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ABSTRACT 

 Recent progress in atomically thin two-dimensional Transition Metal Dichalcogenides 

(TMDs) have led to the production of very small-scale semiconductors devices where a 

controllable number of polaron are confined into a small volume. Unlike conventional materials 

such as germanium and gallium arsenide, TMDs have interesting electronic and optical 

properties and above all, the flexibility of their gap make them advanced materials for the new 

generation of electronic devices. Optimizing the performance of quasi-particles in these 

materials remains a key issue for the miniaturization of next-generation devices. 

In this thesis, investigations on dynamic, decoherence and optical properties of polaron, 

exciton-polaron and bipolaron in TMDs (molybdenum disulfide (MoS2), molybdenum 

diselenide (MoSe2), tungsten disulfide (WS2), and tungsten diselenide WSe2) have been 

presented. In order to achieve our goals, we have used different variational methods of 

calculations such as Lee Low-Pines (LLP), Huybrecht and Pekar variational method. The 

ground state and first excited state of the eigen energies of optical polaron, exciton-polaron and 

bipolaron in different TMDs monolayer were calculated.  

The study of polaron in TMDs reveals that external potential such as electric field, 

amplitude of radiowave (RW) or amplitude of microwave (MW) increase the polaron ground 

state energy, the first excited state energy, the mobility, the coherence of polaronic states, allow 

information transfer and can be helpful to control the state of the system. Also, we showed that 

electric field reduces polaron lifetime, while the amplitudes of RW or MW increase polaron 

lifetime and reduces the magnitude of bandgap modulation. We also found that the frequencies 

of RW or MW create fluctuation in the polaron states energies and in the magnitude of bandgap 

modulation. Among the chosen monolayers, polaron moves more freely and lives longer in WS2 

in the presence of electric field. Futhermore, study of exciton-polaron in TMDs showed that 

magnetic barrier or magnetic field, strongly affected the states energies, reduce the effective 

mass of exciton polaron and increase their mobility. We also observed that the magnetic barrier 

length allows the transition from the valence band to conduction band, increases the information 

transfer and can be used to adjust the decoherence of exciton-polaron state in TMDs. It is also 

found that the optical absorption coefficient of exciton-polaron have a threshold value in the 

presence of the magnetic field, it increase with the increasing of magnetic field and decrease 

with internal distance between TMDs and polar substrates, optical absorption strongly depends 

to the choice of the polar substrates, and to the electron phonon coupling. Besides, results on 
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bipolaron in TMDs reveals that, the higher the coupling strength, the stronger is the magnetic 

field effect on bandgap modulation, the highest bandgap modulation is obtained with MoS2 

monolayer, we found that the bipolaron is stable in all chosen monolayer. Optical  absorption 

of bipolaron in presence of magnetic field also present a threshold values with correspond to 

the energy of photon equal to the frequency of optical phonon and increase in the sequency of 

WSe2, MoSe2, WS2 and MoS2. We also demonstrated that in presence of pseudo harmonic 

potential, the chemical potential increases the mobility of bipolaron, the transition frequency 

and decreases the decoherence time whereas the zero point of pseudo harmonic potential 

decrease the mobility of bipolaron, transition frequency and increase decoherence time. Thus 

decreasing the zero point of pseudo harmonic potential resulting to large transition frequency 

which destroy the decoherence. We found that bipolaron moves more freely in WS2 monolayer. 

We also found that pseudo harmonic potential is useful to information transfer; to destroy the 

decoherence of bipolaron state and permits to manage the state of a system. 

The results obtained in this thesis are useful for society in general because they make it 

possible to improve the performance of electronic devices such as transistors, LEDs logic gates 

while reducing their size. also for the scientific community because the control of the polaronic 

states in TMDs systems open a path towards the improvement of quantum computing by 

proposing a new system for the design and construction of the quantum computer, for the 

transfer and storage of quantum information.  

Keywords: polaron, exciton-polaron, bipolaron, dynamic, decoherence, TMDs. 
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RESUME 

Les récents progrès dans le domaine des Dichalcogenures de Métaux de Transition 

(Transition Metal Dichalcogenides (TMDs) en anglais), matériaux bidimensionnels de taille 

atomique ont conduit à la fabrication des dispositifs semi-conducteurs de très petites tailles dans 

lesquelles un nombre de polaron est confiné dans un petit volume. Contrairement au materiaux 

classiques tels que l’arsenuire de Galium et le Grermanium, les TMDs présentent des 

prorpriétes électroniques intéressantes. La flexibilité de leur gap fait d’eux des materiaux de 

pointes pour la nouvelles géneration de composants électroniques. L’optimisation de la 

perfomance des quasi-particules dans ces matériaux reste un enjeu déterminant pour la 

minuatirisation des appareils de nouvelle génération. 

Dans cette thèse, nous étudions la dynamique, la décohérence et les proprietés optiques 

du polaron, de l’exciton-polaron et du bipolaron dans les TMDs (disulfure de molybdène 

(MoS2), disélénure de molybdène (MoSe2), disulfure de tungtène (WS2), disélénure de tungtène 

WSe2) via des méthodes variationnelles tel que la méthode de Lee-Löw Pines (LLP), la méthode 

de Huybrecht et la méthode de Pekar. Les énergies propres de l’état fondamental et du premier 

état excité du polaron, de l’exciton-polaron et du bipolaron dans les monocouches de TMDs 

ont été calculées.  

L’étude du polaron dans les TMDs révèle que les potentiels externes tels que le champ 

électrique, l’amplitude de l'onde radio (RW) ou de la micro onde (MW) augmente l’énergie de 

l'état fondamental du polaron, l’énergie du premier état excité, la mobilité, la cohérence des 

états polaroniques, permettent le transfert de l’information quantique et peuvent être utiliser 

pour contrôler l’état d’un système. En outre, nous avons montré que le champ électrique réduit 

la durée de vie du polaron, par contre les amplitudes de la RW ou de la MW augmentent la 

durée de vie du polaron et réduisent l’amplitude de la bande interdite modulée. Nous avons 

également constaté que la fréquence de la RW ou de la MW crée des fluctuations dans les 

énergies des états du polaron et dans l’amplitude de la bande interdite modulée. Parmi les 

monocouches de TMDs choisies, le polaron se déplace plus librement et vit plus longtemps 

dans le WS2 en présence du champ électrique. De plus, l’étude de l’exciton-polaron dans les 

TMDs montre que la barrière magnétique ou le champ magnétique affecte fortement les 

énergies des états, réduit la masse effective de l’exciton-polaron et augmente leur mobilité. 

Nous avons également observé que l’augmentation de la longueur de la barrière magnétique 

facilite la transition de la bande de valence vers la bande de conduction, augmente le transfert 
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de l’information ainsi, peut être utilisée pour ajuster la cohérence des états de l’exciton-polaron 

dans les TMDs. On n’a aussi observé que le coefficient d’absorption optique de l’exciton 

polaron admet une valeur seuil, augmente avec l’augmentation du champ magnétique mais 

diminue avec l’augmentation de la distance interne entre la TMD et le substrat polaire. 

L’absorption optique dépend fortement du choix du substrat polaire ainsi que du couplage 

électron phonon. En outre, les résultats sur le bipolaron dans les TMD montrent que plus le 

couplage électron-phonon est élevée, plus l’effet du champ magnétique sur la modulation de la 

bande interdite est fort, la modulation de la bande interdite la plus élevée est obtenue pour la 

monocouche de MoS2, le bipolaron est stable dans toute les monocouches de TMD choisies. 

L’absorption optique présente également une valeur seuil qui correspondent à l’énergie du 

photon égale à l’énergie du phonon optique, il augmente à la séquence de WSe2, MoSe2, WS2 

et MoS2. Nous avons également démontré qu’en présence d’un pseudo potentiel harmonique, 

le potentiel chimique augmente la mobilité du bipolaron, la fréquence de transition mais 

diminue le temps de décohérence tandis que le point zéro du pseudo potentiel diminue la 

mobilité du bipolaron, la fréquence de transition mais augmente le temps de décohérence. La 

diminution du point zéro du pseudo potentiel entraine une fréquence de transition élevée qui 

détruit la décohérence des états bipolaroniques. Nous avons constaté que le pseudo potentiel 

harmonique est utile pour le transfert de l’information, la destruction de la décohérence et la 

gestion des états du système. 

Les résultats obtenus dans ce travail sont utiles pour la societé en générale car ils 

permettent d’ameliorer les perfomances des composantes électroniques tel que les portes 

logiques, les transistors et les LED tout en reduisant leurs de tailles. Également pour la 

communauté scientifique car Le control des états polaroniques des systèmes à TMDs ouvre une 

voie vers l'amelioration du calcul quantique en proposant un système nouveau pour la 

conception et la realisation de l’ordinateur quantique, pour le transfert et le stockage de 

l’information quantique. 

Mots clés : polaron, exciton-polaron, bipolaron, dynamique, décohérence, TMDs 
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GENERAL INTRODUCTION 

CONTEXT 

According to Christoph Tillman [1], advanced semiconductor expertise permits the 

fabrication semiconductor nanodevices with small size. In the past decade research focusses on 

many types of semiconductor nanodevices with dimensions of 10 nm or less. Even commercial 

mass production of nanodevices has grasped a length scale of few nanometers and the 

International Technology Roadmap for semiconductors predict a thinning of this scale below 

10 nm over the next decade [1], but at these length scales, transport is conquered by quantum 

mechanics phenomena such as quantum confinement, decoherence and quantum consideration 

of some classical properties. furthermore, the discovery of graphene has ignited intensive 

interest in a wide range of two-dimensional (2D) layer materials [2]. In general, there are a wide 

range of layer materials in which the atomic layers are weakly bonded together by van der 

Waals interactions and can be readily isolated into single or few-layer nanosheets through 

mechanical exfoliation or liquid exfoliation processes [2]. These atomically thin 2D nanosheets 

derived from the layer materials share many interesting characteristics of the well-known 

graphene, such as exceptional electronic properties, extraordinary mechanical flexibility. With 

the reduced dimensionality and/or quantum confinement effect, these 2D nanosheets can exhibit 

unique properties distinct from their 3D bulk counterpart. The Transition Metal 

Dichalcogenides (TMDs) are part of the large family of the 2D layer materials, it is call layer 

material to show their surprising narrowness. TMDs have properties that are different from 

those of the graphene, e.g. semiconducting TMDs monolayers have a direct bandgap and can 

be used in electronic as transistor, in optic as emitters and detectors [3, 4], the crystal structure 

has no inversion center, which allows to access a new degree of freedom of charge carriers, 

namely the k-valley index, and open a new field of physics: valleytronics [4- 6]. TMDs are 

often combined with other 2D materials like graphene and hexagonal boron nitride to make 

Van der Waals heterostructures. These heterostructures need to be optimized to be possible 

used as building blocks for many different devices such as transistors, solar cells, leds, 

photodetectors, fuel cell, photocatalytic and sensing devices. Some of these devices are already 

used in everyday life and can become smaller, cheaper and more efficient by using TMDs 

monolayers [7, 8]. Others are still being developed and promise a huge impact on our 

technology. A thorough understanding of electronic, optical and transport properties in 

nanoscale devices are required to build a theoretical model of carrier in such nanostructures. As 
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these devices are never free of deficiency, any charge carrier is defied with its environment as 

phonons. This is particularly true when the device is subjected to small temperatures which rise 

the phonon vibrations. Therefore, a truthful model for transport in semiconductor nanodevices 

must address carrier confinement, carrier dynamics, nanostructure properties and nanostructure 

environments [9]. 

Then, it is well known that a local change in the electronic state of a crystal leads to 

corresponding local changes in the interactions between the individual atoms of the crystal. And 

mutually, any local change in the state of the network ions changes the local electronic state. It 

is common in this situation to speak of electron-phonon interaction. Electron-phonon coupling 

arises when polarization of the lattice vibration is coupled to electron charge [10, 11]. This 

interaction even manifests itself at absolute zero temperature and results in a number of specific 

microscopic and macroscopic phenomena. In TMDs as in others polar materials, a particular 

coupling arises between electron and phonon, this phonon interacts with electron via 

polarization density to form an entity called polaron. Polaron is a quasiparticle having particular 

characteristics, such as effective mass, total momentum, energy [12]. And perhaps other 

quantum numbers describing the internal state of the quasiparticles in the presence of an 

external magnetic field or in case of very strong lattice polarization that causes the electron to 

locate itself in the polarization with the appearance of discrete energy levels. The formation of 

this polaron is a consequence of the dynamic of electron-lattice interaction that is also 

responsible for the diffusion of charge carriers, the renormalization of the frequency of phonons 

as well as the screening of the interaction between charge carriers in solid [13]. The concept of 

the polaron was first studied by Pekar [14], who investigated the most essential properties of 

the stationary polaron in the uncertain case of a very intense electron-phonon interaction, so 

that the polaron behavior can be examined in what is entitled adiabatic approximation. 

A polaron is a quasiparticle used in condensed matter physic to explain the interaction 

between electrons and atoms in a solid material. For a local, 1D electron-phonon interaction, 

there is permanently a polaron. On the other hand, in 2D and more, the establishment of a 

polaron necessitate an adequately strong local coupling [15, 16]. In this case the polaron’s are 

always very small, i. e. located on a single site. In the absence of Coulomb repulsion, two 

polarons form a bipolaron. Its consists of two electrons in a singlet state, located on the same 

site. If the repulsion between electrons becomes very strong, the bipolaron disappears to form 

two unbound polaron’s. The exciton being a quasi-particle that can be seen as an electron-hole 

pair linked by coulomb forces. We have two types of excitons, the Mott-Vanier excitons and 
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the Frenkel excitons. Indeed, the combination of phonon and exciton gives rise to another quasi-

particle name exciton-polaron. So exciton-polaron is formed when exciton interact with 

acoustic or optical phonons via coupling to the deformation potentials associated to the 

conduction and valence band. In other hand, the created bare exciton is further dressed with 

phonons. This leads to the formation of a quasi-composite particle which is the coherent mixture 

of the electron-hole and phonon pair that can be called exciton-polaron. So exciton-polaron can 

be seen as the mixture of two polarons, one polaron form with electron an another polaron form 

with hole. 

Many researchers have devoted to the development of polaron theory [17-20]. But, even 

if the formulation of polaron is simple, the polaron problem has not yet been fully solved and 

continues to attract much attention especially in 2D materials. It plays an essential part in solid 

state physic, statistical mechanic and quantum field theory due to the fact that it can be consider 

as the simplest example of a non-relativistic quantum particle interacting with a quantum field. 

This is why many mathematical tools have been skilled for the first time using this problem as 

a model. One of the most important contributions to polaron theory is made by Bogolubov who 

used various schemes such as adiabatic perturbation theory, the formalism of functional 

integration, the T-product method [21-23] to solve polaron problem. As for polaronic theories, 

several bipolaronic theories taking into account quantum fluctuations in the network have been 

developed to try to explain superconductivity. With low electron-phonon coupling, the Barden 

Cooper Schrieffer theory has proven the existence of pairs of electrons (Cooper’s pairs) formed 

in a self-consistent manner in a superconducting phase. These pairs remain spatially very large 

over a distance that is the length of coherence. For bipolaronic superconductivity, it is 

speculated that pairs of electrons (small bipolaron) pre-exist and behave like a boson liquid. 

These bipolarons would condense into a superfluid phase. However, this is not the case, a very 

strong argument disproves this hypothesis: when a bipolaron exists in 2D and 3D its effective 

mass is so high that it does not allow a condensation of Bose at a reasonable temperature. The 

bipolarons would then correspond to chemical bonds and condense into a spatially ordered or 

unordered phase. For a strong electron-phonon coupling, the bipolaronic system is modelled by 

a network of 1/2 spins coupled with two types of interaction. The competition between electron 

phonon coupling and electron repulsion can generate a high mobility of bipolarons with a 

relatively strong binding energy.  

Improvement of Coulomb interactions in 1D semiconductors leads to formation of 

closely related excitations when electron-hole pairs are excited as well as to the improvement 
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of the role of interactions involving several charge carriers. Excitons are electrically neutral 

particles and can move freely through a crystal [24]. Nowadays, realization of device 

components with impurities placed with atomic precision have been achieved [25], with these 

single dopants strongly tailoring the behaviour of low-dimensional systems [26, 27]. So, it is 

essential to understand the underlying mechanisms of donor impurities, both for transport and 

for qubit applications. 

MOTIVATION 

Lately, as an interdisciplinary field of information science and quantum mechanic, 

quantum computation and quantum communication have enlarged the research ranges of 

quantum mechanic and significantly improved the development of quantum theory [28-31]. 

Experimental and theoretical researchers are attracted by some effects appearing in crystal and 

in nanoscales systems such as the Jahn-Teller and polaronic effects [32-36]. So, we are more 

interested in the polaronic effect in novel material as TMDs because it can help to provide 

systems useful in quantum information science and also because of the importance of the 

interaction between electrons and the crystal lattice in nanoscale. In quantum information 

science, the construction and manipulation of a qubit in nanostructures are important subjects, 

so that exploring those topics is necessary and valuable not only to understand quantum 

mechanics but also to achieve extra information processing methods [37]. Quantum system 

should be isolated for any interaction with its environment to preserve the destruction of its 

states which lead to the loss of information, quantum systems are very frail and the interaction 

of a quantum memory with its environment destroys the quantum coherence of the stored 

information leading to the process named decoherence [38]. Therefore, quantum decoherence 

plays a very important role in the formalism of quantum computing. So a great deal of 

considerable efforts [39-42] have been made to investigate the quantum decoherence and how 

to prolong coherence time in semiconductors in past years. In addition, Electron-phonon 

interactions of polaron-type play a very important role in the properties of small-scale quantum 

systems [43-48]. Thus, the interest in the polaron problem is growing in TMDs materials 

because the electron-phonon interaction in TMDs monolayers systems is stronger than in others 

semiconductors. So the decoherence process and the dynamic of the quasiparticles in these 

materials need to be investigated.  

In addition, in TMDs, Polaronic state can have long lifetimes and can be controlled and 

manipulated, making them potential candidates for qubit implementations in quantum 
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computers. However, there are some challenges associated with using of the polaronic state in 

TMDs for quantum computation such as: the polaronic state that can be sensitive to external 

environmental factors which can lead to decoherence and loss of quantum information, 

quantum gate operation on polaronic qubits can be challenging due to their interactions with 

the lattice vibrations and the polaronic qubit can be difficult to scale due to their interactions 

with the lattice vibrations. So, ongoing research aims to address these limitations and explore 

the potential of the polaronic state in TMDs for quantum computing 

PROBLEMATIC 

Supplementary properties of quantum confinement can be providing by the replacement 

of particles with nano-sized by the layers with nano-sized, this can also give rise to new 

components with new properties. Indeed, some nanoparticles factors such as its large 

surface/volume ratio, its shape, its arrangement in one medium or another, its compatibility 

with other components can modify the optical and electronic properties of materials containing 

them. For all these factors, research on nanoparticles has taken off significantly over the last 

two decades. A wide range of methods are required for quantum bit control. However, a strong 

confinement offers much more possibilities on the quantum control of these quantum bits. 

Modelling the behaviour of the quantum bit made up of polaron, exciton-polaron and bipolaron 

under the action of external potential in TMDs monolayers is one of our tasks. Although several 

works [49-52] have been done on the quasiparticles in TMDs, particularly on the bandgap 

modulation where the results show that the bandgap can be modulated by varying different 

polar substrates or internal distance between substrate and TMDs or by increasing electric field. 

Also, lot of theoretical physics research on electron-phonon interaction in TMDs [51-53] and 

bandgap engineering [54-56] has been done in order to build optoelectronic devices. Some 

important aspects of the problem have not yet been solved such as dynamic properties (mobility, 

lifetime…), decoherence properties (decoherence time, density probability…) or optical 

properties of quasiparticles in the monolayer TMDs knowing that their presence can affect the 

properties of materials. Thus, research on the effect of the polaron, exciton-polaron and 

bipolaron in TMDs has become an essential topic in small-scale physics because it can be easily 

integrated in the low dimensional systems. There is then a good reason to believe that 

quasiparticles such as polaron, exciton-polaron and bipolaron can exhibit other new 

characteristics in the presence of electric field, magnetic field, magnetic barrier, microwave, 

radiowave; as well as in the presence of confinement as pseudo-harmonic potential.  
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There are several attempts to solve the physical problems of the polaron, exciton-

polaron and bipolaron in the presence of external effects using different models proposed in the 

literature. However, a complete description of the behaviour of these quasiparticles remains 

incomplete using traditional methods like, Huybrecht method, particularly in TMDs 

nanostructures. The dynamic, optical and decoherence properties of the polaron, exciton-

polaron and bipolaron in TMDs should be adequately studied to evaluate the effect of electron-

phonon coupling, electric field, magnetic field, magnetic barrier, pseudo-harmonic potential, 

microwave and radiowave on dynamic and decoherence of these quasiparticules in TMDs. 

Thus, what will be the effect of those external potential as same as the electron-phonon coupling 

on dynamic, optical and decoherence properties of the polaron, the exciton-polaron and 

bipolaron in TMDs? In addition, can electron-phonon coupling or magnetic field affect the 

optical absorption of exciton-polaron and bipolaron in TMDs system? These questions are 

studied in detail in this thesis, taking into account the imperfections observed in TMDs, while 

solving the problem of bipolaron stability. 

OBJECTIVES 

Presently, the study of correlated quantum systems in TMDs monolayers as in others 

semiconductors provides a new platform to explore new quantum properties. Our main 

objective is to explore the behavior of polaron, exciton-polaron and bipolaron confined in 

TMDs materials and explore their features, by examining new quantum phenomena with 

theoretical methods, thus we will study the dynamic, optical and decoherence properties of 

polaron, exciton-polaron and bipolaron in TMDs monolayers under various external potential. 

The specifics objectives are to first of all model each of the system in order to theoretically 

investigated the associated quantum phenomena; we will also study the effect of electron-

phonon coupling on dynamic and optical absorption of exciton-polaron and the optical signature 

of bipolaron in TMDs. For the purpose we will propose models that will characterize the qubit 

in TMDs with different quasi-particles under different external potential. Subsequently we will 

calculate some parameters like ground and first excited states energies, effective mass, 

absorption coefficient, stability, mobility, lifetime, magnitude of bandgap modulation, 

transition frequency, probability density, decoherence time and Shannon entropy. 

OUTLINES 

This thesis is structured as follows: chapter one provides generalities on the recent 

evolution on 2D TMDs; quasiparticles such as polaron, exciton-polaron, bipolaron and 
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decoherence effect. In chapter two, the variational methods as LLP, Huybrecht and Pekar type 

methods are presented in standard polaronic system. The LLP method describes the polaronic 

effect in a weak electron-phonon coupling limit. Huybrecht method allow to solve polaronic 

problems in all electron-phonon coupling and the Pekar variational method allow to solve 

polaronic problem in strong electron-phonon coupling regime. Also, some parameters of 

quasiparticles are presented, differents systems that polaron, exciton-polaron and bipolaron can 

exist in TMDs materials are presented by a suitable Hamiltonian. Thus, the energies of the 

ground and the first excited states energies are obtained in the different electron-phonon 

coupling regime in TMDs. The effective mass and others dynamic properties of some 

quasiparticles are also investigated.  Chapter three is devoted to the numerical results achieved. 

Here, expressions linking transition frequency to electric field, magnetic barrier, pseudo-

harmonic potential, microwave and radiowave are presented. To study decoherence, probability 

density, Shannon entropy and decoherence time are also presented. The optical absorption, 

lifetime and the magnitude of bandgap are also displayed in TMDs. Finally, this thesis ends 

with general conclusion and perspectives are outlined for further researches. 
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1) CHAPTER 1: LITERATURE REVIEW 

INTRODUCTION 

Nowadays nanotechnology has attracted a lot of research works due to the wide range 

of domain in which it can be applied; in fact, nanotechnology has created opportunities for the 

fabrication of new nanoscale systems. The aim of this chapter is to give a general concept on 

nanostructures, polaronic quasiparticles that we have been working on throughout this thesis. 

Thus we will focus on TMDs nanomaterials, we will present generalities on polaron, exciton-

polaron and bipolaron. At the end we will present decoherence concept. 

