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ANNÉE ACADEMIQUE 2021/2022 

(Par Département et par Grade) 

DATE D’ACTUALISATION 22 juin 2022 

ADMINISTRATION 

DOYEN : TCHOUANKEU Jean- Claude, Maître de Conférences 

VICE-DOYEN / DPSAA: ATCHADE Alex de Théodore, Maître de Conférences 

VICE-DOYEN / DSSE : NYEGUE Maximilienne Ascension, Professeur 

VICE-DOYEN / DRC : ABOSSOLO ANGUE Monique, Maître de Conférences 

Chef Division Administrative et Financière : NDOYE FOE Florentine Marie Chantal, Maître de Conférences 

Chef Division des Affaires Académiques, de la Recherche et de la Scolarité DAARS : AJEAGAH Gideon 

AGHAINDUM, Professeur 

1- DÉPARTEMENT DE BIOCHIMIE (BC) (39) 

 
N° NOMS ET PRÉNOMS GRADE OBSERVATIONS 

1.  BIGOGA DAIGA Jude Professeur En poste 

2.  BOUDJEKO Thaddée Professeur En poste 

3.  FEKAM BOYOM Fabrice Professeur En poste 

4.  FOKOU Elie Professeur En poste 

5.  KANSCI Germain Professeur En poste 

6.  MBACHAM FON Wilfred Professeur En poste 

7.  MOUNDIPA FEWOU Paul Professeur Chef de Département 

8.  OBEN Julius ENYONG Professeur En poste 

 
9.  ACHU Merci BIH Maître de Conférences En poste 

10.  ATOGHO Barbara MMA Maître de Conférences En poste 

11.  AZANTSA KINGUE GABIN BORIS Maître de Conférences En poste 

12.  BELINGA née NDOYE FOE F. M. C. Maître de Conférences Chef DAF / FS 

13.  DJUIDJE NGOUNOUE Marceline Maître de Conférences En poste 

14.  EFFA ONOMO Pierre Maître de Conférences En poste 

15.  EWANE Cécile Annie Maître de Conférences En poste 

16.  KOTUE TAPTUE Charles Maître de Conférences En poste 

17.  MOFOR née TEUGWA Clotilde Maître de Conférences Doyen FS / UDs 

18.  NANA Louise épouse WAKAM Maître de Conférences En poste 

19.  NGONDI Judith Laure Maître de Conférences En poste 

20.  NGUEFACK Julienne Maître de Conférences En poste 

21.  NJAYOU Frédéric Nico Maître de Conférences En poste 

22.  TCHANA KOUATCHOUA Angèle Maître de Conférences En poste 

 

 
23.  AKINDEH MBUH NJI Chargé de Cours En  poste 

24.  BEBEE Fadimatou Chargée de Cours En poste 

25.  BEBOY EDJENGUELE Sara Nathalie Chargé de Cours En poste 

26.  DAKOLE DABOY Charles Chargé de Cours En poste 
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27.  DJUIKWO NKONGA Ruth Viviane Chargée de Cours En poste 

28.  DONGMO LEKAGNE Joseph Blaise Chargé de Cours En poste 

29.  FONKOUA Martin Chargé de Cours En poste 

30.  KOUOH ELOMBO Ferdinand Chargé de Cours En poste 

31.  LUNGA Paul KEILAH Chargé de Cours En poste 

32.  MANANGA Marlyse Joséphine Chargée de Cours En poste 

33.  MBONG ANGIE M. Mary Anne Chargée de Cours En poste 

34.  OWONA AYISSI Vincent Brice Chargé de Cours En poste 

35.  Palmer MASUMBE NETONGO Chargé de Cours En poste 

36.  PECHANGOU NSANGOU Sylvain Chargé de Cours En poste 

37.  WILFRED ANGIE Abia Chargé de Cours En poste 

 
38.  FOUPOUAPOUOGNIGNI Yacouba Assistant En poste 

39.  MBOUCHE FANMOE Marceline Joëlle Chargée de Cours En poste 
 

 

 

2- DÉPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE ANIMALES (BPA) (51) 

 
1.  AJEAGAH Gideon AGHAINDUM Professeur DAARS/FS 

2.  BILONG BILONG Charles-Félix Professeur Chef de Département 

3.  DIMO Théophile Professeur En Poste 

4.  DJIETO LORDON Champlain Professeur En Poste 

5.  DZEUFIET DJOMENI Paul Désiré Professeur En Poste 

6.  ESSOMBA née NTSAMA MBALA Professeur Vice Doyen/FMSB/UYI 

7.  FOMENA Abraham Professeur En Poste 

8.  KEKEUNOU Sévilor Professeur En poste 

9.  NJAMEN Dieudonné Professeur En poste 

10.  NJIOKOU Flobert Professeur En Poste 

11.  NOLA Moïse Professeur En poste 

12.  TAN Paul VERNYUY Professeur En poste 

13.  TCHUEM TCHUENTE Louis Albert Professeur 

Inspecteur de service 

Coord.Progr./MINSANTE 

14.  ZEBAZE TOGOUET Serge Hubert Professeur En poste 

 

 

15.  
ALENE Désirée Chantal Maître de Conférences 

Chef  Service/ 

MINESUP 

16.  BILANDA Danielle Claude Maître de Conférences En poste 

17.  DJIOGUE Séfirin Maître de Conférences En poste 

18.  
JATSA BOUKENG Hermine épse 

MEGAPTCHE 
Maître de Conférences En Poste 

19.  LEKEUFACK FOLEFACK Guy B. Maître de Conférences En poste 

20.  MBENOUN MASSE Paul Serge Maître de Conférences En poste 

21.  MEGNEKOU Rosette Maître de Conférences En poste 

22.  MONY Ruth épse NTONE Maître de Conférences En Poste 

23.  NGUEGUIM TSOFACK Florence Maître de Conférences En poste 

24.  NGUEMBOCK Maître de Conférences En poste 

25.  TOMBI Jeannette Maître de Conférences En poste 

 
26.  ATSAMO Albert Donatien Chargé de Cours En poste 

27.  BASSOCK BAYIHA Etienne Didier Chargé de Cours En poste 

28.  DONFACK Mireille Chargée de Cours En poste 
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29.  ESSAMA MBIDA Désirée Sandrine Chargée de Cours En poste 

30.  ETEME ENAMA Serge Chargé de Cours En poste 

31.  FEUGANG YOUMSSI François Chargé de Cours En poste 

32.  GONWOUO NONO Legrand Chargé de Cours En poste 

33.  GOUNOUE KAMKUMO Raceline Chargée de Cours En poste 

34.  KANDEDA KAVAYE Antoine Chargé de Cours En poste 

35.  KOGA MANG DOBARA Chargé de Cours En poste 

36.  LEME BANOCK Lucie Chargé de Cours En poste 

37.  MAHOB Raymond Joseph Chargé de Cours En poste 

38.  

METCHI DONFACK MIREILLE 

FLAURE EPSE GHOUMO 

 

Chargé de Cours En poste 

39.  MOUNGANG Luciane Marlyse Chargée de Cours En poste 

40.  MVEYO NDANKEU Yves Patrick Chargé de Cours En poste 

41.  NGOUATEU KENFACK Omer Bébé Chargé de Cours En poste 

42.  NJUA Clarisse Yafi Chargée de Cours 
Chef  Div. Uté 

Bamenda 

43.  NOAH EWOTI Olive Vivien Chargée de Cours En poste 

44.  TADU Zephyrin Chargé de Cours En poste 

45.  TAMSA ARFAO Antoine Chargé de Cours En poste 

46.  YEDE Chargé de Cours En poste 

47.  YOUNOUSSA LAME Chargé de Cours En poste 

 
48.  AMBADA NDZENGUE GEORGIA 

ELNA 

Assistante 
En poste 

49.  FOKAM Alvine Christelle Epse KEGNE Assistante En poste 

50.  MAPON NSANGOU Indou Assistant En poste 

51.  NWANE Philippe Bienvenu Assistant En poste 

 
 

 

3- DÉPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE VÉGÉTALES (BPV) (33) 

 
1.  AMBANG Zachée Professeur Chef  DAARS /UYII 

2.  DJOCGOUE Pierre François Professeur En poste 

3.  MBOLO Marie Professeur En poste 

4.  MOSSEBO Dominique Claude Professeur En poste 

5.  YOUMBI Emmanuel Professeur Chef de Département 

6.  ZAPFACK Louis Professeur En poste 

 
7.  ANGONI Hyacinthe Maître de Conférences En poste 

8.  BIYE Elvire Hortense Maître de Conférences En poste 

9.  MALA Armand William Maître de Conférences En poste 

10.  MBARGA BINDZI Marie Alain Maître de Conférences  DAAC  /UDla 

11.  NDONGO BEKOLO Maître de Conférences CE / MINRESI 

12.  NGODO MELINGUI Jean Baptiste Maître de Conférences En poste 

13.  NGONKEU MAGAPTCHE Eddy L. Maître de Conférences CT / MINRESI 

14.  TONFACK Libert Brice Maître de Conférences En poste 

15.  TSOATA Esaïe Maître de Conférences En poste 

16.  ONANA JEAN MICHEL Maître de Conférences En poste 

 
17.  DJEUANI Astride Carole Chargé de Cours En poste 

18.  GOMANDJE Christelle Chargée de Cours En poste 

19.  GONMADGE CHRISTELLE Chargée de Cours En poste 

20.  MAFFO MAFFO Nicole Liliane Chargé de Cours En poste 
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21.  MAHBOU SOMO TOUKAM. Gabriel Chargé de Cours En poste 

22.  NGALLE Hermine BILLE Chargée de Cours En poste 

23.  NNANGA MEBENGA Ruth Laure Chargé de Cours En poste 

24.  NOUKEU KOUAKAM Armelle Chargé de Cours En poste 

25.  
NSOM ZAMBO EPSE PIAL ANNIE 

CLAUDE 
Chargé de Cours 

En 

détachement/UNESCO 

MALI 

26.  GODSWILL NTSOMBOH NTSEFONG Chargé de Cours En poste 

27.  KABELONG BANAHO Louis-Paul-Roger Chargé de Cours En poste 

28.  KONO Léon Dieudonné Chargé de Cours En poste 

29.  LIBALAH Moses BAKONCK Chargé de Cours En poste 

30.  LIKENG-LI-NGUE Benoit C Chargé de Cours En poste 

31.  TAEDOUNG Evariste Hermann Chargé de Cours En poste 

32.  TEMEGNE NONO Carine Chargé de Cours En poste 

    

33.  MANGA NDJAGA JUDE Assistant En poste 

 
 

 

4- DÉPARTEMENT DE CHIMIE INORGANIQUE (CI) (31) 

 
1.  AGWARA ONDOH Moïse Professeur Chef de Département 

2.  Florence UFI CHINJE épouse MELO Professeur Recteur Univ.Ngaoundere 

3.  GHOGOMU Paul MINGO Professeur Ministre Chargé deMiss.PR 

4.  NANSEU Njiki Charles Péguy Professeur En poste 

5.  NDIFON Peter TEKE Professeur CT MINRESI 

6.  NDIKONTAR Maurice KOR Professeur Vice-Doyen Univ. Bamenda 

7.  NENWA Justin Professeur En poste 

8.  NGAMENI Emmanuel Professeur 
DOYEN FS 

Univ.Ngaoundere 

9.  NGOMO Horace MANGA Professeur Vice Chancelor/UB 

 
10.  ACAYANKA Elie Maître de Conférences En poste 

11.  EMADACK Alphonse Maître de Conférences En poste 

12.  KAMGANG YOUBI Georges Maître de Conférences En poste 

13.  KEMMEGNE MBOUGUEM Jean C. Maître de Conférences En poste 

14.  KENNE DEDZO GUSTAVE Maître de Conférences En poste 

15.  KONG SAKEO Maître de Conférences En poste 

16.  MBEY Jean Aime Maître de Conférences En poste 

17.  NDI NSAMI Julius Maître de Conférences En poste 

18.  
NEBAH Née  NDOSIRI Bridget 

NDOYE 
Maître de Conférences CT/ MINPROFF 

19.  NJIOMOU C. épse DJANGANG Maître de Conférences En poste 

20.  NJOYA Dayirou Maître de Conférences En poste 

21.  NYAMEN Linda Dyorisse Maître de Conférences En poste 

22.  
PABOUDAM GBAMBIE 

AWAWOU 
Maître de Conférences En poste 

23.  TCHAKOUTE KOUAMO Hervé Maître de Conférences En poste 

 
24.  BELIBI BELIBI Placide Désiré Chargé de Cours Chef Service/ ENS Bertoua 

25.  CHEUMANI YONA Arnaud M. Chargé de Cours En poste 

26.  KOUOTOU DAOUDA Chargé de Cours En poste 

27.  MAKON Thomas Beauregard Chargé de Cours En poste 

28.  NCHIMI NONO KATIA Chargé de Cours En poste 

29.  NJANKWA NJABONG N. Eric Chargé de Cours En poste 
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30.  PATOUOSSA ISSOFA Chargé de Cours En poste 

31.  SIEWE Jean Mermoz Chargé de Cours En Poste 
 

 

 

 

5- DÉPARTEMENT DE CHIMIE ORGANIQUE (CO) (38) 

1.  DONGO Etienne Professeur Vice-Doyen/FSE/UYI 

2.  NGOUELA Silvère Augustin Professeur Chef de Département UDS 

3.  NYASSE Barthélemy Professeur En poste 

4.  
PEGNYEMB Dieudonné Emmanuel Professeur 

Directeur/ MINESUP/ Chef de 

Département 

5.  WANDJI Jean Professeur En poste 

6.  MBAZOA née DJAMA Céline Professeur En poste 

 
7.  Alex de Théodore ATCHADE Maître de Conférences Vice-Doyen / DPSAA 

8.  AMBASSA Pantaléon Maître de Conférences En poste 

9.  EYONG Kenneth OBEN Maître de Conférences En poste 

10.  FOLEFOC Gabriel NGOSONG Maître de Conférences En poste 

11.  FOTSO WABO Ghislain Maître de Conférences En poste 

12.  KAMTO Eutrophe Le Doux Maître de Conférences En poste 

13.  KENMOGNE Marguerite Maître de Conférences En poste 

14.  KEUMEDJIO Félix Maître de Conférences En poste 

15.  KOUAM Jacques Maître de Conférences En poste 

16.  MKOUNGA Pierre Maître de Conférences En poste 

17.  MVOT AKAK CARINE Maître de Conférences En poste 

18.  NGO MBING Joséphine Maître de Conférences Chef de Cellule MINRESI 

19.  NGONO BIKOBO Dominique Serge Maître de Conférences C.E.A/ MINESUP 

20.  NOTE LOUGBOT Olivier Placide Maître de Conférences DAAC/Uté Bertoua 

21.  NOUNGOUE TCHAMO Diderot Maître de Conférences En poste 

22.  TABOPDA KUATE Turibio Maître de Conférences En poste 

23.  TAGATSING FOTSING Maurice Maître de Conférences En poste 

24.  TCHOUANKEU Jean-Claude Maître de Conférences Doyen /FS/ UYI 

25.  YANKEP Emmanuel Maître de Conférences En poste 

26.  ZONDEGOUMBA Ernestine Maître de Conférences En poste 

 
 

 

 

 

 

35.  MUNVERA MFIFEN Aristide Assistant En poste 

36.  NONO NONO Éric Carly Assistant En poste 

37.  OUETE NANTCHOUANG Judith 

Laure 
Assistante En poste 

38.  TSAFFACK Maurice Assistant En poste 
 

  

27.  NGNINTEDO Dominique Chargé de Cours En poste 

28.  NGOMO Orléans Chargée de Cours En poste 

29.  OUAHOUO WACHE Blandine M. Chargée de Cours En poste 

30.  SIELINOU TEDJON Valérie Chargé de Cours En poste 

31.  MESSI Angélique Nicolas Chargé de Cours En poste 

32.  TCHAMGOUE Joseph Chargé de Cours En poste 

33.  TSAMO TONTSA Armelle Chargé de Cours En poste 

34.  TSEMEUGNE Joseph Chargé de Cours En poste 
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6- DÉPARTEMENT D’INFORMATIQUE (IN) (22) 

 
1.  ATSA ETOUNDI Roger Professeur Chef Div.MINESUP 

2.  
FOUDA NDJODO Marcel Laurent Professeur 

Chef Dpt ENS/Chef 

IGA.MINESUP 

 

 

3.  NDOUNDAM Réné Maître de Conférences En poste 

4.  TSOPZE Norbert Maître de Conférences En poste 

 
5.  ABESSOLO ALO’O Gislain Chargé de Cours Sous-Directeur/MINFOPRA 

6.  AMINOU Halidou Chargé de Cours Chef de Département 

7.  DJAM Xaviera YOUH - KIMBI Chargé de Cours En Poste 

8.  DOMGA KOMGUEM Rodrigue Chargé de Cours En poste 

9.  EBELE Serge Alain Chargé de Cours En poste 

10.  HAMZA Adamou Chargé de Cours En poste 

11.  JIOMEKONG AZANZI Fidel Chargé de Cours En poste 

12.  KOUOKAM KOUOKAM E. A. Chargé de Cours En poste 

13.  MELATAGIA YONTA Paulin Chargé de Cours En poste 

14.  MONTHE DJIADEU Valery M. Chargé de Cours En poste 

15.  
OLE OLE Daniel  Claude Delort Chargé de Cours 

Directeur adjoint ENSET. 

Ebolowa 

16.  TAPAMO Hyppolite Chargé de Cours En poste 

 
17.  BAYEM Jacques Narcisse Assistant En poste 

18.  EKODECK Stéphane Gaël Raymond Assistant En poste 

19.  MAKEMBE. S . Oswald Assistant En poste 

20.  MESSI NGUELE Thomas Assistant En poste 

21.  NKONDOCK. MI. BAHANACK.N. Assistant En poste 

22.  NZEKON NZEKO'O ARMEL 

JACQUES 
Assistant En poste 

 

 
7- DÉPARTEMENT DE MATHÉMATIQUES (MA) (31) 

 
1.  AYISSI Raoult Domingo Professeur Chef de Département 

2.  EMVUDU WONO Yves S. Professeur Inspecteur MINESUP 

 

 
3.  KIANPI Maurice Maître de Conférences En poste 

4.  MBANG Joseph Maître de Conférences En poste 

5.  MBEHOU Mohamed Maître de Conférences En poste 

6.  MBELE BIDIMA Martin Ledoux Maître de Conférences En poste 

7.  
NOUNDJEU Pierre Maître de Conférences 

Chef Service des Programmes 

& Diplômes/FS/UYI 

8.  TAKAM SOH Patrice Maître de Conférences En poste 

9.  TCHAPNDA NJABO Sophonie B. Maître de Conférences Directeur/AIMS Rwanda 

10.  TCHOUNDJA Edgar Landry Maître de Conférences En poste 

 

11.  
AGHOUKENG JIOFACK Jean 

Gérard 
Chargé de Cours Chef Cellule MINEPAT 

12.  BOGSO ANTOINE MARIE 

 
Chargé de Cours En poste 

13.  CHENDJOU Gilbert Chargé de Cours En poste 
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14.  DJIADEU NGAHA Michel Chargé de Cours En poste 

15.  DOUANLA YONTA Herman Chargé de Cours En poste 

16.  KIKI Maxime Armand Chargé de Cours En poste 

17.  MBAKOP Guy Merlin Chargé de Cours En poste 

18.  MENGUE MENGUE David Joe Chargé de Cours Chef Dpt /ENS Uté Maroua 

19.  NGUEFACK Bernard Chargé de Cours En poste 

20.  NIMPA PEFOUKEU Romain Chargée de Cours En poste 

21.  OGADOA AMASSAYOGA Chargée de Cours En poste 

22.  POLA  DOUNDOU Emmanuel Chargé de Cours En stage 

23.  TCHEUTIA Daniel Duviol Chargé de Cours En poste 

24.  TETSADJIO TCHILEPECK M. E. Chargé de Cours En poste 

 

25.  BITYE MVONDO Esther Claudine Assistante En poste 

26.  FOKAM Jean Marcel Assistant En poste 

27.  LOUMNGAM KAMGA Victor Assistant En poste 

28.  MBATAKOU Salomon Joseph Assistant En poste 

29.  MBIAKOP Hilaire George Assistant En poste 

30.  MEFENZA NOUNTU Thiery Assistant En poste 

31.  TENKEU JEUFACK Yannick Léa Assistant En poste 

 
 

8- DÉPARTEMENT DE MICROBIOLOGIE (MIB) (22) 

 
1.  ESSIA NGANG Jean Justin Professeur Chef de Département 

2.  NYEGUE Maximilienne Ascension Professeur VICE-DOYEN / DSSE/FS/UYI 

3.  NWAGA Dieudonné M. Professeur En poste 

 
4.  ASSAM ASSAM Jean Paul Maître de Conférences En poste 

5.  BOUGNOM Blaise Pascal Maître de Conférences En poste 

6.  BOYOMO ONANA Maître de Conférences En poste 

7.  
KOUITCHEU MABEKU Epse 

KOUAM Laure Brigitte  
Maître de Conférences En poste 

8.  RIWOM Sara Honorine Maître de Conférences En poste 

9.  SADO KAMDEM Sylvain Leroy Maître de Conférences En poste 

 

10.  
BODA Maurice Chargé de Cours 

En position d’absence 

irrégulière 

11.  ESSONO OBOUGOU Germain G. Chargé de Cours En poste 

12.  NJIKI BIKOÏ Jacky Chargée de Cours En poste 

13.  TCHIKOUA Roger Chargé de Cours En poste 

14.  ESSONO Damien Marie Chargé de Cours En poste 

15.  LAMYE Glory MOH Chargé de Cours En poste 

16.  MEYIN A EBONG Solange Chargée de Cours En poste 

17.  NKOUDOU ZE Nardis Chargé de Cours En poste 

18.  
TAMATCHO KWEYANG Blandine 

Pulchérie 
Chargée de Cours En poste 

19.  TOBOLBAÏ Richard Chargé de Cours En poste 

 

20.  MONI NDEDI Esther Del Florence Assistante En poste 

21.  NKOUE TONG ABRAHAM Assistant En poste 

22.  SAKE NGANE Carole Stéphanie Assistante En poste 
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9. DEPARTEMENT DE PYSIQUE(PHY) (43) 

 
1.  BEN- BOLIE Germain Hubert Professeur En poste 

2.  DJUIDJE KENMOE épouse ALOYEM Professeur En poste 

3.  EKOBENA FOUDA Henri Paul Professeur 
Vice-Recteur. Uté 

Ngaoundéré 

4.  ESSIMBI ZOBO Bernard Professeur En poste 

5.  NANA ENGO Serge Guy Professeur En poste 

6.  NANA NBENDJO Blaise Professeur En poste 

7.  NDJAKA Jean Marie Bienvenu Professeur Chef de Département 

8.  NJANDJOCK NOUCK Philippe Professeur En poste 

9.  NOUAYOU Robert Professeur En poste 

10.  PEMHA Elkana Professeur En poste 

11.  SAIDOU Professeur 
Chef de 

centre/IRGM/MINRESI 

12.  TABOD Charles TABOD Professeur Doyen FSUniv/Bda 

13.  TCHAWOUA Clément Professeur En poste 

14.  WOAFO Paul Professeur En poste 

15.  ZEKENG Serge Sylvain Professeur En poste 

 

16.  BIYA MOTTO Frédéric Maître de Conférences DG/HYDRO Mekin 

17.  BODO Bertrand Maître de Conférences En poste 

18.  ENYEGUE A NYAM épse BELINGA Maître de Conférences En poste 

19.  EYEBE FOUDA Jean sire Maître de Conférences En poste 

20.  FEWO Serge Ibraïd Maître de Conférences En poste 

21.  HONA Jacques Maître de Conférences En poste 

22.  MBINACK Clément Maître de Conférences En poste 

23.  MBONO SAMBA Yves Christian U. Maître de Conférences En poste 

24.  NDOP Joseph Maître de Conférences En poste 

25.  SIEWE SIEWE Martin Maître de Conférences En poste 

26.  SIMO Elie Maître de Conférences En poste 

27.  VONDOU DerbetiniAppolinaire Maître de Conférences En poste 

28.  WAKATA née BEYA Annie Maître de Conférences Directeur/ENS/UYI 

 
29.  ABDOURAHIMI Chargé de Cours En poste 

30.  CHAMANI Roméo Chargé de Cours En poste 

31.  EDONGUE HERVAIS Chargé de Cours En poste 

32.  FOUEDJIO David Chargé de Cours Chef Cell. MINADER 

33.  MELI’I  Joelle   Larissa Chargée de Cours En poste 

34.  MVOGO ALAIN Chargé de Cours En poste 

35.  WOULACHE Rosalie Laure Chargée de Cours Absente depuis Janvier 2022 

36.  AYISSI EYEBE Guy François Valérie Chargé de Cours En poste 

37.  DJIOTANG TCHOTCHOU Lucie 

Angennes 

Chargée de Cours En poste 

38.  OTTOU ABE Martin Thierry Chargé de Cours En poste 

39.  TEYOU NGOUPOU Ariel Chargé de Cours En poste 

 
40.  KAMENI NEMATCHOUA Modeste Assistant En poste 

41.  LAMARA Maurice Assistant En poste 

42.  NGA ONGODO Dieudonné Assistant En poste 

43.  WANDJI NYAMSI William Assistant En poste 
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10- DÉPARTEMENT DE SCIENCES DE LA TERRE (ST) (42) 

 

 
1.  BITOM Dieudonné-Lucien Professeur Doyen / FASA / UDs 

2.  FOUATEU Rose épse YONGUE Professeur En poste 

3.  NDAM NGOUPAYOU Jules-Remy Professeur En poste 

4.  NDJIGUI Paul Désiré Professeur Chef de Département 

5.  NGOS III Simon Professeur En poste 

6.  NKOUMBOU Charles Professeur En poste 

7.  NZENTI Jean-Paul Professeur En poste 
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Répartition chiffrée des Enseignants de la Faculté des Sciences de l’Université de Yaoundé I 
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DÉPARTEMENT Professeurs Maîtres de 
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Cours 
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114 (33) 134 (37) 32 (07) 352 (84) 

 

 

Soit un total de                                               352 (84) dont : 

- Professeurs                                                  72  (07) 

- Maîtres de Conférences                             114 (33) 

- Chargés de Cours                                      134 (37) 

- Assistants                                                    32  (07) 

( ) = Nombre de Femmes          84 
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Abstract

Euclidean lattice-based cryptography originated in the 1990′s with Miklos Aj-
tai where he demonstrated that Euclidean lattices can serve as a basis for
cryptography. The security of lattice-based cryptosystems is based on the
presumed hardness of lattice problems such as closest and shortest vector
problems. Lattice-based cryptography is growing rapidly today: its poten-
tial effectiveness, its apparent resistance to quantum attacks, and above all its
proofs of security under very precise hypotheses of algorithmic difficulties of
fairly well understood problems.

Although the Shortest Vector and Closest Vector Problems are difficult for
Euclidean lattices, there are some families of lattices for which these problems
are efficiently solvable. We have for example integer lattice Zn, root lattices
An (n ≥ 1), Dn (n ≥ 2), E6, E7, E8, their duals, and the An⊗Am (n,m ≥ 1).

In this thesis we propose a polynomial algorithm for solving the closest
vector problem in the root lattice Dn ⊗Dm (n,m ≥ 2).

We also consider the root lattice An1 ⊗ ...⊗Ank (n1, ..., nk ≥ 1) for which
we propose a polynomial algorithm for solving the Closest Vector Problem.
This was successful using the associativity of lattices and non commutativity
of tensor product.

Furthermore, Sieving algorithms have been very efficient in solving some
extended insistences of Shortest Vector Problem. In this thesis, we use the
famous LLL-reduction algorithm and the symmetries of lattices to give a new
Sieve algorithm for orthogonal integer lattice Λ ⊂ Zn. Lattice-based cryptog-
raphy going rapidly today thanks to its potential effectively. All over this work,
we have successfully implemented all the algorithms in the Maple computer
software 18.0.

Key Words : orthogonal integer lattice, closest vector problem, shortest
vector problem, Sieve algorithm, LLL algorithm, .
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Résumé

La Cryptographie basée sur les réseaux euclidiens est née dans les années 1990
avec Miklos Ajtai où il démontre que les réseaux euclidiens peuvent servir de
base solide à la cryptographie. La sécurité des cryptosystèmes basés sur les
réseaux est basée sur la difficulté des problèmes du réseau tels que, les prob-
lèmes du vecteur le plus proche, et du vecteur le plus court. La cryptographie
basé sur les réseaux connait aujourd’hui un essor rapide: son apparente ré-
sistance aux attaques quantiques, et surtout ses preuves de sécurité sous des
hypothèses très précises de difficultés algorithmique de problèmes assez bien
compris.

Bien que les problèmes du vecteur le plus court et du vecteur le plus proche
cités plus haut soient difficiles pour les réseaux, il existe certaines familles de
réseaux pour lesquelles ces problèmes sont solubles en utilisant un algorithme
polynomial. Nous avons par exemple les réseaux entiers Zn, les réseaux de
racine An (n ≥ 1), Dn (n ≥ 2), E6, E7, E8, leurs duaux, et An⊗Am, (n,m ≥ 1).
Dans cette thèse nous proposons un algorithme polynomial de résolution du
problème du vecteur le plus proche dans le réseaux Dn ⊗Dm (n,m ≥ 2).

Nous considérons également le réseau An1 ⊗ ...⊗Ank (n1, ..., nk ≥ 1) pour
lequel nous proposons un algorithme polynomial de résolution du problème du
vecteur le plus proche. Cela a été fait en utilisant l’associativité des réseaux
et la non commutativité du produit tensoriel.

De plus, les algorithmes de crible ont été très efficaces pour résoudre cer-
taines instances étendues du Problème du Vecteur le plus Court. Dans cette
thèse, nous utilisons le fameux algorithme de réduction LLL et le symétrie
des réseaux pour proposer un nouvel algorithme de crible pour les réseaux en-
tier orthogonaux Λ ⊂ Zn. La cryptographie basée sur les réseaux Euclidiens
progresse rapidement aujourd’hui grâce à son efficacité. Tout au long de ce
travail, nous avons réussi à implémenter tous les algorithmes avec le logiciel
informatique Maple 18.0.

