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Abstract xv

This thesis highlights the dynamic response of a mechanical structure whose model

takes into account its history of solicitation, and whose non-linearity refers to the mem-

ory effect that represents the phenomenon so-called hysteresis. The Bouc-Wen hysteresis

model approach based on partial differential equations is used to highlight this type of

behaviour. The following main results were obtained:

The appearance of catastrophic ϕ4 monostable potential due to the presence of hys-

teretic force in the system is obtained as well as the appearance of Smale horseshoe chaos

using Melnikov’s theory. In addition, the effectiveness of the adaptive control is proven

when the negative stiffness of spring increases.

A second approach is to choose a negative value of the shape parameter A of the

hysteretic model in the unstability zone established using the Routh-Hurwitz criterion.

Thus, a homocline chatastrophic separatrix appears; therefore, this separatrix describes

well the behaviour of real structures. The Melnikov limits for the appearance of Smale’s

horseshoe chaos are found and verified by the representation of stability basins at fractal

boundaries, bifurcation diagram, Lyapunov Exponent and phase portraits of system are

also investigated by means of numerical simulation. A very important step forward for

the world of control has thus been updated.

A final approach considers the Duffing oscillator in the presence of the hysteretic force:

Several complex behaviors are observed. We show how the parameters of the Bouc-Wen

model strongly affect the dynamics of the crossing well in the case of two-well potential,

and the configuration of the catastrophic monostable potential. We obtain approximately

the criterion of appearance or disappearance of Smale’s horseshoe chaos in the adaptif

controlled system and the effect of the parameters of gain of control is analyzed.

Keywords: Degree of freedon, Hysteresis force, Bouc-Wen model, Negative

Stiffness, Separatrix, Melnikov’s theory, Horseshoes Chaos, Adaptive control,

Duffing oscillator.
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Résumé



Résumé xvii

Cette thèse met en exergue la réponse dynamique d’une structure mécanique dont

le modèle prend en compte son histoire de sollicitation, et dont la non-linéarité renvoie

à l’effet de mémoire qui représente le phénomène dit d’hystérésis. L’approche du modèle

d’hystérésis de Bouc-Wen basée sur des équations aux dérivées partielles est utilisée pour

mettre en évidence ce type de comportement. Les principaux résultats suivants ont été

obtenus:

L’apparition du potentiel ϕ4 mono-stable catastrophique dû à la présence de la force

d’hystérésis dans le système est obtenue de même que l’apparition du chaos de fer-à-cheval

de Smale en utilisant la théorie de Melnikov. En outre, l’efficacité du contrôle adaptatif

est prouvée lorsque la rigidité négative du ressort augmente.

Une deuxième approche consiste à choisir une valeur négative du paramètre A du

modèle d’hystérésis dans la zone d’instabilité établie à l’aide du critère de Routh-Hurwitz.

Ainsi, une séparatrice homocline catastrophique apparaît; par conséquent, cette sépara-

trice décrit bien le comportement des structures réelles. Les frontières de Melnikov pour

l’apparition du chaos sont trouvées et vérifiées par la représentation des bassins de stabil-

ité aux frontières fractales, le diagramme de Bifurcation, l’Exposant de Lyapunov et les

portraits de phase du système sont aussi analysés au moyen des simulations numériques.

Une avancée très importante pour le monde du contrôle a ainsi été mise à jour.

Une dernière approche considère l’oscillateur de Duffing en présence de la force d’hystérésis:

Plusieurs comportements complexes sont observés. Nous montrons comment les paramètres

du modèle Bouc-Wen affectent fortement la dynamique des puits de croisement dans le

cas du potentiel à deux puits, et la configuration du potentiel mono-stable catastrophique.

Nous obtenons approximativement le critère d’apparition du chaos dans le système adap-

tatif contrôlé et l’effet des paramètres de gain de contrôle est analysé.

Mots-clés: Degré de liberté, Force d’hysteresis, Modèle Bouc-Wen, Rigidité

négative, Séparatrice, Théorie de Melnikov, Chaos de fer-à-cheval, Contrôle

adaptatif, Oscillateur de Duffing.
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General introduction

Structural systems often show nonlinear behavior under severe excitations generated by

natural hazards. In that condition, the restoring force becomes highly nonlinear showing

significant hysteresis. The hereditary nature of this nonlinear restoring force indicates that

the force cannot be described as a function of the instantaneous displacement and velocity.

Nowadays, one of the constant challenges of mechanical systems is to design new rein-

forcement techniques for existing structures so that they offer a real comfort of safety for

their occupant while ensuring the lifespan of the structure. Accordingly, many hysteretic

restoring force models were developed to include the time dependent nature using a set

of differential equations [1]. This nonlinear behavior is encountered in a wide variety of

processes in which the input-output dynamic relations between variables involve memory

effects. Examples are found in biology, optics, electronics, ferroelectricity, magnetism, me-

chanics, structures, among other areas. In mechanical and structural systems, hysteresis

appears as a natural mechanism of materials to supply restoring forces against movements

and dissipate energy. In these systems, hysteresis refers to the memory nature of inelastic

behavior where the restoring force depends not only on the instantaneous deformation,

but also on the history of the deformation.

In general, hysteresis describes a situation where entry into a system results in a de-

layed result, and the system changed significantly during the delay. Delays caused by these

situations, called mechanical hysteresis, can cause unexpected behavior in a mechanical

system. This unexpected behavior can range from slight friction to severe vibration prob-

lems that could threaten the structural integrity of a project. Mechanical hysteresis is

notoriously difficult to predict and minimize in many areas of engineering. This limitation

in modelling makes it difficult to anticipate the stability and control of mechanical systems.

Indeed, in nature, internal factors: type of materials, chemical composition, crystalline or

amorphous structure, etc. External factors: temperature, initial load, initial stress, etc.

And the factors related to motion: amplitude and frequency of deformation, state of the
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stress can generate a variation of dissipative and elastic forces, accompanied by a dissi-

pation of energy [2] which in most cases lead to explosions, fires, destruction of rooms,

collapses of buildings.

In order to characterize the presence of hysteresis in a physical system, several re-

searchers, in this case engineer Bouc in 1966 [3], initiated the mathematical study of hys-

teresis. This study was extended by Wen in 1976 [4], Mayergoyz [5], Visintin [6], Brokate

and Sprekels [7], and Krejci [8] in the 1980s led to an understanding of general scalar

hysteresis operators, including, in particular, the Preisach operator [9]. These authors

also studied the existence and uniqueness of solutions of ordinary differential equations

(ODEs) and partial differential equations (PDEs) coupled with hysteresis operators. A

renewed interest in smart materials and their control took place in the 1990s stimulated

by the development of new materials that showed significant magnetostrictive and elec-

trostrictive properties. Numerical and experimental analyses as well as theories have been

developed, in particular in the modelling of the behavior of rheological magneto dampers,

basic insulation devices for buildings and other types of damping devices [10]. In these

contexts, a certain type of structural protection system must be implemented to mitigate

the effects of environmental damage. From this, many unresolved problems of vibration

analysis with contact, play or friction still remain.

Therefore, health control technologies and their overall integration offer a new ap-

proach to manage the life cycle of structures. They allow designers to hope for smaller

design margins and lighter structures: this is the case of the BW [4, 11] model, which is

undergoing a meteoric evolution, including the latest techniques for modelling intelligent

structures and materials and is formulated according to the problem posed. The precise

prediction of mechanical hysteresis and the limitations on the consideration of hysteretic

behavior when designing mechanical structures subject to external actions are complex

and continuous problems encountered in structural dynamics.

To understand the stakes of this phenomenon of hysteresis in mechanical struc-

tures, the case of interest in the thesis is to characterize the vibrational be-

havior of a mechanical structure by using hysteresis type BW and to propose

adequate adaptive control techniques to reduce vibration within the said struc-

ture. We are focused on the following problems:

1- Mathematical modelling of the hysteresis phenomenon and its insertion into

the simulation of mechanical systems.

2- The use of mathematical and numerical tools to access the behavior of the
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structural system and analyze the influence of hysteresis on each type of sys-

tem.

3- The design and optimization of a new control strategy (Find the best con-

trol parameters for which the system is adaptive while ensuring the safety and

stability of the structures)

Following this introduction, the thesis is organized as follows:

• In the first chapter, Literature review on hyteresis, some mechanical hysteresis mod-

els and general formalism in vibration control are presented.

• Chapter two presents Bouc-Wen hyteresis model : analytical and numerical for-

malisms. The mathematical and numerical tools used to characterize the dynamic re-

sponses of the studied structural system are also illustrated in this chapter.

• Chapter three presents and discusses our main results. The mathematical model

describing the dynamic behavior of the structural system with Bouc-Wen hysteretic force

under the periodic excitation is presented. Afterwards, a adaptive control law is defined

and used to suppress the chaotic behavior in the structural system.

• We end by a general conclusion which gives the main results obtained and perspec-

tives for future investigations.
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1.1 Introduction

Hysteresis is a phenomenon observed across many scientific fields ranging from physics,

chemistry, and engineering to biology, materials and economics. It is incorporated in many

artificial systems [12,13]. In addition, hysteresis is ubiquitous in smart materials, such as

piezoelectric, magnetostrictive, shape memory alloys, and active electro polymers as well

as in many other natural phenomena. In natural systems, it is often associated with

irreversible thermodynamic changes such as phase transitions and internal friction; and

dissipation is a common side effect.

Hysteresis also occurs in mechanical systems (in the form of backlash and friction) and

geophysical systems. Mechanical hysteresis is a common engineering problem that can lead

to unexpected results in mechanical systems, it affects many materials and industries in

various ways, including through friction and wear of components. Therefore, consideration

of this nonlinearity in the design of mechanical structures would be of great interest to the

control community in order to better predict the dynamic behavior of future structures.

The purpose of this chapter is to provide background information on some mechanical

hysteresis models, their mathematical modelling, and some additional details on control

mechanisms. The chapter is organized as follows: Section 1.2 provides general information

on hysteresis and its applications. In Section 1.3, we briefly describe some models of me-

chanical hysteresis and the equations modeling their behavior. In Section 1.4, an overview

of the control mechanisms used in the literature will be presented, Finally Section 1.5

concludes the chapter.

1.2 Generality on mechanical hysteresis and its appli-

cations

Hysteresis is a phenomenon observed across many scientific fields such as physics, chem-

istry, engineering, biology and economics. In general Hysteresis is the dependence of the

state of a system on its history.

1.2.1 History of hysteresis

The term “hysteresis” is derived from the Greek hysteros word meaning “delay”. The study

of hysteresis has a long history (see [6]). Although James A. Ewing [14] coined the word
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hysteresis during his study of ferromagnetism in 1881, the special properties of magnetite,

that is, loadstone, seem to have been known and utilized by ancient Greek and Chinese

civilizations at least in first and second millennia B.C. respectively (see [15]). The an-

cients constructed compasses (fig..1.1(a)) that take advantage of the remanance property

of magnetite (fig.1.1(b)), which is a consequence of hysteresis in the magnetic–field input

versus the magnetization output. Contributions to the study of hysteresis were made by

Madelung (1905) [16], who discovered the rules for scalar hysteresis; Weiss (1907) [17],

who introduced the concept of a magnetic domain based on spontaneous magnetization;

By the 1920s, researchers in plasticity and soil mechanics had discovered the hysteresis

phenomenon as well. and the rate at which these maxima or minima are achieved does not

matter. Prandtl (1924) considered a scalar model of elastoplasticity, which was later redis-

covered by Ishlinskii (1944). Heisenberg (1928), who explained spontaneous magnetization

in terms of quantum mechanics; Haines (1930) [19] discovered a hysteretic relationship

between moisture content in the soil and capillary pressure. Preisach (1935) [9] who intro-

duced a model for scalar hysteresis; and Landau (1937) [20], who developed a qualitative

theory of phase transitions, which explains various kinds of hysteretic phenomena. The

mathematical study of hysteresis was initiated not by a mathematician, but by an en-

gineer Bouc (1966) [3], who studied scalar hysteresis as a map between function spaces,

This study is extended by Wen in (1976) [4]. Starting in 1970, systematic study was

undertaken by Krasnoselskii, Pokrovskii, and others, who constructed rate–independent

hysteresis operators from elementary units called hysterons [21]. Further work by May-

ergoyz [5], Visintin [6], Brokate and Sprekels [7], and Krejci [8] in the 1980s led to an

understanding of general scalar hysteresis operators. Hysteresis due to sunk–costs was

studied as a fundamental economic phenomenon in the 1980s [22].

(a) (b)

Figure 1.1: a) A Han dynasty magnetic compass [124]; b) Magnetite [125],
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1.2.2 Mechanical hysteresis

Mechanical hysteresis can come from many sources and can have a broad effect on me-

chanical and electrical systems. Two of the most easily recognizable are deformation and

friction. Deformation can be the product of many forms of hysteresis, including mechanical

and voltage hysteresis. Mechanical hysteresis promotes deformation once it starts. Once

a component is deformed, it dissipates energy at an increasing pace as its deformation

continues, rather than converting energy into work as intended. This is partially due to

friction but can be affected by many other factors, including the integrity of materials

and the environment in which energy dissipation happens. Engineers and designers can

calculate how much energy is being lost by estimating the amount of mechanical hysteresis

in a system.

There are two different types of mechanical hysteresis: rate-independent and rate-

dependent. Rate-independent hysteresis has the potential to permanently change the

properties of a mechanical system. Rate-dependent hysteresis, by contrast, depends on

how long unexpected inputs continue and eventually levels off to zero when unexpected

inputs end. The effects of rate-independent hysteresis can persist after unexpected inputs

end. Both types of mechanical hysteresis can cause physical changes to a system, but

those created by rate-dependent hysteresis may take much longer to alter the system’s

functionality in a significant way.

• Rate-dependent hysteresis usually occurs as a simple lag between input and out-

put. If the input is reduced to zero, the output continues to respond for a finite time.

When rate-dependent hysteresis is due to dissipative effects like friction, it is associated

with power loss.

• Rate-independent hysteresis indicates a persistent memory of the system to its

past (loading history/response) that remains after the transients have died out.

Mechanical hysteresis is usually characterized as an engineering problem, which is how

the rest of this thesis will describe it. However, it is important to note that there are also

specific instances where mechanical hysteresis can be helpful to engineers.
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1.2.3 Some applications of hysteresis

Hysteresis can be exploited in a positive ways both in nature and in engineering applica-

tions.

1- In Nature:

• Biological systems

- In biology, hysteresis provides a mechanism that enhances the robustness of cell

functions against random perturbations.

2- In Engineering:

• Electronic circuits

- Often, some amount of hysteresis is intentionally added to an electronic circuit to

prevent unwanted rapid switching. Example a Schmitt trigger is a simple electronic circuit

that exhibits this property.

- Hysteresis is essential to the workings of some memristors (circuit components which

remember changes in the current passing through them by changing their resistance) [23].

- As another example, hysteretic switching prevents chattering and the associated con-

sequences in switched systems, such as thermostats, digital circuits, and power electronics.

• User interface design

- A hysteresis is sometimes intentionally added to computer algorithms. The field of

user interface design has borrowed the term hysteresis to refer to times when the state of

the user interface intentionally lags behind the apparent user input.

• Control systems

- In control systems, hysteresis can be used to filter signals so that the output reacts less

rapidly than it otherwise would by taking recent system history into account. For example,

a thermostat controlling a heater may switch the heater on when the temperature drops

below A, but not turn it off until the temperature rises above B.

- Magnetorheological (MR) fluids are a class of new smart materials whose rheological

characteristics change rapidly and can be controlled easily in the presence of an applied

magnetic field. The devices based on MR fluids, including dampers, brakes, clutches,

polishing devices and hydraulic valves, etc., have a very promising potential future; some

of them have been used commercially in engineering applications such as automobiles,

polishing machines, exercise equipment, etc.

- Hysteresis is the fundamental mechanism in magnetic data storage and emerging

computer memory technologies, such as ferroelectric nonvolatile thin-film memories, which
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are major enablers of the information technology industry.

1.3 Some mechanical hysteresis models

Hysteresis models are linear or nonlinear and can be mathematically difficult to model. A

fundamental theory allowing a general mathematical framework for modelling hysteresis

has not been developed up to now. For specific problems, models describing hysteretic

systems can be derived from an understanding of physical laws. Usually this is an ardu-

ous task and the resulting models are too complex to be used in practical applications.

In general, engineering practice seeks for alternative more simple models which, although

not giving the best description of the physical behavior of the system, do keep relevant

input-output features and are useful for characterization, design and control purposes.

