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Abstract 
This thesis aims at the theoretical and experimental study of optoelectronic oscillators 

cascaded by nonlinear electronic components. For this purpose, two (02) nonlinear electronics 

components have been used, namely: the self-sustained Colpitts oscillator and the nonlinear 

filter. We first study numerically and experimentally the self-sustained Colpitts oscillator 

which generates an electrical signal at high frequency and exhibits dynamic behaviors such as 

periodic, bursting, and mixed-mode oscillations which can be obtained using a potentiometer 

contained in the electronic circuit of the oscillator. Subsequently, this Colpitts oscillator is 

inserted into the electronic part of the optoelectronic oscillator (Colpitts-OEO). In this way, 

we put forward the interaction between optical nonlinearity and electronic nonlinearity to 

obtain also complex dynamic behaviors of the system thus constituted. It is shown that a wide 

variety of periodic and chaotic states can be excited and that there is an amplification of the 

signal frequencies. The temporal dynamics of the Colpitts-OEO system with and without 

delay is studied experimentally. In addition, we make an analytical and numerical study of 

the optoelectronic oscillator cascaded by a nonlinear filter (CN-OEO). This nonlinear filter is 

designed from a non-linear capacitor and a coil. We thus provide a spectral analysis of the 

phenomena of multi-periodicity, crenelated, mixed-mode oscillations, and chaos when the 

bandwidth and the cubic nonlinear term of the filter vary in the CN-OEO. On the one hand, 

when the high and low cut-off frequencies are sufficiently far apart, it is both analytically and 

numerically proved that the presence of the cubic nonlinear term (CNT) reveals the frequency 

combs generation with a free spectral range equal to the inverse of the time delay. Likewise, 

the width of the central peak narrows with the increase of the CNT, showing that the system 

becomes more and more selective in terms of oscillation frequencies. On the other hand, when 

the cut-off frequencies are sufficiently close, harmonic and sub-harmonic frequencies are 

recorded. In either case, CN-OEO displays oscillations whose frequencies remain greater than 

those of a standard optoelectronic oscillator. 

Keywords: Optoelectronic oscillator, Colpitts oscillator, nonlinear filter, time-delay system, 

bursting oscillation, mixed-mode oscillation, chaotic pulse-package, power spectrum, 

frequency combs. 
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Résumé 
Cette thèse a pour objet l’étude théorique et expérimentale des oscillateurs 

optoélectroniques cascadés par des composants électroniques non linéaires. Pour cela, deux 

(02) composants électroniques non linéaire ont été utilisés à savoir : l’oscillateur auto-

entretenu de Colpitts et le filtre non linéaire. Nous étudions tout d’abord numériquement et 

expérimentalement l’oscillateur auto-entretenu de Colpitts qui génère un signal électrique à 

haute fréquence et exhibe des comportements dynamiques tels que des oscillations 

périodiques, des oscillations de battements et des oscillations à modes mixtes qui peuvent être 

obtenues en utilisant un potentiomètre contenu dans le circuit électronique de l’oscillateur. 

Par la suite, cet oscillateur de Colpitts est inséré dans la partie électronique de l’oscillateur 

optoélectronique (Colpitts-OEO). Nous mettons ainsi en exergue, l’interaction entre la non 

linéarité optique et la non linéarité électronique afin d’obtenir d’autres comportements 

dynamiques complexes du système ainsi constitué. Il est montré qu’une grande variété des 

états périodiques et chaotiques peuvent être excités et aussi une amplification des fréquences 

du signal. La dynamique temporelle du système Colpitts-OEO avec et sans délai est étudiée 

expérimentalement. De plus nous faisons une étude analytique et numérique de l’oscillateur 

optoélectronique cascadé par un filtre non linéaire (CN-OEO : cubic nonlinear OEO). Ce 

filtre non linéaire est conçu à partir d’un condensateur non linéaire et d’une bobine. Nous 

fournissons ainsi une analyse spectrale des phénomènes de multi périodicité, des oscillations 

crénelées, des oscillations à modes mixtes et des oscillations chaotiques lorsque la largeur de 

la bande passante et le terme non linéaire cubique du filtre varient dans le CN-OEO. D’une 

part, lorsque les deux fréquences de coupure sont suffisamment éloignés, il est prouvé 

analytiquement et numériquement que la présence du terme non linéaire cubique révèle la 

génération des peignes de fréquences avec une plage spectrale libre égale à l’inverse de la 

valeur du délai. De même, la largeur du pic central se rétrécit avec l'augmentation du terme 

cubique non linéaire, montrant que le système devient de plus en plus sélectif en termes de 

fréquences d'oscillation. D'autre part, lorsque les fréquences de coupure sont suffisamment 

proches, les fréquences harmoniques et sous-harmoniques sont enregistrées. Dans les deux 

cas, le CN-OEO affiche des oscillations dont les fréquences restent supérieures à celles d'un 

oscillateur optoélectronique standard. 

Mots-clés : Oscillateur optoélectronique, oscillateur de Colpitts, filtre non linéaire, système 

avec délai, oscillations de battements, oscillations à modes mixtes, paquets d’impulsion 

chaotiques, Spectre de puissance, peignes de fréquences. 
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Electronics experienced a major boom at the end of the 19th century. Already in 1897, 

the Italian physicist Guglielmo Marconi invented the first form of the radio and obtained a 

patent. He also used ''Antenna'' for the transmission of radio waves. Thereafter Jagadish 

Chandra Bose also worked on radio, microwave optics, and wireless signaling. He was the 

first to use semiconductor junctions to detect radio signals in 1899 [1]-[3]. Thus, at the 

beginning of the 20th century, with the assembly of electronic components, circuits such as 

electronic oscillators, filters, amplifiers, and many others came into being. For example, in 

1915 and 1918, the scientists Hartley and Colpitts invented patented and oscillators that bear 

their names respectively [4]-[5]. Colpitts and Hartley electronics oscillator became very 

popular both in industries and academia due to their simplicity, ease of operation, and 

superior stability. In early literature, these circuits were already referred to as Colpitts and 

Hartley oscillators [6] and were widely used in audio and communication applications [7]-

[11]. This vast field that is electronics continues to this day to achieve remarkable 

achievements in terms of its applications in everyday life, which the world can no longer do 

without. 

  The progress of science imposes new choices and new strategies that are very different 

from those used in the past, such as the use of new systems or new techniques. In recent 

years, a great effort has been made to miniaturize devices for photonic applications based on 

the study of light-matter interaction [12]-[13]. Optics is therefore the science that studies light 

and its properties, its production, propagation and diffusion, its manipulation, and its 

applications. Nonlinear optics is the study of phenomena that occur as a consequence of the 

modification of the optical properties of a material system by the presence of light. In other 

words, it is the behavior of light in non-linear media and all-optical phenomena and systems 

described by non-linear equations [14]-[15]. It is all this that has led scientists working in this 

field to prophesy that optics will be in the 21st century what electronics was in the 20th 

century. This dream is becoming a reality with guided optics, which is now emerging as one 

of the most important technologies in the context of optical telecommunications, which is a 

revolution compared with telecommunications by radio waves [16]-[19]. 

The invention of the laser in 1960 by Theodore Maiman [20] and the discovery of the 

optical fiber four years later by Charles Kao and Georges Hockman [21], revolutionized the 

world of oscillators because it became possible to link optics and electronics: this is 

Optoelectronics which can in some circumstance incorporate time-delay. 
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 Delay differential systems are ubiquitous since they are encountered in relevant fundamental 

and applied fields such as chemical kinetics, fluid dynamics, electronics, biology, optics and 

photonics, and so on [22]-[26]. Particularly in the optical domain, a wide variety of time-

delayed electro-optical systems was modeled using the so-called Ikeda’s equation [27]-[28]. 

Examples are optoelectronic oscillators (OEOs). 

Optoelectronic oscillators (OEOs) were first proposed by Neyer and Voges in 1982 

[27], but it was not until 1994 that Yao and Maleki of the JPL (Jet Propulsion Laboratory) 

first studied these oscillators for microwave generation [29]. The main advantage of OEOs 

compared to other oscillators is related to their time scales. The time scale versatility is 

possible because the system is built with ultra-fast optical and electronic devices, with 

bandwidths up to 100 GHz [30]. As a result, the nonlinear dynamics of OEOs can span 

several orders of magnitude, and over the past three decades, research on various OEO 

architectures has demonstrated that they can be particularly fruitful systems for both basic and 

applied science. 

In general, in OEOs, the nonlinearity of the system comes from the optical path, while 

the electrical path is considered to be linear. OEOs are autonomous systems in which a signal 

is alternatively converted into the optical and electrical domains in a closed-loop 

configuration. In other words, OEOs offer the advantage of generating both electrical and 

optical signals for a more wide range of applications [31]-[33].  In their standard 

configuration, OEOs have two sub-families depending on the bandwidth of the electrical path 

in the feedback loop When the filter is narrow, the system displays ultra-stable microwave 

signals with applications in the fields such as aerospace engineering [34], sensing [35]-[36], 

time-frequency metrology [37]-[38], and pulse generation in optical fiber networks [39]-[40]. 

On the other hand, when the filter is broad, OEOs can output other complex optical 

microwave signals such as breathers, bursting, chaos [41]-[42] that are applied in optical 

chaos communications [22],[43], random bit generation [44]-[45], and neuromorphic 

computing [46]-[47]. These systems with delayed feedback have been the focus of intense 

research activities in recent years and were shown to be excellent platforms to investigate the 

interaction between the complexity induced by nonlinearity and the infinite dimensionality 

inherent to the time-delay [48]-[50]. 

         From the discovery of frequency combs with the construction of the first mode-

blocked laser [51], various configurations, including optoelectronic feedback [52], optical 
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injection [53], and optical feedback [54] have been developed and analyzed for the generation 

of microwave frequency combs (MFCs). It is important to clarify that OEOs were also used to 

display microwave frequency combs (MFCs) [55]-[56]. Microwave frequency combs (MFCs) 

[57]-[58] are spectral structures characterized by a discrete and regularly spaced succession of 

lines and found a multitude of applications in a wide range of fields such as metrology [59]-

[60], modern instrumentation [61]-[62], spectroscopy [63], and radar [64], to name just a few.  

In the architectures of OEOs used for most applications cited above, the nonlinear 

conversion between the electrical and the optical signals is performed by a phase or an 

intensity modulator with a sinusoidal transfer function. On the other hand, it was 

demonstrated that other electro-optic components can be used to achieve such nonlinear 

conversion [65]-[66]. These authors exploited the seeding laser diode (LD) itself as an 

electrical-to-optical converter through its power-intensity transfer function which offers an 

advantage in congestion. For instance, such an idea was carried out with a Van der Pol 

oscillator in the electrical path Chaotic and limit-cycle oscillations were generated 

experimentally, but at frequencies up to some kHz imposed by the Van der Pol 

oscillator. Moreover, this Van Der Pol oscillator used is not an oscillator that generates 

complex electrical signals. It would be therefore interesting to explore the case of 

oscillation featuring complex signal such as the Colpitts oscillator. 

Among these novel architectures of OEOs, the one with the nonlinear capacitor and 

called the cubic-nonlinear OEO (CN-OEO) was investigated both theoretically and 

experimentally with and without the Mach-Zehnder modulator. It came out that compared 

to a standard OEO (that is the one with a standard band-pass filter in the electrical 

path), the CN-OEO can display chaos for lower feedback gain. Moreover, it routes to 

chaos through a large region of limit-cycle oscillations of higher frequencies followed by 

a narrow window of crenelated oscillations instead of breathers as is usually the case 

[67]-[69]. However, the power spectrum analysis of the system was not addressed as well 

as a study according to the width of the bandwidth. Power spectrum analysis is one of 

the main tools to explore the characteristics of oscillation properties of CN-OEO, notably 

when some parameters evolve such as the bandwidth of the electrical filter and the 

characteristic parameter of the nonlinear capacitor. It is in this perspective that we have 

set ourselves another objective of this thesis to study numerically and experimentally the 

dynamics and the spectrum of OEOs cascaded by nonlinear electronic components. 
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This thesis is divided into three chapters: 

        In chapter 1, we will review the literature on the progress of work on optoelectronic 

oscillators. In this chapter, we will introduce the basics necessary for a good understanding of 

this field, while also highlighting the problem of the thesis. 

         Chapter 2 will be devoted to the methodology. We will explain the mathematical 

techniques used to describe the nonlinear and OEO circuits used in this thesis as well as the 

numerical analysis methods to solve the differential equations. The optical and electronic 

materials used in the experiments will also be presented. 

         In chapter 3, we present the obtained results. This chapter is divided into two parts. 

First, we make a numerical and experimental study of the dynamics of the Colpitts oscillator. 

The quantities characterizing it such as its amplitude, its period, and its waveform are 

examined. This study shows a perfect agreement between the numerical part and the 

experimental part. Then it is a question of making an experimental study of the dynamics of 

the Colpitts-OEO system with and without delay. In the second part, we study the power 

spectrum analysis of time-delayed optoelectronic oscillators with wide and narrow nonlinear 

filters. We are thus interested in two parameters of the system, namely: the effects of the coil 

and the CNT. For this, a study of the dynamics and the frequency of CN-OEO are carried out. 

The case where L=10 µH and L=10 mH corresponding to the wide and narrow band of the 

nonlinear filter are considered. 

We will end our work with a general conclusion and perspectives, in which we will 

summarize the results and indicate new interesting problems identified at the end of this 

thesis. 
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1.1 Introduction 

           Oscillators are an integral part of our lives and are increasingly used in fields such as 

telecommunications, computing, and embedded systems, especially in aeronautics and space. 

These are essential elements at the level of transmitters and receivers for the transmission and 

suitable restitution of information. The world of oscillators has been turned upside down with 

the discovery of laser and fiber optics with the advent of a new oscillator called optoelectronic 

oscillators (OEOs). OEOs are systems that open up a wide advantage with the generation of 

electrical and/or optical signals and become an excellent means for the generation of high-

purity radio frequency and microwave signals in the civil and military fields. In this chapter, it 

is a question for us of making a review of the literature on oscillators and optoelectronic 

oscillators in particular in order to better understand the necessary bases as well as the 

possibilities of studies and applications for the good understanding of this field and to identify 

the problem of this thesis. 

1.2 The oscillators 

1.2.1 Description  

        In general, an oscillator is a system that moves back and forth more or less long and 

more or less stable around an equilibrium position. In other words, the constituted system 

produces oscillations that can be periodic or not. To produce these oscillations, the oscillators 

need a source of energy that is either internal or external to the system: we then speak of self-

sustaining oscillators or forced oscillators, respectively.  

         The oscillation frequency is fixed by the external excitation in the case of the forced 

oscillators. With regard to the self-sustaining oscillators; the oscillator itself has a source of 

internal energy necessary to maintain its own oscillations appearing in the form of a looped 

system or of feedback. In their configuration, self-sustaining oscillators are made up of two 

main media, namely a resonant milieu which makes it possible to select the oscillation 

frequencies, and an amplifying milieu which compensates the losses of the resonator to 

maintain oscillations. This configuration is given in figure 1.1. 
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Figure 1.1: Configuration of a self-sustaining oscillator. 

In the Fourier domain, if we consider   as the transfer function of the resonator 

and    as that of the amplitude, the transfer function of the oscillator  H  will be defined 

by the relation: 

                             
 

   1
H




  





                                                                          (1.1) 

The conditions of instabilities which are the limiting conditions of starting of 

oscillations of Barkhausen are defined by the system of equations: 

                          
   

   

1

arg arg 2k

  

   

  


         

                                        (1.2) 

where k is an integer. The first equation of the system is the condition on the oscillation 

amplitude and the second equation is the phase condition. The system will only oscillate when 

the transfer function of equation (1.1) is infinite, i.e. when the denominator is equal to zero. 

1.2.2 Colpitts oscillator 

a) History, definition, and circuit 

       The Colpitts oscillator invented by the American engineer Edwin Colpitts in 1918 is one 

of the many possible configurations of an electronic oscillator [70]. Its strengths lie in its 

simple construction and robustness. This oscillator is an amplifier with positive feedback and 

it converts the DC input signal into an AC output waveform with a certain variable frequency 
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drive and certain shape of output waveform by using the positive feedback instead of the 

input signal. 

   Oscillators that utilize the inductor L and capacitor C in their circuit are called LC 

oscillators which is a type of linear oscillator. The Colpitts oscillator consists of a tank circuit 

which is an LC resonance sub-circuit made of two series capacitors connected in parallel to an 

inductor and the frequency of oscillations can be determined by using the values of these 

capacitors and inductor of the tank circuit [71]. The Colpitts oscillator is one of the well-

known and most commonly used electronic oscillators for generating sinusoidal waves at 

radio frequencies [72]. However, this oscillator is shown to exhibit chaos for some special 

sets of its parameters [73]-[75]. Compared to its low-frequency counterparts (e.g. Chua’s 

circuit [76]), the Colpitts oscillator presents some interesting features:  

❖The operation frequency can vary from a few Hertz up to the microwave region; 

 

❖The relative simplicity of its electronic circuit; 

 

❖The oscillator can exhibit rich and complex (chaotic) dynamical behavior at various 

operating frequencies.  

 

          These attractive properties justify the potential utility of the Colpitts oscillator for 

chaos-based secure communication applications [77]. Figure 1.2 shows a typical Colpitts 

oscillator with a tank circuit. An inductor L is connected parallel to the serial combination 

of capacitors C1 and C2 (shown by the red enclosure). The process starts with the charging of 

two capacitors C1 and C2. Then inside the tank circuit, these two series capacitors discharge 

into the parallel inductor L and the stored energy in the capacitor is transferred to the inductor. 

Due to the capacitor being connected in parallel, the inductor is now discharged by the two 

capacitors and the capacitors start to charge again. These charging and discharging in both of 

the components continues and thus provide an oscillation signal across it. 

The oscillation is highly dependent on the capacitors and the inductor’s value. The below 

formula is to determine the oscillation frequency: 

                                                1

2
f

LC
                                                                      (1.3) 

where f  is the frequency and L is inductor, C is the total equivalent capacitance. The 

equivalent capacitance of the two capacitors can be determined using 

https://www.electrical4u.com/what-is-inductor-and-inductance-theory-of-inductor/
https://www.electrical4u.com/what-is-capacitor/
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1 2

1 2

C C
C

C C





                                                                        (1.4)

 

So the oscillation frequency is finally given by:  

                                                    1 2

1 2

1

2

C C
f

C C





                                                              (1.5) 

        During this oscillation phase in the tank circuit, some energy loss occur. To 

compensate for this lost energy and to sustain the oscillation inside the tank circuit, a gain 

device is required. There are many different types of gain devices are used to compensate for 

the loss of energy inside the tank circuit. The most common gain devices are transistors and 

operational amplifiers. 

        The oscillation of the transistor-based Colpitts oscillator circuit is depended on the phase 

shift. This is well known as the Barkhausen criterion for the oscillator. As per the Barkhausen 

Criterion, the loop gain should be slightly greater than the unity and the phase shift around the 

loop needs to be 360 degrees or 0 degrees. So, during this case, to provide the oscillation 

across the output, the total circuit needs 0 degrees or a 360-degree phase shift. The transistor 

configuration as a common emitter provides a 180-degree phase shift whereas the tank circuit 

also contributes an additional 180-degree phase shift. By combining these two-phase shifts 

the total circuitry achieves a 360-degree phase shift which is responsible for the oscillation. 

         

Figure 1.2: Colpitts oscillator circuit [71]. 

          Other components in the circuit of figure 1.2 are the same as that found in the case of 

common-emitter CE, which is biased using a voltage divider network, i.e., RC is the collector 
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resistor, RE is the emitter resistor which is used to stabilize the circuit, and the resistors R1 and 

R2 form the voltage divider bias network.  

        Here, as the power supply is switched ON, the transistor starts to conduct, increasing 

the collector current Ic due to which the capacitors C1 and C2 get charged. On acquiring the 

maximum charge feasible, they start to discharge via the inductor L. 

b) Some application of the Colpitts oscillator circuit 

       The Colpitts oscillator has much more to offer in electronics and therefore has many 

applications, but we can mention among others [73,78]: 

❖Due to the difficulties in a smooth variation of inductor and capacitor, the Colpitts 

oscillator is mainly used for fixed frequency generation. 

❖The main use of the Colpitts oscillator is in mobile or other radio frequency-controlled 

communications devices. 

❖In high-frequency oscillation, the Colpitts oscillator is an excellent choice. Thus high-

frequency oscillator-based devices use Colpitts oscillator. 

❖For those applications which need a wide range of frequencies with minimum noise-

induced. 

❖Various types of metal detectors use the Colpitts oscillator. 

❖Frequency modulation related radio frequency transmitter use Colpitts oscillator. 

❖In microwave applications, signal masking related chaotic circuits also required Colpitts 

oscillator in the different frequency range. To name just a few. 

1.3 Nonlinear capacitor 

         Nonlinear capacitors are important components in electronic systems, from both the 

fundamental and technological points of view. They are used in circuits for power electronics 

and can operate at high frequencies. They can also be used to implement nonlinear resistors 

and inductances. For these reasons, they are commonly used as a source of nonlinearity in 

several physical systems [79]-[80].  
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       In general, a nonlinear capacitor can be made of an ideal operational amplifier, four 

diodes, two linear capacitors, and one linear resistor as depicted in figure 1.3. The charge-

voltage characteristics of the nonlinear capacitor is a nonlinear function of the instantaneous 

electrical charge and which can be modeled by a constitutive relation of the form [81,82]: 

                             1

0

1 0 1 2

2
2

C

q q
V q V Sinh

C I R C

  
   

 
                                                                  (1.6) 

where 0V  and 0I  are the characteristics voltage and current, respectively.  

A two terms Taylor expansion of sinh function gives: 

                                 
 

30 0

3

1 0 1 2 0 1 2

1

24
C

V V
V q q q

C I R C I R C

 
   
 

                                                     (1.7) 

Using Maple software, this equation will be plotted in the next chapter. 

                                   

Figure 1.3: Model of the nonlinear capacitor. 

1.4 The laser 

1.4.1 History and definition 

Devices generate visible or invisible light, based on the stimulated emission of light. 

The word laser stands for Light Amplification by Stimulated Emission of Radiation. The 

principle of stimulated emission (or induced emission) was described in 1917 by Albert 

Einstein. In 1950, Alfred Kastler proposed an optical pumping process, which he validated 

experimentally two years later with Brossel and Winter. Charles Townes and Arthur 

Schawlow established the principle of laser design in 1958, but it was not until two years later 
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that the American Theodore Maiman (1927-2007) developed the first laser [20]. The laser is 

an optical cavity where the photons are emitted by stimulated emission based on population 

inversion (is the process of achieving a greater population of higher energy state as compared 

to the lower energy state. The population inversion technique is mainly used for light 

amplification. It is required for laser operation). The laser is thus made up of an amplifier 

milieu, a resonant cavity, and reflection mirrors (see figure 1.4). 

 

Figure 1.4:   Schematic view of a laser. 

      Laser light has four unique characteristics that differentiate it from ordinary light these 

are coherence, directionality, monochromatic and high intensity. 

1.4.2 Different types of Laser 

      There are several types of lasers, we can mention among others gas laser (is a laser in 

which an electric current is discharged through gas inside the laser medium to produce laser 

light. In gas lasers, the laser medium is in the gaseous state.), and a liquid laser (is a laser that 

uses the liquid as laser medium), solid-state lasers (is a laser that uses solid as a laser medium. 

In these lasers, glass or crystalline materials are used), and semiconductor lasers (is the one 

that interests us in this work). 

a) Semiconductor lasers 

    Semiconductor lasers play an important role in our everyday life. These lasers are very 

cheap, compact in size, consume low power, and cover a wide spectral range from visible to 

near-infrared. Semiconductor lasers are also known as laser diodes and have an optical power 
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of up to several watts continuously. It is different from the solid-state laser. For example, in 

solid-state lasers, light energy is used as the pump source whereas, in semiconductor lasers, 

electrical energy is used as the pump source. In semiconductor lasers, a p-n junction of a 

semi-conductor diode forms the active medium or laser medium. The optical gain is produced 

within the semiconductor material. 

       There are several varieties of laser diodes on the laser market, depending on their very 

different applications. 

i) Fabry-Perot cavity laser diodes 

        These are semiconductor lasers consisting of a resonant cavity delimited by two semi-

reflecting plane mirrors inside which there is an active material at the p-n junction (see figure 

1.5). The electrical pumping of the conduction zone is carried out by metallic contacts in 

order to carry out the amplification. It is important to note that this type of laser is not optimal 

for the majority of applications in optical telecommunications systems because of their 

spectral characteristic which reveals a low SMSR (Single-Mode Suppression Ratio) due to the 

high number of longitudinal modes. 

