REPUBLIQUE DU CAMEROUN Paix – Travail – Patrie

UNIVERSITE DE YAOUNDE I

FACULTE DES SCIENCES

CENTRE DE RECHERCHE ET DE FORMATION DOCTORALE EN SCIENCES, TECHNOLOGIE ET GEOSCIENCES

UNITE DE RECHERCHE ET DE FORMATION DOCTORALE EN CHIMIE ET APPLICATIONS REPUBLIC OF CAMEROON Peace – Work – Fatherland

THE UNIVERSITY OF YAOUNDE I

FACULTY OF SCIENCE

POSTGRADUATE SCHOOL FOR SCIENCES, TECHNOLOGY AND GEOSCIENCES

DOCTORALE RESEARCH UNIT FOR CHRMISTRY AND APLICATIONS

LABORATOIRE DE PHARMACOCHIMIE DES SUBSTANCES NATURELLES NATURAL PRODUCTS PHARMACOCHEMISTRY LABORATORY

Isolement et caractérisation des constituants chimiques des feuilles de deux plantes de la famille des Rubiaceae : *Tricalysia atherura* N. Hallé et *Tricalysia oligoneura* K. Schum; Evaluation de leurs activités sur certaines parasitoses (paludisme et leishmaniose)

Thèse présentée en vue de l'obtention du diplôme de Doctorat /Ph.D en Chimie

Par :

DJIKAM SIME Gwladys Matricule: 12T0039 *Master en Chimie Organique*

Devant le jury composé ainsi qu'il suit :

Président :	NDOM Jean Claude, Pr., U. Yaoundé I
Rapporteurs :	PEGNYEMB Dieudonné Pr., U. Yaoundé I
	NGONO BIKOBO Dominique, MC., U. Yaoundé I
Membres :	KOUAM FOGUE Siméon, Pr., U. Yaoundé I
	ATCHADE Alex de Théodore, Pr., U. Yaoundé I
	MKOUNGA Pierre, Pr., U. Yaoundé I
	DJIOGUE Sefirin, MC., U. Yaoundé I

Année 2024

UNIVERSITÉ DE YAOUNDÉ I

Faculté des Sciences

Division de la Programmation et du

Suivi des Activités Académiques

THE UNIVERSITY OF YAOUNDE I

Faculty of Science

Division of Programming and Follow-up

of Academic Affaires

LISTE DES ENSEIGNANTS PERMANENTS

LIST OF PERMANENT TEACHING STAFF

ANNÉE ACADEMIQUE 2022/2023

(Par Département et par Grade)

DATE D'ACTUALISATION 31 MAI 2023

ADMINISTRATION

DOYEN : TCHOUANKEU Jean- Claude, Maître de Conférences

VICE-DOYEN / DPSAA: ATCHADE Alex de Théodore, Professeur

VICE-DOYEN / DSSE : NYEGUE Maximilienne Ascension, Professeur

VICE-DOYEN / DRC : ABOSSOLO ANGUE Monique, Maître de Conférences

Chef Division Administrative et Financière : NDOYE FOE Florentine Marie Chantal, *Maître de Conférences*

Chef Division des Affaires Académiques, de la Recherche et de la Scolarité DAARS : AJEAGAH Gideon AGHAINDUM, *Professeur*

1- DÉPARTEMENT DE BIOCHIMIE (BC) (43)

N°	NOMS ET PRENOMS	GRADE	OBSERVATIONS
1.	BIGOGA DAIGA Jude	Professeur	En Poste
2.	FEKAM BOYOM Fabrice	Professeur	En Poste
3.	KANSCI Germain	Professeur	En Poste
4.	MBACHAM FON Wilfred	Professeur	En Poste
5.	MOUNDIPA FEWOU Paul	Professeur	Chef de Département
6.	NGUEFACK Julienne	Professeure	En Poste
7.	NJAYOU Frédéric Nico	Professeur	En Poste
8.	OBEN Julius ENYONG	Professeur	En Poste

9.	ACHU Merci BIH	Maître de Conférences	En Poste
10.	ATOGHO Barbara MMA	Maître de Conférences	En Poste
11.	AZANTSA KINGUE GABIN BORIS	Maître de Conférences	En Poste

12.	BELINGA née NDOYE FOE F. M. C.	Maître de Conférences	Chef DAF / FS
13.	DJUIDJE NGOUNOUE Marceline	Maître de Conférences	En Poste
14.	DJUIKWO NKONGA Ruth Viviane	Maître de Conférences	En Poste
15.	EFFA ONOMO Pierre	Maître de Conférences	VD/FS/Univ Ebwa
16.	EWANE Cécile Annie	Maître de Conférences	En Poste
17.	KOTUE TAPTUE Charles	Maître de Conférences	En Poste
18.	LUNGA Paul KEILAH	Maître de Conférences	En Poste
19.	MBONG ANGIE M. Mary Anne	Maître de Conférences	En Poste
20.	MOFOR née TEUGWA Clotilde	Maître de Conférences	Doyen FS / UDs
21.	NANA Louise épouse WAKAM	Maître de Conférences	En Poste
22.	NGONDI Judith Laure	Maître de Conférences	En Poste
23.	TCHANA KOUATCHOUA Angèle	Maître de Conférences	En Poste

24.	AKINDEH MBUH NJI	Chargé de Cours	En Poste
25.	BEBEE Fadimatou	Chargée de Cours	En Poste
26.	BEBOY EDJENGUELE Sara Nathalie	Chargé de Cours	En Poste
27.	DAKOLE DABOY Charles	Chargé de Cours	En Poste
28.	DONGMO LEKAGNE Joseph Blaise	Chargé de Cours	En Poste
29.	FONKOUA Martin	Chargé de Cours	En Poste
30.	FOUPOUAPOUOGNIGNI Yacouba	Chargé de Cours	En Poste
31.	KOUOH ELOMBO Ferdinand	Chargé de Cours	En Poste
32.	MANANGA Marlyse Joséphine	Chargée de Cours	En Poste
33.	OWONA AYISSI Vincent Brice	Chargé de Cours	En Poste
34.	Palmer MASUMBE NETONGO	Chargé de Cours	En Poste
35.	PECHANGOU NSANGOU Sylvain	Chargé de Cours	En Poste
36.	WILFRED ANGIE ABIA	Chargé de Cours	En Poste

37.	BAKWO BASSOGOG Christian Bernard	Assistant	En Poste
38.	ELLA Fils Armand	Assistant	En Poste
39.	EYENGA Eliane Flore	Assistante	En Poste
40.	MADIESSE KEMGNE Eugenie Aimée	Assistante	En Poste

41.	MANJIA NJIKAM Jacqueline	Assistante	En Poste
42.	MBOUCHE FANMOE Marceline Joëlle	Assistante	En Poste
43.	WOGUIA Alice Louise	Assistante	En Poste

2- DÉPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE ANIMALES (BPA) (52)

1.	AJEAGAH Gideon AGHAINDUM	Professeur	DAARS/FS
2.	BILONG BILONG Charles-Félix	Professeur	Chef de Département
3.	DIMO Théophile	Professeur	En Poste
4.	DJIETO LORDON Champlain	Professeur	En Poste
5.	DZEUFIET DJOMENI Paul Désiré	Professeur	En Poste
6.	ESSOMBA née NTSAMA MBALA	Professeure	CD et Vice Doyen/FMSB/UYI
7.	FOMENA Abraham	Professeur	En Poste
8.	KEKEUNOU Sévilor	Professeur	En Poste
9.	NJAMEN Dieudonné	Professeur	En Poste
10.	NJIOKOU Flobert	Professeur	En Poste
11.	NOLA Moïse	Professeur	En Poste
12.	TAN Paul VERNYUY	Professeur	En Poste
13.	TCHUEM TCHUENTE Louis Albert	Professeur	Inspecteur de service / Coord.Progr./MINSANTE
14.	ZEBAZE TOGOUET Serge Hubert	Professeur	En Poste

15.	ALENE Désirée Chantal	Maître de Conférences	Vice Doyen/ Uté Ebwa
16.	BILANDA Danielle Claude	Maître de Conférences	En Poste
17.	DJIOGUE Séfirin	Maître de Conférences	En Poste
18.	GOUNOUE KAMKUMO Raceline épse FOTSING	Maître de Conférences	En Poste
19.	JATSA BOUKENG Hermine épse MEGAPTCHE	Maître de Conférences	En Poste
20.	LEKEUFACK FOLEFACK Guy B.	Maître de Conférences	En Poste
21.	MAHOB Raymond Joseph	Maître de Conférences	En Poste

22.	MBENOUN MASSE Paul Serge	Maître de Conférences	En Poste
23.	MEGNEKOU Rosette	Maître de Conférences	En Poste
24.	MOUNGANG Luciane Marlyse	Maître de Conférences	En Poste
25.	NOAH EWOTI Olive Vivien	Maître de Conférences	En Poste
26.	MONY Ruth épse NTONE	Maître de Conférences	En Poste
27.	NGUEGUIM TSOFACK Florence	Maître de Conférences	En Poste
28.	NGUEMBOCK	Maître de Conférences	En Poste
29.	TAMSA ARFAO Antoine	Maître de Conférences	En Poste
30.	TOMBI Jeannette	Maître de Conférences	En Poste

31.	ATSAMO Albert Donatien	Chargé de Cours	En Poste
32.	BASSOCK BAYIHA Etienne Didier	Chargé de Cours	En Poste
33.	ETEME ENAMA Serge	Chargé de Cours	En Poste
34.	FEUGANG YOUMSSI François	Chargé de Cours	En Poste
35.	FOKAM Alvine Christelle épse KENGNE	Chargée de Cours	En Poste
36.	GONWOUO NONO Legrand	Chargé de Cours	En Poste
37.	KANDEDA KAVAYE Antoine	Chargé de Cours	En Poste
38.	KOGA MANG DOBARA	Chargé de Cours	En Poste
39.	LEME BANOCK Lucie	Chargée de Cours	En Poste
40.	MAPON NSANGOU Indou	Chargé de Cours	En Poste
41.	METCHI Donfack Mireille Flaure épse GHOUMO	Chargée de Cours	En Poste
42.	MVEYO NDANKEU Yves Patrick	Chargé de Cours	En Poste
43.	NGOUATEU KENFACK Omer Bébé	Chargé de Cours	En Poste
44.	NJUA Clarisse YAFI	Chargée de Cours	Chef Div. Uté Bamenda
45.	NWANE Philippe Bienvenu	Chargé de Cours	En Poste
46.	TADU Zephyrin	Chargé de Cours	En Poste
47.	YEDE	Chargé de Cours	En Poste
48.	YOUNOUSSA LAME	Chargé de Cours	En Poste

49. AMBADA NDZENGUE GEORGIA ELNA Assistante Eli Poste		49. AMBAD	A NDZENGUE GEORGIA ELNA	Assistante	En Poste
---	--	-----------	-------------------------	------------	----------

50. KODJOM WANCHE Jacguy Joyce	Assistante	En Poste
51. NDENGUE Jean De Matha	Assistant	En Poste
52. ZEMO GAMO Franklin	Assistant	En Poste

3- DÉPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE VÉGÉTALES (BPV) (34)

1.	AMBANG Zachée	Professeur	Chef de Département
2.	DJOCGOUE Pierre François	Professeur	En Poste
3.	MBOLO Marie	Professeur	En Poste
4.	MOSSEBO Dominique Claude	Professeur	En Poste
5.	YOUMBI Emmanuel	Professeur	En Poste
6.	ZAPFACK Louis	Professeur	En Poste

7.	ANGONI Hyacinthe	Maître de Conférences	En Poste
8.	BIYE Elvire Hortense	Maître de Conférences	En Poste
9.	MAHBOU SOMO TOUKAM. Gabriel	Maître de Conférences	En Poste
10.	MALA Armand William	Maître de Conférences	En Poste
11.	MBARGA BINDZI Marie Alain	Maître de Conférences	DAAC /UDla
12.	NDONGO BEKOLO	Maître de Conférences	En Poste
13.	NGALLE Hermine BILLE	Maître de Conférences	En Poste
14.	NGODO MELINGUI Jean Baptiste	Maître de Conférences	En Poste
15.	NGONKEU MAGAPTCHE Eddy L.	Maître de Conférences	CT / MINRESI
16.	TONFACK Libert Brice	Maître de Conférences	En Poste
17.	TSOATA Esaïe	Maître de Conférences	En Poste
18.	ONANA JEAN MICHEL	Maître de Conférences	En Poste

19.	DJEUANI Astride Carole	Chargé de Cours	En Poste
20.	GONMADGE Christelle	Chargée de Cours	En Poste
21.	MAFFO MAFFO Nicole Liliane	Chargée de Cours	En Poste
22.	NNANGA MEBENGA Ruth Laure	Chargée de Cours	En Poste
23.	NOUKEU KOUAKAM Armelle	Chargée de Cours	En Poste

24.	NSOM ZAMBO Epse PIAL Annie Claude	Chargée de Cours	En détachement/UNESCO MALI
25.	Godswill NTSOMBOH NTSEFONG	Chargé de Cours	En Poste
26.	KABELONG BANAHO Louis-Paul- Roger	Chargé de Cours	En Poste
27.	KONO Léon Dieudonné	Chargé de Cours	En Poste
28.	LIBALAH Moses BAKONCK	Chargé de Cours	En Poste
29.	LIKENG-LI-NGUE Benoit C	Chargé de Cours	En Poste
30.	TAEDOUNG Evariste Hermann	Chargé de Cours	En Poste
31.	TEMEGNE NONO Carine	Chargé de Cours	En Poste

32.	MANGA NDJAGA Jude	Assistant	En Poste
33.	DIDA LONTSI Sylvere Landry	Assistant	En Poste
34.	METSEBING Blondo-Pascal	Assistant	En Poste

4- DÉPARTEMENT DE CHIMIE INORGANIQUE (CI) (29)

1.	GHOGOMU Paul MINGO	Professeur	Ministre Chargé de Mission PR
2.	NANSEU NJIKI Charles Péguy	Professeur	En Poste
3.	NDIFON Peter TEKE	Professeur	CT MINRESI
4.	NENWA Justin	Professeur	En Poste
5.	NGAMENI Emmanuel	Professeur	Doyen FS Univ.Ngaoundere
6.	NGOMO Horace MANGA	Professeur	Vice Chancelor/UB
7.	NJOYA Dayirou	Professeur	En Poste
8.	UPHIE CHINJE Florence	Professeur	Recteur Univ.Ngaoundere

9.	ACAYANKA Elie	Maître de Conférences	En Poste
10	EMADAK Alphonse	Maître de Conférences	En Poste
11	KAMGANG YOUBI Georges	Maître de Conférences	En Poste
12	KEMMEGNE MBOUGUEM Jean C.	Maître de Conférences	En Poste

13	KENNE DEDZO GUSTAVE	Maître de Conférences	En Poste
14	MBEY Jean Aime	Maître de Conférences	En Poste
15	NDI NSAMI Julius	Maître de Conférences	Chef de Département
16	NEBAH Née NDOSIRI Bridget NDOYE	Maître de Conférences	Sénatrice/SENAT
17	NJIOMOU C. épse DJANGANG	Maître de Conférences	En Poste
18	NYAMEN Linda Dyorisse	Maître de Conférences	En Poste
19	PABOUDAM GBAMBIE AWAWOU	Maître de Conférences	En Poste
20	TCHAKOUTE KOUAMO Hervé	Maître de Conférences	En Poste
21	BELIBI BELIBI Placide Désiré	Maître de Conférences	Chef Service/ ENS Bertoua
22	CHEUMANI YONA Arnaud M.	Maître de Conférences	En Poste
23	KOUOTOU DAOUDA	Maître de Conférences	En Poste

24.	MAKON Thomas Beauregard	Chargé de Cours	En Poste
25.	NCHIMI NONO Katia	Chargée de Cours	En Poste
26.	NJANKWA NJABONG N. Eric	Chargé de Cours	En Poste
27.	PATOUOSSA ISSOFA	Chargé de Cours	En Poste
28.	SIEWE Jean Mermoz	Chargé de Cours	En Poste

20	BOYOM TATCHEMO Franck W.	Assistant	En Poste
29.		1 1001000000	

5- DÉPARTEMENT DE CHIMIE ORGANIQUE (CO) (37)

1.	Alex DE THEODORE ATCHADE	Professeur	Vice-Doyen / DPSAA
2.	DONGO Etienne	Professeur	Vice-Doyen/FSE/UYI
3.	NGOUELA Silvère Augustin	Professeur	Chef de Département UDS
4.	PEGNYEMB Dieudonné Emmanuel	Professeur	Directeur/ MINESUP/ Chef de Département
5.	WANDJI Jean	Professeur	En Poste
6.	MBAZOA née DJAMA Céline	Professeure	En Poste

7.	AMBASSA Pantaléon	Maître de Conférences	En Poste
8.	EYONG Kenneth OBEN	Maître de Conférences	En Poste
9.	FOTSO WABO Ghislain	Maître de Conférences	En Poste
10	KAMTO Eutrophe Le Doux	Maître de Conférences	En Poste
11	KENMOGNE Marguerite	Maître de Conférences	En Poste
12	KEUMEDJIO Félix	Maître de Conférences	En Poste
13	KOUAM Jacques	Maître de Conférences	En Poste
14	MKOUNGA Pierre	Maître de Conférences	En Poste
15	MVOT AKAK CARINE	Maître de Conférences	En Poste
16	NGO MBING Joséphine	Maître de Conférences	Chef de Cellule MINRESI
17	NGONO BIKOBO Dominique Serge	Maître de Conférences	Chef service (SAARP)/ MINESUP
18	NOTE LOUGBOT Olivier Placide	Maître de Conférences	DAAC/Uté Bertoua
19	NOUNGOUE TCHAMO Diderot	Maître de Conférences	En Poste
20	TABOPDA KUATE Turibio	Maître de Conférences	En Poste
21	TAGATSING FOTSING Maurice	Maître de Conférences	En Poste
22	TCHOUANKEU Jean-Claude	Maître de Conférences	Doyen /FS/ UYI
23	YANKEP Emmanuel	Maître de Conférences	En Poste
24	ZONDEGOUMBA Ernestine	Maître de Conférences	En Poste

25	MESSI Angélique Nicolas	Chargé de Cours	En Poste
26	NGNINTEDO Dominique	Chargé de Cours	En Poste
27	NGOMO Orléans	Chargée de Cours	En Poste
28	NONO NONO Éric Carly	Chargé de Cours	En Poste
29	OUAHOUO WACHE Blandine M.	Chargée de Cours	En Poste
30	OUETE NANTCHOUANG Judith Laure	Chargée de Cours	En Poste
31	SIELINOU TEDJON Valérie	Chargé de Cours	En Poste
32	TCHAMGOUE Joseph	Chargé de Cours	En Poste
33	TSAFFACK Maurice	Chargé de Cours	En Poste
34	TSAMO TONTSA Armelle	Chargée de Cours	En Poste

35	TSEMEUGNE Joseph	Chargé de Cours	En Poste
36	MUNVERA MFIFEN Aristide	Assistant	En Poste
37	NDOGO ETEME Olivier	Assistant	En Poste

6- DÉPARTEMENT D'INFORMATIQUE (IN) (22)

1.	ATSA ETOUNDI Roger	Professeur	Chef de Division MINESUP
2.	FOUDA NDJODO Marcel Laurent	Professeur	Inspecteur Général/ MINESUP

3.	NDOUNDAM Réné	Maître de Conférences	En Poste
4.	TSOPZE Norbert	Maître de Conférences	En Poste

5.	ABESSOLO ALO'O Gislain	Chargé de Cours	Chef de Cellule MINFOPRA
6.	AMINOU HALIDOU	Chargé de Cours	Chef de Département
7.	DJAM Xaviera YOUH - KIMBI	Chargé de Cours	En Poste
8.	DOMGA KOMGUEM Rodrigue	Chargé de Cours	En Poste
9.	EBELE Serge Alain	Chargé de Cours	En Poste
10	HAMZA Adamou	Chargé de Cours	En Poste
11	JIOMEKONG AZANZI Fidel	Chargé de Cours	En Poste
12	KOUOKAM KOUOKAM E. A.	Chargé de Cours	En Poste
13	MELATAGIA YONTA Paulin	Chargé de Cours	En Poste
14	MESSI NGUELE Thomas	Chargé de Cours	En Poste
15	MONTHE DJIADEU Valery M.	Chargé de Cours	En Poste
16	NZEKON NZEKO'O ARMEL JACQUES	Chargé de Cours	En Poste
17	OLLE OLLE Daniel Claude Georges Delort	Chargé de Cours	Sous-Directeur ENSET Ebolowa
18	TAPAMO Hyppolite	Chargé de Cours	En Poste

19	BAYEM Jacques Narcisse	Assistant	En Poste
20	EKODECK Stéphane Gaël Raymond	Assistant	En Poste

21 MAKEMBE. S.	Oswald	Assistant	En Poste
NKONDOCK. N 22 BAHANACK.N	MI.	Assistant	En Poste

7- DÉPARTEMENT DE MATHÉMATIQUES (MA) (33)

1.	AYISSI Raoult Domingo	Professeur	Chef de Département
----	-----------------------	------------	---------------------

2.	KIANPI Maurice	Maître de Conférences	En Poste
3.	MBANG Joseph	Maître de Conférences	En Poste
4.	MBEHOU Mohamed	Maître de Conférences	En Poste
5.	MBELE BIDIMA Martin Ledoux	Maître de Conférences	En Poste
6.	NOUNDJEU Pierre	Maître de Conférences	Chef Service des Programmes & Diplômes/FS/UYI
7.	TAKAM SOH Patrice	Maître de Conférences	En Poste
8.	TCHAPNDA NJABO Sophonie B.	Maître de Conférences	Directeur/AIMS Rwanda
9.	TCHOUNDJA Edgar Landry	Maître de Conférences	En Poste

10	AGHOUKENG JIOFACK Jean Gérard	Chargé de Cours	Chef Cellule MINEPAT
11	BOGSO ANTOINE Marie	Chargé de Cours	En Poste
12	CHENDJOU Gilbert	Chargé de Cours	En Poste
13	DJIADEU NGAHA Michel	Chargé de Cours	En Poste
14	DOUANLA YONTA Herman	Chargé de Cours	En Poste
15	KIKI Maxime Armand	Chargé de Cours	En Poste
16	LOUMNGAM KAMGA Victor	Chargé de Cours	En Poste
17	MBAKOP Guy Merlin	Chargé de Cours	En Poste
18	MBATAKOU Salomon Joseph	Chargé de Cours	En Poste
19	MENGUE MENGUE David Joël	Chargé de Cours	Chef Dpt /ENS Université d'Ebolowa
20	MBIAKOP Hilaire George	Chargé de Cours	En Poste

21	NGUEFACK Bernard	Chargé de Cours	En Poste
22	NIMPA PEFOUKEU Romain	Chargée de Cours	En Poste
23	OGADOA AMASSAYOGA	Chargée de Cours	En Poste
24	POLA DOUNDOU Emmanuel	Chargé de Cours	En stage
25	TCHEUTIA Daniel Duviol	Chargé de Cours	En Poste
26	TETSADJIO TCHILEPECK M. Eric.	Chargé de Cours	En Poste

27	BITYE MVONDO Esther Claudine	Assistante	En Poste
28	FOKAM Jean Marcel	Assistant	En Poste
29	GUIDZAVAI KOUCHERE Albert	Assistant	En Poste
30	MANN MANYOMBE Martin Luther	Assistant	En Poste
31	MEFENZA NOUNTU Thiery	Assistant	En Poste
32	NYOUMBI DLEUNA Christelle	Assistante	En Poste
33	TENKEU JEUFACK Yannick Léa	Assistant	En Poste

8- DÉPARTEMENT DE MICROBIOLOGIE (MIB) (24)

1.	ESSIA NGANG Jean Justin	Professeur	Chef de Département
2.	NYEGUE Maximilienne Ascension	Professeure	VICE-DOYEN / DSSE

3.	ASSAM ASSAM Jean Paul	Maître de Conférences	En Poste
4.	BOUGNOM Blaise Pascal	Maître de Conférences	En Poste
5.	BOYOMO ONANA	Maître de Conférences	En Poste
6.	KOUITCHEU MABEKU Epse KOUAM Laure Brigitte	Maître de Conférences	En Poste
7.	RIWOM Sara Honorine	Maître de Conférences	En Poste
8.	NJIKI BIKOÏ Jacky	Maître de Conférences	En Poste
9.	SADO KAMDEM Sylvain Leroy	Maître de Conférences	En Poste

10 ESSONO Damien Marie	Chargé de Cours	En Poste
11 LAMYE Glory MOH	Chargé de Cours	En Poste
12 MEYIN A EBONG Solange	Chargée de Cours	En Poste

13	MONI NDEDI Esther Del Florence	Chargée de Cou	urs	En Poste
14	NKOUDOU ZE Nardis	Chargé de Cou	rs	En Poste
15	TAMATCHO KWEYANG Blandine P.	Chargée de Cou	urs	En Poste
16	TCHIKOUA Roger	Chargé de Cours	Cl	hef de Service de la Scolarité
17	TOBOLBAÏ Richard	Chargé de Cours		En Poste

18	NKOUE TONG Abraham	Assistant	En Poste
19	SAKE NGANE Carole Stéphanie	Assistant	En Poste
20	EZO'O MENGO Fabrice Télésfor	Assistant	En Poste
21	EHETH Jean Samuel	Assistant	En Poste
22	MAYI Marie Paule Audrey	Assistante	En Poste
23	NGOUENAM Romial Joël	Assistant	En Poste
24	NJAPNDOUNKE Bilkissou	Assistant	En Poste

9. DEPARTEMENT DE PYSIQUE(PHY) (43)

1.	BEN- BOLIE Germain Hubert	Professeur	En Poste
2.	DJUIDJE KENMOE Epse ALOYEM	Professeure	En Poste
3.	EKOBENA FOUDA Henri Paul	Professeur	Vice-Recteur. Uté Ngaoundéré
4.	ESSIMBI ZOBO Bernard	Professeur	En Poste
5.	HONA Jacques	Professeur	En Poste
6.	NANA ENGO Serge Guy	Professeur	En Poste
7.	NANA NBENDJO Blaise	Professeur	En Poste
8.	NDJAKA Jean Marie Bienvenu	Professeur	Chef de Département
9.	NJANDJOCK NOUCK Philippe	Professeur	Chef cellule /MINRESI
10.	NOUAYOU Robert	Professeur	En Poste
11.	SAIDOU	Professeur	Chef de centre/IRGM/MINRESI
12.	TABOD Charles TABOD	Professeur	Doyen FS/Univ/Bda

13.	TCHAWOUA Clément	Professeur	En Poste
14.	WOAFO Paul	Professeur	En Poste
15.	ZEKENG Serge Sylvain	Professeur	En Poste

16.	BIYA MOTTO Frédéric	Maître de Conférences	DG/HYDRO Mekin
17.	BODO Bertrand	Maître de Conférences	En Poste
18.	ENYEGUE A NYAM épse BELINGA	Maître de Conférences	En Poste
19.	EYEBE FOUDA Jean sire	Maître de Conférences	En Poste
20.	FEWO Serge Ibraïd	Maître de Conférences	En Poste
21.	MBINACK Clément	Maître de Conférences	En Poste
22.	MBONO SAMBA Yves Christian U.	Maître de Conférences	En Poste
23.	MELI'I Joelle Larissa	Maître de Conférences	En Poste
24.	MVOGO ALAIN	Maître de Conférences	En Poste
25.	NDOP Joseph	Maître de Conférences	En Poste
26.	SIEWE SIEWE Martin	Maître de Conférences	En Poste
27.	SIMO Elie	Maître de Conférences	En Poste
28.	VONDOU Derbetini Appolinaire	Maître de Conférences	En Poste
29.	WAKATA née BEYA Annie Sylvie	Maître de Conférences	Directeur/ENS/UYI
30.	WOULACHE Rosalie Laure	Maître de Conférences	En Poste

31.	ABDOURAHIMI	Chargé de Cours	En Poste
-----	-------------	-----------------	----------

32.	AYISSI EYEBE Guy François Valérie	Chargé de Cours	En Poste
33.	CHAMANI Roméo	Chargé de Cours	En Poste
34.	DJIOTANG TCHOTCHOU Lucie Angennes	Chargée de Cours	En Poste
35.	EDONGUE HERVAIS	Chargé de Cours	En Poste
36.	FOUEJIO David	Chargé de Cours	Chef Cell. MINADER
37.	KAMENI NEMATCHOUA Modeste	Chargé de Cours	En Poste
38.	LAMARA Maurice	Chargé de Cours	En Poste
39.	OTTOU ABE Martin Thierry	Chargé de Cours	Directeur Unité de production des réactifs/IMPM
40.	TEYOU NGOUPO Ariel	Chargé de Cours	En Poste
41.	WANDJI NYAMSI William	Chargé de Cours	En Poste
42.	NGA ONGODO Dieudonné	Assistant	En Poste
43.	SOUFFO TAGUEU Merimé	Assistant	En Poste

10- DÉPARTEMENT DE SCIENCES DE LA TERRE (ST) (43)

1.	BITOM Dieudonné-Lucien	Professeur	Doyen / FASA /UDs
2.	NDAM NGOUPAYOU Jules-Remy	Professeur	En Poste
3.	NDJIGUI Paul-Désiré	Professeur	Chef de Département
4.	NGOS III Simon	Professeur	En Poste
5.	NKOUMBOU Charles	Professeur	En Poste
6.	NZENTI Jean-Paul	Professeur	En Poste
7.	ONANA Vincent Laurent	Professeur	Chef de Département/Uté. Eb.
8.	YENE ATANGANA Joseph Q.	Professeur	Chef Div. /MINTP

9.	ABOSSOLO née ANGUE Monique	Maître de Conférences	Vice-Doyen / DRC
10.	BISSO Dieudonné	Maître de Conférences	En Poste
11.	EKOMANE Emile	Maître de Conférences	Chef Div./Uté Ebolowa

12.	Elisé SABABA	Maitre de Conférences	En Poste
13.	FUH Calistus Gentry	Maître de Conférences	Sec. d'Etat/MINMIDT
14.	GANNO Sylvestre	Maître de Conférences	En Poste
15.	GHOGOMU Richard TANWI	Maître de Conférences	Chef de Div. /Uté Bertoua
16.	MBIDA YEM	Maitre de Conférences	En Poste
17.	MOUNDI Amidou	Maître de Conférences	CT/MINIMDT
18.	NGO BIDJECK Louise Marie	Maître de Conférences	En Poste
19.	NGUEUTCHOUA Gabriel	Maître de Conférences	CEA/MINRESI
20.	NJILAH Isaac KONFOR	Maître de Conférences	En Poste
21.	NYECK Bruno	Maître de Conférences	En Poste
22.	TCHAKOUNTE Jacqueline épse NUMBEM	Maître de Conférences	Chef. Cell /MINRESI
23.	TCHOUANKOUE Jean-Pierre	Maître de Conférences	En Poste
24.	TEMGA Jean Pierre	Maître de Conférences	En Poste
25.	ZO'O ZAME Philémon	Maître de Conférences	DG/ART

26.	ANABA ONANA Achille Basile	Chargé de Cours	En Poste
27.	BEKOA Etienne	Chargé de Cours	En Poste
28.	ESSONO Jean	Chargé de Cours	En Poste
29.	EYONG John TAKEM	Chargé de Cours	En Poste
30.	MAMDEM TAMTO Lionelle Estelle, épouse BITOM	Chargée de Cours	En Poste
31.	MBESSE Cécile Olive	Chargée de Cours	En Poste
32.	METANG Victor	Chargé de Cours	En Poste
33.	MINYEM Dieudonné	Chargé de Cours	Chef Serv./Uté Maroua
34.	NGO BELNOUN Rose Noël	Chargée de Cours	En Poste
35.	NOMO NEGUE Emmanuel	Chargé de Cours	En Poste
36.	NTSAMA ATANGANA Jacqueline	Chargée de Cours	En Poste
37.	TCHAPTCHET TCHATO De P.	Chargé de Cours	En Poste
38.	TEHNA Nathanaël	Chargé de Cours	En Poste
39.	FEUMBA Roger	Chargé de Cours	En Poste
40.	MBANGA NYOBE Jules	Chargé de Cours	En Poste

41.	KOAH NA LEBOGO Serge Parfait	Assistant	En Poste
42.	NGO'O ZE Arnaud	Assistant	En Poste
43.	TENE DJOUKAM Joëlle Flore, Epse KOUANKAP NONO	Assistante	En Poste

	1	NOMBRE D'ENSEIG	NANTS		
DÉPARTEMENT	Professeurs	Maîtres de Conférences	Chargés de Cours	Assistants	Total
ВСН	8 (01)	15 (11)	13 (03)	7 (05)	43 (20)
BPA	14 (00)	16 (09)	18 (03)	4 (02)	52 (14)
BPV	6 (01)	12 (02)	13 (07)	3 (00)	34 (10)
CI	8 (02)	15 (04)	5 (01)	1 (00)	29 (07)
СО	6 (01)	18 (04)	11 (04)	2 (00)	37 (09)
IN	2 (00)	2 (00)	14 (01)	4 (00)	22 (01)
MAT	1 (00)	8 (00)	17 (00)	7 (01)	33 (01)
MIB	2 (01)	7 (03)	8 (04)	7 (00)	24 (08)
РНҮ	15 (00)	15 (04)	11 (01)	2 (00)	43 (05)
ST	8 (00)	17 (01)	15 (04)	3 (01)	43 (06)
Total	70 (06)	125 (38)	125 (28)	40 (09)	359 (80)

Répartition chiffrée des Enseignants de la Faculté des Sciences de l'Université de Yaoundé I

Soit un total de

360 (81) dont :

-	Professeurs	70 (06)
-	Maîtres de Conférences	125 (38)
-	Chargés de Cours	125 (28)

- Assistants

40 (09)

() = Nombre de Femmes 81

DEDICACES

Je dédie cette thèse à mes adorables enfants,

Leroy Ryan LONFO SIME et Noemie Ketsia LONFO MAGUELOUNG.

Et à ma grand-mère feue

Jacqueline DJIKAP.

REMERCIEMENTS

Ce travail a été réalisé au sein du Laboratoire de Pharmacochimie des Substances Naturelles de l'Université de Yaoundé I, sous la co-direction de Messieurs **Dieudonné Emmanuel Pegnyemb**, Professeur, et de **Dominique Serge Ngono Bikobo**, Maître de Conférences.

Je tiens à exprimer ma profonde gratitude au Professeur **Dieudonné Emmanuel PEGNYEMB**, Chef de Département de Chimie Organique, Responsable du Laboratoire de Pharmacochimie des Substances Naturelles et superviseur de ce travail, pour m'avoir accepté dans son équipe de recherche et facilité mon intégration.

Toute ma reconnaissance à mon Directeur de thèse, le Professeur **Dominique NGONO BIKOBO** pour l'accueil qu'il m'a réservé depuis mon Master, pour l'aide fournie et les connaissances qu'il a su me transmettre. Je le remercie également pour sa disponibilité et la qualité de ses conseils qui m'ont laissé une large part d'autonomie dans ce travail tout en m'aiguillant sur des pistes de réflexion riches et porteuses.

Je voudrais remercier très chaleureusement le Professeur **Muhammad IQBAL CHOUDHARI**, Directeur de Recherche à ICCBS à Karachi (Pakistan), pour m'avoir accueilli au sein du laboratoire 212 à (*Hej*) *Center* (Hussain Ebrahim Jamal) par le biais de la bourse TWAS. Je vous remercie également pour m'avoir permis d'effectuer ce travail dans les meilleures conditions.

J'exprime également ma profonde et respectueuse gratitude aux Professeurs : Joséphine NGO MBING, Olivier NOTE, Thierry NDONGO, Auguste ABOUEM, Le doux KAMTO et le Docteur Mc Jésus KINYOK pour leurs encouragements et leurs précieux conseils qui m'ont été bénéfiques tout au long de ce travail.

Mes vifs remerciements aux ainés de laboratoire : les Docteurs, Gaétan BAHIYA, Angélique Nicolas MESSI, Line SIMO, Norbert MBABI, Éric TIAM, Lin Marcellin AMBASSA MESSI, Marius BALEMAKEN MISSI, Guy Roland EBEDE, André Néhémie BITOMBO et Jeanne Louise NKOT pour leur gentillesse, leur disponibilité, leur encouragement et les moments agréables que nous avons passés ensemble.

Je tiens à remercier vivement les Docteurs Atia-tul-WAHAB, Rabia FAROOQ, Shella NUHZAT, FAROOQ et Monsieur SOHAIL du laboratoire 212 *Hej Center* à ICCBS au Pakistan, pour avoir facilité mon adhésion au sein du laboratoire. Sans vous, les analyses des composés isolés n'auraient pas pu être effectives.

Merci à mes amis et promotionnaires : Jean Faustin ATANGANA, Aurore Merveilles BELLA BELINGA, Larissa KOM, Paul SEKE et Yolande NGUIMBOUS qui ont toujours été là pour moi. Nous avons traversé des moments difficiles et même lorsque je désespérais, votre soutien inconditionnel et vos encouragements me permettaient de ne point abandonner.

J'adresse également mes remerciements à tous mes ainés et cadets du Laboratoire de Pharmacochimie des Substances Naturelles : Fred ZOUA, Alexis Bienvenu NAMA, Emmanuel BIANG, Merveille DONGMO, Daniella NTOMI DJIPMENIE, Aliette BEKOU FOSSO, Bertrand TADJOUTSAP, Rachelle DEGOU MOUOBOUO et Zouberou LAMANJE NJOYA pour leur compagnie et pour les moments d'échanges que nous avons partagés.

Je tiens à remercier les bénéficiaires comme moi de la bourse TWAS, avec qui nous avons effectué un séjour de recherche à Karachi, au Pakistan : Dr Faustine DONGMO, Mr Hassana YAYA, Phalonne TINGUEP et Bernie MAFFO.

Je ne saurais oublier :

Mes parents chéris, Mr **Dagobert SIME** et Mme **Madeleine KOMBOU** épouse **SIME**, pour leur soutien constant et leurs encouragements.

Mon bien aimé, mon compagnon **Joel Aimé LONFO SOTEZO** pour sa sollicitude, ses précieux conseils et encouragements. Trouve dans ce document, une récompense et mes sincères remerciements pour ton soutien moral et financier.

Mes frères et sœurs, **Eluge SIME NGANSOP**, **Leonette SIME NOUTCHIE**, **Hermann SIME NANA**, **Franck Manuel DJOMO** et tous les membres de ma famille, pour leurs encouragements et leurs prières.

Mon amie Adrienne Carole ZAMBOU pour son soutien moral, ses conseils et son assistance inconditionnelle.

A toutes celles et ceux qui de près ou de loin m'ont soutenu et dont les noms n'ont pas été mentionnés ici, merci à vous.

TABLE DE MATIERES

1.6. Etudes pharmacologiques antérieures sur quelques espèces de la famille des Rubiaceae
1.6.1. Activité antiplasmodiale
1.6.2. Activité antileishmaniale
1.6.3. Autres activités biologiques antérieures
1.6.3.1 Activité antibactérienne
1.6.3.2. Activité anticancéreuse
1.7. Généralités sur le genre <i>Tricalysia</i>
1.7.1. Introduction
1.7.2. Aperçu botanique de quelques espèces du genre <i>Tricalysia</i>
1.7.2.1. L'espèce <i>Tricalysia atherura</i> (N. Hallé)
1.7.2.2. L'espèce Tricalysia oligoneura (K. Schum)
1.7.3. Usages ethnopharmacologiques de quelques espèces du genre <i>Tricalysia</i> 34
1.7.4. Etudes phytochimiques antérieurs sur les espèces du genre Tricalysia
1.7.4.1.Diterpenoides isolés du genre Tricalysia
1.7.4.2. Les Triterpènoides et Stéroides isolés du genre Tricalysia
1.7.4.3. Les alcaloïdes du genre <i>Tricalysia</i>
1.7.4.4. Cérébroside isolé du genre <i>Tricalysia</i>
1.7.4.5. Les glucosides sulfates isolés du genre <i>Tricalysia</i>
1.7.5. Etudes pharmacologiques antérieures sur quelques espèces du genre Tricalysia 37
1.8. Généralités sur la leishmaniose
1.8.1. Définition
1.8.2. Le vecteur de la leishmaniose
1.8.3. Aspect clinique
1.8.3.1. La leishmaniose viscérale (LV)
1.8.3.2. La Leishmaniose cutanée (LC)
1.8.3.3. La leishmaniose cutanéomuqueuse (LCM) 40
1.8.4. Répartition géographique40

1.8.4.1. Dans le monde	40
1.8.4.2. Au Cameroun	41
1.8.5. Le parasite	
1.8.6. Le vecteur de la leishmaniose	
1.8.7. Prévention et traitement de la leishmaniose	
1.8.7.1. Prévention	
1.8.7.2. Traitement de la leishmaniose	44
1.9. Généralités sur le paludisme	45
1.9.1. Epidémiologie du paludisme	45
1.9.2. Le parasite et le vecteur	47
1.9.2.1. Le parasite	47
1.9.2.2. Le vecteur	47
1.9.3. Les manifestations cliniques	
1.9.4. Prévention et traitement du paludisme	
1.9.4.1. Prévention du Paludisme	
1.9.4.2. Traitement du Paludisme	
CHAPITRE II: RESULTATS ET DISCUSSION	51
2.1. Etude phytochimique des feuilles de Tricalysia atherura N. Hallé	
2.1.1. Extraction, fractionnement et purification des composés	
2.1.2. Caractérisation des composés isolés	
2.1.2.1. Détermination structurale du composé TAF ₁	54
2.1.2.2. Détermination structurale du composé TAF ₂	64
2.1.2.3. Détermination structurale du composé TAF ₃	71
2.1.2.4. Détermination structurale du composé TAF ₄	
2.1.2.5. Identification du composé TAF ₅	
2.1.2.6. Identification du composé TAF ₆	95
2.1.2.7. Identification du composé TAF7	
2.1.2.8. Identification du composé TAF ₈	

2.1.2.9. Identification du composé TAF9	105
2.1.2.10. Identification du composé TAF ₁₀	109
2.1.2.11. Identification du composé TAF ₁₁	113
2.2. Etude phytochimique des feuilles de Tricalysia oligoneura S. Schum	116
2.2.1. Extraction, fractionnement et purification des composés	116
2.2.2. Caractérisation des composés isolés	118
2.2.2.1. Détermination structurale du composé TOF ₁	118
2.2.2.2. Détermination structurale du composé TOF ₂	125
2.2.2.3. Détermination structurale du composé TOF ₃	135
2.2.2.4. Identification du compposé TOF ₄	144
2.2.2.5. Identification du composé TOF ₅	148
2.2.2.6. Identification du composé TOF ₆	152
2.2.2.7. Identification du composé TOF7	154
2.2.2.8. Identification du composé TOF ₈	158
2.2.2.9. Identification du composé TOF9	162
2.2.2.10. Identification du composé TOF ₁₀	165
2.3. Activités biologiques des extraits et de quelques composés isolés	169
2.3.1. Activité antiplasmodiale et cytotoxique in vitro	169
2.3.2. Activité antileishmaniale et cytotoxique in vitro	170
2.4. Biosynthèse de quelques composés isolés	172
2.4.1. Cas des triterpènes	172
2.4.2. Cas des alcaloides indolomonoterpéniques	174
2.5. Importance Chimiotaxonomique	174
CONCLUSION GÉNÉRALE ET PERSPECTIVES	175
CHAPITRE III: MATERIEL ET METHODES	178
3.1. Matériel végétal	179
3.2. Séparation et isolement	179
3.3. Méthodes chromatographiques	181
3.3.1. Chromatographie sur couche mince	181

3.3.2. Chromatographie sur gel perméable182
3.3.3. Chromatographie Liquide Haute Performance (HPLC)
3.3.4. Chromatographie en phase liquide couplée à la spectrométrie de masse LC/MS 183
3.4. Méthodes physico-chimiques184
3.4.1. Spectrométrie de masse
3.4.2. Spectroscopie IR
3.4.3. Spectroscopie UV
3.4.4. Spectroscopie de Résonance Magnétique Nucléaire (RMN)184
3.4.5. Hydrolyse acide
3.4.6. Pouvoir rotatoire
3.5. Méthodes biologiques
3.5.1. Evaluation de l'activité antiplasmodiale <i>in vitro</i>
3.5.1.1. Culture <i>in vitro</i> de Plasmodium falciparum
3.5.1.2. Essai <i>in vitro</i> de Plasmodium falciparum
3.5.1.3. Activité antileishmaniale <i>in vitro</i>
3.5.1.3.1. Essai de cytotoxicité
3.5.1.3.2. Analyse des données
3.6. Caractéristiques physico-chimiques190
RÉFÉRENCES BIBLIOGRAPHIQUES
COMMUNICATIONS SCIENTIFIQUES
PUBLICATION

LISTE DES ABREVIATIONS ET SYMBOLES

AcOEt	Acétate d'éthyle
Api	Apiose
[α] _D	Pouvoir rotatoire
CC	Chromatographie sur colonne
CC_{50}	Concentration cytotoxique à 50%
CD	Circular dichroism
CF	Chromatographie Flash
CI ₅₀	Concentration Inhibitrice à 50%
ССМ	Chromatographie sur couche mince
C_5D_5N	Pyridine deutéré
COSY	Correlation Spectroscopy
CQR	Chloroquino resistante
CQS	Chloroquino sensible
D	Doublet
dd	Doublet dedoublé
DEPT	Distortionless Enhancement by Polarization Transfer
DMAPP	Diméthylallyl-pyrophosphate
δ_C	Déplacement chimique du carbone en ppm
δ_{H}	Déplacement chimique du proton en ppm
IE	Impact electronique
ESI	Electro Spray Ionization
IR	Infrarouge
FAME	Fatty acid methyl ester
Glc	Glucose
HPLC	High Pressure Liquid Chromatography
HMBC	Heteronuclear Multiple Bond Connectivity
HSQC	Heteronuclear Single Quantum Coherence
Hz	Hertz
IPP	Isopentényl-pyrophosphate
J	Constante de couplage mesuré en Hz

