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Abstract

This research work consists in building a nonlinear electrical transmission line model, capable

of generating different localized wave envelopes at very high frequencies. From the literature

review, it appears that the weakness of the nonlinearity arising from the line components limits

the formation of a wide variety of localized wave profiles. Consequently, we believe that the

incorporation of Josephson junctions at very low temperatures will increase the non-linearity of

the line. This, in turn, will facilitate very high-frequency propagation of the various localized

wave patterns. To verify this research hypothesis, we first demonstrated the possibility of

formation of different wave patterns using the fractional derivative applied to a simple line.

Next, a nonlinear transmission line was realized as an initial model of a parallel Josephson

junction network. A discrete equation is deduced from Kirchhoff’s laws. By applying the

semi-discrete perturbation method to the equation, the dispersion relation, the group velocity

and the nonlinear Schrödinger equation of the flux envelope were derived from the model. As

results obtained, the propagation of bright and dark solitons for two frequency regimes of the

infrared order. What’s more, the plasma frequency ωj behaves like an oscillator in the system,

as it decreases, the instability gain decreases while cancelling out the envelope amplitude. As it

increases, so does the instability, leading to the formation of localized waves, notably peregrines

and super-rogue waves. Numerical simulation of the discrete line equation has enabled us to

confirm the propagation in the line of bright and dark solitons, and others localized wave

patterns as obtained analytically.

Keywords: Josephson junction, plasma frequency, Schrödinger equation, perturbation

method, localized wave, modulation instability.
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Résumé

Ce travail de recherche consiste à construisons un modèle de ligne de transmission électrique

non linéaire, capable de générer différente enveloppe d’ondes localisées à très haute fréquence.

De la revue de littérature, il ressort que la faiblesse de la non linéarité issue des composants de

la ligne, limite la formation d’une grande diversité de profils d’ondes localisées. En conséquence,

nous pensons que l’incorporation des jonctions Josephson à très basse température augmentera

la non-linéarité de la ligne. Ce faisant, il y aura la facilitation de la propagation à très haute

fréquence des différents modèles d’ondes localisées. Pour vérifier cette hypothèse de recherche,

nous avons d’abord montré à l’aide de la dérivée fractionnaire appliquée à une ligne simple, la

possibilité de formation des différents modèles d’ondes. Ensuite nous avons réalisé une ligne de

transmission non linéaire en tant que modèle initial d’un réseau de jonction Josephson parallèle.

Des lois de Kirchhoff est déduite une équation discrète. En appliquant la méthode de pertur-

bation semi-discrète à léquation, la relation de dispersion, la vitesse de groupe et l’équations de

Schrödinger non linéaire de l’enveloppe du flux ont été dérivées du modèle. Comme résultats

obtenus, la propagation des solitons brillants et sombres pour deux régimes de fréquences de

l’ordre de l’infrarouge. Bien plus, la fréquence plasma ωj se comporte comme un oscillateur

du système, lorsqu’elle diminue le gain d’instabilité diminue tout en annulant l’amplitude de

l’enveloppe. Lorsqu’elle augmente, l’instabilité augmente aussi, ce qui entraine la formation des

ondes localisées, notamment les pérégrines et les super rogue waves. La simulation numérique

de l’équation discrète de la ligne nous a permis de confirmer la propagation dans la lignes des

soliton bright et dark, et les modèles d’ondes localisées tel que obtenus analytiquement.

Mots clés: Jonction de Josephson, fréquence plasma, équation de Schrödinger, méthode

de perturbation, onde localisée, instabilité de modulation.
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General Introduction

The generation of superconducting states in materials (metals) has attracted a great deal

of interest from physics and mathematics researchers in recent years, following Brian David

Josephson’s discovery of the Josephson effect in 1962 [1]. The incorporation of the Josephson

junction into a conducting metal allows, at very low temperatures, the generation, control and

protection of a superconducting state in that metal [2]. Non-linear electrical transmission lines

thus offer a real advantage for the study of this phenomenon, both for their importance in data

transport and for the ease they offer in terms of modeling.

Indeed, a transmission line is a structure that serves as a support and guide for electromagnetic

waves [3]. It can also be defined as a combination of passive components used to transport a

signal from a source (or transmitter) to a load (or receiver). As such, transmission lines are

used to carry various types of signals (electromagnetic, telephone, digital or analog) between

a transmitting source and a receiving load, or vice versa. The distance being transmitted, the

bandwidth of the signal and the technology used depend on the type of information. Each

line has a specific transport capacity, which depends on the nature of the material it is fab-

ricated from, and the characteristics of the signal to be transported. The physical modeling

of the transmission line by the localized element approach has led to the replacement of the

physical structure by a series of components made up largely of capacitors, inductors and re-

cently of JJ whose response to current and voltage respectively is highly nonlinear. Since these

are nonlinear and dispersive media, modifying the characteristics of these components easily

allows the synthesis of different types of nonlinear media [4]. This modeling process follows

the theory of transmission lines (TL), which is a well-known theoretical tool for the analy-

sis and design of materials for electromagnetic (EM) applications, including the study of the

EM properties of non-linear electrical transmission lines (NETL). Therefore, a NETL model is
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identified a number of characteristic constants, including its impedance, its damping constant

(which specifies the losses in the line), and the signal travel speed (depending on the material

used). As dispersion is standard, since it comes from the structural periodicity between suc-

cessive cells, a variety of transmission lines have been experimented with different nonlinear

elements [5–20].This succession of numerical and analytical work has given great satisfaction,

especially on the dynamics of modulated waves in NETLs. Thus, the analysis of various non-

linear excitations in these low nonlinearity models has allowed the resolution of problems in

quantum mechanics, in plasma media, in the control of medical systems, in signal transport

and of course in communication support by NETLs [21–25]. Traveling wave solutions are usu-

ally obtained by reducing the discrete nonlinear evolution equations into associated ordinary

differential equations. Thus, a plethora of nonlinear differential equations have been derived

to describe a variety of nonlinear wave phenomena in many areas of physics such as quantum

mechanics, plasma physics, fiber optics, metamaterials, condensed matter physics, field theory,

fluid dynamics, to name a few [26–35]. The literature at our disposal shows that in electron-

ics, the modeling of phenomena leads mainly to three known nonlinear differential equations

such as: the Korteweg-de Vries equation (KdV), the nonlinear Schrödinger equation (NLS)

or the complex Ginzburg Landau equation (CGL) with periodically varying dispersion and

nonlinearity coefficients [36]. For example, some electrical systems have a potential dependent

capacitance with a non integer power law, which has memory or transient effects [37–39]. In the

last decades, countless integration patterns have been proposed to construct exact analytical

solutions and approximate numerical solutions to the obtained nonlinear differential equations,

including the subequation method, the Sinh-Gordon expansion method, the new extended di-

rect algebraic method, the exp(−ψ(ξ)) expansion method, the rational hyperbolic method, the

generalized auxiliary equations technique, the generalized Kudryashov method (GK), the frac-

tional and variational iteration algorithm I, the improved variational iteration algorithm II,

the efficient method without local mesh, the collocation method without local mesh, a new

generalized Jacobi elliptic function method, the extended tanh method, the rational hyperbolic

function method, the rational exponential function method, the tanh-coth method, just to name

a few [40–43].
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However, recent studies have shown that at very high frequencies, new phenomena appear

that cannot be taken into account by integer-order nonlinear partial differential equations, as is

the case at low frequencies. This situation has led on the one hand to the use of nonlinear dif-

ferential equations with fractional derivatives to model these nonlinear power lines, in order to

obtain solution profiles of the rational type [44] . However, for very high frequencies, this solu-

tion seems limited. This is why several researchers have recently developed very high-frequency

superconducting power lines using the Josephson junction, in order to reduce ohmic losses and

take into account the memory effect thanks to its high non-linearity. In practical terms, the

Josephson junction is the basis for the design of the SQUID, a femto-Tesla sensitive magne-

tometer with numerous applications in medicine, geophysics and biology. In addition, RSFQ

logic using the Josephson junction as a building block enables circuit speeds on the order of

hundreds of GHz [45], while featuring negligible power consumption and reduced architectural

complexity [46]. For this reason, Abdoulkary et al. [47] studied envelope solitons in a nonlin-

ear left-handed transmission line with a Josephson junction. They started from a unit circuit

model representing a left-hand transmission line to establish the nonlinear Schrödinger equa-

tion (NLSE) using the reductive perturbation method. They obtained a nonlinear Schrödinger

model that is well known to admit solitary wave solutions. Thus, they realized that depending

on whether the PQ product is positive or negative, two frequency regimes form around 10 GHz,

where bright and dark solitons form. More recently, Houwe et al [48] have incorporated a high-

nonlinearity Josephson junction into a left-hand line so that it supports many types of solitons

compared with previous studies. Applying the generalized Riccati method, they obtained, in

addition to bright and dark solitons, the kink soliton.

Nevertheless, we believe that previous work has been limited to metamaterials, and the

frequencies obtained are below those expected by theory in this field. What about conventional

materials? Could we reach frequencies in the infrared range, which corresponds to the vibra-

tional frequency of lattice phonons?

As a general hypothesis of this research, we believe that an electrical transmission line model

consisting of a network of parallel Josephson junctions, taking into account parasitic capacitive

effects in the line, will facilitate the propagation of different wave profiles localized at frequen-
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cies in the infrared range.

From this general hypothesis we formulate the following specific objectives:

• Demonstrate, with the aid of fractional derivatives, the possibility of propagation in non-

linear transmission lines of rational solitons such as brilliant W-form solitons;

• Construct a nonlinear transmission line model based on a compact parallel Josephson

junction network capable of taking into account all the effects involved in the detection

of a very high-frequency signal;

• Use the reductive perturbation method in the semi-discrete approximation to construct

the nonlinear Schrödinger equation (1-NLSE) representing the mathematical model of the

line;

• Show analytically the possibility of dark and bright soliton propagation, and other local-

ized waveforms using modulation instability studies;

• Confirm the propagation of the various localized wave profiles above using numerical

simulation.

This work is structured around three chapters as follow :

Chapter I is devoted to the literature review and preliminaries of this work. To this end,

in the first section we present generalities on nonlinear power lines, including basic con-

cepts, the modeling process, types of nonlinear components and the resulting integer or

fractional order differential equations. Then, in the second section, we present the con-

cept of the localized wave, in particular the soliton and its evolution, the types of soliton

propagated in power lines and the investigation methods used, the concept of modulation

instability, and finally the applications of the various localized wave models. The aim

of this approach is to identify the structural and functional limits of existing lines and

the models and equation solutions to which they lead, and then to propose a new, more

efficient system.
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Chapter II is reserved for the presentation of our line model and the method we will use in

this study. We first present the two methods of fractionnal order derivative for investi-

gating the soliton solution, namely: the new extended direct algebraic method and the

new sub-ODE method. Next, we model our NETL and apply Kirchoff’s laws to a unit

cell and derive the discrete Sine-Gordon equation that serves as the mathematical model

for our line. In addition, because the amplitudes of the wave are sufficiently small, we

perform a limited sinusoidal development and a semi-discrete approximation of the initial

wave, which we subject to a slight transverse perturbation. By calculating the algebraic

equations and cancelling the third-order coefficients, we obtain the nonlinear Schrödinger

equation governing the envelope dynamics. This operation will enable us to highlight the

essential parameters of the line, such as the dispersion relation, group velocity, dispersion

coefficients and nonlinearity. At the end of this operation, we will present some of the

modulation instability analysis methods used in different fields of physics, and we will

introduce the method we have chosen for our study. This mathematical tool will enable

us to establish the zone of wave propagation stability, identify the key parameters of

our line’s stability and generate other localized wave models.moreover, the Schrödinger

equation obtained has already been the subject of several studies and possesses analyti-

cal solutions that are already known, including bright and dark solitons, peregrines and

super-scare waves. We simply need to associate the dispersion (P) and non-linearity (Q)

parameters obtained from the analytical study of the line with these solutions, in order

to represent and verify the characteristics of the evolution of these waves in the line.

Consequently, in order to verify the validity of our analytical approach and determine the

evolution of the system taking into account the instability zone. We carried out numerical

simulations using the MATLAB ODE45 solver, setting the number of cells to N=1001 for

the discrete equation of motion with a given perturbed initial condition.

Chapter III is devoted to results and discussion, and is divided into five sections. In the first

section, we study the different types of soliton solutions for the fractional nonlinear dif-

ferential equation conforming to NETL using, on the one hand, the new extended direct

algebraic method and, on the other hand, the new Sub-ODE equation. In Section 2, we
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perform a stability analysis of our model, and note that there is indeed a stable and an un-

stable wave propagation zone. In Section 3, we study the analytical propagation of bright

and dark solitons for two cutoff frequency regimes. We represent the soliton at different

times and appreciate the evolution and profile of the soliton during its evolution. Section

4 also presents analytical solitons, in particular peregrines and super rogue waves. In Sec-

tion 5, numerical analysis confirms the propagation of the various modulated wave profiles

obtained analytically. What’s more, this numerical analysis has enabled us to appreci-

ate the wave profile after a certain time, which is not the case with the analytical method.
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Chapter 1

Literature Review

1.1 Introduction

Over the past four decades, the advent of the Internet has led to an exponential increase in

telecommunications requirements, including interconnection devices such as : telephone lines,

power lines, waveguides for high frequency signals and fiber optics. The increase of the frequency

to 60 GHz in the millimeter frequency band, which should allow higher data rates of the order

of 5 to 7 Gb/s, was the answer to the growing requirements of broadband telecommunication

systems. This increase needs the realization of more integrated and more efficient active or pas-

sive circuits. However, if optical fibers are to progressively replace the TL for long-distance and

transcontinental telecommunication links, the latter must continue to be used in various fields,

including electronic circuits, local communications, and electric power transmission. This is

why their study is essential, in order to use them correctly, especially at high frequencies where

propagation times become relatively appreciable, but also for new applications of the latter.

This requires a perpetual adaptation of electronic systems to a very high integration of compo-

nents and transmission systems. This is to overcome the problem of the increasing congestion

of the allocated bands and the significant increase of the required data rates [49]. After the

discovery of Maxwell’s equations that made possible the propagation of electromagnetic waves,

the scientific world is looking for a long distance and lossless energy transport system based

on the exploitation of electromagnetic propagation on a material support. From a structural

point of view, several material supports serving as electromagnetic waveguides have been tested.
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Among the most used supports, we have bifilar cables, coaxial cables and microstrip cables,

each having its advantages and disadvantages. However, all these supports have a common

difficulty for very high frequency signals, the losses that are manifested by the degradation of

the transported signal or the fires due to the Joule effect. Thus, the soliton as it was discov-

ered by John Scott Russel with amazing properties such as its ability to keep intact its shape

and speed during its propagation has interested the community of researchers in electronics, to

overcome the previous difficulties related to the losses of the transported electrical energy. In

this sense, several studies on the modeling of NETLs have been conducted [6, 50, 51]. In this

regard, the mathematical modeling of nonlinear electric transmission lines has led mainly to

three types of nonlinear differential equations such as: the Korteweg and De Vries equation, the

Ginsburg-Landau equation and the nonlinear Schrodinger equation, representing the dynamics

of voltage or potential along a line, in the approximation of the slowly varying envelope [7].

However, recent studies have shown that at very high frequencies, new phenomena appear and

cannot be modeled by the nonlinear partial differential equations of integer order. This situa-

tion is due to the weakness of the nonlinearity brought by the components of the transmission

line. We ask ourselves the question, if the increase of the nonlinearity of the network by a

Josephson junction will not allow to propagate the energy without loss at very high frequency?

In order to identify the diversity of concepts and theoretical frameworks belonging to various

fields and disciplines in this work, a conceptual clarification, a review of methods and solutions

in NETLs is necessary to get the most relevant picture of the situation. Thus in this chapter,

we will identify the theoretical framework that will allow us to carry out this research, namely:

transmission lines, the Josephson junction, the different types of localized waves propagated in

NETLs and the modulation instability used.

1.2 Generalities on Electrical Transmission Line

1.2.1 Basic concept on electrical transmission line

1.2.1.1 Line

A line is a geometric shape, considered as extended in length, but of negligible width (thickness).

The use here of this mathematical concept refers to the relationship between the dimensions of
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the structure studied, in particular the length considered here as infinitely large compared to

the thickness of the structure. This generally cylindrical shape is said to be homogeneous when

its section is linearly constant.

1.2.1.2 Transmission Line

A transmission line is a structure used to conduct electromagnetic waves [3]. It can also be

defined as a combination of conductive components used to carry an signal from a source

(or transmitter) to a load (or receiver). A transmission line is identified by its characteristic

impedance, its damping constant (which specifies the losses in the line), and the speed of signal

traveling (depending on the material used). They are used to transport various signals such

as electrical, telephonic, digital or analog, between a transmitting source and a receiving load,

or vice versa. Therefore, the distance to be transmitted, the bandwidth of the signals and

the technology used depend on the type of information. Each line has a specific transport

capacity, which depends on the nature of the material it is made of and the characteristics of

the signal to be transported. Moreover, this capacity depends on the structural configuration

of the cable. Indeed, these transmission lines known as cables are generally composed of one

or more conductive lines, each surrounded by a layer of insulation called dielectric. Thus, we

find coaxial cables, bifilar lines (straight pair, twisted pair or shielded pair), coplanar lines or

microstrip lines, etc.

1.2.1.3 Electrical Transmission Line

A power transmission line is a device usually consisting of two or more parallel conductors

designed to transmit or guide electromagnetic energy from one point to another. Power lines

are used in two main areas, covering a wide range of frequencies and powers :

- The transmission of electrical energy for lighting and powering machinery and other devices

in general (they use base frequencies up to 50Hz).

- The transmission of information in the form of low power, low voltage electrical signals at

frequencies covering a wide spectrum (they use very high frequencies going beyond 10MHz), in

the field of communications, electronics, etc.

Below we present the most common transmission line and their specific characteristics.

1.2.1.4 Type of electrical transmission line

Materially and structurally, transmission lines are available in various forms, each of them with
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its advantages and inconveniences. Among the most widely used and known we have :

• The two-wire line

These are lines with two identical, parallel copper conductors, each covered with a solid di-

electric and both held in close proximity by insulating separators. An example is the ordinary

electrical cable used as an extension cord in the home. However, these bi-filar cables are be-

ing used less and less for energy transmission, although they are inexpensive but have limited

losses. At high frequencies, a two-wire line with small diameter conductors 2a in front of their

separation 2d. Around each conductor, the electric field is practically radial, and the current

penetration practically uniform around the circumference. The linear resistance of the line

increases as the square root of the frequency of the propagating wave. At very low frequencies,

the resistance reduces to that of direct current. The consequence of these different effects is the

overall increase in losses due to wire resistance and dielectric losses. There are several types of

two-wire lines:

Straight pairs: This kind cable uses two parallel conductors separated by a layer that main-

tains a gap between them. Compared to other two-wire lines, this cable has the following

disadvantage : high losses, low bandwidth and high sensitivity to noise.

Figure 1: Straight pairs [3]

Twisted pairs: In this type of cable, the two wires are twisted together and are also

separated by a layer that maintains the spacing between them. It has a characteristic impedance

of 600 Ohms [54], and is used to carry telephone, digital or analog signals. This two-wire cable

is widely used in the telecommunications and computer industries and has the advantage over

other cables of being less sensitive to noise.

Shielded Twisted Pairs: In this type of two-wire cable, the two wires are twisted and are

also separated by a layer that provides spacing between the two, with the exception that it is
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Figure 2: Twisted pairs [3]

surrounded by a conductive foil which serves as noise immunization contrary to two-wire cable.

It is used in the computing industry as a 10 and 100 Mbps network cable.

• Coaxial line:

The coaxial line, also called coaxial cable, is the most common transmission line. Because it

can carry different frequencies up to 3 GHz. Structurally, coaxial cable consists of two metallic

conductors: an axial cylindrical conductor, and a peripheral cylindrical conductor used to block

internal losses and stray radiation from the line. Figure 3 shows the structure of a coaxial line.

The center conductor is shown here as braided strands, but is often a solid wire. The dielectric

is usually solid polyethylene, but sometimes it is a polyethylene wire wrapped around the center

conductor with a large helix pitch, or a polyethylene foam to achieve lower permittivity (lower

linear capacitance) and higher propagation speed. The shield is made of fine braided wire, but

aluminum foil wrapped around the dielectric is often used. The envelope or sheath is also made

of various materials that are more or less resistant to environmental conditions, polyethylene,

polyvinyl chloride, etc. In this respect, the losses depend strongly on the quality of the dielectric

used. The bandwidth is important. At high frequencies, the current flows over the surface of

the facing conductors, and the linear resistance increases as the square root of the frequency.

The use of coaxial cable extends to any application where a signal must undergo a minimum

of distortion and attenuation, or where the elimination of external interference is paramount.

Coaxial cables are used in the following areas: Telecommunication, aerospace, radio/television,

computer etc.

For example, for a coaxial line with a central conductor of radius a = 2mm and a screen of

internal radius b = 6mm spaced by a solid dielectric of relative permittivity equal to 2,2. When

the losses are negligible, we evaluate its characteristic impedance at Zo = 44, 4ohms and the

propagation speed of a signal in this cable at u = 2, 02.108m/s.

• Printed line
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Figure 3: Coaxial line [3]

Parallel plates : Parallel plates lines are rarely used in practice, but they can be used to

simplify the analysis of more complex waveguides. The figure below gives an example.

Figure 4: Parallel plates lines [3]

Coplanar lines : The coplanar line is a waveguide often used in integrated circuits. It

is similar to the microstrip line [54], except that the grounds are placed on each side of the

conductor, as in figure 5. In the high frequency range, above a few 100 MHz, special lines are

used on circuits to connect "chips" or components together. They are cheap because they use

printed circuit technology. The different existing geometries are presented in the following.

The electrical characteristics of the lines depend on the dimensions of the metallizations and

the characteristics of the materials used (metals and dielectrics).

- It has no loss at any frequency ;

Figure 5: Coplanar lines [3]
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- It resists high voltage overloads.

- It has stable characteristics (characteristic impedance, damping constant and speed of signal

traveling);

- It is compatible in terms of size with the standard chords we have in stock.

All these phenomena must be modeled for their eventual mathematical analysis and control.

1.2.2 Modelisation of electrical transmission line

There are two approaches to modeling a transmission line, modeling by Maxwell’s equations

(where the structure of the transmission line depends on the characteristics and dimensions of

the dielectric substrate, as well as the propagation of the electromagnetic field in this substrate),

or modeling by localized elements (where the transmission line is represented by electrical

components, such as capacitors, inductors, and resistors where appropriate). In this study, we

use the electrical circuit or localized element approach. Like the theory of electrical circuits

from which it is derived, the theory of transmission lines adopts the same vocabulary and the

same notation convention. As such, the modeling of a transmission line is not totally different

from the modeling of a simple circuit, it is a serial duplication of this circuit. The simple circuit

or unit cell represents a small section dx of the line, while the serial duplication of the cell

represents the entire line. The choice of this section is dictated by the order of magnitude of

the wavelength of the input signal which is the voltage. Thus, for very high frequencies the

wavelength or the section must be very small, because the wavelength is inversely proportional to

the frequency. It is therefore necessary to choose a section less than or equal to the wavelength

of the signal. From a physical point of view, this choice is justified by the need to control

the behavior of the line parameters, because some physical phenomena whose effects could be

neglected at low frequency, can not be at high frequency. Thus, the modeling of transmission

lines for high frequency signals uses very small cross-sections modeled by parameters familiar

from circuit analysis such as line resistance, line inductance and line capacitance. Moreover,

for high frequencies these terms are more dependent on Maxwell’s equations, including the use

of electric and magnetic fields.

1.2.2.1 Modeling an electrical transmission line with loss
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Figure 6: Transmission line

Modeling a lossy transmission line means representing it by the essential elements, which cor-

respond to its response to the input current or voltage, in the form of propagation constants.

It is said to be lossy when it takes into account all the energy losses by Joule effect during

the propagation of the voltage. Indeed, starting from the fact that the speed of propagation

of the electric voltage is not instantaneous in the line, but depends on the characteristics of

the material used. A specific study of the evolution of the intensity and the voltage in the line

was carried out. Thus, by considering the source as the spatial and temporal origin and each

point of the line L, corresponds to a couple of magnitude of voltage and intensity (V, I). This

allowed us to see that these two quantities are functions of the position x and time t: V (x, t)

and I(x, t). By choosing a section dx of the line such that v and v+dv are the voltages at the

input and output of the element, and i and i+di are the corresponding currents. It can be seen

that, for each section dx of the line, the following effects must be taken into account, as soon

as we are in the variable voltage regime :

- resistive effect of each of the two conductors, because the conductors are not perfect (non-

zero resistivity) and the skin effect must be taken into account (decreasing current density as

the conductor is inserted). This effect results in a Joule effect, corresponding to an energy

consumption, which can be represented by an electrical resistance of value Rdx;

- conductive effect of the insulator which separates the two conductors, because the insu-

lator is not perfect (non-zero conductivity) and thus also causes a consumption of energy by

Joule effect, which one can model by an electric conductance of value Gdx;

- inductive effect translating the self-induction effect of the conductive segment on itself,

tending to slow down the current variations (Lenz’s law), this effect is represented by an induc-
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tance of value Ldx;

- capacitive effect highlighted by the system composed of the two conductors separated by

the insulator, translating the mutual dependence of the variation of charge on each of the two

conductors tending to slow down the variations of voltage. This effect is represented by a ca-

pacitor of value Cdx, hence the following local model (see figure 7).

These quantities R, L, C and G are called the primary constants of the line. The orders of

magnitude of L and C are however variable depending on the geometry of the line. However,

the current values are, for L between 50 and 500 nH/m, for C between 20 and 100 pF/m.

Figure 7: Model of electrical transmission line with loss

1.2.2.2 Modeling a lossless electrical transmission line

Still called ideal line, the transmission lines without losses are lines for which the losses by Joule

effect are negligible. This type of line will be modeled as the previous line but considering the

zero resistive effects (R=0) and the zero conductive effects of the insulator (G=0). So here

we have to find a type of material (metal) with zero resistance and an insulator with infinite

resistance. In reality, such a type of material does not exist at room temperature, and even less

so an insulator of infinite resistance, which at high frequency always becomes a conductor (see

Figure 8).

NB: The above line is also called the conventional line or straight hand line. However, when we

swap the position of the capacitor with that of the inductor, and duplicate to n-order, we obtain

a line called the left-hand transmission line, which models a material called the metamaterial.

The concept of metamaterials was mentioned for the first time in the field of optics in 1968,

by the Russian physicist Victor Veselago [56]. Several other forms of modeling are given in the

literature depending on the effects that we want to take into account and the form of the signal
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that we want to obtain.

Figure 8: Model of lossless electrical transmission line

1.2.3 Elements of nonlinearity in the electrical transmission line

Electrical transmission lines are said to be nonlinear if they contain in their models nonlin-

ear electrical components, such as the capacitor, the coil, the nonlinear resistor or a Josephson

junction. We already know that, in a transmission line, the dispersion comes from the structural

periodicity between the successive meshes. The combination of nonlinearity and dispersion in

the line leads to nonlinear differential equations responsible for the phenomenon of voltage

propagation in the form of a progressive wave of soliton type. This non-linearity is concretely

manifested in the line by the variation of the primary parameters of the line according to the

frequency of the voltage at the terminals of the line, such as: capacitor, chokes, Josephson

junction, and in some cases the resistance. The most commonly used nonlinear component is

the capacitor with capacity that varies with the applied voltage. Thus, depending on the envi-

ronment that we want to model, we will choose the appropriate nonlinear component(s), which

we will place on the branches in series or in parallel. In recent years, the Josephson junction

has been sufficiently solicited for its strong nonlinearity. The first non-linear transmission line

was realized by Hirota and Suzuki, with a variable capacitance depending on the voltage. In

the rest of this work, we have chosen two non-linear components which are the capacitor and

the Josephson junction that we will explain below.

1.2.3.1 Nonlinear capacitor

When the nonlinear element is a capacitor, which means that it has a capacitance that varies

with the voltage applied across it. This is a variable capacitor, most commonly used for radio
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tuning, which allows the amount of electrical charge it can hold to change over a certain range,

measured in a unit called farads. Nonlinear capacitors come in the form of reverse biased varac-

tor diodes (variable capacitance diode), more commonly known as varicap, is a semiconductor

electronic device very closely related to a standard diode but with certain capacitances similar

to a capacitor. The varactor diode is used in place of a variable capacitor which is a more

expensive and difficult device to install. On the other hand, due to the shortcomings presented

by nonlinear chokes and resistors, most of the work on nonlinear power lines is conducted by

considering capacitors as nonlinear elements, but with different types of nonlinearity relation-

ship between voltage and capacitance [57]. In this study, the nonlinear capacitor in this network

is a varicap diode that admits that the capacitance varies with the applied voltage.

1.2.3.2 Nonlinear Josephson junction

• The Josephson effects and applications

The Josephson effect is the passage of paired electrons called Cooper pair through a thin in-

sulating dielectric barrier placed between two superconductors. This pair of electrons crosses

the insulating layer by tunneling effect [58], without any resistance from the metal. This is

one of the remarkable effects of superconductivity, called a macroscopic quantum phenomenon

that appears at very low temperatures in some metals. As a consequence, there is no voltage

drop as long as the current remains below a specific level, called critical current. Indeed, the

voltage positive initial constant of disturbance of electrons maintained indefinitely. All of these

effects were predicted by Brian D. Josephson in the early 1960s. This effect can be controlled

by applying a magnetic field which reduces the intensity of a supercurrent through the barrier.

Indeed, magnetic fields cannot penetrate inside the Josephson junction through fractional vor-

tices. Thus, the current strength increases and decreases at different locations as the magnetic

field strength changes, allowing for controlled signal flow and switching. Furthermore, when

superconductors are exposed to a direct current, electron pairs pass through the barrier releas-

ing electromagnetic waves, resulting in the production of small amounts of light instead of heat.

In recent years, transporting a signal without losing the initial quality has always been the

major concern of mankind in many fields such as telecommunications, electronics and many

others. Thus, since the discovery of the Josephson effect, many researchers have invested to
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develop new technologies that will be able to transport signals while limiting losses. On a

practical level, the realization of passive circuits is much more important than that required for

active elements. The Josephson effect can also be applied to radio electronics used in extreme

cold conditions, as a Josephson junction can function as a sensor of electromagnetic oscillations.

Moreover, the study of the JJ is very topical in the technological race in order to determine the

successor to silicon. Indeed, carbon nanotubes, spintronics, optronics, all tracks are beaten in

this technological hunt to determine the most efficient and cost-effective solution for tomorrow.

Because that circuits based on this junction can also store data and can be manufactured in

small spaces thanks to their efficiency, so their use in computers is possible. RSFQ (Rapid

Single Flux Quantum) logic, which uses the Josephson junction as a building block, allows

circuit speeds of the order of hundreds of GHz to be achieved, while maintaining negligible

power consumption and reduced complexity of architectures [15]. The Josephson effect occurs

at very low temperatures and is most effective at temperatures near zero degrees Kelvin (about

−4600F ).

• Importance of the Josephon Junction in a circuit

A Josephson junction is a voltage-controlled oscillator capable to generate very high frequen-

cies, up to the bandgap frequency of the superconductor (typically up to 1000 GHz).This by

introducing a relationship that links classical mechanics to quantum mechanics, in particular

between frequency and voltage V = ~
2e
ωj, where ~ is Planck’s constant, ωj is the Josephson

angular frequency and e is the charge of electrons. Systems using this effect can be connected to

measure very low magnetic fields, down to the femto tesla. The Josephson junction, thanks to

its high sensitivity and its ability to operate even at zero voltage, has revolutionized metrology.

Instruments incorporating Josephson junctions use the Josephson effect to make precise dimen-

sional measurements, amplify electromagnetic signals, and drive fast computers. For example,

the Josephson junction is a key component of SQUIDs (Superconductive Quantum Interferom-

eter Device), which is a magnetometer with a sensitivity in the femto tesla range. This tool

has important applications in the fields of geophysics, biology and medicine R59, R60. They

can also excite low power levels in generators that can be designed to be switched over multiple

frequencies. A JJ switches signals faster than any other solid-state switch. Such a system can
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operate at DC or microwave frequencies. Superconductors can therefore be used at very good

temperature with JJ.

• The Josephson junction model

In order to model a Josephson junction, we present the approach that led to the modeling

of the Josephson effect. Let us observe the diagram below which presents the principle of

the Josephson effect. Let φ be the phase difference between superconductors 1 and 2, which

generates the Cooper pair current Is crossing the insulating barrier by tunneling effect. Let us

suppose that a non dissipative current can flow between the two superconducting electrodes.

This so-called Josephson current results from the coherent transfer of Cooper pairs between

the two superconductors, due to the existence of a phase difference φ = φ2 − φ1 between the

two superconductors. The charge carriers in a metal superconductor with josephson junction

are quantum objects described by a complex wave function (we neglect here the interactions

between carriers and the spin effects).

Figure 9: Principle of the Josephson effect. [80]

Ψ = |Ψ| exp(iφ) (1.1)

Where:

- |Ψ|2 is the particle density

- Ψ is the wave function

- φ Represents the phase of the wave which is itself a function of space and time (r; t).
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Josephson showed that a supercurrent Is can cross the insulating barrier even at zero voltage

; this current is a function of the phase difference φ = φ2 − φ1 between the wave functions of

the two superconductors between the wave functions of the two superconductors:

Is = Ic sinφ (1.2)

Where Ic is the critical current corresponding to the maximum non-dissipative current that the

superconducting tunnel junction can withstand before it transitions to the normal state. This

current depends significantly on the geometrical factors of the barrier, the material properties,

and the operating temperature.

So far, we have only considered simple circuits that can be described by localized passive circuit

elements. We will now deal with high-frequency coupling schemes that are better characterized

by distributed circuit elements, i.e., microwave transmission lines and cavity resonators. When

we consider the previous circuit as the SQUID (Superconducting QUantum Interference Device)

elementary brick of the RSFQ logic. It has the property of having several stable states of

operation which allow to realize a memory effect. There are several possible configurations of

SQUID; we study here the one constituted by two Josephson junctions in a superconducting

loop. This is called a "dc SQUID", because the junctions can be biased with a direct current

and the following phase difference [61]:

φ = φ2 − φ1 = 2π
ϕn
ϕ0

(1.3)

with ϕn = n ~
2e

= nϕ0.

In RSFQ logic the information about the flux state is transmitted from one superconducting

loop to the other, using the fact that a phase change of 2 on a junction corresponds to the

passage of a flux quantum through the junction itself [59]. The JTL (Josephson Transmission

Line), based on this principle, allows the transmission of flux quanta through the RSFQ circuit

with practically no attenuation of the signal; if Josephson junctions with progressively larger

critical currents are used, it is even possible to amplify the output signal.

The quasi-particle transport and the capacitance between the electrodes are treated as finite el-

ements in parallel to the ideal junction, through which only a current of Cooper pairs flows. The

voltage at the terminals of the circuit follows the second relation demonstrated by Josephson,
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which links the phase difference ∆φ to the electrodynamic properties of the junction :

dφ

dt
=

2eV

~
(1.4)

This relation does not take into account any approximation, and considers only fundamental

physical quantities. It is always valid, except in particular cases in which the equilibrium of the

stationary state of the electrodes is broken by parasitic currents, for example in the vicinity of

normal currents or in the presence of a heat flux [59]. The Josephson effect can be classified

into two different regimes depending on whether φ is constant or varies with time ∆φ(t). In

the second case which concerns us, where φ varies with time, we speak rather of an alternating

Josephson effect. The term Josephson current Ic which passes between the electrodes is not

sufficient to describe the behavior of the junction in variable regime. The model of the josephson

junction proposed by the RCSJ approach is a relatively simple equivalent circuit that uses finite

elements. The following figure shows this equivalent circuit for the case where the junction is

current biased.