Mots clés : réseaux orthogonaux, problème du vecteur le plus court, prob-
lème du vecteur le plus proche, algorithme de crible, algorithme LLL.
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Chapter One

INTRODUCTION

1.1 Context and Motivation

1.1.1 Context
The central purpose of cryptography is to allow two peoples, traditionally
called Alice and Bob, to communicate through a secure channel such that a
passive opponent Oscar cannot alter or manipulate the information. Crypt-
analysis is the art for an unauthorized person to decrypt, decode, decipher
a message. It is therefore the set of methods for attacking a cryptographic
system. Cryptology is the combination of cryptography and cryptanalysis.
Cryptography focuses on four different objectives:
• Confidentiality: Confidentiality ensures that only the intended recipi-

ent can decrypt the message and reads its contents.
• Integrity: Integrity focuses on the ability to be certain that the infor-

mation contained within the message cannot be modified while in storage or
transit.
• Non-repudiation: Non-repudiation means the sender of the message

cannot backtrack in the future and deny their reasons for sending or creating
the message.
• Authenticity: Authenticity ensures the sender and recipient can verify

each other’s identities and the destination of the message.
These objectives help ensure a secure and authentic transfer of information.
Based on the number of keys that are employed for encryption and decryp-
tion, there are two types of cryptography: secret key (symmetric) cryptography
and public key (asymmetric) cryptography. With secret key cryptography, the
same key is used for both encryption and decryption. A sender and a recipient
must already have a shared key. Key distribution is then a tricky problem as
was the motivation for developing public key cryptography.

With public key cryptography, two different keys are used for encryption

Ph.D Thesis 1



1.1 Context and Motivation 2

and decryption. Every user in an asymmetric key cryptosystsem has both a
public key and private key. The private key is kept secret at all times, but
the public key may be freely distributed and it won’t affect security (unlike
sharing the key in a symmetric cryptosystem).

A revolution in cryptography came along with the discovery of public-
key encryption, where only the receiver of messages needs to be in possession
of the secret key, while a sender just needs to know the public key of the
receiver. The discovery of public-key cryptography is usually attributed to
Diffie and Hellman[17], with Rivest, Shamir and Adleman providing the first
implementation[47].

The security of public key cryptographic algorithms is based on mathemat-
ical problems that are hard to solve:

Discrete Logarithm Problem (DLP): Let G =< g > be a cyclic group
of order n with generator g and h an element of G, find x ∈ {1, ..., n} such
that h = gx. Note that the integer x is uniquely determined modulo the group
order. Just as for the continuous logarithm function, one also writes x = logg h
and refers to x as the discrete logarithm of h to the base g. Discrete logarithm
problem is hard on group embedded in a finite extension field and on a group
of points of ordinary elliptic curves[26, 27]. Some protocols based on discrete
logarithm are Diffie-Hellman key exchange protocol [17], ElGamal cryptosys-
tem [43]

Factorization Problem: Let N be the product of two large prime num-
bers p and q of roughly the same size, e and d two integers such that:
ed ≡ 1( mod ϕ(N)). Given the public key (N, e) and the cipher text y, it is
difficult to find d to obtain the plain text x such that y ≡ xe mod N . The
most known method to solve the factorization (RSA) problem is factoring the
modulus N . This task is impractical if N is sufficiently large [47, 8].

Classical lattice problems: The first fundamental hard problem in lat-
tice is the Shortest Vector Problem (SVP). Given a basis for a lattice, the
problem is to find a non-zero vector in the lattice whose length is minimal
over all non-zero lattice vectors. This problem is NP-hard for randomized re-
ductions. Note that the shortest vector problem in a lattice is not unique.
[1, 3, 4, 18, 24].

The Closest Vector Problem (CVP) is the generalization of the Shortest
Vector Problem. In this problem one is given a lattice defined by some basis
as well as a target vector in the ambient vector space in which the lattice lies,
the task is to determine a vector in the lattice which is close to the target
vector [1, 3, 4, 18, 24, 49, 50]. Encryption an decryption of the GGH, NTRU
cryptosystems are based on the Closest Vector Problem.
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1.1.2 Motivation
Today, cryptography is used in a large number of products. It is thus found
in electronic votes, payment by bank cards, electronic mail, databases, smart
cards, digital decoders, electronic purchases. Unfortunately, quantum com-
puters can make their security vulnerable. The reason quantum cryptography
can do this is that, with a powerful enough computer, algorithms that would
usually take 10 years to crack could now take only weeks or days with quantum
computer. Indeed, in [48], Peter Shor proposes a polynomial time algorithm
running on a quantum computer which solves both of factoring and discrete
logarithm problems. Now the physicists have actually not been able to build
a large quantum computer yet, and the complete breakdown of most cryptog-
raphy used today is probably not right around the corner.

The United States is preparing new encryption standards that even the
National Security Agency (NAS) will not be able to crack, specifies the Di-
rector cyber security of the National Aeronautics and Space Administration
(NASA). These new standards are intended to resist quantum computer, which
could potentially compromise public-key cryptographic algorithms. In De-
cember 2016, the National Institute of Standards and Technology (NIST)
announced an international competition, selected 7 finalist from the 69 ini-
tial submissions. After careful consideration during 3rd Round of the NIST
post quantum standardization process, NIST has identified 4 candidate al-
gorithms for standardization, as well as those that will continue to be eval-
uated in a fourth round of analysis. The public-key encryption and key-
establishment algorithm that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS+. While there are multiple signature algorithms se-
lected, NIST recommends CRYSTAL-Dilithium as the primary algorithm to
be implemented. In 2018, Léo Ducas and al. presented a new Digital Signature
Scheme DILITHIUM whose security is based on the hardness of finding short
vectors in lattices [20]. The most compact lattice-based signature schemes
[19, 21] crucially require the generation of secret randomness from the dis-
crete Gaussian distribution. Generating such samples in a way that is secure
against side-channel attacks is highly non trivial and can easily lead to inse-
cure implementations, as demonstrated in [9, 44]. DILITHIUM uses uniform
Sampling, as was originally proposed in [35, 28]. In addition, four of the alter-
native key-establishment candidate algorithms will advance to a fourth round
evaluation: BIKE (Bit Flipping Key Encapsulation), classic McEliece, HQC
(Hamming Quasi-Cyclic), and SIKE (Super singular Isogeny Key Encapsula-
tion). These candidates are still being considered for future standardization
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(https : //doi.org/10.6028/NIST.IR.8413). The goal of this competition is to
make the algorithms available in 2024 so that government and industries can
adopt them.
To avoid an economics war, it is imperative to set up new cryptosystems that
will be resistant to these quantum computers. It is therefore judicious to seek
among the mathematical tools, those which present hard problems, which can
be used for cryptography. We list error correcting codes, isogenies and Eu-
clidean lattices. In this thesis, we will focus our attention only on Euclidean
lattices. Indeed, lattice based cryptographic constructions hold a great promise
for post-quantum cryptography, as they enjoy very strong security proofs based
on worst-case hardness, relatively efficient implementations, as well as great
simplicity. In addition, lattice based cryptography is believed to be secure
against quantum computers.

Euclidean lattices are the regular arrangements of points in space, or more
precisely, the discrete subgroups of Rn for some positive integer n. In 1982,
Arjen Lenstra, Hendrick Lenstra and Lásló Lovàsz developed a polynomial al-
gorithm for lattice reduction [11, 16, 46, 50, 49]. This algorithm known under
the name LLL, coming from its authors names, constituted a real revolution of
lattice theory. First of all, its complexity is without comparison with the algo-
rithms described until then to study Euclidean lattices, and, above all, it has
opened the way to an impressive number of applications. The three historical
applications are the factorization of polynomials with integer or rational cœffi-
cients, simultaneous rational approximations [33] and integer programming in
fixed dimension[30]. This algorithm also received immediate success in the field
of cryptanalysis. In particular, it was used by Lagarias and Odlyzko[32, 34]
to break the knapsack’s cryptosystem proposed by Merkle and Hellman. The
algorithm due to Lenstra, Lenstra and Lovàsz is still a very popular tool in the
cryptanalysis of public key cryptosystems, such as some fast variants of RSA
[6, 8, 38], and some fast variants of the DSA signature scheme[29, 42]. The
LLL algorithm has also shown that finding the private exponent of a RSA key
is computationally equivalent to factoring the modulus[39]. Indeed, it makes it
possible to construct a deterministic polynomial reduction. Another important
field of application of the LLL algorithm is the algorithmic theory of numbers:
it has made it possible to invalidate the conjecture of Mertens, and is also used
to calculate minimal polynomials of algebraic numbers for example, or to work
in the field of numbers[46].
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1.2 Problematic
A central problem in the theory of lattices is the Closest Vector Problem
(CVP). It is often seen as one of the hardest computational lattice problems
as many lattices problems polynomially reduce to it. We can point as exam-
ple, the Shortest Vector Problem (SVP)[25], and more generally, finding all
successive minima of lattice[45]. Furthermore it was already proven in 1981
that for general lattices, CVP was NP-hard under deterministic reductions.
In 1998, SVP was proven to be NP-hard under randomized reductions[4]. A
deterministic reduction that SVP is NP-hard has not been discovered yet. Al-
though the CVP is an NP-hard problem for general lattices, it is interesting to
design lattices for which CVP can be solved efficiently while at the same time
optimizing other lattices properties like the packing density. Special lattices
are for example the root lattices An (n ≥ 1), Dn (n ≥ 2), En (n = 6, 7, 8), their
duals and the Leech lattice [13, 22]. These lattices can be used as the basis
for efficient block quantizers for uniformly distributed inputs and to construct
code for a band-limited channel with Gaussian noise [23, 13]. Indeed, recent
attempts to create lattice-based cryptographic schemes are promising and are
mostly based on removing some error to a lattice vector using a CVP algorithm
[36, 37]. Léo Ducas and Wessel van Woerden proposed a polynomial algorithm
for solving CVP for the case of the lattice An⊗Am (n,m ≥ 1) in order to give a
generalization of resolution of CVP on some case of cyclotomic integer lattices
Z[ζα] (with α = p.q, where p and q are prime) and their duals [22]. SVP has
been extensively studied as purely mathematical problem, being central in the
study of the geometry of numbers and as algorithm problems, having many
applications in communication theory and computer science. There are two
main algorithmic techniques for solving exact SVP: enumeration and sieving.
Enumeration algorithms were initiated by Pohst [45] in 1981 and one of the
best enumeration algorithm was given by Kannan in 1983 [31]. This method
runs in no(n) time but is polynomial in space. The main idea of sieve algo-
rithms is to randomly select lattice vectors, then compare them in order to
end up getting the shortest lattice vectors, running the algorithm for many
steps. This method was introduced by Ajtai, Kumar and Sivakumar in 2001
[5], lowering the time complexity of the SVP to 2o(n), but required 2o(n) space
and randomness. In 2010, Micciancio et al. presented GaussSieve [41], the first
sieving heuristic that outperformed enumeration routines. In 2011, Panagiotis
proposed a new heuristic sieving algorithm [50] that performed quite well in
the practice with estimated running time 20,52n and space complexity 20,2n. In
2017, Leo Ducas [18] exploits the fact that sieving returns many short vectors,
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rather than only one to propose a new practical improvement for sieve algo-
rithms. The questions below are problems that have interested us throughout
our thesis.
Question 1: Find a polynomial time algorithm to solve the Closest Vector
Problem in tensor product of three root lattices of type A (An ⊗ Am ⊗ Ap;
n,m, p ≥ 1), and in the general case of tensor product of a finite number k of
root lattices of type A (An1 ⊗ ...⊗ Ank ; n1, ..., nk ≥ 1).
Question 2: Find a polynomial time algorithm to solve the Closest Vector
Problem in two root lattices of type D (Dn ⊗Dm; n,m ≥ 2).
Question 3: Give sieve algorithm for the case of orthogonal integer lattice of
dimension n.

1.3 Contributions

1.3.1 Research Objectives
The objectives of this thesis consist to respond to questions 1, 2 and 3. The
answers of questions 1 and 2 will help to solve the Closest Vector Problem in
the general case of cyclotomic integer rings. The answer of question 3 will help
to solve the Shortest Independent Vector Problem in some orthogonal integer
lattice. These results will allow to extend the families of lattices that should
not be used for post quantum signature schemes based on lattices.

1.3.2 Results obtained and Methodology
The main contributions of this thesis are presented as follows:

1. We use the associativity of lattices and non commutativity of tensor
product to give a polynomial algorithm allowing to solve the Closest
Vector Problem in the tensor product of three root lattices of type A
(An ⊗ Am ⊗ Ap; n,m, p ≥ 1), and give a polynomial algorithm for the
case of tensor product of a finite number k of root lattices of type A
(An1 ⊗ ... ⊗ Ank; n1, ..., nk ≥ 1). This efficient algorithm performs with
O(d.(((n + 1)(m + 1) − 1)p)2min{(n + 1)(m + 1) − 1), p}) arithmetic
operations.

2. We established that the root lattice Dnm is a full rank sub-lattice of the
tensor product Dn ⊗ Dm (n,m ≥ 2) of the root lattices Dn and Dm.
This allows to provide efficient algorithm for solving the Closest Vector
Problem in Dn ⊗Dm (n,m ≥ 2) by using the same method for the case
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of root lattice Dn. The proposed algorithm performs at most O(n+m)
arithmetic operations.

3. We use the famous LLL-reduction algorithm and the symmetries of lat-
tices to give a new sieve algorithm that we called OrthogonalSieve algo-
rithm. This algorithm gives at least n and at most 2n short vectors in
general case of orthogonal integer lattice Λ ⊂ Zn. This algorithm runs
in O(n2n) time and can be polynomial in space and the list of short
vectors obtained enables to solve the Shortest Independent Vector Prob-
lem (SIVP) [7] for some orthogonal integer lattices. We also give an
algorithm for the particular case of integer lattice Zn. Indeed, for the
particular lattices Λ ⊂ Zn, An and Dn, we respectively have 2n, n(n+ 1)
and 2n(n− 1) short vectors.

The above results consist of the following publications:

1. Arnaud Girès Fobasso Tchinda, Emmanuel Fouotsa, Celestin Nkuimi
Jugnia, Sieve Algorithms for Some Orthogonal Integer Lattices, Discrete
Mathematics, Algorithms and Applications, (2022)
https://doi.org/10.1142/S179383022501518.

2. Arnaud Girès Fobasso Tchinda, Emmanuel Fouotsa and Celestin Nkuimi
Jugnia, A Polynomial Algorithm for Solving the Closest Vector Problem
in Tensored Root Lattices of Type D, SN Computer Science, Springer
(2022) https://doi.org/10.1007s42979-022-01440-2.

3. Arnaud Girès Fobasso Tchinda, Emmanuel Fouotsa, Celestin Nkuimi
Jugnia, Generalization of Closest Vector Problem in Tensored Root Lat-
tices of Type A. Under review at Indian Journal of Pure and Applied
Mathematics, Springer.

1.4 Organization of the Thesis
Besides this introduction, the thesis contains three chapters. The last two
chapters start with an introduction followed by the main results of the chapter.
Then, these chapters conclude with remarks that summarize the results of the
chapter and address further works. We end the thesis by giving some general
conclusions which summarize the results of the thesis and also address the
most interesting further work.

Chapter 2 is a survey of the lattice background and some basic definitions
and results on lattice reduction. Closest Vector Problem, Shortest Vector
Problem, Sieve algorithm and some lattice reductions were discussed.
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InChapter 3, we present the polynomial algorithms for solving the Closest
Vector Problem for the case of tensor product of a finite root lattices of type
An (n ≥ 1), and for tensor product of two root lattices of type Dn (n ≥ 2).

In Chapter 4, we give a list of all short vectors of the particular case
of orthogonal integer lattices Zn. We also propose an enumeration algorithm
which will allow us to obtain the list of shortest vectors in all orthogonal integer
lattices Λ ⊆ Zn.

For correctness, a Maple computer software implementation of the algo-
rithm has been done.

Conclusion: It contains a summary of the main results from the research
conducted. There is also a discussion of future work to be carried out on
algorithms for solving Closest Vector Problems for tensor product of a finite
root lattices of type Dn (n ≥ 2); and giving an algorithm which will give a list
of short vector in general case of any orthogonal lattice.
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Chapter Two

General preliminaries on lattices

In this chapter, we will give an introduction to lattices and the different con-
cepts used in lattice-based cryptography. It should serve as a starting point for
reading the following chapters, as well as giving a general introduction to some
of the concepts used in the area. We start with an introduction of lattices in
Section 2.1. In Section 2.2, we give some invariants of Euclidean lattices and
the algorithmic problems related to them. Some of these invariants are easy to
evaluate, and the notion of reduction makes it possible to obtain information
on invariants that are difficult to calculate from those that are easy to evaluate.
This is studied in Section 2.3 as well as the Gaussian heuristic. Before conclud-
ing this chapter, we will talk about lattice problems in Section 2.4. The result
announced in this chapter come mainly from [2, 4, 11, 13, 18, 24, 41, 45, 49].
Throughout this work, for any positive integer n, we use the Euclidean in-
ner product on Rn that is defined by: 〈x , y〉 := x1y1 + x2y2 + · · · + xnyn for
x := (x1, x2, · · · , xn) and y := (y1, y2, · · · , yn) in Rn. The Euclidean norm on
Rn is defined as follows: ||x|| :=

√
〈x , x〉.

We denote by B(x,R) the closed Euclidean n−dimensional ball of radius R
centered at x, that is : B(x,R) = {y ∈ R : ‖x− y‖< R}. If no center is
specified, then the center is zero; B(R) := B(O,R).

2.1 Lattices
A lattice in Rn is a set of points with a periodic structure. More formally, it
can be viewed as a discrete additive subgroup of Rn. We give the following
definition, for which an example can be seen in Figure 2.1, Figure 2.2, Figure
2.3 and Figure 2.4.

Definition 2.1.1. [24] Given a set B = {b1, ..., bd} of d linearly independent
vectors in Rn, we can define the lattice Λ(B) as the set of all integer linear
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combinations of these vectors. That is

Λ(B) =
{

d∑
i=1

zibi : (z1, z2, · · · , zd) ∈ Zd
}
. (2.1)

We say that B forms a basis for Λ(B), and the integers n and d the dimension
and the rank of the lattice, respectively. Indeed, The rank of a lattice Λ is
defined as the number of linearly independent vector in any basis for that lattice.
A lattice Λ that is full-rank is defined as a lattice where the number of linearly
independent vectors in any basis for this lattice is equal to the dimension of
the lattice. This means that if d = n, then the lattice is called full-rank lattice.

In this definition, it is an implicit requirement that n ≥ d. This will
always be the assumption, unless something else is explicitly specified. A more
compact and convenient way of writing the definition of Λ(B), is to consider
B as a matrix in Rn×d with b1, ..., bd as columns. Using this matrix, we can
also write Λ(B) as:

Λ(B) =
{
Bx : x ∈ Zd

}
. (2.2)

The basis of a lattice is not necessarily unique, in fact most lattices will have
an infinite number of different bases. Given a basis B of a lattice Λ, one can
obtain another basis B′ = U × B by multiplication with a unimodular ma-
trix U such that Λ(B) = Λ(B′). Indeed, a modular transformation matrix is
defined as an integer matrix, whose inverse is also integral. This implies the
following properties:

1− U must be integral;
2− U must be square;
3− |det(U)| must be exactly 1.

The following figure is an example of a lattice of dimension 2 and three equiv-
alent basis.
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Figure 2.1: A lattice of dimension 2 and three equivalent basis.

The following lemma formalized the notion of equivalent bases.

Lemma 2.1.2. [24] Two bases B1 and B2 in Rn×d are equivalent if and only
if B2 = B1U (or B1 = B2U) for some unimodular matrix U ∈ Zd×d.

Proof. Let B1, B2 ∈ Rn×d two bases; assume that B2 = B1U for some unimod-
ular matrix U ∈ Zd×d;
given y ∈ Λ(B2), we have that y = B1Ux for some x ∈ Zd; let x′ = Ux,
since U is an integer matrix, x′ is an integer vector and y ∈ Λ(B1).Thus
Λ(B2) ⊆ Λ(B1); equivalently for z ∈ Λ(B1), we have z ∈ Λ(B2).
Therefore, Λ(B2) = Λ(B1).
Now assume that Λ(B2) = Λ(B1). Each column bi of B2 lies in Λ(B2) and
by assumption also in Λ(B1). Therefore there must exist xi ∈ Zd, such that
bi = B1xi. Let U ∈ Zd×d be the matrix with x1, ..., xd as columns, we see
that B2 = B1U . Similarly there exists V ∈ Zd×d such that B1 = B2V .
Combining the two, we get that B2 = B1U = B2V U and that BT

2 B2 =
(V U)TBT

2 B2V U . By taking the determinants on both sides, we see that
det(BT

2 B2) = det(V U)2det(BT
2 B2) which, unless det(BT

2 B2) = 0, implies that
det(V U) = ±1. Now, since both U and V are integers matrices, it must then
be the case that det(U) = ±1, and we can conclude that U is unimodular.

Another important notion is that of the dual lattice.

Definition 2.1.3. Given a lattice Λ ⊂ Rn, the dual lattice Λ∗ ⊆ Rn of Λ is
defined as

Λ∗ = {x ∈ Rn : ∀y ∈ Λ, 〈x, y〉 ∈ Z} (2.3)
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Notice how the dual lattice is defined in a rather non-constructive way. In
a lattice given by Definition 2.1.1, it is clear how one would

find a lattice point: simply choose any vector x ∈ Zn and multiply it by
the basis B to obtain a lattice point. Even more simple is to give a basis of
the lattice, since this is the starting point of the definition. Nonetheless, the
dual lattice is also a lattice in the sense of Definition 2.1.1. This can be seen
from the following result which gives us a basis for the dual lattice.

Lemma 2.1.4. Given a lattice Λ with basis B, define the dual basis D =
B(BTB)−1. Then D is a basis for the dual lattice Λ∗ for Λ. Thus Λ(B)∗ =
Λ(D).

Proof. Let y = B(BTB)−1x for some x ∈ Zn; let t = Bx′ be any lattice
point in Λ(B) where x′ ∈ Zn, we have: 〈y, t〉 = yT t = (B(BTB)−1x)TBx′ =
xT (B(BTB)−1)TBx′ = xT (BTB)−1(BTB)x′ = xTx′ ∈ Z. Thus y ∈ Λ(B)∗.
Now, let z ∈ Λ(B)∗. Since span(B) = span(D), we can write z = Dx for
x ∈ Rn. Consider BT z, this is a vector having the inner product of z and
all columns of B as entries. But since BT z = BTDx = BTB(BTB)−1x = x.
Therefore we can conclude that x ∈ Zn, implying that z ∈ Λ(D).

We move on and give a few small useful results about a lattice and its dual.

Lemma 2.1.5. For any lattice Λ it is the case that (Λ∗)∗ = Λ.

Proof. Let B be a basis for Λ. Using Lemma 2.1.4 the basis of (Λ∗)∗ = Λ is

(B(BTB)−1)((B(BTB)−1)T (B(BTB)−1)−1 = B

We will continue with the description of Gram-Schmidt Orthogonalization.

Gram-Schmidt Orthogonalization

The Gram-Schmidt Orthogonalization algorithm is an iterative approach to
orthogonalizing vectors of a basis. The first vector b1 of a given basis B is
taken as a reference and the second vector b2 is projected on to an (n − 1)−
hyper plane perpendicular to b1. The third vector b3 is projected onto a (n−2)−
hyper plane perpendicular to the plane described by b1 and b2. This process
continues in an iterative fashion until all degrees of freedom are exhausted.
The new orthogonal vector is denoted by b∗i and it basis as B∗.

b∗i = bi −
i−1∑
j=1

µijb
∗
j for all 1 ≤ j < i ≤ n (2.4)
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An example of a base of given basis (b1, b2) and its Gram-Schmidt
Orthogonalization (b1∗, b2∗) of a lattice is given by the following figure.

Figure 2.2: Two vectors b1, b2 and their Gram-Schmidt Orthogonalization b∗1,
b∗2.

where µij =
〈bi, b∗j〉
〈b∗j , b∗j〉

.

Remark 2.1.6. Let Λ be a lattice of dimension n and B = {b1, ..., bn} a basis
thereof. Let B∗ be the Gram-Schmidt Orthogonalization of the basis B.
If r = min

1≤i≤n
‖b∗i ‖, then any non-zero vector of Λ has a norm greater than r.

2.2 Some invariants of a lattice
Given a lattice Λ, we call a quantity related to Λ an invariant if it does not
depend on the choice of the basis of Λ that we could make. Indeed, it is an
intrinsic quantity to the lattice, which does not depend on the representation.
We have already defined two simple invariants (dimension and rank). We
define in this section the fundamental parallelepiped, the minima, the radius,
and the volume, also called determinant.
We start with the notion of a fundamental parallelepiped which is tied to a
specific lattice basis.

Definition 2.2.1. [24] For any lattice basis B we define the fundamental par-
allelepiped of B as

P(B) = {Bx| x ∈ Rn , ∀i : 0 ≤ xi < 1} . (2.5)

where xi is the i′th entry in x.
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The following figure is an example of a lattice in Rn with two different bases
B = {b1; b2}, B′ = {b′1; b′2}, and their corresponding fundamental

parallelepipeds P(B), P(B′).

Figure 2.3: A lattice in Rn shown with two different bases B = {b1; b2},
B′ = {b′1; b′2}, and corresponding to fundamental parallelepipeds P(B), P(B′).

Lemma 2.2.2. Let Λ be a lattice of rank d, and let b1, b2, ..., bd ∈ Λ be d
linearly independent lattices vectors. Then, b1, b2, ..., bd form a basis of Λ if
and only if P(b1, b2, ..., bd) ∩ Λ = {0}.

Proof. Assume first that b1, b2, ..., bd ∈ Λ. Then, by Definition 2.1.1, Λ is the
set of all their integer combinations. Since P(b1, b2, ..., bd) is defined as the set
of linear combinations of b1, b2, ..., bd with coefficients in [0; 1[, the intersection
of the two sets is {0}.
For the second direction, assume that P(b1, b2, ..., bd) ∩ Λ = {0}. Since Λ is a
rank d and b1, b2, ..., bd are linearly independent, we can write any lattice vector
x ∈ Λ as ∑ yibi for some yi ∈ R. Since by definition a lattice is closed under
addition, the vector x′ = ∑(yi−byic)bi is also in Λ. By our assumption, x′ = 0.
This implies that all yi are integers and hence x is an integer combination of
b1, b2, ..., bd.

In the next definition we will give about basic lattices relating to the fun-
damental parallelepipeds of different bases for the same lattice.

Definition 2.2.3. Let Λ(B) be a lattice of rank d and dimension n, where
B ∈ Rn×d is any basis. We define the determinant of a lattice, denoted by
det(Λ), as the n-dimensional volume of the fundamental parallelepiped P(B),
as below:

det(Λ) =
√
det(BTB). (2.6)
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In the above definition the choice of bases does not matter and so the
determinant is well-defined. This is because the n volumes of any two funda-
mental parallepipeds of a given lattice are equal. This can be seen easily using
Lemma 2.1.2. Given two bases B1 and B2 of Λ, we know from Lemma 2.1.2
that B2 = B1U for some unimodular matrix U ∈ Zn×n. This gives us:√

det(BT
2 B2) =

√
det(UTBT

1 B1U) =
√
det(BT

1 B1). (2.7)

If the lattice Λ is of full rank, then B is a square matrix and consequently, we
have:

det(Λ) =| det(B) | . (2.8)

Proposition 2.2.4. The determinant of a lattice is independent of the choice
of the basis B.

Proof. Let B1, B2 be equivalent bases. Then by Lemma 2.1.2, there is a uni-
modular matrix U such that B2 = B1U . Thus, det(Λ(B2))=

√
det(BT

2 B2)=√
det(UTBT

1 B1U) =
√
det(U)2.det(BT

1 B1) =
√
det(BT

1 B1) = det(Λ(B1)).

Lemma 2.2.5. For any lattice Λ = Λ(B) it is the case that det(Λ∗) = 1
det(Λ) .

Proof. We have det(Λ∗) =
√
det((B(BTB)−1)T (B(BTB)−1) =

√
det(BTB)−1 =

1√
det(BTB)

= 1
det(Λ) .

The determinant is a very useful quantity when describing a lattice. One
important feature is that the density of the lattice points is inverse proportional
to the determinant of the lattice. Finally, we define the minimum distance in
a lattice and more generally the i′th successive minimum as follows.

Definition 2.2.6. Let Λ(B) be a lattice of dimension n. Let i ≤ n, the i′th
minimum of the lattice, denoted λi(Λ), is defined by:

λi(Λ) = min {r , dim((Λ ∩ B(r))) = i} . (2.9)

The successive minima of a given lattice are all reached. There exist vectors
of the lattice of norms equal to the successive minima, and this can be so in
particular for linearly independent vectors.

Definition 2.2.7. For any lattice Λ with a basis B, the minimum distance of
Λ is the smallest distance between any two lattices points given as below:

λ(Λ) = inf {‖x− y‖ : x, y ∈ Λ, x 6= y} (2.10)

Let Λ ⊆ Rn be a lattice. We say that Λ′ is a sublattice of Λ if Λ′ ⊆ Λ is a
lattice as well. If Λ′ is a sublattice of Λ, then λi(Λ) ≤ λi(Λ

′) for i ≤ dim(Λ′).
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The following figure is an example of a lattice of dimension 2 and a
geometrical interpretation of the determinant.

Figure 2.4: A lattice of dimension 2 and geometrical interpretation of the
determinant.

We observe that the minimum distance can be equivalently defined as the
length of the shortest nonzero lattice vector as bellow:

λ(Λ) = inf {‖v‖ : v ∈ Λ r {0}}

In the above definition the distance between two lattice points is the Euclidean
distance. One could have generalized the definition to any norm, but for
simplicity we will not.

Remark 2.2.8. Let Λ be a lattice of dimension n and B = {b1, ..., bn} any
basis. Let B∗ be the Gram-Schmidt Orthogonalization of the basis B.
1- The lattice Λ always admits a vector v of minimal norm (‖v‖ = λ1(Λ)).
2- Given a basis B = (b1, ..., bn) of a lattice Λ ⊆ Rn, and the associated Gram-
Schmidt orthogonalization B∗ = (b∗1, ..., b∗n), we have det(Λ) =

n∏
i=1
‖b∗i ‖ and

vol(P(b1, ..., bn)) =
n∏
i=1
‖b?i ‖.