These models are referred to as phenomenological or semi-physical models. The mathe-

matical formulations used to model hysteretic phenomena lead to both finite and infinite

dimensional models, in which the state is the system memory.

In the literature on hysteresis, there are some types of commonly used hysteresis

models, namely, Coulomb model, the Preisach model, the Dahl model, the Duhem model,

and the Bouc-Wen model. A brief overview of these models and their properties is given

in Table 1.1.

Table 1.1: Some hysteresis models and their properties

Hysteresis models Rate-dependence Type of Memory continuity

Coulomb Rate–independent nonlocal discontinuous

Preisach Rate–independent nonlocal discontinuous

γ = 0 Rate–independent local discontinuous

Dahl 0 < γ < 1 Rate–independent local continuous

γ ≥ 1 Rate–independent local Lipschitz

Duhem Rate–dependent or independent local or nonlocal Lipschitz

Bouc–Wen Rate–independent nonlocal Lipschitz
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1.3.1 Coulomb model

From the macroscopic point of view, the contact between two surfaces creates a con-

tact force whose tangential component defines the friction force. The magnitude of the

Coulomb model friction force is proportional to the normal load [34], that is:

FC = µFN (1.1)

where µ is commonly refereed to as the friction coefficient and FN is the normal force.

The magnitude of the Coulomb model friction force is independent of the magnitude of

the velocity and the contact area and the friction force opposes the motion of the body.

The friction force can be expressed as:

Ff = sign (v)FC (1.2)

where v is the velocity of the body relative to the surface [34–36].

Figure 1.2: Coulomb model

1.3.2 Preisach model

The Preisach model [24] is an integral operator, that operates on an infinite number

of elementary hysteresis operators called hysterons. The hysterons are turned on or off

depending on the direction and value of the input. The hysterons that are on contribute

to the output, while the hysterons that are off do not. The Preisach model has the form:

y (t) =

∫ ∫
α≥β

µ (α, β) γ̂αβu (t) dαdβ (1.3)

where u (α, β) is a weight function, u (t) is the input, the hysteresis operator γ̂αβ is called

a hysteron, and α and β are the values at which the output of the hysteron,is switched on
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and off, respectively. Preisach models are rate-independent and have nonlocal memory.

They are often used to model hysteresis in piezoceramic actuators, shape memory alloys,

and magnetism [25–27]. The Prandtl-Ishlinskii model, which is a special type of Preisach

model, replaces the hysterons by the play operators weighted by a density function

[6, 7, 28, 29].

1.3.3 Dahl model

One of the first models proposed to improve system control in the presence of dry friction

is the Dahl model. This model [37–39] has the form :

Ḟf (t) = σ

∣∣∣∣1− Ff (t)

Fc
sgn (u̇)

∣∣∣∣isgn

(
1− Ff (t)

Fc
sgn (u̇)

)
u̇ (t) (1.4)

where Ff is the friction force, u is the relative displacement between the two surfaces

in contact, Fc > 0 is the Coulomb friction force, i ≥ 0 is a parameter that determines the

shape of the force- displacement curve, and σ > 0 is the rest stiffness, that is, the slope

of the force-deflection curve when Ff = 0. The right-hand side of Eq(1.4) is Lipschitz

continuous in Ff for i ≤ 1. but not Lipschitz continuous in Ff for 0 ≤ i ≤ 1.

Figure 1.3: Hystersis loop of Dahl model (i = 1)

1.3.4 Duhem model

The Duhem model has been used to represent friction [55], electromagnetic behavior

[53,54], or hysteresis in magnetorheological dampers [56]. The state of the Duhem model

depends on the derivative of the input and thus the output changes its character when

the input changes direction [30–33] The general form of the Duhem model is:

ẋ = f (x (t) , u (t)) g (u̇ (t)) (1.5)
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y (t) = h (x (t) , u (t)) (1.6)

where g is a function that determines how the output changes as the input changes

direction [50]. The function g satisfies g(0) = 0 and thus, for a constant input u (t) = ū,

there is an infinite number of equilibria. Duhem models can be rate-dependent or rate-

independent and can exhibit local or nonlocal memory [30].

1.3.5 Bouc-Wen model

This model was proposed for application to vibratory systems. The Bouc-Wen [5] model

has the form:

ż (t) = Au̇ (t)− β |u̇ (t)| |z (t)|n−1z (t)− γu̇ (t) |z (t)|n (1.7)

or simply as:

ż (t) = (A− [βsgn (z (t) u̇ (t)) + γ] |z (t)|n) u̇ (t) (1.8)

z(t) is a non-observable hysteretic parameter (usually called the hysteretic displacement)

that obeys the following nonlinear differential equation with zero initial condition (z(0) =

0), and that has dimensions of length: where sgn denotes the signum function, and A, β >

0, γ and n are dimensionless quantities controlling the behaviour of the model (n = ∞
retrieves the elastoplastic hysteresis).
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1.4 General formalism of vibration control

Engineers are becoming increasingly aware of the problems caused by vibration in engi-

neering design, particularly in the areas of structural health monitoring and smart struc-

tures. Vibration is a constant problem as it can impair performance and lead to fatigue,

damage and the failure of a structure. Control of vibration is a key factor in prevent-

ing such detrimental results. The structural control presents a homogenous treatment of

vibration by including those factors from control that are relevant to modern vibration

analysis, design and measurement . Mechanisms for control of structural response can be

classified into four main groups: passive, active, semi–active and hybrid [40].

1.4.1 Structural control systems

For several years, always with the aim of improving the performance of controllers and

having stronger structures, Structural control system has emerged and is now more and

more widespread in the word. It can be passive, active, semi-active or hybrid; it depends

on how it is modeled. Structural control is the control of selected response variable of a

structure subjected to dynamics loading [41].

• Such variables may be displacements or their time derivatives (velocities, accelera-

tions) and/or forces

• Full controllability can be achieved in mode control and the control of rigid body

mechanism

• For mode control, a structural system is needed that has clearly defined modes

• For rigid body control, a structural system must consist of an assemblage of rigid

bodies

Therefore, Structural Control is NOT:

− Added damping

− Added damping and stiffness

− Or any conventional structural system with additional devices: No system vari-

able is controlled in such structures!

The first step in structural control is to select a structural concept that is

controllable! [42]
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1.4.1.1 Control system with hysteretic devices

1.4.1.1.1 Hysteretic device (HyDe) system

Hysteretic-Device or Hyde-systems are a kind of structural control system that introduces

a stiff-ductile mechanism into the structure [43, 44]. By doing so, the structure becomes

an assembly of rigid bodies moving in a defined pattern with internal forces limited by the

yield level of the devices that are placed in the joints between the rigid bodies (fig.1.4).

Such an assembly dissipates almost all the input energy due to an earthquake in these

devices through plastic yielding or friction. This characteristic leads to very small stresses

in the structure and at the same time limits the motion of the mechanism. It is a system

that can be applied to new structures but is most suitable for retrofitting, especially when

it comes to the so-called soft storey structures. Such structures are abundant in modern

cities due to the presence of open spaces in the ground floor and apartment floors above

stiffened by “non-structural” partition walls usually made of bricks. The upper storeys thus

form a rigid block on top of a horizontal seismic joint: The natural place for stiff-ductile

devices to make it a HyDe-system [45].

Figure 1.4: Hyde System [45]

1.4.1.1.2 Tendon system

Tendon Systems are one of the structural control systems for earthquake protection. In

this system, rigid bodies are connected through single cables or through a cable network

as shown in fig.1.5 below [46]. Systems of this type generally consist of a set of prestressed

tendons connected to a structure with their tensions being controlled by servomechanisms.

One of the reasons for favoring such a control mechanism has to do with the fact that

tendons are already existing members of many structures. This is attractive, for example

in the case of retrofitting or strengthening an existing structure [47]. The pre-stressing
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forces of the cables are regulated strategically at given locations. Therefore, a suitable

dynamic mechanism can be established [48].

(a) (b) (c)

Figure 1.5: Principle of Tendon System [46]

1.4.1.1.3 Base isolation system

These systems consist of placing, between the foundations and the superstructure, devices

that have a very high horizontal deformability and a very high vertical stiffness. These

devices make the decouple of the movement of the ground from the structure possible in

order to reduce the forces transmitted to it. The isolator captures deformations (inelastic)

and filters the accelerations (high frequencies) so that the isolated superstructure moves

essentially in a rigid mode undergoing low accelerations and almost no deformation. As a

result, the inertial forces transmitted to the foundation elements are limited and remain

below the elastic capacity of such elements. Base isolation is based on the principle that

if the vibration period is increased sufficiently to move away from the predominant earth

quake excitation period, the accelerations transmitted to the structure (and consequently

the inertial forces) are considerably reduced. On the other hand, the increase of the period

generates larger displacements concentrated at the level of the isolator [131] (fig.1.6).

Figure 1.6: Isolator device [126]
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1.4.2 The Self-vibration control

• A self-controlled system is a system which has the ability to maintain or turn back

itself in a suitable stage whatever what disturb it and put it away from that stage

• Self-controlled is also known as maintained self-oscillation, self-excited, self-induced,

spontaneous, autonomous.

• These structures do not need any external help or internal system (structural control

system, etc) to be controlled

• This new system is suitable for high-rise buildings because there generally have

flexible and low damping characteristics

This fact is already scientifically explained, but no modern structure has been built

with this robust structural system, which belongs to a class of seismic control concepts.

These concepts rely on the control of rigid body motions allowing for a drastic reduction in

kinetic and potential energy in the structure, thus leading to a very robust behaviour. In

this field, two first models were already proposed and is shown in the following paragraphs.

1.4.2.1 Control system with hysteretic behaviour

1.4.2.1.1 Pagoda system

Pagoda system, inspired by high seismic performance of old built Pagoda structures

(fig.1.7), is one of the most powerful design structure which react positively when they

face earthquake [49–51]. The traditional Pagoda already was built by a highly flexible kit

system allowing the building to move and shake in a controlled way thus absorbing the

vibrations. The Pagoda performs a so–called snake dance during an earthquake, which

has protected it from failure for over 1300 years. Therefore, the beams and columns of

such a house were only plugged together (interlocking technology) and not joined in a

fixed way or nailed. These joints allowed the joined elements to move within a certain

scope [52]. In the literature, according to dear configuration, it is two differents kinds of

Pagoda structures:

• The fisrt one is most build with wood, we usually see that kind of building in China

and all the pieces of wood are assembled without the least nail! All is indeed fitted one in

another thanks to sets of tenons, mortises.

• The second one is characterized by his central mast called ”Shin-bashira” which

can be useful for repositioning of one story if it is deviated, we can also notice that Load

at different levels can help to stabilize the building after a disturbance.
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Figure 1.7: Principle of pagoda System [126]

1.5 Problematic of the thesis

As mentioned earlier, hysteresis describes a situation where entry into a system results in

a delayed result, and the system changed significantly during the delay. Delays caused by

these situations, called mechanical hysteresis, can cause unexpected behavior in a mechan-

ical system. This unexpected behavior can range from slight friction to severe vibration

problems that could threaten the structural integrity of a project. Mechanical hysteresis

is notoriously difficult to predict and minimize in many areas of engineering. This limita-

tion in modelling makes it difficult to anticipate the stability and control of mechanical

systems. The Bouc-Wen model is a common equation for measuring mechanical hysteresis

in engineering and electronics. It was directly inspired by vibrations caused in physical

systems, a problem that is common in electrical engineering.

Our model is based on the behavior of pagoda systems which have great deformity and

resistance to extreme excitations. Thus, the attention of this thesis work is to evaluate

the total energy dissipated by the structure by means of the Bouc-Wen model in order to

analyse the response of the structural system and finally to evaluate the performance of

the self-contained system by playing with the parameters of the model.
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1.6 Conclusion

In this chapter, the generalities on mechanical hysteresis and its applications were pro-

vided. Some hysteresis models and general formalism of vibration control are too pre-

sented. The Bouc-Wen model, which takes into account memory effects, depending on the

rate and which can account for elasto-plastic behavior, was adopted to model the struc-

tures used in this work. The next chapter will be devoted to the mathematical modelling

of Bouc-Wen model in mechanical structures, the analytical and numerical formalism used

to solve the problem of the thesis.
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2.1 Introduction

This chapter deals a general background on the BW model and focuses on the differ-

ent methods used to solve the problems statement of the thesis. Section 2.2 presents the

conception of BW model and theirs dynamics properties. Section 2.3 is devoted to the

mathematical formalisms and the numerical methods used to solve the differential equa-

tions as well as the hardware and software used. In section 2.4, the computational tools

for the characterization of the dynamical states are given. The conclusion of the chapter

appears in section 2.5.

2.2 Bouc-Wen model: Considerations

A popular and versatile hysteretic model is the BW model [4, 57]. It has been applied

in many problems, including the response of beam members [58, 59], concrete walls [60],

masonry walls [61], seismic isolation devices [62,63], wood joints [64], caisson foundations

[65], magnetorheological fluid dampers [66, 67], as well as more specific applications such

as the stick-slip phenomena in elevator guide rails [68], or the restoring force in seat

suspension systems [69], to name a few. A survey on the implementations of the BWmodel

can be found in the work of Ismail et al. [70]. Being phenomenological, the BW model is

able to describe complex responses using even single degree-of-freedom (SDoF) systems.

These can be embedded into large-scale models or used in finite element analysis [71–73].

The complex internal mechanism producing the overall hysteresis is not examined at all.

Obviously, the response and dissipated energy of such a system is of great interest.

Within this context, a hysteretic semi-physical model was proposed initially by Bouc

early in 1971 and subsequently generalized by Wen in 1976. Since then, it was known

as the BW model and has been extensively used in the current literature to describe

mathematically components and devices with hysteretic behaviors, particularly within

the areas of civil and mechanical engineering. The model essentially consists in a first-

order nonlinear differential equation that relates the input displacement to the output

restoring force in a hysteretic way. By choosing a set of parameters appropriately, it is

possible to accommodate the response of the model to the real hysteresis loops.
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2.2.1 The memory operators

The hysteresis phenomena due to a (temporal) memory of the system can be noted in a

very general way [74–76]:

r (t) = H (u (.) , t, r (0)) , (2.1)

where H is a causal operator: the value r(t) is the function of both the initial value

r(0) and the history u(τ), 0 ≤ τ ≤ t of the input signal. H is for example a convolution

operator:

r (t) =

∫ t

0

K (t− s, t) . G (u (s)) . d s+ r0 (2.2)

The definition given here of H: a causal operator, or even more specifically a causal con-

volution operator - is very broad: in particular, it includes linear operators, the behavior

of which is not usually considered hysteretic. This is the reason why it must be restricted.

According to Visintin [6], hysteresis = rate-independent memory effect. Thus, the

future state of a hysteretic system depends not only on its current state but also on its

past history.

r (t) = µ2u (t) + f (u (t)) + ψ (t) , (2.3)

where µ2u,f (u) and ψ represent linear, nonlinear, and hysteresis instantaneous terms,

respectively. ψ takes into account the memory of the material studied, its "heredity",

We first choose to write:

ψ (t) =

∫ t

t0

F (t, s)du (s) (2.4)

F (t, s) is the forgetting function; it generally only depends on the quantity (t− s) and
ψ then appears as a convolution; hereditary actions being forgotten as time passes, F (s)

is chosen as a finite, continuous, positive, decreasing function for s ≥ 0, zero for s ≤ 0.

But it is also required that the trajectories remain identical by compression or dilation

of time (rate-independence); this means that, for the physical systems described, the rate

of the observed hysteresis cycles does not depend on the frequency of the operator input

signal. The expression of ψ above is not suitable, but we keep the idea of such an integral

expression, the argument of the function F then being an interval function; positive,

increasing as s moves away from t .

2.2.2 Presentation of the model

The starting point of the so called Bouc-Wen model is the early paper by [11], where a

functional that describes the hysteresis phenomenon was proposed. Among the different
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models of hysteresis proposed by Bouc (1971) [11], the simplest one can be formulated by

a Stieltjes integral as follows: F (t) = αx (t) + z (t)

z (t) =
∫ ξs

0
µ (ξs (t)− τ) dx (τ)

(2.5)

where α is a non-negative constant; x and F are two time-dependent functions, which

are considered as input and output functions, respectively. In structural engineering appli-

cations the input usually has the meaning of a generalized displacement, while the output

F plays the role of a generalized force, defined as the sum of a linear term αx (t) and a

hysteretic term z(t).