             

 

Figure 1.5: Structure of a semiconductor laser with a Fabry-Perot cavity [83]. 

ii) VCSEL laser diodes 

      Vertical-Cavity Surface-Emitting, are surface-emitting semiconductor lasers and their 

optical cavity is formed by Bragg reflectors or mirrors consisting of alternating layers of 

media of different refractive indices on either side of the p-n junction. Generally, the output 
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light is in a geometrically circular mode, thus facilitating its coupling with an optical fiber. 

Certain works show on the one hand that the VCSELs, when they are subjected to a sinusoidal 

modulated current emit pulses and/or packets of pulses of modulated frequencies which can 

reach a few hundred MHz and, on the other hand, excite relaxation oscillations in SRLs 

(Semiconductors Ring laser) [84]. 

VCSELs include the following: 

❖Bragg reflector lasers or DBR (Distributed Bragg Reflector): are laser diodes consisting 

of a cavity in which one side is replaced by a Bragg mirror. The Bragg reflector is a periodic 

structure whose reflection coefficient depends on the wavelength of the incident photon.  

DBRs are widely used for the transmission of information over optical fibers in optical 

telecommunications, radar, and embedded systems applications. 

❖Distributed feedback lasers or DFB: have a structure similar to DBRs and are generally 

used in the field of fiber optical telecommunications. They are longitudinal single-mode and 

can emit at the wavelength of 1550 nm at which the optical fiber has minimum attenuation. 

DFB and DBR lasers oscillate in a single-longitudinal mode even under high-speed 

modulation, in contrast to Fabry-Perot lasers, which exhibit multiple-longitudinal mode 

oscillation when pulsed rapidly [85]. The structure of DBF and DBR is given in figure 1.6. 

                       

Figure 1.6: Schematic illustration of DBR and DFB lasers [86] 

 

1.4.3 Current-power characteristics of a laser diode. 

      The optical power output of a laser diode depends on the current injected into the 

laser. If 
opP  is the photon power at the laser output, I is the pump current and thI  is the laser 

threshold current, then the photon output power will be given by the expression [87,88]: 
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where is the directing coefficient of the  opP f I curve which depends on the 

differential Bragg mirror quantum yield  , h  is Planck's constant and v  is the photon 

emission frequency. The parameter  is a coefficient that depends on the 

efficiency and the factor of the spontaneous emission s  and   respectively (which are 

negligible). The optical power is assumed to be zero for a pump current below the threshold 

current ( thI I at 
opP = 0). The current-power characteristic of a laser is given by the following 

figure 1.7: 

              

Figure 1.7: Current-power characteristics of a laser diode. 

This figure reflects a so-called kink non-linearity existing in the laser medium. This 

kink non-linearity can therefore be translated by the non-linear function:  

                                                                                                              (1.9) 

where   is a laser conversion factor, D  the non-linear function of the laser defined by the 

relation : 
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For thI I , the laser is off, no photons are emitted. For thI I , we have the laser effect which 

emits a coherent monochromatic beam. 

1.4.4 Applications of Lasers 

      A laser is an optical device that generates an intense beam of coherent monochromatic 

light by stimulated emission of radiation. Laser light is different from ordinary light. It has 

various unique properties such as coherence, monochromaticity, directionality, and high 

intensity. Because of these unique properties, lasers are used in various applications. The most 

significant applications of lasers include: 

❖Medicine: Bloodless surgery, cancer diagnosis, and therapy remove tumors successfully, 

cosmetic treatments such as acne treatment, cellulite and hair removal… 

❖Communications: Laser light is used in optical fiber communications to send information 

over large distances with low loss, in underwater communication networks, in space 

communication, radars, and satellites. 

❖Industries: In electronic industries for trimming the components of Integrated Circuits 

(ICs), to collect information about the prefixed prices of various products in shops and 

business establishments from the bar code printed on the product… 

❖Science and technology: In computers to retrieve stored information from a Compact Disc 

(CD), and also to store a large amount of information or data in CD-ROM, in computer 

printers… 

❖Military: To determine the distance to an object, as secretive illuminators for 

reconnaissance during the night with high precision… 

1.5 Electro-optical modulation (Mach-Zehnder 

Modulator) 

        Electro-optical modulators are based on the non-linear electro-optical effect which 

corresponds to the variation of the refractive index of the material by application of a voltage: 

this is the Pockels effect. 

         The Mach-Zehnder modulator is the most widely used electro-optical modulator. It is 

made of lithium niobate (LiNbO3) and is based on an architecture composed of two "Y" 

junctions linked together by two straight guides which constitute the interferometer arms. The 

light propagating in the optical guides is generated by a laser source. 
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         The MZM has two (02) separate electrodes, namely the bias or DC  electrode (constant) used 

to select the operating point of the modulator and the RF  electrode (variable) for wave modulation 

(see figure 1.8.(a)). It is characterized by its static transfer function giving the optical power output 

outP  as a function of the voltage  V t applied to the electrodes. Thus, if inP  represents the optical 

power of the laser beam at the input of the MZ modulator, the relationship between the output power 

and the applied voltage is a sinusoidal function given by [105],[109]: 

                                    
 2cos

2 2

B
out in

RF DC

V t V
P P

V V 

 
  

 
                                                         (1.11) 

BV  is the DC  voltage applied to the bias and DCV  is the half-wave voltage at this electrode. 

The parameter RFV  is the half-wave voltage of the RF  electrode which imposes a phase shift 

of π. For this phase shift of π, the optical power output reaches its maximum. This defines the 

operating point of an optoelectronic oscillator when the MZ modulator is used. The position 

of the half-wave and quarter-wave voltages giving the non-linearity of the MZ is shown in 

Figure 1.8.(b) [89]. 

 

 

Figure 1.8: (a) Schematic of push-pull-type MZM and (b) the power transfer function 

curve [89]. 

In general, intensity modulators are characterized by: 
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❖Bandwidth of the modulator: this is very important as it limits the throughput in digital 

communications. It also depends on the type of modulator used and varies from one electrode 

to another. 

❖The half-wave voltageV : this voltage makes it possible to pass from a maximum to a 

minimum transmission (or vice versa). This corresponds to a phase shift of   between the 

two arms of the MZ interferometer. 

❖The voltage biasV : also called the operating point of the modulator, it is chosen according to 

the applications of the envisaged modulator. To double the signal frquency, is sufficient to 

modulate with an operating point located in phase or phase opposition. To modulate a signal, 

however, it is often preferable to place the operating point in phase quadrature, i.e. the 

operating point must be in the middle of the linear zone of the transfer function. 

❖Insertion loss : this is the ratio of the light power injected at the input to that recovered at 

the output of the modulator. It corresponds to the capacity of the modulator to transmit light 

when it is in constructive interference.   

❖The contrast or extinction ratio: generally induced during the manufacture of the 

modulator, it represents the ratio between the optical power transmitted at the output of the 

interferometer in the blocking state (destructive interference) and the interferometer in the 

passing state (constructive interference). This extinction ratio can be degraded if the two arms 

of the MZ interferometer are not strictly identical (loss imbalance).  

       The MZ modulator has a great advantage in that it can support high optical power and 

also responds to frequencies above 100 GHz making it an excellent candidate for fiber optical 

communication [90]. 

1.6 Modulation by electrical signals 

        In optical transmission systems, it is important to be able to modulate the light wave 

by an electrical signal and to be able to demodulate it afterward, supporting very high data 

rates in the case of digital telecommunications and very high microwave frequencies in the 

case of analog telecommunications. Thus, we can have intensity modulation, phase 
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modulation, and frequency modulation. Light intensity modulation offers the advantage of the 

simplicity of direct detection and is still the most widely used type of modulation. A 

distinction is made between two types of laser modulation: direct modulation and external 

modulation. These two modulation techniques are applied in our work.                  

1.6.1 Directly modulated laser diodes 

        Direct modulation of a laser source is the simplest method of modulation. This is 

achieved by superimposing an RF (or microwave) signal on the laser injection current (see 

Figure 1.9).  Only semiconductor lasers are of practical interest for direct modulation because 

of bandwidth and efficiency requirements [91]. The unique feature of the semiconductor laser 

allows the semiconductor to be modulated directly by modulating its excitation current. At 

high data rates (10 Gb/s) or higher, the spurious frequencies imposed by direct modulation 

become relatively large, and this makes the modulation of semiconductor lasers inefficient. 

When these spurious signals are caused by modulation, the wave propagation speed fluctuates 

and the shape of the optical signal is distorted as it propagates through the fiber, making long-

distance transmission inefficient [92]. 

                                       

Figure 1.9:  Modulation through the laser diode. 

1.6.2 External modulators 

      A typical example of direct intensity modulation is an optical modulation in which 

data are modulated by varying the intensity of a laser beam. However, this type of modulation 

is not suitable for long-distance transmission since the power at which the transmitter’s laser 

emits should be kept at a low level, its necessary to use an optical amplifier or repeaters which 

significantly increase the overall cost of the network solution. For more sophisticated 

modulations are used devices called external optical modulators [93]-[95]. 
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      There are two main categories of external modulation: electro-optical modulators (the 

one used in this thesis) and electro-absorbent modulators. This classification is based on the 

properties of the materials used to modulate the light intensity. Several important 

characteristics must be taken into account when comparing different modulators, namely: the 

voltage required for phase shifting, the optical processing capability, the linearity of the 

transfer function, etc.    

        The modulator has two inputs, one electrical and one optical (see Figure 1.10). An 

optical modulator is a device that produces temporal changes in the amplitude and phase of 

the optical signal. Several methods of optical modulation exist [96]. Amplitude modulation 

can be achieved with external modulators by constructing an interferometer in which it is 

possible to control the phase difference between the two arms by applying a controlled 

external electrical voltage (using electrodes) to an electro-optical material; this causes the 

refractive index of a single arm to change, thus producing phase modulation on the first arm 

of the modulator and amplitude modulation on the output of the interferometer. This type of 

device is known as a Mach-Zehnder (see section 1.5) and allows modulation frequencies over 

40 GHz. 

                             

Figure 1.10: Optical link with external modulation. 

1.7 Optoelectronic oscillator 

1.7.1 Description 

       Optoelectronic oscillators (OEOs) are self-contained systems where the signal is 

alternately converted in the optical and electrical domains, in a closed-loop configuration 

(figure 1.11). The feedback consists of an electronic part that loops over the optical part. This 

is the seat of the optical/electrical conversion. 
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        Figure 1.11: Generic representation of an optoelectronic oscillator with time-delayed 

feedback.  

        Energy flows alternatively in the optical and electrical forms, and conversion 

between both paths is performed by electrical-to-optical (E/O) and optical-to-electrical (O/E) 

converters. This closed-loop system is always nonlinear, dissipative, and infinite dimensional 

because of the time delay. The interplay between these three properties is the main source of 

dynamical complexity in OEOs. For metrological applications, a fourth property, 

stochasticity, becomes relevant as well [97]. 

1.7.2 Classical optoelectronic oscillator 

       Optoelectronics oscillators (OEOs) are autonomous nonlinear systems whose feedback 

loop is constituted by an optical and an electrical branch. In their architecture in general, the 

optical part of OEOs are seeded with a continuous-wave (CW) semiconductor laser (typically 

in the near-infrared range). The output laser beam is generally modulated using a nonlinear 

electro-optic modulator and subsequently launched into an optical fiber line which is long 

enough to induce a significant time delay. The optical beam is then converted into an 

electrical signal using a fast photodiode (PD). This radio-frequency (RF) signal is eventually 

band pass or low pass filtered, amplified, and then used as a driving signal of the modulator, 

thereby closing the feedback loop as shown in figure 1.12. Following this mechanism, OEOs 

can output RF signals with a frequency range from 1 kHz to 100 GHz, and they display a very 

wide range of complex dynamical behaviors [98]-[100],[131]. 

      The purity of the microwaves generated with the OEO is since in the oscillation loop 

the insertion of a fiber delay line allows a considerable storage time equivalent to a quality 

factor given by the expression: 

       Conversion         

   Electrical/Optical 

         Conversion     

   Optical/Electrical 

                  Energy carried by the optical signal 

               Energy carried by the electrical signal 

 Delay 
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                                               2RF DQ FT                                                                  (1.12)                                                                     

where F  is the microwave frequency and 
D

nL
T

C
  is the delay induced by the delay line of 

length L, where n is the refractive index of the group velocity, and C is the speed of light in a 

vacuum. 

 

                  

  Figure 1.12:  A classical Optoelectronic oscillator [101]. 

This system is described by an Ikeda-type delay integro-differential equation [102]:   

                               
0

21
cos

t

D

t

dx
x x s ds x t T

dt
  


                                           (1.13) 

where   is the normalized gain which is proportional to the laser power,   is the phase 

corresponding to the half-wave bias voltage, and  x t  is the normalized voltage through the 

circuit. The delay introduced into the loop increases the dimensions of the system and these 

two frequencies are inversely proportional to the respective time scales   and . This allows 

for three different time scales. By varying the loop gain  , the interaction between the band 

pass filter and the optical non-linearity induces the coexistence of periodic slow dynamics and 

chaotic fast dynamics [103]. This double dynamics is described by the breathers that are 

periodic for small values of the gain; when the gain is large, these breathers become chaotic. 

In 2009, Peil et al. in “Routes to chaos and multiple time scale dynamics in broadband 

bandpass nonlinear delay electro-optic oscillators” explored the multi-scale dynamics in 

broadband electro-optical oscillators. They consider a 20 m optical fiber that creates a 100 ns 
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delay. The other two time scales were related to the high and low cut-off frequencies of the 

filter used. Depending on the operating point   and the loop gain, a wide variety of dynamic 

behaviors such as slow or fast oscillations with different waveforms, and regular or chaotic 

breathers [104,105]. 

       It has been shown by considering the interaction between the Mach-Zehnder non-

linearity and the optical delay that the ultra-pure microwave envelope amplitude becomes 

unstable as the loop gain increases [106]-[108]. 

1.7.3 The simplest autonomous optoelectronic oscillator 

looped by a laser 

       Goune Chengui in his thesis has shown that it is possible to design a simpler OEO than 

the classical ones [109]. Unlike other OEOs, this simplified OEO does not use an external 

modulator (see figure 1.13). But a simple electrical signal can be used to pump a laser which 

will provide oscillations. With this architecture, the intensity modulation is ensured by a 

piecewise linear function (and therefore, non-linear), through the power-intensity transfer 

function of the laser diode. The photodiode converts the input power  P t into an electrical 

voltage  V t , which is applied to a variable voltage attenuator which here acts as an RF-

amplifier with a gain G , before being converted back into the current,  rfI t to be used to 

pump the laser diode. The laser diode performs the conversion from the electrical to the 

optical domain [109]. 

                         

             Figure 1.13: Basic architecture of an optoelectronic oscillator [109]. 

 

The dimensionless non-linear transfer function of the laser diode is, therefore:      
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where  H x  is the Heaviside function usually equal to 0 for 0x  and 1 otherwise. 

         Consequently, the non-linear function of the diode  D x  is equal to zero for negative

x , and is equal to x  in the contrary case (with a linear evolution). In laser diodes, this 

function is of the form  thD I I  , which is equal to 0 for thI I , and to  thI I   for thI I , 

with   being the linear conversion factor from intensity to power. The intensity power of the 

transfer function of the laser diode is, therefore: 

                                                            rf pol thP t D I t I I                                                             (1.15) 

where d hv   is the conversion slope of the laser, d  is the quantum efficiency, h  is 

Planck’s constant, and
c

v


  the frequency of the laser carriers. In this case, if
0 th polI I I  , 

the output power of the laser will therefore be: 
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                                                    (1.16) 

        The dynamic properties of the system are governed by the set of bandpass filters 

induced by the superposition of the pass bands of the RF amplifier, the photodiode, and the 

coupler. Taking advantage of the fact that the high cut-off frequencies Hf  and the low cut-off 

frequencies Lf  are very far from each other, it is estimated that this band pass filter consists of 

a cascade of low-pass linear filters and top-notch high passes. The input voltage  inV t and the 

voltage  outV t of the cascaded band pass filter obey: 

                             
 

 
0

2

0
int

1
t

s

out out

t

du t
V t V t V s ds

dt


  

  
                                                   (1.17) 

and the optical output power P  is then converted into the electrical domain through the 

photodiode (PD), according to the relationship    DV t SP t T  , where DT  is the time-delay 

from the propagation time in the line of the fiber between the laser and the photodetector, and 
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S  the sensitivity of the photodiode. The circuit input voltage of the electrical part can 

therefore be written as       0in rf DV t V t S D I t T I       . The relationship between 

 rfV t and the output voltage    rf outV t GV t of the voltage attenuator is converted to 

current    rf rf ZI t V t R , where ZR  is the characteristic impedance used for the voltage-to-

current conversion, and   the dimensionless factor represents all the linear losses (electrical 

and optical) in the loop. Therefore, the voltage  rfV t obeys [109]: 

                                
0

1
t

t

dx
x x s ds D x t T

dt
  


                                                          (1.18)

 

where 0V  , and 0V  is equivalent to the current-voltage conversion of 0I  by 0 0ZV R I . The 

scaled system variable is    rfx t V t , and the feedback gain control parameter is 

ZS G R   . 

         By doing a stability study of their system, they showed that this stability depends on 

the sign of  . For  0 pol thI I   , the system remains in its fixed equilibrium state 

regardless of the gain or time delay. It is therefore concluded that the bias current is 

absolutely a very important element when studying the system, in order to obtain non-trivial 

dynamic behavior. For  0 pol thI I   , as   increases and reaches the value 1  = 1.32, the 

limit cycle of frequency 1f  = 612.1 kHz emerges and becomes an attractive limit cycle for any 

initial condition taken around this unstable equilibrium point. It thus appears that the 

necessary condition for the emergence of oscillations is 
pol thI I , and this depends heavily on 

the gain. 

As a result, the behavior of their bifurcation diagram plotting the maximum of  x t  as 

a function of the control parameter   shows the different state variations of the system (in 

three parts) when this control parameter is changed [109]:  

❖Portion (A) is the region where 1 <   < 1.18. No oscillation is observed. It turns out that 

the signal is zero, and the fixed point becomes attractive. 
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❖ Portion (B) is the region where 1.18 <   < 1.34. A limit cycle of period DT  appears; the 

amplitude of these oscillations increases with the value of  . 

❖Portion (C) is the region where   > 1.34. A limit cycle of slow time-scale oscillations 

appears which gradually gives rise to the appearance of a fast oscillation of period DT  just at 

the extrema as   increases continuously. 

1.7.4 OEO with the electronic part cascaded by an 

electrical oscillator. 

a) Van der Pol Optoelectronic Oscillator without Mach-Zehnder 

modulator 

      OEOs usually have a linear electrical branch where the electrical signal is amplified 

and the frequency is finally filtered. A very important point of view on the behavior of the 

OEO deserves investigation, such as when this electrical branch responds non-linearly to an 

input excitation. Goune et al., therefore, explored the non-linearity of the electrical branch by 

introducing the self-sustaining Van der Pol (VdP) electrical oscillator, which is a classic 

example of a self-oscillating system [109]. Historically, the VdP oscillator was introduced by 

Balthasar Van der Pol in the 1920s. Since then, it has been a very important paradigm for 

autonomous systems and relaxation oscillations in physical and biological systems [110,111]. 

      In this OEO (figure 1.14), the nonlinearity of the laser diode is used to perform the 

conversion from the electrical to the optical domain, while the electrical branch has a VdP 

nonlinearity. Thus, they experimentally implemented the system and its modeling in order to 

investigate the complex dynamics of the electrical output signal. 

 



 
 

Doctorate Thesis/Ph.D in Physics |                 Mboyo Kouayep René                   Year   2023        
 

26 

                   

Figure 1.14: The experimental set-up of the Van der Pol-optoelectronic oscillator 

(VdP-OEO). DL: Delay line; PD: Photodiode; Ipol: Laser polarization current; 

IRF: RF current from the feedback loop [65]. 

       For their results, the bias voltage is taken as 
th polV V = 2.05V to allow the laser to 

reach its linear operating region. As the gain increases, they observe a significant qualitative 

difference in harmonic behavior. The main difference between the VdP and the VdP-OEO is 

that the oscillations in the latter are asymmetric, with an asymmetry towards positive values. 

On the other hand, in the VdP-OEO, the transitions from negative to positive values are 

slower than that from positive to negative values, whereas both transitions are of equal 

duration in the case of the classical VdP oscillator. It is also important to note that in both 

time traces (theoretical and experimental), they also observe the typical increase in the 

oscillation period as the gain increases. 

         It is important to remember here that with the VDP oscillator they only obtained 

periodic and chaotic dynamics in their system. 

b) Van der Pol Optoelectronic Oscillator with Mach-Zehnder 

modulator. 

        A representative diagram of this system is shown in figure 1.15 (A.F Talla et al. in 

Breather and Pulse Package Dynamics in multi nonlinear electro-optical systems with delayed 

feedback). The optical signal in the feedback loop is delivered by a DBR semiconductor laser 

that emits continuous light of maximum power of 12 mW with a pump current of 100 mA, at 

the telecommunication wavelength  =1559.8 nm. The threshold of their laser is obtained for 

a measured pump current at thI =27.3 mA.  This laser is modulated by a Mach-Zehnder electro-

optical modulator characterized by its RF half-wave voltage RFV  and DC voltage DCV . The 
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output signal of the MZ passes through an optical fiber of length L =100 m which introduces a 

delay DT = 0.5 s  into the loop. The delayed optical signal is detected by a photodiode 

which performs the optical/electrical conversion with a sensitivity S = 0.95 A/W. The 

electrical signal then passes through the VDP circuit, whose output is offset controlled, and 

amplified before returning to the DC electrode of the MZM. The VDP circuit inserted in the 

electrical branch of the feedback loop is a self-interacting oscillator consisting of a LC  

oscillator (whose frequency is
0 1 LC  ) and a nonlinear negative resistance.  

   

             

Figure 1.15: Setup for the VdP-OEO with Mach-Zehnder modulator. MZM: Mach–

Zehnder modulator; DL: delay line; PD: photodiode; VdP: Van der Pol circuit; BPF: 

bandpass filter (note that this element stands here for all the bandpass filtering elements of 

the electric branch); OC: offset controller; MC: microwave coupler; Amp: amplifier [112]. 

        To experimentally explore the complex dynamics of their oscillator, they first consider 

the case where the delay is fixed at zero (the delay line is removed). When they increase the 

laser current beyond the threshold, they first observe a hybrid regime where the oscillations 

are (multi-) periodic. The output voltage of the oscillator is a periodic limit-cycle with a single 

frequency f =0.91 kHz which is of the same order of magnitude as the oscillation frequency 

of the VDP circuit. When the pump current I (and generally corresponding laser power P ) is 

increased, quasi-rectangular oscillations appear on the sharp rising edge of the relaxation 

oscillations, but they are rapidly damped soon after their onset. At this stage, the breathers are 

still periodic. A further increase in pump current leads their system into a regime of complex 

oscillations involving chaotic breathers and pulse packages. 
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         When the delay is taken into account (insertion of the 100 m long optical fiber), the 

system becomes infinite in dimension. In this case, the system can have other complex 

dynamical behaviors. They find that when the laser is pumped just above the threshold, 

relaxation oscillations and breathers comparable to those obtained in the zero delay case 

appear.  However, when they increase the laser power, the system produces pulse packages 

that are chaotic while those obtained when DT = 0 are periodic. Then a further increase leads 

their system to hyper-chaos [105]-[112]. 

       It is important to note that their system oscillates with frequencies of the order of a few 

kHz imposed by the VDP oscillator. 

1.7.5 Optoelectronic oscillators with nonlinear filters in 

electrical part. 

     The CN-OEO is one of the most recent OEOs proposed in 2019 [49]. Indeed, it is built 

by replacing the classical band-pass filter or the electronic oscillator with a nonlinear cubic 

filter (figure 1.16). This nonlinear filter is implemented using a nonlinear capacitor. It has 

boosted the complexity of the OEO dynamics which opens it to multiple applications such as 

secure communication, random bit generation… 

        In their oscillator, the nonlinear capacitor is used to introduce an additional integral 

term so that the resulting OEO model is presented as a novel extension of the broad bandpass 

Ikeda-like equation. The system can display attractors such as fixed points, limit cycles, and 

chaos, and is therefore compatible with all the related applications. It is also possible to 

control mixed-mode oscillations which in return favored quadrupled-frequency limit-cycle 

oscillations. Adding a nonlinear element in the electric branch is also a natural pathway to 

emulate complex coherent phenomena in coupled networks of OEOs (such as cluster 

synchronization, for example [113,114]). The final equation of this system is given by [49]: 

                             
0

3

2

0

1
( ) cos

t t

D

t

dx
x x s ds x s ds x t T

dt
   



 
         

 
                    (1.19) 

where ( ) 2out RFx V t V is the dimensionless dynamical variable of the system. According to 

Equation 1.19, the cubic nonlinear band-pass filter is characterized by three-time scales 

which are the high cut-off time   the low cut-off time  , and the nonlinearity timescale 
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3 1  . Therefore, adding the delay TD transforms the CN-OEO into a four-timescales OEO. 