2.3 Minkowski’s Theorem and Lattice Reductions
For lattice reduction problems and finding the shortest vectors, a bound is
used to check if a given basis can be improved or if it is already very small.
The two Minkowski’s theorems presented in this section make it possible to
simply bound the successive minima of a lattice.
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Theorems of Minkowski
Theorem 2.3.1. (First Theorem of Minkowski)
For any full-rank lattice Λ ⊆ Rn, we have:

λ1(Λ) ≤
√
n(det(Λ))1/n (2.11)

where λ1(Λ) denote the minimum Euclidean norm of vectors in Λ \ {0}.√
n(det(Λ))1/n is called the Minkowski bound.

For the proof of this theorem, we will need the following proposition and
theorem.

Theorem 2.3.2. (Minkowski-convex body)
Let Λ ⊆ Rn be a full-rank lattice. Then for any symmetric central set S, if
vol(S) > 2ndet(Λ), then S contains a non-zero point of the lattice.

Proposition 2.3.3. The volume of a ball of dimension n and radius r is

vol(B(O, r)) ≥
(

2r√
n

)n
.

Proof. (First Theorem of Minkowski)
Since λ1(Λ) is the shortest non-zero vector of the lattice Λ, then B(O, λ1(Λ))
does not contain any non-zero vector of the lattice. Thus by Theorem 2.3.2,
vol(B(O, λ1(Λ))) ≤ 2n.det(Λ).

Subsequently, from Proposition 2.3.3 we have vol(B(O, λ1(Λ))) ≥
(

2λ1(Λ)√
n

)n
;

we get then
(

2λ1(Λ)√
n

)n
≤ vol(B(O, λ1(Λ))) ≤ 2n.det(Λ);

so
(

2λ1(Λ)√
n

)n
≤ 2n.det(Λ);

thus 2λ1(Λ)√
n
≤ 2 (det(Λ))1/n;

Therefore, λ1(Λ) ≤
√
n(det(Λ))1/n.

Definition 2.3.4. (Hermite’s invariant)
Hermite’s invariant of a given lattice of dimension n is defined as below:

γ(Λ) =
(

λ1(Λ)
det(Λ)1/d

)2

(2.12)

Theorem 2.3.5. (Second theorem of Minkowski)
For all lattice Λ of dimension n, we have:(

n∏
i=1

λi(Λ)
)1/n

≤ √γn.det(Λ)1/n (2.13)
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Proof. To do this, it is necessary to use instead of the Euclidean ball of diame-
ter λ1, disjoint ellipsoids of diameter λ1, λ2, ..., λn centered on the points of the
lattices. Indeed, let x1, ..., xn ∈ Λ be linearly vectors achieving the successive
minima (i.e ‖xi‖ = λi(Λ));
let x?1, ..., x?n be their Gram Schmidt orthogonalization; consider the open el-
lipsoid T with axes x?1, ..., x?n and lengths λ1(Λ), ..., λn(Λ)

T =
{
y ∈ Rn :

n∑
i=1

( 〈y,x?i 〉
‖x?i ‖λi(Λ)

)2
< 1

}
let y ∈ Λ and let k = max {k ∈ 1, ..., n : ‖y‖ ≥ λk(Λ)};
then y ∈ span(x?1, ..., x?k) = span(x1, ..., xk), else x1, ..., xk, y would be k + 1
linearly independent vectors of length less than λk+1(Λ);
thus

n∑
i=1

( 〈y,x?i 〉
‖x?i ‖λi(Λ)

)2
=

k∑
i=1

( 〈y,x?i 〉
‖x?i ‖λi(Λ)

)2
;

since
k∑
i=1

( 〈y,x?i 〉
‖x?i ‖λi(Λ)

)2
≥ 1

(λk(Λ))2

k∑
i=1

( 〈y,x?i 〉
‖x?i ‖

)2
= ‖y‖2

(λk(Λ))2 ≥ 1, y /∈ T ;

by theorem 2.3.2, vol(T ) ≥ 2ndet(Λ);
on the other hand, by the volume formula for ellipsoids

vol(T ) =
(

n∏
i=1

λi(Λ)
)
vol(B(1)) ≥

(
n∏
i=1

λi(Λ)
)( 2√

n

)n
;

combining both bounds yields,
(

n∏
i=1

λi(Λ)
)1/n

≤
√
n (det(Λ))1/n.

Minkowski’s second theorem generalizes the first and shows that the ge-
ometric mean of all the minima of a lattice of dimension n is bounded by a
function γn and the determinant of the lattice. Indeed, Minkowski’s second
theorem shows that a basis whose product of vector’s norms is of the order of
the lattice’s volume is a "good basis".
Now, we will recall some lattice reductions allowing either to determine a short
vector, or a list of short vectors. In practice, the algorithms often look for a
basis whose inner product of the vectors is within a multiplicative constant of
the volume of the lattice. For example, the LLL algorithm calculates a "good
basis" with an exponential factor in n.
We recall the two fundamental lattice problem below.

2.4 Lattice Problems
In this section, we present some standard lattice problems as well as shortest
vector problem (SVP), shortest independent vector problem (SIVP) and closest
vector problem (CVP).
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2.4.1 Closest vector problem (CVP)
A central problem in the theory of lattice is the closest vector problem (CVP).
One need to give a lattice and a target point in the R-linear span of that
lattice, and then find a closest lattice point to the target. It is often seen as
one of the hardest computational lattice problems as many lattice problems
polynomially reduce to it. Let Λ ⊂ Rd be a lattice. Given an arbitrary point
t ∈ span(Λ). The vector x in Λ that minimizes the distance ||t − x|| is called
a closest vector to t. Although the Closest Vector Problem is classified as NP-
hard [24], there are some lattices where this problem can be solved efficiently.
It is the case of integer lattice Zn, the root lattices An (n ≥ 1), Dn (n ≥ 2), En
(n = 6, 7, 8), the Leech lattice, and some cases of cyclotomic integer lattices
Z[ζα] (with α = p.q, where p and q are prime). We propose a polynomial
algorithm to solve the closest vector problem in the tensor product of some
root lattices in Chapter 3.

2.4.2 Shortest vector problem (SVP)
The most important computational problem in lattices is the shortest vector
problem. The shortest vector problem asks to find a non zero lattice vector
of small norm for a given lattice basis as input. This norm is called the first
minimum λ1(Λ) or the minimum distance and is in general unique up to the
sign. This means that: given a basis of a lattice Λ, find a lattice vector whose
norm is exactly λ1(Λ). This Problem is classified as NP-hard [24]. Minkowski’s
theorem gives a simple way to bound the length of the shortest lattice vector.
Another variant of this problem is shortest independent vector problem (SIVP).
The shortest independent vector problem asks to find a linearly independent
set {v1, ..., vn} such that all vectors have length at most γ.λ1(Λ(B)) for a
given lattice basis B as input (where γ ≥ 1). We construct an enumeration
algorithm for integer lattice Zn to provide a full list of its shortest vectors. We
also construct an algorithm which gives at least n and at most 2n short vectors
of a general orthogonal lattice Λ ⊆ Zn in Chapter 4.
The main method for tackling these problems is lattice reduction.

2.5 Some Lattice Reductions
A lattice has an infinity of bases, which are all equivalent from an algebraic
point of view, this is not true techniqually , and some of these bases have
interesting Euclidean properties. The objective of the reduction is to find in a
reasonable time a basis of fairly good Euclidean properties, made up of fairly
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2.5 Some Lattice Reductions 20

orthogonal vectors, and short enough to give approximations for successive
minima. But in dimension 5, the successive minima do not necessarily form a
basis of the lattice. It is therefore difficult to find an absolute criterion which
defines what is a good basis. Several notions of reductions exist and each
corresponds to a notion of quality of the reduced base. The main reductions
are: reduction in the sense of Korkine and Zolotarev, reduction in the sense of
Lenstra, Lenstra and Lovàsz, Minkowski’s reduction and Schnorr block reduc-
tion. It should be noted that the notion of reduction operates a compromise
between the quality of the reduction and the complexity to obtain it. For
example, the reduction in the sense of Korkine and Zolotarev produces a base
whose quality is much higher than that which is produced by the reduction in
the sense of Lentra, Lenstra ans Lovàsz, but the computation time to obtain
it is greater. In the following, we are only going to be interested in reduction,
in the sense of Lenstra, Lentra and Lovàsz and Gauss reduction.
We recall that, the goal of lattice basis reduction is to find a basis with short
vectors and orthogonal to each other. We also know that Gram-Schmidt pro-
cess does not preserve the structure of integer lattice. It would be interesting to
focus on the LLL-reduction which uses Gram-Schmidt process and returns in-
teger vectors. The most usual notions of reduction is probably LLL-reduction.

2.5.1 LLL and Gauss Reductions

The LLL- reduction is one of the most commonly used. Let 1
4 < δ < 1, let

B = (b1, ..., bn) ∈ Zn×n be a basis of a lattice. We say that B is size-reduced if
all Gram-Schmidt coefficients satisfy | µij |≤

1
2 .

We say that B satisfies the Lovàsz conditions if for all i ∈ {1, ..., n} we have
δ‖b∗i ‖2≤ ‖b∗i+1‖2+µi+1,i‖b∗i ‖2.
Therefore, if a basis B is size-reduced and satisfies the Lovàsz conditions, then
we say that B is LLL- reduced. The LLL algorithm is given in [49] and it is
showed that the number of LLL swaps is O(n2 lg‖B‖).
The LLL-reduction implies that the norms of Gram-Schmidt-Orthogonalization
vector never drop too fast. Indeed the vectors are not far from being orthogo-
nal.
LLL-reduction does not solve the problem for all lattices. Indeed, for random
lattice, we use the Gaussian heuristic and Gauss reduction to obtain the list of
short vectors of the lattice. This method is called Sieve. We will define Gauss
reduced as below.

Definition 2.5.1. (Gauss reduction)
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For vectors u, v ∈ Λ, if max(‖u‖, ‖v‖) ≤ min(‖u− v‖, ‖u+ v‖), then u, v are
called Gauss-reduced.

2.5.2 Hermite-Korkine-Zoltarev (HKZ)-reduction
A basisB = (b1, ..., bn) is said to beHKZ(Hermite-Korkine-Zolotarev)-reduced
if its first vector reaches the minimum of Λ and if orthogonally to b1 the other
bi’s are themselves HKZ−reduced. This implies that for any i, we have:
‖b∗i ‖≤

√
n− i+ 1

(
‖b∗j‖

) 1
n−i+1 .

Remark 2.5.2. Each of the two reductions has its own particularity. Indeed,
HKZ−reduction is very strong, but expensive to compute. On the other hand,
LLL−reduction is fairly cheap, but an LLL−reduced basis is of much lower
quality.

2.5.3 Minkowski’s reduction
A basis B = (b1, ..., bn) of a lattice Λ is reduced in the sense of Minkowski if
the following conditions hold:
• The vector b1 is the short vector in lattice Λ;
• The vector bi+1 is the shortest among all independent vectors of vectors
(b1, ..., bi), so that (b1, ..., bi+1) can be extended to a basis of Λ.
In an equivalent way, a basis is reduced in the sense of Minkowski if the fol-
lowing inequalities are satisfied:

∀ i ≤ n, ‖x1b1 + ...+ xnbn‖ ≥ ‖bi‖ (2.14)

for all n-tuples of integers (x1, ..., xn) formed by the integers xi, ..., xn relatively
prime.

2.6 Some root lattices
Root lattices emerge from so called root systems of vectors. There are three
families of root lattices (A, D and E), and they have been the object of very
detailed studies [12, 13, 14, 40]. In the following, we recall the definitions of
the root lattices of type An (n ≥ 1), Dn (n ≥ 2) , and give their generator
matrix.
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2.6.1 Definition and Basis of An (n ≥ 1)
Definition 2.6.1. Let n be a positive integer. The subset An (n ≥ 1) of Rn+1

defined by:
An := {x ∈ Zn+1 : 〈x , 1〉 = 0} , (2.15)

where 1 := (1, 1, · · · , 1), is a lattice of rank n in Rn.

The shortest vectors in the lattice An (n ≥ 1) are all the permutations
of (1,−1, 0, 0, ..., 0). The basis of the root lattice An is given in the following
Lemma 2.6.2.

Lemma 2.6.2. (Basis of An (n ≥ 1)) A generator matrix of the lattice An is
the n× (n+ 1)-matrix B given by:

B =



1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 −1 1 · · · 0 0 0
... . . .

...
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1


, (2.16)

A generator matrix of its dual A∗n is the n× (n+ 1)-matrix B∗ given by:

B∗ = 1
n+ 1



n −1 −1 · · · −1
−1 n −1 · · · −1
... . . . . . . . . . ...
−1 · · · n −1 −1
−1 · · · −1 n −1


, (2.17)

with n
n+1 on the main diagonal and −1

n+1 everywhere else.

2.6.2 Definition and Basis of Dn (n ≥ 2)
In the following, we recall the definition of the root lattice of type Dn (n ≥ 2),
and give its generator matrix.

Definition 2.6.3. Let n be a positive integer. The subset Dn (n ≥ 2) of Rn

defined by:
Dn := {x ∈ Zn : 〈x , 1〉 is even} , (2.18)

where 1 := (1, 1, · · · , 1), is a lattice of rank n in Rn.

The shortest vectors in the lattice Dn are all the permutations of
(∓1,∓1, 0, 0, ..., 0).
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Lemma 2.6.4. (Root lattice D∗n) Let n ≥ 3, the lattice D∗n dual to Dn is

D∗n =
3⋃
i=0

([i] +Dn) (2.19)

where, [0] = (0n), [1] = (1
2)n, [2] = (0n−1, 1) and [3] = (1

2
n−1

,−1
2).

In the following sections it will be useful to know a basis for Dn and D∗n.

Lemma 2.6.5. (Basis of Dn and D∗n)[13] A generator matrix of the lattice
Dn is the n× n-matrix B given by:

B∗ =



−1 −1 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
... . . .

...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


(2.20)

A generator matrix of the lattice D∗n dual to Dn is the n× n-matrix B∗ given
by:

B∗ =



1 0 · · · 0 0
0 1 · · · 0 0
... . . .

. . . . . . ...
0 0 · · · 1 0
1
2

1
2 · · · 1

2
1
2


, (2.21)

2.7 Concluding remarks
Some important definitions and properties of lattices have been given. The
invariant of lattices, some reductions of lattices and the two principal problems
of lattice have been respectively presented. Some important definitions and
properties that will be useful to bring out the results in the next chapters were
also discussed.
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Chapter Three

Closest Vector Problem in
tensored root lattices of some
lattices of type A and type D

In this chapter, we propose a polynomial algorithm to solve the Closest Vec-
tor Problem (CVP) in the tensor product of three root lattices of type An
(n ≥ 1), and two root lattices of type Dn (n ≥ 2). In 2018, Léo Ducas and
Wessel van Woerden proposed a polynomial algorithm allowing to solve this
problem in the tensor product of two root lattices of type An (n ≥ 1) [22].
In our present case, we use the associativity of the lattice of type A and the
same techniques to solve this problem in the tensor product of three lattices
of type A. And we show that the root lattice Dnm is a full rank sub-lattice
of the tensor product Dn ⊗ Dm (n,m ≥ 2) of the root lattices Dn and Dm,
enabling us to derive a polynomial algorithm for solving the Closest Vector
Problem in Dn (n ≥ 2). The proposed algorithm performs at most O(n + m)
arithmetic operations. A motivation could be to use the full characteriza-
tion of the Voronoi relevant vector in this case in terms of simple cycle in
the complete directed tripartite graph Kn+1,m+1,p+1. So we need to establish
the relationship between the Voronoi relevant vectors in the tensor product
An ⊗Am ⊗Ap and the complete directed tripartite graphs Kn+1,m+1,p+1. Sub-
sequently, we will modify some parameters of the polynomial algorithm in
[13] to solve this problem in An ⊗ Am ⊗ Ap, and even in the tensor prod-
uct of a finite number of lattices An1 ⊗ ... ⊗ Ank (n1, ..., nk ≥ 1) of type A.
So we determined a polynomial algorithm to solve CVP in An ⊗ Am ⊗ Ap in
O (d.(((n+ 1)(m+ 1)− 1)p)2 min {(n+ 1)(m+ 1)− 1, p}) (d ≥ 1) arithmetic
operations, and an algorithm to solve this problem in k ≥ 4 root lattices
An1 ⊗ ...⊗ Ank .

This chapter is organized as follows: In Section 3.1, we review the defini-
tions of graphs, tensor product and basic properties of the root lattices of type
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A, D and simple graph to understand the results of further sections. In section
3.4.2 and Section 3.2, we present the characterization of the voronoi relevant
vector in the tensor product of three root lattices of type A, give a polynomial
algorithm to solve the problem of the nearest vector in An⊗Am⊗Ap, and We
will also determine a polynomial algorithm to solve the closest vector problem
in the general case of the tensor product of k (k ≥ 4) root lattices of type A
(An1 ⊗ ...⊗ Ank , n1, ..., nk ≥ 1). This algorithm runs in
O (d.(((n1 + 1)...(nk−1 + 1)− 1)nk)2 min {(n1 + 1)...(nk−1 + 1)− 1, nk}) (where
d ≥ 1) arithmetic operations. In Section 3.4.3, we propose a polynomial algo-
rithm to solve CVP in the tensor product Dn⊗Dm (n,m ≥ 2), where Dn and
Dm are two root lattices of type D.

3.1 Preliminaries
Although the closest vector problem is classified as NP-hard [24], there are
some lattices where this problem can be solved efficiently. It is the case of
integer lattice Zn, the root lattices An (n ≥ 1), Dn (n ≥ 2), En (n = 6, 7, 8),
the Leech lattice, and some cases of cyclotomic integer lattices Z[ζα] (with
α = p.q, where p and q are prime).
We recall here the definitions and properties that will be used throughout this
chapter.
All definitions in this section are taken from [22, 49]. We start with the defi-
nitions of tensor product of two and three lattices.

Definition 3.1.1. Let Λ1 ⊆ Rn1 and Λ2 ⊆ Rn2 be lattices of respectively
ranks n1 and n2. Let a1, ..., an1 ∈ Rn1 and b1, ..., bn2 ∈ Rn2 be respective
bases. The tensor product Λ1 ⊗ Λ2 ⊂ Rn1n2 is defined as the lattice with basis
{ai ⊗ bj : i ∈ {1, ..., n1}, j ∈ {1, ..., n2}} .
Here x⊗ y = (x1, ..., xn1)⊗ (y1, ..., yn2) with x ∈ Rn1 and y ∈ Rn2 is defined as
the natural embedding in Rn1n2 as follows :
(x1y1, x1y2, ..., x1yn1 , x2y1, ..., xn1yn2) ∈ Rn1n2 .

For three lattices, the tensor product Λ1 ⊗ Λ2 ⊗ Λ3 ⊂ Rn1n2n3 (with Λ3 ⊂ Rn3

and its basis c1, ..., cn3 ∈ Rn3) is defined as the lattice with basis:
{ai ⊗ bj ⊗ ck : i ∈ {1, ..., n1}, j ∈ {1, ..., n2}, k ∈ {1, ..., n3}} .
Here x⊗y⊗ z = (x⊗y)⊗ z = ((x1y1, x1y2, ..., x1yn1 , x2y1, ..., xn1yn2)⊗ z) thus,
x⊗ y ⊗ z = (x1y1z1, x1y1z2, ..., x1y1zn3 , x1y2z1, ..., xn1yn2zn3) ∈ Rn1n2n3.

Definition 3.1.2. Let Λ1 ⊆ Rn1 , Λ2 ⊆ Rn2 , ..., Λk ⊆ Rnk be lattices of respec-
tively ranks n1, ..., nk; let a(1)

1 , ..., a(1)
n1 ∈ Rn1 ; a(2)

1 , ..., a(2)
n2 ∈ Rn2 ;..., a(k)

1 , ..., a(k)
nk
∈

Ph.D Thesis FOBASSO TCHINDA Arnaud Girès



3.1 Preliminaries 26

Rnk be respective bases. The tensor -product Λ1 ⊗ Λ2 ⊗ ...⊗ Λk ⊂ Rn1n2...nk is
defined as a lattice with basis:{
a

(1)
i(1) ⊗ a(2)

i(2) ⊗ ...⊗ a(k)
i(k) : i(1) ∈ {1, ..., n1}, i(2) ∈ {1, ..., n2}, ...i(k) ∈ {1, ..., nk}

}
.

Here, we use the associativity to compute:
x(1)⊗x(2)⊗...⊗x(k) =

(
x

(1)
1 x

(2)
1 ...x

(k)
1 , x

(1)
1 x

(2)
1 ...x

(k)
2 , ..., x(1)

n1 x
(2)
n2 ...x

(k)
nk

)
∈ Rn1n2...nk .

We will continue with the notion of Voronoi region. In the following, we
give its definition and some properties.

Definition 3.1.3. Let Λ be a lattice of dimension n. The Voronoi region of
Λ is defined as below:

V (Λ) = {x ∈ span(Λ) : ‖x‖ ≤ ‖x− v‖ for all v ∈ Λ} (3.1)

So the Voronoi region consists of all points of span(Λ) that are at least as close
to 0 ∈ Λ as to any other point of Λ.

The Voronoi region is the intersection of half spaces Hv := {x ∈ span(Λ) :
2〈x, v〉 ≤ 〈v, v〉} for all v ∈ Λ \ {0}. Note that the only half spaces Hv in
this intersection that matter are those corresponding to a facet (rank(Λ) − 1
dimensional face of V (Λ)) {x ∈ span(Λ) : ‖x‖ = ‖x − v‖} ∩ V (Λ) of the
Voronoi region. Such v ∈ Λ are called Voronoi relevant vector.

Definition 3.1.4. Let Λ be a lattice of dimension n. The Voronoi relevant
vectors are the minimal set RV (Λ) ⊂ Λ of vectors such that:

V (Λ) =
⋂

v∈RV (Λ)
Hv (3.2)

Voronoi showed that for v ∈ Λ \ {0} we have that v is a Voronoi relevant
vector if and only if 0 and v are the only closest vectors to 1

2v in Λ. It was
proved by Minkowski in 1897 that a lattice of rank n can only have at most
2(2n − 1) Voronoi relevant vectors [22].

Lemma 3.1.5. Let Λ be a lattice. v ∈ Λ \ {0} is a Voronoi relevant vector if
and only if :

〈v, x〉 < 〈x, x〉 for all x ∈ Λ \ {0, v} (3.3)

Proof. Let Λ be a lattice and let v ∈ Λ \ {0} a Voronoi relevant vector of Λ;
we have ‖1

2v− x‖
2−‖1

2v‖
2 = 〈x, x〉− 〈v, x〉 and thus for a v ∈ Λ \ {0} and all

x ∈ Λ \ {0, v}; note that both 0 and v have exactly distance ‖1
2v‖ to

1
2v and

therefore the first statement is that of the definition, while the later statement
is that of the lemma.
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Lemma 3.1.6. Let t ∈ span(Λ) and x ∈ Λ. There exists a vector y ∈ Λ such
that ‖(x+y)− t‖ < ‖x− t‖ if and only if there exists a Voronoi relevant vector
v ∈ RV (Λ) such that ‖(x+ v)− t‖ < ‖x− t‖.

Proof. Let t ∈ span(Λ) and x ∈ Λ. Assume that there exists a vector v ∈
RV (Λ) such that ‖(x + v)− t‖ < ‖x− t‖. Since RV (Λ) ⊂ Λ, then for y = v,
we have ‖(x+ y)− t‖ < ‖x− t‖.
Now suppose there exists a vector v ∈ Λ such that ‖(x + y) − t‖ < ‖x − t‖;
then ‖y − (t− x)‖ < ‖t− x‖; thus (t− x) /∈ Hv; therefore (t− x) /∈ V (Λ). So
there exists a vector v ∈ RV (Λ) such that ‖t − x‖ > ‖(t − x) − v‖; therefore
there exists v ∈ RV (Λ) such that ‖(x+ v)− t‖ < ‖x− t‖.

3.2 The closest vector problem in some root lat-
tices of type An

We start this with the case of root lattice and type An (n ≥ 1) as below.

3.2.1 The closest vector problem in root lattice An

We will start this section by characterizing the vectors of An. We recall that
the lattice An consists of all vectors x = (x1, · · · , xn+1) ∈ Zn+1 such that

n+1∑
i=1

xi = 0, (3.4)

The algorithm below is a polynomial CVP algorithm for the lattice An [22].
This algorithm takes as input a vector t ∈ span(An), calculates the round
x′ = dtc of this vector (the vector x′ is a close vector to t). We calculate the
sum of the components x′ and, if this sum is equal to zero, then it is the closest
vector to t, else we add or remove successively 1 to some components as shown
by the algorithm below.
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Algorithm 1 A polynomial CVP algorithm for the lattice An
Require: Given a target t =

(
t1, · · · , t(n+1)

)
∈ span(An).

Ensure: A closest vector x to t in An.

1: Let x′ =
(
dt1c, · · · , dt(n+1)

⌋
) ∈ span(An) is a close vector to t

2: Compute δ(ti) := ti − dtic. Let ∆ :=
(n+1)∑
i=1

x′i the deficit of x′

B: Note that x′ ∈ An if and only if ∆ = 0.
3: Put δ(t1), · · · , δ(tn+1) in ascending order as below:

−1
2 ≤ δ(ti1) ≤ · · · ≤ δ(tin+1) ≤ 1

2 , ( we rank in ascending order.)

4: a) if ∆ = 0, then x = x′ is a closest vector to t;

b) if ∆ > 0, then a closest vector x to t is obtained from x′ by subtract-
ing 1 from x′i1 , · · · , x

′
i∆
.

c) if ∆ < 0, then a closest vector x to t is obtained from adding 1 to
x′i(n+1)

, · · · , x′i(n+1)+∆+1
.

Example 3.2.1. Finding some closest vector in A8.

Consider the vector t = (1.3,−0.7,−0.6, 2,−3, 1, 0, 2.7,−2.7) ∈ span(A8); (we
have t ∈ span(A8) because ∑9

i=1 ti = 0);
we will determine a nearest vector x ∈ A8 of t.

(1) we will have: x′ = (1,−1,−1, 2,−3, 1, 0, 3,−3);
thus ∆ = ∑9

i=1 x
′
i = 1− 1− 1 + 2− 3 + 1 + 0 + 3− 3 = −1;

so ∆ = −1;

(2) we will start by calculating δ(ti) for i = 1, · · · , 9 as below:
δ(t1) = 1.3 − 1 = 0.3, δ(t2) = −0.7 + 1 = 0.3, δ(t3) = −0.6 + 1 = 0.4,
δ(t4) = 2−2 = 0, δ(t5) = −3+3 = 0, δ(t6) = 1−1 = 0, δ(t7) = 0−0 = 0,
δ(t8) = 2.7− 3 = −0.3 and δ(t9) = −2.7 + 3 = 0.3;
in the following, we will arrange these δ(ti) in ascending order (and this
as in the algorithm of previous section):

• we have: δ(ti1) = 0.3 ≤ δ(ti2) = 0.3 ≤ δ(ti3) = 0.4;

• δ(ti4) = δ(ti5) = δ(ti6) = 0;

• δ(ti7) = −0.3 ≤ δ(ti8) = 0 ≤ δ(ti9) = 0.3;
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(3) we have, ∆ = −1,
given that ∆ = −1 < 0, we will only add 1 to x′i9 (since x′i9−1+1 = x′i9);
so: x = (1,−1,−1, 2,−3, 1, 0, 3,−3 + 1) = (1,−1,−1, 2,−3, 1, 0, 3,−2
Therefore, the nearest vector of t in A8 is:
x = (1,−1,−1, 2,−3, 1, 0, 3,−2)

3.2.2 The closest vector problem in root lattice An⊗Am

We start this section by the characterization of the vectors of the root lattice
An ⊗ Am (n,m ≥ 1) as below. We first recall the definition of the tensor
product:

Definition 3.2.2. Let Λ1 ⊆ Rn1 and Λ2 ⊆ Rn2 be lattices of respectively ranks
n1 and n2,

let a1, ..., an1 ∈ Rn1 and b1, ..., bn2 ∈ Rn2 be their respective bases. The tensor
product Λ1 ⊗ Λ2 ⊂ Rn1n2 is defined as the lattice with basis {ai ⊗ bj : i ∈
{1, ..., n1}, j ∈ {1, ..., n2}}.
Here x⊗y = (x1, ..., xn1)⊗(y1, ..., yn2) with x ∈ Rn1 and y ∈ Rn2 can be seen as
an element of Rn1n2 as follows : (x1y1, x1y2, ..., x1yn1 , x2y1, ..., xn1yn2) ∈ Rn1n2 .

Characterisation of the vectors of the root lattice An ⊗ Am

The root lattice An ⊗ Am ⊆ Z(n+1)(m+1) (n,m ≥ 1) consists of all elements
x = (x11, ..., x1(m+1), x21, ..., x2(m+1), ..., x(n+1)1, ..., x(n+1)(m+1)) ∈ Z(n+1)(m+1)

satisfying the following conditions:

(1)
n+1∑
i=1

xij = 0 for all j = 1, ...,m+ 1

(2)
m+1∑
j=1

xij = 0 for all i = 1, ..., n+ 1.

The notation x = (x11, ..., x1(m+1), x21, ..., x2(m+1), ..., x(n+1)1, ..., x(n+1)(m+1))
above, means that there exist two vectors u = (u1, ..., un+1) ∈ An
and v = (v1, ..., vm+1) ∈ Am such that: xij = uivj for i = 1, ..., n + 1 and
j = 1, ...,m+ 1 .

Basis of root lattice An ⊗ Am

A basis of the root lattice An ⊗ Am has some nice properties. First let bij ∈
An ⊗ Am be given by:
• biji,j = biji+1,j+1 = 1;
• biji+1,j = biji,j+1 = −1;
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and 0 otherwise for all i ∈ {1, ..., n} and j ∈ {1, ...,m}.
Therefore, we can note B := {bij : i ∈ {1, ..., n} and j ∈ {1, ...,m}} as a basis
of An ⊗ Am. Because the basis B is so sparse, we can efficiently encode and
decode elements in this basis.

Example 3.2.3. A good basis of the root lattice A2 ⊗ A3 is given by:
B = {b11, b12, b13, b21, b22, b23} where:
• b11 = (1,−1, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0);
• b12 = (0, 1,−1, 0, 0,−1, 1, 0, 0, 0, 0, 0);
• b13 = (0, 0, 1,−1, 0, 0,−1, 1, 0, 0, 0, 0);
• b21 = (0, 0, 0, 0, 1,−1, 0, 0,−1, 1, 0, 0);
• b22 = (0, 0, 0, 0, 0, 1,−1, 0, 0,−1, 1, 0);
• b23 = (0, 0, 0, 0, 0, 0, 1,−1, 0, 0,−1, 1).