 

1.1 GENERALITIES ON TRANSITION METAL DICHALCOGENIDES 

The great success of graphene has been followed by an equally impressive surge for the 

development of the other 2D materials that can form atomic sheets with extraordinary 

properties. Interestingly, the 2D library grows every year and feature more than 150 exotic layer 

materials that can be easily split into a sub-nanometer thick material [59–61]. These include 2D 

TMDs (e.g. MoS2, MoSe2, WS2 and WSe2), h-BN, 2D boron, 2D silicon, 2D germanium, and 

MXenes. Depending on their chemical composition and structural configuration, atomically 

thin 2D materials can be categorized as metallic, semi-metallic semiconducting, insulating, or 

superconducting. The first graphene descendants that sparked intense research activity are 

TMDs, which are almost as thin, transparent and flexible as graphene [62-67].  TMDs belong 

to the family of lamellar materials of formula MX2. M is a transition metal of group 4, 5, 6, 7, 

9 or 10 of the periodic classification table and X is a chalcogen. Generally, TMDs materials 

containing group 4 to 7 transition elements have a layered structure, while those with group 9 

to 10 transition metals have non-layered structures. Fig.1 shows the possible layered and non-

layered structures of TMDs materials. Each layer has a thickness of 6 to 7 Angstrom, which 

consists of a hexagonally packed layer of metal atoms combined by weak Van der Waals forces 

[68]. Electronically, it covers a wide range of properties from insulator to metal trought 

semiconductor [69]. Table 1 summarize the electronic character of different layered TMDs.  
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Figure 1 : possible layered structure TMDs materials consist of 16 transition metals and 3 

chalcogen atoms [68]. 
 

Table 1 : Electronic character of different layered TMDs [68] 
 

Group M X Properties 

4 Ti, Hf, Zr S, Se, Te Semiconducting (  eVEg 22.0   

5 V, Nb, Ta S, Se, Te Narrow band metal or semimetals 

6 Mo, W S, Se, Te Sulfides and selenides are semiconducting. Telurides are 

semimetal 

7 Tc, Re S, Se, Te Small gap semiconductors 

10 Pd, Pt S, Se, Te Sulfides and selenides are semiconducting. Telurides are 

metallic. PdTe2 is superconducting 

 

2D TMDs is a new generation of thin atomic material with special physical properties.  

Today, these materials are the focus of much scientific research. With the development of the 

field of nanotechnology in recent years, a great deal of attention has been paid to study TMDs 

from both theoretical and experimental aspects. 2D TMDs exhibit unique electrical and optical 

properties that envolve from the quantum confinement and surface effects that arise during the 

transition of an indirect bandgap to a direct bandgap when bulk materials are scaled down to 

monolayers. This tunable bandgap in TMDs is accompanied by a strong photoluminescence 

and large exciton binding energy, making them promising candidate for a variety of opto-

electronic devices, including solar cells, photo-detectors, light-emitting diode and photo-

transistors [70–73]. Another aspect of the weakly bonded 2D TMDs atomic layers is that they 
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can be easily isolated and stacked with others TMDs to construct a wide range of van der Waals 

heterostructures without the limitation of lattice matching [74, 75]. 

1.1.1 STRUCTURE OF TMDS 

TMDs are layered materials in which each unit is composed of a transition metal (M) 

layer sandwiched between two chalcogen (X) atomic layers. They are made of 2D sheets, 

stacked along the crystallographic axis (C). Depending on the arrangement of the atoms, the 

structures of 2D TMDs can be categorized as trigonal prismatic where the atom of metal is 

sandwiched between two planes of atoms of chalcogen. Metal is linked to six chalcogen by 

covalent bonds, the adjacent planes of two sheets contain only chalcogen, which leads to the 

formation of weak bonds knowing as the Van der Waals bond. The stacking of the sheets along 

the C axis give rise to numerous polytypes, the common one for the studied compound are 2H 

and the 3R polytypic. The 2H polytypic corresponds to a hexagonal stacking, it includes 2 layers 

per unit cell it belong to the 4

6hD space group. The 3R polytypic corresponds to a rhombohedral 

stack, it includes three layers per unit cell and belongs to the 5

3vC space group [76-78]. The planes 

perpendicular to the C axis are defined by the (002) planes and they are called basal planes. The 

basal surfaces are constituted by the external layer of chalcogen atom. The bonds of the 

chalcogen atom on the surface of the sheet being saturated, the basal surfaces are little 

chemically reactive. On the other hand, the dangling bonds at the edges of the sheets make the 

non-basal surfaces chemically active. It should be noted that molybdenum and tungsten 

disulfides exist in nature in the form of minerals called molybdenite and tungstenite, but the 

selenides of these transition metals are not found naturally on the surface of the earth [79].  

1.1.2 SYNTHESIS METHOD OF TRANSITION METAL DICHALCOGENIDES 

In 2004, Novoselov et al. successfully produced various single-layer 2D crystals from 

bulk materials, such as graphite, BN, NbSe2 using mechanical exfoliation method [80]. This 

method is typically adopted to prepare single-layer TMDs samples. The single crystal TMDs 

prepared by this method are good quality, and can be used for studying their basic properties 

[81, 82]. Fig.2 presents different steep of this method use in transition metal dichalcogenides. 

However, the size of the TMDs materials prepared by the mechanical exfoliation method is 

quite small approximately on tens of microns’ scale, posing a limitation to real devices 

applications. To obtain large quantities of TMDs nanosheets or few-layer TMDs nanosheets, a 

solution processing strategy would be more appropriate. Thus the first report on the liquid phase 

exfoliation of sheets of clay materials in the early 1960s [83] has inspired many studies into 
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methods of exfoliating nanosheets of TMDs [84-86]. Due to their layered structure, TMDs bulk 

matreials can be intercalated by various kinds of intercalates such as organic molecules, 

transition metal halides and lithium ions [86]. The resulting intercalated compounds can be 

exfoliated in single and few layer 2D nanosheets by ultrasonication [87, 88]. However, this 

method is time-consuming and the degree of intercalates insertion is not controllable, which 

limit it feasibility. To apply TMDs materials to real devices, their large scale growth is essential. 

The chemical vapor deposition (CDV) method is the most effective way to achieve large area 

growth. This method can be divided into two tyes, the sulfurization of metal thin films and 

vapor phase reaction of metal oxides with chalcogen precursor. In this method, the size and 

thichness of the predeposited metal films determine the size and thikness of the TMDs thin film 

respectively. However, it is challenging to deposit a uniform metal film.  

 

Figure 2 : Representation of the steps of mechanical exfoliation technique on TMDs [89] 
 

Fig.3 is an illustration for the synthesis of the MoS2 layers by MoO3 sulfurization. A layer of 

MoO3 was thermally evaporated on the sapphire substrate, the MoO3 is converted to MoS2 by 

a two step thermal process. Fig.4 present the synthesis procedure for the ALD-based WS2 

nanosheets. The synthesis of the TMDs by the direct sulfurization of a metal oxide thin film 

has several limitations, such as the difficulty to control the thickness of the predeopsited metal 

oxide or metal thin film, which affects the wafer-scale uniformity. Thus to obtain high quality 

TMDs with the desired number of layers, the thickness of the metal oxide needs to be precisely 

controlled. Thus with the synthesis process by depositing metal oxide layers via atomic layer 

deposition (ADL), we obtained a thin TMDs nanosheets with systemaic thickness 

controllability and wafer-scale uniformity. 
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Figure 3 : sulfurization of metal thin film (a) synthesis of MoS2 layer by MoO3 sulfurization; 

(b) MoS2 layer on a sapphire [90] 
 

 

Figure 4 : sulfurization of metal thin film: synthesis procedure for the ADL-based WS2 [91] 
 

1.1.3 PHYSICAL AND THERMODYNAMIC PROPERTIES 

The properties of the TMDs are often strongly linked to their lamellar structures. There 

are therefore very anisotropic like graphite. Table 2 shows some physical and thermodynamic 

characteristic of the four compounds. Fig.5 present the crystal arrangement of compound MX2 
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Figure 5 : Crystal arrangement of compound MX2 (M=W; Mo, X=S; Se) consist of a stack 

monolayer coupled by weak bonds of Van der Waals [92] 

(a) Transverse view (the vertical arrow represents the crystallographic axis C) 

(b) Top view of the monolayer 

(c) Prismatic trigonal coordination of sulfur or selenide atoms around a metal atom 

 

Table 2 : physical and thermodynamic characteristic of some TMDs [78] 
 

compound Molar mass(g/mol) 1( . . )H K J mol  
1 1( . . )S J K mol   

Temperature(C) 

MoS2 160.07 -275.04   5.02 62.5 570 

MoSe2 253.86 -196/05  41.18 87.78  8.36 340  

WS2 247.98 -259.16  6.72 64.76  6.27 400  

WSe2 341.17 -188.1  62.7 89.87  12.57 480 

 

1.1.4 BAND STRUCTURE 

The notion of the gap or bandgap is related to the representation of the dispersion of a 

semiconductor, the behavior of semiconductors, such as metals and insulators, is described by 

the theory of bands. The energy band structure defines the possible energy state that an electron 

can take in a crystal as function of a wave vector. In the phase diagram, the energy is represented 

according to the direction with the highest symmetry, it is divided into valence band, conduction 
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band and band gap. The energy distance between the maximum of the valence band and the 

minimum of the conduction band is called bandgap. in the phase diagram, the maximum of the 

valence band and the minimum of the conduction band can correspond to the same value of the 

wave or to different values of it; in the first case we speak of direct bandgap while in the second 

case, we speak of indirect bandgap. Direct gap and indirect gap materials behave very 

differently from the optoelectronic point of view because the charge carriers of the direct gap 

materials can pass from one band to the other by simply exchanging a photon whose momentum 

is negligible at this level of energy. While the charge carriers of the indirect gap materials have 

to interact with both a photon and a phonon in order to modify their wave vectors which makes 

the transition much less likely. 

The TMDs are semiconductors characterized by an indirect band gap between 0.788-

0.917eV and direct transitions between 1.393-1.679eV [93]. The indirect band gap comes from 

the upper part of the valence band located at the  point down to the halfway of the conduction 

band between and the K points, while the direct transition are located at the K point of the 

Brillouin zone. Fig.6 represent the band structure of different compounds in massif form where 

Table 3 summarizes their indirect and direct band gap value obtained by the density functional 

theory. 

The structure of the energy bands of the TMDs in the form of the thin films show that 

all these materials have a direct energy gap at the K point of the Brillouin zone. Fig.7 presents 

the band structure of different compounds in the thin form. When the number of layer decrease, 

the fundamental indirect gap increase due to confinement effects. In the case of monolayer it 

becomes lager than the indirect bandgap located at K point. In the limit of a single layer, it 

become direct at K point. Thus, the TMDs change from indirect gap semiconductors in the bulk 

state to direct gap semiconductors in two dimensions. 
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Figure 6 : Band structure of MX2; a: MoS2, b: WS2, c: MoSe2, d: WSe2 [94] 
 

Table 3 : Indirect and direct bandgap of some TMDs [93] 
 

Material (solid) Indirect bandgap (Ev) Direct bandgap (Ev) 

MoS2 0.788 1.679 

WS2 0.917 1.636 

MoSe2 0.852 1.393 

WSe2 0.910 1.407 
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Figure 7 : Band structure of MX2 in monolayer form; a: MoS2, b: WS2, c: WSe2, d: MoSe2 

[94] 
 

1.1.5 APPLICATIONS OF TMDS 

2D TMDs materials are considered attractive for diverse applications including 

electronics, photonics, sensing, and energy devices.  These applications are inspired by the 

unique properties of layered materials such as thin atomic profile that represents the ideal 

conditions for maximum electrostatic efficiency, mechanical strength, tunable electronic 

structure, optical transparency, and sensor sensitivity [95]. Of particular interest for applications 

is flexible nanotechnology, which is considered for potentially ubiquitous electronics and 

energy devices that can benefit from the range of outstanding properties afforded by 2D 

materials. Flexible technology comprises a wide array of scalable large-area devices including 

thin film transistors, displays, sensors, transducers, solar cells and energy storage on 

mechanically compliant substrates. As TMDs might be applicable for future generation large-

scale electronics [96], provided manufacturing and integration challenges can be resolved.  2D 

TMDs are gaining significant attention as electrode materials for energy storages, such as super-
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capacitors and Li-ion batteries, due to their atomically layered structure, high surface area and 

excellent electrochemical properties. Such layered structures provide more sites for ions in 

energy storage while maintaining structure stability during charge and discharge cycles. The 

high surface area of 2D materials when combined with surface functionality and electrical 

conductivity, make them as an ideal electrode for energy storages [97–99]. Due to its excellent 

semiconducting properties with direct bandgap of 1.83ev, the single-layer MoS2 nanosheets are 

seen as one of the most appropriate supplementing materials to graphene for the fabrication of 

the low power electronic devices. The performance limit of MoS2 transistor with HfO2 as 

dielectric has been theoretically studied [100] by Yoon et al., and showed that on/off current 

ration exceeding 1010 can be achieved. It was observed that the field effect transistor based 

sensors fabricated using bilayer, trilayer and quadrilayer MoS2 nanosheets exhibited high 

sensitivity with the detection limit of less than 1pm. The large-scale production of single and 

multi-layer MoS2 nanosheets using exfoliation techniques can enable their wide spread 

applications for energy storage devices such as batteries. MoS2 nanosheets prepared by 

chemical lithiation and exfoliation in stacking structure were fabricated for use as electrodes 

for lithium batteries and compared with the electrodes made from the bulk MoS2, the stacked 

MoS2 nanostructure showed much better cycling stability than the bulk MoS2 retaining a high 

capacity even after 50 cycles [101]. The stability and Li-storage capacity of MoS2 based energys 

storing devices can be improved to a greater extent by adding polymer molecules such as 

polyethylene oxide to the Li-intercalation solution [102], as the presence of the polyethylene 

oxide can increase in the interlayer spacing of the MoS2 nanosheets. Much improved Li-storage 

capacity and cycling stability are observed in the case of electrodes made from the MoS2-

polyethylene oxide nanocomposites. This improvement in performance is attributed to the fact 

that large amounts of lithium ions can be accommodated over the polyethylene oxide. The MoS2 

can be used for the fabrication of supercapacitors or bi-layer capacitors, as they possess a large 

interlayer space, as well as a large specific surface area, that can be used for ion intercalation 

and exhibit several stable oxidation states [103] Moreover, in this timeframe, several articles 

have reviewed breakthroughs and perceived applications of 2D materials [104,105]. 

1.2 CONCEPT OF QUASI PARTICLES 

1.2.1 CONCEPT OF PHONONS 

1.2.1.1 DEFINITION OF PHONONS 
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Quasiparticles are a type of particles that emerge as a result of interactions between 

others particles in a material. There are not particles, but excitations that behave like particles 

and have certain properties. Quasiparticles can help us understand and predict the behavior of 

materials and their properties such as electronic, magnetic, and optical properties. There are 

various types of quasiparticles, but some of the most well known include: electron holes that 

can be seen as as lack of electron, and phonons, which are quasiparticles that arise due to the 

collective vibrations of atoms in a material. The vibrations of atoms will form a vector field 

called the displacement field, which can be quantized; the quanta of the displacement field are 

called phonons [106]. Phonons are considered as quasiparticles, which means that they have no 

physical existence as seperate materials entities, but as a collective excitation in a crystalline 

solid. Phonons can be imagined as energy packets that propagate trough the solid, carrying 

vibrational energy. A normal vibration mode is a mode in which all the element of a network 

vibrates at the same frequency. The mode of vibrations of atoms in a crystal lattice are 

essentially periodic oscillations of the positions of the atom around their equilibrium positions. 

The phonons can be dispersive, which means that their speed and frequency can vary depending 

on the direction of propagation and the properties of the material.  Phonons are quasi-particles 

of spin 0. We have many types of phonons such as acoustic phonons and optical phonons, 

acoustic and optical Phonons exist only within a crystal lattice with a large number of particles, 

and the only known physical structures corresponding to this definition are crystal solids. In the 

following we will therefore only deal with phonons in this context and, for sake of clarity, we 

will call the particles constituting the network atoms, although they may be ions in an ionic 

solid. 

The forces acting between the different atoms in the lattice lead to movement of one or 

more atoms around their equilibrium position that will cause the vibration and propagation of 

waves through the lattice. The Fig.9 below shows a vibration wave in a network. The amplitude 

of the wave is given by the amplitude of the displacement of the atoms around their equilibrium 

position. The wavelength corresponds to the smallest interval between two identical repetitions 

of the arrangement of atoms, it is noted on the figure. 

1.2.1.2 TYPES OF PHONONS 

In a real solid, there are two types of phonons: "Acoustic" and "Optical" phonons [106]. 

Acoustic phonons are compression and decompression waves that propagate through a solid. 

They are responsible for the propagation of the sound in materials. They are commonly found 
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in metals, ceramics, and semiconductors. Optical phonons are present in solids that have several 

atoms per mesh. They are called "optical" because in ionic crystals they are very easily excited 

by light waves. This is due to the fact that they correspond to vibration mode for which positive 

and negative ions located on adjacent sites of the network approach and move away from each 

other by creating an electric dipole moment oscillating with time. Optical phonons that interact 

in this way with light are called active in the infrared. Noticed that they are others types of 

phonons like amorphous phonons that propagate in amorphous materials such as glass. Unlike 

crystalline materials, amorphous materials do not possess a periodic structure, which gives rise 

to a broader and more complex phonon frequency distribution. The presence of different types 

of phonons depends on the materials. For example, some materials exhibit only acoustic 

phonons, while others may exhibit both acoustic and optical phonons. Also the nature of 

phonons can vary depending on temperature and other environmental conditions. 

In TMDs the phonon dispersion of a monolayer has three acoustics and six optical branches 

inheriting from the nine vibrational modes at point. The three acoustics branches include the 

in-plane longitudinal acoustic, the transverse acoustic and the out-of-plane acoustic. The in-

plane branches have a linear dispersion and higher frequency than the out-of-plane. The six 

optical branches are two in-plane longitudinal optical branches, two in-plane transverse optical 

branches and two out-of-plane optical branches [107]. These six optical modes at point 

correspond to the irreductibble representation in Fig. 8. Since TMDs are slightly polar materials, 

certains R-active phonons modes displays optical splitting due to coupling of the lattice to the 

macroscopic electric field created by the relative displacement of M and X atoms in the long 

wavelength limit. 

For two-layers and bulk TMDs, there are 18 phonons branches which are split from 9 

phonons branches in monolayers TMDs. Owing to the weak van der waals interaction in two-

layers and bulk TMDs, the frequency of the splitting corresponding for the two optical branches 

is very small, resulting in resemblance of optical phonon dispersion curves among mono, two 

layers and bulk TMDs. For example, the phonon dispersion of monolayer Fig. 8B and bulk Fig. 

8C are much similar except three new branches due to interlayer vibration below 1100 cm in 

bulk due to interlayer vibrations. The general features of theses TMDs are similar to each other. 

But, their phonon frequencies are more different. In comprarison to monolayer MoS2 the 

phonon bands, of monolayer WS2 are shifted down to lower frequencies, which mainly due to 

the larger mass of W atoms. Furthermore, the interlayer phonons in bulk are different from each 
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other, which is due to their intrinsic differences in both the whole mass of TMDs and interlayer 

coupling strengths. 

 

Figure 8 : phonon dispersion curves of (b) monolayer and (c) bulk layer TMDs [107] 

 

1.2.1.3 PHONONS APPLICATIONS 

The study of phonons continues to gain momentum because of its various domains of 

applications such as 

 Optical phonons can be used to detect chemical bonds and determine the compositions 

of materials trought a process called infrared spectroscopy. They can also be used in 

phonon assisted thermoelectricity to convert heat or mechanical energy into electricity.  

 Acoustic phonons are useful in thermal management which consist of avoiding heating 

in electrical devices by removing heat from them. They are also used to set up materials 

that absorb sound waves, thus limiting the propagation of noise. In TMDs, acoustic 

phonons branch also contribute to the thermal conductivity 

 Phonons are used as phonons based sensors in sensoring to detect change in temperature, 

pressure or other physical properties. Its can also be used in highttemperature 

superconductivity. Its is used instead of photons to produce coherent sound waves in 

process called phonon laser. 

 The amorphous phonons can be use in thermics, where phonons play an important role 

in the conduction of heat in materials. Understanding and controlling the properties of 

amorphous phonons can lead to the development of materials with high thermal 

efficiency, useful in the fields of electronics, energy and heat management 
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Figure 9 : Crystal lattice vibration [108] 
 

1.2.2 CONCEPT OF POLARON 

1.2.2.1 DEFINITION OF POLARON 

To explain the concept of polaron, we begin first with the description of crystals. The 

structure of all crystals can be described in terms of a lattice (a lattice is a regular periodic array 

of point in space) with a group of atoms attached to every lattice point. The group of atoms is 

called basis, when repeated periodically in space it forms the crystal structure. At room 

temperature, the atoms are not fixed but vibrate around their equilibrium positions (the lattice 

points). Ionic polarization in the crystal occurs by the electric field of a conduction electron in 

which the electric field of the electron displaces the positive and negative ions with respect to 

one another (attracts the positive ions and repels the negative ions according to coulomb forces). 

This displacement can be described as cloud of phonons. A conduction electron or hole together 

with its self-induced polarization in a polar semiconductor or an ionic crystal forms a Polaron 

[109]. As a result of the formation of a polaron, the electron polarizes the lattice producing a 

potential well around itself in which it becomes trapped. The self-trapping is considered in ionic 

(polar) materials, so the notation "polaron" is due to this fact. This concept was first introduced 

by Landau [110]. 

1.2.2.2 CONCEPT AND REPRESENTATION 



CHAPTER 1: LITERATURE REVIEW  40 

A charge placed in a polarizable medium is screened. Dielectric theory describes the 

Phenomenon by the induction of a polarization around the charge Carrier. The induced 

Polarization will follow the charge carrier when it is moving through the medium. The carrier 

together with its self-induced polarization is considered as one entity (Fig.10), named a polaron 

[111].  The physical properties of a polaron are different from those of a band-carrier. In 

particular, the polaron is characterized by its binding (or self-) energy, an effective mass and its 

characteristic response to external electric or magnetic fields (e.g. mobility and optical 

absorption coefficient). We have two types of polaron: the large or Fröhlich polaron (when the 

spatial extension of a polaron is large compared to the lattice parameter of the solid), and the 

small or Holstein polaron (when the self-induced polarization caused by an electron or a hole 

is of the order of the lattice parameter). The difference between the large polaron and small 

polaron is that small polaron are governed by short-range interactions. Historically, Fröhlich 

planned a Hamiltonian model to investigate a polaron in a continuum medium, he used the 

second quantization form of the electron lattice interaction (Eq.1a). Later, Landau and Pekar 

investigated the self-energy and the effective mass of the polaron, for what was shown by 

Fröhlich corresponding to the adiabatic or strong-coupling regime. This particular study made 

with free electron interacting with a dielectric polarizable continuum, described by the static 

dielectric constant 0 and the optical (or high frequency) dielectric constant 1 [110]. So we have 

three cases of the coupling regime: the weak coupling regime, strong coupling and intermediate 

coupling regime depending on the value of the coupling strength. 
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r is the position coordinate operator of the electron with band mass m, P is its canonical 

conjugate momentum operator, k  is the wave vector, 

ka and 
ka are the creation and 

annihilation operators for longitudinal optical phonons of wave-vector and phonon energy 

LO . With
LO the longitudinal optical frequency. The

kV  are the Fourier components of the 
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electron phonon interaction (Eq. 1b).  is the dimensionless electron-LO phonon coupling 

strength (Eq. 1c). With  0 , the high-frequency (static) dielectric constant of the medium

2
1

2 







LO

p m
r


 is the polaron radius. 