The integral in Eq(2.5)2 depends on the time-function ξs (t), which is named inter-

nal time and is assumed to be positive and non-decreasing. The function µ, called the

hereditary kernel, takes into account hysteretic phenomena. One of the definitions of ξs
proposed by Bouc is the total variation of x:

ξs (t) =

∫ t

0

∣∣∣∣dxdτ
∣∣∣∣dτ or, equivalently ξ̇s = |ẋ| , with ξs (0) = 0 (2.6)

where the superposed dot indicates time-differentiation. (2.6) implies the rate- indepen-

dence of ξs and as a result, z and F are in turn rate-independent. Bouc (1971) [11] defined

µ as a continuous, bounded, positive and non-increasing function on the interval ξs ≥ 0,

having a bounded integral. In the special case of an exponential kernel.

µ (ξs) = Ae−βξs with A, β > 0 (2.7)

a differential formulation of (2.5) can be easily deduced. Then, (2.6) and (2.7) imply: F (t) = αx (t) + z (t)

ż = Aẋ− βzξ̇s with ξ̇s = |ẋ|
(2.8)

One can observe that for an initial value in the interval (−zx, zx), with zx = A/β, the

hysteretic force z remains in the same interval. Bouc (1967) [57] proposed a more general

formulation of (2.8): F (t) = αx (t) + z (t)

ż = Aẋ− βz |ẋ| − γ |z| ẋ with γ < β
(2.9)

While Wen (1976) [4] suggested a further modification by introducing a positive exponent

n:  F (t) = αx (t) + z (t)

ż = Aẋ− (βsgn (zẋ) + γ) |z|nẋ,
(2.10)
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where sgn(•) is the signum function. Wen did not impose any condition on the value of

γ and assumed integer values for n; however, all real positive values of n are admissible.

When n is large enough, force-displacement curves similar to those of an elastic-perfectly-

plastic model with the additional linear term αx are obtained. Provided that β + γ > 0,

the limit strength value z of (2.10) becomes:

zmax = ±
(

A

(β + γ)

) 1
n

(2.11)

The parameter β is positive by assumption, while the admissible values for γ can be

derived from the condition ξ̇s ≥ 0 [77].

2.2.3 Physical and mathematical consistency of the Bouc-Wen

model

In the current literature, the BW model is mostly used within the following black-box

approach: given a set of experimental input-output data, how to adjust the BW model

parameters so that the output of the model matches the experimental data. The use

of system identification techniques is one practical way to perform this task. Once an

identification method has been applied to tune the BW model parameters, the resulting

model is considered as a good approximation of the true hysteresis when the error between

the experimental data and the output of the model is small enough. Then this model is

used to study the behavior of the true hysteresis under different excitations. On the other

hand, the BW model is a nonlinear differential equation, and has to have some general

mathematic properties to be used properly. The following properties have been considered

in the literature:

− Bounded input-bounded output (BIBO) stability

− Consistency with the asymptotic motion of physical systems

− Passivity

− Thermodynamic admissibility

− Accordance with Drucker and Il’iushin stability postulates

− Consistency with the hysteresis property

a) Bounded input-bounded output (BIBO) stability

For any bounded input x, the output of the true hysteresis φBW (x) is bounded : This

BIBO stability property stems from the fact that we are dealing with mechanical and
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structural systems that are stable in open loop [78]. We consider a system with the rate-

independence property (see equation (2.6)). It is assumed that the force φBW delivered

by the system can be broken down into an elastic force Fe and a hysteretic force Fh,

operating in parallel (Figure 2.1). The force Fe is related to the elastic deformation of the

elements (Fe(0) = 0) while Fh corresponds to plastic phenomena. The BW model that

approximates the true hysteresis φBW (x) is :

φBW (x) (t) = αkx (t) + (1− α) z (t) (2.12)

ż = D−1
(
Aẋ− β |ẋ| |z|n−1 − γẋ|z|n

)
(2.13)

Generally for the sake of simplicity we take D = 1.

Figure 2.1: Physical model

b) Consistency with the Asymptotic Motion of Physical Systems

Accordingly, Theorem 2 [70] shows that, for the classes I and II, the displacement x goes

to a constant value asymptotically and that the velocity ẋ goes to zero. This is compatible

with experimental observations for base-isolation devices which means that both classes

are good candidates for the description of the real physical behavior of a base-isolation

system. Based on numerical simulations, classes III and IV are shown not to behave in

accordance with experimental observations.

c) Passivity

Passivity is related to the energy dissipation and means that the system does not generate

energy. In [78], the model (2.12)-(2.13) is written as:
ẋ = u

ż = D−1
(
Au− β |u| |z|n−1 − γu|z|n

)
y = αkx+ (1− α) z

(2.14)

where u is the input of the model and y is its output.

d) The thermodynamic admissibility

The thermodynamic admissibility is investigated in [77] using the endochronic theory (a
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Table 2.1: Classification of the BIBO-stable Bouc-Wen models [78]

.

Case Ω Upper bound on |z (t)| Class

A > 0

A < 0

A = 0

β + γ > 0 and β − γ ≥ 0

β − γ < 0 and β ≥ 0

β − γ > 0 and β + γ ≥ 0

β + γ < 0 and β ≥ 0

β + γ > 0 and β − γ ≥ 0

All other cases

R

[−z1, z1]

R

[−z0, z0]

R

∅

max (|z(0), z0|)
max (|z(0), z0|)
max (|z(0), z0|)
max (|z(0), z0|)
|z (0)|

I

II

III

IV

V

theory of viscoplasticity without a yield surface, proposed in [79]). The BW type models

that are considered are univariate and tensorial. Theorem 3 [70] The BW models of

(23)-(31) fulfill the second principle of Thermodynamics if and only if the following holds:

n > 0

β > 0

−β ≤ γ ≤ β

(2.15)

e) Accordance with Drucker and Il’iushin Stability Postulates

Drucker’s postulate [80] implies that the hysteresis system should not produce a negative

energy dissipation when the unloading-reloading process occurs without load reversal.

For the BW model, it has been noted in many references that this may not be the case,

although the effect of this violation on the expected results may be minor [81–85]. An

attempt to reduce the violation is presented in [86] by modifying the BW model. On the

other hand, [87, 88] show that for n = 1, β + γ > 0 and γ − β ≤ 0 (β being positive by

assumption), the BW model verifies Drucker’s postulate. The more general result for n

arbitrary is obtained in Theorem 3 of [77], as the thermodynamic consistency for the

BW model implies that it verifies Drucker’s postulate.

f) Consistency with the Hysteresis Property

The hysteresis property means that the output depends on the sign of the derivative

of the input.
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Table 2.2: Different Cases of Hysteresis [78]
.

Case No Nature of Hysteresis loop Condition

1 Weak Softening
β + γ > 0

γ − β < 0


2 Weak Softening on loading, mostly linear unloading

β + γ > 0

γ − β = 0


3 Strong softening on loading and unloading, narrow loop

β + γ > γ − β
γ − β > 0


4 Weak Hardening

β + γ = 0

γ − β < 0


5 Strong Hardening

0 > β + γ

β + γ > γ − β


2.2.4 Characteristic of Bouc-Wen parameters model

Using this simple differential model proposed by Bouc(1967) and generalized in (1976) by

Wen, a variety of hysteretic loops are obtained. In this model, the hysteretic force z is

obtained for an imposed cyclic displacement x and is described by a nonlinear differential

equation [3]- [4]:

Typical shapes of hysteretic loops are obtained using BW model for different values

of loop parameters and a imposed displacement x(t) = x0sin(2πft) and n = 1 where the

frequency f = 1Hz and the amplitude x0 = 1mm [89].(see Fig.(2.1))
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.2: Hysteretic loops generated by BW model
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Parameter A (fig.2.2(a)) controls the scale and the amplitude of the hysteretic curved

controls and the slope variation of the stiffness characteristic. The BW model must re-

produce the property of energy dissipation for an adequately representation of physical

behavior of the real systems.

The variation of parameter β (fig.2.2(b)) has the effect of turning the hysteresis loop

in clockwise, increasing the area of the hysteresis loop and curved of backbone.

The variation of parameter γ (fig.2.2(c)) has the effect of turning the backbone of

hysteresis loop in clockwise simultaneously with its curving clockwise for negative values

of the parameter and clockwise for positive values of the same parameter.

The parameter n (fig.2.2(d)) governs the smoothness of the transition from linear to

nonlinear range and controls the shape of the hysteretic curve. The effect is important

between 1 and 2 values. For n > 2 the differences are less important.

(a) (b)

(c) (d)

Figure 2.3: Hysteresis loops generated by viaration of the parameters of BW model: a) A,

b) β, c) γ, d) n
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2.3 Mathematical formalisms and numerical methods

2.3.1 Mathematical formalisms

To predict the response and to give the decision on its stability, three analytical techniques

[90–94] are used to approach our reduced mathematical models (nonlinear ODEs, PDEs

and linear equations) and will present in the following subsection.

2.3.1.1 Taylor expansion serie

Taylor’s theorem, [90] is taught in introductory-level calculus courses and is one of the

central elementary tools in mathematical analysis. It gives simple arithmetic formulas

to accurately compute values of many transcendental functions such as the exponential

function and trigonometric functions. It is the starting point of the study of analytic

functions, and is fundamental in various areas of mathematics, as well as in numerical

analysis and mathematical physics. Taylor’s theorem also generalizes to multivariate and

vector valued functions. if f : R → R infinitely differentiable at x = x0 then the Taylor

series for f at x is the following power series.

f (x) = f (x0) + f ′ (x0) ∆x+ f ′′ (x0)
(∆x)2

2!
+ ...+ f (k) (x0)

(∆x)k

k!
+ ... (2.16)

Truncating this power series at some power results in a polynomial that approximates f

around the point x. In particular, for small ,

f (x+ ∆x) ' f (x) + f ′ (x) ∆x+ f ′′ (x)
(∆x)2

2!
+ ...+ f (k) (x)

(∆x)k

k!
(2.17)

Here the error of the approximation goes to zero at least as fast as (∆x)k as ∆x→ 0

. Thus, the larger the k the better is the approximation. This is called the k th–order

Taylor approximation of f at x. This can be generalized to the multivariate case

2.3.1.2 Routh-Hurwitz stability criterion

Routh-Hurwitz stability criterion is a method for stability analysis of linear systems. This

approach is a necessary and sufficient condition for the stability of a system, since it

has bounded output for bounded inputs, if the roots of its characteristic equation have

negative real parts only. The characteristic equations is given by:

f (λ) = a0λ
n + a1λ

n−1 + · · ·+ an−1λ+ a0 = 0 (2.18)
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where the coefficients ai are real constants. The main diagonal of the Hurwitz’s matrix

are the form:

∆1 = a1 , ∆2 =

∣∣∣∣∣∣ a1 a0

a3 a2

∣∣∣∣∣∣

∆3 =

∣∣∣∣∣∣∣∣
a1 a0 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣ , ..., ∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 ... 0

a3 a2 a1 ... 0

a5 a4 a3 ... 0

.. .. .. ... ..

0 0 0 ... an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.19)

In general, Hurwitz condition states: all of the roots of the polynomial have negative

real part if the determinant of all Hurwitz matrix are positive. That is, none of them are

zero or negative.

∆1 > 0, ∆2 > 0, ..., ∆n > 0 (2.20)

Since, ∆n = an∆n the condition ∆n > 0 can be changed by an

n = 2; a1 > 0 and a2 > 0 (2.21)

n = 3; a1 > 0, a3 > 0 and a1a2 > a3 (2.22)

n = 4; a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4 (2.23)

2.3.1.3 Melnikov’s method to predict Smale horseshoe chaos

Melnikov’s method [96] is one of relatively few analytical methods used to predict the onset

of chaotic motion in dynamical systems with deterministic or random perturbation. It

gives a bound on the parameters of a system such that chaos is predicted not to occur. It is

applicable to conservative one DOF systems which include a separatrix loop, and which are

perturbed by small forcing and damping. The idea is to show by perturbation expansions

that there exists an intersection of the stable and unstable manifolds of an equilibrium

point in a two-dimensional Poincare map M . This implies that there is a horseshoe in the

map M , which in turn implies that there exist periodic motions of all periods, as well as

motions which are not periodic. The horseshoe map also exhibits sensitive dependence on

initial conditions. The method was first applied by Holmes [97] to study a periodically
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forced Duffing oscillator with negative linear stiffness. To perform the general Melnikov

technique for horseshoe chaos analysis, let’s Consider a SDoF Hamiltonian system subject

to light damping and external or parametric excitation. This system has the following

form:  ẋ = ∂H
∂y

ẏ = −∂H
∂x
− ελ (x, y) ∂H

∂y
+ εf (x, y) η (t) ,

(2.24)

where x and y are generalized displacement and velocity respectively; H = H (x, y) is

the Hamiltonian with continuous first–order derivatives; ε is a small positive parameter;

η(t) is the external perturbation which can be purely periodic excitation or random noise

excitation. λ = λ (x, y) represents the coefficient of damping; f (x, y) represents the am-

plitude of excitation. We assume that (x0 (t) , y0 (t)) is a solution on the separatrix loop

in the ε = 0 system. The separatrix loop in the ε = 0 system will generally be ”broken”

when the perturbation is applied. The question of whether or not chaos can occur in a

particular system depends upon what happens to the broken pieces of the separatrix loop

(the stable and unstable manifolds of the saddle), that is, whether they intersect or not.

In the case of 2.24 and based on a formula given by Wiggins [98], Melnikov’s method

involves the following integral:

M (t0) =

+∞∫
−∞

∂H

∂y

[
−λ (x, y)

∂H

∂y
+ f (x, y) η (t+ t0)

]
dt (2.25)

where before integrate the previous (2.25), the couple (x, y) is substituted by the orbit

(x0 (t) , y0 (t)) - Melnikov method for chaos analysis: Deterministic state of the system

when a system (2.24) is under purely periodic excitation (case where η (t) is periodic

function of time), the system is said to respond in a deterministic state. In this case, the

deterministic Melnikov method need to be adopt in other to define the condition for the

appearance of the so-called transverse intersection points between the perturbed and the

unperturbed separatrix, thus identifying possible chaotic response by the Smale Birkhoff

theorem, in a two dimensional vector field [98,99]. This transverse intersection manifests

itself by the fractality on the basin of attraction of the system. According to the assump-

tion made in this section, M (t0) in (2.25) is a deterministic function which characterizes

the size of the gap between the stable and unstable manifolds of the saddle. If M (t0)

vanishes for some t0, then the stable and unstable manifolds intersect and system (2.24)

is predicted to contain a horseshoe. If M (t0) does not vanish for any t0, then Melnikov’s

method predicts that there is no intersection of the stable and unstable manifolds, and
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hence no associated horseshoe or chaos in system (2.24). All these results assume that ε

is a small quantity.

2.3.2 Numerical methods

When analytic solutions are not apparent, numerical integration is the only way to obtain

information about the trajectory. Many different methods were proposed and used in an

attempt to solve accurately various types of the ODEs. Unfortunately it is seldom that

these equations have solutions that can be expressed in closed form, so it is common to

seek approximate solutions by means of numerical methods; nowadays this can usually

be achieved very inexpensively to high accuracy and with a reliable bound on the er-

ror between the analytical solution and its numerical approximation. In this thesis, two

numerical methods including a classical RK4 to integrate the ODEs, Newton-Raphson

to integrate the PDEs and to solve a complex or non-trivial polynomial equations are

presented.

2.3.2.1 Fourth-order Runge-Kutta method for ordinary differential equations

Runge-Kutta methods are among the most popular ODEs solver. It has been elaborated

for the first time in 1894 by Carle Runge and has been improved by Martin W. Kutta

in 1901. Their modern developments are mostly due to John Butcher in the 1960s, it is

widely used since it is most stable [94]. Generally, we distinguish 04 important families

of Runge-Kutta methods: Second-order, Fourth-order, Five-order and Six-order Runge

Kutta Methods. But the most used method is the Fourth-order one since that it is easy

to use and no equations need to be solved at each stage, highly accurate for moderate

values of the normalization integration time step and easy to code. Let us consider the

ordinary first order. differential equation:

dX(t)

dt
= F (t,X(t)) (2.26)

with X (t0) = X0; this equation can also be under a vectorial form (X and F being

vectors). One define h as the time step size and ti = t0 + ih. The aim of the RK4 method

is to find solutions after each time step, the next solution as a function of the previous

one. The classical RK4 flow for this problem is given by:
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x0,j = X0

L1,j = hfj (ti, xi,j)

L2,j = hfj

(
ti + h

2
, xi,j +

L1,j

2

)
L3,j = hfj

(
ti + h

2
, xi,j +

L2,j

2

)
L4,j = hfj (ti + h, xi,j + L3,j)

xi+1,j = xi,j + 1
6

(L1,j + 2L2,j + 2L3,j + L4,j)

(2.27)

where i runs for time incrementation and j labels the variables related to xj. L1,j, L2,j,

L3,j and L4,j are intermediate coefficients. This procedure needs in its iteration only the

initial value X0, to calculate all the other values taken by the function X at other times

separated by the time step h.

