomass as in
aforementioned works. Hence, it may be more realistic
to assume that, after predating the prey, the reproduc-
tion of the predator is not instantaneous. It is neces-
sary to take into account the fact that the reproduction
of predator is mediated through some time lag which
is required for gestation. For the above reasons, mod-
els with delays are more realistic than those without
delays. For example, a time delay can cause the change
of the stability of an equilibrium, making a stable equi-
librium to become unstable through a Hopf bifurcation
(see, e.g., Brauer [10], Kar et al. [31], Beretta et al. [6],
Kuang [32], Gopalsamy [22], Azbelev et al. [4], Bal-
achandran et al. [5], Arino et al. [2], Liu et al. [41], Liu
et al. [38,40], Liu [39], Datta et al. [17], Ma [43], Nind-
jin et al. [48], Xiao and Li [65], Xu et al. [66], Yafia
et al. [67], Xu et al. [66], Yan and Li [69], Yuan et al.
[70], Yuan et al. [72,73], Yuan and Song [71], Zi-Zhen
and Hui-Zhong [75]).

Predators and preys are ecological resources. So
they can be used either for human being needs or
for commercial industries. It can then be exploited
and harvested in fishery, forestry and wildlife man-
agement. There is a wide range of interest in the use
of bioeconomic models to gain insight into the sci-
entific management of the renewable resources like
fisheries and forestries [13]. To study the effect of
harvesting in the dynamic of relationship between
species, some harvesting functions have been con-
sidered by researchers. We can cite constant har-
vesting function, linear harvesting functions, nonlin-
ear harvesting functions, quadratic harvesting func-
tions [17,20,21,30,31,34,35,41,50,61,74] and the so-
called continuous threshold policy (CTP) which use
one or more than one threshold and with which har-
vesting starts when the population of the species being
harvested has reached a certain threshold [8,33,45,59].

In what follows, we formulate and analyze a Leslie–
Gower predator–prey model derived from the one pro-
posed by Alves [1], but with some improvements.
Notably, we take into account time delay τ for the con-
version time from prey biomass to predator biomass
after predation. In addition, a prey refuge is also con-
sidered. Finally, a CTP harvesting function for preys is
taken into account. The organization of our paper is as
follows: We formulate the model in Sect. 2. In Sect. 3,
we prove that each solution of the system is positive and
bounded. Section 4 contains the equilibria of the model
without the time delay and their stability. Considering
the time delay as bifurcation parameter, the investiga-
tion for a Hopf bifurcation is done and the stability of
equilibria is studied in Sect. 5. We analyze the stabil-
ity and the direction of the existing Hopf bifurcation in
Sect. 6. Numerical simulations results are supplied in
Sect. 7 in support of the theoretical analysis.

2 The model formulation

Alves [1] formulated and analyzed the following
model:⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = r1

(

1 − x(t)

K1

)

x(t) − qλ1x(t)y(t),

ẏ(t) = r2

(

1 − y(t)

qα1x(t) + (1 − q)αAKA

)

y(t),

(1)

where the variables x(t) and y(t) are, respectively,
the preys and the predators population at time t . In
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model (2), we have two categories of parameters. The
parameters r1 and r2 are the intrinsic growth rates
of preys and predators, respectively. λ1 measures the
strength of competition among individuals of preys
population, K1 is the carrying capacity of the preys
when there is no predation, α1 measures the amount of
energy in the form of biomass of the prey x(t) assim-
ilate into the predator’s energy in terms biomass. The
parameters r1, r2, λ1, α1 and K1 always exist in a
Leslie–Gower predator–preymodel. The parameters q,
KA and αA have been introduced by Alves [1] with
the assumption of additional food for predators. He
assumes that the predator is provided with additional
food of constant density KA. The parameter αA mea-
sures the amount of energy in the form of biomass of
the additional food assimilate into the predator’s energy
in terms of biomass. The parameter q is the preference
rate of the predator due to the fact that the predator has
two sources of food. It means that if q = 0, the predator
consumes only the additional food A. Thus the carry-
ing capacity of the predator is αAKA. If q = 1, the
predator consumes only the prey x . So the carrying
capacity of the predator is α1x(t). If q ∈ (0, 1), the
predator consumes two sources of food according to
proportions defined by the parameter q. The carrying
capacity of the predator population is then given by
qα1x(t) + (1 − q)αAKA according to the formalism
of Stephens and Krebs [58]. Our model, incorporating
prey refuge, additional food for predators, time delay
and harvesting of preys, is given by the following set
of ordinary differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = r1

(

1 − x(t)

K1

)

x(t) − qλ1(1 − m)x(t)y(t) − ϕ(x(t)),

ẏ(t) = r2

(

1 − y(t − τ)

qα1(1 − m)x(t − τ) + (1 − q)αAKA

)

y(t).

(2)

Due to the fact that the reproduction of the predator
population after the predation of preys is not an instan-
taneous phenomenon, we introduced a time delay τ in
the predator equation which represents the time lag for
gestation or maturation of the predator. The parameter
m ∈ [0, 1) measures the strength of refuge. It means
that mx(t) models the capacity of a refuge at the time
t . Hence, refuge protecting mx(t) quantity of the prey
population at the time t , it remains (1−m)x(t) quantity
of preys available to the predation. ϕ(x(t)) denotes the
continuous threshold prey harvesting function defined
as follows:

ϕ(x) =
⎧
⎨

⎩

0 if x < T1,
h(x − T1)

h + x − T1
if x ≥ T1.

(3)

In this way, if the prey population is less than the
threshold T1, there is not harvesting of preys. Once
the prey population reaches the size x = T1, their har-
vesting starts and increases smoothly to a limit value h.
From both biological and practical point of views, such
harvesting function is more sound than its constant or
linear counterparts [8,59]. For biological reason, it is
natural to assume

T1 < K1

(

K1 = r1
b1

)

. (4)

Due to the fact that it is not plausible to have the
number of preys (respectively, the number of predators)
at time t = 0 greater than the carrying capacity K1 =
r1
b1

(respectively, K2 = qα1(1 − m)K1 + αAKA) of

preys (respectively, predators), we assume:

0 ≤ x(0) <
r1
b1

(5)

and

0 ≤ y(0) < qα1(1 − m)K1 + αAKA. (6)

The initial conditions for system (2)–(3) are chosen
as:

x(0) ≥ 0, y(0) ≥ 0. (7)

For θ ∈ [−τ, 0], we use the notation:
xt (θ) = x(t + θ). (8)

Then the initial conditions for the system take the form:

x0(θ) = φ1(θ), y0(θ) = φ2(θ), (9)

for all θ ∈ [−τ, 0], where (φ1, φ2) ∈ C([−τ, 0], R2+),
x(0) = φ1 > 0 and y(0) = φ2 > 0.
C = C([−τ, 0], R2+) is the Banach space of continuous
functions from the interval [−τ, 0] into R2+ = {(x, y) :
x ≥ 0, y ≥ 0}.

3 Positivity and boundedness of solutions

3.1 Positivity of solutions

In this subsection, we prove that our model is biologi-
cally meaningful. It means that the variables x(t) and
y(t)which represent the population of preys and preda-
tors, respectively, are always positive. We have the fol-
lowing theorem.
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Theorem 1 When assumptions (5) and (6) hold, the
positive quadrant R2+ is invariant for system (2)–(3).

Proof See “Appendix A.” ��

3.2 Boundedness of solutions

In this subsection,weprove that each solution of system
(2)–(3) is bounded. The following theorem holds.

Theorem 2 When assumptions (5) and (6) hold, each
solution of system (2)–(3) is uniformly bounded.

Proof See “Appendix B.” ��

4 Equilibria of the model and their stability when
τ = 0

4.1 Equilibria of the model when τ = 0

In the following theorem, we give equilibria of system
(2)–(3).

Theorem 3 1. When x < T1, system (2)–(3) has four
equilibria which are:

– E0
1(0, 0) which means that both predators and

preys are absent.
– E0

2(0, (1−q)αAKA) for which there is no prey,
while the predator population reaches its car-
rying capacity.

– E0
3(K1, 0) for which there is no predator and

the prey population reaches its carrying capac-
ity.

– E0
4

(
r1 − λ1(1 − m)q(1 − q)αAKA

b1 + q2λ1α1(1 − m)2
,

r1α1(1−m)q+(1−q)b1αAKA
b1+q2λ1α1(1−m)2

)
.

The coexistence equilibrium E0
4 is biologically

meaningful if r1 > λ1(1 − m)q(1 − q)αAKA.

