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? ? Résumé ??

Les travaux de cette thèse portent sur le problème de l’axiomatisation des solutions ponctuelles
(aussi appelées valeurs) aux jeux coopératifs à utilités transférables (JCUTs) issus des
travaux de Von Neumann and Morgenstern (1944). Plusieurs valeurs sur les JCUTs ex-
istent dont, entre autres, la valeur de Shapley (1953), le nucleolus de Schmeidler (1969),
la valeur de Owen (1977) et la valeur de solidarité de Nowak and Radzik (1994). Pour
motiver le choix d’une valeur, l’axiomatisation s’est avérée indispensable. Nous enrichissons
la littérature existante à partir de deux approches.

L’approche supra-domaine consiste pour une valeur axiomatisée sur une famille F de
jeux à rechercher de nouvelles axiomatisations sur des familles F ′ ⊇ F . C’est par exemple
le cas du passage d’un électorat fixe à un électorat variable. Ici, notre attention porte sur
l’indice de Deegan and Packel (1978) et l’indice de Holler-Packel introduit par Holler (1982).
Nous contribuons à l’analyse de ces deux indices en proposant de nouvelles axiomatisations
dans le cadre d’un électorat variable resté inexploré. À la suite de Fishburn (1970) sur
les électorats variables, de nouveaux axiomes sont introduits relativement à l’arrivée d’un
nouveau joueur et à une fusion.

L’approche intra-domaine consiste pour une axiomatisation d’une valeur sur une famille
F de jeux à rechercher les domaines F ′ ⊆ F sur lesquels restreindre les axiomes initiaux
caractérise de nouveau la valeur considérée. Ici, nous portons notre attention sur la valeur
de Shapley (1953). Nous introduisons la notion de classe de symétrie non triviale d’un
JCUT et montrons que les axiomes de Shapley (1953) caractérisent de nouveau une seule
valeur sur toute famille F dont les générateurs ont chacun au plus une classe de symétrie
non triviale. Nos résultats généralisent celui de Neyman (1989) aussi bien que celui de Peleg
and Sudhölter (2007). Le passage d’une famille F à une sous-famille F ′ peut nécessiter la
reformulation de certains axiomes. C’est le cas de l’axiomatisation de la valeur de Shapley
par Van den Brink (2001) étendue aux jeux de vote par l’auteur lui-même et à tout cône
convexe contenant tous les JCUTs à l’unanimité par Casajus (2011). Ces deux résultats
occultent le cas des jeux de vote monotones (ou jeux simples). Nous levons cette impasse
due à la formulation de l’axiome d’équité et obtenons de nouvelles axiomatisations sur les
jeux simples.

Mots clés: Jeux coopératifs à utilités transférables, jeux simples, valeur de Shapley,
indice de Holler-Packel, indice de Deegan-Packel, électorat variable, axiomatisation.
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? ? Abstract ??

In this thesis, we deal with the problem of axiomatizing single-valued solutions (also called
values) for transferable utility games (TU-games) that has been initiated by Von Neumann
and Morgenstern (1944). Several values for TU-games exist and include, among others, the
Shapley value by Shapley (1953), the nucleolus by Schmeidler (1969), the Owen value by
Owen (1977) and the solidarity value by Nowak and Radzik (1994). To motivate the choice of
a value among several others, the operation of axiomatization has become an essential step.
We enrich the existing literature from two approaches. Given an existing characterization
of a value on a family F of TU-games, the supra-domain approach consists in searching for
new axiomatizations of the value in consideration over some families F ′ ⊇ F . This is for
instance the case when one moves from a fixed electorate to a variable electorate. Here, our
attention is focused on the Deegan-Packel index by Deegan and Packel (1978) and the Public
Good Index introduced by Holler (1982). We contribute to the analysis of these two power
indices by proposing new axiomatizations in the framework of a variable electorate that was
not yet explored. Following Fishburn (1970) on the variable electorates, new axioms are
introduced related to the arrival of a new player and to the merging of players.

Given an axiomatization of a value over a set F of TU-games, the intra-domain ap-
proach consists in searching for domains F ′ ⊆ F on which restricting the initial axioms still
characterizes the value in consideration. We focus our attention here on the Shapley value;
see Shapley (1953). We introduce the notion of non-trivial symmetry class of a TU-game
and show that the axioms of Shapley (1953) again characterize a single value on any set
F of TU-games whose generators each has at most one non-trivial symmetry class. Our
results generalize those by Neyman (1989) and Peleg and Sudhölter (2007). Moving from a
set F of TU-games to a subset F ′ may require an appropriate reformulation of some axioms.
This is the case of the axiomatization of the Shapley value by Van den Brink (2001) which
was extended to voting games by the author himself and to any convex cone containing all
unanimity games by Casajus (2011). These two results escape the case of monotone voting
games (or simple games). We note that this impasse is due to the formulation of the fairness
axiom and obtain new axiomatizations of the Shapley value on simple games.

Keywords: Cooperative games with transferable utilities, simple games, Shapley value,
Public Good Index, Deegan-Packel index, variable electorate, axiomatization.
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? ? Introduction ??

Since the seminal work by Von Neumann and Morgenstern (1944), investigations in game
theory have become borderless since they cover economic models as well as many applications
to various fields such as politics, security, networks, computer sciences, etc. It generally
involves modeling and analyzing situations (called games) where agents (hereafter called
players) with conflicting interests interact in such a way that the well-being or the worth
of each of them depends not only on his actions but also on those of others. Mathematical
formalism and logic are therefore assets for modeling and analyzing the actions of agents
and the possible causal links between individual strategies and possible outcomes in a game.
In this thesis, we focus our attention on cooperative games with transferable utilities (TU-
games) where players can form coalitions through binding cooperative agreements to achieve
collective payoffs and redistribute these achievements among members of actual coalitions
in a conceivable way. More specifically, our concerns are related to the properties of single-
valued solutions (also called values) each of which associates any TU-game on a given set of
players with a payoff vector whose coordinates indicate individual payments in the game.

There exists a rich panel of values for TU-games. A non exhaustive list includes for
example the Shapley value by Shapley (1953), the nucleolus by Schmeidler (1969), the Owen
value by Owen (1977) and the solidarity value by Nowak and Radzik (1994). To handle this
multitude of values for TU-games, axiomatization has become essential. An axiomatization
of a value on a family F for TU-games is in fact any operation which consists in providing a
minimal list of desirable properties that the value in consideration is the only one to satisfy
among all values defined on F . Such an operation consists, according to Ferrières (2016),
of two steps: one should first introduce and motivate some appealing properties (called
axioms); and then proves that combining those axioms necessarily emerges to a unique
value. Our contribution is related to this strand of the literature and is based on two main
approaches we subdivide into two parts.

The first part of our investigations is a supra-domain study of two well-known voting
power indices. A supra-domain approach consists, given an axiomatization of a value over
a set F of TU-games, in searching for new axiomatizations of the value under consideration
over some families F ′ ⊇ F . This is for instance the case when one moves from a fixed set
of players to a variable set of players as it is the case from fixed electorate with no possible
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abstention to a variable electorate with eventually the possibility of some voters abstaining.
Typical contributions within the variable electorate include Driessen and Funaki (1997a)
or Van den Brink and Funaki (2009) who provided axiomatic characterizations of certain
solution concepts. Our concerns here can be scrutinized from two distinct corners, both
related to the abundant literature of voting power indices.

For a brief overview, the reader is referred to Andjiga et al. (2003) for an impregnation
reading on power indices; or for a selected list of power indices and their features to Shapley
and Shubik (1954); Banzhaf (1965); Coleman (1971); Deegan and Packel (1978) or Holler
(1982). Power indices are of practical importance; see for examples, Bilbao (1998) who
used power indices to measure individual voting power in the Council of Ministers of the
European Union, Laruelle and Widgrén (1998) who presented an explanation of some voting
behavior in terms of voting power among members of the European Union or Alonso-Meijide
et al. (2011b) who quantified voting power in the Portuguese Parliament. Concretely, the
intuition behind a simple game is the following: each player is a voter who either votes
for the adoption or the rejection of a proposal; each coalition is either winning or losing;
the grand coalition is winning and any superset of a winning coalition is winning. Values
on simple games are called (voting) power indices and thus viewed as tools for evaluating
individual voting power. Given a simple game, a power index thus assigns to each player a
real number that can be interpreted as his decisiveness in the game or simply his ability to
influence the final outcome (rejection or adoption).

Our first attempt within the supra-domain approach consists in providing new axiom-
atizations of the Holler-Packel index also known as the Public Good Index. Holler and
Packel (1983) have provided an axiomatization of the Public Good Index in the case of
fixed electorates in terms of (E), (S), (NP) and an axiom we refer to as the Holler-Packel
mergeability condition (HPM). To the best of our knowledge, no such axiomatization result
exists in the variable electorate setting. To address this issue, we bring into consideration
some new axioms such as supplementation consistency (SC); supplementation invariance
(SI) or the membership equivalence property (MEP) among others. These axioms are in
relation with the arrival of a new player or the merging of some players (who decide to let
a single player act on behalf of others) and their respective intuitions are sketched below.

The merging operation occurs when two or more players are merged into a single player.
When players are independent in some sense, merging should not impact on the power of
partners. Our axiom of Non Profitable Merging (NPM) of independent players requires that
in such situation, the power of the representative player is equal to the sum of the powers
of merged players. Alternatively, our axiom of Independence of External Merging (IEM)
of independent players requires that in such situation, the power of other players should
remain unchanged. Similar requirements to Axiom (NPM) can be found in Knudsen and
Østerdal (2012) or in Lehrer (1988) under the name 2-efficiency when the merging operation
is restricted to two players.
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Supplementing a player is observable when a new player gets in a simple game without
breaking any of the existing minimal winning coalitions. For such events, moving from
one simple game to another, the number of minimal winning coalitions is unchanged. Our
Supplementation Consistency (SC) axiom requires that when we move from a simple game
to another by a supplementation operation, the power of all players, other than the new
comer, in the supplemented game should be proportional to their power in the initial game
(their respective voting powers are affected in the same way). Such condition were used by
Moulin (2002) in the context of cost allocation problems to characterize the proportional
rule.

The Supplementation Invariance axiom that is newly introduced in this thesis states
that the power of a player, say i, should not change from a game to another whenever the
new arrival player k did not, during a supplementation operation, join any minimal winning
coalition containing player i. Similar but different axioms were used by Sen (1977) and
Basu (1983) in the framework of Social Choice Theory to exhibit particular social welfare
functions; and by Béal et al. (2015) in the framework of TU-games to characterize four
solutions of TU-games.

Two simple games are said to be equivalent for a player i when moving from one of
the two simple games to the other, only one minimal winning coalition of the first game
is affected by allowing only the substitution of some players other than i (the size of the
affected coalition as well as the membership of i remain unchanged). The membership
equivalence property (MEP) we introduce here is based on equivalent games and simply
requires that when two simple games are equivalent for a player, that player should enjoy
the same power in both games.

As results, we obtain five axiomatizations of the Public Good Index thanks to the newly
introduced axioms we just describe. In our second attempt within the supra-domain ap-
proach, we apply the analysis developed with the Public Good Index to establish new
axiomatizations of the Deegan-Packel index. The linking aspect of both attempts is that
the two power indices we consider depend only on the set of minimal winning coalitions in a
simple games. Moreover, exactly as the axiomatizations of these two power indices by Holler
and Packel (1983) and Deegan and Packel (1978) differ only on how merging two games is
treated; we also present two new axiomatizations that also differ only on how a supple-
mentation of a simple game is handled. Some of the results presented here are extended
to simple games with a priori unions; (see Alonso-Meijide et al. (2010a) or Alonso-Meijide
et al. (2010b)).

The second part of our investigations is an intra-domain study of the Shapley value.
An intra-domain approach that consists, given an axiomatization of a value over a set F
of TU-games, in searching for domains F ′ ⊆ F on which restricting the initial axioms still
characterizes the value in consideration. We refer to such a sub-domain F ′ as a valid domain
of the initial axiomatization. As in the case of the supra-domain approach, our objective on
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the intra-domain approach is twofold.
Our first objective within the intra-domain approach is the analysis of valid domains of

a pioneering and renowned axiomatization result due to Shapley (1953) who proved that, on
the set of all TU-games on a given finite and nonempty set of players, the Shapley value is
the only value that satisfies efficiency (E), symmetry (S), additivity (A) and the null player
property (NP). Of course, many other characterizations of the Shapley value have been
established so far using alternative axioms; for a selected list of papers, see Young (1985)
; Chun (1989); Feltkamp (1995); Van den Brink and Van der Laan (1998); Van den Brink
(2001); Laruelle and Valenciano (2001); Hamiache (2001) or de Clippel (2018). There are
also many books and book chapters that further reflect the notoriety of the Shapley value
and its extensions to a wide variety of game classes; see for examples, Roth (1988); Aumann
(1990); Winter (2002) or Algaba et al. (2019).

Despite this impressive expansion of contributions on the Shapley value, we were only
able to identify two publications related to valid domains of the (E)+(S)+(A)+(NP) char-
acterization mentioned above; hereafter, such a domain will simply be called a Shapley valid
domain. The first type of Shapley valid domain is due to Neyman (1989) who showed that
the (E)+(S)+(A)+(NP) characterization of the Shapley value remains valid on any addi-
tive subgroup generated by a given TU-game and its subgames. Another type of Shapley
valid domain is provided by Peleg and Sudhölter (2007) and consists in any convex cone
(that is any nonempty set of TU-games stable under linear combinations with non negative
coefficients) containing all unanimity TU-games. We introduce the notion of non-trivial
symmetry class of a TU-game and show that the axioms of Shapley (1953) again charac-
terize a single value on any set F of TU-games whose generators each has at most one
non-trivial symmetry class. Our results on conically consistent sets of TU-games generalize
those of Neyman (1989) and Peleg and Sudhölter (2007).

Still on the intra-domain approach, our second objective is to show that the set of simple
games on a given nonempty set of players can be seen as a valid domain of a characterization
of the Shapley value due to Van den Brink (2001). Using a fairness axiom, here called Van
den Brink fairness (VDB-F), the author proved that the Shapley value is the only value, on
the set of all TU-games on any finite and nonempty set of players, that meets (E), (NP)
and (VDB-F). Before we continue, it is worth mentioning that the Axiom (VDB-F) is the
requirement that if from any TU-game to another, one simply adds TU-game in which
two players are symmetric, then the payoffs of these two players must change by the same
amount. The author himself proved that his (E)+(NP)+(VDB-F) characterization of the
Shapley value is still valid on the set of all voting games (these are {0, 1}-valued TU-games)
on any finite and nonempty set of players. In a follow up paper, Casajus (2011) remarkably
proved the same result on any cone of TU-games that contains all unanimity games. Simple
games are monotonous voting games and are very often the model encountered in voting
bodies where the voting rule is a yes-no voting such as the simple (also known as qualified)
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majority voting. It is thus of real interest to check whether the (E), (NP) and (VDB-F) still
characterize the restriction of the Shapley value on simple games.

Exceptionally, the restriction of the Shapley value on the domain of simple games is
known as the Shapley-Shubik (voting power) index after Shapley and Shubik (1954) made
it a suitable measure of voting power. Unfortunately, the set of simple games is not a valid
domain of the (E)+(NP)+(VDB-F) characterization of the Shapley value. We note that
this is only due to the formulation of the Axiom (VDB-F). Clearly, the sum of two simple
games is no longer a simple game. In order to get out of this impasse, we note that (VDB-F)
is, over the set of all TU-games over any finite and nonempty set of players, the requirement
that if from one TU-game to another, two players play symmetric roles in the changes that
are observed, their respective payoffs should change by the same amount. Now, instead of
summing up two simple games, we focus our attention on the contribution of each player to
the changes that occur from one simple game to another. The new axiom is simply denoted
by (F) and we prove on the one hand that (F) and (VDB-F) are equivalent in terms of
axioms on the set of all TU-games; and on the other hand that, the Shapley-Shubik index
is the only voting power index that satisfies (E), (NP) and (F).

In the sequel, the presentation is structured around five chapters that include some
preliminaries on simple games, results within the supra-domain approach and results within
the intra-domain approach. More precisely, Part I is subdivided into three chapters. Chapter
1 of Part I presents basic concepts on simple games and power indices as well as new concepts
such as merging, supplementation and equivalence on simple games together with some
associated axioms. In Chapter 2 of Part I, we provide new axiomatizations of the Public
Good Index on simple games with a variable electorate. The same work is done in Chapter 3
of Part I for the Deegan-Packel index. Part II is an intra-domain study of the Shapley value
and comprises two chapters. In Chapter 4 of Part II, we provide our analysis of Shapley
valid domains and then prove that Neyman’s domains and the Peleg-Sudhölter’s domains
are particular instances of ours. The fairness condition (VDB-F) is revisited in Chapter 5
of Part II and this leads us to a new axiomatization of the Shapley-Shubik index using a
restatement of the fairness condition.
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? ? Chapter One ? ?

Preliminaries on simple games

In this chapter, we present basic concepts related to simple games. Simple games are
tools used to model yes-no voting: these are decision-making processes where proposals are
made to the voting body and each voter provides his opinion by saying Yes or No without
abstention. The final outcome is the Adoption or the Rejection of that proposal. One of
the main problem on this family of games is the power measurement. Power indices are
methods for numerical evaluation of players’ voting power in simple (voting) games. But
a question still persists over decades: what is a "good" power index? Axiomatizing power
indices provides a partial and practical answer to this question as axioms that characterize
a given power index highlight most of its key features.

When the electorate is fixed, classical axioms of symmetry, efficiency and the null player
property are intra-game axioms: these are axioms that are applied on a single game. Besides,
inter-game axioms are used to indicate how a power index changes when we move from a
game to another; this is the case of the Transfer (axiom) from Dubey (1975), the Deegan-
Packel mergeability from Deegan and Packel (1978) and the Holler-Packel mergeability from
Holler and Packel (1983).

The aim of this chapter is to present formal definitions of basic concepts on simple games
that will be used in subsequent chapters. This involves classical concepts as well as the ones
we newly introduce. The whole chapter is organized as follows: Section 1.1 formally describes
simple games and power indices. For an illustrative example, we consider the voting rule
of the Senegalese Parliament that resulted from the parliamentary election held on 31 July
2022. Section 1.2 introduces the merging and the supplementation operations together with
the notion of equivalent games. The chapter ends with the statement of some axioms and
some preliminary results that highlight some immediate properties deduced from the axioms
presented.

1.1 Simple games and power indices

We denote by N the set of all non negative integers and by N∗ the set of all positive integers.
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1.1. Simple games and power indices

1.1.1 Simple games

In this section, we consider an infinite set P of potential players indexed by positive integers;
that is P = N∗. Each finite and nonempty subset S of P is called a coalition and |S| or s
denotes the cardinality of S, that is the number of players in S.

Definition 1.1.1. A simple game is a pair G = (N, v), where N is a finite nonempty
subset of P, and v is a {0, 1}-valued map defined on the powerset of N such that:

(i) v(∅) = 0;

(ii) v(N) = 1;

(iii) for all S, T ⊆ N , S ⊆ T implies v(S) ≤ v(T ).

We set, unless otherwise stated, N = {1, 2, . . . , n} with |N | = n ≥ 2.

The set N is the electorate associated to the simple game (N, v) and elements of N
are called voters (or players). The set of all coalitions of N will be denoted by 2N . Firstly,
condition (i) simply means that when all voters are against a proposal, that proposal should
be rejected. Secondly, condition (ii) is the disposition that when all voters are for the
adoption of a proposal, that proposal should be collectively adopted. Finally, condition
(iii) is the statement that if S can ensure the adoption of a proposal and T contains all
members of S, then T too can ensure the adoption of that proposal; that is, v is monotonic.

Notation 1.1.1. The set of all simple games with the same electorate N is denoted
by GN and the set of all possible simple games by G; that is

G =
⋃
N∈E

GN

where E is the set of all finite and nonempty subsets of the set P of all potential voters.

Notation 1.1.2. Let N be a given electorate and L a coalition, we denote by 1L the
indicator function of L; that is for all i ∈ N ,

1L(i) =

1 if i ∈ L

0 otherwise.

By definition, coalitions in a simple game are partitioned into two groups as in the
following definition.

Definition 1.1.2. Given G = (N, v) ∈ G,

• a coalition S is called winning if v(S) = 1, and losing otherwise;

• a winning coalition S is called minimal if v(S \ {i}) = 0 for all player i ∈ S.
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1.1. Simple games and power indices

The set of all winning coalitions in G is denoted by W(G), the set all minimal winning
coalitions byM(G) and the set of all minimal winning coalitions that contain a player
i ∈ N by Mi(G).

Each coalition is either winning or losing in a simple game. Thus, a simple game G =

(N, v) is completely described by its set N of voters and its setW(G) of winning coalitions.
Therefore, the simple game G will also be denoted by G = (N,W(G)) or simply by G =

(N,M(G)) as sometimes used by Felsenthal and Machover (1998) and Peleg and Sudhölter
(2007).

Example 1.1.1. Here are some examples of simple games given a set N of voters.

1) Unanimity simple game: G = (N,W(G)) with W(G) = {N}.

2) Absolute majority: G = (N,W(G)) where W(G) = {S ∈ 2N : |S| > 1
2
|N |}.

3) Qualified majority with quota q: G = (N,W(G)) where W(G) = {S ∈ 2N :

|S| ≥ q|N |} with q ∈]1
2
; 1].

4) Weighted voting game: G = (N,W(G)) where W(G) = {S ∈ 2N :
∑
i∈S

wi ≥ q}

where q, w1, w2, ..., wn are some positive real numbers such that
∑
i∈N

wi > q > 0.

5) The decision rule of the Parliament of the Basque Country resulted from

the elections held on April 14th, 2005 (see Alonso-Meijide et al. (2010b)) can
be seen as a simple game G = (N,W(G)) where N = {1, 2, 3, 4, 5, 6, 7} and M(G)

consists of the following coalitions {1, 2}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5} and {2, 4, 5, 6, 7}.

Depending on how the complement of a winning coalitions is treated, here are two classes
of simple games.

Definition 1.1.3. A simple game G = (N,W(G)) is,

• proper if ∀S ⊆ N : S ∈ W(G)⇒ N\S /∈ W(G);

• strong if ∀S ⊆ N : S /∈ W(G)⇒ N\S ∈ W(G).

Being a proper simple game simply means that the complement of any winning coalition
is losing. In the same way, a simple game is strong if the complement of any losing coalition
is winning.

Definition 1.1.4. Given a simple game G = (N, v),

• a null player in G is any player i such that v(S ∪ {i}) = v(S) for all S ⊆ N \ {i};
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1.1. Simple games and power indices

• a dictator in G is any player i such that v(S ∪ {i}) = 1 for all S ⊆ N \ {i};

• given a coalition S, a player i ∈ S is decisive in S if v(S) = 1, but v (S \ {i}) = 0.
In this case, player i is said to be complementary to S \ {i}.

We denote by Di(G) the set of all winning coalitions in which player i is decisive in G.

Note that, a player i in a simple game G is decisive in a coalition S if S ∈ W(G) and
S\{i} /∈ W(G). Moreover, player i is a null player and player j a dictator in a simple game
G if

Di(G) =Mi(G) = ∅ andMj(G) = {{j}}.

In other words, a null player in G is any player who is decisive nowhere in G and a dictator
is any player whose vote for the adoption of a proposal commits everyone.

Notation 1.1.3. The set of all null players in a simple game G is denoted by N0(G).

Before we continue, here are some specific simple games that will be useful in the sequel.

Definition 1.1.5. Given a finite and nonempty subset S of P, the singleton game
associated to S denoted by GS is the simple game GS = (S,W(GS)) with

M(GS) = {{i} : i ∈ S}.

A singleton game associated to a coalition S is a simple game in which players in S and
only those players are each a dictator.

Next, given a simple game G = (N,W(G)), i ∈ N and j ∈ P\N , we denote by Gi↔j the
simple game obtained from G by only replacing i by j. Formally, Gi↔j = (N i↔j,W(Gi↔j))

with N i↔j = (N ∪ {j})\{i} and

W(Gi↔j) = {S ∈ W(G) : i /∈ S} ∪ {(S ∪ {j})\{i} : S ∈ W(G) and i ∈ S}.

Note that given a coalition T ⊆ P\{i, j},

GT∪{i} =
(
GT∪{j}

)j↔i
.

Furthermore, given a positive integer p and {i1, i2, ..., ip} ⊆ P\N , we denote byG [i1, i2, ..., ip]

the simple game obtained from G by successively introducing players i1, i2, ..., ip−1 and ip as
null players in such a way that the player set in G [i1, i2, ..., ip] is N ∪ {i1, i2, ..., ip} and the
set of minimal winning coalitions is stillM (G). Note that player i1 gets in first, player i2
second and so on. Moreover, it follows by definition that,

G [i1, i2, ..., ip] = G [j1, j2, ..., jp] whenever {i1, i2, ..., ip} = {j1, j2, ..., jp} .

That is, the entry order does not matter in defining G [i1, i2, ..., ip].
The following propositions underline the link between winning coalitions and minimal

winning coalitions.
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1.1. Simple games and power indices

Proposition 1.1.1 ( Safokem et al. (2021) ). Given a simple game G = (N,W(G)) ∈
G and a coalition S ⊆ N . If S ∈ W(G), then K ⊆ S for some K ∈M(G).

Proof.
Consider a simple game G = (N,W(G)) ∈ G and a coalition S ⊆ N . Suppose that

S ∈ W(G). Pose S0 = S and T0 = {i ∈ S : S \ {i} ∈ W(G)}. If T0 = ∅, then for
all i ∈ S, S \ {i} /∈ W(G). Since S ∈ W(G), then S ∈ M(G). Otherwise, consider a
player i1 ∈ T0. It follows that S \ {i1} ∈ W(G). Pose S1 = S \ {i1} and T1 = {i ∈ S1 :

S1 \ {i} ∈ W(G)}. We have |S1| < |S|. Since S is finite, by iterating this procedure, one
constructs three finite sequences (il)1≤l≤p, (Sl)0≤l≤p and (Tl)0≤l≤p such that p ≤ |S| and
for all l ∈ {1, ..., p}, Sl = S \{i1, ..., il} ∈ W(G), Tl = {i ∈ Sl : Sl \{i} ∈ W(G)}, il ∈ Tl−1

and Tp = ∅. Hence Sp \ {i} /∈ W(G) for all i ∈ Sp. Thus Sp = S \ {i1, i2, ..., ip} ∈ M(G)

and Sp ⊆ S.

Proposition 1.1.2 (Safokem et al. (2021)). Consider a simple game G = (N,W(G)),
i ∈ N and S ⊆ N .

If S ∈ Di(G), then there exists K ⊆ S such that K ∈Mi(G).

Proof.
Suppose that S ∈ Di(G) in the simple game G = (N,W(G)). Then S ∈ W(G) and

it follows by Proposition 1.1.1 that there exists T ∈ M(G) such that T ⊆ S. Suppose
that i /∈ T . Then T ⊆ S\{i} and it follows by monotonicity that S\{i} ∈ W(G). A
contradiction arises since S ∈ Di(G). It holds that T ∈Mi(G) and T ⊆ S.

Let G = (N, v) be a simple game. If π : N → N is a permutation of the player set
N (that is a bijection from N to N), then the simple game Gπ = (N, vπ) is defined by
vπ(S) = v(Sπ) for all S ⊆ N where

Sπ = {π−1(i) : i ∈ S}

and for all i, j ∈ N ,
π−1(i) = j if and only if π(j) = i.

The mapping π−1 refers to the inverse of π. In particular, the transposition of two players
i and j is the bijection τi,j : N → N defined by

τi,j(i) = j, τi,j(j) = i and τi,j(k) = k for all k ∈ N \ {i, j}.

Definition 1.1.6. Two players i and j in the game G = (N,W(G)) are called sym-
metric if

∀S ⊆ N\{i, j}, S ∪ {i} ∈ W (G)⇐⇒ S ∪ {j} ∈ W (G) .

That is W
(
Gτi,j

)
=W (G).
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1.1. Simple games and power indices

In words, two symmetric players act in the same way when one replaces the other.

Example 1.1.2. In the simple game of the Parliament of the Basque Country in
Example 1.1.1, players 4 and 5 as well as players 6 and 7 are symmetric.

Dubey (1975), Deegan and Packel (1978) and Holler and Packel (1983) introduced some
operators on simple games that we recall below.

Definition 1.1.7. Given two simple games G1 = (N,W(G1)) and G2 = (N,W(G2))

with the same electorate N ,

(i) The merging game obtained from G1 and G2 is denoted by G1 ⊕G2 = (N,W(G1 ⊕
G2)) and is such that

W(G1 ⊕G2) =W(G1) ∪W(G2).

(ii) G1 and G2 are mergeable if

∀(S1, S2) ∈M(G1)×M(G2), S1 * S2 and S2 * S1.

Saying that two simple games G1 and G2 are mergeable simply means that in G1 and
G2 each minimal winning coalition from one game is losing in the other. Furthermore, note
that:

• for all i ∈ N,Mi(G1 ⊕G2) =Mi(G1) ∪Mi(G2);

• when the simple gamesG1 andG2 are mergeable, it follows that for all i ∈ N ,Mi(G1)∩
Mi(G2) = ∅ and |Mi(G1 ⊕G2)| = |Mi(G1)|+ |Mi(G2)|.

1.1.2 Review of some power indices

In this section, we provide a short view on tools for quantitative measurement of voting
power. For qualitative approaches of measuring voting power, we refer to Isbell (1958);
Tomiyama (1987); Diffo Lambo and Moulen (2002) or Tchantcho et al. (2008).

Definition 1.1.8. A power index ϕ is a map defined on G such that ϕ(G) ∈ RN for
every G = (N,W(G)) ∈ G.

The share ϕi(G) measures the ability of voter i to turn a losing coalition, as he/she gets
in, into a winning one; or conversely, to make a winning coalition losing, as he/she moves
out. Intuitively, the larger ϕi(G), the greater the power of voter i. For many authors, the
definition of a power index includes the disposition that players’ shares are non negative
numbers; see Kóczy (2009) or Kong and Peters (2021). But in general, the positivity
fulfillment is deduced from some reasonable properties of power indices. Many power indices
exist in the literature, what follows is the definition of some classical power indices.
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1.1. Simple games and power indices

The Shapley-Shubik index was introduced by Shapley and Shubik (1954) and it is the
restriction of the Shapley value to the class of simple games. For this power index, all possible
orderings of voters are considered with equal probabilities and each voter is associated with
the total number of being the swing voter (each time he/she is the first to turn the ascending
coalition from losing to winning). The voting power of a voter by the Shapley-Shubik index
is simply the average number of times he/she is the swing voter. Formally,

Definition 1.1.9. The Shapley-Shubik index is the map SS defined on G such that

∀G = (N,W(G)) ∈ G, ∀i ∈ N, SSi(G) =
∑

S∈Di(G)

(s− 1)!(n− s)!
n!

where s = |S| and n = |N |.

The Banzhaf power index appears in Banzhaf (1965), although Penrose (1946) defines a
measure which is the half of the Banzhaf’s power index. For this index, all coalitions that
contain a given voter are considered with equal probabilities and he/she is associated with
the total number of times he/she is decisive. The voting power of a voter by the Banzhaf
power index is simply the average number of times he/she is decisive in the coalitions he/she
belongs to. Formally,

Definition 1.1.10. Given a simple game G = (N,W(G)) and a player i ∈ N ,

• the Banzhaf (or absolute Banzhaf or Banzhaf-Penrose) index of voter i is given by

Bi(G) =
|Di(G)|

2n−1
;

• The normalized Banzhaf (or relative Banzhaf or Banzhaf-Coleman) index of voter i,
is given by

B̃i(G) =
|Di(G)|∑
j∈N |Dj(G)|

.

The Johnston index is due to Johnston (1978). Given a simple game G, a coalition S
and a voter i, let d(S) denotes the total number of decisive voters in S. For the Johnston
index, all coalitions containing i are considered and i receives a Johnston reward of 1/d(T )

each time he is decisive in a coalition T and nothing otherwise. The voting power of i by
the Johnston index is the sum of all his Johnston rewards over the coalitions to which it
belongs. Formally,

Definition 1.1.11. Given a simple game G = (N,W(G)) ∈ G and a player i ∈ N ,

• the non-normalized Johnston index of voter i is given by

Ji(G) =
∑

S∈Di(G)

1

d(S)
;
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1.1. Simple games and power indices

• The Johnston index of voter i is given by

J̃i(G) =
Ji(G)∑
j∈N Jj(G)

.

The Deegan-Packel index was introduced by Deegan and Packel (1978). For this power
index, all minimal winning coalitions are considered and each voter receives a Deegan-Packel
reward of 1/|S| each time he is a member of a minimal winning coalition S and nothing
otherwise. The voting power of a voter by the Deegan-Packel index is his average Deegan-
Packel reward over all minimal winning coalitions. Formally,

Definition 1.1.12. Given a simple game G = (N,W(G)) ∈ G and a player i ∈ N , the
Deegan-Packel index of voter i is given by

DPi(G) =
1

|M(G)|
∑

S∈Mi(G)

1

|S|
. (1.1)

The Holler-Packel index was first introduced and used in Holler (1978) to measure the
voting power of parties in the Finnish Parliament; it was explicitly defined in Holler (1982).
For this power index, each voter is associated with a Holler-Packel reward equal to the
total number of minimal winning coalitions he belongs to. The voting power of a voter by
the Holler-Packel index is his relative Holler-Packel reward assuming that individual voting
powers sum to 1 and are each proportional to the corresponding Holler-Packel reward.
Formally,

Definition 1.1.13. The Holler-Packel index (also known as the Public Good Index) is
the map HP define on G such that

∀G = (N,W(G)) ∈ G,∀i ∈ N,HPi(G) =
|Mi(G)|∑
j∈N |Mj(G)|

. (1.2)

For more literature on power indices, see Andjiga et al. (2003).

1.1.3 An illustration example

In this section, we model the Senegalese Parliament as a simple game where the data origin
from the results of parliamentary elections held in Senegal on 31 July 2022. We also compute
individual voting powers for each of the preceding power indices.

The situation

The Senegalese National Assembly is a 6-party Parliament with 165 seats distributed as
described in Table 1.1 below:
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1.1. Simple games and power indices

Party Simplified designation Total number of seats (weight)

United in Hope 1 82

Liberate the People 2 56

Wallu Sénégal 3 24

The Servants – MPR 4 1

AAR Sénégal 5 1

Bokk Gis Gis 6 1

Table 1.1: Senegalese National Assembly: parties and distribution of seats.

Case of absolute majority voting

We consider here the case of a standard bill whose adoption requires an absolute majority
of favorable votes by parliamentarians. Our aim is the evaluation of the ratio of power
enjoyed by each party in the Senegalese National Assembly. We assume that votes are
coordinated within each party and a party then acts as a single voter whose weight is the
total number of seats the party records. The voting rule is modeled as a weighted simple
game the quota of which is exactly 83 and the weights is as in Table 1.1. For the sake of
simplicity, we identify each party with a positive integer as in the table. The set of voters
is then identified with N = {1, 2, 3, 4, 5, 6} and the corresponding set of minimal winning
coalitions is

M(G) = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3, 4, 5, 6}}.

The computation of voting power of Senegalese parties

The set of minimal winning coalitions of the weighted simple game in consideration
reveals a preliminary qualitative information: except, the leading party, all other parties
are symmetric. This is of course a contrast with the distribution of seats observed. The
Liberate the People party with 56 seats and the Wallu Sénégal party with 24 seats both
have substitutable roles with the three small sized parties with one seat each!

Numerical results are as in Table 1.2 below.

Power index (ϕ) ϕ1(G) ϕ2(G) ϕ3(G) ϕ4(G) ϕ5(G) ϕ6(G)

Shapley-Shubik (SS) 10
15

1
15

1
15

1
15

1
15

1
15

Banzhaf-Coleman (B̃) 30
40

2
40

2
40

2
40

2
40

2
40

Johnston (J̃) 275
310

7
310

7
310

7
310

7
310

7
310

Deegan-Packel (DP) 25
60

7
60

7
60

7
60

7
60

7
60

Holler-Packel (HP) 5
15

2
15

2
15

2
15

2
15

2
15

Table 1.2: Computation of the power indices of parties in the Senegalese Parliament

Each of the five power indices gives equal voting power to the five parties other than
the dominant party. This is consistent with the fact that these parties all play symmetric
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roles in case of an absolute majority voting. Moreover, the dominant party’s voting power is
maximal under the Johnston index and minimal under the Holler-Packel index. Of course,
this is due to the distinct scenarios on which the five power indices are based. Once more,
the change of the distribution of individual voting power from one power index to another
requires additional analyzes such as axiomatization results that would motivate the choice
of a power index.

1.2 New operations and axioms of power indices

In this section, we present new operations on simple games namely merging and supple-
mentation. Concepts of equivalent simple games from the view point of a voter is also
introduced. This leads us to some classical axioms and new axioms for power indices.

1.2.1 Merging of independent players

Players in a coalition T can enter a simple game G = (N,W(G)) with a prior agreement
to act as a single player iT ∈ P\N . In this case, players in T are merged into iT , their
representative in the new simple game. Before a formal definition, we associated, given a
coalition T and a voter iT ∈ P\N , any coalition S with the coalition denoted by ST and
defined by

ST =

{
(S \ {iT}) ∪ T if iT ∈ S
S otherwise.

The presence of iT in a coalition S is seen as that of all the members of T .

Definition 1.2.1. Given a simple game G = (N, v), a coalition T and a player iT ∈
P\N , the merged game obtained from G by merging members of T into iT is denoted
by GT = (NT , vT ) and defined by:

(i) NT = (N \ T ) ∪ {iT};

(ii) vT (S) = v(ST ), ∀S ⊆ NT .

The move from G to GT is called a merging operation while the move from GT to G is
called a splitting operation.

We will sometimes replace GT by GT→k to specify that iT is identified with a given player
k ∈ P\N . Note that in Definition 1.2.1, ST is a subset of N for each S ⊆ NT . Similarly,
for each S ⊆ N , we denote by ST the subset of NT defined by

ST =

{
(S \ T ) ∪ {iT} if S ∩ T 6= ∅
S otherwise.
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Now, the membership of any voter in T is seen as that of iT .
The merging operation is well-known in the literature although authors sometimes used

distinct notation options, see Knudsen and Østerdal (2012) or Slavov and Evans (2017). It
is also known under the name of amalgamation as in Lehrer (1988) or in Haviv (1995).

Example 1.2.1. Consider the simple game G = (N,W(G)) such that N = {1, 2, 3, 4, 5}
and M(G) = {{1, 2}, {2, 3, 5}, {1, 3, 4}}. Let T = {1, 5}. Here, NT = {iT , 2, 3, 4} and
M(GT ) = {{iT , 2}, {iT , 3, 4}}. If we set iT = 6, then NT→6 = {6, 2, 3, 4} andM(GT→6) =

{{6, 2}, {6, 3, 4}}. Similarly, for K = {4, 5}, NK = {1, 2, 3, iK} and M(GK) = {{1, 2},
{2, 3, iK}, {1, 3, iK}}. Still for illustration with T = {1, 5}, note that {1, 4}T = {iT , 4},
{1, 4, 5}T = {iT , 4} and {2, 3, 4}T = {2, 3, 4}, {iT , 3}T = {1, 3, 5} and {2, 3, 4}T = {2, 3, 4}.

Remark 1.2.1. Note that the merging operation in the sense of Deegan and Packel
(1978) and Holler and Packel (1983) is related to merging two simple games with the
same electorate meanwhile our merging operation is related to merging players in one
simple game; thus in our case the electorate is variable.

We now define two particular configurations of players: disconnected players and inde-
pendent players.

Definition 1.2.2. Two players i and j in the simple game G = (N,W(G)) are dis-
connected if |S ∩ {i, j}| ≤ 1 for all S ∈M(G).

Definition 1.2.2 simply means that Mi(G) ∩ Mj(G) = ∅. That is, two players are
disconnected in a simple game if no minimal winning coalition contains both players at the
same time.

Definition 1.2.3. Two players i and j in a simple game G = (N,W(G)) are inde-
pendent if i and j are disconnected and for all losing coalitions S ⊆ N \ {i, j} : S ∪ {i} ∈ Di (G)

and
S ∪ {j} ∈ Dj (G)

⇒ for some S ′, S ′′ ⊆ S,

 S′ ∪ {i} ∈ Di(G), S′ ∪ {j} /∈ Dj(G)

S
′′ ∪ {j} ∈ Dj(G) and S

′′ ∪ {i} /∈ Di(G)

 .

Furthermore, we say that a coalition T consists of independent players in G if any
two players in T are independent in G.

Intuitively, two players are independent in a simple game if each time they are both
complementary to the same losing coalition S, each of the two players is complementary to
some subset of S while the other is not.

Example 1.2.2. In Example 1.2.1 where G = (N,W(G)) is such that N = {1, 2, 3, 4, 5}
and M(G) = {{1, 2}, {2, 3, 5}, {1, 3, 4}}, players 4 and 5 are disconnected in the simple
game G and there is no losing coalition S such that S ∪ {4} and S ∪ {5} are winning.
Thus, 4 and 5 are independent in G. Now, players 1 and 5 are disconnected in G; but
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for S = {2, 3}, S is losing, S ∪ {1} and S ∪ {5} are winning, but S ′ ∪ {5} is losing for
all S ′ ( S. Thus, 1 and 5 are not independent in G. Also observe that players 1 and
3 are not disconnected in the simple game G.

It is worth mentioning that if i is a null player in a simple game G, then for any other
player j, i and j are independent. In the general case, we have the following result.

Proposition 1.2.1 (Safokem et al. (2021)). Given a simple game G = (N,W(G)),
two disconnected players i and j are independent if and only if for all S ∈Mi(G) and
for all S ′ ∈Mj(G), S \ (S ′ ∪ {i}) 6= ∅ and S ′ \ (S ∪ {j}) 6= ∅.

Proof.
Consider two disconnected players i and j in a simple game G = (N,W(G)). First

suppose that players i and j are independent. Consider S ∈Mi(G) and S ′ ∈Mj(G). To
prove that S \ (S ′ ∪ {i}) 6= ∅ and S ′ \ (S ∪ {j}) 6= ∅, suppose the contrary. Without loss
of generality (w.l.o.g), suppose that S \ (S ′ ∪ {i}) = ∅; that is, S ⊆ S ′ ∪ {i}. Since i and
j are disconnected, j /∈ S. Therefore S \ {i} ⊆ S ′ \ {j}. Let K = S ′ \ {j}. It follows that
K is losing, K ∪{i} ∈ Di(G) and K ∪{j} ∈ Dj(G). Since i and j are independent, there
exists S ′′ ⊆ K such that S ′′ ∪ {j} ∈ Dj(G) and S ′′ ∪ {i} /∈ Di(G). Note that K ∪ {i} is
winning while S ′′ ∪ {i} is losing. We deduce that S ′′ is a proper subset of K and that
S ′′ ∪ {j} is a proper winning subset of S ′; that is S ′′ ∪ {j} ⊆ S ′ and S ′′ ∪ {j} 6= S ′. A
contradiction arises since S ′ ∈Mj (G).

Now suppose that for all S ∈ Mi(G) and for all S ′ ∈ Mj(G), S \ (S ′ ∪ {i}) 6= ∅
and S ′ \ (S ∪ {j}) 6= ∅. Consider a losing coalition S ⊆ N \ {i, j} such that both
S ∪{i} ∈ Di(G) and S ∪{j} ∈ Dj(G). Then, by Proposition 1.1.2, there exist S ′, S ′′ ⊆ S

such that S ′ ∪ {i} ∈ Mi(G) and S ′′ ∪ {j} ∈ Mj(G). To prove that S ′ ∪ {j} /∈ Dj(G)

and S ′′ ∪ {i} /∈ Di(G), suppose the contrary. W.l.o.g., suppose that S ′ ∪ {j} ∈ Dj(G).
Then by Proposition 1.1.2, there exists L ⊆ S ′ such that L∪{j} ∈ Mj (G). It holds that
S ′ ∪ {i} ∈ Mi (G), and L ∪ {j} ∈ Mj (G) with L \ S ′ = ∅. A contradiction arises since
by assumption we should have L \ S ′ = (L ∪ {j}) \ (S ′ ∪ {i, j}) 6= ∅.

The next result tells us how merging independent players impacts the structure of a
simple game.

Proposition 1.2.2 (Safokem et al. (2021)). Consider a simple game G = (N,W(G)) ∈
G and a coalition T of at least two players. If T is a coalition of independent players,
then

(a) For all S,R ∈M(G), S 6= R implies ST 6= RT ;

(b) M(GT ) = {ST : S ∈M(G)};

(c) |Mj(G
T )| = |Mj(G)| for all j ∈ N \ T ;
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(d) |MiT (GT )| =
∑

i∈T |Mi(G)|.

Proof.
Suppose that T is a coalition of independent players with |T | ≥ 2.

(a). Consider S,R ∈M(G) such that S 6= R. First suppose that S ∩ T = R∩ T = ∅.
By definition, ST = S 6= R = RT . Now suppose that S ∩ T 6= ∅ and R ∩ T = ∅. Then
iT ∈ ST and iT /∈ RT . Therefore ST 6= RT . Similarly, ST 6= RT if S ∩ T = ∅ and
R∩T 6= ∅. Finally suppose that S ∩T 6= ∅ and R∩T 6= ∅. Since T contains only pairs of
independent (disconnected) players, then S ∩T = {i} and R∩T = {j} for some i, j ∈ T .
If i = j, then ST \RT = S \R 6= ∅ since R ∈M(G). Otherwise i 6= j. Players i and j are
independent, S ∈ Mi(G) and R ∈ Mj(G), thus by Proposition 1.2.1, S \ (R ∪ {i}) 6= ∅.
Since S \ (R ∪ {i}) ⊆ ST \RT , it follows that ST 6= RT . In each possible case, ST 6= RT .

(b). We first prove thatM(GT ) ⊇ {ST : S ∈ M(G)}. Let S ∈ M(G). If S ∩ T = ∅,
then ST = S ∈M(GT ) since (S \{i})T = S \{i} is losing in both G and GT for all i ∈ S.
Otherwise, |S∩T | = 1 since S ∈M(G) and T contains only pairs of disconnected players.
Set S ∩ T = {i}. First note that (ST \ {iT})T = S \ {i} /∈ W(G) and thus ST \ {iT} /∈
W(GT ). Now consider j ∈ ST \ {iT} and suppose that ST \ {j} ∈ W(GT ). By definition,
(ST \{j})T = (S \ {i, j})∪T ∈ W(G), it follows that there exists A ⊆ (S \ {i, j})∪T such
that A ∈M(G). Set A = A′∪A′′ with A′ ⊆ S\{i, j} and A′′ ⊆ T . Note that A′′ 6= ∅ since
A′ ⊆ S \ {i, j} /∈ W(G). Moreover A′′ = {k} for some k ∈ T since T contains only pairs
of disconnected players. Recalling that S \ {j} /∈ W(G), it follows that k 6= i. Note that
{i, k} ⊆ T such that S = (S\ {i}) ∪ {i} ∈ Di(G) and A ⊆ (S\ {i}) ∪ {k} ∈ Dk(G). Since
i and k are independent, therefore there exists K ⊆ S\ {i} such that K ∪ {i} ∈ Di(G)

and K ∪ {k} /∈ Dk(G). Hence K ( S\ {i} and thus K ∪ {i} ( S. A contradiction arises
since K ∪ {i} ∈ W(G) and S ∈ M(G). This proves that ST \ {j} /∈ W(GT ) for all
j ∈ ST \ {iT}. Therefore ST ∈M(GT ). We conclude thatM(GT ) ⊇ {ST : S ∈M(G)}.

Now, we prove thatM(GT ) ⊆ {ST : S ∈ M(G)}. Let R ∈ M(GT ). If iT /∈ R, then
RT = R ∈ W(GT ) and for all i ∈ R, (R \ {i})T = R \ {i} /∈ W(GT ). By definition of
GT , R ∈ W(G) and for all i ∈ R, R \ {i} /∈ W(G). Thus, R ∈ M(G) and R = RT ∈
{ST : S ∈ M(G)}. Otherwise, iT ∈ R. Two possible cases arise. First suppose that
R = {iT}. Then RT = T ∈ W(G). This implies that T contains in the simple game
G some minimal winning coalition K. Therefore R = KT ∈ {ST : S ∈ M(G)}. Now
suppose that R 6= {iT}. Since R ∈ M(GT ), we have RT = (R \ {iT}) ∪ T ∈ W(G) while
R \ {iT} /∈ W(G). It follows that there exists some nonempty subset L of T such that
(R\{iT})∪L ∈ Di(G) for all i ∈ L. Such a coalition L can be obtained from (R\{iT})∪T
by removing, one by one, some members of T . Note that [(R \ {iT}) ∪ L]T = R. To prove
that R ∈ {ST : S ∈ M(G)}, we only have to prove that (R \ {iT}) ∪ L is necessary a
minimal winning coalition in the simple game G. Suppose on the contrary that this is
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not the case. Then, there exists j ∈ R \ {iT} such that (R \ {iT , j})∪L is still a winning
coalition in the simple game G. By the definition of GT , [(R \ {iT , j}) ∪ L]T = R \ {j}
is a proper subset of R which is a winning coalition in GT . A contradiction arises since
R ∈M(GT ). Therefore (R \ {iT})∪L is a minimal winning coalition in the simple game
G. In each possible case, R ∈ {ST : S ∈M(G)}. We conclude thatM(GT ) ⊆ {ST : S ∈
M(G)}. Finally,M(GT ) = {ST : S ∈M(G)}.