2.3.2.2 Newton-Raphson method for system of equations

Newton-Raphson method for system of equations. Due to the encountered difficulties

for solving the nonlinear system of equations. Many iterative methods are employed in

the literature to remedy to this problem. The Newton-Raphson method is defined as an

iterative procedure for finding zeros of an equation or the system of nonlinear equations.

To illustrate this principle, the system of equations is defined as follows. f (x, y) = 0

g (x, y) = 0
(2.28)

The functions f (x, y) and g (x, y) are two arbitrary functions

f (x, y) = f (x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0) + 0 (x, y) (2.29)

g (x, y) = g (x0, y0) +
∂g

∂x
(x− x0) +

∂g

∂y
(y − y0) + 0 (x, y) (2.30)

The Jacobian matrix associated with above equations is found as follows:

J (x, y) =

 ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

 (2.31)

If det (J) 6= 0, the iterative method is written as

Xn−1 = Xn − J−1 (Xn)F (Xn) (2.32)
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A convergence criterion for the solution of a system of nonlinear equation could be, for

example, the magnitude of the absolute values of the functions F (Xn) is smaller than a

certain tolerance

|F (Xn)| < 0 (2.33)

2.3.3 Hardware and software

During the course of this work, we used a Laptop computer having the following perfor-

mances (Operating system: Windows 10 single language 64-bit, Processor: Intel(R)Core(TM)i5-

3230M CPU @2.60GHz(4CPUs), 2.6GHz, Memory: 8 Go RAM) and five major softwares:

Fortran and Python for differential equations, Matlab for data analysis, Mapple and Math-

ematica for integral calculus.

2.4 Computational tools for the characterization of the

dynamical states of non-linear systems

Dynamical states of the nonlinear systems are usually investigated with a number of nu-

merical tools such as the time histories diagram, phase portraits diagrams, bifurcation

diagrams and Lyapunov exponent. In this section, we give a brief account of the com-

putational techniques which are used for characterizing different dynamical states of new

chaotic Bouc-Wen model.

2.4.1 Phase portraits diagrams

A phase portrait of a dynamical system is a mathematical space having orthogonal coor-

dinate directions which represent each of the variables needed to specify the instantaneous

state of the system. The state of a particle moving in one dimension is specified by its

position and velocity. The phase space variables need not be mechanical coordinates like

position and velocity. The state of a dynamical system is represented by a point in the

phase space. As the system evolves in time, it constitutes a trajectory in the phase space.

Phase portraits are an invaluable tool in studying dynamical systems. They consist of a

plot of typical trajectories in the state space. This reveals information such as whether

an attractor, a repellor or limit cycle is present for the chosen parameter value. However

the drawback of this computational tool is that it can be hard to distinguish the quasi-
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periodicity and chaos phenomena by using the phase portrait diagram. The most reliable

numerical tools used to know if a dynamical system exhibited a chaotic phenomenon for

a given parameter values is the Poincaré section.

2.4.2 Bifurcation Diagrams

A bifurcation is the event in which one of the properties of a dynamical system changes

qualitatively when a control parameter of the system is varied. For plotting the bifurcation

diagram of continuous dynamical systems, a set of values of a single variable representing

the attractor must be obtained. This is usually done by the return map obtained from the

Poincaré section [129]. There is another method for obtaining discrete mappings from the

flows. In the bifurcation phenomena, attractors may appear, disappear or be replaced by

another one. Bifurcation diagrams help us to visualize these transitions. We can identify

various routes to chaos taken by dynamical systems. The most common are: the period

doubling route, the quasi-periodic route and intermittency route.

2.4.3 Lyapunov exponents

Named after Lyapunov, a Russian mathematician, Lyapunov exponents are the widely

accepted tools for characterizing chaotic and periodic states of a dynamical system. Lya-

punov exponents describe the rate of divergence or convergence of nearby trajectories

onto the attractor in different directions in phase space. It gives a measure of the sensitive

dependence upon initial conditions which is a characteristic of chaotic system. In this

subsection, we discuss briefly the definition and computational aspects of the Lyapunov

exponents of the continuous and discrete dynamical systems. In the case of ODEs ,if you

consider two initially nearby state variables x (t0) and x (t0)+δx (t0), the derivation δx (t)

further evolves as :
dδx (t)

dt
=

[
δF

δx

]
x

.δx (2.34)

with δx (t0) = δx0 and [δF = δx] is the jacobian of the flow F evaluated on X. The n

eigenvalues of this jacobian are referred to as Lyapunov exponents, and they can numer-

ically be determined through [130].

λk = lim
t→+∞

1

t
ln

[
|δxk (t)|
|δxk (0)|

]
(2.35)

with k = 1, ..........., n

The n eigenvalues λk constitute the Lyapunov spectrum of the flow F for the initial
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condition x (t0). The average Lyapunov spectrum of an attractor is defined as the space

average of the Lyapunov spectrum over its corresponding basin of attraction. Depending

on its sign, an average Lyapunov exponent λk expresses convergence (when negative) or

divergence (when positive) of nearby trajectories along the corresponding eigendirection

in the attractor. Therefore, a dynamical system is said to be chaotic if at least one average

Lyapunov exponent λk is positive. The system is said to be hyperchaotic if more than one

average Lyapunov exponent is positive. Moreover, a greater number of positive λk, as well

as greater absolute values for each of them when positive indicate a higher complexity in

the state space and a higher unpredictability in the time domain. Generally, if the initial

value x0 is properly chosen, the resulting Lyapunov spectrum does not differ substancially

from the average Lyapunov spectrum.

2.5 Conclusion

In this chapter, the mathematical modelling of BW model and a brief description of

parameters model were presented. A physical structure model was presented to highlight

the applicability of the model. Afterwards, the mathematical and numerical simulation

methods used to solve the equations subject to external perturbations such as external

periodic force were also detailed in this chapter, as well as the hardware and software

employed. The next chapter focuses on results and discussions.
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3.1 Introduction

This chapter is devoted to the results and discussions of the work carried out in this

thesis. It is organized as follows. Section 3.2 deals the dynamic analysis of a SDOF hys-

teretic system with negative stiffness, and the effect of the BW parameters model on the

dynamics responses. Here, we show that by playing only on the shape parameters of the

BW hysteresis one can predict and suppress the appearance of chaotic motion Section

3.3 deals with the conditions for which homoclinic chaos appears in a class of systems

with BW hysteresis. In this sense, Mathematical formalism and dynamics explanation

are detailed. Section 3.4 presents the complex dynamic behavior of nonlinear mechanical

structure modelled with asymmetric potential generated by the hysteretic force of BW

type and the key role of BW parameters model on the dynamics response. The last section

concludes the chapter.

3.2 On the appearance of horseshoe chaos in a nonlin-

ear hysteretic systems with negative stiffness

3.2.1 Bouc-Wen model: Description

We consider a bridge on which periodic service loads are performed (see fig.3.1a). Under

the action of these loads, the vertical beams deform and thus constitute a stiffness. This

rigidity is highlighted by the so-called Bouc-Wen restoration force. During the movement,

the system loses energy due to the viscous damping of the shape memory material that

constitutes the structure.

Assume an SDOF system, e.g. a cantilever (see fig.3.1b), the equation of motion for

SDOF system consisting of a mass (m > 0) connected in parallel to a viscous damper

(c > 0) with BW hysteretic spring is described by:

mẍ (t) + cẋ (t) +H (x, z, t) = F (t) , (3.1)

where x, ẋ and ẍ are displacement, velocity and acceleration respectively, the non

damping restoring force H, is composed of both linear and hysteretic restoring forces.

H is given by:

H (x, z, t) = αkx (t) + k (1− α) z (t) (3.2)
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k is a stiffness, α the rigidity ratio of post-yield to pre-yield and z the hysteretic dis-

placement. The relative input of the hysteretic part is therefore controlled by the pa-

rameter α . The non-linear restoring force is thus a function of the fictitious hysteretic

displacement z rather than the total displacement x. At larger displacements, for a non-

pinching, non-degrading system the so-called BW model represents the true hysteresis in

the form [78,101,102]:

ż = D−1(Aẋ− β |ẋ| |z|n−1 z − γẋ |z|n), (3.3)

where ż denotes the time derivative, n > 1, D > 0, k > 0 and A > 0. A is the parameter

controlling hysteresis amplitude β, γ and n are parameters describing shape and amplitude

of hysteresis.

(a) (b)

Figure 3.1: a) Real system; b) Physical model

In this study, thermodynamic admissibility issues impose the following inequality [77,

103,104]:

β ≥ γ (3.4)

Based on (3.4), the hysteretic loop assumes a bulge shape (see Figure 3.2) as opposed

to a slim-S one (see Figure 3.3).

β + γ ≥ 0 (3.5)

Equation (3.5) is a sufficient and necessary condition for strain-softening behaviour.

The combination of β and γ dictates whether the model describes a softening (see Figure

3.2) or hardening (see Figure 3.3) load-slip relation.

This results are obtained assuming that the external excitation is harmonic i.e

F (t) = F0 sin (Ωt), where F0 and Ω are respectively the amplitude and frequency of the

Ph.D in Fundamental Mechanics and Complex Systems by YOUTHA NGOUOKO Octave Nathaniel ?UY1/FS?



Chapter III: Results and discussion 40

Figure 3.2: Softening hysteresis loop generated by the model for D = 1, n = 2, A = 1,

γ = 0.05 and β = 0.95 .

Figure 3.3: Hardning hysteresis loop generated by the model for D = 1, n = 2, A = 1,

γ = −0.65 and β = 0.35.
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excitation. To derive the total energy of the system, it is convenient to rewrite the system

equation in the form [105]:

ẍ (t) + 2ςωẋ (t) + αω2x (t) + ω2 (1− α) z (t) = F (t)

ω =
√

k
m
, ς = c

2mω
,

(3.6)

where ω is a pre-yield natural frequency of the system and ς a linear viscous damping

ratio. The evolution of the hysteretic displacement z given by the following constitutive

differential equation:

ż = D−1 [A− (γ + sgn (ẋ) sgn (z) β) |z|n] ẋ (3.7)

We note that the phase space of the Bouc-Wen oscillator is three dimensional and is

spanned by (x, ẋ, z). Setting ε = sgn (ẋ) sgn (z) = ±1 with sgn denotes the signum func-

tion, in order to integrate z, (3.7) can be rewritten in the following form:

dz = D−1 [A− (γ + εβ) |z|n] dx (3.8)

3.2.2 Appearance of separatrix

The equations (3.6) and (3.8) can be recasted in state space form as:

ẋ = y

ẏ = −2ςωy − αω2x− (1− α)ω2z

ż = D−1 [A− (γ + εβ) |z|n] y

(3.9)

.

For D = 1 and n = 2, one obtains three fixed points (0 , 0 , 0);(
− (1−α)

α

√
A

γ+εβ
; 0 ;

√
A

γ+εβ

)
and

(
(1−α)
α

√
A

γ+εβ
; 0 ;−

√
A

γ+εβ

)
Taking into account the influence of the hysteretic force, the potential energy of the system

is given by:

V (x) =
1

2
αω2x2 + ω2 (1− α)

∫ x(t)

x(0)

zdx (3.10)

The energy absorbed by the hysteretic element is thus the continuous integral of the

hysteretic force and the total energy displacement.

Equation (3.8) is integrated for D = 1 and n = 2. The initial conditions x(0) , ẋ(0) ,

z(0) are known. For the sake of simplicity, it is assumed that x(0) = ẋ(0) = z(0) = 0. It

is claimed that the hysteretic displacement z can thus be derived explicitly and given by:

z =

√
A√

(γ + εβ)
tanh

(√
A (γ + εβ)x

)
(3.11)
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Then complete potential of the system, taking into account the hysteresis component

(see Figure 3.4(a)) is given by:

V (x) = 1
2
αω2x2 + ω2 (1−α)

√
A√

(γ+εβ)
ln cosh

(√
A (γ + εβ)x

)
(3.12)

The critical amplitude xu is obtained when the following conditions are satisfied:

(a)

(b)

Figure 3.4: a) Potential curve, b) Energy diagram of system for ε = 1.

V
′
(x) = 0 and V

′′
(x) ≥ 0 (3.13)

But obtaining the analytical expression using the form given by (3.11) is quite impossi-

ble. To find an approximation solution, we carry out the expansion of tanh
(√

A (γ + εβ)x
)
,
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assume that β = ξβ̄ and γ = ξγ̄, where ξ is a small positive constant. An expansion in

power series of ξ allows to obtain an approximate description of the hysteresis loop by

neglecting the ξ3 and higher powers, and by integration of (3.10), one obtains:

Vap (x) = 1
2
(ω2 (α + (1− α)A))x2 − 1

12
(ω2A2 (1− α) (γ + εβ))x4 (3.14)

The representation of this potential shows that the presence of hysteretic force describes

the unbounded monostable potential (see Figure 3.4(b)). Equation of the dynamics of this

system is given by :

ẍ (t) + 2ςωẋ (t) + (αω2 (t) + ω2 (1− α)A)x (t)− 1
3
ω2A2 (1− α) (γ + εβ)x3 (t) = F0 sin (Ωt)

(3.15)

Figure 3.4 also shows that we have three fixed points: one stable (0; 0) and the other

two unstable
(
±
√

3(α+(1−α)A)
(1−α)(γ+εβ)A2 ; 0

)
leading to the appearance of heteroclinic orbit (see

Figure 3.5). In this case, the separatrix appears leading to the possible transverse inter-

section between pertubed and unpertubed heteroclinic orbit. This means that the shape

parameters of the hysteresis force have a direct link with the appearance of horseshoe

chaos in the system. The presence of horseshoe chaos means that the existence of a start-

ing point for successive route to chaotic dynamics. This can be detected analytically using

Melnikov theory.

3.2.3 Melnikov analysis

In the present section, we apply the Melnikov method [96,98,106,107] to detect analytically

the effects of Bouc Wen model parameters on the threshold condition for the inhibition of

horseshoe chaos in the system and on the fractal basin boundaries. To apply this method,

we introduce a small parameter µ in (3.15) and rewrite the governing system as the

following set of first order differential equations : ẋ (τ) = y (τ)

ẏ (τ) = −ω2 (α + (1− α)A)x (τ) + 1
3
A2ω2 (γ + εβ) (1− α)x3 (τ) + µΓ (t) ,

(3.16)

with Γ (τ) = −2ςωy (τ) + F0 cos (Ωτ). For µ = 0 and after assuming that : x = x (τ) ,

y = y (τ) the system of (3.16) is the Hamiltonian system with Hamiltonian function.