LC	Leishmaniose cutanée
LV	Leishmaniose viscerale
LC-MS	Chromatographie Liquide Couplée à la Spectrométrie de Masse
MHz	Mégahertz
MeOH	Méthanol
m	Multiplet
m/z	masse/charge d'un ion
NOESY	Nuclear Overhauser Effect Spectroscopy
OMS	Organisation Mondiale de la Santé
P.f.	Point de Fusion
Ppm	Partie par million
SM	Spectrométrie de masse
S	Singulet
IS	Indice de Selectivité
SiOH	Silice (gel)
t	Triplet
UV	Ultra-Violet
v/v	Volume par volume
Xyl	Xylose
λ_{max}	Longueur d'onde maximale
$\mu_{ m mol}$	Micromole
$v_{\rm max}$	Fréquence maximale

LISTE DES FIGURES

Figure 1 : Répartition géographique des Rubiaceae	6
Figure 2 : Squelette des triterpènes pentacyclique.	16
Figure 3 : Structures planes de quelques squelettes carbonés de triterpènes pentacycliques : Oleanar	ne
(63), Ursane (64), (65) et Lupane (66).	20
Figure 4 : Feuilles et tige de Tricalysia atherura	33
Figure 5 : Feuilles et tige de <i>Tricalysia oligoneura</i>	34
Figure 6: Cycle de vie de Leishmania sp	38
Figure 7 : Leishmaniose viscérale avec une splénomégalie marquée.	39
Figure 8 : Aspect de la LC causée par L. infantum	40
Figure 9 : Répartition géographique de la leishmaniose dans le monde	40
Figure 10 : Régions du Cameroun avec indication des cas de leishmaniose signalés et/ou où des	
mouches des sables ont été collectées et photographies montrant les caractéristiques cliniques des	
lésions de LC sur des patients du Cameroun	42
Figure 11: Image du parasite de la leishmaniose vue au microscope	42
Figure 12: Image du phlebotme papatasi prenant un repas de sang.	43
Figure 13 : Structures des principaux médicaments utilisés dans le traitement de la leishmaniose	44
Figure 14 : Mode de transmission du paludisme	46
Figure 15 : Zones touchées par le paludisme	46
Figure 16 : Cycle évolutif de Plasmodium sp	47
Figure 17 : Structure des principales molécules antipaludéennes	50
Figure 18 : Spectre de masse LC-ESI-SM du composé TAF ₁	54
Figure 19 : Spectre RMN ¹ H (500 MHz, CD ₃ OD) du composé TAF ₁	55
Figure 20 : Spectre RMN ¹ H élargi (500 MHz, CD ₃ OD) du composé TAF ₁	55
Figure 21 : Spectre RMN ¹³ C (125 MHz, CD ₃ OD) du composé TAF ₁	56
Figure 22 : Spectre COSY élargi (500 MHz, CD ₃ OD) du composé TAF ₁	57
Figure 23 : Spectre HMBC (500 MHz, CD ₃ OD) du composé TAF ₁	58
Figure 24 : Spectre HSQC élargi (500 MHz, CD ₃ OD) montrant l'anomère du composé TAF ₁	59
Figure 25 : Spectre RMN ¹³ C élargi (125 MHz, CD ₃ OD) montrant les carbones osidiques du compo	osé
TAF ₁	60
Figure 26 : Spectre HMBC (500 MHz, CD ₃ OD) du composé TAF ₁	61
Figure 27 : Spectre NOESY (500 MHz, CD ₃ OD) du composé TAF ₁	61
Figure 28 : Corrélations HMBC (a) et NOESY (b) du composé TAF ₁	62
Figure 29 : Spectre de masse LC-ESI-SM du composé TAF ₂ .	64
Figure 30 : Spectre HSQC élargi (500 MHz, CD ₃ OD) montrant le signal de l'anomère du composé	
TAF ₂	65
Figure 31 : Spectre HSQC élargi (500 MHz, CD ₃ OD) montrant les signaux osidiques du composé	
TAF ₂	66
Figure 32 : Spectre COSY élargi (500 MHz, CD ₃ OD) du composé TAF ₂ .	66
Figure 33 : Spectres HMBC (a) et NOESY(b) (500 MHz, CD ₃ OD) du composé TAF ₂ .	68
Figure 34 : Corrélations HMBC (a) et NOESY (b) du composé TAF ₂	68
Figure 35 : Spectre de masse HR-ESI-MS du composé TAF ₃	71
Figure 36 : Spectre de masse ESI-MS du composé TAF ₃	72

Figure 37 : Spectre RMN ¹ H g	lobal (500 MHz, CD ₃ OD) du composé TAF ₃	72
Figure 38 : Spectre RMN ¹ H é	largi (500 MHz, CD ₃ OD) du composé TAF ₃	73
Figure 39 : Spectre RMN ¹ H é	largi (500 MHz, CD ₃ OD) du composé TAF ₃	73
Figure 40 : Spectre de RMN ¹³	C (125 MHz, CD ₃ OD) de TAF ₃	74
Figure 41 : Spectre COSY (50	0 MHz, CD ₃ OD) du composé TAF ₃	75
Figure 42 : Spectre HSQC (50	0 MHz, CD ₃ OD) du composé TAF ₃	76
Figure 43 : Spectre HMBC (50	00 MHz, CD ₃ OD) du composé TAF ₃	77
Figure 44 : Spectres NOESY (500 MHz, CD ₃ OD) du composé TAF ₃	79
Figure 45 : Corrélation HMBC	C (a) et NOESY (b) du composé TAF ₃	79
Figure 46 : Spectre de masse I	C-ESI-MS du composé TAF4	82
Figure 47 : Spectres de RMN	H (500 MHz, CD ₃ OD) du composé TAF ₄	83
Figure 48 : Spectre de RMN ¹³	C global (125 MHz, CD ₃ OD du composé TAF ₄)	
Figure 49 : Spectre de RMN ¹³	C élargi (125 MHz, CD ₃ OD du composé TAF ₄)	
Figure 50: Spectre de COSY é	largi (500 MHz, CD ₃ OD du composé TAF ₄)	85
Figure 51 : Spectre HSQC élan	gi (500 MHz, CD ₃ OD) montrant les signaux des anomères du	composé
TAF ₄		86
Figure 52 : Spectre HSQC élan	gi (500 MHz, CD ₃ OD) partie osidique du composé TAF ₄	87
Figure 53 : Spectre HMBC (50	00 MHz, CD ₃ OD) du composé TAF ₄ montrant les points de lia	ison des
sucres		88
Figure 54 : Spectre NOESY (5	500 MHz, CD ₃ OD) du composé TAF ₄ montrant les points de li	aison des
sucres.		
Figure 55 : Corrélations HMB	C (a) et NOESY (b) du composé TAF ₄	
Figure 56 : Spectre de masse F	IR-ESI du composé TAF ₅ .	
Figure 57 : Spectre de RMN ⁴ I	H (500 MHz, CD ₃ OD) du compose TAF ₅	
Figure 58 : Spectre de masse L	C-ESI-MS du compose TAF ₆	
Figure 59 : Spectre de RMN ⁴	H (500 MHz; $CDCl_3/CD_3OD$) du compose TAF ₆	
Figure 60 : Spectre de RMN	C (125 MHz; CDCl ₃ / CD ₃ OD) du compose TAF ₆	
Figure 61 : Spectre de masse E	2SI-SM du compose I AF ₇	
Figure 62 : Spectre de RMIN ⁴	H (500 MHz / CD ₃ OD) du compose TAF ₇	100
Figure 63 : Spectre HMBC (50	$JO MHZ/CD_3OD)$ du compose TAF ₈	
Figure 64 : Spectre de masse E	2SI-SM du compose TAF ₉	
Figure 65 : Spectre RMN ⁴ H (:	500 MHz, CD_3OD) du compose TAF ₉	
Figure 66 : Spectre de RIVIN I	H etargi (500 MHz, CD_3OD) du compose TAF ₉	
Figure 67 : Spectre de masse F	IR-ESI-SM du compose I AF_{10}	
Figure 68 : Spectre RMIN $^{\circ}$ H (:	O_{MHz} , $CD_{3}OD$) du compose TAF ₁₀	110
Figure 69 : Spectre HSQC (50	O MHZ, CD ₃ OD) du compose TAF ₁₀	110
Figure 70 : Spectre de masse I	\mathcal{L} -ESI-SM du compose TAF ₁₁	113
Figure 71 : Spectre RMIN 'H (:	$C = SL MS du composé TAF_{11}$	114
Figure 72 : Spectre de masse I	C-ESI-MIS du compose TOF ₁	118
Figure 73 : Spectre RMIN ⁻ H (.	$0 \text{ MHz}, \text{CD}_{3}\text{OD}$ du compose 1OF_{1}	
Figure 74 : Spectre HSQC (50	0 MHz, CD_3OD) du composé TOF ₁	120
Figure 75 : Spectre UNDC (50	0 MHz, CD ₃ OD) du composé TOF ₁	121
Figure 70. Specife HMBC (50	vonte issue du alivaça du composé TOF. (UDLC)	121
Figure 77: Fics des ions fragm	v du composé TOE	122
Figure 70. Conclusion NOES	1 un compose 101_1	123 122
Figure 17. Spectre de masse L	$\overline{\mathbf{W}}_{\mathbf{H}}$ $\overline{\mathbf{U}}_{\mathbf{J}}$ $\overline{\mathbf{U}}_{\mathbf{U}}$ $\overline{\mathbf{U}}_{\mathbf{U}}$ $\overline{\mathbf{U}}_{\mathbf{U}}$ $\overline{\mathbf{U}}_{\mathbf{U}}$ $\mathbf{$	123 175
Figure 81 · Spectre de DMN ¹¹	T = 1015 at compose 1012 mmoss	125 176
Figure 61 . Spectres de DMN	^{13}C (125 MHz CD ₂ OD/ CDCl ₂) du composé TOE-	120
rigure 02. specifies de RIVIN	$C(125 \text{ with}Z, CD30D/CDC13)$ au compose $10F_2$	12/

Figure 83 : Spectre HSQC (500 MHz, CD ₃ OD/ CDCl ₃) du composé TOF ₂	128
Figure 84 : Spectre COSY (500 MHz, CD ₃ OD/ CDCl ₃) du composé TOF ₂	129
Figure 85 : Spectre HMBC (500 MHz, CD ₃ OD/ CDCl ₃) du composé TOF ₂	129
Figure 86 : Pics d'ions fragments issus du clivage du composé TOF ₂ (IE-MS).	131
Figure 87 : Spectre HMBC (500 MHz, CD ₃ OD/ CDCl ₃) du composé TOF ₂	132
Figure 88 : Principales corrélations COSY et HMBC du composé TOF ₂	132
Figure 89: Spectre NOESY (500 MHz, CD ₃ OD/ CDCl ₃) de TOF ₂ .	133
Figure 90 : Spectre de masse HR-ESI-SM du compose TOF ₃	135
Figure 91 : Spectre RMN ¹ H global (500 MHz, CD ₃ OD) du composé TOF ₃ .	136
Figure 92 : Spectre RMN ¹ H (500 MHz, CD ₃ OD) du composé TOF ₃ montrant les méthyles angul	aires. 136
Figure 93 : Spectre HSQC (500 MHz, CD ₃ OD) du composé TOF ₃ montrant les méthyles angulair	res.
Figure 94 · Spectre de RMN ¹³ C (125 MHz CD ₂ OD) du composé TOF ₂	138
Figure 95 : Spectre HSOC élargi (500 MHz, CD ₂ OD) montrant le signal de l'anomère du compose	sé
TOF ₃ .	139
Figure 96 : Spectre HMBC (500 MHz, CD ₃ OD) du composé TOF ₃ montrant le point de jonction.	. 140
Figure 97 : Spectre NOESY élargi (b) (500 MHz, CD ₃ OD) du composé TOF ₃ montrant le point d	e
jonction	141
Figure 98 : Corrélations HMBC (a) et NOESY (b) du composé TOF ₃	141
Figure 99 : Spectre de masse HR-ESI-SM du compose TOF ₄	144
Figure 100 : Spectre de RMN ¹ H (500 MHz, CD ₃ OD/ CDCl ₃) du composé TOF ₄	145
Figure 101 : Spectre de RMN ¹³ C (125 MHz, CD ₃ OD/ CDCl ₃) du composé TOF ₄	146
Figure 102 : Spectre de masse ESI-SM du composé TAF ₅	148
Figure 103 : Spectre RMN ¹ H (400 MHz, DMSO-d ₆) du composé TOF ₅	149
Figure 104 : Spectre RMN ¹³ C (100 MHz, DMSO) du composé TOF ₅	149
Figure 105 : Spectre DEPT 135 (100 MHz, DMSO) du composé TOF ₅	150
Figure 106: Spectre RMN ¹ H (400 MHz, DMSO) du composé TOF ₆	152
Figure 107 : Spectre de RMN ¹³ C (100 MHz, DMSO) du composé TOF ₆	153
Figure 108 : Spectre de masse LC-ESI-SM du composé TOF7	154
Figure 109 : Spectre RMN ¹ H (500 MHz, CDCl ₃) du composé TOF ₇	155
Figure 110 : Spectre RMN ¹³ C (120 MHz, CDCl ₃) du composé TOF ₇	156
Figure 111 : Spectre de masse EI-MS du composé TOF ₈	158
Figure 112 : Spectre RMN ¹ H (500 MHz, CDCl ₃) du composé TOF ₈	159
Figure 113 : Spectre de RMN ¹³ C (125 MHz, CDCl ₃) du composé TOF ₈	160
Figure 114 : Spectre de masse EI-MS du composé TOF ₉	162
Figure 115 : Spectre RMN ¹ H (500 MHz ; CDCl ₃) du composé TOF ₉	163
Figure 116 : Spectre HR-ESI-MS du composé TOF ₁₀ .	165
Figure 117 : Spectre RMN 1 H (500 MHz ; C ₅ D ₅ N) et RMN 13 C (125 MHz ; C ₅ D ₅ N) du composé	;
TOF ₁₀	166
Figure 118 : Appareil de HPLC	183
Figure 119 : Appareil de RMN	185

LISTE DES TABLEAUX

Tableau I: Sous- famille, quelques tribus et genres de la famille des Rubiaceae. 7
Tableau II : Quelques Diterpènes isolés des plantes de la famille des Rubiaceae
Tableau III : Quelques triterpènes isolés des plantes de la famille des Rubiaceae
Tableau IV : Structure de chaque catégorie d'alcaloïde. 24
Tableau V: Alcaloïdes isolés des plantes de la famille des Rubiaceae. 26
Tableau VI : Distribution géographique de quelques espèces du genre Tricalysia au Cameroun 32
Tableau VII : Données RMN ¹ H (500 MHz et ¹³ C, 125 MHz, CD ₃ OD) partie aglycone de TAF ₁ 63
Tableau VIII : Données RMN (¹ H, 500 MHz et ¹³ C, 125 MHz, CD ₃ OD) de TAF ₂ 70
Tableau IX : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz, CD ₃ OD,) du composé TAF ₃ 81
Tableau X : Données de RMN (¹ H 500 MHz et ¹³ C, 125 MHz) de TAF ₄ comparées à l'hydrobenzoine
symétrique91
Tableau XI : Données RMN (¹ H, 500 MHz et ¹³ C, 125 MHz) de TAF ₅ comparé à ceux de la
littérature
Tableau XII : Données de RMN (1 H, 500 MHz et 13 C, 125 MHz) de TAF ₆ comparé à celles de la
littérature
Tableau XIII : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz ; CD ₃ OD) de TAF ₇ comparées à
celles de la littérature
Tableau XIV : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz ; CD ₃ OD) de TAF ₈ comparées à
celles de la littérature
Tableau XV : Données de RMN (¹ H, 500 MHz et 13C, 125 MHz ; CD ₃ OD) de TAF ₉ comparées à
celles de la littérature
Tableau XVI : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz ; CD ₃ OD) de TAF ₁₀ comparées à
celles de la littérature
Tableau XVII : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz ; CD ₃ OD) de TAF ₁₁ comparées à
celles de la littérature
Tableau XVIII : Données de RMN (1 H, 500 MHz et 13 C, 125 MHz ; CD ₃ OD) du composé TOF ₁ 124
Tableau XIX : Données de RMN (¹ H, 500Mz et ¹³ C ,125MHz ; CD ₃ OD/ CDCl ₃) du composé TOF ₂ .
Tableau XX : Données de RMN (¹ H, 500Mz et ¹³ C, 125MHz ; CD ₃ OD) du composé TOF ₃ comparées
aux données de l'acide oléanolique143
Tableau XXI : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz) du composé TOF ₄ comparées à
celles de la littérature
Tableau XXII : Données de RMN (¹ H, 500 MHz et ¹³ C, 100 MHz ; DMSO) du composé TOF_5
comparées à celle de la littérature 151

Tableau XXIII : Données de RMN (1 H, 500 MHz et 13 C, 100 MHz ; DMSO) du composé TOF ₆
comparées à celle de la littérature 153
Tableau XXIV : Données de RMN (¹ H, 500MHz et ¹³ C, 125 MHz) du composé TOF ₈ commparées
aux données de la littérature161
Tableau XXV : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz ; CDCl ₃) du composé TOF ₉
comparé à celles de la littérature 164
Tableau XXVI : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz ; CD ₃ OD) du composé TOF_{10}
comparé à celles de la littérature
Tableau XXVII : Activité antiplasmodiale et cytotoxique in vitro de l'extrait méthanolique et
composés purs de T. atherura
Tableau XXVIII : Activité antileishmaniale et cytotoxique in vitro de l'extrait méthanolique et
composés purs de <i>T. oligoneura</i>
Tableau XXIX : Protocole du screening phytochimique des extraits de plantes
Tableau XXX : Données spectrales et constantes physiques des composés isolés

LISTE DES SCHÉMAS

Schéma 1 : Classification des terpènes suivant le nombre d'unités isoprènes dans leur structure	
chimique	9
Schéma 2 : Biosynthèse des diterpènes (Breitmaier, 2006) 1	0
Schéma 3 : Formation de l'IPP et du DMAPP (Bruneton, 1999) 1	7
Schéma 4 : Formation de l'époxysqualène (Dubey et al., 2003) 1	8
Schéma 5 : Voie biosynthétique de quelques triterpènes à partir de l'époxysqualène (Han et al., 2019)).
	9
Schéma 6: Biosynthèse des alcaloïdes indolomonoterpéniques (Rodney et al., 2000) 2	:5
Schéma 7: Protocole d'extraction et d'isolement des composés des feuilles de Tricalysia atherura 5	64

RÉSUMÉ

L'étude phytochimique des feuilles de *T. atherura* N. Hallé et *T. oligoneura* K. Schum a conduit à l'isolement et à la caractérisation de vingt-et-un (21) composés dont sept (7) sont nouvellement décrits. Les structures de tous ces composés ont été établies grâce à l'analyse approfondie des spectres RMN 1D (¹H, ¹³C) et 2D (COSY, HSQC, HMBC et NOESY) couplées à la spectrométrie de masse haute résolution (HR-ESI-MS) et basse résolution (EI-MS), et par la comparaison avec les données de la littérature.

L'extrait au MeOH des feuilles de *T. atherura* a conduit à l'isolement de 11 composés dont quatre (04) sont nouvellement décrits, il s'agit de : deux triterpènes glycosylés de type ursane [les atherurosides A et B (146- 147)] ; un alcaloïde indolique de type akuammidine, l'atheruramine (148) et un hydrobenzoïne, le tricalydioloside (149). Les sept autres composés déjà décrits dans la littérature ont été regroupés en différentes classes dont quatre triterpènes [l'acide bétulinique (151), l'acide ursolique (154), le rubrinol (155) ; le 19α - hydroxy- α amyrine (156)] ; deux alcaloïdes [un alcaloïde diterpénique, le tricalysiamide D (153) ; un alcaloïde indolique, l'acide strictosidinique (150)] et un diterpène, le tricalysiolide B (152).

L'extrait au MeOH des feuilles de *T. oligoneura* a conduit à l'isolement de dix (10) composés dont trois (03) dérivés nouveaux à savoir : un triterpène glycosilé de type oléanane, l'oligoneurine (**159**) ; un alcool *n*-paraffinique, le nonacosane-1,10– diol (**157**) ainsi qu'une céramide de type phytosphingosine, l'oligoneuramide (**158**). Les sept (07) autres composés déjà décrits dans la littérature ont été regroupés en différentes classes dont deux sucres [le β -D-fructofuranosyle- α -D- glucopyranosyl (**151**) et le D-mannitol (**162**)] ; une lignane, l'asarinine (**164**) ; un acide gras, l'acide oléique (**165**)] ; deux stéroïdes [le β -sitostérol (**163**) et le β -sitosterol-3- β -D- glucopyranoside (**160**)] et un triterpène, l'aridanine (**166**).

Concernant les activités antiparasitaires des extraits bruts et quelques-uns des composés purs isolés, ils ont été évalués d'une part pour leurs activités antiplasmodiales *in vitro* sur les souches CQS (chloroquino sensible) et CQR de *Plasmodium falciparum* 3D7 et Dd2 en utilisant la méthode basée sur la fluorescence *Sybr-green*-I et d'autre part, pour leurs activités antileishmaniales sur les promastigotes de *Leishmania donovani* 1S (MHOM/SD/62/1S) en utilisant la méthode basée sur le dosage colorimétrique de la Resazurine. En ce qui concerne l'activité antiplasmodiale, l'extrait brut des feuilles de *Tricalysia atherura* a montré une bonne activité antiplasmodiale sur les souches *Plasmodium falciparum* 3D7 et Dd2 avec des valeurs de CI₅₀ respectivement de 7,923 \pm 0,530 et 4,196 \pm 0,278 µg/mL. Pour ce qui est de l'activité antileishmaniale, l'oligoneurine (**159**) et l'oligoneuramide (**158**) ont présenté des activités leishmanicides modérées avec des valeurs de CI₅₀ de 21,10 et 23,87 µg/mL respectivement. Par ailleurs, l'extrait brut a montré une bonne activité sur la même souche avec une valeur de CI₅₀ de 13,62 µg/mL et un indice de sélectivité relativement faible (IS= 5,05) ce qui traduirait une plausible toxicité de la plante pour la consommation humaine.

Mots clés : *Tricalysia atherura, Tricalysia oligoneura,* Rubiaceae, activités antiplasmodiale, antileismaniale et cytotoxique.

ABSTRACT

The phytochemical study of the leaves of *T. atherura* N. Hallé and *T. oligoneura* K. Schum led to the isolation and characterization of twenty-one (21) compounds, seven (7) of which are newly described. The structures of all these compounds were established through extensive analysis of 1D (¹H, ¹³C) and 2D (COSY, HSQC, HMBC and NOESY) NMR spectra coupled with high-resolution (HR-ESI-MS) and low-resolution (IE-MS) mass spectrometry, and by comparison with literature data.

The MeOH extract of *T. atherura* leaves led to the isolation of 11 compounds, four (04) are newly described, they are: two ursane-type glycosilated triterpenes [atherurosides A and B (146-147)]; an akuammidine-type indolic alkaloïd, atheruramine (148) and a hydrobenzoïn, tricalydioloside (149). The seven other compounds already described in the literature have been grouped into different classes, including four triterpenes [betulinic acid (151), ursolic acid (154), rubrinol (155); 19α - hydroxy- α - amyrin (156)]; two alkaloïds [a diterpenic alkaloïd, tricalysiamide D (153); an indolic alkaloïd, strictosidinic acid (150)] and a diterpene, tricalysiolide B (152).

The MeOH extract of *T. oligoneura* leaves led to the isolation of ten (10) compounds, including three (03) new derivatives: an oleanan-type glycosylated triterpene, oligoneurin (**159**); an n-paraffinic alcohol, nonacosan-1,10-diol (**157**); and a phytosphingosine-type ceramid, oligoneuramide (**158**). The other seven (07) compounds already described in the literature were grouped into different classes including two sugars [β -D- fructofuranosyl- α -D- glucopyranosyl (**151**) and D-mannitol (**162**)]; a lignan, asarinin (**164**); a fatty acid, oleic acid (**165**)]; two steroïds [β -sitosterol (**163**) and β -sitosterol-3- β -D- glucopyranoside (**160**)] and a triterpene, aridanin (**166**).

Concerning the antiparasitic activities of the crude extracts and some of the pure compounds isolated, they were evaluated on the one hand for their *in vitro* antiplasmodial activities on CQS and CQR of *Plasmodium falciparum* strains 3D7 and Dd2 using the *Sybr-green*- I fluorescence-based method and on the other hand, for their antileishmanial activities on *Leishmania donovani* 1S promastigotes (MHOM/SD/62/1S) using the Resazurin colorimetric assay-based method. With regard to antiplasmodial activity, the crude extract of *Tricalysia atherura* leaves showed good antiplasmodial activity against *Plasmodium falciparum* strains 3D7 and Dd2, with IC₅₀ values of 7.923 \pm 0.530 and 4.196 \pm 0.278 µg/mL respectively. With regard to antileishmanial activity, oligoneurin (**159**) and oligoneuramide (**158**) exhibited moderate leishmanicidal activities with IC₅₀ values of 21.10 and 23.87 µg/mL respectively. In addition, the crude extract showed good activity on the same strain with an IC₅₀ value of 13.62 µg/mL and a relatively low selectivity (SI = 5.05), which would indicate a plausible toxicity of the plant for human consumption.

Keywords: *Tricalysia atherura*, *Tricalysia oligoneura*, Rubiaceae, antiplasmodial, antileishmanial and cytotoxic activity.
INTRODUCTION

Le paludisme et la leishmaniose font parti des maladies parasitaires les plus récurrentes dans le monde notamment en Afrique, en Amérique du Sud et en Asie. Concernant le paludisme, c'est une affection fébrile aiguë causée par le parasite Plasmodium qui se transmet par la piqûre d'un moustique l'anophèle femelle infectée. Les espèces pathogènes responsables du paludisme Humain sont P. vivax, P. ovale, P. malariae, P. knowlesi et P. falciparum; deux de ces cinq espèces de plasmodium sont particulièrement dangereuses. Il s'agit de : P. falciparum, l'espèce la plus virulente et la plus répandue en Afrique et au Cameroun en particulier (Lusakibanza, 2012), et l'espèce P. vivax, prédominante en Asie, en Amérique latine ainsi qu'en Afrique du Nord (Krotoski et al., 1982). Selon le dernier rapport de l'OMS, les estimations font état de 14 millions de nouveaux cas en 2020 par rapport à 2019 (241 millions contre 227 millions). D'après ces mêmes estimations, 69 000 personnes en plus, seraient mortes du paludisme en 2020 par rapport à 2019 (OMS, 2022). Le continent africain reste le plus touché avec 95 % des nouveaux cas, et 96 % des décès dont 80 % représente les enfants de moins de 5 ans ainsi que les femmes enceintes (OMS, 2022). L'OMS recommande dans le cadre d'une lutte antipaludique globale, l'utilisation généralisée du vaccin antipaludique RTS, S/AS01 (RTS, S) chez les enfants (de moins de 5 ans) dans les zones à transmission modérée et forte du paludisme à P. falciparum ; dont celui-ci réduit considérablement la morbidité et la mortalité stagnant chez le jeune enfant (30%) (OMS, 2022).

Pour ce qui est de la leishmaniose, c'est une infection parasitaire due à un protozoaire transmis par la piqûre de phlébotomes femelles infectés. Il existe trois formes de leishmaniose (viscérale, cutanée et cutanéo- muqueuse) dont la plus grave est la leishmaniose viscérale (aussi appelée kala-azar) qui atteint les organes internes. La leishmaniose reste l'une des maladies les plus négligées dans le monde ; elle touche les populations les plus pauvres, principalement dans les pays en voie de développement. On estime à plus d'un milliard le nombre de personnes exposées au risque d'infection et 700 mille à 2 millions de nouveaux cas par an, causant jusqu'à 20 mille à 50 mille décès chaque année (OMS, 2020 ; Palma et *al.*, 2021). Cette maladie s'étend actuellement dans les pays d'Afrique subsaharienne dont le Cameroun (Dondji et *al.*, 2001 ; Gyapong et Boatin, 2016), où 147 cas ont été rapportés dans les régions de l'Extrême-Nord et du Nord entre 2007 - 2010 (Njih, 2010), et 17 décès enregistrés entre 2016 - 2017. L'OMS a récemment rapporté 4 cas de LC et 33 cas de LV au Cameroun.

Malgré les avancées de la science et les progrès de la médecine qui ont permis la mise sur pied de plusieurs médicaments antipaludéens [quinine, atovaquone et les analogues de la chloroquine (Fidock et al., 2010; Wells et al., 2009) et antileihsmaniaux [Amphotericine B, Miltefosine, Pentamidine (Gradoni et al., 2008; Marty, 2009); ces maladies continuent de représenter un problème majeur de santé publique en Afrique Subsaharienne et particulièrement au Cameroun (OMS, 2021). Cette situation serait dû à la résistance du parasite due à l'utilisation régulière et parfois excessive de ces médicaments conventionnelles, le ciblage non specifique de certains medicaments, leur coût élevé (Akinyemi et al., 2005 ; Carnet et al., 2006) ou l'apparition de nouvelles souches de microorganismes du fait des mutations successives dérivant en partie des changements climatiques (Hoareau et Da silva, 1999, Akhoundi et al., 2016). Par ailleurs, la résistance croissante aux médicaments conventionnels existant pourrait annuler les efforts visant à éradiquer ces maladies mortelles (Wells et al., 2009). A l'heure actuelle où la pharmacorésistance dûe aux parasites du paludisme et de la leishmaniose est largement répandue et qu'aucune nouvelle classe chimique d'antipaludéens et antileishmaniaux n'a été introduit dans la pratique depuis 1996 (Gamo et al., 2010), il devient primordial de mettre au point une nouvelle approche, pouvant permettre d'améliorer la prise en charge des patients souffrant de ces fléaux. Pour cela, il existe un intérêt renouvelé pour la médecine traditionnelle et ses plantes aux propriétés antileishmaniales et antiplasmodiales. En effet, on estime qu'environ 80 % de la population mondiale utilise la médecine traditionnelle pour le traitement de diverses maladies à l'instar du paludisme et de la Leishmaniose (Dike et al., 2012). De plus, un grand nombre de médicaments conventionnels (40% des médicaments) utilisés à travers l'Afrique dérive directement ou indirectement des plantes (Dieve et Sarr, 2021). Des études portant sur des espèces de la famille des Rubiaceae ont mis en évidence des activités antiplasmodiales et antileishmaniales intéressantes (Muhammad et al., 2003 ; Wonkam et al., 2020 ; Tajuddeen et al., 2021). Ces informations laisseraient- elles présager que d'autres espèces à l'instar des plantes étudiées, de la famille des Rubiaceae pourraient contenir des composés ayant lesdites propriétés ?

C'est dans ce cadre qu'un vaste programme de recherche a été initié au sein du laboratoire de Pharmacochimie des Substances Naturelles (LPSN) de l'Université de Yaoundé I (Cameroun) ayant pour but de rechercher des molécules originales et bioactives issues des plantes médicinales camerounaises de la famille des Rubiaceae.

Pour ce faire, Nous nous sommes intéressés à cette famille en étudiant deux plantes appartenant au genre *Tricalysia* : *Tricalysia atherura* N. Hallé et *Tricalysia oligoneura* K. Schum.

Objectif général

Ce travail avait pour objectif principal de rechercher les constituants chimiques de deux plantes du genre *Tricalysia (Tricalysia atherura* N. Hallé et *Tricalysia oligoneura* K. Schum) et evaluer leur potentiel sur deux types de parasitoses (paludisme et leishmaniose).

> Objectifs spécifiques

Plus précisément, il s'agira de :

- Extraire les métabolites secondaires de T. atherura et T. oligoneura ;
- Fractionner à l'aide des solvants de polarité croissante ;
- Isoler et caractériser les constituants chimiques à partir des fractions d'intérets de *T*. *atherura* et *T. oligoneura* ;
- Evaluer leurs activités antiplasmodiales et antileishmaniales à l'egard de quelques souches de *Plasmodium falciparum* et de *Leishmania donavi*.

Notre travail sera divisé en trois principaux chapitres :

Le premier chapitre concerne la synthèse bibliographique relative à la famille et au genre des espèces étudiées. Il comprendra l'étude botanique, les généralités sur les terpénoïdes et les alcaloïdes, les travaux phytochimiques et pharmacologiques antérieures sur le genre *Tricalysia* et les généralités sur le paludisme et la leishmaniose.

Le deuxième chapitre portera sur l'étude phytochimique réalisée au laboratoire sur les deux espèces. Celui- ci présentera les résultats d'isolement, d'identification et d'analyses structurales des composés ainsi que les activités biologiques effectuées sur les extraits et les composés isolés.

Le troisième chapitre quant à lui présentera les techniques d'isolement, de purification et d'analyse structurale, ainsi que les différentes méthodes utilisées pour les tests biologiques. Des références bibliographiques consultées pour la rédaction de cette thèse seront présentées à la fin de ce document, et en annexe les publications issues des travaux de cette thèse. CHAPITRE I: REVUE DE LA LITTÉRATURE

1. Généralités sur la famille des Rubiaceae

1.1. Introduction

Les Rubiaceae constituent l'une des plus grandes familles d'Angiospermes dans le règne végétal. Rattachée à l'ordre des Gentianales, cette famille regroupe 637 genres et 13000 espèces (Souza et Lorenzi, 2008) reparties dans les régions tropicales et subtropicales (Mabberley, 1997) ; on les trouve exceptionnellement dans les zones de climat tempéré. Cette importante famille comporte peu de grands arbres mais surtout des arbustes, dressés ou lianescents, et d'autre part quelques plantes herbacées et relativement peu de lianes ligneuses ou herbacées (Botineau, 2010). Ce sont parfois des plantes cultivées, d'intérêt économique important. Dans cette famille, le genre qui a de loin la plus grande importance économique est le genre *Coffea* (le café), avec des espèces *Coffea Arabica* et *Coffea canephora* (Sin. C. robuste). Un bon nombre d'autres espèces produisent des fruits comestibles, utilisés localement (*Pentas, Ixora, Gardenia, Bouvardia*) ; parmi les Coffeoïdeae, les caféiers, originaires d'Afrique (*Coffea arabica* d'Abyssinie, *C. liberica, C. robusta* de la Côte-d'Ivoire) et cultivés dans toute la zone tropicale, en particulier en Amérique du Sud au Brésil et en Amérique centrale, donnent des graines riches en caféine (Bouquet, 1972).

1.2. Répartition de la famille des Rubiaceae

La figure ci-dessous représente la répartition géographique de la famille des Rubiaceae.

Figure 1 : Répartition géographique des Rubiaceae (Guinko et al., 1995).

1.3. Classification botanique de la famille des Rubiaceae

En classification classique, les Rubiaceae constituent l'ordre des Rubiales (Cronquist, 1981). Cette famille est subdivisée en trois sous- famille : Cinchonoideae, Rubioideae, et ixoroideae (Martins et Nunez, 2015). Les sous- famille ont été divisés en 43 tribus en raison de l'abondance des espèces. Le tableau 1 regroupe les trois sous- famille, quelques tribus et genres de cette famille (Martins et Nunez, 2015).

Sous-familles	Tribus	Genres
Cinchonoidaga	Cinchoneae	Hintonia, Cinchona
Cilicitolioideae	Guettardeae	Chomelia, Guettarda
Dubicidaçã	Rubieae	Galium, Rubia
Rubioideae	Spermacoceae	Saprosma, Oldenladia
Ivoroidaaa	Gardenieae	Rothmania, Gardenia
Ixoroideae	Coffeae	Coffea, Tricalysia

Tableau I: Sous- famille, quelques tribus et genres de la famille des Rubiaceae.

Les plantes de cette famille possèdent des caractères permettant de reconnaitre assez facilement toutes les espèces lui appartenant. Le fruit est une capsule, une baie parfois ligneuse (Cretep, 1965). Les feuilles sont simples, généralement entières et opposées. On note la présence des stipules à la base du pétiole. Ces stipules peuvent être soudés chez certaines espèces formant une pièce foliaire entre les feuilles, tandis que chez d'autres espèces les stipules sont de même taille que les feuilles, formant ainsi des « fausses feuilles » de telle sorte que l'ensemble semble être verticillé (ensemble d'organes tels que des fleurs ou feuilles, disposés en cercle autour d'un axe) (Duvingneaud et *al.*, 1973).

1.4. Usage en médecine traditionnelle des plantes de la famille des Rubiaceae

Les Rubiaceae, dans la pharmacopée africaine, ont une grande réputation et sont utilisées en médecine traditionnelle dans le traitement de nombreuses affections. C'est le cas de *Mitracarpus frigidus* qui est utilisée en médécine traditionnelle (Afrique de l'Ouest) pour le traitement de maux de tête, maux de dents, aménorrhée, maladies hépatiques et vénériennes, lèpre et dans le traitement des maladies de la peau (Fabri et *al.*, 2012). Par ailleurs, *Pentas longiflora* est une plante médicinale importante de l'afrique Orientale. En effet, au Kenya, une décoction de ses racines mélangées à du lait se prend comme remède contre le paludisme (Kokwaro., 2010) ; En revanche, *Rothmannia hispida* (K. Schum.) Fager est utilisé pour le traitement des affections cutanées, des ulcères et de la fièvre (Udia et *al.*, 2013). *Mussaenda erythrophylla* est quant à elle utilisée en médécine traditionnelle Africaine et Asiatique pour le traitement des infections occulaires, des vers intestinaux, des maux de corps, de la diarrhée et

de la dysenterie (Bouzeko et *al.*, 2021). Enfin, les racines de *Gardenia thunbergia* sont ulisées par le peuple Zulu, en Afrique de Sud pour le traitement de la fièvre et des maux d'estomac (Tajuddeen et *al.*, 2021).

Compte tenu des multiples usages en médecine traditionnelle des plantes de la famille des Rubiaceae, plusieurs équipes de recherche se sont intéressées à l'isolement de leurs constituants bioactifs.

1.5. Etudes phytochimiques antérieures et principaux métabolites isolés de la famille des Rubiaceae

Les travaux effectués sur les espèces de cette famille ont révélé la présence de diverses classes de composés dont les plus caractéristiques sont les terpènoïdes et les alcaloïdes (Martins et Nunez, 2015).

1.5.1. Les terpènoïdes

1.5.1.1. Généralités sur les terpènoïdes

Avec environ 70.000 structures connues aujourd'hui (d'après le dictionnaire des molécules naturelles), les terpénoïdes sont considérés comme la plus grande famille de composé naturels (Ashour et *al.*, 2010). Bien que « terpènes » soit réservés aux composés oléfiniques et « terpènoïdes » aux composés oxydés, les deux termes sont généralement considérés comme équivalents et pourront donc être confondus dans cette thèse. La structure de base d'un triterpène est composée d'un nombre variable d'unités de cinq carbones, appelées unités isoprènes. Le nombre de carbone de n'importe quel terpène est alors un multiple de 5. Les produits de dégradation des terpénoïdes dans lesquels des atomes de carbone ont été perdus par des processus chimiques ou biochimiques peuvent contenir différents nombres d'atomes de carbone, mais leur structure globale indiquera leur origine terpénique (Cao et *al.*, 2018). La classification de ces composés est basée sur les nombres d'unités isoprénoïdes contenus dans leur structure chimique. Les catégories les plus importantes sont celles comportant deux unités isoprénoïdes (diterpènes), trois unités isoprénoïdes (sesterterpènes), six unités isoprénoïdes (triterpènes) et huit unités isoprénoïdes (tétraterpènes) (Ashour et *al.*, 2010). (schéma 1).

Schéma 1 : Classification des terpènes suivant le nombre d'unités isoprènes dans leur structure chimique.

1.5.2. Cas des diterpènes

Les diterpènes sont une large famille d'isoprénoïdes. Ils sont largement répandus et peuvent être trouvés dans les météorites, les huiles, les sédiments, ainsi que dans le milieu vivant terrestre et marin, végétal et animal. Leur structure est assez variable, ils peuvent être cycliques ou non (Villedieu-Percheron, 2011). Ces molécules, qu'on retrouve aussi sous le nom de phytanes, sont composées de quatre unités d'isoprène (2-méthylbutane) C₅H₈, ce qui leur donne une formule générale C₂₀H₃₂. Dans la nature, ils sont souvent sous forme d'alcools ou de leurs dérivés glycosylés, d'éthers, d'aldéhydes, de cétones, d'acides carboxyliques ou d'esters (Villedieu-Percheron, 2011).

1.5.2.1. Biosynthèse des diterpènes

L'acétylCoenzyme A, correspondant à l'acide acétique activé, est le précurseur utilisé en milieu biologique pour la formation de terpènes (Peters, 2010). A la manière d'une condensation de Claisen, deux acétylCoA s'assemblent pour donner un analogue biologique de l'acétoacétate. En suivant ce schéma de condensation aldolique, l'acétoacétylCoA (7) réagit de nouveau avec un acétylCoA. Cette condensation est suivie par une réduction enzymatique pour donner l'acide mévalonique (9). Une phosphorylation, suivie d'une décarboxylation permet d'obtenir l'isopenténylpyrophosphate IPP (11) (isoprène activé) dont l'addition sur un isomère aboutit à un monoterpène (12). Deux additions successives de ce monoterpène sur IPP permettent d'obtenir un diterpène.

Diterpène (14)

Dans la famille des Rubiaceae, les diterpènes sont parmi les principaux métabolites secondaires recensés dans le genre *Tricalysia*.

Structure	S	Noms	Sources	Références
HO 10	R_{1} R_{2} R_{2} R_{3} R_{2} R_{3} R_{4} R_{5} R_{3} R_{4} R_{5} R_{3} R_{1} R_{2} R_{3} R_{4} R_{5} R_{3} R_{1} R_{2} R_{3} R_{4} R_{5} R_{1} R_{2} R_{3} R_{1} R_{2} R_{3} R_{3} R_{4} R_{4} R_{5} R_{5} R_{5} R_{5} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5	Tricalysine A- C (15-17)		
Н	Ac OH			
0 10 10 10 10 14 10 14 14 14 14 14 14 14 14 14 14	OH OH	Tricalysine D (18)		
20 10 10 10 10 10 10 10 10 10 1	¹⁶ ОН ОН	Tricalysine E (19)	Rameaux de <i>Tricalysia</i> <i>fructicosa</i>	Shen et <i>al</i> ., 2015
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	H ¹⁷ OH OH	Tricalysine F (20)		

Tableau II : Quelques Diterpènes isolés des plantes de la famille des Rubiaceae.

2 1 1 1 1 1 1 1 1 1 1 1 1 1	Tricalysine G (21)		
2'	Tricalysine H (22)		
22 21 0 18 20 11 10 9 8 7 0 12 11 11 14 0 11 10 11 10 11 10 11 10 11 10 10 11 10 10	Fructilactone A (23)	Rameaux de Tricalysia fructicosa	Shen et <i>al.</i> , 2015
22 21 0/11, 11 1 22 21 0/11, 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fructilactone B (24)		

(1'-6')Glc (1'-6'	Tricalysioside H (25)		
$HO_{R1}^{20} \frac{11}{10} \frac{12}{5} \frac{13}{6} \frac{17}{6} OHOGIC$ $R_{1} R_{2} R_{3}$			
$\begin{array}{c ccc} CH_3 & CHO & H \\ CH_3 & CHO & Ac \\ CHO & H & Ac \end{array}$	Tricalysioside I- K (26-28)	Feuilles de Tricalysia dubia	He et <i>al</i> ., 2005
$HO^{11}_{R1} = \frac{20}{10} + \frac{11}{10} + \frac{12}{14} + \frac{13}{16} + \frac{17}{10} + OR_4$	Tricalysioside		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L-O (29-32)		
$CH_3 \qquad CH_2OH \qquad H \qquad Glc$			
$CH_3 \qquad CH_2 \cup Glc \qquad H \qquad H$			
$\begin{array}{c ccccc} CH_3 & CH_2OH & Ac & Gic \\ CH_2OH & CH_2OH & Ac & Glc \end{array}$			

Tableau II : Quelques Diterpènes isolés des plantes de la famille des Rubiaceae (suite).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tricalysioside P- Q (33-34)		
$HO^{11}_{18} \xrightarrow{20}{}^{11}_{19} \xrightarrow{12}{}^{13}_{14} \xrightarrow{16}{}^{17}_{17} OGlc$	Tricalysioside R (35)		
$R_{1} = R_{2} = R_{3}$ $OAc = Glc = H$ $OH = H = Glc$	Tricalysioside S-T (36-37)	Feuilles de Tricalysia dubia	He et <i>al.</i> , 2002
$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$	Tricalysioside U (38)		
$HO_{4"} = HO_{1} = $	Tricalysioside V (39)		

Tableau II : Quelques Diterpènes isolés des plantes de la famille des Rubiaceae (suite).

HO =	Tricalysioside W (40)		Xu et <i>al.</i> , 2009
$HO_{18}^{20} \xrightarrow{11}_{10}^{12} \xrightarrow{12}_{14}^{13} \xrightarrow{16}_{17}^{17} \xrightarrow{17}_{0H} OH$ $HO_{18}^{20} \xrightarrow{11}_{10}^{14} \xrightarrow{16}_{14}^{17} \xrightarrow{17}_{0H} OH$ $HO_{18}^{11} \xrightarrow{19}_{15}^{17} \xrightarrow{0}_{0} OR_{1} \qquad R_{1} \qquad R_{2}$ $Glc \qquad H$	Tricalysioside X-Y (41-42)		
$HO_{18}^{OIC} \xrightarrow{20^{11}}_{10} \xrightarrow{12^{12}}_{10} \xrightarrow{13^{16}}_{17} \xrightarrow{17^{16}}_{17^{16}} OH$	Tricalysioside Z (43)	Feuilles de Tricalysia dubia et	Shimatoko et <i>al.</i> , 2010
$HO_{19}^{20} 10^{12} 13^{16} 17^{17} OCH_3$ $HO_{34}^{20} 5^{6} 6^{7} OCH_3$ $HO_{19}^{19} 18 R$ H $CH_3 (CH_2)_{14} CO$	Tricalysiolide H-I (44-45)	Tricalysia okelensis	Tamaki et <i>al.</i> , 2007
20 10 10 10 11 12 15 16 OH OH OH OH	Tricalysiolide J (46)		Nishimura et al., 2007
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	Tricalysione A (47)		

Tableau II : Quelques Diterpènes isolés des plantes de la famille des Rubiaceae (suite).

Tableau II : Quelques Diterpènes isolés des plantes de la famille des Rubiaceae (suite et fin).

1.5.3. Cas des triterpènes

Les triterpènes sont des composés en C_{30} , ils sont très répandus, notamment dans les résines, à l'état libre, estérifié, ou sous forme hétérosidique. Ils peuvent être :

- Composés aliphatiques : tel que le squalène, surtout rencontré dans le règne animal, se trouve également dans l'insaponifiable d'huiles végétales (Olive, Lin, Arachide). C'est un intermédiaire dans la biogenèse des triterpènes cycliques et des stéroïdes.

