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Résumé

Ce travail illustre la propagation des ondes de déplacement dans les modèles mathématiques de

chimiotaxie. Nous considérons les cellules pouvant proliférer dans un fluide bi-dimensionel dans lequel

la traction, et la diffusion de longue portée sont pris en compte. Une extension des fonctions de

type F nous permet de construire de solutions de type cloches, cloches renversées, escaliers, et péri-

odiques. Nous démontrons que le champ de vitesse du fluide constitue le support compact sur lequel

la propagation est possible. Ceci nous permet de déduire la ligne séparant les solutions dynamiques et

stationaires. La vitesse des ondes décroit avec l’augmentation de la traction et la diffusion de longue

portée. De plus, les valeurs croissantes de la diffusion de longue portée réduisent la largeur de l’onde

tout en favorisant un déplacement dans le sens direct. Cependant, la traction diminue de la largeur de

l’onde et du nombre de particules transportées. Plus loin, nous couplons chimiotaxie et l’haptotaxie

obtenant ainsi un model ou traction et adhésion sont prépondérants. Par injection des excitations

nonlinéaires, les propriétés visco-élastiques sont établies, et nous prédisons l’existence des zones de

paramètres pouvant mener à la génération des ondes expansives ou compressives. La réduction du

modèle nous mène à une équation compexe de Ginzburg-Landau dont les solutions nous permettent

de montrer que le transport des cellules est optimisé lorsque l’adhésion croît ou la traction décroît. En

fluide nonuniforme, le modèle correspondant prend en compte les effets de friction, gravité et traction.

En présence des perturbations transversales, nous établissons que le type d’instabilité ne depend pas

de la profondeur d’immersion de cellules. Les perturbations non-transversales mettent en évidence les

structures oscillatoires en eau profonde, en plus du fait que le système reste stable pour des grandes

valeurs du vecteur d’onde de perturbation. Dans toutes nos analyses, nous observons que les solutions

numériques et analytiques restent proche les unes des autres et gardent leur poitivité. Ce dernier fait

nous permet de dire que les solutions construites sont stables et peuvent être considérées comme des

objets physiques.

Mots clés : Particules biologiques actives, Mouvement collectif, Interactions Hydrodynamiques,

Excitations Nonlinéaires, Ondes de matière bactériennes.



Abstract

The results present in this document broadly describe the propagation of traveling waves in chemo-

taxis models. Considering cells to be immersed in fluids, and assuming a two-dimensional frame-

work, we introduce models taking into consideration proliferation, long-range diffusion, traction and

chemoattractant consumption rate. An extended F-expansion method allows to construct several

families of waves, including bell-shaped, dip, step, and periodic profiles. We show that the flow rate

of the medium constitutes the compact support through which the propagation is made possible.

The later observation allows us to separate stationary and non-stationary states, and we establish

the critical line separating forward and backward propagations. It is observed that wave velocity

decreases as traction and long-range diffusion increase. Long-range diffusion reduces the wave width

accompanied by a forward displacement, while traction decreases wave width and the number cells

transported. Coupling chemotaxis and haptotaxis allows to describe the transport of cells in fibrous

media. Through nonlinear excitations phenomenology, visco-elastic properties are deduced, and we

predict the existence of parameter domains where expansive or compressive waves may be generated.

Model reduction yields the complex Ginzburg-Landau equation, whose solutions are used to show that

cells transport is optimized when adhesion increases or traction decreases. In a nonuniform fluid, we

propose a chemotaxis model where friction, gravity and traction are at play. Transversal perturbations

to the y-axis reveal that the type of instability does not depends on depth of the suspension. In pres-

ence of non-transversal perturbations, our analysis predict the emergence of stable oscillatory patterns

in deep suspensions. Moreover, the system remains stable at long wave-vectors while stability reduces

as gravity and friction increase. In our manufacturing, we have performed numerical simulations by

using the analytical solutions constructed as initial conditions. We observe that numerical and ana-

lytical solutions keep their positivity and remain close to one another. This allows us to confidently

assert that our solutions are physically relevant and can therefore be observed in real experimental

settings.

Keywords : Active biological particles, Collective behavior, Hydrodynamic interactions, Nonlinear

excitations, Bacterial waves.
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Introduction

Studies on active media and innovative trends in biotechnology, have grown increasing attention

for researchers from diverse walks of science. Particularly, studies on active biological particles have

continuously set the evidence on spatiotemporal symmetry-breaking properties, and pave the way to-

ward their sorting into different classes. A collection of bacteria, spermatozoa, or cells moving towards

an energy source, or away from repellent domains constitutes an active system within which particles

are continuously and outwardly driven by tuning their orientation through signal sensing, transduc-

tion, and adaptation. When the external factor responsible for such a directed motion is a chemical,

the process is termed chemotaxis and when it is induced by extracellular medium (ECM) properties,

it is known as haptotaxis. Both mechanisms have been studied experimentally, theoretically, and

numerically. Though they present some differences at the molecular level, they are commonly capable

of assembling cells at favorable environmental locations. In that sense, chemotaxis and haptotaxis

have been shown to be at the onset of several biological processes of interest such as organ repair [1],

pattern formation [2, 3], wound healing [2, 4], fertilization [2, 5], long-range communication [2, 6],

and also pathological conditions including cancer cells invasion [7, 8], metastasis formation/migration

[2, 3, 8], and tumour angiogenesis [9, 10]. It is therefore ubiquitous to understand how both phenomena

contribute to topological deformations cells induce upon their direct surroundings, the ECM.

Chemical-induced collective motion of a cellular distribution was first studied by Adler [11], Pat-

lak [12], Keller and Segel [13]. The latter proposed the first mathematical models to describe self-

assemblies of chemotactic particles, while mathematical models describing haptotaxis were proposed

later [2, 4, 7, 10, 14, 15, 16, 17]. Chemotaxis and haptotaxis models have been continuously and

independently modified to take into consideration various aspects of bacterial migration including

long-range interactions, contact inhibition, proliferation, hydrodynamic events and competitive inter-

actions amongst cells [2, 6, 18, 19, 20, 21, 22, 23]. On the other side, though experimental shreds

of evidence reveal that chemotaxis and haptotaxis operate through different biochemical paths, they

also occur simultaneously [15, 24], yet no mathematical models taking into consideration both aspects

have been consistently provided and analyzed up until now, to the best of our knowledge. Moreover,



chemotactic/haptotactic models have been analyzed in one-dimensional settings, however, the spread-

ing behavior of cells and their sudden orientational change suggests that a two-dimensional analysis

may be required to access new pieces of information. Mathematical models and theoretical calcula-

tions in this end and to the best of our knowledge, have also not yet received much attention. Besides,

collective dynamic in cellular networks occurs as traveling bands of matter [2, 13, 19, 20, 21, 25], let-

ting us to think that the use of traveling wave methods may be appropriate to uncover intrinsic salient

features embedded in those systems. For example, Keller and Segel [13] showed the existence of trav-

eling waves conditioned by a singular chemotactic drift. A very problematic assumption, since such

a singularity, entails an unbounded chemotactic velocity drift and, an infinite cellular density. These

observations further encouraged investigations on conditions within which chemotactic/haptotactic

systems are globally and locally integrable [11, 26, 27, 28, 29, 30]. The latter results design differ-

ent physical setups within which traveling bands of matter-wave may be observed. They also lay

the mathematical foundations for investigating bacterial spread and invasion within multidimensional

biological tissues, thus the aim of our investigations.

Ordinary and partial differential equations have proved their usefulness in formulating various

problems under sound and specific physical constraints. This is well visible in reactive systems for

example, where deterministic reaction-diffusion equations are often used to describe spatial spread.

However, in their natural habitat, cells are subject to the influences of several factors, enforcing the

adaptation of their motion to both chemical and mechanical events. The latter observations raise

several questions amongst which the prominent are: How reaction-diffusion models may be modified

to incorporate physical phenomena relevant to the study of active collective assemblies? In other

words, how do particles integrate local and distant sensing pieces of information simultaneously and

correlate globally their motion towards the realization of a unique endeavor? How does the collective

motion of a given population shape and/or reshapes the topology of the medium within which they

are immersed? And finally what are the appropriate structures emanating from generalized reaction-

diffusion models responsible for a stable cellular transport in the limit of long-time and large space

dimensions? Pieces of information necessary to answering these questions have not yet been provided,

to the best of our knowledge. In other words, investigating these questions offers an opportunity to

study new directions in the physics of collective behaviors. It opens the doors to many possibilities for

analytical as well numerical analyses. We subsequently propose to theoretically assess spatiotemporal

evolutions of active particles placed in a medium with dynamics of its own in one and two spatial

dimensions. Using traveling wave analysis in some cases and weakly nonlinear excitations in others,

we intend to provide in close analytical expressions, the solutions for chemotactic-haptotactic models

and use these ones to probe cellular transport across their propagating media.
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To the best of our knowledge, the application of exact solutions methods, perturbations techniques

coupled with stability and numerical analysis, have not yet been used to decipher the nonlinear dy-

namics of reactive systems composed of biological particles set into motion by an external energy

source in a multi-dimensional space. We lay down in chapter 1, brief generality on chemotaxis is

provided. In chapter 2, we proceed with model derivation, and present mathematical and numer-

ical models used to analyzed those models. the third chapter displays our common findings. The

F-expansion method is used to construct traveling wave solutions of a two-component chemotaxis

models. The RPM is applied to reduce chemotaxis models to cubic complex Ginzburg-Landau and

complex Davey-Stewartson equations. The analytical solutions of these equations are later used to

probe spatiotemporal evolutions of bacterial densities. The present report is enclosed with a general

conclusion and an open door on future research works.
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Chapter 1

Generality on bacterial chemotaxis and

traveling bacterial waves

1.1 Introduction

Understanding bacterial chemotaxis/haptotaxis has become a paradigm for biology and biome-

chanic system analysts. Broadly, both mechanisms happen as the signature of local excitations strong

enough to trigger an average convergence towards stable configurations. It is therefore reasonable

to wonder how an element of a given population senses and integrates external excitations at the

molecular level such that the resulting motion at the population scale is coherent. The answer to

this question represents a fundamental issue in the sense it requires taking into consideration variants

characteristics of cell-cell interactions. Starting at the molecular level, we lay in this chapter, the

biochemical foundations of collective motion and expose the main motivation of our investigations.

1.2 The run and tumble dynamic and its biochemical implica-

tions

Chemotaxis is the ability of a cell to instantaneously direct its orientation directions toward regions

with attractive or repulsive chemical properties. It was observed by Engelmann [31, 32] and Pfeffer

[33], and has since then received much attention from theoreticians and experimentalists. At the

cellular level, this phenomenon is achieved by specific chemoreceptors known as Methyl-accepting

Chemotaxis Proteins (MCPs). Each of these receptors respond to specific chemoeffectors. In E. coli

for example, there are five preponderant receptors, namely: Tar responding to aspartate, Tsr responds



to serine, Tap to dipeptides, Trg to galactose and Aer, the less abundant responds to oxygen. The

receptors span the cytoplasm and form clusters at both ends of bacteria. Chemoreceptors are highly

sensitive to chemoattractant concentration variations, and they each respond to specific attractants.

In absence of any external bias, a bacterium moves randomly without a preferred orientation direction.

In presence of an attractive chemical, activation of bacterial receptors triggers a set of intracellular

biochemical cascades that subsequently monitor the bacterial flagella activity. When several flagella

rotate counterclockwise (CCW), they bundle and propel the cell in a quasi straight line forward motion

called a run. Clockwise (CW) rotations are at the onset of flagella detachment, and such a process

would lead to a tumbling motion. The latter allows a cell to change its primary direction orientation.

The process is very transient compared to runs

In the case of E. coli specie as depicted on the left panel of Fig. 1, CW and CCW rotations are

entertained by a set of specific chemicals known as chemotaxis proteins (Che). These are known to play

a linkage role between the receptor and flagella motors situated at the end of the cell body. Though

each chemotaxis protein has a specific role, their mutual interactions coupled with production-depletion

control both the type and degree of the cellular motion as displayed in Fig. 1. On the left panel of Fig.

Figure 1.1: Left panel, biochemical transduction path of chemotactic motion in E. Coli [34]. Right

panel displays the run-tumble dynamic associated with chemoreceptor states spanning cellular cyto-

plasm [35].

1, the chemotaxis proteins Che’s provide the necessary path for the biochemical cascade taking place

within each cell during a chemotactic event. This enforces that the signal transduction from sensing

to the actuation of flagella motors is controlled by a set of well defined intracellular protein-protein

interactions. The proteins CheA, CheW and CheZ are located at bacterial receptors level. In presence

of a given chemical, receptors produce a signal that is then transmitted within the cell. In order to
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translate the detected signal at the intracellular level, the chemoreceptor protein CheW plays a linking

role between CheA and the receptors situated at both edges of cells [36]. CheA also interacts directly

with the receptors. When the chemoattractant concentration decreases, an autophosphorylation of

CheA is triggered by receptors. One of the phosphoryl group is either subsequently transferred to the

response regulator CheY or to CheB. The phosphotransfer from CheAp to CheY increases the affinity

of the latter with flagella motors. Thus CheYp diffuses through the cell. Once it reaches flagella,

the tumbling rate/probability of the cell increases [37]. As consequence, flagella unbundle. Signal

termination happens when CheZ dephosphorylates CheYp at the receptors level [38].

Simultaneously on the other side, a slower the phosphotransfer also occurs from CheAp to CheB,

triggering the process of adaptation. The latter is mediated by the CheBp proteins. In fact, the pri-

mary role of CheB is to reset the receptors into the unstimulated state, while CheBp has the potential

to demethylating the receptors, hence counteracting the activity of the methlytransferase CheR. The

dual competition between CheY and CheB proteins reveals that receptor methylation leverages the

rate of CheAp production [34, 35]. When bacteria are in their unstimulated states, the dual compe-

tition results into an equilibrium between CheR and CheBp, leading to the non observation of the

methylation process. Since CheR and CheBp compete for a specific binding domain of CheA, one

can therefore assume that autophosphorylation of CheA coupled with receptors methylation are the

key processes to controlling flagella rotations, and hence the out-coming motion. In contradiction,

adding a chemoattractant to receptors decreases the autophosphorylation rate of CheA, with two

major conseqences: the phosphotransfer to CheY does not occur, entailing a net decrease of CheYp

in the cytoplasm. Therefore, as CheY concentrations are higher, their affinity with flagella triggers

CCW rotations of the latter ones. The second effect of adding a chemoattractant is that CheBp con-

centrations decrease, and the receptors get methylated by the methyltransferase CheR. Consequently,

an autophosphorylation of CheA occurs, hence returning the system to its unstimulated state. We

display on the left panel of Fig. 1 brief details of the machinery described above, and on the right,

the different associated displacement patterns.

When the extracellular medium (ECM) of the cell changes positively (presence of chemoattrac-

tant), chemoreceptors’ activity drops hence phosphorylation rate of CheA decreases. Consequently,

CheYp concentration reduces, causing counterclockwise rotations of flagella. In the same way, CheBp
concentration decreases as well, increasing the methylation rate of receptors by CheR. As an outcome,

their activity rises hence leading them to a pre-stimulated autophosphorylated state CheA, and the

cycle starts all over again. Reversely, when negative variations occur, autophosphorylation rate of

CheA increases, hence increasing CheYp and CheBp concentrations. Thus, clockwise rotations of flag-

ella cause cells to tumble. Subsequently, the rise of CheBp favors receptors demethylation leading to
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a return to the prestimulated phosphorylated state CheA, as well as the CheBp and CheYp. Though

each species may present its own specific chemotaxis proteins due to physiological differences, the

above-described machinery is similar in many species [35], hence letting us think that it might be a

common feature in several biological entities. The underlying process may be summarized as

Signal detection −→ Signal processing −→ Response to signal −→ Adaptation.

The integration of the above linear chain over several units indicates a continuous bias of flagellar

rotations, with a possible outcome of large scale motions as those observed in collective dynamics of

swimming fishes, traffic jams, herd flocks, bird swirling, collective behavior of pedestrians in a busy

street, just to name few. The overall process of bacterial motion starting from signal sensing to collec-

tive dynamic can be described by important intrinsic characteristics including sensitivity, adaptation,

and robustness. In other words, the individual response of bacteria requires some changes in the

signal processing networks that is further responsible for biasing flagella motors. This also implies

that the above characteristics enable cells filter the signal being processed. Adaptation mediated the

termination of the bacterial response, and it does not alter either signal processing or provokes spatial

rearrangement. These observations enforce the understanding of principles prevailing at the cellular

level. These ones presents several opportunities to design biotechnological setups for controlling the

transport of higher densities and by ricochet the collective dynamic. Our point that those basic prin-

ciples in fact might present some influences at the macroscale, in the sense that they may be applied

to decipher structural changes such as the degradation of receptors.

1.3 From microscopic to emergence of a bulk collective motion

From the precedent section, chemotactic motion possesses complex molecular origins, hence the

need for more accurate, in-depth qualitative and quantitative analyses. To this end, a significant and

strategic body of works has emphasized on describing chemotaxis at single cell unit and the population

level. Both lines of work started in the middle sixties with the pioneering experiments of Adler [11],

and has since then been served as the basis for unraveling chemotactic systems, experimentally and

theoretically. In occurrence, active convergence of cells towards attractive regions may be responsible

for contamination due to higher densities biofilm formation on surfaces [39].

In his work, Adler studied E. coli migration in agar plates containing different chemoattractant

substances. He observed the formation of circular bands of cells depending on the attractant consumed

[11, 40]. Attractant consumption at the microscopic scale drives each constituent of the colony to

exhibit an irreversible dynamic. The observations of these traveling bands sparked much interest

in the modeling of population behavior at large scales. It is reasonable to think that self-propelled
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biological entities may form coherent sub-class of active matter systems that can be theoretically

assessed. It is a common feature when investigating collective dynamics to consider mathematical

models emanating from microscopic interactions [11-14, 19-22, 37, 38, 40].

Several approaches have been adopted to analyze the collective motion of bacterial densities in their

natural habitat. At a single cell level (left panel of Fig. 2), the canonical view of runs (quasi-straight

distances covered at constant speed) punctuated by tumbles (angular deviation from the previous

direction orientation occurs at a quasi-constant rate) leads over a high number of particle, to a diffusive

like behavior (right panel of Fig. 1). However, observations of Fig. 2 facilitate the establishment of a

Figure 1.2: On the left, the simulated path of a single cell dynamics while the right displays the

crystalline order of a bacterial flock.

connection between single-cell dynamics, and broad range phenomena existing in the subsequent high

particles density systems derived after application of suitable coarse-grained analyses. In this view,

the application of the latter requires considering the deterministic diffusion equation describing the

probability distribution function coupled to a single particle evolution equation. These coarse-grained

models are used to describe large space phenomena such as dense cluster formation often associated

with down-regulation of bacterial swimming speed. This implies that chemical communication/sensing

experienced by cells presents effects on each unit of the colony that in bulk, can be observed as density-

dependent velocity. For instance, when the medium is quasi-dilute, the velocity smoothly decorrelates

and bacteria asymmetrically catalyze chemoattractant conversion into a fuel following the biochemical

cascades described in section 1.2, hence leading to a mechanical motion (flagella actions). Therefore,

an acute tuning of sensing mechanisms of each cell may lead to a new state called Motility Induced

Phase Separation (MIPS) [41, 42]. Though MIPS also occurs in many non-biochemical situations, it

summarizes the fact that collective assemblies are the result of individuals particles coherently moving
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accordingly with their neighbor for the realization of a common task. This also implies that particles’

interactions with one another and with their environment give rise to highly correlated motion and

mechanical events that cannot only be explained by the biochemical machinery involved. A clear

distinctive feature associated with chemotactic collective behaviors in large spatial dimensions is that

each particle consumes and produces a chemoattractant, and the chemoattractant is initially precisely

located. This characteristic enables the system to avoid shear flows like behaviors that are literally

due to energy sources localized at the boundaries in some systems [43].

Though the chemotaxis machinery of many species is well documented, a complete description

of the phenomenon seems far to be attained due to complexity and the high number of variables to

be handled. However, for a given population, quantifying key parameters of the dynamical behavior

may provide an effective way improve our understanding of the generic process behind living matter

motion. This is achievable by investigating global principles such as transport, conservation, and

symmetry. Questioning some hypotheses accessible to theory as performed in the seminal work [44]

may offer a suitable approach to this end.

Individual-based models have been applied to decipher the influences of single-cell behaviors on

the cellular population. An example of this approach was performed by the authors of [45] while

investigating the contribution of stochasticity in the chemotactic signaling network upon the bulk

dynamic. Their analyses shed light on two majors problems: the incapacity of agents based models

to probe the influences of variations of receptor sensitivity, adaptation, and motor response at the

population level. Secondly, it is incapable of distinctively accounting for the relation between flagella

rotation bias and CheYp concentration. These issues have been circumvented by the authors of [46, 47]

who built a detailed model consisting of approximately 90 ordinary differential equations (ODEs).

Incorporating biophysical data, they produced a good approximation of swimming patterns of cells,

hence bridging the gap between single cell and population-scale models. However, the number of

equations involved in the model is relatively high, rendering tedious its complete analysis.

On the other side, the jet lag between excitation and adaptation allowed [48] to show that tem-

poral cellular evolution can be coarse-grained. In the same way, the authors of [49] showed that the

chemotactic response vanishes as the adaptation time tends to zero, hence paving the way toward

simulations of chemotactic behaviors under reasonable time limits. Though this approach leads to

interesting results, the common issue associated with this approach is that the application of coarse-

grained methods shifts the system from discrete to continuous, hence the contribution of an individual

cell on the global dynamic is significantly hidden.

Following [12, 50] it is clear that the chemotactic behavior also follows stochastic paths. Though

this approach offers the possibility to understand the correlation between collective chemotactic motion
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and random walks of a cell, it does not help to bridging intracellular biochemical cascades to the

observed large-scale behaviors. However, considering the temporal change in receptor occupancy,

the approach developed in [50], represents a starting point to explain how a single cell trait affects

population behavior. All the above shreds of evidence suggest that chemotaxis can be primarily

analyzed at a single cell level as well as at macroscale, and in some rare cases a bridge between

both observations can be built. However, in nature, bacteria collectively travel as a bundle. This

last observation paves the way towards unraveling collective chemotaxis behavior by measuring the

average bacterial density. Such an exercise can be made possible in experimental settings or using

direct numerical integrations of the models under consideration.

1.4 Propagation of weakly nonlinear excitations in active sys-

tems

Biological systems in occurrence, collections of chemotactic bacteria are excitable systems that are

set into motion due to energy or metabolic supply high enough to internally trigger changes at the

biochemical level. This means that understanding bacterial collective behaviors depends on the scale

one attaches its attention to. However, whether one is interested in either macroscopic or microscopic

description, the laws describing complex phenomena in biological systems are often empirically derived

using simplistic ideas and hypotheses such as transport, symmetry, kinetics, linearization, and Taylor

expansion. The latter approach has helped produce results with remarkable accuracy, yet extending

its use to complex systems such as chemotaxis/haptotaxis has proven difficult since the biochemical

structures induced by chemotaxis/haptotaxis have non-trivial consequences at the macroscopic scales.

This difficulty resides in the fact that the approach becomes mathematically taxing, enforcing to

consider different scales of the problem. The aim is to be able to reduce the complexity of a model

and hence provide a description of the problem that shares the characteristics of the different scales

initially considered. A systematical way of doing this consists of replacing a non-integrable nonlinear

problems with their equivalent ones that are linear. A technically affordable method while proceeding

so maybe through perturbation analysis which implies the use of slowly varying wave amplitudes often

qualified as weakly nonlinear waves.

Although weakly nonlinear waves approximations may be used without the need to rely on a

specific experimental situation, their related phenomena diverge from the results obtained through

linear analysis. This is principally due to the fact that small displacement of a physical quantity in

the equation may yield large deviations from its expected value. In this sense, the use of a multiscale
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analysis may be convenient and has been used in spatially extended systems. Weakly nonlinear waves

and their applications in complex extended systems range from biology, plasma physics water wave

surfaces [51, 52, 53, 54, 55], just to name a few. In fact, when dealing with a system that is analytically

difficult to analyze nonlinear waves offer a better alternative for probing mathematical models with

remarkable accuracy. In this regard, the authors of [51] were able to provide explicit analytical solutions

to a model describing the movement of charges in plasma. More recently in the same approach,

nonlinear excitations were in a plasma system were used to generate soliton solutions of a plasma

system in three dimensions [53]. In [54], nonlinear waves propagating in a viscoelastic tube were used

to generate Mayer waves, which are well known for their applications in the study of cardiovascular

problems. In their study of signal transmission in neural networks, the authors of [55] showed that

weak nonlinear waves may be used as a key to generating stable and coherent modes as long as the

bandwidth frequency remains within a predetermined interval. More recently, in our investigations of

collective dynamics of chemotactic in fluid [56] and invasive processes induced by mesenchymal cells

[57], we used weak nonlinear waves to prove that apparently complicated systems of partial differential

equations may be solved by considering finite sums of modulated nonlinear solutions. Despite the

possibilities generated by the application of multiscale methods, one can confidently affirm that it

provides a compelling framework to describe mathematical models using a solid footing. Moreover, it

offers a unified tool for modeling the different scales appearing in physical systems, in occurrence in

biological models.

1.5 Experimental and theoretical evidences of chemotactic waves,

the outline of the present work

Besides the fact that bacteria are responsible for several pathological issues, they are also used in

pharmaceutical and biotechnological industries for drug delivery and recycling purposes. When placed

in a specific medium, they aggregate to form complex geometrical shapes with a remarkable speed,

and the process may not only be explained through experimental observations. Starvation-induced

aggregation of Dictyostelium discoideum into a multicellular has been observed, letting us wonder how

and when short-range chemical gradients at a single cell level lead to emission of moving macroscopic

structures akin to traveling waves. Answering this question implies considering how local interactions

among cells, and between cells and their direct surrounding medium might contribute to enhance the

formation and propagation of bands that, mathematically may be described using a traveling wave

analysis. In this section, we provide the experimental context, the theoretical foundations for the
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existence of traveling waves propagating within chemotactic systems, and highlight their roles at the

physiological level.

1.5.1 Experimental and theoretical foundations of chemotactic traveling

waves

Qualitative and quantitative analyses of bacterial collective motion have been carried in several

experiment settings and theoretical frameworks [1-50]. The first demonstration of traveling bands

of cells is imputed to Adler [11], who observed the behaviors of E. coli cells placed at one end of a

one-dimensional racetrack setting. He found that when an attractive chemical is placed at the other

end of the tube, several bands form and travel at different velocities. The bands were not formed

instantaneously, and samples of bacteria taken in two distinct bands showed they present different

velocities, leading to think that cells localization may be predicted with good accuracy. Starting from

experimental observations of Adler, Keller and Segel derived a mathematical model for chemotaxis

from whose solutions are traveling pulses [13]. Those solutions exist under the very problem of a

singular chemotactic drift velocity. The latter implies that cells density might indefinitely grow and

their velocity goes to infinity. Under these conditions, those solutions might not be physically relevant

and call for advanced experimental investigations of traveling bands of chemotactic cells. The collective

dynamic of cells happens as a transition from a single cell to multicellular network behavior, which the

authors of [58] numerically and experimentally analyzed using cell-cell correlations. They were able

to demonstrate that long-range communication is at the onset of aggregation. Experimental studies

presented in [59, 60] revealed the formation of bands of cells. In so doing, the authors extend the results

obtained by Adler and proved that The nature, the type, the number of bands, and their moving speed

depend on the medium characteristics. While patterns formed in fluids are simple geometrical forms

with a lifetime of about a few minutes, complex patterns were observed in semi-solid media and take

several days to form [2, 59]. These observations imply that in the former case the cellular proliferation

may not play an important role, in contradiction with the latter.

