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Abstract

We study theoretically and numerically the modulation instability of plane waves in the

complex cubic-quintic at (3+1)-dimension Ginzburg-Landau equation, and we present the evo-

lution of various dissipative optical light bullet characterized by different topological charges

in the complex cubic-quintic-septic at (3+1)-dimension Ginzburg-Landau equation, which de-

scribes the dynamics of light bullet in nonlinear metamaterials.

We introduce a new equation (cubic-quintic-septic (3+1)-dimensional complex Ginzburg-

Landau equation) for the propagation of impulses in materials with negative refractive index,

considering the theory of electromagnetic waves from the equations by Maxwell. This new

nonlinear model is derived beyond the slowly varying field envelope approximation, which is

affected by emerging physical mechanisms. These are linear loss, diffusion, higher-order disper-

sion effects, cubic, quintic and septic nonlinearities, as well as cubic, quintic and septic self-

steepening effects. When studying the modulation instability with the complex cubic-quintic

(3+1)-dimensional Ginzburg-Landau equation, the analytical results are confronted with the

numerical results and are fully in agreement with the predictions of the gain spectra.

The analysis of the modulation instability of the system was carried out analytically, using

the linear stability analysis which allows us to plot curves giving the instability gain, and nu-

merically, using direct simulations of the Fourier space of the proposed nonlinear wave equation,

based on Drude’s model. Choosing a specific set of parameters allows us to generate a stable

propagation of dissipative light bullets.

Keywords: Metamaterials, Complex Ginzburg-Landau equation, Linear stability, Split-

Step Fourier Method, Solitons.
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Résumé

Nous étudions théoriquement et numériquement l’instabilité de modulation des ondes

planes dans les équations de Ginburg-Landau complexe Cubique-quintique à (3+1)-dimention,

et nous presentons l’évolution de diverses balles de lumineuses optiques dissipative caracterisées

par différentes charges topologiques dans l’équation de Ginzburg-Landau complexe cubique-

quintique-septique à (3+1)-dimension, qui décrit la dynamique des balles lumineuses dans les

métamatériaux non linéaires.

Nous introduisons une nouvelle équation(équation de Ginzburg-Landau complexe cubique-

quintique-septique (3+1)-dimension) pour la propagation des impulsions dans les matériaux à

indice de réfraction négatif, en considérant la théorie des ondes électromagnétiques à partir des

équations de Maxwell. Ce nouveau modèle non linéaire est dérivée au-delà de l’approximation

de l’enveloppe de champ lentement variable, qui est affecté par des mécanismes physique qui

apparaissent. Il s’agit des effets de perte linéaire, de diffusion, de dispersion d’ordre superieure,

des nonlinéairités cubique, quintique et septique, ainsi que les effets de auto-raidissement cu-

bique, quintique et septique. Lors de l’étude de l’instabilité de modulation avec équation de

Ginzburg-Landau complexe cubique-quintique (3+1)-dimension , les résultats analytiques sont

confrontés aux résultats numériques et sont entièrement en accord avec les prédictions des

spectres de gains.

L’analyse de l’instabilité de modulation du système a été realisé analytiquement, en util-

isant l’analyse de la stabilité linéaire qui nous permet de tracer des courbes donnant le gain

d’instabilité, et numériquement, en utilisant des simulations directes de l’espace dans Fourier de

l’équation d’onde non linéaire proposée, basée sur le modèle de Drude. Le choix d’un ensemble

spécifique de paramètres nous permet de générer une propagation stable de balles lumineuses

dissipatives .
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Mots clés: Métamatériaux, équation de Ginzburg-Landau complexe, stabilité linéaire,

Méthode de Fourier à pas divisé, Solitons.
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Acronym Meaning

PMD: Polarization Mode-Dispersion

CW: Continuous Wave
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DS: Dissipative Soliton

PDE: Partial Differential Equation

FODEs: First-Order Differential Equations

ODEs: Ordinary Differential Equations

SVS: Stabilized Vector Solitons
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General Introduction

The search for materials with extraordinary properties has always been one of the obsessions

of the man. The science of metamaterials, which appeared at the end of the 20th century,

marks a turning point important concept. Indeed, until now, the properties of materials were

always governed by the atomic properties of the constituent elements. The innovative principle

of metamaterials is to fashion artificial resonators whose properties of electromagnetic fields

dominate the response of the atoms and make it possible to generate a radically different

optical behavior [1].

New electromagnetic properties could be realized by creating a composite artificial structure

consisting of well-arranged functional inclusions of dimensions sub-wavelength. Generally, the

size of the unit cells of these artificial structures is much smaller than the wavelength of inter-

est and the electromagnetic response of such structures are expressed in terms of homogenized

and effective material parameters [1]. These artificial structures, created by man, are called

metamaterials. Although there is no universal definition of the term "metamaterial", we prefer

the following definition proposed by W. Cai and V. Shalaev [2]: "A metamaterial is an artifi-

cially structured material which acquires its properties from of the structural unit rather than

the constituent materials. A metamaterial has a scale of inhomogeneity that is much smaller

than the wavelength of interest, and its electromagnetic response is expressed in terms of the

parameters of homogenized materials". One of the most fascinating example of such structures

is the so-called negative-index metamaterials (NIM).

Indeed, metamaterials, also called "left-hand materials", are a structuring artificial peri-

odic metallo-dielectric on a sub-wavelength scale, which exhibits electromagnetic properties

not accessible in nature, namely permittivity and permeability, both negative. The first theory

concerning their electromagnetic properties was introduced by the Russian researcher Veselago,
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in 1964 [3]. This subject has known a long hibernation until 2000, when a first practical re-

alization was proposed by the American researcher D. Smith [4]. Since then, metamaterials

have not ceased to arouse the interest of researchers, because they make it possible to envisage

new applications and optimizations in the field of microwaves, in particular at the level of the

miniaturization of circuits and the introduction of new properties (dual band filter, phase ad-

vance line). The application possibilities of metamaterials are found in industrial sectors such as

information and communication technologies, space, security, and defense, but also applications

in health, energy, and environmental areas are foreseen. Examples of devices that have been

made in recent years are sensors, superlenses, masking and light emitting diodes or cavities for

low threshold lasers, and these were based on controlling wave propagation and used dynamic,

reconfigurable, and tunable materials. Another potential application that has aroused great

interest from researchers is the invisibility cloak or "Cloaking" [5]. This structure aims to make

an object invisible by surrounding it with a network of metamaterials that will divert light (or

electromagnetic waves in general) and allow the reconstruction of wave fronts downstream of

this object. This approach is of great interest, particularly in the field of defense for stealth

applications.

A great deal of research has been exclusively focused on the linear MMs both theoretically

and experimentally [6,7]. In the linear region, it has been assumed that the electric permittivity

and magnetic permeability does not depend on the intensity of incident radiation. Recently, the

nonlinear effects in MMs become interesting field of research, particularly among the theoretical

physicists. As the linear responses of MMs show various unusual properties which are not found

in naturally occurring materials, in the same way, the study of nonlinear MMs may have a path

breaking impact in the context of nonlinear optics. Kivshar and his colleagues were the first to

explore theoretically the nonlinear properties of metamaterial [8].

Many authors have investigated and proposed nonlinear pulse propagation models in MMs

in various contexts. The first significant attempt in deriving a proper model equation to describe

nonlinear pulse propagation was made by Scalora et al. [9]. They derived a new generalized

one-dimensional (1D) nonlinear Schrödinger (NLS) equation without taking nonlinear magneti-

zation into account. This model equation describe the propagation of ultrashort pulses in bulk

negative index media, exhibiting frequency-dependent dielectric susceptibility and magnetic
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permeability. Following a similar approach, but eliminating the magnetic field at the very start,

Wen et al.[10] have derived a (3+1)-D evolution equation for MMs. The self-modulation of

waves propagating in nonlinear magnetic metamaterials is governed by the 1D NLS equation

[11]. This self-modulation of the carrier wave leads to a spontaneous energy localization via

the generation of localized envelope structures (envelope solitons). The NLS equation has exact

soliton solutions that correspond to a balance between nonlinearity and dispersion in the case

of temporal solitons or between nonlinearity and diffraction in the case of spatial solitons.

In real media, the dissipation is inevitable. A wide class of dissipative systems, ranging

from nonlinear optics, plasma physics, and fluid dynamics to superfluidity, superconductivity,

Bose-Einstein condensates, liquid crystals, and strings in field theory can be modeled by the

cubic complex Ginzburg-Landau (CGL) equation [12]. Such a cubic CGL equation describes

a very promising class of self-organized localized electromagnetic (EM) structures, dissipative

spatiotemporal solitons [13]. Aprerequisite for generation of these solitons is a simultaneous

balance of not only diffraction and dispersion with saturating nonlinearity, but also loss with

gain [14]. A generalized CGL equation modeling dissipative spatiotemporal solitons in NIMs

has been derived [15] and established that solitons behave as dissipationless due to the cross-

compensation of the saturating nonlinearity excess, losses, and gain. A medium in the presence

of such dissipationless solitons may be considered as a novel effectively lossless active composite

metamaterial. The compensation of the dissipation is of particular interest for materials with

resonant character of interactions like NIMs.

Evolution of optical vortex beams characterized by different topological charges (TCs) has

been presented numerically based on the cubic-quintic CGL equation [16]. New families of spa-

tiotemporal dissipative optical bullets, including self-trapped, necklace-ring, ring-vortex soli-

tons, uniform-ring beams, spherical and rhombic distributions of light bullets, fundamental and

cluster solitons have been numerically reported based on[17], the higher-order (3 + 1)-D cubic-

quintic-septic complex Ginzburg-Landau equation with higher-order effects such as stimulated

Raman scattering, self-steepening and third-, fourth-, fifth- and sixth-order dispersion terms.

It is well-known that a continuous-wave (CW) or quasi-CW radiation propagating in a

nonlinear dispersive medium may suffer an instability with respect to weak periodic modulations

of the steady state and results in the breakup of the wave into a train of ultrashort pulses [18].
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Modulational instability (MI), occuring as a result of an interplay between nonlinearity and

dispersion (or diffraction, in the spatial domain), is a fundamental and ubiquitous process that

appears in most nonlinear wave systems in nature such as fluid dynamics [19, 20], nonlinear

optics [21, 22], and plasma physics [23], just to name a few. In the context of fiber optics,

the temporal MI has been experimentally verified for a single pump wave propagating in a

standard non birefringence fiber, which can be modeled by the NLS equation, and it was found

that the MI only occurs in anomalous group-velocity dispersion (GVD) regime with a positive

cubic nonlinear term [24]. Recently, Hong [25] has investigated the MI of optical waves in

a high dispersive cubic-quintic higher-order NLS equation. In the more complicated optical

systems with gain and loss terms, described by the cubic-quintic CGL equation , the MI of

CWs of the cubic-quintic CGL equation has been investigated. It has been found that the low-

amplitude CW solutions are always unstable, which are regions where they are modulationally

unstable, on one hand, while for higher-amplitude,CW solutions are always stable, leading to

modulationnally stable regime [26].

To enlarge the information capacity, it is necessary to transmit ultrashort optical solitons

at high bit rate in the picosecond and femtosecond regimes, and several new effects greatly

influence their propagation properties. For example, in the picosecond regimes, the pulse prop-

agation in nonlinear optical communication systems are usually of Kerr type, and the dynamics

of light pulses, whose description is based on the slowly varying envelope approximation (SVEA)

or quasimonochromatic approximation leads to the NLS or CGL equation with cubic nonlinear

terms. The validity of the NLS and CGL equations as reliable models is dependent on the as-

sumption that the spatial width of the soliton is much larger than the carrier wavelength, which

is equivalent to the condition that the width of the soliton frequency spectrum is much less

than the carrier frequency. In other words, the NLS and CGL equations describe the evolution

of an envelope function which is assumed to vary slowly over an optical cycle.

It has been shown that the SVEA breaks down for these ultrashort optical pulses or even

for initial pulses that are many optical cycles long [27, 28]. Indeed, Rothenberg [27] has shown

that the 3D NLS equation derived in the SVEA is not adequate for describing the self-focusing of

femtosecond pulses in dispersive media and that the breakdown of this approximation occurs for

pulses much longer than an optical cycle. Furthermore, Oughstun and Xiao [28] have considered
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an input pulse envelope propagating in the positive z direction through a linear dielectric, whose

frequency dispersion is described by the double resonance Lorentz model with complex index

of refraction. The dynamical field evolution shows that at three, five, and seven absorption

depths into the dispersive medium, the SVEA remains accurate in its description of the main

body of the pulse that is oscillating at (or very near to) the input carrier frequency. However,

at 10 absorption depths into the dispersive medium, the accuracy of the SVEA is seen to have

completely broken down.

The main objective:

The objective of the present thesis is that, motivated by few-cycle regimes and MI, we focus

on the issue of how MI, which is closely related to the existence of optical solitons, may play

a key role in the generation of few-cycle pulses and their propagation through MMs. To better

understand our objective, we must obtain a qualitative understanding of the physical processes

involved in the formation of the spatiotemporal patterns of the propagation of electromagnetic

waves in MMs.

Specifics objectives:

In our contribution, we start with the Maxwell’s equations describing the response of the

nonlinear medium to an electromagnetic wave. Then, we report on the derivation of the (3+1)D

cubic-quintic-septique CGL equation, beyond the SVEA, which is further used to discuss the-

oretically and numerically MI of few-cycle pulses on this equation. We examine plane wave

stability by means of both a rigorous analysis of linearized equations for small perturbations

and using direct numerical simulations to support our analytical predictions, and we present

the evolution of various dissipative optical bullets in MMs characterized by different topolog-

ical charges namely, the fundamental vortex, necklace and azimuthon that can exhibit stable

propagation for very large distances.

The rest of the work is organized as follows.

Chapter 1 is devoted to the literature review on the generalities related metamaterials

theory. The following concepts will therefore be addressed: history of metamaterials, type of

metamaterials, metamaterials in optical communication systems, dissipative soliton in meta-

materials.

The chapter 2 is devoted to the models describing the dynamics in nonlinear metamaterials.
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Here, we also present some analytical and numerical methods used for our different studies.

Chapter 3 presents the main results of this thesis. These results concern the modultion-

nel instability in the dissipative systems:nonlinear MMs, model by the (3+1)D cubic-quintic

complex Ginzburg-Landau equation, and the evolution of various dissipative optical bullets in

MMs, model by the (3+1)D cubic-quintic-septic complex Ginzburg-Landau equation.

The present thesis ends with a general conclusion. We summarize our results and give some

future directions that could be investigated.
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Chapter I

Literature review on metamaterials

1.1 Introduction

What are metamaterials? Semantically, the prefix "meta" means "beyond" in Greek; the

term metamaterial, therefore, designates a class of material whose properties go in some way

beyond those of classical materials. More specifically, this means media whose internal structure

interacts with an incident wave (acoustic or electromagnetic), so as to create the so-called "ef-

fective" macroscopic properties that are unusual, even unobserved in natural materials. In the

case of electromagnetic metamaterial, which is our system in the context of our thesis work, the

fundamental electromagnetic parameters describing the wave-matter interaction are the elec-

trical permittivity and the magnetic permeability. Metamaterials make it possible, for example,

to achieve, depending on the proposed structures and the target frequency ranges, "extreme"

values of permittivity, either unusually large or, on the contrary, close to zero. Similarly, some

structures make it possible to obtain non-trivial values of the effective permeability in the fre-

quency ranges, where it is naturally equals to unity, giving rise to an artificial magnetism. A

localized structure in such a system, i.e. a "dissipative soliton", well deserves to be an estab-

lished scientific keyword. The use of soliton in optical communication systems improves the use

of metamaterial action, as they carry a large amount of information, such as: footprint, power

consumption and cost. Optical systems inevitably have chromatic dispersion/diffraction, losses

(signal attenuation) and nonlinearity. In order for the soliton pulses to propagate through this

optical system without signal loss or without changing their spectrum and spatial shape, the

dispersion/diffraction and the nonlinearity must compensate each other.

For a better understanding of the rest of our work, this chapter will highlight information

on the history of metamaterials, the different types of metamaterials, some electromagnetic
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properties of metamaterials, dissipative solitons.

1.2 A brief history of metamaterials

Even before the appearance of the term metamaterials, men sought to go beyond the properties

of conventional materials. As evidenced by the creation of the cup of Lycurgus in the 4th century,

whose glass has inclusions of gold and silver nanoparticles, which cause a change in color of the

cup, depending on whether it is observed in transmitted light or thoughtful. We retrace here,

in broad outline, the history of the birth and development of the field of metamaterials.

1.2.1 The works of Veselago

A first step towards metamaterials in the contemporary sense of the term is made by Viktor

Veselago in 1967 [3], with the publication of a theoretical study on the propagation of an elec-

tromagnetic wave in a material medium according to the values taken by the relative dielectric

permittivity and magnetic permeability of the medium. Veselago notices that the tried formed

by the wave vector, the electric field and the magnetic field is indirect, while in the classical

case this same triedfghjklmùd is known to be direct. Furthermore, Veselago observes that, at

the same time, the tried formed by the Poynting vector, the electric field and the magnetic field

remains direct, which means that for these media, the wave vector and the vector of Poynting

point in opposite directions-an unprecedented situation a priori. Taking into accouunt the ori-

entation of the wave vector, giving the direction of propagation of the phase and the orientation

of the Poynting vector, that of the propagation of energy, Veselago concludes that in this type

of material, the phase and the energy propagate in opposite directions. From Snell’s laws of

refraction and relations of passages between two media, he also shows that the index of such

a medium is negative, in the sense that, during the passage from a medium with a positive

index to negative (or vice-versa), any ray is refracted on the same side of the normal to the

plane of incidence (let’s recall that in a classic dioptre, the ray "crosses" the normal to the

refraction). However, as Veselago points out in the final part of his theoretical publication, the

absence of materials with negative permeability made the experimental demonstration of his

results impossible at that time and the subject remained a dead letter for many years.
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1.2.2 Experimental confirmation

For the subject to really take off, it was necessary to wait until the end of the 1990s, with J.

Pendry and his team carrying out work on networks of wires metallic [29, 30] and on resonators

in the form of split rings (split-ring resonators or SRR) [31]. These two types of media are made

up of resonators whose characteristic sizes are much smaller than the incident wavelength, and

allow respectively to obtain permittivity and negative permeability, in the microwave range.

From then on, all the tools are gathered for the experimental verification of Veselago’s work,

and it was the group of D. Smith who manufactured in 2001 the first material with simultaneous

permeability and negative permittivity in the microwave range[32]. These researchers showed

that for a material of which only one of the parameters is negative, the waves cannot propagate

(as expected), but that the propagation is well restored in a medium where the two parameters

are negative (as predicted by Veselago)[4]. In a second publication[32], they then confirmed,

thanks to an assembly involving a metamaterial cut in the shape of a prism, that there is indeed

a negative refractive index with this type of material.

1.2.3 Possibility of perfect imaging

The existence, then proven, of materials with a negative index was certainly sensational, but

without potential applications. One can suppose that the subject would undoubtedly have been

condemned to oblivion progressive without the publication of J. Pendry entitled "negative re-

fraction make a perfect Lens" published in 2000 [33]. Pendry took Veselago’s work a little

further, this time examining the transmission and reflection of a plate with a parallel face of

index n = −1. He showed that this type of structure not only focuses the far field (like a con-

ventional Lens), but also the evanescent part field (see Figure 1.2). A Lens of this kind, which

Pendry calls "super-Lens", therefore offers possibilities of perfect imaging, potentially making

it possible to cross the diffraction limit of usual Lenses. Note, however, that the diffraction limit

was no longer an insurmountable limit since near-field imaging techniques (SNOM) already ex-

isted. However, Pendry’s discovery allowed to imagine making an image, almost instantaneously

and in its entirety, of a sample, without needing to scan it point by point (a process that can

take some time) like we did it with a SNOM. As a result, this brilliant idea, which caused a
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Figure 1.1: The first negative-index (two-dimensional) metamaterial in the microwave range.