1.2.2.3 APPLICATIONS 

We have many extensions of the polaron concept such as acoustic polaron, piezoelectric 

polaron, electronic polaron, bound polaron, trapped polaron, spin polaron, molecular polaron, 

solvated polarons, polaronic exciton, Jahn-Teller polaron, small polaron, bipolarons and multi-

polaron systems which are important [112]. These extensions of the concept are interested, for 

example, to study the properties of conjugated polymers, colossal magneto-resistive 

perovskites, high T superconductors, layered MgB2 superconductors, fullerenes, quasi–1D 

conductors, semiconductor nanostructures. The physical properties of multi-polaron system has 

renewed interest due the fact that it is possible that polaron play a role in high-T 

superconductivity which could have important implications for energy generation and storage 

[113, 114]. Recents applications of polarons has been in the development of organic light 

emetting diodes, which are used in the displays of many modern electronic devices. By 

controlling the movement of polarons with the organic light emetting diodes, researchers have 

been able to improve their efficiency and brightness. Another application of polarons is in the 

development of quantum computing technologies by exploring the use of polarons as qubits 

due to their long coherence time and strong coupling to their environement. Polaron could also 

be used to transport information in electronic devices at a much higher speed than traditional 

electrons, this opens the door to significant advances in the field of telecommunications and 

computing. Due to its small size, polaron can be used to create nanoscale devices such as 

transistors, sensors optoelectronics components. These potential polaron applications could 

revolutionize the industry and open up new avenues for more advanced technologies. In 

addition, the polaron exhibits unique properties when it comes to electrical conductivity so, 

researchers are currently studying how to exploit these properties to improve the efficiency of 

solar cells for conversion devices. It can also be used in the field of medecine to selectively 

target and destroy certain cancer cells, providing new treatment approaches for cancer. 
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Figure 10 : formation of the polaron due to deformation of the crystal [111]. 
 

1.2.3 CONCEPT OF BIPOLARON 

1.2.3.1 PRESENTATION AND DEFINITION OF BIPOLARON 

For certain system parameters, two polarons with the same charge can become mutually 

coupled, forming a new type of a quasiparticle named bipolaron [115]. Therefore, the energy 

gains for creating a bipolaron from two separated polarons (Fig.11a) is the sum of the Coulomb 

repulsion which tends to separate polarons, and the lattice deformation energy gained by having 

two particles in the same potential well (Fig.11b). The bipolaron can also be form with two 

electrons or two holes localize at the same atomic site in the lattice. In this case, the bipolaron 

obtained is so-called one-center bipolaron [115]. Electron or hole bipolaron has an electric 

charge equal either to 2e- or 2e+, respectively. The bipolarons obey to the Bose-Einsten 

stactistic because their spin is interger. Moreover, it is thought that at low temperatures they 

form a Bose condensate similarly to Cooper pairs in superconductors. Due to their unique 

properties bipolarons formation takes a special place in the polaron physics.  
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Figure 11 : Cartoon illustrating bipolaron formation. a) Two separated polarons each in its 

own polarisation well. b) Bipolaron where two electrons are localized in the same potential 

well [115]. 
 

A bipolaron is a bound pair of two electrons dressed with a cloud of virtual phonons [116]. 

Considering the electron-phonon coupling in bipolaron formation, the strong electron-phonon 

coupling receive intensive study in recent years due not only to general theoretical interest in 

the problem but also to its important applications. For a long time, calculation errors have been 

calling into the question of the possibility of bipolaron existence. So, the description of the 

bipolaron state start with the Hamiltonian proposed by Pekar and Frohlich made up of two 

electrons or holes interacting with a phonon cloud. After that, several researchers used used 

variational approach to describe the bipolaron with the wave function. Among those works, the 

energy of bound bipolaron was achieved in [117] with the use of wave function chosen in 

correlation with electron. Notice that there was no solutions in the case of weak and 

intermediate coupling constant . So, the bound bipolaron state exist only for sufficienly large 

values of the coupling constanst  2.5  [118].  

1.2.3.2 STABILITY OF BIPOLARON 

In the Fröhlich approximation, a pair of electron or hole interacting with LO phonon in 

the continuum limit; is referred as Fröhlich bipolaron. The study is focused in optical phonon 

because in this context the polaronic effects are extremely important and should therefore be 

taken into consideration when making devices with them [116]. The stability of bipolaron in 

2D and 3D in the Fröhlich approximation has been examined with the use of operator 

techniques where the center of mass of the bipolaron was approximately separated from the 

relative electron motion [119]. The result was similar to those obtained in [120, 121] using the 

Feynman path integral with bipolaron in 2D and 3D. Also, the stability of bipolaron was also 

investigated [122] in the path-integral representation; in this work the combined effect of optical 

phonons and acoustic phonons was analyzed. Early work on bipolarons had been based on 
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strong-coupling theory in which case the bipolaron stability was expressed with parameter

0  and the confinement length of the quantum dot. Recently, investigation in graphene 

show that bipolaron stability depend on the strength of eletron-phonon interactions. Thus, 

bipolarons are stable in graphene in presence of electric field lower than 3mV/A [123]. It turns 

out that the stability criteria of bipolaron depend of various parameters such as coupling 

constant or others parameters of the system as confinement length, the electric field. The 

stability of bipolaron is influenced by the force of the interaction between the particles which 

compose it. A strong interaction favors the formation of a stable bipolaron, because it allows 

the particles to remain bound together despite possible external disturbances. The stability of 

bipolaron can also be affected by the environment it is in. temperature and density can play a 

crucial role in the formation and stability of bipolarons. For example, at low temperature, the 

interactions between the particles can be stronger and thus promote the formation of stable 

bipolarons. It is also important to note that the stability of the bipolaron can vary depending on 

the material in which it is formed. Some materials may promote the formation of 

stablebipolarons, while others may be less conducive to their exixtence.  

1.2.3.3 APPLICATIONS 

The bipolaron problem is interesting for both academic reasons and for its practical 

importance in polar semiconductors and semiconducting glass. However, above all, the 

discovery of the high temperature superconductivity in CuO2 based layered ceramic materials 

and the subsequent proposal of the bipolaronic mechanism for pairing has made the bipolaron 

problem most fascinating and has brought it to the forefront of the current research [116]. In 

particular, the search for alternative microscopic mechanism for higth TC superconductivity has 

stimulated a renewed interest in the bipolaron problem. So, bipolaron is useful in high 

temperature superconductivity in the models with pierls-like coupling at low carrier density 

[124].  Bipolaron is also helpful in tunneling experiments or in transport through molecular 

dots, but also to its important applications, such as a treatment of high-temperature 

superconductivity. 

If many bipolarons form but are not too close, they are likely to form a Bose-Einstein 

condensate. This led that bipolarons could be a mechanism for superconductivity at high 

temperature. This could, for example, lead to a very direct interpretation of the isotopic effect. 

The theory of bipolaron  explains some thermodynamic properties of high-temperature 

superconductivity such as availability and value of the jump in the heat capacity which is 
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lacking in the theory of the condensation of an ideal gas. The theory explains the occurrence of 

a gap and a pseudogap in high-temperature superconductivity materials. Bipolaron is necessary 

to explain the experiments on high-temperature superconductors, the possible ways of raising 

the critical temperature of the high- temperature supercondoctors [125]. Bipolarons are 

responsible for electrical conduction in semiconductor polymers. The formation of bipolarons 

is characterized by the appearance of states located on the chains and is manifested by the 

appearance in the forbidden band of discrete states or even at higher concentrations of the 

polaronic bands. These polaronic bands should allow a metallic behaviour. 

1.2.4 CONCEPT OF EXCITON-POLARON 

1.2.4.1 CONCEPT OF EXCITON 

Excitons are very interesting physical entities that, in polarizable media, are relevant for 

polarons: in polar systems, they can be apprehended as two polarons interacting with opposite 

charges. The energy excentric from the ground in a polar crystal was determined taking into 

account that the potential energy of the electron-hole interaction depending on the quantum 

state of the particles in question [126, 127]. Later, many books have been devoted to this 

problem. Similar considerations were applied [128] to explain the dependence of the binding 

energy of an excited-ionized donor complex on the electron-hole mass ratio in CdS and TlCl, 

and to show that ratio of the binding energy of D-centers to that of neutral donors in AgBr and 

AgCl is up to an order of magnitude larger than in the non-polar crystal [129]. An exciton is a 

coulombically bound electron-hole pair that is generated in a material either by light absorption 

or electrical charge injection. Excitonic materials can be very efficient absorbers of light, 

possess high light emission yields, and exhibit a variety of unique optical phenomena, such as 

up- and down- conversion, that can enable new technologies to move beyond the efficiency 

limits of the existing material. 

For an excitonic system with elementary charge in a medium with dielectric constant 

and reduced mass, the ground state Bohr radius is given by: 

2

2

e
a




          (2). 

There are two types of excitons which are characterized by the ratio between the excitonic Bohr 

radius and the lattice constant: Wannier-Mott Exciton and Frenkel Excitons. When the Bohr 

radius is larger than the lattice, we have the Wannier-Mott Exciton, it has a smaller binding 
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energy and is delocalized over a number of lattice sites. Both the electron and the hole are 

mobile. The underlying lattice of atoms is treated as a background field in which the electrons 

and the holes exist as free particles, and an exciton consists of an electron and a hole orbiting 

each other in this medium [130]. In contrast, if the Bohr radius is smaller than lattice, we have 

Frenkel exciton; such exciton is strongly bound and usually localized on one site. The electron 

and the hole do not move independently. The motion of Frenkel excitons is viewed as hopping 

of both the electron and the hole from one atom to another. If an electron is excited from a 

valence shell of an atom into an excited state of a nearby atom, the Coulomb repulsion of the 

electron on the valence electrons of the new atom will be tied to push one of them into the hole 

left in the valence shell of the original atom when the electron was excited. 

1.2.4.2 FORMATION OF EXCITON POLARON 

Exciton-polaron is a hypothetical many-body quasiparticle that involves an exciton 

dressed with a polarized electron-hole cloud. the exciton-polaron is formed when exciton 

interact with acoustic or optical phonons via coupling to the deformation potentials associated 

with the conduction and valence band. The exciton and its accompanying lattice distortion can 

be conceptualized as a dressed particle or excitonic-polaron, with a self-energy and a 

renormalized mass. The formation of a composite exciton-polaron has been examined in 

material systems of various configurations [131-133]. The theory of three-dimensional 

excitonic polarons (excitons interacting with phonons in bulk) has been well developed and 

have shown that the subsequent behaviour of an exciton gets modified depending on its strength 

of interaction with phonons. Exciton–phonon interactions, in particular, play an important role 

in the optical and intrinsic transport properties of material systems. The exciton effective mass 

and energy undergo shifts which are dependent on the strength of the exciton–phonon coupling. 

1.3 DECOHERENCE 

1.3.1 DEFINITION 

When a system interacts with its environment, a decoherence process occurs. 

Decoherence is the process by which the quantum properties of a system interact with its 

environment, causing the quantum state to become mixed or entangled with the state of the 

environment. This process can cause the quantum state to collapse into a classical state and can 

make it difficult to observe and manipulate quantum system. Decoherence is a process that 

occurs in quantum systems whereby the coherence between different states become disrupted 

by the system’s interaction with environment. Thus results in the loss of quantum information 
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and the emergence of classical behavior. Whereas the quantum coherence is a property of 

quantum systems that allows them to maintain a stable and coordinated state over time. It refers 

to the ability of quantum particles to maintain their relative phase relationship, even as they 

interact with their environment. In quantum mechanics, quantum decoherence is the loss of 

coherence or ordering of the phase angles between the components of a system in a quantum 

superposition. The study of decoherence, trough based at the heart of quantum theory, is a 

relatively young subject. It was initiated in the 1070s and 1980 with the work of Zeh and Zurek 

on the emergence of the classicality in the quantum framework. It is a ubiquitous phenomenon 

in quantum systems, and it is often characterized by various parameters such as transition 

frequency, density probability, Shannon entropy, decoherence time, coherence time, 

environment coupling strength and decoherence rate. 

1.3.2 DECOHERENCE PARAMETERS 

Decoherence is characterize by various parameters: The transition frequency which 

refers to the rate at which the quasiparticles transite between two states. The transition 

frequency can be used to measure how quickly a quantum system loses coherence, and thus 

how quickly decoherence occurs. The Shannon entropy is the measure of the amount of 

uncertainty or information in a system. In the case of the quantum system, the Shannon entropy 

can be used to measure how much information is lost due to decoherence. The higher the 

entropy, the more information is lost and the greater the level of decoherence. Density 

probability is the probability of finding a particle at a particular location in space. Decoherence 

time and decoherence rate are terms used in quantum mechanics to describe the loss of 

coherence in a quantum system due to its interaction with environment. Decoherence time refers 

to the amount of time it taked for a quantum system to lose its coherence, while decoherence 

rate refers to the rate at which coherence is lost. The coherence time is a measure of how long 

the system can maintain its quantum state before it becomes too entangled with its environment, 

causing it to lose its coherence and become a classical system. An example of quantum system 

where the decoherence can occurs via those parameters is the well known quantum qubit which 

is form by the superposition of two state in quantum system. In order to restrain the decoherence 

processes, several authors achieved some useful results in investigating respectively the effects 

of pseudo-harmonic potential [134], of temperature and electric field [135], and a magnetic 

field [136] on the properties of quantum pseudodot qubit, and the properties of an 

unsymmetrical parabolic quantum dot qubit [137] and a coulomb bound potential quantum rod 

qubit [138]. However, most research works are focused on the properties of the ground and the 
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first excited states, instead of the quantum transition of the electron in an anisotropic quantum 

dot. To further reveal the factors and conditions which affect the state properties of the electron, 

the influences of the transverse confinement length, the longitudinal confinement length, the 

electron-phonon coupling strength, the oscillation period, and the transition probability of the 

electron in anisotropic quantum dot are studied [139].   

At the heart of quantum mechanical theory is the superposition principle. The power of 

quantum computers lies in the quantum bit (qubit), a superposition of the classical bit of 1 and 

0. The two level system is employed as an elementary unit in storing information. The name 

qubit to two state memory cell formed from the superposition of states was first given by 

Schumacher. It is employed as the elementary unit of storing information. 

10           (3), 

here and  are complex numbers with normalization condition 122   . The bra-ket 

notation is tailor-made for the description of closed mechanical system. When considering an 

open system, the ket notation becomes less suitable. The unlimited amount of states that a qubit 

can take at any time can be traditionally represented by the sphere were the north-pole is 1 and 

the south pole 0. Any amount of numbers can be between one and zero. A classical bit can have 

only two states; 1 or 0. It can be represented by a transistor switch set of on and off 

1.3.3 APPLICATION OF DECOHERENCE 

Decoherence has a variety of applications in science and technology including quantum 

teleportation, quantum information and computation, entangled states, and the quantum-

classical interface. Decoherence represents a challenge for the practical realization of quantum 

computers since such machines are expected to rely heavily on the undisturbed evolution of 

quantum coherences. The development of quantum computers is still in its infancy, but 

experiments have been carried out in which quantum computational operations were executed 

on a very small number of quantum bits [140, 141]. For the implementation of a quantum 

computer, high quantum coherence semiconductors quantum dot is needed [142]. It is necessary 

to note that the environment coupling for the case of atoms can be strongly suppressed by 

ultrahigh vacuum and ultralow temperature. For the case of artificial atoms, the problem seems 

to be different due to the fact that the atoms are intimately incorporated in the surrounding solid-

state environment and suffer from various decoherence channels. This happens even for optical 

excitation of electron-hole pairs in the states of lowest energy, for example, the exciton or 
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biexciton ground state, which causes the deformation of the surrounding lattice (i.e., formation 

of a polaron state) whereas relaxation is completely inhibited because of the atomic-like carrier 

density of states.  

In coherent optical spectroscopy [143], which is sensitive to the optically induced 

coherence, this partial transfer of quantum coherence from the electron hole state to the lattice 

degrees of freedom (i.e. phonons), results in dephasing [142]. Since the electronic (or excitonic) 

states in a system of quantum dots are designed to play the role of qubits which must be 

manipulated with great precision, the exact knowledge of the energetic spectrum of a quantum 

dot is of major importance. Moreover, because of the necessary quantum coherence during 

quantum computing processes, the interaction between the localized electron and the 

surrounding medium must be well understood. Also decoherence is use to determine the 

system’s ability to perform quantum computation, to ensure the security of communication 

channels by detecting and correcting errors caused by environmental noise in cryptography. 

Qubits find applications in many fields as seen in the following: Quantum dots (nanocrystal) 

are used in LEDs and Lasers [144] Quantum dots realized by epitaxy which are of interest in 

our studies are frequently used in optoelectronics. 

 Decoherence is a difficult problem to solve, but there are some things we can do to 

reduce theirs effects. For example, we can implement error correcting codes, which can be 

necessary to protect the system against quantum noise and mitigate the effects of the 

decoherence. We can also use tecnnique such as dynamical decoupling or quantum error 

correction, which can help to suppress decoherence by actively working to to reduce the 

interaction between the system and its environment. Another method is to try to improve the 

coherence time of the system by using high quality qubits or by optimizing the experimental 

setup. 

CONCLUSION 

In this chapter, we presented the generalities on nanostructures and quasiparticles, 

precisely polaron, bipolaron and exciton-polaron. We have presented some notion on 

decoherence. In the next chapter we will present an overview on mathematics tools, some 

quasiparticles parameters useful to describe the dynamic and decoherence of those 

quasiparticles. We will also model each of our system by an appropriate Hamiltonian, and by 

using the above mathematics tools, we will investigate the states energy for each system. 
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CHAPTER 2: MATHEMATICAL TOOLS AND 

THEORITICAL MODELS 

INTRODUCTION 

In the earlier chapter, we presented the overviews on Transition Metal Dichalcogenides, 

quasiparticles such as polaron, bipolaron and exciton polaron and decoherence parameters. This 

chapter is devoted firstly, to present an overview on variational method such as Lee Low Pine 

(LLP) method of a polaron in the weak coupling regime, the Huybrecht method well known as 

the modified Lee Low Pine method proposed by Huybrecht for all coupling regime and the 

Pekar variational method for strong coupling regime, secondly to present some parameters of 

quasiparticles and finally to model each of our system and investigate some parameters by using 

the above variational methods.  

 

2.1 VARIATIONALS METHODS 

The variationals methods make it possible to determine the energies of the ground and 

first excited state using trial function which is a linear combinaison of basis function. These 

methods are often used for complex system where it is difficult to solve the Schrodinger 

equation exactly, so these methods find an approximate solution for the system using optimal 

trial function. The limit of those variational methods depends on the accuracy of the 

approximations used in the calculations, the complexity of the system being studied, and the 

computational resources available. Althought more advanced methods such as the Monte Carlo 

method, the desenty functional theory method are more precise and efficient than variational 

methods in solving complex systems, they can be more expensive in terms of calculations time 

and computing resources. Thus, to use variational method, it would be wise to choose a good 

trial function for the system to be studied because this can have a significant impact on the 

precision of the results, also optimizing the parameters of the trial function makes it possible to 

improve the precision of the results using variational methods. So, the trial function is chosen 

so as to minimize the total energy of the system.  

2.1.1 HAMILTONIAN 

2.1.1.1 HAMILTONIAN OF AN ELECTRON  

The Hamiltonian of a free electron or free hole in a medium is given as follow: 
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m

p
H e

2

ˆ 2

            (4), 

whith m being the mass of electron or hole and p̂ the kinetic momentum of the electron or the 

hole. 

2.1.1.2 HAMILTONIAN OF PHONON  

The energy of the phonon changes with the advancement of the lattice polarization vector is 

given as: 

      drrprp
M

E ph
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         (5), 

with 
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          (6), 

D


is the electric induction, r is the position of the electron, is the frequency of the phonon, ,

0 and  are respectively the polarizability of the medium, the polarizability of the vacuum and 

the polarizability at infinity. The Hamiltonian of lattice vibration is equal to the phonon 

Hamiltonian and can be written as follow: 
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thus, we can write the Hamiltonian of the phonon as follow: 
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k is the wave vector of phonon with frequency ,
kx and

ky are canonical variables then the 

Hamiltonian of phonon takes the following form: 

kkk

k

ph aaH             (11), 
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         (12). 

2.1.1.3 HAMILTONIAN OF ELECTRON-PHONON INTERACTION  

Let us consider a model where an electron interact with the dielectric polarization 

labelled by the polarizability of the vacuum 0 and the polarizability at infinity  . If the 

carriers interact with optical phonons in the ionic crystal under the condition that the lattice 

constant is small compared to the size of the self-trapped state, so the lattice discreteness is 

unrelated. The ionic crystal can be considering as a polarizable dielectric continuum, notice that 

only ionic part contributes to the polaron state formation. During the relaxation time, the 

polaron can moves a distance less than the polaron radius, thus the polarization will follow the 

polaron motion and is defined by the following expression: 

   rPdivr


                                                       (13), 

the Hamiltonian of interaction between the field and the charge is given as: 

 reVH int , 0e                    (14), 

where  rV is the electron potential in the crystal field given as follow: 

   rpdivrV


 442                    (15), 

Or 

)(4)( rprV


                    (16). 

Notice that in perfect crystal, due to translational symmetry, polaron can move, thus the 

dynamical deformation does not perfectly follow the polaron motion. The delay is responsible 



CHAPTER 2: MATHEMATICAL TOOLS AND THEORITICAL 

MODELS  53 

for the polaron mass enhancement. Inside the continuum harmonic approximation, the energy 

of the phonon changes with the progression of the lattice polarization vector )(rp


 : 

      drrPrP
M

H ph

222

2


                                                                                   (17). 

If we consider the ionic part of the total polarization we have a relation between )(rP


and )(rD


as given in Eq. (6), this relation permits to find the deformation potential energy of the ionic 

polarization of the crystal. By quantizing the phonon energy, we obtained the same expression 

as in Eq. (11). In the second quantization, the electron-phonon interaction Hamiltonian is given 

after using Fourier series for and is expressed through bosonic variables may now take the 

following form: 
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*

int                                                                                 (18). 

2.1.2 LEE-LOW PINES VARIATIONAL METHOD  

Let us consider a free electron in movement in a polar crystal. The Fröhlich Hamiltonian 

has three parts: The Hamiltonian of the electron; the Hamiltonian of the phonon and the 

Hamiltonian of interaction (electron-phonon). Thus the total Hamiltonian can be write using 

Eqs. (4), (11) and (18) as follow: 
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 is the coupling element for electron-phonon interaction, r is the position coordinate operator 

of the electron with mass m , p̂ is momentum operator, 

ka and ka are the creation and 

annihilation operators for phonons of wave-vector k and phonon energy  , with the 
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frequency. kV are Fourier components of the electron phonon interaction,V is the volume of the 

crystal. 

We apply the LLP method [145] to Hamiltonian given by Eq. (19). The total momentum 

operator is obtainecd as follows: 

paakP
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                   (22), 

where the momentum of the electron is given by: 





ip . Then we apply the unitary 

transformation 

 1U


                   (23), 

where the wave function is obtained by solving the following Schrödinger equation 

 EH                   (24). 

The first canonical transformation of LLP necessary to eliminate the electron coordinate from 

Eq. (19) is given as: 
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applying this first transformation on different operators we obtained: 

The electron momentum operator is: 
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then we obtain: 
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the phonon operator is 
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Combining eqs. (26), (27), (28), (29) and (30), one gets 
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According to Fröhlich perturbation analysis, the number of virtual phonon is not 

negligible in the intermediate coupling regime then it is not possible to apply perturbation 

theory to the Hamiltonian given by Eq. (31). But it is possible to eliminate with the canonical 

transformation the main part of the interaction term of Hamiltonian. For the case LLP we use a 

variational method of calculation with a trial wave function chose as follow: 

02U                   (32), 

where 0 is the vacuum state of phonon satisfying the following condition: 
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The second canonical transformation corresponding to this variationnal method is: 
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where
k

f  is a variational function obtained by minimizing of the ground state energy. 
2U is use 

to displace the operator
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2.1.2.1 GROUND STATE ENERGY  

The ground state energy is given as: 

00 21

1

2 UHUHE                 (36), 

using Eq. (35), Eq. (31) is transformed as follow: 
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after development, we obtain: 
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then the expression in Eq. (38) can be separate into two part: '''2 HHH  where 
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using Eq. (33), we obtain from Eq. (36) that 
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Then minimize Eq. (41) and setting that 
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we have 
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Let introduce a new parameter associated to p̂ because the only prefered direction in this 

problem is p̂  
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the ground state energy of the system which is given by Eq. (41) satisfying Eq. (46). Using Eq. 

(46), Eq. (41) can be rewritten as follows: 
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then we have: 
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introduising the parameter in the Eq. (48) we obtain: 
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then Eq. (48) can be rewritten as follow: 
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after a few calculations, we obtained: 









































k

k

k

k

m

k

m

pk

m

pk

m

pk

m

k
v

m

k

m

pk

v

m

P
E





























2
22

22
2

22

2
22

2
)1(

ˆ.

)1(
ˆ.

)1(
ˆ.

