
REPUBLIC OF CAMEROON

Peace - Work - Fatherland

UNIVERSITY OF YAOUNDE I

Faculty of Sciences

POSTGRADUATE SCHOOL FOR SCIENCE,
TECHNOLOGY AND

GEOSCIENCE

RESEARCH AND POSTGRADUATE
TRAINING UNIT FOR MATHEMATICS,

COMPUTER SCIENCE, BIOINFORMATICS AND
APPLICATIONS

 REPUBLIQUE DU CAMEROUN

Paix - Travail - Patrie

UNIVERSITÉ DE YAOUNDÉ I

Faculté des Sciences

CENTRE DE RECHERCHE ET DE

FORMATION DOCTORALE EN SCIENCES,

TECHNOLOGIES ET GÉOSCIENCES

UNITÉ DE RECHERCHE ET DE FORMATION

DOCTORALE MATHÉMATIQUE,

INFORMATIQUE, BIO-INFORMATIQUE ET

APPLICATIONS

Distributed approach driven Dynamic

Service Composition in a System Scalabity

Thesis submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy in Computer Science

Option: Information Systems

Presented by:
BESSALA BESSALA Célestin Parfait

Registration Number: 01U249

Thesis Director:
 ATSA ETOUNDI Roger

Professor

Academic Year : 2021/2022

LABORATORY OF COMPUTER SCIENCE AND APPLICATIONS

LABORATOIRE D’INFORMATIQUE ET APPLICATIONS

hp
Tampon

https://v3.camscanner.com/user/download

Distributed Approach driven Dynamic
Service Composition in a System

Scalability

BESSALA BESSALA Célestin Parfait 01U249

Director: Pr ATSA ETOUNDI Roger

8 avril 2024

Dedication

To my dear Father BESSALA OKALA Célestin...

To my dear Mother NKE ODILE ...

To all those who contributed but did not see it ...

Distributed Dynamic Service Composition (2DSC) i

Acknowledgments

My sincere gratitude goes to Prof. ATSA ETOUNDI Roger, Coordinator
of Computer Science Laboratory, for heartily welcoming me into his team
and for supervising this work. “Grand Prof”, all my gratitude for the many
discussions and fruitful exchanges I have had with you throughout this work.
You have supervised my Master’s work and now, thanks to you, I can see the
end of this long course which is the thesis.

I am very grateful to Prof. TCHANA Alain, Professor at the Ecole Normale
Supérieure de Lyon in France for his great availability, support and constant
encouragement.

I would like to thank Prof. SOSSO Aurélien, Rector of the University of
Yaoundé I for allowing me to continue my research work.

My thanks also go to all the teachers of the Department of Computer
Science in the Faculty of Sciences of the University of Yaoundé I, for the
training and the teachings they gave me.

My thanks also go to the managers of the INPT-ENSEEIHT (National
Polytechnic Institute of Toulouse) in France and in particular the researchers
of the Institut de Recherche Informatique de Toulouse (IRIT) for the warm
welcome they have always reserved tome during my research trips and seminars
to which I was invited throughout this work. I particularly thank Prof. HAG-
IMONT Daniel, Dr. TEABE Boris, Dr. EKANE Brice for their availability,
support and encouragement.

I thank all the members of the Computer Science Laboratory coordinated
by Prof. ATSA ETOUNDI Roger more particularly Dr. ABESSOLO, Dr.
MOUAFFO Laetitia for the important exchanges maintained during the mul-
tiple seminars.

I would like to thank especially Mr. BENE NTOUDA Sylvain, Mr Ndima
Cyril and Mr. NGUELE Serge, who read this thesis again and did me a great
favor to put it in the better lines.

I am so thankful to my wife Marcelle BESSALA BESSALA who has con-
tinuously supported me and for the understanding and patience she has shown
throughout this work.

I hope everyone who contributed directly or indirectly to the realization
of this work may find here my gratitude and may not feel frustrated for any
forgetting.

Finally, I want to thank all my beloved ones and my friends for the shared
moments, as well as my family, without whom I would be nothing.

Distributed Dynamic Service Composition (2DSC) ii

Abstract

Dynamic Composition of Services (DSC) consists of providing at the run-
time of a request (at each request from an end user) a new complex service by
combining or composing a set of atomic services. It is a process of complex
steps (service discovery, service selection, composition plan generation and se-
lection) which poses difficulties when the data set becomes large. Scalability
in the dynamic composition of services has therefore become a major challenge
for its adoption in the real world. The research lists three causes of scalability:
(i) the number of requests, (ii) the complexity of requests, and (iii) the num-
ber of services. Several works have made it possible to optimize the dynamic
composition process to manage scalability mainly by making each of its steps
efficient. Our main concern is therefore to address the scalability problem in
dynamic service composition based on its three known sources.

This preoccupation leads us to evaluate the impact of current solutions on
the three sources of known compositions. And subsequently take into account
the neglected cause of scalabity with a distributed approach.

The modeling of an e-government based on this model was the experimental
phase which made it possible to verify its adaptation to the environment of a
developing country like Cameroon, faced with infrastructural difficulties and
the energy crisis. .

Keywords: SOA, scalability, dynamic service composition, dis-
tributed system, e-government

Résumé

La Composition Dynamique de Services (CDS) consiste à fournir au mo-
ment de l’exécution d’une requête (à chaque demande d’un utilisateur final) un
nouveau service complexe en combinant ou en composant un ensemble de ser-
vices atomiques. C’est un processus d’étapes complexes (recherche de service,
sélection de service, génération de plan de composition et sélection) qui pose
des difficutés lorsque la taille des données devient importante. La scalabilité
dans la composition dynamique des services est donc devenue un défi majeur
pour son adoption dans le monde réel. Les recherches énumèrent trois causes
de scalabilité : (i) le nombre de requêtes, (ii) la complexité des requêtes et (iii)
le nombre de services. Plusieurs travaux ont permis d’optimiser le processus
de composition dynamique pour gérer la scalabilité principalement en rendant
performante chacune de ses étapes.

Notre principale préoccupation est donc de traiter le problème de scalabi-
lité dans la composition dynamique de service sur la base de ses trois sources
connues Cette préoccupation, nous a conduits à évaluer l’impact des solu-
tions actuelles sur les trois sources de compositions connues. Et par la suite
prendre en compte la source de scalabité negligée en appliquant une approche
distribuée ?

La modélisation d’un e-government basé sur ce modèle a été la phase
expérimentale qui a permis de vérifier son adaptation à l’environnement d’un
pays en voie de développement comme le Cameroun, confrontés à des difficultés
infrastructurelles et à la crise énergétique.

Mots clés : SOA, scalabilité des systèmes, composition dynamique
des services, système distribué, e-government

Contents

I GENERAL INTRODUCTION 2

1 Introduction 3
1.1 Introduction to research . 4
1.2 Research context . 4
1.3 Research problem background 7
1.4 Problem statement . 8
1.5 Research relevant to information systems 9
1.6 Research goal . 9
1.7 Main research question . 10
1.8 Secondary research questions 10
1.9 Research justification . 10
1.10 Research contribution . 11

1.10.1 Practical . 12
1.10.2 Theoretical . 12

1.11 Thesis structure . 13

2 Research philosophy and methodology 15
2.1 Introduction . 17
2.2 Research process . 18
2.3 Research design . 19
2.4 Research philosophy . 19

2.4.1 Positivism . 19
2.4.2 Realism . 20
2.4.3 Interpretivism . 20
2.4.4 Pragmatism . 20

2.5 Research approach . 20
2.5.1 The deductive method 21
2.5.2 The inductive method 21

i

CONTENTS

2.6 Research strategy . 21
2.6.1 Experiment . 21
2.6.2 Survey . 22
2.6.3 Case study . 22
2.6.4 Action research . 22
2.6.5 Grounded theory . 22
2.6.6 Ethnography . 22
2.6.7 Archival . 23

2.7 Research choice . 23
2.7.1 Mono-method . 23
2.7.2 Mixed-methods . 23
2.7.3 Multi-methods . 24

2.8 Time horizon . 24
2.8.1 Cross-sectional . 24
2.8.2 Longitudinal . 24

2.9 Data collection and analysis techniques 24
2.10 Synthesis . 25

2.10.1 Research philosophy 25
2.10.2 Research approach . 25
2.10.3 Research strategy . 26
2.10.4 Research choice . 26
2.10.5 Time horizon . 26
2.10.6 Data collection and analysis techniques 26

II STATE OF THE ART 28

3 Service Oriented Architecture and Service Composition 29
3.1 Introduction . 30
3.2 History and philosophy . 32
3.3 Characteristics . 32
3.4 SOA layers and basic protocols 33
3.5 Service composition . 35

3.5.1 Introduction . 35
3.5.2 Manual and automatic service composition 36
3.5.3 Dynamic and static service composition 37

3.6 Synthesis . 38

Distributed Dynamic Service Composition (2DSC) ii

CONTENTS

4 Dynamic Service Composition 40
4.1 Introduction . 42
4.2 Service description . 42

4.2.1 Syntactic models . 42
4.2.2 Semantic models . 43
4.2.3 Ontologies . 46

4.3 Service discovery . 49
4.3.1 Main aspects . 49
4.3.2 Service publication and location 50

4.3.2.1 Centralized approaches 50
4.3.2.2 Distributed approaches 50

4.3.3 User request specification 53
4.4 Service selection . 54

4.4.1 Request matching and Service 54
4.4.2 Service composability 56
4.4.3 Composite service reliability 57

4.5 Composition plan generation approaches 57
4.5.1 Workflow approach . 58
4.5.2 Planification techniques 60

4.5.2.1 Situation calculation 61
4.5.2.2 Hierarchical tasks network 62
4.5.2.3 Proofs by theorems 62
4.5.2.4 Rule-based system 63

4.5.3 Dependency Graph approach 64
4.6 Composite service description 66

4.6.1 Orchestration . 67
4.6.2 Choreography . 68

4.7 Cloud computing and microservices 69
4.8 Decentralization in service composition 71
4.9 Synthesis on scalability issue on dynamic service composition . 72
4.10 Research question . 74
4.11 Synthesis . 75

III RESEARCH IMPLEMENTATION 77

5 The principles and paradigms of Distributed Systems 78
5.1 Introduction . 80
5.2 Distributed systems goals . 80

5.2.1 Making Resources Accessible 80

Distributed Dynamic Service Composition (2DSC) iii

CONTENTS

5.2.2 Distribution Transparency 80
5.2.3 Openness . 81
5.2.4 Scalability . 81

5.3 Distributed systems types . 81
5.3.1 Distributed Computing Systems 82
5.3.2 Distributed Information Systems 82
5.3.3 Distributed Pervasive Systems 82

5.4 Distributed systems characteristics 83
5.4.1 Architectures . 83

5.4.1.1 Architectural styles 83
5.4.1.2 System architectures 84

5.4.2 Processes . 84
5.4.3 Communication . 85
5.4.4 Naming . 86
5.4.5 Synchronization . 87
5.4.6 Consistence and replication 88
5.4.7 Fault tolerance . 88
5.4.8 Security . 89

5.5 Relevance of distributed approach in information system . . . 89
5.5.1 Distributed object based systems 89
5.5.2 Distributed file systems 90
5.5.3 Distributed web-based systems 90
5.5.4 Distributed coordination based system 91

5.6 Relevance of distributed approach in the present study 91
5.7 Synthesis . 91

6 Distributed Dynamic Service Composition (2DSC) in a Sys-
tem Scalability 93
6.1 Introduction . 95
6.2 Preliminaries . 95

6.2.1 Motivation example . 95
6.2.2 NFS architecture . 96

6.3 Distributed Dynamic Service Composition (2DSC) 97
6.3.1 Basic idea . 98

6.3.1.1 Decongest of the composition plan server . . . 98
6.3.1.2 Service clustering 99
6.3.1.3 Local composition plan generator 99

6.3.2 Concept’s specification 99
6.3.2.1 semantically request similarity 99
6.3.2.2 Local request matching 100

Distributed Dynamic Service Composition (2DSC) iv

CONTENTS

6.3.2.3 Local library 101
6.3.2.4 Service monitoring 101
6.3.2.5 Local registry 101
6.3.2.6 Local plan generator 102

6.3.3 Process description . 102
6.3.4 Model . 103

6.3.4.1 Logical approach illustration 103
6.3.4.2 Architectures of the current and dynamaic ser-

vice composition approach 104
6.3.4.3 Model architecture 106
6.3.4.4 Formalisation 106
6.3.4.5 Algorithm . 108

6.4 Comparison between the current DSC and our Distributed and
dynamic service composition (2DSC) 116
6.4.1 Formalization of the global composition time 117
6.4.2 Computation time evaluation of the current approach . 117
6.4.3 Dynamic service composition layer description 117
6.4.4 Computation time evaluation of the 2DSC approach . . 119
6.4.5 Best case comparison 120
6.4.6 Worst cases comparison 120
6.4.7 Average case comparison 121
6.4.8 Comparison analysis 121

6.5 2DSC systems caracteristics 122
6.5.1 Architectures . 122
6.5.2 Processes . 122
6.5.3 Communication . 123
6.5.4 Naming . 123
6.5.5 Synchronization . 123
6.5.6 Consistence and replication 123
6.5.7 Fault tolerance and disaster recovery 124
6.5.8 Security . 125

6.6 Synthesis . 125

7 Validation of Distributed Dynamic Service Composition (2DSC):
Case study on Cameroon e-government implementation 127
7.1 Introduction . 129
7.2 E-government . 129

7.2.1 Context . 129
7.2.2 Definition . 131
7.2.3 E-government implementation approach 132

Distributed Dynamic Service Composition (2DSC) v

CONTENTS

7.2.4 Our issue . 133
7.2.5 E-government research in developing countries 134
7.2.6 motivation . 135
7.2.7 Cameroon e-government’s project structure 135

7.3 2DSC algorithm for Cameroon’s e-government project 136
7.4 DSC layer for Cameroon’s e-government system with 2DSC ap-

proach . 138
7.4.1 Simulation specifications 138
7.4.2 Distributed Dynamic Service Composition framework gen-

erated . 143
7.4.3 Architecture . 144
7.4.4 Technical environment 145
7.4.5 Test’s results . 146

7.4.5.1 Basic test results 147
7.4.5.2 Case of dynamic service composition without

2DSC approach 149
7.4.5.3 Case of dynamic service composition based on

distributed approach 149
7.4.5.4 Comparison of results 150
7.4.5.5 Latency and Throughput 150
7.4.5.6 Case of power failure 151
7.4.5.7 Conclusion 153

7.5 Synthesis . 153

IV GENERAL CONCLUSION 155

8 Conclusion 156
8.1 Context . 157
8.2 Problem . 157
8.3 Methodology . 158
8.4 Contribution . 158

8.4.1 Analysis of the impact of current approach on the known
3 causes of scalability problem in dynamic service com-
position . 158

8.4.2 Distributed approach to deal with scalability problem in
dynamic service composition 159

8.5 Limits and futurs works . 160
8.5.1 Develop a dynamic service composition tool 160
8.5.2 Monitoring optimization 160

Distributed Dynamic Service Composition (2DSC) vi

CONTENTS

8.5.3 Grid of dynamic service composition service 160

Distributed Dynamic Service Composition (2DSC) vii

List of Figures

1.1 Thesis blue print . 14

2.1 Research onion (Saunders, 2011). 18
2.2 Research onion of the research. 27

3.1 SOA architecture. 31
3.2 Dynamic service composition. 38
3.3 Static service composition. 39

4.1 Service composition live cycle. 42
4.2 Orchestration . 67
4.3 Choreography . 68
4.4 Current approaches on dynamic service composition live cycle 73
4.5 Links and impact of the stages on the sources of scalability . 75

6.1 Semantical representation of 2DSC 105
6.2 Currrent approach . 106
6.3 Architecture in term of Java. 107
6.4 Proposed architecture. 108
6.5 Dynamic Service Composition Layer 118
6.6 Multi layer Dynamic Service Composition 119

7.1 Cameroon PKI architecture (?) 137
7.2 MySQL Data base . 140
7.3 Transformation of the database to the Graph 141
7.4 Architecture of the Simulator 143
7.5 DSC layer for Cameroon SOA based e-government 144
7.6 Current DSC for e-government 145
7.7 2DSC for Service oriented e-government 146
7.8 Basic test results . 147
7.9 Graphic representation of performance on current and new ap-

proaches in case of 1 Application 150

viii

LIST OF FIGURES

7.10 Graphic representation of performance on current and new ap-
proaches in case of 2 applications 151

7.11 Graphic representation of performance on current and new ap-
proaches in case of 4 applications 151

7.12 Representation of tail latency 152

Distributed Dynamic Service Composition (2DSC) ix

List of Tables

4.1 Solutions impact on the 3 causes 73
4.1 Solutions impact on the 3 causes 74

7.1 characteristic differences between traditional government and
e-government organizations . 132

7.2 Basic test’s results with estimation time in seconde 147
7.3 Simulation without 2DSC approach with estimation time in sec-

onde . 149
7.4 Simulation with 2DSC approach with time estimation in seconde149
7.5 Simulation of power failure . 152

1

Part I

GENERAL INTRODUCTION

2

A man of honor is one who has dreamed of hon-
ors; a man of money is one who has dreamed of
money; a fool is one who sleeps to dream.

C.BESSALA OKALA

1
Introduction

Contents
1.1 Introduction to research 4

1.2 Research context . 4

1.3 Research problem background 7

1.4 Problem statement 8

1.5 Research relevant to information systems 9

1.6 Research goal . 9

1.7 Main research question 10

1.8 Secondary research questions 10

1.9 Research justification 10

1.10 Research contribution 11

1.10.1 Practical . 12

1.10.2 Theoretical . 12

1.11 Thesis structure . 13

3

INTRODUCTION

1.1 Introduction to research

Between 2014 and 2017, people’s access to ICT has improved considerably,
from 0.356 to 0.476 in Cameroon(ANTIC, 2017). In the same period, the IDI
(ICT development index) increased significantly from 2.03 to 3.85(ANTIC,
2017). This index had a positive impact on the use of ICT over the same
period, from 0.37 to 3.58. This use of ICTs and the internet paved the way
for Cameroon to advance its e-government project with the support of the
Republic of South Korea(?).

It should be noted this kind of project involves a significant number of
actors. This can lead to a proliferation of computer systems that need to
cooperate. Also, one of the major challenges of this cooperation between dif-
ferent IT systems is to facilitate their interoperability. This requires thinking
and facilitating since the design, on the architectural means to make automatic
transactions and data exchange between the different computer platforms de-
spite their multi-aspect heterogeneity . In this perspective, service-oriented
architectures (SOA) can provide an effective response to this concern.

In fact, the SOA as architectural model of the information systems guar-
antees the autonomy of the cooperating actors and facilitates the development
of the systems in a technical and philosophical independence. The research
has already proved its effectiveness in environments with a high level of coop-
eration, particularly in the implementation of e-government.

By proposing to set up an e-government by the SOA in Cameroon, this
study aims to present the different advantages of this approach in an evolv-
ing, multi-stakeholder and unstable environment like those of the developing
countries. Moreover, as an important advantage of SOA, the automatic and
dynamic service composition is the main subject of this study. In this direc-
tion, this work proposes a new approach of automatic and dynamic service
composition able to deal with scalability issue, which is often an obstacle to
its adoption despite its relevance in evolving environments.

1.2 Research context

This part will allow the reader who does not follow constantly the situation
of computer development projects in Cameroon to learn and especially to get
an idea of the state of implementation of its e-government project.

Cameroon has adopted a Strategy Document for Growth and Jobs (SDGJ)
in 2010. On the basis of this plan, the Ministry of Posts and Telecommuni-
cations adopted in 2005 a sectoral strategy document in the field of telecom-

Distributed Dynamic Service Composition (2DSC) 4

INTRODUCTION

munications and ICT(?). This led reforms in the legislative and regulatory
framework have followed. We can mention mainly the adoption of the laws
relating to cybersecurity and cybercriminality, the laws relating to electronical
transactions and e-commerce(ANTIC, 2017).

In 2014, the sectoral strategy for the telecommunications and ICT was
updated to aligning it with current technological changes. Also, to promote
the creation of wealth through private initiatives including startups, a strategic
plan for the development of digital economy ”Digital Cameroon 2020”, was
developed and adopted by the government in 2016(?).

In order to meet the objectives of this Strategic Plan, the government has
initiated projects for the strengthening of high and ultra high speed telecom-
munications infrastructure with the construction of landing points for subma-
rine fiber optic cables:

— SAT3 (South Africa Transit 3) in Douala with a capacity of 280Gbps
put into service on February 18, 2002;

— WACS (West Africa Submarine Cable system) in Limbé with 2x140 Gbps
capacity commissioned July 1, 2015

— NCSCS (Nigeria – Cameroon Submarine Cable System), extension of
Main One to Kribi with a capacity of 40 Gbps put into service on January
25, 2016

Two more cables are planned:

— ACE, whose will enable Cameroon to benefit from 48.9 Gbps capacity
as soon as construction is completed;

— SAIL (South Atlantic Inter Link) planned to land in Kribi, a linear of
nearly 6,000 km across the Atlantic Ocean to directly connect Cameroon
and Brazil.

The strategic plan also aims to extend the national fiber-optic backbone
to allow national terrestrial fiber-optic transmission of approximately 12,000
kilometers between the 10/10 Regions, 52/58 Departments and 209/360 Dis-
tricts. It also launched the implementation of the NBN (National Broadband
Network) program, and the construction of urban optical loops as well as the
construction of IXPs (Internet Exchange Points) built in 2016 in Yaoundé and
Douala, to enable the conservation of national traffic at the local level without
using equipment outside national borders.

In addition to the infrastructure, there are other projects that reveal the
permanent concern to have effective e-government. We can mention among
others:

Distributed Dynamic Service Composition (2DSC) 5

INTRODUCTION

— drawing up a master plan for the development of e-government with the
technical and financial support of KOICA (Korea International Cooper-
ation Agency). Here, the goal is to have a global plan of realization in
the next five years of an e-government;

— the design, development and hosting of an e-government web portal for
the information of the e-government committee;

— design and development of a government web portal in Cameroon with
technical and financial assistance from the World Bank to centralize all
services and administrative procedures available at the government web
portal;

— the establishment of a government intranet permitting fiber optic inter-
connection of all the central and deconcentrated services of the Public
Administrations.

Others innovative projects include:

— a feasibility study with technical and financial support from the IUT for
the establishment of a national digital library;

— A series of measures taken at the level of the NAICT (National Agency
of ICT) as well as important investments made in order to make the
”.cm” viable and credible, making it possible to increase from 650 domain
names in 2009 to 63,059 in 2016;

— implementation of tools allowing a better knowledge and enhancement
of Cameroon’s tourist and cultural heritage;

— the acquisition of a telemedicine site at the Yaoundé University Hospital
hosting the telemedicine platform, acquired as part of the pan-African
online services project;

— the establishment of a distance learning platform, through the Virtual
University of the Central Africa subregion, located at the University of
Yaoundé I and the National Virtual University at the Yaounde ENSPT,
as part of the pan-African online services project;

— the payment of online tuition fees through different money transfer plat-
forms belonging to mobile operators.

All these projects and initiatives seem to sufficiently reveal the option of
electronic services of public and private organizations. Their cooperation and
the transactions they may wish to make should impose on them a service-
oriented architectural model. And in view of the dynamism of the technological
environment, the dynamic and automatic composition will be presented as the
outcome by which it should pass.

Distributed Dynamic Service Composition (2DSC) 6

INTRODUCTION

1.3 Research problem background

Collaboration between organizations has become a major challenge dic-
tating their performance. Meaning; an organization’s capability to produce,
manage, process and analyze information quickly and efficiently collabora-
tively with its stakeholders gives a competition. Even for public adminis-
tration, the rapid interactions between computer systems of various depart-
ments reduce delays in processing files and brings an effective mean to fight
against the inertia(West, 2004)(Peña-López et al., 2012). This requirement
has imposed the establishment of information systems dealing with hetero-
geneity, interoperability and ever changing requirements; and the advent of a
new paradigm of computer development called Service Oriented Architecture
(SOA)(Pulparambil and Baghdadi, 2019).

Service composition has thus become a fundamental area in service-oriented
modeling as it solves complex problems by combining basic services available to
satisfy an initial purpose. It is therefore one of the most active areas of research
on web services(Blake et al., 2010) because it is complex and involves several
activities such as discovery, sorting and selection and execution of services.

Internet, standards and web technologies have significantly contributed
to the rise of SOA. The Internet has thus positioned itself beyond a mere
vector of data exchange, that is to say, into a more constructive platform
for the transport and exchange of self-describing, modular, easily integrable
components weakly coupled called services(Papazoglou, 2003). Web services
have thus given organizations the possibility to open technically to others in
order to materialize their different lines of collaboration. They have also made
application development faster by reusing services and reducing the time to
develop new applications. Early on, as individual service were limited in their
capabilities, putting together a set of services proved to be essential for creating
more complex services. We are talking about the composition of services.

Service composition has thus become a fundamental area in service-oriented
modeling as it solves complex problems by combining basic services available to
satisfy an initial purpose. It is therefore one of the most active areas of research
on web services(Blake et al., 2010) because it is complex and involves several
activities such as discovery, sorting and selection and execution of services.

The service composition can be static or dynamic depending on when it
is performed. If the sequence is described at the time of the coding of the
application, one speaks of static composition but if this scheduling is carried
out during the execution, one speaks about dynamic composition. The com-
position can also be automatic when performed by a machine. It can be semi
automatic if it is performed by a machine assisted by the human interven-

Distributed Dynamic Service Composition (2DSC) 7

INTRODUCTION

tion: It can also be manual if it entirely relies on a human action. Given
its inefficiency mainly due to the permanent changes in technological environ-
ments, manual and static service composition are given way to dynamic and
automatic service composition.

Also, the integration of cloud computing that promotes outsourcing of
IT resources in organizations; in SOA has created a new concept that vi-
sualizes the composition of services as a whole service. Then, the proposed
Composition as a Service (CaaS) approach attempts to combine collaborative
software engineering principles with latest innovations in service-oriented com-
puting(Blake et al., 2010). This practice has proven its efficiency in such a way
that it is currently promoted in other domains such as Function as a Service
(FaaS). But the latter has caused many concerns. Among these, scalability has
become a major problem(Baryannis and Plexousakis, 2010; Yu et al., 2008).
In fact, the dynamic composition methods that provide the responses related
to the dynamics of the environments are yet to effectively answer the problem
of the large number of available data. For example, in the case of CaaS, these
large and available number of data are due to the ever growing number of
services and the exponential number of system users(Yu et al., 2008). Thus,
in one hand, the discovery, the selection of a service to be part of a chain of
the execution of several others become complex operations. And in the other
hand, the number of requests received by the composition server that provides
the composition plans is also a factor that can deteriorate his performance(Yu
et al., 2008). All these aspects increase the response time of the system and
can have a negative impact on the processing of customer requests(Baryannis
and Plexousakis, 2010).

It is therefore in this context that this work is set to provide a solution to
scalability issue to reduce the request processing time during the process.

1.4 Problem statement

The scalability problem is still exploring because it delays the implemen-
tation and adoption of automatic and dynamic service composition as stan-
dard(Baryannis and Plexousakis, 2010)(Lécué et al., 2008a). There are many
recent and repeat recommendations that large number of data is the main
cause of scalability(Yu et al., 2008)(Baryannis and Plexousakis, 2010)(Ros-
tami et al., 2014). Researchers argue that there are three causes of scalability
in a DSC namely: (i) the large number of service composition requests, (ii) the
complexity of the request and (iii) the large number of services which compose
the service repository(Baryannis and Plexousakis, 2010).

Distributed Dynamic Service Composition (2DSC) 8

INTRODUCTION

The current approach for addressing this challenge consists in performing
separately each stages of the composition process: user’s request analysis, ser-
vice discovery, services selection and composition(Rao and Su, 2005; Kopeckỳ
et al., 2007; Baryannis and Plexousakis, 2010; Blake et al., 2010; Medjahed
and Atif, 2007). But put together their results didn’t make easy to adopt
DSC at the industrial level by resolving the scalability issue(Baryannis and
Plexousakis, 2010).

Therefore, to perform the dynamic service composition, it seems important
to make an holistic analysis of the problem. Specifically, it seems important
to propose a solutions related the three known sources of scalability in DSC.

1.5 Research relevant to information systems

As an application area, E-government is a multidisciplinary issue of interest
to managers, economists and computer scientists(Lofstedt, 2012a). Scholl(Scholl,
2004) argues that the complex relationship between information technology
and e-government has become a major focus of academic research in several
fields such as public administration, organizational behavior, information sci-
ence, and technology innovation. That is why researchers who have chosen e-
government as an application area might have their theoretical starting points
in several other disciplines like organization theory, social science, informatics,
computer science, public administration, business administration, economy,
political science, law, government professionals, library science etc(Lofstedt,
2012a). Thus the starting point of this work concerns service oriented archi-
tecture which is a branch of software design which is also a part of information
system in computer science.

1.6 Research goal

The goal of this work is to define a new approach to deal with the scalability
issue in automatic and dynamic service composition. This will lead us to
improve the implementation of e-government based on SOA in Cameroon. In
order to achieve this goal, the following objectives are constructed:

— To study and evaluate the impact of the current solutions on the three
known causes of scalability;

— To propose a new approach based on the above study, which can deal
with the scalability issue in DSC;

Distributed Dynamic Service Composition (2DSC) 9

INTRODUCTION

— To propose an e-government based on SOA to improve the effectiveness
of cameroonian administration.

1.7 Main research question

The primary research question of this research can be formalized as follow:
How can we deal with the scalability issue in the dynamic service

composition process based on its 3 known causes?
This question can be turned into secondary questions.

1.8 Secondary research questions

To ensure that the primary question is answered, the following secondary
questions were addressed:

1. Are the three factors causing the scalability taken into account in the
current solutions to deal with it?

2. How can a new approach deal with scalability problem in dynamic service
composition by taking into account the negleted cause?

3. How Cameroon can implement his adapted e-government based on ser-
vice oriented architecture?

1.9 Research justification

This work can be justified in its thematic application and in its scientific
issue.

In the developing countries, the debate on the relevance and contribution of
ICT in the development process compared to the basic social infrastructure has
found a better balance in the views (Osterwalder, 2003). Indeed, ICT do not
solve the basic social problems arisen but is rather a tool that can facilitate the
access, the availability and the proper functioning of the services responsible to
provide the answers to these priority needs of populations in these areas. Some
therefore believe rightly that, it is an instrument to facilitate the achievement
of the MDGs(of Science and Technology, 2006) and a better tool for good
governance (Bertot et al., 2010).

One of the best ways to make visible the social and economic impact of
ICTs is to make use of them in the different approaches to public governance
of the states. Electronic government called e-government or E-Gov(Relyea,

Distributed Dynamic Service Composition (2DSC) 10

INTRODUCTION

2002), is since many years seen as an important aspect in accelerating the
growth in developing countries by creating a lot of opportunities among which
the cost reduction and efficiency gains, the quality of service delivery to busi-
nesses and customers, the transparency, the anti-corruption, the accountabil-
ity, the increase of the capacity of government, the network and community
creation, the improvement of the quality of decision making, and they promote
the use of ICT in other sectors of the society(Ndou, 2004).

But different applications and platforms that cover the overall range of
the e-government implementation area need to interoperate in order to pro-
vide integrated governmental services to the citizens and businesses(Yan and
Guo, 2010)(Peristeras et al., 2009). So researchers have proposed in the area of
enhancing e-government interoperability to use common models and/or ontolo-
gies (Peristeras et al., 2009). And others propose the use of Service Oriented
Architecture to potentially address more those needs and provide a modern
application architecture for the interaction of existing and new distributed
systems(Yan and Guo, 2010).At the same way, to overcome lack of interop-
erability’s situation, researchers propose the use of a designed semantic plat-
form to easy public administration to cooperate and expand the accessibility
of services in a broad sense(Sabucedo and Anido-Rifón, 2006). The authors
argue that Service oriented architectures, methodologies and tools, together
with the conceptual and empirical framework of web services have a high po-
tential to assist public administrations in ongoing e-government innovation
processes(Marchese, 2003).

Thus, in view of the particular context of developing countries(Ndou, 2004)(Yan
and Guo, 2010), the SOA-oriented e-government solution must be able not
only to improve existing methods of collaboration between public adminis-
trations information systems, but also to provide an appropriate response to
the environments of these special countries. The problems of scalability that
show down the adoption of dynamic and automatic service composition as a
model of composition(Baryannis and Plexousakis, 2010) must above all find
an effective response.

1.10 Research contribution

This study contributes in two folds to the body of knowledge:

Distributed Dynamic Service Composition (2DSC) 11

INTRODUCTION

1.10.1 Practical

This study contributes practically as an analytical guide for the imple-
mentation of service-oriented information systems. The study indicates the
structural approach to implement a service-oriented e-government that can
support scalability by providing multiple levels of composition. The local level
that makes it possible to take advantage of the activities of the remote server,
and the external level which makes it possible to entrust the tasks of com-
positions to a dedicated server. This architecture is perfectly suited to the
structural organization of public administrations that respect a certain hierar-
chy between the systems and especially allows to build an autonomy in time
that generates fault tolerance.

1.10.2 Theoretical

The study contributes to:

— a global analysis of the scalability problem of dynamic composition of
services on the basis of the three causes indicates by researches:

Our solution presents scalability as a consequence of the actions of an
entire system that it is necessary to resolve by involving all the end-users
of the system;

— a formalization of the problem:

This formalization allows us to better appreciate the problem and the ob-
jective of the scientific approach. Our formalization presents the results
of the static composition model as the desired goal of the optimization
of dynamic composition;

— a proposition of a distributed and participatory approach using end-
users’ infrastructures:

Based on the rules of the distributed systems, the study therefore pro-
poses way to decentralize this process of services composition by consid-
ering the composition path as the shared files, the composition server as
a main tool and the clients as the local servers able to refer to themselves
even before referring to the server dedicated.