It consists of SRRs and copper wires deposited on a fiber glass substrate. The unit cell has a

size of 5mm and the metamaterial is designed to operate in a range of wavelengths around 3cm

[32] .

stir and sparked heated debate, really acts as a starting point for the metamaterials branch.

From the discovery of Pendry, many research teams were interested in the physics of com-

plex electromagnetic media and its applications for imaging and telecommunications. The field

of metamaterials then widened greatly, new applications appeared (the most spectacular being

certainly “invisibility”) and experimental verifications were carried out in each part of the elec-

tromagnetic spectrum. In the following section, we rewiev the different types of metamaterials.
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Figure 1.2: Diagram taken from [34], illustrating the principle of a super-Lens. The far field

(A) as well as that of the evanescent field (B) coming from the object are focused at the same

image point, thus giving, in the principle, an image of ideal resolution.

1.3 Different types of metamaterials

1.3.1 Metamaterials with negative electric permittivity

At the time of Veselago, we already knew about materials with negative permittivity in a given

frequency range such as gaseous plasmas and metals. To obtain a negative permittivity in the

microwave range, one can use “wire medium” as proposed by Brown in 1953 [35] and Rotman

[36]. This idea was then taken up by Pendry at the end of the 90s and then used for the

manufacture of the first metamaterial. It is now known how to manufacture structures giving a

negative permittivity for almost the entire electromagnetic spectrum, from such wire media or

from plasmonic structures. The metal thin-wire structure exhibits negative permittivity under

certain conditions (Figure 1.3).

Indeed, when the excitation of the electric field E is parallel to the axis of the wires (E||z),

this induces a current along these wires and generates equivalent electric dipole moments. The

permittivity is given as a function of the plasma frequency ωpe and the excitation frequency ω:

ε(ω) = 1−
ω2
pe

ω2
, (1.1)

According to relation 1.1, the plasma permittivity is negative for frequencies below the plasma

frequency. Therefore, to have a negative permittivity, the electric field must be parallel to the

z axis and the frequency of the plasma must be higher than the frequency of the excitation

source.
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Figure 1.3: Fine wire structure presenting ε negative/µ positive, when E//z [30].

1.3.2 Metamaterials with negative magnetic permeability

Veselago had already pointed out in his publication the fact that no material has naturally

negative permeability at high frequency. Hardy and Whitehead [37] proposed in 1981 metal

structures in the form of a split ring operating in the microwave and whose induced currents

give rise to a strong magnetic response. Pendry took over and improved these structures, to

show in 1999 that they could give rise to negative permeability in the microwave range [30].

With the emergence of metamaterials and means miniaturization by lithography, several groups

extended these “split ring resonator” (SRR) structures to make them work in the near infrared

[38-40]. The SRR exhibits negative permeability under certain conditions (Figure 1.4).

When a magnetic excitation field H is parallel to the plane of the rings (H //y), it generates

a magnetic dipole moment. The permeability is given by:

µ(ω) = 1− Fω2

ω2 − ω2

0m + jωζ
, (1.2)

where F = π(a
p
)2, with a is the radius of the small ring), ω0m is the magnetic resonance frequency

tuned to the GHz range, ζ is the attenuation factor due to metal losses.

This structure is anisotropic. In order to solve the anisotropy problem of the SRR, a Swiss

team [41] introduced a two-dimensional pattern called Crossed SRR "CSRR" (Crossed Split

Ring Resonator) (Figure 1.5) consisting of two SRRs of the same dimension. This pattern
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Figure 1.4: SRR structure presenting ε positive/µ negative when H//z [31].

increases hence the isotropy in two directions of space.

Figure 1.5: Two-dimensional SRR pattern proposed by Balmaz and Martin [41].

The same authors also speak of three-dimensional isotropy, see (Figure 1.6), where three

SRRs are placed perpendicular to each other. In the first case Figure 1.6 (a), where the dimen-

sions of the three SRRs are identical, they unfortunately show that this type of pattern does not

constitute, in any case, a three-dimensional isotropic pattern. On the other hand, it is possible

to obtain a 3-D isotropic structure with three SRRs of different dimensions Fig 1.6(b)[42]
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Figure 1.6: Three-dimensional pattern proposed by Balmaz and Martin [41]. (a): Structure

composed of three identical SRRs perpendicular to each other. (b): Structure composed of

three SRRs of different dimensions perpendicular to each other.

Figure 1.7 shows the equivalent circuit of a split ring resonator. In the double ring configu-

ration, the capacitive and inductive couplings between the large and the small ring are modeled

by a coupling capacitance Cm. In Figure 1.7(b), the ring is equivalent to a resonator RLC cir-

cuit, with a resonant frequency ω0 = 1√
LC

. The double SRR is equivalent to the single SRR if

the mutual coupling is weak [43] .

1.3.3 Metamaterials with negative electic permittivity and negative

magnetic permeability

In general, the electromagnetic response of any material to a wave incident electromagnetic

radiation is determined by its two intrinsic parameters εr and µr. So, depending on the signs of

εr and µr, four combinations are possible. Figure 1.8 represents the different types of materials

according to these combinations.

The case where εr > 0 and µr > 0 (right hand) represents the case of materials classic, like

dielectrics. The case where εr < 0 and µr < 0 (left hand) represents the case metamaterials.

Returning to the case that interests us (dial 4), as noted before, the metamaterials also called

left-hand materials or double-negative materials do not exist in nature.
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Figure 1.7: SRR equivalent circuit model. (a): Configuration of a dual SRR. (b): Simple con-

figuration of an SRR [43].

The original idea to obtain negative index metamaterials was to superimpose, at the same

frequency, the effect of negative permittivity and negative permeability. This type of metama-

terial forms our system in our thesis work. In [4], Smith et al. combined Pendry’s thin wires

and "SRRs" structure into a compound structure seen in Figure 1.9 (a), which represented the

first experimental prototype of the left-hand metamaterial.

The structure seen in Figure 1.9(a) is a one-dimensional left-handed material, since only

one direction is allowed for the doublet (E,H) to have negative permittivity and permeability.

The structure seen in Figure 1.9(b) is a bidirectional left-handed material because, although E

must be directed along the z-axis of the wires, two directions are possible for H.

In the following section, we recall the basics of electromagnetism to better understand this

thesis. We begin by recalling Maxwell’s equations and their consequences for the propagation

of electromagnetic waves in doubly negative metamaterials.
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Figure 1.8: Propagation of a plane wave through a medium according to the sign of these

constitutive parameters (permittivity and permeability)[44].

1.4 Electromagnetic properties of metamaterials and Maxwell’s

equations

The description of the electromagnetic properties of a material by the macroscopic quantities

εr and µr supposes that this material is homogeneous, which is a priori contradictory with a

composite structure. However, the notion of homogeneity depends on the scale of measurement

with a simple criterion: a (meta)material will be considered homogeneous for the propagation

of a wave if the size of its resonators and the distances which separate them are very small

compared to the wavelength in the material (which can be significantly different from its value

in vacuum).

1.4.1 Maxwell’s equations

Maxwell’s equations summarize several important findings in electromagnetism. They describe,

in a mathematical way, how are bound and how interact electric charges, electrical currents,
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Figure 1.9: First left-hand experimental structure, consisting of thin wires (TWs) and SRRs

introduced by the team from the University of California, San Diego. (a): One-dimensional

left-hand structure [4]. (b): Two-dimensional left hand structure[4].

electric fields and magnetic fields. For simply statement, they describe the electric, magnetic

and luminous phenomena quantitatively. These equations are very significant in physics.

Maxwell-Gauss equation: This equation can be expressed as follows and shows that the

divergence of the electric field E is proportional to the electric charge distribution ρ:

∇.E =
ρ

ε0
. (1.3)

A particle or an electrically charged body, constitutes a concentration of electric charges of the

same sign. This means that the electrical field is diverging since the source of electric charges

is proportional to the distribution of these charges.

Maxwell- Flux equation: The divergence of the magnetic field B is nought and is given

as follows:

∇.B = 0. (1.4)

There is no divergence of the magnetic field, so the magnetic field lines do not point towards in-

finity. This law reflects the simple fact that there is no magnetic monopole. A magnet monopole

does not exist as there are electric monopoles such as electron and proton. If we break a magnet,
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we get several magnets with north and south pole. Mathematically, the law can also be read as

the lines of outgoing magnetic field of one of the poles of a magnet which return in the other

pole. This formulation explains better the fact that the sum of all lines of fields is equal to

nought. What leaves one side returns to the other and final one does not lose nor creates thing.

Maxwell-Faraday equation: The curl of electric field E is proportional to the variation

of the magnetic field B over time:

∇× E = −∂B
∂t
. (1.5)

If we take a varying magnetic field in a conductor, then, there appears a rotating electric field

around the magnet. In the Maxwell-Faraday equation, the curl of electric field is proportional to

the variation of magnetic field. Indeed, it is the variation of the magnetic field that generates an

electric field and not the magnetic field alone. If we place a magnet in a coil, nothing happens.

On the other hand, if you move the magnet, an electric field is created around, which itself will

generate an electric current in the wire.

Maxwell-Ampere equation: The curl of magnetic field B is the sum of his time depen-

dence variation of electric field E and electric current J:

∇×B = µJ + µε
∂E
∂t
. (1.6)

This equation shows that the magnetic field is produced by the variation of electric field

during the time. The term µJ shows also that the magnetic field as well depends on electric

current in the case of conductor. There are no free charges, and no free currents flow, in the

framework.

These relations allow us to have the wave equation and the refractive index n2 = µε, with

the parameters µ and ε, which are usually complex. This expression is well defined when the two

real parts of µ and ε are positive, or when one of the two is negative (as is the case for classical

materials). But when both parties are negative simultaneously, we must carefully consider the

definition of the square root complex, and in particular, to make an adequate choice of the

branch cut of the root function in the complex plane.

Today, the artificial structures exhibiting electromagnetic responses at light frequencies,

known as optical metamaterials, are considered to be one of the most fascinating and fruitful
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area of MMs research. It is well understood in elementary physics that if either the permittivity

ε or the permeability µ is negative, while the other one is positive, then the refractive index

is purely imaginary resulting in no propagating waves. If we assume that materials with both

ε < 0 and µ < 0 exists, then one can show that propagating waves are possible and one must

write n = −√εµ due to causality condition. It may be explained as follows. Let us consider a

passive medium with ε = −ε1 + iε2 and µ = −µ1 + iµ2, where ε2 � ε1 and µ2 � µ1 . Then, we

have n = ±√εµ = ±
√

(−ε1 + iε2)(−µ1 + iµ2) ≈ ±√ε1µ1[1− i ε1µ2+ε2µ1
2ε1µ1

].

Causality requires that the imaginary part of the refractive index must be positive for any

passive medium, and hence, we must choose the negative sign, when the real parts of both ε

and µ are negative. One can immediately see some of the consequences of negative refractive

index and of the fact that ε, µ < 0.

Let us consider a plane electromagnetic wave propagating through a medium, where the

electric field is written as:
−→
E =

−→
E0e

i(
−→
k .−→r −ωt), where

−→
E0,
−→
k and ω are electric field amplitude,

wave vector and angular frequency of the wave respectively. Maxwell’s curl equations ∇ ×

E = −∂B
∂t
, ∇ × H = ∂D

∂t
take the following form in an isotropic medium: k × E = ωµ(ω)H,

k×H = −ωε(ω)E. For a common material, ε(ω), µ(ω) > 0 and so, the vectors E, H and k form

a right-handed coordinate system. Also, the wave vector k is parallel to the Poynting vector

s = E ×H. On the other hand, for a negative index material, for which ε(ω), µ(ω) < 0, the

vectors E, H and k form a left-handed coordinate system.

This is the reason why NIMs are known as left-handed materials also. It is interesting to

note that in NIM, the wave vector is directed opposite to the Poynting vector. This physically

means that in MM, the energy propagates opposite to the wave vector direction and the phase

is advanced in the propagation direction.

We will thus give some consequences of a doubly negative medium.

1.4.2 Inversion of the Snell-Descartes law

The refraction of light at the interface of a positive medium and a negative medium has been

discussed by Veselago. Consider the plane incident electromagnetic wave, on a positive medium,

with a wave vector . It is clear that the field continuity and Maxwell’s equations require the

transmitted wave vector to be, based on the choice of wave vector. Noting that the Poynting
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Figure 1.10: Orientation of E, H, k and s (a): Right handed medium (RHM). (b): Left handed

medium (LHM).

vector is oriented exactly with respect to the phase vector, in a negative refractive index mate-

rial. We realize that the ray representing the energy corresponding to the refracted wave should

now be on the other side of normal. This negative angle can also be intuitively implied in the

Snell-Descartes law:

n1sinθ1 = n2sinθ2, (1.7)

where n2 < 0 which implies θ1 < 0.

The modification of the Snell-Descartes law is the opposite of a fundamental concept in the

optical system of isotropic media, depending on how dense the medium is, the wave can bend

near the normal, but not never cross. In this case, the refracted beam emerges on the other side

of the normal. However, the angle of the reflected beam remains unchanged. A consequence of

this gives us for a convex object to make a plane wave diverge, while the concave object makes

the plane wave converge.
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Figure 1.11: Ray diagram of Snell’s law (a): conventional material. (b): negative index meta-

material.

Apart from the above two phenomena, many interesting phenomena such as reversal of the

Doppler effect [45, 46], reversal of Cerenkov radiation [47], reversal of Goos-Hanchen shift

[48], etc have been realized in negative index metamaterials

1.4.3 The reverse Doppler effect

The Doppler effect is a well-known phenomenon. It describes the frequency shift a wave experi-

ences whether it is emitted from a moving source or reflected away from a moving boundary. It

has well-established applications in astrophotonic, biological diagnostic, weather and air craft

radar systems, velocimetry and vibrometry. Consider a source emitting radiation at a frequency

ω, in a material with a negative refractive index, having a speed v, with respect to the medium.

The frequency measured in the material reinforcement is:

ω
′
= γ(ω + kv). (1.8)

Here γ = (1 − v2

c2
)
−1
2 is the relativistic factor. note that k = nω

c
, for emission along the

direction of source motion in the left material. The frequency measured by a detector would

be smaller when the source moves towards it. This is the opposite of an increase in frequency,

which we will get in a normal setting. The wave vector being opposite, this is what is responsible
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for the reversed Doppler effect. The counter intuitive inverse Doppler effect was theoretically

predicted in 1968 by Veselago in a new type of novel artificially structured materials called neg-

ative refractive index metamaterials (NIM) or simply known as metamaterials (MM) making

nonlinear optics research a very useful and exciting activity [1]. However, because of the fre-

mendous challenges of frequency shift measurements inside such materials, most investigations

of the inverse Doppler effect have been limited to theorecal predictions and numerical simula-

tions. Study of solitary waves in such novel nonlinear optical systems is extremely challenging

and fruitful.

1.5 Dissipative soliton in physical systems and some deriva-

tive equations beyond the slowy varying envelope ap-

proximations

1.5.1 Dissipative solitons

The term ’soliton’ was introduced in 1965 [49], but the scientific research of solitons had started

way back in 1834 when John Scott Russell observed a large solitary wave propagating at a

constant speed without changing its shape over a long distance in a canal near Edinburgh, (see

fig.1.12) [50]. In the days of Scott Russell, there was much debate from the leading scientific

scholars of the day regarding the very existence of this kind of solitary waves. In 1845, Airy’s

nonlinear shallow-water wave theory predicted that a wave with elevation of finite amplitude

cannot propagate without change of its form i.e. solitary waves could not exist [51]. Later

on in 1849, Stokes showed that it is possible to have solitary waves with finite amplitude

and permanent shape in deep water and they are periodic wave trains [52]. Then, it was

followed by water tank experiments by H. Brazin [53] and the theoretical developments by

Joseph Boussinesq in 1871 and Lord Rayleigh in 1876 independently[54, 55]. In 1895, Korteweg

and de Vries derived a mathematical model equation, popularly known as the KdV equation,

which describes the unidirectional propagation of shallow water waves [56]. The KdV equation

successfully explained the 1834 observations of John Scott Russell. Though the existence of

solitary waves were proved beyond doubt, not much progress have been made until the 1960s,
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when N. Zabusky and M. Kruskal numerically re-investigated the KdV equation and discovered

the elastic collision between KdV solitary waves [49]. It is worth noting that Zabusky and

Kruskal were motivated to study the KdV equation numerically by the so-called Fermi, Pasta

and Ulam (FPU) problem [57]. In 1967, Gardner et al. [58] obtained the analytical solution

of the KdV equation for the localized solitary waves by using the idea of Inverse Scattering

method, and their results agreed well with the experimental results obtained by John Scott

Russell . This pioneering work triggered unprecedented burst of research activities on nonlinear

waves and which is continuing till today. One year later, Lax generalized their results [59]

and in 1972, Zakharov and Shabat exactly solved the nonlinear evolution equation known as

nonlinear Schrödinger equation (NLS) for weakly nonlinear deep water waves by the same

method and they termed the solutions as envelope soliton [60]. In the context of nonlinear

optics, Hasegawa and Tappert in 1973 showed theoretically the existence of optical solitons

inside an optical fiber [61], where the propagation of light is modeled by the NLS equation and

it was experimentally observed by Mollenauer et al. in 1980 [62]. Since then, optical solitons

have found practical applications in long distance communicational systems, producing short

pulse lasers, pulse compression technique, electronic devices like optical switching and optical

logic gates, etc [63].

In the context of nonlinear optics, solitons are classified as being either temporal, spatial,

or spatiotemporal depending on whether the confinement of light occurs in time or space

during wave propagation [64]. It is worthy to mention that the space-time coupling occurring

when a pulsed optical beam propagates through a nonlinear medium leads to unique nonlinear

effects.

• Temporal soliton represent optical pulses that maintain their shape during propagation.

Their existence was predicted in 1973 in the context of optical fibers [61]. Since then, fiber

solitons have been studied extensively and have even found applications in the field of fiber-

optic communications [65, 66].

A temporal soliton is controlled by dispersion and nonlinearity. Strictly speaking, such a

soliton emerges when the chirping induced by the dispersion and the nonlinearity exactly cancels

each other out to give a constant phase across the pulse [18]. The manner in which attention

can be directed only towards nonlinearity and dispersion depends upon the waveguide structure
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Figure 1.12: Recreation of a solitary wave on the Scott Russell Aqueduct on the Union Canal.

Photograph courtesy of Heriot-Watt University [50].

that is supporting the solitons. For example, in an optical fibre, diffraction is eliminated in all

directions perpendicular to the propagation axis. Here, a planar waveguide is used. The temporal

soliton propagation in double-negative metamaterials has been discussed with an emphasis upon

short pulses that exhibit self-steepening controlled by the frequency dependence of the relative

permittivity and permeability [67].

Let us consider the generalized NLS equation describing the evolution of femtosecond optical

field ψ(z; t) in nonlinear metamaterials [68, 69]:

i
∂ψ

∂z
+
k2

2

∂2ψ

∂t2
+ p3|ψ|2ψ − p5|ψ|4ψ − is1

∂(|ψ|2ψ)

∂t
= 0 (1.9)

where t = cT and z = Z/λp are the respective normalized time and propagation distance,

with λp being the plasma wavelength. Also, k2 stands for the GVD coefficient, s1 represents

the self-steepening coefficient, while p3 and p5 represent cubic and pseudo-quintic nonlinear

coefficients, respectively.

This equation contains several particular cases such as the standard NLS equation, who is

the basis of many researches in the field of telecoms (p5 = s1 = 0) [70], the modified NLS

equation( p5 = 0) [71], the Kaup-Newell equation (p3 = p5 = 0) [72]], the cubic- quintic NLS

Laure TIAM MEGNE Ph.D-Thesis



Chapter I: Literature review on metamaterials 35

equation (s1 = 0)[73], and the pure quintic NLS equation (p3 = s1 = 0) [74]. Each particular

case is important to describe nonlinear wave dynamics in specific physical systems.