(c). Given j ∈ N \ T , note that for all coalitions S ⊆ N , j ∈ ST if and only if j ∈ S.
Therefore, Part (b) implies thatMj(G

T ) = {ST : S ∈ M(G) and j ∈ ST} = {ST : S ∈
Mj(G)}; moreover, the above operator is onto by definition. By Part (a), the operator
S 7−→ ST is injective inM(G). Therefore |Mj(G

T )| = |{ST : S ∈Mj(G)}| = |Mj(G)|.

(d). By Part (b), MiT (GT ) = {ST : S ∈ M(G) and T ∩ S 6= ∅}. Recall that
T contains only pairs of independent (disconnected) players, then, |S ∩ T | ≤ 1 for all
S ∈ M(G). It follows that MiT (GT ) = {ST : S ∈ M(G) and i ∈ S for some i ∈ T} =

∪i∈T{ST : S ∈Mi(G)}. MoreoverMi(G)∩Mj(G) = ∅ for pairs {i, j} of distinct players
in T . Taking into account that the operator S 7−→ ST is injective inM(G), one finally
gets |MiT (GT )| =

∑
i∈T |Mi(G)|.

Remark 1.2.2. Note that the results in Proposition 1.2.2 fail if T is not a coalition of
independent players; even if T contains pairs of disconnected players as we can see in
the simple game G = (N,W(G)) in Example 1.2.1 defined such that N = {1, 2, 3, 4, 5}
and M(G)={{1,2},{2,3,5},{1,3,4}}. By considering T = {1, 5}, NT = {iT , 2, 3, 4} and M(GT ) =

{{iT , 2}, {iT , 3, 4}}. Players 1 and 5 are disconnected, {2, 3, 5} ∈ M(G) but {2, 3, 5}T =

{iT , 2, 3} /∈M(GT ); |M2(GT )| 6= |M2(G)| and |MiT (GT )| 6= |M1(G)|+ |M5(G)|.

1.2.2 Supplementation of a simple game

The scenario we now consider, for a given simple game G = (N,W(G)), is the arrival of a
new player k /∈ N .

Definition 1.2.4. Given k ∈ P \ N , a k-supplementation of a simple game G =

(N,W(G)) is any simple game G′ = (N ′,W(G′)) such that N ′ = N ∪ {k} and for all
coalitions S ⊆ N :

S ∈M(G)⇐⇒ (S ∈M(G′) or S ∪ {k} ∈ M(G′)).

From G to a k-supplementation G′ of G, the arrival of player k is such that, for each
minimal winning coalition S in G, either S or S ∪ {k} remains a minimal winning coalition
in G′. For each winning coalition S in G, we say that k becomes supplementary to S from
G to G′ when S is losing in G′, while S∪{k} is winning in G′. For cost allocation problems,
a similar definition was considered by Hougaard and Moulin (2014) in their definition of
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an item that is supplementary to an agent needs. From G to a k-supplementation of G,
the arrival of player k changes the set of minimal winning coalition of G exactly as the
introduction of a supplementary resource to the needs of an agent, say i, reshapes the
collection of agent i’s minimal serving sets.

Example 1.2.3. Let G = (N,W(G)) be the simple game defined in Example 1.2.1 with
N = {1, 2, 3, 4, 5} andM(G) = {{1, 2}, {2, 3, 5}, {1, 3, 4}}. Then G is a 3-supplementation
of G1 = (N1,W(G1)) where N1 = {1, 2, 4, 5} and M(G1) = {{1, 2}, {2, 5}, {1, 4}}. From
G1 to G, player 3 is supplementary not only to the minimal winning coalitions {2, 5}
and {1, 4} but also to some non minimal winning coalitions such as {2, 4, 5}. Similarly,
the simple game G is a 5-supplementation of G2 = (N2,W(G2)) with N2 = {1, 2, 3, 4}
and M(G2) = {{1, 2}, {2, 3}, {1, 3, 4}}. Conversely, G is not a 1-supplementation of
G3 = (N3,W(G3)) where N3 = {2, 3, 4, 5} and M(G3) = {{2}, {3, 4}}. Since {2, 3, 5} ∈
M(G) but {2, 3, 5} /∈M(G3) and 1 /∈ {2, 3, 5}.

The next proposition shows how a supplementation impacts on the set of minimal win-
ning coalitions of a simple game.

Proposition 1.2.3 (Safokem et al. (2021)). Consider G = (N,W(G)) ∈ G, a player
k ∈ P \N and a simple game G′ = (N ′,W(G′)) such that N ′ = N ∪ {k}.

Then G′ is a k-supplementation of G if and only if there exists a subset E ofM(G)

such that
M(G′) = {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E}.

Proof.
Let G = (N,W(G)) ∈ G, k ∈ P \ N and G′ = (N ′,W(G′)) ∈ G such that N ′ =

N ∪ {k}.
Necessity. Suppose that G′ is a k-supplementation of G. Let E = M(G) \ W(G′).

We prove that M(G′) = {S ∪ {k} : S ∈ E} ∪ {S : S ∈ M(G) \ E}. We first show
that M(G′) ⊇ {S ∪ {k} : S ∈ E} ∪ {S : S ∈ M(G) \ E}. To see this, first consider
a coalition R ⊆ N ′ such that R = S ∪ {k} for some S ∈ E. By definition of E,
R \ {k} = S /∈ W(G′), then S /∈M(G′). Since S ∈ E ⊆M(G), it follows by assumption
on G′ that S ∪ {k} ∈ M(G′). That is R ∈ M(G′). Now, consider a coalition R ⊆ N ′

such that R ∈ M(G) \ E = M(G) ∩ W(G′). Then R ∈ M(G) and R ∪ {k} /∈ M(G′)

since R ∈ W(G′). It follows by assumption on G′ that R ∈M(G′).
We now prove that M(G′) ⊆ {S ∪ {k} : S ∈ E} ∪ {S : S ∈ M(G) \ E}. For this

purpose, consider R ∈M(G′). If k /∈ R, then by definition ofG′, R ∈M(G) and therefore
R ∈ M(G) ∩M(G′) ⊆ M(G) ∩W(G′) =M(G) \ E. Now suppose that k ∈ R, that is
R = S ∪ {k} for some S ⊆ N . It follows that S ∈M(G) since G′ is a k-supplementation
of G by assumption. Moreover, R\{k} = S /∈ W(G′) Therefore S ∈M(G)\W(G′) = E.
We conclude thatM(G′) ⊆ {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E}.

UYI: Ph.D Thesis 21 SAFOKEM Adin c©UYI 2023



1.2. New operations and axioms of power indices

In summary,M(G′) = {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E}.
Sufficiency. Assume thatM(G′) = {S∪{k} : S ∈ E}∪{S : S ∈M(G)\E} for some

subset E ofM(G). We prove that G′ is a k-supplementation of G. Consider S ⊆ N .
First suppose that S ∈ M(G). If S /∈ E, then S ∈ M(G) \ E and this implies that

S ∈ M(G′). If S ∈ E, then it follows by assumption that S ∪ {k} ∈ M(G′). We have
prove that S ∈ M(G) implies S ∈ M(G′) or S ∪ {k} ∈ M(G′). Now suppose that
S ∈ M(G′) or S ∪ {k} ∈ M(G′). If S ∈ M(G′) then S ∈ M(G) \ E since k /∈ S.
Thus S ∈ M(G). If S ∪ {k} ∈ M(G′) then S ∈ E ⊆ M(G). Therefore in both cases,
S ∈M(G). In summary, G′ is a k-supplementation of G.

From Proposition 1.2.3, we obtain the following result that tells us how the supplemen-
tation operation impacts on the cardinalities of minimal winning coalitions containing a
given player.

Proposition 1.2.4 (Safokem et al. (2021)). Consider G = (N,W(G)) ∈ G, k ∈ P\N
and a k-supplementation G′ = (N ′,W(G′)) of G. Then

(a) |Mi(G
′)| = |Mi(G)| for all i ∈ N ;

(b) |Mk(G
′)| = |M(G) \W(G′)|.

Proof.
Suppose that G′ is a k-supplementation of G. It follows from Proposition 1.2.3 that

M(G′) = {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E} for some E ⊆M(G).
(a). Given i ∈ N , Mi(G

′) = {S ∈ M(G′) : i ∈ S} = {S ∪ {k} : i ∈ S ∈ E} ∪
{S : i ∈ S ∈ M(G) \ E}. That is Mi(G

′) = {S ∪ {k} : S ∈ E ∩ Mi(G)} ∪ {S :

S ∈ Mi(G) \ E}. Since E ∩ Mi(G) and Mi(G) \ E are disjoint sets, it follows that
|Mi(G

′)| = |E ∩Mi(G)|+ |Mi(G) \ E| = |Mi(G)|.
(b). By assumption, k /∈ N . ThereforeMk(G

′) = {S ∈ M(G′) : k ∈ S} = {S ∪ {k} :

S ∈ E}. Therefore, |Mk(G
′)| = |E|. Now, note that for all S ∈ E, we have S ∈ M(G)

since E ⊆M(G) and S /∈ W(G′) since S∪{k} ∈ M(G′). Therefore, E ⊆M(G)\W(G′).
Conversely, all S ∈ M(G) \ W(G′) are such that S ∈ M(G) and S /∈ M(G′). By
assumption onM(G′), S /∈ M(G) \ E. That is S ∈ E. ThereforeM(G) \ W(G′) ⊆ E.
We conclude that E =M(G)\W(G′). This proves that |Mk(G

′)| = |M(G)\W(G′)|.

1.2.3 Equivalent games

We now present a notion of equivalent games from a player’s perspective. The importance
of a player in a collective decision process depends not only on all the situations where
his opinion counts, but also on all the situations in which decisions can be made without
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him. It is therefore necessary for each player to make a round up about: on the one hand,
the situations where he is decisive (internal decisiveness parameter) and on the other hand,
the situations where decision can be made without him (external decisiveness parameter),
taking into account each time the number of his partners. Two games are thus equivalent
for a player’s viewpoint if they keep the above parameters unchanged. For example, in a
parliamentary system, one can imagine that the formation of a government can only be
initiated by a minimal winning coalition. A player’s influence parameters are therefore the
minimal winning coalitions that contain him and their sizes. Formally,

Definition 1.2.5. Given two simple games G = (N,W(G)), G′ = (N ′,W(G′)) ∈ G,
and a player i ∈ N ∩N ′.

The games G and G′ are said to be Mi-equivalent, if there exists (S, T ) ∈ M(G)×
M(G′) such thatM(G′) = (M(G)\{S})∪{T} with |S| = |T | and (i ∈ S∩T or i /∈ S∪T ).

In this case, we write G∆iG
′ or more precisely G∆S,T

i G′ if coalitions S and T

involved in the definition are specified.

Note that for a given player i ∈ P , ∆i is a binary relation on G putting together games
that are somewhat similar for player i, in the sense that moving from one of those two games
to the other, only one minimal winning coalition of the first game is replaced by a minimal
winning coalition of the second with the same cardinality and the particularity that the
membership of i is unaffected (he belongs to both coalitions or to none of them).

Example 1.2.4. Consider the simple games G = (N,W(G)), G′ = (N ′,W(G′)) and
G′′ = (N ′′,W(G′′)) such that N = {1, 2, 3, 4, 5}, N ′ = {1, 2, 3, 4, 6}, N ′′ = {1, 2, 3, 4, 5, 7, 8, 9}
and M(G) = {{1, 2}, {2, 3, 5}, {1, 3, 4}},M(G′) = {{1, 2}, {2, 4, 6}, {1, 3, 4}}, M(G′′) =

{{1, 2}, {2, 3, 4}, {1, 3, 4}}. Let S = {2, 3, 5}, T = {2, 4, 6}, K = {2, 3, 4}. It follows that

G∆S,T
2 G′, G∆S,T

1 G′, G∆S,K
2 G′′, G∆S,K

3 G′′, G′∆T,K
4 G′′ and G′∆T,K

2 G′′.

Notation 1.2.1. Given i ∈ P, we denote by Gi the set of all simple games G = (N, v)

such that i ∈ N . Hence, G = ∪i∈PGi.

The next proposition exhibits some algebraic properties1.

Proposition 1.2.5. For all i ∈ P, the binary relation ∆i is reflexive and symmetric
on Gi, but fails to be transitive.

Proof.
1A binary relation R on a set X (that is any subset of the Cartesian product X × X) is reflexive if

(x, x) ∈ R for all x ∈ X; symmetric if for all x, y ∈ X, (x, y) ∈ R =⇒ (y, x) ∈ R; and transitive if for all
x, y, z ∈ X, ((x, y) ∈ R and (y, z) ∈ R) =⇒ (x, z) ∈ X. It is usual to write xRy instead of (x, y) ∈ R.
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Consider a potential player i ∈ P .

(i) Reflexivity: Consider a simple game G = (N,W(G)) ∈ Gi. Since M(G) 6= ∅,
consider S ∈M(G).

If i ∈ S, then i ∈ S ∩ S andM(G) = (M(G)\{S}) ∪ {S}, it follows that G∆S,S
i G.

Else i /∈ S, then i /∈ S∪S andM(G) = (M(G)\{S})∪{S}, it follows that G∆S,S
i G.

In both cases G∆iG. Therefore ∆i is reflexive on Gi.

(ii) Symmetry: Consider two simple games G = (N,W(G)), G′ = (N ′,W(G′)) ∈ Gi
such that G∆iG

′. Then there exists (S, T ) ∈ M(G) ×M(G′) with |S| = |T | and
(i ∈ S ∩ T or i /∈ S ∪ T ) such that M(G′) = (M(G)\{S}) ∪ {T}. One obtains
M(G) = (M(G′)\{T}) ∪ {S}. It follows that G′∆T,S

i G. This proves that ∆i is
symmetric on Gi.

(iii) Transitivity: To see that the relation ∆i is not transitive on Gi, consider the
following simple games G = (N,W(G)), G′ = (N ′,W(G′)) and G′′ = (N ′′,W(G′′))

with N = {1, 2, 3, 4, 5} andM(G) = {{1, 2}, {2, 3, 5}, {1, 3, 4}}; N ′ = {1, 2, 3, 4, 6}
and M(G′) = {{1, 2}, {2, 4, 6}, {1, 3, 4}}; N ′′ = {1, 2, 3, 4, 5, 6, 7, 8} and M(G′′) =

{{2, 3}, {2, 4, 6}, {1, 3, 4}}. Let S = {2, 3, 5}, T = {2, 4, 6}, T ′ = {1, 2}, K = {2, 3}.
It follows that G∆S,T

2 G′, G′∆T ′,K
2 G′′ but e(G∆2G

′′) since |M(G)\M(G′′)| = 2 > 1.
Clearly, G∆2G

′ and G′∆2G
′′ but e(G∆2G

′′). We conclude that ∆i is not transitive
on Gi.

The following remark is useful in the sequel. It is straightforward from the definition of
two equivalent simple games.

Remark 1.2.3. If G∆S,T
i G′, then M(G′) = (M(G)\{S}) ∪ {T} with |S| = |T | and:

1. Mi(G
′) = (Mi(G)\{S}) ∪ {T} if i ∈ S ∩ T ;

2. Mi(G
′) =Mi(G) otherwise.

1.2.4 Axioms of power indices

Among classical axioms for power indices, we have the following when one considers a power
index ϕ:

Axiom 1. Null Player (NP): For all G ∈ G, ϕi(G) = 0 whenever i is a null player
in G.

Axiom (NP) simply means that a player who is never decisive in a simple game necessarily
enjoys a null voting power.
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Axiom 2. Efficiency (E): For all G = (N,W(G)) ∈ G,
∑

i∈N ϕi(G) = 1.

A power index that meets (E) is said to be normalized. Note that for any power index
ϕ such that individual shares in all simple games always sum to non-zero values, one gets
an efficient power index ϕ defined for all G = (N,W(G)) ∈ G and for all i ∈ N by:

ϕi(G) =
ϕi(G)∑
j∈N ϕj(G)

.

The power index ϕ is called the normalized version of ϕ. The Banzhaf-Coleman index (see
Banzhaf (1965) or Coleman (1971)) is the normalized version of the Banzhaf-Penrose index;
see Banzhaf (1965) or Penrose (1946).

Axiom 3. Anonymity (AN): For all G = (N,W(G)) ∈ G, for all permutation π :

N −→ N , ϕπ(i)(Gπ) = ϕi(G) for all i ∈ N .

Axiom (AN) says that individual voting powers should not depend on the players’ labels.
The three preceding axioms are classical axioms of a power index very often used; see for
example Allingham (1975).

Axiom 4. Deegan-Packel Mergeability (DPM): For all G1 = (N,W(G1)) ∈ GN , for
all G2 = (N,W(G2)) ∈ GN such that G1 and G2 are mergeable,

ϕi(G1 ⊕G2) =
|M(G1)|ϕi(G1) + |M(G2)|ϕi(G2)

|M(G1 ⊕G2)|
, ∀i ∈ N.

This axiom is due to Deegan and Packel (1978) and says that the voting power of a
player in a merged game obtained from two mergeable simple games is a weighted mean of
voting powers of the component games, with the number of minimal winning coalitions in
each component game being its weight.

Axiom 5. Holler-Packel Mergeability (HPM): For all G1 = (N,W(G1)) ∈ GN , for
all G2 = (N,W(G2)) ∈ GN such that G1 and G2 are mergeable,

ϕi(G1 ⊕G2) =
λ(G1)ϕi(G1) + λ(G2)ϕi(G2)

λ(G1) + λ(G2)
, ∀i ∈ N

where for all G = (N,W(G)) ∈ G,

λ(G) =
∑
i∈N
|Mi(G)| =

∑
i∈N

∑
S∈Mi(G)

1 =
∑

S∈M(G)

∑
i∈S

1 =
∑

S∈M(G)

|S|.

Axiom (HPM) is due to Holler and Packel (1983) and tells us that the voting power of
a player in a game obtained from two mergeable simple games is a weighted mean of voting
powers of the component games, the weight of each component game being equal to the
sum of the sizes of all its minimal winning coalitions.

The next three axioms are due to Safokem et al. (2021).
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Axiom 6. Non Profitable Merging (NPM) of independent players: For all G =

(N,W(G)) ∈ G, for all coalitions T ⊆ N of at least two players,

ϕiT (GT ) =
∑
i∈T

ϕi(G) (1.3)

whenever T contains only independent players.

Axiom (NPM) is a weak condition of the lack of incentive for independent players to
merge in a simple game; for similar requirements, see Knudsen and Østerdal (2012). When
the merging equality (1.3) is considered only for coalitions of size 2 (without any restriction),
one obtains the 2-efficiency condition of Lehrer (1988)2.

The following remark highlights the differences between Axiom (NPM) and the well-
known Deegan-Packel mergeability and Holler-Packel mergeability axioms.

Remark 1.2.4. It can be checked that the power index that associates each simple
game G = (N,W(G)) ∈ G with the n-tuple (1/n; 1/n; · · · ; 1/n) satisfies the Deegan-
Packel mergeability axiom as well as the Holler-Packel mergeability axiom but not
(NPM). And the Deegan-Packel index (see Deegan and Packel (1978)) satisfies Axiom
(NPM) but fails to meet the Holler-Packel mergeability Axiom; also, the Holler-Packel
index (see Holler (1982)) satisfies Axiom (NPM) but fails to meet the Deegan-Packel
mergeability axiom. Furthermore, the Holler-Packel and the Deegan-Packel mergeabil-
ity conditions apply to a fix electorate while (NPM) is designed for variable electorates.

The next result provides a relationship between (NPM) and (NP).

Proposition 1.2.6 (Safokem et al. (2021)). All power indices that satisfy (NPM)
also satisfy (NP).

Proof.
Suppose that ϕ is a power index that satisfies (NPM). Consider a simple game G =

(N,W(G)) ∈ G and a null player k ∈ N in G. Denote by G0 the simple game obtained
when k leaves the game G while the set of minimal winning coalitions is unchanged; that
is G = G0[k]. To prove that ϕk(G) = 0, we consider {k1, k2, k3, k4, k5, k6} ⊂ P\N and
the following simple games :

G1 = G0[k1, k2, k3, k4], G2 = G0[k1, k2, k5], G3 = G0[k5, k6] and G4 = G0[k1, k2, k3, k6].

Note that any player from {k1, k2, k3, k4, k5, k6} who is involved in a games Gj for j =

1, 2, 3, 4 is a null player. Moreover, in terms of the merging operation, the following holds

G = G
{k1,k2,k3,k4}→k
1 = G

{k1,k2,k5}→k
2 , G2 = G

{k3,k4}→k5
1 and G3 = G

{k1,k2}→k6
2 . (1.4)

2The author proves that the Banzhaf value for TU-games (that is an extension of the Banzhaf-Penrose
index on the class of TU-games) is uniquely determined by the 2-efficiency condition among all values that
coincide with the Shapley value on all 2-player games. It follows that the Banzhaf power index (normalized
or not) satisfies (1.3) for all coalitions T of size 2.

UYI: Ph.D Thesis 26 SAFOKEM Adin c©UYI 2023



1.2. New operations and axioms of power indices

Furthermore, applying (NPM) on each of the above mentioned merging operations leads
to

ϕk1(G1) + ϕk2(G1) = ϕk(G)− ϕk3(G1)− ϕk4(G1) since by (1.4), G = G
{k1,k2,k3,k4}→k
1

= ϕk(G)− ϕk5(G2) since by (1.4), G2 = G
{k3,k4}→k5
1

= ϕk1(G2) + ϕk2(G2) since by (1.4), G = G
{k1,k2,k5}→k
2

= ϕk6(G3) since by (1.4), G3 = G
{k1,k2}→k6
2 .

In a similar way, ϕi(G1) + ϕj(G1) = ϕk6(G3) for all pairs {i, j} ⊆ {k1, k2, k3, k4}. This
proves that ϕi(G1) + ϕj(G1) does not depend on the pair {i, j} ⊆ {k1, k2, k3, k4}. Since
ϕk1(G1) + ϕk2(G1) + ϕk3(G1) + ϕk4(G1) = ϕk(G), it follows that ϕi(G1) = 1

4
ϕk(G) for

all i ∈ {k1, k2, k3, k4} and ϕk6(G3) = 1
2
ϕk(G). In the same way, ϕi(G4) = 1

4
ϕk(G) for all

i ∈ {k1, k2, k3, k6}.
Noting that G3 = G

{k1,k2,k3}→k5
4 , it follows by (NPM) that ϕk5(G3) = 3

4
ϕk(G).

Moreover G = G
{k5,k6}→k
3 . Thus ϕk6(G3) = ϕk(G) − ϕk5(G3) = 1

4
ϕk(G). Hence

1
2
ϕk(G) = 1

4
ϕk(G) and therefore ϕk(G) = 0.

Axiom 7. Independence of External Merging (IEM) of independent players : For
all G = (N,W(G)) ∈ G, for all coalitions T ⊆ N of at least two players, ϕi(GT ) = ϕi(G)

for all i ∈ N \ T whenever T is a coalition of independent players.

When a merging operation involves independent players from one game to another,
(IEM) is the requirement that the shares of other players remain unchanged. It is shown in
the next proposition that (IEM) and (E) imply (NPM).

Proposition 1.2.7. If a power index ϕ satisfies (E) and (IEM), then ϕ satisfies
(NPM).

Proof.
Suppose that a power index ϕ satisfies (E) and (IEM). Consider G = (N,W(G)) ∈ G

and a coalition T ⊆ N of independent players. We have:

ϕiT (GT ) = 1−
∑
i∈N\T

ϕi(G
T ) by (E)

= 1−
∑
i∈N\T

ϕi(G) by (IEM)

=
∑
i∈T

ϕi(G) by (E).

Therefore ϕ satisfies (NPM).
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In the following axiom, the members of a coalition T of independent players in a simple
game G have to choose their representative in T . This is the case in an annexation described
by Aziz et al. (2011) when a voter in T takes the voting weight of other members of T . The
notation GT→t is extended below so that the possibility for t to be a player from T is now
included.

Axiom 8. Independence of Internal Merging (IIM) independent players: For
all G = (N,W(G)) ∈ G, for all coalitions T ⊆ N of at least two players, for t ∈ T ,
ϕi(G

T→t) = ϕi(G) for all i ∈ N \ T whenever T is a coalition of independent players.

When the members of a coalition T of independent players are offered the possibility to
merge into a player in T , (IIM) requires that this should not impact the shares of players
out of T .

Proposition 1.2.8. All power indices on G that satisfy (IIM) also satisfy (IEM).

Proof.
Suppose that a power index ϕ on G satisfies (IIM). Consider a simple game G =

(N,W(G)) ∈ G, a coalition T of independent players with |T | ≥ 2 and a player iT ∈ P\N .
Set G1 = G[iT ]. By noting that |N | ≥ |T | ≥ 2, consider for all i ∈ N , some j ∈ N\{i}.
Since G = G

{j,iT }→j
1 , then by (IIM), it follows that ϕi(G) = ϕi(G1). Now, note that

GT = (G1)T∪{iT }→iT . Therefore, (IIM) implies that for all i ∈ N\T , ϕi(GT ) = ϕi(G1)

and therefore, ϕi(GT ) = ϕi(G). This proves that ϕ satisfies (IEM).

Here is a new axiom relied on equivalent games that we have introduced.

Axiom 9. Membership Equivalence Property (MEP): For all G = (N,W(G)), G′ =

(N ′,W(G′)) ∈ G, for all player i ∈ N ∩N ′, ϕi(G) = ϕi(G
′) whenever G∆iG

′.

This axiom requires that a power index should give a player, say i, the same power in
two simple games that are Mi-equivalent, in other words, the Mi-equivalence of simple
games should guarantee to player the same power in both games.

We establish that any power index that satisfies (MEP) and (E) also satisfies (NP).

Proposition 1.2.9. If a power index ϕ on G satisfies (MEP) and (E), then ϕ also
satisfies (NP).

Proof.
Consider a power index ϕ on G that satisfies (MEP) and (E). Let G = (N,W(G)) ∈

G be a simple game and i ∈ N0(G) be a null player in G. Define the simple game
G0 = (N0,W(G0)) with N0 = N\{i} andM(G0) =M(G). Set S ∈M(G) and consider
j ∈ N0.
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If j ∈ S, then j ∈ S ∩ S andM(G0) = (M(G)\{S}) ∪ {S}, that is G∆jG0.
If j /∈ S, then j /∈ S ∪ S andM(G0) = (M(G)\{S}) ∪ {S}, that is G∆jG0.
It follows by (MEP) that ϕj(G0) = ϕj(G). Then

∑
j∈N0

ϕj(G0) =
∑
j∈N0

ϕj(G). Axiom

(E) implies that 1 = 1− ϕi(G), that is ϕi(G) = 0. Thus, ϕ satisfies (NP).

We now establish that (MEP) is stronger than (IEM).

Proposition 1.2.10. If a power index ϕ on G satisfies (MEP), then ϕ satisfies (IEM).

Proof.
Suppose that ϕ is a power index on G that satisfies (MEP). Consider G =

(N,W(G)) ∈ G, iT ∈ P\N and T ⊆ N such that members of T are independents players.
Also consider a player i ∈ N\T , we show that ϕi(GT ) = ϕi(G).

Set T = {i1, i2, ..., it}, where t = |T |. Write:
Mik(G) = {Sk,1, Sk,2, ..., Sk,nk

} for all k ∈ {1, 2, ..., t}.
Since members of T are independent players, they are also disconnected. That is for

k, k′ ∈ {1, ..., t} with k 6= k′, for all l ∈ {1, ..., nk} and l′ ∈ {1, ..., nk′}, one have ik /∈ Sk′,l′
and ik′ /∈ Sk,l.

For all k ∈ {1, 2, ..., t} and l ∈ {1, ..., nk}, set Tk,l = (Sk,l\{ik}) ∪ {iT}. Define the
following games:

G1,1 = (N1,1,W(G1,1)) with N1,1 = N ∪{iT} andM(G1,1) = (M(G)\{S1,1})∪{T1,1}.
G1,2 = (N1,2,W(G1,2)) with N1,2 = N1,1 = N ∪ {iT} and M(G1,2)=(M(G1,1)\{S1,2})∪{T1,2}.

...
G1,n1 = (N1,n1 ,W(G1,n1)) with N1,n1 = (N\{i1}) ∪ {iT} and M(G1,n1 )=

(M(G1,n1−1)\{S1,n1})∪{T1,n1}.
G2,1 = (N2,1,W(G2,1)) with N2,1 = (N\{i1}) ∪ {iT} and M(G2,1)=(M(G1,n1 )\{S2,1})∪{T2,1}.
G2,2 = (N2,2,W(G2,2)) with N2,2 = N2,1 = (N\{i1})∪{iT} and M(G2,2)=(M(G2,1)\{S2,2})∪

{T2,2}.
...

G2,n2 = (N2,n2 ,W(G2,n2)) with N2,n2 = (N\{i1, i2}) ∪ {iT} and M(G2,n2 )=

(M(G2,n2−1)\{S2,n2})∪{T2,n2}.
...

Gt,1 = (Nt,1,W(Gt,1)) with Nt,1 = (N\{i1, i2, ..., it−1}) ∪ {iT} and M(Gt,1)=

(M(Gt−1,nt−1 )\{St,1})∪{Tt,1}.
Gt,2 = (Nt,2,W(Gt,2)) with Nt,2 = Nt,1 = (N\{i1, i2, ..., it−1}) ∪ {iT} and M(Gt,2)=

(M(Gt,1)\{St,2})∪{Tt,2}.
...

Gt,nt = (Nt,nt ,W(Gt,nt)) with Nt,nt = (N\{i1, i2, ..., it−1, it}) ∪ {iT} = (N\T ) ∪ {iT}
and M(Gt,nt )=(M(Gt,nt−1)\ {St,nt}) ∪ {Tt,nt}. Note that Gt,nt = GT .
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∀k ∈ {1, ..., t} and l ∈ {2, ..., nk}, one have M(Gk,l) = (M(Gk,l−1)\{Sk,l}) ∪
{Tk,l}, |Tk,l| = |(Sk,l\{ik}) ∪ {iT}| = |Sk,l|, i ∈ Nk,l−1 ∩ Nk,l and (i ∈ Sk,l ∩ Tk,l or i /∈
Sk,l ∪ Tk,l) since i /∈ T . That is Gk,l∆iGk,l−1.

Since ϕ satisfies (MEP), one obtains ϕi(Gk,l) = ϕi(Gk,l−1).
Similarly, one show that G∆iG1,1 and Gk+1,1∆iGk,nk

for all k ∈ {1, ..., t− 1}.
By (MEP), one obtains ϕi(G) = ϕi(G1,1) and ϕi(Gk+1,1) = ϕi(Gk,nk

) for all k ∈
{1, ..., t− 1}.

Finally, one gets ϕi(G) = ϕi(G1,1) = ϕi(Gt,nt) = ϕi(G
T ).

Therefore, ϕ satisfies (IEM).

Remark 1.2.5. Using Proposition 1.2.7 and Proposition 1.2.10, we observe that
(MEP) and (E) together implies Axiom (NPM). But (MEP) alone is not sufficient
to imply (NPM) as we can see with the power index Υ defined below for all G =

(N,W(G)) ∈ G and for all i ∈ N by

Υi(G) =

{
1

|Mi(G)| if i /∈ N0(G)

1 otherwise

To see this, first consider two simple games G = (N,W(G)), G′ = (N ′,W(G′)) ∈ G
and a player i ∈ N ∩N ′ such that G∆iG

′. Note that |Mi(G
′)| = |Mi(G)|. If i ∈ N0(G),

then |Mi(G)| = 0 = |Mi(G
′)|. That is i ∈ (N ′)0(G). It follows that Υi(G) = 1 = Υi(G

′).
If i /∈ N0(G), then |Mi(G)| 6= 0 and |Mi(G

′)| 6= 0 since |Mi(G)| = |Mi(G
′)|. That is

i /∈ (N ′)0(G). It follows that Υi(G) = 1
|Mi(G)| = 1

|Mi(G′)| = Υi(G
′). Thus, Υ satisfies

(MEP).
Now, consider the simple game G = (N,W(G)) such that N = {1, 2, 3, 4, 5} and

M(G) = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}. Since player 5 is a null player in G, then
merging players 4 and 5 into 6 in G is a proper merging operation and it leads us to
the simple game GT = (NT ,W(GT )) where T = {4, 5}, NT = {1, 2, 3, 6} and M(GT ) =

{{1, 2}, {1, 3}, {1, 6}, {2, 3, 6}}. We obtain Υ(G) =
(

1
3
, 1

2
, 1

2
, 1

2
, 1
)
and Υ(GT ) =

(
1
3
, 1

2
, 1

2
, 1

2

)
.

It then appears that Υ6(GT ) = 1
2
6= Υ4(G)+Υ5(G). That is Υ does not satisfies (NPM).

In what follows, it is shown that any power index that meet (MEP) and (E) assigns a
specific distribution of voting power to each singleton simple game.

Proposition 1.2.11. If a power index ϕ on G satisfies (MEP) and (E), then for all

coalition S, ϕi(GS) =
1

|S|
for all voter i ∈ S.

Proof.
Suppose that ϕ is a power index on G that satisfies (MEP) and (E). Consider

a singleton game GS = (S,W(GS)). By Proposition 1.2.9, ϕ satisfies (NP). If |S| =

1, then S = {i} for some i ∈ P ; it follows by Axiom (E) that ϕi(GS) = 1 =
1

|S|
.
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Otherwise |S| ≥ 2. In this case, consider three players i, j ∈ S and k ∈ P\S. Define the
simple games G1 = (N1,W(G1)) and G2 = (N2,W(G2)) by N1 = (S\{i}) ∪ {k}, N2 =

(S\{j})∪ {k},M(G1) = (M(G)\{{i}})∪ {{k}} andM(G2) = (M(G)\{{j}})∪ {{k}}.
In the one hand, we have for all l ∈ S\{i}, G1∆lGS, it follows by Axiom (MEP) that
ϕl(G1) = ϕl(GS). Applying Axiom (E) to the simple games G1 and GS lead us to
1− ϕk(G1) = 1− ϕi(GS). That is

ϕk(G1) = ϕi(GS). (1.5)

In the other hand, we have for all l ∈ S\{j}, G2∆lGS, it follows by Axiom (MEP)
that ϕl(G2) = ϕl(GS). Applying Axiom (E) to the simple games G2 and GS lead us to
1− ϕk(G2) = 1− ϕj(GS). That is

ϕk(G2) = ϕj(GS). (1.6)

Note that G1∆kG2, it then follows by (MEP) that

ϕk(G1) = ϕk(G2). (1.7)

Equations (1.5), (1.6) and (1.7) imply that ϕi(GS) = ϕj(GS).

Applying Axiom (E) to the singleton game GS leads us to ϕi(GS) =
1

|S|
.

As mentioned right at the beginning of this chapter, we have presented basic concepts
and some preliminary results on simple games and power indices. We are now ready to
combine some of those axioms to provide some new axiomatizations of the Public Good
Index. This is the subject of the next chapter.
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Axiomatizations of the Public Good

Index for simple games with a variable

electorate

In this chapter, we focus our attention on the Holler-Packel index, also known as the Public
Good Index. It is worth mentioning that the Public Good Index was introduced by Holler
(1978) and was explicitly interpreted as a power index by Holler (1982). Its first axioma-
tization was provided by Holler and Packel (1983) on the domain of simple games with a
fixed electorate as an (AN)+(E)+(NP)+(HPM) characterization. Our main objective is to
provide new characterizations of the Public Good Index on the domain of simple games with
a variable electorate which was not yet explored. We mainly present some characterizations
using efficiency and inter-game axioms.

The current chapter is organized as follows: Section 2.1 provides preliminary results on
Public Good Index. We recall the first axiomatization of the Public Good Index due to
Holler and Packel (1983) and then introduce an axiom that relies to the supplementation
operation: the Supplementation Consistency (SC). We then show that the Public Good
Index satisfies (SC) as well as other new properties. We mainly state and prove several
characterization results in Section 2.2 built on (SC), on (NPM) and some of its variants.
The independence of the axioms we use is also confirmed for each of the results provided.
Finally, in section 2.3, we provide an axiomatization of the Public Good Index using a
weak version of Axiom (NPM) or Axiom (MEP) based on the concept of equivalent games
presented in Chapter 1. Extensions to coalitional versions of the Public Good Index are
also considered.

2.1 Preliminaries

This section deals with preliminaries on the Public Good Index. We essentially present
a result due to Holler and Packel (1983) which is the first axiomatic description of the
Public Good Index. Useful references are also provided. In order to ease the proofs of some
characterizations that appear later in the chapter, some preliminary properties of the Public
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Good Index are established.

2.1.1 The Holler-Packel axiomatization of the Public Good Index

As already announced, the Public Good Index was axiomatized by Holler and Packel (1983)
using Axiom (HPM) as the main novelty in the analysis of voting powers. The independence
of the axioms the authors used was later established by Napel (2001).

Given a nonempty and finite subset N of P , the Public Good Index is the unique
power index that simultaneously satisfies (NP), (E), (AN) and (HPM) on GN .

Theorem 2.1.1 (Holler and Packel (1983)).

?

Other axiomatizations of the Public Good Index with a fixed electorate include Haradau
and Napel (2007) who built a potential function to characterize the Public Good Index; and
Alonso-Meijide et al. (2008) who provided an alternative characterization by substituting
a monotonicity axiom to the Holler-Packel Mergeability axiom. Related contributions also
include, for example, Holler and Li (1995) for the non-normalized version, Freixas and Kurz
(2016) for some type of monotonic power indices obtained as convex combinations of the
Public Good Index and the Banzhaf index, Alonso-Meijide et al. (2015) for an extension
to simple games with externalities, Courtin and Tchantcho (2020) for extensions to (j, 2)

simple games and Kurz (2021) for an extension to (j, k) simple games.
We move to the variable electorate setting.

2.1.2 Axiom of Supplementation Consistency

The next axiom is a way to handle changes due to a supplementation that may reasonably
affect the shares of voters by a power index.

Axiom 10. Supplementation Consistency (SC): For all G = (N,W(G)) ∈ G, for all
k ∈ P \ N , for all k-supplementations G′ of G, for all i ∈ N , ϕi(G′) = ϕi(G)λG′ for
some constant λG′.

In (SC), it is stated that, from a simple game G to a k-supplementation G′ of G, changes,
if any, on each player’s share is proportional to his/her power in G. More specifically, when
the power index is normalized, the constant λG′ becomes more explicit as shown below:

Proposition 2.1.1 (Safokem et al. (2021)). If a power index ϕ satisfies (E) and
(SC), then for all G = (N,W(G)) ∈ G, for all k ∈ P \N , for all k-supplementations G′

of G, for all i ∈ N ,
ϕi(G

′) = (1− ϕk(G′))ϕi(G). (2.1)
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Proof.
Suppose that a power index ϕ satisfies (E) and (SC). Consider a simple game

G = (N,W(G)) ∈ G, a player k ∈ P \ N and a k-supplementation G′ of G. Then,
there exists a constant λG′ such that ϕi(G′) = ϕi(G)λG′ for all i ∈ N . Then by (E),
1− ϕk(G′) =

∑
i∈N ϕi(G

′) = λG′
(∑

i∈N ϕi(G)
)

= λG′ .

Equation (2.1) effectively matches the consistency requirement by Hougaard and Moulin
(2014) as an agent is removed (or introduced) in a cost allocation problem.

The next result is a property of power indices that meet (SC) and (E).

Proposition 2.1.2 (Safokem et al. (2021)). Consider a simple game G = (N,W(G)),
a player k ∈ P \ N , a k-supplementation G′of G and two power indices ϕ and ψ that
both satisfy (E) and (SC) .

Then (ψ(G′) = ϕ(G′) and ϕk(G′) 6= 1) implies ψ(G) = ϕ(G).

Proof.
Suppose that two power indices ϕ and ψ satisfy (E) and (SC). Consider a simple

game G = (N,W(G)) ∈ G, a player k ∈ P \ N and a k-supplementation G′ of G such
that ψ(G′) = ϕ(G′) and ϕk(G

′) 6= 1. Then, by Proposition 2.1.1, it follows that for all
i ∈ N , ψi(G′) = (1−ψk(G′))ψi(G) and ϕi(G′) = (1−ϕk(G′))ϕi(G). Since ψ(G′) = ϕ(G′)

and ϕk(G′) 6= 1, then ψi(G) = ϕi(G) for all i ∈ N . That is ψ(G) = ϕ(G).

2.1.3 Preliminary results

It is shown that the Public Good Index meets (NP), (E), (NPM) and (SC). As observed by
Holler and Packel (1983), the following result is straightforward:

Proposition 2.1.3. The Public Good Index HP satisfies (NP) and (E).

Thanks to Proposition 1.2.4, we are able to establish that the Public Good Index satisfies
(SC) as stated in the next result.

Proposition 2.1.4. The Public Good Index satisfies Axiom (SC).

Proof.
Consider G = (N,W(G)) ∈ G, k ∈ P\N and a k-supplementation G′ = (N ′,W(G′))

of G. Given i ∈ N , it follows from Proposition 1.2.4 that

HPi(G
′) =

|Mi(G
′)|∑

j∈N ′ |Mj(G′)|

=
|Mi(G)|

|Mk(G′)|+
∑

j∈N |Mj(G)|

=

∑
j∈N |Mj(G)|

|Mk(G′)|+
∑

j∈N |Mj(G)|
× |Mi(G)|∑

j∈N |Mj(G)|
= (1− HPk(G

′)) HPi(G).
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Therefore HP satisfies Axiom (SC).

Using Proposition 1.2.2, we prove that the Public Good Index satisfies (NPM).

Proposition 2.1.5. The Public Good Index satisfies (NPM).

Proof.
Consider a simple game G = (N,W(G)) ∈ G and a coalition T of independent

players such that |T | ≥ 2. Parts (c) and (d) in Proposition 1.2.2 imply that∑
j∈NT

|Mj(G
T )| =

∑
j∈N
|Mj(G)| and |MiT (GT )| =

∑
i∈T
|Mi(G)|.

Furthermore,

HPiT (GT ) =
|MiT (GT )|∑
j∈NT |Mj(GT )|

=

∑
i∈T |Mi(G)|∑
j∈N |Mj(G)|

=
∑
i∈T

HPi(G).

Therefore HP satisfies (NPM).

Remark 2.1.1. By Proposition 1.2.6, any power index ϕ that satisfies (NPM) also
satisfies (NP). Moreover, if ϕ satisfies both (E), (SC) and (NPM), then ϕi(G) = ϕi(G0)

for all i ∈ N0 whenever G = G0[i1, ..., ip] for all nonempty and finite subset N0 ⊆ P.

Proposition 2.1.6 (Safokem et al. (2021)). Let ϕ be a power index on G that
satisfies (E), (NPM) and (SC).

Then for all simple games G = (N,W (G)), for all i ∈ N and for all j ∈ P\N ,
ϕj (Gi↔j) = ϕi (G).

Proof.
Let ϕ be a power index on G that satisfies (E), (NPM) and (SC). Consider a simple

game G = (N,W(G)), i ∈ N and j ∈ P\N . Let k ∈ P\ (N ∪ {j}). By Proposition
1.2.6, ϕk(G[k]) = 0 and therefore, ϕi(G[k]) = ϕi(G) by (E) and (SC). Moreover, Gi↔j

is obtained from G [k] by merging i and k into j. Therefore by (NPM), ϕj (Gi↔j) =

ϕk(G[k]) + ϕi(G[k]) = ϕi (G).

Proposition 2.1.6 tells us that, if from one simple game to another, only one player in
the initial simple game is replaced by another player, then the new player simply inherits
the replaced player’s share. However, nothing is said about the shares of other players in
the new simple game.
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Remark 2.1.2. Suppose that ϕ is a power index that satisfies (E), (NPM) and (SC).
We denote by ϕT,i the share of player i in the simple game GT∪{i} for a given coalition
T ⊆ P and a given player i ∈ P\T . Note that for any other player j ∈ P\ (T ∪ {i}),
GT∪{i} =

(
GT∪{j}

)j↔i. Therefore, it follows from Proposition 2.1.6 that

ϕT,i = ϕi
(
GT∪{i}

)
= ϕj

(
GT∪{j}

)
= ϕT,j.

This shows that ϕT,i only depends on T but not on the player i we choose from P\T .
That is why, from now on, we simply denote by ϕT the share, with respect to ϕ, of an
arbitrary player i ∈ P\T in the simple game GT∪{i}. By efficiency, it follows that for
all coalitions S ⊆ P of at least two players, the collection (ϕT )T⊆S/|T |=|S|−1 satisfies the
following equation (ES) : ∑

T⊆S/|T |=|S|−1

ϕT = 1. (2.2)

Recall that the set P of potential players is infinite. So, there is an infinite number of
equations similar to (2.2). As we will show in the next section, those equations are sufficient
to determine the collection (ϕT )∅6=T⊆P for any power index that satisfies (E), (NPM) and
(SC). For illustration, we show, in the example below, how to determine ϕT when T is a
singleton.

Example 2.1.1. Suppose that |S| = 2 and set S = {i, j}. We have to determine
ϕ{i} = ϕj

(
G{i,j}

)
and ϕ{j} = ϕi

(
G{i,j}

)
assuming that ϕ is a power index on G that

satisfies (E), (NPM) and (SC). We first bring into consideration a new player, say
k ∈ P\ {i, j}. As stated in (2.2), we have

E{i,j} : ϕ{i} + ϕ{j} = 1, E{i,k} : ϕ{i} + ϕ{k} = 1, E{j,k} : ϕ{j} + ϕ{k} = 1.

Equivalently 
1 1 0

1 0 1

0 1 1




ϕ{i}

ϕ{j}

ϕ{k}

 =


1

1

1

 .

Since the corresponding matrix is invertible, we get
ϕ{i}

ϕ{j}

ϕ{k}

 =


+1

2
+1

2
−1

2

+1
2
−1

2
+1

2

−1
2

+1
2

+1
2




1

1

1

 =


1
2
1
2
1
2

 .

Instead of inverting the matrix, it is sufficient to note that 1
2

(
E{i,j}

)
+ 1

2

(
E{i,k}

)
−

1
2

(
E{j,k}

)
would have immediately lead us to ϕ{i} = 1

2
. In the general case, we provide

in the next section appropriate combinations to obtain ϕT .
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2.2 Axiomatizations of the Public Good Index

We state and prove some axiomatizations of the Public Good Index using our merging and
supplementation axioms.

2.2.1 Main result

It is shown in the precedent section that the Public Good Index satisfies (NP), (E), (NPM)
and (SC). It is now shown that it is the unique power index on G that meets (E), (NPM)
and (SC). Before we state and prove this result, the following lemmas are useful to ease the
presentation of the main steps of the proof.

In the following lemma, it is shown that power indices that satisfy (E), (NPM) and (SC)
all coincide with HP on singleton simple games.

Lemma 2.2.1. Let ϕ be a power index on G that satisfies (E), (NPM) and (SC).
Then for all coalitions C ⊆ P, ϕ (GC) = HP (GC).

Proof.
To ease the proof, we introduce, for all integers p ≥ 2, the sequence (cm)1≤m≤p

defined by

cm =
(−1)m−1(

p−1
m−1

) .

where
(
p−1
m−1

)
is the binomial coefficient. Note that it can be easily checked that for 0≤m<p,

(p−m) cm+1 +mcm = 0. (2.3)

Now, let ϕ be a power index on G that satisfies (E), (NPM) and (SC). Consider a
coalition C ⊆ P and set |C| = p. If p = 1, then C = {k} and M (GC) = {{k}} for
some k ∈ P . By efficiency, ϕk (GC) = 1 = HPk (GC). Clearly, ϕ (GC) = HP (GC). Now
suppose that p ≥ 2. As we announced earlier, we consider a coalition C ′ ⊆ P\C of p− 1

players. Set N = C∪C ′ and denote by H the set of all simple games GS such that S ⊆ N

and |S| = p. Note that there are exactly
(

2p−1
p

)
simple games GS in H that lead to

(
2p−1
p

)
equation (ES)S⊆N,|S|=p, with exactly

(
2p−1
p−1

)
variables (XT )T⊆N,|T |=p−1.

Since HPi (GC) = 1
p
for all i ∈ C, we have to prove that ϕi (GC) = 1

p
for all i ∈ C.

That is, XC\{i} = 1
p
for all i ∈ C. Consider i ∈ C and set K = C\ {i}. In (2.2) (see

Remark 2.1.2, Page 36), we multiply by cp−|S∩K| the left-hand-side and the right-hand-side
of each equation (ES) such that S ⊆ N and |S| = p. By summing over all left-hand-sides
and over all right-hand-sides, we obtain∑

S⊆N,|S|=p
cp−|S∩K|

∑
T⊆S,|T |=p−1

XT =
∑

S⊆N,|S|=p
cp−|S∩K| × 1 (2.4)
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On the one hand, the right-hand-side of (2.4), say
∑

R, is simplified as follows:

∑
R

=
∑

S⊆N,|S|=p
cp−|S∩K| × 1 =

p−1∑
k=0

∑
S⊆N,|S|=p,|S∩K|=k

cp−k

Each coalition S such that S ⊆ N , |S| = p and |S ∩K| = k consists in k players from
K and p − k players from N\K. Since |K| = p − 1 and |N\K| = p, there are exactly(
p−1
k

)(
p

p−k
)
such coalitions. Noting that 0 ≤ |S ∩K| ≤ p− 1, it follows that

∑
R

=

p−1∑
k=0

(
p

p− k

)(
p− 1

k

)
(−1)p−1−k(

p−1
p−1−k

)
Since

(
p−1

p−1−k
)

=
(
p−1
k

)
and

(
p

p−k
)

=
(
p
k

)
, it follows that

∑
R

= (−1)p−1
p−1∑
k=0

(−1)k
(
p

k

)
= (−1)p−1 (0− (−1)p) = 1. (2.5)

On the other hand, the left-hand-side of (2.4), say
∑

L, is simplified as follows:∑
L

=
∑

S⊆N,|S|=p
cp−|S∩K|

∑
T⊆S,|T |=p−1

XT =
∑

T⊆N,|T |=p−1

XT

∑
S⊆N,|S|=p,T⊆S

cp−|S∩K|.