2. When x ≥ T1, system (2)–(3) is such that:

– Eϕ
1 (xϕ

1 , 0) is an equilibrium for which there is
no predator and the number xϕ

1 of preys is a pos-
itive solution on the interval [T1, K1] of equa-
tion (10):

−b1x
3 + (r1 − b1(h − T1))x

2

+(r1(h − T1) − h)x + hT1 = 0. (10)

– Eϕ
2 (xϕ

2 , yϕ
2 ) is an equilibrium where yϕ

2 = (1−
m)qα1x

ϕ
2 + (1 − q)αAKA and the number xϕ

2
of preys is a positive solution on the interval
[T1, K1] of equation (11)

Aϕ
1 x

3 + Aϕ
2 x

2 + Aϕ
3 x + hT1 = 0, (11)

where
Aϕ
1 = −b1 − q2λ1α1(1 − m)2,

Aϕ
2 = r1 − q(1 − q)(1 − m)λ1αAKA −

(h − T1)(b1 + q2λ1α1(1 − m)2),
Aϕ
3 = (r1−q(1−q)(1−m)λ1αAKA)(h−

T1) − h.

Proof See “Appendix C.” ��
Note that if CONDEX (xϕ

2 ) below holds

CONDEX (xϕ
2 ) : r1 − b1T1 − qλ1(1 − m)

(1 − q)αAKA + q(1 − m)α1T1 > 0

then equation (11) will have at least one solution in the
interval [T1, K1]. So, we have a sufficient condition for
the existence of the coexistence equilibrium Eϕ

2 .
In what follows, we discuss on the results of the

above theorem in terms of the preference rate q, the
threshold of harvesting T1 and the intrinsic growth rate
of preys r1. The aim of that discussion is to analyze
the impact of the preference rate q, the threshold of
harvesting T1 and the intrinsic growth rate of preys r1
on the equilibria of the model. As it has been done in
the theorem, we distinguish two cases:

1. Case 1 : x < T1, there is no harvesting of preys.

1.1. q = 0, the predator consumes only the addi-
tional food A.
– Equilibria E0

1 and E0
3 remain unchanged.

– The equilibrium E0
2 = (0, αAKA) is such

that the predator reaches its carrying capac-
ity.

– The coexistence equilibrium E0
4 = (K1,

(1 − m)αAKA) always exists (the condi-
tion of its existence given in the theorem
is satisfied); the preys x which are not
consumed reach their carrying capacity,
while the predator also reaches its carry-
ing capacity taking into account the refuge
of the preys x .

1.2. q = 1, the predators consume only the preys.
– Equilibria E0

1 and E0
3 remain unchanged.

– The predator population does not more
reach its carrying capacity when the preda-
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tors consume only the preys. The equilib-
rium E0

2 = (0, 0) = E0
1 .

– The coexistence equilibrium E0
4(

r1
b1 + λ1α1(1 − m)2

,

r1α1(1−m)+(1−m)b1αAKA
b1+λ1α1(1−m)2

)
always exists. (The

condition of its existence r1 > λ1(1 −
m)q(1 − q)αAKA given in the theorem is
satisfied.) Preys and predators do not more
reach their carrying capacities as when
q = 0.

We remark that when the predators consume
only one source of food, the coexistence equi-
librium always exists.

1.3. q ∈ (0, 1), the predators consume the two
sources of food according to the preference rate
q.
– Equilibria E0

1 , E
0
2 and E

0
3 always existwith

the possibility for the preys or the predators
to reach their carrying capacities.

– The coexistence equilibriumdoes notmore
always exits. Its existence depends on the
intrinsic growth rate r1 of preys, the den-
sity of additional fixed food for preda-
tors KA, the amount of energy in the
form of biomass of additional food assim-
ilate into the predator’s energy αA, the
strength of refuge m and the strength of
competition among individuals of preys.

So if r1 ≥ λ1αAKA(1 − m)

4
, then the

coexistence equilibrium E0
4 always exists

for any value of the preference rate q in

(0, 1). If r1 ≤ λ1αAKA(1 − m)

4
, then

the coexistence equilibrium E0
4 exists only

for the values of the preference rate q

in (0, q1] ∪ [q2, 1) where q1 = 1

2
−

1

2

√

1 − 4r1
λ1αAKA(1 − m)

and q2 = 1

2
+

1

2

√

1 − 4r1
λ1αAKA(1 − m)

.

2. Case 2 : x ≥ T1, there is harvesting of preys.

2.1. q = 0, the predator consumes only the addi-
tional food A.
– Equilibrium Eϕ

1 always exists.

– The coexistence equilibrium Eϕ
2 = (xϕ

2 ,

αAKA) always exists (using assumption
(4) gives r1−b1T1 > 0 andCONDEX (xϕ

2 )

holds); the predator population reaches its
carrying capacity.

2.2. q = 1, the predators consume only the preys.
– The equilibrium Eϕ

1 always exists.
– The coexistence equilibrium Eϕ

2 = (xϕ
2 ,

(1−m)α1x
ϕ
2 ) always exists. (Using assump-

tion (4) gives r1 − b1T1 + (1−m)α1T1 >

0 and CONDEX (xϕ
2 ) holds.) Predators

reach their carrying capacity.
2.3. q ∈ (0, 1), the predators consume the two

sources of food according the preference rate
q.
– Equilibrium Eϕ

1 always exists.
– The coexistence does not always exist. Its
existence can be discussed in terms of the
threshold of harvesting T1. Then, we have
the following cases.

If T1 ≥ λ1αAKA

α1
, then using assumption

(4) gives r1 − b1T1 − qλ1(1 − m)(1 −
q)αAKA + q(1 − m)α1T1 > r1 − b1T1 +
(1 − m)α1T1 > 0. Thus, CONDEX (xϕ

2 )

holds and the coexistence equilibrium Eϕ
2

exists.

If T1 <
λ1αAKA

α1
and r1 ≥

λ1αAKA(1 − m)

4
, then Eϕ

2 exists.

If T1 <
λ1αAKA

α1
and r1 <

λ1αAKA(1 − m)

4
, then the coexistence

equilibria Eϕ
2 does not always exist.

4.2 Stability of equilibria of the model without delay

The following theorem holds:

Theorem 4 1. The equilibrium E0
1 is an unstable

node.
2. The equilibrium E0

2 is a stable node if r1 < qλ1(1−
m)(1 − q)αAKA and a saddle (unstable) if r1 >

qλ1(1 − m)(1 − q)αAKA. We have a saddle-node
bifurcation.

3. The equilibrium E0
3 is a saddle (unstable).
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4. The equilibrium E0
4 is locally asymptotically stable.

More precisely, let us set:

ΔE0
4

= (b1x
0
4 − r2)

2 − 4(1 − m)2α1r2q
2x04

– If ΔE0
4

> 0, then E0
4 is a stable node.

– If ΔE0
4

< 0, then E0
4 is a stable spiral.

– If ΔE0
4

= 0, then E0
4 is a stable degenerate

node.

5. The equilibrium Eϕ
1 is unstable. More precisely,

– if
h(xϕ

1 − T1)2 − h2T1
xϕ
1 (xϕ

1 + h − T1)2
< b1x

ϕ
1 , then Eϕ

1 is a

saddle.

– if
h(xϕ

1 − T1)2 − h2T1
xϕ
1 (xϕ

1 + h − T1)2
> b1x

ϕ
1 , then Eϕ

1 is an

unstable node.

6. Let us set:

T r(J (Eϕ
2 )) = −r2 − b1x

ϕ
2 + h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
,

|J (Eϕ
2 )| = −r2

(

−b1x
ϕ
2 + h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2

)

+(1 − m)2q2α1λ1r2x
ϕ
2 ,

ΔEϕ
2

=
(

r2 − b1x
ϕ
2 + h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2

)2

−4(1 − m)2q2λ1α1r2x
ϕ
2 .

(a) When ΔEϕ
2

> 0, the equilibrium Eϕ
2 is:

– a saddle if
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
− b1x

ϕ
2 −

(1 − m)2q2λ1α1x
ϕ
2 > 0;

– a stable node if
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
−

b1x
ϕ
2 − (1 − m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ
2 − T1)2 − h2T1

xϕ
2 (xϕ

2 + h − T1)2
− r2 − b1x

ϕ
2 < 0;

– an unstable node if
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
−

b1x
ϕ
2 − (1 − m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ
2 − T1)2 − h2T1

xϕ
2 (xϕ

2 + h − T1)2
− r2 − b1x

ϕ
2 > 0.