Bright and dark solitons, as well as combined solitary waves and periodic waves have been

analytically or numerically studied from different viewpoints [77,78]. In order to observe soli-

tons in experiments, left-handed nonlinear transmission lines (NLTL), employed as nonlinear

MMs, have been used to investigate the generation of solitons [79-82]. The trains of both

bright and dark envelope solitons were observed in the left-handed NLTL MMs [79-81] and

stable generation of soliton pulses was experimentally demonstrated in an active NLTL MM

composed of a left-handed NLTL inserted into a ring resonator [79], in which the approach

can be employed for the other types of active MMs. In addition, dark solitons in a practical

left-handed NLTL MMs with series nonlinear capacitance are demonstrated by circuit analysis,

which verified analytically that the left-handed NLTL could support dark solitons by tailoring

the circuit parameters [80]. These theoretical and experimental studies show that it is practical

and significant to search for new and possible solitons in MMs.

• Spatial soliton represent self-guided beams that remain confined in the transverse di-

rections orthogonal to the direction of propagation. In similar to the temporal soliton, they

evolve from a nonlinear change in the refractive index of an optical material induced by the

light intensity phenomenon known as the optical Kerr effect in the field of nonlinear optics

[81, 82, 83]. The intensity dependence of the refractive index leads to spatial self-focusing

(or self-defocusing), which is a major nonlinear effects that is responsible for the formation of

optical solitons. A spatial soliton is formed when the self-focusing of an optical beam balances

natural diffraction-induced spreading (see Fig. 1.13).

Self-focusing and self-defocusing of continuous-wave (CW) optical beams in a bulk nonlinear

medium have been studied extensively [84]. Self-trapping was not linked to the concept of

spatial solitons immediately because of its unstable nature. During the 1980s, stable spatial

solitons were observed using nonlinear media in which diffraction were limited to only one

transverse dimension [85]. The formation of spatial solitons is based on the geometry of the

waveguide and on the photo-induced phase shift [86]. Concerning the geometry of the induced

waveguide, we know that a beam of limiting width obeys the laws of diffraction characterized

by the Rayleigh length:
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Figure 1.13: Schematic illustration of the Lens analogy for spatial solitons. Diffraction acts as

a concave Lens, while the nonlinear medium acts as a convex Lens. A soliton forms when the

two Lenses balance each other such that the phase front remains plane [86].

LD =
r

θD
=
πn0r

2

λ
, (1.10)

where r is the mode radius ("waist"), n0 the linear refractive index and λ the optical wavelength.

The length of Rayleigh LD is the propagation distance after which the size of the beam has

increased by a factor
√

2 (its area doubled). In the presence of a positive nonlinearity medium

(γ > 0), the beam induces an increase in index ∆n, proportional to the intensity. The critical

angle of total reflection between the two media, defined by θc =
√

2∆n/n0, allows to determine

the characteristic length of nonlinearity (auto-focusing) in the approximation of small angles

[86],

LNL =
r

θc
=

r√
2∆n/n0

. (1.11)

The spatial soliton corresponds to a balance between diffraction and self-focusing. In this case,

the two widths are equalized, so that LNL = LD leads to θc = θD.

As indicated by Zakharov and Shabat [87], a continuous wave with (1+1)D with a sech

profile and a prescribed relation between its width and its power can propagate as fundamental

spatial soliton in a homogeneous Kerr medium, with exact balance between the Kerr effect and

the diffraction. However, in the case with two transverse dimensions (2+1)D, the situation is
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quite different, marked by collapse; there is therefore no spatial Kerr soliton at (2+1)D. For an

understanding of the evolution of the optical field in the optical system and consequently the

resulting phenomena, it is necessary to consider the theory of electromagnetic wave propagation

in dispersive nonlinear media. Like all electromagnetic phenomena, the propagation of optical

fields in optical fibers is governed by Maxwell’s equations. From the Maxwell’s equations, the

evolution of optical field inside the optical system, where the input electric field is assumed

to propagate in the +Z -direction and is polarized in the X -direction is described by the NLS

equation written as

i
∂ψ

∂z
+ η∆ψ + κ|ψ|2ψ = 0, (1.12)

where η is the dispersion coefficient, κ in the nonlinear coefficient, ψ(z,X) is the wave envelope,

X = x1, ..., xd, ∆ =
d∑
l=1

∂2

∂x2l
, and d = 1 or 2.

There is self-confinement of impulsions when κ > 0, and the opposite phenomenon when

κ < 0. When κ > 0, Eq. (1.28) admits solutions which become singular after a finite time when

d = 2 (critical case), or d > 2 (super-critical case). For d = 1, Eq. (1.28) is integrable and gives

soliton solutions which result from the exact balance between diffraction and nonlinearity. For

d = 2, in order to avoid the singularity in the wave function and thus, limit the risk of collapse

of the pulses, it has been shown that the presence of a damping due to inhomogeneities in

the structure of the fields and in the particle distribution function [88], either by saturation

of nonlinearity [89], partial coherence [90], or non-paraxiality of small beams [89] can be

considered.

Therefore, in (2+1)D systems, the diffraction is not strong enough to overcome self-phase

modulation. It then becomes difficult to find spatial solitons with (2+1)D stable over long dis-

tances [91, 92]. The disturbance effects which can modify or stop the "collapse" are dissipation,

normal dispersion and the saturation of nonlinearity [93]. The most used alternative to obtain

the formation of space solitons with more than one dimension is to use dissipative media, where

the presence of gains and nonlinear losses allows to have more stable solitons, and thus, avoid

the wave collapse.

• One of the major goals in the study of optical solitons is the possibility to generate pulses

that are localized in the transverse dimensions of space, as well as in time. Such solitons of the

(3 + 1)D NLS equation are called spatiotemporal solitons or “light bullets”, a term coined
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by Silberberg [94] which stresses their particle-like nature. In contrast to the extensive studies

of spatial and temporal (1+1)D and spatial (2+1)D solitons, experimental progress toward the

production of (3 + 1)D solitons has been slow. One of the reason for that is that the conditions

for formation of stable spatiotemporal solitons were not identified theoretically yet. Indeed,

evidence for spatiotemporal solitons in one spatial dimension has been given by Wise group in

quadratic media [95, 96] and Barad group in cubic media [97]. However, even in these cases,

the beam splits in space and in time after propagating a few characteristic lengths. To date,

true (3+1)D spatiotemporal solitons have not been observed. For a discussion of the current

status of the problem, see [98].

In recent times, investigation on the nonlinear pulse propagation in NIMs is being actively

pursued. The nonlinear partial differential equation governing the propagation of light pulse

in the NIM has been derived and is found to admit envelope solitary wave solutions [99]. A

generalized nonlinear Schrödinger equation for dispersive dielectric susceptibility and perme-

ability has been derived to describe the propagation of electromagnetic pulse in the NIM and

it has been found that the linear properties of the medium can be tuned to modify its lin-

ear as well as nonlinear effective properties, which lead to a new form of dynamical behavior

[9]. The role of second-order nonlinear dispersion in the stable propagation of Gaussian pulse

in the NIM in focusing or defocusing cases with normal or anomalous regimes has been ana-

lyzed [100]. The evolution equations for the envelopes of beams and spatiotemporal pulses in

nonlinear dispersive NIM have been derived and stability of solitary wave solutions has been

analyzed using numerical methods based on fast Fourier-Bessel transforms [101]. By adopting

the methods of quantum statistics and a kinetic equation for the pulses, the partial coherence in

NIMs has been discussed [102]. The Raman soliton self-frequency shift in the nonlinear NIMs

can be controlled by nonlinear electric polarization [103]. The existence of gray solitary waves

and the conditions for their formation in NIMs have also been studied [104]. The propagation

of ultrashort electromagnetic pulse in metamaterials with cubic electric and magnetic nonlin-

earities have been investigated and it has been predicted that spatiotemporal electromagnetic

solitons may exist in the negative index regime of the metamaterials with defocusing nonlinear-

ity and normal group velocity dispersion[105]. The self-focusing of ultrashort pulses in NIMs

can be controlled by tailoring dispersive magnetic permeability [106]. In contrast to ordinary
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positive index materials, in the case of NIMs dark solitons may exist for the case of normal

second-order dispersion, anomalous third-order dispersion, self-focusing Kerr nonlinearity, and

non-Kerr nonlinearities[107].

•Dissipative nonlinear systems suggest an interesting alternative. The additional balance

between gain and loss in dissipative systems provides the necessary for the generation of stable

dissipative solitons. Rosanov has shown that dissipative optical systems can admit solitons in

one, two, and three dimensions [108]. These formations are stable during propagation, provided

the system parameters are chosen in specific regions. Hence, the term "dissipative soliton" is

used as the one that covers the majority of relevant phenomena in optics, biology and medicine.

As a fuller explanation, it means "soliton in a dissipative system", where "dissipative system" is

to be understood in Prigogine’s sense as a sub-system with an external pump of energy, rather

than a system with losses only. An optical laser is one of the examples of such subsystem in

optics[109]. There is a significant difference between solitons in Hamiltonian systems and in dis-

sipative ones. In Hamiltonian systems, soliton solutions appear as a result of a balance between

diffraction (or dispersion) and nonlinearity. Diffraction spreads the beam, while nonlinearity

focuses it and makes it narrower. In addition to the balance between diffraction/diffusion and

nonlinearity, in systems with gain and loss, in order to have stationary solutions, gain and loss

must be balanced in the first place. The two balances result in solutions which are fixed. The

shape, amplitude and the width are all fixed and depend on the parameters of the equation.

On the other hand, a dissipative soliton is a stable localized structure formed by the double

balance between nonlinearity and dispersion and between gain and loss which change the pulse

energy. It can be observed in a variety of fields such as optics, cosmology, biology, condensed

matter physics and medicine[110]. In fiber-laser, cavities with third order dispersion (TOD)

can form stable and oscillatory bound states of dissipative soliton [111]. Stability of discrete

dissipative localized modes in metamaterials composed of weakly coupled SRRs have been

studied [112]. Knotted solitons, which are stable self localized dissipative structures in the

form of closed knotted chains has been identified in magnetic metamaterials [113]. The delicate

balance between input power and intrinsic losses results in the formation of stable dissipative

breather in a superconducting quantum interface device metamaterials[114].

In the present context of this work about dissipative solitons, gain and loss are important,

Laure TIAM MEGNE Ph.D-Thesis



Chapter I: Literature review on metamaterials 40

and this statement requires a further comment. The problem of instabilities, leading to the

collapse, and which depends on the number of space dimensions and strength of nonlinearity

has attracted the attention. The most straightforward modification of the model, which opens

the way to the stable solitary pulse, is the introduction of the cubic-quintic (CQ) nonlinearity,

with linear gain and cubic loss in the cubic CGL equation [110]. Dynamics of dissipative solitons

can then be described by a (D+1)-dimensional CQ-CGL equation[14]:

i
∂E

∂z
+ ∆E + |E|2E − ν|E|4E = Q, (1.13)

with

Q = i
[
δE + µ|E|4E + ε|E|2ψ + β∆E

]
. (1.14)

The left-hand-side of Eq. (1.13) contains the conservative terms. E is the normalized complex

envelope of the optical field, and ∆ = r1−D ∂
∂r

(
r1−D ∂E

∂r

)
is the D-dimensional Laplacian describ-

ing beam diffraction and/or anomalous group velocity dispersion. Therefore, cubic and quintic

nonlinearities have to be in opposite signs; i.e., parameter ν is negative. Dissipative terms are

denoted by Q given in Eq. (1.14). Depending on the sign of the parameter δ, the first term

is either linear gain or loss. β > 0 accounts for diffusive coefficient. The cubic and quintic

gain-loss parameters are, respectively, ε and µ. In addition to the balance between diffraction

and/or dispersion and nonlinearity, the balance between loss and gain is a prerequisite for the

generation of dissipative solitons.

In optical transmission systems, the CGL equation has been the subject of considerable stud-

ies, and it has been found that, the diffusivity in the transverse plane is a necessary ingredient

to get stable dissipative structures even in the lack of bandwidth limited gain. The notion of

the dissipative soliton has emerged from a three-part foundation. To be specific, these parts are

classical soliton theory, nonlinear dynamics (with its theory of bifurcations) and Prigogine con-

cept of self-organization. These underlying ideas set us up for a comprehensive understanding

of the new notion and allow us to explain the basic properties of solitons in dissipative systems.

Complications which arise from the fact that the dynamical systems usually have an infinite

number of degrees of freedom can be overcome by using reductions to low-dimensional systems.

However, these reductions always need to be done carefully by comparing the conclusions with

the results of particular numerical simulations of the original equation.
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1.5.2 Some derivative equations beyond the slowy varing envelope

approximations

Physical, engineering, chemical and biological sciences are continuously generating problems of

either theoretical or practical interest. The necessary investigations of these problems involve

models that, very often, are mathematically expressed as ordinary or partial differential equa-

tions, which in most of the cases, are nonlinear. In this respect, it is of great importance for the

refinement of the designed models in view of the best understanding of the original problems

or phenomena and, hence, their optimal exploitation or eventually their control.

Many authors have used the concept of nonparaxial beams of various orders leading to a

hierarchy of differential equations that can be used to determine the paraxial beam and the

various orders of nonparaxial beams successively [115, 116, 117]. Thus, nonparaxial corrections

for the fundamental Gaussian beam have been expressed on the basis of wave functions by using

the transition operators [118, 119, 120]. However, the wave functions do not have a radial

dependence that reflects correctly the cylindrical symmetry of the total field. Later, it has been

shown that the representation of the fields in term of modal functions constructed from the

Laguerre-Gauss modes was able to explain in physical terms the sequential development of

the various orders of nonparaxial corrections [121]. The electrodynamics of the fundamental

electromagnetic Gaussian beam has been constructed beyond the paraxial approximation by

the use of a single component of the electric vector potential oriented normal to the propagation

direction. It has been shown that the paraxial beam is governed by the homogeneous paraxial

wave equation and the nonparaxial beams are governed by the inhomogeneous paraxial wave

equations. Most importantly, the governing equations for paraxial and nonparaxial beams are

first-order differential equations in z, requiring only one condition for obtaining a unique solution

[122].

→ The slowly varying envelope and paraxial approximations: the beam radius

is sufficiently large compared with the wavelength

It is well-known that the nonlinear Schrödinger (NLS) equation is one of the most important

models in mathematical physics. This model appears in many fields of physics and applied

mathematics, for example condensed matter physics, plasma physics, nonlinear optics, fluid
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mechanics and phase transitions, to cite only a few. In particular, the propagation of one-

dimensional (1D) optical pulses, in the regime of slowly varying envelope amplitude, and in

the paraxial approximation, is usually described by a (1+1) D NLS equation with a focusing

cubic nonlinearity, that includes both dispersion and nonlinearity. For the case of instantaneous

response, it is written in the form [18]

i
∂E(z, t)

∂z
+ β2

∂2E(z, t)

∂t2
+ γ|E(z, t)|2E(z, t) = 0, (1.15)

where E(z, t) is the complex envelope amplitude of the pulse assumed to vary slowly with

respect to both z and t. Here, z represents the distance along the medium and t is the time

measured in the frame of reference of the pulse , respectively. β2 is the group velocity dispersion

parameter and γ is the nonlinear parameter that is proportional to the nonlinear refraction

index n2. Physically speaking, the slowly varying envelope approximation (SVEA) in space is

valid when the beam is wider than just a few wavelengths: ∂
2E(z,t)
∂z2

� k0
∂E(z,t)
∂z

, where k0 is the

wavenumber. For this reason, we select a ray which travels close to the optical axis. This is the

so-called paraxial approximation of small angles. The process of formation of solitary waves

can be triggered by small perturbations superposed to a continuous radiation that evolves in

time into a train of ultrashort solitary pulses. A linear stability analysis around the steady-state

solution of the NLS equation shows that harmonic perturbations grow exponentially within a

given frequency range, a process usually termed as MI. The dynamics of MI is governed by

the NLS equation, which admits soliton or solitary wave through a conservative interaction

between anomalous GVD and self-focusing Kerr nonlinearity. It is well-known that the NLS

equation is derived from the scalar nonlinear Helmholtz (NLH) equation, using the paraxial

approximation, which is valid when the beam radius is sufficiently large compared with the

wavelength.

In higher dimensions, the paraxial 4D NLS equation, which, in optics, governs the evolution

of the electric field envelope,E(x, y, z, t), of a beam propagating in the +z direction through a

Kerr medium, can be written as [94]:

i
∂E(x, y, z, t)

∂z
+α(

∂2E(x, y, z, t)

∂x2
+
∂2E(x, y, z, t)

∂y2
)+β2

∂2E(x, y, z, t)

∂t2
+γ|E(x, y, z, t)|2E(x, y, z, t) = 0,

(1.16)

where α defines the scale of the transverse plane. If diffraction ? is fixed to be positive, we
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have the following four cases: anomalous dispersion (β2 > 0) , normal dispersion (β2 < 0),

self-focusing media (γ > 0) , self-defocusing media (γ < 0) . The self-focusing effects of an

optical beam beyond the slowly varying envelope and nonparaxial approximations, in cases of

rapid evolution of the field envelope at large angles of propagation, or when the beam waist

and the diffraction length become comparable, or when the spectral width of a pulse is much

smaller than the pulse central frequency have been investigated in two principal directions.

In the first direction, some nonlinear nonparaxial wave equations have been derived including

the ∂2E
∂z2

term. In the second direction, other nonlinear nonparaxial wave equations have been

derived by dropping the ∂2E
∂z2

term and ∂2E
∂z∂t

, respectively.

→ The slowly varying envelope and nonparaxial approximations: the beam ra-

dius is sufficiently large compared with the wavelength

The formalism of coupled-mode theory applied to the continuum of transverse radiation

modes, which automatically includes nonparaxial contributions up to the second order and

vectorial effects, has been used by Crosignani, Porto, and Yariv [123], to derive the following

nonlinear nonparaxial evolution equation:

∂u

∂Z
+ i

1

2
(
∂2u

∂X2
+
∂2u

∂Y 2
)− i1

8
(
∂4u

∂X4
+
∂4u

∂Y 4
) + i|u|2u = −i1

2
(
∂2

∂x2
+

∂2

∂y2
)(|u|2u)− i1

3
| ∂u
∂X
|2u

− i1
3

(|u|2 ∂
2u

∂X2
− u2∂

2u∗

∂X2
).

(1.17)

Equation (1.17) generalizes the standard NLS equation that describes paraxial propagation

by the addition of nonparaxial terms up to the second-order in the ratio λ/w between the

wavelength and the typical dimension of the beam, and which is inherently first order in ∂/∂Z

and no approximation is required for neglecting the term in ∂2/∂Z2, without any slowly varying

approximation hypothesis. This is contrasted with derivations that start with the Helmholtz

equation.

The first type of nonparaxiality arises from the rapid evolution of the field envelope at a

large angle to the longitudinal axis. The scalar nonlinear Helmholtz equation well describe this

nonparaxiality and overcome the limitations of the NLS equation. The nonparaxial nonlinear

Helmholtz equation is [124]:
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∂2E(z, x)

∂z2
+
∂2E(z, x)

∂x2
+ k2

0(1 + (
2n2

n0

)|E(z, x)|2)E(z, x) = 0. (1.18)

The first term in Eq. (1.18) represents the nonparaxiality. Here, where E is the electric field

envelope, z the propagation axis and x the transverse axis, k0 is the linear wave number, n0 is

the linear index of refraction and n2 is the Kerr coefficient. The subscripts z and x denote the

partial derivatives with respect to z and x, respectively. Using the standard approach to derive

the NLS equation, the field E is represented as E = Aexp(ik0z), where A is assumed to be slowly

varying, the nonparaxial nonlinear Helmholtz equation can be written as [124, 125, 126]:

d
∂2A

∂z2
+ i

∂A

∂z
+
∂2A

∂x2
+ q|E(z, x)|2E(z, x) = 0, (1.19)

where d is the non-paraxiality parameter. The parameters p and q are related to dispersion

and self-phase modulation, respectively. An exact nonparaxial soliton solution from which the

paraxial soliton is recovered in the appropriate limit has been proposed by Chamorro-Posada,

McDonald and New [127], and the physical and mathematical geometry of the nonparaxial

soliton have been explored through the consideration of dispersion relations, rotational trans-

formations and approximate solutions.

