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?? Abstract ??

In this thesis, our aim is threefold and consists in exploring three non classical approaches

of cooperative games. In a cooperative game with transferable utilities, each coalition that

is formed is endowed with a pre-determined worth. This is not always the case as shown in

our investigations. Firstly, we assume that the payoff of a coalition depends on the choice

of its members between two or more available alternatives. By so doing, we introduce

the class of multi-cooperative games with transferable utilities (MTU-games) by assuming

that, instead of a single game, players are offered two or more TU-games. For MTU-games,

we define some core concepts; and then we prove necessary and sufficient conditions of

the non-emptiness for the corresponding cores. Secondly, we consider cooperative games

with possibly non-monetary sharing issues by assuming that each outcome of cooperation

is a raw material each share of which is made profitable by players in their own way.

For these games, called cooperative games with local utilities functions (LUF-games),

two core concepts are introduced. For core sharing vectors, no coalition exists such that

all its members are better off by staying out of the grand coalition; while for strong core

sharing vectors, any deviation that is profitable for some members of a coalition also makes

some others in that coalition worse off. The results obtained include a generalization of

the Shapley-Bondareva theorem to linear utility functions with possibly distinct rates.

Thirdly and finally, we follow Charnes and Granot (1973,1976) on cooperative games

when payoffs of coalitions are random variables; the so-called chance-constrained games.

On this strand of the literature, we encompass the absence of a single- valued solution

by defining a two-stage value as an ex-ante agreement among players. In support of the

tractability of the newly introduced value called equal-surplus Shapley value, a simple and

compact formula as well as axiomatic solutions are established.

Keywords: Cooperative games; random payoffs; non-monetary shares; core solutions.
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?? Resumé ??

Dans cette thèse, nos préoccupations se déclinent en trois volets et consistent à explorer

trois approches non classiques des jeux coopératifs (JCs). En fait, à chaque coalition qui

se forme est affecté classiquement un gain connu à l’avance. Ceci n’est pas toujours le

cas dans les modÃ¨les que nous investigons. Premièrement, nous supposons que le gain

d’une coalition dépend du choix consensuel d’une option parmi deux ou plusieurs alter-

natives par ses membres. En fait, nous introduisons la classe des jeux multi-coopératifs

à utilités transférables sous l’hypothèse que les membres de chaque coalition peuvent

avoir la possibilité de choisir suivant quelle option s’exerce leur coopération entre une ou

plusieurs options de jeux coopératifs à utilités transférables. Pour cette classe de jeux,

nous définissons une solution de type cœur et établisssons une condition nécessaire et suff-

isante pour que le cœur correspondant soit non vide. Deuxièmement, nous considérons

les JCs avec possibilité de partage non monétaire entre les joueurs en supposant que le

produit d’une coopération est un bien dont l’utilité de chaque part dépend du joueur.

Pour cette classe de jeux appelés jeux coopératifs à fonctions d’utilités locales, deux con-

cepts de solution de type cœur sont introduits. Pour un partage du cœur, il n’existe

pas de coalition dont tous les membres gagneraient à quitter la grande coalition; tandis

que pour tout partage du cœur fort, toute déviation par une coalition qui est rentable

pour certains l’est au détriment de certains autres. Entre autres résultats, nous général-

isons le théorème de Shapley-Bondareva aux jeux avec des fonctions d’utilités linéaires

de coefficients distincts. Troisièmement et pour terminer, nous reprenons les travaux de

Charnes and Granot (1973,1976) sur les JCs lorsque les gains des coalitions sont des vari-

ables aléatoires, jeux très souvent appelés jeux coopératifs à paiements aléatoires. Nous

comblons l’absence d’une solution ponctuelle dans la littérature sur cette classe de jeux en

définissant une valeur en termes d’un contrat préalable de coopération à deux étapes entre

les joueurs. Pour prouver la maniabilité et l’attractivité de la nouvelle valeur que nous

avons convenue d’appeler valeur de Shapley à suppléments égaux, une formule simple et

compacte ainsi que plusieurs axiomatisations sont établies.
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?? Introduction ??

Since Morgenstern and Von Neumann (1953) who defined the cooperative game in char-

acteristic function form of a strategic game, cooperative games with transferable utilities

(TU-games) have been used in modeling many other economic interactions where players

form coalitions to produce goods, make profits, save costs or enjoy power; for various appli-

cations, see Curiel (2013) for optimization issues; Slikker and Van den Nouweland (2012)

and Myerson (1977) for network allocation problems; Thomson (2003) for bankruptcy

problems; Wang et al. (2008) and Young et al. (1982) for water supply problems; or Pe-

leg and Sudhölter (2007) for a systematic study of some salient solutions to cooperative

games. Classically, the payoff of a coalition in all those contributions is deterministic. The

aim of this thesis is to study three non classical families of cooperative games in which a

coalition may be proposed several opportunities; or the outcome of cooperation may not

be monetary (such as an intermediate good differently valued by players) or may simply

be a random variable.

The first class of games that we consider differs with the usual TU-games on the

way coalitions get their collective payments. There are two or more alternatives for

cooperation offered to the members of each coalition. For the coalitional worth, players

thus care not only about their partners (as it is the case with TU-games) but also which

of the alternative to adopt. To illustrate this, consider two neighbors, X and Y , planning

each for a new house to be built by one of the three qualified building firms of their town

hall. Each building firm makes a pricing that specifies the cost for bills (if X and Y

separately contact the firm) and the cost for a joint bill (if X and Y jointly contact the

firm). Clearly, the pricing by each building firm is a TU-game involving X and Y . The

question is, when should the two neighbors cooperate? In the case of cooperation, which

building firm is chosen and what is the share of each partner? Note that, the situation we
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Introduction

just describe is a collection of three TU-games on the same set of players. Any such game

that consists in a finite collection of two or more TU-games is called a multi-cooperative

game with transferable utilities (MTU-game).

In the first chapter, two core concepts for MTU-games are presented. The first core

concept for MTU-games we consider consists in assuming that players form an arbitrary

coalition structure and partners share their coalitional worth in such a way that no coali-

tion in the game can improve the payoffs of all its members by behaving differently. The

set of all payoff vectors that satisfy the latter requirement of stability is called the B-core
(core following the coalition structure B) of the MTU-game in consideration. Of course,

this is a generalization of the B-core of TU-games; see Gillies (1953) and Aumann and

Dreze (1974). Now, for our second core concept, no a priori coalition structure is given.

A core payoff is now any payoff vector supported by a coalition structure such that no

coalition in the game can improve the payoff of all its members. In both cases, we provide

necessary and sufficient conditions for the non-emptiness of the corresponding cores. This

is achieved by the introduction of an appropriate notion of balanced families of coali-

tions. The characterization results that we derive can then be seen as an extension, from

TU-games to MTU-games, of the Shapley-Bondareva theorem; see Shapley (1967) and

Bondareva (1963).

In the second class of games analyzed here, we reconsider another key assumption in

TU-games which amounts to assuming that money (or an infinitely divisible commodity)

is available as a means of exchange. Aumann (1960) showed that transferable utilities are

met in games with at least three players only if utilities are linear in money with a common

rate. In the second chapter, we introduce cooperative games with local utility functions

(LUF-games) which are cooperative games such that (i) each outcome of cooperation is

a raw material each share of which is made profitable by players in their own way; and

(ii) the utility of a player depends on their coalition of partners. The presentation of a

cooperative game with its characteristic function and a collection of utility functions was

also mentioned by Peleg and Sudhölter [2007, page 211, equation (11. 4.1)] to construct

a non transferable utilities "pregame" associated with a given TU game. We provide an

analysis of LUF-games as a primitive class of games.

More precisely, we provide two core concepts for LUF-games assuming that the grand

coalition is formed. The core of a LUF-game is the set of all sharing vectors such that all
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the members of no coalition are better off by staying out of the grand coalition. This is

the usual requirement on core elements. Since we only require utility functions to be non

decreasing, it is shown that the core may contain some weakly Pareto dominated sharing

vectors. The strong core is then introduced as a refinement of the core that consists

of all sharing vectors such that any deviation that is profitable for some members of a

coalition also makes some other members of the same coalition worse off. When utilities

are transferable, it is shown that the two cores coincide with the well known Gillies core;

see Gillies (1959). It is shown that the non emptiness of each of the two cores depends

not only on the characteristic function but also on the collection of utility functions.

To characterize core sharing vectors of a LUF-game, we introduce the notion of (lower

or upper) compensation share. Intuitively, consider a sharing vector that allocates the

outcome of the grand coalition to players. The lower compensation share of a player i

from the grand coalition to a proper coalition S is the smallest share player i needs to

move from the grand coalition to S; that is the smallest share of the coalitional worth of

S such that a larger share of player i in S provides him with at least as much utility as his

initial share in the grand coalition. An upper compensation share is defined in a similar

way. It is shown that the stability of a sharing vector depends on whether the collection

of its compensation shares meets a set of constraints e provide. In particular, when all

utility functions are linear, upper compensation shares coincide with lower compensation

shares and the two cores coincide. This allows us to derive a Shapley-Bondareva like

theorem for the non-emptiness of this LUF-games with linear utility functions.

The last class of games we analyze is the class of chance-constrained games (CC-games)

introduced by Charnes and Granot (1973,1976). CC-games depart from TU-game on the

fact that coalitional payoffs are rather random variables than of being deterministic. We

reconsider this class of games mainly for two reasons. Firstly, for CC-games, only set-

valued solutions have been defined. More precisely, Charnes and Granot (1977) consider

a two-stage core and a two-stage nucleolus for CC-games. No single-valued rule, a value,

that assigns to a CC-game with a single payoff vector is not yet defined together with some

of its axiomatizations. Secondly, Charnes and Granot (1977) advocate that, in CC-games,

the payoff process to the players should be composed of two parts: a prior payoff and an

adjustment disposition. Such a payoff process can be viewed as a two-stage contract

which works as follows: when a given coalition is formed, its members are first promised,

UYI: Ph.D Thesis 3 Donald Njoya Nganmegni N. c©UYI 2021
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taking into the account the expectation of each of its sub-coalitions, their respective

prior payoffs; after a realization of the random payoff of the coalition is observed, the

second part of the contract is applied to reallocate the surplus to the members of the

coalition. This approach for profit sharing takes into account all possible realizations of

the profit. Although Timmer et al. (2004) find this approach to be "time-consuming,

inefficient and perhaps even impossible", we think these comments are misleading since

the alternative approach that consists in assigning to each agent a share of the total profit

can also be viewed as a two-stage payoff with null prior payments. Moreover, the value

we propose has a two-stage shape, but it still has some desirable properties and a very

simple interpretation.

Our aim in the third chapter is to fill this gap on the absence of a value for CC-games

by providing a value together with a simple and compact formula as well as some charac-

terization results. In doing so, we opt for the normative approach in which we only care

about individual contributions to the collective worth in order to set up some justice and

equity norms like efficiency, symmetry, null player property, etc. Moreover, we consider

CC-games each equipped with a collection of finite sample spaces from which coalitional

payoffs are derived. A similar approach was considered for cooperative games with un-

certainty by Habis and Herings (2011) who introduce a single sample space, and then

define all coalitional worths as functions on this sample space. Assuming that the grand

coalition is formed, one obtains a two-stage payoff by equally re-allocating the surplus

when a realization of the collective payoff is observed. We refer to the corresponding

rule as the equal-surplus Shapley value. In We explore some interesting features of the

equal-surplus Shapley value of CC-games from three distinct perspectives as mentioned

above. Firstly, from a computational point of view, the equal-surplus Shapley value has

a simple formula that linearly depends on the inputs that define the game. Secondly,

we show that the equal-surplus Shapley value complies with the Shapley procedure with

the only adjustment that the marginal contribution of a player to a given coalition is

not known in advance. Finally, axiomatizations are provided to exhibit what are the

normative dispositions that completely describe the equal-surplus Shapley value.

The idea of the equal-surplus shares is also known in the case of TU-games; see for

example van den Brink (2007) or Béal et al. (2016). Béal et al. (2019) introduce the

efficient egalitarian Shapley value of a TU-game as the sum of the Shapley value of the
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game and the equal shares of the surplus generated for the grand coalition as one moves

from the game to its super-additive cover. This allocation rule has the same shape as

the equal-surplus Shapley value for CC-games. Another similarity with the TU-game

setting is that some of the axioms we use are extensions of known axioms from TU-

games to CC-games. This is the case for efficiency, null player property or additivity.

However, some other axioms are purely designed for CC-games. This is for example the

case with Independence of Local Relabeling (ILR) or Independence of Local Duplication

(ILD). Axiom (ILR) requires that any relabeling of events in the sample space associated

with a proper coalition should have no effect on individual shares. In the same way, (ILD)

requires that no change on individual shares occurs when an event in a sample space is

split into two new events which preserve the probability and the payments: each of the two

new events yields the same payment as the initial event and the sum of the probabilities

of the two new events is equal to the probability of the initial event. Depending on which

probability distributions are admissible, we provide distinct axiomatizations of the equal-

surplus Shapley value for CC-games. To make our presentation easier, two assumptions

are made. It is assumed that the grand coalition is formed; and that all sample spaces are

finite; that is, the random payoff of each coalition consists of a finite number of elementary

events.

A detailed presentation of what we outline above includes three chapters as follows.

In chapter 1, we recall the class of TU-games and introduce the model of MTU-games.

We then enlarge two concepts of core solution to the new class of games. The main result

of this chapter, gives necessary and sufficient conditions for the non-emptiness of the

corresponding cores. The class of LUF-games is introduced and an analysis of stability

on this class is presented in chapter 2. More precisely, after modeling the new class

of games, we define two core concepts on LUF-games and give a generalization of the

Shapley-Bondareva’s result like theorem for the non-emptiness of this LUF-games with

linear utility functions. Chapter 3 is devoted to the definition and axiomatizations of

the equal-surplus Shapley value for CC-games. For each axiomatization, we show the

independence of the axioms. In the conclusion, after a summary of the work carried out,

we highlight some of these lines of future research.

UYI: Ph.D Thesis 5 Donald Njoya Nganmegni N. c©UYI 2021



? ? Chapter One ? ?

Multi-cooperative games with

transferable utilities

In this chapter, we generalize the approach of cooperative games with transferable utilities

(TU-games) by including situations in which the members of a coalition have to choose

an activity for cooperation out of several available activities. We define two core solu-

tions that are both generalizations of cores presented by Gillies (1953) and Aumann and

Dreze (1974) on classical TU-games. Our main results provide necessary and sufficient

conditions for the non-emptiness of the newly introduced cores. These results are based

on a generalization of the balancedness conditions introduced by Bondareva (1963) and

Shapley (1967) to the new class of games.

The present chapter is organized as follows: Section 1.1 is devoted to the presentation

of the TU-games, the concept of core solution on those games and the stability of the core

solution. Multi-cooperative games with transferable utilities (MTU-games) are introduced

in Section 1.2. Two concepts of core solution on this new class of cooperative games are

presented together with necessary and sufficient conditions for the non-emptiness of each

of the two cores.

1.1 Cooperative games with transferable utilities

In many practical situations, agents (called actors here) interact with potentially conflict-

ing individual interests for a result that depends on individual or coordinated actions. In

such situations or games), players care not only about their own choices but also about

the decisions of others. There are mainly two forms of games which are:

• non-cooperative games where no binding agreement is allowed between players;

UYI: Ph.D Thesis 6 Donald Njoya Nganmegni N. c©UYI 2021



1.1. Cooperative games with transferable utilities

• cooperative games where binding agreements are allowed between players who may

coordinate their actions by forming coalitions.

We are especially interested in cooperative games with transferable utilities we recall

below. To this purpose, we adopt the following notational dispositions. In what follows,

N is a finite non-empty set of players. Any non-empty subset of N is called a coalition.

We denote by ΠN the set of partitions of N and by 2N the set of coalitions of N (including

the empty set). The set of all coalitions of N is denoted by CN .

Hereafter a partition B of N will be called a coalition structure. Furthermore, two

players i and j are called partners with respect to B if there exists B ∈ B such that

{i, j} ⊆ B.

1.1.1 On the cores of TU-games

At the end of each TU-games, each player belongs to exactly one coalition and all coalitions

are admissible.

Definition 1.1.1. A cooperative game with transferable utilities (TU-game) on N ,

or simply a TU-game, is a mapping v : 2N −→ R such that v(∅) = 0. The set of all

TU-games on N is denoted by ΓN .

Interpretation Given a TU-game (N, v),

• v indicates the state of the cooperation between players of N ;

• for any coalition S, v (S) is the quantity of goods (collective payoff or collective

loss) that the coalition S obtains when its members act together by a mutual

agreement.

It is assumed that:

• all coalitions are likely to forme;

• players are free to cooperate;

• players are rational and the aim of everyone, is to maximize his/her individual

interest;

• information on the state of cooperation is fully contained in the data of v.

UYI: Ph.D Thesis 7 Donald Njoya Nganmegni N. c©UYI 2021



1.1. Cooperative games with transferable utilities

The following example is from Moulin [2003, Example 2.4a, page 28].

Example 1.1.1. Teresa is a pianist and David is a violinist. They are proposed

to work as a full-time duo with a revenue of $210,000. Before the duo was formed,

Teresa was earning $50, 000 a year as a teacher and solo artist, and David $100,

000 as the first violinist of a symphony orchestra.

It is interesting to know:

(Q1) What is the end agreement on cooperation (should the two artists form the duo

or not)?

(Q2) What is a fair split of the duo revenue in the case the two artists opt for a

joint venture?

The outcome of a TU-game consists of a partition of the player set together with a

sharing vector that informs on the way the worth of each coalition is split among its

members. If the players free decide how to cooperate and share the outcome of the

cooperation, the main questions raised by a TU-game are (a) which partition of N will

be observed at the end of the game? and (a) what will be the share of each player in

the selected coalition structure? Question (a) refers to coalition formation issues while

Question (b) is on sharing issues.

Sharing vectors and imputations

Definition 1.1.2. Given (N, v) a TU-game and B a coalition structure. A B-
sharing vector (sharing vector given B) is any mapping x : N → R that assigns to

each player i of N a real number denoted by xi such that:

∀B ∈ B, x (B) = v (B) ;

where x (B) =
∑

i∈B xi.

We denote by RN the set of all mappings from N to R. Given x ∈ RN a B-sharing
vector:

• xi is the share of player i;

• when N = {1, 2, . . . , n}, we identify x with the n-tuple x = (x1, x2, ..., xn);
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1.1. Cooperative games with transferable utilities

• the n-tuple x is also denoted by (xi)i∈N .

Definition 1.1.3. A sharing vector is any element x of RN which is a B-sharing
vector with respect to some coalition structure B.

Definition 1.1.4. Given a TU-game (N, v) and a coalition structure B,

• A B-sharing vector x is individually rational if, for all i ∈ N , xi ≥ v (i);

• A B-sharing vector x is collectively rational if for all S ∈ CN , x (S) ≥ v (S).

An individually rational B-sharing vector is also called a B-imputation or an imputa-

tion given B. The set of all imputations with respect to a coalition structure B is denoted

by χ (B, v). More specifically, for B = {N}, we simply note χ (B, v) by χ (N, v).

Classical core

Most of the existing studies in the literature deal with redistribution issues after assuming

that the problem of coalition formation is solved: the players are already grouped together

according to a coalition structure. Concretely, according to the core solution (see Gillies

(1953)), it is assumed that:

(C1) players form the grand coalition (that is B = {N});

(C2) coalitional payoffs are infinitely divisible;

(C3) players are rational.

Under these conditions, the problem which remains to be solved is therefore that

of sharing the payoff of each of the observed coalitions. It is natural to assume that

the members of no coalition S will accept a sharing vector in which the total amount

they receive is less than what they might win by unilaterally forming S. In this sense,

only sharing vectors that are collectively rational are observable and are the only payoff

outcomes advocated by the core solution. Formally,

Definition 1.1.5. Given a TU-game (N, v), the classical core of (N, v) is the set

of all collectively rational {N}−sharing vector.
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1.1. Cooperative games with transferable utilities

This set is denoted C (N, v) and in other words:

C (N, v) =
{
x ∈ RN : x (N) = v (N) and ∀S ∈ CN , x (S) ≥ v (S)

}
. (1.1)

The TU-game (N, v) is stable if C (N, v) is a non-empty set.

Another definition of the core solution based on the notion of dominance is given by

Gillies (1953) as follows:

Definition 1.1.6. Given a TU-game (N, v), S ∈ CN and x, y ∈ χ (N, v),

1. y dominates x via S if

(i) ∀i ∈ S, yi > xi;

(ii) y (S) ≤ v (S).

2. x is dominated if there exists z ∈ χ (N, v) and T ∈ CN such that z dominates x

via T .

In this case we, also say that x is not stable.

For x to be dominated by y via S, there are two requirements. Firstly, item (i) requires

that each member of the coalition S expects a better payoff in y than in x; we say that

item (i) is the incentive condition. Secondly, for item (ii), the total amount of claims

should not exceed the worth of the objecting coalition; we say that (ii) is the means

condition. It appears the following proposition (see Gillies (1953)):

Proposition 1.1.1. Given a TU-game (N, v), the set of all sharing vector (follow-

ing {N}) that are dominated by no sharing vector (or that are stable) coincides with

the core solution of the TU-game (N, v).

In other words

C (N, v) = {x ∈ χ (N, v) : x is stable} (1.2)

The core solution can therefore be perceived in its two forms (1.1) and (1.2). The form

(1.1) is called static form and give a subset of possible shares. The form (1.2) is called

dynamic form. In fact, when the players cooperate following the notion of dominance,

the only stable shares are non-dominated shares.

The next definition gives an alternative definition of the notion of domination among

sharing vector.
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1.1. Cooperative games with transferable utilities

Definition 1.1.7. Given a TU-game (N, v), S ∈ CN and x, y ∈ χ (N, v),

1. y weakly dominated x via S if

(i) yi ≥ xi for all i ∈ S; and yi > xi for some i ∈ S;

(ii) y (S) ≤ v (S).

2. x is weakly dominated if there exists z ∈ χ (N, v) and T ∈ CN such that z weakly

dominated x via T .

The weak domination relation among sharing vector is obtained by weakening only

the incentive condition (i) in Definition 1.1.6: the share of each member of the objecting

coalition should not be altered from x to y; and y should provide a better share for some

of those players as compared to what they receive in x.

Definition 1.1.8. Let (N, v) be a TU-game.

The strong core of the game (N, v) is the set Cs (N, v) of all payoff vectors that

are weakly dominated by no sharing vector.

It is obvious that the strong core Cs (N, v) of a TU-game (N, v) is a subset of the core

C (N, v) of that game. Moreover, it has been proved that the two core coincide as stated

below.

Proposition 1.1.2. The strong core and the core of each TU-game coincide.

The B-Core

The core solution has been defined above when the players are grouped according to the

grand coalition N . Aumann and Dreze (1974) generalize the classical core approach to

any coalition structure B. Concretely, the authors suppose that :

(D1) The players are grouped following a partition B of N ;

(D2) Goods are infinitely divisible;

(D3) Players are rational.

Under the three conditions (D1) to (D3), the B-core is defined by the following static

formulation:
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Definition 1.1.9. Given a TU-game (N, v) and a coalition structure B on N ,

1. the B-core of the TU-game (N, v), denoted by C (B, v), is the set of all B-
imputations that are collectively rational. In other words,

C (B, v) = {x ∈ χ (B, v) : ∀S ∈ CN , x (S) ≥ v (S)}

2. the TU-game (N, v) is B-stable (or stable following B) if C (B, v) is a non-empty

set.

Remark 1.1.1. It follows by definition that the B-core is the set of sharing vector of
χ (B, v) that are collectively rational. Moreover, for B = {N}, we obtain the classical

core. In other words:

C ({N} , v) = C (N, v) .

The above definition of the B-core of a TU-game does not guarantee its stability as

shown in the following example:

Example 1.1.2. Let (N, v) be the TU-game defined as follows:

S 1 2 3 12 13 23 123

v (S) 0 0 0 10 6 10 12

For B = {N}, suppose x belongs to C (N , v). It follows that:

(x1 + x2) + (x1 + x3) + (x2 + x3) ≥ 10 + 6 + 10; and then x1 + x2 + x3 ≥ 13

Since, x is a B-sharing vector, it appears that:

x1 + x2 + x3 = 12 ≥ 13

A contradiction arises and contradicts the assumption that the core is not empty.

That is C (N, v) = ∅. Furthermore, for any other coalition structure B 6= {N}, we
have: ∑

B∈B
v (B) < v (N) = 12.

This proves that C (B, v) = ∅ for all coalition structures B.
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Example 1.1.2 shows that the core of a TU-game following a coalition structure might

be empty. In this case, there exists no sharing vector that is collectively rational. In

other words, given any sharing vector, there exists some coalition S whose members have

incentives to depart from the coalition structure in consideration. This is a clearly a

drawback of core solutions on TU-game. In order to identify all TU-games that do not

exhibit this shortcoming issue with core solutions, Bondareva (1963) and Shapley (1967)

independently presented necessary and sufficient conditions for the non-emptiness of the

core of an arbitrary TU-game.

1.1.2 The Shapley-Bondareva theorem

Before we move to Shapley-Bondareva theorem, it is worth recalling a relationship between

the collection of B-cores for a given TU-game.

Definition 1.1.10. Given a TU-game (N, v) and a partition B0 of N , the coalition

structure B0 is v-efficient if:

∀B ∈ ΠN ,
∑
B∈B

v (B) ≤
∑
B∈B0

v (B) .

In this case, we pose:

v (ΠN) =
∑
B∈B0

v (B) = max
B∈ΠN

∑
B∈B

v (B) .

It can be observed that B is v-efficient when B maximizes over all partitions of N ,

the total sum of coalitional payoffs. The following proposition underlines not only the

importance of efficient coalition structures; but also the link between those coalitions

structure and the TU-game (N, v) obtained from (N, v) as follows :

∀S ∈ CN , v (S) =


v (ΠN) if S = N

v (S) otherwise

Proposition 1.1.3. Given a TU-game (N, v) and a partition B of N ,

1. C (B, v) = ∅ whenever B is not v-efficient;

2. C (B, v) = C (N, v) whenever B is v-efficient.
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According to Proposition 1.1.3, any partition that is not v-efficient generates an empty

core. Furthermore two v- efficient coalition structures always generate the same B-core.
Proposition 1.1.3 also tells us that the problem of the non-emptiness of the core with

respect to a coalition structure is essentially the one of the non-emptiness of the core with

respect to the grand coalition of the game (N, v). For this purpose, the notion of balanced

families of coalitions has been introduced. We just recall it below.

Definition 1.1.11. Given a TU-game (N, v),

1. a non-empty set F of coalitions is balanced if there exists a family of non

negative coefficients (λS)S∈F such that for each player i,∑
S∈F :i∈S

λS = 1.

The collection λ = (λS)S∈F will be called balancedness coefficients (associated

with F).

2. the TU-game (N, v) is balanced if for all balanced families F with balancedness

coefficients (λS)S∈F , ∑
S∈F

λSv (S) ≤ v (N) .

Before we continue, here below are some examples of balanced family of coalitions.

Example 1.1.3. Given a TU-game (N, v),

1. each possible partition Q of N is balanced with a unique family of balancedness

coefficients λ = (λS)S∈Q defined by λS = 1 for all S ∈ Q;

2. given k ∈ {1, 2, ..., n}, the set Qk of all coalitions of size k is balanced with a

family of balancedness coefficients λ = (λS)S∈Qk
defined by λS = 1

(n−1
k−1)

for all

S ∈ Qk.

3. given i ∈ {1, 2, ..., n}, the set

mathcalPi is balanced with a family of balancedness coefficients λ = (λS)S∈Pi

defined by λS = 1
Pi

for all S ∈ Pi.

Note that for some balanced families, it is possible to extract a sub-family which is

still balanced. But there exists other balanced families such that no non empty sub-family

is balanced.
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Definition 1.1.12. A balanced family of coalition is called minimal if it contains

no proper sub-family of coalitions that is balanced.

It can be shown that any minimal balanced family of coalitions admits a unique family

of balancedness coefficients. Since we know a classification of these sets we can simplify

the condition for the non-emptiness of the core.

Balanced families of coalitions play a key role for the statement of the conditions of the

non-emptiness of the core of a TU-game. The following result, established independently

by Bondareva (1963) and Shapley (1967), gives a characterization of stable TU-games

when players form the grand coalition {N}.

Given a TU-game (N, v),

the game (N, v) is stable following the coalition structure {N} if and only

if the game (N, v) is balanced.

Theorem 1.1.1 (Shapley (1967) -Bondareva (1963)).

?

Now, note that for all TU-game (N, v) and for all partition B v-efficient of N , it follows

from Proposition 1.1.3 that

C (B, v) = C (N, v) .

This leads to a generalization of Theorem 1.1.1 to the case of the core with respect

an arbitrary coalition structure. To achieve this, Aumann and Dreze (1974) introduce

the following definition which generalizes the notion of balanced family for any coalition

structure.

Definition 1.1.13. Given a TU-game (N, v) and a coalition structure B of N , the

TU-game (N, v) is B-balanced if for all balanced families F of N with balancedness

coefficients (γS)S∈F , ∑
S∈F

γSv (S) ≤
∑
B∈B

v (B) .

With B-balancedness, the following result holds.

A TU-game (N, v) is B-stable if and only if the game (N, v) is B-balanced.

Theorem 1.1.2 (Aumann and Dreze (1974)).

?
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1.2 Multi-cooperative games with transferable utilities

In this section, we introduce a new class of cooperative games as possible generalization of

TU-games. We also extend to this class of games the two core concepts presented above.

New stability conditions are then provided.

1.2.1 The model

Generally, in the modeling of cooperative games with transferable utilities, the strategic

aspects of the players are temporarily set aside (non-cooperative situations)and the char-

acteristic function is offered. More precisely, in a TU-game (N, v), each player cares about

which coalition to join and about what would be his/her share. Now we add another strat-

egy dimension by assuming that there may be two or more options for cooperation instead

of a single one with TU-games. These games are called multi-cooperative games with

transferable utilities and are formalized as follows.

Definition 1.2.1. A multi-cooperative game with transferable utilities (MTU-

game) is a couple
(
N, v = (vj)1≤j≤m

)
where N is the set of players; m is a positive

integer and for all j ∈ {1, 2, . . . ,m}, (n, vj) is a TU-game.

We denote byMTUN,m the class of MTU-games with the player set N andm activities

(opportunities).

Interpretation Given an MTU-game
(
N, v = (vj)1≤j≤m

)
,

• vj (or j) denotes an activity (opportunity) in which a player or group of players

(coalition) can be involve;

• given an activity vj and a coalition S, vj(S) is the quantity of goods (collective

payoff or collective loss) assigned to coalition S when its members decide by

mutual agreement to form S and choose to be involve in activity vj.

We suppose that:

• all coalitions are likely to form and players have access to all the available

activities;

• players are free to cooperate;

• players are rational, the aim of each player is to maximize his/her interest;
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• at the end of the game, each player should belong to only one coalition and

chooses with his/her partners one option on the available opportunities;

• information on the state of cooperation is fully contained in the data of each

vj.

Remark 1.2.1. With only one activity (m = 1), MTU-games are identified with

TU-games. In other words, MTUN,1 = ΓN .

To better understand the new class of games that interests us in this thesis, consider

the following examples:

Example 1.2.1 (Pipework renewal). Two neighboring cities X and Y , in order to

improve their water supplies, have the choice between two experts. The two experts’

evaluations of costs are as follows:

- When each city opts for a separate pipework renewal, Expert 1 charges 25 and 20

for city X and city Y respectively; meanwhile Expert 2 charges 23 and 27 for

city X and city Y respectively. The difference between the two evaluations is

due to equipment constraints and the technology each expert uses.

- When the two cities decide for a joint venture, the cost for pipework renewal is

40 by Expert 1 and 39 by Expert 2.

The situation is summarized by:

city X city Y cities X and Y

Expert 1 25 20 40

Expert 2 23 27 39

where the unit for cost evaluation is a million of FCFA.

Some questions emerge among which the followings:

(Q1) How will the player behave?

(Q2) What advice will you give to?

(Q3) In the case of cooperation, how much should be the contribution of each of the two

cities?
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Example 1.2.2. Three countries A, B and C have opted for the implementation

of submarine optical fiber in order to improve their digital economy. Two expert

companies E1 and E2 on the market offer the following pricing: costs are expressed

in billions of CFA francs.

For E1:

• Each installation costs 50 when the three countries separately negotiate for

their respective networks.

• If two countries make a joint venture, they will spend together an amount of

70.

• When they form a trio, they will spend together an amount of 125.

For E2:

• When the three countries separately negotiate for their respective networks, the

cost of individual network installation is 30 for Country A and 60 for each of

the two other countries.

• In the case of a joint venture between two of the three countries, the cost is 65

for B and C; and 80 for A and any one of two other countries.

• When the three countries form a trio, they will pay together an amount of 130.

As in the Example 1.2.1, It becomes interesting to know:

(Q1) What is the best way to proceed for the three countries: which coalition structures

will emerge?

(Q2) In case of cooperation for a joint venture for a coalition of two or three countries,

which of the two experts should the partners choose?

(Q3) In the case of cooperation, how much should be the contribution of each of the three

countries?

The problem described in these two examples is an illustration of many situations en-

countered in economic environments where producers (resp. consumers) meet several

opportunities of cooperation that can generate profits. They might form coalitions and
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choose an opportunity in order to maximize the coalitional worth (resp. minimize the

coalitional costs). Addressing questions (Q1), (Q2) and (Q3) in the class of MTU-games

is our main concern. To this purpose, we define two concepts of core solution.

1.2.2 Core solutions for MTU-games and characterization

Given an MTU-game, answering questions (Q1), (Q2) and (Q3) consists in giving a parti-

tion of the players’ set together with the activity chosen by each coalition of the partition

and a sharing vector stating how partners share their coalitional worths. Considering

this, which partition will be observed at the end of the game and which activ-

ities will be chosen by the coalitions of that partition? And what will be the

sharing vector in each of the partition that emerges?

An analysis with a predefined coalition structure

Definition 1.2.2. Given an MTU-game G =
(
N, (vj)1≤j≤m

)
, a coalition structure

P is a collection of ordered pairs ((S1; vk1), (S2; vk2), ..., (Sp; vkp)) such that (Sj)j=1,...,p ∈
ΠN and for j = 1, 2, . . . ,m, vkj is the activity that the members of Sj choose. The

set of all coalition structures in the game G is denoted by ΠN(G).

Definition 1.2.3. Given an MTU-game
(
N, (vj)1≤j≤m

)
and a coalition structure

P, a P-sharing vector (sharing vector according to P) is any application x : N → R

that assigns to each player i of N a real number noted xi such that:

∀(T, u) ∈ P , x (T ) = u (T ) ;

with x (T ) =
∑

i∈T xi.

Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
, we denote by RP(G) the set of all

P-sharing vectors. In other words:

RP(G) =
{
x ∈ RN : ∀j = 1, . . . , p, x(Sj) = vkj(Sj)

}
.

Definition 1.2.4. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a coalition

structure P,

• A multi-individually rational P-sharing vector is any sharing vector x fol-

lowing P such that, for all i ∈ N , for all l ∈ {1, 2, ...,m}, xi ≥ vl (i);
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• A multi-collectively rational P-sharing vector is any sharing vector x follow-

ing P such that, for all S ∈ CN , for all l ∈ {1, 2, ...,m}, x(S) ≥ vl (S).

Definition 1.2.5. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a coalition

structure P on the MTU-game G, a P-sharing vector x is unstable if there exist an

activity l in {1, ...,m}, a coalition S ∈ CN and y ∈ RS such that: yi > xi ∀i ∈ S
y(S) ≤ vl(S)

In this case, we say that x is dominated via (S, l, y).

A P-sharing vector x is called stable if x is not dominated in the game.

In other words a P-sharing vector is unstable if there exists an activity where the

members of a coalition can improve their respective shares in the game. Recall that

we assume that players are grouped with respect to a predefined coalition structure P .
The remaining problem is thus the sharing issue within each coalition that is formed.

Definition 1.2.5 provides a way to test whether a given P-sharing vector is stable or not.

This leads us to the following core concept for MTU-games.

Definition 1.2.6. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a coalition

structure P, the P-core of G, denoted by CM(P , G), is the set of all P-sharing
vectors that are multi-collectively rational. In other words,

CM(P , G) = {x ∈ RP(G) : x is stable }. (1.3)

The game G is P-stable if CM(P , G) is not empty.

The following proposition characterizes all P-sharing vectors that are stable.

Proposition 1.2.1. A P-sharing vector x is stable in an MTU-game G if and only

if x is multi-collectively rational.

Proof.

Consider an MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a coalition structure P . Let

x ∈ RP(G).
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Sufficiency. First suppose that x is unstable. Then there exist an activity l in

{1, ...,m}, a coalition S ∈ CN and y ∈ RS such that yi > xi ∀i ∈ S
y(S) ≤ vl(S)

We deduce that 
y(S) =

∑
i∈S

yi >
∑
i∈S

xi = x(S)

y(S) ≤ vl(S)

Therefore x(S) < vl(S) and x is not multi-collectively rational.

Necessity. Conversely, suppose that x is not multi-collectively rational. Then, there

exists l ∈ {1, ..., p} and S ∈ CN such that: x(S) < vl(S). Consider y ∈ RS such that

yi = xi +
vl(S)− x(S)

|S|

for all i ∈ S. Since x(S) < vl(S, it immediately follows that yi > xi ∀i ∈ S
y(S) ≤ vl(S)

Therefore, x is unstable.

Proposition 1.2.1 is a characterization of stable P-sharing vectors. It thus provides

the following characterization of the P-core.

Corollary 1.2.1. Given a MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a coalition

structure P on the MTU-game G. The P-core of MTU-game G is also given by:

CM(P , G) = {x ∈ RP(G) : ∀S ∈ CN , ∀l ∈ {1, 2, ...,m}, x(S) ≥ vl (S)}. (1.4)

Proof.
Immediately follows from the definition of a multi-collectively rational sharing

vector and Proposition 1.2.1.

To check whether a sharing vector is stable or not, we now simply have to check

whether some linear constraints are satisfied. This helps us to identify the set of all

MTU-games with non-empty cores.
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Definition 1.2.7. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a coalition

structure P on the MTU-game G. The MTU-game G is P-stable if CM(P , G) is a

non-empty set.

For an MTU-game that is P-stable, players can be groups with respect to P and share

in a stable way the outcome of their cooperation. But how to check whether an MTU-game

is stable or not. To address this question, we introduce the following definition.