- Composés tétracycliques tel que les stéroïdes et les phytostérols.

- Composés pentacycliques sont très fréquents chez les plantes telle que α -amyrin et β -amyrin.

Ils sont issus de la cyclisation de l'époxysqualène ou du squalène (Breitmaier, 2006).

Triterpène pentacyclique (49)

Figure 2 : Squelette des triterpènes pentacyclique.

1.5.3.1. Biosynthèse des triterpènes

Tous les triterpènes en général proviennent des précurseurs simples à cinq atomes de carbone, l'isopentényl-pyrophosphate (IPP) et son isomère le diméthylallyl-pyrophosphate (DMAPP) assemblés et modifiés de plusieurs façons (Dewick, 1999). Leur biosynthèse est initiée par deux voies : la voie du mévalonate et celle du méthylérythritol phosphate. La voie

du mévalonate est utilisée préférentiellement pour la biosynthèse des stérols, sesquiterpènes et triterpènes (Chapell, 2002).

Pour cette voie, lors de l'étape initiant le processus de formation de l'IPP, deux molécules d'acétylCoenzyme A entrent en jeu. La réaction est catalysée par deux enzymes séquentielles et conduit au $3-\beta$ -hydroxy- $3-\alpha$ -méthylglutaryl-Coenzyme A (HMG-CoA). Une réduction s'ensuit et permet d'obtenir l'acide 3R-mévalonique (MVA). Le passage de ce composé à une unité réactive isoprénique s'effectue par une série de quatre réactions, dont les deux premières consistent simplement en une double phosphorylation d'un groupement hydroxyle. Ces deux réactions, conduisent successivement par le mévalonate kinase et phosphomévalonate kinase assurent la formation d'un bon groupe partant : le groupe diphosphate. Son élimination assiste une décarboxylation de la molécule et conduit à la formation de l'IPP (Bruneton, 1999). Une molécule d'IPP est isomérisée en DMAPP. Cela est illustré par le schéma 3 :

Schéma 3 : Formation de l'IPP et du DMAPP (Bruneton, 1999).

Par la suite, il y a formation du géranyl-pyrophosphate (GPP) via une condensation entre le DMAPP et une autre unité d'IPP. Suivant le même procédé de condensation tête-à-queue entre un IPP et le précurseur nouvellement formé, le farnésyl-pyrophosphate (FPP) est obtenu (Sando et *al.*, 2008). Le couplage queue à queue de deux FPP suivi d'une oxydation permet l'élaboration de l'époxysqualène comme le montre le schéma 4.

Schéma 4 : Formation de l'époxysqualène (Dubey et *al.*, 2003).

La biosynthèse des triterpènes se produit à travers l'action de l'oxydosqualène cyclase qui génère divers types de triterpènes à partir du 2,3-époxysqualène après réarrangement du squelette triterpénique (Han et *al.*, 2019). Cette biosynthèse est mise en évidence par le schéma 5.

1.5.3.2. Structure des triterpènes

Les triterpènes pentacycliques sont des molécules composées de trois motifs terpéniques (soit six motifs isopréniques) agencés, soit en cinq cycles à six carbones, soit en quatre cycles à six carbones et un cycle à cinq carbones (**Fig. 3**).

Par extension, nous pouvons également associer à cette famille tous les composés issus des mêmes voies biosynthétiques (onocérane par exemple), ou qui en dérivent par dégradation (Bruneton, 2009).

Figure 3 : Structures planes de quelques squelettes carbonés de triterpènes pentacycliques : Oleanane (63), Ursane (64), Friedelane (65) et Lupane (66).

Dans la famille des Rubiaceae, les triterpènes isolés des plantes sont en majorité pentacycliques.

Structures	Noms des composés	Sources	Références
HO' $\frac{29}{10}$ $\frac{12}{10}$ $\frac{12}{13}$ $\frac{19}{19}$ $\frac{221}{18}$ $\frac{22}{28}$ $\frac{11}{10}$ $\frac{12}{13}$ $\frac{13}{14}$ $\frac{17}{16}$ $\frac{2000}{28}$ $\frac{11}{10}$ $\frac{12}{13}$ $\frac{11}{10}$ $\frac{12}{13}$ $\frac{11}{10}$ $\frac{12}{13}$ $\frac{11}{10}$ $\frac{12}{28}$ $\frac{11}{24}$ $\frac{11}{10}$ $\frac{12}{28}$ $\frac{11}{28}$ $\frac{12}{27}$ $\frac{11}{10}$ $\frac{12}{13}$ $\frac{11}{10}$ $\frac{12}{28}$ $\frac{11}{24}$ $\frac{11}{10}$ $\frac{12}{28}$ $\frac{11}{28}$	Acide 3,24-dihydroxyurs- 12-en-28-oïque (67)	Tiges de	
$HO \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	Acide oleanolique (68)	orientalis	He et <i>al</i> ., 2005
$HO = \begin{bmatrix} 29 & 20 \\ 29 & 20 \\ 29 & 19 & 21 \\ 20 & 19 & 21 \\ 20 & 19 & 21 \\ 20 & 19 & 21 \\ 26 & 14 & 15 & 10 \\ 27 & 0 \\ 27 & 0 \\ 27 & 0 \\ 27 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Acide betulinique (69)	Equillas da	Coiimon et al
HO _{1, 2} 10 12 13 18 17 22 HO _{1, 2} 10 9 8 $\frac{1}{27}$ 15 15 16 16 14 16 28 $\frac{1}{23}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{27}$ $\frac{1}{15}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{15}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{15}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{15}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ $\frac{1}{28}$ $\frac{1}{27}$ $\frac{1}{28}$ \frac	30-nor-2α,3β- dihydroxyurs-12-ène (70)	Rothmannia hispida	1984 ; Michina et <i>al.</i> , 2007 ; Isah et <i>al.</i> , 2016

Tableau III : Quelques triterpènes isolés des plantes de la famille des Rubiaceae.

	-		
$HO = \begin{bmatrix} 29 & 30 \\ 19 & 20 & 21 \\ 25 & 11 & 26 & 14 \\ 23 & R_{1} \\ 23 & R_{1} \end{bmatrix} \begin{bmatrix} 12 & 13 & 17 \\ 26 & 14 & 16 \\ 27 & 27 \\ 27 & 27 \end{bmatrix} \begin{bmatrix} 29 & 30 \\ 21 \\ 22 \\ 28 \\ 27 \\ 27 \end{bmatrix}$	R ₁ = CH ₃ ; R ₂ =CH ₂ OH : érythrodiol (71) R ₁ =CH ₂ OH ; R ₂ = COOH: hédéragénine (72)		
R = palmitoyl	 R= palmitoyl : palmitate de lupéol (73) R= OH : Lupeol (74) 	Feuilles de Rothmannia hispida	Goijman et <i>al.</i> , 1984 ; Michina et <i>al.</i> , 2007 ; Isah et <i>al.</i> , 2016
HO_{23}^{29}	R=CH ₂ OH: uvaol (75); R= COOH: acide ursolique (76)		
$HO = \begin{bmatrix} 29 & 0 \\ 29 & 0 \\ 19 & 20 \\ 20 & 10 \\ 20 & 10 \\ 20 & 10 \\ 20 & 10 \\ 20 & 10 \\ 20 & 10 \\ 20 & 10 \\ 20 & 10 \\ 10 & 10 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 2$	Acide barbinervique (77)	Psychotria succulenta	Juogo et <i>al.</i> , 2022

Tableau III : Quelques triterpènes isolés des plantes de la famille des Rubiaceae (suite et fin).

$\mathbf{R} = \alpha - L - rhamnopyranosyl$ $\mathbf{R} = \beta - D - glucopyranosyl$	3- <i>O</i> -[α-L- rhamnopyranosyl-(1→2) - β-D-glucopyranosyl] oleanolic acid 28- <i>O</i> -β-D- glucopyranosyl ester (78)	Feuilles de Gardenia thunbergia	Tajuddeen et Van Heerden 2019 ; Tajuddeen et <i>al.</i> 2021a ; Tajuddeen et <i>al.</i> 2021b
---	---	---------------------------------------	---

1.5.4. Généralités sur les alcaloïdes

A l'origine, le terme alcaloïde a été employé pour décrire toute base de Lewis contenant un hétérocycle azoté (ou improprement une amine). Cette propriété basique est due à la présence du doublet non liant sur l'atome d'azote. On trouve des alcaloïdes, principalement chez les végétaux, les champignons et quelques groupes animaux peu nombreux, biologiquement, les alcaloïdes sont des dérivés des acides aminés (Foley, 2003).

1.5.4.1. Classification des alcaloïdes

Les alcaloïdes ont été classifiés pour mieux les maitriser vu qu'une centaine de molécules sont ajoutées chaque année par les scientifiques du monde entiers aux milliers de composés naturels existants (Tadeusz, 2007). Ces classifications se feront en fonction du squelette de base. On retrouve ainsi : Pyrrolidines, Azines, Tropanes, Quinoléines, Isoquinolines, Phényléthylamines, Indoles, Purines (Tadeusz, 2007). Les structures étant regroupées dans le tableau suivant.

Catégories	Structures chimiques
Pyrrolidines	NH 79
Tropanes	
Quinoléines	N 81
Isoquinolines	N 82
Phényléthylamines	NH ₂ 83
Indoles	N H 84
Purines	

Tableau IV : Structure de chaque catégorie d'alcaloïde.

1.5.4.2. Classification en fonction du précurseur biogénétique et la voie de biosynthèse

Les alcaloïdes peuvent être classés en fonction de leur précurseur avant leur synthèse dans une voie biologique. On distingue alors trois grandes classes [les alcaloïdes vrais (qui dérivent d'acides aminés et comportent un atome d'azote dans un système hétérocyclique), les pseudo-alcaloïdes (dont le squelette carboné de base ne dérive pas d'acides aminés) et les protoalcaloïdes (dans lequel l'atome d'azote N dérivé d'un acide aminé ne fait pas partie d'un hétérocycle)] selon qu'ils possèdent ou non un acide aminé comme précurseur direct, et qu'ils comportent ou non un atome d'azote dans un hétérocycle (Tadeusz, 2007).

- Biosynthèse des alcaloïdes indolomonoterpéniques

Nous avons donc deux voies de biosynthèse, celles des acides aminés aliphatiques et celles des acides aminés aromatiques. On s'intéressera à la voie des acides aminés aromatiques car les alcaloïdes recherchés dérivent de cette dernière.

Les alcaloïdes indolomonoterpéniques sont des composés qui renferment dans leurs structures de base le noyau indolique. Le doublet électronique porté par l'atome d'azote dans la représentation de Lewis est assez disponible rendant ainsi possible une substitution électrophile aromatique. La position la plus réactive à cet effet est la position C-3 qui est environ 1000 fois plus réactive que celles situées sur le cycle benzénique (Vara et al., 2008). La biosynthèse des alcaloïdes indolomonoterpéniques utilise comme précurseur le tryptophane qui est acide alpha aminé se réduisant pour donner la tryptamine, qui par la suite réagit avec la sécologanine pour donner la strictosidine, intermédiaire à partir duquel se forme la plupart des alcaloïdes indolomonoterpéniques. Le schéma 6 montre un aperçu de cette biosynthèse (Rodney et al., 2000).

Schéma 6: Biosynthèse des alcaloïdes indolomonoterpéniques (Rodney et al., 2000).

Plusieurs alcaloïdes ont été isolés des plantes de la famille des Rubiaceae :

Structures	Noms des composés	Sources	Références
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Naucleaorine (96)	Tiges de Nauclea	He et <i>al</i> ., 2005
10 10 10 12 13 14 14 15 14 14 15 14 16 0Me 15 17 14 16 0Me 10 10 10 12 13 14 14 15 14 16 0Me 15 10 10 10 10 10 10 10 10 10 10	Epiméthoxynaucleaorine (97)	orientalis	
10 10 12 13 H 2 3 4 2 3 4 2 4 2 2 4 2 2 14 15 16 17 10 17 10 10 12 13 14 14 14 14 14 15 16 16 17 10 17 10 17 10 10 10 10 10 10 10 10 10 10	Vincosamide- <i>N</i> -oxyde (98)		
10 10 12 13 H 23 4 N 22 0 14 14 15 16 17 19 22 21 0 10 5' 6' OH HO 2' 3' OH HO 2' 3' OH HO 10 0 5' OH HO 10 0 0 10 1	Vincosamide (99)	Fruits d'Anthoce phalus cadamba	Mishra et <i>al.</i> , 2018

Tableau V: Alcaloïdes isolés des plantes de la famille des Rubiaceae.

1.6. Etudes pharmacologiques antérieures sur quelques espèces de la famille des Rubiaceae

Les travaux effectués sur les espèces de cette famille ont permis de confirmer certains de leurs vertus thérapeutiques. En effet, dans cette famille, plusieurs espèces ont été rapportées comme possédant de nombreuses activités et les composés isolés présentant des propriétés intéressantes notamment antibactériennes, anticancéreux, antiplasmodiale, antileishmaniale etc.

1.6.1. Activité antiplasmodiale

Un certain nombre de composés isolés des plantes de la famille des Rubiaceae ont été testés afin de déterminer leurs propriétés antiplasmodiale. C'est ainsi que la naucleaorine (**96**), l'épiméthoxynaucleaorine (**97**), l'acide 3,24-dihydroxyurs-12-en-28-oïque (**67**) et l'acide oléanolique (**68**) ont été identifié à partir des tiges de *Nauclea orientalis* par He et collaborateurs en 2005. Ces composés ont montré des activités antiplasmodiales sur les souches 3D7/Dd2 de *Plasmodium falciparum*, avec les valeurs de CI₅₀ suivantes : composé **96** (CI₅₀ 6,9/6,0 μ M) ; **97** (CI₅₀ 12,4/13,2 μ M) ; **67** (CI₅₀ 9,7/12,7 μ M) et **68** (CI₅₀ 4,6/5,1 μ M). De plus les composés (**96-97**) ont montré une cytotoxicité contre les cellules KB avec des valeurs ED₅₀ de 38,0 >37,9

>42,2 et 46,0 μ M, respectivement. L'extrait de racines de *Pentas longiflora* a montré une activité antiplasmodiale significative.

A partir de l'extrait de racine de *Pentas longiflora*, les dérivés de naphtalène : la pentalongine (**103**), le psychorubrine (**104**), et le mollugine (**105**) ont été isolé, identifié et testés pour leur activité antiplasmodiale par el Hady et collaborateurs en 2002, Liu et *al* en 2008, Hayashi et *al* en 1987. Les composés (**103**) et (**104**) ont montré une bonne activité ($CI_{50} < 1 \mu g/mL$) sur les souches 3D7 et Dd2 de *P. falciparum*, tandis que le composé (**105**) a montré une activité pas très significative vis-à-vis des mêmes souches. Par la suite, une activité antiplasmodiale *in vitro* modérée a été observée pour l'extrait au dichlorométhane de l'écorce de tige de *Heinsia crinita* ($CI_{50} 29, 2 \pm 1$. 39 µg/mL) et pour les deux nouveaux iridoïdes, lamalbide 6, 7, 8- triacétate (**106**) ($CI_{50} 16,39 \pm 0,43 \mu g/mL$). L'extrait éthanolique d'écorce de tige de la même plante (200 et 300 mg/kg/jour, voie orale) a montré une activité antipaludique *in vivo* modérée chez des souris infectées par *Plasmodium berghei* avec respectivement 27,84 ± 2,75 % et 48,54 ± 3,76 % d'inhibition croissante du parasite (p < 0,01). Cet extrait a également montré une activité antioxydante cellulaire élevée en utilisant le dichlorofluorescéine-diacétate (DCFDA) sur des monocytes HL-60.

De même, l'extrait brut et composés purs testés de Heinsia crinita à la concentration plus élevée de 100 µg/mL n'a pas montré de cytotoxicité contre les cellules WI38 (Tshisekedi et al., 2016). Pour ce qui est de l'extrait méthanolique des feuilles de Gardenia thunbergia, il a montré une activité antiplasmodiale significative (inhibition > 80%) à 50 mg/mL et n'était pas cytotoxique contre les cellules HeL (Tajuddeen et al. 2021a). Son activité antiplasmodiale a diminué à une concentration plus faible de 10 mg/mL. Il est intéressant de noter qu'un extrait DCM-MeOH (1 :1) des feuilles n'a pas montré d'activité antiplasmodiale, ce qui suggère que les composés actifs de l'extrait végétal sont polaires. La purification de l'extrait de feuilles a permis d'obtenir neuf composés, dont une saponine triterpénique, le 3-0-[a-Lrhamnopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl] acide oléanolique 28-O- β -D-glucopyranosyl ester (78) et deux glycosides flavonoïdes : l'astragaline (108) et l'isoquercitrine (109). La saponine et les glycosides flavonoïdes ont inhibé P. falciparum de plus de 80% à 50 mg/mL, mais étaient également cytotoxiques contre les cellules HeLa. Des études précédentes ont montré que les saponines présentent une activité antiprotozoaire non sélective, y compris une activité antiplasmodiale (Mostafa et al. 2016 ; Foubert et al. 2016 ; Tajuddeen et Van Heerden 2019). De même, les flavonoïdes et leurs glycosides ont été signalés comme présentant des

activités antiplasmodiales et cytotoxiques (Tajuddeen et Van Heerden 2019 ; Tajuddeen et *al.* 2021a ; Tajuddeen et *al.* 2021b).

 $\mathbf{R} = \beta$ -D-glucopyranosyl ; $\mathbf{R}_1 = OH (109)$

1.6.2. Activité antileishmaniale

Quelques essais biologiques ont été menés sur des extraits de plantes de la famille des Rubiaceae. Ainsi, le fractionnement de l'extrait au dichlorométhane de *Mitracarpus frigidus*, guidé par la bioactivité, a permis de découvrir la pyranonaphtoquinone psychorubrine. Ce composé, jusqu'alors inconnu dans le genre *Mitracarpus*, a vu son activité biologique évaluée sur *L. amazonensis*, *L. major*, *L. braziliensis* et *L. chagasi*. Au vu de cette évaluation, il a été constaté que la psychorubrine (**110**) possède une activité antileishmaniale prononcée avec une CI₅₀ variant de 1,7 à 2,7 μ M pour les espèces de *Leishmania* testées (Fabri et *al.*, 2012). Il s'agit du premier rapport de la présence de pyranonapthoquinones dans le genre *Mitracarpus*, pouvant servir de marqueur chimiotaxonomique. Par la suite, l'extrait brut et certains des composés isolés de *Mussaenda erythrophylla* Schumach et Thonn ont été évalués *in vitro* pour leur activité antileishmaniale (Bouzeko et *al.*, 2021). Ainsi, l'extrait brut au CH₂Cl₂/MeOH (1:1) de *M. erythrophylla* a montré une activité antileishmaniale modérée (CI₅₀ 61,6 µg/mL) tandis que la fraction soluble dans l'hexane a montré une bonne activité antileishmaniale (CI₅₀ 31,06 µg/mL) par rapport au médicament de référence, l'amphotéricine B ; (CI₅₀ = 0,11 µM). Les composés isolés à savoir le monostearine (**111**) et l'acide oleanolique (**68**) ont également présenté une

puissante activité antileishmaniale ($CI_{50} = 53,7-52,0 \mu M$). A partir de l'extrait brut actif (CI_{50} 15,50 µg/mL) de R. hispida, les composés isolés à savoir l'acide ursolique (76), le 30-nor- 2α , 3β -dihydroxyurs-12-ène (70) et l'hédéragénine (72) ont montré une très bonne activité sur la souche L. donovani promastigotes avec des valeurs CI_{50} allant de 0,88 à 9,12 µg/mL. En outre, le palmitate de lupéol (74), le mélange uvaol (75) et érythrodiol (71) et le n-heptadécyl-4-hydroxy-trans-cinnamate (112) ont présenté une activité avec des valeurs CI₅₀ comprises entre 11,05 et 14,30 µg (Wonkam et al., 2020). De manière générale, tous les échantillons testés ont présenté une très faible cytotoxicité (CC50> 70 µg/mL) sur les cellules RAW 264,7. Cependant, les composés les plus actifs à savoir l'acide ursolique (76) et le 30-nor- 2α , 3β dihydroxyurs-12-ène (70) a montré une cytotoxicité limitée vis-à-vis des cellules RAW 264,7 avec une sélectivité, SI > 57. Certains auteurs ont suggéré que l'activité antileishmanial des triterpénoïdes pourrait être liée à l'inhibition de la synthèse des protéines et des acides nucléiques leishmaniens et/ou à l'inhibition d'une pompe ATPase calcium-dépendante associée à la membrane (Goijman et al., 1984 ; Michina et al., 2007 ; Isah et al., 2016). Aussi, l'extrait brut était moins actif que l'acide ursolique (76), le 30-nor- 2α , 3β -dihydroxy- 12-ène (70) et l'hédéragénine (72) dont $CI_{50} < 10 \mu g/mL$. La différence d'activité entre l'extrait brut et certains des composés isolés peuvent être dus à une action antagoniste des composés isolés. Cet effet antagoniste entre extrait et constituants a été discuté précédemment par Caesar et Cech en 2019, qui démontrent que la complexité des extraits bruts en masque l'activité biologique des constituants chimiques sur certaines cibles thérapeutiques.

1.6.3. Autres activités biologiques antérieures

1.6.3.1 Activité antibactérienne

Les extraits EtOH, AcOEt et n-BuOH de *Psychotria succulenta Hiern* ont présenté des activités antibactériennes significatives (CMI 32- 128 µg/mL et CMB 64- 256 µg/mL) contre *Staphylococcus aureus* (bactérie Gram-positive), *Pseudomonas aeruginosa, Escherichia coli* et *Klebsiella pneumonia* (bactéries Gram-négatives). Parmi les composés isolés, la scopoletine

(113) et l'acide barbinervique (77) ont montré une activité modérée contre *Klebsiella pneumoniae* avec des valeurs CMI et CMB de 16 μ g/mL et 32 μ g/mL, respectivement (Juogo et *al.*, 2022).

1.6.3.2. Activité anticancéreuse

A partir des fruits d'*Anthocephalus cadamba* (Roxb) (Rubiaceae), le Vincosamide-*N*-oxyde (**98**), le vincosamide (**99**), la dihydrocadambine (**100**), la vallesiachotamine (**101**), l'isovallesiachotamine (**102**) ont été isolés et évalués pour leur activité antiproliférative *in-vitro* contre la lignée cellulaire de cancer du poumon humain H1299. Le profil cytotoxique a été étudié dans la lignée cellulaire de macrophages de souris RAW 264,7 et l'induction de l'apoptose dans les cellules MCF-7. Les composés **101** et **102** ont présenté une puissante activité anticancéreuse avec des valeurs CI₅₀ de 4,24 et 3,79 μ M respectivement. Tandis que les composés **98**, **99** et **100** ont montré une cytotoxicité modérée contre les mêmes cellules cancéreuses, avec des valeurs CI₅₀ de 37,96 ; 39,69 et 16,35 μ M respectivement après 48 heures d'incubation (Mishra et *al.*, 2018).

1.7. Généralités sur le genre Tricalysia

1.7.1. Introduction

Le genre *Tricalysia* est l'un des plus grands genres des Rubiaceae en Afrique et est présent en Afrique continentale (environ 95 espèces recencées), Madagascar (12 espèces), et les Comores (une espèce). Ce genre possède généralement les caractéristiques distinctives de la tribu Coffeae (Bridson et Verdcourt, 2003 ; Davis et *al.* 2007). Il s'agit notamment de l'inflorescence axillaire jumelée aux nœuds avec des calices évidents, des fleurs avec aestivation gauche de la corolle contorsionnée et un style nettement bi lobé, et relativement petit et peu de graines, fruits charnus. La plupart des espèces de *Tricalysia* peuvent être séparé facilement des autres cafés par la présence de stipules avec des alènes en forme d'aiguilles, tronquées à des calices lobés, et des graines avec un hile peu profond. L'identification des espèces sur une vaste zone géographique et écologique, souvent séparés par des caractères continus. Au Cameroun, six espèces du genre *Tricalysia* ont été recensées dans plusieurs régions.

Espèces	Régions	Localisation
T. Lasiodelphys	Sud-Ouest Littoral	Mont Cameroun Song Bong (près de Mbikeng)
T. fangana	Centre	Mont kala, Yaoundé
T. Obstetrix	Sud-Ouest	Mont Cameroun
T. amplexicaulis	Littoral Centre Sud	Lac Tissongo Makak, Song Bong Kribi, forêt marécageuse de la Kienké, Oveng
T. oligoneura	Sud	Mont Ngongonjié
T. atherura	Sud-Ouest Centre Littoral	(Village de Kupé, mont Etinde)(Mont Fébé, Yaoundé)(Réserve forestière de Loum)

Tableau VI : Distribution géographique de quelques espèces du genre Tricalysia au
Cameroun (Onana, 2013).

1.7.2. Aperçu botanique de quelques espèces du genre Tricalysia

1.7.2.1. L'espèce Tricalysia atherura (N. Hallé)

Tricalysia atherura N. Hallé est un d'arbuste de 6 m de haut. Son écorce est fendillée longitudinalement tandis que ses fleurs sont blanches avec un réceptacle vert. Son fruit vert devenant orange atteind 27 à 35 mm de diamètre et est couronné par un calice vert. Sa paroi est épaisse d'environ 3 mm devenant pulpeuse et rose à maturité (Breteler, 1933). Ses graines sont roussatres à hile étiré marginalement sur toute la longueur du tégument (Breteler, 1933). L'espèce a été observée en un seul endroit au Gabon (mont Babiel près de Bélinga) et sur plusieurs sites au Cameroun (voir Tableau 12).

La classification phylogénique selon Cronquist de cette epèce est présentée comme suit :

Règne :	Plantae
Clade :	Angiospermes
Ordre :	Gentianales
Famille :	Rubiaceae
Genre :	Tricalysia
Espèce :	Tricalysia atherura
	(Tosh et <i>al.</i> , 2009)

Figure 4 : Feuilles et tige de *Tricalysia atherura* (https:/agroneo.com/gaia/ *Tricalysia atherura*).

1.7.2.2. L'espèce Tricalysia oligoneura (K. Schum)

Tricalysia oligoneura K. Schum est une plante tropicale de la famille des Rubiaceae et du genre *Tricalysia*. La plante présente les caractéristiques botaniques suivantes : Petit arbuste de 1,50 à 3 m de hauteur possédant des jeunes rameaux finement pubescens avec des stipules pubescentes à écument effilé long de 2-4 mm, un pétiole pubescente longue de 4-10 mm, un limbe olivacé à sec, plutôt mince, glabre sur les deux faces. Son fruit est rouge orangé à maturité, globuleux, atteignant 5-7 mm de diamètre sur le vif, un peu pubescent. 3-4 graines par fruit, longues de 3-4 mm. L'espèce a été observée au Nigeria, au Cameroun, en République Centrafricaine et en République démocratique du Congo (Schummann et *al.*, 1896).

La classification phylogénique selon Cronquist de cette epèce est présentée ci-dessous :

Règne : Pla	antae
Clade :	Angiospermes
Ordre :	Gentianales
Famille :	Rubiaceae
Genre :	Tricalysia
Espèce :	Tricalysia oligoneura
	(Tosh et <i>al.</i> , 2009)

Figure 5 : Feuilles et tige de Tricalysia oligoneura (https://agroneo.com/gaia/ Tricalysia oligoneura).

1.7.3. Usages ethnopharmacologiques de quelques espèces du genre *Tricalysia*

Plusieurs plantes du genre Tricalysia sont couramment employées en Asie et en Afrique comme médicament traditionnel. C'est ainsi que la décoction des racines de Tricalysia Sphaerocarpa mélangé avec du jus de feuilles de Tricalysia coriacea (sbsp. Nyassae) est bu pour soigner le paludisme (Moshi et al., 2012). Les feuilles/racines de Tricalysia coriacea (Benth.) Hiern sont quant à elles bouillies et la décoction est bue pour soigner les maladies de la peau et le paludisme/fièvre jaune (jaunisse) (Awouafack et al., 2018). En ce qui concerne l'écorce de Tricalysia macrophylla (K. Schum), elle est utilisée pour la gestion du cancer (Soladoye et al., 2010). Pour ce qui est des racines de Tricalysia capensis (café chacal) et de Tricalysia lanceolata (café chacal), elles sont utilisées comme émétique (Moshi et al., 2009). Relativement aux feuilles de Tricalysia singularis (Korth.) K. Schum et Tricalysia Sphaerocarpa (Hook. F.) Gamble Null, elles sont utilisées traditionnellement pour soigner la maladie du sommeil. Par contre, Tricalysia elwitschii (Nom vernaculaire en beembe : muyinga) est utilisé pour soigner les fièvres graves avec douleurs articulaires en soumettant le malade à l'action des vapeurs chaudes du décocté des écorces (Bouquet, 1972). Pour ce qui est des rameaux de Tricalysia dubia, ils sont utilisés comme agent thérapeutique pour le traitement des ulcères cutanés et des contusions (Chuan-pu et al., 2015). Par contre, Tricalysia coriacea est utilisée en médecine traditionnelle comme sédatif et émétique, et pour le traitement du paludisme, de la jaunisse et des maladies de la peau (Moshi et *al.*, 2012).

1.7.4. Etudes phytochimiques antérieurs sur les espèces du genre Tricalysia

Des études phytochimiques antérieures de certaines espèces végétales du genre *Tricalysia* ont rapporté l'isolement de stéroïdes (Anandhi et *al.*, 2013), de terpénoïdes (Shen et *al.*, 2015), d'alcaloïdes diterpéniques (Nishimura et *al.*, 2007), d'esters d'acides gras et de glycosides. Il est à noter que les terpenoides sont prédominants dans ce genre.

Nous allons présenter les structures de quelques-uns de ces métabolites secondaires isolés du genre *Tricalysia*. Cette liste n'est pas exhaustive et nous présenterons les structures des composés les plus fréquemment rencontrés.

1.7.4.1. Diterpenoides isolés du genre Tricalysia

Les diterpenoides du genre *Tricalysia* sont généralement de type kauranique et de type cafestol. Leurs méthyles C-18 et 19 se sont réarrangés pour former un cycle γ -lactone α - β -insaturé, avec d'autres groupes fonctionnels situés à distance uniquement sur C-15,-16 et -17 de l'anneau à cinq chaînons (He et *al.*, 2002 ; Nishimura et *al.*, 2006). Les études phytochimiques menées à partir des espèces de ce genre, font état de plusieurs diterpenoides isolés. En effet, sur les feuilles *de Tricalysia dubia*, on dénombre 24 diterpenoides isolés à savoir le tricalysioside H-Z (**25-43**) (He et *al.*, 2005 ; Xu et *al.*, 2009, Shimatoko et *al.*, 2010) ; tricalysiolide H-J (**44-46**) (Tamaki et *al.*, 2007) ; tricalysione A-B (**47-48**) ; tandis que sur les rameaux de *Tricalysia fructicosa* on en dénombre 10 à savoir le tricalysine A-H (**15-22**) et fructilactone A-B (**23-24**) (Shen et *al.*, 2015).

1.7.4.2. Les Triterpènoides et Stéroides isolés du genre Tricalysia

Les investigations phytochimiques sur les espèces de ce genre ont raportés l'isolement d'uniquement 03 triterpènoides à savoir : l'acide ursolique (**76**), l'acide oleanolique (**68**) et l'acide betulinique (**69**) sur l'espèce *Tricalysia dubia* (Tamaki et *al.*, 2008) et 02 stérols à savoir le β -sistostérol-3-*O*- β -D-glucopyranoside (**114**) et stigmast-4-en-6- β -ol-3-one (**115**) sur les espèces et *Tricalysia dubia* (Tamaki et *al.*, 2008) et *Tricalysia Coriaceae* (Awouafack et *al.*, 2018).

1.7.4.3. Les alcaloïdes du genre Tricalysia

L'étude phytochimique des espèces du genre *Tricalysia* (Rubiaceae) a conduit à l'isolement de plusieurs métabolites secondaires et principalement les alcaloïdes diterpéniques de type kaurannique. Il a été prouvé que la plupart les alcaloides isolés dans ce genre

[tricalysiamide A-D (**116-119**)] appartiennent à l'espèce *Tricalysia dubia* (He et *al.*, 2002 ; He et *al.*, 2005 ; Nishimura et *al.*, 2006 ; Wang et *al.*, 2002).

1.7.4.4. Cérébroside isolé du genre Tricalysia

Les cérébrosides sont des lipides qui font partie des glycosphingolipides (appelés aussi simplement sphingolipides). Ils sont constitués d'une céramide liée par une liaison bêtaosidique à un ou plusieurs oses neutres. Pour les oses chargés voir les gangliosides. L'acide gras est souvent à longue chaine, et en particulier l'acide nervonique.

Les études phytochimiques menées à partir des feuilles de *Tricalysia coriacea* Benth ont rapporté l'isolement d'un cérébroside nommé tricalycoside (**120**) et possédant une activité antibactérienne modérée sur la souche de *klebsiella pneumoniae* (CMI=75 μ g/mL) (Awouafack et *al.*, 2018).

1.7.4.5. Les glucosides sulfates isolés du genre Tricalysia

On appelle « hétérosides » ou « glycosides » les composés naturels formés d'un ou plusieurs oses (sucres) liés à une molécule dite aglycone, c'est-à-dire non glucidique.

Les travaux phytochimiques antérieures ont rapportés l'isolement de six (6) glucosides sulfates [Sulfatricalysine A-F (**121-126**)] sur l'espèce *Tricalysia dubia* (Shitamoko et *al.*, 2010).

1.7.5. Etudes pharmacologiques antérieures sur quelques espèces du genre Tricalysia

Les études pharmacologiques menées sur les espèces du genre *Tricalysia* ont été rapporté sur uniquement deux espèces à savoir *Tricalysia coriaceae* (Moshi et *al.*, 2012) et *Tricalysia fructicosa* (Chuan-Pu et *al.*, 2015). En effet, l'espèce *Tricalysia coriaceae* a été revelé comme possédant des vertus antimalariques (Moshi et *al.*, 2012) mais aucun test antiplasmodiale n'a été effectué sur l'extrait et sur les composés isolés de ladite plante. Pour ce qui est de l'espèce *Tricalysia fructicosa*, une activité antiinflammatoire sur les cellules macrophages raw 264,7 activés par le lipopolysaccaride a été évaluée. Seule le composé Tricalysin H (22) a présenté une très bonne activité antiinflammatoire avec une CI_{50} de 6,6 ± 0,4 µM (Chuan-Pu et *al.*, 2015).

1.8. Généralités sur la leishmaniose

1.8.1. Définition

Les leishmanioses sont des parasitoses du système monocytes-macrophages dont l'agent pathogène est un protozoaire flagellé, du genre *Leishmania*. Il s'agit d'anthropozoonoses dues à une piqure de moucherons hématophages infectés, des Psychodidés, du genre *Phlebotomus*, (Bourdoiseau et Denerolle, 2000). Cette maladie infectieuse zoonotique majeure est due au développement et à la multiplication du parasite principalement dans les cellules du système des phagocytes mononuclées. Elles causent des affections sous forme d'ulcères cutanés ou de lésions viscérales accompagnées d'autres symptômes. La leishmaniose se décline sous trois formes cliniques principales : Viscérale (la plus sévère, souvent appelée Kala-azar), cutanée (la plus fréquente) et cutanéomuqueuse.

1.8.2. Le vecteur de la leishmaniose

Le parasite *Leishmania* fut observée par Sir William Leishman en 1900, dans des frottis de rate d'un soldat mort à Dum-Dum en Inde. En 1903, Charles Donovan, en poste dans un service médical indien, identifia le même parasite dans une biopsie de rate. Le parasite fut nommé *Leishmania Donovani* en leur hommage (Roberts et Janovy, 2000).

La relation entre le vecteur (phlébotome) et les symptômes a été révélée par l'équipe de l'Institut Pasteur d'Algérie, dirigée à l'époque par les frères Edmond et Etienne Sergent et leurs collaborateurs. Les preuves expérimentales de la transmission de la leishmaniose cutanée ont été rapportées en 1921, lorsque les frères Sergent contaminèrent un sujet sain en le faisant piquer par des phlébotomes récoltés dans le sud du pays. Presque parallèlement, des observations faites en Palestine et en Syrie par Adler et Theodor confirmèrent celles de l'équipe de l'Institut Pasteur d'Algérie (Benallal et *al.*, 2013).

Cycle de vie de Leishmania

Elle comporte deux stades principaux : la forme promastigote flagellée extracellulaire qui subsiste dans l'intestin moyen de la mouche des sables vectrice et la forme amastigote non flagellée intracellulaire qui vit à l'intérieur des macrophages, des monocytes, des cellules dendritiques et des neutrophiles de la cellule hôte (Ouellette, 2003).

Figure 6: Cycle de vie de Leishmania sp. (Source : CDC, www.cdc.gov).

1.8.3. Aspect clinique

1.8.3.1. La leishmaniose viscérale (LV)

Maladie vectorielle causée par un parasite appartenant au genre *Leishmania* (Benallal et *al*, 2013). Sur le plan clinique, l'affection atteint préférentiellement l'enfant de moins de 5ans, et se manifeste par la triade symptomatique : fièvre irrégulière, pâleur cutanéomuqueuse et splénomégalie. À côté de ces signes majeurs, on peut retrouver : une hépatomégalie, des adénopathies périphériques, un amaigrissement progressif et des signes hémorragiques (Belazzoug et *al.*, 1983). La LV est mortelle en l'absence de traitement (OMS, 2016).

Figure 7 : Leishmaniose viscérale avec une splénomégalie marquée (OMS, 2016).

1.8.3.2. La Leishmaniose cutanée (LC)

La LC est la forme la plus fréquente et est aussi connue comme le classique bouton d'orient. Elle est causée par plusieurs espèces de *Leishmania (L. donavi ; L. infantum)*, chacune ayant des réservoirs mammifères, des hôtes et des vecteurs spécifiques (Aoun et Bouratbine, 2014). Toutes les espèces anthropophiles de *Leishmania* peuvent être responsables de leishmaniose cutanée, y compris les espèces habituellement viscérotropes comme *L. infantum* (**Fig. 7**). Les signes cliniques de la LC varient selon l'espèce de *Leishmania* qui infecte, cecidit, une seule espèce peut provoquer des lésions avec plusieurs aspects chez la même personne (Richard et Queiroz, 1996). La leishmaniose cutanée présente des lésions cutanées, principalement des ulcères, sur les parties exposées du corps. Elle persiste des mois, voire même des années dans certains cas, la guérison est spontanée mais laisse des cicatrices définitives et des handicaps sévères.

Figure 8 : Aspect de la LC causée par L. infantum.

1.8.3.3. La leishmaniose cutanéomuqueuse (LCM)

C'est la forme la plus grave des LC. Elle détruit partiellement ou totalement les muqueuses du nez, de la bouche et de la gorge. La plupart des cas de LCM se manifestent chez des patients qui ont développé précédemment un épisode de leishmaniose cutanée (OMS, 2016).

1.8.4. Répartition géographique

1.8.4.1. Dans le monde

La leishmaniose est présente dans les 5 continents et dans 98 pays. Elle est endémique dans 88 pays (**Fig. 9**) avec plus de 350 millions de personnes à risque et 12 millions de personnes infectées. L'incidence est estimée à 2 millions de nouveaux cas par an. Parmi ces 88 pays, 22 appartiennent au « nouveau monde » et 66 à « l'ancien monde ». Il y a 200 000 à 400 000 nouveaux cas de LV par an, avec 20 000 à 40 000 décès et 700 000 à 1 200 000 nouveaux cas de LC par an (OMS, 2012). Malgré la distribution géographique étendue, la leishmaniose humaine affecte plus particulièrement les populations vivant dans des conditions précaires en milieu rural ou suburbain.

Figure 9 : Répartition géographique de la leishmaniose dans le monde (Source : OMS, 2016).

1.8.4.2. Au Cameroun

Les premiers cas de leishmaniose rapportés au Cameroun l'ont été dans les années 1930 à Garoua (Hervé, 1937 ; Djibrilla et *al.*, 1979). Lors d'une enquête menée auprès de 120 personnes à Kousseri entre 1987 et 1988, 46 personnes présentaient des symptômes cliniques et 09 d'entre elles ont été confirmées parasitologiquement et/ou sérologiquement (Kaptué et *al.*, 1992). D'autres 58 cas ont été trouvés dans cette région lors d'une enquête en 1994, où 162 personnes ont été trouvées avec des cicatrices de leishmanies et 14 cas avec une leishmaniose active. Lors d'une enquête plus importante menée auprès de 6 503 personnes entre 1996 et 1997, 82 cas actifs et 40 personnes présentant des cicatrices ont été identifiés (Dondji et *al.*, 2001). Entre janvier 2007 et juin 2010, 147 cas ont été rapportés dans les régions de l'Extrême-Nord et du Nord, dont 60% étaient âgés de moins de 15 ans et 52% étaient des hommes (Njih, 2010). Dix-sept décès ont été enregistrés entre janvier 2016 et mars 2017 (publié dans "le journal du Cameroun" par le Ministère de la Santé Publique, 2017). Aujourd'hui, la LC et la LV ont été signalés dans de nombreuses régions du pays, avec 4 cas de LC et 33 cas de LV signalés récemment (OMS, 2020).

Les localités où la LV a été signalée sont : Yaoundé, Kousseri et Gawar. Les localités où des cas de LC ont été signalés sont Mokolo, Logone Birni, Mora, Waza, Gawar, Goulfey, Garoua, Fontem et Kumbo. Mokolo est actuellement considéré comme le principal foyer endémique de la LC tandis que Kousseri est un foyer de la LV (Kaptué et *al.*, 1992 ; Dondji, et *al.*, 2001). Des phlébotomes ont été collectés à Bafia, Yaoundé, Douala, Garoua, Mokolo, Logone Birni et Kousseri comme le montre la figure 9 ci-dessous (Ngouateu et *al.*, 2012). Cependant, au fil du temps, les études sur la leishmaniose se raréfient ; les données sont très rares et peu documentées. Le Cameroun est actuellement classé parmi les pays ne disposant pas de données sur le nombre exact de cas (Gyapong et Boatin, 2016). La figure 9 montre quelques régions et caractéristiques cliniques représentatives de la leishmaniose prises sur le terrain sur des patients du Cameroun.

Figure 10 : Régions du Cameroun avec indication des cas de leishmaniose signalés et/ou où des mouches des sables ont été collectées et photographies montrant les caractéristiques cliniques des lésions de LC sur des patients du Cameroun (Ngouateu et *al.*, 2012).

1.8.5. Le parasite

Les Leishmanies sont des protozoaires flagellés appartenant au genre *Leishmania*, et à la famille des trypanosomatidae, et à l'ordre des Kinetoplastida (Granier, 2013). Elles présentent au cours de leur cycle deux stades évolutifs distincts : le stade promastigote dans le tube digestif du phlébotome et le stade amastigote intracellulaire chez l'hôte vertébré. Elles se multiplient aux deux stades par division binaire simple (Dedet, 2009). Elles sont caractérisées par la présence d'ADN mitochondrial regroupé en une masse unique appelée le kinétoplaste. Il s'agit d'un parasite intracellulaire obligatoire lorsqu'il est présent chez l'hôte vertébré (Granier, 2013).

Figure 11: Image du parasite de la leishmaniose vue au microscope (Granier, 2013).

1.8.6. Le vecteur de la leishmaniose

Les flagellés du genre *Leishmania* sont transmis par des insectes diptères de la famille des Psychodidaes appartenant au genre *Phlébotomus* dans l'ancien monde, et *Lutzomyia* dans le nouveau monde (Ripert, 1996). Les phlébotomes sont les vecteurs exclusifs dans la transmission des leishmanioses. L'adulte mesure 2 mm à 5 mm de longueur. Il est d'aspect « bossu » et à peine coloré. Le corps, les ailes et les pattes sont velues, et les yeux sont nettement visibles. Les phlébotomes vivent dans les pays tempérés et tropicaux.

Les adultes ont une activité crépusculaire et nocturne. Leur vol est silencieux. Seules les femelles sont hématophages. La piqûre est douloureuse car ces insectes dilacèrent les téguments avec leurs pièces buccales pour aspirer le sang (Ripert, 1996). Elles s'alimentent par telmophagie de sang et de lymphe. Ce repas peut s'effectuer de manière interrompue, à la suite de plusieurs piqures, sur le même individu ou sur des individus différents. Il faut noter que la salive inoculée est allergisante (érythème, douleur) et participe activement à l'installation et à la multiplication des leishmanies chez l'hôte vertébré (Marquardt, 1997 ; Monteiro et *al.*, 2005). La longévité de ces insectes est de l'ordre de quelques mois. Un cycle gonotrophique complet dure environ six semaines. La femelle ne prend qu'un seul repas sanguin par cycle (Leger et Depaquit, 1999).

Figure 12: Image du phlebotme papatasi prenant un repas de sang (Ripert, 1996).

1.8.7. Prévention et traitement de la leishmaniose

1.8.7.1. Prévention

Il n'existe pas de vaccin, ni de médicament préventif contre les leishmanioses. Il est donc essentiel de se protéger contre les piqûres des phlébotomes. Dans ses recommandations sanitaires pour les voyageurs de 2011, le Comité des maladies liées aux voyages et des maladies d'importation (CMVI) conseille de porter des vêtements couvrants imprégnés d'insecticide, d'utiliser des répulsifs cutanés durant toute la journée et de dormir la nuit, mais aussi pendant la sieste, sous des moustiquaires à fines mailles et imprégnées d'insecticide. Il est utile de réduire les activités de plein air à partir du coucher du soleil.

1.8.7.2. Traitement de la leishmaniose

Contre la forme viscérale, le principal traitement utilisé est l'Antimoniate de méglumine (Glucantime®). Il est administré par injection inta-musculaire ou intraveineuse. Alors que l'Amphotericine B liposomale (Ambisome®), et la Miltefosine®, sont administrées par voie orale.

La forme cutanée peut guérir spontanément, d'où l'abstention thérapeutique. Le Glucantime® peut être proposé en infiltrations périlésionelles ou en intramusculaire, pour raccourcir l'évolution et minimiser les séquelles. Alors que l'amphotéricine B (Fungizone®) est le premier traitement pour les patients adultes, Méglumine antimoniate (Glucantime®) jusqu'à ce jour reste le principal traitement pédiatrique contre LV en Algérie (Gradoni et *al.*, 1995) et est disponible dans les hôpitaux. Les patients ne répondant pas sont traités avec la miltefosine ou l'amphotéricine B liposomale (Ambisome®) lorsqu'ils sont disponibles. Le coût élevé de ce dernier ne permet pas son utilisation comme médicament de première intention (Gradoni et *al.*, 2008 ; Marty, 2009).