The 2D generalization of equation (1.16) to include nonparaxial effects leads to the consid-

eration of the following evolution equation:
Θ2

4

∂2E(x, y, z, t)

∂z2
+ i

∂E(x, y, z, t)

∂z
+ α(

∂2E(x, y, z, t)

∂x2
+
∂2E(x, y, z, t)

∂y2
) + β2

∂2E(x, y, z, t)

∂t2

+ γ|E(x, y, z, t)|2E(x, y, z, t) = 0,

(1.20)

where Θ is a parameter equivalent to the divergence angle for a Gaussian beam in linear

propagation and naturally reflects the role of the transverse size of the beam and the tendency

for light to travel off-axis in nonlinear propagation.

The nonlinear effects of beam size stabilization due to nonparaxiality on the self-focusing

of Gaussian and ring-shaped optical beams have been studied for the first time by Feit and

Fleck [128], where a nonparaxial algorithm for the Helmholtz equation to some self-focusing

situations of experimental interest has been applied. Furthermore, the following nonparaxial

scalar model has been derived by Akhmediev, Ankiewicz, and Soto Crespo [129]:

∂2ψ

∂z2
+
∂2ψ

∂x2
+
∂2ψ

∂y2
+ ε1(x)ψ + α(x)|ψ|2ψ = 0, (1.21)
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where ε1 is the linear part of the transverse profile of the dielectric permittivity of the layered

medium and α(x) is the transverse profile of the nonlinear susceptibility. It has been shown that

the standard approximation, which uses the parabolic equation (NLS equation) in the analysis

of nonlinear self-focusing and self-guiding, should be completed with an additional term that

takes into account the variation of the propagation constant along the propagation direction.

Spatial solitary waves carried by a TE mode in planar optical waveguides, with Kerr-type

of nonlinearity, have been investigated theoretically and numerically by Boardman, Marinov,

Pushkarov and Shivarova, based on the following modified (1+1) modified NLS equation [130]:

i
∂E

∂z
+
∂2E

∂x2
+ |E|2E +

∂2E

∂z2
+ 4E(|∂E

∂x
|2+

1

3

∂2|E|2

∂x2
) + 4

∂

x
(E
∂|E|2

∂x
) = 0, (1.22)

where the first three terms give the NLS equation in its usual form. The next one is the

nonparaxial correction, and the last terms can be considered as nonlinearity induced diffraction.

New solitary solutions have been found analytically and numerically, where the influence of

each of the effects associated with the different terms in the nonlinear wave equation has been

clarified.

→ Beyond the slowly varying envelope and nonparaxial approximations: The

beam waist and the diffraction length become comparable, or when the spectral

width of a pulse is much smaller than the pulse central frequency. Derivation of

the nonlinear nonparaxial wave equation dropping the ∂2A/∂Z2 term

In contrast to the first type, the second type is the high intensity light beams. This second

type of nonparaxiality results from the evolution of ultra-narrow beams in nonlinear media.

A difficulty in describing the nonparaxial propagation of an electromagnetic field by means of

a parabolic wave equation arises whenever the beam waist and the diffraction length become

comparable, or when the spectral width of a pulse is much smaller than the pulse central

frequency. However, as one increases the intensity of the incident light to produce shorter

(femtosecond) pulses, non-Kerr nonlinearity effects become important and the dynamics of

pulses should be described by the NLS family of equations with higher-order nonlinear terms.

Indeed, in the second direction, for example, a vector nonparaxial theory for a very nar-

row beam has been developed from the vector Maxwell equations by means of the order-of-

magnitude analysis method by Chi and Guo as follows [131]:
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i
∂u

∂ζ
+

1

2
(
∂2u

∂ξ2
+
∂2u

∂η2
) + |u|2u+ σ2(

1

2

∂2u

∂ζ2
+

∂2

∂ξ2
[|u|2u+

2

3
|∂u
∂ξ
|2u− 1

3
(
∂u

∂ξ
)2u∗]) = 0. (1.23)

In order to use the split-step Fourier method to solve the wave equation numerically, the ∂2u
∂ζ2

term must be replaced by the transverse derivative. Partial derivative of the above equation

with respect to ζ gives the expression ∂2u
∂ζ2

. Introducing this partial derivative in the above

equation leads to:

∂u

∂ζ
= i

1

2
(
∂2u

∂ξ2
+
∂2u

∂η2
) + |u|2u− iσ

2

8
(
∂4u

∂ξ4
+
∂4u

∂η4
)− iσ2(

1

2
|u|4u+ |u|2(

∂2u

∂ξ2
+
∂2u

∂η2
) + |∂u

∂η
|2u

− 11

3
|∂u
∂ξ
|2u+

1

2
u∗[(

∂u

∂η
)2 − 7

3
(
∂u

∂ξ
)2]− u2∂

2u∗

∂ξ2
).

(1.24)

Marinov, Pushkarov and Shivarova [132] have derived the following nonlinear nonparaxial wave

equation:

i
∂u

∂z
+
∂2u

∂x2
+
∂2u

∂z2
+ |u|2u+ 4|∂u

∂x
|2u− 4

3

∂|u|2

∂x

∂u

∂x
+

16

3

∂

∂x
(u
∂|u|2

∂x
) = 0. (1.25)

Partial derivative of the above equation with respect to z gives the expression ∂2u
∂z2

, that is,

∂2u

∂z2
= −∂

4u

∂x4
− ∂2|u|2

∂x2
+ u2∂

2u∗

∂x2
− 2|u|2∂

2u

∂x2
− |u|4u. (1.26)

After replacing this equation in the nonparaxial wave equation, we obtain:

i
∂u

∂z
+
∂2u

∂x2
− ∂4u

∂x4
− ∂2|u|2

∂x2
+ u2∂

2u∗

∂x2
− 2|u|2∂

2u

∂x2
− |u|4u+ |u|2u+ 4|∂u

∂x
|2u− 4

3

∂|u|2

∂x

∂u

∂x

+
16

3

∂

∂x
(u
∂|u|2

∂x
) = 0.

(1.27)

This NLS equation containing nonparaxial correction terms has been solved numerically by em-

ploying a fully explicit , noniterative difference scheme [132]. Boardman, Marinov, Pushkarov

and Shivarova [133] have derived the following nonlinear nonparaxial wave equation:

i
∂u

∂z
+
∂2u

∂x2
+ |u|2u+

∂2u

∂z2
+

8

3
|∂u
∂x
|2u− ∂4u

∂x4
− 4

3
(
∂u

∂x
)2u∗ + k

∂2(|u|2u)

∂x2
+
k

3

∂

∂x
(u2∂u

∗

∂x
)

− 2k

3

∂

∂x
(|u|2∂u

∂x
) = 0.

(1.28)

This equation contains all the first-order correction terms to the NLS equation and accounts

for a complete nonparaxial vector model of (1+1)D beam propagation in a Kerr media. By
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considering the correction terms as a perturbation, an iterative procedure for solving the above

equation analytically has been developed. It has been shown that the differences between the

obtained analytical and numerical new solitary wave solutions in a nonparaxial vector approach

and the exact solution of the scalar approach are rather small [133].

Syrchin, Zheltikov and Scalora [131] have derived the following nonlinear nonparaxial wave

equation:

i
∂u

∂ξ
= −µz

∂2u

∂ξ2
+ µτ{

∂2u

∂ξ∂τ
− 4i

∂|u|2u
∂τ
} − |u|2u− |ε0|2χ(5)

χ3
|u|4u. (1.29)

This nonlinear nonparaxial wave equation includes second-order longitudinal spatial ∂2u
∂ξ2

,

and second-order spatiotemporal ∂2u
∂ξ∂τ

derivatives. Next, we replace these higher-order spatial

and spatiotemporal derivatives by applying successive differentiations with respect to ξ and τ

to the above equation. So, differentiating the nonparaxial wave equation with respect to ξ, and

neglecting the terms of the order of µ2
z,µ2

τ ,µzµτ , and µχ(5), we find:

∂2u

∂ξ2
= iµ2

z

∂3u

∂ξ3
+ 2i|u|u |u|

∂ξ
+ i|u|2∂u

∂ξ
+ 0(µτ ) = −|u|4u+ 0(µτ ) + 0(µz). (1.30)

Then, differentiating the nonlinear nonparaxial wave equation with respect to τ , we find:

∂2u

∂ξ∂τ
=

∂

∂τ
[i|u|2u+ 0(µτ ) + 0(µz)]. (1.31)

After substitution, we find:

i
∂u

∂ξ
= µz|u|4u−−

|ε0|2χ(5)

χ3
|u|4u− {1 + 3iµτ

∂

∂τ
}|u|2u. (1.32)

This equation includes the first-order non-slowly varying amplitude approximation and

the contribution of the fifth-order nonlinearity. An iterative procedure allowing an analyti-

cal integration of the first-order non-slowly varying amplitude approximation for self-phase-

modulational equation for the amplitude and the phase for the cubic optical nonlinearity and

very short pulses has been developed [131].

Scalora et al. [134] have derived the following nonlinear nonparaxial wave equation:

i
∂u

∂z
=

i

2βn

1

(
V 2
g −αγ−β(

εγ
′
+ µα

′

2
))
∂2u

∂t2
+

i

2βn
(
∂2u

∂z2
− 2

Vg

∂2u

∂z∂t
)+
iβµχ(3)

2n
|u|2u−(

γχ(3) + µχ(3)

2n
)
∂

∂t
(|u|2u).

(1.33)

This nonlinear nonparaxial wave equation includes second-order longitudinal spatial ∂2u
∂z2

, and

second-order spatiotemporal ∂2u
∂z∂t

derivatives. Next, we replace these higher-order spatial and
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spatiotemporal derivatives by applying successive differentiations with respect to z and t to the

above equation. So, differentiating the nonlinear nonparaxial wave equation with respect to z

and t and neglecting higher-order derivatives, we have:

∂2u

∂z2
≈ iβχ(3)

2n

∂

∂z
(|u|2u). (1.34)

∂2u

∂z∂t
≈ iβχ(3)

2n

∂

∂t
(|u|2u). (1.35)

After substitution, we find:

∂u

∂z
=
ik
′′

2

∂2u

∂t2
+
iβχ(3)

2n
[1− µχ(3)

4n2
|u|2]|u|2u+ χ(3){ µ

2Vgn2
− (

γ + µ

2n
)} ∂
∂t

(|u|2u). (1.36)

This generalized NLS equation, that can be solved numerically, includes the first-order non-

slowly varying amplitude approximation corrections [9].

→ Slowly Evolving Wave Approximation (SEWA): The pulse duration is com-

parable to the carrier oscillation cycle

A generic nonlinear envelope equation, first-order in the propagation coordinate ξ, which

provides a powerful means of describing light pulse propagation in dispersive nonlinear media,

has been derived by Brabec and Krausz [135] as follows:

∂u

∂ξ
= −α

2
u+ iD̂u+

i

2β0

(1 +
i

ω0

∂

∂τ
)−1(

∂2u

∂x2
+ i

2πβ0

n2
0

(1 +
i

ω0

∂

∂τ
)|u|2u. (1.37)

D̂ = −α1

2

∂

∂τ
+ Σ∞m=2(

βm + iαm
2

m!
)(i

∂

∂τ
)m. (1.38)

In this derivation, backward propagating waves have been neglected. The following single math-

ematical requirement has been provided:

|∂u
∂ξ
|� β0|u|, (1.39)

which has been referred to as the slowly-evolving-wave approximatiom (SEWA). In particular,

the concept of the SEWA indicates that

|β0 − ω0β1

β0

|� 1, (1.40)

that is, the difference between phase and group velocities of the waves involved in the interaction

is small compared to the phase (or group) velocity of the fundamental pulse, which is fulfilled
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in which all waves propagate in the same direction. In other words, this condition is violated in

processes such as Brillouin scattering, where the pulses propagate in opposite directions, and

can be addressed using nonlinear envelope equation only in the frame of the SVEA, that is, for

pulse durations much longer than the optical cycle [135]. The SEWA requires more from the

propagation medium than the SVEA: not only the envelope but also the relative carrier phase

must not significantly vary as the pulse covers a distance equal to the wavelength, where the

characteristic propagation length meets the condition β0Lchar � 1

1.6 Conclusion

In this chapter, we have pointed out some generalities about metamaterials, solitons, dissipative

solitons and vortex solitons in nonlinear metamaterial that we will use in this thesis. It follows

that the CGL model is promising equation to study the solitons of all optical device.

The propagation of such ultrashort and intense pulses is then affected by additional physical

mechanisms like self-steepening and septic nonlinearities, where especially higher-order effects

such as fourth, fifth and sixth-order dispersion terms become important. These aspects of the

problem will be investigated throughout this work. In the next chapter, we will present the

methodology of investigations used to obtain our results.
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Chapter II

Models and methodology of

investigations

2.1 Introduction

In dissipative systems, research in physics devotes much attention to nonlinear phenomena.

Investigations of the propagation of wave in the nonlinear media concern experimental ob-

servations and theoretical descriptions. Concerning theoretical descriptions, it appears as an

important part of investigations that often come after an experimental observation and, when

theoretical explanation is well carried out to generate nonlinear evolution system to model the

phenomenon observed. It is then possible to predict theoretically the behavior of the wave in

the medium of interest, under some new hypothesis, before returning in laboratories to verify

if the theoretical hypothesis are confirmed experimentally. Such an inter-dependence between

experiment and theoretical investigation make it clear the importance of both in looking for

more innovative technological devices. As far as we are concerned throughout this thesis with

MI and the propagation of spatiotemporal wave in metamaterials, theoretical investigations

have been carried out beyond the SVEA within the framework of some treatable methods, in

particular linear stability analysis.

Very recently, many authors have investigated and proposed nonlinear ultrashort pulse prop-

agation models in NIMs in various contexts [13,135]. Scalora et al.[9] first derived a new gen-

eralized nonlinear Schrodinger (NLS) equation, to describe the propagation of ultrashort pulses

in bulk negative index media exhibiting frequency dependent dielectric susceptibility and mag-

netic permeability. Going beyond the usual SVEA, they investigated the propagation of pulses

for at least a few tens of optical cycles in MMs. They did not consider magnetic nonlinearity in
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their approach. Wen et al. have derived a (3+1) dimensional evolution equation for NIM with a

Kerr nonlinear polarization by following the same procedure as applied to the case of ordinary

materials [10].

The CGL equation may be viewed as a dissipative extension of the NLS equation. Accord-

ingly, it can describe a broad range of behaviors suggested by the NLS equation dynamics,

ranging from chaos and pattern formation to spatiotemporal dissipative optical solitons. The

CGL equation with the cubic-quintic nonlinearity makes it possible to find stable localized

solutions in both the 2D and 3D geometries.

The higher-order (3+1)D CQS-CGL equation, taking into account diffraction, diffusion,

higher-order dispersion terms up to six with higher-order effects such as self-steepening effects,

as mentioned in the general introduction, is the most advanced model in the CGLs-type family

equation that no one else has studied yet for the modeling of the dissipative solitons in nonlinear

metamatreials. This model equation has been derived for the first time in this thesis.

Our main objective is to investigate new types of dissipative and nonlinear dynamics and

thus, contribute to the understanding of 3D dissipative optical solitons. In order to accomplish

our aims, we employ some analytical and numerical methods, which lead to describe the beam

m behavior correctly beyond the SVEA. The numerical methods are used to consolidate the

analytical results. In the first part of this chapter, we derive the (3+1)D CQ-CGL and the

higher-order (3+1)D CQS-CGL equations in the physical context of nonlinear metamaterial

beyond the SVEA. In the second part, we give general information about our analytical methods

and the third part is devoted to the presentation of numerical methods. A concise conclusion

finally ends the chapter.

2.2 Governing equation and derivation of the (3+1)D cubic-

quintic and cubic-quintic-septic complex Ginzburg-Landau

beyond the SVEA

Let us now proceed in deriving at (3+1-dimension cubic-quintic and cubic-quintic-septic CGL

equation beyond the SVEA with competing effects ch as dispersion, diffraction, gain, loss, cubic-

Laure TIAM MEGNE Ph.D-Thesis



Chapter II:Models and methodology of investigations 52

quintic-septic nonlinearities, and cubic, quintic and septic self-steepening terms, for dissipative

light bullets in nonlinear metamaterials.

2.2.1 Derivation of the (3+1)D cubic-quintic complex Ginzburg-

Landau beyond the SVEA

The field of nonlinear optics is complex and encompasses myriads of interesting effects and

practical applications. In spite of its richness, most of the effects can be described accurately

with just a few equations. This introduction to nonlinear optics is therefore limited to a simple

analysis of Maxwell’s equations, which govern the propagation of light. The well-known theory

of electromagnetic wave propagation in dispersive nonlinear media is considered in order to

understand the nonlinear phenomena in metamaterials. In dielectric media, the equations are

given by,

∇× E = −∂B
∂t
, ∇×H =

∂D
∂t

, ∇.D = 0, and ∇.B = 0, (2.1)

in which there are no free charges, and no fee currents flow. the quantities E and H are the

electric and magnetic field vectors, respectively. The quantities D and B are the electric and

magnetic flux densities, respectively. The induced polarization P and magnetization M may be

made explicit in Maxwell’s equations via the constitutive relations

D = ε0εE + Pnl, and B = µ0µH + Mnl, (2.2)

where ε0 and µ0 are the respective vaccum electric permittivity and magnetic permeability. ε

and µ are dispersive complex permittivity and permeability of a dissipative medium. Pnl is a

nonlinear polarization, and Mnl is a nonlinear magnetization. E, D, B, H are slowly varying

functions in space and time. The quasi-monochromatic representation is used for the functions,

namely A(r, t) = A exp (ikr− iωt), where ω is the carrier frequency and k = kr + iki is a

complex vector. k is determined by the linear dispersion relation k2c2 = ω2ε(ω)µ(ω). The first

derivatives of Eqs.(2.2) with respect to time t are

∂D
∂t

= ε0(−iωεE− iωεnlE)e−iωt and
∂B
∂t

= µ0(−iωµH− iωµnlH)e−iωt. (2.3)
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We expand the dielectric permittivity ε(ω) and magnetic permeability µ(ω), in Taylor series

around the central frequency ω0, as follows:

ωε(ω) = Σ∞n=0

[αn
n!

(ω − ω0)n
]
, ωµ(ω) = Σ∞m=0

[
βm
m!

(ω − ω0)m
]
, (2.4)

where αn = ∂n[ωε(ω)]
∂ωn

|ω=ω0 and βm = ∂m[ωµ(ω)]
∂ωm

|ω=ω0 .

Substituting Eqs.(2.4) into Eqs.(2.3) yields

∂
−→
D

∂t
≈ ε0

(
−iω0ε

−→
E + α1

∂
−→
E

∂t
+ i

α2

2

∂2−→E
∂t2

+
∂(εnl

−→
E )

∂t
− iω0εnl

−→
E

)
e−iωt,

∂
−→
B

∂t
≈ µ0

(
−iω0µ

−→
H + β1

∂
−→
H

∂t
+ i

β2

2

∂2−→H
∂t2

+
∂(µnl

−→
H )

∂t
− iω0µnl

−→
H

)
e−iωt.