Solving the closest vector problem in root lattice An ⊗ Am

The results of this section are taken from [22].
We will characterize the Voronoi relevant vector in the root lattice An ⊗ Am.
First, we will limit the search space by the following lemma.

Lemma 3.2.4. For all Voronoi relevant vectors v ∈ An⊗Am, we have |vij| < 2
for all i ∈ {1, ..., n+ 1} and j ∈ {1, ...,m+ 1}.

Proof. Let u ∈ An ⊗Am be a Voronoi relevant vector. We suppose that there
exist i, j such that |uij| ≥ 2; because of symmetry we can assume without loss
of generality that |u11| ≥ 2. And because u is a Voronoi relevant vector if and
only if −u is also a Voronoi relevant vector, we can also assume that uij ≥ 2.
Let xij ∈ An ⊗ Am for all i = 2, ..., n + 1 and j = 2, ...,m + 1 be given by
x11 = xij = 1; xi1 = x1j = −1 and 0 otherwise.
Note that 〈xij, xij〉 = 4 for all i, j. Then by definition 3.1.3 we get: u11 +
u1 + uij − ui1 − uj1 = 〈u, xij〉 < 〈xij, xij〉 = 4 for all i = 1, ..., n + 1; and
j = 1, ...,m+ 1.
also note that because these are all integers, we even have that:
u11 + u1 + uij − ui1 − uj1 ≤ 3. Summing multiple of these relations for a fixed
j = 2, ..., n+ 1 gives:
mu11 −mui1 +

m+1∑
j=2

(u1j + uij) ≤ 3(m+ 1− 1) = 3m;

furthermore −u11 =
m+1∑
j=2

u1j and ui1 =
m+1∑
j=2

uij;

so the inequation becomes: (m+ 1)u11 − (m+ 1)ui1 ≤ 3m;
as a result of u11 ≥ 2, we now get that: ui1 ≥

3
m+ 1 − 1;

and thus ui1 > −1; for all i = 2, ..., n+1 and j = 1, ...,m+1; then thus ui1 ≥ 0;
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Figure 3.1: Example graph Gt corresponding to
t = (0, 0, 0, 0, 0, 1, 0,−1, 0, 0,−1, 0, 1,−1, 1, 0, 0, 0, 1,−1) ∈ A3 ⊗ A4.

for all i = 2, ..., n+ 1 and j = 1, ...,m+ 1
but in that case: 0 =

n+1∑
i=1

ui1 ≥ 2 + 0 + ...+ 0 = 2 which gives a contradiction.
so |u11| < 2

As a result all Voronoi relevant vectors of An ⊗ Am must lie in X :=
{−1, 0, 1}(n+1)(m+1) ⋂(An ⊗ Am). In the following, we will give the correspon-
dence between the elements of X and certain subgraphs of the complete di-
rected bipartite labelled graph Kn+1,m+1 = (V,E). We label the n + 1 nodes
V1 := {v1, ..., vn+1} and V2 := {w1, ..., wm+1}. Let V = V1 ∩ V2; we let a
coefficient tij ∈ X corresponds to the pair (vi, wj) of nodes of Kn+1,m+1.

Definition 3.2.5. Let t ∈ {−1, 0, 1}(n+1)(m+1) be given. We will define the
subgraph Gt = (Vt, Et) ⊂ Kn+1,m+1 = (V,E) corresponding to t. Let Et consist
of the following directed edges:
• The edge (vi, wj) for each tij that has value −1;
• The edge (wj, vi) for each tij that has value 1;

and let Vt consist of all nodes with non zero in-or outdegree.

Example 3.2.6.

v1 v2
v3 v4

w1 w2 w3 w4 w5

Proposition 3.2.7. The Voronoi relevant vectors of root lattice An ⊗Am are
precisely all v ∈ X \ {0} such that Gv is connected and the indegree and
outdegree of every node is exactly 1.

Proof. Let u ∈ X \ {0} be given. Note that we already have:
〈u, x〉 = ∑

i,j
uijxij ≤

∑
i,j
|xij| ≤

∑
i,j
|xij|2 = 〈x, x〉. for x ∈ An ⊗ Am. because

u ∈ X \ {0}. We remark that if x ∈ X, we have ∑
i,j
|xij| = ∑

i,j
|xij|2 and

〈x, x〉 = ∑
i,j
|xij| if and only if uijxij = |xij| for all i = 1, ..., n + 1 and
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j = 1, ...,m+ 1; so xij = 0 or xij = uij ∈ X \ {0}.
This makes it clear that the only candidates such that 〈u, x〉 = 〈x, x〉 are those
x ∈ X such that Gx ⊂ Gu. By Lemma 22 [22], we get that u ∈ RV (An⊗Am) if
and only if Go and Gu are the only subgraphs of that form of Gu. In fact note
that each Gx with x ∈ X consists of a union of disconnected Eulerian graphs
and thus a union of disconnected cycles. Furthermore note that every cycle in
Gx corresponds to a subgraph H ⊂ Gx for which there exists an x′ ∈ X such
that H = Gx′ . But that means that Gu is a Voronoi relevant vector if and only
if Gu contains only the trivial cycle Go and Gu and no other cycles. We will
show that this is only the case when Gu is a simple cycle.
Because Gu is a union of disconnected cycles, we must have that Gu is con-
nected as otherwise taking one of those disconnected cycles would give a non
trivial subgraph. Gx ( Gu. So Go must be connected and thus consist of a
single cycle. In the case Gu contains a non trivial cycle, the one when starting
in w and returning to w for the first time. So Gu must be connected and
the indegree and outdegree of every node must be 1. But in that case Gu is a
simple cycle and it is clear that Gu only has the trivial cycles corresponding
to Go and Gu. So u is a voronoi relevant vector in that case.

Lemma 3.2.8. Let x ∈ An ⊗Am and let t ∈ span(An ⊗Am) be our target. If
there exists a Voronoi relevant vector v ∈ RV (An ⊗Am) such that ‖(x+ v)−
t‖ < ‖x − t‖, we can find such a Voronoi relevant vector in O((n + m)nm)
arithmetic operations on reals. If it does not exist this will also be detected by
the algorithm.

Proof. Let u := x−t be the difference vector of t and x. We construct weighted
directed complete bipartite graph Kn+1,m+1(u) with weight functionW defined
as follows: for i ∈ {1, ..., n+ 1} and j ∈ {1, ...,m+ 1}

W (vi, wj) = (uij − 1)2 − u2
ij = 1− 2uij

W (wj, vi) = (uij + 1)2 − u2
ij = 1 + 2uij

Now consider some Gv ⊂ Kn+1,m+1(u) with the same weights for an arbitrary
v ∈ RV (An ⊗ Am). Then by construction, we have:
W (Gv) = ∑

i,j:vij 6=0
1 + 2vij.uij = 〈v, v〉+ 2〈v, u〉 = ‖u+ v‖2 − ‖u‖2.

So ‖(x+v)−t‖ < ‖x−t‖ for a v ∈ RV (An⊗Am) if and only ifGv ⊂ Kn+1,m+1(u)
has negative weight. By Proposition 3.2.7, the Voronoi relevant vectors of
An ⊗Am are precisely all v ∈ X \ {0} such that Gv consists of a single simple
cycle. Thus every simple cycle of length at least 4 in Kn+1,m+1 corresponds
to a Voronoi relevant vector. So the problem of finding a v ∈ RV (An ⊗ Am)
such that ‖(x + v) − t‖ < ‖x − t‖ is equivalent to finding a simple cycle
of length at least 4 with negative weight in Kn+1,m+1. Note that because
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W (vi, wj) +W (wj, vi) = 2 ≥ 0 for all i ∈ {1, ..., n+ 1} and j ∈ {1, ...,m+ 1},
there exists no simple cycles of length 2. Therefore, we just need to find a
simple cycle of negative weight. this can be done by Bellman-Ford algorithm
in O(C.|E|) = O(min{n+m}nm) operations, where C = 2 min{n+ 1,m+ 1}
bounds the length of the cycles considered. The construction of the graph
itself can easily be done in O(n+m+ nm) operations and thus adds nothing
to the complexity. The Bellman-Ford algorithm also detects if simple negative
weight cycles exist or not [15].

Lemma 3.2.9. For any t ∈ span(An⊗Am), we can find an x ∈ An⊗Am such
that ‖x− t‖ ≤ 2

√
(n+ 1)(m+ 1) in O(nm) operations.

A polynomial CVP algorithm for the lattice An ⊗ Am is given as below:

Algorithm 2 A polynomial CVP algorithm for the lattice An ⊗ Am.
Require: n,m, d ≥ 1 and t = ∑

i,j
aijb

ij ∈ span(An ⊗ Am) with aij ∈ 2−dZ
Ensure: a closest vector x to t in An ⊗ Am

1: Find (aqr)q,r, such that t = ∑
qr
aqrb

qr;
2: a := ∑

q,r
baqrebqr, b := a;

3: for i = 1, · · · , d(outer loop) do
4: ti := ∑

q,r
2−ib2iaqrebqr;

5: construct weighted Kn+1,m+1 (with u := a− ti);
6: while Kn+1,m+1(a− ti) has a negative cycle Gu do (inner loop)
7: a := a+ u;
8: else
9: break;

10: xi := a;
11: end for
12: xd is a closest vector to t;

Theorem 3.2.10. Given a target t = ∑
i,j
aijb

ij ∈ span(An ⊗ Am) with all

aij ∈ 2−dZ and with d ≥ 1 we can find a closest vector to t in An ⊗ Am in
O(d.(nm)2(n+m)) operations.

Proof. Let akl ∈ 2−dZ such that t = ∑
k,l
aklb

kl ∈ 2−dZ(n+1)(m+1). These akl can

be done in time O(nm). Let ti = ∑
k,l

2−ib2iaklcbkl for i = 0, ..., l; so tl = t.

These can be also be computed in time O(nm) each as each bkl has only 4
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nonzero cœfficient there are at most 4 basis elements that are non zero there.
Note that if our current target is ti and our current best approximation is
a ∈ An ⊗ Am, we will improve in every iteration with at least 2−i+1 between
squared distances if we improve at all as for a relevant vector v ∈ RV (An⊗Am)
we have ‖a+v−ti‖2−‖a−ti‖2 = 2〈a−ti, v〉+〈v, v〉 ∈ 2−i+1Z(n+1)(m+1); because
a and v are integer vectors, and ti ∈ 2−iZ(n+1)(m+1), when searching a closest
vector to ti we start with the approximation xi−1. To bound the number of
iterations of the inner loop to get xi, we need the following bound for i ≥ 1:
‖ti−1−xi−1‖2−‖ti−xi‖2 = (‖ti − xi−1‖ − ‖ti − xi‖) (‖ti − xi−1‖+ ‖ti − xi‖);
≤ (‖ti−1 − xi−1‖+ ‖ei‖+ ‖ti − xi‖) (‖ti−1 − xi−1‖+ ‖ei‖ − ‖ti − xi‖); since we
have ‖ti − xi‖ ≤ 2

√
(n+ 1)(m+ 1) for all i ≥ 0 by Lemma 3.2.9;

we get, ‖ti−xi−1‖2−‖ti−xi‖2 ≤ (dist(ti−1, An⊗Am)+2−i+2
√

(n+ 1)(m+ 1)+
2
√

(n+ 1)(m+ 1))(dist(ti−1, An⊗Am)+2−i+2
√

(n+ 1)(m+ 1)−dist(ti, An⊗
Am);
so ‖ti − xi−1‖2 − ‖ti − xi‖2 ≤ (4

√
(n+ 1)(m+ 1) + 2−i+2

√
(n+ 1)(m+ 1))

(dist(ti−1, An ⊗ Am)− dist(ti, An ⊗ Am) + 2−i+2
√

(n+ 1)(m+ 1));
then ‖ti − xi−1‖2 − ‖ti − xi‖2 ≤ (4 + 2−i+2)

√
(n+ 1)(m+ 1)(dist(ti−1, An ⊗

Am)− dist(ti, An ⊗ Am) + 2−i+2
√

(n+ 1)(m+ 1));
thus ‖ti − xi−1‖2 − ‖ti − xi‖2 ≤ (4 + 2−i+2)

√
(n+ 1)(m+ 1)(‖ti−1 − ti‖ +

2−i+2
√

(n+ 1)(m+ 1));
i.e ‖ti−xi−1‖2−‖ti−xi‖2 ≤ (4+2−i+2)

√
(n+ 1)(m+ 1)(2−i+2

√
(n+ 1)(m+ 1)+

2−i+2
√

(n+ 1)(m+ 1));
i.e ‖ti−xi−1‖2−‖ti−xi‖2 ≤ (4+2−i+2)

√
(n+ 1)(m+ 1)(2−i+3

√
(n+ 1)(m+ 1));

thus ‖ti − xi−1‖2 − ‖ti − xi‖2 ≤ 16.2−i+1 + 8(2−i+1)(2−i+1)(n+ 1)(m+ 1);
therefore, ‖ti − xi−1‖2 − ‖ti − xi‖2 ≤ 16.2−i+1(1 + 2−i)(n+ 1)(m+ 1);
so for fixed i the inner loop starts with a = xi−1 and improves this approxi-
mation until ‖ti − as‖ = ‖ti − xi‖. So we get the following:
‖ti − xi−1‖2 = ‖ti − a‖2 < ‖ti − a1‖2 < ... < ‖ti − as‖2 = ‖ti − xi‖2

and because ‖ti − xi−1‖2 − ‖ti − xi‖2 ≤ 16.2−i+1(1 + 2−i)(n + 1)(m + 1) and
in every iteration this decreases with at least 2−i+1 there can be at most
16.(1 + 2−i) + 1 iterations (+1 for the final check) for every i ≥ 1. So giving a
closest vector xi−1 to ti−1 we can find a closest vector xi to ti in O(nm) iter-
ations. By Lemma 3.2.8, each iteration takes O(nmminn,m) operations. By
Lemma 3.2.9, we can find a a ∈ An⊗Am such that ‖t0−a‖2 ≤ 4(n+1)(m+1)
and thus, ‖t0− a‖2−‖t0−x0‖2 ≤ 4(n+ 1)(m+ 1); and as difference decreases
with at least 2−0+1 = 2 every iteration, the number of iterations to obtain x0

from the first approximation is also in O(nm) and thus the total number of
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operations to find x0 is in O((nm)2 minn,m). This changes nothing to the
total complexity and thus we can find a closest vector to td = t in An⊗Am in
An ⊗ Am in O(d.(nm)2 minn,m) operations.

3.2.3 Solving the closest vector problem in An⊗Am⊗Ap

(n,m, p ≥ 1)
In this section, we will characterize the Voronoi relevant vector in An⊗Am⊗Ap
(n,m, p ≥ 1) in order to determine a polynomial algorithm to solve the closest
vector problem in this lattice.
We will use the same techniques as for the case of the tensor product of two
root lattices of type A. But in this case of the tensor product of three root
lattices of type A, we will use the complete directed tripartite graph.

Definition 3.2.11. Let n,m, p ≥ 1, be three positives integers that are not all
zero. We call root lattices An⊗Am⊗Ap ⊆ Z(n+1)(m+1)(p+1) of rank nmp all of
the elements
x = (x111, ..., x11(p+1), x121, ..., x12(p+1), ..., x(n+1)(m+1)(p+1)) ∈ Z(n+1)(m+1)(p+1)

satisfying the following conditions:

n+1∑
i=1

xijk = 0 for all j = 1, ...,m+ 1 and k = 1, ..., p+ 1
m+1∑
j=1

xijk = 0 for all i = 1, ..., n+ 1 and k = 1, ..., p+ 1
p+1∑
k=1

xijk = 0 for all i = 1, ..., n+ 1 and j = 1, ...,m+ 1.

We will use the indices i, j and k throughout this section.

3.2.4 Characterizing the Voronoi relevant vectors
As announced, we construct a polynomial algorithm to solve the closest vector
problem for the lattice An ⊗ Am ⊗ Ap. For this we characterize the Voronoi
relevant vector of An ⊗ Am ⊗ Ap. First we will limit our search space. Many
of the results presented here are due by Léo Ducas and Wessel van Woerden
[22].

Proposition 3.2.12. For all voronoi relevant vectors u ∈ An ⊗ Am ⊗ Ap we
have |uijk| < 6 for all i = 1, ..., n+ 1; j = 1, ...,m+ 1 and k = 1, ..., p+ 1.

Proof. Let u ∈ An ⊗ Am ⊗ Ap be a Voronoi relevant vector. We suppose that
there exists i, j, k such that |uijk| ≥ 6; because of symmetry of the Voronoi
region we can assume without loss of generality that |u111| ≥ 6. And because u
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is a Voronoi relevant vector if and only if −u is also a Voronoi relevant vector,
we can also assume that uijk ≥ 6.
Let xijk ∈ An⊗Am⊗Ap for all i = 2, ..., n+1; j = 2, ...,m+1 and k = 2, ..., p+1
be given by x111 = x1jk = xij1 = xi1j = 1; x11k = x1j1 = xi11 = xijk = −1 and
0 otherwise.
Note that 〈xijk, xijk〉 = 8 for all i, j, k. Then by Definition 2, we get: u111 +
u1jk +uij1 +ui1j−u11k−u1j1−ui11−uijk = 〈u, xijk〉 < 8 for all i = 1, ..., n+ 1;
j = 1, ...,m+ 1 and k = 1, ..., p+ 1.
also note that because these are all integers, we even have that:
u111 + u1jk + uij1 + ui1k − u11k − u1j1 − ui11 − uijk ≤ 7. Summing multiple of
these relations for a fixed j = 2, ...,m+ 1 gives:
mu111−mu11k +mui1k−mui11 +

m+1∑
j=2

(u1jk +uij1−u1j1−uijk) ≤ 7(m+ 1− 1);
summing multiple of these relations for a fixed k = 2, ..., p+ 1 gives:
mpu111 −mpui11 +

p+1∑
k=2

(mui1k −mu11k) +
p+1∑
k=2

(
m+1∑
j=2

(u1jk + uij1 − u1j1 − uijk)) ≤

7(m+ 1− 1)(p+ 1− 1);
furthermore −mui11 =

p+1∑
k=2

mui1k and −mu111 =
p+1∑
k=2

mu11k;

as becomes : mpu111 −mpui11 −mui11 +mu111 +
p+1∑
k=2

(
m+1∑
j=2

(u1jk + uij1 − u1j1 −

uijk)) ≤ 7(m+ 1− 1)(p+ 1− 1);

furthermore,
p+1∑
k=2

m+1∑
j=2

(u1jk+uij1−u1j1−uijk) =
p+1∑
k=2

(−u11k−ui11 +u111 +ui1k) =
u111 − pui11 + pu111 − ui11;
so the inequation becomes: mpu111 −mpui11 −mui11 +mu111 + u111 − pui11 +
pu111 − ui11 ≤ 7(m+ 1− 1)(p+ 1− 1);
thus (m + 1)(p + 1)(u111 − ui11) ≤ 7(m + 1 − 1)(p + 1 − 1); so u111 − ui11 ≤
7(m+ 1− 1)(p+ 1− 1)

(m+ 1)(p+ 1) ;
by hypothesis we have u111 ≥ 6, then we now get:
ui11 ≥

−7(m+ 1− 1)(p+ 1− 1)
(m+ 1)(p+ 1) +6; and thus ui11 ≥ −1+7(m+ 1 + p+ 1− 1)

(m+ 1)(p+ 1) ;

we also have 7((m+ 1)(p+ 1)− 1) > (m+ 1)(p+ 1) for all n+ 1,m+ 1 ≥ 3
so ui11 ≥ 0 for all i = 2, ..., n+ 1 and u111 ≥ 6;
but in that case: 0 =

n+1∑
i=1

ui11 ≥ 6 + 0 + ...+ 0 = 6 which gives a contradiction.
so |u111| < 6

Remark 3.2.13. From the Proposition 3.2.12 we can deduce that all Voronoi
relevant vectors of An ⊗ Am ⊗ Ap must lie in
X := {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}(n+1)(m+1)(p+1) ∩ (An ⊗ Am ⊗ Ap).
As for the case of two root lattices we have determined the set of coordinates
of the Voronoi relevant vector in An ⊗ Am but the characterization of its ele-
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ments according to a certain subgraphs of the complete directed tripartite graph
Kn+1,m+1,p+1 = (V,E) is very difficult. This is the reason why, we will use the
associativity of the lattice of type A and the results obtained by Léo Ducas and
wessel van Woerden in [22] to solve CVP in the tensor product of more than
two lattices of type A.

Since An ⊗ Am is a sub lattice of root lattice A(n+1)(m+1)−1, and that the
lattices are non commutative, we can give the correspondence between the
elements of Y and certain subgraphs of the complete tripartite labelle graph
Kn+1,m+1,p+1 = (V,E). We label the n + 1 nodes V1 := {u1, ..., un+1}, V2 :=
{v1, ..., vm+1} and V3 := {w1, ..., wp+1}; and we let the coefficient tijk ∈ Y cor-
respond to the triplet (ui, vj, wk) := (ui, vj) ∧ (vj, wk) of nodes ofKn+1,m+1,p+1.

Definition 3.2.14. Let t ∈ {−1, 0, 1}nmp be given. Let Kn+1,m+1,p+1 be the
complete directed tripartite graph with n + 1 nodes u1, ..., un+1; m + 1 nodes
v1, ..., vm+1 and p+1 nodes w1, ..., wp+1. We define the subgraph Gt = (Vt, Et) ⊂
Kn+1,m+1,p+1 corresponding to t where Et consists of the following directed
edges.
• The edge (ui, vj, wk) = (ui, vj) ∧ (vj, wk) for each t()ijk that has value 1;
• The edge (ui, vj, wk) = (ui, vj) ∧ (wk, vj) for each tijk that has value 1;
• The edge (ui, vj, wk) = (vj, ui) ∧ (vj, wk) for each tijk that has value −1;
• The edge (ui, vj, wk) = (vj, ui) ∧ (wk, vj) for each tijk that has value −1;

and Vt as all nodes with non zero in-or outdegree. Note that the condition for
{−1, 0, 1}nmp to be part of An⊗Am⊗Ap corresponds to the fact for every node
of Gt the difference between the indegree and the outdegree must be even.

From Definition 3.2.14, we can give the following lemma.

Lemma 3.2.15. For any complete directed tripartite graph Kn+1,m+1,p+1, we
can define an equivalent sub graph Gt′ = (Vt′ , Et′) ⊂ K(n+1)(m+1)−1,p+1 corre-
sponding to t′ where Et′ consists of the following directed edges.
• The edge (t′ij, wk) for each t′ijk that has value 1 if t′ij = (ui, vj);
• The edge (t′ij, wk) for each t′ijk that has value −1 if t′ij = (vj, ui).

In this case, the difference between the indegree and the outdegree of every node
of Gt′ must be even.
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Figure 3.2: Example graph G′t corresponding to
t′ = (0, 1,−1, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0,−1, 1) ∈ A2 ⊗ A1 ⊗ A2

Example 3.2.16.

u1 u2 u3

v1 v2

w1 w3w2

⇓

t′11 t′12 t′21 t′22 t′31

w1 w3w2

t′32

Therefore, we will use the same techniques as for the case of the tensor product
of two root lattices of type A to solve the problem in three root lattices of type
A.

Proposition 3.2.17. Now consider Y := {−1, 0, 1}. The Voronoi relevant
vectors of An ⊗Am ⊗Ap are precisely all s ∈ Y \ {0} such that Gs consists of
a simple cycle.

Proof. Just use (Theorem 2, [22]) and associativity of tensor product in root
lattices of type A.

From Theorem 2, [22] we can deduce that the number of Voronoi relevant
vectors of
An ⊗ Am ⊗ Ap is equal to:

min{(n+1)(m+1),(p+1)}∑
i=2

((n+1)(m+1)
i )(p+1

i ).i!.(i− 1)!
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3.2.5 Finding the closest vector in An ⊗ Am ⊗ Ap

The Voronoi relevant vectors of An ⊗Am ⊗Ap being characterized, we will in
the following present a polynomial algorithm allowing to solve CV P in this
type of lattice.

Lemma 3.2.18. Let x ∈ An ⊗ Am ⊗ Ap, and let t ∈ span(An ⊗ Am ⊗ Ap) be
our target. If there exists a Voronoi relevant vector u ∈ RV (An ⊗ Am ⊗ Ap)
such that ‖(x + u) − t‖ < ‖x − t‖ we can find such a Voronoi relevant vector
in O (((n+ 1)(m+ 1)− 1 + p)((n+ 1)(m+ 1)− 1)p) operations. If it doesn’t
exist this will be detected by the algorithm.

Proof. Just use (Lemmas 3 and 8 [22]) and the associativity of tensor product
in root lattices of type A.

Lemma 3.2.19. Let bijk ∈ An ⊗ Am ⊗ Ap. be given by:
• bijki,j,k = bijki,j+1,k+1 = bijki+1,j,k+1 = bijki+1,j+1,k = 1;
• bijki,j,k+1 = bijki,j+1,k = bijki+1,j,k = bijki+1,j+1,k+1 = −1;
• and 0 otherwise for all i = 1, ..., n+1; j = 1, ...,m+1 and k = 1, ..., p+1.

Note that
B :=

{
bijk : i = {1, ..., n+ 1}; j = {1, ...,m+ 1} and k = {1, ..., p+ 1}

}
is a basis of An⊗Am⊗Ap. Because the basis B is so sparse we can efficiently
encode elements in this basis.

Lemma 3.2.20. For any t ∈ span(An ⊗ Am ⊗ Ap) we can find an x ∈ An ⊗
Am ⊗ Ap such that
‖x− t‖ ≤ 2

√
(n+ 1)(m+ 1)(p+ 1) in O(((n+ 1)(m+ 1)− 1)p)) operations.

Proof. Just use (Lemma 7, [22]) and the associativity of tensor product in
root lattices of type A.

In Lemma 5 [22], if ∑
i,j,k

aijb
ijk ∈ span(An⊗Am⊗Ap)∩(2−dZ(n+1)(m+1)(p+1))

from the transformation, it is clear that aij ∈ 2−dZ. Since An ⊗ Am ⊗ Ap has
only integer vectors, we can say that if
t ∈ 2−dZ(n+1)(m+1)(p+1) then the squared distance to the target will in each
iteration improve with at least 2−i+1 which is exactly what we need to bound
the number of iterations. �

A polynomial CVP algorithm for the lattice An ⊗ Am ⊗ Ap is given as below:
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Algorithm 3 A polynomial CVP algorithm for the lattice An ⊗ Am ⊗ Ap.
Require: n,m, p, d ≥ 1 and t = ∑

i,j,k
aijkb

ijk ∈ span(An ⊗ Am ⊗ Ap.) with

aijk ∈ 2−dZ
Ensure: a closest vector x to t in An ⊗ Am ⊗ Ap.

1: Find (apqr)p,q,r, such that t = ∑
pqr
apqrb

pqr;
2: a := ∑

p,q,r
bapqrebpqr, b := a;

3: for i = 1, · · · , d(outer loop) do
4: ti := ∑

p,q,r
2−ib2iapqrebpqr;

5: construct weighted K(n+1)(m+1),(p+1) (with s := a− ti);
6: a := a+ s;
7: else
8: break;
9: xi := a;

10: end for
11: xd is a closest vector to t;

Proposition 3.2.21. Given a target t = ∑
i,j
aijb

ij ∈ span(An ⊗Am ⊗Ap) with

all aij ∈ 2−dZ and with d ≥ 1 we can find a closest vector to t in An⊗Am⊗Ap
in
O(d.(((n+1)(m+1)−1)p)2min{(n+1)(m+1)−1), p}) arithmetic operations
with the previous algorithm.

Proof. Just use (Theorem 3, [22]) and the associativity of tensor product in
root lattice of type A.

3.3 Closest Vector Problem in An1 ⊗ An2 ⊗ ... ⊗
Ank

According to the previous remark, we can generalize the resolution of CVP in
the tensor product of k root lattices of type A.
Let k lattices An1 , ..., Ank of type A.

Definition 3.3.1. Let n1, ..., nk ≥ 1, be k positive integers that are not all zero.
We call root lattice An1 ⊗An2 ⊗ ...⊗Ank ⊂ Z(n1+1)...(nk+1) of rank n1n2...nk all
of the elements
x = (x11...1, x11...1(nk+1), x121...1, ..., x(n1+1)...(nk+1)) ∈ Z(n1+1)...(nk+1) satisfying
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conditions:
n1+1∑
i(1)=1

xi(1)i(2)...i(k) = 0 for all i(2) ∈ {1, ..., n2 + 1} ... i(k) ∈ {1, ..., nk + 1}
n2+1∑
i(2)=1

xi(1)i(2)...i(k) = 0 for all i(1) ∈ {1, ..., n1 + 1} ... i(k) ∈ {1, ..., nk + 1}

... .. ... ... ...
nk+1∑
i(k)=1

xi(1)i(2)...i(k) = 0 for all i(1) ∈ {1, ..., n1 + 1} ... i(k−1) ∈ {1, ..., nk−1 + 1}.

We will use the indices i(1), ..., i(k) throughout this section.

We note that by gradually regrouping these lattices, and two by two,
and by using the associativity of the tensor product, solving closest vector
problem in An1 ⊗ An2 ⊗ ... ⊗ Ank amounts to solving the same problem in
(An1 ⊗ An2)⊗ An3 ⊗ ...⊗ Ank .
Step by step, solving this problem in An1 ⊗ An2 ⊗ ... ⊗ Ank could be reduced
to solving it in An1(n2+1)...(nk−1)−1 ⊗ Ank .
The previous Section illustrates well the case for k = 3. For the general case,
we just have to use the same technique, and we will obtained a CVP algorithm
for this general case. This algorithm runs in
O (d.(((n1 + 1)...(nk−1 + 1)− 1)nk)2 min {(n1 + 1)...(nk−1 + 1)− 1, nk}) (where
d ≥ 1) arithmetic operations.

3.4 Closest vector problem for some root Lattice
of type D

Before going on the characterization of the vectors of the root lattice Dn⊗Dm,

we will present a polynomial algorithm which solves the CVP in the root lattice
Dn.