We will return to this equation in detail in Chapter 2. 

 

                         

Figure 1.16: Set-up for the CN-OEO. VB is the offset phase control voltage; PC: 

Polarization Controller; MZM: Mach-Zehnder Modulator; PD: Photodiode; CNBPF: 

Cubic-Nonlinear Band-Pass Filter; VS: Voltage Subtractor; Amp: RF amplifier; MC: 

Microwave Coupler [49]. 

       The limit cycles generated with the device are of higher frequency and amplitude 

compared to the standard OEO. Their system can be operated either in narrow-band or wide-

band configuration. It can display or not breathers by tuning some parameters for applications 

where they have to be either enhanced or avoided. This result shows that the CN-OEO is more 

versatile than the standard one. Their work also offers a more general overview of the origin 

of breathers in the wide-band OEO.   

1.7.6 OEO with nonlinear amplifiers (sinh-OEO) [115]   

        Time-delayed dynamical systems generally feature smooth nonlinear transfer 

functions in the feedback loop, such as polynomial or sinusoidal functions. As a consequence, 

the complexity of their dynamical behavior mainly originates from the time-delay. But in 

2021, Talla Mbé et al. (see figure 1.17) explore the opposite case where the nonlinear transfer 

function is complex (cos2( sinh)), and therefore, non-smooth. They perform a bifurcation 

analysis of the system, and evidence that this novel type of time-delayed system can display a 

chaotic behavior characterized by positive maximum Lyapunov exponent and quasi-maximal 

entropy. The high entropy behavior of the system combined with post-processing are used to 

generate random numbers for small values of the feedback gain with an overall bit rate up to 

1.478 Gb/s. 
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         The optical signal in the feedback loop originates from a telecommunication laser 

diode, which outputs a continuous-wave signal of power PL (few mW). This signal is used to 

seed an integrated lithium-niobate Mach-Zehnder modulator characterized by the 

radiofrequency and direct-current half-wave voltages VπRF = 3.9 V and VπDC = 5.0 V, 

respectively, and biased with a tunable but constant voltage VB in the DC electrode. One 

should note that the nonlinear transfer function of this modulator is the conventional cos2 

function, which is the same as the one feature in most OEO implementations. The optical 

output signal of the Mach-Zehnder modulator is then sent into a fiber delay line of time-delay. 

The delayed optical wave is then translated to the electrical domain using a photodiode of 

sensitivity S = 4.75 V/mW at 1550 nm with a detection bandwidth of 150 MHz, and the 

resulting electrical signal is subsequently routed to a band-pass filter with low- and high cut-

off frequencies fL = 10 Hz and fH = 5 MHz, respectively. The filtered signal Vin is split with a 

microwave coupler into two: the first part is used to monitor the electrical signal in the loop 

owing to a digital oscilloscope while the other part is sent to a custom-made nonlinear 

amplifier, which outputs a signal Vout that is re-injected into the RF electrode of the Mach-

Zehnder modulator to close the feedback loop. 

                                 

Figure 1.17: Set-up of the optoelectronic oscillator with complex transfer function. PC: 

Polarization controller; MZM: Mach-Zehnder modulator; DL: Delay line; PD: 

Photodiode; BPF: Band-pass filter; MC: Microwave coupler; NLA: Nonlinear amplifier 

(sinh) [115]. 

      Taking into consideration the saturation voltage of the operational amplifiers (Vcc = 15 

V), the relationship between the input Vin and the output Vout of their nonlinear amplifier is 

found to be a piecewise hyperbolic sine transfer function given as: 
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with VinC = 6V0arcsinh (R1Vcc/2RR2I0) being the critical value of the input voltage for which 

the operational amplifiers saturate. The system designed in figure 1.17 is ruled by the 

following integro-differential delayed equation [115]: 

                                            NLA

0

1
f

t

x t x t x d x t T   


                                                  (1.21) 

where x(t) = πVin(t)/2VπRF stands for the state variable, and the overdot means the derivative 

with respect to time. The high and low cut-off times of the band-pass filter are 

τ = 1/2πfH = 31.85 ns and θ = 1/2πfL = 15.92 ms, respectively. The parameter β = πκSPL/2VπRF 

represents the feedback gain (with κ accounting for all the loop losses), while φ = πVB/2VπDC 

is the offset phase of the Mach-Zehnder modulator. The complex function fNLA originates 

from the combination of the Mach-Zehnder modulator and the nonlinear amplifier (NLA), 

and it yields: 
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xC and f± are the critical values imposed by the saturation of operational amplifiers, while A 

and B are the dimensionless amplitude and phase coefficients of the nonlinear amplifier, 

respectively. In their case, A and B yield A = 40.28 and B = 16.55.  For being the combination 

of two well defined functions (cos2(sinh)), it is evident that fNLA is not a smooth function but 

it appears to be complex. 

       Their experimental results are found to be in agreement with the numerical 

simulations. The theory developed predicted that the system should be chaotic for almost any 
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achievable gain value, and this behavior is recovered both numerically and experimentally. 

The amplitude of the chaotic oscillations steadily increases with the power of the laser diode, 

thereby confirming the trend indicated in their bifurcation diagram. It has been also shown 

that the proposed system produces high-order chaotic dynamics and then can be used as an 

entropy source. They show that although the limitation imposed by the saturation of the 

operational amplifier, this entropy source is complex enough to serve as a random numbers 

generator.              

1.8 OEOs in science and technology [97] 

       In the last 20 years, there has been a steady growth in the number of publications 

related to OEOs from both scientific and technological viewpoints. As a consequence, the 

OEO has become one of the most studied systems in optoelectronics and microwave 

photonics [116]. From the fundamental side, OEOs permit one to investigate the properties of 

nonlinear time-delayed systems [25]. In this regard, delay-differential equations (DDEs) are 

mathematically infinite dimensional, exactly like spatially extended systems ruled by partial 

differential equations [117]. Because the timescales and delay time in OEOs can be 

distributed over up to 10 orders of magnitude, they emerged as excellent experimental 

benchmarks to investigate the rich bifurcation structure originating from the interplay 

between infinite dimensionality and nonlinearity, leading to complex dynamical states such as 

slow-fast relaxation oscillations, pulse-package trains, chaotic breathers, chimera states, or 

hyperchaos. From the applied perspective, propositions for innovative technological systems 

have been remarkably plentiful and diverse. As highlighted in the preceding sections, OEOs 

are used for ultrastable microwave generation and deliver some of the best phase noise 

performances at room temperature. OEOs are widespread in optical chaos communication 

architectures and have permitted successful demonstrations of multi-Gbit/s transmission in 

metropolitan optical fiber networks. Still, in the hyperchaotic regime, they are proven to be 

efficient sources of entropy for ultrafast random number generation, while passing some of 

the most stringent randomness tests. OEOs are a cornerstone in the emerging field of photonic 

reservoir computing and proved their potential in established benchmarks such as spoken-

digit recognition or time-series forecasting. OEOs also have been developed for high-speed 

and high-sensitivity sensing of magnetic fields, temperature, pressure, or distance [97],[118]. 
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1.9 Optical frequency combs ( OFC) 

1.9.1 What is an OFC? 

        It is a spectral structure characterized by a discrete and regularly spaced succession of 

lines. The traditional answer is that an OFC is a phase-stabilized mode-locked laser (MLL). 

While different generation methods have been developed over the past 20 years, MLLs were 

the original OFC sources. They were developed almost two decades ago to support the 

world’s most precise atomic clocks. Acting as precision optical synthesizers, frequency 

combs enable the precise transfer of phase and frequency information from a high-stability 

reference to hundreds of thousands of tones in the optical domain.  

 

Figure 1.18: Time- and frequency-domain representations of the optical frequency comb 

[119]. 

This figure 1.18 allows us to note that: 

❖ (A) The continuous optical wave with frequency f and period T is represented as a single 

tone in the frequency domain.  
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❖ (B) An amplitude modulation on the optical wave at a lower frequency rf  that is an exact   

of f  would enable simple frequency division by an integer n.  

❖ (C) In general, the modulation frequency is not an exact sub-harmonic of f , but rather the 

modulation envelope “slips” concerning the fixed carrier f  from pulse to pulse. 

1.9.2 Combs equation 

     The behavior of the frequency comb spectrum is most succinctly described by the 

comb equation. The optical field of the laser pulse train can be described by a carrier 

frequency, 2c cf   that is modulated by a periodic pulse envelope,  A t . Typically, the 

time between optical pulses ranges between 1 and 10 ns. Due to the pulse periodicity, the 

optical field can also be described as a periodic Fourier series of optical modes, 2n nf  

, with Fourier amplitude components, nA , and mode number, n, such that [120]:  

                                                   
f

c n

i

n

i t in t

n

n n

E t A t e A e
 



                                                     (1.24) 

Because cf  is not necessarily an exact multiple of the mode spacing, rf , the individual 

Fourier frequencies are shifted from integer multiples of rf  by a common offset, such that 

[121]-[123]:   

                                                     0n rf n f f                                                                             (1.25) 

where n is an integer. Equation 1.25 is referred to as the comb equation.  

❖The repetition rate ( rf ) is the comb spacing frequency. This frequency is also called the 

free spectral range. 

❖The offset frequency or the fundamental frequency ( 0f ). Pulse formation necessarily 

requires that every longitudinal laser mode is perfectly equidistant in frequency and shares a 

common phase. The offset frequency, 0f , controls the carrier phase of the pulse train and 



 
 

Doctorate Thesis/Ph.D in Physics |                 Mboyo Kouayep René                   Year   2023        
 

35 

enables fine optical frequency tuning. The detection and control of the laser offset frequency

0f is the key to allowing precise frequency determination of the comb modes. [120] 

1.10 Conclusion 

        In this chapter, we have presented a review of the literature on some nonlinear 

electronic components (nonlinear capacitor, Colpitts oscillator), optical components (laser and 

applications, Mach-Zehnder modulator) as well as the different models of optoelectronic 

oscillators (in the field of science and technology). In the same way, the presentation of the 

modulation of the electric signals allows us to understand that the OEO presents internal as 

well as external modulations. This understanding allowed us to identify the problem of this 

thesis and to better understand the continuation of the work. The problems raised concerned 

the experimental realization and study of the dynamics of the OEO cascaded by an oscillator 

which presents both complex dynamics and high frequencies, and finally the numerical, 

analytical, and spectral study of CN-OEO as a function of the bandwidth and the non-linear 

coefficient term present in the equation. In the next chapter, the methodology to be followed 

for the resolution of the problems encountered will be presented. 
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2.1 Introduction 

        In the previous chapter, we posed two problems, namely the study of the dynamics 

of a self-sustained electronic oscillator with both complex dynamics and high frequency in 

order to insert it into the electrical part of the optoelectronic oscillator, and the study of the 

effet of some key parameters such as the bandwidth ant the cubic-nonlinear coefficient on the 

dynamics and the power spectrum of the CN-OEO. Thus, the aim of this chapter is to present 

the two systems used, and the approach to be followed for the numerical and analog 

resolution as well as to present the optical components necessary for the experimentation. 

Section 2.2 is devoted to the presentation of the two systems (OEO-Colpitts and CN-OEO 

system). Section 2.3 presents the electronic components and the method of analog simulation. 

In this section, we present some electronic components by establishing the equations that 

govern the operation of the electronic circuits incorporated in the electronic part of the OEO. 

Section 2.4 is reserved for the presentation of the optical material used for the 

experimentation. Section 2.5 is dedicated to the determination of the global equation of the 

CN-OEO system. The numerical method for solving the equations will be discussed in 

section 2.6. It deals with the Runge-Kutta method, the numerical tools for the characterization 

of the dynamic states of nonlinear systems, and finally the method of spectral analysis. The 

conclusion of the chapter appears in section 2.7. 

2.2 Presentation of the two systems used in this 

thesis. 

       In this work, two different optoelectronic oscillator systems were considered. 

2.2.1 OEO-Colpitts System 

The proposed OEO with a Colpitts oscillator inserted in its electrical path is referred to 

as OEO-Colpitts whose schematic representation is shown in figure 2.1. This corresponds to 

the state where Kin and Kout are on in figure 2.3 (a). The optical signal in the feedback loop is 

provided by a continuous-wave Distributed Feedback (DFB) laser diode. It delivers power up 

to 12 mW at the telecom wavelength   = 1.55 μm and is also used to perform the electrical-

to-optical conversion via its pump voltage electrode. The threshold of this laser diode is 

obtained experimentally for a pump voltage measured at Vth = 1.02 V. The light at the exit of 
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the laser diode is delayed by an optical delay line of time-delay TD. The delayed optical signal 

is detected by a fast photodiode with an optical/electrical conversion factor S = 0.95 A∕W. 

    (a)                                                                       (b) 

           

Figure 2.1: (a): Experimental set-up of the OEO-Colpitts oscillator. MC: Microwave 

Coupler. (b): A picture of the OEO-Colpitts oscillator in the laboratory. 

        When the switch Kin is on, this electrical signal feeds the Colpitts oscillator at a 

particular point of the circuit (Vin) and the output is probed at Vout (see figure 2.3 (a)) for the 

switch Kout on and then added to the polarization voltage (Vpol) before fedback to the electrode 

of the laser diode. A microwave coupler (MC) is used to visualize the signal at the input and 

output of the OEO-Colpitts thanks to a digital oscilloscope.  

2.2.2 CN-OEO System 

      The experimental setup of the CN-OEO is presented in figure 2.2 (a) [67]-[68]. A 

telecommunication continuous-wave laser diode with wavelength λL = 1.55 µm and power Pin 

seeds a Mach-Zehnder modulator (MZM) characterized by a radio frequency (RF) and direct-

current (DC) half-wave voltages Vπrf and Vπdc, respectively. The modulated light is retarded by 

an optical delay line resulting in a time-delay TD, before being converted to an electrical 

signal with a photodiode (PD) of responsivity S. The electrical signal generated by the 

photodiode Vin passes through a cubic-nonlinear band-pass filter (CNBPF) that outputs Vout 

and in turn is subjected to an amplification before being re-injected into the RF electrode of 

the MZM. We notice that the CNBPF is made of a resistor R, a coil L, and a nonlinear 

capacitor (NC). The nonlinear capacitor is constructed with an operational amplifier U (type 

LF356), two capacitors C1,2, one resistor r, and a mixed assembly of eight simple junction 
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diodes (type IN400X) and whose characteristics are the thermal voltage VT, the inverse 

saturation current IS (figure 2.2 (b)). The number of junction diodes in series is n = 4. 

 

 

 

 

  

 

 

Figure 2.2 :  (a): Set-up of the cubic-nonlinear optoelectronic oscillator.(b): Nonlinear 

capacitor (NC). PC: Polarization controller. MZM: Mach-Zehnder Modulator. VB is the 

offset phase control voltage. PD: Photodiode. CNBPF: Cubic-nonlinear band-pass filter. 

VS: Voltage subtractor. Amp: RF amplifier. MC: Microwave coupler [67]-[68]. 

 

2.3 The electronic circuits used in this thesis. 

         An electronic circuit is a set of interconnected electronic components that can be 

active or passive and whose purpose is to perform a given function. Electronic components 

are elements intended to be assembled with others to perform one or more electronic 

functions.  

         In electronics, a component is active when it allows the power of a signal to be 

increased so that the additional power is recovered through a power supply. It allows the 

power of a signal to be amplified or transformed into voltage and/or current. In other words, it 

is capable of introducing energy into the circuit to which it contributes. In the vast majority of 

cases, active components are semi-conductors and are classified into two main categories: 

discrete active components (which carry out a single function) and integrated circuits (which 

are designed to carry out one of several electronic functions). On the other hand, a component 

is said to be passive when it does not allow the power of a signal to be increased; it can even 

sometimes reduce the power available at the output by the Joule effect. 

       In this thesis, by assembling passive and active components we will use two nonlinear 

circuits, namely the Colpitts self-sustained oscillator and the cubic nonlinear filter. 
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2.3.1 Self-sustained Colpitts oscillator. 

         In order to simulate this oscillator numerically and compare it with an analog 

simulation from the point of view of its dynamics, it is important to determine certain 

characteristics such as its frequency and its equations. 

a) Determination of the frequency of the Colpitts oscillator. 

In order to determine the oscillation frequency of the Colpitts oscillator, one consider the set-

up given in figure 2.3. The total gain of the circuit is:  

                                           1 2G G G 
                                                                                              

(2.1) 

     

     (a)                                                                       (b) 

        

Figure 2.3: (a) Circuit of the Colpitts oscillator (b) Colpitts oscillator circuit in the static 

regime.      

Where 
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❖Determination of 2G  
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By replacing Z  by its expression in equation 2.4 we have: 
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The final expression for the gain of this oscillator is definitely given by: 
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Applying the Barkhausen criterion, we obtain the following two equations: 
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The first equation of the system allows for determining the oscillation condition while 

the second equation allows to obtain the oscillation frequency of the Colpitts oscillator. Thus 

we have: 
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  Hence the expression for the frequency is given by: 
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(2.12) 

       This frequency will be determined by taking into account the values of our 

components. Subsequently, the determination of the equations of this oscillator is crucial in 

deciding to make a numerical study. 

b) Determination of the Colpitts oscillator equations. 

       Taking into account the above circuit (figure 2.3 (a)) and applying Kirchhoff’s laws 

we can write the equations of the Colpitts oscillator as follows: 
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Where  1,2,...,5
iCV i   represent the voltages across the capacitors iC . 

5 2 1BE C C CV V V V  
  

is 

the emitter–base voltage,   1
BE

T

V

V

E BE SI f V I e
 

   
 
   

the emitter current, CI  is the collector 

current, bI  is the base current ( C bI I ). TV  and SI  are the thermal voltage and the saturation 

current of the emitter-base of the bipolar junction transistor, respectively. 

     For convenient numerical analysis, let us introduce the following set of dimensionless 

variables and parameters to the system of equation 2.13 of the Colpitts oscillator, above  

established in the previous chapter: 
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                      (2.14)

 

Therefore, the above equations are rewritten in the dimensionless form as: 

                          

1
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1

1
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
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



 

 

  


   


    

  


    



   


                                                                  (2.15)

 

          

It is important to note that each equation in this system of equations is an ordinary 

differential equation which will be solved numerically by the RK4 method presented below. 

       In addition to the Colpitts oscillator, we also have the cubic-nonlinear band-pass filter. 

 

 

2.3.2 Cubic-nonlinear band-pass filter (CNBPF) 
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      The voltage inV (voltage at the output of the photodiode) is filtered with a cubic-

nonlinear band-pass filter (CNBPF) made of a coil L, a resistor R, and a nonlinear capacitor 

NC (see figure 2.4 (a)) [67]-[68]. The output voltage outV  of the CNBPF is the voltage 

difference probed across the resistor R. The inner structure of the nonlinear capacitor is 

depicted in figure 2.4 (b) [67]-[68]. It is implemented using an operational amplifier U (type 

LF356), two capacitors C1,2, one resistor r, and a mixed assembly of eight simple junction 

diodes (type IN400X). These junction diodes are characterized by their thermal voltage TV  = 

25 mV, inverse saturation current SI = 5 μA, and the number of junction diodes in series n = 

4. 

                          

Figure 2.4: (a) Cubic-nonlinear band-pass filter (CNBPF) and (b) the inner structure of 

the nonlinear capacitor [67]-[68]. 

The application of the Kirchhoff laws permits to evaluate the voltage across such a 

nonlinear capacitor which is:                   

                     1 2
1

1

2
2

NC C d T

s

iq
V q V V nV Sinh

C I

  
     

                                                    

(2.16) 

And yet,                                        
2

S

q
V V

C

                                                                                (2.17) 

Because             0V       and    2SV ri                                                                
(2.18) 

(a) (b) 
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we therefore determine                          2

2

q
i

rC
 

                                                                   

(2.19) 

where                         1

1 2

2
2

NC T

s

q q
V q nV Sinh

C I rC

  
   

                                             

(2.20) 

                                                     
0

1
( )

t

outq V s ds
R

 
                                                                 

(2.21) 

 

   of the series capacitor, and yields the relationship  

                     

3

3

1 2 20 0

1 1
( ) ( ) ( )

2 48( )

t t

T T
NC out out

s s

nV nV
V t V l dl V s ds

R C rI C rRI C

  
     

   
         (2.22) 

where t  is the time. Then, the output voltage  outV t of the CNBPF is related to the input 

 inV t by:     

                                   
( )

( ) ( ) ( )out
in out NC

dV tL
V t V t V t

R dt
                                             (2.23) 

       By plotting equation 2.20, we obtain the characteristics of the voltage as a function of 

the charge given by the following figure 2.5 which is indeed a nonlinear behavior. 

                                       

Figure 2.5: Characteristics curve of the nonlinear capacitor. 
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2.3.3 Electrical amplifier 

        The electrical amplifier is an amplifier circuit consisting of operational amplifiers and 

passive components of analog electronics (resistor and capacitor) integrated into a box. It is 

used to increase the power of the signal. Its gain depends on the frequency and voltage of the 

input signal. If G  represents the gain of the amplifier or the amplification factor, the input 

signal  inV t  and the output signal  outV t  are related by the following relationship: 

                                            out inV t GV t
                                                                             

(2.24) 

                       

Figure 2.6: Diagram of an amplifier. 

      To build up our optoelectronic oscillator, we will also need the optical components. 

2.4 The optical components used in this thesis 

        In addition to the electronic components used, the study carried out in this thesis also 

uses optical components which play an important role. Thus these two components, put 

together, form a feedback loop. 

2.4.1 The laser diode 

       Our very first optical component is a wavelength-tunable multi-electrode laser diode 

(butterfly laser) which is a DBF-type semiconductor widely used in optical 

telecommunication. It emits a monochromatic (infrared) laser beam of rectilinear polarization 

and wavelength l = 1.55 m . This wavelength and its optical power are controlled by 

electrical current or voltage. To determine the threshold voltage of our laser, we have 

experimentally plotted the output voltage of this laser against the output voltage of the 

photodiode. For this purpose, this threshold voltage is approximately equal to 1.02 V (see 

figure 2.7). It is very important to remember here that these semiconductors must be handled 

with great care otherwise, they may deteriorate at the first manipulation.    
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       According to this curve, when the active voltage of the laser emission is lower than 

1.02 V, no phenomenon is observed. But for a voltage a little higher than this value, one can 

start to observe dynamics if the rest of the circuit obeys the oscillation conditions. 

 

                      

     

Figure 2.7: Laser diode, Laser mount, and Current-power characteristics of a laser diode. 

2.4.2 Mach-Zehnder modulator 

          A beam of coherent light from the laser diode is modulated in intensity using the 

electro-optical effect and the principle of interferometry. The power of the incoming light 

beam (or intensity) inP  is ideally divided into two equal parts that are routed to two diverging 

optical paths (see Figure 2.8). In the first path, the light undergoes phase modulation and 

1

2
inP  turns into 

1

2

i

inP e  , while in the other path the amplitude of the second beam suffers 

only from the phase shift of the material and turns into 0
1

2

i

inP e
 . Then, the two optical 

paths are reconnected and the beams interfere, resulting in the ideal case in total output 

power: 
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(2.25) 

                                          0
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2 V
n E L

V


  


    

                                        

(2.26) 

where,                 

1

0
0 0

00

2
,     

2 E

d dn
n L V

L dE











  
     

                                                 

(2.27) 

0  is the wavelength of the light beam passing through a Pockels medium of length L ,   V  is 

a constant voltage applied across the thickness d . E V d  is an electric field which is 

therefore applied to the electro-optical medium and   is the accumulated phase shift at the 

output.  

      Taking into account the other characteristics, the final expression for the output power is 

that of the following equation given in Chapter 1:   

                            
 2cos

2 2

B
out in

RF DC

V t V
P P

V V 

 
  

 
                                                          (2.28) 

                        

Figure 2.8: Mach-Zehnder modulator. 

Figure 2.8 is a representation of the Mach Zehnder modulator found on the market. At the 

output of this modulator, the optical fiber can be placed. 

2.4.3 The optical fiber         

       An optical fiber is a very thin glass or plastic wire that is a conductor of light and is 

used for the transmission of data and light. It offers a much higher data rate than coaxial 

cables and can be used as a medium for a "broadband" network through which television, 
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telephone, video-conferencing, or computer data can be transmitted. In other words, it is the 

channel for transmitting optical information over very long distances and at previously 

impossible rates, and it creates a delay in the feedback loop. It consists of three concentric 

elements as shown in Figure 2.9 (a). 

❖The core: Which generally varies between 10 and 85 m . It is in this area, made of glass 

with a refractive index of 1n  that the light is guided and propagates along the fiber. 

❖The cladding: A layer of glass with a refractive index of 2 1n n  that surrounds the core 

(approximately 125 m ). The composition of the glass used is different from that of the core. 

The combination of these two layers allows the light to be confined within the core, by total 

reflection of the light at the core-cladding interface. 

❖The protective layer or insulation: This is a mechanical protective coating generally made 

of polyvinyl chloride (PVC). 