Definition 1.2.8. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a coalition

structure P on the MTU-game G, the max-game associated with G is the TU-game

denoted by vG and defined on N for ∀S ⊆ N by,

vG(S) = max{vk(S), k = 1, ...,m}. (1.5)

Given an MTU-game G and a coalition structure P in G, we slightly abuse notation

to identify P = (Sj, vj)j∈J with the partition (Sj)j∈J . Recall that C(P , vG) is the P-core
of the TU-game (N, vG); that is

x ∈ C(P , vG)⇐⇒

 x(N) =
∑p

l=1 vG(Sl)

x(S) ≥ vG(S) ∀S ∈ CN
(1.6)

Now, we denote by C∗(P , vG) the subset of RN defined by

x ∈ C∗(P , vG)⇐⇒

 x(N) =
∑p

l=1 vkl(Sl)

x(S) ≥ vG(S) ∀S ∈ CN
(1.7)

The next result equates the P-core of an MTU-game G with the set C∗(P , vG). The

advantage is that C∗(P , vG) is completely characterized by a set of linear inequalities.

Proposition 1.2.2. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
, for all coalition

structure P on the MTU-game G, CM(P , G) = C∗(P , vG).

Proof.

Consider an MTU-game G =
(
N, v = (vj)1≤j≤m

)
, a coalition structure P of G

and x ∈ RN . Then we have:

x ∈ CM(P , G)⇐⇒

 x ∈ RP(G)

∀l = 1, ...,m, ∀S ∈ CN x(S) ≥ vl(S)

⇐⇒

 x(Sj) = vkj(Sj), ∀j = 1, ..., p

∀S ∈ CN , x(S) ≥ vl(S), ∀l ∈ {1, ...,m}
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It then follows by the definition of the max-game that

x ∈ CM(P , G)⇐⇒


x(Sj) = vkj(Sj) ∀j = 1, ..., p

x(S) ≥ max
l∈{1,...,m}

vl(S) ∀S ∈ CN

⇐⇒

 x(Sj) = vkj(Sj) ∀j = 1, ..., p

x(S) ≥ vG(S) ∀S ∈ CN By Equation (1.5)

⇐⇒x ∈ C∗(P , vG)

Clearly, finding a stable P-sharing vector given an MTU-game G amounts to finding a

sharing vector with respect to the partition embedded to P that is stable in the max-game

associated with G.

Example 1.2.3. An MTU-game model of Example 1.2.1 is as follows:

S {1} {2} {1, 2}
v1 −25 −20 −40

v2 −23 −27 −39

vG −23 −20 −39

Costs has been turned into utilities.

For the coalition structure P = {({N}, v2)}, the core CM(P , G) is determined as

follows: Let x be an element of RN . Then

x ∈ CM(P , G)⇐⇒



x1 + x2 = −39

x1 ≥ −23

x2 ≥ −20

x1 + x2 ≥ −39

By canceling the redundant constraint x1 + x2 ≥ −39, it follows that

x ∈ CM(P , G)⇐⇒


x1 + x2 = −39

x2 ≥ −20

−x2 − 39 ≥ −23

⇐⇒

 x1 + x2 = −39

−20 ≤ x2 ≤ −16
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For example (−21,−18) is a stable P-sharing vector in which City X and City Y

are charged 21 and 18 respectively.Now, for P ′ = {({N}, v1)}, it can be noted that a

stable P ′-sharing vector x should satisfy :

x1 + x2 = −40; and x1 + x2 ≥ −39;

which lead to a contradiction. Therefore, CM(P ′, G) is a empty set.

We conclude that if the two municipalities agree to cooperate and choose Expert

2, there would be no objection to bear the charges of 21 million and 18 million for

City X and City Y respectively. But there exists no sharing vector which encourages

in a stable way the two municipalities to cooperate and choose the Expert 1.

The following example gives an application of core solution for three players and two

activities:

Example 1.2.4. Example 1.2.2 can be modeled by the following MTU-game:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v1 −50 −50 −50 −70 −70 −70 −125

v2 −30 −60 −60 −80 −80 −65 −130

vG −30 −50 −50 −70 −70 −65 −125

Given the coalition structure P = {({1}, v2), ({2, 3}, v2)} and x ∈ RN ,

x ∈ CM(P , G)⇐⇒



x2 + x3 = −65 and x1 = −30

x1 ≥ −30; x2 ≥ −50 et x3 ≥ −50

x1 + x2 ≥ −70; x1 + x3 ≥ −70 and x2 + x3 ≥ −65

x1 + x2 + x3 ≥ −125
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Therefore

x ∈ CM(P , G)⇐⇒


x2 + x3 = −65 and x1 = −30

x2 ≥ −50 and x3 ≥ −50

x2 ≥ −40 and x3 ≥ −40

⇐⇒

 x2 + x3 = −65 and x1 = −30

x2 ≥ −40 and x3 ≥ −40

⇐⇒

 x3 = −65− x2 and x1 = −30

−40 ≤ x2 ≤ −25

It appears that (−30,−32,−33) is an example of stable P-sharing vector. We conclude

that if Country A stays alone and choose E2 while Countries B and C agree to

cooperate and choose E2, there would be no objection to bear the charges of 30 billion,

32 billion and 33 billion for A, B and C respectively.

An Analysis when no predefined coalition structure

We start by enlarging the set of sharing vectors players might be offered.

Definition 1.2.9. Given an MTU-game
(
N, (vj)1≤j≤m

)
, an element x of RN is a

G-sharing vector if there exists a coalition structure P such that x is a P-sharing
vector.

We denote by RG the set of all G-shares; that is

RG =
⋃

P∈ΠN

RP(G).

As in Definition 1.2.4, we also extend the notion of being multi-individually rational

and multi-collectively rational to G-sharing vectors.

Definition 1.2.10. Consider an MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a coali-

tion structure P on the MTU-game G,

• A multi-individually rational G-sharing vector is any multi-individually P-
sharing vector x for some coalition structure P such that, for all i ∈ N , for all

l ∈ {1, 2, ...,m}, xi ≥ vl (i);
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• A multi-collectively rational G-sharing vector is any multi-collectively ratio-

nal P-sharing vector x for some coalition structure P such that, for all S ∈ CN ,
for all l ∈ {1, 2, ...,m}, x(S) ≥ vl (S).

We assume that when players face a G-sharing vector x, each player simply cares

about his/her share by checking whether there exists a possibility of cooperation for a

better share.

Definition 1.2.11. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
. An element x

of RG is unstable if there exist an activity l in {1, ...,m}, a coalition S ∈ CN and

y ∈ RS such that:  yi > xi ∀i ∈ S
y(S) ≤ vl(S)

In this case, we say that x is dominated via (S, l, y).

A G-sharing vector x is called stable if x is not dominated in the game.

The stability of a G-sharing vector has the same interpretation we provide for P-
sharing vectors. The core concept associated with the stability of G-sharing vectors is the

following:

Definition 1.2.12. The core of an MTU-game G =
(
N, v = (vj)1≤j≤m

)
is the set

CM(G) of all stable G-sharing vectors; that is

CM(G) = {x ∈ RG : x is stable}. (1.8)

The game G is stable if CM(G) is not empty.

Proposition 1.2.3. Given an an MTU-game G =
(
N, v = (vj)1≤j≤m

)
, a G-sharing

vector x is stable if and only if x is multi-collectively rational.

Proof.

Consider an MTU-game G =
(
N, v = (vj)1≤j≤m

)
and a G-sharing vector x.

Necessity. First suppose that x is stable. To prove that x is multi-collectively

rational, suppose on the contrary that this is not the case. Then, there exist l ∈
{1, ...,m} and S ∈ CN such that x(S) < vl(S). Consider y ∈ RS defined by

yi = xi +
vl(S)− x(S)

|S| for all i ∈ S.
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It is immediate that x is dominated via (S, l, y). A contradiction.

Sufficiency. Suppose that x is multi-collectively rational. To prove that x is stable,

suppose the contrary. Then there exist an activity l ∈ {1, ...,m}, a coalition S ∈ CN
and y ∈ RS such that

 yi > xi ∀i ∈ S
y(S) ≤ vl(S)

It follows that

{
vl(S) ≥ y(S) =

∑
i∈S

yi >
∑
i∈S

xi = x(S)

Hence vl(S) > x(S). A contradiction arises since x is multi-collectively rational.

As in Proposition 1.2.1, the stability of a G-sharing vector coincides by Proposition

1.2.3 with the notion of being multi-collectively rational. It then provides the following

characterization of core sharing vectors.

Corollary 1.2.2. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
; the classical core

of MTU-game G is also given by:

CM(G) = {x ∈ RG : ∀S ∈ CN ,∀l ∈ {1, 2, ...,m}, x(S) ≥ vl (S)}. (1.9)

Proof.
Immediately follows from the definition of a multi-collectively rational sharing

vector and Proposition 1.2.3.

The next result provides a relationship between the core of an MTU-game when no

coalition structure is provided and the core of an MTU-game with respect to a predefined

coalition structure.

Proposition 1.2.4. Given an MTU-game G =
(
N, v = (vj)1≤j≤m

)
, an element x

of RN is an element of CM(G) if and only if there exists a coalition structure P such

that x is an element of CM(P , G), that is CM(G) =
⋃
P∈ΠN

CM(P , G).

Proof.
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Consider an MTU-game G =
(
N, v = (vj)1≤j≤m

)
, x ∈ RN an element of CM(G).

Since x is an element of RG, then there exists P a coalition structure such that x be

an element of RP(G).

It follows that:

x ∈ CM(G)⇐⇒

 ∃P ∈ ΠN(G), x ∈ RP
∀l = 1, ...,m, ∀S ∈ CN x(S) ≥ vl(S)

⇐⇒∃P ∈ ΠN(G),

 x(Sj) = vkj(Sj), ∀j = 1, ..., p

∀S ∈ CN , x(S) ≥ vl(S), ∀l ∈ {1, ...,m}

⇐⇒∃P ∈ ΠN(G),


x(Sj) = vkj(Sj), ∀j = 1, ..., p

x(S) ≥ max
l∈{1,...,m}

vl(S), ∀S ∈ CN

⇐⇒∃P ∈ ΠN(G), x ∈ CM(P , G)

⇐⇒x ∈
⋃
P∈ΠN

CM(P , G)

This proves that that is CM(G) =
⋃
P∈ΠN

CM(P , G).

Example 1.2.5. Recall that Example 1.2.1 is modeled the following MTU-game:

S {1} {2} {1, 2}
v1 −25 −20 −40

v2 −23 −27 −39

vG −23 −20 −39

All coalition structures in this game are listed as follows:

P1 = {({N}, v1)}, P2 = {({N}, v2)},

P3 = {({1}, v1); ({2}, v1)}

P4 = {({1}, v2); ({2}, v2)}, P5 = {({1}, v1); ({2}, v2)}

and P6 = {({1}, v2); ({2}, v1)}.

Now, given x = (x1, x2) ∈ RN , we have:
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x ∈ CM(G)⇐⇒



x1 + x2 = −40

x1 + x2 ≥ −39

x1 ≥ −23

x2 ≥ −20

or



x1 + x2 = −39

x1 + x2 ≥ −39

x1 ≥ −23

x2 ≥ −20

or



x1 = −25 and x2 = −20

x1 + x2 ≥ −39

x1 ≥ −23

x2 ≥ −20

or



x1 = −23 and x2 = −27

x1 + x2 ≥ −39

x1 ≥ −23

x2 ≥ −20

or



x1 = −23 and x2 = −20

x1 + x2 ≥ −39

x1 ≥ −23

x2 ≥ −20

or



x1 = −25 and x2 = −27

x1 + x2 ≥ −39

x1 ≥ −23

x2 ≥ −20

⇐⇒



x1 + x2 = −39

x1 + x2 ≥ −39

x1 ≥ −23

x2 ≥ −20

⇐⇒

 x1 + x2 = −39

−20 ≤ x2 ≤ −16

For this game, the sets of constraints for the stability of Pt-sharing vectors for P1, P3, P4,

P5 and P6 are not feasible. It then appears that CM(G) = CMP2(G) which is the P-core

we found for this game in the Example 1.2.3.

Example 1.2.6. Let G = (N, u = (uj)1≤j≤2) the MTU-game defined as follows:

S 1 2 3 12 13 23 123

u1 (S) 0 0 0 10 6 10 12

u2 (S) 0 0 0 8 7 11 11

uG′ (S) 0 0 0 10 7 11 12

Given a coalition structure P = (Sj, ulj)1≤j≤p, the set of stability conditions for a

P-sharing vector x includes:

(x1 + x2) + (x1 + x3) + (x2 + x3) ≥ 10 + 7 + 11; and then x1 + x2 + x3 ≥ 14.
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Since P is coalition structure, the game is such that:

p∑
j=1

ulj(Sj)<uG(N) = 12.

A contradiction arises. We conclude that CM (P , G) = ∅ for all coalition structure

P. Therefore CM (G) = ∅ by Proposition 1.2.4.

It clearly appears in the core of an MTU-games might be empty. It is therefore

interesting to find necessary and sufficient conditions for the non-emptiness of the core of

an MTU-game.

1.2.3 Stabilities conditions of MTU-games

We extend the notion of efficient coalition structures from TU-games to MTU-games as

follows:

Definition 1.2.13. A coalition structure P = (S ′j, vkj)1≤j≤p of an MTU-game G is

poly-efficient if for all coalition structures (Sj, vlj)1≤j≤r we have:

r∑
j=1

vlj(Sj) ≤
p∑
j=1

vkj(S
′
j). (1.10)

In other words, a coalition structure P is poly-efficient means that there it maximizes,

over all possible coalitions structures, the total sum of coalitional payoffs in the game.

The coincidence between CM(G) = CMP2(G) observed in Example 1.2.5 is underlined in

the next result in terms of poly-efficient coalition structures.

Proposition 1.2.5. Given an MTU-game G = (N, v = (vj)1≤j≤m) and a coalition

structure P of the game G,

1. CM (P , G) = ∅ whenever P is not poly-efficient in the game G;

2. If a coalition structure P = (Sj, vlj)1≤j≤r is poly-efficient in the game G, then

(Sj)1≤j≤r is efficient in the max-game.

3. CM (P , G) = C∗ (P , vG) = C (N, vG) whenever P is poly-efficient in the game G.

Proof.
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Consider an MTU-game G = (N, v = (vj)1≤j≤m) and a coalition structure P =

(Sj, vlj)1≤j≤r of the game G.

1. Suppose that P is not poly-efficient and suppose that CM (P , G) is not empty.

Consider x ∈ CM (P , G). Since P is not poly-efficient in the game G, then there

exists a coalition structure P = (S ′j, vkj)1≤j≤p of the game G such that

x(N) ≥
r∑
j=1

vlj(Sj) >

p∑
j=1

vkj(S
′
j) = x(N). (1.11)

A contradiction holds. We conclude that CM (P , G) is empty.

2. Suppose that a coalition structure P = (Sj, vlj)1≤j≤r is poly-efficient in the game

G. Consider a partition (S ′j)1≤j≤p of N that is vG-efficient. By the definition of vG,

there exists for each j ∈ {1, 2, . . . , p}, an activity kj such that vG(Sj) = vkj(Sj).

Since P is poly-efficient and (S ′j)1≤j≤p of N that is vG-efficient, it follows that

r∑
j=1

vlj(Sj) =

p∑
j=1

vG(S ′j) =

p∑
j=1

vkj(S
′
j). (1.12)

Therefore (Sj)1≤j≤r is efficient in the max-game.

3. Suppose that P is poly-efficient. Consider a partition (S ′j)1≤j≤p of N that is

vG-efficient. As shown at the second item above, it follows that

r∑
j=1

vlj(Sj) =

p∑
j=1

vG(S ′j). (1.13)

By 1.6 and 1.7, it follows that C∗ (P , vG) = C∗ (P ′, vG). Therefore by Proposition

1.1.3, we get CM (P , G) = C∗ (P ′, vG) = C (N, vG).

Corollary 1.2.3. Given an MTU-game G = (N, v = (vj)1≤j≤m),

CM (G) = C (N, vG) .

Proof.
See Proposition 1.2.4 and Proposition 1.2.5.

Proposition 1.2.5 inspires us the following definition.
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Definition 1.2.14. Consider an MTU-game G = (N, v = (vj)1≤j≤m) and a coalition

structure P = (Sj, vlj)1≤j≤p of G,

1. The game G is P-balanced if for all balanced families F of N with balancedness

coefficients (γS)S∈F , ∑
S∈F

γSvG (S) ≤
p∑
j=1

vlj(Sj).

2. The game G is max-balanced if for all balanced families F of N with bal-

ancedness coefficients (γS)S∈F ,∑
S∈F

γSvG (S) ≤ max
B∈ΠN

∑
B∈B

vG (B) .

We are now ready to characterize all MTU-games that are stable with respect to a

coalition structure.

Given an MTU-game G and a coalition structure P of G, the game G is P-stable
if and only if the game G is P-balanced.

Theorem 1.2.1.

?

Proof.
See Theorem 1.1.2 and Proposition 1.2.5

Similarly,

Given an MTU-game G, the game G is stable if and only if the game G is

max-balanced.

Theorem 1.2.2.

?

Proof.
See Theorem 1.1.1 and Corollary 1.2.3

Theorem 1.2.1 and Theorem 1.2.1 complete the study of the stability of MTU-games.

Il appears that the stability of an MTU-game relies on its associated max-game. If the

game is not max-balanced, the game is not stable. When the game is max-stable, its
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core coincides with the core with respect to an arbitrary coalition structure that is poly-

efficient. Any coalition structure that is not poly-efficient leads to an empty core: no

sharing vector with respect to a non poly-efficient coalition structure is stable.

In MTU-games, utilities are still transferable. In the next chapter, we weaken this

condition to introduce a new class of cooperative games.
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Cooperative games with local utilities

functions

Cooperative games with transferable utilities (TU-games) have been used in modeling

some economic interactions where players form coalitions to produce goods, to make prof-

its, to save costs or to enjoy power. For transferable utilities, it is generally assumed that

money (or an infinitely divisible commodity) is available as a means of exchange, but there

exist many other economic environments where players form coalitions to produce goods

that do not fit this model. In this chapter, we reconsider the transferability assumption

in TU-games. More precisely, we consider cooperative games in which (i) every outcome

of cooperation is a raw material and each share is made profitable by the player in their

own way; and (ii) the utility of a player depends on the current coalition. Due to these

two assumptions, those games will be called cooperative games with local utility functions

(LUF-games). We define two core concepts for LUF-games that give a generalization of

core solutions introduced by Gillies (1953) and Aumann and Dreze (1974) on TU-games.

Note that one of our important results in this chapter gives necessary and sufficient con-

ditions of the non-emptiness for the two core concepts using a generalization of balanced

family introduced by Bondareva (1963) and Shapley (1967).

The chapter comprises two sections presented as follows. Section 2.1 is devoted to a

presentation of the notion of LUF-games. Two core concepts for LUF-games is presented

in Section 2.2. The main result in Section 2.2 generalizes the Shapley-Bondareva theorem

by providing necessary and sufficient conditions of the non-emptiness for a subclass of

LUF-games.
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2.1 Cooperative games with local utilities

2.1.1 Illustrative examples

For illustration, consider two providers who separately supply water in two neighboring

municipalities. In order to reduce costs, control the sustainability of resources, and in-

crease the profitability of their respective businesses, building some common water treat-

ment facilities is generally a solution. An option for cooperation is to opt for a joint

managing authority in charge of maximizing the total profit. This profit is redistributed

to the two providers according to a predetermined contract that underpinned the creation

of the joint managing authority. This presumes that an outcome of cooperation is an

amount of money and that side payments are possible between the most profitable and

the least profitable network. In another option for cooperation, each provider contributes

to common expenses provided that he gets access to a certain volume of water he makes

profitable in his way. The presence of a state agency is sometimes necessary to avoid

collusion or side payments that would result in a minimum service offer to the least prof-

itable municipality. Instead of a centralized management based on the common profit as

in the first option, any binding agreement between the two suppliers in the second option

is directly made on how to share, between the two networks, the volume of water avail-

able. The stability of such water quota agreements depends on the unit profitability of the

water supply in each of the two networks, and the two characteristics can be of any type,

there by departing from Aumann’s transferable utility conditions. Still in this example,

it is worth mentioning that the profitability level of each of the two networks actually

depends on whether the cooperation is implemented or not. To better understand the

model we are describing, the following few examples perfectly illustrate the life situations

that relate to the model we formalize in this chapter.

Example 2.1.1 (Abroad joint venture). Two businessmen 1 and 2 are operating from

two distinct countries C1 and C2 respectively. The two businessmen are investigating a

possible joint venture in a third country C. The possibilities open to the two businessmen

is summarized in terms of a cooperative game, where the two players can act separately
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or form a coalition, as follows:

Country C1 C2 C

Coalition S {1} {2} {1, 2}
Worth v (S) 100 200 330

Utility rate 0.94 0.88 0.85; 0.82

When player 1 is operating in C1, the rate of income tax for national investment in C1

is 6%; the corresponding utility rate is 0.94; that is, a worth of one unit produced in C1

finally gives 0.94 units of utility to player 1. In case of a joint venture, the rate of income

tax applicable for investment abroad by player 1 is 15% (this includes taxes in both C1 and

C); the corresponding utility rate is 0.85: each benefit unit in country C finally represents

to player 1 a utility of 0.85. A similar reasoning applies to player 2. The question is,

what would be the share of each player in case of a joint venture?

To see the contrast with the classical monotonicity condition of utility functions, note

that in the case of cooperation in the previous example, a share of 21 for player 2 yields

less utility than the worth of 20 realized by player 2 when he acts alone. The reason is

that, the utility enjoyed by a player now depends on both the coalition formed and the

share received. For example, the utility function u1 of player 1 is the function defined by

u1 (S, x) = 0.94x if S = {1} ; and u1 (S, x) = 0.85x if S = {1, 2} . (2.1)

Similarly, the utility function u2 of Firm 2 when it receives a share x and joint a coalition

S is as follows:

u2 (S, x) = 0.88x if S = {2} ; and u2 (S, x) = 0.82x if S = {1, 2} . (2.2)

It is worth noting that, for a given coalition S, the utility of each player in S is a non

decreasing function of his share of the collective worth of S.

The next example now deals with individuals externalities when investment return

rates are brought into consideration for water supply in two neighboring municipalities.

Example 2.1.2 (Water providers). Consider two water providers 1 and 2 in two

neighboring towns. Each provider has some specific geographical constraints that impact

on the profit per unit of its water supply offer. A joint water tower will improve on the
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volume of water available for the two municipalities, but will also impact on the profit per

unit in both municipalities. The situation is the following:

Coalition S {1} {2} {1, 2}
Volume of water v (S) 100 140 300

(profit per unit, fix costs) (1.2; 10) (1.5; 8) (1.1; 7) ; (1.2; 5)

when each provider builds a water tower for his/her own, the profit per unit for providers

1 and 2 are 1.2 and 1.5 respectively; together with a fix cost of 10 for 1 and 8 for 2. With

a common water tower located at a boundary area of the two towns, the profit per unit for

providers 1 and 2 are now 1.1 and 1.2 respectively; together with a fix cost of 7 for 1 and

5 for 2. The question is, in the case of a common water tower, which quantity of water

would be allocated to each provider?

It should be noted that, even in the case of cooperation, each water provider wishes

to manage its own network and to retain the resulting profit. This is for example the

case when one assumes that the two water providers have already agreed on a method of

sharing vector the cost of the common water tower; such methods have been investigated

in Suzuki and Nakayama (1976) or Young et al. (1982); see also Kruś and Bronisz (2000)

for a multicriteria analysis of the case of multiple goods.

Note that in Example 2.1.2, the utility function ui of provider i = 1, 2 when he receives

a share x, is as follows:

u1 (S, x) = 1.2x− 10 if S = {1} ; and u1 (S, x) = 1.1x− 7 if S = {1, 2} (2.3)

u2 (S, x) = 1.5x− 8 if S = {2} ; and u2 (S, x) = 1.2x− 5 if S = {1, 2} . (2.4)

In case of cooperation, an amount x of the collective worth represents x′ = 1.1x − 7

amount of utility for provider 1 and x′′ = 1.2x − 5 amount of utility for provider 2. It

appears that the two providers value differently the same share of the collective worth.

Example 2.1.3 (One sales unit - n production units). Consider n production

units 1, 2, ..., n that supply a certain sales unit. Each production unit has the equipment

that enables it to produce certain goods, each in a limited quantity and with a certain level

of profitability. A coalition S of production units can be formed to supply up to a quantity

v(S) of the goods of type TS that can be absorbed by the sales unit. In this case, the
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members of S simply have to agree on the maximum quantity of the goods of type TS that

each partner in S should produce. Furthermore, a production unit i in S can produce at

most a quantity qS,i of TS type of goods with a profitability of pi,S per unit. Clearly, what

each production unit gains depends on its coalition and its share of the maximum quantity

of goods to be supplied. Due to this production limitation, the utility ui(S, q) associated

with a production unit i when it is allowed a maximum quantity q of TS type of goods as

a member of a coalition S is given by:

ui(S, q) = min(q, qS,i)pS,i. (2.5)

Note that, a utility function of a player in this game is no longer a linear function of his

share.

In each of the examples above, analyzing cooperation in the corresponding games is no

longer possible under the TU-game model; see Aumann (1960) on utility transferability:

with at least three players, only linear utility functions with the same slope guarantee the

transferability of utilities. The utility function of a player, say i, is now a function with

several arguments that possibly include the coalition that i joins. Even in the case of

linear utility functions, the slope of the function on the same item may change from one

player to another. A formal presentation of such games is the subject of the next section.

2.1.2 The model

To give a formal presentation of the games considered here, we denote by Pi (N) the set

of all coalitions that contain a given player i; that is

Pi (N) = {S ⊆ N : i ∈ S} .

Definition 2.1.1. A function f : R −→ R is:

• nondecreasing if for all q, q′ ∈ R, q′ ≥ q =⇒ f (q′) ≥ f (q) ;

• increasing if for all q, q′ ∈ R, q′ > q ⇐⇒ f (q′) > f (q) .

Definition 2.1.2. A cooperative game with local utilities functions(LUF-game) is

a triple
(
N, v, u = (ui)i∈N

)
such that v : P (N) −→ R with v (∅) = 0; and for each

i ∈ N , ui : Pi (N) × R −→ R is a nondecreasing function with respect to its second

argument; that is for all S ∈ Pi (N), ui,S : q 7−→ ui (S, q) is nondecreasing.
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Given a LUF-game (N, v, u), the characteristic function v can be seen as the (coali-

tional) production function; and given i ∈ N , ui is the utility function of player i. Note

that the worth of a coalition or the share of a player in a LUF-game may be an amount

of money as in Example 2.1.1; or an amount of a certain good as in Example 2.1.2 or

Example 2.1.3. Furthermore, distinct coalitions may produce distinct goods. This is the

case in Example 2.1.3 where the members of a coalition S produce TS type of goods. The

possibility of several commodities was also considered by Aumann (1960) who assumes

that there exists a set of possible coalitional outcomes of the game before side payments

are made. It appears from the conclusion by the author that, a transferable utility game

(TU-game) with at least three players and a single commodity (when a coalition is formed,

its worth is an amount of a given commodity) can be seen as a LUF-game (N, v, u) where

for some real number a > 0 and for some collection b = (bi)i∈N of real numbers,

for all q ∈ R, ui (S, q) = aq + bi for all S ∈ Pi (N) and for all i ∈ N. (2.6)

In this case, players all have linear utility functions that all have the same rate and

do not depend on the coalition in consideration. It clearly appears that the class of

LUF-games constitutes a generalization of the class of TU-games. From now on,

Definition 2.1.3. A TU-game is a LUF-game (N, v, u) such that for some real number

a > 0 and for some collection b = (bi)i∈N of real numbers, ui (S, q) = aq+ bi for all i ∈ N ,

for all S ∈ Pi (N) and for all q ∈ R.

In a LUF-game, the utility of a player depends on the coalition he finally belongs to;

that is ui (S, q) is the utility of player i provided that i joins S and is given a share q of

the collective worth v(S) achieved by the members of S. Clearly, the same share (even

with only one commodity) may now provides to i distinct utilities from a coalition to

another. To allow utility comparability by each player on distinct commodities or from

distinct coalitions, we assume that each player is able to measure his utility on any of his

share using monetary units. In Example 2.1.2, the utility function of a water provider,

his benefit, changes from a coalition to another; but the benefit is measured in each case

using the same monetary unit.

As already described above, one can obviously observe that Examples 2.1.1 and 2.1.2

are supported by LUF-games rather by the classical TU-games. In Example 2.1.1, the set
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of players is N = {1, 2}, the coalitional production function is defined by

v(∅) = 0, v({1}) = 10, v({2}) = 20 and v({1, 2}) = 35. (2.7)

and the utility functions of the two players are defined by Equations (2.1) and (2.2). This

can be summarized as follows

S {1} {2} {1, 2}
v (S) 100 200 330

(ui (S, q))i∈S 0.94q 0.88q 0.85q; 0.82q

(2.8)

Similarly, the game of Example 2.1.2 can be represented as follows:

S {1} {2} {1, 2}
v (S) 100 140 300

(ui (S, q))i∈S 1.2q − 10 1.5q − 8 1.1q − 7; 1.2q − 5

(2.9)

Finally the situation in Example 2.1.3 is formalized as a LUF-game (N, v, u) such that

N = {1, 2, ..., n}; for all coalition S and given i ∈ S,

v (S) =
∑
i∈S

qS,i and ui(S, q) = min(q, qS,i)× pS,i for all q ∈ R

Remark 2.1.1. In a LUF-game, note that the share received by a player while

joining a coalition may be an amount of money (see Example 2.1.1) or not (see

Example 2.1.2).

Now depending on the type of utility functions, one may defined subclasses of LUF-

games.

Definition 2.1.4. A LUF-game with local fixed-term externalities is any LUF-

game (N, v, u) such that for all i ∈ N ,

ui (S, q) = q + bi (S)

for some local constants (depending of the cooperation of player i) bi (S) ∈ R.

In this case, bi (S) is the utility fixed-term of i in S.

In a LUF-game with local fixed term-externalities, the utility of a player in a coalition

is obtained by shifting his/her share by a given local constant.
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Definition 2.1.5. A LUF-game with local fixed-rate externalities is any LUF-game

(N, v, u) such that for all i ∈ N ,

ui (S, q) = ai (S) q

for some local non negative constants (depending of the cooperation of player i)

ai (S).

In this case, ai (S) is the utility fixed-rate of i in S.

In a LUF-game with local fixed-rate externalities, the utility of a player in a coalition

is the product of his/her share by a local constant rate.

Definition 2.1.6. A LUF-game (N, v, u) is linear (in utilities) if for all coalitions S

and for all players i ∈ S there exists some real numbers ai,S > 0 and bi,S such that

ui(S, q) = ai,Sq + bi,S. (2.10)

In this case, a = (ai,S)S∈2N ,i∈S and b = (bi,S)S∈2N ,i∈S will be called the gradient collection

and the fixed-term collection respectively.

We also say that (N, v, u) is a LUF-game with local uniform externalities, the utility

of a player in a coalition is an affine transformation of his/her share by combining an

utility fixed-rate with an utility fixed-term. Therefore when the collection gradient are

all positives reals numbers we call it the positive gradient collection.

Definition 2.1.7. A regular LUF-game is any LUF-game (N, v, u) such that for all

i ∈ N , there exists an increasing function µi from R to R and

ui (S, q) = µi(q) for all S ∈ Pi (N) .

Note that the word "regular" only refers to the fact that each player has a unique

utility function which is increasing and does not change from one coalition to another.

Definition 2.1.8. A LUF-game (N, v, u) is consistent if for all i ∈ N , ui is increas-

ing function with respect to its second argument.

When a LUF-game is consistent, a larger share of the worth of a coalition to a player

provides him/her a better utility.
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As in TU-games, two questions arise given a LUF-game: which coalition would emerge?

In case of cooperation, what would be the share of each player? In this paper, we assume

that players form the grand coalition and propose two notions of core concepts. Each of

the two cores corresponds to a set of sharing vector that satisfy the stand-alone test: no

coalition exists such that its members have incentive to form their own coalition.

2.2 Core solution for LUF-games and characterization

As with TU-games, we provide here a core concept for LUF-games. The main idea

consists in redefining a stand alone test that captures players preferences as modeled by

the collection of individual utility functions.

2.2.1 Classical core on LUF-games

From now on, we assume that:

(CL1) players agree to form the grand coalition (the coalition structure is {N});

(CL2) goods are infinitely divisible;

(CL3) players are rational.

Under these hypothesis, the problem which remains to be solved is therefore that of

sharing the payoff of the grand coalition. It is natural to think that the members of each

coalition S cannot accept a sharing vector if they have an incentive to stand alone once

S is formed. This is the main idea of the following notion of dominance between sharing

vector in LUF-games.

Definition 2.2.1. Given a LUF-game (N, v, u) and a coalition S, an S-sharing vector

is any collection x = (xi)i∈S of real numbers that sum to v (S); that is x (S) = v (S).

The set of all S-sharing vectors in the game (N, v, u) will be denoted by χ (S, v). In

particular, an N -sharing vector will be called a sharing vector for short.
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Definition 2.2.2. Let (N, v, u) be a LUF-game and x ∈ χ (N, v).

The payoff vector x is dominated if there exists a coalition S and a s-tuple y ∈
χ (S, v) such that:

(a) ui (S, yi) > ui (N, xi) for all i ∈ S;

(b) y (S) ≤ v (S).

In this case, we say that x is dominated by y via S; or that (S, y) is an objection

on x via S or say simply that x is unstable.

Firstly, condition (a) in Definition 2.2.2 is the requirement that each player i in the

objecting coalition S expects in S a share yi that provides much more utility than what is

available in xi: this is the incentive condition. Secondly, condition (b) expresses the fact

that, the total amount y (S) of claims should not exceed the worth v (S) of the objecting

coalition S: this is the feasibility condition. Being dominated dismisses the corresponding

sharing vector agreement from being a (one-shot) stable outcome of a LUF-game when

collective rationality is the sole basis of stability: in case of domination, the members

of an objecting coalition would reject the proposal since they may find their respective

utilities improved when they appropriately reorganize themselves.

Example 2.2.1. Let (N, v, u) be the LUF-game in Equation (2.8). Consider the pro-

portional sharing vector vector x = (110, 220). The share x1 = 110 of player 1 represents

a total utility of u1(N, 110) = 110 ∗ 0.88 = 93.5. However, player 1 can stay alone to

produce 100 with a total utility of u1({1}, 100) = 100 ∗ 0.94 = 94. Thus player 1 is bet-

ter off by operating alone. The proportional sharing vector x is therefore dominated via

({1}, 100).

Note that the existence of an objection to a sharing vector implies that some players are

better off by disrupting the grand coalition to form a coalition and share the corresponding

worth in an appropriate way. When the stand alone test is the minimal requirement, such

a sharing vector is discarded as a possible outcome of the a LUF-game.

Definition 2.2.3. Let (N, v, u) be a LUF-game.

The core of the game (N, v, u) is the set CL (N, v, u) of all stable (undominated)

sharing vectors.
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in other words:

CL (N, v) = {x ∈ χ (N, v) : x stable } . (2.11)

The LUF-game (N, v, u) is stable if CL (N, v, u) is non-empty.

Example 2.2.2. Let (N, v, u) be the LUF-game at (2.8). Consider a sharing vec-

tor x. An objection ({1} , y1) by player 1 on x holds if y1 = 100 and u1 ({1} , y1) =

u1 ({1} , 100) = 100 × 0.94 > u1 ({1, 2} , x1) = 0.85x1. Therefore, no objection on x by

player 1 exists if and only if 0.85x1 ≥ 94. Similarly, no objection on x by player 2 exists

if and only if 0.82x2 ≥ 176. Thus

CL (N, v, u) =

{
x ∈ R2 : x1 + x2 = 330, x1 ≥

94

0.85
, x2 ≥

176

0.82

}
=

{
(q, 330− q) :

94

0.85
≤ q ≤ 94.6

0.82

}
.

Besides, when we replace the collection of utility functions u by any other collection u′

of utility functions that satisfy Equation (2.6), the corresponding Gillies core C (N, v) is

given by

C (N, v) =
{
x ∈ R2 : x1 + x2 = 330, x1 ≥ 100, x2 ≥ 200

}
= {(q, 330− q) : 100 ≤ q ≤ 130}

Note that for the current game, CL (N, v, u) is a proper subset of C (N, v). Both C (N, v)

and CL (N, v, u) are sketched in Figure 2.2.1 to highlight the impact of utility functions

on the shape of the core:

x1

x2

Ω(90, 190)

x1 + x2 = 330

CL (N, v, u)

C(N, v)

Figure 2.1: Core of the LUF-game at Equation (2.8) and the corresponding

Gillies core

Remember that we assume in this section that the grand coalition is formed. A set-

valued solution for LUF-games is any mapping S that associates each LUF-game (N, v, u)
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with a subset S(N, v, u) of the χ(N, v). The set S(N, v, u) is the set of possible outcomes

in the game (N, v, u) with respect to the solution concept S. A minimum requirement

for a desirable solution concept is the Pareto principle: if from a sharing vector x to

another sharing vector y, all players are better off, then the Pareto principle stipulates

that x should not be selected. We rephrase the Pareto principle in the current setting of

LUF-games as follows:

Definition 2.2.4. Given a LUF-game (N, v, u), a sharing vector x is Pareto dom-

inated if for some sharing vector y, ui (N, yi) > ui (N, xi) for all i ∈ N .

A solution concept S for LUF-games is Pareto efficient if S(N, v, u) contains a

Pareto dominated sharing vector for no LUF-game (N, v, u).