2

2
)1(

ˆ.
2

2

)1(








 (51), 

Finally, we obtain the ground state energy given by: 
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Let do the series expansion of Eq. (52) with respect to p̂ in second order 
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then after some calculations we obtained 

     
 

























  4

2222

24

22

2

22

2

0
1

)1(ˆ.4

1

ˆ.2
1

1

11
P

k

pk

k

pk

k

v
I

v

v

v

v

k v

k









 







 



                                     (53b), 
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then we obtain: 
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From the expression of
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f  , we have: 
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therefore, by integrating, 
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finally, we have: 
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Thus, the expression of the energy becomes: 
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Then introduicing Eq. (58) into Eq. (60), the expression of energy becomes 
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then, the ground state energy is obtained as: 
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2.1.2.2 EFFECTIVE MASS OF POLARON  

The effective mass of polaron can be derived in Eq. (61), it is given as: 
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2.1.3 HUYBRECHT VARIATIONAL METHOD  

Other mathematic tools use for solving the problem of polaron in nanostructures is the 

Huybrecht method also known as Lee-Low-Pines-Huybrecht method introduced by Huybrecht 

[146]. It is an all coupling approach.  

2.1.3.1 DETERMINATION OF THE GROUND STATE ENERGY  

To determine the fundamental energy of the polaron, by the method of Huybrecht [146], 

one start from Hamiltonian given in Eq. (19). Let us transform this Hamiltonian by the 

following unitary operator: 



















  raakPiaU kk

k


.exp1

               (64), 

with 

kk

k

aakapP 


 .                            (65). 

The Hamiltonian in Eq. (19) can be rewritten as follow: 
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a  is the Huybrechts parameter. when 0a  , this approach is corresponding for strong coupling 

regime, when 1a  , this approach is reduces to the LLP which is treated in the previous part. 
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when 10  a  one can have a consistent theory encompassing the entire parameter space. We 

introduce the creation and annihilation operators


jb and jb by 

   

 
































j

jjj

j

jjjj

bb
m

ir

pbbmP

2
1

2
1

4

0










                                                                                         (67), 

j denotes the x

, y , z


directions and jp0;


 are the variational parameter. Using Eq. (67), the Eq. 

(66) is transformed as: 
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and 
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where 

00 jp


                                                                                                                             (71). 

Performing the second Lee- Low- Pines canonical transformation 

 *

2 exp
kkkk

fafaU   
                                                                                                   (72), 

where  
kk

ff 


are obtained by minimizing the energy. Applying all these operators on the Eq. 

(68) we obtain: 
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the part 2

~
H of Eq. (68) have some terms with no importance for supplementary calculations. 

The phonon vacuum state ph0 is taken such as the below relations should be satisfies,        
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then the ground state energy is obtained as: 
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 the variationnal function  
kk

ff 


 are obtained by minimizing the above ground state energy; 

then after minimizing Eq. (75) we obtain 
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Replacing Eq. (76) into Eq. (75), the ground state energy becomes     
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                                                 (77), 

transforming the summation into integration after replacing
k

v   by its expression given by Eq. 

(20), we have 
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2.1.3.2 FIRST EXCITED STATE ENERGY  

In polar materials with intermediate coupling between electron and phonon, a strong 

correlation between phonon is induced, therefore there appears a potential well created by the 

virtual phonon field which implies that electron can be excited in a higher potential level. In 

our model we will calculate the energy in the first approximation of the first excited state by 

using the same parameters as those used for the calculation of the fundamental energy. To 

calculate the energy in the first approximation of the first excited state, we evaluate the 

following relation: 

11 '

1 HE                                                                                                                     (79), 

where 01  jb . 

By doing the same calculation as in the ground state, the approximation energy of the first 

excited state is obtained as follow: 
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then the variationnal function  
kk

ff 


are given by: 
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thus the first excited energy becomes            
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finally Replacing
k

v   by its expression and transforming summation into integration, we have: 
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2.1.3.3 DIFFERENCE BETWEEN LLP AND HUYBRECHT METHODS  

The difference between the LLP and Huybrecht methods is in the first unitary operators. This 

operator in the case of Huybrecht is given as follows: 
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a is the parameters calling Hubrecht parameter in the case of Huybrecht method, in the LLP 

method, this parameter takes the values 1. Thus one can observe that Huybrecht method is an 

all coupling method : strong coupling  0a , intermediate coupling  00  a and weak 

coupling regime  1a which the calculation is similar to LLP method which is also a weak 

coupling method. Another difference is that in the case of Huybrecht method, new operators of 

creation and annihilation related to position and momentum of electron are introduced. 

2.1.4 PEKAR VARIATIONAL METHOD  

We consider a polaron in presence of magnetic field and confining potential [147]. The 

electron under this consideration is in movement in an asymmetric quantum dot with three-

dimensional Anisotropic harmonic potential, and interacting with bulk LO phonons, under the 

influence of a magnetic field along the z-direction with vector potential of  0;2;2 xyBA  . 

The Hamiltonian of the polaron system can be written as :       
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where  ce22  , m is the band mass, 1 and 2 are the magnitude of the transverse and 

longitudinal confinement strengths of the potentials in the yx  plane and the z-direction, 

respectively.  qq aa 


are the creation (annihilation) operator of the bulk phonon with wave 

vector q ,  zyx pppp ,, and  zr , are the momentum and position vector of electron, 

 yx, is the position vector of the electron in the yx  plane. This Hamiltonian will be uses 

to explicit the Pekar variational method, thus following this method the appropriate wave 

function of strong coupling regime is divided into two part one describing the electron and other 

for the phonon. This function is written as follow: 

phU 0                                                                                                                 (86), 

whith  depending only on the electron coordinate and ph0  represents the phonon’s vacuum 

state satisfying the following relation 00 phqa , the coherent state of phonon is given by

phU 0 with 
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 *

qq ff  is the variational function. By solving the schrodinger equation using Eq. (85), we 

obtained the following appropriate ground and first excited state wave function of the electron 
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where 0 , 0 , 1 and 1 are the variational parameters. These wave functions of the electron 

satisfy the normalized relation given as: 

11100    and 010                                                                                (90). 

The polaron ground state energy is obtained by minimizing the expectation value of the 

Hamiltonian, thus we have: 
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000  HE                                                                                                                 (91). 

After some calculations, we obtain the ground state energy in the form 
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By the same sheme, the first excited state energy is given as: 
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                                          (93). 

 

2.2 SOME PARAMETERS OF QUASIPARTICLES 

2.2.1 POLARON LIFETIME IN WEAK COUPLING REGIME 

The effect of temperature and interaction between electron and phonon in a system give rise to 

quantum transition, provided that the energy exchanges correspond to the energies necessary 

for these transitions. The transition rate from fundamental to first excited state can be 

investigated by using the Fermi golden principle [139], it is expressed as follow: 
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            (94), 

pheH   is the Hamiltonian of electron-phonon coupling given by Eq.(18), is the electronic 

wave function in the ground state or excited state and is the kronecker, is the lifetime of the 

polaron in the ground or first excited states, E is the state energy as the polaron transite from 

ground state to first excited state. The following expression can be written due to fact that 

polaron absorbs phonon  

1' 
kk
                   (95), 
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replacing Eqs. (18) and (95) into Eq. (94), we obtain: 
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then after developing we have: 
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with 
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and considering a quantum distribution of bososns, and the self coherence between  and the 

difference of energy between of fundamental and first excited state, we have 
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2.2.2 EFFECTIVE MASS OF POLARON IN ALL COUPLING REGIME 

In solid state physics, effective mass is a conceptual approach towards the investigation of the 

transport of electrons. Rather than describing electrons with a fixed mass moving at a given 

potential, they are described as free electrons whose effective mass varies. This effective mass 

can be positive or negative, greater or less than the actual mass of the electron. Let us use the 
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Hamiltonian described in Eq. (19) to present a method of calculation of the effective mass of 

polaron this calculation is based on [145]. This Hamiltonian can be separated into two parts: 


 HHH ˆˆˆ                                                                                                                    (102), 

where  
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To investigate the movement of the electron state in the plane xoy, we consider that the 

movement along the z−direction is slow so the quantity of momentum and position can be 

considering. As the movement is perpendicular to the xoy plane, we introduce the unitary 

transformation given by Eq. (67). Also, the linear combination of the creation


jb and 

annihilation operator jb are introduced to signify the position and momentum operators of the 

electron and are satisfying the boson commutative relation   1, 

jj bb . The subscript j stands for 

the x and y directions. Thus, the total momentum is given by: 
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applying the unitary transformation given by Eqs. (64) and (34) and using the linear 

combination operator given by Eq. (104) we evaluate the momentum as follow:  
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then we obtain: 
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Let us choose an arbitrary multiplierÛ called the Lagrange’s multiplier which is used to 

optimize the problem. This lead to the new variationnal function as: 
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in the intermediate coupling regime  10  a ,   



CHAPTER 2: MATHEMATICAL TOOLS AND THEORITICAL 

MODELS  69 

   

jk
k

j

kkkk
k

jSS

p
m

UfkUapk
mm

a

m

ka

fvfvka
m

pUpffF

0

2

1

2

0

2

1
222

*222

00

*

2
)1(

22

)1(
4

exp
44

;;;;





























































 









           (108),     
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Substituting these functions into Eq. (106) and using condition below, 
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then expanding by ojp̂ andÛ  up to the second-order, we have the relation with ojp̂ andÛ as, 
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so, as the total momentum is perpendicular to x-y plane, we can obtain: 
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by expanding the above expression in the second-order term of ojp̂  andÛ , we obtain: 
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replacing Eq. (113) into Eq. (112) and assuming that the first order terms ojp


andU


are zero we 

obtain: 
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In Eq. (114) Û has the sense of the velocity which can be considered as the average velocity of 

the polaron along the x-y plane. Then the effective mass is given by the term beforeÛ . 

Transforming the summation into integration, the effective mass of polaron is given as: 
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by replacing wave functions into the Eq. (115), we obtain the effective mass of polaron as: 
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by the same schemes, one can obtain the effective mass for the first-excited. 

In the case of weak coupling regime  1a , we have : 
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then the variational function stands as: 
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replacing this function into Eq. (106) and expanding up to second order as in the case of 

intermediate limit, we obtain the new form of variational parameter. And using the condition 

given by Eq. (110), we obtain: 
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thus the total momentum is written as: 
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after calculations we have: 
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In the case of weak coupling regime, the effective mass of polaron in fundamental state is given 

as follows: 
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using Eq. (102) and doing a little transformation, we obtain: 
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For strong coupling regime  0a the variation parameter is given as: 
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then we have: 
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inserting into Eq. (106) the above expression and doing development up to second order term 

ofÛ  and using condition given by Eq. (110), we obtain: 
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thus the total momentum is: 
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assuming that the first order term inU
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is zero, then use the development of 
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The effective mass of polaron is given by the following expression after some developments: 
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2.2.3 MOBILITY OF POLARON 

Charge carrier mobility is a concept used in physic to characterize environment that 

conduct electric current. It shows the link between the average velocity of an electric charge 

carrier of the medium (electron, hole, ion, etc.) to the average velocity of the medium. The 

Mobility is used to describe the movement of the quasi-particles in nanomaterials. In the case 

of polaronic quasiparticles the mobility can be investigated by formula below 
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                                                                                 (130). 

This expression of the mobility was presented by Devreese [148]. It appears of this espression 

of mobility that mobility strongly depends on the coupling constant, effective mass of the quasi-

particle and temperature. It also shows that the mobility varies with the frequency of the quasi-

particle characterizing the amount of energy in the system. For low temperature, this mean weak 

electon-phonon coupling   1f , 3 . For intermediate electron-phonon coupling regime

 
4

5f  , 63   

The mobility can also be invstigated by using quantum statistic theory. So the average 

number of phonons is given by [149]: 
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                                                                    (131), 

Where
Bk andT are the Boltzmann constant and the temperature of the system, respectively. On 

the other hand,
0E and

1E are respectively the ground state and first-excited state energy. The 

mobility and the number of phonons are related by the following formula: 
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                                                             (132). 

2.2.4 SHANNON ENTROPY 

Entropy, is a measurement of the number in which a thermodynamic system can be 

arranged, generally understood like disorder measures. According to the second law of 

thermodynamic the entropy of a closed system never decreases; such system will proceed 

spontaneously towards thermodynamic balance, the configuration with the maximum entropy. 

In this work, we deal with the Shannon entropy as in [150]. The entropy of Shannon, due to 

Claude Shannon, is a mathematical function which, intuitively, corresponds to the quantity of 

information contained or delivered by a source of information. This source can be an electric signal 

or an unspecified computer file. The entropy indicates then the quantity of information 

necessary so that the receiver can determine without ambiguity what the source 

transmitted. To evaluate Shannon entropy, when the electron is in the superposition of ground 

and first excited states, and its wave function is given by:  

 1001
2

1
                                                                                                      (133), 

with 0  is the electron ground state wave function and 1 the electron first excited state wave 

function. Then the time evolution law of these wave function can be written as: 

)exp(
2

1
)exp(

2

1
),,,( 1

1
0

001


tiEtiE
zyxt   .                                                    (134), 

so, the Shannon entropy of the system can be investigated as [150]: 

2

01

2

01 ),,,(ln),,,()( zyxtzyxtdxdydzts                                                                  (135), 
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where 
2

01( , , , )t x y z is the density probability and is given by the following expression: 
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01 titizyxt                                    (136), 

and 
01 is the transition frequency given by: 


01

01

EE 
                                                                                                                  (137). 

2.2.5 DECOHERENCE TIME 

The decoherence time is an essential parameter that enable us to know the period 

during which our system is able to react in a favorable way or not; in the case of the polaron it 

will enable us to know the time during which the system can enable us to make interesting 

studies. In order to investigate de decoherence time, we will first evaluate the spontaneous 

emission rate. So, we consider a system made of a two level atom in the free electromagnetic 

field, the Hamiltonian of this system can be written as follow:  

fatfat HHHH  .                                                                                                  (138a), 

The Hamiltonian of the atom is given as: bbEaaEH baat  , a and b  are 

respectively the ground and first excited states of the atom. The free electromagnetic field is 

given by,  
2

1
,,

,

,   sksk

sk

skf aaH   where ckKck   is the frequency of 

electromagnetic field. The interaction between the atom and the electromagnetic dipole is 

given by  rEqrH fat . , where r is the position operator of the electron orbiting around the 

atom, eq   is the electron’s charge, and  rE is the electric field operator given by: 
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, and '' ,sk

e the unit polarization vectors 

corresponding to each mode.  

For allowed transitions, the transition rate is mostly coming from the leading order of 

this interaction, which is  0.EqrH fat   with  *

,,,,
, 0

''''''''
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'

2
)0(

sksksksk
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V

iE  



. As we 

will use the Fermi’s golden rule, we choose the initial and final states describing the 
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phenomena we intend to explain, namely spontaneous emission. Using the notation, 

fat   |, the initial and possible final states are 0 bi and sksk af ,, 1  

where 0 is the vacuum state of the electromagnetic field, and 01 ,,

 sksk a is the state, 

where a single photon occupies mode sk , . The energies of these states are
0EEE bi  and 

0, EE kkf   where 000 fHE  is the (infinite) energy of electromagnetic vacuum. To 

calculate the spontaneous decay rate of the atom we replace all information above in Fermi’s 

golden rule. Thus, the transition rate for skfi , is 
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which has to be summed over the different final states to get the total decay rate out of the 

initial state i , or in other words the transition rate from ab  is given by 
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The most difficult part of evaluating this expression is the matrix element, so we have 
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here we are going to use the following rule of evaluating matrix elements between tensor 

product states:      2121 HHHH  . Since r acts on the atomic 

wave function and '' ,sk
a and


'' ,sk

a act on the field wave function, the matrix element can be 

written in the following form:  
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             (138d), 

where we used the followings, 00'' ,


sk
a ,

sksk
a

,, '' 10 
, '''' ,,,,

11
sskksksk

 and

   
,

F F
 



   . Defining brap   and plugging this expression for the matrix element back 
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to Fermi’s golden rule, we get   
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k ckpe
V,

0

2
*

,

0

2 2

2




 


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0 and used that  ckEEEE kabkfi  0,   .  

The next step is the evaluation of the sum over different sk , modes. The free electromagnetic 

field modes in a box with volume LLLV  with periodic boundary conditions are
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 , corresponding to each mode. In a real situation, L  is much larger than any 

relevant (atomic, or optical) size, thus the modes form a practically continuous set in k-space, 

3k . This allows us to turn the sum over the modes into an integral over k . The only thing 

which has to be taken into account is above calculated volume per mode. So
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 replacing these expressions of the 

summation and Eq. (138c) in the Eq. (138b), we gets
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The other thing we should deal with is the polarization sum. In order to make it controllable 

we use the following construction for polarization vectors: zK
zK

eK
ˆˆ

ˆˆ

1
1, 


 and 

 zKK
zK

eKe kK
ˆˆˆ

ˆˆ

1ˆ
1,2, 


  where K̂  and ẑ are two unit vectors pointing to the 

direction of z -axis and k  vector, respectively. By definition of the cross product, this 

construction ensures all properties of e , namely ijjkik ee  ,

*

,  and 0,  Ke ik . Because we 

expressed K  as   cos,sinsin,cossinkK  , the polarization vectors have the following 

components:  0,sinsin,cossin1,  Ke and   sin,cossin,coscos2, Ke . 
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Now, consider a Cartesian coordinate system, where z-axis points to the direction of P ,

  pP ,0,0 . The dot products give the following results for the two polarizations:  
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. Replacing this back to the 

last expression of the Femi’s golden rules gives 
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so the spontaneous emission rate can be given by  
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where braqp  ,and 


ab EE 
0  and 1

b a



 is the decoherence time which is similar to 

that obtained [151]                                                                                      

2.3 THEORITICAL MODELS 

2.3.1 POLARON IN TRANSITION METAL DICHALCOGENIDES  

2.3.1.1 POLARON UNDER ELECTRIC FIELD IN TRANSITION 

METAL DICHALCOGENIDES QUANTUM DOT 

In order to investigate the states energies, the mobility, the lifetime, the decoherence 

time, the density probability and the Shannon entropy of the polaron in presence of electric 

field, we consider a single free electron moving in a monolayer of TMDs quantum dot 

sandwiched between polar substrate and air, this cause an interaction between free electron and 

optical phonon situated on the surface of TMDs layer. The Hamiltonian of the system in the 

presence of an external electric field can be written as: 
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where ),,( '

3

'

2

'

1

' xxxr refers to the position vector of the electron, m is the electron mass, ip, is 

the frequency of the confining parabolic potential corresponding to the direction i , SO  is the 

surface-optical (SO) phonon frequency which is assumed to be dispersionless, )( '' kk
aa

 is the 

creation (annihilation) operator for an SO phonon with wave vector 'k ,
,'k

T is the coupling 

parameter between electron and SO phonon and F is the strength of electric field. It is 

convenient to use the dimensionless units in which the energy is scaled by SO and the lengths 

are scaled by
0r . This scale is equivalent to put 1 . Thus Hamiltonian in Eq. (139) becomes: 
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In Eq. (140) everything is dimensionless, the dimensionless electron position vector 

),,( 321 xxxr  and the phonon wave vector k  are respectively given by 
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  if we consider a symmetric quantum dot, in dimensionless units, we have 

  321 , thus the Hamiltonian in Eq. (140) becomes : 
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The energies of polaron is evaluated by using the Lee-Low pines method. In order to 

achieve our goal, a specific wave function of weak electron-phonon coupling regime is 

choosing which can be separated into two parts describing individually electron and phonon. 

Thus the energy is obtained as: 

 1

1

1 HUUE                                                                                      (142), 

)(r is a trial electronic wave function,  is the phonon state given as: 
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1U is the first unitary transformation of LLP given by Eq. (25). the trial electronic wave 

functions in the ground and first excited states can be chosen as: 
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where 0  and 1  are the variational parameters to be evaluated by minimizing energies with 

respect to them.  Eq. (144) satisfies the following normalized relations: 
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by minimizing the expectation value of the Hamiltonian of Eq. (141), that is 
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we obtain the ground and first excited state energies of polaron under electric field in the 

following form: 
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l is the effective confinement length of the quantum dot, Ck is the cut-off wave vector, 0z the 

internal distance between TMDs monolayer and substrate, 0 is the permittivity of the vacuum 

and  is the polarizability of the substrate. On can remarked that the energies of the polaron is 

proportional to the electric field and depends on others parameters as the internal distance 

between TMDs and polar substrate, the cut-off wave vector and the confinement legth of the 

quantum dot. So, those parameters can be necessary to modulate the states energies. 
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 Lifetime of polaron under electric field 

The transition rate from fundamental to first excited state is given by the Eq. (94), after 

few developments we obtain: 
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where is the lifetime of polaron. The lifetime of polaron is a function of the parameters of 

the system such as electric field, internal distance between monolayer and polar substrate and 

wavelength of the phonon. Thus, those parameters are useful to control lifetime of polaron in 

TMDs. And can also influenced others parameters such as docoherence time, Shannon entropy, 

density probability, transition frequency and mobility which are linked to states energies of 

polaron. 

2.3.1.2 EFFECT OF MICROWAVES AND RADIOWAVES ON 

POLARON IN TRANSITION METAL DICHALCOGENIDES QUANTUM DOT  

Let us consider a polaron in TMDs under the cumulative radiation of a microwave and a 

radiowave and theoretically investigated the mobility, the Shannon entropy density probability 

and the transition frequency. The Hamiltonian of the system can be written as follow: 

MRphephe HHHHHH  
                                                                                      (151a), 

with :    k

k
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                                                                                              (151b),                                                                                                      
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                                                                                  (151d), 

  yM tAH   cos2                                                                                                     (151e),                   

  
xR tAH cos1                                                                                                             (151f). 

 In Eq.(151a), the first term describes the free electron (hole) momentum energy (
eH ) 

in a parabolic quantum dot, where FV is the fermi velocity,  1  stand for the electron and 
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hole respectively in the conduction and in the valence band, i are Pauli matrices, iP is the 

momentum of the carriers with zyxi ,, , m is the mass of the electron (hole), G2 is the 

bandgap of the TMD [51] and  is the confinement strength of the parabolic quantum dot; the 

second and third terms stands for phonon energy ( phH ) and coupling between carriers and 

phonon ( pheH  ) respectively, with  kk aa 
 the creation and annihilation operators of the 

phonon including LO and SO modes with frequency  and wavelength k , ,kT  the amplitude 

of the interaction of charges with phonons [51], and ir  is the position of the carriers; the 

fourth and fifth terms stands respectively for radiowave energy (
RH ) and microwave energy (

MH ) taken in the cosine form, with  the frequency of the radiowave,  the frequency of the 

microwave and  is his phase. In the radiowaves and microwaves, both the electric and 

magnetic fields oscillate perpendicular to the direction of propagation, they are both present 

and necessary for the wave to propagate through space. So 1A and 2A are the amplitudes of the 

electric field and magnetic field of respectively the radiowave and microwave. The 

Hamiltonian in Eq. (151a) is transformed as follow: 
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where zl is the azimuthal quantum number. If we consider the case that 1   and applying the 

second LLP unitary transformation given by Eq. (34) on the Eq. (152) as follow
2
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we obtain: 
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by minimizing the Hamiltonian of Eq. (153), that is: 
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where 
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Notice that 0 and 1 satisfying the same normalisation condition as given by Eq. (145). After 

some calculations, the expression of ground and first excited states energies are obtained as 

follow: 
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Similarly if we consider the case that 1   , we obtained the following expression for the 

ground and first excited energies : 
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Thus the Eigen values of those energies are given as follow: 
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For the SO phonon the coupling element is given as in [51] by:  

 0

0

,

2

, exp
2

kz
kA

e
T SO

SOk 


 
                                                                                          (162), 

where  ,SO is the frequency of SO phonon with two branches .2,1  is the polarizability of 

substrate. A is the surface area of TMD, 0  is the permittivity of vacuum and 0z is the internal 
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distance between the monolayer TMD and polar substrate. Thus the Eigen values of ground and 

first excited states energies are: 
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with  

   


















ck

SO dk
k

kz
kk

zkQ
0

22

0

2222

0,1
2

12
2

exp,,











                                              (166). 

For the LO phonon the coupling elements is taken as in [51]:  
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where LO is the frequency of LO phonon. 0 is the dielectric constant of the TMDs monolayer 

and is also use to describe the intrinsic polarizability of monolayer TMDs. mL is the atomic 

thickness of the monolayer erfc is the complementary error function, in which   denotes the 

confinement effect between LO phonons and carriers in 2D materials. Thus the Eigen values of 

ground and first excited states energies are: 
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 Magnitude of Bandgap Modulation 

The Magnitude of the Bandgap Modulation (MBM) is evaluated as follow [51]: 

    EEGG 22                                                                                                    (172), 
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Where  1,0E stand for ground or first excited states energies of polaron including LO or 

SO phonons modes. 