Figure 10: RCSJ approach of equivalent circuit for a Josephson junction. [80]

Using the superconducting RCSJ model, the quasiparticle transport IN and the interelec-

trode capacitance IC , are treated as finite elements in parallel to the ideal junction, through

which a current of Cooper pairs of Cooper pairs Is. The voltage across the junction obeys the

law of equation 1.4.

Applying Kirchhoff’s law in the circuit of Figure 10, we obtain :

I = Is + IN + IC = Ic sinφ+
V

RN

+ C
dV

dt

= Ic sinφ+
1

RN

~
2e

dφ

dt
+ C

~
2e

d2φ

dt2
(1.5)

Here RN is the resistance in the junction that the normal electrons see (the quasiparticle

resistance). This is the socalled RCSJ model (the resistively shunted junction model). This
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simple model has turned out to be adequate in predicting the principal behavior of Josephson

junctions. It is very useful for the design of superconducting electronics. However in the frame-

work of our study, we will consider, the electrical transport is dominated just by Cooper pairs,

and the quasiparticles (electron) present activated by thermal fluctuations are negligible. The

normal resistivity RN is therefore very large and tends to infinity in this regime. The field of

investigation of superconductors is extremely vast given the complexity of this type of material.

They represent a certain economic and strategic stake on an international scale. And this, in

view of its multiple applications. Superconductors are generated and controlled by Josephson

junctions, which are themselves integrated into transmission lines.

1.2.4 Electromagnetic wave equation of nonlinear electrical transmis-

sion line

1.5.1.1 Telegrapher’s equation [62]

The telegrapher’s equations are a system of two partial linear differential equations that describe

the evolution of voltage and current on a power line as a function of distance and time. Oliver

Heaviside developed the power line model that leads to these equations in the 1880s. It applies

to any power line, regardless of frequency, and covers transmission and reflection phenomena

on a transmission line, whether it is used for telegraph, telephone, or any other purpose, as well

as on power grid distribution lines.

An element of length dx of a two-conductor line can be assimilated to a quadrupole made

up of elements derived from the parameters R, L, C and G. Let us consider the simplified

representation of the lossy line (figure 7), which allows us to simplify the derivation of the

propagation equations. Let us now apply the laws of electrical networks to this section. By

applying the mesh law to the cell of rank n :

dv(x, t)−Ri(x, t)dx− L
∂i(x, t)

∂t
dx = 0 (1.6)

di(x, t)−Gv(x, t)dx− C
∂v(x, t)

∂t
dx (1.7)
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Dividing both members by dx, we get the following two equations:

∂v(x, t)

∂x
= Ri(x, t) + L

∂i(x, t)

∂t
(1.8)

∂i(x, t)

∂x
= Gv(x, t) + C

∂v(x, t)

∂t
(1.9)

We obtain a system of two linear partial differential equations whose solutions are the current

i(x,t) and the voltage v(x,t) which crosses the line at all points and at all times. By deriving

the two members of the first one with respect to x, we have :

∂2v(x, t)

∂x2
= −R∂i(x, t)

∂t
− L

∂

∂t
(
∂i(x, t)

∂x
) (1.10)

Let us now carry equation (1.10) in the latter and group the terms. We obtain the following

linear differential equation still called equation of the telegraphers :

∂2v(x, t)

∂x2
= LC

∂2v(x, t)

∂t2
+ (LC +RG)

∂v(x, t)

∂t
+RGv(x, t) (1.11)

In the same way, we would obtain for the current :

∂2i(x, t)

∂x2
= LC

∂2i(x, t)

∂t2
+ (LC +RG)

di(x, t)

dt
+RGi(x, t) (1.12)

These are two linear differential equations of the second order with partial derivatives, are

wave equations. We will now examine the special case of lines where the linear resistance and

conductance can be considered negligible. These are called lossless lines. In this case R and G

are zero, the previous equations become :

∂2v(x, t)

∂x2
= LC

∂2v(x, t)

∂t2
(1.13)

∂2i(x, t)

∂x2
= LC

∂2i(x, t)

∂t2
(1.14)

If we assume that the propagation regime is sinusoidal, equations (1.13) and (1.14) become :

∂2v(x, t)

∂2x
= (R + jLw)(G+ jCw)v(x, t) = 0 (1.15)

∂2i(x, t)

∂2x
= (R + jLw)(G+ jCw)i(x, t) = 0 (1.16)

we pose the following constant :

γ =
√
(R + jLw)(G+ jCw) (1.17)
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Where γ is the propagation constant of the line (complex quantity), which can be put in the

form:γ = α+ jβ

α, the real part, is an attenuation parameter expressed in (Np/m). This coefficient is a function

of several parameters: losses in the conductor losses in the dielectric substrate, and radiation

losses.The imaginary part is a phase parameter expressed in (rad/m). We obtain by identifica-

tion from equation (1.15) the following expressions of α and β:

α =

√
1

2
(R2 + L2ω2)(G2 + C2ω2) + (LG−RCω2) (1.18)

β =

√
1

2
(R2 + L2ω2)(G2 + C2ω2)− (LG−RCω2) (1.19)

Equations (1.15) and (1.16) admit solutions of the form :

v(z) = Vi exp(−γz) + Vr exp(γz) (1.20)

i(z) = Ii exp(−γz) + Ir exp(γz) (1.21)

Where Vi, Ii, Vr and Ir are integration constants, the ratio of impedance constants gives the

following constant which is homogeneous to an impedance :

Vi
Ii

= −Vr
Ir

=

√
R + jLω

G+ jCω
(1.22)

This constant determined by the ratio Vi
Ii

is called the characteristic impedance Zc of the line :

Zc =

√
R + jLω

G+ jCω
(1.23)

NB: generally for the cable of televisor it is 50 ohm or 75 ohm.

For lossless lines we have: R = G = 0, α = 0, γ = jβ = jω
√
LC. The characteristic

impedance in these conditions is real, their value is given by :

Zc =

√
L

C
(1.24)

We have β = ω
√
µε, so: LC = µε Where µ and ε are respectively the effective permeability

and the effective permittivity of the materials. The prpagation velocity for a lossless line is

given by the relation :

u =
1√
LC

(1.25)
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At relatively high frequencies, the phase velocity tends to a limit essentially determined by the

distributed capacitance and inductance, independent of losses.

1.5.1.2 Partial differential equation for nonlinear transmission line

A nonlinear electric transmission line (NETL) is a system of repeating inductors, capacitors,

or Josephson junctions, where the inductors, capacitors, junctions, or all three are nonlinear in

their response to current and voltage, respectively. In reality, many components used in power

lines are nonlinear components, so the primary parameters R, L, and C are not necessarily all

constant. For this reason, NETLs are very convenient tools for modeling nonlinear dispersive

media and even for modeling exotic properties of new systems.The mathematical model of non-

linear electrical transmission lines automatically leads to nonlinear partial differential equations

(PDE). Generally, researchers usually transform the equation governing the dynamics of waves

in nonlinear electrical lines to a well-known nonlinear differential equation. The literature at our

disposal shows that the corresponding mathematical models often obtained are the Korteweg-de

Vries equation (KdV), the NLS equation or the complex Ginzburg-Landau equation (CGL) with

periodically varying dispersion and nonlinear coefficients [36]. Indeed, the NETL is one of the

most popular physical models in electronics, and is governed by classical integer and fractional

order PDEs. Thus, when we take into account the nonlinear components of the line, which can

be either the capacitor, the coil or the Josephson junction, we obtain, after applying the mesh

law, a system of N coupled nonlinear differential equations that cannot be solved without using

approximations. However, by using the continuous medium approximation, and a multiscale

perturbation, these equations reduce to a nonlinear differential equation. The first equation

thus obtained was obtained by a fourth-order approximation which led to the modified Bousi-

nessq nonlinear differential equation [63]. This is very similar to the one obtained by Boussinesq

in 1895 for shallow water hydrodynamic waves, although there is an important difference which

lies in the nonlinear term which involves here a temporal and not a spatial derivative. Although

this modified Boussinessq equation is not fully integrable, it describes the properties of the elec-

tric chain well and has the potential to be easily manipulated experimentally on a power line.

Nevertheless, this equation is much less easy to use than the KdV equation, because there are

far fewer mathematical tools available. Thus, additional approximations were used to move

from the modified Bousinessq equation to the KdV equation. The error in switching from a
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KdV-type description is of the order of magnitude of the experimental error when measuring

electrical chains, but the gain is significant because we have the important mathematical tools

that KdV theory provides. Furthermore, Scott [63] has shown that the KdV equation describes

weakly nonlinear waves in a nonlinear LC transmission line containing a finite number of cells,

which consist of a linear inductance in the series branch and a nonlinear capacitor in the shunt

branch. If the nonlinearity is shifted from the capacitor parallel to the shunt branch of the line

to a capacitor parallel to the series branch, the NLS equation is obtained instead [64,65].

It has been proved by many physics researchers that the best governing mathematical model

capable of describing the electrical propagation in NETLs reduces to different types of NLS

equations or to a pair of coupled nonlinear Ginzburg-Landau Schrödinger equations [25, 66].

Indeed, using the reductive perturbation approach in the semi-discrete approximation, several

authors have shown that the modulated wave dynamics in NLTLs can be described, with a

good approximation, by the well-known NLS equations [67,68]. A few years ago, we presented

a model for wave propagation on a discrete NLTL based on the NLS equation complex expan-

sion on the governing nonlinear equations [69]. In our recent work on NLTLs, we have shown

that the modulated lattice wave dynamics can be governed either by an NLS equation with a

linear external potential or by a generalized Chen-Lee-Liu equation [70], which appears as a

cubic NLS equation with an additional cubic derivative term. Kengne et al [71] modeled an

RLC transmission line with variable capacitance capacitor by the complex coupled Ginzburg

Landau equations (CCGL). Kuek et al [10] modeled a cascaded LC section chain consisting

of nonlinear inductors in series and linear capacitors in parallel using a simplified form of the

Landau-Lifshitz-Gilbert (LLG) equation.

1.5.1.3 Fractional order derivative in non-linear transmission line

• Historical context of the introduction of the fractional derivative

The history of the theory of fractional derivation goes back to the end of the 17th century.

All scholars agree to place its beginning at the end of 1695, when Hospital asked Leibniz a

question about the meaning of dny
dxn

when n = 1
2

[72]. Indeed, in his prophetic answer, Leibniz

predicted a possible non-integer derivation theory, stating that: "this would lead to a paradox

from which useful consequences will be drawn one day". Euler (1730) was the first to attempt
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to theorize this problem when he studied the simple case of fractional integrals of monomials

of arbitrary real order in the heuristic mode of the time. Subsequently, Fourier (1822) [73]

proposed an integral representation to define the derivative, and his version can be considered

the first definition of the derivative of arbitrary (positive) order. Abel (1826) solved an integral

equation associated with the tautochron problem, which is considered the first application of

the fractional derivative. But the first real serious attempt to give a logical definition of the

fractional derivative is due to Liouville who published nine papers on this subject between 1832

and 1837. In 1832 [74] he proposed a definition based on the differentiation formula for the

exponential function, and the other formula is presented in terms of an integral and is now

called Liouville’s version for non-integer order integration.However, the most important paper

was published by Riemann [75], ten years after Liouville. Furthermore, Grĺunwald [76] and

Letnikov [77], independently, developed an approach to non-integer order derivatives in terms

of a convenient convergent series, in contrast to the Riemann-Liouville approach, which is given

by an integral. Letnikov showed that his definition coincides with the versions formulated by

Liouville, for particular values of the order, and by Riemann, under a convenient interpretation

of the so-called non-integer order difference. Hadamard (1892) [73] published a paper where the

non-integer order derivative of an analytic function must be done in terms of its Taylor series. A

few years later, the fractional derivative underwent a dazzling development, in the formulation of

certain problems considered as complex. For this purpose, other definitions appeared. Weyl [78]

introduced a derivative in order to get around a problem involving a particular class of functions,

the periodic functions. Riesz [79,80] proved the mean value theorem for fractional integrals and

introduced another formulation which is associated with the Fourier transform. Marchaud

(1927) [81,82] introduced a new definition of the non-integer order of derivatives. Nevertheless,

it was Caputo (1967) [83] who formulated a definition, admittedly more restrictive than the

Riemann-Liouville one, but more appropriate for discussing problems involving a fractional

differential equation with initial conditions [84, 85]. Because of the importance of Caputo’s

version, we will compare this approach with the Riemann-Liouville formulation. The definition

as proposed by Caputo reverses the order of the integral and derivative operators with the non-

integer order derivative of Riemann-Liouville. We summarize the difference between these two

formulations. In Caputo’s formula: first we compute the derivative of integer order and then we
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compute the integral of non-integer order. In the Riemann-Liouville formula: first we compute

the non-integer order integral and then we compute the integer order derivative. It is important

to mention that the Caputo derivative is useful to face problems where the initial conditions are

made in the function and in the respective derivatives of integer order.After the first conference

at the University of New Haven in 1974, CF has developed and several applications have

appeared in many areas of scientific knowledge. As a result, distinct approaches to solving

problems involving the derivative have been proposed and distinct definitions of the fractional

derivative are available in the literature. From the 1900’s the "useful consequences" of this

mathematical model are visible with the fractional differential equations which appeared in the

modeling of several phenomena in fields such as physics, biology, engineering, etc. [86–88].

However, some definitions of fractional order derivatives introduced in the transmission

lines have shown limitations in their mathematical formalism, especially the derivative of a

product or fraction of a function. Indeed, this derivative generalizes the formalism of the

derivative of integer order to the fractional order, which is not the case until now with the

Riemann-Liouville derivative and the Cauto derivative. The ambiguity of these definitions

of fractional order derivatives, whose properties sometimes exclude them from applications in

circuit theory, has motivated other researchers. Another type of non-classical derivative is the

so-called conformable derivative which was introduced by Khalil et al [89]. This interesting

fractional derivative is based on a limit form as in the classical derivative and has similar

properties to the classical derivative. The new conformal fractional derivative is now of great

interest and is the subject of several articles concerning boundary value problems, see [90, 91].

One of the essential mathematical tools of this fractional calculus is the fractional derivation

operator Dα. The problem is thus to define an operator Dα for real values of a, such that when

a takes an integer value n, we find the usual n-th derivation for n > 0 or the iterated integration

|n| times for n < 0.There are many approaches to fractional derivation, we will highlight the

approaches that are frequently used approaches in applications.

• The Riemann-Liouville approach

Definition 1 : Let p > 0; the Riemann-Liouville fractional derivative of order p of a
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function f ∈ C((a;∞),R) is defined by

D
(p)

a+f(t) =
1

Γ(n− p)

dn

dtn

∫ t

a

(t− s)n−p−1f(s)ds (1.26)

where n = [p] + 1, provided the right side is pointwise defined on (a;∞) :

• Approche de Caputo

Définition 2 : Let p > 0 and n = [p] + 1; the Caputo’s fractional derivative of a function

f ∈ ([a; b] ;R ) is defined by

D
(p)

a+f(t) =
1

Γ(p− n)

dn

dtn

∫ t

a

(t− s)n−p−1fn(s)ds (1.27)

Suppose p > 0 and n = [p]+1; then the relation between Riemman-Liouville, Caputo fractional

derivatives and Riemann Liouville integral can be expressed by the theorem below.

Theorem : Set D = d
dt

; then we have for p, q > 0:

D
(p)

a+f(t) =
CD

(p)

a+f(t) +
n−1∑
k=0

fk(a)(t− a)k−p

.
(1.28)

In mathematical modeling the use of fractional derivatives in the Riemann-Liouville sense leads

to initial conditions containing the boundary values of fractional derivatives in the lower bound

t = a. A certain solution of this problem has been proposed by M.Caputo.

Let p ≥ 0 (with n − 1 ≤ p < n and n ∈ N∗) f is a function such that fracdndtnf ∈ L1[a, b].

The fractional derivative of order p of f in the sense of Caputo is defined by :

D
(p)
t f(t) =

1

Γ(n− p)

∫ t

a

(t− τ)n−p−1f (n)(τ)dτ (1.29)

= I
(n−p)
t (

dn

dtn
f(t)) (1.30)

• Conformable Fractional Derivative

All definitions of fractional derivatives satisfy the linearity property. However, properties, such

as the product rule, quotient rule, chain rule, Rolle’s theorem, mean value theorem, and com-

position rule, are missing from almost all fractional derivatives. These and other inconsistencies
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have raised many problems in real applications and have limited the possibilities of exploring

these fractional calculations. To avoid these difficulties, Khalil et al, [89] proposed an inter-

esting idea that extends the definitions of ordinary limits of derivatives of a function called

the conformal fractional derivative. This definition allows many extensions of some classical

theorems of calculus for which applications are essential in fractional differential models that

existing definitions do not allow. This conformal derivative has attracted the interest of re-

searchers because it seems to satisfy all the requirements of the standard derivative. The basic

concepts about conformable derivative are as follows : Given a function h : α ∈ (0, 1) −→ R

Then the"conformable fractional derivative" of h of order α is defined by

dαh(t)

dtα
= lim

ς→+∞

h(t+ ςt1−α)− h(t)

ς
. (1.31)

for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0, and limt lim
t→0+

h(α)(t) exists,

then define h(α)(0) = limt lim
t→0+

h(α)(t)

Theorem : Let αϵ(0, 1] and f = f(t), g = g(t) be α-conformable differentiable at t < 0.

Hence,

• Dα
t (af + bg) = aDα

t f + bDα
t g, and a, b ∈ R.

• Dα
t (t

β) = βtβ−α and β ∈ R.

• Dα
t (fg) = fDα

t (g) + gDα
t (f) .

• Dα
t

(
f
g

)
=

gDα
t (f)−fDα

t (g)

g2
.

1.4.3.3 Some fractional differential equation for nonlinear transmission line

In many fields and particularly in electricity, the introduction of new mathematical tools, in

particular the factional derivative, has allowed to better model electrical phenomena. Indeed,

we are often confronted with a problem such as: how to describe a particular phenomenon in a

precise and simple way? As new phenomena will surface, the existing tools will become obsolete

to better model. However, the implementation of fractional derivatives must not contradict the

laws of physics (the mathematical equations). For example, Ampere’s and Faraday’s laws, the

dependence between the coil voltage and the coupled alternating magnetic flux, the Maxwellian

distribution laws, even if these will be refined by the Lorentz transformation for high speeds.
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Moreover, each model must be confirmed by one or more relevant experiments. The main reason

for the application of FO derivatives in the modeling of the elements of an electric circuit lies

in its non-local properties compared to the classical definition of IO derivatives. Indeed, unlike

integer order derivatives, fractional order derivatives include a memory of all previous states

of the considered circuit element (the time domain history) in the calculations. In addition, in

the process of designing the components of an electrical circuit, the derivative FO brings ad-

ditional degrees of freedom to the system, which allows for design flexibility and optimization

freedom [91, 92]. With respect to circuit components, in FO models of transmission lines, the

FO inductance can be useful in modeling the skin effect while the FO capacitance is capable of

modeling various non-idealities of the dielectric medium characteristics (e.g., the accumulation

of electric charge along the line and memory effects in the dielectric polarization). As demon-

strated in several experimental works [74, 75, 92, 93], the FO transmission line model allows

for more compact and accurate analytical modeling over a wide frequency band compared to

traditional IO modeling. Some definitions of FO derivatives are well established and have al-

ready been applied in circuit theory, while other definitions have only recently been introduced.

With respect to the propagation of waves in power lines, Ryszard Sikora [92] has shown that

relatively simple mathematical models containing fractional order derivatives can be a conve-

nient and "flexible" tool for approximating frequency characteristics when the multifrequency

MMFES method is applied. Houwe et al. [62] modeled by the nonlinear fractional differential

equation a low-pass electrical transmission line, consisting of a number of LC connected with

negligible dissipative effect. This allowed to obtain an ordinary differential equation, with the

fractional complex time assumption: [93]. Aydin, B. Samanci, and S. Ozoguz showed that the

fractional order characterization allows the derivation of an effective model that incorporates

the transmission line loss over a wide frequency range of 1-6 GHz, which is useful in high band-

width applications such as the 5G system [94, 129]. Y. Shang et al. worked on metamaterial

T-lines, they showed that in a circuit with RLGC electrical parameters, the integer order model

is insufficient to describe the characteristics of T-lines for millimeter waves. First, because the

loss term in the T-line is difficult to model (distributed dispersion loss and non-quasi-static

effects) [96], requiring a large number of RLGC components to fit the entire millimeter-wave

frequency region [62,97]; second, the metamaterial T-line has more complex coupling structures
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such as the metamaterial load on the host T-line. Nevertheless, the fractional order model has

recently shown to be a promising candidate for compact T-line modeling in the millimeter-wave

frequency region. It has been used to calibrate the capacitor (C) and inductor (L) components

in the conventional RLGC T-line model in the high-frequency region.By properly choosing the

values of the fractional order parameters, a compact equivalent circuit model can be constructed

for any T-line to fit a high frequency, broadband region. In this paper, we have developed a FO

of RLGC model for metamaterial T-lines in the wave frequency region, with the following ad-

vantages. First, the fractional order RLGC model of the line can have a compact description of

the distributed dispersion components. Second, the FO of RLGC model can accurately model

the coupling effect in resonant-type metamaterial T-lines. The proposed FO of RLGC model is

verified using S-parameter measurement results (up to 325 GHz) for metamaterial T-lines fabri-

cated in 65 nm. Compared to the conventional IO of RLGC model, the proposed FO of RLGC

model demonstrates better accuracy in the compact form of the equivalent circuit models. Some

aspects of fractional differential equations, such as stability, existence and uniqueness of solu-

tions, have been the subject of much research. Due to the inclusion of frequency-dependent

losses and non-quasi-static effects, good agreement of the characteristic impedance is observed

between the FO model for frequencies up to 110 GHz. In contrast, the traditional IO of RLGC

model provides agreement between the model and measurements only up to 10 GHz. E. Fendzi-

Donfack et al. [98], used fractional partial differential equations to model a fractional NETL

and the fractional perturbation of the nonlinear Schrodinger equation (NLS) with the Kerr law

nonlinearity term. They showed that the fractional complex transformation can be considered

as a soft method to convert the fractional differential equation into an ODE using the conformal

fractional derivative. In fact, by using the fractional derivative where the fractal index appears

as a useful tool to easily change the fractional differential equation into a partial differential

equation, we can describe the discontinuity of the medium without any difficulty.

Hamadou Halidou Ph.D-Thesis



1.3 Localized waves in nonlinear transmission line 33

1.3 Localized waves in nonlinear transmission line

1.3.1 Solitary waves concept

The soliton is a solitary wave, spatially localized, whose stability properties are spectacular.

The soliton, also called solitary wave, was observed for the first time by the Scottish engineer

and mathematician, John Scott Russel in 1834, however it was not until about ten years later

that his observations were reported in the scientific literature [98]. John Scott Russel, was

struck by the propagation of a hydrodynamic wave in the Hermiston canal, near the Riccarton

Heriot-Watt University located in Edinburgh, by noting that its shape and its speed remained

unchanged during its propagation. It is from this empirical observation that the need for a

mathematical interpretation of the phenomenon was born, and then eventually its applications.

This necessarily requires a modeling of the phenomenon, from numerical simulation to the con-

struction of an exact mathematical solution, through different models. Several researchers have

conducted investigations to understand this phenomenon, but it remained without mathemat-

ical interpretation until 1871, the year Joseph Valentin Boussinesq proposed an approximate

equation of the phenomenon [99]. The equation that correctly modeled the propagation of a

solitary wave on the surface of a narrow and shallow channel was that of Korteweg - de Vries

in 1894-1895 [100]. However, it is the construction of the soliton solutions of the "Korteweg-

de Vries" equation by Zabusky and Kruskal [54] that the existence of a "solitary wave" will

be definitively established. After this important discovery of the hydrodynamic soliton, many

researchers turned to this new era of research: nonlinear physics. Thus, since the beginning of

the 70’s, many equations describing nonlinear systems are known and the solitons themselves

have been observed directly or indirectly in various media R36. However, due to the difficulties

of experimentation, there are only a few systems where solitons are easily and directly observed

in controlled laboratory experiments. In this respect, nonlinear electrical transmission lines are

good examples, as they are easily amenable to experimental [101,102]. Several types of soliton

have been propagated in NETLs, with different applications in real life. In this section we

present the different types of soliton propagated in NETLs, in particular the W-shape soliton

which is the subject of our contribution and which is propagated for the first time in power

lines with several concrete application perspectives.
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1.3.2 Type of soliton

The soliton can propagate in any dispersive and nonlinear medium such as air, water or

solids. Thus, according to the energy state of the propagation medium before and after the

passage of the wave, they are classified into two categories: non-topological solitons and topo-

logical solitons [63].

1.3.2.1 Non-topological soliton

A soliton is non-topological when the propagation medium is in the same energy state before and

after the passage of the wave. These solitons are those observed in hydrodynamics (although

some are observed in solid mechanics). Non-topological solitons are dynamical structures that

propagate locally while maintaining their shape and velocity, but which cannot exist at rest.

The non-topological soliton in a hydrodynamic environment for example, can be described by

the KdV equation or the NSL equation, which are nonlinear and dispersive partial differential

equations for a function of two real variables x and t. As non-topological soliton we can note for

example: the envelope soliton, the optical light soliton, the peregrine soliton, the rogue wave,

the W-shape bright soliton and others [103–106].

• Bright soliton

Figure 11: Bright soliton

Bright solitons are known as bell-shaped solitons or non-topological solitons [63]. The bright

soliton is considered as a localized peak of light intensity above a background of continuous

waves. These types of soliton waves are usually modeled by the sech function. Indeed, in the

context of nonlinear optics, solitons are classified as either temporal or spatial, depending on

whether the confinement of light occurs in time or in space during the propagation of the wave.
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Both types of solitons evolve from a nonlinear change in the refractive index of an optical ma-

terial induced by light intensity: a phenomenon known as the optical Kerr effect in the field

of nonlinear optics. Several forms of bright solitons have been propagated in other media than

the optical medium, notably nonlinear transmission lines.

• Rogue wave soliton

Rogue waves (RW) are also known as freak waves, monster waves, killer waves, giant waves,

huge waves, super waves, gigantic waves, or extreme waves, etc. All these and similar names

have been the subject of several recent publications related to the unique giant waves appearing

in the ocean, which Akhmediev and al. [107] describes as "waves that appear from nowhere and

disappear without a trace". It is a very rare and extremely giant type of wave that possesses

powerful concentrated energy and strong nonlinearity. Indeed, the physical mechanisms of the

rogue wave have attracted a lot of attention as more and more maritime accidents are due

to this extreme wave, causing devastating damage to ships and offshore structures and even

causing significant damage to shipboard personnel and valuable property. Although, we do not

have a complete understanding of this phenomenon due to the difficult and risky observation

conditions, studies on the mechanisms of rogue waves are therefore of great importance for the

design and operation of ships and platforms. Some possible mechanisms have been summarized

in review articles [108–110]. The most common mathematical description of these waves is

based on certain rational solutions of the NLS equation. Today we have many family of rogue

wave, such as the peregrine and super rogue wave. The well-known prototype of the RW in

a (1+1)-dimensional equation is the first-order RW solution of the NLS equation, also called

Peregrine solution (PS) [111].The super rogue wave (SRW) is also a rational solution to the

NLS equation, a higher order than the standard RW. Therefore, it has higher energy and causes

more serious disasters. Since SRWs have caused many marine disasters, these waves are also

very dangerous to transmission lines and understanding them is a necessity.

• Peregrine soliton

The PS, which was first discovered in 1983 by Peregrine [111], is a rational function of second

degree, representing a double spatiotemporal localization on a finite continuous background,
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Figure 12: Super rogue wave

used in the modeling extreme wave events in various scientific areas, from oceanography and

hydrodynamics to NETLs through nonlinear optics. The PS, is a particular form of solitary

wave, also known as rational solution, "isolated Ma soliton", "explosion-decay solitary wave",

"rational mode of growth and decay", "algebraic blast" or "fundamental solution of rogue

wave". Unlike other classes of solitons, it is thus localized both in time and space : it emerges

from nowhere and extracts its energy from a continuous wave, to reach a very high intensity

before disappearing as suddenly as it appeared and returning to its initial state. Therefore,

from a small fluctuation on a continuous background, the PS expands, its temporal duration

decreasing and its amplitude increasing. At the point of maximum compression, its amplitude

reaches three times the amplitude of the surrounding continuous background (if we reason

in intensity as it is the case in optics, it is a factor nine (9) which separates the peak of

the soliton from the surrounding background). After this point of maximum compression,

the wave sees its amplitude decrease and widen to finally disappear, this behavior of the PS

corresponds to the criteria usually used to qualify a rogue wave. The PS is a mathematical

solution of the NLS equation, or the Gross-Pitaevskii equation. This solution was established

in 1983 by Howell Peregrine, researcher at the Department of Mathematics of the University of

Bristol [111]. This soliton solution was obtained by searching for a limit behavior of the solutions

of breathers of the focusing NLS equation. These breather solutions belong to the families of

solitons on a constant and non fading background, where the continuous wave envelope serves

as a pedestal. Thus, the rational PS presents itself as a limiting behavior of the other two

types of breathing solitons, i.e. the Kuznetsov-Ma breather and the Akhmediev soliton [112].

Although with a phase shift, the latter becomes a nonlinear extension of the homoclinic orbit
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waveform corresponding to an unstable mode in the modulation instability phenomenon. For

this reason, this wave was observed for the first time in the context of modulation instability

of plane waves. The modulational instability that produces the PS in an experiment requires

a careful choice of initial conditions, but its dynamics has now been observed in a number of

careful studies in different systems, first in nonlinear optical fibers, then in hydrodynamic wave

reservoirs, plasmas, in irregular oceanic seas, and recently in nonlinear power lines. Recent

mathematical studies have shown that the PS solution actually appears more generally in the

nonlinear localization of high-power pulses in the semiclassical (zero dispersion) limit of the

focusing NLS equation. The first experimental observation of the PS in a water wave tank

was recently documented by Chabchoub et al. [113] while in optics it has been observed by

Kibler et al. [88]. This observation was later supported by numerical experiments and within

the framework of exact 2D potential theory. This fundamental solution has a large peak whose

height is three times that of the asymptotic background, surrounded by two deep troughs. The

PS is the well-known prototype of the RW in a (1+1)-dimensional equation also consider as the

first-order RW solution of the NLS equation. These rogue waves are localized both in space

and in time. More precisely, they emerge from the background at a very early stage of the

evolution, then reach the main peak (or amplitude maximum) of the fundamental model or the

strong interaction zone of the other models mentioned above, and eventually retreat back into

the same background. However, experimental studies conducted on the PS structure have been

limited to the plane wave modulation instability regime.The characteristics of the first-order

rogue wave call PS can be summarized as follows:

(i) (quasi-) rational solution (or equivalent solution modulus);

(ii) dual localization in time and space;

(iii) large amplitude (the peak has a height at least three times that of the background) with

a hole on each side.

1.3.2.2 Topological soliton

Topological solitons are those that are seen more in the field of solid mechanics. They are

called topological when the propagation medium is in different energy states before and after

the passage of the wave. Unlike non-topological solitons, they are dynamic structures that

propagate locally while maintaining their shape and velocity and can be at rest. The soliton
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Figure 13: Peregrine soliton

can be described in this state by the Sine Gordon equation.

• Kink soliton

Figure 14: Kink soliton shape

Kink-solitons are generally one-dimensional topological solitons [106]. They represent a twist

in the value of a solution and cause a transition from one value to another. This soliton contains

two extremes, a minima and a maxima, it is the existence of these two extremes that induces

an additional topological constraint. In reality, the kink are quasi-solitons, which correspond

indeed to a fast variation of the variable. These quasi-solitons do not emerge unchanged from

collisions with other kinks. The Sine Gordon (SG) equation which has a sinusoidal potential

is the only one that leads to a fully integrable system possessing kink soliton solutions. The

solutions of the SG equation are called kink or anti-kink solitons, and the velocity does not

depend on the amplitude of the wave.The kinks then describe fundamental excitations of the

system having a very important contribution to the statistical thermodynamics. This model

can also describe topological defects in polymers like polyacetylene. In field theory, it has been
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proposed as a simple model of stable states different from the "vacuum" state. A good physical

example of a kink solution is a Bloch wall between two magnetic domains in a ferromagnet.

The magnetic spins rotate, for example, from spin down in one domain to spin up in the

adjacent domain. The transition region between spin down and spin up is called the Bloch

wall. Under the influence of an applied magnetic field, the Bloch wall can propagate according

to the Sine-Gordon equation.

• Dark soliton

Figure 15: Dark soliton shape

Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anoma-

lous dispersion Dark solitons are also known as topological solitons or simply topological defects.

The dark soliton is characterized by a localized decrease in intensity associated with a more

intense continuous wave background. In the context of optical fibers, the generation of dark

solitons in the normal dispersion regime has been predicted by many researchers [103,120], and

demonstrated experimentally [121]. They are observed as localized intensity dips on a continu-

ous wave background with a non-trivial phase profile. Dark solitons have a number of interesting

properties. For example, these solitons have been shown to be more robust to perturbations

than their bright counterparts, including perturbations due to loss and amplified spontaneous

emission noise. In addition, dark solitons can be created without a threshold value in the input

pulse power. As applications, it has been shown that various types of all-optical switches can

be "written" using structures created during the propagation and interaction of dark spatial

solitons. As previously demonstrated for bright solitons, these induced structures can guide a

weak probe beam of a different frequency or polarization, thus acting as light-induced struc-

tured waveguides. These types of devices have very interesting properties, for example, they
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can retain the transverse velocity. The key feature used in switching dark space solitons, even

in the presence of two-photon absorption. The effect that can have a dramatic destructive

influence on bright space solitons . Experimental observations of a holey soliton in a nonlinear

electrical network, with nonlinear capacitances, were made by Muroya et al [122]. They showed

that the holey soliton generated from an initial wave propagates stably in the circuit, and that

the modulation width and depth of this soliton were in agreement with theoretical predictions

based on the NLS model.

1.3.3 Localized waves patterns solution of nonlinear transmission line

model

In electronics, NETLs are a major tool for modeling a nonlinear dispersive medium, in order

to study the propagation of voltage or potential waves in this medium, in the form of electrical

solitons [123]. Thus, by changing the characteristics of NETLs components, one can model

different states and conditions in the medium. In general, researchers transform the equation

governing the dynamics of voltage or potential waves in nonlinear power lines into a well-known

differential equation such as the KdV equation, NLSE [36], CGLE, before searching for solutions.

The first study of soliton wave propagation was carried out by Hirota and Suzuki [5], who first

physically explained some fundamental properties of solitons in terms of nonlinear properties of

the LC lattice, and then mathematically demonstrated by establishing analytical expressions as

a solution of soliton in a particular LC lattice. Nagashima and Amagishi [124] were the first to

simulate the propagation of analogous solitons in the Toda atomic lattice [125]. Following this

pioneering work, many other scientists around the world have turned to the study of soliton-like

wave propagation with NETLs as a support [20–25, 126]. Among these, we have the study of

the dynamics of nonlinear and modulated waves, bright and dark soliton pulses [127,128], and

intrinsic localized modes also called breathers [129,130]. Propagation of pulses with frequencies

beyond the called allowed band has revealed the gap solitons corresponding to supertransmission

[25, 131–133]. The collision of solitons in NETLs has also been studied [124, 134, 135]. In

the same time classical NETLs have been treated analytically by several authors and have

allowed the exploration of certain soliton solutions of kink, anti-kink, bell, anti-bell, singular,

periodic and periodic singular type [123,131,136,137]. Some characteristics of solitons have also
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been observed experimentally in NETLs, notably the interactions between solitons [138, 139],

the recurrence phenomenon [140] and the networks [141, 142]. Some potential applications

of NETLs such as harmonic generation [143], pulse shaping [6], and pulse compression [144]

have been studied. Some left-handed transmission lines, such as the composite right/left-

handed transmission line with voltage-dependent shunt capacitors have been used to propagate

bright and dark solitons [127]. Fabien II et al. studied the analytical and numerical effects

of nearest-neighbor couplings on the propagation of skywave signals in a nonlinear electrical

transmission line. Thus, NETLs can support several types of soliton solutions including: dark,

bright, bent, pulse, envelope, peregrine, rogue, kink, and anti-kink, and others. In recent

years, one of the most important objectives of research in NETLs is the generation at very

high frequency of solitons with rational pulse profile. However, at very high frequency, new

uncontrolled phenomena appear in the lines, such as the memory effect, the skin effect, which

must be taken into account in the propagation of solitons in NETLs. Indeed, the nonlinearity

produced until now by the capacitor or the coil, whose capacitance or inductance changes

with the applied voltage, seems to be inoperative for this purpose, since it presents both a

frequency and spatial dispersion. In order to overcome these difficulties with NETLs, several

researchers have started to use fractional models for its non-local properties on the one hand,

and the use of superconducting components such as the Josephson junction on the other hand.