Clearly, the core of LUF-game is Pareto efficient. To go beyond the Pareto principle,

note that in a LUF-game, a player may be indifferent on two distinct shares. To see this,

consider the following example:

Example 2.2.3. Let (N, v, u) be the two-player game defined as follows:

S {1} {2} {1, 2}
v (S) 8 15 11

(ui (S, q))i∈S min (q, 5) min (q, 20) (2 min (q, 4) ; 3 min (q, 10))

The intuition behind this LUF-game comes from Example 2.1.3 with one sales unit

and two production units 1 and 2, the players. We rephrase it as follows: player i

masters a certain technology to produce goods of type Ti. The market can absorb up

to 8 units of T1 type of goods; but player 1 can produce only up to 5 units of this

good with a benefit per unit of 1. The market can absorb only 15 units of T2 type of

goods although player 2 can produce up to 20 units of this good. By cooperating, the

two players benefit from the experience of each other to produce each an advanced

design good of type T12. The market can absorb up to 11 units of T12 goods. For the

good of type T12, the production ability of player 1 is 4 units at most with a benefit

per unit of 2 while player 2 is able to produce up to 7 units with a benefit per unit

of 3. In case of cooperation, player 1 can produce at most 4 units of goods of type

T12. Thus, any share of more than 4 units provides as much utility as a share of 4

units. Thus instead of a share of 4 + ε with ε > 0 to player 1, it is optimal to give

player 1 only 4 units and reallocate the surplus of ε to player 2.
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The previous illustration leads us to the following refinements of the core. The next

definition gives a notion of a weak domination relation for LUF-games.

Definition 2.2.5. Let (N, v, u) be a LUF-game and x ∈ χ (N, v).

The sharing vector vector x is weakly dominated if there exists a coalition S and a

s-tuple y ∈ χ (S, v) such that:

(i) ui (S, yi) ≥ ui (N, xi) for all i ∈ S; and ui (S, yi) > ui (N, xi) for some i ∈ S;

(ii) y (S) ≤ v (S).

In this case, we say that x is weakly dominated by y via S, or that (S, y) is a weak objection

on x via S or simply that x is weakly unstable.

The weak dominance relation is obtained by weakening only the incentive condition

(i) in Definition 2.2.2: the utility of each member of the objecting coalition should not

be altered from x to y; and y should provide a better utility for some of those players as

compared to what they receive in x.

Definition 2.2.6. Let (N, v, u) be a LUF-game.

The strong core of the game (N, v, u) is the set CLs (N, v, u) of all sharing vector

that are weakly dominated by no sharing vector vector,

that is:

CLs (N, v) = {x ∈ χ (N, v) : x strongly stable } . (2.12)

The LUF-game (N, v, u) is strongly stable if CLs (N, v, u) is non-empty.

A sharing vector that is weakly Pareto-dominated is sub-optimal since some players

can be better off without any adverse effect on other players.

Clearly, a sharing vector that is weakly Pareto dominated is suboptimal since some

players can be better off without any adverse effect on other players. The strong core is

thus a natural refinement of the core. It is obvious that the strong core CLs (N, v, u) of a

LUF-game (N, v, u) is a subset of the core C (N, v, u); but CLs (N, v, u) may differ from

CL (N, v, u) as shown below.

Proposition 2.2.1. For all LUF-game (N, v, u), CLs (N, v, u) ⊆ CL (N, v, u); and

the inclusion is strict for some LUF-games.
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Proof.
Firstly, consider x ∈ χ (N, v) if x is dominated, then there exists a coalition S

and a s-tuple y ∈ χ (S, v) satisfy items (a) and (b) in Definition 2.2.2. Thus there

exists then there exists a coalition S and a s-tuple y ∈ χ (S, v) satisfy items (a) and

(b) in Definition 2.2.5. By contraposition, it follows that: if x is strongly stable, then

x is stable. Secondly, consider the sharing vector x = (5, 6) in the LUF-game given

in Example 2.2.3. The utility of player 1 is u1({1, 2}, x1) = 2 min (x1, 4) = 8. Since

the maximum amount that player 1 can achieve by opting out is at must equal to 5,

there is no objection of player 1 on x. Similarly, the maximum amount that player 2

can achieve by opting out is 15. Since u2({1, 2}, x2) = 3 min (x2, 9) = 18, there is no

objection of player 2 on x. Hence x is a core sharing vector.

Now, let S = {1, 2} and y = (4, 7). It can be checked that y weakly dominates x

via N . Thus x is not a strong core selection. This proofs that the strong core of this

game is a proper subset of its core.

Taking into account the possibility of indifference in comparing distinct shares by some

players, we consider the following refinement of the Pareto principle:

Definition 2.2.7. Given a LUF-game (N, v, u):

• A sharing vector x is weakly Pareto dominated if for some sharing vector y, ui (N, yi) ≥
ui (N, xi) for all i ∈ N and ui (N, yi) > ui (N, xi) for some i ∈ N .

• A solution concept S for LUF-game is strongly Pareto efficient if S(N, v, u) never

contains a weakly Pareto dominated sharing vector for every LUF-game (N, v, u).

By definition, any strongly Pareto efficient solution concept for LUF-games is also

Pareto efficient.

Proposition 2.2.2. The core of any LUF-game is Pareto efficient; but not strongly

Pareto efficient.

Proof.
The core of LUF-game is Pareto efficient by its definition, see Definitions 2.2.2

and 2.2.3. Now, consider the LUF-game presented in Example 2.2.3. In the proof

of Proposition 2.2.1, it has been shown that x = (5, 6) is a core sharing vector and

is weakly dominated by y = (4, 7). Therefore the core of LUF-games is not Paretro

efficient.
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Proposition 2.2.3. The strong core of LUF-games is strongly Pareto efficient.

The proof is obvious and is therefore omitted. For LUF-games in general, the core and

the strong core differ on some LUF-games. However, it is shown in the next proposition

that the two core concepts coincide on each regular LUF-game (N, v, u).

Proposition 2.2.4. If a LUF-game (N, v, u) is regular, then CLs (N, v, u) = CL (N, v, u) =

C(N, v).

Proof.
Consider a constant LUF-game (N, v, u). We show that C(N, v) ⊆ CLs (N, v, u)

and CL (N, v, u) ⊆ C(N, v). By definition of a regular LUF-game, there exists a col-

lection (µi)i∈N of increasing utility functions which satisfy (2.1.7). Consider a sharing

vector x /∈ C(N, v). Then by the definition of C(N, v), x is not collectively rational.

Thus there exists a coalition S such that x(S) < v(S). Let ε = v(S)−x(S)
|S| > 0 and pose

yi = xi + ε for all i ∈ S. It follows that y(S) = v(S) and ui(S, yi) = µi(yi) > µi(xi) =

ui(N, xi). Therefore (S, y) is an objection on x via S. Thus x /∈ CL(N, v, u). This

proves that CL (N, v, u) ⊆ C(N, v).

Now, consider a sharing vector x /∈ CLs (N, v, u). Then by the definition of

CLs (N, v, u), there exists a coalition S and S-sharing vector y such that ui(S, yi) ≥
ui(N, xi) for all i ∈ S and ui(S, yi) = ui(N, xi) for some i ∈ S. By item (a) in Defi-

nition 2.2.5, let j be a player in S such that uj(S, yj) = µj(yj) > ui(N, xj) = µj(xj).

Since, µj is an increasing function, we deduce that yj > xj. Pose ε =
yj−xj
|S| > 0

and pose zi = yi + ε for all i ∈ S. It follows that z(S) = v(S) and zi > xi for all

i ∈ S. Therefore (S, z) is an objection on x via S. Thus x /∈ C(N, v). This proves that

C (N, v) ⊆ CLs (N, v, u). The results follows since the strong core is a subset of the

core.

Corollary 2.2.1. For any TU-game (N, v, u) in the sense of (2.6), CLs (N, v, u) =

CL (N, v, u) = CLs(N, v).

Proof.
The result holds from Proposition 2.2.4 since any TU-game (N, v, u) in the sense

of Equation 2.6 is a regular LUF-game.
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Corollary 2.2.1 shows that the core and the strong core of LUF-games are both exten-

sions of the core of TU-games. Furthermore, the core (or the strong core) of a LUF-game

may differ from the core of the associated TU-game only if the utility of some players on

a given share depends on the coalition in consideration; or the preference relation of some

player admits indifference (distinct shares provide the same amount of utility).

The coincidence between the core and the strong core is mainly due to the properties

of utility functions. In the case of regular LUF-games, utility functions depend only on the

share of each player; and not on the coalition a player joins. This can be seen as an inter-

coalition regularity. One can also think about other types on regularity such as topological

regularities. For example, one may require each utility function to be continuous: each

player compares his shares in a smooth way, without any jump1

In the proposition below, it is shown that the continuity is sufficient condition for the

coincidence between the core and the strong core of LUF-games when utility functions

are increasing.

Proposition 2.2.5. Let (N, v, u) be any LUF-game. Assume that for all coalitions

S and for each player i ∈ S, the function ui (S, ·) is continuous and increasing on R.

Then a sharing vector x is dominated if and only if x is weakly dominated; that

is CLs (N, v, u) = CL (N, v, u).

Proof.
Consider a LUF-game (N, v, u) and a sharing vector x. Assume that for all

coalitions S and for each player i ∈ S, the function ui (S, ·) is continuous on R.

Sufficiency. Assume that x is dominated. Then x is, by definition, weakly domi-

nated via S.

Necessity. Assume that x is weakly dominated. Then there exists an objection

(S, y) on x such that:

(i) ui (S, yi) ≥ ui (N, xi) for all i ∈ S; and ui (S, yi) > ui (N, xi) for some i ∈ S;

(ii) y (S) ≤ v (S).

First note that if S is a singleton, then (S, y) is an objection on x; and x is domi-

nated. Now suppose that S contains at least two players. Let j be a player in S such
1More formally, a function f from R→ R is continuous if for each a ∈ R and for any variation ε > 0 of

f(a), there exists a small variation α > 0 of a such that for all q ∈ R, |q − a| < α =⇒ |f(q)− f(a)| < ε.
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that uj (S, yj) > uj (N, xj). Since uj (S, yj)− uj (N, xj) > 0 and uj (S, ·) is continuous,

then for the variation ε = uj (S, yj) − uj (N, xj) > 0 of uj (S, yj), there exists a small

variation α > 0 of yj such that for all q ∈ R :

|q − yj| < α =⇒ |uj (S, q)− uj (S, yj) | < ε.

Let q be any share of v(S) such that |q−yj| < α. We have |uj (S, q)−uj (S, yj) | < ε.

Since ε = uj (S, yj)−uj (N, xj), we deduce that −ε = uj (N, xj)−uj (S, yj) < uj (S, q)−
uj (S, yj). Hence uj (N, xj) < uj (S, q). Define the S-sharing vector z by

zi =


yi + α

2|S\{j}| if i ∈ S\{j}

yj − α
2

if i = j

Note that |zj − yj| < α. Thus uj (N, zj) < uj (S, xj) as shown above. Moreover,

for each player i ∈ S\{j}, zi > yi. Since utility functions are increasing, ui(S, zi) >

ui(S, yi) ≥ ui(S, xi). Hence ui(S, zi) > ui(S, xi). Finally and by construction, z satisfies

z(S) = y (S) ≤ v (S) . In summary, (S, z) is an objection on x and x is dominated.

Beside continuity, it is also required in Proposition 2.2.5 that individual utility func-

tions should also be increasing. For example, utility functions in the LUF-game presented

in Example 2.2.3 are continuous; but not increasing. Therefore one can not drop in

Proposition 2.2.5 the monotonicity condition.

2.2.2 Characterization of core elements for LUF-games

The lower transition correspondence and strong core

Consider a LUF-game (N, v, u) and a sharing vector x on (N, v, u). Given a coalition S,

the question is whether the members of S can be better off by opting out from the grand

coalition. To this end, each member of S examines what would be his minimum share of

the worth v (S) that guarantees at least as much utility as the current share xi of v (N).

The answer is given by a set-valued map denoted by LTi,S and defined as follows:

LTi,S (q) = {Q ∈ R : ui (S,Q) ≥ ui (N, q)} . (2.13)

The set LTi,S(q) will be called the lower transition set of q as the share q of v(N) provides

to player i at most as much utility as any share Q ∈ LTi,S(q) received by i when S is
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formed. Note that for the sharing vector x, any share Q of v(S) which is out of LTi,S(xi)

provides to player i less utility than the share xi of v(N). Since each player is assumed

to be rational, player i will never accept to leave the grand coalition when he is offered a

share Q of v(S) which is out of LTi,S(xi). For the stability of the sharing vector x, the

collection LTi,S(xi), i ∈ S plays the role of a control test to check the feasibility of any

weak objection via S in a sense which will be made clearer later. But before, we introduce

the following definition:

Definition 2.2.8. Let (N, v, u) be a LUF-game, S a coalition and i a player in S.

• The lower transition correspondence of player i from N to S is the map LTi,S

defined by (2.13).

• The lower transition function of player i from N to S is the map ui,S defined for all

q ∈ R by

ui,S (q) =


inf (LTi,S (q)) if LTi,S (q) 6= ∅

+∞ otherwise

In case ui,S (q) is finite, it is called the lower compensation share of q when player

i opts out from N to S.

Note that LTi,S (q) is the set of all shares Q of the worth of S that provides to player i

as much utility as the share q of v (N). Moreover, when ui,S (q) = +∞, LTi,S (q) = ∅. In
this case, no share received by i in S compensates the utility provided to i by the share q

of v (N). This occurs when the line of q 7−→ ui(N, q) is above the curve of Q 7−→ ui(S,Q).

When ui,S (q) is finite, LTi,S (q) 6= ∅; and ui,S (q) is the smallest share of v(S) such that

any greater share of v(S) provides at least as much utility to player i as the share q of

v(N). Note that it is still possible that ui (S, ui,S(q)) < ui(N, q) when the utility function

ui(S, ·) is discontinuous for example. One may also have ui,S (q) = −∞. In this later case,

the curve of Q 7−→ ui(S,Q) is above the line q 7−→ ui(N, q): the share q of v(N) provides

to player i at most as much utility as any share of the worth v(S) of coalition S.

When ui,S(q) is finite, it is worth mentioning that ui(S, ui,S(q) + ε) ≥ ui(N, q) for any

small variation ε > 0. The word "compensation" in Definition 2.2.8 only refers to the fact

that ui,S(q) is a threshold up to which a greater share of v(S) provides to player i at least
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at most utility as the share q of v(N). We say that the lower compensation share ui,S(q)

is exact if ui,S(q) is finite and ui(S, ui,S(q)) = ui(N, q).

Example 2.2.4. In the game of Example 2.1.2 formalized by Equation (2.9), the

utility function u1 of player 1 is defined by

u1 (S, x) = 1.2x− 10 if S = {1} ; and u1 (S, x) = 1.1x− 7 if S = {1, 2} .

Suppose that the grand coalition is formed and that 1 receives x1 = q. Thus the

lower transition correspondence of 1 from N to coalition S = {1} is such that

UT1,S (q) = {q′ ∈ R : 1.2q′ − 10 ≥ 1.1q − 7} =

{
q′ ∈ R : q′ ≥ 11

12
q +

10

4

}
Therefore the associated lower transition function is given by u1,S (q) = 11

12
q + 25

6
. In

other words, from {1, 2} to {1}, the {1}-correspondent of q is 11
12
q + 10

4
: in terms of

utility for player 1, a share q of v(N) corresponds to the share 11
12
q + 10

4
of v({1}).

Example 2.2.5. In the game of Example 2.2.3, the utility function u1 of player 1 is

defined by

u1 (S, q) = min(q, 5) if S = {1} ; and u1 (S, q) = 2 min(q, 4) if S = {1, 2} .

The lower transition correspondence of 1 from N to coalition S = {1} is such that

LT1,S (q) = {Q ∈ R : min(Q, 5) ≥ 2 min(q, 4)}

Therefore the associated strong transition function is such that u1,S (q) = 2q if q ≤ 5
2
;

and u1,S (q) = +∞ otherwise. As illustrated in Figure 2.2.2, for q ≤ 5
2
, the utility

of player 1 is 2q and the horizontal line u = 2 min(q, 4) = 2q intercepts the curve of

u = min(Q, 5) at a point which locates, for player 1, the compensation share of q. However,

for q > 5
2
, 2 min(q, 4) > 5. The horizontal line u = 2 min(q, 4) is now above the curve

of u = min(Q, 5) and no longer intercept it. In this later case, UTi,{1}(q) = ∅ and

ui,{1}(q) = +∞: player 1 has no incentive to opt out from the grand coalition.

Recall that in a TU-game seen as a LUF-game, the utility function ui of player i in

each coalition S ∈ Pi (N) is such that ui (q) = aq + b for some constant a > 0 and b.

Therefore the strong transition function of i is defined by ui,S (q) = q. Thus, the utility

function and the strong transition function coincide for TU-games.
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u1,{1}(b) = +∞

Figure 2.2: Lower compensation shares when player 1 opts out from {1, 2} in

the game of Example 2.2.3

Proposition 2.2.6. Let (N, v, u) be a LUF-game and S a coalition.

1. If x is dominated via S, then
∑

i∈S ui,S (xi) ≤ v (S).

2. If x is weakly dominated via S, then
∑

i∈S ui,S (xi) ≤ v (S).

Proof.
Consider a LUF-game (N, v, u), a sharing vector x and a coalition S.

Assume that x is dominated via S. Then there exists an S-sharing vector y such

that (S, y) is an objection on x. Let i be a player in S. Then ui (S, yi) > ui (N, xi). It

follows by definition of ui,S that yi ∈ LTi,S. Therefore ui,S (xi) ≤ yi. This implies that∑
i∈S

ui,S (xi) ≤ y (S) ≤ v (S) .

The later inequality holds from the fact that (S, y) is an objection on x.

The second item of proposition is proved by using similar arguments to those pre-

sented above.

The previous result shows that when a sharing vector is dominated via a coalition S,

the sum of all compensation shares of the members of S is less than or equal to the worth

of S. Put another way, if a sharing vector x is such that for all coalitions S, the sum
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of all compensation shares of players in S is greater than the worth of S in the game,

then x admits no objection and is therefore a core selection. The next result is a general

characterization of all sharing vectors that are belong to the strong core for a LUF-game.

Lemma 2.2.1. Let (N, v, u) be any LUF-game. Then the two assertions below are

equivalent:

1. A sharing vector x belongs to the strong core of (N, v, u).

2. For all S ∈ 2N , x satisfies

(2-a) for some i ∈ S, ui,S(xi) = +∞; or else

(2-b) for all i ∈ S, ui (N, xi) ≥ ui

(
S, v (S)−∑j∈S\{i} uj,S (xj)

)
2.

Proof.
Sufficiency. Suppose that x satisfies condition (2) for all coalitions S. To prove

that x is in the strong core, suppose the contrary that x is weakly dominated. Then

there exists a weak objection (S, y) on x. By definition, ui (S, yi) ≥ ui (N, xi) for all

i ∈ S and ui (S, yi) > ui (N, xi) for some i ∈ S. It follows that LTi,S(xi) 6= ∅ and

ui,S (xi) ≤ yi for all i ∈ S. Note that in this case, ui,S (xi) < +∞ for all i ∈ S.

Consider j ∈ S such that uj (S, yj) > uj (N, xj). Since y (S) ≤ v (S), then

yj ≤ v (S)−
∑

i∈S\{j}
yi ≤ v (S)−

∑
i∈S\{j}

ui,S (xi) .

The utility function uj(S, ·) is a nondecreasing function. Therefore

uj (S, yj) ≤ uj

S, v (S)−
∑

i∈S\{j}
ui,S (xi)

 ≤ uj (N, xj) < uj (S, yj) .

A contradiction holds. This proves that x belongs to the strong core.

Necessity. Assume that x is in the strong core. Consider a coalition S. To prove

that x satisfies (2-a); or else (2-b), suppose on the contrary that ui,S(xi) < +∞
for all i ∈ S, and that the set S∗ that consists of all j ∈ S such that uj (N, xj) <

uj

(
S, v (S)−∑i∈S\{j} ui,S (xi)

)
is a non-empty subset of S. Note that for each player

2In case uj,S(xj) = −∞ for some j ∈ S\{i}, the quantity v (S)−∑j∈S\{i} uj,S (xj) is set to +∞ and

the condition ui (N, xi) ≥ ui (S,+∞) simply means that ui (N, xi) ≥ ui (S, q) for all q ∈ R.
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j ∈ S∗, there exists some qj ∈ R such that uj(N, xj) < uj(S, qj). Denote by S0 the set

that consists of all k ∈ S such that uk,S(xk) = −∞.

First suppose that S0 is empty. Then for each player i ∈ S, the compensation

share ui,S(xi) is finite. Choose a player j in S∗ and define the S-sharing vector y

by yi = ui,S(xi) if i ∈ S\{j}; and yj = v (S) −∑i∈S\{j} ui,S (xi). It follows that

y(S) = v(S), uj(S, yj) > ui(N, xi) and ui(S, yi) ≥ ui(N, xi) for all i ∈ S. Thus, (S, y)

is a weak objection on x. A contradiction arises since x belongs to the strong core by

assumption.

Now suppose that S0 is a singleton and pose S0 = {k}. Note that for each

player i ∈ S\{k}, the compensation share ui,S(xi) is finite and uk(S, q) ≥ uk(N, xk)

for all q ∈ R. Two cases are possible. Firstly, suppose that uk (N, xk) <

uk

(
S, v (S)−∑i∈S\{k} ui,S (xi)

)
. In this case, define the S-sharing vector y by

yk = v (S) −∑i∈S\{k} ui,S (xi) and yi = ui,S(xi) if i ∈ S\{k}. Clearly, y(S) = v(S),

uk(S, yk) > uk(N, xk) and ui(S, yi) ≥ ui(N, xi) for all i ∈ S\{k}. Thus, (S, y)

is a weak objection on x. A contradiction. Secondly, suppose that uk (N, xk) =

uk

(
S, v (S)−∑i∈S\{k} ui,S (xi)

)
. This implies that k /∈ S∗. Choose j ∈ S∗ and

qj ∈ R such that uj(S, qj) > uj(N, xj). Now define the S-sharing vector y by yj = qj,

yi = ui,S(xi) if i ∈ S\{j, k} and yk = v (S) − qj −
∑

i∈S\{k,j} ui,S (xi). The vector y

satisfies y(S) = v(S), uj(S, yj) > ui(N, xi) and ui(S, yi) ≥ ui(N, xi) for all i ∈ S\{j}.
Thus, (S, y) is a weak objection on x. A contradiction also arises.

Finally, suppose that S0 contains a pair {k, l} of players. Choose j ∈ S∗ and

qj ∈ R such that uj(S, qj) > uj(N, xj). Suppose without lost of generality that j 6= k.

Define the S-sharing vector y by yj = qj, yi = ui,S(xi) if i ∈ S\ (S0 ∪ {j}), yi = 0 if

i ∈ S0\{j, k} and yk = v (S) − qj −
∑

i∈S\{k} ui,S (xi). It follows that y(S) = v(S),

uj(S, yj) > ui(N, xi) and ui(S, yi) ≥ ui(N, xi) for all i ∈ S\{j}. Thus, (S, y) is a weak

objection on x. A contradiction holds.

In each of the three possible cases, a contradiction arises. This proves that x is the

element of strong core.
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Let (N, v, u) be a LUF-game in which all players have increasing utility functions

and only exact lower compensation shares from the grand coalition to any other

coalition S ∈ 2N . Then the two assertions below are equivalent:

1. A sharing vector x belongs to the strong core.

2. For all S ∈ 2N ,
∑

i∈S ui,S (xi) ≥ v (S).

Theorem 2.2.1.

?

Proof.
Consider a LUF-game (N, v, u) in which all players have increasing utility func-

tions and only exact lower compensation shares from the grand coalition to any other

coalition S ∈ 2N .

Sufficiency. Assume that
∑

i∈S ui,S (xi) ≥ v (S) for all S ∈ 2N . Consider a coalition

S and some i0 ∈ S. By assumption on the game, uj,S(xj) is finite for all j ∈ S. Note

that
∑

i∈S ui,S (xi) ≥ v (S) implies ui,S(xi0) ≥ v(S) −∑j∈S\{i0} uj,S (xj). The utility

function of player i is an increasing function. Therefore

ui0

S, v(S)−
∑

j∈S\{i0}
uj,S (xj)

 ≤ ui0(S, ui0,S(xi0)) = ui0(N, xi0).

The last equality holds thanks to the fact that ui0,S(xi0) is an exact lower compensation

share to xi0 . Therefore, x satisfies condition (2) in Lemma 2.2.1. It follows that x is in

the strong core.

Necessity. Assume that x is a strong core selection. Consider a coalition S and

i ∈ S. It follows that x satisfies condition (2) in Lemma 2.2.1. Since for all coalitions

S ∈ 2N and for all j ∈ S, uj,S(xj) is finite, it follows from Lemma 2.2.1 that

ui

S, v(S)−
∑

j∈S\{i}
uj,S (xj)

 ≤ ui(N, xi) = ui(S, ui,S(xi)).

Recalling that ui is an increasing utility function, it holds that v(S) −∑
j∈S\{i} uj,S (xj) ≤ ui(S, ui,S(xi)). Therefore

∑
i∈S ui,S (xi) ≥ v (S).

Condition (2-b) in Lemma 2.2.1, which is better explicit in the Theorem 2.2.1 repre-

sents a kind of coalition rationality. It says that, for any sharing vector in the strong core
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of a LUF-game, each player obtains at most as much utility in the grand coalition as with

any other coalition when each of his partners in the new coalition is compensated even

minimally. Furthermore, under assumptions in Theorem 2.2.1, the strong core is com-

pletely determined by a set of 2n − 1 constraints as the classical core of TU-games; that

is, provided that all players have increasing utility functions and only exact compensation

shares from the grand coalition to any other coalition S ∈ 2N ,

CLs (N, v, u) =

{
x ∈ χ (N, v) :

∑
i∈S

ui,S (xi) ≥ v (S) , ∀S ∈ 2N

}
. (2.14)

As shown in Proposition 2.2.5, the core and the strong core coincide for all LUF-games

in which for all coalitions S and for each player i ∈ S, the function ui (S, ·) is continuous

and increasing. In addition, if all compensation shares are exact, then the core is also

determined by (2.14). However, the characterization of all sharing vectors that are in the

core is more involving for an arbitrary LUF-game. This is addressed in the next section

using further notation.

The upper transition correspondence and core sharing vectors

Given a LUF-game (N, v, u), a coalition S and i ∈ S, we pose

UT i,S (q) = {Q ∈ R : ui (S,Q) ≤ ui (N, q)} . (2.15)

The set UT i,S(q) will be called the upper transition set of q, as the share q of v(N)

provides to player i at least as much utility as any Q ∈ UT i,S(q) received by i when S is

formed. Thus each player has no proper insensitive (or no profit for his own) to leave the

grand coalition and receive a share q of v(S) which is in UT i,S(xi). For the stability of

the sharing vector x, the collection UT i,S(xi), i ∈ S also plays the role of a control test

since no player will not accept less than upper compensation share while opting out from

N to any other coalition. This leads us to the following definition:

Definition 2.2.9. Let (N, v, u) be a LUF-game, S a coalition and i a player in S.

• The upper transition correspondence of player i from N to S is the map UT i,S

defined by Equation 2.15.

• The upper transition function of player i from N to S is the map ui,S defined for
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all q ∈ R by

ui,S (q) =


sup

(
UT i,S (q)

)
if UTi,S (q) 6= ∅

−∞ otherwise

In case ui,S (q) is finite, it is called the upper compensation share of q when player i opts

out from N to S. Furthermore, ui,S (q) is exact if ui,S (q) is finite and ui(S, ui,S (q)) =

ui(N, q).

Similarly to the case of the lower transition set, note that UT i,S (q) is the set of all

shares Q of the worth of S that provides to player i at most as much utility as the share

q of v (N). Moreover, when ui,S (q) = −∞, it holds that UT i,S (q) = ∅. In this case, no

share received by i in S provides to player i less utility than the share q of v (N). This

occurs when the line of q 7−→ ui(N, q) is below the curve of Q 7−→ ui(S,Q). When ui,S (q)

is finite, UT i,S (q) 6= ∅; and ui,S (q) is the greatest share of v(S) such that any smaller

share of v(S) provides at most as much utility to player i as the share q of v(N). It is

also possible that ui,S (q) = +∞. In this later case, the curve of Q 7−→ ui(S,Q) is below

the line q 7−→ ui(N, q): the share q of v(N) provides to player i at least as much utility

as any share of v(S).

Before we continue, the next proposition gives a relationship between the notions of

compensation shares we introduce.

Proposition 2.2.7. Let (N, v, u) be any LUF-game, S a coalition and i ∈ S. Then,

1. for all q ∈ R, ui,S(q) ≤ ui,S(q);

2. if the utility function ui(S, ·) is increasing, ui,S(q) = ui,S(q) for all q ∈ R.

Proof.
Let (N, v, u) be any LUF-game. Consider a coalition S, a player i ∈ S and q ∈ R.

1. To prove that ui,S(q) ≤ ui,S(q), first suppose that ui,S(q) = +∞. Then by

definition, LTi,S(q) = ∅; that is for all Q ∈ R, ui(S,Q) < ui(N, q). Therefore

UT i,S(q) = R and ui,S(q) = +∞. Now suppose that ui,S(q) is finite. To prove

that ui,S(q) ≤ ui,S(q), suppose on the contrary that ui,S(q) > ui,S(q). Then choose

a real number Q such that ui,S(q) > Q > ui,S(q). By the definition of ui,S(q) and
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since Q > ui,S(q), it holds that Q /∈ UT i,S(q). Thus ui(S,Q) > ui(N, q). This

implies that Q ∈ LTi,S(q). Therefore Q ≥ ui,S(q). A contradiction arises due

to the fact that ui,S(q) > Q. This proves that ui,S(q) ≤ ui,S(q). Finally, if

ui,S(q) = −∞, then it is obvious that ui,S(q) ≤ ui,S(q).

2. Assume that the utility function ui(S, ·) is increasing. To prove that ui,S(q) =

ui,S(q), suppose on the contrary that ui,S(q) 6= ui,S(q). Then it follows from the

item part of the present proof that ui,S(q) < ui,S(q). Choose a real number Q0

such that ui,S(q) < Q0 < ui,S(q). Two cases arise. First suppose that ui(S,Q0) ≤
ui(N, q). Then for all Q ∈ LTi,S(q), ui(S,Q0) ≤ ui(N, q) ≤ ui(S,Q). Since

ui(S, ·) is increasing, Q0 ≤ Q for all Q ∈ LTi,S(q). Thus, by the definition of

ui,S(q), it appears that Q ≤ ui,S(q). A contradiction arises. Now, suppose that

ui(S,Q0) > ui(N, q). Then for all Q ∈ UT i,S(q), ui(S,Q0) > ui(N, q) ≥ ui(S,Q).

Since ui(S, ·) is increasing, Q0 > Q for all Q ∈ UT i,S(q). Thus, by the definition

of ui,S(q), it follows that Q ≥ ui,S(q). A contradiction holds. This proves that

ui,S(q) = ui,S(q).

The next result provides a characterization of all sharing vectors that are in the core

of a given LUF-game.

Let (N, v, u) be any LUF-game. Then the two assertions below are equivalent:

a. A sharing vectors x belongs to the core.

b. For all S ∈ 2N , x satisfies

(b-1) for some i ∈ S, ui,S(xi) = +∞; or else

(b-2)
∑

i∈S u
i,S (xi) > v (S); or else

(b-3)
∑

i∈S u
i,S (xi) = v (S) and ui(S, uj,S(xj)) ≤ uj(N, xj) for some j ∈ S.

Theorem 2.2.2.

?

Proof.
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Sufficiency. Suppose that x satisfies the current condition (b) for all coalitions S.

To prove that x is in the core, suppose on the contrary that x is dominated. Then

there exists an objection (S, y) on x. By definition, ui (S, yi) > ui (N, xi) for all i ∈ S.
Given i ∈ S, it follows that for all q ∈ UT i,S(xi), ui(S, q) ≤ ui(N, xi) < ui (S, yi). Since

the utility function u(S, ·) is nondecreasing, it holds that for all q ∈ UT i,S(xi), q < yi.

Therefore ui,S (xi) ≤ yi < +∞ for all i ∈ S and thus
∑

i∈S u
i,S (xi) ≤ y(S) = v(S).

This implies that x does not satisfy (b-1); nor (b-2). Therefore x necessarily satisfies

(b-3). Consider j ∈ S such that ui(S, uj,S(xj)) ≤ uj(N, xj). Recalling that (S, y)

is an objection on x, it follows that ui(S, uj,S(xj)) ≤ uj(N, xj) < uj(S, yj) and thus

uj,S(xj) < yj. In summary, ui,S (xi) ≤ yi for all i ∈ S and uj,S(xj) < yj. This

implies that
∑

i∈S u
i,S (xi) < y(S) = v(S). A contradiction arises since by (b-3),∑

i∈S u
i,S (xi) = v(S).

Necessity. Assume that x ∈ CL (N, v, u) and consider a coalition S. To prove

that x satisfies condition (b), suppose the contrary that this is not the case. Then x

simultaneously satisfies

(c1) for all i ∈ S, ui,S(xi) < +∞; and

(c2)
∑

i∈S u
i,S (xi) ≤ v (S); and

(c3)
∑

i∈S u
i,S (xi) 6= v (S) or ui(S, ui,S(xi)) > ui(N, xi) for all i ∈ S.

Denote by S ′ the set of all i ∈ S such that ui,S(xi) = −∞. Then for all i ∈ S ′,

ui(S, q) > ui(N, xi). Moreover, by (c1), ui,S(xi) is finite for all i ∈ S\S ′. Thus, for each
i ∈ S\S ′, there exists some real number qi such that ui(S, qi) > ui(N, xi). Two possible

cases arise:

Case 1: The set S ′ is not empty. Choose j ∈ S ′ and define the S-sharing vector y

by

yi = qi if i ∈ S\S ′, yj = v(S)−
∑

i∈S\(S′∪{j})
qi and yi = 0 if i ∈ S ′\{j}. (2.16)

By definition of S ′ and qi for i ∈ S\S ′, y is such that y(S) = v(S) and ui(S, yi) >

ui(N, xi) for all i ∈ S. Therefore (S, y) is an objection on x. A contradiction holds.
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Case 2: The set S ′ is empty. Then, by (c1), ui,S(xi) is finite for all i ∈ S. First

suppose that
∑

i∈S u
i,S (xi) /∈ v (S). The by (c2), it follows that

∑
i∈S u

i,S (xi) < v (S).

We define the S-sharing vector y by

yi = ui,S(xi) + ε with ε =
1

|S|

(
v (S)−

∑
i∈S

ui,S (xi)

)
> 0. (2.17)

Let i ∈ S. Then by definition of ui,S (xi) and since yi > ui,S(xi), it comes that

yi /∈ UT i,S(xi) and thus ui(S, yi) > ui(N, xi). Moreover y(S) = v(S). Therefore (S, y)

is an objection on x. A contradiction arises since x belong to the core. Now suppose

that
∑

i∈S u
i,S (xi) = v (S). Then by (c3), ui(S, ui,S(xi)) > ui(N, xi) for all i ∈ S.

Define the S-sharing vector y by yi = ui,S(xi) for all i ∈ S. Clearly, (S, y) is an

objection on x. A contradiction holds.

In both cases, a contradiction arises. This proves that x necessarily satisfies condi-

tion (b).

In Theorem 2.2.2, the stability of a sharing vector x is guaranteed by condition (b)

which consists for each possible coalition S in three steps. At the first step, one should

check whether (b-1) is satisfied or not. If x meets (b-1), the shares for some players in

x provide at least as much utility as any shares they may be offered when S is formed.

Since those players have no incentive to opt out from N to S, no objection via S exists.

If x does not satisfies (b-1), the stability test leads to the second step; that is (b-2). If

this condition is satisfied, the worth v(S) is not enough to simultaneously compensate

all members of S. This makes any objection via S impossible. If condition (b-2) also

fails, then the third and final step to be checked is (b-3). When x satisfies (b-3), the

worth of S is just enough to minimally serve each member of S; even in these conditions,

some players in S are not better off. This discards any possibility for an objection via S.

Instead of a three-stage test, conditions (b1)-(b-3), reduce to a single inequality as soon as

all utility functions in a LUF-game have some minimal properties such as monotonicity.

Corollary 2.2.2. Let (N, v, u) be a LUF-game in which all players have only exact

upper compensation shares from the grand coalition to any other coalition S ∈ 2N .

Then the two following assertions below are equivalent:

1. A sharing vector x belongs to the core CL (N, v, u).
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2. For all S ∈ 2N ,
∑

i∈S u
i,S (xi) ≥ v (S).

Proof.
Consider a LUF-game (N, v, u) in which all players only have exact upper com-

pensation shares from the grand coalition to any other coalition S ∈ 2N .

Sufficiency. Assume that
∑

i∈S u
i,S (xi) ≥ v (S) for all S ∈ 2N and consider a

coalition S. By assumption on the game, x does not meet condition (b-1) in Theo-

rem 2.2.2 since each upper compensation share is finite. It is then sufficient to prove

that x meets (b-2); or else (b-3) in Theorem 2.2.2. Clearly, if
∑

i∈S u
i,S (xi) > v (S),

then x satisfies (b-2). Otherwise
∑

i∈S u
i,S (xi) = v (S) and x satisfies (b-3) since

ui(S, u
i,S(xj)) = ui(N, xi) for all i ∈ S by assumption on the game. In both cases, x

satisfies condition (b) in Theorem 2.2.2. Therefore, x ∈ CL (N, v, u).

Necessity. Assume that x ∈ CL (N, v, u) and consider a coalition S. Then x satisfies

condition (b) in Theorem 2.2.2. Since each upper compensation share ui,S(xi) is finite

for all i ∈ S. Therefore, x does not meet condition (b-1) in Theorem 2.2.2. This implies

that x meets (b-2); or else (b-3). In both cases,
∑

i∈S u
i,S (xi) ≥ v (S).

Provided that all players only have exact upper compensation shares from the grand

coalition to any other coalition S ∈ 2N as stated in Corollary 2.2.2, the core is also

determined by a set of 2n − 1 constraints as the classical core of TU-games; that is,

CL (N, v, u) =

{
x ∈ χ (N, v) :

∑
i∈S

ui,S (xi) ≥ v (S) , ∀S ∈ 2N

}
. (2.18)

It is worth mentioning that in both Equations (2.14) and (2.18), the two characterizations

may involve nonlinear constraints since some compensation shares may be derived from

utility functions of any shape. Whether the core (or the strong core) of a given LUF-

game is empty or not surely depends on the collection of utility functions embedded. This

dependence is illustrated in the next proposition.

Proposition 2.2.8. Consider a coalitional production function v. Then depending

on the collection u = (ui)i∈N of utility functions, the core (or the strong core) may

be empty or not.

Proof.
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Consider a coalitional production function v.

