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Abstract

This thesis is oriented along two lines of research: the study of the dynamics of
an optoelectronic oscillator whose electronic part is made of a nonlinear filter that we
have called cubic nonlinear optoelectronic oscillator and the study of the dynamics of an
optoelectronic oscillator which exhibits two nonlinearities, that of the laser and that of
the nonlinear cubic band-pass filter.

First, a theoretical approach to the dynamics of the cubic nonlinear optoelectronic
oscillator shows that this new architecture induces an additional timescale to those al-
ready existing in the standard optoelectronic oscillator. This additional timescale is the
basis of a multi-scales dynamics which begins with a limit-cycle oscillations and evolves
into chaos through crenelated oscillations as the feedback gain increases. This optoelec-
tronic oscillator made with cubic nonlinear band-pass filter can operate equally well in
narrow-band or wide-band configuration. It can generate breathers when adjusting cer-
tain parameters of the system. This could be useful in applications where breathers are
required or not. The optoelectronic oscillator has a time-delay which gives it an infinite
dimension. We use the normal form theory to transform this infinite-dimensional system
into a two-dimensional (amplitude and phase) differential system. This reduction makes
it possible to analytically determine the expressions of the amplitude and the frequency
of the limit-cycle oscillations as a function of other parameters of the system such as the
time-delay and the feedback gain. This allows us to analytically confirm that this new
architecture produces limit-cycle oscillations whose frequencies are higher than those of
the classical optoelectronic oscillator. The experimental study is made and confirms the
theoretical results.

Secondly, we present the theoretical and experimental study of the dynamics of the
cubic nonlinear optoelectronic oscillator in which the electrical-to-optical conversion is
performed by the laser diode. This allows us to observe that the system oscillates only for
an appropriate and negative value of the bias voltage. The frequency of the oscillations in-
creases with the feedback gain, and the cubic nonlinear parameter and decreases with the
normalized time-delay parameter. An experimental study confirms that the dynamics of
this oscillator is dominated by the limit-cycle oscillations which provides quasi-sinusoidal
and the slow-fast oscillations as the feedback gain increases. We thus obtain an optoelec-

tronic oscillator whose cost is reduced and which, thanks to its slow-fast dynamics, can be
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exploited in several biological, chemical, mechanical, electronic, optical, and engineering

systems.

Keywords: Optoelectronic oscillator, cubic nonlinear pass-band filter, cubic-nonlinear

Optoelectronic oscillator, slows-fast Oscillation, crenellated oscillations, chaos.
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Résumé

Cette these est orientée suivant deux axes de recherche: I'étude de la dynamique d’'un
oscillateur optoélectronique dont la partie électronique est faite d'un filtre non linéaire que
nous appelons oscillateur optoélectronique cubique non linéaire et I'étude de la dynamique
d'un oscillateur optoélectronique qui présente a la fois les non linéarités du laser et du
filtre passe-bande cubique non linéaire.

Dans un premier temps, une approche théorique de la dynamique de l'oscillateur op-
toélectronique cubique non linéaire montre que cette nouvelle architecture induit une
échelle de temps multiple supplémentaire a aux trois échelles de temps de 1'oscillateur op-
toélectronique standard. Cette augmentation est a la base d'une dynamique multi-échelle
qui commence par un cycle limite et évolue vers le chaos en passant par un signal en
créneaux au fur et & mesure que le gain de la rétroaction augmente. Cet oscillateur peut
aussi bien fonctionner en configuration bande-étroite ou bande-large. Il peut présenter le
phénomene de battement dit " breathers " lorsqu’on ajuste certains parametres du sys-
teme. Ceci pourrait étre utile dans les applications necessitant les breathers. L’oscillateur
optoélectronique posséde un retard temporel, qui lui confére une dimension infinie. Nous
utilisons la théorie de la forme normale pour transformer ce systéme de dimension infinie
en un systeme différentiel a deux dimensions (amplitude et phase). Cette réduction per-
met de déterminer analytiquement les expressions de 'amplitude et de la fréquence des
oscillations de cycle limite en fonction des autres parameétres du systeéme tels que le retard
et le gain de la rétroaction. Cette demarche nous permet de confirmer analytiquement que
cette nouvelle architecture produit un cycle limite dont les fréquences sont plus élevées que
celles de I'architecture de l'oscillateur optoélectronique classique. L’étude expérimentale
est faite et confirme les résultats théoriques et analytiques.

Dans un deuxiéme temps, nous présentons l'étude théorique et expérimentale de
I'oscillateur optoélectronique cubique non linéaire dans lequel la conversion électrique
optique est réalisée par la diode laser. Cela nous permet de constater que non seulement
le systeme n’oscille que pour une valeur appropriée et négative de la partie continue de
I’alimentation du laser, mais aussi que la fréquence des oscillations augmente avec le gain
de la rétroaction et le parameétre cubique non linéaire, mais décroit avec le parametre du
retard normalisé. Une étude expérimentale permet de confirmer que la dynamique de cet

oscillateur est dominée par le cycle limite qui fournit des oscillations lentes et rapides au
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fur et & mesure que le gain de la rétroaction croit. Nous obtenons ainsi un oscillateur
optoélectronique dont le cotit est réduit et qui grace a sa dynamique lente-rapide, peut
étre exploité dans plusieurs systemes biologiques, chimiques, mécaniques, électroniques,
optiques et d’ingénierie.

Mots-clés: Oscillateur optoélectronique, filtre passe-bande cubique non linéaire, os-
cillateur optoélectronique cubique non linéaire, oscillations lentes-rapides, oscillations

crenelées, chaos.
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GENERAL INTRODUCTION



Optoelectronic Oscillators (OEOs) are self-sustaining systems made up of two blocks:
an optical block and an electronic block. They are the basis for the generation of both
optical and electrical signals. Initially, their main fields of application were telecommu-
nications. Therefore, they make it possible not only to generate ultra-pure signals for
detection but also complex signals for chaos communication. Nowadays, their applica-
tions are becoming more and more numerous; they are also used in neuroscience and high
precision metrology.

OEOs are autonomous systems in which the signal, in a closed loop configuration,
is alternately converted into the optical and electrical domains. Initially, a laser diode
produces a light beam which will be phase or amplitude modulated by suitable nonlinear
device which is fed by an electrical signal. The signal coming from this phase or ampli-
tude modulator is delayed during its progression in an optical fiber where it will undergo a
series of reflections. The modulated and delayed optical signal will then be photodetected
by a photodiode which will convert this optical signal into an electrical signal. The elec-
trical signal thus produced will feed the electronic part which can be a band-pass-filter.
This filter will give an output signal which will be amplified and feedback into the light
modulator [1-4]. OEOs are made from ultra-fast optical and electronic devices, which al-
low them to have multiple timescales. Compared to other, the dynamics of optoelectronic
oscillators (OEOs) can extend over several orders of magnitude and generate signals of
very high frequencies [5-7]. In recent decades, several OEOs architectures have emerged
and have given rise to several applications in basic and applied sciences.

The OEOs are ideal for studying the nonlinear dynamics of autonomous systems.
After the pioneering work of Neyer and Voges, these oscillators have been widely studied
from the point of view of fundamental sciences [8-22]. These studies have generated
many technological applications. They were used to generate ultra-pure microwave signals
[23-34], for neuromorphic computers [35-42], for metrology and detection [43-45], chaotic
cryptography [46-49], and several other technological applications [50-54]. Recently,
several studies have demonstrated the possibility of implementing these oscillators on
chips [?7,55,56].

The richness and varied applications of the OEQO are at the origin of the search of new
architectures. Indeed, it has been observed that the nature of the filters influences the
dynamics of the optoelectronic oscillator. This means that the dynamics of OEQOs strongly
depends on the electronic part. For example, in the Ikeda model, the dynamics of low-pass
filtering are quite different from those of OEOs with band-pass filters. With band-pass
OEOs, the dynamics still depends critically on the nature of the filter. Generally, the
electrical part consists of a linear response filter. However, nonlinear response filters have
already been shown to be effective in studying complex dynamics such as antimonotonicity
and some bursting-like oscillations not encountered in the standard OEO [57,58]. Tt is

therefore interesting to study a OEQ architecture which has a nonlinear response filter.
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Regarding the nonlinear filters, some have already been used in the field of optics like
for example the Chua, Colpitts, and Van der Pol oscillator [59-66]. Some of these filters
have been introduced in optoelectronic oscillators and have generated useful signals for
several OEQO applications. These are particularly Van der Pol and Colpitts oscillators.
Faced with the complexity associated with the implementation of nonlinear response fil-
ters in optoelectronic oscillators, one wonders if it would not be possible to propose a
new nonlinear filter whose implementation and mathematical modeling would be simple
than those known until now? The search for a simple nonlinear filter to implement in
optoelectronic oscillators and whose mathematical model would be just as simple led us to
create a filter that we called a cubic nonlinear band-pass filter (CNBPF). It is a nonlinear
RLC circuit made with a nonlinear capacitor. Nonlinear capacitors are made up of single
junction diodes. They are important components in electronic systems, both from the
point of view of fundamental sciences and from the point of view of technology [67-71].
The choice of the nonlinear capacitor here is justified by the fact that they are used in
snubber circuits for power electronics, and can operate at high frequencies. The new ar-
chitecture of OEO which use a CNBPF is more versatile than the standard OEO because
it allows to generate breathers or not by tuning some parameters, displays high frequen-
cies and amplitudes in the limit-cycle oscillations. The transition between the limit-cycle
oscillations and chaos is made through crenelated oscillations. This architecture can be
operated either in narrow-band or wide-band configuration. The experimental results are
compatible with the theoretical ones mentioned above.

The cubic-nonlinear optoelectronic oscillator (CN-OEQ), having an infinite dimension,
one wonders what would be the method to adopt in order to make an analytical study of
the frequency and the amplitude of the signal generated by this circuit. Faced with this
concern we use the normal form theory. It makes it possible to characterize an infinite
dimensional system into a two-dimensional differential system. It allows us to study in
depth in an analytical way the amplitude and the frequency of the limit-cycle oscillations
through the key parameters of the system such as the time-delay, and the feedback gain.
This method has already been used for the standard OEO [12].

Despite the richness and many applications of OEOs, other objectives are to meet
the strict requirements of the future communications, radar, navigation, and satellite sys-
tems. For this purpose, compact OEOs have been considered in which a laser is directly
connected to a filter such as the Van der Pol oscillator, a band-pass filter, and the Col-
pitts oscillator [57,66,67]. With this architecture, the intensity modulation is performed
through the piecewise-linear (that is, nonlinear) power- intensity transfer function of the
laser-diode. Looping an OEO on the laser reduces the price, the number of components,
and the electrical energy consumption. Hence, the name of simplified OEO is employed.
However, the drawback of this method is the reduction in the bandwidth imposed by the

laser relaxation oscillations of the laser itself compared to the OEO bandwidth using a
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phase or amplitude modulator. It is in this logic that we have also proposed a study of the
dynamics of the CN-OEO whose CNBPF is directly connected to the laser which plays
the role of electrical-to-optical converter.

A simplified analysis of CN-OEQO makes it possible to realize the quasi-sinusoidal
dynamics and the slow-fast dynamics of the oscillations. It is important to highlight that
the slow-fast dynamics are responsible for canard explosions which are observed in many
biological, chemical, mechanical, electronic, optical, and engineering systems [72-84].

The present work is divided in three chapters.

Chapter one is devoted to the literature review on the evolution of work on the op-
toelectronic oscillator by describing the standard OEO first, some OEOs that have a
nonlinear filter, and those which use a laser diode to do the electrical-to-optical conver-
sion. This part will end with the problems that this thesis solves.

Chapter two will explain the methodology used. It will highlight the mathematical
methods used to describe the optoelectronic oscillators, the techniques for solving the
equations generated by these oscillators, the digital methods used to explain their dy-
namics and the experimental method.

Chapter three will present the results obtained and we will end the thesis by a general

conclusion and perspectives.
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Chapter 1

LITERATURE REVIEW



1.1. INTRODUCTION 6

1.1 Introduction

The study of optoelectronic oscillators controlled by various filters is a very inter-
esting subject. These filters are electronic oscillators. These electronic oscillators are
autonomous and can generate special signals, including pulse, slow-fast oscillation, burst-
ing signals, and chaos when they are used as filter in OEO [?,7,57,66,67]. In general the
electric branch of OEOs is considered to be linear. However, nonlinear electrical response
can be an ideal benchmark to investigate the complex dynamics in OEOs. The nonlinear
filters are implemented and can operate in high frequency signals. Another preoccupation
is to reduce the number of components and energy consumption. In this chapter, we will
first present the applications of the optoelectronics oscillators. Secondly we will briefly
describe the basic principles of an optoelectronic oscillator and then present its charac-
terization by using a normal form method. Thirdly, we will present a literature review
on the OEOs which use a nonlinear filter. Fourthly, we will present some architectures
of OEOs which use a laser diode for optical-to-electrical conversion. The problems to be
solved in the thesis will be presented in the last but one section. Conclusion is given in

the last section

1.2 Optoelectronic oscillators (OEOs) and its char-

acterization by Normal Form Method.

This section is divided in two main parts. The first one briefly describes the basic
principles of a standard optoelectronic oscillator and the second one presents the char-
acterization of that standard OEQO near the primary Hopf bifurcation in term of key

parameters of the system by using a normal form method.

1.2.1 Basic principles of a standard optoelectronic oscillator.

Optoelectronic oscillators are looped autonomous systems in which an electronic part
loops over the optical part. The electronic part consists of a filter which imposes the
frequency and an amplifier which amplifies the power of the signal. The optical part is
made of a laser emitting a continuous wave, an electro-optical modulator (seat of the
optical nonlinearity), a roll of optical fiber or an optical resonator which creates a time
delay in the loop, and a photodiode which ensures the optical-to-electrical conversion (see
Figurel.1l).

Doctorate Thesis/PhD Juliette Stévia Deumi Kamaha Year 2024



1.2. OPTOELECTRONIC OSCILLATORS (OEOS) AND ITS
CHARACTERIZATION BY NORMAL FORM METHOD. 7

Laser PC
S an :

oooo

Oscilloscope Amp  Filter

Figure 1.1: Experimental setup of the OEQ. PC, polarization controller; MZM,
MachZehnder modulator; DL, delay line; PD, photodiode; Amp, RF amplification; MC,
microwave coupler [12].

The experimental setup of the standard optoelectronic oscillator (OEQ) is presented
in Figure 1.1 and described as follows [21]: A polarized light of power Pin delivered
by a telecommunication continuous-wave laser diode is modulated with a Mach-Zehnder
modulator (MZM) whose half-wave voltages are Vigp and Vipc. The modulated light
coming from the MZM is retarded into an optical delay line resulting in a time-delay
equal to T, before being converted to an electrical signal with a photodiode (PD) of
responsivity S. The electrical signal generated by the photodiode V;,, passes through a
Radio Frequency filter (RF) with outputs V,,; and in turn is suggested to an amplification
before being re-injected into the RF electrode of the MZM.

These architectures makes it possible to achieve an approximative performance of
electronic oscillators in tern of few GHz operating frequency and spectral purity (phase
noise of -160dBc/Hz at 10GHz carrier). This system is described by an integro-differential

delay equation of the Tkeda type [21]:

T + Tj—f - % t: z(s)ds = Bcos®[z(t — Tp) + 4], (1:1)

where 3 is the normalized feedback gain which is proportional to the power of laser
diode, ¢ is the phase corresponding to the half-wave voltage of the bias and the variable
z(t) represents the normalized voltage crossing of the circuit. The integral term is in the
base of many dynamics in the system such as breathers, pulse package. The dynamics
observed in the standard OEO are the phenomenon of relaxation, breathers, and chaos
presented in Figure 1.2. To perform the OEO for many other applications, the electronic
part was revised in order to have new dynamics, operating in many bandwidths, with

high purity, and high frequency.
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1.2. OPTOELECTRONIC OSCILLATORS (OEOS) AND ITS

CHARACTERIZATION BY NORMAL FORM METHOD. 8
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Figure 1.2: Time traces of the variable z for different values of the feedback gain 3 of
standard optoelectronic oscillator. ¢ = =% (a) 8 = 1.5, (b) 8 =2, (c) 8 = 3, and (d) 8
=35 [21].

1.2.2 Characterization of the bandpass OEO near the primary

Hopf bifurcation by the normal form method.

In 2019, TALLA Mbé et al., proposed an experimental and theoretical study of a normal
form method for the determination of the oscillations characteristic near the primary Hopf
bifurcation in standard optoelectronic oscillator [12]. Principally, the amplitude and the
frequency of the Hopf limit-cycles as a time-delay function and other parameters was
determined. The dynamics of the OEO strongly depends on the parameters of the system
namely, the time-delay, the feedback gain, and the nonlinear transfer function. TALLA
Mbé et al. here obtained the expressions of the frequency and the amplitude as the
function of the key parameters without neglecting the time-delay as it is usually the case.

This was confirmed experimentally. The dimensionless form of the equation 1.1 is given

by:
d;l'l i 2 4 2 4
= —z7 — 0%y + B[cos®(zy, + @) — cos” ¢ (17
(f.’l’z
— ==z 1.3
= 1 (1.3)
where z; = z and z; = i'r f:” z(s)ds. The parameter o = 7 is the ratio between

the low and the high cut frequencies, and v = % represents the normalized time-delay:.
Before computing the normal form, it is convenient to separate the above equations into a
linear and nonlinear part. By using the Taylor expansion in the neighborhood of the Hopf

bifurcation point and around the equilibrium point of the system, after some calculations
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1.2. OPTOELECTRONIC OSCILLATORS (OEOS) AND ITS
CHARACTERIZATION BY NORMAL FORM METHOD. 9

(details on the calculations will be given in chapter two), the complex normal form of the

system is given by [12]:

3 = iw.z — 6bp + by, p?p[2 — diw.y, (PTe~2we] 227 (1.4)

where § = v — 7, is the relative effective feedback gain. The "overline" stands for the
complex conjugation. In the first approximation, the variable z is related to the complex
amplitude of limit-cycle oscillation by z(t) = A(t)e™<' which, replaced in equation 1.4

leads to the complex normal form of the amplitude:

A=—6MA+ A A%A, (1.5)

where the coefficients A; and A, have the following expressions:

A= [1+2‘-':wc+’ch(1—iu.;cv)c_in” ’ (1.6)
Ay = 2”&%2A1[1 — 24wy, (e 2iwer] (17)

Equation (1.5) is a complex equation. To study the evolution of the amplitude and the
frequency around the Hopf bifurcation, it is required to do the following approximation
A = a(t)e’*). After investigating the stability of the equilibrium point, it can be shown
that the amplitude and the frequency of the limit-cycle can be explicitly defined as a

function of 4 = vy — 7, following:

R[A
Y- ﬂ/H)sﬁ}AH (1.8)
RA; SA2—SA; RAZ
Wepf =Wy + (v — ’TH)#Z (1.9)

where the symbols R and < stand for the real and the imaginary parts of their argu-

ments respectively.
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Figure 1.3: (a) Variation of the limit-cycle amplitude in case of negative slope with ¢ = =F,
case of positive slope with ¢ = 7) as the gain is varied beyond the Hopf bifurcation point
Yy as d = — 7, - (b) is the evolution of limit-cycle frequency in case of § = —4 x 102,
and § = 1.5 x 10? as a function of the normalized delay » = 2. Both in (a) and (c),
the analytical result is displayed with a solid line and the numerical with the black circles

12].

From Figure 1.3 it is confirmed that the value of the normalized time-delay affects the
characteristic of frequency. The limit-cycle amplitude shows the numerical curve and the
analytical curve obtained through characterization by normal form are almost symmetric
to zero, confirming that the negative slope is only defined for § < 0, and positive slope

requires o > 0.

1.3 The main applications of Optoelectronic oscilla-

tors.

Optics, undoubtedly one of the oldest sciences, has undergone spectacular upheavals
over the last decades. It was first the advent of optical fibers, semiconductor lasers, and
then new architectures of the optoelectronic oscillators. These discoveries have initiated
the move from traditional optoelectronics to miniaturization and low cost assemblies. In

this section, we will highlight some applications of optoelectronic oscillators.

1.3.1 OEO-based Chaos Synchronization and Communications.

The search for confidentiality during the transport of information is the basis for the
creation of several optical architectures. OEQ architectures are used to provide privacy
in optical networks. Information is transmitted through a chaotic optical carrier and

retrieved via chaos synchronization.
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1.3. THE MAIN APPLICATIONS OF OPTOELECTRONIC OSCILLATORS. 11

Goedgebuer et al. in 1998 (see [85]), proposed an Tkeda OEO system for chaos com-
munications. With this architecture, they managed to transmit a hidden audio signal in
a chaotic carrier. After this pioneering work, several architectures have been proposed
in order to improve chaotic communication. The architecture presented in Figure 1.4 is
from the work of Chembo in 2019 [86].

(a) Input message Output message
A

Emitter Receiver

Figure 1.4: Field experiment of chaos communication using an Ikeda-based optoelectronic
oscillator. (a) Emitter-receiver system. The emitter uses a laser diode (LD), MachZehnder
modulator (MZ), an erbium-doped fiber amplifier (EDFA) to boosts the power of the

1

signal to be launched into the transmission line [86].

The signal to be masked is added to the laser electrode while controlling its emission
wavelength. The chaotic carrier is an OEQO of well-defined bandwidth. An optical fiber
will then transport the information from the transmitter to the receiver. The receiver is
also an optoelectronic oscillator from which the information which has been masked can
be extracted. Goedgebuer et al carried out a successful chaos communication experiment
with a pseudorandom binary signal at 100Mbit/s, over a 50 — km — long optical fiber
channel.

From this basic architecture, several architectures have been developed insofar as the
transmitter and the receiver designed based on the OEO have undergone improvements.
One of the most active lines of research related to optical chaos communications is the
improvement of both the performance and security of the existing systems. For this pur-
pose, in 2008, Cohen et al. proposed and experimentally observed the nonlinear dynamics
of an optoelectronic time-delayed feedback loop designed for chaotic communication using
commercial optical fiber links [87]. Their optoelectronic system shown in Figure 1.5 can
be used as a transmitter and receiver for a high-speed chaotic communication demon-

stration over a commercial optic fiber channel. Their architecture is presented in Figure

1.5.
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Figure 1.5: The optoelectronic using Synchronization for prediction of high-dimensional
chaotic dynamics [87].

1.3.2 OEO-based Reservoir Computing

Designing materials inspired by the human brain is a constant challenge. In the same
way that we train the human brain to retain information, we train machines to retain
information and restore it. Training a neural network for a given task typically consists
of finding the optimal connectivity between the neurons. However, this procedure can
be particularly difficult, time consuming, and computationally expensive, most notably
when the number of neurons is large. The first implementation of reservoir computing
with time-delayed systems was proposed by Appeltant et al. in 2011, using an electronic
circuit modeling the Mackey-Glass dynamics [88].

In recent years, broadband OEOs have gradually established themselves as a powerful
technology platform for analog computing machine learning. The operation of the neural
network highlights the use of key properties for the analog calculation. These features can
be emulated in OEQOs, with the ability to process information with ultra-high bandwidth.
The neurons are generally nonlinear nodes, while the coupling among themselves, also
called connectivity, can at the same time be variable, random, and sparse. An example

of OEO-based reservoir computing is displayed in Figure 1.6
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Figure 1.6: Schematic of an experimental OEO reservoir computer. The reservoir layer is a
delay dynamical system in which a Mach-Zehnder (MZM) modulator acts as nonlinearity.
The information is mixed to the signal using an arbitrary waveform generator (AWG) [89].

In Figure 1.6, the input layer is used to drive the reservoir computer which is an
optoelectronic oscillator (reservoir layer). The output layer is a circuit that decodes the
output signal. An input signal is fed into the reservoir, which is considered a "black
box". A reading mechanism is placed at the output of this reservoir to read the output
signal. Just like the human brain, this reservoir needs to be trained in order to memorize

information and return it when requested.

1.3.3 Narrow-band OEOs for ultrapure microwave generation.

A narrow bandpass OEOQO is mainly characterized by a feedback loop that is highly fre-
quency selective in the radio frequency spectral domain. The optimization parameters
that influence the dynamics of such systems are mainly the RF phase shifter, optical bias
controller and modulator bias voltage. In this system, it is the RF filter that allows the
selection of optical modes and operation at precise frequencies of the mode-locked laser.
The system is then optimized to generate a comb wide and therefore a narrow optical

pulse. The initial architecture is presented in Figure 1.7. It was developed by Yao et

al. [90]:
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E£/0 modulator
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Figure 1.7: Basic single-loop OEO architecture for ultrapure microwave generation [90].