Combining experimental, computational, and theoretical analyses, the authors of [25] provide

compelling evidence of bacterial bands displacement structures akin to traveling waves. The study

shows that bacteria are principally carried through traveling pulse profiles, and, both the wave velocity

and characteristic length were recovered from the model proposed. Following the same approach

traveling bacterial pulses for two-chemotactic populations migrating with different speeds towards the

same attractant source were analyzed in [19]. The authors prove the emergence of collective behavior

that depends on the fraction of the fast population. Further theoretical studies of bacterial traveling
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waves for two-species chemotactic models with Lotka-Volterra kinetics reveal that traveling waves

connect two spatially homogeneous states and travel with a speed greater than a critical admissible

value that does not depends on the chemotaxis strength [18]. In nutrient limiting cases, numerical

simulations and experimental analyses figured out that the heterogeneity between two-chemotactic

populations was found as a key to accelerating the progression of the population presenting chemotactic

superiority characteristics [61]. On the other hand, in the flux limiting cases, it has been theoretically

and numerically proving that the Keller-Segel approach to chemotaxis admits backward traveling

waves. The latter was shown to be initially responsible for the population saturation in stable states

and later engender cells transition towards unstable modes [62]. All the above-described observations

reveal that chemotaxis promotes bacterial expansions towards unoccupied domains and that traveling

wave analysis may be applied to assess the characteristics of such an invasive mechanism. Exact

solutions methods may therefore be applied to propose analytical solutions to chemotaxis models, and

use the latter to derive the spatiotemporal properties of these models. To the best of our knowledge,

such an approach has not yet been done, hence our motivations.

1.5.2 Outline and the contribution of the present work

The above paragraph summarizes the fact that collective dynamics of cells may experimentally,

numerically, and theoretically be described using traveling waves analyzes. Yet, in a reactive system

where several aspects ranging from biochemical to mechanical events are at play, explicit analytical

solutions have not yet been provided and discussed to a great extent. Pragmatically speaking, reaching

out to biological problems is one of the main motivations for getting involved in this kind of research.

This thesis derives and solves in one and two spatial dimensions chemotactic models appearing under

several conditions, and the solutions constructed are used to power out some predictions.

♠ Chemotaxis in a fluid with uniform flow rate

In order to describe the contribution of the medium flow on the global dynamic of the bacteria,

we introduce a mathematical model for chemotaxis that taken into consideration the medium flow

rare, proliferation and chemoattractant consumption rate. Further, to elucidate the contribution

of the average chemotactic flow emanating from bacterial motion, we construct a model that takes

into consideration traction forces as well as long-range interactions. The resulting equations are sets

of coupled reaction-linear and nonlinear cross-diffusion equations that are highly nonlinear. Under

realistic boundary conditions, analytical solutions of these models are constructed, and their existence

is discussed.

♠ Mechanical waves generation in chemotaxis
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In this approach, we consider the mechanical properties cells might undergo in their respective media.

Such a configuration requires considering the different physical mechanisms interfering in cells’ motion,

namely chemotaxis, haptotaxis, and advection. The resulting model is a set of four reaction-diffusion

equations with nonlinear cross diffusive terms describing the dynamics of cellular density, chemical

concentration, medium density, and the bulk orientation of cells. Furthermore, several other aspects

such as medium compressibility properties, long-range diffusion, haptotaxis, and traction are also

considered. As result, the models obtained are coupled nonlinear equations describing kinetic law,

continuity, and momentum balanced. Under realistic boundary conditions, solutions are approximated

using finite sums through which stability properties may be deduced at the linear orders. A further

calculation may lead to model reduction and later to analytical solutions.

♠ Bacterial wave patterns in presence of non-uniform hydrodynamic interactions

In their natural habitat, bacteria are capable of interacting directly with the neighborhood through

friction, traction. Also, it is well known that bacteria present different swimming patterns depending

on the medium within which they are immersed. Starting with these observations, it is amenable

to think of bacteria as entities or particles capable of undergoing both steric and hydrodynamic

interactions. Moreover, considering bacteria to be denser than the fluid medium within which they

are immersed, they are more likely to exhibit a vertical motion when the density of their accumulation

reaches an upper threshold or when they lose their sensitivity. Taking into consideration those aspects,

applying force balance conditions and conservation laws leads to an extended chemotaxis-fluid model.

The stability properties of such systems are of high importance to comprehend how coherent patterns

emerge.

1.6 Conclusion

In summary, we exposed in this chapter the power points of bacterial and cellular collective motion,

starting from microscopic observations. We emphasize on the chemotaxis-induced collective motion

as a traveling wave, and we provided its theoretical as well as experimental foundations. We recall

our aim that is to construct stable traveling bacterial waves, and their existence conditions.
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Chapter 2

Model derivation and methodology

2.1 Introduction

The previous chapter showed that chemotaxis and haptotaxis may be at the onset of a wide

range of phenomena such as collective motion, self-assemblies, patterns formation, and phase separa-

tion/transition just to name a few. Moreover, in their natural habitat, bacterial cells undergo inter and

intra-species interactions and exhibit diverse swimming patterns. In that sense, a collection of cells

may be considered as a highly interesting dynamical system whose properties may be used in applied

biological sciences and biotechnology. In their study of chemotaxis, Keller and Segel started from

microscopic observations and examined the motion of an amoeba. In doing so, they were able to build

the first mathematical model mimicking with great accuracy their experimental observations. Since

then, several other approaches have been proposed to derive models for chemotaxis. In this chapter,

we present the general frameworks for deriving chemotaxis models under several circumstances, and

we also present the tools used to analyze those models.

2.2 The Keller-Segel class models: Description, derivation

In their description of chemotaxis on slime molds [13, 63], Seller and Segel observed the formation of

many species. By entirely examining the motion of a unit cell in a given population and standing from

the macroscopic point of view, they derived a mathematical model that explains their experimental

observations. In this paragraph, our aim is to recall the derivation of the Keller-Segel model for

chemotaxis.

In reality, chemotaxis takes place in a medium containing bacterial cells, a nutrient, chemoat-

tractant. Bacteria consume both nutrients and chemoattractants and they also produce an enzyme



responsible for chemoattractant depletion. As usually observed in a reactive system, the chemoat-

tractant and the enzyme may combine to form a complex which is unstable and that decays quickly

[13, 63]. Rather than studying biochemical processes, we are interested in understanding physics laws

that apply to a collection of multicellular cells. Through this thesis, we denote by n(r, t) the bac-

terial density and c(r, t), the chemoattractant concentration, t the time variable and r = x, (x, y)T ,

(x, y, z)T is the position vector in one, two and three dimensions, respectively. In order to derive the

equations describing both n(r, t) and c(r, t), we assume that (a) bacteria may produce and consume

chemoattractant, (b) bacteria and chemoattractant diffusions may be classified as Fickian processes,

and the bacterial total flux should be modified to include chemotaxis effects, (c) time scales are long

enough such that bacteria birth-death are not negligible, (d) variations of bacterial density happen as

the combined effects of diffusion and that of the positive chemoattractant gradient that designs the

swimming direction. Considering an arbitrary bounded regular domain Ωb in a two-dimensional frame,

temporal variations of bacterial density (chemoattractant concentration) balances both the outwards

diffusive fluxes and the kinetics terms, hence we write

d

dt

∫

Ωb

ndr =

∫

Ωb

Fndr −
∫

Jn · ηsds, (2.1a)

d

dt

∫

Ω

cdr =

∫

Ωb

Fcdr −
∫

Jc · ηsds. (2.1b)

s represents the surface delimiting the boundaries of Ωb. ηs is an outward unit vector. Fn(n, c) is a

kinetics term accounting for bacterial birth-death and Fc(n, c) describe chemoattractant production

consumption. Jn and Jc are bacterial and chemoattractant fluxes, respectively. Using the hypothesis

(b), we write Jn = Dn∇n−χ(n, c)∇c, and Jc = Dc∇c. Dn and Dc are bacterial and chemoattractant

diffusions, respectively. χ is the chemotaxis strength which may also depend on n and c. Application

of the divergence theorem on Eqs. (1) permits to write

∂n

∂t
= Dn∇2n−∇ · (χ(n, c)∇c) + Fn (2.2a)

∂c

∂t
= Dc∇2c+ Fc. (2.2b)

Eqs. (2) is Keller-Segel model for chemotaxis. Eq. (2a) describes a reaction-drift process while Eq.

(2b) is a purely reaction-diffusion mechanism. With appropriate initial and boundary conditions, Eqs.

(2) can be solved to determined n and c at any later time. Though the model Eqs. (2) is derived

under realistic biological assumptions, it still presents some limitations, namely: (a) The Keller-Segel

model does not show how the flow of the medium within cells are immersed may affect the collective

motion of cells; (b) In a highly dense system, the motion of a unit cell may affect its neighbors,

hence modifying the average flow in the medium; (c) the Keller-Segel model considers bacteria as
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non-deformable particles, an assumption that only holds in relatively dilute systems. In other words,

when the bacterial/cellular population is high, the incompressibility condition is not very consistent,

hence the aim to revisit our description of chemotaxis. Furthermore, in their analyses of chemotaxis,

Keller and Segel did not take into consideration the Function Fn accounting for intrinsic properties

of cells such as proliferation. These enforces that cellular density remains constant, yet for timescales

under consideration in experiments, it is well known that cells duplicate. These drawbacks encourage

the derivation of more realistic models.

2.3 The models investigated in the present study

In this paragraph, we derive the models for chemotaxis investigated through our studies. In order

to do that, we assume that (a) the medium within which cells are immersed has a dynamic of its

own, (b) the motion of a cell may affect its neighborhood, meaning that traction forces and nonlocal

responses of the cell to external stimuli may be at play.

2.3.1 The (2+1)-dimensional Keller-Segel model in a uniform flow

In this part of the work, we consider a bounded domain Ωb containing a density n(r(t), t) and

chemoattractant concentration c(r(t), t). The domain Ωb is considered deformable, and those defor-

mations arise by the motion of cells in and out the domain Ωb. Therefore, it is amenable to think that

local stresses on Ωb primarily depend on the bacterial density. The application of material derivative

coupled with conservation law on Ωb may be written as

d

dt

∫

Ωb

ndr =

∫

Ωb

(
∂n

∂t
+
dr

dt
· ∇n

)
dr =

∫

Ωb

Fndr −
∫

Jn · ηsds (2.3a)

d

dt

∫

Ω

cdr =

∫

Ωb

(
∂c

∂t
+
dr

dt
· ∇c

)
dr =

∫

Ωb

Fcdr −
∫

Jc · ηsds. (2.3b)

dr
dt

= δ0 represents the velocity of a material point taken in Ωb. In this thesis, we assume a Fisher

logistic growth term for bacterial density Fn(n, c) = rn(σ − n), the chemoattractant kinetic of the

form Fn(n, c) = −βnc and the chemotaxis strength of the form χ(n, c) = χ0n. The application of the

divergence theorem on Eqs. (2.3) leads to advection-chemotaxis model

∂n

∂t
+ δ0 · ∇n = Dn∇2n− χ0∇ · (n∇c) + rn(σ − n), (2.4a)

∂c

∂t
+ δ0 · ∇c = Dc∇2c− βnc. (2.4b)

Eqs. (2.4) is our chemotaxis model for particles placed in a fluid medium. χ0 represents the chemo-

taxis strength and δ0 = (δ0x , δ0y)
T the two dimensional flow rate which we assume uniform in each
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spatial direction. r is the proliferation rate of cells and σ is the medium carrying capacity. β is the

chemoattractant consumption rate. The model Eqs. (2.4) states that the collective motion of cells

influences the medium dynamics with the consequence of creating short-range mechanical effects on

cells. In [2, 13] simplest versions of Eqs. (2.4) have been investigated in one dimensional settings in

absence of flow rate δ0 = (0, 0)T . However sudden reversal of cells due to chemotaxis and random

dispersal leads us to think that a better description of chemotaxis is well suited in two-dimensional

frames. Analytical calculations to the best of our knowledge have not yet been done under such config-

uration for the model Eqs. (2.4). Furthermore, the bacterial logistic growth combined with a uniform

advection may nucleate fluid mixing hence leading to instability. More recently, using a kinetic theory,

the authors of [20] derived a modified chemotaxis model and used their model to predict the emergence

of a traveling pulse that carries a limited amount of cells. Their model does not take into account

growth either advection phenomena. From the above observations, it is amenable to think that the

model Eqs. (2.4) is a better one to probe cellular collective motion only when the short-range response

of cells to excitations is concerned. Hereafter, we circumvent this issue by introducing a model that

takes into account cell-cell traction forces and long-range effects.

2.3.2 Chemotaxis, traction and long-range diffusion in fluids

As in the previous paragraph, we consider a bacterial density n(r, t) and a chemoattractant con-

centration c(r, t) in a bounded domain Ωb. In a situation where cells are highly packed, variations and

deformations of a bacterium taken at the position r have contributions emanating from its nearest

and farthest neighbors situated at position r′. We consider close neighbors effects dominate that of

those placed at long distances, which implies that cells’ response to stimuli located at relatively long

distances must be averaged over the entire domain. Besides the advection and chemotactic fluxes,

the conservation equation for bacterial density must include the contributions of all neighboring cells,

a situation that is mathematically described by an integro-differential equation [2]. Incorporating

neighbor effects in the model Eqs. (2.4) yields.

∂n

∂t
+∇ · Jn = F ′n(n, c) +

∫ +∞

−∞
w(|r− r′|)n(r′, t)dr′, (2.5a)

∂c

∂t
+∇ · Jc = Fc(n, c). (2.5b)

w(|r − r′|) is a kernel quantifying the effects of cells located at r have on their neighboring placed

at r′. w(|r − r′|) must be chosen to fit experimental realities such as the positivity and finiteness of

the bacterial density. We assume a symmetric kernel hence w(|r − r′|) = w(r − r′) = w(r′ − r). If

Fn(n, c)→ 0, the bacterial rate of change positivity is ensured as soon as
∫

Ωb
w(|r− r′|)n(r′, t)dr′ > 0.
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The condition lim|r−r′|→∞w(|r − r′|) → 0 ensures bounded bacterial densities. Let introduce a new

variable z = r− r′. In the case of a narrowing kernel, z→ 0 and Eq. (2.5a) becomes

∂n

∂t
+∇ · Jn = F ′n(n, c) +

∫ +∞

−∞
w(z)n(z + r′, t)dz, (2.6)

Taylor expansion around z = 0 yields

∂n

∂t
+∇ · Jn = F ′n(n, c) + n

∫ +∞

−∞
w(z)dz +∇n ·

∫ +∞

−∞
zw(z)dz

+
∇2n

2

∫ +∞

−∞
z2w(z)dz +

∇3n

6

∫ +∞

−∞
z3w(z)dz +

∇4n

24

∫ +∞

−∞
z4w(z)dz + .... (2.7)

The symmetry hypothesis of w(|r− r′|) permits
∫ +∞

−∞
z2m+1w(z)dz = 0, D′2m =

1

(2m)!

∫ +∞

−∞
z2mw(z)dz 6= 0, m ∈ N. (2.8)

Further, diffusive fluxes are chosen as Jn = δn+χ0n∇c−Dn∇n,Jc = δc−D3∇c. Eqs. (2.5) therefore
take the form

∂n

∂t
+∇ · (nδ) = D0n+D1∇2n+D2∇4n− χ0∇ · (n∇c) + Fn(n, c), (2.9a)

∂c

∂t
+∇ · (cδ) = D3∇2c+ Fc(n, c). (2.9b)

In Eqs. (2.9), Fn(n, c) = D0n+F ′n(n, c), D1 = Dn+D′2, D2 = D′4. To complete the model construction,

we evaluate the velocity of a point material taken in the domain Ωb. Recent studies of bacterial

migration in a confined one-dimensional racetrack showed nucleation of strong flows emanating from

cells closed to channel boundaries [64]. These flows are capable of swerving the bulk dynamic of cells

placed far from channel walls. In other words, the bulk velocity field in the system comprises an active

part generated by the collective motion of cells and a passive part emanating from the perturbations

of the medium within which cells are immersed, hence we write

δ = δ0 +∇H(n, c), where H(n, c) =
τ0n

1 + λn
. (2.10)

In this definition of the bulk velocity in the medium, the function H permits to account for traction

forces cells exert upon each other. This function may be used to measure medium deformations due

to cells activity. τ0, the maximum traction force ensures that the velocity remains finite when the

population increases in a quasi-dilute medium. λ measures the velocity reduction due to a higher

density of cellular aggregation. In the thermodynamic limit, this choice of H ensures that the velocity

remains finite both at low and high densities. In this thesis, we have considered quasi dilute systems

which implies that λ → 0, a situation corresponding to weak hydrodynamic properties of bacteria.
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Furthermore, we choose Fn(n, c) = rn(σ − n) and Fc(n, c) = k0n
k1+k2n2 − βnc. r, σ, and β are the prolif-

eration rate, the medium carrying capacity, and the chemoattractant consumption rate, respectively.

the first term in Fc describes chemoattractant production, and numerical values of k0, k1, k2 are not

known to the best of our knowledge. This choice of chemoattractant production is motivated by ex-

perimental pieces of evidence which suggest that chemoattractant production is linked to a saturating

cellular density [2]. This in other words also means that only a small number of particles is expected

to be involved in chemoattractant production. It is therefore safe to consider k2n2

k1
<< 1. Using Taylor

expansions, Fc(n, c) = β1n−β3n
3−βnc. β1 = k0

k1
, β3 = k0k2

k21
arbitrary unknown real constants. Finally

the system Eqs. (2.9) become

∂n

∂t
+∇ · (nδ0) = D1∇2n−D2∇4n− τ0∇ · (n∇n)− χ0∇ · (n∇c) + rn(σ − n), (2.11a)

∂c

∂t
+∇ · (cδ0) = D3∇2c− τ0∇ · (c∇n) + β1n− β3n

3 − βnc. (2.11b)

More than a simple reaction-diffusion-advection process, the system of Eqs. (2.11) is dynamically

interesting. It takes into consideration simple and nonlinear cross diffusions, in addition to incor-

porating two active transport mechanisms, namely chemotaxis and traction. Traction has been the

subject of intensive experimental studies [22, 65] and to the best of our knowledge, its contribution has

not yet been mathematically formulated in a chemotactic system. The model Eqs. (2.11) indicates

that taking into account traction forces enhances both cellular and chemical displacement towards one

another. In this sense, Eqs. (2.11) can be used to explain a broad range of phenomena in systems

made of composite materials. For example, it may describe the spreading behavior of two chemotactic

subpopulations of bacteria moving toward each other with different velocities. Such a differential

velocity may lead to rich phenomena like instabilities and new patterns formation just to name a few.

We propose Eqs. (2.11) as a viable generalized chemotaxis model that incorporates several aspects of

bacterial collective motion not discussed in previous models presented in [2, 13, 18, 19, 20, 22, 25, 63]

2.3.3 The coupled haptotaxis-chemotaxis model

In this part of our work, we are interested in pathological tissues such as invasion, tumor develop-

ment, and metastasis where chemotaxis may play a key role. In fact, tumor development starts with

normal cells being transmuted negatively. Such a transmutation allows them to escape the home-

ostatic mechanisms accompanied by proliferation and spatial spread as the result of the diffusion.

Through metastasis, cells may also come close to chemical and substrate factors with the potential of

modifying their migration [4, 15, 16]. On the other hand, they also chemotactically respond to the

extracellular matrix (ECM) when proteolytic degradations solubilize the ECM and release chemicals
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that were attached to the ECM. The release of those chemicals is responsible for a chemical-based

cellular reorientation [15, 16], enforcing the conclusion that the medium density has the potential to

influence cells’ motion. The latter phenomenon is known as haptotaxis. It rises to improve the ability

of invasive cells to optimally detect and respond to positive external gradients, a situation that helps

to recruit neighboring cells. The latter contributes to building networks through which the tumor’s

food transits. These observations demonstrate that besides advection, diffusion, and chemotaxis, other

factors including adhesion-mediated migration, and haptotaxis largely contribute to cellular motion.

Therefore, chemotaxis and haptotaxis are two distinct active mechanisms through which invasion hap-

pens in soft tissues. From the physical perspective, this implies modifying the fluxes in such a way as

to consider all the above cite phenomena. In our mathematical description, we assume a continuum

approach where the variables of interest are cellular density n(r, t), the chemoattractant concentration

c(r, t), the medium density ρ(r, t) and cellular orientation u(r, t). Applying force-balanced condition

and conservation laws result in the chemotaxis-haptotaxis model for cellular invasion [2, 4, 15, 16]

∂n

∂t
+∇ ·

(
n
∂u

∂t

)
= D′n∇2n−∇ · [n (χ∇c+ a1∇ρ)] , (2.12a)

∂c

∂t
+∇ ·

(
c
∂u

∂t

)
= D′c∇2c− β0nc+ α0c, (2.12b)

∂ρ

∂t
+∇ ·

(
ρ
∂u

∂t

)
= 0, (2.12c)

∇ ·
[(
µ1
∂ε

∂t
+ µ2

∂θ

∂t
Id

)
+ ε+ ν ′θId +

τ ′n

1 + λ0n2

(
ρ+ γ0∇2ρ

)
Id

]
= s0ρu. (2.12d)

In the system Eqs. (2.12), Dn and Dc are the cellular and chemoattractant diffusions, respectively.

χ and a1 are respectively the chemotactic and the haptotactic functions which we hereafter consider

constants. β0 is the chemoattractant consumption’s rate while α0 is the chemoattractant production

rate. ρ is the ECM density, u being displacement vector of a material point of the ECM, and ∂u
∂t

the

associated velocity. ε = 1
2

(
∇u +∇uT

)
is the strain tensor, and θ = ∇ · u is the dilatation rate of

the extracellular matrix. µ1 and µ2 are the shear and bulk viscosities. ν ′ is the Poisson ratio, τ ′ is a

measure of the traction force generated by a cell, λ0 is the force reduction in presence of other cells.

In the force/momentum Eq. (2.12d), the term τ ′n
1+λ0n2 (ρ+ γ0∇2ρ) describes tractions forces cells exert

upon the ECM, and hence accounts for cell-ECM interactions. τ ′ > 0 measures the maximal intensity

of the traction forces. λ0 > 0 ensures that traction forces go to zero at higher cellular density as

experimentally suggested [2], and γ0 > 0 measures the nonlocal long range of cell-ECM interactions.

In fact, experimental shreds of evidence suggest that filopodia which allow cells to attach to ECM

may extend far beyond the direct neighborhood of those cells. Therefore, it appears reasonable to

take into consideration long-range effects in the traction forces. In the right-hand side of Eq. (2.12d),
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s0ρu represents the body force that counterbalances traction and viscous forces. In that term, s0 is a

parameter measuring intensity with which a point material in the ECM is moved towards a restraining

position along the u direction. It may be taken as an adhesion or attachment parameter.

We introduce the dimensionless variables

t′ =
t

T
, ∇′ = ∇

L
, n′ =

n

N
, c′ =

c

cr
, ρ′ =

ρ

ρr
, u′ =

u

L
, λ = λ0N

2, χ0 =
χcrT

L2
,

Dn =
D′nT

L2
, α1 =

a1ρrT

L2
, Dc =

D′cT

L2
, β =

β0T

Nc2
r

, α =
α0T

c2
r

, µ =
µ1 + µ2

1 + ν ′
,

τ0 =
τ ′

1 + ν ′
, s =

s0

1 + ν ′
. (2.13)

Furthermore, at the early stage of invasion, the maximum distance covered by cancer cells is L ∼
0.1− 1cm [15]. Parameter values for the model Eqs. (2.12) may be taken as in [2]. However cellular

diffusion is known to be of magnitude D′n,c ∼ 10−6cm2/s [2, 15, 16]. With this choice, the dimensional

values of diffusion Dn,c ∼ 10−3 given in [2] allows to deduce the reference time scale T ∼ 10 s. This

value is relatively small compared to the time scales required for cellular proliferation to occur. Cellular

proliferation may be responsible for the co-existence of multiple cell clones. Its effects during invasion

are beyond the scope of this work and will be analyzed in future investigations. In the present model,

we limit ourselves to the cases of a zero proliferation rate, an assumption that applies to experimental

situations where the number of cells remains constant. This also means that we are interested in

migration mechanisms where the effects of the existence of multiple cell clones are not considered. By

omitting the prime, Eqs. (2.12) become

∂n

∂t
+

∂

∂x

(
∂u

∂t
n

)
= Dn

∂2n

∂x2
− ∂

∂x

[
n

(
χ0
∂c

∂x
+ α1

∂ρ

∂x

)]
, (2.14a)

∂c

∂t
+

∂

∂x

(
∂u

∂t
c

)
= Dc

∂2c

∂x2
− βnc+ αc, (2.14b)

∂ρ

∂t
+

∂

∂x

(
∂u

∂t
ρ

)
= 0, (2.14c)

µ
∂3u

∂x2∂t
+
∂2u

∂x2
+ τ0

∂

∂x

[
n

1 + λn2

(
ρ+ γ

∂2ρ

∂x2

)]
= sρu. (2.14d)

Initially, cellular/ECM densities, chemoattractant concentration, and position of a material point in

the ECM are considered non-null and can be chosen arbitrarily to match an experimental situation

of interest. Further, considering the case invasion takes place in a confined domain (quasi-isolated

system), we assume zero flux boundary conditions which can be experimentally realized. Let Ωb the

bounded domain within which the invasion takes place, and ∂
∂ν

the outward normal derivative on ∂Ωb.

Then the initial value problem and the zero-flux boundary condition described above are situations
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that mathematically, are respectively translated by [15, 16]

n(x, 0) = n0(x), c(x, 0) = c0(x), ρ(x, 0) = ρ0(x), and u(x, 0) = u0(x), ∀x ∈ Ωb.

Dn
∂n

∂ν
− χ0n

∂c

∂ν
− α1n

∂ρ

∂ν
=
∂c

∂ν
=
∂ρ

∂ν
=
∂u

∂ν
= 0, ∀x ∈ ∂Ωb.

What is interesting with Eqs. (2.14) is that cells and the ECM are actively convected by the ma-

trix, and the convection is amongst the primary transport mechanism in the medium. Moreover, it

accounts for viscous and traction forces in addition to the fact that it also considers spatiotemporal

dynamics of the ECM coupled with variations of the chemoattractant concentrations. These aspects

were not taken into consideration in the seminal models discussed in [15, 16, 66]. Therefore, Eqs.

(2.14) sets a stepping stone to evaluating the geometrical deformations a delimited volume element,

taken in the system might experience. Mathematical models for chemotaxis-haptotaxis have been

proposed and analyzed [4, 15, 16, 67] set into evidence competitive interactions between haptotaxis

and chemotaxis though they do not consider viscous and traction forces. In addition, chemoattractant

degradation/production mechanisms were taken as a linear function of the bacterial density and the

chemoattractant concentration, yet experimental shreds of evidence suggest that it may be nonlinear

[2]. The insightful work of Lolas and Chaplain [16] did not take into consideration ECM density

variations and cell orientations. This says they exclude the possibility of ECM displacement and/or

the differential transport of cells locally entailed as advection. Generally, the ECM is constituted

of composite materials such as macromolecules, ions, enzymes [15, 16, 66] which makes us think

that collective motion of cells may induce mechanical actions on the ECM and further contribute

to carrying the elements present in the ECM. In that sense, the models discussed by the authors

of [2, 4, 15, 16, 17, 66] present some limitations that the model Eqs. (2.14) is expected to cover.

Besides, in his seminal book [2], Murray proposed models that described cellular invasion mechanisms

where mechanical forces were accounted for. He did not take into consideration the contribution of

chemoattractant concentration variations, meaning that he cancel out the possibility of cells to un-

dergo chemotaxis, and he used a linear theory to derive his models. However, a simple observation of

Eqs. (2.14) tells that the active transport of cells in the medium may be highly nonlinear. The latter

property may render the search for analytical solutions of Eqs. (2.14) a tough exercise. Also, the

existence of several transport strategies underlines the existence of parameter regions within which

each of them dominantly drives the cellular transport in the medium. In fluids, for example, recent

works suggest the existence of a critical Rayleigh number separating stable from unstable modes that

depend on chemotaxis strength [68]. In other words, chemotaxis has stabilizing/destabilizing effects,

and we suspect haptotaxis to have similar characteristics on the system when acting alone. From this

description, it is clear that the model Eqs. (2.14) represents a viable (1 + 1)-dimensional extension of
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the models analyzed in [2, 4, 15, 16, 67]. We suspect it describes intriguing spatiotemporal dynamical

behaviors that to the best of our knowledge have not yet received complete attention.