(a)                                                                             (b) 

                              

           Figure 2.9: Structure and a roll of an optical fiber.            

                            

Figure 2.10: Attenuation in an optical fiber as a function of the wavelength of the light 

[129]. 
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        As light travels along the fiber, it gradually attenuates. This attenuation expressed in 

dB/km depends on the wavelength of the light used and is given by the relationship: 

                                        / 10log in

out

P
A dB km

P

 
  

                                                                 

(2.29) 

Where inP and outP , represent the input and output power of the optical fiber respectively. 

However, the wavelength of the light used to transmit a signal is not chosen at random. It 

must correspond to a maximum of attenuation (see figure 2.10). According to this figure, the 

wavelength of our laser used ( 1.55 m  ) corresponds to a minimum attenuation. 

The time delay in the fiber is proportional to the refractive index of the core, the length 

of the fiber used, and inversely proportional to the speed of light according to the equation: 

                                                   
nL

T
c

                                                                                              (2.30) 

When one has several fiber rolls and wishes to physically interconnect them, one must 

use the 'fiber to fiber' principle which consists of bringing them into contact using a precision 

alignment ring usually made of ceramic called a sleeve. 

At the output of the optical fiber, which is an optical signal, an optical/electrical 

converter is required. 

2.4.4 The photodiode  

      The role of the photo-detector is to convert optical power fluctuations, carrying 

information, into current fluctuations. In other words, it is used for optical/electrical 

conversion. It is the last element of the optical link and the first of the detection chain. That 

used (PDA10CF) is of the InGaAs type designed for the detection of signals in the 700-1800 

nm wavelength range with an output impedance equal to 50  for a voltage of 5V (figure 

2.11). As for the choice of the optical fiber, that of this semiconductor for the detection of the 

signals is not also a coincidence but is preponderant because of its sensitivity which is close to 

1 for the wavelength of our laser used. It intervenes in the optoelectronic equations by its 

sensitivity noted S.  
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(a)                                                                          (b) 

                         

Figure 2.11: (a) Photodiode and (b) sensitivity of the photodiode as a function of the 

wavelength of the light signal [130].        

2.5 Global equation of the CN-OEO system 

       Taking into account the electronic and optical components of the CN-OEO system 

listed above one can easily determine the equations governing the dynamics of this oscillator. 

According to equation 2.23, 

                                         

( )
( ) ( ) ( )out

in out NC

dV tL
V t V t V t

R dt
                                                               (2.31)

                                

Where                           
 2cos

2 2

B
in in
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V t T V
V t SGP

V V 

  
  

 

                                              (2.32) 

is the output voltage of the photodiode or the voltage entering the non-linear filter, outV  is the 

output voltage of the filter and  

          

3
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1 2 20 0

1 1
( ) ( ) ( )

2 48( )

t t

T T
NC out out

s s

nV nV
V t V l dl V s ds

R C rI C rRI C

  
     

   
                                   (2.33) 

   is the voltage across the nonlinear capacitor.  Taking into account equations (2.31), (2.32), 

and (2.33), the final equation is given by:                

            

   
0

3

2

0

1
( ) cos

t t

D

t

dx
x x s ds x s ds x t T

dt
   



 
         

 
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where 2out RFx V V  is the dimensionless dynamical variable of the system. Contrary to 

other OEOs, the particularities of CN-OEO come from the fact that it has the cubic-nonlinear 

band-pass filter and four timescales which are: the high cut-off time  

                                                      τ = L/R,                                                                          (2.35) 

 the low cut-off time                
1 2

1

2
T

s

nV
R

C rI C


  
   

  

                                                    (2.36) 

 the nonlinearity timescale                     3 1


                                                                (2.37) 

with                    

                                3 22

212T RF SnV V rRI C G                                                      (2.38) 

representing the cubic nonlinear coefficient, and the last timescale is the time-delay TD. The 

normalized feedback gain and the offset phase are respectively 2in RFSGP V   and 

2
DCBV V


  . 

For mathematical convenience and without loss of generality, the following rescalings 

are done: 

                                

 

  3

0

,   = ,   ,   

1
,   ,   

D

t

v t T x x v

y x s ds

   

    


  

   
                                                          (2.39) 

so that equation 2.34 can be rewritten in the form of the following flow: 

                                     
 3 2cosx x y y x

y x

        

 
                                                         (2.40) 

     This equation system is a delay-differential equations. 

 

2.6 Numerical methods used to solve the problem 

        Physical systems are described by equations whose analytical solution is not always 

obvious. The equations describing these systems are either in differential or algebraic form 

and thus require numerical approximations to describe the related physical phenomena. 
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Numerical methods are based on an algorithm that is implemented through computers to solve 

different types of problems. Computers enable us to approximate the solutions to analytically 

intractable problems, and also to visualize those solutions. In this thesis, the physical system 

is described by the ordinary differential equations (case of the Colpitts oscillator) and the 

delay differential equations (case of the CN-OEO). 

2.6.1 Runge-Kutta method 

       Runge-Kutta methods are an important family of implicit and explicit iterative 

methods for the approximation of solutions of ODEs. These techniques have been elaborated 

for the first time in 1894 by Carle Runge and have been improved by Martin W. Kutta in 

1901 [124,125]. 

a) The case of the ordinary differential equation (ODEs) 

       In this thesis, we will use the Runge-Kutta method because it is one of the most 

efficient numerical methods for these types of equations due to its advantage of being 

numerically stable [126]. There are several orders (second order, third order, and fourth-order) 

for this method but it is the fourth order that we use because of its stability. 

If we consider a physical system described by the following first-order ODE: 

                                           , ,x f t x


                                                                                            (2.41) 

with the initial condition  0 0x t x . The Runge-Kutta method is used to approximate the 

exact solution numerically. The solution  1ix x t h    is given by equation 2.2 where h  is 

the integration step. 

                                 5

1 1 2 3 4

1
2 2 0

6
i ix x k k k k h                                                    (2.42) 

where the 
1,2,3,4k are given by : 
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k h f t h x k
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   

   

                                                                  (2.43) 

It is important to know the initial condition 0x  in order to calculate the other values. 

For the case of an integro-differential equation of the form: 

                              
0

,

t

t

x f t x x s ds                                                                                     (2.44) 

with the initial condition  0 0x t x , where is a parameter that does not depend on time t  and 

x . Equation 2.4 is decomposed into two ordinary equations by introducing a new variable y

. 

                                      y x t                                                                                                  (2.45) 

                                         , , ,x f t x y t g t x y                                                                 (2.46) 

Where  , ,g t x y  is the new function. The solution to this system of equations by posing

   ,z t x x t  is given by: 

                                          5

1 1 2 3 4

1
2 2 0

6
i iy y l l l l h                                                        (2.47) 

                                  5

1 1 2 3 4

1
2 2 0

6
i ix x k k k k h                                                     (2.48) 

where the 1,2,3,4k  on the one hand and the 1,2,3,4l  on the other are given by: 
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                                       (2.49) 

   Fortran 90 (mathematical FORmula TRANslating system) and Matlab (MATrix 

LABoratory) software are used to perform the calculations.     

b) The case of the delay-differential equations (DDEs) 

        Contrary to ordinary differential equations where the initial conditions are given by a 

discrete and finite set of values, initial conditions in delay-differential equations should be 

specified using a function  g t  defined on the continuous interval  ,0 so that infinity of 

values has to be initially known to fully characterize a unique solution of the system. In this 

regard, delay-differential equations (DDEs) are mathematically infinite dimensional, exactly 

as spatially extended systems ruled by partial differential equations. 

In delay differential equations, the dynamics at each time t depend on the value of the 

vector X  at each time t , but also on the value of X  at the previous time t  , with 0   

[25]. If we introduce the variable with delay  X t  and  1 2G , ,..., nG G G the n -

dimensional vector field, the DDE is thus written: 

                                     G , ,X t X t X t 


                                                                              (2.50) 

              with           t  ,0X t g t for   
                                                                                   (2.51)

 

where g is a time-dependent n -dimensional vector,        1 2, ,..., nX t x t x t x t    and 

       1 2, ,..., nX t x t x t x t          are vector variables. The iterative scheme of 

RK4 for DDE is given in [127] as follows: 
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                        1, , 1, 2, 3, 4,2 2
6

i j i j j j j j

h
x x l l l l                                                     (2.52) 

                                                                     t t h   

Where 

                

 

 

 

 

1, , , ,

2, , , , 1,

3, , , , 2,

4, , , , 3,

, ,

2, , 2

2, , 2

, ,

j i i j i j

j i i j i j j

j i i j i j j

j i i j i j j

l G t x x

l G t h x x hl

l G t h x x hl

l G t h x x hl











  

  

  

                                                        (2.53) 

i  repre sents the time increment and j  the index for the variable 
jx . 

 

2.6.2 Numerical tools for the characterization of the 

dynamical states of our nonlinear systems 

a) Bifurcation diagrams 

       Another set of concepts useful for the analysis of dynamical systems is the theory of 

bifurcation. A bifurcation is a phenomenon in which, the properties of a dynamical system 

change qualitatively when a control parameter of the system is varied. In order to plot the 

bifurcation diagram of continuous dynamical systems, a set of consecutive maxima of the 

variable representing the attractor must be obtained or a periodic capture of the variable after 

each period when the period is known. In the bifurcation phenomena, attractors may appear, 

disappear, or be replaced by another one. Bifurcation diagrams help us to visualize these 

transitions. Thus, one can identify fixed points, periodic orbits, or chaotic attractors. One can 

also identify various routes to chaos taken by dynamical systems. 

The value for which the bifurcation occurs is called the bifurcation point. There are 

several types of bifurcation. We can mention among others: 
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❖The fold bifurcation or node-col 

In this type of bifurcation, two equilibrium points exist (one is stable and the other is 

unstable) before the bifurcation. After the bifurcation, no equilibrium exists. 

❖The Hopf bifurcation 

A Hopf bifurcation occurs when a periodic solution cycle or limit cycle surrounding an 

equilibrium point emerges or disappears when a parameter  varies. When a stable limit cycle 

surrounds an unstable equilibrium point, it is called a supercritical Hopf bifurcation. If the 

limit cycle is unstable and surrounds a stable equilibrium point, it is called a subcritical Hopf 

bifurcation. 

Moreover, some stable solutions like quasi-periodic oscillations can be misinterpreted 

from the bifurcation diagram as they are represented with dense points like chaos/hyper chaos 

solutions. Let us also note that hysteresis dynamics are tracked using this method by 

superimposing two sets of data corresponding respectively to increase and decrease values of 

the control parameter. Even though the bifurcation diagram helps to distinguish stable 

(periodic) solution areas from unstable (chaotic) ones; it doesn’t provide any information 

about the kind of dynamic (chaos or hyper chaos) that is present in unstable areas. 

Of this fact, Lyapunov exponents and phase portraits are some additional tools 

required to conclude the dynamics of the investigated system. 

b) Lyapunov’s exponent 

      To gain the most information from a dynamical system, one should look for its 

maximum Lyapunov exponent. Chaotic behavior is illustrated by a positive maximum 

Lyapunov exponent. The evaluation of the maximum Lyapunov exponent can be done by 

observing the evolution of small perturbations of the system during its evolution over time. 

Thus, for a positive maximum Lyapunov exponent, a stretch occurs when initially 

neighboring points are separated: this is chaos. Moreover, for a negative exponent, there is a 

contraction or approach that characterizes a unique oscillatory or static state: this is regularity; 

and finally, for a zero exponent, we have a set of quasi-periodic waveforms: this is the torus. 

Two methods exist to achieve this, the first is to perform the spectral calculation of the 

Lyapunov exponent for all dimensions of the system. And the second consists to perturb the 
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system by introducing small variations on each of its axes. But, it is the second method that 

will be used in this thesis. 

Thus, if we consider a system with n degrees, the small variations are given by 

1 2, ,..., n    

such that we have : 

                                    

1 1 1

2 2 2

,

,

.          .,                                 

.    .,

.          .,

.n n n

x x

x x

x x







 

 



 

                                                           (2.54)

  

Then, the maximum Lyapunov exponent will be defined by: 

                             max 1 2

1
lim ln ... .n
x t

   


   
                                      

(2.55) 

 Furthermore, this maximum one-dimensional Lyapunov exponent max can be calculated 

using the following general formula: 

                                
1

max

0

1
lim ln ,

m

i
m

i

f x
m







 
                                                          

(2.56) 

With m  is a number of iterations 

                
 i Jf x M u  ,                                                                                                                          (2.57) 

where JM  is the Jacobian matrix associated with the system and u  is the local variable used 

to describe the dynamics of this system in the vicinity of the equilibrium point. There are two 

possible cases: 
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❖ 0  : In this case, we distinguish two sub-cases for which the oscillatory states are stable: 

• Case where 0  . In this case, we have regular oscillations.  

• Case where 0  . In this case, we have a toric orbit made up of a set of quasi-periodic 

waveforms.   

❖ 0  : In this case, we have a toroidal orbit made of a set of quasi-periodic waveforms, 

which materializes the presence of a chaotic state. 

Note that the combination of the bifurcation diagram and the maximum Lyapunov 

exponent is an efficient tool to study the behavior (chaotic or not) of a dynamic system. The 

bifurcation diagram allows accounting for the qualitative state of the system while the 

maximum Lyapunov exponent allows accounting for the state of the system quantitatively. 

c) Time series 

This time-based analysis is a specific way of understanding a sequence of points 

collected over a regular time interval and period rather than recording them intermittently or 

randomly. 

Time series analysis typically requires a large number of data points to ensure 

consistency and reliability. An extensive data set ensures you have a representative sample 

size and that analysis can cut through noisy data. It also ensures that any trends or patterns 

discovered are not outliers and can account for seasonal variance. Additionally, time-series 

data can be used for forecasting-predicting future data based on historical data. 

It is often important to accompany the time series with phase portraits. 

d) Phase portraits 

The region of the phase space towards which the trajectories of a dissipative 

dynamical system converge is called an "attractor". Attractors are geometrical shapes that 

characterize the long-term evolution of dynamical systems. There are four types of attractors: 

a point, a torus, a limit cycle, and a more complex fractal-like structure [128]. 

❖The "fixed point" attractor is a point in the phase space towards which the trajectories tend  

and is, therefore, a constant stationary solution, 
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❖The "limit cycle" attractor is a closed trajectory in phase space towards which the 

trajectories tend. It is therefore a periodic solution of the system, 

❖The "torus" attractor represents the motions resulting from two or more independent 

oscillations which are sometimes called quasi-periodic motions, 

❖ Strange attractors are much more complex than the others. 

2.6.3 Fourier Spectral analysis 

Observation of the dynamical state of the system in the time domain, phase portrait, 

and many others is often insufficient to deduce the mathematical expression of the signal. It 

would be interesting to find another representation that would provide more information about 

the signal than the usual time representation for example. This new representation should 

show certain characteristics of the signal directly, not in the time domain (as a function of 

time) but in the frequency domain, i.e. as a function of frequency. Power spectrum analysis is 

one of the main tools for exploring the oscillation characteristics of physical systems, 

especially when certain system parameters change. 

Joseph FOURIER (1768-1830) French scientist profoundly influenced the 

mathematics and physics of the sciences of his century with his study of the propagation of 

heat, which led to the discovery of the trigonometric series bearing his name. 

Fourier's Theorem states that under certain conditions of derivation and continuity, any 

periodic continuous-time signal  s t of period 0T  can be written as a sum of sinusoidal 

signals. This sum can be written in two ways: 

❖ Real trigonometric form. 

❖Complex exponential form. 

Here we will focus on the real trigonometric form. Any periodic continuous-time signal s(t) of 

period 
0 0

0

2
T

T



 

 
 

can be written: 
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     0 0 0

1

cos sin

  ,   0   0
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n n n
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A a n
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



  

  



                                           

(2.58)

     

 

         with                 
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0

0

0

1
t T

t

a s t dt
T



     and     0 0b 
                                                                 

(2.59) 

                                           
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2
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t

a s t n t dt n
T




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(2.60) 

                                           
0 0

0

0

0

2
sin ,    1

t T

n

t

b s t n t dt n
T





 
                                                      

(2.61) 

The next general term is still called the thn  harmonic, where nA  is the Fourier amplitude and 

n  is the phase at the origin.                       

                               0 0 0cos sin cosn n n n nu t a n t b n t A n t      
            

(2.62) 

                                               
2 2 ,    0    n n n nA a b A n   

                                           
(2.63) 

                                                  arctan n
n

n

b

a
 

                                                                                   

(2.64) 

❖a0: average value of the signal (continue component)  

❖Harmonic of order 1: fundamental. 

❖Amplitudes nA tend to 0 when n  tends to infinity. 

❖Decomposition independent of the interval [ 0 0 0,t t T ] 
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❖If  s t  is an even number,   0 0   b n         0 0

1

cosn

n

s t a a n t




           (2.65)

  ,   0   0n n nA a n  
                                                                                                                        

(2.66) 

❖If  s t  is an uneven number, 0   na n     

                                  0 0

1 1

sin cos
2

n n

n n

s t b n t b n t


 
 

 

 
   

 
 

                                                    

(2.67)                                         

                                         

 

Taking into account the expression for the Fourier amplitude, the Fourier power is given by 

                                                          20.0log nP A                                                                 (2.68)    

2.7 Conclusion 

     In the first part of this chapter, our two systems were presented nemaly the OEO-

Colpitts and CN-OEO system. Then we presented the components of the electrical and optical 

part of the OEO. In these sections, the frequency and the equations of the Colpitts oscillator 

have been found, as also that of the cubic nonlinear band pass filter (CNBPF) and we have 

listed the optical components used in this thesis. The threshold voltage of the laser diode used 

was obtained experimentally. The RK4 methods for solving ODEs and DDEs applied to our 

equations previously determined as well as the method for spectral analysis of a system were 

presented. All these methods and components will be used in chapter 3. We will then present 

and discuss the numerical and experimental results obtained. 
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3.1 Introduction 

     In this chapter, we present the results obtained in the framework of our thesis work. 

Section 3.2 will be devoted to the dynamics of the optoelectronic oscillator cascaded by the 

Colpitts oscillator. In this part, we will first make a theoretical and experimental study of the 

dynamics of the self-maintained Colpitts oscillator, and then an experimental study of the 

OEO- Colpitts system in the case of zero delays and in the presence of delay. Two types of 

dynamics exhibited by the Colpitts oscillator will be considered. In section 3.3, we will study 

the spectra and dynamics of the CN-OEO system as a function of two system parameters: the 

bandwidth of the bandpass filter and the nonlinear cubic coefficient term. The last section is 

reserved for the conclusion of the chapter. 

3.2 Experimental study of the Colpitts-OEO system 

      We are exploring experimentally an optoelectronic oscillator featuring a Colpitts 

oscillator in its electrical path. 

       To make a good study of this system it is imperative to know first of all certain 

characteristics of the Colpitts oscillator being in its electric part namely the amplitude and the 

frequency of the various types of dynamic behavior which it delivers. For that a theoretical 

and experimental study of the Colpitts oscillator solitary is essential. 

3.2.1 Theoretical and experimental study of the Colpitts 

oscillator 

      Oscillators of the Colpitts-type are well-known since they are commonly used as 

electronic oscillators for generating limit-cycle oscillations at radio frequencies and present 

some interesting advantages such as the relative simplicity of their electronic circuits. It was 

shown that with an appropriate setting of these circuit parameters, they can exhibit rich and 

complex dynamical behaviors (chaos) at various operating frequencies which potential 

applications are in communication, radar systems, and so on [73,74]. These attractive 

properties justify our choice to focus on this class of oscillators. 

a) Experimental realization of the Colpitts oscillator circuit 

    The design of the Colpitts oscillator is shown in figure. 3.1 (a) when the switches Kin 

and Kout are off (which will be on in section 3.2.2). Figure 3.1b depicts its experimental set-
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up in the laboratory. The following electronic components are used: four resistors (R1, R2, R3, 

and R4); five capacitors (C1, C2, C3, C4, and C5) one coil (L), and one transistor of type 

2N2222 which is polarized with V0 = 5 V. This transistor (semiconductor) is a common NPN 

bipolar junction transistor (BJT) used for general purpose low-power amplifying or switching 

applications. It is designed for low to medium current, low power, and medium voltage. The 

gain of our transistor is measured with an appropriate multimeter and is equal to 261. 

The values of these electronic components are given as follows in table 1: 

Table 1: Values of the Colpitts oscillator components. 

    Designation            Components                       Values 

       Resistors                R1, R2                  10 kΩ    

        Resistor                   R3                  100 Ω 

      Potentiometer                    R4              value 220 Ω 

 Coupling capacitors                C1, C3                 10 nF and 1 nF 

 Decoupling capacitor                    C2                 10 Nf 

      Capacitors                 C4, C5                  1 nF each 

           Coil                     L                 5 μH 

    

Using expression 2.12 of chapter 2, and the values of the components used in this 

circuit, we can calculate the theoretical value of its fundamental frequency which is equal to 

3.20 MHz.  

     Note that in the circuit of figure. 3.1, the only nonlinear device is the bipolar junction 

transistor, which nonlinear character is responsible for the complex behavior experienced by 

the electronic circuit. The resistor R4 is used both for damping and biasing purposes. As 

mentioned, we stress that the modification of the standard Colpitts oscillator allows shifting 

the fundamental frequencies to higher ones, closer to the threshold frequencies of the 

transistor [131].  

Before studying its dynamics, we will first draw its bifurcation diagram. 
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(a)                                                                       (b) 

        

Figure 3.1: (a) Electronic circuit of the Colpitts oscillator. (b) A picture of the Colpitts 

circuit in the laboratory. 

b) Bifurcation diagram 

     To better appreciate the frontiers between the different dynamical regimes of the 

Colpitts oscillator, its numerical bifurcation diagram is plotted in figure 3. 2. The bifurcation 

diagram is obtained by plotting the coordinate x3 in terms of the control parameter R4. It can 

be observed three parts in this bifurcation diagram, namely a fixed point when R4 is inferior to 

37 Ω.  The limit cycle boundered at [R4 = 37 Ω; R4 = 97Ω]. In this interval all the time traces 

of x3 are periodic.  The birth of bursting oscillations is observed for R4 ≈ 98 Ω. The maximum 

value of R4 above which the bursting oscillations disappeared is R4 = 120 Ω.  Above this 

value, the Colpitts oscillator undergoes the unstable domain that is not shown in figure 3.2. 

                         

Figure 3.2 :  Bifurcation diagram of the Colpitts oscillator showing the state variable x3 

versus R4 
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Thereafter, we will use both forms of signals (limit-cycle and bursting) for the 

excitability in an optoelectronic oscillator. 

c)  Dynamics of the Colpitts oscillator 

In addition to establishing the equations governing the operation of the Colpitts 

oscillator and even wiring its circuit on a test plate, we first used the Multisim software (see 

figure 3.3). This software gave us an idea of its dynamic behavior as well as the values of the 

components to be used. The only parameter of the circuit is the potentiometer R4.                             

               

Figure 3.3: Limit-cycle and bursting oscillations in the solitary Colpitts oscillator obtained 

with Multisim software. 

     Experimentally, when tuning the potentiometer (R4), different time traces have been 

recorded (figure 3.4 (a) and (c)) and compared to the numerical ones obtained from equation 

2.15 (see figure 3.4 (b) and (d)). It appears that the Colpitts oscillator exhibits limit-cycle and 

bursting oscillations depending on the value of the potentiometer. An interesting agreement is 

found between the numerical and experimental results. These two results confirm those 

already obtained with the electronic simulation software Multisim. 

Figure 3.4.(a) and (b) present the case where R4 = 50 Ω. The Colpitts oscillator displays limit 

cycle oscillation having a frequency of 4.5 MHz and a maximum amplitude of 264 mV. As R4 

is further increased, the limit-cycle changes to the bursting oscillations (figure 3.4.(c) and (d)) 

for R4 = 105 Ω) exactly as predicted by the bifurcation diagram in figure 3.2. 

       Indeed, when R4 is equal to R4 = 105 Ω, the bursting oscillation appears. These 

bursting oscillations are characterized by the alternation of two phases: silent and active 

phases. The silent phase (interval between two packages of oscillations) is characterized by a 

sort of dead zone where the voltage output is always constant to zero materialized by the 

(a) (b) 
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horizontal line existing between the packages. The active phase (packages of oscillations) 

consists of the transient apparition of fast oscillations over a short period compared to the 

period of the package which is referred to as slow.  

                                                                 

    

Figure 3.4: Limit-cycle and bursting oscillations in the solitary Colpitts oscillator. (a) and 

(c) are the experimental results (black color). (b) and (d) are numerical simulation results 

(blue color).  

 

     The frequency of the slow oscillation is equal to 2.5 MHz with a maximum amplitude 

of 1.44 V. These bursting oscillations similar to the conventional heart sound signals (Kingni 

et al. 2013) are quite raised in amplitude and frequency and could also be used in 

telecommunication as the amplitude modulator (AM), and for radar systems if higher 

frequencies are attained. 