Given T ⊆ N such that |T | = p − 1, each coalition S ⊆ N such that |S| = p and
T ⊆ S can be rewritten as S = T ∪ {l} for some l ∈ N\T . Furthermore, N\T =

(K\T ) ∪ (N\ (K ∪ T )). Thus,

∑
L

=
∑

T⊆N,|T |=p−1

XT

 ∑
l∈K\T,S=T∪{l}

cp−|S∩K| +
∑

l∈N\(T∪K),S=T∪{l}
cp−|S∩K|

 .

Consider a coalition T ⊆ N such that |T | = p− 1. First suppose that T = K. Then no
coalition S exists such that S = T ∪ {l} for some l ∈ K\T , since K\T = ∅. And there
are exactly p coalitions S such that S = T ∪ {l} for some l ∈ N\ (T ∪K) = N\K. Now
suppose that T 6= K. For all l ∈ K\T and S = T ∪ {l}, |S ∩K| = |T ∩K| + 1 ≤ p− 1.
And for all l ∈ N\ (T ∪K) and S = T ∪ {l}, |S ∩K| = |T ∩K|. Therefore,∑

L
= pXK +

∑
T⊆N,T 6=K,|T |=p−1

[
|K\T | cp−1−|T∩K| + |N\ (T ∪K)| cp−|T∩K|

]
XT .

Since |K| = p− 1 and |N | = 2p− 1, it follows that for all T ⊆ N such that T 6= K and
|T | = p−1, we have |K\T | = p−1−|T ∩K| and |N\ (T ∪K)| = 2p−1−|T |− |K\T | =
p− |K\T | = |T ∩K|+ 1. Therefore,∑

L
= pXK+

∑
T⊆N,T 6=K,|T |=p−1

[
(p− 1− |T ∩K|) cp−1−|T∩K| + (|T ∩K|+ 1) cp−|T∩K|

]
XT .

For all T ⊆ N such that T 6= K and |T | = p − 1, note that, the relation (2.3), taking
m = p− 1− |T ∩K|, implies that

(p− 1− |T ∩K|) cp−1−|T∩K| + (|T ∩K|+ 1) cp−|T∩K| = 0 and
∑

L
= pXK . (2.6)
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We conclude from (2.4), (2.5) and (2.6) that XK = 1
p
for all coalitions K ⊆ P . Thus,

ϕ (GC) = HP (GC).

Remark 2.2.1. Note that to prove Lemma 2.2.1, we mainly use the fact that the
power index ϕ satisfies Axiom (E) and for all simple games G = (N,W (G)), for all
i ∈ N and for all j ∈ P\N , ϕj (Gi↔j) = ϕi (G).

In the next lemma, it is shown that all power indices that meet (E), (NPM) and (SC)
necessarily coincide on all simple games in which every voter is decisive in at most one
coalition.

Lemma 2.2.2. Let ϕ be a power index on G that satisfies (E), (NPM) and (SC).
Then ϕ (G) = HP (G) for all simple games G = (N,W(G)) ∈ G such that |Mi(G)| ≤ 1

for all i ∈ N .

Proof.
Suppose that ϕ is a power index on G that satisfies (E), (NPM) and (SC). We

denote by Gn the set of all simple games G = (N,W(G)) ∈ G with n players such that
|Mi(G)| ≤ 1 for all i ∈ N . We prove by induction on n = |N | ≥ 1 the assertion A (n)

that for all simple games G ∈ Gn, ϕ(G) = HP(G).

Initialization step.
In the initialization step, we consider n ∈ {1, 2}.
Suppose that n = 1 and let G = (N,W(G)) ∈ G1. Then N = {i} for some i ∈ P . By

efficiency, ϕ(G) = HP(G).
Suppose that n = 2 and let G = (N,W(G)) ∈ G2. ThenM(G) = {{i}}; orM(G) =

{{j}}; or M(G) = {{i} , {j}}; or M(G) = {{i, j}} with N = {i, j} for some i, j ∈ P .
First suppose thatM(G) = {{i}} with N = {i, j}. Then by efficiency and Proposition
1.2.6, ϕi (G) = 1 = HPi (G) and ϕj (G) = 0 = HPj (G) since j is a null player in G.
That is ϕ(G) = HP(G). Similarly, if M(G) = {{j}}, then ϕj (G) = 1 = HPj (G) and
ϕi (G) = 0 = HPi (G). That is ϕ(G) = HP(G). Now suppose that M(G) = {{i} , {j}}
with N = {i, j}. Then G = G{i,j} and ϕ(G) = HP(G) by Lemma 2.2.1. Finally,
suppose that M(G) = {{i, j}} with N = {i, j}. Consider a player k ∈ P\ {i, j}. Let
G1 = (N1,W(G1)) and G2 = (N2,W(G2)) be the simple games defined by N1 = {i, k},
N2 = {j, k}, M(G1) = {{i, k}} and M(G2) = {{j, k}}. Note that G1 = Gj↔k, G2 =

Gi↔k and G2 = Gi↔j
1 . By Proposition 2.1.6, it follows that

ϕi (G) = ϕk (G2) , ϕj (G) = ϕk (G1) and ϕi (G1) = ϕj (G2) .

It then follows by efficiency with respect to G, G1 and G2 that

ϕi (G) + ϕj (G) = 1, ϕi (G1) + ϕj (G) = 1 and ϕi (G1) + ϕi (G) = 1.
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Solving this three equations leads to ϕi (G) = ϕj (G) = ϕi (G1) = 1
2
. Since HPi (G) =

HPj (G) = 1
2
, it holds that ϕ(G) = HP(G).

Induction step.
For the induction step, suppose that A (n) holds for some integer n ≥ 2. We prove

that A (n+ 1) necessarily holds. Consider a simple game G = (N,W(G)) ∈ Gn+1. Set
C = {i ∈ N : |Mi(G)| = 1} and N0(G) = {i1, i2, ..., in0} with n0 = |N0(G)| that is
the number of null players in the simple game G. Note that N = C ∪ N0(G). First
suppose that |S| = 1 for all S ∈ M(G). Then G = GC [i1, i2, ..., in0 ] and ϕi(G) = 0 =

HPi(G) for all i ∈ N0(G) by Proposition 1.2.6. And for all i ∈ C, one have in the one
hand ϕi(G) = ϕi(GC) and HPi(G) = HPi(GC) by Remark 2.1.1, and in the other hand
ϕi(GC) = HPi(GC) by Lemma 2.2.1; therefore ϕi(G) = HPi(G). Then ϕ(G) = HP(G).
Now suppose that there exists some S ∈M(G) such that |S| ≥ 2. Consider three distincts
players i, j and k in N such that i, j ∈ S and k ∈ C. Let Si = S\ {i} and Sj = S\ {j}.
Define the simple games G1 = (N1,W(G1)) and G2 = (N2,W(G2)) by N1 = N\ {i},
N2 = N\ {j},M(G1) = [M(G)\ {S}] ∪ {Si} andM(G2) = [M(G)\ {S}] ∪ {Sj}. Since
G ∈ Gn+1, coalitions in M(G) are disjoints. Thus, no coalition in M(G)\ {S} contains
Si or Sj. This guarantees that the simple games G1 and G2 are well-defined. By the
induction assumption, ϕt (G1) = 1

n1
= HPt (G1) for all t ∈ C \ {i} and ϕt (G2) = 1

n2
=

HPt (G2) for all t ∈ C \ {j}. Note that n1 = |N1 \ N0(G1)| = |N \ (N0(G) ∪ {i})| =

|N \ (N0(G)∪{j})| = |N2 \N0(G2)| = n2. Moreover, G is an i-supplementation of G1 as
well as a j-supplementation of G2. Therefore, moving from G1 to G, (SC) implies that

ϕj (G) = (1− ϕi (G))ϕj (G1) =
1− ϕi (G)

n1

and ϕt (G) = (1− ϕi (G))ϕt (G1) =
1− ϕi (G)

n1

.

Similarly, from G2 to G, (SC) implies that

ϕi (G) = (1− ϕj (G))ϕi (G2) =
1− ϕj (G)

n1

and ϕt (G) = (1− ϕj (G))ϕt (G2) =
1− ϕj (G)

n1

.

We then deduce that

ϕt (G) =
1− ϕi (G)

n1

=
1− ϕj (G)

n1

with ϕi (G) =
1− ϕj (G)

n1

.

Therefore
ϕi (G) = ϕj (G) =

1

n1 + 1
.

Recalling that G is an i-supplementation of G1, we deduce by (SC) that for all t ∈ C\ {i},

ϕt (G) = (1− ϕi (G))ϕt (G1) =
1− ϕi (G)

n1

=
1

n1 + 1
.

This proves that ϕt (G) = 1
n1+1

= HPt (G) for all t ∈ C where n1 + 1 = |{t ∈ N :

|Mt(G)| = 1}| = |N \N0(G)|. Also, one have ϕt(G) = 0 = HPt(G) for all t ∈ N0(G) by
Proposition 1.2.6. Finally, ϕ (G) = HP (G). This proves that A (n+ 1) holds. Therefore,
we conclude that A (n) holds for all integers n ≥ 2.
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We are now ready to state and prove the following:

A power index ϕ on G satisfies (E), (NPM) and (SC) if and only if ϕ = HP.

Theorem 2.2.1 (Safokem et al. (2021)).

?

Proof.
Necessity. By Propositions 2.1.3, 2.1.4 and 2.1.5, HP necessary satisfies (E), (SC) and

(NPM).
Sufficiency. Consider a power index ϕ on G that satisfies (E), (NPM) and (SC). Given

a simple game G = (N,W(G)) ∈ G, we denote by E (G) the set of all players i in N such
that |Mi(G)| ≥ 2 and by G(m) the set of all simple games G = (N,W(G)) ∈ G in which
E (G) contains exactly m players. We prove by induction on integer m ≥ 0 the assertion
A′ (m) that for all simple games G ∈ G(m), ϕ(G) = HP(G).

For the initialization step, suppose that m = 0. For all simple games G =

(N,W(G)) ∈ G(0), E (G) = ∅. That is |Mi(G)| ≤ 1 for all i ∈ N . Therefore,
ϕ(G) = HP(G) by Lemma 2.2.2. This prove that A′ (0) holds.

For the induction step, suppose that A′ (m) holds for some integer m ≥ 0. We
prove that A′ (m+ 1) necessarily holds. Consider a simple game G = (N,W(G)) ∈
G(m+1). Then |E (G)| = m + 1 ≥ 1. Thus, there exists some player i ∈ E (G). Let
p = |M(G)| and q = |Mi(G)| . We write Mi(G) = {S1, S2, ..., Sq} and M(G) =

{S1, S2, ..., Sq, Sq+1, ..., Sp}. Consider p+q distincts players j1, j2, ..., jp, i1, i2, ..., iq ∈ P\N .
We define the simple games:

• G1 = (N1,W(G1)) with N1 = (N\ {i}) ∪ {j1, j2, ..., jp} ∪ {i1, i2, ..., iq} and

M(G1) = {T1 ∪ {i1, j1} , ..., Tq ∪ {iq, jq} , Sq+1 ∪ {jq+1} , ..., Sp ∪ {jp}}

where Tt = St\ {i} for all t ∈ {1, 2, ..., q}.

• G2 = (N2,W(G2)) with N2 = N ∪ {j1, j2, ..., jp} and

M(G2) = {T1 ∪ {i, j1} , ..., Tq ∪ {i, jq} , Sq+1 ∪ {jq+1} , ..., Sp ∪ {jp}}

= {S1 ∪ {j1} , ..., Sq ∪ {jq} , Sq+1 ∪ {jq+1} , ..., Sp ∪ {jp}} .

• G3 = (N3,W(G3)) with N3 = N2\ {i} and

M(G3) = {T1 ∪ {j1} , ..., Tq ∪ {jq} , Sq+1 ∪ {jq+1} , ..., Sp ∪ {jp}} .

Note that G1 is obtained from G by adding jt to St for t ∈ {1, ..., p} and replacing
player i in each St by it for t ∈ {1, ..., q}. Since each new player belongs to exactly one
minimal winning coalition in G1, then E (G1) = E (G) \ {i}. It follows that |E (G1) | = m.
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Therefore by the induction assumption, ϕ(G1) = HP(G1). Also note that moving from
G1 to G2 consists in merging players i1, i2, ..., iq into i. Since {i1, i2, ..., iq} is a coalition
of independent players in the simple game G1, we then deduce that

ϕi(G2) =

q∑
t=1

ϕit(G1) since ϕ satisfies (NPM)

=

q∑
t=1

HPit(G1) since ϕ(G1) = HP(G1)

= HPi(G2) since HP satisfies (NPM).

To continue, also note that E (G3) = E (G) \ {i}, it follows that |E (G3) | = m.
Therefore by the induction assumption, ϕ(G3) = HP(G3). By observing that G2 is an
i-supplementation of G3, it follows that for all k ∈ N2\ {i} ,

ϕk(G2) = (1− ϕi(G2))ϕk(G3) since ϕ satisfies (SC)

= (1− HPi(G2)) HPk(G3) since ϕi(G2) = HPi(G2) and ϕ(G3) = HP(G3)

= HPk(G2) since HP satisfies (SC).

This proves that ϕ(G2) = HP(G2). Finally, we define the simple games (G′t)0≤t≤p by
G′0 = G and for all t ∈ {1, 2, ..., p}, G′t = (N ′t ,W(G′t)) with

N ′t = N ∪ {j1, j2, ..., jt} andM(G′t) = {S1 ∪ {j1} , ..., St ∪ {jt} , St+1, ..., Sp} .

Note that G′p = G2 and that G′t is an jt-supplementation of G′t−1 for all t ∈ {1, 2, ..., p}.
Moreover i ∈ N ′t and Mi(G

′
t) 6= ∅ for all t ∈ {1, 2, ..., p}. By the definition of HP,

it follows that HPi(G
′
t) > 0 for t ∈ {1, 2, ..., p}. This proves that, for all k ∈ N ′t\ {i},

HPk(G
′
t) < 1. Since ϕ(G2) = HP(G2) and G′p is an jp-supplementation of G′p−1, we deduce

from Proposition 2.1.2 that ϕ(G′p−1) = HP(G′p−1) with HPjp−1(G
′
p−1) < 1. By iterating

this procedure for t = p, p − 1, ..., 1, it holds that ϕ(G′0) = HP(G′0). Since G′0 = G, we
get ϕ(G) = HP(G). This proves that A′(m+ 1) holds. In conclusion, A′(m) holds for all
integers m ≥ 0.

2.2.2 Independence of axioms

Theorem 2.2.1 provides an axiomatic characterization of the Public Good Index on the
domain of simple games with a variable electorate. We now prove that those axioms are
independent (none of the three axioms is redundant).

Proposition 2.2.1. The three axioms used in Theorem 2.2.1 are logically indepen-
dent on G.
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Proof.
(i) Non redundancy of Non Profitable Merging of independent players

Consider the power index ϕ defined on G for all G = (N,W(G)) ∈ G and for all i ∈ N
by:

ϕi(G) =


1

|N\N0(G)|
if i ∈ N\N0(G)

0 otherwise.

It is obvious that ϕ satisfies (E) and (SC). To see that ϕ fails to meet (NPM), let
G = (N,W(G)) with N = {1, 2, 3, 4, 5} andM(G) = {{1, 3, 5}, {2, 3, 4}}. Set T = {1, 2}.
Then T is a pair of independent players. Moreover NT = {3, 4, 5, iT}, ϕ1(G) + ϕ2(G) =
1
5

+ 1
5

= 2
5
6= ϕiT (GT ) = 1

4
. Hence ϕ does not satisfy (NPM). It follows that (NPM) is not

redundant.
(ii) Non redundancy of Efficiency

The power index 2 HP (where HP is the Public Good Index) satisfies (NPM) and
(SC); but fails to meet (E). Thus (E) is not redundant.

(iii) Non redundancy of Supplementation Consistency

Consider the power index H defined on G for all G = (N,W(G)) ∈ G and for all i ∈ N
as follows:

Hi(G) =
|M∗

i (G)|∑
j∈N |M∗

j(G)|

where

M∗(G) = {S ∈M(G) : |S| ≤ |T | for all T ∈M(G)}

is the set of minimal winning coalitions with the minimal size and for all i ∈ N ,

M∗
i (G) = {S ∈M∗(G) : i ∈ S}.

The power index H satisfies (E) and (NPM), but H fails to meet (SC). To prove
this, consider the simple game G = (N,W(G)) such that N = {1, 2, 3, 4} and
M(G) = {{1, 3} , {2} , {3, 4}}. Set G′ = (N ∪ {5} ,W(G′)) ∈ G with M(G′) =

{{1, 3} , {2, 5} , {3, 4, 5}}. Then G′ is a 5-supplementation of G. Moreover, M∗(G) =

{{2}} and M∗(G′) = {{1, 3} , {2, 5}} . It follows that H(G) = (0, 1, 0, 0) and H(G′) =(
1
4
, 1

4
, 1

4
, 0, 1

4

)
. It appears that the power index H does not satisfy (SC) since H satisfies

(E) and H3 (G′) = 1
4
6= 0 = (1−H5 (G′))H3 (G). Thus (SC) is not redundant.

2.2.3 Further axiomatizations

We use here two other axioms introduced early in Chapter 1, namely: (IEM) and (IIM), to
provide two new axiomatizations of the Public Good Index.
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A power index ϕ on G satisfies (E), (SC) and (IEM) if and only if ϕ = HP.

Theorem 2.2.2 (Safokem et al. (2021)).

?

Proof.
Necessity. By Proposition 2.1.3 and Proposition 2.1.4, HP satisfies (E) and (SC); it

remains to prove that HP satisfies (IEM). Consider a simple game G = (N,W(G)) ∈ G
and a coalition T of at least two independent players with |T | ≥ 2. Items (c) and (d) in
Proposition 1.2.2 imply that HPi(G

T ) = HPi(G) for all i ∈ N\T . Therefore HP satisfies
(IEM).

Sufficiency. Consider a power index ϕ on G that satisfies (E), (SC) and (IEM). Since
ϕ satisfies (E) and (IEM), it follows by Proposition 1.2.7 that ϕ satisfies (NPM). Thus,
Theorem 2.2.1 implies that ϕ = HP.

A power index ϕ on G satisfies (E), (SC) and (IIM) if and only if ϕ = HP.

Theorem 2.2.3 (Safokem et al. (2021)).

?

Proof.
Necessity. By Proposition 2.1.3 and Proposition 2.1.4, HP satisfies (E) and (SC); it

remains to prove that HP satisfies (IIM). Consider a simple game G = (N,W(G)) ∈ G, a
coalition T of independent players with |T | ≥ 2 and a player t ∈ T . Given iT ∈ P\N , note
that GT→t is obtained from GT when iT is replaced by t. Parts (c) and (d) in Proposition
1.2.2 imply that HPi(G

T→t) = HPi(G) for all i ∈ N\T . Therefore HP satisfies (IIM).
Sufficiency. Consider a power index ϕ on G that satisfies (E), (SC) and (IIM). Since ϕ

satisfies (IIM), it follows by Proposition 1.2.8 that ϕ also satisfies (IEM). Thus, Theorem
2.2.2 implies that ϕ = HP.

Remark 2.2.2. For the independence of axioms used in Theorems 2.2.2 and 2.2.3,
power indices defined in Proposition 2.2.1 still apply.

2.3 Alternative axiomatizations

This section is devoted to other axiomatizations of the Public Good Index using Axiom
(MEP) on equivalent games and a weak version of Axiom (NPM). We also provide char-
acterization results of the coalitional versions of the Public Good Index on the domain of
simple games with a priori unions and a variable electorate.

UYI: Ph.D Thesis 44 SAFOKEM Adin c©UYI 2023



2.3. Alternative axiomatizations

2.3.1 Axiomatization using Axiom (MEP)

In the next proposition, it is shown that the Public Good Index satisfies (MEP).

Proposition 2.3.1. The Public Good Index HP satisfies (MEP).

Proof.
Consider two simple games G = (N,W(G)), G′ = (N ′,W(G′)) ∈ G and a player

i ∈ N ∩ N ′ such that G∆iG
′. It follows that there exists (S, T ) ∈ M(G) ×M(G′) such

thatM(G′) = (M(G)\{S}) ∪ {T} with |S| = |T | and (i ∈ S ∩ T or i /∈ S ∪ T ). In the
one hand, by Remark 1.2.3, we have:

• If i ∈ S ∩ T, then Mi(G
′) = (Mi(G)\{S}) ∪ {T}, it follows that |Mi(G

′)| =

|Mi(G)|;

• If i /∈ S ∪ T, thenMi(G
′) =Mi(G), it follows that |Mi(G

′)| = |Mi(G)|.

In the other hand,

∑
j∈N ′
|Mj(G

′)| =
∑

L∈M(G′)

|L|

= |T |+
∑

L∈M(G′)\{T}
|L|

= |T |+
∑

L∈M(G)\{S}
|L| sinceM(G′)\{T} =M(G)\{S}

= |S|+
∑

L∈M(G)\{S}
|L| since |S| = |T |

=
∑

L∈M(G)

|L|

=
∑
j∈N
|Mj(G)|.

Thus,

HPi(G
′) =

|Mi(G
′)|∑

j∈N ′ |Mj(G′)|

=
|Mi(G)|∑
j∈N |Mj(G)|

= HPi(G).

That is HP satisfies (MEP).
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We now prove that a power index that satisfies (E), (MEP) and (SC) coincides with
the Public Good Index on simple games where each player belongs to at most one minimal
winning coalition.

Lemma 2.3.1. If ϕ is a power index on G that satisfies (E), (MEP) and (SC), then
ϕ(G) = HP(G) for a given simple game G = (N,W(G)) ∈ G such that |Mi(G)| ≤ 1 for
all i ∈ N .

Proof.
Suppose that a power index ϕ on G satisfies (E), (MEP) and (SC). We denote by

r(G) = max{|S| : S ∈M(G)} for all simple gameG ∈ G and Gr = {G ∈ G : r(G) = r} for
all positive integer r. We prove by induction on positive integer r ≥ 1 that ϕ(G) = HP(G)

for all simple game G = (N,W(G)) ∈ Gr such that |Mi(G)| ≤ 1 for all i ∈ N .

Initialization: For r = 1, let G = (N,W(G)) ∈ G1 such that |Mi(G)| ≤ 1 for all
i ∈ N . Then for all i ∈ N\N0(G),Mi(G) = {{i}}. Set S = N\N0(G). We have G∆iGS

for all i ∈ S, where GS is the singleton game associated to S. It follows that for all i ∈ S,
ϕi(G) = ϕi(GS) since ϕ satisfies (MEP) and G∆iGS

=
1

|S|
by Proposition 1.2.11 since ϕ satisfies (E) and (MEP)

= HPi(GS) by Proposition 1.2.11 since HP satisfies (E) and (MEP)
= HPi(G) since HP satisfies Axiom (MEP) and G∆iGS.

Note that for all i ∈ N0(G), ϕi(G) = 0 = HPi(G) By Proposition 1.2.9. Thus,
ϕ(G) = HP(G).

Induction step: Suppose that for some positive integer r ≥ 1, ϕ(G) = HP(G) for
all simple game G = (N,W(G)) ∈ Gr such that |Mi(G)| ≤ 1 for all i ∈ N . Consider
a simple game G = (N,W(G)) ∈ Gr+1 such that |Mi(G)| ≤ 1 for all i ∈ N , we set
F (G) = {S ∈ M(G) : |S| = r + 1}. We prove by induction on f = |F (G)| ≥ 1 that
ϕ(G) = HP(G) for all simple game G = (N,W(G)) ∈ Gr+1 such that f = |F (G)| and
|Mi(G)| ≤ 1 for all i ∈ N .

For f = 1, consider a simple game G = (N,W(G)) ∈ Gr+1 such that |F (G)| = 1 and
|Mi(G)| ≤ 1 for all i ∈ N . Set F (G) = {S}, then |S| = r+1 ≥ 2. Fix two players i, j ∈ S
and define the simple games G′ = (N ′,W(G′)), G′′ = (N ′′,W(G′′)) ∈ G with N ′ = N\{i},
N ′′ = N\{j},M(G′) = (M(G)\{S}) ∪ {S ′} andM(G′′) = (M(G)\{S}) ∪ {S ′′} where
S ′ = S\{i} and S ′′ = S\{j}.

Then G is an i-supplementation of G′, and it follows by Proposition 2.1.1 that ϕk(G) =

(1 − ϕi(G))ϕk(G
′) for all k ∈ N\{i}. Note that G′ ∈ Gr and |Mk(G

′)| ≤ 1 for all k ∈
N\{i}, it follows by induction assumption that ϕ(G′) = HP(G′). But HPk(G

′) = 1
n−n0−1

for all k ∈ N\(N0(G) ∪ {i}) where n0 = |N0(G)|. Thus, ϕj(G) = ϕk(G) = 1−ϕi(G)
n−n0−1

for all
k ∈ N\(N0(G) ∪ {i, j}).
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Similarly, ϕi(G) = ϕk(G) =
1−ϕj(G)

n−n0−1
for all k ∈ N\(N0(G) ∪ {i, j}) since G is an

j-supplementation of G′′.
It follows that, ϕi(G) = ϕj(G) = ϕk(G) for all k ∈ N\(N0(G) ∪ {i, j}).
We have by Proposition 1.2.9 that ϕk(G) = 0 = HPk(G) for all k ∈ N0(G). It

follows by Axiom (E) that ϕk(G) = 1
n−n0

= HPk(G) for all k ∈ N\N0(G). Therefore,
ϕ(G) = HP(G).

Now suppose that for some positive integer f ≥ 1, ϕ(G) = HP(G) for all simple game
G = (N,W(G)) ∈ Gr+1 such that |F (G)| = f and |Mi(G)| ≤ 1 for all i ∈ N .

Consider a simple game G = (N,W(G)) ∈ Gr+1 such that |F (G)| = f + 1 and
|Mi(G)| ≤ 1 for all i ∈ N . Set S ∈ F (G), then |S| = r + 1 ≥ 2. Fix two players i, j ∈ S
and define the simple games G′ = (N ′,W(G′)), G′′ = (N ′′,W(G′′)) ∈ G with N ′ = N\{i},
N ′′ = N\{j},M(G′) = (M(G)\{S}) ∪ {S ′} andM(G′′) = (M(G)\{S}) ∪ {S ′′} where
S ′ = S\{i} and S ′′ = S\{j}.

Then G is an i-supplementation of G′, and it follows by Proposition 2.1.1 that ϕk(G) =

(1−ϕi(G))ϕk(G
′) for all k ∈ N\{i}. Note that G′ ∈ Gr+1, |F (G′)| = f and |Mk(G

′)| ≤ 1

for all k ∈ N\{i}, it follows by induction assumption on f that ϕ(G′) = HP(G′). But
HPk(G

′) = 1
n−n0−1

for all k ∈ N\(N0(G) ∪ {i}) where n0 = |N0(G)|. Thus, ϕj(G) =

ϕk(G) = 1−ϕi(G)
n−n0−1

for all k ∈ N\(N0(G) ∪ {i, j}).
Similarly, ϕi(G) = ϕk(G) =

1−ϕj(G)

n−n0−1
for all k ∈ N\(N0(G) ∪ {i, j}) since G is an

j-supplementation of G′′.
It follows that, ϕi(G) = ϕj(G) = ϕk(G) for all k ∈ N\(N0(G) ∪ {i, j}).
We have by Proposition 1.2.9 that ϕk(G) = 0 = HPk(G) for all k ∈ N0(G). It

follows by Axiom (E) that ϕk(G) = 1
n−n0

= HPk(G) for all k ∈ N\N0(G). Therefore,
ϕ(G) = HP(G).

Results that precede now lead us to the following:

A power index ϕ on G satisfies (E), (SC) and (MEP) if and only if ϕ = HP.

Theorem 2.3.1.

?

Proof.
Necessity : Proposition 2.1.3, Proposition 2.1.4 and Proposition 2.3.1, show that the

Public Good Index HP satisfies (E), (SC) and (MEP).

Sufficiency : Now consider a power index ϕ on G that satisfies (E), (MEP) and (SC).
For all simple game G = (N,W(G)) ∈ G, we set E(G) = {i ∈ N : |Mi(G)| ≥ 2}. We
denote G(m) = {G ∈ G : |E(G)| = m} and we prove by induction on positive integer m
that ϕ(G) = HP(G) for all G ∈ G(m).
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Initialization: For m = 0, consider a simple game G = (N,W(G)) ∈ G(0). We
have E(G) = ∅, that is |Mi(G)| ≤ 1 for all i ∈ N . It follows by Lemma 2.3.1 that
ϕ(G) = HP(G).

Induction step: Suppose that for some positive integer m, ϕ(G) = HP(G) for all
G ∈ G(m). Consider a simple game G = (N,W(G)) ∈ G(m+1) and a player i ∈ E(G).
Then |Mi(G)| ≥ 2, set p = |Mi(G)|, q = |M(G)|,Mi(G) = {S1, ..., Sp} and M(G) =

{S1, ..., Sp, Sp+1, ..., Sq}. Consider p players i1, ..., ip ∈ P\N and set Tl = (Sl\{i}) ∪
{il} for all l ∈ {1, ..., p}. Define the following simple games (Gl)l∈{0,...,p} by G0 = G

and for all l ∈ {1, ..., p}, Gl = (Nl,W(Gl)) with Nl = N ∪ {i1, ..., il} and M(Gl) =

{T1, ..., Tl, Sl+1, ..., Sq}.
Then E(Gp) = E(G)\{i}, one obtains |E(Gp)| = m. It follows by the induction

assumption that ϕ(Gp) = HP(Gp). Note that Gp∆jGp−1 for all j ∈ Np−1\{i}, therefore
ϕj(Gp−1) = ϕj(Gp) since ϕ satisfies Axiom (MEP)

= HPj(Gp) since ϕ(Gp) = HP(Gp)

= HPj(Gp−1) since HP satisfies Axiom (MEP).
Moreover,
ϕi(Gp−1) = 1−

∑
j∈Np−1\{i}

ϕj(Gp−1) since ϕ satisfies Axiom (E)

= 1−
∑

j∈Np−1\{i}
HPj(Gp−1) since ϕj(Gp−1) = HPj(Gp−1) for all j∈Np−1\{i}

= HPi(Gp−1) since HP satisfies Axiom (E).
That is ϕ(Gp−1) = HP(Gp−1).
Let l ∈ {1, ..., p} and assume that ϕ(Gl) = HP(Gl). Note that for all j ∈

Nl−1\{i}, Gl∆jGl−1; therefore
ϕj(Gl−1) = ϕj(Gl) since ϕ satisfies Axiom (MEP)

= HPj(Gl) since ϕ(Gl) = HP(Gl) by assumption
= HPj(Gl−1) since HP satisfies Axiom (MEP).

Moreover,
ϕi(Gl−1) = 1−

∑
j∈Nl−1\{i}

ϕj(Gl−1) since ϕ satisfies Axiom (E)

= 1−
∑

j∈Nl−1\{i}
HPj(Gl−1) since ϕj(Gl−1) = HPj(Gl−1) for all j∈Nl−1\{i}

= HPi(Gl−1) since HP satisfies Axiom (E).
Thus, ϕ(Gl−1) = HP(Gl−1).
For l = 1, one obtains ϕ(G0) = HP(G0). That is ϕ(G) = HP(G).

Next, we show in that none of the three axioms in Theorem 2.3.1 can not be dropped.

Proposition 2.3.2. Axioms (E), (SC) and (MEP) are logically independent.

Proof.
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(i) Non redundancy of Membership Equivalence Property

Consider the power index J defined by:

for all G = (N,W(G)) ∈ G, J(G) =

HP(G) if |M(G)| ≥ 2

1{i0} ifM(G) = {S} for some S ⊆ N

where i0 = min{i : i ∈ S}.

It is easy to check that J satisfies Axiom (E).

To establish that J satisfies Axiom (SC), consider a simple game G = (N,W(G)) ∈
G, a player k ∈ P \N and a k-supplementation G′ = (N ′,W(G′)) of G. Note that
|M(G′)| = |M(G)| as in Proposition 1.2.4.

If |M(G)| ≥ 2, then |M(G′)| ≥ 2; it follows by Corollary 2.1.4 that for all i ∈
N,HPi(G

′) = (1 − HPk(G
′)) HPi(G). That is Ji(G′) = (1 − Jk(G

′))Ji(G) for all
i ∈ N .

If |M(G)| = 1, setM(G) = {S} and i0 = min{i : i ∈ S}. ThenM(G′) = {S} or
M(G′) = {S ∪ {k}}.

In the case M(G′) = {S}, we have Jk(G
′) = 0 and Ji(G

′) = Ji(G) = (1 −
Jk(G

′))Ji(G) for all i ∈ N .

In the caseM(G′) = {S ∪ {k}}, Jk(G′) =

1 if k < i0

0 if k > i0.

If k < i0, then Ji(G′) = 0 = (1− Jk(G′))Ji(G) for all i ∈ N .

If k > i0, then Ji(G′) = Ji(G) = (1− Jk(G′))Ji(G) for all i ∈ N .

Thus, J satisfies Axiom (SC).

The power index J does not satisfy Axiom (MEP): In fact, consider the simple
games G = (N,W(G)), G′ = (N ′,W(G′)) ∈ G define by N = {2, 3, 4, 5}, N ′ =

{1, 2, 3, 4, 5},M(G) = {{2, 3, 4}} andM(G′) = {{1, 2, 3}}. It follows that J(G) =

(1; 0; 0; 0) meanwhile J(G′) = (1; 0; 0; 0; 0). Note that G′∆2G meanwhile J2(G′) 6=
J2(G). That is J does not satisfy Axiom (MEP).

(ii) Non redundancy of Efficiency

The power index 2 HP satisfies (MEP) and (SC); but fails to meet Axiom (E).

(iii) Non redundancy of Supplementation Consistency

It will be shown later in Chapter 3 that the Deegan-Packel index DP satisfies
(E) and (MEP) (see Propositions 3.1.4 and 3.3.1), but fails to meet Axiom (SC).
To see that DP does not meet Axiom (SC), consider what follows. Define the
following simple games G = (N,W(G)), G′ = (N ∪ {6} ,W(G′)) ∈ G by N =
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{1, 2, 3, 4, 5} , N ′ = N ∪ {6}, M(G) = {{1, 3, 4} , {2, 4, 5} , {1, 2}} and M(G′) =

{{1, 3, 4} , {2, 4, 5} , {1, 2, 6}}. Note that G′ is a 6-supplementation of G. We have
DP(G) =

(
5
18
, 5

18
, 2

18
, 4

18
, 2

18

)
and DP(G′) =

(
4
18
, 4

18
, 2

18
, 4

18
, 2

18
, 2

18

)
. It follows that

DP1(G′)
DP1(G)

6= DP3(G′)
DP3(G)

. Therefore, the Deegan-Packel index DP does not satisfy Axiom
(SC).

Remark 2.3.1. Note that another proof of Theorem 2.3.1 can be established using
on the one hand, Proposition 2.1.3, Proposition 2.1.4 and Proposition 2.3.1 for the
necessity part; and an the other hand, using Proposition 1.2.10 and Theorem 2.2.2 for
the sufficiency part.

2.3.2 Weakening Axiom (NPM)

Proposition 1.2.6 states that (NPM) implies (NP). It may be of interest to see how to weaken
the (NPM) condition so that (NP) is explicitly needed; by so doing we aim at highlighting
how far do these two axioms overlap. On this point, we show that when (NPM) is replaced
in Theorem 2.2.1 with its weaker version obtained by restricting the merging operation only
to independent players who are decisive in at least one coalition, incorporating (NP) is a
necessary condition. Furthermore, to characterize the Public Good Index, we also need the
classical axiom of symmetry.

Axiom 11. Symmetry (S): For all G = (N,W(G)) ∈ G and for all pairs {i, j} of
symmetric players in G, ϕi(G) = ϕj(G).

According to Axiom (S), two symmetric players in a simple game should enjoy the same
voting power. To continue, we introduce the following definition.

Definition 2.3.1. Given a simple game G and a coalition T , the merging operation
from G to GT is effective if T contains no null player in the game G.

The following axiom is a weak version of Axiom (NPM) when only effective merging of
independent players are considered.

Axiom 12. Non Profitable Effective Merging (NPEM) of independent players:
For all G = (N,W(G)) ∈ G, for all coalitions T ⊆ N of at least two players,

ϕiT (GT ) =
∑
i∈T

ϕi(G)

whenever T contains no null player and only independent players.

Proposition 2.3.3 (Safokem et al. (2021)). If a power index ϕ on G satisfies (E),
(SC), (NPEM), (NP) and (S), then ϕ satisfies (NPM).
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Proof.
Consider a power index ϕ on G. Suppose that ϕ satisfies (E), (SC), (NPEM), (NP)

and (S). Consider a simple game G = (N,W(G)) ∈ G, a coalition T ⊆ N containing only
independent players with |T | ≥ 2. Let S be the set of all members of T who are null
players in G; and G′ = (N\S,W(G′)) be the simple game such that M(G′) = M(G).
The game G′ is obtained from G when the members of S leave G without altering the
status of any minimal winning coalition.

Step 1. First suppose that S is empty. Then by (NPEM), condition (1.3) is satisfied.

Step 2. Now suppose that S is not empty and T\S = {i}, for some i ∈ N . Note that i
is no longer a player in the game GT = (NT ,W(GT )). Consider the game G′′ =

(NT ∪ {i},W(G′′)) obtained from GT when player i gets in the game by joining
only all minimal winning coalitions that contain iT ; that is, for all K ⊆ NT ∪ {i},
K ∈ M(G′′) if and only if (iT /∈ K, i /∈ K and K ∈ M(GT )), or (iT ∈ K, i ∈ K
and K\{i} ∈ M(GT )). On the one hand, G′′ is an i-supplementation of the game
GT . Furthermore, i and iT are symmetric players in G′′. Therefore by (S), (E) and
(SC), it follows that

ϕi(G
′′) = ϕiT (G′′) = (1− ϕi(G′′))ϕiT (GT ). (2.7)

On the other hand, G′′ is an iT -supplementation of G′. Thus, it follows that

ϕiT (G′′) = ϕi(G
′′) = (1− ϕiT (G′′))ϕi(G

′). (2.8)

It follows from (2.7) and (2.8) that ϕiT (GT ) = ϕi(G
′). By noting that when a null

player k leaves a simple game while the set of minimal winning coalitions remains
unchanged, the shares of players other than k remain unchanged by applying both
(E), (SC) and (NP). Therefore, ϕi(G′) = ϕi(G) since G′ is obtained from G when
the members of S leaves G and those members are null players in G. Therefore
ϕiT (GT ) = ϕi(G). Hence condition (1.3) is satisfied.

Step 3. Finally, suppose that S is not empty and |T\S| ≥ 2. Set T ′ = T\S. Then no null
player belongs to T ′ and T ′ contains only independent players. By (NPEM),

ϕiT ′ (G
T ′) =

∑
j∈T ′

ϕj(G) =
∑
j∈T

ϕj(G). (2.9)

The second equality in (2.9) holds by (NP) since players in S = T\T ′ are null players
in the game G. In the game GT ′ , note that coalition T ′′ = {iT ′} ∪ S contains only
independent players and all members of T ′′ are null players in GT ′ except player iT ′ .
As it is just shown in Step 2., merging in the game GT ′ the members of T ′′ into iT
implies that

ϕiT

((
GT ′
)T ′′)

= ϕiT ′ (G
T ′). (2.10)
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Moreover,
(
GT ′
)T ′′

= GT . Therefore, condition (1.3) holds by (2.9) and (2.10).

In each of the three possible cases, condition (1.3) holds. That is ϕ satisfies (NPM).

The next result is a characterization of the Public Good Index using (NP).

A power index ϕ on G satisfies (E), (SC), (NPEM), (NP) and (S) if and only if
ϕ = HP.

Theorem 2.3.2 (Safokem et al. (2021)).

?

Proof.
The proof follows from Proposition 2.3.3 and Theorem 2.2.1.

Proposition 2.3.4. Axioms in Theorem 2.3.2 are independent.

Proof.
Each of the three power indices presented in Section 2.2.2 satisfies both (NP) and

(S). Those power indices can then be used to prove that in Theorem 2.3.2, none of the
(E), (SC) and (NPEM) can be dropped. For (NP) and (S), we consider the two power
indices below:

• Define the power index I on G for all G = (N,W(G)) ∈ G and for all i ∈ N by

Ii(G) =

{
HPi(G) if |M(G)| ≥ 2

1
|N | otherwise

The power index I satisfies (E), (SC), (NPEM) and (S); but I obviously fails to
meet (NP) over the class of unanimity simple games or simple games with only
a unique minimal coalition. This proves that (NP) is not redundant in Theorem
2.3.2.

• Consider the power index J defined on G for all G = (N,W(G)) ∈ G and for all
i ∈ N by

Ji(G) =


HPi(G) if |M(G)|≥2

1 if M(G)={S} for some coalition S such that i ∈ S and i ≤ j for all j∈S

0 otherwise.

The power index J satisfies (E), (SC), (NPEM) and (NP); but J obviously fails
to meet (S) by considering simple games with a unique minimal winning coalition.
This proves that (S) is not redundant in Theorem 2.3.2.
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Using weak versions of (IEM) and (IIM) where the merging operation is restricted only
to independent players who are decisive in at least one coalition, one can obtain two other
characterizations of the Public Good Index. Since such results become obvious from what
is already done here, they are simply omitted.

2.3.3 Axiomatization of coalitional versions of the Public Good

Index

A simple game with a priori unions is a simple game where players are grouped into a
coalition structure (that is a partition of the set of players). Alonso-Meijide et al. (2010b)
has extended the Public Good Index to simple games with a priori unions as well as an
axiomatization of the whole class of coalitional versions of the Public Good Index; these
are power indices on simple games with a priori unions that yield, on simple games with
a priori unions containing only singletons, the same distribution of voting power as with
the Public Good Index of the main simple game with no a priori unions; see also Holler
and Nohn (2009) for the introduction and axiomatization of four alternative versions of the
Public Good Index for simple games with a priori unions. In a similar way, we provide
below another characterization of coalitional versions of the Public Good Index. Following
Alonso-Meijide et al. (2010b), we recall the following definitions.

Definition 2.3.2. Given a finite nonempty set N of players:

1. A simple game with a priori unions is a 3-tuple (N, v, P ), where (N, v) is a simple
game and P , a partition of N called the set of a priori unions.

2. A coalitional power index is any mapping that associates each simple game with
a priori unions (N, v, P ) with an n−tuple of real numbers; hat is, f(N, v, P ) =

(fi(N, v, P ))i∈N .

3. A coalitional power index f is said to be a coalitional version of a given power
index g on simple games if f(N, v, PN) = g(N, v) for all (N, v) ∈ G, where PN =

{{i} : i ∈ N} .

In particular, a coalitional power index f is a coalitional version of the Public Good
Index if:

f(N, v, PN) = HP(N, v),∀(N, v) ∈ G. (2.11)

For power indices on simple games with a priori unions, the following axiom is due to
Alonso-Meijide et al. (2010b).

Axiom 13. Singleton Efficiency (SE): For all G = (N, v) ∈ G,
∑
i∈N

fi(N, v, P
N) = 1.
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In a similar way, we now introduce the following coalitional versions of the axioms we
early presented.

Axiom 14. Supplementation Consistency with a priori Unions (SCU): For all
G = (N, v) ∈ G, for all k ∈ P\N , and for all k-supplementations G′ = (N ′, v′) of G,
there exists a real constant λG′ such that

fi

(
N ′, v′, PN ′

)
= λG′fi

(
N, v, PN

)
for all i ∈ N.

Axiom 15. No Profitable Merging with a priori Unions (NPMU): For all G =

(N, v) ∈ G, for all T ⊆ N with |T | ≥ 2, for all jT ∈ P\N , fjT (NT , vT , PNT

) =∑
i∈T

fi(N, v, P
N) whenever T consists of independent players in G.

Proposition 2.3.5 (Safokem et al. (2021)). A coalitional power index f is a coali-
tional version of the Public Good Index if and only if f satisfies (SE), (SCU) and
(NPMU).

Proof.
Straightforward from Theorem 2.2.1 and equation (2.11).

Proposition 2.3.6. Axioms (SE), (SCU) and (NPMU) are independent.

Proof.

(i) Axioms (SE), (SCU) do not imply (NPMU)

Define the power index ϕ̃ for all simple games with a priori unions G =

(N,W(G), P ) as follows,

ϕ̃i(G) =


1

|N\N0(N,W(G))|
if P = PN and i ∈ N\N0((N,W(G))

0 otherwise.

By definition of ϕ̃, the restriction of ϕ̃ on the set of all simple games with a priori
unions G = (N,W(G), PN) coincides with the power index ϕ defined in Part (i)
of the proof of Proposition 2.2.1 (that is ϕ̃(N,W(G), PN) = ϕ(N,W(G))). Since
we have shown in the proof of Proposition 2.2.1 that ϕ satisfies (SE) and (SCU),
but not (NPMU), then by (2.11), ϕ̃ satisfies (SE) and (SCU), but fails to meet
(NPMU).
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(ii) Axioms (NPMU) and (SCU) do not imply (SE)

Define the power index H̃P defined for all simple game with a priori unions G =

(N,W(G), P ) and for all i ∈ N by,

H̃Pi(G) =

2 HPi(N,W(G)) if P = PN

0 otherwise.

By definition, the restriction of H̃P on the set of all simple games with a priori
unions G = (N,W(G), P ) with P = PN coincides with the power index defined in
Part (ii) of the proof of Proposition 2.2.1. By considering (2.11), the power index
H̃P satisfies (NPMU) and (SCU), but not (SE).

(iii) Axioms (NPMU) and (SE) do not imply (SCU)

Consider the power index H̃ defined for all simple game with a priori unions G =

(N,W(G), P ) and for all i ∈ N by,

H̃i(G) =


|M∗

i (N,W(G))|∑
j∈N |M∗

j(N,W(G))|
if P = PN

0 otherwise.

where

M∗(N,W(G)) = {S ∈M(N,W(G)) : |S| ≤ |T | for all T ∈M(N,W(G))},

is the set of minimal winning coalitions with the minimal size and for all i ∈ N ,

M∗
i (N,W(G)) = {S ∈M∗(N,W(G)) : i ∈ S}.

On the set of all simple games with a priori unions G = (N,W(G), P ) with P = PN ,
the restriction of H̃ coincides with the power index H defined in Part (iii) of the
proof of Proposition 2.2.1. Therefore, it follows by (2.11) that the power index H̃

satisfies (NPMU) and (SE), but not (SCU).

Each of the theorems presented in this chapter on simple games can be extended to
simple games with a priori unions using very similar arguments. We simply omit here all
those results since it was not our primarily objective. What is important is that each of the
characterization we present here enriches the literature on the Public Good Index on simple
games as well as simple games with a priori unions (with very little effort). Furthermore,
the tools developed in this chapter enable us to widen the scope of our analysis to the
Deegan-Packel index. This is presented in the next chapter.
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Axiomatizations of the Deegan-Packel

index on simple games with a variable

electorate

The Deegan-Packel index was introduced in Deegan and Packel (1978). Two known axiom-
atizations of this power index are due, on the one hand, to Deegan and Packel (1978) who
proved an (AN)+(E)+(NP)+(DPM) characterization; and on the other hand, to Lorenzo-
Freire et al. (2007) who has presented another characterization by replacing Axiom (DPM)
by a monotonicity condition. All these results are related to simple games with a fixed
electorate. Our objective is to provide new axiomatizations of the Deegan-Packel index for
simple games with a variable electorate on which no existing characterization has not yet
been reported to the best of our knowledge.

For an overview of this chapter, we first provide in Section 3.1, some preliminaries on the
Deegan-Packel index. A new axiom on the supplementation operation is introduced: the
Supplementation Invariance (SI) and it is shown that the Deegan-Packel index satisfies (E),
(SI) and (NPM). Secondly, we state and prove in Section 3.2 new axiomatizations of the
Deegan-Packel index for simple games with a variable electorate together with the logical
independence of the axioms we used in each result. We conclude this chapter in Section 3.3
with another axiomatization of the Deegan-Packel index using an axiom based on equivalent
games; we also obtain axiomatization results of coalitional versions of the Deegan-Packel
index.

3.1 Preliminaries

The present section is devoted to preliminaries on the Deegan-Packel index. This includes
an overview of two related characterization results; the introduction of our axiom of Supple-
mentation Invariance (SI) and the proof that the Deegan-Packel index satisfies (SI), (NPM)
and (IEM).
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3.1.1 On two known axiomatizations of the Deegan-Packel index

The following characterization of the Deegan-Packel index due to Deegan and Packel (1978)
is in the same spirit with the characterization of the Public Good Index by Holler and Packel
(1983); see Theorem 2.1.1. The two results differ only on their respective mergeability
conditions.

Given a nonempty and finite subset N of P , the Deegan-Packel index is the unique
power index that simultaneously satisfies (NP), (E), (AN) and (DPM) on GN .