2.3.4 The hydrodynamic description of chemotactic suspensions

Up until now the models introduced considered the fluid velocity uniform. Yet, experimental

investigations suggest that when active particles are placed in a medium, their motion produces

fluctuations from which force balance and moment conservations are shifted. In this conception of

chemotactic suspensions, we consider systems constituted of fore-aft asymmetric particles (particles

presenting different physical characteristics at both ends). Those types of particles are well described

by ciliated or flagellated entities such as molecular swimmers (bacteria, sperm cells just to name a

few). We assume distributions within which volume elements contain several cells so that it may be

reasonable to analyze the variables of interest such as population density, chemical concentrations,

and velocities by their averages over a volume element, as functions of time and space variables. Such

approach enforces to consider the bulk velocity of the system has a contribution emanating from the

average chemotactic flow of cells, and a drag flow induced by the stress gradients in the medium

[69, 70, 71, 72]. The other contribution comes from the velocity fields of the medium within which

cells are immersed. The medium flow rate accounts for advective transport as well as frontal collisions

amongst cells in a two-dimensional framework. The physics of such a configuration is well suited for

higher space dimensions analyses. Regardless of the geometrical configurations and orientations of

bacteria, the parameters of interest obey the continuity and the conservation equations:

∂n

∂t
+∇ · (Un) = Dn∇2n−∇ · (χn∇c) +∇ · (n∇φ0) (2.15a)

∂c

∂t
+∇ · (Uc) = Dc∇2c− β0nc. (2.15b)

In the system Eqs. (2.15), ∇ = ( ∂
∂x
, ∂
∂y

)T , and ∇2 = ∂2

∂x2
+ ∂2

∂y2
are respectively the gradient and

the Laplacian operators in two dimensions. n and c respectively represent the bacterial distribution

and the chemoattractant concentration, and, Dn and Dc their respective diffusion constant. χ is the

chemotactic strength of bacteria, and φ0 is the gravitational potential that accounts for gravitational

forces when the number of cells vertically increases. This situation happens when cells lose their

active properties, hence leading to sedimentation. Recent investigations on active suspensions rule

out this term since the sedimentation’s speed can be neglected when compared to instability timescale

[73, 74, 75, 76, 77]. However, the authors in [74] hypothesized the existence of a critical vertical

gradient density above which instability occurs. This implies that not all the cells in the medium

are involved in the rise of bioconvective instability. Thus, we introduce φ0 = µ0Vng(ρn − ρ)y. µ0
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is a scaling parameter that we introduce to measure the proportion of cells carried vertically in the

system as the direct result of gravity effects. If µ0 << 1 very few cells are directly under gravity

forces influence, and a majority of bacteria is directly subject to gravity forces when µ0 ∼ 1. The

idea of introducing a parameter that controls the number of cells subject to gravity is a completely

new one. Though this parameter is directly linked to the Rayleigh number, we suspect it to be the

seat of dynamical behaviors that are systematically different from those observed in [74, 75, 76, 77]

where only the Rayleigh number was under consideration. Vn is the volume occupied by bacteria,

g the gravity constant, ρn the bacterial density, and ρ the fluid density. In Eq. (2.15b), β0 is the

rate consumption of chemoattractant by cells. U = (u, v)T is the two-dimensional velocity field. Eq.

(2.15a) indicates that chemotaxis induces a motion with a local average velocity that is proportional to

the chemoattractant gradient. This drag flow induced by the chemotactic activity superimposes itself

to the free velocity field and drives a net local deformation of the fluid streamlines. Thus, the local

velocity reads Uloc = U + χ∇c. This proposed relation indicates the existence of flow regimes either

dominated by fluid or chemotaxis. These possibilities may be observed in experimental settings where

the chemoattractant is non-uniformly distributed in such a way acceleration/deceleration areas of

active particles rise. However, the fact that higher density aggregation is characterized by a decreasing

velocity stems that flow rate reduces considerably at the core of the distribution. It is thus reasonable

to think that in the Stokes regime, frictions act on the local velocity Uloc. For higher bacterial density

in shallow water, friction and body forces counterbalance viscous effects, hence the force-balance

condition in thin fluid [69, 72] is modified to yield

∇ · Σ = γUloc + n∇φ0. (2.16)

In Eq. (2.16), γ is the dynamic viscosity, and can also be understood as the parameter that measures

cellular attachment at a particular position. Eq. (2.16) indicates that the superimposition of adhesives

and body forces is counterbalanced by viscous forces emanating from background flow and the flow

induced by the collective cellular displacement. Σ is the stress tensor that we consider to be composed

of an active part Σa (that depends on the diffusive components n and c), and a passive part Σp [70]

emanating from fluids dynamics properties

Σ = Σa(n, c)Id + Σp,

Σp = η0

[
∇U + (∇U)T − 2

d
(∇ ·U)Id

]
+ ηv(∇ ·U)Id. (2.17)

d is the dimension of the space, Id is the unit tensor of dimension d, η0 and ηv are the shear and bulk

viscosities respectively [70]. The introduction of the active part of the stress tensor as the function of

the diffusive components is motivated by the fact that at the leading order of linearity, the velocity
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is a function of diffusive components [69]. This means that the gradient of the active part of the

stress tensor acts as external leading forces on fluid and drives local flows within which the quantity

of the particles carried decreases, hence creating a net decay in the velocity field over a distance

equal to the hydrodynamic length scale [71]. We consider bacteria as hard-rod particles of average

dimensions smaller than the hydrodynamic length scale that interacts attractively in both short and

long ranges as the consequence of auto-chemotaxis [6, 22, 65]. Since bacterial reproduction is ruled out

of consideration, the number of bacteria is quasi constant, and, at high-density distribution, bacteria

can be considered as particles obeying thermodynamic laws. Under these considerations, we propose

the active part of the stress tensor Σa = p0n
n+nr

with nr being the reference concentration of cells. In

the limits of a dilute system (n→ 0), Σa ∝ n which is reminiscent of the equation of state expressing

the pressure in ideal gases. After introducing the dimensionless variables,

∇′ = ∇
L0

, t′ =
tDn

L2
0

, L2
0 =

η0

γ
, n′ =

n

nr
, c′ =

c

cr
, u′ =

L0

Dn

U, ν = 1 +
ηv
η0

, α =
Dc

Dn

,

γ0 =
nrgVn(ρn − ρ)L3

0

η0Dn

, χ0 =
χcr
Dn

, χ1 = γχ0, Pe =
p0

γDn

, β =
β0nrL

2
0

Dncr
, (2.18)

keeping the (2 + 1)−spatial dimensions formulation of the problem, and omitting the prime for sake

of simplicity, Eqs. (1)-(3) are transformed as

∂n

∂t
+∇ · (un) = ∇2n− µ0γ0γ∇ · (ney)− χ0∇ · (n∇c), (2.19a)

∂c

∂t
+∇ · (uc) = α∇2c− βnc, (2.19b)

ν
∂2u

∂x2
+
∂2u

∂y2
+ (ν − 1)

∂2v

∂x∂y
− u+ χ1

∂c

∂x
− Pe

(1 + n)2

∂n

∂x
= 0, (2.19c)

(ν − 1)
∂2u

∂x∂y
+ ν

∂2v

∂y2
+
∂2v

∂x2
− v + χ1

∂c

∂y
− Pe

(1 + n)2

∂n

∂y
− µ0γ0n = 0. (2.19d)

In Eqs. (2.18), Dn ∼ 10−6cm2/s is the bacterial diffusivity and L0 ∼ 1 cm is the average running

length of bacteria. Under the latter configurations, a real-time t = 2·104 s corresponds to a dimensional

time t′ = 2 · 10−2. This time is sufficiently long for cellular proliferation to be observed. Proliferation

may be responsible for the rise and the co-existence of multiple clones in the medium. However, we

do not take into consideration the latter, meaning that we limit our analyses to situations the number

of cells in the medium remains constant during the experiment. Pe is a parameter measuring traction

cells exert on the fluid and γ0, the analogous Rayleigh number in thermal convection for our system

[73]. We consider the case bacteria are about 10 percent denser than fluid particles (here water).

They move chemotactically and experience gravitational forces responsible for the sedimentation of

cells. Gravity thus appears to increase the number of bacteria carried along the y-line. Bacteria and

chemoattractant are transported by the fluid, and bacteria diffuse proportionally to chemoattractant
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diffusion’s rate. Such a differential diffusivity amongst components of a system may either drives the

latter one out of stability or may be used to predict with quite a good accuracy the type of patterns that

might emerge. χ1 ∝ γ implies that frictions hamper or leverage the contribution of the average flow

emanating from the chemotactic activity of cells. Depending on the strength of the interplay between

frictions, gravity, and viscosities, local distortions of the flow streamlines may be observed. In absence

of viscosities (η0 = 0 and ηv = 0), gravitation forces, (φ0 ∼ 0) and contribution of chemotactic motion

of cells on the fluid, Eq. (2.19c) and Eq. (2.19d) indicate a down bacterial migration to density

gradient through an exclusion weighted by the factor Pe/(1 + n)2. This factor goes to zero at high

cell density and presents a maximum value equal to Pe when n → 0. This causes bacteria to move

faster at low density and slower at high density, stemming that the velocity field within the system is

not infinite in both spatial directions. Therefore, the superimposition of the active stress gradient and

the chemotactic activity of cells induces another nonlinearity in the system. In their study of active

fluids, the authors of [69, 70, 71, 72] introduced a simplified model of Eqs. (2.19), yet they did not

consider one of the diffusive species to be presenting chemotactic activity. Moreover, these works did

not investigate the contribution of gravity effects on cells. The latter insufficiency was circumvented

by the papers [68, 71, 74, 75, 76, 77]. In addition to the fact that these works did not point out the

local aspects such as friction, tractions cells might experience in the fluids, they also neglected the

contribution of the average flow generated by cells on the fluids. Nevertheless, the authors proved

that chemotaxis-fluid systems are highly interesting dynamical systems. In the sense that the model

Eqs. (2.19) considered here that takes into account the combined effects of gravity, traction, friction,

chemotaxis, and kinetics, we can afford to assume that it describes an active fluid that to the best of

our knowledge has not yet been fully investigated. We henceforth aim at deciphering some facets of

its dynamical behaviors.

2.4 Theoretical calculations methods

2.4.1 The Extended F-expansion method

The F-expansion method [78, 79] is a powerful technique used to construct analytical solutions of

nonlinear partial differential equations. In this paragraph we provide a brief outline of the method.

Let consider a (1 + 1)-dimensional partial differential equation of the form

G

(
U,
∂U

∂t
,
∂U

∂x
,
∂2U

∂x∂t
,
∂2U

∂t2
,
∂2U

∂x2
,
∂3U

∂t2∂x
,
∂3U

∂t∂x2
...

)
= 0, (2.20)

where U(x, t) is the dependent variable to be found. The application of the method requires the

introduction of the traveling wave variable ξ = kx − ωt, where 1
k
is the wave width and ω the wave
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velocity. Then, Eq. (2.20) becomes

G

(
U,
dU

dξ
,
d2U

dξ2
,
d3U

dξ3
...

)
= 0. (2.21)

Solutions of Eq. (2.21) may be sought as a polynomial expansion

U(ξ) =
l∑

i=0

aiF
i(ξ). (2.22)

In Eq. (2.21), l is calculated by balancing the higher order derivative term with the higher order

nonlinearity. The a′is are coefficients to be determined and F (ξ) is an auxiliary function that is

solution to the equation
(
dF (ξ)
dξ

)2

= P4F (ξ)4 + P3F (ξ)3 + P2F (ξ)2 + P1F (ξ) + P0. (2.23)

P4, P3, P2, P1, P0 are real constants conditioning the form of F (ξ). Solutions of Eq. (2.23) may be

found in [78, 79, 80]. Eq. (2.22) is plugged into Eqs. (2.21) using Eq. (2.23). Then, assembling all

the terms with the same F j(ξ) together leads to a set of algebraic equations that is solved for the

variables ai, k, ω.

2.4.2 The reductive perturbation method and its applications

Analytical solutions of systems of partial differential equations are important in the sense they may

be used to make ling time predictions. Hence the need to develop consistent methods to extract them

from the models being considered. However, when these solutions are not directly accessible through

classical techniques, they may still be approximated by considering weak fluctuations of the variables

to be determined. Such consideration requires redefining the spatiotemporal variables within which

those small fluctuations may be significantly perceived. Besides shifting the reference, dependent

variables may be expanded using convergent power series. Let us assume that the models to be

solved are given by Eq. (2.20). Then the application of the methods requires the introduction of slow

spatiotemporal variables ξ = ε(x − Vgt), and τ = ε2t. ε measures nonlinearity order, Vg being the

group velocity. Furthermore, we expand for solutions of Eq. (2.20) around a reference state U0, hence

the consideration of the finite sum [51]

U = u0 + Σ∞j=1ε
jΣj

l=−jU
(j)
l (ξ, τ)Al(x, t), (2.24)

The series Eqs. (2.24) contains all the overtones Al(x, t) = exp[il(kx − ωt)] up to order j. We also

consider the relations U (j)
−l = (U

(j)
l )∗, where ()∗ denotes the complex conjugate of the quantity in

between parentheses. The solutions Eq. (2.24) is inserted in Eq. (20). The resolution is made at each
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order of ε to determine the harmonics U (j)
l . In this study, we apply this method to determine how the

first-order harmonics propagate in the models (2.14) and (2.19). Full and detailed applications of the

method on one and two-spatial dimensions models are described in appendices A and B.

2.4.3 The Hirota Bilinear Method (HBM)

The HBM offers a compelling framework to determine localized structures propagating in nonlinear

systems. It principles lies on the fact any nonlinear system may written in a simple form, provided

that the suitable transformation is used. Let consider Eqs. (2.20) as the model to be solved. The

bilinearization of Eq. (2.20) requires to consider U(x, t) in a specific form that in reality depends on

how the equation is built. For example, if Eq. (2.15) is the nonlinear Schroedinger equation, then

we must set U(x, t) = H(x,t)
F (x,t)

, and if Eq. (2.20) is the cubic complex Ginzburg-Landau equation, then

U(x, t) = H(x,t)

F 1+iδi (x,t)
. If Eq. (2.20) is of KdV class, then U(x, t) = ∂2F

∂x2
. In all these cases, H(x, t) is

complex, F (x, t) is as well as δi are real. The reader is referred to [81, 82] for more details. Once the

right form of U(x, t) is determined and inserted into Eq. (2.20), the bilinear operators

Dm
x,αF (x) ·H(x) =

(
∂

∂x1

− α ∂

∂x2

)m
F (x1)G(x2)|x1=x2=x, m ∈ N, (2.25)

are considered. Then, Eq. (2.20) is factorized in a polynomial form hence:

P (Dt, Dx, Dx ·Dt, Dxx...)F · F = 0. (2.26)

Eq. (2.26) is the generic class of bilinear equations resulting from Eq. (2.20). Solutions of Eq. (2.26)

are determined by expanding the function F (x, t) as

F (x, t) = f0 + εf1(x, t) + ε2f2(x, t) + ε3f3(x, t) + ε4f 4(x, t) + ... f0 = cnst. (2.27)

The first order solution of Eq. (2.26) is obtained by truncating the expansion Eq. (2.27) at the first

order, hence Eq. (2.26) becomes

P (Dx, Dt, Dx ·Dt, Dxx...)
[
f0 · f0 + ε (f0 · f1 + f1 · f0) + ε2 (f1 · f1)

]
= 0 (2.28)

Eq. (28) is solved recursively at each order of ε. The first and second order of ε yield

ε : P

(
∂

∂t
,
∂

∂x
,
∂2

∂x∂t
,
∂2

∂x2
...

)
f1(x, t) = 0, (2.29a)

ε2 : P (Dx, Dt, Dx ·Dt, Dxx...)f1 · f1 = 0. (2.29b)

Eq. (2.29a) is linear hence its solutions may be taken as

f1(x, t) = epx+qt+p0 . (2.30)

p, q, and p0 are constant that may be determined by inserting the solution Eq. (2.30) into Eq. (2.29b),

hence are constructed analytical solutions of Eq. (2.20).
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2.5 Numerical methods

Analytical techniques used to solve our models Eqs. (2.4), (2.11) and (2.14) are based on ap-

proximation methods, which means that the corresponding solutions present some imperfections that

shall inhibit their propagation for long time in large spatial domains. In reality, solutions expected

must present good stability properties, hence the motivation of comparing analytical with numerical

solutions. In this section, we display techniques applied to numerically solve Eqs. (2.4), (2.11), (2.14)

and (2.19).

2.5.1 The fourth order Runge-Kutta method (RK4)

The RK4 is an integration technique used to numerically approximate solutions of ordinary (linear

and nonlinear) differential equations. Assuming that the equation to solve takes the form of Eq.

(2.20), the first step to apply the RK4 methods consists of writing Eq. (2.20) in the form of an

ordinary differential equation. One way of doing that consists of discretizing all the spatial derivatives

embedded in Eq. (2.120) using a centered finite difference. At a precise point of the gridsapce, Eq.

(2.20) becomes

duj
dt

= F (t, uj(t)), uj(t = 0) = uj0, t > 0, where uj(t) = u(x = j · dx, t) (2.31)

Then integrating Eq. (2.31) using the RK4 scheme requires to calculate the intermediary variables

and used the latter ones to extract the values of u(x,t). The algorithm reads

K1j = F (t, uj(t))

K2j = F (t+ dt/2, uj(t) +K1j/2)

K3j = F (t+ dt/2, uj(t) +K2j/2)

K4j = F (t+ dt, uj(t) +K3j)

uj(t+ dt) =
1

6
(K1j + 2 ·K2j + 2 ·K3j +K4j) . (2.32)

2.5.2 The Fourier Pseudo-spectral

In order to apply the RK4 method to solve Eq. (2.20), the previous paragraph suggest to discretize

spatial derivatives. Another way of dealing with the latter ones consists of changing the reference

frame within which Eq. (2.20) is solved. In that end, the Fourier transform is a better candidate

and provide the advantage to ease the implementation of periodic boundary conditions. Following the
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Fourier transform rules, Eq. (2.20) may be written in the form

dû(k, t)

dt
= F (k, t, û(k, t)) , û(k, t = 0) = û(k, 0), t > 0, where (2.33a)

û(k, t) =
1

2π

∫ +∞

−∞
u(x, t)e−2πikxdx. (2.33b)

Then using Eqs. (2.32), Eq. (2.33) is solved in the Fourier space. Once that is done, the inverse

Fourier transform is applied to recover the corresponding data in the real domains.

2.6 Conclusion

In summary, using mass conservation and force balanced conditions, extended chemotaxis models

have been constructed. In their natural habitat for instance, bacteria are subject to several mechanical

events, which makes us think that those models taking into consideration several effects including trac-

tion, adhesion, chemotaxis, haptotaxis, long-range diffusion, advection, chemoattractant consumption

rate and gravity are very realistic. Further, mathematical and the numerical tools used to probe the

models constructed are presented. The F-expansion and the Hirota Bilinear methods are used to

construct analytical solutions of the equations under consideration, while the reductive perturbation

method is used to reduce highly stiff set of coupled nonlinear partial differential equations. In order

to test the numerical stability of the solutions constructed, numerical integration methods applied

include the fourth-order Runge-Kutta scheme and the Fourier pseudo-spectral method.
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Chapter 3

Results and Discussion

3.1 Introduction

Experimental observations of bacteria collectively traveling by forming bands of matter moving at

finite speed suggest that those bands may be mathematically described using the traveling analysis

methods. In this chapter, we use the latter approaches to investigate chemotactic models derived

in the previous. We principally apply the F-expansion and the Hirota bilinear methods to integrate

the equations under consideration. Also, finite sums of modulated nonlinear excitations are applied

to reduce the models when they are not directly integrable. Both approaches allow us to construct

analytical solutions, discuss their existence. Those solutions are later used probe the inherent dynamics

of the system considered. In each of these cases numerical simulations are performed to ascertain that

our solutions are analytically and numerically stable.

3.2 (2+1)-Traveling chemotactic waves in fluid

3.2.1 Exact solutions of Eqs. (2.4) through the F-expansion method

The models Eqs. (2.4) and (2.11) describe two-dimensional spatiotemporal evolutions of bacteria

and chemoattractants under very different circumstances, although happening in fluid media with

a uniform flow rate. Solutions of those systems have not been derived before, to the best of our

knowledge. In this section, we fill the gap by deriving a few solutions and discussing their existing

conditions. To determine analytical solutions of Eqs. (2.4), the traveling wave variable ξ = kx+ly−ωt
is assumed. 1

k
and 1

l
are the wave widths in x− and y− directions, respectively, while, ω is the wave



pulsation. Combination of Eqs. (2.4) leads to the ordinary differential equation

Dn (k2 + l2) d2n
dξ2
− χ0 (k2 + l2) dn

dξ
dc
dξ
− βχ0

Dc
n2c+ rn(σ − n) = 0,

ω = kδ0x + lδ0y .
(3.1)

On the other side and without loss of generality, the positive sign of ω implies a forward wave prop-

agation or a collective motion of cells towards the energy source. However, If δ0x = δ0xcrit = − lδ0y
k
,

(δ0y > 0), ω = 0, there is no longer any chemoattractant-induced collective displacement. This

corresponds to a stationary motion of cells. For values of δ0x < δ0xcrit and for δ0y fixed, the medium

constrains the cells to follow its motion. Since the flow rate is externally imposed by the experimenter,

the above result indicates that in confined domains the fluid flow rate may be chosen so that the wave

propagates without interacting with the boundaries neither create any reflexive patterns. Solutions of

Eq. (3.1) are sought by assuming the expansions

n = a−2F (ξ)−2 + a−1F (ξ)−1 + a0 + a1F (ξ) + a2F (ξ)2,

c = b−1F (ξ)−1 + b0 + b1F (ξ).
(3.2)

a−2, a−1, a0, a1, a2 and b−1, b0, b1 are real constants to be determined later. The auxiliary function F (ξ)

is solution to the equation [78, 79]
(
dF (ξ)

dξ

)2

= d4F (ξ)4 + d2F (ξ)2 + d0. (3.3)

d4, d2, d0 are real constants that define the form of F (ξ). Exact solutions of Eq. (3.4) may be found

in the existent literature [78, 79]. Inserting Eq. (3.2) into Eq. (3.1) using Eq. (3.3), collecting

all coefficients of powers F (ξ)m, then setting each coefficient to zero yields a set of over-determined

algebraic equations for the unknown aj (j = -2,-1,0,1,2) and bi (i = -1,0,1). We solve the over-

determined set equations and extract only those which are physically relevant objects and obtain

a−2 = a−1 = b−1 = 0, a2 = −2d4ν
βχ

, b0 = − r
βχ

+
rσa0− 8µνd0d4

βχ

βχa20+
4ν2d0d4

3βχ

a2
1 =

4d4

3βχ

[3µ+ ν(b0 + r
βχ

)](βχa2
0 − 4ν2d0d4

βχ
)

µd2 + rσ − 2βχa0(b0 + r
βχ

)
, b1 =

4d4

3a1βχ
[3µ+ ν(b0 +

r

βχ
)],

a2
1 =

4νd4a0(b0 + r
βχ

)− 2νd4
βχ

(rσ + 4µd2)

βχ(b0 + r
βχ

)
−

4d2
3βχ

(νd2 + 2βχa0)[3µ+ ν(b0 + r
βχ

)]

βχ(b0 + r
βχ

)
,

b1 =
4d4

3a1βχ
[3µ+ ν(b0 +

r

βχ
)], (3.4)

a2
1 =

16d4ν

βχ

(a0 + νd2
βχ

)[3µ+ ν(b0 + r
βχ

)]

6µ− 8ν(b0 + r
βχ

)
, b1 =

4d4

3a1βχ
[3µ+ ν(b0 +

r

βχ
)].
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In these solutions, a0 is an arbitrary real constant and we set µ = Dn(k2 + l2), ν = χ0(k2 + l2) and

χ = χ0

Dc
. The set of parameters Eqs. (3.4) are obtained for the auxiliary functions

F (ξ) =

√
−d2

d4

cosh
(√

d2ξ
)−1

, d4 = −1, d2 = 1, d0 = 0 (3.5a)

F (ξ) =

√
−d2

2d4

tanh

(√
−d2

2
ξ

)
, d4 = 1, d2 = −1, d0 =

d2
2

4d4

. (3.5b)

3.2.2 Existence, dynamical behavior of solutions of Eqs. (2.4)

Using Eqs. (3.4) and (3.5), we construct bacterial and chemoattractant waves

n(ξ) = a0 +

√
4

3βχ

3µ+ rσa0

rσ − µ
1

cosh(ξ)
+

2ν

βχ

(
1

cosh(ξ)

)2

, (3.6a)

c(ξ) =
r(σ − 1)

βχ
− 4(rσν + 3µβχa0)

3a0(βχ)2

√
3βχ(rσ − µ)

4(3µ+ rσa0)

1

cosh(ξ)
, (3.6b)

provided that rσ > Dn(k2 + l2), and a0 6= −
3Dn

rσχ0

= a0crit. (3.6c)

Eqs. (3.6a) and (3.6b) stand for traveling pulse which have been demonstrated to be excellent candi-

date to mimicking experimental results [19, 20, 25]. Eq. (3.6c) is the global existence condition within

traveling pulse may be observed, enforcing that the wave widths 1
k
, 1
l
must fall within the circle of

radius rσ
Dn

. Further, Eq. (3.5b), one recovers the bacterial and the chemoattractant step waves

n(ξ) = a0 +

√
−2µ(ν2 + β2χ2a2

0)

β2χ2(µ+ rσ)

(a0 − a01)(a0 − a02)

(a0 − a03)(a0 − a04)
tanh

(√
1

2
ξ

)
− ν

βχ

(
tanh

(√
1

2
ξ

))2

,

c(ξ) =
−3β2χ2ra0(σ − a0)− ν(νr + 6βχµ)

βχ(ν2 + 3β2χ2a2
0)

+ b1 tanh

(√
1

2
ξ

)
. (3.7)

a01 = − rσν
6βχµ

[
1 +

√
1 + 12

r2σ2

]
, a02 = − rσν

6βχµ

[
1−

√
1 + 12

r2σ2

]
,

a03 = µν
βχ(µ+rσ)

[
2−

√
11
3

+ r2σ2

3µ2

]
, a04 = µν

βχ(µ+rσ)

[
2 +

√
11
3

+ r2σ2

3µ2

]
.

Solutions Eqs. (3.7) exist for a0 ∈]a01 , a02 [∪]a03 , a04 [. It is clear from Eqs. (3.6a-b), and Eqs. (3.7a-b)

that the densities are proportional to the system parameters, hence providing the experimenter with

the framework to control the number of particles carried by each of these waves. Solutions Eqs. (3.6)

and (3.7) are bell-shaped and step traveling waves, respectively. Specifically, the bell-shaped profile

Eqs. (3.6) is a (2 + 1)-dimensional extension of the one dimensional counterpart obtained in [13, 19,

20, 25, 63] without any medium flow rate nor cellular proliferation. On the other hand, the step wave

profile solutions Eqs. (3.7) are striking ones and their occurrence indicates a bacterial distribution as
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well as chemoattractant concentration shift over time at a precise location. The asymmetry associated

with this wave profile can be seen as the result of a chemoattractant concentration gradient that

triggers a slower than expect a cellular response to signal detection amongst units of a given population.

These solutions are matter carriers and their occurrence reveals the excitable nature of the system

and its subsequent associated transport strategies. These ones connect stable spatially homogeneous

states and ensure cellular survival as well as long-distance communication.

Figure 3.1: The temporal evolution of bacterial waves shows that wave thickness and velocity vary

as fluid flow (a). Reduction of the carrying capacity increases amplitude and wave thickness. The

same observations hold when the chemoattractant consumption’s rate decreases as displayed on panels

(c), (f). Parameters Dn = 4 · 10−6, Dc = 8.9 · 10−6, χ0 = 3.9 · 10−9, r = 2 · 10−4, σ = 3.5, β = 1,

k = 0.9, l = 0.9, δ0x = 1.5 · 10−6, δ0y = 1.5 · 10−6

Investigating the effects of the carrying capacity of the medium as well as chemoattractant con-

sumption rate on the two different solutions Eqs. (3.6) and Eqs. (3.7) reveal interesting dynamical

features. In Fig. 3.1(a) where the advection δ0x is gradually reduced, the traveling wave has a smaller

velocity yet it propagates at quasi-constant amplitude. It is also observed that the wave thickness

reduces when the advection decreases, implying that the flow does not affect the number of cells car-

ried, but rather their spatial distribution. As consequence, the number of collisions of cells per unit

volume is modified, hence leading to a spatial homogeneity in which the frequency bandwidth of the

communication mechanisms amongst units becomes tighter, an observation consistent with experi-

mental observations in [6] and numerical simulations in [20]. Further, increasing values of the carrying

capacity σ as per panel (b) of Fig. 3.1, it is observed that the wave velocity reduces at high flow
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rates. Yet the wave is detected at the same time, and it experiences amplitude and width increase.