Figure 13 : Structures des principaux médicaments utilisés dans le traitement de la leishmaniose (Gradoni et *al.*, 2008 ; Marty, 2009).

1.9. Généralités sur le paludisme

1.9.1. Epidémiologie du paludisme

Le paludisme ou malaria est une parasitose due à des hématozoaires du genre *Plasmodium* transmise par les piqures de moustiques du genre anophèles (Watts et *al.*, 2010). Elle est la première endémie parasitaire mondiale et constitue un problème de santé publique majeur en zone intertropicale. En 2020, on estimait à 241 millions le nombre de cas de paludisme dans le monde (OMS, 2020) ; la plupart de ces décès survenant dans la région Afrique (92%), loin devant la région Asie du Sud-Est (6%) et la région Méditerranée orientale (2%) de l'OMS. L'immense majorité (99%) des décès sont dus au paludisme à *P. falciparum* (OMS, 2020).

Figure 14 : Mode de transmission du paludisme (OMS, 2020).

Le Cameroun fait parti des pays les plus touchés car selon le rapport mondial commis en 2020 par l'Organisation Mondial de la Santé (OMS), le Cameroun compte parmi les dix pays les plus touchés par le paludisme dans le monde contribuant à hauteur de 3% au pourcentage de la mortalité de toute la planète. Cette pandémie constitue le quart des consultations dans les formations hospitalières. Chez les enfants, le taux de consultation s'élève à 32% et 13% des patients atteints en meurent. L'on a enregistré en 2017, 4000 morts enregistré dans les formations sanitaires et presque autant dans les familles qui gèrent les cas sans aller à l'hôpital (OMS, 2021). Le nombre de cas enregistré dans les formations sanitaires est quasi- stagnant depuis 2011 et avec une tendance à l'augmentation à partir de l'année 2017. Le nombre de décès, après une évolution à la baisse sur plusieurs années, connait une tendance à la hausse depuis 2017 également. Il a représenté 24,3 % des consultations toutes confondues et 12,8 % des décès survenus dans les formations sanitaires du pays (PSNLP, 2019- 2023).

Figure 15 : Zones touchées par le paludisme (OMS, 2021).

Le paludisme représente donc une charge financière énorme pour les populations et par conséquent la maladie constitue un obstacle au développement des pays concernés notamment d'Afrique. Pour toutes ces raisons, la lutte contre le paludisme constitue un des objectifs du millénaire définis par les nations – unies (Watts et *al.*, 2010).

1.9.2. Le parasite et le vecteur

1.9.2.1. Le parasite

Le paludisme est causé par cinq espèces qui affectent l'Homme. Tous ces parasites appartiennent au genre Plasmodium : *P. falciparum*, *P. vivax*, *P. ovale*, *P. malariae*, *P. knowlesi*. Parmi elles, *P. falciparum* et *P. vivax* posent le plus grand défi sanitaire. *P. falciparum* est l'espèce la plus répandue sur le continent Africain et est responsable de la plupart des décès liés au paludisme (Talkmore et *al.*, 2015). Le cycle de *Plasmodium* est complexe et comporte deux étapes essentielles : une phase asexuée chez l'homme et une phase sexuée chez le moustique.

Figure 16 : Cycle évolutif de Plasmodium sp.

1.9.2.2. Le vecteur

Les moustiques constituent la plus importante famille de vecteurs d'agents pathogènes. Parmi eux figurent les anophèles, vecteurs de *Plasmodium sp*, parasite responsable du paludisme. Il existe environ 50 espèces d'anophèles, dont une cinquantaine est capable de transmettre le paludisme à l'homme. Dans la pratique, 20 espèces assurent l'essentiel de la transmission dans le monde (Pages et *al.*, 2007).

1.9.3. Les manifestations cliniques

Les symptômes de l'infection au *P. falciparum* comprennent la fièvre, les frissons, la toux, la transpiration, la diarrhée, les problèmes de respiration et le mal de tête. Les symptômes de l'infection au *P. vivax*, *P. malariae* ou *P. ovale* commencent par un malaise et une fièvre pendant plusieurs jours, suivis de frissons et une élévation de température, souvent accompagnée de maux de tête et de nausée et qui se terminent d'une abondante sudation. Après une période de fièvre et de transpiration est répétée tous les uns à trois jours (Cheesbrough, 1987).

1.9.4. Prévention et traitement du paludisme

1.9.4.1. Prévention du Paludisme

Le paludisme peut être prévenu à travers des gestes qui diminuent le nombre de piqure de moustiques, tels que l'utilisation approprié de *N*, *N*- diethylmethyltoluamide (DEET), agent capable de repousser les moustiques, ainsi que l'usage des moustiquaires imprégnées.

1.9.4.2. Traitement du Paludisme

La première stratégie d'éradication, définie par l'OMS de 1955 à 1969 s'avéra inefficace en dépit des moyens considérables mobilisés et les 10 années qui suivirent furent marquées par l'extension de la résistance des anophèles aux insecticides, par l'apparition de chimiorésistance de *Plasmodium* à la chloroquine, par l'impossibilité de mettre en place un programme d'éradication dans les zones de haute endémie, et même par la résurgence de la maladie dans des zones considérées comme contrôlées.

Actuellement, la lutte contre la maladie repose sur trois principes :

- La lutte contre les piqures de moustiques à travers l'utilisation des moustiquaires imprégnées d'insecticides à longue durée d'action (MILDA)
- La recherche et le développement de vaccins : En 2021, l'OMS a recommandé l'utilisation du vaccin RTS, S/AS01 dans le cadre de la prévention du paludisme à *P*. *falciparum* chez les enfants vivant dans des zones de transmission modérée à élevée. Il est démontré que le vaccin réduit considérablement la morbidité et la mortalité palustre chez le jeune enfant (efficace à 30%). Près de 364 000 enfants ont été couverts par au moins 1 dose de vaccin antipaludique en 2021 grâce aux programmes pilotes d'introduction au Ghana, au Kenya et au Malawi, contre 344 000 en 2020 et 189 000 en 2019 (OMS, 2022). Les résultats de ces programmes pilotes ont confirmé que ce vaccin est sûr et qu'il réduit le paludisme infantile, les hospitalisations et les décès. Au moins

27 pays d'Afrique ont exprimé leur intérêt vis-à-vis de l'adoption du vaccin contre le paludisme dans le cadre de leurs stratégies nationales de lutte contre le paludisme. D'autres pays vont commencer à vacciner en 2023.

- La recherche et le développement de nouvelles molécules antipaludiques.

Un antipaludique est un composé naturel au de synthèse qui, administré par voie orale, parentérale ou rectale, à dose unique ou répétée, permet de détruire le parasite ou de bloquer sa croissance dans le but de prévenir ou de guérir la maladie palustre (Gentilini, 1993). Les antipaludiques peuvent être classés en divers groupes en fonction de leurs structures chimiques, mais également en fonction de leurs modes d'action et de la cible d'action.

L'arsenal thérapeutique de lutte contre le paludisme est composé de quatre principales classes de molécules :

- Les dérivés de quinoléines (aminoquinoleine : chloroquine, primaquine et 4méthanolquinoleines : quinine, méfloquine) ;
- Les anti-folates (sulfadoxine, proguanil) ;
- Les naphtoquinones (atovaquine) ;
- Les combinaisons thérapeutiques à base d'artémisinine (ACT), qui combinent l'artémisinine à un médicament partenaire (arthéméther, artéether, artésunate) représentent le traitement le plus efficace contre le paludisme à *P. falciparum*.

Certains antibiotiques ont également des propriétés antipaludéennes (tétracycline, doxycycline).

La figure ci-après présente les structures des principaux antipaludiques.

PARTIE A : ETUDES PHYTOCHIMIQUES

2.1. Etude phytochimique des feuilles de Tricalysia atherura N. Hallé

L'étude phytochimique des feuilles de *Tricalysia atherura* N. Hallé nous a permis d'isoler onze (11) composés parmi lesquels quatre sont nouvellement décrits dans la littérature. L'élucidation structurale de ces composés a été réalisée grâce à une analyse approfondie des spectres de RMN 1D (¹H, ¹³C) et de RMN 2D (COSY, NOESY, HSQC et HMBC), couplée à la spectrométrie de masse.

2.1.1. Extraction, fractionnement et purification des composés

Nous avons travaillé sur les feuilles de *T. atherura* (500g). Ces dernières ont été sechées, broyées et macérées dans le MeOH (2L) pendant 72h à températurature ambiante. A la fin de chaque macération, les filtrats ont été regroupés et évaporés à sec à l'aide d'un rotavapor de type BUCHI. L'extrait méthanolique obtenu (60 g) a été partitionné successivement au *n*-hexane et à l'acétate d'éthyle. L'extrait à l'acétate d'éthyle (3,86 g) a été fractionnée sur colonne ouverte de silice en phase normale et éluée avec des mélanges *n*-Hex/ AcOEt suivie de CH₂Cl₂/MeOH de polarité croissante. Six principales fractions ont été obtenues (indexées A à F) et regroupées en fonction de leur profil sur chromatographie sur couche mince.

La purification des différentes fractions par différentes méthodes chromatographiques a permis d'obtenir onze composés. Le schéma ci-dessous présente les différentes étapes d'isolement des composés de *T. atherura*.

Schéma 7: Protocole d'extraction et d'isolement des composés des feuilles de Tricalysia atherura.

2.1.2. Caractérisation des composés isolés

2.1.2.1. Détermination structurale du composé TAF1

Le composé **TAF**₁ est obtenu sous forme de poudre blanche amorphe. Il répond positivement au test de Liebermann- Burchard caractéristique des triterpènes (Golembiewska et *al.*, 2013). Son spectre de masse LC-ESI-MS exhibe le pic de l'ion *pseudo*-moléculaire à m/z 575,4066 [M+H]⁺ correspondant à la formule brute C₃₅H₅₈O₆ (calculée pour C₃₅H₅₈O₆: 575,4075) ce qui correspond à 07 degrés d'insaturations.

Figure 18 : Spectre de masse LC-ESI-MS du composé TAF1.

L'analyse de son spectre de RMN ¹H met en évidence sept signaux de méthyles résonnant sous forme de singulet à $\delta_{\rm H}$ 0,98 (*s*, H-23) ; 0,80 (s, H-24) ; 0,94 (*s*, H-25) ; 0,92 (*s*, H-28) ; 1,32 (*s*, H-27) ; 0,78 (*s*, H-26) et 1,18 (*s*, H-29) et un methyl doublet à $\delta_{\rm H}$ 0,91 (*d*, H-30, J = 6,3 Hz) caractéristique d'un triterpène pentacyclique de type ursane (Ibrahim et *al.*, 2012). Dans les champs faibles, on observe le déblindage d'un proton à δ_{H} 5,27 (*s*, H-12) suggérant la présence d'une double liaison oléfinique. On observe également un signal de proton de type oxymethine à δ_{H} 3,03 (1H, *dd*, *J*= 9,5 ; 3,5 Hz ; H-3) caractéristique d'une fonction alcool secondaire (Chen et *al.*, 2010).

Figure 20 : Spectre RMN ¹H élargi (500 MHz, CD₃OD) du composé TAF₁.

L'analyse du spectre de RMN ¹³C découplé proton large bande, nous permet de distinguer les signaux des carbones des huit methyles angulaires à δ_C 28,3 (C-23) ; 17,1 (C-24) ; 16,1 (C-25) ; 16,5 (C-30) ; 16,4 (C-28) ; 24,6 (C-27) ; 17,3 (C-26) et 27,0 (C-29). De plus, on observe la présence de plusieurs carbones quaternaires parmis lesquels le carbone quaternaire de la double liaison à δ_C 140,0 (C-13) et celui hydroxylé à δ_C 73,5 (C-19) qui indique une structure de type ursane (Akbar et Malik, 2002). On observe egalement le signal d'un methine hydroxylé à δ_C 89,4 (C-3).

Figure 21 : Spectre RMN ¹³C (125 MHz, CD₃OD) du composé TAF₁.

L'analyse de son spectre COSY ¹H-¹H permet de déduire les liaisons et sous structures du composé **TAF**₁. En effet, on observe des corrélations entre H-3 (δ_H 1,41) et H-2 (δ_H 1,65) ; H-6 (δ_H 1,41) et H-5 (δ_H 30,79) ; H-11 (δ_H 1,96) et H-9 (δ_H 1,69) ; H-18 (δ_H 2,51) et H-28 (δ_H 0,92) ; H-18 (δ_H 2,51) et H-16 (δ_H 1,5) ; H-20 (δ_H 1,33) et H-30 (δ_H 0,91).

Les corrélations observées sur le spectre HMBC entre les signaux de protons à 0,98 ppm (H-23) ; 0,80 ppm (H-24) et le carbone à 89,4 ppm (C-3) confirme l'emplacement d'une fonction alcool secondaire en C-3. De plus, la corrélation à 1,18 ppm (H-29) et le carbone à 73,5 ppm (C-19) justifie la présence d'un carbone quaternaire hydroxylé en C-19 (Akbar et Malik, 2002). Toutes les valeurs de protons et de carbones ont été attribuées d'après l'analyse des spectres COSY et HSQC du composé TAF₁.

Figure 23 : Spectre HMBC (500 MHz, CD₃OD) du composé TAF₁.

Ainsi, l'analyse de spectres RMN ¹H, ¹³C, COSY, HSQC et HMBC de TAF₁ a permis d'attribuer tous les signaux de l'aglycone, et par comparaison avec les données de la littérature, nous avons identifié celui-ci au **19\alpha- hydroxy-\alpha- amyrine** qui est un triterpène de type ursane (Akbar et Malik, 2002). (Voir **Tableau 7**).

Sous structure 1

L'observation d'un seul groupement oxyméthine résonant à $\delta_{\rm C}$ 89,4 montre que **TAF**₁ est un dérivé mono-osidique du 19 α - hydroxy- α -amyrine ayant une chaîne monosaccharidique attachée en C-3 de l'aglycone au moyen d'une liaison éther.

La nature du sucre de TAF_1 a été déterminée par hydrolyse acide suivie d'une CCM comparative avec un échantillon authentique disponible au laboratoire et par comparaison avec les données de la littérature. Ainsi le D-apiose a été identifié.

L'analyse du spectre de RMN ¹H de TAF₁ permet de distinguer un signal de proton anomérique résonnant à 4,97 (d; J = 2,8 Hz, H-1') et qui corrèle avec le carbone à δ_C 112,5 (C-1') dans le spectre HSQC (**Fig. 24**).

Figure 24 : Spectre HSQC élargi (500 MHz, CD₃OD) montrent le proton anomèrique du composé TAF₁.

Tous les protons du sucre ont été identifiés par une analyse approfondie des spectres COSY et NOESY. Leurs carbones correspondants ont été, quant à eux, attribuées sur la base des corrélations observées dans le spectre HSQC et confirmé par le spectre HMBC. En effet, sur le spectre RMN carbone 13, on note la présence de quatre signaux de carbones osidiques à δ_C 80,1 (C-3') ; 78,1 (C-2') ; 74 (C-5') et 65,5 (C-4') caractéristique d'un furanosyl (Xu et *al.*, 2010).

Figure 25 : Spectre RMN ¹³C élargi (125 MHz, CD₃OD) montrant les carbones osidiques du composé TAF₁.

Les données des expériences de RMN 2D (COSY, NOESY, HSQC, et HMBC) indiquent que le sucre identifié à savoir l'Apiose est sur sa conformation furanosyl. La configuration β a été attribuée au proton anomérique d'Api sur la base de sa constante de couplage J = 2,8 Hz (Silva et Parente, 2004).

Sous structure 2

L'analyse des spectres HMBC et NOESY nous a permis de déterminer le point de jonction du sucre sur l'aglycone ainsi que les liaisons interglycosidiques.

La corrélation observée dans le spectre HMBC entre le signal à δ_H 3,03 (H-3 de l'aglycone) et le carbone à δ_C 112,5 (C-1'Api) suggère que l'Api est liée à la génine en position 3 ; cette liaison est confirmée par la corrélation observée sur le spectre NOESY entre les signaux δ_H 4,97 (H-1' Api) et δ_H 3,03 (H-3 de l'aglycone).

Figure 26 : Spectre HMBC (500 MHz, CD₃OD) du composé TAF₁.

Figure 27 : Spectre NOESY (500 MHz, CD₃OD) du composé TAF₁.

Figure 28 : Corrélations HMBC (a) et NOESY (b) du composé TAF₁.

Sur la base de ces résultats, la structure du composé TAF_1 a été identifié comme étant le **3-***O*- β -(α -**D**-apiofuranosyl-(1-3)) **19** α -hydroxy- α -amyrine qui est un triterpène de type ursane ; composé naturel nouvellement décrit auquel nous avons donné le nom trivial Atheruroside A.

Atheruroside A (146)

Position	$\delta_{\rm H} (J \text{ en Hz})$	δ	HMBC ($H \rightarrow C$)		
Aglycone					
1	1,62 (1H, <i>m</i>)	20.2			
1	0,97 (1H, <i>m</i>)	39,2			
2	1,75 (1H, <i>m</i>)	26,6			
2	1,50 (1H, <i>m</i>)				
3	3,03 (1H, <i>dd</i> J = 9,5 et 3,5 Hz)	89,4	C-1'		
4	-	39,9			
5	0,79 (1H, <i>m</i>)	56,9			
6	1,53 (1H, <i>m</i>)	19,6			
7	1,55 (1H, <i>m</i>)	34,1			
8	-	41,5			
9	1,68 (1H, <i>m</i>)	48,8			
10	-	39,6	C-12		
11	1,95 (1H, <i>m</i>)	24,5			
12	5,27 (1H, <i>m</i>)	129,4	C-18; C-14		
13	-	140,0			
14	-	42,3			
15	1,80 (1H, <i>m</i>)	29,4			
16	1,60 (1H, <i>m</i>)	27,2			
17	-	42,7			
18	2,49 (1H, <i>m</i>)	55,0	C-13; C-19; C-20		
19	-	73,5			
20	1,34 (1H, <i>m</i>)	42,9			
21	1,62 (1H, <i>m</i>)	26,8			
22	1,70 (1H, <i>m</i>)	38,9			
23	0,98 (3H, <i>s</i>)	28,3	C-24; C-5		
24	0,80 (3H, <i>s</i>)	17,1	C-3; C-5		
25	0,94 (3H, <i>s</i>)	16,1			
26	0,78 (3H, <i>s</i>)	17,3			
27	1,32 (3H, <i>s</i>)	24,6	C-13		
28	0,92 (3H, <i>s</i>)	16,4	C-17; C-22		
29	1,18 (3H, <i>s</i>)	27,0	C-19; C-18		
30	0,91 (3H, <i>d</i> ; <i>J</i> = 6,3 Hz)	16,5	C-19		
Sucre					
1'	4,97 (1H, <i>d</i> , <i>J</i> = 2,8 Hz)	112,5	C-3		
2'	3,83 (1H, <i>m</i>)	78,1	C-1'; C-3'		
3'	-	80,1			
4'	3,98-3,71 (1H, <i>d</i> , <i>J</i> = 8,0 Hz)	74,4	C-3'; C-5'		
5'	3,56 (2H, <i>d</i> , <i>J</i> = 5,5 Hz)	65,5	C-3'		

2.1.2.2. Détermination structurale du composé TAF₂

Le composé **TAF**₂ est obtenu sous forme de poudre blanche amorphe. Il répond positivement au test de Liebermann- Burchard caractéristique des triterpènes (Golembiewska et *al.*, 2013). Son spectre de masse LC-ESI-MS exhibe le pic de l'ion *pseudo*- moléculaire à m/z 575,4068 [M+H]⁺ correspondant à la formule brute C₃₅H₅₈O₆ (calculée pour C₃₅H₅₈O₆: 575,4075) ce qui correspond à 07 degrés d'insaturations.

La comparaison des valeurs des déplacements chimiques observées pour l'aglycone de **TAF**₁ avec celles obtenues dans le composé **TAF**₂ montrent que ces deux composés partagent le même aglycone, à savoir **19** α - hydroxy- α - amyrine (Akbar et Malik, 2002).

Une analyse approfondie des expériences de RMN 1D et 2D de TAF_2 nous a permis d'attribuer tous les signaux des protons et des carbones de l'aglycone qui est un squelette de type ursane (Tableau 11).

Sous structure 1

La nature du sucre a été déterminée par hydrolyse acide suivie d'une CCM comparative avec un échantillon authentique disponible au laboratoire et par comparaison avec les données de la littérature. Ainsi le D-xylose a été identifié.

L'analyse du spectre de RMN ¹H de **TAF**₂ permet de distinguer un signal de proton anomérique résonnant à $\delta_{\rm H}$ 4,27 (*d*; *J* = 2,8 Hz, H-1'), et qui corrèle sur le spectre HSQC avec le carbone à $\delta_{\rm C}$ 107,1 (C-1'), ce qui prouve la présence d'un sucre (**Fig. 30**).

Figure 30 : Spectre HSQC élargi (500 MHz, CD₃OD) montrant le signal de l'anomère du composé TAF₂.

Tous les protons du sucre ont été identifiés par une analyse approfondie des spectres COSY, HSQC, et HMBC. Leurs carbones correspondants ont été, quant à eux, attribués sur la base des corrélations observées sur le spectre HSQC et confirmé par le spectre HMBC. En effet, l'analyse de son spectre de RMN ¹H permet de distinguer quatre signaux de protons osidiques résonnant à $\delta_{\rm H}$ 3,56 (H-2') ; 3,51 (H-3') ; 3,79 (H-4') ; 3,81-3,50 (H-5'a et H-5'b) ; et qui corrèlent sur le spectre HSQC avec les carbones à $\delta_{\rm C}$ 72,8 (C-2') ; 74,3 (C-3') ; 69,3 (C-4') ; 66,3 (C-5') (Evina et *al.*, 2017).

Figure 31 : Spectre HSQC élargi (500 MHz, CD₃OD) montrant les signaux osidiques du composé TAF₂.

L'analyse de son spectre COSY ¹H-¹H présente des corrélations entre H-12 (δ_H 5,27) et H-11 (δ_H 1,93) ; H-1' (δ_H 4,27) et H-3 (δ_H 3,12) ; H-3 (δ_H 3,12) et H-2 (δ_H 1,68) ; H-9 (δ_H 1,67) et H-11 (δ_H 1,93).

Figure 32 : Spectre COSY élargi (500 MHz, CD₃OD) du composé TAF₂.

La configuration β a été attribuée au proton anomérique de Xyl sur la base de sa constante de couplage *J*=8,0 Hz (Evina et *al.*, 2017).

L'exploitation de ces corrélations (COSY) combinées à celles observées sur le spectre HSQC a permis de déduire la sous structure suivante :

Sous structure 2

L'analyse des spectres HMBC et NOESY nous a permis de déterminer le point de jonction du sucre sur l'aglycone.

L'observation dans le spectre RMN ¹³C d'un signal de carbone à δ_C 90,7 (C-3) indique que **TAF**₂ est un dérivé mono-osidique du 19 α - hydroxy- α - amyrine ayant une chaîne monosaccharidique attachée en C-3 de l'aglycone au moyen d'une liaison éther.

La corrélation observée dans le spectre HMBC entre le signal à $\delta_{\rm H}$ 4,27 (H-1' de Xyl) et le carbone à δ_C 90,7 (C-3 de l'aglycone) suggère que le Xyl est lié à la génine en position 3 ; cette liaison est confirmée par la corrélation observée dans le spectre NOESY entre les signaux à $\delta_{\rm H}$ 4,27 (H-1' Xyl) et \Box_H 3,12 (H-3 de l'aglycone).

a)

Figure 34 : Spectre NOESY(b) (500 MHz, CD₃OD) du composé TAF₂.

Figure 35 : Corrélations HMBC (a) et NOESY (b) du composé TAF₂.

Au vu des résultats obtenus, la structure du composé TAF_2 a été élucidée à 3-O- β -(D-xylofuranosyl-(1 \rightarrow 3) - 19 α - hydroxy- α - amyrine qui est un triterpène de type ursane ; composé naturel nouvellement décrit, auquel nous avons donné le nom trivial Atheruroside B.

Atheruroside B (147)

Tableau VIII : Données RMN (¹H, 500 MHz et ¹³C, 125 MHz, CD₃OD) de TAF2.Position δ_{T} (Lop Hz) δ_{T} (Lop Hz)

Position	$\partial_{\rm H} (J {\rm en} {\rm Hz})$	øс	HMBC ($H \rightarrow C$)	
Aglycone				
1	1,76 (1H, <i>m</i>)	38,1		
	1,60 (1H, <i>m</i>)			
2	1,81 (1H, m)	26.9		
	1,68 (1H, <i>m</i>)	20,8		
3	3,12 (1H, <i>m</i>)	90,7	C-1'	
4	-	40,1		
5	0,78 (1H, <i>m</i>)	57,1		
6	1,52 (1H, <i>m</i>)	19,3		
7	1,51 (1H, <i>m</i>)	33,6		
8	-	41,3		
9	1,67 (1H, <i>m</i>)	48,7		
10	-	39,7	C-12	
11	1,93 (1H, <i>m</i>)	24,6		
12	5,27 (1H, <i>m</i>)	129,3		
13	-	140,2		
14	-	42,3		
15	1,00 (1H, <i>m</i>)	29,5		
16	1,83 (1H, <i>m</i>)	26.0		
	1,32 (1H, <i>m</i>)	20,9		
17	-	42,9		
18	2,51 (1H, <i>m</i>)	55,1		
19	-	73,7		
20	1,33 (1H, <i>m</i>)	42,9		
21	1,31 (1H, <i>m</i>)	28,2		
22	2,17 (1H, <i>m</i>)	35,8		
	2,29 (1H, <i>m</i>)			
23	0,98 (3H, <i>s</i>)	28,3	C-24; C-5	
24	0,80 (3H, <i>s</i>)	17,1	C-3; C-5	
25	0,94 (3H, <i>s</i>)	16,1		
26	0,78 (3H, <i>s</i>)	17,3		
27	1,32 (3H, <i>s</i>)	24,6	C-13	
28	0,92 (3H, <i>s</i>)	16,4	C-17; C-22	
29	1,18 (3H, <i>s</i>)	27,0	C-19; C-18	
30	0,91 (3H, <i>d</i> , <i>J</i> = 6,3 Hz)	16,5		
Sucre				
1'	4,27 (1H, <i>d</i> , <i>J</i> = 8,0 Hz)	107,1	C-3	
2'	3,56 (1H, <i>m</i>)	72,8		
3'	3,51 (1H, <i>m</i>)	74,3		
4'	3,79 (1H, <i>m</i>)	69,3		
5'	3,81-3,50 (1H, <i>m</i>)	66,3	C-3'; C-4'	

2.1.2.3. Détermination structurale du composé TAF₃

Le composé **TAF**³ est obtenu sous la forme d'une poudre blanche amorphe. Il répond positivement au test de Dragendorff, caractéristique des alcaloides. Son spectre IR montre deux absorptions à 3385 et 1678 cm⁻¹ caractéristique des fonctions Hydroxyle et carbonyle respectivement. L'analyse de son spectre UV présente les les bandes d'absorptions aux longueurs d'ondes λ_{max} 225 et 290 nm indicateur d'un chromophore indolique (Brown et Charalambides, 1974). L'analyse de ses spectres de masse HR-ESI-MS (**Fig. 35**) et ESI-SM (**Fig. 36**), en mode positif montre le pic de l'ion *pseudo* moléculaire à *m/z* 369,1805 [M+H]⁺ correspondant à la formule brute C₂₁H₂₄N₂O₄, [calculée pour C₂₁H₂₄N₂O₄ : 369,1809) ce qui correspond à 11 degrés d'insaturations.

Figure 36 : Spectre de masse HR-ESI-MS du composé TAF₃.

Figure 37 : Spectre de masse ESI-MS du composé TAF₃.

Le spectre RMN ¹H (**Fig. 38**) de **TAF**₃ indique la présence de quatre signaux de protons aromatique correspondant à un noyau indolique disubstitué à δ_H 7,36 (1H, d, J = 8,0 Hz, H-9) ; 6,96 (1H, dd, J = 8,0 ; 7,8 Hz, H-10) ; 7,04 (1H, dd, J = 8,0 ; 7,6 Hz, H-11) ; 7,27 (1H, d, J = 8,5 Hz, H-12).

Figure 38 : Spectre RMN ¹H global (500 MHz, CD₃OD) du composé TAF₃.

Figure 39 : Spectre RMN ¹H élargi (500 MHz, CD₃OD) du composé TAF₃.

Figure 40 : Spectre RMN ¹H élargi (500 MHz, CD₃OD) du composé TAF₃.

L'analyse du spectre de RMN ¹³C découplé proton large bande, nous permet de distinguer les signaux des carbones quaternaires sp² à $\delta_{\rm C}$ 137,6 (C-2) ; 104,7 (C-7) ; 127,8 (C-8) et 138,3 (C-13) ; quatre methines sp² à $\delta_{\rm C}$ 118,4 (C-9) ; 119,7 (C-10) ; 122,1 (C-11) et 111,9 (C-12) caractéristique d'un alcaloïde indolique. On observe également le signal d'un *N*- méthyl à $\delta_{\rm C}$ 51,6.

Figure 41 : Spectre de RMN 13 C (125 MHz, CD₃OD) de TAF₃.

L'analyse des données des spectres RMN 1 H et 13 C de **TAF**₃ a permis de ressortir la sous structure suivante :

Sous structure 1

L'analyse de son spectre COSY ¹H-¹H permet de déduire les liaisons et sous structures du composé **TAF3**. En effet, on observe des corrélations entre H-5 (δ_H 3,4) et H-6 (δ_H 3,09) ; H-3 (δ_H 4,04) et H-14 (δ_H 1,95 et 2,14) ; H-18 (δ_H 3,76) et H-19 (δ_H 1,82 et 1,98) ; H-15 (δ_H 2,22) et H-14 (δ_H 1,95 et 2,14) ; H-17 (δ_H 2,88) et H-22 (δ_H 3,5) ; enfin, entre H-17 (δ_H 2,88) et H-15 (δ_H 2,22).

Figure 42 : Spectre COSY (500 MHz, CD₃OD) du composé TAF₃.

Sur son spectre HSQC, on observe les corrélations entre H-5 (δ_H 2,22) et C-5 (δ_C 61,2) ; H-6 (δ_H 3,00- 3,09) et C-6 (δ_C 24,6) ; H-3 (δ_H 4,04) et C-3 (δ_C 49,2) ; H-15 (δ_H 2,22) et C-15 (δ_C 38,6) ; H-17 (δ_H 2,88) et C-17 (δ_C 63,2) ; H-18 (δ_H 3,76) et C-18 (δ_C 58,3) ; H-19 (δ_H 1,82- 1,98) et C-19 (δ_C 38,1) enfin entre H-22 (δ_H 23,5- 3,67) et C-22 (δ_C 76,3).

L'exploitation des corrélations COSY combinées à celles observées sur le spectre HSQC a permis de déduire les sous structures suivantes :

Sous structure 2 et 3

L'analyse des spectres HMBC et NOESY a permis d'établir les liaisons entre les sous structures sus citées. En effet, sur le spectre HMBC (**Fig. 44**), on observe des corrélations entre les protons à δ_H 2,22 (H-15) ; 3,41 (H-5) et le carbone à δ_C 172,8 ; entre les protons à δ_H 3,76 (H-18) ; 2,85 (H-17) ; 2,22 (H-15) ; 2,14 (H-14) ; 1,97 (H-19 β) et 1,82 (H-19 α) et le carbone à δ_C 84,1 (C-20). De plus, un exocycle est observé sur le composé **TAF3** dont la position est justifiée sur le spectre HMBC entre les protons à δ_H 6,67 et 3,75 (H-22 α et H-22 β) et les carbones à δ_C 84,1 (C-20) ; 53,9 (C-16) et 38,6 (C-15) ; entre le proton à δ_H 2,22 (H-15) et le carbone à δ_C 84,1 (C-20) et 38,1 (C-19). Ce qui a permis de confirmer les caractéristiques structurales et les groupes fonctionnels (C(16)-CH₂OH ; C(19)-CH₂OH et C(20)-CO-), indiquant que **TAF**₃ est apparenté au *N*-méthylakuammidine (Noguera et *al.*, 2014). Les principales différences ont été observées sur le fragment oxyethylène et oxyméthylène en C-20 et C-22 respectivement au lieu d'une double liaison entre C-18 et C-19 et d'une fonction carboxyle en C-22 respectivement, dans le *N*-méthylakuammidine.

Figure 44 : Spectre HMBC (500 MHz, CD₃OD) du composé TAF₃.

Schéma 8 : Connexion des sous structures de TAF₃ sur la base des corrélations HMBC.

Sur la base des analyses ci-dessus, le composé **TAF**³ est déduit comme étant un zwitterion, justifié par les informations sur les atomes de carbone décalés vers le haut (C-3 et C-5 $\delta_{\rm C}$: 49,2 et 61,2) et voisins des charges azotées de **TAF**³ par rapport à celle de la *N*-méthylakuammidine (C-3 et C-5 $\delta_{\rm C}$: 60,7 et 66,3 décalés vers le bas due à l'effet attracteur de l'atome d'azote positif en N-4).

Structure du N-méthylakuammidine (Nogueira et al., 2014)

La configuration relative de **TAF3** a été déduite des corrélations observées sur les spectres COSY et NOESY qui sont similaires au fragment polycyclique de la sarpagine (Battersky et Yeowell, 1964) apparenté dans divers dérivés naturels, en particulier la macusine C (Battersky et Yeowell, 1964). Les corrélations observées entre H-3 et H-5/ N-CH₃ indiquent que les protons H-3 et H-5/ N-CH₃ ont une α - orientation, tandis que les corrélations observées entre H-17 et H-14 β indique que le proton du CH₂-17 possède une β - orientation. On observe également une α - orientation sur le proton H-15, justifiée par la corrélation sur le spectre NOESY entre H-15 et H-19 α .

Figure 45 : Spectres NOESY (500 MHz, CD₃OD) du composé TAF₃.

Figure 46 : Corrélation HMBC (a) et NOESY (b) du composé TAF₃.

Au vu des résultats obtenus, la structure du composé **TAF**³ a été élucidé à l'**Atheruramine** qui est un alcaloïde indolique, nouveau composé naturel.

Atheruramine (148)

Position	$\delta_H(J ext{ en Hz})$	δ_C	HMBC $(H \rightarrow C)$
2	-	137,6	
3	4,04 (1H, <i>dd</i> , <i>J</i> = 9,0 ; 4,2 Hz)	49,2	C-2 ; C-14 ; C-15
5	3,40 (1H, <i>dd</i> , <i>J</i> = 7,5 ; 4,0 Hz)	61,2	C-7 ; C-3 ; C-16 ; C- 22
6α	3,00 (1H, <i>dd</i> , <i>J</i> = 16,0 ; 5,0 Hz)		
6β	3,09 (1H, <i>dd</i> , <i>J</i> = 16,5 ; 1,5 Hz)	24,6	
7	-	104,7	
8	-	127,8	
9	7,36 (1H, <i>d</i> , <i>J</i> = 8,0 Hz)	118,4	C-7
10	6,96 (1H, <i>dd</i> , <i>J</i> = 8,0, 7,8 Hz)	119,7	C-12 ; C-8
11	7,04 (1H, <i>dd</i> , <i>J</i> = 8,0, 7,6 Hz)	122,1	C-13 ; C-9
12	7,27 (1H, <i>d</i> , <i>J</i> = 8,5 Hz)	111,9	
13	-	138,3	
14α	1,95 (1H, <i>m</i>)		
14β	2,14 (1H, <i>ddd</i> , <i>J</i> = 18,5 ; 7.0, 5,0 Hz)	23,1	C-14 ; C-20
15	2,22 (1H, <i>dd</i> , <i>J</i> = 7,0 ; 4,0 Hz)	38,6	C-20 ; C-19 ; C-21
16	-	53,9	
17	2,88 (2H, <i>d</i> , <i>J</i> = 14,0 Hz)	63,2	C-5; C-16
18	3,76 (2H, <i>m</i>)	58,3	
19α	1.82 (1H, <i>ddd</i> , <i>J</i> = 14,0 ; 7,0 ; 6,8 Hz)	38.1	~
19β	1,98 (1H, <i>m</i>)	7	C-18 ; C-20
20	-	84,1	
21	-	172,8	
22α	3,67 (1H, d , $J = 14,0$ Hz)	76.2	
22β	3, 5 (1H, <i>m</i>)	/0,5	
N–Me	3,07 (3H, <i>s</i>)	51,6	C-5 ; C-21

Tableau IX : Données de RMN (¹H, 500 MHz et ¹³C, 125 MHz, CD₃OD,) du composé TAF₃.

2.1.2.4. Détermination structurale du composé TAF4

Le composé **TAF**₄ est isolé sous forme de solide jaune soluble dans le méthanol et possède un point de fusion compris entre 236–238°C. Il répond positivement au test de Molish et au Chlorure ferrique (FeCl₃), caractéristique des sucres et des phénols respectivement. Son spectre IR montre des bandes d'absorption à 3380 (-OH), 2920 (C-H), 1562 (C-H noyau aromatique), 1455 (C-H), 1205 et 1032 (C-O large) cm⁻¹. L'analyse de son spectre UV présente les bandes d'absorptions aux longueurs d'ondes λ_{max} 226, 251 et 260 nm indicateur d'un chromophore benzoine (Lim et *al.*, 2021). Sa formule moléculaire C₂₆H₃₄O₁₄ est obtenue grâce à l'analyse de son spectre de masse LC-ESI-MS en mode positif sur lequel on observe le pic de l'ion *pseudo*-moleculaire [M+H]⁺ à *m/z* 571,2086 (calculée pour C₂₆H₃₄O₁₄ : 571,2084) et possédant 10 degrés d'insaturation.

Figure 47 : Spectre de masse LC-ESI-MS du composé TAF4.

Le spectre RMN ¹H (**Fig. 47**) de **TAF**₄ présente dans les champs faibles les signaux de deux protons méthinique à δ_H 5,95 (1H, *brs*, H-1) et 5,81 (1H, *brs*, H-2) caractéristiques de groupements oxymethines très proches, indicateur d'une molécule symétrique. Sur ce même spectre, on observe les signaux de 08 protons aromatique apparaissent à δ_H 6,85 (1H, overl, H–4')/6,83 (1H, m, H–4''), 6,99 (2H, m, H–2'/ H–2''), 7,02 (2H, m, H–6'/H–6'') et 7,25 (1H, *dd*, J=8,0; 7,5 Hz, H–5'')/7,24 (1H, *dd*, J=8,0; 7,5 Hz, H–5') et qui sont assignables à deux systèmes de deux noyaux benzénique di-substitués (Lim et *al.*, 2021).

Son spectre RMN ¹³C (**Fig. 48**) présente deux carbones oxygénés à δ_C 68,4 et 68,2 (C-1 ; C-2) caractéristiques de deux fonctions alcools secondaires et indicateur d'une molécule symétrique ; quatre carbones quaternaires sur le cycle benzénique dont deux portent un atome d'oxygène à 159,3 (C–3' et C-3'').

Figure 49 : Spectre de RMN ¹³C global (125 MHz, CD₃OD du composé TAF₄).

L'analyse de son spectre COSY ¹H-¹H présente des corrélations entre H-6'' (δ_H 7,02) et H-2 (δ_H 5,82) ; H-2' (δ_H 6,99) et H-1 (δ_H 5,95) ; H-5'' (δ_H 7,25) et H-4'' (δ_H 6,83) ; H-5'' (δ_H 7,25) et H-6'' (δ_H 7,02)

Figure 51: Spectre de COSY élargi (500 MHz, CD₃OD du composé TAF₄).

L'analyse des spectres de RMN ¹H, ¹³C, HSQC et COSY de **TAF**₄ a permis d'attribuer toutes les valeurs des déplacements chimiques de notre aglycone qui est un dérivé d'hydrobenzoine. Ces données sont en accord avec celles décrites dans la littérature (Lim et *al.*, 2021).

L'observation des signaux résonant à δ_{C} 68,4 (C-1) et 68,2 (C-2) montre que **TAF**₄ est un dérivé 1.2- bi-osidique d'hydrobenzoine ayant des sucres attachés en C-1 et C-2 de l'aglycone au moyen des liaisons éther.

La nature des sucres a été déterminée par hydrolyse acide suivie d'une CCM comparative et d'une analyse par chromatographie en phase liquide et par comparaison avec les sucres de

référence du laboratoire. Ainsi le D-glucose (tr = 19,2 min) a été identifié.

L'analyse du spectre de RMN ¹H de **TAF**₄ permet de distinguer deux signaux de protons anomériques résonnant à δ_H 4,64 (1H, d, J = 7,5 Hz, H-1''') et 4,23 (1H, d, J = 7,5 Hz, H-1''''), et qui corrèlent sur le spectre HSQC avec les carbones à δ_C 102,0 (C-1''') et 101,8 (C-1'''') ppm, ce qui prouve la présence deux sucres (**Fig. 51**).

Figure 52 : Spectre HSQC élargi (500 MHz, CD₃OD) montrent les signaux des protons anomiques du composé TAF₄.

L'analyse de son spectre de RMN ¹H permet de distinguer huit signaux de protons osidiques résonnant à δ_H 3,26 (H-2"') ; 3,39 (H-3"') ; 3,25 (H-4"') ; 3,24 (H-5"') ; et 3,56 -3,51 (H-6"'') pour Glc I et 3,64 (H-2"'') ; 3,23 (H-2"'') ; 3,28 (H-3"'') ; 3,27(H-5"'') et 3,91 -3,67 (H-6"'') pour Glc II qui corrèlent sur le spectre HSQC avec les carbones à δ_C 73,8 (C-2"'') ; 78,3 (C-3"'') ; 71,4 (C-4"'') ; 78,1 (C-5"'') et 62,8 (C-6"''), pour Glc I et 74,6 (C-2"'') ; 78,0 (C-3"') ; 71,4 (C-4"'') ; 78,3 (C-5"'') et 64,4 (C-6"') pour Glc II. Leurs valeurs très proches semblent démontrer que cette molécule serait symétrique (*érythro*). Toutefois, leurs nombres indiqueraient une non symétrie, par conséquent, la possible rotation entre les carbones C-1 et C-2 ne ramènerait pas les substituants identiques vis-à-vis ce qui nous a orienté à donner à notre molécule une configuration *thréo* (Li et *al.*, 2012a ;2012b).

Figure 53 : Spectre HSQC élargi (500 MHz, CD₃OD) partie osidique du composé TAF₄.

La configuration β a été attribuée aux protons anomériques des deux Glc sur la base de leurs constantes de couplage ${}^{3}J_{\text{H-1, H-3}}$ égale à 7,5 Hz. L'ensemble de ces données a permis d'identifier 2 groupements β -D-glucopyranosyle à δ_{H} 6,64 (d, J = 7,5 Hz) pour Glc I-1 et à δ_{H} 4,23 (d, J = 7,5 Hz) pour Glc II-1.

Sous structure 2

L'analyse des spectres HMBC et NOESY nous a permis de déterminer les points de jonction des sucres sur l'aglycone.

L'observation dans le spectre RMN ¹³C de deux signaux distincts de carbone à δ_C 68,4 (C-1) et 68,2 (C-2) indique que **TAF**₄ ne possède pas un plan de symétrie mais est un dérivé bi-osidique d'hydrobenzoine ayant des sucres attachés en C-1 et C-2 de l'aglycone au moyen d'une liaison éther (Li et *al.*, 2012a ;2012b).

Sur son spectre HMBC, on observe une corrélation entre le proton d'un oxymethine substitué à δ_H 5,95 (H-1) et le carbone d'un autre oxymethine substitué à δ_C 68,2 (C-2) et avec les carbones aromatiques C-1', C-2' et C-6'. On observe d'autres correlations entre le proton du second oxyméthine substitué à δ_H 5,81 (H-2) et le carbone du premier oxymethine

substitué à δ_C 68,1 (C-1) et avec les carbones aromatiques C-1", C-2" et C-6". Par la suite, les correlations HMBC observées entre le signal d'un proton anomérique à δ_H 4,64 (H-1" Glc-I) et le carbone à δ_C 68,4 (C-1), entre le proton à δ_H 4,23 (H-1"" Glc-II) et le carbone à δ_C 68,2 (C-2) indiquent la connexion de ces sucres avec les carbones hydroxylés vicinaux C-1 et C-2.

Figure 54 : Spectre HMBC (500 MHz, CD₃OD) du composé TAF₄ montrant les points de liaison des sucres.

Figure 55 : Spectre NOESY (500 MHz, CD₃OD) du composé TAF₄ montrant les points de liaison des sucres.

Figure 56 : Corrélations HMBC (a) et NOESY (b) du composé TAF₄.

La comparaison avec les données de la littérature des dérivés acyclique des diols vicinaux ((7'R, 8'R) *-thréo*-strebluslignanol-2-*O*- β -D-glucopyranoside et 1-(4'- methoxyphenyl) -1,2-propanediol (Li et *al.*, 2012a ; 2012b) permet de conclure que le pouvoir rotatoire [α]_D= 39,7⁰ (c 1,0 ; MeOH) peut etre assigné à la configuration (R, R).

Au vu des résultats obtenus, la structure du composé **TAF**⁴ a été élucidée au (1R*, 2R*) *-thréo*-1,2-*O*, *O*-di-(β -D-glucopyranosyl) -1,2-bis (3-hydroxyphenyl) éthane, nouveau composé naturel auquel nous avons donné le nom trivial de **Tricalydioloside**.