Theorem 3.1.1 (Deegan and Packel (1978)).

?

Alternatively, Lorenzo-Freire et al. (2007) characterized the Deegan-Packel index by
replacing the Deegan-Packel Mergeability with the following axiom of Minimal Monotonicity.

Axiom 16. Minimal Monotonicity : A power index ϕ satisfies Minimal Monotonicity
(MM) if for any two simple games G = (N,W(G)) and G′ = (N,W(G′)) ∈ GN , it holds
that,

ϕi(G)|M(G)| ≤ ϕi(G
′)|M(G′)| for all i ∈ N such that Mi(G) ⊆Mi(G

′).

That is, if in a simple game G = (N,W(G)), the set of minimal winning coalitions
containing a voter i ∈ N is a subset of minimal winning coalitions containing voter i in
another simple game G′ = (N,W(G′)), then the power of voter i in game G′ is not less than
the power of voter i in G once the power is normalized by the number of minimal winning
coalitions in G′ and G, respectively. A similar axiom of monotonicity was later introduced
by Alonso-Meijide et al. (2008) to built up what we refer to as a dual characterization of
the Public Good Index as compared to the one stated by Lorenzo-Freire et al. (2007) on the
Deegan-Packel index. This sort of duality between the Holler-Packel index and the Deegan-
Packel index is certainly due to their respective formulations with an apparent closeness to
minimal winning coalitions.

3.1.2 Axiom of Supplementation Invariance

As with the Supplementation Consistency (SC) condition we use to characterize the Public
Good Index, we now introduce the following axiom of Supplementation Invariance which
is another conceivable way changes due to a supplementation may be handled by a power
index.

Axiom 17. Supplementation Invariance (SI): For all G = (N,W(G)) ∈ G, for all
k ∈ P \N , for all k-supplementation G′ of G, for all i ∈ N , if k /∈ S for all S ∈Mi(G

′),
then ϕi(G

′) = ϕi(G).
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When a simple game G′ is a k-supplementation of a simple game G, Axiom (SI) says
that, each time a player i in the initial game G is such that k belongs to no minimal winning
coalition containing i in the new game G′, then the i’s voting power should not be affected.

A useful relationship between (SI), (E) and (NP) is provided in the next result.

Proposition 3.1.1. Let ϕ be a power index on G that satisfies (E) and (SI).
Then ϕ satisfies Axiom (NP).

Proof.
Let ϕ be a power index on G that satisfies (E) and (SI). Consider a simple game

G = (N,W(G)) ∈ G and a null player i in G. Pose Gi = (Ni,W(Gi)) with Ni = N\{i}
and M(Gi) = M(G). Note that G is an i-supplementation of Gi such that for all
j ∈ Ni, for all S ∈ Mj(G), i /∈ S. Since ϕ satisfies Axiom (SI), one gets ϕj(G) = ϕj(Gi)

for all j ∈ Ni. It follows that ∑
j∈Ni

ϕj(G) =
∑
j∈Ni

ϕj(Gi). (3.1)

Moreover,

ϕi(G) = 1−
∑
j∈Ni

ϕj(G) by efficiency of ϕ applied to the simple game G

= 1−
∑
j∈Ni

ϕj(Gi) by equation (3.1)

= 0 by efficiency of ϕ applied to the simple game Gi.

The following propositions provide other properties of all power indices that satisfy (E)
and (SI).

Proposition 3.1.2. Let ϕ be a power index on G that satisfies (E) and (SI).
If G0 = (N0,W(G0)) and G = (N,W(G)) are two simple games such that G =

G0[i1, i2, ..., il] for some voters i1, i2, ..., il ∈ P \ N0 with l ∈ N∗; then ϕik(G) = 0 for all
k ∈ {1, ..., l} and ϕi(G) = ϕi(G0) for all i ∈ N0.

Proof.
Let ϕ be a power index on G that satisfies (E) and (SI). Consider two simple games

G0 = (N0,W(G0)) and G = (N,W(G)) such that G = G0[i1, i2, ..., il] for some l ∈ N∗

and l players i1, i2, ..., il ∈ P \ N0. One have N = N0 ∪ {i1, i2, ..., il}. Since for all
k ∈ {1, ..., l}, ik is a null player in the simple game G, it follows by Proposition 3.1.1
that ϕik(G) = 0. For all i ∈ N0, ϕi(G0[i1]) = ϕi(G0) by Axiom (SI), since G0[i1] is a i1-
supplementation of G0 and for all S ∈Mi(G0[i1]), i1 /∈ S. Similarly, ϕi(G0[i1, i2, ..., ik]) =
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ϕi(G0[i1, ..., ik−1]) for all k ∈ {2, ..., l} and i ∈ N0, since G0[i1, i2, ..., ik] is a ik-
supplementation of G0[i1, i2, ..., ik−1] and for all S ∈ Mi(G0[i1, ..., ik]), ik /∈ S. For k = l,
one gets for all i ∈ N0, ϕi(G0[i1, ..., il]) = ϕi(G0[i1, ..., il−1]) = ... = ϕi(G0[i1]) = ϕi(G0).
That is ϕi(G) = ϕi(G0).

Proposition 3.1.2 enables us to proves the following result.

Proposition 3.1.3. Let ϕ be a power index on G that satisfies (E), (NPM) and (SI).
Then for all simple game G = (N,W (G)) ∈ G, for all i ∈ N and for all j ∈ P\N ,

ϕj (Gi↔j) = ϕi (G).

Proof.
Let ϕ be a power index on G that satisfies (E), (NPM) and (SI). Consider a simple

game G = (N,W(G)) ∈ G, i ∈ N and j ∈ P\N . Let k ∈ P\ (N ∪ {j}). By Proposition
3.1.2, ϕk(G[k]) = 0 and ϕi(G[k]) = ϕi(G). Moreover, Gi↔j is obtained from G [k] by
merging i and k into j. Since ϕ satisfies Axiom (NPM), it follows that ϕj (Gi↔j) =

ϕk(G[k]) + ϕi(G[k]) = ϕi (G).

Proposition 3.1.3 tells us that, given any power index that satisfies (E), (NPM) and (SI),
if from one simple game to another, only one player in the initial simple game is replaced by
another player, then the new player simply inherits the replaced player’s share. However,
nothing is said about the shares of other players in the new simple game.

3.1.3 Preliminary results

As preliminary results to characterization results in subsequent sections, it is shown here
that the Deegan-Packel index satisfies (E), (SI), (NPM) and (IEM). The following is straight-
forward and is also mentioned by Deegan and Packel (1978).

Proposition 3.1.4. The Deegan-Packel index DP satisfies (E), (NP) and (AN).

The next results are related to simple games with a variable electorate.

Corollary 3.1.1. The Deegan-Packel index satisfies Axiom (SI).

Proof.
Consider G = (N,W(G)) ∈ G, k ∈ P\N and a k-supplementation G′ = (N ′,W(G′))

of G. Let i ∈ N be a player such that for all S ∈Mi(G
′), k /∈ S, it follows as in the Propo-

sition 1.2.4 that |M(G′)| = |M(G)|,Mi(G
′) = {S ∪ {k} : S ∈ E ∩Mi(G)} ∪ {S : S ∈

UYI: Ph.D Thesis 59 SAFOKEM Adin c©UYI 2023



3.1. Preliminaries

Mi(G) \ E} and |Mi(G
′)| = |Mi(G)|. One obtains Mi(G

′) = Mi(G) and |M(G′)| =

|M(G)|. Thus,

DPi(G
′) =

1

|M(G′)|
∑

S∈Mi(G′)

1

|S|

=
1

|M(G)|
∑

S∈Mi(G)

1

|S|

= DPi(G).

Therefore DP satisfies Axiom (SI).

Corollary 3.1.2. The Deegan-Packel index satisfies Axiom (NPM).

Proof.
Consider a simple game G = (N,W(G)) ∈ G and a coalition T of at least two players

such that the merging operation from G to GT consists of merging members of T , where
T contains only pairs of independent players. Let i ∈ T . Note that for all S ∈ Mi(G),
S ∩ T = {i} and |S ∩ T | = 1 since T only contains pairs of independent players, then
ST = (S \ T ) ∪ {iT} and |ST | = |S| − |S ∩ T | + 1 = |S|. By Parts (b) and (d) of
Proposition 1.2.2, one gets |M(GT )| = |M(G)| andMiT (GT ) = ∪i∈T{ST : S ∈ Mi(G)}
with Mi(G) ∩ Mj(G) = ∅ for all pair of distinct players i, j in T . Since S 7→ ST is
injective, we get

DPiT (GT ) =
1

|M(GT )|
∑

S∈MiT
(GT )

1

|S|

=
1

|M(GT )|
∑
i∈T

∑
S∈Mi(G)

1

|ST |

=
1

|M(G)|
∑
i∈T

∑
S∈Mi(G)

1

|S|

=
∑
i∈T

(
1

|M(G)|
∑

S∈Mi(G)

1

|S|
)

=
∑
i∈T

DPi(G).

Therefore, DP satisfies Axiom (NPM).

Using Parts (b) and (c) in Proposition 1.2.2, we show in the next corollary that DP even
satisfies Axiom (IEM).

Corollary 3.1.3. The Deegan-Packel index DP satisfies Axiom (IEM).
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Proof.
Consider a simple game G = (N,W(G)) ∈ G and a coalition T of at least two players

such that the game GT is obtained from G by merging members of T , where T contains
only pairs of independent players. Let i ∈ N\T . Note that for all S ∈Mi(G), if S∩T = ∅,
then ST = S and |ST | = |S|; else |S ∩ T | = 1 since T only contains pairs of independent
players, then ST = (S \T )∪{iT} and |ST | = |S|− |S∩T |+ 1 = |S|. By Parts (b) and (c)

of Proposition 1.2.2, one gets |M(GT )| = |M(G)| andMi(G
T ) = {ST : S ∈ Mi(G)}.

Since S 7→ ST is injective, we get

DPi(G
T ) =

1

|M(GT )|
∑

S∈Mi(GT )

1

|S|
=

1

|M(G)|
∑

S∈Mi(G)

1

|S|
= DPi(G).

Therefore, DP satisfies Axiom (IEM).

3.2 Axiomatizations of the Deegan-Packel index

We state and prove some axiomatizations of the Deegan-Packel index for simple games with
a variable electorate using Axiom (SI) and some axioms related to merging operations. The
logical independence among our axioms is also provided.

3.2.1 Main result

It is just shown above that the Deegan-Packel index satisfies (NP), (E), (SI), (NPM) and
(IEM). We now prove that appropriate combinations of these axioms uniquely identify the
Deegan-Packel index. But before stating such result, we need the following lemmas to ease
its proof. We start by considering the case of singleton games.

Lemma 3.2.1. Let ϕ be a power index on G that satisfies (E), (NPM) and (SI).
Then for all coalitions S ⊆ P, ϕ (GS) = DP (GS).

Proof.
Let ϕ be a power index on G that satisfies (E), (NPM) and (SI). Consider a coalition

S ⊆ P and the singleton game GS = (S,W(GS)). Since ϕ satisfies (E), (NPM) and
(SI), it follows from Proposition 3.1.3 that for all simple games G = (N,W (G)) ∈ G, for
all i ∈ N and for all j ∈ P\N , ϕj (Gi↔j) = ϕi (G). Then using Remark 2.2.1 together

with Lemma 2.2.1, we obtain ϕs(GS) =
1

|S|
for all s ∈ S. Considering the fact that

DPs(GS) =
1

|S|
for all s ∈ S, we then conclude that for all s ∈ S, ϕs(GS) = DPs(GS).

Thus, ϕ (GS) = DP (GS).
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Next, we consider the case of all simple games in which each voter is decisive in at most
one minimal winning coalition.

Lemma 3.2.2. Let ϕ be a power index on G that satisfies (E), (NPM) and (SI).
Then ϕ (G) = DP (G) for all simple games G = (N,W(G)) ∈ G such that |Mi(G)| ≤ 1

for all i ∈ N .

Proof.
Suppose that ϕ is a power index on G that satisfies (E), (NPM) and (SI). We denote by

N ′(G) = {i ∈ N : |Mi(G)| = 1} and n′ = |N ′(G)| for all G = (N,W(G)) ∈ G. We prove
by induction on integer n′ ≥ 1 the assertion B (n′) that for all simple games G ∈ G with
|N ′(G)| = n′, ϕ(G) = DP(G). Note that N = N ′(G) ∪N0(G) and N ′(G) ∩N0(G) = ∅.

Initialization step. For the initialization step, suppose that n′ = 1 and let G =

(N,W(G)) ∈ G such that |N ′(G)| = 1. Then N ′(G) = {i} and M(G) = {{i}} for
some i ∈ P . By Proposition 3.1.1, we have ϕj(G) = 0 = DPj(G) for all j ∈ N0(G) and
ϕi(G) = 1 = DPi(G) by Axiom (E). That is ϕ(G) = DP(G). Then B (1) holds.

Induction step. For the induction step, suppose that B (n′) holds for some integer
n′ ≥ 1. We prove that B (n′ + 1) necessarily holds. Consider a game G = (N,W(G)) ∈ G
such that |N ′(G)| = n′ + 1. Pose M(G) = {S1, S2, ..., Sm} with Sp ∩ Sq = ∅ for all
p, q ∈ {1, ...,m} such that p 6= q. Set L(G) = {S ∈M(G) : |S| ≥ 2}.

If |L(G)| = 0, then for all T ∈ M(G), |T | = 1. That is G = GS[i1, . . . , im] where
S = N ′(G) and N0(G) = {i1, . . . , im}. It follows by Proposition 3.1.2 and Lemma 3.2.1
that ϕ(G) = DP(G).

Else, |L(G)| ≥ 1 and there exists some k ∈ {1, ...,m} such that |Sk| ≥ 2. Pose
Sk = {i, i1, ..., is} and Tk = Sk\{i} = {i1, ..., is} with s = |Sk| − 1 ≥ 1. Con-
sider the simple game G0 = (N0,W(G0)) define by N0 = N \ {i} and M(G0) =

{S1, S2, ..., Sk−1, Tk, Sk+1, ..., Sm}. Note that |N ′(G0)| = n′ and |Mj(G0)| ≤ 1 for all
j ∈ N0. It follows by the induction assumption that ϕ(G0) = DP(G0). Moreover, G is an
i-supplementation of G0 such that for all j ∈ N \ Sk and for all S ∈Mj(G), i /∈ S (since
minimal winning coalitions of G are disjoint). Then by Axiom (SI), ϕj(G) = ϕj(G0) and
DPj(G) = DPj(G0) for all j ∈ N \ Sk. Thus in the one hand, ϕj(G) = DPj(G) for all
j ∈ N \ Sk. In the other hand, to prove that ϕj(G) = DPj(G) for all j ∈ Sk, we consider
the following cases.

Case |L(G)| ≥ 2: there exists some Sk′ ∈M(G) \ {Sk} such that |Sk′| ≥ 2. It follows
in a similar ways that ϕj(G) = DPj(G) for all j ∈ N \ Sk′ . Note that Sk ⊆ N \ Sk′ since
Sk ∩ Sk′ = ∅. Then ϕj(G) = DPj(G) for all j ∈ Sk in this case.
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Case |L(G)| = 1: If M(G)\L(G) 6= ∅, then there exists some Sk′ ∈ M(G) with
|Sk′ | = 1. Consider a player l ∈ P\N , let Tk′ = Sk′∪{l} and define the simple game G1 =

(N1,W(G1)) by N1 = N ∪ {l} andM(G1) = (M(G)\{Sk′}) ∪ {Tk′}. We have L(G1) =

{Sk, Tk′}, it then follows from the case |L(G1)| ≥ 2 that ϕ(G1) = DP(G1). Note that G1

is a l-supplementation of G such that for all j ∈ N1\Tk′ and for all S ∈ Mj(G1), l /∈ S.
It then follows from Axiom (SI) that ϕj(G) = ϕj(G1) and DPj(G) = DPj(G1) for all
j ∈ N1\Tk′ . Therefore, ϕj(G) = DPj(G) for all j ∈ N1\Tk′ . Note that Sk ⊆ N1\Tk′ .
Thus, ϕj(G) = DPj(G) for all j ∈ Sk in this case.

If M(G)\L(G) = ∅, then M(G) = L(G) = {Sk} with |Sk| ≥ 2. Proposition 3.1.2
implies ϕs(G) = ϕs(GSk

) and DPs(G) = DPs(GSk
) for all s ∈ Sk since G = GSk

[i1, . . . , im]

where N\Sk = {i1, . . . , im}. Noting by Lemma 3.2.1 that ϕs(GSk
) = DPs(GSk

) for all
s ∈ Sk, it follows that ϕs(G) = DPs(G) for all s ∈ Sk. Finally, ϕ(G) = DP(G).

We are now able to state and prove the following characterization of the Deegan-Packel
index for simple games with a variable electorate.

A power index ϕ on G satisfies (E), (NPM) and (SI) if and only if ϕ = DP.

Theorem 3.2.1.

?

Proof.
Necessity. By Proposition 3.1.4 together with Corollaries 3.1.1 and 3.1.2, DP satisfies

(E), (SI) and (NPM).

Sufficiency. Consider a power index ϕ on G that satisfies (E), (NPM) and (SI). Given
a simple game G = (N,W(G)) ∈ G, we denote by E (G) the set of all players i in G such
that |Mi(G)| ≥ 2 and by G(m) the set of all simple games G = (N,W(G)) ∈ G in which
E (G) contains exactly m players. We prove by induction on integer m ≥ 0 the assertion
A′ (m) that for all games G ∈ G(m), ϕ(G) = DP(G).

Initialization step. For the initialization step, we suppose that m = 0 and we consider
a simple game G = (N,W(G)) ∈ G(0), then E (G) = ∅. That is |Mi(G)| ≤ 1 for all i ∈ N .
Since ϕ satisfies (E), (NPM) and (SI), it follows by Lemma 3.2.2 that ϕ(G) = DP(G).
This prove that A′ (0) holds.

Induction step. For the induction step, we suppose that A′ (m) holds for some integer
m ≥ 0. We prove that A′ (m+ 1) necessarily holds. Consider a simple game G =

(N,W(G)) ∈ G(m+1). Then |E (G)| = m + 1 ≥ 1. Thus, there exists some player i ∈
E (G). Let q = |M(G)| and p = |Mi(G)| . We pose Mi(G) = {S1, S2, ..., Sp} and
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M(G) = {S1, S2, ..., Sp, Sp+1, ..., Sq}. Consider p distincts players i1, i2, ..., ip ∈ P\N . We
define the following simple game:

G1 = (N1,W(G1)) with N1 = (N\ {i}) ∪ {i1, i2, ..., ip} and

M(G1) = {T1 ∪ {i1} , ..., Tp ∪ {ip} , Sp+1, ..., Sq}

where Tt = St\ {i} for all t ∈ {1, 2, ..., p}.
Note that G1 is obtained from G by replacing player i in each St by it for t ∈ {1, ..., p}.

Since each new player belongs to exactly one minimal winning coalition in G1, then
E (G1) = E (G) \ {i}. It follows that |E (G1) | = m. Therefore by the induction as-
sumption, ϕ(G1) = DP(G1). Also note that moving from G1 to G consists of merging
independent players i1, i2, ..., ip into i. We then deduce that

ϕi(G) =

p∑
t=1

ϕit(G1) since ϕ satisfies Axiom (NPM)

=

p∑
t=1

DPit(G1) since ϕ(G1) = DP(G1)

= DPi(G) since DP satisfies Axiom (NPM) .

Moreover, for all j ∈ N \ E(G), |Mj(G)| ≤ 1.

If |Mj(G)| = 0, thenMj(G) = ∅ and j ∈ N0(G). It follows by Proposition 1.2.6 that
ϕj(G) = 0 = DPj(G).

If |Mj(G)| = 1, thenMj(G) = {T} for some T ∈ 2N . Note that there exists i ∈ E(G)

such that T /∈ Mi(G). Set Mi(G) = {S1, . . . , Sp}, M(G) = {S1, . . . , Sp, Sp+1, . . . , Sq}
and define the simple game G2 = (N2,W(G2)) such that N2 = N\{i} and M(G2) =

{T1, . . . , Tp, Sp+1, . . . , Sq} where Tl = Sl\{i} for all l ∈ {1, . . . , p}. It follows that G is an
i-supplementation of G2 such that for all S ∈Mj(G), i /∈ S. Axiom (SI) implies ϕj(G) =

ϕj(G2) and DPj(G) = DPj(G2). Note that E(G2) = E(G)\{i} and |E(G2)| = m. Thus
by the induction assumption, ϕj(G2) = DPj(G2). Therefore ϕj(G) = DPj(G).

Finally, we get ϕ(G) = DP(G). This proves that A′(m + 1) holds. In conclusion,
A′(m) holds for all integers m ≥ 0.

Theorem 2.2.1 and Theorem 3.2.1 are both three-axiom characterizations of the Public
Good Index and the Deegan-Packel index respectively. From one of the two axiomatizations
to another, only one axiom changes on the way supplementation operations impact indi-
vidual shares for each of the two power indices. This was already the case with Holler and
Packel (1983) and Deegan and Packel (1978) whose respective results brought out the fact
that among power indices that meet (E), (AN) and (NP), the Public Good Index and the
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Deegan-Packel index differ only on the way mergeable simple games are treated. Similar
dual results have been also reported by Lorenzo-Freire et al. (2007) and Alonso-Meijide et al.
(2008) with the main difference being two distinct concepts of monotonicity.

3.2.2 Logical independence of axioms

It is shown here that none of the three axioms used in Theorem 3.2.1 can not be dropped.

Proposition 3.2.1. Axioms (E), (SI) and (NPM) are logically independent.

Proof.

(i) Non redundancy of Non Profitable Merging of independent players

Define the power index F on G for all G = (N,W(G)) ∈ G as follows:

– If |M(G)| 6= 1, then we pose

F (G) = DP(G).

– IfM(G) = {S} for some S ∈ 2N , then we pose

F (G) =


1{1} if 1 ∈ S

1
|S|1S otherwise.

Firstly, it is clear by the definition of F that F satisfies Axiom (E).

Secondly, to see that F satisfies Axiom (SI), consider G = (N,W(G)) ∈ G, k ∈ P\N
and G′ = (N ′,W(G′)) ∈ G such that G′ is a k-supplementation of G. Also consider
i ∈ N such that k /∈ R for all R ∈ Mi(G

′). When i is a null player in G, it follows
from the definition of F that Fi(G) = Fi(G

′) = 0. To continue, suppose that
Mi(G) 6= ∅. First suppose that |M(G)| 6= 1, then |M(G′)| 6= 1 since |M(G′)| =

|M(G)| by Proposition 1.2.4. Note that on the one hand, Fi(G) = DPi(G) and
Fi(G

′) = DPi(G
′) by the definition of F ; and on the other hand, DPi(G

′) = DPi(G)

since the Deegan-Packel index DP satisfies Axiom (SI) by Proposition 2.1.4. That
is Fi(G′) = Fi(G). Now, suppose that M(G) = {S} for some S ∈ 2N . Since
G′ is k-supplementation of G and |M(G′)| = |M(G)|, either M(G′) = {S}; or
M(G′) = {S ∪ {k}}. Moreover, noting thatMi(G

′) =Mi(G) 6= ∅, it follows that
Mi(G

′) =Mi(G) = {S}. Clearly,

– If 1 ∈ S, then 1 ∈ S ∪ {k} and by the definition of F ,

Fi(G
′) = Fi(G) = 1{1}(i).
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– If 1 /∈ S , then 1 /∈ S ∪ {k} and by the definition of F ,

Fi(G
′) = Fi(G) =

1

|S|
1S(i).

In both cases, Fi(G′) = Fi(G).

Finally, to see that F does not satisfy Axiom (NPM), consider the simple game
G = (N,W(G)) defined by N = {1, 2, 3, 4, 5} and M(G) = {{1, 3, 5}} and pose
T = {1, 2}. In G, voters 1 and 2 are independent players. Noting that GT =

(NT ,W(GT )) is the simple game where 1 and 2 are merged into some voter iT ∈
P\N . That is NT = {3, 4, 5, iT} andM(GT ) = {{iT , 3, 5}}. It follows that F (G) =

(1, 0, 0, 0, 0) and

F (GT ) =
(
F3(GT ), F4(GT ), F5(GT ), FiT (GT )

)
=

(
1

3
, 0,

1

3
,
1

3

)
.

Therefore FiT (GT ) =
1

3
6= F1(G) + F2(G) = 1. Thus, F does not satisfy Axiom

(NPM). We conclude that (NPM) can not be deduced from (E) and (SI).

(ii) Non redundancy of Efficiency

Clearly, the power index 2 DP satisfies (NPM) and (SI); but fails to meet Axiom
(E). Thus Axiom (E) can not be deduced from (NPM) and (SI).

(iii) Non redundancy of Supplementation Invariance

Consider the Public Good Index HP; see Definition 1.1.13 at page 14. It was shown
in Chapter 2 that HP satisfies (E) and (NPM). To see that HP fails to meet Axiom
(SI), consider the simple game G = (N,W(G)) ∈ G and G′ = (N ∪ {6} ,W(G′))

such that N = {1, 2, 3, 4, 5}, M(G) = {{1, 3, 4} , {2, 4, 5} , {1, 2}}. and M(G′) =

{{1, 3, 4} , {2, 4, 5} , {1, 2, 6}}. Then G′ is a 6-supplementation of G andM3(G′) =

{{1, 3, 4}} =M3(G). Moreover,

HP(G) =

(
2

8
,
2

8
,
1

8
,
2

8
,
1

8

)
and HP(G′) =

(
2

9
,
2

9
,
1

9
,
2

9
,
1

9
,
1

9

)
.

It clearly appears that 6 /∈ S for all S ∈M3(G′); but HP3(G′) = 1
9
6= HP3(G) = 1

8
.

Therefore, HP does not satisfy (SI). Thus, Axiom (SI) can not be deduced from
(NPM) and (E).

3.2.3 Further axiomatizations

We provide two other axiomatizations of the Deegan-Packel index by successively replac-
ing Axiom (NPM) in Theorem 3.2.1 by (IEM) and (IIM). The next theorem arises using
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Proposition 1.2.7 and Theorem 3.2.1.

A power index ϕ on G satisfies (E), (SI) and (IEM) if and only if ϕ = DP.

Theorem 3.2.2.

?

Proof.
Necessity. By Proposition 3.1.4 together with Corollaries 3.1.1 and 3.1.3, DP satisfies

(E), (SI) and (IEM).
Sufficiency. Consider a power index ϕ on G that satisfies (E), (IEM) and (SI). Since

ϕ satisfies (E) and (IEM), it also satisfies Axiom (NPM) (see Proposition 1.2.7). It then
follows from Theorem 3.2.1 that ϕ = DP.

Remark 3.2.1. To check that (E), (SI) and (IEM) in Theorem 3.2.2 are independent,
one can easily use the power indices defined in Proposition 3.2.1.

Proposition 1.2.8 and Theorem 3.2.2 allow us to state and prove the following result.

A power index ϕ on G satisfies (E), (SI) and (IIM) if and only if ϕ = DP.

Theorem 3.2.3.

?

Proof.
Necessity. By Proposition 3.1.4 together with Corollary 3.1.1, DP satisfies (E) and

(SI). By mimicking the proof of Corollary 3.1.3, it is easy to establish that DP satisfies
Axiom (IIM).

Sufficiency. Consider a power index ϕ on G that satisfies (E), (IIM) and (SI). Since
ϕ satisfies Axiom (IIM), it also satisfies Axiom (IEM) (see Proposition 1.2.8). It then
follows from Theorem 3.2.2 that ϕ = DP.

Remark 3.2.2. Once again, to check that (E), (SI) and (IIM) in Theorem 3.2.3 are
independent, one can easily use the power indices defined in Proposition 3.2.1.

3.3 Alternative axiomatizations

We present here another characterization of the Deegan-Packel index using an axiom on
equivalent simple games. Characterizations of some of its coalitional versions are also pro-
vided.
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3.3.1 Axiomatization based on equivalent simple games

We start by stating some preliminary properties of the Deegan-Packel index.

Corollary 3.3.1. The Deegan-Packel index satisfies Axiom (MEP).

Proof.
Consider two simple games G = (N,W(G)) and G′ = (N ′,W(G′)). Let i ∈ N ∩N ′

be a voter such that G∆iG
′. Since G∆iG

′, there exists (S, T ) ∈ M(G) ×M(G′) such
thatM(G′) = (M(G)\{S})∪{T} with |S| = |T | and (i ∈ S ∩T or i /∈ S ∪T ). It follows
that |M(G′)| = |M(G)| and |S| = |T |.

If i /∈ S ∪ T , then it follows by Remark 1.2.3Mi(G
′) =Mi(G) and

DPi(G
′) =

1

|M(G′)|
∑

R∈Mi(G′)

1

|R|

=
1

|M(G)|
∑

R∈Mi(G)

1

|R|
sinceMi(G

′) =Mi(G) and |M(G′)| = |M(G)|

= DPi(G).

If i ∈ S ∩ T , thenMi(G
′) = (Mi(G)\{S}) ∪ {T} and

DPi(G
′) =

1

|M(G′)|
∑

R∈Mi(G′)

1

|R|

=
1

|M(G)|
∑

R∈(Mi(G)\{S})∪{T}

1

|R|
since |M(G′)| = |M(G)|

=
1

|M(G)|
∑

R∈Mi(G)

1

|R|
since |S| = |T |

= DPi(G).

Therefore DP satisfies Axiom (MEP).

Next, it is shown in the following lemma that any power index that satisfies (E), (MEP)
and (SI) necessarily coincides with the Deegan-Packel index on any simple games where
each player belongs to at most one minimal winning coalition. Formally,

Lemma 3.3.1. If a power index ϕ on G satisfies (E), (MEP) and (SI), then ϕ(G) =

DP(G) for all simple game G = (N,W(G)) ∈ G such that |Mi(G)| ≤ 1 for all i ∈ N .

Proof.
Suppose that a power index ϕ on G satisfies (E), (MEP) and (SI). We denote by

r(G) = max{|S| : S ∈M(G)} for all simple gameG ∈ G and Gr = {G ∈ G : r(G) = r} for
all positive integer r. We prove by induction on positive integer r ≥ 1 that ϕ(G) = DP(G)

for all simple game G = (N,W(G)) ∈ Gr such that |Mi(G)| ≤ 1 for all i ∈ N .

UYI: Ph.D Thesis 68 SAFOKEM Adin c©UYI 2023



3.3. Alternative axiomatizations

-Initialization: For r = 1, consider a simple game G = (N,W(G)) ∈ G1 such that
|Mi(G)| ≤ 1 for all i ∈ N . Then, Mi(G) = {{i}} for all i ∈ N\N0(G). Set S =

N\N0(G). We have G∆iGS for all i ∈ S, where GS is the singleton game associated to
S. It follows that for all i ∈ S,

ϕi(G) = ϕi(GS) since ϕ satisfies Axiom (MEP) and G∆iGS

=
1

|S|
by Proposition 1.2.11 since ϕ satisfies (E) and (MEP)

= DPi(GS) by Proposition 1.2.11 since DP satisfies (E) and (MEP)
= DPi(G) since DP satisfies Axiom (MEP) and G∆iGS.

Moreover, for all i ∈ N0(G), ϕi(G) = 0 = DPi(G) by Proposition 3.1.1. Thus ϕ(G) =

DP(G).

-Induction step: Suppose for some positive integer r ≥ 1 that ϕ(G) = DP(G) for all
simple game G = (N,W(G)) ∈ Gr such that |Mi(G)| ≤ 1 for all i ∈ N .

Consider a simple game G = (N,W(G)) ∈ Gr+1 such that |Mi(G)| ≤ 1 for all i ∈ N ,
we set F (G) = {S ∈ M(G) : |S| = r + 1}. We prove by induction on f = |F (G)| ≥ 1

that ϕ(G) = DP(G) for all simple game G = (N,W(G)) ∈ Gr+1 such that f = |F (G)|
and |Mi(G)| ≤ 1 for all i ∈ N .

For f = 1, consider a simple game G = (N,W(G)) ∈ Gr+1 such that |F (G)| = 1

and |Mi(G)| ≤ 1 for all i ∈ N . Set F (G) = {S}, then |S| = r + 1 ≥ 2. Fix a
player i ∈ S and define the simple game G1 = (N1,W(G1)) ∈ G with N1 = N\{i}, and
M(G1) = (M(G)\{S}) ∪ {S1} where S1 = S\{i}. We have G1 ∈ Gr.

Then G is an i-supplementation of G1 such that for all l ∈ N\S, for all L ∈Ml(G), i /∈
L. It follows that for all l ∈ N\S,

ϕl(G) = ϕl(G1) since ϕ satisfies Axiom (SI) and for all L ∈Ml(G), i /∈ L
= DPl(G1) since ϕ(G1) = DP(G1) by the induction assumption on r = r(G1)

= DPl(G) since DP satisfies Axiom (SI) and for all L ∈Ml(G), i /∈ L.
Consider three players i, j ∈ S, k ∈ P\N and define the two simple games G′ =

(N ′,W(G′)), G′′ = (N ′′,W(G′′)) ∈ G with N ′ = (N\{i}) ∪ {k}, N ′′ = (N\{j}) ∪ {k},
M(G′) = (M(G)\{S})∪ {S ′} andM(G′′) = (M(G)\{S})∪ {S ′′} where S ′ = (S\{i})∪
{k} and S ′′ = (S\{j}) ∪ {k}. We have in the one hand, for all l ∈ N\{i}, G′∆lG, it
follows by Axiom (MEP) that ϕl(G) = ϕl(G

′). Then
ϕi(G) = 1−

∑
l∈N\{i}

ϕl(G) by Axiom (E) applied to the simple game G

= 1−
∑

l∈N\{i}
ϕl(G

′) since ϕl(G) = ϕl(G
′) for all l ∈ N\{i}

= ϕk(G
′) by Axiom (E) applied to the simple game G′.

In the other hand, for all l ∈ N\{j}, G′′∆lG, it follows by Axiom (MEP) that ϕl(G) =

ϕl(G
′′). Then
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ϕj(G) = 1−
∑

l∈N\{j}
ϕl(G) by Axiom (E) applied to the simple game G

= 1−
∑

l∈N\{j}
ϕl(G

′′) since ϕl(G) = ϕl(G
′′) for all l ∈ N\{j}

= ϕk(G
′′) by Axiom (E) applied to the simple game G′′.

Note that G′∆kG
′′, it follows by Axiom (MEP) that ϕk(G′) = ϕk(G

′′). That is
ϕi(G) = ϕj(G) = ϕt(G) for all t ∈ S since i and j were arbitrary choose in S. Then,
|S|ϕi(G) =

∑
l∈S

ϕl(G) since ϕi(G) = ϕt(G) for all t ∈ S

= 1−
∑
l∈N\S

ϕl(G) by Axiom (E)

= 1−
∑
l∈N\S

DPl(G) since ϕl(G) = DPl(G) for all l ∈ N\S

=
∑
l∈S

DPl(G) by Axiom (E)

= |S|DPi(G) since DPi(G) = DPt(G) for all t ∈ S.
Therefore, ϕi(G) = DPi(G) since |S| ≥ 2. That is ϕi(G) = DPi(G) for all i ∈ S.

Thus ϕ(G) = DP(G).

Now suppose that for some positive integer f ≥ 1, ϕ(G) = DP(G) for all simple game
G = (N,W(G)) ∈ Gr+1 such that |F (G)| = f and |Mi(G)| ≤ 1 for all i ∈ N .

Consider a simple game G = (N,W(G)) ∈ Gr+1 such that |F (G)| = f + 1 ≥ 2 and
|Mi(G)| ≤ 1 for all i ∈ N . Set S, T ∈ F (G), then |S| = |T | = r + 1 ≥ 2. Fix two players
i ∈ S, j ∈ T and define the two simple games

G1 = (N1,W(G1)), G2 = (N2,W(G2)) ∈ G with N1 = N\{i}, N2 = N\{j},M(G1) =

(M(G)\{S}) ∪ {S1} and M(G2) = (M(G)\{S}) ∪ {S2} where S1 = S\{i} and S2 =

T\{j}. Note that |F (G1)| = |F (G2)| = f and G1 as much as G2 are simple games since
any player in G belongs to at most one minimal winning coalition of G.

In the one hand, G is an i-supplementation of G1 such that for all l ∈ N\S, for all
L ∈Ml(G), i /∈ L. It follows that for all l ∈ N\S,

ϕl(G) = ϕl(G1) since ϕ satisfies Axiom (SI) and for all L ∈Ml(G), i /∈ L
= DPl(G1) since ϕ(G1) = DP(G1) by the induction assumption on f
= DPl(G) since DP satisfies Axiom (SI) and for all L ∈Ml(G), i /∈ L.

In the other hand, G is an j-supplementation of G2 such that for all l ∈ N\T , for all
L ∈Ml(G), j /∈ L. It follows that for all l ∈ N\T ,

ϕl(G) = ϕl(G2) since ϕ satisfies Axiom (SI) and for all L ∈Ml(G), j /∈ L
= DPl(G2) since ϕ(G2) = DP(G2) by the induction assumption on f
= DPl(G) since DP satisfies Axiom (SI) and for all L ∈Ml(G), j /∈ L.

Note that S ∩ T = ∅ since S, T ∈ M(G) and |Ml(G)| ≤ 1 for all l ∈ N . It follows
that S ⊆ N\T . Then ϕl(G) = DPl(G) for all l ∈ N . Finally, ϕ(G) = DP(G).

The main result of this section is the following.
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A power index ϕ on G satisfies (E), (SI) and (MEP) if and only if ϕ = DP.

Theorem 3.3.1.

?

Proof.
Necessity . It follows from Proposition 3.1.4, Corollary 3.1.1 and Corollary 3.3.1, that

the Deegan-Packel index DP satisfies axioms (E), (SI) and (MEP).
Sufficiency . Consider a power index ϕ on G that satisfies (E), (MEP) and (SI). For

all simple game G = (N,W(G)) ∈ G, we set E(G) = {i ∈ N : |Mi(G)| ≥ 2}. We denote
G(m) = {G ∈ G : |E(G)| = m} and we prove by induction on positive integer m that
ϕ(G) = DP(G) for all G ∈ G(m).

Initialization: For m = 0, consider a simple game G = (N,W(G)) ∈ G(0). We
have E(G) = ∅, that is |Mi(G)| ≤ 1 for all i ∈ N . It follows by Lemma 3.3.1 that
ϕ(G) = DP(G).

Induction step: Suppose that for some positive integer m, ϕ(G) = DP(G) for all
G ∈ G(m). Consider a simple game G = (N,W(G)) ∈ G(m+1) and a player i ∈ E(G).
Then |Mi(G)| ≥ 2, set p = |Mi(G)|, q = |M(G)|,Mi(G) = {S1, ..., Sp} and M(G) =

{S1, ..., Sp, Sp+1, ..., Sq}. Consider p players i1, ..., ip ∈ P\N and set Tl = (Sl\{i}) ∪
{il} for all l ∈ {1, ..., p}. Define the following simple games (Gl)l∈{0,...,p} by G0 = G

and for all l ∈ {1, ..., p}, Gl = (Nl,W(Gl)) with Nl = N ∪ {i1, ..., il} and M(Gl) =

{T1, ..., Tl, Sl+1, ..., Sq}.
Then E(Gp) = E(G)\{i}, one obtains |E(Gp)| = m. It follows by the induction

assumption that ϕ(Gp) = DP(Gp). Note that Gp∆jGp−1 for all j ∈ Np−1\{i}, therefore
ϕj(Gp−1) = ϕj(Gp) since ϕ satisfies Axiom (MEP)

= DPj(Gp) since ϕ(Gp) = DP(Gp)

= DPj(Gp−1) since DP satisfies Axiom (MEP).
Moreover,
ϕi(Gp−1) = 1−

∑
j∈Np−1\{i}

ϕj(Gp−1) since ϕ satisfies Axiom (E)

= 1−
∑

j∈Np−1\{i}
DPj(Gp−1) since ϕj(Gp−1) = DPj(Gp−1) for all j∈Np−1\{i}

= DPi(Gp−1) since DP satisfies Axiom (E).
That is ϕ(Gp−1) = DP(Gp−1).
Let l ∈ {1, ..., p} and assume that ϕ(Gl) = DP(Gl). Note that for all j ∈

Nl−1\{i}, Gl∆jGl−1; therefore
ϕj(Gl−1) = ϕj(Gl) since ϕ satisfies Axiom (MEP)

= DPj(Gl) since ϕ(Gl) = DP(Gl) by assumption
= DPj(Gl−1) since DP satisfies Axiom (MEP).

Moreover,
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ϕi(Gl−1) = 1−
∑

j∈Nl−1\{i}
ϕj(Gl−1) since ϕ satisfies Axiom (E)

= 1−
∑

j∈Nl−1\{i}
DPj(Gl−1) since ϕj(Gl−1) = DPj(Gl−1) for all j∈Nl−1\{i}

= DPi(Gl−1) since DP satisfies Axiom (E).
That is ϕ(Gl−1) = DP(Gl−1).
For l = 1, one obtains ϕ(G0) = DP(G0). That is ϕ(G) = DP(G).

Remark 3.3.1. To check that (E), (SI) and (MEP) in Theorem 3.3.1 are independent,
one can easily use the power indices defined in Proposition 3.2.1.

Remark 3.3.2. Note that another proof of Theorem 3.3.1 can be established using on
the one hand, Proposition 3.1.4, Corollary 3.1.1 and Corollary 3.3.1 for the necessity
part. And on the other hand, using Proposition 1.2.10 and Theorem 3.2.2 for the
sufficiency part.

3.3.2 Axiomatizing coalitional versions of the Deegan-Packel index

Since Owen (1977) who provided an extension of the Shapley value to TU-games with a priori
unions, the so-called Owen value, many contributions have emerged in this area; see Andjiga
and Courtin (2015) for definition and characterization of a class of share functions that
contains the Shapley value and the Banzhaf value for games with coalition configurations;
or Alonso-Meijide et al. (2010a) and Alonso-Meijide et al. (2010b) for some extensions and
axiomatizations of the Public Good Index to the class of simple games with a priori unions.
In this line of inquiry, Alonso-Meijide et al. (2011a) has extended the Deegan-Packel index
to simple games with a priori unions and provided an axiomatization of the whole class of
coalitional versions of the Deegan-Packel index; these are power indices on simple games
with a priori unions that coincide with the Deegan-Packel index when each union is formed
by only one voter. We provide below other characterizations of coalitional versions of the
Deegan-Packel index for simple games with a priori unions and a variable electorate.

Following Alonso-Meijide et al. (2011a), we first recall the definition of a coalitional
version of the Deegan-Packel index. Since the definition of a simple game with a priori
union has already been introduced in section 2.3.3 as well as the definition of a coalitional
version of a power index; we will simply omit those concepts here.

Definition 3.3.1. A coalitional power index f is a coalitional version of the Deegan-
Packel index if:

f(N, v, PN) = DP(N, v),∀(N, v) ∈ GN , (3.2)

where PN = {{i} : i ∈ N}.
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The following axioms are obtained by shifting some appropriate axioms we early pre-
sented from simple games to simple games with a priori unions.

Axiom 18. Supplementation Invariance with a priori Unions (SIU): For all G =

(N,W(G)) ∈ G, for all k ∈ P\N , for all k-supplementations G′ = (N ′,W(G′)) of G, for
all i ∈ N , if k /∈ S for all S ∈Mi(G

′), then

fi

(
N ′,W(G′), PN ′

)
= fi

(
N,W(G), PN

)
.

Axiom 19. Independence of External Merging independent players with a priori

Unions (IEMU): For all G = (N,W(G)) ∈ G, for all T ⊆ N with |T | ≥ 2, for all
iT ∈ P\N , fi(NT ,W(GT ), PNT

) = fi(N, v, P
N) for all i ∈ N \ T whenever T consists of

independent players in G.

Proposition 3.3.1. A coalitional power index f is a coalitional version of the Deegan-
Packel index if and only if f satisfies (SE), (SIU) and (NPMU).

Proof.
Straightforward from Theorem 3.2.1 and equation (3.2).

Proposition 3.3.2. Axioms (SE), (SIU) and (NPMU) are independent.

Proof.

(i) Axioms (SE), (SIU) do not imply (NPMU)

Define the power index F̃ for all simple games with a priori unions G =

(N,W(G), P ) as follows,

– If P = PN and |M(G)| 6= 1, then

F̃ (G) = DP(N,W(G)).

– If P = PN andM(G) = {S} for some S ∈ 2N , then

F̃ (G) =

1{1} if 1 ∈ S
1
|S|1S if 1 /∈ S.

– If P 6= PN , then
F̃i(G) = 0 for all i ∈ N.

By noting that the restriction of F̃ on the set of all simple games with a priori
unions G = (N,W(G), PN) coincides with the power index defined in Part (i) of
the proof of Proposition 3.2.1 and thanks to (3.2), it follows that the power index
F̃ satisfies (SE) and (SIU), but F̃ fails to meet (NPMU).
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(ii) Axioms (NPMU) and (SIU) do not imply (SE)

Define the power index D̃P defined for all simple game with a priori unions G =

(N,W(G), P ) and for all i ∈ N by,

D̃Pi(G) =

2 DPi(N,W(G)) if P = PN

0 otherwise.

By definition, the restriction of D̃P on the set of all simple games with a priori
unions G = (N,W(G), P ) with P = PN coincides with the power index defined in
Part (ii) of the proof of Proposition 3.2.1. By considering (3.2), the power index
D̃P satisfies (NPMU) and (SIU), but not (SE).

(iii) Axioms (NPMU) and (SE) do not imply (SIU)

Consider the power index H̃P defined for all simple game with a priori unions
G = (N,W(G), P ) and for all i ∈ N by,

H̃Pi(G) =

HPi(N,W(G)) if P = PN

0 otherwise.

On the set of all simple games with a priori unions G = (N,W(G), P ) with P = PN ,
the restriction of H̃P coincides with the power index defined in Part (iii) of the proof
of Proposition 3.2.1. Therefore, it follows by (3.2) that the power index D̃P satisfies
(NPMU) and (SE), but not (SIU).

The next result is similar to the preceding and is based on Axiom (IEMU).

Proposition 3.3.3. A coalitional power index f is a coalitional version of the Deegan-
Packel index if and only if f satisfies (SE), (SIU) and (IEMU).

Proof.
Straightforward from Theorem 3.2.2 and equation (3.2).

Proposition 3.3.4. Axioms (SE), (SIU) and (IEMU) are independent.

Proof.
The proof is straightforward by using the power indices defined in Proposition

3.3.2.
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For power indices with a priori unions, we provide below further axioms on how individual
shares are affected by an internal merging of independent players or in presence of an
occurrence of a membership equivalence.

Axiom 20. Independence of Internal Merging independent players with a priori

Unions (IIMU): For all G = (N,W(G)) ∈ G, for all T ⊆ N of at least two players,
for all t ∈ T , fi(NT→t,W(GT→t), PNT→t

) = fi(N,W(G), PN) for all i ∈ N \ T whenever
T is a coalition of independent players.

Proposition 3.3.5. A coalitional power index f is a coalitional version of the Deegan-
Packel index if and only if f satisfies (SE), (SIU) and (IIMU).

Proof.
Straightforward from Theorem 3.2.3 and equation (3.2).

Remark 3.3.3. To check that (SE), (SIU) and (IIMU) are independent, one can
easily used the power indices defined in Proposition 3.3.2.

Axiom 21. Membership Equivalence Property with a priori Unions (MEPU):
For all G = (N,W(G)), G′ = (N ′,W(G′)) ∈ G, for all player i ∈ N∩N ′, ϕi(N,W(G), PN) =

ϕi(N
′,W(G′), PN ′) whenever G∆iG

′.

Proposition 3.3.6. A coalitional power index f is a coalitional version of the Deegan-
Packel index if and only if f satisfies (SE), (SIU) and (MEPU).

Proof.
Straightforward from Theorem 3.3.1 and equation (3.2).

Remark 3.3.4. To check that (SE), (SIU) and (MEPU) are independent, one can
easily used the power indices defined in Proposition 3.3.2.

In this chapter, we have presented several axiomatizations of the Deegan-Packel index.
Following Holler and Packel (1983) and Deegan and Packel (1978), or Lorenzo-Freire et al.
(2007) and Alonso-Meijide et al. (2008), each characterization result stated in this chapter
mirrors a similar theorem from Chapter 2. By so doing, we have shed new light on the
duality between the Holler-Packel index and the Deegan-Packel index. Results that we have
already presented so far are all contributions within the supra-domain approach. In the
next chapters, our concerns are rather intra-domain preoccupations.
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An intra-domain study of the Shapley

value
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? ? Chapter Four ? ?

On Shapley valid domains

Simple games are particular instances of a more general notion: the one of cooperative
games with transferable utilities (TU-games). Keeping axiomatization issues in mind, we
focus our attention in this chapter on a key solution of TU-games that has been recently
considered a crown jewel of game theory by Thomson (2019): the so celebrated Shapley
value. Our motivation is a sparse concern that very often emerges from characterization
results: that is, does a given list of axioms that uniquely identifies a solution concept over a
set of TU-games (called the initial domain) also prevails, when the attention is now focused
only on some specific subsets of the initial domain? We refer to this concern as the intra-
domain approach of analyzing axiomatization results. Our contribution in this chapter is
an intra-domain analysis of Shapley’s characterization of the Shapley value; see Shapley
(1953).