3.4.1 The closest vector problem in Dn

Given x ∈ Rn, the closest point to x in Dn is whichever of f(x) and g(x)
having an even sum of coordinates (one will have an even sum, the other an
odd sum), where the functions f and g are defined as follows: For an arbitrary
xi ∈ R, we define the functions f(xi) and w(xi) for all i = 1, ..., n as follows:

• if xi = 0 then f(xi) = 0 and w(xi) = 1

• if 0 < m+ 1
2 < xi < m+ 1 then f(xi) = m and w(xi) = m+ 1
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• if −m− 1
2 ≤ xi ≤ −m then f(xi) = −m and w(xi) = −m− 1

• if 0 < m+ 1
2 < xi < m+ 1 then f(xi) = m+ 1 and w(xi) = m

• if −m− 1 < xi < −m−
1
2 then f(xi) = −m− 1 and w(xi) = −m

We also write xi = f(xi) + δ(xi), so that |δ(xi)| ≤
1
2 is the distance from xi to

the nearest integer.
Given that x = (x1, ..., xn) ∈ Rn, let k(1 ≤ k ≤ n) such that |δ(xk)| ≤
|δ(xi)| for all 1 ≤ i ≤ n and |δ(xk)| = |δ(xi)| implies k ≤ i. Then f(x) =
(f(x1), f(x2), ..., f(xk), ..., f(xn)) and g(x) is defined by:
g(x) = (f(x1), f(x2), ..., w(xk), ..., f(xn)).

3.4.2 Characterisation of the vectors of the root lattice
Dn ⊗Dm

We will start this section by the characterization of the vectors of the root
lattice Dn ⊗ Dm (n,m ≥ 2) as below. We first recalls the definition of the
tensor product:

Definition 3.4.1. Let Λ1 ⊆ Rn1 and Λ2 ⊆ Rn2 be lattices of respectively ranks
n1 and n2,

let a1, ..., an1 ∈ Rn1 and b1, ..., bn2 ∈ Rn2 be their respective bases. The tensor
product Λ1 ⊗ Λ2 ⊂ Rn1n2 is defined as the lattice with basis {ai ⊗ bj : i ∈
{1, ..., n1}, j ∈ {1, ..., n2}}.
Here x⊗y = (x1, ..., xn1)⊗(y1, ..., yn2) with x ∈ Rn1 and y ∈ Rn2 can be seen as
an element of Rn1n2 as follows : (x1y1, x1y2, ..., x1yn1 , x2y1, ..., xn1yn2) ∈ Rn1n2 .

The root lattice Dn ⊗Dm ⊆ Znm (n,m ≥ 2) consists of all elements
x = (x11, ..., x1m, x21, ..., x2m, ..., xn1, ..., xnm) ∈ Znm satisfying the following
conditions:

(1)
n∑
i=1

xij even for all j = 1, ...,m

(2)
m∑
j=1

xij even for all i = 1, ..., n.

(The notation x = (x11, ..., x1m, x21, ..., x2m, ..., xn1, ..., xnm) above, means that
there exist two vectors u = (u1, ..., un) ∈ Dn and v = (v1, ..., vm) ∈ Dm such
that: xij = uivj for i = 1, ..., n and j = 1, ...,m. )

Indeed, we have (x11, ..., x1m, ..., x2m, ..., xn1, ..., xnm) =
(u1v1, ..., u1vm, u2v1, ..., u2vm, ..., unv1, ..., unvm) ∈ Dn ⊗ Dm. Since the sums
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n∑
i=1

ui and
m∑
j=1

vj are even, then
n∑
i=1

uivj is even for all j = 1, ...,m and
m∑
j=1

uivj

is even for all i = 1, ..., n.

Remark 3.4.2. Let Dn and Dm (n,m ≥ 2)be two root lattices. Then Dnm is
a full rank sub lattice of the lattice Dn ⊗Dm.
Indeed, the vector x = (0, 0, 2, 1, 1, 0,−1, 1) is the vector of the root lattice D8

because 0+0+2+1+1+0−1+1 = 4, which is even. But this vector is not in
the root lattice D2⊗D4 because

4∑
j=1

x1j = x11+x12+x13+x14 = 0+0+2+1 = 3,
which is odd.

Lemma 3.4.3. (Basis of Dn ⊗ Dm) Let Dn and Dm (n,m ≥ 2) be two root
lattices,
the basis Bn⊗m := {bij : i = 1, ..., n and j = 1, ...,m} of the root lattice Dn⊗
Dm is given by:

• b11
1,1 = b11

1,2 = b11
2,1 = b11

2,2 = 1

• bi1i−1,1 = bi1i−1,2 = 1; bi1i,2 = bi1i;1 = −1 for all i = 2, ..., n

• b1j
1,j−1 = b1j

2,j−1 = 1; b1j
1,j = b1j

2,j = −1 for all j = 2, ...,m

• biji−1,j−1 = biji,j = 1; biji−1,j = biji,j−1 = −1 for all i = 2, ..., n and j = 2, ...,m

• 0 otherwise

3.4.3 A polynomial algorithm for solving the CVP in
Dn ⊗Dm

We first present a general description of our CVP efficient algorithm inDn⊗Dm

(n,m ≥ 2) as below:

Description of the algorithm
This algorithm takes as input a vector of a linear space spanned span(Dn⊗Dm)
(where Dn and Dm are two root lattices of type D with n,m ≥ 2) and returns
a closest vector to this vector in Dn ⊗ Dm as follows: Given a vector t =
(t11, ..., t1m, t21, ..., t2m, ..., tn1, ..., tnm) of span(Dn ⊗Dm) ⊆ Rnm.
We will start by determining the closest vector to t in the root lattice Dnm.
To do this, we will calculate the functions:
f(t) = (f(t11), ..., f(t1m), f(t21), ..., f(t2m), ..., f(tn1), ..., f(tnm)) and
g(t) = (f(t11), ..., f(tk(l−1)), w(tkl), f(tk(l+1)), ..., f(tnm)) (where f(tij) = btije
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for all i = 1, ..., n and j = 1, ...,m; and the function g is obtained by proceeding
as in the case of a single root lattice of type D [13]). Given that the two
functions f and g differ by only one component, and by the value 1, then
either the sum of the function’s coordinates f or g will be even .
Then, if the sum of all the coordinates of f(t) is even then h := f , else h := g.
Thus, h ∈ Dnm. After determining the closest vector h ∈ Dnm of t, the closest
vector to h in Dn ⊗Dm is obtained as follows:
We carry out the sums

n∑
i=1

h(tij) for all j = 1, ...,m and
m∑
j=1

h(tij) for i = 1, ..., n.
If all these sums are even, then h ∈ Dn ⊗ Dm. Therefore, x := h. Else we
proceed as follow:
Then we initialize the counters c, d, α and β as follows: c := 0, d := 0, α := 1
and β := 1. We calculate for each i = 1, ..., n the sums

m∑
j=1

h(tij). Thus, for

i = 1, ..., n if
m∑
j=1

h(tij) odd, then c := c+ 1; uα :=
m∑
j=1

h(tij) and α = α+ 1. We

calculate also for each j = 1, ...,m the sums
n∑
i=1

h(tij). As above, for j = 1, ...,m

if
n∑
i=1

h(tij) odd, then d := d+ 1; vβ :=
m∑
j=1

h(tij) and β = β + 1.
After calculating all the sums above, if c = 0 and d = 0 then x := h. Else, for
each r = 1, ..., c we denote by f(huα) and g(huα) the corresponding functions
to the vector h as defined in Section 3.4.1. Similarly, for each s = 1, ..., d we
denote by f(hvβ) and g(hvβ) the corresponding functions to the vector h. Here,
the functions f(huα) and g(huα) are associated with the vector h whose sum
of the coordinates is equal to uα. In the same way, the functions f(hvβ) and
g(hvβ) are associated with the vector h whose sum of the coordinates is equal
to vβ.
Thus, for all uα and vβ there exists a single common function of which all the
sums of the coordinates are even. We will denote by q this function.
At the end of all these operations, we get the vector x := q.
This process is performed at most (n+m) times until all the sums

n∑
i=1

h(tij) for

all j = 1, ...,m and
m∑
j=1

h(tij) for i = 1, ..., n are even. Thus, the new coordinates
of the function that we obtain is the component of the vector x ∈ Dn ⊗Dm.
An such x is the closest vector of t ∈ span(Dn ⊗Dm) in Dn ⊗Dm.
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Algorithm 4 A CVP algorithm for the lattice Dn ⊗Dm.

Require: n,m ≥ 2 and t = (t11, ..., tnm) ∈ span(Dn ⊗Dm).
Ensure: a closest vector x to t in Dn ⊗Dm.

1: f1 := (bt11e, ..., btnme);
2: g1 := (f(t11), ..., f(tk(l−1)), f(wkl), f(tk(l+1)), ..., f(tnm)); (where wkl is de-

fined as in Section 3.4.1);
3: u = [0, ..., 0]; v = [0, ..., 0]; c := 0; d := 0;
4: if ∑

i,j
f(tij) even then

5: p := f1;
6: if p := g1;
7: end if
8: for i = 1, · · · , n do
9: a :=

m∑
j=1

pij;
10: if a odd then
11: c := c+ 1; uc := a;
12: end if
13: end for
14: for j = 1, · · · ,m do
15: b :=

n∑
i=1

pij;
16: if b odd then
17: d := d+ 1; vd := b;
18: end if
19: end for
20: if c = 0 and d = 0 then
21: x := p;
22: end if
23: for α = 1, · · · , c and β = 1, · · · , d do
24: compute f(puα); g(puα); f(pvβ); g(pvβ); (see Subsection 3.4.3)
25: x := q;(see Complexity Analysis 3.4.3 below)
26: end for
27: x is a closest vector of x in Dn ⊗Dm;

Complexity Analysis
About the complexity of this algorithm, we have:
From line 1 to line 2, we have 2 elementary operations. Indeed, we have only
2 assignments in these steps.
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Line 3 has 4 elementary operations. Indeed, we have 4 assignments in this
step.
From line 4 to line 8 we have 2 elementary operations. Indeed, we have 1
comparison and 1 assignment.
From line 9 to line 15, we have at most 3n elementary operations. Indeed, we
have at most 3 operations inside the loop for which goes from 1 to n.
From line 16 to line 22, we have at most 3m elementary operations. Indeed,
we have at most 3 operations inside the loop for which goes from 1 to m.
From line 23 to line 24, we have at most 3 elementary operations.
From line 26 to line 29, we have n + m operations. Indeed, q is the vector
whose coordinates are made up of a part of the coordinates whose sum is even
in line 10 of our algorithm, and the rest of the coordinates of q supplemented
by the coordinates obtained after line 27 of our algorithm. In this step, the
algorithm uses Section 3.4.1 to determine each sub-coordinate for which the
sub-vectors of each block are close to the associated target sub-vectors. Indeed,
by determining the values whose distances with that of the associated sub-
blocks are minimum, we will globally obtain the closest vector to the initial
target vector. Given that the only operations used here are the comparisons
and the additions, and that we have at most n blocks according to the index
i, and at most m blocks according to the index j.
Thus we will have at most 2 + 4 + 4 + 3n+ 3m+ 3 = 13 + 4n+ 4m arithmetic
operations;
since 13 + 4n+ 4m

n+m
−→ cste when n,m −→ ∞, then the complexity of this

algorithm is O(n+m) arithmetic operations.

Example 3.4.4. Let n = m = 2, and x = (1.2,−1.2,−1.2, 0.6) ∈ span(D2 ⊗
D2).
We have: f = (1,−1,−1, 1), and g = (1,−1,−1, 0);
since 1− 1− 1 + 1 = 0, then p := f = (1,−1,−1, 1) ∈ D4;
and because

2∑
i=1

pi1 = p11 + p21 = 1− 1 = 0,
2∑
i=1

pi2 = p12 + p22 = −1 + 1 = 0,
2∑
j=1

p1j = p11 + p12 = 1 − 1 = 0 and
2∑
j=2

p2j = p21 + p22 = −1 + 1 = 0 then

x := p = (1,−1,−1, 1).
Therefore, x = (1,−1,−1, 1) is the closest vector of t = (1.2,−1.2,−1.2, 0.6)
in D2 ⊗D2.

Example 3.4.5. Let n = 3 and m = 2, and
t = (2.8,−2.8,−2.8, 4.6,−2.9,−3.3) ∈ span(D3 ⊗D2).
We have: f := (3,−3,−3, 5,−3,−3) and g := (3,−3,−3, 4,−3,−3);
since 3− 3− 3 + 5− 3− 3 = −4, then p := f = (3,−3,−3, 5,−3,−3);
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For i = 1, ..., 3 we have:
U1 =

2∑
j=1

p1j = p11 + p12 = 3− 3 = 0; U2 =
2∑
j=1

p2j = p21 + p22 = −2 + 4 = 2;

U3 =
2∑
j=1

p3j = p31 + p32 = −3− 3 = −6;
and for j = 1, ..., 2 we have:
V1 =

2∑
i=1

pi1 = p11 +p21 +p31 = 3−3−3 = 3 and V2 =
2∑
i=1

pi2 = p12 +p22 +p32 =
−3 + 5− 3 = 3;
we have V1 and V2 odd. For the case of V1, we take the coordinates p11, p21,
p31 and we calculate f1 and g1 as below:
f1 = (3,−3,−3) and g1 = (3,−2,−3) where p11 = 3, p21 = −3,−2 and
p31 = −3.
For the case of V2, we take the coordinates p12, p22, p32 and we calculate f2

and g2 as below:
f2 = (−3, 5,−3) and g2 = (−3, 4,−3) where p12 = −3, p22 = 5, 4 and p32 =
−3;
since the sums of the coordinates of the vectors g1 and g2 are even, we choose
p21 = −2 and p22 = 4; thus, x := (3,−3,−2, 4,−3,−3).
Therefore, the vector x = (3,−3,−2, 4,−3,−3) is the closest vector of
t = (2.8,−2.8,−2.8, 4.6,−2.9,−3.3) in the root lattice D3 ⊗D2.

3.5 Concluding remarks
In this Chapter, we have use associativity and non commutativity of tensor
product in lattices to solve the closest vector problem in the tensor product of
three root lattices of type A. We have also generalized this work for the case
of k (k ≥ 4) root lattices of type A. We have also successfully constructed a
polynomial algorithm to solve the closest vector problem for the case of tensor
product of two root lattices Dn and Dm that we noted Dn ⊗Dm (n,m ≥ 2).
Our future work will consist to generalise this algorithm to solve this problem
for the case of tensor product of a finite number k of root lattices of type Dn

(n ≥ 2) which we denote by
k⊗
i=1

Di.
Our future work will consist to improve the algorithm for solving the closest
vector problem in the tensor product of two and three root lattices of type A.
Indeed, a tensor product of two or three root lattices is also a sub lattice of a
root lattice with some particular properties. We will use the characterization
of the Voronoi relevant vectors and the oriented complete k−graphs to solve
CVP in the tensor product of k lattices of type A.
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Chapter Four

Sieving algorithm for orthogonal
integer lattice of dimension n

In this chapter, we propose a new sieve algorithm that we called Orthogonal-
Integer sieve algorithm for some orthogonal integer lattices and particularly
the case of integer lattices Λ ⊂ Zn, root lattices of type An (n ≥ 1) and of
type Dn (n ≥ 2). In these cases, we use the famous LLL algorithm to find the
shortest vector of these lattices. Indeed, in general, a sieve algorithm builds a
list of short random vectors which are not necessarily in the lattice, and tries
to produce short lattice vectors by taking linear combinations of the vectors
in the list. But in our case, we built a list of short vectors in the lattice. From
the first column of the LLL-reduced basis of the considered basis, we have the
list of at least n and at most 2n short vectors for the general case (where n is
the dimension of the lattice) of orthogonal integer lattices Λ ⊂ Zn . For the
lattices Zn, An (n ≥ 1) and Dn (n ≥ 2), we have respectively 2n, n(n + 1)
and 2n(n− 1) short vectors . The proposed sieve algorithm for integer lattice
Zn runs in space O(2n) and the OrthogonalInteger sieve algorithm performs
O(n2n) arithmetic operations and is polynomial in space. Indeed, we give a
list of all short vectors of the particular case of orthogonal integer lattices Zn.
The proposed algorithm is polynomial and requires O(n) in space. We also
propose an enumeration algorithm which will allow us to obtain the list of
shortest vectors in all orthogonal integer lattices Λ ⊆ Zn. This algorithm runs
in O(n2n) time and can be polynomial in space and the list of short vectors
obtained enables to solve the shortest independent vector problem SIV P [7]
for some orthogonal integer lattices. This is possible for some integer lattice
Zn, root lattices of type Dn (n ≥ 2) and An (n ≥ 1) and their duals. For
correctness, a Maple computer software implementation of the algorithm has
been done.

This chapter is organized as follows. In Section 4.1, we recall some key con-
cepts such as orthogonal lattice, some properties of orthogonal lattices that will
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be useful in the paper. In Section 4.2 we give a polynomial algorithm to de-
termine an orthogonal integer basis for a given integer lattice. In Section 4.3
we recall Gauss sieve algorithm. Our main result of this chapter is presented
in Section 4.4 where we describe a polynomial algorithm which returns a list
of exactly 2n short vectors for the case of the orthogonal integer lattice Zn.
We also present in Section 4.4 an algorithm which gives at least n and at most
2n short vectors of general orthogonal integer lattices Λ ⊂ Zn. This algorithm
runs in time O(n2n) and can be polynomial in space. The chapter is con-
cluded in Section 4.5. The result announced in this chapter come mainly from
[45, 31, 5, 41, 50, 18].

4.1 Preliminaries
Here we recall some formal definitions that will be used throughout this chap-
ter. All definitions in this section are taken from [10, 11, 49, 41]

Definition 4.1.1. [10] A lattice Λ is said to be orthogonal if it has a basis B
such that the rows of B are pairwise orthogonal vectors.
In other words, a lattice Λ is said to be orthogonal if it generated by a set of
pairwise orthogonal vectors. We recall that a basis {b1, b2, · · · , bn} is orthog-
onal if and only if:
• 〈bi, bi〉 6= 0 for all i and;
• 〈bi, bj〉 = 0 for all i 6= j.

Example 4.1.2. Zn is an orthogonal lattice.
Indeed, the basis of Zn is B = (b1, ..., bn) where b1 = (1, 0, ..., 0); b2 = (0, 1, 0, ..., 0);
bn−1 = (0, ..., 0, 1, 0) and bn = (0, ..., 0, 1).
Then, for i, j ∈ {1, ..., n} with i 6= j, bi and bj are orthogonal.
Thus, the rows of the generator matrix of Zn are pairwise orthogonal vectors.
Therefore, Zn is an orthogonal lattice.

Definition 4.1.3. [11] Let Λ ⊆ Rn be a lattice. We say that Λ′ is a sublattice
of Λ if Λ′ ⊆ Λ is a lattice as well. If Λ′ is a sublattice of Λ, then λi(Λ) ≤ λi(Λ

′)
for i ≤ dim(Λ′).

Definition 4.1.4. [11] A sublattice Λ′ of Λ ⊆ Rn is said to be primitive if
there exists a subspace E of Rn such that Λ′ = Λ ∩ E.

Lemma 4.1.5. [24] Let Λ be a lattice and b1, ..., bd ∈ Λ be d linearly in-
dependent lattice vectors. Then b1, ..., bd form a basis of Λ if and only if
P(b1, ..., bd) ∩ Λ = {0}.
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In the rest of this work, we will use full-rank lattice.

Definition 4.1.6. [49] Let B = {b1, b2, · · · , bn} be a basis of a lattice Λ of
rank n. The orthogonality defect of the basis B is the following quantity:

δ>(B) =

n∏
i=1
‖bi‖

det(B) (4.1)

Remark 4.1.7. δ>(B) ≥ 1 and if B is orthogonal, then δ>(B) = 1. This
means that if B is orthogonal, then det(B) =

n∏
i=1
‖bi‖

We recall that the minimum distance can be equivalently defined as the
length of the shortest nonzero lattice vector as below:

λ(Λ) = inf {‖v‖ : v ∈ Λ r {0}} (4.2)

For the case of random lattices, we have an approximation of the minimum
distance called Gaussian heuristic. It is defined explicitly as below.

Definition 4.1.8. For all lattices Λ, the Gaussian heuristic gh(Λ) gives the
expected first minimum and for a full rank lattice Λ ⊆ Rn, gh(Λ) is defined as:

gh(Λ) =
√

n

2πe.vol(Λ)1/n. (4.3)

We also denote gh(n) for gh(Λ) of n-dimensional lattice Λ of volume 1: gh(n) =√
n

2πe .
The Gaussian heuristic says that a shortest non zero vector in a randomly
chosen lattice will satisfy vshortest ≈ gh(Λ).

Lemma 4.1.9. Let a lattice Λ with a basis B. If B⊥ is its orthogonal basis,
then λ1(Λ) ≤ λ1(Λ⊥). Where λ1(Λ) and λ1(Λ⊥) are respectively the minimum
distance of the lattices Λ and Λ⊥.

Proof. We use the fact that for every orthogonal lattice, we have only one
operation (swap) for all the vectors of the basis and we have the result.

Hermite’s Theorem:
Every lattice Λ of dimension n contains a non zero vector v ∈ Λ satisfying:
‖v‖≤

√
n. (det(Λ))

1
n .
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Orthogonal Basis of Integer Lattices
Although the vectors of B∗ are rationals, by multiplying the basis B∗ by the
least common multiple (lcm) of the denominators of the coordinates, we obtain
the basis B⊥ (with integer coordinates) with pairwise orthogonal rows. This
basis B⊥ is an orthogonal basis of the lattice Λ(B).

Example 4.1.10. Let given the base B = (b1, b2, b3) with b1 = (1, 1, 1); b2 =
(−1, 0, 2) and b3 = (3, 5, 6). We want to determine B⊥.
The Gram-Schmidt Orthogonalization of B is given by: B∗ = (b∗1, b∗2, b∗3) with
b∗1 = (1, 1, 1); b∗2 = (−4

3 ,−
1
3 ,

5
3) and b∗3 = (−3

7 ,
9
14 ,−

3
14);

since lcm(3, 7, 14) = 42, we have:
b⊥1 = 42× b∗1 = (42, 42, 42); b⊥2 = 42× b∗2 = (−56,−14, 70) and
b⊥3 = 42 × b∗3 = (−18, 27,−9). Therefore, B⊥ = (b⊥1 , b⊥2 , b⊥3 ) is an orthogonal
basis (with integer coordinates) of the lattice Λ(B).

Lemma 4.1.11. Let a lattice Λ with a basis B. If B⊥ is its orthogonal basis,
then λ1(Λ) ≤ λ1(Λ⊥). Where λ1(Λ) and λ1(Λ⊥) are respectively the minimum
distance of the lattices Λ and Λ⊥.

Proof. We use the fact that for every orthogonal lattice, we have only one
operation (swap) for all the vectors of the basis and we have the result.

In the next subsection, we proceed to lattice reduction assuming that an
orthogonal basis is always given.

4.2 Orthogonal Reduced Basis of Integer Lattices
Given an orthogonal basis B⊥ of an integer lattice Λ ⊆ Zn, Algorithm 5 returns
a reduced basis B⊥1 of B⊥, i.e a basis with vectors shorter than those of B⊥ .
We start by calculating the gcd of the components of each vectors of B⊥. After
that, we divide all these vectors by this gcd. Finally, we perform permutations
between these vectors in order to achieve the successive minima. The following
algorithm illustrates this description.
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Algorithm 5 Reduced(B⊥)
Require: The orthogonal basis B⊥ of a lattice Λ.
Ensure: A reduced basis B⊥1 of the basis B⊥.

1: for i from 1 to d do
2: b⊥1

i ←
b⊥i

gcd(ai)
(where a′is are the components of the vector b⊥i );

3: end for
4: end for
5: for j from d to 1 do
6: if ‖b⊥1

j ‖< ‖b⊥1
j−1‖ then

7: swaps(b⊥1
j , b⊥1

j−1);
8: end if
9: end if

10: end for
11: end for
12: return B⊥1

Example 4.2.1. Let be given the basis B =


1 −1 3
1 0 5
1 2 6

 with b1 = (1, 1, 1);

b2 = (−1, 0, 2) and b3 = (3, 5, 6).

The Gram-Schmidt Orthogonalization of B is given by: B∗ =


1 −4

3 −3
7

1 −1
3

9
14

1 5
3 − 3

14


with b∗1 = (1, 1, 1);
b∗2 = (−4

3 ,−
1
3 ,

5
3) and b∗3 = (−3

7 ,
9
14 ,−

3
14);

since lcm(3, 7, 14) = 42, we have: B⊥ =


42 −56 −18
42 −14 27
42 70 −9

 with b⊥1
1 =

1
42 × (42, 42, 42) = (1, 1, 1); b⊥1

2 = 1
14 × (−56,−14, 70) = (−4,−1, 5) and

b⊥1
3 = 1

9 × (−18, 27,−9) = (−2, 3,−1);
therefore, since ‖b⊥1

3 ‖< ‖b⊥1
2 ‖ then,

b⊥1
2 = b⊥1

3 = (−2, 3,−1); and b⊥1
3 = b⊥1

2 = (−4,−1, 5);
since ‖b⊥1

1 ‖≤ ‖b⊥1
2 ‖, the vectors b⊥1

1 and b⊥1
2 remains the same and we have the
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following reduced basis: B⊥1 =


1 −2 −4
1 3 −1
1 −1 5


We recall that, the goal of lattice basis reduction is to find a basis with

short vectors and orthogonal to each other. We also know that the Gram-
Schmidt process does not preserve the structure of integer lattice. It would be
interesting to focus on the LLL-reduction which used Gram-Schmidt process
and returns integer vectors. The most usual notion of reduction is probably
the LLL-reduction. The LLL- reduction is one of the most commonly used.
Let 1

4 < δ < 1, let B = (b1, ..., bn) ∈ Zn×n be a basis of a lattice. We say

that B is size-reduced if all Gram-Schmidt coefficients satisfy | µij |≤
1
2 . We

say that B satisfies the Lovàsz conditions if for all i ∈ {1, ..., n} we have
δ‖b∗i ‖2≤ ‖b∗i+1‖2+µi+1,i‖b∗i ‖2.
A basis B satisfying both the size-reduced and the Lovàsz conditions is said
to be LLL-reduced. The LLL algorithm is given in [49] and it is shown that
the number of LLL swaps is O(n2 lg‖B‖). The LLL-reduction implies that the
norms of the Gram-Schmidt-Orthogonalization vectors never drop too fast. In-
deed the vectors are not far from being orthogonal. The most famous problem
of lattice theory is the shortest vector problem (SVP), and the LLL-reduction
gives a solution of this problem. We can thus deduce the Hadamard’s inequality
which is stated as below.

Hadamard’s inequality [49]
Let b1, ..., bn be vectors in Rn and let B be a corresponding n × n real ma-
trix with the columns b1, ..., bn. Then Hadamard’s inequality asserts that:
| det(B) |≤

n∏
i=1
‖ bi ‖.

The most famous problem of lattice theory is the Shortest Vector Problem
(SVP), and the Closest Vector Problem (CVP) is its non-homogeneous variant.

For random lattices, one uses the Gaussian heuristic and Gauss reduction
to obtain the list of short vectors of the lattice.

Definition 4.2.2. [41] For two given vectors u, v ∈ Λ, if max(‖u‖, ‖v‖) ≤
min(‖u− v‖, ‖u+ v‖), then u and v are called Gauss-reduced.

Let L be a list of N vectors from a lattice Λ(B). If for any two different
vectors vi, vj (i, j = 1, ..., N i 6= j) in L, vi and vj are Gauss-reduced, then
the list L is called pairwise-reduced.
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When solving the shortest vector problem, gh(Λ) is usually regarded as the
expected norm of the shortest vector. In the following, we will present the
notion of OrthogonaInteger sieve which is the exact method in practice to
solve the shortest vector problem in orthogonal integer lattices Λ(B) ⊂ Zn

where n is the dimension of lattice Λ.
In the following, we will present the notion of sieve which is the fastest

method in practice to solve the shortest vector problem in random lattice.

4.3 Gauss Sieve algorithm
In this section, we describe the Gauss Sieve algorithm [41] and use it to propose
an Orthogonal sieve algorithm for orthogonal lattices and particularly the case
of integer lattice Zn.
It is known that all sieving algorithm start by sampling lots of lattices vectors
into a list L and by shorting it.

4.3.1 List sieve algorithm
The List Sieve algorithm works by iteratively building a list L of lattice points.
At every iteration, the algorithm attempts to add a new point to the list.
Lattice points already in the list are never modified or removed. The goal
of the algorithm is to produce shorter and shorter lattice vectors, until two
lattice vectors within distance µ from each other are found, and a lattice
vector achieving the target norm can be computed as the difference between
these two vectors. At every iteration, a new lattice point is generated by

first picking a (somehow random, in a sense to be specified) lattice point
v, and reducing the length of v as much as possible by repeatedly subtracting
from it the lattice vectors already in the list L when appropriate. Finally, once
the length of v cannot be further reduced, the vector v is included in the list.
The main idea behind our algorithm design and analysis is that reducing v
with the vector list L ensures that no two points in the list are close to each
other. Since v is close to a list vector u ∈ L, then u is subtracted from v before
v is considered for inclusion in the list, this immediately gives upper bounds
on the space complexity of the algorithm. Moreover, if at every iteration we
were to add a new lattice point to the list, we could immediately bound the
running time of the algorithm as roughly quadratic in the list size, because
the size of L would also be an upper bound on the number of iterations, and
each iteration takes time proportional to the list size |L|. The problem is that
some iterations might give collisions, lattice vectors v that already belong to
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the list. These iterations leave the list L unchanged, and as a result they just
waste time. So the main hurdle in the time complexity analysis is bounding
the probability of getting collisions. This is done using the same method as in
the original sieve algorithm [5] instead of directly working with a lattice point
v, we use a perturbed version of it p = v + e, where e is a small random error
vector of length ‖e‖ ≥ ζµ for an appropriate value of ζ > 0, 5. As before the
length of p is reduced using list points, but instead of adding p to the list we
add the corresponding lattice vector v = p + e. We will see that some points
p = v1 +e1 = v2 +e2 correspond to two different lattice points v1, v2 at distance
precisely ‖v1 − v2‖ = λ1(B) from each other. For example, if s is the shortest
nonzero vector in the lattice, then setting p = −e1 = e2 = s/2 gives such a pair
of points v1 = 0; v2 = s. The distance between two points in L is greater than
µ or else the algorithm terminates and as a result at most one of the possible
lattice vectors v1; v2 is in the list. This property can be used to get an upper
bound on the probability of getting a collision. Unfortunately the introduction
of perturbations comes at a cost. As we have discussed above, sieving produces
points that are far from L and as a result we can prove a lower bound on the
angles between points of similar norm. Indeed after sieving with L the point
p will be far from any point in L. However the point that is actually added to
the list is v = p− e which can be closer to L than p by as much as ‖e‖ ≥ ζµ.
That makes the resulting bounds on the angles worse. This worsening gets
more and more significant as the norm of the points gets smaller. Fortunately
we can also bound the distance between points in L by µ, which gives a good
lower bound on the angles between shorter points. The space complexity of
the algorithm is determined by combining these two bounds to obtain a global
bound on the angle between any two points of similar norm, for any possible
norm.
Sampling: The pair (p; e) is chosen picking e uniformly at random within a
ball of radius µ, and setting p = emodB. This ensures that, by construction,
the ball B(p; ζµ) contains at least one lattice point v = p − e. Moreover, the
conditional distribution of v (given p) is uniform over all lattice points in this
ball. Notice also that for any ζ > 0, 5, the probability that B(p; ζµ) contains
more than one lattice point is strictly positive: if s is a lattice vector of length
λ1(B), then the intersection of B(0; ζµ) and B(s; ζµ) is not empty, and if e
falls within this intersection, then both v and v+s are within distance ζµ from
p.
List reduction: The vector p is reduced by subtracting (if appropriate) lattice
vectors in L from it. The vectors from L can be subtracted in any order. Our
analysis applies independently from the strategy used to choose vectors from
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L. For each v ∈ L, we subtract v from p only if ‖p − v‖ < ‖p‖. Notice that
reducing p with respect to v may make p no longer reduced with respect to
some other v′ ∈ L. So, all list vectors are repeatedly considered until the
length of p can no longer be reduced. Since the length of p decreases each
time it gets modified, and p belongs to a discrete set Λ(B) − e, this process
necessarily terminates after a finite number of operations. In order to ensure
fast termination, as in the LLL algorithm, we introduce a slackness parameter
γ < 1, and subtract v from p only if this reduces the length of p by at least a
factor γ. As a result, the running time of each invocation of the list reduction
operation is bounded by the list size |L| times the logarithm (to the base 1/γ)
of the length of p. For simplicity, we take γ(n) = 1− 1/n, so that the number
of iterations is bounded by a polynomial log(n‖B‖)/ log(1− 1/n)−1 = n[o(1)].
The algorithm above illustrate the above description.