It is also important to note that the minimum and maximum frequencies of the limit-

cycle obtained experimentally with this oscillator are 3.5 MHz (which is appreciably close to 

the theoretical frequency of 3.2 MHz) with a maximum amplitude equal to 120 mV and 4.76 

Numerical Experimental 
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MHz with a maximum amplitude of 320 mV, respectively given by figure 3.5 (a) and (b) for 

different values of R4. 

 

Figure 3.5: Other experimental limit-cycles of the Colpitts oscillator. (a) limit-cycle with the 

lowest frequency of  ( 4 40R   ) and (b) limit-cycle with the highest frequency of 

( 4 80R   ).    

        In addition to the bursting oscillations, this oscillator exhibits another very interesting 

dynamic behavior, namely the mixed-mode oscillations as shown in figure 3.6. This type of 

dynamic behavior is characterized by an alternation between high and low amplitude 

oscillations, also known as a breather, and finds its application in various fields such as 

electrical and electronic engineering (circuits and control systems), mechanical systems and 

transport vehicles, as well as electrochemistry and biological structures. It is also obtained for 

a value of the potentiometer taken at R4 = 105 . 

       As in the previous cases, a good agreement is also obtained between the numerical 

(blue color) and experimental results (back color) which allowed us to validate the 

experimental model of our Colpitts oscillator. 

 

 

 

 

 

 

3.5 MHz

4.76 MHz
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Figure 3.6: (a) Black color for experimental result and (b) blue color for numerical 

simulation. Mixed-mode oscillation in Colpitts oscillator. 

3.2.2 Results obtained by inserting the Colpitts oscillator 

into the OEO 

   Inserting the Colpitts oscillator in the optoelectronic oscillator (see figure 2.1), we put 

forward the interaction between optical nonlinearity and electronic nonlinearity to obtain also 

complex dynamical behaviors. The resulting system is called OEO-Colpitts. The temporal 

dynamics of the system with and without delayed feedback are investigated experimentally. 

The different dynamical states of the Colpitts oscillator found in section 3.2 

necessarily affect the dynamics of the system as developed hereafter. 

a) Dynamics of the OEO-Colpitts oscillator 

        The goal here is to study the interaction between the nonlinearity due to the solitary 

Colpitts oscillator and that of the OEO. We then focus on three parameters of the system to 

analyze its dynamics: the potentiometer of the Colpitts oscillator, the power of the laser, and 

the length of the optical fiber. To analyze the dynamics of the OEO-Colpitts oscillator, two 

major cases are considered. Firstly, the case where the Colpitts oscillator generates a limit-

cycle (potentiometer R4 = 50 Ω) and secondly when it emits a bursting oscillation 

(potentiometer R4 = 105 Ω), considering in each case the cases with and without delay. The 

question is to see what happens in the optoelectronic systems in these states. 
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i) Case with the limit‑cycle of the Colpitts oscillator (R4 = 50 Ω) 

     The principal tunable parameter of the OEO-Colpitts oscillator is the polarization 

voltage Vpol . To explore experimentally the complex dynamics of the oscillator, we first 

consider the case where the time-delay is set to zero (the delay line is removed: TD = 0). When 

the polarization voltage is increased beyond the threshold, a regime of multi-periodic 

oscillations is observed as displayed in figure 3.7 (a),(e) (for Vout and Vin). This signal 

oscillates with a maximum frequency equal to f = 18.18 MHz and a maximum amplitude of 

4.72 V for Vout and 1.15 V for Vin, which are large compared to the oscillation frequency and 

the maximum amplitude of the solitary Colpitts oscillator found equal to 4.5 MHz and 264 

mV, respectively (see section 3.2). Precisely, this frequency is four times the one of the 

solitary Colpitts oscillator (18.18∕4.5 ≈ 4.). 
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Figure 3.7: Black color for Vout and green color for Vin: (a)and(e)) Multi-periodic, 

(b)and(f) chaotic bursting, (c)and(g) periodic bursting, and (d)and(h) pulse-package 

oscillation in the time domain as the polarization voltage is increased beyond the threshold 

(TD = 0). (a),(e) Vpol = 1.29 Vth; (b),(f) Vpol = 1.34 Vth; (c),(g) Vpol = 1.4 Vth; (d),(h) Vpol = 1.6 

Vth. 

        As the polarization voltage is increased, it appears a chaotic bursting oscillation (see 

figure 3.7 (b),(f) for the two voltages) and thereafter these bursting become periodic 
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characterized by the fast-scale dynamics superimposed onto a slow-scale, as displayed in 

figure 3.7 (c),(g) for the two voltage. The frequency of the slow oscillation is equal to 438.6 

kHz (frequency of the package) and with a maximum amplitude equal to 2.32 V for Vout and 

0.55 V for Vin. The interval between two packages is characterized by a sort of a single 

oscillation and at the inner of each slow-scale dynamics (package), the chaotic fast-scale 

dynamics are observed. Thereafter, higher polarization voltage leads the system to a 

dynamical state corresponding to chaotic pulse-package oscillations observed in figure 3.7 

(d),(h), and the system continues to exhibit these chaotic oscillations until the signal 

extinguishes (not shown). 
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Figure 3.8: Black color for Vout and green color for Vin: (a),(e) Multi-periodic, (b),(f) slow-

fast dynamics, and (d),(h) chaotic bursting oscillation in the time domain as the 

polarization voltage is increased beyond the threshold (TD = 0.2 μs). (a),(e) Vpol = 1.09 Vth; 

(b),(f) Vpol = 1.24 Vth; (d),(h) Vpol = 1.54 Vth; (c),(g) are the enlargements of one package of 

(b)and(f). 

      In the second consideration and still, in the case with the limit-cycle oscillation of the 

solitary Colpitts oscillator, the time delay is accounted for (insertion of the optical fiber of 

length 43 m ∶ TD = 0.2 μs). The system becomes infinite-dimensional. For a value of 

polarization voltage just beyond the threshold, multi-periodic dynamics are observed (see 
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figure 3.8 (a),(e) for the case of the two voltages) with a maximum amplitude equal to 6.8 V 

(for Vout) , 1.4 V for Vin and with the maximum frequency of the system rather equal to 16.67 

MHz. This maximum frequency has slightly decreased (16.67 MHz) compared to the case 

where the delay line is removed (18.18 MHz) but the maximum amplitude has increased 

(from 4.7 to 6.8 V for Vout and form 1.15 to 1.4 V for Vin). However, when the polarization 

voltage increases, the system generates other types of multi-periodic states characterized by 

fast-scale dynamics alternated by slow-scale dynamics as observed in figure 3.8 (b),(f)  with 

a maximum frequency equal to 13.89 MHz and a maximum amplitude equal to 5.36 V for Vout 

and 1 V for Vin. 

      Figure 3.8 (c),(g) show the enlargement of one package of figure 3.8 (b),(f) unveiling 

the fast-scale dynamics. This enlargement allows observing that the system has several 

amplitudes in its dynamics. We find that a further increase of the polarization voltage finally 

drives the system in a regime of chaotic bursting oscillations given in figure 3.8 (d),(h) for 

the two voltages. Here, the maximum frequency is reached when the polarization voltage is 

increased just beyond the threshold before gradually drops. Therefore, the insertion of the 

optical fiber delay line in the system increases the maximum amplitude but also slightly 

decreases the maximum frequency. 
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Figure 3.9: Black color for Vout and green color for Vin: Experimental time-traces of the 

OEO-Colpitts oscillator for TD = 0 μs. (a),(e) Bursting, and (c),(g) chaotic bursting 

oscillations are observed when the polarization voltage is increased beyond the threshold. 

(a),(e) Vpol = 1.14 Vth; (c),(g) Vpol = 1.52 Vth. (b),(f)and (d),(h) are the enlargements of 

(a),(e) and (c),(g) respectively. 
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Figure 3.10: Black color for Vout and green color for Vin: From chaos to chaotic bursting 

oscillations. The laser pump voltage is increased beyond the threshold (TD = 0.2 μs); (a),(e) 

chaos for Vpol = 1.12 Vth; (b),(f) Multi-periodic for Vpol =1.4 Vth; (c),(g) beginning of the 

chaotic bursting for Vpol = 1.6 Vth; (d),(h) full chaotic bursting for Vpol = 1.74 Vth. 
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beyond the threshold, the bursting oscillations are observed (figure 3.9 (a),(e) for the two 

voltages) with the oscillation frequency corresponding to one of the bursting oscillations of 

the solitary Colpitts oscillator (2.5 MHz). In this case, one can observe that the maximum 

amplitude of the system is equal to 8.2 V for Vout and 1.4 V for Vin. These bursting oscillations 

are characterized by an alternation of two different oscillation packages separated by some 

fast-scale dynamics. Furthermore, chaotic bursting oscillations (see figure 3.9 (c),(g)) are 

obtaine d when the polarization voltage increases. The enlargements observed in figure 3.9 

(b),(d) for Vout and (f),(h) for Vin  display the inner structures of each package of bursting and 

chaotic bursting oscillations of figure 3.9 (a),(c) and (e),(g), respectively. 

      Besides, when the delay line is added (TD = 0.2 μs) in the system, the dynamical 

behavior which is initially chaotic (see figure 3.10 (a),(e), for the two voltages) migrates 

towards multi-periodic oscillation (figure 3.10 (b),(f)). The maximum frequency 

corresponding to this multi-periodicity is equal to 195 kHz with a maximum amplitude of 1.4 

V for Vout and 0.45 V for Vin. Finally, the system returns to a chaotic state (chaotic bursting 

figure 3.10 (c),(g) and (d),(h)) in Vout and Vin when the polarization voltage is increased. The 

main difference between the cases without and with the delay line is that one has only 

bursting oscillation with a maximum amplitude equal to 8.2 V and chaotic bursting oscillation 

in the first case; but, the multi-periodic oscillation with a maximum amplitude equal to 1.4 V 

is also observed in the second case for the Vout of the system. 

3.3 Power spectrum analysis of the dynamics of 

time-delayed optoelectronic oscillators with wide 

and narrow band nonlinear filters 

       In this section, we report on the power spectrum analysis of the phenomena of multi-

periodicity, crenelated, mixed-mode oscillations, and chaos when the values of the bandwidth 

and the cubic-nonlinear term (CNT) of the filter vary in the cubic-nonlinear optoelectronic 

oscillator (CN-OEO) (figure 2.2). 

Combining both Kirchhoff’s laws and the general modeling of the OEO, the whole 

system of figure 2.2 is ruled by the integro-differential delayed equation [67]: see section 2.5 

for the global equation of the CN-OEO system. 
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         Throughout this thesis, except for the tunable parameters G, L, and Pin, we consider 

the following values of the key parameters [67]-[68] contained in Table 2: 

Table 2: Values of the CN-OEO system components. 

        Designation               Components           Values 

           Resistor                          R             2.5 kΩ 

           Resistor                          R            300 Ω 

           Capacitor                         C1            270 Pf 

     half-wave voltage  (RF)                         Vπrf            3.9 V 

      half-wave voltage (DC)                         Vπdc            5 V 

            Time-delay                         TD            3.28 µs 

            Responsivity                          S            4.75 V/Mw 

            Saturation current                          IS             5 µA 

            Thermal voltage                          VT             25 Mv 

              Capacitor                          C2             9.15 Nf 

   The fixed point ( 0x , 0y ) of equations (2.39) and (2.40) yields 0x  = 0 and 0y  satisfying 

the third-order polynomial  

                                    
3 2

0 0 cos 0y y     .                                                               (3.1) 

which is nontrivial if β or φ is different from 0 or π/2 (mod [2π]), respectively. It is important 

to mention that 0y  is real and unique since ρ and β are positive quantities.     

As the gain evolves, Hopf bifurcation can occur at 

                                  sin 2H H                                                                                 (3.2)           

and the system exhibits limit-cycle oscillations with frequency H  such that [68]: 

                                 

3

2

3

3 4
1 1

2 3

H

 







 
   
 
                                                        (3.3) 
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at the effective normalized gain        

                                                       
   

2 4

1
2 24

H H

H

   
                                                                (3.4) 

where                 
1

D

L
T

R
  



 
    

 
        and,        2

01 3 y                                   (3.5) 

     To investigate the effect of the bandwidth of the filter, it is possible to tune either the 

high or the low cut-off time. It is preferable to deal with the high cut-off time by monitoring 

the coil since it could not affect other parameters of the system. By doing so, reducing the 

value of the coil L decreases τ while increasing L increases τ. It is important to note that such 

change is done respecting the requirement of the wideband OEO τ < TD < θ.  

The following section deals with the dynamical behavior as well as the corresponding 

spectrum for different values of the coil. 

3.3.1 Effect of the coil on the dynamics of CN-OEO 

     According to equation 2.34 changing the coil L modifies the value of the high cut-off 

time τ and then changes the width of the band-pass filter. 

a) Case where L = 10 µH 

       In this subsection, the value of the coil is fixed at L = 10 µH, corresponding to a high 

cut-off time τ = 4 ns that is fH = 39.8 MHz. Besides, the low cut-off time is θ = 41 µs (i.e fL = 

3.9 kHz). Then the bandwidth is large (39.79 MHz). The sub subsections i) and ii) 

respectively address the different bifurcation diagrams and their corresponding power 

spectrafor some values of the CNT ρ. 

i) Bifurcation diagram 

    The full bifurcation diagrams and the maximum Lyapunov exponents of the system 

without (figures 3.11 (a) and (d)) and with (figures 3.11 (b) and (e), and (c) and (f)) the CNT 

present the various dynamical states that can be obtained as the effective normalized gain 

 sin 2    is varied. 
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Figure 3.11 : Bifurcation diagrams and maximum Lyapunov exponents of: (a) and (d), the 

standard OEO (ρ = 0) (i.e. without the cubic-nonlinear term in equation(2.40)); ((b) and 

(e)) and ((c) and (f)) for the CN-OEO (i.e. with cubic-nonlinear term in equation (2.40) 

corresponding to ρ = 6.4 ×104 and ρ = 6.4 ×106, respectively). φ = −π/4 

 

        The bifurcation diagram (figure 3.13 (a)) and the Lyapunov exponent (figure 3.13 (d)) 

of the standard OEO (the case with ρ = 0) depicts the usual sequence: Fixed point for | γ| ≤ 1; 

limit-cycles for γ above 1 which frequency decreasing as γ increases; mixed-mode oscillations 

from |γ| ≥ 1.57. Mixed-mode oscillations also known as breathers are trajectories of a 

dynamical system in which there is an alternation between oscillations of distinct large and 

small amplitudes [132,133]. The multiple lines of the bifurcation diagram mark an increase of 

small amplitude oscillations of these mixed-mode oscillations as the effective normalized gain 

γ evolves routing to chaos from |γ| ≥ 2.5. 

        Figures 3.11 (b) and (e) show the evolution of the amplitude as the effectively 

normalized gain increases when the CNT ρ = 6.4×104 is considered in equation 3.12. Periodic 

oscillation dominates until |γ| is close to 2.35. Just above this value, chaotic behavior appears 

in the system. Compared to the case of figure 3.11 (a), one first observes that the threshold of 

the effective normalized gain is not considerably affected by the CNT (|γth| = 1). Secondly, 

one notes that the region in form of a circular arc observed in the case of standard OEO just 

after the threshold value no longer exists. Thirdly, the chaotic dynamics appears a little 
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earlier; that is |γ| = 2.35 for 6.4×104 whereas it was |γ| = 2.5 for ρ = 0. When the CNT is 

increased (6.4×106), the threshold value of γ remains at |γth| = 1. However, the value of γ 

from which chaos emerges in the system has reduced again; it is now equal to 2.15 (see 

figures 3.11 (c) and (f)). 

       The following sub sub-section analyses the spectra of the signals at different levels of 

the bifurcation diagrams. 

ii) Spectral response 

Figure 3.12 shows the times series, the power spectra, and the phase portraits of the 

standard OEO (ρ = 0) for different values of the effective normalized gain chosen above the 

threshold. For instance, |γ| = 1.05 (figures 3.12 a1-a3), the time series is a relaxation 

oscillation whose fundamental frequency is about 300 kHz corresponding to a region in the 

form of a circular arc (see figure 3.11 (a)) confirmed by a phase portrait showing a slow-fast 

dynamical limit-cycle. For |γ| = 1.1 (figures 3.12 b1-b3), another limit-cycle oscillation 

similar to sinusoid (figure 3.12 b1) is observed in the time series, with a fundamental 

frequency of about 13.75 kHz and harmonic frequencies of 27.5 kHz and 41.25 kHz revealed 

by the power spectrum. Increasing γ (|γ| = 1.5 (figures 3.12 c1-c3)), relaxation oscillation 

reappears in a different form from that obtained when |γ| = 1.05 with a lower fundamental 

frequency (12 kHz) and several harmonics. The fundamental frequency is continuously 

decreasing with the increase of γ as well as the number of harmonics of these fundamental 

frequencies. Such growth precedes mixed-mode oscillations (see figures 3.12 d1-d3 for |γ| = 

2.3). The fundamental frequency of large amplitudes shown in the power spectrum has also 

been reduced to 8 kHz, and the phase portrait reveals that breathers are symmetrical. Finally, 

when |γ| reaches the chaotic region, e.g | γ |= 2.65 (figures 3.12 e1-e3), one has a flat 

broadened power spectrum and a phase portrait exhibiting a strange attractor. 
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Figure 3.12: Time series (first column), power spectra (second column), and phase 

portraits (third column) for the standard OEO (ρ = 0) at different values of γ. |γ| = 1.05 

(figures 3.12 a1-a3), |γ| = 1.1 (figures 3.12 b1-b3), |γ| = 1.5 (figures 3.12 c1-c3), |γ| = 2.3 

(figures 3.12 d1-d3), and |γ| = 2.65 (figures 3.12 e1-e3) 

 

       Figure 3.13 displays the time series, the power spectrum, and the phase portraits of this 

system for different values of the effective normalized gain above the threshold when the 

CNT is different from zero (ρ = 6.4×104). For |γ| = 1.05 (figures 3.13 a1-a3), the time series 

exhibit a limit-cycle oscillation where the fundamental frequency f0 is about 2.1 MHz 

corresponding to the peak of larger amplitude. The two other peaks of the spectrum are 

equally distant from the fundamental frequency with a spacing equal to the inverse of the time 
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delay (1/TD = 303 kHz). Furthermore, we can also observe side lobes that appear periodically 

indicating multiples of the comb spacing frequency 1
D

T  where κ is a strictly positive 

integer. This frequency ΩFSR/2π=1/TD = 303 kHz is also called the free spectral range [134]. 

The single-phase portrait loop confirms the time series. When the effective normalized gain is 

increased, (|γ| = 1.5 for figures 3.13 b1-b3), the time series show relaxation oscillations 

which are alternate. The fundamental frequency is now about f0 = 1.2 MHz. The power 

spectrum also displays frequency combs. As can be seen, with the increase of γ, the energy in 

different harmonics is being redistributed more evenly and the phase portrait shows a limit-

cycle of several lines. When |γ|=2 (figures 3.13 c1-c3), in the time series, one can note that 

the system displays mixed-mode oscillations with modulated amplitude. The power spectrum 

shows a curve similar to the previous case, with the same fundamental frequency but, a 

slightly larger amplitude is observed. When the value of the effective normalized gain 

increases (|γ| = 2.3 for figures 3.13 d1-d3), the mixed-mode oscillations with modulated 

amplitude become important and crenelated oscillation occurs. Crenelated oscillation displays 

two types of dynamics: the slow dynamics characterized by square oscillations of the plateau 

and the fast dynamics representing the oscillations inside the plateau. The power spectrum 

indicates the fundamental frequency at a value of 1.5 MHz but with multiple peaks. The phase 

portrait shows the form of oscillations contained in each dynamics. For higher values of γ, the 

system exhibits a chaotic behavior (figures 3.13 e1-e3 for |γ| = 3.1). 

           For the following case, we increase the value of the CNT to ρ = 6.4×106. The results 

are displayed in figure 3.14. Topologically, one can witness that as γ increases, the system 

exhibits dynamic features similar to the case where ρ = 6.4×104 (see figure 3.13). That is the 

evolution from limit-cycle oscillation at an early value of γ (|γ| = 1.05 and |γ| = 1.5 for figures 

3.14 a1-a3 and figures 3.14 b1-b3, respectively) then, mixed mode oscillations (|γ| = 2 for 

figures 3.14 c1-c3), crenelated oscillations (|γ| = 2.5 for figures 3.14 d1-d3), and finally 

chaotic behavior (|γ| = 3.1 for figures 3.14 e1-e3). Moreover, limit cycle oscillations present 

packages of frequency combs with the same combs spacing (303 kHz = 1/TD and see figures 

3.14 b2 and c2) i.e same free spectral range as in the case where ρ = 6.4×104 . Nevertheless, it 

is important to notice that the differences are at the level of the fundamental oscillation 

frequencies (f0 = 5.8 MHz, f0 = 4.3 MHz, and f0 = 3.7 MHz for ρ = 6.4×106 against f0 = 2.1 

MHz, f0 = 1.2 MHz, and f0 = 1.2 MHz for ρ = 6.4×104 when |γ| = 1.05, |γ| = 1.5, and |γ| = 2, 

taken respectively for the two cases) and the spectrum envelope (when the value of γ 

increases, the envelope of the spectrum keeps the same shape in the limit-cycle oscillations 
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and whose fundamental frequency remains the only peak of great amplitude for the case ρ = 

6.4×106 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Time series (first column), power spectra (second column), and phase 

portraits (third column) for the CN-OEO (ρ = 6.4 ×104) at different values of γ. |γ| = 1.05 

(figures 3.13 a1-a3), |γ| = 1.5 (figures 3.13 b1-b3), |γ| = 2 (figures 3.13 c1-c3), |γ| = 2.3 

(figures 3.13 d1-d3), and |γ| = 3.1 (figures 3.13 e1-e3). 
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Figure 3.14:  Time series (first column), power spectra (second column), and phase 

portraits (third column) for the CN-OEO (ρ = 6.4×106) at different values of γ. |γ| = 1.05 

(figures 3.14 a1-a3), |γ| = 1.5 (figures 3.14 b1-b3), |γ| = 2 (figures 3.14 c1-c3), |γ| = 2.5 

(figures 3.14 d1-d3), and |γ| = 3.1 (figures 3.14 e1-e3). 
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In either case, the frequency combs are observed in the presence of the CNT and are 

characterized mainly by their k-th frequency components fk given by fk = f0 + k · 1/TD, where f0 

is the fundamental frequency corresponding to the frequency associated with the phase shift 

between two successive laser pulses, 1/TD = ΩFSR/2π = 303 kHz is the free spectral range 

[135].  

The following section consists of increasing the value of the coil. This increase brings 

the two cut-off times closer. 

b) Case where L = 10 mH 

      In this part, the procedure is similar to that done in subsection 3.3.1.a) with the 

difference that only the value of the coil is modified and is taken equal to L= 10 mH. It results 

that, the value of the high cut-off time is τ = 4 µs and the low cut-off time θ = 41 µs 

corresponding to respective frequencies fH = 39.8 kHz and fL = 3.9 kHz. Thus, the bandwidth is 

narrow equal to 35.9 kHz. Several other phenomena and dynamic behaviors might occur in 

the system. 

i) Dynamical behaviors 

     To better appreciate the frontiers between the different dynamical regimes of the 

standard OEO and CN-OEO, numerical bifurcation diagrams, and their corresponding 

maximum Lyapunov exponents are plotted in figure 3.15. For three cases ρ = 0, ρ = 6.4×104, 

and ρ = 6.4×106, these bifurcation diagrams and Lyapunov exponents qualitatively display 

similar results. That is the dynamics globally commence with fixed-point followed by a Hopf-

bifurcation characterized by limit-cycle oscillations which dwell until a certain value of the 

bifurcation parameter, where mixed-mode oscillations and period-doubling take place; 

the further increase of the bifurcation parameter leads the system into chaotic motions (see 

figure 3.15 and figure 3.11 for some value of ρ, respectively). However, there are several 

important differences that merit being underlined. The first one is about the order of the 

values of γ in the bifurcation diagram. The order of γ in the bifurcation diagram for L = 10 mH 

is higher compared to the case of L= 10 µH for the same value of the CNT. Consequently, the 

threshold value for the Hopf bifurcation is larger. When L= 10 µH, |γth| conserved the same 

value of the threshold (|γth| = 1) no matter the value of ρ (see figure 3.13). But, figure 3.15 

shows that |γth| = 1 for ρ = 0, |γth| = 3.36 for ρ = 6.4×104, and |γth| = 1.3 for ρ = 6.4×106. 

Besides, the CNT makes the chaotic dynamics occurring a little later (in figure 3.15, |γ| = 5.85 
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for ρ = 0, |γ| = 9.2 for ρ = 6.4×104 and |γ| = 12.3 for ρ = 6.4×106). The second thing to 

underline concerns the case where ρ = 6.4×106. Comparing figures 3.11 (c) and (f) and 

figures 3.15 (c) and (f), it is remarkable that the routes to chaos are different. Mixed-mode 

oscillations are not pronounced in figure 3.15 (c) and chaos arise almost abruptly through a 

crisis phenomenon. 