Thus, many experimental works have shown that the transmission line model with a fractional

order derivative allows to obtain soliton solutions with rational profile and more over a wide

frequency band compared to the traditional modeling with the integer order derivative. Among

these works, that of kumar and al [66], used the conformal derivative to model the propagation

of rational solitons of form W, M and U in a nonlinear transmission line. The NETL model

used in this study consists of a nonlinear network with several coupled nonlinear LC dispersive

transmission lines. Also, the JJs was used to replace the varactors, in order to increase the

nonlinearity and produce a better solution profile and frequency. Recently, Houwe et al have

shown that the highly nonlinear nature of the JJ arrays incorporated in the JLHTL structure

can support many types of solitons such as dark solitons, bright solitons, bent solitons, and

anti-bent solitons at very high frequencies. Moreover, these analytical results are in agreement

with numerical simulations. Some work has been devoted to the possibility of existence and
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dynamics of rational solitons, in particular the alpha-form in LH nonlinear transmission lines,

but there is little work on RH nonlinear transmission lines. Moreover, there is also no work to

our knowledge on the propagation of rational solitons, in a NETL model with JJ. Thus, we have

realized a RHNETL with JJ to propagate different localized waves as : PS, SRWs, breathers in

addition to the classical bright and dark solitons, for very high frequencies than the previous

results.

1.4 Applications

. The Josephson junction as an electronic component has several applications [59, 60], no-

tably in nonlinear transmission lines such as :

• Signal shaping and enhancement in data transmission for high speed digital circuits.

Indeed, RSFQ logic, using the JJ as a basic element, allows to reach operating speeds of

circuits of the order of hundreds of GHz, while maintaining negligible power consumption

and reduced architecture complexity.

• Reduction of pulse rise and fall times, in high-speed sampling oscilloscopes and other

instruments for microwave systems. A recent experimental study demonstrated the use

of NLTL with JJ in an electrical soliton oscillator, as a single port system, which itself

generates soliton pulses from ambient noise. An amplifier was used in the realization of

this soliton oscillator to compensate for losses and stabilize the oscillations.

• The miniaturization of components: physically small but electrically large components

such as antennas with a reduced size of 1
10

(at least) having performances equal or superior

to conventional antennas.

• The realization of the supercomputer, currently being considered by the army and major

research centers.

• The use in a wide range of optical applications: very high resolution imaging systems.
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• The development of broadband, moderate intensity Terahertz (THz) sources, accessible

to many applications: from condensed matter physics to biomedical, manufacturing and

other techniques.

• The development of superconducting electronics with the realization of a 50 GHz LTC

microprocessor with one million logic gates, memories, inputs/outputs and packaging.

• The realization of analog-to-digital converter circuits with RSFQ technology, which con-

stitute the real limit of mobile and radio communications. In particular, very high speed

switches, and in signal processing, for example the DSP4 for real-time FFT. The conver-

sion of imaging systems (reading) into writing systems using higher density photonic and

electronic components.

• The realization of quantum mechanical circuits such as SQUID. In particular, the revolu-

tion in metrology, introducing a fundamental relationship between frequency and voltage,

the use of digital and programmable volt values, the design of sampling oscilloscopes, spec-

trum analyzers with a very wide bandwidth. It can be defined as meta-surfaces whose

geometry controls the propagation of surface waves. Indeed, the Josephson junction is

the basis of SQUIDs, magnetometers with a sensitivity in the order of femtotesla at 1Hz

which find a wide application in medicine, geophysics and biology.

1.5 Conclusion

This chapter is devoted to the review of the literature on TLs and localized waves. In the first

section, the generalities on TLs were presented. This presentation allowed us first to clarify the

basic concepts used in TLs, in particular the types of lines, their advantages and disadvantages.

Then to present the modeling approach used and the different elements of non linearity. Finally

we present the different nonlinear equations to which the TLs models lead. It appears from

this first section that firstly the printed lines are the ones that behave better at very high

frequencies, secondly the nonlinear elements used are very limited to produce some localized

wave profiles, and thirdly the Schrödinger equation is the most appropriate for the transport

of high frequency signals in transmission lines. In section two, we present the literature review
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on localized waves in NETLs. Thus, we presented the conceptual evolution of the solitary wave

from its first observation to its current conceptualization. Then, we present the different types

of localized wave profiles such as: bright and dark solitons, the kink, the SRW, the PS, and the

SRWs. Finally, we review recent work that has allowed the propagation of different localized

wave profiles, including the different types of propagated solitons and their applications. From

this work, it appears that several types of localized waves have been propagated in power lines.

However, few works have allowed the propagation of SRW, PS and other exotic forms of very

high frequency localized waves in LTs, while they have several applications in daily life.
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Chapter 2

Model and Methodology

2.1 Introduction

The study of propagation in very high frequency power lines of localized waves has been the

subject of research in recent years, particularly because of the ease it offers for experimenta-

tion [6, 50, 51, 55]. Indeed, a large number of researches have been devoted to the study of

short pulses in NETLs with different types of nonlinearities [8–20, 57]. In this context, differ-

ent types of models and methods have been used to study wave propagation in these NETLs.

These different models have led to nonlinear differential equations and mainly to the nonlinear

Schrödinger equation (NLS). Several efficient techniques to study analytically the nonlinear

Schrödinger equation (NLS) describing solitary waves have been used. Thus, these different

works have allowed the propagation of several localized wave profiles at different frequency

ranges. Several mathematical techniques have been used to verify the modulation instability of

these waves. However, recent studies have shown that at very high frequencies, new phenomena

appear and cannot be taken into account by the complete differential nonlinear equations as

at low frequencies. This situation has led on the one hand to the use of fractional order which

has led to nonlinear differential equations with fractional derivative to model these nonlinear

power lines and on the other hand to the incorporation of new components with high nonlin-

earity. Indeed, by using the fractional derivative, the fractal index appears as a useful tool

to easily transform the fractional differential equation into a partial differential equation, we

can describe the discontinuity of the medium without any difficulty . Thus, effective methods
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have been developed to obtain some exact and numerical solutions of fractional differential

equations [145–159]. However, the fractional method has certainly made it possible to obtain

rational profiles of localized waves, but has not solved the problem related to the frequency.

To overcome this problem, several researchers have realized very high frequency and supercon-

ducting power lines using the Josephson junction, which is able to reduce ohmic losses and can

take into account the memory effect due to its strong nonlinearity. In this sense, Abdoulkary

et al. [47] have studied the envelope solitons in a left-handed nonlinear transmission line with

Josephson junction. For this purpose, they made a unit circuit model representing a left-handed

transmission line to establish the nonlinear Schrödinger equation (NLSE) using the reductive

perturbation method. They obtained a nonlinear Schrödinger model that is well known to

admit solitary wave solutions. Thus, they realized that depending on the behavior of the PQ

product, two different regimes are obtained: low and high frequency regimes where bright and

dark solitons are formed. More recently, Houwe et al. [48] have incorporated a Josephson junc-

tion with high nonlinearity in a left-handed line so that it supports at very high frequency many

types of solitons. As results, by applying the generalized Riccati method, they obtained exact

solutions of the traveler’s curvature solitons and the envelope solitons (dark soliton and bright

soliton). In this chapter, we will first model the conventional left hand line with JJ which will

be considered here as our model. Then we will use the perturbation method to deduce the key

parameters of the propagation, notably the NLS equation. Finally we will determine by the

method of modulation instability, the conditions of propagation and modulation instability of

the localized waves obtained. This work will end with a numerical study that will confirm the

analytical results obtained previously. Moreover, powerful mathematical and computational

tools such as Maple and Matlab will be used.

2.2 Overview of the two methods of fractionnal derivative

2.2.1 The new extended direct algebraic method

The fundamental of the new extended direct algebraic method is given by the following

steps [160–165].
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Step 1: Adopting the partial differential equation (PDE) in the following form

H(u,Dα
t u,D

α
xu,D

α
y u,D

2α
t u,D

α
t D

β
xu, ...) = 0, 0 < α, β < 1, (2.1)

where u(x, t) is an unknown function and H is a polynomial of u.

Surmise the traveling-wave hypothesis as follows and then adopting u(x, t) = U(ξ)

ξ =
k1

Γ(1 + α)
tα +

k2
Γ(1 + α)

xα (2.2)

while k1, k2 are constants to be determined, and k1, k2 ̸= 0. Thus, the PDE can turn into

ordinary differential equation

F (U, k1U
′, k1k2U

′′, k31U
′′′, ...) = 0, (2.3)

and prime denotes the derivative with respect to ξ.

Step 2: Considering that Eq.(2.3) has the solution in the following expression

U(ξ) =
N∑
j=0

giQ
i(ξ), gn ̸= 0. (2.4)

where gj(0 ≤ j ≤ N) are constants to be determined later and Q(ξ) satisfies the following ODE

Q′(ξ) = Ln(A)(λ+ µQ(ξ) + σQ2(ξ)), (2.5)

and A ̸= 0, 1. The solutions of ODE Eq.(2.5) are:

Case 1: µ2 − 4λσ < 0 and σ ̸= 0

Q1(ξ) = − µ

2σ
+

√
−(µ2 − 4λσ)

2σ
tanA

(√
−(µ2 − 4λσ)

2
ξ

)
, (2.6)

Q2(ξ) = − µ

2σ
+

√
−(µ2 − 4λσ)

2σ
cotA

(√
−(µ2 − 4λσ)

2
ξ

)
, (2.7)

Q3(ξ) = − µ

2σ
+

√
−(µ2 − 4λσ)

2σ
tanA

(√
−(µ2 − 4λσ)ξ

)
±
√
−pq(µ2 − 4λσ)

2σ
secA

(√
−(µ2 − 4λσ)ξ

)
, (2.8)

Q4(ξ) = − µ

2σ
−
√

−(µ2 − 4λσ)

2σ
cotA

(√
−(µ2 − 4λσ)ξ

)
±
√
−pq(µ2 − 4λσ)

2σ
cscA

(√
−(µ2 − 4λσ)ξ

)
, (2.9)

Hamadou Halidou Ph.D-Thesis



2.2 Overview of the two methods of fractionnal derivative 48

Q5(ξ) = − µ

2σ
−
√

−(µ2 − 4λσ)

2σ
tanA

(√
−(µ2 − 4λσ)

4
ξ

)

−
√
−(µ2 − 4λσ)

2σ
cotA

(√
−(µ2 − 4λσ)

4
ξ

)
, (2.10)

Case 2: µ2 − 4λσ > 0 and σ ̸= 0

Q6(ξ) = − µ

2σ
+

√
(µ2 − 4λσ)

2σ
tanhA

(√
(µ2 − 4λσ)

2
ξ

)
, (2.11)

Q7(ξ) = − µ

2σ
+

√
(µ2 − 4λσ)

2σ
cothA

(√
(µ2 − 4λσ)

2
ξ

)
, (2.12)

Q8(ξ) = − µ

2σ
+

√
(µ2 − 4λσ)

2σ
tanhA

(√
(µ2 − 4λσ)ξ

)
±i
√
pq(µ2 − 4λσ)

2σ
sechA

(√
(µ2 − 4λσ)ξ

)
, (2.13)

Q9(ξ) = − µ

2σ
−
√
(µ2 − 4λσ)

2σ
cothA

(√
(µ2 − 4λσ)ξ

)
±
√
pq(µ2 − 4λσ)

2σ
cschA

(√
(µ2 − 4λσ)ξ

)
, (2.14)

Q10(ξ) = − µ

2σ
−
√
−(µ2 − 4λσ)

4σ
tanhA

(√
(µ2 − 4λσ)

4
ξ

)

−
√
(µ2 − 4λσ)

4σ
cothA

(√
(µ2 − 4λσ)

4
ξ

)
, (2.15)

Case 3: λσ > 0 and µ = 0

Q11(ξ) =

√
λ

σ
tanA

(√
λσξ

)
, (2.16)

Q12(ξ) = −
√
λ

σ
cotA

(√
λσξ

)
, (2.17)

Q13(ξ) =

√
λ

σ
tanA

(√
2λσξ

)
±
√
pq
λ

σ
secA

(√
2λσξ

)
, (2.18)
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Q14(ξ) = −
√
λ

σ
cotA

(√
2λσξ

)
±
√
pq
λ

σ
cscA

(√
2λσξ

)
, (2.19)

Q15(ξ) =
1

2

√
λ

σ

(
tanA

(√
λσ

2
ξ

)
−
√
λ

σ
cotA

(√
λσ

2
ξ

))
. (2.20)

Case 4: λσ < 0 and µ = 0

Q16(ξ) = −
√

−λ
σ

tanhA

(√
−λσξ

)
, (2.21)

Q17(ξ) = −
√

−λ
σ

cothA

(√
−λσξ

)
, (2.22)

Q18(ξ) = −
√

−λ
σ

tanhA

(√
2λσξ

)
± i

√
pq

−pqλ
σ

sechA

(
2
√
−λσξ

)
, (2.23)

Q19(ξ) = −
√

−λ
σ

cothA

(
2
√
−λσξ

)
±
√
−pqλ

σ
cschA

(
2
√
−λσξ

)
, (2.24)

Q20(ξ) = −1

2

(√
−λ
σ

tanhA

(√
−λσ
2

ξ

)
+

√
−λ
σ

cothA

(√
−λσ
2

ξ

))
, (2.25)

Case 5: µ = 0 and λ = σ

Q21(ξ) = tanA(λξ), (2.26)

Q22(ξ) = − cotA(λξ), (2.27)

Q23(ξ) = tanA(2λξ)±
√
pq secA(2λξ), (2.28)

Q24(ξ) = − cotA(2λξ)±
√
pq cscA(2λξ), (2.29)

Q25(ξ) =
1

2

(
tanA(

λ

2
ξ)− cotA(

λ

2
ξ)

)
, (2.30)

Case 6: µ = 0 and λ = −σ

Q26(ξ) = − tanhA(λξ), (2.31)
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Q27(ξ) = − cothA(λξ), (2.32)

Q28(ξ) = − tanhA(2λξ)± i
√
pqsechA(2λξ), (2.33)

Q29(ξ) = − cothA(2λξ)±
√
pqcschA(2λξ), (2.34)

Q30(ξ) = −1

2

(
tanhA(

λ

2
ξ) + cothA(

λ

2
ξ)

)
, (2.35)

Case 7: µ2 = 4λσ

Q31(ξ) = −2λ(µξLn(A) + 2)

µ2ξLn(A)
, (2.36)

Case 8: µ = k, λ = mk(m ̸= 0), andσ = 0,

Q32(ξ) = Aξk −m, (2.37)

Case 9: µ = σ = 0

Q33(ξ) = λξLnA, (2.38)

Case 10: µ = λ = 0

Q34(ξ) =
−1

σξLnA
, (2.39)

Case 11: µ ̸= 0 and λ = 0.

Q35(ξ) =
pµ

σ(coshA(µξ)− sinhA(µξ)− p)
, (2.40)

Q36(ξ) = − µ(sinhA(µξ) + coshA(µξ))

σ(coshA(µξ)− sinhA(µξ) + q)
, (2.41)

Case 12: µ = k and σ = mk(m ̸= 0) and λ = 0.

Q37(ξ) = − pAkξ

q −mpAkξ
, (2.42)

Step 3: By using the homogeneous balance principle the value of N can be obtained between

the highest order derivative and high-order terms in Eq.(2.3).

Step 4: Substituting Eq.(2.4) and Eq.(2.5) into Eq.(2.3), then collecting all the term of Qj(ξ)

to set to zero yields a system of algebraic equation.

Step 5: With aid of MAPLE, the results of the system of algebraic equation can be obtained

and then use the results of Eq.(2.5) to construct the exact solutions of Eq.(2.3).

However, the details of the generalized hyperbolic and trigonometric functions are given by [160].
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2.2.2 The new sub-ODE method

Suppose that the solution of Eq.(2.3) is given by [166–168]

U(ξ) = µF s(ξ), µ > 0. (2.43)

Here µ is an arbitrary positive constant to be determined, while F (ξ) satisfies the following

ODE

F ′2(ξ) = AF 2−2p(ξ) +BF 2−p(ξ) + CF 2(ξ) +DF 2+p(ξ) + EF 2+2p(ξ), p > 0. (2.44)

• Step 1: It consists to determine the parameter s by using the balance principle as follows:

D(U) = s, D(U2) = 2s . . . , D(U ′) = s+ p, D(U ′′) = s+ 2p . . . , (2.45)

• Step 2: Now, Eq.(2.2) and Eq.(2.3) can be plugged together into set of Eq.(2.1), thereafter

collect all the coefficients of F si(ξ) [F (ξ)′]s (i = 0, 1, 2, 3, .....) and equal them to zero,

yields to a set of algebraic system of equation which will lead to determine the different

coefficients A,B,C,D,E and µ. In the same time the s values should be (0, 1).

• Step 3: The final procedure focusses to insert the obtained parameters in the following

set of solutions of Eq.(2.1), which are listed in ref. [160].

Case 1: If A = 0, B = 0, D = 0, it is recovered bright soliton of Eq.(2.3):

F (ξ) =

[
ε

√
−C
E
sech

(
p
√
Cξ
)] 1

p

, C > 0, E < 0, ε± 1, (2.46)

a periodic solution

F (ξ) =

[
ε

√
−C
E

sec
(
p
√
−Cξ

)] 1
p

, C < 0, E > 0, ε± 1, (2.47)

and a rational solution

F (ξ) =

[
ε

p
√
Eξ

] 1
p

, C = 0, E > 0, ε± 1. (2.48)
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Case 2: By setting the conditions B = 0, D = 0, A = C2

4E
, it is gained dark soliton-like

solution of Eq.(2.3):

F (ξ) =

[
ε

√
− C

2E
tanh

(
p

√
−C
2
ξ

)] 1
p

, C < 0, E > 0, ε± 1, (2.49)

and a periodic solution

F (ξ) =

[
ε

√
C

2E
tan

(
p

√
C

2
ξ

)] 1
p

, C > 0, E > 0, ε± 1. (2.50)

Case 3: By setting the conditions B = 0, D = 0, we deduce three forms of Jacobian elliptic

functions solutions of Eq.(2.3):

F (ξ) =

[
ε

√
−Cm2

E(2m2 − 1)
cn

(
p

√
C

2m2 − 1
ξ

)] 1
p

, C > 0,

A =
C2m2(m2 − 1)

E(2m2 − 1)2
, ε± 1, (2.51)

F (ξ) =

[
ε

√
−C

E(2−m2)
dn

(
p

√
C

2−m2
ξ

)] 1
p

, C > 0,

A =
C2(1−m2)

E(2−m2)2
, ε± 1, (2.52)

and

F (ξ) =

[
ε

√
−Cm2

E(1 +m2)
sn

(
p

√
−C

1 +m2
ξ

)] 1
p

,

C < 0, A =
C2m2

E(1 +m2)2
, ε± 1. (2.53)

Case 4: By setting the conditions A = B = E = 0, bright soliton-like solution of Eq.(2.3)

is gained:

F (ξ) =

[
−C
D

sech2
(p
2

√
Cξ
)] 1

p

, C > 0, D < 0, (2.54)

a periodic solution

F (ξ) =

[
−C
D

sec2
(p
2

√
−Cξ

)] 1
p

, C < 0, D > 0, (2.55)
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and a rational solution

F (ξ) =

[
4

D(pξ)2

] 1
p

, C = 0, D < 0. (2.56)

Case 5: By setting the conditions C = E = 0, D > 0, the Weierstrass elliptic function

solutions of Eq.(2.3) are recovered

F (ξ) =

[
℘

(
p
√
D

2
ξ, g2, g3

)] 1
p

, (2.57)

where g2 = −4B
D

, g3 =
−4A
D

.

Case 6: Assuming B = D = 0, it is revealed Weierstrass elliptic function solutions to set

of Eq.(2.3),

F (ξ) =

[
℘(pξ, g2, g3)

E
− C

3E

] 1
2p

, (2.58)

where g2 = 4C2−12AE
3

, g3 = 4C(−2C2+9AE)
27

.

F (ξ) =

[
3A

3℘(pξ, g2, g3)− C

] 1
2p

, (2.59)

where g2 = 4C2−12AE
3

, g3 =
4C(−2C2+9AE)

27
.

F (ξ) =

[
6
√
A℘(pξ, g2, g3) + C

√
A

3℘′(pξ, g2, g3)

] 1
p

, (2.60)

where ℘′(pξ, g2, g3) =
d℘(pξ,g2,g3)

dξ
, g2 =

C2

12
+ AE, g3 =

C(36AE−C2)
216

.

F (ξ) =

[
3
√
E−1℘′(pξ, g2, g3)

6℘(pξ, g2, g3) + C

] 1
p

, (2.61)

where A = 5C2

26E
g2 =

2C2

9
, g3 =

C3

54
,

F (ξ) =

[√
5C2

36E

6℘(pξ, g2, g3) + C

3℘′(pξ, g2, g3)

] 1
p

, (2.62)
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while g2 and g3 are the invariants of the Weierstrass elliptic function.

Case 7: By setting the conditions A = 0, B = 0, we deduce three forms of solutions of Eq(2.3):

F (ξ) =

[
1

cosh(p
√
Cξ)− D

2C

] 1
p

, C > 0, D < 2C, E =
D2

4C
− C, (2.63)

F (ξ) =

[
1

2

√
C

E

(
1 + ε tanh

(p
2

√
Cξ
))] 1

p

, C > 0, E > 0, D = −2
√
CE, ε = ±1(2.64)

and

F (ξ) =

[
4D

(pDξ)2 − 4E

] 1
p

, C = 0, E < 0. (2.65)

Case 8: Considering A = B = 0, C > 0, we have gained combined bright soliton and

hyperbolic functions solutions of Eq(2.3):

F (ξ) =

[
2Csech2(p

2

√
Cξ)

2
√
D2 − 4CE − (

√
D2 − 4CE +D)sech2(p

2

√
Cξ)

] 1
p

, D2 − 4CE > 0,(2.66)

F (ξ) =

[
2Ccsch2(p

2

√
Cξ)

2
√
D2 − 4CE + (

√
D2 − 4CE −D)csch2(p

2

√
Cξ)

] 1
p

, D2 − 4CE > 0,(2.67)

F (ξ) =

[
2C

ε
√
D2 − 4CE cosh(p

√
Cξ)−D

] 1
p

, D2 − 4CE > 0, ε = ±1 (2.68)

F (ξ) =

[
2C

ε
√
−(D2 − 4CE) sinh(p

√
Cξ)−D

] 1
p

, D2 − 4CE < 0, ε = ±1 (2.69)

F (ξ) =

[
−C
D

(
1 + ε tanh(

p

2

√
Cξ
)] 1

p

, D2 − 4CE = 0, ε = ±1 (2.70)

F (ξ) =

[
−C
D

(
1 + ε coth(

p

2

√
Cξ
)] 1

p

, D2 − 4CE = 0, ε = ±1 (2.71)
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F (ξ) =

− Csech2
(
p
2

√
Cξ
)

D + 2ε
√
CE tanh

(
p
2

√
Cξ
)


1
p

, E > 0, ε = ±1 (2.72)

F (ξ) =

 Ccsch2
(
p
2

√
Cξ
)

D + 2ε
√
CE coth

(
p
2

√
Cξ
)


1
2

, E > 0, ε = ±1 (2.73)

F (ξ) =

 −CDsech2
(
p
2

√
Cξ
)

D2 − CE
(
1 + ε tanh

(
p
2

√
Cξ
))2


1
2

, (2.74)

F (ξ) =

 CDcsch2
(
p
2

√
Cξ
)

D2 − CE
(
1 + ε coth

(
p
2

√
Cξ
))2


1
2

. (2.75)

Case 9: Considering A = B = 0, C < 0, we gained combined bright soliton and hyperbolic

functions as solutions

F (ξ) =

[
−2C sec2(p

2

√
−Cξ)

2
√
D2 − 4CE − (

√
D2 − 4CE −D) sec2(p

2

√
−Cξ)

] 1
p

, D2 − 4CE > 0,(2.76)

F (ξ) =

[
2C csc2(p

2

√
−Cξ)

2
√
D2 − 4CE − (

√
D2 − 4CE +D) csc2(p

2

√
−Cξ)

] 1
p

, D2 − 4CE > 0,(2.77)

F (ξ) =

[
2C sec(p

√
−Cξ)

ε
√
D2 − 4CE −D sec(p

√
−Cξ)

] 1
p

, D2 − 4CE > 0, ε = ±1, (2.78)

F (ξ) =

[
2C csc(p

√
−Cξ)

ε
√
D2 − 4CE −D csc(p

√
−Cξ)

] 1
p

, D2 − 4CE > 0, ε = ±1, (2.79)

F (ξ) =

[
−

C sec2(p
2

√
−Cξ)

D + 2ε
√
−CE tan(p

2

√
−Cξ)

] 1
p

, E > 0, ε = ±1, (2.80)
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F (ξ) =

[
−

C csc2(p
2

√
−Cξ)

D + 2ε
√
−CE cot(p

2

√
−Cξ)

] 1
p

, D2 − 4CE > 0, E > 0, ε = ±1.(2.81)

Case 10: For A = 0, B = 8C2

27D
, E = D2

4C
, it is gained hyperbolic function solutions of Eq(5)

F (ξ) =

− 8C tanh2(p
2

√
−C
3
ξ)

3D(3 + tanh2(p
2

√
−C
3
ξ))


1
p

, C < 0, (2.82)

F (ξ) =

− 8C coth2(p
2

√
−C
3
ξ)

3D(3 + coth2(p
2

√
−C
3
ξ))


1
p

, C < 0, (2.83)

it is gained trigonometric function solutions

F (ξ) =

 8C tan2(p
2

√
C
3
ξ)

3D(3− tan2(p
2

√
C
3
ξ))


1
p

, C > 0. (2.84)

F (ξ) =

 8C cot2(p
2

√
C
3
ξ)

3D(3− cot2(p
2

√
C
3
ξ))


1
p

, C > 0, (2.85)

Case 11: For A = B = 0,

F (ξ) =

[
4Cp2e(pε

√
Cξ)(

eεp
√
Cξ −Dp2

)2 − 4CEp4

] 1
p

, C > 0, ε = ±1, (2.86)

F (ξ) =

[
4Cp2e(pε

√
Cξ)

−1 + 4CEp4e2εp
√
Cξ

] 1
p

, C > 0, D = 0, ε = ±1, (2.87)

F (ξ) =

[
ε

p
√
Eξ

] 1
p

, E > 0, C = D = 0, ε = ±1. (2.88)

Case 12: For A = 0 the Jacobian elliptic function solutions it is revealed

Hamadou Halidou Ph.D-Thesis



2.2 Overview of the two methods of fractionnal derivative 57

For E > 0, B = D3(m2−1)
32m2E2 , C = D2(5m2−1)

16m2E
,

F (ξ) =

[
− D

4E

(
1 + εsn

(
pD

4m

√
1

E
ξ

))] 1
p

, ε = ±1, (2.89)

F (ξ) =

− D

4E

1 + ε
1

msn
((

pD
4m

√
1
E
ξ
))



1
p

, ε = ±1, (2.90)

For E > 0, B = D3(1−m2)
32E2 , C = D2(5−m2)

16E
, it is stated

F (ξ) =

[
− D

4E

(
1 + εmsn

(
pD

4

√
1

E
ξ

))] 1
p

, ε = ±1, (2.91)

F (ξ) =

− D

4E

1 +
ε

sn
((

pD
4

√
1
E
ξ
))



1
p

, ε = ±1, (2.92)

For E < 0, B = D3

32m2E2 , C = D2(4m2+1)
16m2E

, it is revealed

F (ξ) =

[
− D

4E

(
1 + εcn

(
pD

4m

√
− 1

E
ξ

))] 1
p

, ε = ±1, (2.93)

F (ξ) =

− D

4E

1 +
ε
√
1−m2sn

(
pD
4m

√
− 1
E
ξ
)

dn
(
pD
4m

√
− 1
E
ξ
)




1
p

, ε = ±1. (2.94)

For E < 0, B = m2D3

32(m2−1)E2 , C = D2(5m2−4)
16(m2−1)E

, it is revealed

F (ξ) =

[
− D

4E

(
1 +

ε√
1−m2

dn

(
pD

4

√
− 1

(1−m2)E
ξ

))] 1
p

, ε = ±1, (2.95)

F (ξ) =

− D

4E

1 +
ε

dn
((

pD
4

√
− 1

(1−m2)E
ξ
))
 1

p

, ε = ±1. (2.96)
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For E < 0, B = m2D3

32E2 , C = D2(m2+4)
16E

, hence

F (ξ) =

[
− D

4E

(
1 + εdn

(
pD

4

√
− 1

E
ξ

))] 1
p

, ε = ±1, (2.97)

F (ξ) =

− D

4E

1 +
ε
√
1−m2

dn
((

pD
4

√
− 1
E
ξ
))



1
p

, ε = ±1, (2.98)

For E > 0, B = D3

32(1−m2)E2 , C = D2(4m2−5)
16(m2−1)E

, it is revealed

F (ξ) =

− D

4E

1 +
ε

cn
((

pD
4

√
1

(1−m2)E
ξ
))
 1

p

, ε = ±1. (2.99)

F (ξ) =

− D

4E

1 +
εdn

(
pD
4

√
1

(1−m2)E
ξ
)

√
1−m2sn

(
pD
4

√
1

(1−m2)E
ξ
)


1
p

, ε = ±1. (2.100)

Case 13: For A = E = 0, it is recovered Jacobian elliptic function

For D < 0, C > 0, B = m2C2(m2−1)
D(2m2−1)2

, we get

F (ξ) =

[
− m2C

D(2m2 − 1)
cn2

(
p

2

√
C

2m2 − 1
ξ

)] 1
p

, (2.101)

For D > 0, C < 0, B = m2C2

D(m2+1)2
, then

F (ξ) =

[
− m2C

D(m2 + 1)
sn2

(
p

2

√
− C

m2 + 1
ξ

)] 1
p

, (2.102)

F (ξ) =

[
− m2C

D(m2 + 1)
cd2

(
p

2

√
− C

m2 + 1
ξ

)] 1
p

, (2.103)

For D < 0, C > 0, B = (1−m2)C2

D(2−m2)2
, consequently the last one

F (ξ) =

[
− C

D(2−m2)
dn2

(
p

2

√
C

2−m2
ξ

)] 1
p

. (2.104)
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2.3 Description of model

2.3.1 Description of physical model and justification

• Justification of physical model

Our starting point is the finding from the literature review that:

- An isolated SQUID consisting of a loop with JJ is less stable to noise and has reduced

sensitivity ;

- Identical JJ arrays have a great advantage over an individual JJ, in terms of amplitude and

sensitivity, in terms of dynamics and also in terms of magnetic noise reduction;

- Series arrays are very sensitive to dispersion phenomena and present difficulties in polarizing

such a JJ array;

- For parallel networks, calculations predict improved sensitivity, but this is difficult to model;

- The models recently proposed by Abdoulkary .al (2016) and Houwe .al (2017) incorporate JJs

but are applied to meta-materials, and the frequencies obtained are below the infrared fibration

frequencies of the array. This shows that the proposed model does not take into account all the

phenomena involved, in particular the parasitic effect.

In this work, we have chosen to integrate the JJ in a right hand line. For this, we integrated

the JJ next to the nonlinear C2 capacitor for the substituted one, thus bringing the capacitor

rather linear. Moreover, at very high frequency, the JJ will create capacitive effects on the line

in the horizontal direction, and these effects are modeled by the capacitor C1. This is justified

by the fact that, the right hand line which is a conventional line models a normal conductor,

while the left hand line models an artificial conductor. This will allow to test not only the very

high frequency conduction capability of current conductive materials, but also to synthesize and

control these materials to build coherent arrays of junctions for several technical applications.

- Identical JJ arrays have a great advantage over an individual JJ, in terms of amplitude and

sensitivity, in terms of dynamics and also in terms of magnetic noise reduction;

- Series arrays are very sensitive to dispersion phenomena and present difficulties in polarizing

such a JJ array;

- For parallel networks, calculations predict improved sensitivity, but this is difficult to model;
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- The models recently proposed by Abdoulkary and al. (2016), Houwe and al. (2017) incorporate

JJs but are applied to meta-materials, and the frequencies obtained are below the infrared

fibration frequencies of the array. This shows that the proposed model does not take into

account all the phenomena involved, in particular the parasitic effect.

In this work, we have chosen to integrate the JJ in a right hand line. For this, we integrated

the JJ next to the nonlinear C2 capacitor for the substituted one, thus bringing the capacitor

rather linear. Moreover, at very high frequency, the JJ will create capacitive effects on the line

in the horizontal direction, and these effects are modeled by the capacitor C1. This is justified

by the fact that, the right hand line which is a conventional line models a normal conductor,

while the left hand line models an artificial conductor. This will allow to test not only the very

high frequency conduction capability of current conductive materials, but also to synthesize and

control these materials to build coherent arrays of junctions for several technical applications.

• Physical model

Figure 16 shows the nth elementary cell of the nonlinear electrical transmission line with Joseph-

son junction. It is modeled by a linear inductor L1 in parallel with a linear C1 in the series

branch and a linear capacitor C2 in parallel with a nonlinear Josephson junction current Jn.

The junction is considered here as the one that brings nonlinearity to the cell, in its response

to the current so the expression of the junction of rank n is :

Jn = J0 sin(2π
ϕn
ϕ0

) (2.105)

where the dimensionless parameter µ0 is given by µ0 = C2

C1
, ϕj = 2π ϕn

ϕ0
is the quantum phase

at node j,and ϕ0 = 2, 064.10−15Tm2,J0 = 200nA [69]. The whole line is thus an assembly of n

elementary and identical cells. Let’s consider the cell of rank n: Vn is the voltage which crosses

the capacitorC1, the choke L1, the condenser C2, and the junction Jn of rank n while In is the

current which crosses this same assembly of cell nth.

2.3.2 Analytical treatment

By using the famous Kirchhoff Laws in current and voltage on the lattice of Figure 16 reveals

the following nonlinear discrete equations which describes the modulated waves in the lattice :
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Figure 16: Schematic representation of the nonlinear electrical transmission line with Josephson

junction

The law of the nodes leads to the following relation:

in = iL + iC1 , (2.106)

in+1 = iL1 + iC1 − iC2 − Jn, (2.107)

The law of meshes gives us the following relation:

Vn−1 − Vn = VC1 , (2.108)

Vn−1 − Vn = VL, (2.109)

Vn = VC1 + VC2 , (2.110)

with,

Vn =
dϕn

dt
. (2.111)

By combining the three equations, then replacing Josephson’s current Jn by J0 sin
(
2 π ϕn

ϕ0

)
we

deduce the following equation:

ϕn−1 − 2ϕn + ϕn+1

L
+ C1

d2

dt2
(ϕn−1 − 2ϕn + ϕn+1) + C2

d2ϕn

dt2
+ J0 sin

(
2
π ϕn
ϕ0

)
= 0, (2.112)
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By setting ω2
0 = 1

L1C1
, µ2

0 = C2

C1
, and the plasma frequency ωj =

√
2πJ0/C1ϕ0,

ϕ0 = 2.064× 10−15Tm2.