In most studies, the filter has a multi-GHz center frequency and a bandwidth of the
order of a few tens of MHz. However, these values can vary largely depending on the band-
width of the various elements of the feedback loop and thereby provide a large frequency
versatility for the OEO. Note that a long-delay line improves phase noise performance
and determines the microwave signal amplitude as a function of the feedback gain when
it is increased beyond the normalized oscillation threshold of 1. It can be said that it is

possible to drastic reduces noise in the signal generates by OEOs.

1.3.4 Optoelectronic oscillators for measurement.

Optoelectronic oscillators can be used to perform very high precision measurements. In
2014, Yanhong et al. [104] proposed and experimentally demonstrated a high sensitivity
temperature sensor based on an optoelectronic oscillator (OEQ). The idea is to highlight
the application of the OEO to perform the sensing of temperature. Their OEO-based

temperature sensor is presented in Figure 1.8.

DFB laser a3 H :
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Figure 1.8: Schematic of the proposed OEO-based temperature sensor with injection
locking. PC, polarization controller; DEMZM, dual electrode Mach-Zenhder modulator;
SMF, single mode fiber; PD, photodetector; BPF, bandpass filter; EA, electrical amplifier;
LO, local oscillator; ADC, analog-to-digital converter [104].
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The DBF laser produces a light wave which is injected into a double electrode MachZen-
hder modulator (DEMZM) after passing through polarization controller (PC). This wave
passes through a single-mode section optical fiber (SMF), which is used as the sensor
head. The photodiode will convert the signal and send it to the filter. The filter selects
the frequency of oscillation. A hybrid coupler is used to produce two quadratic electrical
signals to drive the DEMZM for single-sideband modulation. A 3 dB directional coupler
in the radio frequency (RF) link splits the oscillation signal in two parts, one part con-
nected to the hybrid coupler input port and the other mixed with a local oscillator signal
in an RF mixer. The local oscillator makes it possible to obtain the mode of oscillation
locked to a preset frequency. The computer permits to monitor the dynamics.

The Single-Mode Fiber is the temperature sensor. This fiber is subjected to different
temperatures. The variations of temperature consequently modifies the total time-delay
7 of the OEO. The total time-delay is the sum of the time-delay of SMF and the time-
delay of the OEQ’s loop. The total time-delay will impact the frequency of the signal.
Knowing that the length of the optical fiber is affected when it is introduced into hot
or cold substance. The variation of the length is recorded in terms of variation of the
oscillations frequency which is itself a function of the total time-delay.

In 2014, Toan et al. proposed an architecture for refractive index sensing using an
OEO [93]. Their architecture is presented in Figure 1.9.

Fiber-to-Fiber
MZM coupling
e pe—— O poy
Fiber l l
RF loop
v
Photo-
detector
RF RF

Filter Amplifier

Spectrum RF i
Analyzer ¢ Coupler [ |/ \ < |

Figure 1.9: Classical structure of an opto-electronic oscillator for refractive index mea-
surement [93].

Indeed, an optical fiber-to-fiber coupling is introduced in an OEQ, just after the optical
fiber. The extra time-delay due to the fiber-to-fiber coupling will cause a variation of the
frequency of signal recorded on the oscilloscope. The optical time-delay takes into account
the total length of the optical delay line, the length of free space, the length of substance,
and the refractive index of each part. Knowing that the length of the optical fiber is

affected when an optical fiber to fiber coupling is introduced, the variation of the length
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is recorded in terms of the variation of the frequency oscillations which is itself a function
of the total time-delay. We recall that the time-delay depends on the refractive index of
the optical fiber-to-fiber coupling.

With suitable mathematical tools, it will be possible to establish the variation of the
frequency according to the frequency of the signal of system. A graph will make it possible
to appreciate the variation of the refractive index according to the key parameters of the
system.

In 2021 Jing Zhang et al. in [92] proposed a technique to efficiently measure a angular
velocity with improved scale factor based on a wideband-tunable optoelectronic oscillator.

The circuit is proposed in Figure 1.10.

Figure 1.10: Configuration of the proposed wideband-tunable OEO for angular velocity
measurement (red lines: optical fibers and blue lines: coaxial cables) [92].

The OEO consists of two cascaded Microwave Photonic Filters (MPFs), namely, a
dispersion induced MPF for mainly determining the OEQ’s oscillating frequency and a
two-tap MPF for the fine selection of the oscillating frequency. With proper control of
polarization of the optical signal, the angular velocity is first mapped into the central
frequency shift of the dispersion-induced MPF, which will then cause an oscillating fre-
quency shift of the frequency. This approach ensures a large-scale factor for the angular
velocity measurement due to the fact that a small phase change in the optical domain
causes a large frequency shift in the electrical domain. In the circuit of Figure 1.10, MPF
is a microwave photonic filters, OC is the optical carrier, PC is polarization controller,
LD is laser diode, MZM is Mach-Zehnder Moulator, EBPF is an electrical, PBS is a po-
larization beam splitter, PBC is a polarization beam combiner, PD is polarization diode,
Cir is optical circulator, EA is an Erbium amplifier, and ESA is an electrical spectrum
analyser.

An OC at an angular frequency is sent to a MZM through a polarization controller

(PC1). This signal will impose the polarization direction in the MZM. The transfer
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function of the MZM will therefore be dependent on the angular velocity.

1.3.5 Optoelectronic oscillators as an Acoustic Sensor.

In [94], Okusaga et al. proposed the OEO as an acoustic sensor. Their circuit is shown

in Figure 1.11.

Signal Processing
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Figure 1.11: A schematic diagram of the OEO-based acoustic sensor experiment [94].

An acoustic wave is emitted so as to create a disturbance or noise in the signal which
crosses the optical fiber. They used a delay-line phase-noise measurement system. They
measure the phase noise which will be the sum of that of the OEO and that acoustic
wave. Base on the fact that the OEO utilizes lengths of the optical fiber in ring resonator
to create low-phase-noise signal, they have proposed a novel fiber-optic sensor. They
demonstrated this novel fiber by measuring the modulation sidebands induced on the
OEOQO’s RF signal by an acoustic tone impinging on the fiber spool in the OEO. The
narrow linewidth and high oscillating frequency of the OEO results in a sensor with both
high signal-to-noise ratios and high spectral resolution.

In Figure 1.11 they placed an OEO in an anechoic chamber. They played a 1 kHz
tone from a speaker approximately 3 m away from the fiber spool in order to determine
the sound level at the spool. To measure the induced phase modulation sidebands, they
used a delay-line phase noise measurement system. In the case of optical interferometer,
they measured the induced modulation directly from the output of the photodetector in
the interferometer. They used the same laser, and photodetector. They plot the noise
curves of both the OEO and the optical interferometer around 1 kHz. It yields that the
OEO has a comparable signal-to-noise ratios to those of the optical interferometer. This
work showed that the OEO can potentially be used as a high-spectral-resolution acoustic

sensor without sacrificing sensitivity.
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1.4 OEOs with nonlinear filter.

The numerous applications of the OEOs encourage the search for new architectures of the
OEOs which can lead to more precise simultaneous measurements, transmission of signals
of higher frequencies, then to improve the already existing applications. It is noteworthy
that in the most case of OEOs, the only nonlinearity of the system is the sinusoidal
transfer function of the MZM. The electric branch of the feedback loop is usually linear.
Several researchers have thought that introducing a nonlinear electronic feedback instead
of a linear one can permit to increase significantly the complexity of the oscillator and

emulates new functionalities.

1.4.1 OEOs with nonlinear filter.

In 2016, A. Talla et al. obtained breathers and pulse-package dynamics in multinonlinear
electrooptical systems with delayed feedback [20]. They inserted a self-sustained Van der
Pol oscillator in the loop and investigated the various dynamical states generated when
the system is in the oscillatory regime. The schematic architecture of their electro-optic

oscillator with delayed feedback is giving in Figure 1.12.

DL
Oscilloscope L PD
=1 P
e Laser  Amp
ccca @
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\ NH >«
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Figure 1.12: Experimental setup to explore the dynamics in multinonlinear electrooptical
systems with delayed feedback. (note that bandpass filter stands here for all the bandpass
filtering elements of the electric branch) Vdp is Van der pol, OC is Offest Controller [20].

The nonlinear transfer function of the MZM is known to be

P, = P cos® F’u(f) + ﬁVB] .

2V, 2V

where P is the power of the laser, V} is a bias voltage and V is the half-wave voltage
of the electrode where the signal u(t) is coupled. The dimensionless voltage of the Van

der Pol circuit obeys to the well known equation:

i+ wirt—e(1 -2z =0,
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where wy is the pulsation and € the nonlinear coefficient. To explore the dynamics of
this novel architecture, they have first considered the case where the time-delay is set to

be zero and the laser pump current increases.
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Figure 1.13: Birth and evolution of breathers in the time domain for Tp = 0, as the laser
pump current (I) is increased beyond threshold Iy,. (a) I ~ I, = 27.3mA, (b) I = 1.2313,
(¢) T =1.491, (d)I = 1.721, [20).
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As the pump current [ is increased, quasi-square wave in Figure 1.13(a) emerges at the
sharp rising edge of relaxation oscillations in Figure 1.13(b) but, they are rapidly damped
shortly after their birth. As the laser power is increased, we observe that a fast-scale
dynamics is superimposed onto a slow-scale limit-cycle as displayed in Figure 1.13 (¢) and
in Figure 1.13(d).

Still the time-delay sets to zero, when the pump current is still increasing, they ob-

tained complex dynamics such as chaotic breathers and chaotic pulse-package oscillations
(Figure 1.14).

Doctorate Thesis/PhD Juliette Stévia Deumi Kamaha Year 2024



1.4. OEOS WITH NONLINEAR FILTER. 20

R iJ' 52 ey
'u, \

\'\ 7\

=2 0 2 4 6 :

wm o

%

6 : T @)

> om yrm i

’ W' m) T
09 L . lm:].i 08 12 8 4 [i [HST 8 12

Figure 1.14: Evolution and death of breathers and pulse-package oscillations in the time
domain as the laser pump current is increased far above the threshold. (a) I = 1.811,,

(b) I =2.27I,, (c) I = 2.771,, (d) I = 2.931,, [20].

In Figure 1.14 (a), we observe the first chaotic breathers, characterized by a chaotic
fast-scale oscillation superimposed onto a periodic slow-scale oscillation. After, as the
pump current increases, a chaotic pulse-package oscillations rises Figure 1.14 (b).
Figure 1.14 (¢) and Figure 1.14 (d), the further increase of pump current leads to reverse

bifurcation where the system becomes bi-periodic and the periodic.
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Figure 1.15: Evolution and death of breathers and pulse-package oscillations in the phase
space as the laser pump current is increased far above the threshold (Tp = 0). Theses
figures correspond to the time traces displayed Fig. 1.14. (a) I = 1.811,, (b) I = 2.271,
(¢) I =2.77I, (d) I = 2.931;;, [20].

The phase portraits permit the better understanding of the time traces displayed in
Figure 1.14. Figure 1.15(a) shows the inherent slow-fast structure of the chaotic attractor,

Figure 1.15(b) features an asymmetric double-scroll structure. Figure 1.15(c) and Figure
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1.15(d) evidences the periodic nature of the temporal output signal from Figure 1.14(c)
and Figure 1.14(d).
When the time-delay is accounted, the system becomes infinite-dimensional and it has

the potential to feature other complex behaviors namely relaxation oscillations.

(b)

uy {V

t [ms]

Figure 1.16: Breathers, pulse-package oscillations, and fully developed hyperchaos as
the laser pump current is increased far above the threshold in the presence of delay

(T = 0.5us). (a) I =1.28I,,, (b) I =1.641, (c) I =2.461I,, (d) I = 3.341,, [20].

When the laser is pumped just above the threshold, one obtains relaxation oscillations
and breathers comparable to those obtained with zero delay which evolve towards chaos.
In Figure 1.16 (a), we observe a relaxation. The first chaotic breather appears in Figure
1.16 (b), characterized by a chaotic fast-scale oscillation superimposed onto a periodic
slow-scale oscillation. After, as the pump current increases, a chaotic pulse-package os-
cillations appears Figure 1.16 (¢). In Figure 1.16 (d), the further increase of the pump

current leads to chaotic signals.
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Figure 1.17: Evidence of the three-timescale behavior of the system in the pulse-package
regime. (Left) pulse packages for the system without delay and with I = 2.271;, [see
Figure 1.14(b)]. The fastest oscillations are periodic. (Right) pulse packages with delay
and with I = 2.461,;, [see Figure 1.16(c)]. The fastest oscillations are periodic [20)].
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1.4.2 OEO with a Colpitts oscillator.

In 2020, in Optical and Quantum Electronics journal, Mboyo et al., obtained bursting
oscillations in Colpitts oscillator and applied in optoelectronics for the generation of com-
plex optical signals [58]. The setup of this architecture is presented in Figure 1.18. In this
architecture, the filter is a Colpitts oscillator. The optical signal provided by distributed
Feedback (DFB) laser diode then is delayed passing through an optical fiber. The delayed
optical signal is detected by a fast photodiode which is an optical/electrical convertor.

The output signal of the photodiode is the input signal of the Colpitts oscillator.

Fiber delay

Laser diode Photodiode

Oscilloscope

Colpitts oscillator

Figure 1.18: Experimental set-up of the OEO-Colpitts oscillator. MC= microwave cou-
pler [58].

The design of the Colpitts oscillator is shown in Figure 1.19. The Colpitts oscillator
is made up of four resistors, five capacitors, a coil, and a transistor. Among the resistors,
one is a potentiometer and its variation modifies the dynamics of the signal emitted by
the Colpitts oscillator. When the value of the potentiometer increases, the dynamics of

the system passes through a steady-state, limit-cycle, and bursting oscillations.

Figure 1.19: A picture of the Colpitts circuit in the laboratory [58].
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A study of the dynamics of the OEO-Colpitts was carried out as a function of key
parameters such as the potentiometer of the Colpitts oscillator, the laser power and the
length of the optical fiber. At first, they consider the delay as being to zero (the delay
line is removed: Tp = 0). Multiperiodic oscillations, chaotic bursting oscillations, periodic
bursting and pulse-packages oscillations were obtained when the polarization voltage as

the polarization increases (figure 1.20).
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Figure 1.20: Multiperiodic, (b) chaotic bursting, (¢) periodic bursting, and (d) pulsep-
ackage oscillation in the time domain as the polarization voltage is increased beyond
the threshold (Tp = 0) (a) Vo = 1.29Vip; (b) Vo = 1.34Vip; (¢) Vpa = 1.4Vi; (d)
Vot = 1.6V [58].

In the second time when the optical fiber is inserted, it yields (figure 1.21) multiperi-
odic oscillations, slow-fast dynamics, and chaotic bursting oscillation as the polarization

voltage is increased.
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Figure 1.21: (a) Multi-periodic, (b) slow-fast dynamics, and (d) chaotic bursting oscil-
lation in the time domain as the polarization voltage is increased beyond the threshold
(Tp = 0.2us). (a) Vou = 1.09Vis; (b) Vou = 1.24Vy,; (d) Veaw = 1.54Vip; (c) is the

enlargement of one package of (b) [58].

The results show that in the case where the optical fiber is removed, the dynamics
offers higher frequencies bursting oscillations but, might be with slightly lower amplitude

compared to the case where optical fiber is considered.

1.5 OEOs which use a laser diode for electrical-to-

optical conversion.

In the standard OEO and most cases of optoelectronics oscillators, the device which per-
forms the nonlinear conversion between the optical and the electrical signal is a phase or
intensity modulator with a sinusoidal transfer function. However, a compact architecture,
in which the intensity modulation of the laser light is performed through a direct optical
feedback was proposed [64,65]. Generally, the majority of function generators used exper-
imentally in laser diode current modulation are heavy, and can offer up to three functions
namely, sine, square, and triangular. Autonomous oscillators are an eventual solution in
the experimental laser diode modulation to generate more complex electrical signals like

pulse, bursting, relaxation, and chaos oscillations [79,80].

1.5.1 OEO with direct feedback modulation.

In 2015 in the journal of lightwave technology, Chengui et al. presented a theoretical and
experimental study of the simplest laser-based optoelectronic oscillator. Their architec-

ture is presented in Figure 1.22.
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Fiber Delay Line

LD

Figure 1.22: Experimental setup of direct modulation of the OEO. LD: laser diode, PD:
photodiode, BPF: band pass filter, G: voltage variable attenuator [66].

It is the most simple autonomous optoelectronic oscillator with a delayed feedback
loop. In this architecture, an electrical signal powers the laser which provides light which
powers the oscillator. Indeed, this signal is delayed into the optical fiber then converted
into an electrical signal through the photodiode. This electrical signal is feed the BPF
and the output signal returns in the laser diode. The behavior of this OEO is critically
dependent on the value of the feedback gain. This model gives an integro-differential

equation characterized by three time scales indicated by the equation below:

t
r+7Z 4 L [ 2(s)ds = BD(t - Tp) - 9], (1.10)
dt 6 to

where D is the dimensionless nonlinear transfer function of laser diode, = the di-
mensionless voltage, f the offset dimensionless voltage, 3 the feedback gain loop. The
dynamics of the system depends on the sign and the value of the polarization current. In
the case where ¥ > 0, there is not oscillations in the system. In the case where ¥ < 0, the

system oscillate for a specifical value of .
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Figure 1.23: Numerical bifurcation diagram of the simplest OEO where the variable z, is
plot as the gain f3 is increased [66].

In Figure 2.4, the bifurcation diagram show that the dynamics of this oscillator is
dominated by the limit-cycle oscillation. For certain value of the feedback gain (3, they is
not oscillation in the system. For 1.18 < 3 < 1.34 a fast-scale limit-cycle oscillations are

sustained. For 8 > 1.34, a slow-scale limit-cycle oscillations can be excited.
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Figure 1.24: Experimental (left column) and numerical (right column) timetraces of the
simplest OEO. ¥ = —0.5, =129, =137, 3= 1.6 [66].

It is important to precise that this work was done in the case of low pump currents.

We see a excellent agrement between the numerical and experimental simulations ( Figure
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2.5). We can conclude that a nonlinear filter can seed a laser diode for optical-electrical

conversion in optoelectronic oscillator.

1.5.2 OEO with modulation through a Van der Pol electrical
component.
Goune et al. in 2018 presented an OEO where a Van der Pol oscillator is used as a

filter and the laser is used for do the optical-to-electrical conversion [57]. The system is

presented in Figure 1.25.
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Figure 1.25: (a) The experimental setup of Van der Pol-optoelectronic oscillator and (b)
experimental setup of the Van der Pol oscillator [57].

In this case, the additional nonlinearity from the nonlinear filter is expected to gen-
erate novel complex behaviors that do not exist in the conventional OEQO architectures.
Inserting a Van der Pol circuit into an OEO loop would allow to benefit simultaneously
from the large bandwidth of the photonic components, and from the neuromorphic com-
puting advantages. The dynamical state of the circuit Figure 1.25 (b) obeys the following

Van der Pol dimensionless autonomous equation:

i—(e—z?)i+x=0, (1.11)

where € is the dimensionless gain of the oscillator and z the dimensionless voltage.
When we combine this filter with the optical part of the OEO where laser-diode make the

conversion, it yields:

i — [BD(xr, — V) — )i + 2 =0, (1.12)

where, T is the dimensionless delay, 3 is the dimensionless gain, and ¢ the dimension-
less offset value for diode nonlinearity. D is the dimensionless nonlinear transfer function

of laser. For positive value of ¥, we have periodic and chaotic dynamics in the system.
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For a short time-delay, the term z7,, do not affect greatly the dynamics of the system.

For a low gain, it can be seen the quasi-sinusoidal oscillations after the Hopf bifurcation.
As the gain is increased the harmonic behavior is observed. There is good agreement
between numerical and experimental results. The main difference between the VDP os-
cillator and the VDP-OEOQ is that the oscillations in the latter case are asymmetric, with
a skewness towards positive values. Along the same line, the transitions form negative to
positive values are slower than those form positive to negative in the VDP-OEQ, while
both transitions are of equal duration in the classical VDP oscillator. For large delay

(Tp = 4), the term zp, affects the dynamics of the system.

Experimental Numerical

VO—!.KI_“I

0 1 I2 3
Time [ms] Time [ms]

Figure 1.26: Experimental (left column) V;, — V,, = 1.314V , R = 10kQ), C = 10nF,
Tp = 0.21us and numerical (right column) timetraces of the simplest OEO. a = 0.1, d
for 3 =1.2, e for 8 =22, f for 8 = 2.2 [57].

We have a different type of attractors, including the chaos one. This complex dynamic
is the result of the interplay of laser diode nonlinearity and VDP nonlinearity. We see
a sudden jump of amplitude in the Hopf bifurcation point in 8 = 0.405 where = and y
are quasi-sinusoidal oscillation confirm by Figure 1.28. The limit-cycle goes around twice
before closing, as a consequence of a first period-doubling bifurcation. For g = 1.55, it is

an infinite cascade of such period-doubling.
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Figure 1.27: (a) Numerical bifurcation diagram of the simplified OEO where the variable
z (maxima), (b) Lyapunov exponent of the system for Tp = 4 and ¥ = 0.1. The label
(a)-(f) indicate the dynamical regimes corresponding to the phase portraits of the Fig.
1.28.

The interplay between laser nonlinearity and the Van der Pol nonlinearity leads to some
dynamics which were not still encountered in the classical OEO such as antimonotonicity,

and period-doubling routes to chaos.
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Figure 1.28: Numerical simulations of the dimensionless VAP-OEO for Tp = 4 and 9 =
0.1, for various gain values 3 in the space. (a) 8 = 0.2: quasi-sinusoidal oscillations
with low amplitude. (b) 5 = 0.405: quasi-sinusoidal oscillations with high amplitude.
(¢c) B = 1.01: Non-sinusoidal oscillations with high amplitude. (d) 8 = 1.4 period-two
oscillations. (e) § = 1.55: period-four oscillations. (f) 5 = 1.7: chaos.

1.6 Problem statement of the work.

There is a lot of works that have studied the OEOs with a nonlinear filter. We want to pro-
vide some solutions to the problems generally encountered in chaos-based communication,
random number generation, cryptographic, neurmorphic computing, and bioengineering
where theses OEOs are used. A challenge remains that of finding electronic circuits as
filters in optoelectronic oscillators whose implementation is simple compared to that of
nonlinear filters such as the Van der Pol oscillator and the Colpitts oscillator. This re-
search aims to obtain optoelectronic oscillators that are more versatile than the standard
optoelectronic oscillator and which could generate higher frequency signals. New archi-
tectures can give rise to new dynamics that could inspire new technological applications.

Chembo et al. studied the experimental chaotic breathers in delayed electro-optical
systems [21]. They showed that the phenomenon which occurred numerically in Tkeda
model is confirmed experimentally. We see that as the gain increases, the relaxation,
breathers, and chaos oscillations are observed. This work allowed to have an experimental
and numerical confirmation of the standard oscillator. Interested by this previous

work, we extend a comparative study of a cubic-nonlinear bandpass filter-OEO
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numerically and experimentally to the standard optoelectronic oscillator.

Talla Mbé et al. proposed an experimental and theoretical study of a normal form
method for the determination of the oscillations characteristic near the primary Hopf
bifurcation in bandpass optoelectronic oscillator [21]. They showed that the amplitude
and the frequency strongly depend on the normalized delay and the normalized gain. The
analytical, numerical and experiment studies were in good agreement. Interested by
this work, we extend the method of the normal form to an OEO featuring
the cubic-nonlinear filter to evaluate the effective amplitude of limit-cycle
oscillations.

In this thesis also propose a study based on the characterization by the normal form
method near of Hopf primary bifurcation. Numerical, analytical, and experimental study
of the limit-cycle oscillations near the primary Hopf bifurcation are propose. This the-
sis show how the amplitude of the oscillation growths with the normalized gain and the
frequency decreases with the normalized time-delay. Because the laser diode has already
been used successfully as electric-light convertor in the OEOs [10,79], and has been gen-
erated strong dynamics to mimic many biological, bioengineering systems and reduce the
number, the cost, power consumption of energy, and is very cheap, accessible, we have
proposed a study of the laser diode pumps with a CNBPF in a loop. Motivated by these
previous works ( [10,82]) based on laser diode conversion, we extend our study
on an experimental and a numerical realization of an CN-OEO looped on the
laser diode. The CNBPF is built analogically by the use of basic electronic
components. We want to demonstrate that the CN-OEO evolve similarly to
a standard OEQO. However, the standard OEO evolves with a lower frequency
of oscillation at the primary Hopf bifurcation compared to the CN-OEO even

in the asymptotic case of large time-delays.