(2.5)

Indeed, after performing the curl of Eqs.(2.1), and neglecting vectorial terms such as∇(∇.E) =

0, and choosing appropriate variables for the measurement of time and spatial coordinates, that

is ξ = z and τ = t − 1
vg
z, where vg is a real group velocity defined by vg =

[
∂(nω)
∂ω

]−1

and n

is a negative-refractive index given by n = −
√
Re[εµ] = kr

c
ω
, with kr being the negative wave

vector’s real part, one would obtain the following dynamical equation

2ik
∂
−→
E

∂ξ
+ ∆
−→
E −

(
2

vg

)
∂2−→E
∂ξ∂τ

− W2

c2

∂2−→E
∂τ 2

+ i
ω2

0

c2
Im[εµ]

−→
E +

ω2
0

c2
µεnl
−→
E + i

ω0

c2
(µ+ β1)

∂(εnl
−→
E )

∂τ

− iµ0
∂(µnl

−→
k ×
−→
H )

∂τ
− µ0ω0µnl

−→
k ×
−→
H = 0,

(2.6a)

2ik
∂
−→
H

∂ξ
+ ∆
−→
H −

(
2

vg

)
∂2−→H
∂ξ∂τ

− W2

c2

∂2−→H
∂τ 2

+ i
ω2

0

c2
Im[εµ]

−→
H +

ω2
0

c2
µnlε
−→
H + i

ω0

c2
(ε+ α1)

∂(µnl
−→
H )

∂τ

+ iε0
∂(εnl

−→
k ×
−→
E )

∂τ
+ ε0εnlω0

−→
k ×
−→
E = 0,

(2.6b)

where

W2 = −c2v−2
g + 1

2
ω0(µα2 + εβ2) + α1β1,

These generalized complex (3+1)- dimensional equations describe dissipative effects in NIMs

as well as in PIMs. Equations (Eqs.(2.6a)) and (Eqs.(2.6b)) are used in order to describe the

dynamics of dissipative solitons in NIMs and to make the comparison with well-known soliton

dynamics in PIMs modeled by usual the Ginzburg-Landau equation. The imaginary part of
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linear permittivity εi , permeability µi , and wave vector ki are considered small. To construct

the ultrashort electromagnetic pulses in MMs for Eqs.(2.6), we assume both the electric and

magnetic fields to propagate along the z−direction, with the linearly polarized fields−→E−→
H

 =

x̂E
ŷH

 exp[i(β0z − ω0t)] + c.c., (2.7)

where ω0 is the central frequency of the electromagnetic pulse, β0 is the corresponding wave

number, and c.c. denotes the complex conjugate. The nonlinear response of MMs is character-

ized by two different contributions. The first one is an intensity-dependent part of the effective

dielectric permittivity of the MMs. The second contribution is the effective magnetic perme-

ability which depends on the macroscopic magnetic field. We further illustrate high optical

intensities by considering the following model expressions for both field-dependent dielectric

permittivity and magnetic-permeability responses of the dispersive MMs of the form

εnl(|E|2) = (ε(3)
r + iε

(3)
i )|E|2−(ε(5)

r + iε
(5)
i )|E|4, (2.8)

and

µnl(|H|2) = (µ(3)
r + iµ

(3)
i )|H|2−(µ(5)

r + iµ
(5)
i )|H|4, (2.9)

We further substitute Eq.(2.8) and Eq.(2.9) into Eq.(2.6a) to obtain for the electric field

equation

i
∂E

∂z
+

1

2n$
∆⊥E +

1

2n$

∂2E

∂z2
−
(

c

n$vg

)
∂2E

∂z∂t
− W2

2nω

∂2E

∂τ 2
+ i

$

2n
Im[εµ]E+

$

2

[
(χ(3)

r + iχ
(3)
i )|E|2E − (χ(5)

r + iχ
(5)
i )|E|4E

]
+
i

2

[(
χ(3)
r + iχ

(3)
i

) ∂(|E|2E)

∂t
− (χ(5)

r + iχ
(5)
i )

∂(|E|4E)

∂t

]
= 0,

(2.10)

in which we defined new normalized variables as [136]: ( c
ωp

)2∆⊥ → ∆⊥, ωpτ → t, (ωp
c

)ξ → z,

(ω0

ωp
) → $, where ωp is the plasma frequency, and ∆⊥ = ∂2

∂x2
+ ∂2

∂y2
. The parameters χ(3) =

ε(3)Z+ µ(W3)

Z(3) and χ(5) = ε(5)Z+ µ(5)

Z(5) are the cubic and quintic susceptibilities, respectively, with

Z = (µ
ε
)
1
2 = E

H
, being the medium impedance.

In order to calculate the first-order non-SVEA correction terms, we use Eq.(2.10) to evaluate
∂2E
∂z2

and ∂2E
∂z∂t

. Consequently, omitting the higher order terms, which are assumed small, the above
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derivatives can be approximately expressed by the following second-order partial differential

equations

∂2E

∂z2
≈ −C2|E|4E, and

∂2E

∂z∂t
≈ iC

(|E|2E)

∂t
− iQ∂(|E|4E)

∂t
,

(2.11)

where, C = $
2

(
χ

(3)
r + iχ

(3)
i

)
, Q = $

2

(
χ

(5)
r + iχ

(5)
i

)
. Substituting Eqs.(2.11) into Eq.(2.10) and

introducing the following normalization for Eq. (10), we obtain

(√
|2n$|
|Re[W ]|

)
t→ t,

∆⊥
2|n|$

→

∆⊥,


√
|χ(3)
r |$
√

2

E → E,

i
∂E

∂z
+ (σr⊥)∆⊥E − iσi⊥∇2

⊥E + (−k2r − ik2i)
∂2E

∂t2
+ iδE + (N3r + iN3i)|E|2E + (N5r + iN5i)|E|4E

+ (SS3r + iSS3i)
∂(|E|2E)

∂t
+ (SS5r + iSS5i)

∂(|E|4E)

∂t
= 0,

(2.12)

In the above equation, the different coefficients are given in the Appendix . The resulting

nonlinear evolutionary equation (2.12) is the (3+1)D cubic-quintic CGL equation which models

the propagation of ultrashort dissipative optical pulses in MMs, where (σr⊥+σi⊥) is the trans-

verse complex coefficient, k2r+ ik2i is the complex group velocity dispersion (GVD). δ is related

to the linear loss (δ < 0) or gain (δ > 0), while (N3r + iN3i) and (N5r + iN5i) are the cubic

and quintic nonlinear complex coefficient, respectively. The complex parameters (SS3r + iSS3i)

and (SS5r + iSS5i) characterize the so-called cubic and quintic self-steepening effects due to

cubic and quintic nonlinear polarizations, The dielectric permittivity ε and magnetic perme-

ability µ are, respectively, given by the lossy Drude model of free electron collisions (νε and νµ)

[137, 138]

ε(ω) = 1−
ω2
p

ω2 + iωνε
, and µ(ω) = 1− ω2

m

ω2 + iωνµ
, (2.13)

where ωm is the magnetic plasma frequency.
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2.2.2 The higher-order (3+1)-dimensional cubic-quintic-septic com-

plex Ginzburg- Landau equation

♣ Higher-order dispersions

In the nonlinear regime, the possibility of ultrashort-pulse propagation has been investigated.

It has also been shown that, under ultrashort-pulse propagation, a modification of the nonlinear

Schrödinger equation, which is traditionally used for the theoretical description of nonlinear

light propagation in optical metamaterial for the slowly varying envelope and which describes

dispersion effects up to the second order and the self-phase modulation effect, is needed. For

this purpose, various authors have considered the third-order dispersion effect [139] and the

self-steepening effect [140]. Moreover, the real part as well as the imaginary part of the third-

order nonlinear susceptibility has been taken into account in order to describe the Raman

self-scattering effect [141]. In addition, a nonlinear wave equation that contains the third-order

dispersion effect, self-steepening effect, Raman self-scattering effect, Stokes losses associated

with the material excitations during the Raman self-scattering process and the dependence of

the nonlinear effects and the fiber mode area on the light frequency, has been derived [142].

All the above-mentioned effects influence considerably the femtosecond soliton propagation. In

particular, the possibility of obtaining high-quality pulses of less than 15 femtosecond duration

by compression of fundamental solitons with approximately 100 femtosecond duration in fibers

with slowly decreasing dispersion has been generated [142].

It is well known that the theoretical description of the self-modulation of waves propagating

in nonlinear magnetic metamaterials for the slowly varying envelope is governed by the nonlinear

Schrödinger (NLS) equation [11]. The NLS equation has exact dark and bright soliton solutions

that correspond to a balance between dispersion effects up to the second order and the self-phase

modulation effect. For bright solitons, this balance should be with the positive nonlinearity in

anomalous dispersive region or the negative nonlinearity in normal dispersive region, while for

dark solitons, these conditions are opposite [143]. Higher-order harmonics can be selectively

generated by introducing varactor diodes into the split-ring resonator circuit [144]. Let us

recall that the interaction of light with nonlinear dispersive media depends on the physical

and chemical structures of the metamaterial. Then, the desired linear and nonlinear properties
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can be obtained, such as the dispersion in metamaterials which can be tailored by stacking a

number of highly dispersive sheets of metamaterials. A number of studies have investigated the

dispersive effect of metamaterial structures on pulse propagation. For this purpose, it has been

shown that the dark soliton, which can transmit stably after the second-order dispersion and

nonlinear cancellation, becomes unstable after adding the third-order dispersion (TOD) [145].

As the pulses become narrower in time, fourth-order dispersion (FOD) should also be taken into

account. An exact dipole solitary wave solution has been derived in metamaterials with Kerr

nonlinearity, TOD and FOD [146]. Dark, bright, combined dark?bright, singular, combined

singular soliton, and singular periodic wave solutions are obtained in metamaterials with cubic-

quintic nonlinearity, detuning intermodal dispersion, self- steepening effect and linear as well

as nonlinear TOD and FOD terms [147]. Following Lagrangian variational method, stable

dynamics of the dissipative soliton in metametarials has been demonstrated as a result of the

interplay between various higher-order effects such as TOD and FOD terms as perturbation to

the system. In particular, self-steepening effect and TOD can remove instabilities, while FOD

always enhances the self-steepening effect induced temporal shift toward the trailing or leading

edges of the pulse [148]. Parametric conditions for the existence of bright, dark and W-shaped

solitary waves on the extended NLS equation with additional TOD and FOD terms, have been

presented [149]. It has been found that TOD contributes none to MI [150, 151], while FOD

plays a major role in the critical MI frequency and leads to the appearance of new MI peaks

that are experimentally observed instability regions [152, 153, 154]. Moreover, the evolution

spectrum of the perturbed wave for different FOD coefficients in MMs has shown when the FOD

coefficient increases, the period of modulation decreases, and the number of pulses increases

[155]. The stabilizing effect of positive FOD as well as the strong destabilizing effect of negative

FOG and TOD has been reported, and the nature of the instability in the vicinity of zero group-

delay dispersion [156]. Generally speaking, as the group velocity reduces further, higher-order

dispersive terms will start to play a role. Especially at these lower optical frequencies, it is

well-known that the common approach to approximate the dispersive properties by a Taylor

expansion, is only valid if many orders of the expansion are included. Indeed, it has been found

that the effect of higher-order dispersion in a typical photonic crystal strongly increases when

the group velocity decreases [157].
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They are expanded in the series around the carrying frequency up to the six order of the

Eq.2.4, and we obtain the Eq.2.5 in the form

∂
−→
D

∂t
≈ ε0(−iω0ε

−→
E + α1

∂
−→
E

∂t
+ i

α2

2

∂2−→E
∂t2
− α3

6

∂3−→E
∂t3
− iα4

24

∂4−→E
∂t4

+
α5

120

∂5−→E
∂t5

+ i
α6

720

∂6−→E
∂t6

+
∂(εnl

−→
E )

∂t
− iω0εnl

−→
E )e−iωt,

∂
−→
B

∂t
≈ µ0(−iω0µ

−→
H + β1

∂
−→
H

∂t
+ i

β2

2

∂2−→H
∂t2
− β3

6

∂3−→H
∂t3
− iβ4

24

∂4−→H
∂t4

+
β5

120

∂5−→H
∂t5

+ i
β6

720

∂6−→H
∂t6

+
∂(µnl

−→
H )

∂t
− iω0µnl

−→
H )e−iωt.

(2.14)

♣ Higher-order nonlinearities

In fact, cubic (Kerr), quintic-septic (non-Kerr) nonlinearities can be well understood when

considering the problem of soliton instabilities. Sometimes, these soliton instabilities lead to

the collapse, and depend on the number of space dimensions and strength of nonlinearity,

respectively. One of the principal direction in the studies of the collapse stabilization is the use

of a weaker nonlinearity, such as saturable [158], cubic-quintic [159], quadratic (χ2) [160],

or that induced by the self-induced transparency[161]. Remarkably, the connection between

the use of a weaker nonlinearity and the collapse stabilization is that, as the intensity of the

incident light field becomes stronger, non-Kerr nonlinear effects come into play. At the same

time, when solving the problem of soliton instabilities leading to the collapse of waves, it is also

important, for some applications in telecommunication and ultrafast signal routing systems,

to increase the channel handling capacity and ultra high speed pulse. For this purpose, it is

necessary to transmit dissipative solitons at a high bit rate (≈ 1 − 10fs) of ultrashort pulses,

which can be seen in many applicative contexts such as high repetition pulse sources based

on fiber as well as on doped fiber technology [162]. In addition, at high light intensities, the

way through which the non-Kerr nonlinearities influence the dissipative soliton propagation in

erbium doped fiber amplifiers has been described by the (3+1)-D complex Ginzburg-Landau

equation with cubic-quintic-septic nonlinearities and higher degree dispersion terms [17].

Specifically, it is well known that, the cubic (Kerr effect) nonlinearity is related to the

value of third-order susceptibility (χ3). Moreover, in a recent experiment, it has been estab-

lished that the optical susceptibility of CdSxSe1−x-doped glass processes a considerable level
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of fifth-order susceptibility (χ5). In semiconductor doubled optical fibers [95], the doping silica

fibers with two appropriate semiconductor particles may lead to an increased value of thir-

dorder susceptibility (χ3) and a decreased value of (χ5). However, when the saturation is very

strong, a self-focusing (χ7) is also needed. Quite recently, an experiment has been reported

in material such as chalcogenide glass which exhibits not only third-order nonlinearities but

even seventh-order nonlinearities [163]. In other words, chalcogenide glass can be classified

as a cubic-quintic-septic nonlinear material. In the past few years, the higher-order nonlinear

Schrödinger equation with cubic-quintic-septic nonlinearities were used, as a model equation

for the propagation of ultrashort femtosecond optical pulse [163]. Thus, in order to investigate

pulse propagation in such materials, it is necessary to consider higher-order nonlinearities in

place of the usual Kerr nonlinearity. To the best of our knowledge, no work has been reported

in the dynamics of dissipative light bullets in the nonlinear metamaterial, taking into account

septic nonlinearity, self-steepening, fourth-, fifth- and sixth-order dispersion terms in the frame

of the CGL equation. So we take Eq.2.8 and 2.9 in the form

εnl(|E|2) = (ε(3)
r + iε

(3)
i )|E|2−(ε(5)

r + iε
(5)
i )|E|4+(ε(7)

r + iε
(7)
i )|E|6, (2.15)

and

µnl(|H|2) = (µ(3)
r + iµ

(3)
i )|H|2−(µ(5)

r + iµ
(5)
i )|H|4+(µ(7)

r + iµ
(7)
i )|H|6, (2.16)

where in addition to the cubic Kerr-type dielectric nonlinearity, the quintic-septic non-Kerr

nonlinear terms become important and should be incorporated when one increases the intensity

of the incident light power to produce shorter pulses. As is well known in the study of soliton

dynamics beyond Kerr nonlinearity, the minus sign of the quintic nonlinearity is to prevent

pulse collapse.

Following the same procedure as in the previous section, we obtain

i
∂E

∂z
+ (σr⊥)∆⊥E − iσi⊥∇2

⊥E + (−ik2i)
∂2E

∂t2
− i(k3r + ik3i)

∂3E

∂t3
+ (k4r + ik4i)

∂4E

∂t4
+ i(k5r + ik5i)

∂5E

∂t5

+ (k6r − ik6i)
∂6E

∂t6
+ iδE + (N3r + iN3i)|E|2E + (N5r + iN5i)|E|4E + (N7r + iN7i)|E|6E+

(SS3r + iSS3i)
∂(|E|2E)

∂t
+ (SS5r + iSS5i)

∂(|E|4E)

∂t
+ (SS7r + iSS7i)

∂(|E|6E)

∂t
= 0,

(2.17)
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In the above equation, the different coefficients are given in the Appendix B. The resulting

nonlinear evolutionary equation ((2.17)) is the (3+1)D cubic-quintic-septic CGL equation which

models the propagation of ultrashort dissipative optical light bullets in MMs in the few cycle

regime, where σ⊥ is the transverse complex coefficient, k2 is the complex group velocity (GVD).

δ is related to the linear loss (δ < 0) or gain (δ > 0), while N3, N5 and N7 are the cubic,

quintic and septic nonlinear complex coefficients, respectively. The complex parameters SS3,

SS5 and SS7 characterize the so-called cubic, quintic and septic self-steepening (SS) effects due

to cubic, quintic and quintic nonlinear polarizations, respectively. Self steepening is a higher

order nonlinear effect which results from the intensity dependence of the group velocity. It

causes an asymmetry in the SPM broadened spectra of ultrashort pulses as the pulse moves

at a lower speed than the wings of the pulse. Therefore, as the pulse propagates inside the

system, the peak shifts towards the trailing edge and the trailing edge becomes steeper with

increasing distance. Self steepening of the pulse creates an optical shock and is only important

for short pulses. The complex quantities k3, k4, k5, and k6 account for the third-, fourth-, fifth-

and sixth-order dispersion coefficients, respectively.

In our scaled units, we choose νε = νµ = 5.10−4, which results in negligible absorption [164].

In Figure 2. 1, we show ε, µ and the index of refraction n, when ω2
m/ω

2
p = 0.64.

Bright spatiotemporal solitons (i.e., light bullets) are generated whenever both diffraction

and dispersion are compensated with saturating nonlinearity, having all the same sign [14]. As

a consequence, as confirmed also by numerical simulations, light bullets may propagate only

in NIMs with NGVD in the range 0.7 < ω < 0.8, for the choice of dissipative parameters

σi⊥ and δi, contrary to PIMs where AGVD is required. Therefore, all real terms of CQS-CGL

equation in NIMs have the opposite sign with respect to equivalent terms for PIMs, reflecting

a “mirror” symmetry. The complementarity of both types of media corresponds essentially to

a disjoint range of parameters in temporal domain. The obtained CQS-CGL equation, since it

is not integrable, can be solved only numerically. However, some analytical approach is highly

desirable.

Laure TIAM MEGNE Ph.D-Thesis



Chapter II:Models and methodology of investigations 61

Figure 2.1: Dispersion of ε, µ, and resulting n. The region 0.8 ≤ ω/ωp ≤ 1 is characterized by

metal-like reflections, as n becomes almost purely imaginary. n < 0 in the region ω/ωp ≤ 0.8.

2.3 Analytical methods

Before the discovery of solitons, mathematicians were under the impression that nonlinear par-

tial differential equations could not be solved, at least not exactly. However, solitons lead to

the recognition that through a combination of such diverse subjects as quantum physics and

algebraic geometry, one can actually solve some nonlinear equations exactly, which opens up

a wide window in the world of nonlinearity [165]. Since the concept of dromions was discov-

ered and introduced by Boiti [166], the study of soliton-like solutions in higher dimensions

has attracted much attention. Now, several significant (2+1- and (3+1)-D models, such as

(2+1)-D Kadomtsev-Petviashvili equation [167], Davey-Stewartson equation [168], general-

ized Korteweg-de Vries equation [169], sine-Gordon equation [170], (3+1)-D Korteweg-de Vries

equation [171], the nonlinear dispersion equation with compact structures [172], the gener-

alized Camassa-Holm (CH) equation [172], the nonlinear elastic rod equation [158-161], the

coupled quadratic nonlinear equations [177], the coupled Klein- Gordon-Schrödinger equations

[177], the coupled dispersionless system [178], the similarity method [179], and the method of
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modulational instability [180], the method of moments [181], the method of collective coordi-

nates [167,169], the finite-difference time-domain method [185], the effective-particle method

[186], the variational method [187], the Lyapunov’s method [188, 189] have been investi-

gated and some special types of localized solutions for these have also been obtained by means

of different approaches.