The automatic and dynamic service composition process is as a centralized
client-server shared files system where the composition path is a shared file.
Thus, this study presents the distributed approach as an effective mean to deal
with scalability problem.

Distributed Dynamic Service Composition (2DSC) 12

INTRODUCTION

1.11 Thesis structure

This work is organized in 3 parts. The first part which is the General In-
troduction of the thesis is composed of 2 chapters. This introduction (Chapter
1) and the chapter 2, where we present the methodology of our research and
the philosophical means used to deal with the scalability in the automatic and
dynamic service composition.

The second part is the state of the art and composed of 2 chapters too:
chapter 3 and chapter 4. The chapter 3 presents an overview on service-
oriented architectures. This chapter also presents the place and purpose of
automatic and dynamic service composition in SOA. In chapter 4, the focus
will be on methods and algorithms for dynamic composition of services and
their limits when scaling up. Existing and planned solutions are explored to
provide effective responses to this concern.

The part third part of this work is the Research implementation. He is com-
posed of 3 chapters: chapter 5, chapter 6 and chapter 7. Chapter 5 presents
the principles and concepts of distributed approach in which the contribution
is based on. Chapter 6 presents the distributed approach to deal with the scal-
ability in automatic and dynamic service composition. The model is exposed
with its benefits and its conceptual organization. In chapter 7, we present the
application of the emanating framework and the results of its assessments. The
technical environment of the work is also presented and simulations results in
case study of e-government based SOA in developing countries as Cameroon
are also evaluated.

The last part of our work is a General conclusion and is composed of one
chapter 8 which is the conclusion. In this chapter, we analyse the advances
that this new solution brings before coming up with logical perspectives that
can help to refine this research. Before that, the contribution’s points are
summarized and some limits of our work are exposed.

All this can be summarized by figure 1.1:
The following chapter is focused to present the methodology of our research

and the philosophical means used to deal with the scalability in the automatic
and dynamic service composition.

Distributed Dynamic Service Composition (2DSC) 13

INTRODUCTION

Figure 1.1 – Thesis blue print

Distributed Dynamic Service Composition (2DSC) 14

If we want everything to continue, everything
must first change

G. TOMASI DI LAMPEDUSA

2
Research philosophy and methodology

Contents
2.1 Introduction . 17

2.2 Research process . 18

2.3 Research design . 19

2.4 Research philosophy 19

2.4.1 Positivism . 19

2.4.2 Realism . 20

2.4.3 Interpretivism . 20

2.4.4 Pragmatism . 20

2.5 Research approach 20

2.5.1 The deductive method 21

2.5.2 The inductive method 21

2.6 Research strategy 21

2.6.1 Experiment . 21

2.6.2 Survey . 22

2.6.3 Case study . 22

2.6.4 Action research . 22

2.6.5 Grounded theory . 22

2.6.6 Ethnography . 22

2.6.7 Archival . 23

15

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

2.7 Research choice . 23

2.7.1 Mono-method . 23

2.7.2 Mixed-methods . 23

2.7.3 Multi-methods . 24

2.8 Time horizon . 24

2.8.1 Cross-sectional . 24

2.8.2 Longitudinal . 24

2.9 Data collection and analysis techniques 24

2.10 Synthesis . 25

2.10.1 Research philosophy 25

2.10.2 Research approach 25

2.10.3 Research strategy . 26

2.10.4 Research choice . 26

2.10.5 Time horizon . 26

2.10.6 Data collection and analysis techniques 26

Distributed Dynamic Service Composition (2DSC) 16

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

2.1 Introduction

The term research is often linked to academic activity, however several
writers link research to everyday life and see it as a fundamental activity
of everyday living so they suggest that everyone is engaged in the research
process through attempting to find solutions to problems which are perceived
(Johnston, 2014). The research can have several objectives. It can allow an
author to explore a phenomenon, solve a problem, question or refute results
provided in previous work. It can also be experimenting with a new process,
a new solution or a new theory. Research can also include applying a practice
to a phenomenon, describing it, or simply explaining it. Scientific research is
therefore a systematic and dynamic process or a rigorous rational approach
that allows the construction of new knowledge (Quinlan, 2011).

The generation of new knowledge or its extension in the context of aca-
demic research must be integrated and reliable for their validity (McGregor
and Murnane, 2010). This credibility is acquired through the reliability of the
author’s approach. Scientific rigor is guided by the notion of objectivity that
demonstrates that the researcher only deals with facts, within a framework
defined by the scientific community. Academic research work must therefore
be based on a philosophy and methodology of research. To define the research
philosophy, most of researchers use the term paradigm which is a set of asser-
tions, concepts, values and practices that constitute the path to shape a reality
(Scotland, 2012). A paradigm consists of the following components: ontology,
epistemology, methodology, and methods (Scotland, 2012). Philosophically, a
paradigm aims to outline the basics assumptions and beliefs about and tech-
nically, it permits to outline the methods and techniques used to conduct the
study (McGregor and Murnane, 2010). That is why beyond the research phi-
losophy, the research methodology of this study will also be presented in this
part.

Simply put, research methodology refers to how each of logic, reality, values
and what counts as knowledge inform research (McGregor and Murnane, 2010).
According to Crotty(Crotty, 1998) methodology is the strategy or plan of
action which lies behind the choice and use of particular methods. Thus,
methodology is concerned with why, what, from where, when and how data
is collected and analyzed (Scotland, 2012). Guba and Lincon explain that
methodology asks the question: how can the researcher go about finding out
whatever they believe can be known(?). Saunders and al. consider research
methodology as the principle of how research will be undertaken including the
theoretical and philosophical assumptions at which the study is grounded and
the implications of techniques adopted (Saunders, 2011).

Distributed Dynamic Service Composition (2DSC) 17

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

Thus, guided by research onion 2.1 as proposed by Saunders (Saunders,
2011), this part will present the philosophical and methodological research
choices of the study. This includes the research design for the study, the
research philosophy, the approach, the research strategy, choices, the time
horizons and techniques and procedures.

Figure 2.1 – Research onion (Saunders, 2011).

2.2 Research process

Scientific research is a process. It has a definite purpose, the steps, with a
beginning and an end. According to Saunders and al., it is a set of procedures,
methods and steps followed by the researcher to conduct the research (Saun-
ders, 2011). This work followed the research process as presented by Saunders
and al. (Saunders, 2011). It begins with a presentation of the literature review
on service-oriented architectures, the resulting process of service composition.
An extensive literature review on the automatic and dynamic service compo-

Distributed Dynamic Service Composition (2DSC) 18

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

sition is followed to better present the problem of scalability that results and
especially the factors that generate it.

This chapter presents the technical and theoretical details on which the
study is conducted. The research design is the next section.

2.3 Research design

A research design is a plan that specifies how the researcher plans to carry
out a research project and how he expects to use its evidence to answer their
research question. In fact, when building a house, it is necessary to define
the type of house and its use before drawing up a plan and other necessary
administrative procedures. And even in a research process, you have to design
and structure the process before collecting the data, for example, and analyzing
them.

According to De Vaus and al., research design can be seen as the logical task
adopted to assist the researcher in collecting evidence that could enable him
to answer the research question (De Vaus, 2001). Flannely and al. explained
that the main aim of the research design is to reduce the likelihood of incorrect
conclusions being drawn from the data by the researcher as a result of relevant
data not being collected (Flannelly and Jankowski, 2014). Thus, the research
model of this study is based on research onion 2.1 presented by Saunders and
al (Saunders, 2011).

2.4 Research philosophy

The research onion describes 4 main paradigms: positivism, realism, inter-
pretism and pragmatism (Saunders, 2011).

2.4.1 Positivism

The positivist approach concludes that the world is external and therefore
should be measured by objective methods (Johnston, 2014). Positivism comes
up with the research questions and hypotheses that you can test. With posi-
tivism, you can find the explanations measuring the accepted knowledge of the
world. It is the type of body of research that other researchers can also take
to find the same outcome. Here, you give importance to get the quantitative
results. It may lend you to statistical analysis.

Distributed Dynamic Service Composition (2DSC) 19

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

2.4.2 Realism

Realism says that you can revise every theory. It further explains that you
can’t find the reality without continuous research. Realism says that you don’t
need to hesitate in using new methods of research. This way realism allows
you to use many types of research methods. It will help you to come up with a
reliable outcome. Realism and positivism are quite similar. It says that social
reality and you are not dependent on each other. It will not let them give
biased results. However, realism says that scientific methods are improper. It
separates the realism and positivism.

2.4.3 Interpretivism

Interpretivism helps you in interpreting how people participate in the social
and cultural life. In other words, you can learn what people understand about
their own and others actions. It can help you in understand a culture. Fur-
thermore, you can also learn about the cultural existence and change through
learning about the ideas and valuables. Some meanings may also prove helpful
for you in the same.

2.4.4 Pragmatism

Pragmatism: Constructivism and Objectivism are the ideal ways to con-
duct a research in the views of pragmatism. A topic can also judge from one
or both viewpoints about the impact of the social actors. You can use these
views to create a practical approach to research. It is essential in the research
onion. You can use it to come up with the solution of the problems.

This study is based on positivism. This philosophy fits better with the
projected strategy. In fact, this strategy consists in studying the mechanism
of automatic and dynamic service composition in Service Oriented Architec-
tures, evaluating the sources of scalability in this process, studying the existing
solutions to deal with the problem and highlight their limits before proposing
an approach that will be evaluated on a statistical basis.

2.5 Research approach

After the discovering of research aim and limitations it is important to
choice an approach. Deductive and inductive are the two approaches that the
second layer of the research onion includes (Saunders, 2011).

Distributed Dynamic Service Composition (2DSC) 20

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

2.5.1 The deductive method

The deductive method aims to find the answer to the question at the start of
the research. In the deduction process, the theories are scanned to the research
question. It further leads to gather data and ultimately the confirmation or
rejection of the question. The revision of the theory can be done.

2.5.2 The inductive method

Inductive method aims to create a new theory. So, this point in the re-
search onion works in the opposite way of the deductive method. It means
researcher doesn’t need to give a thought to an existing theory. The hierarchy
of the research runs from research question to observation. Next come the
observation, description, analysis and the researcher comes up with her own
theory in the end. Hence, it is better to use inductive method for the research
if the research requirements are not big.

The study follows a deductive approach. Because there is a research ques-
tion at the start of the research and there is a review of literature already done
in the field. This study will therefore build on this previous work to address
the problem of scalability on the automatic and dynamic service composition
by investigating the causes of their lack of efficiency, before propose a new
distributed approach.

2.6 Research strategy

A research style is used to gather and analyze data like grounded theory
are the choices. Every choice has its benefits and limitations. Thus, it is a
must for a researcher to give a thorough thought to each of it. Furthermore,
he should explain and balance the choice well in the work. The researchers
have the option to choose more than one beyond the following strategies.

2.6.1 Experiment

Experiment: the experimental designs can be find very scientific and com-
plex in their structure. It may make it tough for others to replicate your
research. Experimental designs test the casual effects of the phenomena on a
group of people. It comprises the group of people who are not under the effects
of the phenomena. The independent variables can be called on the dependent
variable as causal effects. Moreover, experimental strategies can give you such
data that you can analyze statistically.

Distributed Dynamic Service Composition (2DSC) 21

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

2.6.2 Survey

Survey strategy of the research onion is often linked with the deductive
approach. It is one of the finest and economical research strategies. It allows
the researcher to gather huge data to answers the who, what, where, when
and how of your research. Rich and reliable data can be collected through this
method.

2.6.3 Case study

A case study design helps researcher in doing a study on one or more
people. This can use the same to do research on real life cases. Researcher
should gather many types of data while studying a case: take a look at the
peoples’ behavior, consider the settings, interview the people and search the
records.

2.6.4 Action research

Action research is the method in the research onion that tries to find and
solve a problem or an issue. For example, an organization makes the inquirer
part of it if they ask him to do a research for them. In other words, him and
the organization work in collaboration on the topic. The following process
helps to do things: have an objective, find the diagnosis of the issue and make
the list of the actions to deal with the problems.

2.6.5 Grounded theory

The grounded theory builds a theory after predicting and explaining the
behavior with the use of the inductive methods. In this method, researcher
collects the data through observation. Next, he makes predictions and theories
with the use of this data. Finally, he tests the predictions. Although this
theory comes up with new theories, yet is it grounded. It is because of the
existing theory and literature on the topic.

2.6.6 Ethnography

Ethnography can be found on the roots of the anthropology. Anthropology
is the study that allows you to study others in a detached way. But, to research
with the ethnography method, researcher has to stay in the community or
situation. He may find this research method time-consuming. It is because
things can take time to change or get in her head.

Distributed Dynamic Service Composition (2DSC) 22

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

2.6.7 Archival

Archival research goes as the name suggests. In other words, researchers
do research with the use of the archive documents and existing information.
Archival research allows to explore and explain the changes happening over a
long span of time. The researchers can also do a descriptive analysis of it but,
it is possible that the information may have some fault. It may lead to not
reaching anywhere.

This study is based on deductive approach. So the survey strategy of the
research onion is more adapted to lead our research. In addition, the research
question is open and there is a large literature review on which this study is
conducted.

2.7 Research choice

In this layer, researchers discover the ways to use quantitative and qual-
itative methods for the research purposes. Here, they ensure whether both
methods are ideal to use or one is fine. Furthermore, the also decide whether
use one method more than other. Or the frequency will stay equal. In quantita-
tive research, researchers consider the quantity and measurements. Whereas
qualitative research allows them to explore personal accounts, descriptions
and opinions. You can use three types of methods according to the fourth
layer of the research onion diagram: mono-method, Mixed-methods and Multi-
methods.

2.7.1 Mono-method

In the mono-method, the inquirers gather only one type of information from
qualitative and quantitative. They may have to do it due to the demands of
the philosophy. Philosophical choices and used strategies may also demand it.

2.7.2 Mixed-methods

Mixed-methods allow to use both qualitative and quantitative methods
for the study purposes. It is possible when researcher combines both these
methods, to offset their limits by finding and filling the gaps in the information
easily.

Distributed Dynamic Service Composition (2DSC) 23

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

2.7.3 Multi-methods

Multi-methods helps in researching with the use of the qualitative as well
as quantitative information. However, researcher focus stays on the one source
only. This way he analyzes both types of data, but with the same point of
view.

This study is a quantitative research because it will consider the quanti-
tative measurements of execution time of requests which are coming from the
clients. The mono-method will be his way to analyze the effectiveness of the
new approach.

2.8 Time horizon

Layer five of the research onion has two-time horizon methods. First is
cross-sectional that can be used to conduct a short time study. Another one
is longitudinal that can be used while doing a long-term study.

2.8.1 Cross-sectional

Cross-sectional: qualitative and quantitative research can be used in the
cross-sectional method. It may help researcher in observing the behavior of a
group of people or an aspect. He can also use the same method to do study
on an individual at one point of time.

2.8.2 Longitudinal

Longitudinal method also allows to use qualitative and quantitative re-
search methods. But, this method is used to study behavior and events with
focused samples over a longer time.

This study use cross-sectional time horizon methods. The framework gen-
erated by the new approach will be observed and its performance evaluated
during the study.

2.9 Data collection and analysis techniques

Layer six of the research onion gives a fine idea of the practicalities of data
collection and analysis. In this stage, the researchers have to make a decision
of which data may prove best for their studies. Moreover, they also have to
discover the analysis to use to find the desired results. In this section of the

Distributed Dynamic Service Composition (2DSC) 24

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

research onion, inquirers decide the questionnaire content and sample groups.
They also give a thought to the questions you will ask in the interviews and
many others things.

The study will be done on a dataset of services. A service will be mainly
a resource characterized by its input and output. A composition plan will
therefore be a path that can exist between services. The composability of two
services is essentially the possibility of matching them. The processing time
of a request is therefore the time taken by the composition server to return
a composition plan to a client having sent him a request clearly showing its
input and the output which is the desired result.

2.10 Synthesis

Research philosophy and methodology is a good way to design academic
studies. It is a must to make sure that all the decisions and tools used sync
with the objectives of the research. The researchers must keep the same thing
in mind for the philosophical stances, strategies, choices, time-horizons, data
collection and analysis. It may help you reach the valid results. We can
summarize the research philosophy and methodology of this research as follows.

2.10.1 Research philosophy

This research is based on positivism. This philosophy fits better with the
projected strategy. In fact, this strategy consists in studying the mechanism of
automatic and dynamic service composition in Service Oriented Architectures,
evaluating the sources of scalability in this process, studying the existing solu-
tions to deal with the problem and highlight their limits before proposing an
approach that will be evaluated on a statistical basis.

2.10.2 Research approach

Our research follows a deductive approach. Because there is a research
question at the start of the research and there is a review of literature already
done in the field. This study will therefore based on this previous work to
address the problem of scalability on the automatic and dynamic service com-
position by investigating the sources of their lack of efficiency, before proposing
a new distributed approach.

Distributed Dynamic Service Composition (2DSC) 25

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

2.10.3 Research strategy

This research is based on deductive approach. So the survey strategy of the
research onion is more adapted to lead our research. In addition, the research
question is open and there is a large literature review on which this study is
conducted.

2.10.4 Research choice

Our research is a quantitative research because it will consider the quanti-
tative measurements of execution time of requests which are coming from the
clients. The mono-method will be our way to analyse the effectiveness of the
new approach.

2.10.5 Time horizon

This study uses cross-sectional time horizon methods. The framework gen-
erated by the new approach will be observed and its performance will be eval-
uated during the experimentations.

2.10.6 Data collection and analysis techniques

The research will be done on a dataset of services. A service will be mainly
a resource characterised by its input and output. A composition plan will
therefore be a path that can exist between services. The composability of two
services is essentially the possibility of matching them. The processing time
of a request is therefore the time taken by the composition server to return a
composition plan to a client which has sent a request with the input and the
output which is the desired result.

The following figure 2.2 summarises the research philosophy and method-
ology of this research.

The following part is focused on the state of the art. He will make the the
presentation of Service-Oriented Architecture (SOA) and the current solutions
proposed to deal with the problem of scalability during the dynamic service
composition process.

Distributed Dynamic Service Composition (2DSC) 26

CHAPTER 2. RESEARCH PHILOSOPHY AND METHODOLOGY

Figure 2.2 – Research onion of the research.

Distributed Dynamic Service Composition (2DSC) 27

Part II

STATE OF THE ART

28

The questioning about our deepest existence,
about the direction to be given to our existence
must be the great business of our intellectual ef-
fort

M. TOWA

3
Service Oriented Architecture and

Service Composition

Contents
3.1 Introduction . 30

3.2 History and philosophy 32

3.3 Characteristics . 32

3.4 SOA layers and basic protocols 33

3.5 Service composition 35

3.5.1 Introduction . 35

3.5.2 Manual and automatic service composition 36

3.5.3 Dynamic and static service composition 37

3.6 Synthesis . 38

29

SOA

This chapter will first present the SOA, its history, its characteristics, its
layers and protocols before present one of the most advantage of this paradigm
which is the service composition.

3.1 Introduction

Thomas Erl defines SOA as a terminology that represents a model in which
automation logic is decomposed into smaller, distinct units of logic. Collec-
tively, these units comprise a larger piece of business automation logic. Indi-
vidually, these units can be distributed (Erl, 2005).

It is an approach to build distributed systems by integrating components
that are independent from the technology platform, implementation languages,
and operating systems. It delivers the functionality of an application as ser-
vices that will be operated directly by the end user or used to form other
services. A service-oriented architecture establishes a conceptual model that
aims to improve the efficiency, agility, and productivity of a business by con-
sidering services as the primary means through which the logic of a solution is
represented in the business support for the achievement of strategic objectives.

Ultimately, depending on the role of each in an organization, a SOA will
have a definition accordingly. For an executive, a SOA can be defined as a set
of services that the company wants to expose to their customers and partners,
or other parts of the organization. When the architect views them as a vendor,
requester, and service description-based architectural style, and supports the
properties of modularity, encapsulation, decoupling, reuse, and composability.
A developer will define them as a programming model with its standards,
paradigms, tools and associated technologies. And for a solution integrator,
it is a middleware offering functionality in terms of assembly, orchestration,
monitoring and management of services.

The concept of service is at the basic concept of SOA. It is a standalone
entity that encapsulates one or more features called service operations. There
are several definitions for a service. It is a software component that provides
a particular functionality and is accessible through its interface. A service
is always accompanied by a description providing applications with the in-
formation necessary for its use. Specifically, the services are independent of
any technology platform or implementation languages. In most cases, SOA
are implemented using web technologies and the notion of service has become
synonymous with that of the web service.

According to World Wide Web Consortium (3WC) which is a reference, a
web service is a software system designed to support interoperable machine-

Distributed Dynamic Service Composition (2DSC) 30

SOA

to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). These service operations are
independent of the context or status of other services. It has a description of
the functionality it performs in terms of operations and their input and output
parameters. It specifies a communication model that governs interactions with
other departments or clients. They expose their functionalities through a
standard interface and communicate via message exchanges. Other systems
interact with the Web service in a manner prescribed by its description using
SOAP-messages, typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.

A service is represented by a tuplet (Id, IO,Desc, Cond,QoS) where:

— Id is the identifier of each service;

— IO represents the input and output of the service interface descriptions;

— Desc the basic information of the service (such as the URL, name and
publisher);

— Cond is a set of actions that must be verified before and after the service
execution;

— QoS is the service quality set of non-functional descriptions, such as the
cost, reliability, execution time, reputation, and availability.

The services are developed by the providers, which publishes their services
descriptions in the form of files. These descriptions are centralized and stored
in registries. Client applications send requests to registries to search for ser-
vices. As soon as they found it, then download the descriptions of the selected
services, and invoke them directly. The figure 3.1 illustrates these different
transactions.

Figure 3.1 – SOA architecture.

Distributed Dynamic Service Composition (2DSC) 31

SOA

3.2 History and philosophy

In most approaches to structuring complex systems, service orientation is
becoming increasingly important. And yet, the concept of service is not new
but given its transversality, it becomes difficult to give it an exact and precise
content. Depending on the areas in which it appears, a definition will be at-
tributed to it. In software engineering, the notion of service is still evolving,
but its origins can be traced back to existing programming techniques. In-
deed, we have moved from the procedural programming model (functions) to
the object model where the encapsulation principle allows data to be grouped
together in an object and associated processing. We then moved to the com-
ponent model that allowed us to expose the functionality of an application or
information system through a set of entry points. The service orientation is a
logical follow-up to these advancements and consists of presenting access to a
set of treatments related to certain functionality, without providing the details
of the treatments. The data is visible only through the messages exchanged.
This orientation, which has mainly benefited from web technologies accessible
to all stakeholders, is therefore a continuation of these methodologies and shar-
ing technologies. Intuitively, the concept of service represents an abstraction
of the functionalities of an entity that can be as simple as a piece of data or
an object on the web or as complex as an adaptable information system of an
organization.

3.3 Characteristics

According to Thomas Erl (Erl, 2005), there are 7 principles of service
orientation which are applied on SOA:

— Loose coupling Services maintain a relationship that minimizes depen-
dencies and only requires that they retain an awareness of each other;

— Service contract Services adhere to a communications agreement, as de-
fined collectively by one or more service descriptions and related docu-
ments;

— Autonomy Services have control over the logic they encapsulate;

— Abstraction Beyond what is described in the service contract, services
hide logic from the outside world;

— Reusability Logic is divided into services with the intention of promoting
reuse.

Distributed Dynamic Service Composition (2DSC) 32

SOA

— Composability Collections of services can be coordinated and assembled
to form composite services;

— Statelessness Services minimize retaining information specific to an ac-
tivity;

— Discoverability Services are designed to be outwardly descriptive so that
they can be found and accessed via available discovery mechanisms.

SOA have many advantages for business and for development engineering.

— For organizations, they improve the agility and flexibility of the business
while facilitating the management of its business processes. They also
offer the ability to break down organizational barriers and reduce the
time of product development cycle. On the economic field, organizations
are improving their return on investment and increasing their revenue
opportunities through service oriented architecture.

— On the technological front, service oriented architecture reduces the com-
plexity of solutions. And taking advantages to the reusability, we can
build services once and use them frequently. They ensure standardized
integration and heterogeneous customer support. They also facilitate
systems maintenance.

The three fundamental interactions of the functioning of the SOA require
a good description of service to facilitate its publication in the repository, its
identification so that it is found easily and a mean of communication on for its
invocation. It makes possible to define to them four layers of functionalities:

— The publication layer, which allows the centralization, storage and dis-
semination of service descriptions;

— The description layer, which groups together necessary details to invoke
services in a document;

— The message layer, which ensures the uniform structuring and exchange
of messages;

— The transport layer, which allows messages to be conveyed through the
network.

3.4 SOA layers and basic protocols

The adoption of SOA in the computer world has been facilitated by several
aspects including Web standards and technologies that have widely spread
their implementation. They are used to provide broad support for SOA in the
publication layer, the description layer, message layer and transport layer.

Distributed Dynamic Service Composition (2DSC) 33

SOA

— Publication layer

The publishing layer is based on the Universal Description, Discovery,
and Integration (UDDI) protocol, which consolidates, stores, and dis-
tributes service descriptions. It is the seat of the service registry. EbXML
will also be noted as an alternative to provide the same functionalities
in the case of e-business (Castillo et al., 2011).

— Description layer

The description layer is supported by the Web Service Description Lan-
guage (WSDL), which describes the functionality provided by the ser-
vice, the messages received and sent for each feature, as well as the
protocol adopted for the communication. The types of data contained in
messages are described using XML Schema language. There are several
others methods of describing a service like Semantic Annotations Web
Service Description Language (SAWSDL); Web Service Modeling Ontol-
ogy (WSMO); Ontology Web Language for Service (OWL-S) which aim
to enrich semantically the service description.

— Message layer

The message layer uses XML-based protocols because its unique syn-
tax resolves syntactical conflicts when encoding data. Currently, Simple
Object Access Protocol (SOAP) (Box et al., 2000), XML-Remote Proce-
dure Call (XML-RPC) (Merrick et al., 2006) and Representational State
Transfer (REST) (Erl et al., 2012) are the protocols used for this layer.
Even though SOAP is still the predominant protocol, REST seems tech-
nically recommended (Castillo et al., 2011).

— Transport layer

For the transport layer, HyperText Transfer Protocol (HTTP) has be-
come the de facto standard. This ubiquitous protocol on the Internet is
generally tolerated firewalls. Making it particularly suitable for commu-
nications between organizations. However, other protocols can be used,
such as Simple Mail Transfer Protocol (SMTP) or File Transfer Protocol
(FTP), allowing web services to remain independent from the transport
mode used.

The main advantage of SOAP and UDDI protocols as well as WSDL lan-
guage is based on the Extensible Markup Language (XML) which is a language
of data description that has huge benefits:

— a unique syntax that allows its adoption by various operating systems;

— a tree structure that facilitates its readability;

Distributed Dynamic Service Composition (2DSC) 34

SOA

— Extensive scalability, because it imposes no restrictions of use apart from
its syntax.

Thus, the exclusive use of languages and protocols based on XML language,
as well as current Internet standards such as HTTP protocol, promotes inter-
operability between distributed information systems. Services remain inde-
pendent from operating systems and development platforms, which facilitates
interactions with client applications, but also across multiple departments in-
volved in the process. That is why SOA are adapted to improve e-government
(Heeks and Bailur, 2007). But one of the key features of developing a services
oriented e-government is to structure and design composite services to gain
real benefits for existent services. That is why the research community is mo-
bilizing to find more effective ways to exploit this advantage. The next section
will present the service composition in general and its different forms.

3.5 Service composition

One of the most important aspects of service oriented architectures is the
possibility to combine many services to provide a new complex one which can
give response to a new request.

3.5.1 Introduction

Sometime it is necessary to combine several services into a workflow to
solve a complex problem. The service composition is an ability to provide a
new functionality obtained from a combination of several Web services offered
by various providers (working group et al., 2004). It is the way to take ad-
vantage of the two main characteristics of SOA which are service reusability
and service composability. They respectively allow, to make use of a service
without worrying about its execution environment and to combine in the form
of an execution chain, a set of services for solving a complex problem (Thang
et al., 2010).

A Web Service Composition (WSC) problem, in a general environment
setting, is defined as (I,G, S) where:

— I is an initial interface, provided by a user in its request, indicating the
starting point;

— G is a goal interface, provided by a user in its request, indicating the
ultimate interface the user wants to obtain;

— S is a set of candidate web services.

Distributed Dynamic Service Composition (2DSC) 35

SOA

Given a web service composition problem (I,G, S) a solution to this prob-
lem, called a composition plan π, is a sequence of totally ordered web services
such that π ⊆ S. By applying each service in π, the resulting interface is a
superset of G.

The service composition can also be define as an AI classic planning prob-
lem (Bevilacqua et al., 2011) (Carman et al., 2003) with a deterministic tran-
sitional model, represented as the 5-tuple:(S, S0, Sf , A,Γ), where:

— S is a finite set of states;

— A a finite set of available actions;

— S0 the initial state;

— and Sf the desired final state.

According to Bevilacqua and al. (Bevilacqua et al., 2011) and Carman
and al. (Carman et al., 2003), a state can be either the set of necessary
conditions for the execution of a service operation (pre-conditions) or the set
of the effects produced by the execution (post-conditions). Problem inputs
and desired outputs can be expressed as predicates in the initial state S0

(describing available knowledge) and predicates in the Sf final state (describing
additional knowledge produced by service execution), respectively. Two states
are connected by a transition if an operation exists that can be performed
to transit from the first state into the second one. An action, generated by
a service operation, triggers a transition from its pre-conditions to its post-
conditions. (Γ ⊆ S × A × S) represents this transition relationship. Service
goal G (or simply goal) the pair (S0, Sf), denoted as S0 → Sf in the following,
representing the desired state transition from the initial state S0 to the final
state Sf

There are many types of service composition methods. These types are
based either on the composition scheme elaboration time, or on the author of
this composition.

3.5.2 Manual and automatic service composition

The composition of services can be characterized by its level of automa-
tion. According to this criterion of automation it can be manual, automatic
and semi-automatic (Foster et al., 2003). The composition is manual when
the user of the services programs himself, and by hand all the steps of the
composition process of the composite services he needs, using a text editor
without the help of dedicated tools. This method has the disadvantage that it
requires extensive knowledge and considerable effort from the user who does

Distributed Dynamic Service Composition (2DSC) 36

SOA

not always have the technical credentials. This task remains arduous and
sensitive to errors caused by the dynamism and flexibility of proprietary ser-
vice environments. Thus, when changes have been made even in one service,
the operation of the resulting composite service may be affected and require
changes in the composition process that must be restarted.

Automatic composition is an approach that supports the entire composition
process and performs it automatically, without any user intervention. The
composition process in this case is a generic process for different users who
want to search and compose services that respond to their specific requests.
Therefore, this process needs to be flexible and agile to accommodate the
unique requirements and preferences of each user.

This agility criterion adds to the exploration of a multitude of possible
Web-based solutions and the ability to interpret the operation of existing web
services to make the automatic composition process a complex processEndong
(2020); Hatzi et al. (2013). Automatic composition is considered, in fact, to
be a very complex task because of the diversity of the elements (properties) of
Web services that it has to examine to identify those appropriate and compat-
ible with suitable composition plans and to verify their composability. This
complexity and subsequently the cost of composition are further increased
because of the rapid proliferation of Web services available on the Internet
and the difficulty of semantically and correctly interpreting the properties of
these services to meet user expectations To cope with some of the difficulties
posed by the automatic service dialing process, a third interactive approach
which is semi-automatic composition has been proposed. Here, the user keeps
a supervision control in the composition process envisaged even if he does not
have a deep knowledge of programming. It can make use of graphical tools
to model and design composite services; select appropriate services based on
semantic suggestions from dedicated tools such as METEOR-S, specify pref-
erences, and intervene continuously during the composition processPatil et al.
(2004); Verma et al. (2005).

3.5.3 Dynamic and static service composition

Depending on the time of its implementation, the service combination to
create a new composite service can also be done statically or dynamically. The
service composition is static when her implementation workflow is designed
during the conception of the application. In the static approach, aggregation
of services is performed at the design phase of the composite service. Ser-
vices are determined, selected, aggregated and linked together before being

Distributed Dynamic Service Composition (2DSC) 37

SOA

deployed. This type of composition is more suitable for stable environments
where services previously identified by the user are not likely to change quickly.
However, changing a component service or substituting another service also
causes changes in the design of the composite service.

Unlike static composition where the number of services provided is limited
and the services to be composed are specified beforehand, dynamic composition
is initiated by a request from the user. The dynamic web service composition
creates process model and selects atomic services automatically at runtime.
It is a process which allows the services to interact in an intelligent way, to
discover other services, to negotiate between them, and to compose themselves
in more complex services (Domingue et al., 2005). It enables you to discover,
select and dynamically combine services from Web service registries while tak-
ing into account the specific constraints of the user. It is an approach that
brings flexibility and adaptability in the composition process. It makes it pos-
sible to generate composition plans adapted to each request from the services
available at the time of the composition. This dynamic approach has several
advantages over the static approach, in particular its flexibility and adaptabil-
ity. The figure 3.2 and the figure 3.3 illustrate the difference between the two
methods.

Figure 3.2 – Dynamic service composition.