The characteristic frequency of the oscillations, then by changing the variable we get:

d2

dt2
(ϕn+1 − 2ϕn + ϕn−1) + ω2

0 (ϕn+1 − 2ϕn + ϕn−1) + µ0
d2ϕn
dt2

+ ω2
j sin (ϕn) = 0

(2.113)

Whose physical parameters of the isolated Josephson junction are given : C1 = 1pF ; L1 =

470µH; J0 = 100nA; ϕ0 = 2.064× 10−15Tm2.

For a chain of N identical cells, we obtain a set of n coupled non-linear differential equations,

assuming the distances between the meshes very small and making the Taylor expansion in the

neighborhood of ϕn led to the fully integrable sine-Gordon equation. The equation obtained

from sine-Gordon being fully integrable, which justifies that the energy obtained is conserved

during propagation. As indicated in the Hamiltonian below:

H =
∑
n

[
1

2
µ0

(
dϕn
dt

)2

+
1

2

(
d

dt
(ϕn + ϕn+1)

)2

+
1

4
ω2
0 (ϕn − ϕn+1)

2 × (ϕn−1 − ϕn)
2

]
−
∑
n

[ωj cos (ϕn)] . (2.114)

Thus, the energy to be propagated in this line is also localized, it is the result of the balance

between the effects of the dispersion brought by the first term of the equation and the strong

nonlinearity introduced by the Josephson Junction current represented in the equation by the

term of degree three which comes from the third order approximation of sine. This aspect is also

revealed in the dispersion relation, which we now derive. To obtain an analytical treatment

of the nonlinear wave that the model of (2.113) can possess, the reductive (quasi-discrete)

perturbation method will be applied as follows [47].

To do so, it is considered (2.113) in case of low-amplitude waves (ϕn ≪ 1). Mathematically, that

is to say that we are going to develop the sine function with the order two sin (ϕn) = ϕn− 1
6
ϕn

3,

which allows us to obtain the following equation :

d2

dt2
(ϕn+1 − 2ϕn + ϕn−1) + ω2

0 (ϕn+1 − 2ϕn + ϕn−1) + µ0
d2ϕn
dt2

+ ω2
jϕn −

ω2
j

6
ϕ3
n = 0.

(2.115)
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We know that this equation (2.11) admit a planar wave solution of small amplitude (ϕ0 <<

1) in the following form exp(iθn), with θn = kn−ωt, where n, ω, k respectively the position, the

angular frequency and the wave number. We place ourselves in the case where the amplitude

of the previous plane wave is nonlinear and associated with a quasi-discrete envelope, then we

use the method of reduction by the perturbation in the quasi-discrete limit in equation (2.115).

According to the authors [47], the solution of (2.115) is assumed to have the following general

form :

ϕn = ϵϕ1(x, τ) exp(iθn) + ϵ2ϕ02(x, τ) + ϵ2ϕ2(x, τ) exp(2iθn) + ...+ c.c., (2.116)

cc the conjugate complex of the preceding term, ϵ a positive parameter related to the amplitude

of the soliton such as: ϵ << 1. ϕ1; ϕ02; ϕ2 and their respective conjugate complex are unknown

functions, representing the small variations of the envelope which, respectively depend on :

x = ϵ (n− vgt) , τ = ϵ2t (2.117)

By introducing this form of solution Eq. (2.116) in Eq. (2.115) and adopting ( ∂
∂t

= ∂
∂τ

· ∂τ
∂t

+

∂
∂x
· ∂x
∂t

= ϵ2 ∂
∂τ
−ϵvg ∂

∂x
), we obtain the algebraic equations around the terms: ϵpϕs1 (x, τ) eq i(kn−ω t)

with p and q integer. From the factors ϵ1ϕ1 (x, τ) e
i(kn−ω t), ∂

∂x
ϕ1 (x, τ) e

i(kn−ω t) and ∂2

∂x2
ϕ1 (x, τ) e

i(kn−ω t)

we deduce respectively the dispersion relation, the speed of the group and the envelope propaga-

tion equation in the conventional transmission line with Josephson junction, from the multiscale

expansion after collecting all the terms in the form below set to zero.

2.3.3 Linear analysis: Linear dispersion and group velocity

Given that a planar wave solution of small amplitude (ϕ0 << 1) in the following form

ϕn = ϕ0e
i(kx−ω t), with x; ω; k respectively the position, the angular frequency and the wave

number. By using the perturbation of Eq.(2.116), in the order ϵ1, we derive the following

algebraic equation :

ϵ1ϕ1 (x, τ) e
i(kn−ω t) : 4ω0

2 (sin (k/2))2 ϕ1 (x, τ)− µ0
2ϕ1 (x, τ)ω

2 + ωj
2ϕ1 (x, τ)

− 4ϕ1 (x, τ) (cos (k/2))
2 ω2 + 4ϕ1 (x, τ)ω

2 (2.118)
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To the above algebraic equation, we derive the following dispersion relation below :

ω2 = −
4 sin2

(
k
2

)
ω2
0 − ω2

j

µ0 − 4 sin2
(
k
2

) . (2.119)

From the linear dispersion relation Figure 17 (a), the wave number is taken in the first

Brillouin zone (0 ≤ k ≤ π). Therefore, it is revealed two cut off frequencies given by ωmin =√
ω2
j−4ω2

0

µ0−4
and ωmax =

√
ω2
j

µ0
respectively. Which leads to the following respective frequencies:

fmin =
1

2π

√
ω2
j − 4ω2

0

µ0 − 4
(2.120)

;

fmax =
1

2π

√
ω2
j

µ0

(2.121)

.

It follows from this result that, the width of the permitted band depends on the value of

the inductance, for a very large inductance value compared to the capacity of the dielectric, the

permitted band is zero and we have an insulator.

By using the following perturbation of Eq.(2.116), in the order ϵ2, we derive the following

algebraic equation :

ϵ2
∂

∂x
ϕ1 (x, τ) e

i(kn−ω t) : −2ω0
2 sin (k)

∂

∂x
ϕ1 (x, τ) + 2µ0

2ω

(
∂

∂x
ϕ1 (x, τ)

)
vg

− 2 sin (k)

(
∂

∂x
ϕ1 (x, τ)

)
ω2 + 8

(
∂

∂x
ϕ1 (x, τ)

)
(cos (k/2))2 iω vg

− 8ω

(
∂

∂x
ϕ1 (x, τ)

)
vg (2.122)

To the above algebraic equation, we derive the following group velocity :

vg =
(ω2 − ω2

0) sin (k)

ω
(
4 cos2

(
k
2

)
+ µ0 − 4

) . (2.123)

We note that in the figure 17b, the speed of the group is zero at the two extremes of fre-

quency fmin and fmax, however this speed reaches its maximum value for k = π
2
. We also note

that, the speed of the group is positive in all the allowed frequency band, which is also com-

pletely in phase with the theoretical predictions.
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Figure 17: (a) is the plot of the dispersion relation versus wave number and (b) the group

velocity versus wave number at J = 200nA, L1 = 480µH, C1 = 1pF , C2 = 2pF .

2.3.4 2.2.2.3 Nonlinear analysis: NLS equation and soliton solution

By using the perturbation of Eq.(2.116), in the order ϵ3 we derive the following algebraic

equation :

ϵ3
∂2

∂x2
ϕ1 (x, τ) e

i(kn−ω t) : −ω0
2 cos (k)

∂2

∂x2
ϕ1 (x, τ) + µ0

2

(
−2 iω

∂

∂τ
ϕ1 (x, τ)

)
+µ0

2

((
∂2

∂x2
ϕ1 (x, τ)

)
vg

2

)
− ωj

2ϕ11 (x, τ) (ϕ1 (x, τ))
2

+4

(
∂2

∂x2
ϕ1 (x, τ)

)
(cos (k/2))2 vg

2 − 8

(
∂

∂τ
ϕ1 (x, τ)

)
× (cos (k/2))2 iω − cos (k)

(
∂2

∂x2
ϕ1 (x, τ)

)
ω2

−4

(
∂2

∂x2
ϕ1 (x, τ)

)
sin (k)ω vg − 4

(
∂2

∂x2
ϕ1 (x, τ)

)
vg

2

+8 iω
∂

∂τ
ϕ1 (x, τ) , (2.124)

To the above algebraic equation, we derive the following nonlinear Schrödinger equation :

i∂τϕ1 + P∂xxϕ1 +Q|ϕ1|2ϕ1 = 0, (2.125)
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with P and Q the dispersion and nonlinearity coefficient respectively and depend of the fre-

quency or the wave number through the dispersion relation, given by the following expressions

P =

((
4 cos4

(
k
2

)
− 4− 2µ0 cos

2
(
k
2

)
+ µ0

)
ω2 + ω0

2
(
−4 cos2

(
k
2

)
+ 4 cos4

(
k
2

)))
(ω2 − ω0

2)(
4 cos2

(
k
2

)
+ µ0 − 4

)2
ω3

.

(2.126)

it is also known that the dispersion coefficient P can be found straightforward using the formula

P = 1
2
∂2ω
∂k2

:

Q =
1

4

ω2
j

ω
(
4 cos2

(
k
2

)
+ µ0 − 4

) , (2.127)

The most significant parameters related to the plane wave propagation in NETLs are: the dis-

persion Eq.(2.119), the group velocity vg = dω/dk Eq.(2.123), the phase velocity vg = dω/dk,

the dispersion coefficient Eq.(2.126), the nonlinearity coefficient Eq.(2.23). Thus, in order to

understand the evolution of these different parameters as a function of time, we will first make

a linear analysis, then a non-linear analysis of these parameters and finally we will present the

solution of the solitons derived from the NLS obtained.

Figure 18: (a) is the plot of the dispersion coefficient and (b) nonlinearity coefficient at J =

200nA, L1 = 480µH, C1 = 1pF , C2 = 2pF .
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Figure 19: Illustration of the bright (6.3× 108kHz < f < 6.655× 108kHz) and dark (6.656×

108kHz < f < 6.8×108kHz) formation areas depending on the sign of the product (PQ) versus

angular frequency at J0 = 200nA, L1 = 480µH, C1 = 1pF , C2 = 2pF .

We know that Eq.(2.125) is a NLSE which is fully integrable and therefore admits known

soliton solutions. Several works have shown that depending on the sign of the product PQ,

the NLSE equation admits either a bright soliton (which corresponds to a stable modulation)

or a dark soliton (for an instability of the modulation). However, the type of soliton obtained

depends on the sign of the product PQ, such that if PQ > 0 it admits a bright soliton solution,

whereas if PQ < 0 one has a dark soliton solution. Thus, figure 18 (b) shows that Q is positive

over the entire admitted band, so the sign of the product depends only on P . The observation

of figure 18 (a), highlights two regimes of cutoff frequencies that correspond to a bright and

dark formation. Thus, for (6.3 × 108kHz < f < 6.655 × 108kHz) the bright soliton is set up,

while the dark soliton is formed at (6.656 × 108kHz < f < 6.8 × 108kHz). From the above

curves (fig.19), PQ > 0 for frequency belonging to 6.3 × 108kHz < f < 6.655 × 108kHz and

we have the following soliton Bright solution:

ϕ1 (x, τ) = ϕ0 sech (λ (−vgτ + x)) ekx−ω τ (2.128)
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Similarly, PQ < 0 for frequency belonging to 6.656× 108kHz < f < 6.8× 108kHz and we have

the following soliton dark solution :

ϕ1 (x, τ) = ϕ0 tanh (λ (−vgτ + x)) ekx−ω τ (2.129)

With λ = ϕ0

√
| Q
2P

| the inverse of the width of the wave packet; k = vg
2P

is the wave number of

the soliton; ω = vgvp
2P

the angular frequency; ϕ0 =
√

vg2−vgvp
2PQ

wave amplitude [63]. Our model of

NLSE being obtained and admitting several known solution for some condition in particular :

the bright and dark soliton, the peregrine and the super rogue waves. It is a question for us to

give the analytical representation of these different soliton and to verify the characteristics of

their propagation in our line model. In the following paragraph, we will analyze the stability

of our line in order to identify the areas of stability and instability, then the key parameters of

control and to generate various models localized waves.

2.4 Modulation instability

The modulation instability is a fundamental phenomenon discovered independently by

Lighthill [169] in 1965, by Benjamin and Feir in 1967 [170], by Zakharov (1968) and by

Whithamen (1974). Zakharov and Ostrovsky [171] have assembled and synthesized the be-

ginnings of this instability which appears in various fields of physics such as hydrodynamics

(it is in this context that we study it) but also nonlinear optics, plasma theory, laser beams

and electromagnetic transmission lines for example. The modulation instability is a non-linear

phenomenon which consists in the growth of a modulation (periodic structure at the start of

a perturbation) superimposed on a continuous (or quasi-continuous) signal. The amplification

of this modulation is due to the conjunction of a Kerr-type nonlinearity and the dispersion of

the medium. When the evolution of the field is described by Schrödinger’s nonlinear propaga-

tion equation. The modulation instability within an optical fiber can occur in the anomalous

dispersion regime, but also in a normal dispersion regime with pumping close to the dispersion

zero associated with conditions on the higher order dispersion coefficients. Indeed, in the nor-

mal dispersion regime, the combined effects of nonlinearity and dispersion tend to stabilize the

continuous wave. However, there is a case where it is possible to obtain the MI process, when

the pumping takes place close to the zero dispersion of the fiber (with conditions of dispersion
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of the fiber (with conditions on higher dispersion orders). Modulation instability or modulation

instability is an effect of reinforcement, by non-linearity, of a deformation of a periodic wave,

leading to the generation of gain bands in the frequency spectrum. It can cause the wave to

break into a train of pulses. It depends strongly on the frequency of the disturbance. At some

frequencies, a disturbance will have little effect, while at others, the disturbance will grow ex-

ponentially. The expression of the gain spectrum can be obtained as detailed below. Random

disturbances generally have a broad spectrum that will cause the generation of spectral bands

that reflect the gain spectrum. Since modulation instability causes a signal to grow, it can be

considered as a form of amplification: by injecting an input signal at the maximum frequency

of the gain spectrum, it is possible to to create an optical amplifier.

2.4.1 Definition

The modulation instability is an phenomena which arises from the interplay between dis-

persive and nonlinear effects and manifests itself in the exponential growth of weak perturba-

tions [172, 173]. The gain leads to amplification of sidebands, which break up the otherwise

uniform wave and generate fine localized structures. Thus, it may act as a precursor for the

formation of solitons [169].

2.4.2 Some examples of modulation instability

The modulation stability phenomenon has been identified and studied in various physical

systems, such as fluids, plasmas, nonlinear optics, metamaterials, discrete nonlinear systems,

and BECs, to name a few [172–176]. However, the investigation criteria evolve according to the

type of medium modeled and the phenomenon to be observed. It is a question here for us to

present some existing approaches in the literature.

2.3.2.1 Modulation instability in the anharmonic Peyrard-Bishop model of DNA

Tabi et al. [174] studied the modulation instability in the PBD model. To do so, they considered

the Salerno equation of the following DNA model:

i
dψn
dt

+ (P1 +Q1|ψn|2)(ψn+1 + ψn−1) +Q2|ψn|2ψn = 0 (2.130)

Where P1 =
K
2ωb

, Q1 =
η

3βω2
g+6η

, Q2 =
η+βω2

g

3βω2
g+6η

, ωg =
2a2D
m

, η = b2Sρ
m

and K = k1
m

.
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Equation (2.26) has an exact plane-wave solution as

ψn(t) = ψ0 exp
i(qn−Λt) (2.131)

The wavenumber q, the angular frequency Λ and the amplitude ψ0 satisfy the following disper-

sion relation:

Λ = 4P1 sin
2(
q

2
)− [2P1 + (2Q1 cos(q) +Q2)ψ

2
0] (2.132)

To examine the linear stability of the initial plane waves, we look for a solution of the form:

ψn(t) = ψ0[1 +Bn(t)] exp
i(qn−Λt) (2.133)

where the perturbation amplitude Bn(t) is assumed to be small in comparison with the

carrier wave amplitude ψ0. Then, one obtains an algebraic equation describing the evolution

of the perturbation Bn(t). Furthermore, we assume a general solution of the above-mentioned

system of the form :

Bn(t) = B1 exp
i(Qn−Ωt) +B2 exp

−i(Qn−Ω∗t) (2.134)

where the asterisk denotes complex conjugation, Q and Ω represent, respectively, the wavenum-

ber and the angular frequency of the perturbation amplitude and B1 and B2 are complex con-

stant amplitudes.

Inserting this modulated solution into the equation describing the evolution of the perturbation

and linearizing around the unperturbed plane wave, we obtain the linear homogeneous system

for B1 and B2 :  a11 − Ω a12

a21 a22 + Ω

  B1

B2

 =

 0

0

 (2.135)

The condition for the existence of non-trivial solutions of this linear homogenous system is given

by a second order equation for the frequency Ω, that is :

(a11 − Ω)(a22 − Ω)− a12a21 = 0 (2.136)
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Figure 20: (Color online) Growth rate versus the wavenumber of the perturbation Q for q = π
8
,

ωb = 1, S = 2.5 × 10−12eV , D = 0.05eV and b = 0.35 × 1010. This has been plotted for three

values of the anharmonic stacking coupling constant ρ . Note also that the carrier wave with

q = π
8

and ρ = 0 is unstable to perturbation of any wavenumber.

Figure 21: (Color online) Growth rate versus the wavenumber of the perturbation Q for q =

0 ,ωb = 1, S = 2.5 × 10−12, D = 0.05 eV and b = 0.35 × 1010. This has been plotted for three

values of the anharmonic stacking coupling constant ρ . Note also that the carrier wave with

q = π
8

and ρ = 0 is unstable to perturbation of any wavenumber (blue line).
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with

a11 = −2P1[sin(Q) sin(q)− (cos(Q)− 1) cos(q)]

−2Q1|ψ2
0|[sin(Q) sin(q)− cos(Q) cos(q)] +Q2|ψ0|2

a12 = a21 = (2Q1 cos(q) +Q2)|ψ0|2 (2.137)

a22 = 2P1[sin(Q) sin(q) + (cos(Q)− 1) sin(q)]

+2Q1|ψ2
0|[sin(Q) sin(q)− cos(Q) cos(q)] +Q2|ψ2

0|

Equation (2.136) can be rewritten as:

(Ω2) = [Ω + 2P1 sin(Q) sin(q) + 2Q1|ψ0|2 sin(Q) sin(q)]2

= 16(P1 +Q1ψ
2
0) sin

2(
Q

2
cos(q) (2.138)

×[(P1 +Q1ψ
2
0) sin

2(
Q

2
cos(q)− (2Q1 cos(q) +Q2)|ψ0|2

• If (Ω1)
2 is negative, two complex numbers are solutions of the above equation and the

exponential growth takes place with rate :

σ(Q) = 4 sin(
Q

2
)

√
(P1 +Q1ψ2

0)[(2Q1 cos(q) +Q2)|ψ0|2) sin2(
Q

2
) cos(q)] cos(q)(2.139)

This is possible if the initial amplitude |ψ0| exceeds the threshold amplitude |ψ0cr| defined as

follows :

|ψ0|2 ≥ |ψ0cr|2 =
2P1 sin

2(Q
2
) cos(q)

2Q1 cos2(
Q
2
) cos(q) +Q2

(2.140)

The obtained results show that, the stacking potential has an impact on the stability/instability

region (the white regions represent the stability areas, while the hatched region indicates the

instability area). Similarly, the modulation wave amplitude growth rates for carrier waves with

three values of ρ are plotted in figure 20 and figure 21. It is shown that the instability growth

rate can be dramatically affected by the stacking potential of PBDs. It is again clear that for

the PB model (ρ = 0), the dynamics of the system has a large instability region (see blue lines
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in figures 20 and 21), whereas in the case of the PBD model (ρ = 1 or ρ = 2), the instability

growth rate is dramatically reduced by the anharmonicity of the stacking energy (see red and

green lines in figures 20 and 21). For all these cases, the growth rate is maximum in general.

On the other hand, the carrier wave with q = π
8

and ρ = 0 is unstable to perturbation of any

wavenumber (see the blue line in figure 20).

2.3.2.2 Modulation Instability Analysis of an integrable model of (2+1)-Dimensional

Heisenberg Ferromagnetic Spin Chain Equation

Inc and al. [175] studied the modulation instability in the following Heisenberg Ferromagnetic

Spin Chain Equation describes the magnetic ordering in ferromagnetic materials :

iqt + αqxx + νqyy + δqxy − γψ|q|2 = 0, i =
√
−1, (2.141)

with α = σ4(J + J2), ν = σ4(J1 + J2), δ = 2σ4J2, γ = 2σ4A.

Where x, t and y are the independent variables and q(x; t; y) is the dependent variable. The

term σ is the lattice parameter, J and J1 are the coefficients of bilinear exchange interactions

along the X and Y axis. J2 refers to the neighboring interaction on the diagonal,while A denote

the uniaxial crystal field anisotropy parameter. The HFSC describes the magnetic ordering in

ferromagnetic materials.

We discuss the MI. In order to study the MI, we use the standard linear- stability analysis.

Equation (2.141) has the perturbed steady-state solution of the form :

q(x, t, y) =
(√

P0 + a (x, y, t)
)
eiϕNL , ϕNL = γ Px (2.142)

where P0 represent the incident power.

We investigate the evolution of the perturbation a(x, t, y) using the concept of linear stability

analysis. Substituting Eq.(2.142) into Eq.(2.141) and linearizing the result in a(x, t, y), we

acquire:

iqt + αqxx + νqyy + δqxy − γP0(a+ a∗) = 0 (2.143)

The linear equation equation (2.143) can be solved in the frequency domain easily. But because

of the a∗ component, the Fourier terms at frequencies Ω and −Ω are coupled. So, we seek for

a(x, t, y) = a1e
i(Kx+K1y−Ωt) + a2e

−i(Kx+K1y−Ωt) (2.144)
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Figure 22: Gain spectra of modulation instability (growth rate) Eq.(2.44) for three values of

the nonlinear length with γ= 3; P0 = (0,2; 0,4; 0,5); k1 = (0,85; 0,5; 0,2); δ= (0,8; 0,8; 0,9);

µ= (1,7; 0,2; 2); α= (0,8; 2; 1):

where K is the wave number, is the frequency and k1 is transverse wave number of the pertur-

bation respectively. Equations (2.144) and (2.143) give a set of two homogeneous equations in

a1 and a2. Substituting Eq.(2.144) into Eq.(2.143), separation the coefficients of ei(Kx+K1y−Ωt)

and e−(iKx+K1y−Ωt) and solving the result, we obtain the following dispersion relation as :

K =
−δk1 ±

√
δ2k21 − 4αγP0 ± 4α

√
Ω2 + γ2P 2

0

2α
(2.145)

The dispersion relation equation (2.145) shows that steady-state stability depends on whether

light experiences anomalous or normal group velocity dispersion inside the fiber.

• If (
√
δ2k21 − 4αγP0 ± 4α

√
Ω2 + γ2P 2

0 ) > 0, the wave number K is real and the steady

state is stable against small perturbations.

• If (
√
δ2k21 − 4αγP0 ± 4α

√
Ω2 + γ2P 2

0 ) < 0 the wave number K is imaginary since the

perturbation grows exponentially, the occurrence of modulation instability.

Thus, the growth rate of the modulation stability gain spectrum g(Ω) can be expressed as :

g(Ω) = 2Im(K) =
1

α

√
δ2k21 − 4αγP0 ± 4α

√
Ω2 + γ2P 2

0 (2.146)
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Figure 23: Gain spectra of modulation instability (growth rate) Eq.(2.44) for three values of

the nonlinear length with γ = 3; P0 = (10; 15; 20); k1 = (0,85; 0,5; 0,2);δ = (0,8; 0,8; 0,9);µ=

(1,7; 0,2; 2); α= (0,8; 2; 1):

The modulation-instability gain is significantly affected by the incident power P0. From figure

22 and figure 23, it can be seen that the MI growth rates will appears to disperse with increase

in P0 values. The main reason is due to increase in the gain along the fiber length because of

the increase in incident power P0 as shown in figure 23.

2.3.2.3 Modulation Instability Analysis in Dispersive Metamaterial

Inc and al. [141] studied the instability to the NLSE describing the propagation in dispersive

metamaterial is given by :

ψx = −isgn(β2)
2

ψtt + δ3ψttt + ivN2{|ψ|2ψ + is1(|ψ|2ψ)t − τrψ(ψ|2)t} (2.147)

We suppose that Equation (2.147) has the perturbed steady-state solution of the form :

ψ(x, t) =
(√

P0 + a (x, y, t)
)
eiϕNL , ϕNL = γ P0x (2.148)

where P0 represent the incident power.

We investigate the evolution of the perturbation a(x; t) using the concept of linear stability

analysis. Substituting Equation (2.148) into equation (2.147) and linearizing the result in a(x;

t), we acquire :

ax = −iµatt + i{γP0(a+ a∗) + is1γP0(2at + a∗t ) + τγP0(at + a∗t ) = 0 (2.149)
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Because of the ρ∗ component, the Fourier terms at frequencies Ω and −Ω are coupled. So, we

seek for :

ρ(t, x, z) = a1e
i(K x−Ω t) + a2e

−i(K x−Ω t) (2.150)

where K is the wave number, is the frequency of the perturbation respectively. We give a set

of two homogeneous equations in a1 and a2.

Substitution Eq.(2.150) into Eq.(2.149), we get the following system of equations for a1 and a2

upon separating the coefficients of ei(K x−Ω t) and e−i(K x−Ω t)

Ka2 + µΩ2a2 + γa1P0 + γa2P0 − iγτΩa1P
2
0 − iγτΩa2P

2
0 − γΩa1P

2
0 s1 − 2γΩa2P

2
0 s1 = 0

− Ka1 + µΩ2a1 + γa1P0 + γa2P0 − iγτΩa1P
2
0 − iγτΩa2P

2
0 + γΩa1P

2
0 s1 + 2γΩa2P

2
0 s1 = 0

(2.151)

From Eq.(2.151), one can easily obtain the following coefficient matrix of a1 and a2 : Γ11 Γ12

Γ21 Γ22

  a1

a2

 =

 0

0

 (2.152)

Γ11 = γP0(1 + P0(−iττΩ− Ωs1)), (2.153)

Γ12 = (K + µΩ2 + γP0 + γΩP0(−iτ − 2s1)),

Γ21 = (−K + µΩ2 + γP0 + γΩP0(iτ + 2s1)),

Γ22 = γP0(1 + ΩP0(iτ + s1)

The coefficient matrix Eq.(2.152) has a nontrivial solution if the determinant vanishes. By

expanding the determinant, we obtain the following dispersion relation

K2 − µ2Ω4 − 2γµΩ2P0 − 2iγτKΩP 2
0 − 4KγΩP 2

0 s1 + 2iγ2τΩ2P 2
0 s1 (2.154)

+3γ2Ω2P 4
0 s

2
1 = 0

The dispersion relation Equation (2.154) has the following solutions

K = iγτΩP 2
0 + 2γΩP 2

0 s1 (2.155)

±
√
µ2Ω4 + 2γµΩ2P0 − γ2τ 2Ω2P 4

0 + 2iγ2τΩ2P 4
0 s1 + γ2Ω2P 4

0 s
2
1

The stability of the steady state is determined by equation (2.154).
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Figure 24: Gain spectra of modulation instability (growth rate) Eq.(55) for three values of the

nonlinear length with γ= 3; P0 = (0:2; 0:4; 0:5); k1 = (0,85; 0,5; 0,2); δ= (0,8; 0,8; 0,9); µ=

(1,7; 0,2; 2); α= (0,8; 2; 1)

Figure 25: Gain spectra of modulation instability (growth rate) Eq.(55) for three values of the

nonlinear length with γ = 3; P0 = (10; 15; 20); k1 = (0,85; 0,5; 0,2);δ = (0,8; 0,8; 0,9);µ= (1,7;

0,2; 2); α= (0,8; 2; 1):
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• If K has an imaginary part, the steady-state solution is unstable since the perturbation

grows exponentially.

• If the wave number K is real, the steady state is stable against small perturbations. It can

be seen from equation (2.53) that the modulation always exists because the imaginary

part Im(K) ̸= 0 : Finally, we obtain the MI gain spectrum as

g(Ω) = 2Im(K) = 2{iγτΩP 2
0 + 2γΩP 2

0 s1 (2.156)

±
√
µ2Ω4 + 2γµΩ2P0 − γ2τ 2Ω2P 4

0 + 2iγ2τΩ2P 4
0 s1 + γ2Ω2P 4

0 s
2
1}

The modulation instability gain is significantly affected by the incident power P0. From figure

24 and figure 25, it can be seen that the MI growth rates will appears to disperse with increase

in P0 values. The main reason is due to increase in the gain along the fiber length as a result

of the increase in incident power P0.

2.4.3 Modulation instability of our system

In this part of our work, we wish to test the modulation instability of our system based

on the NLS equation (2.125). For this purpose, we consider the plane wave solution of this

equation in the form :

ϕ1 = ϕ10e
iϕ20τ . (2.157)

With ϕ20 = Q|ϕ10|2.

Where ϕ10 and ϕ20 is respectively the amplitude and the frequency of the carrier waves.

Thus we perturb the amplitude of the plane wave solution in the following form :

ϕ1 = (ϕ10 + ϵϕ11)e
iϕ20τ (2.158)

with ϕ11 = ϕ12e
i(Kx+Ωτ)+cc, where the wave number and the angular frequency perturbation

are given respectively by K and Ω. While ϕ12 is a constant representing the amplitude of the

disturbance.

When we introduce this perturbation into Equation (2.125) and separate the real and imaginary
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parts, then after collecting in the terms in power of ϵ and and solving the system, we obtain

the following dispersion relation:

Ω2 = P 2K2(K2 − 2
Q

P
|ϕ10|2) (2.159)

The obtained dispersion relation Eq.(2.159) depends on the ratio Q/P .

• If Q/P < 0, (K2 − 2Q
P
|ϕ10|2) will always be positive, which means that the angular fre-

quency of perturbation will be real. Thus the perturbation will not generate an instability

of the plane wave. The plane wave is said to be modulationally stable.

• If Q/P > 0, (K2 − 2Q
P
|ϕ10|2) will be negative and for these values of K, the angular fre-

quency of the perturbation Ω will be complex. Thus for certain values of the wavenumber

K, the frequency of the perturbation will increase exponentially leading to the instability

of the plane wave. The plane wave is said to be modulationally unstable.

Let’s continue with the case where Q/P > 0, that is to say (K2 − 2Q
P
|ϕ10|2) < 0 and let’s look

for the value of K corresponding to this zone of instability of the wave modulation:

K <

√
2Q

P
|ϕ10|2 (2.160)

The maximum value reached in this zone of instability is by K is Kc =
√

2Q
P
|ϕ10|2 and this

value is called the critical value of the modulation wave number and ϕ10 is the amplitude of

plane initial wave.

In this condition the growth rate is reading as [22] :

Γgr = |P |K2

√
K2
c

K2
− 1, (2.161)

2.5 Conclusion

In short, we have presented the methodology that will guide our research. To do so, we

first presented the modeling process that led to the nonlinear transmission line model that will

support our study. Using Kirchhoff’s laws for the nth rank mesh, the line leads to a discrete

second order equation. This discrete equation after using the reductive perturbation method

in the semi-discrete approximation will lead to different order of perturbation one, two and
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three, to the dispersion, group velocity and simple 1-NLSE respectively. The dispersion and

nonlinearity curves show that this equation admits two types of solitons, namely dark and bright

solitons. These solitons can present a modulation instability. For this, a method of investigation

of the modulation instability of the model has been presented, after having presented some

existing methods of investigation. It is also established that this equation admits for certain

values of the system parameters, solutions of well known modulated waves of type rogue and

peregrine waves and other localized wave profiles. It appears from this presentation that the use

of the Josephson junction parameters, in particular the plasma frequency, is a key parameter

for the stability of the line and the increase of the bandwidth at very high frequencies. This

observation comes from the contribution of this parameter on the coefficient of nonlinearity

of the equation, which allows the increase of the nonlinearity of the line and also gives the

possibility of obtaining a multitude of localized waves depending on the choice of model. We

will use the numerical method, in particular with the MATLAB ODE solver software, to verify

the analytical results of the propagated profiles. In the next chapter, we will discuss the different

models of localized waves propagated in a nonlinear electrical transmission line with Josephson

junction and the instability of the system.
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Chapter 3

Results and Discussions

3.1 Introduction

The study of the propagation of localized waves in nonlinear power lines continues to arouse

interest since the work of the pioneers Hirota and Suzuki [5]. Indeed, a succession of numerical

and analytical works followed with great satisfaction, in particular on the dynamics of localized

waves in NETLs [142, 177, 178]. The analysis of various excitations in highly nonlinear media

such as the resolution of quantum mechanical problems, plasma waves, the control of medical

systems, signal transport and communication means find their salvation through NETLs [22–

25, 179]. Indeed, a NETL is a circuit in which we can incorporate various components such

as: capacitors, inductors and JJs that provide a non-linear response to current and voltage.

It is therefore a favorable environment for the synthesis of soliton propagation, PS, SRW, and

others. Several works have allowed the propagation of bright and dark solitary waves with the

NLS equation as propagation support in the presence of weak nonlinearity and dispersion in

NETLs [36,67,176,180–183].

Thus, nowadays, in order to overcome the problem of data transfer, which are more and more

important, a recourse is made to superconducting components. However, almost all electronic

superconductors are based on JJs. Because of its high nonlinearity, the nonlinear electrical

transmission line with JJs has been the subject of various works especially in the field of

superatransmission. The use of high nonlinearity components has allowed the propagation

of new localized wave profiles at very high frequencies, such as PSs, SRWs and other exotic
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wave patterns in the presence of a modulation instability. RWs and PSs, responsible for a large

number of maritime disasters, have been highlighted in various studies over the decades [88,184–

189]. Indeed, as for all nonlinear and dispersive systems, NETLs have a modulation instability.

Thus, for transverse line perturbations, the exact cutoff frequencies of the growth rate have been

revealed and the modulation instability gain spectrum of solitary wave instabilities has been

obtained for left-handed lines [47,48,173]. However, no work has been done to propagate rational

solitons at very high frequency in straight handlines, while these have multiple applications.

In this chapter, we first use the linearization technique and small perturbations to study the

unstable or stable region of the modulated wave propagation in the structure. For this, we use

the effect of the plasma frequency as well as other system parameters. Next, we will perform

the analytical study of solitary waves such as the bright soliton and the dark soliton. As

we mentioned in chapter 2, we propagate soliton solutions, such as Peregrine soliton and super

rogue wave, and we describe their analytical behavior. Then we will verify the analytical results

by a numerical method.

3.2 Application of the methods

This section apply the methods described above to construct exact traveling-wave solutions

of the conformable derivative nonlinear differential equation governing wave propagation in elec-

trical transmission line. To obtain the NODE, we used the conformable derivative properties.

Assuming u(x, t) = U(ξ) and (1) becomes

[
(1 + b1U + b2U

2)k22 − u20k
2
1

]
U ′′ + (b1 + 2b2U)k

2
2U

′2 − 1

12
u20δ

2k41U
(′′′′) = 0. (3.1)

Where U = U(ξ).
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3.2.1 On solving the nonlinear differential governing low-pass electri-

cal transmission lines by using the new extended direct algebraic

method

Employing the homogeneous balance principle to Eq.(3.1), gives N = 1. Thus, Eq.(2.4) can be

expressed

U(ξ) = g0 + g1Q(ξ), (3.2)

Substituting Eq.(3.2) and Eq.(2.5) into Eq.(3.1), we obtained a set of algebraic equation in

terms of Qj(ξ). After setting all the terms obtained to zero, and then with the aid of Maple,

we recovered the following results.