1.7 Conclusion.

We have presented in this chapter a standard optoelectronic oscillator, a literature review
on optoelectronic oscillators which use nonlinear filters, and the ones which perform laser
and filter nonlinearities. This presentation has allowed us to highlight the problems of
the thesis. The next Chapter will be devoted to theoretical, numerical, and experimental

methods used to analyze the dynamical states of the devices proposed in this work.
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2.1 Introduction

In the previous chapter, we posed a problem which was to propose other optoelectronic
oscillators which are made with a nonlinear filter whose implementation is simple and
which can operate in wide-band and narrow-band configurations. The goal of this chapter
is to present the methods for solving this problem. Section 2.2 is reserved to the theoretical
methods used to solve the integro-differential equations modeling the dynamics of the
studied systems. The numerical methods will be given in section 2.3. In section 2.4, we
will present the methods of calibrating the electronic and optical devices that will be use

during the experiment and the last section will be devoted to the conclusion.

2.2 Mathematical formalisms and stability criteria

In this section, three mathematical formalisms are introduced. The first deals with the
linear stability analysis of the dynamics of optoelectronic oscillators. The second deals
with the characterization by the normal form of the delayed integro-differential equations,
and the third formalism deals with intensity modulation by the laser in the optoelectronic

oscillators.

2.2.1 Stability analysis for ordinary differential equations and
delay differential equations

In general, the differential equations of optoelectronic oscillators with time-delay are

under the form:

dX(t

X0 _ P X(t-1).7) 2.1)
where F a differentiable function, X(¢) et X(¢t — T') are too vectors in R" (X (t) =
(z1(t), z2(), ..., 2n(t), Xt — T) = (z1(t = 1), 22t — T),...,2s(t — T))), and T > 0 is

the time-delayed. To determine the fixed points, we solve the equation behind:

dX (t)
dt

=0, (2.2)
The solutions of such equation are the fixed points and are under the form, X = ¢'¢ so that

X(t) = X(t —T). To analyze the stability of the fixed points, one uses the perturbation

method which consist to write the solution X (¢) under the form:

X(t) = Xo + 6X(t) (2.3)

Doctorate Thesis/PhD Juliette Stévia Deumi Kamaha Year 2024



2.2. MATHEMATICAL FORMALISMS AND STABILITY CRITERIA 34

where 0.X(t) is the small perturbation. The next step after determining the fixed point
is the linearization of equation 2.1 around the fixed point and performing a truncation to

order 1. It will allow us to obtain the variational equation yielding:

OF[X(t), X (t —T),]
OXr(t)

dsX(t) _ OF[X(t),X(t—T)

7 :
06X
dt X (1) lx()=x0X +

|x()=x,0 X7 (2.4)

Consider J; et J, the jacobian matrices are defined by:

OF(X (), X(t—T),) o

h X (t)
OF(X(t),X(t—T),
3, ( (%XT(;;) H)lx(t)zxm (2.5)

Let us consider 6X(t) = dXye, where X, is an constant vector and have the same
dimension with X (), and A as eigenvalue of this system 2.4. This consideration permits

to generate the eigenvalues equation of the system:
det(J; — NI +e721J,) =0, (2.6)

where! is the unit matrix.
The eigenvalues, solution of the characteristic equation 2.6 can be either positive or

negative real numbers, or complex conjugates.

e A fixed point is unstable if the real parts of the eigenvalues are positive.
e The fixed point is stable if the real parts of the eigenvalues are negative.

e It is neutral if the real roots are equal to zero.

The nature of the eigenvalues from solving the characteristic equation can be used to
analyze the dynamic behavior of a system. Concerning OEQs, the fixed points and the
eigenvalues depend on the parameter v. It is noted that when the system evolves linearly
or nonlinearly, the changing of the value of the parameter v, can lead to carry significant
qualitative changes in the properties of the system. This allows us to conclude that the
study of fixed points and eigenvalues also makes it possible to analyze the dynamics of

the system.

2.2.2 Characterization by the normal form of integro-differential

equations with delay

The characterization by the normal form makes it possible to analyze the stability of

the system according to the key parameters of the system considered. Nayfeh is the
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one who developed the normal form method and we use the "center-manifold reduction'
method to analyze the amplitude and the frequency of oscillations from the optoelectronic
oscillators [95]. The first step consists of doing a limited Taylor expansion around the
equilibrium points which are determined beforehand in order to obtain a differential vector

equation with delay. It yields:

With X as a vector which depends on the variables of the system. £ and R the 2 x 2
matrices which contain the coefficients in front of the variables of the system and F a
column vector which contains the nonlinear terms of the system.

To solve the equation (2.7), two time intervals must be considered: the interval taking
into account the time-delay [—7';0] and the interval after the origin of times [0;+o0].
Consider ¢ as the time in the first interval and ¢ in the second interval, we can rewrite

equation (2.7) in the form:

dX t (.;’)
dt

where Xy) = X(t +¢) is a portion of the solution trajectory in the recent past. A is

= AXyo) + (X)), (2.8)

the linear operator with pure imaginary eigenvalue iw, of the Hopf bifurcation point. A

transforms a center subspace function p(<) as follows:

Ap(s) = iwyp(s)
B dfi(:) for —v<¢<0
Lp(0) + Rp(—v) for ¢=0.

(2.9)

It is known that when iw,, is an eigenvalue of the Hopf bifurcation, its complex conjugate
—iw,, is also an eigenvalue. Thus, to take into account both eigenvalues, we define the

adjoint operator of A, call A* which also acts on another subspace function ¢(s) as:

A'q(s) = —iwg,q(s)
_dq(s) &
s for 0<¢<v (2.10)
L*q(0) + R*q(v) for ¢=0,

where £* and R™ are the adjoint of the operators £ and R, respectively. In equation (2.8),

the expression of the vector G is:

g — (2.11)

0 for —v<¢<0
F for ¢=0.
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In the theory of the center manifold reduction it requires that the subspace functions

p(s) and ¢(¢) satisfy the inner product:

<qp>=q0p0) + [ 7€ +v)Ryp(€)de . (2.12)

ot

The 'overline' stands for the complex conjugation. Since X;(¢) must be finite, it is
necessary to introduce a normalization condition such that < ¢,p >=1 and < ¢,p >= 0.
These inner products make it possible to define the values of the subspace functions
p(s) and ¢(s). These functions determined, the next step is to decompose X into two
components: the first one o(t)p(s) + o(t)p(s) resting on the central subspace and the
second u,(<) transverse to the center subspace is the infinite-dimensional component and
satisfies < p,u >= 0 and < p,u >= 0. Hence,
Xi(s) = o(t)p(s) + e(t)p(s) + ui(s) (2.13)
Substituting equation (2.13) into equation (2.8) and using the inner products yields a
first order differential equation satisfied by ¢. To solve this differential equation we must

take the solution in the form:

o(t) = z + knz® + k1922 + ki32° (2.14)

This equation (2.14), as a solution form, replaced into equation (2.8) and the secular
terms eliminated, we proceed by identifying the coefficients k1, k1, and k3. The remaining
non-secular terms will constitute the complex normal form of the system and will be given
in differential equation satisfied by 2 (2 & iwyz). The variable z is linked to the complex
amplitude of the limit-cycle oscillations by the relation: z(#) = A(t)e™#* which replaced
in the differential equation satisfied by Z will allow to have the complex normal form of

the amplitude of the signal of the system:

where y; and Y2 are complex coefficients resulting from the various developments. The
solution of the Eq. (2.15), can be taken as A = a(t)e*#'. This solution form allow to have a
first order differential equations in term of a and . These differential equations satisfied
by a and ¢ will be used to know the fixed points of the system and we can analyze their
stability. This last step makes it possible to have the amplitude a and the frequency ¢ of
the limit-cycle oscillations analytically by using the method of center-manifold reduction

of the normal form.
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2.2.3 Intensity modulation by using the laser diode in an OEO:
the limit of the low pumps of the laser diode
In this part, we are interested in the electrical-optical conversion in the limit of the low

pumps of the laser diode [66]. Figure 2.1 permits to see different currents which feed the

laser diode.

Fiber Delay Line

Figure 2.1: Experimental setup of direct modulation of the OEO. LD: laser diode, PD:
photodiode, BPF: band pass filter, G: voltage variable attenuato [66].

The power of the signal from the laser P(t) is a function of the current from the
filter(/rr) and the bias current (I,,). These two electric currents allow us to have a
threshold current (Iy,):

Lip = Ipoy + IRp (2.16)

The power of the signal from the laser P(#) is a nonlinear function which is defined

by the transfer function:

P(t) = { 0 Jorler(t) < Io
”[IRF(t) - IO] fOT IHf(t) = I():

The parameter ;1 = nzhv is the laser conversion slope with 7, as the quantum efficiency,

(2.17)

h the Planck constant, and v the laser carrier frequency. The experimental value of the
parameter g in this thesis is g = 0.21W/A. In equation(2.17), Iy = Iy, — I,,. Taking into
account the time-delay experienced by the optical signal during its flow inside the delay
line, the voltage provided by the photodiode is related to such retarded optical signal as

follows:

Vin = KSP(t — Tp), (2.18)

where K is a dimensional factor standing for the overall losses (electrical and optical) in
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the feedback loop. This voltage will be use as input of the CNBPF.

2.3 Numerical methods

The mathematical treatment of some nonlinear that describe physical systems is not
always easy. The analytical method which passes by the study of the stability of the fixed
points allows us just to approximate the dynamic behavior of the optoelectronic systems.
This assessment is not always satisfactory, that is why we also request numerical approx-
imations for a better analysis of the system or confirmation of the analytical study. In
this work, the systems are described by ordinary differential equations (ODE), differen-
tial equations with time-delay (DET), and nonlinear algebraic equations which lead to
some developments. In order to have more information on the dynamical behaviour of
the systems obtained in this work, one something needs numerical methods such as the
Runge-Kutta methods for the ODEs and the DETs [101], and the bisection method for

the nonlinear algebraic equations.

2.3.1 Runge-Kutta Methods
2.3.1.1 ODEs case

The Runge-Kutta method was first developed by the German mathematician C. Runge in
1894 and improved by M. W. Kutta in 1901. It is one of the most widely used numerical
simulation algorithms for solving ordinary differential equations and differential equations
with time-delay. This method is popular because it is a more stable and efficient numerical
method [101,102]. Runge-Kutta method behaves three orders knowing: the second-order
(RK2), the third-order (RK3) and the fourth-order (RK4). The method used here is the
fourth order Runge-Kutta method. Consider a physical system described by the first-order

ordinary differential equation:

with the initial condition y(ty) = yp. Using Runge-Kutta’s method for solving the equa-
tion, we can approximate the numerical solution. the solution y;4; = y(t + h) is giving

by (2.20) where h is the integration step.

1 . . n
Yir1 = Ui + é(Kl + 2K, + 2K3 + K,) + O(h®) (2.20)
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where the terms K, 534 are given by:

Ki = hf(ty)

Ky = hf(t+h/2,y+ K1/2)

Ks = hf(t+h/2,y+ Ka2/2) (2.21)
Ky = hf(t+h,y+ K3).

The choice of initial condition ¥, is important. This choice is decisive in order to be
able to calculate the other values. In the case of an integro-differential equation in the

form

i = () +a [ yls)ds (2:22)

with initial condition y(ty) = yo , where a is a parameter that does not depend on t and
on y, we decompose this equation into two ordinary differential equations by setting a

new variable

u = ay(t)
y = f(t,y) +au=g(t y,u) (2.23)

where ¢(t,y,u) is the new function. Consider that z(¢,y) = ay(t), the solution of that
equation will be given by the Runge-Kutta method’s:

1 -
Uir1 = Uy + E(Ll + 2L2 + 2L’3 + L,i) + O(ha) (224)

1
'yi-i—l = Ui + 6(!(1 4+ 2K2 + 2}'{3 + K4) + O(hs) 5 (225)
where the terms K534 and the terms L, 34 are given by:

Ky = hg(t,y,u)

Ky, = hg(t+h/2,y+ K /2,u+ L,/2)

Ks = hg(t+h/2,y+ K2/2,u+ Ly/2)

Ky = hg(t+hy+ K u+ Ly) (2.26)
Li = hz(t,y)

Ly, = hz(t+h/2,y+ K,/2)

Ly = hz(t+h/2,y+ K3/2)

Ly = hz(t+h,y+ K3).

The software used here to perform this scientific calculation is Fortran 90 and Matlab.
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2.3.1.2 DETs case

For solving differential equations with time-delay, the most stable and suitable numeri-
cal solving method is the second order Runge-Kutta method (RK2). Let us consider a

differential equation with delay given by:

= fit.alt)wl—=T), (2.27)

with t € [-T,0[, T as time-delay. The initial condition is a constant function in a
r
h
integration, the solution of that equation is given by:

finite interval. Considering Ny = 1 and ¢t = ih where i is an integer and h is the step of

1
Xiy1 =X+ §(k1 + k) + O(R?), (2.28)

with

ki = hf(ih,X(i), X(i — Nr))
ke = hf((i+05)hX(0)+ ki, X(i = Nr+1)), (2.20)

which are the second order Runge-Kutta coefficients with delay.

2.3.2 Bisection method for solving nonlinear algebraic equations

The search for fixed points in this thesis has generated nonlinear equations for which it

was important to find the roots. To determine the roots of the function f(z) we solve:
f(z) =0. (2.30)

When f(z) is a polynomial function that does not correspond to a known form, the
bisection method can be used. It consists of dividing the search interval into two equal
parts and this repeatedly, until the width of the interval is comparable to the desired
precision € on the position of root. Consider f as a monotonic function on the interval
[z0; Y] such as f(zo)f(yo) < 0; there is one and only one solution or root included in this
interval.

The resolution algorithm is as follows: We calculate first f(23) and verified:

o if f(£F*)f(z() < 0. we define a new framing of the root by the couple (z1,y;):

T1 =9 et Yy, = L —;_ % (2.31)
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o if f(£2F#®)f(x0) > 0. we define a new framing of the root by the couple (z,;):

Y1 = Iy et r = o —;_ Yo . (2.32)

After several iterations, we obtain a sequence of couples (z,,¥,) such that the desired

precision e,, = y,, — x,, verifies the relation:

€En )
Entl = ? (233)

where ¢y = #5*. the tolerance e which represents the precision to which we want to

obtain the root permits to calculate the number of iterations n to be carried out yields:

n =In (M) (2.34)

€

The choice of the precision requires some precautions.

2.4 Presentation of the experimental device

The goal is to present the material used in the experimental study of the optoelectronic
oscillator in this thesis. The overall experimental device used is shown in Figure 2.2. It

is made up of many components which the description is made here.

(e) MZmM

Laser diode Delay li
ISer dio : F .I ine PD
Optical part | 0
Vi Ve
= CNBPF
scilloscope
n NN Amp Vs _| .o
MYRYE == R
LA Mc Vout ] \/i

Electronic part

(b)

Figure 2.2: (a) Experimental setup of cubic-nonlinear optoelectronic oscillator. (b) In-
ner structure of the nonlinear capacitor [68,69]. PC: Polarization Controller; MZM:
MachZehnder Modulator; Vg is the offset phase control voltage; PD: Photodiode; CNBPF:
Cubic-Nonlinear Band-Pass Filter; VS: Voltage Subtractor; Amp: RF amplifier; MC: Mi-
crowave Coupler.L = 0.1mH, r = 30012, C; = 270 pF, Cy; = 9.15nF

The experimental devices in the laboratory is presented in Figure2.3.
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Oscilloscope

Figure 2.3: Experimental devices in the laboratory. One can identify different components
cited in the text.

2.4.1 Cubic-nonlinear band-pass filter (CNBPF)

The CNBPF is implemented using two capacitors C} 2, two resistors (r, R), an opera-
tional amplifier U (type LF356), a mixed assembly of eight simple junction diodes (type
IN400X), and one coil L. The thermal voltage of these junction diodes is Vy = 25 mV/,
the number of junction diodes in series is n = 4, and the inverse saturation current is

I, =5 pA. The goal of this part is to present each component.

2.4.1.1 Operational amplifiers (OPAMP) and operations using OPAMP

a) Operational amplifiers (OPAMP)

The operational amplifier is a fundamental element present in a very large number
of electronic devices. It is an electronic amplifier which strongly amplifies an electrical
potential difference present at its inputs. We use the LF356 series to realize the design of
the CNBPF. It has eight pins and each of the eight pins is a small electric wire. Its symbol
is shown in Figure 2.4. The pin marked NC is useless: NC means "Not Connected'. Figure
2.5 is the electronic diagram of an OPAMP.

LF356

-

Figure 2.4: Operational amplifier LF356N.
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+Vee

Analogue
Inputs

i-e

Figure 2.5: Electronic diagram of an OPAMP.

The way that the operational amplification is associated with resistors and capacitors
it can perform many mathematical operations such as inversion, summation, derivation,

and integration of the input signal.
b) Operations using OPAMPs

The association of the resistors and capacitor to the operational amplifier gives the

following mini circuits presented in Figure 2.6, which have well defined roles.

c1

o 2

A
R
¥, e—Arn—i :]-‘> v -—-'\RA‘.I'\,—L.
iy . -
-

Figure 2.6: Some basic operations using OPAMP: (a) integrator; (b) inverter amplifier;
(¢) summator; (d) subtractor.

- The integrator: it is realized thanks to an OPAMP associated with a resistor and a
capacitor. The circuit of an integrator is shown in Figure2.6, where R; is resistance,
C, the capacity, V. the input voltage and Vg the output voltage. No current enters
in OPAMP which is considered as ideal. The expression of the voltage is given as

follow:

1

Vo
*= 7RG,

[ Vet (2.35)
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- The voltage inverter amplifier: it is a voltage amplifier which takes any signal
at the input and invert it at the output. The expression of the voltage is given

below:

R
Ve = -2V, (2.36)

Ry
Other operations are analog summators and subtractors whose role is to sum and subtract
the input voltages respectively. The expressions of their output voltages are given by

equations. (2.37) and (2.38) below:

Vi.oV.W.

v/ S, - 4 WL SR
s RR1+R2+R3

(2.37)

(Rl = R4) R2 Rq
Vo ——W, 2.38
Ri (Bs+Ry) X R 2:5)

To constitute the CNBPF, we use only the subtractors.

Vs =

2.4.1.2 Resistors and capacitors.

To model the nonlinear filter (CNBPF), we also used some resistors and some capacitors.

These electrical components are shown in Figure 2.7.

(a) (b)

Figure 2.7: (a) Resistors and (b) Capacitors.

The role of the resistor is to limit the intensity of the electric current in a circuit. It
is a passive dipole. A capacitor, meanwhile, smooths and stabilizes power supplies, filters
and absorbs certain parasitic signals. It can increase the quality of signal transmission.
It can also store electricity to ensure or facilitate the starting of a circuit by yielding the

stored electricity.

2.4.1.3 Diodes and coils.

Diodes and coils are other elements that enter into the constitution of the CNBPF. They
are presented in Figure 2.8.
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Figure 2.8: (a) Coils and (b) diodes.

A diode is a semiconductor device that primarily acts as a one-way switch of current.
It allows current to flow easily in one direction, but severely restricts current from flowing
in the opposite direction. The induction coil on the other hand, is an element that stores
energy in the core in the form of a magnetic field, so it converts the energy of the electric
current into energy of the magnetic field or vice versa. A change in the current flowing
through the winding generates an electromotive force in the direction that counteracts

that change.

2.4.2 Stabilized DC power supply and Rigol oscilloscope.

In order to read information on the signal from the CN-OEQO, measurement equipment

was needed to carry out this experimental work. We can cite among others:

- a stabilized DC power supply (PS2303) with two variable outputs (0-30 V) and a
fixed output of 12 V (see Figure2.9(a)), used to bias our electronic components that
are the OPAMPs;

- a Rigol oscilloscope of type DS1102E, of bandwidth 100 MHz (see Figure2.9(b))
which allowed us to visualize the different signals from the CN-OEO when the value

of the feedback gain was varied.

(a)

Figure 2.9: Some additional materials used: (a) DC power supply; (b) Rigol oscilloscope.
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2.4.3 Laser diode.

In the feedback loop that constitutes the simplified CN-OEQO, we encounter the laser
diode. Tt is a semiconductor laser with distributed feedback (see Figure 2.10). The
optical power and wavelength of this laser is controlled by the electric currents. It emits a
monochromatic beam in the infrared range, with a rectilinear polarization and wavelength
A = 1550 nm. Improper handling of the diode can easily damage it. It is important to
point out that during certain manipulations, in order to control the power supply of the
laser diodes, the devices such as the "Laser Diode Controller" (reference: LDC 200 C)
and the "Temperature Controller" (reference: TED 200) control the injection current and

temperature. An example of laser diode is presented in Figure 2.10

Figure 2.10: Distributed feedback laser diode

The current-power characteristics determining the threshold of the laser used is given
by the Figure 2.11. The experimental threshold of the current of the distributed feedback

laser diode is approximative the same with the constructor one(10 mA)

P [mW]
B = o

0 10 20 30 50 60 70 80

40
I [mA]

Figure 2.11: The current-power characteristics of the laser.

2.4.4 Polarization controller

Another component that comes after the laser diode is a polarization controller shown in
Figure 2.12.
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Quater wave plate

Half wave plate

Figure 2.12: Polarization controller.

This device consists of three cascaded wave plates that can be turned manually. The
first quarter-wave plate is oriented to transform the incident elliptical polarization into
a linear polarization. The second half-wave plate transforms this linear polarization into
another linear polarization. The last quarter-wave plate transforms linear polarization

into elliptical polarization which is usable at the output.

2.4.5 Electro-optical modulator.

The modulation of the signal is done at the level of the Mach-Zehnder, which presents
a cos? nonlinearity. This Mach-Zehnder is made with the Lithium Niobate LiNO3; and
is based architecture composed of two head-to-tail "Y" junctions linked together by two
straight guides which constitute the arms of the interferometer. A relative phase shift
result between the arms of the Mach-Zehnder. The internal structure of Mach-Zehnder
modulator is shown in Figure 2.13. The Mach-Zehnder (MZ) interferometer has two
separate electrodes including the bias or DC electrode and the RF electrode for wave
modulation. The MZ modulator is characterized by its static transfer function with gave
the output optical power Pout as a function of the voltage V (t) applied to the electrodes.
If Pin is the optical power input of the Mach-Zehnder, his relation with the output is

giving by:

TV (t)
ZV‘}TR.F

Paut — Rn COSQ [ + 99‘| 5 (239)
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input

Figure 2.13: (a) Electro-optical modulator integrating phase modulation, (b) MachZehn-
der image.

where ¢ is the phase at the origin which is function of the voltage Vg applied to the
bias (DC electrode) and the half-wave voltage V.. pc at this electrode, according to:

B Vg
7T 2Vipe

(2.40)

Mach-Zehnder modulator can generate a high optical power and produces the wave
which can have more than 100 GHz frequency. They are more used in optical communi-

cation.

2.4.6 The optical fiber

The optical fiber is ideal for transmitting the optical information because it limits the
energy losses. This fiber create a time-delay in the feedback loop. The parts of this fiber

are indicated in Figure 2.14.

Plastic Buffer Outer Jacket

/

Glass Core ’

Figure 2.14: The structure of the optical fiber
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e The glass core: this zone is made with a glass with a refractive index n,. It allows

to guide the light which propagates along the fiber.

e The glass clading: this area is also made with a glass with a refractive index na # n;.
It surrounds the glass core to better confine the light thanks to the phenomenon of

total reflection.

e the protection: it is a mechanical protective coating generally in polyvinyl chloride

(PVC).

In this work, the wavelength of the laser used is A = 1550nm. The longer of the
fiber increases the time-delay. Indeed, the time-delay in the optical fiber is proportional
to the refractive index of the glass core nl, the length of the fiber used L, and inversely

proportional to the speed of light, according to:

T'e=— 2.41
. (2.41)
In order to avoid losses of light when the transmission is running, it is preferable to
use a long optical. This is the reason why we used a fiber of 656 meters in the CN-OEO.
Figure 2.15 presents the optical fiber uses in this these.

Delay line

Figure 2.15: Optical fibers used to constitute CN-OEO.

Note that for a roll of 656m is use in this these. The time-delay is Tp = 3.29us. the

optical fiber provides the link between the electrical-to-optical convertor and photodiode.

2.4.7 Photodiode

The optical output chain is made with a photodiode which permits the conversion froms
optical signal to electrical signal. The one we use in this work is the PDA10CF. It is an
amplifier detector InGaAs type. This detector can detect the signal which the wavelength
varying within 700 4ALS 1800 nm. His output impedance is 50Q for 5 V voltage. It is

presented in Figure 2.16
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Photodiode
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Figure 2.16: Optical fibers used to constitute CN-OEO.

The choice of this photodiode is motivated by the fact that his sensibility is near of 1
for the wavelength of the laser diode used in this thesis (A = 1550 nm). The intervention

of the photodiode in the optoelectronic oscillator’s equation remain of the sensibility.