(b) When ΔEϕ
2

< 0, the equilibrium xϕ
2 is:

– a stable spiral if
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
−

b1x
ϕ
2 − (1 − m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ
2 − T1)2 − h2T1

xϕ
2 (xϕ

2 + h − T1)2
− r2 − b1x

ϕ
2 < 0;

– anunstable spiral if
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
−

b1x
ϕ
2 − (1 − m)2q2λ1α1x

ϕ
2 < 0 and

h(xϕ
2 − T1)2 − h2T1

xϕ
2 (xϕ

2 + h − T1)2
− r2 − b1x

ϕ
2 > 0;

– a center if
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
− b1x

ϕ
2 −

(1 − m)2q2λ1α1x
ϕ
2 < 0 and

h(xϕ
2 − T1)2 − h2T1

xϕ
2 (xϕ

2 + h − T1)2
− r2 − b1x

ϕ
2 = 0.

(c) When ΔEϕ
2

= 0, the equilibrium xϕ
2 is:

– a degenerate stable node if
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
− b1x

ϕ
2 − (1 − m)2

q2λ1α1x
ϕ
2 < 0and

h(xϕ
2 − T1)2 − h2T1

xϕ
2 (xϕ

2 + h − T1)2
−

r2 − b1x
ϕ
2 < 0;

– a degenerate unstable node if
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
− b1x

ϕ
2 − (1 − m)2

q2λ1α1x
ϕ
2 < 0and

h(xϕ
2 − T1)2 − h2T1

xϕ
2 (xϕ

2 + h − T1)2
−

r2 − b1x
ϕ
2 > 0.

Proof See “Appendix D.” ��

Remark 1 When the equilibrium E2 is locally asymp-
totically stable, the equilibrium E4 does not exists.
When E4 exists, it is always locally asymptotically sta-
ble and E2 is unstable.

Remark 2 If
h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
≤ 0 or h ≥

(xϕ
2 − T1)2

T1
, then equilibrium Eϕ

2 is always stable.

More precisely, xϕ
2 is a stable node if ΔEϕ

2
> 0, a

stable spiral if ΔEϕ
2

< 0 and a degenerate stable node
if ΔEϕ

2
= 0.
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5 Hopf bifurcation and stability analysis of the
delayed model

In this section, we study the stability of system (2)–
(3) for τ > 0. Before going further, let us recall the
fact that if an equilibrium is unstable for τ = 0, it
remains unstable for τ > 0 (see Martin et al. [44],
Culshaw et al. [16]). Thus, we shall study the stability
of the coexistence equilibrium without harvesting E0

4
which is always stable when it exists and the stability
of the coexistence equilibrium with harvesting Eϕ

2 . Let
us recall that when equilibrium Eϕ

2 exists, it is stable if

−b1x
ϕ
2 − r2 + h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
< 0

and

−r2

(

−b1x
ϕ
2 + h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2

)

+(1 − m)2q2α1λ1r2x
ϕ
2 > 0.

We recall that the equilibrium E4 exists if

r1 − λ1(1 − m)q(1 − q)αAKA > 0.

To linearize system (2)–(3) around an equilibrium
E(xe, ye)which can be E0

4 or E
ϕ
2 , let us set X = x−xe

and Y = y − ye. Then the linearized system of system
(2)–(3) reads as:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ(t) =
(

−b1xe + ϕ(xe)

xe
− ϕ′(xe)

)

X (t)

−qλ1(1 − m)xeY (t),
Ẏ (t) = r2(1 − m)qα1X (t − τ) − r2Y (t − τ).

(12)

From the linearized system (12), we have the fol-
lowing characteristic equation:

λ2 + A1ϕλ + r2λe
−λτ + A2ϕe

−λτ = 0, (13)

where

A1ϕ = b1xe − h(xe − T1)2 − h2T1
xe(xe + h − T1)2

,

A2ϕ = A1ϕr2 + r2λ1α1q
2(1 − m)2xe.

Now, let us investigate conditions under which the
characteristic equation (13) has purely imaginary roots
λ = iω.

Replacing λ by iω in equation (13) gives:

− ω2 + A1ϕiω + A2ϕe
−iωτ + r2e

−iωτ iω = 0. (14)

Then separating the real and the imaginary parts in
equation (14) gives:

− ω2 + A2ϕcosτω + r2ωsinτω = 0, (15)

and

A1ϕω − A2ϕsinτω + r2ωcosτω = 0. (16)

From equations (15) and (16), we have:

cosτω = r2λ1α1q2(1 − m)2xeω2

A2
2ϕ + r22ω2

(17)

and

sinτω = A1ϕ A2ϕω + r2ω3

A2
2ϕ + r22ω2

. (18)

From equations (17) and (18) and using the equa-
tion cos2τω + sin2τω = 1, we obtain the following
equation:

r22ω6 + (A2
2ϕ + r22 A

2
1ϕ − r42 )ω4

+(A2
1ϕ A

2
2ϕ − 2r22 A

2
2ϕ)ω2 − A4

2ϕ = 0. (19)

Setting W = ω2, equation (19) becomes:

r22W
3 + (A2

2ϕ + r22 A
2
1ϕ − r42 )W

2

+(A2
1ϕ A

2
2ϕ − 2r22 A

2
2ϕ)W − A4

2ϕ = 0,

which has at least one positive root because r22 > 0 and
−A4

2ϕ < 0. Then, we have at least two opposite values
ω0 > 0 and ω1 < 0 of ω.

Moreover, from (17) and (18) and for ω = ω0, we
obtain:

τk = 1

ω0
arctan

(
A1ϕ A2ϕω0 + r2ω3

0

r2λ1α1q2(1 − m)2xeω2
0

)

+kπ

ω0
= τ0 + kπ

ω0
, k ∈ Z,

where

τ0 = 1

ω0
arctan

(
A1ϕ A2ϕω0 + r2ω3

0

r2λ1α1q2(1 − m)2xeω2
0

)

.
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In order to see whether a Hopf bifurcation can occur,
we verify the transversality condition [18]. When dif-
ferentiating equation (13) with respect to τ , we obtain:

[2λ + A1ϕ − A2ϕe
−λτ τ + r2e

−λτ − r2λτe−λτ ]dλ
dτ

−(A2ϕ + r2λ)λe−λτ = 0,

from which we obtain,

(
dλ

dτ

)−1

= 2λ + A1ϕ − A2ϕe
−λτ τ + r2e

−λτ − r2λτe−λτ

(A2ϕ + r2λ)λe−λτ

= 2λ + A1ϕ − A2ϕe−λτ τ

(A2ϕ + r2λ)λe−λτ
− τ

λ

= −2λ + A1ϕ − A2ϕe−λτ τ

λ(λ2 + A1ϕλ)
− τ

λ

= − 1

λ

[
2λ + A1ϕ − A2ϕe−λτ τ

λ2 + A1ϕλ
+ τ

]

.

Following Cooke and Grossman [15], we therefore
obtain by using (17) and (18),

sign

{
d(Reλ)

dτ

}

λ=iω0

= sign

{

Re

(
dλ

dτ

)−1
}

λ=iω0

= sign

{

Re

(

−2λ + A1ϕ − A2ϕe−λτ τ

λ(λ2 + A1ϕλ)

)}

λ=iω0

= sign

{
r22ω4

0 + 2ω2
0A

2
2ϕ + A2

1ϕ A
2
2ϕ

(ω4
0 + A2

1ϕω2
0)(A

2
2ϕ + r22ω2

0)

}

.

Hence, we have:

sign

{
d(Reλ)

dτ

}

λ=iω0

> 0.

It means that the transversality condition is satisfied.
Then, a Hopf bifurcation can occur when τ = τ0.

The following theorem holds for the stability of the
coexistence equilibrium of system (2)–(3):

Theorem 5 1. If τ ∈ [0, τ0), then the coexistence
equilibrium E(xe, ye) is locally asymptotically sta-
ble.

2. If τ > τ0, then the equilibrium E(xe, ye) is unsta-
ble.

3. If τ = τk with k ∈ Z, then system (2)–(3) undergoes
a Hopf bifurcation.

Proof See “Appendix E.” ��

Remark 3 According to results obtained for the transver-
sality condition and the existence of the critical value
τ0, the Hopf bifurcation always exists for any values
the refuge strength m, the preference rate q and the
harvesting limit value h.

6 Direction and stability of Hopf bifurcation

In this section, we compute some formulas by using
the normal form theory [12,70] and the center mani-
fold theorem introduced by Hassard et al. [26]. These
formulas are used to determine the direction of theHopf
bifurcation and the stability of the bifurcating periodic
solution of system (2)–(3) which occurs when the delay
τ takes the critical value τ0. The following result gives
us a description of the Hopf bifurcating periodic solu-
tions of system (2)–(3)

Theorem 6 Let us consider System (2)–(3). There
exists three real numbers μ2, β2 and T2 such that the
followings hold true.