S1: for µ2 − 4λσ < 0 and σ ̸= 0, it is obtained

g0 = g0, g1 = g1, b1 = − 1
12

g21(µ2−4λσ)
2
(g1µ−2 g0σ)δ2(Ln(A))

2

u02(8 g21λσ−12 g1g0µσ+g21µ
2+12 g20σ

2)(−g21λ+g1g0µ−g20σ)
,

b2 = − 1
12

g21(µ2−4λσ)
2
δ2(Ln(A))2σ

u20(8 g21λσ−12 g1g0µσ+g21µ
2+12 g20σ

2)(−g21λ+g1g0µ−g20σ)
, k1 =

√
− µ2−4λσ

8 g21λσ−12 g1g0µσ+g21µ
2+12 g20σ

2 g1

u0
,

k2 = −
√
− µ2−4λσ

8 g21λσ−12 g1g0µσ+g21µ
2+12 g20σ

2 g1

u11(x, t) = g0 + g1

[
−µ
2σ

+

√
−(µ2 − 4λσ)

2σ
tanA

(√
−(µ2 − 4λσ)

2
ξ

)]
, (3.3)

u12(x, t) = g0 + g1

[
− µ

2σ
+

√
−(µ2 − 4λσ)

2σ
cotA

(√
−(µ2 − 4λσ)

2
ξ

)]
, (3.4)

u13(x, t) = g0 + g1

[
− µ

2σ
+

√
−(µ2 − 4λσ)

2σ
tanA

(√
−(µ2 − 4λσ)ξ

)]

±g1

[√
−pq(µ2 − 4λσ)

2σ
secA

(√
−(µ2 − 4λσ)ξ

)]
, (3.5)

u14(x, t) = g0 + g1

[
− µ

2σ
−
√

−(µ2 − 4λσ)

2σ
cotA

(√
−(µ2 − 4λσ)ξ

)]

±g1

[√
−pq(µ2 − 4λσ)

2σ
cscA

(√
−(µ2 − 4λσ)ξ

)]
, (3.6)
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u15(x, t) = g0 + g1

[
− µ

2σ
−
√

−(µ2 − 4λσ)

2σ
tanA

(√
−(µ2 − 4λσ)

4
ξ

)]

− g1

[√
−(µ2 − 4λσ)

2σ
cotA

(√
−(µ2 − 4λσ)

4
ξ

)]
, (3.7)

S2: for µ2 − 4λσ > 0 and σ ̸= 0, it is obtained

g0 = g0, g1 = g1, b1 = − 1
12

g21(µ2−4λσ)
2
(g1µ−2 g0σ)δ2(Ln(A))

2

u02(8g21λσ−12 g1g0µσ+g21µ
2+12 g20σ

2)(−g21λ+g1g0µ−g20σ)
,

b2 = − 1
12

g21(µ2−4λσ)
2
δ2(Ln(A))2σ

u20(8 g21λσ−12 g1g0µσ+g21µ
2+12 g20σ

2)(−g21λ+g1g0µ−g20σ)
, k1 =

√
− µ2−4λσ

8 g21λσ−12 g1g0µσ+g21µ
2+12 g20σ

2 g1

u0
,

k2 = −
√
− µ2−4λσ

8 g21λσ−12 g1g0µσ+g21µ
2+12 g20σ

2 g1

u21(x, t) = g0 + g1

[
− µ

2σ
+

√
(µ2 − 4λσ)

2σ
tanhA

(√
(µ2 − 4λσ)

2
ξ

)]
, (3.8)

u22(ξ) = g0 + g1

[
− µ

2σ
+

√
(µ2 − 4λσ)

2σ
cothA

(√
(µ2 − 4λσ)

2
ξ

)]
, (3.9)

u23(x, t) = g0 + g1

[
− µ

2σ
+

√
(µ2 − 4λσ)

2σ
tanhA

(√
(µ2 − 4λσ)ξ

)]

±g1

[
i

√
pq(µ2 − 4λσ)

2σ
sechA

(√
(µ2 − 4λσ)ξ

)]
, (3.10)

u24(x, t) = g0 + g1

[
− µ

2σ
−
√

(µ2 − 4λσ)

2σ
cothA

(√
(µ2 − 4λσ)ξ

)]

±g1

[√
pq(µ2 − 4λσ)

2σ
cschA

(√
(µ2 − 4λσ)ξ

)]
, (3.11)

u25(x, t) = g0 + g1

[
− µ

2σ
−
√

−(µ2 − 4λσ)

4σ
tanhA

(√
(µ2 − 4λσ)

4
ξ

)]

− g1

[√
(µ2 − 4λσ)

4σ
cothA

(√
(µ2 − 4λσ)

4
ξ

)]
, (3.12)

S3: for λσ > 0 and µ = 0, it is obtained

g0 = g0, g1 = g1, b1 = 6 σ (u0k1−k2)(u0k1+k2)g0
3 k22σ g

2
0−g21λ+2 k22g

2
1λ

, b2 = −3 (u0k1+k2)(u0k1−k2)σ
3 k22σ g

2
0−g21λ+2 k22g

2
1λ

,
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Figure 26: Spatiotemporal plot evolution and contour plot of dark solitons |u21(x, t)|2 at α = 1,

A1 = e, k1 = −k2 = 3.840, g0 = 0.001,g1 = 0.018, λ = −0.312, σ = −0.0185 .
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Figure 27: Spatiotemporal plot evolution of kink-like solitons |u21(x, t)|2 at α = 0.75, α = 0.85,

α = 0.95 and α = 1, A = e, k1 = −k2 = 25.840, g0 = 0.001,g1 = −0.18, µ = −0.015,

λ = −0.0312, σ = −2.000185 respectively
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Figure 28: Spatiotemporal plot evolution of 2D of kink-like solitons |u23(x, t)|2 at α = 0.95,

A = e, k1 = −k2 = 20.840, g0 = −0.001,g1 = 0.18, µ = −0.015, λ = −0.0312, σ = −10.000185.
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k1 = k1, k2 = k2, δ =

√√√√−
(3+3 k22)(u0k1−k2)(u0k1+k2)

σ (3 k22σ g20−g21λ+2 k2
2g21λ)

g1

Ln(A)u0k21
.

u31(x, t) = g0 + g1

√
λ

σ
tanA

(√
λσξ

)
, (3.13)

u32(x, t) = g0 − g1

√
λ

σ
cotA

(√
λσξ

)
, (3.14)

u33(x, t) = g0 + g1

[√
λ

σ
tanA

(√
2λσξ

)
±
√
pq
λ

σ
secA

(√
2λσξ

)]
, (3.15)

u34(x, t) = g0 + g1

[
−
√
λ

σ
cotA

(√
2λσξ

)
±
√
pq
λ

σ
cscA

(√
2λσξ

)]
, (3.16)

u35(x, t) = g0 + g1

[
1

2

√
λ

σ

(
tanA

(√
λσ

2
ξ

)
−
√
λ

σ
cotA

(√
λσ

2
ξ

))]
,

(3.17)

S4: for λσ < 0 and µ = 0, yields to

g0 =
1
3

√
−

3λ(−1+2u20k
2
1)

σ
g1

u0k1
, g1 = g1, b1 = −2

3

u0δ2k31(Ln(A))
2σ2

√
−3

λ(−1+2u20k
2
1)

σ

g1(1+u20k
2
1)

,

b2 =
u20δ

2k41(Ln(A))
2σ2

g21(1+u20k21)
, k1 = k1, k2 = ±u0k1

u41(x, t) =
1

3

√
−3λ (−1+2u02k1

2)
σ

g1

u0k1
− g1

√
−λ
σ

tanhA

(√
−λσξ

)
, (3.18)

u42(x, t) =
1

3

√
−3λ (−1+2u02k1

2)
σ

g1

u0k1
− g1

√
−λ
σ

cothA

(√
−λσξ

)
, (3.19)

u43(x, t) =
1

3

√
−3λ(−1+2u02k1

2)
σ

g1

u0k1

− g1

[√
−λ
σ

tanhA

(√
2λσξ

)
± i

√
pq

−pqλ
σ

sechA

(
2
√
−λσξ

)]
, (3.20)

Hamadou Halidou Ph.D-Thesis



3.2 Application of the methods 88

Figure 29: Spatiotemporal plot evolution of the W-shape bright soliton of |ℑu43(x, t)|2 for (a)

[α = 0.52, α = 0.54, α = 0.56 (b) [α = 0.45, α = 0.46, α = 0.47] at A = e, k1 = 10.75, k2 = 2.15,

u0 = 0.2, g0 = 3.33, g0 = 0.75, p = q = 1, µ = 0, λ = −0.5, σ = 0.02, p = 0.8, q = 0.5.

u44(x, t) =
1

3

√
−3λ (−1+2u02k1

2)
σ

g1

u0k1

− g1

[√
−λ
σ

cothA

(
2
√
−λσξ

)
±
√

−pqλ
σ
cschA

(
2
√
−λσξ

)]
, (3.21)

u45(x, t) =
1

3

√
−3λ (−1+2u02k1

2)
σ

g1

u0k1

− g1

[
1

2

(√
−λ
σ

tanhA

(√
−λσ
2

ξ

)
+

√
−λ
σ

cothA

(√
−λσ
2

ξ

))]
, (3.22)

S5: for λ = σ and µ = 0, it is obtained

g0 = g0, g1 = g1, b1 = 6(u0k1−k2)(u0k1+k2)g0
−g21+3 k22g

2
0+2 k22g

2
1

, b2 = −3(u0k1−k2)(u0k1+k2)
−g21+3 k22g0

2+2 k22g
2
1

, k1 = k1, k2 = k2

δ =

√
−
(3+3k22)(u0k1−k2)(u0k1+k2)

−g21+3 k22g
2
0+2 k22g

2
1

g1

Ln(A)σu0k21
,

Hamadou Halidou Ph.D-Thesis



3.2 Application of the methods 89

Figure 30: Contour plot evolution of the W-shape bright soliton of |ℑu43(x, t)|2 for (c) [α =

0.5, α = 0.47] (d) [α = 0.48, α = 0.49] at A = e, k1 = 10.75, k2 = 2.15, u0 = 0.2, g0 = 3.33,

g0 = 0.75, p = q = 1, µ = 0, λ = −0.5, σ = 0.02, p = 0.8, q = 0.75.

Figure 31: Spatiotemporal plot evolution of the dark soliton of |ℜu43(x, t)|2 for (T) [α =

0.45, α = 0.47, α = 0.49] (R) [α = 0.55, α = 0.57, α = 0.59] at A = e, k1 = 10.75, k2 = 2.15,

u0 = 0.2, g0 = 3.33, g0 = 0.75, p = 0.71, q = 0.95, µ = 0, λ = −0.5, σ = 0.02.
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Figure 32: Plot evolution of |ℑu43(x, t)|2 for α = 0.48, A = e, k1 = 20.75, k2 = 2.15, u0 = 0.2,

g0 = 3.33, g0 = 0.75, p = 0.71, q = 0.95, µ = 0, λ = −0.5, σ = 0.02.
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Figure 33: Plot evolution of breather corresponding to |ℑu43(x, t)|2 for α = 0.48, A = e,

k1 = 25.75, k2 = 18.54, u0 = 0.72, g0 = 3.33, g0 = 0.75, p = 0.8, q = 0.4, µ = 0, λ = −0.5,

σ = 0.02.
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Figure 34: Plot evolution of of the bright soliton |ℑu43(x, t)|2 for α = 0.48, A = e, k1 = 25.75,

k2 = −18.54, u0 = −0.72, g0 = 3.33, g0 = 0.75, p = 0.8, q = 0.4, µ = 0, λ = −0.5, σ = 0.02.

u51(x, t) = g0 + g1 tanA(λξ), (3.23)

u52(x, t) = g0 − g1 cotA(λξ), (3.24)

u53(x, t) = g0 + g1 [tanA(2λξ)±
√
pq secA(2λξ)] , (3.25)

u54(x, t) = g0 − g1 [cotA(2λξ)±
√
pq cscA(2λξ)] , (3.26)

u55(x, t) = g0 + g1

[
1

2

(
tanA(

λ

2
ξ)− cotA(

λ

2
ξ)

)]
, (3.27)

S6: for λ = −σ and µ = 0, it is obtained the set of result

g0 =
1
3

√
3−6u02k1

2g1
u0k1

, g1 = g1, b1 = −2
3

u0δ2k31(Ln(A))
2σ2

√
3−6u20k

2
1

g1(1+u20k21)
, b2 =

u20δ
2k41(Ln(A))

2σ2

g21(1+u20k21)
,

k1 = k1, k2 = ±u0k1, δ =

√
− (3+3k2

2)(u0k1−k2)(u0k1+k2)

−g21+3 k22g
2
0+2 k22g

2
1

g1

Ln(A)σu0k21
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Figure 35: Spatiotemporal Plot evolution of bright |u53(x, t)|2 at A = e, k1 = −k2 = 20.40,

g0 = −5.001,g1 = −10.18, λ = −0.002.

Figure 36: Spatiotemporal plot of dark solitons |u61(x, t)|2 at α = 0.85, α = 0.90, α = 0.95,

α = 1, respectively and g1 = −1.04, A = e, k1 = −4.84, k2 = −0.90 u0 = 5.125, σ = −1.185.
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u61(x, t) =
1

3

√
3− 6u02k1

2g1
u0k1

− g1 tanhA(λξ), (3.28)

u62(x, t) =
1

3

√
3− 6u02k1

2g1
u0k1

− g1 cothA(λξ), (3.29)

u63(x, t) =
1

3

√
3− 6u02k1

2g1
u0k1

− g1 [tanhA(2λξ)± i
√
pqsechA(2λξ)] , (3.30)

u64(x, t) =
1

3

√
3− 6u02k1

2g1
u0k1

− g1 [cothA(2λξ)±
√
pqcschA(2λξ)] , (3.31)

u65(x, t) =
1

3

√
3− 6u02k1

2g1
u0k1

− g1

[
1

2

(
tanhA(

λ

2
ξ) + cothA(

λ

2
ξ)

)]
, (3.32)

S7: for µ2 = 4λσ, it is obtained the following result

g0 = g0, g1 = g1, b1 = −2(u0k1−k2)(u0k1+k2)(−3 g0σ g21λ+3 g20σ g1
√
λσ−g30σ2+

√
λσg31λ)

k22(−g21λ+2 g1g0
√
λσ−g20σ)

2 , b2 = (u0k1−k2)(u0k1+k2)σ
k22(−g21λ+2 g1g0

√
λσ−g02σ)

,

k1 = k1, k2 = k2, δ =

√
(k22+1)(u0k1−k2)(u0k1+k2)

σ (−g21λ+2 g1g0
√
λσ−g20σ)

g1

Ln(A)u0k21k2
,

u71(x, t) = g0 − g1
2λ(µξLn(A) + 2)

µ2ξLn(A)
, (3.33)

S10: for µ = λ = 0, it is obtained the following results

g0 = g0, g1 = g1, b1 = 2 (u0k1−k2)(u0k1+k2)
k2

2g0
, b2 = −b1, k1 = k1, k2 = k2, δ =

√
−(1+k22)(u0k1−k2)(u0k1+k2)g1

Ln(A)σ u0k2k21g0

u101(x, t) = g0 + g1
−1

σξLnA
, (3.34)

S11: for µ ̸= 0, and λ = 0, it is obtained the following results
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R1: g0 = g0, g1 = g1, b1 = 6σ (u0k1−k2)(u0k1+k2)g0
3 k2

2σ g20−g21λ+2 k22g
2
1λ

, b2 = −3σ (u0k1−k2)(u0k1+k2)
3 k22σ g0

2−g21λ+2 k22g
2
1λ

, k1 = k1, k2 = k2,

δ =

√√√√−
3(1+k22)(u0k1−k2)(u0k1+k2)

σ (3 k22σ g20−g21λ+2 k22g
2
1λ)

g1

Ln(A)u0k21
,

u111(x, t) = g0 + g1

[
pµ

σ(coshA(µξ)− sinhA(µξ)− p)

]
, (3.35)

R2: g0 = 1
3

√
−

3λ(−1+2u20k
2
1)

σ
g1

u0k1
, g1 = g1, b1 = −2

3

u0δ2k31(Ln(A))
2σ2

√
−3

λ(−1+2u20k
2
1)

σ

g1(1+u20k
2
1)

, b2 =
u20δ

2k41(Ln(A))
2σ2

g21(1+u20k21)
,

k1 = k1, k2 = ±u0k1
.

u112(x, t) =
1

3

√
−3λ(−1+2u02k1

2)
σ

g1

u0k1
+ g1

[
pµ

σ(coshA(µξ)− sinhA(µξ)− p)

]
, (3.36)

S12: for µ = k, σ = mk(m ̸= 0), and λ = 0, it is obtained the following result

g0 = g0, g1 = g1, b1 = 12(u0k1−k2)(u0k1+k2)(−g1+2 g0m)m

12 k22g
2
0m

2+k2
2g21+g

2
1−12 k22g1g0m

, b2 = − 12m2(u0k1−k2)(u0k1+k2)
12 k22g

2
0m

2+k22g
2
1+g

2
1−12 k22g1g0m

, k1 = k1,

k2 = k2, δ =
2

√
−

(3k22+1)(u0k1−k2)(u0k1+k2)

12 k22g
2
0m

2+k22g
2
1+g21−12 k22g1g0m

g1

Ln(A)u0k21k

u121(x, t) = g0 − g1
pAkξ

q −mpAkξ
, (3.37)

where u(x, t) = U(ξ), ξ = k1
Γ(1+α)

tα + k2
Γ(1+α)

xα, and p, q > 0. Therefore, in this paper ξ0 is

considered as zero value. The details of the generalized hyperbolic and triangular functions are

given in [17]. It is observed that, for cases (8), (9) et (10) none solutions have been obtained.

3.2.2 On solving the nonlinear differential governing low-pass electri-

cal transmission lines by using the new sub-ODE equation

The initial step is to use the balance principle which between the higher order derivative

and the higher order nonlinear term. So, it is obtained 3s+ 2p = 4s ⇒ s = 2p. Consequently,

Eq.(3.1) read

U(ξ) = µF 2p(ξ), (3.38)
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Inserting Eq.(2.44) and Eq.(2.43) into Eq.(3.1) gives the set of system of equation in terms of

F jp(ξ). Setting the obtained system of algebraic equation to zero and making used MAPLE it

is revealed the following set of results:

Result 1: A = 0, B = 0, C = 63
4

b21

(−192b2+7b1
2)p2δ2

, D = 0, E = E, µ = 1
18

(−192b2+7b21)p2δ2E
b1b2

, k1 =

2
3
i
√
3, k2 = 8

√
− 3b2

−192b2+7 b21
u0.

Hence, it is recovered three types of solutions to Eq.(2.2)

Case 1: If A = 0, B = 0, D = 0, bright type is obtained

u2,1,1(x, t) = µ

[
ε

√
−C
E
sech

(
p
√
Cξ
)] 1

2p

, C > 0, E < 0, ε± 1, (3.39)

a periodic solution

u2,1,2 = (x, t) = µ

[
ε

√
−C
E

sec
(
p
√
−Cξ

)] 1
2p

, C < 0, E > 0, ε± 1, (3.40)

and a rational solution

u2,1,3 = µ

[
ε

p
√
Eξ

] 1
2p

, C = 0, E > 0, ε± 1. (3.41)

Result 2: A = 3969
64

b1
4

(54 b2+7 b21)
2
Eδ4p4

, B = 0, C = 63
4

b21

(54b2+7b1
2)p2δ2

, D = 0, E = E, µ =

4
27

(54 b2+7 b21)p2δ2E
b1b2

, k1 =
2
3
i
√
3, k2 = 8

√
− 3b2

−192 b2+7 b1
2u0.

The corresponding solutions give:

Case 2: By setting the conditions B = 0, D = 0, A = C2

4E
, it is gained dark soliton-like

solution of Eq.(2.3):

u2,2,1 = µ

[
ε

√
− C

2E
tanh

(
p

√
−C
2
ξ

)] 1
2p

, C < 0, E > 0, ε± 1, (3.42)

and a periodic solution

u2,2,2 =

[
ε

√
C

2E
tan

(
p

√
C

2
ξ

)] 1
2p

, C > 0, E > 0, ε± 1. (3.43)
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Case 3: By setting the conditions B = 0, D = 0, we deduce three forms of Jacobian elliptic

functions solutions of Eq.(2.3):

u2,3,1 = µ

[
ε

√
−Cm2

E(2m2 − 1)
cn

(
p

√
C

2m2 − 1
ξ

)] 1
2p

, C > 0, A =
C2m2(m2 − 1)

E(2m2 − 1)2
, ε± 1,(3.44)

u2,3,2 = µ

[
ε

√
−C

E(2−m2)
dn

(
p

√
C

2−m2
ξ

)] 1
2p

, C > 0, A =
C2(1−m2)

E(2−m2)2
, ε± 1,(3.45)

and

u2,3,3 = µ

[
ε

√
−Cm2

E(1 +m2)
sn

(
p

√
−C

1 +m2
ξ

)] 1
2p

, C < 0, A =
C2m2

E(1 +m2)2
, ε± 1.(3.46)

Case 4: Assuming B = D = 0 and E ̸= 0, it is revealed Weierstrass elliptic function

solutions to set of Eq.(2.3),

u2,4,1 = µ

[
℘(pξ, g2, g3)

E
− C

3E

] 1
4p

, (3.47)

where g2 = 4C2−12AE
3

, g3 = 4C(−2C2+9AE)
27

.

u2,4,2 = µ

[
3A

3℘(pξ, g2, g3)− C

] 1
2p

, (3.48)

where g2 = 4C2−12AE
3

, g3 =
4C(−2C2+9AE)

27
.

u2,4,3 = µ

[
6
√
A℘(pξ, g2, g3) + C

√
A

3℘′(pξ, g2, g3)

] 1
2p

, (3.49)

where ℘′(pξ, g2, g3) =
d℘(pξ,g2,g3)

dξ
, g2 =

C2

12
+ AE, g3 =

C(36AE−C2)
216

.

u2,4,4 = µ

[
3
√
E−1℘′(pξ, g2, g3)

6℘(pξ, g2, g3) + C

] 1
2p

, (3.50)

where A = 5C2

26E
g2 =

2C2

9
, g3 =

C3

54
,

u2,4,5 = µ

[√
5C2

36E

6℘(pξ, g2, g3) + C

3℘′(pξ, g2, g3)

] 1
2p

, (3.51)

while g2 and g3 are the invariants of the Weierstrass elliptic function and ξ = k1
Γ(1+α)

tα+ k2
Γ(1+α)

xα.
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3.3 Physical interpretation

Figures 26 is the spatiotemporal plot evolution of the dark soliton of |u21(x, t)|2 and Figures

27-28 are the plot evolution of anti-kink like solution |u23(x, t)|2. Furthermore, Figure 29-30 are

the spatiotemporal plot evolution of the W-shape bright solutions of |ℑu43(x, t)|2. Moreover,

by varying the fractional order parameter, figure 31 gives the profile of dark soliton with the

effect of the latter. Besides, by considering the parameters of the line k1 = 25.75, k2 = 18.54

and α = 0.48, we obtain the breather (see figure 32) which propagates at different times.

This behavior appears to be new in the electrical transmission line. In Figures 32 and 33, we

obtain the same behavior. However, in figure 34 we manage to reverse the behavior of the

breather type over time by taking k2 = −18.54. The soliton obtained is bright as a solution

which propagates along the line, this exhibits the behavior of modulated waves in a nonlinear

electrical transmission line. In addition, Figure 35 depicts the 3D bright solitons under the

effect of the fractional derivative order. It is pointed out the deformation of the shape during

the propagation of the latter. Figures 11 gives the normal shape of the dark soliton at α = 0.1.

The results obtained are more general than those reported by [16]. It is observed that, fractional

order α has the effects on the width and on the amplitude of the obtained bright and dark

soliton solutions (see figures 26, 27, 28, 29, 30, 31, 32, 33, 34, 35). Furthermore, dark and

bright solitons obtained will be helpful to explain natural phenomena and the other solutions

could be probably used in diverse applications in science and engineering.

Without doubt, it could be predicted that the derivative order affects the shape of the traveling-

wave in the electrical transmission line. Otherwise, the obtained results of the nonlinear frac-

tional differential equation governing wave propagating in the low-pass electrical transmission

lines are essential to explain the phenomenon of the data transmission in telecommunication,

as the latter depicts the natural event such as propagation with a finite speed and vibration.

On the other hand, these obtained results can help to explain internal waves in the ocean, as

it is well known that soliton are virtually hazardous for offshore engineering building such as

gas and oil pipelines and shipping decks. The best important effect of solitons generation is the

tidal energy conversion from barotropic to baroclinic component over large-scale oceanic bottom

obstructions (shelf breaks, sea mounts, canyons and ridges). Otherwise, dark and bright solitary
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waves are omnipresent everywhere strong tides happen in the quarter of irregular topography.

Solitons are frequently important lineaments discovered in optical and radar satellite imagery

of costal water. In this case, solitary waves can travel over several thousand kilometers and

carry both load and impulse. However, during their propagation, a considerable velocity shear

causes turbulence and mixing. The obtained mixing, frequently offer background nutritious

into the water column, thus enrich the local region and changing the biology inside.

Finally, it emerges that using the extended direct algebraic method, we obtain a diversity

of solutions such as dark (Eq.(3.8)), trigonometric function solutions Eqs.(3.3-3.7), singular

solitons and combined solutions (Eqs.(3.10-3.12)). The virtue of this method lies in obtaining

the W-shape bright soliton which is well known in nonlinear optical fibers. Otherwise, it is

gained jacobian elliptic function solutions and Weierstrass elliptic function solutions by applying

the Sub-equation method (see Eqs.(3.46-3.50). On the other hand, by setting C = µ2 − 4λσ

and E = σ and assuming g0 = 0 and g1 = 0, Eq.(3.8) and Eq.(3.40) are the same.

3.4 Linear stability analysis and rogue waves

3.4.1 Modulation instability in the NETL with the Josephson junc-

tion

We observe that the dispersion relation obtained in equation (2.159) depends on the ratio
Q
P
. Moreover, the non linearity coefficient Q, depends proportionally on the plasma frequency

ωj of the grating. By plotting the variation of the quotient Q
P

versus ω for different values

of ωj as shown in figure 37(m). We can see that when the plasma frequency decreases, the

nonlinearity decreases and the instability region decreases too (see figure 37(m)). Therefore,

in 0 ≤ ω ≤ 2, 09 (rad.s−1), the gain spectrum is stable despite the small perturbation. At the

same time, the ratio Q
P

is still positive for 2.09 < ω ≤ 3.5(rad.s−1) (see Figure 37(m)) and the

dispersion relation of the perturbation becomes complex. As a result, the modulation instability

gain spectrum is unstable and the wavenumber K is below the critical value Kc =
√

2Q
P
|ϕ10|2. In

general, we say that when the plasma frequency increases, the ratio Q
P

increases and consequently

the instability zone of the line increases too. Moreover, we also investigate the influence of the

capacitance C2 on the variation of Q
P

as a function of (ω). It appears that, when C2 increases
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Figure 37: Illustration of the ratio bright (Q/P ) versus angular frequency with the effect

of plasma frequency (m) ωj = 3.044 × 1016rad.s−1, ωj = 3.0442 × 1016rad.s−1, C1 = 1pF ,

C1 = 2pF and (n) the effect of the capacitor at C1 = 20pFm J0 = 200nA, L1 = 480µH.

slightly, the curve keeps its initial shape and remains almost stable on 0 ≤ ω ≤ 3, 5(rad.s−1)

(see figure 37(n)) by keeping its negative value. We can say that the capacitor C2 has an

opposite effect than the plasma frequency ωj and therefore plays the role of control parameter

for the stability of the line.

We now look for the variation of the growth rate of the modulation instability equation

(2.161) as a function of the line parameters. Thus, to highlight the behavior of the growth rate

(Γgr) of the modulation instability, we will plot the growth rate in terms of wavenumber with

the effect of the plasma frequency. Figure 38 show that, as the plasma frequency increases,

the critical value increases and consequently the instability gain also increases. Thus, when the

plasma frequency reaches the critical value, the modulation instability gain spectrum is unstable

for any value of the chosen angular frequency.It is observed instability zones for 0 < K < 6

and 2 < Kc < 6. However, in figure 39 we observed two slip lobes which highlight the identical

instability zones opposite to the symmetry axis Kc = 0. The identical scenario is exposed in

figure 40 a slip lobe for −5 < K < 5. We can summarize for this part that the line presents

a stability zone for values of Kc lying in the interval −2 < Kc < 2. However, when we go out

of this interval all the values of Kc lead to an instability of the line. Moreover, we can also
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Figure 38: Illustration of the growth rate of MI in terms of wave number and critical wave

number with the effect of plasma frequency (s1) 3D, (s2) contour plot and (s3) 2D plot at

ωj = 3.044× 109rad.s−1, C1 = 1pF , C2 = 400pF at J0 = 200nA, L1 = 780µH.

see that the gain of instability increases as we move away from 2. The plasma frequency is the

only one responsible for this instability of the line.This situation reflects the fact that there is a

large gap between the non-linearity provided by the Q coefficient and the dispersion provided

by the P coefficient. This increases the instability rate in the line and increases the generation

of different localized wave patterns in the line.

Figure 41 shows the influence of the variation of the critical wavenumber, in particular the

effect of the plasma frequency on the instability gain modulation instability. However, this

time we take the value of the critical wavenumber close to zero which is the resonance. Thus,

we fix the plasma frequency, i.e. the critical value of the wavenumber Kc, and we plot the

gain as a function of the wavenumber. We see that for small values of Kc, i.e. for values of ωj

around ωj = 6.7618×103rad.s−1 we see that the width of the modulation band narrows and the

amplitude of the gain drops from 4.3×107 to 1.0×107 for the first curve. Then again for smaller

values than the previous ones, the amplitude of the gain drop from 2.75×106 to 0.4×106. This

clearly shows that for small values of the plasma frequency or its order of magnitude, there is
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Figure 39: Illustration of the growth rate of MI in terms of wave number and critical wave

number with the effect of plasma frequency (s4) contour plot and (s5) 2D plot at ωj = 3.044×

108rad.s−1, C1 = 0.1pF , C2 = 20pF at J0 = 200nA, L1 = 780µH.

a significant loss of energy in the line. Moreover, we also note that the instability zone shrinks

as the critical value Kc tends towards zero. This also reflects this loss of energy in the line.

Figure 42 shows the influence of the capacitors C1 and C2 on the modulation instability gain,

for fixed values of ωj. It appears from the different curves that, in addition to the fact that if

ωj decreases, the amplitude of the gain also decreases, this for constant values of C1 and C2

capacitors: When C1 = 400.2pF and C2 = 720pF or ωj = 6.06× 103rad.s−1. We then observe

two sidebands whose maximum amplitude is 2.5 × 109. However, when for C1 = 400.2pF

and C2 = 720pF or ωj = 6.06 × 103rad.s−1 we pass to C1 = 750pF and C2 = 920pF or

ωj = 3.20×103rad.s−1, this variation of the capacitors has no effect on the gain. The main effect

remains the same as the one caused by the decrease of the plasma frequency on the instability

gain. On the other hand, when for C1 = 400.2pF and C2 = 720pF or ωj = 6.06 × 103 we go

to C1 = 950pF and C2 = 420pF or ωj = 6.761 × 103rad.s−1, this variation in capacitors has

an effect on gain. Indeed, we would have expected that as the plasma frequency has increased,

that the amplitude of the gain also increases. But no, because the fact that the capacitor C1 is

twice as large as the capacitor C2 has had an antagonistic effect on the plasma frequency of the

system. This shows that as the C1 capacitor becomes larger and larger than the C2 capacitor,
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Figure 40: Illustration of the growth rate of MI in terms of wave number and critical wave

number with the effect of plasma frequency (s6) 3D and (s7) contour plot at ωj = 7.6104 ×

1015rad.s−1, C1 = 40pF , C2 = 200pF at J0 = 200nA, L1 = 780µH.

there is an increase in the energy dissipation in the line. Generally speaking, we can say that

the capacitors C1 and C2 play a very important role in the stabilization of the line, as well as

the plasma frequency ωj.

We can conclude that the influence of different physical parameters of the line on the growth

rate of modulation instability is shown in figures (37, 38, 39, 40, 41, 42). It appears from these

different figures that the plasma frequency is the key parameter of the line, when this frequency

increases, the instability zone increases and the instability rate also increases. The enlargement

of the allowed range of K for modulation instability involving the possibility of generating non

linear structures. These instability zones are described by an instability lobe, which represents

the region where Q
P
> 0 (unstable region), while the whole red region is equivalent to the region

Q
P
< 0 (stable region). Note that all these results are in agreement with our prediction.In the

region Q
P
> 0 which is the instability zone, a small perturbation of the plane wave can generate

a wave of larger amplitude. Under this condition, the energy is assumed to localize in a small

area in space and time, which then leads to the formation of localized wave patterns.
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Figure 41: Illustration of the growth rate of MI in terms of wave number and critical wave

number with the effect of plasma frequency (s6) 3D and (s7) contour plot at ωj = 6.7618 ×

103rad.s−1, C2 = 2C1 (blue line) and C1 = 2C2 (red line) at J0 = 200 nA, L1 = 480 µH

3.4.2 Peregrine soliton

Recently, it has been investigated rogue waves to equation (2.125) [22,23]. The rogue waves

solution takes the form of PSs or SRWs. In which follows, it will be pointed out PS and SRWs.

Starting from the fact that all the information and properties of the scattering wave are

contained in the coefficients P and Q of the nonlinear Schrödinger equation (2.125), which are

functions of the relevant parameters of the nonlinear electric transmission line with Josephson

junction. In what follows, we study the effects of these system parameters on the characteristics

of the Peregrine solitons.

For Peregrine soliton, it is used [6].

ϕ1(x, τ) =

√
2P

Q

(
1− 4 + 16iPτ

16P 2τ 2 + 4x2 + 1

)
e2iPτ . (3.52)

Hamadou Halidou Ph.D-Thesis



3.4 Linear stability analysis and rogue waves 104

Figure 42: The comparison of the growth rate of MI under the influence of the capacitors C1

and C2 and fixed value of the critical wave number (s9)[ωj = 6.06×103rd.s−1rad.s−1], (s10)[ωj =

4 × 103rd.s−1rad.s−1], (s11)[ωj = 3.20 × 103rd.s−1rad.s−1], (s12)[ωj = 6.761 × 103rad.s−1] at

J0=200nA, L1 = 780µH.

We can see that figure 43 has the shape of a peregrine structure, notably a large amplitude

(the peak has a height at least three times that of the bottom) with a hole on each side. The

evolution of the peregrine at different times (i.e. τ = 0 ms, τ = 5 ms, τ = 10 ms, τ = 15 ms,

τ = 20 ms), shows that the peregrine keeps its shape and characteristics during the course.

These observations confirm the theoretical assumptions that the wave energy is concentrated in

a small region due to the nonlinear properties of the electric transmission line. Such a solution

is able to concentrate a significant amount of wave energy in a relatively small area in space.

Figure 33 shows the PS in 2D view, and one can clearly see the two pointed forks of the soliton.

The figure 45 presents the speed of disappearance and appearance of the PS τ = 0 ms,
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Figure 43: (S8) is the 2D plot of the Peregrine rogue wave and (S9) the 3D spatiotemporal

evolution of the Peregrine rogue wave at C1 = 2pF , C2 = 470pF at J0 = 200nA, L1 = 480µH.

Figure 44: (s10) is the contour plot of the Peregrine solitons and (s11) the 2D spatiotemporal

evolution of the Peregrine rogue wave at C1 = 20pF , C2 = 470pF at J0 = 200nA, L1 = 480µH.
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Figure 45: Spatiotemporal plot evolution of the Peregrine solitons at τ = 0 ms, τ = 5 ms,

τ = 10 ms, τ = 15 ms, τ = 20 ms for C1 = 420 pF , C2 = 480 pF at J0 = 200 nA,

L1 = 480 µH.
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Figure 46: Spatiotemporal plot evolution of the Peregrine solitons τ = 0 ms, τ = 5 ms,

τ = 10 ms, τ = 15 ms, τ = 20 ms for C2 = 2C1 (blue line) and C1 = 2C2 (red line) at

J0 = 200 nA, L1 = 480 µH.
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τ = 5 ms, τ = 10 ms, τ = 15 ms, τ = 20 ms, the Peregrine has a high frequency of appearance

and disappearance very high and with equal and equidistant time intervals. However, figure 46

represents the spatio-temporal evolution of the Peregrine wave with the effect of the capacitors

(C1 and C2). It is highlighted by the (red line) when the capacitor C1 is larger than C2. The

(blue line) gives the major effect of the capacitor C2 on the shape of the PS (the two peaks

below in Fig.35, are exposed here by the blue line). When the capacitor C1 becomes larger

than the capacitor C2, the Peregrine shape disappears (red line) in figure 35. We can conclude

by saying that, as previously indicated in the modulation instability, the capacitor C1 when

it becomes larger than C2 limits the amplification of the gain, which is reflected here by the

decrease in the amplitude of the peregrine or even its extinction. This situation translates into

a loss of energy in the line, due to the increase of C1, i.e. the decrease of the plasma frequency.