 Lifetime of polaron under microwave and radiowave 

The effect of temperature and interaction between carriers and phonon in a system give 

rise to quantum transition. The transition rate from fundamental to first excited state can be 

calculated based on the Fermi golden rule. Thus, the lifetime of polaron is given by Eq. (94), 

then after little developments we obtain: 

Then for SO phonon we obtained: 
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and for LO phonon 
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The lifetime of polaron in ground state obtained here are all influenced by the amplitudes 

and the frequencies of both microwave and radiowave and also by the parameters of the 

monolayers. This result is quiet similar to that obtained in [151]. So one can suggest that 

radiowave and microwave can be use to control the lifetime, the motion of polaron and the 

decoherence parameters of polaron in TMDs. The lifetime of polaron also depends on the type 

of electron-phonon coupling. 

2.3.2 EXCITON-POLARON IN TRANSITION METAL DICHALCOGENIDES   
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2.3.2.1 MAGNETIC BARIER EFFECT ON EXCITON-POLARON IN 

TRANSITION METAL DICHALCOENIDES  

 

The overall Hamiltonian of the exciton, phonon and exciton-phonon interacting energy 

operators is displayed in a non-diagonal manner and needs suitable diagonalization techniques 

to obtain precise eigenvalues and eigenfunctions of the exciton-phonon composite system. In 

this part, we considered an individual exciton that moves in panel depicting the monolayer, and 

interacting with 2D phonons and calculate the ground state and first excited state energies, the 

mobility and the effective mass of exciton-polaron. Thus the full Hamiltonian of the combined 

exciton and LO-phonon composite scheme appears to be expressed as: 

phexcphexc HHHH  ˆˆˆˆ                                                                                                   (177), 

where excĤ  denotes the quasi-two-dimensional Hamiltonian of exciton written as 
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where )( kk BB
 denotes the creation (annihilation) operators for the 2D exciton wave vector k  in 

which occurring in the monolayer that represents the transition metal and the atomic planes of 

the chalcogen. Note that the former term of Eq. (178) is arranged diagonally in the exciton 

operators because the exciton spreads unobstructed in the monolayer plane. The exciton’s 

energy is given by: 
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where gE stands for the bandgap of the monolayer along the direction k ; is a constant 

define as follow
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place between the electron and the hole in the surface plane of the monolayer. zĤ displays the 

Hamiltonian of exciton polaron in z direction defined as: 
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where zeP , and zhP ,  denote the momentum related to electrons and holes respectively, )( ee zV and 

)( hh zV stand for the trap of the electron and holes between inter-layers of the TMD materials. 

These trapping potentials appear as: 
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with the confinement strength of the trap )(zEb represents the exciton binding energy in z-

direction. Hence we assume that the binding energy depends on
he zzr   where  he zz

represents the distance coordinate for electron (hole). We note em and hm the respective electron 

hole carrier mass supposing that we have anisotropic features, and phĤ  represents the phonon 

energy defined as: 
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with )( qq bb
being the phonon creation (annihilation) operators and phexcH 

ˆ  gives the quasi-2D 

exciton- phonon interaction expressed as: 
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with  zqq// represents the component of the wave vector in yx, plane (and z direction), 

),( // zqqE denotes the exciton-phonon coupling function shown in Ref. [152]. Next, we apply 

an accurate 2D form of the coupling function in which the z component of the phonon wave 

vector zq is removed from the coupling function. The latter is expressed as in Refs. [153]:      


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
                                                                         (184), 

where A denotes the area of the layer plane, u denotes the velocity of the sound,  is the mass 

density of the phonon, opaci , stands for the acoustic or optic phonons.  vc DD  is the constant 

of the deformation trap for electron and optical (acoustic) phonon in the conduction band (for 

hole in the valence band) respectively in the critical point )',( KK . We also have 
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                                                                                                         (185), 

with exa  being the effective exciton bohr radius. 

In order to obtain eigenvalues and eigenfunctions of the exciton-phonon composite 

system, we need a suitable diagonalization technique to transform the Hamiltonian. Thus 

diagonalization technique consist to transform the operator phexH 
ˆ  in Eq. (177) having a non-

diagonal form. Therefore, we apply the unitary transformations as in Ref. [154], 
iS

ex eU   where 

S appears as: 

]),(),([
////

//

// ////

*

,

qexqex

qq

kqk bqkfbqkfBBS
z

 





                                                                  (186). 

notice that 1*  SSS , then the function ),( //qkfex can be determined by minimizing the 

energy exex UHU ˆ1
.  Let us note by 'Ĥ  the new Hamiltonian. It is given by: 

iS

phexcphexc

iSiSiS eHHHeeHeH )ˆˆˆ(ˆ'ˆ


                                                                     (187), 

....]),ˆ],ˆ[
2

[()ˆ],ˆ[(ˆ'ˆ
000   SHSH

i
iHSHiHH phexphex                                            (188), 

with                  zphex HHHH ˆˆˆˆ
0  .                                                                            (189), 

to have a rough term of the transformed Hamiltonian, we will use only the first three term of 

the series in Eq. (188). Using the expression of exciton-phonon interaction operator phexH 
ˆ , 

phonon operator phĤ and exciton phonon exĤ , we obtained the following expression of the 

function ),( //qkfex given by: 
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                                                                        (190), 

for small values of ),( //qkfex  the series in Eq. (189) is convergent, see Ref. [58]. The 

transformed Hamiltonian exex UHUH ˆ'ˆ 1 is then evaluated as:    

T

phexzphexexex HHHHUHUH 

  ˆˆˆˆˆ'ˆ 1
                                                                          (191), 
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where the term 
T

phexH 
ˆ is given by 
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(192). 

In order to follow our calculations, we are going to make some approximations. For this 

purpose, the Hamiltonian converted into Eq. (191) is not entirely biased; this procedure is 

therefore taken as an estimate but offers a quantifiably computed solution for evaluating the 

energy of the exciton polaron (see Ref. [58]). 

The fundamental state energy of an exciton-polaron is calculated through the state vector

)(0)(, qnBqnk k

  with //// (0(;0 qnqn   where 0  denotes the vacuum state vector of 

the exciton and ,....,)( 2//1//// qq nnqn   represents the 2D acoustic or optical phonon state vector 

with //qn being the occupation number of phonon with wave vector //q . The ground state 

energy of exciton polaron is obtained at low thermalized phonon occupation, and it is expressed 

as: 

)(,'ˆ),()0( qnkHkqnE polex                                                                                     (193), 

after soms calculations the expression of the ground state energy is obtain as follow: 
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                                                              (194), 

where
zE gives the energy obtained by transforming the Hamiltonian zĤ using Huybrecht 

method and )(kTex
 is given by: 
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                        (195). 

Transforming the summation over //q into integration we have: 
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after calculations one gets 
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the above expression can be now transformed as follow: 
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(198), 

where      
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In TMDs, ( ) 1e hb b  . Considering this assumption, and at small wave vectors we can write  

21 exexex TTT                                                                                                                  (200), 
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                                                                   (201). 

Now, we evaluate the contribution of the energy in z-direction zE . We consider the 

Hamiltonian zĤ under the presence of the magnetic field barrier. The core structure of the 

magnetic barrier is composed of the magnetic field strength zB along the z direction describes 

as a delta-like function [155]. This barrier can be constructed as in ref [41], thus Fig.12 

illustrates the present case. Here, two long narrow magnetic stripes are placed perpendicular to 

the TMD layer 

)]()([)( LxxBlxBz  B                                                                               (202), 

where L  is the width of the barrier, Bl  is a length scale of the barrier. For 1 he mm we have 
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If we consider that
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Figure 12 :  Magnetic barrier using two long narrow magnetic stripes perpendicular to the 

monolayer TMD 
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with                                                  
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rpEr                                               (205). 

We minimize the Eq. (204) by the first unitary transformation of Huybrechts given by Eq. (64), 

and introducing operators of creation and annihilation given by Eq. (67), we have: 
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developing the above equation w obtain: 
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with   
2

BeBl
 , then averaging in the vacuum state as 00 '

zz HE  ,We obtain : 

rz EE 
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In Eq. (205) ...  denote an averaging over the fundamental state wave function, thus chosing 

the ground state oscillator wave function  
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where b  is a variational parameter, we finaly we obtain : 
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thus, the fundamental state energy of the exciton-polaron is given as follows: 
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By the same schemes as in the ground state, we derive the first excited state energy of exciton-

polaron. The state vector used to derive the first excited state energy of exciton polaron is

)(1)(, qnBqnk k

  with //// (1(;1 qnqn   where 1 represents the first state vector of 

exciton and ,....,)( 2//1//// qq nnqn   previously defined. The exciton-polaron’s energy in the 

first excited state can be evaluated at lower thermalization of the phonon state 

)(,'ˆ),()1( qnkHkqnE polex                                                                                       (212), 

after some calculation we obtain: 
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with                         1

'

1 8 exex TT   ;   2

'

2 8 exex TT                                                                   (214), 

where 1exT and 2exT are given in Eq. (201). The ground and first excited states energies are 

independent of the width of the magnetic barrier; this is due to the fact that it is in the kronecker 

delta function whcich usually takes either 0 or 1. 

 Effective mass of exciton-polaron under magnetic barrier 

In oder to investigate the effective mass of exciton-polaron, let’s consider the Hamiltonian 

of the exciton-polaron given by Eq. (177), for the movement of exciton-polaron parallel to z -

axis, we introduce the unitary transformation and the linear combination of creation and 

annihilation operator )( jj bb
given by the following expression [156] 
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                                                                                       (215), 
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where jp0 is the variational parameter and the index j refers to the three directions. Let us put: 
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, where g is a variational parameter. Then using 

diagonilazation technique to evaluate the Hamiltonian via state vector as:
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the minimization problem is now achieved by using Lagrange multipliers. With the choice of 

an arbitrary constant multiplier , we get:   010//
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we can now do this approximation 
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(218) 

with 2gk   

then the expression of   ,,,,, 0// pqqkG z  take this form: 
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Deriving Eq. (219) with respect to
0p and setting it equal to zero we obtain the below expression 

for
0p  : 
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The term u denotes the average velocity of the exciton-polaron in the z direction as the second 

term is neglected. Then the mass of exciton polaron can be approximated as: 
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 Mobility of exciton polaron under magnetic barrier effect 
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According to the Eq. (130), the mobility of exciton-polaron is given in table 4 for all 

coupling range. These expressions of mobility are quiet similar for the case of polaron in weak 

and intermediate coupling regime, where mobility depends on the coupling constant, the 

effective mass of exciton-polaron, the energy of exciton-polaron and the temperature. 

Table 4 : Coupling range and corresponding mobility [157, 158] 

Coupling range Expression of the mobility 
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for strong coupling  6   
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The states energies of exciton-polaron are influenced by the length of magnetic barrier, the 

potententiel of deformation of electron in valence and conduction bands and others parameters 

of the system. Also, the mobility, the Shannon entropy, de probability density and the transition 

frequency which are related to the states energies are influenced by those parameters. 

2.3.2.2 ELECTRON-PHONON COUPLING CONTRIBUTION ON 

EXCITON- POLARON IN TMDs QUANTUM DOT  

We consider the system constituted by an exciton-polaron in TMDs monolayer (the exciton 

is formed by the interaction between an electron in the conduction band and a hole in the 

valence; the exciton interacting with a cloud of phonon via electron form the exciton-polaron) 

situated on polar substrate in a quantum dot under a uniform magnetic field, and investigate the 

ground state energy for all coupling range for both LO and SO phonons modes, the effective 

mass and the optical obsorption for weak and intermediate coupling regime. The total 

Hamiltonian can be written as: 

 ( )exc ph e ph e hH H H H u r U r r     
                                  

(223), 

excH describes the Hamiltonian of the exciton define as: 
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321 ,,  are the Pauli matrices, 
FV is the Fermi velocity,  1  stand for the electron and 

hole respectively in the conduction and in the valence band, G2 is the magnitude of the bandgap 

and A is the potential vector. It is convenient to use the dimensionless units in 1 he mm . 

The second term phH
 
is the Hamiltonian of the phonon including SO and LO phonons modes 

define as: 

k

k

kph aaH  



,

                     (225), 

kk aa ,
 
are respectively creation and annihilation operators for phonon with wave vector k ,   

is the phonons frequency. The third term e phH   is the Hamiltonian of interaction between 

electron and phonon, ,kM
 
is the coupling element of Fröhlich [51], and stand for LO or SO 

phonons modes 

 ,

,

exp( )e ph k k k

k

H T a a ikr




                                                                                     (226). 

The term )(ru  is the potential of confinement [159] in the quantum dot, whereas R , V

and L are respectively the length, the depth and the smoothness of the quantum dot. C is a 

constant. 
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The last term  
ehr

U
rU  is the coulomb potential between the electron and hole. Since 

exciton-polaron is a composite particle, it is convenient to introduce the notion of the center of 

mass and the relative coordinate and momentum, hxexx ppP  ,
hyeyy ppP  ,

hzezz ppP  , 
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 . ehr  is the distance between the electron and hole, hr and er are 

respectively the hole position and the electron position. The distance between electron and hole 

can be defined as follow
22 Drreh  with D  the projection of the electron position in the 

band valence band (where the hole is) and r is the distance between the position of the hole and 

the projection of the electron position. Using relative coordinate relative to center of mass and 

the momentum, the Eq. (223) can be rewritten as: 
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E   whit symbol ..  denoting an averaging over the 

wave function thus using oscillator wave vector given by Eq. (209). Then we obtain: 
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performing the first Huybrecht and second LLP unitary operators given respectively by Eq. (70) 

and Eq. (34) to the exciton-polaron Hamiltonian as 21
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The ground state energy is obtain by replacing into Eq. (230) ip and ir   by the expression 

given by Eq. (67), Then minimizing by the zero phonon   
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where 2eB is the magnetic confinement length [51]and 
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by replacing Eq. (232) into Eq. (231), the eigenvalues of the energies in the Landau level can 

now be obtained as: 
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   (234). 

The third term in Eq. (223) represented respectively the interaction between carriers and 

optical phonon, we obtain the following results for different coupling regime and for SO and 

LO phonons: 

The energies of SO and LO in the weak coupling  1  are respectively: 
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The energies of SO and LO exciton-polaron in the intermediate coupling  10   are 

respectively: 
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The energies of SO and LO exciton-polaron in the strong coupling  0a  are respectively: 
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 Effect of electron-phonon coupling on effective mass of exciton polaron  

Many authors in literature have proposed various methods to evaluate the effective mass 

of quasiparticles. The effective mass can also be obtained by using the second derivative of 

energy of the state system. it is given as in [151]: 

2

2

*

1

k

E

m 


                                                                                                                (238), 

thus, we have used Eq. (238) to investigate the exciton-polaron effective mass in whic
E

is the energy exciton-polaron with LO or SO Phonons 

 Optical absorption of exciton-polaron 

The absorption coefficient     of the incident light with the energy   of a free 

quasiparticles, according to Fermi's golden rule, is [160, 161] 
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EEV
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

 0

2

002



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                                              (239). 

For more details, based on the formula given by Eq. (239), readers should refer to [162]. The 

calculation of the absorption coefficient is very difficult because the excited final state 

comprises all excited states of the quasiparticles, which is not well known. Thus, to prevent 

complicated summation on the final states, Devreese and his collaborators [160] have 

developed a simple model in which the wave functions f  of the excited states have been 

suppressed by the Lee Löw Pines unit transformations. It was noted that Eq. (239) concerns the 

weak and intermediate coupling regime. Considering the system of exciton-polaron describe by 

the Hamiltonian of Eq. (223) and using the same formula established in the case of polaron to 
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evaluated the optical absorption in the case of exciton-polaron for SO and LO phonon mode, 

we obtain, in the weak coupling, the absorption coefficient for SO and LO exciton-polaron 
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finally, the absorption coefficient of SO and LO exciton-polaron in the intermediate coupling 

gives: 

 

 

 







































 








 
























 

















 
























 








 
























 









 










2

2

2

2

2

22

21
2

2

2

2

2

3

0

2

20

4

2

1

2

1

2

12

2,1
21

2

1

2

10

2

1,3

0

4

1
exp

2
arctan

2

1

2
cos

44

2

2

1
exp

2
arctan

2

1

2
cos

44

2
exp

2

















































b

D

b

erfc

cn

LbeV

b

D

b

z

cn

beV

LOmF

SO
F

(241), 

with                  
F

SO

V

  ,

1


           





F

LO

V


2 . 

We observe that energies in weak coupling regime as same as optical absorption are 

independant of the magnetic field which is differents from other coupling regime (intermediate 

and strong coupling regime). So, the optical absorption and ground state energy in weak 

coupling regime can not be altered by an external magnetic field. Both magnetic field and 

electron-phonon coupling can be used to tuned state energy and optical absorption.  

 

2.3.3 BIPOLARON IN TRANSITION METAL DICHALCOGENIDES 

2.3.3.1 BIPOLARON IN TMDs: ALL COUPLING APPROACH  
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Let us consider a bipolaron ungergoing the effect of an incident photon in monolayer of 

TMDs situates on a polar substrate in presence of uniform magnetic field applied on the third 

directions in a quantum dot illustrates by Fig.13. In this part we investigated the ground state 

energie for all coupling range, and the optical absorption for weak and intermediate coupling 

of the bipolaron. The total Hamiltonian of bipolaron can be written in this form 

 2121 )( rrUrruHHHH phephebp                                                           (242), 

where
eH is given as in Eq. (224) where the hole is replaced by another electron as bipolaron is 

form by two electron interacting via coulomb repulsion phH , pheH   and )( 21 rru  are 

respectively given by Eqs. (225), (226) and (227). The last term of Eq. (242) is the coulomb 

interaction potential between the two electrons. Using the same schemes as in the case of 

electron-phonon coupling contribution on the optical absorption and the dynamic of exciton- 

polaron in monolayer TMDs to obtain the ground state energy, we obtain: 

 

Figure 13 : sketch of the optical absorption of the bipolaron in the monolayer TMDs [162] 
 

Then we obtain the bipolaron energy: 
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(244). 

Finally, the eigenvalues of the energies in the zero Landau Levels can be written as: 
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(245). 

Replacing the coupling element for SO phonon and for LO phonon mode, we obtain the 

following results for different coupling regime and for SO and LO phonons: 

The energies of SO and LO in the weak coupling  1  are respectively : 
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(246a), 

and 
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(246b). 

The energies of SO and LO bipolaron in the intermediate coupling  10   are respectively: 
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The energies of SO and LO bipolaron in the strong coupling  0  are respectively : 
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 Binding energy of bipolaron 

The binding energy (BE) is evaluate using the following formula given as [163]: 

bpp EEBE  2                                                                                                       (249), 

it characterises the stability criteria. Here, pE is the single polaron ground state energy in the 

same approximation. In this, case the BE is given by: 

002 bpp EEBE                                                                                                                 (250). 

From Eq. (246), we observe that 0bpE and 0bpE are independant of the magnetic field which is 

differents from other Landau levels energies in others coupling (Eqs. (247) and (248)). So the 

magnitude of bandgap modulation in weak coupling regime can not be altered by an external 

magnetic field. This result is similar to the case of polaron [51, 164]. In others coupling regime 

(intermediate and strong), the magnitude of the bandgap is a function of magnetic field. 

 Optical absorption of bipolaron 

The absorption coefficient     of the incident light with the energy  of a free polaron, 

according to Fermi's golden rule, is given as in Eq. (239). Follow the same rule as in the case 

of exciton- polaron in TMDs we obtain the absorption coefficient for the weak and intermediate 

coupling regime. Thus, in the weak coupling regime, we obtain the absorption coefficient for 

SO and LO bipolaron as 
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    (251), 

in the intermediate coupling, the absorption coefficient of SO and LO bipolaron is given by: 
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(252). 

The ground sate energy of bipolaron is not influenced by the magnetic field in the weak 

coulpling regime, this remark is also true for the optical absorption and the magnitude of 

bandgap modulation. So, the ground state energy, the optical absorption and the magnitude of 

bandgap modulation are affected by magnetic field, electron-phonon coupling and others 

parameters such as distance between TMDs monolayer and polar substrates.  

 

2.3.3.2 BIPOLARON IN TMDs QUANTUM PSEUDODOT  

The system considered here is constituted of two electrons confined in 2D-TMDs quantum 

pseudodot interacting with SO-phonon, thus a quasiparticle called Fröhlich bipolaron can be 

formed. So, we evaluate ground and first excited state energies. The Hamiltonian is written as 

follow: 
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where     
2


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r
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Vrv O

O

O                                                                                            (254). 

In the Eq. (253), )(  rp are the operator’s momentum (position) of the th electron )2,1(  , 

m is the effective band mass of the electrons, )( kk aa  stand respectively operators of creation 

(annihilation) of SO-phonons with the wave vector k


.  rv represent the pseudo-harmonic 

potential with both antidot potential and harmonic quantum dot potential, 
OV  represent the 

chemical potential of the two-dimensional electron gas and
Or is the zero point of the pseudo-

harmonic potential. rUru )( is Coulomb interaction potential between the two electrons, 

with
 2eU , where

 represent the high-frequency dielectric constant of the substrate. 

Considering bipolaron as composite quasiparticle, the expression in Eq. (253) can be 

transformed by introducing the center of the mass coordinate as follows : 
21 ppP  , 
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  221 rrR  and relative coordinate 
21 rrr    221 ppp  for the two electron, thus we 

can rewrite Eq. (253) as: 
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r  with ... denoting an averaging over 

the fundamental or first excited states wave functions. 

The first unitary transformation proposed by Huybrecht given above is used to 

diagonalize Eq. (255) and the new creation 


jb and annihilation jb operator’s relative to mass 

center coordinate and momentum given by Eq. (67) are introduced, thus Eq. (255) can be 

rewritten as : 

'
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Then using the second LLP unitary transformation, we obtained: 
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(259). 

The terms obtained with '

2H can be neglected, this because if we first perform the angular 

integration they will vanish. Then to obtain the ground and first excited states energies, the 

wave function is chosen as in [163] 

 
jbann nnr                                                                                                             (260), 

n is oscillator wave function of an electron’s. For the ground state and first excited state, we 

have the following wave function: 
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                                                                      (261), 

where  is a variational parameter which can be obtained by minimizing the state energies. 

This waves function satisfying the normalization condition as given in Eq. (145). Performing 

in the Hamiltonian given by Eq. (259) the above wave function for fundamental and first excited 

states, we obtained the following expression of energies: 
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(262), 
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(263). 

 The ground and first excited state energies are proportional of
OV and inversely 

proportional to
Or . These energies are also influenced by the coupling parameters a and the 

mass of the electron in monolayers. Thus, others parameters related to states energies also 

affected by
OV and

Or . 

CONCLUSION 

In this chapter, an overview on mathematics tools is are presented, some dynamic and 

decoherence parameters which caracterises the quasiparticle are also presented. Therefore, we 

model each of our system by appropriate Hamiltonian and using the variational methods 

presented, we investigated the ground and first excited states energies of diffeents system in 

TMDs under various external field, also others parameters of quasiparticles such as lifetime, 

effective mass, optical absorption, bindng energy are also investigated. Decoherence proprieties 

which is link to states energies such as transition frequency, density probability, Shannon 

entropy and decoherence time can also be evaluated. Futhermore, we will later use these 

analyticals results in the following chapter to obtain some numericals results on ground and 

first excited states energies, lifetime, binding energy, effective mass optical absorption, 

transition frequency, density probability, Shannon entropy and decoherence time that can help 

to explain physics at the nanoscale level.   
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CHAPTER 3: NUMERICAL RESULTS AND 

DISCUSSIONS 

INTRODUCTION 

In the previous chapter, it was question for us to present different configurations where 

polaron, exciton-polaron and bipolaron can exist in TMDs materials and study their new 

properties in those systems. In this chapter, it is now question to present numerical results and 

discussions of the above calculations. We will focus on four different monolayers (MoS2, 

MoSe2, WS2 and WSe2) because their proprerties have been studied and are well known in the 

literature. Several properties characterizing these quasi-particles will be numerically presented.  