2.5 Conclusion

The aim of this chapter was to present the experimental setup and devices of CN-OEQ,
the summary of the mathematical methods which make it possible to analyze the stability
of this oscillator by using the differential equations generated by the said oscillator. The
numerical methods which have made it possible to successfully explore the dynamics
of the CN-OEO was also presented. In the first part, analytical methods such as the
perturbation method to analyse the stability of the fixed points, the normal form reduction
and modulation of intensity by laser were presented. Then the numerical methods for the
simulation of DETs were presented. Finally, we have presented the electronic and optical
components necessary for the construction of CN-OEQ, as well as the equipment used
to build the devices. All of these methods (numerical and experimental) will be used in

Chapter 3 which is devoted to the presentation of the main results of this thesis.
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3.1 Introduction

We have specified in the previous chapters that the nature of the filter influences the
dynamics of the optoelectronic oscillator. The filter may be linear in response as it may be
nonlinear response. We have also specified that an intensity modulation can be achieved
by using a diode laser instead of a phase or amplitude modulator. In this chapter, we
will present and discuss the results obtained in our thesis. Section 3.2 will be devoted
to the study of the dynamics of the optoelectronic oscillator using a cubic nonlinear
bandpass filter (CNBPF) (CN-OEQ). In this part, we will present the experimental device
in order to establish the equation of the dynamics liking the parameters of the system.
Next, we will examine the influence of the control oscillator parameters on the stability
and the dynamics of the system. Section 3.3 will be reserved to the characterization
using the normal form of this delayed-system. This part addresses a deeper dynamical
characterization of that CN-OEQ in term of key parameters such as the strength of the
feedback gain, the time delay, the offset phase, and the cubic nonlinear term. Section
3.4 will perform the simplified benchmark of the CN-OEQO. We will show that as in the
simplest OEQO, the dynamic essentially exhibits limit cycle oscillation in two kinds: quasi-
sinusoidal and slow-fast oscillation but rather with higher frequency. Finally, Section 3.5

will be devoted to the conclusion.

3.2 Dynamics of an OEO which use the CNBPF

3.2.1 Model description and time-delayed model to investigate

the complex dynamical behavior

This section will be divided in three main parts. We will first introduce the model de-
scription, and secondly propose a time-delayed model to investigate its complex dynamical
behavior. In the last case, a description of the mathematical model of the oscillator high-

lighted will be presented.

3.2.1.1 Model description

The experimental setup of the cubic-nonlinear optoelectronic oscillator (CN-OEQ) is
presented in Figure 3.1 and described as follows: A polarized light of power P, de-
livered by a telecommunication continuous-wave laser diode (with a wavelength equal
AL =~ 1.55pm) is modulated with a Mach-Zehnder modulator (MZM) whose half-wave
voltages are Vygr = 3.8V and V,.pc = 5V. The modulated light is retarded with an opti-
cal delay line resulting in a time-delay equal to T, = 3.28us, before being converted to an
electrical signal with a photodiode (PD) of responsivity S = 4.75V/mW. The electrical

signal generated by the photodiode Vj, passes through a cubic-nonlinear band-pass filter
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(CNBPF) which outputs V,,; and in turn is suggested to an amplification before being
re-injected into the RF electrode of the MZM. It can be noticed that the CNBPF is made
of a resistor R, a coil L, and a nonlinear capacitor NC. This latter is constructed with
an operational amplifier U (type LF356), two capacitors C| 5, one resistor r, and a mixed
assembly of eight simple junction diodes (type IN400X) and whose characteristics are the
thermal voltage V3 = 25 mV, the inverse saturation current I, = 5 pA (see Figure 3.1
(b)). A picture of the whole experimental setup in the laboratory is displayed in Figure

3.2

MZIM

Delay line PD

Oscilloscope

\ ;’\Jf "

%

"

Figure 3.1: Experimental setup of cubic-nonlinear optoelectronic oscillator [?]. (b) inner
structure of the nonlinear capacitor [68,69]. PC: Polarization Controller; MZM: Mach-
Zehnder Modulator; Vi is the offset phase control voltage; PD: Photodiode; CNBPF:
Cubic-Nonlinear Band-Pass Filter; VS: Voltage Subtractor; Amp: RF amplifier; MC:
Microwave Coupler. L = 0.1 mH, r = 30012, C;, = 270pF, C5 = 9.15nF.

3.2.1.2 Time-delayed model to investigate the complex dynamical behavior

The electronic part of the oscillator consists of a CNBPF. Given V;,(t) the input voltage
of the CNBPF circuit, and Vu(t) the output voltage. The relation giving Vi, (t) according
to Vou(t) is established according to the Kirchhoff laws relating to the voltages.

The output voltage V., (t) of the CNBPF is related to the input V,(¢) by:
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Oscilloscope

MZIM

Purip from

the Laser L0
=T o

Figure 3.2: Experimental devices in the laboratory. One can identify different component
cited in the text.

L dVyu(t)
R dt
Vae(t) is the voltage yields to a nonlinear capacitor. The application of Kirchhoff

Vin(t) = + Vour () + Vre(?) - (3-1)

laws permits to evaluate the voltage across such a nonlinear capacitor which is a cubic-

polynomial of the charge

4= [ Vouls)ds (3.2)

of the series capacitor, and yields the relationship [68]:

1 ( 1 nVr nVr

t t 3
o) = & (g a6 L Vm‘t(”d”m(/o Vou(s)ds) (33

where t is the time.
Using equations. (3.3) and (3.1), and the usual closure relationships of broad bandpass
optoelectronic oscillators [21], the system presented in Figure 3.1(a) obeys the following

integro-differential delayed equation:

m—l—’rj—j—ké fot z(s)ds+n ([: z(s) ds)g = B{cos*[z(t — Tp) + ¢}, (3.4)

where x = 7V, (t)/2Vygrr is the dimensionless dynamical variable of the system. Accord-
ing to equation. (3.4), the cubic-nonlinear band-pass filter is characterized by three time

scales which are the high cut-off time 7, the low cut-off time #, and the nonlinearity time
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scale /1/n that are explicitly defined via

r = L/R (3.5)
= R[(1/Cy) — (nVr/2rL,Cy)] ™ (3.6)
n = nVaVie/ [1200RLCo)* (G . (3.7)

Therefore, adding the delay Tp confers to our CN-OEO a novel approach to imple-
ment a four-time scales OEQ. The other parameters are the normalized loop-gain 3 =
7kSGP,, 2V rr and the offset phase ¢ = 7V3/2V,pc. Throughout this thesis, except
the tunable parameters G and P,,, the values of other parameters are kept compatible
with the experimental set-up. They are set to L = 0.1 mH, R = 2.5 k2, » = 300 £,
C1 =270 pF, Cy =9.15 nF, and Tp = 3.29 pus.

In order to facilitate the dynamical analysis, it is preferable to recast equation (3.4)
under the form of a flow of first-order coupled delay differential equations. For this
purpose, we introduce the new variable

1 t
y=—=[ x(s)ds (3.8)
6 Jo

and the dimensionless time v = t/f. Equation (3.4) is then transformed into a slow-fast

system with z as the fast variable while y is the slow variable [10]:

d

55 = —z4y+py’+pPcos’(z, + 9] (3.9)
dy
Stk e —_T . ']'
dv ‘ .

The small quantity € = 7/ = 9.7 x 10~ is the cut-off times ratio, 0 = T /6 = 8 x 1072
represents the normalized delay so that =, = z(v — o) being the time-delay variable. The
parameter p = n6® = 6.4 x 10* stands for the cubic-nonlinear parameter.

In our case of study, the dynamics of the CN-OEO amounts to determining its dynamic
behavior under the effect of feedback gain [, the normalized time-delay v, and the cubic
nonlinear parameter 7. It is important to study the stability of the system by the method
of fixed points and bifurcations.

To determine the equilibrium points of the amplitude of the signal which comes from
the CN-OEOQO, we stand the points which represent amplitude to zero. Indeed, the equi-
librium point of the set of equations. (3.9) and (3.10) is (xg,yo) such as, zo = 0 and y,

being the real root of the third-order polynomial
PYa+yo+Bcos’ ¢ =0, (3.11)

which is nontrivial if 8 or ¢ is different from 0 or 7/2 (mod [27]), respectively. It is
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important to mention that g is real and unique since p and [ are positive quantities.

In order to study the stability of these fixed points, the perturbation method is used.
The process of this method yields a characteristic eigenvalue equation which solutions
being conjugate complexes. The stability of that equilibrium point can be investigated
through the eigenvalues equation

1
24

g (1—;—73_’\0) )\—i—é (1+3py§) =0, (312)

where v = [3sin(2¢) is the effective normalized gain. Limit-cycle oscillation might occur
through a Hopf bifurcation if the eigenvalues become pure imaginary values (A = +iw),
with w being the frequency of the corresponding limit-cycle which satisfies the following

transcendental equation
ew? +w tan(wo)— (1+3py§) =0, (3.13)
while the effective normalized gain ~ rather satisfies
v cos(wo) = —1. (3.14)

In the approximation of small delay (small o), the solutions of equations. (3.13) and (3.14)

computed with an excellent precision give

w = wway1+3pys, (3.15)

1 (14 3py5
vy = 14— —— . |
Y +2( T o (3.16)

Here,

wsd = 1/Ve+ao (3.17)

represents the frequency of the limit-cycle for the standard OEO, that is the one with a
linear band-pass filter that does not feature the cubic-term in equation. (3.4). We notice
that from equations. (3.15) and (3.17), it clearly appears that the frequency of the limit-
cycle oscillations of our CN-OEQ is greater than the one displayed by a standard OEO for
the same values of parameters. The numerical simulations and the experimentally ones

will allows us to confirm theses analytical results.
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3.2.2 Numerical and experimental simulations to approximate
the dynamics of CN-OEO

The first numerical simulation which allows us to explore the dynamics of the CN-OEOQ is
the Hopf bifurcation diagram. It permits to see the general behavior of the system as the
normalized feedback gain increases. The comparison of the CN-OEO and the standard
OEQ, shows that the threshold of the effective normalized gain is not considerably affected
by the cubic-nonlinear term since v ~ —1 as witnessed by the bifurcation diagram of
Figure 3.3 (a), showing the evolution of the amplitude as the effective normalized gain
increases. One can note that only fixed point, limit-cycles, and chaos are preserved.
Indeed, for |y| < 1, the fixed point zy = 0 dominates the dynamics of the system. From
|v| = 1, limit-cycle oscillations occur through a Hopf bifurcation and remain dominant
for a long range of |y|. When || is further increased, the limit-cycle disappears to give
place to chaos. These transitions are emphasized by the corresponding largest Lyapunov
exponent (Figure 3.3 (b)) defined as

_ e 1o | [62(2)]

with §z(t) being a linear perturbation of the system [57]. The Lyapunov exponent A is
known to be a positive quantity for chaotic behavior and negative or zero otherwise. It is
shown from both figures that the bifurcation diagram and the largest Lyapunov exponent

indicate the same window of dynamical behaviors for the chosen parameters.

3

-3 L L L
005 115 2 25 3 35
|l

Figure 3.3: (Color online) (a) Bifurcation diagram depicting the Hopf bifurcation routes
to chaos. (b) Largest Lyapunov exponent A.
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Another comparison between standard OEO and CN-OEOQO which is presented in the
bifurcation diagram, is to notice that for the chosen parameters, mixed-mode oscillations
also known as breathers are missed in our CN-OEO [10,57]. The theory of breathers
in OEO has been investigated through the geometric singular perturbation theory (see
[84] and Refs. therein) and it is well known that the standard wide-band OEO displays
breathers while routing to chaos [10]. To gain insight into their control in our system, it is
necessary to analyze the case where only the cubic-term is canceled in equation. (3.4). The
result presented in Figure 3.4 (a) testifies the presence of breathers which are manifested
by damped oscillations around the attractive branches of the invariant critical manifold
of the system, while they do not occur when the cubic-term is considered (Figure 3.4 (b)).

Indeed, the invariant critical manifolds are those static S-shaped curves of Figures 3.4

(a) and (b) defined in the (z—y) plane by setting edz/dv = 0 in equation. (3.9); That is:
py’+y= z—B{cos’[z, + ¢]} . (3.19)

Each invariant critical manifold is characterized by two fold points x; and z, which are

solutions of dy/dz = 0, yielding

T 1 el X . ‘

B = —p + 5 arcsin (B) — 0, (3.20)
1 ; 1

Ty = —garcsin (5) —0. (3.21)

These critical points are marked with large dots and subdivide each invariant critical
manifold into three branches, two of which are attractive (solid lines) and one is repulsive
(dotted line) (see Figure 3.4).

The slow-fast oscillations recorded in OEO result from alternate passages of its tra-
jectory from one attractive branch to another and thanks to the acceleration it undergoes
when this trajectory enters the zone of the repulsive branch. Indeed, a point of the tra-
jectory taken near the fold point is accelerated by the repulsive branch towards the other
attractive branch which is not attached to that fold point. The influence of the repulsive
branch on the trajectory can not dwell infinitely. It ceases when the speed cancels out
(dz/dv — 0 in dynamic mode). In the phase plane, this corresponds to dz/dy = 0, with
o # 0 and are marked by points a; and a; of Figure (a), and b; and by of Figure 3.4 (b).
We will refer them as the first notches. The positioning of these first notches is crucial
for the appearance of breathers: if the first notch (for example a,) is quite far from the
attractive branch, the attraction imposed by the branch on the trajectory is manifested
through damped oscillations around the branch, and the trajectory ended up alongside
it. The damped oscillations give rise to other notches (see Figure 3.4 (a)). In the time

domain, this phenomenology is known as breathers. On the contrary, if the first notch
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(for example b;) occurs very close to the attractive branch, then the trajectory fully or
asymptotically meet this attractive branch while evolving towards the fold static point
(for example z,) where the acceleration of the repulsive branch takes the relay and the
cycle starts again. Therefore, the system will not display breathers, and in this regard,
the dynamics of this system significantly differs from the multiscale oscillations that can

be observed in other architectures of OEOs (see for example [17,19,57]).

az

= -1

aj

-15
& —2p(0) bo
Lo
X =25
= K
i 0 1

Figure 3.4: (Color online) Projections in the (z—y) plane of the trajectories (solid red
(or black)) of: (a) the standard OEO (i.e. without cubic-term in equation. (3.9)) and
(b) the cubic-nonlinear OEO. The time trace of Figure 3.4 (b) is given in Figure 3.6 (d).
The dashed and solid greys are the instable and stable branches of the invariant critical
manifold, respectively. The invariant critical manifolds are plotted for ¢ — 0 [12]. In
both figures, |y| = 1.9 and ¢ = —7 /4.

Time traces permits to highlight the dynamic of the oscillator. First, we will see the
comportment near the Hopf bifurcation, doing a comparison between the standard OEO
and the CN-OEQ. Taking the case of |y| = 1.01 and ¢ = —7 /4, the frequency increasing
factor y/1 + 3py2 ~ 4, Figure 3.5 validates the increase of the frequency of the CN-OEQ,
as well as its amplitude, comparatively to the standard OEQO. That increase of frequency

dwells for all values of the gain.
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Figure 3.5: (Color online) Timetraces of the amplitude of the cubic-nonlinear OEQO (blue
or black) versus the standard OEO (grey). |y| = 1.01 and ¢ = —m/4. A noticeable effect
of the nonlinearity is to increase the frequency of the limit-cycle induced by the primary
Hopf bifurcation..

The bifurcation diagram also showed that the amplitude of the signal would increases
os the normalized feedback gain increased, and the route to chaos across through a limit-
cycle. The time traces at different levels of the bifurcation diagram reveals that close
to the Hopf bifurcation, the system displays harmonic oscillations (Figures 3.6 (a) and
(b)). But, as |y| increases, harmonic oscillations are replaced by relaxation limit-cycles
demonstrating the alternation between the slow and the fast transitions as the time evolves
(Figures 3.6 (c) and (d)). For very large values of |y| time traces of Figures 3.6 (e) and
(f) illustrate the chaotic behavior of the system.
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Figure 3.6: (Color online) Experimental and numerical timetraces demonstrating the
dynamical evolutions of the system as the gain increases. ¢ = —m/4. From top to
bottom: - for experimental curves, P, is progressively 6.51 mW, 7 mW, and 7.8 mW; -
for the numerical ones, 3 is equal to 1.1, 1.9, and 3.

Our CN-OEOQO can operate either narrow-band or wide-band. It can displays or not
a breathers. Indeed, when we take 17 = 0 the oscillator run with the same dynamic with
the standard one. It means that our CN-OEQ is more versatile that the standard one.
After theses general observations, it is time to characterize that CN-OEO through some

keys parameters of the system.

3.3 Characterization in term of keys parameters of

the system of the CN-OEO

This part addresses a deeper dynamical characterization of the CN-OEQO in terms of
key parameters such as the strength of the feedback gain, the time-delay, the offset phase,
and the cubic-nonlinear term. To this end, this part will be subdivided into four parts.
The first one is the stability analysis of fixed points in term of keys parameters, the second
part addresses to the bifurcation analysis of the CN-OEQ, third part presents the normal
form analysis which help to study the properties of the system (amplitude, frequency),
and the last part deals with the effect of the cubic-nonlinear term on oscillation condition

of the system.

Doctorate Thesis/PhD Juliette Stévia Deumi Kamaha Year 2024



3.3. CHARACTERIZATION IN TERM OF KEYS PARAMETERS OF THE
SYSTEM OF THE CN-OEO 62

3.3.1 Stability analysis of fixed points in term of keys parame-

ters

To perform this analysis, we consider equation. (3.4) and rewrite it considering the fol-

lowing rescaling v = -{1{-1 z(t—v) =m,, y =L 2(s)ds, e = Z, and n = pr®. The

- 7 ]

equation. (3.4) can be rewritten under the form of the following flow:

& = —z—ey—ny’+ Bcos’[zr, + ¢ (3.22)
y = =, (3.23)

where the "overdot" stands for the derivation according the dimensionless time t = tT—' In

the previous section, it was shown that the fixed point (x4, y,) of the system is such that

[?]:

Ty = 0 (3.24)

_. - Y

Yy + —Ys = —cos" @ (3.25)
n n

The stability analysis of the fixed point shows that limit-cycle oscillation of frequency
w,, might occur through a Hopf bifurcation at v, (with v = Ssin(2¢) being the effective
feedback gain and v, = 3, sin(2¢) its value at the Hopf bifurcation point) if and only if

w, and 7, fulfill the following transcendental equations:

1+7ycosw,y = 0 (3.26)
_wi =2 (E & 37?’9‘57:) +ywy sinw,v = 0, (327)

After some mathematical investigations, equations. (3.26) and (3.27) can be approximated

with a third-order precision as:

3 [—1+/1+ 2v(e+3ny?) ‘
LU'H — J 5 VQ (3.28)
2 .2 4 4
L, wgyt | wyy ‘
o = 1 2 + IR (3.29)

Theses last equations allows us to say that the frequency of the system decreases with the
normalized time-delay v, and increases with the cubic nonlinear parameter n. This Hopf
bifurcation point marks the beginning of oscillations in the system that evolve until the

chaotic dynamics as it is developed in the next section.

3.3.2 Bifurcation analysis of the CN-OEQO: Route to chaos

In the previous section, the equation (3.29) predict that a Hopf bifurcation for |y| ~ 1.
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Figure 3.7: (a) A point-by-point recorded of the experimental bifurcation diagram. (b) the
numerical bifurcation diagram and (c) the corresponding maximum Lyapunov exponent.
One can note the qualitative agreement between the experimental and numerical curves.
The value of 7 calculated using the experimental values of components is = 9.809 x 1072,

0=

The bifurcation diagrams of Figures 3.7 (a,b) effectively unveils a Hopf bifurcation at
|7| = 1 as predicted by equation (3.29). Just above 2.5, Chaos arises in the system as
confirmed by the plot of the maximum Lyapunov exponent of Figure 3.7 (¢). It is also
important to note that in the region of limit-cycle oscillations, the amplitude globally
grows with the feedback gain. More precisely, it is a stepped bifurcation characterized
by amplitude jump phenomenon at some specific values of the feedback gain but not
regularly spaced (|| =~ 1.379, |y| ~ 1.797, and |y| ~ 2.28).

The first region where the amplitude jump phenomenon occurs is highlighted in Figure
3.8 (the case for |y| ~ 1.379). As it can be seen, around that region, the amplitude
first undergoes a progressive increase and suddenly decreases before starting to gradually
increase again. Before and after the fall of amplitude, the periods of oscillations of the
system for two neighboring values of || are very close. For instance, for two points taken
before the jump, we noticed that 7' = 3.288x 10 "s when |y| = 1.378 and T' = 3.278x10~ s
when |y| = 1.379. After the jump, T'= 3 x 10~"s when |y| = 1.38 and 7' = 2.981 x 10~ s
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when |y| = 1.381. One can immediately observed that the period globally decreases as the

effective feedback gain increases. For very close values of the effective feedback gain, and at
the neighborhood of the jump, there is an important variation of the period of oscillation
compared to closer points at each size. Indeed, when v = 1.379, T = 3.278 x 107 's
and when |y| = 1.38, T = 3 x 10~ 7s; the variation of the period in this interval gives
AT = 2.78 x 107 8s for just a light change in the effective feedback gain equal to 0.001.

Then, the amplitude drop is accompanied by a large variation of the period of limit-
cycle oscillation. Moreover, this phenomenon unveils that two limit-cycle oscillations with
the same amplitude can evolve with different periods. An example is the case of two limit-
cycles (one obtained at |y| = 1.365 and the other at |y| = 1.397) which oscillate with the
periods (T = 3.27 x 10~ s and T = 3.278 x 10~ "s, respectively) but with same amplitude
x ~ 0.782. It was noticed that this behavior is globally the same for the other jumps
point apart from the fact that the variation of the periods are not the same, however,
gradually decreases as the effective feedback gain increases. Indeed, for the second and
the third points of jump phenomenon |y| ~ 1.797 and |y| ~ 2.28, the variations are
AT =228 x 1078 and AT = 1.98 x 10~ 8s, respectively.

0.8

0.78 |+*°

Amplitude

iy
0 ?.36 1.38 1.40

Figure 3.8: (Observation of one step of the bifurcation curve when g = 1.379.

The phase portrait allows us to understand the dynamics of the CN-OEQO. Indeed, the
limit-cycle oscillation dominates until |y| close to 2.5 (see Figures 3.9 (a),(d)). A time
trace of chaotic dynamics and the corresponding phase portrait are shown in Figures.
3.9 (¢),(f). The transition from limit-cycle to chaos occurs exactly at |y| = 2.5 and
the system displays a crenelated oscillation (see Figures. 3.9 (b),(e)). This crenelated
oscillation is similar to the one obtained by Weicker et al. with a standard OEQO featuring
a phase modulator in the nonlinear transfer function and two time-delays in the feedback
loop [17]. The crenelated oscillation displays two type of dynamics: the slow dynamics
characterized by square oscillations of the plateau and the fast dynamics representing the

fast oscillations inside the plateau.
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Figure 3.9: (Time traces and phase portraits ( for ¢ = =F, and n = 9.809360 x 107°) of

the system at different levels of the bifurcation diagram..|'y| = 1.1 (a) and (d), |y| = 2.5
(b) and (e), and |y| = 3.0 (c¢) and (f).

From this bifurcation analysis it is noticeable that two main dynamics are dominant in
the CN-OEQ: the limit-cycle and chaos oscillations. The analytical analysis of Chaos re-
main a great challenge whereas recently, it was demonstrated that limit-cycle in inherent-
infinite dimensional systems such the standard OEO can be analytically characterized in
terms of their amplitude and frequency using the method of the normal form [12]. In the

next section, that method of the normal form will be applied on our CN-OEO.

3.3.3 Characterization of limit-cycle oscillation by using the Nor-

mal form

The literature proposes several approaches to analyze the nature of Hopf bifurcation of
retarded systems including integral averaging, the Freehold alternative, the implicit func-
tion theorem, the method of multiple scales and the center-manifold reduction [95]. In
this thesis, we choose the method of center manifold reduction since it has been success-
fully used to characterize standard OEO [12] and other time delayed systems [95-98]. It
stipulates that the long-time dynamics of a system can be reduced to the dynamics on its
center manifold. Also, it is a rigorous mathematical technique that makes this reduction
possible, at least near the Hopf bifurcation point (see [99]).