3.4.3 Super rogues waves soliton

For SRWs, it is considered ψ =
√

Q
2P
ϕ1 and T = τP , then equation (2.125) gives [22].

i
∂ψ

∂T
+
∂2ψ

∂x2
+ 2|ψ|2ψ = 0. (3.53)

Now we can assume the solution of equation (3.53) as follows [22,23].

ψ(x, T ) =

(
1− G+ iH

D

)
e2iPτ , (3.54)

where

G =

(
x2 + 4τ 2 +

3

4

)(
x2 + 20τ 2 +

3

4

)
− 3

4
,

H = 2T
(
4τ 2 − 3x2

)
+ 2τ

[(
2x2 + 4τ 2

)2 − 15

8

]
,

D =
1

3

(
x2 + 4τ 2

)3
+

1

4

(
x2 − 12τ 2

)2
+

3

64

(
12x2 + 176τ 2 + 1

)
. (3.55)

It should be noted that this solution has a remarkable property when x = 0 et τ = 0, there

is an increase in the amplitude of the carrier wave. Figures 47-50 shows the effects of the

nonlinear electrical transmission line parameters (C1, C2 and L1) and the wave number. From

figure 47 and 48, it can be observe that when C1 is more important than C2, the SRW emerges

which is higher than the PS. From figure 49, it is given at different times τ = 0 ms, τ = 5 ms,
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Figure 47: (C1) Spatiotemporal plot evolution and (C2) plot 2D of the SRWs at C2 = 210C1

at J0 = 200 nA, L1 = 480 µH.

Figure 48: (R1) Spatiotemporal plot evolution and (R2) contour plot of the SRWs at C1 < C2

and J0 = 200 nA, L1 = 480 µH.
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Figure 49: Spatiotemporal plot evolution of the SRWs at (g1) τ = 0 ms, (g2) τ = 5 ms, (g3

)τ = 10 ms, (g4) τ = 15 ms, (g5) τ = 20 ms for C1 < C2 and J0 = 200 nA, L1 = 480 µH.

Figure 50: (q1) Spatiotemporal plot evolution of the SRWs (q2) and contour plot evolution at

C2 = 18.75C1 and J0 = 200nA nA, L1 = 480 µH, ϕ0 = 2.064× 10.−10.
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τ = 10 ms, τ = 15 ms, τ = 20 ms the shape of the SRWs. At τ = 0 ms, the SRW is forming

with a good shape, and progressively the SRW shape seem to be a PS, and we can affirm that

when the capacitors value decrease, the amplifying SRW is stopping. However, figure 37 gives

the most specific form of the SRW with decreasing amplitude. Furthermore, it is pointed out

that the wave energy is located in a small area due to the nonlinear and dispersion terms of NLS

equation. These obtained results highlight the dynamic progresses of the SRWs. In summary,

the amplitude and width of the peregrine decreases with increasing C1 = 2C2, until it disappears

figure 48. The opposite behavior is observed in the same figure 37 where the amplitude and

width of the peregrine increases with the increase of C2 = 2C1. The PS predicts the energy

concentration in a small region due to the highly nonlinear value contributed by JJ. Physically,

increasing the C2 parameters reduces the nonlinearity and disperses the energy, making the

pulses shorter. On the other hand, an increase in ωj would lead to an increase in nonlinearity

and would then concentrate a significant amount of energy, making the pulses larger. We can

see that the characteristics of the SRW are similar to those obtained for the PS. The amplitude

and width of the SRW decrease with the increase of the C2 parameter. On the other hand, the

amplitude and width of the SRW increase with the increase of the non-thermal parameter ωj.

The absolute values of the Peregrine solution and the SRW solution are shown in figures 43 and

47, which shows the localization of the energy in a small area of space and time. One of the

most interesting features of these solutions is that the SRWs excitations have higher amplitudes

and are more concentrated compared to the PS. Such waves appear in regions where modulated

waves are expected as a result of the interaction between nonlinear and dispersive effects. It

is interesting to note that the RW originates from the modulation instability with resonance

perturbations for which the dominant frequency and propagation constant are equal to those of

the continuous wave background [107]. This feature will help us realize the dynamics of RWs in

many different physical systems, such as nonlinear fibers, Bose Einstein condensates, wave water

tanks, and plasmas. Also, note that RWs exist in unstable systems, but not all unstable systems

allow for the existence of RWs. The results provide some useful tools for analyzing whether an

RW can exist in a nonlinear system. Note that modulation instability analysis can only be used

to understand the process of weak perturbation amplification for nonlinear localized waves; it

cannot explain their entire dynamical processes. It is still necessary to develop new methods,
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especially numerical simulation, to understand the whole dynamical processes of fundamental

waves and even of higher order waves.

3.5 Enveloppe soliton : Bright and dark

This equation admits the following bright and dark solitons solutions respectively [140].

From the above curves, PQ > 0 for frequency belonging to 6.3×108kHz < f < 6.655×108kHz

and we have the following soliton Bright solution:

ϕ1(x, τ) = Asech

(
A

√
| Q
2P

|(x− vτ)

)
ei(kx−ωτ), (3.56)

Similarly, PQ < 0 for frequency belonging to 6.656× 108kHz < f < 6.8× 108kHz and we have

the following soliton dark solution :

ϕ1(x, τ) = A tanh

(
A

√
| Q
2P

|(x− vτ)

)
ei(kx−ωτ). (3.57)

With k = vg
2P

is the wave number of the soliton; ω = vgvp
2P

the angular frequency; A =
√

vg2−vgvp
2PQ

wave amplitude [140].

The objective here is to show analytically the propagation of the above bright and dark soli-

tons of nonlinear Schrödinger equation (2.125), which governs the propagation of the modulated

waves in NETL with JJ. Thus, to illustrate the properties of the solitons in great details. Fig-

ure 52 plots the spatiotemporal profile of the dark soliton at different times, t = 0 , t = 0.01s,

t = 0.02s, and t = 0.03s, , and the analytical evolution of the bright soliton in figure 40 at

different times, t = 0 , t = 0.04 s, t = 0.08 s and t = 0.12 s. It has been shown that the

propagation of the robustness of dark soliton and bright soliton with stable shape and width.

As a result, the soliton moves from left to right direction witch corroborate a positive signs of

group and phase velocities in the line. This behavior confirms the theoretical hypotheses on the

conventional NETL. It emerges from this analysis that the plasma the variation of capacitance

behaves as energy source in the structure. In the next section, it is used the some algebraic

transformation to seek the behavior of the SRWs and PS in the NETL with JJ.
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Figure 51: Spatiotemporal plot evolution of the bright soliton with (t=0) as initial condition

at C1 = 50pF , C2 = 750pF , ωj = 0.034, ω = 0.0026, and J0 = 200nA, L1 = 240 µH, ϕ0 =

2.064× 10.−10.
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Figure 52: Spatiotemporal plot evolution of the dark soliton at C1 = 50pF , C2 = 750pF ,

ωj = 0.034, ω = 0.0026, and J0 = 200nA, L1 = 240 µH, ϕ0 = 2.064× 10.−10.
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3.6 Numerical simulation

The main objective of the previous section was to determine the parameter areas where the

nonlinearities brought by the JJ balance with the dispersion to give rise to modulated waves

and nonlinear patterns such as bright, dark, RWs solitons and other exotic patterns. In view of

these results, we can consider a numerical analysis to better observe the phenomena predicted

by the results obtained analytically. Given that, the linear stability analysis says nothing about

the long time evolution of the disturbance, which requires direct numerical simulation to be

validated. For this purpose, we use a direct numerical integration of the discrete equation

(2.115), to point out the behavior of the perturbed plane wave and exhibit the propagation of

the modulated waves bright and dark solitons in the structure. It is worth to indicate that we

have predicted in the analytical section that the variation of the plasma frequency can induce

unstable/stable modes in the system. So, to corroborate this prediction we have to consider

the same parameters used above and seek the behavior of the solitonic waves.

3.6.1 Localized waves in NETL with JJ

In this section, we consider the following periodic solution as initial condition :

ϕn = ϕ0 (1 + 0.01× cos(Kn)) cos(kn), (3.58)

with ϕ0 the initial amplitude, K the perturbed wave vector, k wave vector of the initial plane

wave. For numerical simulation we assume:

dϕn
dt

= Vn,

d

dt
(Vn+1 − 2Vn + Vn−1) + ω2

0 (ϕn+1 − 2ϕn + ϕn−1) + µ0
dVn
dt

+ω2
jϕn −

ω2
j

6
ϕ3
n = 0. (3.59)

After some mathematical manipulation, we use MATLAB ODE45 solver. We fix the cell

index N = 250 and the propagation time t = 1500s while the parameters of the of the JJ are

keep fix as ion analytical investigation.

For C1 = 400.2pF and C1 = 750pF respectively with the corresponding plasma frequencies

ωj = 6.06× 103 and ωj = 3.20× 103, in Figure 53a-b, it is shown the propagation of the trains
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of pulse while the bottom panel (figure 53c-d) shows the evolution of the SRWs. We have

equally exhibited that the amplitude of the SRW increases to 2 in figure 53d. It emerges that

the plasma frequency is being as source of energy in the system.

Beside in figure 54a-b, we have fixed the value of the capacitor as well as the plasma fre-

quency. From figure 54a we have set the wave vector k = 0.1 and at specific time of propagation

t = 10s, it is emerged the SRWs where the higher peak amplitude is 3.5. For strong specific

time of propagation t = 20s and the wave vector is considered to k = 0.5, it is observed three

peaks. One can observe that the variation of the wave vector at specific time of propagation

generate the SRWs in the structure as it was predicted in our analytical investigation.

However, it is also shown that increasing the values of the structure parameters reduce the

amplitude of the train of wave. Looking closely at the individual objects, we notice their sim-

ilarity to RWs, where a train of pulse displayed against space presents an Akhmediev sniffer.

This is a confirmation is given analytics, in which lower values of the capacitor C1 support

the appearance of RWs, showing their direct relationship with the appearance of modulation

instability. In addition, increasing the value of modulation instability delays and reduces the

amplitude of the wave train with the increase of the propagation time. This is therefore not

a surprise but rather reinforces the fact that the exact solutions of the NLS equation that

describes the nonlinear mode of modulation instability are the Akhmediev breathers. The ad-

vantage of the proposed model, which in the context of other nonlinearity, can support more

exotic behaviors and give more insights for experimental investigations. This particular scenario

is summarized in figure 53, shows a cross section of the molecular structures forming the trains.

At the constant propagation distance, the same structures vary with the value of the plasma

frequency, as shown in the figure 53-54. The instability is characterized by a train of extended

bell-shaped solitons. The scenario changes when C1 takes the respective values 2 and 3 times

larger than C2, where we notice the emergence of trains of solitons with two bumps, with a

lower band between the two. On a long distance propagation, we obtain the results presented

analytically in figure 31. Remarkably, we observe persistence in the formation of RW trains,

which confirms their robustness in the studied model. To go further, we should also point out

that such Akhmediev blowers were classified as type B in ref. [153], where their appearance

was also related to the development of modulation instability. The study of tools to control the
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shape and characteristics of such structures has been the subject of a recent discussion, where it

has been shown that the frequency of modulation may play an important role under conditions

where the coefficients vary periodically [154]. This could lead to wave compression in some

contexts, requiring additional bifurcation theory tools to be predicted and controlled. However,

in the present case, the combination of the Josephson nonlinearity and the effects of the C1 and

C2 capacitors also offers the possibility to the formation of soliton trains that include several

modes, the only requirement being a judicious choice of the wave and system parameters. For

example, by fixing the plasma frequency, Fig. 36, we show the wave modulation adopts different

behaviors when the wave vector increases.

The interest of the JJ lies in their specific properties, significantly different from those of the

variable capacitor. Their peculiarity is due to their high nonlinear indices which come from high

refractive indices, leading to higher nonlinear coefficients than the variable capacitor. Thus,

models including a JJ nonlinearity provide a good description of the characteristics of the

modeled media, especially metals. In the context of high pumping powers, leading to large

nonlinear absorption with complicated practical applications, relatively moderate nonlinear ab-

sorption can be provided by a saturation of the cubic nonlinearity provided by the JJ. These

enhanced properties of suitable nonlinear saturable materials require improved models that

illustrate their tunability, conditioned by a tunable absorption capacity when pumped by elec-

tron peers that are in resonance with no core material energy level. Intrinsically, the nonlinear

response of the materials is a more complex function of the light flux intensity. In our case,

the JJ and the metal can then constitute a composite material with specific properties. One

example is the incorporation of Au nanoparticles which can significantly improve the nonlinear

properties of graphene oxide [154].

3.6.2 Modulated waves patterns in NETL with JJ

As we have predicted in analytical results that both bright and dark can propagate in the line

with JJ. Now we use the numerical simulation to seek the robustness of the obtained analytical

investigation. For this fact, we consider equations (2.128 and 2.129) as initial conditions. The

width of the modulated solitonic waves is x0 = 10 and the initial position is x(0).
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For modulated wave bright soliton we use equation (2.24) and we set k = 0, 25 with C2 = 20 pF .

From figure 44a-d, it is shown the propagation of the bright soliton at different time for the cell

index n = 150. One can observe that obtained bright soliton spread from left to right with stable

shape. This result is given for C1 = 400, 2 pF witch correspond to ωj = 6, 06 × 103rad/s. In

figure 56a-d, we have fined the value of the ωj = 3, 20× 103rad/s and varying the wave vector

k. For k = 0, 1, it is pointed out in figure 56a a modulated wave pattern has fulfilled with

breather behavior. It is equally observing that the amplitude of the solitonic wave increases.

Increasing strong enough the wave vector to k = 0, 5 and k = 0, 75 respectively in figure 56d,

we exhibit the modulated waves bright soliton where the amplitude increases.

One result from this analysis the JJ can increase the amplitude of the bright soliton in nonlinear

transmission line with JJ. This result, can open new features to the solitonic waves in nonlinear

structures.

Following the same procedure as we did for bright soliton, we use the equation (2.129) as initial

condition. In figure 57a-b, we have displayed the propagation of dark soliton for C1 = 960 pF ,

C2 = 420 pF and k = 0, 75. One emerges that the modulated wave dark soliton spreads with

stable shape in the structure. Beside, in bottom panel figure 46c-d, we have increase the wave

vector to k = 1, 25 and it is shown that the dark soliton tends to expand preserves its shape.

One results that despite the fact that the dark soliton is a stable wave, it is propagated with

stable shape in the system where the JJ is used. Figure 53a-b train of waves figures 53c-d

localized waves like rogue waves at specific time of propagation. Figures 42a-b denotes the

values of the plasma frequencies (a) ωj = 6, 06 × 103rad/s; (b) ωj = 3, 20 × 103rad/s. The

other parameter are J0 = 200nA, L1 = 780µH. Figure 43 localized modes close to rogue wave

(a-b) are respectively the variation of the excitation wave vector k. (a) k = 0, 5 and k = 1, 4.

The other parameter are C1 = 400 pF , C2 = 700 pF and J0 = 200nA

3.7 Conclusion

The purpose of this chapter is to establish to unearth the envelope solitons, the SRW and the

PS to the NLS equation obtained by using the reductive perturbation method in the semi-

discrete approximation. Through the coefficients of dispersion and non linearity the areas of
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Figure 53: Localized waves like rogue waves at specific time of propagation with the values

of the plasma frequencies (a) ωj = 6, 06 × 103rad/s; (b) ωj = 3, 20 × 103rad/s. The other

parameter is J0 = 200nA, L1 = 780µH.
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Figure 54: Localized modes close to rogue wave (a-b) are respectively the variation of the

excitation wave vector k. (a) k = 0, 5 and k = 1, 4. The other parameter are C1 = 400 pF ,

C2 = 700 pF and J0 = 200nA

Hamadou Halidou Ph.D-Thesis



3.7 Conclusion 118

Figure 55: The propagation of the bright soliton at different time for the cell index n = 150,

given for C1 = 400, 2 pF witch correspond to ωj = 6, 06 × 103rad/s. and J0 = 200nA, L1 =

240 µH, ϕ0 = 2.064× 10.−10.
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Figure 56: The propagation of the modulated wave pattern has fulfilled with breather behavior,

with the value of the ωj = 3, 20 × 103rad/s and varying the wave vector k. For k = 0, 1,

Increasing strong enough the wave vector to k = 0, 5 and k = 0, 75 and other parameters

J0 = 200nA, L1 = 240µH ϕ0 = 2.064× 10.−10.
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Figure 57: The propagation of dark soliton with C1 = 960 pF , C2 = 420 pF and k = 0, 75.

When we have increase the wave vector to k = 1, 25 and it is shown that the dark soliton tends

to expand preserves its shape.

propagation of the bright and black solitons have been identified, thus the areas of instability.

The most relevant observation is that the obtained RW show regions of energy concentration

which are influenced by the parameters of the NETL with JJ. On the other hand, we realize

that the frequency of the plasma related to the flow of the JJ, have an effect to the obtained

results. It has been also study the modulation instability analysis to highlight the process of

magnifying small perturbation for the solitary waves. Numerical investigation have been done

to more understand the dynamic process of the RWs.
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General Conclusion

At the start of this thesis, we hypothesized that an electrical transmission line model con-

sisting of a parallel Josephson junction network, taking into account parasitic capacitive effects

in the line, would facilitate the propagation of various localized wave profiles at infrared fre-

quencies.

The answer to this hypothesis will lead us to formulate the following research objectives:

Using the fractional derivative, demonstrate the possibility of propagation in nonlinear trans-

mission lines of rational solitons such as brilliant W-form solitons;

Construct a nonlinear transmission line model based on a compact parallel Josephson junction

network capable of taking into account all the effects involved in the detection of a very high-

frequency signal;

Use the reductive perturbation method in the semi-discrete approximation to construct the

nonlinear Schrödinger equation (1-NLSE) representing the mathematical model of the line;

Demonstrate analytically the possibility of dark and bright soliton propagation, and other lo-

calized waveforms, using the modulation instability study;

Confirm the propagation of the various localized wave profiles above using numerical simulation.

The first objective was to demonstrate, using the fractional derivative, the possibility of

propagation in nonlinear transmission lines of rational solitons such as bright W-form solitons.

The new extended direct algebraic method makes it possible to demonstrate bright and dark

W-form solitary waves, kink-type soliton solutions, periodic solutions and rational solutions. In

addition, the use of the sub-ODE method has made it possible to add new types of solutions

called elliptic Weierstrass functions. This article proposes a plethora of traveling waves that

include the results obtained previously. By choosing appropriate values of the order of the
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conformal derivative, the behaviors of the results obtained have been illustrated graphically in

3D and 2D, and these soliton solutions are identical to the results obtained in the nonlinear

differential equations that describe the propagation of long waves in shallow water. This result

shows that rational solitons propagate in non-linear transmission lines.

The second objective was to build a nonlinear transmission line model based on a compact

parallel Josephson junction network capable of taking into account all the effects involved in

the detection of a very high-frequency signal. After a literature review, on the one hand on

the generalities of nonlinear power lines, including the basic concepts, the modeling process,

the types of nonlinear components and the mathematical equations to which they lead. Sec-

ondly, on localized waves propagating in NETLs. It appears that the weakness of the nonlinear

components used to date limits the possibility of obtaining certain localized wave profiles at

very high frequencies. Whereas several recent works also show that the Josephson junction can

overcome this problem thanks to its strong nonlinearity.But most of them have been applied

to left-hand lines made of metamaterials with different structures. In this work, we chose to

integrate the JJ into a straight line. To do so, we integrated the JJ next to the non-linear

capacitor C2 to substitute it, thus making the capacitor rather linear. In addition, at very high

frequencies, the JJ creates capacitive effects on the line in the horizontal direction, and these

effects are modeled by the C1 capacitor. This is justified by the fact that the line on the right,

which is a conventional line, models a normal conductor, while the line on the left models an

artificial conductor. This will enable us not only to test the very high-frequency conduction

capability of current conductive materials, but also to synthesize and control these materials in

order to build coherent arrays of junctions for a number of technical applications. This confirms

the relevance of this model for this investigation.

The third objective was to use the reductive perturbation method in the semi-discrete ap-

proximation to construct the nonlinear Schrödinger equation (1-NLSE) representing the math-

ematical model of the line from the previous model. We applied Kirchoff’s laws to this cell and

deduced the discrete Sine-Gordon equation that serves as the mathematical model for our line.

In addition, given the sufficiently small amplitudes of the wave, we perform a limited sinusoidal
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development and a semi-discrete approximation of the initial wave, which we subject to a slight

transverse perturbation. By calculating the algebraic equations and cancelling the third-order

coefficients, we obtain the NLSE that governs the envelope dynamics. This operation will en-

able us to highlight the essential parameters of the line, such as the dispersion relation, group

velocity, dispersion coefficients and non-linearity. At the end of this operation, we’ll present a

few methods for analyzing modulation instability used in different fields of physics, and we’ll

introduce the method we’ve chosen for our study. This mathematical tool will enable us to es-

tablish the zone of wave propagation stability, identify the key parameters of our line stability

and generate other localized wave models.

The fourth objective was to demonstrate analytically the possibility of dark and bright soli-

ton propagation, and other localized waveforms, using the modulation instability study. In the

first section, after analyzing the stability of our model, we see that there is indeed a zone of

stable wave propagation and a zone of unstable wave propagation. This stability is strongly

dependent on the plasma frequency, as determined by the non-linearity coefficient Q of the

NLS equation. We deduced from this result that bright and dark solitons propagate in two

regimes of cut-off frequencies. As the analytical solutions are known, we have represented the

solitons at different times and appreciated the evolution and profile of the solitons during their

evolution. Section 3 also introduces analytical solitons, in particular peregrine solitons and

super-scare waves. In the second section, we study the propagation of peregrine solitons and

super rogue waves. We already know that for certain parameter values, the instability energy

is assumed to be localized in a small area in space and time, leading to the formation of rogue

waves.For the Peregrine soliton, we have defined the expression obtained by [22], to which we

have integrated our parameters, in particular the dispersion and nonlinearity coefficients. We

have given illustrations of the analytical results of its 3D evolution. In addition, we have also

provided illustrations of Peregrine in 3D for different values of the capacitor C1. The spatio-

temporal evolution of the Peregrine soliton in the line at different instants has also been given

(t = 0ms, t = 5ms, t = 10ms, t = 15ms, t = 20ms). In addition, the influence of capacitors C1

and C2 on the spatio-temporal evolution of the Peregrine soliton was also given. This shows that

when the capacitor C1 is larger than C2, the peregrine form disappears for SRWs. To verify the
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propagation of SRWs, we defined the expression obtained by [22], to which we incorporated our

parameters, in particular the dispersion and nonlinearity coefficients. We note that this solution

has a remarkable property when x = 0 and t = 0, there is a significant increase in the amplitude

of the carrier wave. The different waveforms also show the effects of line parameters (C1, C2 and

L1) and wavenumber. We can also observe that when C1 is greater than C2, the carrier wave

emerges and is higher than the Peregrine soliton.The graphs show the evolution of the carrier

wave profile in the line at various times (t = 0ms, t = 5ms, t = 10ms, t = 15ms, t = 20ms).

At t = 0ms, the SRW forms with a good shape, and gradually the shape of the SRW seems to

become peregrine again, and we can say that when the value of the capacitors decreases, the

amplification of the SRW stops. The numerical analysis carried out confirmed the propagation

of the various modulated wave profiles obtained analytically. In addition, this numerical analy-

sis enabled us to assess the wave profile after a time t, which cannot be done by the analytical

method.

In view of the different localized wave profiles obtained, we can say that the hypothesis formu-

lated at the outset has been validated. As a result, our model is relevant to the design of a

SQUID network capable of detecting very high-frequency waves in the infrared range, leading

to a plethora of applications in different areas of life.
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3.8 Deduction of the discrete transmission line equation

By using the famous Kirchhoff Laws in current and voltage on the lattice of Figure 16 reveals

the following nonlinear discrete equations which describes the modulated waves in the lattice :

The law of the nodes leads to the following relation:

the first nodes in front of in give the relation :

in = iL + iC1 , (3.60)

the last nodes before in+1 give the relation :

in+1 = iL1 + iC1 − iC2 − Jn, (3.61)

The law of meshes gives us the following relation:

In the mesh bounded by Vn−1, VC1 and Vn we have the following relation :

Vn−1 − Vn = VC1 , (3.62)

In the mesh bounded by Vn−1, VL1 and Vn we have the following relation :

Vn−1 − Vn = VL, (3.63)

In the mesh bounded by Vn−1, VL1 and VC2 we have the following relation :

Vn = VC1 + VC2 , (3.64)

Substituting relation Eq.(2.165), Eq.(2.164) in Eq.(2.163), we obtain the relation :

in+1 =
1

L1

∫
(Vn−1 − Vn)dt+ C1

d

dt
(Vn−1 − Vn) + C2

d

dt
Vn + Jn, (3.65)
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Figure 58: Schematic representation of the nonlinear electrical transmission line with Josephson

junction

Substituting relation Eq.(2.165), Eq.(2.164) in Eq.(2.162), we obtain the relation :

in+1 =
1

L1

∫
(Vn−1 − Vn)dt+ C1

d

dt
(Vn−1 − Vn) (3.66)

with,

Vn =
dϕn

dt
. (3.67)

Equating Eq.(2.167) with Eq.(2.168) and substituting Eq.(2.169) we obtain de following

relation :

ϕn−1 − 2ϕn + ϕn+1

L
+ C1

d2

dt2
(ϕn−1 − 2ϕn + ϕn+1) + C2

d

dt
Vn + Jn = 0, (3.68)

Then replacing Josephson’s current Jn by J0 sin
(
2 π ϕn

ϕ0

)
we deduce the following equation:

ϕn−1 − 2ϕn + ϕn+1

L
+ C1

d2

dt2
(ϕn−1 − 2ϕn + ϕn+1) + C2

d2ϕn

dt2
+ J0 sin

(
2
π ϕn
ϕ0

)
= 0, (3.69)

3.9 How the junction works as a SQUID magnetic field

sensor

In 1962, twenty-two-year-old British physicist Brian D. Josephson came up with the idea that

Cooper pairs could cross an insulating barrier without breaking. This prediction was verified
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experimentally with junctions between two superconducting materials (niobium) separated by

an insulator, in this case Nb-oxide-Nb, structures henceforth known as Josephson junctions.

The Cooper pairs retain their phase coherence if the insulator is thin enough. Josephson treats

the device as two weakly coupled quantum objects (interacting weakly with each other), with

respective energy and wave functions U2 and U2, Ψ1 and Ψ2. When a potential difference V is

applied between the two electrodes, the energy difference is :

△E = U2 − U1 = 2eV. (3.70)

The Josephson equations have three notable consequences: - The continuous Josephson

effect is verified when V = 0 : a supercurrent J of Cooper pairs is observed up to a maximum

current density J0 depending on the energy height and thickness da barrier. - The alternating

Josephson effect is observed when a continuous potential difference V0 is applied between

the two electrodes, the Cooper pair current becomes oscillatory and there is emission of an

electromagnetic wave of frequency f, given by Planck’s relation, E = ~f . In this case, we

obtain:

f =
2eV

~
=

V

Φ0

, (3.71)

where Φ0 is the flux quantum, that is : f = 0.81011Hz.mV −1 . So, for an applied voltage

of 1mV , we’re in the microwave range, with wavelengths on the order of millimeters. - The

mixing effect is observed if, in addition to an applied DC voltage V0 , a microwave of frequency f

is sent to the NIS device. The latter emits a wave at a frequency f0 = V0/Φ0 , which mixes with

the external frequency f. A continuous step is obtained in the characteristic of current J as a

function of V = 0 whenever f0 = n.f , with n an integer. These steps are called "Shapiro steps",

after the experimenter who first observed them. These three effects have been demonstrated

experimentally by numerous teams and are very well established. They have led to numerous

applications, described below.

- The effect of a magnetic field on a Josephson junction: the case of SQUIDs.

Some important applications are based on the influence of a magnetic field on the Josephson

effect. For the magnetic field has an important effect on superconductivity; it controls the phase

Hamadou Halidou Ph.D-Thesis



3.9 How the junction works as a SQUID magnetic field sensor 127

of the Cooper pair wave function. When we measure the current through a Josephson junction

by varying the magnetic field, we observe that the maximum pair current Imax is controlled

by the magnetic flux Φ. There’s a perfect analogy with the diffraction of light by a slit. In

this case, it’s the magnetic flux that controls the phase of the superconducting wave function,

whereas for the light wave, it’s the distance traveled.
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This paper examines envelope solitons, rational W-shape solitons to a Nonlinear Electrical Transmission 
Line (NETL) with Josephson junction (JJ) that consist of the Nth cells of circuits. By employing the 
reductive perturbation approach in the semi-discrete approximation, we obtain the nonlinear Schrödinger 
equation (NLSE). From this equation, the frequency ranges of propagation of bright and dark solitons 
were obtained. As in most of the works, the NLSE obtained is well known as the seat of rogue waves and 
Peregrine solitons. The nonlinearity provided by the JJ, combined with the dispersion, made it possible to 
study the Modulation Instability (MI) gain spectrum. The 3D and 2D graphical representations illustrated 
the instability zones and the W-rational solutions have followed by using numerical simulation. The 
results obtained in this paper are of a very capital contribution for the study of rogue waves in nonlinear 
transmission lines or other physical problems.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Work on the study of nonlinear power lines has been the focus of interest since the work of pioneers Hirota and Suzuki was born [1]. 
Indeed, a succession of numerical and analytical works followed with great satisfaction, especially on the dynamics of waves modulated 
in NETL [2–4]. The analysis of the miscellaneous of the nonlinear excitations in mediums with strong nonlinearity and the resolution of 
the problems of quantum mechanical type, the plasma waves, the control of the medical systems, the transport of the signal and the 
communication support have their salvation thanks to NETL [5–9]. A NETL is a circuit which consists for the most part of capacitors, 
inductors and JJ which are nonlinear in their response to current and voltage respectively. It therefore constitutes a favorable environment 
for the propagation of solitons, Peregrine solitons, rogue waves and so on. The nonlinear electrical transmission line with JJ has been at 
the center of various works in the field of supra transmission. Almost the majority of superconductors electronics are held on JJ.

However, several works on the investigation of bright or dark solitary waves obeying the NLSE in the presence of weak nonlinearity 
and dispersion in NETL, have been full of basket in recent years [10–16]. The NLSE has been widely studied, and has exhibited nonlinear 
event, such as rogue waves, Peregrine solitons and modulation instability. Regarding the rogue waves (RWs) which are in charge of great 
number of maritime catastrophe have been pointed out in diverse studies for decades [17,18].

A succession of theoretical works has been developed to explain the virtues of these waves, which probably comes from nowhere 
and disappears without a trace [19–23]. One of its waves, is the single rogue wave which is a solution of NLSE. It is also known as the 
Peregrine soliton [20].
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Fig. 1. Schematic representation of the nonlinear electrical transmission line with Josephson junction.

These obtained results in NETL, present an instability like any other nonlinear system which progresses with a MI of the plane wave 
and a posterior production of localized pulses. In this way, for transverse disturbances, the exact cut-off frequencies of the growth rate 
have been highlighted and the MI gain spectrum of solitary waves instabilities has been obtained [24].

In this paper, to investigate envelope solitons, RWs and Peregrine solitons, we used the quasi-discrete method to build the one-
nonlinear Schrödinger equation (1-NLSE) to the nonlinear electrical transmission line with JJ. The paper is organized as follows: Section 1
is devoted to model description and analytical treatment. In section, the linear analysis technique is used to point out the MI gain 
spectrum, follows by the investigation of the RWs. The last section concludes the works.

2. Model description and analytical treatment

Fig. 1 shows the nth elementary cell of the NETL with JJ. It is modeled by a linear inductor L1 in parallel with a linear C1 in the series 
branch and a linear capacitor C2 in parallel with a nonlinear JJ current Jn . By using the famous Kirchhoff Laws in current and voltage on 
the lattice of Fig. 1 it is reveals the following nonlinear discrete equations which describes the modulated waves in the lattice

d2

dt2 (φn+1 − 2φn + φn−1) + ω2
0 (φn+1 − 2φn + φn−1) + μ0

d2φn

dt2
+ ω2

j sin (φn) = 0, (1)

while the voltage Vn and the JJ current Jn are given respectively by

Vn = dφn

dt
, Jn = J0 sin

(
2π

φn

φ0

)
, (2)

in the same time ω2
0 = 1

L1C1
, μ2

0 = C2
C1

, and the plasma frequency ω j = √
2π J0/C1φ0, φ0 = 2.064 × 10−15T m2. Now, integrating this 

equation gives the Hamiltonian of the system as

H =
∑

n

[
1

2
μ0

(
dφn

dt

)2

+ 1

2

(
d

dt
(φn + φn+1)

)2

+ 1

4
ω2

0 (φn − φn+1)
2 × (φn−1 − φn)

2 − ω j cos (φn)

]
. (3)

From Eq. (3) it is highlighted the conservation of the energy in the lattice. To establish the NLSE which admits solitary waves like (bright 
and dark solitons), it will be adopted quasi discrete approximation which will assume the inherent discreteness of the system. This 
oncoming permits to describe the quasi-discrete envelope solitons, typified by the discrete carrier and slowly varying continuum envelope. 
A solution of Eq. (1) is given as

φn = εφ1(x, τ )exp(iθn) + ε2φ02(x, τ ) + ε2φ2(x, τ )exp(2iθn) + .......... + c.c., (4)

where c.c. is the complex conjugate and the slow scales x = ε
(
n − v gt

)
and τ = ε2t , while exp(iθn), with θn = kn − ωt . Where ω is the 

carrier frequency, k is the wave number and ε is the small parameter. Also v g is the group velocity. To do so, it is considered Eq. (1) in 
case of low-amplitude waves i.e. (φn � 1). Then Eq. (1) becomes

d2

dt2 (φn+1 − 2φn + φn−1) + ω2
0 (φn+1 − 2φn + φn−1) + μ0

d2φn

dt2
+ ω2

j φn − ω2
j

6
φ3

n = 0. (5)

Plugging Eq. (4) into Eq. (5) gives:
To order O (ε) proportional exp(iθn) points out the linear dispersion relation,

ω2 = −
4 sin2

(
k
2

)
ω2

0 − ω2
j

μ0 − 4 sin2
(

k
2

) . (6)

To order O (ε2) proportional exp(iθn) gives the group velocity dispersion

v g =
(
ω2 − ω2

0

)
sin (k)

ω
(

4 cos2
(

k
2

)
+ μ0 − 4

) . (7)

Then order O (ε3) proportional exp(iθn), the following nonlinear Schrödinger equation is obtained

i∂τ φ1 + P∂xxφ1 + Q |φ1|2φ1 = 0, (8)

2
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Fig. 2. (a) is the plot of the dispersion relation versus wave number and (b) the group velocity versus wave number at J = 200nA, L1 = 480μH , C1 = 1pF , C2 = 2pF .

the nonlinear coefficient gives

Q = 1

4

ω2
j

ω
(

4 cos2
(

k
2

)
+ μ0 − 4

) , (9)

and the dispersion coefficient is

P =
((

4 cos4
(

k
2

)
− 4 − 2μ0 cos2

(
k
2

)
+ μ0

)
ω2 + ω0

2
(
−4 cos2

(
k
2

)
+ 4 cos4

(
k
2

)))(
ω2 − ω0

2
)

(
4 cos2

(
k
2

)
+ μ0 − 4

)2
ω3

.