Intriguingly, optimal cellular transport corresponding to higher wave amplitude is observed when the

carrying capacity takes small values. Such an outcome is appealing since it indicates a departure

shift between the number of cells the traveling wave can sustain and the number of cells the medium

can support without undergoing saturation. In this way, the response of the number of cells the

wave carries is measured by the excitation (here the exposure to chemoattractant) from which local

dynamic is subtracted. Under this configuration, cells can detect and amplify signals irrespectively

to their direct surrounding medium. Interestingly on the other side, increasing the chemoattractant

consumption’s rate as on panel (c) of Fig. 3.1 leads to the conclusion that both parameters have the

same effects on the traveling bacterial pulse. One can thus afford to assume that a faster bacterial

progression is expected to be observed when a small number of cells possess a high food consumption

rate or when the fraction area containing cells is accordingly reduced. This set into evidence the

complementary roles played by these two parameters for the sake of cell development and survival.

This study, therefore, suggests that in order to avoid cannibalism or competition among units of the

same population, these parameters may be tuned accordingly, an issue manageable and that must be

initially addressed by the experimenter. The traveling dip step profile as depicted in panels (e), (f) of

Fig. 3.1 shows that the transition from higher to lower values is softened when the carrying capacity

reduces or the chemoattractant consumption’s rate increases. The occurrence of this wave profile in

reactive systems sets into evidence the existence of differential cellular density across the medium.

Thus panels (e) − (f) of Fig. 3.1 indicate that in order to stabilize the number of particles carried

by this wave profile when time increases, either the carrying capacity of the medium or the chemoat-

tractant consumption rate should be increased. Under the action of these parameters, the traveling

dip step profiles tend to adopt a quasi-linear (uniform) feature, meaning that the number of particles

carried from the initial till the final time does not vary much. Therefore, these parameters may offer a

better option to counterbalance the dissipative nature of reactive systems which are often responsible

for non-conservativeness effects during cellular transport in soft tissues. In this way, cells can travel

for a long time without being absorbed or attenuated. Such an outcome is significant for technological

and medicinal applications, in the sense it indicates that cells may take more time to cover a distance

when their food consumption rate or the carrying capacity, or the medium within which they are

immersed independently increase.
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3.2.3 Numerical confirmation through the Fourier pseudo-spectral method

In this part of the work, we numerically test the robustness of the solutions constructed. Eqs. (3.6)

and Eqs. (3.7) are used as initial conditions to numerically integrate the original model Eqs. (2.4). Our

numerical simulations run up to tfinal = 10 with the time step dt = 10−4. The Fourier pseudo-spectral

method is used to integrate Eq. (2.4). We have considered 1024 points in each direction of a squared

integration domain of dimensions x, y ∈ [−10, 10]. For all numerical simulations, analytical solutions

injected at the initial time were randomly perturbed by a noise of strength one percent of the maximum

magnitude of the analytical solutions, and results are depicted in Fig. 3.2 and Fig. 3.3. To be precise,

top panels (a), (b), (c) of Fig. 3.2 (resp. bottom panels (d), (e), (f) of Fig. 3.2) display snapshots

of the bacterial density (resp. chemoattractant concentration) at t = 0, 5, 10 respectively, obtained

with the analytical solution Eqs. (3.6) (resp. Eqs. (3.7)) as the initial condition. In Figs. 3.2(a),

(b), (c), the initial solution for bacterial density evolves without disintegration and remains very close

to the analytical one, though the insertion of a random perturbation at the initial time. Hence, the

analytical solution presented in Figs. 3.2(a), (b), (c) is stable. This implies that our two-dimensional

model that takes into account advection and proliferation may be used as a predictive tool for the

investigation of the bacterial collective motion. In general, bacterial cells are immersed in a medium

with a nonvanishing velocity field, our numerical results confirm the existence of bands of collective

motion of bacteria. Results not found in previous works to the best of our knowledge. We expect that

families of solutions presented in this work may motivate two-dimensional experiments as only one-

dimensional experiments had been carried in the absence of the velocity field of the medium [19, 25].

Now with two-dimensional experiments available, [83], we do believe that tests of our results on the

two-dimensional model Eqs. (2.4) may be carried in the near future. Conversely, the chemoattractant

concentration decreases with time (see panels (d), (e), (f) of Fig. 3.2), a situation rather different

from the prediction provided by the analytical calculations presented above (Eqs. (3.6)). The origin

of the discrepancy between analytical and numerical results is due to the large difference amongst the

magnitude of the diffusion, the advection rate against the chemoattractant consumption rate. This

calls to a proper definition of β unlike the one used here taken from [2]. This work would be carried

elsewhere. We now consider the analytical solutions Eqs. (3.7) for the bacterial density and the

chemoattractant concentration, respectively. Once again, numerical results in Figs. 3.3(a), (b), and

(c) for the density recover the analytical predictions with a pretty much good accuracy while, due to

a large value of β the numerical results differ from the analytical prediction for the chemoattractant

concentration displayed in Fig. 4(d), (e), (f).
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Figure 3.2: Stable evolution of traveling bacterial (top) and chemoattractant concentrations (bottom)

waves. Parameters are taken as on Fig. 3.1(a), (b). The thickness of chemoattractant waves slightly

increases and its amplitude decreases as time evolves.

Figure 3.3: Propagation of traveling bacterial-step (top panels), and chemoattractant (bottom panels)

waves. Parameters are taken as on Figs. 3.1(c), (d). Chemical wave shifts from step to down-step

profile.
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3.3 Bacterial and chemical waves in chemotactic system with

long-range diffusion, traction and kinetics

3.3.1 Analytical solutions of Eqs. (2.11) through an extended F-expansion

method

The models Eqs. (2.11) indicate that due to inherent nature of the medium within which cells

might be placed, nonlocal responses of the latter to external stimuli leads to spatiotemporal behaviors

worth revisiting using exact solutions methods. As in the previous section, we introduce the traveling

wave variable ξ = kx+ ly − ωt, and reduce the model Eqs. (2.11)

D2K
2d

4n

dξ4
+ χ0

(
Ω0

χ0 − τ0

)2

+

[
βχ0Ω0ξ

K(χ0 − τ0)2
+
β

τ0

D1(χ0 − τ0) + τ0D3

χ0 − τ0

− rσ + β1

]
n

+

(
r +

βτ0

χ0 − τ0

)
n2 − β3n

3 = 0, (3.9)

provided that

c(ξ) = −τ0n(ξ) +D3

χ0 − τ0

− Ω0χ0ξ

K(χ0 − τ0)2
− D1

τ0

. (3.10)

K = k2 + l2, Ω0 = δ0xk + δ0y l − ω. We restrict ourselves to the case where ω = kδ0x + lδ0y to avoid

nonphysical solutions that diverge at infinity. Such a choice is also consistent with recent numerical

and theoretical results presented in [83, 84, 85] where the authors proved that the wave velocity

in the Martiel-Golbeter chemotaxis model (for Dictyostelium discoideum dynamics) varies linearly

with the imposed flow. On the other hand, Eq. (3.10) tells that variations of chemoattractant and

bacterial waves are directly linked, hence corroborating results obtained in the analysis of chemotactic

Dictyostelium colonies [84]. The same study showed that by increasing background level, the directed

propagation can be suppressed, due to memory inactivation. In other words, cells can be swept or

their direction propagation swerved, enforcing the conclusion that medium flow rate has the potential

of favoring the rise of progressive or regressive waves. In the present study, the transition from

forwards to backward propagation is attained when parameters are chosen such that the critical line
δ0x
δ0y

= −l√
K−l2 corresponding to stationary patterns is violated. In the latter configuration, our solutions

may be either progressive (ω > 0) or regressive (ω < 0). The former is responsible for faster bacterial

colonization of unoccupied regions, while the latter may be the signature of backward waves. In the

flux limiting cases, the backward waves in a chemotactic system were shown to be responsible for a

population saturation in a stable state accompanied by a transition toward unstable modes [62].

Physical acceptable solutions of Eqs. (2.11) correspond to positive bacterial and chemoattractant

wave amplitudes. In addition, both bacterial densities and chemoattractant concentrations must re-
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main finite, hence using Eq. (3.10) and assuming that n(ξ) ≥ 0, the finiteness of the chemoattractant

concentration implies the following restrictions

τ0 > χ0, τ0 6= 0, c(ξ) ≥ D3

τ0 − χ0

− D1

τ0

= cmin, D1 ≤
D3τ0

τ0 − χ0

. (3.11)

Before proceeding further, Eqs. (3.11) provide important characteristics about the solutions to be

found below. The traction forces must be non-null and greater than the chemotaxis strength implying

that the experimenter must choose an appropriate chemoattractant substance that is consistent with

Eqs. (3.11). Moreover, there exists a critical chemoattractant concentration that completely depends

on system parameters (τ0, χ0, D1, D3), below which the corresponding solutions are unphysical. The

solutions will be viable only if the chemoattractant concentration is at least equal to cmin, a situation

which means that chemoattractant diffusion rate is always greater or equal than a minimal value

D3 ≥ D1

(
1− χ0

τ0

)
= D3min . The fact that D1 > D3min implies D1 > D3. The latter inequality is

a situation rather different from experimental values reported in [2, 19, 20, 25, 45, 59]. Therefore,

traction forces substantially modify the behaviors of chemotactic systems.

Balancing higher-order derivative with the higher-order nonlinear terms in Eq. (3.9) permits the

polynomial expansion

n = a0 + a1F (ξ) + a2F (ξ)2, (3.12)

where a0, a1, a2 are real constants to be determined later. The function F (ξ) is a solution of the

auxiliary equation
(
dF (ξ)
dξ

)2

= P4F (ξ)4 + P3F (ξ)3 + P2F (ξ)2 + P1F (ξ) + P0. (3.13)

P4, P3, P2, P1, P0 are real constants. Solutions of Eq. (3.13) may be found in [79, 78, 80]. Plugging

Eq. (3.12) into Eq. (3.9) and using Eq. (3.13) yields a set of algebraic equations that we solve for the

variables a0, a1, a2, K, β3 and obtain different families of solutions

Family A: P0 = P1 = P3 = 0, P2 > 0, P4 < 0, F (ξ) =
√
−P2

P4
cosh−1

(√
P2ξ
)

a0 = 0, a1 = 0, a2 =
15σ1P4

2σ2P2

, K =
1

4P2

√
− σ1

D2

, β3 = − 2σ2
2

15σ1

, (3.14)

Family B: P0 =
P 2
2

4P4
, P1 = P3 = 0, P2 < 0, P4 > 0, F (ξ) =

√
− P2

2P4
tanh

(√
−P2

2
ξ
)

a0 = −15σ1

2σ2

, a1 = 0, a2 =
15σ1P4

2σ2P2

, K = − 1

2P2

√
− σ1

D2

, β3 = − 2σ2
2

15σ1

. (3.15)
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Family C: P0 = P1 = 0, P2 > 0, P3 = 2ε
√
P2P4, P4 > 0, F (ξ) = ε

2

√
P2

P4

cosh(

√
P2
2
ξ)−2

ε tanh(

√
P2
2
ξ)−1

a0 = −σ1(
√

105 + 21)

14σ2

, a1 = ε

√
P4

P2

3σ1(35−
√

105)

7σ2

, a2 = −3σ1P4(35−
√

105)

7P2σ2

β3 = − 28σ2
2

3σ1(7 + 3
√

105)
K =

1

P2

√
−σ1(

√
105− 7)

14D2

. (3.16)

3.3.2 Existence, dynamical behavior of solutions Eqs. (3.14)-(3.16)

For analytical conveniences in Eqs. (3.14)-(3.16), se wet

σ1 = β1 − rσ − βcmin 6= 0, σ2 = r +
βτ0

χ0 − τ0

6= 0, τ0 6= χ0 and ε = ±1.

A straightforward analysis of Eqs. (3.14)-(3.16) shows that bacterial and chemoattractant solutions

exist if D2 6= 0, σ1 < 0, σ2 > 0 which lead to the constraints

β1 < rσ + βcmin = β1crit , and r >
βτ0

τ0 − χ0

= rmin. (3.17)

The first inequality of Eq. (3.17) proves that the linear chemoattractant production rate β1 possesses

a minimum value rσ, and linearly increases with chemoattractant consumption rate β. The second

inequality shows that our system admits a proliferation rate always greater than the threshold value

rmin. Eqs. (3.11) and Eqs. (3.17) describe the general conditions on the existence of bacterial and

chemoattractant concentration but, do not provide any details on dynamical properties. We discuss

below some dynamical properties of both bacterial and chemoattractant waves such as their profiles,

velocities, amplitudes, thicknessess, and we analyze effects of τ0, χ0, D2, D1, and β. To this end, we

take β1 =
β1crit

10
, r = rmin + r0, r0 = 1.69 · 10−9 being the proliferation rate given in [2].

Using Eqs. (3.14), one recovers the bell-shape traveling wave

n(x, y, t) = −15σ1

2σ2

(
1

cosh
[√
P2(kx+ ly − ωt)

]
)2

, (3.18a)

c(x, y, t) = − 15σ1τ0

2σ2(χ0 − τ0)

(
1

cosh
[√
P2(kx+ ly − ωt)

]
)2

+ cmin, (3.18b)

where the associated velocity reads:

ω = δ0x

√
1

4P2

√
1

D2

[rσ − β1 + βcmin]− l2 + δ0y l = ωbs. (3.19)
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From Eq. (3.19), on deduces the existence of minimal/maximal wave velocities

ωmin = 0 ≤ ω ≤ ωmax =

√
δ2

0x + δ2
0y

4P2

√
1

D2

[rσ − β1 + βcmin],

where ωmin = ω(l = lcrit) and ωmax = ω(l = l0). lcrit is recovered by solving ω|l=lcrit = 0, and the

maximum velocity ωmax is reached at l0. The latter is determined by solving dω
dl
|l=l0 , hence we have

lcrit = δ0x

√
ω0

δ2
0

, l0 = δ0y

√
ω0

δ2
0

, δ2
0 = δ2

0x + δ2
0y , ω0 =

1

4P2

√
1

D2

[rσ − β1 + βcmin].

l0 and lcrit depend on the system parameters, which means the experimenter has the potential of

controlling fast or slow wave propagation if he accurately tunes the experimental setups. From Eqs.

(18) n∞bs
= limξ→∞ n(x, y, t) → 0 and c∞bs

= limξ→∞ c(x, y, t) → D3

τ0−χ0
− D1

τ0
, which mean that

bacterial and chemoattractant wave amplitudes are finite as their associated velocity. This confirms

that bell-shape solutions Eqs. (18) are physical ones. The bell-shape profile Eqs. (18) is displayed

in Fig. 3.4 at the time t = 100. Traveling waves in reactive systems are either matter carriers or

Figure 3.4: Bell-shape solutions Eqs. (3.18) for density (a) and chemoattractant concentration (b). Wave

velocity increase with traction (c), chemotaxis (e), or as long-range diffusion (d) decreases. Parameters are

D1 = 8.9 · 10−6, D2 = 1.69 · 10−9, D3 = 4 · 10−6, χ0 = 6.49 · 10−5, τ0 = 1.62 · 10−3, σ = 2.4231 · 108, β =

3.5 · 10−8, δ0x = 1.5 · 10−5, δ0y = 4.5 · 10−4, P2 = 4.

information conveyors, the bell-shaped profile obtained here may explain collective bands of bacteria
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usually observed in reactive systems. Its velocity is depicted in panels (c)-(e) of Fig. 3.4. It is seen that

the amplitude of ωbs decreases with increasing values of traction and long-range diffusion, respectively

[see Figs. 3.4(c)-(d)], meaning that the traction and the long-range diffusion slow down the waves.

Conversely, the amplitude of ωbs increases with increasing values of χ0 implying that the chemotaxis

strength accelerates the wave propagation. τ0, D2, and χ0 have competing effects on the velocity of

the wave. This property may be used in experiments to detect or characterize the waves. In all the

cases, the velocity reduces with increasing values of l, thus thinner waves move faster than wider ones.

Figure 3.5: Influence of long-range diffusion (a), traction (b), chemotaxis (c), short-range diffusion

(d) and chemoattractant consumption rate (e) upon the bell-shape bacterial wave at y = 0 and time

t = 100 s Except where mentioned, parameters are taken as in Fig. 3.4.

Considering the influences of system parameters on the bell-shaped wave, one observes that when

long-range diffusion increases [Fig. 3.5(a)], the wave thickness widens, hence the cellular distribution

occupies a larger spatial domain. At high values of long-range diffusion D2, the coordination degree

amongst units of the bacterial population decreases, resulting in a diminution of the global velocity

of the aggregation. Such a result is in accordance with the idea that diffusion of particles should

break up coordination and communication degree amongst particles. Wave thickness variations are

a common feature in reactive systems as extensively discussed in [83, 85] and its occurrence in the

present study signifies that cells do not lose their active properties, but rather rearrange themselves to

accommodate chemoattractant concentrations across the medium. In panels (b)-(e) of Fig. 3.5, wave
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thickness variations are accompanied by an amplitude variation. Amplitude and thickness increase is

observed when traction Fig. 3.5(b) and short range-diffusion Fig. 3.5(d) increase, while chemotaxis

Fig. 3.5(c) as well as the chemoattractant consumption rate Fig. 3.5(e) decrease. Wave thickness

reduction or increase coupled with amplitude variations in systems with uniform flows have also been

reported in autocatalytic fronts [86], the Fitz-Hugh-Nagumo model [87], and the Belousov-Zhabotinsky

reaction [88, 89]. We propose such a coupled dynamic between wave thickness and amplitude as a tool

to slice spatial domains in intervals within which cells activity remains optimized, and above which

cellular density drastically reduces.

Using the parameters given in Eq. (3.15) leads the dip traveling wave solutions

n(x, y, t) = −15σ1

4σ2


2 + tanh

(√
−P2

2
(kx+ ly − ωt)

)2

 , (3.20a)

c(x, y, t) = cmin +
15τ0σ1

4σ2(χ0 − τ0)


2 + tanh

(√
−P2

2
(kx+ ly − ωt)

)2

 . (3.20b)

In the long time/large space limits, n∞dw
= limξ→∞ n(x, y, t)→ −45σ1

4σ2
> 0 and c∞dw

= limξ→∞ c(x, y, t)→
1

τ0−χ0

[
D3 − 45σ1τ0

4σ2

]
− D1

τ0
> 0. The velocity associated with solutions Eqs. (22) reads

ω = δ0x

√
− 1

2P2

√
1

D2

[rσ − β1 + βcmin]− l2 + δ0y l = ωdw. (3.21)

Figs. 3.6(a), and 3.6(b) show the snapshots at time t = 100 of bacterial density (Eq. (3.20a)) and

chemoattractant concentration (Eq. (3.20b)). The dip waves travel faster than the bell-shape waves

since ωdw > ωbs. A straightforward comparison of Eqs. (3.20) and Eqs. (3.18) allows to figure out that

the model parameters have similar effects on dip waves and their velocity ωdw as on the bell-shape

wave presented above.

Figure 3.6: Dip traveling waves for bacterial density (a) and chemoattractant concentration (b) given

by Eqs. (3.20). Same parameters as in Fig. 1 except for P2 = −2.
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Plugging the parameters set Eq. (3.15) into Eq. (3.12) and Eq. (3.10) allows us to construct step

traveling waves whose analytical formula are

n(x, y, t) = −σ1(21 +
√

105)

14σ2

− 3σ1(35−
√

105)

28σ2

cosh
(√

P2

4
(kx+ ly − ωt)

)−2

tanh
(√

P2

4
(kx+ ly − ωt)

)
− 1
×


−2 +

cosh
(√

P2

4
(kx+ ly − ωt)

)−2

tanh
(√

P2

4
(kx+ ly − ωt)

)
− 1


 , (3.22)

c(x, y, t) = −D1

τ0

− 1

χ0 − τ0

[
D3 −

τ0σ1(21 +
√

105)

14σ2

]
+

3σ1τ0(35−
√

105)

28σ2(χ0 − τ0)

cosh
(√

P2

4
(kx+ ly − ωt)

)−2

tanh
(√

P2

4
(kx+ ly − ωt)

)
− 1


−2 +

cosh
(√

P2

4
(kx+ ly − ωt)

)−2

tanh
(√

P2

4
(kx+ ly − ωt)

)
− 1


 .

The velocity associated with solutions Eqs. (3.22) is

ω = δ0x

√√√√ 1

P2

√√
105− 7

14D2

[rσ − β1 + βcmin]− l2 + δ0y l = ωsw. (3.23)

Furthermore, n−∞sw = limξ→−∞ n(x, y, t) → −σ1(21+
√

105)
14σ2

, c−∞sw = limξ→−∞ c(x, y, t) → D3

τ0−χ0
− D1

τ0
−

σ1τ0(21+
√

105)
14σ2(τ0−χ0)

, and n+∞sw = limξ→+∞ n(x, y, t)→ −σ1(420−11
√

105)
14σ2

, c+∞sw = limξ→+∞ c(x, y, t)→ D3

τ0−χ0
−

D1

τ0
− σ1τ0(420−11

√
105)

14σ2(τ0−χ0)
. Step waves obtained here translate the transition process happening between

two different levels of bacteria as well as chemoattractant distribution. The gap between the levels

depends on system parameters, which means that the experimenter has the potential of choosing how

and the position at which the transition happens. Figs. 3.7 display bacterial and chemoattractant

step waves Eqs. (3.22) in panels (a), (b), respectively.

Numerical values of short-range diffusions D1, D3, chemotaxis strength χ0, chemoattractant con-

sumption rate β, and medium carrying capacity σ were chosen as in [2, 20, 19, 83]. The fluids flow rate

was taken according to experimental studies [83, 19]. The other parameters τ0, D2, β1, β3 to the best of

our knowledge are not yet available. While the analytical formalism used allows to determine β3, and

the existence of solutions discussed yields a minimum value of β1. Though traction forces dominate

the chemotaxis strength, the latter is shown to still have strong effects on wave characteristics namely

the velocity, amplitude, and thickness. These observations are consistent with conclusions reported

in [19, 25]. More importantly, for the same set of parameter values, comparison of Eqs. (3.19), Eqs.

(3.21) and Eqs. (3.23) yields ωdw > ωsw > ωbs: the dip waves travel faster than the step and the

bell-shaped waves. In other words, dip waves are better candidates to achieve fast coordination of
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Figure 3.7: Step traveling waves for bacterial density (a) and chemoattractant concentration (b) (Eqs.

(3.22)). P2 = 4, other parameters taken as in Fig. 1.

cells or to quickly convey a piece of information within a bacterial population. From Eqs. (3.18),

Eqs. (3.20) and Eqs. (3.22), on derives the inequalities nsw > n
dw
> n

bs
. Step waves carry a higher

amount of particles compared to dip and bell-shaped waves. Generally speaking, an optimal transport

is expected for higher velocities and wave amplitudes, but the results obtained here draw the roadmap

to characterizing an optimal transport as follows: while step waves ensure the transport of a higher

number of particles, a faster transport is guaranteed through dip wave structures. In reactive systems

without traction and long-range diffusion, it has been shown that optimal transport necessitates the

coupled dynamic between short-range diffusion and feedback [90]. However, the present study stresses

that traction and long-range diffusion deeply alter the optimal transport of waves, hence must be

taken into account for a better description of waves propagation.

3.3.3 Numerical experiments with the bell-shape traveling wave

In this section, we ascertain the ability of waves discussed above to propagate in a stable fashion

way in model Eqs. (2.11). To this end, direct numerical integrations of Eqs. (2.11) on a square spatial

domain of length L = 100 are performed. We take N = 1024 points along each spatial direction with

a time step is dt = 10−3. Integrations are performed through the pseudo-spectral method. We initially

launched the simulations by introducing perturbed analytical solutions with a noise strength of ten

percent of the initial amplitude of the wave. Simulations are ran over a final time tfin = 200 s and

results are displayed in Figs. 3.8. To be precise, panels (a), (b), (c) of Figs. 3.8 (resp. panels (d), (e),

(f)) display snapshots of the bacterial density (resp. chemoattractant concentration) at t = 0 s,100

s, 200 s respectively, obtained with the analytical solutions Eqs. (3.18), (3.20), and (3.22) as initial

conditions. Though we inserted a random perturbation at the initial time, results are depicted in Figs.

3.8 show that initial solutions evolve without undergoing any collapses nor explosions. Our solutions
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are numerically stable ones. In addition, from Eqs. (3.18), (3.20), and (3.22), the analytical solutions

found above predict waves whose profiles, widths, amplitudes, and velocities remain unchanged during

their evolutions, but slightly displaced due to small velocities of magnitude about 10−5. Snapshots

of waves displayed in Figs. 3.8 are in good agreement with analytical predictions. Our solutions are

therefore stable ones, such that they are likely to be observed in experiments. Our results are new

ones and we do believe this work may motivate further two-dimensional experimental investigations

in chemotaxis systems where traction forces, advection, and long-range diffusion are at play. To the

best of our knowledge, such experimental investigations that take into account the latter effects are

still missing.

Figure 3.8: Snapshots of stable numerical bell-shape solutions for bacterial (chemoattractant) wave

att = 0 s (a) [(d)], t = 100 s (b) [(e)], and t = 200 s (c) [(f)]. Parameters as in Figs. 3.4.

3.4 Dynamic of nonlinear excitations in coupled haptotaxis-

chemotaxis systems

3.4.1 Results of the application of the reductive perturbation method: The

wave frequency, group velocity, and the reduced model

In order to apply the reductive perturbation method, we consider slow spatiotemporal variables

ξ = ε(x− Vgt), and τ = ε2t. ε measures nonlinearity order, Vg being the group velocity. We Look for
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solutions of dependent variables n, c, ρ u, as expansions around the reference quantities (n0, c0, ρ0, u0)

n = n0 + Σ∞j=1ε
jΣj

l=−jn
(j)
l (ξ, τ)Al(x, t), c = c0 + Σ∞j=1ε

jΣj
l=−jC

(j)
l (ξ, τ)Al(x, t),

ρ = ρ0 + Σ∞j=1ε
jΣj

l=−jρ
(j)
l (ξ, τ)Al(x, t), u = Σ∞j=1ε

jΣj
l=−ju

(j)
l (ξ, τ)Al(x, t) (3.24)

are introduced into Eqs. (2.14). Hereafter, we assume (n0, c0, ρ0) = (1, 1, 1). Inserting the nonlinear

excitations Eqs. (3.24) into the model Eqs. (2.14) permits the extraction of the wave frequency and

the group velocity, respectively given by Eqs. (A.3) and Eq. (A.8) in Appendix A. We display in Fig.

3.9 the variations of these quantities as a function of the modulation wave k, for a different set of

parameter values. We assume the wave pulsation given by Eq. (A.8) writes ω = ωr+iωi. ωr represents

the angular frequency and ωi is the factor that represents the growth rate of the expansion Eq. (2.24)

while propagating in the model Eq. (2.14). The sign of ωi reveals wether the excitations die (ωi < 0)

or grow (ωi > 0) exponentially as time increases. In the present study, the fact that ω is complex

reveals viscoelastic properties, translating the inability of the medium to effectively convey information

without modifying it. In fact, when space parameters converge toward ωi > 0, nonlinear excitations

Eqs. (3.24) get amplified, a situation that may be nonrelevant for biological applications. Yet the

situation ωi < 0 describes amplitude decay with time. We infer the above-stated behaviors as the

consequences of localized inhomogeneities, that in the latter case, cause some waves to continuously

lose their energy and decay via radiation to infinity. This is also observed in bounded domains where

interactions of forwards waves with boundaries nucleate backward propagations or compressive waves.