H (x, y) = 1
2
y2 + 1

2
ω2 (α + (1− α)A)x2 − 1

4

(
1
3

(1− α) (γ + εβ)ω2A2
)
x4 (3.17)
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The saddle points (see Figure 3.4) xu1 and xu2 are connected by heteroclinic

orbits (see Figure 3.5) that satisfied the following equation:

xhet = ±
√

3(α+(1−α)A)
(1−α)(γ+εβ)A2 tanh

(
ω
√

α+(1−α)A
2

τ

)

yhet = ± 3(α+(1−α)A)ω
(1−α)(γ+εβ)A2

√
α+(1−α)A

2
sech2

(
ω
√

α+(1−α)A
2

τ

) (3.18)

Figure 3.5: Heteroclinic orbit of unbounded monostable potential

The Melnikov theory defines the condition for the appearance of the so called trans-

verse intersection points between the perturbed and the unperturbed separatrix or the

appearance of the fractality on the basin of attraction. This theory can be applied in the

case of (3.15) by using the formula given by Wiggins [98] as follows:

MY (τ0) =
∫ +∞
−∞ g0 (uhet (τ))× gp (uhet (τ) , τ + τ0) dτ

= −2ςω
∫ +∞
−∞ y2

het (τ) dτ + F0

∫ +∞
−∞ yhet (τ) sin (Ω (τ + τ0)) dτ

= I ± Z (τ0)

(3.19)

where
I = −24ςω2

√
α+(1−α)A

2

(
α+(1−α)A

(1−α)(γ+εβ)A2

)2

and

Z (τ0) = 3F0Ωπ(α+(1−α)A) sin(Ωτ0)

ω(1−α)(γ+εβ)A2

√
α+(1−α)A

2
sinh

(
Ωπ

2ω

√
α+(1−α)A

2

)
When the Melnikov function has a simple zero point, the stable manifold and the

unstable manifold intersect transversally, chaos in the sense of Smale horseshoe transform
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occurs. So let MY (τ0) = 0, one concludes that Melnikov chaos appears when:

F0 ≥ FCR =

∣∣∣∣ 4ςω3(α+(1−α)A)2

((γ+εβ)(1−α)A2)Ωπ sin(Ωτ0)
sinh

(
Ωπ

2ω
√
α+(1−α)A

2

)∣∣∣∣ (3.20)

The criterion in Eq (3.20) defines the threshold value of FCR for the appearance of

a transverse intersection between the perturbed and the unperturbed manifolds. Such a

condition is known as necessary for the existence of chaos. The threshold condition is

plotted in Figure 3.6 as a function of the driving frequency Ω for different values of α (see

Figure 3.6(a)), A (see Figure 3.6(c)) and (γ + εβ) (see Figure 3.6(e)) , as function of the

parameter α (see Figure 3.6(b)), as function of A (see Figure 3.6(d)) and as function of

the parameters (γ + εβ) (see Figure 3.6(f)).

Figure 3.6(a) shows in the space (Ω, FCR), the lower bound for the appearance of hete-

roclinic bifurcation for several cases of α parameter. For (Ω, FCR) taken below the lower

bound line, the system displays a periodic motion, while possible chaotic motion is ob-

served in the upper domain. It appears that: when α decreases the surface of the critical

force increases consequently critical force decreases.

Figure 3.6(b) illustrates the effects of negative stiffness on the threshold value of FCR,

for −1 < α < 0, the threshold increases, it appears that the control effect increases as α

increases, this is a sign of the reinforcement of effectiveness of the control. The variations

of the critical force as a function of α show that the parameter α plays a preponderant

role in its efficiency.

Figures 3.6(c) and 3.6(e) show the critical external forcing amplitude for different values

of A and (γ + εβ) respectively. One can see (Figure 3.6(c)) that when the value of the

parameter A increases, the thresholds of the critical values for heteroclinic bifurcation of

the harmonic excitation FCR decrease. The same effect is observed with the parameters

(γ + εβ) (Figure 3.6(e)). We conclude that the parameters A and (γ + εβ) have the same

effect on the critical value for chaotic motions.

Figure 3.6(d) highlights the fact that as A increases the amplitude of the critical force

decreases. Consequently, the choice of the parameter A relating to the reduction of the

speed and amplitude of vibration or to the increase of the stability basin may be the

starting point of a route leading to unpredictable behaviour. The same investigations are

made in the case of Figure 3.6(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Evolution of the critical amplitude FCR as a function of : Ω (a), (c) and (e) ;

α (b) ; A (d) and (γ + εβ) (f) with ε = 1.
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3.2.4 Numerical investigation

The existence of a homoclinic or heteroclinic orbit for the detection of horseshoe chaos in

physical systems is of paramount importance. Indeed, the choices of control parameters for

obtaining the basin of attraction is not done in a random manner; Moreover, it is possible

to determine the conditions for which heteroclinic orbit appears, while defining the limits

of values of model parameters for which basins can be obtained. Of Equations (3.18), it

is possible to find the conditions (see Equation 3.21) for which the parameters of the BW

model, will allow to obtain each time a heroclinic orbit. Thus, if the conditions (I) and

(II) of Equations (3.21) are satisfied, horseshoe chaos in the system can be predicted if

only if:

A > 0 ; −1 < α < 0 with

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(I)

 β + γ > 0

γ − β < 0

(II)

 β + γ > β − γ
β − γ > 0

(III)All other cases ∅

(3.21)

To validate the accuracy of the proposed analytical predictions, we solve numerically

Equation 3.9 by means of fourth order Runge Kutta algorithm. A particular characteristic

of the Melnikov theory is the fractality [106, 108, 109] of the basin of attraction and the

resulting unpredictability due to the dependence on the initial conditions.

The limit FCR given by (3.20) is shown in Figure 3.7. These figures display the basin

of attraction according to the evolution of external forces. Thus, it appears that the basin

has a regular geometry (see Figure 3.7(a)), and completely fractal (see Figure 3.7(b) and

Figure 3.7(c)) for higher values, sign of the establishment of chaos. In addition, from the

appropriate parameters of the Bouc-Wen model, we can also control the appearance of

chaos in the SDOF system (see Figure 3.8).

Figure 3.8 Shows how when playing with the parameters of BW model it is possible to

control system or to cause chaos. Thus, for the same value of critical amplitude and for

different parameters of the Bouc-Wen model, the attraction basin is chaotic (see figure

3.7(c)), at the Figure 3.8 the attraction basin can be controlled. It is viewed that for a

small amplitude of the external force, the limits of the basin are regular. In the case of the

soft system, the heteroclinical orbit is clear. Above a certain value, it becomes irregular,

meaning the presence of Melnikov chaos in the case of the soft system.

To validate the accuracy of the restoring force, (3.2) is plotted in Figure 3.9, by
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(a) (b)

(c)

Figure 3.7: Basins of attraction showing the confirmation of the analytical prediction for

ε = 1; α=-0.5; β=0.95; γ=0.05; ς=0.02 and A=1.
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Figure 3.8: Effect of parameters (γ + εβ), A and α, on the basin of attraction for Ω=1;

α=-0.4; γ + εβ = 0.9 and A = 0.7

comparing the curves in this figure, we show that, the energy dissipated by the system

can be considerably reduced when the system is controlled.

Figure 3.9: Response of BW model under cyclic excitation, with parameters used in Fig

3.7 without control and Fig 3.8 with control: − without control; . . . with control
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3.3 On Appearance of homoclinic chaos in a SDoF os-

cillator with Bouc-Wen hysteresis: Mathematical

formalism and dynamics explanation

3.3.1 Bouc-Wen hysteresis model: New consideration

The following set of differential equations governs the motion of a SDoF oscillator with

BW hysteresis [105]:

ẍ (t) + 2ςω0ẋ (t) + αω2
0x (t) + ω2

0 (1− α) z (t) = F (t) (3.22)

ż = D−1 [A− (γ + sgn (ẋ) sgn (z) β) |z|n] ẋ, (3.23)

where x, ẋ and ẍ are displacement, velocity and acceleration respectively. α the rigidity

ratio of post-yield to pre-yield and z the hysteretic dispacement. With ς the damping ratio

of the system and ω0 the natural frequency of the system without damping and hysteresis.

The relative input of the hysteretic part is therefore controlled by the parameter α with

0 ≤ α ≤ 1. The non-linear restoring force is thus a function of the fictitious hysteretic

displacement z rather than the total displacement x.

In this study, the case A < 0 of the classification table 2.1 of the BIBO-stable BW

model and second principle of Thermodynamics are strictly adopted [70, 77] following

these inequalities:

β > 0 and β ≥ γ (3.24)

Assuming that, the external excitation is harmonic i.e F (t) = F0 sin (ωt).

where F0 and ω are respectively the amplitude and frequency of the excitation. We note

that the phase space of the Bouc-Wen oscillator is three dimensional and is spanned by

(x, ẋ, z). Setting ε = sgn (ẋ) sgn (z) = ±1 with Sgn denotes the signum function, Eq (3.23)

can be rewritten in the following form:

dz = D−1 [A− (γ + εβ) |z|n] dx (3.25)

3.3.2 Fixed points and their stability

To examine the stability of system, the equations (3.22) and (3.25) can be recast into

state space form as:
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ẋ = y

ẏ = −2ςω0y − αω2
0x− (1− α)ω2

0z

ż = D−1 [A− (γ + εβ) |z|n] y

(3.26)

Firstly, we obtain the fixed points by solving the general equation F (u̇) = 0 , where F is

the nullcline and u is the vector space containing x, y and z. It appears that without purely

hysteretic force (α = 1), we have only one fixed point P0(0 , 0 , 0) and with hysteretic force,

we have two fixed points namely P1(0 , 0 , 0) and P2

(
− (1−α)A
α(γ+εβ)

, 0 , A
(γ+εβ)

)
In both cases, by considering the Jacobian matrix of one of these equilibria and calculating

their eigenvalues, we can investigate the stability of the equilibrium point based on the

roots of the characteristic equation:

P 3 + a2P
2 + a1P + a0 = 0, (3.27)

where a2 = (γ + εβ) y0 + ς , a1 = (γ + εβ) ςy0 +Aω2
0 (1− α)− (γ + εβ) (1− α)ω2

0z0 +αω2
0

and a0 = αω2
0 (γ + εβ) y0

We know that the fixed points are stable if the real parts of the roots of the charac-

teristics equation are all negative. Otherwise, the fixed points are unstable. Using Routh-

Hurwitz criterion, for the sign of the real part of the roots, we obtain that the real parts

of the roots are negative if and only if the conditions of Eq (3.28) are satisfies.

a2 > 0, a1 > 0, a0 > 0

a2a0 − a1 > 0

a0 (a2a0 − a1) > 0

(3.28)

Before analyzing the stability status of each point, it is important to consider the

practical process of modeling system Eq (3.26). It is clear that A can take negative or

positive values. Focussing on the fixed point P1 and for A < 0, the analysis leads us to

the conclusion that for
( −A

1−A < α < 1
)
this fixed point can be stable (see fig. 3.11 (a)) or

unstable (see fig. 3.11 (b)) if
(
0 < α < −A

1−A

)
depending on the choice of space parameter

of the system. The other fixed points P2 is always stable. Therefore the stability condition

(see fig. 3.10) should be checked according to the criteria defined above before any use is

made of the system.
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Figure 3.10: Stabilty curve of system: With hysteretic force at point P1 class III and class

IV

3.3.3 Appearance of separatrix

Without taking into account hysteretic force the potential energy of the system is harmonic

and given by:

V (x) =
1

2
αω2

0x
2 (3.29)

Taking into account the influence of the hysteretic force, this is modified in the fol-

lowing manner:

V (x) =
1

2
αω2

0x
2 + ω2

0 (1− α)

∫ x(t)

x(0)

zdx (3.30)

The energy absorbed by the hysteretic element is thus the continuous integral of the

hysteretic force and the total energy displacement. Equation (3.25) is integrated for D = 1

and n = 1. The initial conditions x(0) , ẋ(0) , z(0) are know. For the sake of simplicity it

is assumed that x(0) = ẋ(0) = z(0) = 0. It is claimed that the hysteretic force z can thus

be derived explicitly and given by:

z =
A

(γ + εβ)
[1− exp (− (γ + εβ)x)] , (3.31)
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(a)

(b)

Figure 3.11: Energy diagram of system for P1: a) Stable α= 0.85, b) Unstable α = 0.5

with A = -2; γ = 0.05; β = 0.95 and ε=1 (class III )
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Then the complete potential of the system taking into account the hysteresis compo-

nent is given by:

V (x) = 1
2
αω2

0x
2 +

Aω2
0(1−α)

(γ+εβ)

[
x− 1−exp(−(γ+εβ)x)

(γ+εβ)

]
, (3.32)

The representation of this potential shows that the presence of hysteretic force change

the shape of potential : Without the hysteretic force, the potential (fig. 3.12(a)) shows one

stable fixed point (0 , 0) in this case, the system can carry out symmetrical oscillations

of large amplitude around the fixed point (0, 0) meaning that in this case there is no

possibility of homoclinic orbit appearance in the system, and with hysteretic force, the

potentials (fig. 3.12(b) and 2(c)) show two fixed points: one unstable fixed point (0 , 0)

and one other stable fixed point, leading to the appearance of homoclinic separatix (see

fig. 3.13(b)).

Fig. 3.12(b) also shows that as (γ + εβ) increases, a particle inside the well gradually

retracts from the unstable point. In the case of fig. 3.12(c) as (γ + εβ) increases for the

negative values, the same behaviour is observed. We conclude that when A < 0, the

behaviour of soft system (class III) and hard system (class IV) could describe the same

dynamic behaviour.

The critical amplitude Pu is obtained when the following conditions are satisfied:

V
′
(x) = 0 and V

′′
(x) ≥ 0 (3.33)

In Eq (3.31) one assumes that β = ξβ̄ and γ = ξγ̄ where ξ is a small positive constant.

An expansion in power series of ξ allows to obtain an approximate description of the

hysteresis loop by neglecting the ξ3 and higher powers one obtains:

z (x) = A
(εβ+γ)

(
1− e−(εβ+γ)x

)
= xA− (εβ+γ)A

2
x2 + 0 (ξ3)

(3.34)

And by integration of Eq. (3.30), one obtains:

Vap (x) =
ω2

0

2
((α+ (1− α)A))x2 − ω2

0

6
(A (1− α) (γ + εβ))x3 (3.35)

By approximation of this potential, fig. 3.13 (a) shows the correspondence between

the approximated and the original potential. Thus, one obtains a stable fixed point(
0, 2(α+(1−α)A)

(1−α)(γ+εβ)A

)
and the other one unstable (0 , 0) for class III and a stable fixed point
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(a)

(b) (c)

Figure 3.12: Potentials curves of system: Without hysteretic force (a) , with hysteretic

force class III (b) and class IV (c) for ε = 1; α = 0.666; A = −2
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(a)

(b)

Figure 3.13: Potentials curves of system, separatrix and homoclinic orbit of unbounded

monostable potential :(a) Original and approximated potential (b) Separatrix (solid line)

and homoclinic orbit(dashed-dashed line): for ε = 1; α = 0.666; A = -2; β = 0.95 and γ

= 0.05
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2(α+(1−α)A)
(1−α)(γ+εβ)A

, 0
)
and the other one unstable (0 , 0) for class IV.

In the case of A < 0 for class III, the separatrix (see fig. 3.13(b)) appears leading to

the possible transverse intersection between pertubed and unpertubed homoclinic orbit.

This means that the shape parameters of the hysteresis force have a direct link with the

appearance of homoclininc orbit. Equation of the dynamic of this system is given by :

ẍ (t) + 2ςω0ẋ (t) + (α + (1− α)A)ω2
0x (t)− 1

2
ω2

0A (1− α) (γ + εβ)x2 (t) = F0 sin (ωt)

(3.36)

This homoclinic orbit can be evaluated analytically and we obtain:

xhom = −3η
(

1− tanh2
[ω0τ

2

√
ρ
])

(3.37)

yhom = 3η
√
ρsech2

[ω0τ

2

√
ρ
]

tanh
[ω0τ

2

√
ρ
]

(3.38)

with η = ρ
(1−α)(γ+εβ)

and ρ = − (α + (1− α)A)

3.3.4 Melnikov analysis

In order to analyse the effects of the parameters of the Bouc-Wen model of the dynamic

response of the system, we take-in account the case where the point P1(0; 0) is unstable

in aim to determine the conditions for which this point could become stable. Fig. 3.11

confirms the analytical prediction given by Eq. (3.30), we observe the original homoclinic

separatrix and the phase diagram of the system. Homoclinic orbits are solutions which

are forward and backward asymptotic (in time) to a saddle-type fixed point (or a more

general invariant set [98]). They occur at the intersection of the sets which are forward

and backward asymptotic to the saddle point, i.e. the stable and unstable manifolds,

respectively.

Related to this homoclinic orbit is the appearance of the typical Smale horseshoe .

Chaotic motion, which occurs when the fractality of the basin of attraction appears and

the Melnikov theory is satisfied [96, 98, 111, 132]. This theory can be easily evaluated in

this case.

F0 ≥ Fcr =

∣∣∣∣4ςηρ 3
2 ω4

0

5πω2 sinh
[

πω
ω0
√
ρ

]∣∣∣∣ (3.39)

here Fcr is the threshold amplitude for the onset of Melnikov chaos in the system.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Evolution of the critical amplitude Fcr for appearance or disappearance of

horseshoes chaos as a function ω for diferent values of α(a), A(c) and γ + εβ(e), as a

function of alpha (b), A (d) and γ + εβ(f) : With ε = 1; β = 0.95; γ = 0.05; alpha = 0.5;

A = -2 and ς = 0.02
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The criterion in eq. (3.39) defines the threshold value of Fcr for the appearance of

a transverse intersection between the perturbed and the unperturbed manifolds. Such

a condition is known as necessary for the existence of chaos. The threshold condition

is plotted in fig. 3.14 as a function of the driving frequency ω for different values of α

(fig. 3.14(a)), A (fig. 3.14(c)) and (γ + εβ) (fig. 3.14(e)), as function of the parameter α

(see fig. 3.14(b)), as function of A (see fig. 3.14(d)) and as function of the parameters

(γ + εβ) (see fig. 3.14(f)).