3.6 Synthesis

Service oriented architecture has made an important contribution to the
interoperability of information systems. In this chapter, some of the fun-

Distributed Dynamic Service Composition (2DSC) 38

SOA

Figure 3.3 – Static service composition.

damental standards, protocols, and key web technologies on which they are
based have been exposed. The service composition which is one of the ma-
jor strengths of this paradigm is a vast and interesting area of research. The
different composition approaches were presented. Manual and static service
composition are time-consuming and hard task when more and more services
have been deployed .The automatic and dynamic composition of services is a
present trend (Pulparambil and Baghdadi, 2019; Endong, 2020; Garriga et al.,
2016; Alwasouf and Kumar, 2019) and this approach is the most adapted for
its flexibility and adaptability in relation to the dynamism of technological
environments and especially in relation to the proliferation of services and
stakeholders in the web.

But this approach raises a number of problems related to its effectiveness
that research seeks to provide solutions. So, achieving dynamic composition in
an environment where the number of services provided is constantly changing
and the number of users is always increasing is not a simple task. In the
next chapter, there will be a review of the literature on the dynamic service
composition and the limitations that underlie this research.

Distributed Dynamic Service Composition (2DSC) 39

Intelligence is defeated as soon as the expression
of thoughts is preceded implicitly or explicitly by
the little word ”we”.

S. WEIL

4
Dynamic Service Composition

Contents
4.1 Introduction . 42

4.2 Service description 42

4.2.1 Syntactic models . 42

4.2.2 Semantic models . 43

4.2.3 Ontologies . 46

4.3 Service discovery . 49

4.3.1 Main aspects . 49

4.3.2 Service publication and location 50

4.3.3 User request specification 53

4.4 Service selection . 54

4.4.1 Request matching and Service 54

4.4.2 Service composability 56

4.4.3 Composite service reliability 57

4.5 Composition plan generation approaches 57

4.5.1 Workflow approach 58

4.5.2 Planification techniques 60

4.5.3 Dependency Graph approach 64

4.6 Composite service description 66

4.6.1 Orchestration . 67

40

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

4.6.2 Choreography . 68

4.7 Cloud computing and microservices 69

4.8 Decentralization in service composition 71

4.9 Synthesis on scalability issue on dynamic service
composition . 72

4.10 Research question 74

4.11 Synthesis . 75

Distributed Dynamic Service Composition (2DSC) 41

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

4.1 Introduction

According to the service composition life cycle 4.1Hatzi et al. (2013); Alwa-
souf and Kumar (2019), researches to improve the dynamic service composition
process and deal with scalability are focused on their main activities: service
description, user request specification, service location, and request matching
and service (Rostami et al., 2013). These activities can be mainly grouped in
service discovery, service selection and composition plan generation.

Figure 4.1 – Service composition live cycle.

4.2 Service description

The description of a service consists in defining an interface exposing oper-
ations performed by the service and linking each operation to its realization.
There are models of syntaxic description and semantic approaches to enrich
with semantic annotations and ontologies the operational interfaces of a ser-
vice. There are also methods of behavioral description of a service.

4.2.1 Syntactic models

The Web Service Description Language (WSDL) (Christensen et al., 2001)
is the current standard for defining services. Through an XML document,
it describes a service through an interface presenting a set of operations and
their entries and exits parameters respectively. The WSDL interface exposes
the functionality accomplished by the service that is, what it does, without

Distributed Dynamic Service Composition (2DSC) 42

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

specifying the conditions of completion of this feature understood how the
service does it. A WSDL document is an XML file consisting of five main
elements: the types, the message, the portType, the binding, and the service.

— types is a container defining the data within messages exchanged by the
service. It defies through an XML schema the types of these data. These
data can be simple or complex.

— message defines the messages exchanged by the service. It is composed
of a set of part. A part is associated with a data described in types.

— portType defines a set of operations. An operation is an abstract de-
scription of an action performed by the service. It consists of an input
and an output describing respectively the input and output parameters
of the operation. Each of these elements has a message attribute desig-
nating a message element.

— binding resumes element operations portType and associates a protocol
of transfer of message to them that the binding describes how the mes-
sages will be exchanged. It specifies the exchange protocol but it does
not specify the addresses between which the messages will be exchanged.
The WSDL describes the binding with the GET and POST methods of
the HTTP protocol. The binding element has two attributes. The name
attribute defines the name of the binding and the type attribute indicates
the portType for which the binding takes place.

— service specifies the address or addresses where the service is located.
A service is a set of port. A port specifies an address for a given binding.

4.2.2 Semantic models

The WSDL standard is not precise in the description of a service. This is
due to the low level of expression of the syntactical description as it focuses on a
sort of operations enumeration and the description of their types of parameters.
It does not provide information on the meaning of the function performed by
the service (Berners-Lee et al., 2001) (D.Fensel, 2002). To overcome WSDL
lack of semantics, several approaches propose to add a semantic layer above
WSDL to complete its syntactic description.

— SAWSDL

The Semantic Annotations for Web Services Description Language (SAWSDL)
and XML Schema (Kopeckỳ et al., 2007), recommended by W3C in
April 2007, is an approach that presents a mechanism for semantically
enriching the services described with WSDL and their associated XML

Distributed Dynamic Service Composition (2DSC) 43

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

schemas. SAWSDL does not specify a language to represent semantic
models. It provides rather a mechanism through which concepts belong-
ing to existing semantic models can be referenced from a WSDL.2 doc-
ument. SAWSDL provides additional annotation extensions for XML
schemas. The main extensions for annotating a WSDL document are
the following attributes: modelReference, liftSchemaMapping, and low-
eringSchemaMapping.

— The modelReference attribute is used to annotate all WSDL ele-
ments. In particular, it is presented as an attribute of interface,
operation and fault. He points to the equivalent concept by adding
his address.

— The liftingSchemaMapping and loweringSchemaMapping attributes
are used to associate a concept diagram or an element with a con-
cept in an adopted reference ontology.

Many work environment prototypes implementing SAWSDL are emerg-
ing.

— Web Services Policy (WS-Policy) (Vedamuthu et al., 2007) , is a
W3C standard that is used to describe policies adopted by the provider of
a Web service as well as the expectations of a customer. Indeed, beyond
its functional capabilities, a Web service has non-functional capabilities
including its level of security and quality of service. A service provider
can provide the same functional web service according to different poli-
cies in terms of non-functional aspects. For example, a given web service
may be provided with different levels of security depending on the trans-
port protocols and encryption algorithms used. In this case, the choice
of these protocols and algorithms forms a policy of the Web service in
terms of security. It uses a simple and extensible syntax grammar to
describe and communicate the strategies of a Web service. WS-Policy
provides particular basic constructs that can be extended by other Web
services specifications. It is based on XML for the purpose of conveying
Web services policies in an interoperable mode.

According to WS-Policy, the policy of a Web service can be expressed
by several alternative policies. Each alternative policy consists of a set
of assertions. Each assertion expresses a characteristic (described by
the provider) or a requirement (required by the client) of a subject that
may be an Endpoint, a message, an operation, etc. For example, the
”Encrypted” assertion associated with an endpoint indicates that the

Distributed Dynamic Service Composition (2DSC) 44

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

messages exchanged must be encrypted. Operators are also used to ex-
press policies. We quote for example ExactlyOne or All.

The All operator specifies the fact that all assertions constituting an al-
ternative policy are or must be satisfied to accept the alternative policy
proposed. The ExactlyOne operator specifies that at least one of the
alternative policies is or must be satisfied to accept this policy. In addi-
tion, the use of the WS-PolicyAttachment element allows you to attach a
policy to a topic as an intrinsic part of its definition (in the WSDL file or
at the UDDI level for example) or as part of an independent document
(apart) used for this purpose (Vedamuthu et al., 2007). The Encrypted-
Parts and SignedParts assertions allow you to specify the parts of the
message (exchanged by the web service) which are respectively concerned
by a protection of confidentiality (encryption) and integrity (digital sig-
nature).

The assertions used to describe the policies of a Web service can relate to
different non-functional areas such as security or quality of service. Some
areas are currently covered by specifications defining all the assertions
relating to it. In particular, these specifications make it possible to
describe, in a standard manner, the properties of Web services relating
to a specific non-functional domain. As an example, we mention the
WSPolicySecurity specification covering the security domainBelouadha
et al. (2012). One can nevertheless point out the absence of a semantic
description of the assertions at WS-Politics. It is a limitation that does
not allow the correct interpretation of non-functional assertions relating
to domains that correspond to user contexts and not covered by standard
specifications such as WSPolicySecurity.

— WSDL-S

This is a common specification for IBM and the LSDIS lab (Akkiraju
et al., 2005) . It was submitted to W3C in 2005. Its main purpose
is to provide a semantic annotation process compatible with existing
technologies. For example WSDL-S Meta- model extends the WSDL by
adding three major elements: category, precondition, effect and two at-
tributes: modelReference and schemaMapping. The elements introduced
make it possible to add information that was not taken into account in
WSDL such as the preconditions and the effects of an operation while
the attributes make it possible to link concepts in reference ontology.

— The category element is a sub-element of portType. It specifies the

Distributed Dynamic Service Composition (2DSC) 45

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

category of a service when publishing in a directory or registry.

— The precondition element is a sub-element of operation that specifies
the preconditions to be checked for the operation to run as expected.

— The effect element is a sub-element of ¡operation¿, indicating the
effects of executing the operation.

— The modelReference attribute can be added to an xs: element in
an XML grammar and to the operation, precondition, and effect
elements to indicate their matches in an given ontology.

— The schemaMapping attribute can be added to an xs: element in
an XML grammar to describe the mappings between the annotated
grammar and the reference ontologies.

— METEOR-S project launched by the LSDIS laboratory (Patil et al.,
2004) aims at adapting service technologies to those of the semantic web.
It does not provide a new service representation model, but proposes
to generate semantic annotations for WSDL. METEOR-S is based on
the METEOR (Managing End To End OpeRations) project which deals
with the management of large-scale process workflows in heterogeneous
environments.

4.2.3 Ontologies

The Semantic Web (Berners-Lee et al., 2001) aims to provide, for each Web
resource, a semantic that can be interpreted by the machine. In this context,
ontologies present as the key element of the semantic Web. They aim to
describe concepts and their interrelationships, as well as the rules of deduction
that govern them. From this fact, they are seen as a way that allows the user
to perform more relevant searches on the Web, as he becomes able to access
not only those resources syntactically related to its requests, but also to those
which are semantically related to it and that can be deduced from domain
ontologies. Ontology of services represents the various aspects related to the
description of the services and their use through a set of concepts, properties
and relations between them. OWL-S and WSMO are the main models used
in SOA.

— OWL-S: Ontology Web Language for Services (DAMLS in earlier ver-
sions) (Martin et al., 2004), is an ontology for describing web services,
whose objectives are to resolve ambiguities and to make the description
of a service understandable by a machine to automate the discovery,

Distributed Dynamic Service Composition (2DSC) 46

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

invocation, composition and monitoring of service delivery. It was sub-
mitted to W3C in November 2004 as a proposal and is based on the
concept of OWL classes. Its tripartite structure represented by the fig-
ure is composed of a service profile, a service grounding and a process
model. These three concepts describe the functionality performed by
the service, link this description with the WSDL description of the ser-
vice, and describe the behavior of a service when interacting with other
services.

— The service profile mainly contains a description of the service and
its provider, the functional behavior of the service and a set of
attributes such as the category of the service. The service provides
a high-level description of a service and its provider.

— The process model defines several types of processes that describe
the scheduling of operations and the behavior of a service in an
interaction.

— The service grounding describes how to communicate with a service
by specifying the protocol, the format of the messages, the serial-
ization and the addressing. It is the result of a mapping between
the OWL-S process describing the service and the original WSDL
description.

— WSMO: Web Service Modeling Ontology - The WSMO ontology was
initiated by the ESSI WSMO workgroup (Domingue et al., 2005). She
is based Web Service Modeling Framework WSMF proposed by Fensel
and Bussler(working group et al., 2004).

Like the OWL-S, WSMO aims to automate service-related tasks with the
essential aspect of separating the description of semantic web services
from executable technologies. To do this, WSMO provides an ontology
description model that is independent of the language used to describe
them. The central concept is the WSMO element which specializes in
ontology or webService or a goal or a mediator. The elements ontology
and webService aim to describe the services. The goal and mediator
elements deal with their discovery.

— An ontology element denotes a reference ontology imported by an
element of the WSMO ontology in order to describe its properties.
The ontology provide a terminology of semantic description of el-
ements belonging to specific domains. They consist of concepts,
relationships, functions, instances and axioms, which allow him to
describe all the information used by the actors of a Web service in a

Distributed Dynamic Service Composition (2DSC) 47

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

comprehensible and interpretable way by a machine. WSMO allows
to import directly an ontology in another in the case of absence of
conflicts, or through a mediator when conflicts of incompatibility
are noted to facilitate the use of different ontology.

— A webService element is a computing unit capable of responding
to a user request. WSMO webServices are defined in a consistent
way with the following: service functionality, description interfaces,
non-functional properties, imported ontologies, and mediators used.
Service functionality, or capability, is described in terms of opera-
tions associated with preconditions, assumptions, post-conditions,
and effects. Pre-conditions and the post-conditions are the require-
ments on the data before the execution of the service and the
changes that they undergo after execution; the assumptions and
effects describe the requirements and changes to the services that
interact with the described service. The description interfaces de-
scribe the behavior of the service, in other words the scheduling
of the operations. The non-functional properties of a webService
describe the attributes that do not relate directly to the processed
data, such as the execution time of an operation. The imported
ontologies are used to referencing the elements of the service de-
scription. Mediators are used if two interacting webServices matter
two different ontologies.

— Mediators solve the structural, semantic, or conceptual incom-
patibilities that can be detected at the data or process level, in
order to connect WSMO heterogeneous resources. In the case of
incompatibility at the given level, mediation serves to establish the
correspondence between the different terminologies. In the second
case (incompatibility at the process level), the mediation analyzes
the execution of the two services and covers any disparities.

— Goals define exactly the objectives that a web service user is try-
ing to satisfy. Whether human or software, this user specifies his
search criteria by describing the interface and expected service fea-
tures through the description of the goal. Customer requests and
services are strongly decoupled in WSMO. Requests are based on
goal descriptions, and mediators must look for matches between
these goal-level requests and existing Web services.

Observations: the service description stage is important in the dynamic
service composition. It is the basis of any operation but, its optimization has
a direct impact only on the number of services.

Distributed Dynamic Service Composition (2DSC) 48

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

4.3 Service discovery

Service discovery consists in detecting services that meet the specifications
of a given request (Benatallah et al., 2005). It is an essential step in a pro-
cess of composition of services. It not only allows to find a service that can
respond to a solicitation, but in the process of composition, it also identifies
services capable of cooperating to form a composite service that responds to
a complex request. Service recovery is in general as the process that takes
a user request as input and returns a list of resources or services that may
eventually fill the described need (Toma et al., 2005a) (Toma et al., 2005b).
Another definition of this process has described it as the operation of locating a
machine-comprehensible description of a service possibly unknown beforehand
and corresponding to certain functional criteria (Hassina Nacer Talantikite,
2009) (Bucchiarone and Gnesi, 2006).

4.3.1 Main aspects

There is a search directory that supports the descriptions of available ser-
vices and facilitates their discovery. This directory called registry receives
the information relating to the technical specifications of the interfaces of the
available services. It is structured in white pages, yellow pages and green
pages (Hammami et al., 2018). The white pages contain the information on
the service providers. The yellow pages describe the services and the green
pages give their technical specifications.
In the literature, several architectures (Benatallah et al., 2003a) (Toma et al.,
2005b) (Keller et al., 2005) have been proposed for realizing Web services
discovery. Most of these works specified three major steps which constitute
service discovery: the specification of the user request, the location of service
description interfaces, and the matching of the search request and the services
found. In the definitions above, we can highlight three important aspects in
the discovery of services:

— The location of services which consists of finding the address to which
the description of a service is provided.

— The data processing that indicates the degree of automation of the dis-
covery.

— The matching that performs the comparison between the user query and
the listed services.

Distributed Dynamic Service Composition (2DSC) 49

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

4.3.2 Service publication and location

4.3.2.1 Centralized approaches

The Universal Description Discovery and Integration (UDDI) model has es-
tablished itself as the reference model for centralized service publishing and dis-
covery approaches before becoming an OASIS standard in July 2004Rompothong
and Senivongse (2003). A UDDI registry is a set of catalogs that provide
mechanisms for classifying and managing services to facilitate discovery and
invocation. A UDDI may belong to a public domain such as the internet or
any other network accessible to an unlimited number of users, as it may be-
long to a restricted domain such as the intranet of a company or a group of
companies. The data structures of a UDDI are as follows:

— businessEntity : contains information describing an organization pro-
viding services.

— businessService : Describes a collection of services provided by an or-
ganization. A businessService is contained in a businessEntity.

— bindingTemplate : Define the technical information needed to invoke
a service. A bindingTemplate is contained in a businessService.

— tModel : Define a concept representing a type of service, a protocol used
by the services or a category of services. A tModel element is reusable
because it can be referenced by more than one bindingTemplate.

— publisherAssertion : Define a link between the businessEntity that
contains it and another businessEntity. When two businessEntity ele-
ments are referencing the same publisherAssertion, we talk about rela-
tionship between these businessEntities

4.3.2.2 Distributed approaches

Distributed approaches consist of extracting service descriptions from de-
centralized repositories. These approaches assume that services are stored in
the provider sites of these services. Thus, the user request is executed directly
at the provider server or through agents or robots for collecting service de-
scriptions (Song et al., 2007) (Zhou and Huang, 2008) (Guan et al., 2008).
The first distributed approaches to service discovery were to set up a federa-
tion of UDDI registries (Rompothong and Senivongse, 2003). This federated
registry was to provide a service that acts as a layer of abstraction linking
several public access UDDI instances. Each instance of UDDI is responsible
for the data for the services to which it refers.

Distributed Dynamic Service Composition (2DSC) 50

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

There are several distributed registries models (Meshkova et al., 2008).
(Rompothong and Senivongse, 2003) present an expandable peer-to-peer in-
frastructure, directories for the publication of semantic services and their dis-
covery entitled METEOR-S Web Service Discovery Infrastructure (MWSDI)
(Verma et al., 2005). This infrastructure, which is not limited to the UDDI
model, makes possible to link several models of proprietary directories. It is a
four layer structure:

— The data layer containing a set of UDDI directories pointing to the
services.

— The communication layer is the underlying peer-to-peer network host-
ing directories, services and customers. The nodes are categorized into
four categories: Operator Peer, Peer Gateway, Auxiliary Peer and Peer
Client.

— The operator services layer contains all the services provided by the
Operator Peers. If they imply a different directory of UDDI, they must
provide the meta-data and APIs to query them.

— The semantic specifications layer contains a set of domain ontologies
and the relationships between them. The elements of the semantic layer
specifications annotate registries and services to automate interaction
and make discovery more accurate.

(Sivashanmugam et al., 2004) is based on the MWSDI model and proposed
the establishment of a federation of public and private registries at the same
time. They assume that an enterprise can be brought to share its directory
infrastructure with its partners to demonstrate and share its services. They
present the XTRO (Extended Registries Ontology) ontology, which brings to-
gether registry ontologies and federations of registries and domains, thus al-
lowing the relationships between these different elements to be described. The
particularity of this work resides in the fact that it takes into account both
the semantic aspect of the publication - discovery process and the possibility
of interaction between public and private registries.

The UDDI 3.0.2 (Clement et al., 2004) specification has incorporated this
principle into a UDDI directory federation. It presents an UDDI registry as a
set of UDDI nodes. Nodes in a registry collaborate to manage a set of UDDI
data structures. A node is part of a single registry. Each node has a replicated
copy of the overall schema of the registries data structure to allow better man-
agement of requests addressed to it.

Distributed Dynamic Service Composition (2DSC) 51

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

Another distributed approach for the services discovery is also described
in (Papaioannou et al., 2006). The services are supposed to be described by
OWL-S ontology services. The peer-to-peer protocol adopted for information
retrieval is Gnutella. By combining these two models, OWL-S and Gnutella,
the authors wanted to combine the precision of description of the OWL-S ap-
proach with the efficiency of the Gnutella search and localization technique.

(Schmidt and Parashar, 2004) proposes a peer-to-peer indexing and storage
system. The indexing approach is based on the Hilbert Space-Filling Curve
matching function. After partitioning the data space, they use the CHORD
(Stoica et al., 2001) protocol to distribute the data in a virtual network to
facilitate the search. Their model has search and localization capabilities in
real time and it allows finding all the elements corresponding to a need if they
are described on the network. This is done with a limited number of messages
and cost.

However, it can be noted that collecting and managing information in a
distributed environment is a difficult and complex task. Because it can face
the problem of heterogeneity of presentation and the description of services
that the target sites can present. That is why (Liao et al., 2019) propose
a flexible paradigm for intelligently discovering, aggregating and processing
big distributed data is a crucial requirement in large content-centric Internet.
They present a scalable Semantic Concast service on Named Data Network-
ing (NDN) being considered as a promising paradigm for the future Internet.
The service enables cooperation between data discovering, aggregating and
processing among intermediate nodes for a user’s Interest that contained a
hierarchical name and semantic constraints. Specifically, multiple types and
strategies of data aggregation and processing for combining and processing the
positive data and suppressing the negative, futile data, as well as a determi-
nation of response completeness are introduced for enhancing relevant results
recall and sharing.

With the growing number of services in the repositories and the challenges
of quickly finding the right ones, the need for clustering related services be-
comes obvious to enhance search engine results with a list of similar services
for each of it. That is why Platzer and al. (Platzer et al., 2009) proposed
a statistical clustering approach that enhances an existing distributed vector
space search engine for Web services with the possibility of dynamically cal-
culating clusters of similar services for each hit in the list found by the search
engine. Recently, Rostami and al. (Rostami et al., 2014) proposed a novel
architecture for semantic web service composition using clustering and Ant

Distributed Dynamic Service Composition (2DSC) 52

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

colony algorithm to perform the service discovery. They used clustering for
categorizing the web services to allow web service consumers to find relate
services easily and an ant colony algorithm used for finding the best set of web
services that have high combining ability. The proposed system can find the
optimal length of web service composition with the different challenge set for
different number of services.

4.3.3 User request specification

To enable users to express their needs and requirements easily even with-
out technical knowledge of service specifications, service dialing systems have
created the query languages. A user can usually describe his request by specify-
ing its functional aspects sought and the non-functional constraints required.
Thus, the discovery becomes a matching between the functional properties
of the published services and the functional description of the query. Non-
functional constraints are often used in the selection phase of discovered ser-
vices.

Request languages are distinctly different from service specification lan-
guages. There are several techniques for representing requests languages among
which we can cite textual approaches, logic-based approaches, graphical ap-
proaches or specific languages to semantic web service models.

— Textual approaches (Bosca et al., 2005) (Cremene et al., 2009) use nat-
ural language to express a request. But this requires a later processing
which consists of formalizing and rewriting the request before being able
to process it automatically. Neng and al. propose a method to obtain
relevant services accurately with a keyword query by exploiting domain
knowledge about service functionalities (i.e., service goals) mined from
textual descriptions of services(Zhang et al., 2018). This later firstly
extracts service goals from services’ textual descriptions using an NLP-
based method and clusters service goals by measuring their semantic
similarities.

— Logic-based approaches and graphs (Lazovik et al., 2005) (Karakoc and
Senkul, 2009) use formal models to describe the query. Logic-based ap-
proaches express queries as predicates. This method takes advantage
of the techniques of artificial intelligence in terms of intelligent man-
agement of knowledge. Above all, it gives the possibility of breaking
complex requests into simple and targeted sub-requests.

— Graph-based approaches (Ceri et al., 1999) express requests in the form
of start nodes representing the composite service inputs and arrival nodes

Distributed Dynamic Service Composition (2DSC) 53

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

representing the outputs of the service. The departure and arrival nodes
delimit any sub-graphs satisfying the request.

— Semantic approaches are extensions based on semantic description mod-
els. We can cite WSML (Web Service Modelling Language) (de Bruijn
et al., 2006) in the case of WSMO and OWL-QL(OWL Query Language)
(Fikes et al., 2004) can be cited in the case of OWL-S.

Observations : the service discovery is an important step in the dynamic
service composition. However, its optimization has a direct impact only on the
number of services and also on the specificities of the user’s request.

4.4 Service selection

To dynamically select a service, a matching is made between the user’s
request and the available service. Then, the best service capable of satisfying
the user needs is chosen. In the context of a composite service, a study of the
composability of the services to be involved in the composition process is still
needed.

4.4.1 Request matching and Service

To identify similarities and possible bridging between the properties ex-
pressed at the query level and those specified in the description of the service
identified, the matching is carried out. Its purpose is to evaluate the level of
correspondance between the user’s request and the description of the localized
service. The functional properties constitute the main elements of analysis
of this comparison. This property allows discovering the services that can
meet the functional needs of the user without taking into account the qual-
ity of this service, its preferences and some other user’s constraints. Matching
mechanisms are categorized into two major categories: syntactic matching and
semantic matching.

— Syntactic matching

The syntactic matching of services is the lexical analysis to evaluate the
level of correspondence between textual structures describing the prop-
erties of the service and those expressed at the level of the user request.
Syntax matching can be based on matching keywords (Kreger et al.,
2001) or based on WSDL matching (Wang and Stroulia, 2003). The first
is to compare the keywords in the query with those describing the Web
service at the service directory level. The second assumes that given

Distributed Dynamic Service Composition (2DSC) 54

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

a textual description of the desired service, a traditional information-
retrieval method is used to identify the most similar service description
files, and to order them according to their similarity. Next, given this
set of likely candidates and a (potentially partial) specification of the
desired service behavior, a structure-matching step further refines and
assesses the quality of the candidate service set.

— semantic matching

This requires the requester to specify several constraints including the de-
pendency of atomic, the user’s preference and so on (Toma et al., 2005b).
Some researchers affirmed that the first step toward this interoperation
is the location of other services that can help toward the solution of a
problem (Paolucci et al., 2002). In this direction, they claim that lo-
cation of web services should be based on the semantic match between
a declarative description of the service being sought, and a description
of the service being offered. Furthermore, they claim that this match
is outside the representation capabilities of registries such as UDDI and
languages such as WSDL and proposed a solution based on DAML-S, a
DAML-based language for service description. They show how service
capabilities are presented in the Profile section of a DAML-S descrip-
tion and how a semantic match between advertisements and requests is
performed.

After that, Michael and al proposed an algorithm, which ranks the
matching degree of service descriptions according to OWL-S(Jaeger et al.,
2005). Different matching degrees are achieved based on the contra vari-
ance of the input and output types for requested and advertised services.
Furthermore, additional elements of the service description, such as the
service category, are either covered by reasoning processes or, such as
quality of service constraints, by custom matching rules. Contrary to
mechanisms that return only success or fail, ranked results provide crite-
ria for the selection of a service among a large set of results. With such
a discovery mechanism additional Web services can be found that might
have normally been ignored. Klust and al. (Klusch et al., 2006) present
an approach to hybrid semantic Web service matching that complements
logic based reasoning with approximate matching based on syntactic IR
based similarity computations. The hybrid matchmaker, called OWLS-
MX, applies this approach to services and requests specified in OWL-S.

Also using ontologies, researchers proposed a novel matching framework
for Web service composition (Medjahed and Atif, 2007). This frame-
work combines the concepts of Web service, context, and ontology. They

Distributed Dynamic Service Composition (2DSC) 55

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

claim that the context-based matching for Web services requires dealing
with three major research thrusts: context categorization, modeling, and
matching. So they first propose an ontology-based categorization of con-
textual information in Web service environments. We then define a two-
level mechanism for modeling Web service contexts. In the first level, ser-
vice providers create context specifications using category-specific Web
service languages and standards. In the second level, context specifica-
tions are enveloped by policies (called context policies) using WS-Policy
standard. Finally, they present a peer-to-peer architecture for matching
context policies. The architecture relies on a context matching engine,
context policy assistants, and context community services. Community
services implement rule-based techniques for comparing context policies.
An another context-based semantic service matching approach named
‘Process-Based service MatchMaker’(PBMM) is proposed to select the
suitable services for the process from candidate services through taking
the dependencies of related services process into consideration (Huang
et al., 2019).

4.4.2 Service composability

The composability of Web services is a process which verifies that it is
possible to compose one or more services. This is a fundamental step in the
building phase of the service composition plans because it makes it possible to
ensure that one or more services, or even service operations, can be connected
to interact with each other and cooperate to meet the functional need of a
given request (Medjahed and Bouguettaya, 2005). It also makes it possible to
generate effective composition plans. Most of the studies on the composition
of services were based on the syntactic or semantic matching of the inputs
and outputs of service operations to evaluate their composability. Others have
proposed an extended analysis of all the functional, non-functional, contextual,
data-driven and technical properties of services to evaluate their composability
(Omrana et al., 2012) (Belouadha et al., 2012).To this end, they proposed more
detailed service description models to facilitate the study of their composability
(Omrana et al., 2010).It is therefore a fundamental element in the selection of
services in the composition process before generating the composition plans.
And these plans have to be reliable.

Distributed Dynamic Service Composition (2DSC) 56

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

4.4.3 Composite service reliability

In services composition, reliability is an important aspect. The reliability
of a service can be defined as the probability of a service that will perform a
required function without failure under stated condition for a stated period of
time. Reliability in service composition is important to improve performance
through fault tolerance of the system (Tiwari and Mishra, 2018).

Fan and al. (Fan et al., 2013) proposed an approach to constructing the
reliable service composition. The underlying formalism is Petri net, which
provides means to observe behaviors of basic component, and to describe their
interrelationship. The transaction attributes, reliability and failure process-
ing mechanisms are articulated. The composition mechanism systematically
integrates these schemas into a transaction mapping model. Based on this,
a reliable composition strategy and its enforcement algorithm are proposed,
which can verify the behaviors of service composition at design time or after
runtime to repair design errors. The operational semantics and related theories
of Petri nets help prove the effectiveness of the proposed method.

Recently, Tiwari and al. (Tiwari and Mishra, 2018) proposed a CPN based
Reliability in Composite Web Service (CPN-RCWS). They compared the reli-
ability of composite web services between local level recoveries and replicated
level recoveries. The Local Level Recovery is a sort of fault tolerance mecha-
nism where failed service is recovered on the concept that the failed subtask
of the service will be again rescheduled the same node for execution. But the
problem in this approach is that there is no possibility of successful execution
as the node is failure prone node. The benefit in this approach is that the
communication overhead is minimal. But oppositely, the Replicated Level Re-
covery is a type of fault tolerance approach where the failed task of service
is replicated to other nodes to resume the execution after failure occurs. The
benefit in this approach is that the probability of success of service execution
of web service is higher than in local level recovery.

Observations : the service selection stage is very important in the dy-
namic service composition. However, its optimization has a direct impact only
on the number of services and also on the specificities of the user’s request.

4.5 Composition plan generation approaches

During manual and static service composition, the services to be com-
bining are determined by the designer of the composite service. But during
the automatic and dynamic service composition it is necessary automatically,

Distributed Dynamic Service Composition (2DSC) 57

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

upon receipt of a complex request, to find possible solutions by composition
of services before discovering among the available services those which make
it possible to reach the objectives of the request. Each of the way to combine
a set of abstract services to respond to a given user’s request is a composition
plan or a composition path.

Constructing composition plans is a very complex task that is a problem
that has been extensively dealt with in several research projects (Rao and Su,
2005). The main approaches dealing with this issue are based on workflows,
artificial intelligence planning techniques and dependency graphs. Other works
also propose hybrid approaches.

4.5.1 Workflow approach

Workflows are activities that involve the coordinated execution of multi
tasks performed by different processing entities (Atsa Etoundi and Ndjodo,
2005). Workflows are business processes that are run in an IT environment
using a tool such as IBM MQSeries Workflow (Kreger et al., 2001). Workflow
tools allow businesses to define each of their business processes as a series of
activities carried out by individuals or applications, and vary the sequence
through the activity series depending on the output data from each individual
activity. They are a means of specifying and composing activities in order to
form a chain of processes performing any management process in application
engineering.

Workflow-based service composition techniques have benefited from the
work of the research community in the area of workflow management and the
maturity of their approaches. It should be noted that a workflow is composed
of activities that are then replaced by services. Researchers believe that a com-
posite service can be conceptually similar to a workflow (Casati et al., 2000a).
As a result, the execution of a composite service appears to be comparable
to the execution of a Worfklow whose mechanisms ensure the flexibility, the
adaptation and the integration of automatic processes. But the services are
different from the activities in the case of the composition by their distributed
aspect, their autonomy and their heterogeneity (Benatallah et al., 2003b) that
must be taken into account when managing or operating the elaborated Work-
flow.

Composition frameworks based on workflows were the first solutions pro-
posed for the composition of services especially in the context of a static com-
position. The construction of static type composition schema is usually based
on BPML(Business Process Modeling Language) and WS-BPEL(Web Service

Distributed Dynamic Service Composition (2DSC) 58

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

for Business Process Executive Language) behavioral description languages
that are used for the orchestration of web service as well as WS-CDL(Web
Service Choreography Description Language) (Kavantzas et al., 2005) and
WSCI(Web Service Choreography Interface) (Arkin et al., 2002) which are
used instead to specify their choreography. To create dynamic compositions,
there are other frameworks using workflows such as eFlow (Casati et al., 2000b)
(Casati et al., 2000a),PAWS (Process for Adaptative Web Service) (Ardagna
et al., 2007) and the framework proposed by Majithia and al. (Majithia et al.,
2004).