1. The sign of μ2 determines the direction of the Hopf
bifurcation. If μ2 > 0, then the Hopf bifurcation is
supercritical. If μ2 < 0, then the Hopf bifurcation
is subcritical.

2. The sign of β2 determines the stability of the bifur-
cating periodic solutions. If β2 > 0, then the bifur-
cating periodic solutions are unstable. If β2 < 0,
then the bifurcating periodic solutions are stable.

Table 1 Parameter values for the Leslie–Gower predator–prey
model (2)–(3)

Parameter Value References

r1 2 Alves [1]

r2 1.5 Alves [1]

λ1 5 Assumed

α1 0.8 Alves [1]

h 1 Assumed

T1 2 Assumed

αA 1.2 Alves [1]

K1 3 Alves [1]

KA 3 Alves [1]

q 0.7 Alves [1]

m 0.7 Assumed
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(a) Bifurcation diagramm (b) Phase portrait: stability of the prey-free equlibrium

(c) Phase portrait: stability of the coexistence equilibrium

Fig. 1 a Bifurcation diagram of system (2)–(3) without harvest-
ing and when the time delay τ = 0. The red circles mean that
the prey-free equilibrium E0

2 is unstable for the corresponding
values of the parameter m and q. For those values of m and q,
the coexistence equilibrium E0

4 exists and is locally asymptot-
ically stable. The blue circles mean that the prey-free equilib-
rium E0

2 is locally asymptotically stable for the corresponding
values of the parameter m and q. For those values of m and

q, the coexistence equilibrium E0
4 does not exist. b Phase por-

trait of system (2)–(3) when the time delay τ = 0, m = 0.3,
q = 0.7.The prey-free equilibrium E0

2 (0; 1.08) is locally asymp-
totically stable. c Phase portrait of system (2)–(3) when the time
delay τ = 0, m = 0.85, q = 0.7. The coexistence equilib-
rium E0

4 (2.016; 1.2494) is locally asymptotically stable. Black
bullets denote the initial data, while the red bullet denotes the
equilibrium

3. T2 determines the period of the bifurcating periodic
solutions. If T2 > 0, then the period increases. If
T2 < 0, then period decreases.

Proof See “Appendix F.” ��

7 Numerical simulations

In this section, some numerical simulations are pro-
vided in order to illustrate our theoretical analysis and
also to support our discussion. The values of the param-
eters r1, r2, α1, αA, K1, KA and q are those which have
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(a) Bifurcation diagram (b) Phase portrait: stability of the prey-free equilibrium
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(c) Phase portrait: stability of the coexistence

equilibrium E0
4
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(d) Phase portrait: stability of the coexistence

equilibrium Eϕ
2

Fig. 2 a Bifurcation diagram of system (2)–(3) with harvest-
ing and when the time delay τ = 0. The green triangle means
that system (2)–(3) does not have a coexistence equilibrium, but
the prey-free equilibrium E0

2 of the model without harvesting
exists and is locally asymptotically stable. The red plus means
that system (2)–(3) does not have a coexistence equilibrium, but
the coexistence equilibrium E0

4 of the model without harvesting
exists and is locally asymptotically stable. The blue circle means

that system (2)–(3) has one coexistence equilibrium Eϕ
2 which is

locally asymptotically stable. b Phase portrait of system (2)–(3)
when the time delay τ = 0, m = 0.3, q = 0.7 et h = 1. c Phase
portrait of system (2)–(3) when the time delay τ = 0, m = 0.7,
q = 0.7 and h = 1. d Phase portrait of system (2)–(3) when
the time delay τ = 0, m = 0.85, q = 0.7 and h = 1. Black
bullets denote the initial data, while the red bullet denotes the
equilibrium . (Color figure online)

been used by [1, Fig. 4.1]. We recall that initial con-
dition values x(0) and y(0) must satisfy (5) and (6),
respectively. For our numerical treatments, we consider
parameter values summarized in Table 1. Note that for
the cases without harvesting, we use h = 0.

Figure 1 depicts the bifurcation diagram, in terms
of the prey refuge and the preference rate, and phase
portraits of system (2)–(3) without the time delay and
without harvesting. We are interested in the effects of
the prey refuge strengthm and the preference rate q on
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(c) τ = 1.0088
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(d) τ = 1.5

Fig. 3 a Phase portrait of system (2)–(3) when the time delay
τ = 0,m = 0.85, q = 0.7 and h = 1. b Phase portrait of system
(2)–(3) when the time delay τ = 0.8, m = 0.85, q = 0.7 and
h = 1. c Phase portrait of system (2)–(3) when the time delay

τ = 1.0088, m = 0.85, q = 0.7 and h = 1. d Phase portrait of
system (2)–(3) when the time delay τ = 1.5, m = 0.85, q = 0.7
and h = 1. Black bullets denote the initial data, while the red
bullet denotes the equilibrium

the dynamic of system (2)–(3) without the time delay.
For some values ofm and q, it is possible to have either
the extinction of the prey population or the coexistence
of the prey and predator populations.

Figure 2 represents the bifurcation diagram, in terms
of the prey refuge and harvest limit rate, and phase por-
traits of system (2)–(3) without the time delay, with and
without harvesting. We are interested in the effects of
prey refuge strengthm and the limit value of harvesting

h on the dynamic of system (2)–(3) without the time
delay. For a fixed value on the preference rate q and for
some values ofm and h, it is possible to have either the
extinction of the prey population or the coexistence of
the prey and predator populations (Fig. 2).

In Fig. 3, we have the phase portraits of system (2)–
(3) without and with the time delay. We are interested
in the effect of the time delay on the dynamic of system
(2)–(3). Panel (b) illustrates the fact that when the time
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Table 2 Values of xϕ
2 and yϕ

2 for system (2)–(3) for m = 0.7
and h = 1

Value of q xϕ
2 yϕ

2

0.1 2.6308 3.3031

0.2 2.5253 3.0012

0.3 2.4467 2.6961

0.4 2.3930 2.3897

0.5 2.3623 2.0834

0.6 2.3532 1.7788

0.7 2.3650 1.4773

0.8 2.3972 1.1802

0.9 2.4498 0.8891

delay τ = 0.8 < τ0 = 1.0088, the coexistence equilib-
rium Eϕ

2 (2.0095; 1.2488) is always stable. Thus for this
case, the time delay does not have any effect on the sta-
bility of the equilibrium. Panel (c) is an illustration of
the existence of a Hopf bifurcation for the critical value
τ0 = 1.0088 of the time delay. We have a stable sub-
critical bifurcating periodic solution around the coexis-
tence equilibrium Eϕ

2 (2.0095; 1.2488) (β2 = 0.7056,
μ2 = −0.5078 , T2 = 2.8505). With panel (d), one
can see that for the value τ = 1.5 > τ0 = 1.0088, the
coexistence equilibriumbecomes unstable. So for those
values of the time delay τ , the coexistence equilibrium
Eϕ
2 (2.0095; 1.2488) is destabilized.
According to Table 2, one can see that when the

preference rate q increases, the number of predators at
the coexistence equilibrium of system (2)–(3) always
decreases, while we have a fluctuation of the number
of preys. The number of preys decreases up to a value
of the preference rate q and begin to increase after that
value.