Numerical results are presented for fundamental, first excited states energies, mobility, 

effective mass, lifetime, transition frequency, probability density, Shannon entropy as well as 

optical absorption, bindind energy and the magnitude of bandgap modulation. The parameters 

using here have been taken in [58, 51, 164, 165, 166]. Others constants used in this section are 

outlined in Table 5 and Table 6. The Fermi velocity is assumed to be equal for all TMDs since 

it varies slightly for different TMDs [164], the value of internal distance adopted is equal to 

nmz  5.00  . The fixed values of nmLm  5.0 , nm 6.0  are taken in all TMDs monolayer 

[167]. 

Table 5 : Parameters of different polar substrates and surfaces optical phonon modes [164] 

Quantity (unit) BNh   
 

AiN  2SiO  
2HfO  

2ZrO  
32OAl  

 00 k  
5.1 9.7 9.1 3.9 22.0 24.0 12.5 

  k  4.1 6.5 4.8 2.5 5.0 4.0 3.2 

 meVSO 1,  167 146 84 25 101 94 53 

 meVSO 2,  116 60 105 71 196 55 19 

  0.032 0.040 0.074 0.082 0.122 0.160 0.164 

 

Table 6 : The magnitude of bandgap modulation for the different TMDs and the energies of 

LO phonons of different TMDs [168] 

Quantity (unit) MoS2 MoSe2 WS2 WSe2 

 meVLO  
48 34 43 30 

 meVG2  1870 1560 2100 1650 

SiC  
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3.1 DYNAMIC OF POLARON, EXCITON-POLARON AND BIPOLARON IN 

TRANSITION METAL DICHALCOGENIDES 

3.1.1 GROUND AND FIRST EXCITED STATES ENERGIES 

3.1.1.1 ENERGIES OF POLARON 

 Polaron under electric field: The numerical results presented here are obtained 

from Eqs. (147) and (148).  

In Figs.14-17, we have presented the plot of ground and first excited states energies of 

polaron as a function of effective confinement length for different values of electric field 

(Fig.14), wave vector for different values of electric field (Fig.15), electric field for different 

values of internal distance (Fig.16), and electric field for different TMDs monolayer (Fig.17). 

From Fig.14, one can observe that ground and first excited state energies are increasing function 

of the effective confinement length, in this same figure we can remark that ground and first 

excited state energies are increasing function of electric field strength. In Fig.15, one can 

observe that the energies are the decreasing function of the wave vector in the case of ground 

state energy, this behavior of energy is in accordance with [51]. 

 

Figure 14 : Polaron energies as a function of effective confinement length for : (a) ground 

state energy (b) first excited.   
 

nmzkc 5.0,10 0   
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Figure 15 : Polaron energies as a function wave vector : (a) ground state energy (b) first 

excited   

 

Figure 16 : Polaron energies as a function of electric field: (a) ground state energy (b) first 

excited.  

Also, in this Fig.15, the energies are increasing function of electric field. In Fig.16, the ground 

and first excited state energies increase with increasing the electric field, this result confirms 

those obtained in Figs.14, 15. One can also observes in this plot (Fig.16) that the energies are 

an increasing function of the internal distance between polar substrate and TMDs monolayer
0z

, then as
0z increases, the energies become less sensible to internal distance showing the fact 

that the further the TMDs is from polar substrate, less its effect is felt on the state energies of 

the polaron in TMDs. In Fig.17, the behavior of energies is the same as in Fig.16. One can also 

nmznml 5.0,2 0   

nmlkc 2,10   
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observe that energies varying with different TMDs monolayer which can be attributed to the 

effective mass of electron in different monolayer, thus less the mass of electron in monolayer 

is less the energies is. This result is similar to [58]. From these figures we can conclude that 

increasing electric field allows us to increase the energies of polaron in different TMDs 

monolayer and the better contribution of electric field to the energies is obtained with WS2 

monolayer. The more electron is confined in presence of electric field, the higher are their 

energies Other parameters allowing us to control the energies states of polaron in TMDs are 

effective confinement length, the internal distance between polar substrate and monolayer and 

the effective mass of electron in different monolayer. This result of modulating the state by 

tuning its energies has a practical use in quantum information process. 

 

Figure 17 : Polaron energies as a function of electric field for: (a) ground state energy (b) first 

excited  
 

 Polaron under radiowave and microwave: here, we presented numerical results 

from Eqs. (163), (165), (168) and (170). 

Figs.18, 19 show the variations of 0E and 0E on the frequency of the RW and MW 

respectively in MoS2 monolayer on different polar substrates. It is observed that 0E and 0E

oscillate with the increasing of frequency. In Fig.18 we have a smooth periodical oscillation 

having the same amplitude whereas in Fig.19 we have a smooth periodical oscillation in 

wchich the amplitude decrease with the increasing of the amplitude of the MW. In the both 

case, RW and MW create the fluctuation in the ground state energy of polaron in MoS2 

monolayer, thus the modulated band gap also fluctuates. The ground state energy of polaron is 

nmlnmzkc 2,5.0,10 0   
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then affected by the presence of the RW and MW field. In this system, we can trap 

quasiparticles involves in the system. We achieve a way to better confine the quasiparticles in 

the system by tuning the frequencies of RW and MW. As the band gap characterizes the 

conductivity of a material, the RW and MW can be use to control the conductivity of TMDs. 

 

Figure 18 : Ground-state energy of polaron with SO phonon mode as function of frequency of 

RW on different polar substrates 

 

Figure 19: Ground-state energy of polaron with SO phonon mode as function of frequency of 

MW on different polar substrates  

auAauAGhz .3;.5;2 21   

auAauAkhz .3;.5;4000 21   
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Also in these figures, the influence of different polar substrates is shown and it can be seen that 

the ground state energy in both case decrease in the following order h-BN, SiC, AiN and Al2O3 

which can be attributed to the polarizability parameter increasing from h-BN to Al2O3. This 

result is in agreement with those obtained in ref [51]. Thus the TMDs is more conductive with 

Al2O3 polar substrate. our result suggests that the conductivity of TMDs monolayer can be 

modulated by tuning the frequencies of the RW or MW but also by changing different polar 

substrates. This result on conductivity can be use in high performance field effect transistors to 

allow charge carriers to move easily throught material which is important for the efficient 

switvhing of signals and amplifications of electrical signals. It can also be use in energy storage 

applications because concructivity of TMDs allow rapid charge and discharge rate 

Figs.20, 21 presents the dependence of energies 0E and 0E as function of the amplitudes 

of the RW and the MW respectively. One can see that the ground state energy increase sharply 

with the increasing of the amplitude the RW and linearly with the amplitude of the MW. This 

behavior of fundamental energy state is similar to those obtained in [169].  Thus as the RW and 

the MW can be considering as a potential of confinement, their amplitude increases the ground 

state energy of polaron in MoS2 monolayer, thus increasing the modulated bandgap. Comparing 

the modulated bandgap of the MoS2 monolayer under the RW and those under MW, one can 

observe that the radiowave modulated better than radiowave. 

 

auAkhzGhz .30;4000;2 2    
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Figure 20 : Ground-state energy of polaron with SO phonon mode as function of amplitude of 

RW for different polar substrate  
 

In these figures are also presented the variation of the ground state energy as function of 

different polar substrates. One can see that the polarizability of different polar substrate 

influences the modulated bandgap of MoS2 monolayer which are in accordance with the 

previous result obtained in Figs.18 and 19. 

 

Figure 21 : Ground-state energy of polaron with SO phonon mode as function of amplitude 

of MW for different polar substrate 

 

The largest modulated bandgap is obtained with h-BN polar substrates which have the smallest 

polarizability and the smallest bandgap modulation is obtained with Al2O3 polar substrate which 

have the largest polarizability parameter. As the polarizability parameter of polar substrate 

increase the modulated bandgap decrease the TMDs monolayer become more conductive. Thus 

the amplitude of both the microwave and the radiowave is viable tools necessary to increase the 

energies of polaron thus, useful to control the bandgap modulation and conductivity of the 

TMDs monolayer on different polar substrates. 

In Figs.22, 23, we presented the dependence of energies 0E and 0E as function of the 

frequency of the RW and the amplitude of MW respectively for LO phonon mode. In Fig.22, 
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on can observed that as in Fig.18, the energies oscillate periodically with the increasing of the 

frequency of RW in all TMDs monolayer, thus the modulated bandgap fluctuates in all chosen 

monolayer. In Fig.23, the energies increase with the increasing of the amplitude of the 

microwave as in fig.20. In these figures the dependence of energies for different monolayer are 

presented and it observed that the energies increase in the sequence of MoSe2, WSe2, MoS2 and 

WS2 which can be attributed to the intrinsic band gap of these monolayer. 

 

Figure 22 : Ground-state energy of polaron with LO phonon mode as function of frequency 

of RW for different TMDs monolayers  

 

Figure 23 : Ground-state energy of polaron with LO phonon mode as function of amplitude 

of MW for different TMDs monolayers  
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The largest modulated bandgap is obtained with WS2 monolayer where the lowest is obtained 

with MoSe2. Comparing the ground state energy in the case of LO phonon with the case of SO 

phonon it can be seen that the energy is more enhanced with SO phonon than in case of LO 

phonon, the same is true for the modulated band gap. Thus in TMDs monolayer, the type of 

phonons mode is important to the modulation of band gap as far as polar substrate, amplitude 

and frequency of the RW and MW. 

3.1.1.2 ENERGIES OF EXCITON-POLARON 

 Magnetic barrier effect on exciton-polaron: The numerical results presented here 

are obtained from Eqs. (211) and (213). 

Fig.24 presents the variation of the ground state energy of Exciton-polaron versus 

magnetic barrier length for different TMDs monolayers. Fig.25 displays the first excited state 

energy as function of magnetic barrier length for various TMDs. From those figures, one can 

observe that both state energies enhance with increase in magnetic barrier length for various 

TMDs. This behavior is similar to that obtained in [58]. Since the exciton-polaron energy is 

very large, exciton-polaron are said to be stable quasiparticles. This stability is increased with 

the presence of magnetic barrier. For instance, the connection with exciton-polaron energy level 

through a magnetic field of a given length is easily identified.       

 

Figure 24 : Ground state energy of exciton polaron versus length of magnetic barrier for 

different TMDs monolayers  
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Figure 25 : First excited state energy of Exciton-polaron versus the length of magnetic barrier 

for various TMDs monolayers in strong coupling regime 
 

These findings also present some situations in which carriers are not strictly confined in two-

dimensional planes but rather trapped inside a narrow well. The highest ground state energy of 

exciton-polaron is obtained with WS2 and the lowest is obtained with MoSe2. Thus the exciton-

polaron ground state energy should vary according to the magnitude of the deformation 

potentials of the different TMDs. We also observed in this figure that the monolayer with sulfur 

displays higher ground state energy than selenide. Because the existence of a magnetic potential 

equals an additional confinement potential, leading to a greater electron entanglement, the 

exciton-polaron interaction is reinforced and the ground state energy becomes more obvious. 

This result is in accordance with the analytically results obtained in the ground state, thus we 

can conclude that with diagonalization technics and that from our analysis the electron phonon 

coupling is a prominent parameter to enhance energy of exciton-polaron. 

 Electron-phonon coupling contribution on exciton-polaron: the results presented 

here come from Eqs. (235), (236) and (237). 

Fig.26 shows the energy variation with the magnetic field of exciton-polaron coupling 

with SO phonon in different TMDs monolayer deposited on SiO2 polar substrate in intermediate 

coupling regime. One can see that the energy decrease sharply in small magnetic field range, 

then vary smoothly with increasing of magnetic field in all monolayer. This means that the 

magnetic field behaves as a trapping potential. Thus with small range of magnetic field, we 

have a better contribution to the correction of ground state energy of the Landau level. 

Furthermore, we can also observe in this figure that the energy decrease in the sequence WS2, 

MoS2, WSe2, MoSe2 which can be attributed to the width of the band gap of those monolayers, 
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where their values are respectively 1050mev, 935mev, 825mev and 725mev. Thus the smaller 

of the band gap width of monolayer is, smaller the contribution of correction of the ground state 

energy of Landau level is. 

The dependences of energy on magnetic field of exciton-polaron coupling with SO 

phonon in various TMDs monolayer on SiO2 polar substrate in strong coupling regime are 

shown in Fig.27. One can observe that the behavior of the energy is similar as in the 

intermediate coupling regime (Fig.26). Comparing to this later regime, the magnitude of the 

energy is greater in the case of strong coupling. This shows how the electron-phonon coupling 

affects the correction of the ground state energy in the Landau levels. This result on the energies 

of exciton-polaron is applicable is quantum information storage because lower ground state 

energy can potentially lead to more stable electronic states. 

 

 

Figure 26 : Energy of exciton-polaron as a function of magnetic field for different TMDs 

monolayer in intermediate coupling regime  
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Figure 27 : Energy of exciton-polaron versus magnetic field for different TMDs monolayer in 

strong coupling regime  

 

In Fig.28, we presented the variation of energy on magnetic field in intermediate coupling 

regime for LO phonon. The behavior of the energy is similar as in the case of SO phonon 

presented in figure 26. Moreover, the LO phonon displays enough energy than SO phonon, 

which means that the type of phonon coupling with electron affects the correction of zero 

Landau level energy of exciton-polaron in TMDs monolayers. Thus the polaron with LO 

phonon mode more impact the exciton than polaron with SO phonon mode, justified by the fact 

that exciton polaron with LO phonon mode displays enough energy than exciton with SO 

phonon. This result is in agreement with those of refs [170-172]. In weak coupling regime, the 

ground state energy is independent of magnetic field, this result is in accordance with [51]. 

Thus, in Figs.29-31 we plot the variation of energy on internal distance 0z  between polar 

substrates and WS2 for weak coupling regime (Fig.29) intermediate coupling regime (Fig.30) 

and strong coupling regime (Fig.31). One can observe that in weak and intermediate coupling 

regime, for 5.10 z , the energy decreases sharply and for 5.10 z , the energy varies smoothly 

with increasing of internal distance between TMDs and polar substrates. 
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Figure 28 : Energy of exciton-polaron with LO phonon versus magnetic field for different 

TMDs monolayers in the intermediate coupling regime  

 

 

 

Figure 29 : Variation of exciton-polaron energy versus internal distance 0z between WS2 and 

polar substrates in weak coupling regime for various polar substrates 
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Figure 30 : Energy of exciton-polaron versus internal distance 0z  in intermediate coupling 

regime for various polar substrates  
 

 

Figure 31 : Energy of exciton-polaron versus internal distance 0z  in strong coupling regime 

for various polar substrates  
 

Thus for small range of internal distance between monolayer and polar substrates, we have a 

dominate contribution to the correction of the ground state energy of exciton-polaron. In strong 

coupling regime, energy varies smoothly with increasing of 0z . For all this plot, as the internal 

distance increase the energies become less sensible for this internal distance. Comparing the 

three plots, the energies are more enhance in the case of a weak coupling regime showing how 

the electron-phonon coupling affects the ground states energies of exciton-polaron in TMDs 

monolayer 
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3.1.2 MOBILITY  

3.1.2.1 MOBILITY OF POLARON 

 Polaron under electric field: the results presented here are obtained from Eq. 

(132) where the expressions of energies are from Eqs. (147) and (148). 

Fig.32 is the 3D plot of the mobility of polaron as a function of wave vector and electric field. 

It is observed that the mobility of polaron decreases with increasing of wave vector. Fig.33 

displays the mobility of polaron as a function of internal distance between TMDs monolayer 

and polar substrate
0z  and electric field. 

 

Figure 32 : Polaron mobility versus wavelength vector and electric field  
 

One can observed that for small value of
0z , mobility decreases sharply and then becomes linear 

with the increasing of
0z . This behavior of mobility is in accordance with those obtained in 

graphene nanoribbon under laser control [151]. From these Figs.32 and 33, one can also observe 

that the mobility increases smoothly with increasing of electric field. In Fig.34, we plot the 

variation of mobility as a function of electric field for different TMDs monolayer. It is observed 

that the mobility increases with the increasing of the electric field. This result is in accordance 

with Fig.32 and 33. Also in Fig.34, one can remark that the mobility varying with different 

TMDs monolayer, the polaron moves more freely in WS2 monolayer. This result was 

predictable in Fig.17 because it is in the same monolayer that we had the greatest energies. 

From these figures, our result suggest that electric field can be useful to increase the movement 
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of electron in different TMDs monolayer. But in order to minimize the displacement of electron 

in a system of TMDs monolayer under electric field, we can either increase internal distance 

between monolayer and polar substrate or increase the value of wave vector. 

 

Figure 33 : Polaron mobility versus electric field and internal distance between TMDs 

monolayer and polar substrate  
 

 

Figure 34 : Polaron mobility versus electric field for different TMDs monolayers  
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 Polaron under microwave and radiowave: the results presented from Eq. (132) 

where the expressions of energies are from Eqs. (163) and (165). 

Fig.35 presents the mobility of polaron for SO phonon as function of amplitude of RW 

and MW for different TMDs monolayer. It is observed that the mobility increase with the 

increasing of the amplitude. This means that the more amplitudes are greater, the polaron moves 

faster in each TMDs monolayers. This shows that RW or MW field can be used to enhance the 

motion of particles in confining TMDs. But small amplitudes of these field will favor less 

mobility. So to reduce fast motion of quasi-particles in TMDs; it will be interesting to choose 

RW or MW with low amplitudes. So the greater the amplitude of the 

RW or the MW, the faster the mobility of the polaron, thus more the RW or the MW impact the 

system, big the polaron behavior is captured. In the same plot is presented the mobility as 

function of different TMDs and one can observed that polaron moves more freely in WS2. This 

result reflects the fact that the polaron interacts effectively with other quasiparticles, thus 

promoting faster energy transfer and hence good electrical conductivity. This result can be used 

in electrical components where the electrical transition is desired such as electrical wires and 

electronic devices. 

 

Figure 35 : Mobility of polaron with SO phonon mode as function of amplitude of RW 

(fig.35A) and amplitude of MW (fig.35B) for different TMDs monolayers 
 

This result was predictable because it is in the same monolayer that we had the greatest energies. 

This result shows that the amplitude of the MW or the RW is helpful to varying the mobility of 

the carriers in TMDs monolayer.  
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3.1.2.2 MOBILITY OF EXCITON-POLARON  

 Magnetic barrier effect on exciton-polaron: here, we presented the numerical 

result from Eq. (130) with the energies given by Eqs. (211) and (213). 

The variation of the mobility of exciton-polaron versus magnetic barrier length is 

presented in Fig.36. One can observe that the mobility increases in all TMDs monolayer with 

increase in magnetic barrier length. We observe that the greater the magnetic barrier length, the 

faster the motion of the polaron. This result has been obtained also by Djomou et al [171]. To 

characterize environments that conduct electric current, we need to apply magnetic field in an 

exciton-polaron system. By increasing the magnetic barrier length, the mobility of exciton-

polaron in TMDs monolayer become high in theory which is in accordance with [173]. Up to 

now, within all TMDs, experimental mobility is much lower due to the combined influence of 

external impurities becoming a major limitation in their applications. 

 

Figure 36 : Mobility of exciton-polaron versus the length of magnetic barrier for different 

TMDs monolayer  
 

Here, we propose in order to increase the mobility in TMDs, to add magnetic field in the system 

and taking into account the phonons that affect the system considerably. Taking WS2 for 

instance, this work examines the main reasons for the high mobility of TMDs, including the 

vibration network, charge doping, magnetic disturbances and potential traps. The available 

mobility results are good because we are capable of achieving trap and impurity densities for a 

broad variety of transistor devices. It is clear from our investigation that the transport of charge 

carriers in TMDs systems appears to be a quite sophisticated issue that needs to be handled with 

attention. 
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3.1.2.3 MOBILITY OF BIPOLARON 

 Bipolaron in quantum pseudodot: here, we presented the numerical result from 

Eq. (132) with the energies given by Eqs. (262) and (233). 

Fig.37 is the plot of the mobility of bipolaron as a function of the chemical potential for 

different values of zero point of the pseudo-harmonic potential. It is observed that the mobility 

is an increasing function of the chemical potential, this means that the more chemical potential 

is greater, the bipolaron moves faster in TMDs. This shows that pseudo harmonic potential can 

be used to enhance the movement of particles in TMDs monolayer by tuning the chemical 

potential. But low chemical potential values will favor less mobility. So to minimize the motion 

of quasi particles in the system; it will be necessary to choose pseudo harmonic potential with 

small chemical potential. In this same plot one can observe that mobility decrease with 

increasing of the zero point of the pseudo-harmonic potential. Fig.38 displays the mobility of 

bipolaron as a function of the zero point of the pseudo-harmonic potential for different TMDs 

monolayers. One can observe that mobility decreases with the increasing of the zero point of 

the pseudo-harmonic potential. This result is in accordance with Fig.37. This behavior of 

mobility is in accordance with those obtained in graphene nanoribbon under laser control [174].  

 

Figure 37 : Mobility of bipolaron versus the chemical potential for different values of zero 

point of the pseudo-harmonic potential 

 

From Fig.38, one can also remark that the mobility varying with different TMDs 

monolayer, the bipolaron moves more freely in WS2 monolayer. Our result suggests that both 

chemical potential and the zero point of the pseudo-harmonic potential can be useful to increase 
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the movement of electron in different TMDs monolayer. But in order to minimize the 

displacement of electron in a system of TMDs monolayer in pseudodot, we can either increase 

the zero point of the pseudo-harmonic potential or decrease the value chemical potential. Thus 

the system consisting of the bipolaron in TMDs constitutes a stable and therefore durable 

system and can be used for the storage of quantum information.  

 

Figure 38 : Mobility of bipolaron versus zero point of the pseudo-harmonic potential for 

various TMDs monolayer 
 

3.1.3 EFFECTIVE MASS OF EXCITON-POLARON  

 Magnetic barrier effect on exciton-polaron: the numerical result is obtained from 

Eq. (221). 
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Figure 39 : variation of effective mass of exciton-polaron versus the length of magnetic 

barrier for various TMDs monolayer  
 

Fig.39 presents the effective mass of the exciton-polaron versus magnetic barrier 

length. One can observe that the effective mass reduces with the increase of the magnetic 

barrier length. For high values of the magnetic barrier length, the mass variation of the 

exciton-polaron is higher, owing to the interplay of phonon and the electron (hole). This 

behavior is in accordance with [171, 175]. This result suggests that the length scale of the 

magnetic barrier can be necessary to tune the effective mass of exciton polaron in TMDs 

monolayer. Often, research experiments use a series of external conditions like the magnetic 

field to explore exciton dynamics in physical structures. As the present work is focused on the 

exciton-phonon interaction due to high deformation trap related to phonon, the magnetic 

barrier can contribute to the diffusion of charge carriers in monolayers. This result proves that 

the transport properties of an exciton-polaron are robust. Since the deformation trap 

characterizes the monolayers, we highlight differences that occur from monolayer TMDs 

when evaluating the polaronic effect due to magnetic barrier. In MoSe2, the transport 

properties can be more interesting than the one of WS2.  

 Electron-phonon coupling effect on exciton-polaron: the numerical results are 

obtained from Eq. (238). 

In Figs.40 and 41, we present the variations of the effective mass of the exciton-polaron 

coupling with SO phonon as a function of the magnetic field in a strong coupling regime 

(Fig.40) and intermediate coupling regime (Fig.41) for different TMDs monolayer. One can 
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observe that the effective mass decrease sharply with increasing of the magnetic field in all 

TMDs monolayers.  This suggest that the effective mass of exciton-polaron in TMDs monolayer 

is greater than the mass of a free charged carriers. This is in accordance with [176]. Our result 

reveals that in all TMDs monolayer, the exciton-polaron participates in transport, also that the 

magnetic field can be used to control the motion of the exciton-polaron in TMDs monolayer 

for both intermediate and strong coupling regimes. The results obtained here can be useful in 

spintronic for the control and manipulation of the spin of charge carriers for the storage of 

quantum information 

 

Figure 40 : Effective mass of exciton-polaron coupling with SO phonon as function of the 

magnetic field in a strong coupling regime for various TMDs monolayer 

 

Figure 41 : Effective mass of exciton-polaron coupling with SO phonon as a function of the 

magnetic field in intermediate coupling regime for various TMDs monolayer 
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 Polaron under electric field: the numerical results presented are obtained from Eq. 

(150) 

Fig.42 displays the lifetime of polaron in the ground state as a function of wave vector 

for different TMDs monolayer. It is observed that the lifetime of polaron increases sharply with 

the increasing of wave vector up to 2Ck . Then for 2Ck the variation of lifetime becomes 

horizontal with the increasing of wave vector. Hence, the wave vector no longer influences the 

lifetime of polaron in ground state. In this figure, the variation of the lifetime of polaron for 

different monolayer are also presented and one can observe that polaron lives long in WS2 

monolayer. 