Before the Hopf bifurcation point, the dynamics of the system is ruled by the trivial
steady state of the variable z, = 0 (see Figure 3.7). Moreover, around that Hopf bifurca-
tion point the relative gain 6 = v—+, = (58—, ) sin 2¢ is considered as a small parameter
(6 < 1). Therefore, in the neighborhood of the Hopf bifurcation point, a Taylor expansion
around z and 0 can be carried out so that equations. (3.22) and (3.23) transform into a
linear (£LX + RX,) and nonlinear (F(X,)) part as follows:
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T = —zr—ey—ny — Blr,sin2¢+ x, cos2¢p — 3% sin 20| (3.30)

y = X (3.31)

Let us introduce the vector matrix X = (7). For mathematical convenience and

without loss of generality, equations. (3.30) and (??) can be separated into a linear (£X +
RX,) and nonlinear (F(X,)) part as follows [12]:

X =LX +RX,+F(X,), (3.32)

with X = (3) being the vector matrix of the variable of the system, and

1 —¢ |
L= 3.33
l { © (3.33)

and .
R=| 0 (3.34)

0 0 _

are the 2 x 2 matrices. F is a column vector defined as:
=0z, — ny® — ay i + 2y, 2]
ny F}H v 3’}(}1 v (3'35)

F(Xy) = ( 6

In equation (3.35), a = [tan(2¢)]"!. Since equation. (3.32) is a delay-differential
equation, computing this equation requires to consider the time intervals in the past
([~v,0]) and after the time origin ([0, +00[). Let us refer as @ the time within the interval
[—v,0] and maintain the notation of time ¢ within [0, +oo[. Then, equation (3.32) can be

written as a step equation:

dXt (g)

dt = AXt(r;) 2 g(Xt(e)): (3.36)

where Xy ) = X(t + <) is a portion of the solution trajectory in the recent past. A is
the linear operator with pure imaginary eigenvalue iw, of the Hopf bifurcation point. A

transforms a center subspace function p(6) as follows:

Ap(s) = iwyp(s)
dp(s) —v<¢<
_ T for —v<¢<0 (3.37)
Lp(0) + Rp(—v) for ¢=0.

It is known that when iw,, is an eigenvalue of the Hopf bifurcation, its complex conjugate
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—iw,, is also an eigenvalue. Thus, to take into account both eigenvalues, we define the

adjoint operator of A, call A* which also acts on another subspace function ¢(¢) as:

A*q(s) = —iwgq(s)
dq(<) :
_ —‘2}—: for 0<¢<v (3.38)
L*q(0) + R*q(v) for ¢=0,

where £* and R* are the adjoint of the operators £ and R, respectively. In equation (3.36),

the expression of the vector G is:

0 for —v<¢<0
G — { or —v<¢< (3.39)

F for ¢=0.

In the theory of the center manifold reduction it requires that the subspace functions

p(s) and ¢(s) satisfy the inner product:

<qp>=q0)p(0) + [ ale +v)Rip(E)ie, (3.40)

The 'overline' stands for the complex conjugation. Since X;(¢) must be finite, it is
necessary to introduce a normalization condition such that < ¢,p >= 1 and < ¢,p >=
0. These inner products lead to the following solutions of equations (3.37) and (3.38),

respectively:
Wy o T 1 it o € ‘
p(s) = (i) e H;q(c)=b( . ) s (3.41)
—iefw,
where b is a complex-valued parameter defined as follows:

b=[1-2iw, +7,(1+iw,v)e“s] ™. (3.42)

The next step consists to use the center subspace to decompose the trajectory X(<)
into two components: the first one y(¢)p(s) + §(¢)p(s) lying in the center subspace; the
second one (<) transverse to the center subspace is the infinite-dimensional component

and satisfies < p,u >= 0 and < p,u >= 0. Hence,

Xi(S) = n(t)p(s) + 9()p(<) + ue(<) (3.43)

Substituting this last equation into equation 3.36 and using the inner products yield that
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1(t) satisfies the following first-order differential equation:

§(t) = iwyy — by — 3nby’n — by, a(Ay + Ap)®
~2ib(1, @A) Az A — T h + 2w, Te™ ]y
‘1‘25’71{ )\2)\1]26 + NRT (344)

N RT represents the non-resonant terms of the equation and the "overdot" represents the

differentiation with respect to time. The complex coefficients A and I' are explicitly given

by:

A =iw, e “n , (3.45)

I = [4w? — e —2iw, (1 + 7 e 2")]™ (3.46)
Now introducing the near-identity transformation
l](t) =z+ k1122 + klgzé + k'1322 (347)

into equation 3.44 and eliminating the secular terms yields:

ki = %), (3.48)
kyg = —ou® )2 (3.50)

The non-secular terms that remain constitute the complex normal form of the system
given by:

2 = iwz — 6bAz — 3nb22Z + by, N2 A2 — diwy, o’Te2"]2%2 (3.51)
where the coefficient

o = [tan(20)] ", (3.52)

and § = v — v, is the relative effective feedback gain. The "overline' stands for the
complex conjugation. In the first approximation, the variable z is related to the complex
amplitude of limit-cycle oscillation by z(t) = A(t)e™s' which, replaced in Eq. 3.51 leads

to the complex normal form of the amplitude:
A=—6MA+ NA2A, (3.53)

where the coefficients A; and A, have the following expressions:

—le v

_ iwye 9
B = [142iw g+ (1—iwy v)e “HY . (3.54)

Ay = 2y, w2 Ay[1 — 2iw, 7y, 0Te™*“u"] — 3nA, /A (3.55)
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Equation (3.53) is a complex equation whose solution can be approximated in the form of
A = a(t)e’®) that will allow us to study the evolution of the amplitude and the frequency
around the Hopf bifurcation. Replacing A in Eq. (3.53) yields:

i@ = —0Ay,a + Aypa® (3.56)
Y =—0Au + AQiQZ, (357)
with A, and Ay; being the real and the imaginary parts of A, respectively. Similarly,

A, and Ay; are also the real and the imaginary parts of A,, respectively.

The equilibrium points of equation (3.56) are:

g =0 (3.58)
oy, = /e, (3.59)
ity = T, (3.60)

which are defined if and only if Ay, # 0 and % > (. The stability condition of the

trivial(ay,) and the non trivial (ay, ,) states depends on the sign of the multiplicities
Astg = —0A;, (3.61)

and

Astra = 26A1, (3.62)

, respectively. Equation (3.57) reveals that the dynamics of the phase is directly related
to the one of the amplitude. The phase is defined for amplitudes different from zero.
Indeed, for a = ay9 = 0, A(t) = 0 and 2(¢) = 0; There are no oscillations in the system.

For a = ay, ,. the solution of equation (3.57) yields:
@ = 0kt + ¢y , (3.63)

where py being the reference phase which is arbitrarily set to zero if needed and k =
Mlﬁ—;—:ﬁ*—% being a coefficient. The stability of the phase is satisfied if & = 0 which
corresponds to Aj,Ag; = ApiAs,.

Beyond the Hopf bifurcation point, the system undergoes the limit-cycle oscillations.
From what precedes, it can be demonstrated that the amplitude and the frequency of
such limit-cycle oscillations can be explicitly defined as a function of the relative effective

feedback gain 6 = v — v, following:

a = 2w,/(7 = 7) 32 (3.64)

gy = o+ (3 = ) D=t (3.65)
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Figure 3.10: Variation of the amplitude versus the effective feedback gain |y|. The analyti-
cal curve (solid line) is obtained from equation (3.64), while the numerical curve (black cir-
cles) is plotted using equations (3.22) and (3.23). ¢ = —%, y« = 14.6, 7 = 9.809360x 107,
and ¢ = .

The Figure 3.10 shows the variation of the amplitude when the gain is increased be-
yond the Hopf bifurcation point. Besides, Figure 3.11 shows the variations of the effective
frequency of oscillation as a function of the normalized time-delay. Qualitatively, the
variation in both figures are similar to those observed with the standard OEO [12]. The
amplitude scales as |/|d| beyond the Hopf bifurcation with the proportionality factor

equal to 2w, \/ﬁ_;r and is a function of all the time constants of the oscillator including
the cubic-nonlinear coefficient. However, the frequency asymptotically decreases with the
time-delay. Furthermore, Figure 3.11 depicts that for the same value of a time-delay,
the CN-OEOQO evolves with limit-cycle oscillations whose frequencies are higher compared
to those of the standard OEQO. These results are in accordance with the prediction. It
is noteworthy that when investigating on the optoelectronic oscillators, the offset phase
(see equation (3.63)) remains a parameter that should be taken with more considera-
tion. Indeed, the oscillations can be cancelled if the offset phase is not appropriately
chosen [100-103]. The next section addresses the impact of the cubic-nonlinear term on

the oscillation condition induced by the offset phase.
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Figure 3.11: Evolution of the effective frequency as a function of the normalized time-
delay v. For the solid line (upper curve), n # 0 and for the dots line (bottom curve),
n=0. ya =14.6, ¢ = —7 and 6§ = —0.02.

3.3.4 Effect of the cubic-nonlinear term on oscillation condition

of the system.

It is know that the standard OEO does not oscillate for all values of the offset phase (see
equation 3.63). The values of the offset phase for which the standard OEO runs are very
narrow and periodically spaced [100-103]. As well as the limit-cycle is concerned, oscil-

lation means that the steady state a exist and are stable whereas as ag, is unstable.

st1,2
Inversely, if the OEO switches off, it means that ag, is stable while ay, , is unstable. In
other words, the stability condition of a, and ay, , are opposite (see equations (3.61) and
(3.62)) and then describe the supercritical and subcritical pitchfork bifurcation. Indeed,

the fact that a are stable while a;, does not is similar to a supercritical bifurcation

st1,2
whereas stable branch of ay, when s, , are unstable is refers to a subcritical bifurca-
tion of the amplitudes. Then, the oscillating condition can be determine through the
existence and stability conditions of ay,,. Such conditions depend on the sign of Ay,
and A;, [103]. Remarking that the offset phase only appears in the expression of A,
through the coefficient a (see equations (3.52) and (3.55)) and not in the one of A; (see
equation(3.54)), therefore, the oscillation condition can be determined with the sign of
As,.. Negative value of A,, refers to oscillation of the system whereas positive branch of
Ao, witnesses no oscillation of the system. We plot in Figure 3.12 the value of Ay, as a
function of ¢. The figure reveals that the standard OEO only oscillates for narrow ranges
of ¢ periodically spaced with a period of |¢| = m/2. For ¢ within —6 to 0, the system is
expected to run when ¢ is around —0.79, —2.35, —3.93, and —5.5 (Figure 3.12(a)). On
the contrary, in the CN-OEQ, As,, is negative for the entire values of ¢. Consequently, it
oscillates regardless the value of the offset phase (Figure 3.12(b)). Nevertheless, we have

noticed a threshold value of the cubic nonlinear term that permits to the CN-OEO to
display oscillation whatever the value of ¢. That is n = 2.80936 x 10~°. Below that value,
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the system behaves as a standard OEQO presenting the regions of ¢ for which the OEO

functions alternated by the non-oscillating regions (Figure 3.13).

Standard OEO (5 = 0) CN-OEO (n # 0)
; T j v ' L3N | ¥ T 15 ' T I r T I T T
5 1 (subcritical)
— 0.6 or
:.:;' 0.03 ubcritida -15
T oof 1 -3t
T —0.03f 1 -as
percriti I} (su ‘f‘""' cal )
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@ ¢

Figure 3.12: Analytical bifurcation map showing the transition between supercritical and
subcritical Hopf bifurcation when n = 0 (the left curve). The horizontal line marks the
frontier. For this results, we have focused on the negative slope. On the right we have,
for standard-OEQ, the analytical bifurcation map which shows the supercritical Hopf
bifurcation when n # 0

(s i |cal

Y 5 ‘ (supertritical )

--4-3-2- 0

Figure 3.13: Below the border, from bottom to top, these are supercritical curves for 7,
(n = 7.80936 x 107° 1 = 5.80936 x 10~>,n = 3.80936 >< 107%,n = 2.80936 x 107°). The
mixed curves are those obtained for 7 = 1.80936 x 10~°,and n = 0.580936 x 10~

We have analyzed the characteristics of the limit-cycle oscillations in terms of some
parameters of the system such as the time delay, the feedback strength, and the cubic-
nonlinear terms. The frequency increases with the cubic-nonlinear term and decreases
with the normalized time-delay. As the bifurcation is concerned, the dynamics of the
CN-OEOQ is essentially dominated by the limit-cycle oscillation and chaos. The transition
between them is through crenelated oscillation. Moreover, the limit-cycle oscillations
undergo small amplitude jumps that are observed at specific points during its progression.
These amplitude jumps are manifested by a sudden decrease of the period of oscillation.

The characterization of the limit-cycle oscillation by the use of the normal form reduction

Doctorate Thesis/PhD Juliette Stévia Deumi Kamaha Year 2024



3.4. THE SIMPLIFIED BENCHMARK OF THE CN-OEO 73

has permitted to derive the analytical expressions of both their amplitude and frequency.
It is demonstrated that their evolve similarly to a standard OEQO. But, this latter has
lower frequency of oscillation. The method of the normal form reduction has also helped
to analyse the impact that the cubic nonlinear term has the oscillation condition of the CN-
OEOQ. The results have shown the this when this term is appropriately chosen, the OEO
can run independently of the offset phase. Such result can be benefit in manufacturing
optimal OEO with energy efficiency. Our future works will deal with the application
of this work to other simple architectures of OEO and the synchronization of several
CN-OEOs.
Our CN-OEO is rubust to the offset phase of the intensity MZM.

3.4 The simplified benchmark of the CN-OEO

In this part, we present a study of a simplified optoelectronic oscillator (OEO) that
features both the laser and the filter nonlinearities. We consider the case where we have a
low pumps of laser diode.It is important to mention that the nonlinear transfer function
in the limit of low pumps of laser diode it is not the same with the nonlinear transfer
function in the limit of high pumps of laser diode. To perform that simplified OEO, we
will subdivide this section in three subsections.The first subsection will be devoted to the
system and model of the system, the second subsection will presents the stability analysis,

the third section will presents the nonlinear dynamics.

3.4.1 System and model of the simplified CN-OEO

The CN-OEO presented in the previous sections, apart runs in narrow-band and wide-
band, generate ultra-pure high frequency signals, be more versatile that the standard
OEOQ, has several application like chaos-based communication, measurement, sensing,
detections, neuromorphic computing... Achieving these applications is not the only ob-
jective. Another one is to meet the strict requirements of future communications, radars,
navigation, satellite systems, and embedded systems. In that scope, in this system (sim-
plified CN-OEQ), the electro-optical modulation is carried out by the laser diode and
no longer with the Mach Zehnder modulator. Indeed, instead of using the intensity or
phase modulator, other electro-optic devices such as electroabsorption modulated laser
were used to simultaneously perform three functions namely lasing, photodetection, and
intensity modulation [61] or direct optical feedback onto the laser-diode was also proposed
to perform intensity modulation [64,65].

The goal of the simplified CN-OEOQ is to reduce the number of components in the
OEO oscillator. Here, the seeding laser diode itself is used to perform the electro-optical

conversion through its light-intensity piecewise function instead of an intensity or phase-
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modulator and termed simplest OEO [66]. The drawback of this method is the reduction
of the bandwidth which is scaled from kHz to tens of GHz (with external modulator) to
kHz to few GHz (with seeding laser-diode) imposed by the relaxation oscillation frequency
of the laser diode. Nevertheless, this method brings a general benefit in the physical equip-
ment, power consumption, and it reduces the cost and congestion [57,66,79]. Later on,
to emulate the complex dynamics in this simplified architecture of OEQ, other authors
proposed cascading the electrical path of the simplest OEO with additional nonlinear
electronic oscillators such as the Van der Pol [57] and the Colpitts [58] oscillators. Novel
dynamics not encountered in standard and simplest OEOs were recovered namely, burst-
ing, anti-monotonicity, and pulse packages.

The experimental device of our simplified CN-OEQ presented in Figure 3.14 is made of
a telecommunication continuous-wave distributed feedback laser diode source with wave-
length A\; ~ 1.55 um, threshold current I, = 15.2 mA which is pumped with a current
under the form of I, + Irp(t), where I, is the polarization current, Irp(t) is the time-
varying radio-frequency (RF) current. Then, the laser outputs the power P(t) that is
retarded through an optical delay line yielding a time-delay 7. An InGaAs fast photo-
diode (PD) converts the delayed light into an electrical signal Vi, with a conversion factor
S = 475 V/mW. This electrical signal Vi, undergoes a nonlinear transformation by
propagating through the cubic-nonlinear band-pass filter (CNBPF). A voltage subtractor
(VS) probes the voltage across the resistor of the CNBPF Vi which is then converted into
the RF current (Igpp = %: where Ry = 50 () is the characteristic impedance used for
the voltage-to-intensity conversion). This current is combined with the polarization cur-
rent I,,; (bias current) to feed the laser which therefore performs the electrical-to-optical
conversion.

The CNBPF is implemented using two capacitors C1 2, two resistors (r, R), an opera-
tional amplifier U (type LF'356), a mixed assembly of eight simple junction diodes (type
IN400X), and one coil L. The thermal voltage of these junction diodes is Vi = 25 mV,
the number of junction diodes in series is n = 4, and the inverse saturation current is
=5 A
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Figure 3.14: (Color online)(a) Experimental setup of OEO featuring both the laser and the
filter nonlinearities and (b) Nonlinear Capacitor (NC). The laser used is a DFB telecom
laser diode (~ 1.55 pum) with a threshold injection current I, = 15.2 mA. The 656 m
optical fiber induces a time-delay of Tp = 3.28 us. PD is Photodiode, I, is polarization
current; Izp is the current from feedback loop. CNBPF refers to Cubic-Nonlinear Band-
pass Filter, VS is the voltage subtractor.

Here again, we Apply the Kirchhoft’s laws to Figure 3.14 (b), to have the relationship
between the input (V4,) and the output (Vz) of the CNBPF. It yields:

Ld 1 Ve 11 ft
Vi VR+[ HT}—/VRds
R Jo
: 3

R dt C_1 B 2rl.co
n[/i,Gz 1 3
N 6 [2?1,,.021%] (/{] VRdS) = GV, (3.66)

where t is the time and G is the gain of the voltage subtractor. The laser diode which
performs the conversion of the electrical-to-optical signal, in the limit of the low pumps

of the laser diode, has the following nonlinear transfer function [57,66,79,80]:

P(t):{ 0 for Inr(t) < Iy 367

pIgp(t) — Io) for Igp(t) > Iy,

The parameter j1 = nghv is the laser conversion slope with 1, as the quantum efficiency,
h the Planck constant, and v the laser carrier frequency. The experimental value of the
parameter p is p = 0.21W/A. In Eq.(3.67), Iy = I, — I,;. Taking into account the time-
delay experienced by the optical signal during its flow inside the delay line, the voltage
provided by the photodiode is related to such retarded optical signal as follows:

I/in = KFSP(t - TD)? (368)

where K is a dimensional factor standing for the overall losses (electrical and optical) in
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the feedback loop. Inserting equation(3.68) into equation(3.66), our simplified CN-OEO
is described by the piecewise cubic-nonlinear integro-differential delayed equation (see
equation(3.67) for P(t — Tp)):

LdVy |1 1t
VR+——R+[—— ”VT]EfO Vi ds
" 3

R dt a  2rles
nVrG? 1 3 o ) ‘
* 6 [QTISCQR] (fn Ve ds) = GKSP(t—1Tp). (3.69)

Then, considering Ipp(t—Tp) = m;zil and setting the dimensionless voltage x = %ﬂ,

with V5 a reference voltage (Vo = 1 V), Eq. (3.69) yields:

Ld 1 | I
:L'+——I+[—— nVT]—/xd.s
0

R dt ¢ 2rl.e,l R
HVTGQ I/OZ 1 3 t 3 B KSG RZIO |
8 [MSCQR} (/0 MS) =~ R, Plz(t—-Tp) - ——|- (3.70)

According to equation (3.70), the system is characterized by four timescales which are the
time-delay T, the high cut-off time 7, the low cut-off time #, and the nonlinear timescale

p that are explicitly given as:

Tp = 2o, (3.71)

= %, (3.72)

0 = R[é — (nVp/2rlLicy)] L, (3.73)

e [2”51@3]3 (3.74)

In equation (3.71), L and ny = 1.5 are respectively the length and the refraction in-

dex of the optical delay line, and ¢ is the velocity of light in the vacuum. Therefore,

equation (3.70) can be rewritten as:

T + Td_:r + = t zds+p (/t :Bds)B = KSGP [x(t —Tp) — Rzlo ; (3.75)
t 0 Ry Vo

To facilitate the dynamical analysis, it is preferable to recast equation (3.75) under the

form of a coupled delay differential equations. For this purpose, we introduce the new

variable y = % Jy xds and the dimensionless times t' = é: V= Zfi (the normalized time-

delay). Equation (3.75) is therefore transformed into a piecewise slow-fast dynamical

system with z as the fast variable while y is the slow variable:

g=ua (3.76)

_ Oifz, —a<0
tzt+ey+ny’® =pP(z,—a)= _ P
T+z+ey+ny BP(z, —a) {ﬁ(:ny—a) if z,—a>0. A

Doctorate Thesis/PhD Juliette Stévia Deumi Kamaha Year 2024



3.4. THE SIMPLIFIED BENCHMARK OF THE CN-OEO 77

Here z, = z(t' — v) is the time-delayed variable, and the feedback gain § = é—}g’ﬁ The
small quantity ¢ = 7 is the cut-off times ratio, the parameter n = p7? stands for the cubic-
nonlinear parameter, a = Ef,:i is the bias parameter. Except the tunable parameter G,
other parameters are compatible with the experimental values taken as L = 0.1 mH,

r=300%2, R=1.62kQ, C, = 270pF, C> = 9.15nF, and Tp = 3.29 us.
To perform the stability analysis, the first step is to determine the fixed points and
the second step is to evaluate the stability of theses fixed points through the method of

perturbation.

3.4.2 Stability analysis of the simplified CN-OEO

To determine the fixed-point (z, ys ), we stand equations (3.76) and (3.77) obeys to the

following:

2y = 0 (3.78)
{ 0 if 9>0

: 3.79
= if 9 <0, )

3 6
Yst + —Yst
n

It appears from equation (3.79) that the solution critically depends on the sign of the bias

parameter 1.

3.4.2.1 Caseofd>0

In this case, equation (3.79) becomes:
54 B .
Yt T —Yst = 0. (3.80)
U]

There is a unique trivial fixed point (zq,yst) = (0,0) because % is a positive quantity.
The stability of this trivial fixed point is determined by the value of the eigenvalue A
(after applying the method of pertubation) which satisfies the following second-order
polynomial:

M4+ A+e=0, (3.81)
and is calculated as:

-1t 1—4¢
-—

The trivial fixed point (0, 0) is unconditionally stable since the cut-off time is known to be

very small (¢ < 1) in broadband OEO (in the present work, ¢ = 9.7 x 10~%). Therefore,

Ax (3.82)

no oscillation is expected regardless of the value of the feedback gain f.
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3.4.2.2 Caseof ¥ <0

According to equation (3.79), the fixed point ys is the root of the following third-order

polynomial:
3 E _19}6’ : ¥
Yar F JYst = — (3.83)

which solutions are non-trivial if 8 # 0 and is unique since % is a positive quantity. Figure

3.15 shows that vy, grows which the feedback gain 3. It can be noticed that the values of
the fixed point parabolically grows with the feedback gain.

1 U | L T

0.8} |

T
|

0.6
0.4
0.2

0005 1 15 2 25

=
=

Figure 3.15: Analytical plot of the fixed point yg as a function of the feedback gain (3
(r=0.21, and ¥ = —0.12) (see equation (3.83)).

The eigenvalues that determine the stability of the fixed point are solutions of the

following transcendental equation:
2 1 —Av
A= 1= (e+3mi)y + e (3.84)

Then, limit-cycle oscillation might occur through a Hopf bifurcation if the eigenvalues
become pure imaginary values (A = +iw), with w being the frequency of the corresponding

limit-cycle oscillation which satisfies the following transcendental equation:

—w? +iw + (& + 3nyZ) = iwB exp —iwv. (3.85)

Separating the real and imaginary parts, equation (3.85) enables to obtain the following

equations:
wtanwy = —w?+ (e + 3ny%) (3.86)
- ey

These equations cannot be solved exactly; so, to compute the Hopf bifurcation point,

some approximations need to be considered. That is for instance tan wv ~ wv [21] leads

Doctorate Thesis/PhD Juliette Stévia Deumi Kamaha Year 2024



3.4. THE SIMPLIFIED BENCHMARK OF THE CN-OEO 79

2
i = 1/(5“1;&3“). (3.88)

Equation (3.88) clearly shows that the frequency of the limit-cycle increases with the

to the critical frequency:

cubic-nonlinear parameter 7 of the system and decreases when the normalized time-delay
v of the system grows. It should be noted that the value of y, is a function of the
feedback gain (see equation (3.83) and its plot in Figure 3.15). Therefore, the variation
of the feedback gain also affects the frequency of the limit-cycle oscillation. According
to Figure 3.15, the frequency will also increases if the feedback gain increases. These

analytical results will be numerically confirm in the next section.