4.3.2 Gauss Sieve algorithm
The Gauss Sieve algorithm allows to build a list of shorter and shorter lattice
vectors. And then, when a new vector v is added to the list, not only we
reduce the length of v using the list vectors, but we also attempt to reduce
the length of the vectors already in the list using v. This means that, if
min(‖v ± u‖) < max(‖v‖, ‖u‖), then we replace the longer of v, u with the
shorter of v ± u. As a result, the list of the Gauss Sieve algorithm L always
consists of vectors that are pairwise reduced, it means that, they satisfy the
condition min(‖v ± u‖) ≥ max(‖v‖, ‖u‖). The Gauss Sieve algorithm uses a
stack data structure S to temporarily remove vectors from the list L. When a
new point v is reduced with L, the algorithm checks if any point in L can be
reduced with v. All such points are temporarily removed from L, and inserted
in S for further reduction. The Gauss Sieve algorithm reduces the points in S
with the current list before inserting them in L. When the stack S is empty,
all list points are pairwise reduced, and the Gauss Sieve can sample a new
lattice point v for insertion in the list L. Since (u, v) is a Gauss reduced basis,
the angle between the vectors u and v is at least π3 . Thus the maximum size
of the list can be immediately bound by the kissing number τn.
In the following, we will present the Gauss Sieve pseudo-code [41].
We will beforehand give two definitions which will allow a better understanding
of this algorithm.

Definition 4.3.1. For vectors u, v ∈ Λ, if max(‖u‖, ‖v‖) ≤ min(‖u− v‖, ‖u+
v‖), then u, v are called Gauss-reduced.

Definition 4.3.2. Let list L be a set of N vectors from lattice Λ(B), if for
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Algorithm 6 The List Sieve algorithm(B)
Require: Basis B and parameter µ.
Ensure: The list L

1: function ListSieve(B, µ)
2: L← {0} , δ ← 1− 1

n
;

3: K ← 2cn, ζ ← 0.685;
4: for i = 0 to K do
5: (pi, ei)← Sample(B, ζµ);
6: vi ← ListReduced(pi, L, γ);
7: if vi /∈ L then
8: if ∃vj ∈ L: ‖vi − vj‖ ≥ µ then
9: return vi − vj;

10: end if
11: L← L ∪ {vi};
12: end if
13: end for
14: return L
15: end function

16: function Sample(B, d)
17: e← Bn(d) (random vector e);
18: p← e mod B;
19: return (p, e);
20: end function

21: function ListReduce(p, L, γ)
22: while∃vi ∈ L: ‖p− vi‖ ≤ γ‖p‖
23: p← p− vi;
24: end while
25: return p
26: end function

any two different vectors vi, vj (i, j = 1, ..., N i 6= j) in L, vi and vj are
Gauss-reduced, then list L is called pairwise-reduced.

The GaussSieve algorithm is given as below:
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Algorithm 7 GaussSieve(B)
Require: Basis B.
Ensure: ‖v‖ : v ∈ B ∧ ‖v‖ ≤ λ1(B)

1: function GaussSieve(B, µ)
2: L← {0} , S ← {}, K ← 0;
3: while K < c (number of collisions) do
4: if S is not empty then
5: vnew ← S.pop();
6: else
7: vnew ← SampleGaussian(B);
8: end if
9: vnew ← GaussReduce(vnew, L, S)

10: if (vnew = 0) then
11: K ← K + 1;
12: else
13: L← L ∪ {vnew};
14: end if
15: end while
16: end function

17: function GaussReduce(p, L, S)
18: while (∃vi ∈ L ‖vi‖ ≤ ‖p‖ ∧ ‖p− vi‖ ≤ ‖p‖) do
19: p← p− vi;
20: end while
21: while (∃vi ∈ L ‖vi‖ > ‖p‖ ∧ ‖p− vi‖ ≤ ‖vi‖) do
22: L← Lr {vi};
23: S.push(vi − p);
24: end while
25: return p
26: end function

4.4 Orthogonal Sieve algorithm
In this Section, we give our main result consisting of a sieve algorithm for inte-
ger lattices. We will first define some important notions that we will use. We
will denote L, a list to be constructed, containing all vectors of orthogonal in-
teger lattices Λ(B) ⊆ Zn such that their norm equals to the minimal distance.
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Along the way, we denote H a list used to build the list L. It is the set of all
vectors obtained by performing permutations of the coordinates of the vectors
u and −u (where u is the first short vector obtained with LLL-reduction). We
will say that there is a collision if there is a repetition of the vectors in the list
H.
We recall that a lattice Λ is said to be orthogonal if it is generated by set
of pairwise orthogonal vectors. If two vectors are orthogonal, then the an-
gle between them is equal to π

2 . The number of vectors in canonical basis of
the integer lattice Zn is n. Considering the structure of an orthogonal basis
in dimension 2, the angle between the two vectors u and v is π2 . We know
that an orthogonal basis has generally large integer coordinates because each
vector is multiplied by the lcm of the denominators of all the vectors of the
basis obtained by the Gram Schmidt Orthogonalization. Since the vectors are
pairwise orthogonal, we cannot use reduction coefficient’s process to reduce
them. Indeed, the coefficients µi,j are all zero for each i, j. Thus, for the case
of orthogonal lattices, we will only have the permutations process to carry
out the successive minima corresponding to this basis. Since the first minima
of LLL−reduced basis is less than the first minima of an integer orthogonal
reduced basis that we have denoted by B⊥1 , we will used the LLL-reduced
basis to find the list of shortest vectors in the general case of orthogonal in-
teger lattice Λ ⊆ Zn. Therefore, we will initialize the empty list L, and the
number of collisions by C = 0. After that, we use LLL-reduced basis to obtain
a short vector of this lattice. Because the opposite of this short vector is also
a short vector, we can use symmetries of different axes to see that all their
permutations are also in the lattice, including shortest vectors. The algorithm
that we are going to propose in this work will output at least n and at most 2n
shortest vectors by using the first vector obtain from the LLL-reduced basis.
Thus, for the case of orthogonal lattice Zn, we know that B⊥Zn = {e1, ..., en}
where e1 = (1, 0, ..., 0); e2 = (0, 1, ..., 0) ; . . . ; en = (0, 0, ..., 0, 1). Thus this
algorithm returns the list L = {−en, ...,−e1, e1, ..., en}; which gives exactly the
2n shortest vectors of the lattice Zn.
Therefore, in this case of integer lattice Zn, we can obtain the list of all shortest
vectors by the following simple enumeration algorithm:
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Algorithm 8 OrthogonalSieve(Zn)
Require: The dimension n.
Ensure: A list L of shortest vectors.

1: B⊥ ← (e1, ..., en) (orthogonal basis of Zn);
2: L← (−en,−en−1, ...,−e1, e1, ..., en−1, en);
3: return L

Remark 4.4.1. Indeed, in this case, our orthogonal basis is the canonical
basis and it does not give all the shortest vectors because the opposites of these
vectors are also the shortest vector. Therefore, to have all the shortest vectors
of the list L, it must be completed with the opposites of the vectors already
present in the orthogonal basis.

Example 4.4.2. For n = 4, the orthogonal basis of Z4 is given by: B⊥ =
(e1, e2, e3, e4) where e1 = (1, 0, 0, 0); e2 = (0, 1, 0, 0); e3 = (0, 0, 1, 0) and e4 =
(0, 0, 0, 1).
Therefore the list L of shortest vectors is given by:
L = {−e4,−e3,−e2,−e1, e1, e2, e3, e4}.

Lemma 4.4.3. Let Λ be a full rank integer lattice of dimension n. Λ has at
least n and at most N = n!.2n shortest vectors.
Particularly,
1− The integer lattice Zn has exactly 2n shortest vectors;
2− The root lattice of type An (n ≥ 1) has exactly n(n+ 1) shortest vectors;
3− The root lattice of type Dn (n ≥ 2) has exactly 2n(n− 1) shortest vectors.

Proof. Let Λ be a full rank integer lattice of dimension n. We know that there
exists a vector v = (v1, ..., vn) ∈ Λ\ {0} such that ‖v‖ = λ1 (Λ). We also know
that u = −v is another shortest vector in Λ. Likewise, all the permutations
of the coordinates of v and u are a shortest vector of the lattice. The vector
v has at most n! permutations and the vector u has also at most n! permu-
tations. Thus, we have at most (n!)2 permutations possible for one of these
vectors. Moreover, the vectors u and v have at most 2n possibilities to combine
symmetrically by the different axes. Therefore, we have at most n!.2n shortest
vectors in integer lattices.
For the case of integer lattice Zn, we know that the n vectors of canonical
basis are the shortest vectors of this lattice. Since their opposites are also the
shortest vectors of Zn, we have exactly 2n shortest vectors in Zn.
Since the short vectors of the root lattices of type An (n ≥ 1) are the per-

mutations of the vector (+1,−1, 0, ..., 0), then we will have exactly (n+ 1)!
(n− 1)! =
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n(n + 1) short vectors in this particular lattice. Thus we will have exactly
n(n+ 1) short vectors in root lattices of type An.
About the root lattices of type Dn (n ≥ 2), we also know that all the short
vectors are the permutations of the vector (±1,±1, 0, ..., 0) with the condi-
tion that the sum of all the components is even. Thus we will have three
possible following cases: the permutations of the vector (+1,−1, 0, ..., 0), the
permutations of the vector (+1,+1, 0, ..., 0) and the permutations of the vector
(−1,−1, 0, ..., 0).
This means that, we will have exactly n!

(n− 2)! + n!
2!(n− 2)! + n!

2!(n− 2)! =

2n(n− 1).
Therefore, we will exactly have 2n(n− 1) short vectors in root lattices of type
Dn.

Corollary 4.4.4. Given a basis B of the orthogonal lattice Zn, we can obtain
the list L of shortest vectors of this lattice in space O(2n).

Proof. Let B be a basis of the orthogonal lattice Zn. The canonical basis
permits to obtain exactly 2n short vectors of this lattice. Then these vectors
will be obtained in space O(n).

We are now going to propose an enumeration algorithm which will take as
input a basis (not orthogonal) of the integer lattice Λ and return a list of at
most 2n shortest vectors of this lattice. Since this lattice is an integer lattice,
then the LLL algorithm will return a shortest vector of the lattice that we call
v. Even if an integer lattice is also an orthogonal lattice, it would be interest-
ing to use a non-orthogonal basis of the lattice. Indeed, by applying the LLL
algorithm to an orthogonal basis, we obtain the same basis. Consequently, the
vectors obtained will not necessarily be the short vectors of the lattice.
Therefore, we will bring out all the possible combinations between the compo-
nents of the vector v and its opposite −v (this by keeping the position of each
component used). The description of our algorithm is given as below.

4.4.1 Description of the Algorithm
Given an orthogonal integer lattice Λ, this algorithm takes as input the (non
orthogonal) basis B = (b1, b2, ..., bn) of the lattice (where n is the dimension of
Λ)and returns a list L of at least n and at most 2n short vectors of the lattice
Λ and the number of collision C as follows: we start by executing the LLL
algorithm to the basis B which allows us to obtain a short vector of the lattice
which we denote by u. Subsequently, we will use this vector u and its opposite
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v = −u to build a list L. To achieve this, we will build a 2n × n matrix K
using an iterative function V ect and an additional 2n−1 × (n − 1) matrix P .
The 2n rows of our constructed matrix K will be short vectors of the lattice.
Now, we will consider the list H whose elements are rows of K. A final list L
consisting of short vectors will then be constructed from K, making sure that
an element appears only once. The number of collisions will be the number of
repetitions of the vectors in the list H.
At the end of the algorithm, we will have the list L which will be made up of at
least n and at most 2n short vectors of the lattice, and the number of collisions
C. The following explanations will help to better understand the algorithm.
• The function Vect takes as input the vectors p and q, and builds a 2n−1 ×
(n− 1) matrix P ;
• K[i, ] is line number i of the matrix K;
• matrix(0, nrow = 2n, ncol = n) is the 2n × n matrix with 0 everywhere;
• The function LLL(B) takes as input the basis B and returns its LLL-reduced
basis.

Remark 4.4.5. We will call the number of collisions that we will denote by C,
the total number of repetitions of the vectors that we will have in the auxiliary
list H which will make it possible to obtain the list L of short vectors. Thus,
if the number of collisions is large, then the size of the list L is small. Indeed,
the total number of vectors of the list L will be equal to 2n − C.

The algorithm below illustrates the above description. For correctness, a
Maple computer software implementation of the algorithm has been done.

Ph.D Thesis FOBASSO TCHINDA Arnaud Girès



4.4 Orthogonal Sieve algorithm 63

Algorithm 9 Orthogonal integer sieve
Require: The basis B of a lattice Λ and its dimension n ≥ 2.
Ensure: A list L of short vectors v with ‖v‖= λ1(Λ(B)) and integer C.

1: L := {}; C := 0; "We initialize an empty list L and integer C "
2: G := LLL(B);
3: u := G[, 1]; v := −u; " u is the 1st column of matrix G"
4: p := (0, ..., 0); q := (0, ..., 0) "(n− 1) times"
5: for i = 1, · · · , n− 1 do
6: pi := ui; qi := vi;
7: end for
8: P := V ect(p, q, n− 1);
9: K := matrix(0, nrow = 2n, ncol = n); l := 2n; t := 2n−1;

10: for i = 1, · · · , t do
11: for j = 1, · · · , n− 1 do
12: K[i, j] := P [i, j];
13: end for
14: end for
15: for i = t+ 1, · · · , l do
16: for j = 1, · · · , n− 1 do
17: K[i, j] := P [i− t, j];
18: end for
19: end for
20: for i = 1, · · · , t do
21: K[i, n] := un; "we update the 2n−1 first components of column n"
22: end for
23: for i = t+ 1, · · · , l do
24: K[i, n] := vn; "we update the last 2n−1 components of column n"
25: end for
26: end if
27: H := (K[1, ], ..., K[2n, ]); L := L ∪ {H[1]});
28: for i = 2, · · · , 2n do
29: if H[i] /∈ L then then
30: L := L ∪ {H[i]}); "we remove all copies from the list"
31: else C := C + 1;
32: end if
33: end for
34: return (The list L of shortest vectors v with ‖v‖= λ1(Λ(B)) and C);
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4.4.2 Complexity Analysis
About the complexity of our algorithm, we have:
The line 1 has 2 elementary operations. Indeed, we have only 2 assignments
in this step;
line 2 is carried out in polynomial time with complexity O(n) arithmetic op-
erations. Indeed, algorithm LLL runs in O(n) arithmetic operations.
The line 3 has 2 elementary operations (assignments).
Line 4 has 2(n− 1) arithmetic operations. Indeed, in this line we have 2 affec-
tations inside the loop for which goes from 1 to n− 1;
from line 5 to line 7, we also have 2(n− 1) elementary operations. Indeed, we
have 2 assignments inside the loop for which goes from 1 to n− 1;
The line 8 has (n − 1)2n−1 arithmetic operations. Indeed, we use a recursive
algorithm that uses two loops "for", which one goes from 1 to 2n−1 and other
from 1 to n− 1;
Line 9 has 3 elementary operations (assignments);
from line 10 to line 14, we have two loops and the first goes from 1 to 2n−1,
and inside this one we have another loop for which goes from 1 to n−1. Thus,
we will have 2n−1 (n− 1) operations from line 10 to line 14.
In the same way, we will have 2n−1 (n− 1) operations from line 15 to line 19;
from line 20 to line 22, we have 2n−1 because we have only one operation inside
the loop for which goes from 1 to 2n−1. In the same way, we will have 2n−1

operations from line 23 to line 26;
line 27 has 2n + 1 operations because we have 1 elementary operation (assign-
ment) and 2n assignments to build matrix K;
from line 29 to line 34, we have 2 operations (assignment and comparison)
which will be automatically executed inside the loop for which goes from 1 to
2n − 1. Thus we will have 2 × (2n − 1) = 2n+1 − 2 operation from line 29 to
line 34.
So we will have 2n+1 − 2 + 2n + 1 + 2n−1 + 2n−1 + (n− 1)2n−1 + (n− 1)2n−1 +
(n− 1)2n−1 + 2(n− 1) + 2 + n+ 2 arithmetic operations;
this means that we have 2n+1 − 2 + 2n + 1 + 2n + (n − 1)2n + (n − 1)2n−1 +
2(n− 1) + n+ 4 arithmetic operations;
thus, we have 2n+1 + 2n+1 + (n− 1)2n + (n− 1)2n−1 + 2(n− 1) + n+ 3;

since 2n+2 + (n− 1)2n + (n− 1)2n−1 + 2(n− 1) + n+ 3
n2n → cte when n →

+∞, then the complexity of algorithm is O(n2n).
Therefore, the complexity of our algorithm is O(n2n) arithmetic operations.
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Example 4.4.6. Let B :=


3 3 −3
1 3 1
1 4 −2

 be a basis of a lattice Λ(B) ⊂ Z3;

we have, G := LLL (B) =


0 0 3
2 2 1
−1 3 1

;
thus u = (0, 2,−1), v = (0,−2, 1) and n = 3;
We have n 6= 1, then p = (0, 2) and q = (0,−2);
then P :=Vect(p = (0, 2), q = (0,−2), n = 2);
thus n = 2 6= 0, this means that we have P := Vect(p = (0), q = (0), n = 1);
therefore, l = 22 = 4 and t = 22−1 = 2; thus
for i = 1, 2 and j = 1 we have: P [1, 1] = 0 and P [2, 1] = 0
for i = 3, 4 and j = 1 we have: P [3, 1] = 0 and P [4, 1] = 0

Thus P is the form K :=


0 0
0 0
0 0
0 0


now we will complete the second column as below:
for i = 1, 2 and j = 2 we have: P [1, 2] = P [2, 2] = u2 = 2;
for i = 3, 3 j = 2 we have: P [3, 2] = P [4, 2] = v2 = −2;

and then, we have P :=


0 2
0 2
0 −2
0 −2


now l = 23 = 8 and t = 22 = 4;
thus for i = 1, ..., 4 and j = 1, 2 we have: K[1, 1] = P [1, 1] = 0; K[1, 2] =
P [1, 2] = 2;
K[2, 1] = P [2, 1] = 0; K[2, 2] = P [2, 2] = 2; K[3, 1] = P [3, 1] = 0; K[3, 2] =
P [3, 2] = −2; K[4, 1] = P [4, 1] = 0 and K[4, 2] = P [4, 2] = −2;
for i = 5, ..., 8 and j = 1, 2 we also have: K[5, 1] = P [1, 1] = 0; K[5, 2] =
P [1, 2] = 2;
K[6, 1] = P [2, 1] = 0; K[6, 2] = P [2, 2] = 2; K[7, 1] = P [3, 1] = 0; K[7, 2] =
P [3, 2] = −2; K[8, 1] = P [4, 1] = 4 and K[8, 2] = P [4, 2] = −2;
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Thus K is the form K :=



0 2 0
0 2 0
0 −2 0
0 −2 0
0 2 0
0 2 0
0 −2 0
0 −2 0


now we will complete the last column as below:
for i = 1, ..., 4 and j = 3 we have K[1, 3] = K[2, 3] = K[3, 3] = K[4, 3] = u3 =
−1;
for i = 5, ..., 8 and j = 3 we have K[5, 3] = K[6, 3] = K[7, 3] = K[8, 3] = v3 =
1;

thus, we have K =



0 2 −1
0 2 −1
0 −2 −1
0 −2 −1
0 2 1
0 2 1
0 −2 1
0 −2 1


Thus,

H = {(0, 2,−1), (0, 2,−1), (0,−2,−1), (0,−2,−1), (0, 2, 1), (0, 2, 1), (0,−2, 1), (0,−2, 1)} .
Therefore, L = {0, 2,−1), (0,−2,−1), (0, 2, 1), (0,−2, 1)} and C = 4.

4.5 Concluding remarks
In this chapter, we talked about the notions of orthogonal lattices, integer
lattices, gave some properties of this family of lattices. We also recalled the
relationship between orthogonal and integer lattices. All this allowed us to
construct an enumeration algorithm for integer lattice Zn to provide a full list
of its shortest vectors. This algorithm runs in space O(n). We also constructed
an algorithm which gives at least n and at most 2n short vectors of a general
orthogonal integer lattice Λ ⊂ Zn. This algorithm runs in time O(n2n) and can
be polynomial in space. We have successfully implemented these algorithms in
the Maple computer software 18.0. Our future work will consist in giving an
algorithm which will give a list of short vector in general case of any orthogonal
lattice.
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Chapter Five

CONCLUSION AND
FURTHER WORK

In this thesis, we have built a new family of lattice (tensor product of two root
lattices of type D) for which the Closest Vector Problem is solved efficiently.
Subsequently, we solved the Closest Vector Problem in the tensor product
of three root lattices of type A, before generalizing this resolution for the
tensor product of a finite number of root lattices of type A. We have also
constructed a list of vectors with minimum norm in the orthogonal integer
lattices of dimension n and in particular for the case of integer lattice Zn. We
have adopted a natural approach, by focusing on the first two cases on the
existing relations with the lattices whose properties are known. To arrive at
the results, we have used various techniques, from the classical computation of
complexity, to some properties of directed graphs and geometry of numbers.
From an algorithmic point of view, our contributions are the following:

1. We have given a polynomial algorithm to determine the closest vector in
the tensor product of two root lattices of type D. To achieve this result,
we first characterized the vectors of this new family of lattices, then we
established the relationship between this lattice and the root lattices of
type D. We used this characterization and the same method for the root
lattice of type D to obtain this new polynomial algorithm. Our future
work will consist to generalise this algorithm to solve this problem for
the case of tensor product of a finite number k of root lattices of type Dn

(n ≥ 2) which we denote by
k⊗
i=1

Di. We will also characterize the Voronoi
region vectors in root lattice Dn ⊗ Dm and use it to propose another
algorithm to solve Closest Vector Problem in lattice Dn ⊗ Dm ⊗ Dp

(n,m, p ≥ 2).

2. We have given a polynomial algorithm to solve the Closest Vector Prob-
lem in the tensor product of three root lattices of type A, and we have also
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given an algorithm which generalizes this resolution in the tensor product
of a finite number of lattices of type A. To achieve this result, we first
characterized the vectors of this new family of lattices (An ⊗ Am ⊗ Ap),
then we established the relationship between this lattice and the root
lattices of type A. We used this characterization and the same method
for the root lattice of two root lattices An⊗Am to obtain the polynomial
algorithm in the case of tensor product of three root lattices of type A.
We used associativity and non commutativity of tensor product of root
lattice to generalize the result for the case of tensor product of a finite
root lattices of type A. As future work, we will improve the algorithm
for solving the closest vector problem in the tensor product of two and
three root lattices of type A. Indeed, a tensor product of two or three
root lattices is also a sub lattice of a root lattice with some particular
properties.

3. We have constructed an enumeration algorithm for integer lattice Zn to
provide a full list of its shortest vectors. We have also constructed an
algorithm which gives at least n and at most 2n short vectors of a general
case of orthogonal integer lattice Λ ⊂ Zn. We used the LLL-reduction
algorithm. Indeed, from the first column vector of the LLL-reduced basis
of the considered basis, we built the list by permuting the components of
this column vector. Our future work will consist in giving an algorithm
which will give a list of short vector in general case of any orthogonal
lattice.

All the previous algorithms are implemented in Maple software 18.0 to get
all the results presented in Chapters 3 and 4.
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Abstract
The purpose of this work is to propose an efficient algorithm to solve the closest vector problem (CVP) in the tensor prod-
uct of two root lattices of type D

n
 ( n ≥ 2 ). In 2018, Léo Ducas and Wessel van Woerden proposed a polynomial algorithm 

allowing to solve this problem in the tensor product of two root lattices of type A
n
 ( n ≥ 1 ). In our present case, we show 

that the root lattice D
nm

 is a full-rank sub-lattice of the tensor product D
n
⊗ D

m
 ( n,m ≥ 2 ) of the root lattices D

n
 and D

m
 , 

enabling us to derive a polynomial algorithm for solving the CVP in D
n
 ( n ≥ 2 ). The proposed algorithm performs at most 

O(n + m) arithmetic operations.

Keywords Lattice-based cryptography · Tensored root lattices · Closest vector problem

Mathematics Subject Classification 11H71 · 11H06 · 94B35

Introduction

A lattice is a discrete additive subgroup of ℝn . A central 
problem in the theory of lattice is the Closest Vector Prob-
lem (CVP). However, the seeking for the closest vector in 
a lattice is a difficult mathematical problem [10], used in 
cryptography to build robust and secured cryptosystems 
resistant to quantum computers [5, 14]. Although CVP is 
an NP-hard problem for general lattices, it is interesting 
to design lattices for which CVP can be solved efficiently, 
while at the same time optimizing other lattices properties 
like the packing density. Special lattices are, for example, 
the root lattices An ( n ≥ 1 ), Dn ( n ≥ 2 ), En ( n = 6, 7, 8 ), their 
duals, and the Leech lattice [3, 4, 6–8]. These lattices can be 
used as the basis for efficient block quantizers for uniformly 

distributed inputs and to construct code for a band-limited 
channel with Gaussian noise [4, 9]. Indeed, recent attempts 
to create lattice-based cryptographic schemes are promis-
ing and are mostly based on removing some error to a lat-
tice vector using a CVP algorithm [11, 12]. Léo Ducas and 
Wessel van Woerden proposed a polynomial algorithm for 
solving CVP for the case of the lattice An ⊗ Am ( n,m ≥ 1 ) 
to give a generalization of resolution of CVP on some case 
of cyclotomic integer lattices ℤ[] (with � = p.q , where p and 
q are prime) and their duals [7]. We build in the same order 
a new family of lattices that we called tensored root lattice 
of type Dn ( n ≥ 2 ) which CVP is solved in polynomial time. 
Even though there are some families of lattices for which 
CVP is solved with a polynomial time algorithm, it would be 
important to remember that lattices have many applications 
in cryptography. Indeed, in December 2016, the National 
Institute of Standards and Technology (NIST) announced 
a competition to select new quantum resistant public key 
encryption algorithms that would eventually supersede the 
classical RSA and other public key cryptography algorithms 
that may be vulnerable to future quantum computer. For the 
past 5 years, after the third round of this competition, lattice 
was selected to continue.

In this work, we propose a polynomial time algorithm to 
solve CVP in the tensor product Dn ⊗ Dm ( n,m ≥ 2 ), where 
Dn and Dm are two root lattices of type Dn ( n ≥ 2).
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The paper is organized as follows. In the section “General 
Preliminaries”, we introduce and recall some definitions and 
preliminaries that will be useful in the paper. In the section 
“The Root Lattice Dn”, we present the root lattices of type 
Dn ( n ≥ 2 ) as well as an efficient algorithm to solve the clos-
est vector problem. Our main result is presented in the sec-
tion “Our Result: The Closest Vector Problem in Dn ⊗ Dm” 
where we present a polynomial time algorithm which solves 
the closest vector problem in Dn ⊗ Dm . The work is con-
cluded in the section “Conclusion”.

General Preliminaries

We recall here the definitions and properties that will be 
used throughout this work.

Throughout this paper, for any positive integer d,  we 
use the Euclidean product on ℝd that is defined by: 
⟨x , y⟩ ∶= x1y1 + x2y2 +⋯ + xdyd for x ∶= (x1, x2,… , xd) 
and y ∶= (y1, y2,… , yd) in ℝd. The Euclidean norm on ℝd 
is defined as follows: ��x�� ∶= √⟨x , x⟩.

We denote by �(x,R) the closed Euclidean n−
dimensional ball of radius R centered at x, such that: 
𝔹(x,R) = {y ∈ ℝ ∶ ‖x − y‖ < R} . If no center is specify, 
then the center is zero �(R) = �(0,R) . More details about 
these preliminaries can be found in [1–3, 7, 13].

Basic Properties of Lattices

Definition 1 A lattice is a discrete additive subgroup of ℝd, 
for any positive integer d. We deal exclusively with any lat-
tice Λ of rank r,  which is generated as the set of all inte-
ger linear combinations of r linearly independent vectors 
b1, b2,… , br (for which there are a basis of this lattice that 
we denoted by B) in ℝd as follows:

Definition 2 The rank of a lattice Λ is defined as the number 
of linearly independent vector in any basis for that lattice. 
Indeed, in the Definition 1, the rank of the lattice Λ is r and 
its dimension is d. The lattice Λ is said to be of full-rank if 
r = d.