— eFlow (Casati et al., 2000b) (Casati et al., 2000a) is a system that
supports the specification, enactment, and management of composite
e-services, modeled as processes that are enacted by a service process
engine. Composite e-services have to cope with a highly dynamic busi-
ness environment in terms of services and of service providers. In addi-
tion, the increased competition forces companies to provide customized
services to better satisfy the needs of every individual customer. Ideally,
service process should be able to transparently adapt to changes in the
environment and to the need of different customers with minimal or no
user intervention. In addition, it should be possible to dynamically mod-
ify service process definitions in a simple and effective way to manage
cases where user intervention is indeed required.

— The PAWS (Processes with Adaptive Web Services) (Ardagna et al.,
2007) framework facilitates flexible and adaptive execution of managed
Web-service-based business processes. The framework coherently inte-
grates several service-adaptation modules and uniquely couples design-
time and runtime mechanisms for process specification and global frame-
work execution. During design, PAWS achieves flexibility through a
number of mechanisms: it identifies a set candidate services for each pro-
cess task, negotiates QoS, specifies quality constraints, and then iden-
tifies mapping rules for invoking services with different interfaces. At
runtime, PAWS exploits the design-time mechanisms to support adap-
tation during process execution: it selects the best set of services to
execute the process, reacts to service failures, and preserves execution
when a context change occurs. Results show that it can reduce design-
time efforts to create a flexible process, while ensuring a good trade-off
between user and provider requirements.

— (Majithia et al., 2004) present a framework to facilitate automated ser-
vice composition in Service-Oriented Architectures using Semantic Web
technologies. The main objective of the framework is to support the

Distributed Dynamic Service Composition (2DSC) 59

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

discovery, selection, and composition of semantically-described hetero-
geneous services. This framework has three main features which dis-
tinguish it from other work in this area. First, it proposed a dynamic,
adaptive, and highly fault-tolerant service discovery and composition al-
gorithm. Second, it distinguished between different levels of granularity
of loosely coupled workflows. Finally, the framework allows the user to
specify and refine a high-level objective.

4.5.2 Planification techniques

Planning is an Artificial Intelligence (AI) strategy that allows you to choose
and organize actions based on a specific goal. This strategy considers a solution
to a given problem as being a sequence of actions to be taken from an initial
state to a target state, having knowledge of the possible actions and states,
and the conditions of application of these actions. Then, each problem to be
solved is represented by a tuplet (S, S0, G,A,Γ) where:

— S is the set of possible states of the world;

— S0 is the set of initial states such that S0 ⊂ S;

— G is the set of target states such as G ⊂ S;

— A is the set of actions;

— Γ is the translation relation that specifies the change from state S1 to
state S2 after execution of action A(Γ ⊆ S × A× S).

In order to resolve dynamically constructing service composition plans us-
ing the planning techniques derived from the AI, most of the work assimilates
this problem to a tuple of which:

— actions represent services;

— the set Γ denotes all the preconditions and effects of the services;

— the set S0 indicates the initial conditions;

— the set G designates the objective or the customer request to be satisfied.

Thus, by representing the services by actions and by choosing a given goal
to be achieved through a predefined set of services, the planner is tasked with
generating an ordered collection of services that achieves the stated goal. Sev-
eral planning techniques have been applied to the dynamic service composition
domain: situation computation, hierarchical task network (HTN), theorem
proofs, and rule-based systems. The use of these techniques is often associ-
ated with the use of ontologies to make them more efficient through semantic
enrichment.

Distributed Dynamic Service Composition (2DSC) 60

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

4.5.2.1 Situation calculation

McIlraith and al. firstly proposed the markup of Web services in the DAML
family of Semantic Web markup languages. This markup enables a wide va-
riety of agent technologies for automated Web service discovery, execution,
composition and interoperation (McIlraith et al., 2001). And they present
one such technology for automated Web service composition by augmenting
version of the logic programming language, Golog provides a natural formal-
ism for automatically composing services on the Semantic Web (McIlraith and
Son, 2002). To this end, researches adapted and extended the Golog language
to enable programs that are generic, customizable and usable in the web con-
text. Further, they propose logical criteria for these generic procedures that
define when they are knowledge self-sufficient and physically self sufficient. To
support information gathering combined with search, they propose a middle-
ground Golog interpreter that operates under an assumption of reasonable
persistence of certain information. This approach combines online execution
of information-providing web services with offline simulation of world alter-
ing Web services, to determine a sequence of Web Services for subsequent
execution.

Lécué and al. introduced a framework for performing dynamic service
composition by exploiting the semantic matchmaking between service param-
eters (i.e., outputs and inputs) to enable their interconnection and interaction
(Lécué et al., 2008b). The basic assumption of the framework is that match-
making enables finding semantic compatibilities among independently defined
service descriptions. They also developed a composition algorithm that follows
a semantic graph-based approach, in which a graph represents service compo-
sitions and the nodes of this graph represent semantic connections between
services. Moreover, functional and non-functional properties of services are
considered, to enable the computation of relevant and most suitable service
compositions for some service request.

In the same trend Phan and al. (Phan and Hattori, 2006) proposed a
formal approach to translate OWL-S web service descriptions into primitive
and complex actions of ConGolog. In addition, in order to support information
gathering with search in an open world initial database, they proposed an
extended version of the middle-ground ConGolog interpreter which relies on a
theorem-prover with prime implicates.

Recently, researchers proposed a new architecture for atomic service dis-
covery, composition and automatic plan generation for the proper execution of
its candidate services. The proposed architecture takes the advantage of ad-
ductive event calculus that uses adductive theorem prover to generate a sound

Distributed Dynamic Service Composition (2DSC) 61

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

and complete plan for the proper order of execution of the atomic services.
(Paulraj et al., 2016)

4.5.2.2 Hierarchical tasks network

Using DAML-S and SHOP2 which is an Hierarchical Task Network (HTN)
planner well-suited for working with the Process Model, researchers have
proven the correspondence between the semantics of SHOP2 and the situa-
tion calculus semantics of the Process Model (Wu et al., 2003). Then, Wu and
al. have also implemented a system which soundly and completely plans over
sets of DAML-S descriptions using a SHOP2 planner, and then executes the
resulting plans over the Web.

After, Klusch and al proposed OWLS-Xplan converts OWL-S 1.1 services
to equivalent problem and domain descriptions that are specified in the plan-
ning domain description language PDDL 2.1, and invokes an efficient AI plan-
ner Xplan to generate a service composition plan sequence that satisfies a given
goal (Klusch et al., 2005). Xplan extends an action based Fast Forward-planner
with a HTN planning and re-planning component. Others researches proposed
a mapping a given set of process models and preferences into a planning lan-
guage for representing Hierarchical Task Networks (Lin et al., 2008). They
then present SCUP, the new web service composition planning algorithm that
performs a best-first search over the possible HTN-style task decompositions,
by heuristically scoring those decompositions based on ontological reasoning
over the input preferences.

4.5.2.3 Proofs by theorems

According to Manna and al. (Manna and Waldinger, 1983) (Abadi and
Manna, 1986)The deductive approach is a formal program-construction method
in which the derivation of a program from a given specification is regarded as a
theorem proving task. To construct a program whose output satisfies the con-
ditions of the specification, we prove a theorem stating the existence of such
an output. The proof is restricted to be sufficiently constructive so that a pro-
gram computing the desired output can be extracted directly from the proof.
The program we obtain is applicative and may consist of several mutually re-
cursive procedures. The proof constitutes a demonstration of the correctness
of this program.

In order to enable markup and automated reasoning technology to describe,
simulate, compose, test, and verify compositions of Web services, Narayanan
and al. (Narayanan and McIlraith, 2002) take as a starting point the DAML-S

Distributed Dynamic Service Composition (2DSC) 62

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

DAML+OIL ontology for describing the capabilities of Web services. After,
they define the semantics for a relevant subset of DAML-S in terms of a first-
order logical language. With the semantics in hand, they encode their service
descriptions in a Petri Net formalism and provide decision procedures for Web
service simulation, verification and composition. They also provide an analysis
of the complexity of these tasks under different restrictions to the DAML-S
composite services we can describe. The implementation of this approach takes
as input a DAML-S description of a Web service, automatically generates a
Petri Net and performs the desired analysis. Such a tool has broad applicability
both as a back end to existing manual Web service composition tools, and as
a stand-alone tool for Web service developers.

Raoa and al. (Rao et al., 2004) (Rao et al., 2006) introduced a method for
automatic composition of semantic Web services using Linear Logic (LL) theo-
rem proving. The method also uses semantic Web service language (DAML-S)
for external presentation of Web services, while, internally, the services are pre-
sented by extra logical axioms and proofs in LL. They use a process calculus
to present the composite service formally. The process calculus is attached
to the LL inference rules in the style of type theory. Thus the process model
for a composite service can be generated directly from the proof. The sub
typing rules that are used for semantic reasoning are presented with LL infer-
ence figures. The approach proposes a system architecture where the DAML-S
translator, the LL theorem prover and the semantic reasoner can operate to-
gether to fulfill the task.

4.5.2.4 Rule-based system

The rule-based systems model the aspects of web services with particular
reference to preconditions and effects when executing queries. Thus, each
service is linked to a rule created at the system level to specify that the effects
that are achieved when the pre-conditions are verified. A composite service is
further specified by an initial state and a final state (Rao and Su, 2005).

Rule-based systems are being applied to tasks of increasing responsibility.
Deductive methods are being applied to their validation, to detect flaws in
these systems and to enable us to use them with more confidence (Waldinger
and Stickel, 1992). Thus, each system of rules is encoded as a set of axioms
that define the system theory and the operation of the rule language and in-
formation about the subject domain are also described in the system theory.
Validation tasks, such as establishing termination, unreachability, or consis-
tency, or verifying properties of the system, are all phrased as conjectures.

Ponnekanti and al. (Ponnekanti and Fox, 2002) address a particular subset

Distributed Dynamic Service Composition (2DSC) 63

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

of this problem with SWORD, a set of tools for the composition of a class of
web services including information-providing services. In SWORD, a service
is represented by a rule that expresses that given certain inputs, the service is
capable of producing particular outputs. A rule-based expert system is then
used to automatically determine whether a desired composite service can be
realized using existing services. If so, this derivation is used to construct a
plan that when executed instantiates the composite service. As our working
prototype and examples demonstrate, SWORD does not require (but could
benefit from) wider deployment of emerging service-description standards such
as WSDL, SOAP, RDF and DAML. This SWORD’s method is different to
some other plausible existing approaches, especially information integration.
They show that although SWORD’s expressive capabilities are weaker, the
abstractions it exposes capture more appropriately the limited types of queries
supported by typical Web services and thus result in simplicity and efficiency.

4.5.3 Dependency Graph approach

Several works have designed the services composition by dependencies be-
tween services using different types of graphs. Sometimes one has used ori-
ented, undirected, weighted or acyclic graphs. Any service dependency graph
consists of a set of nodes and arcs that translate inter-node relationships de-
rived from the descriptions of these services. Nodes can represent different
elements such as services, operations, parameters, preconditions, effects, etc.
according to the description formalism chosen. Two nodes are connected by an
arc if there is a syntactic or semantic matching which reveals their dependence.
Thus, the response to a complex query during service composition consists of
searching the service graph for all possible paths that from the request entries
lead to the expected outputs. The path of these graphs can be done by search
algorithms such as Forward chaining, Backward chaining, A *, Floyd-Warshall.
They also allow you to select the best plan based on the defined preference
criteria. These criteria may include customer constraints and requirements,
often in terms of quality of service and context. Several dependency graph
approaches have been exploited in the dynamic composition of services.

Hashemian and al. proposed a technique takes advantage of graph struc-
tures and also a particular formalism called interface automata to construct
the graph when executing the client’s request (Hashemian and Mavaddat,
2005).The method aimed at searching among Web services in order to find
those whose composition provides a specific behavior. Those Web services
found after this search are incrementally composed together to build a new
service that realizes that behavior.

Distributed Dynamic Service Composition (2DSC) 64

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

To reach the true potential of such a distributed infrastructure, Gekas
and al. (Gekas and Fasli, 2005) proposed to combine such autonomic ser-
vices together as parts of a workflow, in order to collectively achieve combined
functionality. They proposed an automatic workflow composition among web
services with semantically described functionality capabilities. For that pur-
pose, they are using a set of heuristics derived from the connectivity structure
of the service repository in order to effectively guide the composition process.
The methodologies described have been inspired by research in areas such as
citation analysis and bibliometrics. Its execution prior to the execution of re-
quests to optimize the composition time is faced with the problem of updating
the graph at each change which is a complex and time-consuming operation.

To meet the user’s requirement to compose automatically services at run-
time, Li and al. (Li et al., 2011) proposed a new architecture of service compo-
sition based on cloud computing technology to achieve the mapping between
the cloud service and abstract service, and the service parameter relation-
ship graph based on semantic was put forward to achieve automatic real-time
service composition at runtime. They use an oriented graph structure rep-
resenting dependencies between services and their inputs and outputs. This
graph is built before the composition phase in order to optimise search times
when executing client requests. The nodes represent services or its input or
output parameters. Each node is weighted using an overall QoS weight pre-
viously calculated and associated with the service in question. Here, service
selection is performed using backward chaining backhaul techniques and the
first depth-of-search search based on QoS.

Ying and al. (Ying, 2010) propose a Gmax chaining technique preferably
forward chaining to build a maximal service composition graph which initial-
ized from the entries of the user request and with the starting node of the
Gmax, the node whose outputs are equivalent to the input parameters of the
query. The two stages of service discovery and matching of the inputs and
outputs of these services are subsequently altered until the output parameters
of the user request are obtained from those of the discovered services. All sub
graphs representing composition plans that respond to the client request are
included in the graph Gmax.Thus, based on the detection of shared nodes and
by eliminating redundant nodes, we can extract a Gmin from a Gmax and
propose as different composition plans satisfying the user request.

To provide a good automatic service composition algorithms that not only
synthesise the correct work plans from thousands of services but also satisfy
the quality requirements of the users some researches (Jiang et al., 2010) have
designed and implemented a tool QSynth to use QoS objectives of service
requests as the search directives. This approach effectively prunes the search

Distributed Dynamic Service Composition (2DSC) 65

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

space and significantly improves the accuracy of the search results. Evaluations
show that compared to the state of the art, QSynth achieves superior scalability
and accuracy with respect to a large variety of composition scenarios.

An another method of automatic composition plan creation that relies on
automatic extraction of dependencies among services is proposed by Omer
and al. (Omer and Schill, 2009). For automatic dependency extraction this
approach makes use of semantic similarities between Inputs and Outputs pa-
rameters of services. Extracted Inputs/Output dependencies are represented
using a directed graph. The approach recognizes when cyclic dependencies
exist and proposes a way of dealing with it. Modified topological sorting al-
gorithm is used for the execution plan generation showing execution order of
candidate services.

An A* algorithm which solves the problem of semantic input-output mes-
sage structure matching for web service composition and purpose to deal with
different issues like performance, semantics or user restrictions is presented by
Rodriguez-Mier and al. (Rodriguez-Mier et al., 2011). Given a request, a ser-
vice dependency graph with a subset of the original services from an external
repository is dynamically generated. Then, the A* search algorithm is used
to find a minimal composition that satisfies the user request. Moreover, in
order to improve the performance, a set of dynamic optimization techniques
has been implemented over the search process. The generation of composition
plans is an important step for the behavioral description of the new composite
service created.

Observations : the dynamic generation and selection of composition
plans is an important stage in service composition. However, its optimization
only has a direct impact on the number of services and the specificities of the
user’s request.

4.6 Composite service description

The composite service is described by the behavioral aspect. The behav-
ioral description consists in describing the order of invocation of the operations
of a service. A service can have several behavioral descriptions such that each
description is a view of the possible behavior of the service in a given interac-
tion. It is a set of information about the internal and external behavior of the
composite service that allows, on one hand, to execute its internal services in
the expected order when this Web service is invoked, and on the other hand,
to interact correctly with others external services. This type of property is
particularly critical in the web services composition. This description pro-

Distributed Dynamic Service Composition (2DSC) 66

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

vides details on an important aspect of this service and must necessarily be
mentioned in its description. There are two ways to describe the sequence of
activities that makes up a business process: service orchestration and service
choreography (Peltz, 2003).

4.6.1 Orchestration

Service orchestration represents a single executable business process that
coordinates the interaction among the different services, by describing a flow
from the perspective and under control of a single endpoint (Sheng et al.,
2014). Orchestration describes the sequence of services according to a prede-
fined framework and executes them as a set of actions to be performed through
web services (Sadiq and Racca, 2003). As described in 4.2, it is an external
behavior of a composite service which refers to how the services invoked at a
service level are aggregated to provide a more complex feature. Orchestration
can therefore be considered as a construct between an automated process and
the individual services that enact the steps in the process. This includes the
management of the transactions between the individual services and the error
handling, as well as describing the overall process. WS-BPEL is the standard
for Web services orchestration designed by OASIS (Organization for the Ad-
vancement of Structured Information Standards) which is largely supported
by the industry.

Figure 4.2 – Orchestration

In WS-BPEL, to describe the orchestration of web services, we distinguish
between primitive and structured activities. The primitive activities, namely,
Receive, Reply, or Assign, describe how the process performed by the compos-
ite web service should react to the messages being exchanged. Receive marks
the expectation of receiving a message by blocking this process. Reply re-
sponds to a received message and Assign updates the values of the process

Distributed Dynamic Service Composition (2DSC) 67

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

variables following the completion of the activities. Structured activities, such
as Sequence, Switch, or Split, combine several primitive activities to describe
different types of branching in a process.

4.6.2 Choreography

The description of the possible interactions between web services is named
choreography. Choreography represents a global description of the observable
behavior of each of the services participating in the interaction, which is defined
by public exchange of messages, rules of interaction and agreements between
two or more business process endpoints (Sheng et al., 2014). As described in
4.3 and according to WSMO, choreography represents the messages exchanged
between a service and its user to fulfill the functionality of the service. WSMO
differentiates between performance choreography and meta choreography: the
first challenge is an interaction protocol, while the second challenges a negotia-
tion and monitoring protocol execution. Choreography is typically associated
with the interactions that occur between multiple Web services rather than a
specific business process that a single party executes.

Figure 4.3 – Choreography

The choreography mechanism is supported by the standard WS-CDL (Web
Services Choreography Description Language) (Kavantzas et al., 2005). This
language is based on XML and has been recommended by the W3C consor-
tium. This is a specification that allows you to model the choreography by
describing the peer-to-peer collaboration between the participating web ser-
vices, but from a global point of view (Kavantzas et al., 2005). It seems like an
extension of WSDL web services because it gives the definition of the interac-
tions between participants involved by describing their observable behaviors.

Distributed Dynamic Service Composition (2DSC) 68

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

In this sense, WS-CDL provides a global model that ensures the coherence
of interactions between cooperating services. In particular, the choreography,
which he describes, guarantees a contractual behavior between multiple ser-
vices without resorting to a complex interconnection tool. The execution of
WS-CDL is independent of platforms and programming languages. Its main
features (Arkin et al., 2002) are:

— the specification of a multi-party common contract which gives a de-
scription of the services’ behavior and ensures their interoperability;

— the management of exceptions in the exchange of messages between web
services;

— and the security, which aims to describe the exchanges of messages be-
tween web services.

The behavioral description of a composite service is fundamental because
it makes it possible to describe the interactions between the atomic services
involved into the process of composition, and to provide sufficient information
on their cooperation contracts. Whether internal or external, it influences the
architectural organization of service composition processes.

With the advent of cloud computing, several research studies have identified
the composition as a new service.

Observations : the work carried out in the modeling of composite ser-
vices aims to optimize the generation and selection of service composition
plans. This work therefore relates to a single step of the process and only has
a direct impact on the number of services and the specificities of the user’s
request.

4.7 Cloud computing and microservices

Dynamic service composition with microservice is likely to gain more pop-
ularity in the future according to the rapid adoption of the new Function as
a Service (FaaS) cloud model (e.g., Amazon Lambda) and in case of Com-
position as a service (Caas). In fact, Cloud computing presents an efficient
managerial, on-demand, and scalable way to integrate computational resources
(hardware, platform, and software). According to Vaquero and al. (Vaquero
et al., 2008) clouds are large pools of easily usable and accessible virtualized
resources (hardware, development platforms, and services). These resources
can be dynamically reconfigured to adjust to a variable load (scalability), and
to allow optimal resource utilization. This pool of resources is typically ex-
ploited by a pay-per-use model. In recent years, there has been an increasing

Distributed Dynamic Service Composition (2DSC) 69

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

interest in web service composition when cloud computing is gradually evolv-
ing as a widely used computing platform where many different web services
are published and available in cloud data centers (Jula et al., 2014). Cloud
manufacturing has been thus recognized as a transformative manufacturing
paradigm to enable rapid production of highly customized products in a net-
worked environment, through on-demand consumption of cloud-based manu-
facturing services (Lu and Xu, 2017).

As cloud based services become increasingly popular, service composition
algorithms that are aware of the cloud selection have deep impacts to the
overall efficiency improvement and cost saving for enterprises (Zou et al., 2010).
In this base, Zou and al. proposed a framework of web service composition
in multi-cloud base environments (Zou et al., 2010). Then, they presented
three different cloud combination methods to help service requesters select
cloud combination. Their proposed method based on artificial intelligence (AI)
planning and combinatorial optimization can more efficiently and effectively
find high quality service composition plans with minimal cloud expense.

But, existing cloud architecture lacks the layer of middleware to enable
dynamic service composition. To enable and accelerate on-demand service
composition, researchers explore the paradigm of dynamic service composi-
tion in the Cloud for Pervasive Service Computing environments and propose
a Cloud-based Middleware for Dynamic Service Composition (CM4SC) (Zhou
et al., 2012). In this approach, the authors introduce the CM4SC ’Composition
as a Service’ middleware layer into conventional Cloud architecture to allow
automatic composition planning, service discovery and service composition.
This new paradigm of Composition as a service enhances the current central-
ization of the dynamic service composition process. Also, as the fundamental
issue of on-demand manufacturing service provision is service composition, re-
sources are mapped to personalized service requests and the research challenge
in this is to explore a feasible service composition method that facilitates easy
mapping between service requests and manufacturing resources based on re-
strictive rule sets in the cloud and availability information about a resource (Lu
and Xu, 2017). This approach proposed system utilizes distributed knowledge
for intelligent service composition and adaptive resource planning. However,
to address several challenges when developing and deploying such large-scale
systems such as reliability, reproducibility, handling failures on infrastructure,
scaling deployment time as composition size grows, coordinating deployment
among multiple organizations, dependency management, and supporting re-
quirements of adaptable systems, researchers propose a flexible and extensible
middleware solution named CHOReOS Enactment Engine, which is a robust
middleware infrastructure to automate the deployment of large-scale service

Distributed Dynamic Service Composition (2DSC) 70

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

compositions (Leite et al., 2014).
Observations : the advent of cloud computing to manage scalability in

the dynamic service composition has introduced a new paradigm: Composition
As a Service (CaaS).This practice is likely to gain more popularity in the
future according to the rapid adoption of the new Function as a Service (FaaS)
cloud model (e.g., Amazon Lambda) and in case of Composition as a service
(Caas) with microservices. The latter entrusts the composition operations to a
particular middleware from which each user would request composition plans
in relation to his requests. It is a centralized approach which has the merit
of offering a dedicated infrastructure but which cannot considerably solve the
problem of scalability.

4.8 Decentralization in service composition

Although service composition invokes services distributed over several servers,
the dynamic service composition is typically under centralized control. Be-
cause performance and throughput are major concerns in enterprise applica-
tions, it is important to remove the inefficiencies introduced by the centralized
control. In this trend, many researchers have proposed decentralization of ser-
vice composition as the main mean of eliminating the problems caused during
scaling-up.

Nanda and al. (Nanda et al., 2004) proposed a distributed, or decentralized
orchestration. In this approach, the BPEL program is partitioned into inde-
pendent sub-programs that interact with each other without any centralized
control. This decentralization increases parallelism and reduces the amount of
network traffic required for an application. The method presents a technique
to partition a composite web service written as a single BPEL program into
an equivalent set of decentralized processes. It gives a new code partitioning
algorithm to partition a BPEL program represented as a program dependence
graph, with the goal of minimizing communication costs and maximizing the
throughput of multiple concurrent instances of the input program. In contrast,
much of the past work on dependence-based partitioning and scheduling seeks
to minimize the completion time of a single instance of a program running in
isolation.

Taking into account a number of factors which affect the QoS of an en-
terprise system, including availability, scalability and performance, and after
evaluation of others distribution patterns, Barrett and al. (Barrett et al.,
2006) propose a brand new approach which combines a Model Driven Archi-
tecture using UML 2.0 for modeling and subsequently generating Web service

Distributed Dynamic Service Composition (2DSC) 71

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

compositions, with a method for achieving dynamic decentralized interaction
amongst services with reduced deployment overheads. These approaches com-
bined provide for the generation of dynamic Web service compositions driven
by a distribution pattern model.

Falou and al.proposed a decentralized multi-agent approach (Falou et al.,
2009). In fact, taking into account the weakness of classical planners based on
Planning techniques which are no longer well suited to compose Web services
in a reasonable time, they proposed a decentralized multi-agent approach to
solve the Web services composition problem at runtime. This model consists of
a set of Web service agents where each agent has a set of services organized in a
graph. Responding to a request, agents propose partial plans which are partial
paths in the graph, and then they coordinate their partial plans to provide the
best global plan for the submitted request. The approach is capable of scaling
up when compared to the of state-of-the-art techniques for automated web
service composition.

Rapti and al. (Rapti et al., 2015) confirmed that traditional service com-
position approaches rely mostly on centralized architectures, which have been
proven inadequate in pervasive Internet of Things (IoT)environments. In
such settings, where decentralization of decision-making is mandatory, nature-
inspired computing paradigms have emerged due to their inherent capability
to accommodate spatiality, self-adaptability and resolvability. So that tak-
ing inspiration from natural metaphors they propose a decentralized service
composition model which is based on artificial potential fields. In the pro-
posed approach, artificial potential fields (APFs) lead the service composition
process through the balance of forces applied between service requests and
service nodes. APFs are formed considering the percentage of user requested
services that can be offered by service provision nodes, as well as service node
availability.

Observations : the decentralization approaches here are applied to cer-
tain stages of the dynamic service composition cycle. It can be a distributed or
decentralized orchestration and choreography; it can be a decentralized multi-
agent approach where each agent has a set of services organized in a graph; it
also can be the use of the parallelism in composition plan generation.

4.9 Synthesis on scalability issue on dynamic

service composition

The number of services, the complexity of the requests and the number of
requests are the 3 main causes of scalability in the dynamic service composition

Distributed Dynamic Service Composition (2DSC) 72

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

(Tanenbaum and Van Steen, 2007) (Yu et al., 2008). Being conceived as a
series of linked steps, the researchers to deal with scalability problems in the
dynamic service composition have provided solutions aiming to optimize each
of its steps as we have presented above and summarized by the figure4.4.

Figure 4.4 – Current approaches on dynamic service composition live cycle

However, despite the satisfaction of these results in isolation, when put
together, the process does not return better results in a real work environment.
To understand why, we will study the impact of the optimization of each of
the process steps on the three referenced causes of scalability.

We present it in the following table

Table 4.1 – Solutions impact on the 3 causes

DSC stages Number of
services

Request
complexity

Number of
request

Service description yes no no
Service discovery yes yes no
Service selection yes yes no
Composition plan generation yes yes no

Distributed Dynamic Service Composition (2DSC) 73

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

Table 4.1 – Solutions impact on the 3 causes

DSC stages Number of
services

Request
complexity

Number of
request

Composite service description yes yes no
DSC and cloud cumputing yes yes no
Decentralisation in DSC yes yes no

This table shows the different stages in which research has focused to im-
prove the process of dynamic service composition in order to optimize it and
reduce the problems linked to scaling up. The table also shows the three known
causes of scalability and the link between these solutions and their impacts on
these enumerated causes. We can see that concurrent access to requests is the
main cause which is not taken into account by the different solutions. This
leads us to formulate our research question.

4.10 Research question

A major drawback in most if not all technical composition is the lack of
scalability (Baryannis and Plexousakis, 2010) (Lecue and Mehandjiev, 2009).
Despite the work done by the research community on the automatic and dy-
namic service composition, it remains a process that generates a scalability
problem in case of large data (Rostami et al., 2014). This is the main obstacle
to its adoption as an effective means of development instead of manual and
static composition (Baryannis and Plexousakis, 2010). Even in e-government
implementation based on SOA, scalability is the main issue in case of larger
number of citizens and businesses served (Lofstedt, 2012a).

In fact, as presented by the figure4.5 among the 3 causes of scalability
enumerated by to YU and al. (Yu et al., 2008) and Tanembaum and al.
(Tanenbaum and Van Steen, 2007) (the number of services, the number of
user’s requests and the complexity of the requests), the literature review above
shows that the proposed solutions deal only with 2 of them: the number of
services and the complexity of the requests. Thus, concurrent access of user’s
request is not taken into account by these proposed approaches.

That is why to deal with this aspect, the question is: how to take into
account the concurrent access of customers to deal with scalability
problems in the automatic and dynamic composition of services?

Distributed Dynamic Service Composition (2DSC) 74

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

Figure 4.5 – Links and impact of the stages on the sources of scalability

4.11 Synthesis

This chapter presented the steps that constitute a dynamic service composi-
tion process. Its also presents the different approaches to solving the problems
related to this trend. We note that to optimize this process, the activities of
each of its stages must undergo improvements that the various works of the
researchers have proposed. Some works even propose to begin by better de-
scribing and better locating the services to allow to refine and to optimize the
process of their dynamic composition. Most of the approaches described to
optimize the dynamic composition process have advantages that enhance this
activity in each step of the life cycle of a composite service. But, the recurrent
problem of scaling up always persists.

So, to deal with the recurring problem of scaling up, the distributed ap-
proach of the service composition process seems to be the best mean. Most of
the researches proposing suggest parallelism in the processes of discovery, of se-
lection, or of orchestration. But these approaches always organize the process
of dynamic service composition around a central infrastructure. They describe
the composition from the point of view of a centralized composition service or
engine. They all implement a centralized model of composition which is the

Distributed Dynamic Service Composition (2DSC) 75

CHAPTER 4. DYNAMIC SERVICE COMPOSITION

main cause of this scalability when data becomes very large.
Also, among the 3 mentioned causes of scalability (Yu et al., 2008), only 2

are taken into account by the proposed solutions. Thus, the researches don’t
involve the clients of the composition to participate in the service composition
process. All researches are done in the total forgetfulness of the possibility
of bringing certain composition operations back to the level of the client’s in-
frastructure. It is in this logic of participative collaboration that a distributed
approach of dynamic service composition is proposed. This proposes to in-
volve customer infrastructures in the dynamic service composition process to
decongest the central server composition infrastructure by decentralizing the
publication of composite service. The next chapter is devoted to present this
new approach.

The next part will present the distributed approach on which this research
is based, the implementation of our proposed framework and it validation.

Distributed Dynamic Service Composition (2DSC) 76

Part III

RESEARCH
IMPLEMENTATION

77

When the intelligence is uncomfortable, the whole
soul is sick

S. WEIL

5
The principles and paradigms of

Distributed Systems

Contents
5.1 Introduction . 80

5.2 Distributed systems goals 80

5.2.1 Making Resources Accessible 80

5.2.2 Distribution Transparency 80

5.2.3 Openness . 81

5.2.4 Scalability . 81

5.3 Distributed systems types 81

5.3.1 Distributed Computing Systems 82

5.3.2 Distributed Information Systems 82

5.3.3 Distributed Pervasive Systems 82

5.4 Distributed systems characteristics 83

5.4.1 Architectures . 83

5.4.2 Processes . 84

5.4.3 Communication . 85

5.4.4 Naming . 86

5.4.5 Synchronization . 87

5.4.6 Consistence and replication 88

78

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

5.4.7 Fault tolerance . 88

5.4.8 Security . 89

5.5 Relevance of distributed approach in information
system . 89

5.5.1 Distributed object based systems 89

5.5.2 Distributed file systems 90

5.5.3 Distributed web-based systems 90

5.5.4 Distributed coordination based system 91

5.6 Relevance of distributed approach in the present
study . 91

5.7 Synthesis . 91

Distributed Dynamic Service Composition (2DSC) 79

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

5.1 Introduction

According to Tanenbaum and al.(Tanenbaum and Van Steen, 2007) vari-
ous definitions of distributed systems have been given in the literature, none
of them satisfactory, and none of them in agreement with any of the others.
Thus, they propose to give a loose characterization: a distributed system is
a collection of independent computers that appears to its users as a single
coherent system. It is a system which is in contrast to the previous central-
ized systems (or single processor systems) consisting of a single computer, its
peripherals, and perhaps some remote terminals.

The definition of distributed systems has several important aspects (Tanen-
baum and Van Steen, 2007). The first one is that a distributed system consists
of components that are autonomous. A second aspect is that users (be they
people or programs) think they are dealing with a single system. This means
that one way or the other the autonomous components need to collaborate.
Therefore, the main question is how to establish this collaboration lies at the
heart of developing distributed systems (Tanenbaum and Van Steen, 2007).

5.2 Distributed systems goals

Distributed systems consist of autonomous computers that work together
to give the appearance of a single coherent system with many goals (Tanen-
baum and Van Steen, 2007).

5.2.1 Making Resources Accessible

The main goal of a distributed system is to make it easy for the users (and
applications) to access remote resources, and to share them in a controlled and
efficient way. Resources can be printers, computers, storage facilities, data,
files, Web pages, networks, costly resources such as supercomputers, high-
performance storage systems, image setters, and other expensive peripherals
to name just a few. Therefore, there are economics reasons for wanting to
share resources (Raymond, 1995).