This implicitly says that perturbations steadily cancel out when ωi < 0. Moreover, the angular

Figure 3.9: The wave frequency, the growth rate and the group velocity as functions of the wave

vector. The parameters taken as in [2] are: Dn = Dc = α1 = γ = χ0 = 10−3, µ = 1, λ = 0.12, β =

0.05, α = 1, τ0 = 1.1, s = 140. Panel (a) shows not significant influences on wave frequency, while

panel (b), the group velocity switches sign as traction increases, showing an expansive/compressive

wave transition point. In panel (c), the group velocity remains positive as adhesion increases.
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frequency depiction Fig. 3.9(a) reveals the existence of a lower and an upper cutoff mode. Invasion

mechanisms of cells within biological tissues require some degree of coherence or synchronization

of the population, though each individual might be undergoing specific and spontaneous activity

with a specific associated frequency. Fig. 3.9(a) indicates the existence of bands frequencies within

which each individual should tune in, in order to coherently move accordingly with others. And

more interestingly, both traction and substrate attachment do not significantly modify the admitted

gap frequency, stemming that they might be more sensitive to intrinsic properties of cells such as

chemoattractant consumption’s rate. In the present paper, we assume that each individual of the

population has its frequency comprised in between the lower and the upper frequencies as depicted in

Fig. 3.9(a).

Panels Fig. 3.9(b), Fig. 3.9(c) show the influences of traction and adhesion on the group velocity,

plotted as a function of the wave vector k. The observed concavity and sign change of the group velocity

shows that the wave is either expansive Vgr > 0 or compressive Vgr < 0 as in Fig. 3.9(b). The sign

change of Vgr is observed for increasing values of traction τ0, meaning that cell-ECM interactions may

generate backward propagations. In other words, τ0 may be used to control the transition between

forwards and backward propagations. On the other side, increasing cell attachment leads to a net

reduction of Vgr, but this last one remains positive and therefore only forward propagating waves

would be observed. In addition, variations of Vgr with adhesion and traction imply that they may

be used to control the number of particles carried by the waves, and probe with good accuracy the

biological tissues being invaded.

3.4.2 Analytical solutions of the reduced model: The bilinear approach

Further, following the RPM technique, we establish in Appendix A that weak nonlinear excitations

propagating in Eqs. (2.14) may be governed by the cubic complex Ginzburg-Landau equation

i
∂ψ

∂τ
+ P

∂2ψ

∂ξ2
+ iR11

∂ψ

∂ξ
+Q|ψ|2ψ + iϕ(τ)ψ = 0 (3.25)

In order to specify spatiotemporal evolutions of weak order bacterial densities, solutions of Eq. (3.25)

should be constructed. For sake of simplicity, we focus our analytical treatment on the cases ϕ(τ) =

cnst, and apply the transformation

ψ(ξ, τ) = Φ(ξ, τ)e−ϕτ , (3.26)

into Eq. (3.25) to obtain

i
∂Φ

∂τ
+ P

∂2Φ

∂ξ2
+ iR11

∂Φ

∂ξ
+Qe−2ϕτ |Φ|2Φ = 0. (3.27)
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The application of the Hirota bilinear method requires to consider the Hirota’s operators [57, 82]

Dm0
δ,τD

m1
δ,ξ F (ξ, τ) ·G(ξ, τ) =

(
∂
∂τ
− δ ∂

∂τ ′
)m0

(
∂
∂ξ
− δ ∂

∂ξ′

)m1

F (ξ, τ)G(ξ′, τ ′) |ξ=ξ′,τ=τ ′ , (3.28)

where m0, and m1 are positive integers. Further, we look forwards solutions of Eq. (3.27) in the form

Φ(ξ, τ) =
G(ξ, τ)

F δ(ξ, τ)
, (3.29)

G(ξ, τ) and F (ξ, τ) being complex and real functions respectively, and δ = δr+ iδi, a complex constant

to be determined. Plugging Eq. (3.29) into Eq. (3.27) and using Eq. (3.28) leads to the bilinear

system:

(
iDδ,τ + PD2

δ,ξ + iR1Dδ,ξ

)
G · F = 0, (3.30a)

D2
ξF · F =

2 (PrQi − PiQr) e
−2ϕτ

3δi|P |2
|G|2, (3.30b)

provided that

δ2
i (PrQi − PiQr) + δi(1 + 2δr)(PrQr + PiQi)− δr(1 + δr)(PrQi − PiQr) = 0. (3.31)

Solutions of Eqs. (3.30) can be investigated as wave traveling in polynomial forms. Thus, following

methodology outlined by the authors of [82, 57]

G(ξ, τ) = eθ1 , F (ξ, τ) = 1 + b1(τ)eθ1+θ∗1 where θ1(ξ, τ) = ξk1 + h0(τ), k1 = k1r + ik1i. (3.32)

Functions h0, b1, are time-dependent complex and real functions, respectively. Inserting Eq. (3.32)

into Eqs. (3.30) yields

dh0

dτ
+ k1(R11 − iPk1) = 0, (3.33a)

1

b1(τ)

db1

dτ
− dh0

dτ
− dh∗0

dτ
− 2R1k1r = 0, (3.33b)

k1i = k1rδi, (3.33c)

b1(τ) =
PrQi − PiQr

12k1ik1r|P |2
e−2ϕτ . (3.33d)

From Eq. (3.33c), we set δi = k1i
k1r

, and solve Eq. (3.31) for the new variable k1i
k1r

(
k1i

k1r

)

±
=
−3(PrQr + PiQi)±

√
9(PrQr + PiQi)2 + 8(PrQi − PiQr)2

2 (PrQi − PiQr)
. (3.34)

After integration of Eq. (3.33a) and Eq. (3.33b), we have

h0(τ) = −k1τ(R11 − ik1P ), (3.35a)

b1(τ) = b00 exp

[
2τk1r(Pi + Pr

k1i

k1r

)

]
. (3.35b)
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b00 is a real integration constant. Using Eq. (3.26), and inserting Eq. (3.35b) into Eq. (3.33d)

enforces

ϕ = −k1r

(
Pi + Pr

k1i

k1r

)
and b00 =

PrQi − PiQr

12k1ik1r|P |2
(3.36)

Making use of all the transformations applied until now, the one soliton solution of Eq. (3.25) is

recovered

ψ(ξ, τ) =
exp
[
k1ξ−k1τ(R11−iPk1)+τk1r

(
Pi+Pr

k1i
k1r

)]

{1+b00 exp[2k1r(ξ−R11τ)]}1+i
k1i
k1r

. (3.37)

3.4.3 Existence and dynamical behaviors of soliton solutions Eq. (3.37)

Using Eq. (3.34), we write k1i as a function of k1r , and the solution Eq. (3.37) admits only k1r as

the free parameter, for a given modulation wave vector k. With the known parameters of the original

model Eq. (2.14), analytical solutions are well defined, and, they are physically and experimentally

more likely to be observed when b00 > 0. Thus following Eqs. (3.34) and the second expression of Eq.

(3.36),

b00 =
(PrQi − PiQr)

2

6k2
1r|P |2

[
3 (PrQr + PiQi)±

√
9 (PrQr + PiQi)

2 + 8 (PrQi − PiQr)
2

] > 0. (3.38)

The above condition is therefore satisfied only for the positive sign "+" corresponding to
(
k1i
k1r

)
+
of

Eq. (3.34). In that sense, Eq. (3.38) stands for the existence condition of the soliton solution Eq.

(3.37).

The one soliton solution we derived in the present study shows quasi constant wave amplitude at

very small time scales. Broadly, a wave flattening feature when either traction τ0 or chemoattractant

consumption increase Fig. 3.10(b)/Fig. 3.10(d) or when the cell attachment s decreases Fig. 3.10(c)

is reported. As the substrate attachment increases Fig. 3.10(c), the solitary pulse gets higher and

wider, stemming that the number of cells involved in mechanical motion is continually increased,

and their spatial repartition is continuously reorganized. Under the same configuration as depicted

in Fig. 3.10(e), the corresponding group velocity decreases, a situation reminiscent of the striking

phenomenon of motility induced phase separation (MIPS), responsible for local recruitment of cells

as their velocity decreases. On the other hand, an amplitude decrease characterizing the reduction of

the number of particles transported is observed when traction τ0 and chemoattractant consumption

β increase (panels 3.10(b) and 3.10(d) resp.). In fact, we earlier showed that increasing τ0 generates

backward or compressive waves. We argue that those counter-propagating waves may swerve the initial

direction of transport of a proportion of the population, hence the amplitude decrease. The fact that

the latter result may also be obtained by increasing chemoattractant consumption rate Fig. 3.10(d)
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Figure 3.10: Solutions of Eq. (2.14) generated through Eq. (3.37) in the (ξ, τ)-frame. Top row, in

panel (a), solitary pulse experiences amplitude reduction for k = 1 while (a1) displays and amplitude

increase for k = 5. The bottom row panels show that the wave undergoes flattening and amplitude de-

crease when traction (b), chemoattractant consumption (d) rate increase, while substrate attachment

decreases (c). k1r = 0.9. Parameters as in Fig. 3.9

reveals an interplay between mechanical and biochemical properties of cells, that to the best of our

knowledge have not yet been pointed out. Furthermore, in order to increase the mechanical activity

in the medium (increase the number of cells carried by the soliton solution Eq. (3.37)), our results

indicate that traction should be reduced or the adhesion parameter increased. Such an antagonistic

behavior between traction and attachment indicates their pivoting role in designing dispersive and

nonlinear properties of the medium, and hence its carrying capacity. Moreover, comparing top row

panels (a) and (a1) of Fig. 3.10 reveals that though the energy consumption per capita might be high,

the population still undergoes extinction Fig. 3.10(a) or a slow population increase Fig. 3.10(a1),

and the propagation direction is conserved. The above analysis suggests that attachment, traction,

consumption rate, and envelope wave vector have specific outcomes on the number of cells involved

in the invasion. Therefore, experimenters how to tune their settings for the sake of their interests.

3.4.4 Numerical experiments

In this section, we ascertain the ability of the model Eqs. (2.14) to support the propagation of

mechanical waves generated through nonlinear analysis performed so far. Taking into consideration

all the transformations applied up until now, solutions of Eq. (A.17) for m(ξ, τ) in the (ξ, τ) frame
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take the form

m(ξ, τ) =
exp

[
ξ
(
k1 + iRr

2Pi

)
− k1τ(R11 − iPk1) + τk1r

(
Pi + Pr

k1i
k1r

)
− iRrτ

2Pi

(
Ri + PrRr

2Pi

)]

{1 + b00 exp [2k1r(ξ −R11τ)]}1+i
k1i
k1r

, (3.39)

and using Eq. (2.24) along with the transformations ξ = ε(x− Vgt), τ = ε2t, we recover the solutions

in the (x, t)−space for cellular density as

n(x, t) = n0 + εReal
[
M(x, t)ei(kx−ωt)

]
where M(x, t) = m(ε(x− Vgt), ε2t). (3.40)

Accordingly, Eq. (3.40) tells that in the (x, t)-frame, ε appears to impact not only wave amplitude,

but also other characteristics including wave velocity and width. Therefore its values must be chosen

acutely. Numerical integrations of Eqs. (2.14) are performed through fourth-order Runge-Kutta

scheme on a spatial domain of length L = 20. The final time of simulations is tfin = 10−2 and

the time step is dt = 10−7. Initial conditions (ICs) generated by the solutions Eq. (3.40) (taken at

t = 0), are randomly perturbed at the initial time, with a noise of a strength one percent of the initial

amplitude. The results are displayed in Fig. 3.11, analytical and numerical results taken at specific

Figure 3.11: Numerical solutions of Eq. (2.14) generated through Eq. (3.40) as initial conditions

in the (x, t)-plane. Parameters are taken as in Fig. 3.9. Panel (a) depict spatiotemporal evolution

of the numerical solution. The other panels compare with great agreement numerical and analytical

solutions at different times.

times are recorded. The initial condition for cellular density propagates in a stable fashion way without

experiencing disintegration and remains very close to its analytical counterpart taken at the precise
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time. Therefore, the model Eqs. (2.14) describing cellular invasion and that takes into consideration

mechanical events like traction, adhesion, and viscous forces may be used as a predictive tool to deeply

assess the evolution of waves rising during invasion within biological tissues. Though the reference

state remains the dominant position, cells are constantly subject to small and non-null external factors

that may contribute to their transport during the invasion. Generally speaking, cells placed in soft

biological tissues are submitted to non vanishing physical factors such as viscous, convective, traction

and attachment forces that have great impacts upon their displacement. Numerical simulations carried

here to confirm that in a system where these parameters are accounted for, one may still observe

small fluctuations around the reference accompanied by collections of cells moving towards a targeted

domain. To the best of our knowledge, those results have not yet been found in previous theoretical

or experimental works. We expect our results may trigger future experimental researches.

3.5 Nonlinear breathing chemotactic patterns in fluids

3.5.1 The linear analysis revisited

We perform the linear stability analysis of Eqs. (2.19). Initially, we consider homogeneous distribu-

tions of bacteria and chemoattractant about the reference quantities n0 and c0 in a medium undergoing

a uniform flow at speed u0. n(r, t) = n0 + εn1(r, t), c(r, t) = c0 + εc1(r, t) and u(r, t) = u0 + εu1(r, t),

with r = (x, y)T . The uniform velocity u0 is generated by the proportion µ0 of cells under the direct

influence of the gravitational forces, hence u0 = −µ0γ0n0ey. We perform linear stability of the model

Eqs. (2.19) in response to a perturbation of the form (n1, c1,u1) ∝ eik·r−λt + c.c with k = (kx, ky)
T

the 2D wave vector and c.c stands for the complex conjugate. λ = λr + iλi is a complex parameter

whose imaginary part λi stands for the wave frequency and its real part λr represents the growth rate

from which stability properties must be deduced. Accordingly, if λr < 0 the plane wave amplitude

experiences an exponential growth as time evolves and may lead to unbounded solutions as instability

signature. The other case of interest which happens when λr > 0 indicates an amplitude decay, hence

stable patterns. In the (kx, ky)−plane, the above ansatz leads to the hydrodynamic velocity

u1(k, t) = ik
1+νk2

[
χ0n0χ1c1 − n1

(
Pe

(1+n0)2
+ iγ0(ν−1)k·ey

1+k2

)]
− µ0γ0n1

1+k2
ey, (3.41)

which extends the one previously derived by Vijay [70]. The last term of Eq. (3.41) indicates that

the proportion of cells carried through gravity produces a velocity field of its own that superimposes

itself to the flow created by diffusing and non-diffusing species of the medium. Eq. (3.41) is inserted

into the linearized form of Eq. (2.19a) and Eq. (2.19b), hence the linear dispersion relation
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[
λ− αk2 − βn0 − χ1c0k2

1+νk2
+ iµ0γ0n0k · ey

] [
λ− k2 − k2n0Pe

(1+n0)2(1+νk2)
+ iµ0γ0

(
n0 − γ + n0

1+νk2

)
k · ey

]

−n0c0k
2(χ0 + χ1

1+νk2
)
(
β + Pek2

(1+νk2)(1+n0)2
− iµ0γ0k·ey

1+νk2

)
= 0.

(3.42)

Using the dot product in the Cartesian coordinates system, k · ey = ky and |k| = k. Eq. (3.42)

gives the possibility to investigate many situations amongst which the prevailing include transversal

k · ey = 0 and longitudinal k · ey 6= 0 perturbations with respect to the y-axis. The former case is of

least interest since it reduces Eq. (3.42) to an equation from which λ is found to possess real values

only. Such an outcome enforces wave frequency to zero and the system admits a finite range of wave

vectors. Under these configurations, using wave modulation in any spatial direction in Eqs. (2.19)

cancels out automatically. Therefore, spatial perturbations must not deviate far from the y-axis or

at least be contained in a plane within which the y-axis lies. In the case k · ey 6= 0, solutions of Eq.

(3.42) are complex and may be written as λ = λr + iλi. Instability occurs by setting λr < 0, which

leads to the following inequality

2µ2
0γ

2
0n0ky

(
2 + νk2

1 + νk2
− γ

n0

)
+ 2n0c0k

2

(
χ0 +

χ1

1 + νk2

)(
β +

Pek
2

(1 + n0)2(1 + νk2)

)

−k2

(
1 +

Pen0

(1 + n0)2(1 + νk2)

)(
βn0 + αk2 +

χ1c0k
2

1 + νk2

)
> 0 (3.43)

that stands for the condition at the onset of the emergence of unstable patterns. Figs. 3.12 display the

growth rate λr in the (kx, ky)-plane. Different configurations determined by frictions, the number of

cells vertically transported, and cellular density reference are considered. As observed, the instability

presents different patterns and magnitudes, letting us think that the latter deeply affects the bulk

system. The right and left panels show that for sufficiently high values of kx, the instability domain is

localized along the y-axis, while the middle panels reveal that instability is localized along both axes

of the frame. In experimental situations, this also means that the experimenter has the potential of

controlling how and the direction of any instability that might arise in the system. Moreover, Eq.

(2.19) indicates that chemotaxis, viscosity, traction, friction, and the proportion of cells vertically

transported have a great impact on the stability of plane wave solutions of Eqs. (2.19). In this sense,

Eq. (3.43) extends the stability criterium derived and discussed in [75]. We can therefore afford to

assume that each of the above mentioned parameters may be a source of instability in Eqs. (2.19).

We display in Fig. 3.13 the effects of friction, the proportion of cells vertically transported and the

traction force forces on the stability/instability domains. Investigating the effects of parameters of

interest namely, friction (left panels of Fig. 3.13), gravity (middle panels of Fig. 3.13), and traction

(right panels of Fig. 3.13) reveals how the instability domains vary. In the first step, the observations

are quite similar in either the x- or the y-direction. It is broadly observed that instability domains
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Figure 3.12: Growth rate of the linear stability for parameters α = 1, β = 10, γ0 = 103, χ0 = 10, ν = 4, Pe =

1, c0 = 1. Left panels, γ = 1, µ0 = 1, n0 = 10. Middle panels γ = 10−2, µ0 = 1, n0 = 1 and right panels

γ = 1, µ0 = 5 · 10−2, n0 = 1.

Figure 3.13: Influence of friction (left), gravity (middle) and traction (right) on stability domains. The

magnitudes and the length of the instability domain increase when friction (a), gravity effects (b) decrease,

while traction increases (c). Parameters taken as in Fig. 3.12
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increase when friction and the number of cells vertically carried decrease, while the traction increases.

This implies that for our system to generate stable and coherent patterns traction forces must be

able to compensate the effects of friction and gravity forces, hence setting into evidence competitive

dynamics in our system. As friction, traction, and proportion vertically carried depend on the medium

properties, unstable patterns rise due to an energy imbalance, implying that the energy carried by the

propagating plane wave may dissipate and entail some changes in the spatial reorganization of cells.

3.5.2 Model reduction through the application the reductive perturbation

method

The above performed linear theory presents some limitations when it comes to fully investigate

some physical aspects, in the sense the nonlinearity embedded in those systems is not qualitatively

and quantitatively assessed. Eq. (2.19) in counterpart is the seat of highly dispersive and nonlinear

diffusive events, that the dispersion relation Eq. (3.42) may not be sufficient to characterize the whole

dynamic of the system. The fact that solutions of Eq. (3.42) reveal that the model Eqs. (2.19) is

characteristic of absorbing hence the need to figure out the contribution of nonlinearity in the model

Eqs. (2.19). Assuming that wave packets change slowly in the laboratory frame, it is amenable to

think that their effects might become more vivid in the wave packets frame. Thus the introduction of

slow spatiotemporal variables ξ = ε(x− Vxt), η = ε(y− Vyt), τ = ε2t. The dependent variables n, c, u,

and v are expanded around their respective reference states as

n = n0 + Σ∞j=1ε
jΣj

l=−jn
(j)
l (ξ, η, τ)Al(x, y, t),

c = c0 + Σ∞j=1ε
jΣj

l=−jC
(j)
l (ξ, η, τ)Al(x, y, t), (3.44)

u = u0 + Σ∞j=1ε
jΣj

l=−ju
(j)
l (ξ, η, τ)Al(x, y, t).

The finite sums Eq. (3.46) contain all the overtones Al(x, y, t) = exp[il(kxx+kyy−ωt)] up to order j.

kx and ky are the wave vectors of the modulation along the respective x and y-directions. ω = ωr + iωi

where the real part ωr stands for the wave frequency, while the imaginary part, ωi can be understood as

the growth factor as discussed in the linear stability section. Thus the parameters Vx = Vxr + iVxi and

Vy = Vyr + iVyi are the complex components of group velocities along the x- and y-axes, respectively.

Eqs. (2.19) are recursively solved at each order of ε by the injection of solutions Eqs. (3.46). The

existence of nontrivial solutions at the first and the second orders of ε leads to the dispersion relation

Eq. (B.2) and the group velocities Vx, Vy Eqs. (B.5), respectively.

Limiting ourselves to wave vector ranges where ωr > 0, group velocities Vxr and Vyr in x, y-axes

are presented in Fig. 3.14 Along the x-axis (top panels), Vxr changes sign several times, meaning that
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Figure 3.14: Influences of traction, friction and amount of cells carried vertically on group velocities

Vxr and Vyr . ky = 0.9 (Top panels), kx = 0.9 (bottom panels), parameters taken as in Fig. 1(a).

the nonlinear excitation propagation direction changes as well. The asymmetry of the profiles permits

us to limit our observations on the positive side of the frames. As the number of cells transported in

the y-axis increases (a), the magnitude as well as the wave vector domains within which Vxr is positive

increase. In other words, the higher the effects of gravity, the more energetic the wave becomes, and

its direction propagation is expected not to be reversed or shifted. Panels (b) and (c), show that the

magnitude of Vxr decreases when friction increases (b) or when traction decreases (c). However the

Vxr < 0 at relatively long wave vector kx, a situation that is in contradiction with observations of

panel (a). The situation described along the x-axis is quite very different from the results derived

by analyzing the situation along the y-axis. It globally comes out that the group velocity Vyr along

the y-axis does not change sign much. In panel (d) for example, increasing gravity effects increases

the peak of Vyr , and the latter becomes quasi constant. The panels (e) and (f) on the other hand

show that Vyr < 0. The above-described observations may be summarized as follows: the wave vector

ranges within which the group velocity carries higher energy are localized. This in other words means

the energy our nonlinear excitations may dissipate in each spatial direction may be quantified with

precision. In fluids, for example, this result is of high importance in the sense it translates the fact that

nonlinear excitations may be used to strengthen the emergence and propagation of coherent patterns

even when the fluid is the seat of an unstable dynamic.

Then, continuing the resolution under the conditions Eq. (B.2) and Eqs. (B.5), the third order of
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ε yields the reduced model (The reader is referred to Appendix B for the full derivation)

i
∂n

(1)
1

∂τ
+ Pξ

∂2n
(1)
1

∂ξ2
+ Pη

∂2n
(1)
1

∂η2
+ Pξη

∂2n
(1)
1

∂ξ∂η
+Q1|n(1)

1 |2n(1)
1 +Q0n

(1)
1 n

(2)
0 = 0, (3.45a)

σ1
∂2n

(2)
0

∂ξ2
+ σ2

∂2n
(2)
0

∂η2
= σ3

∂2|n(1)
1 |2

∂ξ2
+ σ2

∂2|n(1)
1 |2

∂η2
, (3.45b)

which stands for a modified the Davey-Stewartson equation with complex coefficients. Eqs. (3.45)

describes the spatiotemporal transport of active particles in fluids by weakly perturbed modulated

wave packets propagating in a two-dimensional setting. Pξ, Pη are the dispersion coefficients along

the ξ and η axes respectively and Pξη emanates from the contribution of the cross-dispersion along ξ

and η directions. Q0 and Q1 measure the nonlinear response of the medium to modulated envelope

excitations. Eqs. (3.45) were initially derived to study the stability of surface waves in fluid systems

with finite depth [52]. Though it is usually regarded as the (2 + 1)-dimensional Schroedinger equation,

it has been associated with the propagation of stable coherent modes in plasma, photonics, and water

waves systems [51, 52, 91, 92, 53]. In a (1 + 1)-dimensional setting, the Davey-Stewartson model

given by Eqs. (3.45) reduces the cubic complex Ginzburg-Landau equation which is an integrable

equation. We, therefore, suspect the above-presented (2 + 1)-dimensional model to be the seat of

interesting dynamical behaviors that we intend to investigate through analytical techniques. For sake

of simplicity, all the complex parameters in Eqs. (3.45) to be in the form ζ = ζr + iζi.

3.5.3 Analytical solutions and dynamical behaviors of bacterial densities

in the chemotaxis-fluidss model Eqs. (5)

We introduce new variables Z = Kξ+Lη
z0

, T = Pτ
ε0z20

, n
(1)
1 (ξ, η, τ) =

√
ε1P
Qz20ε0

ψ(Z, T ). L, z0, ε0 and ε1

are arbitrary real constants. Parameters L, P, and Q are given by

Q = Q1r −
Q0rQ1i

Q0i

, K2 = −σ2Q1i + σ4Q0i

σ1Q1i + σ3Q0i

L2,

P =

[
Pηr − Pξr

σ2Q1i + σ4Q0i

σ1Q1i + σ3Q0i

+ Pξηr

√
−σ2Q1i + σ4Q0i

σ1Q1i + σ3Q0i

]
L2.

Then, Eqs. (3.47) are reduced to the traditional nonlinear Schroedinger equation

i
∂ψ

∂T
+ ε0

∂2ψ

∂Z2
+ ε1ψ|ψ|2 = 0. (3.46)

For ε0 = 1
2
, ε1 = 1 and following [93, 94, 95, 96], Eq. (3.46) admits first and second order rational

solutions, respectively given by
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ψ(Z, T ) =

[
1− 4 (1 + 2iT )

1 + 4T 2 + 2Z2

]
eiT = ψ1(Z, T ), (3.47)

ψ(Z, T ) =


1 +

(
Z2 + T 2 + 3

4

) (
Z2 + 5T 2 + 3

4

)
− 3

4
+ iT

[
T 2 − 3Z2 + 2 (Z2 + T 2)

2 − 15
8

]

1
3

(Z2 + T 2)3 + 1
4

(Z2 − 3T 2)2 + 3
64

(1 + 12Z2 + 44T 2)


 eiT

= ψ2(Z, T ). (3.48)

Applying all the transformations considered up until now, the bacterial density reads

n(x, y, t) = n0 +
ε

z0

√
ε1P

Qε0
Real

[
ψ

(
ε

z0

(Kx+ Ly − (KVx + LVy)t),
2Pε2

z2
0

t

)
ei(kxx+kyy−ωt)

]
(3.49)

Besides the parameters of the original model that are known, L, and z0 appear to be the only free

parameters of the solution Eq. (3.49). While ε and L impact the amplitudes, thickness, and velocity of

the wave, z0 is expected to influence the wave thickness and its velocity. Furthermore, the finiteness of

the solution Eq. (3.49) requires that Q 6= 0. In other words, the nonlinearity brought by cubic and the

crossing terms must not cancel out. Moreover, the positivity of the bacterial densities enforces that

P ·Q > 0, a criterium governing the rise of coherent modes in the nonlinear Schroedinger equation Eq.

(3.46). The latter inequality also means that competition between dispersive and nonlinear effects is

compelling to generate localized structures in the model Eqs. (2.19). Hereafter, Solutions Eqs. (3.49)

are used to assess spatiotemporal evolutions of bacterial density in the model Eqs. (2.19). In Fig. 3.14

are displayed the bacterial wave solutions of Eqs. (2.19) generated by plugging the rational solutions

(3.47)-(3.48) into Eq. (3.49). To be precise, the top panels of Fig. 3.14 are recovered by inserting

the first-order rational solutions Eq. (3.47) into Eq. (3.49). In the same way, the bottom panels of

Fig. 3.15 are obtained after injecting the second-order rational solution Eq. (3.48) into Eq. (3.49).

The profiles hence depicted are new ones in the sense they have not yet been obtained in chemotaxis-

fluids models, to the best of our knowledge. Both first, and second-order waves have a commonality:

They oscillate along the y-axis and present localized periodic breathing patterns centered at the origin

along the x-direction. This says at certain positions, our solutions are simple periodic functions while

at others, they periodically breathe. Though the role and the importance of breathing behaviors

have not yet been reported in chemotaxis-fluids systems, we point out the fact that such behavior

may explain the signal regulation, intercellular communication which is often necessary to achieve

collective dynamics. The different breathing patterns portrayed in Fig. 3.14 are representative of the

dependence of these solutions on system parameters. In addition to the asymmetry in their profiles, the

features of these solutions are reminiscent of plume patterns recovered through numerical simulations

in [68, 77] and experimental works [74]. For instance, in the left-hand panels of Fig. 3.14, it is observed
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Figure 3.15: Top panels display bacterial waves profile generated by inserting the first order rational

solution Eqs. (3.48) into Eq. (3.50). Bottom panels represent the bacterial profile recovered by

plugging the second order rational solution Eq. (3.49) into Eq. (3.50). In top and bottom panels,

solutions are displayed at the same time t = 5 · 10−3. L = 0.09, z0 = 0.1, kx = 0.01, ky = 10, ε = 10−3.