Fig. 3.14(a) and (c) show in the space (ω, Fcr), the lower bound for the appearance of

homoclinic bifurcation for several cases of α and A parameters respectively. For (ω, Fcr)

taken below the lower boundary line, the system displays a periodic motion, while pos-

sible chaotic motion is observed in the upper domain. It appears that: when α increases

the surface of the critical force decreases consequently critical force decreases. The same

investigations are made in the case of Fig. 3.14(c)

Fig. 3.14(b) illustrates the effects of α on the threshold value of Fcr, for 0 < α < 0.51,

it appears that, the intensity of the critical force for the appearance of of Melnikov’s

chaos decreases when α increases and 0.51 < α < 0.666 the intensity increases, it appears

that the control effect increases, this is a sign of the reinforcement of effectiveness of the

control. The variations of the critical force as a function of α show that the parameter α

plays a preponderant role in its efficiency.

Fig. 3.14(d) and (f) highlight the fact that as A and (γ + εβ) increase the amplitude

of the critical force decreases. Consequently, the choice of these parameters relating to

the reduction of the speed and amplitude of vibration or to the increase of the stability

basin may be the starting point of a route leading to unpredictable behavior. The same

observations were obtained by [120].

Fig. 3.14(e) shows the critical external forcing amplitude for different values of (γ + εβ).

One can see that when (γ + εβ) increases, the thresholds of the critical values for homo-

clinic bifurcation of the harmonic excitation Fcr decrease. We conclude that, more and

more as (γ + εβ) increases the control becomes less and less effective.
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3.3.5 Basins of attraction

The existence of a homoclinic orbit for the detection of Melnikov chaos in physical systems

is of paramount importance. Indeed, the choices of control parameters for obtaining the

basin of attraction is not done in a random manner; Also, it is possible to determine the

conditions for which homoclinic orbit appears, while defining the limits of values of model

parameters for which basins can be obtained. Of eq. 3.37 we obtain:

A < 0 ; α <
A

A− 1
with

∣∣∣∣∣∣∣∣∣

{
ClassIII{
ClassIV

All other cases ∅

(3.40)

These conditions describe well the hysteretic behaviour of softening systems. To valide the

accuracy of the proposed analytical predictions, we solve numerically Eq. 3.36 by means

of fourth order Runge Kutta algorithm. A particular characteristic of the Melnikov chaos

is the fractality [112] of the bassin of attraction and the resulting unpredictability due to

the dependence on the initial conditions.

Fig. 3.15 displays the basin of attraction according to the evolution of external force.

Thus, it appears that the basin has a regular geometry (see fig. 3.15(a)), fractal (see

fig. 3.15(b), (c)) and completely fractal (see fig. 3.15(d)) for higher values, sign of the

establishment of chaos. In addition, from the appropriate parameters of the Bouc-Wen

model, we can also control the appearance or disappearance (see fig. 3.16) of chaos in the

SDOF system. It is viewed that for a same amplitude of the external force, the basins

are fractal (see fig. 3.16(a), (b) and (c) ) or regular (see fig. 3.16(d)) by consideration of

Melnikov investigation and playing on the Bouc-Wen parameter model.
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(a) (b)

(c) (d)

Figure 3.15: Basins of attraction showing the confirmation of the analytical prediction: D

= 1; n = 1; ε = 1; ω = 0.85; β = 0.95; γ = 0.05; α = 0.5; A = -2 and ς=0.02
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(a) (b)

(c) (d)

Figure 3.16: Basins of attraction showing the confirmation of the analytical prediction:

ε = 1; ω=0.85; β=0.95; γ=0.05; α=0.5 and ς=0.02
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3.3.6 Bifurcation Diagram and Lyapunov Exponent

A bifurcation diagram for the range of excitation amplitude 0.0 < F0 < 6.0 is shown in

fig. 3.17(a) for damping ratio ς = 0.02; ε =1; A = -2; α = 0.666; γ = −0.54; β = 0.55;

ω0 =1; D = 1; n = 1 and frequency of external excitation ω = 1. The initial conditions

are x |t=0 = ẋ |t=0 = 0 fig. 3.17(b) is corresponding diagram of the largest Lyapunov ex-

ponents. The stroboscopic time period used to map various transitions which appear in

the model is T = 2π/ω. Our investigations show that the model exhibits chaotic behavior

(see fig. 3.18 (a)). These curves are obtained by numerically solving Eq. 3.22 and 3.23

and the corresponding variational equations. The one dimensional Lyapunov exponent is

defined by:

Lya = lim
t→∞

ln
(√

dx2 + dy2 + dz2
)

t
(3.41)

where dx, dy and dz are respectively the variations of x, ẋ, and ż. As the amplitude F0

increases from zero, the amplitude of the quasi-periodic oscillations exists until F0 = 3.96

where a chaotic orbit takes place. At F0 = 4.05, the system bifurcates from a period-21

orbit to a chaotic orbit until F0 = 4.236 where the chaotic orbit appears, the system

remains until F0 = 4.54 where it bifurcates to the period-1 orbit. Figures 3.18 presents

the phase portrait ẋ versus x of the chaotic and periodic motions.

Remark The bifurcation diagram and Lyapunov Exponent of classes III and IV are

the same, there is due in a negative value of A parameter. The same analysis is founded

in section 3.
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(a)

(b)

Figure 3.17: Bifurcation diagram (a) and Lyapunov exponent (b) vs the amplitude F0

with the parameters of system: D = 1; n = 1; ε = 1; α = 0.666; A = -2; β = 0.55 and γ

= - 0.54
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(a)

(b)

Figure 3.18: Various phase portraits in some intermittency areas for different values of

F0: F0 = 4.3 (a); F0 = 5.5 (b). With D = 1; n = 1; ω =1; ω0 = 1; ε = 1;α = 0.666;A =

−2; β = 0.55 and γ = −0.54.
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3.4 Complex horseshoe chaos on a nonlinear oscillator

with hysteretic Bouc-Wen force

A large number of studies have been dedicated to the nonlinear dynamic structures mod-

elled by a classical Duffing oscillator with single and double well [90, 99,113–115].

V (x) = a0

2
x2 + b0

4
x4, (3.42)

where V(x) is the potential: a and b are the constants, with a0 > 0 and b0 < 0 case

of single well and a0 < 0 and b0 > 0 case of double well. The representation of these

potentials shows that, this model describes a mass particle that can move in a symmetrical

potential well [116]. Under harmonic excitation such systems can exhibit chaotic behavior,

for structures subjected to extreme dynamic loads, a degrading, hysteretic restoring force

model has been developed by Wen and Baber [4, 115, 117, 118]. Because of their large

nonlinearities and discontinuities, hysteretic systems are complicated to investigate. This

non-linear hysteretic behavior is typically found in processes where input-output dynamic

relationships between variables involve memory effects. Many others researchers studied

this potential by introducing an asymmetric term [112,127,128]. Diverse ideas have been

analyzed, several aspects have been considered [127, 128] and experimental design [111].

Another interesting model takes into account the hysteretic energy due to hysteretic force,

unfortunately, few analytical investigations have been done until now [110,120].

V (x) =
a0

2
x2 +

b0

4
x4 + (1− α)ω2

0

∫ x(t)

x(0)

gdx, (3.43)

where g is the hysteretic displacement.

We Firstly show that by taking into account higher nonlinear contributions of the hys-

tretic force, the dynamics of a Duffing oscillator is described by the asymmetric potential.

Secondly, the Melnikov theory is used to force the starting point for a successive route

to chaotic dynamics taking to account homoclinic and heteroclinic orbits. Some complex

behavior has also been investigated. We conclude in the last section.

3.4.1 General mathematical formalism

Bouc-Wen model of hysteresis [57, 78, 101, 121] commonly used in mechanical, civil and

seismic engineering for the manufacture, design and control of structures, is a set of non-

linear differential equation that reflect local history by introducing an additional state

Ph.D in Fundamental Mechanics and Complex Systems by YOUTHA NGOUOKO Octave Nathaniel ?UY1/FS?



Chapter III: Results and discussion 67

variable. Here we consider the Duffing-Bouc-Wen oscillator as presented by Figure 3.19,

with H (g, t) is given by (3.44).

Figure 3.19: Physical model

 H (g, t) = k (1− α) g (t)

ġ = D−1
(
Aẋ− β |ẋ| g|g|n−1 − γẋ|g|n

)
,

(3.44)

where x, ẋ and H are displacement, velocity and purely hysteretic force. With A > 0, β >

0, γ and n are dimensionless quantities controlling the behavior of the model. Parameter A

simply controls the hysteresis amplitude. Along with n, β and γ are parameters describing

shape of hysteresis. k is a stiffness, α the rigidity ratio of post-yield to pre-yield, The

relative input of the hysteretic part is therefore controlled by the parameter α with 0 ≤
α < 1. In this study, thermodynamic admissibility issues impose the following inequality

[77,103,104]:

β ≥ γ (3.45)

We impose

 A = 1

β + γ � 0
This condition is a sufficient and necessary for strain-softening

behavior [104]. Eqn. (3.44). is integrated for D = 1 and n = 1. It is claimed that the

hysteretic displacement g can thus be derived explicitly and given by : ġ = [A− (γ − sgn (ẋ) sgn (g) β) g] ẋ

g = A
(εβ+γ)

(
1− e−(εβ+γ)x

)
,

(3.46)

with ε = sgn (ẋ) sgn (g) = ±1

Thus, the equation of motion of the SDOF system with asymmetric potential under

an external excitation can be written as:

ẍ+ 2ζ ẋ+ a1,2x+ λ1,2x
3 +

(1− α)Aω2
0

(εβ + γ)

(
1− e−(εβ+γ)x

)
= F0 sin Ωt, (3.47)
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with ζ = c
2mω0

; ω2
0 = k

m
and a1,2 = ±ω2

0, the parameters ζ, F0 and Ω are respectively:

the damping, the amplitude and the frequency of the excitation. t is the time and the

dot over x stands for the time derivative. The Hamiltonian system from Eqn. (3.47) is as

follow:  ẋ = y

ẏ = −a1,2x− λ1,2x
3 − (1−α)Aω2

0

(εβ+γ)

(
1− e−(εβ+γ)x

)
,

(3.48)

and is Hamiltonian function given as:

H (x, y) =
1

2
y2 + V (x) (3.49)

with V (x) the asymmetric potential:

V (x) =
1

2
a1,2x

2 +
1

4
λ1,2x

4 +
A (1− α)

(γ + εβ)

[
x− 1− e−(γ+εβ)x

(γ + εβ)

]
(3.50)

The total energy of our systems are plotted in 3D: for a1 and λ1 (see Figure 3.20(a)) one

observes two stable and one unstable equilibrium points (see Figure 3.20(b)), and for a2

and λ2 (see Figure 3.20(d)) one observes two unstable and one stable equilibrium points

(see Figure 3.20(e)).

The position x = 0 is a static equilibrium position, around which for a small amplitude

vibration, Eqn. (3.46) (where (εβ + γ) � 0) can be expanded using a Taylor series:

g (x) =
A

(εβ + γ)

(
1− e−(εβ+γ)x

)
= x (1− α)A− (1− α) (εβ + γ)A

2
x2 + 0

(
x3
)
, (3.51)

where 0 (x3) represents the higher other terms, Of this approximation, the approximate

potential is obtained at Eqn. (3.52)

Vap (x) =
1

2
(a1,2 + (1− α)A)x2 +

1

3

(
−1

2
A (1− α) (γ + εβ)

)
x3 +

1

4
λ1,2x

4 (3.52)

Figure (3.21) gives the correspondence between approximated and the original poten-

tial. Thus, one obtains a two stables fixed point: case of double well (Figure 3.21 (a))(
1
2
A(1−α)(γ+εβ)±

√
( 1

2
A(1−α)(γ+εβ))

2
−4λ1(a1+(1−α)A)

2λ1
, 0

)
and one unstable (0 , 0).

and in the case of single well (Figure 3.21 (b)). case (a) two unstables fixed points:(
1
2
A(1−α)(γ+εβ)±

√
( 1

2
A(1−α)(γ+εβ))

2
−4λ2(a2+(1−α)A)

2λ2
, 0

)
and one stable (0 , 0).

and case (b) one unstable fixed point:(
1
2
A(1−α)(γ+εβ)−

√
( 1

2
A(1−α)(γ+εβ))

2
−4λ2(a2+(1−α)A)

2λ2
, 0

)
and one stable (0 , 0).
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(a) (d)

(b) (e)

(c) (f)

Figure 3.20: Phase space, Asymmetric potentials and separatrix due to the hysteretic

force:(a) Phase space of double well, (b) Asymmetric potential of double well ,(c) Asym-

metric separatrix of double well, (d) Phase space of single well, (e) Asymmetric potential

of single well ,(f) Asymmetric separatrix of single well (Heteroclinic Blue and Homoclinic

Red ) . A = 1, λ1 = 1, a1 = −1, λ2 = −1, a2 = 1, α = 0.5, n = 1 and ε = 1.
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(a)

(b)

Figure 3.21: Pertubed potential due to hysteretic force for orginal and approximated

potential: (a) Two wells, (b) Single well. for A = 1; λ1 = 1; a1 = −1; λ2 = −1; a2 = 1

β = 0.65 ; γ = −0.35 ; α = 0.5 ; n = 1 and ε = 1.
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3.4.2 Complex behaviour versus fractal

3.4.2.1 Melnikov theory

In this section, we used the Melnikov’s theory to determine analytically the critical value of

external force, where the Melnikov’s chaos appears in our system. Consider the generalized

dynamical equation of a given system written in vector form:

u̇ = g0 (u) + ε′gp (u, t) , (3.53)

where u = (x , y) , (y = ẋ) is the state vector, g0 (g1, g2) is the vector field chosen

Hamiltonian with the energy H0 so that: g1 = ∂H0

∂ẋ

g2 = −∂H0

∂x

(3.54)

and gp is a periodic pertubation function. In our model, we have: g0 =
(
y, − (a1,2 + (1− α)A)x−

(
−1

2
A (1− α) (γ + εβ)

)
x2 − λ1,2x

3
)

gp = (0, −ςy + F0 sin Ωt)
(3.55)

Let us assume that the unperturbed Hamiltonian system possesses saddle points con-

nected by a separatrix or heteroclinic orbit ū (t) or only one hyperbolic saddle point with

a homoclinic orbit ū (t). In the presence of the perturbation gp (u, t) , the orbits are per-

turbed. When the perturbed and the unperturbed manifolds intersect transverssaly, the

geometry of the basin of attraction may become fractal, indicating the high sensitivity

to initial conditions, thus chaos. The Melnikov’s theory which gives the condition for the

fractal basin boundary can be given as follows [96, 133]. Let the Melnikov’s function be

defined as:

M (t0) =

∫ +∞

−∞
g0 (ū (t)) ∧ gp (ū (t) , t+ t0) dt, (3.56)

with −∞ ≺ t0 ≺ +∞. If M (t0) has simple zeros so that for a given tl0 one has

M
(
tl0
)

= 0 with dH (t0) /dt0 6= 0 at t = tl0 (condition for transversal intersection), then

Eq. (3.50) (for a1 and λ1) can present fractal boundaries for motions around different

stable equilibrium points. To apply the Melnikov theorem to our model, we derive the

equations for the homoclinic and heteroclinic orbits. Let us first consider the case of the

potential with two wells (see Figure 3.20(b)). For this case, we have to find the homoclinic

orbits connecting the unstable point (see Figure 3.20(c)) x = 0 to itself. Making use of
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integrals tables [122] (see also [123]) and the method of residues, we obtain the homoclinic

orbits defined by:

xl,rho = −2a1

− 1
3
A(1−α)(γ+εβ)±

√
∆ cosh

√
−a1t

yl,rho = ±2a1
√
−a1∆ sinh

√
−a1t

[− 1
3
A(1−α)(γ+εβ)±

√
∆ cosh

√
−a1t]

2

, ,

(3.57)

with ∆ = (A(1−α)(γ+εβ))2

9
−2a1λ1 � 0 In the case of the potential with a single well (see

Figure 3.20(e)), the heteroclinic orbit (see Figure 3.20(f)) connecting the unstable points

xu2 and xu1 and the homoclinic orbit connecting the unstable point xu1 to itself. Making

use of integrals tables [122], we obtain the heteroclinic orbit defined by the following

equations:

xhe =
4x2

1(
4x1 − e

(
t|x1|√

2

)) + xu1

yhe =

4|x1|3√
2
e

(
t|x1|√

2

)
(

4x1 − e
(
t|x1|√

2

))2

,

(3.58)

and the homoclinic orbit defined by:

xho =
4x1x2e

(
t
√
x1x2

2

)

− (x1 − x2)2 − e
(

2t
√
x1x2

2

)
+ 2 (x1 + x2) e

(
t
√
x1x2

2

) + xu1

yho =

4x1x2

√
x1x2

2
e

(
t
√
x1x2

2

)(
(x1 − x2)2 − e

(
2t
√
x1x2

2

))
(
− (x1 − x2)2 − e

(
2t
√
x1x2

2

)
+ 2 (x1 + x2) e

(
t
√
x1x2

2

))2

,

(3.59)

with x1 = xa − xu1 and x2 = xb − xu1 (see Figure 3.17(b))

with the expressions of Eqs. (3.57) and (3.58), we can calculate the Melnikov functions

for each case. In the case of the potential with two wells, the calculations lead to the

Ph.D in Fundamental Mechanics and Complex Systems by YOUTHA NGOUOKO Octave Nathaniel ?UY1/FS?