To construct a LUF-game (N, v, u) with a non-empty strong core, pose

M = max{v(S) : S ∈ 2N} and m = min{v(S) : S ∈ 2N}. (2.19)

and define the utility of player i for all coalitions S ∈ 2N and for all q ∈ R by

ui(S, q) = q − m

|S| if S 6= N and ui(N, q) = max(M −m, q). (2.20)

Consider the sharing vector x such that xi = V (N)
n

. It is clear that for all i ∈ N , the lower

compensation share of player i fromN to a coalition S is ui,S(xi) = max(M−m,xi)+ m
|S| .

Therefore, it follows that for all coalitions S and for all i ∈ S, the lower compensation

share ui,S(xi) is finite and

v(S)−∑j∈S\{i} ui,S(xi) ≤ v(S)−∑j∈S\{i}

(
M −m+ m

|S|

)
= v(S)−m− (|S| − 1) (M −m) + m

|S|

≤ v(S)−m+ m
|S| since M −m ≥ 0

(2.21)

Since ui(S, ·) is increasing,

ui

S, v(S)−
∑

j∈S\{i}
ui,S(xi)

 ≤ ui

(
S, v(S)−m+

m

|S|

)
= v(S)−m ≤ ui(N, xi)

(2.22)

By Theorem 2.2.1, the strong core of the game is not empty; and so is also the core by

Proposition 2.2.1.

Now, to construct a LUF-game (N, v, u′) with an empty core, define the utility of

player i for all coalitions S ∈ 2N and for all q ∈ R by

ui(S, q) = q if S 6= N and ui(N, q) = q + v ({i})− 1− v(N)

n
. (2.23)

Let x be any sharing vector. By definition of a sharing vector x(S) = v(N). Therefore,

there exists some player j ∈ N such that xj ≤ v(N)
n

. For player j, uj(N, xj) = v ({j})−1

and uj({j}, v ({j})) = v ({j}). Therefore player j is better off by standing alone. Thus,

x is dominated via S = {i}. This proves that the core of the game (N, v, u′) is empty;

and so is also the strong core by Proposition 2.2.1.
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For a given coalitional production function, the non emptiness of the core (or the strong

core) clearly depends on the collection of the utility functions. The well known Shapley-

Bondareva theorem, by Shapley (1967) and Bondareva (1963), provides necessary and

sufficient conditions for the non-emptiness of the core of a TU-game. In the next section,

we extend this theorem to a class of LUF-games.

2.2.3 Stability conditions of LUF-games

In this section, we consider the class of LUF-games in which utility functions are linear

(See, Definition 2.1.6).

Assume for example that in a LUF-game (N, v, u), players form coalition to produce

a given good. Then in Definition 2.1.6, ai,S can be interpreted as the investment return

rate of player i ∈ S when S is formed; in this case, the constant term bi,S may be seen

as a fixed cost term or a fixed profit term. It can be easily checked that under (2.10),

utility functions are increasing. Moreover, given i ∈ S, upper compensations shares and

lower compensations shares of player i from N to a coalition S coincide, are exact and

are given by:

ui,S(q) =
ai,N
ai,S

q +
bi,N − bi,S

ai,S
= ui,S(q). (2.24)

This leads us to the following results:

Proposition 2.2.9. The core and the strong core of any linear LUF-game coincide.

Proof.
For a linear LUF-game, all utility functions are increasing and continuous. Thus,

the results follows from Proposition 2.2.5.

Proposition 2.2.10. If (N, v, u) is a linear LUF-game with gradient collection a

and fixed-term collection b, then CL(N, v, u) and CLs(N, v, u) coincide with the set of

all solutions x to the following set of 2n − 1 linear constraints:∑
i∈S

ai,N
ai,S

xi ≥ v(S)−
∑
i∈S

bi,N − bi,S
ai,S

for all S ∈ 2N . (2.25)

Proof.
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For any linear LUF-game, all utility functions are increasing and continuous. Fur-

thermore, players have only exact upper compensation shares and exact lower compen-

sation shares from N to any other coalition. Thus, the result follows from Proposition

2.2.5, Theorem 2.2.1 and Corollary 2.2.2.

The notion of balanced collections of coalitions is the sole basis of the Shapley-

Bondareva theorem. We provide here a result using characteristic vectors as in Peleg

and Sudhölter (2007). We give a definition of balanced family to a LUF-game below:

Definition 2.2.10. Given a linear LUF-game (N, v, u) with positive gradient col-

lection a, a family F of subsets of N and a family of nonnegative reals numbers

(δS)S∈2N

A couple (F, (δS)S∈2N) of subsets of N is an a-balanced family if each player j

satisfies the following condition: ∑
S∈F
j∈S

δS
aj,N
aj,S

= 1.

The family (δS)S∈2N is so called a-balancing weights.

Given a linear LUF-game (N, v, u) with positive gradient collection a and fixed-term

collection b, we associate the following linear programming problem which will be called

the primal problem of the game (N, v, u).

(P ) :


minx(N)

subject to
∑
i∈S

ai,N
ai,S

xi ≥ va(S) for all coalitions S ∈ 2N
(2.26)

where

va(S) = v(S)−
∑
i∈S

bi,N − bi,S
ai,S

for all S ∈ 2N . (2.27)

The dual program of (P ) is

(D) :


max

∑
S∈2N δSva(S)

subject to
∑
S∈2N
i∈S

δS
ai,N
ai,S

1S = 1N and δS ≥ 0 for all coalitions S ∈ 2N
(2.28)
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Where for a given coalition S, 1S is the characteristic vector of S denoted by 1S = (1iS)i∈N

and defined such that for all i ∈ N , 1iS = 1 if i ∈ S; and 1iS = 0 otherwise.

A feasible solution to a linear programming problem is any solution to the set of linear

inequalities of that problem. A feasible solution x∗ of (P ) is optimal if p∗ = x(N) takes

the minimum value among all feasible solutions of (P ); while a feasible solution δ∗ of (D)

is optimal if d∗ =
∑

S∈2N δSva(S) takes the maximum value among all feasible solutions

of (D); in this case p∗ and d∗ are the optimal value of (P ) and the optimal value of D

respectively.

Lemma 2.2.2. The primal problem of any linear LUF-game with positive gradient

collection admits an optimal value p∗ = d∗.

Proof.
Consider a linear LUF-game (N, v, u) with gradient collection a and fixed-term

collection b. By the duality theorem, we only need to prove that the primal problem

of the game admits an optimal value. Note that the collections
{
va(S)
|S| : S ∈ 2N

}
and{

ai,N
ai,S

: i ∈ S ∈ 2N
}

are finite. Thus, there exist some coalitions K,L ∈ 2N and some

player j ∈ N such that

va(K)

|K| ≥
va(S)

|S| and
aj,N
aj,L
≤ ai,N
ai,S

for all S ∈ 2N and for all i ∈ S. (2.29)

Define the n-tuple y by

yi =
aj,L
aj,N

va(K)

|K| and for all i ∈ N. (2.30)

Let S be any coalition. Then∑
i∈S

ai,N
ai,S

yi ≥
∑
i∈S

ai,N
ai,L

xi = |S|va(K)

|K| ≥ |S|
va(S)

|S| = va(S). (2.31)

Therefore, y is a feasible solution the dual problem (P ) of the game. To prove that (P )

admits an optimal solution, we only need to prove that for any feasible solution x of

(P ), x(N) greater than or equal to some number. For this purpose, consider a feasible

solution x of (P ). Since x satisfies all constraints of (P ), it follows that for all i ∈ N ,
ai,N
ai,{i}

xi ≥ va({i}). Therefore x(N) ≥∑i∈N
ai,{i}
ai,N

va({i}).

Lemma 2.2.3. A linear LUF-game is stable if and only if, the optimal value p∗ of

its primal problem satisfies p∗ ≤ v(N).
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Proof.
Consider a linear LUF-game (N, v, u) with gradient collection a and fixed-term

collection b.

Necessity. Suppose that C(N, v, u) 6= ∅. Consider x ∈ C(N, v, u). Then by Propo-

sition 2.2.10, x is a feasible solution to the primal problem (P ) of the game. Thus,

p∗ ≤ x(N) = v(N).

Sufficiency. Suppose that the optimal value p∗ of the primal problem of the game

is such that p∗ ≤ va(N). Consider an optimal solution x∗ of (P ) and define the sharing

vector x for all i ∈ N by xi = x∗i + v(N)−p∗
n

. By assumption v(N)−p∗ = v(N)−x∗(N) ≥
0. Therefore, xi ≥ x∗i for all i ∈ N . Since the gradient collection contains only positive

numbers, it follows that x satisfies (2.25). We conclude by Proposition 2.2.10 that

x ∈ C(N, v, u).

Lemmas 2.2.2 and 2.2.3 lead to the following result:

A linear LUF-game (N, v, u) with gradient collection a and fixed-term collection

b is stable if, and only if, for all a-balanced family B of a-balancing weights

(δS)S∈B, ∑
S∈B

δSva(S) ≤ v(N). (2.32)

Theorem 2.2.3.

?

Proof.
Consider a linear LUF-game (N, v, u) with gradient collection a and fixed-term

collection b.

Necessity. Suppose that C(N, v, u) 6= ∅. Consider an a-balanced collection B and a

collection of a-balancing weights (δS)S∈B for B. Extend δ from coalitions in B to any

coalition in 2N by considering the collection δ′ defined by δ′S = δS if S ∈ B and δ′S = 0

otherwise. Since B is an a-balanced collection and (δS)S∈B is a collection of a-balancing

weights for B, it follows that δ′ is a feasible solution to the dual program (D) of the

game. Therefore,

∑
S∈B

δSva(S) =
∑
S∈2N

δ′Sva(S) ≤ d∗ = p∗ ≤ v(N).
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Note that d∗ = p∗ comes from Lemma 2.2.2; and the last inequality holds from Lemma

2.2.3 since C(N, v, u) 6= ∅ by assumption.

Sufficiency. Suppose that (2.32) holds for all a-balanced collections B and for all

collections of a-balancing weights (δS)S∈B for B. By Lemma 2.2.2, the primal problem

and the dual problem of the game admit, each, some feasible solutions and the same

optimal value. Consider a feasible solution δ = (δS)S∈2N of the dual problem (D).

It follows that the set 2N of all coalitions is a balanced and that δ is a collection of

a-balancing weights for 2N . Therefore,

∑
S∈2N

δ′Sva(S) ≤ v(N).

This proves that p∗ = d∗ ≤ v(N). Hence by Lemma 2.2.3, C(N, v, u) 6= ∅.

Before moving to the next chapter, we recall that cooperative games with transferable

utility (TU-games), multi-cooperative games with transferable utility (MTU-games) or

cooperative games with local utilities functions (LUF-games) model interactions in which

agents form coalitions and gain some payments. The payoff of a coalition is classically

deterministic. However, in many situations, payoffs are not known in advance but are

random variables. This is the case in the next chapter where the outcome of a cooperation

is a random variable.
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Chance-constrained cooperative games:

a value solution

In this chapter, we focus our attention on chance constrained games ( CC-games) intro-

duced by Charnes and Granot (1973). Up to now, only set-valued solutions of CC-games

have been defined. More precisely, Charnes and Granot (1977) consider a two-stage core

and a two-stage nucleolus for this class of games. No single-valued rule, a value, that

assigns a CC-game with a single payoff vector is not yet defined together with some of its

axiomatizations. Our aim is to fill this gap by providing a value for CC-games together

with a simple and compact formula as well as some characterization results1. More pre-

cisely, we present here a two-stage value for chance-constrained games (on discrete sample

spaces) as an ex-ante agreement among players.

The chapter is organized into three sections. Section 3.1 is devoted to the presentation

of CC-games. We mainly introduce the model and adjust it by adding sample spaces and

give some algebraic properties of CC-games. In Section 3.2, we define a value for CC-

games and introduce some intuitive axioms. In Section 3.3, we define the Equal-surplus

Shapley value and give a simple and compact formula of this value. Axiomatizations of

the newly introduced value are presented.

3.1 On chance-constrained games

Hereafter, the cardinality of a finite set A is denoted by |A|, a permutation of A is a

one-to-one function from A onto itself and a transposition of A is a permutation π of A

such that for some {k, l} ⊆ A, π(k) = l, π(l) = k and π(t) = t for all t ∈ A \ {k, l}. in

this case, π is denoted by π = (k, l).
1Njoya et al. (2021) present the essentials of the achievements in this chapter

UYI: Ph.D Thesis 69 Donald Njoya Nganmegni N. c©UYI 2021
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3.1.1 Models of cooperative games with random payments

The theory of cooperative games in characteristic function form was extended by Charnes

and Granot (1973), so as to encompass situations in which the values of the various

coalitions are not deterministic but are rather random variables with given distribution

functions.

Definition 3.1.1. A chance-constrained game (CC-game) is simply a couple

(N, (XS)S∈2N ) with XS a random variable representing a coalitional payoff of S.

These games are also called n-person cooperative game in stochastic characteris-

tic function form.

Richer models of cooperative games with random payments exist. When some coali-

tions have several actions and random payoffs. one obtains cooperative game with stochas-

tic payoffs which are each, a collection (N, (AS)S∈CN , (XS)S∈CN , (�i)i∈N) where for each

a ∈ AS, XS(a) is a finite expectation random variable each realization of which is a coali-

tional payoff of S when its members jointly choose action a; and (�i)i∈N is the collection

of individual preferences over random payoff vectors. Preferences of players are needed to

analyze the desirability or the stability of random payoff vectors; see Suijs et al. (1999) for

more details. Another model in Habis and Herings (2011) deals with cooperative games

with uncertainty (TUU-games): players are involved in a TU-game depending on some

given states of the nature. Precisely, a TUU-game can be viewed as a five-ingredient

collection (N,S, v, T, u) in which N is a finite set of players, S is a finite set of the states

of nature, v = (vs)s∈S is a collection of TU-games such that vs is the TU-game associated

with the state of nature s, T is a finite set of periods, and u = (ui)i∈N is a collection

of individual utility functions. Over each period in T , a state of nature s is (randomly)

observed from S and all players play the game (N, vs). Our model of games departs from

all these settings and is presented below.

3.1.2 The new model of game and basic definitions

A random variable is derived from a random experiment, that is a process with many

uncertain issues. The set of all possible issues or all possible random events for the

experiment forms the sample space. CC-games (or games with stochastic payoffs general)

and TUU-games with uncertainty are usually defined without any information on the
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sample spaces. In this chapter, we embed sample spaces with a probability distribution

from which coalitional payoffs are derived.

Definition 3.1.2. Given a finite set N of n ≥ 2 players, a chance-constrained game

with discrete sample spaces on N is a tuple (Ω, v,$) such that for some collection

Ω = (ΩS)S∈2N of coalitional sample spaces; the mapping v and $ respectively give,

for all S ∈ 2N and for all k ∈ ΩS, the coalitional payoff v(S, k) of the members of S

and the probability $(S, k) > 0 of observing event k; with
∑

k∈ΩS
$(S, k) = 1 for all

coalitions S.

The set of all chance-constrained games with discrete sample spaces on N is denoted

by CC(N), CC(N,Ω, $) is the subset of CC(N) that consists of all CC-games on N with

the same probability distribution mapping $ on Ω and CCr(N) is the subset of CC(N) on

the full class of rational probability distributions. Provided that $ and Ω are known, the

game (Ω, v,$) will be identified with its coalitional payoff function v. Note that given a

coalition S, the mapping vS : k ∈ ΩS 7−→ v(S, k) is a random variable with probability

distribution $S : k ∈ ΩS 7−→ $(S, k). In other words, (N, (vS)S∈2N ) is a CC-game in

Charnes and Granot sense. The little change in our setting is that we have embedded the

collection of sample spaces from which the random payoff of each coalition is derived.

Example 3.1.1. Consider two business units BU1 and BU2 who may purchase each

a basic printer. Each business unit may experience, over a given period, a mechanic

breakdown (M), an electronic breakdown (E), or none of them (Z). Event M occurs

with probability 0.1 for BU1 and 0.05 for BU2. Event E occurs with probability 0.02

for BU1 and 0.1 for BU2. In case of a joint professional printer, M and E are

observed with the same probability of 0.05. The assistance charges for BU1 are 5

for M and 10 for E; BU2 pays 8 for M and 4 for E; and for the joint printer, M

and E cost 10 and 12 respectively. It is assumed that the functioning of printers are

independent. The question is, in case of a joint printer, what would each business

unit pay for M? for E? Here the sample space for each coalition S is ΩS = {M,E,Z}
where Z stands for no breakdown (observed with no charge).

This situation can be formalised by a chance-constrained game with discrete sample

spaces (Ω, v,$) ∈ CC(N) and be rewritten as follows:
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Example 3.1.2. In Example 3.1.1, N = {1, 2} and ΩS = {M,E,Z} for all S ∈ 2N .

Here, player 1 stands for BU1 and player 2 for BU2. The coalitional payoff function

v and the probability distribution function $ are summarized below with respect to

each of the three possible coalitions:

S = {1}
k v (S, k) $ (S, k)

M 5 0.1

E 10 0.02

Z 0 0.88

S = {2}
k v (S, k) $ (S, k)

M 8 0.05

E 4 0.1

Z 0 0.85

S = {1, 2}
k v (S, k) $ (S, k)

M 10 0.05

E 12 0.05

Z 0 0.9

The second following example described a situation with more than 2 players and

where the samples spaces are not the same for all coalitions:

Example 3.1.3. During a festival, three types of tombola are organized for single

tickets, two-person tickets and group tickets respectively. Buying any ticket gives

rights to a Wheel of Fortune trial depending on the nature of the ticket. The Wheel

of Fortune for a one-person ticket may return a golden (G) band with probability

0.02 for a win of 10 euros; or a red (R) band for a zero win. For a two-person

ticket, one may win 25 euros for a yellow (Y) band with probability 0.04; 250 euros

for a golden (G) band with probability 0.02; or nothing for a red (R) band. A group

ticket for at least k ≥ 3 visitors is offered an initial discount of k euros and may

further win 20k euros with probability 0.02 for a yellow (Y) band; 200k euros with

probability 0.001 for a golden (G) band; and nothing for a red (R) band on the Wheel

of Fortune. John (player 1) has to purchase the entrance rights for three persons

( himself, his wife and his young daughter); Penny (player 2) would like to pay

access for two persons (herself and Jenny); and Andrew (player 3) intends to attain

the festival. They may separately purchase their tickets or form coalition for group

ticket.

It can be noted that the sample space for each coalition S is ΩS = {Y,G,R} if 1 ∈ S
or 2 ∈ S; and ΩS = {Y,R} if S = {3}. It is important to note that the sample space

depends on the coalition considered.

Definition 3.1.3. Given a CC-game v ∈ CC(N,Ω, $), a coalition S and a permu-

tation π of ΩS. (πΩ, πvS, π$S) is the chance-constrained game with discrete sample
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spaces defined for all T ∈ 2N \ {S} and for all k ∈ ΩT by πvS(T, k) = v(T, k) and

π$S(T, k) = $(T, k) ; together with πvS(S, π(k)) = v(S, k) and π$S(S, π(k)) = $(S, k).

We will simply denote this CC-game by πvS. For an illustration, consider Example

3.1.2; let S = {1} and π be the transposition of the mechanic breakdown (M) and the

electronic breakdown (E). Then the game πvS is obtained from the representation of v

in Example 3.1.2 by simply interchanging M and E in the first column of the first table.

Equivalently, this simply amounts to interchanging for the business unit BU1 the costs

and the probabilities of observing M and E. Globally, the risk incurred by BU1 remains

unchanged; only a relabeling of the possible events occurred.

Definition 3.1.4. Given a game u ∈ ΓN . The chance-constrained game with

discrete sample spaces associates to u is the game ũ defined for all S ∈ CN by

ũ(S, k) = u(S) for all k ∈ ΩS and $ is the uniform distribution probability on ΩS.

Remark 3.1.1. Given a c.c game v ∈ CC(N,Ω, $). The expectation game noted Ev

is the TU-game that assigns to each coalition S, its expected worth Ev(S) defined by

Ev(S) :=
∑

k∈ΩS
$(S, k)v(S, k).

3.1.3 Algebraic definitions and properties on CC-games

The following definitions give some algebraic operations for chance-constrained games

with discrete sample spaces.

Definition 3.1.5. Given a probability distribution function $ on Ω, CC(N,Ω, $)

and u, v ∈ CC(N,Ω, $). u+ v is the c.c game in CC(N,Ω, $) such that for all S ∈ 2N

and for all k ∈ Ω (u+ v)(S, k) = u(S, k) + v(S, k).

For example, in the game of Example 3.1.1, if u models the charges for possible

breakdowns and v the transport cost, then u + v gives the total cost for each possible

breakdown.

Definition 3.1.6. Given a probability distribution function $ on Ω, CC(N,Ω, $)

and a real number λ. λv is the c.c game in CC(N,Ω, $) such that (λv)(S, k) = λv(S, k).

Similarly, in the game of Example 3.1.1, if u models the charges for possible break-

downs. Then λv corresponds to the game obtained when the transport cost is updated

by a constant rate λ.
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It is well-known that the set ΓN of all TU-games on N is a space vector of dimension

2n − 1 . It can be also checked that CC(N,Ω, $) is also a space vector of dimension∑
S∈2N |ΩS|. This assertion is proven below together with some other nice properties of

CC(N,Ω, $) that will be useful in characterizing Ψ.

Given a coalition S, k ∈ ΩS and a collection c = (ck,S)S∈CN ,k∈ΩS
we define:

• γS ∈ ΓN and γ∗S ∈ ΓN for all T ∈ CN by

γS (T ) =

 1 if S ⊆ T

0 otherwise
and γ∗S (T ) =

 1 if S $ T

0 otherwise

• gk,S, Υk,S, Υ∗,S ∈ CC(N,Ω, $) for all T ∈ CN and l ∈ ΩT by Υ∗,S (T, l) = γ∗S (T ),

gk,S (T, l) =

 1 if l = k and T = S

0 otherwise
and Υk,S (T, l) =

 γS (T ) if l = k

γ∗S (T ) otherwise

• Υc,k,S ∈ CC(N,Ω, $) by Υc,k,S = ck,Sg
k,S + Υ∗,S.

Note that γS and γ∗S are TU-games; whereas gk,S, Υk,S and Υ∗,S are CC-games in

CC(N,Ω, $). Furthermore,

Υk,S = gk,S + Υ∗,S = Υc,k,S provided that ck,S = 1. (3.1)

Proposition 3.1.1. Given N , Ω and $.

1. CC(N,Ω, $) is a real space vector.

2. Any collection
(
Υc,k,S

)
S∈CN ,k∈ΩS

is a basis of CC(N,Ω, $) assuming that that

ck,S 6= 0 for all S ∈ CN and for all k ∈ ΩS.

Proof.
To prove that CC(N,Ω, $) is a real space vector, we have just to prove that

it is a subspace vector of space vector of application from 2N to R. It is clear that

CC(N,Ω, $) 6= ∅ and the proof is completed by Definitions 3.1.5 and 3.1.6.

Now to prove that
(
Υc,k,S

)
S∈CN ,k∈ΩS

is a basis of CC(N,Ω, $), consider c =

(ck,S)S∈CN ,k∈ΩS
a collection of real numbers such that ck,S 6= 0 for all S ∈ CN and

for all k ∈ ΩS. Note that for all games v ∈ CC(N,Ω, $),

v =
∑

S∈CN ,k∈ΩS

v(S, k)gk,S.
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Therefore, {gk,S : S ∈ CN , k ∈ ΩS} is a generating set for the vector space CC(N,Ω, $).

It follows that the dimension of CC(N,Ω, $) is at most
∑

S∈CN |ΩS|. Now, the col-

lection
(
Υc,k,S

)
S∈CN ,k∈ΩS

contains exactly
∑

S∈CN |ΩS| distinct games. To prove that(
Υc,k,S

)
S∈CN ,k∈ΩS

is a basis of CC(N,Ω, $), it is sufficient to prove that the games in(
Υc,k,S

)
S∈CN ,k∈ΩS

are linearly independent. To see this, let (αk,S)S∈CN ,k∈ΩS
be some real

numbers such that ∑
S∈CN ,k∈ΩS

αk,SΥc,k,S = 0̃Ω. (3.2)

where 0̃Ω (T, l) = 0 for all T ∈ CN and for all l ∈ ΩS. We prove by induction on the

cardinality of S that αk,S = 0 for all S ∈ CN and k ∈ ΩS. First assume that |S| = 1;

that is S = {i} for some i ∈ N. Consider k ∈ ΩS. Then by the definition of Υc,l,T ,

0̃Ω ({i}, k) = 0 =
∑

T∈CN ,l∈ΩT

αl,TΥc,l,T ({i}, k) = ck,{i}αk,{i}.

Therefore αk,{i} = 0 since ck,{i} 6= 0. Assume that for some s such that 1 ≤ s < n, it

holds that for all S ∈ CN and for all k ∈ ΩS, αk,S = 0 whenever 1 ≤ |S| ≤ s. Consider

a coalition S of cardinality s+ 1 and k ∈ ΩS. The definition of Υc,l,T together with the

induction assumption imply

0̃$ (S, k) = 0 =
∑

T∈CN ,l∈ΩT

αl,TkΥ
c,l,T (S, k) = ck,Sαk,S +

∑
T$S,l∈ΩT

cl,Tαl,T = ck,Sαk,S.

Therefore αk,S = 0 since ck,S 6= 0. This proves that αk,S = 0 for all S ∈ CN and for all

k ∈ ΩS.

In particular, the collection
(
Υk,S

)
S∈CN ,k∈ΩS

is, by (3.1), a basis of CC(N,Ω, $). In

the following propositions show that, the sum of all Υk,S over ΩS can be also rewritten as

a linear combination of some specific games.

Proposition 3.1.2. Given a coalition S,∑
k∈ΩS

Υk,S = (γ̃S)Ω + (|ΩS| − 1) Υ∗,S. (3.3)

Proof.
Let S ∈ CN . Proving (3.3) amounts to showing that for all T ∈ CN and for all

l ∈ ΩT , ∑
k∈ΩS

Υk,S (T, l) = γS (T ) + (|ΩS| − 1) Υ∗,S (T, l) . (3.4)
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Consider T ∈ CN and l ∈ ΩT . There are three possible cases we distinguish.

(a) First suppose that S * T . By definition, Υk,S (T, l) = γS (T ) = Υ∗,S (T, l) = 0

for all k ∈ ΩS. Hence,∑
k∈ΩS

Υk,S (T, l) = 0 and γS (T ) + (|ΩS| − 1) Υ∗,S (T, l) = 0.

(b) Now, for S = T . Then Υk,S (T, l) = 0 for k 6= l; Υl,S (T, l) = 1 = γS (T ); and

Υ∗,S (T, l) = 0. Therefore∑
k∈ΩS

Υk,S (T, l) = 1 and γS (T ) + (|ΩS| − 1) Υ∗,S (T, l) = 1.

(c) Finally, assume that S $ T , then γS (T ) = Υk,S (T, l) = Υ∗,S (T, l) = 1 for all

k ∈ ΩS. Thus,∑
k∈ΩS

Υk,S (T, l) = |ΩS| and γS (T ) + (|ΩS| − 1) Υ∗,S (T, l) = |ΩS|.

For each of the three possible cases, (3.3) holds.

The game Υk,S is a kind of unanimity game in which a win of one unit is guaranteed

provided that either the members of S cooperate and event k is observed; or the members

of S cooperate with some players out of S. Thus, (3.3) simply tells us that by summing

over all events in ΩS, the members of S secure, independently of the event that is observed,

a win of one unit by forming S, or a win of |ΩS| by cooperating with some players out

of S. More importantly, Proposition 3.1.2 together with the next result help in linking

unanimity CC-games with the known unanimity TU-games.

Proposition 3.1.3. Given a coalition S, when the collection c is such that for all

S ∈ CN and for all k ∈ ΩS, ck,S = 1
$(S,k)

:

∑
k∈ΩS

1

c k,S
Υc,k,S = (γ̃S)Ω . (3.5)

Proof.
The collection c = (ck,S)S∈CN ,k∈ΩS

is well-defined since only events with positive

probabilities are considered. Let S ∈ CN , since for all k ∈ ΩS, Υc,k,S = 1
$(S,k)

gk,S + Υ∗,S

we have:
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∑
k∈ΩS

1

c k,S
Υc,k,S =

∑
k∈ΩS

gk,S +$(S, k)Υ∗,S

=
∑
k∈ΩS

[
Υk,S −Υ∗,S

]
+ Υ∗,S

∑
k∈ΩS

$(S, k)

=
∑
k∈ΩS

Υk,S − |S|Υ∗,S + Υ∗,S

= (γ̃S)Ω + (|ΩS| − 1) Υ∗,S − |ΩS|Υ∗,S + Υ∗,S by equation (3.3)

= (γ̃S)Ω .

Proposition 3.1.4. Given a coalition S,

Υ∗,S =
∑

T∈2N :S$T

(−1)|T |−|S|+1 γ̃T . (3.6)

Proof.
Consider a coalition S. Proving (3.6) amounts to showing that for all K ∈ 2N and

for all l ∈ ΩK

Υ∗,S (K, l) =
∑

T∈2N :S$T

(−1)|T |−|S|+1 γT (K) . (3.7)

Consider K ∈ 2N and l ∈ ΩK . First suppose that S * K or K = S. Then each

coalition T such that S $ T satisfies T * K; otherwise one would have S $ K. Thus

Υ∗,S (K, l) = γ∗S (K) = 0 and γT (K) = 0. Therefore∑
T∈2N :S$T

(−1)|T |−|S|+1 γT (K) = 0 = Υ∗,S (K, l) .

Now suppose that S $ K, then Υ∗,S (K, l) = 1 and γT (K) = 0 for all coalitions T such

that T * K. Thus∑
T∈2N :S$T

(−1)|T |−|S|+1 γT (K) =
∑

T/S$T⊆K
(−1)|T |−|S|+1

= (−1)|S|−1

|K|−|S|∑
t=1

(|K| − |S|
t

)
(−1)|S|+t

where t = |T\S|

= −
(

(1− 1)|K|−|S| − 1
)

= 1 = Υ∗,Sl (K)

In both possible cases, (3.6) holds.
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3.2 A value for CC-games with discrete sample spaces

A CC-game is played as follows: players have to form coalitions. When a coalition S is

formed, a realization from ΩS of a random event is observed and the members of S obtain

the corresponding payoff. Furthermore, when a coalition structure P = {S1, S2, . . . , Sp}
is formed, outcomes of coalitions in P have independent realizations. If P is disrupted,

new coalitions are formed and again new events with possibly new payoff realizations are

randomly observed.

3.2.1 Basic definitions

Our concern is as follows. The grand coalition N is formed; but an a priori sharing vector

rule F is to be designed such that when an event k ∈ ΩN is observed, the coalitional

payoff v (N, k) is shared accordingly. In a two stage process, an allocation usually has the

shape (d, r) such that given i ∈ N , player i who is first promised di finally gets di + fi (P )

with fi (P ) = ri
(
P −∑i∈N di

)
when P is the actual worth of the grand coalition; see

Suijs et al. (1999). We are interested in such an operational solution. But before, we have

the following general definition:

Definition 3.2.1. Assume that the grand coalition N is formed. An allocation

rule (a value) on F ⊆ CC(N) is a mapping F that associates each CC-game G =

(Ω, v,$) ∈ F with a list F (G) = (F (G, k))k∈ΩN
of payoff vectors.

Fi (G, k) is the share of player i with respect to F when the grand coalition is formed

and event k ∈ ΩN is observed.

Given a game G = (Ω, v,$), a value F assigns to G a collection of deterministic

payoff vectors F (G, k) for k ∈ ΩN . This can be viewed as a post ante contract that states

the share of each player for each specific event k ∈ ΩN that may be encountered as the

grand coalition is formed. But observing an event in ΩN is a stochastic event. Thus, the

pair ((F (G, k))k∈ΩN
, ($(N, k))k∈ΩN

) can also be seen as an n-tuple of random variables

Fi(G) = ((Fi(G, k))k∈ΩN
, ($(N, k))k∈ΩN

) for i ∈ N, that sum to the random variable

vN = (v(N, k), $(N, k))k∈ΩN
. Roughly, before an event k ∈ ΩN is observed for the grand

coalition, the share of player i is the random variable Fi(G); and provided that k ∈ ΩN

is observed, the share of player i is equal to Fi(G, k) for sure.
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3.2.2 Axioms for a value on CC-games with discrete sample spaces

The desirability of a value depends on how appealing are the shares it generates. Below

are some properties of a value given a family F of CC-games.

Definition 3.2.2. An allocation rule (a value) F on F ⊆ CC(N) satisfies Efficiency

(E) if for all v ∈ F and for all k ∈ ΩN ,
∑
i∈N

Fi (v, k) = v (N, k).

Efficiency requires that when an event k ∈ ΩN is observed for the grand coalition,

individual deterministic payments are summed to the collective worth v(N, k).

Definition 3.2.3. An allocation rule (a value) F on F ⊆ CC(N) satisfies Additiv-

ity (A) if for all u, v ∈ F ∩CC(N,Ω, $), for some Ω and $, F (u+ v) = F (u)+F (v).

Additivity states that when an event k ∈ ΩN occurred for the grand coalition, the

share of a player in the game u + v should be the sum of his/her shares in the games u

and v.

Definition 3.2.4. A player i ∈ N is a null player in a CC-game v ∈ F ∩
CC(N,Ω, $) if for all S ⊆ N \ {i}, ΩS = ΩS ∪ {i} and for all k, l ∈ ΩS, v(S ∪ {i}, k) =

v(S, l).

In other words, a null player is simply a player who can not changes the possibles

actions of a coalition when he/she joints this coalition. Therefore he/she could not change

the coalition’s payoffs by joining a coalition. 4

Definition 3.2.5. An allocation rule (a value) F on F ⊆ CC(N) satisfies Null

Player Property (NP∗) if for all null player in a CC-game v ∈ F ∩ CC(N,Ω, $),

Fi (v, k) = 0 for all k ∈ ΩN

Axiom ( NP∗) simply requires that any null player in a CC-game should receive a zero

share.

Definition 3.2.6. Given a CC-game v ∈ CC(N,Ω, $). Two players i and j are

stochastically symmetric in the CC-game v if for all 444 S ⊆ N \ {i, j} and for all

k ∈ ΩS∪{i},
∑

l∈ΩS∪{i},k
$(S ∪ {i}, l) =

∑
l∈ΩS∪{j},k

$(S ∪ {j}, l);
Where ΩT,k = {l ∈ ΩT : v(T, l) = v(T, k)}

UYI: Ph.D Thesis 79 Donald Njoya Nganmegni N. c©UYI 2021



3.2. A value for CC-games with discrete sample spaces

We simply say that, interchanging (transposing) i and j does not affect the chance of

any coalition to realize each of its feasible worth.

Moreover in the game v ∈ CC(N,Ω, $), given a coalition T and an elementary k in

ΩT . ΩT,k is the set of all elementary events l in ΩT such that both l and k produce the

same payoff for T ; l is called a duplication of k in ΩT .

Definition 3.2.7. An allocation rule (a value) F on F ⊆ CC(N) satisfies Stochas-

tic Symmetry (SS) if for two players i and j who are stochastically symmetric in

a game v ∈ F , then Fi (v, k) = Fj (v, k) for all k ∈ ΩN .

Following (SS), two stochastically symmetric players in a CC-game always receive

equal shares.

Definition 3.2.8. An allocation rule (a value) F on F ⊆ CC(N) satisfies Indepen-

dence of Local Relabeling (ILR) if for all coalitions S 6= N and for all permutations

π of ΩS, F (πv) = F (v) whenever v, πv ∈ F .

Axiom (ILR) requires that any local relabeling of events in a sample space associated

with a proper coalition of players should have no effect on individual shares.

One would expect any conceivable value to return in the new game the same shares

as in the initial game.

Another change we consider is the duplication of an event.

Definition 3.2.9. Given a c.c game v′ ∈ CC(N,Ω′, $′). A game v ∈ CC(N,Ω, $) is

a local duplication of v′ if there exists a coalition S 6= N and k, k′ ∈ ΩS satisfies both

three items:

(i) k′ ∈ ΩS \ Ω′S, ΩS = Ω′S ∪ {k′} and ΩT = Ω′T for all T 6= S;

(ii) v(S, k) = v(S, k′) = v′(S, k) and $(S, k′) +$(S, k) = $′(S, k);

(iii) v(T, l) = v′(T, l) and $(T, l) = $′(T, l) whenever (l 6= k or T 6= S).

This is denoted by v′ = vS,k,k
′ . We also say that v′ is obtained from v by canceling

the duplicated event k′ of k. We also say that v′ = vS,k,k
′ is a local duplication game.

Assume for illustration that in Example 3.1.3, the organizer modifies the Wheel of

Fortune for one-person tickets by only splitting the golden band into a new golden band

UYI: Ph.D Thesis 80 Donald Njoya Nganmegni N. c©UYI 2021



3.2. A value for CC-games with discrete sample spaces

which provides a win of 10 euros with probability pg and a yellow (Y) band which also

provides 10 euros with probability py in such a way that pg+py = 0.02. Then a one-person

ticket still wins 10 euros with probability 0.02 although such a win now comes from two

distinct events. Such a fake change should normally have no effect on individual shares

in a game.

Definition 3.2.10. An allocation rule (a value) F on F ⊆ CC(N) satisfies Inde-

pendence of Local Duplication (ILD) if for all local duplication game vS,k,k′ of any

CC-game v, F
(
vS,k,k

′)
= F (v) whenever vS,k,k′ ∈ F .

Condition (ILD) is the requirement that any local duplication has no change on indi-

vidual shares.

Remark 3.2.1. One can iterate (ILD), if feasible, to cancel any subset of events

that are duplications of a given event k ∈ ΩS. To see this, consider a nonempty

subset K = {k1, k2, . . . , kt} of ΩS,k \ {k} and denote by vS,k,K the game obtained from

v by successively canceling k1, k2, . . . , kt. Condition (ILD) is equivalent to say that

F (vS,k,K) = F (v). In words, by canceling any finite number of duplications of a given

event k in a game and by updating the probability of observing k to the sum of the

probabilities of observing k or some of its duplications, the shares of players are not

affected.

Remark 3.2.2. By duplicating some event for a given game in F , it is not guar-

anteed that the new game is still in F . Similarly, by canceling a duplication of an

event, the new game is not necessarily in F . Some family may be rich enough to al-

low these two operations. In this case, F will be simply called rich. This is formally

stated in the next definition.