8 Conclusion

In this paper, we have incorporated a time delay, a
continuous threshold policy harvesting of preys and
a refuge of preys in a Leslie–Gower predator–prey
model with additional fixed food. The theoretical anal-
ysis shows that when the threshold and the harvesting
limit value satisfy a condition depending on the pref-
erence rate of predators, the carrying capacity of the
additional fixed food and the refuge strength of preys,
there always exists a coexistence equilibrium for the
studied model. Considering the time delay as a bifur-

cation parameter, it has been shown that it exists a crit-
ical value of the time delay depending on the threshold
of harvesting and the rate of harvesting, the preference
rate and the carrying capacity of the additional fixed
food. For that critical value of the time delay, a Hopf
bifurcation occurs around the coexistence equilibrium,
and for the values of the timedelay greater than that crit-
ical value, the coexistence equilibrium becomes unsta-
ble. An application of the normal form theory and the
center manifold theorem allowed us to study the sta-
bility and determine the direction of the bifurcating
periodic solutions. So the time delay is an impact on
the stability of the system around the coexistence equi-
librium. We also remark that increasing the preference
rate of predators decreases the numbers of predators,
but does not reach to extinction, while the number of
preys decreases firstly and increases after. By using a
bifurcation diagram, we also observe that the existence
and the stability of equilibria of the systemwithout time
delay depend on the refuge strength, the preference rate
and the harvesting limit value. According to our the-
oretical analysis, we can conclude that qualitatively,
taking into account harvesting increases the number of
equilibria with at least one more coexistence equilib-
rium which can be stable. In this paper, the time delay
has been taken into account only for the dynamic of
predators. For our further investigation, we shall for-
mulate a model with two delays by introducing a time
delay in the dynamic of preys in the model we have
analyzed in this paper. Because the response function
also has a significant role in a predator–prey model and
particularly in a Leslie–Gower predator–prey model,
we shall also formulate and investigate Leslie–Gower
predator prey models with additional fixed food with
different response functions as Holling type II, Holling
type III and Holling type IV. What we have done in our
paper can also be extended to Leslie–Gower predator–
prey models with two preys and with one or more than
one time delays, without or with any type of harvesting
function.
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A Proof of Theorem 1

We must show that each solution (x, y) of system (2)–
(3), defined and continuous on [−τ, A[ where A ∈
]0,+∞], x(t) > 0 and y(t) > 0 for all t ∈ [0, A[.
Suppose that it is not true. Then there exists a value of
T in ]0, A[ such that for all t ∈ [0, T [, x(t) > 0 and
y(t) > 0, and either x(T ) = 0 or y(T ) = 0.

For all t ∈ [0, T [ and from equations of (2), we
have,

x(t) > x(0) exp

(∫ t

0
(r1 − b1x(s) − qλ1(1 − m)y(s)

− h

h + x(s) − T1

)

ds

)

and

y(t) = y(0)exp

(∫ t

0
(r2

(

1 − y(s − τ)

qα1(1 − m)x(s − τ) + (1 − q)αAKA

))

ds

)

.

As x and y are defined and continuous on the com-
pact [−τ, T ], there exists M ≥ 0 such that:

x(t) > x(0)exp

(∫ t

0
(r1 − b1x(s) − a1(1 − m)y(s)

− h

h + x(s) − T1

)

ds

)

≥ x(0)exp(−T M)

and

y(t) = y(0)exp

(∫ t

0
(r2

(

1 − y(s − τ)

qα1(1 − m)x(s − τ) + (1 − q)αAKA

))

ds

)

≥ y(0)exp(−T M).

Taking the limit as t → T gives

x(T ) ≥ x(0)exp(−T M) > 0

and

y(T ) ≥ y(0)exp(−T M) > 0,

which contradicts the fact that either x(T ) = 0 or
y(T ) = 0. Then, a solution of System (2)–(3) which
starts in the positive quadrant R2+ remains there.

B Proof of Theorem 2

Using the first equation of System (2), we always have

ẋ(t) ≤ r1x(t)

(

1 − x(t)

K1

)

.

Applying a differential inequality [Hale, 1980] gives
x(t) ≤ 1

1

K1
+

(
1

x(0)
− 1

K1

)

e−r1t
.

Using assumption (5) gives x(t) ≤ K1, for all positive
value of t . It means that x(t) is bounded.

Let us use the second equation of System (3) to prove
that y(t) is bounded. For all t ≥ 0, we have

ẏ(t) ≤ r2y(t).

Integrating that differential inequality from t − τ to t
gives

y(t − τ) ≥ y(t)e−r2τ .

Using the fact that x(t) ≤ K1 gives the following dif-
ferential inequality

ẏ(t) ≤ r2y(t)

(

1 − y(t)

K

)

where K = (1 − m)qα1K1 + (1 − q)αAKA

e−r2τ
. Once

more, applying a differential inequality [Hale, 1980]
gives

y(t) ≤ 1
1

K
+

(
1

y(0)
− 1

K

)

e−r2t
.

Using assumption (6) gives y(t) ≤ K , for all positive
value of t . Thus y(t) is bounded. One can easily verify
that, using assumption (6), the inequalities x(t) ≤ K1

and er2τ ≥ 1 lead to y(0) ≤ K .

C Proof of Theorem 3

Acouple of variables (x, y) is an equilibrium of system
(2)–(3) if it is a solution of the following systems on
[0, T1] × R+ and on [T1, K1] × R+, respectively.
⎧
⎪⎪⎨

⎪⎪⎩

0 = r1

(

1 − x(t)

K1

)

x(t) − qλ1(1 − m)x(t)y(t),

0 = r2

(

1 − y(t)

qα1(1 − m)x(t) + (1 − q)αAKA

)

y(t),

(20)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = r1

(

1 − x(t)

K1

)

x(t) − qλ1(1 − m)x(t)y(t)

− h(x − T1)

h + x − T1
,

0 = r2

(

1 − y(t)

qα1(1 − m)x(t) + (1 − q)αAKA

)

y(t).

(21)
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Firstly, we solve system (20) on [0, T1] × R+. Using
the first equation of the system (20), we have x = 0 or

x = r1 − qλ1(1 − m)y

b1
.

Replacing x by 0 in the second equation of system
(20) gives y = 0 or y = (1 − q)αAKA. Then we have
the equilibria E0

1 and E0
2 .

Replacing x by
r1 − qλ1(1 − m)y

b1
in the second

equation of system (20) gives y = 0 or y = (1 −
m)qα1x + (1 − q)αAKA. If y = 0, we have x =
r1
b1

. If y = (1 − m)qα1x + (1 − q)αAKA, we

have x = r1 − λ1(1 − m)q(1 − q)αAKA

b1 + q2λ1α1(1 − m)2
and y =

r1α1(1 − m)q + (1 − m)b1αAKA

b1 + q2λ1α1(1 − m)2
. Then we have the

equilibria E0
3 and E0

4 .
Secondly, we solve system (21) on [T1, K1] × R+.
Using the second equation of system (21) gives y =

0 or y = (1−m)qα1x+(1−q)αAKA. If y = 0,we find
that x is a solution of equation (10). Moreover, if we
consider the function f defined by f (x) = −b1x3 +
(r1−b1(h−T1))x2+(r1(h−T1)−h)x+hT1, then we
have f (T1) = hT1(r1 − b1T1) > 0 using assumption
(4). We also have f (K1) = −h(K1 − T1) < 0 because
T1 < K1. Thus, by the intermediate value theorem [9,
46], there exists at least one solution of equation (10).
Sowehave the equilibria Eϕ

1 . If y = (1−m)qα1x+(1−
q)αAKA, x is a solution of equation (11). Moreover, if
we consider the function g defined by g(x) = Aϕ

1 x
3 +

Aϕ
2 x

2+ Aϕ
3 x+hT1, we have g(T1) = hT1(r1−b1T1−

qλ1(1 − m)(1 − q)αAKA + qα1(1 − m)T1). We have
g(K1) = −(K1(K1 − T1) + hT1)(qλ1(1 − m)(1 −
q)αAKA + q2λ1α1K1(1 − m)2) < 0 because T1 <

K1. Thus, if r1 − b1T1 − qλ1(1 − m)(1 − q)αAKA +
q(1−m)α1T1 > 0 then g(T1) > 0. By the intermediate
value theorem [9,46], (11) has at least one solution in
[K1, T1]. Thus we have the equilibrium Eϕ

2 .

D Proof of Theorem 4

1. The Jacobian matrix of system (2)–(3) at the equi-
librium E0

1 is:

JE0
1

=
(
r1 0
0 r2

)

.

JE0
1
has two positive eigenvalues (r1 and r2). So

the equilibrium E0
1 is an unstable node.

2. The Jacobian matrix of system (2)–(3) at the equi-
librium E0

2 is:

JE0
2

=
(
r1 − qλ1(1 − m)(1 − q)αAKA 0

r2(1 − m)α1q −r2

)

.

JE0
2
has one negative eigenvalue (−r2). The stabil-

ity of the equilibrium E0
2 depends on the sign of the

second eigenvalue r1 − qλ1(1−m)(1− q)αAKA.
Moreover, the discriminant of the characteristic
equation is ΔE0

2
= (r+r1 − qλ1(1 − m)(1 −

q)αAKA)2 > 0. Thus if r1 < qλ1(1 − m)(1 −
q)αAKA, then the equilibrium E0

2 is stable node
and the equilibrium E0

4 does not exist. If r1 >

qλ1(1 − m)(1 − q)αAKA, the equilibrium E0
2 is

a saddle (unstable).
3. The Jacobian matrix of system (2)–(3) at the equi-

librium E0
3 is:

JE0
3

=
(−r1 −qλ1(1 − m)K1

0 r2

)

.