5.2.2 Distribution Transparency

Another important goal of a distributed system is to hide the fact that its
processes and resources are physically distributed across multiple computers.
A distributed system can be able to present itself to users and applications as a

Distributed Dynamic Service Composition (2DSC) 80

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

single computer system is said to be transparent. The concept of transparency
can be applied to several aspects: access, location, migration, relocation, repli-
cation, concurrence and failure (Raymond, 1995).

5.2.3 Openness

An open distributed system is a system that offers services according to
standard rules that describe the syntax and semantics of those services (Tanen-
baum and Van Steen, 2007). In distributed systems, services are generally
specified through interfaces, which are often described in an Interface Def-
inition Language (IDL). Interface definitions specify precisely the names of
the functions that are available together with types of the parameters, return
values, possible exceptions that can be raised, and so on (Raymond, 1995).

5.2.4 Scalability

Scalability is one of the most important design goals for developers of
distributed systems because of Worldwide connectivity through the Internet
is rapidly becoming as common as being able to send a postcard to anyone
anywhere around the world (Raymond, 1995). A system is said to be scalable if
it can handle the addition of users and resources without suffering a noticeable
loss of performance or increase in administrative complexity (ord Neuman,
1994). Scalability of a system can be measured along at least three different
dimensions (ord Neuman, 1994). First a system can be scalable with respect
to its size, meaning that we can easily add more users and resources to the
system. Second, a geographically scalable system is one in which the users and
resources may lie far apart. Third, a system can be administratively scalable
meaning that it can still be easy to manage even if it spans many independent
administrative organizations.

5.3 Distributed systems types

According to Tanenbaum and al. (Tanenbaum and Van Steen, 2007), dis-
tributed systems are composed by distributed computing systems, distributed
information systems, and distributed embedded systems.

Distributed Dynamic Service Composition (2DSC) 81

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

5.3.1 Distributed Computing Systems

An important class of distributed systems is the one used for high-performance
computing tasks. They are two subgroups: cluster computing and grid com-
puting (Tanenbaum and Van Steen, 2007).

— In cluster computing, the underlying hardware consists of a collection
of similar workstations or PCs, closely connected by means of a high-
speed local-area network. In addition, each node runs the same operating
system (Tanenbaum and Van Steen, 2007).

— The grid computing consists of distributed systems that are often con-
structed as a federation of computer systems, where each system may
fall under a different administrative domain, and may be very different
when it comes to hardware, software, and deployed network technology
(Tanenbaum and Van Steen, 2007).

5.3.2 Distributed Information Systems

Another important class of distributed systems is found in organizations
that were confronted with a wealth of networked applications, but for which in-
teroperability turned out to be a painful experience (Tanenbaum and Van Steen,
2007). Therefore, Bernstein and al. (Bernstein, 1996) argued that many of
the existing middleware solutions are the result of working with an infrastruc-
ture in which it was easier to integrate applications into an enterprise-wide
information system. in fact, as applications became more sophisticated and
were gradually separated into independent components (notably distinguish-
ing database components from processing components), it became clear that
integration should also take place by letting applications communicate directly
with each other (Tanenbaum and Van Steen, 2007).

5.3.3 Distributed Pervasive Systems

As its name suggests, a distributed pervasive system is part of our sur-
roundings (and as such, is generally inherently distributed) (Tanenbaum and
Van Steen, 2007). An important feature is the general lack of human ad-
ministrative control. At best, devices can be configured by their owners, but
otherwise they need to automatically discover their environment and ’nestle in’
as best as possible (Tanenbaum and Van Steen, 2007). Computational power
will be then available everywhere so mobile and stationary devices will dynam-
ically connect and coordinate to seamlessly help people in accomplishing their
tasks (Grimm et al., 2004). For this vision to become a reality, developers

Distributed Dynamic Service Composition (2DSC) 82

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

must build applications that constantly adapt to a highly dynamic comput-
ing environment by following the following three requirements for pervasive
applications: embrace contextual changes, encourage ad hoc composition and
recognize sharing as the default (Grimm et al., 2004).

5.4 Distributed systems characteristics

Distributed systems are characterized by their architectures, processes,
communication, naming, synchronization, consistency and replication, fault
tolerance and security.

5.4.1 Architectures

Distributed systems can be seen as a set of complex pieces of software
dispersed across multiple machines. To manage them, it is crucial that these
systems are properly structured. There are different ways on how to view
the organization of a distributed system, but an obvious one is to make a
distinction between the logical organization of the collection of software com-
ponents and on the other hand the actual physical realization (Tanenbaum
and Van Steen, 2007).

5.4.1.1 Architectural styles

Architectural styles tell us how the various software components are to be
organized and how they should interact.

— Layered architectures: components are organized in a layered fashion
where a component at layer L is allowed to call only components which
are their direct neighbors.

— Object-based architectures: each object corresponds to what we have
defined as a component, and these components are connected through a
(remote) procedure call mechanism (Tanenbaum and Van Steen, 2007).

— Data-centered architectures evolve around the idea that processes com-
municate through a common (passive or active) repository. For example
Web-based distributed systems are largely data-centric because processes
communicate through the use of shared Web-based data services.

— Event-based architecture processes essentially communicate through the
propagation of events, which optionally also carry data. For distributed
systems, event propagation has generally been associated with what are

Distributed Dynamic Service Composition (2DSC) 83

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

known as publish/subscribe systems in which subscribers register their
interest in an event, or a pattern of events, and are subsequently syn-
chronously notified of events generated by publishers (Eugster et al.,
2003).

5.4.1.2 System architectures

The system architectures instantiate and place software components on
real machines. There are many different choices that can be made in doing
it and the final instantiation of a software architecture is also referred to as a
system architecture (Tanenbaum and Van Steen, 2007).

— Centralized architectures are the basic client-server model where pro-
cesses in a distributed system are divided into two groups: a server and
a client. A server is a process implementing a specific service and a client
is a process that requests a service from a server by sending it a request
and subsequently waiting for the server’s reply. This client-server inter-
action, also known as request-reply behavior (Tanenbaum and Van Steen,
2007).

— Decentralised architectures are Multitiered client-server architectures which
are a direct consequence of dividing applications into a user-interface,
processing components, and a data level. The different tiers correspond
directly with the logical organization of applications (Tanenbaum and
Van Steen, 2007).

— Hybrid architectures are specific classes of distributed systems in which
client-server solutions are combined with decentralized architectures.

5.4.2 Processes

The concept of a process originates from the field of operating systems
where it is generally defined as a program in execution. From an operating-
system perspective, the management and scheduling of processes are perhaps
the most important issues to deal with (Tanenbaum and Van Steen, 2007).In
distributed system, processes are modelized by threads and virtualization.

— Threads: Tanenbaum and Van Steen(Tanenbaum and Van Steen, 2007)
note that to efficiently organize client-server systems, it is often conve-
nient to make use of multithreading techniques. So a main contribution
of threads in distributed systems is that they allow clients and servers
to be constructed such that communication and local processing can
overlap, resulting in a high level of performance.

Distributed Dynamic Service Composition (2DSC) 84

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

— Virtualization: in recent years, the concept of virtualization has gained
popularity (Tanenbaum and Van Steen, 2007). This allows an applica-
tion, and possibly also its complete environment including the operating
system, to run concurrently with other applications, but highly indepen-
dent of the underlying hardware and platforms, leading to a high degree
of portability. Moreover, virtualization helps in isolating failures caused
by errors or security problems (Tanenbaum and Van Steen, 2007).

5.4.3 Communication

The communication between processes is at the heart of all distributed
systems. It the ways that processes on different machines can exchange infor-
mation. Communication in distributed systems is always based on low-level
message passing as offered by the underlying network. There are three widely-
used models for communication: Remote Procedure Call (RPC), Message-
Oriented Middleware (MOM), and data streaming.

— Remote Procedure Call (RPC): When a process on machine A calls’ a
procedure on machine B, the calling process on A is suspended, and
execution of the called procedure takes place on B. Information can be
transported from the caller to the called in the parameters and can come
back in the procedure result. No message passing at all is visible to the
programmer and data streaming.

— Message-Oriented Middleware (MOM): Likewise, the inherent synchronous
nature of RPCs, by which a client is blocked until its request has been
processed, sometimes needs to be replaced by something else which is
messaging.

— Data streaming: There are forms of communication in which timing
plays a crucial role. Let us consider the next example (Tanenbaum and
Van Steen, 2007). An audio stream built up as a sequence of 16-bit
samples, each representing the amplitude of the sound wave as is done
through Pulse Code Modulation (PCM). Also assume that the audio
stream represents CD quality, meaning that the original sound wave has
been sampled at a frequency of 44, 100 Hz. To reproduce the original
sound, it is essential that the samples in the audio stream are played out
in the order they appear in the stream, but also at intervals of exactly
1/44, 100 sec. playing out at a different rate will produce an incorrect
version of the original sound.

Distributed Dynamic Service Composition (2DSC) 85

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

5.4.4 Naming

According to Tanenbaum and Van Steen, a name in a distributed system
is a string of bits or characters that is used to refer to an entity (Tanenbaum
and Van Steen, 2007). Names have an important role in all computer systems
because they are used to uniquely identify entities, share resources or to refer
to locations. To allow a process to access the named entity, it is necessary to
implement a naming system. The difference between naming in distributed
systems and nondistributed systems lies in the way naming systems are im-
plemented (Tanenbaum and Van Steen, 2007).

Anything can be an entity is a distributed system. A name of entity can
then be an address or an access point to operate on it. An entity may change its
access points in the course of time when moves to another location as a person
moves to another city or country, it is often necessary to change telephone
numbers as well. An address is therefore a special kind of name which refers
to an access point of an entity.

Wieringa and de Jonge have determined some properties which identifier
a name (Wieringa and Jonge, 1995):

— An identifier refers to at most one entity;

— Each entity is referred to by at most one identifier;

— An identifier always refers to the same entity (it is never reused).

There are structured, attributed-based and unstructured or flat names.

— Flat names are good for machines, but are generally not very convenient
for humans to use. In case of flat names, identifiers are simply random
bit strings which are conveniently refer to as unstructured names;

— As an alternative, naming systems generally support structured names
that are composed from simple, human-readable names. Not only file
naming, but also host naming on the Internet follow this approach.

— There are many ways in which descriptions can be provided, but a pop-
ular one in distributed systems is to describe an entity in terms of (at-
tribute, value) pairs, generally referred to as attribute-based naming. In
this approach, an entity is assumed to have an associated collection of
attributes. Each attribute says something about that entity therefore,
by specifying which values a specific attribute should have, a user essen-
tially constrains the set of entities that he is interested in (Tanenbaum
and Van Steen, 2007).

Distributed Dynamic Service Composition (2DSC) 86

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

5.4.5 Synchronization

A problem in distributed systems is that there is no notion of a globally
shared clock so that processes on different machines have their own idea of
what time it is. It is important that multiple processes do not simultaneously
access a shared resource, such as printer, but instead cooperate in granting
each other temporary exclusive access (Tanenbaum and Van Steen, 2007).
The synchronization can be implemented through various methods.

— Clock synchronization: It is a method where an accurate account of time
is needed because time is unambiguous in a centralized system. So if a
process wants to know the time, it makes a system call and the kernel
tells it. If process A asks for the time and then a little later process B
asks for the time, the value that B gets will be higher than (or possibly
equal to) the value A got. It will certainly not be lower. In a distributed
system, achieving agreement on time is not trivial.

— Logical clocks: According to Tanenbaum, clock synchronization is nat-
urally related to real time so that it may be sufficient that every node
agrees on a current time, without that time necessarily being the same
as the real time.

— Mutual exclusion: In many cases in distributed systems, processes will
need to simultaneously access the same resources. Mutual exclusive ac-
cess by processes is a means through which the corruption of the resource
can be prevent.

— Global positioning of nodes: When the number of nodes in a distributed
system grows, it becomes increasingly difficult for any node to keep track
of the others. Then global positioning of nodes may be important for ex-
ecuting distributed algorithms such as routing, multicasting, data place-
ment, searching, and so on. In geometric overlay networks each node is
given a position in an 111 dimensional geometric space, such that the dis-
tance between two nodes in that space reflects a real-world performance
metric (Tanenbaum and Van Steen, 2007).

— Election algorithms: Many distributed algorithms require one process to
act as coordinator, initiator, or otherwise perform some special role. In
general, it does not matter which process takes on this special respon-
sibility, but one of them has to do it. In general, election algorithms
attempt to locate the process with the highest process number and des-
ignate it as coordinator. The algorithms differ in the way they do the
location (Tanenbaum and Van Steen, 2007).

Distributed Dynamic Service Composition (2DSC) 87

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

5.4.6 Consistence and replication

Data are generally replicated to enhance reliability and performance. One
of the major problems is that when one copy is updated we need to ensure
that the other copies are updated as well; otherwise the replicas will no longer
be the same.

— Data are replicated to increase the reliability of a system: If a file system
has been replicated it may be possible to continue working after one
replica crashes by simply switching to one of the other replicas. Also,
by maintaining multiple copies, it becomes possible to provide better
protection against corrupted data.

— Data are replicated to increase the performance: Replication for per-
formance is important when the distributed system needs to scale in
numbers and geographical area. Scaling in numbers occurs, for example,
when an increasing number of processes needs to access data that are
managed by a single server. Scaling with respect to the size of a geo-
graphical area may also require replication. The basic idea is that by
placing a copy of data in the proximity of the process using them, the
time to access the data decreases (Tanenbaum and Van Steen, 2007).

Any distributed system that supports replication is to decide where, when,
and by whom replicas should be placed, and subsequently which mechanisms
to use for keeping the replicas consistent.

5.4.7 Fault tolerance

The fault tolerance in distributed systems is strongly related to availability,
reliability, safety and maintainability.

— A system is available means that a system is ready to be used immedi-
ately. This property refers to the probability that the system is operating
correctly at any given moment and is available to perform its functions
on behalf of its users.

— A system is reliable means that a system can run continuously without
failure. This property is defined in terms of a time interval instead of
an instant in time. A highly-reliable system is one that will most likely
continue to work without interruption during a relatively long period of
time.

— Safety refers to the situation that when a system temporarily fails to
operate correctly for only a very brief moment, the effects couldn’t be
disastrous and nothing catastrophic happens.

Distributed Dynamic Service Composition (2DSC) 88

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

— A system is maintainable when it is easy to repair it when he is failed. A
highly maintainable system may also show a high degree of availability,
especially if failures can be detected and repaired automatically.

When a system has these characteristics above, then it can be considered
as demonstrates fault tolerant. And that is a good attribute for a system in
general, and distributed system in particular.

5.4.8 Security

Security in a computer system is strongly related to the notion of depend-
ability and dependability includes availability, reliability, safety, and maintain-
ability (Tanenbaum and Van Steen, 2007). But it is important to put our trust
in a computer system, then confidentiality and integrity should also be taken
into account (Tanenbaum and Van Steen, 2007).

— Confidentiality refers to the property of a computer system whereby its
information is disclosed only to authorized parties.

— Integrity is the characteristic that alterations to a system’s assets can be
made only in an authorized way. In other words, improper alterations
in a secure computer system should be detectable and recoverable. Ma-
jor assets of any computer system are its hardware, software, and data.
Another way of looking at security in computer systems is that we at-
tempt to protect the services and data it offers against security threats
(Tanenbaum and Van Steen, 2007).

5.5 Relevance of distributed approach in in-

formation system

Many platforms have adopted the distributed approach to improve the
performance of their systems. This has led to the emergence of new architec-
tures in several IT development contexts like distributed object based systems,
distributed file systems, distributed web based systems and distributed coor-
dination based system.

5.5.1 Distributed object based systems

The key feature of an object is that it encapsulates data called the state,
and the operations on those data, called the methods. There is a separation
between interfaces and the objects implementing these interfaces and this is

Distributed Dynamic Service Composition (2DSC) 89

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

crucial for distributed systems because it allows to place an interface at one
machine, while the object itself resides on another machine.

The notion of an object plays a key role in establishing distribution trans-
parency in distributed object-based systems. This paradigm treats everything
as an object and clients are offered services and resources in the form of ob-
jects that they can invoke. Distributed objects form an important paradigm
because it is relatively easy to hide distribution aspects behind an object’s in-
terface and furthermore, because an object can be virtually anything, it is also
a powerful paradigm for building systems (Tanenbaum and Van Steen, 2007).
The principles of distributed systems are applied to a number of well-known
object-based systems like CORBA, Java-based systems, and Globe.

5.5.2 Distributed file systems

To share data is fundamental to distributed systems so that distributed file
systems form the basis for many distributed applications. They form an impor-
tant paradigm for building distributed systems which are generally organized
according to the client-server model, with client-side caching and support for
server replication to meet scalability requirements. In addition, caching and
replication are needed to achieve high availability. Distributed file systems al-
low multiple processes to share data over long periods of time in a secure and
reliable way (Tanenbaum and Van Steen, 2007). As such, they have been used
as the basic layer for distributed systems and applications. NFS and C0DA
are the main examples of distributed file systems.

5.5.3 Distributed web-based systems

Since 1994, Web developments have been initiated by the World Wide Web
Consortium and this consortium is responsible for standardizing protocols,
improving interoperability, and further enhancing the capabilities of the Web
(Tanenbaum and Van Steen, 2007). In addition, many new developments take
place outside this consortium, not always leading to the compability one would
hope for (Tanenbaum and Van Steen, 2007). By now with the introduction
of Web services we are seeing a huge distributed system emerging in which
services rather than just documents are being used, composed, and offered to
any user or machine that can find use of them.

Service oriented architecture is a part of distributed web based systems
then many concepts underlying Web technology are based on the principles
discussed in the first chapter??.

Distributed Dynamic Service Composition (2DSC) 90

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

5.5.4 Distributed coordination based system

The distributed coordination based systems is a generation of distributed
systems that assume that the various components of a system are inherently
distributed and that the real problem in developing such systems lies in co-
ordinating the activities of different components (Tanenbaum and Van Steen,
2007). This means that instead of concentrating on the transparent distribu-
tion of components, emphasis lies on the coordination of activities between
those components.

Key to the approach followed in coordination-based systems is the clean
separation between computation and coordination and many conventional dis-
tributed systems are gradually incorporating mechanisms that play a key role
in coordination-based systems (Tanenbaum and Van Steen, 2007).

5.6 Relevance of distributed approach in the

present study

The present study is focused on service oriented architecture. It is a part of
distributed web based system implementation. The main problem this study
is resolving is the scalability. The distributed approach has among its goals
the scalability so it is a good mean to deal with it.

Having discussed some of the scalability problems brings us to the question
of how those problems can generally be solved. In most cases, scalability prob-
lems in distributed systems appear as performance problems caused by limited
capacity of servers and network. There are now basically only three techniques
for scaling: hiding communication latencies, distribution, and replication.

The techniques used in this study are the replication, the distribution and
the synchronization. The study will propose the model for composition plan
replication and the service registry clustering distribution. The study will also
propose the mechanisms of coordination of the whole process.

5.7 Synthesis

Various aspects of real-life systems such as WebSphere MQ, DNS, GPS,
Apache, CORBA, Ice, NFS, Akamai, TIBlRendezvous, Jini, and many more
examples illustrate the thin line between theory and practice, which makes
distributed systems such an exciting field.

Distributed Dynamic Service Composition (2DSC) 91

CHAPTER 5. THE PRINCIPLES AND PARADIGMS OF DISTRIBUTED
SYSTEMS

Distributed systems have made an important contribution to the interop-
erability of information systems. In this chapter, some of the fundamental
principles on which they are based have been exposed. The scalability which
is one of the major strengths of this paradigm is a real way of motivation that
can make the dynamic service composition more effective. The automatic and
dynamic composition of services is a present trend (Benatallah et al., 2003a)
and this approach is the most adapted for its flexibility and adaptability in
relation to the dynamism of technological environments and especially in re-
lation to the proliferation of services and stakeholders in the web.

The current dynamic service composition approach raises a scalability
problems related to its effectiveness that research seeks to provide solutions.
So, achieving dynamic composition in an environment where the number of
services provided is constantly changing and the number of users is always in-
creasing is not a simple task. In the next chapter, there will be a presentation
of the dynamic service composition based on distributed approach to deal with
the scalability issue.

Distributed Dynamic Service Composition (2DSC) 92

A logical equivalence goes beyond a simple nu-
merical comparison because it takes into account
the entire operating environment of the models
to evaluate their performance; whereas the nu-
merical equivalence simply makes a comparison
between the values of a single element of the sys-
tems.

ATSA ETOUNDI Roger

6
Distributed Dynamic Service

Composition (2DSC) in a System
Scalability

Contents
6.1 Introduction . 95

6.2 Preliminaries . 95

6.2.1 Motivation example 95

6.2.2 NFS architecture . 96

6.3 Distributed Dynamic Service Composition (2DSC) 97

6.3.1 Basic idea . 98

6.3.2 Concept’s specification 99

6.3.3 Process description 102

6.3.4 Model . 103

6.4 Comparison between the current DSC and our
Distributed and dynamic service composition (2DSC)116

6.4.1 Formalization of the global composition time 117

6.4.2 Computation time evaluation of the current approach117

6.4.3 Dynamic service composition layer description . . . 117

6.4.4 Computation time evaluation of the 2DSC approach 119

93

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

6.4.5 Best case comparison 120

6.4.6 Worst cases comparison 120

6.4.7 Average case comparison 121

6.4.8 Comparison analysis 121

6.5 2DSC systems caracteristics 122

6.5.1 Architectures . 122

6.5.2 Processes . 122

6.5.3 Communication . 123

6.5.4 Naming . 123

6.5.5 Synchronization . 123

6.5.6 Consistence and replication 123

6.5.7 Fault tolerance and disaster recovery 124

6.5.8 Security . 125

6.6 Synthesis . 125

Distributed Dynamic Service Composition (2DSC) 94

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

6.1 Introduction

Service-oriented architectures brought a great evolution in the interoper-
ability of information systems. This progress relies on a set of web technologies
and standards. The dynamic service composition, despite its advantages over
the static composition, it is slow in its execution because of many operations
it imposes during its process at runtime. This situation leads to scalability
problems as data becomes larger and larger. To make these processes effective
even when scaling up, a lot of work has been done.

The preceding chapter?? has extensively presented the work done to im-
prove each of these phases, including the interpretation of the request, the
search for services and their selection, the composition plan’s generation and
the selection of the best, the execution and publication of the new service.
The previous chapter has also swept away important work such as the de-
scription of services that may facilitate their handling in the other stages of
the composition and also the description of a composite service. This pre-
ceding chapter also presented the means implemented to describe interactions
between services.

This chapter is dedicated to the presentation of a Distributed Dynamic Ser-
vice Composition (2DSC) to make this process effective. He will first present
some notions needed to the next, the principle of our method, and the algo-
rithm of the solution before its formalization and its theoretical validation.
But the chapter begins with the preliminaries to well present our solution and
with the reminder of the research question.

6.2 Preliminaries

This section is dedicated to the preliminarie notions. Then, some concepts
will be presented. This will be the main knowledge which will allow us to
better understand the solution that will be presented later. It will begin with
a motivation example able to better present the treated issue.

6.2.1 Motivation example

It is always easier to make a problem perceptible through one or more ex-
amples. In the context of the presentation of the dynamic service composition
problem, a good example would also be an important illustration mean.

Take an information system that establishes and generates, among other
things, the criminal record of a citizen. Let us figure out he has to collaborate

Distributed Dynamic Service Composition (2DSC) 95

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

with a number of other partner government systems. It is assumed that all
these entities have implemented service-oriented based systems to facilitate
and improve their exchanges and collaborations. This presupposes the exis-
tence of a service registry in which all available services are published. Let us
imagine that there is a composition server that can generate the composition
plans for a received request (Blake et al., 2010). Let us suppose also that the
social security number is the identifier of each individual.

When the system receives a request from a user wishing to generate the
criminal record of an individual A, the request is sent to the composition server
to search for and classify the services that can contribute to the achievement
of this objective. The composition server will then serve to the system a
composition plan that the latter will undertake to execute and return the
result to the user. But if a user requests the system again to generate another
criminal record, the request is sent again to the composition server which
will probably answer again with the same composition plan. However, these
multiple and sometimes unnecessary solicitations have a negative impact on
the performance of the composition server and on the client system. This is
one source of scalability among the two others that researches have treated.
Because the processing of each request is dedicated to the composition server
exclusively.

And yet, it would be advantageous to generate a distributed approach,
creating for the client system, a registry in which the composition plan ex-
ecuted successfully is saved. This would decentralize the dynamic composi-
tion approach and allow the remote composition server to be entered only
after an unsuccessful search of the locally created registry. It is therefore this
distributed solution that we propose to solve the problem of scalability in
automated dynamic service composition activities in SOA. It is a decentral-
ized manner and personalized service composite publication which seems like
a mean to build a self composition and discovery mechanism (Zimeo et al.,
2008). The appropriate mechanism is based on distributed architecture.

6.2.2 NFS architecture

NFS (network files system) is a feature of UNIX systems that consists of
sharing files across a network. It makes it possible to decongest the central
system by the use of the cache memories in its central memory and in the
requesting systems.

In fact, when a remote user wishes to have a shared file, his request is first
processed locally. This local processing consists in checking if the cache of its
system contains this file to put it directly at the disposal of the user. If not,

Distributed Dynamic Service Composition (2DSC) 96

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

its request is then transmitted to the central server. The latter searches first
if the file is presented in its cache. If this is the case, the file is served to the
user. If, on the other hand, the file is not available in the server cache, the
server will immediately search for it on its disk and return it to the user.

This method allows the system to gain a lot of time during transaction file
sharing procedures with its clients. It is a system that uses the clients’ infras-
tructure as a backup point to give them what they need from their activities
with the server. This prevents a client from making remote calls to find a file
when it has become routine to solicit it regularly.

The following algorithm illustrates this mode of operation.

Algorithm 1 Basic NFS file system

1: FindLocalCache
2: if (CacheMiss) then
3: FindServerCache
4: if (CacheMiss) then
5: FindDisk
6: end if
7: end if

Algorithm 2 Basic2DSC algorithm

1: FindLocalComposition
2: if (LocalCompositionMiss) then
3: FindRemoteServerCompositionCache
4: if (RemoteServerCompositionCacheMiss) then
5: FindRemoteServerComposition
6: end if
7: end if

6.3 Distributed Dynamic Service Composition

(2DSC)

This section aims to formalize the 2DSC system. This consists of formaliz-
ing some illustrations. It also consists of formalizing the main components and
mechanism of the model. Among them, we cite local library generation, the
local registry generation and the monitoring between the composition server
and others local devices.

Distributed Dynamic Service Composition (2DSC) 97

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

6.3.1 Basic idea

Our basic idea in this chapter can be exposed as follows. Indeed, we con-
sider a dynamic service composition operation as a composition path-sharing
system in which the composition paths are the searched information; the re-
quests are the client requests that are addressed to the central composition
engine being server. In this architecture, dynamic service composition is per-
ceived as a distributed operation in which it is easier to contain the flow of
requests sent to the same infrastructure using proxy servers. Thus, when the
processing of a request has given a composition plan executed successfully, this
path must be kept and saved at the client system that issued the request to
probably serve in another request of the same type.

To illustrate the problem that the centralization of the dynamic composi-
tion process, let us take the example of a request Q of a client S addressed
to the composition engine M . After processing this request, a composition
plan PS is returned to him for execution. Let us suppose that after a time
T , S returns another similar request Q to M for a second time. We observe
here that this treatment could be avoided if in the local system of S, there
existed a library of composition plan in which the local compositor can refer
to before the system S send it to M . It is therefore one of the major chal-
lenges of the participation of customer systems in the policy of dynamic service
composition.

Even more importantly, if the client’s composition plans are well executed,
the services that it contents are sufficiently adapted to this client. That is,
when selecting each service belonging to the plan, a set of descriptive informa-
tion of this service has already been taken into account during this selection
step. The QOS applied to these services make them therefore refined enough
to make it possible to build a personal registry of services more appropriate
to the client’s activities. It is therefore both a method of clustering services
adapted to customers and optimization of the dynamic composition that can
be done by using the infrastructures of the customers.

The construction of this library of composition plans and local registry will
give to the system the possibility to decongest the composition server, to build
a personalized service for all the clients and to make a local composition to all
clients of the system.

6.3.1.1 Decongest of the composition plan server

This will avoid similar treatments to the system by keeping locally the com-
position plans needed to process the requests already sent to the composition

Distributed Dynamic Service Composition (2DSC) 98

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

system. This perspective based on the NFS mechanism avoids the composi-
tion server to receive repeated requests of the same nature and from the same
customers. This will necessarily decongest this infrastructure and allow it to
become more efficient for processing new queries. It also brings the customer
closer to the information he often needs to provide effective responses to his
users.

6.3.1.2 Service clustering

This model will facilitate a clustering of the service registry according to the
precise requests of the users. Service clustering allows you to select and match
a set of services with a high probability of participating in the same service
composition activities. Taking into account the composition plans received
from the composition server, each client locally builds its service register, which
is already refined in terms of quality of service (QoS) and composability.

6.3.1.3 Local composition plan generator

This model can facilitate the establishment of a local composition engine
based on the resources available in the local registry and the composition plan
library. With the availability of a set of service descriptive information, a
simple composition algorithm can be effective for locally producing service
plans that can respond to requests from the customer’s users. This algorithm
will benefit from treatments already done during the preliminary selection of
services during the remote composition stage.

To set up this mechanism, it would be necessary to define in a specific way
the concepts that will be manipulated in the following for a better compre-
hension.

6.3.2 Concept’s specification

This part gives a precise meaning to each of the notions used in the pro-
posed approach.

6.3.2.1 semantically request similarity

When sharing similar demands, enterprises are using their specific vocab-
ulary and structural representations for modeling business processes (Ehrig
et al., 2007). The semantically request similarity aims to evaluate the degree
of semantic correspondence between two or many requests.

Distributed Dynamic Service Composition (2DSC) 99

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

According to Michael Richter (Richter, 1993), a real-valued function Sim :
S × S → [0, 1] on a set S measuring the degree of similarity between two
elements is called similarity measure if ∀Q1, Q2 ∈ S the basic axioms for
similarity of Q1 and Q2 are:

— Sim(Q1, Q1) = Sim(Q2, Q2) = 1: reflexivity;

— Sim(Q1, Q2) = Sim(Q2, Q1): simmetry;

The request similarity can be measured on its syntactic, linguistic and
structural aspects. Its complete measure is therefore the combination of these
three aspects. Thus, in order to compute the combined similarity Simcom be-
tween concept instance names c1 and c2 let c1 be a particular concept instance
name of Q1 and c2 be a concept instance name of Q2. Then the combined sim-
ilarity is an aggregation of the degrees returned from the syntactical, linguistic
and structural similarity measures as explained above:

Simcom(C1, C2)=

(
wsyn ∗ Simsyn(Q1, Q2) + wlin ∗ Simlin(Q1, Q2) + wstr ∗ Simstr(Q1, Q2)

wsyn + wlin + wstr

)

Where wsyn, wlin and wstr are respectively the weights of syntactical, lin-
guistic and structural similarities. The weightings of each type of similarity
can be given by each user according to the priorities of their environment.

The similarity between two semantic request Q1, Q2 is defined by semantic
relationships, which we consider by the two sets of concept instances C1andC2

of Q1andQ2.

— Equivalence:Sim(Q1, Q2) = 1 if C1 = C2;

— Disjointedness:Sim(Q1, Q2) = 0 if C1 ∩ C2 = φ;

— Intersection: Sim(Q1, Q2) ∈]0...1[if C1 ∩ C2 = {x|(x ∈ C1) ∧ (x ∈
C2)} ∧ C1 6= C2.

6.3.2.2 Local request matching

The local matching of a request is the semantic study which allows the prior
study of its similarity with other requests already processed by the system.
This operation makes possible to associate to the new request the composition
plan of the old one for its execution when there is a similarity between a new
request and an old one. It is during this operation that the system chooses to
send or not a request to the central composition engine to receive a plan that
composition adapted for its processing. Let Q1 an old request that has been
processed by a composition plan P1. Let Q2 be a new request being processed.

Distributed Dynamic Service Composition (2DSC) 100

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

If Sim(Q1, Q2) = 1 then, P1 can be executed for Q2. Instead of sending Q2

to the central composition engine, we simply associate Q2 to the composition
plan P1 and execute it. We can note:

RMatch(Q,Rep)=P if Sim(Q,Q1)=1∧P is the composition plan of Q1.
With RMatch the request matching function and Rep the set of composition
plan composing the repository of matching;

6.3.2.3 Local library

The local library is a directory in which are saved all the composition plans
whose execution was satisfied and their associated requests. Indeed, it is the
main directory that permits the matching of new requests. The local library
is therefore an essential tool in which updates must be made when:

— When the execution of a composition plan is well proceeded, this request
and its semantic description is kept in local repository as well as the
associated execution plan;

— if by associating a composition plan to a new request, if the execution of
this plan is no longer well proceeded, and then a new matching must be
carried out by removing this defective composition plan from these new
matching operations.

6.3.2.4 Service monitoring

Monitoring consists of modifying a composition plan already registered in
the local library. This operation is carried out to inform in the following cases:

— The owner of a service has modified the service: here, it is a question of
updating the information relating to one or more services belonging to
one or more composition plans of the local library according to its new
description received from the registry through the central composition
engine;

— The owner of a service has removed it: here, it is always a matter of
updating a composition plan of the local library by replacing the services
deleted by the new alternative services. These new services must be
composed with the other services of the composition plan and have the
same functional properties.

6.3.2.5 Local registry

The local registry makes it possible to build a local service cluster of the
remote registry based on their participation in the efficient execution of re-

Distributed Dynamic Service Composition (2DSC) 101

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

quests received by the system. This method of clustering is more efficient to
give a response to a new user request because the services registered therein
have been selected by a user based centric filter and on their quality of service
preferences. A local composition engine can therefore be started to provide
composition plans that can be used to give effective composition plan to new
requests without referring to the central composition engine.