There are two sections in the present chapter. Section 4.1 is devoted to the presentation of
TU-games. Main issues in TU-games and solutions are described. The Shapley value is also
presented. In Section 4.2, we introduce the notion of a valid domain to a characterization
result. In the specific case of the characterization of the Shapley value by himself, we
present existing results on Shapley valid domains. We then introduce the notion of conically
consistent domains and prove that any conically consistent domain is a Shapley valid domain.
To achieve this, we introduce an extension of the notion of cone and some other related
concepts. Moreover, it is shown that previous Shapley valid domains we report here are
specific instances of conically consistent domains. In the case of exactly two players, a
characterization of all linear subspaces of the vector space of all TU-games on a nonempty
and finite set of players is also provided.

4.1 TU-games

Cooperative games with transferable utilities (TU-games) are interactions where players can
form coalitions through binding agreements to achieve a collective worth to be redistributed
in a conceivable way. Basic concepts of TU-games such as the formal definition of a TU-
game, the notion of Harsanyi dividends or the family of unanimity games. Single-valued
solutions are presented with the Shapley value being our primary target.
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4.1.1 Preliminaries on TU-games

Recall that, given any nonempty set X, we denote by P(X) the powerset of X.

Definition 4.1.1. A transferable utility game (or simply a TU-game) is any pair (N, v)

such that :

(i) N = {1, 2, · · · , n} is a nonempty and finite set with n ≥ 2;

(ii) v : P(N) −→ R is a mapping satisfying v(∅) = 0.

In this case, N is called the set of players and v the characteristic function of the game.
When the set N of players is known, (N, v) will simply be identified to its characteristic
function v.

Given a TU-game (N, v) and a coalition S, v(S) is the collective payoff (or value) that
the members of S can obtain regardless of the decisions of the players in N\S.

Notation 4.1.1. We denote by ΓN the set of all TU-games having N as the set of
players. For the sake of simplicity and when there is no ambiguity, we will sometimes
write v(i) instead of v({i}); or v(S + i) instead of v(S ∪ {i}) given v ∈ ΓN , i ∈ N and
S ⊆ N\{i}.

Before we continue, below is an illustrative example of TU-game inspired by Caulier
(2009).

Example 4.1.1. Three neighbors in a town, say A, B and C, have to build connection
facilities to the local sewer system. The connection cost (in hundreds of thousands CFA
francs) is 2 for A alone , 6 for B and 7 for C. The cost for a joint connection is 7 for
A and B, 8 for A and C, 10 for B and C. If the three neighbors are collectively served,
the joint cost is 11.

Identifying A to 1, B to 2 and C to 3, this situation can be described by the TU-game
(N, v) where N = {1, 2, 3} and the characteristic function is given by: :

Coalitions S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Costs v(S) 0 −2 −6 −7 −7 −8 −10 −11

Will these three neighbors act together or solely? How will they share the collective
cost in case of cooperation? How these two questions are addressed will be commented
in the next section. We continue to introduce basics of TU-games.

Below is a definition of two usual operations on TU-games.

Definition 4.1.2. Let u, v ∈ ΓN and λ ∈ R.
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(i) The sum of u and v is the TU-game u+ v ∈ ΓN defined for all S ⊆ N by

(u+ v)(S) = u(S) + v(S).

(ii) The scalar product of u by λ is the TU-game λu ∈ ΓN defined for all S ⊆ N by

(λu)(S) = λ× u(S).

Remark 4.1.1. The structure (ΓN ,+, .) is a vector space. The null game is the TU-
game 0̃ ∈ ΓN defined for all S ⊆ N by 0̃(S) = 0.

We now define two families of TU-games introduced by Shapley (1953) and which
are very often used to analyze the structure of the set of all TU-games.

Definition 4.1.3. Given a coalition S,

• the unanimity game associated with S is the TU-game γS ∈ ΓN defined for all
T ⊆ N by

γS(T ) =

1 if S ⊆ T

0 else
(4.1)

• the Dirac game associated with S is the TU-game δS ∈ ΓN defined all T ⊆ N by

δS(T ) =

1 if S = T

0 else
(4.2)

Remark 4.1.2. Shapley (1953) has shown that the space vector (ΓN ,+, .) is of dimen-
sion 2n − 1, one of its basis is the collection (γS)S∈2N of unanimity games and for all
u ∈ ΓN ,

u =
∑
S∈2N

[u]SγS (4.3)

where for all S ∈ 2N , [u]S is the Harsanyi dividend in the game u associated with S

and is defined as follows:
[u]S =

∑
T⊆S

(−1)|S|−T |u(T ). (4.4)

For recent and useful basis of (ΓN ,+, .), we refer to Yokote et al. (2016).

UYI: Ph.D Thesis 79 SAFOKEM Adin c©UYI 2023



4.1. TU-games

4.1.2 TU-game solutions

As seen in the preceding example, any TU-game raises two problems:

• The problem of coalition formation: which coalition structure will emerge?

• The problem of payoff redistribution: how will the players share the collective payoff
in case of cooperation?

A TU-game solution (or just solution for short) is any conceivable way to address the
two issues mentioned above by matching each TU-game over a given set of players with a
set of payoff vectors. A solution thus specifies how players are organized and how shares
are derived. However, very few solutions have been set up combining the two problems.
It is generally assumed that a coalition structure has already been reached and that the
remaining question is how to share each coalition payoff. There are two main classes of
solutions.

On the one hand, set-valued solutions attach to a TU-game a set of sharing vectors
on which players will possibly agree. Very often, a payoff vector selected by a set-valued
solution is an equilibrium with respect to some admissible types of objection or counter-
objection. This is, for example, the case of the core by Gillies (1953); the notion of stable
set by Von Neumann and Morgenstern (1944); the B-core by Aumann and Dreze (1974);
the rich panel of bargaining sets by Aumann and Maschler (1961), Zhou (1994), Mas-Colell
(1989) or Dutta et al. (1989). To a TU-game, a set-valued solution may assign an infinite set
of payoff vectors. In such cases, selecting a payoff raises new issues. A set-valued solution
may also assign to a TU-game an empty set of payoff. Any such situation is clearly an
impasse.

On the other hand, single-value solutions assign to a TU-game a single payoff that is
supposed to best account for individual contributions in the game. It is therefore important
to identify what are norms or standards behing each single-valued solution of TU-games. The
more all the properties advocated under a single-valued solution are intuitively convincing,
the better the desirability of the sharing vectors it generates. This is the basic principle
of the normative approach: the so-called axiomatic approach, see Thomson (2001) for a
nice guide of an axiomatic study. TU-games analyses have been enriched so far with a
rich variety of single-valued solutions simply called values. A non exhaustive list of values
includes for example the Shapley value by Shapley (1953), the Banzhaf value by Banzhaf
(1965), the nucleolus by Schmeidler (1969), the Owen value by Owen (1977), the solidarity
value by Nowak and Radzik (1994), the egalitarian nonpairwise-averaged contribution value
by Driessen and Funaki (1997b), the consensus value by Ju et al. (2007) and the solidarity
value with cooptation by Diffo Lambo and Wambo (2015). As we earlier mention, this
chapter is devoted to shedding light on the Shapley value.
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4.1.3 The Shapley value

The following definition is a formal statement of a value we use and is clearly related to a
fixed set of players.

Definition 4.1.4. A value (or a single-valued solution ) on ΓN is any mapping Ψ :

ΓN −→ RN .

Given a value Ψ on ΓN and v ∈ ΓN , Ψ(v) is the n-tuple Ψ(v) = (Ψi(v))i∈N where for
each player i ∈ N , Ψi(v) is the individual share of player i in the game v. Here, it is assumed
that Ψi(v) may be any real number. By so doing, it is implicitly assumed that coalitional
payoff are infinitely divisible. Furthermore, no constraint about the feasibility of Ψ(v) is
required and is, however, Ψ(v) is supposed to be derived from a reasonable procedure.

Definition 4.1.5. The Shapley value is the value on ΓN denoted by Shap and defined
for all v ∈ ΓN and for all i ∈ N by

Shapi(v) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
[v(S + i)− v(S)]. (4.5)

Equation (4.5) is also called the coalitional formula of the Shapley value and v(S+ i)−
v(S) is the marginal contribution of player i to S.

Provided that the marginal contribution of player i to any coalition S is weighted by
|S|! (n− |S| − 1)!/n!, player i’s share in a TU-game v by the Shapley value can be taken as
his average marginal contribution across all the coalitions he can join. As it will be seen later,
the sharing vector by the Shapley value is feasible since individual shares sum to the payoff
of the grand coalition for all TU-games; that is, the Shapley value is essentially a solution to
the problem of payoff redistribution. When a given coalition structure is embedded to any
TU-game in ΓN , we refer to the Owen value by Owen (1977) as a possible way of extending
the Shapley value to those contexts.

Remark 4.1.3. Alternative formulae of the Shapley value exist. Two such formulae
are the following:

∀v ∈ ΓN ,∀i ∈ N, Shapi(v) =
∑
π∈ΠN

1

n!
[v(P i

π + i)− v(P i
π)] (4.6)

where ΠN is the set of all permutations of N and P i
π = {j ∈ N : π(j) < π(i)} is the set

of all predecessors of player i with respect to a permutation π ∈ ΠN .

∀v ∈ ΓN ,∀i ∈ N, Shapi(v) =
∑
S⊆N
i∈S

[v]S
s
. (4.7)

where for all S ∈ 2N , [v]S is the Harsanyi dividend of coalition S with respect to v

defined in (4.4).
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Example 4.1.2. The Shapley value of the TU-game of Example 4.1.1 is given by

Shap(v) =

(
−4

3
,−13

3
,−16

3

)
.

That is if A, B and C decide to cooperate and agree for a common linking facility,
individual cost shares using the Shapley value are such that A will pay 4

3
, meanwhile

B and C will pay 13
3
and 16

3
respectively.

To account on the merit of the Shapley value, Shapley (1953) provided a four-axiom
characterization. Before a formal statement of that result, further concepts are needed.
For example, in the following definition, some specific players in a TU-game are presented
depending on their marginal contributions in the game.

Definition 4.1.6. Given a TU-game v ∈ ΓN ,

• A player i is said to be a dummy player in v or simply v-dummy if

∀S ⊆ N\{i}, v(S + i)− v(S) = v(i).

• A null player in v is any player i ∈ N such that

∀S ⊆ N\{i}, v(S + i)− v(S) = 0.

• Two players i and j are symmetric or simply v-symmetric if

∀S ⊆ N\{i, j}, v(S + i) = v(S + j).

Consider a TU-game. A null player is any player whose marginal contribution to all
coalitions he joins is null. A dummy player is any player whose marginal contribution to
any coalition he joins is exactly what he obtains by standing alone. Thus, a null player is
simply a dummy player who gains nothing by standing alone. Two symmetric players are
any two players such that the replacement of one by the other does not change anything in
any coalition; their respective marginal contributions coincide for any coalition containing
neither of the two. For example, any two null players are symmetric.

Definition 4.1.7. Let Ψ be a value on ΓN .

(i) Ψ satisfies efficiency (E) if for all v ∈ ΓN ,∑
i∈N

Ψi(v) = v(N).

(ii) Ψ satisfies the null player property (NP) if for all v ∈ ΓN and for all i ∈ N
such that i is a null player in v, Ψi(v) = 0.
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(iii) Ψ satisfies the dummy property (D) if for all v ∈ ΓN and for all i ∈ N such
that i is v-dummy, Ψi(v) = v(i).

(iv) Ψ is additivite (AD) if for all games u, v ∈ ΓN and for all player i ∈ N ,

Ψi(u+ v) = Ψi(u) + Ψi(v). (4.8)

(v) Ψ satisfies symmetry (S) if for all game v ∈ ΓN , and for all players i, j ∈ N

such that i and j are v-symmetric, Ψi(v) = Ψj(v).

The Efficiency axiom can be seen as a feasibility condition when players form the grand
coalition. It simply requires that individual shares should sum to the payoff of the grand
coalition. The null player property states that any null player should receive a zero share
(since he contributes noting to any coalition). A value that satisfies the dummy axiom
assigns to each dummy player his stand alone worth in the game. Additivity is the re-
quirement that summing any two TU-games should always results in summing the payoffs
associated with the two games. Symmetry simply states that if two players in a TU-game
are substitutes, then they should be rewarded the same amount.

Combining some axioms from Definition 4.1.7 yields the following result which is a
characterization of the Shapley value by means of four axioms.

The Shapley value is the unique value on ΓN that satisfies (E), (NP), (S) and (AD).

Theorem 4.1.1 (Shapley (1953)).

?

It can be easily checked that any value on ΓN that satisfies Axiom (D) also satisfies
Axiom (NP); and the converse also holds in presence of Axiom (AD). That is why some
authors sometimes substitute the weak Axiom (NP) for the Axiom (D) in the preceding
Shapley theorem to obtain the following.

The Shapley value is the unique value on ΓN that satisfies (E), (D), (S) and (AD).

Theorem 4.1.2 (Shapley (1953)).

?

Whether the above characterization holds on some subsets of ΓN is an important issue
we address in the next sections.

4.2 An intra-domain analysis of the Shapley value

In this section, we introduce the notion of valid domain associated with a list of axioms on
ΓN the combination of which yields a given result. The case of Theorem 4.1.2 constitutes
our main focus.
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4.2.1 Shapley valid domains, subspaces and cones

We start with an abstract definition of the concept of a valid domain.

Definition 4.2.1. A characterization result on ΓN is any pair (L, ϕ0) where L is a
finite and nonempty list of axioms for solutions on ΓN and ϕ is a value on ΓN such
that any value ϕ satisfies all the axioms in L if and only if ϕ = ϕ0.

Of course, our definition may be easily weaken to capture statements where axioms in
L are just sufficient or necessary conditions; or statements where instead of ΓN , the value
ϕ0 is defined on a proper subset of ΓN .

Definition 4.2.2. Given a characterization result (L, ϕ0) on ΓN , an (L, ϕ0) valid
domain is any nonempty subset Γ′ of ΓN such that any value satisfies all the axioms
in L for games in Γ′ if and only if ϕ(v) = ϕ0(v) holds for all v ∈ Γ′.

Moving from ΓN to one of its nonempty subset Γ′, we consider only TU-games in Γ′ and
suppose that a solution applies only for games in Γ′. For example, the additivity axiom on
Γ′ is now the requirement that (4.8) holds only for all u, v ∈ Γ′ such that u+ v ∈ Γ′. In the
case of Theorem 4.1.2, we have the following definition.

Definition 4.2.3. A Shapley valid domain is any (L, ϕ0) valid domain D where
L = {(E), (D), (S), (AD)} and ϕ0 = Shap; that is, the Shapley value is the unique value
on D that satisfies (E), (D), (S) and (AD).

A Shapley valid domain can be of any kind since in Definition 4.2.3 no information is
required on the structure of a Shapley valid domain. To see this, consider the following
example.

Example 4.2.1. By Theorem 4.1.2, ΓN is obviously a Shapley valid domain. More-
over, for any TU-game v such that all players are v-dummy, the singleton D = {v}
is a Shapley valid domain since any solution Ψ on D that satisfies (E), (D), (S) and
(AD) necessarily satisfies Ψi(v) = Shapi(v) = v(i) by (D). In this later case, (E), (S)
and (AD) are clearly redundant over D.

Let Ψ be defined on the set GN of all simple games on N for all v ∈ GN by

Ψi(v) =
1

|N(v)|
1N(v)

where N(v) is the set of non null players in v. Since v(N) = 1 for all v ∈ GN , the set
N(v) is always non empty. This proves that Ψ is well-defined on GN . Moreover, Ψ as
well as any value on GN satisfies (AD) since the sum of two simple games is never
a simple game. Moreover, it can be easily checked that Ψ satisfies (E), (S), (D) and
(AD). Therefore, GN is not a Shapley valid domain.
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Here below are some specific subsets of ΓN that contain only TU-games derived from a
fixed set of TU-games by linear combinations.

Definition 4.2.4. Given a nonempty subset F of ΓN , any TU-game

u =

p∑
l=1

αlul

for some p ∈ N∗, (αl)1≤l≤p ⊆ R and (ul)1≤l≤p ⊆ F is called a linear combination of
TU-games in F . The set of linear combinations of TU-games in F , denoted Span(F)

is called the linear span of F .
Any TU-game in F is called a generator of Span(F).

The linear span Span(F) of a nonempty subset F of ΓN , involves linear combinations
with arbitrary real coefficients. In the next definition, only linear combinations with integer
coefficients are considered.

Definition 4.2.5. Given a nonempty subset F of ΓN , any TU-game

u =

p∑
l=1

αlul

for some p ∈ N∗, (αl)1≤l≤p ⊆ Z and (ul)1≤l≤p ⊆ F is called an integer linear combination
of TU-games in F . The set of all integer linear combinations of TU-games in F ,
denoted SpanZ(F) is called the integer (linear) span of F ; formally,

SpanZ(F) =

{
p∑
l=1

αlul : p ∈ N∗, (αl)1≤l≤p ⊆ Z and (ul)1≤l≤p ⊆ F

}
.

Any TU-game in F is called a generator of SpanZ(F).

For any nonempty subset F of ΓN , it can be easily checked that any linear combination
of two TU-games in Span(F) remains a TU-game in Span(F). This is a property of some
well-known algebraic concepts in a vector space we recall below.

Definition 4.2.6. Let E be a nonempty subset of ΓN .

• The set E is called a subspace of ΓN if αu + βv ∈ E for all u, v ∈ E and for all
α, β ∈ R.

• The set E is called an additive subgroup of ΓN if u− v ∈ E for all u, v ∈ E.

For illustration, ΓN is trivially both a subspace and an additive subgroup of ΓN ; and
any subspace is an additive subgroup. More interestingly, we have the following remark.

Remark 4.2.1. For any nonempty subset F of ΓN , Span(F) is both a subspace and
an additive subgroup of ΓN ; and SpanZ(F) is an additive subgroup of ΓN .
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Another subset of TU-games that is sometimes cited is the notion of convex cone pre-
sented in the next definition.

Definition 4.2.7. Let E be a nonempty subset of ΓN .

• The set E is called a (linear) cone in ΓN if αu ∈ E for each TU-game u ∈ E and
for each positive α ∈ R.

• The set E is called a convex cone in ΓN if αu+ βv ∈ E for all u, v ∈ E and for all
positive α, β ∈ R>0.

It is immediate that any subspace of ΓN is a cone of ΓN . A rich panel of concepts on
cones is provided by Bourbaki (1987) and Bernstein (2018).

Notation 4.2.1. Given F ⊆ ΓN , we pose :

Cone(F) = {v ∈ ΓN : v = αu for some u ∈ F and α > 0}.

and

ConvCone(F) =

{
p∑
l=1

αlul : p ∈ N∗, (αl)1≤l≤p ⊆ R>0 and (ul)1≤l≤p ⊆ F

}
.

Clearly, Cone(F) is a cone and ConvCone(F) is a convex cone of ΓN known, re-
spectively, as the cone of F in ΓN and the convex cone of F in ΓN .

By definition, the null game 0̃ does not belong to some convex cones; but necessarily
belongs to any convex cone of a nonempty subset E of ΓN . We extend the notion of cone
and related sets in the next definition.

Definition 4.2.8. Let E be a nonempty subset of R and F a nonempty subset of ΓN .
The E-span of F is the subset of ΓN denoted by SpanE(F) and defined as follows:

SpanE(F) =

{
p∑
l=1

αlul : p ∈ N∗, (αl)1≤l≤p ⊆ E and (ul)1≤l≤p ⊆ F

}
.

Any TU-game in F is called a generator of SpanE(F).

The only change from Span(F) to SpanE(F) is that only linear combinations of TU-
games from F with coefficients in E are considered instead of arbitrary real coefficients. In
the same way, we introduce the following definition:

Definition 4.2.9. Let E be a nonempty subset of R and F a nonempty subset of ΓN .

• The E-cone of F is the subset of ΓN denoted by ConeE(F) and defined as follows:

ConeE(F) = {αu : α ∈ E>0 and u ∈ F} , where E>0 = {α ∈ E : α > 0}.
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• The convex E-cone of F is the subset of ΓN denoted by ConvConeE(F) and defined
as follows:

ConvConeE(F) =

{
p∑
l=1

αlul : p ∈ N∗, (αl)1≤l≤p ⊆ E>0 and (ul)1≤l≤p ⊆ F

}
.

Any TU-game in F is called a generator of ConeE(F) and ConvConeE(F).

Clearly, ConvConeE(F) may not be convex at all. But any convex combination of TU-
games from F with coefficients from E belongs to ConvConeE(F). What is important is that
ConvConeE(F) mimics the structure of ConvCone(F) when the only admissible coefficients
are elements of E.

4.2.2 Existing Shapley valid domains

We present here some Shapley valid domains that have already been reported so far. One of
the two related contributions we have identified is due to Neyman (1989). The author was
addressing a remark due to Hart and Mas-Colell (1989) on the fact that some "standard
axiomatizations require the application of the axioms to a large class of games (e.g., all
games; or, all simple games; etc.) in order to uniquely determine it (the value) for any
single game".

Definition 4.2.10. Given a TU-game v ∈ ΓN and a coalition S, the subgame of
v associated with S is the TU-game denoted by vS and defined for all T ⊆ N by
vS(T ) = v(S ∩ T ).

The set of all subgames of v is denoted by Γ(v).

Hart and Mas-Colell (1989) used a distinct notion of subgame to provide an alternative
characterization of the Shapley value. They simple referred to the subgame associated with
a coalition S as the restriction of the initial game to only subsets of S; this is rather a
TU-game in ΓS; but not necessary a TU-game in ΓN . Definition 4.2.10, due to Neyman
(1989), can be seen as a way to deal with games in ΓN although only players in S matter.

To fit our vocabulary on Shapley valid domains, we introduce the following definition.

Definition 4.2.11. A nonempty subset D of ΓN is a Neyman domain if there exists
a TU-game v ∈ ΓN such that D = SpanZ(Γ(v)).

To rephrase the preceding definition, a Neyman domain is any additive subgroup of ΓN

generated by a TU-game and all its subgames.

On the additive subgroup generated by any TU-game and all its subgames, the
Shapley value is the unique value that satisfies (E), (NP), (AD) and (S).

Theorem 4.2.1 (Neyman (1989)).

?
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Since (D) implies (NP), the following result is an immediate consequence of Theorem
4.2.1.

Corollary 4.2.1. All Neyman domains are Shapley valid domains.

Another family of Shapley valid domain is due to Peleg and Sudhölter (2007). The
authors also provided some specific instances of their main condition.

Definition 4.2.12. A subset D of ΓN is a Peleg-Sudhölter domain if D is a convex
cone which contains the null game and all the unanimity games.

It is clear that ΓN is a Peleg-Sudhölter domain of TU-games.

On any Peleg-Sudhölter domain, the Shapley value is the unique value that satisfies
(E), (NP), (AD) and (S).

Theorem 4.2.2 (Peleg and Sudhölter (2007)).

?

As we recall above, (D) implies (NP). Thus, the following result is an immediate conse-
quence of Theorem 4.2.2.

Corollary 4.2.2. All Peleg-Sudhölter domains are Shapley valid domains.

We present below some particular Peleg-Sudhölter domains.

Definition 4.2.13. A TU-game u ∈ ΓN is

• superadditive if for all S, T ∈ 2N ,

u(S) ≥ u(S ∩ T ) + u(S\T ).

• monotonic if for all S, T ∈ 2N ,

S ⊆ T =⇒ u(S) ≤ u(T ).

• convex if for all S, T ∈ 2N ,

u(S) + u(T ) ≤ u(S ∪ T ) + u(S ∩ T ).

• additive if all players in N are dummy players in u.

Following Peleg and Sudhölter (2007), we denote by V(s) the set of all superadditive
TU-games in ΓN , by V(m) the set of all monotonic TU-games in ΓN , by V(c) the set of
all convex TU-games in ΓN and by V(a) the set of all convex TU-games in ΓN .
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Figure 4.1: Representation of some classic families of TU-games.

As depicted in Figure 4.1, the four classic families of TU-games presented in Definition
4.2.13 are closely related and are each a convex cone that contains all the unanimity games.
Moreover,V(a) ⊂ V(c) ⊂ V(s) ⊂ V(m) ⊂ ΓN . That is, any additive game is a convex game;
any convex game is a superadditive game; any superadditive game is a monotonic game.
This leads to the following result reported by Peleg and Sudhölter (2007).

Corollary 4.2.3 ( Peleg and Sudhölter (2007)). For E ∈ {V(s),V(m),V(c),V(a)}, the
Shapley value is the unique value that satisfies (E), (NP), (AD) and (S) on E.

The next result holds as an immediate consequence of Corollary 4.2.3.

Corollary 4.2.4. Each of the four subsets V(s), V(m), V(c) and V(a) is a Shapley valid
domain.

In the next section, we provide new Shapley valid domains.

4.2.3 New Shapley valid domains : conically consistency

In what follows, for each TU-game u ∈ ΓN , we denote the set of all dummy players in u by
Dum(u) and the partition of all non dummy players in u by Sym(u); that is

Dum(u) = {i ∈ N : i is dummy in u}

and for all S ∈ Sym(u), for all i, j ∈ N\Dum(u),

• i ∈ T for some T ∈ Sym(u);

• (i ∈ S and j ∈ S) =⇒ i and j are symmetric players in u;

• (i ∈ S and j /∈ S) =⇒ i and j are non symmetric players in u.
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Definition 4.2.14. Given a TU-game u ∈ ΓN , any coalition in Sym(u) is called a
symmetry class of non dummy players in u.

Remark 4.2.2. Given u ∈ ΓN , consider the binary relation ∼u defined for all i, j ∈
N\Dum(u) by i ∼u j if i and j are symmetric players in u. Then ∼u is an equivalence
relation on N\Dum(u). Moreover, Sym(u) is the set of all equivalence classes of ∼u
on N\Dum(u).

For illustration, we provide the following example.

Example 4.2.2. Consider the TU-game v defined in Example 4.1.1. We have Dum(v) =

∅ and Sym(v) = {{1}, {2}, {3}} since any two players in v are not symmetric. More-
over, given any coalition S, Dum(γS) = N\S and Sym(γS) = {S}; and for any additive
game u, Dum(u) = N and Sym(u) = ∅.

It can be easily checked that a necessary and sufficient condition for a TU-game u to be
additive is that

u(S) =
∑
l∈S

u(l) for all S ∈ 2N .

Furthermore, the following result holds for all TU-games.

Proposition 4.2.1. For all u ∈ ΓN and all player i ∈ N , we have Du 6= N\{i}.

Proof.
Consider a TU-game u ∈ ΓN and a player i ∈ N . Suppose that Du = N\{i}. Let

S = {i1, ..., is} ∈ 2N . First suppose that i /∈ S. Then u(S) =
∑s

k=1 u(ik) =
∑

j∈S u(j)

since all members of N\{i} are dummy players. Now suppose that i ∈ S. We show by
induction on s ∈ {1, ..., n} the assertion A(s) that u(S) =

∑
l∈S

u(l) for all S ∈ 2N such

that i ∈ S.
Initialization: For s = 1, S = {i} and A(1) obviously holds.
Induction step: Let k ∈ {1, 2, ..., n−1} and assume that u(S) =

∑
l∈S

u(l) for all S ∈ 2N

such that i ∈ S and |S| ≤ k. Consider S ∈ 2N such that i ∈ S and s = k + 1. Then,

u(S) = u((S\{j}) + j) where j ∈ S\{i}
= u(S\{j}) + u(j) since j ∈ Du

= u(j) +
∑

l∈S\{j}
u(l) by induction assumption

=
∑
l∈S

u(l).

Conclusion: u(S) =
∑
l∈S

u(l) for all S ∈ 2N such that i ∈ S.

This proves that u is additive and that i is a dummy player in u. A contradiction
arises. Therefore Du 6= N\{i}.
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By Proposition 4.2.1, if at least n− 1 players are dummy in a TU-game, then all the n
players are dummy in that TU-game. We now move to a necessary and sufficient condition
for the linear span Span({u}) of a TU-game to be a Shapley valid domain.

Proposition 4.2.2. Let u ∈ ΓN and D be any nonempty subset of Span({u}).
The Shapley value is the unique value on D that satisfies (E), (S), (AD) and (D)

if and only if u admits at most one symmetry class of non dummy players.

Proof.
Consider u ∈ ΓN .
⇐=) Assume that |Sym(u)| ≤ 1 and consider a value on D that satisfies (E), (S),

(AD) and (D). First suppose that |Sym(u)| = 0. Then Dum(u) = N . In this case, for
all v ∈ Span({u}), v = αu for some α ∈ R and therefore Dum(v) = N . By (D), it follows
that ϕi(v) = v(i) = Shapi(v) for all v ∈ D and for all i ∈ N . Therefore, ϕ(v) = Shap(v)

for all v ∈ D .
Now suppose that |Sym(u)| = 1. That is Sym(u) = {S} and Dum(u) = T for some

two-coalition partition {S, T} of N . Let v ∈ Span({u}) . Then v = αu for some α ∈ R.
Suppose that α = 0. Then v = 0̃ and it follows by (D) that ϕi(v) = Shapi(v) = 0 for
all i ∈ N ; that is ϕ(v) = Shap(v). Suppose that α 6= 0. Then Sym(v) = {S} and
Dum(v) = T . Therefore by (D), ϕi(v) = v(i) = Shapi(v) for all i ∈ T and by (S),
ϕi(v) = ϕj(v) for all i, j ∈ S. By (E), ϕi(v) = Shapi(v) = 1

|S|

(
v(N)−

∑
j∈T v(j)

)
for all

i ∈ S. Therefore, ϕ(v) = Shap(v) for all v ∈ D.
=⇒) Suppose that |Sym(u)| ≥ 2 and consider S, S ′ ∈ Sym(u). Moreover, consider

K ∈ 2N such that u(K) 6= 0. Of course, such a coalition K exists; otherwise u = 0̃

and Sym(u) = ∅, a contradiction. For each λ ∈ R, define the value ϕλ for all v ∈ D by
ϕλ(v) = (ϕλ,i(v))i∈N such that for all i ∈ N ,

ϕλ,i(v) =



v(i) if i ∈ Dum(u)

λ

|S|
v(K) if i ∈ S

1

|N \ (S ∪Dum(u))|

v(N)− λv(K)−
∑

j∈Dum(u)

v(j).

 otherwise

Each ϕλ satisfies (E), (S), (AD) and (D) on D. To see this, consider λ ∈ R. The value ϕλ
is well defined since |S| 6= 0 and |N \ (S ∪Dum(u))| ≥ |S ′| ≥ 1 by noting the fact that
S ′ ⊆ N \ (S ∪ Dum(u)) and S, S ′ ∈ Sym(u). By definition, ϕλ(v) linearly depends on
v and therefore ϕλ satisfies (AD). To continue, consider v ∈ D. Then v = αu for some
α ∈ R.

If α = 0, then v(L) = 0 for all L ⊆ N , Dum(v) = N and by definition, ϕλ(αu) = 0 =

v(i) for all i ∈ N . Otherwise, α 6= 0, Dum(v) = Dum(u) and it follows by the definition
of ϕλ that ϕλ,i(αu) = v(i) for all i ∈ Dum(u) = Dum(v). This proves that ϕλ meets (D).
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By adding individual shares for ϕλ(v) = (ϕλ,i(v))i∈N , the following holds by definition:

∑
l∈N

ϕλ,l(v) = (
∑

l∈Dum(u)

v(l)) + λv(K) + v(N)− λv(K)−

 ∑
l∈Dum(u)

v(l)

 = v(N).

Thus, ϕλ satisfies (E).
Consider two symmetric players i, j ∈ N in v. We prove that ϕλ,i(v) = ϕλ,j(v). First

suppose that α = 0, then v is null and ϕλ,i(v) = ϕλ,j(v) = 0 by the definition of ϕλ. Now
suppose that α 6= 0, then i and j are symmetric players in u and thus, u(i) = u(j). There
are three possible cases: (i) i, j ∈ Dum(u); (ii) i, j ∈ S; or (iii) i, j ∈ N\(Dum(u) ∪ S).
In each of the three possible cases, ϕλ,i(v) = ϕλ,j(v) by the definition of ϕλ. Thus, ϕλ
satisfies (S).

To conclude, the family (ϕλ)λ∈R is a family of distinct values on D that satisfies (E),
(D), (S) and (AD). Therefore the Shapley value is not the only value on D that satisfies
(E), (D), (S) and (AD). Thus D is not a Shapley valid domain.

It is worth mentioning that for a TU-game u ∈ ΓN such that |Sym(u)| ≥ 2, it is still
possible to define a value that satisfies (E), (S) and (D) but not (AD) on Span({u}). This
may be achieved by simply substituting (v(K))2 to v(K) in the definition of ϕλ in the proof
of Proposition 4.2.2. The next result is straightforward from Proposition 4.2.2.

Corollary 4.2.5. For any TU-game u ∈ ΓN , any nonempty subset D of Span({u})
is a Shapley valid domain if and only if u admits at most one symmetry class of non
dummy players.

In the next result, we identify the set of all TU-games u ∈ ΓN such that |Sym(u)| ≤ 1.

Proposition 4.2.3. A TU-game u ∈ ΓN admits at most one symmetry class of non
dummy players if and only if

u =
∑
i∈D

αiγ{i} +

|S|∑
l=1

βl
∑

T⊆S,|T |=l
γT (4.9)

for some D ⊆ N,S ⊆ N, (αi)i∈D ⊂ R and (βl)l∈{1,...,|S|} ⊂ R such that S ∩ D = ∅ and
S ∪D = N .

Proof.
=⇒) It is obvious that any TU-game u ∈ ΓN that satisfies (4.9) also satisfies

|Sym(u)| ≤ 1.
⇐=) Suppose a that a TU-game u ∈ ΓN is such that |Sym(u)| ≤ 1. First suppose

that |Sym(u)| = 0. Then Dum(u) = N and therefore u =
∑

i∈N u(i)γi. Thus u satisfies
(4.9) for D = N , S = ∅ and αi = u(i) for all i ∈ N . Now suppose that |Sym(u)| = 1.
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Let Sym(u) = S and Dum(u) = D. It follows that S ∩D = ∅ and S ∪D = N . Then for
all T ∈ 2N ,

u(T ) = u((T ∩D) ∪ (T ∩ S))

=
∑
i∈D∩T

u(i) + u(T ∩ S) since all players in D are dummy players in u

=
∑
i∈D∩T

u(i) +
∑
L∈2N

[u]LγL(T ∩ S) by (4.3)

=
∑
i∈D∩T

u(i) +
∑

L∈2S/L⊆T
[u]L

=
∑
i∈D

u(i)γi(T ) +
∑
L∈2S

[u]LγL(T )

Let s = |S| and for each k ∈ {1, 2, . . . , s}, consider a subset Sk of S such that |Sk| = k.
Given that L ∈ 2S and l = |L|, the following holds

[u]L =
∑
K⊆L

(−1)l−|K|u(K)

=
s∑

k=1

(−1)l−k
(
l

k

)
u(Sk) since for all K ∈ 2S, |K| = k implies u(K) = u(Sk)

= [u]Sl
since only the size of L matters

We deduce that for all T ∈ 2N ,

u(T ) =
∑
i∈D

u(i)γi(T ) +
∑
L∈2S

[u]LγL(T )

=
∑
i∈D

u(i)γi(T ) +
s∑

k=1

[u]Sl

∑
L∈2S/|L|=l

γL(T )

Therefore u fits (4.9) with αi = u(i) for all i ∈ D and βl = [u]Sl
for all l ∈ {1, 2, . . . , s}.

We are now ready to state and prove a sufficient condition on a nonempty subset of ΓN

to be a Shapley valid domain. But, before we need the following notation.

Notation 4.2.2. For any nonempty subset E of R, we denote by E→ and E↔ the subset
of R defined by

E→ = {|α|/α ∈ E} and E↔ = {|α|/α ∈ E} ∪ {−|α|/α ∈ E}.

That is

E→ = E≥0 ∪ {−α/α ∈ E≤0} and E↔ = E→ ∪ {−α/α ∈ E→}.

In particular, Z→ = Z≥0 and R→ = R≥0. Similarly, Z↔ = Z and R↔ = R.
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Let E be a nonempty subset of R, F a nonempty subset of ΓN such that |Sym(u)| ≤
1 for all u ∈ F .
Any nonempty subset D of ΓN that satisfies

ConvConeE→(F) ⊆ D ⊆ SpanE↔(F) (4.10)

is a Shapley valid domain.

Theorem 4.2.3.

?

Proof.
Consider a nonempty subset E of R and F a nonempty subset of ΓN such that

|Sym(u)| ≤ 1 for all u ∈ F . Suppose D is a nonempty subset of ΓN that satisfies (4.10).
It is well-known that the Shapley value Shap satisfies (E), (D), (AD) and (S) on ΓN ,

and thus on D. Now, let ϕ be a value on D that satisfies (E), (D), (AD) and (S). Consider
v ∈ D. Clearly if v = 0̃, then ϕ(v) = Shap(v) by (E) and (S).

To continue, suppose that v 6= 0̃. Since D ⊆ SpanE↔(F), there exist p ∈

N∗, (αl)l∈{1,...,p} ⊆ E↔, and (vl)l∈{1,...,p} ⊂ F such that v =

p∑
l=1

αlvl. Set I+ = {l ∈

{1, . . . , p} : αl > 0} and I− = {l ∈ {1, . . . , p} : αl < 0}. The game v can be rewritten as
follows:

v =
∑
l∈I+

αlvl +
∑
l∈I−

αlvl.

Note that we suppose that both I+ and I− are nonempty since v can be rewritten as
v = v + α0v0 − α0v0 for some α0 ∈ E→ and v0 ∈ F . Equivalently,

v +
∑
l∈I−

(−αl)vl =
∑
l∈I+

αlvl.

Note that for all p ∈ I+ and for all q ∈ I−,

αpvp, (−αq)vq,
∑
l∈I+

αlvl,
∑
l∈I−

(−αl)vl ∈ D

since by assumption ConvConeE→(F) ⊆ D. It follows that

ϕ

(
v +

∑
l∈I−

(−αl)vl

)
= ϕ

(∑
l∈I+

αlvl

)
.

Furthermore, by (AD), we deduce that

ϕ(v) +
∑
l∈I−

ϕ((−αl)vl) =
∑
l∈I+

ϕ(αlvl).

Therefore
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ϕ(v) =
∑
l∈I+

ϕ(αlvl)−
∑
l∈I−

ϕ((−αl)vl).

Noting that for all l ∈ I+ ∪ I−, ConvConeE→({vl}) ⊆ ConvConeE→(F) ⊆ D and that
by assumption on F , |Sym(vl)| ≤ 1, Corollary 4.2.5 implies that Span({vl}) is a Shapley
valid domain. Hence, ϕ(αlvl) = Shap(αlvl) for all l ∈ I+ and ϕ((−αl)vl) = Shap((−αl)vl)
for all l ∈ I−. Finally, we deduce that

ϕ(v) =
∑
l∈I+

Shap(αlvl)−
∑
l∈I−

Shap((−αl)vl) = Shap(v).

This proves that any value ϕ on D that satisfies (E), (D), (AD) and (S) on D neces-
sarily coincides on D with Shap. Thus D is a Shapley valid domain.

In condition (4.10), no algebraic property is required on the structure of E. This under-
lines the diversity of Shapley valid domain, having some cone-wise structure. To describe
all such families of TU-games, we introduce the following definition.

Definition 4.2.15. Any non empty subset D of ΓN is said to be conically consistent
if D satisfies

ConvConeE→(F) ⊆ D ⊆ SpanE↔(F)

for some nonempty subset E of R and for some nonempty subset F of ΓN such that
|Sym(u)| ≤ 1 for all u ∈ F .

In this case, we say that D is conically consistent with respect to E and F .

From now on, we consider the following notation.

Notation 4.2.3. We denote by UN the set of all unanimity games γS in ΓN and by FN
the set of all TU-games that have at most one symmetry class of non dummy players.
That is,

UN = {v ∈ ΓN/v = γS for some S ∈ 2N}

and
FN = {v ∈ ΓN/|Sym(v)| ≤ 1}.

It is immediate that ∅ 6= UN ⊆ FN .

The next result provides some trivial cases of conically consistent domains.

Proposition 4.2.4. For any nonempty subset E of R and for any nonempty subset
F of FN , ConvConeE→(F) and SpanE(F) are conically consistent in ΓN with respect to
E and F .

Proof.
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The proof immediately follows from the definition of FN and the fact that for any
nonempty subset E of R and for any nonempty subset F of FN , ConvConeE→(F) ⊆
SpanE(F) ⊆ SpanE↔(F).

Proposition 4.2.5. ΓN is conically consistent with respect to R and UN .

Proof.
Noting that UN ⊆ FN , the proof immediately follows from Proposition 4.2.4 and the

fact that SpanR(UN) = ΓN since UN is a basis of the linear space ΓN .

In the next section, we prove that previous results we earlier mentioned are particular
instances of conically consistent domains of ΓN .

4.2.4 Comparison with existing results and further directions

We prove here that Neyman domains as well as Peleg-Sudhölter domains are particular
instances of conically consistent domains. New directions are also presented.

The case of Neyman domains

For an arbitrary TU-game v ∈ ΓN , a subgame vS of v is defined with respect to any coalition,
say, S. However, players in S are not necessarily symmetric players in vS. The Neyman
domain associated with v is the additive subgroup SpanZ(Γ(v)) generated by the collection
of its subgames. We prove below that any Neyman domain is conically consistent with
respect to Z and a subset of Γ that contains only TU-games with at most one symmetry
class of non dummy players. For this purpose, we introduce the following definition.

Definition 4.2.16. Given a TU-game v ∈ ΓN , the Harsanyi component game of v
associated to a coalition S is the TU-game [v]SγS where [v]S is the Harsanyi dividend
of the members of S in v.

We denote by H(v) the set all Harsanyi component games of v.

Obviously, the Harsanyi component game [v]SγS of v is null as soon as [v]S = 0. Moreover
[v]SγS and [v]TγT are distinct games whenever S 6= T . To show that the Neyman domain
associated to v coincides with the additive subgroup generated by the collection of Harsanyi
component games of v, we first prove the following:

Proposition 4.2.6. Given v ∈ ΓN and S ∈ 2N , vS =
∑
T∈2S

[v]TγT .

Proof.
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Let S, L ∈ 2N . On the one hand, vS(L) = v(S ∩ L) by definition of vS. Therefore,
it follows from (4.3) that

vS(L) =
∑
T∈2N

[v]TγT (S ∩ L)

=
∑

T⊆S∩L
[v]T since γT (S ∩ L) = 0 for T * S ∩ L

=
∑

T∈2S/T⊆L
[v]T

=
∑
T∈2S

[v]TγT (L) since γT (L) = 1 for T ⊆ L

This proves that vS =
∑
T∈2S

λT (v)γT .

In the next result, it is shown that the additive group of ΓN generated by the collection
of all subgames of a given TU-game coincides with the additive subgroup of ΓN generated
by the collection of all Harsanyi component games of the same TU-game.

Proposition 4.2.7. For all v ∈ ΓN , we have SpanZ(Γ(v)) = SpanZ(H(v)).

Proof.
To prove that SpanZ(Γ(v)) ⊆ SpanZ(H(v)), it is sufficient to prove that Γ(v) ⊆

SpanZ(H(v)). Consider u ∈ Γ(v). Then by definition of Γ(v), u = vS for some coalition
S. Therefore by Proposition 4.2.6, vS =

∑
T∈2S

[v]TγT and thus, vS ∈ SpanZ(H(v)). We

conclude that Γ(v) ⊆ SpanZ(H(v)).
Similarly, to show that SpanZ(H(v)) ⊆ SpanZ(Γ(v)), we simply prove that H(v) ⊆

SpanZ(Γ(v)). To do this, we prove by induction on t ∈ {1, 2, . . . , n} the assertion A(t)

that [v]TγT ∈ SpanZ(Γ(v)) for all T ∈ 2N such that |T | ≤ t.
Initialization: Consider T ∈ 2N such that |T | = 1. Then T = {i} for some i ∈ N and

by Proposition 4.2.6, vT = [v]TγT since T = {i} is the only coalition contained in 2T in
this case. Therefore [v]TγT = vT ∈ SpanZ(Γ(v)).

Induction step: Consider t ∈ {1, . . . , n − 1} and suppose that [v]LγL ∈ SpanZ(Γ(v))

for all L ∈ 2N such that |L| ≤ t. Consider T ∈ 2N such that |T | = t+ 1. By Proposition
4.2.6, the following holds:

vT =
∑
L∈2T

[v]LγL = [v]TγT +
∑

2T \{T}
[v]LγL.

We deduce that
[v]TγT = vT −

∑
L∈2T \{T}

[v]LγL.

Therefore [v]TγT ∈ SpanZ(Γ(v)) since vT ∈ SpanZ(Γ(v)) by definition of Γ(v) and for all
L ∈ 2T\{T}, [v]LγL ∈ SpanZ(Γ(v)) by the induction assumption.
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Conclusion: [v]TγT ∈ SpanZ(Γ(v)) for all L ∈ 2N .

By Proposition 4.2.6, the subgame of a TU-game u ∈ ΓN associated to a coalition S

is non null as soon as the corresponding Harsanyi component game is non null. But the
Harsanyi component game associated to a coalition can be null (its Harsanyi dividend is
null) while the corresponding subgame is non null (there exists a proper subset with a non
zero Harsanyi dividend). It is then immediate that the number of Harsanyi component
games of a TU-game is at most equal to the total number of its subgames. Proposition
4.2.7 is therefore a description of the additive subgroup generated by the collection of all
subgames of a TU-game with possibly a smaller number of generators. Furthermore, we
have the following result.

Corollary 4.2.6. All Neyman domains are conically consistent.

Proof.
Suppose that a nonempty subset D of ΓN is a Neyman domain. Then there exists a

TU-game u ∈ ΓN such that D = SpanZ(Γ(u)). Then by Proposition 4.2.7, it follows that
D = SpanZ(H(u)). It is obvious that each Harsanyi component game in H(u) admits
at most one symmetry class of non dummy players. Moreover, ConvConeZ(H(u)) ⊆
SpanZ(H(u)) = D ⊆ SpanZ(H(u)). Therefore, D is conically consistent with respect to
E = Z and F = H(u).

By Corollary 4.2.6, the scope of Theorem 4.2.3 is larger than the one of Theorem 4.2.1.

The case of Peleg-Sudhölter domains

As already mentioned in Remark 4.1.2, Shapley (1953) has shown that the collection UN
of all unanimity games is a basis of the vector space ΓN . The following result is thus
straightforward.

Proposition 4.2.8. The linear space ΓN is such that

SpanR(UN) = ΓN .

The next result provides the relationship between Peleg-Sudhölter domains and conically
consistent domains.

Proposition 4.2.9. All Peleg-Sudhölter domains are conically consistent.

Proof.
Suppose that a nonempty subset D of ΓN is a Peleg-Sudhölter domain. Then D is

a convex cone of ΓN that contains the set UN of all unanimity games in ΓN . Therefore
ConvConeR(UN) ⊆ D. Each unanimity game in ΓN admits exactly one symmetry class of
non dummy players. The result then follows from the fact that ConvConeR(UN) ⊆ D ⊆
SpanR(UN) = ΓN .
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Further directions

The notion of conically consistent domain is closely related to the structure of a cone in ΓN

and on whether or not a domain contains some specific combinations of some games. An
alternative approach is to focus on some specific domains in ΓN with a well-known algebraic
structure as it is, for example, the case with linear subspaces of ΓN .

Notation 4.2.4. For any nonempty subset D of ΓN . We pose D∗ = D ∩ FN ; that is

D∗ = {v ∈ D : |Symv| ≤ 1}.

To the question of what subspace of ΓN are Shapley valid domains, the next result
provides a necessary and sufficient condition in the case of exactly two players.

With exactly two players, any subspace E of ΓN is a Shapley valid domain if and
only if SpanR(E∗) = E .

Theorem 4.2.4.

?

Proof.
Assume that N = {1, 2} and consider an arbitrary subspace E of ΓN .

First suppose that SpanR(E∗) = E . Then by Proposition 4.2.4, E is a Shapley valid
domain since E∗ ⊆ FN by definition of E∗.

Now suppose that SpanR(E∗) 6= E . To prove that E is not a Shapley valid domain,
suppose on the contrary, that E is a Shapley valid domain. By Proposition 4.2.8, ΓN =

SpanR({γ{1}, γ{2}, γ{1,2}}). It follows that E is of dimension at most 3. We then distinguish
three distinct cases.

Firstly, suppose that dim(E) ≤ 1. Then by Corollary 4.2.5, E = SpanR({u}) for
some u ∈ FN . Therefore E∗ = SpanR({u}) = E and thus, SpanR(E∗) = E . This is a
contradiction holds to the assumption that SpanR(E∗) 6= E .

Secondly, suppose that dim(E) = 3. Then E = ΓN . In this case {γ{1}, γ{2}, γ{1,2}} ⊆ E∗

and thus, SpanR(E∗) = E by Proposition 4.2.8; a contradiction since SpanR(E∗) 6= E .
Thirdly and finally, suppose that dim(E) = 2. Since SpanR(E∗) 6= E , then

dim SpanR(E∗) ≤ 1 and there exists u ∈ E such that u /∈ SpanR(E∗). Moreover, there
exists v ∈ E such that E = SpanR({u, v}). To continue, we identify each game w ∈ ΓN

with the triplet (x, y, z) such that x = w({1}), y = w({2}) and z = w({1, 2}). In this
sense, we set u = (a, b, c) and v = (a′, b′, c′). Noting that u /∈ SpanR(E∗), it follows that

c 6= a+ b and a 6= b. We pose λ =
c′ − a′ − b′

c− a− b
and w = v− λu. The game w is such that:

w({1}) =
a′(c− b)− a(c′ − b′)

c− a− b
and w({2}) =

b′(c− a)− b(c′ − a′)
c− a− b
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and
w({1}) + w({2}) = w({1, 2}) =

ca′ + cb′ − ac′ − bc′

c− b− a
.