Definition 3 Let Λ be a lattice and B its basis, we defined 
the fundamental parallelepiped of Λ , denoted ℙ(B) as below

For any lattice basis B and point x, there exists a unique vec-
tor y ∈ ℙ(B) , such that y − x ∈ Λ(B).

(1)Λ =

{
r∑

i=1

zibi ∶ (z1, z2,… , zr) ∈ ℤ
r

}
.

(2)ℙ(B) =
{
Bx | x ∈ ℝ

d , ∀i ∶ 0 ≤ xi < 1
}
.

Definition 4 The determinant of a lattice Λ denoted ���(Λ) 
is defined as being the volume of fundamental parallelepiped 
ℙ(B) given by

where BT is the transpose of the matrix B. If the lattice Λ 
is of full rank, then B is a square matrix, and consequently, 
we have

Specifically, in a lattice Λ , any non-zero vector v has a 
strictly positive length. However, the problem which arises is 
that of knowing if this length is relatively small compared to 
the other vectors of the lattice. This leads us to introduce the 
notion of minimum distance in a lattice and more generally 
the i’th successive minima of a lattice as below.

Successive Minima

Let Λ(B) be a lattice of dimension n. Let i ≤ n , the i'th mini-
mum of lattice, denoted �i(Λ) , is defined by

The successive minima of a given lattice are all reached. 
There exist vectors of the lattice of norms equal to the suc-
cessive minima, and can be so in particular by linearly inde-
pendent vectors. The minimum distance of a lattice Λ w.r.t 
Euclidean norm, denoted ‖Λ‖, is the length of a shortest 
lattice non-zero vector, i.e., ‖Λ‖ ∶= ���

0≠x∈Λ
‖x‖.

Another lattice Λ∗ in ℝd of the same rank r, such that 
Λ∗ ⊂ Λ is called a full-rank sub-lattice of Λ. A generator 
matrix of Λ∗ is a matrix whose rows form a base of Λ.

Definition 5 Let Λ ⊆ ℝ
d be a lattice. We say that Λ� is a sub-

lattice of Λ if Λ�

⊆ Λ is a lattice, as well. If Λ� is a sub-lattice 
of Λ , then �i(Λ) ≤ �i(Λ

�

) for i ≤ ���(Λ
�

).

Definition 6 The span of a lattice Λ is the linear space 
spanned by its vectors

where d is the dimension of the lattice Λ and B its basis.

Definition 7 Let Λ1 ⊆ ℝ
n and Λ2 ⊆ ℝ

m be lattices and 
respective ranks n and m, and let x1, ..., xn ∈ ℝ

n and 
y1, ..., ym ∈ ℝ

m be respective bases. The tensor prod-
uct Λ1 ⊗ Λ2 ⊆ ℝ

nm is defined as the lattice with basis {
xi ⊗ yj ∶ i ∈ {1, ..., n}, j ∈ {1, ...,m}

}
 . We note that 

a⊗ b = (a1, ..., an)⊗ (b1, ..., bm) with a ∈ ℝ
n and b ∈ ℝ

m is 
defined as the natural embedding in ℝnm as below

���(Λ) = ���(ℙ(B)) =
√
���(BTB),

���(Λ) =∣ ���(B) ∣ .

(3)�i(Λ) = min {R, dim((Λ ∩ �(R))) = i}.

����(Λ) = {By | y ∈ ℝ
d},
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Definition 8 (Closest vector problem). Let Λ ⊂ ℝ
d be a lat-

tice. Given an arbitrary vector t ∈ ����(Λ). The vector x 
in Λ that minimizes the distance ||t − x|| is called a closest 
vector to t.

Although the closest vector problem is classified as NP-
hard [10], there are some lattices where this problem can be 
solved efficiently. It is the case of integer lattice ℤn , the root 
lattices An ( n ≥ 1 ), Dn ( n ≥ 2 ), En ( n = 6, 7, 8 ), the Leech 
lattice, and some cases of cyclotomic integer lattices ℤ[] 
(with � = p.q , where p and q are prime).

The Root Lattice D
n

Definition and Basis of D
n

In the following, we recall the definition of the root lattice of 
type Dn ( n ≥ 2 ) , and give its generator matrix.

Definition 9 Let n be a positive integer. The subset Dn 
( n ≥ 2 ) of ℝn defined by

where 1 ∶= (1, 1,… , 1), is a lattice of rank n in ℝn.

The shortest vectors in the lattice Dn ( n ≥ 2 ) are all the 
permutations of (∓1,∓1, 0, 0, ..., 0) . The basis of the root lat-
tice Dn is given in the following Lemma 1.

Lemma 1 (Basis of Dn ( n ≥ 2 )) A generator matrix of the 
lattice Dn is the n × n-matrix B given by

Before going on the characterization of the vectors of the 
root lattice Dn ⊗ Dm, we will present a polynomial algorithm 
which solves the CVP in the root lattice Dn.

The Closest Vector Problem in D
n
 [3]

Given x ∈ ℝ
n , the closest point to x in Dn is whichever of 

f(x) and g(x) having an even sum of coordinates (one will 
have an even sum and the other will have an odd sum), 
where the function f and g are defined as follows: For an 

a⊗ b = (a1b1, a1b2, ..., a1bm, a2b1, ..., a2bm, ..., anbm) ∈ ℝ
nm.

(4)Dn ∶=

�
x ∈ ℤ

n ∶ ⟨x , 1⟩ is even
�
,

(5)B =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 − 1 0 ⋯ 0 0 0

1 − 1 0 ⋯ 0 0 0

0 1 − 1 ⋯ 0 0 0

⋮ … ⋮

0 0 0 ⋯ 1 − 1 0

0 0 0 ⋯ 0 1 − 1

⎞⎟⎟⎟⎟⎟⎟⎠

.

arbitrary xi ∈ ℝ, we define the functions f (xi) and w(xi) for 
all i = 1, ..., n as follows:

– if xi = 0 , then f (xi) = 0 and w(xi) = 1

– i f  0 < m +
1

2
< xi < m + 1 ,  t hen  f (xi) = m  and 

w(xi) = m + 1

– i f  −m −
1

2
≤ xi ≤ −m  ,  t h e n  f (xi) = −m  a n d 

w(xi) = −m − 1

– if 0 < m +
1

2
< xi < m + 1 , then f (xi) = m + 1 and 

w(xi) = m

– if −m − 1 < xi < −m −
1

2
 , then f (xi) = −m − 1 and 

w(xi) = −m.

We also write xi = f (xi) + �(xi), so that |�(xi)| ≤ 1

2
 is the dis-

tance from xi to the nearest integer.
Given that x = (x1, ..., xn) ∈ ℝ

n, let k(1 ≤ k ≤ n) , such that 
|�(xk)| ≤ |�(xi)| for all 1 ≤ i ≤ n and |�(xk)| = |�(xi)| implies 
k ≤ i . Then, f (x) = (f (x1), f (x2), ..., f (xk), ..., f (xn)) and g(x) 
is defined by:

g(x) = (f (x1), f (x2), ...,w(xk), ..., f (xn)).

Our Result: The Closest Vector Problem 
in D

n
⊗ D

m

We will start this section by the characterization of the vec-
tors of the root lattice Dn ⊗ Dm ( n,m ≥ 2 ) as below. We first 
recall the definition of the tensor product:

Definition 10 Let Λ1 ⊆ ℝ
n1 and Λ2 ⊆ ℝ

n2 be lattices of, 
respectively, ranks n1 and n2, let a1, ..., an1 ∈ ℝ

n1 and 
b1, ..., bn2 ∈ ℝ

n2 be their respective bases. The tensor prod-
uct Λ1 ⊗ Λ2 ⊂ ℝ

n1n2 is defined as the lattice with basis 
{ai ⊗ bj ∶ i ∈ {1, ..., n1}, j ∈ {1, ..., n2}}.

Here, x⊗ y = (x1, ..., xn1 )⊗ (y1, ..., yn2) with x ∈ ℝ
n1 

and y ∈ ℝ
n2 can be seen as an element of ℝn1n2 as follows : 

(x1y1, x1y2, ..., x1yn1 , x2y1, ..., xn1yn2 ) ∈ ℝ
n1n2 .

Characterization of the Vectors of the Root Lattice 
D
n
⊗ D

m

The root lattice Dn ⊗ Dm ⊆ ℤ
nm (n,m ≥ 2) consists of all 

elements x = (x11, ..., x1m, x21, ..., x2m, ..., xn1, ..., xnm) ∈ ℤ
nm 

satisfying the following conditions: 

(1) 
∑n

i=1
xij even for all j = 1, ...,m

(2) 
∑m

j=1
xij even for all i = 1, ..., n.
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[The notation x = (x11, ..., x1m, x21, ..., x2m, ..., xn1, ..., xnm) 
above means that there exist two vectors u = (u1, ..., un) ∈ Dn 
and v = (v1, ..., vm) ∈ Dm , such that xij = uivj for i = 1, ..., n 
and j = 1, ...,m . ]

Indeed, we have (x11, ..., x1m, ..., x2m, ..., xn1, ..., xnm) =
(u1v1, ..., u1vm, u2v1, ..., u2vm, ..., unv1, ..., unvm) ∈ D

n
⊗ D

m
 . 

Since the sums 
∑n

i=1
ui and 

∑m

j=1
vj are even, then 

∑n

i=1
uivj is 

even for all j = 1, ...,m and 
∑m

j=1
uivj is even for all i = 1, ..., n

.

Remark 1 Let Dn and Dm ( n,m ≥ 2)be two root lattices. 
Then, Dnm is a full-rank sub-lattice of the lattice Dn ⊗ Dm.

I n d e e d ,  t h e  v e c t o r  x = (0, 0, 2, 1, 1, 0,−1, 1) 
is the vector of the root lattice D8 ,  because 
0 + 0 + 2 + 1 + 1 + 0 − 1 + 1 = 4 , which is even. How-
ever, this vector is not in the root lattice D2 ⊗ D4 , because ∑4

j=1
x1j = x11 + x12 + x13 + x14 = 0 + 0 + 2 + 1 = 3 , which 

is odd.

Le m m a  2  ( B a s i s  o f  Dn ⊗ Dm  )  L e t  Dn  a n d 
Dm  (  n,m ≥ 2 )  be two root latt ices,  the basis 
Bn⊗m ∶=

{
bij ∶ i = 1, ..., n and j = 1, ...,m

}
 of the root 

lattice Dn ⊗ Dm is given by

– b11
1,1

= b11
1,2

= b11
2,1

= b11
2,2

= 1

– bi1
i−1,1

= bi1
i−1,2

= 1; bi1
i,2

= bi1
i;1

= −1 for all i = 2, ..., n

– b
1j

1,j−1
= b

1j

2,j−1
= 1; b1j

1,j
= b

1j

2,j
= −1 for all j = 2, ...,m

– b
ij

i−1,j−1
= b

ij

i,j
= 1; bij

i−1,j
= b

ij

i,j−1
= −1 for all i = 2, ..., n 

and j = 2, ...,m

– 0 otherwise.

A Polynomial Algorithm for Solving the CVP 
in D

n
⊗ D

m

We first present a general description of our CVP efficient 
algorithm in Dn ⊗ Dm ( n,m ≥ 2 ) as below:

Description of the Algorithm

This algorithm takes as input a vector of a linear space 
spanned span(Dn ⊗ Dm) (where Dn and Dm are two root lat-
tices of type D with n,m ≥ 2 ) and returns a closest vector to 
this vector in Dn ⊗ Dm as follows:

Given a vector t = (t11, ..., t1m, t21, ..., t2m, ..., tn1, ..., tnm) of 
span(Dn ⊗ Dm) ⊆ ℝ

nm.

We will start by determining the closest vector to t in the 
root lattice Dnm . To do this, we will calculate the functions 
f (t) = (f (t11), ..., f (t1m), f (t21), ..., f (t2m), ..., f (tn1), ..., f (tnm)) 
a n d  g(t) = (f (t11), ..., f (tk(l−1)),w(tkl), f (tk(l+1)), ..., f (tnm)) 
(where f (tij) = ⌊tij⌉ for all i = 1, ..., n and j = 1, ...,m ; and 
the function g is obtained by proceeding as in the case of a 
single root lattice of type D [4]). Given that the two func-
tions f and g differ by only one component, and by the value 
1, then either the sum of the function’s coordinates f or g 
will be even .

Then, if the sum of all the coordinates of f(t) is even, 
then h ∶= f  , else h ∶= g . Thus, h ∈ Dnm . After determining 
the closest vector h ∈ Dnm of t, the closest vector to h in 
Dn ⊗ Dm is obtained as follows:

We carry out the sums 
∑n

i=1
h(tij) for all j = 1, ...,m and ∑m

j=1
h(tij) for i = 1, ..., n . If all these sums are even, then 

h ∈ Dn ⊗ Dm . Therefore, x ∶= h . Else, we proceed as 
follows.

Then, we initialize the counters c, d, � , and � as fol-
lows: c ∶= 0 , d ∶= 0 , � ∶= 1 , and � ∶= 1 . We calculate for 
each i = 1, ..., n the sums 

∑m

j=1
h(tij) . Thus, for i = 1, ..., n 

if 
∑m

j=1
h(tij) odd, then c ∶= c + 1 ; u� ∶=

∑m

j=1
h(tij) and 

� = � + 1 . We calculate also for each j = 1, ...,m the sums ∑n

i=1
h(tij) . As above, for j = 1, ...,m , if 

∑n

i=1
h(tij) odd, then 

d ∶= d + 1 ; v� ∶=
∑m

j=1
h(tij) and � = � + 1.

After calculating all the sums above, if c = 0 and d = 0 , 
then x ∶= h . Else, for each r = 1, ..., c , we denote by f (hu� ) 
and g(hu� ) the corresponding functions to the vector h as 
defined in the section “The Closest Vector Problem in Dn 
[3]”. Similarly, for each s = 1, ..., d , we denote by f (hv� ) and 
g(hv� ) the corresponding functions to the vector h. Here, the 
functions f (hu� ) and g(hu� ) are associated with the vector h 
whose sum of the coordinates is equal to u� . In the same way, 
the functions f (hv� ) and g(hv� ) are associated with the vector 
h whose sum of the coordinates is equal to v�.

Thus, for all u� and v� , there exists a single common func-
tion of which all the sums of the coordinates are even. We 
will denote by q this function.

At the end of all these operations, we get the vector 
x ∶= q . This process is performed at most (n + m) times 
until all the sums 

∑n

i=1
h(tij) for all j = 1, ...,m and 

∑m

j=1
h(tij) 

for i = 1, ..., n are even. Thus, the news coordinates of the 
function that we obtain is the component of the vector 
x ∈ Dn ⊗ Dm.

An such x is the closest vector of t ∈ span(Dn ⊗ Dm) in 
Dn ⊗ Dm.
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Complexity Analysis

About the complexity of this algorithm, we have the 
following:

From line 1 to line 2, we have 2 elementary operations. 
Indeed, we have only 2 assignments in these steps.

Line 3 has 4 elementary operations. Indeed, we have 4 
assignments in this step.

From line 4 to line 8, we have 2 elementary operations. 
Indeed, we have 1 comparison and 1 assignment.

From line 9 to line 15, we have at most 3n elementary 
operations. Indeed, we have at most 3 operations inside the 
loop for which goes from 1 to n.

From line 16 to line 22, we have at most 3m elementary 
operations. Indeed, we have at most 3 operations inside the 
loop for which goes from 1 to m.

From line 23 to line 24, we have at most 3 elementary 
operations.

From line 26 to line 29, we have n + m operations. Indeed, 
q is the vector whose coordinates are made up of a part of 
the coordinates whose sum is even in line 10 of our algo-
rithm, and the rest of the coordinates of q supplemented by 
the coordinates obtained after line 27 of our algorithm. In 
this step, the algorithm uses the section “The Closest Vec-
tor Problem in Dn [3]” to determine each sub-coordinate for 
which the sub-vectors of each block are close to the associ-
ated target sub-vectors. Indeed, by determining the values 
whose distances with that of the associated sub-blocks are 
minimum, we will globally obtain the closest vector to the 
initial target vector. Given that the only operations used here 
are the comparisons and the additions, and that we have at 
most n blocks according to the index i, and at most m blocks 
according to the index j.

T h u s ,  w e  w i l l  h a v e  a t  m o s t 
2 + 4 + 4 + 3n + 3m + 3 = 13 + 4n + 4m  a r i t h m e t i c 
operations;
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since 13 + 4n + 4m

n + m
⟶ cste when n,m ⟶ ∞ , then the 

complexity of this algorithm is O(n + m) arithmetic 
operations.

E x a m p l e  1  L e t  n = m = 2  ,  a n d 
x = (1.2,−1.2,−1.2, 0.6) ∈ ����(D2 ⊗ D2).

We have: f = (1,−1,−1, 1) , and g = (1,−1,−1, 0);
since 1 − 1 − 1 + 1 = 0 , then p ∶= f = (1,−1,−1, 1) ∈ D4 ; 

a n d  b e c a u s e  
∑2

i=1
pi1 = p11 + p21 = 1 − 1 = 0  , ∑2

i=1
pi2 = p12 + p22 = −1 + 1 = 0  , ∑2

j=1
p1j = p11 + p12 = 1 − 1 = 0  a n d ∑2

j=2
p2j = p21 + p22 = −1 + 1 = 0  ,  t h e n 

x ∶= p = (1,−1,−1, 1).
Therefore, x = (1,−1,−1, 1) is the closest vector of 

t = (1.2,−1.2,−1.2, 0.6) in D2 ⊗ D2.

E x a m p l e  2  L e t  n = 3 and m = 2  ,  a n d 
t = (2.8,−2.8,−2.8, 4.6,−2.9,−3.3) ∈ ����(D3 ⊗ D2).

W e  h a v e :  f ∶= (3,−3,−3, 5,−3,−3)  a n d 
g ∶= (3,−3,−3, 4,−3,−3);

s i n c e  3 − 3 − 3 + 5 − 3 − 3 = −4  ,  t h e n 
p ∶= f = (3,−3,−3, 5,−3,−3);

For i = 1, ..., 3 , we have: U1 =
∑2

j=1
p1j = p11 + p12 = 3 − 3 = 0;

U2 =
∑2

j=1
p2j = p21 + p22 = −2 + 4 = 2;

U3 =
∑2

j=1
p3j = p31 + p32 = −3 − 3 = −6  ;  a n d  fo r 

j = 1, ..., 2 , we have: V1 =
∑2

i=1
p
i1 = p11 + p21 + p31 = 3 − 3 − 3 = 3 

and V2 =
∑2

i=1
pi2 = p12 + p22 + p32 = −3 + 5 − 3 = 3;

we have V1 and V2 odd. For the case of V1 , we take the 
coordinates p11 , p21 , p31 and we calculate f1 and g1 as below:

f1 = (3,−3,−3) and g1 = (3,−2,−3) where p11 = 3 , 
p21 = −3,−2 and p31 = −3.

For the case of V2 , we take the coordinates p12 , p22 , p32 
and we calculate f2 and g2 as below:

f2 = (−3, 5,−3) and g2 = (−3, 4,−3) where p12 = −3 , 
p22 = 5, 4 and p32 = −3;

since the sums of the coordinates of the vectors g1 
and g2 are even, we choose p21 = −2 and p22 = 4 ; thus, 
x ∶= (3,−3,−2, 4,−3,−3).

Therefore, the vector x = (3,−3,−2, 4,−3,−3) is the 
closest vector of t = (2.8,−2.8,−2.8, 4.6,−2.9,−3.3) in the 
root lattice D3 ⊗ D2.

Conclusion

In this work, we successfully constructed a polynomial 
algorithm to solve the closest vector problem for the case 
of tensor product of two root lattice Dn and Dm that we 
noted Dn ⊗ Dm ( n,m ≥ 2 ). Our future work will consist to 

generalize this algorithm to solve this problem for the case 
of tensor product of a finite number k of root lattices of type 
Dn ( n ≥ 2 ) which we denote by 

⨂k

i=1
Di . We will also char-

acterize the Voronoi region vectors in root lattice Dn ⊗ Dm 
and use it to propose another algorithm to solve Closest 
Vector Problem in lattice Dn ⊗ Dm ⊗ Dp ( n,m, p ≥ 2 ). After 
having proposed this, it will also be a question of comparing 
this new algorithm with that of this work.

Declarations 

Conflict of Interest The authors declare that they have no conflict of 
interest.

References

 1. Aggarwal D, Dadush D, Stephens-Davidowitz N. Solving the clos-
est vector problem in 2n time: the discrete gaussian strikes again! 
In: Guruswami V, editor. IEEE 56th Annual Symposium on Foun-
dations of Computer Science, FOCS 2015, Berkeley, CA, USA, 
17-20 October, 2015. IEEE Computer Society; 2015. p. 563–582.

 2. Ahuja RK, Magnanti TL, Orlin JB. Network flows-theory, algo-
rithms and applications. Hoboken: Prentice Hall; 1993.

 3. Conway JH, Sloane NJA. Fast quantizing and decoding and algo-
rithms for lattice quantizers and codes. IEEE Trans Inf Theory. 
1982;28(2):227–31.

 4. Conway JH, Sloane NJA. Sphere Packings, Lattices and Groups, 
volume 290 of Grundlehren der mathematischen Wissenschaften. 
Berlin: Springer; 1988.

 5. Dachman-Soled D, Ducas L, Gong H, Rossi M. LWE with 
side information: attacks and concrete security estimation. In: 
Micciancio D, Ristenpart T, editors. Advances in Cryptology-
CRYPTO 2020-40th Annual International Cryptology Confer-
ence, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 
2020, Proceedings, Part II, volume 12171 of Lecture Notes in 
Computer Science. Springer; 2020. p. 329–358.

 6. Ducas L. Shortest vector from lattice sieving: a few dimensions for 
free. In: Nielsen JB, Rijmen V, editors. Advances in Cryptology-
EUROCRYPT 2018-37th Annual International Conference on the 
Theory and Applications of Cryptographic Techniques, Tel Aviv, 
Israel, April 29-May 3, 2018 Proceedings, Part I, volume 10820 of 
Lecture Notes in Computer Science. Springer; 2018. p. 125–145.

 7. Ducas L, van Woerden WPJ. The closest vector problem in ten-
sored root lattices of type A and in their duals. Des Codes Cryp-
togr. 2018;86(1):137–50.

 8. Ducas L, van Woerden WPJ. On the lattice isomorphism prob-
lem, quadratic forms, remarkable lattices, and cryptography. In: 
Dunkelman O, Dziembowski S, editors. Advances in Cryptol-
ogy-EUROCRYPT 2022-41st Annual International Conference 
on the Theory and Applications of Cryptographic Techniques, 
Trondheim, Norway, May 30-June 3, 2022, Proceedings, Part III, 
volume 13277 of Lecture Notes in Computer Science. Springer; 
2022. p. 643–673.

 9. Gersho A. Asymptotically optimal block quantization. IEEE Trans 
Inf Theory. 1979;25(4):373–80.

 10. Goldreich O, Goldwasser S, Halevi S. Public-key cryptosys-
tems from lattice reduction problems. In: Kaliski Jr BS, editor. 
Advances in Cryptology-CRYPTO ’97, 17th Annual International 
Cryptology Conference, Santa Barbara, California, USA, August 



SN Computer Science            (2023) 4:19  Page 7 of 7    19 

SN Computer Science

17–21, 1997, Proceedings, volume 1294 of Lecture Notes in Com-
puter Science. Springer; 1997. p. 112–131.

 11. Lyubashevsky V, Peikert C, Regev O. On ideal lattices and 
learning with errors over rings. In: Gilbert H, editor. Advances 
in Cryptology-EUROCRYPT 2010, 29th Annual International 
Conference on the Theory and Applications of Cryptographic 
Techniques, Monaco/French Riviera, May 30-June 3, 2010. Pro-
ceedings, volume 6110 of Lecture Notes in Computer Science. 
Springer; 2010. p. 1–23.

 12. Lyubashevsky V, Peikert C, Regev O. A toolkit for ring-lwe cryp-
tography. IACR Cryptol ePrint Arch. 2013;2013:293.

 13. Micciancio D, Voulgaris P. A deterministic single exponential 
time algorithm for most lattice problems based on voronoi cell 
computations. In: Schulman LJ, editor. Proceedings of the 42nd 

ACM Symposium on Theory of Computing, STOC 2010, Cam-
bridge, Massachusetts, USA, 5-8 June 2010. ACM; 2010. p. 
351–358.

 14. Shor PW. Polynomial-time algorithms for prime factorization and 
discrete logarithms on a quantum computer. SIAM J Comput. 
1997;26(5):1484–509.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.



2nd Reading

September 24, 2022 16:30 WSPC/S1793-8309 257-DMAA 2250151

Discrete Mathematics, Algorithms and Applications
(2022) 2250151 (15 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S1793830922501518

Sieve algorithms for some orthogonal integer lattices

Arnaud Gires Fobasso Tchinda

Department of Mathematics, The University of Yaounde 1
P.O. Box 812 Yaounde Cameroon

fobass1989@gmail.com

Emmanuel Fouotsa∗

Department of Mathematics, Higher Teacher Training College
The University of Bamenda. P.O. Box 39 Bambili Cameroon

emmanuelfouotsa@yahoo.fr

Celestin Nkuimi Jugnia

Department of Mathematics, The University of Yaounde 1
P.O. Box 812 Yaounde Cameroon

nkuimi@yahoo.co.uk

Received 7 March 2022
Revised 20 July 2022

Accepted 15 August 2022
Published 26 September 2022

Communicated by Zhipeng Cai

We propose in this work a Sieve algorithm that we called OrthogonalInteger sieve algo-
rithm for some orthogonal integer lattices and particularly the case of integer lattices
Λ ⊂ Zn, root lattices of type An (n ≥ 1) and of type Dn (n ≥ 2). In these cases, we
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general, a sieve algorithm builds a list of short random vectors which are not necessarily
in the lattice, and try to produce short lattice vectors by taking linear combinations of
the vectors in the list. But in our case, we built a list of short vectors in the lattice. From
the first column of the LLL-reduced basis of the considered basis, we have the list of at
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sieve algorithm performs O(n2n) arithmetic operations and is polynomial in space.
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1. Introduction

A lattice is a mathematical object which takes a set of vectors in Rn and combines

them in all possible integer linear combinations. One of the central problems of

lattices theory is the Shortest Vector Problem (SVP) which consists in finding the

shortest nonzero vector in the lattice. SVP has been extensively studied as purely

mathematical problem, being central in the study of the geometry of numbers and

as algorithm problems, having many applications in communication theory and

computer science. There are two main algorithmic techniques for solving exact SVP:

enumeration and sieving. Enumeration algorithms were initiated by Pohst [14] in

1981 and one of the best enumeration algorithm was given by Kannan in 1983 [11].

This method runs in no(n) time but polynomial in space. The main idea of Sieve

Algorithm is to randomly select lattice vectors, then compare them in order to end

up getting the shortest lattice vectors, running the algorithm for many steps. This

method was introduced by Ajtai et al. in 2001 [1] lowering the time complexity of the

SVP to 2o(n), but required 2o(n) space and randomness. In 2010, Micciancio et al.

presented GaussSieve [12], the first sieving heuristic that outperformed enumeration

routines. In 2011, Panagiotis proposed a new heuristic sieving algorithm [17] that

performed quite well in the practice with estimated running time 20,52n and space

complexity 20,2n. In 2017, Leo Ducas [8] exploits the fact that sieving returns many

short vectors, rather than only one to propose a new practical improvement for

sieve algorithms. In this work, we give a list of all short vectors of the particular

case of orthogonal integer lattices Zn. The proposed algorithm is polynomial and

requires O(2n) in space. We also propose an enumeration algorithm which will allow

us to obtain the list of shortest vectors in all orthogonal integer lattices Λ ⊆ Zn.

This algorithm runs in O(n2n) time and can be polynomial in space and the list

of short vectors obtained enable to solve the shortest independent vector problem

(SIVP) “which is an NP-Hard problem in cryptography” [2] for some orthogonal

integer lattices. Indeed, when we obtain the list of short vectors in some orthogonal

integer lattice of dimension n, we can extract a family of n independent vectors with

equal norms. This family of vectors is a solution to the shortest independent vector

problem in the lattice. Note however that when the dimension n is large, the list of

shortest vectors becomes larger, and consequently the search for independent vectors

of this list also becomes more complex. This is possible for some integer lattice Zn,

root lattices of type Dn (n ≥ 2) and An (n ≥ 1) and their duals. For correctness, a

Maple computer software implementation of the algorithm has been done.

The paper is organized as follows. In Sec. 2, we recall some key concepts such as

successive minima, Minkowski’s theorem, and some properties of orthogonal lattices

that will be useful in the paper. In Sec. 3, we recall the Gram Schmidt process, the

LLL-reduction process and we propose a polynomial algorithm to determine an

orthogonal integer basis for a given integer lattice. Our main result is presented in

Sec. 4, where we describe a polynomial algorithm which returns a list of exactly 2n

short vectors for the case of the orthogonal integer lattice Zn. We also present in

Sec. 4 an algorithm which gives at least n and at most 2n short vectors of general
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orthogonal integer lattices Λ ⊂ Zn. This algorithm runs in O(n2n) time and can be

polynomial in space. The work is concluded in Sec. 5.

2. Preliminaries on Lattices

In this section, we recall some key concepts such as successive minima, Minkowski’s

theorem and some properties of orthogonal lattices.

Throughout this work, for any positive integer n, we use the Euclidean inner

product on Rn which is defined by 〈x,y〉 := x1y1 + x2y2 + · · · + xnyn for

x := (x1, x2, . . . , xn) and y := (y1, y2, . . . , yn) in Rn. The Euclidean norm on Rn is

defined as follows: ‖x‖ :=
√
〈x,x〉. We denote by B(x, r) the closed Euclidean n-

dimensional ball of radius r centered at x such that: B(x, r) = {y ∈ R : ‖x−y‖< r}.
The ball centered at zero will be simply denoted B(r).

2.1. Basic definition of lattices

More details about these definitions can be found in [10, 16]. A lattice is a discrete

additive subgroup of Rn, for any positive integer n. We deal exclusively with any

lattice Λ of rank d, which is generated by the set of all integer linear combinations

of d linearly independent vectors b1,b2, . . . ,bd in Rn as follows:

Λ =

{
d∑

i=1

zibi : (z1, z2, . . . , zd) ∈ Zd

}
. (2.1)

The set of vectorsB = {b1,b2, . . . ,bd} is called the basis of the lattice. A lattice has

several invariant such as rank, dimension, volume, the determinant of the lattice,

the first minimum of the lattice, and the nth-successive minima of the lattice. We

will define these notions and give some associated properties in the following.