JE0
3
has one positive eigenvalue (r2). The equilib-

rium E0
3 is a saddle (unstable).

4. The Jacobian matrix of system (2)–(3) at the equi-
librium E0

4 is:

JE0
4

=
( −b1x04 −qλ1(1 − m)x04

(1 − m)α1r2q −r2

)

.

Tr(JE0
4
) = −(b1x

0
4 + r2) < 0,

|(JE0
4
)| = r2b1x

0
4 + (1 − m)2α1λ1r2q

2x04 > 0.

Moreover, the discriminant of the characteris-
tic equation is ΔE0

4
= (b1x04 − r2)2 − 4(1 −

m)2α1λ1r2q2x04 . Therefore, if ΔE0
4

> 0, then the

equilibrium E0
4 is a stable node. If ΔE0

4
< 0, then

the equilibrium E0
4 is a stable spiral. If ΔE0

4
= 0,

then the equilibrium E0
4 is a stable degenerate node.

5. The Jacobian matrix of system (2)–(3) at the equi-
librium Eϕ

1 is:

JEϕ
1

=
⎛

⎝ −b1x
ϕ
1 + ϕ(xϕ

1 )

xϕ
1

− ϕ′(xϕ
1 ) −qλ1(1 − m)xϕ

2

0 r2

⎞

⎠ .

JEϕ
1
has one positive eigenvalue (r2). Thus, the

equilibrium Eϕ
1 is unstable. Moreover, if−b1x1ϕ +

h(xϕ
1 − T1)2 − h2T1

xϕ
1 (xϕ

1 + h − T1)2
< 0, then the equilibrium Eϕ

1

is a saddle. If −b1x
ϕ
1 + h(xϕ

1 − T1)2 − h2T1
xϕ
1 (xϕ

1 + h − T1)2
> 0,
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then the equilibrium Eϕ
1 is an unstable node. If

−b1x
ϕ
1 + h(xϕ

1 − T1)2 − h2T1
xϕ
1 (xϕ

1 + h − T1)2
= 0, then the equi-

librium Eϕ
1 is an unstable nonhyperbolic point.

6. The Jacobian matrix of system (2)–(3) at the equi-
librium Eϕ

2 is:

JEϕ
2

=
⎛

⎝ −b1x
ϕ
2 + ϕ(xϕ

2 )

xϕ
2

− ϕ′(xϕ
2 ) −qλ1(1 − m)xϕ

2

(1 − m)α1r2q −r2

⎞

⎠ .

Tr(JEϕ
2
) = −b1x

ϕ
2 − r2 + h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2
,

|JEϕ
2
| = −r2

(

−b1x
ϕ
2 + h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2

)

+(1 − m)2q2α1λ1r2x
ϕ
2 .

The discriminant of the characteristic equation is:

ΔEϕ
2

=
(

r2 + b1x
ϕ
2 − h(xϕ

2 − T1)2 − h2T1
xϕ
2 (xϕ

2 + h − T1)2

)2

−4(1 − m)2q2α1λ1r2x
ϕ
2 .

Then using the signs of Tr(JEϕ
2
), |JEϕ

2
| and ΔEϕ

2
,

and the table given in Jordan et al. [29], we have the
type and the stability of the equilibrium Eϕ

2 as in
theorem (4). (For stability of equilibria in the plane,
one can also refer to Auger et al. [3] and Hirsch et
al. [27].)

E Proof of Theorem 5

We proved that it is possible to have purely imagi-
nary roots for the characteristic equation (13) and the
transversality condition is satisfied. Thus, we have the
third item of theorem 5. In what follows, we prove the
first and the second items of theorem 5. By Rouche’s
theorem [19] and the continuity in τ , the characteris-
tic equation (13) has roots with positive real parts if
and only if it has purely imaginary roots. Let λ(τ) =
μ(τ) + iω(τ) where μ and ω are real depending on
τ . For τ = 0, the equilibrium E is stable. Thus, we
haveμ(0) < 0. By continuity, if τ is sufficiently small,
we still have μ(τ) < 0 and E is still stable. The
change of stability will occur for some values of τ for
which μ(τ) = 0 and ω(τ) �= 0; it means that λ will
be purely imaginary. Let τe be such that μ(τe) = 0
and ω(τe) = ωe �= 0 with λ = iω(τe). In this case,
the steady state loses stability and eventually becomes
unstable when μ(τ) becomes positive. In other words,

if such a value ωe does not exist, then the steady state
E will remain stable for all τ .

F Proof of Theorem 6

For convenience, let t = sτ , x(sτ) = x1(s), y(sτ) =
x2(s) and τ = τ0 +μ, μ ∈ R so that μ = 0 is the Hopf
bifurcating value for system (2)–(3). Then system (2)–
(3) becomes equivalent to the system:

u̇(t) = Lμ(ut ) + f (μ, ut ), (22)

where ut = (x1(t), x2(t))T ∈ C and ut (θ) = u(t +
θ) = (x1(t + θ), x1(t + θ))T ∈ C.
Lμ : C → R2 is defined as follows:

Lμφ = (τ0 + μ)

(
AAϕ BAϕ

0 0

) (
φ1(0)
φ2(0)

)

+(τ0 + μ)

(
0 0

CAϕ DAϕ

) (
φ1(−1)
φ2(−1)

)

, (23)

where AAϕ = −b1xe + ϕ(xe)

xe
− ϕ′(xe), BAϕ =

−qλ1(1 − m)xe, CAϕ = qr2α1(1 − m), DAϕ = −r2.
f : R × C → R2 is defined as follows:

f (μ, φ) = (τ0 + μ)( f1, f2)
T , (24)

where φ(θ) = (φ1(θ), φ2(θ))T ∈ C
f1 = a11φ

2
1(0) + a12φ1(0)φ2(0) + a13φ

3
1(0),

and

f2 = a21φ
2
1(−1) + a22φ1(−1)φ2(0)

+a23φ1(−1)φ2(−1) + a24φ2(−1)φ2(0)

+a25φ
3
1(−1) + a26φ

2
1(−1)φ2(0)

+a27φ
2
1(−1)φ2(−1)

+a28φ1(−1)φ2(0)φ2(−1),

with

a11 = −b1 + h2

(xe + h − T1)2
, a12 = −qλ1(1 − m),

a13 = h2

(xe + h − T1)4

a21 = −r2(1 − m)2q2α2
1

ye
, a22 = r2(1 − m)qα1

ye
,

a23 = r2(1 − m)qα1

ye
, a24 = − r2

ye
,
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a25 = −r2(1 − m)3q3α3
1

y2e
, a26 = −r2(1 − m)2q2α2

1

y2e
,

a27 = −r2(1 − m)2q2α2
1

y2e
, a28 = r2(1 − m)qα1

y2e
.

Lμ is a one parameter family of bounded linear oper-
ators in C[−1, 0] → R2. Then by the Riesz repre-
sentation theorem, there exists a matrix whose com-
ponents are bounded variation functions η(θ, μ) in
[−1, 0] → R2 such that

Lμ =
∫ 0

−1
dη(θ, μ)φ(θ). (25)

In fact, we can choose

η(θ, μ) = (τ0 + μ)

(
AAϕ BAϕ

0 0

)(
φ1(0)
φ2(0)

)

δ(θ)

+(τ0 + μ)

(
0 0

CAϕ DAϕ

) (
φ1(−1)
φ2(−1)

)

δ(θ + 1),

(26)

where δ is the Dirac function. Then equation (22) is
satisfied.

For φ ∈ C1[−1, 0], let us define

A(μ)φ =
⎧
⎨

⎩

dφ(θ)

dθ
, if − 1 ≤ θ < 0

∫ 0
−1 dη(θ, μ)φ(θ), if θ = 0

(27)

and

R(μ)φ =

⎧
⎪⎨

⎪⎩

(
0
0

)

, if − 1 ≤ θ < 0,

f (μ, φ), if θ = 0.

(28)

System (2)–(3) is then transformed into the operator
equation of the form (29) as follows, in order to study
the Hopf bifurcation problem

u̇(t) = A(μ)ut + Rut . (29)

Define the adjoint operator for ψ ∈ C1([0, 1], (R2)�),

A�(μ)ψ(s) =
⎧
⎨

⎩

−dφ(s)

ds
if 0 < s ≤ 1,

∫ 0
−1 dη

T (s, μ)ψ(−s) if s = 0.