Therefore, Dum(w) = N , Sym(w) = ∅ and thus, w ∈ E∗ ⊆ SpanR(E∗). Recalling that
u and v are linearly independent vectors, w 6= 0̃ and thus, SpanR(E∗) = SpanR({w}).
Furthermore, u and w are linearly independent otherwise u ∈ SpanR({w}) ⊆ SpanR(E∗)
which stands in contradiction to the fact that u /∈ SpanR(E∗). Therefore E can also be
written by E = SpanR({u,w}).

Suppose that α 6= β. Then for t =
b′ − a′

β − α
, the TU-game w′ = u − t ∗ w is such that

w′({1}) = w′({2}). Therefore w′ ∈ SpanR(E∗) = SpanR({w}). It follows that there exists
k ∈ R such that u− t ∗ w = k ∗ w. We get u = (k + t) ∗ w and it appears that u and w
are linearly dependent; a contradiction arises since E = SpanR({u,w}) and dim(E) = 2.

We deduce that α = β 6= 0 and we pose w0 =
1

α
w = (1, 1, 2). We note that E =

SpanR({u,w0}) and define the value Φ on E for all g ∈ E by:

Φ(g) = (Φ1(g),Φ2(g)) = (x+y×u(N), x) provided that g = x×w0 +y×u with x, y ∈ R.

Below, we prove that Φ satisfies (E), (D), (S) and (AD). For this purpose, let N = {i, j}.
(E): Consider g = x× w0 + y × u ∈ E . We have

Φ1(g) + Φ2(g) = 2x+ y × u(N) = x× w0(N) + y × u(N) = g(N).

Thus Φ satisfies (E).
(D): Consider g = x×w0 + y× u ∈ E and a player i ∈ N . If player i is dummy in g,

then by Proposition 4.2.1, player j is also dummy. It follows that g(N) = g({1})+g({2}).
Equivalently, 2x+y×u(N) = x+y×u({1})+x+y×u({2}). That is yc = y(a+b) and since
c 6= a+ b, we obtain y = 0. Then g = x× w0 and Φ1(g) = x = Φ2(g) = g({1}) = g({2}).
Thus Φ satisfies (D).

(S): Consider g = x × w0 + y × u ∈ E . If players 1 and 2 are symmetric players in
g, then g(1) = g(2). That can be rewritten as x + y × u({1}) = x + y × u({2}). That is
ya = yb and since a 6= b, we obtain y = 0. Then g = x × w0 and Φ1(g) = x = Φ2(g).
Thus Φ satisfies (S).

(AD): Consider g, g′ ∈ E . Then g = x × w0 + y × u, g′ = x′ × w0 + y′ × u and
g + g′ = (x+ x′)× w0 + (y + y′)× u for some x, y, x′, y′ ∈ R. It follows that Φ(g + g′) =

(x+x′+ (y+ y′)×u(N), x+x′) = (x+ y×u(N);x) + (x′+ y′×u(N);x′) = Φ(g) + Φ(g′).
Thus Φ satisfies (AD).

To conclude, we recall that E is a Shapley valid domain by assumption. This im-
plies that Φ(g) = Shap(g). Note that u = 0 × w0 + 1 × u. Therefore (c, 0) =(
a+

c− a− b
2

, b+
c− a− b

2

)
. Hence c = a +

c− a− b
2

and 0 = b +
c− a− b

2
. There-

fore a = b+ c and c = a+ b. A contradiction arises since c 6= a+ b. In each of the possible
cases, E is a Shapley valid domain only if SpanR(E∗) = E .
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The proof of Theorem 4.2.4 is heavily related to some specificities due to the assumption
N = {1, 2}. For example, a TU-game u ∈ ΓN admits at most one symmetry class of non
dummy players if and only if u({1}) = u({2}). This is no longer valid with at least three
players. A characterization of all subspaces of ΓN that are Shapley valid is thus remains
an open issue. Of course, the condition SpanR(E∗) = E is, in general, a sufficient condition;
and also a necessary condition in the case of exactly two players.

In the next chapter, we revisit the Van den Brink’s axiomatization of the Shapley value
using a fairness condition. We essentially present a valid domain to this later characteriza-
tion to solve an issue that was left open.
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? ? Chapter Five ? ?

On the Van den Brink’s type of

characterization results

An axiomatization of the Shapley value (see Shapley (1953)) for TU-games was provided by
Van den Brink (2001) using an axiom that combines the axioms of additivity and symmetry:
the so-called fairness condition. We refer to this characterization of the Shapley value as
the VDB characterization of the Shapley value. The author also proved that the set of all
{0, 1}-valued TU-games (also known as voting games) is a VDB valid domain. In a follow
up paper, Casajus (2011) proves that any Peleg-Sudhölter domain presented in the previous
chapter is also a VDB valid domain. Whether the set of all simple games is a VDB valid
domain was abandoned due to the formulation of the fairness axiom. In this chapter, we
revisit the VDB characterization to reach new characterization results mainly on the set of
simple games where the initial condition of fairness no longer works.

To present the results so far obtained, this chapter comprises three sections. In Section
5.1, we present the axiom of fairness due to Van den Brink (2001). We then state the VDB
characterization result together with a new proof built only on the fact that each TU-game
is a linear combination of unanimity games. Still in the same section, we provide a new
version of the VDB fairness condition together with some useful comparison results. Due to
some technical considerations on how minimal winning coalitions of a simple game overlap,
a decisiveness graph as well as some key definitions on simple games are presented. In
Section 5.2, we state and prove a three-axiom characterization of the Shapley value on the
set of all simple games using the new condition of fairness. This is achieved thanks to some
insights on some specific symmetry relationships we provide between players in a simple
game. Section 5.3 is devoted to two further fairness analyses. We first combine the axioms
of null player property and symmetry into a new single axiom called the null player fairness.
This leads us to another characterization of the Shapley value on ΓN . We also consider a
strengthened condition of fairness that emerges to another three-axiom charaterization of
the Shapley-Shubik index the proof of which is simple and short.
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5.1 On the VDB axiomatization of the Shapley value

Concepts and axioms presented in previous chapters are simply used here without any
restatement. We mainly present two known characterization results stated using an axiom
that combines the additivity condition and another classical axiom to obtain a three-axiom
characterization of the Shapley value. In this section, we present a fairness condition due
to Van den Brink (2001).

5.1.1 Van den Brink’s theorem on ΓN

Consider two TU-games and suppose from one of these two games to another, one simply
adds a TU-game in which two given players are symmetric. Then the VDB fairness require-
ment is that the two players’ payoffs should increase by the same (algebraic) amount. More
formally,

Axiom 22. Van den Brink’s Fairness (VDB-F):
For all u, v ∈ ΓN and for all i, j ∈ N ,

ϕi(u+ v)− ϕi(u) = ϕj(u+ v)− ϕj(u)

whenever i and j are symmetric players in v.

Suppose that i and j are symmetric players in v. Then noting that v = (u + v) − u, it
appears that i and j play symmetric roles in the changes that occur from u to u + v. The
condition ϕi(u + v) − ϕi(u) = ϕj(u + v) − ϕj(u) simply means that the shares of the two
players increase or decrease by the same amount. Clearly, (VDB-F) is a fairness condition
on how individual shares vary when changes occur from one game to another. The following
remark has been pointed out by Van den Brink (2001).

Remark 5.1.1. If a given value ϕ on a domain that contains the null game 0̃ satisfies
(VDB-F) and (NP), then ϕ also satisfies Axiom (S).

The next result is a characterization of the Shapley value where two axioms, namely
Additivity (AD) and Symmetry (S), are replaced by the fairness condition we just present
above.

A value ϕ on ΓN satisfies (E), (NP) and (VDB-F) if and only if ϕ = Shap.

Theorem 5.1.1 (Van den Brink (2001)).

?

The original proof of Theorem 5.1.1 by Van den Brink (2001) is based on the collection
of unanimity games in ΓN and some graph concepts. Casajus (2011) proved the same result
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using TU-games that have positive Harsanyi dividends on ΓN as well as on any Peleg-
Sudhölter domain. We propose here a new proof of that theorem based only on unanimity
games using an induction reasoning. For this purpose, we first state and prove a lemma
that would help us to ease the proof.

Lemma 5.1.1. Consider a value ϕ on ΓN that satisfies (E), (NP) and (VDB-F).
Given any TU-game u0 ∈ ΓN , if ϕ(u0 +αSγS) = Shap(u0 +αSγS) holds for all S ∈ 2N

and for all αS ∈ R, then for all S, T ∈ 2N and αS, αT ∈ R, ϕ(u0 + αSγS + αTγT ) =

Shap(u0 + αSγS + αTγT ).

Proof.
Let ϕ be a value on ΓN that satisfies (E), (NP) and (VDB-F). Suppose that u0 ∈ ΓN

is a TU-game such that for all S ∈ 2N and for all αS ∈ R, ϕ(u0+αSγS) = Shap(u0+αSγS).
Consider S, T ∈ 2N ; and αS, αT ∈ R. We pose S = N\S, T = N\T ,

u = u0 + αSγS + αTγT ,

u−T = u− αTγT = u0 + αSγS

and
u−S = u− αSγS = u0 + αTγT .

Since all members of T are αTγT -symmetric and ϕ satisfies Axiom (VDB-F), then there
exists x ∈ R such that for all k, l ∈ T

x = ϕk(u)− ϕk(u−T ) = ϕl(u)− ϕl(u−T ).

Similarly, since members of T = N\T are null players in the game αTγT , they are also
αTγT -symmetric. Then there exists y ∈ R such that for all k ∈ T ,

y = ϕk(u)− ϕk(u−T ).

Noting that ϕ(u−T ) = Shap(u−T ), we obtain

ϕ(u) = ϕ(u−T ) + x1T + y1T = Shap(u−T ) + x1T + y1T . (5.1)

Similarly, there exist x′, y′ ∈ R such that

ϕ(u) = Shap(u−S) + x′1S + y′1S. (5.2)

By observing that ϕ meets (E), it follows by (5.1) that u−T (N) + tx+ (n− t)y = u(N).
That is

tx+ (n− t)y = αT . (5.3)

Similarly, by (5.2), one obtains

sx′ + (n− s)y′ = αS. (5.4)
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Note that in the case S ∩ T 6= ∅, one obtains, by combining (5.1) and (5.2), that for
any player i ∈ S ∩ T , ϕi(u) = Shapi(u−T ) + x = Shapi(u−S) + x′. Since Shapi(u−T ) −
Shapi(u−S) = αS

s
− αT

t
, it follows that

x′ − x =
αS
s
− αT

t
. (5.5)

In the case S\T 6= ∅, one obtains, by combining (5.1) and (5.2), that for any player
j ∈ S\T , ϕj(u) = Shapj(u−T ) + y = Shapj(u−S) + x′. Since Shapj(u−T )− Shapj(u−S) =
αS

s
, it follows that

x′ − y =
αS
s
. (5.6)

In the case T\S 6= ∅, one obtains, by combining (5.1) and (5.2), that for any player
k ∈ T\S, ϕk(u) = Shapk(u−T ) +x = Shapk(u−S) + y′. Since Shapk(u−T )−Shapk(u−S) =

−αT

t
, it follows that

y′ − x = −αT
t
. (5.7)

We distinguish five possible cases as follows:
Case 1: S ∩T 6= ∅, S\T 6= ∅ and T\S 6= ∅. Consider i ∈ S ∩T, j ∈ S\T and k ∈ T\S.
Considering (5.3), (5.4), (5.5), (5.6) and (5.7), the following linear system arises:

(S1) :



tx+ (n− t)y = αT

sx′ + (n− s)y′ = αS

x′ − x = αS

s
− αT

t

x′ − y = αS

s

y′ − x = −αT

t
.

Summing (5.6) and (5.7), one gets x′ − y + y′ − x = αS

s
− αT

t
and using equation

(5.5), we have x′ − y + y′ − x = x′ − x and thus, y′ = y. Therefore (5.7) leads us to
y = y′ = x− αT

t
. Replacing in (5.3), it follows that x = αT

t
and from (5.7), y = 0. Then

replacing in (5.1), one finally obtains
ϕ(u) = Shap(u−T ) + αT

t
1T + 0 ∗ 1T

= Shap(u−T ) + Shap(αTγT )

= Shap(u−T + αTγT ) since Shap satisfies Axiom (AD)
= Shap(u).

Case 2: S ∩ T 6= ∅, S\T = ∅ and T\S = ∅. Then S = T and u = u0 + (αS + αT )γS.
It follows by assumption on u0 that ϕ(u) = Shap(u).

Case 3: S ∩T 6= ∅, S\T 6= ∅ and T\S = ∅. Then (5.3), (5.4), (5.5) and (5.6) hold and
lead us to the following linear system:

(S3) :



tx+ (n− t)y = αT

sx′ + (n− s)y′ = αS

x′ − x = αS

s
− αT

t

x′ − y = αS

s
.
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Substracting (5.5) from (5.6) leads to y = x− αT

t
. By replacing y in equation (5.3), one

obtains x = αT

t
. Finally, x = αT

t
and y = 0. Thus ϕ(u) = Shap(u) as in Case 1.

Case 4: S ∩T 6= ∅, S\T = ∅ and T\S 6= ∅. Then (5.3), (5.4), (5.5) and (5.7) hold and
lead us to the following linear system:

(S4)



tx+ (n− t)y = αT

sx′ + (n− s)y′ = αS

x′ − x = αS

s
− αT

t

y′ − x = −αT

t
.

Substracting equation (5.5) from equation (5.7) leads to y′ = x′ − αS

s
. By replacing y′ in

equation (5.4), one obtains x′ = αS

s
. Finally, x′ = αS

s
and y′ = 0. Thus ϕ(u) = Shap(u).

Case 5 : S ∩ T = ∅. Then S ⊆ T and T ⊆ S. Therefore S\T = S 6= ∅ and
T\S = T 6= ∅. Considering j ∈ S\T and k ∈ T\S, (5.3), (5.4), (5.6) and (5.7) hold and
lead to the following linear system:

(S2)



tx+ (n− t)y = αT

sx′ + (n− s)y′ = αS

x′ − y = αS

s

y′ − x = −αT

t
.

By (5.6) and (5.7), one gets x′ = y+ αS

s
and y′ = x− αT

t
. Replacing (5.4), one obtains

(n− s)x+ sy =
n− s
t

αT . (5.8)

By (5.3), x = αT−(n−t)y
t

and replacing in (5.8), leads to n(s + t − n)y = 0. If n 6= s + t,
then y = 0 and x = αT

t
. It follows that

ϕ(u) = Shap(u−T ) + αT

t
1T + 0 ∗ 1T

= Shap(u−T ) + Shap(αTγT )

= Shap(u−T + αTγT ) since Shap satisfies Axiom (AD)
= Shap(u).

Now, suppose that n = s + t. Then S = T and T = S. We pose L = S\{j} and
w = u0 + αTγT − αSγL+k where j ∈ S and k ∈ T . Then the TU-game u satisfies:

u = αS(γL+j + γL+k) + w.

Note that ϕ(u0 +αTγT ) = Shap(u0 +αTγT ) and ϕ(u0−αSγL+k) = Shap(u0−αSγL+k)

by assumption on u0. Since T ∩ (L+k) = {k} 6= ∅, it follows from cases 1, 2, 3 and 4 that
ϕ(w) = Shap(w). Since j and k are αS(γL+j + γL+k)-symmetric and ϕ satisfies (VDB-F),

ϕj(u)− ϕj(w) = ϕk(u)− ϕk(w).
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That is
y + Shapj(u−T )− ϕj(w) = x+ Shapk(u−T )− ϕk(w). (5.9)

Moreover Shapj(u−T ) = Shapj(u0) + αS

s
, Shapj(w) = Shapj(u0), Shapk(u−T ) =

Shapk(u0) and Shapk(w) = Shapk(u0) + αT

t
− αS

s
. Replacing in (5.9), one obtains

y = x− αT
t
. (5.10)

Replacing y in (5.3), it follows that x = αT

t
and replacing x in (5.10), it follows that

y = 0. Therefore
ϕ(u) = Shap(u−T ) + αT

t
1T + 0 ∗ 1T

= Shap(u−T ) + Shap(αTγT )

= Shap(u−T + αTγT ) since Shap satisfies Axiom (AD)
= Shap(u).

In each of the five possible cases, ϕ(u) = Shap(u).

We now prove Theorem 5.1.1.

Proof.
⇐=) It is well-known that the Shapley value satisfies (E) and (NP). Now consider

two games u, v ∈ ΓN and two players i, j ∈ N such that i and j are v-symmetric. Then
Shapi(v + u)− Shapi(u) = Shapi(v) + Shapi(u)− Shapi(u) by (AD)

= Shapi(v)

= Shapj(v) by (S)
= Shapj(v) + Shapj(u)− Shapj(u)

= Shapj(v + u)− Shapj(u) by AD).
Thus, the Shapley value satisfies Axiom (VDB-F).
=⇒) Suppose that ϕ is a value on ΓN that satisfies (E), (NP) and (VDB-F). We show

that ϕ = Shap.
Suppose that n = 2. Pose N = {1, 2}, consider u ∈ ΓN and define the TU-games

u1 and u2 as shown in the following table:

S ∅ {1} {2} {1, 2}
u(S) 0 a b c

u1(S) 0 a a a+ c− b
u2(S) 0 0 b− a b− a

Since player 1 is a null player in u2 and ϕ satisfies (NP), one obtains ϕ1(u2) = 0.
The value ϕ also satisfies (E). Then ϕ2(u2) = b − a − ϕ1(u2) = b − a. Noting that
u = u1 + u2 and that players 1 and 2 are u1-symmetric. Then by (VDB-F), it holds that
ϕ1(u1 + u2)− ϕ1(u2) = ϕ2(u1 + u2)− ϕ2(u2). That is ϕ1(u)− ϕ1(u2) = ϕ2(u)− ϕ2(u2).
Moreover, ϕ satisfies (E), one obtains ϕ1(u) + ϕ2(u) = u({1, 2}) = c. Then the following
linear system arises:
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(S5) :

ϕ1(u)− ϕ2(u) = a− b

ϕ1(u) + ϕ2(u) = c.

Solving (S5) yields ϕ(u) = (ϕ1(u), ϕ2(u)) = ( c+a−b
2

, c+b−a
2

) = Shap(u).
Now suppose that n ≥ 3. Given an integer m ≥ 1, we pose

Em =

{
u ∈ ΓN/u =

∑
T∈E

αTγT for some E ⊆ 2N and (αT )T∈E ⊆ R such that |E| ≤ m.

}

We prove by induction on m ∈ {1, 2, . . . , 2n − 1} that ϕ(u) = Shap(u) for all u ∈ Em.
Initialization: Consider u ∈ E1. Then u = αγT for some T ∈ 2N and α ∈ R. Any

player i ∈ N\T is a null player in u and thus, ϕi(u) = 0 = Shapi(u) since ϕ satisfies
(NP). Moreover, players in T are symmetric players in u. Since ϕ satisfies (VDB-F) and
(NP), it follows by Remark 5.1.1 that ϕ also satisfies (S) since 0̃ ∈ ΓN . It then follows
that ϕi(u) = α

|T | = Shapi(u). Thus ϕ(u) = Shap(u) for all u ∈ E1.
Induction step: Consider an integer m ∈ {1, 2, . . . , 2n − 2} and assume that ϕ(u) =

Shap(u) for all u ∈ Em. We show that ϕ(u) = Shap(u) for all u ∈ Em+1. By induction
assumption, it is sufficient to prove that ϕ(u) = Shap(u) for all u ∈ Em+1 such that there
exists T1, T2, · · · , Tm+1 ∈ 2N and α1, α2, · · · , αm+1 ∈ R such that:

u =
m+1∑
l=1

αlγTl = v + αm+1γTm+1 for v =
m∑
l=1

αlγTl .

Let u ∈ Em+1 be one such game.
If m = 1, then v = α1γT1 + 0̃ and since for all T ∈ 2N and αT ∈ R, 0̃ + αTγT ∈ Em, it

follows by the induction assumption that ϕ(0̃ + αSγS) = Shap(0̃ + αSγS). Finally, from
Lemma 5.1.1, ϕ(0̃ + α1γT1 + α2γT2) = Shap(0̃ + α1γT1 + α2γT2). That is ϕ(u) = Shap(u).

Now, suppose that m ≥ 2. Then v = u0 + αmγTm with u0 =
m−1∑
l=1

αlγTl . Since for

all T ∈ 2N and αT ∈ R, u0 + αTγT ∈ Em, it follows by the induction assumption that
ϕ(u0 + αSγS) = Shap(u0 + αSγS). From Lemma 5.1.1, it follows that ϕ(u0 + αmγTm +

αm+1γTm+1) = Shap(u0 + αmγTm + αm+1γTm+1).
Conclusion: ϕ(u) = Shap(u) for all u ∈ E2n−1 = ΓN .

Van den Brink (2001) proved that Theorem 5.1.1 still holds on the set of all voting
games. In other words, the set of all voting games is a valid domain for the characterization
result (Lf , Shap) for Lf = {(E), (NP ), (V DB−F )}. Casajus (2011) extended the scope of
valid domains to the same result to cover all convex cones that contain all the unanimity
games (known as Peleg-Sudhölter domain). Conically consistent domains we introduce in
the previous chapter are potential (Lf , Shap) valid domains. But we omit investigation
in that direction to focus on the validity of (Lf , Shap) on the set of simple games. Of
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course, the importance of the Shapley value for simple games (called Shapley-Shubik index)
is unquestionable after Shapley and Shubik (1954) made it a suitable measure of voting
power. It is therefore of great interest to give the Shapley-Shubik index a characterization
in terms of fairness. This is the subject of the next section.

5.1.2 Revisiting Van den Brink’s fairness

We recall that GN is the set of all simple games with the same set N = {1, ..., n} of n players.
Hereafter, the restriction of the Shapley value on GN is called the Shapley-Shubik index and
is denoted SS. Our objective is to give the Shapley-Shubik index a characterization that is
somewhat a version of Theorem 5.1.1 when only simple games are admissible games. The
main difficulty is that adding two simple games is no more a feasible operation since the
sum of any two simple games is never a simple game. A way out from this is due to Dubey
(1975) who proposed the transfer property as a substitute of the additivity property to
characterize the Shapley-Shubik index. Our solution here consists in an equivalent version
of (VDB-F) that better fits possible restrictions to any nonempty subset K of ΓN ; that is
the set of admissible TU-games.

Axiom 23. Fairness on K (F): For all u, v ∈ K, for all players i, j ∈ N such that i
and j are symmetric in v − u,

ϕj(v)− ϕj(u) = ϕi(v)− ϕi(u).

Note that in the above axiom, v− u is seen as an element of ΓN rather than an element
of K since K may not be closed under the difference of two games (as it is, for instance,
the case for K = GN). The TU-game v − u is seen as a measure of changes that occurs
from u to v. In other words, the fairness Axiom (F) is the disposition that whenever two
players play symmetric roles for changes that occur from one game to another, the shares of
these two players should increase or decrease by the same amount. This is exactly the main
intuition in (VDB-F). Of course, the small and inessential difference is that it is necessary
in (VDB-F) that the difference which measures the changes in the two games is also an
admissible game. More precisely, the restriction of (VDB-F) on a nonempty subset of K of
ΓN suggested by Van den Brink (2001) himself is as follows:

Axiom 24. (VDB-F) on K: For all u, v ∈ K, for all players i, j ∈ N such that i and
j are symmetric in v,

ϕj(u+ v)− ϕj(u) = ϕi(u+ v)− ϕi(u)

whenever u+ v ∈ K.

Definition 5.1.1. A nonempty subset K of ΓN is closed under difference if v−u ∈ K
for all u, v ∈ K.
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This formulation contains an inessential requirement. That is the fact that v ∈ K since
the game v is simply a measure of how players are involved in the changes that occur from
u to u+ v. Below, we present some existing relationships between (VDB-F) and (F).

Proposition 5.1.1. Consider a nonempty subset K of ΓN .

(i) Any value that satisfies (F) on K also satisfies (VDB-F) on K.

(ii) If K is closed under the difference, then any value that satisfies (VDB-F) on K
also satisfies (F) on K.

Proof.
Let K be a nonempty subset of ΓN .

First suppose that a value ϕ satisfies (F) on K. Consider two TU-games u, v ∈ K
such that u+ v ∈ K and two players i, j ∈ N such that i and j are symmetric players in
v. Noting v = (u+ v)− u, it follows by (F) that ϕj(u+ v)− ϕj(u) = ϕi(u+ v)− ϕi(u).
Therefore, ϕ satisfies (VDB-F) on K.

Now, suppose that K is closed under the difference. Let ϕ be a value that satisfies
(VDB-F) on K. Consider two TU-games u, v ∈ K and two players i, j ∈ N such that i
and j are symmetric players in v − u. Noting v − u ∈ K and v = u + (v − u), it follows
by (VDB-F) that ϕj(v)− ϕj(u) = ϕi(v)− ϕi(u). Therefore, ϕ satisfies (F) on K.

As underlined in Proposition 5.1.1, (F) implies (VDB-F) on any nonempty subset of
ΓN . It then appears that (F) is a strengthening version of (VDB-F). Furthermore, (F) and
(VDB-F) are equivalent on any nonempty subset of ΓN which is closed under difference.
In particular, (F) and (VDB-F) are equivalent on ΓN and on any subspace of ΓN . The
following result is thus straightforward.

A value ϕ on ΓN satisfies (E), (NP) and (F) if and only if ϕ = Shap.

Theorem 5.1.2 (Van den Brink (2001) reformulated).

?

Van den Brink (2001) (see Proposition 2.4., p. 311) proved that (NP) and (VDB-F)
imply (S) on ΓN . Since (VDB-F) and (F) are equivalent on ΓN , it also holds that (NP) and
(F) imply (S) on ΓN . When we replace ΓN by GN , this later result still holds for n ≥ 3; but
no longer for n = 2. This is developed in the next proposition and remark.

Proposition 5.1.2. For n ≥ 3, (F) and (NP) implies (S) on GN .

Proof.
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Assume n ≥ 3. Let ϕ be a value on GN that meets (F) and (NP). Consider i, j ∈ N
and v ∈ GN such that i and j are v-symmetric. Note that for k ∈ N\{i, j}, i and j are
symmetric players in v− γ{k}. Therefore, (F) implies ϕi(v)−ϕi(γ{k}) = ϕj(v)−ϕj(γ{k}).
Since both i and j are null players in γ{k}, then ϕi(γ{k}) = ϕj(γ{k}) = 0 by (NP). Hence
ϕi(v) = ϕj(v). Thus ϕ satisfies (S).

Remark 5.1.2. For n = 2, N = {1, 2} and GN = {v1, v2, v3, v4} where v1 = γ{1},
v2 = γ{2}, v3 = γ{1} ∨ γ{2} and v4 = γ{1,2}; see the following tabular:

vl\S {1} {2} {1, 2}
v1 1 0 1

v2 0 1 1

v3 1 1 1

v4 0 0 1

Consider a value ϕ on GN that satisfies (E), (NP) and (F). It follows by (E) and
(NP) that ϕ(v1) = (1, 0) = SS(v1) and ϕ(v2) = (0, 1) = SS(v2). Set ϕ(v3) = (x, y) and
ϕ(v4) = (x′, y′). Note that players 1 and 2 are symmetric in v3 − v4, it follows by (F)
that x−x′ = y−y′. Since x+y = x′+y′ = 1 by Axiom (E), we obtain x = x′ and y = y′.
Players 1 and 2 are neither symmetric in v2 − v1, nor in v3 − v1, nor in v4 − v1, nor
in v3 − v2, nor in v4 − v2. Thus all value ϕ on GN satisfies (E), (NP) and (F) if and
only if ϕ(v1) = (1, 0) = SS(v1), ϕ(v2) = (0, 1) = SS(v2) and ϕ(v3) = (x, 1− x) = ϕ(v4) for
some x ∈ R. For x = 1

3
, one obtains ϕ(v3) = (1

3
, 2

3
) 6= SS(v3),ϕ1(v3) 6= ϕ2(v3) meanwhile

1 and 2 are symmetric players in v3. That is ϕ satisfies (F) and (NP); but not (S).

To continue, we need some further definitions and notations.

Definition 5.1.2. Given v, w ∈ GN , the games v∧w and v∨w are defined as follows:

∀S ⊆ N, (v ∧ w)(S) = min{v(S), w(S)} and (v ∨ w)(S) = max{v(S), w(S)}. (5.11)

A given coalition is winning in v ∧ w if it is winning in both v and w, meanwhile for a
coalition to be winning in v ∨ w, it should be winning at least in v or in w. The set GN
of simple games is closed under the operators ∨ and ∧, that is v ∧ w, v ∨ w ∈ GN for all
v, w ∈ GN .

It can be easily checked that

u ∨ v + u ∧ v = u+ v and u ∧ (v ∨ w) = (u ∧ v) ∨ (u ∧ w) (5.12)

and that for all coalitions S and T ,

γS ∧ γT = γS∪T . (5.13)
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Furthermore, for any v ∈ GN ,
v = ∨

T∈M(v)
γT . (5.14)

The above mentioned properties of ∨ and ∧ were of crucial importance for Dubey (1975)
who provided a characterization of the Shapley-Shubik index. They are also useful in the
sequel.

Notation 5.1.1. Assuming that v is a simple game, S ∈ M(v) and |M(v)| ≥ 2, the
games v−S and v+S are, respectively, obtained by

v−S = ∨
T∈M(v)\{S}

γT and v+S = γS ∧ v−S = ∨
T∈M(v)\{S}

γT∪S.

From v, the game v−S is obtained by cancelling S among minimal winning coalitions.
To be winning in v+S, a coalition should simultaneously comprise all members of S and
all members of at least one other minimal winning coalition in v. The last equation holds
thanks to the distributivity of ∧ and ∨ in the lattice GN .

To apply fairness disposals, one needs some specific relationships between simple games
that exhibit symmetric roles between players. On this issue, the following decomposition of
a simple game is very often used to link a given simple game with other simple games with
fewer minimal winning coalitions.

Proposition 5.1.3. For any simple game v and for any S ∈M(v) such that |M(v)| ≥
2,

v = γS + v−S − v+S. (5.15)

Moreover, players in S are symmetric players in v − v−S.

Proof.
Equation (5.15) is straightforward from (5.12) and (5.13) by noting that v = γS∨v−S.

Now, players in S are symmetric players in γS as well as in γT∪S for all T ∈ M(v)\{S}.
Therefore, players in S are symmetric players in γS − v+S, and thus in v − v−S since
v − v−S = γS − v+S by (5.15).

The preceding decomposition of a simple game appears in the proof of several results;
see for example Dubey and Shapley (1979) (proof of Theorem 1), Weber (1988) (proof
of Theorem 7) or Peleg and Sudhölter (2007) (proof of Theorem 8.6.4), among others.
Moreover, the explicit expression of v+S in terms of a conjunction of unanimity games is
also reported by Peleg and Sudhölter (2007).
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5.1.3 A decisiveness graph of a simple game

In a simple game v, a player i is decisive in a coalition S if S is winning while S\{i} is losing.
One way to describe the decisiveness structure in a simple game consists in associating to
this game a graph whose edges coincide with pairs of winning coalitions having common
decisive players. Such a graph may be built using only minimal winning coalitions since
a player i is decisive in a coalition S if and only if i is a member of a minimal winning
coalition contained in S, see Safokem et al. (2021). We opt for the following definition of a
decisiveness graph 1 associated to a simple game.

Definition 5.1.3. Given v ∈ GN , the decisiveness graph of v is the ordered pair
Gv = (M(v), Ev) where Ev is defined by

Ev = {{S, T} ⊆ M(v) : S ∩ T 6= ∅} ∪ {{S} ⊆ M(v) : S ∩ T = ∅ for all T ∈M(v)\{S}}.

In Gv,M(v) is the set of vertices and Ev contains all edges of Gv; and any loop corre-
sponds to a minimal winning coalition which overlaps with no other.

Definition 5.1.4. Given v ∈ GN and two minimal winning coalitions S and T , a path
from S to T is any sequence p = (S1, . . . , Sk) of minimal winning coalitions such that
S1 = S, Sk = T and {St, St+1} ∈ Ev for all t ∈ {1, 2, . . . , k − 1}. In this case, the length
of p is k − 1 and we write l(p) = k − 1.

A path is simple if it contains only distinct coalitions.

Definition 5.1.5. A connected set in the decisiveness graph Gv of a game v ∈ GN is
any set C ⊆ M(v) such that |C| = 1; or |C| ≥ 2 and for all pairs {S, T} ⊆ C, there is a
path in Gv from S to T .

In particular, a component of Gv is any maximal connected set C in Gv; S ∈ C and
T ∈ M(v)\C. The total number of components of Gv is denoted by c(v) and the set of
all components by C(v).

Example 5.1.1. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and v ∈ GN be a simple game
such that M(v) = {{10}, {1, 2}, {3, 5}, {7, 8}, {8, 9}, {2, 3, 4}, {3, 4, 6}}. The graph of
the game, see Figure 5.1, has three components. That is C(v) = {C1, C2, C3} with
C1 = {{1, 2}, {3, 5}, {2, 3, 4}{3, 4, 6}}, C2 = {{7, 8}, {8, 9}} and C3 = {{10}}.

Definition 5.1.6. A peripheral coalition in a component C of the graph Gv of a game
v ∈ GN is any coalition S ∈ C such that C = {S}, or C 6= {S} and removing S from C
again gives a connected subset of coalitions in Gv.

1A similar but distinct graph is introduced and used by Van den Brink who defines edges between
players from coalitions with non null Harsanyi dividends instead of edges between minimal winning coalitions
presented here.
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{1, 2}

{2, 3, 4} {3, 5}

{3, 4, 6}

{7, 8}

{8, 9}
{10}

Figure 5.1: Decisiveness graph withM(v) = {{10}, {1, 2}, {3, 5}, {7, 8}, {8, 9}, {2, 3, 4}, {3, 4, 6}}

Note that removing a peripheral coalition reduces by one the total number of components
or simply leaves this number unchanged.

Example 5.1.2. In Example 5.1.1, coalitions in C1 are all peripheral except {2, 3, 4}.

In the next proposition, it is established that the set of peripheral coalitions in a given
consistent component of a simple game is always nonempty.

Proposition 5.1.4. Given v ∈ GN , any component of v admits at least a peripheral
coalition.

Proof.
Consider v ∈ GN and let C be a component of Gv. First note that if C = {S} for

some S ∈ M(v), then S is, by definition, a peripheral coalition in C. Next, suppose
that C = {S, T} for some S, T ∈ M(v), then both S and T are peripheral coalitions
in C by definition. From now on, |C| ≥ 3. Let P(C) be the set of all simple paths
p = (T1, T2, . . . , Tk) such that Th ∈ C for all h ∈ {1, 2, . . . , k} and denote by P∗(C) the
set of all paths in P(C) of maximal length. The set P∗(C) is nonempty sinceM(v) is a
finite set. Consider p = (T1, T2, . . . , Tk) ∈ P∗(C).

To prove that S = T1 is peripheral in C, suppose on the contrary that it is not. Then
there exists {K,L} ⊆ C\{S} with no path in Gv−S fromK to L. Since C is a component in
Gv, then there exists a simple path (S1, S2, . . . , Sg, S, Sg+1, . . . , Sh) in v fromK to L (which
necessarily includes S). Let K = ∪1≤t≤gSt and L = ∪g+1≤t≤hSt. If Sg /∈ {T2, T3, . . . , Tk},
then p′ = (Sg, S, T2, . . . , Tk) ∈ P(C) and l(p′) = l(p) + 1. A contradiction arises since
p ∈ P∗(C). Thus, there exists x ∈ {2, 3, . . . , k} such that Sg = Tx. Similarly, there exists
y ∈ {2, 3, . . . , k} such that Sg+1 = Ty. There are two possible cases. If x < y, then
(S1, S2, . . . , Sg, Tx+1, . . . , Ty−1, Sg+1, . . . , Sk) is a path in Gv−S from K to L. Similarly, if
x > y, then (Sh, Sh−1, . . . , Sg+2, Ty, Ty−1, . . . , Tx+1, Sg, Sg−1, . . . , S1) is a path in Gv−S from
L to K. In both cases, a contradiction arises since, by assumption, there is no path in
v−S from K to L.
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We have the following properties of the components of the decisiveness graph of a simple
game.

Proposition 5.1.5. Consider v ∈ GN and suppose that Gv admits a component C
such that |M(v)\C| ≥ 2. Then there exist {R, S} ⊆ M(v)\C and i ∈ S\R such that
R′ ∪ {i} is losing for all proper subset R′ of R or R′ ∪ S\{i} is losing for all proper
subset R′ of R.

Proof.
Consider a game v ∈ GN and suppose that the graph Gv admits a component C such

that |M(v)\C| ≥ 2. Consider {R,L} ⊆ M(v)\C and i ∈ L\R. First suppose R′ ∪ {i}
is losing in v for all proper subset R′ of R. The result follows by taking S = L. To
complete the proof, suppose that R′ ∪ {i} is winning in v for some proper subset R′ of
R. It follows that R′′ ∪ {i} ∈ M(v) for some proper subset R′′ of R. Let S = R′′ ∪ {i}.
Then R ∪ S\{i} = R. Since R ∈M(v), it follows that R′ ∪ S\{i} is losing for all proper
subset R′ of R.

5.2 Van den Brink’s theorem on GN
In the sequel, we make use of the following notation:

Notation 5.2.1. Given v ∈ GN and F ⊆ 2N , we pose

m(v) = |M(v)|, c(v) = |C(v)| and s(v) = min{|S| : S ∈M(v)}.

In words, m(v) is the total number of minimal winning coalitions in v, c(v) is the
total number of components in Gv and s(v) is the smallest size of a minimal winning
coalition.

Furthermore, given F ⊆ 2N and an integer p ≥ 1, we set

∪F = ∪S∈FS and GN,p = {v ∈ GN : m(v) = p}.

Clearly, ∪F is the union of all coalitions in the collection F . In particular, ∪M(v) =

∪S∈M(v)S is the set of all players who belong each to at least one minimal winning coalition
of the game v ∈ GN . The set GN,p consists of all simple games on N with exactly p minimal
winning coalitions.
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5.2.1 Preliminary results

Before a formal statement of the Van den Brink’s theorem on GN , we first state and prove
some preliminary results we later use to ease the presentation of the main proof.

Proposition 5.2.1. Consider two efficient values ϕ and ψ on GN , v ∈ GN , a coalition
S and k ∈ N .

If ϕk(v)− ϕl(v) = ψk(v)− ψl(v) for all l ∈ S and ϕl(v) = ψl(v) for all l ∈ N\S, then
ϕl(v) = ψl(v) for all l ∈ N .

Proof.
Consider two efficient values ϕ and ψ on GN , v ∈ GN , a coalition S and k ∈ N such

that ϕk(v)−ϕl(v) = ψk(v)−ψl(v) for all l ∈ S and ϕl(v) = ψl(v) for all l ∈ N\S. Then,
summing all these equalities over l ∈ S yields, by efficiency,

|S|ϕk(v)−

1−
∑
l∈N\S

ϕl(v)

 = |S|ψk(v)−

1−
∑
l∈N\S

ψl(v)

 .

Therefore, ϕk(v) = ψk(v) since ϕl(v) = ψl(v) for all l ∈ N\S. The result follows by
considering this latter equality in each of the |S| previous others associated to players in
S.

Proposition 5.2.1 still holds on any nonempty subset K ⊆ ΓN . We simply state it here
on GN to share the same scope with other subsequent results.

Remark 5.2.1. Let ϕ and ψ be two efficient values on GN , v ∈ GN and k ∈ ∪M(v).
Further assume that both ϕ and ψ satisfy (NP). It is an immediate consequence of
Proposition 5.2.1 that ϕl(v) = ψl(v) for l ∈ N whenever ϕk(v) − ϕl(v) = ψk(v) − ψl(v)

for all l ∈ ∪M(v).

The next result highlights a symmetry relationship that links a dictator and other players
in a game. This is of course useful to scrutinize how a power index that satisfies (F) varies
from some games to other.

Proposition 5.2.2. Assume that a simple game v admits a dictator i and a minimal
winning coalition S such that |S| ≥ 2. Then for any member j of S, i and j are
symmetric players in v ∨ γS\{j} − v. Moreover, M(v ∨ γS\{j}) ⊆ {S\{j}} ∪ (M(v)\{S}).

Proof.
Let v be a simple game that admits a dictator i and a minimal winning coalition

S such that |S| ≥ 2. Consider j ∈ S and K ⊆ N\{i, j}. Since i is a dictator in
v,
(
v ∨ γS\{j} − v

)
(K ∪ {i}) = 0. To evaluate

(
v ∨ γS\{j} − v

)
(K ∪ {j}), two cases

arise. First suppose that γS\{j}(K ∪ {j}) = 1. Then S\{j} ⊆ K. This implies that
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v(K∪{j}) = 1 and
(
v ∨ γS\{j} − v

)
(K∪{j}) = 0. Now suppose that γS\{j}(K∪{j}) = 0.

Then v ∨ γS\{j}(K ∪{j}) = v(K ∪{j}) and thus,
(
v ∨ γS\{j} − v

)
(K ∪{j}) = 0. In both

cases,
(
v ∨ γS\{j} − v

)
(K ∪ {i}) =

(
v ∨ γS\{j} − v

)
(K ∪ {j}) = 0.

Finally, since γS\{j} ∨ γS = γS\{j}, it follows that

v ∨ γS\{j} = γS\{j} ∨
(

∨
T∈M(v)\{S}

γT

)
. (5.16)

ThereforeM(v ∨ γS\{j}) ⊆ {S\{j}} ∪ (M(v)\{S}).

In Proposition 5.2.2, the main change from v to v ∨ γS\{j} is that player j is no longer
decisive in the winning coalition S. In the new game, S\{j} is a minimal winning coalition.
However, it is important to note that change can also turn down the status of some other
minimal winning coalition. It then appears that there are at most as many minimal winning
coalitions in v ∨ γS\{j} as in v.

The next result is another symmetry relationship between some players from distinct
components of asimple game.

Proposition 5.2.3. Let C1 and C2 be two distinct components of a simple game v

such that m(v) ≥ 3, s(v) ≥ 2 and |C1| ≤ |C2|. Then for all T ∈ C1 and j ∈ T , there
exists {R, S} ⊆ M(v)\C1 and i ∈ S\R such that R′ ∪ {i} is losing in v for all proper
subset R′ of R or R′ ∪ S\{i} is losing in v for all proper subset R′ of R.

Moreover, for

S ′ = S\{i}, T ′ = T\{j} and w = v−R ∨ γS′∪R∪{j} ∨ γT ′∪R∪{i},

(i) i and j are symmetric players in v − w;

(ii) M(v)\{R} ⊆ M(w) ⊆ (M(v)\{R}) ∪ {S ′ ∪R ∪ {j}, T ′ ∪R ∪ {i}};

(iii) S ′ ∪R ∪ {j} ∈ M(w) or T ′ ∪R ∪ {i} ∈ M(w).

Proof.
Let C1 and C2 be two distinct components of a simple game v such that m(v) ≥ 3,

s(v) ≥ 2 and |C1| ≤ |C2|. Consider T ∈ C1 and j ∈ T . Since m(v) ≥ 3 and |C1| ≤ |C2|, it
follows that |M(v)\C1| ≥ 2. Then by Proposition 5.1.5, there exist {R, S} ⊆ M(v)\C1

and i ∈ S\R such that R′ ∪ {i} is losing for all proper subset R′ of R or R′ ∪ S\{i}
is losing for all proper subset R′ of R. Let S ′ = S\{i}, T ′ = T\{j} and w = v−R ∨
γS′∪R∪{j} ∨ γT ′∪R∪{i}.

(i) To prove that i and j are symmetric players in v − w, consider K ⊆ N\{i, j}.
First suppose that S ′ ∪ R ⊆ K. Then R ⊆ K and S = S ′ ∪ {i} ⊆ K ∪ {i}. Therefore
w(K ∪ {j}) = v(K ∪ {j}) = v(K ∪ {i}) = 1 and w(K ∪ {i}) = v−R(S ′ ∪ {i}) = 1. It
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follows that (v−w)(K ∪ {j}) = (v−w)(K ∪ {i}) = 0. The same reasoning applies when
T ′ ∪R ⊆ K. Now, suppose that neither S ′ ∪R ⊆ K; nor T ′ ∪R ⊆ K. In this case, both
K∪{j} and K∪{i} do not contain R. Therefore v(K∪{l}) = v−R(K∪{l}) = w(K∪{l})
for l ∈ {i, j}. Thus (v − w)(K ∪ {j}) = (v − w)(K ∪ {i}) = 0.

(ii) By the definition of w, it is immediate thatM(v)\{R} ⊆ M(w) ⊆ (M(v)\{R})∪
{S ′ ∪R ∪ {j}, T ′ ∪R ∪ {i}}.

(iii) Suppose that T ′ ∪R ∪ {i} /∈M(w). By the definition of w, w(T ′ ∪R ∪ {i}) = 1

and w(R) = 0. It follows that there exists L ∈ M(w)\{R} such that L ⊆ T ′ ∪ R ∪ {i}.
By assumption, T ∈ C1 and {R, S} ⊆ M(v)\C1. Therefore, L overlaps with either T ′ or
with R∪ {i}. But T and L are both minimal winning coalitions in v. Thus, L ⊆ R∪ {i}
and R′ ∪ {i} is winning in v for some proper subset R′ of R. By assumption, R′ ∪ S ′

is losing in v for all proper subset R′ of R. To see that S ′ ∪ R ∪ {j} ∈ M(w), note
that w(S ′ ∪ R ∪ {j}) = 1 and suppose that some proper subset, say L′, of S ′ ∪ R ∪ {j}
is winning in w. Then w(L′) = v−R(L′) = v(L′) = 1. It follows that L′ 6= {j} since
s(v) ≥ 2. Clearly, L ⊆ R or L ⊆ S ′ ∪ R′ for some proper subset R′ of R. In both cases,
w(L) = v−R(L) = v(L) = 0. A contradiction arises.

5.2.2 Van den Brink’s theorem for simple games

We proceed by introducing four lemmas, the first of which concerns simple games containing
a dictator.

Lemma 5.2.1. Given n ≥ 3 and a value ϕ on GN that meets (E), (NP) and (F), then
ϕ(v) = SS(v) for all simple games v ∈ GN such that s(v) = 1.

Proof.
Consider a value ϕ that satisfies (E), (NP) and (F) on GN with n ≥ 3. We prove

by induction on λ(v) =
∑

S∈M(v)

|S| the assertion A(p) that ϕ(v) = SS(v) for all v ∈ GN

such that s(v) = 1 and 1 ≤ λ(v) ≤ p. It is worth noticing that, by Proposition 5.1.2, ϕ
satisfies (S).

Initialization : Let v ∈ GN be such that s(v) = 1 and λ(v) = 1. ThenM(v) = {{i}}
for some i ∈ N . Therefore by (E) and (NP), ϕj(v) = 0 = SSj(v) for all j ∈ N\{i} and
ϕi(v) = 1 = SSi(v).

Induction step : Assume that A(p) holds for some integer p ≥ 1. Consider v ∈ GN
such that s(v) = 1 and λ(v) = p + 1. Let k ∈ ∪M(v) such that {k} ∈ M(v) and
consider i ∈ ∪M(v). First note that, if {i} ∈ M(v), then k and i are symmetric
players in v. Therefore ϕk(v) − ϕi(v) = SSk(v) − SSi(v) = 0. Now suppose that i ∈ S
for some S ∈ M(v) such that |S| ≥ 2. It follows, by Proposition 5.2.2, that k and i
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are symmetric players in v ∨ γS\{i} − v. Since ϕ and SS satisfy Axiom (F ), it follows
that ϕk(v) − ϕi(v) = ϕk(v ∨ γS\{i}) − ϕi(v ∨ γS\{i}) and SSk(v) − SSi(v) = SSk(v ∨
γS\{i}) − SSi(v ∨ γS\{i}). Furthermore, {k} ∈ M(v ∨ γS\{i}) and by Proposition 5.2.2,
M(v∨γS\{i}) ⊆ {S\{i}}∪(M(v)\{S}). Therefore, λ(v∨γS\{i}) ≤ p and s(v∨γS\{i}) = 1.
Thus, by induction assumption, ϕ(v ∨ γS\{i}) = SS(v ∨ γS\{i}). It follows that ϕk(v) −
ϕi(v) = SSk(v ∨ γS\{i}) − SSi(v ∨ γS\{i}) = SSk(v) − SSi(v). Thus, by Proposition 5.2.1,
ϕ(v) = SS(v). This proves that A(p+ 1) holds.

In the following lemma, we show that when a power index agrees with the Shapley-
Shubik index on all simple games with at most p minimal winning coalitions, players’ shares
for the two indices vary by the same amount for any pair of players belonging to the same
component of a simple game with exactly p+ 1 minimal winning coalitions.

Lemma 5.2.2. Given n ≥ 3, assume that ϕ is a power index on GN that meets (E),
(NP) and (F). If ϕ(v) = SS(v) for all games v ∈ GN such that 1 ≤ m(v) ≤ p, then
ϕj(v)− ϕi(v) = SSj(v)− SSi(v) for all v ∈ GN,p+1 and for all connected players i, j ∈ N .