6.3.2.6 Local plan generator

Based on a local registry enriched by the system, the local composition
plan generator makes it possible to generate the composition plans capable to
give solution to requests received in the system without referring to the remote
composition engine. This local composition operation is initiated when, after
receiving a request, no composition plan from the local library is appropriate
for processing the request. It should be noted that to be efficient, this local
composition operation can be started if and only if there is a sufficient amount
of services in the local directory.

After having defined these concepts, the description of the envisaged pro-
cess will follow.

6.3.3 Process description

The request arrives in the system. It is sent to the local request matching.
The latter verifies if there is a composition plan that can process the request
in the local library. If this is the case, the request is processed directly and the
response is sent to the user. If the local matching composer does not find an
appropriate composition in the local plan composition library, the request is
transmitted to the remote central composer which processes it by examining its
composition cache. If this cache of the central composer does not find a path
that can answer the request, the composer then starts the dialing operation
by relying on directories. It finds the services corresponding to the request
and places them in a satisfactory order of execution. It sends the composition
plan to the requesting system. It then updates his central composition cache.

The requesting system executes the path passed to it. If the execution
is good then it updates its local composition library. Otherwise, it informs
the central composer which stimulates the composition and sends him a new
plan. The process begins again until the satisfaction of the requesting system
or until the composer has transmitted the entire possible plan. A monitoring
system is set up to update the various registers according to the activities in
the directories. For example, if a service involved in a composite service is

Distributed Dynamic Service Composition (2DSC) 102

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

changed, the corresponding plan is updated in the composition cache of the
central composer. This update is also done in the local library.

It is therefore a model adapted to this description which will be presented
later.

6.3.4 Model

The model is the one that will bring optimization in the process of dynamic
service composition based on the 2DSC’s orientations described above. This
presentation will begin with the logical approach illustration, the presentation
of the model, the formalization of the system and the appropriated algorithms.

6.3.4.1 Logical approach illustration

In a static system, the services composition is done during development.
The response time TSC of a request Q that needs to involves n services is the
sum of the response time of each service forming part of the composition. It
can be noted:

STSC = TEX [S1] + TEX [S2] + ...TEX [Sn]

=
∑n

i=1 TEX [Si]

But in case of dynamic composition, the response time TDC of a request
Q become the sum of response time of each service, added to the composition
time procedures and the network time. This response time becomes:

TDC = TComp + TEX [S1] + TEX [S2] + ...TEX [Sn]
= TComp +

∑n
i=1 TEX [Si] + σ

= TComp + TSC .
where:

— TSC is the response time in case of static composition;

— TDC is the response time in case of dynamic composition,

— TComp is the time of composition process;

— TEX [Si] the execution time of each Si service;

— σ is network time.

When the request Q1 arrives to the composition server, this can be run-
ning to process another client request later Q2. So the composition time
TComp also depends on the number of requests the composition server receives.
Then, beyond the number of services to be selected in the registry, this time

Distributed Dynamic Service Composition (2DSC) 103

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

TComp = f(Request, Service).

This means that, if the number of request is large, the response time will be
long. Likewise, if the number of services in the registry is large, this response
time also becomes as important. Our work aims to reduce this composition
time substantially to the level of execution time during static composition.

Otherwise:
Let TSC : the static composition time and
Let TDC : the dynamic composition time. We noted that:

TSC = TEX [S1] + TEX [S2] + ...TEX [Sn]

=
∑n

i=1 TEX [Si]
TDC = Tcomp + TEX [S1] + TEX [S2] + ...TEX [Sn] + σ

= Tcomp +
∑n

i=1 TEX [Si] + σ

with:

— TEX [Si]: execution time of the service i

— σ : is the network time.

So we are trying to build our local composition’s plan library, which will
lead the system S after a number X of requests and after a time t, to have:

TSC ≤ TDC ≤ Tcomp + TSC .
We are also trying to build our local registry, which will lead the system

S after a number X of requests, and after a time t, to have his own registry
which will avoid some remote researches transactions in the network. S will
locally build some service composition plan.

Our idea is to build a local library and a local service registry for the client
service composition system S like in the case of NFS shared file system.

This approach can be described as follows.

6.3.4.2 Architectures of the current and dynamaic service compo-
sition approach

In the next figure you can see the general structure of the current ?? and our
proposed system ??. It is important to note, that Local Composition Engine,
Local Registry and Application (to serve a Client) could be put as one com-
ponent (even, for example, same machine or somewhere locally, on the client

Distributed Dynamic Service Composition (2DSC) 104

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Figure 6.1 – Semantical representation of 2DSC

side) while Remote Composition Engine and Global Registry could be placed
elsewhere. So that, according to our assumption, Client asks an Application
for certain outputs, providing some inputs for it. At this point, Application
sends a message of a client to the Local Composition Engine with inputs.
Using its own algorithm, Local Composition Engine requests Local Registry
for the information. After the communication is finished, Local Composition
Engine makes a decision if it needs to send the same request to the Remote
Composition Engine (in case we didn’t find the path - send a message). And
then Composition Engine makes the same operation with Global Registry and
sends response to LCE (path with files). After receiving a response and has
already downloaded the files, Local Composition Engine needs to send the
response to Application (path with files) and send the same files and the in-
formation to the Local Registry to put data in it. As you can see, at the
beginning, when the Local Registry is empty, the time for the response will
be even bigger, than if use simple system from the first approach. But after
the Client requested for the same outputs using already used inputs, we can
see that finding the data in Local Composition Engine, which is much smaller,
takes less time, so that this approach can reach the goal of the project.

The detailed architecture of the project can be seen below from Java point
of view in Figure 6.3. Here, set of Interfaces are marked as blue, and classes
also marked as yellow.

Distributed Dynamic Service Composition (2DSC) 105

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Figure 6.2 – Currrent approach

6.3.4.3 Model architecture

The design of the system is as described by the figure 6.4:
A local registry and a composition plan library are installed near each

client. There will be saved all descriptive information for each service that
is part of a successful executed composition plan. For each composition plan
saved in the library, the associated request is also saved in the library. A
monitoring tool is integrated into the composition server to allow the synchro-
nization of updates between the components of the system.

Before any transaction with the remote composition server, the client
should do a local research of the information in his own library or his own
local registry.

6.3.4.4 Formalisation

The formalization here is to represent abstractly the major components of
the model and to present the associated interactions.

The 2DSC is represented by a quintuplet (C,RC,Q, P, S) where:

— C is the set of possible client’s information system;

— RC is the remote composition server;

— Q is the set of requests received by the client’s information system;

— P is the set of composition plan generated by the remote composition
server;

— S is the set of services;

Distributed Dynamic Service Composition (2DSC) 106

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Figure 6.3 – Architecture in term of Java.

On the basis of the above notations, the construction mechanisms of the
composition plan library, the local service registry and the monitoring respon-
sible for updating the information can be defined as follows:

— Local registry generation:
This explains how the local registry is generated. In fact, for each client
of service composition c ∈ C of RC, there is a registry in which all the
services sc ∈ S that are part of the execution of its composition plans
pc ∈ P are saved. This directory is called local registry of the client c.

∀ci ∈ C, ∀sci/sci ∈ S ∧ sci ∈ pc, ∃Ac/sci ∈ Ac

— Local library generation:
This explains how the local library is generated. In fact, for each client
of composition service c ∈ C of RC, there is a library noted Lc in which
all composition plans pc ∈ P and the requests qc ∈ Q for which they

Distributed Dynamic Service Composition (2DSC) 107

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Figure 6.4 – Proposed architecture.

are generated are saved. This library is called local library of service
composition plans.

∀ci ∈ C, ∃Lci(Q× P)/(pci , qci) ∈ Lci .

Lc is the local library of ci.

— Monitoring:
The monitoring of the system is a main function which will perform it.
In fact; Information about changing of a service in the remote registry
must be reflected on local registries that use it. These changes must also
be reflected in the local libraries of the associated plans.

∀s ∈ S,∀ci ∈ C, ∀Ai(ci),∀Lci , desc(s(Ai)) = desc(s(A)) ∧ desc(s(Lci)) =
desc(s(A)). With desc as the description of the service s and s(A) as
the service which is a part of registry A.

We can describe these activities by the algorithms bellow.

6.3.4.5 Algorithm

The basic principle of this system is to set up a support infrastructure,
external to the main composition engine, which will relieve it during multi-
ple similar and repetitive solicitations. The model therefore requires within
each client system, an infrastructure to build a library of composition plans
exploitable to autonomously treat requests similar to those already processed
through the composition server. It also requires within each client system, a
local registry to save services taking part in each composition plan of a library.

Distributed Dynamic Service Composition (2DSC) 108

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

This will bring a significant time saving when processing certain requests.
This will bring back after a number of requests processing, the time of the
dynamic composition to a level very close to the processing time during the
static composition.

The appropriate algorithms are described as follows.
Algorithm 2DSC:
The client system receives a request noted Rq. It checks its path library

with the function noted LocalMatch if there is a similarity to an entry in this
table. If this is the case, it executes with the function noted ExecuteEngine
the associated composition plan. If this execution goes well, it sends the answer
to the user. If the execution goes bad, after marking the appropriate entry
with the function SetInvalide, it will search again to look for another entry
the similar request. He repeats this operation until he has gone through all the
entries of the composition library. When this step is unsuccessful, it sends the
request to the remote composition server with RecomteCompos and waits for
the plan it will execute with ExecuteEngine. It inserts into the library the new
composition plan if the execution goes well with the function InsertLibrary
and upto date the system. This update also the function SetV Alide which
makes all the entries of the library available to new similarity test’s operation.

These others functions called in the algorithm are described below:

Distributed Dynamic Service Composition (2DSC) 109

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Algorithm 3 2DSC

1: input: request noted Rq;
2: output: response noted Rp;
3: Vector Tab = Null
4: PathRq = LocalMa tch(Rq)
5: if (PathRq != NULL) then
6: Rp = ExecuteEngine(PathRq)
7: if (Rp != NULL) then
8: Return(Rp)
9: else

10: repeat
11: Add(Tab,PathRq)
12: SetInvalide(PathRq)
13: PathRq = LocalMatch(Rq)
14: Rp = ExecuteEngine(PathRq)
15: until (PathRq == NULL or Rp != NULL)
16: if (Rp != NULL) then
17: Return Rp
18: SetValide(Tab)
19: else
20: repeat
21: PathRq = RemoteCompos (Req)
22: Rp = ExecuteEngine (PathRq)
23: until (PathRq == NULL or (Rep != NULL))
24: if (Rp != NULL) then
25: Return Rp
26: InsertLibrary (Rq,PathRq)
27: Uptodate ()
28: else
29: Return Rp
30: end if
31: end if
32: end if
33: end if

Distributed Dynamic Service Composition (2DSC) 110

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Algorithm 4 localMatch

1: input: Request noted Req;
2: input: Registry noted Reg;
3: output: Path noted PathReq;
4: Vector Tab = Reg
5: i = 1
6: repeat
7: Sim(Tab[i],Rq)
8: i=i+1
9: until Sim(Tab[i], Rq) or n ≤ i)

10: if i ≤ n then
11: Return PathRq(Tab[i-1])
12: else
13: Return NULL
14: end if

The function LocalMatch() takes a request Rq and returns its last corre-
sponding composition path PathReq. This function performs a similarity test
of the new request received with the entries in the plans library Tab.

Distributed Dynamic Service Composition (2DSC) 111

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Algorithm 5 ExecuteEngine

1: input: Vector noted PathRq;
2: output: Response noted Rep;
3: Vector Tab = PathRq
4: i = 1, Rep=NULL
5: repeat
6: Rep= Rep + Result (Tab[i])
7: i=i+1
8: until i = N+1) or Result (Tab[i])= NULL
9: if i ≤ N then

10: Rep= NULL
11: else
12: Return Rep
13: end if

The function ExecuteEngine() takes a composition plan PathReq asso-
ciated to a request Rq and returns the result of his execution Rep. This result
can be conclusive or not;

Algorithm 6 RemoteCompos

1: input: Request noted Req;
2: output: Vector noted PathRq;
3: Return PathRq

The function RemoteCompos () is the central composition system. It
takes a request Rq as parameter and returns a composition plan PathRq to
the user information system;

Distributed Dynamic Service Composition (2DSC) 112

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Algorithm 7 SetInvalide

1: input: Vector noted Regis;
2: input:PathReq noted path;
3: output: Vector noted Regis;
4: Vector Tab = Regis
5: i = 1
6: if Tab[i]=path then
7: state (Tab[i]=0)
8: Tab = Regis
9: else

10: repeat
11: i=i+1
12: until (i = N+1) or (Tab[i]= path)
13: if Tab[i]=path then
14: state Tab[i]= 0
15: Tab = Regis
16: end if
17: end if
18: Return Regis

The function SetInvalide() removes a composition path PathReq from
the local composition processes. Precondition: the path cannot be empty.

Distributed Dynamic Service Composition (2DSC) 113

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Algorithm 8 SetValide

1: input: Vector noted Regis;
2: input:PathReq noted path;
3: output: Vector noted Regis;
4: Vector Tab = Regis
5: Vector Tab = Regis
6: i = 1
7: if Tab[i]=path then
8: state(Tab[i]=0)
9: Tab = Regis

10: else
11: repeat
12: i=i+1
13: until (i = N+1) or (Tab[i]= path)
14: if Tab[i]=path then
15: state Tab[i]= 1
16: Tab = Regis
17: end if
18: end if
19: Return Regis

The function SetValide() takes in parameter a set of composition plans
that it puts into treatment in the graph. This process makes them available
to the new local matching operation.

Distributed Dynamic Service Composition (2DSC) 114

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Algorithm 9 Insert Library

1: input: Vector noted Lib;
2: input :PathReq noted path;
3: output: Vector noted Lib;
4: Vector Tab = Regis
5: i = 1
6: if Tab[i]=null then
7: state (Tab[i]=path)
8: Tab = Regis
9: else

10: repeat
11: i=i+1
12: until i=N+1 or Tab[i]=null
13: if Tab[i]=null then
14: state Tab[i]= path
15: Tab = Regis
16: end if
17: end if
18: Return Regis

The function InsertLibrary() takes a composition plan PathReq and a
request Rq that it saves to the local library. As precondition: this information
must be new.

Distributed Dynamic Service Composition (2DSC) 115

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Algorithm 10 UpToDate

1: input:Vector noted Lib;
2: input:Request noted Req;
3: input:PathReq noted path;
4: output:Vector noted Lib;
5: Vector Tab = Lib
6: i = 1
7: if Tab[i]=Req then
8: state(Tab[i]=path)
9: Tab = Regis

10: else
11: repeat
12: i=i+1
13: until i=N+1 or Tab[i]=Req
14: if Tab[i]=Req then
15: state Tab[i]= path
16: Tab = Lib
17: end if
18: end if
19: Return Lib

The function Uptodate () makes to date the composition system by
adding in his library, the new composition plan that can satisfy the current
request and calling the Setvalide function.

6.4 Comparison between the current DSC and

our Distributed and dynamic service com-

position (2DSC)

This section will evaluate the temporal complexity of our proposed ap-
proach, then evaluate the temporal complexity of the current approach before
comparing the temporal resources of these two methods and enact a lemma
followed by its proof.

The comparison of the complexities of the two approaches is done in the
best case, in the average of cases and in the worst case.

Distributed Dynamic Service Composition (2DSC) 116

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

6.4.1 Formalization of the global composition time

The global composition time is the sum of:

— The network time σ;

— The time taken for the execution of each stage of the composition (dis-
covery, selection of services, generation of composition plans, selection
of the best plan, execution of the plan, publication of the new service)
Ti;

— Texec: execution’s time;

We can formalize the temporal complexity of the current and proposal
approaches as follows:

Let S1 be the current dynamic composition system without distributed
approach (1);

Let S2 be the proposed dynamic composition system with distributed ap-
proach (2);

(1) τS1 = TDC +
∑n

i=1 Ti + σ.
(2) τS2 = T2DC +

∑n
i=1 Ti + σ.

Let us calculate the complexities of the 2DSC and current approaches in
the best cases, in the average cases and in the worst cases, and compare them.

6.4.2 Computation time evaluation of the current ap-
proach

In the current system, the best case is similar to the worst and the average
case because the process does not vary. We repeat the same activities each
time.

We can evaluate the temporal complexity τS1 of this approach as follow :

τS1 =

TDC +

∑n
i=1 Ti + σ in the best case

TDC +
∑n

i=1 Ti + σ in the average case
TDC +

∑n
i=1 Ti + σ in the worst case

We observe that it is the time.

6.4.3 Dynamic service composition layer description

Our proposed dynamic service composition framework figure 6.5 is a hierar-
chical structure of three main levels. We have the local level, the intermediate

Distributed Dynamic Service Composition (2DSC) 117

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

levels; the number of which depends the administrative or territorial structure
of each organization, and the national level. Each level is composed of two
components: a composition plan library, a service repository. A monitoring
support makes it possible to establish coherent communication at the different
levels and is responsible for updating the service registries and libraries.

Figure 6.5 – Dynamic Service Composition Layer

In fact, the process begins by the sending of a user’s request to the client
system. The client system sends the request to his local composition engine.
This local composition engine checks in its composition library if it has already
processed such a request. If so, its composition path is then used to process the
request without involving the remote composition server and by relying on the
local registry. The composition path is then returned to the local composition
which will return it to the client. If this request is new for the system, it is
sent to the remote service composition which will repeat the same process at
its level.

We can generate the following framework for a distributed multi layer col-
labartion 2DSC 6.6.

Distributed Dynamic Service Composition (2DSC) 118

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

Figure 6.6 – Multi layer Dynamic Service Composition

6.4.4 Computation time evaluation of the 2DSC ap-
proach

In the 2DSC approach, the best case represents the case where the request
is still processed by the local library. Middle case is the situation in which
everything goes without support from the local library. This case is identical
to the basic process. The worst case is to find a way and therefore the execution
goes wrong. In this case, the composition engine is still requested for a new
composition. Logically, this is a situation that can arise when updates have
not been made by the monitoring system.

With the 2DSC, we can evaluate his complexity τS2 as follow:

Distributed Dynamic Service Composition (2DSC) 119

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

τS2 =

∑n

i=1 Ti + σ in the best case
TLC +

∑n
i=1 Ti + σ Texec = Texec′

TLC + TDC +
∑n

i=1 Ti + TLC + σ TLC is the time of local research

6.4.5 Best case comparison

The system works at its best when its local library finds the desired com-
position path for all requests. This allows the remote composition server to
be completely free from this solicitation. This situation is favored by the en-
richment of the local library of the client system over time taking advantage
to the various activities during the operation of the system.

The complexity of the new model 2DSC in the best case is: τS2 =
∑n

i=1 Ti+
σ.
And the complexity of the current DSC model in the best case is: τS1 =
TDC +

∑n
i=1 Ti + σ.

So we conclude that: τS2 ≤ τS1 .

That means the new approach is better in this case.

6.4.6 Worst cases comparison

The worst case is when the local system always fails to produce the com-
position plan; the system cannot find the information in its local library. It
will therefore first perform an unsuccessful search locally before calling on the
remote composition server again. This situation is favored by the lack of ac-
tivities intended to enrich the local library of the client system. It is clear that
our approach is less efficient than the current model.

The complexity of the new model in the worst case is:
τS2 = TLC + TDC +

∑n
i=1 Ti + σ

And the complexity of the current model in the worst case is:
τS1 = TDC +

∑n
i=1 Ti + σ

So we can conclude that: τS1 ≤ τS2

That means the current model is better in this case.

Distributed Dynamic Service Composition (2DSC) 120

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

6.4.7 Average case comparison

We consider here as the average case in our approach the combination of
both the worst and the best case. The complexity of the new model in the
average case is:

τS2 = TLC +
∑m

i=1 Ti
And the complexity of the current model is:
τS1 = TDC +

∑n
i=1 Ti + σ

We can see that it depends of the value of TDC and TLC . But we observe
that the remote server is freed. And that is our first priority.

So we can conclude that: τS2 ≤ τS1

That means that the current approach is most efficient.

6.4.8 Comparison analysis

In the worst case and the average case of the theoretical comparison, the
complexity of our system shows that it is less efficient than the current model.
These will happen when the client system is at the start of its operation and the
tests it performs in its local composition cannot give it a positive response.
Quite simply because his composition library is still empty. To avoid this
situation, it is possible to carry out the first treatments in the system without
having recourse to the local composition infrastructure. The main question
after this analysis is to be sure that our system will still work in the best case
condition to validate the performance of our approach on a theoretical level.
As a result of these preoccupations, we can dictate the following lemma:

Lemma Let T be the computation time of a request processing.
Let S1 be the current dynamic service composition and S2 be the new system.
Let be R the set of request. ∀r ∈ R, T (S1(r)) ≫ T (S2(r))

Proof To prove that the new approach is better than the current one, let’s
show that the system will spend more time in the best case process. Let N
be the number of functionalities of a system. After a system running time t,
there will be a number n of composition plans if n distinct requests have been
processed in the local library.

Then, when t tends to infinity, n tends to N . It means that the registry can
already contain a number of plans able to satisfy all its functionalities locally.
This would imply that the majority of process is done locally.

In other words, let f(t) be the function that inserts the composition plans
into the local library of composition paths. Let N be the finite number of

Distributed Dynamic Service Composition (2DSC) 121

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

functions of a system. f(t) tends to N when t tends to infinity.

f(t) =

{
t→∞ when t tends to infinity
n→ N n tends to N

This lemma proves that our approach will allow to build in time, a local
composition system for each client and this will free the remote composition
server and make the model more efficient. The scalability due to the growing
number of users and services will decrease, thus reducing the dynamic compo-
sition time to the same level as during static composition. This will also lead
to reduce request response time for end-users. This shows that in the time,
the system will situate in the best case.

This shows that in the time, the system would behave as being totally local
composition. This would situate it in the best case.

6.5 2DSC systems caracteristics

As a distributed system, the 2DSC is also characterized by an architecture,
a process, a communication, a naming, a synchronization, a consistency and
replication, a fault tolerance and security.

6.5.1 Architectures

2DSC can be seen as a set of complex pieces of software dispersed across
multiple machines which are properly structured. There are architectural
styles which informs how all the various software components are to be or-
ganized and how they should interact. This system is a data-centered archi-
tecture because processes communicate through the use of shared Web-based
data services. The system is also a decentralised architectures and multitiered
client-server architectures.

6.5.2 Processes

In 2DSC system, processes are modelized by threads because clients and
servers are constructed such that communication and local processing can
overlap, resulting in a high level of performance.

Distributed Dynamic Service Composition (2DSC) 122

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

6.5.3 Communication

The communication between processes is at the heart of the 2DSC sys-
tems. Different machines can exchange information by Remote Procedure Call
(RPC) because when a process on machine A calls a procedure on machine B,
the calling process on A is suspended, and execution of the called procedure
takes place on B. Also, information can be transported from the caller to the
called in the parameters and can come back in the procedure result.

6.5.4 Naming

The system is mainly based on two entities: the developed and published
service, the user request for processing and the composition plans generated by
the composition server. All these entities are named exclusive in the system.
This means that the names of these entities are their addresses and there are
some properties to identify these names:

— An identifier refers to at most one entity;

— Each entity is referred to by at most one identifier;

— An identifier always refers to the same entity (it is never reused).

The entities have structured and attributed-based names. Entities are
described in terms of attribute and value. Thus, an entity is assumed to have
an associated collection of attributes. Each attribute says something about
that entity therefore, by specifying which values a specific attribute should
have, a user essentially constrains the set of entities that he is interested.

6.5.5 Synchronization

The synchronization in the system is ensured by the composition server
as usual. But there is also a monitor that alerts the client systems on any
updates that can improve their databases and harmonize all the system. The
update can be useful in case of new information received through the service
registry or in case of new performed composition plan to process some hold
request. This monitoring tool is in permanent but transparent communication
with the client systems. It is a process required to act as coordinator, initiator,
or otherwise performs some special role.

6.5.6 Consistence and replication

Data on service registry are generally replicated on local registries to en-
hance reliability and performance. One of the major rules of the monitoring

Distributed Dynamic Service Composition (2DSC) 123

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

entity is that when one copy is updated we need to ensure that the other
copies are updated as well; otherwise the replicas will no longer be the same.
Data on such request and their effective composition plans are also replicated
to increase the performance of the system. This replication for performance
is important when the system needs to scale in numbers and geographical
area. Scaling in numbers occurs, for example, when an increasing number of
processes needs to access data that are managed by a single server. Scaling
with respect to the size of a geographical area may also require replication.
The basic idea is to place a copy of data in the proximity of the process us-
ing them to decrease the time to access the data. Thus the system supports
replication and decides where, when, and by whom data should be placed, and
subsequently which mechanisms to use for keeping the replicas consistent.

6.5.7 Fault tolerance and disaster recovery

The new distributed approach for dynamic service composition is supports
availability, reliability, safety and maintainability.

— The 2DSC system is available because the system is ready to be used
immediately. Theoretically it is proven that the probability that the
system is operating correctly at any given moment and is available to
perform its functions on behalf of its users.

— The system is reliable because it can run continuously without failure
due to the scalability. The system will most likely continue to work
without interruption during a relatively long period of time even in case
of composition plan server failure.

— The system has a safety property because of the monitoring operations,
if the system temporarily fails to operate correctly for only a very brief
moment, the effects couldn’t be disastrous and nothing catastrophic hap-
pens.

— The system is maintainable because it is easy to repair it when he is
failed. In fact, we can observe that our distributed model creates the
relocation of data which participate to the service composition. This
allows the system to build a user’s profile data clustering. In addition,
this relocalisation approach also gives the system the ability to make a
disaster recovery after a major incident with the monitoring function.
En fact, the monitoring function up to date the subsystem by using the
remote central composition server cache.

This is the prove of the faults tolerance and the disaster recovery of our
proposed approach.

Distributed Dynamic Service Composition (2DSC) 124

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

6.5.8 Security

Security in the DSC system is strongly proven by their confidentiality and
integrity.

— Confidentiality: the information is disclosed only to authorized parties.
Any service clusters contains only their concerns information.

— Integrity is taken into account and improper alterations are detectable
and recoverable. Major assets of the system are its hardware, software,
and data.

6.6 Synthesis

Dynamic service composition is an important operation when handling user
requests in a cooperative environment of service-oriented information systems.
It starts with the discovery of services, the selection of services, the generation
of composition plans, the selection of the best composition plan, the execution
and the publication of the new composite service. It is therefore a heavy oper-
ation that puts the client system, the service-owning systems, the composition
engine and the service registry into permanent activity and generates scala-
bility. To deal with this issue, the new distributed approach to dynamically
compose services has proposed.

It is an approach to publishing composite services during dynamic service
composition to optimize service discovery under a distributed architectural
model. We called it 2DSC. It allows making the process effective by building
in time at each client system, a registry of composite services emanating from
the results of its various requests. It is therefore a method that brings each
client system closer to the composite services generated by its requests. This
reconciliation also makes it possible to locally generate composition plans ca-
pable of responding to the concerns of its users without the intervention of a
remote infrastructure.

By publishing compositing plans locally as new composite services, pro-
cessing a new request that is similar to an earlier request reduces the response
time by deleting transactions with the remote registry and those of the remote
composition engine (server). In addition, this can generate new composition
plans, if necessary, directly on the basis of the built library.

With this in mind, we have defined a general dynamic composition algo-
rithm that integrates local composition plan, local composition plan search,
central composition engine, local request matching and local composition con-
trol functions. Request matching is based on semantic similarity rules.

Distributed Dynamic Service Composition (2DSC) 125

CHAPTER 6. DISTRIBUTED DYNAMIC SERVICE COMPOSITION
(2DSC) IN A SYSTEM SCALABILITY

In addition, the publication that is above all dynamic composition activ-
ities is seen through our approach as an important aspect as it seems to be
the basis for the execution of the entire dynamic service composition process.
As an information-sharing moment, it can help improve the process of dy-
namic service dialing by leveraging customer infrastructures to decentralize
information in ways that benefit customers.

In conclusion, the distributed dynamic services composition (2DSC) pro-
posed in this chapter is based on the distributed approach and sharing of
descriptive information about services. Regardless of the service description
methods used, this approach simply captures the information resulting from
the successful processing of a client request. In fact, the composition plan
associated with a request that has been successfully executed can be exploited
to handle similar requests.

In the next chapter, this approach will be evaluated in the case of a service-
oriented E-government in a developing country like Cameroon. We will focus
on the improvement of quality of service especially in developing countries
where ICT infrastructure issues are important.

Distributed Dynamic Service Composition (2DSC) 126

The passions of the heart are more lively but less
constant than those of the mind

LAMENAIS

7
Validation of Distributed Dynamic
Service Composition (2DSC): Case
study on Cameroon e-government

implementation

Contents
7.1 Introduction . 129

7.2 E-government . 129

7.2.1 Context . 129

7.2.2 Definition . 131

7.2.3 E-government implementation approach 132

7.2.4 Our issue . 133

7.2.5 E-government research in developing countries . . . 134

7.2.6 motivation . 135

7.2.7 Cameroon e-government’s project structure 135

7.3 2DSC algorithm for Cameroon’s e-government project
. 136

7.4 DSC layer for Cameroon’s e-government system
with 2DSC approach 138

127

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

7.4.1 Simulation specifications 138

7.4.2 Distributed Dynamic Service Composition frame-
work generated . 143

7.4.3 Architecture . 144

7.4.4 Technical environment 145

7.4.5 Test’s results . 146

7.5 Synthesis . 153

Distributed Dynamic Service Composition (2DSC) 128

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

7.1 Introduction

This part aims to show how our proposed model based on 2DSC archi-
tecture can improve dynamic service composition especially in E-government
in a developing country like Cameroon. Our study will start with the pre-
sentation of the context of our study in developing countries, the definition
of E-government and the methods to implement it and some issues of the
concept. Then we will propose an architectural model of information sys-
tems based on our proposed framework in developing countries particularly
in Cameroon where the administration is structurally and territorially decen-
tralized and where there are many problems of ICT’s infrastructures. An
illustration of our proposal will be focused on improving the collaboration
between Cameroonian public administration information’s systems.

7.2 E-government

This part will present the context of the experimentation of our model on
E-government. Then we will present the concept of e-government, its definition
and the problems it raises during its implementation. It will also be clearly
exposed the precise problem that our solution brings in the service-oriented
e-government both in a general way and in a particular way in the developing
countries.

7.2.1 Context

In the developing countries, the debate on the relevance and contribution of
ICT in the development process compared to the basic social infrastructure has
found a better balance in the views (Osterwalder, 2003). Indeed, ICT do not
solve the basic social problems arise but is rather a tool that can facilitate the
access, the availability and the proper functioning of the services responsible to
provide the answers to these priority needs of populations in these areas. Some
therefore believe rightly that it is an instrument to facilitate the achievement
of the MDGs (of Science and Technology, 2006) and a better tool for good
governance (Bertot et al., 2010).

One of the best ways to make visible the social and economic impact of
ICTs is to make use of them in the different approaches to public governance
of the states. Electronic government called E-Government or E-Gov (Relyea,
2002), is since many years seen as an important aspect in accelerating the
growth in developing countries by creating a lot of opportunities among which

Distributed Dynamic Service Composition (2DSC) 129

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

the cost reduction and efficiency gains, the quality of service delivery to busi-
nesses and customers, the transparency, the anti-corruption, the accountabil-
ity, the increase of the capacity of government, the network and community
creation, the improvement of the quality of decision making, and they promote
the use of ICT in other sectors of the society (Ndou, 2004).

But different applications and platforms that cover the overall range of the
E-Government implementation area need to interoperate in order to provide
integrated governmental services to the citizens and businesses (Yan and Guo,
2010) (Peristeras et al., 2009). So researchers have proposed in the area of en-
hancing e-government interoperability to use common models and/or ontolo-
gies (Peristeras et al., 2009). And others propose the use of Service Oriented
Architecture to potentially address more those needs and provide a modern
application architecture for the interaction of existing and new distributed
systems (Yan and Guo, 2010).At the same way, to overcome lack of interoper-
ability’s situation, researchers propose the use of a designed semantic platform
to easy public administration to cooperate and expand the accessibility of ser-
vices in a broad sense (Sabucedo and Anido-Rifón, 2006). The authors argue
that Service oriented architectures, methodologies and tools, together with
the conceptual and empirical framework of web services have a high potential
to assist public administrations in ongoing e-government innovation processes
cite ref131.

In view of the particular context of developing countries (Ndou, 2004) (Yan
and Guo, 2010), an SOA-oriented E-government solution must be able not only
to improve existing methods of collaboration between public administrations
information systems, but also to provide an appropriate response to the envi-
ronments of these special countries.

In fact, developing countries are countries which are not yet developed.
They are the countries of the south and present transitional infrastructural
characteristics, ie they are moving from traditional to modern environment.
To describe developing countries in the context of information and communi-
cation technologies, we can observe them on the infrastructural level, on the
political level and on the human or cultural level (Motahari-Nezhad et al.,
2018). In fact, developing countries are characterized by a low energy supply,
the availability of which can sufficiently support the permanent commissioning
of infrastructures dedicated to ICT (Mulugetta et al., 2019). There is low en-
ergy coverage which causes equipment to be switched off and this leads to the
unavailability of several services accessible via computers. In terms of human
capital, and culture, the use of tics has become real and it has spread through
the use of cell phones. This reality is especially favored by the juvenization of
the population (Hossain et al., 2019; Demissie et al., 2016). On the political

Distributed Dynamic Service Composition (2DSC) 130

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

level, several states have evolved their legal orders to adapt to the new situ-
ation (Ngeminang, 2012). Cameroon is one of the countries of sub-Saharan
Africa which has launched its electronic government project since 2000 with
technical support from Korea (MINPOSTEL, 2020; ANTIC, 2017). it has also
previously set up a far-reaching telecommunications and internet infrastruc-
ture.