     The next section consists of taking some values of the effective normalized gain above 

the threshold value and observing the response of the system from the spectral point of view. 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.15:  Bifurcation diagrams and maximum Lyapunov exponents of: (a) and (d), the 

standard OEO (ρ = 0) (i.e. without cubic term in equation (2.40)); ((b) and (e)) and ((c) and 

(f)), the CN-OEO (i.e. with cubic term in equation (2.40) corresponding to ρ = 6.4×104 and 

ρ = 6.4×106, respectively). φ = −π/4. 

ii) Spectral response 

      For the first case where the coefficient of the CNT is zero (standard OEO), our 

simulation shows some spectral states corresponding to each dynamical behavior that we can 

observe in figure 3.16. Thus, taking a value of γ just above the threshold |γ| = 1.05 (figures 

3.16 a1-a3), a limit-cycle oscillation occurs in the time series and whose fundamental 

frequency is equal to 9.5 kHz, and its harmonic (19 kHz and 28.5 kHz) as can be seen in the 

Fourier spectrum. The trajectories of the phase portrait show a clear limit cycle. For |γ| = 1.5 
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(figures 3.16 b1-b3), the system rather exhibits relaxation oscillation whose fundamental 

frequency is now equal to 8.25 kHz and several other harmonics appear in the power spectrum 

where their intensity decreases until they completely attenuate. When |γ| is further increased 

(|γ| = 4.8 (figures 3.16 c1-c3)), the system now displays mixed-mode oscillations whose 

maximum amplitude of oscillations is equal to 2.7 and the power spectrum indicates their 

fundamental frequency at a value equal to 3.5 kHz. Small amplitude oscillations are 

symmetrical as shown in the phase portrait. An increase in the effective normalized gain (| γ| 

= 6.3 for figures 3.16 d1-d3) drives the system in a regime of chaotic mixed-mode 

oscillations. Here, no obvious peak can be observed in the power spectrum. When | γ| is 

increased to 9.1 (figures 3.16 e1-e3), the chaotic state disappears and the system behaves with 

a multi-periodic oscillation whose fundamental frequency is about 42.5 kHz. Finally, when | γ| 

is taken above the value of 9.5, the system completely goes back into a chaotic state (see 

figures 3.15 (a) and (d)). 
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Figure 3.16: Time series (first column), power spectra (second column), and phase 

portraits (third column) for the standard OEO (ρ = 0) at different values of γ. |γ| = 1.05 

(figures 3.16 a1-a3), |γ| = 1.5 (figures 3.16 b1-b3), |γ| = 4.8 (figures 3.16 c1-c3), |γ| = 6.3 

(figures 3.16 d1-d3), and |γ| = 9.1 (figures 3.16 e1-e3). 

Figure 3.17 shows the dynamic behavior and the corresponding power spectra for 

some values of the effective normalized gain when the CNT is ρ = 6.4×104 . For this case, the 

threshold value of the effective normalized gain is obtained for a value equal to 3.36. Taking 

the value of the effective normalized gain equal to 3.45 (figures 3.17 a1-a3), the almost 

sinusoidal oscillation is produced. The related power spectrum indicates that the fundamental 



 
 

Doctorate Thesis/Ph.D in Physics |                 Mboyo Kouayep René                   Year   2023        
 

89 

frequency is about 245 kHz and a harmonic equal to 490 kHz. For | γ| = 8.8 (figures 3.17 b1-

b3), the periodic waveform with fourteen distinct peak intensities is shown in the time series, 

the sub-harmonic frequency appears in the power spectrum whose the first is about 17.5 kHz 

i.e the fundamental frequency (245 kHz) divided by fourteen and the corresponding phase 

portrait shows also fourteen loops that are intertwined together. When | γ| is increased (| γ| = 

9.7 for figures 3.17 c1-c3), the peak intensities of the time series behave as an irregular 

fluctuation, the associated power spectrum broadens, and the phase portrait exhibits a strange 

attractor. For | γ| = 10.5 (figures 3.17 d1-d3), the chaotic dynamic state previously observed 

disappears and a 3-T period oscillation is shown in the system. Three peaks with different 

intensities emerge in the time series, the sub-harmonic frequency appears in the power 

spectrum whose first is about 84 kHz (the fundamental frequency divided by three). The 

corresponding phase portrait shows three loops. As the effective normalized gain is increased 

(| γ| = 12 for figures 3.17 e1-e3), chaotic dynamics are definitely observed. 

Now, we increase the value of the CNT to ρ = 6.4×106 and the results are shown in 

figure 3.18. Compared to the case where ρ = 6.4×104 (figure 3.17), the system presents 

different ranges of the effective normalized gain but one can attest to a similarity, namely that 

the route to chaos is made only through the period-doubling (of different periods). However, 

it is more interesting to notice some differences summarized in Table 3. Indeed, table 3 

reveals that for a value just above the threshold value of γ (γ = 3.45 for ρ = 6.4×104 and γ = 

1.5 for ρ = 6.4×106), one notices a period-1 dynamics for both cases (see lines 2 and 7). On 

the other hand, while one observes changes in the fundamental frequency, harmonics, and sub 

harmonics frequencies for ρ = 6.4×104 when γ varies from 3.45 to 10.5 (see lines 2, 3, 4, 5 

and figure 3.15 (b)), the dynamic behavior for the case where ρ = 6.4×106 remains at one 

period for practically the same range of the variation of γ (1.5 to 10.8: see lines 7, 8 and 

figure 3.15 (c)). The chaotic dynamics occur a little far when the value of the CNT ρ passes 

from ρ = 6.4×104 to ρ = 6.4×106 (see lines 4, 6, and 10). Another difference is that when the 

CNT passes from ρ = 6.4×104 to ρ = 6.4×106, the side lobes appear in the power spectrum. 
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Figure 3.17: Time series (first column), power spectra (second column), and phase 

portraits (third column) for the CN-OEO (ρ = 6.4×104) at different values of γ. |γ| = 3.45 

(figures 3.17 a1-a3), |γ| = 8.8 (figures 3.17 b1-b3), |γ| = 9.7 (figures 3.17 c1-c3), |γ| = 10.5 

(figures 3.17 d1-d3), and |γ| = 12 (figures 3.17 e1-e3). 
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Figure 3.18: Time series (first column), power spectra (second column), and phase 

portraits (third column) for the CN-OEO (ρ = 6.4×106) at different values of γ. |γ| = 1.5 

(figures 3.18 a1-a3), |γ| =10.8 (figures 3.18 b1-b3), |γ| = 11.8 (figures 3.18 c1-c3), |γ| = 12.5 

(figures 3.18 d1-d3), and |γ| = 13.5 (figures 3.18 e1-e3). 
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Table 3: Some differences with the increase of the effective normalized gain in presence of 

the cubic-nonlinear term when L=10 mH. (F.F: Fundamental Frequency; F.S.H: First 

Sub-Harmonic; F.H: First Harmonic). 

|γ|      ρ  Dynamics (number of   

periods) 

F.F (kHz) F.S.H (kHz) F.H (kHz) Figures 

3.45 46.4 10     Periodic (One)    245    None    490 3.17 

8.8 46.4 10     Periodic (fourteen)    245    17.5    262.5 3.17 

9.7 46.4 10     Chaos    None    None    None 3.17 

10.5 46.4 10     Periodic (three)    252    84    336 3.17 

12 46.4 10     Chaos    None    None    None 3.17 

1.5 66.4 10     Periodic (One)    265    None    530 3.18 

10.8 66.4 10     Periodic (One)    370    None    740 3.18 

11.8 66.4 10     Periodic (two)    370    185    555 3.18 

12.5 66.4 10     Chaos     None    None    None 3.18 

13.5 66.4 10     Periodic (four)    360     90     450 3.18 

 

 

3.3.2 Influence of the cubic-nonlinear coefficient on the 

selectivity of characteristic peaks 

  This section shows the influence of the CNT on the central peak when the value of the 

coil and that of the effective normalized gain taken just above the threshold value are 

maintained fixed. From this figure 3.19, when ρ increases (black to blue in figure 3.19), the 

appearance of low-intensity peaks around the central peak shows a kind of translation toward 

the smaller intensities. Besides, that reduction in intensity is accompanied by a narrowing in 

the width of the central peak. The fact that the width of the central peak narrows with the 
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increase of ρ demonstrates that the system becomes more and more selective in terms of 

oscillation frequencies. 

                    

Figure 3.19: Power spectra: black for ρ = 0, - blue for ρ = 6.4×104, and - red when the 

value of the cubic-nonlinear term increases (ρ = 6.4×106). For these three cases, L=10 µH, 

and the value of the effective normalized gain remains the same |γ| = 1.05. 

 

3.4 Conclusion 

      In this chapter, we have presented the results of our work. In the first part, we firstly 

studied numerically and experimentally the self-sustaining Colpitts oscillator. This allowed us 

to determine some characteristics of this oscillator (output voltage, its frequency) and to show 

that it can exhibit dynamic behaviors such as limit-cycle oscillations, mixed-modes, and 

bursting oscillations depending on the value of the potentiometer contained in the circuit. We 

noticed a good agreement between our results on the Multisim software, our numerical 

simulations, and the experimental results. Secondly, we inserted this self-sustaining Colpitts 

oscillator into the electrical part of the OEO. We put into competition three parameters of the 

system, namely the power of the laser diode, the potentiometer of the Colpitts oscillator, and 

the delay across the length of the optical fiber. It is shown that a wide variety of periodic and 

chaotic states can be excited and also that there is an amplification of the signal frequencies. 

In particular, bursting, chaotic bursting, and chaotic pulse package oscillations with slow-fast 

temporal dynamics are experimentally observed in the system. This study has shown that 

coupling a non-linear self-sustaining oscillator to a photonic oscillator provides dynamic 

behaviors that open the door to new applications such as neuromorphic computing. In the 

second part, we have done a power spectrum analysis of timed-delayed optoelectronics 

oscillators with wide and narrow band nonlinear filters. We have mainly focused on the 
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frequency characterization of the cubic-nonlinear optoelectronic oscillator (CN-OEO). The 

effects of two main parameters have been investigated: the high cut-off time through the coil 

L and the cubic-nonlinear term ρ. It has appeared that these terms affect the system from the 

dynamical and spectral points of view. Firstly, when the value of the coil has been fixed at 10 

µH (wideband CN-OEO), the results have shown that the presence and the increase of the 

cubic-nonlinear term do not affect the threshold value of the effective normalized gain 

(always equal to 1), but chaotic dynamics occurs at earlier values of the effective normalized 

gain when the nonlinear parameter increases (|γ| = 2.5, |γ| = 2.35, and |γ| = 2.15 for ρ = 0, ρ = 

6.4×104, and ρ = 6.4 × 106, respectively). The bifurcation diagram has also shown that the 

dynamics of the CN-OEO are essentially dominated by limit-cycle oscillations and chaotic 

states. Also, we have observed a very large increase in the fundamental frequency (300 kHz 

for ρ = 0, 2.1 MHz for ρ = 6.4× 104, and 5.8 MHz for ρ = 6.4× 106 when γ = 1.05 for the 

three cases) and the increase of the cubic-nonlinear term reduces the number of admitted 

oscillation modes in the system. Same for this case, the presence of the cubic-nonlinear term 

makes the CN-OEO like a high (in the range of MHz) frequency combs generator with a free 

spectral range equal to 303 kHz corresponding to the value of the inverse of the time-delay 

1/TD. Secondly, when the value of the coil has been increased and fixed at 10 mH (narrow 

band CN-OEO), it was observed that the cubic-nonlinear term, however, influences the 

threshold value of the effective normalized gain (1 for ρ = 0, 3.36 for ρ = 6.4×104, and 1.3 for 

ρ = 6.4×106). Then, from the dynamical point of view, chaotic dynamics occurs a little far (|γ| 

= 5.85 for ρ = 0, |γ| = 9.2 for ρ = 6.4×104, and |γ| = 12.3 for ρ = 6.4×106). In this case (L=10 

mH), we have also noted an increase in the fundamental frequency for the values of the 

effective normalized gain taken just above each threshold (9.5 kHz for ρ = 0 when |γ| = 1.05, 

245 kHz for ρ = 6.4×104 when |γ| = 3.45, and 265 kHz for ρ = 6.4×106 when γ = 1.5). 

 

 

 

 

 

 



 
 

Doctorate Thesis/Ph.D in Physics |                 Mboyo Kouayep René                   Year   2023        
 

0 

 

 

 

 

 

 

 

 

 

 

General conclusion 

 

 

 

 

 

 

 



 
 

Doctorate Thesis/Ph.D in Physics |                 Mboyo Kouayep René                   Year   2023        
 

95 

1-Main results 

     The work we presented in this thesis focused on the study of optoelectronic oscillators 

cascaded by nonlinear electronic components. For this purpose, two approaches have been 

considered, namely the theoretical and the experimental ones. 

      In the first chapter, we have reviewed the literature on some nonlinear electronic 

components (nonlinear capacitor, Colpitts oscillator), optical components (laser and 

applications, Mach-Zehnder modulator) through their characteristics and properties as well as 

the different models of optoelectronic oscillators (in the field of science and technology). In 

the same way, the presentation of the modulation of the electric signals allows us to 

understand that the OOE presents internal as well as external modulations. We have also 

explored frequency combs by listing their characteristics, equations, and some of their 

applications in everyday life. To conclude this chapter, we have outlined the problems to be 

solved in this manuscript. 

     In chapter 2 on methodology, our two systems were presented nemaly the OEO-

Colpitts and CN-OEO system. Then we presented the components of the electrical and optical 

part of the OEO. In these sections, the frequency and the equations of the Colpitts oscillator 

have been found, as also that of the cubic nonlinear band pass filter (CNBPF) and we have 

listed the optical components used in this thesis. The threshold voltage of the laser diode used 

was obtained experimentally. The RK4 methods for solving ordinary differential equations 

and delay differential equations applied to our equations previously determined as well as the 

method for spectral analysis of a system were presented. In other words, the whole 

experimental scheme was presented. 

      The last chapter (chapter 3) was dedicated to the presentation of the results obtained 

for the theoretical and experimental study of optoelectronic oscillators cascaded by nonlinear 

electronic components. In the first part of this chapter, the theoretical and experimental study 

of the Colpitts self-sustaining oscillator were done. The bifurcation diagram shows us three 

states namely the steady-state, the limit-cycle oscillation state, and finally the bursting or 

mixed-mode oscillations state controlled by the only variable parameter of the circuit which is 

a potentiometer. This bifurcation diagram is confirmed by the time traces thus indicating 

some characteristics of this self-sustained oscillator such as the amplitudes and frequencies of 

each dynamic. Very good agreement has been observed between the methods used. 



 
 

Doctorate Thesis/Ph.D in Physics |                 Mboyo Kouayep René                   Year   2023        
 

96 

Afterward, these dynamical states of the Colpitts oscillator (limit cycle and bursting 

oscillation) have been used to emulate complex fast regular, multi-periodic, bursting, and 

chaotic bursting oscillations in a simplified optoelectronic oscillator. Two principal cases 

have been developed: the case where the delay line has been considered and the case where it 

is removed. The results have shown that this latter case offers higher frequencies of bursting 

oscillations but, might be with slightly lower amplitude compared to the other case. This 

phenomenon is certainly inherent from the effect of the delay line in the same order as other 

phenomena such as chaos, amplitude death, and so on observed in delay systems [136]. 

Moreover, it is noteworthy that small noises occur in the experimental records mainly in the 

time intervals within two packages of bursting oscillations (see figures 3.15-3.18). We admit 

that such noises are due to both electronic and optoelectronic components of our OEO-

Colpitts oscillator. On the other hand, comparing both the amplitudes and the frequencies of 

the solitary Colpitts oscillator and those of the OEO-Colpitts oscillator, it can be noticed that 

the OEO-Colpitts oscillator displays signals with higher amplitudes and frequencies. Such 

results could be important in photonic devices requiring the multiplication of amplitude and 

frequency. Moreover, mixed-mode oscillations of engineering systems include lasers, 

photonic microwave mixing, or neuromorphic computing using electro-optical systems with 

feedback could also benefit from the bursting capability.  

         The second part was devoted to the power spectrum analysis of time-delayed 

optoelectronic oscillators with wide and narrow band filters. To have the wide and narrow 

band non-linear filters we just need to control the value of the single coil contained in this 

non-linear filter since it could not affect other parameters according to the equations 

governing the dynamics of the system. By doing so, reducing the value of the coil L decreases 

τ while increasing L increases τ. First, when the value of the coil has been fixed at 10 µH 

which corresponds to a wideband CN-OEO, the results have shown that the presence and the 

increase of the cubic nonlinear term do not affect the threshold value of the effective 

normalized gain which always equal to 1, but chaotic dynamics occurs at earlier values of the 

effective normalized gain when the nonlinear parameter increases (|γ| = 2.5, |γ| = 2.35, and |γ| 

= 2.15 for ρ = 0, ρ = 6.4×104, and ρ = 6.4×106, respectively).  We have observed a very large 

increase in the fundamental frequency (300 kHz for ρ = 0, 2.1 MHz for ρ = 6.4×104, and 5.8 

MHz for ρ = 6.4×106 when γ = 1.05 for the three cases). If we calculate the frequency ratio 

between the ρ = 0 case and the ρ = 6.4×106 case when γ = 1.05, we see an increase of almost 

twenty times (5.8/0.3=19.3) in the frequency, which is an interesting result. Same for this 
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case, the presence of the cubic nonlinear term makes the CN-OEO like a high (in the range of 

MHz) frequency combs generator with a free spectral range equal to 303 kHz corresponding to 

the value of the inverse of the time-delay 1/TD. Thus, depending on the desired application, 

the length of the optical fiber can be increased or decreased to give a wider or narrower free 

spectral range. Then, when the coil value was increased and set to 10 mH which corresponds 

to narrowband CN-OEO, and unlike the case of broadband CN-OEO, the cubic-nonlinear term 

influences the threshold value of the normalized effective gain  (1 for ρ = 0, 3.36 for ρ = 

6.4×104 , and 1.3 for ρ = 6.4×106 ). Then, dynamically, the chaotic dynamics occurs a little 

far (γ| = 5.85 for ρ = 0, |γ| = 9.2 for ρ = 6.4×104, and |γ| = 12.3 for ρ = 6.4×106). In this case 

(L=10 mH), we also noted a small increase in the fundamental frequency for the values of the 

normalized effective gain taken just above each threshold (9.5 kHz for ρ = 0 when |γ| = 1.05, 

245 kHz for ρ = 6.4×104 when γ| = 3.45, and 265 kHz for ρ = 6.4×106 when γ| = 1.5). It is 

important to emphasize here that this case gives equally interesting dynamics but requires 

high-power laser diodes for its realization because the range of the gain which is a function of 

the laser diode power is very small. The results obtained by the two parts of this thesis show 

that each system is the seat of complex dynamic behavior. 

2-Outlook 

This work leaves open several issues, the main ones being the following: 

❖A major challenge is to recover the mathematical equations of the OEO- Colpitts system to 

confront the numerical results with those obtained experimentally in this thesis. Subsequently, 

to redo numerically and experimentally the studies of the OEO-Colpitts system by further 

inserting another nonlinearity through an external modulator.  

❖Further research investigations will be devoted to the exploration of multi-loop 

architectures of the OEO-Colpitts system which would provide extra degrees of freedom and 

therefore, a wider variety of dynamical behaviors [137]-[139]. 

❖It would also be very interesting to devote more research investigations to the exploration 

of the phase noise in OEO- Colpitts and CN-OEO systems and potential applications in 

radar[140,141]                                                                                                                            

❖A look will be taken at potential applications, especially when each of these two systems is 

synchronized. 
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Abstract
We are exploring an optoelectronic oscillator featuring a Colpitts oscillator in its electri-
cal path. The Colpitts oscillator generates high frequency electrical signals and exhibits 
dynamical behaviors such as periodic and bursting oscillations which can be easily moni-
tored using a potentiometer. Inserting the Colpitts oscillator in the optoelectronic oscillator, 
we put forward the interaction between optical nonlinearity and electronic nonlinearity to 
obtain also complex dynamical behaviors. The temporal dynamics of the system with and 
without delayed feedback is investigated experimentally. It is shown that a wide variety of 
periodic and chaotic states can be excited and that there is an amplification of the signal 
frequencies. In particular, bursting, chaotic bursting and chaotic pulse-package oscillations 
with slow-fast temporal dynamics are experimentally observed in the system.

Keywords  Optoelectronic oscillator · Colpitts oscillator · Bursting oscillation · Chaotic 
pulse-package oscillations

1  Introduction

Oscillators of the Colpitts-type are well-known since they are commonly used as elec-
tronic oscillators for generating limit-cycle oscillations at radio frequencies and present 
some interesting advantages such as the relative simplicity of their electronic circuits 
(Horowitz and Hill 1994; Kengne et al. 2012; Effa et al. 2009). It was shown that, with an 
appropriate setting of these circuit parameters, they can exhibit rich and complex dynami-
cal behaviors (chaos) at various operating frequencies which potential applications are in 
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communication, radar systems, and so on (Kennedy 1994; Maggio et al. 1999; Mykolaitis 
et  al. 2004; Tamasevicius et  al. 2006; Uchida et  al. 2003; Lindberg et  al. 2007). These 
attractive properties justify our choice focused on this class of oscillators. In this paper, we 
are proposing a Colpitts oscillator which, in addition to limit-cycle, can also display burst-
ing oscillations. It is important to highlight that bursting oscillations are observed in many 
practical systems and found a multitude of applications in areas such as electro-mechan-
ics (Hunter et al. 1997; Simo and Woafo 2011), electronics (Kingni et al. 2013), biology 
(Sherman et al. 1988; Izhikevich 2000), bio-engineering of artificial organs (Jerrelind and 
Stensson 2000; Plant and Kim 1976; Nash and Hunter 2000), to name just a few.

Besides complex oscillators, the optoelectronic oscillators (OEOs) offer the advantage 
of generating both electrical and optical signals for a more wide range of applications. 
Indeed, they are nonlinear and autonomous systems characterized by a closed feedback 
loop that is formed with two concatenated optical and electronic branches (Yao and Maleki 
1996; Maleki 2011; Chembo et al. 2019). These systems with delayed feedback have been 
the focus of intense research activities in recent years and were shown to be excellent plat-
forms to investigate the interaction between the complexity induced by nonlinearity and the 
infinite dimensionality inherent to the time-delay (Chembo et al. 2005, 2007; Talla Mbé 
et al. 2015, 2019a; Romeira et al. 2015). The OEOs have found various applications such 
as ultra-stable microwave generation (Yao and Maleki 1996; Okusaga et al. 2011; Nguimdo 
et al. 2012; Zhang et al. 2014; Lelièvre et al. 2017; Ly et al. 2018), chaos communications 
(Argyris et al. 2005; Cohen et al. 2008; Ai et al. 2017), neuromorphic computing (Paquot 
et al. 2012; Soriano et al. 2013; Larger et al. 2017), detection, measurement and sensing 
(Zou et al. 2016; Yao 2017; Wu et al. 2018), time–frequency metrology (Chang et al. 2016; 
Huang et al. 2018), pulse generation in optical fiber networks (Yao et al. 2000; Lasri et al. 
2002; Chembo et al. 2009; Huang et al. 2014; Jia et al. 2015; Romeira et al. 2015; Talla 
et al. 2016), among other technological aims. These applications were recently reviewed by 
Chembo et al. 2019. In the architectures of OEOs used for most applications cited above, 
the nonlinear conversion between the electrical and the optical signals is performed by a 
phase or an intensity modulator with a sinusoidal transfer function. On the other hand, it 
was demonstrated that other electro-optic components can be used to achieve such nonlin-
ear conversion (Chengui et al. 2016, 2018). These authors exploited the seeding laser diode 
(LD) itself as an electrical-to-optical converter through its power-intensity transfer function 
which offers an advantage in congestion. For instance, such an idea was carried out with a 
Van der Pol oscillator in the electrical path (Chengui et al. 2018). Chaotic and limit-cycle 
oscillations were generated experimentally, but at frequencies up to some kHz imposed by 
the Van der Pol oscillator. Moreover, recently, it was demonstrated that the insertion of a 
nonlinear device in the electrical path of a classical OEO increases both the amplitude and 
the frequency of limit-cycle oscillation (Talla Mbé et al. 2019b).

In this article, we are investigating a Colpitts oscillator capable of displaying bursting 
and limit-cycle oscillations at higher frequencies (in the range of MHz). Such character-
istics of the Colpitts oscillator is used to emulate high-frequency complex dynamics in a 
simplified OEO where the feedback loop is closed on the laser diode and featuring that 
Colpitts oscillator in its electrical path.