3.4.3 Nonlinear dynamics of the simplified CN-OEO

In the previous section, we have demonstrated that the dynamics of the simplified CN-
OEO strongly depend on the value of bias parameter . This is to highlight the importance
of the bias parameter ¥/ on the dynamics of the simplified CN-OEOQO. Indeed, it can cancel
oscillations in the system for any value greater than or equal to zero. It the goal to prove
that information, the plot of the bifurcation diagram of the variable z as a function of
¥ gives the numerical confirmation of this analytical result (Figure 3.16). Starting from
negative values of the bias parameter ¢, it appears that the amplitude of oscillations

decreases when the bias parameter 1 increases and vanishes from ¥ = 0 (Figure 3.16).

0.2 T T BT T

0.15 |-

0.1

x(a.u)

0.05 |

Lot L Ll L el
914—12—10 -8 -6 -4 -2 0 2

a x 1072

Figure 3.16: Numerical plot of the bifurcation diagram for the variable x of the system
as a function of ¥ for v = 53.14 and 3 = 1.08.

For appropriate negative value of the bias parameter ¥ (¢ = —0.12), the bifurcation
diagram in terms of the feedback gain (3 is displayed in Figure 3.17 (a). It present the
general observation of the dynamic of the simplified CN-OEO. It yields that the dynamic
presents a limit-cycle oscillation,a doubling of periods to route of chaos. Figure 3.17 (b)

presents the Lyapunov exponent which confirms the dynamics of the bifurcation diagram.
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Figure 3.17: (a) Numerical plot of the bifurcation diagram for the variable z. (b) Lya-
punov exponent A of the system v = 53.14 and a = —0.12.

In order to make a comparison between the simplest OEO or simplified standard OEO
and this simplified CN-OEQ, the analysis will concern the limit-cycle oscillation. For this

purpose, we consider the bifurcation diagram give in Figure 3.18
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Figure 3.18: (a) Numerical plot of the bifurcation diagram for the variable z. (b) Lya-
punov exponent A of the system v = 53.14 and a = —0.12.
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Figure 3.19: Timetraces of the signal around the jump amplitude. The dashed line is the
timetrace of the signal for § = 1.35 (i.e. just before the jump point), and the red one is
the timetrace of the signal for 3 = 1.36 (i.e. just after the jump point).

In Figure 3.18 (a), it yields that the amplitude of the limit-cycle oscillations grows
when [ increases. This bifurcation diagram can be divided in three parts. The first part
(I) corresponds to 3 < 1 where there are not oscillations in the system; the fixed point is

exponentially stable and there is no other attractor in the system. This numerical value of
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the Hopf point (8 ~ 1) matches with the analytical result of equation(3.87). The second
part (II) correspond to 1 < 3 < 1.35. In this part, one notes the limit-cycle oscillations
whose amplitude increases. The third part (III) corresponds to 8 > 1.35. In this part, the
amplitude of the limit-cycle oscillations continues to progressively increase. The second
(II) and the third (III) parts are separated by an amplitude jump occurring at 5 = 1.35.
Figure 3.19 shows the comparison of the signal for two neighboring values of the feedback
gain 8 around the jump point (in particular for § = 1.35 (dashed) and § = 1.36 (line)).
The signal increases in both the amplitude and the frequency (at 8 = 1.35 the amplitude
is 0.35 and the frequency is 0.184 GHz while at § = 1.36 the amplitude is 0.45 and the
frequency is 0.216 GHz). There is also a phase shift between the two signals emitted
before and after the jump point. The signal emitted when 8 = 1.35 is in phase-advance
over the signal emitted when 3 = 1.36. The Lyapunov exponent of Figure 3.18(b) is
compatible with the bifurcation diagram of Figure 3.18 (a). The Lyapunov exponent A
is the same as defined in equation (3.18).

The phase portrait is a suitable tool for evaluating the dynamic of a system. To explore
the dynamic of the simplified CN-OEOQO, we have first plot the phase portraits in the limit-
cycle oscillation region. It appears that near the threshold value of Hopf bifurcation (the
second part of the bifurcation diagram), the system displays a quasi-sinusoidal oscillation
as confirmed by the limit-cycle of Figure 3.20 (a) for § = 1.08. After the jump, for 3 = 1.5
(the third part of the bifurcation diagram), the phase portrait of the system magnifies

the slow-fast limit-cycle oscillations (Figure 3.20 (b)).
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Figure 3.20: Numerical simulations of the CN-OEO-LASER for v = 53.14 and a = —0.12,
when f is varied. (a) is quasi sinusoidal oscillations for § = 1.08, and (b) is slow-fast
oscillations for g = 1.5.

Secondly, to confirm the analysis of the phase portraits, the experimental analysis
is carried out. In Figure 3.21, we have displayed the numerical and experimental time
traces. For experimental analysis, the polarization voltage is set to Iy, — I,; = 0.263 V.
It can be seen that for low feedback gain, one obtains a quasi-sinusoidal oscillation after
the Hopf bifurcation threshold (Figures 3.21 (a) and 3.21 (¢)). When the value of the
feedback gain increases, it affects the dynamics of the system. In particular, the slow-
fast oscillations recorded in this simplified CN-OEO result from alternate passages of
accelerated trajectory and slow trajectory in the oscillation (Figures 3.21 (b) and (d)).
Figure 3.21 also shows that the frequency of limit-cycle increases as the feedback gain
increases (see Figures 3.21 (a) and 3.21 (b)) as predicted by the analytical study (see
equation. (3.88)).
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Figure 3.21: Time traces of the simplified CN-OEO. Left column [ (a), and (b)]: corre-
sponding numerical simulations from Egs. (3.76) and (3.77) for v = 53.14 and a = —0.12,
when 3 is varied. (a) is z for 8 = 1.08, and (b) is = for § = 1.5. Right column | (c¢),and
(d)] experimental measurements for R = 2.5kQ, r = 3009, C; = 270pF, Cy, = 9.15nF,
Tp = 3.28us, and Vi, — Vo = 1.314 V.

It is important to highlight that slow-fast dynamics are responsible for "canard explo-
sions" which are observed in many biological, chemical, mechanical, electronic, optical,
and engineering systems [72-75,77,78,81-84].

On the interest of the chaotic region, for the large feedback gain (8 > 1.75), the
time-trace show a large difference between the experimental and the numerical results as
shows Figure 3.22. This difference is due to the internal dynamics of the laser diode. We
conclude that a discrepancy occurs between experimental and numerical records when the

feedback gain becomes large.
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Figure 3.22: Time traces of the experimental and numerical results when the feedback
gain become large (3 = 2.5 ). Other parameters are the same as in Figure 3.21.

At the end of investigation on the simplified CN-OEQ, after having proposed the
experimental device, have established the equations reflecting the dynamics of limit-cycle

oscillations of the system. We can say that the system is efficient and can be used
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for several application considering the limit of pumps of the laser diode. In this case
specially, we have used the transfer function of the laser in the limit of low pumps.
Moreover, the system oscillates only for appropriate negative value of the bias parameter
¥ but it does not regardless any positive value of . The theoretical analysis of these
equations has allowed to realize that the frequency of the system grows with the cubic-
nonlinear parameter of the system (7), the feedback gain (/3), and decreases when the
normalized time-delay (v) of the system increases. The bifurcation curve has shown that
the simplified CN-OEQ is dominated by the limit-cycle oscillations, and chaos. These
dynamical phenomena (quasi-sinusoidal oscillation, slow-fast oscillation, and chaos) that
occurred have been experimentally proven and confirmed. But we mention that when the
feedback gain growths it is a discrepancy between experimental and numerical records.
Our simplified CN-OEO is cheaper and constitutes a step towards photonic integrated

circuits.
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1- Main Results

In this thesis, the study of optoelectronic oscillator with the Cubic-Nonlinear Band-Pass
Filter (CNBPF) has been carried out theoretically and experimentally with the simplified
model of that CN-OEO.

Firstly, the Cubic-Nonlinear Band-Pass Filter (CNBPF) have been considered. A
mathematical description has been made. The equivalent electrical circuit of this filter
has been presented in order to carry out the experiment. The theoretical and experimental
studies have shown that this filter is able to run the CN-OEO under the variation of some
parameters.

Secondly, the optoelectronic oscillator with the Cubic-Nonlinear Band-Pass Filter
(CNBPF) has been analyzed, theoretically, and experimentally. The CNBPF cancels
breathers in the dynamics of the OEO, generates quasi-periodic oscillations, slow-fast
oscillations, and chaos. The CN-OEQ runs in higher frequency than the standard OEO
and can operate in narrow-band and wide-band. The CN-OEQ is more versatile than the
standard one because it generates the same dynamics that are observed in the standard
OEO (breathers, relaxation oscillations, and chaos) by tuning some parameters of the
CNBPF. The mathematical analysis has shown that the signal frequency of the CN-OEO
grow with the cubic-nonlinear parameter and decreases with the normalized time-delay.
The numerical and experimental analysis have shown that the Hopf bifurcation was not
affected by the use of CNBPF and we always have limit-cycle oscillations and chaos but
with high frequency. It is interesting to mention that the transition between limit-cycle
oscillations and chaos present crenelated oscillations. In the dynamics of the CNOEO,
jumped points have been observed corresponding to where the amplitude decreases first
before restarting to increase. The characterization of the CN-OEOQO in terms of some key
parameters have shown that the amplitude and the frequency of the CN-OEO evolve
similarly as on the standard OEO but with higher frequency oscillations in primary Hopf
bifurcation. A good qualitative agreement has been found between the theoretical and
experimental investigations.

Thirdly, the simplified CN-OEO has been presented. It has been investigated math-
ematically, numerically, and experimentally, in the limit of low pumps of the laser diode.
The laser diode is used to perform the electro-optical conversion in the simplified CN-
OEOQ. The goal of this system is to reduce the number of components, the power energy
consumption, and the cost of materials. It can also be put as integrated circuits for ap-
plications in communication, navigation, and other tech-nological aims. Quasiperiodic
and slow-fast oscillations were recorded. We highlighted that slow-fast oscillations are re-
sponsible of the phenomena of "canard explosion". The mathematical analysis has shown
that the signal frequency of the CN-OEO grows with the cubicnonlinear parameter and

decreases with the normalized time-delay. The bifurcation diagram still presents jump
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points. Compared to the direct feedback modulation of the standard OEQ, the simpli-
fied CN-OEO still runs in higher frequencies. As in the simplified standard OEQ, in the
simplified CN-OEQ, the oscillations critically depend of the negative value of the bias
voltage parameter. For appropriate value of that bias voltage, we have oscillations in
the system. When the feedback gain increases, we see a discrepancy between experimen-
tal and numerical results, because the laser diode begins to operate in the limit of high
pumps. However, the numerical investigation was closed to experiment in the low pumps

regime.

2- Perspectives

This work presents a model of OEO which has a cubic-nonlinear band-pass filter. It
can be used for random numbers, for generation chaos-based communication, detection,
sensing, and neuromorphic computing.

It would be interesting to investigate later the dynamics of the CN-OEQO with a polar-
ized Mach Zehnder in order to explore some new dynamics, to see a possible addition of
times scale for new applications of the CN-OEOQ. Indeed, in this study, the Mach-Zehnder
was biased with a DC voltage. We also think to explore its dynamics if it is polarized

with an alternative function.
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Abstract

In this paper, we present a study of a simplified optoelectronic oscillator (OEQO) that fea-
tures both the laser and the filter nonlinearities. We show that this optoelectronic oscillator
depicts the phenomena of quasi-sinusoidal oscillations when the feedback gain is small,
relaxation and chaos oscillations when the feedback gain increases. It is analytically con-
firmed that the frequencies of the limit-cycle oscillations increase with the cubic-nonlinear
term and the feedback gain but decrease with the time-delay of the system. The experi-
mental measurements are qualitatively in agreement with the theoretical and numerical
analysis.

Keywords Optoelectronic oscillator - Nonlinear band-pass-filter - Quasi-sinusoidal
oscillation - Slow—fast oscillation

1 Introduction

Optoelectronic oscillators (OEOs) are autonomous nonlinear hybrid systems made of an
optical and electrical path. After the pioneering work of Neyer and Vogues (1982), OEOs
have been widely studied from the fundamental viewpoint (see for example Romeira et al.
2013; Chengui et al. 2014; Talla Mbé et al. 2015; Munnelly et al. 2017; Talla Mbé et5 al.
2019; Murphy et al. 2010; Callan et al. 2010; Martinez-Llinas et al. 2014; Jiang et al. 2016;
Weicker et al. 2012; Williams et al. 2013; Weicker and Erneux 2013; Talla et al. 2016;
Chembo et al. 2005; Ha and Chembo 2021), to several applications such as ultra-stable
microwave generations (Talla et al. 2015; Chembo 2017; Yao 1994; Yang et al. 2007; Yao
1996; Kim and Cho 2010; Li and Yao 2010; Ozdur et al. 2014; Jia et al. 1996; Chembo
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et al. 2008; Zhang et al. 2014; Nguimdo et al. 2012; Okasuga et al. 2011; Saleh et al. 2015;
Lelievre et al. 2017), neuromorphic computing (Paquot et al. 2012; Bruner et al. 2013;
Duport et al. 2016; Barron-Zambrano and Torres-Huitzil 2013; Soriano et al. 2013; Larger
et al. 2017; Wang et al. 2021; Dai and Chembo 2021), measurement, sensing, detections
(Zou et al. 2016; Yao 2017; Wu 2018), chaos-based communications (Argyris et al. 2015;
Uchida 2012; Ai et al. 2017; Nguimdo et al. 2010), random numbers generation (Talla Mbé
et al. 2021), 5-G wireless communication (Zou et al. 2021), and others technological aims
(Ly et al. 2018; Huang et al. 2018; Shi et al. 2018). The richness of the dynamics and appli-
cations of OEQOs have been recently reviewed in Hao et al. (2020), Chembo et al. (2019).

But, achieving these applications is not the only objective. Another one is to meet the
strict requirements of future communications, radars, navigation, satellite systems, and
embedded systems. In that scope, compact OEOs were designed (Maleki 2011; Zhou et al.
2014; Nguewou-Hyousse and Chembo 2020, 2021). Besides, instead of using the inten-
sity or phase modulator, other electro-optic devices such as electroabsorption modulated
laser were used to simultaneously perform three functions namely lasing, photodetection,
and intensity modulation (Zhou et al. 2014) or direct optical feedback onto the laser-diode
was also proposed to perform intensity modulation (Chang et al. 2016, 2017). However,
another alternative consists to reduce the number of components in the OEO oscillator.
The pioneering work in this orientation focused on the electrical-to-optical signal conver-
sion where the seeding laser diode itself was used to perform that conversion through its
light-intensity piecewise function instead of an intensity or phase-modulator and termed
simplest OEO (Goune Chengui et al. 2015). Only quasi-sinusoidal and relaxation oscilla-
tions were recorded with a standard bandpass filter (Goune Chengui et al. 2015). The draw-
back of this method is the reduction of the bandwidth which is scaled from kHz to tens of
GHz (with external modulator) to kHz to few GHz (with seeding laser-diode) imposed by
the relaxation oscillation frequency of the laser diode. Nevertheless, this method brings
a general benefit in the physical equipment, power consumption, and it reduces the cost
and congestion (Goune Chengui et al. 2015, 2018; Talla Mbé and Woafo 2018; Talla Mbé
et al. 2019a). Later on, to emulate the complex dynamics in this simplified architecture
of OEO, other authors proposed cascading the electrical path of the simplest OEO with
additional nonlinear electronic oscillators such as the Van der Pol (Goune Chengui et al.
2018) and the Colpitts (Kouayep et al. 2020) oscillators. Novel dynamics not encountered
in standard and simplest OEOs were recovered namely, bursting, anti-monotonicity, and
pulse packages.

Recently, another architecture of OEQO in which the electric path features a cubic-non-
linear response was investigated and called the cubic-nonlinear optoelectronic oscillator
(CN-OEQ) (Talla Mbé et al. 2019b; Kamaha et al. 2020). In that architecture, an inten-
sity Mach-Zehnder modulator translates the RF electrical signal of a cubic-nonlinear band-
pass filter (CNBPF) into the optical domain. The dynamics of that OEO was shown to
be more versatile than the standard OEO and generated higher frequency and amplitude
of limit-cycle oscillations in a larger range of the feedback gain. The frontier transition
between the limit-cycle oscillations and the chaotic motion shown crenelated oscillations.
The idea addressed in this paper is to perform the simplified benchmark of the CN-OEO.
It is also shown that as in the simplest OEO (Goune Chengui et al. 2015), for low values of
the feedback gain, the dynamics essentially exhibits limit-cycle oscillations of two kinds:
quasi-sinusoidal and slow—fast but rather with higher frequency. Slow—fast dynamics are
trajectories of a dynamical system in which there are alternately successive large and small
amplitudes in the time evolution (Talla Mbé et al. 2015). It is important to highlight that
slow—fast dynamics are responsible for “canard explosions”which are observed in many
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biological, chemical, mechanical, electronic, optical, and engineering systems (Broms
et al. 2008; Petrov et al. 1992: Huack and Scheinder 1993: Vo et al. 2010; Sekikawa et al.
2010; Duhram and Moehlis 2008; Shchepakina and Korotkova 2013; Qin et al. 2021, 2020,
2020; Desroches et al. 2012). But, for high values of the feedback gain, chaotic dynamics
1s recorded.

This paper is organized as follows: Sect. 2 presents the experimental system along with
its mathematical model. Section 3 deals with the stability analysis of this OEO. Section 4
presents the numerical simulations and the experimental results. The last section contains
the concluding remarks.

2 System and model

The experimental device of our simplified CN-OEO presented in Fig. 1 is made of a tele-
communication continuous-wave distributed feedback laser diode source with wavelength
A; =~ 1.55 pm, threshold current /,, = 15.2 mA which is pumped with a current under the
form of 1, + Ipz(1), where I, is the polarization current, I.(7) is the time-varying radio-
frequency (RF) current. Then, the laser outputs the power P(r) that is retarded through an
optical delay line yielding a time-delay 7},. An InGaAs fast photodiode (PD) converts the
delayed light into an electrical signal V,, with a conversion factor § = 4.75 V/mW. This
electrical signal V, undergoes a nonlinear transformation by propagating through the

cubic-nonlinear band-pass filter (CNBPF). A voltage subtractor (VS) probes the voltage

T, Delay line (Tp) Bi

P

(a) ' ¢ —
. I———"]

Oscilloscope

1Yo o

Ll hLiloo | —— Lol CNBPF

vy I"r; VY 'r- [

o] Tor vs | L

O oo % & -F R NC -O/

VR - IE Vin
(b)

Fig.1 (Color online) a Experimental setup of OEO featuring both the laser and the filter nonlinearities
and b nonlinear capacitor (NC). The laser used is a DFB telecom laser diode (~ 1.55 pm) with a thresh-
old injection current [/, = 15.2 mA. The 656 m optical fiber induces a time-delay of T, = 3.28 ps. PD is
Photodiode, Im, is the polarization current; [, is the current from feedback loop. CNBPF refers to cubic-
nonlinear band-pass Filter, VS is the voltage subtractor
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across the resistor of the CNBPF V, which is then converted into the RF current (/. = K—",
Z

where R, = 50 Q is the characteristic impedance used for the voltage-to-intensity conver-
sion). This current is combined with the polarization current J’PG! (bias current) to feed the
laser which therefore performs the electrical-to-optical conversion.

The CNBPF is implemented using two capacitors C, 5, two resistors (r, R), an opera-
tional amplifier U, a mixed assembly of eight simple junction diodes, and one coil L. The
thermal voltage of these junction diodes is V; = 25 mV, the number of junction diodes in
series is n = 4, and the inverse saturation current is [/, = 5 pA.

Applying the Kirchhoft’s laws to Fig. 1b, the relationship between the input (V;,) and
the output (V) of the CNBPF yields (Talla Mbé et al. 2019b):

dv, V
Ve g, s / V, ds
R dt ':'1 T2 Ea

nV;G? 1
Ved =GV,
e [W\ (f ) =on

where 1 is the time and G is the gain of the voltage subtractor. In the limit of the low pumps
of the laser diode, the laser diode which performs the conversion of the electrical-to-opti-
cal signal has the following nonlinear transfer function (Goune Chengui et al. 2015, 2018;
Talla Mbé and Woafo 2018; Talla Mbé et al. 2019a):

P() = {u for T <1,

(1)

Ullge() = L)) for  Ipe(t) > I, (2)

The parameter y = n,hv is the laser conversion slope with #, as the quantum efficiency,
h the Planck constant, and v the laser carrier frequency. The experimental value of the
parameter u is 4 = 0.21 W/A. In Eq. (2), I, = 1, — 1,,,;. Taking into account the time-delay
experienced by the optical signal during its flow inside the delay line, the voltage provided

by the photodiode is related to such retarded optical signal as follows:
V., = KSP(t — Tp), (3)

where K is a dimensional factor standing for the overall losses (electrical and optical) in the
feedback loop. Inserting Eq. (3) into Eq. (1), our simplified CN-OEO is described by the
piecewise cubic-nonlinear integro-differential delayed equation [see Eq. (2) for P(t — Tp)]:

LdVp 1 nVry |1 f
+—-—+ Ved
RYR ar ) 2 5 0 :

4
5 nV,;G* T E /IV ) 3 - (4)
- s ] = = ;
6 |2rlc,R g i
Then, considering I (i — Tp) = @ and setting the dimensionless voltage x = %,
< U
with V,, a reference voltage (V,, = 1 V), Eq. (4) yields:
L dx
TE—— == xds
R dr e 2r le /
(3)

nV G*V; R;I
" 1 /‘m =KSG Xt —T,) — ~Zo|
6 2rl c;,R 0 R, Vo
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According to Eq. (5), the system is characterized by four timescales which are the time-
delay T,,, the high cut-off time 7, the low cut-off time #, and the nonlinear timescale p that
are explicitly given as:

naL
‘TD =%, (6)
L
F= (7)
8 =R~ — (nVy /2 )", (8)
[

1

9)

2=5 [2;*1,(:23]

In Eq. (6), L and n, = 1.5 are respectively the length and the refraction index of the optical
delay line, and c is the velocity of light in the vacuum. Therefore, Eq. (5) can be rewritten

as:
de 1 (' 4 > KSG Rzl

—+ - d: ds | = P -T,) — . 10

x+rdr+8/ﬂ‘x s‘+p(/n‘x ‘i‘) R, x(t D) 7 (10)

To facilitate the dynamical analysis, it is preferable to recast Eq. (10) under the form
of a coupled delay differential equations. For this purpme we introduce the new varia-
ble y = z f o xds and the dimensionless times ¢’ = £, v = 12 (the normalized time-delay).
Equation (10) is therefore transformed into a plecew15£: slow—fast dynamical system with x
as the fast variable while y is the slow variable:

y=x (11)

0 ifx,—a<0

flx, —a) if x, —a > 0. (12)

X+x+ey+ f:.'_)"j = fP(x, —a)= {

Here x, = x(f' — v) is the time-delayed variable, and the feedback gain f = %’i The
¥

small quantity £ = ’E;’ is the cut-off times ratio, the parameter 5 = pz” stands for the cubic-
. Kol < . : ;
nonlinear parameter, @ = —=* is the bias parameter. In this article, except the tunable

(1]
parameter G, other parameters are compatible with the experimental values taken as

L=0.1mH, r=300Q, R =162k, C, =270pF,C, = 9.15nF, and T, = 3.29 ps.

3 Stability analysis

The fixed-point (x_, v,,) of the set of Eqs. (11) and (12) obeys to the following:
x, =0 (13)
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- 0 if az0
}‘_;;+E}}s= _—_':_E if @<0." (14)

It appears from Eq. (14) that the solution critically depends on the sign of the bias param-
eter a.

3.1 Caseofa >0

In this case, Eq. (14) becomes:

y, + f—?}-‘ﬂ =0. (15)

<5t

There is a unique trivial fixed point (x,v,,) = (0,0) because = is a positive quantity. The
' n

stability of this trivial fixed point is determined by the value of the eigenvalue 4 which sat-
isfies the following second-order polynomial:

AEA£E=0, (16)
and is calculated as:
—1+v1—-4¢
&i=T. (17)

The trivial fixed point (0, 0) is unconditionally stable since the cut-off time is known to
be very small (¢ < 1) in broadband OEO (in the present work, £ = 9.7 x 10~%). Therefore,
no oscillation is expected regardless of the value of the feedback gain £.