Definition 3.2.11. A family F of CC-games is rich if F meets the following two

conditions:

(c1) for all v ∈ F such that v ∈ CC(N,Ω, $) for some Ω and $, for all coalitions

S 6= N , for all events k ∈ ΩS and for all events k′ /∈ ΩS, there exists u ∈ F such

that v = uS,k,k
′;

(c2) for all v ∈ F such that v ∈ CC(N,Ω, $) for some Ω and $, for all coalitions

S 6= N and for all events k, k′ ∈ ΩS, if k′ is a duplication of k in v then

vS,k,k
′ ∈ F .
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Condition (c1) means that for each game v in F and for each event k in the universe of

a proper subset of the player set, there exists a game in F obtained from v by a duplication

of k that brings into the game v a new event k′. Condition (c2) is the requirement that by

merging an event and some of its duplications from a game in F , the new game should stay

in F . For example, the set of all CC-games on N is rich. Furthermore, one also obtains a

rich family of CC-games by considering the set of all CC-games such that all probabilities

are rational numbers. The following result holds on rich families of CC-games.

Proposition 3.2.1. (ILD) implies (ILR) on any rich domain.

Proof.
Consider a rich family F of CC-games and a value F on F that meets (ILD).

Since any permutation of a finite set is a finite product of transpositions, to prove

that F necessarily meets (ILR), it is sufficient to prove that for all v ∈ F such that

v ∈ CC(N,Ω, $) for some Ω and $, for all coalitions S 6= N and for all transpositions

π of ΩS, F (πv) = F (v). Suppose that π is a transposition of ΩS. That is π = (k, l)

for some {k, l} ⊆ ΩS. Consider two events k′ and l′ such that k′, l′ /∈ ΩS. Since F is

rich and k ∈ ΩS, then there exists u1 ∈ F such that v = uS,k,k
′

1 (u1 is obtained from v

by a duplication of event k). By (ILD),

F (v) = F (u1). (3.8)

Similarly, l ∈ ΩS ∪ {k′} and l′ /∈ ΩS ∪ {k′}. Since F is rich, there exists a game u2

in F such that u1 = uS,l,l
′

2 . By (ILD),

F (u1) = F (u2). (3.9)

Note that in the game u2, k′ and l′ are duplications of k and l respectively. Since

F is rich, the game u3 such that u3 = uS,k
′,k

2 (obtained from u2 by merging k′ and k

into k′) belongs to F . By (ILD),

F (u2) = F (u3). (3.10)

Similarly, the game u4 such that u4 = uS,l
′,l

3 belongs to F . By (ILD),

F (u4) = F (u3). (3.11)
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By construction, the game u4 is obtained from v by only renaming k to k′ and l to

l′. It appears from Equations (3.8)− (3.11) that F (u4) = F (v). In words, renaming k

to k′ and l to l′ with k′, l′ /∈ ΩS does not affect individual shares in the game v. Note

that u4 ∈ CC(N,Ω′, $′) where

Ω′S = (ΩS\{k, l}) ∪ {k′, l′},

$′(S, k′) = $(S, k), $′(S, l′) = $(S, l),

u4(S, k′) = v(S, k), u4(S, l′) = v(S, l);

and for all coalitions T 6= S,

Ω′T = ΩT and $′(T, t) = $(T, t) for all t ∈ Ω′T .

Since k, l /∈ Ω′S, one obtains from u4 a new game u5 by only renaming k′ to l and l′ to k

without altering individual shares. That is F (u5) = F (u4). Hence F (u5) = F (v). This

complete the proof since u5 = πv.

3.3 The equal-surplus Shapley value for CC-games

Is there any value that meets all the properties mentioned in Section 3.2? The answer is

yes and a solution is constructed below in two different ways.

3.3.1 Two ways of constructing a value

We construct two values Ψ and Φ for CC-games using to distinct approaches.

Via an analytic approach

We associate each CC-game v ∈ CC(N,Ω, $) with its expectation game Ev that assigns

to each coalition S, its expected worth Ev(S). More formally,

Ev(S) :=
∑
k∈ΩS

$(S, k)v(S, k).

The game Ev is a TU-game and its Shapley value is called the prior Shapley value of

the CC-game v.We then define the two-stage value Ψ for CC-games as follows. Players in

N are first promised their prior Shapley shares of the game v and then proceed to observe
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a random event from ΩN . When k ∈ ΩN is observed at the second stage, the actual worth

of the grand coalition is v(N, k) and the surplus to be re-allocated is v(N, k) − Ev(N).

This surplus is equally split among players in such a way that the final share of a each

player i ∈ N is

Ψi(v, k) = Shapi(Ev) +
1

n
(v(N, k)− Ev(N)). (3.12)

The value Ψ will be called the equal-surplus Shapley value for CC-games.

Via a bargaining model

Given a game v ∈ CC(N), the intuition on how the payoff vector Φ(v, k) is derived can

be obtained as in Shapley (1953) using a bargaining procedure. Once the grand coalition

is formed and an event k ∈ ΩN is observed, the question is how to share v(N, k) among

the n players? The attributes in favor of a player, say i, are measured only by all possible

marginal contributions that may be observed when i joins a coalition S ⊆ N \ {i} as in

the following threefold procedure:

(A1) Once an event k ∈ ΩN is observed, players row up in a line to join the coalition one

at a time; Ns denotes the coalition of the first s players to get in.

(A2) While the sth player, say es, is joining the coalition, a trial from ΩNs is made for s < n

to observe a random event es with probability $(Ns, e
s) and player es is promised

his/her marginal contribution v(Ns, e
s)− v(Ns−1, e

s−1) with the convention N0 = ∅,
k0 = 0, v(∅, k0) = 0 and en = k, k is the final issue.

(A3) All the n! orderings of the players are equally probable; for each ordering of players,

the n − 1 first trials have independent realizations; and the event en = k ∈ ΩN

observed for the grand coalition remains unchanged.

Φi(v, k) is the expectation of player i in the procedure (A1)− (A3).

Here, an entry-trial scenario is a pair e = (e1e2...en, e
1e2...en) such that player es gets

in at the sth position and es is the event that is observed as the coalition {e1, e2, . . . , es}
of the first s players is formed. A k-entry-trial scenario is any entry-trial scenario e such

that en = k. The set of all k-entry-trial scenarios will be denoted by Ek. The probability

of observing e ∈ Ek is $e = $(N1, e
1) ×$(N2, e

2) × · · · ×$(Nn − 1, en − 1) with Ns =

{e1, e2, . . . , es}.
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Interestingly, Ψ = Φ and the value Ψ meets all the six axioms above as shown in the

following propositions.

Proposition 3.3.1. The value Ψ satisfies (E), (A), (NP ∗), (SS), (ILR) and (ILD).

Proof.
Note that the operator that associates each CC-game v with the TU-game Ev

is linear. Moreover, the Shapley value is efficient and additive. It then follows from

(3.12) that Ψ is efficient and additive. Also note that if two players are stochastically

symmetric in the game v, they are symmetric in the TU-game Ev. Recalling that the

Shapley value is symmetric, it follows from (3.12) that Ψ satisfies (SS). Given a TU-

game u, note that the expectation game of ũΩ coincides with u and that by definition,

ũ(N, k) = u(N) = EũΩ
(N). Again, if follows from (3.12) that Ψ satisfies (NP ∗) . By

the definition of the game πvS given a coalition S and a permutation π of ΩS, note

that EπvS(T ) = Ev(T ) for all coalitions T. Since πvS(N, k) = v(N, k) for all k ∈ ΩN , it

follows from (3.12) that Ψ satisfies (ILR). In the same way, a local duplication does not

affect the expectation game; nor the random coalitional worth of the grand coalition.

Thus by (3.12), a local duplication does not affect individual shares by Ψ; and Ψ then

meets (ILD).

Remark 3.3.1. Given a player i ∈ N , it immediately follows from (3.12) that, the

payoff of player i in a CC-game is a random variable the mean of which is the

Shapley payoff of player i in the expectation game and its standard deviation is 1
n

the standard deviation of the random payoff of the grand coalition. Therefore, the

smaller of the standard deviation of the payoff of the grand coalition is, the better is

the chance of player i to obtain his/her prior Shapley share.

Proposition 3.3.2. For all v ∈ CC(N,Ω, $) and for all k ∈ ΩN , Φ(v, k) = Ψ(v, k).

Proof.
Given a k-entry-trial scenario e, denote by e [i] ∈ {1, 2, . . . , n} the position of

player i. By definition,

Φi (v, k) =
n∑
r=1

∑
e∈Ek:e[i]=r

$e

n!
v (Nr, e

r) .
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This sum can be split into three distinct sums Φi (v, k) = K1 + K2 + K3 where the

first sum K1 is the weighted sum of contributions of player i for all entry-trial scenarios

where he/she gets in first.

K1 =
∑

e∈Ek:e1=i

$e

n!
v
(
N1, e

1
)

=
∑

e∈Ek:e1=i

$e

n!
v
(
{i} , e1

)
=

(n− 1)!

n!

∑
a∈Ω{i}

$ ({i} , a) v ({i} , a)

=
(n− 1)!

n!
Ev ({i}) =

0! (n− 1)!

n!
(Ev ({i})− Ev (∅)) since Ev (∅) = 0

The sum K2 is the weighted sum of contributions of player i for all k-entry-trial

scenarios where i gets in last.

K2 =
∑

e∈Ek:en=i

$e

n!

(
v (Nn, e

n)− v
(
Nn−1, e

n−1
))

=
∑

e∈Ek:en=i

$e

n!

(
v (N, k)− v

(
N\ {i} , en−1

))
=

(n− 1)!0!

n!

∑
a∈ΩN\{i}

$ (N\ {i} , a) (v (N, k)− v (N\ {i} , a))

=
(n− 1)!0!

n!
(v (N, k)− Ev (N\ {i}))

=
(n− 1)!0!

n!
(Ev (N)− Ev (N\ {i})) +

1

n
(v (N, k)− Ev (N))

The sum K3 is the weighted sum of all contributions of player i for all entry-trial

scenarios where he/she gets in at a position s such that 1 < s < n. Let Ps,n = (s−1)!(n−s)!
n!

for 1 ≤ s ≤ n.

K3 =
∑

e∈Ek:es=i∧1<s<n

$e

n!

(
v (Ns, e

s)− v
(
Ns−1, e

s−1
))

=
∑

S:i∈S∧1<|S|=s<n

∑
e∈Ek:es=i

∧Ns = S
$e

n!

(
v (S, es)− v

(
S\ {i} , es−1

))
=

∑
S:i∈S∧1<|S|=s<n

∑
b∈ΩS

∑
a∈ΩS\{i}

(v (S, b)− v (S\ {i} , a))
∑

e∈Ek:es=i∧Ns=S∧es=b∧es−1=a

$e

n!

=
∑

S:i∈S∧1<|S|=s<n
Ps,n

∑
b∈ΩS

∑
a∈ΩS\{i}

$ (S, b)$ (S\ {i} , a) (v (S, b)− v (S\ {i} , a))

=
∑

S:i∈S∧1<|S|=s<n
Ps,n [Ev (S)− Ev (S\ {i})]
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Therefore, combining the three sums gives

Φi (v, k) =
∑
S:i∈S

(s− 1)! (n− s)!
n!

(Ev (S)− Ev (S\ {i})) +
1

n
(v (N, k)− Ev (N))

= Shapi (Ev) +
1

n
(v (N, k)− Ev (N)) = Ψi (v, k)

Clearly, the two solutions Φ and Ψ coincide.

Procedure (A1) − (A3) can then be viewed as a bargaining model of the value Ψ. It

provides an intuitive way of deriving the shares of all players as their expected shares

from a dynamic process. The following example give in detail an application of the equal-

surplus Shapley value on the game v in Example 3.1.2.

Example 3.3.1. Consider the game v in Example 3.1.2. When the event M for the

joint printer is observed, all scenarii in sharing vector v(N,M) are as follows:

Scenarii 1’s contribution $ 2’s contribution $

(21,MM) 2 0.05 8 0.05

(21, EM) 6 0.1 4 0.1

(21, ZM) 10 0.85 0 0.85

(12,MM) 5 0.1 5 0.1

(12, EM) 10 0.02 0 0.02

(12, ZM) 0 0.88 10 0.88

Expectations Φ1(v,M) = 9.9
2

= 4.95 Φ2(v,M) = 10.1
2

= 5.05

For illustration, note that when the entry-trial is (21,MM), player 1’s contribu-

tion is v ({1, 2} ,M)−v ({2} ,M) = 2 while player 2’s contribution is v ({2} ,M)−0 = 8.

Similarly, when the entry-trial is (12, ZM), player 1’s contribution is v ({1} , Z)−0 =

0 while player 2’s contribution is v ({1, 2} ,M)− v ({1} , Z) = 10.

We easily compute that the expectation game Ev is given by Ev ({1}) = 0.7,

Ev ({2}) = 0.8 and Ev ({1, 2}) = 1.1. The prior shares is then Shap1(Ev) = 0.5

for player 1 and Shap2(Ev) = 0.6 for player 2. When a mechanic breakdown (M) for

the joint printer is observed, the surplus cost is v({1, 2},M)−0.7−0.6 = 8.9. Each of

the two players gets the same extra cost of 4.45. Finally Ψ1(v,M) = 0.5 + 4.45 = 4.95
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and Ψ2(v,M) = 0.6 + 4.45 = 5.05. Thus Ψ(v,M) coincides with the expected payoffs

from procedure (A1) − (A3). Similarly, it can be also checked that Φ(v, k) = Ψ(v, k)

for k ∈ {E,Z}. Thus Φ(v) = Ψ(v) for the game of Example 3.1.2.

The coincidence Φ(v) = Ψ(v) observed in Example 3.3.1 turns out to be true for an

arbitrary CC-game.

3.3.2 Characterization of equal-surplus Shapley value

Characterization with a uniform probability distribution function

The probability distribution function $ is a collection of uniform probability distributions

if for all coalitions S 6= N , all events in ΩS occur with the same probability. Since all

probabilities over ΩS sum to 1, we have,

Uniform probability distributions $ : for all coalitions S 6= N and for all k ∈ ΩS,

$(S, k) = 1
|ΩS | . In this case, we simply say that $ is uniform.

Note that the collection$ is uniform if for all coalitions S 6= N ,$(S, .) := ($(S, k))k∈ΩS

is a uniform probability distribution on ΩS. Proposition 3.3.1 holds on CC(N,Ω, $) for

any probability distribution function $. When $ is uniform, we now show that the first

five properties in Proposition 3.3.1 completely characterize Ψ.

Lemma 3.3.1. Consider an arbitrary probability distribution $ on Ω.

Then for any two values F and F ′ that satisfy (E), (NP ∗) and (SS) on CC(N,Ω, $),

F (α (γ̃S)Ω) = F ′ (α (γ̃S)Ω)

for all S ∈ CN and for all α ∈ R.

Proof.
Members of S are symmetric players in αγS as well as in α (γ̃S)Ω . Thus by (SS),

players in S all have the same shares with respect to both F and F ′. Furthermore,

members of N \ S are null players in γS. Therefore by (NP∗), players in N \ S have

each a zero share in αγS as well as in α (γ̃S)Ω with respect to both F and F ′. The

result then follows by efficiency.
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Lemma 3.3.2. Assume that $ is uniform on Ω. Then for any two values F and F ′

that satisfy (E), (A), (NP ∗), (SS) and (ILR) on CC(N,Ω, $),

F
(
αΥk,S

)
= F ′

(
αΥk,S

)
for all S ∈ CN , for all k ∈ ΩS and for all α ∈ R.

Proof.
First suppose that S = N . Then any two players are stochastically symmetric in

the game αΥk,S. Thus by (SS) and (E), F
(
αΥk,S

)
= F ′

(
αΥk,S

)
. Now suppose that

S 6= N . Then by Propositions 3.1.2 and 3.1.4, it follows that,

F

(∑
k∈ΩS

αΥk,S

)

= F

α (γ̃S)Ω + α(|ΩS| − 1)
∑

T∈CN :S$T

(−1)|T |−|S|+1 (γ̃T )Ω


= F (α (γ̃S)Ω) + α(|ΩS| − 1)

∑
T∈CN :S$T

(−1)|T |−|S|+1 F ((γ̃T )Ω) by (A)

= F ′ (α (γ̃S)Ω) + α(|ΩS| − 1)
∑

T∈CN :S$T

(−1)|T |−|S|+1 F ′ ((γ̃T )Ω) by Lemma 3.3.1

= F ′
(∑
l∈ΩS

αΥl,S

)
by (A)

Moreover, for all l ∈ ΩS\ {k}, πΥk,S = Υl,S where π is the transposition of k and l

in ΩS. Therefore by (ILR), F
(
αΥl,S

)
= F

(
αΥk,S

)
. Thus, by (A), |ΩS|F

(
αΥk,S

)
=

|ΩS|F ′
(
αΥk,S

)
. Finally, F

(
αΥk,S

)
= F ′

(
αΥk,S

)
.

The following result is an axiomatization of the equal-surplus Shapley value on CC-

games with uniform probability distributions:

Assume that $ is uniform on Ω. Then, the equal-surplus Shapley value Ψ is the

unique value on CC(N,Ω, $) that simultaneously satisfies (E), (A), (NP ∗), (SS)

and (ILR) .

Theorem 3.3.1 (Njoya et al. (2021)).

?
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Proof.
Assume that $ is uniform on Ω.

Necessity. See Proposition 3.3.1.

Sufficiency. Suppose that F is a value on CC(N,Ω, $) that satisfies (E), (A),

(NP ∗), (SS) and (ILR). To see that F = Ψ, consider a game v ∈ CC(N,Ω, $). By

Proposition 3.1.1, the family
(
Υk,S

)
S∈CN ,k∈ΩS

is a basis of the space vector CC(N,Ω, $).

Therefore there exists a family of reals (αk,S)S∈CN ,k∈ΩS
such that

v =
∑
S∈CN

∑
k∈ΩS

αk,SΥk,S.

By Lemma 3.3.2, F
(
αk,SΥk,S

)
= Ψ

(
αk,SΥk,S

)
for all k ∈ ΩS, since F and Ψ both

satisfy (E), (A), (NP ∗), (SS) and (ILR) on CC(N,Ω, $). Therefore, F (v) = Ψ (v) by

additivity. We then conclude that, F = Ψ.

In Theorem 3.3.1, condition (ILR) may be omitted for some specific Ω. To illustrate

this, we assume that all sample spaces with proper coalitions are of the same cardinality.

The following counterpart of Lemma 3.3.2 holds for this specific configuration.

Lemma 3.3.3. Assume that $ is uniform on Ω and that |ΩS| = |ΩT | for all coalitions
S, T ∈ CN \ {N}. Then for any two values F and F ′ that satisfy (E), (A), (NP ∗) and

(SS) on CC(N,Ω, $),

F
(
αΥk,S

)
= F ′

(
αΥk,S

)
for all S ∈ CN , for all k ∈ ΩS and for all α ∈ R.

Proof.
Assume that $ is uniform on Ω and that |ΩS| = |ΩT | for all coalitions S, T ∈

CN \ {N}. Consider two values F and F ′ that satisfy (E), (A), (NP ∗) and (SS) . As

above, F
(
αΥk,S

)
= F ′

(
αΥk,S

)
for S = N by (SS) and (E). Now, let S be a coalition

other than N ; and k, l ∈ ΩS. Choose an arbitrary event kT for each possible coalition

T such that |T | = |S| and define the CC-game v by

v =
∑

T 6=S:|T |=|S|
αΥkT ,T .

Taking into the account that the probability distribution is uniform, it follows that

for both αΥk,S + v and αΥl,S + v, any pair of players are stochastically symmetric.

Therefore by efficiency, F (αΥk,S + v) = F ′(αΥl,S + v). Thus by additivity, one gets

F (αΥk,S) = F ′(αΥl,S).
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Lemma 3.3.3 leads us to the following result:

Assume that $ is uniform on Ω and that |ΩS| = |ΩT | for all coalitions

S, T ∈ CN \ {N}. Then
The equal-surplus Shapley value Ψ is the unique value on CC(N,Ω, $) that sat-

isfies axioms (E), (A), (NP ∗) and (SS).

Theorem 3.3.2 (Njoya et al. (2021)).

?

Proof.
Assume that $ is uniform on Ω and that |ΩS| = |ΩT | for all coalitions S, T ∈

CN \ {N}. Necessity. See Proposition 3.3.1.

Sufficiency. Very similar to the proof of Theorem 3.3.1 using Lemma 3.3.3 instead of

Lemma 3.3.2.

As shown in the next proposition, axioms in Theorem 3.3.2 are independent, none of

them can dropped.

Proposition 3.3.3. Assume that $ is uniform on Ω and that |ΩS| = |ΩT | for all

coalitions S, T ∈ CN \ {N}. Axioms (E), (A), (NP ∗) and (SS) are independent on

CC(N,Ω, $).

Proof.
Assume that $ is uniform on Ω and that |ΩS| = |ΩT | for all coalitions S, T ∈

CN \ {N}. For any four axioms out of (E), (A), (NP ∗) and (SS), we show that there

exists a value that meets all these three axioms, but which does not satisfy the fourth.

1. F 1
i (v, k) = 1

n
v (N, k) for all v ∈ CC(N,Ω, $), for all coalitions S, for all k ∈ ΩN

and for all i ∈ N .

(a) It is clear that given a CC-game v ∈ CC(N,Ω, $) for some Ω and $:∑
i∈N F

1
i (v, k) = v (N, k). Thus F 1 is (E).

(b) Given two CC-games u, v ∈ CC(N,Ω, $) for some Ω and $, we have for any

player i: F 1
i (u+ v) = 1

n
[u+ v] (N, k) = F 1

i (u) + F 1
i (v), thus F 1 is (A).
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(c) Now consider two players i and j who are stochastically symmetric in a

game v ∈ CC(N,Ω, $), by definition of F 1 we have F 1
i (v, k) = F 1

j (v, k) =

1
n
v (N, k). Thus F 1 is (SS).

(d) Although for some TU-game u ∈ ΓN and for any null player i in u ∈ ΓN and

in ũ$ ∈ CC(N,Ω, $), we have F 1
i (v, k) = 1

n
v (N, k). Thus F 1 is not (NP ∗).

2. Consider the value F 2 defined by: F 2 (v) = 2Ψ (v) for all v ∈ CC(N,Ω, $). Given

a player i in N , consider the CC-game v =
(
γ̃{i}
)

Ω
∈ CC(N,Ω, $) for some Ω and

$. Then all player N \ {i} are null players in
(
γ̃{i}
)

Ω
and By definition of Ψ for

an event k ∈ ΩN ,
∑

j∈N F
2
j (v, k) = 2Ψi (v, k) = 2v (N, k). Thus, F 2 is not (E) .

Since Ψ is (NP ∗), (A) and (SS); it is clear that F 2 is also (NP ∗), (A) and (SS).

3. Given v ∈ CC(N,Ω, $), denote by N∗(v) the set of all null players in the expec-

tation game Ev and for all S ∈ CN , let V (S) = {v(S, l) : l ∈ ΩS} be the set of all

possible worths of coalition S. Define the value F 3 for all v ∈ CC(N,Ω, $) and

for all i ∈ N by

F 3
i (v, k) = 0 if i ∈ N∗(v); and F 3

i (v, k) =
v(N, k)

|N\N∗(v)| otherwise.

(a) It is clear that F 3 satisfies (E) and (NP ∗).

(b) Suppose that i and j are two stochastically symmetric players in a CC-

game v ∈ CC(N,Ω, $). To see that i and j are symmetric players in the

expectation game, consider S ⊆ N\{i, j}.

Ev(S ∪ {i}) =
∑

l∈ΩS∪{i}

$((S ∪ {i}, l)v((S ∪ {i}, l)

=
∑

x∈V (S∪{i})
x

∑
l∈ΩS∪{i}:v(S∪{i},l)=x

$(S ∪ {i}, l)

=
∑

x∈V (S∪{j})
x

∑
l∈ΩS∪{j}:v(S∪{j},l)=x

$(S ∪ {j}, l)

since i and j are stochastically symmetric in v

=
∑

l∈ΩS∪{j}

$((S ∪ {j}, l)v((S ∪ {j}, l)

=Ev(S ∪ {j})

Thus, i and j are symmetric players in Ev. By the definition of F 3,

F 3
i (v, k) = F 3

j (v, k) for all k ∈ ΩN . Therefore F 3 satisfies (SS).

UYI: Ph.D Thesis 92 Donald Njoya Nganmegni N. c©UYI 2021



3.3. The equal-surplus Shapley value for CC-games

(c) Consider {i, j} ∈ CN . Pose u =
(
γ̃{i}
)

Ω
and v =

(
γ̃{i,j}

)
Ω
. Let k ∈ ΩS. We

have N∗(u) = N \{i} and N∗(v) = N∗(u+v) = N \{i, j}. By the definition

of F 3,

F 3
i (u, k) + F 3

i (v, k) = 1 +
1

2
=

3

2
and F 3

i (u+ v, k) = 1.

Therefore F 3(v + u) 6= F 3(u) + F 3(v) since F 3
i (u + v) 6= F 3

i (u) + F 3
i (v, k).

This proves that F 3 does not satisfy (A).

4. Given two distinct players i and j in N , denote by a the n-tuple defined by ai = 1,

aj = −1 and ah = 0 for all h ∈ N\{i, j}. Let the value F 4 be defined for all

v ∈ CC(N,Ω, $) and for all k ∈ ΩN by

F 4(v, k) = Ψ(v, k)+

 ∑
l∈Ω{i,j}

$({i, j}, l)v({i, j}, l)−
∑
l∈Ω{i}

$({i}, l)v({i}, l)−
∑
l∈Ω{j}

$({j}, l)v({j}, l)

 a.
(a) Since the terms of Ψ(v, k) sum to v(N, k) and the terms of a sum to zero, it

follows that the terms of F 4(, k) sum to v(N, k). Therefore F 4 satisfies (E).

(b) Suppose that u is a TU-game on N and h ∈ N is a null player in u. If h ∈
N\{i, j}, then by the definition of a, ah = 0 and F 4

h (ũ$, k) = Ψh(ũ$, k) = 0

since Ψ is (NP ∗). Now, without lost generality, suppose that h = i. Since

Ψ is (NP ∗), Ψi(ũ$, k) = 0. Moreover, ũ$(S, l) = u(S) for all coalitions S

and for all l ∈ ΩS. Thus, by the definition of F 4, we have:

F 4
i (ũ$, k) =

 ∑
l∈Ω{i,j}

$({i, j}, l)u({i, j})−
∑
l∈Ω{i}

$({i}, l)u({i})−
∑
l∈Ω{j}

$({j}, l)u({j})

 ai
=

u({i, j})− u({j})︸ ︷︷ ︸
0

−u({i})︸ ︷︷ ︸
0

 ai since $ is a probability distribution function

=0.

We conclude that F 4 satisfies (NP ∗).

(c) F 4 verifies (A) since Ψ verifies (A) and the coefficient of vector a in the

definition of F 4 is linear.

(d) Pose v = Υl,{i,j} for some k ∈ Ω{i,j}. Players i and j are stochastically

symmetric in v. Moreover,

F 4
i (v, k) = Ψi(v, k) + 1 and F 4

j (v, k) = Ψj(v, k)− 1.
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Since Ψi(v, k) = Ψj(v, k) by symmetry of Ψ, we deduce that F 4(i(v, k) 6=
F 4
j (v, k). Therefore F 4 does not satisfy (SS).

In summary, the four axioms are independent.

In Theorem 3.3.1, (ILR) is a necessary condition for some sample spaces. An illus-

tration is provided in the following example.

Example 3.3.2. Let N = {1, 2} be a set of two players. Consider the coalitional

sample spaces Ω{1} = {a, b}, Ω{2} = {c} and Ω{1,2} = {x, y}. A probability distribu-

tion function $ that is uniform on Ω is such that $({1}, a) = $({1}, b) = 1
2
and

$({2}, c) = 1. Define the value F on CC(N,Ω, $) as follows:

F (v) =


F1 (v, x) F2 (v, x)

F1 (v, y) F2 (v, y)



=


v1,b − 1

2
v1,a − 1

2
v2,c + 1

2
v12,x

1
2
v1,a − v1,b + 1

2
v2,c + 1

2
v12,x

1
2
v1,a − 1

2
v2,c + 1

2
v12,y

1
2
v2,c − 1

2
v1,a + 1

2
v12,y



where for simplicity v1,k = v({1}, k) for k ∈ {a, b}, v2,c = v({2}, c) and v12,k =

v({1, 2}, k) for k ∈ {x, y}. Note that F satisfies (E), (A), (NP∗) and (SS); but not

(ILR). This shows that for Theorem 3.3.1 to hold with this specific sample space,

one can no more discard condition (ILR).

Characterization over the full class of rational probability distributions

A uniform probability distribution is completely described by the collection of its sample

spaces. This is no longer the case for non uniform probability distributions. Also note

that conditions (E), (A) and (NP∗) are entirely normative considerations on individual

shares with respect to coalitional payoffs in a game. Thus, apart from (SS), axioms in

Theorem 3.3.1 do not fully capture the full strength of non uniform probability distribu-

tions. Condition (ILR) is some type of neutral treatment of elementary events in a sample

UYI: Ph.D Thesis 94 Donald Njoya Nganmegni N. c©UYI 2021



3.3. The equal-surplus Shapley value for CC-games

space. Thus none of the five properties in Theorem 3.3.1 tells about how changes on the

collection of probability distributions impact on individual shares. Further properties are

needed to characterize the equal-surplus Shapley value on CCr (N).

Remark 3.3.2. Consider a pair {a, b} of integers and Ω0 such that Ω0
S = {a, b} for

all S ∈ CN . Let p ≥ 3 be a prime number. Define the probability distribution function

$p for all coalitions S, by $p(S, a) = 2/p and $p(S, b) = 1 − 2/p. Now, define the

value F 5 for all v ∈ CC (N,Ω, $) ⊆ CCr (N) by

F 5 (v) =

 Ψ (v̂) if Ω = Ω0 and $ = $p

Ψ (v) otherwise

where the game v̂ is obtained from v by substituting to $p the uniform probability

distribution function $0 on Ω0. It can be checked that both F and Ψ meet (E),

(A), (NP ∗), (SS) and (ILR). Since F 5 6= Ψ, one needs further requirements to

characterize Ψ on CCr (N).

Recall that condition (ILD) allows to reshape the sample space as well as the prob-

ability distribution function. Over the full class of rational probability distributions, we

obtain the following:

A value F on CCr (N) satisfies (E), (A), (NP ∗), (SS) and (ILD) if and only if

F = Ψ.

Theorem 3.3.3 (Njoya et al. (2021)).

?

Proof.
Sufficiency. See Proposition 3.3.1.

Necessity. Suppose that a value F on CCr (N) satisfies(E), (A), (NP ∗), (SS) and

(ILD). Then by Theorem 3.3.2, it follows that F (v) = Ψ (v) whenever v is a game with

a uniform probability distribution function on a sample space Ω such that |ΩS| = |ΩT |
for all coalitions S, T ∈ CN \{N}. Now, consider an arbitrary game v ∈ CC (N,Ω, $) ⊆
CCr (N). Given a coalition S 6= N , pose $(S, k) =

aS,k
bS,k

with bS,k ≥ 1. Denote by q,

the least common multiple of the collection {bS,k: S ∈ CN \ {N} and k ∈ ΩS}. Then
given a coalition S 6= N , q = qS,kbS,k for some integer qS,k ≥ 1. By duplicating qS,k − 1

times each event k ∈ ΩS for all coalitions S 6= N and by applying (ILD) as indicated in
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Remark 3.2.1, one constructs a new game vd ∈ CC
(
N,Ωd, $d

)
such that $d is uniform

on Ωd, F (v) = F (vd) and for all coalitions S, T 6= N , |Ωd
S| = |Ωd

T | = q. Since $d is

uniform, then by Theorem 3.3.2, F (vd) = Ψ(vd). Hence F (v) = Ψ(vd) = Ψ(v).

Proposition 3.3.4. The axioms (E), (A), (NP ∗), (SS) and (ILD) are independent

on CCr (N) .

Proof.
Each of the four values presented in Proposition 3.3.3 satisfies (ILD) but fails to

satisfy exactly one axiom among (E), (A), (NP ∗) and (SS). Therefore, we only have

to prove that (ILD) can not be deduced from the other four axioms in consideration

on CCr (N) . To see this, we prove that the value introduced in Remark 3.3.2 is (E),

(A), (NP ∗) and (SS), but not (ILD).

1. The value F 5 satisfies (E) since Ψ verifies (E).

2. To prove that F 5 satisfies (NP ∗), suppose that u is a TU-game on N and i ∈ N
is a null player in u. We have to prove that for all k ∈ ΩN , F 5

i (v, k) = 0 where

v = ũ$ for an arbitrary probability distribution function $ on a collection Ω

of sample spaces. First suppose that v ∈ CC(N,Ω0, $p); that is Ω = Ω0 and

$ = $p. Then v̂ = ũ$0 and F 5
i (v, k) = Ψi (ũ$0 , k) = 0 since Ψ satisfies (NP ∗).

Now, suppose that v /∈ CC(N,Ω0, $p). Then F 5
i (v, k) = Ψi (ũ$, k) = 0 since Ψ

satisfies (NP ∗). Thus, we conclude that F 5 satisfies (NP ∗).

3. By noting that û+ v = û + v̂ for all u, v ∈ CC(N,Ω0, $p), it follows that F 5

verifies (A) since Ψ verifies (A).

4. Suppose that i and j are two stochastically symmetric players in a CC-game

v ∈ CC(N,Ω, $). Let k ∈ ΩN . First suppose that v /∈ CC(N,Ω0, $p). By the

definition of F 5, F 5(v) = Ψ(v). Since Ψ verifies (SS), it follows that F 5
i (v, k) =

F 5
j (v, k) for all k ∈ ΩN . Now, suppose that v ∈ CC(N,Ω0, $p). By the definition

of Ω0, i and j are such that v(S∪{i}, l) = v(S∪{j}, l) for all S ⊆ N\{i, j} and for

all l ∈ ΩS∪{i}) = {a, b} = ΩS∪{j}). From v to v̂, only the probability distribution

function changes. Therefore, v̂(S ∪{i}, l) = v̂(S ∪{j}, l) for all S ⊆ N\{i, j} and
for all l = {a, b}. This proves that i and j are stochastically symmetric in v̂ and
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that F 5(v) = Ψ(v̂). Since Ψ verifies (SS), it follows that F 5
i (v, k) = F 5

j (v, k) for

all k ∈ ΩN . This prove that F 5 satisfies (SS).

5. Consider i ∈ N . Pose S = N\{i}, v = Υa,S ∈ CC(N,Ω0, $p) and u = vS,b,b
′

where u is obtained from v by only duplicating, in ΩS, b into b and b′. Note that

v ∈ CC(N,Ω0, $p), v̂ ∈ CC(N,Ω0, $0) and u /∈ CC(N,Ω0, $p). Also note that,

Eu = Ev =
2

p
γS +

(
1− 2

p

)
γN and Ev̂ =

1

p
γS +

(
1− 1

p

)
γN . (3.13)

Therefore,

F 5
i (v, a) = Ψi(v̂, a) = Shapi

(
1

p
γS +

(
1− 1

p

)
γN , a

)
=

1

n
− 1

np

and

F 5
i (u, a) = Ψi(u, a) = Shapi

(
2

p
γS +

(
1− 2

p

)
γN , a

)
=

1

n
− 2

np

It follows that F 5
i (u, a) 6= F 5

i (v, a). Since u is obtained from v by a duplication

of b in ΩS, we conclude that F 5 does not satisfy (ILD).

The proof is thus completed.

The arguments in the proof of Theorem 3.3.3 are strongly related to the fact that the

probability of each coalitional event is a rational number. The main step of the proof

consists in moving from any game with rational probability distributions to a game with

a uniform probability distribution.

Characterization in the whole set of all CC-games

In this section, the whole set CC(N) of all CC-games on N is considered (there is no

restriction on the probability distribution function). New axioms are introduced to cap-

ture how a value behaves when some specific changes on the payoffs or on the probability

distribution occur. But before, we extend the scope of Theorem 3.3.3 from CCr (N) to

CC (N) . To this end, the following lemma is introduced.

Lemma 3.3.4. If a value F satisfies (E), (A), (NP ∗), (SS) and (ILD) on CC (N),

then

F
(
αΥk,S

)
= Ψ

(
αΥk,S

)
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for all collections Ω = (ΩS)S∈CN of sample spaces, for all probability distribution

functions $ on Ω, for all S ∈ CN , for all k ∈ ΩS and for all α ∈ R.

Proof.
Consider a value F that satisfies (E), (A), (NP ∗), (SS) and (ILD) on CC (N); a

collection Ω of sample spaces, a probability distribution function $ on Ω, a coalition

S ∈ CN , an event k ∈ ΩS and a real number α ∈ R. First note that by Theorem

3.3.3, the result holds when $ is rational-valued. Now, suppose that the probability

distribution function $ is not rational-valued and cannot be reduced to a rational-

valued function by merging only some duplicate events. We prove that, even in this

case, F
(
αΥk,S

)
= Ψ

(
αΥk,S

)
. By the definition of Υk,S, for all coalitions T 6= S, all

events in ΩT lead to the same coalitional payment of 1 when S $ T , and 0 when

S * T . Thus by (ILD), F
(
αΥk,S

)
= F (u0) where the game u0 is obtained from Υk,S

by merging all duplicated events in each sample space ΩT , with T /∈ {S,N}, into a

single event eT . By so doing, we move from (Ω, $) to (Ω1, $1) such that for T ∈ {S,N},
(Ω1)T = ΩT , $1(T, k) = $(T, k) for all k ∈ ΩT ; and for all T 6= S, (Ω1)T = {eT} and
$1(T, eT ) = 1. Since $ cannot be reduced to a rational-valued probability distribution,

ΩS necessarily contains at least two events.

First suppose that ΩS = {k, l} for some events k and l with the associated probability

distribution (p1; p2). To continue, we introduce three new games. To this end, we

consider an arbitrary rational number q such that p1 − 1
2
< q < min{p1,

1
2
}. Such a

rational number q necessarily exists since p1 − 1
2
< p1 and p1 − 1

2
< 1

2
. The new games

are:

• u1 ∈ CC(N,Ω1, $1) is defined such that

u1(S, k) = 0, u1(S, l) = 1, $′(S, k) = $′(S, l) =
1

2

and

u1(T, t) = 1 for all T 6= S and t ∈ (Ω1)T .