Solitons and localized structures have been intensively used during the recent years. The

direct way to emerge solitons and localized structures from nonlinear systems is through the

activation of MI. MI consists in the input of continuous wave (with a constant amplitude, but

with an amplitude dependence of the dispersion relation) which propagates through the system,

which can become unstable for a small perturbation under specific conditions.

In this thesis, a set of evolution equations have been derived using linear stability analysis

method. We recall that this linear stability analysis method has been successfully used to address

a variety of nonlinear problems. The motivations of our choice are based on the advantages of

this method. Among them, we have: linear stability analysis gives a detailed qualitative picture

of the role and mode of action of each perturbation (such as third-order dispersion, self-phase

modulation, or self-steepening) on the pulse. In order to investigate new types of 3D dissipative

optical light bullets, our consideration are based on the linear stability analysis.

• Linear stability analysis method

In a local nonlinear media(ker effet) the propagation of a slowly varying wave packet A(z, t),

along the z-axis is described by the nonlinear paraxial wave equation, that is, the 1D NLS

equation that takes the following form [190]

i
∂A

∂z
=
β2

2

∂2A

∂T 2
− γ|A|2A, (2.18)

where more precisely, A(z, T ) represents the amplitude of the pulse envelope, β2 is the GVD

parameter, and the nonlinear parameter γ is responsible for SPM. In the case of CW radiation,

the amplitude A is independent of T at the input of the fiber at z = 0. Assuming that A(z, T )

remains time independent during propagation inside the fiber, Eq.(2.18) is readily solved to

obtain the steady-state solution

A =
√
P0exp(iφNL), (2.19)

where P0 is the incident power and φNL = γP0z is the nonlinear phase shift induced by SPM.
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Eq.(2.19) implies that CW light should propagate through the fiber unchanged except for

acquiring a power-dependent phase shift (and for reduction in power in the presence of fiber

losses).

Before reaching this conclusion, however, we must ask whether the steady-state solution

Eq.(2.19) is stable against small perturbations. To answer this question, we perturb the steady

state slightly as follows

A = (
√
P0 + a)exp(iφNL), (2.20)

and examine evolution of the perturbation a(z, T ) using a linear stability analysis. Substituting

Eq.(2.20) inEq.(2.18) and linearizing in a, we obtain

i
∂a

∂z
=
β2

2

∂2a

∂T 2
− γP0(a+ a∗). (2.21)

This linear equation can be solved easily in the frequency domain. However, because of the a∗

term, the Fourier components at frequencies Ω and −Ω are coupled. Thus, we should consider

its solution in the form

a(z, T ) = a1exp[i(Kz − ΩT )] + a1exp[−i(Kz − ΩT )], (2.22)

where K and Ω are the wave number and the frequency of perturbation, respectively. Equa-

tions (2.21) and (2.22) provide a set of two homogeneous equations for a1 and a2. This set has

a nontrivial solution only when K and Ω satisfy the following dispersion relation

K = ±1

2
|β2Ω|[Ω2 + sgn(β2Ω2

c)]
1/2, (2.23)

where sgn(β2) = ±1 depending on the sign of β2, and

Ω2
c =

4γP0

4
. (2.24)

The dispersion relation (2.24) shows that steady-state stability depends critically on whether

light experiences normal or anomalous GVD inside the fiber. In the case of normal GVD

(β2 > 0), the wave number K is real for all Ω, and the steady state is stable against small

perturbations. By contrast, in the case of anomalous GVD (β2 < 0), K becomes imaginary for

Ω < Ωc, and the perturbation a(z, T ) grows exponentially with z as seen from Eq.(2.22). As a
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result, the CW solution ((2.20)) is inherently unstable for β2 < 0. This instability is referred

to as modulation instability because it leads to a spontaneous temporal modulation of the CW

beam and transforms it into a pulse train.

The gain spectrum of modulation instability is obtained from Eq. ((2.23)) by sgn(β2) = 1

and g(Ω) = 2Im(K), where the factor of 2 converts g to power gain. The gain given by

g(Ω) = |β2Ω|[Ω2
c − Ω2]1/2, (2.25)

exists only if Ω < Ωc.

2.4 Numerical Methods

A numerical approach is therefore often necessary for an understanding of nonlinear effects

in dissipative systems. A large number of numerical methods can be used for this purpose

[191, 192]. These can be classified into two broad categories known as: (i) the finite-difference

methods; and (ii) the pseudospectral methods. Generally speaking, pseudospectral methods are

faster by up to an order of magnitude to achieve the same accuracy [193]. The one method

that has been used extensively to solve the pulse-propagation problem in nonlinear dispersive

or dissipative media is the split-step Fourier method [194, 195]. The relative speed of this

method compared with most finite-difference schemes can be attributed in part to the use of

the finite-Fourier-transform (FFT) algorithm [196]. This section describes various numerical

techniques used to study the pulse-propagation problem with emphasis on the split-step Fourier

method and its modifications.

• Split-step Fourier method

The Split-step method is based on the pseudo-spectral method. This method involves calcu-

lating the dispersive and nonlinear terms in the dynamical equations governing the propagation

of ultrashort dissipative optical bullets in highly nonlinear metamaterials. In numerical analysis,

the split-step Fourier method is a pseudo-spectral numerical method used to solve nonlinear

partial differential equations like the NLS equation. The name arises for two reasons. First,

the method relies on computing the solution in small steps, and treating the linear and the

nonlinear steps separately (see Fig. 2.2). Second, it is necessary to Fourier transform back and
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forth because the linear step is made in the frequency domain, while the nonlinear step is made

in the time domain. An example of usage of this method is in the field of light pulse propagation

in optical fibers, where the interaction of linear and nonlinear mechanisms makes it difficult to

find general analytical solutions. However, the split-step method provides a numerical solution

to the problem. It is the most popular algorithm because of its good accuracy and relatively

modest computing cost. Here, below, is the description of the method.

Figure 2.2: Split-step Fourier method algorithm.

Let us, Consider for example, the NLS equation

i
∂A

∂z
− β

2

∂2A

∂t2
+ γ|A|2A = 0, (2.26)

where A(t, x) describes the pulse envelope in time t at the spatial position x. We rewrite this

equation as

i
∂A

∂z
− β

2

∂2A

∂t2
+ γ|A|2A = [D̂ + N̂ ]A. (2.27)

This equation (2.26) can be split into a linear part,

−β
2

∂2AD
∂t2

= D̂AD, (2.28)

Laure TIAM MEGNE Ph.D-Thesis



Chapter II:Models and methodology of investigations 66

and a nonlinear part,

γ|A|2AN = N̂AN . (2.29)

Both the linear and the nonlinear parts have analytical solutions. However, if only a small

step h is taken along z, then, the two parts can be treated separately with only a small numerical

error. One can, therefore, first take a small nonlinear step,

AN(t, z + h) = exp[iγ|A|2h]A(t, z), (2.30)

using the analytical solution. The dispersion step has an analytical solution in the frequency

domain, so it is first necessary to Fourier transform AD using

ÃD(ω, z) =

∫ +∞

−∞
AD(t, z)exp[i(ω − ω0)t]dt, (2.31)

where ω0 is the center frequency of the pulse. It can be shown that using the above definition

of the Fourier transform, the analytical solution to the linear step is

ÃD(ω, z + h) = exp[i
β

2
(ω − ω0)2h]AD(ω, z). (2.32)

By taking the inverse Fourier transform of ÃD(ω, z+h), one obtains AD(t, z+h); the pulse

has thus been propagated a small step h. By repeating the above N times, the pulse can be

propagated over a length of Nh.

The above shows how to use the method to propagate a solution forward in space. However,

many physics applications, such as studying the evolution of a wave packet describing a particle,

require one to propagate the solution forward in time rather than in space. The nonlinear

Schrödinger equation, when used to govern the time evolution of a wave function, takes the

form

i
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ γ|ψ|2ψ = [D̂ + N̂ ]A, (2.33)

where D̂ = − ~2
2m

∂2ψ
∂x2

, and N̂ = γ|ψ|2ψ, and that, m is the mass of the particle and ~ is Planck’s

constant.

The formal solution to this equation is a complex exponential

ψ(x, t) = eit(D̂+N̂)ψ(x,0). (2.34)
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Since D̂ and N̂ are operators, they do not in general commute. However, the Baker-Hausdorff

formula can be applied to show that the error from treating them as if they do will be of order

dt2, if we are taking a small but finite time step dt. We, therefore, can write

ψ(x, t+ dt) ≈ eidtD̂eidtN̂ψ(x, t). (2.35)

The part of this equation involving N̂ can be computed directly using the wave function at

time t, but to compute the exponential involving D̂ , we use the fact that in frequency space,

the partial derivative operator can be converted into a number by substituting ik for ∂
∂x
, where

k is the frequency (or more properly, wave number, as we are dealing with a spatial variable

and thus transforming to a space of spatial frequencies, i.e. wave numbers) associated with the

Fourier transform of whatever is being operated on. Thus, we take the Fourier transform of

eidtk
2 , recover the associated wave number, compute the quantity e−idtk2 and use it to find the

product of the complex exponentials involving and in frequency space as below:

e−idtk
2
F [eidtN̂ψ(x, t)], where F denotes a Fourier transform. We then use the inverse Fourier

transform of this expression to find the final result in physical space, yielding the final expression

ψ(x, t+ dt) = F−1[eidtk
2

F [eidtN̂ψ(x, t)]]. (2.36)

A variation on this method is the symmetrized split-step Fourier method, which takes half a

time step using one operator, then takes a full time step with only the other, and then takes

a second half time step again with only the first. This method is an improvement upon the

generic split-step Fourier method because its error is of order dt3 for a time step dt. The Fourier

transforms of this algorithm can be computed relatively fast using the Fast Fourier Transform

(FFT). Compared to the typical finite difference methods [197], the split-step Fourier method

can therefore be much faster.

2.5 Conclusion

This chapter was devoted to the methods used in this thesis. Helped by the Maxwell’s equations,

we have derivatived the (3 + 1)D CQS-CGL equation. Other analytical methods (linear stability

analysis method) and numerical methods (the Split-Step Fourier) have been presented, and
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some of these methods have been used to study the dynamics of the signal in the nonlinear

metamaterial. The numerical methods are used to consolidate the analytical results. In the next

chapter, we will present our results together with discussions.

Laure TIAM MEGNE Ph.D-Thesis



Chapter III

Results and Discussions

3.1 Introduction

The preceding chapters were devoted to generalities on the nonlinear metamaterials, soliton,

dissipative soliton and vortex soliton in dissipative optical systems (nonlinear metamaterials)

modeled by CGL equations. From the Maxwell’s equations, we have derived a new equation

which models the propagation of the optical soliton in the nonlinear metamaterials, called

"the (3+1)-D CQS-CGL equation". This new model which takes into account higher-order

dispersion terms up to six, cubic-quintic-septic nonlinearities and higher-order effects such as

self-steepening effects, is an originality in the study of dissipative solitons propagation based

on CGL models. It is nowadays, the most advanced model in this field of study and represents

our first contribution in this thesis.

In order to reach other objectives, such as different results derived from this model, we has

pointed out analytical treatment which have been proposed to describe the main characteristics

of the pulse evolution such as the linear stability analysis. To confirm the analytical methods

and to plot the different curves, we carried out numerical simulations of the higher-order (3+1)D

CQS-CGL equation based on the split-step Fourier method. There are a lot of works on the

spatiotemporal dissipative soliton, but this thesis focuses on the investigation of modulational

instability phenomena and the new families of spatiotemporal dissipative optical bullets by the

(3+1)D CQS-CGL equation, which can overcome the bandwidth challenge currently faced by

industrial sectors like information and communication technologies, space, security, and defense.
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3.2 Modulational instability in the (3+1)-dimensional cubic-

quintic CGL equation for MMs

Modulation instability (MI) is a well known and most ubiquitous and widespread type of insta-

bility that appears in most nonlinear systems [198]. In fact, a search on the Internet with the

term “Modulation instability” returns millions of hits! In Physics, it appears in many branches of

physics such as hydrodynamics, plasma physics, and electrodynamics, low temperature physics,

and quite obviously in nonlinear optics [198]. It is very difficult to say who started MI research

first. However, Benjamin and Feir was the first to observe the MI process on deep water waves

in 1967 [199]. Since then, MI is also sometimes known as Benjamin-Feir instability. MI has

been experimentally observed for electromagnetic waves in radio-wave signal by Zagryadskaya

and Ostrovsky in 1969 [200]. Later, numerous studies on MI has been carried out in the field

of nonlinear optics [198]. In optics, the interest in MI stems from its possible applications and

relevance in ultrafast pulse generation with high repetition rate, ultra-broadband super contin-

uum generation etc.[201]. MI is useful to generate ultrashort pulses whose repetition rate could

be externally controlled. Nowadays, MI is used as a technique to generate ultra-short pulses

with repetition rate higher than those attainable from mode locked-laser [198]. Also, MI is now

widely recognized as the precursor of soliton formation. In the context of nonlinear fiber optics,

the possibility of MI was predicted theoretically in optical fiber by Hasegawa in 1984 [202] and

have been experimentally verified by Tai et al [203]. In general, MI occurs in the anomalous

group velocity dispersion (GVD) regime for a focusing nonlinearity [198]. MI is possible in the

normal GVD regime also but it is limited to some special cases only [204]. It is interesting

to know that, recently, the study of MI process has even been extended to oceanography, to

understand the phenomena behind the generation of the so-called rogue waves [205].

3.2.1 Linear stability analysis and gain spectrum

Physical, engineering, and biological sciences are continuously generating problems of either

theoretical or practical interest. The necessary investigations of these problems involve models

that, very often, are mathematically expressed as ordinary differential equations (ODEs). In

this respect, solving ODEs constitutes an important research activity which is ever attracting a
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great deal of attention. For instance, approximate solutions can be obtained analytically using

various perturbation techniques for nonlinear ODEs which contain a small parameter. Problems

with two or more scales of variation can be analyzed using the method of multiple scales [206]

or the method of averaging [207]. In general, the starting point is the motivation in the choice

of the ansatz. When a small parameter is zero, ODE has a sine or cosine periodic solution with

the amplitude and phase constants. For small values of the small parameter, we expect the

same form of the solution to be approximately valid, but now the amplitude and phase are

expected to be slowly varying functions of time. The natural question is how the behavior of

the amplitude and phase of the wave has been approached in PDEs.

Usually, the study of the linear stability starts by considering a plane-wave solution, es-

pecially in the case of MI. In this framework, we assume that Eq. (2.12), gets the exact CW

solution

E(z, x, y, t) = Mei(k1x+l1y+kzz−ω1t), (3.1)

where |M | is positive real number representing the amplitude of the plane wave E(z, x, y, t).

k1, l1, and kz are real numbers representing the wave vectors. ω1 is real number representing

the natural angular frequency of the plane wave. Making use of the above into Eq.(2.12), and

setting both imaginary and real parts to zero, we obtain the dispersion relations

kz − σr⊥(k2
1 + l21)− ω2

1σr + δr +M2(N3r +M2N5r) + ω1M
2(SS3i +M2SS5i) = 0,

− σi⊥(k2
1 + l21)− ω2

1σi + δi +M2(N3i +M2N5i)− ω1M
2(SS3r +M2SS5r) = 0.

(3.2)

The linear stability of the CW solution can be examined by introducing a small perturbation in

the amplitude or in the phase or in both. Nevertheless, it has been shown in several occasions

that even when amplitude and phase perturbations are simultaneously considered, the growth

rate of instability mainly depends on the amplitude of the plane wave but it is independent of its

wave vector and its frequency [64, 208]. The latter relies on the fact that in the linearization

process of the perturbed wave around the unperturbed one, there is always a possibility of

finding a linear relationship between the phase and amplitude of the perturbation, which easily

allows to control the emergence of instability around an amplitude threshold [64, 208]. Zhao

et al. [209], adopting the same procedure, confirmed that the emergence of nonlinear spin

waves in an atomic chain of spinor Bose-Einstein condensates under MI, mainly depends on the
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amplitude perturbation, even when both the phase and amplitude are perturbed. This finds

real applications in the field of gravitational waves, for example, where the carrier frequency is

extremely high so that the subperiod power cannot be measured. In such conditions, the only

measurable quantity remains the slowly varying amplitude of modulation [210]. Interestingly,

phase and frequency modulation can indubitably become detectable only if converted into

amplitude modulation [210]. Therefore, in the rest of this work, we consider an amplitude

perturbation so that solution (3.1) becomes

E(z, x, y, t) = (M + a(z, x, y, t))ei(k1x+l1y+kzz−ω1t), (3.3)

where the complex field a(x, y, z, t) is small perturbations of the carrier waves, i.e., |a(x, y, z, t)|<<

|M |. Next, we substitute Eq.(3.3) into Eq.(2.12) and keep only the terms that are linear in

a(x, y, z, t), which leads to the linearized equation of the perturbed field

i
∂a

∂z
+ σ⊥

(
∆⊥a+ 2i

(
k1K

∂a

∂x
+ l1L

∂a

∂y

))
+ σ

∂2a

∂t2
− 2iω1σ

∂a

∂t
+M2(N3 + 2M2N5)(a+ a∗)

+M2(2SS3 + 3M2SS5)
∂a

∂t
+M2(SS3 + 2M2SS5)

∂a∗

∂t
− iω1M

2(SS3 + 2M2SS5)(a+ a∗) = 0.

(3.4)

Here, a∗(x, y, z, t) is the complex conjugate of the perturbed field, assumed to be of the form

a(z, x, y, t) = a1e
i(Kx+Ly+Kzz−Ωt) + a∗2e

−i(Kx+Ly+Kzz−Ω∗t), (3.5)

where K , L and Kz are the perturbation wave numbers, Ω is the frequency of the perturbation

modulating the carrier signal, and the parameters a1 and a∗2 are constant complex amplitudes.

The substitution of Eq.(3.5) into Eq.(3.4) gives a linear homogeneous system of equations in

terms of a1 and a2  Kz + a11 a12

a21 Kz + a22

 a1

a2

 =

 0

0

 , (3.6)
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where,

a11 = σ⊥(K2 + L2 + 2k1K + 2l1L) + σ(Ω2 + 2Ωω1)−M2(N3 + 2M2N5) + iM2Ω(2SS3 + 3M2SS5)

+ iω1M
2(SS3 + 2M2SS5),

a12 = −M2(N3 + 2M2N5) + iM2Ω(SS3 + 2M2SS5) + iω1M
2(SS3 + 2M2SS5),

a21 = M2(N∗3 + 2M2N∗5 )− iM2Ω(SS∗3 + 2M2SS∗5) + iω1M
2(SS∗3 + 2M2SS∗5),

a22 = −σ∗⊥(K2 + L2 − 2k1K − 2l1L)− σ∗(Ω2 − 2Ωω1) +M2(N∗3 + 2M2N∗5 )− iM2Ω(2SS∗3 + 3M2SS∗5)

+ iω1M
2(SS∗3 + 2M2SS∗5).

(3.7)

The condition for the existence of nontrivial solution for the system (3.6) gives rise to a second-

order polynomial equation for the wave number Kz that represents the dispersion law for the

perturbation, i.e.,

K2
z + sKz + p = 0, (3.8)

in which s = a11 + a22 and p = a11a22 − a12a21. We study the sign of the imaginary part of the

roots of Eq.(3.8) and we investigate the gain or loss spectrum or the MI regions. This equation

has two roots given by

K±z =
1

2

(
−s±

√
s2 − 4p

)
. (3.9)

The steady-state solution becomes unstable whenever the wave numbers K±z have a nonzero

imaginary part, since the perturbed amplitude grows exponentially along the NIM.The quan-

tities K±z depend on the values of the parameters that make the coefficients of the dispersion

relation. Therefore, MI in NIMs, with the presence of the wave numbers K and L of the per-

turbed mode, the wave number of the continuous wave k1, cubic-quintic nonlinearities and,

cubic and quintic self-steepening effects, can be controlled. The regions of instability are called

MI gain spectrums and are regions where the gain G+ = 2Im(K+
z ) > 0, or G− = 2Im(K−z ) > 0,

where Im(K±z ) ) represents the imaginary part of K±z .