The rank of a lattice Λ is defined as the number of linearly independent vector

in any basis for that lattice. A lattice Λ is said to be a full-rank lattice when n = d.

The determinant (volume) of a lattice Λ of dimension n and rank d, denoted det(Λ)

is defined by

det(Λ) =
√
det(BTB), (2.2)

where BT is the transpose of the matrix B.

If the lattice Λ is of full rank, then B is a square matrix and consequently, we

have

det(Λ) = |det(B)|. (2.3)

Remark 2.1. The determinant of a lattice is independent of the choice of the

basis B.

Let Λ be a lattice and B one basis, the fundamental parallelepiped of Λ, denoted

P(B) is defined as

P(B) = {Bx |x ∈ Rn, ∀ i : 0 ≤ xi < 1}. (2.4)
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Lemma 2.2. Let Λ be a lattice and b1, . . . , bd ∈ Λ be d linearly independent lattice

vectors. Then b1, . . . , bd form a basis of Λ if and only if P(b1, . . . , bd) ∩ Λ = {0}.

In the rest of this work, we will use full-rank lattice. Specifically, in a lattice Λ,

any nonzero vector v has a strictly positive length. But the problem which arises is

that of knowing if this length is relatively small compared to the other vectors of

the lattice. This leads us to introduce the notion of successive minima of a lattice

as below.

2.2. Successive minima

For a given lattice Λ, we denote λ1(Λ) the minimum Euclidean norm of vectors in

Λ\{0}. More generally, for all 1 ≤ i ≤ n, we define the ith- minimum as follows:

λi(Λ) = minv1,...,vi∈Λmaxj≤i ‖ vj ‖ (where v1, . . . , vi are linearly independent).

Definition 2.3 ([4]). For any lattice Λ with a basis B, the minimum distance of

Λ is the smallest distance between any two lattices points given as follows:

λ(Λ) = inf{‖x− y‖ : x, y ∈ Λ, x �= y}.

Let Λ ⊆ Rn be a lattice. We say that Λ′ is a sublattice of Λ if Λ′ ⊆ Λ is a lattice as

well. If Λ′ is a sublattice of Λ, then λi(Λ) ≤ λi(Λ
′) for i ≤ dim(Λ′) (where dim(Λ′)

is the dimension of lattice Λ′).

Theorem 2.4 ([4]). (First theorem of Minkowski) For any full-rank lattice Λ ⊆
Rn, we have

λ1(Λ) ≤
√
n(det(Λ))1/n, (2.5)

where λ1(Λ) denote the minimum Euclidean norm of vectors in Λ\{0}.

The proof of this theorem requires the following results.

Theorem 2.5. Let Λ ⊆ Rn be a full-rank lattice. Then for any symmetric central

set S, if vol(S) > 2ndet(Λ), then S contains a nonzero point of the lattice.

Proposition 2.6. The volume of a ball of dimension n and radius r is vol(B(r)) ≥
( 2r√

n
)n.

The above results enable to conclude that the minimum distance can be equiv-

alently defined as the length of the shortest nonzero lattice vector as follows:

λ(Λ) = inf{‖v‖ : v ∈ Λ�{0}}. (2.6)

For the case of random lattices, we have an approximation of the minimum distance

called Gaussian heuristic. It is defined explicitly as follows.

Definition 2.7 ([12, 13]). For all lattices Λ, the Gaussian heuristic gh(Λ) gives

the expected first minimum and for a full rank lattice Λ ⊆ Rn, gh(Λ) is defined as

2250151-4

D
is

cr
et

e 
M

at
h.

 A
lg

or
ith

m
. A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 Z
H

E
JI

A
N

G
 N

O
R

M
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/0
6/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

September 24, 2022 16:30 WSPC/S1793-8309 257-DMAA 2250151

Sieve algorithms for some orthogonal integer lattices

follows:

gh(Λ) =

√
n

2πe
.vol(Λ)1/n. (2.7)

We also denote gh(n) for gh(Λ) of n-dimensional lattice Λ of volume 1: gh(n) =√
n

2πe .

The Gaussian heuristic says that a shortest nonzero vector in a randomly chosen

lattice will satisfy vshortest ≈ gh(Λ).

In the following, we will define the particular lattices An (n ≥ 1) andDn (n ≥ 2),

also called root lattices.

Definition 2.8 ([5]). Let n ≥ 2 be an integer, the root lattice Dn ⊂ Rn of rank n

is defined as follows:

Dn :=

{
(x1, . . . , xn) ∈ Zn :

n∑

i=1

xi is even

}
. (2.8)

Let n be a positive integer, the root lattice An ⊂ Rn of rank n is defined as follows:

An :=

{
(x1, . . . , xn+1) ∈ Zn+1 :

n+1∑

i=1

xi = 0

}
. (2.9)

From this, the shortest vectors of root lattice of typeDn and An are, respectively,

all the permutations of the vectors (±1,±1, 0, . . . , 0) and (1,−1, 0, . . . , 0).
In the following, we will define orthogonal lattices and give the relation with

integer lattices.

2.3. Orthogonal lattices

Definition 2.9 ([3]). A lattice Λ is said to be orthogonal if it has a basis B such

that the rows of B are pairwise orthogonal vectors. In other words, a lattice Λ is

said to be orthogonal if it is generated by set of pairwise orthogonal vectors. We

recall that a basis {b1,b2, . . . ,bn} is orthogonal if and only if:

• 〈bi, bi〉 �= 0 for all i and;

• 〈bi, bj〉 = 0 for all i �= j.

Example 2.10. Zn is an orthogonal lattice. Indeed, the basis of Zn is B =

(b1, . . . , bn) where b1 = (1, 0, . . . , 0); b2 = (0, 1, 0, . . . , 0); bn−1 = (0, . . . , 0, 1, 0) and

bn = (0, . . . , 0, 1).

Definition 2.11 ([16]). Let B = {b1,b2, . . . ,bn} be a basis of a lattice Λ of rank

n. The orthogonality defect of the basis B is the following quantity:

δ�(B) =

∏n
i=1‖bi‖
det(B)

. (2.10)

Remark 2.12. δ�(B) ≥ 1 and if B is orthogonal, then δ�(B) = 1. Thus if B is

orthogonal, then det(B) =
∏n

i=1‖bi‖
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3. Lattice Reduction

In this section, we will recall some lattice reductions allowing either to determine

a short vector, or a list of short vectors. We will also propose an algorithm which

determines the orthogonal basis of a given integer lattice. We start with the descrip-

tion of Gram–Schmidt Orthogonalization.

Gram–Schmidt orthogonalization [10, 15, 16]

The Gram–Schmidt orthogonalization algorithm is an iterative approach for orthog-

onalizing vectors of a given basis. The first vector b1 of a given basis B is taken

as a reference and the second vector b2 is projected onto an (n− 1)− hyper plane

perpendicular to b1. The third vector b3 is projected onto a (n − 2)− hyper plane

perpendicular to the plane defined by b1 and b2. This process continues in an iter-

ative way until all degrees of freedom are exhausted. The new orthogonal vectors

are denoted by b∗i and the orthogonal basis obtained is denoted as B∗.

b∗i = bi −
i−1∑

j=1

μijb
∗
j for all 1 ≤ j < i ≤ n, (3.1)

where μij =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

3.1. Orthogonal basis of integer lattices

Although the vectors of B∗ are over rational field, by multiplying the basis B∗ by

the least common multiple (lcm) of the denominators of the coordinates, we obtain

the basis B⊥ (with integer coordinates) with pairwise orthogonal rows. This basis

B⊥ is an orthogonal basis of the lattice Λ(B).

Example 3.1. Given the base B = (b1, b2, b3) with b1 = (1, 1, 1); b2 = (−1, 0, 2)
and b3 = (3, 5, 6). We want to determine B⊥.

The Gram-Schmidt Orthogonalization of B is given by: B∗ = (b∗1, b
∗
2, b

∗
3) with

b∗1 = (1, 1, 1); b∗2 = (− 4
3 ,− 1

3 ,
5
3 ) and b∗3 = (− 3

7 ,
9
14 ,− 3

14 ); since lcm(3, 7, 14) = 42, we

have b⊥1 = 42× b∗1 = (42, 42, 42); b⊥2 = 42× b∗2 = (−56,−14, 70) and b⊥3 = 42× b∗3 =

(−18, 27,−9). Therefore, B⊥ = (b⊥1 , b
⊥
2 , b

⊥
3 ) is an orthogonal basis (with integer

coordinates) of the lattice Λ(B).

Lemma 3.2. Let a lattice Λ with a basis B. If B⊥ is its orthogonal basis, then

λ1(Λ) ≤ λ1(Λ
⊥). Where λ1(Λ) and λ1(Λ

⊥) are, respectively, the minimum distance

of the lattices Λ and Λ⊥.

Proof. We use the fact that for every orthogonal lattice, we have only one operation

(swap) for all the vectors of the basis and we have the result.

In section, we proceed to lattice reduction assuming that an orthogonal basis is

always given.
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3.2. Orthogonal reduced basis of integer lattices

Given an orthogonal basis B⊥ of an integer lattice Λ ⊆ Zn, Algorithm 1 returns a

reduced basis B⊥1 of B⊥, i.e., a basis with vectors shorter than those of B⊥ . We

start by calculating the gcd of the components of each vectors of B⊥. After that,

we divide all these vectors by this gcd. Finally, we perform permutations between

these vectors in order to achieve the successive minima. The following algorithm

illustrates this description.

Example 3.3. Given the basis B =

(
1 −1 3

1 0 5

1 2 6

)
with b1 = (1, 1, 1); b2 =

(−1, 0, 2) and b3 = (3, 5, 6). The Gram–Schmidt orthogonalization of B is given

by: B∗ =

(
1 − 4

3 − 3
7

1 − 1
3

9
14

1 5
3 − 3

14

)
with b∗1 = (1, 1, 1); b∗2 = (− 4

3 ,− 1
3 ,

5
3 ) and b∗3 =

(− 3
7 ,

9
14 ,− 3

14 ); since lcm(3, 7, 14) = 42, we have: B⊥ =

(
42 −56 −18

42 −14 27

42 70 −9

)
with

b⊥1
1 = 1

42 × (42, 42, 42) = (1, 1, 1); b⊥1
2 = 1

14 × (−56,−14, 70) = (−4,−1, 5)
and b⊥1

3 = 1
9 × (−18, 27,−9) = (−2, 3,−1); therefore, since ‖b⊥1

3 ‖< ‖b⊥1
2 ‖ then,

b⊥1
2 = b⊥1

3 = (−2, 3,−1); and b⊥1
3 = b⊥1

2 = (−4,−1, 5); since ‖b⊥1
1 ‖≤ ‖b⊥1

2 ‖, the
vectors b⊥1

1 and b⊥1
2 remains the same and we have the following reduced basis:

B⊥1 =

(
1 −2 −4

1 3 −1

1 −1 5

)

We recall that the goal of lattice basis reduction is to find a basis with short

vectors and orthogonal to each other. We also know that the Gram–Schmidt process

does not preserve the structure of integer lattice. It would be interesting to focus on

the LLL-reduction which used Gram–Schmidt process and returns integer vectors.

The most usual notion of reduction is probably the LLL-reduction. The LLL-

Algorithm 1. Reduced(B⊥)

Require: The orthogonal basis B⊥ = (b⊥1 , . . . , b
⊥
n ) of a lattice Λ.

Ensure: A reduced basis B⊥1 of the basis B⊥.

1: for i from 1 to n do

2: b⊥1

i ←
b⊥i

gcd(ai)
; (where a′is are the components of the vector b⊥i )

3: end for

4: for j from n to 1 do

5: if ‖b⊥1

j ‖< ‖b⊥1

j−1‖ then then

6: swaps(b⊥1

j , b⊥1

j−1); (permutation between vectors b⊥1

j and b⊥1

j−1)

7: end if

8: end for

9: return B⊥1
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reduction is one of the most commonly used. Let 1
4 < δ < 1, let B = (b1, . . . , bn) ∈

Zn×n be a basis of a lattice. We say that B is size-reduced if all Gram–Schmidt

coefficients satisfy |μij | ≤ 1
2 . We say that B satisfies the Lovàsz conditions if for all

i ∈ {1, . . . , n} we have δ‖b∗i ‖2≤ ‖b∗i+1‖2+μi+1,i‖b∗i ‖2.
A basis B satisfying both the size-reduced and the Lovàsz conditions is said to

be LLL-reduced. The LLL algorithm is given in [7, 16] and it is shown that the

number of LLL swaps is O(n2 lg‖B‖). The LLL-reduction implies that the norms of

the Gram–Schmidt-orthogonalization vectors never drop too fast. Indeed the vectors

are not far from being orthogonal. The most famous problem of lattice theory is

the shortest vector problem (SV P ), and the LLL-reduction gives a solution of this

problem.

3.3. Shortest vector problem (SVP)

The most important computational problem in lattices is the shortest vector prob-

lem. The shortest vector problem asks to find a non zero lattice vector of small

norm for a given lattice basis as input. This norm is called the first minimum λ1(Λ)

or the minimum distance and is in general unique up to the sign. This means that:

given a basis of a lattice Λ, find a lattice vector whose norm is exactly λ1(Λ).

This problem is classified as NP-hard [6, 10]. Minkowski’s theorem gives a simple

way to bound the length of the shortest lattice vector. Another variant of this

problem is the shortest independent vector problem (SIVP) [9] which asks to find

a linearly independent set {v1, . . . , vn} such that all vectors have length at most

γ · λ1(Λ(B)) for a given lattice basis B as input (where γ ≥ 1) [2]. LLL-reduction

does not solve this problem for all lattices. Indeed, for random lattices, one uses the

Gaussian heuristic and Gauss reduction to obtain the list of short vectors of the

lattice.

Definition 3.4 ([12]). For two given vectors u, v ∈ Λ, if max(‖u‖, ‖v‖) ≤ min(‖u−
v‖, ‖u+ v‖), then u, v are called Gauss-reduced.

Let L be a list of N vectors from a lattice Λ(B). If for any two different vectors

vi, vj (i, j = 1, . . . , N i �= j) in L, vi and vj are Gauss-reduced, then the list L is

called pairwise-reduced.

When solving the shortest vector problem, gh(Λ) is usually regarded as the

expected norm of the shortest vector. In the following, we will present the notion

of orthogonaInteger Sieve algorithm which is the exact method in practice to solve

the shortest vector problem in orthogonal integer lattices Λ(B) ⊂ Zn, where n is

the dimension of lattice Λ.

4. Our Main Result: OrthogonalInteger Sieve

In this section, we give our main result consisting of a Sieve algorithm for integer

lattices. We will first define some important notions that we will use. We will denote

L, a list to be constructed, containing all vectors of orthogonal integer lattices

2250151-8
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Λ(B) ⊆ Zn such that their norm equal to the minimal distance. Along the way,

we denote H a list used to build the list L. It is the set of all vectors obtained by

performing permutations of the coordinates of the vectors u and −u (where u is the

first short vector obtained by LLL-reduction). We will say that there is a collision

if there is a repetition of the vectors in the list H .

We recall that a lattice Λ is said to be orthogonal if it is generated by a set of

pairwise orthogonal vectors. If two vectors are orthogonal, then the angle between

them is equal to π
2 . The number of vectors in canonical basis of the integer lat-

tice Zn is n. Considering the structure of an orthogonal basis in dimension 2, the

angle between the two vectors u and v is π
2 . We know that an orthogonal basis has

generally large integer coordinates because each vectors is multiplied by the lcm

of the denominators of all the vectors of the basis obtained by the Gram–Schmidt

Orthogonalization. Since the vectors are pairwise orthogonal, we cannot use reduc-

tion coefficient’s process to reduce them. Indeed, the coefficients μi,j are all zero

for each i, j. Thus, for the case of orthogonal lattices, we will only have the per-

mutations process to carry out the successive minima corresponding to this basis.

Since the first minima of LLL-reduced basis is less than the first minima of an

integer orthogonal reduced basis that we have denoted by B⊥1 , then we will use the

LLL-reduced basis to find the list of shortest vectors in the general case of orthog-

onal integer lattice Λ ⊆ Zn. Therefore, we will initialize the empty list L, and the

number of collisions by C = 0. After that, we use LLL-reduced basis to obtain a

short vector of this lattice. Because the opposite of this short vector is also a short

vector, we can use symmetry of different axes to see that all their permutations are

also in the lattice, including shortest vectors. The algorithm that we are going to

propose in this work, will output at least n and at most 2n shortest vectors by using

the first vector obtained from the LLL-reduced basis.

Thus, for the case of orthogonal lattice Zn, we know that B⊥
Zn = {e1, . . . , en},

where e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 0, 1). Thus this algo-

rithm returns the list L = {−en, . . . ,−e1, e1, . . . , en}; which gives exactly the 2n

shortest vectors of the lattice Zn.

Therefore, in the case of integer lattice Zn, we can obtain the list of all shortest

vectors by the following simple enumeration algorithm:

Example 4.1. For n = 4, the orthogonal basis of Z4 is given by: B⊥ = (e1, e2,

e3, e4) where e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1).

Algorithm 2. OrthogonalSieve(Zn)

Require: The dimension n.

Ensure: A list L of shortest vectors.

1: B⊥ ← (e1, . . . , en) (orthogonal basis of Zn);

2: L← (−en,−en−1, . . . ,−e1, e1, . . . , en−1, en);

3: return L
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Therefore the list L of shortest vectors is given by: L = {−e4,−e3,−e2,
−e1, e1, e2, e3, e4}.

Lemma 4.2. Let Λ be a full rank integer lattice of dimension n. Λ has at least n

and at most N = n!.2n shortest vectors. Particularly,

(1) The integer lattice Zn has exactly 2n shortest vectors;

(2) The root lattice of type An (n ≥ 1) has exactly n(n+ 1) shortest vectors;

(3) The root lattice of type Dn (n ≥ 2) has exactly 2n(n− 1) shortest vectors.

Proof. Let Λ be a full rank integer lattice of dimension n. We know that there

exists a vector v = (v1, . . . , vn) ∈ Λ\{0} such that ‖v‖ = λ1(Λ). We also know

that u = −v is another shortest vector in Λ. Likewise, all the permutations of the

coordinates of v and u are a shortest vector of the lattice. The vector v has at most

n! permutations and the vector u has also at most n! permutations. Thus, we have

at most (n!)2 permutations possible for one of these vectors. Moreover, the vectors

u and v have at most 2n possibilities to combine symmetrically by the different

axes. Therefore, we have at most n!.2n shortest vectors in integer lattices.

For the case of integer lattice Zn, we know that the n vectors of canonical basis

are the shortest vectors of this lattice. Since their opposites are also the shortest

vectors of Zn, we have exactly 2n shortest vectors in Zn.

Since the short vectors of the root lattices of type An (n ≥ 1) are the permuta-

tions of the vector (+1,−1, 0, . . . , 0), then we will have exactly (n+1)!
(n−1)! = n(n + 1)

short vectors in this particular lattice. Thus we will have exactly n(n + 1) short

vectors in root lattices of type An.

About the root lattices of type Dn (n ≥ 2), we also know that all the short

vectors are the permutations of the vector (±1,±1, 0, . . . , 0) with the condition that

the sum of all the components is even. Thus we will have three possible following

cases: the permutations of the vector (+1,−1, 0, . . . , 0), the permutations of the

vector (+1,+1, 0, . . . , 0) and the permutations of the vector (−1,−1, 0, . . . , 0).
This means that, we will have exactly n!

(n−2)! +
n!

2!(n−2)! +
n!

2!(n−2)! = 2n(n −
1). Therefore, we will have exactly 2n(n − 1) short vectors in root lattices of

type Dn.

Corollary 4.3. Given a basis B of the orthogonal lattice Zn, we can obtain the list

L of shortest vectors of this lattice in space O(2n).

Proof. Let B be a basis of the orthogonal lattice Zn. The canonical basis permits

to obtain exactly 2n short vectors of this lattice. Then these vectors will be obtained

in space O(2n).

We are now going to propose an enumeration algorithm which will take as input

a basis (not orthogonal) of the integer lattice Λ and return a list of at most 2n

shortest vectors of this lattice. Since this lattice is an integer lattice, then the LLL

algorithm will return a shortest vector of the lattice that we call v. Even if an integer
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lattice is also an orthogonal lattice, it would be interesting to use a non-orthogonal

basis of the lattice. Indeed, by applying the LLL algorithm to an orthogonal basis,

we obtain the same basis. Consequently, the vectors obtained will not necessarily

be the short vectors of the lattice. Therefore, we will bring out all the possible

combinations between the components of the vector v and its opposite −v (this by

keeping the position of each component used). The description of our algorithm is

given as follows.

4.1. Description of the algorithm

Given an orthogonal integer lattice Λ, this algorithm takes as input the (non-

orthogonal) basis B = (b1, b2, . . . , bn) of the lattice (where n is the dimension of

Λ) and returns a list L of at least n and at most 2n short vectors of the lattice

Λ and the number of collision C as follows: We start by executing the LLL algo-

rithm to the basis B which allows us to obtain a short vector of the lattice which

we denote by u. Subsequently, we will use this vector u and its opposite v = −u
to build a list L. To achieve this, we will build a 2n × n matrix K using an iter-

ative function V ect and an additional 2n−1 × (n − 1) matrix P . The 2n rows of

our constructed matrix K will be short vectors of the lattice. Now, we will con-

sider the list H whose elements are rows of K. A final list L consisting of short

vectors will then be constructed form K, making sure that an element appears only

once. The number of collisions is be the number of repetitions of the vectors in the

list H .

At the end of the algorithm, we will have the list L which will be made up of at

least n and at most 2n short vectors of the lattice, and the number of collisions C.

Remark 4.4. We will call the number of collisions that we will denote by C, the

total number of repetitions of the vectors that we will have in the auxiliary list H

which will make it possible to obtain the list L of short vectors. Thus, if the number

of collisions is large, then the size of the list L is small. Indeed, the total number of

vectors of the list L will be equal to 2n − C.

The algorithm below illustrates the above description. For correctness, a Maple

computer software implementation of the algorithm has been done.

4.2. Complexity analysis

About the complexity of our algorithm, we have

Line 1 has 2 elementary operations. Indeed, we have only 2 assignments in this

step; line 2 is carried out in polynomial time with complexity O(n) arithmetic

operations. Indeed, algorithm LLL runs in O(n) arithmetic operations. Line 3 has

2 elementary operations (assignments). Line 4 has 2(n − 1) arithmetic operations.

Indeed, in this line we have 2 affectations inside the loop for which goes from 1 to

n − 1; from line 5 to line 7, we also have 2(n − 1) elementary operations. Indeed,
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we have 2 assignments inside the loop for which goes from 1 to n − 1; Line 8 has

(n − 1)2n−1 arithmetic operations. Indeed, we use a recursive algorithm that uses

two loops “for”, which one goes from 1 to 2n−1 and the other from 1 to n − 1;

Line 9 has 3 elementary operations (assignments); from line 10 to line 14, we have

two loops and the first goes from 1 to 2n−1, and inside this one we have another

loop for which it goes from 1 to n− 1. Thus, we will have 2n−1(n − 1) operations

from line 10 to line 14. In the same way, we will have 2n−1(n− 1) operations from

line 15 to line 19; from line 20 to line 22, we have 2n−1 because we have only one

operation inside the loop for which it goes from 1 to 2n−1. In the same way, we

will have 2n−1 operations from line 23 to line 26; line 27 has 2n + 1 operations

because we have 1 elementary operation (assignment) and 2n assignments to build

matrixK; from line 29 to line 34, we have 2 operations (assignment and comparison)

which will be automatically executed inside the loop for which it goes from 1 to

2n − 1. Thus we will have 2 × (2n − 1) = 2n+1 − 2 operation from line 29 to

line 34.

So we will have 2n+1 − 2 + 2n + 1+ 2n−1 + 2n−1 + (n− 1)2n−1 + (n− 1)2n−1 +

(n− 1)2n−1 + 2(n− 1) + 2 + n+ 2 arithmetic operations; this means that we have

2n+1 − 2 + 2n + 1 + 2n + (n − 1)2n + (n − 1)2n−1 + 2(n − 1) + n + 4 arithmetic

operations; thus, we have 2n+1+2n+1+(n−1)2n+(n−1)2n−1+2(n−1)+n+3; since
2n+2+(n−1)2n+(n−1)2n−1+2(n−1)+n+3

n2n → cte when n→ +∞, then the complexity of

algorithm is O(n2n).

Therefore, the complexity of our algorithm is O(n2n) arithmetic operations.

Example 4.5. Let B :=

(
3 3 −3

1 3 1

1 4 −2

)
be a basis of a lattice Λ(B) ⊂ Z3; we have,

G := LLL(B) =

(
0 0 3

2 2 1

−1 3 1

)
; thus u = (0, 2,−1), v = (0,−2, 1) and n = 3; We have

n �= 1, then p = (0, 2) and q = (0,−2); then P := Vect(p = (0, 2), q = (0,−2), n =

2); thus n = 2 �= 0, this means that we have P := Vect(p = (0), q = (0), n = 1);

therefore, l = 22 = 4 and t = 22−1 = 2; thus for i = 1, 2 and j = 1 we have:

P [1, 1] = 0 and P [2, 1] = 0 for i = 3, 4 and j = 1 we have: P [3, 1] = 0 and

P [4, 1] = 0. Thus P is the form K :=

⎛
⎝

0 0

0 0

0 0

0 0

⎞
⎠ now we will complete the second

column as folows: for i = 1, 2 and j = 2 we have: P [1, 2] = P [2, 2] = u2 = 2;

for i = 3, 3 j = 2 we have: P [3, 2] = P [4, 2] = v2 = −2; and then, we have

P :=

⎛
⎝

0 2

0 2

0 −2

0 −2

⎞
⎠, now l = 23 = 8 and t = 22 = 4; thus for i = 1, . . . , 4 and j = 1, 2,

we have: K[1, 1] = P [1, 1] = 0; K[1, 2] = P [1, 2] = 2; K[2, 1] = P [2, 1] = 0;

K[2, 2] = P [2, 2] = 2; K[3, 1] = P [3, 1] = 0; K[3, 2] = P [3, 2] = −2; K[4, 1] =

P [4, 1] = 0 and K[4, 2] = P [4, 2] = −2; for i = 5, . . . , 8 and j = 1, 2, we also
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Algorithm 3. Orthogonal integer sieve

Require: The basis B of a lattice Λ and its dimension n ≥ 2.
Ensure: A list L of short vectors v with ‖v‖= λ1(Λ(B)) and the number of colli-

sions C.

1: L := {}; C := 0; ”We initialize a empty list L and the number of collision C ”
2: G := LLL(B); ”LLL(B) takes as input the basis B and returns its reduced

basis”
3: u := G[, 1]; v := −u; ” u is the 1st column of matrix G and v is its opposite”
4: p := (0, . . . , 0); q := (0, . . . , 0) ”(n− 1) times”
5: for i = 1, . . . , n− 1 do
6: pi := ui; qi := vi;
7: end for
8: P := V ect(p, q, n− 1); ”The function Vect takes as input the vectors p and q,

and builds a 2n−1 × (n− 1) matrix P”
9: K := matrix(0, nrow = 2n, ncol = n); l := 2n; t := 2n−1; ”We initialize the

2n × n matrix with 0 everywhere”
10: for i = 1, . . . , t do
11: for j = 1, . . . , n− 1 do
12: K[i, j] := P [i, j];
13: end for
14: end for
15: for i = t+ 1, . . . , l do
16: for j = 1, . . . , n− 1 do
17: K[i, j] := P [i− t, j];
18: end for
19: end for
20: for i = 1, . . . , t do
21: K[i, n] := un; “we update the 2n−1 first components of column n of the

matrix K”
22: end for
23: for i = t+ 1, . . . , l do
24: K[i, n] := vn; “we update the last 2n−1 components of column n of matrix

K”
25: end for
26: end if
27: H := (K[1, ], . . . ,K[2n, ]); L := L ∪ {H [1]}); “K[i, ] is line number i of the

matrix K”
28: for i = 2, . . . , 2n do
29: if H [i] /∈ L then then
30: L := L ∪ {H [i]}); “we remove all copies from the list”
31: else
32: C := C + 1;
33: end if
34: end for
35: return (The list L of shortest vectors v with ‖v‖= λ1(Λ(B)) and C);
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have: K[5, 1] = P [1, 1] = 0; K[5, 2] = P [1, 2] = 2; K[6, 1] = P [2, 1] = 0; K[6, 2] =

P [2, 2] = 2; K[7, 1] = P [3, 1] = 0; K[7, 2] = P [3, 2] = −2; K[8, 1] = P [4, 1] = 4

and K[8, 2] = P [4, 2] = −2; Thus K is the form K :=

⎛
⎜⎜⎜⎜⎝

0 2 0
0 2 0
0 −2 0
0 −2 0
0 2 0
0 2 0
0 −2 0
0 −2 0

⎞
⎟⎟⎟⎟⎠
, now we will

complete the last column as follows: for i = 1, . . . , 4 and j = 3, we have K[1, 3] =

K[2, 3] = K[3, 3] = K[4, 3] = u3 = −1; for i = 5, . . . , 8 and j = 3, we have K[5, 3] =

K[6, 3] = K[7, 3] = K[8, 3] = v3 = 1; thus, we have K =

⎛
⎜⎜⎜⎜⎝

0 2 −1
0 2 −1
0 −2 −1
0 −2 −1
0 2 1
0 2 1
0 −2 1
0 −2 1

⎞
⎟⎟⎟⎟⎠
. Thus, H =

{(0, 2,−1), (0, 2,−1), (0,−2,−1), (0,−2,−1), (0, 2, 1), (0, 2, 1), (0,−2, 1), (0,−2, 1)}.
Therefore, L = {0, 2,−1), (0,−2,−1), (0, 2, 1), (0,−2, 1)} and C = 4.

5. Conclusion

In this work, we talked about the notions of orthogonal lattices, integer lattices, gave

some properties of this family of lattice. We also recalled the relationship between

orthogonal and integer lattices. All this allowed us to construct an enumeration

algorithm for integer lattice Zn to provide a full list of its shortest vectors. This

algorithm runs in space O(2n). We also constructed an algorithm which give at

least n and at most 2n short vectors of a general orthogonal integer lattice Λ ⊂ Zn.

This algorithm runs in time O(n2n) and can be polynomial in space. We have

successfully implemented these algorithms in the Maple computer software 18.0.

Our future work will consist in giving an algorithm which will give a list of short

vectors in general case of any orthogonal lattice.
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