• u2 ∈ CC(N,Ω2, $2) is obtained from u0 by only duplicating k into k and k′, and

l into l and l′ in such a way that (Ω2)S = {k1, k2, l1, l2} and (Ω2)T = (Ω1)T for all

T 6= S, with

$2(S, k) = q, $2(S, k′) = p1 − q; $2(S, l′) =
1

2
− q; $2(S, l) = q +

1

2
− p1 = p2 −

(
1

2
− q
)
.
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• u3 ∈ CC(N,Ω2, $3) is obtained from u1 by only duplicating k into k and l′, and l

into l and k′ in such a way that

$3(S, k) = q, $3(S, l′) =
1

2
− q; $3(S, k′) = p1 − q; $3(S, l) = q +

1

2
− p1 =

1

2
− (p1 − q)

Note that u2 and u3 are defined on the same sample space Ω2. Moreover, from $2

to $3, only the probabilities of k′ and l′ are permuted. Let π be the transposition of

Ω2 that interchanges k′ and l′; that is π = (k′, l′). Then π$3 = $2. We deduce that

πu3 ∈ CC(N,Ω2, $2). Furthermore,

(u2 + πu3)(S, t) = 1 for all t ∈ (Ω2)S .

In words, all events in (Ω2)S lead to the same coalitional payment of 1. Therefore, by

(ILD), k, k′, l and l′ can be merged from u2 + πu3 into a single event eS that occurs

with probability 1. This leads us to the game u4 = u2 + πu3 ∈ CC(N, (Ω3, $4) such

that

(Ω2)T = {eT} and $4(T, eT ) = 1

for all coalitions T 6= N . Thus, u1 and u4 belongs CCr(N). Therefore

F
(
αΥk,S

)
= F (u0) by (ILD)

= F (u2) by (ILD)

= F (u2 + πu3)− F (πu3) by additivity of F

= Ψ (u2 + πu3)− F (πu3) by Theorem 3.3.3 since u4 = u2 + πu3 ∈ CCr(N)

= Ψ(u2) + Ψ (πu3)− F (πu3) by additivity of Ψ

= Ψ(u2) + Ψ (u3)− F (u3) by (ILD) and Proposition 3.2.1

= Ψ(u0) + Ψ (u1)− F (u1) by (ILD)

= Ψ(u0) by Theorem 3.3.3 since u1 ∈ CCr(N)

= Ψ
(
αΥk,S

)
by (ILD)

Now, suppose that ΩS contains more than two events. By definition, Υk,S(S, k) = 1

and Υk,S(S, t) = 0 for all t ∈ ΩS\{k}. Thus by merging all events t ∈ ΩS\{k} into a

single event l, one returns to the previous case by applying (ILD).
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Thanks to the previous lemma, we have the following result :

A value F on CC (N) satisfies (E), (A), (NP ∗), (SS) and (ILD) if and only if

F = Ψ.

Theorem 3.3.4 (Njoya et al. (2021)).

?

Proof.
Necessity. See Proposition 3.3.1.

Sufficiency. For a given collection Ω of sample spaces and a probability distribution

function on $ on Ω,
(
Υk,S

)
S∈CN ,k∈ΩS

is, by Proposition 3.1.1, a basis of CC(N,Ω, $).

Thus, the result follows from Lemma 3.3.4 and additivity.

Proposition 3.3.5. Axioms (E), (A), (NP ∗), (SS) and (ILD) are independent on

CC (N) .

Proof.
Since CCr (N) ⊆ CC (N), each of the five values invoked in the proof of Proposition

3.3.4 also permit to prove that none of the five axioms in consideration on CC (N) can

not be deduced from the four others.

In Theorem 3.3.4 , axioms (E), (A) and (NP ∗) are related to how, independently of

the probability distribution, the information on coalitional payoffs in a game impacts on

the shares of players. Axioms (SS) and (ILD) describe some specific patterns or changes

that may be observed either on the coalitional payoffs; or on the probability distribution

function separately. Some more mixture changes that combine changes on the probability

distribution and the coalitional payoffs are explored below. The first change consists in

merging two events as follows: given v ∈ CC (N) , a coalition S 6= N and {k, l} ⊆ ΩS, the

game
(
ΩS,k∼l, vS,k∼l, $S,k∼l) ∈ CC (N) is defined by

(i) ΩS,k∼l
T = ΩT \ {l} if T = S and ΩS,k∼l

T = ΩT if T 6= S;

(ii) $S,k∼l(S, k) = $(S, k) +$(S, l) and

vS,k∼l(S, k) =
$(S, k)

$(S, k) +$(S, l)
v(S, k) +

$(S, l)

$(S, k) +$(S, l)
v(S, l);
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(iii) $S,k∼l(T, j) = $(T, j) and vS,k∼l(S, j) = v(S, j) if T 6= S or (T = S and j ∈
ΩS \ {k, l}).

To obtain the game vS,k∼l, event l is deleted, the probability of event k is updated to

the sum of the probability of events k and l while the corresponding payoff is obtained

by aggregating the payoffs associated with k and l to their weighted mean. Hereafter, we

say that moving from v to vS,k∼l is an merging and cancelling operation (MC-merging).

Definition 3.3.1. An allocation rule (a value) F on F ⊆ CC(N) satisfies Merge-

and-Cancel Invariance (MCI) if for all v ∈ CC (N), for all coalitions S 6= N and

for all k, l ∈ ΩS, F
(
vS,k∼l

)
= F (v).

In contrast with (ILD), mergeability invariance captures changes that combine prob-

abilities with payoffs of coalitions. Although, (MCI) seems to be almost a mathematical

disposition, it turns out in the following result that (MCI) is equivalent to (ILD) when

one assumes (E), (A), (NP ∗) and (SS).

Considering (MCI), we have the following:

A value F on CC (N) satisfies (E), (A), (NP ∗), (SS) and (MCI) if and only if

F = Ψ.

Theorem 3.3.5 (Njoya et al. (2021)).

?

Proof.
Sufficiency Due to Proposition 3.3.1, one only needs to prove that Ψ satisfies

(MCI). By merging two events k, l ∈ ΩS into k in the CC-game v, it can be checked

that the expectation game in the new game vS,k∼l coincides with that of v. Therefore,

F
(
vS,k∼l

)
= F (v) by Equation (3.12).

Necessity. Suppose that a value F on CC (N) satisfies (E), (A), (NP ∗), (SS) and

(MCI). Given a coalition S 6= N , all events in ΩS can be merged into a single event,

say kS, by a successive use of the merging operation. By MCI, this operation leaves

unchanged all individual shares with respect to F and Ψ from v to the new game. By

iterating this procedure for all coalitions S 6= N , one moves from v to the game

Υ =
(
Ẽv

)
$′

+
∑
k∈ΩN

(v(N, k)− Ev(N)) Υk,N

UYI: Ph.D Thesis 101 Donald Njoya Nganmegni N. c©UYI 2021



3.3. The equal-surplus Shapley value for CC-games

such that for all k ∈ ΩN , the payoff and the probability of event k are the same in Υ

as in v; for all coalitions S 6= N , kS is the unique event for S in Υ while the payoff

of the members of S is the expectation Ev(S) of S in v. By (MCI), F (v) = F (Υ) and

Ψ(Υ) = Ψ(v). Moreover, the probability distribution in Υ is uniform on Ω′. Thus by

Theorem 3.3.2, F (Υ) = Ψ(Υ). Therefore F (v) = Ψ(v).

Proposition 3.3.6. Axioms (E), (A), (NP ∗), (SS) and (MCI) are independent on

CC (N) .

Proof.
Each of the four values presented in Proposition 3.3.3 fails to satisfy exactly

one axiom among (E), (A), (NP ∗) and (SS). Each of those four values obviously

satisfies (MCI). Now, we have proved that the value F 5 in the proof of Proposition

3.3.4 satisfies (E), (A), (NP ∗) and (SS). To prove that F 5 fails to meet (MCI),

consider i ∈ N . Pose S = N\{i}, v = Υa,S ∈ CC(N,Ω0, $p) and u = vS,a∼b where u

is obtained from v by merging, in ΩS, a and b into a. Note that v ∈ CC(N,Ω0, $p),

v̂ ∈ CC(N,Ω0, $0) and u /∈ CC(N,Ω0, $p). Since the expectation game does not change

by applying an MC-merging operation, (3.13) still holds. Therefore,

F 5
i (v, a) = Ψi(v̂, a) = Shapi

(
1

p
γS +

(
1− 1

p

)
γN , a

)
=

1

n
− 1

np

and

F 5
i (u, a) = Ψi(u, a) = Shapi

(
2

p
γS +

(
1− 2

p

)
γN , a

)
=

1

n
− 2

np

It follows that F 5
i (u, a) 6= F 5

i (v, a). Since u is obtained from v by an MC-merging

operation, we conclude that F 5 does not satisfy (MCI). The proof is thus completed.

By an MC-merging operation, the size of a sample space is reduced by canceling

some events. An alternative would consist in maintaining all events. To achieve such an

operation, associate to a game v ∈ CC(N,Ω, $) the game vS,k∧l ∈ CC (N,Ω, $) defined

by vS,k∧l(T, j) = v(T, j) if T 6= S or (T = S and j ∈ ΩS \ {k, l}); together with

vS,k∧l(S, k) = vS,k∧l(S, l) =
$(S, k)

$(S, k) +$(S, l)
v(S, k) +

$(S, l)

$(S, k) +$(S, l)
v(S, l).
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For the game vS,k∧l(S, k), one merges the payoffs of events k and l to the their weighted

mean; but keeps all events with their respective probabilities. However, for the game vk∼l,

one merges the payoffs of the two events and delete l from the sample space of S.

Definition 3.3.2. An allocation rule (a value) F on F ⊆ CC(N) satisfies Merge-

and-Keep Invariance (MKI) if for all v ∈ CC (N), for all coalitions S 6= N and for

all k, l ∈ ΩS, F
(
vS,∧l

)
= F (v).

Both (MKI) and (MCI) are based on the same intuition that merging some events

in a consistent way should not affect individual shares in a game. Hereafter, we say that

moving from v to vS,k,l is an MK-merging operation.

To prove the next result, we consider the basis
(
Υc,k,S

)
S∈CN ,k∈ΩS

of CC(N,Ω, $) where

the collection c is such that for all S ∈ CN and for all k ∈ ΩS,

ck,S =
1

$(S, k)
. (3.14)

It can be checked that all games Υc,k,S for k ∈ ΩS yield the same expectation of one unit

to coalition S. Moreover, the following result holds:

Lemma 3.3.5. Let c = (ck,S)S∈CN ,k∈ΩS
be a collection defined by (3.14).

Then, all values F that satisfy (MKI) on CC (N,Ω, $) are such that

F
(
αΥc,k,S

)
= F

(
αΥc,l,S

)
(3.15)

for all coalitions S, for all events k, l ∈ ΩS and for all real numbers α.

Proof.
Suppose that c = (ck,S)S∈CN ,k∈ΩS

is defined by (3.14). Consider a value F on

CC (N,Ω, $) that satisfies (MKI), a coalition S, two events k, l ∈ ΩS and a real

number α. Pose u = αΥk,S and v = αΥl,S. By the definition of αΥk,S and αΥl,S,

u(T, t) = v(T, t) for all coalitions T and for all t ∈ ΩT such that T 6= S or (T = S

and t ∈ ΩS\{k, l}). Therefore, uS,k∧l(T, t) = vS,k∧l(T, t) for all coalitions T and for all

t ∈ ΩT such that T 6= S or (T = S and t ∈ ΩS\{k, l}). Furthermore, for t ∈ {k, l},

uS,k∧l(S, t) = vS,k∧l(S, t) =
1

$(S, k) +$(S, l)
.

This proves that uS,k∧l = vS,k∧l. It appears from (MKI) that,

F (αΥk,S) = F (uS,k∧l) = F (vS,k∧l) = F (αΥl,S).

UYI: Ph.D Thesis 103 Donald Njoya Nganmegni N. c©UYI 2021



3.3. The equal-surplus Shapley value for CC-games

As with (MCI), axiom (MKI) leads us to the following result:

A value F on CC (N) satisfies (E), (A), (NP ∗), (SS) and (MKI) if and only if

F = Ψ.

Theorem 3.3.6 (Njoya et al. (2021)).

?

Proof.
Sufficiency. Due to Proposition 3.3.1, we only needs to prove that Ψ satisfies

(MKI). Consider v ∈ CC(N). By the definition of an (MKI)-merging operation, the

expectation game of vS,k∧l coincides with that of v. Therefore, by Equation (3.12),

Ψ
(
vS,k∧l

)
= Ψ (v).

Necessity. Suppose that a value F on CC (N) satisfies (E), (A), (NP ∗), (SS)

and (MKI). Consider v ∈ CC (N,Ω, $). Since F satisfies (A) and the collection(
Υc,k,S

)
S∈CN ,k∈ΩS

with c defined by (3.14) is a basis of CC (N,Ω, $), to prove that

F (v) = Ψ(v), we only have to prove that F
(
αΥc,k,S

)
= Ψ

(
αΥc,k,S

)
for all S ∈ CN and

for all k ∈ ΩS.

For this purpose, consider a coalition S and k ∈ ΩS. On the one hand, we have

F

(∑
l∈ΩS

$(S, l)αΥc,l,S

)
= F (α (γ̃S)$) by Proposition 3.1.3

On the other hand,

F

(∑
l∈ΩS

$(S, l)αΥc,l,S

)
=
∑
l∈ΩS

F
(
$(S, l)αΥc,l,S

)
by additivity

=
∑
l∈ΩS

F
(
$(S, l)αΥc,k,S

)
by Lemma 3.3.5

= F

(∑
l∈ΩS

$(S, l)αΥc,k,S

)
by additivity

= F
(
αΥk,S

)
since

∑
l∈ΩS

$(S, l) = 1

This proves that F
(
αΥk,S

)
= F (α (γ̃S)Ω). Since Ψ also satisfies (E), (A), (NP ∗), (SS)

and (MKI), we deduce that Ψ
(
αΥk,S

)
= Ψ (α (γ̃S)Ω). In the CC-game α (γ̃S)Ω, all

players in S are stochastically symmetric while all players out of S are null players in

the game. The result follows by applying (E), (NP ∗) and (SS).
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Proposition 3.3.7. Axioms (E), (A), (NP ∗), (SS) and (MKI) are independent

on CC (N) .

Proof.
Each of the four values presented in Proposition 3.3.3 fails to satisfy exactly one

axiom among (E), (A), (NP ∗) and (SS). Each of those four values obviously satisfies

(MKI). Now, we have proved that the value F 5 in the proof of Proposition 3.3.4

satisfies (E), (A), (NP ∗) and (SS). To prove that F 5 fails to meet (MKI), consider

i ∈ N . Pose S = N\{i}, v = Υa,S ∈ CC(N,Ω0, $p) and u = vS,a∧b where u is

obtained from v by an MK-merging operation, in ΩS. Note that v ∈ CC(N,Ω0, $p),

v̂ ∈ CC(N,Ω0, $0) and u ∈ CC(N,Ω0, $p). Since the expectation game does not change

by applying an MK-merging operation, (3.13) still holds. Therefore,

F 5
i (v, a) = Ψi(v̂, a) = Shapi

(
1

p
γS +

(
1− 1

p

)
γN , a

)
=

1

n
− 1

np

and

F 5
i (u, a) = Ψi(u, a) = Shapi

(
2

p
γS +

(
1− 2

p

)
γN , a

)
=

1

n
− 2

np

It follows that F 5
i (u, a) 6= F 5

i (v, a). Since u is obtained from v by an MK-merging

operation, we conclude that F 5 does not satisfy (MCI). The proof is thus completed.

Remark 3.3.3. It appears from Theorems 3.3.5 and 3.3.6 that (MCI) and (MKI)

are equivalent axioms for values that satisfy (E), (A), (NP ∗) and (SS) . The notice-

able advantage of Theorem 3.3.6 is that it is still valid for a given sample space Ω

while Theorem 3.3.5 stands for a framework with a variable sample space. Further-

more, the intuition behind both (MCI) or (MKI) seems quite to be the preservation

of the expectations of proper coalitions in a game. Each of the two axioms is equiv-

alent to (ILD) for values that satisfy (E), (A), (NP ∗) and (SS) . Hence (ILD) tells

a more perceivable story behind (MCI) or (MKI).
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?? Conclusion ??

At the end of this thesis, it is worth noticing that our aim was the study of some non

classical approaches to cooperative games. In this sense, we have explored three new

classes of cooperative games namely MTU-games, LUF-games and CC-games (with sam-

ple spaces). For each of these three classes, our main concerns consist in analyzing how

the worth of a cooperation can be shared amount partners.

With MTU-games presented in Chapter 1, the novelty is that the payoff of a coalition

depends on the choice of its members between two or more available alternatives. We

have defined two core concepts and provided necessary and sufficient conditions for the

non-emptiness of each of the two cores (see Theorem 1.2.1 and Theorem 1.2.2). These

results can be viewed as two extensions of the Shapley-Bondareva theorem from TU-

games to MTU-games. To achieve this, we prove in Proposition 1.2.5 that the core of an

MTU-game with respect to a given coalition structure is empty whenever the coalition

structure is not poly-efficient; and coincides, for all poly-efficient coalition structures, with

the classical core of the corresponding max-game.

In chapter 2, we introduce the class of LUF-games by weakening the utility transfer-

ability assumption in TU-games. Now, each outcome of cooperation is a raw material

the value depends on the player and the coalition in consideration. Two core concepts

for LUF-games are defined and the characterization of sharing vectors in each of the two

cores are presented. Necessary and sufficient non-emptiness conditions are stated and

proved in Theorem 2.2.3 for linear LUF-games. In the general case, we provide, in Theo-

rem 2.2.1 and Theorem 2.2.2, the characterizations of core sharing vectors in LUF-games.

The notions of lower compensation shares and upper compensation shares of players, two

concepts we introduce, were very useful tools in proving each of the characterizations

provided.
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Conclusion

In chapter 3, we enrich the model of CC-games by embedding sample spaces to coali-

tional random payoffs. This allows us to define a value for CC-games called equal-surplus

Shapley value. By so doing, we encompass the absence of single-valued solutions for CC-

games in the literature. The newly introduced value has been characterized in several

ways depending on the class of admissible probability distributions; see Theorems 3.3.1

to 3.3.6. These axiomatizations scrutinize the equal-surplus Shapley value on its ability

to fulfill some desirable properties of value solutions defined on CC-games. For example,

when only uniform probability distributions are observable, the equal-surplus Shapley

value is the unique value on CC-games that simultaneously satisfies efficiency, additivity,

null player property, stochastic symmetry and independence of local relabeling.

Still in our framework, some issues are left open. For example, it is of interesting to

find necessary and sufficient conditions for the non-emptiness of the cores of LUF-games.

Possible directions to explore include the study of possible links between LUF-games and

the general model of non transferable utility cooperative games. It is worth noticing that

an interpretation of a LUF-game as a non transferable utility cooperative game will surely

emerge to a loss of information about individual utility functions. Another pending issue

is the extension and the characterization of the equal-surplus Shapley value for CC-games

with possibly infinite sample spaces. An immediate difficulty in doing that is the fact that

some coalitional random payoffs might lead to infinite means (that is when the means of

some coalitional payoffs do not exist as real numbers on which algebraic operations might

be defined).
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Abstract
Many interactions from linear production problems, financial markets, or sequencing
problems are modeled by cooperative games where payoffs to a coalition of players is
a random variable. For this class of cooperative games, we introduce a two-stage value
as an ex-ante agreement among players. Players are first promised their prior Shapley
shares which are exactly their respective shares by the Shapley value of the expectation
game. The final payoff vector is obtained by equally re-allocating the surplus when
a realization of the random payoff of the grand coalition is observed. In support of
the tractability of the newly introduced value called equal-surplus Shapley value, we
provide a simple and compact formula. Depending on which probability distributions
over the sample spaces are admissible,we present several characterization results of the
equal-surplus Shapley value. This is achieved by using some classical axioms together
with some other appealing axioms such as the independence of local duplicationwhich
simply requires that individual shares in a game remain unchanged when only certain
events are duplicated in the sample space of a coalition without altering the probability
of observing the others.

Keywords Game theory · Random coalitional payoffs · Equal surplus · Finite sample
spaces

B Issofa Moyouwou
imoyouwou2@yahoo.fr

Donald Nganmegni Njoya
donaldnjoya24@yahoo.fr

Nicolas Gabriel Andjiga
andjiga2002@yahoo.fr

1 Department of Mathematics, Faculty of Sciences, University of Yaounde I, P.O. Box 812,
Yaounde, Cameroon

2 Department of Mathematics, Advanced Teachers’ Training College, University of Yaounde I, P.O.
Box 47, Yaounde, Cameroon

123



464 D. N. Njoya et al.

1 Introduction

Cooperative games with transferable utility (TU-games) model interactions in which
agents form coalitions and gain some payments. The payoff of a coalition is classi-
cally deterministic. However, inmany situations, payoffs are not known in advance but
are random variables. A variety of stochastic environments for cooperative decision-
making is nicely reported in Suijs (2012) and Suijs et al. (1998) who explore
applications in linear production tasks, queuing models, financial markets as well
as insurance deals. In this strand of the literature, Charnes and Granot (1973; 1976)
were the first to consider cooperative games when payoffs of coalitions are random
variables; the so-called chance-constrained games (c.c. games). Suijs et al. (1999), in
order to define stochastic cooperative games, enrich this model by embedding a set of
possible actions for each coalition and a profile of individual preferences on payoff
vectors. We are essentially interested in this paper on Charnes–Granot model mainly
for two reasons:

On the one hand, Charnes and Granot (1977) advocate that, in c.c. games, the payoff
process to the players should be composed of two parts: a prior payoff and an adjust-
ment disposition. Such a payoff process can be viewed as a two-stage contract which
works as follows: when a given coalition is formed, its members are first promised,
taking into the account the expectation of each of its sub-coalitions, their respective
prior payoffs; after a realization of the random payoff of the coalition is observed, the
second part of the contract is applied to reallocate the surplus to the members of the
coalition. This approach for profit sharing takes into account all possible realizations of
the profit. Although Timmer et al. (2004) find this approach to be “time-consuming,
inefficient and perhaps even impossible”, we think these comments are misleading
since the alternative approach that consists in assigning to each agent a share of the
total profit can also be viewed as a two-stage payoff with null prior payments. More-
over, the value we propose in this paper has a two-stage shape, but it still has some
desirable properties and a very simple interpretation.

On the other hand, it can be checked that for c.c. games, only set-valued solutions
have been defined. More precisely, Charnes and Granot (1977) consider a two-stage
core and a two-stage nucleolus for this class of games; further, they present some
conditions, on the distribution functions associated with the random payoffs of coali-
tions, that describe some situations in which the two-stage nucleolus contains a unique
payoff vector. No single-valued rule, a value, that assigns a c.c. game with a single
payoff vector is not yet defined together with some of its axiomatizations. Our aim is
to fill this gap by providing a value for c.c. games together with a simple and compact
formula as well as some characterization results.

To define core concepts which lead to set-valued solutions, preferences are used in
Suijs et al. (1999, 1998) or Charnes and Granot (1977). Timmer (2006) and Timmer
et al. (2004) provide, for cooperative games with random payoffs, the only solutions
that are single-valued. In both contributions, individual preferences play a central role
in designing the allocation rules. Individual preferences are omitted here. In doing so,
we opt for the normative approach inwhichwe only care about individual contributions
to the collective worth in order to set up some justice and equity norms like efficiency,
symmetry, null player property, etc. Moreover, we consider chance-constrained games
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each equipped with a collection of finite sample spaces fromwhich coalitional payoffs
are derived.A similar approachwas considered for cooperative gameswith uncertainty
by Habis and Herings (2011) who introduce a single sample space, and then define
all coalitional worths as functions on this sample space. In this latter framework,
coalitional worths, which may be correlated or not, are simultaneously generated as a
state of nature is observed. This is the case, for example, of the worths of coalitions of
agents on the same market with distinct volumes of the same good, the price of which
depends on each state of nature. However, chance-constrained games that we consider
deal with situations in which only the worths of coalitions formed by players are
observed at each state of nature. However, all the parameters of the game are common
knowledge (the sample spaces, the coalitional function and all the probabilities are
known in advance). Illustrations of this class of games are provided later in the paper.

Note that the expectation game of a given c.c. game associates each coalition with
the expectation of its random payoff. The prior Shapley value of a c.c. game (see
Charnes and Granot (1973), ) is simply the Shapley value of its expectation game.
Assuming that the grand coalition is formed, one obtains a two-stage payoff by equally
re-allocating the surplus when a realization of the collective payoff is observed. We
refer to the corresponding rule as the equal-surplus Shapley value. We explore some
interesting features of the equal-surplus Shapley value of c.c. games from three distinct
perspectives as mentioned above. Firstly, from a computational point of view, the
equal-surplus Shapley value has a simple formula that linearly depends on the inputs
that define the game. Secondly, we show that the equal-surplus Shapley value complies
with the Shapley procedure with the only adjustment that the marginal contribution
of a player to a given coalition is not known in advance. Finally, axiomatizations are
provided to exhibit what are the normative dispositions that completely describe the
equal-surplus Shapley value.

The idea of the equal-surplus shares is also known in the case of TU-games; see
for example van den Brink (2007) or Béal et al. (2016). Béal et al. (2019) introduce
the efficient egalitarian Shapley value of a TU-game as the sum of the Shapley value
of the game and the equal shares of the surplus generated for the grand coalition
as one moves from the game to its superadditive cover. This allocation rule has the
same shape as the equal-surplus Shapley value for c.c. games in this paper. Another
similarity with the TU-game setting is that some of the axioms we use are extensions
of known axioms from TU-games to c.c. games. This is the case for efficiency, null
player property or additivity. However, some other axioms are purely designed for c.c.
games. This is for example the case with Independence of Local Relabeling (ILR) or
Independence of Local Duplication (ILD). Axiom (ILR) requires that any relabeling
of events in the sample space associated with a proper coalition should have no effect
on individual shares. In the same way, (ILD) requires that no change on individual
shares occurs when an event in a sample space is split into two new events which
preserve the probability and the payments: each of the two new events yields the same
payment as the initial event and the sum of the probabilities of the two new events
is equal to the probability of the initial event. All these new axioms are illustrated
through examples.

Depending on which probability distributions are admissible, we provide distinct
axiomatizations of the equal-surplus Shapley value for c.c. games. We first consider
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the uniform probability distribution on sample spaces. We then move to the class of
probability distributions that are rational-valued. In the general case, no restriction on
the probability distribution on sample spaces is imposed. To make our presentation
easier, two assumptions are made. It is assumed that the grand coalition is formed; and
that all sample spaces are finite; that is, the random payoff of each coalition consists
of a finite number of elementary events.

The rest of the paper is organized into three main sections. Section 2 is devoted to
some basic definitions and differences between TU-games, c.c. games and coopera-
tive games with stochastic payoffs. We essentially present some illustrations of c.c.
games with sample spaces on which we structure our analysis. Still in this section, the
notion of value for c.c. games is defined and the equal-surplus Shapley value is intro-
duced. In Sect. 3, an interpretation of the equal-surplus Shapley value is provided.
Some algebraic properties on c.c. games are then presented to make the proofs of
some subsequent results in the paper more understandable. In this section, we mainly
present some axiomatizations of the equal-surplus Shapley value depending on which
probability distributions are considered; detailed proofs of the independence between
axioms we use in each result are relegated to the appendices. Section 4 concludes the
paper.

2 Basic definitions and some preliminary results

Denote by N = {1, 2, . . . , n} a nonempty finite set of n ≥ 2 players; and by 2N the
set of all subsets of N . A non empty subset of N is called coalition and the set of all
coalitions of N is denoted by CN . Given a finite set X , the cardinality of X is denoted
by |X |, a permutation of X is a one-to-one function from X onto itself. A transposition
of X is any permutation π of X such that for some {k, l} ⊆ X , π(k) = l, π(l) = k
and π(t) = t for all t ∈ X\{k, l}; in this case, π is denoted by π = (k, l).

2.1 TU-games, c.c. games and cooperative games with stochastic payoffs

Acooperative gamewith transferable utilities on N , or simply aTU-game, is amapping
v : 2N −→ R with v(∅) = 0; v(S) is the payoff that the members of S can jointly
achieve. The set of all TU-games on N is denoted by Γ N . Given a game v ∈ Γ N , a
player i is a null player if for all S ⊆ N\ {i}, v (S ∪ {i}) − v (S) = 0; two players
i and j are symmetric if for all S ⊆ N\ {i, j}, v (S ∪ {i}) = v (S ∪ { j}). The sum
of u, v ∈ Γ N is the TU-game u + v ∈ Γ N defined for all S ⊆ N by (u + v) (S) =
u (S) + v (S).

It is assumed that the grand coalition N is formed. An allocation rule, or a value,
on Γ N is a mapping f assigning each TU-game v with a payoff vector f (v) =
( fi (v))i∈N ; fi (v) is the share of player i in the game v with respect to f . A value
f satisfies Symmetry (Sym) if for all v ∈ Γ N , fi (v) = f j (v) whenever i and j
are symmetric players in v; Null Player (NP) property if for all v ∈ Γ N , fi (v) = 0
whenever i is a null player in v; Efficiency (E) if for all v ∈ Γ N ,

∑
i∈N fi (v) = v (N );

and Additivity (A) if for all u, v ∈ Γ N , f (u + v) = f (u) + f (v). It is known from
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Shapley (1953) that the unique value on Γ N that simultaneously meets (N P), (Sym),
(E) and (A) is the Shapley value defined for all v ∈ Γ N by

∀i ∈ N , Shapi (v) =
∑

S	i

(|S| − 1)! (n − |S|)!
n! (v (S) − v (S\ {i})) .

When some coalitions have several actions and random payoffs; one obtains coop-
erative game with stochastic payoffs which are each, a collection (N , (AS)S∈CN ,

(XS)S∈CN , (
i )i∈N ) where for each a ∈ AS , XS(a) is a finite expectation random
variable each realization of which is a coalitional payoff of S when its members jointly
choose action a; and (
i )i∈N is the collection of individual preferences over random
payoff vectors. Preferences of players are needed to analyze the desirability or the sta-
bility of randompayoff vectors; see Suijs et al. (1999) formore details. These attributes
can be omitted when one is mainly interested in value theory from a point of view of a
social planner. However, individual preferences are inescapable when one cares about
the stability of a payoff vector as it is the case with core concepts; see Timmer et al.
(2005) and Suijs et al. (1998) for cooperative games with stochastic payoffs; or Habis
and Herings (2011) for cooperative games with uncertainty (players are involved in a
TU-game depending on some given states of nature). Moreover, when each strategy
set AS is a singleton and strategies are omitted, the corresponding game, which is
simply identified to (N , (XS)S∈CN ), is hereafter called a chance-constrained game
(c.c. game) following Charnes and Granot (1973). It is worth noticing that values for
cooperative games with random payoffs that take into account individual preferences
on random payoffs are presented by Timmer (2006) and Timmer et al. (2004).

Note that a random variable is derived from a random experiment, that is a process
with many uncertain issues. The set of all possible issues or all possible random events
for the experiment forms the sample space. Chance-constrained games and gameswith
stochastic payoffs are usually definedwithout any information on the sample spaces. In
this paper, we embed sample spaces fromwhich coalitional payoffs are derived. Before
we introduce chance-constrained games with sample spaces, let us give a short view
of cooperative games with uncertainty (TUU-games) by Habis and Herings (2011).
A TUU-game can be summarized as a five-ingredient collection (N , S, v, T , u) in
which N is a finite set of players, S is a finite set of the states of nature, v = (vs)s∈S
is a collection of TU-games such that vs is the TU-game associated with the state of
nature s, T is a finite set of periods, and u = (ui )i∈N is a collection of individual utility
functions. Over each period in T , a state of nature s is (randomly) observed from S
and all players play the game (N , vs).In TUU-games, the worths of all coalitions are
known for each state of nature. In the following illustrative examples, the worths of
coalitions are independently drawn from distinct sample spaces.

Example 1 Consider two business units BU1 and BU2 who may purchase each a
basic printer. Each business unit may experience, over a given period, a mechanic
breakdown (M), an electronic breakdown (E), or none of them (Z). Event M occurs
with probability 0.1 for BU1 and 0.05 for BU2. Event E occurs with probability 0.02
for BU1 and 0.1 for BU2. In the case of a joint professional printer, M and E are
observed with the same probability of 0.05. The assistance charges for BU1 are 5 for
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M and 10 for E ; BU2 pays 8 for M and 4 for E ; and for the joint printer, M and E
cost 10 and 12 respectively. It is assumed that the printers operate independently. The
question is, in case of a joint printer, what would each business unit pay for M? for
E? Here the sample space for each coalition S is ΩS = {M, E, Z} where Z stands
for no breakdown (observed with no charge).

Remark 1 Note that in Example 1, there are only two coalition structures, namely P1
when BU1 and BU2 opt for individual printers; and P2 when they purchase a joint
printer. For P1 the states of nature are (M, M), (M, E), (M, Z), (E, M), (E, E),
(E, Z), (Z , M), (Z , E) and (Z , Z) where, for example, (M, E) means that BU1 and
BU2 experience M and E respectively. For each of these nine states of nature, note
that nothing is known about what would have happened for a joint printer since P1
and P2 are conjointly not possible here. Similarly, for P2, the states of nature are M ,
E and Z . Now, for each of these three states of nature associated with P2, nothing is
said about what would have happened for individual printers.

Example 2 During a festival, three types of tombola are organized for single tickets,
two-person tickets and group tickets respectively. Buying any ticket gives rights to a
Wheel of Fortune trial depending on the nature of the ticket. The Wheel of Fortune
for a one-person ticket may return a golden (G) band with probability 0.02 for a win
of 10 euros; or a red (R) band for a zero win. For a two-person ticket, one may win
25 euros for a yellow (Y) band with probability 0.04; 250 euros for a golden (G)
band with probability 0.02; or nothing for a red (R) band. A group ticket for at least
k ≥ 3 visitors is offered an initial discount of k euros and may further win 20k euros
with probability 0.02 for a yellow (Y) band; 200k euros with probability 0.001 for a
golden (G) band; and nothing for a red (R) band on theWheel of Fortune. John (player
1) has to purchase the entrance rights for three persons ( himself, his wife and his
young daughter); Penny (player 2) would like to pay access for two persons (herself
and Jenny); and Andrew (player 3) intends to attain the festival. They may separately
purchase their tickets or form a coalition for a group ticket. The question is, howwould
they share a joint win from the Wheel of Fortune in case of a group ticket (for six
visitors)? Note that the sample space for each coalition S is ΩS = {Y ,G, R} if 1 ∈ S
or 2 ∈ S; and ΩS = {Y , R} if S = {3}. Note that the sample space depends on the
coalition considered.

Definition 1 Given a finite set N of n ≥ 2 players, a chance-constrained game on N
(with sample spaces) is a triple (Ω, v,�) such that Ω = (ΩS)S∈CN is a collection of
coalitional sample spaces; the mapping v and � respectively give, for all S ∈ CN and
for all k ∈ ΩS , the coalitional payoff v(S, k) of the members of S and the probability
�(S, k) > 0 of observing event k; with ∑

k∈ΩS
�(S, k) = 1 for all coalitions S.

The set of all chance-constrained games on N is denoted by CC(N ) and
CC(N ,Ω,�) is the subset of CC(N ) that consists of all c.c. games on N with the
same probability distribution function � on Ω. Provided that � and Ω are known,
the game (Ω, v,�) will be identified with its coalitional payoff function v. Note that
given a coalition S, the mapping vS : k ∈ ΩS �−→ v(S, k) is a random variable with
probability distribution �S : k ∈ ΩS �−→ �(S, k). In other words,

(
N , (vS)S∈CN

)
is
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a c.c. game in Charnes and Granot sense. The little change in our setting is that we
have embedded the collection of sample spaces fromwhich the random payoff of each
coalition is derived.

Example 3 In Example 1, the corresponding game can be formalized as a c.c. game
v ∈ CC(N ,Ω,�) with N = {1, 2} andΩS = {M, E, Z} for all S ∈ CN . Here, player
1 stands for BU1 and player 2 for BU2. The coalitional payoff function v and the
probability distribution function � are summarized below with respect to each of the
three possible coalitions:

S = {1} S = {2} S = {1, 2}

k v (S, k) � (S, k) k v (S, k) � (S, k) k v (S, k) � (S, k)
M 5 0.1 M 8 0.05 M 10 0.05
E 10 0.02 E 4 0.1 E 12 0.05
Z 0 0.88 Z 0 0.85 Z 0 0.9

Given a TU-game u on N , a collectionΩ = (ΩS)S∈CN of coalitional sample spaces
and a probability distribution function � on Ω , the game ũ� is the c.c. game defined
for all S ∈ CN and for all k ∈ ΩS by ũ� (S, k) = u(S). In the c.c. game ũ� , the
coalitional payoff of a coalition S is, for all events k ∈ ΩS , identical to the coalitional
payoff of S in the TU-game u. Although several events can be observed when S is
formed, each of them exactly produces u(S). The game ũ� can then be seen as the
randomized version of u in CC(N ,Ω,�).

Given a probability distribution function � on Ω , CC(N ,Ω,�) is equipped with
two algebraic operations as follows: for all u, v ∈ CC(N ,Ω,�) and for all real
numbers λ, the games u + v ∈ CC(N ,Ω,�) and λv ∈ CC(N ,Ω,�) are defined for
all S ∈ CN and for all k ∈ Ω by (u + v)(S, k) = u(S, k) + v(S, k) and (λv)(S, k) =
λv(S, k). The games u + v and λv are defined for a given probability distribution
function � by re-evaluating the worth of coalitions. For example, in the game of
Example 1, if u models the charges for possible breakdowns and v the transport cost,
then u + v gives the total cost for each possible breakdown and λv corresponds to
the game obtained when the transport cost is updated by a constant rate λ. It is worth
noticing that a distinct sum of u and v may consist in summing the random variables
uS and vS for all S ∈ CN . This is the case if, for example, u is the cost function for
a given period and v the cost function for another period. This alternative summation
of random variables is used by Cheng-Guo et al. (2014) and Ma et al. (2008).

2.2 Values for c.c. games and the equal-surplus Shapley value

A c.c. game is played as follows: players have to form coalitions. When a coalition
S is formed, a realization from ΩS of a random event is observed and the members
of S obtain the corresponding payoff. Furthermore, when a coalition structure P =
{S1, S2, . . . , Sp} is formed, outcomes of coalitions inP have independent realizations.
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If P is disrupted, new coalitions are formed and again new events with possibly new
payoff realizations are randomly observed.