It is in this context that the evaluation of the 2DSC in the new service-
oriented E-government paradigm is presented. It will be the way to verify
the improvement of the service composition process during the processing of
requests despite the problem of physical interconnectivity of the information
systems of public administrations and other takesholders.

7.2.2 Definition

E-government is about reinventing the way in which governments interact
with citizens, governmental agencies, businesses, employees, and other takesh-
olders; it is also about enhancing the democratic process and also about using
new ideas to make life easier for citizens (Lofstedt, 2012b). E-Government
is a powerful guiding vision for the transformation of public administration.
It has many definitions according to the literature and all these definitions
integrate the notion of public service, the facilitation of the collaboration be-
tween public administration and its partners, and the use of the technological
infrastructure.

Thus, E-government refers to the delivery of national or local government
information and services via the Internet or other digital means to citizens or
businesses or other governmental agencies (Palvia and Sharma, 2007). Accord-
ing to World Bank, E-Government refers to the use by government agencies
of information technologies (such as Wide Area Networks, the Internet, and
mobile computing) that have the ability to transform relations with citizens,
businesses, and other arms of government. It is an innovative way of the pro-
duction and delivery of government services through IT applications, used to
simplify and improve transactions between governments and citizens (G2C),
businesses (G2B), and other government agencies (G2G) (Sharma, 2006).

The benefits of e-government usually include improved quality of citizen
services, internal efficiencies, law enforcement, education and information, pro-
motion and outreach activities, safety and security, health care services and
management, and involvement of citizens in the democratic process (Sharma,
2006). The table 7.1 summarizes the characteristic differences between the
traditional government and e-government organizations (Sharma, 2006).

Distributed Dynamic Service Composition (2DSC) 131

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Table 7.1 – characteristic differences between traditional government and e-
government organizations

Traditional government E-government

Bureaucratic controls, clear authority
hierarchy

Client service and community
empowerment, leveled/blurred

hierarchy
Process centricity Customer centricity

Isolated administrative functions and
data collection

integrated resource service and
knowledge focus

Functional specialization of units or
geographic bias

Breakdown of unit barrier,
government integration

Decision based on uniform rules and
awkward reporting approvals

Decision based on negotiation and
implicit controls and approvals

Isolated administrative functions integrated resource services
Disjointed information technologies Integrated network solutions

Time-consuming process Rapid streamlined responses

7.2.3 E-government implementation approach

Many researchers have been done in the field of the implementation ap-
proach of E-government (Heeks and Bailur, 2007). Authors proposed four
stages to offer a path for governments to follow and suggest challenges, both
in terms of the organization and technical aspects (Layne and Lee, 2001): cata-
loguing, transaction, vertical integration, and horizontal integration described
as below.

— cataloguing: in stage one of cataloguing, initial efforts of state govern-
ments are focused on establishing an on-line presence for the government.
Many state governments’ efforts on web development and forms-on-line
initiatives belong to this stage;

— transactional: in this second stage, e-government initiatives will focus
on connecting the internal government system to on-line interfaces and
allowing citizens to transact with government electronically;

— Vertical integration: Vertical integration refers to local, state and federal
governments connected for different functions or services of government;

— horizontal integration: horizontal integration is defined as integration
across different functions and services. So systems in both agencies talk
to each other or work from the same database.

Distributed Dynamic Service Composition (2DSC) 132

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

These stages are mainly based on technical, organizational and managerial
feasibilities and corresponding examples. They suggested that e-government is
an evolutionary phenomenon and therefore e-government initiatives should be
accordingly derived and implemented. Some researches proposed five stage-
model of e-government framework which are emerging, enhanced presence, in-
teractive presence, transactional presence and networked presence (Palvia and
Sharma, 2007). This approach takes the above approach by simply exploding
the first stage (cataloging) in 2 stages (emerging and enhance presence).

7.2.4 Our issue

Researches in the field of e-government are mainly focused on E-service, E-
security, interaction, e-democracy and management and organization defined
as follow (Palvia and Sharma, 2007).

— E-Services form an emerging field which is rapidly gaining attention and
importance. Citizens expect and demand governmental services with a
high degree of quality, quantity, and availability in a 24-hour, seven-
days-a-week, and year-round fashion;

— E-Democracy is explored as a subset of the greater, and more important,
philosophical topic of democracy itself. E-Democracy focuses on the use
of information and communication technologies in supporting democratic
decision-making processes and in allowing more effective and transparent
engagement between government, business, and citizen;

— Organization and Management: There is a need to develop theories,
models, and methods within the area of e-government. Thus far, the
research has mainly involved descriptive studies, philosophical studies,
theoretical research, and empirical studies;

— E-Security: E-Government services have to be secure with regards to all
aspects, so that the government and the users trust the system and feel
confident in using it. Security is critical since it can influence citizens’
willingness to adopt the services offered;

— Interactions: there have been a number of categories identified for inter-
action within e-government: government-to-citizen (G2C), government-
to-employee (G2E), government-to-government (G2G), and government-
to-business (G2B). Each uses Internet technology to provide government
services online.

Cameroon is making progress in the implementation of an e-governance
system. In accordance with the step-by-step approach above, we can situ-
ate this implementation of its e-government’s projet at the level of service’s

Distributed Dynamic Service Composition (2DSC) 133

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

transactions between administrations and between administration and others
(citizen, employee, business). It is therefore at the level of interactive e-services
that the challenge lies, i.e. the integration and the use of services belonging
to another administration and others takesholders in the computer system of
a given administration. These service’s transactions must be dynamic with
regard to the limits of static composition. That is why this work aims to
improve dynamic service composition (the quality of interactions) in service-
oriented architecture based e-government in general and particulary in the
environments of the developing countries of which Cameroon is a part.

7.2.5 E-government research in developing countries

Research in the field of e-government in developing countries has made sub-
stantial progress and researchers had primarily focused on gaining an under-
standing of the adoption and usage of ICT in governments focusing on explor-
ing the implications of transforming traditional governments to e-government,
as well as the challenges and constraints to the implementation and advance-
ment of e-government (Fonou Dombeu and Rannyai, 2014).

This paradigm is became one with research theories and some future re-
search directions from a methodological point of view pay more attention to
improve the quality of research (Wahid, 2012). Thus, the integration of het-
erogeneous and distributed services to achieve interoperability of Information
and Communication Technology (ICT) is then became the real challenge for
the e-government and the Service Oriented Architecture has emerged over the
past several years as a preferred approach to deal with this issue (Das et al.,
2010).

Many papers address the technical design of systems for successful imple-
mentation of e-government initiatives (Fonou Dombeu and Rannyai, 2014).
Several researchers have proposed models and frameworks for the successful
development, monitoring and implementation of e-government in African coun-
tries and the preconditions for successful implementation of these initiatives
are also discussed (Wahid, 2012; Saleh et al., 2013).

Authors undertaking e-government research in Africa for example tackle
certain issues varied from country to country as challenges and opportuni-
ties of e-government in Africa, the proposal of e-government strategies, best
practices of e-government implementation, evaluation of government websites,
models and frameworks for implementing e-government, and assessment of
the state of e-government, the implication of e-government on public policy
and citizen roles and participation in e-government were, the accessibility of
e-government services, analysis of e-government readiness, and usage of ICTs

Distributed Dynamic Service Composition (2DSC) 134

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

in e-government implementation (Lu and Xu, 2017).
Thus, several works have focused on interoperability and integration prob-

lems between systems in e-government (Saleh et al., 2013; Wahid, 2012). The
service oriented approach has conquered space and the problems of applica-
tion collaboration in e-government are approached from an architectural view
(Fonou Dombeu and Rannyai, 2014; Alghamdi et al., 2011; Das et al., 2010).
Several studies have focused on a specific sector of activity such as health and
education by highlighting the ontologies of business fields (Saleh et al., 2013).

Compared to these different works, our study addresses an important and
updated part of service-oriented architectures to fulfill its use in developing
countries. Indeed, after admitting that the service oriented approach is the
most suitable for building collaborative platforms dedicated to public admin-
istrations, one of the advantages of SOA, which is the services composition,
must go beyond the manual and static principle to dynamic principle to cope
with changes of environments. The dynamic service composition has therefore
become an important research question where its optimization to deal with the
resulting scalability becomes a necessity for its pratical adoption (Baryannis
and Plexousakis, 2010; Lecue and Mehandjiev, 2009).

7.2.6 motivation

The reasons for this guidance are mainly related to the quality of the com-
munication infrastructure and the availability of electrical energy. Indeed, the
availability of computer systems is not assured when the electrical energy is
not available all the time. And in a service-oriented architecture, the avail-
ability of the registry and each service owner is essential for the good running
of the service composition and execution process.

Our solution which aims to reduce the number of interventions of the ser-
vice composition server by using composite service local backups, gives a way
to reduce considerably the rate of failures of the possible requests and also
gives a better way to disaster recovery. It will allow the availability of service
composition even when the composition engine and/or the registry is/are out
of service.

7.2.7 Cameroon e-government’s project structure

In November 2001, less than 10 percent of government agencies had a Web
presence and the value of data provided was poor. By August 2002, nearly
half of ministries have a Web presence, and other ministries and government
agencies have defined plans and timescales for their Web presence. There has

Distributed Dynamic Service Composition (2DSC) 135

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

been standardisation of Web site structure and appearance via the portal.
There has been an increase in the volume of data available online, including
budgets, government plans and regulations so businesses and citizens can get
access to some tender information online.

The Cameroon e-government’s project is a service orientated projet figure
7.1 with a transactional authority. To integrate various systems, both new
systems, and existing systems there are two main strategies: the bottom-
up and the top-down. The strategy’s implementation based on a bottom-up
approach when it needs to take into account several existing applications yet
used by many takesholders. The new systems are build on top down strategy
to take the service oriented vision at the beginning of the system design. The
structure of the Cameroon e-government is centralized around a certification
authority, which guarantees the security of transactions between the various
IT platforms.

This architecture also supplies, as indicated in the figure 7.1, a public
network which is open to transactions between all takesholders, and a private
network infrastructure which is dedicated only to government agencies. This
model started out around an idea of manual composition. Thus, the dynamism
of the environment cannot be taken into account. This will quickly make
the system become obsolete. This is why the dynamic service composition
approach can deal whith this issue and the scalability which is therefore the
crucial aspect of this process requires our interest.

We can observe that this architecture presents 4 major entities. Users or
citizens who can request services from an administrative entity via the Inter-
net form the first the entity. An another block is composed by government
information systems’s partners. The third block is composed by public admin-
istration systems that can interact with each other via a dedicated intranet
network based on a service registration structure (registry). The fourth com-
ponent is a certification authority; a public key infrastructure, which is at
the center of all transactions between all the information systems and other
entities.

7.3 2DSC algorithm for Cameroon’s e-government

project

The main problem that reduces the use of dynamic service composition
despite its importance over static composition is scalability (Baryannis and
Plexousakis, 2010; Lecue and Mehandjiev, 2009). The scalability has three
causes but solutions are not taking into account the number of user’s request

Distributed Dynamic Service Composition (2DSC) 136

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.1 – Cameroon PKI architecture (?)

(Lecue and Mehandjiev, 2009). This is why it is on this level we focus our
approach to deal whith this issue. We are proposing to improve the dynamic
service composition layer and that will act to improve the extension of e-
government, especially in developing countries.

We propose to extend application infrastructures with a local service com-
position system which will serve as a smart cache for the remote public com-
position engine. This middleware is provided as a plug-in for the application’s
infrastructure in such a way that the application developer has no addition task
to perform. It privately and locally processes a number of service composition
requests without soliciting the shared remote composition server. Algorithm
11 summarizes our idea.

The functions of our algorithm are described as follows:

— The function LocalEgovComposition takes a request and returns the
result of the composition at local level. The result can be good or not;

— The function LocalEgovCompositionMiss informs for the result of this
LocalEgovComposition;

— The function RegionalEgovServerComposition is the regional compo-
sition system. It takes a request parameter and returns a composition
path to the information system;

Distributed Dynamic Service Composition (2DSC) 137

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Algorithm 11 Basic algorithm of Distributed Dynamic Service Composition
(2DSC)

1: LocalEgovComposition
2: if LocalEgovCompositionMiss) then
3: RegionalEgovServerComposition
4: if RegionalEgovServerCompositionCacheMiss then
5: NationalEgovDynamicServiceCompositon
6: end if
7: end if

— The functionRegionalEgovServerCompositionCacheMiss is a sub-function
of RegionalEgovServerComposition which verifies if it exists a past
composition plan that can be used to treat the new request;

— The function NationalEgovDynamicServiceCompositon launches the
whole process of dynamic service composition at the national level.

7.4 DSC layer for Cameroon’s e-government

system with 2DSC approach

This part aims to build and evaluate a distributed simulator for 2DSC
approach into an e-government in a developing country like Cameroon. The
goal is to simulate the operation of such a technological infrastructure, evaluate
system performance and draw observations. A global architecture will first
serve to present the general vision of this integration.

7.4.1 Simulation specifications

According to previously considered scheme of SOA, the architecture of the
simulator consists of Application (the Service consumer, or the other words -
client), Registry of services (which includes the list of services with the corre-
sponding links) and Composition Engine (Service provider which is collecting
needable services) with its own algorithm of searching the outputs according to
inputs. Here on the scheme you can see how it works. Below we are describing
what exactly each component is doing in the architecture.

— Application part:

— Loading properties to communicate with Composition Engine (port,
hostname and so on);

Distributed Dynamic Service Composition (2DSC) 138

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

— Generating requests or using the text file with the list of requests
to send it to Composition Engine with input, output parameters;

— Receiving the response from the Composition Engine as a path from
input to output;

— Sending a request to Composition Engine to download correspond-
ing WSDL files;

— Creating the files with the content of WSDL files.

— Registry:

— Loading properties to connected to database stored information
about services.

— Receiving the request from the Composition Engine with Client’s
message:

— 1. Checking if input parameters exist;

— 2. Searching in database outputs correspondant to input pa-
rameters.

— Repeating 1 and 2 while find (or not) corresponding output;

— Send the response to Composition Engine about existing of the
parameters and their communications .

— send the WSDL file to Composition Engine.

Thus our data base is in the form of table, that contains the name of the
service, the name of the input and the output as well as the link where
the WSDL file exist in the file system. We can see the example of our
MySQL database as follows 7.2:

.

We can transform this data base to a directed graph, where arcs present
the name of the services that take a parameter as input and give another
parameter as output. The nodes are these parameters. The directed
graph that we can imagine is in the form shown in the figure 7.3: bellow:

.

— Composition Engine:

— Loading the information to communicate to a Registry of services;

— Receiving the message from Application;

— Sending parameters to register after splitting client’s message;

Distributed Dynamic Service Composition (2DSC) 139

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.2 – MySQL Data base

— Receiving the response from registry, start searching composition
with an algorithm(build a tree to find correspondence output);

— Composing the servers and send to client (if the composition is
found, otherwise send a message with corresponding result);

— Downloading the WSDL files from registry and send it to client.

The composition engine will create the root node of the tree representing
the input parameter requested by the application and create three tables
that will help to create the tree. The composition engine will, each time,
request the name of services as well as the name of the output parameters
for a given input in the aim of creating a tree to find the output parameter
requested by the application.

So, at the beginning there is a set of clients which are requesting the Appli-
cation to invoke Composition Engine for the services at the same time. They
are doing it using the messages consists of the information of which parameters
should be considered as an input and the output we want to receive. When
the message is delivered, Composition engine starts the searching algorithm

Distributed Dynamic Service Composition (2DSC) 140

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.3 – Transformation of the database to the Graph

which is sending the messages to the Registry step by step checking if the
parameters are exist and which outputs they are produced. This approach is
based on searching in a tree algorithm.

At the Database there is set of rows described the relationship between the
2 parameters: one with inputs and one with the outputs. So that we can build a
graph for simple representation of the relationship between parameters. In this
graph it is possible to find the path from each vertex to the others. Checking
all the neighbors of a vertex we are checking their neighbors and so on while
the simulator can find (or we sure it cannot) the corresponding output. After
the Composition Engine complete the composition services path, it sends that
path to the client, and afterall, sends the WSDL files corresponding to the
path.

Now imagine that Global Registry consists of millions of rows, meanwhile
in your application, for example, you are using not more than thousand (the
most popular ones). Or, for example, you are using several registries of services
and to make a composition you have to consider all rows in all registries, which
is, obviously, takes a lot of time. So that the searching time would be huge
each time while searching.

Now the proposed solution is considering adding to the simulator Local
Composition Engine (LCE) and Local Registry (LR). In this case the LCE
and LR will be stored locally with the Application, and so, according to our

Distributed Dynamic Service Composition (2DSC) 141

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

assumption, could help us to decrease the time to receive the response. To
improve the summary time to receive response the proposition is a solution
based on dividing the structure of our architecture by 5 components:

— Application (to serve a client);

— Local Registry which contains just needable information while;

— Global Registry would contain all the information about the services;

— Local Composition Engine which would work directly with application
and;

— Global Composition Engine to communicate with Global Registry.

Here you can see a description of each component, all the procedures they
do and how they are connected to each other. Here you can see the general
structure of the code. It is important to note, that Local Composition Engine,
Local Registry and Application (to serve a Client) could be put as one com-
ponent (even, for example, same machine or somewhere locally, on the client
side) while Global Composition Engine and Global Registry could be placed
elsewhere.

So that, according to our assumption, Client asks an Application for cer-
tain outputs, providing some inputs for it. At this point, Application sends
a message of a client to the Local Composition Engine with inputs. Using
its own algorithm, Local Composition Engine requests Local Registry for the
information. After the communication is finished, Local Composition Engine
makes a decision if it needs to send the same request to the Global Compo-
sition Engine (in case we didn’t find the path - send a message). And then
Composition Engine makes the same operation with Global Registry and sends
response to LCE (path with files). After receiving a response and has already
downloaded the files, Local Composition Engine needs to send the response to
Application (path with files) and send the same files and the information to
the Local Registry to put data in it.

As you can see, at the beginning, when the Local Registry is empty, the
time for the response will be even bigger, than if use simple system from the
first approach. But after the Client requested for the same outputs using
already used inputs, we can see that finding the data in Local Composition
Engine, which is much smaller, takes less time, so that this approach can
reach the goal of the project. The detailed architecture of the project you can
see below from Java point of view you can see below. Here we have set of
Interfaces, market as blue, and also classes (yellow) 7.4.

Distributed Dynamic Service Composition (2DSC) 142

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.4 – Architecture of the Simulator

7.4.2 Distributed Dynamic Service Composition frame-
work generated

Our proposed dynamic service composition approach leads to a generated
dynamiccomposition framework presented in figure 7.5 is an hierarchical struc-
ture of three main levels. We have the local level, the intermediate our middle
levels which the number depends on the administrative or territorial structure
of the organization, and the national level. Each level is composed of two
components: a composition plan library, a service repository. A monitoring
support makes it possible to establish coherent communication at the different
levels and is responsible for updating the service registries and libraries.

In fact, the process begins by the sending of a user’s request to the client
system. The client system sends the request to his local composition engine.
This local composition engine checks in its composition library if it has already
processed such a request. If so, its composition path is then used to process the

Distributed Dynamic Service Composition (2DSC) 143

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.5 – DSC layer for Cameroon SOA based e-government

request without involving the remote composition server and by relying on the
local registry. The composition path is then return to the local composition
which will return it to the client. If this request is new for the system, it is
sent to the remote service composition which will repeat the same process at
its level.

7.4.3 Architecture

Based on the the figure 7.1 we can deduce the following figure 7.6 as the
old approach architecture of the the centralized e-government’s project.

with our 2DSC we can deduce the following decentralized architecture 7.7

Distributed Dynamic Service Composition (2DSC) 144

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.6 – Current DSC for e-government

as the new architecture.

7.4.4 Technical environment

— Environment Intellij IDEA: it is a Java integrated development environ-
ment. It is User-Friendly and easy to integrate with database. It is also
GIT-supportive;

— Programming languages: we used Java. It is a popular object-oriented
programming language with code reusability. It is used to build the
simulator which is divided into blocks (Application part, Composition
Engine part, Registry part);

— Data base: we used MySQL which is a relational database management
system. It is used to store the information about services;

— Operating system: Our OS was Linux (Ubuntu). It is an open-source

Distributed Dynamic Service Composition (2DSC) 145

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.7 – 2DSC for Service oriented e-government

software operating system, fast for development, highly secured.

7.4.5 Test’s results

This section is reserved for the presentation of the results of the tests car-
ried out to test the theoretical demonstrations made around our model. We
will launch dynamic composition processes without the distributed architec-
ture by gradually increasing the data to observe the behavior of the device.
Then we will resume this process in an environment integrating our approach.
A comparison will then be made to highlight the performance gaps of our

Distributed Dynamic Service Composition (2DSC) 146

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

2DSC model. At the end, we will simulate a power failure by successively
shutting down the remote composition engine and the service registry. We
will thus draw the beneficial consequences of our approach in an e-government
environment in developing countries.

It should be noted that in the modeling that follows, each application is
considered a computer system of a government structure. Thus, the experi-
ments made between several applications represent the cooperation between
these different state entities.

7.4.5.1 Basic test results

Let us consider the public agency A that send P4 as input and P1 as output.
we need services s2, s8. Let us consider the public agency B that send P1 as
input and P5 as outputs. we need services s1, s6 and s4. Let us consider the
public agency C that send P4 as input and P3 as outputs. we need services s2,
s8,s1 and s3. After making some experiments we receive the time to reach the
response in the 2DSC and the approach without 2DSC noted in the table7.2.

Figure 7.8 – Basic test results

Table 7.2 – Basic test’s results with estimation time in seconde

Requests Services Without
2DSC

With 2DSC
/first time

With 2DSC/
second time

P4 → P1 S2, S8 0,214846138 0,486304783 0,166178036
P1 → P5 S1, S6, S4 0,416030016 0,860169026 0,253286912
P4 → P3 S2, S8, S1, S3 0,416891526 0,919836546 0,325509476

Distributed Dynamic Service Composition (2DSC) 147

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

So the request column in the table 7.2 means the inputs and outputs given
by user. Here each P consists of a set of some parameters. The next column
is dealing with the services used to reach the output parameters. You can see
the response time with a new approach, performed for the first time, when
the registry is empty and the request needs to pass all the way to the local
composition engine, remote composition engine and both registries. And at
the end, you can see results when the simulator puts already something in
the local registry, so that there is no need to make the big circle. As we can
observe, the time of response to reach the application is decreased by 20-30%.

One of the challenges was also to check how the simulator will be work
both with big amount of requests from one Application and when the amount
of Applications is decreased. For this purpose some amount of requests (10,
25, 100, 1000) was considered and checked how the simulator is doing in case
of 1 application is requesting for the response and if there are 2 or 4. So, after
tasting we obtained such results:

Distributed Dynamic Service Composition (2DSC) 148

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

7.4.5.2 Case of dynamic service composition without 2DSC ap-
proach

Table 7.3 – Simulation without 2DSC approach with estimation time in sec-
onde

Requests 1 application 2 applica-
tions

4 applica-
tions

10 14.95 15.05 17.69
25 36.29 36.85 49.27
100 154.19 158.10 235.08
1000 1537.06 1583.76 2354.13

As we can see in the table 7.3, the response time for 4 application increased
almost 1.5 times compared with the results of the work of 1 application. This
increase in the response time we observe is consistent with our approach which
considers that this response time of a request depends both on the amount of
data (number of services available) in the service registry and the number
of composition plan clients requesting the composition server. Thus, as the
number of clients increases, the response time becomes as long. Just as it gets
long when the number of service increases in the registry. This is one of the
problem our approach have to resolve.

7.4.5.3 Case of dynamic service composition based on distributed
approach

Table 7.4 – Simulation with 2DSC approach with time estimation in seconde

Requests 1 application 2 applica-
tions

4 applica-
tions

10 11.55 13.55 13.45
25 36.14 34.02 36.22
100 143.99 151.88 162.52
1000 1266.81 1492.51 2062.95

The table 7.4 shows that at the same time, the Simulator presents good
results with our distributed approach. Certainly this time always increases
when several applications solicit the composition plan server, but it does not

Distributed Dynamic Service Composition (2DSC) 149

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

believe with the same ampleness. Also, according to the initial example 7.2,
during the next execution, our approach will still allow to reduce the response
time. This can leed us to the next comparisons.

7.4.5.4 Comparison of results

In the figure 7.9, the figure 7.10 and the figure 7.11, blue line is performance
with current approach and red one is with 2DSC approach.

Figure 7.9 – Graphic representation of performance on current and new ap-
proaches in case of 1 Application

As we can see, the 2DSC approach is decreasing the time for response to
a client. It should be noted that performing a request takes a long time. For
the case of 1 or 2 applications, the performing time is very similar, but if to
compare with the case of 4 applications, it takes approximately 1.5 times more
to perform requests come from 4 applications.

7.4.5.5 Latency and Throughput

So, to measure the latency we count how big is the tail latency, and to
achieve this goal we counted the amount of different requests (for which we
suppose to call remote composition server), choose the max from it and the
size of a registry and divide on the amount of requests. Throughput is counted
by the amount of request done per second. As you can see it increased 30%
compared with the current approach.

Distributed Dynamic Service Composition (2DSC) 150

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.10 – Graphic representation of performance on current and new ap-
proaches in case of 2 applications

Figure 7.11 – Graphic representation of performance on current and new ap-
proaches in case of 4 applications

7.4.5.6 Case of power failure

Developing countries are mainly characterized by the lack of permanent
and stable electrical energy. To assess the ability of our approach to better
integrate in this type of country like Cameroon, we will decommission the
remote composition engine and the service registry after a certain number of
operating hours and launch the experiments and evaluate the failure rate of the

Distributed Dynamic Service Composition (2DSC) 151

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

Figure 7.12 – Representation of tail latency

requests in one application. It is obvious that the current approach does not
allow the operation of the system when one of the components is unavailable.
For this reason, the automaton of each system is one of the priorities in the
environment of dynamic service composition in developing countries.

Table 7.5 – Simulation of power failure

Time in hour Rate of failure
10 50.45
25 24.22
100 15.52
1000 4.95

It is observed that the number of requests unable to find an answer locally
when the remote composition server is unavailable is reduced over time. It is
the same with the unavailability of the registry. This proves that our approach
allows to build in time a certain autonomy with the client of composition. This
may allow the running of a system, although some entities may not be able to
collaborate for multiple reasons. What is important in developing countries
like Cameroon.

Distributed Dynamic Service Composition (2DSC) 152

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

7.4.5.7 Conclusion

The above results that emerge from the experiments have sufficiently shown
the effectiveness of the dynamic service composition model based on the 2DSC
architecture. These results allowed observing a net saving of time during dy-
namic service composition processes when the client applications of compo-
sitions have the capacity to store composition plans that are served to them
during their requests. These plans can also be used to build local registries that
can be used to generate local composition plans. This autonomy is therefore
observed within these client applications over time with respect to the remote
composition server. This ability to empower composition plan customers not
only frees the composition engine, but also gives them the opportunity to deal
with certain constraints related to infrastructural failures, particularly those
related to electrical energy, which is fundamental to the proper functioning of
computer systems.

7.5 Synthesis

In the previous chapter an distributed dynamic service composition frame-
work has been presented. It is an approach of decentralization of the dynamic
service composition based on personalized publication of composite services.
Theoretically, this approach makes the process more effective than the current
centralized method. This chapter is focused on the experimental validation of
our new model and especially its adaptability to improve the performance of
e-government in developing countries like Cameroon.

It started by revisiting the general concept of e-government, the stages
of its implementation and its issues for its proper functioning. The chapter
presented some issues of implementation of e-government based on service-
oriented architecture in developing countries. We finally presented the SOA
based e-government that takes into account our approach and evaluated its
effectiveness in the context of developing countries like Cameroon.

In general, the 2DSC approach has enormous experimental performance.
There is a marked improvement in the response time during transactions in
the system. To take into account some infrastructural problems such as lack
of electrical power that can disturb availability of some resources, we have
simulated the system by decommissioning some infrastructures such as the
composition plan server or the registry to observe a satisfactory rate of suc-
cessful transactions.

Also, this new approach is sufficiently adapted to decentralised and hierar-

Distributed Dynamic Service Composition (2DSC) 153

CHAPTER 7. VALIDATION OF DISTRIBUTED DYNAMIC SERVICE
COMPOSITION (2DSC): CASE STUDY ON CAMEROON

E-GOVERNMENT IMPLEMENTATION

chical architectures like the public administration. It is thus possible, to place
each information system as a composition plan server or registry for others
systems which are situated in the lower administrative level. And this is very
effective.

The next part will conclude our research process.

Distributed Dynamic Service Composition (2DSC) 154

Part IV

GENERAL CONCLUSION

155

Ignorance more frequently breeds self-confidence
than does knowledge.

C. Darwin

8
Conclusion

Contents
8.1 Context . 157

8.2 Problem . 157

8.3 Methodology . 158

8.4 Contribution . 158

8.4.1 Analysis of the impact of current approach on the
known 3 causes of scalability problem in dynamic
service composition 158

8.4.2 Distributed approach to deal with scalability prob-
lem in dynamic service composition 159

8.5 Limits and futurs works 160

8.5.1 Develop a dynamic service composition tool 160

8.5.2 Monitoring optimization 160

8.5.3 Grid of dynamic service composition service 160

156

CHAPTER 8. CONCLUSION

8.1 Context

Cameroon has launched for several years a major project to modernize its
administration. It has developed technological infrastructure to support this
great ambition aimed at collaboration between its various information systems.
Also, advances in web technologies and standards have strongly contributed to
the adoption of service-oriented architectures as a new architectural paradigm
for interoperable application development. One of the major advantages of
this model is service composability. But, it is sometimes necessary to collabo-
rate several services in order to fill a more complex task. This is called service
composition. It can be static or dynamic, manual or automatic. Taking ad-
vantages to the advent of the semantic web, dynamic service composition has
taken over the static model which presents many gaps on the evolutionary
level of applications.

In an another plan, dynamic service composition has a life cycle. It begins
with the description of the services, their location, their selection, the gener-
ation of the composition plans capable of giving an effective response to the
processed request, the selection and execution of the best composition plan,
and the publication of the composite service. Thus, to optimise the dynamic
service composition and deal with scalability issue, the researchers proposed
methods to make each of these steps less expensive.

But with the development of many services and the multiplicity of actors
in the cyberspace, dynamic composition optimisation methods lose their ef-
ficiencies and must deal with the scalability issue. So these algorithms are
inefficient in real world. It is in this context that this work was done.

8.2 Problem

The main problem of this work consisted in defining on the basis of the
known sources of scalability, an approach able to optimize the dynamic ser-
vice composition process. To ensure that the main problem is answered, the
following secondary issues were addressed:

1. Analysis of current solutions to deal with scalability in dynamic service
composition related its three known sources;

2. On the basis of this analysis, the second issue was to propose a new
approach which can deal with the scalability problem in dynamic service
composition process;

3. The final issue was to propose a model more adapted to implement the
Cameroon’s e-government project based on service oriented architecture.

Distributed Dynamic Service Composition (2DSC) 157

CHAPTER 8. CONCLUSION

These concerns have been addressed during this work and the results have
been clearly laid out.

8.3 Methodology

Among its many advantages, scalability is one of the most important design
goals for developers of distributed systems because of Worldwide connectivity
through the Internet is rapidly becoming as common as being able to send a
postcard to anyone anywhere around the world (Raymond, 1995). A system
is said to be scalable if it can handle the addition of users and resources
without suffering a noticeable loss of performance or increase in administrative
complexity (ord Neuman, 1994). This is why the distributed approach seemed
relevant to us to provide a solution to the concerns observed during our analysis
of the solutions in the literature review.

8.4 Contribution

Over the course of these, service-oriented architectures have been studied
extensively and an emphasis has been placed on the work done to deal with the
scalability in dynamic service composition process which is our main research
subject.

As the main contribution, this work proposed a dynamic service composi-
tion approach capable to deal with the difficulties related to scalability. We
can mention specifically:

8.4.1 Analysis of the impact of current approach on the
known 3 causes of scalability problem in dynamic
service composition

The state of art has allowed us to make a global study of the solutions that
the researchers brought to the scalability issue which slows down the adoption
of the dynamic service composition in the real world. We evaluated the impact
of each solution on the three known causes of scalability in the dynamic service
composition issue. We observed that these solutions consist in performing each
stage of the composition process but do not impact all the three known causes
of scalability. The researches are focused in great nomber of service and the
complexity of client requests. Indeed, the number of requests which is one

Distributed Dynamic Service Composition (2DSC) 158

CHAPTER 8. CONCLUSION

of the sources of scalability in dynamic service composition is not taken into
account in the different approaches.

Indeed, the analysis shows that the stages of the dynamic service composi-
tion life cycle are oriented towards the two main sources of scalability namely
the number of services and the complexity of the requests. The third cause,
which is the number of requests, has no directly linked with the activities
of performing each stage of the process. So it cannot therefore be solved by
performing the stages of the dynamic service composition process. This may
explain why it is not taken into account like the other two causes of scalability.

It is on this basis that we have proposed a distributed approach which to
deal with the scalability by taking into account the number of requests aspect.