Proof.
Suppose that ϕ(v) = SS(v) for all games v ∈ GN such that 1 ≤ m(v) ≤ p. Let

v ∈ GN,p+1 and i, j ∈ N be such that i and j are connected. Then, there exists
{S1, S2, . . . , Sq} ⊆ M(v) and I = {i1, i2, . . . , iq} such that i = i1 ∈ S1, j = iq ∈ Sq

and for all l ∈ {2, . . . , q}, il ∈ Sl ∩ Sl−1. We prove by induction on l ∈ {1, 2, . . . , q} the
assertion A(l) that for all k ∈ Sl, ϕk(v)− ϕi(v) = SSk(v)− SSi(v).

Initialization: Consider k ∈ S1\{i}. It follows by Proposition 5.1.3 that i and k are
symmetric players in v − v−S1 , then

ϕk(v)− ϕi(v) = ϕk(v
−S1)− ϕi(v−S1) since ϕ satisfies (F )

= SSk(v
−S1)− SSi(v

−S1) since m(v−S1) < m (v) and m (v) ≤ p by assumption
= SSk(v)− SSi(v) since SS also satisfies (F )

Therefore A(1) holds.
Induction step: Assume that A(l − 1) holds for some l ∈ {2, . . . , q} and consider

k ∈ Sl\{il}. As in the previous step, it holds by Proposition 5.1.3 and Axiom (F) that
ϕk(v) − ϕil(v) = SSk(v) − SSil(v). Moreover, il ∈ Sl−1. Thus, by induction assumption,
ϕil(v) − ϕi(v) = SSil(v) − SSi(v). Summing these two equations gives ϕk(v) − ϕi(v) =

SSk(v)− SSi(v). This proves A(l).
Conclusion: For all l ∈ {1, 2, . . . , q}, A(l) holds.

In the next lemma, we deal with simple games with at most two minimal winning coali-
tions. It is shown that the Shapley-Shubik index is the only power index that simultaneously
meets (E), (NP) and (F) on GN,1 ∪ GN,2.
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Lemma 5.2.3. Given n ≥ 3 and a value ϕ on GN that meets (E), (NP) and (F), then
ϕ(v) = SS(v) for all simple games v ∈ GN such that 1 ≤ m(v) ≤ 2.

Proof.
Assume that n ≥ 3 and consider a value ϕ that satisfies (E), (NP) and (F) on GN .

By Proposition 5.1.2, ϕ satisfies (S). We partition the set E = {v ∈ GN : 1 ≤ m(v) ≤ 2}
into three disjoint subsets E1, E2 and E3 defined by E1 = {v ∈ GN : m(v) = 1};
E2 = {v ∈ GN : M(v) = {S, T} with S ∩ T 6= ∅}; and E3 = {v ∈ GN : M(v) =

{S, T} with S ∩ T = ∅}. Firstly, consider v ∈ E1. ThenM(v) = {S} for some coalition
S. Therefore by (NP), ϕi(v) = SSi(v) = 0 for all i ∈ N\S. Moreover, by (NP), (S) and
(E), ϕi(v) = SSi(v) = 1/|S| for all i ∈ S. Hence ϕ(v) = SS(v). Secondly, consider v ∈ E2.
Then M(v) = {S, T} for some coalitions S and T such that S ∩ T 6= ∅. Then players
in ∪M(v) = S ∪ T are connected to each other; and by Lemma 5.2.2 and Remark 5.2.1,
ϕ(v) = SS(v). In the rest of the proof, S ∩ T = ∅. To complete the proof, we prove by
induction on s(v) = min(|S|, |T |) the assertion A(k) that ϕ(v) = SS(v) for all v ∈ E3

such that 1 ≤ s(v) ≤ k.
Initialization : Let v ∈ E3 be such that s(v) = 1. Then M(v) = {S, T} for some

coalitions S and T such that S ∩ T = ∅ and s(v) = 1. Then, |S| = 1 or |T | = 1. It
follows, by dictator lemma (see Lemma 5.2.1), that ϕ(v) = SS(v). Thus A(1) holds.

Induction step : Assume that A(k) holds for some integer k ≥ 1. Consider v ∈ E3

such thatM(v) = {S, T} with S ∩ T = ∅ and s(v) = k + 1. Without loss of generality,
assume that |S| = k + 1 ≤ |T |. Consider {i, j} ⊆ S and {k, l} ⊆ T . Note by Proposition
5.1.3 that i and j are symmetric players in v − γT . Then it follows, that

ϕj(v)− ϕi(v) = ϕj(γT )− ϕi(γT ) since ϕ satisfies (F )

= SSj(γT )− SSi(γT ) since ϕ(γT ) = SS(γT )

= SSj(v)− SSi(v) since SS also satisfies (E), (NP ) and (F ).
Similarly, ϕj(v)−ϕi(v) = SSj(v)− SSi(v) for all j ∈ S; and ϕk(v)−ϕl(v) = SSk(v)−

SSl(v) for all l ∈ T .
Also note by Proposition 5.1.3 that i and k are symmetric players in v ∨ γ{i,k} − v.

Then it follows, that
ϕk(v)− ϕi(v) = ϕk(v ∨ γ{i,k})− ϕi(v ∨ γ{i,k}) since ϕ satisfies (F )

= SSk(v ∨ γ{i,k})− SSi(v ∨ γ{i,k}) since ϕ(v ∨ γ{i,k}) = SS(v ∨ γ{i,k})
= SSk(v)− SSi(v) since SS also satisfies (E), (NP ) and (F ).

It follows that ϕl(v)−ϕi(v) = SSl(v)− SSi(v) for all l ∈ ∪M(v) = S ∪T . Thus, from
Proposition 5.2.1 and Remark 5.2.1, we conclude that ϕ(v) = SS(v).

Conclusion : ϕ(v) = SS(v) for all v ∈ E3.

In the next and final lemma, we show that whenever a power index agrees with the
Shapley-Shubik index on the set of all simple games with at most p minimal winning coali-

UYI: Ph.D Thesis 120 SAFOKEM Adin c©UYI 2023



5.2. Van den Brink’s theorem on GN

tions, the two power indices necessarily agree on the set of all simple games with exactly
p+ 1 minimal winning coalitions.

Lemma 5.2.4. Given n ≥ 3 and p ≥ 2, assume that ϕ is a power index on GN that
meets (E), (NP) and (F). If ϕ(v) = SS(v) for all games v ∈ GN such that 1 ≤ m(v) ≤ p,
then ϕ(v) = SS(v) for all v ∈ GN,p+1.

Proof.
Assume that n ≥ 3, p ≥ 2 and consider a value ϕ that satisfies (E), (NP) and (F) on

GN . Also assume that ϕ(v) = SS(v) for all games v ∈ GN such that 1 ≤ m(v) ≤ p. By
Lemma 5.2.2, ϕ(v) = SS(v) for all v ∈ GN,p+1 such that c (v) = 1. Furthermore, by the
dictator lemma (see Lemma 5.2.1), ϕ(v) = SS(v) for all v ∈ GN,p+1 such that s (v) = 1.
Now, consider v ∈ GN,p+1 such that c (v) ≥ 2 and s (v) ≥ 2. Consider two components
C1 and C2 of v such that |C1| ≤ |C2|, j0 ∈ ∪C1 and i0 ∈ ∪C2. First suppose that C1 = C2.
Then i0 and j0 are connected and by Lemma 5.2.2, ϕj0(v)− ϕi0(v) = SSj0(v)− SSi0(v).

Now, suppose that C1 6= C2. Since m (v) = p + 1 ≥ 3 and by Proposition 5.1.5, there
exist T ∈ C1, {R, S} ⊆ M(v)\C1, j ∈ T and i ∈ S\R such that R′ ∪ {i} is losing for
all proper subset R′ of R or R′ ∪ S\{i} is losing for all proper subset R′ of R. Then
j0, j ∈ ∪C1 and i0, i ∈ ∪C2. By Lemma 5.2.2, ϕj0(v) − ϕj(v) = SSj0(v) − SSj(v) and
ϕi0(v)−ϕi(v) = SSi0(v)−SSi(v). Thus, to prove that ϕi0(v)−ϕj0(v) = SSi0(v)−SSj0(v),
we only have to prove that ϕi(v) − ϕj(v) = SSi(v) − SSj(v). For this purpose, let
I = S\ {i}, J = T\ {j} and w = v−R ∨ γI∪R∪{j} ∨ γJ∪R∪{i}. By Proposition 5.2.3, i and j
are symmetric players in v−w. It follows that ϕi(v)−ϕj(v) = ϕi(w)−ϕj(w). To complete
the proof, we show that ϕi(w) − ϕj(w) = SSi(w) − SSj(w). Note that by Proposition
5.2.3,M (w) ⊆ (M (v) \ {R}) ∪ {I ∪R ∪ {j} , J ∪R ∪ {i}} and m (w) ≤ p+ 2.

First suppose that I ∪ R ∪ {j} /∈ M(w). Then by Proposition 5.2.3, J ∪ R ∪ {i} ∈
M(w) and m (w) = p + 1. Moreover, i and j are connected in w since S ∈ M(w),
T ∈ M(w), i ∈ S ∩ (J ∪R ∪ {i}) and ∅ 6= J ⊆ T ∩ (J ∪R ∪ {i}). Thus, by Lemma
5.2.2, ϕi(w) − ϕj(w) = SSi(w) − SSj(w). Similarly, suppose that J ∪ R ∪ {i} /∈ M(w).
Then by Proposition 5.2.3, I ∪ R ∪ {j} ∈ M(w) and m (w) = p + 1. This implies that
i and j are connected in w since S ∈ M(w), T ∈ M(w), j ∈ T ∩ (I ∪R ∪ {j}) and
∅ 6= I ⊆ S ∩ (I ∪R ∪ {j}). By Lemma 5.2.2, ϕi(w)− ϕj(w) = SSi(w)− SSj(w).

Now suppose that I ∪ R ∪ {j} ∈ M(w) and J ∪ R ∪ {i} ∈ M(w) and consider
l ∈ R. Then M (w) = (M (v) \ {R}) ∪ {I ∪R ∪ {j} , J ∪R ∪ {i}}. By Proposition
5.1.3, l and j are symmetric players in w − w−I∪R∪{j}. Therefore, ϕl(w) − ϕj(w) =

ϕl(w
−I∪R∪{j})−ϕj(w−I∪R∪{j}) since ϕ satisfies (F ). Moreover, i and j are still connected

in w−I∪R∪{j} since J∪R∪{i} , S, T ∈M(w−I∪R∪{j}). Noting thatm(w−I∪R∪{j}) = p+1, it
follows by Lemma 5.2.2 that ϕl(w)−ϕj(w) = SSl(w

−I∪R∪{j})−SSj(w
−I∪R∪{j}). Recalling
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that SS also satisfies satisfies (E), (NP) and (F), we deduce that SSl(w) − SSj(w) =

SSl(w
−I∪R∪{j}) − SSj(w

−I∪R∪{j}) = ϕl(w) − ϕj(w). In the same way, ϕl(w) − ϕi(w) =

SSl(w)− SSi(w). Hence ϕi(w)− ϕj(w) = SSi(w)− SSj(w).

In summary, ϕi0(v)− ϕj0(v) = SSi0(v)− SSj0(v) for all i0, j0 ∈ ∪M (v). We conclude
by Proposition 5.2.1 and Remark 5.2.1 that ϕ(v) = SS(v).

We are now ready to state and prove the main result of this section.

For n ≥ 3, if a value ϕ on GN meets (E), (NP) and (F), then ϕ(v) = SS(v) for all
simple games v ∈ GN .

Theorem 5.2.1.

?

Proof.
Consider a power index ϕ that satisfies (E), (NP) and (F) on GN . By Proposition

5.1.2, ϕ satisfies (S). We prove by induction on p ≥ 1 the assertion A(p) that ϕ(v) = SS(v)

for all v ∈ GN such that 1 ≤ m(v) ≤ p.
Initialization : Let v ∈ GN be such that 1 ≤ m(v) ≤ 2. Then by Lemma 5.2.3,

ϕ(v) = SS(v).
Induction step : Given an integer p ≥ 2, assume that ϕ(v) = SS(v) for all games

v ∈ GN such that 1 ≤ m(v) ≤ p. Let v ∈ GN be a simple game such that m(v) = p + 1.
It follows by Lemma 5.2.4 that ϕ(v) = SS(v).

Conclusion : It holds that ϕ(v) = SS(v) for all v ∈ GN .

In view of this result, some remarks and comments deserve our attention.

Remark 5.2.2. Note that Theorem 5.2.1 does not hold on GN for n = 2 since in
Remark 5.1.2, we provide a value on GN for n = 2 that satisfies (E), (NP) and (F)
without being the Shapley-Shubik index.

Remark 5.2.3. By Lemma 5.2.1, the set of all simple games that each admit a dic-
tator is a valid domain of the result stated in Theorem 5.2.1; that is a valid domain
for the characterization result (L, Shap) for

L = {(E), (NP ), (F )}.

Furthermore, by Lemma 5.2.4 and Lemma 5.2.3, it follows that for all integers p ≥ 1,
the set GN,≤p with

GN,≤p =
p
∪
k=1
GN,k.

is also a valid domain for the characterization result (L, Shap).
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For further highlights, we have the following result that simply shows that the set of
all proper simple games v on N (that is c(v) = |C(v)| = 1) is a valid domain for the
characterization result (L, Shap).

Proposition 5.2.4. For n ≥ 3, if a value ϕ on GN meets (E), (NP) and (F), then
ϕ(v) = SS(v) for all proper simple games v.

Proof.
Assume that n ≥ 3 and consider a value ϕ that satisfies (E), (NP) and (F) on GN .

Denote by G∗N the set of all proper simple games v ∈ GN . Note that for v ∈ G∗N ,
C(v) = {M(v)} andM(v) is the unique component of the decisiveness graph associated
to v.

To prove that ϕ(v) = SS(v) for all v ∈ G∗N , we proceed by induction on the cardinality
of the unique consistent componentM(v) of v.

Initialization : Suppose that |M(v)| = 1. Then M(v) = {S} for some coalition S;
that is v = γS. Then all players in N\S are null players in v while any two players in S
are v-symmetric. By (NP), ϕi(v) = 0 = SSi(v) for all i ∈ N\S; and by Proposition 5.1.2,

ϕi(v) = ϕj(v) for all i, j ∈ S. Therefore, (E) implies ϕi(v) =
1

|S|
= SSi(v) for all i ∈ S.

Hence ϕ(v) = SS(v).
Induction step : Given a positive integer m, assume that ϕ(v) = SS(v) for all simple

games v ∈ G∗N such that |M(v)| ≤ m. Then let v ∈ G∗N be a simple game such |M(v)| =
m + 1. First note that any player i ∈ N such that Mi(v) is empty is a null player
in v and therefore, ϕi(v) = 0 = SSi(v) by (NP). Since v is a proper simple game,
M(v) = {S1, S2, . . . , Sm+1} and St ∩ St+1 6= ∅ for all t ∈ {1, 2, . . . ,m}. Thus, consider
it ∈ St ∩ St+1 for all t ∈ {1, 2, . . . ,m} and set im+1 = im.

Given t ∈ {1, 2, . . . ,m+ 1}, note that by Proposition 5.1.3, v− v−St = γSt − v+St and
players in St are symmetric players in v − v−St . Therefore it follows that for all i ∈ St,

SSi(v)
(F )
= SSit(v) + SSi(v

−St)− SSit(v
−St)

and
ϕi(v)

(F )
= ϕit(v) + ϕi(v

−St)− ϕit(v−St) = ϕit(v) + SSi(v
−St)− SSit(v

−St)

where the second equality holds by induction assumption on v−St . A substraction using
the previous identities yields,

ϕi(v)− SSi(v) = ϕit(v)− SSit(v) for all i ∈ St.

By construction, it ∈ St+1 for all t ∈ {1, 2, . . . ,m}. Therefore,

ϕit(v)− SSit(v) = ϕit+1(v)− SSit+1(v).
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This proves that the sequence (ϕit(v)− SSit(v))1≤t≤m+1 is constant. Hence

ϕit(v)− SSit(v) = ϕi1(v)− SSi1(v), t ∈ {1, 2, . . . ,m+ 1}.

and for all t ∈ {1, 2, . . . ,m+ 1},

ϕi(v)− SSi(v) = ϕi1(v)− SSi1(v) for all i ∈ St.

By summing over all players i ∈ ∪M(v),∑
i∈∪M(v)

(ϕi(v)− SSi(v)) = | ∪M(v)| (ϕi1(v)− SSi1(v))
(E)
= 0.

Finally, ϕi1(v) − SSi1(v) = 0 and therefore, ϕi(v) − SSi(v) = 0 for all i ∈ St and for all
t ∈ {1, 2, . . . ,m+ 1}; that is ϕ(v) = SS(v).

Conclusion : It holds that ϕ(v) = SS(v) for all simple games v ∈ G∗N .

Proposition 5.2.5. Axioms (E), (NP) and (F) are logically independent on GN .

Proof.
We prove that no axiom in Theorem 5.2.1 can not be dropped.

(a) Defined ξ on GN by ξi(v) = 1/n for all v ∈ GN and for all i ∈ N . Then, the power
index ξ satisfies (E) and (F), but fails to meet (NP).

(b) The power index 2SS satisfies (F) and (NP), but fails to meet (E).

(c) The Public Good Index HP, see Definition 1.1.13, satisfies (E) and (NP), but not
(F). To see that HP does not satisfy (F), consider {i, j, k} ⊆ N and pose N ′ = N\{i, j, k}.
Let u and v be the simple games defined on N by u = γ{i} ∨ γ{j,k} and v = γ{i} ∨ γ{j}. It
follows that

v − u = ∨
S⊂N ′

γS∪{j}.

Therefore players i and k play symmetric roles in v − u. Moreover,

HPi(v)− HPi(u) =
1

2
− 1

3
=

1

6
and HPk(v)− HPk(u) =

1

3
− 0 =

1

3
.

It then appears that HPi(v)−HPi(u) 6= HPk(v)−HPk(u) although i and k play symmetric
roles in changes that occur from u to v. Thus, HP does not satisfies (F).

In the next section, we present further insights on some aspects of fairness considerations.
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5.3 A new axiomatization of the Shapley value

In this section, we provide two other three-axiom axiomatization of the Shapley value on
ΓN using two fairness conditions: the Null Player Fairness and the Strong Fairness. We also
provide a new axiomatization of the Shapley value on simple games that use (E), (NP) and
a strong version of the fairness Van den Brink (2001) used. This last result also holds on
ΓN .

5.3.1 The null player fairness condition

Recall that a fairness condition captures how some changes impact on individual shares from
one game to another. For example, suppose that v is a TU-game in which a given player,
say i, is a null player. Then if v describes changes that occur from a TU-game to another,
player i contributes nothing in all changes that are observed and this may be a reasonable
condition to require player i’s share not to be affected. These considerations leads us to the
following axiom.

Axiom 25. Null Player Fairness (NPF): For all v ∈ ΓN , for all players i ∈ N such
that i is a null player in v,

ϕi(u+ v) = ϕi(v) for all u ∈ ΓN .

The (NPF) condition requires a null increment of the share of a player from a TU-game
to another whenever the move is obtained by only adding a TU-game in which that player
is a null player.

Proposition 5.3.1. Consider a value ϕ : ΓN → RN .

(a) If ϕ satisfies (NP) and (AD), then it also satisfies (NPF).

(b) If ϕ satisfies (NPF) and (AD), then ϕ also satisfies (NP).

(c) If ϕ satisfies (E), (S) and (NPF), then ϕ also satisfies (NP).

Proof.
Consider a value ϕ on ΓN .

(a) Suppose that ϕ satisfies (NP) and (AD). For all u, v ∈ ΓN , for all i ∈ N such that
i is a null player in v, one have:

ϕi(u+ v) = ϕi(u) + ϕi(v) since ϕ satisfies Axiom (AD)
= ϕi(u) since ϕ satisfies Axiom (NP) and i is a null player in v.

(b) Suppose that ϕ satisfies (NPF) and (AD). Let v ∈ ΓN and i ∈ N such that i is
a null player in v. By applying the additivity of ϕ to the zero-game 0̃, we obtain
ϕi(0̃) = ϕi(0̃ + 0̃) = ϕi(0̃) + ϕi(0̃). That is ϕi(0̃) = 0. Moreover,
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ϕi(v) = ϕi(0̃ + v)

= ϕi(0̃) since ϕ satisfies Axiom (NPF) and i is a null player in v
= 0 since ϕi(0̃) = 0.

Thus ϕ satisfies (NP).

(c) Suppose that ϕ satisfies (E), (S) and (NPF). Let v ∈ ΓN and i ∈ N such that i is a
null player in v. Note that all players are symmetric in the zero-game 0̃ and since
ϕ satisfies (S) and (E), one obtains ϕi(0̃) = 0̃(N)

n
= 0. Moreover,

ϕi(v) = ϕi(0̃ + v)

= ϕi(0̃) since ϕ satisfies Axiom (NPF) and i is a null player in v
= 0 since ϕi(0̃) = 0.

Thus ϕ satisfies (NP).

Note from Parts (a) and (b) of Proposition 5.3.1 that in presence of Axiom (AD), axioms
(NPF) and (NP) are logically equivalent on ΓN . The next result is a characterization of the
Shapley value where condition (NPF) is substituted to the classical conditions (AD) and
(NP).

A value ϕ on ΓN satisfies (E), (S) and (NPF) if and only if ϕ = Shap.

Theorem 5.3.1.

?

Proof.
⇐=) It is well-known that the Shapley value satisfies (E) and (S). Since the Shapley

value also satisfies (NP) and (AD), we deduce from part (a) of Proposition 5.3.1 that the
Shapley value satisfies Axiom (NPF).

=⇒) Suppose that ϕ is a value on ΓN that satisfies (E), (S) and (NPF). We show that
ϕ = Shap. To do this, we consider, for each positive integer m ∈ N∗, the set Em of all
TU-games u which are each a linear combination of at most m unanimity games; that is
there exist some T1, T2, · · · , Tm ∈ 2N and some α1, α2, · · · , αm ∈ R such that

u =
m∑
l=1

αlγTl .

We prove by induction on m ∈ N∗ the assertion that ϕ(u) = Shap(u) for all u ∈ Em.
Initialization: For m = 1, consider u ∈ E1. Then there exists T1 ∈ 2N and α1 ∈ R

such that u = α1γT1 . Let i ∈ N .
First suppose that i ∈ N\T1. Then i is a null player in u. By Part (c) of Proposition

5.3.1, ϕ satisfies (NP). Therefore, ϕi(u) = 0 = Shapi(u).
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Now, suppose that i ∈ T1. Since all members of T1 are u-symmetric, we have
|T1|ϕi(u) = α1 since ϕ satisfies (E) and (S). Therefore, ϕi(u) = α1

|T1| = Shapi(u).
This proves that ϕ(u) = Shap(u) for all u ∈ E1.
Induction step: Consider m ∈ N∗ and suppose that ϕ(u) = Shap(u) for all u ∈ Em.

We show that ϕ(u) = Shap(u) for all u ∈ Em+1. Let u ∈ Em+1. By definition of Em,
there exist T1, T2, · · · , Tm+1 ∈ 2N and α1, α2, · · · , αm+1 ∈ R such that

u =
m+1∑
l=1

αlγTl .

Consider i ∈ N . To show that ϕi(u) = Shapi(u), we pose T = ∩m+1
l=1 Tl. There are two

possible cases;
First suppose that i /∈ T . Then there exist l0 ∈ {1, · · · ,m+ 1} such that i /∈ Tl0 . This

implies that i is a null player in the game αl0γTl0 . We then deduce the following:

ϕi(u) = ϕi(v + αl0γTl0 ) where v =
m+1∑

l=1,l 6=l0
αlγTl

= ϕi(v) since ϕ satisfies Axiom (NPF)

= Shapi(v) by induction assumption on v ∈ Em
= Shapi(v + αl0γTl0 ) since Shap satisfies Axiom (NPF)

= Shapi(u) since u = v + αl0γTl0 .

Now, suppose that i ∈ T . Noting that all members of T are αlγTl-symmetric for all
l ∈ {1, · · · ,m + 1}, then they are also u-symmetric. Moreover, since ϕ satisfies (E) and
(S), it then follows that

ϕi(u) =
1

|T |

u(N)−
∑
j /∈T

ϕj(u)


=

1

|T |

u(N)−
∑
j /∈T

Shapj(u)

 since ϕj(u) = Shapj(u) ∀j ∈ N\T

= Shapi(u) since Shap satisfies (E) and (S).

In each possible case, ϕi(u) = Shapi(u). Therefore ϕ(u) = Shap(u).
Conclusion: For all m ∈ N∗, for all u ∈ Em, ϕ(u) = Shap(u).
Recalling the collection of all unanimity games is a basis of ΓN , one gets ΓN = E2n−1

and thus ϕ = Shap.

The proof of Theorem 5.3.1 is built around the decomposition of a TU-game as a linear
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combination of unanimity games. Therefore, the following remark is straightforward.

Remark 5.3.1. Theorem 5.3.1 still holds when one replaces ΓN by any Peleg-Sudhölter
domain.

Proposition 5.3.2. Axioms (E), (S) and (NPF) are logically independent on ΓN .

Proof.

(a) The egalitarian rule δ defined on ΓN for all v ∈ ΓN and for all i ∈ N by δi(v) = v(N)
n

,
satisfies (E) and (S), but fails to meet (NPF).

(b) The Banzhaf value (see Banzhaf (1965) or Owen (1975)) β defined on ΓN by:

βi(v) =
1

2n−1

∑
S⊆N\{i}

[v(S + i)− v(S)] ∀v ∈ ΓN ,∀i ∈ N,

satisfies (S) and (NPF), but fails to fulfill (E).

To see that β satisfies Axiom (NPF), we simply note that β obviously satisfies (NP)
and (AD); and then apply Part (a) of Proposition 5.3.1 to conclude.

(c) The value ϕ defined on ΓN given a player io ∈ N by

∀v ∈ ΓN ,∀i ∈ N,ϕi(v) =

Shapio(v)− 1 if i = io

Shapi(v) + 1
n−1

otherwise.

with n = |N |. The value ϕ satisfies (E) and (NPF), but fails to meet Axiom (S).

To show that ϕ satisfies Axiom (NPF), consider two games u, v ∈ ΓN and a player
i ∈ N such that i is a null player in the game v. There are two possible cases.

For i = i0, we have

ϕi(u+ v) = Shapi(u+ v)− 1

= Shapi(u) + Shapi(v)− 1 since Shap satisfies Axiom (AD)
= Shapi(u)− 1 since Shap satisfies Axiom (NP) and i is a null player in v
= ϕi(u).

For i 6= i0, we have

ϕi(u+ v) = Shapi(u+ v) + 1
n−1

= Shapi(u) + Shapi(v) + 1
n−1

since Shap satisfies Axiom (AD)
= Shapi(u) + 1

n−1
since Shap satisfies Axiom (NP) and i is a null player in v

= ϕi(u).

In both cases, ϕi(u+ v) = ϕi(u). Thus ϕ satisfies Axiom (NPF).
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5.3.2 The strong fairness condition

In the statement of condition (F), the attention is focused on a pair of TU-games and on the
difference between those two TU-games. Given a value, it is an interesting issue whether
the same set of changes produces the same impact on individual shares in all circumstances.
In other words, how do individual shares vary when two pairs of TU-games yield the same
difference? This may be handled in various ways. To present our formulation, we need some
further notation.

Consider v, w ∈ ΓN , i, j ∈ N (with i = j eventually) and a subset S ⊆ N\{i}. We denote
by vi←j and Si←j the game and the coalition obtained from v and S by interchanging the
roles of i and j in v and S respectively. Formally,

vi←j(S) = v(Si←j) with Si←j =


(S\{i}) ∪ {j} if i ∈ S and j /∈ S
(S\{j}) ∪ {i} if j ∈ S and i /∈ S

S otherwise.

In particular, vi←i = v and Si←i = S.
Thus, two players i and j are symmetric in v if vi←j = v. Given a subset K of ΓN ,

formulation of a fairness condition when one considers the same set of changes from two
pairs of TU-games is as follows:

Axiom 26. Strong Fairness on K (SF): For all u, u′, v, v′ ∈ K, for all players i, j ∈ N
(possibly i = j) such that (v′ − v)i←j = u′ − u,

ϕj(v
′)− ϕj(v) = ϕi(u

′)− ϕi(u).

Consider two sets of changes in two games that result in two new games. Then given any
two players who play identical roles in the two moves, the payoff differential of each of them
coincides with the payoff differential of his correspondent. It is worth noticing that vi←j and
u or v′i←j and u′ may be distinct games; what is important is that (v′ − v)i←j = u′ − u.

Remark 5.3.2. If a value ϕ on K satisfies Axiom (SF), then for all u, u′, v, v′ ∈ K,

ϕ(v′)− ϕ(v) = ϕ(u′)− ϕ(u) whenever v′ − v = u′ − u.

In fact, given u, u′, v, v′ ∈ K and i ∈ N such that v′ − v = u′ − u,
ϕi(u

′)− ϕi(u) = ϕi(v
′
i←i)− ϕi(vi←i) since u′ − u = (v′i←i − vi←i)i←i

= ϕi(v
′)− ϕi(v) since v′i←i = v′ and vi←i = v.

The next proposition arises showing the relationship between (SF) and (F).

Proposition 5.3.3. Consider a value ϕ on K.
If ϕ satisfies (SF) on K, then ϕ satisfies (F) on K.

Proof.
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Consider a value ϕ : K → RN and suppose that ϕ satisfies Axiom (SF) on K.
Consider u, v ∈ K (with u + v ∈ K) and two players i, j ∈ N such that i and j are
symmetric in v. Note that

(v + u− u)i←j = vi←j

= v since i and j are symmetric in v
= v + u− u.

Thus Axiom (SF) entails that ϕj(v+u)−ϕj(u) = ϕi(v+u)−ϕi(u). That is ϕ satisfies
Axiom (F).

Remark 5.3.3. The converse of Proposition 5.3.3 does not hold. To see this, define
the value ϕ on ΓN by ϕi(v) = (v(N))2 for all v ∈ ΓN and i ∈ N . Consider two games
u, v ∈ ΓN and two players i, j ∈ N such that i and j are symmetric in v − u. Then
by definition of ϕ, ϕj(v) − ϕj(u) = (v(N))2 − (u(N))2 = ϕi(v) − ϕi(u). Therefore ϕ

satisfies (F). Now, pose u = γ{1}, v = γ{1} + γN , u′ = 2γ{2} and v′ = 2γ{2} + γN .
Then, we obtain v − u = v′ − u′ = γN and therefore (v′ − u′)1←2 = v − u. Moreover,
ϕ1(v) − ϕ1(u) = 22 − 12 = 3 while ϕ2(v′) − ϕ2(u′) = 32 − 22 = 5. It then appears that
ϕ1(v)− ϕ1(u) 6= ϕ2(v′)− ϕ2(u′). This clearly proves that ϕ fails to satisfy (SF).

The next result underlines a useful relationship between (NP), (SF) and (S).

Proposition 5.3.4. (SF) and (NP) imply (S) on GN .

Proof.
Consider a value ϕ that satisfies (SF) and (NP) on GN . Consider i, j ∈ N and v ∈ GN

such that i and j are v-symmetric. Note that γ{i}, γ{j} ∈ GN and (v− γ{i})i←j = v− γ{j}.
Therefore ϕi(v) − ϕi(γ{j}) = ϕj(v) − ϕj(γ{i}) by (SF). Since ϕi(γ{j}) = ϕj(γ{i}) = 0 by
(NP), it follows that ϕi(v) = ϕj(v).

Remark 5.3.4. For n ≥ 3, Proposition 5.3.4 follows from Proposition 5.1.2 and
Proposition 5.3.3. We have opted for the proof presented above since it is short and
immediately involves the case of n = 2.

Remark 5.3.5. A value may satisfy (SF) without satisfying neither (S) nor (NP).
To see this, consider the value ϕ defined in Part (c) in the proof of Proposition 5.3.2.

With at least three players, the next result can be viewed as a weak version of Theorem
5.2.1 since (SF) is stronger than (F). The advantage of its presentation is that it remains
valid with two players and admits a short proof.

A power index ϕ on GN satisfies (E), (NP) and (SF) if and only if ϕ = SS.

Theorem 5.3.2.

?
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Proof.
Necessity : It is well-known that SS satisfies (E) and (NP) on GN . Now, to prove

that SS also satisfies (SF) on GN , consider four simple games u, v, u′, v′ ∈ GN and two
players i, j ∈ N such that (v′ − v)i←j = u′ − u. We have

SSj(v
′)− SSj(v) = SSj(v

′ − v) since on GN , SS = Shap and Shap is (AD) on ΓN

= SSi ((v
′ − v)i←j) since on GN , SS = Shap and Shap is (S) on ΓN

= SSi (u
′ − u) since by assumption, (v′ − v)i←j = u′ − u

= SSi(u
′)− SSi(u) since on GN , SS = Shap and Shap is (AD)

This proves that SS satisfies Axiom (SF).

Sufficiency : Consider a power index ϕ that satisfies (SF), (E) and (NP) on GN , a game
v ∈ GN and the setM(v) of minimal winning coalitions of v. We prove by induction on
the cardinality m(v) ofM(v) that ϕ(v) = SS(v).

Initialization : Assume that m(v) = 1. Then M(v) = {S} for some coalition S.
Therefore by (NP), ϕi(v) = 0 = SSi(v) for all i ∈ N\S. Moreover, by (S) and (E),
ϕi(v) = 1/s = SSi(v) for all i ∈ S. Hence ϕ(v) = SS(v).

Induction step : Given a positive integer m, assume that ϕ(v) = SS(v) for all games
v ∈ GN such that m(v) ≤ m. Then let v ∈ GN be a game such that m(v) = m + 1 and
poseM(v) = {S1, S2, . . . , Sm, Sm+1}. Let v′, u′, u ∈ GN be the games defined by

v′ = γS1 , u
′ = v−S1 and u = v−S1 ∧ γS1 .

Then note that v′, u′ and u are such that

M(v′) = {S1},M(u′) = {S2, . . . , Sm, Sm+1} andM(u) = {S2∪S1, S3∪S1, . . . , Sm+1∪S1}.

It follows from Proposition 5.1.3 that v − v′ = u′ − u. Therefore, by (SF) and Remark
5.3.2, ϕ(v)− ϕ(v′) = ϕ(u′)− ϕ(u). Moreover, m(w) ≤ m for w ∈ {v′, u′, u}. We deduce
by the induction assumption that ϕ(w) = SS(w) for w ∈ {v′, u′, u}. We deduce that

ϕ(v) = ϕ(v′) + ϕ(u′)− ϕ(u) = SS(v′) + SS(u′)− SS(u) = SS(v).

Conclusion : It holds that ϕ(v) = SS(v) for all v ∈ GN (since each simple game v ∈ GN
admits a finite number of minimal winning coalitions).

The relationship between (F) and (SF) calls for some remarks.

Remark 5.3.6. Since (SF) implies (F) on any nonempty subset of ΓN , it follows
that (E), (NP) and (SF) uniquely identifies Shap on any nonempty subset K of ΓN
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that is ({(E), (NP ), (F )}, Shap) valid. This is for example the case of Peleg-Sudhölter
domains.

Remark 5.3.7. An immediate consequence of Theorem 5.2.1 and Theorem 5.3.2 is
that (F) and (SF) are equivalent on GN in the presence of at least three players.

Remark 5.3.8. Both (F) and (SF) share the same intuition with the initial condition
(VDB-F) of fairness presented by Van den Brink (2001). These two reformulations
of the initial condition permit us to obtain new characterization results of the Shapley
value on domains such as the set of all simple games where (VDB-F) no longer works.

It is shown in the next result that axioms in Theorem 5.3.2 are independent.

Proposition 5.3.5. Axioms (E), (NP) and (SF) are logically independent on GN .

Proof.
We prove that no axiom in Theorem 5.3.2 can not be dropped.

(a) Defined ξ on GN by ξi(v) = 1/n for all v ∈ GN and for all i ∈ N . Then, the power
index ξ satisfies (E) and (SF), but fails to meet (NP).

(b) The power index 2SS satisfies (SF) and (NP), but fails to meet (E).

(c) The Public Good Index HP, see Definition 1.1.13, satisfies (E) and (NP), but not
(F) as shown in Proposition 5.2.5. Therefore, HP also fails to meet (SF) by Proposition
5.3.3.

At the end of this chapter, we would like to recall our initial objective that was to look
for new versions of the fairness condition provided by Van den Brink (2001). Our motivation
was a will to reach new characterization results mainly on the set of simple games where the
(VDB-F) condition no longer works. On this issue, two conditions have been introduced,
namely, (F) and (SF). These two axioms effectively lead us to new characterization results
of the Shapley-Shubik index; see Theorem 5.2.1 and Theorem 5.3.2. Further investigations
relegated to future works include for example the search for valid domains of each of the
newly established characterization result.
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In this thesis, we have been concerned with axiomatization issues: the design, under a
variable electorate, of new axioms that allow a full description of a power index and the
search of subdomains of TU-games on which a given characterization result remains valid.
The results we obtain are related to three well-known single-valued solutions: the Public
Good Index, the Deegan-Packel index and the Shapley value.

For variable electorates, we have inaugured the characterization of the Public Good
Index and the Deegan-Packel index with newly stated axioms. To achieve this, we have in-
troduced some operations and binary relations on simple games: merging, supplementation
and equivalence. The merging operation has emerged to the statement of some normative
requirements such as the axiom of non profitable merging (NPM) of independent players,
the axiom of independence of external merging (IEM) of independent players or the axiom
of independence of internal merging (IIM) of independent players. Other axioms are related
to the supplementation operation. This is for example the case for the axiom of supple-
mentation consistency (SC) and the axiom of supplementation invariance (SI). Thanks to
these newly introduced axioms, several characterizations results are stated and proved in
Chapter 2 for the Public Good Index and in Chapter 3 for the Deegan-Packel index. The
performances of these two power indices are summarized below where we indicate whether
each axiom is satisfied (X) by each of the two power indices or not ( ).

Axioms NP E NPM IEM IIM MEP SC SI

Public Good Index X X X X X X X
Deegan-Packel index X X X X X X X

Table 5.1: HP and DP performances on axioms for variable electorate

In Chapter 4 and Chapter 5, we have addressed some domain validity issues. With
respect to Shapley’s characterization result ({(E), (D), (S), (AD)}, Shap), we have intro-
duced the concept of conically consistent domain and Shapley valid domain. Further, we
have shown in Chapter 4 that the condition of being a conically consistent domain gener-
alizes previous known results on this topic such as Peleg-Sudhölter domains and Neyman
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domains. Still on the validity domain issue, we reconsidered in Chapter 5 a characterization
of the Shapley value by Van den Brink (2001) that no longer holds on the set of simple
games. We have mainly provided an equivalent reformulation of the author’s condition of
fairness and proved that the new characterization remains valid on the set of simple games.
The same intuition leads us to some other results by considering axioms such as the null
player fairness or the strong fairness conditions.

It is worth mentioning that, for each characterization result we presented here, it has
been established that the axioms used are logically independent.

In terms of discussion, for our results on axiomatization of the Public Good Index
and the Deegan-Packel index it is not surprising that our characterization results use
three axioms instead of four axioms as those of Deegan and Packel (1978) who gave an
(AN)+(E)+(NP)+(DPM) characterization of the Deegan-Packel index, Lorenzo-Freire et al.
(2007) who provided an alternative characterization of the Deegan-Packel index by replac-
ing a monotonicity axiom to the Deegan-Packel Mergeability; Holler and Packel (1983) who
proved an (AN)+(E)+(NP)+(HPM) characterization of the Public Good Index, Alonso-
Meijide et al. (2008) who provided an alternative characterization by substituting a mono-
tonicity axiom to the Holler-Packel Mergeability since our results are on the domain of
simple games with a variable electorate meanwhile their are on the domains of simple games
with a fix electorate. Moreover, a combination of some of our axioms implies some of their
axiom. For instance, we shown that (E) and (NPM) imply (NP) as well as (E) and (SI)
imply (NP). We should notice that the only axiom that is common to their results and our
is (E).

For the choice of the Shapley value in the supra-domain approach, we recognise the this
is the main redistribution methods used in Game Theory and this fact played a main role
in our choice despite many other values can be very interesting to study, for the solidarity
value see Nowak and Radzik (1994) or the Owen value see Owen (1977).

We believe that the idea behind the geometrical properties of a cone could help us to
definitely solve the problem of Shapley valid domains in terms of necessary and sufficient
condition. Since just succeed to prove that our condition is sufficient in general.

There are still enough concerns for future work. Especially, the question whether a
given subset of ΓN is a Shapley valid domain or not remains open. The richness of conically
consistent domains we presented tells us that Shapley valid domains can be very coarse and
that the search for a general condition seems very challenging. There is a huge variety of
characterization results in game theory. Each such result merits a validity domain analysis.
Another direction for furure works consists in analyzing under variable electorates some
other classical power indices (such as the Shapley-Shubik index, the Banzhaf index, the
Johnston index, ...) together with their associated coalitional versions.
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Power indices are methods for numerical evaluation of players’ voting power in simple
(voting) games. We present alternative characterizations of the well-known Holler–
Packel index, also known as the Public Good Index. To achieve this, we replace the
Null Player Property, Anonymity and the Mergeability Condition with two new axioms.
These axioms are based on the merging operation and the new arrival property.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Since Shapley and Shubik [43] who have considered the Shapley value as an appropriate tool for measuring voting
power, several indices have emerged, from game theory and related fields, offering many perspectives to measure the
ability of a player to influence the social outcome in a decision-making process; see Andjiga et al. [7] for a rich selection
of power indices. One of the main concerns for a given power index is to bring out characterization results that highlight
some of its key features. For example, the Shapley–Shubik index has been scrutinized from various perspectives; see Dubey
[15],Laruelle and Valenciano [37], or Einy and Haimanko [16]. For the Holler–Packel index introduced by Holler [22] and
called Public Good Index, we provide new characterization results without the axiom of mergeability used by Holler and
Packel [30].

Conceptually, the Public Good Index, in its normalized version, proportionally measures the relative share of each
player when only minimal winning coalitions are formed and each player is endowed with the probability of belonging
to the ruling coalition. In support of the intuition of forming only minimal winning coalitions, Holler and Nurmi [29]
point out the fact that a larger player is less welcome in a losing coalition than a smaller one if some players of the losing
coalition will not be critical (decisive) in the winning coalition after the arrival of the new player. For further motivation,
see Holler [24,25],Holler and Napel [27] or Holler [23].

From a normative approach, Holler and Packel [30] prove that the Public Good Index is the unique power index that
satisfies the null player property, efficiency, anonymity, and mergeability; see Napel [41] for the independence of these
axioms. Alonso-Meijide et al. [5] provide an alternative characterization by substituting a monotonicity axiom into the
axiom of mergeability. Related contributions include, for example, Holler and Li [26] for the non-normalized version
(efficiency is dropped), Freixas and Kurz [18] for some type of monotonic power indices obtained as convex combinations
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of the Public Good Index and the Banzhaf index, Courtin and Tchantcho [12] for an extension to (j, 2) simple games1
and Alonso-Meijide et al. [1] for an extension to simple games with externalities.2

In this paper, we characterize the Public Good Index by means of efficiency and two new axioms. One of the two
new axioms relates to what happens when two or more players are merged into a single new player: when players
are independent in some sense, merging should not impact on the power of partners. Commenting their mergeability
axiom, Holler and Packel [30] say: ‘‘While the axiom is mathematically appealing we offer no compelling story for its
plausibility, finding it neither more nor less plausible then the corresponding final characterizing axioms for the other
indices.’’ Our attempt can thus be seen as an alternative mergeability property with a plausible story: the merging
operation of some players which is a common practice in real-world situations. For example, in order to increase their
influence, two or more parties (or shareholders) may merge into a new one. This well-established practice is analyzed
by Aziz et al. [8] and Lasisi and Allan [38] in the case of weighted voting games in which several voters may unite into
one by annexation or merging the weights of voters in the coordination; see also Felsenthal and Machover [17] who even
propose a conceivable illustration with the Council of Ministers of the European Community.

The other axiom deals with the arrival of a new player: changes on players’ shares, if any, due to the arrival of a
new player who enters the game by joining some existing winning coalitions without disrupting any minimal winning
coalition are proportional to the players’ shares in the initial game. In other words, if a new player is added in a simple
game without essentially changing the set of minimal winning coalitions, then the relative comparison of the powers
of the old players should not change. A similar proportionality axiom is used by Barua et al. [9] in the specific case of
merging exactly two voters in a unanimity (voting) game. We would also like to mention that this latter axiom has the
same intuition as the consistency axiom of Hougaard and Moulin [31] in the context of cost allocation problems.

Merging players or allowing partnership are considered by many other authors; see Kalai and Samet [32], Carreras [11],
Rodríguez-Veiga et al. [42], Koshevoy et al. [36] and Giménez et al. [19]. In the context of n-person simple bargaining
games, Harsanyi [20] studies the impact on the total share of two or more players who opt for merging; Moulin [40]
characterizes the proportional method using merging/splitting axioms; see also Lehrer [39] who uses bilateral mergers to
obtain a characterization of the Banzhaf value; or Haviv [21], Derks and Tijs [14], Aziz et al. [8] or Besner [10] for some
other models with TU games.

The rest of the paper is organized as follows: Section 2 provides preliminaries on simple games and power indices. The
merging and the supplementation operations are also introduced as well as a formal statement of our primary axioms.
The main result stating a new axiomatization of the Public Good Index is presented in Section 3 together with the
independence of the axioms we use. Variants of the newly introduced axioms lead us to further characterization results.
Section 4 concludes the paper with some perspectives on how to extend the results in this paper to other power indices
on the one hand, or to coalitional versions of the Public Good Index on the other hand. All lengthy or technical proofs are
relegated to the appendix section.

2. Simple games and power indices

2.1. Preliminaries

Let P = {1, 2, . . .} be an infinite set of potential players indexed by positive integers. Each finite and nonempty subset
S of P is called a coalition and |S| denotes the cardinality of S.

Definition 2.1. A simple game is a pair G = (N, v), where N is a coalition and v is a {0, 1}-valued map defined on the
subsets of N such that: (i) v(∅) = 0; (ii) v(N) = 1; and (iii) v is monotonic, that is, for all S, T ⊆ N , S ⊆ T implies
v(S) ≤ v(T ).

The set of all simple games is denoted by G. Given G = (N, v) ∈ G, a coalition S is called winning if v(S) = 1, and losing
otherwise. A winning coalition S is called minimal if v(S \ {i}) = 0 for all i ∈ S. The set of all minimal winning coalitions
in the simple game G will be denoted byM(G) and the set of all minimal winning coalitions that contain a player i ∈ N
byMi(G). The simple game G will also be denoted by G = (N,W(G)), since G is completely determined by the player set
N and the corresponding set W(G) of winning coalitions (or by the setM(G) of minimal winning coalitions).

Definition 2.2. Given a coalition S, a player i ∈ S is decisive in S if S ∈ W(G), but S \ {i} /∈ W(G). In this case, player i is
called complementary to S \ {i}.

The set Di(G) is the collection of all winning coalitions of the simple game G in which player i is decisive. A null player
in G is any player i such that v(S ∪{i}) = v(S) for all S ⊆ N \ {i}; that is, Di(G) = ∅. The set of all null players in the simple
game G is denoted by N0(G).

1 A (j, 2) simple game is a simple game with j ordered qualitative options in the input and 2 ordered quantitative options in the outcome.
2 The worth of a coalition depends not only on the members of that coalition but on the whole coalition structure.
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Remark 2.1. Given a simple game G = (N,W(G)), i ∈ N and S ⊆ N .
If S ∈ Di(G) then K ∈Mi(G) for some K ⊆ S.

Before proceeding, here are some specific simple games that will be useful for what follows. With each coalition S ⊆ P ,
we associate the simple game GS = (S,W(GS)) withM (GS) = {{i} : i ∈ S}; that is, a coalition is winning in the game GS
if and only if it overlaps with S. Next, given a simple game G = (N,W(G)), i ∈ N and j ∈ P\N , we denote by Gi↔j the
simple game obtained from G by only replacing i by j. Note that for all T ⊆ P\{i, j}, GT∪{i} =

(
GT∪{j}

)j↔i. Furthermore,
given a positive integer p and

{
i1, i2, . . . , ip

}
⊆ P\N , we denote by G

[
i1, i2, . . . , ip

]
the simple game obtained from G by

successively introducing players i1, i2, . . . , ip−1 and ip as null players in such a way that the player set in G
[
i1, i2, . . . , ip

]
is N ∪

{
i1, i2, . . . , ip

}
and the set of minimal winning coalitions is still M (G). Note that player i1 gets in first, player i2

second and so on. Moreover, by definition, we have

G
[
i1, i2, . . . , ip

]
= G

[
j1, j2, . . . , jp

]
whenever

{
i1, i2, . . . , ip

}
=
{
j1, j2, . . . , jp

}
.

2.2. Merging independent players

Players in a coalition T can enter the simple game G = (N,W(G)) with a prior agreement to act as a single player
iT ∈ P\N . In this case, players in T are merged into iT , their representative in the new simple game. The modified simple
game that follows is denoted by GT

= (NT , vT ) and defined such that NT
= (N \ T ) ∪ {iT } and for all coalitions S ⊆ NT ,

vT (S) = v(S \ {iT }) ∪ T if iT ∈ S; and vT (S) = v(S) otherwise. We will sometimes replace GT by GT→k to specify that iT is
identified with a given player k ∈ P\N . Moving from G to GT is called a merging operation. Hereafter, for each S ⊆ N , we
denote by ST the subset of NT defined by ST = (S \ T ) ∪ {iT } if S ∩ T ̸= ∅ ; and ST = S otherwise.