Left panels µ0 = 1, ν = 2. Middle panels µ0 = 0.1, ν = 2, L = 0.009 and right panels n0 = 10, γ0 =

1, γ = 10, µ0 = 0.1;Pe = 100, ky = 5.

that breathers are highly localized at the position x = 0. When the parameter networks changes, the

middle panels show that the first-order solutions (b) give structures with bigger volumes while the

second-order rational solution (e) tends to separate the periodic from breathing profiles. By increasing

the traction, and reducing the modulation wave number ky, we obtain periodic (c) and breathing (f)

profiles. The coalescence of periodic and breathing modes progressively gives rise to periodic profile in

one case (c) and to breathers on the other hand (f). These results enforce that cells are continuously

collected into high and low-concentration layers that are mediated by nonuniform fluid flows. These

results are also indicative of how one can achieve cellular distribution in an optimized fashion way. In

fact, breather carries energy during their propagation and the fact that their volumes augment implies

that their thickness increase as well, an outcome that may optimize cellular redistribution across the

medium. Furthermore, as the breathers increase their volumes, the sharp distribution of cells located

at x = 0 scatters towards the edges, a result that is consistent with numerical simulations presented

in [68, 77], and experimental works of [76].

A better understanding of the dynamical behaviors of our solutions may be attained considering the

individual effects system parameters have on the proposed solutions. Up until now, results presented

rely on the choice α = 1, which in other words means that chemoattractant and bacteria diffuse

at the same rate. However, by increasing the diffusion ratio (d), the breathing behavior tends to
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Figure 3.16: Influences of proportion of cells vertically transported (a), friction (b), traction (c),

diffusion ratio (d), chemotaxis (e), and chemoattractant consumption rate (f) on the thicknesses and

amplitudes of the wave. Parameters taken as in Fig. 3.14(b).

give place to a pulsatory pattern, with a consequence of the diminution of the breathing frequency,

the number of bacteria carried by the wave as well as the wave thickness. In other words, when

the chemoattractant diffuses faster than bacteria, the number of particles transported by the wave

decreases, and their spatial distribution is also affected. The latter features are also reported when

traction decreases (c), while friction (b) and the proportion of cells vertically transported (a) increase.

In their study of active fluids [70], the authors showed that fast diffusing species up-regulate the stress.

Our results extend these observations by stating that when one of the diffusive species is active, the

density of the fast diffusing species is expected to reduce, and the characteristics of structures ensuring

transport in the medium are slightly modified. On the other hand, the contribution of chemotaxis and

chemoattractant consumption have more dramatic effects on the wave profiles. As these parameters

increase, they incur several damages to the wave structures to the point that the latter change their

profiles. We understand these sudden wave profile changes as a mechanism for shifting the primary

transport mode. In addition to the fact that chemotaxis has stabilizing/destabilizing properties on the

system Eqs. (2.19), its effects on our solutions are on the line with results experimentally obtained

by [97], which stated that chemotactic bacteria transit towards the formation of unsteady plumes

that penetrated deeply into the medium with the consequence of enhancing their transport. However,

the symmetry of the wave is globally preserved, enforcing some compelling implications: Chemotaxis

strength must be high enough such that cells may overcome the instabilities incurred by the medium

62



within which they are immersed. In other words, by controlling the chemotactic activity of cells in

fluids, one can prevent and disseminate fluid instabilities.

3.5.4 Confirmation through direct numerical simulations

This section presents our numerical simulations, the aim being an ascertainment of the ability

of the solutions proposed above to propagate in a stable fashion in the model Eqs. (2.19). Using

pseudo-spectral methods, direct numerical integrations of Eqs. (2.19) on a domain of length l = 10

are performed. Along each spatial direction, N = 1024 points are considered and the time step is

dt = 10−6, and we ran simulations over the final dimensional time tfin = 2 · 10−2. As said earlier,

this time corresponds to a time t = 2 · 104 s in the real space-time frame. Our initial conditions

are the analytical solutions Eqs. (3.49) taken at t = 0. Simulations are launched by perturbing the

analytical solutions with small perturbations of strength 10 percent of the wave amplitude, taken at

time t = 0. Panels (a), (b), (c) of Fig. 3.16 (resp. panels (d), (e), (f)) depict snapshots of bacterial

Figure 3.17: Stable numerical solutions for first (second) order bacterial wave at t = 0 (a) [(d)],

t = 5 · 10−3 (b) [(e)], and t = 0.02 (c) [(f)]. Parameters as in Figs. 5(b) [(f)].

densities whose analytical solutions are recovered by inserting the first (resp. second) order rational

solution Eq. (3.46) (resp. Eq. (3.47)) into Eq. (3.48). Our solutions have initially been perturbed, but

the results displayed in Fig. 3.16 indicate that their numerical counterpart evolves without neither

collapses nor explosions. In that sense, our solutions are numerically stable and are likely to be

observed in experiments. Chemotaxis-fluids systems are the seat of highly nonlinear events where
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gravity, friction, viscosity, chemotaxis, and diffusion are more likely to interact in either constructive

or destructive ways to produce interesting spatiotemporal behaviors. Numerical analyses performed

in this section do confirm that while in the vertical line, cells fluctuate around their reference state.

The density remains quasi-constant along the horizontal axis, with their distribution reaching its

peak at the origin. These results are quite interesting and are new ones since two-dimensional waves

modulation in chemotaxis-fluids systems has never been carried before, to the best of our knowledge.

We, therefore, expect the investigations carried here to spark the light toward experimental studies of

chemotaxis systems where traction, friction, viscous, and gravity forces are at play.

3.6 Conclusion

In this chapter, we have considered several physical a considerations and construct their relative

mathematical models. We start with a model where cells are immersed in a uniform flow, analytical

solutions have been constructed and their existence conditions specified. We discussed the experimen-

tal feasibility of those solutions, and found that the background flow constitutes the compact support

on which non-stationary traveling structures emerge. The flow also contribute to the colonization of

large domains even when the chemotactic sensitivity of cells drastically decreases. Further, we con-

sidered the coupled dynamics between chemotaxis and haptotaxis. The resulting model is shown to

be presenting viscoelastic properties and we identified the parameter regions where nonlinear excita-

tions either expand or counter-propagate. It is observed that traction and adhesion have competing

effects on wave amplitude and thickness. In a fluid with nonuniform flows, we derived an extended

two-dimensional model for chemotaxis taking into consideration gravity, friction, and viscous forces.

A linear stability showed that instability reduces when friction and gravity increase. On the other

hand, traction increases the instability domains in addition to the fact that the systems remain un-

stable at long wave vectors in both spatial directions. In deep water, our analysis reveals that the

emergence of oscillatory instability when the perturbations considered deviate from the vertical axis.

In presence of transversal perturbations, the type of instability does not absolutely depend on the

depth of the suspension. Finite sums of nonlinear modulated waves showed that bacterial waves are

asymmetric breathing patterns interacting with periodic vertical structures. It is shown that of the

wave is enhanced when bacterial diffusion, chemotaxis, friction, traction, chemoattractant consump-

tion rate increase while the number of cells vertically transported in the system decreases. In each of

our manufacturings, numerical simulations show that analytical and numerical solutions remain closed

to one another, meaning that solutions constructed are stable.
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Conclusion and future research plans

The objective of this work was to discuss spatiotemporal behaviors of collective motion exhibited

by chemotactic systems where mechanical, body and traction forces are at play. In that end, math-

ematical models taking these aspects have been derived. Analytical solutions of those models have

been constructed and their existence conditions discussed with great details. Our investigations point

that in a situation where traction forces and long-range diffusion are at play, the whole system is

significantly modified. We predict the existence of a minimal chemoattractant concentration in the

system, in order for waves to be generated. It is also proved that the fluid constitutes the compact

support through which propagation happens, and the wave velocity depends on the flow rate of the

fluid. Our study reveals that in a situation where cortical flows are taken into consideration, opti-

mal characteristics of cells transport are observed through step and dip waves. The former carries a

high number of cells while the latter ensures their fast collective displacement. Furthermore, coupling

chemotaxis with mechanical actions allows us to show that traction and adhesion have competing

effects on the transport of cells. In addition, we predict the existence of a threshold value of traction

above which nonlinearly modulated waves are compressive. In a nonuniform fluid flow where traction,

friction and body forces are simultaneously at play, we predict that non-transversal perturbations

favor the emergence of oscillatory stable patterns in deep suspensions. To the best of our knowledge,

the results discussed in this document are new and have not yet been obtained before. However, there

still remain unanswered questions that we aim at pursuing in a near future.

• Use the kinetic theory to derive a multiscale model through which effects of rheological forces

would be fully clarified.

• Apply the Lagrangian mechanics to determine the contribution of shape changing of cells on the

collective dynamic of the bulk population.

• Study a multi-populations system to show how their interactions shape their respective evolution.



Appendices: Derivation of the cubic complex

Ginzburg-Landau Equation Eq. (3.25) and

the Davey-Stewartson equation Eqs. (3.45)

Appendix A: Derivation of the cubic complex Ginzburg-Landau

Equation Eq. (3.25)

We insert the expansions Eqs. (2.19) into Eqs. (2.14) and collect resulting terms in power of ε.

Doing so leads to the first order harmonics

C
(1)
1 = Γ1m, ρ

(1)
1 = B1m, U

(1)
1 = A1m (A.1)

where we set m = n
(1)
1 , given that the dispersion relation

A0ω
3 +B0ω

2 + C0ω +D0 = 0. (A.2)

is satisfied. This last one depends on the parameters of the system and we can solve it for ω as function

of the wave vector k. A0, B0, C0, and D0 are given by

A0 = −ikµN0, B0 = N0a0kµ− ia01, C0 = a03 + a0a01 − ia02, and D0 = a0a02 + a04,

K0 = 1− λn2
0, N0 = (1 + λn2

0)2, M0 = n0(1 + λn2
0), a0 = Dck

2 + β0n0 − α0,

a01 = ik3µN0Dn − ikρ0τ0n0K0 + iN0(sρ0 + k2)− ik2ρ0τ0M0(1− γk2),

a02 = Dnk
2
[
k2ρ0τ0M0(1− γk2)−N0(sρ0 + k2)

]
− ρ2

0τ0n0K0α1k,

a03 = ik3χ0n0c0

(
µN0β − ρ0τ0K0k

2
)
, a04 = χ0n0c0k

2β
[
k2ρ0τ0M0(1− γk2)−N0

(
sρ0 + k2

)]
.

Eq. (3.25) admits three complex solutions. Hereafter in the present study we discuss our results



for the solution of Eq. (3.25) that is

ω =
4ω2(1 + i

√
3)− (1− i

√
3)ω

2
3
1

12A0ω
1
3
1

, where ω2 = 3A0C0 −B2
0 , (A.3)

ω1 = 36A0(B0C0 − 3D0A
2
0)− 8B3

0 + 12A0

√
27A0D0(3A0D0 − 2B0C0) + 12A0C3

0 + 3B2
0(4D0B0 − C2

0)

The coefficients A1, B1 and Γ1 are given by

A1 =
−ikτ0ρ0K0

N0(ikωµ− sρ0 − k2) + k2ρ0τ0M0(1− γk2)
, B1 = −ikρ0A1, Γ1 =

−c0(β + kωA1)

Dck2 + βn0 − α− iω
,

(A.4)

We continue as at the first order of ε, and obtain the second-order and constant terms as function of

the first harmonics. At O(ε2), for l = 0, we obtain

U
(2)
0 =

1

ρ0sN0

[
ikδ0(B1 −B∗1)− 4λn0(1 + λn2

0)(sρ0 − k2)(A1 + A∗1)−N0s(A1B
∗
1 +B1A

∗
1)
]
|m|2,

δ0 = τ0(1− γk2)(1 + 3λn2
0K0 −K0). (A.5)

For sake of simplicity, we rewrite U (2)
0 = A|m|2. For l = 1, we have the

C
(2)
1 = Γ1m+ Γ21

∂m

∂ξ
, ρ

(2)
1 = B1m+B21

∂m

∂ξ
, U

(2)
1 = A1m+ A21

∂m

∂ξ
, (A.6)

with

A21 =
ωτ0M0(1− γk2)(−B1 + ikρ0A1)− ωτ0K0 − 2iωkN0A1(1− iωµ)

ωN0(ikωµ− sρ0 − k2) + ωk2ρ0τ0M0(1− γk2)

+
Vg [−µωk2N0A1 + kτ0M0(1− γk2)(B1 + ikρ0A1)]

ωN0(ikωµ− sρ0 − k2) + ωk2ρ0τ0M0(1− γk2)
,

B21 = −
[
ρ0A1 + ikρ0A21 +

Vg
iω

(B1 + ikρ0A1)

]
,

Γ21 =
Vg(Γ1 − ikc0A1) + c0kωA21 − iωc0A1 + 2ikDcΓ1

Dck2 + βn0 − α− iω
, (A.7)

The group velocity Vg takes the form:

Vg =
δ1 − δ3

δ4 − δ2

, δ1 =
c0kωβ1 − iωc0A1 + 2ikDcΓ1

Dck2 + βn0 − α− iω
, δ2 =

Γ1 − ikc0A1 + c0kωβ2

Dck2 + βn0 − α− iω
,

δ3 = −2ik(Dn − χ0n0Γ1 − n0α1B1) + n0A1(iω − α1ρ0k
2)− n0kβ1(ω + iα1ρ0)

χ0n0k2
,

δ4 = −ω [1 + ikn0A1 − n0kβ2(ω + iα1ρ0)] + iα1n0k
2(B1 + ikρ0A1)

χ0n0ωk2
,

β1 =
τ0M0(1− γk2)(−B1 + iρ0A1)− τ0K0 − ikN0A1(1− iωµ)

N0(ikωµ− sρ0 − k2) + k2ρ0τ0M0(1− γk2)
,

β2 =
−µωk2N0A1 + kτ0M0(1− γk2)(B1 + ikρ0A1)

ωN0(ikωµ− sρ0 − k2) + ωk2ρ0τ0M0(1− γk2)
. (A.8)
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Further, At l = 2, we have to solve a system of the form

a11n
(2)
2 + b11C

(2)
2 + c11U

(2)
2 − e11m

2 = 0

a22n
(2)
2 + b22C

(2)
2 + c22U

(2)
2 − e22m

2 = 0

a33n
(2)
2 + c33U

(2)
2 − e33m

2 = 0,

(A.9)

in order to determine n(2)
2 , C

(2)
2 , U

(2)
2 . The (a, b, c, e)jj coefficients are:

a11 = 4Dnk
2 − 2iω, b11 = −4χ0n0k

2, c11 = 4n0k(ω + 2ikρ0α1),

e11 = 2χ0k
2Γ1 + 2α1k

2B1 − 2ωkA1 − 4iα1n0k
3A1B1,

a22 = βc0, b22 = 4Dck
2 + βn0 − α− 2iω, c22 = 4c0kω, e22 = −Γ1(β + 2ωkA1),

a33 = 2ikτ0ρ0K0, c33 = N0(8ikωµ− sρ0 − k2) + 4k2τ0M0rho0(1− γk2),

e33 = N0sA1B1 + 2ikτ0ρ0n0λ+ 4λn0A1(1 + λn2
0)(k2 − sρ0 − iωkµ)

−ikτ0B1(1− γk2)(K0 − 1 + 3λn2
0)− 2k2τ0M0A1B1(1− γk2).

Solutions of Eq. (A.9) can be written as

n
(2)
2 = D2m

2, C
(2)
2 = Γ2m

2, ρ
(2)
2 = B2m

2, U
(2)
2 = A2m

2,

A2 =
a11b22e33 − a22b11e33 + a33b11e22 − a33b22e11

a11b22c33 − a22b11c33 + a33b11c22 − a33b22c11

, B2 = −ik(A1B1 + 2ρ0A2),

D2 =
b11c22e33 − b11c33e22 − b22c11e33 + b22c33e11

a11b22c33 − a22b11c33 + a33b11c22 − a33b22c11

,

Γ2 =
(a11c22 − a22c11)e33 + (−a11c33 + a33c11)e22 + (a22c33 − a33c22)e11

a11b22c33 − a22b11c33 + a33b11c22 − a33b22c11

(A.10)

Moreover, expressions for the zeroth harmonic have not been completely determined within the

second order. We therefore consider the third-order equations. The (l = 0)-components of the third

order are given by:

Vg
∂n

(2)
0

∂ξ
= [iω(A∗1 − A1 + ikχ0(Γ1 − Γ∗1) + ikα1(B1 −B∗1))] ∂|m|

2

∂ξ
,

Vg
∂ρ

(2)
0

∂ξ
= iω(B1A

∗
1 − A1B

∗
1)∂|m|

2

∂ξ
.

(A.11)

After integration, Eq. (A.11) becomes

n
(2)
0 = D|m|2 + h(τ), ρ

(2)
0 = B|m|2 + g(τ), C

(2)
0 = Γ|m|2 − βc0h(τ)

βn0−α ,

D =
iω(A∗1−A1+ikχ0(Γ1−Γ∗1)+ikα1(B1−B∗1 ))

Vg
, B = iω

Vg
(B1A

∗
1 − A1B

∗
1), Γ = −β(c0D+Γ1+Γ∗1)

βn0−α
(A.12)

h(τ) and g(τ) being two arbitrary real functions of the slow time variable τ . The (l = 1)-components

yield the system

a1n
(3)
1 + b1C

(3)
1 + c1ρ

(3)
1 + d1U

(3)
1 − e1 = 0, a2n

(3)
1 + b2C

(3)
1 + c2ρ

(3)
1 + d2U

(3)
1 − e2 = 0,

c3ρ
(3)
1 + d3U

(3)
1 − e3 = 0, a4n

(3)
1 + c4ρ

(3)
1 + d4U

(3)
1 − e4 = 0. (A.13)
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The coefficients (a, b, c, d)j of Eq. (A.13) are

a1 = Dnk
2 − iω, b1 = −χ0n0k

2, c1 = −α1n0k
2, d1 = n0kω, a2 = βc0,

b2 = Dck
2 + βn0 − α− iω, d2 = c0kω, c3 = −iω, d3 = ρ0kω,

a4 = ikτ0ρ0K0, c4 = ikτ0M0(1− γk2), d4 = N0(ikωµ− sρ0 − k2),

p1 = −(1 + ikn0A1), p2 = −(Γ1 + ikc0A1), p3 = −(B1 + ikρ0A1), p4 = N0µk
2A1;

q1 = Dn − χ0n0Γ1 + n0A1Vg − n0α1B1 + in0A21(ω + kVg)− 2ikχ0n0Γ21 − 2ikn0α1B21,

q2 = DcΓ1 + c0VgA1 + ic0A21(ω + kVg) + Γ21(Vg + 2ikDc),

q3 = ρ0VgA1 + iρ0A21(ω + kVg) + VgB21,

q4 = −N0A21(µk2Vg + 2µkω + 2ik)− τ0M0B21(1− γk2)−N0A1(1− iωµ)− 3ikτ0M0γB1;

R1 = χ0k
2Γ1 + α1k

2B1 − kωA1, R2 = βc0(β+ωkA1)
βn0−α − βΓ1, R3 = −ωkA1;

R41 = (N0sA1 − ikτ0K0),

R42 = 2ikτ0ρ0n0λ− ikτ0B1(1− γk2)(1 + 3λ2
0)− 4n0A1λ(1 + λn2

0)(iωµ− k2 − sρ0);

S1 = χ0k
2 (2Γ2 −D2Γ∗1 +DΓ1) + α1k

2(2B2 −D2B
∗
1 +DB1)− ωk(2A2 −D2A

∗
1 +DA1),

S2 = ωk(Γ2A
∗
1 − 2A2Γ∗1 − ΓA1)− β(D2Γ∗1 + Γ2 + Γ +DΓ1), S3 = ωk(B1A

∗
1 − 2A2B

∗
1 −BA1),

S4 = D [2ikτ0n0ρ0λ− ikτ0B1(1− γk2)(1 + 3λn2
0)− 4n0λA1(1 + λn2

0)(iωµ− sρ0 − k2)]

+DB (ikτ0K0 −N0sA1)− ikτ0(1− γk2) [n0λ(6B1 − 5B∗1)−D2B
∗
1(1 + 3λn0 − 2K0)]

+ikτ0B2(1− 4γk2)(K0 − 2− 6λn2
0) +N0s(A2B

∗
1 +B2A

∗
1) + ikτ0ρ0λ(1 + 2n0D2)

+4λn0(1 + λn2
0) [ikµ(D2 − 8µωB2) +D2A

∗
1(k2 + sρ0) + s(B1 + ρ0A2 + A1B

∗
1 +B1A

∗
1) + 4k2A2] ;

T1 = Vg + 2ik(Dn − χ0n0Γ1 − n0α1B1) + in0A1(ω + kVg), T2 = Γ1(Vg + 2ikDc) + ic0A1(ω + kVg),

T3 = B1Vg + iρ0A1(ω + kVg), T4 = − [τ0K0ρ0 + τ0M0B1(1− γk2)−N0A21(µk2Vg + 2µkω + 2iω)] ,

e1 = p1
∂m
∂τ

+ q1
∂2m
∂ξ2

+R1h(τ)m+ S1|m|2m+ T1
∂n

(2)
1

∂ξ
,

e2 = p2
∂m
∂τ

+ q2
∂2m
∂ξ2

+R2h(τ)m+ S2|m|2m+ T2
∂n

(2)
1

∂ξ
,

e3 = p3
∂m
∂τ

+ q3
∂2m
∂ξ2

+R3g(τ)m+ S3|m|2m+ T3
∂n

(2)
1

∂ξ
,

e4 = p4
∂m
∂τ

+ q4
∂2m
∂ξ2

+ [R41g(τ) +R42h(τ)]m+ S4|m|2m+ T4
∂n

(2)
1

∂ξ
+ 2ikµN0A1Vg

∂m
∂ξ
.

Using all the above determined expressions, we use the solvability condition provided by the dispersion

relation Eq. (A.3) into Eq. (A.8), and after gathering all remaining expressions, we arrive at the cubic

complex nonlinear partial differential equation

i
∂m

∂τ
+ P

∂2m

∂ξ2
+R

∂m

∂ξ
+Q|m|2m+H(τ)m = 0. (A.14)

which governs the evolution of weakly nonlinear excitations in the original model Eqs. (2.14). The

coefficients P, Q, R, are complex and so do the linear gain/loss coefficient H(τ). Explicitly their

69



analytical expressions are:

P =
∆1q1 + ∆2q2 + ∆3q3 + ∆4q4

∆1p1 + ∆2p2 + ∆3p3 + ∆4p4

, R =
2ikµN0VgA1

∆1p1 + ∆2p2 + ∆3p3 + ∆4p4

,

Q =
∆1S1 + ∆2S2 + ∆3S3 + ∆4S4

∆1p1 + ∆2p2 + ∆3p3 + ∆4p4

, H(τ) = Rhh(τ) +Rgg(τ),

Rh =
∆1R1 + ∆2R2 + ∆3R42

∆1p1 + ∆2p2 + ∆3p3 + ∆4p4

, Rg =
∆3R3 + ∆4R41

∆1p1 + ∆2p2 + ∆3p3 + ∆4p4

,

∆1 = b2c3d4 − b2c4d3, ∆2 = b1c4d3 − b1c3d4, ∆3 = b2c4d1 − b2c14− b1c4d2,

∆4 = b1c3d2 + b2c1d3 − b2c3d1. (A.15)

we introduce the transformation m(ξ, τ) = ψ(ξ, τ)ei(χ1ξ+χ2(τ)), and Eq. (A.17) becomes Eq. (3.24)

in the main document, provided that χ1 = Rr
2Pi

, R11 = Ri + 2χ1Pr, χ2(τ) = −χ1τ(Ri + χ1Pr). h(τ)

and g(τ) are chosen so that the real part of H(τ) is zero. ϕ(τ) = Im(H(τ)) + χ1(Rr − Piχ1). If

we simultaneously set h(τ) = 0 and g(τ) = 0, Eq. (A.17) reduces to the traditional cubic complex

nonlinear Schroedinger equation. Eq. (A.17), is the reduced form of Eqs. (2.14).

Appendix B: Derivation of the complex Davey-Stewartson Equa-

tion Eqs. (3.45)

Substituting Eqs. (3.45) into Eqs. (2.19) and assembling the terms with the same exponential

yields the first harmonics

C
(1)
1 = Γ1n

(1)
1 , u

(1)
1 = A1n

(1)
1 , v

(1)
1 = B1n

(1)
1 ,

Γ1 =
−iω−ikyµ0γ0

(
γ−n0− n0

1+νk2

)
+k2

(
1+

n0Pe

N2
0 (1+νk2)

)

n0k2
(
χ0+

χ1
1+νk2

) , A1 = 1
1+νk2

[
ikx

(
χ1Γ1 − Pe

N2
0

)
− µ0γ0kxky(1−ν)

1+k2

]
,

B1 = 1
1+νk2

[
iky

(
χ1Γ1 − Pe

N2
0

)
− µ0γ0(1+k2y+νk2x)

1+k2

]
, N0 = 1 + n0,

(B.1)

provided that the dispersion relation is given by
[
−iω + ikyµ0γ0

(
γ − n0 − n0

1+νk2

)
+ k2

(
1 + n0Pe

N2
0 (1+νk2)

)] [
−iω − ikyµ0γ0n0 + βn0 + k2

(
α− χ1c0

1+νk2

)]

+n0c0k
2
(
χ0 + χ1

1+νk2

) [
β +

Pek2−ikyµ0γ0N2
0

N2
0 (1+νk2)

]
= 0.

(B.2)

As expected, it is observed from Eqs. (B.2) that real and imaginary parts of ω depends on system’s

parameters as well as modulation wave vectors kx and ky. The imaginary part of ω coincides with the

growth rate factor earlier discussed in the linear stability section. At the second order, we continue

and determine the amplitudes of the second harmonics, the constant terms and the non vanishing
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terms. The constant terms corresponding to l = 0 yield

C
(2)
0 = − c0

n0
n

(2)
0 + 2

n0N2
0

n0Pe+N2
0 (1+νk2)

χ1+n0(1+νk2)
|n(1)

1 |2, u
(2)
0 = A|n(1)

1 |2, with

A = 2
N0

[
kxky(1− ν)(B1 +B∗1)− (1 + k2

y + νk2
x)(A1 + A∗1) + 2ikxχ1(Γ1 − Γ∗1)

]
,

B = 2
N0

[
kxky(1− ν)(A1 + A∗1)− 2µ0γ0 + (1 + k2

y + νk2
x)(B1 +B∗1)

]
.