(10)

From the linear dispersion relation Fig. 2(a), the wave number is taken in the first Brillouin zone (0 ≤ k ≤ π ). Therefore, it is revealed 

two cut off frequencies given by ωmin =
√

ω2
j −4ω2

0
μ0−4 and ωmax =

√
ω2

j
μ0

respectively. Besides, it is stressed the behavior of the group velocity 
versus the wave number in Fig. 2(b). Furthermore, in Fig. 3, it is shown the dispersion relation and nonlinear coefficient curves. We 
observe two regions of the propagation of the soliton solution in the lattice from the dispersion curve (see Fig. 3(a)). Otherwise, the 
nonlinear coefficient is permanently positive, so the product will give a good pipe of the solitary waves propagation in the lattice. Several 
works have been shown that depending on the sign of the product P Q the NLSE Eq. (8) admits either bright soliton (which correspond 
to modulation stable), or dark soliton (for modulation instability). Observing Fig. 4, it is pointed out two regimes of cut off frequencies 
which correspond to bright and dark formation. So, for (6.3 × 108kH z < f < 6.655 × 108kH z) the bright soliton is set out, meanwhile 
the dark soliton is formed at (6.656 × 108kH z < f < 6.8 × 108kH z). In addition, Figs. 5(m) and 5(n) point out the behavior of the ration 
(Q/P) versus the angular frequency. It is observed the effect of the plasma frequency ω j and the capacitor C2. Despite the presence 
of the JJ, the capacitor has contributed hardly to the formation of solitons. The given Figs. 3(c) and 3(b) correspond to the dispersion 
term and nonlinear coefficient. Moreover the NLSE Eq. (8) with different kind of nonlinear excitation, enclosing Peregrine rogue wave 
(RW), Akhmediev breather (AB), Kuznetsov-Ma breather (K-M) have been established recently [20–22]. One of the concerns, is to find the 
different regimes of MI of these obtained results. It is imperative to make known that the small disturbances in the MI regimes refer to 
unstable zones and therefore are amplified exponentially, while for small perturbation in the modulation stable regime, they are stable 
and do not grow. In the next section, the MI and the super rogue will be studied.

3. Modulation instability and rogue waves

3.1. Modulation instability

It is derived the MI based on the NLSE Eq. (8) in this part of the paper. To this, it is considered the plane wave solution of the NLSE 
Eq. (8) in the form of φ1 = φ10ei Q |φ10|2τ . Introducing the perturbation term into the plane wave as φ1 = φ10 + εφ20ei(K x+	τ) +c.c., where 
the wave number and the frequency perturbation are given respectively by K and 	. While φ20 is the amplitude of the carrier frequency. 
Inserting this hypothesis into Eq. (8), gives the following dispersion relation:

	2 = P 2 K 2(K 2 − 3
Q

P
|φ10|2). (11)

The obtained dispersion relation Eq. (11) depends on the ratio Q /P . So, it is also pointed out that the ratio depends on the plasma 
frequency (ω j ) of the lattice.

Inspecting Eq. (11), if the ratio (Q /P < 0) i.e. 0 ≤ ω ≤ 2.09 (rds−1) (Fig. 5(m)) and 0 ≤ ω ≤ 3.5(rds−1) (see Fig. 5(n)), the MI gain 
spectrum is stable despite the small perturbation. In the same time, the ratio (Q /P ) is always positive for 2.09 < ω ≤ 3.5(rds−1) (see 
Fig. 5(m)) and the perturbation relation becomes complex. Consequently the MI gain spectrum is unstable and the wave number is small 
compared to critical wave number value i.e. K < Kc =

√
3Q

P |φ10|2. In this condition the growth rate is reading as [22]

3



H. Halidou, S. Abbagari, A. Houwe et al. Physics Letters A 430 (2022) 127951

Fig. 3. (a) is the plot of the dispersion relation versus wave number and (b) the group velocity versus wave number at J = 200nA, L1 = 480μH , C1 = 1pF , C2 = 2pF .

Fig. 4. Illustration of the bright (6.3 × 108kH z < f < 6.655 × 108kH z) and dark (6.656 × 108kH z < f < 6.8 × 108kH z) formation areas depending on the sign of the product 
(PQ) versus angular frequency at J0 = 200nA, L1 = 480μH , C1 = 1pF , C2 = 2pF .


gr = |P |K 2

√
K 2

c

K 2
− 1, (12)

where Kc is the critical wave number. In addition, the ratio (Q /P ) value increases when the plasma frequency increases (see Fig. 5(m) and 
5(n)). Thus, when the plasma frequency reach the critique value, the MI gain spectrum is unstable for any value of the angular frequency 
chosen in the range of 0 ≤ ω ≤ 3.5(rds−1) (see figure (n)). However, to highlight the behavior of the growth rate (
gr ) of the modulation 
instability it will be plotted the growth rate in terms of the wave number with the effect of plasma frequency.

Fig. 6 shows the growth rate of MI versus the wave number. It is observed instability zones for 0 ≤ K < 6 and 2 < K < 5. However, 
in Fig. 7 is observed two slides lobes which emphasize the instability zones. The identical scenario is set out in Fig. 8 one slide lobe for 

4
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Fig. 5. Illustration of the ratio bright (Q /P ) versus angular frequency with the effect of plasma frequency (m) ω j = 3.044 × 1016, ω j = 3.0442 × 1016, C1 = 1pF , C1 = 2pF
and (n) the effect of the capacitor at C1 = 20pF m J0 = 200nA, L1 = 480μH .

Fig. 6. Illustration of the growth rate of MI in terms of wave number and critical wave number with the effect of plasma frequency (s1) 3D, (s2) contour plot and (s3) 2D 
plot at ω j = 3.044 × 109, C1 = 1pF , C2 = 400pF at J0 = 200nA, L1 = 780μH . (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 7. Illustration of the growth rate of MI in terms of wave number and critical wave number with the effect of plasma frequency (s4) contour plot and (s5) 2D plot at 
ω j = 3.044 × 108, C1 = 0.1pF , C2 = 20pF at J0 = 200nA, L1 = 780μH .

−5 ≤ K < 5. Furthermore, in Fig. 9, it is formed the growth rate of the MI with the variation of the critical wave number. It is pointed out 
that when the critical wave number increases the MI band increases and its became different when the critical wave number decreases 
the MI band decreases. On the other hand, Fig. 10 is obtained by varying the values of the capacitors. This situation shows the variation 
of the plasma frequency of the Josephson junction.

3.2. Rogue waves solutions

Recently, it has been investigated rogue waves to Eq. (8) [6,7]. The rogue waves solution takes the form of Peregrine solitons or super 
rogue wave. In which follows, it will be pointed out Peregrine and super rogue wave to Eq. (8). For Peregrine soliton, we set [6]

5
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Fig. 8. Illustration of the growth rate of MI in terms of wave number and critical wave number with the effect of plasma frequency (s6) 3D and (s7) contour plot at 
ω j = 7.6104 × 1015, C1 = 40pF , C2 = 200pF at J0 = 200nA, L1 = 780μH .

Fig. 9. The comparison of the growth rate of MI under the influence of the critical wave number (s8) ω j = 6.7618 ×103, C1 = 450pF , C2 = 750pF at J0 = 200nA, L1 = 780μH .

Fig. 10. The comparison of the growth rate of MI under the influence of the capacitors C1 and C2 and fixed value of the critical wave number (s9)[ω j = 6.06 × 103], 
(s10)[ω j = 4 × 103], (s11)[ω j = 3.20 × 103], (s12)[ω j = 6.761 × 103]at J0 = 200nA, L1 = 780μH .

φ1(x, τ ) =
√

2P

Q

(
1 − 4 + 16i Pτ

16P 2τ 2 + 4x2 + 1

)
e2i Pτ . (13)

Figs. 11 depict the analytical results Eq. (13) which are the 3D evolution of the Peregrine soliton. Furthermore, Figs. 12 are illustration 
of the contour plot and 3D Peregrine solitons respectively under the effect of the capacitor (C1). At the time, Fig. 11 is the spatiotemporal 
evolution of the Peregrine at different time (i.e. τ = 0 ms, τ = 5 ms, τ = 10 ms, τ = 15 ms, τ = 20 ms). However, Fig. 12 is the spatiotempo-
ral evolution of the Peregrine rogue wave with the effect of capacitors (C1 and C2). It is pointed out by the (red line) when the capacitor 
C1 is bigger than C2. The (blue line) gives the major effect of the capacitor C2 on the Peregrine soliton shape (the two pikes below in 

6
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Fig. 11. (S8) is the 2D plot of the Peregrine rogue wave and (S9) the 3D spatiotemporal evolution of the Peregrine rogue wave at C1 = 2pF , C2 = 470pF at J0 = 200nA, 
L1 = 480μH .

Fig. 12. (s10) is the contour plot of the Peregrine solitons and (s11) the 2D spatiotemporal evolution of the Peregrine rogue wave at C1 = 20pF , C2 = 470pF at J0 = 200nA, 
L1 = 480μH .

Fig. 10, are exhibited here by the blue line). While capacitor C1 becomes more important than capacitor C2, the Peregrine shape vanishes 
(red line) (Fig. 13, Fig. 14). To turns to the super rogue waves (SRWs), we set ψ =

√
Q

2P φ1 and T = τ P , then Eq. (8) gives [4].

i
∂ψ

∂T
+ ∂2ψ

∂x2
+ 2|ψ |2ψ = 0. (14)

Now we can assume the solution of Eq. (14) as follows [4,6].

ψ(x, T ) =
(

1 − G + iH

D

)
e2i Pτ , (15)

where

G =
(

x2 + 4τ 2 + 3

4

)(
x2 + 20τ 2 + 3

4

)
− 3

4
,

H = 2T
(

4τ 2 − 3x2
)

+ 2τ

[(
2x2 + 4τ 2

)2 − 15

8

]
,

D = 1

3

(
x2 + 4τ 2

)3 + 1

4

(
x2 − 12τ 2

)2 + 3

64

(
12x2 + 176τ 2 + 1

)
. (16)

It should be noted that this solution has a remarkable property when x = 0 et τ = 0, there is an increase in the amplitude of the carrier 
wave. Figs. 15, 16, 17 and 18 show the effects of the NETL parameters (C1, C2 and L1) and the wave number. From Fig. 15 and 16, it can 
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Fig. 13. Spatiotemporal plot evolution of the Peregrine solitons at τ = 0 ms, τ = 5 ms, τ = 10 ms, τ = 15 ms, τ = 20 ms for C1 = 420 pF , C2 = 480 pF at J0 = 200 nA, 
L1 = 480 μH .

Fig. 14. Spatiotemporal plot evolution of the Peregrine solitons τ = 0 ms, τ = 5 ms, τ = 10 ms, τ = 15 ms, τ = 20 ms for C2 = 2C1 (blue line) and C1 = 2C2 (red line) at 
J0 = 200 nA, L1 = 480 μH .

be observed that when C1 is more important than C2, the SRW emerges which is higher than the Peregrine soliton. From Fig. 17, it is 
given at different times τ = 0 ms, τ = 5 ms, τ = 10 ms, τ = 15 ms, τ = 20 ms the shape of the SRWs. At τ = 0 ms, the SRW is forming 
with a good shape, and progressively the SRW shape seems to be a Peregrine soliton, and we can affirm that when the capacitors value 
decrease, the amplifying rogue wave is stopping. However, Fig. 16 gives the most specific form of the SRW with decreasing amplitude. 
Furthermore, it is pointed out that the wave energy is located in a small area due to the nonlinear and dispersion terms of NLSE. These 
obtained results highlight the dynamic progresses of the SRWs.

4. Envelope solitons: bright and dark

The nonlinear Schrödinger equation in Eq. (8) admits the following bright and dark solitons solutions respectively [10]:

φ1(x, τ ) = Asech

(
A

√
| Q

2P
|(x − vτ )

)
ei(kx−ωτ),

φ1(x, τ ) = A tanh

(
A

√
| Q

2P
|(x − vτ )

)
ei(kx−ωτ). (17)
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Fig. 15. (C1) Spatiotemporal plot evolution and (C2) plot 2D of the SRWs at C2 = 210C1 at J0 = 200 nA, L1 = 480 μH .

Fig. 16. (R1) Spatiotemporal plot evolution and (R2) contour plot of the SRWs at C1 < C2 and J0 = 200 nA, L1 = 480 μH .

Fig. 17. Spatiotemporal plot evolution of the SRWs at (g1) τ = 0 ms, (g2) τ = 5 ms, (g3) τ = 10 ms, (g4) τ = 15 ms, (g5) τ = 20 ms for C1 < C2 and J0 = 200 nA, L1 = 480 μH .

Fig. 18. (q1) Spatiotemporal plot evolution of the SRWs (q2) and contour plot evolution at C2 = 18.75C1 and J0 = 200nA nA, L1 = 480 μH, φ0 = 2.064 × 10.−10.

9
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Fig. 19. (B) Spatiotemporal plot evolution of the bright soliton with (t=0) as initial condition and (D) the evolution of the dark soliton at C1 = 50pF , C2 = 750pF , ω j = 0.034, 
ω = 0.0026, and J0 = 200nA, L1 = 240 μH, φ0 = 2.064 × 10.−10.

To investigated envelope soliton to the discrete equation given in Eq. (5) it will be used numerical simulation by considering the given set 
of Eq. (15) with (t = 0) as initial condition. The first step is to use the Runge-Kutta of order 4, to integrate Eq. (5), to observe the behavior 
of the wave which propagates in the lattice. It is assumed N = 1001.

Figs. 19 (B) and (D) are bright and dark evolution with (t=0) as initial condition of Eq. (15). However, Fig. 20( f1) and 20( f2) are 
analytical plot evolution and numerical simulation of the bright soliton respectively. We observe that the maximum amplitude of the 
plane wave which propagates is around 0.003V . Moreover, the wave propagates in a sinusoidal and regular manner along the NETL 
with JJ. We also note the similarity between the curves obtained numerically and analytically. This result confirms the predictions made 
analytically on the signs of the dispersion and nonlinearity coefficients.

5. Conclusion

The purpose of this paper is to establish to unearth the envelope solitons, the super rogue waves and the Peregrine soliton to the 
NLSE obtained by using the reductive perturbation method in the semi-discrete approximation. Through the coefficients of dispersion and 
non-linearity the areas of propagation of the bright and black solitons have been identified, thus the areas of instability. The most relevant 
observation is that the obtained rogue waves show regions of energy concentration which are influenced by the parameters of the NETL 
with JJ. On the other hand, we realize that the frequency of the plasma related to the flow of the JJ, has an effect to the obtained results. 

10
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Fig. 20. ( f1)Analytical result contour plot evolution and numerical simulation ( f2) of the bright soliton with (t = 0) as initial condition at C1 = 50pF , C2 = 750pF , ω j = 0.034, 
f = 1.5M H z, and J0 = 200nA, L1 = 240 μH, φ0 = 2.064 × 10.−10.

It has been also studied the MI analysis to highlight the process of magnifying small perturbation for the solitary waves. The next work, 
will be focused to numerical investigation to more understand the dynamic process of the rogue waves.
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Abstract
In this paper, we construct diverse solitary wave solutions for the nonlinear differential equation governing wave propaga-
tion in the low-pass nonlinear electrical transmission lines with conformable derivatives. However, by employing the new 
extended direct algebraic method and the improved Sub-ODE equation, we recovered W-shape bright soliton, dark soliton, 
periodic solutions, rational solutions and Weierstrass elliptic function solutions. The obtained results are new in nonlinear 
electrical transmission lines field. In addition, the acquired solitons are depicted with the appropriate parameters values of 
the methods and the nonlinear electrical transmission lines. The shape of the W-bright and dark soliton solutions points out 
the effect of the derivative order. Finally, the results indicate that the two integrations methods are a most applicable and 
forceful integration tools for emphasizing the soliton solutions.

Keywords  W-shape bright soliton · Conformable derivative order · Electrical transmission lines

1  Introduction

Recently, there has been significant attentiveness in frac-
tional calculus used in the analysis of the traveling wave 
solutions of nonlinear differential equations [1–19]. Frac-
tional calculus is an extension of ordinary calculus, where 
derivatives and integrals of an arbitrary real order are 
defined. Many types of fractional calculus definitions that 

have been given in literature cannot be adopted for classi-
cal properties such as Rolle and mean value theorem, chain 
rules and so on. Furthermore, the conformable fractional 
is confused to the fractional derivative and integral with 
� ∈ (0.1) order. Beside of this, several types of operators 
have been also used like fractional derivatives during the 
past few years.
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Moreover, fractional calculus has been extensively used 
nowadays to formulate exact problems in mathematics and 
other field of science. On this way, new class of analytical 
solutions of nonlinear conformable time-fractional coupled 
Drinfeld–Sokolov–Wilson equation was proposed by Orkun 
et al. [20]. This proposal arise in shallow water flow simula-
tions, when particular forms are employed to plan the shal-
low water equations like Sine-Gordon expansion technique. 
Likewise, Rezazadeh et al. used the conformable fractional 
to generalized kuramoto sivashinsky equation to build soli-
tary wave solutions [21], Rezazadeh et al.. adopted the first 
integral method with conformable time-fractional deriva-
tive [22]. Exact solutions of fractional partial differential 
equations (PDEs), have become very important to explain 
wave propagation phenomena in deep waters like fiber optic 
transport and in shallow ones.

The fractional derivatives which are well knowing in 
modern mathematics have been proposed by the popular 
mathematicians such as Riemann et al. [23]. However, sev-
eral definitions of fractional derivatives were obtained such 
as Atangana–Baleanu derivative in Caputo direction, Atan-
gana–Baleanu fractional derivative in Riemann–Liouville 
sense, the new truncated M-fractional derivative of Igor 
[24], Abdon [25] and Sousa and Oliveira [26], just to name 
a few.

Therefore, the conformable nonlinear ordinary differential 
equations have supplied interesting solitary waves solutions 
of many physical phenomena by using relevant mathemati-
cal methods. Beside of this, it have been obtained soliton 
turbulence to examine ocean wave data. That is why soliton 
turbulence becomes very interesting in study nowadays 
[27]. Furthermore, in the last decade, innumerable integra-
tion scheme has been proposed to construct exact analytical 
solutions and the approached numerical solutions to confor-
mal nonlinear differential equations such as such as the sub-
equation method, the Sinh–Gordon expansion method, the 
new extended direct algebraic method, exp(−�(�))-expan-
sion method, the rational hyperbolic method, the generalized 
auxiliary equation technique, the generalized Kudryashov 
(GK), the fractional and variational iteration algorithm I, the 
improved algorithm to the variational iteration algorithm-II, 
the efficient local meshless method, the local meshless col-
location method, a new generalized Jacobi elliptic function 
method, the extended tanh method, the rational hyperbolic 
functions method, the rational exponential functions method, 
the tanh–coth method just to name a few [1, 3, 4, 28–55]. It 
is also difficult to find a suitable method which can give a 
variety of analytical solutions known in the literature. Most 
often, several methods are used to collect a good quantity 
of physically explainable solutions. In this paper, it will be 
a question of using two methods known for their variety in 
analytical solutions, they are namely the new extended direct 
algebraic method and the improved new Sub-ODE method.

In this study, we explore new, accurate solitary wave solu-
tions for the conformable derivative nonlinear differential 
equation that governs wave propagation in the nonlinear 
electrical transmission line (NELT) loaded by the diode 
vector BB112 [41].

The details of the derivation of (1) was proposed in [41]. 
However, u(x, t) is the voltage in transmission line and � 
and u0 are constants, while the variable x is the propagation 
distance and t represents the slow time. However, b1 and b2 
are constants.

To reach the goal, Sect. 2 summarizes the conformable 
derivative theorem. The glimpse of the methods applied are 
given in Sect. 3 and in Sect. 4 we apply the methods to the 
conformable nonlinear differential equation governing wave 
propagation in low-pass electrical transmission lines, follows 
by some graphical illustrations. The last section gives the 
summary of the work.

2 � Sight of the conformable derivative order

Considering the following short definition of the conform-
able derivative of order � ∈ (0, 1) :

Theorem 1  Let ��(0, 1] and g = g(t) , h = h(t) be �-conform-
able differentiable at t < 0 . Hence,

•	 D�
t
(ag + bh) = aD�

t
g + bD�

t
h, and a, b ∈ ℝ.

•	 D�
t
(t�) = �t�−� and � ∈ ℝ.

•	 D�
t
(gh) = hD�

t
(g) + fD�

t
(h) .

•	 D�
t

(
g

h

)
=

hD�
t
(g)−fD�

t
(h)

g2
.

3 � Overview of the methods

3.1 � The new extended direct algebraic method

The fundamental of the new extended direct algebraic 
method is given by the following steps [42].

Step 1: Adopting the partial differential equation (PDE) 
in the following form

(1)

(1 + b1u(x, t) + b2u(x, t)
2)D2𝛼

tt
u(x, t)

+ (b1 + 2b2u(x, t))(D
𝛼

t
u(x, t))2

− u2
0
D2𝛼

xx
u(x, t)

−
u2
0
𝛿2

12
D4𝛼

xxxx
u(x, t) = 0, 0 < 𝛼 ≤ 1.

(2)
d�g(t)

dt�
= lim

�→+∞

g(t + �t1−�) − g(t)

�
, g ∶ (0,∞) → ℝ.
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where u(x, t) is an unknown function and H is a polynomial 
of u.

Surmise the traveling-wave hypothesis as follows and 
then adopting u(x, t) = U(�)

while k1 , k2 are constants to be determined, and k1, k2 ≠ 0 . 
Thus, the PDE can turn into ordinary differential equation

and prime denotes the derivative with respect to �.
Step 2: Considering that (5) has the solution in the fol-

lowing expression

where gj(0 ≤ j ≤ N) are constants to be determined later and 
Q(�) satisfies the following ODE

and A ≠ 0, 1.
The solutions of ODE (7) are:
Case 1. 𝜇2 − 4𝜆𝜎 < 0 and � ≠ 0

(3)
H(u,D𝛼

t
u,D𝛼

x
u,D𝛼

y
u,D2𝛼

t
u,D𝛼

t
D𝛽

x
u, ...) = 0, 0 < 𝛼, 𝛽 < 1,

(4)� =
k1

�
t� +

k2

�
x�

(5)F(U, k1U
�, k1k2U

��, k3
1
U���, ...) = 0,

(6)U(�) =

N∑
j=0

giQ
i(�), gn ≠ 0,

(7)Q�(�) = Ln(A)(� + �Q(�) + �Q2(�)),

(8)

Q1(�) = −
�

2�
+

√
−(�2 − 4��)

2�
tanA

�√
−(�2 − 4��)

2
�

�
,

(9)

Q2(�) = −
�

2�
+

√
−(�2 − 4��)

2�
cotA

�√
−(�2 − 4��)

2
�

�
,

(10)

Q3(�) = −
�

2�
+

√
−(�2 − 4��)

2�
tanA

�√
−(�2 − 4��)�

�

±

√
−pq(�2 − 4��)

2�
secA

�√
−(�2 − 4��)�

�
,

(11)

Q4(�) = −
�

2�
−

√
−(�2 − 4��)

2�
cotA

�√
−(�2 − 4��)�

�

±

√
−pq(�2 − 4��)

2�
cscA

�√
−(�2 − 4��)�

�
,

Case 2. 𝜇2 − 4𝜆𝜎 > 0 and � ≠ 0

Case 3. 𝜆𝜎 > 0 and � = 0

(12)

Q5(�) = −
�

2�
−

√
−(�2 − 4��)

2�
tanA

�√
−(�2 − 4��)

4
�

�

−

√
−(�2 − 4��)

2�
cotA

�√
−(�2 − 4��)

4
�

�
.

(13)

Q6(�) = −
�

2�
+

√
(�2 − 4��)

2�
tanhA

�√
(�2 − 4��)

2
�

�
,

(14)

Q7(�) = −
�

2�
+

√
(�2 − 4��)

2�
cothA

�√
(�2 − 4��)

2
�

�
,

(15)

Q8(�) = −
�

2�
+

√
(�2 − 4��)

2�
tanhA

�√
(�2 − 4��)�

�

± i

√
pq(�2 − 4��)

2�
sechA

�√
(�2 − 4��)�

�
,

(16)

Q9(�) = −
�

2�
−

√
(�2 − 4��)

2�
cothA

�√
(�2 − 4��)�

�

±

√
pq(�2 − 4��)

2�
cschA

�√
(�2 − 4��)�

�
,

(17)

Q10(�) = −
�

2�
−

√
−(�2 − 4��)

4�
tanhA

�√
(�2 − 4��)

4
�

�

−

√
(�2 − 4��)

4�
cothA

�√
(�2 − 4��)

4
�

�
.

(18)Q11(�) =

�
�

�
tanA

�√
���

�
,

(19)Q12(�) = −

�
�

�
cotA

�√
���

�
,

(20)

Q13(�) =

�
�

�
tanA

�√
2���

�
±

�
pq

�

�
secA

�√
2���

�
,

(21)

Q14(�) = −

�
�

�
cotA

�√
2���

�
±

�
pq

�

�
cscA

�√
2���

�
,
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Case 4. 𝜆𝜎 < 0 and � = 0

Case 5. � = 0 and � = �

Case 6. � = 0 and � = −�

(22)

Q15(�) =
1

2

�
�

�

�
tanA

�√
��

2
�

�
−

�
�

�
cotA

�√
��

2
�

��
.

(23)Q16(�) = −

�
−�

�
tanhA

�√
−���

�
,

(24)Q17(�) = −

�
−�

�
cothA

�√
−���

�
,

(25)
Q18(�) = −

�
−�

�
tanhA

�√
2���

�

± i

�
pq

−pq�

�
sechA

�
2
√
−���

�
,

(26)
Q19(�) = −

�
−�

�
cothA

�
2
√
−���

�

±

�
−pq

�

�
cschA

�
2
√
−���

�
,

(27)

Q20(�) = −
1

2

��
−�

�
tanhA

�√
−��

2
�

�

+

�
−�

�
cothA

�√
−��

2
�

��
.

(28)Q21(�) = tanA(��),

(29)Q22(�) = − cotA(��),

(30)Q23(�) = tanA(2��) ±
√
pq secA(2��),

(31)Q24(�) = − cotA(2��) ±
√
pq cscA(2��),

(32)Q25(�) =
1

2

(
tanA(

�

2
�) − cotA(

�

2
�)

)
.

(33)Q26(�) = − tanhA(��),

(34)Q27(�) = − cothA(��),

(35)Q28(�) = − tanhA(2��) ± i
√
pqsechA(2��),

Case 7. �2 = 4��

Case 8. � = k, � = mk(m ≠ 0), and � = 0,

Case 9. � = � = 0

Case 10. � = � = 0

Case 11. � ≠ 0 and � = 0.

Case 12. � = k and � = mk(m ≠ 0) and � = 0.

Step 3. By using the homogeneous balance principle the 
value of N can be obtained between the highest order deriva-
tive and high-order terms in (5).

Step 4. Substituting (6) and (7) into (5), then collecting 
all the term of Qj(�) to set to zero yields a system of alge-
braic equation.

Step 5. With aid of MAPLE, the results of the system of 
algebraic equation can be obtained and then use the results 
of (7) to construct the exact solutions of (5).

However, the details of the generalized hyperbolic and 
trigonometric functions are given by [42].

3.2 � The new sub‑ODE method

Suppose that the solution of Eq. (5) is given by

Here � is an arbitrary positive constant to be determined, 
while F(�) satisfies the following ODE

(36)Q29(�) = − cothA(2��) ±
√
pqcschA(2��),

(37)Q30(�) = −
1

2

(
tanhA(

�

2
�) + cothA(

�

2
�)

)
.

(38)Q31(�) = −
2�(��Ln(A) + 2)

�2�Ln(A)
.

(39)Q32(�) = A�k − m.

(40)Q33(�) = ��LnA.

(41)Q34(�) =
−1

��LnA
.

(42)Q35(�) =
p�

�(coshA(��) − sinhA(��) − p)
,

(43)Q36(�) = −
�(sinhA(��) + coshA(��))

�(coshA(��) − sinhA(��) + q)
.

(44)Q37(�) = −
pAk�

q − mpAk�
.

(45)U(𝜉) = 𝜇Fs(𝜉), 𝜇 > 0.
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•	 Step 1: it consists to determine the parameter s by using 
the balance principle as follows: 

•	 Step 2: now, Eqs. (4) and (5) can be plugged together 
into set of Eq. (3), thereafter collect all the coefficients 
of Fsi(�)

[
F(�)�

]s ( i = 0, 1, 2, 3,… ) and equal them to zero, 
yields to a set of algebraic system of equation which will 
lead to determine the different coefficients A, B, C, D, E 
and � . In the same time the s values should be (0, 1).

•	 Step 3: the final procedure focusses to insert the obtained 
parameters in the following set of solutions of Eq. (3), 
which are listed in Ref. [51, 52].

Case 1. If A = 0, B = 0,D = 0 , it is recovered bright soliton 
of Eq. (5):

a periodic solution

and a rational solution

Case 2. By setting the conditions B = 0, D = 0, A =
C2

4E
 , it 

is gained dark soliton-like solution of Eq. (5):

and a periodic solution

(46)
F�2(𝜉) =AF2−2p(𝜉) + BF2−p(𝜉) + CF2(𝜉)

+ DF2+p(𝜉) + EF2+2p(𝜉), p > 0.

(47)
D(U) = s, D(U2) = 2s… , D(U�) = s + p,

D(U��) = s + 2p… ,

(48)

F(𝜉) =

�
𝜀

�
−
C

E
sech

�
p
√
C𝜉

�� 1

p

, C > 0, E < 0, 𝜀 ± 1,

(49)

F(𝜉) =

�
𝜀

�
−
C

E
sec

�
p
√
−C𝜉

�� 1

p

, C < 0, E > 0, 𝜀 ± 1,

(50)F(𝜉) =

�
𝜀

p
√
E𝜉

� 1

p

, C = 0, E > 0, 𝜀 ± 1.

(51)F(𝜉) =

[
𝜀

√
−

C

2E
tanh

(
p

√
−C

2
𝜉

)] 1

p

,

C < 0, E > 0, 𝜀 ± 1,

(52)F(𝜉) =

[
𝜀

√
C

2E
tan

(
p

√
C

2
𝜉

)] 1

p

,

C > 0, E > 0, 𝜀 ± 1.

Case 3. By setting the conditions B = 0, D = 0 , we deduce 
three forms of Jacobian elliptic functions solutions of 
Eq. (5):

and

Case 4. By setting the conditions A = B = E = 0, bright 
soliton-like solution of Eq. (5) is gained:

a periodic solution

and a rational solution

Case 5. By setting the conditions C = E = 0, D > 0, 
the Weierstrass elliptic function solutions of Eq. (5) are 
recovered

where g2 =
−4B

D
 ,   g3 =

−4A

D
.

Case 6. Assuming B = D = 0 , it is revealed Weierstrass 
elliptic function solutions to set of Eq. (5),

(53)
F(𝜉) =

[
𝜀

√
−Cm2

E(2m2 − 1)
cn

(
p

√
C

2m2 − 1
𝜉

)] 1

p

,

C > 0, A =
C2m2(m2 − 1)

E(2m2 − 1)2
, 𝜀 ± 1,

(54)
F(𝜉) =

[
𝜀

√
−C

E(2 − m2)
dn

(
p

√
C

2 − m2
𝜉

)] 1

p

,

C > 0, A =
C2(1 − m2)

E(2 − m2)2
, 𝜀 ± 1,

(55)
F(𝜉) =

[
𝜀

√
−Cm2

E(1 + m2)
sn

(
p

√
−C

1 + m2
𝜉

)] 1

p

,

C < 0, A =
C2m2

E(1 + m2)2
, 𝜀 ± 1.

(56)F(𝜉) =
�
−C

D
sech2

�p
2

√
C𝜉

�� 1

p

, C > 0, D < 0,

(57)F(𝜉) =
�
−C

D
sec2

�p
2

√
−C𝜉

�� 1

p

, C < 0, D > 0,

(58)F(𝜉) =

[
4

D(p𝜉)2

] 1

p

, C = 0, D < 0.

(59)F(�) =

�
℘

�
p
√
D

2
�, g2, g3

�� 1

p

,

(60)F(�) =

[
℘(p�, g2, g3)

E
−

C

3E

] 1

2p

,
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where g2 =
4C2−12AE

3
 , g3 =

4C(−2C2+9AE)

27
.

where g2 =
4C2−12AE

3
 ,   g3 =

4C(−2C2+9AE)

27
.

w h e r e  ℘�(p�, g2, g3) =
d℘(p�,g2,g3)

d�
 ,  g2 =

C2

12
+ AE  , 

g3 =
C(36AE−C2)

216
.

where A =
5C2

26E
 g2 =

2C2

9
 , g3 =

C3

54
,

while g2 and g3 are the invariants of the Weierstrass elliptic 
function.

Case 7. By setting the conditions A = 0, B = 0 , we 
deduce three forms of solutions of Eq. (5):

and

Case 8. Considering A = B = 0, C > 0 , we have gained 
combined bright soliton and hyperbolic functions solutions 
of Eq. (5):

(61)F(�) =

[
3A

3℘(p�, g2, g3) − C

] 1

2p

,

(62)F(�) =

�
6
√
A℘(p�, g2, g3) + C

√
A

3℘�(p�, g2, g3)

� 1

p

,

(63)F(�) =

�
3
√
E−1℘�(p�, g2, g3)

6℘(p�, g2, g3) + C

� 1

p

,

(64)F(�) =

[√
5C2

36E

6℘(p�, g2, g3) + C

3℘�(p�, g2, g3)

] 1

p

,

(65)
F(𝜉) =

⎡⎢⎢⎣
1

cosh(p
√
C𝜉) −

D

2C

⎤⎥⎥⎦

1

p

, C > 0, D < 2C,

E =
D2

4C
− C,

(66)
F(𝜉) =

�
1

2

�
C

E

�
1 + 𝜀 tanh

�p
2

√
C𝜉

��� 1

p

, C > 0,

E > 0, D = −2
√
CE, 𝜀 = ±1,

(67)F(𝜉) =

[
4D

(pD𝜉)2 − 4E

] 1

p

, C = 0, E < 0.