3.2 Caseofa <0

According to Eq. (14), the fixed point y_, is the root of the following third-order polynomial:

3, €. _ —af
Yut E.",s.r = g (18)
which solutions are non-trivial if f# # 0 and is unique since f; is a positive quantity. Figure 2

shows that y , grows with the feedback gain f. It can be noticed that the values of the fixed
point parabolically grows with the feedback gain.

Fig.2 Analytical plot of the
fixed point y,, as a function of the
feedback gain f (¢ = 0.21, and

a = —0.12) [see Eq. (18)]

yst
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The eigenvalues that determine the stability of the fixed point are solutions of the fol-
lowing transcendental equation:

—Av

A=-1-(e +3.~1}.-'i]%+ﬂe (19)

Then, limit-cycle oscillation might occur through a Hopf bifurcation if the eigenvalues
become pure imaginary values (4 = +i®), with @ being the frequency of the corresponding
limit-cycle oscillation which satisfies the following transcendental equation:

- + iw + (E + 3;;}'31] = iwf exp —iwv. (20)

Separating the real and imaginary parts, Eq. (20) enables to obtain the following
equations:

wtanov = — @° + (E +3r}}-'_fr] (21)
—@* + (€ + 3ny* 3

These equations cannot be solved exactly; so, to compute the Hopf bifurcation point,
some approximations need to be considered. That is for instance tan wv =~ wv (Chembo
et al. 2005) leads to the critical frequency:

+ 3ny:
o = (¢ nys) (23)

1+v

Equation (23) clearly shows that the frequency of the limit-cycle increases with the
cubic-nonlinear parameter

of the system and decreases when the normalized time-delay v of the system grows. It
should be noted that the value of y, is a function of the feedback gain [see Eq. (18) and
its plot in Fig. 2]. Therefore, the variation of the feedback gain also affects the frequency
of the limit-cycle oscillation. According to Fig. 2, the frequency will also increases if the
feedback gain increases. These analytical results will be numerically confirm in the next
section.

4 Nonlinear dynamics

The previous analytical analysis has highlighted the importance of the bias parameter a on
the dynamics of the simplified CN-OEO. Indeed, it can cancel oscillations in the system for
any value greater than or equal to zero. The plot of the bifurcation diagram of the variable
x as a function of & gives the numerical confirmation of this analytical result (Fig. 3). Start-
ing from negative values of the bias parameter e, it appears that the amplitude of oscilla-
tions decreases when the bias parameter a increases and vanishes from a = 0 (Fig. 3).

For appropriate negative value of the bias parameter a (a = —0.12), the bifurcation
diagram in terms of the feedback gain f is displayed in Fig. 4a. It yields that the ampli-
tude of this limit-cycle oscillations grows when f increases. This bifurcation diagram
can be divided in three parts. The first part (I) corresponds to f < 1 where there are not
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Fig.3 Numerical plot of the 0.2
bifurcation diagram for the vari-
able x of the system as a function
of a forv=53.14and f = 1.08

0.15

0.1
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Fig.4 a Numerical plot of the 15 T
bifurcation diagram for the
variable x. b Lyapunov exponent
A of the system v = 53.14 and
a=-0.12

—
1=
=
—

(1) Itul)
0.5

7

© —05

Ueaz + Lmin ['l' “]
=

=
w
(R BT
[
w

-1.5 .
0

J.}

Ax107?

oscillations in the system; the fixed point is exponentially stable and there is no other
attractor in the system. This numerical value of the Hopf point (f =~ 1) matches with
the analytical result of Eq. (22). The second part (II) correspond to 1 < f < 1.35. In
this part, one notes the limit-cycle oscillations whose amplitude increases. The third
part (III) corresponds to f > 1.35. In this part, the amplitude of the limit-cycle oscil-
lations continues to progressively increase. The second (II) and the third (III) parts are
separated by an amplitude jump occurring at f = 1.35. Figure 5 shows the comparison
of the signal for two neighboring values of the feedback gain f around the jump point
[in particular for f = 1.35 (dashed) and f§ = 1.36 (line)]. The signal increases in both
the amplitude and the frequency (at f = 1.35 the amplitude is 0.35 and the frequency
is 0.184 GHz while at § = 1.36 the amplitude is 0.45 and the frequency is 0.216 GHz).
There is also a phase shift between the two signals emitted before and after the jump
point. The signal emitted when f = 1.35 is in phase-advance over the signal emitted
when f = 1.36. The Lyapunov exponent of Fig. 4b is compatible with the bifurcation
diagram of Fig. 4a. The Lyapunov exponent A is known to be a almost null quantity for
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Fig.5 Timetraces of the signal

around the jump amplitude. The a4
dashed line is the timetrace of . 02y
the signal for # = 1.35 (i.e. just & 5
before the jump point), and the %
red one is the timetrace of the —02|
signal for f = 1.36 (i.e. just after 04
the jump point) | L
0 0.01 0.02 0.03
Time [p5]

periodic and quasi-periodic behaviors and strictly negative for fixed points. The Lyapu-
nov exponent is defined as Goune Chengui et al. (2018), Talla Mbé et al. (2019b):

|6x(1)|

6xti)] | €

A =lim . In [
t
with 8x(r) being a linear perturbation of the system.

To explore the slow—fast dynamics of the simplified CN-OEQO, the phase portraits are
analyzed. Indeed, near the threshold value of Hopf bifurcation (the second part of the
bifurcation diagram), the system displays a quasi-sinusoidal oscillation as confirmed by
the limit-cycle of Fig. 6a for § = 1.08. After the jump, for § = 1.5 (the third part of the
bifurcation diagram), the phase portrait of the system magnifies the slow—fast limit-cycle
oscillations (Fig. 6b).

To corroborate our previous results, the experimental analysis is carried out. In Fig. 7,
we have displayed the numerical and experimental timetraces. For experimental analy-
sis, the polarization voltage is set to I, — I, = 0.263 V. It can be seen that for low feed-
back gain, one obtains a quasi-sinusoidal oscillation after the Hopf bifurcation threshold
(Fig. 7a, c¢). When the value of the feedback gain increases, it affects the dynamics of the
system. In particular, the slow—fast oscillations recorded in this simplified CN-OEO result

Fig.6 Numerical simulations 1
of the CN-OEO-LASER for - (a)
v=>53.14and e« = —0.12, when ’
f 1s varied. a Is quasi sinusoidal 5 08
oscillations for § = 1.08, and b 1s _3 0.7 1
slow—fast oscillations for f = 1.5 =
0.6
0.5
-0.2 =01 0 0.1 0.2
x la.u.)
1.8
(b)
1.4
=
g 1
=
0.6
0.2
-1 -0.5 0 0.5 1
z [a.u.
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Numerical Experimental
0.2 0.2
(a) (©)
__ o1 gy SR
3 =
S0 < 0
5 =
01y = o1
—0.2 —0.2 :
0 0.01 0.02 0.03 0 0.01 0.02 0.03
Time [ps] Time [pus|
0.8
(b)
04 -
S =
8 0 &
.!i -
—oal %
-0.8 -0.6 '
0 0.01 0.02 0.03 0 0.01 0.02 0.03
Time [us] Time [us]

Fig.7 Timetraces of the simplified CN-OEQ. Left column [(a, b)]: corresponding numerical simula-
tions from Egs. (11) and (12) for v = 53.14 and a = —0.12, when # is varied. a is x for f = 1.08 and b is
x for f = 1.5. Right column [(e, d)] experimental measurements for R = 2.5kQ, r = 30090, C, = 270 pF,
Cy; =9.15n0F, T =328ps, and V,, — V,, = 1.314V

po

from alternate passages of accelerated trajectory and slow trajectory in the oscillation
(Fig. 7b, d). Figure 7 also shows that the frequency of limit-cycle increases as the feed-
back gain increases (see Fig. 7a, b) as predicted by the analytical study [see Eq. (23)]. It is
necessary to mention that other dynamics than limit-cycle oscillations were also recorded
at large values of the feedback gain (f > 1.75). For instance, when g crosses the value of
1.75, the bifurcation diagram plotted from the set of Egs. (11) and (12) presents a period-
doubling route to Chaos as confirmed by the Lyapunov exponent (see Fig. 8a, b). But, the
timetraces show a large difference between the experimental and the numerical results at
those higher values of the feedback gain (see Fig. 9). Indeed, for the same value of the
feedback gain, both numerical and experimental timetraces unveil chaotic motion but with
a difference in the amplitude distribution. This is because, at large feedback gains, it could
not be legitimate to consider that the output power of the laser diode P(r) adiabatically
follows the pump current /() via the nonlinear function [see Eq. (2)]. Then, the internal
dynamics of the laser diode (coupled rate equations for carrier and photon densities) should
be considered (Tang and Liu 2001, 2003; Chen et al. 2018).

5 Conclusion

In this work, we have investigated an OEO with the laser diode and cubic-nonlinear
band-pass filter (CNBPF) nonlinearities. After having proposed the experimental
device, we have established the equations reflecting the dynamics of limit-cycle oscilla-
tions of the system. Moreover, the system oscillates only for appropriate negative value
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Fig.8 Numerical plots of the 25 T
bifurcation diagram (a) and = (a)
the corresponding Lyapunov = 125
exponent (b). Both display a g
e . : B 0
period-doubling route to chaos =
for large values of the feedback 5
; T —125 |
gain (f > 1.75) iy I
—25 :
0 0.5
g
1.5 T
1+ (b)
X
-
-15 T -
0 0.5 1 1.5 2 2.5
B
Numerical Experimental
20
5 1 =
2 =
8 <
-10
—20 —20 :
0 002 004 0.06 008 01 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12
Time [ps] Time [us]

Fig.9 Timetraces of the experimental and numerical results when the feedback gain become large
(f = 2.5). Other parameters are the same as in Fig. 7

of the bias parameter a but it does not regardless any positive value of a. The theoreti-
cal analysis of these equations has allowed to realize that the frequency of the system
grows with the cubic-nonlinear parameter of the system (#), the feedback gain (f), and
decreases when the normalized time-delay (v) of the system increases. The bifurca-
tion curve has shown that for low values of the feedback gain, the simplified CN-OEQO
1s dominated essentially by the limit-cycle oscillations. These dynamical phenomena
(quasi-sinusoidal oscillation and slow—fast oscillation) that occurred have been experi-
mentally proven and confirmed. But, due to the internal dynamics of the laser diode, a
discrepancy occurs between the experimental and numerical records when the feedback
gain becomes large. Our simplified CN-OEO is cheaper and constitutes a step towards
photonic integrated circuits. Future work will address the phase noise performance of
our system (Brian et al. 2021; Nguimdo et al. 2012).
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In this paper, we show that the cubic nonlinear optoelectronic oscillator (CN-OEO) [IEEE J. Quantum Electron.
55,5000106-1 (2019)] depicts the phenomena of amplitude jump and crenelated oscillations in its routes to chaos.
The amplitude jump is characterized by a sudden variation of the frequency of the limit-cycle oscillations. Using
the normal form of the system, we characterize the limit-cycle oscillations. The amplitude and the frequency of
these limit-cycle oscillations are determined mathematically and analyzed in terms of system parameters such as the
time delay and feedback gain. It is analytically confirmed that the CN-OEQO displays limit-cycle oscillations whose
frequencies remain greater than those of a standard optoelectronic oscillator (the one with a standard bandpass fil-
ter in the electrical path). Our experimental measurements are in good agreement with the analytical and numerical

results. ©2020 Optical Society of America

https://doi.org/10.1364/JOSAB.396596

1. INTRODUCTION

Optoelectronic oscillators (OEQOs) are time-delayed autono-
mous nonlinear hybrid oscillators made of an optical and
electrical path [1-3]. Fundamentally, they have been widely
studied [4-9] and have also inspired numerous applications
in areas such as chaos communications [10-14], ultrastable
microwave generation [15-20], neuromorphic computing
[21-24], and measurement, sensing, and detections [25-29].
A comprehensive review of applications of these time-delayed
oscillators was recently reported in [30]. To achieve some of
these applications, novel architectures are required.

Some of these architectures are made by incorporating an
electronic self-sustained oscillator such as a Van der Pol or
Colpitts in the feedback loop to investigate complex dynam-
ics like antimonotonicity and some bursting-like oscillations
not encountered in the standard OEO [9,31,32]. Sometimes,
however, the resulting OEO missed mathematical modeling
due to the incorporation of such oscillators in the OEO loop
[31,32]. Recently, a cubic nonlinear optoelectronic oscillator
(CN-OEO) was proposed [33]. It is an OEO where the elec-
trical path features a cubic nonlinear response, implemented
using a nonlinear capacitor. The circuit implementation of the
cubic nonlinear filter used to build the CN-OEO (as well as
the mathematical modeling) is simple compared to those of

0740-3224/20/110A75-08 Journal © 2020 Optical Society of America

the Van der Pol and Colpitts oscillators. Besides, the dynamics
that emerged show that the CN-OEQ is more versatile than the
standard OEO since it offers the possibility to display breathers
or not by tuning some parameters of the system. In the case
where breathers are controlled, they are replaced by limit-cycle
oscillations of higher frequency.

This present work addresses a deeper dynamical charac-
terization of that CN-OEQ in terms of key parameters such
as the strength of the feedback gain, the time delay, the offset
phase, and the cubic nonlinear term. For instance, we prove
that the transition to chaos is through successive amplitude
jump phenomena and crenelated oscillations. In addition, the
dynamics of the system is dominated by the limit-cycle oscil-
lations. These latter are also characterized using the normal
form method of this time-delayed system as it was recently
done for a standard OEO [34]. The normal form permits the
derivation of the analytical expressions of the amplitude and the
frequency.

This paper has five sections: Section 2 presents the system;
Section 3 presents a bifurcation analysis of the CN-OEO; and
Section 4 presents the normal form analysis that helps to study
the properties of the system (amplitude, frequency). The paper
ends with a conclusion in Section 5.
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2. THE SYSTEM AND MODEL

The experimental setup of the CN-OEO is presented in Fig. 1
[33]. A polarized light of power P, delivered by a telecom-
munications continuous-wave laser diode (with a wavelength
equal A; >~ 1.55 um) is modulated with a Mach—Zehnder
modulator (MZM) whose half-wave voltages are Virp =3.8V
and V;pc =5 V. The modulated light is retarded by an opti-
cal delay line resulting in a time-delay equal to 7, =3.28 ps,
before being converted to an electrical signal with a photodiode
(PD) of responsivity S=4.75V/mW. The electrical signal
generated by the photodiode V., passes through a cubic non-
linear bandpass filter (CNBPF) that outputs V,,, and in turn is
subjected to an amplification before being re-injected into the
RF electrode of the MZM. It can be noticed that the CNBPF is
made of a resistor R, a coil L, and a nonlinear capacitor NC. It
is constructed with an operational amplifier U (type LF356),
two capacitors C) 2, one resistor 7, and a mixed assembly of
eight simple junction diodes (type IN400X) and whose char-
acteristics are the thermal voltage V=25 mV and an inverse
saturation current /, = 5 pA [Fig. 1(b)]. A picture of the whole
experimental setup in the laboratory is displayed in Fig. 2.

Combining both Kirchhoff's laws and the general modeling
of the wideband OEQ, the whole system of Fig. 1 is ruled by the
following integro-differential delayed equation [33]:

! r 3
dx 1 [f n d
x+fﬁ+§ﬁ x(f}d5+r—3(fu X(J)d.f)

=B cos’[x(t — Tp) + 4] (1)
(@) MZIM
Laser diode e Delay line PD
Lt Ao
=l —T=
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Fig. 1. (a) Experimental setup of cubic nonlinear optoelectronic

oscillator [33]. (b) Inner structure of the nonlinear capacitor [35,36].
PC: polarization controller; MZM: Mach—Zchnder modulator; Vy
is the offset phase control voltage; PD: photodiode; CNBPF: cubic
nonlinear bandpass filter; VS: voltage subtractor; Amp: RF amplifier;
MC: microwave coupler. L = 0.1 mH, » =300 €2, C, =270 pF, and
C2 =915 nF.
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Fig.2. Experimental device in the laboratory. One can identify the
different components cited in the text. MZM: Mach-Zehnder modu-
lator; CNBPF: cubic nonlinear bandpass filter; Amp: RF amplifier.

where x = %ﬁ}” is the dimensionless dynamical variable
fris . s 1 nVr -1
of the system and ¢ is the time. Q—R[(a} - (m)]

and 7 = % are the high and low cutoff times, respectively. The
additional timescale induced by the CNBPF is 7.3/1/n, with

e nVy V2aRE
1= 26 RLGP @GN
n = 4 is the number of junction diodes in series. Other parame-

, . SGP,
ters are the normalized feedback gain 8 = ;V—‘“ and the offset
b 4

7% being the cubic nonlinear coefficient.

F
phase ¢ =7 Vz/2V,pc. Considering the following rescaling
v= Z—f, x(t—v)=xy, y= é f(:x(s)d_r, and € = é, Eq. (1)
can be rewritten in the form of the flow as follows:

$=—x—e€y—ny° + B cos’[x, + ], 2

y=x, 3)

where the “overdot” stands for the derivation according to the

. . . f - .
dimensionless time # = *. In our previous work, it was shown
that the fixed point (x,, ys) of the system is such that [33]

% =0, (4)

€
Yo+ Sa= % o (5)

The stability analysis of the fixed point shows that limit-
cycle oscillation of frequency @ might occur through a Hopf
bifurcation at yy [with y =B sin(2¢) being the effective
feedback gain and yy = By sin(2¢) its value at the Hopf
bifurcation point] if and only if @ and y fulfill the following
transcendental equations:

1+ ygcoswyv =0, (6)

—wy + (€ +3ny2) + ygoy sinwyv =0. (7)

After some mathematical investigations, Eqgs. (6) and (7) can
be approximated with a third-order precision as

3| -1 +\/l + 3v(e+3ny2)
on= |3 ; ®)

vl
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This Hopf bifurcation point marks the beginning of oscilla-
tions in the system that evolve until the chaotic dynamics as it is
developed in the next section (Section 3).

3. ROUTE TO CHAOS

The bifurcation diagrams of Figs. 3(a) and 3(b) effectively
unveil a Hopf bifurcation at |y| 2 1, as predicted by Eq. (9).
The limit-cycle oscillation dominates until |y| is close to 2.57
[Figs. 4(a) and 4(d)]. Just above 2.57, chaos arises in the system,
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Fig. 3. (a) Point-by-point record of the experimental bifurcation
diagram. The variation of y is achieved by tuning the pump power
P, of the laser diode. (b) Numerical bifurcation diagram. It is impor-
tant to mention that the “Amplitude” appearing in the vertical axis
of (a) and (b) refers to the maximum peaks in a given time trace.
(¢) Corresponding maximum Lyapunov exponent. One can note the
considerable agreement between the experimental and numerical
curves. For an ameliorate matching, however, the exact contribution
of each component of Fig. 1 in terms of attenuation/amplification and
noise effects must be quantified. The value of 1 calculated using the

experimental values of components is 7 = 9.809 x 1075. ¢ = =F.
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as confirmed by the plot of the maximum Lyapunov exponent of
Fig. 3(c), and which is defined as in [9,33]. A time trace of cha-
otic dynamics and the corresponding phase portrait are shown
in Figs. 4(c) and 4(f). The transition from limit-cycle to chaos
occurs exactly at |y| = 2.57, and the system displays a crenel-
ated oscillation [Figs. 4(b) and 4(e)]. This crenelated oscillation
is similar to the one obtained by Weicker ez a/. with a standard
OEO featuring a phase modulator in the nonlinear transfer
function and two time delays in the feedback loop [37], and
by Romeira ez al. with an OEO comprising a phase modulator
and a linearly chirped fiber Bragg grating [38]. The crenelated
oscillation displays two types of dynamics: the slow dynamics
characterized by square oscillations of the plateau and the fast
dynamics representing the fast oscillations inside the plateau. It
isalso important to note that in the region of limit-cycle oscilla-
tions, the amplitude globally grows with the effective feedback
gain. More precisely, it is a stepped bifurcation characterized by
an amplitude jump phenomenon at some specific values of the
effective feedback gain but not regularly spaced [|y| ~ 1.379,
ly| = 1.797, and |y| == 2.28], as shown in the circled areas of
Fig. 3(b).

The first region where the amplitude jump phenomenon
occurs is highlighted in the inset of Fig. 3(b), which is the case for
[y] 22 1.379. As can be seen, around that region the amplitude
first undergoes a progressive increase and suddenly decreases
before starting to gradually increase again. On one side of the fall
point, the periods of oscillations of the system for two neighbor-
ing values of |y | are very close. For instance, for two points taken
before the fall point, we noticed that 7= 3.288 x 10" s when
ly|=1.378 and T=3.278x107"s when |y|=1.379.
After the jump, 7=3x10""s when |y|=1.38 and
T=2981x10""s when |y|=1.381. One can immedi-
ately observe that the period globally decreases as the effective
feedback gain increases. For very close values of the effec-
tive feedback gain, and at the neighborhood of the jump,
there is an important variation of the period of oscillation
compared to closer points at each size. Indeed, exactly at the
fall point, when y =1.379, 7=3.278 x 107" s and when
ly| =1.38, T=3 x 107 s, the variation of the period in this
interval gives AT =2.78 x 107 %5 for just a light change in
the effective feedback gain equal to 0.001. Then, the ampli-
tude drop is accompanied by a large variation of the period of
limit-cycle oscillation. Moreover, this phenomenon unveils
that two limit-cycle oscillations with the same amplitude can
evolve with different periods. An example is the case of two
limit-cycle oscillations (one obtained at |y|=1.365 and
the other at |y|=1.397) which oscillate with the periods
(T=3.27 x 1077 sand T=3.278 x 1077 s, respectively), but
with same amplitude x 2 0.782. This behavior appears globally
the same for other jump points apart from the fact that the
variation of the periods are not the same; however, it gradually
decreases as the effective feedback gain increases. Indeed, for the
second and the third points of jump phenomenon |y| ~ 1.797
and |y| >~ 2.28, the variations are AT =228 x 10785 and
AT =1.98 x 107% s, respectively.

From this bifurcation analysis, it is noticeable that two main
dynamics are dominant in the CN-OEOQ: the limit cycle and
chaos oscillations. The analytical analysis of chaos remains a
great challenge; recently, however, it was demonstrated that the
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()and (F) [y| =3.0.n=9.809 x 107> and¢p = ".

limit cycle in inherent-infinite dimensional systems such as the
standard OEO can be analytically characterized in terms of their
amplitude and frequency using the method of the normal form
[34]. In the next section, that method of the normal form will be
applied to our CN-OEO (see Section 4).

4. CHARACTERIZATION OF LIMIT-CYCLE
OSCILLATION

Several approaches have been proposed in the literature to
compute the normal form of retarded systems including inte-
gral averaging, the Freehold alternative, the implicit function
theorem, the multiple scales method, and the center manifold
reduction [39]. In this paper, we chose the center manifold
reduction method since it has been successfully used to char-
acterize standard OEQO [34] and other time-delayed systems
[39-42]. It stipulates that the long-time dynamics of a system
can be reduced to the dynamics on its center manifold. Also, it
is a rigorous mathematical technique that makes this reduction
possible, at least near the Hopf bifurcation point [43].

After performing several mathematical investigations with
respect to the techniques and hypothesis regarding the theory of
the center manifold reduction method, it can be proven that the

complex normal form of Egs. (2) and (3) is (see Appendix A)
z=iwyz — 55,&2 = 37}57;22 + g}’;;ﬂzﬂ,
x [2— 4:'&}”]/;;0‘2[‘8_2‘;&”1;]%5 (10)

where 8§ =y — yy is the relative effective feedback gain. The
reader should consult Appendix A for expressions of other
coefficients appearing in Eq. (10), notably &, u, @, and T.
The “overline” stands for the complex conjugation. In the
first approximation, the variable z is related to the complex
amplitude of limit-cycle oscillation by z(¢) = A(2)e"H" which,
replaced in Eq. (10) leads to the complex normal form of the
amplitude,

A=—-8MN A+ A A%A, (11)

where the coefficients A ; and A have the expressions
—im gV

f(f);.ff,’
1+ 2iwy + yu(l — iopv)e—@nY’

(12)

Ay

As =2ypwy Al — 2iogyne’Te *“H"] — 3nA, /.
(13)
It is remarkable that only A, explicitly depends on the
cubic nonlinear coefficient 7. Equation (11) is a complex
equation whose solution can be approximated in the form of
A=a()e’? that will allow us to study the evolution of the
amplitude and the frequency around the Hopf bifurcation

point. Replacing A in Eq. (11) yields

a =—6A|,a+A2,a3. (14)

@ =—8Ay; + Aya’, (15)

with Ay, and Ay; being the real and the imaginary parts of A4,
respectively. Similarly, A5, and Ay; also are the real and the
imaginary parts of A ,, respectively.