(B.3)

The l = 1 terms are reduced into

C
(2)
1 = Γ1n

(2)
1 +Γ21

∂n

∂ξ
+Γ22

∂n

∂η
, u

(2)
1 = A1n

(2)
1 +A21

∂n

∂ξ
+A22

∂n

∂η
, v

(2)
1 = B1n

(2)
1 +B21

∂n

∂ξ
+B22

∂n

∂η
,

with Γ21 =
Γ1

[
Vx + ikx

(
2α− χ1c0

1+νk2

)]
− c0A1

(
1 +

k2y(1−ν)−2νk2x
1+νk2

)
+ c0kx

1+νk2

[
B1ky(1 + ν) + iPe

N2
0

]

βc0 +
c0Pek2−ikyµ0c0γ0N2

0

N2
0 (1+νk2)

,

Γ22 =
µ0γ0n0 + Γ1

[
Vy + iky

(
2α− χ1c0

1+νk2

)]
− c0B1

(
1 +

k2x(1−ν)−2νk2y
1+νk2

)
+ c0ky

1+νk2

[
A1kx(1 + ν) + iPe

N2
0

]

βc0 +
c0Pek2−ikyµ0c0γ0N2

0

N2
0 (1+νk2)

,

B21 =
1 + k2

y + νk2
x

(1 + k2)(1 + νk2)

[
ikyχ1(1 + k2)

1 + k2
y + νk2

x

Γ21 − iky(1− ν)A1 + 2ikxB1

]

− kxky(1− ν)

(1 + k2)(1 + νk2)

[
Pe
N2

0

+ iky(1− ν)B1 − χ1Γ1 − 2ikxνA1

]
,

B22 =
1 + k2

y + νk2
x

(1 + k2)(1 + νk2)

[
ikyχ1Γ22(1 + k2)

1 + k2
y + νk2

x

− Pe
N2

0

− ikxA1(1− ν) + χ1Γ1 + 2ikyνB1

]

− kxky(1− ν)

(1 + k2)(1 + νk2)
[ikxB1(1− ν)− 2ikyA1] ,

A21 =
ikx(χ1Γ21 + 2νA1) + (1− ν)(kxkyB21 − ikyB1) + χ1Γ1 − Pe

N2
0

1 + k2
y + νk2

x

,

A22 =
ikx [χ1Γ22 −B1(1− ν)] + kxkyB22(1− ν) + 2ikyA1

1 + k2
y + νk2

x

, (B.4)

provided that Vx and Vy take the form

Vx = Nx
Dx
, and Vy = NY

Dy
,

Nx = −n0k
2
(
χ0 + χ1

1+νk2

){
ikx

[
c0Pe

N2
0 (1+νk2)

+ Γ1

(
2α− χ1c0

1+νk2

)]
− c0A1

[
1 +

k2y(1−ν)−2νk2x
1+νk2

]
+ c0kxkyB1(1+ν)

1+νk2

}

−
{
ikx

[
2 + n0Pe

N2
0 (1+νk2)

− n0Γ1

(
2χ0 + χ1

1+νk2

)]
+ kxkyn0B1(1+ν)

1+νk2
− n0A1

(
1− 2νk2x

1+νk2

)}
×

[
−iω − ikyµ0γ0n0 + βn0 + k2

(
α− χ1c0

1+νk2

)]
,

Dx = −iω − ikyµ0n0γ0 + βn0 + k2
(
α− χ1c0

1+νk2

)
+ n0k

2
(
χ0 + χ1

1+νk2

)
,

Dy = −2iω − ikyµ0γ0

(
γ − n0 − n0

1+νk2

)
+ (α + 1)k2 +

k2(n0Pe−N2
0 c0χ1)

N2
0 (1+νk2)

,

Ny = −n0k
2
(
χ0 + χ1

1+νk2

){
µ0γ0n0 − c0B1

[
1 +

(1−ν)k2x−2νk2y
1+νk2

]
+ c0kxkyA1(1+ν)

1+νk2

}

−ikxn0k
2
(
χ0 + χ1

1+νk2

) [
c0Pe

N2
0 (1+νk2)

+ Γ1

(
2α− χ1c0

1+νk2

)]
−
[
−iω − ikyµ0n0γ0 + βn0 + k2

(
α− χ1c0

1+νk2

)]
×{

kxkyn0A1(1+ν)

1+νk2
− µ0n0γ0 − n0B1

(
1 +

(1−ν)k2y−2νk2x
1+νk2

)
+ iky

[
2 + Pen0

N2
0 (1+νk2)

− n0Γ1

(
2χ0 + χ1

1+νk2

)]}
.

(B.5)
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We continue the resolution of the second order. For l = 2, components of the second harmonics are

recovered by solving the system

a11n
(2)
2 + b11C

(2)
2 + c11V

(2)
2 = d11

(
n

(1)
1

)2

, a22n
(2)
2 + b22C

(2)
2 + c22V

(2)
2 = d22

(
n

(1)
1

)2

, (B.6)

a33n
(2)
2 + b33C

(2)
2 + c33V

(2)
2 = d33

(
n

(1)
1

)2

, U
(2)
2 = a44n

(2)
2 + b44C

(2)
2 + c44V

(2)
2 + d44

(
n

(1)
1

)2

,

where

a44 = − 2ikxPe
N2

0 (1+4k2y+4νk2x)
, b44 = − kxky(1−ν)

1+4k2y+4νk2x
, c44 = 2ikxχ1

1+4k2y+4νk2x
, c22 = 2ikyc0(1 + c44),

d44 = −2N0A1(1+k2y+νk2x)+2N0kxkyB1(ν−1)−2ikxχ1Γ1

N2
0 (1+4k2y+4νk2x)

, b11 = −4χ0n0k
2 + 2ikxn0b44,

a11 = −2iω + 4k2 + 2ikyµ0γ0(γ − n0) + 2ikxn0a44, c11 = 2ikyn0 + 2ikxn0c44,

d11 = 2χ0k
2Γ1 − 2ikxA1 − 2ikyB1 − 2ikxn0d44,

a22 = βc0 + 2ikyc0a44, b22 = −2iω + 4αk2 + βn0 + 2iky(µ0n0γ0 + c0b44),

d22 = −Γ1 [β + 2i (kxA1 + kyB1)]− 2ikyc0d44, a33 = 4N2
0a44kxky(1− ν)− 2ikyPe − µ0γ0N

2
0 ,

b33 = 2ikyχ1N
2
0 + 4kxkyN

2
0 b44(1− ν), c33 = 4kxkyN

2
0 c44(1− ν)−N2

0 − 4N2
0 (k2

x + νk2
y),

d33 = 2N0B1(1 + k2
x + νk2

y) + µ0γ0 + 2kxkyN0 − 2ikyN0χ1Γ1 − 4d44kxkyN
2
0 (1− ν).

The system Eqs. (B.6) is solved for the dependent variables n(2)
2 , C

(2)
2 , V

(2)
2 and U (2)

2 , and the solutions

are given as functions of
(
n

(1)
1

)2

, thus we write

n
(2)
2 = D2

(
n

(1)
1

)2

, C
(2)
2 = Γ2

(
n

(1)
1

)2

, U
(2)
2 = A2

(
n

(1)
1

)2

, V
(2)

2 = B2

(
n

(1)
1

)2

, where

A2 = −2N0A1(1+k2y+νk2x)+2N0kxkyB1(ν−1)−2ikxχ1Γ1+2ikx(PeD2−N2
0χ1Γ2)+4N2

0 kxkyB2(1−ν)

N2
0 (1+4k2y+4νk2x)

,

D2 = b11c22d33−b11c33d22−b22c11d33+b22c33d11+b33c11d22−b33c22d11
a11b22c33−a11b33c22−a22b11c33+a22b33c11+a33b11c22−a33b22c11 ,

Γ2 = −a11c22d33−a11c33d22−a22c11d33+a22c33d11+a33c11d22−a33c22d11
a11b22c33−a11b33c22−a22b11c33+a22b33c11+a33b11c22−a33b22c11 ,

B2 = a11b22d33−a11b33d22−a22b11d33+a22b33d11+a33b11d22−a33b22d11
a11b22c33−a11b33c22−a22b11c33+a22b33c11+a33b11c22−a33b22c11 .

(B.7)

At the third order of ε, the l = 0 components of the third order allows us to establish that the

dependent variable n(2)
0 we could not explicitly determine a the second order for l = 0 satisfies

σ1
∂2n

(2)
0

∂ξ2
+ σ2

∂2n
(2)
0

∂η2
= σ3

∂2|n(1)
1 |2

∂ξ2
+ σ2

∂2|n(1)
1 |2

∂η2
. (B.8)

The parameters σ1, σ2, σ3, and σ4 are given by

α1 = n0A+ A1 + A∗1 + ikxχ0(Γ1 − Γ∗1), α2 = n0B +B1 +B∗1 + ikyχ0(Γ1 − Γ∗1), σ1 = VxiVxr ,

σ2 = −Vyi [Vyr − µ0γ0 (γ − 2n0)] , σ3 =
VxiVyiα

2
1

α1Vyi + α2Vxi
, σ4 = − VxiVyiα

2
2

α1Vyi + α2Vxi
.
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σ1, σ2, σ3 and σ4 are all reals. The l = 1−components of the third order yields the system

a1n
(3)
1 + b1C

(3)
1 + c1U

(3)
1 + d1V

(3)
1 = −∂n

(1)
1

∂τ
+ P1

∂2n
(1)
1

∂ξ2
+ P2

∂2n
(1)
1

∂η2
+ P3

∂2n
(1)
1

∂ξ∂η
+ P4n

(1)
1 n

(2)
0

+ P5n
(1)
1 |n(1)

1 |2 + P6
∂n

(2)
1

∂ξ
+ P7

∂n
(2)
1

∂η
,

a2n
(3)
1 + b2C

(3)
1 + c2U

(3)
1 + d2V

(3)
1 = −Γ1

∂n
(1)
1

∂τ
+Q1

∂2n
(1)
1

∂ξ2
+Q2

∂2n
(1)
1

∂η2
+Q3

∂2n
(1)
1

∂ξ∂η
+Q4n

(1)
1 n

(2)
0

+Q5n
(1)
1 |n(1)

1 |2 +Q6
∂n

(2)
1

∂ξ
,

a3n
(3)
1 + b3C

(3)
1 + c3U

(3)
1 + d3V

(3)
1 = R1

∂2n
(1)
1

∂ξ2
+R2

∂2n
(1)
1

∂η2
+R3

∂2n
(1)
1

∂ξ∂η
+R4n

(1)
1 n

(2)
0 +R5n

(1)
1 |n(1)

1 |2

+R6
∂n

(2)
1

∂ξ
+R7

∂n
(2)
1

∂η
,

a4n
(3)
1 + b4C

(3)
1 + c4U

(3)
1 + d4V

(3)
1 = S1

∂2n
(1)
1

∂ξ2
+ S2

∂2n
(1)
1

∂η2
+ S3

∂2n
(1)
1

∂ξ∂η
+ S4n

(1)
1 n

(2)
0 + S5n

(1)
1 |n(1)

1 |2

+ S6
∂n

(2)
1

∂ξ
+ S7

∂n
(2)
1

∂η
, (B.9)

with

a1 = −iω + k2 + ikyµ0γ0(γ − n0), b1 = χ0n0c0k
2, c1 = ikxc0, a2 = βc0,

b2 = −iω + αk2 + βn0 − ikyµ0n0γ0, c2 = ikxc0, d2 = ikyc0, a3 = −ikxPe, b3 = ikxχ1N
2
0 ,

c3 = −N2
0 (1 + k2

y + νk2
x), d3 = N2

0kxky(1− ν), a4 = −i(kyPe + µ0γ0N
2
0 ), b4 = ikyχ1N

2
0 ,

c4 = kxkyN
2
0 (1− ν), d4 = −N2

0 (1 + k2
x + νk2

y), P1 = 1− χ0n0Γ1 − 2ikxχ0n0Γ21 − n0A21,

P2 = 1− χ0n0Γ1 − 2ikyχ0n0Γ22 − n0B22, P3 = −2iχ0n0(kxΓ22 + kyΓ21)− n0(A22 +B21),

P4 = χ0k
2Γ1−ikxA1−iky(B1−µ0γ0), P5 = χ0k

2(2Γ2−D2Γ∗1)−ikx(A2+A+D2A
∗
1)−iky(B2+D2B

∗
1+B),

P6 = Vx + 2ikx(1− χ0n0Γ1)− n0A1, P7 = Vy + 2iky(1− χ0n0Γ1) + µ0γ0(n0 − γ)− n0B1,

Q1 = αΓ1 + Γ21(Vx + 2iαkx)− c0A21, Q2 = αΓ1 + Γ22(Vy + 2iαky + µ0γ0n0)− c0B22,

Q3 = Γ21(Vy + 2iαky + µ0n0γ0)− c0B21 + Γ22(Vx + 2iαkx)− c0A22,

Q4 = Γ1(ikyµ0n0γ0 − β) +
c0

n0

(β + ikxA1 + ikyB1),
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Q5 = −β(Γ + Γ2 +D2Γ∗1)− iky(BΓ +B2Γ∗1 +B∗1Γ2 + ΓB1)− ikx(AΓ1 + A2Γ∗1 + A∗1Γ2 + ΓA1),

Q6 = −c0A1 − Γ1(Vx + 2ikxα), Q7 = −c0B1 − Γ1(Vy + 2iαky + µ0n0γ0),

R1 = −N2
0B1+ikyN

2
0A21(1−ν)−2ikxN

2
0B21, R2 = −νN2

0B1+ikxN
2
0A22(1−ν)−2ikyνN

2
0B22−χ1N

2
0 Γ22,

R3 = N2
0A1(1− ν)− χ1N

2
0 Γ21 + ikxN

2
0A21(1− ν)− 2ikyνN

2
0B21 + ikyN

2
0A22 − 2ikxN

2
0B22,

R4 = 2N0B1(1 + k2
x + νk2

y) + 2N0kxkyA1(ν − 1) + 2N0µ0γ0 − 2ikyχ1N0Γ1,

R5 = (1+k2
x+νk2

y)(B
∗
1 +2B1+2N0D2B

∗
1)+kxky(ν−1)(A∗1+2A1+8N0A2+2N0D2A

∗
1)+µ0γ0(3+4N0D2)

+ 2N0B2(1 + 4k2
x + 4νk2

y) + ikyχ1(Γ∗1 − 2Γ1) + 2ikyN0Γ1(D2Γ∗1 − 2Γ2),

R6 = N2
0 [ikyA1(1− ν)− 2ikxB1] , R7 = N2

0 [ikxA1(1− ν)− 2ikyB1 − χ1Γ1] ,

S1 = N2
0 [νA1 − χ1Γ21 + ikxB21(1− ν)− 2ikxνA21] , S2 = N2

0 [A1 + ikxB22(1− ν)− 2ikya22] ,

S3 = N2
0 [(1− ν) (B1 + ikyB22 + ikxB21)− χ1Γ22 − 2ikxνA22 − 2ikyA21] ,

S4 = −2νN0kxkyB1(1− ν)− 2N0A1(1 + k2
x + νk2

y) + 2ikxN0χ1Γ1,

S5 = 2N2A1 + ikxχ1(Γ∗1 + 2N0D2Γ∗1 − 2Γ1 − 4N0Γ2) + (1 + k2
y + νk2

x)(A
∗
1 + 2A1 + 2N0D2A

∗
1)

+ kxky(ν − 1)(B∗1 + 2N0D2B
∗
1 + 2B1 + 8N0B2) + 2N0A2(1 + 4k2

y + 4νk2
x),

S6 = Pe − χ1N
2
0 Γ1 + ikyN

2
0B1(1− ν)− 2ikxN

2
0 νA1, S7 = iNo2

0 [kxB1(1− ν)− 2kyA1] .

Eq. (B.10) is solved with respect to the dependent variables X(3)
1 , X = n, c, U, V. Taking in to consid-

eration the solvability conditions given by Eq. (B.2) and Eq. (B.5) leads to the equation

i
∂n

(1)
1

∂τ
+ Pξ

∂2n
(1)
1

∂ξ2
+ Pη

∂2n
(1)
1

∂η2
+ Pξη

∂2n
(1)
1

∂ξ∂η
+Q|n(1)

1 |2n(1)
1 +Q0n

(1)
1 n

(2)
0 = 0. (B.10)

The coefficients Pξ, Pη, Pξη, Q and Q0 are complex constants, and given by

Pξ = −iP1∆1+Q1∆2+R1∆3+S1∆4

∆1+Γ1∆2
, Pη = −iP2∆1+Q2∆2+R2∆3+S2∆4

∆1+Γ1∆2
, Pξη = −iP3∆1+Q3∆2+R3∆3+S3∆4

∆1+Γ1∆2
,

Q0 = −iP4∆1+Q4∆2+R4∆3+S4∆4

∆1+Γ1∆2
, Q1 = −iP5∆1+Q5∆2+R5∆3+S5∆4

∆1+Γ1∆2
, and

∆1 = b2c4d3 + b3c2d4 + b4c3d2 − b2c3d4 − b3c4d2 − b4c2d3,

∆2 = b3c4d1 + b4c1d3 + b1c3d4 − b1c4d3 − b3c1d4 − b4c3d1,

∆3 = b1c4d2 + b2c1d4 + b4c2d1 − b1c2d4 − b2c4d1 − b4c1d2,

∆4 = b1c2d3 + b3c1d2 + b2c3d1 − b1c3d2 − b3c2d1 − b2c1d3.

Combining Eq. (B.8) and Eq. (B.10) yields the reduced model Eqs. (3.46) (of the main document)

which stands for the complex Davey-Stewartson equation.
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Abstract In this paper, a new (2 + 1)-dimensional chemotaxis model is introduced, the focus being the understanding of influences of
cooperative mechanisms from traction forces, long-range diffusion to chemotaxis on the dynamical characteristics of waves and their
transport. Applying the F-expansion method, three families of new traveling wave solutions of bacterial density and chemoattractant
concentration are constructed, including step, dip, and bell-shape wave profiles. The dependence of the conditions of existence of
our solutions with respect to the model parameters is fully clarified. We found that traction and long-range diffusion slow down
the waves and entail the transport of a small number of particles. Surprisingly, the long-range diffusion increases the thickness of
the wave but does not alter its magnitude. Among families of solutions constructed, dip waves travel faster may be used to explain
fast coordination among particles. As they support the transport of large amounts of cells, step waves could explain the transport
of particles in high dense media. Intensive numerical simulations corroborate with a pretty much good accuracy our theoretical
analysis, confirming the robustness of our predictions. Traction and long-range diffusion deeply affect the wave dynamics, they must
be taken into account for a better understanding of chemotaxis systems.

1 Introduction

Studies on the dispersal of active particles have shed light on different mechanisms associated with their response when placed under
various mechanical and/or chemical conditions. An example of active particles is given by a distribution of bacteria in a uniform
flow whose collective motion allows them to spread and colonize outward regions. Depending on their sensitivity and acquaintance
with the local environment composition, such a collective motion has been characterized qualitatively and quantitatively [1–14].
When placed in chemical fields with attractive properties, ciliated particles, for example, synchronize their flagella’s rotation, the
resulting quasi-linear run allows them to efficiently reach the core of higher chemical concentrations. Such a collective behavior
termed chemotaxis has been widely studied since the pioneering work of Adler [1]. Besides the importance of chemotaxis in
the cellular realm where it plays a major role in fertilization [2–4], intercellular communication [5,6], wound repair [2,3], and
pattern formation [3,7], it has also been reported in animal and insect ecology [4], large-scale collective behavior [1,8–14] and
synchronization processes [5,8]. Though the literature is well furnished when it comes to chemotaxis, various issues associated
with a combination of chemical and mechanical constraints cells might feature in their natural habitats that has just recently started
receiving attention [10,12–22]. It is known that the latter interactions may lead to interesting holistic dynamical behaviors that to
the best of our knowledge remain to be fully understood.

The collective dynamic entailed by chemotaxis indicates that bacteria are social entities and are therefore prone to communicate
with one another. In some extreme cases, communication is made possible through chemoattractant production. The latter is
responsible for the attraction of other distant entities. This phenomenon significantly different from chemotaxis at the molecular
level can be termed auto-chemotaxis and was recently observed through lenses of experimental settings [5]. Though the authors
were not able to provide full and satisfying explanations of its specific contribution at the local level, they showed that it has the
potential of biasing the primary chemotactic signal at the onset of bacterial motion. Depending on the strength of the bias, cells
rearrange themselves and exhibit a different moving pattern. Independently, a theoretical approach to the question was addressed
to demonstrate that auto-chemotaxis is a factor of instability [15,16], while friction and proliferation in the system have stabilizing
effects. Such an antagonism is at the onset of pattern selection with a well-defined wave number [15]. On the other side, the fact
that cells can become attractive by producing their own chemoattractant implies that in a given population, certain cells are more
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chemotactic than others, therefore may exert distant actions like traction forces. In cancer invasion for example, those distant actions
allow cancerous melanocytic cells to escape tumorous regions and undergo metastasis [17]. In the dynamic of micro-swimmers
assembly, distant traction forces were also reported. This means that the existence of traction forces might be a common feature in
reactive systems, especially for higher active particles densities [16].

Apart from interspecies communication mechanisms, cells are also involved in hydrodynamic interactions which ensure an
active transport of diffusive and non-active components over long distances. In aqueous media, swimming patterns of cells that
consist of pulling, pushing, gliding, and scrawling imply that cells interactions with fluids constituents may lead to a variety of
spatiotemporal patterns. Experimental and theoretical evidence showed that bacteria are collectively transported through wavy
structures like solitary pulses [18–20,24–30]. Furthermore, other experimental findings suggest that hydrodynamic interactions
coupled to the chemoattractant concentration gradient may guide traveling bands of bacteria at a constant speed [18–20]. Therefore,
the inclusion of advection rate while modeling chemotactic behaviors is expected to substantially improve our knowledge of the
system. Mathematical modeling in this view requires to couple the Keller–Segel chemotaxis model to Navier–Stokes equations
[16,21–23]. Another simple and realistic approach consists at collecting contributions emanating from stresses and traction cells
exert upon each other in addition to the uniform flow coming from the background field within which cells are immersed in. In
fact, recent evidences demonstrate that the collective motion of cells in a fluid generates flows mediated by the hydrodynamics
interactions in between them [10,22,23]. It is therefore natural to wonder how both chemotaxis and traction forces contribute to
producing structures like traveling waves observed from the Keller–Segel formulation for chemotaxis [24]. The latter model initially
introduced to describe slime mold showed drawbacks and later experimental findings suggest that the issues may be circumvented
when cells create their own chemoattractant gradient [25]. This implies that the collective motion of cells modifies the average flow
of the medium, which in turn affects cellular response. In this way, cells’ response to an excitatory source ceases to be proportional to
the concentration gradient of the excitation. Another way of looking at the problem consists at considering the nonlocal character of
bacterial response [3,26,31] which is responsible for the nucleation of long-range diffusion. In this work, we introduce a mathematical
model that extends the existing ones, with the aim to fill in the above-mentioned gaps. To this end, we consider a chemotactic system
where long- and short-range diffusion, chemotaxis, traction forces, cellular proliferation, and uniform advection are accounted for;
dynamical behaviors of new traveling waves shall be investigated.

The rest of the manuscript is organized as follows. In Sect. 2 we derive the model and construct its analytical solutions. Secondly,
we evaluate the effects of key parameters of the system on the proposed solutions and then make some predictions on the dynamical
behavior of the system. In Sect. 3, numerical simulations are performed to ascertain our predictions. Some biological implications
are discussed. Section 4 concludes the paper.

2 Main results and discussion

2.1 The model

In this description of collective behavior, we are interested in a bacterial population in a two-dimensional frame, immersed in a
fluid experiencing a uniform flow. Besides the chemotactic velocity and the medium flow rate, the bulk bacterial motion also has
a drift-velocity contribution emanating from the stress cells exert upon each other. Recent studies show that many energy sources
simultaneously influence cells motion [30], but in the present paper, we consider the case where bacteria are in the presence of
only one chemoattractant source. The timescale is large enough such that cells undergo proliferation, the nonlocal response ensures
long-distance communications, and the cellular protrusion is also accounted for. The resulting model is an extended set of coupled
partial differential equations that reads [3,24,28–31]

∂c

∂t
+ ∇ · (cδ) = D3∇2n + k0n

k1 + k2n2 − βnc. (1a)

∂n

∂t
+ ∇ · (nδ) = D1∇2n − D2∇4n − χ0∇ · (n∇c) + rn(σ − n), (1b)

In Eq. (1), t is the time variable in seconds (s), ∇ =
(

∂
∂x , ∂

∂y

)T
is two-dimensional gradient, ∇2 = ∂2

∂x2 + ∂2

∂y2 , the two-dimensional

Laplacian. n is the bacterial density, while c is the chemoattractant concentration. D1 and D3 are short-range diffusion while D2

stands for the long-range diffusion of bacteria. χ0 represents the chemotaxis strength, r is the proliferation rate of cells, σ , the
medium’s carrying capacity. The term k0n

k1+k2n2 describes the chemoattractant production. Numerical values of k0, k1, k2 are not

known to the best of our knowledge. β is the chemoattractant consumption’s rate. δ = (δx , δy)
T is the two- dimensional bulk

velocity field of the system. Recent studies of bacterial migration in a confined one-dimensional racetrack showed nucleation of
strong flows emanating from cells closes to channel boundaries [14]. These flows were capable of swerving the bulk dynamic of
cells placed far from channel walls. In this sense, the bulk velocity field in the system comprises an active part generated by the
collective motion of cells and a passive part emanating from the perturbations of the medium within which cells are immersed. We
propose a velocity field in the medium with the form
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δ = ∇0 + ∇H(n, c), with δ0 = δ0x + δ0y , and H(n, c) = τ0n

1 + λn
. (2)

δ0x , and δ0y are components of the uniform flow imposed by the medium within which cells and the chemoattractant are immersed.
The function H takes into account the effects of traction forces generated by active particles present in the medium (here the
bacterial cells). τ0 is the maximum traction force ensuring a finite velocity at higher cellular density when the population increases
in a quasi-dilute medium. λ measures the velocity decrease due to a higher density of cellular aggregation. In the thermodynamic
limit, this choice of H ensures that the velocity remains finite both at low and high densities. The current model diverges from the
classical Keller–Segel models [3,24,29–31], since the chemotactic velocity drift, as well as wave profiles, remains bounded. This
further sets the stepping stone to find relevant physical solutions for the model under consideration. In that endeavor, we assume
a quasi-dilute medium, corresponding to λ → 0, meaning that hydrodynamic properties of bacteria are weak but non-null. Under
this configuration, experimental studies revealed that one might still expect complicated patterns [7,32], and bacterial distribution
per unit area may be very small but non-null. Hence, only a small amount of cells are expected to contribute to chemoattractant

production, a situation entailing k2n2

k1
<< 1. Considering lower power series of the saturating term from Eq. (1b) and plugging Eq.

(2) into Eq. (1) yield the (2 + 1)-modified extended chemotaxis model

∂n

∂t
+ ∇ · (nδ) = D1∇2n − D2∇4n − τ0∇ · (n∇n) − χ0∇ · (n∇c) + rn(σ − n), (3a)

∂c

∂t
+ ∇ · (cδ0) = D3∇2n − τ0∇ · (c∇n) + β1n − β3n

3 − βnc, (3b)

β1 = k0
k1

, β3 = k0k2
k2

1
are arbitrary real constants and are also not known as the k′

j s. Nevertheless, they will be chosen in accordance

with biological relevance. β1, β3 are referred to as the new chemoattractant production rate parameters. More than a simple reaction–
diffusion–advection process, the system of Eq. (3) is dynamically interesting. It takes into consideration simple and nonlinear cross
diffusion, in addition to incorporating two active transport mechanisms, namely chemotaxis and traction. Though traction has been
the subject of intensive experimental studies [5,15,16,25], its contribution has not yet been mathematically formulated in chemotactic
systems, to the best of our knowledge. Model Eq. (3) indicates that taking into account traction forces enhances both cellular and
chemical displacement toward one another. In this sense, Eq. (3) can be used to explain a broad range of phenomena in systems
made of composite materials. For example, it may describe the spreading behavior of two chemotactic subpopulations of bacteria
moving toward each other with different velocities. Such a differential velocity may lead to rich phenomena like instabilities and
new patterns formation just to name a few. We propose Eq. (3) as a viable generalized chemotaxis model that incorporates several
aspects of bacterial collective motion not discussed in previous models [3,15,28–31,33–42].

2.2 Analytical solutions through the extended F-expansion method

The F-expansion method is a scheme used to solve nonlinear ordinary differential equations. In order to solve Eq. (3) using an
extended F-expansion method, the traveling wave variable ξ = kx + ly−ωt is assumed. In the latter transformation, 1

k and 1
l are the

wave widths along the x− and y− directions, respectively, ω the wave velocity taken in the laboratory frame. Thus, Eq. (3) become

D2K
2 d4n

dξ4 − D1K
d2n

dξ2 + �0
dn

dξ
+ χ0K

d

dξ

(
n

dc

dξ

)
+ τ0K

d

dξ

(
n

dn

dξ

)
− rn(σ − n) = 0, (4a)

−D3K
d2c

dξ2 + �0
dc

dξ
+ τ0K

d

dξ

(
c

dn

dξ

)
− β1n + βnc + β3n

3 = 0, (4b)

with

K = k2 + l2, and �0 = δ0x k + δ0y l − ω.