(68)F(𝜉) =

⎡⎢⎢⎣
2Csech2(

p

2

√
C𝜉)

2
√
D2 − 4CE − (

√
D2 − 4CE + D)sech2(

p

2

√
C𝜉)

⎤⎥⎥⎦

1

p

, D2 − 4CE > 0,

Case 9. Considering A = B = 0, C < 0 , we gained com-
bined bright soliton and hyperbolic functions as solutions

(69)

F(𝜉) =

⎡
⎢⎢⎣

2Ccsch2(
p

2

√
C𝜉)

2
√
D2 − 4CE + (

√
D2 − 4CE − D)csch2(

p

2

√
C𝜉)

⎤
⎥⎥⎦

1

p

,

D2 − 4CE > 0,

(70)

F(𝜉) =

�
2C

𝜀
√
D2 − 4CE cosh(p

√
C𝜉) − D

� 1

p

,

D2 − 4CE > 0, 𝜀 = ±1,

(71)F(𝜉) =

�
2C

𝜀
√
−(D2 − 4CE) sinh(p

√
C𝜉) − D

� 1

p

,

D2 − 4CE < 0, 𝜀 = ±1,

(72)
F(�) =

�
−
C

D

�
1 + � tanh(

p

2

√
C�

�� 1

p

, D2 − 4CE = 0, � = ±1,

(73)
F(�) =

�
−
C

D

�
1 + � coth(

p

2

√
C�

�� 1

p

, D2 − 4CE = 0, � = ±1,

(74)

F(𝜉) =

⎡
⎢⎢⎢⎣
−

Csech2
�

p

2

√
C𝜉

�

D + 2𝜀
√
CE tanh

�
p

2

√
C𝜉

�
⎤
⎥⎥⎥⎦

1

p

, E > 0, 𝜀 = ±1,

(75)

F(𝜉) =

⎡
⎢⎢⎢⎣

Ccsch2
�

p

2

√
C𝜉

�

D + 2𝜀
√
CE coth

�
p

2

√
C𝜉

�
⎤
⎥⎥⎥⎦

1

2

, E > 0, 𝜀 = ±1,

(76)F(�) =

⎡
⎢⎢⎢⎣

−CDsech2
�

p

2

√
C�

�

D2 − CE
�
1 + � tanh

�
p

2

√
C�

��2

⎤
⎥⎥⎥⎦

1

2

,

(77)F(�) =

⎡
⎢⎢⎢⎣

CDcsch2
�

p

2

√
C�

�

D2 − CE
�
1 + � coth

�
p

2

√
C�

��2

⎤
⎥⎥⎥⎦

1

2

.
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Case 10. For A = 0, B =
8C2

27D
, E =

D2

4C
 , it is gained hyper-

bolic function solutions of Eq. (5)

it is gained trigonometric function solutions

(78)

F(𝜉) =

⎡⎢⎢⎣
−2C sec2(

p

2

√
−C𝜉)

2
√
D2 − 4CE − (

√
D2 − 4CE − D) sec2(

p

2

√
−C𝜉)

⎤⎥⎥⎦

1

p

,

D2 − 4CE > 0,

(79)F(𝜉) =

⎡
⎢⎢⎣

2C csc2(
p

2

√
−C𝜉)

2
√
D2 − 4CE − (

√
D2 − 4CE + D) csc2(

p

2

√
−C𝜉)

⎤
⎥⎥⎦

1

p

, D2 − 4CE > 0,

(80)F(𝜉) =

�
2C sec(p

√
−C𝜉)

𝜀
√
D2 − 4CE − D sec(p

√
−C𝜉)

� 1

p

, D2 − 4CE > 0, 𝜀 = ±1,

(81)F(𝜉) =

�
2C csc(p

√
−C𝜉)

𝜀
√
D2 − 4CE − D csc(p

√
−C𝜉)

� 1

p

, D2 − 4CE > 0, 𝜀 = ±1,

(82)

F(𝜉) =

⎡⎢⎢⎣
−

C sec2(
p

2

√
−C𝜉)

D + 2𝜀
√
−CE tan(

p

2

√
−C𝜉)

⎤⎥⎥⎦

1

p

, E > 0, 𝜀 = ±1,

(83)F(𝜉) =

⎡⎢⎢⎣
−

C csc2(
p

2

√
−C𝜉)

D + 2𝜀
√
−CE cot(

p

2

√
−C𝜉)

⎤⎥⎥⎦

1

p

, D2 − 4CE > 0,E > 0, 𝜀 = ±1.

(84)F(𝜉) =

⎡
⎢⎢⎢⎣
−

8C tanh2(
p

2

�
−C

3
𝜉)

3D(3 + tanh2(
p

2

�
−C

3
𝜉))

⎤
⎥⎥⎥⎦

1

p

, C < 0,

(85)F(𝜉) =

⎡
⎢⎢⎢⎣
−

8C coth2(
p

2

�
−C

3
𝜉)

3D(3 + coth2(
p

2

�
−C

3
𝜉))

⎤
⎥⎥⎥⎦

1

p

, C < 0,

(86)F(𝜉) =

⎡
⎢⎢⎢⎣

8C tan2(
p

2

�
C

3
𝜉)

3D(3 − tan2(
p

2

�
C

3
𝜉))

⎤
⎥⎥⎥⎦

1

p

, C > 0,

Case 11. For A = B = 0,

Case 12. For A = 0 the Jacobian elliptic function solutions 
it is revealed

For E > 0, B =
D3(m2−1)

32m2E2
, C =

D2(5m2−1)

16m2E
,

(87)F(𝜉) =

⎡
⎢⎢⎢⎣

8C cot2(
p

2

�
C

3
𝜉)

3D(3 − cot2(
p

2

�
C

3
𝜉))

⎤
⎥⎥⎥⎦

1

p

, C > 0.

(88)

F(𝜉) =

⎡
⎢⎢⎢⎣

4Cp2e(p𝜀
√
C𝜉)

�
e𝜀p

√
C𝜉 − Dp2

�2

− 4CEp4

⎤
⎥⎥⎥⎦

1

p

, C > 0, 𝜀 = ±1,

(89)

F(𝜉) =

�
4Cp2e(p𝜀

√
C𝜉)

−1 + 4CEp4e2𝜀p
√
C𝜉

� 1

p

, C > 0, D = 0, 𝜀 = ±1,

(90)F(𝜉) =

�
𝜀

p
√
E𝜉

� 1

p

, E > 0, C = D = 0, 𝜀 = ±1.

(91)

F(�) =

[
−

D

4E

(
1 + �sn

(
pD

4m

√
1

E
�

))] 1

p

, � = ±1,
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for E > 0, B =
D3(1−m2)

32E2
, C =

D2(5−m2)

16E
 , it is stated

for E < 0, B =
D3

32m2E2
, C =

D2(4m2+1)

16m2E
 , it is revealed

for E < 0, B =
m2D3

32(m2−1)E2
, C =

D2(5m2−4)

16(m2−1)E
 , it is revealed

for E < 0, B =
m2D3

32E2
, C =

D2(m2+4)

16E
 , hence

(92)

F(�) =

⎡
⎢⎢⎢⎢⎣
−

D

4E

⎛
⎜⎜⎜⎜⎝
1 + �

1

msn

��
pD

4m

�
1

E
�

��
⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

1

p

, � = ±1,

(93)

F(�) =

[
−

D

4E

(
1 + �msn

(
pD

4

√
1

E
�

))] 1

p

, � = ±1,

(94)F(�) =

⎡
⎢⎢⎢⎢⎣
−

D

4E

⎛
⎜⎜⎜⎜⎝
1 +

�

sn

��
pD

4

�
1

E
�

��
⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

1

p

, � = ±1,

(95)

F(�) =

[
−

D

4E

(
1 + �cn

(
pD

4m

√
−
1

E
�

))] 1

p

, � = ±1,

(96)

F(�) =

⎡⎢⎢⎢⎢⎣
−

D

4E

⎛⎜⎜⎜⎜⎝
1 +

�
√
1 − m2sn

�
pD

4m

�
−

1

E
�

�

dn

�
pD

4m

�
−

1

E
�

�
⎞⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎦

1

p

, � = ±1.

(97)F(�) =

�
−

D

4E

�
1 +

�√
1 − m2

dn

�
pD

4

�
−

1

(1 − m2)E
�

��� 1

p

, � = ±1,

(98)

F(�) =

⎡
⎢⎢⎢⎣
−

D

4E

⎛
⎜⎜⎜⎝
1 +

�

dn
��

pD

4

�
−

1

(1−m2)E
�

��
⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

1

p

, � = ±1.

(99)

F(�) =

[
−

D

4E

(
1 + �dn

(
pD

4

√
−
1

E
�

))] 1

p

, � = ±1,

for E > 0, B =
D3

32(1−m2)E2
, C =

D2(4m2−5)

16(m2−1)E
 , it is revealed

Case 13. For A = E = 0, it is recovered Jacobian elliptic 
function.

For D < 0, C > 0, B =
m2C2(m2−1)

D(2m2−1)2
 , we get

for D > 0, C < 0, B =
m2C2

D(m2+1)2
 , then

for D < 0, C > 0, B =
(1−m2)C2

D(2−m2)2
 , consequently the last one

4 � Application of the methods

This section apply the methods described above to construct 
exact traveling-wave solutions of the conformable derivative 
nonlinear differential equation governing wave propagation 

(100)

F(�) =

⎡
⎢⎢⎢⎢⎣
−

D

4E

⎛
⎜⎜⎜⎜⎝
1 +

�
√
1 − m2

dn

��
pD

4

�
−

1

E
�

��
⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

1

p

, � = ±1,

(101)

F(�) =

⎡
⎢⎢⎢⎣
−

D

4E

⎛
⎜⎜⎜⎝
1 +

�

cn
��

pD

4

�
1

(1−m2)E
�

��
⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

1

p

, � = ±1.

(102)

F(�) =

⎡
⎢⎢⎢⎣
−

D

4E

⎛
⎜⎜⎜⎝
1 +

�dn
�

pD

4

�
1

(1−m2)E
�

�

√
1 − m2sn

�
pD

4

�
1

(1−m2)E
�

�
⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

1

p

, � = ±1.

(103)F(�) =

[
−

m2C

D(2m2 − 1)
cn2

(
p

2

√
C

2m2 − 1
�

)] 1

p

,

(104)F(�) =

[
−

m2C

D(m2 + 1)
sn2

(
p

2

√
−

C

m2 + 1
�

)] 1

p

,

(105)F(�) =

[
−

m2C

D(m2 + 1)
cd2

(
p

2

√
−

C

m2 + 1
�

)] 1

p

,

(106)F(�) =

[
−

C

D(2 − m2)
dn2

(
p

2

√
C

2 − m2
�

)] 1

p

.
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in electrical transmission line [4]. To obtain the NODE, 
we used the conformable derivative properties. Assuming 
u(x, t) = U(�) and (1) becomes

where U = U(�).

4.1 � On solving the nonlinear differential governing 
low‑pass electrical transmission lines by using 
the New Extended Direct Algebraic Method

Employing the homogeneous balance principle to (107), 
gives N = 1 . Thus, (6) can be expressed

Substituting (108) and (7) into (107), we obtained a set of 
algebraic equation in terms of Qj(�) . After setting all the 
terms obtained to zero, and then with the aid of Maple, we 
recovered the following results.

S1: for 𝜇2 − 4𝜆𝜎 < 0 and � ≠ 0 , it is obtained

(107)

[
(1 + b1U + b2U

2)k2
2
− u2

0
k2
1

]
U�� + (b1 + 2b2U)k2

2
U�2

−
1

12
u2
0
�2k4

1
U(����) = 0.

(108)U(�) = g0 + g1Q(�),

g0 = g0, g1 = g1,

b1 = −
1

12

g2
1

(
�2 − 4 � �

)2(
g1� − 2 g0�

)
�2(Ln(A))2

u0
2
(
8 g2

1
� � − 12 g1g0� � + g2

1
�2 + 12 g2

0
�2
)(
−g2

1
� + g1g0� − g2

0
�
) ,

b2 = −
1

12

g2
1

(
�2 − 4 � �

)2
�2(Ln(A))2�

u2
0

(
8 g2

1
� � − 12 g1g0� � + g2

1
�2 + 12 g2

0
�2
)(
−g2

1
� + g1g0� − g2

0
�
) ,

k1 =

√
−

�2−4 � �

8 g2
1
� �−12 g1g0� �+g2

1
�2+12 g2

0
�2
g1

u0
,

k2 = −

√
−

�2 − 4 � �

8 g2
1
� � − 12 g1g0� � + g2

1
�2 + 12 g2

0
�2

g1

(109)

u11(x, t) =g0 + g1

�
−�

2�
+

√
−(�2 − 4��)

2�
tanA

�√
−(�2 − 4��)

2
�

��
,

(110)

u12(x, t) =g0 + g1

�
−

�

2�
+

√
−(�2 − 4��)

2�
cotA

�√
−(�2 − 4��)

2
�

��
,

(111)

u13(x, t) =g0 + g1

�
−

�

2�
+

√
−(�2 − 4��)

2�
tanA

�√
−(�2 − 4��)�

�
±

√
−pq(�2 − 4��)

2�
secA�√

−(�2 − 4��)�
��

,

(112)

u14(x, t) =g0 + g1

�
−

�

2�
−

√
−(�2 − 4��)

2�
cotA

�√
−(�2 − 4��)�

�
±

√
−pq(�2 − 4��)

2�
cscA�√

−(�2 − 4��)�
��

,
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S2: for 𝜇2 − 4𝜆𝜎 > 0 and � ≠ 0 , it is obtained
(113)

u15(x, t) =g0 + g1

�
−

�

2�
−

√
−(�2 − 4��)

2�
tanA

�√
−(�2 − 4��)

4
�

�
−

√
−(�2 − 4��)

2�
cotA

�√
−(�2 − 4��)

4
�

��
,

g0 = g0, g1 = g1,

b1 = −
1

12

g2
1

(
�2 − 4 � �

)2(
g1� − 2 g0�

)
�2(Ln(A))2

u0
2
(
8g2

1
� � − 12 g1g0� � + g2

1
�2 + 12 g2

0
�2
)(
−g2

1
� + g1g0� − g2

0
�
) ,

b2 = −
1

12

g2
1

(
�2 − 4 � �

)2
�2(Ln(A))2�

u2
0

(
8 g2

1
� � − 12 g1g0� � + g2

1
�2 + 12 g2

0
�2
)(
−g2

1
� + g1g0� − g2

0
�
) ,

k1 =

√
−

�2−4 � �

8 g2
1
� �−12 g1g0� �+g2

1
�2+12 g2

0
�2
g1

u0
,

k2 = −

√
−

�2 − 4 � �

8 g2
1
� � − 12 g1g0� � + g2

1
�2 + 12 g2

0
�2

g1

(114)

u21(x, t) =g0 + g1

�
−

�

2�
+

√
(�2 − 4��)

2�
tanhA

�√
(�2 − 4��)

2
�

��
,

(115)

u22(�) =g0 + g1

�
−

�

2�
+

√
(�2 − 4��)

2�
cothA

�√
(�2 − 4��)

2
�

��
,

(116)

u23(x, t) = g0 + g1

�
−

�

2�
+

√
(�2 − 4��)

2�
tanhA

�√
(�2 − 4��)�

�
± i

√
pq(�2 − 4��)

2�
sechA

�√
(�2 − 4��)�

��
,

(117)
u24(x, t) =g0 + g1

�
−

�

2�
−

√
(�2 − 4��)

2�
cothA

�√
(�2 − 4��)�

�
±

√
pq(�2 − 4��)

2�
cschA

�√
(�2 − 4��)�

��
,

S3: for 𝜆𝜎 > 0 and � = 0 , it is obtained

(118)

u25(x, t) =g0 + g1

�
−

�

2�
−

√
−(�2 − 4��)

4�
tanhA

�√
(�2 − 4��)

4
�

�
−

√
(�2 − 4��)

4�
cothA

�√
(�2 − 4��)

4
�

��
,

g0 = g0, g1 = g1,

b1 = 6
�
(
u0k1 − k2

)(
u0k1 + k2

)
g0

3 k2
2
� g2

0
− g2

1
� + 2 k2

2
g2
1
�

,

b2 = −3

(
u0k1 + k2

)(
u0k1 − k2

)
�

3 k2
2
� g2

0
− g2

1
� + 2 k2

2
g2
1
�
,

k1 = k1, k2 = k2,

� =

√
−
(3+3 k22)(u0k1−k2)(u0k1+k2)
� (3 k22� g2

0
−g2

1
�+2 k2

2g2
1
�)

g1

Ln(A)u0k
2
1

.

(119)u31(x, t) =g0 + g1

�
�

�
tanA

�√
���

�
,
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S4: for 𝜆𝜎 < 0 and � = 0 , yields to

(120)u32(x, t) =g0 − g1

�
�

�
cotA

�√
���

�
,

(121)

u33(x, t) =g0

+ g1

��
�

�
tanA

�√
2���

�
±

�
pq

�

�
secA

�√
2���

��
,

(122)

u34(x, t) =g0

+ g1

�
−

�
�

�
cotA

�√
2���

�
±

�
pq

�

�
cscA

�√
2���

��
,

(123)

u35(x, t) =g0

+ g1

�
1

2

�
�

�

�
tanA

�√
��

2
�

�
−

�
�

�
cotA

�√
��

2
�

���
,

g0 =
1

3

√
−

3� (−1+2 u20k
2
1)

�
g1

u0k1
, g1 = g1,

b1 = −
2

3

u0�
2k3

1
(Ln(A))2�2

√
−3

� (−1+2 u20k
2
1)

�

g1(1 + u2
0
k2
1
)

,

b2 =
u2
0
�2k4

1
(Ln(A))2�2

g2
1

(
1 + u2

0
k2
1

) ,

k1 = k1, k2 = ±u0k1

(124)

u41(x, t) =
1

3

�
−

3� (−1+2 u02k1
2)

�
g1

u0k1
− g1

�
−�

�
tanhA

�√
−���

�
,

(125)

u42(x, t) =
1

3

�
−

3� (−1+2 u02k1
2)

�
g1

u0k1
− g1

�
−�

�
cothA

�√
−���

�
,

(126)

u43(x, t) =
1

3

�
−

3�(−1+2u02k12)
�

g1

u0k1

− g1

��
−�

�
tanhA

�√
2���

�
± i

�
pq

−pq�

�
sechA

�
2
√
−���

��
,

S5: for � = � and � = 0 , it is obtained

S6: for � = −� and � = 0 , it is obtained the set of result

(127)

u44(x, t) =
1

3

�
−

3� (−1+2 u02k12)
�

g1

u0k1

− g1

��
−�

�
cothA

�
2
√
−���

�
±

�
−pq

�

�
cschA

�
2
√
−���

��
,

(128)

u45(x, t) =
1

3

�
−

3�
�
−1+2 u0

2k1
2
�

�
g1

u0k1

− g1

�
1

2

��
−�

�
tanhA

�√
−��

2
�

�
+

�
−�

�
cothA

�√
−��

2
�

���
.

g0 = g0, g1 = g1,

b1 =
6
(
u0k1 − k2

)(
u0k1 + k2

)
g0

−g2
1
+ 3 k2

2
g2
0
+ 2 k2

2
g2
1

,

b2 = −
3
(
u0k1 − k2

)(
u0k1 + k2

)

−g2
1
+ 3 k2

2
g0

2 + 2 k2
2
g2
1

, k1 = k1, k2 = k2

� =

√
−
(3+3k22)(u0k1−k2)(u0k1+k2)

−g2
1
+3 k2

2
g2
0
+2 k2

2
g2
1

g1

Ln(A)�u0k
2
1

,

(129)u51(x, t) = g0 + g1 tanA(��),

(130)u52(x, t) = g0 − g1 cotA(��),

(131)u53(x, t) = g0 + g1
�
tanA(2��) ±

√
pq secA(2��)

�
,

(132)u54(x, t) = g0 − g1
�
cotA(2��) ±

√
pq cscA(2��)

�
,

(133)u55(x, t) = g0 + g1

[
1

2

(
tanA(

�

2
�) − cotA(

�

2
�)

)]
,
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S7: for �2 = 4�� , it is obtained the following result

g0 =
1

3

√
3 − 6 u0

2k1
2g1

u0k1
, g1 = g1,

b1 = −
2

3

u0�
2k3

1
(Ln(A))2�2

√
3 − 6 u2

0
k2
1

g1
(
1 + u2

0
k2
1

) ,

b2 =
u2
0
�2k4

1
(Ln(A))2�2

g2
1

(
1 + u2

0
k2
1

) , k1 = k1, k2 = ±u0k1,

� =

√
−
(3+3k2

2)(u0k1−k2)(u0k1+k2)
−g2

1
+3 k2

2
g2
0
+2 k2

2
g2
1

g1

Ln(A)�u0k
2
1

(134)u61(x, t) =
1

3

√
3 − 6 u0

2k1
2g1

u0k1
− g1 tanhA(��),

(135)u62(x, t) =
1

3

√
3 − 6 u0

2k1
2g1

u0k1
− g1 cothA(��),

(136)u63(x, t) =
1

3

�
3 − 6 u0

2k1
2g1

u0k1

− g1
�
tanhA(2��) ± i

√
pqsechA(2��)

�
,

(137)u64(x, t) =
1

3

�
3 − 6 u0

2k1
2g1

u0k1

− g1
�
cothA(2��) ±

√
pqcschA(2��)

�
,

(138)
u65(x, t) =

1

3

√
3 − 6 u0

2k1
2g1

u0k1

− g1

[
1

2

(
tanhA(

�

2
�) + cothA(

�

2
�)

)]
.

g0 = g0, g1 = g1,

b1 = −

2
�
u0k1 − k2

��
u0k1 + k2

��
−3 g0� g2

1
� + 3 g2

0
� g1

√
� � − g3

0
�2 +

√
� �g3

1
�

�

k2
2

�
−g2

1
� + 2 g1g0

√
� � − g2

0
�

�2
,

b2 =

�
u0k1 − k2

��
u0k1 + k2

�
�

k2
2

�
−g2

1
� + 2 g1g0

√
� � − g0

2�

� ,

k1 = k1, k2 = k2, � =

�
(k2

2+1)(u0k1−k2)(u0k1+k2)

�

�
−g2

1
�+2 g1g0

√
� �−g2

0
�

� g1

Ln(A)u0k
2
1
k2

,

S10: for � = � = 0 , it is obtained the following results

S11: for � ≠ 0 , and � = 0 , it is obtained the following results
R 1 :  g0 = g0  ,  g1 = g1 ,  b1 =

6� (u0k1−k2)(u0k1+k2)g0
3 k2

2� g2
0
−g2

1
�+2 k2

2
g2
1
�

 , 

b2 = −
3� (u0k1−k2)(u0k1+k2)
3 k2

2
� g0

2−g2
1
�+2 k2

2
g2
1
�

  ,  k1 = k1   ,  k2 = k2   , 

� =

√
−

3(1+k22)(u0k1−k2)(u0k1+k2)
� (3 k22� g2

0
−g2

1
�+2 k2

2
g2
1
�)

g1

Ln(A)u0k
2
1

,

R 2 :  g0 =
1

3

√
−

3�(−1+2 u20k
2
1)

�
g1

u0k1
  ,  g1 = g1   , 

b1 = −
2

3

u0�
2k3

1
(Ln(A))2�2

√
−3

�(−1+2 u20k
2
1)

�

g1(1+u
2
0
k2
1
)

 ,  b2 =
u2
0
�2k4

1
(Ln(A))2�2

g2
1(1+u

2
0
k2
1)

 , 

k1 = k1 , k2 = ±u0k1.

S12: for � = k, � = mk(m ≠ 0) , and � = 0 , it is obtained the 
f o l l o w i n g  r e s u l t  g0 = g0  ,  g1 = g1  , 
b1 =

12(u0k1−k2)(u0k1+k2)(−g1+2 g0m)m

12 k2
2
g2
0
m2+k2

2g2
1
+g2

1
−12 k2

2
g1g0m

  , 

(139)u71(x, t) = g0 − g1
2�(��Ln(A) + 2)

�2�Ln(A)
,

g0 = g0, g1 = g1,

b1 = 2

(
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)(
u0k1 + k2

)

k2
2g0

, b2 = −b1, k1 = k1, k2 = k2,

� =

√
−
(
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2

)(
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)(
u0k1 + k2

)
g1

Ln(A)� u0k2k
2
1
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(140)u101(x, t) = g0 + g1
−1

��LnA
,

(141)u111(x, t) = g0 + g1

[
p�

�(coshA(��) − sinhA(��) − p)

]
.

(142)
u112(x, t) =

1

3

√
−

3�(−1+2 u02k1
2)

�
g1

u0k1

+ g1

[
p�

�(coshA(��) − sinhA(��) − p)

]
,
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b2 = −
12m2(u0k1−k2)(u0k1+k2)

12 k2
2
g2
0
m2+k2

2
g2
1
+g2

1
−12 k2

2
g1g0m

 ,  k1 = k1  ,  k2 = k2  , 

� =

2

√
−
(3k22+1)(u0k1−k2)(u0k1+k2)

12 k2
2
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0
m2+k2

2
g2
1
+g2
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−12 k2

2
g1g0m

g1

Ln(A)u0k
2
1
k

where u(x, t) = U(�) , � =
k1

�
t� +

k2

�
x� , and p, q > 0 . There-

fore, in this paper �0 is considered as zero value. The details 
of the generalized hyperbolic and triangular functions are 
given in [42]. It is observed that, for cases (8)–(10) none 
solutions have been obtained.

4.2 � On solving the nonlinear differential governing 
low‑pass electrical transmission lines by using 
the New Sub‑ODE equation

The initial step is to use the balance principle which between 
the higher order derivative and the higher order nonlinear 
term. So, it is obtained 3s + 2p = 4s ⇒ s = 2p . Conse-
quently, Eq. (107) read

Inserting Eqs.(46) and (144) into Eq. (107) gives the set of 
system of equation in terms of Fjp(�) . Setting the obtained 
system of algebraic equation to zero and making used 
MAPLE it is revealed the following set of results:

Result 1: 
A = 0, B = 0, C =

63

4

b2
1

(−192b2+7b1
2)p2�2

, D = 0, E = E,

� =
1

18

(−192b2+7b
2

1)p
2�2E

b1b2
, k1 =

2

3
i
√
3, k2 = 8

�
−

3b2

−192b2+7 b
2

1

u0
.

Hence, it is recovered three types of solutions to Eq. (1).
Case 1. If A = 0, B = 0,D = 0 , bright type is obtained

a periodic solution

and a rational solution

(143)u121(x, t) = g0 − g1
pAk�

q − mpAk�
,

(144)U(�) = �F2p(�),

(145)

u2,1,1(x, t) = 𝜇

�
𝜀
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E
sech

�
p
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�� 1

2
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(146)u2,1,2 =(x, t) = 𝜇

�
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�
−
C

E
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�
p
√
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�� 1

2

,

C < 0, E > 0, 𝜀 ± 1,

(147)u2,1,3 =𝜇

�
𝜀

p
√
E𝜉

� 1

2p

, C = 0,

E > 0, 𝜀 ± 1.

Result 2: 
A =

3969
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b1
4

(
54 b2+7 b

2
1

)2
E�4p4

, B = 0, C =
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4

b2
1(

54b2+7b1
2
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, D = 0, E = E,
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2
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√
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2 u0

.

The corresponding solutions give:
Case 2. By setting the conditions B = 0, D = 0, A =

C2

4E
 , 

it is gained dark soliton-like solution of Eq. (1):

and a periodic solution

Case 3. By setting the conditions B = 0, D = 0 , we deduce 
three forms of Jacobian elliptic functions solutions of 
Eq. (1):

and

Case 4: Assuming B = D = 0 and E ≠ 0 , it is revealed 
Weierstrass elliptic function solutions to set of Eq. (5),

where g2 =
4C2−12AE

3
 , g3 =

4C(−2C2+9AE)

27
.

(148)u2,2,1 =𝜇
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𝜀

√
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2E
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2
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2

,
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√
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2E
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p

√
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2
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2
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√
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where g2 =
4C2−12AE

3
 ,   g3 =

4C(−2C2+9AE)

27
.

(154)u2,4,2 = �

[
3A

3℘(p�, g2, g3) − C

] 1

2

,

where ℘�(p�, g2, g3) =
d℘(p�,g2,g3)

d�
 , 

g2 =
C2

12
+ AE ,    g3 =

C(36AE−C2)

216
.

(155)u2,4,3 = �

�
6
√
A℘(p�, g2, g3) + C

√
A

3℘�(p�, g2, g3)

� 1

2

,

Fig. 1   Spatiotemporal plot evolution and contour plot of dark solitons |u21(x, t)|2 at � = 1 , A1 = e , k1 = −k2 = 3.840 , g0 = 0.001,g1 = 0.018 , 
� = −0.312 , � = −0.0185

Fig. 2   Spatiotemporal plot evolution of kink-like solitons |u21(x, t)|2 at � = 0.75 , � = 0.85 , � = 0.95 and � = 1 , A = e , k1 = −k2 = 25.840 , 
g0 = 0.001,g1 = −0.18 , � = −0.015 , � = −0.0312 , � = −2.000185 respectively
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Fig. 3   Spatiotemporal plot evolution of 2D of kink-like solitons |u23(x, t)|2 at � = 0.95 , A = e , k1 = −k2 = 20.840 , g0 = −0.001,g1 = 0.18 , 
� = −0.015 , � = −0.0312 , � = −10.000185

Fig. 4   Spatiotemporal plot evolution of the W-shape bright 
soliton of |ℑu43(x, t)|2 for a [� = 0.52, � = 0.54, � = 0.56 , b 
[� = 0.45, � = 0.46, � = 0.47] at A = e , k1 = 10.75 , k2 = 2.15 , 

u0 = 0.2 ,    g0 = 3.33 , g0 = 0.75 , p = q = 1 , � = 0 , � = −0.5 , 
� = 0.02, p = 0.8, q = 0.5
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(156)u2,4,4 = �

�
3
√
E−1℘�(p�, g2, g3)

6℘(p�, g2, g3) + C

� 1

2

,

where A =
5C2

26E
 g2 =

2C2

9
 ,   g3 =

C3

54
,

Fig. 5   Spatiotemporal plot evolution and Contour plot evolution of the W-shape bright soliton of |ℑu43(x, t)|2 for c [� = 0.5, � = 0.47] , d 
[� = 0.48, � = 0.49] at A = e , k1 = 10.75 , k2 = 2.15 , u0 = 0.2 ,   g0 = 3.33 , g0 = 0.75 , p = q = 1 , � = 0 , � = −0.5 , � = 0.02, p = 0.8, q = 0.75

Fig. 6   Spatiotemporal plot evolution of the dark soliton of |ℜu43(x, t)|2 for T [� = 0.45, � = 0.47, � = 0.49] , R [� = 0.55, � = 0.57, � = 0.59] at 
A = e , k1 = 10.75 , k2 = 2.15 , u0 = 0.2 ,   g0 = 3.33 , g0 = 0.75 , p = 0.71, q = 0.95 , � = 0 , � = −0.5 , � = 0.02
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while g2 and g3 are the invariants of the Weierstrass elliptic 
function and � =

k1

�
t� +

k2

�
x�.

(157)u2,4,5 = �

[√
5C2

36E

6℘(p�, g2, g3) + C

3℘�(p�, g2, g3)

] 1

2

,

5 � Physical interpretation

Figure 1 is the spatiotemporal plot evolution of the dark 
soliton of |u21(x, t)|2 and Figs. 2 and 3 are the plot evolution 
of anti-kink like solution |u23(x, t)|2 . Furthermore, Figs. 4 

Fig. 7   Plot evolution of |ℑu43(x, t)|2 for � = 0.48,A = e , k1 = 20.75 , k2 = 2.15 , u0 = 0.2 ,    g0 = 3.33 , g0 = 0.75 , p = 0.71, q = 0.95 , � = 0 , 
� = −0.5,� = 0.02

Fig. 8   Plot evolution of breather corresponding to |ℑu43(x, t)|2 for � = 0.48, A = e , k1 = 25.75 , k2 = 18.54 , u0 = 0.72 ,    g0 = 3.33 , g0 = 0.75 , 
p = 0.8, q = 0.4 , � = 0 , � = −0.5 , � = 0.02



1756	 Journal of Computational Electronics (2021) 20:1739–1759

1 3

and 5 are the spatiotemporal plot evolution of the W-shape 
bright solutions of |ℑu43(x, t)|2 . Moreover, by varying the 
fractional order parameter, Fig. 6 gives the profile of dark 
soliton with the effect of the latter. Besides, by consider-
ing the parameters of the line k1 = 25.75 , k2 = 18.54 and 
� = 0.48 , we obtain the breather (see Fig. 7) which propa-
gates at different times. This behavior appears to be new 
in the electrical transmission line. In Figs. 7 and 8, we 
obtain the same behavior. However, in Fig. 9 we manage to 

reverse the behavior of the breather type over time by tak-
ing k2 = −18.54 . The soliton obtained is bright as a solution 
which propagates along the line, this exhibits the behavior 
of modulated waves in a nonlinear electrical transmission 
line. In addition, Fig. 10 depicts the 3D bright solitons under 
the effect of the fractional derivative order. It is pointed out 
the deformation of the shape during the propagation of the 
latter. Figure 11 gives the normal shape of the dark soliton 
at � = 0.1.

Fig. 9   Plot evolution of of the 
bright soliton |ℑu43(x, t)|2 for 
� = 0.48, A = e , k1 = 25.75 , 
k2 = −18.54 , u0 = −0.72 ,   
g0 = 3.33 , g0 = 0.75 , 
p = 0.8, q = 0.4 , � = 0 , 
� = −0.5 , � = 0.02

Fig. 10   Spatiotemporal Plot evolution of bright |u53(x, t)|2 at A = e , k1 = −k2 = 20.40 , g0 = −5.001,g1 = −10.18 , � = −0.002
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The results obtained are more general than those reported 
by Hubert Malwe et al. [41]. It is observed that, fractional 
order � has the effects on the width and on the amplitude of 
the obtained bright and dark soliton solutions (see Figs. 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10). Furthermore, dark and bright solitons 
obtained will be helpful to explain natural phenomena and 
the other solutions could be probably used in diverse appli-
cations in science and engineering.

Without doubt, it could be predicted that the derivative 
order affects the shape of the traveling-wave in the electri-
cal transmission line. Otherwise, the obtained results of the 
nonlinear fractional differential equation governing wave 
propagating in the low-pass electrical transmission lines are 
essential to explain the phenomenon of the data transmission 
in telecommunication, as the latter depicts the natural event 
such as propagation with a finite speed and vibration.

On the other hand, these obtained results can help to 
explain internal waves in the ocean, as it is well known that 
soliton are virtually hazardous for offshore engineering 
building such as gas and oil pipelines and shipping decks. 
The best important effect of solitons generation is the tidal 
energy conversion from barotropic to baroclinic component 
over large-scale oceanic bottom obstructions (shelf breaks, 
sea mounts, canyons and ridges). Otherwise, dark and bright 
solitary waves are omnipresent everywhere strong tides hap-
pen in the quarter of irregular topography. Solitons are fre-
quently important lineaments discovered in optical and radar 
satellite imagery of costal water. In this case, solitary waves 

can travel over several thousand kilometers and carry both 
load and impulse. However, during their propagation, a con-
siderable velocity shear causes turbulence and mixing. The 
obtained mixing, frequently offer background nutritious into 
the water column, thus enrich the local region and changing 
the biology inside.

Finally, it emerges that using the extended direct alge-
braic method, we obtain a diversity of solutions such 
as dark [Eq.  (114)], trigonometric function solutions 
Eqs.  (109)–(113), singular solitons and combined solu-
tions [Eqs. (116)–(118)]. The virtue of this method lies 
in obtaining the W-shape bright soliton which is well 
known in nonlinear optical fibers. Otherwise, it is gained 
jacobian elliptic function solutions and Weierstrass ellip-
tic function solutions by applying the Sub-equation method 
[see Eqs.  (153)–(157)]. On the other hand, by setting 
C = �2 − 4�� and E = � and assuming g0 = 0 and g1 = 0 , 
Eqs. (114) and (148) are the same.

6 � Conclusion and remarks

This paper secures W-shape bright soliton and diverse trave-
ling waves solutions to the nonlinear differential equation 
governing wave propagation in low-pass electrical transmis-
sion line with conformable derivatives by adopting the new 
extended direct algebraic method and sub-ODE method. 
From the new extended direct algebraic method it is pointed 

Fig. 11   Spatiotemporal plot of dark solitons |u61(x, t)|2 at � = 0.85 , � = 0.90 , � = 0.95 , � = 1 , respectively and g1 = −1.04 , A = e , k1 = −4.84 , 
k2 = −0.90 u0 = 5.125 , � = −1.185



1758	 Journal of Computational Electronics (2021) 20:1739–1759

1 3

out W-shape bright, dark solitary waves, kink-like soliton 
solutions, periodic solutions and rational solutions compare 
to Hubert Malwe et al. [41] and Rezazadeh et al. [42]. It is 
worth to mention also the virtue of the relevant results in 
communication system and data encoding during thousand 
kilometers of communication via the optical fibers. More 
recently, soliton perversion has been involved in experimen-
tal devices to facilitate a conception of an inhomogeneous 
system of coupled nonlinear waveguides [58]. Furthermore, 
the used of the sub-ODE method added new types of solu-
tions called the Weierstrass elliptic function. This paper 
offers a plethora of traveling waves which include the results 
obtained in Refs. [1, 3–5]. By choosing the appropriate val-
ues of the conformable derivative order, the behaviors of the 
obtained results have been illustrated graphically in 3D and 
2D and these soliton solutions are identically to the results 
obtained in nonlinear differential equation which describe 
the propagation of long waves in shallow water [56, 57].
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