(30)

In order to normalize the eigenvectors of the operator
A and the adjoint operator A�, we need to introduce the
following bilinear form:

〈ψ, φ〉 = ψ(0).φ(0)

−
∫ 0

θ=−1

∫ θ

ξ=0
ψ

T
(ξ − θ)dη(θ)φ(ξ)dξ, (31)

where η(θ) = η(θ, 0).
By the discussion and the transformation t = sτ ,

we know that iτ0ω0 and −iτ0ω0 are the eigenval-
ues of A(0) and other eigenvalues have strictly neg-
ative real parts. Hence, they are also eigenvalues of
A�. Now we are going to compute the eigenvectors of
A(0) and A� corresponding to their respective eigen-
values iτ0ω0 and −iτ0ω0. If we suppose that q(θ) =
(q(1)(θ), q(2)(θ))T = (1, q1)T eiτ0ω0θ is the eigenvec-
tor of A(0) corresponding to the eigenvalue iτ0ω0, then
by the definitionwe have A(0)q(0) = iτ0ω0q(0). Then
using the definition of A(0) and the expressions given
by (22), (24) and (25) gives:

τ0

(
AAϕ BAϕ

0 0

)

q(0) + τ0

(
0 0

CAϕ DAϕ

)

q(−1)

= iτ0ω0q(0),

or equivalently

τ0

(
AAϕ BAϕ

0 0

)(
1
q1

)

+ τ0

(
0 0

CAϕ DAϕ

) (
1
q1

)

e−iτ0ω0 = iτ0ω0

(
1
q1

)

This implies

{
AAϕ + BAϕq1 = iω0,

(CAϕ + DAϕq1)e−iτ0ω0 = q1iω0,

and q1 = CAϕ

−DAϕ + iω0eiτ0ω0
.

Thus, q(1)(θ) = eiτ0ω0θ and q(2)(θ)

= CAϕeiτ0ω0

−DAϕ + iω0eiτ0ω0
.

Now let us compute the eigenvector q� of A�. Sup-
pose that we have q�(s) = GAϕ(1, q�

1)
T eiτ0ω0s, 0 ≤

s ≤ 1. Then we have the following relation

τ0

(
AAϕ 0
BAϕ 0

)

q�(0) + τ0

(
0 CAϕ

0 DAϕ

)

q�(−1)

= −iτ0ω0q
�(0),

which is equivalent to τ0

(
AAϕ 0
BAϕ 0

) (
1
q�
1

)

+ τ0

(
0 CAϕ

0 DAϕ

) (
1
q�
1

)

e−iτ0ω0 = −iτ0ω0

(
1
q�
1

)

.

This implies

{
AAϕ + CAϕq�

1e
−iτ0ω0 = −iω0,

BAϕ + DAϕq�
1)e

−iτ0ω0 = −q�
1 iω0,

and q�
1 = − BAϕ

DAϕ + iω0eiτ0ω0
.
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Now let’s compute GAϕ by using the orthogonality
condition 〈q�(s), q(θ)〉 = 1. By using (30), we have:

〈q�(s), q(θ)〉
= q�(0).q(0) −

∫ 0

θ=−1

∫ θ

ξ=0
q�T

(ξ − θ)dη(θ)q(ξ)dξ

= q�(0).q(0) −
∫ 0

θ=−1

∫ θ

ξ=0
GAϕ(1, q�

1)e
−iω0τ0(ξ−θ)

dη(θ)(1, q1)
T eiω0τ0ξ

= GAϕ

{
1 + q1q�

1 − (1, q�
1)

∫ 0

−1
θeiω0τ0θdη(θ)(1, q1)

T
}

= GAϕ

{
1 + q1q�

1 + τ0e
iω0τ0(CAϕ + DAϕq1)q1

�
}

.

Then,

GAϕ = [1 + q1q
�
1 + τ0e

−iω0τ0(CAϕ + DAϕq1)q
�
1]−1.

Now we are going to compute the coordinates to
describe the center manifold C0 at μ = 0. Let us define

z(t) = 〈q∗, ut 〉 (32)

and

W (t, θ) = ut (θ) − 2Re{z(t)q(θ)}, (33)

where ut is a solution of (28) when μ = 0.
On the center manifold C0, we have:

W (t, θ) = W (z(t), z(t), θ),

where

W (t, θ) = W (z(t), z(t), θ) = W20(θ)
z2

2
+ W11(θ)zz

+W02(θ)
z2

2
+ · · · (34)

In (33), z and z represent the local coordinates of
the center manifold C0 in the direction of q and q∗,
respectively.

Now let us reduce equation (28) to an ordinary dif-
ferential equation using a single complex variable on
the center manifold. Since μ = 0 and for ut a solution
of (28) belonging to the center manifold C0, we have:
ż(t) = 〈q∗, u̇(t)〉 = 〈q∗, Aut + Rut 〉

= 〈q∗, Aut 〉 + 〈q∗, Rut 〉
= 〈A∗q∗, ut 〉 + 〈q∗, Rut 〉
= iτ0ω0z + q∗ f0(z, z).

The following equation:

ż(t) = iτ0ω0z + q∗ f0(z, z) (35)

can be rewritten as:

ż(t) = iτ0ω0z + g(z, z), (36)

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · ·(37)

In what follows, we are going to expand g in pow-
ers of z and z in order to obtain from the first three
coefficients of this expansion, the value of μ2 which
indicates the direction of the Hopf bifurcation (that is
to say if the Hopf bifurcation is supercritical or subcrit-
ical) and the value of β2 which determines the stability.
To do so, we use the algorithm presented by Hassard
et al. [26].

A substitution of (28) in (36) leads to:

Ẇ (t) = u̇t − żq − żq

= A(μ)ut + Rut − [iτ0ω0z + q∗(0) f0(z, z)]q
−[−iτ0ω0z + q∗(0) f 0(z, z)]q

= AW + 2ARe(zq) + Rut − 2Re[q∗(0) f0(z, z)q(θ)]
−2Re[iτ0ω0zq(θ)]

= AW − 2Re[q∗(0) f0(z, z)q(θ)] + Rut .

Then we obtain the following equations

Ẇ =
{
AW − 2Re[q∗(0) f0(z, z)q(θ)] if − 1 ≤ θ < 0,
AW − 2Re[q∗(0) f0(z, z)q(θ)] + f if θ = 0.

(38)

Equations (37) can be rewritten as:

Ẇ = AW + H(z, z, θ), (39)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz

+H02(θ)
z2

2
+ · · · (40)

Derivating W in (33) with respect to t , we have:

Ẇ = Wzż + Wzż. (41)

Then using (33), (38) and (39) gives:

(A − 2iτ0ω0)W20(θ) = −H20(θ), (42)

and

AW11(θ) = −H11(θ). (43)
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Using equations (34) and (35) gives:

g(z, z) = q∗(0) f0(z, z) = τ0GAϕ

(
1
q�
1

) (
f1
f2

)

= τ0GAϕ( f1 + q�
1 f2), (44)

where

f1 = a11x
2
1 (t) + a12x1(t)x2(t) + a13x

3
1(t),

f2 = a21x
2
1 (t − 1) + a22x1(t − 1)x2(t)

+ a23x1(t − 1)x2(t − 1) + a24x2(t − 1)x2(t)

+ a25x
3
1(t − 1)

+ a26x
2
1 (t − 1)x2(t) + a27x

2
1 (t − 1)x2(t − 1)

+ a28x1(t − 1)x2(t)x2(t − 1),

and

x1t (0) = q(1)(0)z + q(1)(0)z + W (1)
20 (0)

z2

2

+W (1)
11 (0)zz + W (1)

02 (0)
z2

2
+ · · ·

x2t (0) = q(2)(0)z + q(2)(0)z + W (2)
20 (0)

z2

2

+W (2)
11 (0)zz + W (2)

02 (0)
z2

2
+ · · ·

x1t (−1) = q(1)(−1)z + q(1)(−1)z + W (1)
20 (−1)

z2

2

+W (1)
11 (−1)zz + W (1)

02 (−1)
z2

2
+ · · ·

x2t (−1) = q(2)(−1)z + q(2)(−1)z + W (2)
20 (−1)

z2

2

+W (2)
11 (−1)zz + W (2)

02 (−1)
z2

2
+ · · ·

An identification by using (34) and (43) gives us the
following coefficients of g:

g20 = 2τ0GAϕ{a11(q(1)(0))2 + a12q
1(0)q(2)(0)

+ q∗
1 (a21(q

(1)(−1))2 + a22q
(1)(−1)q(2)(0)

+ a23q
(1)(−1)q(2)(−1) + a24q

(2)(0)q(2)(−1))},
g11 = τ0GAϕ{2a11q(1)(0)q(1)(0)