(149)

	TAF4 (CD3OD)		Hydrobenzoine symétrique			
Desition	Sr (Lon Hz)	\$ -		$\left(U_{3} U$) 8-	
	он (J ен нz)	<i>OC</i>	$\frac{\mathbf{\Pi}\mathbf{W}\mathbf{D}\mathbf{C} (\mathbf{\Pi} \rightarrow \mathbf{C})}{\mathbf{C} 1^{\dagger} \mathbf{C} 2 \mathbf{C} 1^{\dagger} \mathbf{U}^{\dagger}}$	$\frac{\partial \mathbf{H} (\mathbf{J} \mathbf{E} \mathbf{I} \mathbf{H} \mathbf{Z})}{4.84 (1 \mathbf{H} \mathbf{z})}$	0C	
1	5,95 (1H, s)	68,4	C-1; C-2; C-1	4,84 (1H, s)	78,2	
<u> </u>	5,81 (1H, <i>s</i>)	08,2	C-1; C-1	4,84 (1H, <i>S)</i>	78,2 120,9	
1 [*]	-	130,3	C 41	-	139,8	
2	6,99 (IH, <i>m</i>)	115,/	C-4	7,27 (<i>d</i> , $J=2,3$)	127,2	
3	-	189,3		7,31(t, J=7,45)	128,2	
4'	6,85 (1H, m)	118,0	C-2*	/,3/ m	128,4	
5'	7,24 (1H, <i>dd</i> , <i>J</i> =8,0; 7,5)	131,0	C-3'	7,31 (<i>t</i> , <i>J</i> =7,45)	128,2	
6'	7,02 (1H, <i>m</i>)	119,9	C-4'	7,27 (<i>d</i> , <i>J</i> = 2,3)	127,2	
1"	-	136,0				
2"	6,99 (1H, <i>m</i>)	115,5	C-6″			
3"	-	159,3	C-5"; C-1"			
4″	6,83 (1H, <i>m</i>)	117,6				
5″	7,25 (1H, <i>dd</i> , <i>J</i> =8,0 ; 7,5)	131,1	C-1"; C-3"			
6"	7,02 (1H, <i>m</i>)	119,6				
		Sucr	e en C-1			
1‴	4,64 (1H, <i>d</i> , <i>J</i> =7,5)	102,0	C-1			
2'''	3,26 (1H, <i>m</i>)	74,6				
3‴	3,39 (1H, <i>m</i>)	78,0				
4′′′	3,25 (1H, <i>m</i>)	71,4				
5‴	3,24 (1H, <i>m</i>)	78,3				
	3,56 (1H, <i>dd</i> , <i>J</i> =11,5;					
6'''	5,6)	64 4				
0	3,51 (1H, <i>dd</i> , <i>J</i> =11,0;	04,4				
	7,1)					
	Sucre en C-2					
1''''	4,23 (1H, <i>d</i> , <i>J</i> =7,5)	101,8	C-2			
2''''	3,64 (1H, <i>m</i>)	73,8				
3''''	3,23 (1H, <i>m</i>)	78,3				
4''''	3,28 (1H, <i>m</i>)	71,4				
5''''	3,27 (1H, <i>m</i>)	78,1				
	3,91(1H, <i>dd</i> , <i>J</i> =12,0;					
6''''	2,1 Hz)	62,8				
	3,67 (1H, <i>m</i>)					

Tableau X : Données de RMN (¹H 500 MHz et ¹³C, 125 MHz) de TAF₄ comparées à l'hydrobenzoïne symétrique (Lim et *al.*, 2021).

2.1.2.5. Identification du composé TAF5

Le composé **TAF**⁵ est obtenu sous forme de solide blanc et possède un point de fusion compris entre 180 et 182°C. Il répond positivement au test de Dragendorff, caractéristique des alcaloïdes. Son spectre IR montre l'absorption de la liaison hydrogène - OH/NH (3400 cm⁻¹), α , β -insaturé C=O (1639 cm⁻¹), et aromatiques (1554 cm⁻¹) (Nascinento et *al.*, 2006). L'analyse de son spectre UV présente les bandes d'absorptions aux longueurs d'ondes λ_{max} 225 et 290 nm indicateur d'un chromophore indolique (Brown et Charalambides, 1974). Son spectre de masse HR-ESI, en mode négatif, présente le pic de l'ion *pseudo*- moléculaire à *m*/*z* = 515,3717 [M-H]⁻ correspondant à la formule moléculaire C₂₆H₃₂N₂O₉ et renfermant dix degrés d'insaturation.

Figure 57 : Spectre de masse HR-ESI du composé TAF5.

Le spectre RMN ¹H présente des protons aromatiques vicinaux à $\delta_H = 7,46$ (1H, *d*, *J* = 7,8 Hz, H-9) ; 7,05 (1H, *dt* ; *J* = 7,8 ; 0,9 Hz, H-10) ; 7,12 (1H, *dt*, *J* = 7,8 ; 0,9 Hz, H-11) et 7,32 (*d*, *J* = 7,8 Hz, H-12), un large singulet à $\delta_H = 4,54$ (1H, H-3), et trois multiplets à $\delta_H = 3,02$ (2H, H-6); 3,40 (1H, H-5) et 3,60 (1H, H-5'). On observe également sur ce même spectre, un proton anomérique à $\delta_H 4,76$ (1H, *d*, *J* = 7,8 Hz, H-1') ; et les protons du sucre, notamment le glucose à $\delta_H 3,20$ (1H, *m*, H-2') ; $\delta_H 3,40$ (1H, *d*, *m*, H-3'); $\delta_H 3,24$ (1H, *m*, H-4') ; $\delta_H 3,36$ (1H, *m*, H-5') ; $\delta_H 3,66$ (1H, *m*, H-6') et $\delta_H 3,96$ (1H, *brd*, *J* = 10,5 Hz, H-1') (Nascinento et *al.*, 2006).

Figure 58 : Spectre de RMN ¹H (500 MHz, CD₃OD) du composé TAF₅.

Le spectre RMN ¹³C montre des pics correspondant à quatre carbones quaternaires sp² à $\delta_C = 106,0$ (C-7); 127,5 (C-8) ; 129,5 (C-2) et 138,3 (C-13) ; quatre carbones tertiaires sp² à $\delta_C = 112,3$ (C-12); 119,0 (C-9); 120,6 (C-10) et 123,3 (C-11); ainsi qu'un carbone tertiaire sp³ à $\delta_C = 59,5$ (C-3) et deux carbones secondaires sp³ à $\delta_C = 17,3$ (C-6) et 51,0 (C-5) (Nascinento et *al.*, 2006).

Au vu de tout ce qui précède et par comparaison avec les données de la littérature, le composé **TAF**⁵ a été élucidé comme étant **l'acide strictosidinique**, précédemment isolé des racines et feuilles de *Palicourea Coriaceae* (Nascinento et *al.*, 2006).

Acide strictosidinique (150)

	TAF5 (CD3OD)		Acide strictosidinique (CD ₃ OD)	
Position	$\delta_{\rm H} (J \text{ en Hz})$	δc	$\delta_{\rm H}(J \text{ en Hz})$	δc
1	-	-	-	
2	-	127,9	-	129,5
3	4,51 (brs, 1H)	60,4	4,54 (brs, 1H)	59,5
4	-	-	-	-
5	3,42 (<i>m</i> , 1H) 3,60 (<i>m</i> , 1H)	49,7	3,40 (<i>m</i> , 1H) 3,60 (<i>m</i> , 1H)	51,0
6	3,03 (<i>m</i> , 2H)	16,9	3,02 (<i>m</i> , 2H)	17,3
7	-	103,0	-	106,0
8	-	127,6	-	127,5
9	7,45 (1H, <i>d</i> , <i>J</i> =7,9 Hz)	119,2	7,46 (1H, <i>d</i> , <i>J</i> =7,8 Hz)	119,0
10	7,03 (1H, <i>t</i> , <i>J</i> =7,49 et 7,50 Hz)	119,8	7,05 (1H, <i>dt</i> , <i>J</i> =7,8 et 0,9Hz	120,6
11	7,12 (1H, <i>t</i> , 7,65 et 7,67 Hz)	122,0	7,12 (1H, <i>dt</i> , 7,8 et 0,9Hz)	123,3
12	7,30 (1H, <i>d</i> , <i>J</i> =8,19 Hz)	110,9	7,32 (1H, <i>d</i> , <i>J</i> =7,8 Hz)	112,3
13	-	139,2	-	138,3
14	2,27 (1H, <i>dt</i> , 11,4 et 0,9Hz)	32,9	2,25 (1H, <i>dt</i> , 11,4 et 0,9Hz)	33,0
15	2,98 (1H, <i>dd</i> , 4,8 et 9,1 Hz)	33,5	2,94 (1H, <i>m</i>)	33,6
16	-	113,7	-	114,5
17	7,50 (1H, <i>brs</i>)	157,5	7,48 (1H, <i>brs</i>)	152,4
18	5,24 ((1H, <i>d</i> , 10,5 Hz)	119,8	5,22 ((1H, <i>d</i> , 10,5 Hz)	119,0
19	5,30 ((1H, <i>d</i> , 17,4 Hz)	138,6	5,30 ((1H, <i>d</i> , 17,4 Hz)	136,5
20	2,7 (1H, <i>m</i>)	49,3	2,68 (1H, <i>m</i>)	45,8
21	5,74 (1H, <i>d</i> , 8,1Hz)	96,5	5,72 (1H, <i>d</i> , 8,1Hz)	96,8
22	-	174,2	-	175,0
1'	4,70 (1H, <i>d</i> , 7,8 Hz)	101,0	4,76 (1H, <i>d</i> , 7,8 Hz)	100,3
2'	3,18 (1H, <i>m</i>)	74,2	3,20 (1H, <i>m</i>)	74,7
3'	3,43 (1H, <i>m</i>)	78,3	3,40 (1H, <i>m</i>)	77,9
4'	3,27 (1H, <i>m</i>)	72,1	3,24 (1H, <i>m</i>)	71,8
5'	3,33 (1H, <i>m</i>)	78,7	3,36 (1H, <i>m</i>)	78,6
6'	3,69 (1H, <i>m</i>) 4,01 (1H, <i>dd</i> , 2,25 et 11,0 Hz)	60,4	3,66 (1H, <i>m</i>) 3,96 (1H, <i>brd</i> , 10,5 Hz)	63,1

Tableau XI : Données RMN (¹H, 500 MHz et ¹³C, 125 MHz) de TAF5 comparé à ceux de
la littérature (Nascinento et *al.*, 2006).

2.1.2.6. Identification du composé TAF₆

Le composé **TAF**₆ est obtenu sous forme de poudre blanche. Il répond positivement au test de Liebermann- Burchard, caractéristique des triterpènes. Son spectre de masse LC-ESI-MS en mode négatif exhibe le pic de l'ion *pseudo-* moléculaire à m/z = 479,3497[M+Na] ⁺ correspondant à la formule moléculaire C₃₀H₄₈O₃ et renfermant sept degrés d'insaturation.

Son spectre RMN ¹H montre cinq singulets de méthyle angulaire à δ_H 0,99 (H-23) ; 0,73 (H-24) ; 0,78 (H-25) ; 0,90 (H-26) et 0,96 (H-27) et un groupe hydroxyle secondaire apparaissant sous forme d'un doublet dédoublé à δ_H 3,06 (1H, dd, J = 11,2 et 5,0 Hz ; H-3). Il a également montré deux protons oléfiniques à δ_H 4,56 et 4,69 en C-29 (2H, d, J = 1,9 Hz, H-29a, 29b) représentant la double liaison exocyclique ainsi qu'un signal méthyle à δ_H 1,68 (H-30) suggérant que le composé isolé **TAF**₆ était un triterpénoïde de type lupane (Jamila et *al.*, 2014).

Figure 60 : Spectre de RMN 1 H (500 MHz ; CDCl₃/CD₃OD) du composé TAF₆.

Le spectre de RMN ¹³C a confirmé la présence de signaux de vinyle à $\delta_{\rm H}$ 150,3 (C-20) et 109,7 (C-29) et l'alcool secondaire à $\delta_{\rm H}$ 76,8. L'apparition d'un groupe carbonyle à $\delta_{\rm C}$ 177,8 (C-28) dans le spectre RMN ¹³C suggère la présence du groupe acide dans sa structure (Jamila et *al.*, 2014).

Figure 61 : Spectre de RMN ¹³C (125 MHz ; CDCl₃/ CD₃OD) du composé TAF₆.

Sur la base des données spectrales qui précèdent, le composé **TAF**₆ a été identifié comme étant de **l'acide bétulinique**, ce qui a été corroboré par les données physiques et spectrales rapportées dans la littérature (Jamila et *al.*, 2014).

Acide bétulinique (151)

	TAF6 (CDCl ₃ / CD ₃ OD)		Acide bétulinique (CDCl ₃ / CD ₃ OD)		
Position	δ _H (J en Hz)	δc	$\delta_{\rm H} (J { m en Hz})$	δc	
1	0,86 m 1,60	38,2	0,99 m	39,3	
2	1,54 m	27,2	1,67 <i>d</i> (<i>j</i> = 12,9)	28,3	
3	3,06 m	76,8	3,13 m	78,1	
4	-	38,5	3,45 <i>t</i> (8,0)	39,5	
5	0,95 m	54,7	$0,65 \ dd \ (j = 10,7 \ ; \ 1,9)$	55,3	
6	0,62 m	54,9	0,82 m	55,1	
7	1,44 m	17,9	1,38 m	18,8	
8	1,32 m		1,56 m		
9	1,32 m	33,9	1,56 m	34,8	
10	-	37,6	1,38 m	37,1	
11	-	40,2	-	41,1	
12	1,24 m	49,9	1,38 m	50,9	
13	-	36,7	-	37,5	
14	1,20 m	20,4	1,21 m	21,6	
15	1,36 m	-	1,43 m	-	
16	1,37 m	31,7	1,55 m	32,8	
17	2,12 m	-	2,63 m		
18	1,25 m	49,3	1,55 m	49,2	
19	1,52 m	48,5	1,77 <i>t</i> (<i>j</i> = 11,5)	49,8	
20	-	150,3	-	150,7	
21	1,27- 1,85 <i>m</i>	30,1	1,35- 1,93 m	30,5	
22	1,41 m	36,2	1,39 <i>dd</i> (<i>j</i> = 9,5 ; 4,5)	37,1	
23	1,09 s	29,2	1,53 s	31,2	
24	0,73 s	15,7	0,71 <i>s</i>	15,3	
25	0,78 s	16,0	0,79 s	16,0	
26	0,90 s	15,8	1,57 <i>m</i>	17,5	
27	0,96 s	14,4	2,25 m		
28	-	177,8	-	179,2	
29	4,44 s 4,32 s	109,7	4,56 <i>d</i> (<i>j</i> = 2,5)	109,4	
30	1,60 s	18,7	1,65 s	19,2	

Tableau XII : Données de RMN (¹H, 500 MHz et ¹³C, 125 MHz) de TAF₆ comparé à celles de la littérature (Jamila et *al.*, 2014).

2.1.2.7. Identification du composé TAF7

Le composé **TAF**⁷ est obtenu sous forme de poudre amorphe brunâtre. Son spectre de masse ESI-MS, basse résolution en mode positif, présente le pic de l'ion *pseudo*-moléculaire à m/z = 349,1 [M+H]⁺ Correspondant à la formule moléculaire C₂₀H₂₈O₅.

Figure 62 : Spectre de masse ESI-MS du composé TAF7.

L'analyse de son spectre RMN ¹H montre qu'il possède 01 proton oléfinique directement lié à un carbonyle à δ_H 5,66 (1H, *s*, H-18) ; 02 protons méthiniques aliphatiques à δ_H 0,97 (1H, *t*, *J* = 12,1 Hz, H-5) et 0,93 (1H, *d*, *J* = 7,2 Hz ; H-9) ; 01 proton méthylique tertiaire à δ_H 0,91 (3H, *s*, H-20) ; 01 proton méthylénique portant une fonction alcool secondaire à δ_H 3,72 (1H, *dd*, *J* = 10,7 et 4,5 Hz, H-17a) et 3,62 (1H, *dd*, *J* = 10,7 et 4,5 Hz, H-17b) caractéristique des diterpènes de type kauranique (Nishimura et *al.*, 2006).

Figure 63 : Spectre de RMN ¹H (500 MHz / CD₃OD) du composé TAF₇.

Le spectre de RMN ¹³C de **TAF**⁷ indique la présence de 20 signaux de carbone caractéristique des diterpènes, consistant en un méthyle à δ_C 15,0 (C-20), huit méthylènes à δ_C 38,2 (C-1) ; 35,0 (C-2), 23,1 (C-6) ; 40,3 (C-7) ; 19,5 (C-11) ; 26,4 (C-12) ; 38,1 (C-14) et 53,8 (C-15) ; trois méthines à δ_C 35,0 (C-5) ; 53,7 (C-9) et 45,9 (C-13) ; une double liaison trisubstituée donnant des liaisons hautement blindées à δ_C 113 (C-18) et déblindées δ_C 174 (C-4) , un carbonyle δ_C 171,5 (C-19) , et quatre carbones quaternaires à δ_C 105,3 (C-3) ; 174,0 (C-4), 45,0 (C-10) et 82,0 (C-16) (Nishimura et *al.*, 2006).

Sur la base des données spectrales qui précèdent et en comparaison avec celles de la littérature, le composé **TAF**⁷ est ientifié à un diterpène kauranique réarrangé de type cafestol avec trois hydroxyles en C-3, C-16 et C-17, connu sous le nom de **Tricalysiolide B** et précedemment isolé du tronc de *Tricalysia dubia* (Nishimura et *al.*, 2006).

Tricalysiolide B (152)

	TAF7 (CD3OD)	Tricalysiolide B (CD ₃ OD)	
Position	$\delta_{\rm H} (J \text{ en Hz})$	δc	$\delta_{\rm H}(J { m en} { m Hz})$	δc
1a 1b	1,70 m 1,69 m	38,6	1,78 m 1,52 m	36,1
2a 2b	2,20 m 1,8 m	34,6	2,52 d (j = 13,7) 2,00 m	35,0
3	-	106,0	-	105,7
4	-	174,6	-	173,7
5	2,32 <i>d</i> (<i>j</i> = 9,6)	47,9	2,57 d (j = 9,7)	47,4
ба 6b	1,64 m 1,4 m	23,1	1,59 m 1,38 m	22,1
7a 7b	1,66 m 1,60 m	40,0	1,65 m 1,56 m	40,3
8	-	45,1	-	44,6
9	1,33 m	53,7	1,29 <i>d</i> (<i>j</i> = 8,6)	53,7
10	-	45,0	-	43,8
11a 11b	1,68 m 1,61 m	20,1	1,76 m 1,54 m	19,5
12a 12b	1,67 m 1,57 m	26,8	1,91 m 1,50 m	26,4
13	2,05 m	45,8	2,47 m	45,9
14a 14b	1,98 <i>d</i> (<i>j</i> = 11,9) 1,69 <i>m</i>	38,1	2,06 dd ($j = 11,6$ et 4,7)	38,1
15a 15b	1,63 <i>d</i> (<i>j</i> = 16,3) 1,46 <i>d</i> (<i>j</i> = 16,3)	54,1	1,86 <i>d</i> (<i>j</i> = 14,3) 1,77 <i>d</i> (<i>j</i> = 14,3)	53,8
16	-	82,8	-	81,5
17a 17b	$3,72 \ d \ (j = 11,33) \\ 3,62 \ d \ (j = 11,06)$	67,0	4,11 <i>dd</i> (<i>j</i> = 10,8 et 4,6) 4,05 <i>dd</i> (<i>j</i> = 10,8 et 4,6)	66,4
	5,56 m	117,3	5,22 d (j = 10,5 Hz)	119,0
19	-	171,3	-	171,5
20	0,86 s	14,0	0,87 s	14,4

Tableau XIII : Données de RMN (¹H, 500 MHz et ¹³C, 125 MHz ; CD₃OD) de TAF₇ comparées à celles de la littérature (Nishimura et *al.*, 2005).

2.1.2.8. Identification du composé TAF8

Le composé TAF₈ se présente sous forme d'un mélange de deux composés (TAF₇ et TAF₇') de proportion 1 :1. Ce mélange se présente sous forme d'une poudre amorphe brunâtre, il répond positivement au test de Dragendorff, caractéristique des alcaloïdes. L'analyse de son spectre de masse à impact électronique (EI-MS) exhibe des pics à m/z = 348,1 et 347,2 M^{+.} Correspondant aux formules moléculaires C₂₀H₂₈O₅ et C₂₀H₂₉NO₄ (Nishimura et *al.*, 2006).

La comparaison des valeurs des déplacements chimiques observées pour le composé TAF₇ avec celles obtenues dans le composé TAF₇', montre que ces deux composés ont le même squelette de base, à savoir le type kauranne. Après discrimination des signaux observés sur les spectres protons et carbones, on observe précisément pour le composé TAF₇' un méthine à δ_H 3,90 (1H, dd, 10,9 ; 7,2 ; H-3). De plus nous pouvons observer la présence dans TAF₇', d'un carbone quaternaire portant une fonction amide en position 19, en remplacement de la fonction ester dans TAF₇ et dont la position est justifiée sur son spectre HMBC (**Fig. 64**) par la corrélation observée entre le proton oléfinique en position 18 à δ_H 5,56 (1H, *s*, H-18) et le carbone quaternaire à δ_C 176,0 (C-19) (Nishimura et *al.*, 2006).

Figure 64 : Spectre HMBC (500 MHz/ CD₃OD) du composé TAF₈.

Au vu des résultats obtenus et par comparaison avec les données de la littérature, le composé **TAF7**' est identifié comme étant le **tricalysiamide B**, composé connu et précédemment isolé du tronc de *Tricalysia dubia* (Nishimura et *al.*, 2006).

Tricalysiamide B (153)

	TAF ₈ (CD ₃ OD)		Tricalysiamide B (CD ₃ OD)	
Position	$\delta_{\rm H}(J \text{ en Hz})$	δ_{C}	$\delta_{\rm H} (J \text{ en Hz})$	δ_{C}
1a 1b	1,87 m 1,29 m	36,3	1,68 <i>m</i> 0,97 <i>td</i> (<i>j</i> = 13,7; 4,0)	36,8
2a 2b	2,23 d (j = 13,7) 1,3 m	30,9	2,14 m 1,47 m	30,7
3	3,92 dd (j = 10,9 et 7,2 Hz)	60,8	$3,90 \ dd \ (j = 10,9 \ \text{et} \ 7,2 \ \text{Hz})$	58,9
4	-	171,3	-	167,3
5	2,13 d (j = 9,7)	50,0	1,88 m	49,0
ба 6b	1,65 m 1,38 m	23,1	1,51 m 1,46 m	22,3
7a 7b	1,64 <i>m</i>	41,6	1,64 m 1,53 m	40,5
8	-	45,1	-	44,6
9	1,31 d (j = 8,6)	55,0	1,15 d (j = 8,8)	53,6
10	-	44,6	-	43,0
11a 11b	1,67 m 1,50 m	19,7	1,71 m 1,49 m	19,5
12a 12b	1,68 m 1,49 m	26,4	1,87 m 1,47 m	26,4
13	2,04 <i>m</i>	45,9	2,45 <i>d</i> (2,9)	45,9
14a 14b	$\begin{array}{c} 1,99 \ dd \ (j = 11,6 \ \text{et} \ 4,7) \\ 1,69 \ m \end{array}$	38,4	2,05 <i>dd</i> (<i>j</i> = 11,4 et 4,1) 1,96 <i>dd</i> (<i>j</i> = 11,4 et 1,73)	38,2
15a 15b	1,62 <i>d</i> (14,3) 1,46 <i>d</i> (14,3)	53,8	1,85 <i>d</i> (14,3)	53,9
16	-	83,3	_	81,6
17a 17b	$\begin{array}{l} 4,34 \ dd \ (j=10,8 \ {\rm et} \ 4,6) \\ 4,17 \ dd \ (j=10,8 \ {\rm et} \ 4,6) \end{array}$	68,8	4,15 <i>dd</i> (<i>j</i> = 10,9 et 5,2) 4,06 <i>dd</i> (<i>j</i> = 10,9 et 5,2)	66,4
18	5,56 <i>d</i> (<i>j</i> = 10,5 Hz)	117,0	5,83 <i>d</i> (<i>j</i> = 10,5 Hz)	117,8
19	-	175,7		174,6
20	0,84 s	15,1	0,71 <i>s</i>	14,9

Tableau	XIV : Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz ; CD ₃ OD) de TAF ₈
	comparées à celles de la littérature (Nishimura et al., 2005).

2.1.2.9. Identification du composé TAF9

Le composé **TAF**⁹ est obtenu sous forme de poudre blanche amorphe. Il répond positivement au test de Liebermann- Burchard, caractéristique des triterpènes. Son spectre de masse ESI basse résolution (ESI-MS) en mode négatif exhibe un pic correspondant à l'ion *pseudo*-moléculaire à m/z = 455,5 [M-H]⁻; Cette valeur est en accord avec la formule brute C₃₀H₄₈O₃ et présentant sept degrés d'insaturations.

Figure 65 : Spectre de masse ESI-MS du composé TAF9.

L'analyse de son spectre RMN ¹H montre cinq signaux de méthyles angulaires résonnant sous forme de singulet à δ_H 0,76 (*s*, H-23) ; 0,96 (*s*, H-24) ; 0,86 (*s*, H-26) ; 0,95 (*s*, H-25) et 1,10 (*s*, H-27) ; et deux méthyles doublet à δ_H 0,88 (*d*, *J* = 7,5 Hz ; H-29) ; 0,84 (*d*, *J* = 8,0 Hz ; H-30) (3H chacun. On observe également un signal à δ_H 5,22 correspondant au proton oléfinique H-12 ; un signal de proton méthinique hydroxylé à δ_H 3,14 correspondant à H-3 de **TAF**₉, un autre signal de proton méthinique à δ_H 2,19 (1H, *d*, *J* = 7,5 Hz, H-18) caractéristique des triterpènes de type ursane (Chee et *al.*, 1996).

Sur son spectre RMN ¹³C, on observe deux signaux de carbones éthyléniques à δ_C 127,4 (C-12) et 139,0 (C-13) correspondant aux carbones de la double liaison Δ^{12} ; le signal de carbone méthinique à δ_C 79,4 correspondant au carbone 3 de **TAF**₉. Dans les champs faibles, on observe le signal d'un carbonyle à δ_C 180,0 correspondant au carbone 28 de notre triterpène (Chee et *al.*, 1996).

Ainsi, l'analyse des spectres de RMN ¹H, ¹³C, COSY, HSQC et HMBC de **TAF9** a permis d'attribuer tous les signaux de notre composé, et par comparaison avec les données de la littérature, nous avons identifié celui-ci à **l'acide ursolique**, composé connu et précédemment isolé des feuilles de *Trialysia niammensis* (Chee et *al.*, 1996).

Acide ursolique (154)

	TAF9 (CD3OD)		Acide ursolique (CD ₃ OD)		
Position	$\delta_{\rm H}(J { m en Hz})$	$\delta_{ m C}$	$\delta_{\rm H}(J { m en Hz})$	$\delta_{ m C}$	
1	0,92 m	20.7	0,94 m	27.0	
1	1,45 m	38,7	1,47 m	37,8	
2	1,70 <i>m</i>	26.4	1,70 <i>m</i>	27.1	
Δ	2,13 m	20,4	2,15 m	27,1	
3	3,14 dd (j = 5,0 et 10,0	794	$3,09 \ dd \ (j = 5,0 \ \text{et } 10,0)$	80.1	
	Hz)	77,1	Hz)	00,1	
4	-	39,3	-	40,0	
5	0,75 m	56,9	0,78 m	55,7	
6	1,57 m 1,4 m	19,4	1,27 m 1,57 m	18,7	
7	1,49 m 1,34 m	31,9	1,52 m 1,58 m	32,6	
8	-	40.1	-	40.0	
9	1.55 m	49.1	1.76 m	49.2	
10	-	37.0	-	38.0	
	2.03 m		1.93 m		
11	1,64 m	25,5	2,00 m	22,8	
12	5,22 m	127,3	5,55 m	129,4	
13	-	139,0	-	141,0	
14	_	42.1	_	42.0	
1.5	1,93 m	,	1,92 m	, ·	
15	1,09 m	29,3	1,07 m	29,1	
16	1,55 m	24.2	1,53 m	34,5	
10	1,34 m	54,5	1,33 m		
17	-	49,1	-	49,1	
18	2,19 m	55,8	2,02 m	56,0	
19	1,56 m	49,0	1,32 m	47,1	
20	-	31,0	-	30,9	
21	1,34 m	24.6	1,20 m	25.0	
21	1,55 m	54,0	1,85 m	55,9	
22	1,49 m	31.8	2,17 <i>m</i>	37.3	
	1,35 m	51,0	2,29 m	52,5	
23	0,76 s	16,1	0,76 s	16,5	
24	0,96 s	22,1	0,95 s	21,7	
25	0,95 s	28,5	0,96 s	27,9	
26	0,86 s	17,8	0,84 s	17,7	
27	1,10 <i>s</i>	23,8	1,13 s	23,3	
28	-	181,8	-	180,1	
29	0,88 d (j = 7,3 Hz)	30,1	0,97 d (j = 7,5 Hz)	29,7	
30	0,84 d (j = 8,1 Hz)	18,0	0,86 d (j = 8,0 Hz)	18,3	

Tableau XV : Données de RMN (¹H, 500 MHz et 13C, 125 MHz ; CD₃OD) de TAF₉ comparées à celles de la littérature (Chee et *al.*, 1996).
2.1.2.10. Identification du composé TAF₁₀

Le composé **TAF**₁₀ est obtenu sous forme de poudre blanche, soluble au méthanol. Il répond positivement au test de Liebermann-Burchard.

Son spectre de masse HR-ESI-MS, haute résolution présente le pic de l'ion *pseudo*moléculaire à $m/z = 445,1963 \text{ [M+H]}^+$ conduisant à la formule moléculaire C₃₀H₅₂O₂ soit six degrés d'insaturations.

Figure 68 : Spectre de masse HR-ESI-MS du composé TAF₁₀.

La comparaison des valeurs des déplacements chimiques observées pour le composé **TAF**₁₀ avec celles obtenues dans le composé **TAF**₉, montre que ces deux composés ont le même squelette de base, à savoir le type ursane ; à l'exception du signal d'un méthyle à δ_H 0,85 (3H, s, H-28) sur le spectre proton, qui remplace la fonction carbonyle en position 28

du triterpène (**Fig. 68**). L'observation du signal de protons hydroxylés résonnant à δ_H 3,63 (2H, *m*, H-30) dans le spectre proton qui corrèle sur le spectre HSQC avec le carbone à δ_C 65,9 révèle la présence d'un hydroxymethyle qui remplace le Me-30 dans le composé **TAF**₉.

Figure 69 : Spectre RMN ¹H (500 MHz, CD₃OD) du composé TAF₁₀.

Figure 70 : Spectre HSQC (500 MHz, CD₃OD) du composé TAF₁₀.

Ainsi, l'analyse des spectres RMN ¹H, ¹³C, HSQC et HMBC de **TAF**₁₀ a permis d'attribuer tous les signaux du composé, et par comparaison avec les données de la littérature, nous avons identifié celui-ci au **rubrinol**, composé connu et précedemment isolé des feuilles de *Plumeria rubra* (Akhtar et *al.*, 1994).

(155)

	TAF ₁₀ (CD ₃ OD)		Rubrinol (CD3OD)		
Position	$\delta_{\rm H}(J { m en Hz})$	δc	$\delta_{\rm H} (J {\rm en} {\rm Hz})$	δc	
1	1,02 m	20.2	0,94 m	27 0	
	1,64 <i>m</i>	38,3	1,47 m	57,0	
2	1,95 m	26.4	1,70 m	27.1	
	2,0 <i>m</i>	20,7	2,15 m	<i>~′</i> ,1	
3	3.13 m	79.4	3,09 dd (j = 5,0 et)	80.1	
	- y - ·		10,0 Hz)	10.0	
4	-	39,3	-	40,0	
5	0,74 <i>m</i>	56,0	0,78 m	55,7	
6	1,42 m	19.3	1,27 m	18,7	
	1,54 m	-	1,57 m		
7	1,54 m 1,22 m	34,3	1,52 m	32.6	
0	1,52 m	40.1	1,38 <i>m</i>	40.0	
0	-	40,1	-	40,0	
9	1,55 <i>m</i>	49,1	1,/0 <i>m</i>	49,2	
10	-	37,0	-	38,0	
11	1,94 m	24,3	1,93 m	22,8	
10	2,02 m	126.0	2,00 m	120.4	
12	5,24 m	120,9	5,55 M	129,4	
13	-	139,8	-	141,0	
14	-	41,9	-	42,0	
15	1,94 <i>m</i>	29,5	1,90 m	29,1	
	1,00 m	34,6	1,1 m 1.57 m	34,5	
16	1,34 m 1 34 m		1,37 m 1 36 m		
17	-	49.0	1,50 m	/19.1	
18	2 2 m	54.8	2.02 m	56.0	
10	2,2 m	<u> </u>	1.32 m	<u> </u>	
20	1,02 m	21.0	1,32 m	20.0	
20	- 1 25 m	51,0	- 1 20 m	30,9	
21	1,55 m 1 54 m	35,9	1,20 m 1.85 m	35,9	
	1,94 m		2.17 m		
22	1,95 m 1.05 m	34,7	2.29 m	32,3	
23	0,76 s	16,3	0,76 s	16,5	
24	0,94 s	21,4	0,95 s	21,7	
25	0,97 s	28.7	0.96 s	27.9	
26	0,86 s	17.8	0,86 s	17.7	
27	1,12 s	24.0	1,10 <i>s</i>	23.3	
28	0.85 s	18.4	0.87 s	18.5	
29	0.97 d (i = 8.5 Hz)	28.9	0.97 d (i = 7.5 Hz)	29.7	
30	3,63 m	66,2	3,67 m	65.5	

Tableau XVI	: Données de RMN (¹ H, 500 MHz et ¹³ C, 125 MHz ; CD ₃ OD) de TAF ₁₀
	comparées à celles de la littérature (Akhtar et al., 1994).

2.1.2.11. Identification du composé TAF₁₁

Le composé **TAF**₁₁ est obtenu sous forme de poudre blanche amorphe. Il répond positivement au test de Liebermann-Burchard, caractéristique des triterpènes. Son spectre de masse LC-ESI-MS basse résolution, en mode positif présente un pic correspondant à l'ion *pseudo*-moléculaire à m/z =443,3373 [M+H]⁺. Cette valeur est en accord avec la formule brute C₃₀H₅₀O₂ et présentant six degrés d'insaturations.

Figure 71 : Spectre de masse LC-ESI-MS du composé TAF₁₁.

L'analyse de son spectre de RMN ¹H met en évidence sept signaux de méthyles résonnants sous forme de singulet à $\delta_{\rm H}$ 0,98 (*s*, H-23) ; 0,80 (*s*, H-24) ; 0,94 (*s*, H-25) ; 0,92 (*s*, H-28) ; 1,32 (*s*, H-27) ; 0,78 (*s*, H-26) et 1,18 (*s*, H-29) et un methyl doublet à $\delta_{\rm H}$ 0,91 (*d*, H-30, J = 6,3 Hz) caractéristique d'un triterpène pentacyclique de type ursane (Ibrahim et *al.*, 2012). Sur ce même spectre on observe le déblindage du proton à δ_{H} 5,27 (*s*, H-12) suggérant la présence d'une double liaison. On observe également un signal de proton méthinique portant un atome oxygéné à δ_{H} 3,03 (1H, *dd*, *J*=9,5 ; 3,5 Hz ; H-3) caractéristique d'une fonction alcool secondaire (Chen et *al.*, 2010).

Figure 72 : Spectre RMN ¹H (500MH_Z, CD₃OD) du composé TAF₁₁.

La comparaison des valeurs des déplacements chimiques observées pour l'aglycone de TAF₁ avec celles obtenues dans le composé TAF₁₁, montrent que ces deux composés partagent le même aglycone à savoir le α -amyrin (3 β -19 α -hydroxy ursan-12-ène).

Une analyse approfondie des expériences de RMN 1D et 2D de **TAF**₁₁ nous a permis d'attribuer tous les signaux des protons et des carbones de TAF₁₁ ; par comparaison avec les données de la littérature nous avons identifié celui- ci au **19** α - hydroxy- α - amyrine (Akbar et Malik, 2002).

19α- hydroxy-α- amyrine

(156)

		- `	19α- hydroxy-α- amyrine		
	TAF ₁₁ (CD ₃ OD)		(CD ₃ OD)		
Position	$\delta_{\rm H}(J { m en Hz})$	δc	$\delta_{\rm H}(J \text{ en Hz})$	δc	
1	1,72 m	30.2	1,76 <i>m</i>	38.1	
1	1,62 m	57,2	1,60 m	50,1	
2	1,75 m	26.9	1,81 m	26.8	
	1,62 m	_0,,,	1,68 <i>m</i>	,0	
3	3,05 m	90,1	$3,09 \ dd \ (j = 5,0 \ \text{et } 10,0 \ \text{Hz})$	90,7	
4	-	40,3	-	40,1	
5	0,79 m	57,1	0,78 m	57,1	
6	1,54 m	20,0	0,0 1,52 m		
7	1,57 m	33,8	1,51 <i>m</i>	33,6	
8	-	41,0	_	41,3	
9	1,69 m	48,5	1,67 <i>m</i>	48,7	
10	-	39,9	-	39,7	
11	1,95 m	25,0	1,93 m	24,6	
12	5,27 m	129,6	5,27 m	129,3	
13	-	140,4	_	140,2	
14	-	42,5	-	42,3	
15	0,99 m	29,2	1,0 <i>m</i>	29,5	
16	1,81 m	267	1,83 m	26,9	
10	1,30 m	20,7	1,32 m		
17	-	42,5	-	42,9	
18	2,50 m	55,5	2,51 <i>m</i>	55,1	
19	-	73,8	-	73,7	
20	1,34 m	43,4	1,33 m	42,9	
21	1,22 m	27,4	1,31 m	28,2	
22	2,17 m	24.2	1,70 <i>m</i>	25 9	
	2,29 m	34,2		55,8	
23	0,99 s	28,4	0,98 s	28,3	
24	0,79 <i>s</i>	17,6	0,80 s	17,1	
25	0,93 s	16,7	0,94 s	16,1	
26	0,79 s	17,7	0,78 s	17,3	
27	1,33 s	24,7	1,32 s	24,6	
28	0,92 s	16,3	0,92 s	16,4	
29	1,19 <i>s</i>	27,2	1,18 s	27,0	
30	0,91 d (J = 6,3 Hz)	16,5	0,96 d (J = 6,2 Hz)	17,0	

Tableau XVII : Données de RMN (1 H, 500 MHz et 13 C, 125 MHz ; CD₃OD) de TAF₁₁comparées à celles de la littérature (Akbar et Malik, 2002).

2.2. Etude phytochimique des feuilles de Tricalysia oligoneura S. Schum

L'étude phytochimique des feuilles de *Tricalysia oligoneura* S. Schum nous a permis d'isoler dix composés parmi lesquels trois sont nouvellement décrit dans la littérature. L'élucidation structurale de ces composés a été réalisée grâce à une analyse approfondie des spectres de RMN 1D (¹H, ¹³C) et 2D (COSY, NOESY, HSQC et HMBC), couplée à la spectrométrie de masse.

2.2.1. Extraction, fractionnement et purification des composés

Nous avons travaillé sur les feuilles de *T. oligoneura* (900g). Ces dernières ont été séchées, broyées et macerées à trois reprises pendant 72h, avec le MeOH (3L). A la fin des extractions par macération, les filtrats ont été regroupés et évaporés à sec à l'aide d'un rotavapor de type BUCHI afin d'obtenir un extrait brut de 35 g. Par la suite, une partie de cet extrait brut (20 g) a été soumise à une chromatographie sur colonne de gel de silice (CC) et éluée au gradient CH₂Cl₂/MeOH (100/0 à 0/1 v/v), donnant 189 fractions qui ont été combinées en sept principales fractions (indexées A à G) après analyse sur chromatographie sur couche mince.

La purification des fractions par différentes méthodes chromatographiques a permis d'isoler dix composés. Le schéma ci-dessous présente les différentes étapes d'isolement des composés de *T. oligoneura*.

Schéma 9: Protocole d'extraction et d'isolement des composés de feuilles de Tricalysia oligoneura.

2.2.2. Caractérisation des composés isolés

2.2.2.1. Détermination structurale du composé TOF1

Le composé **TOF**₁ est obtenu sous forme d'une poudre blanche amorphe. Il répond positivement au test de Lucas, caractéristique des alcools. L'analyse de son spectre de masse LC-ESI-MS en mode positif exhibe le pic de l'ion *pseudo*-moléculaire à m/z = 441,3362[M+H]⁺ et conforme à la formule C₂₉H₆₀O₂.

Figure 73 : Spectre de masse LC-ESI-MS du composé TOF1.

L'analyse du spectre RMN ¹H de **TOF**₁ présente un signal large dans la plage de δ_H 1,25–1,74 (2H, *m*, groupe CH₂) et un triplet à 0,89 (3H, *t*, *J* = 6,7 Hz, groupes Me terminal, Me-29) attribués à une longue chaîne aliphatique. La présence d'un méthine oxygéné à δ_H 3,47 dans le composé **TOF**₁ est en accord avec la structure d'un alcool (Sharma et *al*. 2014 ; Khedr et *al*., 2018). Aussi, en accord avec la structure précitée, nous avons observé le pic caractéristique d'un oxyméthylène terminal à δ_H 4,03 (H-1) corrélé dans le spectre HSQC avec un carbone à δ_C 64,7.

Figure 74 : Spectre RMN ¹H (500 MHz, CD₃OD) du composé TOF₁.

Le spectre de RMN ¹³C révèle la présence des signaux à δ_C 72,7 (C-10); 64,7 (C-1) attribuables à un méthine oxygéné dans la chaine et à un méthylène oxygéné terminal respectivement et confirmant le squelette d'un alcool (Natori et *al.*, 1994; Rho et Kim., 2005; Sharma et *al.*, 2014).

L'analyse de son spectre HSQC (**Fig. 75**) nous a permis de fixer chaque proton au carbone correspondant. Nous avons notamment les tâches de corrélations entre le proton à δ_H 3,47 (H-10) et le carbone d'un méthine oxygéné à δ_C 72,3 (C-10); entre un oxyméthylène à δ_H 4,03 (H-1) qui corrèle avec son carbone à δ_C 64,7 (C-1); également les protons caractéristiques d'une longue chaine aliphatique à δ_H 1,25-1,60 et leur carbone à δ_C 30,5.

Figure 75 : Spectre HSQC (500 MHz, CD₃OD) du composé TOF₁.

Les assignations de divers protons et carbones dans les spectres RMN ont été faites sur la base d'expériences ¹H-¹H COSY (**Fig. 76**) et HMBC (**Fig. 77**). Le spectre COSY révèle entre autre le couplage entre le méthine oxygéné à δ_H 3,47 (H-10) avec le méthylène à δ_H 1,40 (H-11); entre l'oxyméthylène terminal à δ_H 4,03 (H-1) et le méthylène à δ_H 1,25 (H-2). Les données spectrales de TOF₁ sont presque identiques au nonacosane-10-ol (Naz et *al.*, 2013) à l'exception que sur le spectre de TOF₁ on observe un oxyméthylène, ce qui laisserait penser qu'un des deux méthyles du nonacosane-10-ol aurait été oxydé.

Les positions des groupes hydroxyles ont été confirmées grâce au spectre HMBC dans lequel le signal du proton méthylénique à δ_H 1,27 (H-2) montre des corrélations avec le signal de carbone de l'oxyméthine à δ_C 64,7 (C-1) ; Le signal du proton méthylénique à δ_H 1,38 (H-11) présente une corrélation avec l'oxyméthylène à δ_C 72,3 (C-10).

Figure 76 : Spectre COSY (500 MHz, CD₃OD) du composé TOF₁.

Figure 77 : Spectre HMBC (500 MHz, CD₃OD) du composé TOF₁.

La formule moléculaire a été confirmée par les pics d'ions fragments à m/z = 409; 253 ; 173 ; 297 et 422 dans son spectre UPLC (schéma 9).

Schéma 10 : Schéma de fragmentation de masse de TOF₁.

La configuration relative de **TOF**₁ a été déduite de l'analyse de son spectre NOESY (**Fig. 79**) où on observe les corrélations entre H-10 (δ_H 3,48) et H-13 (δ_H 1,27) et entre H-28 (δ_H 1,31) et H-29 (δ_H 0,89) ; ce qui indique que les protons sont orientés du même côté Ainsi, la stéréochimie relative déduite pour le stéréo-centre C-10 est présumée être 10S* en comparaison avec les données de la littérature (Naz et *al.*, 2013) et du pouvoir rotatoire $[\alpha]_D^{25}$ = +71.3 (c 0,1 MeOH) de **TOF**₁.

Figure 79: Correlations NOESY du composé TOF₁.

Figure 80: Spectre NOESY (500 MHz, CD₃OD) de TOF₁.

Au vu des résultats obtenus, la structure du composé **TOF**₁ a été élucidée comme étant le **nonacosane-1,10-diol**, nouveau composé naturel.

(157)

Desition	TOF ₁ (CD ₃ OD)			
Position	$\delta_H(J ext{ en Hz})$	δ_C		
1	4,04-4,01 m	64,7		
2	1,29-1,27 m	26,7		
3-7	1,29-1,27 m	30,5		
8	1,41-1,39 m	26,7		
9	1,43-1,41 m	38,2		
10	3,47 m	72,3		
11	1,41-1,40 m 1,37-1,35 m	38,3		
12	1,57-1,55 m 1,41-1,39 m	26,7		
13-26	1,29-1,27 m	30,5		
27	1,29-1,27 m	32,6		
28	1,29-1,27 m	23,5		
29	0,89 t (j = 6,5 Hz)	14,0		

Tableau XVIII : Données de RMN (¹H, 500 MHz et ¹³C, 125 MHz ; CD₃OD) ducomposé TOF1

2.2.2.2. Détermination structurale du composé TOF₂

Le composé **TOF**₂ est isolé sous la forme d'une poudre blanche amorphe. L'analyse de son spectre de masse HR-ESI-SM en mode négatif exhibe un ion quasi-moléculaire à m/z 680,6154 [M-H]⁻, conforme à la formule C₄₂H₈₃NO₅ (calculée pour C₄₂H₈₃NO₅ : 681,6192) avec deux degrés d'insaturations. Son spectre IR révèle la présence d'un groupe amino N-H (3331 cm⁻¹), de groupes hydroxyle (3350 cm⁻¹), amide (1622 et 1544 cm⁻¹) et méthylène (722 cm⁻¹) dans la molécule. On observe également une épaule (1067 et 1022 cm⁻¹) à une fréquence plus élevée traduisant les vibrations de déformation d'un carbonyle suivie d'une bande à 964 cm⁻¹, qui caractérise une double liaison trans carbone-carbone (Natori et *al.*, 1994).