The work is organized as follows. Section 2 deals with the study of the solitary Colpitts 
oscillator. The electronic structure of this oscillator is addressed and the appropriate math-
ematical model is derived to describe its dynamical behaviors. Section 3 presents an OEO 
featuring the Colpitts oscillator in the feedback loop (OEO-Colpitts oscillator). Firstly, the 
circuit description of the OEO-Colpitts oscillator is designed and secondly, the complex 
dynamical behaviors of the whole system are studied. A conclusion is given in Sect. 4.
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2 � The Colpitts oscillator

2.1 � Circuit and equation

The design of the Colpitts oscillator is shown in Fig. 1a when the switches Kin and Kout 
are off. Figure 1b depicts its experimental set-up. The following electronic components are 
used: four resistors ( R1, R2, R3, and R4 ); five capacitors ( C1, C2, C3, C4, and C5 ), one 
coil ( L ), and one transistor of type 2N2222 which is polarized with V0 = 5V . The values of 
these electronic components are given as follows: R1 = R2 = 10 kΩ , R3 = 100Ω , and R4 
is a potentiometer of maximum value 220Ω ; C1 = C2 = 10 nF , C3 = C4 = C5 = 1 nF , and 
L = 5 μH.

The expression of the eigen frequency of this oscillator is estimated by Eq.  (1) and 
by considering the values of the previous components, its theoretical value is equal to 
3.2 MHz

Applying the Kirchhoff’s law at the circuit of Fig.  1, one obtains the following set of 
equations:

where VCi
(i = 1, 2, … , 5 ) represent the voltages across the capacitors Ci . 

VBE = VC5
− VC2

− VC1
 is the emitter–base voltage, IE = f

(
VBE

)
= IS

[
exp

(
VBE

VT

)
− 1

]
 the 

emitter current, IC is the collector current, Ib is the base current ( IC = � Ib ). VT and IS are 
the thermal voltage and the saturation current of the emitter–base of the bipolar junction 

(1)f =
1

2�

√
C4 + C5

LC4C5

(2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L
dIL

dt
= VC4

− VC5

R1C1

dVC1

dt
= 2VBE + 2VC2

− V0 + R1Ib

R3C2

dVC2

dt
= R3IE − VC2

R4C3

dVC3

dt
= V0 − VC3

− VC4
− R4IC

R4C4

dVC4

dt
= V0 − VC3

− VC4
− R4IC − R4IL

R1C5

dVC3

dt
= R1IL − 2VBE − 2VC2

− R1Ib + V0

Fig. 1   a Electronic circuit of the Colpitts oscillator. b A picture of the Colpitts circuit in the laboratory
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transistor, respectively. For a convenient numerical analysis, let us introduce the following 
set of dimensionless variables and parameters as

The normalized time t′ is such that t� = t

�
 , with � =

√
LC3

Therefore, the above equations are rewritten in the dimensionless form as

In the Sect  2.2, the experimental records will be compared to the numerical results 
obtained with the set of Eq. (3).

2.2 � Dynamics of the Colpitts oscillator

Experimentally, when tuning the potentiometer ( R4 ), different time-traces have been 
recorded (Fig. 2) and compared to the numerical ones obtained from Eq.  (3). It appears 
that the Colpitts oscillator exhibits limit-cycle and bursting oscillations depending on the 
value of the potentiometer. An interesting agreement is found between the numerical and 
experimental results.

Figure 2a, b present the case where R4 = 50Ω . The Colpitts oscillator displays limit-
cycle oscillation having a frequency of 4.5 MHz and a maximum amplitude of 264 mV. As 
R4 is further increased, the limit-cycle changes to the bursting oscillations (Fig. 2c, d for 
R4 = 105Ω).

Indeed, when R4 is equal to R4 = 105Ω , the bursting oscillation appears as it can be 
seen in Fig. 2c, d. These bursting oscillations are characterized by the alternation of two 
phases: silent and active phases. The silent phase (interval between two packages of oscil-
lations) is characterized by a sort of dead zone where the voltage output is always constant 
to zero. The active phase (packages of oscillations) consists of the transient apparition of 
fast oscillations of a short period compared to the period of the package which is referred 
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to as slow. The frequency of the slow oscillation is equal to 2.5 MHz with a maximum 
amplitude of 1.44 MHz. These bursting oscillations similar to the conventional heart sound 
signals (Kingni et al. 2013) are quite raised in amplitude and frequency and could also be 
used in telecommunication as the amplitude modulator (AM), and for radar systems.

It is also important to note that the minimum and maximum frequencies of limit-cycle 
obtained with this oscillator are of 3.5 MHz (which is appreciably close to the theoretical 
frequency of 3.2 MHz) with a maximum amplitude equal to 8.2 V and 4.76 MHz with a 
maximum amplitude of 320 mV, respectively given by Fig. 3a, b for different values of R4.

To better appreciate the frontiers between the different dynamical regimes of the Col-
pitts oscillator, its numerical bifurcation diagram is plotted in Fig. 4. It appears that limit-
cycle arises in the system from R4 = 37Ω and dwells up to R4 = 97Ω . This death of 
limit-cycle oscillations results in the sudden appearance of bursting oscillations through 
an almost crisis phenomenon. Thereafter, we will use both form of signals (limit-cycle and 
bursting) for the excitability in an optoelectronic oscillator.

Fig. 2   Sinusoidal and bursting oscillations in the solitary Colpitts oscillator. a, c are the experimental 
results. b, d are numerical simulation results

Fig. 3   Other experimental limit-cycles of the Colpitts oscillator. a Limit-cycle with the lowest frequency of 
3.5 MHz ( R

4
= 40Ω ) and b limit-cycle with the highest frequency of 4.76MHz ( R

4
= 80Ω)
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3 � Generation of complex optical signals in an optoelectronic oscillator 
with a Colpitts oscillator

3.1 � Circuit description

The proposed OEO with a Colpitts oscillator in its electrical path is referred to as OEO-
Colpitts which schematic representation is shown in Fig. 5. This corresponds to the state 
where Kin and Kout are on in Fig. 1. The optical signal in the feedback loop is provided by 
a continuous-wave Distributed Feedback (DFB) laser diode. It delivers power up to 12 mV 
at the telecom wavelength � = 1.55 μm and is also used to perform the electrical-to-optical 
conversion via its pump voltage electrode. The threshold of this laser diode is obtained for 
a pump voltage measured at Vth = 1.02V . The light at the exit of the laser diode is delayed 
by an optical delay line of time-delay TD . The delayed optical signal is detected by a fast 
photodiode with an optical/electrical conversion factor S = 0.95A∕W . When the switch 
Kin is on, this electrical signal feeds the Colpitts oscillator at a particular point of the cir-
cuit (Vin) and the output is probed at Vout (see Fig. 1.a) for the switch Kout on and then 
added to the polarization voltage ( Vpol ) before fed back to the electrode of the laser diode. 

Fig. 4   Numerical plot of the 
bifurcation diagram of the 
Colpitts oscillator showing its 
different dynamical regimes

Fig. 5   Experimental set-up of the OEO-Colpitts oscillator. MC microwave coupler
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A microwave coupler (MC) is used to visualize the signal of the OEO-Colpitts oscillator 
thanks to a digital oscilloscope.

The different dynamical states of the Colpitts oscillator found in Sect. 2.2 necessarily 
affect the dynamics of the system as developed hereafter.

3.2 � Dynamics of the OEO‑Colpitts

The goal here is to study the interaction between the nonlinearity due to the solitary Col-
pitts oscillator and that of the OEO. We then focus on three parameters of the system to 
analyze its dynamics: the potentiometer of the Colpitts oscillator, the power of the laser 
and the length of the optical fiber. In order to analyze the dynamics of the OEO-Colpitts 
oscillator, two major cases are considered. Firstly, the case where the Colpitts oscillator 
generates a limit-cycle (potentiometer R4 = 50Ω ) and secondly when it emits a bursting 
oscillation (potentiometer R4 = 105Ω ). The question is to see what happens in the opto-
electronic systems in these states.

3.2.1 � Case with the limit‑cycle of the Colpitts oscillator ( R
4
= 50Ä)

The principal tunable parameter of the OEO-Colpitts oscillator is the polarization voltage 
Vpol . In order to explore experimentally the complex dynamics of the oscillator, we first 
consider the case where the time-delay is set to zero (the delay line is removed: TD = 0 ). 
When the polarization voltage is increased beyond the threshold, a regime of multi-peri-
odic oscillations is observed as displayed in Fig. 6a. This signal oscillates with a maximum 
frequency equal to f = 18.18MHz and a maximum amplitude of 4.72V , which are large 
compared to the oscillation frequency and the maximum amplitude of the solitary Colpitts 
oscillator found equal to 4.5 MHz and 264 mV, respectively (see Sect. 2.2). Precisely, this 
frequency is four times the one of the solitary Colpitts oscillator ( 18.18∕4.5 = 4.04).

Fig. 6   a Multiperiodic, b chaotic bursting, c periodic bursting, and d pulse-package oscillation in the 
time domain as the polarization voltage is increased beyond the threshold ( TD = 0 ) a Vpol = 1.29Vth ; b 
Vpol = 1.34Vth ; c Vpol = 1.4Vth ; d Vpol = 1.6Vth
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As the polarization voltage is increased, it appears a chaotic bursting oscillation (see 
Fig.  6b) and thereafter these bursting become periodic characterized by the fast-scale 
dynamics superimposed onto a slow-scale, as displayed in Fig. 6c. The frequency of the 
slow oscillation is equal to 438.6 kHz (frequency of the package) and with a maximum 
amplitude equal to 2.32 V. The interval between two packages is characterized by a sort of 
a single oscillation and at the inner of each slow-scale dynamics (package), the chaotic fast-
scale dynamics are observed. Thereafter, higher polarization voltage leads the system in a 
dynamical state corresponding to chaotic pulse-package oscillations observed in Fig. 6d, 
and the system continues to exhibit these chaotic oscillations until the signal extinguishes 
(not shown).

In the second consideration and still in the case with the limit-cycle oscillation of the 
solitary Colpitts oscillator, the time-delay is accounted for (insertion of the optical fiber 
of length 43m ∶ TD = 0.2 μs ). The system becomes infinite-dimensional. For a value of 
polarization voltage just beyond the threshold, a multi-periodic dynamics is observed (see 
Fig. 7a) with a maximum amplitude equal to 6.8 V and with the maximum frequency of 
the system rather equal to 16.67  MHz. This maximum frequency has slightly decreased 
(16.67 MHz) compared to the case where the delay line is removed (18.18 MHz) but the 
maximum amplitude has increased (from 4.7 to 6.8 V). However, when the polarization 
voltage increases, the system generates other types of multi-periodic states characterized 
by a fast-scale dynamics alternated by slow-scale dynamics as observed in Fig. 7b with a 
maximum frequency equal to 13.89 MHz and a maximum amplitude equal to 5.36 V.

Figure  7c shows the enlargement of one package of Fig.  7b unveiling the fast-scale 
dynamics. This enlargement allows observing that the system has several amplitudes in its 
dynamics. We find that further increase of the polarization voltage finally drives the system 
in a regime of chaotic bursting oscillations given in Fig. 7d. Here, the maximum frequency 
is reached when the polarization voltage is increased just beyond the threshold before grad-
ually drops. Therefore, the insertion of the optical fiber delay line in the system increases 
the maximum amplitude but also slightly decreases the maximum frequency.

Fig. 7   a Multi-periodic, b slow-fast dynamics, and d chaotic bursting oscillation in the time domain as the 
polarization voltage is increased beyond the threshold ( TD = 0.2 μs ). a Vpol = 1.09Vth ; b Vpol = 1.24Vth ; d 
Vpol = 1.54 Vth ; c is the enlargement of one package of b 
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3.2.2 � Case with the bursting oscillation of the Colpitts oscillator ( R
4
= 105Ä)

In this case, the similar work is done as in Sect. 3.2.1 but, at the only difference that the 
solitary Colpitts oscillator is configured to emit bursting oscillations. For the case where 
the time-delay is set to zero ( TD = 0 μs ), firstly for the value of the polarization volt-
age just beyond the threshold, the bursting oscillations are observed (Fig. 8a) with the 
oscillation frequency corresponding to the one of bursting oscillations of the solitary 
Colpitts oscillator (2.5 MHz). In this case, one can observe that the maximum ampli-
tude of the system is equal to 8.2  V. These bursting oscillations are characterized by 
an alternation of two different oscillation packages separated each by some fast-scale 
dynamics. Furthermore, chaotic bursting oscillations (see Fig.  8b) are obtained when 
the polarization voltage increases. The enlargements observed in Fig. 8c, d display the 
inner structures of each package of bursting and chaotic bursting oscillations of Fig. 8a, 
b, respectively.

Besides, when the delay line is added ( TD = 0.2 μs) in the system, the dynamical 
behavior which is initially chaotic (see Fig. 9a) migrates towards multi-periodic oscilla-
tion (Fig. 9b). The maximum frequency corresponding to this multi-periodicity is equal 
to 195 kHz with a maximum amplitude of 1.4V . Finally, the system returns to a chaotic 
state (chaotic bursting) (Fig. 9c, d) when the polarization voltage is increased.

The main difference between the cases without and with the delay line is that one has 
only bursting oscillation with a maximum amplitude equal to 8.2 V and chaotic bursting 
oscillation in the first case; but, the multi-periodic oscillation with a maximum ampli-
tude equal to 1.4 V is also observed in the second case.

Fig. 8   Experimental time-traces of the OEO-Colpitts oscillator for TD = 0 μs . a Bursting, and b cha-
otic bursting oscillations are observed when the polarization voltage is increased beyond the threshold. a 
Vpol = 1.14Vth ; b Vpol = 1.52Vth . c, d are the enlargements of a, b, respectively
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4 � Conclusion

In this paper, we have presented a solitary Colpitts oscillator which generates both 
high frequencies limit-cycle and bursting oscillations when a potentiometer of its cir-
cuit evolves. These dynamical states of the Colpitts oscillator have been used to emu-
late complex fast regular, multiperiodic, bursting, and chaotic bursting oscillations in a 
simplified optoelectronic oscillator. Two principal cases have been developed: the case 
where the delay line has been considered and the case where it is removed. The results 
have shown that this latter case offers higher frequencies bursting oscillations but, might 
be with slightly lower amplitude compared to the other case. This phenomenon is cer-
tainly inherent from the effect of the delay line in the same order as other phenomena 
such as chaos, amplitude death, and so on observed in delay systems (Lakshmanan and 
Senthilkumar 2011). Moreover, it is noteworthy that small noises occur in the experi-
mental records mainly in the time intervals within two packages of bursting oscillations 
(see Figs. 6, 7, 8, 9). We admit that such noises are due to both electronic and optoelec-
tronic components of our OEO-Colpitts oscillator.

On the other hand, comparing both the amplitudes and the frequencies of the solitary 
Colpitts oscillator and those of the OEO-Colpitts oscillator, it can be noticed that the 
OEO-Colpitts oscillator displays signals with higher amplitudes and frequencies. Such 
results could be important in photonic devices requiring the multiplication of amplitude 
and frequency. Moreover, mixed-mode oscillations of engineering systems including 
lasers, photonic microwave mixing, or neuromorphic computing using electro-optical 
systems with feedback could also benefit from the bursting capability. Further research 
investigations will be devoted to the exploration of multi-loop architectures which 
would provide extra-degrees of freedom and therefore, a wider variety of dynamical 
behaviors (Shumakher and Eisenstein 2008; Levy et al. 2010; Nguimdo et al. 2012; Liu 
et al. 2012).

Fig. 9   From chaos to chaotic bursting oscillations. The laser pump voltage is increased beyond the thresh-
old ( TD = 0.2 μs ); a chaos for Vpol = 1.12Vth ; b bursting for Vpol = 1.4Vth ; c beginning of the chaotic burst-
ing for Vpol = 1.6Vth ; d full chaotic bursting for Vpol = 1.74Vth
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Abstract
In this paper, we use the fourth-order Runge–Kutta and fast Fourier transform-based spec-
tral analysis to study the power spectrum of the phenomena of multi-periodicity, crenel-
ated, mixed-mode oscillations, and chaos when the values of the bandwidth and the cubic-
nonlinear term (CNT) of the filter vary in the cubic-nonlinear optoelectronic oscillator 
(CN-OEO). On the one hand, when the high and low cut-off frequencies are sufficiently far 
apart, it is numerically proved that the presence of the CNT reveals the frequency combs 
generation with a free spectral range equal to the inverse of the time-delay. Likewise, the 
width of the central peak narrows with the increase of the CNT, showing that the system 
becomes more and more selective in terms of oscillation frequencies. On the other hand, 
when the cut-off frequencies are sufficiently close, harmonic and sub-harmonic frequen-
cies are recorded. In either case, CN-OEO displays oscillations whose frequencies remain 
greater than those of a standard optoelectronic oscillator.

Keywords  Time-delay systems · Optoelectronic oscillators · Power spectrum · Frequency 
combs

1  Introduction

Delay differential systems are ubiquitous since they are encountered in relevant fundamen-
tal and applied fields such as chemical kinetics, fluid dynamics, electronics, biology, optics 
and photonics, and so on (Argyris et al. 2005; Ge et al. 2005; Li et al. 2009; Emeux 2009; 
Uchida 2012; Larger et al. 2013; Wang et al. 2017; Huang and Zhang 2019). Particularly 
in the optical domain, a wide variety of time delayed electro-optical systems was mod-
eled using the so-called Ikeda’s equation (Neyer and Voges 1982; Vallée and Delisle 1986). 
Examples are optoelectronic oscillators (OEOs).
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OEOs are autonomous systems in which a signal is alternatively converted into the 
optical and electrical domains in a closed-loop configuration (Talla et al. 2016; Chembo 
et al. 2019). In their standard configuration, OEOs have two sub-families depending on the 
bandwidth of the electrical path in the feedback loop. On the one hand, when the filter is 
narrow, the system displays ultra-stable microwave signals (Yao and Maleki 1996; Chembo 
et al. 2008) with applications in the fields such as aerospace engineering (Maleki 2011), 
sensing (Zou et  al. 2016; Yao 2017; Koualong et  al. 2022), time-frequency metrology 
(Zhang et al. 2014; Saleh et al. 2014), and pulse generation in optical fiber networks (Lasri 
et al. 2002; Jia et al. 2015). On the other hand, when the filter is broad, OEOs can output 
other complex optical microwave signals such as breathers, bursting, chaos (Chembo et al. 
2005; Weicker et al. 2013) that are applied in optical chaos communications (Argyris et al. 
2005; Chengui et  al. 2014), random bit generation (Sciamanna and Shore 2015; Zhang 
et al. 2017; Talla Mbe et al. 2021), and neuromorphic computing (Larger et al. 2012; Mar-
tinenghi et al. 2012).

From the discovery of frequency combs with the construction of the first mode-blocked 
laser (Hargrove et  al. 1964), various configurations, including optoelectronic feedback 
(Chan et al. 2007), optical injection (Juan and Lin 2009), and optical feedback (Zhao et al. 
2015) have been developed and analyzed for the generation of microwave frequency combs 
(MFCs). It is important to clarify that OEOs were also used to display microwave fre-
quency combs (MFCs) (Chembo et al. 2019; Xu et al. 2019; Cheng et al. 2020). Microwave 
frequency combs (MFCs) (Savchenkov et al. 2016; Chembo 2016) are spectral structures 
characterized by a discrete and regularly spaced succession of lines and found a multitude 
of applications in a wide range of fields such as metrology (Yokoyama et al. 2008; Hale 
et al. 2018), modern instrumentation (Barmuta et al. 2016; Cho et al. 2020), spectroscopy 
(Coddington et al. 2016), and radar (Gill et al. 1994), to name just a few.

In general, in OEOs, the nonlinearity of the system comes from the optical path, while 
the electrical path is considered to be linear. However, some recent studies have shown that 
the insertion of electrical nonlinearities such as the nonlinear capacitor, the Van der Pol, 
and Colpitts oscillators increase the scope of dynamical behaviors such as a wide variety 
of periodic, quasiperiodic, chaotic states, and the increase of the frequency of the signal 
(Talla et al. 2016; Talla Mbé et al. 2019; Kouayep et al. 2020; Kamaha et al. 2020). Among 
these novel architectures of OEOs, the one with the nonlinear capacitor and called the 
cubic-nonlinear OEO (CN-OEO) was investigated both theoretically and experimentally 
with and without Mach-Zehnder modulator (Talla Mbé et al. 2019; Kamaha et al. 2020, 
2022). It came out that compared to a standard OEO (that is the one with a standard band-
pass filter in the electrical path), the CN-OEO can display chaos for lower feedback gain. 
Moreover, it routes to chaos through a large region of limit-cycle oscillations of higher 
frequencies followed by a narrow window of crenelated oscillations instead of breathers as 
is usually the case. However, the power spectrum analysis of the system was not addressed. 
Power spectrum analysis is one of the main tools to explore the characteristics of oscilla-
tion properties of CN-OEO, notably when some parameters evolve such as the bandwidth 
of the electrical filter and the characteristic parameter of the nonlinear capacitor.

In this article, we are investigating the power spectral and the dynamical behaviors 
when the values of the bandwidth and the CNT of the filter vary in the CN-OEO. From the 
frequency point of view, sub-harmonics, harmonics, and frequency combs generation with 
a free spectral range (FSR) of 303 kHz are recovered depending on the two cut-off frequen-
cies and the cubic-nonlinear term (CNT).

This paper is organized as follows: The next section (Sect. 2) presents the system and the 
model. In Sect. 3, the effects of the coil and the CNT on the dynamics and the frequency of 
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CN-OEO are studied. The case where L = 10 μH and L = 10 mH are considered. Section 4 
presents the influence of the cubic-nonlinear term on the selectivity of characteristic peaks in 
the power spectrum and the last section (Sect. 5) concludes the article.

2 � System and model

The experimental setup of the CN-OEO is presented in Fig. 1 (Talla Mbé et al. 2019; Kamaha 
et al. 2020). A telecommunication continuous-wave laser diode with wavelength �L = 1.55 μm 
and power Pin seeds a Mach–Zehnder modulator (MZM) characterized by a radio-frequency 
(RF) and direct-current (DC) half-wave voltages V�rf  and V�dc , respectively. The modulated 
light is retarded by an optical delay line resulting in a time-delay TD , before being converted to 
an electrical signal with a photodiode (PD) of responsivity S. The electrical signal generated 
by the photodiode Vin passes through a cubic-nonlinear band-pass filter (CNBPF) that outputs 
Vout and in turn is subjected to an amplification before being re-injected into the RF electrode 
of the MZM. We notice that the CNBPF is made of a resistor R, a coil L, and a nonlinear 
capacitor (NC). The nonlinear capacitor is constructed with an operational amplifier U (type 
LF356), two capacitors C1,2 , one resistor r, and a mixed assembly of eight simple junction 
diodes (type IN400X) and whose characteristics are the thermal voltage VT , the inverse satura-
tion current IS (Fig. 1b). The number of junction diodes in series is n = 4 . Combining both 
Kirchhoff’s laws and the general modeling of the wideband OEO, the whole system of Fig. 1 
is ruled by the integro-differential delayed equation (Talla Mbé et al. 2019):

where x = �Vout∕2V�RF is the dimensionless dynamical variable of the system. Contrary to 
other OEOs, the particularities of CN-OEO come from the fact that it has the cubic-nonlin-
ear band-pass filter and four timescales which are: the high cut-off time � = L∕R , the low 
cut-off time � = R∕((

1

C1

) −
nVT

2rISC2

), the nonlinearity timescale 3
√
1∕� with 

� = nVTV
2
�RF

∕(12(rRISC2)
3(�G)2) representing the cubic-nonlinear coefficient, and the last 

(1)x + �
dx

dt
+

1

� ∫
t

0

x(s)ds + �

(

∫
t

0

x(s)ds

)3

= � cos2(x(t − TD) + �)

Fig. 1   a Set-up of the cubic-nonlinear optoelectronic oscillator. b Nonlinear capacitor (NC). PC: Polariza-
tion controller. MZM: Mach–Zehnder Modulator. V

B
 is the offset phase control voltage. PD: Photodiode. 

CNBPF: Cubic-nonlinear band-pass filter. VS: Voltage subtractor. Amp: RF amplifier. MC: Microwave cou-
pler
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timescale is the time-delay TD . The normalized feedback gain and the offset phase are 
respectively � = �SGPin∕2V�RF and � = �VB∕2V�DC . Throughout this article, except for 
the tunable parameters G, L, and Pin , we consider the following experimental values of the 
key parameters (Talla Mbé et  al. 2019; Kamaha et  al. 2020): R = 2.5 k� , r = 300� , 
C1 = 270 pF , V�rf = 3.9V , V�dc = 5V , TD = 3.28 μs , S = 0.95A∕W , IS = 5 μA , 
VT = 25mV , and C2 = 9.15 nF.