Fig. 3.1 displays some bounded regions of MI, with finite gains G− > 0, and their cor-

responding density plots, versus the wave number K and k1 of the perturbation and CW,

respectively. The parameters used in the calculations are: Ω = 0.6, ω1 = 0.8, L = −K, l1 = 0.8,

k1 = 0.8, σ⊥ = −1 + i0.005, σi = 0.19, δ = −i0.081, SS3 = −1 − i0.1, SS5r = 1. In regions
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Figure 3.1: Modulational instabilty gain associated with the solution G− as a function of the

wave number of the perturbation mode K and the wave number of the continuous wave k1.

Panels in (aj)j=1,2,3,4 show bounded gains of MI, and the corresponding density plots in Panels

(bj)j=1,2,3,4, for Ω = 0.6, ω1 = 0.8, L = −K, l1 = 0.8, k1 = 0.8, σr⊥ = −1, σi⊥ = 0.005, σi =

1.98, δr = 0, δi = −0.081, SS3r = −0.4, SS3i = 1.2, SS5r = 0.5, SS5i = −0.9. Panels (a1)-(b1):

normal-GVD regime of self-focusing negative-index MMs, σr⊥ = −1, σr = 1, N3r = 1, N3i =

−0.12, N5r = −1, N5i = 0.075. Panels (a2)-(b2): anomalous-GVD regime of self-defocusing

negative-index MMs, σr⊥ = −1, σr = 1, N3r = −1, N3i = 0.12, N5r = 1, N5i = −0.075.

Panels (a3)-(b3): normal-GVD regime of self-defocusing negative-index MMs, σr⊥ = −1, σr =

1,N3r = −1, N3i = 0.12, N5r = 1, N5i = −0.075. Panels (a4)-(b4): anomalous-GVD regime

of self-defocusing positive-index MMs, σr⊥ = 1, σr = −1, N3r = −1, N3i = 0.12, N5r = 1,

N5i = −0.075.
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Figure 3.2: Plots of MI gain associated with solution G−, versus K, for different values of SS3i,

for Ω = 0.6, ω1 = 0.8, L = −K, l1 = 0.8, k1 = 0.8, σr⊥ = −1, σi⊥ = 0.005, σr = −1, σi = 0.19,

δi = −0.081, N3r = −1, N3i = 0.12, N5r = 1, N5i = −0.075, δr = 0, SS3r = −1, SS5r = 1 and

SS5i = −0.44.

where G− > 0, the plane wave will be expected to break-up into nonlinear patterns and soli-

tonic objects. Otherwise, the plane wave will remain stable under modulation. Such features

of instability/stability are importantly modified by the changes in system parameters such as

the cubic and quintic self-steepening coefficients. A good illustration of such effects is given by

Fig.3.2, where the MI gain G− is plotted against the perturbation wave number K, with the

cubic self-steepening coefficient SS3i changing. In general, the MI gain spectrum is illustrated

by two identical and symmetric lobes which get expanded when SS3i decreases. This also af-

fects the band-gap which also grows when SS3i decreases, while the MI gain decreases under

the same effect. To remind, Fig.3.2 has been plotted for SS5i = −0.44, a value which does not

give full information on how the MI gain can be affected by the quintic self-steepening term.

This is illustrated in Fig. 3.3, where G− is plotted versus K and SS5i, both under anomalous-

and normal-GVD regimes, with SS3i = −0.1. As in Fig. 3.2, the MI gain is characterized by

two symmetric and identical lobes and, in general, G− is a decreasing function of SS5i. How-
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Figure 3.3: Regions of MI illustrating gain associated with solution G− against K, the wave

number of perturbation, and the quintic self-steepening imaginary coefficient SS5i, for Ω = 0.6,

ω1 = 0.8, L = −K, l1 = 0.8, k1 = 0.8, σr⊥ = −1, σi⊥ = 0.005, σi = 0.19, δr = 0, δi = −0.081,

N3i = 0.12, N5r = 1, N5i = −0.075, SS3r = −1, SS3i = −0.1, SS5r = 1. Panel (a): anomalous-

GVD regime of self-defocusing negative-index MMs, σr = −1 and N3r = −1. Panel (b): normal-

GVD regime of self-defocusing negative-index MMs, σr = 1 and N3r = −1.

ever, in the anomalous regime (see Fig. 3.3(a)), the band-gap reduces with SS5i increasing and

solitons are not likely to exist when SS5i = 0. On the other side, the normal-GVD regime

supports solitonic structures for SS5i = 0 and the MI bad-gap is not considerable affected as

in the anomalous-GVD case. Indeed, this is contrary to what was already reported by Wen et

al.[10]. In fact, they showed, using a (3+1)D NLS equation for ultrashort pulse propagation,

that there was bandwidth amplification with increasing the cubic self-steepening parameter, in

absence of the quintic nonlinear coefficient and the quintic self-steepening term. Moreover, the

proposed model, which contains essentially complex coefficient, is a generalized case, which,

when σi = σi⊥ = δI = δr = N3i = N5r = N5i = SS3r = SS5i = SS5r = 0, the NLS equa-

tion is recovered. Obviously, the balance between such new effects can modify the gain and be

responsible for the emergence of more suitable patterns under long-time evolution.

3.2.2 Numerical experiment

The linear stability analysis, which is based on the linearization around the unperturbed plane

wave, is valid only when the amplitude of the perturbation is small compared to that of the

carrier wave. More precisely, the linear approximation should not be valid at large time scales,

Laure TIAM MEGNE Ph.D-Thesis



Results and Discussions 77

Figure 3.4: Panels (a)-(f) show the structure of the beam intensity for a cluster of four funda-

mental solitons for different values of the longitudinal distance z, and the corresponding density

plots. Panel (a): z = 7. Panel (b): z = 8. Panel (c): z = 10; panel (d): z = 11. The other param-

eter values are A = 0.001, Ω1 = Ω2 = 0.5, ω1 = ω2 = 0.41, σr⊥ = −2.71, σi⊥ = 0.5, σr = 2.57,

σi = 0.5, δr = 0, δr = −0.0079, N3r = −1, N3i = 0.12, N5r = 1, N5i = −0.65, SS3r = −0.2,

SS3i = −0.6, SS5r = 0.42 and SS5i = −0.5.
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since the amplitude of an unstable sideband grows exponentially. Therefore, the long-time evo-

lution of the modulated plane wave requires full numerical simulations of the generic equation.

This is, in fact, a way of confronting the analytical predictions and, in our context, pulse propa-

gation in NIM is carried out via the split-step Fourier method on Eq.(2.12). In order to examine

the accuracy of the performed digital experiment, different space and time steps are tested. 256

space Fourier modes are used with the space period of 8, and in time, the number of Fourier

modes is also 256, with a similar period of 8. Additionally, the numbers of grid points in space

and time are 350 and 350, respectively, with the mesh size ∆x = ∆y = 0.005 and ∆t = 0.005.

The split-step Fourier method is then applied considering y = 0, with z constant, with the

initial signal being of the form

E(x, t, 0) = M(1 + Asin(2π(Ω1x+ Ω2t)))e
−i(ω1x+ω2t), (3.10)

where A is the modulation amplitude, Ω1 and Ω2 are the frequencies of weak sinusoidal modu-

lations imposed on the continuous waves in the x direction and time t, respectively.

According to features of Figs. 3.1-3.3, the development of MI depends on both the wavenum-

bers K and self-steepening parameter values, which implies that right values of such parameters

should be chosen to expect the appearance of soliton-like objects. We used the parameter values

A = 0.001, Ω1 = Ω2 = 0.5, ω1 = ω2 = 0.41, σr⊥ = −2.71, σi⊥ = 0.5, σr = 2.57, σi = 0.5, δr = 0,

δi = −0.0079, N3r = −1, N3i = 0.12, N5r = 1, N5i = −0.65, SS3r = −0.2, SS5r = 0.42,.

Calculations are initiated for SS3i = −0.6 and SS5i = −0.5, which results to the MI behaviors

summarized in Fig. 3.4, where, at distance z = 5, one clearly sees the appearance of a cluster of

four fundamental solitons as the result of the interplay between nonlinear and dispersive effects.

This, indeed, shows the accuracy of our analytical predictions and confirms that MI is a direct

mechanism for soliton formation in nonlinear media. The most interesting aspect of the present

numerical experiment is that the emerging entities are found to be moving as z increases, and

their interaction leads to a complex molecular soliton (see Figs. 3.4(e) and (f)), which concen-

trates all the energies carry by individual solitons. Also, this brings out another main effect of

MI, which is the creation of localized pulses and energy localization. In the last decades, differ-

ent kinds of solitons have been discussed in the literature, along with their relationship with MI,

including Bragg solitons, vortex solitons, discrete solitons and cavity solitons [86], just to name

a few. They are however few, the contributions that discuss the appearance of cluster solitons
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Figure 3.5: Panels (a)-(d) show the structure of the beam intensity for a cluster of four fun-

damental solitons for different values of the longitudinal distance z, and their corresponding

density plots. Panel (a): z = 7. Panel (b): z = 11. Panel (c): z = 13. Panel (d): z = 15. The

other parameter values used here are A = 0.001, Ω1 = Ω2 = 0.5, ω1 = ω2 = 0.41, σr⊥ = −2.71,

σi⊥ = 0.5, σr = 2.57, σi = 0.5, δr = 0, δr = −0.0079, N3r = −1, N3i = 0.12, N5r = 1,

N5i = −0.65, SS3r = −0.2, SS3i = −0.6, SS5r = 0.42 and SS5i = −2.

as the consequence of MI, a phenomenon that has, for instance, been related to azimuthal MI

by Petroski et al.[211]. We should however stress that intensive numerical studies have pointed

out the fact that the stability of such structures is very sensitive to noise input[105], depending

on the number of solitons composing the cluster, the angular quantum number of the azimuthal

instability and the corresponding largest growth rate of MI. Nevertheless, noise effects being

not considered in the present paper, other aspects can be regarded as done in Fig. 3.5, where we

have decreased the imaginary quintic self- steepening parameter to SS5i = −2. As previously,

the initial plane wave breaks into a four-wave cluster of moving solitons which, as distance

increases, merge into a unique structure (see Fig. 3.5(c)), gets more localized from distance

z = 15 (see Fig. 3.5(d)). Compared to the molecular structure of Fig. 3.4(f), which contains

some humps, the unique molecular soliton of Fig. 3.5(d) displays some features of dromions that

are well known in the literature[212, 213]. As a whole, the numerical results discussed above

show the strengths and weaknesses of our linear stability analysis of the MI in the (3+1)D CQ
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CGL equation. It gives a correct conclusion about the analytical predictions, at least at the

onset stage of wave evolution for a short distance of propagation. Indeed, for a sufficiently long

distance and time, the linear stability analysis fails and the modulation can lead the system to

the formation of localized patterns, spontaneously generated via wave-mixing processes during

propagation and interaction. Indeed, such interaction, when they are inelastic, give rise to the

complex molecular entities obtained from the model under study. From the physical point of

view, the phenomenon displayed by Figs. 3.4(f) and 3.5(d) may result from the fact that the

cubic and quintic self-steepening terms bring about additional nonlinear effects, which, because

of the well-balanced effects between self-defocussing nonlinearity and dispersion, cause the rapid

increase of pulse intensity, leading to maximum peaks. There are however two interesting be-

haviors of such maximum peak intensities, depending on the quintic self-steepening strength,

that are pulse splitting in the temporal domain and compression in the spatial domain, on the

one hand, and symmetric shrinking in both temporal and spatial domains, with the highest

intensity being located at (x = 0, t = 0) in both cases in the other hand. In some other con-

texts, such behaviors may predict the emergence of spatial ring solitons that were reported in

MMs by Zhang et al.[105] using a (3+1)D NLS equation, with simultaneous cubic electric and

magnetic nonlinearity, by means of the variational method.

3.3 Propagation of dissipative light bullet in Kerr and non-

Kerr negative-refractive-index materials

Up to now, all studies on MMs have been concerned with only CQ nonlinearities, and there

have been no studies on the properties of dissipative solitons in 3D dissipative optical metama-

terials with cubic-quintic-septic nonlinearities. In particular, the generalized CQ CGL equation

modeling dissipative spatiotemporal solitons in NIMs has been derived, and the simultaneous

cross-compensation of saturating nonlinearity excess with losses that are balanced by gain gen-

erates dissipative light bullets, transforming the medium into an active dissipationless composite

metamaterial [15].

In this section, we chose a set of parameters that allows us to generate stable dissipative

light bullets propagation characterized by different topological charges, namely fundamental
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vortex, necklace, and azimuthon in MMs displaying optical nonlinearities up to the seventh

order, with (3+1)D CQS-CGL equation with competing effects of dispersion, diffraction, gain,

loss, cubic-quintic- septic nonlinearities, and cubic, quintic, and septic self-steepening terms.

Dynamics of dissipative optical solitons is described by the higher-order (3+1)-D CQS-CGL

equation for the normalized complex envelope of the optical field:

i
∂E

∂z
+ (σr⊥)∆⊥E − iσi⊥∇2

⊥E + (−ik2i)
∂2E

∂t2
− i(k3r + ik3i)

∂3E

∂t3
+ (k4r + ik4i)

∂4E

∂t4
+ i(k5r + ik5i)

∂5E

∂t5

+ (k6r − ik6i)
∂6E

∂t6
+ iδE + (N3r + iN3i)|E|2E + (N5r + iN5i)|E|4E + (N7r + iN7i)|E|6E+

(SS3r + iSS3i)
∂(|E|2E)

∂t
+ (SS5r + iSS5i)

∂(|E|4E)

∂t
+ (SS7r + iSS7i)

∂(|E|6E)

∂t
= 0,

(3.11)

We show that families of spatiotemporal dissipative optical ligth bullets, including simple

vortex, necklace-ring and azimuthon solitons, uniformrig beam, sphericals distributions of ligth

bullets are possible in Eq.(3.11), where the time-dependent Laplacian is ∆⊥ = ∇2
⊥ + k2r

∂2

∂t2
.

Here, k2r is the normal GVD. Normalizing reduced time t = t√
k2r

, one obtains the laplacian

∆⊥ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂t2
, which is completely symmetrical with respect to spacial coordinates

x, y and time coordinate t. Metamaterials possessing a negative refractive index can display

both negative and positive self-steepening effects, which govern the dimensions of the SRR

circuit, unlike regular materials with a positive refractive index. Research has demonstrated

that nonlinear dispersive parameters (self-steepening) cause a time delay in the system while the

soliton progresses. The influence of higher-order dispersion on the soliton, where the light bullet

permits the suppression or enhancement of this temporal delay caused by the self-steepening.

One of the critical issues in studying the emergence of light bullets and vortices in nonlinear

systems is the choice of the appropriate initial conditions. Most of such initial conditions, used

in several contributions, were derived as analytical solutions of single and coupled (2+1)D

and (3+1)D NLS equations, using different methods among which the Hirotas bilinear method

[214], the self-similarity method [215], and so on. It was shown that an azimuthally periodically

modulated bright ring necklace beam could self-trap in a (2+1)D cubic NLS equation [216].

This was generalized to a (2+1)D cubic-quintic CGL equation, where necklace-shaped arrays of

localized spatial beams were shown to merge into stable fundamental or vortex solitons due to
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the competition between cubic and quintic nonlinearities [217]. Numerical simulations were also

performed in spherical coordinates using incident soliton shape derived in Refs.[17, 216, 217]

and given by:

E(z = o, r, ϕ) = E0sech[(r −R0)/r0][cos(nϕ) + iq sin(nϕ)]eimϕ, (3.12)

with E0 being the amplitude factor, R0 being the mean initial radius, r0 being the width. The

parameter q, with 0 ≤ q ≤ 1, determines the azimuthal modulation depth [218, 219, 220]

and m and 2n stand for the number of topological charge(TC) and necklace beads in the input

beam, respectively. r = (x2 + y2 + t2)1/2 and ϕ = arctan(y/x). In general, the beam given by

Eq.(3.12) can be perceived as a combination of two vortices with respective m+ n and m− n,

which is expressed as

E(z = o, r, ϕ) =
E0

2
(1 + q)sech[(r −R0)/r0]e[i(m+n)ϕ] +

E0

2
(1− q)sech[(r −R0)/r0]e[i(m−n)ϕ],

(3.13)

Numerical studies of vortices formation are carried out via the split-step Fourier algorithm

applied to Eq.(3.11). In what follows, we have adopted the following approach in order to allow

a good understanding of the method applied to Eq.(3.11). To succeed, it is useful to write

Eq.(3.11) formally in the form:

∂E

∂z
= (D̂ + N̂)E, (3.14)

where D̂ is the linear differential operator that accounts for dispersion in a linear medium and

N̂ is a nonlinear operator that governs the effect of nonlinearities.

Taking the case where the nonlinearities have to offset the dispersion terms, these operators

are given by:

D̂ = iσr⊥∆⊥+σi⊥∇2
⊥+k2i

∂2

∂t2
+(k3r+ik3i)

∂3

∂t3
+i(k4r+ik4i)

∂4

∂t4
−(k5r+ik5i)

∂5

∂t5
+i(k6r−ik6i)

∂6

∂t6
−δ,

(3.15)
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and

N̂ = i(N3r + iN3i)|E|2+i(N5r + iN5i)|E|4+i(N7r + iN7i)|E|6+i(SS3r + iSS3i)
∂(|E|2E)

|E|∂t
+

i(SS5r + iSS5i)
∂(|E|4E)

|E|∂t
+ i(SS7r + iSS7i)

∂(|E|6E)

|E|∂t
.

(3.16)

The split-step Fourier method obtains an approximate solution by assuming that in prop-

agating the optical field over a small distance h, the dispersion and nonlinear effects can be

pretended to act independently. More specifically, propagation from z to z+ h is carried out in

two steps. In the first step, the nonlinearity acts alone, and D̂ = 0 in Eq.(3.14). In the second

step, dispersion acts alone, and N̂ = 0 in Eq. (3.14). Mathematically, the integration of Eq.

((3.14) gives

E(z + h, x, y, t) = exp(hD̂)exp(hN̂)E(z, x, y, t). (3.17)

The exponential operator exp(hD̂) can be evaluated in the Fourier domain using the pre-

scription:

exp(hD̂)E(z, x, y, t) = F−1
T exp[hD̂(ikx, iky,−iω)]FTE(z, x, y, t), (3.18)

where FT denotes the Fourier-transform operation. Operator D̂(ikx, iky,−iω) is obtained from

Eq. (3.15) by replacing the differential operator ∂2

∂x2
= (ikx)

2, ∂2

∂y2
= (iky)

2 in k space and ∂m

∂t2

by (−iω)m, and ω is the frequency in the Fourier domain.

In order to be used, the self-steepening have to be transformed as follows:

(SS3r + iSS3i)

E
F−1
T ((−iω(FT ((abs(E)2)E)))) +

(SS5r + iSS5i)

E
F−1
T ((−iω(FT ((abs(E)2)E))))+

(SS7r + iSS7i)

E
F−1
T ((−iω(FT ((abs(E)2)E)))).