Figure 81 : Spectre de masse HR-ESI-MS du composé TOF₂.

L'analyse du spectre de RMN ¹H de **TOF**₂ présente un signal large dans la plage de δ_H 1,25– 1,74 (2H, *m*, groupe CH₂) et un triplet à 0,87 (6H; J = 6,7 Hz, représentant deux groupes Me terminaux (Me-26 et Me-16')) attribuable à deux longues chaînes aliphatiques. Un signal à δ_H 5,39 (2H, *m*) caractéristique d'une double liaison de protons oléfiniques (Natori et *al.*, 1994). Ainsi, parmi les deux insaturations de **TOF**₂, l'une d'elles pourrait sans ambiguïté être attribuée à la double liaison oléfinique et la deuxième à la fonction amide. Enfin, la présence de trois méthines oxygénées (δ_H 3,50 ; 3,54 et 4,02) dans le composé **TOF**₂ est en accord avec la structure d'une céramide (Sharma et *al.* 2014 ; Khedr et *al.*, 2018). Nous observons également le pic caractéristique d'un oxyméthylène à δ_H 3,77 (H-1) et le pic d'un méthine lié au NH de l'amide à δ_H 4,09 (H-2) (Khedr et *al.*, 2018).

Figure 82 : Spectre de RMN ¹H (500 MHz, CD₃OD/ CDCl₃) du composé TOF₂.

Le spectre de RMN ¹³C révèle un signal d'un carbonyle à δ_C 178 et un signal à δ_C 52,6 (C–N) confirmant la présence d'un groupe amide (Khedr et *al.*, 2018). On observe également deux signaux à δ_C 131,1 et 131,0 attribuables aux carbones oléfiniques ; trois signaux de méthines oxygénés à δ_C 72,7 (C-2') ; 73,0 (C-4) et 75,8 (C-3) ; et un signal de méthylène oxygéné à δ_C 61,9 (C-1) confortant le squelette d'une céramide (Natori et *al.*, 1994; Rho et Kim., 2005; Sharma et *al.*, 2014).

Figure 83 : Spectres de RMN ¹³C (125 MHz, CD₃OD/ CDCl₃) du composé TOF₂.

L'analyse de son spectre HSQC (**Fig. 84**) nous a permis de fixer chaque proton au carbone correspondant. Nous avons notamment les tâches de corrélations entre le proton oléfinique à δ_H 5,39 (H-18') et le carbone oléfinique à δ_C 131,1 (C-18'), entre les protons et les carbones des trois méthine oxygénés à δ_H 3,50 ; 3,54 ; 4,02 et δ_C 73,0, 75,8 et 72,7 respectivement ; entre un oxyméthylène à δ_H 3,77 (H-1) qui corrèle avec un carbone à δ_C 61,9 ; également le pic d'un méthine lié au NH de l'amide à δ_H 4,09 (H-2) et δ_C 52,6 (C-2). Nous pouvons également observer la corrélation entre les protons caractéristiques d'une longue chaine aliphatique à δ_H 1,25-1,60 et leurs carbones à δ_C 23,6- 30,8.

Figure 84 : Spectre HSQC (500 MHz, CD₃OD/ CDCl₃) du composé TOF₂.

Les assignations de divers protons et carbones dans les spectres RMN ont été faites sur la base d'expériences COSY (**Fig. 85**) et HMBC (**Fig. 86**). Le spectre COSY révèle entre autres les couplages ^{2,3}*J*_{H-H}, celui du méthine lié à l'azote à δ_H 4,09 (H-2) avec l'oxyméthylène à δ_H 3,76 (H-1) et l'oxyméthine à δ_H 3,54 (H-3) d'une part, mais également d'autre part, avec le proton de l'azote à δ_H 7,69 (NH). Les positions des groupes hydroxylés ont été confirmées grâce au spectre HMBC dans lequel le signal du proton de l'oxyméthine à δ_H 3,54 (H-3) montre des corrélations avec le signal de carbone à δ_C 73,0 (C-4). Le signal du méthine à δ_H 4,09 (H-2) présente des corrélations avec le carbonyle à δ_C 178,0 (C-1'). De plus, la corrélation HMBC entre le signal protonique à δ_H 4,09 (H-2) et le carbonyle à δ_C 178,0 (C-1') confirme la présence d'une longue chaîne latérale d'acide gras α -hydroxylé (Rho et *al.*, 2005).

Figure 85 : Spectre COSY (500 MHz, CD₃OD/ CDCl₃) du composé TOF₂.

Le spectre de masse, effectué à l'issue de la méthanolyse de **TOF**₂, montre le pic de l'ion *pseudo*-moléculaire à m/z 284,1 [M-H]⁻ reconnu comme l'unité d'ester de méthyl d'acide gras (EMAG) : le 2-hydroxy-hexadécanoate de méthyle. Ceci permet de conclure

que la longue chaîne d'acide gras (LCAG) de la céramide **TOF**₂ est constituée de 16 atomes de carbones tandis que la longue chaîne basique (LCB) de l'unité sphingosine renferme 26 atomes de carbones avec une liaison oléfinique.

Le positionnement de la liaison oléfinique dans la chaîne latérale a été déduit de l'analyse du spectre de masse du dérivé α -méthylthiolé correspondant, après réaction de la céramide avec le diméthyldisulfure (DMDS), qui fournit un fragment facilement reconnaissable après bombardement électronique (**Schéma 11**). La réaction de dérivatisation a conduit à un dérivé méthylthiolé, dont le spectre de masse montre un fragment à m/z 112 (clivage C-18 et C-19) indiquant la présence d'une double liaison séparée par trois ou plusieurs groupes méthylènes.

Schéma 11 : Schéma de fragmentation possible du composé TOF₂.

De plus, la formule moléculaire a été confirmée par les pics d'ions fragments à m/z =112 [M- C₃₄H₆₇NO₅]⁺ ; 125 [M- C₃₃H₆₆NO₅]⁺ ; 255 [M- C₂₇H₅₂NO₄]⁺ ; 284 [M-C₂₆H₅₂NO₃]⁺; 301 [M- C₂₅H₅₀O₃]⁺ ; 426 [M- C₁₆H₃₁O₂]⁺ ; et dans son spectre IE-MS (**Fig. 78**). La longue chaîne basique 1,3,4, trihydroxylée a été confirmée par la présence de l'ion m/z = 426 (C₂₆H₅₂NO₃).

Les observations précédentes ont été renforcées par l'analyse du spectre HMBC (**Fig. 88**) : des pics croisés du proton oléfinique à δ_H 5,39 avec les atomes de carbone à δ_C 33,4 (C-17 et C-22) d'une part, et d'autre part entre des protons de méthylènes adjacents, insaturés à δ_H 1,95 et 2,02 avec le carbone oléfinique à δ_C 131,5. La double liaison a été déterminée comme étant *trans*, selon les déplacements chimiques des carbones allyliques à δ_C 33,4 (Ngono et *al.* 2011 ; Dos santos et *al.*, 2012). Les déplacements chimiques de **TOF**₂, comparés aux données déjà rapportées des sphingolipides naturels (Khedr et *al.*, 2018) ont montré des similitudes qui confirment que **TOF**₂ est une céramide.

Figure 88 : Spectre HMBC (500 MHz, CD₃OD/ CDCl₃) du composé TOF₂.

Figure 89 : Principales corrélations COSY et HMBC du composé TOF₂.

Quant à la stéréochimie des centres chiraux, elle a été établie après comparaison avec des composés analogues (Honda et *al.*, 1991; Khedr et *al.*, 2018; Ramos et *al.*, 2006; Christophe et *al.*, 2008; Sandjo et *al.*, 2008; Dos Santos et *al.*, 2012). Les corrélations NOESY (**Fig. 90**) observées entre H-2 (δ_H 4,09) et H-3 (δ_H 3,54) et aussi entre H-2 (δ_H 4,09) et H-1 (δ_H 3,74) indiquent que ces protons sont orientés du même côté de la molécule. Ainsi, la stéréochimie relative déduite pour les stéréocentres C-2, C-2 ', C-3 et C-4 est présumée être respectivement 2S*, 2'R*, 3S*et 4R* et cela justifie ainsi la présence d'une base longue chaine et d'un acide gras à longue chaîne α -hydroxylé dans le composé **TOF**₂. De plus, l'activité optique [α]²¹_D = + 18,2 (*c* 0,1 MeOH) corrobore cette stéréochimie.

En conclusion, le composé **TOF**₂ a été établi comme étant (2R*,2'R*,3S*,4R*,18E)-*N*-[2'-hydroxyhexadecyl]-2-aminohexacosa-18-ène-1, 3, 4-triol (**171**), pour lequel le nom trivial **oligoneuramide** a été proposé.

(158)

TOF ₂ (CD ₃ OD/ CDCl ₃)			
Position	$\delta_H(J \text{ en Hz})$	δ_C	
1	3,74 m	61,9	
2	$4,09 \ ddd \ (j = 4,0; 7,9; 8,0)$	51,4	
3	3,54 - 3,52 m	75,8	
4	3,50 - 3,48 m	73,0	
5	1,65 - 1,63 m 1,38 - 1,36 m	32,7	
6	1,59 - 1,57 m 1,37- 1,35 m	26,8	
7-16	1,29 - 1,26 m	29,8	
17	2,00 - 1,95 m	33,4	
18	5,39 m	131,5	
19	5,39 m	131,2	
20	2,00 - 1,95 m	33,4	
21-23	1,26 - 1,28 m	29,8 - 30,5	
24	1,26 - 1,24 <i>m</i>	32,8	
25	1,27 - 1,25 m	23,6	
26	0,87 m	14,4	
NH	7,68 m	-	
1'	-	176,8	
2'	$4,02 \ dd \ (j = 3,0; 6,5)$	72,7	
3'	1,74 m 1,60 - 1,58 m	35,6	
4'	1,60 - 1,58 m 1,40 - 1,38 m	25,8	
5'-13'	1,26 - 1,28 m	29,8 - 30,5	
14'	1,26 - 1,24 <i>m</i>	32,8	
15'	1,27 - 1,25 m	23,6	
16'	0,87 t (j = 6,5)	14,4	

Tableau XIX : Données de RMN (¹H, 500Mz et ^{13}C ,125MHz ; CD3OD/ CDCl3) du
composé TOF2.

2.2.2.3. Détermination structurale du composé TOF₃

Le composé **TOF**₃ est obtenu sous forme de poudre blanche amorphe. Il répond positivement au test de Liebermann- Burchard, caractéristique des triterpènes. Son spectre de masse par ionisation par électrospray haute résolution (HR-ESI-SM) en mode positif exhibe un pic correspondant à l'ion *pseudo*-moléculaire à m/z 649,4762 [M+H]⁺. Cette valeur est en accord avec la formule brute C₃₈H₆₆NO₇ (calculée pour C₃₈H₆₆NO₇ : 649,4917).

Figure 91 : Spectre de masse HR-ESI-SM du compose TOF₃.

L'analyse de son spectre de RMN ¹H met en évidence huit signaux de méthyl à δ_H 0,95 (*s*, H-23) ; 0,76 (*s*, H-24) ; 0,92 (s, H-25) ; 0,93 (*s*, H-30) ; 0,80 (*s*, H-28) ; 1,15 (*s*, H-27) ; 0,84 (*s*, H-26) et 0,89 (*s*, H-29) (3H chacun, s) qui corrèlent sur le spectre HSQC avec les carbones à δ_C 28,4 ; 17,6 ; 15,8 ; 23,9 ; 17,0 ; 26,2 ; 17,2 et 33,4 respectivement, caractéristique d'un triterpène de type oléanane (Adesina et *al.*, 1985).

Figure 92 : Spectre RMN ¹H global (500 MHz, CD₃OD) du composé TOF₃.

Figure 93 : Spectre RMN ¹H (500 MHz, CD₃OD) du composé TOF₃ montrant les méthyles angulaires.

Figure 94 : Spectre HSQC (500 MHz, CD₃OD) du composé TOF₃ montrant les méthyles angulaires.

On observe également sur son spectre de RMN ¹H un signal à δ_H 5,23 (*brs*, H-12), correspondant au proton oléfinique H-12, un signal de proton methinique à δ_H 3,10 (*dd*, *J* = 7,6 Hz, H-3) correspondant à H-3 de l'aglycone.

Sur son spectre de RMN ¹³C, on observe deux signaux de carbones éthyléniques à δ_C 123,7 et 140,2 correspondants aux carbones de la double liaison Δ^{12} , un signal de carbone méthinique à δ_C 90,9 correspondant au carbone 3 de l'aglycone.

Figure 95 : Spectre de RMN 13 C (125 MHz, CD₃OD) du composé TOF₃.

Ainsi, l'analyse des spectres de RMN ¹H, ¹³C, COSY, HSQC et HMBC de **TOF**₃ a permis d'attribuer tous les signaux de l'aglycone, et par comparaison avec les données de la littérature, nous avons identifié celui-ci à la β - amyrine.

Sous structure 1

L'observation des signaux de carbone resonnant à $\delta_{\rm C}$ 89,6 (C-3) et $\delta_{\rm C}$ 176,0 (C-28) montre que **TOF**₃ est un dérivé 3-mono-osidique de β - amyrine ayant une chaine osidique attachée respectivement en C-3 au moyen d'une liaison éther (Adesina et *al.*, 1985).

Le sucre de **TOF**₃, a été déterminé comme étant le monosaccharide D-GlcNAC par hydrolyse acide suivie d'une analyse par chromatographie en phase gazeuse et par comparaison avec les échantillons authentiques du laboratoire. Le solvant d'élution utilisé est le CHCl₃- MeOH- H₂O (8-5-1) (Chaabi et *al.*, 2010). L'analyse du spectre HSQC de **TOF**₃ permet de distinguer un signal de proton anomérique résonnant à $\delta_H 4,42$ (d, J = 10 Hz, H-1') corrélant avec le signal d'un carbone à $\delta_C 104,9$; ce qui prouve la présence d'un sucre.

Figure 96 : Spectre HSQC élargi (500 MHz, CD₃OD) montrant le signal de l'anomère du composé TOF₃.

Tous les protons des sucres ont été identifiés par une analyse approfondie des spectres COSY, HSQC et NOESY. Leurs carbones correspondants ont été, quant à eux, attribués sur la base des corrélations observées sur le spectre HSQC et confirmé par le spectre HMBC.

Le proton anomérique à δ_H 4,42 a été attribué à une unité de D-GlcNAc. Cela a été confirmé par la corrélation observée dans le spectre HMBC entre le signal à δ_H 4,42 et le carbonyle à δ_C 173,4 (NHCOCH₃) en accord avec les données de la littérature (Adesina et *al.*, 1985).

Les données spectrales ci-dessus indiquent que le sucre identifié à savoir GlcNAc, est sous sa forme pyranosyle. (**Tableau 20**).

La configuration β a été attribuée au proton anomérique de GlcNAc sur la base de sa constante de couplage ³*J*_{H-1}, _{H-3} qui est de 7,3 Hz.

L'analyse des spectres HMBC et NOESY nous a permis de déterminer le point de jonction du sucre sur l'aglycone ainsi que les liaisons interglycosidiques.

L'observation dans le spectre RMN ¹³C d'un signal de carbone à δ_C 90,9 (C-3) indique que **TOF**₃ est un dérivé mono-osidique de β - amyrine ayant un sucre attaché en C-3 de l'aglycone au moyen d'une liaison éther.

La corrélation observée dans le spectre HMBC entre le signal à δ_H 4,42 (H-1' de GlcNHAc) et le carbone à δ_C 90,9 (C-3 de l'aglycone) suggère que le GlcNHAc est lié à la génine en position 3 ; cette liaison est confirmée par la corrélation observée sur le spectre NOESY entre les signaux δ_H 4,42 (H-1'GlcNHAc) et δ_H 3,10 (H-3 de l'aglycone).

Figure 97 : Spectre HMBC (500 MHz, CD₃OD) du composé TOF₃ montrant le point de jonction.

Figure 98 : Spectre NOESY élargi (b) (500 MHz, CD₃OD) du composé TOF₃ montrant le point de jonction.

Figure 99 : Corrélations HMBC (a) et NOESY (b) du composé TOF_{3.}

Au vu des résultats obtenus, la structure du composé **TOF**₃ est élucidée comme étant la β -amyrine 3-[O-2-acetamido-2-deoxy]- β -D-glucopyranoside, composé nouveau naturel auquel nous avons donné le nom trivial d'**oligoneurine**.

HO Δ_1 \sum_{23} NHCOCH₃ 24 HC Oligoneurine

(159)

Tableau XX : Données de RMN (¹H, 500Mz et ¹³C, 125MHz ; CD₃OD) du composé TOF₃ comparées aux données de l'acide oléanolique (Adesina et *al.*, 1985).

	TOF ₃ (CD ₃ OD)		Acide oléanolique (CD ₃ OD)		
Position	$\delta_{\rm H} (J \text{ en Hz})$	$\delta_{ m C}$	HMBC ($H \rightarrow C$)	$\delta_{\rm H}(J \text{ en Hz})$	δc
	. , ,		Aglycone	, ,	
1	0,82 (1H, <i>m</i>) 1,34 (1H, <i>m</i>)	33,9	C-2 ; C-10 ; C-5	0,80 ; 1,34 m	38,5
2	1,65 (1H, <i>m</i>) 2,17 (1H, <i>m</i>)	26,7		1,74 ; 2,17 m	26,2
3	3,10 <i>dd</i> (7,6)	89,6	C-1'; C-2; C-3	3,24 <i>dd</i> (7,6)	89,1
4	-	40,1		-	39,1
5	0,74 (1H, <i>m</i>)	56,8		0,72 m	55,7
6	1,27 (1H, <i>m</i>) 1,58 (1H, <i>m</i>)	24,0		1,27 ; 1,47 m	18,4
7	1,44 (1H, <i>m</i>)	33,4		1,27 ; 1,44 <i>m</i>	33,2
8	-	37,5		-	39,6
9	1,57 (1H, <i>m</i>)	46,0		1,59 m	47,9
10	-	40,5		-	36,9
11	1,85(1H, <i>m</i>)	24,4		1,86 ; 2,09 m	23,6
12	5,23 (1H, <i>m</i>)	129,3		5,64 m	122,3
13	-	140,2		-	144,7
14	-	42,3		-	42,1
15	1,05 (1H, <i>m</i>) 2,12 (1H, <i>m</i>)	28,9		1,05 ; 2,12 m	28,1
16	1,85 (1H, <i>m</i>) 1,95 (1H, <i>m</i>)	34,0		1,85 ; 1,95 m	23,7
17	-	37,9		-	46,6
18	2,86 (1H, <i>m</i>)	42,6		3,27 m	41,9
19	1,26 (1H, <i>m</i>) 1.80 (1H, <i>m</i>)	47,2		1,26 ; 1,80 m	46,4
20	-	31,5		-	30,9
21	1,20 (1H, <i>m</i>) 1,43 (1H, <i>m</i>)	33,9		1,20 ; 1,43 m	34,1
22	1,81 (1H, m) 2,03 (1H, m)	34,9		1,81; 2,03 m	33,2
23	0.76 (3H, s)	28.4	C-3: C-24	1.18 s	28.1
24	0.95 (3H, s)	17.6	C-3: C-23	0.97 s	16.9
25	0.92 (3H. s)	23.9	C-9: C-8	0.76 s	15.4
26	0,84 (3H, <i>s</i>)	17,5		0.97 s	17.3
27	1,15 (3H, s)	26,2	C-15	1,28 s	26,1
28	0,80 (3H, s)	17,1	C-17; C-18; C-22	,	180,1
29	0,89 (3H, s)	33,4	C-20		33,2
30	0,93 (3H, s)	16,5	C-29		23,1
		,	Sucre	1	,
1'	4,42 (d, J = 7,3 Hz)	104,9	C-3 ; C-2'		
2'	3,64	57,7			
3'	3,43	75,8			
4'	3,30	72,1			
5'	3,24	77,5			
6'	3,83- 3,67	62,7			
NHCO <u>CH</u> 3	1,93	22,9			
NHCOCH3	-	173,4			

2.2.2.4. Identification du compposé TOF₄

Le composé TOF₄ se présente sous forme de poudre blanche. Il répond positivement au test de Liebermann-Burchard, caractéristique des stérols. L'analyse de son spectre de masse HR-ESI-MS en mode positif exhibe le pic de l'ion *pseudo*-moléculaire à m/z 577,4469 [M+H] ⁺ (masse calculée 577,4468 pour C₃₅H₆₁O₆), correspondant à la formule brute C₃₅H₆₀O₆ et renfermant six degrés d'insaturations (Chaurasia et Wichtl., 1987).

Son spectre IR montre la présence d'un hydroxyle (3430 cm⁻¹) et d'une liaison C–O (1100, 1055 cm⁻¹), d'une double liaison C=C (1629, 883 cm⁻¹) et des groupem CH_2 et CH₃ (2931, 2865, 1465, 1375 cm⁻¹).

Figure 100 : Spectre de masse HR-ESI-MS du compose TOF₄.

L'analyse de son spectre RMN ¹H (**Fig. 101**) révèle la présence d'un doublet large à $\delta_H 5,17$ (1H, J=6,1 Hz) correspondant au proton éthylénique H-6 ; un multiplet d'intégration 1H à $\delta_H 3,07$ correspondant à un proton méthinique portant un atome d'oxygène, notamment le H-3 d'un stérol ; deux singulet à $\delta_H 1,05$ et $\delta_H 0,80$ d'intégration 3H chacun, attribuables aux méthyles 19 et 18 respectivement ; deux doublets et un triplet superposés d'intégration 9H centrés à $\delta_H 0,70$ et 0,63 correspondant aux deux méthyles isopropyliques (H-27 et H-29) qui sont diastéreoisotopiques et par conséquent magnétiquement non équivalent à $\delta_H 1,01$ du méthyle (H-29) (Chaurasia et Wichtl., 1987).

Ce spectre montre également la présence d'un proton anomérique (H-1' d'une unité glycosidique et qui apparait à 4,20 ppm. Les protons H-6'du sucre, notamment le glucose, ont été observés sous forme de doublet dédoublés à δ_H 3,62 (1H, *dd*, *J* =12,0 et 4,9 Hz, H-6'a) et 3,65 (1H, *dd*, *J* =12,0 et 2,80 Hz ; H-6'b).

Figure 101 : Spectre de RMN ¹H (500 MHz, DMSO) du composé TOF₄.

Le spectre de RMN ¹³C révèle la présence de deux atomes de carbone éthylénique. Le premier correspondant à un CH à $\delta_{\rm C}$ 122,2 et le second a un atome de carbone quaternaire à $\delta_{\rm C}$ 140, 5 soit des valeurs de déplacement chimiques caractéristiques des positions C-6 et C-5 d'un stérol. Par ailleurs, on note la présence d'un signal du carbone anomérique apparaissant à $\delta_{\rm C}$ 101,4 (C-1'), ce qui démontre l'emplacement du glycosyle sur l'oxygène de l'aglycone et permet d'en déduire que l'on est en présence d'un *O*-glucosyde (Tableau 21).

Figure 102 : Spectre de RMN ¹³C (125 MHz, DMSO) du composé TOF₄.

Au vu des résultats obtenus et par comparaison avec les données de la littérature, le composé TOF₄ a été identifié comme étant le sitostérol 3-*O*- β -D- glucopyranoside, composé connu et isolé pour la première fois de *Urtica dioica* (Chaurasia et Wichtl., 1987).

Sitosterol 3-*O*-β-D- glucopyranoside (160)

	TOF ₄ (CD ₃ OD/ CDCl ₃)		Sitosterol 3- <i>O</i> -β-D- glucopyran CDCl ₃)	oside (CD ₃ OD/
Nº	$\delta_{H}(\mathrm{ppm})$; J (Hz)	δ_C (ppm)	$\delta_{H}(\mathrm{ppm})$; $J(\mathrm{Hz})$	$\delta_{C}\left(\mathbf{ppm} ight)$
1	1,81 ; 1,01 m	38,5	1,83 ; 1,05 <i>m</i>	37,6
2	1,90 ; 1,50 m	29,9	1,87 ; 1,54 <i>m</i>	30,2
3	3,47 m	76,8	3,52 m	76,9
4	2,27 ; 2,38 m	44,0	2,23 ; 2,36 m	40,1
5	-	140,5	-	140,7
6	5,32 m	122,2	5,33 m	122,4
7	1,93 ; 1,45 <i>m</i>	33,2	1,93 ; 1,44 <i>m</i>	32,2
8	1,42 m	33,1	1,42 m	32,2
9	0,91 m	50,2	0,92 m	50,5
10	-	37,2	-	37,0
11	1,42 ; 1,50 m	21,8	1,41 ; 1,48 <i>m</i>	21,4
12	1,80 ; 1,13 <i>m</i>	40,3	1,98 ; 1,13 <i>m</i>	39,0
13	-	42,9	-	42,6
14	0,99 m	57,3	0,97 m	57,1
15	1,01 m	25,7	1,05 ; 1,55 <i>m</i>	24,6
16	1,93 ; 1,23 m	29,7	1,82 ; 1,24 <i>m</i>	29,2
17	1,07 <i>m</i>	56,3	1,10 m	56,2
18	0,66 s	12,5	0,70 s	12,3
19	0,96 s	19,4	0,97 s	19,5
20	1,33 s	34,4	1,33 m	36,5
21	0,96 s	19,8	0,97 s	19,5
22	1,29 ; 0,98 m	35,7	1,30 ; 0,98 <i>m</i>	34,2
23	1,16 <i>m</i>	25,3	1,13 m	26,3
24	0,86 m	45,6	0,90 m	46,2
25	1,62 m	29,9	1,63 m	29,4
26	0,76 d (j = 6,5 Hz)	18,4	0,76 d (j = 6,2 Hz)	19,2
27	0,77 d (j = 4,7 Hz)	20,5	0,80 d (j = 5,1 Hz)	20,0
28	1,18 ; 1,16 m	23,7	1,25 ; 1,20 <i>m</i>	23,3
29	0,78 t (j = 7,2 Hz)	11,6	0,81 t (j = 7,7 Hz)	12,3
1'	4,22 d (j = 7,8 Hz)	101,6	4,36 d (j = 7,0 Hz)	101,4
2'	3,13 t (j = 7,8 Hz)	74,7	3,19 t (j = 7,0 Hz)	73,9
3'	3,40 <i>m</i>	77,0	3,38 m	76,8
4'	3,38 m	70,9	3,36 m	70,6
5'	3,04 <i>m</i>	76,6	3,24 <i>m</i>	76,3
6'	$3,\overline{61}; 3,41 dd (j = 5,6;$ 11,4 Hz)	61,6	3,80; $3,70 dd$ ($j = 2,8$; $12,0$ Hz)	62,1

Tableau XXI : Données de RMN (¹H, 500 MHz et ¹³C, 125 MHz) du composé TOF₄ comparées à celles de la littérature (Chaurasia et Wichtl., 1987).

2.2.2.5. Identification du composé TOF5

Le composé **TOF**⁵ est isolé sous forme d'un solide blanc et possède un point de fusion variant de 181-183 °C. Il répond positivement au test de Molish, caractéristique des sucres. L'analyse de son spectre de masse ESI-MS, basse résolution en mode positif montre un ion *pseudo*-moléculaire à m/z = 343,1 [M+H]⁺, conforme à la formule C₁₂H₂₂O₁₁.

Figure 103 : Spectre de masse ESI-MS du composé TOF5

L'analyse des spectres RMN ¹H (**Fig. 104**) présente des signaux dans les régions allant de $\delta_{\rm H}$ 3 à 5,5 et de $\delta_{\rm C}$ 60 à 110 respectivement. Ces observations confirment la présence d'un groupe fructose (Yamamori et *al.*, 2017). Son spectre proton montre également la présence d'un signal dans les champs faibles correspondant à un doublet à $\delta_{\rm H}$ 5,18 attribuable à un proton anomérique (H-1) avec une constante de couplage de 3,8 Hz caractéristique d'une liaison α du noyau glucopyranose. Le signal à $\delta_{\rm C}$ 92,2 appartenant au carbone C-1 du α glucose corréler avec le proton à 5,18 (H-1) dans le spectre HSQC, confirmant la présence du carbone anomérique dans le sucre (yamamori et *al.*, 2017).

Figure 104 : Spectre RMN ¹H (400 MHz, DMSO-d₆) du composé TOF₅.

Figure 105 : Spectre RMN ¹³C (100 MHz, DMSO- d₆) du composé TOF₅.

L'analyse de son spectre DEPT 135 (**Fig. 106**) permet de visualiser la présence des signaux concernant l'unité fructose et l'unité osidique à savoir :5 groupements CH du glucose à $\delta_{\rm C}$ 92,2 (C-1) ; 71,1 (C-2) ; 72,5 (C-3) ; 69,2 (C-4) ; 72,3 (C-5) ; 3 groupements CH du fructose à $\delta_{\rm C}$ 76,4 (C-3') ; 73,9 (C-4') ; 81,3 (C-5') ; 3 groupements CH₂ dont l'un appartient à l'unité glucose à $\delta_{\rm C}$ 60,1 (C-6') et les 2 autres à l'unité fructose à $\delta_{\rm C}$ 61,3 (C-1') et 62,3 (C-6').

Figure 106 : Spectre DEPT 135 (100 MHz, DMSO-d₆) du composé TOF₅.

Au vu des résultats obtenus et par comparaison avec les données de la littérature, le composé **TOF**⁵ a été identifié comme étant le β -D- fructofuranosyl-(1 \rightarrow 2)– α -D- glucopyranoside, composé connu et précédemment isolé par yamamori et *al* en 2017.

β-D- fructofuranosyl-(1→2)- α-D-glucopyranoside (161)

Tableau XXII : Données de RMN (¹H, 500 MHz et ¹³C, 100 MHz ; DMSO) du composé TOF5comparées à celle de la littérature (Yamamori et *al.*, 2017).

Г

NIO	TOF5 (DMSO)		β-D-fructofuranosyl-α-D- glucopyranoside (DMSO)		
IN	$\delta_{H}(\mathrm{ppm})$; J (Hz)	δ_C (ppm)	$\delta_{H}(\mathrm{ppm})$; J (Hz)	δ_C (ppm)	
		a-G	Hu		
1	5,18 m	92,2	4,87 d ($j = 8,1$ Hz)	95,4	
2	3,44 m	71,1	3,35 <i>dd</i> (<i>j</i> = 9,3 ; 8,1 Hz)	73,6	
3	3,62 m	72,5	3,54 <i>dd</i> (<i>j</i> = 9,3 ; 9,0 Hz)	76,6	
4	3,53 m	69,2	3,41 <i>dd</i> (<i>j</i> = 9,9 ; 9,0 Hz)	70,4	
5	3,61 m	72,3	3,47 <i>ddd</i> (<i>j</i> = 9,9 ; 5,6 ; 2,3 Hz)	76,5	
6	3,51 m	60,1	3,89 ; 3,71 <i>dd</i> (<i>j</i> = 12,4 ; 2,3 ; 5,6 Hz)	61,3	
β-Fru					
1'	3,49 m	61,3	3,79 ; 3,68 <i>d</i> (<i>j</i> = 12,7Hz)	62,0	
2'		103,9		105,4	
3'	3,87	76,4	4,28 d ($j = 8,7$ Hz)	76,6	
4'	3,52 m	73,9	4,15 <i>dd</i> (<i>j</i> = 8,7 ; 8,4 Hz)	74,5	
5'	3,55 m	81,3	3,93 <i>ddd</i> (<i>j</i> = 8,4 ; 6,6 ; 3,0 Hz)	82,5	
6'	3,49 m	62,3	3,83 ; 3,78 <i>dd</i> (<i>j</i> = 12,5 ; 3,0 ; 6,6 Hz)	63,0	

2.2.2.6. Identification du composé TOF₆

Le composé TOF₆ est isolé sous forme d'un solide blanc et possède un point de fusion variant de 179-181°C. Il répond positivement au test de Molish, caractéristique des sucres. L'analyse de son spectre de masse LC-EI-MS, basse réolution, en mode positif montre un ion *pseudo-* moléculaire à m/z = 182,1 [M+H]⁺ conforme à la formule C₆H₁₄O₆.

L'analyse des spectres RMN ¹H et ¹³C (**Fig. 107**) présente des signaux dans les régions allant de $\delta_{\rm H}$ 3 à 4,5 et de $\delta_{\rm C}$ 60 à 80 respectivement. Son spectre proton montre la présence de quatre signaux de protons hydroxylés à $\delta_{\rm H}$ 4,40 (1H, d, *J*=4 Hz, H-2), 4,35 (1H, *t*, H-3), 4,14 (1H, *d*, *J*=4 Hz, H-1), 3,53 (1H, *m*, H-1') attribuables au proton d'une unité allitol (Hough et Stacey., 1963). Ceci suggère la présence de 2 fragments identiques d'allitol.

L'analyse de son spectre carbone (**Fig. 108**) permet de visualiser la présence de signaux d'un fragment d'unité allitol à savoir : 2 groupements CH hydroxylé à δ_C 71,4 (C-2) ; 63,9 (C-3) ; 1 groupement CH₂ hydroxylé à δ_C 69,9 (C-1).

Figure 108 : Spectre de RMN ¹³C (100 MHz, DMSO) du composé TOF₆.

Au vu des résultats obtenus et par comparaison avec les données de la littérature, le composé TOF_6 a été identifié comme étant le D- mannitol, composé connu et précédemment isolé de *itea yunnanensis* par Hough et Stacey en 1963.

D-mannitol (162)

Tableau XXIII : Données de RMN (1 H, 500 MHz et 13 C, 100 MHz ; DMSO) du composéTOF6 comparées à celle de la littérature.

	TOF ₆ (DMSO)	D-mannitol (DMSO)		
Nº	$\delta_{ m H}(m ppm)$; $J(m Hz)$	$\delta_{ m C}~({ m ppm})$	$\delta_{ m H}({ m ppm}) \ ; \ J({ m Hz})$	$\delta_{\mathrm{C}} (\mathrm{ppm})$
1	4,14- 3,53 <i>d</i> (8 Hz)	69,9	4,12- 3,53 m	69,9
2	4,40 <i>d</i> (4 Hz)	71,4	4,42 m	71,7
3	4,35 <i>t</i> (8 ; 12 Hz)	63,2	4,38 m	65,2
4	4,40 <i>d</i> (4 Hz)	71,4	4,43 m	71,8
5	4,35 <i>t</i> (8 ; 12 Hz)	63,2	4,38 m	65,2
6	4,14- 3,53 <i>t</i> (8 ; 12 Hz)	69,9	4,12- 3,53 m	69,9

2.2.2.7. Identification du composé TOF7

Le composé TOF₇ est obtenu sous forme de poudre blanche amorphe, soluble au méthanol. Il répond positivement au test de Libermann-Buchard, caractéristique des stérols. L'analyse de son spectre de masse LC-ESI-SM haute résolution en mode positif, présente le pic de l'ion *pseudo*- moléculaire à $m/z = 415,3055 [M+H]^+$ conduisant à la formule moléculaire C₂₉H₅₀O, avec cinq degrés d'insaturations.

Figure 109 : Spectre de masse LC-ESI-SM du composé TOF7.

L'analyse de son spectre RMN ¹H présente un large doublet à δ_H 5,26 (1H, *d*, *J*= 6,1Hz) correspondant au proton éthylénique H-6 ; un multiplet d'intégration 1H à δ_H 3,25 ppm correspondant à un proton sur un carbone oxygéné, notamment le H-3 d'un stérol ; deux singulet à δ_H 1,03 et 0,70 d'intégration 3H chacun, attribuables aux méthyles 19 et 18 respectivement ; deux doublets et un triplet superposés d'intégration 9H centrés à δ_H 0,81 et δ_H 0,70 correspondant aux deux méthyles isopropyliques (H-27 et H-28) ; Un singulet δ_H 1,01 correspondant au méthyle (H-29).

Figure 110 : Spectre RMN ¹H (500 MHz, CDCl₃) du composé TOF₇.

Le spectre de RMN ¹³C montre la présence de deux atomes de carbones éthyléniques. Le premier correspondant à un CH à δ_C 121,9 et le second à un atome de carbone quaternaire à δ_C 140,5 soit des valeurs de déplacement chimiques caractéristiques des positions C-5 et C-6 d'un stérol. Par ailleurs, on note la présence d'un signal de carbone méthinique à δ_C 72,0 correspondant au carbone 3 du stérol.

Figure 111 : Spectre RMN ¹³C (120 MHz, CDCl₃) du composé TOF₇.

Par comparaison avec les données de la littérature, l'ensemble de ces données sont en accord avec la structure du β -sitostérol, précédemment isolé de *Saurauia roxburghii* (Ahmed et *al.*, 2013).

	TOF7 (CDCl3)		β-sitostérol (CDCl ₃)		
Nº	$\delta_{H}(\mathrm{ppm})$; J (Hz)	δc (ppm)	$\delta_{H}(\mathrm{ppm})$; $J(\mathrm{Hz})$	δ _C (ppm)	
1	1,81- 1,01 m	37,5	1,83- 1,05 m	38,8	
2	1,90- 1,50 m	31,9	1,87-1,54 m	30,7	
3	3,51 <i>tdd</i> (4,5 ; 4,2 ; 3,8 Hz)	72,0	3,45 <i>tdd</i> (<i>j</i> = 4,5 ; 4,2 ; 3,8 Hz)	71,8	
4	2,27	42,5	2,27	37,0	
5	-	140,9	-	140,8	
6	5,26 t (j = 6,0 Hz)	121,9	5,26 t (j = 6,1Hz)	121,7	
7	1,47-1,92	32,1	1,47-1,92	31,7	
8	1,39-1,55	32,1	1,39-1,55	31,9	
9	0,81-0,89	50,3	0,81-0,89	50,2	
10		36,7		34,0	
11	1,36-1,58	21,3	1,36-1,58	21,2	
12	1,10-1,98	39,9	1,10-1,98	39,8	
13		42,6		42,3	
14	0,91-0,99	56,9	0,91-0,99	56,5	
15	1,49-1,58	26,3	1,49-1,58	24,3	
16	1,22-1,79	28,5	1,22-1,79	28,3	
17	1,03-1,08	56,3	1,03-1,08	54,4	
18	0,67	12,3	0,67	11,9	
19	0,87d j = (6,4)	19,2	1,00 d (j = 6,5 Hz)	19,4	
20	1,26-1,30	34,2	1,26-1,30	36,2	
21	0,94	18,3	0,92	18,8	
22	1,02-1,26	35,1	1,02-1,26	34,0	
23	1,08-1,19	23,3	1,08-1,19	26,1	
24	0,84 <i>t</i> (7,0 Hz)	12,2	0,81-0,89 <i>t</i> (<i>j</i> = 7,2 Hz)	44,9	
25	1,63 m	29,4	1,63	29,2	
26	0,83 d (j = 6,2 Hz)	20,1	0,75-0,85 d (j = 6,4 Hz)	19,0	
27	$0,81d \ (j = 6,2 \text{ Hz})$	19,6	0,75-0,85 d (j = 6,4 Hz)	19,8	
28	1,18 m	19,0	1,20 m	23,1	
29	0,78 m	12,2	0,81 m	12,3	

Tableau XXIV : Données de RMN (¹H, 500MHz et ¹³C, 125 MHz) du composé TOF₇ comparé aux données de la littérature (Ahmed et *al.*, 2013).

2.2.2.8. Identification du composé TOF₈

Le composé **TOF**₈ se présente sous forme d'un solide blanc. L'analyse de son spectre de masse EI-MS, basse résolution exhibe le pic de l'ion moléculaire à m/z 354,3 M^{+.} Correspondant à la formule moléculaire C₂₀H₁₈O₆.

Figure 112 : Spectre de masse EI-MS du composé TOF₈.

Le spectre de RMN¹H présente deux protons sous forme de singulet à δ_H 5,93 (2H, s, H-2') correspondant aux protons du méthylène dioxo ; un système ABX de deux cycles aromatiques à δ_H 6,82 (1H, s, H-7') ; δ_H 6,75 (1H, m, H-4') et δ_H 6,59 (1H, m, H-5') ; deux cycles accolés notamment l'hexahydrofurol à δ_H 3,84 (1H, dd, J= 3,5 ; 9,5 Hz ; H-1') ; δ_H 4,20 (1H, m, H-1''); δ_H 1,6 (1H, s, H-6) et δ_H 3,04 (1H, m, H-5) (Virinder et al., 1998).

Figure 113 : Spectre RMN ¹H (500 MHz, CDCl₃) du composé TOF₈.

Le spectre de RMN ¹³C montre la présence du signal d'un carbone lié à deux atomes d'oxygène à δ_C 101,0 (C-2') correspondant au carbone du méthylène di-oxo ; les carbones d'un noyau benzénique tri substitué accolé au cycle et possédant le méthylène dioxo à δ_C 106,0 (C-7') ; 119,3 (C-5') ; 108,0 (C-4') ; les signaux de carbone méthiniques et méthyléniques de deux cycles accolés à δ_C 71,6 (C-1) ; 54,3 (C-2) et 85,2 (C-3) (Virinder et *al.*, 1998).

Figure 114 : Spectre de RMN ¹³C (125 MHz, CDCl₃) du composé TOF₈.

L'ensemble des données spectrales, comparées à celle de la littérature nous a permis de conclure que **TOF**₈ est l'asarinine ou le 5-[3-(1,3- benzodioxo-5-yl)-1, 3,3a, 4, 6,6a-hexahydrofuro [3,4-c] furan-6-yl] 1,3- benzodioxole, précédemment isolé des racines de *Piper longum* (Virinder et *al.*, 1998).

Asarinine (164)

Tableau XXIV : Données de RMN (¹ H, 500MHz et ¹³ C, 125 MHz) du composé TOF ₈
commparées aux données de la littérature (Virinder et al., 1998).

	TOF ₈ (CD	TOF8 (CDCl3) Asarinine (C		DCl3)
Nº	$\delta_{ m H}(m ppm), J(m Hz)$	δ C (ppm)	$\delta_{ m H}(m ppm), J(m Hz)$	δ c (ppm)
1	4,20 ; 3,84 m	71,6	4,21 ; 3,84 m	71,8
2	1,6 <i>m</i>	85,6	1,62 m	84,2
3	3,04 m	54,3	3,06 m	55,0
4	4,20 ; 3,84 <i>m</i>	71,6	4,21 ; 3,84 <i>m</i>	71,8
5	1,6 m	85,6	1,58 m	85,3
6	3,04 m	54,3	3,06 m	54,0
1'	-	147,8	-	147,0
2'	5,83 s	101,3	5,83 s	100,2
3'	-	147,8	-	147,1
4'	6,72 m	108,2	6,74 m	108,0
5'	6,59 m	119,6	6,6 <i>m</i>	119,0
6'	-	135,1	-	135,0
7'	6,82 m	106,4	6,80 m	106,2
1"	-	147,8	-	147,0
2"	5,83 s	101,3	5,83 s	100,2
3"	-	147,8	-	147,1
4"	6,72 m	108,2	6,74 m	108,0
5"	6,59 m	119,6	6,6 m	119,0
6"	-	135,1	-	135,0
7''	6,82 m	106,4	6,80 m	106,2

2.2.2.9. Identification du composé TOF9

Le composé **TOF**₉ se présente sous forme de poudre blanche, soluble dans le chloroforme. L'analyse de son spectre de masse, à impact électronique, basse résolution, montre le pic de l'ion moléculaire à m/z 280,3 M⁺.

Figure 115 : Spectre de masse EI-SM du composé TOF₉.

L'analyse de son spectre RMN ¹H présente des signaux caractéristiques correspondant à deux protons oléfiniques de type méthine à $\delta_{\rm H}$ 5,30 et 5,32 et des protons des groupes méthylènes à δ_{H} 1,23 (2H, *t*, *J*= 6,4 Hz), δ_{H} 2,22 (2H, *t*, *J*= 7,6 Hz) et δ_{H} 2,02 (4H, m). Ce spectre présente également des protons des groupes méthylènes entre δ_{H} = 1,25 et δ_{H} 1,23 (16H) et un proton du groupe méthyl à δ_{H} 0,87 (3H, *t*, *J*= 6,9 Hz) caractéristique d'un dérivé d'acide gras (Chang et *al.*, 2000).

Figure 116 : Spectre RMN ¹H (500 MHz ; CDCl₃) du composé TOF₉.

L'analyse de son spectre RMN ¹³C présente : Les carbones caractéristiques du groupe méthylène CH₂ à δ_C 33,1 (C-2); 24,5 (C-3) ; 27,1 (C-8 et C-11). Les carbones éthyléniques à δ_C 128,5 et 129,9 correspondants à C-9/10. Le carbone du CH₃ terminal (C-18) à δ_C = 13,9 (Chang et *al.*, 2000).

Sur la base des données spectrales et celles de la littérature, le composé **TOF**₉ a été identifié à l'acide (z)-9 octadecaenoique (acide oléique), précédemment isolé de *Bidens pilosa* par Chang et *al.*, 2000.

	TOF ₉ (C	CDCl ₃)	Acide oléique (CDCl ₃)		
N°	$\delta_{H}(\mathrm{ppm}), J(\mathrm{Hz})$	$\delta_{C}\left(\mathrm{ppm} ight)$	$\delta_{H}(\mathrm{ppm}), J(\mathrm{Hz})$	δ_C (ppm)	
1	-	175,0	-	173,3	
2	2,22 <i>t</i> (7,6 Hz)	33,1	2,32 <i>t</i> (7,4 Hz)	34,1	
3	1,62 m	24,9	1,58 m	24,6	
4	1,25 m	29,9	1,22 m	30,1	
5	1,25 m	29,9	1,22 m	30,1	
6	1,25 m	29,9	1,22 m	30,1	
7	1,25 m	29,9	1,22 m	30,1	
8	2,02 <i>t</i> (7,0 Hz)	26,9	2,03 q (7,0 Hz)	27,2	
9	5,32 m	129,9	5,34 m	130,2	
10	5,30 m	128,5	5,34 m	130,0	
11	1,98 <i>t</i> (6,4 Hz)	25,8	1,95 <i>t</i> (5,9 Hz)	25,6	
12	1,25 m	29,5	1,25 m	29,1	
13	1,25 m	29,5	1,25 m	29,1	
14	1,25 m	29,5	1,23 m	29,0	
15	1,25 m	29,5	1,23 m	29,0	
16	1,23 m	31,7	1,22 m	31,5	
17	1,25 m	22,7	1,22 m	22,6	
18	0,87 <i>t</i> (6,9 Hz)	13,9	0,85 <i>t</i> (6,8 Hz)	14,1	

Tableau XXV : Données de RMN (¹H, 500 MHz et ¹³C, 125 MHz ; CDCl₃) du composé TOF₉ comparé à celles de la littérature (Chang et *al.*, 2000).