Our concern is as follows. The grand coalition N is formed; but an a priori sharing
rule F is to be designed such that when an event k ∈ ΩN is observed, the coalitional
payoff v (N , k) is shared accordingly. In a two stage process, an allocation usually has
the shape (d, r) such that given i ∈ N , player i who is first promised di finally gets
di + fi (P) with fi (P) = ri

(
P − ∑

i∈N di
)
when P is the actual worth of the grand

coalition; see Suijs et al. (1999). We are interested in such an operational solution. But
before, we have the following general definition:

Definition 2 Anallocation rule (a value) onF ⊆ CC(N ) is amapping F that associates
each c.c. game G = (Ω, v,�) ∈ F with a list F (G) = (F (G, k))k∈ΩN

of payoff
vectors such that Fi (G, k) is the player i’s share of the collective worth v(N , k).

Given a game G = (Ω, v,�), a value F assigns to G a collection of deterministic
payoff vectors F(G, k) for k ∈ ΩN . This can be viewed as a post ante contract
that states the share of each player for each specific event k ∈ ΩN that may be
encountered as the grand coalition is formed. But observing an event in ΩN is a
stochastic event. Thus, the pair

(
(F(G, k))k∈ΩN , (�(N , k))k∈ΩN

)
can also be seen,

as an n-tuple of random variables Fi (G) = (Fi (G, k),�(N , k))k∈ΩN
, i ∈ N , that

sum to the random variable vN = (v(N , k),�(N , k))k∈ΩN
. Roughly, before an

event k ∈ ΩN is observed for the grand coalition, the share of player i is the random
variable Fi (G); and provided that k ∈ ΩN is observed, the share of player i is equal
to Fi (G, k) for sure. This approach consists in making “plans for profit sharing based
on all possible realizations of the profit” as observed by Timmer et al. (2004) in the
case of cooperative games with random payoffs. The desirability of a value depends
on how appealing are the shares it generates. Here are some properties of a value given
a family F of c.c. games.

Efficiency (E): If v ∈ F ∩ CC(N ,Ω,�) for some Ω and � , then for all k ∈ ΩN ,

∑

i∈N
Fi (v, k) = v (N , k) .

Additivity (A). If u, v ∈ F ∩ CC(N ,Ω,�) for some Ω and � , then

F (u + v) = F (u) + F (v) .

Null Player Property (NP∗). If a player i ∈ N is a null player in a TU-game
u ∈ Γ N and � is a probability distribution function on a collection Ω of sample
spaces such that ũ� ∈ F , then Fi (̃u� , k) = 0 for all k ∈ ΩN .

Efficiency requires that when an event k ∈ ΩN is observed for the grand coalition,
individual deterministic payments are summed to the collective worth v(N , k). Addi-
tivity states that when an event k ∈ ΩN occurred for the grand coalition, the share of
a player in the game u + v should be the sum of his/her shares in the games u and v.

Axiom ( NP∗) simply requires that any null player in a TU-game u should receive a
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zero share in the game ũ� when u is seen as a c.c. game. Thus (N P∗) simply says
that, any null-player in a TU-game u has a zero share in the randomized version of u.

In a c.c. game v ∈ CC(N ,Ω,�), two players i and j are stochastically symmetric
if interchanging i and j does not affect the chance of any coalition to realize each of
its feasible worth; that is for all S ⊆ N\{i, j} and for all k ∈ ΩS∪{i}, there exists some
k′ ∈ ΩS∪{ j} such that v(S ∪ {i}, k) = v(S ∪ { j}, k′) and

∑

l∈ΩS∪{i},k
�(S ∪ {i}, l) =

∑

l∈ΩS∪{ j},k′
�(S ∪ { j}, l)

where in the game v ∈ CC(N ,Ω,�), ΩT ,t = {l ∈ ΩT : v(T , l) = v(T , t)} is the set
of all elementary events l in ΩT such that both l and t produce the same payoff for T ;
any event l ∈ ΩT ,t is called a duplication of t in ΩT .

Stochastic Symmetry (SSym). If two players i and j are stochastically symmetric in
a c.c. game v ∈ F , then Fi (v, k) = Fj (v, k) for all k ∈ ΩN .

Following (SSym), two stochastically symmetric players in a c.c. game always
receive equal shares. Now, consider a coalition S and a permutation π of ΩS ; and
update, in the game v, only the payoff of the members of S and the probability that
the members of S observed each event k ∈ ΩS . The corresponding game denoted
by (πvS, π�S) or simply by πvS , is formally defined for all T ∈ CN\{S} and for
all k ∈ ΩT by πvS(T , k) = v(T , k) and π�S(T , k) = �(T , k) ; together with
πvS(S, π(k)) = v(S, k) and π�S(S, π(k)) = �(S, k). For an illustration, consider
Example 3; let S = {1} and π be the transposition of the mechanic breakdown (M) and
the electronic breakdown (E). Then the game πvS is obtained from the representation
of v in Example 3 by simply interchanging M and E in the first column of the first
table. Equivalently, this simply amounts to interchanging for the business unit BU1
the costs and the probabilities of observing M and E. Globally, the risk incurred by
BU1 remains unchanged; only a relabeling of the possible events occurred. One would
expect any conceivable value to return in the new game the same shares as in the initial
game.

Independence of Local Relabeling (ILR). For all coalitions S �= N and for all
permutations π of ΩS , F (πv) = F (v) whenever v, πv ∈ F .

Condition (ILR) requires that any local relabeling of events in a sample space
associated with a proper coalition of players should have no effect on individual
shares.

Another change we consider is the duplication of an event. Assume, for an illustra-
tion, that in Example 2, the organizer modifies the Wheel of Fortune for one-person
tickets by only splitting the golden band into a new golden band which provides a
win of 10 euros with probability pg and a yellow (Y) band which also provides 10
euros with probability py in such a way that pg + py = 0.02. Then a one-person
ticket still wins 10 euros with probability 0.02 although such a win now comes from
two distinct events. Such a fake change should normally have no effect on individual
shares in a game. More formally, a game v ∈ CC(N ,Ω,�) is obtained from a game
v′ ∈ CC(N ,Ω ′,� ′) by a local duplication if there exists a coalition S �= N and
k, k′ ∈ ΩS such that (i) k′ ∈ ΩS\Ω ′

S , ΩS = Ω ′
S ∪ {k′} and ΩT = Ω ′

T for all T �= S;
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(ii) v(S, k) = v(S, k′) = v′(S, k) and �(S, k′) + �(S, k) = � ′(S, k); and (iii)
v(T , l) = v′(T , l) and �(T , l) = � ′(T , l) whenever (l /∈ {k, k′} or T �= S.) In this
case, we also say that v′ is obtained from v by canceling the duplicated event k′ of k.
This is denoted by v′ = vS,k,k′

.

Independence of Local Duplication (ILD). If v(S, k) = v(S, k′) for some coali-

tion S �= N and for some events k, k′ ∈ ΩS , then F
(
vS,k,k′) = F (v) whenever

v, vS,k,k′ ∈ F .

Condition (ILD) is the requirement that in a c.c. game, any local duplication has
no change on individual shares.

Remark 2 One can iterate (I LD), if feasible, to cancel any subset of events that are
duplications of a given event k ∈ ΩS wile preserving all individual shares. To see this,
consider a nonempty subset K = {k1, k2, . . . , kt } of ΩS,k\{k} and denote by vS,k,K

the game obtained from v by successively canceling k1, k2, . . . , kt . Condition (ILD)
is equivalent to say that F(vS,k,K ) = F(v). In words, by canceling any finite number
of duplications of a given event k in a c.c. game and by updating the probability of
observing k to the sum of the probabilities of observing k or some of its duplications,
the shares of players are not affected.

Remark 3 By duplicating some event for a given game in F , it is not guaranteed that
the new game is still in F . Similarly, by canceling a duplication of an event, the new
game is not necessarily in F . Some family may be rich enough to allow these two
operations. In this case, F will be simply called rich. This is formally stated in the
next definition.

Definition 3 A familyF of c.c. games is rich ifF meets the following two conditions:

(c1) for all v ∈ F such that v ∈ CC(N ,Ω,�) for some Ω and � , for all coalitions
S �= N , for all events k ∈ ΩS and for all events k′ /∈ ΩS , there exists u ∈ F
such that v = uS,k,k′

;
(c2) for all v ∈ F such that v ∈ CC(N ,Ω,�) for some Ω and � , for all coalitions

S �= N and for all events k, k′ ∈ ΩS , if k′ is a duplication of k in v then
vS,k,k′ ∈ F .

Condition (c1)means that for each game v inF and for each event k in a sample space
ΩS for S �= N , there exists a game in F obtained from v by a duplication of k that
brings into the game v a new event k′ /∈ ΩS . Condition (c2) is the requirement that
by merging an event and some of its duplications from a game in F , the new game
should stay in F . For example, the set of all c.c. games on N is rich. Furthermore, one
also obtains a rich family of c.c. games by considering the set of all c.c. games such
that all probabilities in all sample spaces ΩS , for S �= N , are rational numbers. The
following result holds on rich families of c.c. games.

Proposition 1 (ILD) implies (ILR) on any rich family F of c.c. games.

Proof Consider a rich family F of c.c. games and a value F on F that meets (ILD).
Since any permutation of a finite set is a finite product of transpositions, to prove that
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F necessarily meets (ILR), it is sufficient to prove that for all v ∈ F such that v ∈
CC(N ,Ω,�) for some Ω and � , for all coalitions S �= N and for all transpositions
π of ΩS , F (πv) = F (v). Suppose that π is a transposition of ΩS . That is π = (k, l)
for some {k, l} ⊆ ΩS . Consider two events k′ and l ′ such that k′, l ′ /∈ ΩS . Since F is
rich and k ∈ ΩS , then there exists u1 ∈ F such that v = uS,k,k′

1 (u1 is obtained from
v by a duplication of event k). By (ILD),

F(v) = F(u1). (1)

Similarly, l ∈ ΩS ∪ {k′} and l ′ /∈ ΩS ∪ {k′}. Since F is rich, there exists a game u2 in
F such that u1 = uS,l,l ′

2 . By (ILD),

F(u1) = F(u2). (2)

Note that in the game u2, k′ and l ′ are duplications of k and l respectively. Since F is
rich, the game u3 such that u3 = uS,k′,k

2 (obtained from u2 by merging k′ and k into
k′) belongs to F . By (ILD),

F(u2) = F(u3). (3)

Similarly, the game u4 such that u4 = uS,l ′,l
3 belongs to F . By (ILD),

F(u4) = F(u3). (4)

By construction, the game u4 is obtained from v by only renaming k to k′ and l
to l ′. It appears from Eqs. (1)–(4) that F(u4) = F(v). In words, renaming k to k′
and l to l ′ with k′, l ′ /∈ ΩS does not affect individual shares in the game v. Note
that u4 ∈ CC(N ,Ω ′,� ′) where Ω ′

S = (ΩS\{k, l}) ∪ {k′, l ′}, � ′(S, k′) = �(S, k),
� ′(S, l ′) = �(S, l), u4(S, k′) = v(S, k), u4(S, l ′) = v(S, l); and for all coalitions
T �= S, Ω ′

T = ΩT and � ′(T , t) = �(T , t) for all t ∈ Ω ′
T . Since k, l /∈ Ω ′

S , one
obtains from u4 a new game u5 by only renaming k′ to l and l ′ to k without altering
individual shares. That is F(u5) = F(u4). Hence F(u5) = F(v). This completes the
proof since u5 = πv. ��

Is there any value that meets all the six above mentioned properties? The answer
is yes as shown in the sequel. To any c.c. game v ∈ CC(N ,Ω,�), we associate its
expectation game Ev that assigns to each coalition S, its expected worth Ev(S) defined
by:

Ev(S) :=
∑

k∈ΩS

�(S, k)v(S, k).

The game Ev is a TU-game and its Shapley value is called the prior Shapley value
of the c.c. game v. We define the two-stage value Ψ for c.c. games as follows. Players
in N are first promised their prior Shapley shares of the game v and then proceed to
observe a random event from ΩN . When k ∈ ΩN is observed at the second stage,
the actual worth of the grand coalition is v(N , k) and the surplus to be re-allocated is
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v(N , k) − Ev(N ). This surplus is equally split among players in such a way that the
final share of a each player i ∈ N is

Ψi (v, k) = Shapi (Ev) + 1

n
(v(N , k) − Ev(N )). (5)

The value Ψ will be called the equal-surplus Shapley value for c.c. games. Interest-
ingly, the valueΨ meets all the six axioms above as shown in the following proposition.

Proposition 2 The equal-surplus Shapley valueΨ satisfies (E), (A), (N P∗), (SSym),
(I L R) and (I LD).

Proof Note that the operator that associates each c.c. game v with the TU-game Ev

is linear. Moreover, the Shapley value is efficient and additive. It then follows from
(5) that Ψ is efficient and additive. Also note that if two players are stochastically
symmetric in the game v, they are symmetric in the TU-game Ev. Recalling that the
Shapley value is symmetric, it follows from (5) that Ψ satisfies (SSym). Given a TU-
game u, note that the expectation game of ũ� coincides with u and that by definition,
ũ� (N , k) = u(N ) = Eũ� (N ).Again, if follows from (5) that Ψ satisfies (N P∗) . By
the definition of the game πvS given a coalition S �= N and a permutation π of ΩS ,
note that EπvS (T ) = Ev(T ) for all coalitions T . Since πvS(N , k) = v(N , k) for all
k ∈ ΩN , it follows from (5) thatΨ satisfies (ILR). In the same way, a local duplication
does not affect the expectation game; nor the random coalitional worth of the grand
coalition. Thus by (5), a local duplication does not affect individual shares by Ψ ; and
Ψ then meets (I LD). ��

Remark 4 Given a player i ∈ N , it immediately follows from (5) that, the payoff of
player i in a c.c. game is a random variable the mean of which is the Shapley payoff of
player i in the expectation game and its standard deviation is 1

n the standard deviation of
the random payoff of the grand coalition. Therefore, the smaller the standard deviation
of the payoff of the grand coalition, the closer is the worth of player i to his/her prior
Shapley share.

In what follows, the value Ψ is further scrutinized based on two characteristics. A
procedure we provide tells about the intuition behind Ψ . We also get axiomatization
results that exhibit certain properties that uniquely identify the equal-surplus Shapley
value among many other solutions for c.c. games.

3 Characterizations of the equal-surplus Shapley value

We provide here some characterization results of the value Ψ depending on the shape
of the sample space Ω or on whether all probability distribution mappings � are
admissible or not.
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3.1 An interpretation of the equal-surplus Shapley value

In this section, we show that the equal-surplus Shapley value of a c.c. game associates
each player with the average of all his/her possible marginal contributions under a
procedure. Such a procedure which tells about the intuition on how the payoff vector
Ψ (v, k) is derived can be obtained as in Shapley (1953). Once the grand coalition is
formed and an event k ∈ ΩN is observed, the question is how to share v(N , k) among
the n players. The attributes in favor of a player, say i , aremeasured only by all possible
marginal contributions that may be observed when i joins a coalition S ⊆ N\{i} as in
the following threefold procedure:

(A1) Once an event k ∈ ΩN is observed, players row up in a line to join the coalition
one at a time; Ns denotes the coalition of the first s players to get in.

(A2) While the sth player, say es , is joining the coalition, a trial from ΩNs is made
for s < n to observe a random event es with probability �(Ns, es). Player es
is promised his/her marginal contribution v(Ns, es) − v(Ns−1, es−1) with the
convention N0 = ∅, k0 = 0, v(∅, k0) = 0 and en = k, k is the final issue.

(A3) All the n! orderings of the players are equally probable; for each ordering
of players, the n − 1 first trials have independent realizations; and the event
en = k ∈ ΩN observed for the grand coalition remains unchanged.
Φi (v, k) is the expectation of player i in the procedure (A1) − (A3).

Here, an entry-trial scenario is a pair e = (
e1e2...en, e1e2...en

)
such that player

es gets in at the sth position and es is the event that is observed as the coalition
{e1, e2, . . . , es} of the first s players is formed. A k-entry-trial scenario is any entry-
trial scenario e such that en = k. The set of all k-entry-trial scenarios will be denoted
by Ek . The probability of observing e ∈ Ek is � e = �(N1, e1) × �(N2, e2) × · · · ×
�(Nn, en) with Ns = {e1, e2, . . . , es}.
Example 4 Consider the game v in Example 3. When the event M for the joint printer
is observed, all scenarii in sharing v(N , M) are as follows:

Scenarii 1’s contribution � 2’s contribution �

(21, MM) 2 0.05 8 0.05
(21, EM) 6 0.1 4 0.1
(21, ZM) 10 0.85 0 0.85
(12, MM) 5 0.1 5 0.1
(12, EM) 10 0.02 0 0.02
(12, ZM) 0 0.88 10 0.88
Expectations Φ1(v, M) = 9.9

2 = 4.95 Φ2(v, M) = 10.1
2 = 5.05

For illustration, note that when the entry-trial is (21, MM), player 1’s marginal
contribution is v ({1, 2} , M) − v ({2} , M) = 2 while player 2’s marginal contribu-
tion is v ({2} , M) − 0 = 8. Similarly, when the entry-trial is (12, ZM), player 1’s
marginal contribution is v ({1} , Z) − 0 = 0 while player 2’s marginal contribution is
v ({1, 2} , M) − v ({1} , Z) = 10.
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The reader can check that the expectation game Ev is given by Ev ({1}) = 0.7,
Ev ({2}) = 0.8 and Ev ({1, 2}) = 1.1. The prior shares is then Shap1(Ev) = 0.5 for
player 1 and Shap2(Ev) = 0.6 for player 2. When a mechanic breakdown (M) for the
joint printer is observed, the surplus cost is v({1, 2}, M)−0.7−0.6 = 8.9. Each of the
twoplayers gets the same extra cost of 4.45. FinallyΨ1(v, M) = 0.5+4.45 = 4.95 and
Ψ2(v, M) = 0.6 + 4.45 = 5.05. Thus Ψ (v, M) coincides with the expected payoffs
from procedure (A1)− (A3). Similarly, it can be also checked thatΦ(v, k) = Ψ (v, k)
for k ∈ {E, Z}. Thus Φ(v) = Ψ (v) for the game of Example 3.

The coincidence Φ(v) = Ψ (v) observed in Example 4 turns out to be true for an
arbitrary c.c. game.

Proposition 3 For all v ∈ CC(N ,Ω,�) and for all k ∈ ΩN , Φ(v, k) = Ψ (v, k).

Proof Given a k-entry-trial scenario e, denote by e [i] ∈ {1, 2, . . . , n} the position of
player i . By definition,

Φi (v, k) =
n∑

r=1

∑

e∈Ek :e[i]=r

� e

n! [v (
Nr , e

r ) − v
(
Nr−1, e

r−1
)
].

This sum can be split into three distinct sums as Φi (v, k) = K1 + K2 + K3 where the
first sum K1 is the weighted sum ofmarginal contributions of player i for all entry-trial
scenarios where he/she gets in first.

K1 =
∑

e∈Ek :e1=i

� e

n! v
(
N1, e

1
)

=
∑

e∈Ek :e1=i

� e

n! v
(
{i} , e1

)

= (n − 1)!
n!

∑

a∈Ω{i}
� ({i} , a) v ({i} , a)

= (n − 1)!
n! Ev ({i}) = 0! (n − 1)!

n! (Ev ({i}) − Ev (∅)) since Ev (∅) = 0

The sum K2 is the weighted sum of marginal contributions of player i for all k-entry-
trial scenarios where i gets in last.

K2 =
∑

e∈Ek :en=i

� e

n!
[
v

(
Nn, e

n) − v
(
Nn−1, e

n−1
)]

=
∑

e∈Ek :en=i

� e

n!
[
v (N , k) − v

(
N\ {i} , en−1

)]

= (n − 1)!0!
n!

∑

a∈ΩN\{i}
� (N\ {i} , a) [v (N , k) − v (N\ {i} , a)]
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= (n − 1)!0!
n! [v (N , k) − Ev (N\ {i})]

= (n − 1)!0!
n! [Ev (N ) − Ev (N\ {i})] + 1

n
[v (N , k) − Ev (N )]

The sum K3 is the weighted sum of all marginal contributions of player i for all
entry-trial scenarios where he/she gets in at a position s such that 1 < s < n. Let
Ps,n = (s−1)!(n−s)!

n! for 1 ≤ s ≤ n.

K3 =
∑

e∈Ek :es=i∧1<s<n

� e

n!
[
v

(
Ns, e

s) − v
(
Ns−1, e

s−1
)]

=
∑

S:i∈S∧1<|S|=s<n

∑

e∈Ek :es=i∧Ns=S

� e

n!
[
v

(
S, es

) − v
(
S\ {i} , es−1

)]

=
∑

S:i∈S∧1<|S|=s<n

∑

b∈ΩS

∑

a∈ΩS\{i}
[v (S, b) − v (S\ {i} , a)]

∑

e∈Ek :es=i∧Ns=S∧es=b∧es−1=a

� e

n!

=
∑

S:i∈S∧1<|S|=s<n

Ps,n
∑

b∈ΩS

∑

a∈ΩS\{i}
� (S, b) � (S\ {i} , a)

× [v (S, b) − v (S\ {i} , a)]

=
∑

S:i∈S∧1<|S|=s<n

Ps,n (Ev (S) − Ev (S\ {i}))

Therefore, combining the three sums gives

Φi (v, k) =
∑

S:i∈S

(s − 1)! (n − s)!
n! [Ev (S) − Ev (S\ {i})] + 1

n
(v (N , k) − Ev (N ))

= Shapi (Ev) + 1

n
(v (N , k) − Ev (N )) = Ψi (v, k)

Clearly, the two values Φ and Ψ coincide. ��
Procedure (A1)–(A3) provides an interpretation of the value Ψ . It provides an

intuitive way of deriving the shares of all players for all possible worths of the grand
coalition.

3.2 Some algebraic properties on c.c. games

It is well-known that the set Γ N of all TU-games on N is a space vector of dimension
2n − 1 . It can be also checked that CC(N ,Ω,�) is also a space vector of dimension∑

S∈CN
|ΩS|. This assertion is proved below together with some other nice properties

of CC(N ,Ω,�) that will be useful in characterizing Ψ .
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Given S ∈ CN , k ∈ ΩS and a collection c = (
cl,T

)
T∈CN ,l∈ΩT

of real numbers, we
define:

– γS ∈ Γ N and γ ∗
S ∈ Γ N for all T ∈ CN by

γS (T ) =
{
1 i f S ⊆ T
0 otherwise

and γ ∗
S (T ) =

{
1 i f S � T
0 otherwise

– gk,S, Υ k,S, Υ ∗,S ∈ CC(N ,Ω,�) for all T ∈ CN and l ∈ ΩT by Υ ∗,S (T , l) =
γ ∗
S (T ),

gk,S (T , l) =
{
1 i f l = k and T = S
0 otherwise

and Υ k,S (T , l) =
{

γS (T ) i f l = k
γ ∗
S (T ) otherwise

– Υ c,k,S ∈ CC(N ,Ω,�) by Υ c,k,S = ck,Sgk,S + Υ ∗,S .

Note that γS and γ ∗
S are TU-games; whereas gk,S , Υ k,S and Υ ∗,S are c.c. games in

CC(N ,Ω,�). Furthermore,

Υ k,S = gk,S + Υ ∗,S = Υ c,k,S provided that ck,S = 1. (6)

The TU-game γS is sometimes called unanimity game; see for example Béal et al.
(2016). The game Υ k,S can be seen as a kind of unanimity c.c. game in which a win
of one unit is guaranteed provided that either the members of S cooperate and event
k is observed; or the members of S cooperate with some players out of S.

Proposition 4 Any collection
(
Υ c,k,S

)
S∈CN ,k∈ΩS

is a basis of CC(N ,Ω,�) assuming
that ck,S �= 0 for all S ∈ CN and for all k ∈ ΩS.

Proof Let c = (
ck,S

)
S∈CN ,k∈ΩS

be a collection of real numbers such that ck,S �= 0 for
all S ∈ CN and for all k ∈ ΩS . Note that for all games v ∈ CC(N ,Ω,�),

v =
∑

S∈CN ,k∈ΩS

v(S, k)gk,S .

Therefore, {gk,S : S ∈ CN , k ∈ ΩS} is a generating set for the vector space
CC(N ,Ω,�). It follows that the dimension of CC(N ,Ω,�) is at most

∑
S∈CN

|ΩS|.
Now, the collection

(
Υ c,k,S

)
S∈CN ,k∈ΩS

contains exactly
∑

S∈CN
|ΩS| distinct games.

To prove that
(
Υ c,k,S

)
S∈CN ,k∈ΩS

is a basis of CC(N ,Ω,�), it is sufficient to

prove that the games in
(
Υ c,k,S

)
S∈CN ,k∈ΩS

are linearly independent. To see this, let
(
αk,S

)
S∈CN ,k∈ΩS

be some real numbers such that

∑

S∈CN ,k∈ΩS

αk,SΥ
c,k,S = 0̃� . (7)
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where 0̃� (T , l) = 0 for all T ∈ CN and for all l ∈ ΩS . We prove by induction on the
cardinality of S that αk,S = 0 for all S ∈ CN and k ∈ ΩS . First assume that |S| = 1;
that is S = {i} for some i ∈ N . Consider k ∈ ΩS . Then by the definition of Υ c,l,T ,

0̃� ({i}, k) = 0 =
∑

T∈CN ,l∈ΩT

αl,TΥ c,l,T ({i}, k) = ck,{i}αk,{i}.

Therefore αk,{i} = 0 since ck,{i} �= 0. Assume that for some s such that 1 ≤ s < n, it
holds that for all S ∈ CN and for all k ∈ ΩS , αk,S = 0 whenever 1 ≤ |S| ≤ s. Consider
a coalition S of cardinality s + 1 and k ∈ ΩS . The definition of Υ c,l,T together with
the induction assumption imply

0̃� (S, k) = 0 =
∑

T∈CN ,l∈ΩT

αl,T kΥ
c,l,T (S, k) = ck,Sαk,S

+
∑

T�S,l∈ΩT

cl,Tαl,T = ck,Sαk,S .

Therefore αk,S = 0 since ck,S �= 0. This proves that αk,S = 0 for all S ∈ CN and for
all k ∈ ΩS . ��

In particular, the collection
(
Υ k,S

)
S∈CN ,k∈ΩS

is, by (6), a basis of CC(N ,Ω,�).

The following propositions show that, the sumof allΥ k,S overΩS can also be rewritten
as a linear combination of some specific games.

Proposition 5 In the space vector CC(N ,Ω,�),

∑

k∈ΩS

Υ k,S = (γ̃S)� + (|ΩS| − 1) Υ ∗,S . (8)

for all coalitions S ∈ CN .

Proof Let S ∈ CN . Proving ( 8) amounts to showing that for all T ∈ CN and for all
l ∈ ΩT , ∑

k∈ΩS

Υ k,S (T , l) = γS (T ) + (|ΩS| − 1) Υ ∗,S (T , l) . (9)

Consider T ∈ CN and l ∈ ΩT . There are three possible cases we distinguish. (a) First
suppose that S � T . By definition, Υ k,S (T , l) = γS (T ) = Υ ∗,S (T , l) = 0 for all
k ∈ ΩS . Therefore

∑

k∈ΩS

Υ k,S (T , l) = 0 and γS (T ) + (|ΩS| − 1) Υ ∗,S (T , l) = 0.

(b) Now, suppose that S = T . Then Υ k,S (T , l) = 0 for k �= l; Υ l,S (T , l) = 1 =
γS (T ); and Υ ∗,S (T , l) = 0. Therefore

∑

k∈ΩS

Υ k,S (T , l) = 1 and γS (T ) + (|ΩS| − 1) Υ ∗,S (T , l) = 1.
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(c) Finally, suppose that S � T . Then γS (T ) = Υ k,S (T , l) = Υ ∗,S (T , l) = 1 for all
k ∈ ΩS . Thus

∑

k∈ΩS

Υ k,S (T , l) = |ΩS| and γS (T ) + (|ΩS| − 1) Υ ∗,S (T , l) = |ΩS|.

For each of the three possible cases, ( 8 ) holds. ��
The equality in (8) simply tells us that by summing over all events in ΩS , the

members of S secure, independently of the event that is observed, a win of one unit
by forming S, or a win of |ΩS| by cooperating with some players out of S. More
importantly, Proposition 5 together with the next result help in linking unanimity c.c.
games with the known unanimity TU-games.

Proposition 6 In the space vector CC(N ,Ω,�),

Υ ∗,S =
∑

T∈CN :S�T

(−1)|T |−|S|+1 (γ̃T )� . (10)

for all coalitions S ∈ CN .

Proof Consider a coalition S. Proving (10) amounts to showing that for all K ∈ CN

and for all l ∈ ΩK

Υ ∗,S (K , l) =
∑

T∈CN :S�T

(−1)|T |−|S|+1 γT (K ) . (11)

Consider K ∈ CN and l ∈ ΩK . First suppose that S � K or K = S. Then each
coalition T such that S � T satisfies T � K ; otherwise one would have S � K . Thus
Υ ∗,S (K , l) = γ ∗

S (K ) = 0 and γT (K ) = 0. Therefore

∑

T∈CN :S�T

(−1)|T |−|S|+1 γT (K ) = 0 = Υ ∗,S (K , l) .

Now suppose that S � K . Then Υ ∗,S (K , l) = 1 and γT (K ) = 0 for all coalitions T
such that T � K . Thus

∑

T∈CN :S�T

(−1)|T |−|S|+1 γT (K ) =
∑

T /S�T⊆K

(−1)|T |−|S|+1

= (−1)|S|−1
|K |−|S|∑

t=1

(|K | − |S|
t

)

(−1)|S|+t

where t = |T \S|
= −

(
(1 − 1)|K |−|S| − 1

)
= 1 = Υ ∗,S (K , l)

In both possible cases, (10) holds. ��
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The c.c. game (γ̃S)� inherits the intuition behind the TU-game γS . Thus, Proposi-
tions 5 and 6 help in highlighting the relationship between the unanimity c.c. games
Υ k,S for S ∈ CN and k ∈ ΩS . The decompositions (8) and (10) will be useful in study-
ing values for c.c. games that meet some interesting properties such as symmetry or
additivity.

3.3 The case of rational probability distributions

We denote by CCr (N ) the set of all c.c. games v such that for some collection Ω

of finite sample spaces and for some probability distribution function � on Ω , v ∈
CC(N ,Ω,�) and for all coalitions S �= N and for all k ∈ ΩS , �(S, k) is rational;
that is �(S, k) = aS,k

bS,k
for some integers aS,k ≥ 1 and bS,k ≥ 1. We start with the

extreme case of uniform probability distributions that will be used later to ease some
proofs.

3.3.1 With a uniform probability distribution function

The probability distribution function � is a collection of uniform probability distri-
butions if for all coalitions S �= N , all events in ΩS occur with the same probability.
Since all probabilities over ΩS sum to 1, we have,

Uniform probability distributions � : for all coalitions S �= N and for all k ∈ ΩS ,
�(S, k) = 1

|ΩS | . In this case, we simply say that � is uniform.
Note that the collection � is uniform if for all coalitions S �= N , �(S, .) :=

(�(S, k))k∈ΩS
is a uniform probability distribution on ΩS . Proposition 2 holds on

CC(N ,Ω,�) for any probability distribution function �. When � is uniform, we
now show that the first five properties in Proposition 2 completely characterize Ψ .

Lemma 1 Consider an arbitrary probability distribution � on Ω .
Then for any two values F and F ′ that satisfy (E), (N P∗) and (SSym) on

CC(N ,Ω,�),

F
(
α (γ̃S)�

) = F ′ (α (γ̃S)�
)

for all S ∈ CN and for all α ∈ R.

Proof Members of S are symmetric players in αγS . They are also stohastically sym-
metric in α (γ̃S)� . Thus by (SSym), players in S all have the same shares with respect
to both F and F ′. Furthermore, members of N\S are null players in γS . Therefore by
(NP∗), players in N\S have each a zero share in α (γ̃S)� with respect to both F and
F ′. The result then follows by efficiency.

Lemma 2 Assume that � is uniform on Ω . Then for any two values F and F ′ that
satisfy (E), (A), (N P∗), (SSym) and (I L R) on CC(N ,Ω,�),

F
(
αΥ k,S

)
= F ′ (αΥ k,S

)
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for all S ∈ CN , for all k ∈ ΩS and for all α ∈ R.

Proof First suppose that S = N . Then any two players are stochastically symmetric in
the game αΥ k,S . Thus by (SSym) and (E), F

(
αΥ k,S

) = F ′ (αΥ k,S
)
. Now suppose

that S �= N . Then by Propositions 5 and 6, it follows that,

F

⎛

⎝
∑

k∈ΩS

αΥ k,S

⎞

⎠

= F

⎛

⎜
⎝α (γ̃S)� + (|ΩS| − 1)

∑

T∈CN :S�T

(−1)|T |−|S|+1 α (γ̃T )�

⎞

⎟
⎠

= F
(
α (γ̃S)�

) + (|ΩS| − 1)
∑

T∈CN :S�T

(−1)|T |−|S|+1 F
(
α (γ̃T )�

)
by (A)

= F ′ (α (γ̃S)�
) + (|ΩS| − 1)

∑

T∈CN :S�T

(−1)|T |−|S|+1 F ′ (α (γ̃T )�
)
by Lemma 1

= F ′
⎛

⎝
∑

l∈ΩS

αΥ l,S

⎞

⎠ by (A)

Moreover, for all l ∈ ΩS\ {k}, πΥ k,S = Υ l,S where π is the transposition of k and l in
ΩS . Therefore by (I L R), F

(
αΥ l,S

) = F
(
αΥ k,S

)
. Thus, by (A), |ΩS|F

(
αΥ k,S

) =
|ΩS|F ′ (αΥ k,S

)
. Thus F

(
αΥ k,S

) = F ′ (αΥ k,S
)
. ��

Combining the precedent results leads to the following.

Theorem 1 Assume that� is uniform onΩ . Then, the equal-surplus Shapley valueΨ

is the unique value on CC(N ,Ω,�) that simultaneously satisfies (E), (A), (N P∗),
(SSym) and (I L R) .

Proof Assume that � is uniform on Ω .
Necessity. See Proposition 2.
Sufficiency. Suppose that F is a value that satisfies (E), (A), (N P∗), (SSym) and

(I L R) on CC(N ,Ω,�). To see that F = Ψ , consider a game v ∈ CC(N ,Ω,�). By
Proposition 4, the family

(
Υ k,S

)
S∈CN ,k∈ΩS

is a basis of the space vector CC(N ,Ω,�).
Therefore there exists a family of reals (αk,S)S∈CN ,k∈ΩS such that

v =
∑

S∈CN

∑

k∈ΩS

αk,SΥ
k,S .

By Lemma 2, F
(
αk,SΥ

k,S
) = Ψ

(
αk,SΥ

k,S
)
for all k ∈ ΩS, since F and Ψ both

satisfy (E), (A), (N P∗), (SSym) and (I L R) on CC(N ,Ω,�). Therefore, F (v) =
Ψ (v) by additivity. ��
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In Theorem 1, condition (I L R) may be omitted for some specific Ω . To illustrate
this,we assume that all sample spaceswith proper coalitions are of the samecardinality.
This is for example the case when all coalitional payoffs in the game are obtained by
performing the same random experience. The following counterpart of Lemma 2 holds
for this specific configuration.

Lemma 3 Assume that � is uniform on Ω and that |ΩS| = |ΩT | for all coalitions
S, T ∈ CN\{N }. Then for any two values F and F ′ that satisfy (E), (A), (N P∗) and
(SSym) on CC(N ,Ω,�),

F
(
αΥ k,S

)
= F ′ (αΥ k,S

)

for all S ∈ CN , for all k ∈ ΩS and for all α ∈ R.

Proof Assume that � is uniform on Ω and that |ΩS| = |ΩT | for all coalitions S, T ∈
CN\{N }. Consider two values F and F ′ that satisfy (E), (A), (N P∗) and (SS) . As
above, F

(
αΥ k,S

) = F ′ (αΥ k,S
)
for S = N by (SSym) and (E). Now, let S be a

coalition other than N ; and k, l ∈ ΩS . Choose an arbitrary event kT for each possible
coalition T such that |T | = |S| and define the c.c. game v by

v =
∑

T �=S:|T |=|S|
αΥ kT ,T .

Taking into the account that the probability distribution is uniform, it follows that
for both αΥ k,S + v and αΥ l,S + v, any pair of players are stochastically symmetric.
Therefore by efficiency, F(αΥ k,S +v) = F ′(αΥ l,S +v). Thus by additivity, one gets
F(αΥ k,S) = F ′(αΥ l,S). ��
Theorem 2 Assume that � is uniform on Ω and that |ΩS| = |ΩT | for all S, T ∈
CN\{N }.

The equal-surplus Shapley value Ψ is the unique value on CC(N ,Ω,�) that sat-
isfies axioms (E), (A), (N P∗) and (SSym).

Proof Assume that � is uniform on Ω and that |ΩS| = |ΩT | for all coalitions S, T ∈
CN\{N }.

Necessity. See Proposition 2.
Sufficiency. Very similar to the proof of Theorem 1 using Lemma 3 instead of

Lemma 2. ��
The four axioms inTheorem2 are independent as stated below. For all independence

issues in this paper, we only present, in the main text, an allocation rule that meets all
the axioms listed except one. More details are relegated to appendix sections.

Proposition 7 Assume that� is uniform onΩ and that |ΩS| = |ΩT | for all coalitions
S, T ∈ CN\{N }. Then axioms (E), (A), (N P∗) and (SSym) are independent on
CC(N ,Ω,�).
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Proof For any three axioms out of (E), (A), (N P∗) and (SSym), we provide a value
that meets all these three axioms, but which does not satisfy the fourth. Details are
provided in Appendix 5.1.

1. F1
i (v, k) = 1

n v (N , k) for all v ∈ CC(N ,Ω,�), for all k ∈ ΩN and for all i ∈ N .
Then F1 is (E), (A) and (SSym); but not (N P∗).

2. F2 (v) = 2Ψ (v) for all v ∈ CC(N ,Ω,�). Then F2 is (N P∗), (A) and (SSym);
but not (E).

3. Given v ∈ CC(N ,Ω,�), denote by N∗(v) the set of all null players in the expec-
tation game Ev . Define the value F3 for all v ∈ CC(N ,Ω,�) and for all i ∈ N
by

F3
i (v, k) = 0i f i ∈ N∗(v); and F3

i (v, k) = v(N , k)

|N\N∗(v)|otherwise.