Chapter III: Results and discussion 73

following conditions for the appearance of fractal basin boundaries. For the homoclinic

orbits, we have:

F0 ≥ FCr =

∣∣∣∣ςI1

I2

∣∣∣∣ = ς

∣∣∣∣∣∣∣
a2

1

√
−a1

15∆ 2F1

(
1, 2; 7

2
; ξ
)

4πω2

∆ sinh Ωπ√
−a1

2F1

(
1
2
− J ωπ√

−a1
, 1

2
+ J ωπ√

−a1
; 3

2
; ξ
)
∣∣∣∣∣∣∣ , (3.60)

with I1 and I2 are shown (see Appendix).

In the case of the potential with a asymmetric single well, we obtain for the hyteroclinic

orbit:

F0 � FCr =

∣∣∣∣∣
∫ +∞
−∞ y2

he dt∫ +∞
−∞ yhe sin [ω (t+ t0)] dt

∣∣∣∣∣ (3.61)

(a) (b)

Figure 3.22: Melnikov criteria for the appearance of chaos in the ω_FCr plane. (a) Case

of a homoclinic orbit (potential of Figure 3.17(a)). (b) Case of a single well potential (

Figure 3.17(b)). for A = 1; λ1 = 1; a1 = −1; λ2 = −1; a2 = 1 β = 0.65 ; γ = −0.35 ;

α = 0.5 ; n = 1 and ε = 1.

The conditions given by Eqs. (3.60) and (3.61) show that some complex behaviors

can appear in the system if the Melnikov boundary is crossed. A comparative study of

Figure (3.22) for the same parameters of system clearly shows that: The critical force

amplitude in the case of an asymmetrical single well potential is greater than that of the

asymmetrical double well, and also the area of chaotic behaviours is less important than

that observed in the two wells.
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3.4.3 Fractal basin boundaries

In order to confirm the analytical predictions from Melnikov’s theory, we analyse in this

section the regular or irregular geometries of the attraction basins by numerical resolution

of Eq. (3.57) by means of Runge-Kutta algorithm of the fourth order. This irregular

geometry of the basin of attraction is characterized by the appearance of fractality [96,

98, 110, 132] on the boundary of basin of attraction which reflects the chaos, resulting

indisputably from the greater sensitivity due to initial conditions. The influence of F0 on

the shape of the basins of attraction of Figures 3.23 and 3.24 are plotted for the values

of Figure 3.22(a) and 3.22(b). For ω0 = 1, with the values of 3.22(a) and 3.22(b). The

Melnikov theory shows that the fractal shape appears for |FCr| ≈ 0.0135 as shown in

Figure 3.23 (case of double well) and |FCr| ≈ 0.027 as shown in Figure 3.24 (case of single

well).

These figures display the basin of attraction according to the evolution of external

forces. Thus, it appears that the basin has a regular geometry (see Figure 3.23(a) and

3.24(a)), and completely fractal (see Figure 3.23(c), (d) and Figures 3.24(c), (d)) for higher

values, sign of the establishment of chaos. In addition, from the appropriate parameters

of the BW model, we can also control the appearance of chaos in the SDOF system (see

Figure 3.25). It is viewed that for a small amplitude of the external force, the limits of

the basin are regular. Above a certain value, it becomes irregular, meaning the presence

of Melnikov chaos.
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(a) (b)

(c) (d)

Figure 3.23: Basins of attraction showing the Melnikov predictions: Case of two wells at

left well as f0 increases for λ1 = 1, a1 = −1 α=0.5, β=0.65, γ=-0.35, ς=0.02 and A=1 ;

a) f0 = 0 ; b) f0 = 0.02 ; c) f0 = 0.05 ; d) f0 = 0.5
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Figure 3.24: Basins of attraction showing the Melnikov predictions: case of single well as

f0 increases for λ2 = −1, a2 = 1 α=0.5, β=0.65, γ=-0.35, ς=0.02 and A=1 ; a) f0 = 0 ;

b) f0 = 0.027 ; c) f0 = 0.05 ; d) f0 = 0.15
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Figure 3.25: Effect of BW parameters A and α on the basins of attraction a) Case of two

wells At left, b)case of single well. for Ω = 1 ; α = 0.9 ; A = 0.2 and f0 = 0.05

3.5 Conclusion

In this chapter, we have studied the dynamic behaviors of a structure with one degree of

freedom and strongly nonlinear and subjected to a periodic excitation. This nonlinearity is

characterized by the BW-type hysteresis force on the one hand and the Bouc-Wen-Duffing

type on the other hand. The results obtained were presented and discussed.

Firstly, an analytical approach to the dynamics of a negative stiffness SDOF system

with hysteresis force under the effect of periodic loads was considered. As a brief summary,

we have shown that the shape of the hysteresis curves and therefore the parameters of the

BW model have a major impact on the appearance (fig. 3.2) or the disappearance (fig.

3.3) of the horseshoe chaos in the system. More interesting is the unexpected influence of

negative stiffness on the control of chaos in the system (fig. 3.6(b)). To distinguish what we

consider to be the most relevant finding, we focused on the effect of the parameters of the

BW model on the energy dissipated by the system. Fig. 3.9 reveals an unexpected benefi-

cial role of dissipated energy on system stability. The analytical approach was also verified

with numerical simulations and the fairly good agreement between the two approaches

was found.

Secondly, we have identified a homoclinic orbit in an SDOF system for a negative value

of the A parameter. We have found that a negative value of the A parameter causes a

threshold for the appearance of chaos in the model. Therefore, this model makes it possible

to describe the real behavior of structures for classes III and IV, while allowing the
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control community to guarantee new designs for the reinforcement of the structures.

Finally, we studied the effects of the BW-type hysteresis force on the classical Duffing

oscillator. The main conclusion is: The force of hysteresis is responsible for the asymmetric

shapes of the potential wells (fig. 3.21(a)) and (fig. 3.21(b)). Indeed, complex behaviors

appear within the system as soon as the hysteresis phenomenon is taken into account.

The interesting conclusion is that the shapes of the hysteresis loops and hence the

parameters of the BW model play a key role in the occurrence of chaotic dynamics called

horseshoe chaos.
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This thesis focused on the dynamic analysis and vibratory control of mechanical structures

with hysteresis of the Bouc-Wen type under the action of a periodic external force. The

structures studied are considered buildings. These moving structures were modelled as

cantilever beams. Specific analytical and numerical analysis methods have been formulated

to assess the response of the latter. The Bouc-Wen hysteresis model was used to model

the hysteresis force generated by the moving system. The main results obtained in this

work are summarized as follows:

In the first chapter, a literature review on hysteresis phenomena and their impact on

engineering systems was presented. We also briefly presented some mathematical systems

of mechanical hysteresis and some applications of this phenomenon on biological and

engineering systems.

In the second chapter, material and methods were presented and detailed, The B-W

model is in the form of a PDE therefore, two mathematical considerations of this model

were presented. More specifically, Four analytical techniques including Melnikov’s theory

to predict Smale’s horseshoe-type chaos, the theory of residues for the calculation of

complex integrals, the Routh-Hurwitz criterion to give the decision on the stability of the

Bouc-Wen model and Taylor’s development in series for approximations and reconciliation

to reality and four numerical methods were presented: the RK4 algorithm to integrate the

ODE, the predictor-corrector schemes of Newton-Raphson for non-linear POEs, the Euler

method.

Finally, the third chapter was devoted to the dynamic behaviour of mechanical struc-

tures with hysteresis force of the Bouc-Wen type and subjected to periodic external force.

Two considerations were considered and the main results obtained were presented and

discussed. In the first series of results, the problem of the appearance of horseshoe chaos

in a system at a degree of freedom in the presence of negative rigidity was considered.

Based on the parameters n = 2 and α < 0 of the B-W model and the energy method, we
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demonstrated that the potential of the monostable system is catastrophic, and based on

Melnikov’s theory, we showed the conditions for the appearance of horseshoe chaos in the

system and by playing with the parameters of the model we showed that it is possible to

cancel out the chaos in the system.

A second approach was to consider n = 1 and A < 0 on the basis of the Routh-

Hurwitz stability criterion and the energy method, we demonstrated that: for a value

of parameter A taken in the stability zone, this system dissipates energy well and its

behaviour describes well that of real structures. The analytical approach was also verified

with numerical simulations and we observed a fairly good agreement.

In the third series of results, to increase the realism of the studies, we have included

a non-linearity of the Duffing type, we have thus demonstrated that the presence of the

force of hysteresis in the system leads to the appearance of complex phenomena (the

asymmetry of the different forms of potential). Based on the residue theory, we calculated

the complex integrals for determining the orbits of the system. we have demonstrated on

the basis of Melnikov’s theory that for the same values of the system parameters, the

simple asymmetric well has a smaller chaotic domain than that of the asymmetric double

well and a higher critical value of the amplitude of the external force. It appears that the

presence of hysteresis force in the classic Duffing-oscillator makes it more unstable in the

case of the double well.

This work leads to some prospective works which could be the improvement of the

proposed model of this work: Despite multiple models available to predict it, mechanical

hysteresis is often unpredictable. The forces caused by potential deformation and friction

are not easy to predict ahead of time. Predicting mechanical hysteresis is different from

estimating the amount of mechanical hysteresis that already exists in a system. Models

like Bouc-Wen have limitations because they can’t easily model highly dynamic systems.

Artificial intelligence has led to some new ideas for predicting mechanical hysteresis. Neu-

ral networks may be able to predict mechanical hysteresis by learning how hysteresis

works in a way that humans cannot directly observe. The accuracy of current mechanical

hysteresis models depends on them being used in the proper engineering field, and univer-

sal prediction of mechanical hysteresis has remained elusive. Neural networks can model

many hysteresis loops at once, allowing granular refinement of predictions with increased

input.
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Γ

(
n+

1

2

)
= (2n− 1)!!

√
π

2n
(3.62)

Γ (n) = (n− 1)! (3.63)

∫ +∞

0

sinh2ν τ(
χ+

√
χ2 − 1 cosh τ

)µ+1dτ =
2νe−JνπΓ (µ− 2ν + 1) Γ

(
ν + 1

2

)
√
π (χ2 − 1)

ν
2 Γ (ν + 1)

Qν
µ−ν (χ) (3.64)

[Re (µ− 2ν + 1) � 0, Re (µ+ 1) � 0] (3.65)

Qν
µ−ν (χ) is the associated Legendre function of the second kind.

Qν
µ (χ) =

eJνπΓ (ν + µ+ 1) Γ
(

1
2

)
2µ+1Γ

(
µ+ 3

2

) (
χ2 − 1

)ν
2 χ−µ−ν−1

2F1

(
µ+ ν + 2

2
,
µ+ ν + 1

2
;µ+

3

2
;
1

ξ

)
(3.66)

M (t0) = −4a3
1∆ςI1 + F0I2 (3.67)

with

I1 =
∫ +∞
−∞ yl,r

2

ho dt

=
∫ +∞
−∞

sinh2√−a1t

[− 1
3
A(1−α)(γ+εβ)±

√
∆ cosh

√
−a1t]

4dt =
−81a2

1∆
√
−a1

[ 1
2
A(1−α)(γ+εβ)]

4
Γ(2)Γ(3/2)√

πΓ(4)
χ4√
χ2−1

Q1
2 (χ)

(3.68)

where χ is defined for the left and right side such that
√
χ2−1

χ
= ± 3

√
∆

A(1−α)(γ+εβ)
, Γ (z) is

the Gamma function, and Qn
m (z) is the associated Legendre function of the second kind.

Using the definition and functional relation of the Gamma function and the associated

Legendre function of the second kind listed, integral I1 becomes:

I1 =
a2

1

√
−a1

15∆
2F1

(
1, 2;

7

2
; ξ

)
(3.69)

where ξ = 18a1λ1

18a1λ1−(A(1−α)(γ+εβ))2 and 2F1 (a, b; c; z) is the hyper-geometric function.

I2 =
∫ +∞
−∞ yl,rho sin Ωtdt

= ± 4πΩ2

∆ sinh Ωπ√
−a1

2F1

(
1
2
− J Ω

2
√
−a1

, 1
2

+ J Ω
2
√
−a1

; 3
2
; ξ
) (3.70)

with J2 = −1.
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2F1 (a, b; c;χ) =
+∞∑
n=0

(a)n (b)n
(c)n

χn

n!
, |χ| ≺ 1, (3.71)

then b = ā one has

2F1 (a, ā, c, χ) =
+∞∑
n=0

(|a| |ā|)n
(c)n

χn

n!
, |χ| ≺ 1, (3.72)

This expression of 2F1 (a, ā, c, z) is always a positive real number.

And the Pochhammer symbol is defined as

(a)n = a (a+ 1) (a+ 2) ..... (a+ n− 1) , (a)0 = 1 (3.73)
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Abstract The problem of inhibition of horseshoe chaos in a nonlinear hysteretic systems using negative
stiffness is investigated in this paper. The Bouc–Wen model is used to describe the force produced by both
the purely hysteretic and linear elastic springs. The analytical investigation of the Hamiltonian shows that the
appearance of separatrix in the system is directly related to the parameters of the hysteretic forces. This means
that the transverse intersection between the perturbed and unperturbed separatrix can be controlled according
to the shape parameters of the hysteretic model.

Keywords Horseshoe chaos · Hysteretic systems · Negative stiffness · Bouc–Wen model · Separatrix

1 Introduction

Nowadays, one of the constant challenges of mechanical systems is to design new reinforcement techniques
for existing structures so that they offer a real comfort of safety for their occupant while ensuring the lifespan
of the structure [1,2]. Amongst that, many phenomenological models using hysteresis force for modelling or
control of mechanical systems have been proposed [4–8]. It is well known that hysteresis is a typical nonlinear
phenomenon. This nonlinear behaviour is encountered in a wide variety of processes in which the input–output
dynamic relations between variables involve memory effects.

The idea of employing negative stiffness springs, or ‘anti-springs’, for the dissipation of a large fraction
of the energy initially induced into the system can be traced in civil engineering [9–12] and the innovative
paper by George Tsiatasa and Aristotelis Charalampakis [13]. This spring can easily obtain negative stiffness
for negative values of its parameter α, leading to a true softening behaviour.The central concept of these
approaches is to significantly reduce the stiffness of the isolator and consequently of the natural frequency of
the system even at almost zero levels.