Solutions of Eq. (4) are sought for a chemoattractant concentration of the form

c(ξ) = G (n(ξ), ξ) . (5)

Inserting Eq. (5) into Eq. (4) leads to the fourth- order nonlinear ordinary differential equation

D2K
2 d4n

dξ4 + χ0

(
�0

χ0 − τ0

)2

+
[

βχ0�0ξ

K (χ0 − τ0)2 + β

τ0

D1(χ0 − τ0) + τ0D3

χ0 − τ0
− rσ + β1

]
n

+
(
r + βτ0

χ0 − τ0

)
n2 − β3n

3 = 0, (6)

provided that

c(ξ) = −τ0n(ξ) + D3

χ0 − τ0
− �0χ0ξ

K (χ0 − τ0)2 − D1

τ0
. (7)
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We restrict ourselves to the case where ω = kδ0x + lδ0y (which implies �0 = 0) to avoid nonphysical solutions that diverge at
infinity. Such a choice is also consistent with recent numerical and theoretical results presented in [19,42,43] where the authors
proved that the wave velocity in the Martiel–Golbeter chemotaxis model (for Dictyostelium discoideum dynamics) varies linearly
with the imposed flow. On the other hand, Eq. (7) tells that variations of chemoattractant and bacterial waves are directly linked;
hence, the corroborating results are obtained in the analysis of chemotactic Dictyostelium colonies [40]. The same study showed
that by increasing background level, the directed propagation can be suppressed, due to memory inactivation. In other words, cells
can be swept or their direction propagation swerved, enforcing the conclusion that medium flow rate has the potential of favoring
the rise of progressive or regressive waves. In the present study, the transition from forward to backward propagation is attained
when parameters are chosen such that the critical line δ0x

δ0y
= −l√

K−l2
corresponding to stationary patterns is violated. In the latter

configuration, our solutions may be either progressive (ω > 0) or regressive (ω < 0). The former is responsible for faster bacterial
colonization of unoccupied regions, while the latter may be the signature of backward waves. In the flux limiting cases, the backward
waves in a chemotactic system were shown to be responsible for a population saturation in a stable state accompanied by a transition
toward unstable modes [44].

Physically acceptable solutions of Eq. (3) correspond to positive bacterial and chemoattractant wave amplitudes. In addition,
both bacterial densities and chemoattractant concentrations must remain finite; hence, using Eq. (7) and assuming that n(ξ) ≥ 0,
the finiteness of the chemoattractant concentration implies the following restrictions

τ0 > χ0, τ0 �= 0, c(ξ) ≥ D3

τ0 − χ0
− D1

τ0
= cmin, D1 ≤ D3τ0

τ0 − χ0
. (8)

Before proceeding further, Eq. (8) provides important characteristics about the solutions to be found below. The traction forces must
be non-null and greater than the chemotaxis strength implying that the experimenter must choose an appropriate chemoattractant
substance that is consistent with Eq. (8). Moreover, there exists a critical chemoattractant concentration that completely depends
on system parameters (τ0, χ0, D1, D3), below which the corresponding solutions are unphysical. The solutions will be viable only
if the chemoattractant concentration is at least equal to cmin, a situation which means that chemoattractant diffusion rate is always

greater or equal than a minimal value D3 ≥ D1

(
1 − χ0

τ0

)
= D3min . The fact that D1 > D3 min implies bacteria diffuse faster

than the minimum chemoattractant diffusion rate that is necessary to generate traveling chemical and bacterial waves. Furthermore,
the minimal chemoattractant diffusion rate D3 min broadly depends on the ratio between chemotaxis strength and traction forces,
enforcing that the latter substantially modify the behavior of chemotactic systems. Taking into account the above considerations,
Eqs. (6), (7) become

D2K
2 d4n

dξ4 + σ1n + σ2n
2 − β3n

3 = 0, (6’)

c(ξ) = cmin − τ0n(ξ)

χ0 − τ0
, (7’)

where

σ1 = β1 − βcmin − rσ, σ2 = r + βτ0

χ0 − τ0
.

The next step of the F-expansion method consists at looking to solutions of Eq. (6’) in a polynomial expansion [45–50]. We
determine the order of the expansion by balancing the higher-order derivative with the higher-order nonlinear terms in Eq. (6’).
Doing so permits a finite polynomial expansion

n = a0 + a1F(ξ) + a2F(ξ)2, (9)

where a0, a1, a2 are real constants to be determined later. The function F(ξ) is a solution of the auxiliary equation
(

dF(ξ)
dξ

)2 = P4F(ξ)4 + P3F(ξ)3 + P2F(ξ)2 + P1F(ξ) + P0. (10)

P4, P3, P2, P1, P0 are real constants. Solutions of Eq. (10) may be found in [27,45–50]. As explained in [45–50], solutions of Eq.
(10) admit unbounded and localized structures. The latter ones are excellent candidates for describing real physical phenomena. We
continue the methodology by plugging Eq. (9) into Eq. (6’) and making use of Eq. (10). Further, we collect all the coefficients of
power of F (Fm(ξ),m = 0, 1, 2, 3, 4), and setting each coefficients to zero yields a set of algebraic equations that we solve for the
variables a0, a1, a2, K , β3 and obtain different families of solutions presented below.

Family A: P0 = P1 = P3 = 0, P2 > 0, P4 < 0, F(ξ) =
√

− P2
P4

cosh−1
(√

P2ξ
)

a0 = 0, a1 = 0, a2 = 15σ1P4

2σ2P2
, K = 1

4P2

√
− σ1

D2
, β3 = − 2σ 2

2

15σ1
, (11a)
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a0 = σ1(3 + ε
√

105)

σ2(7 + ε
√

105)
, a1 = 0, a2 = −3σ1P4(35 + ε

√
105)

28P2σ2
,

K = 1

4P2

√
σ1(7 + ε

√
105)

14D2
, β3 = − 2σ 2

2 (7 + ε
√

105)

3σ1(19 + ε
√

105)
. (11b)

Family B: P0 = P1 = P3 = 0, P2 < 0, P4 > 0, F(ξ) =
√

− P2
P4

sec
(√−P2ξ

)

a0 = 0, a1 = 0, a2 = 15σ1P4

2σ2P2
, K = − 1

4P2

√
− σ1

D2
, β3 = − 2σ 2

2

15σ1
, (12a)

a0 = σ1(3 + ε
√

105)

σ2(7 + ε
√

105)
, a1 = 0, a2 = −3σ1P4(35 + ε

√
105)

28P2σ2
,

K = − 1

4P2

√
σ1(7 + ε

√
105)

14D2
, β3 = − 2σ 2

2 (7 + ε
√

105)

3σ1(19 + ε
√

105)
. (12b)

Family C: P0 = P2
2

4P4
, P1 = P3 = 0, P2 < 0, P4 > 0, F(ξ) =

√
− P2

2P4
tanh

(√
− P2

2 ξ

)

a0 = −15σ1

2σ2
, a1 = 0, a2 = 15σ1P4

2σ2P2
, K = − 1

2P2

√
− σ1

D2
, β3 = − 2σ 2

2

15σ1
(13a)

a0 = −σ1(543 + ε53
√

105)

σ2(133 + ε13
√

105)
, a1 = 0, a2 = 30σ1P4(11 + ε

√
105)

σ2P2(35 + ε3
√

105)
,

K = − 1

2P2

√
σ1(7 + ε

√
105)

14D2
, β3 = −2σ 2

2 (133 + ε13
√

105)

3σ1(113 + ε11
√

105)
. (13b)

Family D: P0 = P2
2

4P4
, P1 = P3 = 0, P2 > 0, P4 < 0, F(ξ) =

√
− P2

2P4
tan

(√
P2
2 ξ

)

a0 = −15σ1

2σ2
, a1 = 0, a2 = 15σ1P4

2σ2P2
, K = 1

2P2

√
− σ1

D2
, β3 = − 2σ 2

2

15σ1
(14a)

a0 = −σ1(543 + ε53
√

105)

σ2(133 + ε13
√

105)
, a1 = 0, a2 = 30σ1P4(11 + ε

√
105)

σ2P2(35 + ε3
√

105)
,

K = 1

2P2

√
σ1(7 + ε

√
105)

14D2
, β3 = −2σ 2

2 (133 + ε13
√

105)

3σ1(113 + ε11
√

105)
. (14b)

Family E: P0 = 1
4 , P1 = P3 = 0, P2 = 1

2 , P4 = 1
4 , F(ξ) = sin(ξ) + ε cos(ξ)

a0 = −8σ1(111 + 11ε
√

105)

σ2(203 + 23ε
√

105)
, a1 = 0, a2 = −60σ1(49 + 5ε

√
105)

7σ2(85 + 9ε
√

105)
,

K =
√

σ1(7 + ε
√

105)

14D2
, β3 = − 2σ 2

2

15σ1
(15)
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Family F: P0 = P1 = 0, P2 > 0, P3 = 2ε
√
P2P4, P4 > 0, F(ξ) =

ε
2

√
P2
P4

cosh

( √
P2

2 ξ

)[
ε sinh

(√
P2

2 ξ

)
−cosh

(√
P2

2 ξ

)]

a0 = −σ1(
√

105 + 21)

14σ2
, a1 = ε

√
P4

P2

3σ1(35 − √
105)

7σ2
, a2 = −3σ1P4(35 − √

105)

7P2σ2

β3 = − 28σ 2
2

3σ1(7 + 3
√

105)
K = 1

P2

√
−σ1(

√
105 − 7)

14D2
, (16a)

a0 = 0, a1 = 30σ1
√
P2P4

σ2P2
, a2 = 30σ1P4

σ2P2
, K =

√−D2σ1

σ2P2
, β3 = − 2σ 2

2

15σ1
(16b)

Family G: P0 = P1 = 0, P2 < 0, P3 = 2ε
√
P2P4, P4 > 0, F(ξ) =

ε
2

√ −P2
P4

cos

(√
P2

2 ξ

)[
ε sin

(√
P2

2 ξ

)
+cos

(√
P2

2 ξ

)]

a0 = −σ1(
√

105 + 21)

14σ2
, a1 = ε

√
P4

P2

3σ1(35 − √
105)

7σ2
, a2 = −3σ1P4(35 − √

105)

7P2σ2

β3 = − 28σ 2
2

3σ1(7 + 3
√

105)
K = − 1

P2

√
−σ1(

√
105 − 7)

14D2
, (17a)

a0 = 0, a1 = 30σ1
√
P2P4

σ2P2
, a2 = 30σ1P4

σ2P2
, K = −

√−D2σ1

σ2P2
, β3 = − 2σ 2

2

15σ1
(17b)

For the sake of simplicity, the parameters σ1, σ2 and ε appearing in Eqs. (11)–(17) have been defined as:

σ1 = β1 − rσ − βcmin �= 0, τ0 �= χ0, and ε = ±1.

2.3 Existence and dynamical behavior of solutions Eqs. (11)–(17)

A straightforward analysis of Eqs. (11)–(17) shows that bacterial and chemoattractant solutions exist if D2 �= 0, σ1 < 0, σ2 > 0
which lead to the constraints

β1 < rσ + βcmin = β1max , and r >
β

D3
(τ0cmin + D1) = rmin. (18)

The first inequality of Eq. (18) proves that the linear chemoattractant production rate β1 possesses a maximum value given by
rσ (in the absence of chemoattractant production) and linearly increases with chemoattractant consumption rate β. Though the
F-expansion method allows a large number of analytical solutions for the auxiliary equation Eq. (10), we just keep above families
of solutions that are physically relevant as they satisfy the existence conditions Eqs. (8) and (18). The fact that the maximum
chemoattractant production rate depends on the nominal chemoattractant consumption rate enforces to hypothesize the existence
of a critical chemoattractant production–consumption line that may impede the wave generation process if violated. The second
inequality of Eq. (18) shows that our system admits a minimal proliferation rate always greater than the threshold value rmin.

Equations (8) and (18) describe the general conditions of the existence of bacterial and chemoattractant concentration waves but, do
not provide any details on dynamical properties. We discuss below some dynamical properties of both bacterial and chemoattractant
waves such as their profiles, velocities, amplitudes, and thicknesses, and we analyze effects of τ0, χ0, D2, D1, and β. To this end,
we take β1 = β1max

10 , r = rmin + r0, r0 = 1.69 × 10−9 being the proliferation rate given in [3]. Table 1 displays the parameters
values used in our analyses.

2.3.1 Bell-shaped bacterial and chemoattractant: family A

The bell-shaped profile corresponds to Family A. Using parameters of Eq. (11a), explicit analytical expressions are given by

n(x, y, t) = −15σ1

2σ2

(
1

cosh
[√

P2(kx + ly − ωt)
]
)2

, (19a)

c(x, y, t) = cmin − 15σ1τ0

2σ2(χ0 − τ0)

(
1

cosh
[√

P2(kx + ly − ωt)
]
)2

, (19b)
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Table 1 Parameter network values

Parameters Values References

D1 8.9 × 10−6 cm2 s−1 [3,19,29,30]

D2 1.69 × 10−9 cm4 s−1 N/A

D3 4 × 10−6 cm2 s−1 [3,19,29,30]

χ0 6.49 × 10−5 cm2 M−1 s−1 [3,19,29,30]

τ0 1.62 × 10−3 cm2 s−1 cell−1 N/A

r0 (1 − 3) × 10−9 s−1 cell−1 [3]

σ 2.4231 × 108 s−1 [3]

β 3.5 × 10−8 s−1 cell−1 [3]

δ0x , δ0y 10−4−10−6 cm s−1 [18–20,29,30]

where the associated velocity reads:

ω = δ0x

√
1

4P2

√
− σ1

D2
− l2 + δ0y l = ωbs. (20)

From Eq. (20), one deduces the existence of minimal/maximal wave velocities

ωmin = 0 ≤ ω ≤ ωmax =
√√√√δ2

0x
+ δ2

0y

4P2

√
− σ1

D2
,

where ωmin = ω(l = lcrit) and ωmax = ω(l = l0). lcrit is recovered by solving ω|l=lcrit = 0, and the maximum velocity ωmax is
reached at l0. The latter is determined by solving dω

dl |l=l0 ; hence, we have

lcrit = δ0x

√
ω0

δ2
0

, l0 = δ0y

√
ω0

δ2
0

, δ2
0 = δ2

0x + δ2
0y , ω0 = 1

4P2

√
− σ1

D2
.

l0 and lcrit depend on the system parameters, which means the experimenter has the potential of controlling fast or slow wave propaga-
tion if he accurately tunes the experimental setups. From Eq. (19) n∞bs = limξ→∞ n(x, y, t) → 0 and c∞bs = limξ→∞ c(x, y, t) →
cmin which mean that bacterial and chemoattractant wave amplitudes are finite as their associated velocity. This confirms that bell-
shaped solutions Eq. (19) are physical objects. The bell-shape profile Eq. (19) is displayed in Fig. 1 at the time t = 100. Bell-shape
waves have been predicted analytically [24,26–30,36–38,42], numerically [16,19,28,30,36,40,43,51], and experimentally observed
[15,19,20,30] in one-dimensional chemotactic systems. Traveling waves in reactive systems are either matter carriers or information
conveyors, the bell-shaped profile obtained here may explain collective bands of bacteria usually observed in reactive systems. Its
velocity is depicted in panels (c)–(e) of Fig. 1. It is seen that the amplitude of ωbs decreases with increasing values of traction and
long-range diffusion, respectively (see Fig. 1c–d), meaning that the traction and the long-range diffusion slow down the waves.
Conversely, the amplitude of ωbs increases with increasing values of χ0 implying that the chemotaxis strength accelerates the wave
propagation. τ0, D2, and χ0 have competing effects on the velocity of the wave. This property may be used in experiments to detect
or characterize the waves. In all the cases, the velocity reduces with increasing values of l, thus thinner waves move faster than wider
ones.

Considering the influences of system parameters on the bell-shaped wave, one observes that when long-range diffusion increases
(Fig. 2a), the wave thickness widens, hence the cellular distribution occupies a larger spatial domain. At high values of long-range
diffusion D2, the coordination degree among units of the bacterial population decreases, resulting in a diminution of the global
velocity of the aggregation. Such a result is in accordance with the idea that diffusion of particles should break up coordination
and communication degree among particles. Wave thickness variations are a common feature in reactive systems as extensively
discussed in [19,42,51], and its occurrence in the present study signifies that cells do not lose their active properties, but rather
rearrange themselves to accommodate chemoattractant concentrations across the medium. In panels (b)–(e) of Fig. 2, wave thickness
variations are accompanied by an amplitude variation. Amplitude and thickness increase are observed when traction Fig. 2b and
short-range diffusion Fig. 2d increase, while chemotaxis Fig. 2c as well as the chemoattractant consumption rate Fig. 2e decreases.
Wave thickness reduction or increase coupled with amplitude variations in systems with uniform flows have also been reported in
autocatalytic fronts [52], the Fitz–Hugh–Nagumo model [53], and the Belousov–Zhabotinsky reaction [54,55]. We propose such a
coupled dynamic between wave thickness and amplitude as a tool to slice spatial domains in intervals within which cells activity
remains optimized, and above which cellular density drastically reduces.
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Fig. 1 Snapshots at t = 100 s of bell-shape solutions Eq. (19) for density (a) and chemoattractant concentration (b). Wave velocity increases with chemotaxis
(e) or when long-range diffusion (d), traction (c) reduce. δ0x = 1.5 × 10−5, δ0y = 4.5 × 10−4, P2 = 4

Fig. 2 Influence of long-range diffusion (a), traction (b), chemotaxis (c), short-range diffusion (d) and chemoattractant consumption rate (e) upon the
bell-shape bacterial wave at y = 0 and time t = 100.s Except where mentioned, parameters are taken as in Fig. 1
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Fig. 3 Dip traveling waves for
bacterial density (a) and
chemoattractant concentration (b)
given by Eq. (23). Same
parameters as in Fig. 1 except for
P2 = −2.

2.3.2 Dip bacterial and chemoattractant waves: family C

Using the parameters given in Eq. (13a) into Eq. (9) and Eq. (7’) permits to recover the dip traveling wave solutions

n(x, y, t) = −15σ1

4σ2

⎡
⎣2 + tanh

(√
− P2

2
(kx + ly − ωt)

)2
⎤
⎦ , (21a)

c(x, y, t) = cmin + 15τ0σ1

4σ2(χ0 − τ0)

⎡
⎣2 + tanh

(√
− P2

2
(kx + ly − ωt)

)2
⎤
⎦ . (21b)

In the long time/large space limits,n∞dw = limξ→∞ n(x, y, t) → − 45σ1
4σ2

> 0 and c∞dw = limξ→∞ c(x, y, t) → cmin− 45σ1τ0
4σ2(τ0−χ0)

>

0. The velocity associated with solutions Eq. (21) reads

ω = δ0x

√
− 1

2P2

√
− σ1

D2
− l2 + δ0y l = ωdw. (22)

Figure 3a, b shows the snapshots at time t = 100 of bacterial density (Eq. (21a)) and chemoattractant concentration (Eq. (21b)).
The dip waves travel faster than the bell-shape waves since ωdw > ωbs. A straightforward comparison of Eqs. (20) and (22) allows
to figure out that the model parameters have similar effects on dip waves and their velocity ωdw as on the bell-shape wave presented
above.

2.3.3 Step bacterial and chemoattractant waves: family F

Plugging the parameters Eq. (16a) into Eq. (7’) and Eq. (8) allows us to construct step traveling waves whose analytical formula are

n(x, y, t) = −σ1(21 + √
105)

14σ2
− 3σ1(35 − √

105)

28σ2

cosh

(√
P2
4 (kx + ly − ωt)

)−2

tanh

(√
P2
4 (kx + ly − ωt)

)
− 1

×

⎡
⎢⎢⎢⎣−2 +

cosh

(√
P2
4 (kx + ly − ωt)

)−2

tanh

(√
P2
4 (kx + ly − ωt)

)
− 1

⎤
⎥⎥⎥⎦ , (23a)

c(x, y, t) = cmin + τ0σ1(21 + √
105)

14σ2(χ0 − τ0)

+ 3σ1τ0(35 − √
105)

28σ2(χ0 − τ0)

cosh

(√
P2
4 (kx + ly − ωt)

)−2

tanh

(√
P2
4 (kx + ly − ωt)

)
− 1

⎡
⎢⎢⎢⎣−2 +

cosh

(√
P2
4 (kx + ly − ωt)

)−2

tanh

(√
P2
4 (kx + ly − ωt)

)
− 1

⎤
⎥⎥⎥⎦ . (23b)

The corresponding velocity associated with solutions Eq. (23) is

ω = δ0x

√√√√ 1

P2

√
7 − √

105

14D2
σ1 − l2 + δ0y l = ωsw. (24)
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Fig. 4 Step traveling waves for
bacterial density (a) and
chemoattractant concentration (b)
(Eq. (23)). P2 = 4, other
parameters taken as in Fig. 1

Furthermore, n−∞sw = limξ→−∞ n(x, y, t) → − σ1(21+√
105)

14σ2
, c−∞sw = limξ→−∞ c(x, y, t) → cmin − σ1τ0(21+√

105)
14σ2(τ0−χ0)

, and

n+∞sw = limξ→+∞ n(x, y, t) → − σ1(420−11
√

105)
14σ2

, c+∞sw = limξ→+∞ c(x, y, t) → cmin − σ1τ0(420−11
√

105)
14σ2(τ0−χ0)

. Step waves obtained
here translate the transition process happening between two different levels of bacteria as well as chemoattractant distribution. The
gap between the levels depends on system parameters, which means that the experimenter has the potential of choosing how and
the position at which the transition happens. Figure 4 displays bacterial and chemoattractant step waves Eq. (23) in panels (a), (b),
respectively.

Numerical values of short-range diffusion D1, D3, chemotaxis strength χ0, chemoattractant consumption rate β, and medium
carrying capacity σ were chosen as in [3,19,29,30]. The fluids flow rate was taken according to experimental studies [18–20,29,30].
The other parameters τ0, D2, β1, β3 to the best of our knowledge are not yet available. While the analytical formalism used allows
to determine β3 as given by Eqs. (11)–(17), the existence of solutions discussed yields a minimum value of β1. Though traction
forces dominate the chemotaxis strength, the latter is shown to still have strong effects on wave characteristics namely the velocity,
amplitude, and thickness. These observations are consistent with conclusions reported in [30]. More importantly, for the same set
of parameter values, comparison of Eq. (20), Eqs. (22) and (24) yields ωdw > ωsw > ωbs: The dip waves travel faster than the step
and the bell-shaped waves. In other words, dip waves are better candidates to achieve fast coordination of cells or to quickly convey
a piece of information within a bacterial population. From Eqs. (19), (21) and (23), one derives the inequalities nsw > ndw > nbs .
Step waves carry a higher number of particles compared to dip and bell-shaped waves. Generally speaking, an optimal transport is
expected for higher velocities and wave amplitudes, but the results obtained here draw the roadmap to characterizing an optimal
transport as follows: while step waves ensure the transport of a higher number of particles, a faster transport is guaranteed through dip
wave structures. In reactive systems without traction and long-range diffusion, it has been shown that optimal transport necessitates
the coupled dynamic between short-range diffusion and feedback [56,57]. However, the present study stresses that traction and
long-range diffusion deeply alter the optimal transport of waves, hence must be taken into account for a better description of waves
propagation.

3 Numerical experiments

In this section, we ascertain the ability of waves discussed above to propagate in a stable fashion way in model Eq. (3). To this end,
direct numerical integrations of Eq. (3) on a square spatial domain of length L = 100 are performed. We take N = 512 points
along each spatial direction with a time step is dt = 10−2. Integrations are performed through the pseudo-spectral method. We
initially launched the simulations by introducing perturbed analytical solutions with a noise strength of ten percent of the initial
amplitude of the wave. Simulations ran over a final time tfin = 200 s and results are displayed in Figs. 5, 6, 7. To be precise, panels
(a), (b), (c) of Figs. 5, 6, 7 (resp. panels (d), (e), (f)) display snapshots of the bacterial density (resp. chemoattractant concentration)
at t = 0 s, 100 s, 200 s, respectively, obtained with the analytical solutions Eqs. (19), (21), (23) as initial conditions. Though we
inserted a random perturbation at the initial time, the results depicted in Figs. 5, 6, 7 show that initial solutions evolve without
undergoing any collapses nor explosions. Our solutions are numerically stable ones. In addition, from Eqs. (19), (21), and (23),
the analytical solutions found above predict waves whose profiles, widths, amplitudes, and velocities remain unchanged during
their evolutions, but are slightly displaced due to small fluid velocities of magnitude about 10−5. Snapshots of waves displayed in
Figs. 5, 6, 7 are in good agreement with analytical predictions. Our solutions are therefore stable ones, such that they are likely to
be observed in experiments. Interestingly, analyzing Fig. 6 reveals that the heights of dip bacterial and chemical waves are slightly
shifted by a magnitude of ∼ 10−2. The latter observation forces us to determine the absolute errors for bacterial and chemoattractant
concentrations and found that |nana(x, y, t) − nnum(x, y, t)| ∼ 10−2, |cana(x, y, t) − cnum(x, y, t)| ∼ 10−2. Dip waves have not
yet been recovered in chemotactic systems, to the best of our knowledge. The fact that their height slightly increases may be the
signature of some biophysical features whose stability properties are beyond the scope of the present work. Our results are new
ones and we do believe this work may motivate further two-dimensional experimental investigations in chemotaxis systems where
traction forces, advection, and long-range diffusion are at play. To the best of our knowledge, such experimental investigations that
take into account the latter effects are still missing.

In the above numerical simulations, we show that solutions constructed here are stable, even though families of solutions B, D,
E, G are not presented. The solutions corresponding to Families B, D, E, and G exhibit periodic and triangular periodic waves. They
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Fig. 5 Snapshots of stable numerical bell-shape solutions for bacterial (chemoattractant) wave at t = 0 s (a) [(d)], t = 100 s (b) [(e)], and t = 200 s (c)
[(f)]. Parameters as in Fig. 1

Fig. 6 Stable propagation of dip bacterial (chemoattractant) wave at t = 0 s (a) [(d)], t = 100 s (b) [(e)], and t = 200 s (c) [(f)]. Parameters as in Fig. 1

actually represent important ways by which bacteria and chemoattractant are transported, in addition to the fact that they substantially
match recent experimental results [18–20]. Periodic bacterial waves were proposed as a mechanism to inhibit the runaway fashions
due to catalysis response of cells to chemoattractant they might produce [43,57]. In this sense, periodic waves corresponding to
Families B, D, E, and G are stable solutions that could be used in the assessment of other aspects of the transport of chemotactic
particles in fluids.

4 Conclusion

We discussed the existence and the dynamical behaviors of bacterial and chemical waves propagating in a (2 + 1)-dimensional
chemotactic system. We introduced a new model that takes into consideration several processes including a uniform advection,
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Fig. 7 Stable evolutions of step waves of bacterial (chemoattractant) at t = 0 s (a) [(d)], t = 100 s (b) [(e)], and t = 200 s (c) [(f)]. Parameters as in Fig. 1

long-range diffusion, chemotaxis, traction, cellular proliferation, and chemoattractant production degradation. The traveling wave
variable is assumed and an extended F-expansion method is used to construct new traveling wave solutions like step, dip, and
bell-shape waves. The quest for physically acceptable solutions enforces the existence of a minimum chemoattractant concentration
which depends on both traction, chemotaxis strength, bacterial and chemical short-range diffusion. We showed that traction, short-
range diffusion, chemotaxis, and chemoattractant consumption rate have competing effects on the number of particles transported.
The former parameters decrease the number of particles transported while the latter ones increase wave amplitudes. Increasing
values of long-range diffusion decrease wave velocity but increase the wave width, the amplitude remaining unchanged. Besides,
by comparing velocities and amplitudes of solutions presented, we observed that while dip waves travel faster hence are better
candidates to explaining fast bacterial coordination, step waves have the potential of carrying a higher number of cells, hence
may be considered as robust structures to perform transport in a highly dense system. The stability of solutions constructed is
analyzed through direct numerical integration of the original model. Both numerical and analytical solutions remain very close
hence ascertaining our theoretical predictions.

Data Availability Statement This manuscript has associated data in a data repository. This manuscript has associated data in a data repository. [Authors’
comment: The data that support the findings of this study are available in GitHub at https://github.com/wil-09/Codes/blob/master/Code.m.]
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