For mathematical convenience and without loss of generality, the following rescal-
ings are done � = t∕� , � = TD∕� , x� = x(� − �) , y = −

1

�
∫ t

0
x(s)ds , � = ��3 , and � = �∕� , 

so that Eq. (1) can be rewritten in the form of the following flow:

The fixed point ( x0 , y0 ) of Eqs. (2) and (3) yields x0 = 0 and y0 satisfying the third-order 
polynomial �y3

0
+ y0 + � cos2 � = 0 . As the gain evolves, Hopf bifurcation can occur at 

�H = �H sin(2�) and the system exhibits limit-cycle oscillations with frequency �H such 
that (Kamaha et al. 2020):

at the effective normalized gain

where � = � + � =
1

�

(
L

R
+ TD

)
 and � = (1 + 3�y2

0
).

To investigate the effect of the bandwidth of the filter, it is possible to tune either 
the high or the low cut-off time. It is preferable to deal with the high cut-off time 
by monitoring the coil since it could not affect other parameters of the system. By 
doing so, reducing the value of the coil L decreases � while increasing L increases � . 
Typically, a filter is considered as wideband (narrowband) filter if the bandwidth spans 
more than (less than or equal) a decade in frequency (Chembo et al. 2019).

The following sections deal with the dynamical behavior as well as the corre-
sponding spectrum for different values of the coil. The results presented are obtained 
from the numerical simulations of the set of Eqs.  (2) and (3) using the fourth-order 
Runge–Kutta method for delay differential equations (Lakshmanan and Senthilkumar 
2011). Time series and phase portraits are displayed, and the fast Fourier transform is 
utilized to compute the power spectra.

3 � Effect of the coil on the dynamics of CN‑OEO

According to Eq. (1), changing the coil L modifies the value of the high cut-off time � 
and then changes the width of the band-pass filter.

(2)𝜀ẋ =−x + y + 𝜌y3 + 𝛽 cos2(x𝜎 + 𝜙)

(3)ẏ = − x

(4)
�H =

√√√√√
3�

2

(
−1 +

√
1 +

4�3�

3�2

)

�3
,

(5)�H = −1 −
(�H�)

2

2
+

(�H�)
4

24
,
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3.1 � Case where L = 10 μH (wideband nonlinear filter)

In this subsection, the value of the coil is fixed at L = 10 μH , corresponding to a high cut-
off time � = 4 ns that is fH = 39.8 MHz . Besides, the low cut-off time is � = 41 μs (i.e 
fL = 3.9 kHz ). Then, the bandwidth is four decades corresponding to a wideband configu-
ration. The Sects.  3.1.1 and 3.1.2 respectively address the different dynamical behaviors 
through the bifurcation diagrams and their corresponding power spectra for some values of 
the CNT �.

3.1.1 � Dynamical behaviors

The full bifurcation diagrams and the maximum Lyapunov exponents of the system with-
out (Fig. 2a, d) and with (Fig 2b, e, and c, f) the CNT present the various dynamical states 
that can be obtained as the effective normalized gain � = �sin(2�) is varied.

The bifurcation diagram (Fig 2a) and the Lyapunov exponent (Fig 2d) of the standard 
OEO (the case with � = 0 ) depicts the usual sequence: Fixed point for |�| ≤ 1 ; limit-cycles 
for � above 1 which frequency decreasing as � increases; mixed-mode oscillations from 
|�| ≥ 1.57 . Mixed-mode oscillations also known as breathers are trajectories of a dynami-
cal system in which there is an alternation between oscillations of distinct large and small 
amplitudes (Chembo et al. 2005; Talla Mbé et al. 2015). The multiple lines of the bifurca-
tion diagram mark an increase of small amplitude oscillations of these mixed-mode oscilla-
tions as the effective normalized gain � evolves routing to chaos from |�| ≥ 2.5.

Fig. 2   Bifurcation diagrams and maximum Lyapunov exponents of: a and d, the standard OEO ( � = 0 ) [i.e. 
without the cubic-nonlinear term in Eq. (2)]; (b and e) and (c and f) for the CN-OEO (i.e. with cubic-non-
linear term in Eq. (2) corresponding to � = 6.4 × 104 and � = 6.4 × 106 , respectively). � = −�∕4
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Figure  2b, e show the evolution of the amplitude as the effective normalized gain 
increases when the CNT � = 6.4 × 104 is considered in Eq. (2). Periodic oscillation domi-
nates until |�| is close to 2.35. Just above this value, chaotic behavior appears in the sys-
tem. Compared to the case of Fig. 2a, one first observes that the threshold of the effective 
normalized gain is not considerably affected by the CNT ( |�th| = 1 ). Secondly, one notes 
that the region in form of a circular arc observed in the case of standard OEO just after 
the threshold value no longer exists. Thirdly, the chaotic dynamics appears a little earlier; 
that is |�| = 2.35 for � = 6.4 × 104 whereas it was |�| = 2.5 for � = 0 . When the CNT is 
increased ( � = 6.4 × 106 ), the threshold value of � remains at |�th| = 1 . However, the value 
of � from which chaos emerges in the system has reduced again; it is now equal to 2.15 (see 
Fig. 2c, f).

The following subsubsection analyses the spectra of the signals at different levels of the 
bifurcation diagrams.

3.1.2 � Spectral response

Figure 3 shows the times series, the power spectra, and the phase portraits of the standard 
OEO ( � = 0 ) for different values of the effective normalized gain chosen above the thresh-
old. For instance, |�| = 1.05 (Fig. 3a1–a3), the time series is a relaxation oscillation whose 
fundamental frequency is about 300 kHz corresponding to a region in the form of a circular 
arc (see Fig. 2a) confirmed by a phase portrait showing a slow-fast dynamical limit-cycle. 
For |�| = 1.1 (Fig. 3b1–b3), another limit-cycle oscillation similar to sinusoid (Fig. 3b1) 
is observed in the time series, with a fundamental frequency of about 13.75 kHz and two 
harmonic frequencies of 27.5 and 41.25 kHz revealed by the power spectrum. Limit-cycle 
oscillation turns into relaxation oscillation having a lower fundamental frequency (12 kHz) 
and more harmonics, but with a form different from that obtained when |�| = 1.05 
(Fig. 3c1–c3) for |�| = 1.5 ). The fundamental frequency is continuously decreasing with 
the increase of � as well as the number of harmonics of these fundamental frequencies. 
Such growth precedes mixed-mode oscillations (see Fig. 3d1–d3 for |�| = 2.3 ). The fun-
damental frequency of large amplitudes showed in the power spectrum has also reduced to 
8 kHz, and the phase portrait reveals that the breathers are symmetrical. Chaotic behavior 
dominates the dynamics at higher values of |�| ; for instance, ∣ � ∣= 2.65 (Fig. 3e1–e3), one 
has a flat broaden power spectrum and a phase portrait exhibiting a strange attractor.

Figure 4 displays the time series, the power spectrum, and the phase portraits of this 
system for different values of the effective normalized gain above the threshold when the 
CNT is different from zero ( � = 6.4 × 104 ). For |�| = 1.05 (Fig. 4a1–a3), the time series 
exhibit a limit-cycle oscillation where the fundamental frequency f0 is about 2.1 MHz 
corresponding to the peak of larger amplitude. The two other peaks of the spectrum are 
equally distant from the fundamental frequency with a spacing equal to the inverse of the 
time-delay ( 1∕TD = 303 kHz ). Furthermore, we can also observe side lobes that appear 
periodically indicating multiples of the combs spacing frequency � ⋅ 1∕TD where � being 
a strictly positive integer. This frequency Ω

FSR
∕2� = 1∕TD = 303 kHz is also called the 

free spectral range (Chembo et  al. 2007). The single-phase portrait loop confirms the 
time series. As in the case of the standard OEO, the value of |�| = 1.5 emulates relaxa-
tion oscillation with a reduced fundamental frequency of about f0 = 1.2 MHz , but hav-
ing different amplitudes (Fig. 4b1) as confirmed by the phase portrait of Fig. 4b3. Com-
pared to the case of |�| = 1.05 , the frequency combs are more important (Fig. 4b2). When 
|�| = 2 (Fig. 4c1–c3), in the time series, one can note that the system displays mixed-mode 
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Fig. 3   Time series (first column), power spectra (second column), and phase portraits (third column) for 
the standard OEO ( � = 0 ) at different values of � . |�| = 1.05 (a1–a3), |�| = 1.1 (b1–b3), |�| = 1.5 (c1–c3), 
|�| = 2.3 (d1–d3), and |�| = 2.65 (e1–e3)
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Fig. 4   Time series (first column), power spectra (second column), and phase portraits (third column) for 
the CN-OEO ( � = 6.4 × 104 ) at different values of � . |�| = 1.05 (a1–a3), |�| = 1.5 (b1–b3), |�| = 2 (c1–c3), 
|�| = 2.3 (d1–d3), and |�| = 3.1 (e1–e3)
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oscillations with modulated amplitude. The power spectrum shows a curve similar to the 
previous case, with the same fundamental frequency but, a slightly larger amplitude is 
observed. These mixed-mode oscillations with modulated amplitude become important and 
crenelated oscillations occur at large value of the normalized gain |�| = 2.3 (Fig. 4d1–d3). 
Crenelated oscillation displays two types of dynamics: the slow dynamics characterized 
by square-oscillations of the plateau and the fast dynamics representing the oscillations 
inside the plateau. The power spectrum indicates the fundamental frequency at a value of 
1.5 MHz but with multiple peaks. The phase portrait shows the form of oscillations con-
tained in each dynamics. For higher values of � , the system exhibits a chaotic behavior 
(Fig. 4e1–e3 for |�| = 3.1).

For the following case, we increase the value of the CNT to � = 6.4 × 106 . The results 
are displays in Fig. 5. Topologically, one can witness that as � grows, the system exhibits 
dynamic features similar to the case where � = 6.4 × 104 (see Fig. 4). That is the evolution 
from limit-cycle oscillation at an early value of � ( |�| = 1.05 and |�| = 1.5 for Fig. 5a1–a3 
and b1–b3, respectively) then, mixed-mode oscillations ( |�| = 2 for Fig.  5c1–c3), cren-
elated oscillations ( |�| = 2.5 for Fig.  5d1–d3), and finally chaotic behavior ( |�| = 3.1 for 
Fig. 5e1–e3). Moreover, limit-cycle oscillations present packages of frequency combs with 
the same combs spacing ( 303 kHz ≃ 1∕TD and see Fig.  5b2 and c2) i.e same free spec-
tral range as in the case where � = 6.4 × 104 . Nevertheless, it is important to notice that 
the differences are at the level of the fundamental oscillation frequencies ( f0 = 5.8 MHz , 
f0 = 4.3 MHz , and f0 = 3.7 MHz for � = 6.4 × 106 against f0 = 2.1 MHz , f0 = 1.2 MHz , 
and f0 = 1.2 MHz for � = 6.4 × 104 when |�| = 1.05 , |�| = 1.5 , and |�| = 2 , taken respec-
tively for the two cases) and the spectrum envelope (when the value of � increases, the 
envelope of the spectrum keeps the same shape in the limit-cycle oscillations and whose 
fundamental frequency remains the only peak of great amplitude for the case � = 6.4 × 106

).
In either case, the frequency combs are observed in the presence of the CNT and are 

characterized mainly by their k-th frequency components fk given by fk = f0 + k ⋅ 1∕TD , 
where f0 is the fundamental frequency corresponding to the frequency associated with the 
phase shift between two successive laser pulses, 1∕TD = Ω

FSR
∕2� = 303 kHz is the free 

spectral range (Udem et al. 2002).
The following section consists of increasing the value of the coil. This increase brings 

the two cut-off times closer.

3.2 � Case where L = 10mH (Narrowband nonlinear filter)

In this part, the procedure is similar to that done in Sect. 3.1 with the difference that only 
the value of the coil is modified and is taken equal to L = 10 mH . It results that, the value 
of the high cut-off time is � = 4 μs and the low cut-off time � = 41 μs corresponding to 
respective frequencies fH = 39.8 kHz and fL = 3.9 kHz . Thus, the bandwidth is one dec-
ade indicating a narrowband configuration. Several other phenomena and dynamical 
behaviors might occur in the system.

3.2.1 � Dynamical behaviors

To better appreciate the frontiers between the different dynamical regimes of the stand-
ard OEO and CN-OEO, numerical bifurcation diagrams, and their corresponding max-
imum Lyapunov exponents are plotted in Fig. 6. For three cases � = 0 , � = 6.4 × 104 , 
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Fig. 5   Time series (first column), power spectra (second column), and phase portraits (third column) for 
the CN-OEO ( � = 6.4 × 106 ) at different values of � . |�| = 1.05 (a1–a3), |�| = 1.5 (b1–b3), |�| = 2 (c1–c3), 
|�| = 2.5 (d1–d3), and |�| = 3.1 (e1–e3)
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and � = 6.4 × 106 , these bifurcation diagrams and Lyapunov exponents qualitatively 
display similar results. That is the dynamics globally commences with fixed-point 
followed by a Hopf-bifurcation characterized by limit-cycle oscillations which dwell 
until a certain value of the bifurcation parameter, where mixed-mode oscillations and 
period-doubling take place; the further increase of the bifurcation parameter leads the 
system into chaotic motions (see Figs. 6 and 2 for some value of � , respectively). How-
ever, there are several important differences that merit being underlined. The first one 
is about the order of the values of � in the bifurcation diagram. The order of � in the 
bifurcation diagram for L = 10 mH is higher compared to the case of L = 10 μH for the 
same value of the CNT. Consequently, the threshold value for the Hopf bifurcation is 
larger. When L = 10 μH , |�th| conserved the same value of the threshold ( |�th| = 1 ) no 
matter the value of � (see Fig. 2). But, Fig. 6 shows that |�th| = 1 for � = 0 , |�th| = 3.36 
for � = 6.4 × 104 , and |�th| = 1.3 for � = 6.4 × 106 . Besides, the CNT makes the cha-
otic dynamics occurring a little later (in Fig.  6, |�| = 5.85 for � = 0 , |�| = 9.2 for 
� = 6.4 × 104 and |�| = 12.3 for � = 6.4 × 106 ). The second thing to underline concerns 
the case where � = 6.4 × 106 . Comparing Figs. 2c, f and 6c, f, it is remarkable that the 
routes to chaos are different. Mixed-mode oscillations are not pronounced for Fig. 6c 
and chaos arise almost abruptly through a crisis phenomenon.

The next section consists of taking some values of the effective normalized gain 
above the threshold value and observing the response of the system from the spectral 
point of view.

Fig. 6   Bifurcation diagrams and maximum Lyapunov exponents of: a and d, the standard OEO ( � = 0 ) [i.e. 
without cubic-term in Eq. (2); (b and e) and (c and f), the CN-OEO (i.e. with cubic-term in Eq. (2) corre-
sponding to � = 6.4 × 104 and � = 6.4 × 106 , respectively). � = −�∕4
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3.2.2 � Spectral response

For the first case where the coefficient of the CNT is zero (standard OEO), our simu-
lation shows some spectral states corresponding to each dynamical behavior that we 
can observe in Fig.  7. Thus, taking a value of � just above the threshold |�| = 1.05 
(Fig. 7a1–a3), a limit-cycle oscillation occurs in the time series and whose fundamental 
frequency is equal to 9.5 kHz and its harmonic (19 and 28.5 kHz ) as can be seen in the 
Fourier spectrum. The trajectories of the phase portrait show a clear limit-cycle. The 
system can also exhibit relaxation oscillation whose fundamental frequency is equal to 
8.25 kHz and several other harmonics appearing in the power spectrum whose intensity 
decreases until completely attenuates (Fig. 7b1–b3 for |�| = 1.5 ). Such relaxation oscil-
lation transforms into symmetric mixed-mode oscillation whose maximum amplitude of 
oscillations is equal to 2.7 (Fig. 7c1 and c3 for |�| = 4.8 ) and the power spectrum indi-
cates their fundamental frequency at a value equal to 3.5 kHz (Fig. 7c2). Small ampli-
tude oscillations are symmetrical as shown in the phase portrait (Fig. 7c3). Mixed-mode 
oscillations progressively grows with the effective normalized gain and chaotic mixed-
mode oscillation is recorded (Fig. 7d1–d3 for |�| = 6.3 ). Chaos does not dwell for higher 
values of |�| . For instance, at |�| = 9.1 , the system behaves with a multi-periodic oscilla-
tion whose fundamental frequency is about 42.5 kHz . However, the system returns into 
a full chaotic state from |�| = 9.5 (see Fig. 6a, d).

Figure 8 shows the dynamic behavior and the corresponding power spectra for some 
values of the effective normalized gain when the CNT is � = 6.4 × 104 . For this case, 
the threshold value of the effective normalized gain is obtained for a value equal to 
3.36. Taking the value of the effective normalized gain equal to 3.45 (Fig. 8a1–a3), the 
almost sinusoidal oscillation is produced. The related power spectrum indicates that the 
fundamental frequency is about 245 kHz and a harmonic equal to 490 kHz . For |�| = 8.8 
(Fig. 8b1–b3), the periodic waveform with fourteen distinct peak intensities are shown 
in the time series, the sub-harmonic frequency appears in the power spectrum whose the 
first is about 17.5 kHz i.e the fundamental frequency ( 245 kHz ) divided by fourteen and 
the corresponding phase portrait shows also fourteen loops that are intertwined together. 
This can lead to irregular fluctuation in the peak intensities of the time series character-
ized by a broader power spectrum and a strange attractor (Fig.  8c1–c3 for |�| = 9.7 ). 
The windows displayed by the bifurcation diagram of Fig. 6b demonstrates the presence 
of periodic oscillations as witnessed by the 3-T period oscillation of Fig.  8d1–d3 for 
|�| = 10.5 . Three peaks with different intensities emerge in the time series (Fig. 8d1), 
the sub-harmonic frequency appears in the power spectrum (Fig. 8d2) whose the first is 
about 84 kHz (the fundamental frequency divided by three). The corresponding phase 
portrait shows three loops. As the effective normalized gain is increased ( |�| = 12 for 
Fig. 8e1–e3), chaotic dynamics are definitely observed.

Now, we increase the value of the CNT to � = 6.4 × 106 and the results are shown 
in Fig. 9. Compared to the case where � = 6.4 × 104 (Fig. 8), the system presents dif-
ferent ranges of the effective normalized gain but one can attest a similarity, namely 
that the route to chaos is made only through the period-doubling (of different periods). 
However, it is more interesting to notice some differences summarized in Table  1. 
Indeed, Table 1 reveals that for a value just above the threshold value of � ( � = 3.45 for 
� = 6.4 × 104 and � = 1.5 for � = 6.4 × 106 ), one notice a period-1 dynamics for both 
cases (see lines 2 and 7). On the other hand, while one observes changes in the funda-
mental frequency, harmonics, and sub-harmonics frequencies for � = 6.4 × 104 when � 
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Fig. 7   Time series (first column), power spectra (second column), and phase portraits (third column) for 
the standard OEO ( � = 0 ) at different values of � . |�| = 1.05 (a1–a3), |�| = 1.5 (b1–b3), |�| = 4.8 (c1–c3), 
|�| = 6.3 (d1–d3), and |�| = 9.1 (e1–e3)
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Fig. 8   Time series (first column), power spectra (second column), and phase portraits (third column) for the 
CN-OEO ( � = 6.4 × 104 ) at different values of � . |�| = 3.45 (a1–a3), |�| = 8.8 (b1–b3), |�| = 9.7 (c1–c3), 
|�| = 10.5 (d1–d3), and |�| = 12 (e1–e3)
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Fig. 9   Time series (first column), power spectra (second column), and phase portraits (third column) for the 
CN-OEO ( � = 6.4 × 106 ) at different values of � . |�| = 1.5 (a1–a3), |�| = 10.8 (b1–b3), |�| = 11.8 (c1–c3), 
|�| = 12.5 (d1–d3), and |�| = 13.5 (e1–e3)
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varies from 3.45 to 10.5 (see lines 2, 3, 4, 5 and Fig. 6b), the dynamic behavior for the 
case where � = 6.4 × 106 remains at one period for practically the same range of the 
variation of � (1.5 to 10.8: see lines 7, 8 and Fig.  6c). The chaotic dynamics occurs 
a little far when the value of the CNT � passes from 6.4 × 104 to 6.4 × 106 (see lines 
4, 6, and 10). Another difference is that when the CNT passes from � = 6.4 × 104 to 
� = 6.4 × 106 , the side lobes appear in the power spectrum.

4 � Influence of the cubic‑nonlinear coefficient on the selectivity 
of characteristic peaks

This section shows the influence of the CNT on the central peak when the value of the coil 
and that of the effective normalized gain taken just above the threshold value are main-
tained fixed.

From this figure, when � increases  (black to the blue of Fig.  10), the appearance of 
low-intensity peaks around the central peak shows a kind of translation towards the smaller 
intensities. Besides, that reduction in intensity is accompanied by a narrowing in the width 
of the central peak. The fact that the width of the central peak narrows with the increase 
of � demonstrates that the system becomes more and more selective in terms of oscillation 
frequencies. (Color figure online)

Table 1   Some differences with the increase of the effective normalized gain in presence of the cubic-non-
linear term when L = 10 mH . (F.F: Fundamental Frequency; F.S.H.: First Sub-Harmonic; F.H.: First Har-
monic)

|�| � Dynamics (number of periods) F.F (kHz) F.S.H (kHz) F.H (kHz) Figures

3.45 6.4 × 104 Periodic (One) 245 None 490 8a1–a3
8.8 6.4 × 104 Periodic (Fourteen) 245 17.5 262.5 8b1–b3
9.7 6.4 × 104 Chaos None None None 8c1–c3
10.5 6.4 × 104 Periodic (Three) 252 84 336 8d1–d3
12 6.4 × 104 Chaos None None None 8e1–e3
1.5 6.4 × 106 Periodic (One) 265 None 530 9a1–a3
10.8 6.4 × 106 Periodic (One) 370 None 740 9b1–b3
11.8 6.4 × 106 Periodic (Two) 370 185 555 9c1–c3
12.5 6.4 × 106 Chaos None None None 9d1–d3
13.5 6.4 × 106 Periodic (Four) 360 90 450 9e1–e3

Fig. 10   Power spectra: black for 
� = 0 , blue for � = 6.4 × 104 , 
and—red when the value of the 
cubic-nonlinear term increases 
( � = 6.4 × 106 ). For these three 
cases, L = 10 μH and the value 
of the effective normalized gain 
remains the same |�| = 1.05
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5 � Conclusion

In this work, we have mainly focused on the frequency characterization of the cubic-nonlinear 
optoelectronic oscillator (CN-OEO). The effects of two main parameters have been investi-
gated: the high cut-off time through the coil L and the cubic-nonlinear term � . It has appeared 
that these terms affect the system from the dynamical and spectral points of view.

First, when the value of the coil has been fixed at 10 μH (wideband CN-OEO), the results 
have shown that the presence and the increase of the cubic-nonlinear term do not affect the 
threshold value of the effective normalized gain (always equal to 1), but chaotic dynam-
ics occurs at earlier values of the effective normalized gain when the nonlinear parameter 
increases ( |�| = 2.5 , |�| = 2.35 , and |�| = 2.15 for � = 0 , � = 6.4 × 104 , and � = 6.4 × 106 , 
respectively). The bifurcation diagram has also shown that the dynamics of the CN-OEO is 
essentially dominated by limit-cycle oscillations and chaotic states. Also, we have observed 
a very large increase in the fundamental frequency ( 300 kHz for � = 0 , 2.1 MHz for 
� = 6.4 × 104 , and 5.8 MHz for � = 6.4 × 106 when � = 1.05 for the three cases) and the 
increase of the cubic-nonlinear term reduces the number of admitted oscillation modes in the 
system. Same for this case, the presence of the cubic-nonlinear term makes the CN-OEO like 
a high (in the range of MHz) frequency combs generator with a free spectral range equal to 
303 kHz corresponding to the value of the inverse of the time-delay 1∕TD.

Secondly, when the value of the coil has been increased and fixed at 10 mH (narrow-
band CN-OEO), it was observed that the cubic-nonlinear term, however, influences the 
threshold value of the effective normalized gain (1 for � = 0 , 3.36 for � = 6.4 × 104 , and 
1.3 for � = 6.4 × 106 ). Then, from the dynamical point of view, chaotic dynamics occurs a 
little far ( |�| = 5.85 for � = 0 , |�| = 9.2 for � = 6.4 × 104 , and |�| = 12.3 for � = 6.4 × 106 ). 
In this case ( L = 10 mH ), we have also noted an increase in the fundamental frequency 
for the values of the effective normalized gain taken just above each threshold ( 9.5 kHz 
for � = 0 when |�| = 1.05 , 245 kHz for � = 6.4 × 104 when |�| = 3.45 , and 265 kHz for 
� = 6.4 × 106 when � = 1.5).

Further research investigations will be devoted to the exploration of the phase noise in 
high-frequency CN-OEO with potential applications in radar (Xu et al. 2019, 2017).
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