+ a12(q
(1)(0)q(2)(0) + q(1)(0)q(2)(0))

+ q∗
1 (2a21q

(1)(−1)q(1)(−1)

+ a22(q
(1)(−1)q(2)(0) + q(2)(0)q(1)(−1))

+ a23(q
(1)(−1)q(2)(−1) + q(2)(−1)q(1)(−1))

+ a24(q
(2)(−1)q(2)(0) + q(2)(0)q(2)(−1)))},

g02 = 2τ0GAϕ{a11(q(1)(0))2

+ a21q
1(0)q(2)(0) + q∗

1 (a21(q
(2)(−1))2

+ a22q
(1)(−1)q(2)(0)

+ a23q
(1)(−1)q(2)(−1)

+ a24q
(2)(0)q(2)(−1))},

g21 = 2τ0GAϕ{a11(q(1)(0)W (1)
20 (0)

+ 2q(1)(0)W (1)
11 (0)) + a12(q

(1)(0)W (2)
11 (0)

+ 1

2
q(1)(0)W (2)

20 (0)

+ 1

2
q(2)(0)W (1)

20 (0)

+ q(2)(0)W (1)
11 (0)) + 3a13(q

(1)(0))2q(1)(0)

+ q∗
1 (a21(q

(1)(−1)W (1)
20 (−1)

+ 2q(1)(−1)W (1)
11 (−1)) + a22(q

(1)(−1)W (2)
11 (0)

+ 1

2
q(1)(−1)W (2)

20 (0)

+ 1

2
q(2)(0)W (1)

20 (−1)

+ q(2)(0)W (1)
11 (−1)) + a23(q

(1)(−1)W (2)
11 (−1)

+ 1

2
q(1)(−1)W (2)

20 (−1) + q(2)(−1)W (1)
11 (−1)

+ 1

2
q(2)(−1)W (1)

20 (−1)) + a24(q
(2)(0)W (2)

11 (−1)

+ 1

2
q(2)(0)W (2)

20 (−1) + q(2)(−1)W (2)
11 (0)

+1

2
q(2)(−1)W (2)

20 (0))

+ 3a25(q
(1)(−1))2q(1)(−1)

+ a26((q
(1)(−1))2q(2)(0)

+ 2q(1)(−1)q(1)(−1)q(2)(0))

+ a27((q
(1)(−1))2q(2)(−1)

+ 2q(1)(−1)q(1)(−1)q(2)(−1))

+ a28(q
(1)(−1)q(2)(0)q(2)(−1))

+ q(1)(−1)q(2)(−1)q(1)(0)

+ q(2)(−1)q(1)(−1)q(2)(0))}.
Now we reach to the step of computation of W20(θ).
Using (27) and (38) gives:

H(z, z, θ) = −2Re[q∗(0) f0(z, z)q(θ)] + Rut

= −gq(θ) − gq(θ) + Rut

= −
(

g20
z2

2
+ g11zz + g02

z2

2

)

q(θ)

−
(

g20
z2

2
+ g11zz + g02

z2

2

)

q(θ) + Rut , (45)
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where

Rut = τ0

(
f1
f2

)

= 2τ0A
Aϕ z

2

2
+ τ0B

Aϕzz,

with

AAϕ =
(
AAϕ
11

AAϕ
21

)

,

BAϕ =
(
BAϕ
11

BAϕ
21

)

,

where

AAϕ
11 = a11(q

(1)(0))2 + a12q
(1)(0)q(2)(0),

AAϕ
21 = a21(q

(1)(−1))2 + a22q
(1)(−1)q(2)(0)

+ a23q
(1)(−1)q(2)(−1)

+ a24q
(2)(−1)q(2)(0),

BAϕ
11 = 2a11q

(1)(0)q(1)(0)

+ a12(q
(1)(0)q(2)(0) + q(1)(0)q(2)(0)),

BAϕ
21 = 2a21q

(1)(−1)q(1)(−1)

+ a22(q
(1)(−1)q(2)(0) + q(1)(−1)q(2)(0))

+ a23(q
(1)(−1)q(2)(−1) + q(1)(−1)q(2)(−1))

+ a24(q
(2)(−1)q(2)(0) + q(2)(−1)q(2)(0)).

A comparison of the coefficients of equations (39) and
(44) gives the following equalities:

H20(θ) =
{−gq(θ) − gq(θ) if − 1 ≤ θ < 0,

−gq(θ) − gq(θ) + 2τ0A if θ = 0.

(46)

H11(θ) =
{−gq(θ) − gq(θ) if − 1 ≤ θ < 0,

−gq(θ) − gq(θ) + τ0B if θ = 0.

(47)

When we substitute (45) in (41) and (46) in (42),
respectively, we obtain the following differential equa-
tions:
{
Ẇ20(θ) = 2iτ0ω0W20(θ) + g20q(θ) + g20q(θ),

Ẇ11(θ) = g11q(θ) + g11q(θ),

(48)

which have the following solutions:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W20(θ) = ig20
τ0ω0

q(0)eiτ0ω0θ + g02
3iτ0ω0

q(0)e−iτ0ω0θ

+E1Aϕe2iτ0ω0θ ,

W11(θ) = g11
iτ0ω0

q(0)eiτ0ω0θ + g11
iτ0ω0

q(0)e−iτ0ω0θ

+E2Aϕ,

(49)

where E1Aϕ = (E (1)
1Aϕ, E (2)

1Aϕ)T and E2Aϕ = (E (1)
2Aϕ,

E (2)
2Aϕ)T are constant vectors belonging to R2.
Now, let us compute the constant vectors E1Aϕ and

E2Aϕ by using (41) and (42). We have:
∫ 0

−1
dη(θ)W20(θ) = 2iτ0ω0W20(0) − H20(0), (50)

and
∫ 0

−1
dη(θ)W11(θ) = −H11(0). (51)

Then, using the fact that,
(

iτ0ω0 I −
∫ 0

−1
eiτ0ω0θdη(θ)

)

q(0) = 0,

(

−iτ0ω0 I −
∫ 0

−1
e−iτ0ω0θdη(θ)

)

q(0) = 0,

and using the first equation of (48), equations (44) and
(49), we have:
(

2iτ0ω0 I −
∫ 0

−1
e2iτ0ω0θdη(θ)

)

E1 = 2τ0

(
AAϕ
11

AAϕ
21

)

which implies

(
2iω0 − AAϕ −BAϕ

−CAϕe−2iτ0ω0 2iω0 − DAϕe−2iτ0ω0

)

(
E (1)
1Aϕ

E (2)
1Aϕ

)

= 2

(
AAϕ
11

AAϕ
21

)

and finally

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E (1)
1Aϕ = 2BAϕ A

Aϕ
21 + 2AAϕ

11 (2iω0 − DAϕe−2iτ0ω0)

(AAϕDAϕ − BAϕCAϕ)e−2iτ0ω0 − 2iω0DAϕe−2iτ0ω0 − 2iω0AAϕ − 4ω2
0

,

E (2)
1Aϕ = 2AAϕ

11 CAϕe−2iτ0ω0 + 2AAϕ
21 (2iω0 − AAϕ)

(AAϕDAϕ − BAϕCAϕ)e−2iτ0ω0 − 2iω0DAϕe−2iτ0ω0 − 2iω0AAϕ − 4ω2
0

.

(52)

Similarly, using the second equation of (48), (46)
and (50) gives:

(∫ 0

−1
e−iτ0ω0dη(θ)

)

E2Aϕ = τ0

(
BAϕ
11

B
Aϕ

21

)

⇒
(
AAϕ BAϕ

CAϕ DAϕ

)(
E (1)
2Aϕ

E (2)
2Aϕ

)

= −
(
BAϕ
11

BAϕ
21

)

,
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and finally
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E (1)
2Aϕ = BAϕB

Aϕ
21 − DAϕB

Aϕ
11

AAϕDAϕ − BAϕCAϕ

,

E (2)
2Aϕ = CAϕB

Aϕ
11 − AAϕB

Aϕ
21

AAϕDAϕ − BAϕCAϕ

.

(53)

Finally, from (48), (50) and (52) we can now cal-
culate values which are useful for the determination of
the period of the bifurcating solution and its stability.
We have the following values:

C1(0) = i

2τ0ω0

(

g20g11 − 2|g11|2 − 1

3
|g02|2

)

+ 1

2
g21,

μ2 = − ReC1(0)

Re( dλdτ (τ0))
,

β2 = 2ReC1(0),

T2 = − Im(C1(0)) + μ2 Im( dλdτ (τ0))

τ0ω0
.

This ends the proof.
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