2.2.2.10. Identification du composé TOF₁₀

Le composé **TOF**₁₀ est obtenu sous forme de poudre blanche amorphe. Il répond positivement au test de Liebermann- Burchard. Son spectre de masse par ionisation par électrospray haute résolution (HR-ESI-MS) en mode positif exhibe un pic correspondant à l'ion *pseudo*-moléculaire à m/z 683,3992 [M + Na]⁺. Cette valeur est en accord avec la formule brute C₃₈H₆₁NO₈.

Figure 117 : Spectre HR-ESI-MS du composé TOF₁₀.

La comparaison des valeurs des déplacements chimiques observées pour le composé **TOF3** avec celles obtenues dans le composé **TOF10**, montre que ces deux composés ont le même squelette de base, à savoir le type oléanane à l'exception du signal d'un méthyle à δ_H 0,80 (3H, s, H-28) qui est absent sur le spectre proton de **TOF10** (**Fig. 118**) et qui est remplacé par le carbonyle résonnant à δ_C 179,9 (C-28) dans le spectre carbone 13.

Figure 118 : Spectre RMN ^1H (500 MHz ; C5D5N) et $\,$ RMN ^{13}C (125 MHz ; C5D5N) du composé TOF10.

Au vu des résultats obtenus et par comparaison avec les données de la littérature, le composé TOF_{10} est identifié comme étant l'acide oléanolique 3-[*O*-2-acetamido-2-deoxy]- β -D-glucopyranoside, composé connu sur le nom trivial **aridanine** et isolé pour la première fois de *Tetrapleura tetraptera* (Adesina et *al.*, 1985).

NTO	TOF ₁₀ (CD ₃	OD)	Aridanine (CD ₃ OD)		
1	$\delta_H(\text{ppm}); J(\text{Hz})$	δ_C (ppm)	$\delta_H(\text{ppm})$; $J(\text{Hz})$	δ_C (ppm)	
1	0,80 ; 1,34 <i>m</i>	38,2	0,80 ; 1,34 <i>m</i>	38,5	
2	1,74 ; 2,17 <i>m</i>	26,1	1,74 ; 2,17 <i>m</i>	26,2	
3	3,24 <i>dd</i> (7,6)	88,8	3,24 <i>dd</i> (7,6)	89,1	
4	-	39,0	-	39,1	
5	0,72 m	55,5	0,72 m	55,7	
6	1,27 ; 1,47 m	18,2	1,27 ; 1,47 m	18,4	
7	1,27 ; 1,44 m	32,9	1,27 ; 1,44 m	33,2	
8	-	39,4	-	39,6	
9	1,59 m	47,7	1,59 m	47,9	
10	-	36,7	-	36,9	
11	1,86 ; 2,09 m	23,4	1,86 ; 2,09 m	23,6	
12	5,64 m	122,3	5,64 m	122,3	
13	-	144,5	-	144,7	
14	-	41,9	-	42,1	
15	1,05 ; 2,12 m	28,0	1,05 ; 2,12 <i>m</i>	28,1	
16	1,85 ; 1,95 m	23,4	1,85 ; 1,95 m	23,7	
17	-	46,4	-	46,6	
18	3,27 m	41,7	3,27 m	41,9	
19	1,26 ; 1,80 m	46,2	1,26 ; 1,80 m	46,4	
20	-	30,7	-	30,9	
21	1,20 ; 1,43 <i>m</i>	33,9	1,20 ; 1,43 <i>m</i>	34,1	
22	1,81; 2,03 m	32,9	1,81; 2,03 m	33,2	
23	1,18 s	27,8	1,18 s	28,1	
24	0,97 s	16,8	0,97 s	16,9	
25	0,76 s	15,1	0,76 s	15,4	
26	0,97 s	17,2	0,97 s	17,3	
27	1,28 s	25,9	1,28 s	26,1	
28	-	179,9		180,1	
29	0,94 s	33,3	0,94 s	33,2	
30	0,99 s	23,5	0,99 s	23,1	
1'	5,05 <i>d</i> (7,3 Hz)	105,2	5,05 <i>d</i> (7,3 Hz)	104,7	
2'	4,53 m	57,8	4,53 m	58,0	
3'	4,39 m	75,9	4,39 m	76,0	
4'	4,17 <i>m</i>	72,5	4,17 <i>m</i>	72,6	
5'	3,95 m	78,2	3,95 m	78,0	
6'	4,35 ; 4,56 m	62,7	4,35 ; 4,56 m	62,9	
NHCO <u>CH</u> 3	2,14 <i>s</i>	23,5	2,14 <i>s</i>	23,6	
NH <u>CO</u> CH ₃	-	169,9	-	170,2	

Tableau XXVI : Données de RMN (¹H, 500 MHz et ¹³C, 125 MHz ; CD₃OD) du composé TOF₁₀ comparé à celles de la littérature (Adesina et *al.*, 1985).

PARTIE B : ETUDES BIOLOGIQUES ET BIOSYNTHÈSE DE QUELQUES COMPOSÉS ISOLÉS

2.3. Activités biologiques des extraits et de quelques composés isolés

2.3.1. Activité antiplasmodiale et cytotoxique in vitro.

Le tableau 28 résume les résultats obtenus pour l'évaluation de l'activité antiplasmodiale *in vitro* de quelques composés isolés et de l'extrait méthanolique des feuilles de *Tricalysia atherura* sur deux souches de *Plasmodium falciparum*, l'une chloroquino-sensible (3D7) et l'autre chloroquino-résistante (Dd2). L'activité antiplasmodiale a été évaluée en appliquant la méthode basée sur la fluorescence Sybr-green- I décrite par Rasoanaivo et *al* (1992) et en utilisant l'artémisinine comme contrôle positif. Concernant le test cytotoxique, il a été évalué en utilisant les cellules Vero (Lignées cellulaire utilisée pour les cultures cellulaires) comme contrôle positif.

Tableau XXVII : Activité antiplasmodiale et cytotoxique *in vitro* de l'extrait méthanolique et composés purs de *T. atherura*.

	CI ₅₀ (µg/ml)		CC50 (µg/ml)	Indice de selectivité (IS)	
	3D7	Dd2	Vero	3D7	Dd2
Extrait des feuilles	$7,54 \pm 0,53$	$4,39 \pm 0,27$	> 100	> 13,26	> 22,78
Atheruramine (148)	> 100	64,99 ± 13,65	NP*	NP*	NP*
Atheruroside A (146)	> 100	$92,29 \pm 3,78$	NP*	NP*	NP*
19α- hydroxy-α- amyrine (156)	> 100	74,88 ± 1,93	NP*	NP*	NP*
Rubrinol (155)	> 100	$73,02 \pm 1,02$	NP*	NP*	NP*
Artemisinine (µM)	$0,034 \pm 0,004$	0,043 ± 0,011	-	-	-
Chloroquine (µM)	$0,0292 \pm 0,0003$	0,0113 ± 0,0003	-	-	-
Doxorubicine (µM)	-	-	0.62 ± 0.04	-	-

NP= Non réalisé

L'échelle de valeur permettant de déterminer l'activité antiplasmodiale d'un échantillon (Cao et *al.*, 2011) est le suivant :

- > Très bonne activité pour une $CI_{50} < 5 \ \mu g/mL$
- Bonne activité pour une CI₅₀ comprise entre 5 et 15 μg/mL
- > Activité moyenne pour une CI₅₀ comprise entre 15 et 50 μg/mL
- Activité faible pour une $CI_{50} > 50 \ \mu g/mL$
- Activité nulle au-delà de 100 μg/mL

Il ressort de ce tableau, que tous les composés testés à savoir atheruramine (**148**), atheruroside A (**146**), 19 α - hydroxy- α - amyrine (**156**), rubrinol (**155**), possède une activité antiplasmodiale modérée sur la souche de Dd2 de *Plasmodium falciparum* avec des valeurs CI₅₀ de l'ordre du microgramme par millilitre. Le composé atheruramine (CI₅₀ = 64,99 μ M) est plus actif, suivi du composé rubrinol (CI₅₀ = 73,02 μ M), et ensuite les composés 19 α -hydroxy- α - amyrine et atheruroside A avec des CI₅₀ de 74,02 et 92,29 μ M respectivement. Par contre sur la souche 3D7, ils sont tous inactifs. En revanche, l'extrait méthanolique a montré une très bonne activité antiplasmodiale sur les deux souches avec une activité plus prononcée pour la souche Dd2 (CI₅₀ de 4,39 μ M). Au vu de ce résultat, nous pouvons suggérer que les composés testés agissent en synergie pour une meilleure activité. Par ailleurs, les triterpènes et les alcaloides sont reputés pour leurs activités antiplasmodiales (He et *al.*, 2005 ; Hady et *al.*, 2002 ; Liu et *al.*, 2008 ; Hayaski et *al.*, 1987).

Concernant le test cytotoxique, l'extrait brut a montré un indice de selectivité (IS) très intérressant qui traduit une toxicité moindre (IS > 13-22). Par conséquent, etant donné que la vertu médicinale pour laquelle nous testons la plante n'est pas repertoriée, celle-ci, au vu des résultats obtenus, pourrait être classée parmi les plantes antiplasmodiales. De plus, pour appuyer notre discussion à ce propos, certaines plantes du genre asiatique ont été revelés comme possédant des vertus antimalariques (Moshi et *al.*, 2012 ; Chuan- pu et *al.*, 2015) corroborant ainsi nos résultats qui valident le potentiel antimalarique du genre tricalysia.

2.3.2. Activité antileishmaniale et cytotoxique in vitro

L'activité antileishmaniale *in vitro* de quelques composés isolés et de l'extrait méthanolique des feuilles de *Tricalysia oligoneura* a été évaluée sur les souches des promastigotes de *Leishmania donovani* 1S (MHOM/SD/62/1S) et sur les cellules macrophages Raw 264,7 afin de déterminer leurs sélectivités vis-à-vis des parasites. Cette activité a été évaluée suivant la méthode basée sur le dosage colorimétrique de la Resazurine. (Callahan et *al.*, 1997 ; Sereno et Lemesre, 2011) et en utilisant l'amphotéricine B comme contrôle positif. Les résultats sont présentés dans le tableau ci-dessous.

Tableau XXVIII : Activité antileishmaniale et cytotoxique *in vitro* de l'extrait méthanolique et composés purs de *T. oligoneura*.

	L. donovani CI50±SD*	Raw 264.7 $CC_{50} \pm SD^*$	Indice de selectivité
	(µg/mL)	(µg/mL)	(IS)
Extrait des feuilles	$13,62 \pm 0,26$	$68,74 \pm 1,83$	5,05
Oligoneurine (159)	$21,10 \pm 1,06$	> 100	> 4,74
Nonacosane-1,10-diol (157)	> 50	> 100	-
Oligoneuramide (158)	$23,87 \pm 1,45$	> 100	> 4,18
Asarinine (164)	> 50	> 100	-
Amphotericine B	$0,0016 \pm 0,0009$	-	-
Podophyllotoxine	-	$0{,}80\pm0{,}09$	-

L'établissement d'une échelle de valeur pour déterminer l'activité d'un extrait dépend du modèle utilisé (promastigotes, amastigotes axéniques, macrophages infectés).

Pour les promastigotes, les amastigotes axéniques et les macrophages infectés, l'échelle de sélection elaborée par Callahan et collaborateurs en 1997 est la suivante :

- Très bonne activité pour une $CI_{50} < 10 \ \mu g/mL$
- Bonne activité pour une CI₅₀ comprise entre 10 et 25 μg/mL
- Activité moyenne pour une CI_{50} comprise entre 25 et 50 μ g/mL
- Activité faible pour une $CI_{50} > a 50 \ \mu g/mL$
- Activité nulle au-delà de 100 μg/mL

L'analyse de ce tableau montre que l'extrait méthanolique des feuilles de *T. oligoneura* possède une bonne activité (valeur CI₅₀ 13,62 µg/mL) sur promastigote de *L. donavi* et une sélectivité relativement faible (IS= 5,05) qui traduirait une plausible toxicité de la plante pour la consommation humaine (Serene et Lemesre, 2011). Par ailleurs, cet indice de sélectivité observé sur l'extrait suggère que l'activité antileishmaniale modérée observée des isolats devrait probablement provenir de leur cytotoxicité (IS < 10). Par contre, les composés : oligoneurine (**159**), qui est un dérivé de type oléanane et oligoneuramide (**158**) qui est une céramide de type phytosphingosine, ont présenté des activités leishmanicides modérées avec des valeurs de CI₅₀ de 21,10 et 23,87 µg/mL respectivement. L'activité de ces types de composés est principalement attribuée à la présence des groupements hydroxyles (OH) greffés dans leur structure. Par ailleurs, les composés nonacosane-1,10-diol (**157**) et asarinine (**164**) ont présenté des activités leishmanicides faibles avec des valeurs de CI₅₀ > 50 µg/mL et une sélectivité non déterminée.

2.4. Biogenèse de quelques composés isolés

2.4.1. Cas des triterpènes

Les triterpènes isolés dans cette thèse présentent une grande variété structurale. Ils peuvent être regroupés en plusieurs types en fonction de leur biogénèse (oléanane, ursane, lupane...). Leur biosynthèse se produit à travers l'action de l'oxydosqualène cyclase qui génère divers types de triterpènes à partir du 2,3- epoxysqualène après rearrangement du squelette triterpénique (Han et *al.*, 2019). Par la suite, le fragment triterpénique en C-3 dérivé de la β - amyrine subirait une deshydratation intermoléculaire en présence du glycoside (D- apiose ou D- xylose) lors du processus biogénétique pour conduire aux composés indexés TAF₁, TAF₂, TAF₁₁ et TOF₃.

2.4.2. Cas des alcaloïdes indolomonoterpéniques

Les alcaloïdes indoliques isolés dans cette thèse présentent également une grande variété structurale. Ils peuvent être regroupés en trois classes en fonction de leur biogénèse (corynanthéanes, vincosanes et iboganes) qui présentent chacune un lien biogénétique. Leur biosynthèse utilise comme précurseur le tryptophane qui est acide alpha aminé se réduisant pour donner la tryptamine, qui par la suite réagit avec la sécologanine pour donner la strictosidine, intermédiaire à partir duquel se forme la plupart des alcaloïdes indolomonoterpéniques (Rodney et *al.*, 2000).

Schéma 13 : Biosynthèse de quelques alcaloïdes indoliques isolés.

2.5. Importance Chimiotaxonomique

Les résultats obtenus de ce travail viennent enrichir la panoplie des métabolites secondaires du genre *Tricalysia*. Les études antérieures relevées dans les pages précédentes montrent que le genre est source d'alcaloïdes (Wang et *al.*, 2002), de stéroïdes (Tamaki et *al.*, 2008), d'acides gras (Awouafack et *al.*, 2018), d'alcool lineaire, de sucres, mais principalement des diterpènes (He et *al.*, 2005 ; Xu et *al.*, 2009 ; Shimatoko et *al.*, 2010 ; Shen et *al.*, 2015) qui ont été jusqu'à présent recensés comme les marqueurs du genre. Notre étude associée aux résultats issus de la bibliographie sur le genre, montre qu'en plus de ces composés, les alcaloïdes indoliques et surtout les triterpènes apparaissent au même titre que les diterpènes, comme les marqueurs chimiques du genre.

CONCLUSION GÉNÉRALE ET PERSPECTIVES

Nos travaux avaient pour objectif de rechercher des molécules à potentiels antiparasitaires, aux fins de lutter contre le phénomène de résistance aux agents antiplasmodiaux et antileishmaniaux, de valoriser et/ou de classer les usages traditionnels de plantes émanant de la biodiversité camerounaise. Ainsi, l'étude phytochimique de deux plantes de la famille des Rubiaceae (*Tricalysia atherura* N. Hallé et *Tricalysia oligoneura* S. schum) a conduit à l'isolement de vingt- et- un composé, dont sept dérivés nouveaux. Leur caractérisation a été réalisée à l'aide de techniques spectroscopiques (RMN 1D et 2D), spectrometrie, dichroisme circulaire et par comparaison avec la littérature.

Des feuilles de *Tricalysia atherura* N. Hallé, 11 composés (3 alcaloïdes, 6 triterpènes, 01 composé phénolique et 01 diterpène) ont été isolé parmi lesquels 04 sont décrits pour la première fois ; Il s'agit de : un alcaloïde indolique de type akuammidine (atheruramine), deux triterpènes glycosilés, Atheruroside A et B et un composé phénolique ayant une configuration *thréo* (tricalydioloside).

Des feuilles de *Tricalysia oligoneura* S. schum, 10 composés (4 triterpènes, 2 dérivés d'acide gras, 1 céramide, 02 sucres et 01 lignane) ont été isolés parmi lesquels 3 sont décrits pour la première fois ; dont un alcool *n*-paraffinique, le nonacosane - 1,10 - diol, une céramide de type phytosphingosine, l'oligoneuramide et un triterpène glycosilé (Oligoneurine). Ces composés sont isolés pour la première fois du genre.

Des métabolites secondaires rencontrés dans le genre *Tricalysia*, très peu de triterpènes et d'alcaloïdes indoliques ont été isolés. Les diterpènes et alcaloïdes diterpéniques sont des marqueurs de ce genre. Les acides ursolique, oléanolique et betulinique ont été isolés, mais aucun triterpène glycosylé dans de ce genre. D'un point de vue chimiotaxonomique, nos résultats apportent donc une précieuse contribution à la connaissance de la chimie des plantes du genre *Tricalysia* de la famille des Rubiaceae.

La prochaine étape a été l'évaluation biologique des extraits et composés obtenus. Deux activités biologiques ont été retenues : l'activité antiplasmodiale et l'activité antileishmaniale.

L'activité antiplasmodiale a été évaluée sur l'extrait brut et 04 composés de *T. atherura* sur les souches 3D7 et Dd2 de *P. falciparum*. En effet, l'étude de la bioactivité de l'extrait brut de ladite plante et de certains composés isolés a montré une bonne activité antiplasmodiale pour l'extrait (CI₅₀ 4,39–7,54 µg/mL) et une activité modérée (CI₅₀ 64,99–92,29 µg/mL pour les composés testés (souche Dd2 de *P. falciparum*). Ceci suggère une activité convergente des

différents constituants de la plante. Ainsi l'extrait brut de *T. atherura* présente un potentiel considérable et pourrait être exploité comme remède antimalarique.

Enfin, les activités antileishmaniales et cytotoxiques de quelques composés isolés et de l'extrait méthanolique des feuilles de *Tricalysia oligoneura* ont été évalué sur les promastigotes de *Leishmania donovani* 1S (MHOM/SD/62/1S) et sur les cellules macrophages Raw 264,7 respectivement. Il ressort de cette évaluation que les composés oligoneurine et oligoneuramide ont présenté des activités leishmanicides modérées avec des valeurs de CI₅₀ de 21,10 et 23,87 μ g/mL respectivement. En revanche, l'extrait brut a montré une bonne activité (valeur CI₅₀ 13,62 μ g/mL) sur le parasite et une sélectivité relativement faible (IS= 5,05) ce qui traduirait une plausible toxicité de la plante pour la consommation humaine.

Dans la suite de nos travaux, nous envisageons de :

- Poursuivre l'étude phytochimique des autres parties de ces plantes afin d'isoler d'autres classes de métabolites secondaires ;
- Affiner davantage la chimiotaxonomie du genre ;
- Faire des tests antiplasmodiaux et antileishmaniaux sur d'autres composés isolés des feuilles de *Tricalysia atherura* N. hallé et *Tricalysia oligoneura* K. Schum afin d'identifier ceux qui pourraient mieux agir sur les souches résistantes et multirésistante du paludisme et la leishmaniose ;
- Faire les hémisynthèses des composés afin d'optimiser l'activité biologique.

3.1. Matériel végétal

L'identification des espèces ci-dessous a été réalisée par Monsieur NANA Victor, botaniste à l'Herbier National du Cameroun.

Tricalysia atherura N. Hallé.

Tricalysia atherura N. Hallé. a été récolté en mars 2019 à Nkolbisson (Région du Centre Cameroun). La plante une fois identifiée à l'Herbier National du Cameroun, un échantillon de référence y a été déposé sous le numéro (23507/HNC).

Tricalysia oligoneura S. schum.

Tricalysia oligoneura S. schum a été récolté au Mont Ngongonjié à Akonetyé, region du Sud-Cameroun en Septembre 2020. La plante a été identifiée à l'Herbier National du Cameroun où un échantillon de référence a été déposé sous le numéro (42144/HNC).

3.2. Séparation et isolement

> Fractionnement et isolement des composés de *Tricalysia atherura* N. Hallé.

La poudre séchée des feuilles de Tricalysia atherura (500 g) a été extraite par macération au MeOH (2L) à température ambiante trois fois pendant 72h afin d'obtenir l'extrait brut (60 g) après filtration et évaporation sous pression réduite. Cet extrait brut à été dissous dans un mélange H₂O/ MeOH (20%) et partitionné successivement à l'hexane et à l'acétate d'éthyle respectivement. L'extrait à l'AcOEt (3,86 g) a été soumis à une CC sur gel de silice et élué avec les gradients n-Hex/ AcOEt (100/0 ; 90/10 ; 80/20 ; 70/30; 60/40 ; 0/100 v/v), suivi d'AcOEt/ MeOH (100/0 ; 90/10 ; 80/20 ; 70/30 ; 60/40 ; 0/100 v/v) pour donner six fractions principales : A (0,63 g), B (112 mg), C (0,41 g), D (0,75 g), E (452 mg) et F (107 mg). La fraction C (0,41 g) a été purifiée sur gel de silice (CC) élué avec le gradient n-Hex/ AcOEt (80/20 à 100/0, v/v) permettant ainsi d'obtenir trois sous-fractions (C₁-C₃). La sous-fraction C₁ (23 mg) a été purifié au Sephadex LH-20 avec du MeOH pour obtenir le composé TAF9 (17 mg). La sous-fraction C₃ (17 mg) a également été purifiée sur Sephadex LH-20 pour donner le composé **TAF**₁₀ (5,4 mg). La fraction D (0,75 g) quant à elle a été soumise à une CC sur gel de silice et éluée au gradient *n*-Hex/AcOEt (100/0 à 0/100 v/v) pour obtenir un mélange de deux composés. Ce mélange a ensuite été séparé par CCM préparative en utilisant le sytème n-Hex/ AcOEt (70/30 v/v) afin d'obtenir deux composés TAF11 (15,0 mg) et TAF6 (7,0 mg). La fraction E (452 mg) a été purifiée sur CC de gel de silice en utilisant le gradient CH₂Cl₂/ MeOH

(30/1 à 5/1 v/v) pour donner trois sous-fractions (E₁-E₃). La sous-fraction E₁ (31 mg) a été purifiée par chromatographie sur gel de silice (SiO₂) avec le système CH₂Cl₂/ MeOH (30/1 à 5/1 ; v/v) pour donner les composés **TAF**₇ (4,7 mg) et **TAF**₈ (3,9 mg). La sous-fraction E₃ (71 mg) a été encore chromatographiée en utilisant le Sephadex LH-20 CC, avec le MeOH comme phase mobile pour donner le composé **TAF**₃ (8,2 mg). La sous-fraction E₂ (100 mg) a ensuite été successivement purifiée par Chromatographie flash avec le CH₂Cl₂/ MeOH (8/1 ; v/v) pour donner les composés **TAF**₁ (10,0 mg) et **TAF**₂ (7,3 mg). La fraction F (107 mg) a ensuite été successivement purifiée en utilisant le séphadex LH-20 CC avec système d'élution le CH₂Cl₂/ MeOH (50/50 v/v) pour obtenir deux sous-fractions (SF₁- SF₂). La sous-fraction SF₂ (0,48 g) a été purifiée davantage sur une phase inverse par chromatographie liquide à haute performance (HPLC ; sil-d-60-80A, 20 ×250 mm, 40 % MeOH à 2,4 mL/ min) pour donner **TAF**₄ (4,0 mg, tr 21,2 min) et **TAF**₅ (5,3 mg).

> Fractionnement et isolement des composés de Tricalysia oligoneura K. schum.

Les feuilles séchées de Tricalysia Oligoneura ont été réduites en poudre (900 g) et soumises à une macération au méthanol à 100%. La solution de méthanol a été concentrée sous pression réduite pour donner 35 g d'extrait brut. Une partie de cet extrait brut (20 g) a été soumise à une chromatographie sur colonne de gel de silice (CC) et éluée au gradient de CH₂Cl₂/MeOH (100/0 à 0/1 v/v), donnant 189 fractions qui ont été combinées en sept fractions après analyse CCM. La fraction A (3,42 g) a été chromatographiée sur une colonne de gel de silice, éluée au gradient n-Hex/ AcOEt (100/0 à 0/100 v/v) pour donner les composés TOF7 (10 mg) et TOF8 (5,31 mg). La fraction C (0,49 g) issue de cette procédure a été soumise à une chromatographie flash sur colonne de gel de silice, éluée au gradient n-Hex/AcOEt (9/1 à 1/1 v/v) pour donner 2 sousfractions. La sous-fraction C1 (87,3 mg) a été purifiée sur une colonne de gel de silice en utilisant du CH₂Cl₂/ MeOH (100/0 à 0/100 v/v) pour obtenir les composés TOF₁ (6,8 mg) et **TOF**₉ (4,3 mg). La fraction D (0,73 g) quant à elle a été soumise à une chromatographie sur gel de silice flash éluée au n-Hex/ AcOEt (100/0 à 0/100 v/v) pour obtenir trois sous-fractions. La sous-fraction D₁ (103 mg) a été purifiée sur une colonne de gel de silice en utilisant le système CH₂Cl₂/ MeOH (30/1 à 0/1 v/v), pour obtenir le composé TOF₅ (20 mg). La sous-fraction D₃ (197 mg) a été purifiée sur une colonne de gel de silice en utilisant le système CH₂Cl₂/ MeOH (20/1 à 0/1 v/v), pour donner deux sous-fractions (D_{3a} et D_{3b}). Les sous-fractions D_{3b} (32 mg) et D_{3a} (17 mg) ont été par la suite chromatographiée sur un séphadex LH-20 en utilisant MeOH
comme solvant, pour donner les composés **TOF**₂ (8,1 mg) et **TOF**₁₀ (5,1 mg). La fraction E (1,43 g) quant à elle a été soumise à une chromatographie sur gel de silice, en éluant au gradient CH₂Cl₂/ MeOH (20/1 à 0/1, v/v), donnant deux sous-fractions (E₁ et E₂). La sous-fraction E₁ (40 mg) a été purifiée sur une phase inverse par chromatographie liquide à haute performance (HPLC ; sil-d-60-80A, 20 ×250 mm, 20% MeOH à 2,4 mL/ min) pour donner les composés **TOF**₃ (9,4 mg) et **TOF**₄ (17 mg). Par ailleurs, La fraction F (1,1 g) a été soumise à la même procédure chromatographique précédente, ce qui a donné trois sous- fractions (F₁-F₃). La sous-fraction F₁ (27,3 mg) a été recueillie et ensuite recristallisée avec de l'acétone, pour donner le composé **TOF**₆ (19,7 mg).

3.3. Méthodes chromatographiques

3.3.1. Chromatographie sur couche mince

La chromatographie sur couche mince (CCM) est une technique de chromatographie dont la phase mobile est liquide. Elle est couramment utilisée pour séparer des composants dans un but d'analyse (CCM analytique) ou de purification (CCM préparative). Elle comprend :

- Une phase stationnaire : une couche mince de matériel adsorbant (usuellement du gel de silice, de l'oxyde d'aluminium ou de la cellulose) ;
- Une phase liquide, dite phase mobile ou éluant : un solvant ou un mélange de solvants qui va entraîner les composés à se séparer le long de la phase stationnaire.

Le développement de ces plaques s'effectue dans des cuves en verre, saturées avec l'éluant approprié, constitué généralement d'un mélange binaire ou tertiaire de solvants selon le type de séparation souhaité.

Conditions chromatographiques :

Phase stationnaire

Plaque de silice CCM (60 Å, F₂₅₄, *Silicycle*),

Phase mobile

CH₂Cl₂/MeOH; 20:1, 10:1, 8:1 (v/v) n-Hex/AcOEt; 100:0 à 0: 100 (v/v)

Révélation

Les plaques sont observées avant et après révélation. Les révélateurs utilisés sur les plaques de silice sont la lampe UV à 254 et 366 nm, la vanilline, l'acide sulfurique (mélange à 10% de solution concentrée de H₂SO₄ et 90% d'éthanol).

3.3.2. Chromatographie sur gel perméable

La chromatographie par perméation de gel (GPC), également appelée chromatographie d'exclusion stérique (SEC) ou chromatographie par filtration sur gel (GFC), est une technique chromatographique qui sépare les molécules dissoutes selon leur taille en les pompant dans des colonnes spéciales contenant un matériau de garniture microporeux. On utilise les granules de gel poreux Sephadex® LH–20. Les premières molécules à sortir de la colonne remplie du gel sont les grosses molécules au diamètre supérieur aux pores du gel. Les petites molécules quant à elles, vont donc sortir les dernières, car incluses dans le gel.

Conditions chromatographiques :

Phase stationnaire

Sephadex® LH-20 (*Pharmacia*) est un dextrane, un polymère linéaire de glucose, semi-rigide, possédant des ramifications par l'hydroxypropyle.

Phases mobiles

Méthanol, MeOH 100 %

Chlorure de Méthylène/ Méthanol, CH2Cl2/ MeOH 50 %.

3.3.3. Chromatographie Liquide Haute Performance (HPLC)

La chromatographie en phase liquide à haute performance (CLHP) dont l'abréviation anglaise HPLC (high performance liquid chromatography ou plus rarement high pressure liquid chromatography) est une technique de séparation analytique et/ou préparatrice de molécules présentes dans un mélange. Cela permet d'adapter les méthodes chromatographiques usuelles (voir Colonne) sur un montage haute pression. Cette forme de chromatographie est fréquemment utilisée en biochimie, ainsi qu'en chimie analytique.

Conditions chromatographiques

Phase stationnaire :

La chromatographie en phase liquide haute pression (HPLC) semi-préparative, a été réalisée avec une pompe Gilson M 305, équipée d'un logiciel Trilution LC utilisant la colonne Nucleodur 100-5 C18ec (21x250 mm, 5 µm). Quant à la silice utilisée elle est fonction du type de composé à isoler. Nous pouvons avoir : Silice en phase inverse sil-d-60-80A, 20×250 mm,

Phase mobile

Les systèmes d'élutions employés sont généralement des mélanges binaires en gradient de polarité : 40% MeOH/ H₂O à 2,4 mL/ min.

Figure 119 : Appareil de HPLC (photo Djikam, Hej-ICCBS, Université de Karachi, 2021).

3.3.4. Chromatographie en phase liquide couplée à la spectrométrie de masse LC/MS

Les spectres de masse à haute résolution ont été obtenus avec un spectromètre QTOF (Bruker, Allemagne) équipé d'une source HESI. Le spectromètre a fonctionné en mode positif (plage de masse : 100-1500, avec une vitesse de balayage de 1,00 Hz) avec un contrôle automatique du gain pour fournir des mésures de masse de haute précision avec une déviation de 2 ppm en utilisant le formiate de Na comme calibrant. Les paramètres suivants ont été utilisés pour les expériences : tension de pulvérisation de 4,5 kV, température du capillaire de 200°C. De l'azote a été utilisé comme gaz de gaine (10 l/min). Le spectromètre était attaché à un système HPLC Ultimate 3000 (Thermo Fisher, USA) composé d'une pompe LC, d'un détecteur à réseau de diodes (DAD) (λ : 215, 254, 280, 330 nm), d'un échantillonneur automatique (volume d'injection 5 l) et d'un four à colonne (50 °C). Les séparations ont été réalisées à l'aide

d'une colonne Synergi MAX-RP 100A (50x2 mm, taille des particules 2.5μ) avec un gradient H2O (+0.1 % HCOOH) (A)/acétonitrile (+0.1 % HCOOH) (B) (débit 500 µL/min). Les échantillons ont été analysés en utilisant un programme de gradient comme suit : 95 % A isocratique pendant 1,5 min, gradient linéaire jusqu'à 100 % B sur 6 min, après 100 % B isocratique pendant 2 min, le système est revenu à sa condition initiale (90 % A) en 1 min, et a été équilibré pendant 1 min.

3.4. Méthodes physico-chimiques

3.4.1. Spectrométrie de masse

Les spectres EI-MS, HRESI-MS et HRFAB-MS ont été enregistrés en utilisant un spectromètre Brucker JEOL JMS-60H.

3.4.2. Spectroscopie IR

Les spectres d'absorption IR sont enregistrés sur un spectromètre FT-IR Tensor 27 (Bruker). Les composés solides, sont inclus dans une pastille de KBr. Les nombres d'onde des bandes d'absorption correspondant aux différentes vibrations sont exprimés en cm⁻¹, à leurs intensités maximales. Les spectres IR des molécules ont été réalisés au moyen des spectrophotomètres FT-IR Tensor 27 (Bruker) et Shimadzu 8900 FT-IR sur une lame de AgCl et dans des pastilles de KBr respectivement.

Pour cela, une quantité de 1 mg d'échantillon a été mélangée à 100 mg de KBr (qualité IR). La pastille a été obtenue à l'aide d'une presse Shimadzu 8900FT-IR. Le balayage des nombres d'onde a été fait entre 4000 et 600 cm-1 sur une durée de 20 minutes. D'autre part 1 mg d'échantillon a été dissout dans le CH₂Cl₂ et déposé sur une lame de AgCl et introduit dans le spectrophotomètre FT-IR Tensor 27. Le balayage des nombres d'onde a été fait entre 4000 et 600 cm⁻¹ sur une durée de 5 minutes.

3.4.3. Spectroscopie UV

L'enregistrement des spectres UV s'est fait à l'aide d'un spectrophotomètre Hitachi U-320, piloté par un logiciel adapté, développé par la même entreprise.

3.4.4. Spectroscopie de Résonance Magnétique Nucléaire (RMN)

L'enregistrement des spectres RMN s'est fait à l'aide d'un spectromètre Bruker Avance 400, Avance 500, Avance 600 MHz en utilisant le TMS comme standard interne, avec les déplacements chimiques enregistrés comme valeurs δ . Les déplacements chimiques sont exprimés en ppm et les constantes de couplage sont en Hz. En ce qui concerne les solvants de RMN utilisés pour analyser nos composés, nous avons fait recours au méthanol deuteuré (CD_3OD), Chloroforme deuteré ($CDCl_3$), le diméthylsulfoxyde deuteré ($DMSO-d_6$), la pyridine deuteré ($C_5D_5N-d_5$).

3.4.5. Hydrolyse acide

Cette technique permet la libération de toutes les unités osidiques engagées dans des liaisons *O*-glycosidiques, ainsi leur identification sera possible par comparaison à des sucres standards. Tous les triterpènes glycosilés (2 mg) sont hydrolysés avec 2 ml de HCl 2M à 85 °C pendant 2 h. Après refroidissement, le solvant est éliminé sous pression réduite. Le mélange de sucre est extrait de la phase aqueuse (10 ml) et lavé avec CH_2Cl_2 (3x 5 ml). Les extraits combinés de CH_2Cl_2 sont lavés avec de l'eau distillée pour donner après évaporation le fragment aglycone. Les sucres sont d'abord analysés par CCM sur gel de silice (CHCl₃ – MeOH – H₂O, 8: 5: 1) par comparaison avec des échantillons standards. La configuration absolue de chaque monosaccharide a été déterminée à partir d'une analyse GC–MS de leurs dérivés

triméthylsilylés par comparaison avec des échantillons authentiques en utilisant la méthode décrite précédemment (Chaabi *et al.*, 2010).

3.4.6. Pouvoir rotatoire

Les rotations optiques ont été mesurées avec un polarimètre numérique automatique P2000 à la longueur d'onde de la raie D du sodium ($\lambda = 589$ nm) dans une cuve de 1 dm à 20°c. Le pouvoir rotatoire spécifique [α]_D, exprimé en degré, est calculé à partir de la formule suivante : [α]_D=1000. α /l.c, (α : angle de rotation, en degré, lu sur le polarimètre, l : longueur de la cuve en dm, c : concentration de la molécule en solution en g/L).

3.4.7. Point de fusion (P.F.)

L'appareil de point de fusion Gallenkamp a été utilisé pour la détermination du point de fusion dans des tubes capillaires ouverts.

3.5. Méthodes biologiques

3.5.1. Evaluation de l'activité antiplasmodiale in vitro

3.5.1.1. Culture in vitro de Plasmodium falciparum

Des souches 3D7 (*Pf* 3D7) sensibles à la chloroquine et Dd2 (*Pf*Dd2) résistantes à la chloroquine de *P. falciparum* ont été maintenues au laboratoire de recherche du paludisme, International Centre for Genetic Engineering and Biotechnology, New Delhi, Inde, et ont été utilisées pour tester *in vitro* l'activité antiplasmodiale des extraits et fractions de plantes au stade sanguin. La culture de *Plasmodium falciparum* a été maintenue selon la méthode décrite par Trager et Jensen (1976) avec des modifications mineures (Kaushik et *al.* 2015), dans des érythrocytes humains frais O positifs en suspension à 4% d'hématocrite dans du RPMI 1640 16,2 g/L (Sigma-Aldrich, New Delhi, Inde) contenant 25 mM HEPES, 11. 11 mM de glucose, 0,2% de bicarbonate de sodium (Sigma-Aldrich, New Delhi, Inde), 0,5% d'albumax I (Gibco, Waltham, MA USA), 45 mg/L d'hypoxanthine (Sigma-Aldrich, New Delhi, Inde) et 50 mg/L de gentamicine (Gibco, Waltham, MA USA) puis incubés à 37 °C sous un mélange gazeux de 5% O₂, 5% CO₂ et 90% N₂. Chaque jour, les érythrocytes infectés ont été transférés dans un milieu complet frais pour propager la culture. Lorsque la parasitémie était supérieure à 10%, les cultures étaient diluées dans des globules rouges sains afin de réduire le pourcentage de parasitémie à 1-2% et de maintenir les cultures dans des conditions sans stress.

3.5.1.2. Essai in vitro de Plasmodium falciparum

L'extrait brut et les fractions ont été évalués pour leur activité antiplasmodiale contre les souches 3D7 et Dd2 de P. falciparum. Pour le criblage des médicaments, le test de fluorescence à base de SYBR green I a été mis en place comme décrit par Smilkstein et al. (2004). Précisément, 100 µL de parasites synchronisés au sorbitol (Lambros et Vanderberg 1979) ont été incubés dans des conditions de culture normales (37 °C, 5 % de CO₂, 5 % d'O₂, 90 % de N₂) à 1 % de parasitémie et 2 % d'hématocrite dans des plaques à 96 puits à fond plat (Corning, États-Unis) en l'absence ou en présence de concentrations croissantes d'extraits bruts ou de fractions pendant 48 heures. La chloroquine (Sigma-Aldrich, New Delhi, Inde) a été utilisée comme témoin positif, tandis que le DMSO à 0,4 % (v/v) a servi de témoin négatif. Après l'incubation, 100 µL de tampon de lyse SYBR green I (Tris (20 mM; pH 7,5), EDTA (5 mM), saponine (0,008%, p/v) et Triton X-100 (0,08%, v/v) ont été ajoutés à chaque puits et mélangés doucement deux fois, puis incubés dans l'obscurité à 37 °C pendant 1 heure. La fluorescence a ensuite été mesurée à l'aide d'un lecteur de plaques multipuits à fluorescence Victor (Perkin Elmer, Waltham, MA, USA) avec des bandes de longueur d'onde d'excitation et d'émission centrées sur 485 et 530 nm, respectivement. Les comptes de fluorescence ont été tracés en fonction de la concentration du médicament et la concentration inhibitrice de 50 % (CI₅₀) a été déterminée par analyse des courbes dose-réponse à l'aide d'une régression non linéaire.

3.5.1.3. Activité antileishmaniale in vitro

Les promastigotes de *Leishmania donovani* 1S (MHOM/SD/62/1S) ont été cultivés à 28°C dans un milieu de culture axénique M199 (Sigma Aldrich) complété par 10 % de sérum fœtal bovin (FBS) inactivé par la chaleur (Sigma Aldrich) et 1 % de streptomycine/pénicilline (Sigma Aldrich). L'activité antileishmaniale des échantillons testés a été déterminée comme décrit précédemment (Siqueira et *al.* 2010) en utilisant le test à base de résazurine. Les composés ont été dilués en série dans du milieu M199 incomplet et 10 μ L de chaque composé ont été introduit dans 90 μ L de promastigotes de *L. donovani* (4×105 parasites) provenant d'une culture en phase exponentielle en milieu complet. Ils ont tous été criblés à des concentrations finales de 100-0,16 μ g/mL pour les extraits et les fractions et de 50-0,08 μ g/mL pour les composés et les plaques de tests ont été incubées pendant 28 h à 28°C, suivie de l'ajout de 1 mg/mL de résazurine. Les contrôles négatifs et positifs étaient respectivement le DMSO à 0,1 % et l'amphotéricine B (Sigma Darmstadt, Allemagne) (10-0,016 μ g/mL). Après une incubation supplémentaire de 44 h, les plaques ont ensuite été lues sur un lecteur de plaques multipuits à

fluorescence Magelan Infinite M200 (Tecan) à une longueur d'onde d'excitation et d'émission de 530 et 590 nm, respectivement. Pour chaque échantillon, les pourcentages de croissance ont été calculés et des courbes dose-réponse ont été construite pour déterminer la concentration inhibitrice de 50 % (CI₅₀) à l'aide du logiciel GraphPad-version 5.0.

3.5.1.3.1. Essai de cytotoxicité

Le profil de cytotoxicité de l'extrait et des composés a été évalué en utilisant l'essai au bleu d'Alamar (Bowling et *al.*, 2012) contre les cellules RAW 264,7 cultivées dans un milieu d'Eagle modifié de Dulbecco (DMD) complet.

Modified Eagle's Medium (DMEM) contenant 13,5 g/L de DMEM (Sigma Aldrich), 10 % de sérum fœtal de bovin (Sigma Aldrich), 0,2 % de bicarbonate de sodium (m/V) (Sigma Aldrich) et 50 µg/mL de gentamicine (Sigma Aldrich). Globalement, les macrophages ont été ensemencés dans des plaques à fond plat de 96 puits de culture cellulaire à une densité de 104 cellules dans 100 µL de milieu complet/puits et incubés pendant 24 h à 37°C, 5 % de CO₂ pour permettre l'adhésion des cellules. Dix microlitres de chaque solution d'échantillons à tester diluée en série ont été ajoutés dans des puits triples de plaques d'essai et ont ensuite été incubés pendant 48 h dans les mêmes conditions expérimentales. Des puits de contrôle de croissance (0,1 % DMSO-100 % de croissance) et de contrôle positif [podophyllotoxine (Sigma Darmstadt, Allemagne) à 20 µM] ont été inclus dans les plaques d'expérimentation. La prolifération cellulaire a été vérifiée en ajoutant 10 µL d'une solution mère de résazurine (0,15 mg/mL dans du PBS stérile) à chaque puits, puis en incubant les plaques pendant 4 h. La fluorescence a ensuite été lue sur un lecteur de plaques multi-puits à fluorescence Tecan Infinite M200 (Tecan) à une excitation/émission de 530/590 nm. Les résultats ont été exprimés en concentrations cytotoxiques à 50 % (CC₅₀) et les indices de sélectivité (CC₅₀ cellule mammalienne/CI₅₀ L. donovani) ont été calculés pour chaque substance testée.

3.5.1.3.2. Analyse des données

Toutes les données d'activité représentent la moyenne \pm l'écart-type (SD) de trois expériences indépendantes. Le logiciel Microsoft Excel a été utilisé pour calculer le pourcentage d'inhibition. Les valeurs CI₅₀ et CC₅₀ ont été déterminées à l'aide du logiciel Graph Pad prism 5.0, les données étant ajustées par régression non linéaire.

3.6. Sreening phytochimique des extraits

Un sreening phytochimique a permi de déterminer les grands groupes de composés présents (tableau XXIX).

Classe des composés	Tests caractéristiques
Alcaloïdes (Test de Dragendorff)	Préparer une solution composée de 0,85 g de nitrate basique de bismuth et 10 mL d'acide acétique dans 40 mL d'eau (= A) et une solution contenant 16 g de KI dans 40 mL d'eau (= B). Mélanger extemporanément 5 mL de A, 5 mL de B, 100 mL d'eau et 20 mL d'acide acétique. Vaporiser le mélange sur la plaque. Les alcaloïdes apparaissent sous forme de taches orange après chauffage de la plaque (Wagner et Bladt, 1996).
Triterpenoïdes et phytosterols (Test de Liebermann- Burchard)	A 2 mL de l'extrait contenu dans un tube à essai, on y ajoute 2 mL de chloroforme. Le filtrat est par la suite traité avec quelques ml d'anhydride acétique à chaud, puis refroidi. La formation d'une interface rouge foncé indique la présence de triterpenoides et de phytostérols (Cook, 1961).
Sucres (Test de Molisch)	A 2 mL de l'extrait contenu dans un tube à essai, on y ajoute deux gouttes de solution alcoolique de α -naphtol (20%). Le mélange est agité, puis 1 mL d'acide sulfurique concentré est ajouté lentement le long du tube puis refroidi dans de la glace. La présence des sucres est indiquée par la formation d'une interface de couleur violette (Foulger, 1931). Le solvant utilisé pour l'identification des sucres est : CHCl ₃ -MeOH-H ₂ O (8-5-1) (Chaabi et <i>al.</i> , 2010).
Composés phénoliques (Test au chlorure Ferrique)	A 2 mL de l'extrait contenu dans un tube à essai, on y ajoute 3 à 4 gouttes d'une solution de chlorure Ferrique (5%). La présence des composés phénoliques est indiquée par la formation d'une coloration bleue (Wagner et Bladt, 1996).

T-1-1	WWW	. D	J	!	1	4 1 - 1 - - - - - -		4*4	-l	1 4
Tableau	XXIX	· Protocole	an sc	reening	nnv	toenimia	me aes	extraits	ae n	lantes.
1 uoreuu	111111		uu be	i coming	Pily	cocining	ac aco	Chui thit	uv p	iunices.