The equilibrium points of Eq. (14) are

g =0, (16)

aAlr
=/ ! 17
Ay As ( )
ﬁAlr
sty = — 3 18
== | (18)

which are defined if and only if Aj, # 0 and 5‘,‘\\% > 0. The
stability condition of the trivial (44,) and the nontrivial (@s55)
states depends on the sign of the multiplicities,

)leg == _aAlrs (19,
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and

A, , =28A4,, (20)

5t1,2

respectively. According to Eq. (15), the dynamics of the phase is
directly related to the one of the amplitude. The phase is defined
for amplitudes different from zero. Indeed, for @ = a4 =0,
A(t) =0 and z(¢) = 0. There are no oscillations in the system.
Fora = ay, ,, thesolution of Eq. (15) yields

@ = 8kt + @0, (21)

where ¢ is the reference phase that is arbitrarily set to zero if
needed and k= (A1, Az — Ay Ay )/ Ay, being a coefficient.
The stability of the phase is satisfied if # = 0, which corresponds
to Ay, Ay = Ay As,.

Beyond the Hopf bifurcation point, the system undergoes the
limit-cycle oscillations. From what precedes, it can be demon-
strated that the amplitude and the frequency of such limit-cycle
oscillations can be explicitly defined as a function of the relative
effective feedback gain§ = y — yy following

Alr
AZr,

a=2wy [(y —VH) (22)

Ay A — Ay,

o (23)

ot =0 + (Y — VH)

Hence, the cubic nonlinear coefficient affects both the ampli-
tude and the frequency [see Eq. (13)]. Figure (5) shows the
variation of the amplitude when the gain is increased beyond the
Hopf bifurcation point. Besides, Fig. (6) shows the variations
of the effective frequency of oscillation as a function of the nor-
malized time delay. Qualitatively, the variation in both figures
is similar to those observed with the standard OEQO [34]. The
amplitude scales as /|| beyond the Hopf bifurcation point

with the proportionality factor equal to 2wy, /3 and is a

2r

function of all the time constants of the oscillator, including the
cubic nonlinear coefficient. However, the frequency asymptoti-
cally decreases with the time delay. Furthermore, Fig. (6) depicts
that for the same value of a time delay, and the CN-OEQ evolves
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Fig.5. Variation of the amplitude versus the effective feedback gain
|¥|. The analytical curve (solid line) is obtained from Eq. (22), while
the numerical curve (black circles) is plotted using Eqs. (2) and (3).
¢=—Fandn=1.49 x 1074
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with limit-cycle oscillations whose frequencies are higher com-
pared to those of the standard OEO. These results are consistent
with the prediction of [33].

5. CONCLUSION

In conclusion, we have investigated the bifurcation scenario of
a CN-OEO and analyzed the characteristics of the limit-cycle
oscillations in terms of some parameters of the system such as the
time delay, the strength of the feedback gain, and the cubic non-
linear coefficient. As the bifurcation is concerned, the dynamics
of the CN-OEOQO is essentially dominated by the limit-cycle
oscillation and chaos. The transition between them is through
crenelated oscillation. Like other slow—fast dynamics such as
bursting, breathers, and spikes, these crenelated-oscillations
might find applications in biology, bioengineering of arti-
ficial organs, and neuromorphic computing as suggested in
[31,38,44,45]. Moreover, the limit-cycle oscillations undergo
small amplitude jumps that are observed at specific points dur-
ing the progression of the system toward chaos. These amplitude
jumps are characterized by a sudden decrease in the period of
oscillation. The characterization of the limit-cycle oscillation
by the use of the normal form reduction has permitted the
derivation of the analytical expressions of both their amplitude
and frequency. We have demonstrated that they evolve similarly
to a standard OEO. The amplitude grows with the effective
feedback gain, while the frequency decreases with the normal-
ized time delay. However, the standard OEO evolves with a
lower frequency of oscillation at the primary Hopf bifurcation
compared to the CN-OEQO even in the asymptotic case of large
delays (v > 500). It can be envisaged to apply the technique of
the normal form reduction to crenelated oscillation as a second
bifurcation. Our future works will deal with the application
of this work to other simple architectures of OEO and the
synchronization of several CN-OEOQs.

APPENDIX A

We present the steps of the calculation of the normal form of the
CN-OEO [see Eq. (10)] through the center manifold reduction
method. The technique has been inspired from [39-42] and the
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steps of calculations that follow are based on the similar work
carried out on the standard OEQ [34].

Before the Hopf bifurcation point, the dynamics of the sys-
tem is ruled by the trivial steady state of the variable x;, =0,
as shown in Fig. (3). Moreover, around that Hopf bifurcation
point, the relative gain §=y —yy=(B — Bu)sin2¢ is
considered as a small parameter (§ <« 1). Therefore, in the
neighborhood of the Hopf bifurcation point, a Taylor expan-
sion around x and 8 can be carried out so that Eqgs. (2) and (3)
transform into a linear (CX + R X,) and nonlinear (F(X,))
partas

X=LX+RX,+F(X.), (A1)

with X = ;) being the vector matrix of the variable of the

system.
s [ —1 —e ] (A2)
1 0
and
R= [ "[}]"H g ] (A3)
are the 2 x 2 matrices. F isa column vector defined as

<5 - . I 2 2 3
.?:(Xv)=( 026w =17 gyﬁ"--*a?’”x!-'). (A4)

In Eq. (Ad), a = [tan(2¢)]~". Since Eq. (Al) is a delay-
differential equation, computing this equation requires
consideration of the time intervals in the past ([—v, 0]) and
after the time origin ([0, +00[). Let us refer to o as the time
within the interval [—v, 0] and maintain the notation of time
t within [0, +00[. Then, Eq. (A1) can be written as a step
equation,

er(o)
dr

= AXr(aJ + Q(X;{g)), (AS)

where X,;)=X(t+ o) is a portion of the solution trajec-
tory in the recent past, and A is the linear operator with pure
imaginary eigenvalue 7wy of the Hopf bifurcation point. A
transforms a center subspace function p (o) as follows:

Ap(o) =iwup(o)

40) for —v=0<0

=1 £ £ Rp(-v) (46)

foro =0.

Itis known that when i@y is an eigenvalue of the Hopfbifur-
cation, its complex conjugate —i@ also is an eigenvalue. Thus,
to consider both eigenvalues, we define the adjoint operator
of A, called A*, which also acts on another subspace function

g(o)as
A*q(0) =—iwnq(o)

— ) for0<o <v
o da — —
L*g(0)+R*q(v) foro=0, i1
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where £* and R* are the adjoints of the operators £ and R,
respectively. In Eq. (A5), the expression of the vector G is

g=IO for-v<o<0 (A8)

F foro =0.

The center manifold reduction theory requires that the
subspace functions p (o) and g (o) satisfy the inner product,

0
(. ) =g p(O) + [ F(E +v)R; p&)dE, (A9)

—u

where the “overline” stands for the complex conjugation. Since
X, (o) must be finite, it is necessary to introduce a normaliza-
tion condition, such that (g, p) =1 and (g, p) =0. These
inner products lead to the solutions of Egs. (A6) and (A7),
respectively:

P{O’) - (f&){{ﬂ' ) g:’mHG‘ (A10)

1 .
glo)=10b (w:'e,r‘co”) e'HT (A11)
where 4 is a complex-valued parameter defined as
b=[1-2iwg+yu(l +iwpv)e ]! (A12)

The next step is to use the center subspace to decompose
the trajectory X,(o) into two components: the first one
() p(o) +0(2) p(o) lying on the center subspace; the
second one #,(0) transverse to that center subspace is the
infinite-dimensional component and satisfies (p, #) =0 and
(p.u)= 0: hence,

X (0)=19(t)p(o) + (1) p(0) + u, (o). (A13)

Substituting this last equation into Eq. (A5) and using the
inner products yield that y(¢) satisfies the following first-order
differential equation:

0(2) = iwph — 8buy — 3nby™h — byya(uy + ih)’

B b b :
= 2ib(ynap)’t [—u S — ZwHF"_ZMH‘} 0D
Wy SwH

+ 2byyu?jin’y + NRT.
(A14)

The term NRT represents the nonresonant terms of the equa-
tion and the “overdot” refers to the differentiation with respect
to time. The complex coefficients p and I are explicitly given by

p="impe Y, (A15)

I = [4w}; — € — 2iwy(1 + yye 2*H")]7L. (A16)
Now introducing the near-identity transformation
0(t) =z + k12 + kiazz + k137 (A17)

into Eq. (A14) and eliminating the secular terms yields
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by 2OV 2, (A18)
()]
—2ib
b= =, (A19)
= VA% 2 (a20)
3w

The nonsecular terms that remain constitute the complex

normal form of the system and are given by

z=iwyz— 8brz — 3?}552 + gynﬂz,ﬁ

(A21)

X [2 — 4iwyyna’Te 24"z,
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Abstract—We present a theoretical and experimental study
of an optoelectronic oscillator featuring a cubic-nonlinear filter
in the feedback loop. In this architecture, the nonlinearity
introduces an additional timescale that leads to the emergence
of complex behavior and multiscale dynamics, ultimately lead-
ing to chaos as the gain is increased. A complete bifurcation
analysis is performed and successfully compared to experimental
measurements. We expect this class of systems to emulate novel
functionalities for analog signal processing based on time-delayed
optoelectronic oscillators.

Index Terms— Optoelectronic devices, nonlinear oscillators.

I. INTRODUCTION

PTOELECTRONIC oscillators have been in recent years

the focus of active scientific research from the funda-
mental viewpoint [1]-[8], as well as from the technological
perspective [9], [10]. These systems have found various appli-
cations such as ultra-stable microwave generation [11]-[19],
chaos communications and systems [20]-[23], neuromorphic
computing [24]-[26]. sensing [27]-[29], signal processing [2],
[30], [31], among other technological aims [32]-[34]. Recent
developments have demonstrated the possibility to implement
these oscillators on-chip [35]-[38].

The dynamics of OEOs strongly depends on the filtering
properties of the feedback loop in the electric path. For
example, the first-order low-pass filtering dynamics of the
original Ikeda model is known today to be quite different
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from the one of OEOs featuring bandpass filters [9], [10], and
even in the bandpass case, the dynamics of the OEO critically
depends on the wideband [1] or narrowband [39] nature of the
filter. In general, the electric branch is considered to be linear.
However, nonlinear electrical response is a possibility and
has already emerged as an ideal benchmark to investigate the
complex dynamical states in OEOs, such as anti-monotonicity,
spikes, pulse packages, and bursting [40], [41].

In this article, we consider an OEO where the electric
branch features a cubic-nonlinear response, implemented using
a nonlinear capacitor made of simple junction diodes. Nonlin-
ear capacitors are important components in electronic systems,
from both the fundamental and technological points of view.
They are used in snubber circuits for power electronics, can
operate at high frequencies. They can also be used to imple-
ment nonlinear resistors and inductances. For these reasons,
they are commonly used as a source of nonlinearity in several
physical systems [42]-[45]. In our oscillator, the nonlinear
capacitor is used to introduce an additional integral term so
that the resulting OEO model is presented as a novel extension
of the broad bandpass Ikeda-like equation. The system can
display attractors such as fixed points, limit-cycles, and chaos,
and is therefore compatible with all the related applications.
It is also possible to control mixed-mode oscillations which in
return favored a quadrupled-frequency limit-cycle oscillations.
Adding a nonlinear element in the electric branch is also a
natural pathway to emulate complex coherent phenomena in
coupled networks of OEOs (such as cluster synchronization,
for example [46], [47])

The article is organized as follows. In the next
section, we present the experimental system and propose
a time-delayed model to investigate its complex dynamical
behavior. The stability analysis of this equation is performed
in Sec. III, while the nonlinear dynamics of the system is
explored in Sec. IV. The last section concludes the article.

II. SYSTEM AND MODEL

The experimental set-up of the cubic-nonlinear optoelec-
tronic oscillator (CN-OEO) is presented in Fig. la. The main
elements are the following. A telecommunication continuous-
wave laser diode with wavelength A =~ 1550 nm and power
Py, seeds a Mach-Zehnder modulator (MZM) characterized
by a radio-frequency (RF) and direct-current (DC) half-wave
voltages Vi, = 3.8 V and V;,. = 5 V, respectively.

0018-9197 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. (Color online) (a) Experimental set-up and (b) Nonlinear Capacitor

(NC). Vg is the offset phase control voltage; PC: Polarization Controller;
MZM: Mach-Zehnder Modulator; PD: Photodiode; CNBPF: Cubic-Nonlinear
Band-Pass Filter; VS: Voltage Subtractor: Amp: RF amplifier; MC: Microwave
Coupler.

The modulated light at the exit of the MZM is delayed by
an optical delay line of delay Tp, and is then converted into
an electrical voltage Vi, by a photodiode with a conversion
factor § = 4.75 V/mW. The voltage Vj, is filtered with a
cubic-nonlinear band-pass filter (CNBPF) made of a coil L,
a resistor R and a nonlinear capacitor NC. The output voltage
Vout of the CNBPF is the voltage difference probed across the
resistor R: it is amplified using a radio-frequency amplifier
with gain G before being re-injected into the RF electrode
of the MZM. The inner structure of the nonlinear capacitor
is depicted in Fig. 1b [42], [43]. It is implemented using an
operational amplifier U (type LF356), two capacitors Cj 2,
one resistor r, and a mixed assembly of eight simple junction
diodes (type IN400X). These junction diodes are characterized
by their thermal voltage Vr = 25 mV, inverse saturation
current [y = 5 pA, and number of junction diodes in series
n=4.

The application of Kirchhoff laws permits to evaluate
the voltage across such a nonlinear capacitor which is a
cubic-polynomial of the charge

1 1
q=E/n Vour(5) ds (1)
of the series capacitor, and yields the relationship [42]:
1 nVr !
Welt) ==|—— Vou (D)dl
Nel(r) R (Cl ZF'ISCQ)/() out ()

nVr /rv 5 3 ,
*m( g s -f) . @

where 7 is the time. Then, the output voltage Vou(t) of the
CNBPF is related to the input Viy(f) by:

Vi“(f) = Equut(r)

R dt + Vou[(r) + VNC(f)- 3)
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Using Egs. (2) and (3), and the usual closure relationships
of broad bandpass optoelectronic oscillators [1], the system
presented in Fig. la obeys the following integro-differential
delayed equation:

dx 1/" P /' ©)d
x—{—rdr -{—9 Ox(s) s+ 7 Oxs} s

= Blcos’[x(t — Tp) + &1}, (4)

where x = 7 Vou(1)/2Vyrr is the dimensionless dynamical
variable of the system. According to Eq. (4), the cubic-
nonlinear band-pass filter is characterized by three time scales
which are the high cut-off time 7, the low cut-off time 6, and
the nonlinearity timescale /T/7 that are explicitly defined via

3

t=L/R (%)
6 = R[(1/C1) — (nVr/2r;C2)]™" (6)
n=nVrVig/ [12(rR15C2)3(7rG)2]. %)

Therefore, adding the delay Tp transforms our CN-OEO
into a four-timescales OEO. The other parameters are the
normalized loop-gain ff = 7xSGPy/2 Vyrp and the offset
phase ¢ = wVg/2Vypc. Throughout this article, except the
tunable parameters G and P, the values of other parameters
are kept compatible with the experimental set-up. They are
set to L = 0.1 mH, R =25kQ, r =300 Q, C; = 270 pF,
C> =9.15nF, and Tp = 3.29 us.

In order to facilitate the dynamical analysis, it is preferable
to recast Eq. (4) under the form of a flow of first-order coupled
delay differential equations. For this purpose, we introduce the
new variable

1 t
y= —E/O x(s)ds (8)

and the dimensionless time v = t/6. Equation (4) is then
transformed into a slow-fast system with x as the fast variable
while y is the slow variable [4]:

dx 3 2
== —x +y+py’ + B cos’lxs + ¢ )
dy

e 10
dv o (10)

The small quantity £ = 7/6 = 9.7 x 10~* is the cut-off times
ratio, ¢ = Tp /6 = 8 x 1072 represents the normalized delay
so that x, = x(v — ¢) being the time-delayed variable. The
parameter p = 5> = 6.4 x 10* stands for the cubic-nonlinear
parameter.

III. STABILITY ANALYSIS

The first step for the analysis of the cubic-nonlinear OEO
is the study of its stability. Indeed, the equilibrium point of
the set of Eqs. (9) and (10) is (xg, yo), with xp = 0 and yg
being the real root of the third-order polynomial

pY§ + Yo+ Bcos’ ¢ =0, (11)

which is nontrivial if £ or ¢ is different from 0 or z/2
(mod [2x]). respectively. It is important to mention that yg
is real and unique since p and f§ are positive quantities. The
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Fig. 2. (Color online) Timetraces of the amplitude of the cubic-nonlinear
OEQO (blue or black) versus the standard OEO (grey). |y| = 1.0l and

¢ = —m /4. A noticeable effect of the nonlinearity is to increase the frequency
of the limit-cycle induced by the primary Hopf bifurcation.

stability of that equilibrium point can be investigated through
the eigenvalues equation
1 ; 1
2t—(t+ye”)it=(1+3p8) =0, a2
& €
where y = fsin(2¢) is the effective normalized gain. Limit-
cycle oscillation might occur through a Hopf bifurcation if the
eigenvalues become pure imaginary values (4 = =+iw), with
w being the frequency of the corresponding limit-cycle which
satisfies the following transcendental equation

s0? + o tan(we) — (1+3py§) =0, (13)
while the effective normalized gain y rather satisfies
y cos(ma) = —1. (14)

In the limit of small delay (small ), the solutions of Eqgs. (13)
and (14) approximated as

m=wsd‘}1+3py§, (15)
L 1+3py5
= —14 -] —" ’ 16
Y +2( t+o 7 (16)
Here,
wd=1/ve+ao (17)

represents the frequency of the limit-cycle for the standard
OEOQ, that is the one with a linear band-pass filter that does
not feature the cubic-term in Eq. (4).

IV. NONLINEAR DYNAMICS

From Eqs. (15) and (17), it clearly appears that the fre-
quency of the limit-cycle oscillations of our CN-OEO is
greater than the one displayed by a standard OEO for the same
values of parameters. For instance, near the Hopf bifurcation,
and taking the case of |y| = 1.0l and ¢ = —m/4, the
frequency increasing factor /1 + 3py§ ~ 4. Exactly, Fig. 2
validates the increase of the frequency of the CN-OEO, as well
as its amplitude, comparatively to the standard OEO. That
increase of frequency dwells for all values of the gain.

On the contrary, the threshold of the effective normalized
gain is not considerably affected by the cubic-nonlinear term
since y =~ —1 as witnessed by the bifurcation diagram
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Fig. 3. (Color online) Bifurcation diagrams [(a) and (c)] depicting the routes

to chaos and the largest Lyapunov exponents A [(b) and (d)]. (a) and (b):
Standard OEO [i.e. without cubic-term in Eq. (9)]: the route to chaos is
through breathers that are revealed by the multiple lines in the bifurcation
diagram. (c) and (d): CN-OEQ: here the route to chaos is directly through the
Hopf bifurcation, and one can note that the multiple lines have disappeared.

of Fig. 3, showing the evolution of the amplitude as the
effective normalized gain increases. Comparatively to the
standard OEQ, one can note that with the CN-OEO, only fixed
point, limit-cycles, and chaos are preserved. Indeed, for the
CN-OEO, when |y | < 1, the fixed point xo = 0 dominates the
dynamics of the system. From |y | = 1, limit-cycle oscillations
occur through a Hopf bifurcation and remain dominant for a
large range of |y|. When |y| is further increased, the limit-
cycle disappears to give place to chaos. These transitions are
emphasized by the corresponding largest Lyapunov exponent
(Fig. 3) defined as

A= lim linliMiI,
1—+00 t |ox (70) |

with dx (r) being a linear perturbation of the system [41]. The
Lyapunov exponent A is known to be a positive quantity for
chaotic behavior and negative or zero otherwise. It is shown
from these figures that the bifurcation diagram and the largest
Lyapunov exponent indicate the same window of dynamical
behaviors for the chosen parameters.

The timetraces at different levels of the bifurcation diagram
of the CN-OEO reveals that close to the Hopf bifurcation,
the system displays harmonic oscillations (Figs. 4a and b).
But, as |y | increases, harmonic oscillations are replaced by
relaxation limit-cycles demonstrating the alternation between
the slow and the fast transitions as the time evolves
(Figs. 4c and d). For very large values of |y| timetraces of
Figs. 4e and f illustrate the chaotic behavior of the system.

From the bifurcation diagrams (see Figs. 3a and c),
it is noticeable that for the chosen parameters, mixed-mode
oscillations also known as breathers are missing in our
CN-OEO [1], [4]. The theory of breathers in OEO has been
investigated through the geometric singular perturbation theory
(see [48] and Refs. therein) and it is well known that the
standard wide-band OEO displays breathers while following
the route to chaos [4] (see Figs. 3a and b). To gain insight into
their effect in our system, it is necessary to analyze the case
where only the cubic-term is canceled in Eq. (4). The result
presented in Fig. 5a testifies the presence of breathers which
are manifested by damped oscillations around the attractive

(18)
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Fig. 4. (Color online) Experimental and numerical timetraces demonstrating
the dynamical evolutions of the system as the gain increases with ¢p = —x /4.
From top to bottom, Py, is set to 6.51 mW, 7 mW, and 7.8 mW for the
experimental timetraces, and £ is set to 1.1, 1.9, and 3 for the theoretical
ones.

branches of the invariant critical manifold of the system, while
they do not occur when the cubic-term is considered (Fig. 5b).

Indeed, the invariant critical manifolds are those static
S-shaped curves of Figs. 5a and b defined in the (x—y) plane
by setting £dx/dv = 0 in Eq. (9); That is:

py} +y =x — pleos’[x, + &1} (19)

Each invariant critical manifold is characterized by two fold

points x; and x» which are solutions of dy/dx = 0,
yielding
T 1 1
= ——+ —arcsin | = | — ¢, 20
X1 > +2arcqm(ﬁ) ¢ (20)
. = il 21
X3 = ~3 arcsin 7 — . (

These critical points are marked with large dots and subdivide
each invariant critical manifold into three branches, two of
which are attractive (solid lines) and one is repulsive (dotted
line) (see Fig. 5).

The slow-fast oscillations recorded in OEO result from
alternate passages of its trajectory from one attractive branch
to another and is characterized by a typical acceleration when
this trajectory enters the zone of the repulsive branch. Indeed,
a point of the trajectory taken near the fold point is accelerated
by the repulsive branch towards the other attractive branch
which is not attached to that fold point. The influence of the
repulsive branch on the trajectory ceases when the “speed”
reaches approaches zero (dx/dv — 0). In the phase plane, this
translates to dx/dy = 0 with ¢ # 0, and corresponds to the
points a; and az of Fig. 5a, and by and b; of Fig. 5b. We refer
to them as the first notches, and the position of these first
notches is crucial for the appearance of breathers. If the first
notch (for example a;) is quite far from the attractive branch,
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Fig. 5. (Color online) Projections in the (x—y) plane of the trajectories (solid
red (or black)) of: (a) the standard OEO and (b) the cubic-nonlinear OEO.
The timetrace of Fig. 5b is given in Fig. 4d. The dashed and solid greys are
the instable and stable branches of the invariant critical manifold, respectively.
The invariant critical manifolds are plotted for & — 0 [4]. In both figures,
|yl =19 and ¢ = —x /4.

the attraction imposed by the branch on the trajectory is man-
ifested through damped oscillations, which give rise to other
notches (see Fig. 5a). In the time domain, this phenomenology
is known as breathers. On the contrary, if the first notch (for
example b;) is located very close to the attractive branch,
then the trajectory asymptotically converges to this branch
while evolving towards the fold static point (for example x1)
where the acceleration of the repulsive branch takes the relay,
and the cycle starts again. In that case, the system will not
display breathers, and in this regard, the dynamics of this
system significantly differs from the multiscale oscillations
that can be observed in other architectures of OEOs (see for
example [1], [49]-[51]).

V. CONCLUSION

In conclusion, we have demonstrated an OEO with a cubic-
nonlinear electrical part. The limit-cycles generated with the
device are of higher frequency and amplitude compared to
the standard OEO. Our system can be operated either in
narrow-band or wide-band configuration. It can display or
not breathers by tuning some parameters for applications
where they have to be either enhanced or avoided. This result
shows that our CN-OEO is more versatile than the standard
one. Our work also offers a more general overview of the
origin of breathers in the wide-band OEO. We found that that
their appearance depends on how far the first notch is from
an attractive branch of the invariant critical manifold. Fur-
ther investigations will explore concrete applications of these
CN-OEO:s in the context of information processing.
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