(3.19)

3.3.1 Simple light bullet(n = 0 or q = 1)

We have used the longitudinal step size M z = 0.01, being adopted for all cases. Moreover,

numerical calculations are made using the following relevant parameters of the studied meta-

material: σr⊥ = −1, σi⊥ = 0.25, k2i = 0.5, k3 = 0.01+ i0.21, k4 = 0.1+ i0.001, k5 = 0.21+ i0.01,

k6 = 2.1 + i0.66, δ = −0.0079, N3 = −1 + i0.12, N5 = 1 − i2.65, N7 = −0.05 + i0.02,
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SS3 = −0.0001 − i0.02, SS5 = 0.1 − i0.01, SS7 = 0.2 − i0.2, while the initial beam (3.13) is

characterized by the set of parameters E0 = 1.2, R0 = 5mm and r0 = 4mm.

To start, the fundamental light bullet is obtained in Fig. 3.6 , where the upper row (a)

shows the evolution of the light bullet propagating without changing its shape over different

propagation distances and the lower row (b) displays the evolution of the amplitude related

to this light bullet. It appears that the optical intensity distribution does not depend on the

number of topological charges nor on the number of beads of the necklace and the azimuthal

modulation. Obviously, the light bullet?s amplitude, shape and radial radius decrease during

the propagation. Such features, obtain for m = n = 0 and q = 0, may change depending on the

choice of the azimuthal modulation, the topological charge, and necklace beads in the input

beam

Based on the above, propagation features of such a fundamental light bullet are given

in in Fig. 3.7, where q = 1 and n = 0, with m = −6, where the upper row (a) depicts

the evolution of the light bullet propagating by changing its shape on different propagation

distances and the lower row (b) shows the phase distribution related to that of the light bullet.

We see that the shape of the light bullets can change depending on the choice of the azimuthal

modulation, the topological load and the necklace beads in the input beam. In this case, the

optical intensity distribution does not depend on the parameter n and has radial symmetry in

the transverse plane. This is due to the condition q = 1. We notice the initial light ball, which,

at z = 10, presents chains of ring-modulated solitons with 6 layers. With increasing distance,

the fundamental light bullet, using the indicated set of parameter values, appears as a ring that

gradually disintegrates into individual solitonic fragments. This is due to the non-linearities that

are too weak to balance the dispersions and diffraction. Interestingly, the stability of such a

structure is obtained in in Fig. 3.8, where the bullets are stable over a large propagation distance.

Here, the upper row (a) shows us the evolution of the light ball propagating in a stable way

without changing its shape on different propagation distances, while the lower row (b) shows

the phase distribution related to this light bullet. The stability achieved is attributed to the

competing nonlinearities, which create a nearly stable profile. This is a result of the heightened

third, fourth, and fifth-order dispersive parameters and third and fifth-order nonlinear dispersive

parameters. Furthermore, these nonlinear dispersive parameters are increased to balance the
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Figure 3.6: The upper row (a) shows the isosurface evolution of a fundamental 3D light bullet

for n = m = q = 0 at different distances z = 0, z = 10, z = 30, z = 50 and z = 70, respectively,

from left to right. The lower row (b) shows the corresponding wave amplitude. The values of

parameters are: σr⊥ = −1, σi⊥ = 0.25, k2i = 0.5, k3 = 0.01 + i0.21, k4 = 0.1 + i0.001, k5 =

0.21+ i0.1, k6 = 2.1+ i0.66, δ = −0.0079, N3 = −1+ i0.12, N5 = 1− i2.65, N7 = −0.05+ i0.02,

SS3 = −0.0001− i0.02, SS5 = 0.1− i0.01, and SS7 = 0.2− i0.2.
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dispersions, resulting in cubic and septic nonlinearity in other physical terms. In fact, higher-

order dispersions help maintain stability over a large propagation distance compared to the

stabilization of light bullets in nonlinear MM waveguides discussed in Ref. [221]. In general,

the increase in the strength of dispersion reveals some hidden phenomena of the system which

did not appear when we were at the lower orders. This can be better understood either by

demonstrating the stability or the instability of the system, which can later lead to the collapse

of the system. In this article, we describe the phenomenon of propagation and stability that

appears thanks to its higher orders. However, in in Fig. 3.8, the higher order terms allow us to

put in stability and prevent a collapse of the structure at a large propagation distance. The above

results from in Fig. 3.7 and in Fig. 3.8 are also confirmed by the evolution of the amuplides of

Fig. 3.9 of the built structures. There, observations show that the unstable fundamental light

ball experiences a decrease in amplitude as it propagates and simultaneously gets expanded

radially. In contrast, the stable fundamental light bullet maintains a constant amplitude and

radius at the same distance of propagation. The scenario is supported by a clockwise rotation of

the optical vortex around the origin [see row (b) of Fig. 3.7], which differs from that of materials

with a positive refractive index [222].

Additionally, the sign of the topological charge imposes the rotation direction of the az-

imuthons, which is related to the negative diffraction in MMs. This is, for example, illustrated

in Fig. 3.10, where m = −6 in panel (a) and m = 6 in panel (b). This, once more, confirms

the main characteristic of vortex and solitons, which is accompanied by phase dislocation and

nonzero angular momentum.

3.3.2 Necklace-ring solitons ((n 6= 0 or q = 0)

The optical wave packet described by Eq. ((3.13) becomes the necklace beams when n 6= 0 and

q = 0, in which 2n determines the number of input lobes. In Fig. 3.8, it is confirmed that the

number of azimuthal modes, for a multipole light bullet is 2n, as we have fixed n = 1, q = 0

and m = −6. The light bullet, which exhibits six notches at z = 10, progressively merges into

one structure, while notches disappear with increasing distance. The amplitude and the phase

distribution show an initial presence of a dipole-type azimuth whose collective rotation leads to

a single structure. In the rotational frame , there is a presence of six, then four lobes, probably
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Figure 3.7: The upper row (a) shows the 3D isosurface evolution and progressive collapse of

the fundamental light bullet with distance, for m = −6, n = 0 and q = 1, at timet = 10

and distances z = 0, z = 10, z = 30, z = 50 and z = 70, while the lower row (b) show the

corresponding phase distribution in the (x, y)-plane. The parameters are: σr⊥ = −1, σi⊥ = 0.25,

k2i = 0.5, k3 = 0.01 + i0.21, k4 = 0.1 + i0.001, k5 = 0.21 + i0.1, k6 = 2.1 + i0.66, δ = −0.0079,

N3 = −1+ i0.12, N5 = 1− i2.65, N7 = −0.05+ i0.02, SS3 = −0.0001− i0.02, SS5 = 0.1− i0.01,

and SS7 = 0.2− i0.2.
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Figure 3.8: The upper row (a) shows the 3D isosurface evolution of the stabilized fundamental

light bullet, for m = −6, n = 0 and q = 1, at time t = 10 and distances z = 0, z = 10,

z = 30, z = 50 and z = 70, while the lower row (b) show the corresponding phase distribution

in the (x, y)-plane. The parameters are: σr⊥ = −0.1, σi⊥ = 0.25, k2i = 0.5, k3 = 3.1 + i2.21,

k4 = 0.1+ i0.01, k5 = 2.21+ i0.1, k6 = 0.1+ i0.66, δ = −0.0079, N3 =?1+ i0.12, N5 = 1− i2.65,

N7 = −0.05 + i0.02, SS3 = −0.001− i0.0001, SS5 = 0.1− i0.01, and SS7 = −0.2− i0.2.
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Figure 3.9: The upper row (a) corresponds to the amplitude evolution of the unstable light bullet

of Fig. 3.7, while the lower row (b) displays the amplitude evolution of the stable fundamental

light bullet of Fig. 3.8, with columns from left to right corresponding to the respective distances

z = 0, z = 10, z = 30, z = 50 and z = 70.

induced by the notches appearing from a distance z = 10. To remind, azimuthons constitute a

new class of optical beams spatially located in nonlinear media .

3.3.3 Azimuthon incidence(n 6= 0 or q 6= 1)

Azimuthons are a new class of optical beams spatially located in nonlinear media introduced in

Ref.[224]. They provide an important link between radially symmetrical vortices and soliton

clusters rotating through the azimuthal modulation q defined Eq.(13). Azimuthons are char-

acterized by two independent integers or azimuthal indices: the topological load m and the

number of intensity peaks n. However, the visible rotation of azimutons can be directed along

or opposite to the direction of the energy determined by the sign of the topological charge m,

see [225]. Note that in MMs, the direction of azimuthons will always be opposed to that of

materials with a positive refractive index due to negative diffraction in MMs.

The number of notches can be concluded to be determined by min|m ± n|, while the for-

mation of nonzero TC rotates in different directions as presented in the corresponding phase
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Figure 3.10: The panels show phase distributions of light bullets corresponding to opposite signs

of the topological charge. This imposes opposite rotative frames of the azimuthons, as expected

in negative-index metamaterials. For panel (a): m = −6, n = 0 and q = 0, while for (b): m = 6,

n = 0 and q = 0, with the other parameters keeping their values.

distributions. This is illustrated by the features of Fig. 3.12, where, in the propagative frame,

the hexapole light bullet rotates with the distance increasing until the unstable state of the

fundamental light bullet is reached. This effectively corroborates the findings of Ref. [226],

which suggested the spontaneous formation of a cluster of four fundamental solitons in a cubic-

quintic CGL equation in addition to the cubic and quintic self-steepening effects. However, for

consistency, the panels of Fig. 3.13 show the propagation of a stable hexapole, under the same

conditions where the light bullet of Fig. 3.8 was stabilized. Once more, the strong impact of the

balance between higherorder dispersions and the rest of the parameters is emphasized, which

once more confirms the importance of higher-order terms in the proposed model. Moreover, it

was also confirmed that such structures had the tendency to merge into a single soliton as a

final state, with some features of dromion. The same study revealed that the spatial expansion

and the transition from vortex to azimuthon are very sensitive to system parameters, with

exceptionally high self-steepening effects. Combined with the competition between nonlinearity

and dispersion, loss, and gain, such effects may indeed affect the azimuthal modulation process

with substantial consequences on the stability/instability of the propagating light bullet. An

excellent example of such is summarized in Fig. 3.12. The amplitude evolution, displayed in

Fig. 3.14, row (a), confirms the instability of such a structure, where the six notches progres-
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Figure 3.11: The upper row shows the evolution of a dipolar light bullet for q = 0, n = 1 and

m = −6, at different propagation distances z = 0, z = 5, z = 10, z = 30 and z = 50,respectively.

The lower rows display the amplitude |E|2, and their corresponding phase distributions of the

dipolar light bullet at time t = 10.
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Figure 3.12: The upper row (a) shows the 3D isosurface evolution and progressive disintegration

of a hexapole light bullet with distance, for q = 0.5, n = 3 and m = 4, at time t = 10

and distances z = 0, z = 10, z = 30, z = 50 and z = 70, while the lower row (b) show

the corresponding phase distribution in the (x, y)-plane. The parameters are: σr⊥ = −0.1,

σi⊥ = 0.25, k2i = 0.5, k3 = 0.01 + i0.21, k4 = 0.1 + i0.01, k5 = 0.21 + i0.1, k6 = 2.1 + i0.66,

δ = −0.0079, N3 = −1 + i0.12, N5 = 1 − i2.65, N7 = −0.05 + i0.02, SS3 = −0.0001 − i0.02,

SS5 = 0.1− i0.01, and SS7 = 0.2− i0.2.

Figure 3.13: The upper row (a) shows the 3D isosurface evolution of a stabilized hexapole light

bullet, for m = 4, n = 3 and q = 0.5, at time t = 10 and distances z = 0, z = 10, z = 30,

z = 50 and z = 70, while the lower row (b) show the corresponding phase distribution in

the (x, y)-plane. The parameters are: σr⊥ = −0.1, σi⊥ = 0.01, k2i = 0.5, k3 = 3.1 + i2.21,

k4 = 0.1 + i0.1, k5 = 2.21 + i1.01, k6 = 0.1 + i0.66, δ = −1.59, N3 = −1 + i0.12, N5 = 1− i2.65,

N7 = −0.5 + i0.2, SS3 = −0.001− i0.00001, SS5 = 0.1− i0.01, and SS7 = −0.2− i0.2.
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Figure 3.14: he upper row (a) corresponds to the amplitude evolution of the unstable hexapole

light bullet of Fig. 3.12, while the lower row (b) displays the amplitude evolution of the stable

hexapole light bullet of Fig. 3.13, with columns from left to right corresponding to the respective

distances z = 0, z = 10, z = 30, z = 50 and z = 70.

sively merge into one structure, with the amplitude drastically dropping, as already noticed in

Fig. 3.7. However, for positive real and negative imaginary parts of the septic self-steepening

coefficient SS7, one gets a stable hexapole, that propagates without being disintegrated by

distance, as noticed earlier. In another context, one instability figure, where the vortex does

not get disintegrated, but the beam rather shrinks radially during propagation while its in-

tensity tends to be localized on one leaf, is obtained by changing the value of the imaginary

part of the septic self-steepening coefficient SS7 to -2 [see Fig. 3.15]. This may imply some

energy concentration necessary to secure residual energy in the system. The appearance of a

non-symmetric set of leaves in the light bullet distribution may result from low energy input, as

argued by Eilenberger et al. [228], which may require new stability properties necessary when

higherorder dispersive nonlinearities are considered. The natural question that comes in mind

is how the sixth-order dispersion (SOD) can completely compensate the septic nonlinearity in

the formation conditions and existence regions of the solitary wave properties in MMs in the

context of the Drude model, when the pulse width is below 10 fs.

The answer to such a question is important both for the fundamental physics and practical
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Figure 3.15: The upper panels show the dynamical disintegration of the vortex azimuthon

related to Fig. 3.14 due to change of the value of the septic self-steepening coefficient. The

lower row shows the corresponding phase distribution, at time t = 10, with q = 0.5, n = 3 and

m = 4.

applications, since it has been proven experimentally by Cristiani et al. [229] that the inclusion

of the higher-order dispersion terms up to thirteen allows a reliable description of the fiber

dispersion behavior over a wide wavelength range and leads to a more accurate result. The

presence of higher-order dispersion will represent new regimes for the generation of dispersive

waves by soliton-like pulses propagating in the normal dispersion regime as well as in the

anomalous dispersion regime in nonlinear fiber optics, and may provide important insights

into the initial stages of supercontinuum generation. Additionally, they might provide a basis

for finding further novel forms of solitary waves in MMs, and ensure their stability under

suitable balance with the septic nonlinearity concomitantly with the other dispersive nonlinear

contributions offered by our model, which couples with recent advances and future perspectives,

therefore opening a new route for potential applications, for nanoscience and nanotechnology,

in the emerging field of plasmonic MMs, for example.

3.4 conclusion

In this chapter, we have performed a detailed analytical and numerical study of modulational

instability modeled by the CQ CGL equation with self steepening. Following the standard pro-

cedure of linear stability analysis, the expression for the MI gain has been proposed and the
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effect of some key parameters, such as the cubic and quintic self-steepening parameters, on

the occurrence of MI has been addressed, both under anomalous and normal GVD regimes.

As the cubic and quintic self-steepening parameters, on the occurrence of MI has been ad-

dressed, both under anomalous and normal GVD regimes. The gain spectrum has revealed

itself to be very sensitive to both self-steepening effects, which has been confirmed by direct

numerical simulation, on the CQ CGL equation, using the split-step Fourier method. Initially,

the MI manifested itself by cluster of four fundamental pulses, which, with increasing distance,

displayed some features of inelastic collision, leading to a single complex solitonic object. How-

ever, with decreasing the quintic self-steepening parameter, the resulting solitonic complex has

been found to be more coherent, with a dromion-like shape. The model equation that we have

derived yields a corrected expression for the SVEA SS parameter, which essentially improves

the description of the MI predicted by the improved growth rate spectrum for realistic MMs.

In consequence, the obtained results, especially the emergence of clusters of localized pulses

and their fusion over long propagation distance, make it possible to infer that a combination

of competing cubic and quintic self-steepening terms can give rise to more complex behaviors,

especially when there exists a suitable balance between such effects and dispersion, diffraction,

loss, gain and cubic and quintic nonlinearities, some of the consequences being the formation

of light bullets that constitute a hot topic in nonlinear optics nowadays.

We investigated the propagation in terms of simple vortex-necklace- and azimuthon shaped

beams with higher-order nonlinearities and high-order dispersion. Under different configurations

of the topological charge, the azimuthal modulation, and the number of input lobes. We have

explored the behaviors of a fundamental light bullet, which has been found to disintegrate

into new structures, whose implications have been discussed comprehensively, along with their

rotational features in the phase distribution.
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General Conclusion

In this thesis, we have theoretically investigated the formation, the propagation of new classes

of 3D spatiotemporal optical dissipative solitons in nonlinear MMs. In our contribution, we

have started with the Maxwell’s equations describing the response of the nonlinear medium

to an electromagnetic wave. Then we have reported on the derivation of the (3+1)D cubic-

quintic CGL equation, as well as the (3+1)D cubic-quintic-septic CGL equation, beyond the

SVEA,includes the effects of two-dimensional transverse diffraction , the dispersion. The higher-

order terms that are taen into account in the nonlinear dynamical model include: third-, fourth-

, fifth and sixth-order dispersions, self-steepening effect in addition to septic nonlinearity. To

understand the process of the formation and propagation of solitons, it was necessary to explain

in detail the different notions that we have used in our investigations.

The thesis has been organized in three parts: In chapter I, we have presented the literature

review on the metamaterials, the different types of metamaterials, electromagnetic properties of

metamaterials, dissipative solitons and vortex soliton . In the second chapter, we have derived

some new models and have presented the analytical method based on linear stability analysis,in

the frame work. Details on the numerical methods used to achieve our goals have been pro-

vided. The last chapter has been devoted for the results of our investigations. Firstly, we have

investigated, analytically and numerically, MI in nonlinear media. The contributions of cubic

and quintic self-steepening parameters, on the occurrence of MI has been addressed, both under

anomalous and normal GVD regimes. The gain spectrum has revealed to be very sensitive to

both self-steepening effects, which has been confirmed by direct numerical simulation, on the

CQ CGL equation, using the split-step Fourier method. Initially, the MI manifested itself by

cluster of four fundamental pulses, which, with increasing distance, displayed some features of

inelastic collision, leading to a single complex solitonic object. However, with decreasing the
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quintic self-steepening parameter, the resulting solitonic complex has been found to be more

coherent, with a dromion-like shape. Finally, simple vortex-necklace- and azimuthon shaped

beams, using a generalized (3+1)D cubic-quintic-septic CGL equation with up to sixth-order

dispersion and septic self-steepening, have been investigated. Under different configurations

of the topological charge, azimuthal modulation, and the number of input lobes, we have ex-

plored the behaviors of a fundamental light bullet, which has been found to disintegrate into new

structures, whose implications have been discussed comprehensively, along with their rotational

features in the phase distribution. Based on that, clockwise and counterclockwise rotations of

light bullet dynamics have been discussed with a specific interest in multipole light bullets.

We have, for example, found that in the rotation frame, dipole, quadruple, and hexapole light

bullets had the tendency to merge into one single structure: the fundamental light bullet. In

addition, the sensitivity of such structures to changes in parameter values has been debated.

It has been found that even though the shape of the wave object was conserved, the septic

self-steepening may significantly affect energy distribution among individual solitons of the

molecular structures.

This work may be interesting for all those, whether professionals or not, who want to

refresh their knowledge and to obtain information or to find the appropriate keys for the better

understanding of dissipative light bullets in nonlinear metamaterials.

Future directions

• This thesis does not address the important issue of the stability of solitary waves in

the nonlinear optical systems considered. It could be one of the extremely potential areas of

investigation in future and we will use the variational method for the azimuthon stability.

•We will investigate the modulational instability and bifurcation soliton with (3+1)D com-

plex Ginzburg-Landau equation with the aim to generate the supercontinuum and study the

cascading phenomena.

• Understanding and controlling the properties of optical vortices could lead to applications

in the near future, ranging from optical communications and data storage to the trapping,

control, and manipulation of particles and cold atoms.

• We will study evolution of this model and stationary homogeneous solutions for electric

and magnetic field amplitudes in a ring cavity with flat mirrors.
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APPENDIX

The value of parameters of Eq.(2.12)
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