 

Figure 42 : Lifetime of polaron versus wavelength for different TMDs monolayers for  
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Figure 43 : Lifetime of polaron versus electric field and internal distance between TMDs 

monolayer and polar substrate  
 

Fig.43 displays the lifetime of polaron in ground state as function of electric field and  

internal distance between TMDs monolayer and polar substrate
0z . One can see that the lifetime 

increases with the increasing of
0z . In this figure, it is observed that the lifetime decreases 

smoothly with the increasing of electric field strength and increase linearly with the increasing 

of
0z . Our results suggest that electric field reduces the lifetime of polaron in TMDs, which can 

be due to the fact that electric field is a confinement potential in on hand, and the internal 

distance between TMDs and polar substrates enhances the life time in oder hand. These results 

show that the lifetime of polaron in TMDs monolayer can be controlled by electric field, internal 

distance
0z and wave vector. The lifetime of the polaron is in the other of milliseconds 

 Polaron under microwave and radiowave: the numerical results presented are 

obtained from Eq. (173) and (175) 

Figs.44, 45 displays respectively the polaron lifetime in ground state as function of 

amplitude for RW and MW for different TMDs for LO phonon mode and SO phonon mode. 

One can observe that in both case RW (Fig.44A) and MW (Fig.44B), the lifetime increases with 

the increasing of the amplitude. In case of SO phonon mode polaron lifetime increase with the 

increasing of the amplitude of the RW (Fig.45A). In Fig.45B the variation of the polaron 

lifetime has a parabolic behavior, it firstly decreases with increasing of the amplitude of the 
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MW and secondly increase with the amplitude. This result is similar to that obtained in [151]. 

Thus in TMDs monolayer, due to presence of MW and RW polaron live for a long period due 

to the fact that the lattice thermal motion becomes slow with the increasing of amplitude, so the 

higher the amplitude, the longer the polaron live. 

 

Figure 44 :  Life time of polaron with LO phonon mode as function of amplitude of RW 

(fig.44A) and amplitude of MW (fig.44B) for different TMDs monolayer 
 

This has the significance that the RW and the MW presence increase the lifetime of 

polaron in ground state. Other reason of the increase in polaron lifetime with amplitude can be 

explained by the fact that electron motion is increased due to the existence of the RW or the 

MW as confinement potential.  In these same figures the dependence of the polaron lifetime for 

different TMDs are presented and it can be remarked that for SO phonon mode, polaron lives 

longer in TMDs with disulphide than with diselenide whereas for LO phonon mode polaron 

lives longer in TMDs with diselenide than with disulphide, which means that the type of 

electron-phonon coupling also affects polaron lifetime in TMDs monolayers. These results on 

the lifetime show that the system consisting of polaron in TMDs present a good stability due to 

interaction between electron and phonon but also to the confinement. These results can be used 

to the fabrication of electronic devices such transistors and LEDs 
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Figure 45 : Life time of polaron with SO phonon mode as function of amplitude of RW 

(Fig.45A) and amplitude of MW (Fig.45B)  for different TMDs monolayer 
 

3.2 STABILITY, OPTICAL ABSORPTION AND BANDGAP MODULATION  

3.2.1 STABILITY OF BIPOLARON 

 The numerical result of the stability of bipolaron is obtained with Eq. (250). 

In Fig.46, the binding energy with magnetic field is presented for intermediate coupling 

regime. One can observe that the binding energy decrease with increasing of magnetic field. 

The increase of magnetic field enhances the average of coulomb repulsion between the 

electrons, this result is in accordance with the work of Brosens and Devreese [177]. Thus, 

despite the enhances of coulomb repulsion, the phonon mediated attractive electron-electron 

attraction still dominated. That is the reason that the binding energy remain positive and 

indicated that in all selected TMDs monolayer, the bipolaron is stable. From Fig.47, the binding 

energy decreases as 0 increases, then the bipolaron is stable in the different monolayer TMDs 

as the binding energy remain positive. This result can be used to develop more efficient and 

durable batteries, or to create new electronic devices that are more energy efficient and can 

operate at high temperatures. 
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Figure 46 : Binding energy of the bipolaron versus magnetic field in MoS2 for different polar 

substrate (intermediate coupling regime) 
 

 

Figure 47 : Binding energy of the bipolaron with parameter 0  in weak coupling regime for 

different TMDs monolayer 
 

3.2.2 MAGNITUDE OF BANDGAP MODULATION 

3.2.2.1 CASE OF POLARON 

 The numerical result of the magnitude of the bandgap modulation of polaron are 

obtained with Eq. (172). 

Fig.48 presents the variation of the magnitude of bandgap modulation as function of the 

frequency of the RW for SO phonon mode. On can observed that the MBM oscillate 
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periodically at same amplitude with the increasing of the RW frequency. Thus the MBM 

fluctuate with the increasing of the frequency of the RW, this result was predictable in Fig.18 

as the energies fluctuate with the frequency of RW. So RW can be necessary to create 

fluctuation in the MBM of the MoS2 monolayer.  

 

Figure 48 : The MBM of polaron with SO phonon mode as function of frequency of RW for 

different polar substrates  
 

 

Figure 49 : The MBM of polaron with SO phonon mode as function of internal distance for 

different polar substrates. (Fig.48A) without RW and MW, (Fig.48B) with RW and MW 
 

Fig.49 shows the variations of the MBM for SO phonon as function of internal distance 

between MoS2 monolayer and different polar substrates in the case without radiofrequency and 
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microwave (Fig.49A) and in the case with both microwave and radiofrequency (Fig.49B). It 

can observe that the MBM decrease sharply with the increasing of the internal distance between 

polar substrate and MoS2. This behavior is similar to that obtained in [51]. In Fig.49A the MBM 

is positive whereas in Fig.49B the MBM is negative showing that the RW and MW increase 

the modulated bandgap in MoS2 monolayer. These figures also present the dependence of MBM 

as function of different polar substrates, it can be observed that the MBM increase with the 

increasing of the of the polarizability parameters, thus the highest MBM is obtained with Al2O3 

polar substrate and the lowest with h-BN polar substrate, this is in accordance with [51]. 

Fig.50 presents the MBM of LO phonon mode as function of amplitude of the RW and 

MW for different TMDs monolayer. It can be observed that the MBM is a decreasing function 

of the amplitude of the RW and the MW. As in the Fig.49, the RW or the MW increase the 

ground state energy thus, increase the modulated bandgap of the monolayer. In this same plot 

is presented the variation of the MBM as function of different TMDs monolayer and one can 

remarked that the MBM decrease in all monolayer. 

 

Figure 50 : The MBM of polaron with LO phonon mode as function of amplitude of RW 

(Fig.50A) and amplitude of MW (Fig.50B) for different TMDs monolayer 
 

3.2.2.2 CASE OF BIPOLARON 

 The numerical results of the magnitude of the bandgap modulation of bipolaron 

are obtained with Eq. (172) with the energies given by Eqs. (246) and (247) 

In Fig.51 (a). we present the dependences of MBM on the magnetic field for bipolaron 

in different monolayer TMDs at intermediate coupling regime. It can be seen that the MBM 
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increases with magnetic field. For various TMDs, the MBM are also shown, one can observe 

that it varies with TMDs monolayer. The most important MBM is obtained with WS2 and the 

less with MoSe2, thus among the selected TMDs the latter strongly enhances the conductivity. 

A significant change of MBM relates to each TMDs highlights the impact of the magnetic field 

on the bandgap modulation in TMDs monolayer. Fig.51 (b). presents the dependence of MBM 

on the magnetic field in different monolayer at strong coupling regime. As in the intermediate 

regime we can see that MBM increases with magnetic field. We also observe that the MBM 

varies with TMDs monolayer, then the most important is obtained with MoS2 and the less with 

WSe2 which is not the case in intermediate coupling regime. Thus the electron phonon coupling 

affect the MBM for different TMDs monolayer in the presence of bipolaron. Fig.51 (c). presents 

the MBM versus 0  for different monolayers in weak coupling regime. One can observed that 

MBM increases with increasing the coupling parameter 0 . Same result was obtained by [51]. 

These results show that the bipolaron strongly affects the bandgap of TMDs. Since the coupling 

parameter characterizes the material, strong coupling favor the modulation of the bandgap. The 

WSe2 presents the highest MBM. In the investigation of carriers LO phonon coupling in 

monolayer TMDs, defined a new parameter fg  defined by sohier [178] as the coupling strength, 

which is analogous to the parameter 0 and pointed out that the 2D Fröhlich coupling is much 

stronger in TMDs. Moreover, we noticed that the values obtained for the bandgap modulation 

due to carrier-LO phonon coupling are very close to experimental results [179, 180]. Then, the 

LO phonons increase the modulated bandgap then consequently decrease conductivity in 

TMDs. Among the selected TMDs, the one with highest performance in conductivity is the 

MoS2. 

 

Figure 51 : Magnitude of bandgap modulation different TMDs as function of : 
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(a) Magnitude of bandgap modulation versus magnetic field in intermediate coupling regime 

for (b) Magnitude of bandgap modulation versus magnetic field in strong coupling regime (c)  

Magnitude of bandgap modulation Versus 0  for different monolayer in weak coupling regime  

3.2.3 OPTICAL ABSORPTION COEFFICIENT  

3.2.3.1 CASE OF EXCITON-POLARON 

 The numerical results of optical absorption of exciton-polaron are obtained from 

Eqs. (240) and (241)  

Figs.52 and 53 illustrate the behavior of the optical absorption of the exciton-polaron 

coupling versus the incident photon energy for various TMDs monolayers with the LO phonon 

and in a weak and an intermediate coupling regime respectively. One can notice that no 

absorption can be observed for LO  , then a minimum value for the absorption is at 

LO  . For this value, the absorption coefficient increase until a maximum value and 

decrease slowly. Thus, optical absorption only occurs when the energy of the photon exceeds 

the energy of the optical phonon. In fact, this behavior of the absorption of an exciton-polaron 

is similar to those obtained in other quasi-particles in ionic crystal and polar semiconductor 

[160-162]. It could be observed that in all TMDs monolayer, the peak of the absorption is 

reached for the same value of the photon energy. The absorption peak corresponds to the 

emission of a quantum of energy, thus in all TMDs monolayer this emission occurs at the value 

of photon energy of around 1.6meV. The value of the absorption increases in the following 

order MoSe2, MoS2, WSe2 and WS2. This may be due to the fact that the absorption is inversely 

proportional to the mass of electron in different TMDs. This highlights that smallest the 

effective mass of carriers in monolayer is, highest the absorption of exciton-polaron is. 

Mentioned that the parameter O  
in the formula of the absorption for LO phonon is assumed (

1.0O ) for all monolayer then the magnitude of the optical absorption of exciton-polaron 

increases with the increasing of O . This result is in accordance with that given in [162]. By 

comparing the two coupling regimes, the particle is more absorbent in the intermediate coupling 

regime than in the weak coupling regime, thus the electron-phonon coupling can be used to 

improve the absorption of exciton-polaron in TMDs monolayer. 
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Figure 52 : Absorption of exciton-polaron as function of photon energy in weak coupling 

regime for LO phonon for different TMDs monolayer 
 

 

Figure 53 : Absorption of exciton-polaron as function of photon energy in intermediate 

coupling regime for LO phonon for different TMDs monolayer 
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Figure 54 : Absorption of exciton-polaron versus photon energy in weak coupling regime 

coupling for different polar substrate  
 

The plot of optical absorption of exciton-polaron coupling with SO phonon as function 

of the incident photon energy is presented in the case of the weak coupling regime (Fig.54) and 

the intermediate coupling regime (Fig.55) in WS2 monolayer on different polar substrates. One 

can observe that the behavior of the absorption is similar to the case of LO phonon. Moreover, 

the intensity of the absorption is highest for certain polar substrates. The peak of the absorption 

is at the photon energy of around 2meV for all polar substrate. According to the formula of the 

optical absorption for SO phonon, the parameter reflects the polarizability which is also the 

coupling strength between electron and SO phonon. In this figure, the contribution of the 

polarizability for different polar substrates is also presented. We can remark that the absorption 

of an exciton-polaron does not increase linearly with the polarizability. This is in good 

agreement with the result obtained in the case of polaron [162]. 

Fig.56 presents 3D plot of the optical absorption of the exciton-polaron coupling with 

SO phonon as function of the magnetic field and internal distance between TMDs and polar 

substrates for WS2 monolayer in intermediate coupling regime. One can observe that the optical 

absorption increase sharply with increasing of magnetic field, this means that the strength of 

electron-SO phonon coupling is directly affected by magnetic field. Furthermore, the influence 

of the internal distance between monolayer TMDs and polar substrates in presented in this 
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figure. This result reveals that increasing the magnetic field may be useful in enhancing the 

absorption of the exciton-polaron in TMDs. 

 

Figure 55 : Absorption of exciton-polaron versus photon energy for intermediate coupling 

regime coupling with SO phonon for different TMDs monolayer 

 

Figure 56 : Absorption of exciton-polaron as function magnetic field and the internal distance 

between TMDs and polar substrates in intermediate coupling regime 
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 The opical absorption of exciton-polaron versus the photon energy is presented in the 

Fig.57 for LO phonon mode and for differentd TMDs monolayer. One can observe that the 

optical absorption is higher in the case of intermediate coupling regime (a=0.5) and lower in 

the weak coupling regime (a=1) for all the monolayers. This result confirm the comparison 

made between Figs. 52 and 53, thus the particle absorbs better in intermediate coupling 

regime than in weak coupling regime confirming that the electron-phonon coupling regime is 

necessary to increase optical absorption of exciton-polaron in TMDs monolayer.  

 

Figure 57 : Absorption of exciton-polaron as function of photon energy for LO phonon for 

different electron phonon coupling in differents TMDs Monolqyer 
 

3.2.3.2 OPTICAL ABSORPTION OF BIPOLARON  

 The numerical results of optical absorption of bipolaron are obtained from Eqs. 

(251) and (252)  

Fig.58 illustrates the optical absorption of the bipolaron versus the incident photon 

energy for LO phonons in different layers of TMDs with a weak coupling regime. It can be 

noted that there is no absorption for
LO . The threshold value of absorption is at 

LO  . At this value the optical absorption increases and arrives at a maximum and 

decreases slowly with increasing of photon energy. In fact, these optical absorption behaviors 
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are consistent with previous work on monolayer TMDs and others [160, 162, 181].  Optical 

absorption is similar for different TMDs but the strength is not the same for each TMD. This 

behavior may be attributed to the fact that the optical absorption is proportional to the phononic 

energy of the bipolaron in the different TMDs. This suggests that the lower the phononic energy 

of the bipolaron in the TMDs, the lower the optical absorption of a bipolaron. A number of past 

works have been carried out to study the coupling force in such monolayers [178, 182] Then in 

MoS2, bipolaron has enough energy to absorb photon than WSe2, this can be due to the 

dominance of electron-phonon and photon-phonon interactions. Comparing the optical 

absorption in intermediate coupling regime (not shown) with the one in weak coupling regime 

we observe a similar behavior. This can explain why both couplings can be considered 

identically in some cases. 

 

Figure 58 : Optical absorption coefficient of bipolaron versus photon energy in LO phonon in 

different monolayer TMDs materials for bipolaron in weak coupling regime 
 

Fig.59 displays the dependences of optical absorption with magnetic field and internal distance 

between TMDs monolayer and polar substrates for the monolayer MoS2 on SiO2 substrate. One 

can observe that the optical absorption increase with the increasing of the magnetic field, 

increase slowly with the internal distance between TMDs monolayer and polar substrates. For 

high value of magnetic field, the optical absorption increase slowly. We also observe that 

optical absorption increase with internal distance separating the monolayer from polar 

substrates, proving that the strength of the electron-SO coupling directly depends on the internal 

distance between the TMDs and the polar substrates. This result is in agreement with that of Li 
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and Wang [162]. In fact, in some studies [183, 184], carrier phonon coupling between 2D 

materials and the polar substrate has also been recognized, where the trends are comparable for 

the coupling strength with the internal distance. 

 

Figure 59 : Optical absorption coefficient of bipolaron (case of SO phonon) versus magnetic 

field and interal distance between TMDs and polar substrates in MoS2 intermediate coupling 

regime 
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Figure 60 : Optical absorption coefficient of bipolaron (case of SO phonon) versus magnetic 

field B in MoS2 intermediate coupling regime for different polar substrate  
 

The optical absorption of SO bipolaron at intermediate coupling regime in monolayer 

MoS2 for different polar substrates is shown in Fig.60 One can observe the variation of optical 

absorption with the polar substrates. For mTB 6.0 , no absorption is observes in MoS2 then 

for mTB 6.0 a significant change of absorption relates to each substrates highlights the 

impact of the magnetic field on the optical absorption in MoS2 monolayer. The greatest optical 

absorption is observed in SiO2 polar substrate this result is in agreement with those of Hein et 

al. [185] and lowest for SiC. 

3.3 DECOHERENCE OF POLARON, EXCITON-POLARON AND BIPOLARON  

3.3.1 TRANSITION FREQUENCY  

3.3.1.1 TRANSITION FREQUENCY OF POLARON  

 Polaron under electric field: the results obtained is from Eq. (137) with energies 

given by Eqs. (147) and (148) 

Since the polaron states are shifted between the two states, it behaves as a qubit called polaron 

qubit. The 3D plot of the transition frequency of polaron qubit is presented in Fig.61 as function 

of effective confinement length and electric field. We observe that the transition frequency 

increases with increasing of the confinement length, thus transition frequency can be controlled 

by varying confinement length. In this qubit system formed by ground and first excited states, 

the polaron qubit is confined. The increasing of effective confinement length resulting from the 

large transition frequency destroys the superposition states. This result shows that decoherence 

process can be reduced in system of polaron qubits by decreasing the effective confinement 

length. In the same figure, one can remark that the transition frequency increases with the 

increasing of electric field strength. Thus in TMDs system decoherence can also be destroyed 

by increasing the strength of electric field. 
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Figure 61 : Transition frequency of polaron qubit versus effective confinement length for 

different value of electric field  
 

In Fig.62, transition frequency as function of electric field strength is presented for 

different TMDs monolayer. It is observed that the transition frequency increases linearly with 

the increasing of the electric field. This confirms the result obtained in Fig.60. The variation of 

transition frequency as function of different TMDs monolayer layer is also presented in Fig.62 

and one can observed that greater the effective mass of electron in TMDs monolayer is greater 

the transition frequency is. 

 Polaron under microwave and radiowave: the results obtained is from Eq. (137) 

with energies given by Eqs. (163) and (165) 

Fig.63 presents the variation of the transition frequency for SO phonon on the MoS2 

monolayer as function amplitude of the MW for different polar substrates. From this figure it 

is observed that the transition frequency is a decreasing function of the amplitude of the 

microwave. Thus, the influence of the MW on the first excited state is weaker than on the 

fundamental state. In this same plot on can see that the transition frequency decrease with the 

increasing of the polarizability parameter. So the energy gap will increase with the increasing 

of the amplitude of the MW or increasing the polarizability parameter of the substrates and lead 

to reduction of transition frequency. 
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Figure 62 : Transition frequency of polaron versus electric field strength for different TMDs 

monolayer 

 

Figure 63 : Transition frequency of polaron with SO phonon mode as function of amplitude 

of MW for different polar substrates 
 

Fig.64 displays the dependence of transition frequency for SO phonon mode as function 

of amplitude of the RW for different TMDs monolayer. From Fig.64, we can observe that the 

variation of the transition frequency with amplitude are different in various ranges: when the 

amplitude is small, the transition frequency increase sharply with increasing of the amplitude 

and reaches a maximum, when the amplitude continues to increase, the transition frequency 
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decrease from the maximum. This behavior of transition frequency is similar to that obtain in 

ref [186]. The transition frequency is more significant when the amplitude of the RW is small. 

In this same figure, one can observe that the transition frequency increases with the decrease of 

the intrinsic gap of the monolayers. Thus the energy gap decrease with decrease of the intrinsic 

gap of monolayers which leads to the increase of transition frequency. 

In fig.65, the 3D plot of the transition frequency for SO phonon mode as function of the 

frequency of the RW and the amplitude of the MW is presented. one can see that the transition 

frequency oscillates periodically with the increasing of the frequency of the RW conserving the 

same amplitude and period of oscillation, also the transition frequency oscillates with the 

increasing of the amplitude of the MW. Both the frequency of RW and the amplitude of MW 

create fluctuation in the transition frequency. 

 

Figure 64 : variation of transition frequency of polaron for SO phonon mode as function of 

amplitude of the RW for different TMDs  
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Figure 65 : Transition frequency of polaron for SO phonon mode as function of frequency of 

RW and amplitude of MW  

  

3.3.1.2 TRANSITION FREQUENCY OF EXCITON-POLARON  

 Magnetic barrier effect on exciton-polaron: the results obtained is from Eq. (137) 

with energies given by Eqs. (211) and (213) 

In Fig.66, we present the feature of the transition frequency of exciton-polaron with 

respect to magnetic barrier length for different monolayer TMDs. It is observed that the 

transition frequency increases with high magnetic length values. This finding is in agreement 

with Refs. [187-189]. The increasing of magnetic length resulting from the large transition 

frequency destroys the superposition states as weel as quantum entanglement. So, the quantum 

system tends to become classical system. This result shows that decoherence process can be 

reduced in system of exciton-polaron qubits by decreasing the magnetic barrier length. 
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Figure 66 : Transition frequency of exciton-polaron as function of the length of magnetic 

barrier for different TMDs monolayer 
 

Since the frequency is related to fundamental and first excited states, it permits us to 

show that transition between one state to another is possible. This figure also shows that in all 

chosen TMDs monolayer the transition is feasible and can be increased by varying the length 

of the magnetic barrier. The monolayer that presents the great ability for electron to translate 

from one state to another is WS2 and that of the smaller ability is MoSe2. As seen above on the 

energy results, it is easier to talk about electron population in the conduction band (first excited 

state) and electron depopulation in the valence band (ground state). This result gives extremely 

successful insight to the understanding of the optoelectronical properties of direct bandgap 

semiconductors. 

 

3.3.1.3 TRANSITION FREQUENCY OF BIPOLARON  

 Bipolaron in quantum pseudodot: the results obtained is from Eq. (137) with 

energies given by Eqs. (262) and (263) 

As the bipolaron states are shifted between the two states, it behaves as a qubit called 

bipolaron qubit. The variation of transition frequency of bipolaron qubit is plotted in Fig.67 as 

function of the zero point of the pseudo-harmonic potential for different values of the chemical 

potential. We observe that the transition frequency decreases with increasing the zero point of 

the pseudo-harmonic potential, thus transition frequency can be controlled by varying the zero 

point of the pseudo-harmonic potential. In this qubit system formed by the two states, the 
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bipolaron qubit is confined. The decreasing of the zero point of the pseudo-harmonic potential 

resulting to the large transition frequency which destroys the superposition states. 

 

 

Figure 67 : Transition frequency of bipolaron versus zero point of the pseudo-harmonic 

potential for various the chemical potential of the two-dimensional electron gas 

 

This result shows that the decoherence process can be reduced in system of bipolaron qubits by 

increasing the zero point of the pseudo-harmonic potential. In the same figure, the variation of 

transition frequency versus the chemical potential is also presented and one can observe that 

the transition frequency increases with the increasing of the chemical potential. Thus in TMDs 

monolayer system the decoherence can also be destroyed by increasing the chemical potential 

of the two-dimensional electron gas. 

In Fig.68, transition frequency as function of the chemical potential of the two-

dimensional electron gas is presented for different TMDs monolayer. It is observed that the 

transition frequency increases linearly with the increasing the chemical potential of the two-

dimensional electron gas, this result is in agreement with [190] who obtained a linear variation 

of oscillating frequency in RbCl quantum pseudodot qubit under electric field. This increasing 

behaviors confirms the result obtained in Fig.67. The influence of the chemical potential of the 

two-dimensional electron gas on the ground state is smaller than that of the first excited state. 

The variation of transition frequency as function of different TMDs monolayer layer is also 

presented in Fig.68 and one can observed the behaviors of transition frequency is the same of 

all chosen TMDs, but greater the effective mass of electron in TMDs monolayer is greater the 
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transition frequency is. Here our results suggest that in TMDs pseudodot system the transition 

frequency can be controlled either by tuning the chemical potential of the two-dimensional 

electron gas or the zero point of the pseudo-harmonic potential. 