	Dans un tube à essai, introduire 10 mL d'acide chlorydrique
Alcools (Test de Lucas)	concentré et une spatule de chlorure de zinc anhydre de facon à
	saturer l'acide. Agiter et décanter. Ensuite ajouter au mélange
	obtenu quelques gouttes de l'alcool à tester. Pour un alcool
	primaire, le précipité blanc se forme très lentement ; pour un
	alcool secondaire, un précipité de chlorure d'alkyle se forme
	lentement ; pour un alcool tertiaire, le précipité blanc se forme
	instantanément (Kjonaas et al., 1991).

3.6. Caractéristiques physico-chimiques

 Tableau XXX
 : Données spectrales et constantes physiques des composés isolés

Composés isolés	Caractéristiques spectroscopiques			
TAF1	LC-ESI-SM mode positif : pic de l'ion			
30	<i>pseudo</i> -moléculaire à <i>m/z</i>			
29 OH	575,4066 [M + H] ⁺ Formule brute : C ₃₅ H ₅₈ O ₆			
12 18 22				
	RMN ¹ H et ¹³ C méthanol (CD ₃ OD) :			
$OH_{4'}$ 2 10 9 114 16	500 et 125MHz			
5 3 4 5 7 27	Aspect physique : poudre amorphe			
HO 3^{2} 2^{1} 2^{3} 2^{4} 6	blanche			
OH Atheruroside A	Test de Lieberman-Burchard : positif			
TAF ₂	LC-ESI-SM mode positif : pic de l'ion			
30	pseudo-moléculaire à m/z 575,4068 [M+			
29 OH	H] ⁺			
12 12 13 13 20 21 22 21 13 18 22 22 11 26 17 12 12 13 18 22 21 13 18 22 13 14 14 14 14 14 14 14 14	Formule brute : C ₃₆ H ₆₀ O ₇			
	RMN ¹ H et ¹³ C méthanol (CD ₃ OD) : 500			
$\begin{bmatrix} 10\\ 3\\ 4 \end{bmatrix} \begin{bmatrix} 10\\ 7\\ 27 \end{bmatrix}$	et 125MHz			
HO 3^{2} 2^{2} 2^{3} 2^{4} 5^{6} 7^{4} 5^{6} 7^{4} 1^{1} 2^{3} 2^{4} 2^{4}	Aspect physique : poudre amorphe			
	blanche			
Atheruroside B	Test de Lieberman-Burchard : positif			

TAF ₃	LC-ESI-SM mode positif : pic de l'ion				
	<i>pseudo</i> -moléculaire à m/z 369,1805 [M +				
HO H CH3 O	H] ⁺				
	Formule brute : $C_{21}H_{24}N_2O_4$ RMN ¹ H et ¹³ C méthanol (CD ₃ OD) :				
9 10 ⊕ N- 21					
- - - - - - - - - -	500 et 125MHz				
$12 \bigcirc H 14$ $H 18 \bigcirc OH$	Aspect physique : poudre amorphe				
Atheruramine	blanche				
	Test de Draggendorff : positif				
TAF4	LC-ESI-SM mode positif : pic de l'ion				
HO~~HO	pseudo-moléculaire à m/z 571,2086 [M				
HO	- +H] ⁺				
	Formule brute : C ₂₆ H ₃₄ O ₁₄				
HO 2^{-1} 1^{2} 3^{-1}	RMN ¹ H et ¹³ C méthanol (CD ₃ OD) : 500				
	et 125MHz				
НОСОН	Aspect physique : solide jaune amorphe				
3"" OH Tricalvdioloside	Test de Molish et au Chlorure				
	Ferrique: positif				
TAF 5 9 6	ESI-SM mode negatif : pic de l'ion				
	pseudo-moléculaire à m/z 515,3717 [M -				
13 13 1 23 1 22					
	Formule brute : C ₂₇ H ₃₄ N ₂ O ₉				
	RMN ¹ H et ¹³ C méthanol (CD ₃ OD) : 500				
$19 \frac{120}{10} \dot{0}$	et 125MHz				
	Aspect physique : poudre amorphe				
HO ² HO	blanche				
Acide strictosidinique	Test de Draggendorff : positif				

ESI-MS mode positif : pic de l'ion TAF₁₀ OH. pseudo- moléculaire à m/z 445,1963 [M + H]⁺. **Formule brute** : C₃₀H₅₀O₂ RMN ¹H et ¹³C méthanol (CD₃OD) : 500 et 125MHz HC Aspect physique : poudre amorphe blanche Rubrinol Test de Liberman-buchard : positif 30 = ESI-MS mode positif : pic de l'ion TAF₁₁ HO pseudo-moléculaire à m/z 443,3373 $[M+H]^{+}$ Formule brute : C₃₀H₅₀O₂ RMN ¹H et ¹³C méthanol (CD₃OD) : 500 et 125 MHz HC , 23 Aspect physique : poudre amorphe blanche 19α- hydroxy-α- amyrine Test de Lieberman-Burchard : positif TOF₁ **LC-ESI-MS mode positif** : pic de l'ion pseudo-moléculaire à m/z 441,3362 OH $[M+H]^+$ HO.1 **Formule brute** : C₂₉H₆₀O₂ RMN ¹H et ¹³C Dichlorométhane (CD₃Cl₃) : 500 et 125MHz Nonacosane-1,10-diol Aspect physique : poudre amorphe blanche Test de Lucas : positif LC-EI-MS mode négatif : pic de l'ion TOF₂ pseudo-moléculaire à m/z 680,6154 [M-HO,, H]-Formule brute : C₄₂H₈₃NO₅ 0~ OH ¹³C $^{1}\mathbf{H}$ RMN et HO. Dichlorométhane /méthanol ŌН (CD₃OD/CD₃Cl₃) : 500 et 125MHz Oligoneuramide Aspect physique : poudre amorphe blanche

Tableau XXX : Données spectrales et constantes physiques des composés isolés (suite)

RÉFÉRENCES BIBLIOGRAPHIQUES

- Adesina S.K., Reisch J. (1985). A Triterpenoid glycoside from *Tetrapleura tetraptera* fruit, *Phytochemistry*. 24 (12): 3003-3006.
- Ahmed Y., Rahman S., Akhtar P., Islam F., Rahman M., Yaakob Z. (2013). Isolation of steroids from n-hexane extract of the leaves of *Saurauia roxburghii*. *International Food Research Journal*. 20 (5): 2939- 2943.
- Akbar E., Malik A. (2002). Antimicrobial triterpenes from *Debregeasia salicifolia*. Natural Product letters. 16(5): 339- 344.
- Akhoundi M., Kuhls K., Cannet A., Votýpka J., Marty P., Delaunay P., Sereno D. (2016). A
 Historical Overview of the Classification, Evolution, and Dispersion of *Leishmania* Parasites and Sandflies. *Neglected Tropical Diseases*. 10(6): e0004770.
- Akhtar, N., Malik, A., Ali, S.N., Kazmi, S.U. (1994). Rubrinol, a new antibacterial triterpenoid from *Plumeria rubra*. *Fitoterapia*. 65 (2): 162–166.
- Akinyemi K.O., Oladapo O., Okawara C.E., Ibe C.C., Fasure K.A. (2005). Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for antimethicillin resistant *Staphylococcus aureus* activity, *Complementary Alternative Medecine*. 5: 1-6.
- Anandhi G., Pragasam A. (2013). Phytochemical screening of the methanolic extract of stem of *Tricalysia sphaerocarpa* (Dalzell ex hook. f,) Gamble, *International Journal Phytotherapy*. 3: 65-69.
- Aoun K., Bouratbine A. (2014). Cutaneouse leishmaiasis in North Africa., a *review. Institut Pasteur de Tunis.*, laboratoire de parasitologie, 13 (74) : 1002.
- Ashour M., Wink M., Gershenzon J. (2010). Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes, *Annual Plant Reviews*. 40: 258–303.
- Awouafack MD., Tane P., Morita H. (2018). Tricalycoside, a new cerebroside from *Tricalysia coriacea* (Rubiaceae). *Chemistry Biodiversity*. 15:1–6.
- Battersky AR., Yeowell DA. (1964). Alkaloid of calabash- curare and *Strychnos* species. Part III. Structure and absolute Stereochemistry of macusine- A, macusine- B, and macusine- C. *Journal of Chemistry Society*. 0: 4419- 4427.

- Belazzoug S., Addadi K., Mokrani T., Hafirassou N., Hamiriou B., Belkaid M. (1983). Nouveau foyer de leishmaniose cutanée à M'sila (Algérie). Infiction naturelle de Psammomys obesus (Rodentia, Gerbillidae). *Bulletin de la Société de Pathologie Exotique*. 76 (2): 146-149.
- Benallal K., Gassem B., Bouiba L., Depaquit G., Harrat Z. (2013). Entomology investigation following the resurgence of human viscéral Leishmaniasis in southern Africa.
- Botineau M. (2010). Botanique systématique et appliquée des plantes à fleurs, Lavoisier. 981.
- Bouquet A. (1972). Plantes médicinales du Congo- Brazzaville, Travaux et documents de l'ORSTOM, Paris, France.112.
- Bourdoiseau G et Denerolle Ph. (2000). Traitement de la leishmaniose canine : actualité. *Revue de Médecine Véterinaire*. 151(5): 395-400.
- Bouzeko I. L.T., Dongmo F.L.M., Ndontsa B.L., Ngansop C.A.N., Keumoe R., Bitchagnoa G.T.M., Jouda J.B., Mbouangouere R., Tchegnitegni B.T., Boyom F.F, Sewald N., Lenta B.N, Tane P., Ngouela S.A, Tene M. (2021). Chemical constituents of *Mussaenda erythrophylla* Schumach. & Thonn. (Rubiaceae) and their chemophenetic significance, *Biochemistry Systematics Ecology*. 98: 104329.
- Bowling T., Mercer L., Don R., Jacobs R., Nare B. (2012). Application of a resazurin-based highthroughput screening assay for the identification and progression of new treatments for human African trypanosomiasis, *International Journal of Parasitol Drugs Resistance*. 2 : 262–270. https://doi.org/10.1016/j.ijpddr.2012.02.002.

Breitmaier E. (2006). Dans Terpenes, Flavors, Fragences, Pharmaca, Pheromones, Ed. Wiley-VCH. Journal of Naturals Products. 70: 4, 711 ISBN-13 978-3-527-31786-8.

- Breteller. (1933). Tricalysia atherura N. Halle, s.nov. Flore du Gabon. PL.68 (6) 293.
- Bridson DM., Verdcourt .B. (2003). Rubiaceae in G. V. Pope (editor), *Flora Zambesiaca.*, Royal Botanic Gardens, Kew, UK. 5 (3): 379-720.
- Brown RT, Charalambides AA. (1974). 5a-Carboxytetrahydroalstonine. *Tetrahedron Letters*. 17: 1649–1652.

Bruneton J. (1999). Pharmacognosie, Phytochimie, plantes médicinales, 3^e édition, Paris, Eds Tec & Doc. Partie 3 : 661-709.

- Bruneton J. (2009). Pharmacognesie, phytochimie, plantes Médicinales, 4^{eme} éd., Tec et doc, paris.
- Caesar L.K., Cech N.B. (2019). Synergy and antagonism in natural product extracts: when 1+1 does not equal 2. *Natural Product Report*. 36: 6869–888. https://doi.org/10.1039/C9NP00011A.
- Callahan H. L., Portal A. C., Devereaux R., Grogl M. A. X. (1997). An axenic amastigote system for drug screening. *Antimicrobial agents and chemotherapy*. 41(4): 818-822.
- Cao J., Chen L., Li M., Cao F., Zhao L., Su E. (2018). Two- phase systems developed it hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compound with differents polarities, *Green chemistry*. 20: 1879-1886.
- Cao M., Muganga R., Tits M., Angenot L., Frédérich M. (2011). 17-O-Acetyl-10hydroxycorynantheol, a selective antiplasmodial alkaloid isolated from *Strychnos* usambarensis leaves. Planta Medecine. 77 : 2050–2053.
- Carnet S., Coquerel Y., Gianini A., Banchelin T., Deprès J.P. (2006). Synthèse totale de terpenoides naturels possédant le squelette bicyclo [5.3.0] décane, Acta Chemica. 294: 24-25.
- Chaabi, M., Chabert, P., Vonthron-Sénécheau, C., Weniger, B., Ouattara, M., Corstjens, H., Sente, I., Declercq, L. & Lobstein, A. (2010). Acylated flavonol pentaglycosides from *Baphia nitida* leaves. *Phytochemistry Letters*. (3): 70–74.
- Chang M.H., Wang G.J., Kuo Y.H., Lee C.K. (2000). The low Polar Constituents from *Bidens pilosa* L.var.Minor (Blume) Sherff. *Journal Chinese Chemical Society*. 47: 1131-1136.

Chapell J. (2002). The genetics and molecular genetics of terpene and sterol origami, *Current Opinion in Plant Biology*. 5: 151-157.

- Chaurasia N., Wichtl M. (1987). Sterols and glycosides from *Urtica dioicca*, *Journal of Natural Product*. 50: 881-885.
- Cheesbrough M. (1987). Medical laboratory manual for tropical countries. Second edition. *Cambridge University Press*, Cambridge, Great Britain. 1: 605.
- Chen H. L., Lin K. W., Huang A. M., Tu H. Y., Wei B. L., Hour T. C., Lin C. N. (2010). Terpenoids induce cell cycle arrest and apoptosis from the stems of *Celastrus kusanoi*

associated with reactive oxygen species. *Journal of agriculture and food chemistry*. 58(6): 3808-3812.

- Christophe C.F., Kouam S.F., Poumale H.M., Simo I.K., Ngadjui B.T. (2008) Benjaminamide: a new ceramide and other compounds from the twigs of *Ficus benjamina* (Moraceae). *Biochemistry and Systematics Ecology*. 36:238-243.
- Chuan-Pu S., Jian-Guang L., Ming-Hua Y., and Ling-Yi K. (2015). Cafestol-Type Diterpenoids from the Twigs of *Tricalysia fruticosa* with Potential Anti-inflammatory Activity, *Journal of Natural Products*. 06.
- Cichewicz R., Kouzi S. (2004). Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. *Medical. Research. Reviews.* 24:90-114.
- Cook R. (1931). Reactions of Steroids with aceticnanhydride and Sulpfuric acid (the Liebermann- Burchard test), *Analyst Journal*. 86: 373-381.
- Cretep. (1965) Systématique des Angiospermes Masson et Cie, Précis de Botanique Tome II. 385.
- Cronquist A. (1981). An Integrated System of Classification of Flowering Plants, New York, *Columbia University Press.*
- Davis A. P., Chester M., Maurin O., Fay M. (2007). Searching for the relatives of Coffeae (Rubiaceae, Ixoraoideae): The circumscription and phylogeny of Coffee based on plastid sequence data and morphology, *American Journal of Botanic*. 94: 313–329.
- Dedet J.P. (2009). Leishmanies, leishmanioses : biologie, clinique et thérapeutique. *EMC* (Elsevier Masson SAS, Paris), Maladies infectieuses, 8: 506-10.

Dewick P. (1999). The biosynthesis of C_5 - C_{25} terpenoid compounds, *Natural Product Report*. 16 : 97-130.

- Dieye P.I., Sarr S.O. (2021). Lutte contre la COVID-19 : la phytothérapie africaine au secours de la médecine moderne en panne, *Afrique Science*. 18 (3): 13 21.
- Dike I. P., Obembe O.O., Adebiyi F.E. (2012). Ethnobotanical survey for potential anti-malarial plants in South- Western Nigeria. *Journal of Ethnopharmacology*. 144: 618- 626.

Djibrilla Kaou B., Ripert C., Ravisse P., Durand B., Carrie J. (1979). Epidemiologic study of the focus of cutaneous leishmaniasis in Mokolo (North Cameroon). *Bulletin de la Société de Pathologie Exotique Filiales*. 72(5-6) : 442-50.

Dondji B. (2001). Leishmaniose et phlébotomes du Cameroun : le point sur les données actuelles, *Bulletin de la société de Pathologie Exotique*. 94 (3) : 277-279.

- Dos Santos E., Meira M., Do Vale A.E., David J., De Queiroz L., David J.P. (2012). Isolation and Characterization of New Ceramides from Aerial Parts of *Lepidaploa Cotoneaster*, *Natural Product Communication*. 7: 781-783.
- Dubey V., Bhalla R., Luthra R. (2003). An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants, *Journal of Biosciences*. 5 : 637-646.
- Duvingneaud p., Van bockstal l. (1973 1975) Systématique des plantes supérieures vol 2 : Dicotyledones, *Press universitaire de Bruxelle*. 289.
- El Hady S., Bukuru J., Kesteleyn B., van Puyvelde L, De Kimpe N., Van T.N. (2002). New pyranonaphthoquinone and pyranonaphthohydroquinone from the roots of Pentas longiflora, *Journal of Natural Products*. 65: 1377–1379.
- Evina J.N., Bikobo DSN., Zintchem AA., Nyemeck NM., II Ndedi EDFM., Dibouie PHB., Nyegue MA., Atchade AT., Pegnyemb DE., Koert U. (2017). *In vitro* antitubercular activity of extract and constituents from the stem bark of *Distemonantus benthamianus*. *Brazilian Journal of Pharmacology*. 27(6): 739- 743.
- Fabri R.L, Nogueira M.S, Braga F.G, Coimbra es and Scio E. (2012). *Mitracarpus frigidus* aerial parts exhibited potent antimicrobial, antileishmanial, and antioxidant effects. *Bioresource Technology*. 100: 428-433.

Fidock D.A. (2010). Drug discovery - Priming the antimalarial pipeline, Nature. 465: 297-298.

- Foley P. (2003). Beans, roots and leaves: A history of the chemical therapy of *Parkinsonism Tectum* verlag.
- Foubert K., Gorella T., Faizal A., Cos P., Maes L., Apers S., Geelen D., Pieters L. (2016).Triterpenoid saponins from *Maesa argentea* leaves, *Planta Medica*. 82 (18):1568–1575.
- Gamo F.J., Sanz L.M., Vidal J., De Cozar C., Alvarez E., Lavandera J.L., Vanderwall D.E., Green D.V.S., Kumar V., Hasan S., Brown J.R., Peishoff C.E., Cardon L.R., Garcia-Bustos

J.F. (2010). Thousands of chemicals starting points for antimalarial lead identification, *Nature*. 465 : 305-310.

- Gentillini M., Caumes E., Duflo B. (1993). Médecine tropicale, *Médecine science, flammarion, Paris.* 5.928.
- Ghenoudon S. S.J., Padonou G.G., Azonvide., Kouakanou, Sna H., Degbelo J., Deh-Tchokpon J., Walther M., Baba- Moussa, Nwakanma D. (2016). Mutations conférant la résistance aux antipaludiques chez les enfants en crise du paludisme au benin : implication sur le repone immunitaire. *Journal de Recherche Scientifique, Université de Lomé* (Togo). 18 (4): 217-225.
- Goijman G., Turrens F., Marini-Bettolo B., Stoppani O., (1984). Inhibition of growth and macromolecular biosynthesis in Trypanosoma cruzi by natural products. Effects of miconidine and tingenone. *Journal of Herbal Medicine Pharmacology*. 44 (4): 361–370.
- Golembiewska E., Shalicka- Wozniak K., Glowniak K. (2013). Methods for the isolation and identification of triterpenes ans sterols in medicinal plants. *Current issues in Pharmacy and Medical Sciences*. 26: 26- 32.
- Gradoni L., Soteriadou K., louzir H., Dakkak A., Ozensoy Toz S. (2008). Drug Regimens for visceral leishmaniasis in Mediterranean countries. *Tropical Medicine and International Health*. 13 : 1272–1276.
- Granier M. (2013). Etude de la perception du vaccin contre la leishmaniose par les vétérinaires et les propriétaires de chiens en zone d'enzootie sur le territoire de France métropolitaine. *Thèse pour obtenir le grade de docteur vétérinaire*. Présentée et soutenue publiquement devant l'université Paul-Sabatier de Toulouse.
- Guinko S. (1989). Opothérapie : Quelques usages médicaux du miel dans l'Ouest du Burkina Faso, Bulletin de Médecine Traditionnelle. 3 (2) : 11-115.
- Guinko S., Millogo R.J., boussim M. J. (1995). Caractéristiques de quelques familles d'angiospermes représentées dans l'Ouest Africain, Travaux pratiques et dirigés de botaniques.

Gyapong J. and Boatin B. (2016). Neglected tropical diseases-sub-Saharan African. Springer.

- Han Y., Jo H., Kwon E., Choi Y. (2019). Cloning and Characterization of Oxidosqualene Cyclases Involved in Taraxasterol, Taraxerol and Bauerenol Triterpene Biosynthesis in *Taraxacum coreanum, Plant and Cell Physiology*. 7: 1595-1603.
- Hayashi T., Smith F.T., Lee K.H. (1987). Antitumor agents of Psychorubrin, a new cytotoxic naphthoquinone from *Psychotria rubra* and its structure-activity relationships. *Journal of Medicinal Chemistry*. 30, 18: 2005–2008.
- He D. H., Otsuka H., Hirata E., Shinzato T., Bando M., Takeda Y. (2002). Tricalysiosides A-G: rearranged ent- kauranoid glycosides from the leaves of *Tricalysia dubia*. *Journal of*. *Natural Products*. 65 (5): 685–688.
- He D.H., Matsunami K., Otsuka H., Shinzato T., Aramoto M., Bando M., Takeda. (2005).
 Tricalysiosides H- O: rearranged ent- kauranoid glycosides from the leaves of *Tricalysia dubia*. *Phytochemistry*. 66: 2857-2864.

Hervé. (1937). Note sur la leishmaniose cutanée au Cameroun. *Annual of Médicine Pharmacology Colon.* 35: 928-934.

- Hoareau L., Da silva E.J. (1999). Medicinal plants, a re-emerging heath aid. *Electronic Journal of Biotechnology*. 2: 56-70.
- Honda M., Ueda Y., Sugiyama S., Komori T. (1991). Synthesis of a new cerebroside from a Chondropsis sp. Sponge. *Chemical and Pharmaceutical Bulletin.* 39:1385-1391.
- Hough L., Stacey B.E. (1963). The occurrence of D-Ribohexulose in *itea ilicifolia* and *itea yunnanensis*. *Phytochemistry*. 2: 315-320.
- Ibrahim SRM., Mohamed GA., Shaala LA., Banuls LMY., Van Goietsenoven G., Kiss R., Youssef DTA. (2012). New ursane-type triterpene from the root bark of *Calotropis procera*. *Phytochemistry letter*. 5 (3): 490- 495.
- Isah M.B., Ibrahim M.A., Mohammed A., Aliyu A.B., Masola B., Coetzer H.T.T. (2016). Systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. *Parasitology*. 143 (10): 1219–1231. https://doi.org/10.1017/S0031182016000718.
- Jamila N., khairuddean M., Khan N.S., Khan N. (2014). Phytochemicals from the Bark of Garcinia hombroniana and Their Biological Activities. Records of Natural Product. 8: 312-316.

- Jouogo N.D.C., Tamokou J-D, Teponno R.B., Takongmo G.M., Nazabadioko L.V., Tapondjou A.L., Ngnokam D. (2022). "Chemotaxonomy and Antibacterial Activity of the Extracts and Chemical Constituents of *Psychotria succulenta* Hiern. (Rubiaceae)", *BioMedical Research International*. 10.
- Kaptué L., Zekeng L., Fomekong E., Nsangou A., Tagu JP Sanofi. (1992). La leishmaniose viscérale au Cameroun. A propos de quelques observations et d'une prospection clinique dans la région de Kousseri, Extrême-Nord Camerounais. *Bulletin de la Société de Pathologie Exotique*. 85 : 156-158.
- Kaur K, Jain M, Kaur T, Jain R. (2009). Antimalarials from nature. Bioorganic Medecine and Chemistry. 17(9) : 3229- 56.
- Kaushik S., Cuervo A. M. (2015). Proteostasis and aging. *Natural Medicine*. 21(12): 1406-1415.
- Khedr A., Ibrahim S.R., Mohamed G.A., Ross S.A, Yamada K. (2018). Panduramides A-D, new ceramides from *Ficus pandurata* fruits. *Phytochemistry Letter*. 23: 100-105.
- Kokwaro JO. (2010). Medicinal Plants of East Africa, Nairobi: University of Nairobi Press, 247–24.
- Krotoski A., Garnham C., Bray S., Krotoski M., Killick-Kendrick R., Draper C., Targett A., Guy W. (1982). Observations on early and late post-sporozoite tissue stages in primate malaria. Discovery of a new latent form of *Plasmodium cynomolgi* (the hypnozoite), and failure to detect hepatic forms within the first 24 hours after infection. *American Journal of Tropical Medicine and Hygiene*. 31(1): 24-35.
- Leger N., Depaquit J. (1999). Les phlébotomes ; In : Dedet JP, editor. Les Lieshmanioses. Paris : Ellipses, 89-108.
- Li J, Tang MJ, Wu Q, Chen H, Niu XT, Guan XL, Li J, Deng SP, Su XJ, Yang RY. (2012a).
 Water-soluble Constituents of the Heartwood of Streblus asper. *Natural Product Communication*. 7:497–500.
- Li J., Tang MJ., Wu Q., Chen H., Niu XT., Guan XL., Li J., Deng SP., Su XJ., Yang RY. (2012a). Water- soluble consituents of the Heartwood of *Sateblus asper*. *Natural Product Comminications*.7: 497- 500.

- Li LQ, Li J, Huang Y, Wu Q, Deng SP, Su XJ, Yang RY, Huang JG, Chen ZZ, Li S.(2012b). Lignans from the heartwood of Streblus asper and their inhibiting activities to hepatitis B virus. *Fitoterapia*. 83(2):303–309.
- Li LQ., Li J., Huang Y., Wu Q., Deng SP., Su XJ., Yang RY., Huang JG., Chen ZZ., Li S. (2012b). Lignans from the heartwood of *Streblus asper* and their inhibiting activities to hepatitis B virus. *Fitoterapia*. 83 (2): 303- 309.
- Lim QY, Tan SP, Tan HY, Liew WK, Lau YL, Nafiah MA. (2021). Compounds Isolated from Bark of *Phyllanthus acidus* (L.) Skeels. *Malaysian Journal of Chemistry*. 23:165–172.
- Liu R., Lu Y., Wu T., Pan Y. (2008). Simultaneous isolation and purification of mollugin and two anthraquinones from *Rubia cordifolia* by HSCCC, Chromatographia, *Journal of Natural Products*. 68: 95–99.
- Long- Ze L., Geoffrey A. C. (1990). ¹H and ¹³C Nuclear Magnetic Resonance Assignments of Polyneuridine, 19-(2)- Akuammidine and 16-Epi-voacarpin. *Phytochemistry Analysis*. 1: 26-30.
- Lusakibanza M. (2012). Étude phytochimique et pharmacologique de plantes antipaludiques utilisées en médecine traditionnelle congolaise, Mémoire présenté en vue de l'obtention du grade de Docteur en Sciences Biomédicales et Pharmaceutiques.
- Mabberley D. (1997). The Plant- book: A Plant- book: A portable Dictionary of the Vascular Plants Utilizing Kubitzki's the families and genera of vascular plants. 2nd edition, *Cambridge University Press*.
- Marquardt W.H. (1997). Biology of deases voctors. 0 (12) 473276-3.
- Martins D., Nunez V. (2015). Secondary metabolites from Rubiaceae species. Bioprospection and Biotechnology Laboratory, *Technological Innovation of Coordination*. 20: 13423.
- Marty P., Pomares-Estran C., Hasseine L., Delaunay P., Haas H. (2009). Leishmaniasis in France: an update. *Archives de Pédiatrie*. 2 (16). 96–100.
- Mishina V., Krishna S., Haynes K., Meade C. (2007). Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense *in vitro* growth. *Antimicrobial Agents Chemotherapy*. 51 (5): 1852–1854. https://doi.org/10.1128/aac.01544-06.

- Mishra D.P., Khan M.A., Yadav D.K., Rawat A.K., Singh R.K., Ahamad T., Hussain M.K., Saquib M., Khan M.F. (2018). Monoterpene Indole Alkaloids from *Anthocephalus cadamba* Fruits Exhibiting Anticancer activity in Human Lung Cancer Cell Line H1299. *ChemistrySelect.* 3: 8468–8472.
- Monteiro E.M., França-Silva J.C., Costa R.T., Costa D.C., Barata R.A., Paula E.V., Machado-Coelho G.L.L, Rocha M.F., Fortes-Dias C.L., Dias E.S. (2005). Leishmaniose viscerale: estudo de flebotomíneos e infecção canina em Montes Claros, Minas Gerais. *Revista da Sociedade Brasileira de Medicia Tropical*. 38: 147-152.
- Moshi M.J., Otieno D.F., Mbabazi P.K., Weisheit A. (2009). The Ethnomedicine of the Haya people of Bugabo ward, Kagera region, north western Tanzania, *Journal of ethnomedicine*. 5: 24.
- Moshi M.J., Otieno D.F., Weisheit A. (2012). Ethnomedicine of the Kagera Region, North Western Tanzania. Part 3: plants used in traditional medicine in Kikuku village, Muleba District. *Journal of Ethnobiology and Ethnomedicine*. 8: 14.
- Mostafa AE, El-Hela AA, Mohammad A-EI, Cutler SJ, Ross SA. (2016). New triterpenoidal saponins from *Koelreuteria paniculata*. *Phytochemistry Letters*. 17: 213–218.
- Muhammad I., Dunbar D.C., Khan S.I., Tekwani B.L., Bedir E., Takamatsu S., Ferreira D., walker L.A. (2003). Antiparasitic alkaloids from *Psychotria klugii*, *Journal of Natural Products*. 66: 962-967.
- Nascimento D.C.A., Gomesa M. S., Li[~]aoa L.M., De Oliveira C.M. A., Katoa L., Da Silvab C. C., and Tanaka C. M. A. (2006). Alkaloids from *Palicourea coriacea* (Cham.) K. Schum. *Z. Nature*. 61b: 1443 – 1446.
- Natori T., Morita M., Akimoto K., Koezuka Y. (1994). Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge *Agelas mauritianus*. *Tetrahedron*, 50: 2771-2784.
- Naz I., Saifullah., Khan M.R. (2013). Nematicidal activity of Nonacosane- 10- ol and 23 a Homostigmast- 5-en-3β- ol isolated from the roots of *Fumaria parviflora* (Fumariaceae), *Journal of Agricultural and Food Chemistry*. 61(24): 5689- 5695.

- Ngono B.D., Nkot J.L., Mosset P., Atchadé A., Ndongo J.T., Pemha R., Pegnyemb D.E. (2011). Acylsteryl glycosides and other constituents from *Campylospermum densiflorum* (Ochnaceae). *Rasayan Journal of Chemistry*, 4: 753-763.
- Ngouateu O.B., Kollo P., Ravel C., Derreure J., Kamtchouing P., Same-Ekobo A., et al. (2012).
 Clinical features and epidemiology of cutaneous leishmaniasis and *Leishmania* major/HIV co-infection in Cameroon: results of a large cross-sectional study. *Transactions of the Royal Society of Tropical Medicine and Hygiene*. 106: 137-142.
- Nishimura K., Hitotsuyanagi Y., Sakakura K.I., Fujita K., Tachihara S., Fukaya H., Aoyagi Y., Hasuda T., Kinoshitaand T., Takeya K., (2007). Three new diterpenoids, tricalysiolide H and tricalysiones A and B, from *Tricalysia dubia*. *Tetrahedron*, 63: 4558-4562.
- Nishimura K., Hitotsuyanagi Y., Sugeta N., Fukaya H., Aoyagi Y., Hasuda T., Kinoshita T., Takeya K. (2007). Tricalysiamides A-D, diterpenoid alkaloids from *Tricalysia dubia*. *Journal of Natural Products*. 70: 758-762.
- Nishimura K., Hitotsuyanagi Y., Sugeta N., Sakakura K., Fujita K., Fukaya H., Aoyagi Y., Hasuda T., Kinoshita T., He D.H., Otsuka H., Takeda Y., Takeya K. (2006). Tricalysiolides A- F, new rearranged ent- kaurane diterpenes from *Tricalysia dubia*. *Tetrahedron*, 62 (7): 1512–1519.
- Njih Tabah E., Ministry of Public Health. (2010). Consultative Meeting on The Control of Leishmaniasis in the African Region WHO/AFRO Addis Ababa, 23-25 Feb.
- Nogueira PCN., Araujo RM., Viana GSB., Braz Filho R., Silveira ER. (2014). Plumeran Alkaloids and Glycosides from the Seeds of *Aspidosperma pyrifolium* Mart. *Journal Brazilian Chemical Society*. 25: 2108- 2120.
- Onana J-M. (2013). Synopsis des espèces végétales vasculaires endémiques et rares du Cameroun : check- liste pour la gestion durable et la conservation de la biodiversité, Yaoundé, Ministère de la Recherche scientifique et de l'innovation, coll. *Flore du Cameroun*. 40, p. 193.

Organisation Mondiale de la Santé. (1968). Statistic reports. 21.

Pages F., Orlandi-Pradines E., Corbel V. (2007). Vecteurs du paludisme : biologie, diversité, contrôle et protection individuelle. *Médecine et mqlqdie infectieuse*. 37 : 153-161.

- Palma D., Mercuriali L., Figuerola J., Montalvo T., Bueno-Mari R., Millet J.P., et al. (2021). Trends in the epidemiology of leishmanaisis in the city of Barcelona, *Front Veterinary Science*. 26: 653-999.
- Peters R.J. (2010). Two rings in them all: the labdane- related diterpenoids, *Natural product reports*. 27 (11): 1521-1530.
- Plan Strategique National de Lutte contre le Paludisme au Cameroun 2019- 2023. Https ://Insp-Cam.org/wp- content//.
- Ramos F., Takaishi Y., Kawazoe K., Osorio C., Duque C., Acuña R., Fujimoto Y., Sato., Okamoto M., Oshikawa T., Ahmed S.U. (2006). Immunosuppressive diacetylenes, ceramides and cerebrosides from *Hydrocotyle leucocephala*. *Phytochemistry*. 67:1143-1150.
- Rho J., Kim Y. (2005). Isolation and structure determination of three new ceramides from the starfish *Distolasterias nipon*, *Bulletin of the Korean Chemical Society*. 26 : 1457-1460.
- Richard D. (1996). Pearson., Anastacio de Queiroz Sousa. *Clinical Infectious Diseases*. 22 (1) 1-11.
- Ripert C., Pajot F.X., Vincendeau P., Esquerdo-Gomez F. (1996). Epidemiologie des maladies parasitaires, Tome 1 : *Protozooses. Ed. Med. Int*, Paris, P 390. In : Morin A.C., 2011. Etude épidemiologique et clinique de la leishmaniose canine a *L. infantum* en France : analyse de 2892 sérums de chiens leishmaniens par le laboratoire de parasitology- mycology de Montpellier. Thèse pour l'obtention de diplôme de doctorat en vétérinaire. Université CLAUDE- BERNARD- LYON I, 108p.
- Roberts L.S., Janovy J.J., Gerald D., Schmidt et Larry S. (2000). Roberts Foundations of Parasitology. McGraw-Hill Higher Education, Boston; in: Djezzar-Mihoubi Ilhem. 2006. Etude des leishmanioses diagnostiquées au centre hospitalo-universitaire Ben Baddis de Constantine.
- Rodney C., Toni K., Norman L. (2000). Natural Product (secondary metabolites) in Biochemistry and Molecular Biology and plants by Buchanan B., Gruissem w., *Jones Report*, 1250-1318.

- Sanchez L.M., Lopez D., Vesely B.A., Togna G.D., Gerwick W.H., Kyle D.E., Linington R.G. (2010). Almiramides A-C: Discovery and Development of a New Class of Leishmaniasis lead Compounds. *Journal of Medicinal Chemistry*. 53: 4187-4197.
- Sandjo L., Hannewald P., Yemloul M., Kirsch G., Ngadjui B.T. (2008). Triumfettamide and triumfettoside IC, two Ceramides and other secondary metabolites from the stems of wild *Triumfetta cordifolia* A. Rich. (Tiliaceae). *Helvetica Chimica Acta*. 91:1 326-1335.
- Sando T., Takaoka C., Mukai Y., Yamashita A., Hattori M., Ogasawara N., Fukusaki E., Kobayashi A. (2008). Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, *Hevea brasiliensis*. *Bioscience Biotechnology and Biochemistry*, 72, 2049–60.
- Schummann K., Bot.Jahrb. (1897). *Tricalysia oligoneura* K. schum. *Flore du gabon*. PL.74 (23) 23: 448.
- Sereno D., Lemesre J.L. (2011). Axenically culture damastigote formsas an *in vitro* model for investigation of antileishmanial agents, *Antimicrobial Agents Chemotherapy*. 41: 972–976.
- Sharma S., Chattopadhyay S.K., Singh M., Bawankule D.U., Kumar S. (2014). Novel chemical constituents with anti-inflammatory activity from the leaves of *Sesbania aculeate*, *Phytochemistry*. 100: 132-140.
- Shen C. P., Luo J. G., Yang M. H., Kong L. Y. (2015). Cafestol-type diterpenoids from the twigs of *Tricalysia fruticosa* with potential anti-inflammatory activity, *Journal of Natural*. *Products*. 78: 1322-1329.
- Shitamoto J., Sugimoto S., Matsunami K., Otsuka H., Shinzato T., Takeda Y. (2010). Tricalysionoside A, a Megastigmane Gentiobioside, Sulfatricalysines A—F, and Tricalysiosides X—Z, ent-Kaurane Glucosides, from the leaves of *Tricalysia dubia*. *Chemical and Pharmaceutical Bulletin*. 59(1): 72—77.
- Silva BP, Parente JP. (2004). New Steroidal Saponins from Rhizomes of *Costus spiralis*. *Zeitschrift fur Naturforschung- Section C Journal of Bioscience*. 59(1-2):81–85.
- Soladoye M.O., Amusa N.A., Raji-Esan S.O., Chukwuma E.C., Taiwo A.A. (2010). Ethnobotanical Survey of Anti-Cancer Plants in Ogun State, Nigeria., Annals of Biological Research. 1 (4): 261-273.

- Souza V., Lorenzi H. (2008). Botânicasistemática: Guiailustrado para identifica □ão de Fanegamasnativas e exóticas no Brasil, baseadoem APG II. *Instituto Plantarum*.
- Tadeusz A. (2017). Alkaloids Secrets of Life: Alkaloid Chemistry, Biological significance, Applications and Ecological role. *Biochemistry Genetics and molecular Biology*, 111-112.
- Tajuddeen N., Swart T., Hoppe H.C., Van Heerden F.R. (2021a). Antiplasmodial and cytotoxic flavonoids from *Pappea capensis* (Eckl. & Zeyh.) Leaves, *Molecules*. 26, 13: 3875.
- Tajuddeen N., Swart T., Hoppe H.C., Van Heerden F.R. (2021b). Antiplasmodial and cytotoxic activities of extract and compounds from *Ozoroa obovata* (Oliv.) R. & A. Fern. Var. *obovata*, *Chemistry Biodiversity*. 18: e2100240.
- Tajuddeen N., Van Heerden F.R. (2019). Antiplasmodial natural products: an update, *Malaria Journal*. 18, 1: 404.
- Talkmore N., Charlotte I.E.A., Klooster V., Joo T.V.M., Jong D., Jan H., Westhuizen V. (2015). Medicinal plants used by traditional healers for the treatment of malaria in the Chipinge district in Zimbabwe. *Journal of. Ethnopharmacology*. 159: 224-237.
- Tamaki T., Nakashima T., Ueda T., Tomii K., Kouno I. (2007). ent-Kaurane Glycosides from *Tricalysia okelensis. Chemical and Pharmaceutical Bulletin.* 55: 899-901.
- Tosh J., Aaron P. D., Dessein S., De Block P., Huysmans S., Fay M.F., Smets E., Robbrecht E. (2009). Phylogeny of *Tricalysia* (Rubiaceae) and its Relationships with Allied Genera Based on Plastid DNA Data: Resurrection of the Genus *Empogona*. *Annals of Missouri Botanical Garden*. 96(1): 194-213
- Trager W., Jensen B.J. (1976). Human malaria parasites in continuous culture. *Science*. 193 (4254): 673- 675.
- Tshisekedi T., Mutwale K.P., Kabongo K.M.J., Tujibikila M.A., Dibungi T., Kalenda., Alembert T., Tchinda A.A., Mouithys-Mickalad O., Jansen E., Cieckiewicz M., Tits L., Angenot M., Frédérich. (2016). Antiplasmodial activity of *Heinsia crinita* (Rubiaceae) and identification of new iridoids, *Journal of Ethnopharmacology*. DOI: http: //dx.doi.org/10.1016/j. jep.2016.11.041.

- Udia P.M., Antai A.B., Lapah P.T., Ekeuwei E.B. (2013). Phytochemistry, proximate and elemental compositions of extracts from the leaves of *Rothmannia longiflora* and *Rothmannia hispida*. *Journal of Natural Products*. 3 (5): 41–47.
- Vara Y., Aldaba E., Arrieta A., Pizarro J., Arriortua M., Cossío F. (2008). "Regiochemistry of the microwave-assisted reaction between aromatic amines and α-bromoketones to yield substituted 1H-indoles". Organic and Biomolecular Chemistry. 6(10) : 1763.
- Villedieu-Percheron E. V. (2011). Etude d'une famille de diterpènes d'origine naturelle ayant une activité anti-inflammatoire., *Thèse de doctorat*. Université d'Orléans. 278.
- Virinder P. S., Subhash J.C., Sangita G. (1998). Polyphenols and alkaloids from *Piper species*. *Phytochemistry*. 49 (4): 1069-1078.
- Wang F.P., Liang X.T., Cordell G.A. (2002). In the Alkaloids/Chemistry and Biology; Ed, *Elsevier Science: New York*. 59: 1-280.
- Watts K.R., Tenney K., Crews P. (2010). The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. *Current Opinion in Biotechnology*. 21: 808-818.
- Wells T.N.C., Alonso P.L., Gutteridge W.E. (2009). New medicines to improve control and contribute to the eradication of malaria, *Nature Review Drug Discovery*. 8: 879-891.
- Wonkam A.K.N., Ngansop C.A.N., Wouamba S.C.N., Jouda J.B., Happi G.M., Boyom F.F., Sewald N., Lenta B.N. (2020). Rothmanniamide and other constituents from the leaves of *Rothmannia hispida* (K. Schum.) fagerl. (Rubiaceae) and their chemophenetic significance, *Biochemistry and Systematics Ecology*. 93: 104-137.
- World Health Organisation (2021). WHO recommends groundbreaking malaria vaccine for Children at risk? Available from https://www.WHO.Int/news/item/ 06-10-2021- Whorecommends-groundbreaking-malaria-vaccine-for-Children-at-risk. Accessed on 31st October, 2021.
- World Health Organisation (2022). Weekly epidemiological record. Available from http://www.who.int/wer/ 4 March 2022, 97^e année, No 9, 2022, 97: 61–80
- World Health Organization. (2020). Leishmaniasis. Regional Office for Africa. URL: http://www.afro.who.int/health-topics/Leishmaniasis.

- World Health Organization. (2020). World Malaria Report. The "World malaria report 2020" at a glance. WHO: Geneva, Switzerland. Available from http://www.who.int/teams/global-malaria-programme/report/world-malaria-report-2020. Accessed on 3rd March, 2021.
- Xu W.H., Jacob M.R., Agarwal A.K., Clark A.M., Liang Z.S., LI X.C. (2009). Ent-Kaurane Glycosides from *Tricalysia okelensis*. *Chemical and Pharmaceutical Bulletin*. 58 (2): 261-264.
- Xu WH, Jacob MR, Agarwal AK, Clark AM, Liang ZS, Li XC. (2010). Ent-Kaurane Glycosides from *Tricalysia okelensis*. *Chemical and Pharmaceutical Bulletin* (Tokyo). 58 (2):261–264.
- Yamamori A., Takata Y., Fukushi E., Kawabata J., Okada H., Kawazoe Naoki., Ueno K., Onodera S., Shiomi N. (2017). Structural analysis of novel Low-Digestible Sucrose Isomers synthesized from D-Glucose and D-Fructose by Thermal Treatment. *Journal of Applied Glycoscience*. 64: 15-19.

COMMUNICATIONS SCIENTIFIQUES

- Doctoriales_ URFD_Chimie et Applications Université de Yaounde 1 Septembre 2022 : Métabolites secondaires isolés des feuilles de *Tricalysia atherura* N.Halle et *Tricalysia oligoneura* K.Schum- Evaluation de leurs activités antiplasmodiale. <u>GS</u> <u>Djikam</u>*, DS Ngono Bikobo, DE Pegnyemb. MI Choudhary. Poster.
- Conférence Nationale Yaoundé 28-29 Avril 2022: « 3MCC 2022 » entitled "Made in Cameroon for Industrialization and Sustainable Economic Development''. Metabolites secondaires isoles des feuilles de *Tricalysia atherura* N. Halle. <u>GS Djikam</u>*, DS Ngono Bikobo, DE Pegnyemb. MI Choudhary. Communication orale.
- Conférence Nationale Douala 05-07 Mars 2022: "Academic Research at the Service of Development and well-being in Pandemic context'': Isolement et caracterisation des phytoconstituants de deux plantes de la famille des Rubiaceae : *Tricalysia atherura* N.Halle et *Tricalysia oligoneura* K. Schum ; Evaluation de leurs activités antiplasmodiale. <u>GS Djikam</u>*, DS Ngono Bikobo, DE Pegnyemb. MI Choudhary. Communication orale.
- Conférence Internationale Islamabad- Pakistan 15-16 Juin 2021: " An Advanced Training Course on ''How to establish Halal Products testing Laboratory?'' : Participante
- Colloque International Karachi- Pakistan 07 Juillet 2021: "Online Meeting on Recent Developments in Drug Discovery and Medicinal Chemistry'': Participante

PUBLICATION

PUBLICATION

Gwladys Djikam Sime, Norbert Mbabi Nyemeck II, Auguste Abouem A Zintchem, Natasha October, Marius Balemaken Missi, Rabia Farooq, Khalid Mohammed Khan, Dominique Serge Ngono Bikobo, Muhammad Iqbal Choudhary & Dieudonné Emmanuel Pegnyemb (2022): Secondary metabolites of the leaves of *Tricalysia atherura* N. Hallé (Rubiaceae) and their potential antiplasmodial activity, *Natural Product Research*, 37: 17, 2830- 2840. DOI: http://doi.org/10.1080/14786419.2022.2137796.