8.4.2 Distributed approach to deal with scalability prob-
lem in dynamic service composition

One of the known causes of scalability is not taken into account in the
current solutions which are performing each stage of a dynamic service com-
position process. This is the number of customer requests. This important
factor can explain the persistent scalability problems in the dynamic service
composition despite the major solutions already existed.

To take this factor into account, we propose a distributed system involving
the infrastructure of the end user systems in this process. We have proposed
an architecture that can support this vision. We have demonstrated theoreti-
cally and then by experimentation that this approach is optimal compared to
the non-distributed approach. The main components of our system were pre-
sented, their interactions were structured and a monitoring middleware for the
synchronization between the client systems and the remote server was detailed.

We have first formalized the objective of our idea of performing the process
to make our approach understandable as well as the solution. Our approach
makes each system semi-autonomous over time. This approach aims to decen-
tralize the dynamic composition operations of services in all end-user systems
of the composition server. This approach decongests the composition server,
which finds itself managing only the new requests that arrive in the system.

Concretely, we consider a composition plan as a file desired by a end users.
We therefore propose to publish this and store this information at the client
level and at composition server level. This would make it possible to locally
build a registry of composite services that can locally provide responses to
redundant requests submitted in a client systems. This approach also makes
it possible to cluster the services in a personalised orientation. Also, this

Distributed Dynamic Service Composition (2DSC) 159

CHAPTER 8. CONCLUSION

approach seems to be adapted to the environments of the developing coun-
tries because it requires very little in time, a strong collaboration between the
principal entities which are the customer, the global services registry and the
remote composition engine.

8.5 Limits and futurs works

Our analysis presented a limit of the solutions aiming to solve the problem
of scalability in the dynamic service composition. We have proposed for this
a new distributed approach which uses end user infrastructures participation
to solve this scalability problem. In view of the proposed architecture and the
collaboration mechanisms between its various components, there are several
aspects which are identified as possible directions for future research activities
and some limits.

8.5.1 Develop a dynamic service composition tool

The limit of our study is basically linked in the fact that we have not
found a framework of dynamic service composition on which to evaluate our
approach and make comparisons. This is why in the future works, we will
develop this tool.

8.5.2 Monitoring optimization

Our architecture requires a middleware that ensures consistency between
the information available at the composition server level and the composition
client systems. For optimal operation and correct synchronization between the
various players, it is necessary to define a less expensive communication policy
so as not to overload the network. We can foresee an offline communication by
detecting the inactivity of an actor and offering him updates for his system.
Moving forward, we plan to also integrate the load balancing process to only
offer effective composition plan using services with low point solicitation.

8.5.3 Grid of dynamic service composition service

It is also possible to think about setting up a dynamic service composition
grid. This space of mutualization which would make it possible to put to use
several end-users to generate composition plans in parallel. In fact, the decen-
tralization of dynamic service composition lead to a distributed environment

Distributed Dynamic Service Composition (2DSC) 160

CHAPTER 8. CONCLUSION

and it is possible to think about the pooling of resources. Indeed, it is pos-
sible to each end-user system to build autonomously composition plans able
to be shared with other end-users. This would perform the process but will
require a monitoring and a certification mechanism to secure and harmonise
the approach.

Distributed Dynamic Service Composition (2DSC) 161

Bibliography

Abadi, M. and Manna, Z. (1986). Modal theorem proving. In International
Conference on Automated Deduction, pages 172–189. Springer.

Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A. P., and Verma,
K. (2005). Web service semantics-wsdl-s.

Alghamdi, I. A., Goodwin, R., and Rampersad, G. (2011). E-government
readiness assessment for government organizations in developing countries.
Computer and Information Science, 4(3):3.

Alwasouf, A. A. and Kumar, D. (2019). Research challenges of web service
composition. Software Engineering, pages 681–689.

ANTIC (2017). Stratégie des télécommunications et tic.

Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., and Plebani, P. (2007).
Paws: A framework for executing adaptive web-service processes. IEEE
software, (6):39–46.

Arkin, A., Askary, S., Fordin, S., and Jekel et al., W. (2002). Web Service
Choreography Interface (WSCI) 1.0. Standards proposal by BEA Systems,
Intalio, SAP, and Sun Microsystems.

Atsa Etoundi, R. and Ndjodo, M. F. (2005). Human resource constraints
driven virtual workflow specification. In SITIS, pages 176–182.

Barrett, R., Patcas, L. M., Pahl, C., and Murphy, J. (2006). Model driven dis-
tribution pattern design for dynamic web service compositions. In Proceed-
ings of the 6th international conference on Web engineering, pages 129–136.
ACM.

Baryannis, G. and Plexousakis, D. (2010). Automated web service compo-
sition: State of the art and research challenges. ICS-FORTH, Tech. Rep,
409.

162

BIBLIOGRAPHY

Belouadha, F.-Z., Omrana, H., and Roudies, O. (2012). A mda approach
for defining ws-policy semantic non-functional properties. arXiv preprint
arXiv:1201.1481.

Benatallah, B., Hacid, M., Léger, A., Rey, C., and Toumani, F. (2005). On
automating web services discovery. VLDB J., 14(1):84–96.

Benatallah, B., Hacid, M., Rey, C., and Toumani, F. (2003a). Request
rewriting-based web service discovery. In The Semantic Web - ISWC 2003,
Second International Semantic Web Conference, Sanibel Island, FL, USA,
October 20-23, 2003, Proceedings, pages 242–257.

Benatallah, B., Hacid, M.-S., Rey, C., and Toumani, F. (2003b). Request
rewriting-based web service discovery. In International semantic web con-
ference, pages 242–257. Springer.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Sci-
entific american, 284(5):34–43.

Bernstein, P. A. (1996). Middleware: a model for distributed system services.
Communications of the ACM, 39(2):86–98.

Bertot, J. C., .Jaeger, P. T., and Grimes, J. M. (2010). Using icts to create
a culture of transparency: E-government and social media as openness and
anti-corruption tools for societies. Government Information Quarterly 27.

Bevilacqua, L., Furno, A., Di Carlo, V. S., and Zimeo, E. (2011). A tool for
automatic generation of ws-bpel compositions from owl-s described services.
In 2011 5th International Conference on Software, Knowledge Information,
Industrial Management and Applications (SKIMA) Proceedings, pages 1–8.
IEEE.

Blake, M. B., Tan, W., and Rosenberg, F. (2010). Composition as a service
[web-scale workflow]. IEEE Internet Computing, 14(1):78–82.

Bosca, A., Ferrato, A., Corno, F., Congiu, I., and Valetto, G. (2005). Compos-
ing web services on the basis of natural language requests. In Web Services,
2005. ICWS 2005. Proceedings. 2005 IEEE International Conference on.
IEEE.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen,
H. F., Thatte, S., and Winer, D. (2000). Simple object access protocol
(soap) 1.1.

Distributed Dynamic Service Composition (2DSC) 163

BIBLIOGRAPHY

Bucchiarone, A. and Gnesi, S. (2006). A survey on services composition lan-
guages and models. International Workshop on Web Services Modeling and
Testing.

Carman, M., Serafini, L., and Traverso, P. (2003). Web service composition
as planning. In ICAPS 2003 workshop on planning for web services, pages
1636–1642.

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., and Shan, M.-C. (2000a).
Adaptive and dynamic service composition in eflow. In International Confer-
ence on Advanced Information Systems Engineering, pages 13–31. Springer.

Casati, F., Ilnicki, S., Jin, L.-J., Krishnamoorthy, V., and Shan, M.-C. (2000b).
eflow: a platform for developing and managing composite e-services. In
Proceedings Academia/Industry Working Conference on Research Chal-
lenges’ 00. Next Generation Enterprises: Virtual Organizations and Mo-
bile/Pervasive Technologies. AIWORC’00.(Cat. No. PR00628), pages 341–
348. IEEE.

Castillo, P. A., Bernier, J. L., Arenas, M. G., Merelo, J., and Garcia-Sanchez,
P. (2011). Soap vs rest: Comparing a master-slave ga implementation. arXiv
preprint arXiv:1105.4978.

Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., and Tanca,
L. (1999). Xml-gl: a graphical language for querying and restructuring
xml documents1the work presented in the paper has been supported by
esprit project nr. 28771 ‘w3i3’, and murst project ‘interdata’.1. Computer
Networks, 31(11):1171 – 1187.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., et al. (2001).
Web services description language (wsdl) 1.1.

Clement, L., Hately, A., von Riegen, C., Rogers, T., et al. (2004). Uddi version
3.0. 2, uddi spec technical committee draft. OASIS UDDI Spec TC.

Cremene, M., Tigli, J.-Y., Lavirotte, S., Pop, F.-C., Riveill, M., and Rey, G.
(2009). Service composition based on natural language requests. In Services
Computing, 2009. SCC’09. IEEE International Conference on, pages 486–
489. IEEE.

Crotty, M. (1998). The foundations of social research: Meaning and perspective
in the research process. Sage.

Distributed Dynamic Service Composition (2DSC) 164

BIBLIOGRAPHY

Das, R., Patra, M., and Misro, A. (2010). Open source soa for e-governance.
In 7th International Conference on E-Governance ICEG.

de Bruijn, J., Lausen, H., Polleres, A., and Fensel, D. (2006). The web service
modeling language wsml: An overview. In Sure, Y. and Domingue, J., edi-
tors, The Semantic Web: Research and Applications, pages 590–604, Berlin,
Heidelberg. Springer Berlin Heidelberg.

De Vaus, D. (2001). Research design in social research. Sage.

Demissie, M. G., Phithakkitnukoon, S., Sukhvibul, T., Antunes, F., Gomes,
R., and Bento, C. (2016). Inferring passenger travel demand to im-
prove urban mobility in developing countries using cell phone data: a case
study of senegal. IEEE Transactions on intelligent transportation systems,
17(9):2466–2478.

D.Fensel, C.Bussler, A. (2002). Semantic web enabled web services. ACM, 31.

Domingue, J., Roman, D., and Stollberg, M. (2005). Web service modeling
ontology (wsmo)-an ontology for semantic web services.

Ehrig, M., Koschmider, A., and Oberweis, A. (2007). Measuring similarity
between semantic business process models. In Proceedings of the fourth
Asia-Pacific conference on Comceptual modelling-Volume 67, pages 71–80.
Australian Computer Society, Inc.

Endong, F. (2020). Prospects and Challenges of E-Government in Black
Africa: A Comparative Study of Nigeria and Cameroon, pages 662–677.

Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and De-
sign.

Erl, T., Carlyle, B., Pautasso, C., and Balasubramanian, R. (2012). Soa with
rest: Principles, patterns &constraints for building enterprise solutions with
rest. Prentice Hall Press.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003).
The many faces of publish/subscribe. ACM computing surveys (CSUR),
35(2):114–131.

Falou, M. E., Bouzid, M., Mouaddib, A.-I., and Vidal, T. (2009). Automated
web service composition: a decentralised multi-agent approach. In Proceed-
ings of the 2009 IEEE/WIC/ACM International Joint Conference on Web

Distributed Dynamic Service Composition (2DSC) 165

BIBLIOGRAPHY

Intelligence and Intelligent Agent Technology-Volume 01, pages 387–394.
IEEE Computer Society.

Fan, G., Yu, H., Chen, L., and Liu, D. (2013). Petri net based techniques for
constructing reliable service composition. Journal of Systems and Software,
86(4):1089–1106.

Fikes, R., Hayes, P., and Horrocks, I. (2004). Owl-ql: A language for deductive
query answering on the semantic web. Web Semantics: Science, Services
and Agents on the World Wide Web, 2(1).

Flannelly, K. J. and Jankowski, K. R. (2014). Research designs and making
causal inferences from health care studies. Journal of health care chaplaincy,
20(1):25–38.

Fonou Dombeu, J. V. and Rannyai, N. (2014). African e-government research
landscape. The African Journal of Information Systems, 6(3):2.

Foster, H., Uchitel, S., Magee, J., and Kramer, J. (2003). Model-based ver-
ification of web service compositions. In Automated Software Engineering,
2003. Proceedings. 18th IEEE International Conference on, pages 152–161.
IEEE.

Garriga, M., Mateos, C., Flores, A., Cechich, A., and Zunino, A. (2016).
Restful service composition at a glance: A survey. Journal of Network and
Computer Applications, 60:32–53.

Gekas, J. and Fasli, M. (2005). Automatic web service composition based
on graph network analysis metrics. In OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”, pages 1571–
1587. Springer.

Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., Anderson, T.,
Bershad, B., Borriello, G., Gribble, S., and Wetherall, D. (2004). System
support for pervasive applications. ACM Transactions on Computer Systems
(TOCS), 22(4):421–486.

Guan, H.-J., Meng, F.-R., Sun, J.-F., and Du, P. (2008). Web service discovery
based on the cooperation of uddi and df. In Wireless Communications, Net-
working and Mobile Computing, 2008. WiCOM’08. 4th International Con-
ference on, pages 1–4. IEEE.

Distributed Dynamic Service Composition (2DSC) 166

BIBLIOGRAPHY

Hammami, R., Bellaaj, H., and Kacem, A. H. (2018). Semantic web services
discovery: A survey and research challenges. Int. J. Semantic Web Inf.
Syst., 14(4):57–72.

Hashemian, S. V. and Mavaddat, F. (2005). A graph-based approach to web
services composition. In The 2005 Symposium on Applications and the In-
ternet, pages 183–189. IEEE.

Hassina Nacer Talantikite, Djamil Aissani, N. B. (2009). Semantic annota-
tions for web services discovery and composition. Computer Standards and
Interfaces, 31.

Hatzi, O., Vrakas, D., Bassiliades, N., Anagnostopoulos, D., and Vlahavas, I.
(2013). The porsce ii framework: Using ai planning for automated semantic
web service composition. The Knowledge Engineering Review, 28(2):137–
156.

Heeks, R. and Bailur, S. (2007). Analyzing e-government research: Perspec-
tives, philosophies, theories, methods, and practice. Government informa-
tion quarterly, 24(2):243–265.

Hossain, N., Yokota, F., Sultana, N., and Ahmed, A. (2019). Factors influ-
encing rural end-users’ acceptance of e-health in developing countries: a
study on portable health clinic in bangladesh. Telemedicine and e-Health,
25(3):221–229.

Huang, C., Xu, L. D., Cai, H., Li, G., Du, J., and Jiang, L. (2019). A context-
based service matching approach towards functional reliability for industrial
systems. Enterprise IS, 13(2):196–218.

Jaeger, M. C., Rojec-Goldmann, G., Liebetruth, C., Mühl, G., and Geihs, K.
(2005). Ranked matching for service descriptions using owl-s. In Kommu-
nikation in Verteilten Systemen (KiVS), pages 91–102. Springer.

Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., and Liu, Z. (2010). Qsynth:
A tool for qos-aware automatic service composition. In 2010 IEEE Interna-
tional Conference on Web Services, pages 42–49. IEEE.

Johnston, A. (2014). Rigour in research: theory in the research approach.
European Business Review, 26(3):206–217.

Jula, A., Sundararajan, E., and Othman, Z. (2014). Cloud computing service
composition: A systematic literature review. Expert systems with applica-
tions, 41(8):3809–3824.

Distributed Dynamic Service Composition (2DSC) 167

BIBLIOGRAPHY

Karakoc, E. and Senkul, P. (2009). Composing semantic web services under
constraints. Expert Systems with Applications, 36(8):11021 – 11029.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., and Bar-
reto, C. (2005). Web services choreography description language version 1.0.
World Wide Web Consortium, Candidate Recommendation CR-ws-cdl-10-
20051109.

Keller, U., Lara, R., Lausen, H., Polleres, A., and Fensel, D. (2005). Automatic
location of services. In The Semantic Web: Research and Applications,
Second European Semantic Web Conference, ESWC 2005, Heraklion, Crete,
Greece, May 29 - June 1, 2005, Proceedings, pages 1–16.

Klusch, M., Fries, B., and Sycara, K. (2006). Automated semantic web ser-
vice discovery with owls-mx. In Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, pages 915–922.
ACM.

Klusch, M., Gerber, A., and Schmidt, M. (2005). Semantic web service com-
position planning with owls-xplan. In Proceedings of the 1st Int. AAAI Fall
Symposium on Agents and the Semantic Web, pages 55–62. sn.

Kopeckỳ, J., Vitvar, T., Bournez, C., and Farrell, J. (2007). Sawsdl: Semantic
annotations for wsdl and xml schema. IEEE Internet Computing, (6):60–67.

Kreger, H. et al. (2001). Web services conceptual architecture (wsca 1.0). IBM
software group, 5(1):6–7.

Layne, K. and Lee, J. (2001). Developing fully functional e-government: A
four stage model. Government information quarterly, 18(2):122–136.

Lazovik, A., Aiello, M., and Gennari, R. (2005). Encoding requests to web
service compositions as constraints. pages 782–786.

Lécué, F., Delteil, A., and Léger, A. (2008a). Optimizing causal link based
web service composition. In ECAI, pages 45–49.

Lecue, F. and Mehandjiev, N. (2009). Towards scalability of quality driven
semantic web service composition. In 2009 IEEE International Conference
on Web Services, pages 469–476. IEEE.

Lécué, F., Silva, E., and Pires, L. F. (2008b). A framework for dynamic web
services composition. In Emerging Web Services Technology, Volume II,
pages 59–75. Springer.

Distributed Dynamic Service Composition (2DSC) 168

BIBLIOGRAPHY

Leite, L., Moreira, C. E., Cordeiro, D., Gerosa, M. A., and Kon, F. (2014).
Deploying large-scale service compositions on the cloud with the choreos
enactment engine. In 2014 IEEE 13th international symposium on network
computing and applications, pages 121–128. IEEE.

Li, J., Chen, S., Li, Y., and Zhang, Q. (2011). Semantic web service auto-
matic composition based on service parameter relationship graph. In IEEE
10th International Conference on Trust, Security and Privacy in Computing
and Communications, TrustCom 2011, Changsha, China, 16-18 November,
2011, pages 1773–1778.

Liao, Z., Teng, Z., Zhang, J., izhi Liu, Xiao, H., and Yi, A. (2019). A semantic
concast service for data discovery, aggregation and processing on NDN. J.
Network and Computer Applications, 125:168–178.

Lin, N., Kuter, U., and Sirin, E. (2008). Web service composition with
user preferences. In European Semantic Web Conference, pages 629–643.
Springer.

Lofstedt, U. (2012a). E-government-assesment of current research and some
proposals for future directions. International journal of public information
systems, 1(1).

Lofstedt, U. (2012b). E-government-assesment of current research and some
proposals for future directions. International journal of public information
systems, 1(1).

Lu, Y. and Xu, X. (2017). A semantic web-based framework for service com-
position in a cloud manufacturing environment. Journal of manufacturing
systems, 42:69–81.

Majithia, S., Walker, D. W., and Gray, W. (2004). A framework for automated
service composition in service-oriented architectures. In European Semantic
Web Symposium, pages 269–283. Springer.

Manna, Z. and Waldinger, R. (1983). Deductive synthesis of the unification
algorithm. In Computer Program synthesis methodologies, pages 251–307.
Springer.

Marchese, M. (2003). Service oriented architectures for supporting environ-
ments in egovernment applications. In 2003 Symposium on Applications and
the Internet Workshops (SAINT 2003), 27-31 January 2003 - Orlando, FL,
USA, Proceedings, pages 106–110.

Distributed Dynamic Service Composition (2DSC) 169

BIBLIOGRAPHY

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith,
S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al. (2004). Owl-s:
Semantic markup for web services. W3C member submission, 22(4).

McGregor, S. L. and Murnane, J. A. (2010). Paradigm, methodology and
method: Intellectual integrity in consumer scholarship. International journal
of consumer studies, 34(4):419–427.

McIlraith, S. and Son, T. C. (2002). Adapting golog for composition of se-
mantic web services. KR, 2:482–493.

McIlraith, S. A., Son, T. C., and Zeng, H. (2001). Semantic web services.
IEEE intelligent systems, 16(2):46–53.

Medjahed, B. and Atif, Y. (2007). Context-based matching for web service
composition. Distributed and Parallel Databases, 21(1):5–37.

Medjahed, B. and Bouguettaya, A. (2005). A multilevel composability model
for semantic web services. IEEE transactions on knowledge and data engi-
neering, 17(7):954–968.

Merrick, P., Allen, S., and Lapp, J. (2006). Xml remote procedure call (xml-
rpc). US Patent 7,028,312.

Meshkova, E., Riihijärvi, J., Petrova, M., and Mähönen, P. (2008). A sur-
vey on resource discovery mechanisms, peer-to-peer and service discovery
frameworks. Computer networks, 52(11):2097–2128.

MINPOSTEL (2020). Stratégie nationale de développement des tic.

Motahari-Nezhad, H., Shekofteh, M., and Kazerani, M. (2018). E-readiness
assessment of academic libraries: a case study in iran. Electron. Libr.,
36(2):193–207.

Mulugetta, Y., Hagan, E. B., and Kammen, D. (2019). Energy access for
sustainable development. Environmental Research Letters, 14(2):020201.

Nanda, M. G., Chandra, S., and Sarkar, V. (2004). Decentralizing execution of
composite web services. In ACM Sigplan Notices, volume 39, pages 170–187.
ACM.

Narayanan, S. and McIlraith, S. A. (2002). Simulation, verification and auto-
mated composition of web services. In Proceedings of the 11th international
conference on World Wide Web, pages 77–88. ACM.

Distributed Dynamic Service Composition (2DSC) 170

BIBLIOGRAPHY

Ndou, V. (2004). E-government for developing countries: opportunities and
challenges. The electronic journal of information systems in developing
countries, 18(1):1–24.

Ngeminang, A. (2012). e-government and the cameroon cybersecurity legisla-
tion 2010: Opportunities and challenges. South African Journal of Infor-
mation and Communication.

of Science, T. P. O. and Technology (2006). ICT in developing countries.
Postnote, 261.

Omer, A. M. and Schill, A. (2009). Dependency based automatic service
composition using directed graph. In 2009 Fifth International Conference
on Next Generation Web Services Practices, pages 76–81. IEEE.

Omrana, H., Belouadha, F., and Roudiès, O. (2010). A mda approach for de-
scribing web services policies. In Proceedings of the 3rd IEEE International
Conference on Web and Information Technologies (ICWIT’10), pages 449–
460.

Omrana, H., Belouadha, F.-Z., and Roudiès, O. (2012). A composability
model for efficient web service’s connectivity. In 2012 Fourth International
Conference on Intelligent Networking and Collaborative Systems, pages 483–
484. IEEE.

ord Neuman, B. C. (1994). Scale in distributed systems. ISI/USC.

Osterwalder, A. (2003). ICT in developing countries. Lausanne, Switzerland,
University of Lausanne, pages 1–13.

Palvia, S. C. J. and Sharma, S. S. (2007). E-government and e-governance:
definitions/domain framework and status around the world. In International
Conference on E-governance, pages 1–12.

Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K. (2002). Seman-
tic matching of web services capabilities. In International semantic web
conference, pages 333–347. Springer.

Papaioannou, I. V., Tsesmetzis, D. T., Roussaki, I. G., and Anagnostou, M. E.
(2006). A qos ontology language for web-services. In Advanced Information
Networking and Applications, 2006. AINA 2006. 20th International Confer-
ence on, volume 1, pages 6–pp. IEEE.

Distributed Dynamic Service Composition (2DSC) 171

BIBLIOGRAPHY

Papazoglou, M. P. (2003). Service-oriented computing: Concepts, charac-
teristics and directions. In 4th International Conference on Web Informa-
tion Systems Engineering, WISE 2003, Rome, Italy, December 10-12, 2003,
pages 3–12.

Patil, A. A., Oundhakar, S. A., Sheth, A. P., and Verma, K. (2004). Meteor-s
web service annotation framework. In Proceedings of the 13th international
conference on World Wide Web, pages 553–562. ACM.

Paulraj, D., Swamynathan, S., Chandran, D., Balasubadra, K., and Prem,
M. V. (2016). Service composition and execution plan generation of com-
posite semantic web services using abductive event calculus. Computational
Intelligence, 32(4):711–737.

Peltz, C. (2003). Web services orchestration and choreography. Computer,
(10):46–52.

Peña-López, I. et al. (2012). Un e-government survey 2012. e-government for
the people.

Peristeras, V., Tarabanis, K., and Goudos, S. K. (2009). Model-driven egovern-
ment interoperability: A review of the state of the art. Computer Standards
& Interfaces, 31(4):613–628.

Phan, M. and Hattori, F. (2006). Automatic web service composition using
congolog. In 26th IEEE International Conference on Distributed Computing
Systems Workshops (ICDCSW’06), pages 17–17. IEEE.

Platzer, C., Rosenberg, F., and Dustdar, S. (2009). Web service clustering
using multidimensional angles as proximity measures. ACM Transactions
on Internet Technology (TOIT), 9(3):11.

Ponnekanti, S. R. and Fox, A. (2002). Sword: A developer toolkit for web
service composition. In Proc. of the Eleventh International World Wide
Web Conference, Honolulu, HI, volume 45.

Pulparambil, S. and Baghdadi, Y. (2019). Service oriented architecture matu-
rity models: A systematic literature review. Computer Standards & Inter-
faces, 61:65–76.

Quinlan, C. (2011). Business research methods. cengage learning emea. Hamp-
shire.

Distributed Dynamic Service Composition (2DSC) 172

BIBLIOGRAPHY

Rao, J., Kungas, P., and Matskin, M. (2004). Logic-based web services com-
position: From service description to process model. In Proceedings. IEEE
International Conference on Web Services, 2004., pages 446–453. IEEE.

Rao, J., Küngas, P., and Matskin, M. (2006). Composition of semantic web
services using linear logic theorem proving. Information Systems, 31(4-
5):340–360.

Rao, J. and Su, X. (2005). A survey of automated web service composition
methods. Springer Berlin Heidelberg, 3387.

Rapti, E., Karageorgos, A., and Gerogiannis, V. C. (2015). Decentralised
service composition using potential fields in internet of things applications.
Procedia Computer Science, 52:700–706.

Raymond, K. (1995). Reference model of open distributed processing (rm-
odp): Introduction. In Open distributed processing, pages 3–14. Springer.

Relyea, H. C. (2002). E-gov: Introduction and overview. Government infor-
mation quarterly, 1(19):9–35.

Richter, M. M. (1993). Classification and learning of similarity measures. In
Information and Classification, pages 323–334. Springer.

Rodriguez-Mier, P., Mucientes, M., and Lama, M. (2011). Automatic web
service composition with a heuristic-based search algorithm. In 2011 IEEE
International Conference on Web Services, pages 81–88. IEEE.

Rompothong, P. and Senivongse, T. (2003). A query federation of uddi reg-
istries. In Proceedings of the 1st international symposium on Information
and communication technologies, pages 561–566. Trinity College Dublin.

Rostami, N. H., Kheirkhah, E., and Jalali, M. (2013). Web services composi-
tion methods and techniques: A review. International Journal of Computer
Science, Engineering and Information Technology, 3.

Rostami, N. H., Kheirkhah, E., and Jalali, M. (2014). An optimized semantic
web service composition method based on clustering and ant colony algo-
rithm. ACM Transactions on Internet Technology (TOIT).

Sabucedo, L. Á. and Anido-Rifón, L. E. (2006). Semantic service oriented
architectures for egovernment platforms. In Semantic Web Meets eGov-
ernment, Papers from the 2006 AAAI Spring Symposium, Technical Report
SS-06-06, Stanford, California, USA, March 27-29, 2006, pages 111–113.

Distributed Dynamic Service Composition (2DSC) 173

BIBLIOGRAPHY

Sadiq, W. and Racca, F. (2003). Business services orchestration: The hypertier
of information technology. Cambridge University Press.

Saleh, Z. I., Obeidat, R. A., and Khamayseh, Y. (2013). A framework for an e-
government based on service oriented architecture for jordan. International
Journal of Information Engineering & Electronic Business, 5(3).

Saunders, M. N. (2011). Research methods for business students, 5/e. Pearson
Education India.

Schmidt, C. and Parashar, M. (2004). A peer-to-peer approach to web service
discovery. World Wide Web, 7(2):211–229.

Scholl, H. (2004). Introduction to the electronic government cluster of mini-
tracks. In 37th Annual Hawaii International Conference on System Sciences,
2004. Proceedings of the, pages 114–114. IEEE.

Scotland, J. (2012). Exploring the philosophical underpinnings of research:
Relating ontology and epistemology to the methodology and methods of the
scientific, interpretive, and critical research paradigms. English language
teaching, 5(9):9–16.

Sharma, S. K. (2006). E-government services framework. In Encyclopedia of
E-Commerce, E-Government, and Mobile Commerce, pages 373–378. IGI
Global.

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., and Xu,
X. (2014). Web services composition: A decade’s overview. Information
Sciences, 280:218–238.

Sivashanmugam, K., Verma, K., and Sheth, A. (2004). Discovery of web
services in a federated registry environment. In Web Services, 2004. Pro-
ceedings. IEEE International Conference on, pages 270–278. IEEE.

Song, H., Cheng, D., Messer, A., and Kalasapur, S. (2007). Web service dis-
covery using general-purpose search engines. In Web Services, 2007. ICWS
2007. IEEE International Conference on, pages 265–271. IEEE.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H.
(2001). Chord: A scalable peer-to-peer lookup service for internet applica-
tions. ACM SIGCOMM Computer Communication Review, 31(4):149–160.

Tanenbaum, A. S. and Van Steen, M. (2007). Distributed systems: principles
and paradigms. Prentice-Hall.

Distributed Dynamic Service Composition (2DSC) 174

BIBLIOGRAPHY

Thang, H. Q., Thi, Q. P., and Hoang, D. B. (2010). A method of verifying web
service composition. In Proceedings of the 2010 Symposium on Information
and Communication Technology, SoICT 2010, Hanoi, Viet Nam, August
27-28, 2010, pages 155–162.

Tiwari, A. and Mishra, V. K. (2018). Colored petri net based techniques
for constructing reliable web service composition. International Journal,
6(1):6–8.

Toma, I., Iqbal, K., Moran, M., Roman, D., Strang, T., and Fensel, D. (2005a).
An evaluation of discovery approaches in grid and web services environ-
ments. In NODe 2005, GSEM 2005, Erfurt, Germany, September 20-22,
2005 (Net.ObjectDays), pages 233–247.

Toma, I., Roman, D., Iqbal, K., Fensel, D., Decker, S., and Hofer, J. (2005b).
Towards semanticweb services in grid environments. In 2005 International
Conference on Semantics, Knowledge and Grid (SKG 2005), 27-29 Novem-
ber 2005, Beijing, China, page 107.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner, M. (2008). A
break in the clouds: towards a cloud definition. ACM SIGCOMM Computer
Communication Review, 39(1):50–55.

Vedamuthu, A. S., Hirsch, F., Hondo, N. M., and Yalçinalp, Ü. (2007). Web
services policy 1.5-primer. W3C (June 2007).

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., and
Miller, J. (2005). Meteor-s wsdi: A scalable p2p infrastructure of registries
for semantic publication and discovery of web services. Information Tech-
nology and Management, 6(1):17–39.

Wahid, F. (2012). The current state of research on egovernment in developing
countries: A literature review. In International Conference on Electronic
Government, pages 1–12. Springer.

Waldinger, R. J. and Stickel, M. E. (1992). Proving properties of rule-based
systems. International Journal of Software Engineering and Knowledge En-
gineering, 2(01):121–144.

Wang, Y. and Stroulia, E. (2003). Flexible interface matching for web-service
discovery. In Proceedings of the Fourth International Conference on Web
Information Systems Engineering, 2003. WISE 2003., pages 147–156. IEEE.

Distributed Dynamic Service Composition (2DSC) 175

BIBLIOGRAPHY

West, D. M. (2004). E-government and the transformation of service delivery
and citizen attitudes. Public administration review, 64(1):15–27.

Wieringa, R. and Jonge, W. d. (1995). Object identifiers, keys, and surrogates:
object identifiers revisited. TAPOS, 1(2):101–114.

working group, E. W. et al. (2004). Web service modeling ontology.

Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D. (2003). Automating
daml-s web services composition using shop2. In International Semantic
Web Conference, pages 195–210. Springer.

Yan, P. and Guo, J. (2010). Researching and designing the architecture of e-
government based on soa. In 2010 International Conference on E-Business
and E-Government, pages 512–515. IEEE.

Ying, L. (2010). A method of automatic web services composition based on
directed graph. In 2010 International Conference on Communications and
Mobile Computing, volume 1, pages 527–531. IEEE.

Yu, J., Benatallah, B., Casati, F., and Daniel, F. (2008). Understanding
mashup development. IEEE Internet computing, 12(5):44–52.

Zhang, N., Wang, J., Ma, Y., He, K., Li, Z., and Liu, X. F. (2018). Web service
discovery based on goal-oriented query expansion. Journal of Systems and
Software, 142:73–91.

Zhou, B. and Huang, T. (2008). Semantic web service discovery search with
ontology learning. In Computer Science and Software Engineering, 2008
International Conference on, volume 5, pages 1048–1051. IEEE.

Zhou, J., Athukorala, K., Gilman, E., Riekki, J., and Ylianttila, M. (2012).
Cloud architecture for dynamic service composition. International Journal
of Grid and High Performance Computing (IJGHPC), 4(2):17–31.

Zimeo, E., Troisi, A., Papadakis, H., Fragopoulou, P., Forestiero, A., and
Mastroianni, C. (2008). Cooperative self-composition and discovery of grid
services in p2p networks. Parallel Processing Letters, 18(03):329–346.

Zou, G., Chen, Y., Yang, Y., Huang, R., and Xu, Y. (2010). Ai planning and
combinatorial optimization for web service composition in cloud computing.
In Proccedding of the International Conference on Cloud Computing and
Virtualization, pages 1–8.

Distributed Dynamic Service Composition (2DSC) 176