Then F3 is (E), (N P∗) and (SSym); but not (A).
4. Given two distinct players i and j in N , denote by a the n-tuple defined by ai = 1,

a j = −1 and at = 0 for all t ∈ N\{i, j}. Define F4 for all v ∈ CC(N ,Ω,�) and
for all k ∈ ΩN by

F4(v, k) = Ψ (v, k) +
⎡

⎢
⎣

∑

l∈Ω{i, j}
�({i, j}, l)v({i, j}, l) −

∑

l∈Ω{i}
�({i}, l)v({i}, l)

−
∑

l∈Ω{ j}
�({ j}, l)v({ j}, l)

⎤

⎥
⎦ a.

The value F4 is (E), (N P∗) and (A); but not (SSym).

In summary, the four axioms are independent. ��
In Theorem 1, (I L R) is a necessary condition for some sample spaces. An illus-

tration is provided in the following example.

Example 5 Let N = {1, 2} be a set of two players. Consider the coalitional sample
spaces Ω{1} = {a, b}, Ω{2} = {c} and Ω{1,2} = {x, y}. A probability distribution
function � that is uniform on Ω is such that �({1}, a) = �({1}, b) = 1

2 and
�({2}, c) = 1. Define the value F on CC(N ,Ω,�) as follows:

F (v) =

⎛

⎜
⎜
⎝

F1 (v, x) F2 (v, x)

F1 (v, y) F2 (v, y)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

v1,b − 1
2v1,a − 1

2v2,c + 1
2v12,x

1
2v1,a − v1,b + 1

2v2,c + 1
2v12,x

1
2v1,a − 1

2v2,c + 1
2v12,y

1
2v2,c − 1

2v1,a + 1
2v12,y

⎞

⎟
⎟
⎠
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where for simplicity v1,k = v({1}, k) for k ∈ {a, b}, v2,c = v({2}, c) and v12,k =
v({1, 2}, k) for k ∈ {x, y}. Note that F satisfies (E), (A), (NP∗) and (SSym); but not
(ILR). This shows that for Theorem 1 to hold with this specific sample space, one can
no longer rule out condition (ILR).

3.3.2 Over the full class of rational probability distributions

A uniform probability distribution is completely described by the collection of its
sample spaces. This is no longer the case for non uniform probability distribution
functions. Also note that conditions (E), (A) and (NP∗) are entirely normative con-
siderations on individual shares with respect to coalitional payoffs in a game. Thus,
apart from (SSym), axioms in Theorem 1 do not fully capture the full strength of non
uniform probability distributions. Condition (ILR) is some type of neutral treatment
of elementary events in a sample space. Thus none of the five properties in Theorem 1
tells about how changes on the collection of probability distributions impact on indi-
vidual shares. Further properties are needed to characterize the equal-surplus Shapley
value on CCr (N ).

Remark 5 Consider a pair {a, b} of integers and the collection Ω0 of sample spaces
such that Ω0

S = {a, b} for all S ∈ CN . Let p ≥ 3 be a prime number. Define the
probability distribution function �p for all coalitions S, by �p(S, a) = 2/p and
�p(S, b) = 1− 2/p. Now, define the value F5 for all v ∈ CC (N ,Ω,�) ⊆ CCr (N )

by

F5 (v) =
{

Ψ (̂v) ifΩ = Ω0and � = �p

Ψ (v) otherwise

where the game v̂ is obtained from v by substituting to�p the uniform probability dis-
tribution function onΩ0. It can be checked that both F5 andΨ meet (E), (A), (N P∗),
(SSym) and (I L R). Since F5 �= Ψ , one needs further requirements to characterize
Ψ on CCr (N ).

Recall that condition (I LD) allows to reshape the sample space as well as the
probability distribution function.

Theorem 3 A value F on CCr (N ) satisfies (E), (A), (N P∗), (SSym) and (I LD) if
and only if F = Ψ .

Proof Sufficiency. See Proposition 2.
Necessity. Suppose that a value F on CCr (N ) satisfies(E), (A), (N P∗), (SSym)

and (I LD). Then by Theorem 2, it follows that F (v) = Ψ (v) whenever v is a
game with a uniform probability distribution function on a sample space Ω such that
|ΩS| = |ΩT | for all coalitions S, T ∈ CN\{N }. Now, consider an arbitrary game
v ∈ CC (N ,Ω,�) ⊆ CCr (N ). Given a coalition S �= N , pose �(S, k) = aS,k

bS,k
with

aS,k ≥ 1 and bS,k ≥ 1. Denote by q, the least common multiple of the collection
{bS,k : S ∈ CN\{N } and k ∈ ΩS}. Then given a coalition S �= N , q = qS,kbS,k for
some integer qS,k ≥ 1. By duplicating qS,kaS,k − 1 times each event k ∈ ΩS for all
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coalitions S �= N and by applying (ILD) as indicated in Remark 2, one constructs a
new game vd ∈ CC

(
N ,Ωd ,� d

)
such that � d is uniform on Ωd , F(v) = F(vd)

and for all coalitions S, T �= N , |Ωd
S | = |Ωd

T | = q. Since � d is uniform, then by
Theorem 2, F(vd) = Ψ (vd). Hence F(v) = Ψ (vd) = Ψ (v). ��
Proposition 8 The axioms (E), (A), (N P∗), (SSym) and (I LD) are independent on
CCr (N ) .

Proof Each of the four values presented in Proposition 7 satisfies (I LD) but fails
to satisfy exactly one axiom among (E), (A), (N P∗) and (SSym). Therefore, we
only have to prove that (I LD) can not be deduced from the other four axioms in
consideration on CCr (N ) . To see this, we note that the value introduced in Remark 5
is (E), (A), (N P∗) and (SSym), but not (I LD). See Appendix 5.2 for further details.

��
The arguments in the proof of Theorem 3 are strongly related to the fact that the

probability of each coalitional event is a rational number. The main step of the proof
consists in moving from any game with rational probability distributions to a game
with a uniform probability distribution with sample spaces of equal sizes.

3.4 The general case

In this section, the whole set CC(N ) of all c.c. games on N is considered (there is
no restriction on the probability distribution function). New axioms are introduced to
capture how a value behaves when some specific changes on the payoffs or on the
probability distribution occur. But before, we extend the scope of Theorem 3 from
CCr (N ) to CC (N ) . To this end, the following lemma is introduced.

Lemma 4 If a value F satisfies (E), (A), (N P∗), (SSym) and (I LD) on CC (N ),
then

F
(
αΥ k,S

)
= Ψ

(
αΥ k,S

)

for all collections Ω = (Ω)S∈CN of sample spaces, for all probability distribution
functions � on Ω , for all S ∈ CN , for all k ∈ ΩS and for all α ∈ R.

Proof Consider a value F that satisfies (E), (A), (N P∗), (SSym) and (I LD) on
CC (N ); a collection Ω of sample spaces, a probability distribution function � on
Ω , a coalition S ∈ CN , an event k ∈ ΩS and a real number α ∈ R. First note that
by Theorem 3, the result holds when � is rational-valued. Now, suppose that the
probability distribution function � is not rational-valued and cannot be reduced to a
rational-valued function by merging only a few duplicate events. We prove that, even
in this case, F

(
αΥ k,S

) = Ψ
(
αΥ k,S

)
. By the definition of Υ k,S , for all coalitions

T �= S, all events in ΩT lead to the same coalitional payment of 1 when S � T ,
and 0 when S � T . Thus by (I LD), F

(
αΥ k,S

) = F (u0) where the game u0 is
obtained from Υ k,S by merging all duplicate events in each sample space ΩT , with
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T /∈ {S, N }, into a single event eT . By so doing, we move from (Ω,�) to (Ω1,�1)

such that for T ∈ {S, N }, (Ω1)T = ΩT , �1(T , k) = �(T , k) for all k ∈ ΩT ; and for
all T ∈ CN\{S, N }, (Ω1)T = {eT } and�1(T , eT ) = 1. Since� cannot be reduced to
a rational-valued probability distribution, ΩS necessarily contains at least two events.
First suppose thatΩS = {k, l} for someevents k and l. Letπ(S, k) = p1 and�(S, l) =
p2 with p1 + p2 = 1. To continue, we consider three new games. To this end, we
consider two distinct events k′, l ′ /∈ {k, l} together with an arbitrary rational number
q such that p1 − 1

2 < q < min{p1, 1
2 }. Such a rational number q necessarily exists

since p1 − 1
2 < p1 and p1 − 1

2 < 1
2 . The new games are:

– u1 ∈ CC(N ,Ω1,�1) such that u1(T , t) = u0(T , t) and �1(T , t) = �(T , t) for
all T ∈∈ CN\{S} together with

u1(S, k) = 0, u1(S, l) = 1and �1(S, k) = �1(S, l) = 1

2
.

– u2 ∈ CC(N ,Ω2,�2) obtained from u0 by only duplicating k into k and k′, and l
into l and l ′ in such a way that (Ω2)S = {k, k′, l, l ′} and

�2(S, k) = q,�2(S, k′) = p1 − q;�2(S, l ′) = 1

2
− q;�2(S, l)

= q + 1

2
− p1 = p2 −

(
1

2
− q

)

.

– u3 ∈ CC(N ,Ω2,�3) obtained from u1 by only duplicating k into k and l ′, and l
into l and k′ in such a way that

�3(S, k) = q,�3(S, l ′) = 1

2
− q;�3(S, k′) = p1 − q;

�3(S, l) = q + 1

2
− p1 = 1

2
− (p1 − q) .

Note that u2 and u3 are defined on the same sample space Ω2. Moreover, from �2
to �3, only the probabilities of k′ and l ′ are permuted. Let π be the transposition of
Ω2 that interchanges k′ and l ′; that is π = (k′, l ′). Then π�3 = �2. We deduce that
πu3 ∈ CC(N ,Ω2,�2). Furthermore,

(u2 + πu3)(S, t) = 1 for all t ∈ (Ω2)S .

In words, all events in (Ω2)S lead to the same coalitional payment of 1. Therefore, by
(I LD), k, k′, l and l ′ can be merged from u2 + πu3 into a single event eS that occurs
with probability 1. This leads us to the game u4 = u2 + πu3 ∈ CC(N , (Ω3,�4) such
that

(Ω2)T = {eT } and �4(T , eT ) = 1 for all coalitions T �= N .
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Thus, u1 and u4 belongs to CCr (N ). Therefore

F
(
αΥ k,S

)
= F (u0) by (ILD)

= F (u2) by (ILD)

= F (u2 + πu3) − F(πu3) by additivity of F

= Ψ (u2 + πu3) − F(πu3) by Theorem 3 since u4 = u2
+πu3 ∈ CCr (N )

= Ψ (u2) + Ψ (πu3) − F(πu3) by additivity of Ψ

= Ψ (u2) + Ψ (u3) − F(u3) by (I LD) and Proposition 1

= Ψ (u0) + Ψ (u1) − F(u1) by (I LD)

= Ψ (u0) by Theorem 3 since u1 ∈ CCr (N )

= Ψ
(
αΥ k,S

)
by (I LD)

Now, suppose that ΩS contains more than two events. By definition, Υ k,S(S, k) = 1
and Υ k,S(S, t) = 0 for all t ∈ ΩS\{k}. Thus by merging all events t ∈ ΩS\{k} into a
single event l, one returns to the previous case by applying (I LD). ��
Theorem 4 A value F on CC (N ) satisfies (E), (A), (N P∗), (SSym) and (I LD) if
and only if F = Ψ .

Proof Necessity. See Proposition 2.
Sufficiency. For a given collection Ω of sample spaces and a probability distribution
function � on Ω ,

(
Υ k,S

)
S∈CN ,k∈ΩS

is, by Proposition 4, a basis of CC(N ,Ω,�).
Thus, the result follows from Lemma 4 and additivity using very similar arguments to
those used in the proof of Theorem 1. ��
Proposition 9 The axioms (E), (A), (N P∗), (SSym) and (I LD) are independent on
CC (N ) .

Proof Since CCr (N ) ⊆ CC (N ), each of the five values invoked in the proof of Propo-
sition 8 also permit to prove that none of the five axioms in consideration on CC (N )

can not be deduced from the four others. ��
In Theorem 4 , axioms (E), (A) and (N P∗) are related to how, independently of the

probability distribution, the information on coalitional payoffs in a game impacts on
the shares of players. Axioms (SSym) and (I LD) describe some specific patterns or
changes that may be observed either on the coalitional payoffs; or on the probability
distribution function separately. Some more mixture changes that combine changes
on the probability distribution and the coalitional payoffs are explored below. The
first change consists in merging two events as follows: given v ∈ CC (N ) , a coalition
S �= N and {k, l} ⊆ ΩS , the game

(
Ω S,k∼l , vS,k∼l ,� S,k∼l

) ∈ CC (N ) is defined by

(i) Ω
S,k∼l
T = ΩT \{l} if T = S and Ω

S,k∼l
T = ΩT if T �= S;
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(ii) � S,k∼l(S, k) = �(S, k) + �(S, l) and

vS,k∼l(S, k) = �(S, k)

�(S, k) + �(S, l)
v(S, k) + �(S, l)

�(S, k) + �(S, l)
v(S, l);

(iii) � S,k∼l(T , t) = �(T , t) and vS,k∼l(S, t) = v(S, t) if T �= S or (T = S and
t ∈ ΩS\{k, l}).

To obtain the game vS,k∼l , event l is deleted, the probability of event k is updated
to the sum of the probabilities of events k and l while the corresponding payoff is
obtained by aggregating the payoffs associated with k and l to their weighted mean.
Hereafter, we say that moving from v to vS,k∼l is an MC-merging.

Merge-and-Cancel Invariance (MCI). For all v ∈ CC (N ), for all coalitions S �= N
and for all k, l ∈ ΩS , F

(
vS,k∼l

) = F (v).
In contrast with (I LD), mergeability invariance captures changes that combine

probabilities with payoffs of coalitions. Although, (MCI ) seems to be almost a math-
ematical disposition, it turns out in the following result that (MCI ) is equivalent to
(I LD) when one assumes (E), (A), (N P∗) and (SSym).

Theorem 5 A value F on CC (N ) satisfies (E), (A), (N P∗), (SSym) and (MCI ) if
and only if F = Ψ .

Proof Consider a value F on CC (N ).

Necessity. Thanks to Proposition 2, we only need to prove that Ψ satisfies (MCI ).
By merging two events k, l ∈ ΩS into k in a c.c. game v, it can be checked that
the expectation game in the new game vS,k∼l coincides with that of v. Therefore, by
equation (5), F

(
vS,k∼l

) = F (v).

Sufficiency. Suppose that a value F on CC (N ) satisfies (E), (A), (N P∗), (SSym) and
(MCI ). Given a coalition S �= N , all events in ΩS can be merged into a single event,
say kS , by a successive use of the merging operation. By MCI , this operation leaves
unchanged all individual shares with respect to F and Ψ from v to the new game.
By iterating this procedure for all coalitions S �= N , one moves from v to the game
Υ ∈ CC(N ,Ω ′,� ′):

Υ = (
Ẽv

)
� ′ +

∑

k∈ΩN

(v(N , k) − Ev(N )) Υ k,N

such that for all k ∈ ΩN , the payoff and the probability of event k are the same in Υ

as in v; for all coalitions S �= N , kS is the unique event for S in Υ while the payoff of
the members of S is the expectation Ev(S) of S in v. By (MCI), F(v) = F(Υ ) and
Ψ (Υ ) = Ψ (v). Moreover, the probability distribution in Υ is uniform on Ω ′. Thus
by Theorem 2, F(Υ ) = Ψ (Υ ). Therefore F(v) = Ψ (v). ��
Proposition 10 Axioms (E), (A), (N P∗), (SSym) and (MCI ) are independent on
CC (N ) .
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Proof Each of the first three values presented in Proposition 7 satisfies (MCI ) but
fails to satisfy exactly one axiom among (E), (A) and (N P∗). Now, consider two
distinct players i and j . Denote by a the n-tuple defined by ai = 1, a j = −1 and
at = 0 for all t ∈ N\{i, j}. Let the value F5 be defined for all v ∈ CC(N ,Ω,�) and
for all k ∈ ΩN by

F6(v, k) =Ψ (v, k) +
⎡

⎣
∑

l∈Ω{i, j}
� ({i, j}, l) v({i, j}, l) −

∑

l∈Ω{i}
� ({i}, l) v({i}, l)

−
∑

l∈Ω{ j}
� ({ j}, l) v({ j}, l)

⎤

⎦ a.

The value F6 is (E), (N P∗), (A) and (MCI ); but not (SSym). Moreover, we note that
the value introduced in Remark 5 is (E), (A), (N P∗) and (SSym), but not (MCI ) .

See Appendix 5.3 for further details. ��
By an MC-merging operation, the size of a sample space is reduced by canceling

some events. An alternative operation consists inmaintaining all events. To define such
an operation, associate to a game v ∈ CC(N ,Ω,�) the game vS,k∧l ∈ CC (N ,Ω,�)

defined by vS,k∧l(T , t) = v(T , t) if T �= S or (T = S and t ∈ ΩS\{k, l}); together
with

vS,k∧l(S, k) = vS,k∧l(S, l) = �(S, k)

�(S, k) + �(S, l)
v(S, k)

+ �(S, l)

�(S, k) + �(S, l)
v(S, l).

For the game vS,k∧l(S, k), one merges the payoffs of events k and l to the their
weighted mean; but keeps all events with their respective probabilities. This contrasts
with the game vk∼l , in which one merges the payoffs of two events and removes one
from the sample space of S.

Merge-and-Keep Invariance (MKI). For all v ∈ CC (N ), for all coalitions S �= N
and for all k, l ∈ ΩS , F

(
vS,k∧l) = F (v).

Both (MK I ) and (MCI ) are based on the same intuition that merging some events
in a consistent way should not affect individual shares in a game. Hereafter, we say
that moving from v to vS,k∧l is an MK -merging operation.

To prove the next result, we consider the basis
(
Υ c,k,S

)
S∈CN ,k∈ΩS

of CC(N ,Ω,�)

where the collection c is such that for all S ∈ CN and for all k ∈ ΩS ,

ck,S = 1

�(S, k)
. (12)

The collection c = (
ck,S

)
S∈CN ,k∈ΩS

is well-defined since only events with positive

probabilities are considered. It can also be checked that all games Υ c,k,S for k ∈ ΩS
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yield the same expectation of one unit to coalition S. Moreover, the following result
holds:

Lemma 5 Let Ω be an arbitrary collection of sample spaces and � a probability
distribution function on Ω . Suppose that c = (

ck,S
)
S∈CN ,k∈ΩS

is defined by (12).
Then, all values F on CC (N ,Ω,�) that satisfy (MK I ) are such that

F
(
αΥ c,k,S

)
= F

(
αΥ c,l,S

)
(13)

for all coalitions S, for all events k, l ∈ ΩS and for all real numbers α.

Proof Suppose that c = (
ck,S

)
S∈CN ,k∈ΩS

is defined by (12). Consider a value F that
satisfies (MK I ) on CC (N ,Ω,�), a coalition S, two events k, l ∈ ΩS and a real
number α. Pose u = αΥ k,S and v = αΥ l,S . By the definition of αΥ k,S and αΥ l,S ,
u(T , t) = v(T , t) for all coalitions T and for all t ∈ ΩT such that T �= S or (T = S
and t ∈ ΩS\{k, l}). Therefore uS,k∧l(T , t) = vS,k∧l(T , t) for all coalitions T and for
all t ∈ ΩT such that T �= S or (T = S and t ∈ ΩS\{k, l}). Furthermore, for t ∈ {k, l},

uS,k∧l(S, t) = vS,k∧l(S, t) = 1

�(S, k) + �(S, l)
.

This proves that uS,k∧l = vS,k∧l . Therefore,

F(αΥ k,S) = F(uS,k∧l) = F(vS,k∧l) = F(αΥ l,S).

since F satisfies (MK I ). ��
Theorem 6 Let Ω be an arbitrary collection of sample spaces and � a probability
distribution function on Ω .

A value F on CC (N ,Ω,�) satisfies (E), (A), (N P∗), (SSym) and (MK I ) if and
only if F = Ψ .

Proof Sufficiency. Due to Proposition 2, we only needs to prove that Ψ satisfies
(MK I ). Consider v ∈ CC(N ). By the definition of an MK -merging operation,
the expectation game of vS,k∧l coincides with that of v. Therefore, by equation (5),
Ψ

(
vS,k∧l) = Ψ (v).

Necessity. Suppose that a value F on CC (N ) satisfies (E), (A), (N P∗), (SSym)

and (MK I ). Consider v ∈ CC (N ,Ω,�). Since F satisfies (A) and the collection(
Υ c,k,S

)
S∈CN ,k∈ΩS

with c defined by (12) is a basis of CC (N ,Ω,�), to prove that

F(v) = Ψ (v), we only have to prove that F
(
αΥ c,k,S

) = Ψ
(
αΥ c,k,S

)
for all S ∈ CN

and for all k ∈ ΩS .
For this purpose, consider a coalition S and k ∈ ΩS . On the one hand, we have

F

⎛

⎝
∑

l∈ΩS

�(S, l)αΥ c,l,S

⎞

⎠ = F

⎛

⎝α
∑

l∈ΩS

�(S, l)
(
cl,Sg

l,S + Υ �,S
)
⎞

⎠ since Υ c,l,S
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= cl,Sg
l,S + Υ �,S

= F

⎛

⎝α
∑

l∈ΩS

(
gl,S + �(S, l)Υ �,S

)
⎞

⎠ since cl,S

= 1

�(S, l)
from (12)

= F

⎛

⎝α
∑

l∈ΩS

(
Υ l,S − Υ �,S + �(S, l)Υ �,S

)
⎞

⎠ since gl,S

= Υ l,S − Υ �,S from (6)

= F

⎛

⎝

⎛

⎝α
∑

l∈ΩS

Υ l,S

⎞

⎠ − α|ΩS|Υ �,S

+αΥ �,S
)
since

∑

l∈ΩS

�(S, l) = 1

= F
(
α (γ̃S)�

)
by Proposition 5

On the other hand,

F

⎛

⎝
∑

l∈ΩS

�(S, l)αΥ c,l,S

⎞

⎠ =
∑

l∈ΩS

F
(
�(S, l)αΥ c,l,S

)
by additivity

=
∑

l∈ΩS

F
(
�(S, l)αΥ c,k,S

)
by Lemma 5

= F

⎛

⎝
∑

l∈ΩS

�(S, l)αΥ c,k,S

⎞

⎠ by additivity

= F
(
αΥ k,S

)
since

∑

l∈ΩS

�(S, l) = 1

This proves that F
(
αΥ k,S

) = F
(
α (γ̃S)�

)
. Since Ψ also satisfies (E), (A), (N P∗),

(SSym) and (MK I ), we deduce that Ψ
(
αΥ k,S

) = Ψ
(
α (γ̃S)�

)
. In the c.c. game

α (γ̃S)� , all players in S are stochastically symmetric while all players out of S are
null players in γS . The result follows by applying (E), (N P∗) and (SSym). ��
Proposition 11 Axioms (E), (A), (N P∗), (SSym) and (MK I ) are independent on
CC (N ) .

Proof Each of the five values invoked in the proof of Proposition 10 also permit to
prove that none of the five axioms in consideration here on CC (N ) can not be deduced
from the four others. See Appendix 5.4 for further details. ��
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Remark 6 It appears from Theorem 5 and Theorem 6 that (MCI ) and (MK I ) are
equivalent axioms for values that satisfy (E), (A), (N P∗) and (SS) . Furthermore,
the intuition behind both (MCI ) or (MK I ) seems quite to be the preservation of the
expectations of proper coalitions in a c.c. game. Each of the two axioms is equivalent
to (I LD) for values that satisfy (E), (A), (N P∗) and (SS) . Hence (I LD), which
simply requires that merging duplicate events should not affect individual shares in a
c.c. game, tells us a more perceivable story than (MCI ) or (MK I ).

Remark 7 For an overview of the results presented, it is worth noticing that in Theorem
3-6, the collection Ω of sample spaces varies as well as the probability distribution
function � . In contrast, Theorems 1, 2 and 6 hold for a given Ω and � . Furthermore,
Theorems 1 and 2 rely only on uniform probability distribution functions while the
scope of Theorem 6 is not restricted. Similarly, Theorem 3 holds on the subclass of
c.c. games with rational-valued probability distributions while Theorem 5 and 6 are
obtained on the whole class of c.c. games.

4 Conclusion

In this paper, a value for c.c. games is presented together with some of its key features.
Firstly, it can be interpreted as a two-stage contract in Charnes andGranot sense. Given
a c.c. game, players are first promised their prior Shapley shares from the expecta-
tion game associated with the initial game. When an event for the grand coalition is
observed, the surplus is equally re-allocated among players to obtain the final shares.
Secondly, a very simple and compact formula is provided and shows how the payoff
vector of a game is obtained from the Shapley value of the expectation game. Thirdly,
a procedure that tells the story behind the determination of individual shares is built
up and follows the same spirit as the Shapley procedure. Fourthly and finally, charac-
terizations that exhibit the normative requirements behind the equal-surplus Shapley
value are presented. Some of these characterization results are obtained thanks to a
new presentation of c.c. games with sample spaces embedded.

Still, in our framework, it is for some interest to pursue investigations on a
proportional-surplus Shapley value that will maintain the same prior shares we use,
but will proportionally split the surplus according to a collection of predetermined
individual weights. Nowak and Radzik (1995) or Béal et al. (2016) are some appropri-
ate references on this issue. In c.c. games, coalitional worths are independent random
variables. The TUU-game model by Habis and Herings (2011) encompasses this lim-
itation since it makes it possible to have correlated coalitional worths. It would also
be interesting to construct single-valued solutions for TUU-games and study their
prominent properties. Our current framework develops some useful tools for such
inquiries.
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5 Appendices

In the main text, we have presented some allocation rules and assert that each of
them meets some properties. We show here that each such rule effectively satisfies the
announced properties.

5.1 Proof of Proposition 7

Proposition 7 Assume that � is uniform on Ω and that |ΩS| = |ΩT | for all S, T ∈
CN\{N }.

Axioms (E), (A), (N P∗) and (SSym) are independent on CC(N ,Ω,�).

Proof Assume that � is uniform on Ω and that |ΩS| = |ΩT | for all coalitions S, T ∈
CN\{N }.
1. F1

i (v, k) = 1
n v (N , k) for all v ∈ CC(N ,Ω,�), for all coalitions S, for all k ∈ ΩN

and for all i ∈ N . Then F1 is (E), (A) and (SSym); but not (N P∗). Proving this
is straightforward and is omitted.

2. F2 (v) = 2Ψ (v) for all v ∈ CC(N ,Ω,�). Then F2 is (N P∗), (A) and (SSym);
but not (E). Proving this is straightforward and is omitted.

3. Given v ∈ CC(N ,Ω,�), denote by N∗(v) the set of all null players in the expec-
tation game Ev and for all S ∈ CN , let V (S) = {v(S, l) : l ∈ ΩS} be the set of all
possible worths of coalition S. Define the value F3 for all v ∈ CC(N ,Ω,�) and
for all i ∈ N by

F3
i (v, k) = 0i f i ∈ N∗(v); and F3

i (v, k) = v(N , k)

|N\N∗(v)|otherwise.

(a) It is clear that F3 satisfies (E) and (N P∗).
(b) Suppose that i and j are two stochastically symmetric players in a c.c. game

v ∈ CC(N ,Ω,�). To see that i and j are symmetric players in the expectation
game, consider S ⊆ N\{i, j}.

Ev(S ∪ {i}) =
∑

l∈ΩS∪{i}
�((S ∪ {i}, l)v((S ∪ {i}, l)

=
∑

x∈V (S∪{i})
x

∑

l∈ΩS∪{i}:v(S∪{i},l)=x

�(S ∪ {i}, l)

=
∑

x∈V (S∪{ j})
x

∑

l∈ΩS∪{ j}:v(S∪{ j},l)=x

�(S ∪ { j}, l)

since i and j are stochastically symmetric in v
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=
∑

l∈ΩS∪{ j}
�((S ∪ { j}, l)v((S ∪ { j}, l)

=Ev(S ∪ { j})

Thus, i and j are symmetric players in Ev . By the definition of F3, F3
i (v, k) =

F3
j (v, k) for all k ∈ ΩN . Therefore F3 satisfies (SSym).

(c) Consider {i, j} ∈ CN . Pose u = (
γ̃{i}

)
�

and v = (
γ̃{i, j}

)
�
. Let k ∈ ΩS . We

have N∗(u) = N\{i} and N∗(u + v) = N\{i, j}. By the definition of F3,

F3
i (u, k) + F3

i (v, k) = 1 + 1

2
= 3

2
and F3

i (u + v, k) = 1.

Therefore F3(v + u) �= F3(u) + F3(v) since F3
i (u + v, k) �= F3

i (u, k) +
F3
i (v, k). This proves that F3 does not satisfy (A).

4. Given two distinct players i and j in N , denote by a the n-tuple defined by ai = 1,
a j = −1 and ah = 0 for all h ∈ N\{i, j}. Let the value F4 be defined for all
v ∈ CC(N ,Ω,�) and for all k ∈ ΩN by

F4(v, k) = Ψ (v, k) +
⎡

⎣
∑

l∈Ω{i, j}
�({i, j}, l)v({i, j}, l) −

∑

l∈Ω{i}
�({i}, l)v({i}, l)

−
∑

l∈Ω{ j}
�({ j}, l)v({ j}, l)

⎤

⎦ a.

(a) Since the terms of Ψ (v, k) sum to v(N , k) and the terms of a sum to zero, it
follows that the terms of F4(v, k) sum to v(N , k). Therefore F4 satisfies (E).

(b) Suppose that u is a TU-game on N and h ∈ N is a null player in u. If h ∈
N\{i, j}, then by the definition of a, ah = 0 and F4

h (̃u� , k) = Ψh (̃u� , k) = 0
since Ψ is (N P∗). Now, without lost generality, suppose that h = i . Since Ψ

is (N P∗), Ψi (̃u� , k) = 0. Moreover, ũ� (S, l) = u(S) for all coalitions S and
for all l ∈ ΩS . Thus, by the definition of F4, we have:

F4
i (̃u� , k) =

⎡

⎣
∑

l∈Ω{i, j}
�({i, j}, l)u({i, j}) −

∑

l∈Ω{i}
�({i}, l)u({i})

−
∑

l∈Ω{ j}
�({ j}, l)u({ j})

⎤

⎦ ai

=
⎡

⎣u({i, j}) − u({ j})
︸ ︷︷ ︸

0

− u({i})
︸ ︷︷ ︸

0

⎤

⎦ ai since

� is a probability distribution function = 0.
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We conclude that F4 satisfies (N P∗).
(c) F4 verifies (A) since Ψ verifies (A) and the coefficient of vector a in the

definition of F4 is linear.
(d) Pose v = Υ k,{i, j} for some k ∈ Ω{i, j}. Players i and j are stochastically

symmetric in v. Moreover,

F4
i (v, k) = Ψi (v, k) + 1 and F4

j (v, k) = Ψ j (v, k) − 1.

Since Ψi (v, k) = Ψ j (v, k) by symmetry of Ψ , we deduce that F4
i ((v, k) �=

F4
j (v, k). Therefore F4 does not satisfy (SSym).

In summary, the four axioms are independent. ��

5.2 Proof of Proposition 8

Proposition 8 The axioms (E), (A), (N P∗), (SSym) and (I LD) are independent on
CCr (N ) .

Proof Each of the four values presented in Proposition 7 fails to satisfy exactly one
axiom among (E), (A), (N P∗) and (SSym). Each of those four values obviously
satisfies (I LD). Therefore, we only have to prove that (I LD) can not be deduced
from the other four axioms in consideration on CCr (N ) . To prove this, consider a pair
{a, b} of integers and the collection of sample spacesΩ0 such thatΩ0

S = {a, b} for all
S ∈ CN . Denote by� 0 the uniform probability distribution function onΩ0 and let�p

be the probability distribution function defined for all coalitions S by �p(S, a) = 2
p

and �(S, b) = 1 − 2
p where p is a prime number such that p ≥ 3. Now, define the

value F5 on CCr (N ) by

F5 (v) =
{

Ψ (̂v) if v ∈ CC(N ,Ω0,�p)

Ψ (v) otherwise

where the game v̂ is obtained from v by substituting to �p the uniform probability
distribution function � 0 on Ω0.

1. The value F5 satisfies (E) since Ψ verifies (E).

(a) To prove that F5 satisfies (N P∗), suppose that u is a TU-game on N and i ∈ N
is a null player in u. We have to prove that for all k ∈ ΩN , F5

i (v, k) = 0 where
v = ũ� for an arbitrary probability distribution function � on a collection Ω of
sample spaces. First suppose that v ∈ CC(N ,Ω0,�p); that isΩ = Ω0 and� =
�p. Then v̂ = ũ� 0 and F5

i (v, k) = Ψi
(
ũ� 0 , k

) = 0 since Ψ satisfies (N P∗).
Now, suppose that v /∈ CC(N ,Ω0,�p). Then F5

i (v, k) = Ψi (̃u� , k) = 0 since
Ψ satisfies (N P∗). Thus, we conclude that F5 satisfies (N P∗).

(b) By noting that û + v = û + v̂ for all u, v ∈ CC(N ,Ω0,�p), it follows that F5

verifies (A) since Ψ verifies (A).
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(c) Suppose that i and j are two stochastically symmetric players in a c.c. game
v ∈ CC(N ,Ω,�). Let k ∈ ΩN . First suppose that v /∈ CC(N ,Ω0,�p). By
the definition of F5, F5(v) = Ψ (v). Since Ψ verifies (SSym), it follows that
F5
i (v, k) = F5

j (v, k) for all k ∈ ΩN . Now, suppose that v ∈ CC(N ,Ω0,�p).

By the definition of Ω0, i and j are such that v(S ∪ {i}, l) = v(S ∪ { j}, l) for
all S ⊆ N\{i, j} and for all l ∈ ΩS∪{i}) = {a, b} = ΩS∪{ j}). From v to v̂,
only the probability distribution function changes. Therefore, v̂(S ∪ {i}, l) =
v̂(S ∪ { j}, l) for all S ⊆ N\{i, j} and for all l = {a, b}. This proves that i and
j are stochastically symmetric in v̂ and that F5(v) = Ψ (̂v). Since Ψ verifies
(SSym), it follows that F5

i (v, k) = F5
j (v, k) for all k ∈ ΩN . This prove that F5

satisfies (SSym).
(d) Consider i ∈ N . Pose S = N\{i}, v = Υ a,S ∈ CC(N ,Ω0,�p) and u = vS,b,b′

where u is obtained from v by only duplicating, in ΩS , b into b and b′. Note that
v ∈ CC(N ,Ω0,�p), v̂ ∈ CC(N ,Ω0,� 0) and u /∈ CC(N ,Ω0,�p). Also note
that,

Eu = Ev = 2

p
γS +

(

1 − 2

p

)

γN and Ev̂ = 1

p
γS +

(

1 − 1

p

)

γN . (14)

Therefore

F5
i (v, a) = Ψi (̂v, a) = Shapi

(
1

p
γS +

(

1 − 1

p

)

γN

)

= 1

n
− 1

np

and

F5
i (u, a) = Ψi (u, a) = Shapi

(
2

p
γS +

(

1 − 2

p

)

γN

)

= 1

n
− 2

np

It follows that F5
i (u, a) �= F5

i (v, a). Since u is obtained from v by a duplication
of b in ΩS , we conclude that F5 does not satisfy (I LD). The proof is thus
completed.

��

5.3 Proof of Proposition 10

Proposition 10 Axioms (E), (A), (N P∗), (SSym) and (MCI ) are independent on
CC (N ) .

Proof Each of the four values presented in Proposition 7 fails to satisfy exactly one
axiom among (E), (A), (N P∗) and (SSym). Each of those four values obviously
satisfies (MCI ). Now, we have proved that the value F5 in the proof of Proposition 8
satisfies (E), (A), (N P∗) and (SSym). To prove that F5 fails tomeet (MCI ), consider
i ∈ N . Pose S = N\{i}, v = Υ a,S ∈ CC(N ,Ω0,�p) and u = vS,a∼b where u is
obtained from v by merging, in ΩS , a and b into a. Note that v ∈ CC(N ,Ω0,�p),
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v̂ ∈ CC(N ,Ω0,� 0) and u /∈ CC(N ,Ω0,�p). Since the expectation game does not
change by applying an MC-merging operation, (14) still holds. Therefore,

F5
i (v, a) = Ψi (̂v, a) = Shapi

(
1

p
γS +

(

1 − 1

p

)

γN

)

= 1

n
− 1

np

and

F5
i (u, a) = Ψi (u, a) = Shapi

(
2

p
γS +

(

1 − 2

p

)

γN

)

= 1

n
− 2

np

It follows that F5
i (u, a) �= F5

i (v, a). Since u is obtained from v by an MC-merging
operation, we conclude that F5 does not satisfy (MCI ). The proof is thus completed.

��

5.4 Proof of Proposition 11

Proposition 11 Axioms (E), (A), (N P∗), (SSym) and (MK I ) are independent on
CC (N ) .

Proof Each of the four values presented in Proposition 7 fails to satisfy exactly one
axiom among (E), (A), (N P∗) and (SSym). Each of those four values obviously
satisfies (MK I ). Now, we have proved that the value F5 in the proof of Proposition 8
satisfies (E), (A), (N P∗) and (SSym). To prove that F5 fails tomeet (MK I ), consider
i ∈ N . Pose S = N\{i}, v = Υ a,S ∈ CC(N ,Ω0,�p) and u = vS,a∧b where u is
obtained from v by an MK -merging operation, inΩS . Note that v ∈ CC(N ,Ω0,�p),
v̂ ∈ CC(N ,Ω0,� 0) and u ∈ CC(N ,Ω0,�p). Since the expectation game does not
change by applying an MK -merging operation, (14) still holds. Therefore,

F5
i (v, a) = Ψi (̂v, a) = Shapi

(
1

p
γS +

(

1 − 1

p

)

γN

)

= 1

n
− 1

np

and

F5
i (u, a) = Ψi ((̂u, a) = Shapi

(
2

p
γS +

(

1 − 2

p

)

γN

)

= 1

n
− 2

np

It follows that F5
i (u, a) �= F5

i (v, a). Since u is obtained from v by an MK -merging
operation, we conclude that F5 does not satisfy (MK I ). The proof is thus completed.

��
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