 

Figure 68 : Transition frequency bipolaron versus the chemical potential of the two-

dimensional electron gas for different TMDs monolayer 
 

3.3.2 DENSITY PROBABILITY  

3.3.2.1 CASE POLARON  

 Polaron under electric field: the results obtained is from Eq. (136) with energies 

given by Eqs. (147) and (148) 

Figs.69 and 70 display the electron probability density as function of time. It is observed 

that the probability density oscillates periodically with time, this result is also obtained in [191]. 

Furthermore, in Fig.69, we observe that as the electric field strength increases period of 

oscillation and decreases the amplitude.  In Fig.70, we observe that the period remains constant 

as we varying different TMDs monolayer. As the electron probability density is related to 

transition frequency, our system can be used to transfer information when electron is in 

superposition states. Thus our results exhibit an information transfer in the system and then as 

we increase the strength of electric field, we increase the frequency of information transfer in 

our system. For different TMDs monolayer we have the same frequency of information transfer. 

This result is also important for the construction of logic gates and is in agreement with [192]. 
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It is also shown that the strength of electric field is useful to control the state of the quasi-

particle and increase information transfer, which is in accordance with [191, 147]. 

 

Figure 69 : Probability density of polaron versus time: (a) nmmVF /1.0 , (b)

nmmVF /5.0 , (c) nmmVF /1 , (d) nmmVF /5.1  

 

Figure 70 : Probability density of polaron versus time: (a) MoSe2, (b) MoS2, (c) WSe2, (d) 

WS2, 
 

3.3.2.2 CASE OF EXCITON-POLARON  

 Magnetic field effect on exciton-polaron: the result obtained is from Eq. (136) with 

energies given by Eqs. (211) and (213) 
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The electron probability density variation with respect to magnetic barrier length for 

different TMDs monolayer is presented in Fig.71. One can observe that probability density 

oscillates at same amplitude demonstrating an interstate transfer of information for all 

monolayers. Carrier doping with good transport properties enables us to adjust the band pattern 

of TMDs and control their features. By increasing the magnetic field impurities in monolayer 

TMDs, holders are allowed to fill the conduction (valence) band to points K/K' resulting in the 

Pauli blocking effect, as derived from the Pauli exclusions rule. This case is more feasible 

because we showed that the exciton-polaron is influenced by the surrounding. As the 

superposition state is the major cause of decoherence in a system, the magnetic barrier can be 

used to control it. Because of efficient Coulomb interactions, monolayer TMD represent 

systems that interact strongly, even with high carrier densities. 

 

Figure 71 : variation of probability of excitonic-polaron density as function of the length of 

magnetic barrier for various TMDs monolayer  
 

The probability density is linked to the transition frequency, then the electron is in superposition 

state, thus the entire system of exciton-polaron can be used to transfer information. Thus a 

localized state is observed.  TMD monolayers modulated by magnetic barrier is an excellent 

structure for information transfer and can be important in the conception of some electronic 

component as logic gates [193]. 

3.3.2.3 CASE OF BIPOLARON  

 Bipolaron in quantum pseudodot: the results obtained is from Eq. (136) with 

energies given by Eqs. (262) and (263) 
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Fig.72 presents the electron probability density as function of time. On can observed that 

the probability density oscillates periodically with time, this result is also obtained in [191]. 

Still in Fig.72 we see that as the chemical potential of the two-dimensional electron gas 

increases, period of oscillation decreases and the amplitude remains constants. In Fig.73, the 

electron probability density versus the zero point of the pseudo-harmonic potential is presented, 

we see that the probability density oscillates with the zero point of the pseudo-harmonic 

potential. The period of oscillation increase with the increasing of the zero point of the pseudo-

harmonic potential and amplitude remains constant. The electron probability density is linked 

to transition frequency; thus our system can be used to transfer information in superposition 

states. The results unveil an information transfer between the ground and first excited states and 

then as we increase the value of the chemical potential of the two-dimensional electron gas, we 

increase the frequency of information transfer in our system. 

 

Figure 72 : Density probability of bipolaron as function of time for different values of the 

chemical potential of the two-dimensional electron gas for 
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Figure 73 : density probability of bipolaron versus the zero point of the pseudo-harmonic 

potential 

In the same way as we increase the zero point of the pseudo-harmonic potential, we 

decrease the frequency of information transfer in our system. This result is besides significant 

for the production of logic gates and is in agreement with [192]. As the chemical potential of 

the two-dimensional electron gas equals to add extra confinement to the electron, which will 

lead to an overlap of electron wave function, thus the electron probability density increase with 

increasing of the chemical potential of the two-dimensional electron gas, this result is similar 

to those obtained by Liang and Xiao with electric field [194]. Our result here suggests that the 

chemical potential of the two-dimensional electron gas and the zero point of the pseudo-

harmonic potential is useful to control the state of the bipolaron in TMDs monolayer pseudodot 

and improves the information transfer. 

3.3.3 SHANNON ENTROPY  

3.3.3.1 SHANNON ENTROPY OF POLARON  

 Polaron under electric field: the results obtained is from Eq. (135) with energies 

given by Eqs. (147) and (148) 

In Fig.74, the Shannon entropy is plotted as function of time for different values of the 

electric field. One can observe that entropy changes with time conserving the same amplitude. 

The amplitude of entropy is different to zero for Figs.74a and 74b showing that the system 

totally losses it pure state this is in accordance with [190]. In Figs.74c and 74d, it is seen that 

the polaron qubits can conserve its pure states since the entropy vanishes for some values of 
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time and the electric field. This result shows that the control of the coherence of polaron qubits 

in TMDs monolayer can be done by modulating the electric field. Fig.75 presents the entropy 

of polaron as a function of electric field for different TMDs monolayer. It is observed that the 

entropy evolves with electric field 

 

Figure 74 : Shannon entropy of polaron versus time: (a) nmmVF /1.0 , (b) nmmVF /5.0 , 

(c) nmmVF /1 , (d) nmmVF /5.1  

 

Figure 75 : Shannon entropy of polaron versus electric field : (a) MoSe2, (b) MoS2, (c) WSe2, 

(d) WS2, 

conserving the same amplitude and period. The TMDs monolayer with diselenide are in 

opposition of phase with those with disulfide. The entropy is not zero showing that the system 

entirely losses its pure state. Thus in TMDs monolayer under electric field, there is information 

transfer between electron-phonon interactions showing that decoherence process is a 
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consequence of this transfer of information. Therefore, electric field is a viable tool to control 

the coherence of a system in TMDs monolayer. 

3.3.3.2 SHANNON ENTROPY OF EXCITON-POLARON  

 Magnetic barrier effect on exciton-polaron: the results obtained is from Eq. (135) 

with energies given by Eqs. (211) and (213) 

The variation of Shannon entropy with respect to time and the length of magnetic barrier 

are respectively displayed in Figs.76 and 77. In Fig.76, it is showed that entropy uniformly 

oscillates over time with same oscillation amplitudes in all monolayers and the entropy of the 

system is not zero. This implies that the exciton-polaron manages the decay of its pure states. 

Indeed, entropy is a concept in Information theory that studies the quantification, storage, and 

communication of information [191], thus amplitude of oscillations observed evolves with time 

showing that there is sometimes a death and revival of quantum states. As Shannon's entropy is 

a measure for examining quantum information theory, this behaviour may be the reason why 

quantum states are stored in TMDs systems to transmit information. we observed that entropy 

involves with time conserving their amplitude and period in all chosen TMDs monolayer. The 

entropy is not zero showing that in all TMDs monolayer the system entirely losses it pure states. 

Thus in all TMDs monolayer there is information transfer between electron-phonon interaction 

demonstrating that decoherence is a consequence of information transfer. The amplitude of the 

entropy is less different in all chosen TMDs monolayer proving that the deformation potential 

of these monolayer also affect the coherence of the system in those monolayer. We also 

observed in this figure that the monolayer with sulfur displays higher ground state energy than 

selenide. In Fig.77, we can see that the entropy enhances with the magnetic barrier keeping a 

constant amplitude for all monolayers. This shows that cohesive state overlay (i.e., quantum 

coherence) is a fundamental property of quantum mechanics which makes the difference with 

classical mechanics [195]. 
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Figure 76 : variation of the entropy of exciton-polaron versus time for various TMD  
 

 

Figure 77 : variation of Shannon entropy of exciton-polaron with respect to the length of 

magnetic barrier for different TMDs monolayer  

 

The process of decoherence may be regarded as a result of the transfer of information 

between electron and phonon, whereas in the TMD monolayer, more transfer of energy takes 

place between the electron (hole)-phonon interplay. Thus, the adjustment of the length of the 

magnetic barrier is relevant to the coherency of the system studied. We note high fluctuations 

in entropy in both situations, which is a sign of a damaging interference that induces a strong 

decoherence. Thus both the length of the magnetic barrier and the deformation potential of 

different TMD monolayer are important parameters useful to control the decoherence of a 

system. 

3.3.3.3 SHANNON ENTROPY OF BIPOLARON  

nmlmevmTB B 2,5.0;1.0   

mevmTB 5.0;1.0   



CHAPTER 3: NUMERICAL RESULTS AND 

DISCUSSIONS  165 

 Bipolaron in quantum pseudodot: the results obtained is from Eq. (135) with 

energies given by Eqs. (262) and (263) 

Fig.78 illustrates Shannon’s entropy plot as a function the chemical potential of the two-

electron gas. One can observe that entropy fluctuates with the chemical potential of the two-

electron gas conserving the same oscillations amplitude and period. Fig.79 presents Shannon’s 

entropy as function of the zero point of the pseudo-harmonic potential. We observed that 

entropy oscillates with the zero point of the pseudo-harmonic potential conserving the same 

amplitude and period of oscillation increase with the increasing of zero point of the pseudo-

harmonic potential. In both figures, the oscillations decrease and increase at certain periods, 

showing that at certain moment, quantum state is loosed and appear after.  

 

Figure 78 : Shannon entropy of bipolaron versus the chemical potential of the two-electron 

gas 
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Figure 79 : Shannon entropy of bipolaron versus zero point of the pseudo-harmonic potential 

   

As Shannon entropy is a parameter useful in quantum information theory, the gains and losses 

of entropy can explain the loses and gains of information’s when the decoherence process is 

controlled. This result is in accordance with the one obtained by Kenfack et al. [191]. we can 

also observe that the entropy is zero for some value of the chemical potential of the two-electron 

gas or the zero point of the pseudo-harmonic potential, this means that the state is pure for this 

value. Notice that the chemical potential of the two-electron gas and the zero point of the 

pseudo-harmonic potential influences the Shannon entropy, our result also presented the 

negative values of Shannon entropy which physically means that the density probability is 

highly localized and the bipolaron is more stable in this region of the quantum system. A similar 

result is obtained by Edet and Ikot [196] when studying Shannon information entropy in 

presence of magnetic and AB fields. Studying the Shannon entropy proves that checking 

the coherence of the system can be done by varying the value of the chemical potential of the 

two-electron gas or the zero point of the pseudo-harmonic potential. 

3.3.4 DECOHERENCE TIME  

3.3.4.1 DECOHERENCE TIME OF EXCITON-POLARON  

 Magnetic barrier effect on excition-polaron: the result obtained is from Eq. (138e) 

with energies given by Eqs. (211) and (213) 

Fig.80 displays decoherence time versus magnetic barrier length. Decoherence time is 

firstly constant with small length of magnetic barrier and then increases sharply with increasing 

of the length of magnetic barrier. The magnetic barrier can be considered as an outer excitation 

source, explaining that when the excitation increases, the system quickly loses coherence. This 

behaviour for decoherence time is in accordance to that obtained by Fotue et al [187] in presence 

of magnetic field. Thus, in TMDs monolayer, the magnetic barrier both increases the 

confinement of the electron and the rate of decoherence in the system. In this plot one can also 

observe that decoherence time is similar in both selenide and sulphide monolayers. In single-

layer TMDs, the high effective masses of the carriers, the large mobility and the robust quantum 

confinement induce intense exciton resonances with high energies also in all Monolayers the 

decoherence is in the other of milliseconds. Coherent exciton-polaron control for thin 

optoelectronic atomic structures requires an appreciation and quantification of exciton 

decoherence rates. In this study, we indicate how the magnetic barrier influences cohesive 

quantum dynamics of exciton-polaron in TMDs monolayers. As the decoherence time of 
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increase with magnetic barrier length, this result is applicable in the domain of quantum 

information and the quantum computer which requires a long decoherence time. 

 

Figure 80 : Decoherence time of exciton-poalron versus the length of magnetic barrier for 

different TMDs monolayers. 
 

3.3.4.2 DECOHERENCE TIME OF BIPOLARON  

 Bipolaron in quantum pseudodot: the results obtained is from Eq. (138e) with 

energies given by Eqs. (262) and (263) 

Figs.81 and 82 displays decoherence time versus dispersion coefficient respectively for 

different values of the chemical potential of the two-dimensional electron gas (Fig.81) and the 

zero point of the pseudo-harmonic potential (Fig.82). Decoherence time increase linearly with 

increasing of the dispersion coefficient. This result is similar to that obtained by Kenfack et al 

[191] in Shannon entropy and decoherence of polaron in asymmetric polar semiconductor 

quantum wire. Thus when the dispersion coefficient increases, the system quickly loses 

coherence. Also in Fig.81 are presented the variation of decoherence time as function of the 

chemical potential of the two-dimensional electron gas, on can remarked that decoherence time 

decrease with the increasing of the chemical potential of the two-dimensional electron gas. The 

duration of the bipolaron in the superposition state is longer with small value of chemical 

potential of the two-dimensional electron gas. 
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Figure 81 : Decoherence time of bipolaron versus dispersion coefficient for different value of 

the chemical potential of the two-dimensional electron gas 
 

In Fig.82, on can also observed that the decoherence time increase with the increasing of the 

dispersion coefficient and increase very little with the increasing of zero point of the pseudo-

harmonic potential. The duration of the bipolaron in the superposition state is longer with high 

value of the dispersion coefficient. Our result suggests that decoherence process of bipolaron 

in TMDs pseudodot can be controlled by the dispersion coefficient and the zero point of the 

pseudo-harmonic potential. Thus, as the pseudodot potential can be consider as an outer 

excitation source, it can affect the decoherence process of bipolaron in TMDs. 

In Fig.83 is presented the variation of decoherence time as function of the chemical 

potential of the two-electron gas for different TMDs monolayers. It is observed that 

decoherence time decrease parabolically as the chemical potential of the two-dimensional of 

electron gas increase. This result is in accordance with Fig.82. Decoherence time significantly 

depends on value of the chemical potential of the two-dimensional electron gas. This result is 

exciting because it shows that increasing the chemical potential of the two-dimensional of 

electron gas shrinks the phenomenon of decoherence. Thus a system involving of a bipolaron 

in TMDs monolayers in pseudodot can be used for the fabrication of a qubit which requires a 

very small decoherence time. Furthermore, in this figure are also presented decoherence time 

in function of different TMDs monolayers, one can observe that decoherence time is similar in 

both selenide and sulphide monolayers. Our result can found it application in quantum 

cryptographie which require a short decoherence time.  
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We have therefore noticed that in TMDs under various configurations, the decoherence 

time is of the order of milliseconds, which is fairly short time. Which mean that the system 

remains coherent for a longer period of time, which is very favorable for quantum applications  

 

Figure 82 : Decoherence time of bipolaron versus dispersion coefficient and the zero point of 

the pseudo-harmonic potential 
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Figure 83 : Decoherence time of bipolaron as function of the chemical potential of the two-

electron gas for different TMDs monolayer 

CONCLUSION 

In this chapter, we have displayed the numericals results obtained from the study of the 

properties of polaron, exciton-polaron and bipolaron in TMDs monolayer. Firstly, we display 

the dynamic properties of quasiparticles versus various external potential. Secondly, we present 

the optical properties such as optical absorption and conductivity of exciton-polaron and 

bipolaron in TMDs. Finally, we highlighted the decoherence parameters of quasiparticles in 

TMDs. Discussions made shown that the characteristics of these quasi-particle can be modified 

and improve to build nanodevices with good efficiency. 
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GENERAL CONCLUSION AND PERSPECTIVES 

In this thesis, we have investigated the electric field, the pseudo harmonic potential, the 

magnetic barrier and both microwave and radiowave on polaron, exciton-polaron and bipolaron 

in Transition Metal Dichalcogenides (MoS2, MoSe2, WS2, WSe2) on one hand. These effects 

were isolated in the different systems proposed. On the other hand, the electron phonon 

coupling contribution on exciton-polaron and bipolaron in TMDs under magnetic field have 

also been investigated. We have calculated the ground state energy, the first excited state 

energy, the lifetime, the mobility, the MBM, the stability, the decoherence time, the transition 

frequency, the probability density and the Shannon entropy in the ground and the first excited 

states of those quasiparticles in TMDs by using various variationnals methods. We came out 

that a single qubit can be obtained as a kind of two level system in TMDs. 

In the case of polaron in TMDs, it was found that the ground and first excited state 

energies are increasing function of the electric field, the effective confinement strength, polar 

substrates, the effective mass of electron in different monolayers and the internal distance 

between the monolayers and polar substrates. But these state energies are decreasing function 

of the wave vector. The ground state energy oscillates with the increasing of the frequency of 

microwaves and radiowave but is an increasing function of their amplitudes. The movement of 

polaron in TMDs is increase by the increasing of the electric field, the amplitude of the 

radiowave or microwaves, but this movement can be reducing by increasing the wave vector or 

the internal distance between TMDs and polar substrates. Thus the polaron move more freely 

in the WS2 monolayer. The lifetime of polaron is reduce with the increasing of the electric field 

and increase with the increasing of the wave vector up to 2Ck , then for 2Ck the lifetime 

becomes linear with the increasing of wave vector. Also, lifetime of polaron is an increasing 

function of the amplitude of the microwave and radiowave both with LO and SO phonons. The 

polaron lives long in the WS2 monolayer. Then in TMDs monolayer the lifetime of polaron in 

the other of the milliseconds. According to the transition frequency, it was found that in 

presence of electric field the transition frequency is an increasing function of the electric field 

and effective confinement strength whereas in presence of both radiowave and microwave it 

decrease with their amplitude and fluctuate with their frequency. Furthermore, the presence of 

the polar substrates reduces the transition frequency to one state to another, also the effective 

mass of electron in different monolayer affected the transition frequency. It has been found that 
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the probability density oscillates periodically with time when the polaron is in the superposition 

state of the ground and the first-excited state. The probability density increases with a decrease 

of the electric field or the effective mass of electron in different monolayer. Thus, varying the 

strength of the electric field on a polaron, our system can increase the probability density. 

besides, entropy evolves periodically with time and also with the electric field and is not zero 

proving that the system entirely losses it pure state. Thus in TMDs monolayer there is 

information transfer between electron and phonon trough interaction showing that the 

decoherence process is a consequence of information transfer. The magnitude of the bandgap 

modulation was also investigated in presence of both the microwave and radiowave and it was 

found that the MBM is a decreasing function of the amplitude of the microwave or radiowave, 

it is also a decreasing function of the internal distance between TMDs monolayer and polar 

substrates, then it is an increasing function of the polarizability of the substrates and also of the 

effective mass of electron in monolayer. 

For the case of exciton-polaron, since the binding energy of the exciton-polaron is very 

important, exciton-polaron are said to be stable quasiparticles in the presence of a magnetic 

field. This stability is increased by the presence of the magnetic barrier. Therefore, it is easier 

to speak of electron population in the conduction band and electron depopulation in the valence 

band. The dimensionality of the system has a key role to play in the development of the system. 

The advantages of quantum confinement, the reduction of the dimensionality of the system are 

revealed in the energy of the exciton-polaron. We showed that molybdenum has a higher ground 

state energy than tungsten. We have seen that the effective mass decreases as the length of the 

magnetic barrier becomes high. With large values of the length of the magnetic barrier, there is 

a greater change in the mass of the exciton-polaron. This is due to the interaction between the 

acoustic phonon and the exciton-polaron. This result proves that the transport properties of an 

exciton-polaron are robust. In WS2, the transport properties may be more interesting than those 

of MoSe2. Those parameters evaluated inform on the efficient transport characteristics of the 

studied system. We have also shown that mobility increases in all single-layer TMDs with 

increasing of the length of the magnetic barrier. To characterize the environments that conduct 

electric current, we need to introduce magnetism into an exciton-polaron system. It is desirable 

to understand the physics of multiple bodies in TMDs in order to use 2D appliances to develop 

optoelectronic systems. The results also reveal that the exciton-polaron is also interesting in 

quantum information theory due to the observed localized states. The outer magnetic barrier 

therefore affects the system coherence. Decoherence process is reduced enabling the transfer of 
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information in TMD monolayers. Finally, the modulation of the length of the magnetic barrier 

is primordial to control the exciton-polaron transport and coherence of the system. 

Concerning the bipolaron in pseudodot quantum qubit, it was found that mobility and 

transition frequency of bipolaron are an increasing function of the chemical potential of the 

two-dimensional electron gas and also an increasing function of the effective mass of electron 

in TMDs, thus, bipolaron moves more freely in WS2 monolayer; moreover, the mobility and 

transition frequency decreases with the increasing of the zero point of the pseudo-harmonic 

potential. Thus both the chemical potential of the two-dimensional electron gas and the zero 

point of the pseudo-harmonic potential can be used to control displacement and the transition 

of electron to one state to another in TMDs. The electron density probability oscillates with the 

zero point of the pseudo-harmonic potential and the period increase with the increasing of the 

zero point of the pseudo-harmonic potential. We also shown that the zero point of the pseudo-

harmonic potential and the chemical potential of the two-dimensional electron gas destroys 

decoherence of bipolaron state in TMDs. The pseudodot effect on bipolaron will be a main 

issue which can help to improve the control of the decoherence of bipolaron in TMDs. 

We theoretically study the energy, the effective mass and the optical absorption of the 

exciton-polaron and the optical absorption of the bipolaron and its effects on the bandgap 

modulation in TMDs monolayer under the applied magnetic field. It was found that the energies 

of Landau level of exciton-polaron are governed by the interaction between the intensity of the 

electron-phonon coupling and the optical phonon energy. The type of electron phonon coupling 

affects the zero energy of the Landau level. It was also shown that in the presence of the 

bipolaron, the MBM of TMDs are flexible, the magnetic field strongly affects the MBM in 

intermediate and strong coupling regime, thus enhances the conductivity of TMDs monolayer 

and that in weak coupling regime, the magnetic field cannot be used to tune the MBM. It was 

also found from the energy and optical absorption results that the LO phonon has always more 

impact on those parameters than the SO one. The result of the optical absorption shows that it 

increases in the following order MoSe2, MoS2, WSe2, and WS2 for exciton-polaron in TMDs 

whereas in the case of bipolaron MoS2, has enough energy to absorb than WSe2. The absorption 

can be increased by reducing the internal distance between monolayer and polar substrate or by 

increasing the magnetic field, the magnetic field and the internal distance separating the 

monolayer and polar substrates affects the optical absorption in the TMDs. By study the 

stability of bipolaron, it was shown that despite the fact that the coulomb repulsion is enhances, 

the phonon mediated attractive electron-electron attraction still dominated. Thus, the binding 
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energy remain positive and indicated that in all selected TMDs monolayer, the bipolaron is 

stable. 

This thesis brings new ideas and offers a possible approach to developp new challenges 

to further optimize the efficiency of TMDs in technology. Also, our results are meaningful for 

the design and implementation of quantum computers both theoretically and experimentally 

and also for the control of decoherence in quantum systems. The results obtained are also very 

helpful in quantum optics, quantum cryptography, quantum information and electronic 

nanodevices. 

Nevertheless, there are still some unanswered questions which we think can be the 

subject of future investigations: 

 Deal with applications, in future works we will study dynamic and decoherence of 

polaron and bipolaron taking into account the influences of many parameters to bring 

out these results in a realistic experimental system and show their significant implication 

in quantum computation 

 Study the relaxation of the particle that can be the cause of decoherence; 

 Extends the studies to TMDs multilayers and metallic TMDs 

 Study the properties of polaron and bipolaron and exciton-polaron in TMDs multilayers 

by taking into, the screening effect. 

 Consider spins to investigate Zeeman effect when calculations are done in the ground 

state; 

 Study the stability of exciton-polaron in TMDs monolayers 
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