This paper deals with the predictions of conditions for which horseshoe chaos appears in a class of systems
with Bouc–Wen hysteresis. In fact, due to the strongly nonlinearity of the Bouc–Wen model, no analytical
investigation has been done until now. Predicting the appearance of some dynamic states in the space parameters
of the system remains a challenge for engineering application. If force is the input function, and total force
versus displacement is considered, then the reduction of the hysteretic force results in total stiffness degradation
only, whereas both total strength and total stiffness degrade if displacement is the independent variable. In fact,

O. N. Youtha Ngouoko (B) · B. R. Nana Nbendjo
Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaounde
I, P.O. Box 812, Yaounde, Cameroon
E-mail: ynonl@yahoo.fr

O. N. Youtha Ngouoko · B. R. Nana Nbendjo · U. Dorka
Steel and Composite Structures, University of Kassel, Kurt-Wolters-Strasse 3, Kassel 34125, Germany

http://orcid.org/0000-0003-4715-4675
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-021-02038-5&domain=pdf


O. N. Youtha Ngouoko et al.

x
-4 -2 0 2 4

z

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 1 Softening hysteresis loop generated by the model for D = 1, n = 2, A = 1, γ = 0.05 and β = 0.95

the hysteretic energy increases with linearly increasing force, the system degrades nonlinearly and is quite
sensitive to the shape parameters of the systems. This sensitivity can give rise to the appearance of separatrix,
meaning that the transverse intersection between the perturbed and unperturbed heteroclinic orbits can occur,
thus the presence of horseshoe chaos [3,16–20]. The appearance of horseshoe chaos in a physical system
guarantees transient chaotic behaviour of the system. The control of this disturbance is fundamental to design
an operation of these physical systems. This paper shows that by playing only on the shape parameters of the
Bouc–Wen hysteresis one can predict and suppress the appearance of chaotic motion.

After the derivation of the equation, we show using some mathematical tools the transition from the
nondegenerated to degenerated potential and then focus on the conditions for which horseshoe chaos can be
suppressed on the system.

2 Mathematical modelling and analytical investigation

Equation of motion for single degree of freedom system consisting of a mass (m > 0) connected in parallel to
a viscous damper (c > 0) with Bouc–Wen hysteretic spring is described by:

mẍ (t) + cẋ (t) + H (x, z, t) = F (t) (1)

where x, ẋ and ẍ are displacement, velocity and acceleration, respectively, and the nondamping restoring force,
H , is composed of both linear and hysteretic restoring forces. H is given by:

H (x, z, t) = αkx (t) + k (1 − α) z (t) (2)

k is a stiffness, α the rigidity ratio of post-yield to pre-yield and z the hysteretic displacement. The relative
input of the hysteretic part is therefore controlled by the parameter α . The nonlinear restoring force is thus a
function of the fictitious hysteretic displacement z rather than the total displacement x . At larger displacements,
for a nonpinching, nondegrading system the so-called Bouc–Wen model represents the true hysteresis in the
form [5,7,14]:

ż = D−1(Aẋ − β |ẋ | |z|n−1 z − γ ẋ |z|n) (3)

where ż denotes the time derivative, n > 1, D > 0, k > 0 and A > 0. A is the parameter controlling
hysteresis amplitude β, γ and n are parameters describing shape and amplitude of hysteresis. In this study,
thermodynamic admissibility issues impose the following inequality [23–25]:

β ≥ γ (4)

Based on (4), the hysteretic loop assumes a bulge shape (see Fig. 1) as opposed to a slim-S one (see Fig. 2).

β + γ ≥ 0 (5)

Equation (5) is a sufficient and necessary condition for strain-softening behaviour. The combination of β and
γ dictates whether the model describes a softening (see Fig. 1) or hardening (see Fig. 2) load–slip relation.
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Fig. 2 Hardening hysteresis loop generated by the model for D = 1, n = 2, A = 1, γ = −0.65 and β = 0.35

These results are obtained assuming that the external excitation is harmonic, i.e. F (t) = F0 sin (Ωt),
where F0 and Ω are, respectively, the amplitude and frequency of the excitation. To derive the total energy of
the system, it is convenient to rewrite the system equation in the form [4]:

ẍ (t) + 2ςωẋ (t) + αω2x (t) + ω2 (1 − α) z (t) = F (t)

ω =
√

k

m
, ς = c

2mω
. (6)

where ω is a pre-yield natural frequency of the system and ς a linear viscous damping ratio. The evolution of
the hysteretic displacement z given by the following constitutive differential equation:

ż = D−1 [
A − (γ + sgn (ẋ) sgn (z) β) |z|n] ẋ (7)

We note that the phase space of the Bouc–Wen oscillator is three dimensional and is spanned by (x, ẋ, z).
Setting ε = sgn (ẋ) sgn (z) = ±1 with Sgn denotes the Signum function; in order to integrate z, (7) can be
rewritten in the following form:

dz = D−1 [
A − (γ + εβ) |z|n] dx (8)

3 Appearance of separatrix and Melnikov analysis

Equations (6) and (8) can be recast in state space form as:

ẋ = y

ẏ = −2ςy − αω2
0x − (1 − α)ω2

0z

ż = D−1 [
A − (γ + εβ) |z|n] y. (9)

For D = 1 and n = 2, one obtains three fixed points (0 , 0 , 0);(
− (1−α)

α

√
A

γ+εβ
; 0 ;

√
A

γ+εβ

)
and

(
(1−α)

α

√
A

γ+εβ
; 0 ;−

√
A

γ+εβ

)
Taking into account the influence of the hysteretic force, the potential energy of the system, is given by:

V (x) = 1

2
αω2x2 + ω2 (1 − α)

∫ x(t)

x(0)
zdx (10)

The energy absorbed by the hysteretic element is thus the continuous integral of the hysteretic force and
the total energy displacement.

Equation (8) is integrated for D = 1 and n = 2. The initial conditions x(0) , ẋ(0) , z(0) are known. For the
sake of simplicity, it is assumed that x(0) = ẋ(0) = z(0) = 0. It is claimed that the hysteretic displacement z
can thus be derived explicitly and given by:

z =
√
A√

(γ + εβ)
tanh

(√
A (γ + εβ)x

)
(11)



O. N. Youtha Ngouoko et al.

−2 0 2
0

0.1

0.3

0.5

0.6

x

V
ap
(x
)

xu2
xu1

(a) (b)

Fig. 3 a Phase space. b Potential curves of system for ε = 1

Then the complete potential of the system, taking into account the hysteresis component (see Fig. 3a) is
given by:

V (x) = 1

2
αω2x2 + ω2 (1 − α)

√
A√

(γ + εβ)
ln cosh

(√
A (γ + εβ)x

)
(12)

The critical amplitude xu is obtained when the following conditions are satisfied:

V
′
(x) = 0 and V

′′
(x) ≥ 0 (13)

But obtaining the analytical expression using the form given by (11) is quite impossible. To find an
approximation solution, we carry out the expansion of tanh

(√
A (γ + εβ)x

)
and assume that β = ξ β̄ and

γ = ξ γ̄ where ξ is a small positive constant. An expansion in power series of ξ allows to obtain an approximate
description of the hysteresis loop by neglecting the ξ3 and higher powers, and by integration of (10), one obtains:

Vap (x) = 1

2
(ω2 (α + (1 − α) A))x2 − 1

12
(ω2A2 (1 − α) (γ + εβ))x4 (14)

The representation of this potential shows that the presence of hysteretic force describes the unbounded
monostable potential (see Fig. 3b).
Equation of the dynamic of this system is given by :

ẍ (t) + 2ςωẋ (t) + (
αω2 (t) + ω2 (1 − α) A

)
x (t) − 1

3
ω2A2 (1 − α) (γ + εβ) x3 (t) = F0 sin (Ωt) (15)

Figure 3 also shows that we have three fixed points: one stable (0, 0) and the other two unstable(
±

√
3(α+(1−α)A)

(1−α)(γ+εβ)A2 , 0
)
leading to the appearance of heteroclinic orbit (see Fig. 4). In this case, the sepa-

ratrix appears leading to the possible transverse intersection between perturbed and unperturbed heteroclinic
orbit. This means that the shape parameters of the hysteresis force have a direct link with the appearance of
horseshoe chaos in the system. The presence of horseshoe chaos means the existence of a starting point for
successive route to chaotic dynamics. This can be detected analytically using Melnikov theory.

4 Melnikov analysis

In the present section, we apply the Melnikov method [16,21,22,26] to detect analytically the effects of Bouc–
Wen model parameters on the threshold condition for the inhibition of horseshoe chaos in the system and on
the fractal basin boundaries. To apply this method, we introduce a small μ parameter in (15) and rewrite the
governing system as the following set of first-order differential equations :{

ẋ (τ ) = y (τ )

ẏ (τ ) = −ω2 (α + (1 − α) A) x (τ ) + 1
3 A

2ω2 (γ + εβ) (1 − α) x3 (τ ) + μΓ (t)
(16)
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Fig. 4 Heteroclinic orbit of unbounded monostable potential

With Γ (τ) = −2ςωy (τ ) + F0 cos (Ωτ). For μ = 0 and after assuming that : x = x (τ ) ; y = y (τ ) the
system of (16) is the Hamiltonian system with Hamiltonian function.

H (x, y) = 1

2
y2 + 1

2
ω2 (α + (1 − α) A) x2 − 1

4

(
1

3
(1 − α) (γ + εβ) ω2A2

)
x4 (17)

The saddle points (see Fig. 3) xu1 and xu2 are connected by heteroclinic orbits (see Fig. 4) that satisfied
the following equation:

xhet = ±
√

3 (α + (1 − α) A)

(1 − α) (γ + εβ) A2 tanh

(
ω

√
α + (1 − α) A

2
τ

)

yhet = ± 3 (α + (1 − α) A) ω

(1 − α) (γ + εβ) A2

√
α + (1 − α) A

2
sech2

(
ω

√
α + (1 − α) A

2
τ

)
(18)

The Melnikov theory defines the condition for the appearance of the so-called transverse intersection
points between the perturbed and the unperturbed separatrix or the appearance of the fractality on the basin
of attraction. This theory can be applied in the case of (15) by using the formula given by Wiggins [26] as
follows:

MY (τ0) =
∫ +∞

−∞
g0 (uhet (τ ))×gp (uhet (τ ) , τ + τ0) dτ

= −2ςω

∫ +∞

−∞
y2het (τ ) dτ + F0

∫ +∞

−∞
yhet (τ ) sin (Ω (τ + τ0)) dτ

= I ± Z (τ0) (19)

where

I = −24ςω2

√
α + (1 − α) A

2

(
α + (1 − α) A

(1 − α) (γ + εβ) A2

)2

and

Z (τ0) = 3F0Ωπ (α + (1 − α) A) sin (Ωτ0)

ω (1 − α) (γ + εβ) A2
√

α+(1−α)A
2 sinh

(
Ωπ

2ω
√

α+(1−α)A
2

)

When theMelnikov function has a simple zero point, the stablemanifold and the unstablemanifold intersect
transversally, and chaos in the sense of Smale horseshoe transform occurs. So let MY (τ0) = 0, one concludes
that Melnikov chaos appears when:

F0 ≥ FCR =
∣∣∣∣∣∣

4ςω3 (α + (1 − α) A)2(
(γ + εβ) (1 − α) A2

)
Ωπ sin (Ωτ0)

sinh

⎛
⎝ Ωπ

2ω
√

α+(1−α)A
2

⎞
⎠

∣∣∣∣∣∣ (20)
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Fig. 5 Evolution of the critical amplitude FCR as a function of : Ω (a), (c) and (e) ; α (b); A (d) and (γ + εβ) ( f ) with ε = 1

The criterion in Eq. (20) defines the threshold value of FCR for the appearance of a transverse intersection
between the perturbed and the unperturbedmanifolds. Such a condition is known as necessary for the existence
of chaos. The threshold condition is plotted in Fig. 5 as a function of the driving frequency Ω for different
values of α (see Fig. 5a), A (see Fig. 5c) and (γ + εβ) (see Fig. 5e) , as function of the parameter α (see
Fig. 5b), as function of A (see Fig. 5d) and as function of the parameters (γ + εβ) (see Fig. 5f).

Figure 5a shows in the space (Ω , FCR), the lower bound for the appearance of heteroclinic bifurcation for
several cases of α parameter. For (Ω , FCR) taken below the lower bound line, the system displays a periodic
motion, while possible chaotic motion is observed in the upper domain. It appears that: when α decreases, the
surface of the critical force increases; consequently, critical force decreases.

Figure 5b illustrates the effects of negative stiffness on the threshold value of FCR , for −1 < α < 0, the
threshold increases, it appears that the control effect increases as α increases, this is a sign of the reinforcement
of effectiveness of the control. The variations of the critical force as a function of α show that the parameter
α plays a preponderant role in its efficiency.

Figure 5c and e shows the critical external forcing amplitude for different values of A and (γ + εβ),
respectively. One can see (Fig. 5c) that when the value of the parameter A increases, the thresholds of the
critical values for heteroclinic bifurcation of the harmonic excitation FCR decrease. The same effect is observed
with the parameters (γ + εβ) (Fig. 5e). We conclude that the parameters A and (γ + εβ) have the same effect
on the critical value for chaotic motions.

Figure 5d highlights the fact that as A increases the amplitude of the critical force decreases. Consequently,
the choice of the parameter A relating to the reduction of the speed and amplitude of vibration or to the
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Fig. 6 Basins of attraction showing the confirmation of the analytical prediction for ε = 1, α = −0.5, β = 0.95, γ = 0.05,
ς = 0.02 and A = 1

increase of the stability basin may be the starting point of a route leading to unpredictable behaviour. The same
investigations are made in the case of Fig. 5f.

5 Numerical investigation

The existence of a homoclinic or heteroclinic orbit for the detection of horseshoe chaos in physical systems is
of paramount importance. Indeed, the choices of control parameters for obtaining the basin of attraction are
not done in a random manner. Moreover, it is possible to determine the conditions for which heteroclinic orbit
appears, while defining the limits of values of model parameters for which basins can be obtained. Of Eq. (18),
it is possible to find the conditions (see Eq. 21) for which the parameters of the Bouc–Wen model will allow
to obtain each time a heteroclinic orbit. Thus, if the conditions (I ) and (I I ) are satisfied, horseshoe chaos in
the system can be predicted.
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Fig. 7 Effect of parameters (γ + εβ), A and α, on the basins of attraction for Ω = 1, α = −0.4, γ + εβ = 0.9 and A = 0.7
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Fig. 8 Response of Bouc–Wen model under cyclic excitation, with parameters used in Fig. 6 without control and Fig. 7 with
control: − without control; . . . with control

A > 0 ; −1 < α < 0 wi th

∣∣∣∣∣∣∣∣∣∣

(I )

{
β + γ > 0
γ − β < 0

(I I )

{
β + γ > β − γ
β − γ > 0

(I I I )All other cases ∅

(21)

To validate the accuracy of the proposed analytical predictions, we solve numerically Eq. 9 bymeans of fourth-
order Runge–Kutta algorithm. A particular characteristic of the Melnikov theory is the fractality [15,17,21]
of the basin of attraction and the resulting unpredictability due to the dependence on the initial conditions.

The limit FCR given by (20) is shown in Fig. 6. These figures display the basin of attraction according
to the evolution of external forces. Thus, it appears that the basin has a regular geometry (see Fig. 6a), and
completely fractal (see Figs. 6b, c) for higher values, sign of the establishment of chaos. In addition, from the
appropriate parameters of the Bouc–Wen model, we can also control the appearance of chaos in the SDOF
system (see Fig. 7).

Figure 7 shows how when playing with the parameters of Bouc–Wen model it is possible to control system
or to cause chaos. Thus, for the same value of critical amplitude and for different parameters of the Bouc–Wen
model, the attraction basin is chaotic (see Fig. 6c); in Fig. 7 the attraction basin can be controlled. It is viewed
that for a small amplitude of the external force, the limits of the basin are regular. In the case of the soft system,
the heteroclinic orbit is clear. Above a certain value, it becomes irregular, meaning the presence of Melnikov
chaos in the case of the soft system.

To validate the accuracy of the restoring force, (2) is plotted in Fig. 8; by comparing the curves in this
figure, we show that the energy dissipated by the system can be considerably reduced when the system is
controlled.
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6 Conclusion

We have presented an analytical and numerical solution to describe the link between the presence of horseshoe
chaos and hysteretic loop in a SDOF system. The hysteretic behaviour has been modelled by the constitutive
differential equation of the first-order so-called Bouc–Wenmodel. Based onMelnikov theory, the approximate
analytical solution has been obtained and we have studied the effects of some main parameters of the system
such as α, A, β and γ on the chaotic dynamic of the system on its stability. It appears after dynamics analysis
that the shape parameters of the hysteresis force play a key role in the occurrence of chaotic dynamics so-
called horseshoe chaos. Thus, taking into consideration a selective situation on the hysteresis function one
could be able to quench the appearance of Melnikov chaos in the system. Those predictions are confirmed
and complemented by the numerical simulations from which we illustrate the regular nature of the basin of
attraction. The analysis has also allowed to estimate the condition for the possible appearance of horseshoe
chaos in the system. The main conclusion is that this condition depends strongly of Bouc–Wen parameters in
the case of softening system.
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