The merging operation is well-known in the literature although authors sometimes used distinct notation options,
see Knudsen and Østerdal [33] or Slavov and Evans [44]. It is also known under the name of amalgamation as in [39]
or [21].

Example 2.1. Consider the simple game G = (N,W(G)) such that N = {1, 2, 3, 4, 5} and M(G) = {{1, 2}, {2, 3, 5},
{1, 3, 4}}. Let T = {1, 5}. Here, NT

= {iT , 2, 3, 4} andM(GT ) = {{iT , 2}, {iT , 3, 4}}. If we set iT = 6, then NT→6
= {6, 2, 3, 4}

andM(GT→6) = {{6, 2}, {6, 3, 4}}. Similarly, for K = {4, 5}, NK
= {1, 2, 3, iK } andM(GK ) = {{1, 2}, {2, 3, iK }, {1, 3, iK }}.

Still for illustration with T = {1, 5}, note that {1, 2}T = {iT , 2}, {1, 2, 5}T = {iT , 2} and {2, 3, 4}T = {2, 3, 4}.

Definition 2.3. Two players i and j are disconnected if |S ∩ {i, j}| ≤ 1 for all S ∈M(G).

Two players are disconnected in a simple game if no minimal winning coalition contains both players at the same
time.

Definition 2.4. Given a simple game G = (N,W(G)), two players i and j are independent if i and j are disconnected and
for all losing coalitions S ⊆ N \ {i, j} :( S ∪ {i} ∈ Di (G)

and
S ∪ {j} ∈ Dj (G)

)
⇒ for some S ′, S ′′

⊆ S,

⎛⎝ S ′
∪ {i} ∈ Di(G), S ′

∪ {j} /∈ Dj(G)

S
′′

∪ {j} ∈ Dj(G) and S
′′

∪ {i} /∈ Di(G)

⎞⎠ .
Furthermore, we say that a coalition T consists of independent players in G if any two players in T are independent

in G.

Intuitively, two players are independent in a simple game if each time they are both complementary to the same losing
coalition S, each of the two players is complementary to some subset of S while the other is not. In Example 2.1, players
4 and 5 are disconnected in the simple game G and there is no losing coalition S such that S∪{4} and S∪{5} are winning.
Thus, 4 and 5 are independent in G. Now, players 1 and 5 are disconnected in G; but for S = {2, 3}, S is losing, S ∪ {1}
and S ∪ {5} are winning, but S ′

∪ {5} is losing for all S ′ ⊊ S. Thus, 1 and 5 are not independent in G.
It is worth mentioning that if i is a null player in a simple game G, then for any other player j, i and j are independent.

In the general case, we have the following result.

Proposition 2.1. Given a simple game G = (N,W(G)), two disconnected players i and j are independent if and only if for all
S ∈Mi(G) and for all S ′

∈Mj(G), S \ (S ′
∪ {i}) ̸= ∅ and S ′

\ (S ∪ {j}) ̸= ∅.

Proof. Consider two disconnected players i and j in a simple game G = (N,W(G)). First suppose that players i and j are
independent. Consider S ∈ Mi(G) and S ′

∈ Mj(G). To prove that S \ (S ′
∪ {i}) ̸= ∅ and S ′

\ (S ∪ {j}) ̸= ∅, suppose the
contrary. W.l.o.g., suppose that S \ (S ′

∪ {i}) = ∅; that is, S ⊆ S ′
∪ {i}. Since i and j are disconnected, j /∈ S. Therefore

S \{i} ⊆ S ′
\{j}. Let K = S ′

\{j}. It follows that K is losing, K ∪{i} ∈ Di(G) and K ∪{j} ∈ Dj(G). Since i and j are independent,
there exists S ′′

⊆ K such that S ′′
∪ {j} ∈ Dj(G) and S ′′

∪ {i} /∈ Di(G). Note that K ∪ {i} is winning while S ′′
∪ {i} is losing.
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We deduce that S ′′ is a proper subset of K and that S ′′
∪ {j} is a proper winning subset of S ′; that is S ′′

∪ {j} ⊆ S ′ and
S ′′

∪ {j} ̸= S ′. A contradiction arises since S ′
∈M (G).

Now suppose that for all S ∈ Mi(G) and for all S ′
∈ Mj(G), S \ (S ′

∪ {i}) ̸= ∅ and S ′
\ (S ∪ {j}) ̸= ∅. Consider a losing

coalition S ⊆ N \ {i, j} such that both S ∪ {i} ∈ Di(G) and S ∪ {j} ∈ Dj(G). Then, by Remark 2.1, there exist S ′, S ′′
⊆ S such

that S ′
∪ {i} ∈ Mi(G) and S ′′

∪ {j} ∈ Mj(G). To prove that S ′
∪ {j} /∈ Dj(G) and S ′′

∪ {i} /∈ Di(G), suppose the contrary.
W.l.o.g., suppose that S ′

∪ {j} ∈ Dj(G). Then by Remark 2.1, there exists L ⊆ S ′ such that L ∪ {j} ∈ Mj (G). It holds that
S ′

∪ {i} ∈ Mi (G), and L ∪ {j} ∈ Mj (G) with L \ S ′
= ∅. A contradiction arises since by assumption we should have

L \ S ′
= (L ∪ {j}) \ (S ′

∪ {i, j}) ̸= ∅. □

2.3. Supplementation of a simple game

The scenario we now consider, for a given simple game G = (N,W(G)), is the arrival of a new player k /∈ N .

Definition 2.5. A k-supplementation of a simple game G = (N,W(G)) is any simple game G′
= (N ′,W(G′)) such that

k ∈ P \ N , N ′
= N ∪ {k} and for all coalitions S ⊆ N:

S ∈M(G) ⇐⇒ (S ∈M(G′) or S ∪ {k} ∈M(G′)).

From G to a k-supplementation G′ of G, the arrival of player k is such that, for each minimal winning coalition S in G,
either S or S ∪ {k} remains a minimal winning coalition in G′. For each winning coalition S in G, we say that k becomes
supplementary to S from G to G′ when S is losing in G′, while S ∪ {k} is winning in G′. For cost allocation problems, a
similar definition was considered by Hougaard and Moulin [31] in their definition of an item that is supplementary to an
agent needs. From G to a k -supplementation of G, the arrival of player k changes the set of minimal winning coalition of
G exactly as the introduction of a supplementary resource to the needs of an agent, say i, reshapes the collection of agent
i’s minimal serving sets.

Example 2.2. Let G = (N,W(G)) be the simple game defined in Example 2.1 with N = {1, 2, 3, 4, 5} and M(G) =

{{1, 2}, {2, 3, 5}, {1, 3, 4}}. Then G is a 3 -supplementation of G1 = (N1,W(G1)) where N1 = {1, 2, 4, 5} and M(G1) =

{{1, 2}, {2, 5}, {1, 4}}. From G1 to G, player 3 is supplementary not only to the minimal winning coalitions {2, 5} and {1, 4},
but also to some non minimal winning coalitions such as {2, 4, 5}. Similarly, the simple game G is a 5-supplementation
of G2 = (N2,W(G2)) with N2 = {1, 2, 3, 4} andM(G2) = {{1, 2}, {2, 3}, {1, 3, 4}}.

Proposition 2.2. Consider G = (N,W(G)) ∈ G, a player k ∈ P\N and a simple game G′
= (N ′,W(G′)) such that N ′

= N∪{k}.
Then G′ is a k-supplementation of G if and only if there exists a subset E ofM(G) such that

M(G′) = {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E}.

Proof. See Appendix A. □

2.4. Axioms of power indices

Definition 2.6. A power index ϕ is a map defined on G such that ϕ(G) ∈ RN for every G ∈ G.

For many authors, the definition of a power index includes the disposition that players’ shares are non negative
numbers; see Kóczy [34] or Kong and Peters [35]. But in general, the positivity fulfillment is deduced from some reasonable
properties of power indices. Among classical axioms for power indices, we have the following:

Axiom 1. Null Player (NP): For all G ∈ G, ϕi(G) = 0 whenever i is a null player in G.

Axiom 2. Efficiency (E): For all G = (N,W(G)) ∈ G,
∑

i∈N ϕi(G) = 1.

A power index that meets (E) is called normalized. Note that for any power index ϕ such that individual shares in all
simple games always sum to non-zero values, one gets an efficient power index ϕ defined for all G = (N,W(G)) ∈ G and
for all i ∈ N by:

ϕi(G) =
ϕi(G)∑
j∈N ϕj(G)

.

The power index ϕ is called the normalized version of ϕ. The Public Good Index Φ , we focus on, is the normalized form
of the power index that associates each simple game G = (N,W(G)) with the collection

(
|Mi(G)|
|M(G)|

)
i∈N

. More formally, for
all i ∈ N ,

Φi(G) =
|Mi(G)|∑
j∈N |Mj(G)|

.
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In this paper, we also consider two new axioms:

Axiom 3. Supplementation Consistency (SC): For all G = (N,W(G)) ∈ G, for all k ∈ P \ N , for all k-supplementations G′

of G, for all i ∈ N , ϕi(G′) = ϕi(G)λG′ for some constant λG′ .

From a simple game G to a k-supplementation G′ of G, the change, if any, on each player’s share is proportional to
his/her power in G. More specifically, when the power index is normalized, the constant λG′ becomes more explicit as
shown below:

Proposition 2.3. If a power index ϕ satisfies (E) and (SC), then for all G = (N,W(G)) ∈ G, for all k ∈ P \ N, for all
k-supplementations G′ of G, for all i ∈ N,

ϕi(G′) = (1 − ϕk(G′))ϕi(G). (1)

Proof. Suppose that a power index ϕ satisfies (E) and (SC). Consider a simple game G = (N,W(G)) ∈ G, a player k ∈ P \N
and a k-supplementation G′ of G. Then, there exists a constant λG′ such that ϕi(G′) = ϕi(G)λG′ for all i ∈ N . Then by (E),
1 − ϕk(G′) =

∑
i∈N ϕi(G

′) = λG′

(∑
i∈N ϕi(G)

)
= λG′ . □

Eq. (1) effectively matches the consistency requirement by Hougaard and Moulin [31] as an agent is removed (or
introduced) in a cost allocation problem.

Axiom 4. Non Profitable Merging (NPM) of independent players: For all G = (N,W(G)) ∈ G, for all coalitions T ⊆ N of
at least two players,

ϕiT (G
T ) =

∑
i∈T

ϕi(G) (2)

whenever T contains only independent players.

Axiom (NPM)3 is a weak condition of the lack of incentive for independent players to merge in a simple game; for
similar requirements, see Knudsen and Østerdal [33]. When the merging equality (2) is considered only for coalitions of
size 2 (without any restriction), one obtains the 2-efficiency condition of Lehrer [39].4

3. Axiomatizations of the Public Good Index

3.1. Preliminary results

In this section, it is shown that the Public Good Index meets (NP), (E), (NPM) and (SC). As observed by Holler and
Packel [30], the following result is straightforward:

Proposition 3.1. The Public Good Index Φ satisfies (NP) and (E).

The next result tells us how merging independent players impacts the structure of a simple game. It allows us to prove
that Φ satisfies (NPM).

Proposition 3.2. Consider a simple game G = (N,W(G)) ∈ G and a coalition T of at least two players . If T is a coalition of
independent players, then

(a) For all S, R ∈M(G), S ̸= R implies ST ̸= RT ;
(b) M(GT ) = {ST : S ∈M(G)};
(c) |Mj(GT )| = |Mj(G)| for all j ∈ N \ T ;
(d) |MiT (G

T )| =
∑

i∈T |Mi(G)|.

Proof. See Appendix B. □

Corollary 3.1. The Public Good Index Φ satisfies (NPM).

3 It can be checked that the power index that associates each simple game G = (N,W) ∈ G with the n-tuple (1/n; 1/n; · · · ; 1/n) satisfies the
Holler–Packel mergeability axiom but not (NPM). And the Deegan–Packel index (see [13]) satisfies axiom (NPM) but fails to meet the Holler–Packel
mergeability axiom. Furthermore, the Holler–Packel mergeability condition applies to a fix electorate while (NPM) is designed for variable electorates.
4 The author proves that the Banzhaf value for TU-games is uniquely determined by the 2-efficiency condition among all values that coincide

with the Shapley value on all 2-player games. It follows that the Banzhaf power index (normalized or not) satisfies (2) for all coalitions T of size 2.
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Proof. Consider a simple game G = (N,W(G)) ∈ G and a coalition T of independent players such that |T | ≥ 2. Parts (c)
and (d) in Proposition 3.2 imply that∑

j∈NT

|Mj(GT )| =

∑
j∈N

|Mj(G)|

Furthermore,

ΦiT (G
T ) =

|MiT (G
T )|∑

j∈NT |Mj(GT )|
=

∑
i∈T |Mi(G)|∑
j∈N |Mj(G)|

=

∑
i∈T

Φi(G).

Therefore Φ satisfies (NPM). □

Using Parts (c) and (d) in Proposition 3.2, it can be shown that Φ even satisfies a stronger version of (NPM) when one
also considers that, for any coalition T of independent players, merging the members of T should affect no player in N \T .
We now prove that Φ satisfies (SC).

Proposition 3.3. The Public Good Index Φ satisfies (SC).

Proof. Consider G = (N,W(G)) ∈ G, k ∈ P \ N , a k-supplementation G′
= (N ′,W(G′)) of G and i ∈ N . It follows from

Proposition 2.2 thatM(G′) = {S ∪ {k} : S ∈ E} ∪ {S : S ∈ M(G) \ E} for some E ⊆ M(G). First note thatMi(G′) = {S ∈

M(G′) : i ∈ S} = {S∪{k} : i ∈ S ∈ E}∪{S : i ∈ S ∈M(G)\E}. That isMi(G′) = {S∪{k} : S ∈ E∩Mi(G)}∪{S : S ∈Mi(G)\E}.
Since E ∩Mi(G) andMi(G) \ E are disjoint sets, it follows that |Mi(G′)| = |E ∩Mi(G)| + |Mi(G) \ E| = |Mi(G)|.

Now, we have

Φi(G′) =
|Mi(G′)|∑
j∈N ′ |Mj(G′)|

=
|Mi(G)|

|Mk(G′)| +
∑

j∈N |Mj(G)|

=

∑
j∈N |Mj(G)|

|Mk(G′)| +
∑

j∈N |Mj(G)|
×

|Mi(G)|∑
j∈N |Mj(G)|

= (1 −Φk(G′))Φi(G)

Therefore Φ satisfies (SC). □

For power indices that meet (SC) or (NPM), we now present some results we use in the next section.

Proposition 3.4. Consider a simple game G = (N,W(G)), a player k ∈ P \ N, a k-supplementation G′ of G and two power
indices ϕ and ψ that both satisfy (E) and (SC) .

Then (ψ(G′) = ϕ(G′) and ϕk(G′) ̸= 1) implies ψ(G) = ϕ(G).

Proof. Suppose that two power indices ϕ and ψ satisfy (E) and (SC). Consider a simple game G = (N,W(G)) ∈ G, a player
k ∈ P \ N and a k-supplementation G′ of G such that ψ(G′) = ϕ(G′) and ϕk(G′) ̸= 1. Then, by Proposition 2.3, it follows
that for all i ∈ N , ψi(G′) = (1 − ψk(G′))ψi(G) and ϕi(G′) = (1 − ϕk(G′))ϕi(G). Since ψ(G′) = ϕ(G′) and ϕk(G′) ̸= 1, then
ψi(G) = ϕi(G) for all i ∈ N . That is ψ(G) = ϕ(G). □

Proposition 3.5. All power indices that satisfy (NPM) also satisfy (NP).

Proof. See Appendix C. □

Remark 3.1. By Proposition 3.5, any power index ϕ that satisfies (NPM) also satisfies (NP). Moreover, if ϕ satisfies both
(E), (SC) and (NPM), then ϕi(G) = ϕi(G0) for all i ∈ N0 whenever G = G0[i1, . . . , ip].

Proposition 3.6. Let ϕ be a power index on G that satisfies (E), (NPM) and (SC).
Then for all simple games G = (N,W (G)), for all i ∈ N and for all j ∈ P\N, ϕj

(
Gi↔j

)
= ϕi (G).

Proof. Let ϕ be a power index on G that satisfies (E), (NPM) and (SC). Consider a simple game G = (N,W(G)), i ∈ N and
j ∈ P\N . Let k ∈ P\(N ∪ {j}). By Proposition 3.5, ϕk(G[k]) = 0 and therefore, ϕi(G[k]) = ϕi(G) by (E) and (SC). Moreover,
Gi↔j is obtained from G [k] by merging i and k into j. Therefore by (NPM), ϕj

(
Gi↔j

)
= ϕk(G[k]) + ϕi(G[k]) = ϕi (G). □

Proposition 3.6 tells us that, if from one simple game to another, only one player in the initial simple game is replaced
by another player, then the new player simply inherits the replaced player’s share. However, nothing is said about the
shares of other players in the new simple game.
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Remark 3.2. Suppose ϕ is a power index that satisfies (E), (NPM) and (SC). We denote by ϕT ,i the share of player i
in the simple game GT∪{i} for all coalitions T ⊆ P and for all i ∈ P\T . Note that for any other player j ∈ P\(T ∪ {i}),
GT∪{i} =

(
GT∪{j}

)j↔i. Therefore, it follows from Proposition 3.6 that

ϕT ,i = ϕi
(
GT∪{i}

)
= ϕj

(
GT∪{j}

)
= ϕT ,j .

This shows that ϕT ,i only depends on T but not on the player i we choose from P\T . That is why, from now on, we simply
denote by ϕT the share, with respect to ϕ, of an arbitrary player i ∈ P\T in the simple game GT∪{i}. By efficiency, it follows
that for all coalitions S ⊆ P of at least two players, the collection (ϕT )T⊆S/|T |=|S|−1 satisfies the following equation (ES) :∑

T⊆S/|T |=|S|−1

ϕT = 1. (3)

Recall that the set P of potential players is infinite. So, there is an infinite number of equations similar to (3). As we
will show in the next section, this is sufficient to determine the collection (ϕT )∅̸=T⊆P for any power index that satisfies
(E), (NPM) and (SC). For illustration, we show, in the example below, how to determine ϕT when T is a singleton.

Example 3.1. Suppose that |S| = 2 and set S = {i, j}. We have to determine ϕ{i} = ϕj
(
G{i,j}

)
and ϕ{j} = ϕi

(
G{i,j}

)
assuming that ϕ is a power index on G that satisfies (E), (NPM) and (SC). We first bring into consideration a new player,
say k ∈ P\{i, j}. As stated in (3), we have

E{i,j} : ϕ{i} + ϕ{j} = 1, E{i,k} : ϕ{i} + ϕ{k} = 1, E{j,k} : ϕ{j} + ϕ{k} = 1.

Equivalently( 1 1 0
1 0 1
0 1 1

)(
ϕ{i}
ϕ{j}
ϕ{k}

)
=

( 1
1
1

)
.

Since the corresponding matrix is invertible, we get(
ϕ{i}
ϕ{j}
ϕ{k}

)
=

⎛⎝ +
1
2 +

1
2 −

1
2

+
1
2 −

1
2 +

1
2

−
1
2 +

1
2 +

1
2

⎞⎠( 1
1
1

)
=

⎛⎝ 1
2
1
2
1
2

⎞⎠ .
Instead of inverting the matrix, it is sufficient to note that 1

2

(
E{i,j}

)
+

1
2

(
E{i,k}

)
−

1
2

(
E{j,k}

)
would have immediately lead

us to ϕ{i} =
1
2 . In the general case, we provide in the next section appropriate combinations to obtain ϕT .

3.2. Main result

It is shown in the preceding section that the Public Good Index satisfies (NP), (E), (NPM) and (SC). We now prove that
it is the unique power index on G that meets (E), (NPM) and (SC). Before the statement of the main result, we need the
following lemmas to ease its proof.

Lemma 3.1. Let ϕ be a power index on G that satisfies (E), (NPM) and (SC).
Then for all coalitions C ⊆ P , ϕ (GC ) = Φ (GC ).

Proof. See Appendix D. □

Lemma 3.2. Let ϕ be a power index on G that satisfies (E), (NPM) and (SC).
Then ϕ (G) = Φ (G) for all simple games G = (N,W(G)) ∈ G such that |Mi(G)| ≤ 1 for all i ∈ N.

Proof. See Appendix E. □

Theorem 3.1. A power index ϕ on G satisfies (E), (NPM) and (SC) if and only if ϕ = Φ .

Proof. By Proposition 3.1, Corollary 3.1 and Proposition 3.3, Φ necessary satisfies (E), (NPM) and (SC). For the sufficiency
part of the proof, see Appendix F. □

3.3. Independence of axioms

Theorem 3.1 provides an axiomatic characterization of the Public Good Index. Moreover, we prove in this section that
those axioms are independent (none of the three axioms is redundant).
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3.3.1. Axiom of Non Profitable Merging of independent players
Consider the power index ϕ defined on G for all G = (N,W(G)) ∈ G and for all i ∈ N by:

ϕi(G) =

⎧⎨⎩
1

|N\N0(G)|
if i ∈ N\N0(G)

0 otherwise.

It is obvious that ϕ satisfies (E) and (SC). To see that ϕ fails to meet (NPM), let G = (N,W(G)) with N =

{1, 2, 3, 4, 5} and M(G) = {{1, 3, 5}, {2, 3, 4}}. Set T = {4, 5}. Then T is a pair of independent players. Moreover
NT

= {1, 2, 3, iT }, ϕ4(G) + ϕ5(G) =
1
5 +

1
5 =

2
5 ̸= ϕiT (G

T ) =
1
4 . Hence ϕ does not satisfy (NPM). It follows that (NPM) is

not redundant.

3.3.2. Axiom of Efficiency
The power index 2Φ (where Φ is the Public Good Index) satisfies (NPM) and (SC); but fails to meet (E). Thus (E) is not

redundant.

3.3.3. Axiom of Supplementation Consistency
Consider the power index H defined on G for all G = (N,W(G)) ∈ G and for all i ∈ N as follows:

Hi(G) =
|M∗

i (G)|∑
j∈N |M∗

j (G)|

where M∗(G) = {S ∈ M(G) : |S| ≤ |T | for all T ∈ M(G)} and M∗

i (G) = {S ∈ M∗(G) : i ∈ S} for all i ∈ N . The power
index H satisfies (E) and (NPM), but H fails to meet (SC). To prove that (SC) is not satisfied, consider the simple game
G = (N,W(G)) such that N = {1, 2, 3, 4} andM(G) = {{1, 3} , {2} , {3, 4}}. Set G′

=
(
N ∪ {5} ,W(G′)

)
∈ G withM(G′) =

{{1, 3} , {2, 5} , {3, 4, 5}}. Then G′ is a 5-supplementation of G. Moreover, M∗(G) = {{2}} and M∗(G′) = {{1, 3} , {2, 5}}.
It follows that H(G) = (0, 1, 0, 0) and H(G′) =

( 1
4 ,

1
4 ,

1
4 , 0,

1
4

)
. It appears that the index H does not satisfy (SC) since H

satisfies (E) and H3
(
G′
)

=
1
4 ̸= 0 =

(
1 − H5

(
G′
))

H3 (G). Thus (SC) is not redundant.

3.4. Further results

In this section, two new axioms are introduced by reformulating Axiom (NPM) when by merging independent players,
our attention is focused on the impact of this operation on the shares of other players.

Axiom 5. Independence of External Merging (IEM) independent players : For all G = (N,W(G)) ∈ G, for all coalitions
T ⊆ N of at least two players, ϕi(GT ) = ϕi(G) for all i ∈ N \ T whenever T is a coalition of independent players.

While a merging operation involves independent players from one game to another, the shares of other players remain
unchanged.

Proposition 3.7. If a power index ϕ satisfies (E) and (IEM), then ϕ satisfies (NPM).

Proof. Suppose that a power index ϕ satisfies (E) and (IEM). Consider G = (N,W(G)) ∈ G and a coalition T ⊆ N of
independent players. We have:

ϕiT (G
T ) = 1 −

∑
i∈N\T

ϕi(GT ) by (E)

= 1 −

∑
i∈N\T

ϕi(G) by (IEM)

=

∑
i∈T

ϕi(G) by (E).

Therefore ϕ satisfies (NPM). □

Theorem 3.2. A power index ϕ on G satisfies (E), (SC) and (IEM) if and only if ϕ = Φ .

Proof. Necessity. It remains to prove that Φ satisfies (IEM). Consider a simple game G = (N,W(G)) ∈ G and a coalition
T of at least two independent players with |T | ≥ 2. Parts (c) and (d) in Proposition 3.2 imply that Φi(GT ) = Φi(G) for all
i ∈ N\T . Therefore Φ satisfies (IEM).

Sufficiency. By Proposition 3.7 and Theorem 3.1. □

In the following axiom, the members of a coalition T of independent players in a simple game G have to choose their
representative in T . This is the case in an annexation described by Aziz et al. [8] when a player in T takes the voting
weight of other members of T . The notation GT→t is extended below so that the possibility for t to be a player from T is
now included.
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Axiom 6. Independence of Internal Merging (IIM) independent players: For all G = (N,W(G)) ∈ G, for all coalitions
T ⊆ N of at least two players, for t ∈ T , ϕi(GT→t ) = ϕi(G) for all i ∈ N \ T whenever T is a coalition of independent
players.

When the members of a coalition T of independent players are offered the possibility to merge into a player in T , (IIM)
requires that this should not impact the shares of players out of T .

Proposition 3.8. All power indices on G that satisfy (IIM) also satisfy (IEM).

Proof. Suppose that a power index ϕ on G satisfies (IIM). Consider a simple game G = (N,W(G)) ∈ G, a coalition T of
independent players with |T | ≥ 2 and a player iT ∈ P\N . Set G1 = G[iT ]. By noting that |N| ≥ |T | ≥ 2, consider for all
i ∈ N , some j ∈ N\{i}. Since G = G{j,iT }→j

1 , then by (IIM), it follows that ϕi(G) = ϕi(G1). Now, note that GT
= (G1)

T∪{iT }→iT .
Therefore, (IIM) implies that for all i ∈ N\T , ϕi(GT ) = ϕi(G1) and therefore, ϕi(GT ) = ϕi(G). This proves that ϕ satisfies
(IEM). □

Theorem 3.3. A power index ϕ on G satisfies (E), (SC) and (IIM) if and only if ϕ = Φ .

Proof. Necessity. It remains to prove that Φ satisfies (IIM). Consider a simple game G = (N,W(G)) ∈ G, a coalition T of
independent players with |T | ≥ 2 and a player t ∈ T . Given iT ∈ P\N , note that GT→t is obtained from GT when iT is
replaced by t . Parts (c) and (d) in Proposition 3.2 imply that Φi(GT→t ) = Φi(G) for all i ∈ N\T . Therefore Φ satisfies (IIM).

Sufficiency. See Proposition 3.8 and Theorem 3.2. □

It can be checked, using the power indices presented in Section 3.3, that axioms in Theorem 3.2 as well as in
Theorem 3.3 are independent.

4. Some perspectives

We present in this section three plausible directions that deserve further attention.

4.1. A weak version of the merging condition

Proposition 3.5 states that (NPM) implies (NP). It may be of interest to see how to weaken the (NPM) condition so that
(NP) is explicitly needed; thus highlighting how far do these two axioms overlap. On this line, we show that when (NPM) is
replaced in Theorem 3.1 with its weaker version obtained by restricting the merging operation only to independent players
who are decisive in at least one coalition, incorporating (NP) is a necessary condition. Furthermore, to characterize the
Public Good Index, we also need the classical axiom of symmetry we now recall. Two payers i and j are called symmetric
in a simple game G = (N,W(G)) if for all S ⊆ N\{i, j}, S ∪ {i} and S ∪ {j} are both winning or both losing.

Axiom 7. Symmetry (S): For all G = (N,W(G)) ∈ G and for all pairs {i, j} of symmetric players in G, ϕi(G) = ϕj(G).

We say that a merging operation from G to GT is effective if T contains no null player in the game G. The following
axiom is a weak version of Axiom (NPM) when only effective merging of independent players are considered.

Axiom 8. Non Profitable Effective Merging (NPEM) of independent players: For all G = (N,W(G)) ∈ G, for all coalitions
T ⊆ N of at least two players,

ϕiT (G
T ) =

∑
i∈T

ϕi(G)

whenever T contains no null player and only independent players.

Proposition 4.1. If a power index ϕ on G satisfies (E), (SC), (NPEM), (NP) and (S), then ϕ satisfies (NPM).

Proof. See Appendix G. □

Theorem 4.1. A power index ϕ on G satisfies (E), (SC), (NPEM), (NP) and (S) if and only if ϕ = Φ .

Proof. The proof follows from Proposition 4.1 and Theorem 3.1. □

Each of the three power indices presented in Section 3.3 satisfies both (NP) and (S). Those power indices can then be
used to prove that in Theorem 4.1, none of the axioms (E), (SC) and (NPEM) can be dropped. For (NP) and (S), we consider
the two power indices below:
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• Define the power index I on G for all G = (N,W(G)) ∈ G and for all i ∈ N by

Ii(G) =

{
Φi(G) if |M(G)| ≥ 2
1

|N|
otherwise

The power index I satisfies (E), (SC), (NPEM) and (S); but I obviously fails to meet (NP) over the class of unanimity
simple games or simple games with only a unique minimal coalition. This proves that (NP) is not redundant in
Theorem 4.1.

• Consider the power index J defined on G for all G = (N,W(G)) ∈ G and for all i ∈ N by

Ji(G) =

{
Φi(G) if |M(G)| ≥ 2
1 ifM(G) = {S} for some coalition S such that i ∈ S and i ≤ j for all j ∈ S
0 otherwise

The power index J satisfies (E), (SC), (NPEM) and (NP); but J obviously fails to meet (S) by considering simple games
with a unique minimal winning coalition. This proves that (S) is not redundant in Theorem 4.1.

4.2. Relations with other power indices

Several other power indices on simple games depend only on the size of some subsets of the set of minimal winning
coalitions. This is the case for the Deegan–Packel Index by Deegan and Packel [13] and the Shift Power Index by Alonso-
Meijide and Freixas [6]. It can be checked that the Deegan–Packel Index satisfies both (E) and (NPM); but fails to meet
(SC). One can also check that the Shift Power Index satisfies (E); but fails to meet neither (NPM) nor (SC). Therefore it
is an interesting issue to find, for each of these two indices, which appropriate versions of the axioms presented in this
paper are satisfied.

4.3. Relations with coalitional versions of the Public Good Index

Alonso-Meijide et al. [3] has extended the Public Good Index to simple games with a priori unions and provided an
axiomatization of the whole class of coalitional versions of the Public Good Index; these are power indices on simple
games with a priori unions that coincide with the Public Good Index on simple games which are identifiable with simple
games with a priori unions containing only singletons; see also Holler and Nohn [28] for some alternative versions of the
Public Good Index for simple games with a priori unions. This is done by reformulating the axioms used by Holler and
Packel [30]. In a similar way, we provide below another characterization of coalitional versions of the Public Good Index.
Following Alonso-Meijide et al. [3], we recall the following definitions.

Definition 4.1. Given a finite nonempty set N of players:

1. A simple game with a priori unions is a 3-tuple (N, v, P), where (N, v) is a simple game and P , a partition of N
called the set of a priori unions.

2. A coalitional power index is any mapping that associates a simple game with a priori unions (N, v, P) with an
n−tuple of real numbers. That is, f (N, v, P) = (fi(N, v, P))i∈N .

3. A coalitional power index f is said to be a coalitional version of a given power index g on simple games if
f (N, v, PN ) = g(N, v) for all (N, v) ∈ GN , where PN

= {{i} : i ∈ N}.

In particular, a coalitional power index f is a coalitional version of the Public Good Index if:

f (N, v, PN ) = Φ(N, v),∀(N, v) ∈ GN . (4)

For power indices on simple games with a priori unions, the following axiom is due to Alonso-Meijide et al. [3].

Axiom 9. Singleton Efficiency (SE): For all G = (N, v) ∈ G,
∑
i∈N

fi(N, v, PN ) = 1.

In a similar way, we now introduce the following versions of the axioms we early presented.

Axiom 10. Supplementation Consistency with a priori Unions (SCU): For all G = (N, v) ∈ G, for all k ∈ P\N , and for
all k-supplementations G′

= (N ′, v′) of G, there exists a real constant λG′ such that

fi
(
N ′, v′, PN ′

)
= λG′ fi

(
N, v, PN) for all i ∈ N.

Axiom 11. No Profitable Merging with a priori Unions (NPMU): For all G = (N, v) ∈ G, for all T ⊆ N with |T | ≥ 2, for
all iT ∈ P\N , fiT (N

T , vT , PNT
) =

∑
i∈T

fi(N, v, PN ) whenever T consists of independent players in G.
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Proposition 4.2. A coalitional power index f is a coalitional version of the Public Good Index if and only if f satisfies (SE),
(SCU) and (NPMU).

Proof. Straightforward from Theorem 3.1 and (4). □

Each of the theorems presented in this paper on simple games can be extended to simple games with a priori unions
using very similar arguments. Furthermore, Alonso-Meijide et al. [2] characterized two particular coalitional versions of
the Public Good Index (the Solidarity PGI and the Union PGI). These two power indices have been also extended and
characterized by Alonso-Meijide et al. [4] in the context of simple games with coalition configurations (a given player
might belong to more than one coalition of the configuration). It would be interesting to scrutinize and enrich all these
results in the context of a variable electorate.

Appendix A. Proof of Proposition 2.2

Proof. Let G = (N,W(G)) ∈ G, k ∈ P \ N and G′
= (N ′,W(G′)) ∈ G such that N ′

= N ∪ {k}.
Necessity. Suppose that G′ is a k-supplementation of G. Let E = M(G) \W(G′). We prove thatM(G′) = {S ∪ {k} : S ∈

E} ∪ {S : S ∈ M(G) \ E}. We first show that M(G′) ⊇ {S ∪ {k} : S ∈ E} ∪ {S : S ∈ M(G) \ E}. To see this, first consider
a coalition R ⊆ N ′ such that R = S ∪ {k} for some S ∈ E. By definition of E, R \ {k} = S /∈ W(G′), then S /∈ M(G′). Since
S ∈ E ⊆M(G), it follows by assumption on G′ that S ∪ {k} ∈M(G′). That is R ∈M(G′). Now, consider a coalition R ⊆ N ′

such that R ∈M(G) \ E =M(G) ∩W(G′). Then R ∈M(G) and R ∪ {k} /∈M(G′) since R ∈ W(G′). It follows by assumption
on G′ that R ∈M(G′).

We now prove thatM(G′) ⊆ {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E}. For this purpose, consider R ∈M(G′). If k /∈ R, then
by definition of G′, R ∈M(G) and therefore R ∈M(G)∩M(G′) ⊆M(G)∩W(G′) =M(G)\E. Now suppose that k ∈ R, that
is R = S ∪ {k} for some S ⊆ N . It follows that S ∈ M(G) since G′ is a k-supplementation of G by assumption. Moreover,
R \ {k} = S /∈ W(G′) Therefore S ∈M(G) \W(G′) = E. We conclude thatM(G′) ⊆ {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E}.

In summary,M(G′) = {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E}.
Sufficiency. Assume thatM(G′) = {S ∪ {k} : S ∈ E} ∪ {S : S ∈M(G) \ E} for some subset E ofM(G). We prove that G′

is a k-supplementation of G. Consider S ⊆ N .
First suppose that S ∈ M(G). If S /∈ E, then S ∈ M(G) \ E and this implies that S ∈ M(G′). If S ∈ E, then it follows

by assumption that S ∪ {k} ∈M(G′). We have prove that S ∈M(G) implies S ∈M(G′) or S ∪ {k} ∈M(G′). Now suppose
that S ∈M(G′) or S ∪ {k} ∈M(G′). If S ∈M(G′) then S ∈M(G) \ E since k /∈ S. Thus S ∈M(G). If S ∪ {k} ∈M(G′) then
S ∈ E ⊆M(G). Therefore in both cases, S ∈M(G). In summary, G′ is a k-supplementation of G. □

Appendix B. Proof of Proposition 3.2

Proof. Suppose that T is a coalition of independent players with |T | ≥ 2.
Part (a). Consider S, R ∈M(G) such that S ̸= R. First suppose that S ∩ T = R ∩ T = ∅. By definition, ST = S ̸= R = RT .

Now suppose that S∩T ̸= ∅ and R∩T = ∅. Then iT ∈ ST and iT /∈ RT . Therefore ST ̸= RT . Similarly, ST ̸= RT if S∩T = ∅ and
R∩T ̸= ∅. Finally suppose that S∩T ̸= ∅ and R∩T ̸= ∅. Since T contains only pairs of independent (disconnected) players,
then S∩T = {i} and R∩T = {j} for some i, j ∈ T . If i = j, then ST \RT

= S \R ̸= ∅ since R ∈M(G). Otherwise i ̸= j. Players
i and j are independent, S ∈Mi(G) and R ∈Mj(G), thus by Proposition 2.1, S \ (R ∪ {i}) ̸= ∅. Since S \ (R ∪ {i}) ⊆ ST \ RT ,
it follows that ST ̸= RT . In each possible case, ST ̸= RT .

Part (b). We first prove thatM(GT ) ⊇ {ST : S ∈M(G)}. Let S ∈M(G). If S ∩ T = ∅, then vT (ST ) = v(S) = 1 and for all
i ∈ S, vT (S\{i}) = v(S\{i}) = 0 since S ∈M(G). Thus, ST ∈ W(GT ) and S\{i} is losing in GT for all i ∈ S. That is ST ∈M(GT ).
Otherwise, |S ∩ T | = 1 since S ∈M(G) and T contains only pairs of disconnected players. Set S ∩ T = {i}. First note that
vT (ST ) = v(S ∪ T ) = 1 and vT (ST \ {iT }) = v(S \ {i}) = 0 and thus ST \ {iT } /∈ W(GT ). Now consider j ∈ ST \ {iT } and suppose
that ST \{j} ∈ W(GT ). By definition, vT (ST \{j}) = v((S \ {i, j})∪T ) = 1. It follows that (S \ {i, j})∪T ∈ W(G) and therefore,
there exists A ⊆ (S \ {i, j})∪ T such that A ∈M(G). Set A = A′

∪ A′′ with A′
⊆ S \ {i, j} and A′′

⊆ T . Note that A′′
̸= ∅ since

A′
⊆ S \ {i, j} /∈ W(G). Moreover A′′

= {k} for some k ∈ T since T contains only pairs of disconnected players. Recalling
that S \ {j} /∈ W(G), it follows that k ̸= i. Note that {i, k} ⊆ T , S = (S\{i})∪ {i} ∈ Di(G) and A ⊆ (S\{i})∪ {k} ∈ Dk(G). Since
i and k are independent, therefore there exists K ⊆ S\{i} such that K ∪ {i} ∈ Di(G) and K ∪ {k} /∈ Dk(G). Hence K ⊊ S\{i}
and thus K ∪ {i} ⊊ S. A contradiction arises since K ∪ {i} ∈ W(G) and S ∈M(G). This proves that ST \ {j} /∈ W(GT ) for all
j ∈ ST \ {iT }. Therefore ST ∈M(GT ). We conclude thatM(GT ) ⊇ {ST : S ∈M(G)}.

Now, we prove that M(GT ) ⊆ {ST : S ∈ M(G)}. Let R ∈ M(GT ). If iT /∈ R, then vT (R) = v(R) = 1 and for all i ∈ R,
vT (R \ {i}) = v(R \ {i}) = 0. This implies that R ∈ M(G) and R = RT

∈ {ST : S ∈ M(G)}. Otherwise, iT ∈ R. Two possible
cases arise. First suppose that R = {iT }. Then vT (R) = v(T ) = 1. This implies that T contains in the simple game G some
minimal winning coalition K . Therefore R = K T

∈ {ST : S ∈ M(G)}. Now suppose that R ̸= {iT }. Since R ∈ M(GT ), we
have vT (R) = v((R \ {iT }) ∪ T ) = 1 while vT (R \ {iT }) = v(R \ {iT }) = 0. It follows that there exists some nonempty subset
L of T such that (R \ {iT }) ∪ L ∈ Di(G) for all i ∈ L. Such a coalition L can be obtained from (R \ {iT }) ∪ T by removing, one
by one, some members of T . Note that [(R \ {iT }) ∪ L]T = R. To prove that R ∈ {ST : S ∈ M(G)}, we only have to prove

96



A. Safokem, I. Moyouwou and A.Y. Mekuko Discrete Applied Mathematics 305 (2021) 86–102

that (R \ {iT }) ∪ L is necessary a minimal winning coalition in the simple game G. Suppose on the contrary that this is
not the case. Then, there exists j ∈ R \ {iT } such that (R \ {iT , j}) ∪ L is still a winning coalition in the simple game G. By
the definition of GT , [(R \ {iT , j}) ∪ L]T = R \ {j} is a proper subset of R which is a winning coalition in GT . A contradiction
arises since R ∈M(GT ). Therefore (R\ {iT })∪ L is a minimal winning coalition in the simple game G. In each possible case,
R ∈ {ST : S ∈M(G)}. We conclude thatM(GT ) ⊆ {ST : S ∈M(G)}.

Part (c). Given j ∈ N \ T , note that for all coalitions S ⊆ N , j ∈ ST if and only if j ∈ S. Therefore, Part (b) implies that
Mj(GT ) = {ST : S ∈ M(G) and j ∈ ST } = {ST : S ∈ Mj(G)}. By Part (a), the operator S ↦−→ ST is injective in M(G).
Therefore |Mj(GT )| = |{ST : S ∈Mj(G)}| = |Mj(G)|.

Part (d). By Part (b), MiT (G
T ) = {ST : S ∈ M(G) and T ∩ S ̸= ∅}. Recall that T contains only pairs of independent

(disconnected) players, then, |S ∩ T | ≤ 1 for all S ∈M(G). It follows thatMiT (G
T ) = {ST : S ∈M(G) and i ∈ S for some i ∈

T } = ∪i∈T {ST : S ∈Mi(G)}. MoreoverMi(G) ∩Mj(G) = ∅ for pairs {i, j} of distinct players in T . Taking into account that
the operator S ↦−→ ST is injective inM(G), one finally gets |MiT (G

T )| =
∑

i∈T |Mi(G)|. □

Appendix C. Proof of Proposition 3.5

Proof. Suppose that ϕ is a power index that satisfies (NPM). Consider a simple game G = (N,W(G)) ∈ G and a null
player k ∈ N in G. Denote by G0 the simple game obtained when k leaves the game G while the set of minimal winning
coalitions is unchanged; that is G = G0[k]. To prove that ϕk(G) = 0, we consider {k1, k2, k3, k4, k5, k6} ⊂ P\N and the
following simple games :

G1 = G0[k1, k2, k3, k4], G2 = G0[k1, k2, k5],G3 = G0[k5, k6] and G4 = G0[k1, k2, k3, k6].

Note that any player from {k1, k2, k3, k4, k5, k6} who is involved in a games Gj for j = 1, 2, 3, 4 is a null player. Moreover,
in terms of the merging operation, the following holds :

G = G{k1,k2,k3,k4}→k
1 = G{k1,k2,k5}→k

2 ,G2 = G{k3,k4}→k5
1 and G3 = G{k1,k2}→k6

2 . (C.1)

Furthermore, applying (NPM) on each of the above mentioned merging operations leads to

ϕk1 (G1) + ϕk2 (G1) = ϕk(G) − ϕk3 (G1) − ϕk4 (G1) since by (C.1), G = G{k1,k2,k3,k4}→k
1

= ϕk(G) − ϕk5 (G2) since by (C.1), G2 = G{k3,k4}→k5
1

= ϕk1 (G2) + ϕk2 (G2) since by (C.1), G = G{k1,k2,k5}→k
2

= ϕk6 (G3) since by (C.1), G3 = G{k1,k2}→k6
2 .

In a similar way, ϕi(G1) + ϕj(G1) = ϕk6 (G3) for all pairs {i, j} ⊆ {k1, k2, k3, k4}. This proves that ϕi(G1) + ϕj(G1) does
not depend on the pair {i, j} ⊆ {k1, k2, k3, k4}. Since ϕk1 (G1) + ϕk2 (G1) + ϕk3 (G1) + ϕk4 (G1) = ϕk(G), it follows that
ϕi(G1) =

1
4φk(G) for all i ∈ {k1, k2, k3, k4} and ϕk6 (G3) =

1
2ϕk(G). In the same way, ϕi(G4) =

1
4ϕk(G) for all i ∈ {k1, k2, k3, k6}.

Noting that G3 = G{k1,k2,k3}→k5
4 , it follows by (NPM) that ϕk5 (G3) =

3
4ϕk(G). Moreover G = G{k5,k6}→k

3 . Thus ϕk6 (G3) =

ϕk(G) − ϕk5 (G3) =
1
4ϕk(G). Hence

1
2ϕk(G) =

1
4ϕk(G) and therefore ϕk(G) = 0. □

Appendix D. Proof of Lemma 3.1

Proof. To ease the proof, we introduce, for all integers p ≥ 2, the sequence (cm)1≤m≤p defined by

cm =
(−1)m−1(p−1

m−1

) .

where
(p−1
m−1

)
is the binomial coefficient. Note that it can be easily checked that for 0 ≤ m < p,

(p − m) cm+1 + mcm = 0. (D.1)

Now, let ϕ be a power index on G that satisfies (E), (NPM) and (SC). Consider a coalition C ⊆ P and set |C | = p. If
p = 1, then C = {k} andM (GC ) = {{k}} for some k ∈ P . By efficiency, ϕk (GC ) = Φk (GC ) = 1. Clearly, ϕ (GC ) = Φ (GC ).
Now suppose that p ≥ 2. As we announced earlier, we consider a coalition C ′

⊆ P\S of p− 1 players. Set N = C ∪ C ′ and
denote by H the set of all simple games GS such that S ⊆ N and |S| = p. Note that there are exactly

(2p−1
p

)
simple games

GS in H that lead to
(2p−1

p

)
equation (ES)S⊆N,|S|=p, with exactly

(2p−1
p−1

)
variables (XT )T⊆N,|T |=p−1.

Since Φi (GC ) =
1
p for all i ∈ C , we have to prove that ϕi (GC ) =

1
p for all i ∈ C . That is, XC\{i} =

1
p for all i ∈ C . Consider

i ∈ C and set K = C\{i}. In (3) (see Remark 3.2), we multiply by cp−|S∩K | the left-hand-side and the right-hand-side of
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each equation (ES) such that S ⊆ N and |S| = p. By summing over all left-hand-sides and over all right-hand-sides, we
obtain ∑

S⊆N,|S|=p

cp−|S∩K |

∑
T⊆S,|T |=p−1

XT =

∑
S⊆N,|S|=p

cp−|S∩K | × 1 (D.2)

On the one hand, the right-hand-side of (D.2), say
∑

R, is simplified as follows:∑
R

=

∑
S⊆N,|S|=p

cp−|S∩K | × 1 =

p−1∑
k=0

∑
S⊆N,|S|=p,|S∩K |=k

cp−k

Each coalition S such that S ⊆ N , |S| = p and |S ∩ K | = k consists in k players from K and p − k players from N\K .
Since |K | = p − 1 and |N\K | = p, there are exactly

(p−1
k

)( p
p−k

)
such coalitions. Noting that 0 ≤ |S ∩ K | ≤ p − 1, it follows

that ∑
R

=

p−1∑
k=0

(
p

p − k

)(
p − 1
k

)
(−1)p−1−k( p−1

p−1−k

)
Since

( p−1
p−1−k

)
=
(p−1

k

)
, it follows that

∑
R

= (−1)p−1
p−1∑
k=0

(−1)k
(
p
k

)
= (−1)p−1 (0 − (−1)p

)
= 1. (D.3)

On the other hand, the left-hand-side of (D.2), say
∑

L, is simplified as follows:∑
L

=

∑
S⊆N,|S|=p

cp−|S∩K |

∑
T⊆S,|T |=p−1

XT =

∑
T⊆N,|T |=p−1

XT

∑
S⊆N,|S|=p,T⊆S

cp−|S∩K |.

Given T ⊆ N such that |T | = p − 1, each coalition S ⊆ N such that |S| = p and T ⊆ S can be rewritten as S = T ∪ {l}
for some l ∈ N\T . Furthermore, N\T = (K\T ) ∪ (N\(K ∪ T )). Thus,

∑
L

=

∑
T⊆N,|T |=p−1

XT

⎛⎝ ∑
l∈K\T ,S=T∪{l}

cp−|S∩K | +

∑
l∈N\(T∪K ),S=T∪{l}

cp−|S∩K |

⎞⎠ .
Consider a coalition T ⊆ N such that |T | = p−1. First suppose that T = K . Then no coalition S exists such that S = T ∪{l}
for some l ∈ K\T , since K\T = ∅. And there are exactly p coalitions S such that S = T ∪{l} for some l ∈ N\(T ∪ K ) = N\K .
Now suppose that T ̸= K . For all l ∈ K\T and S = T ∪ {l}, |S ∩ K | = |T ∩ K | + 1 ≤ p − 1. And for all l ∈ N\(T ∪ K ) and
S = T ∪ {l}, |S ∩ K | = |T ∩ K |. Therefore,∑

L

= pXK +

∑
T⊆N,T ̸=K ,|T |=p−1

[
|K\T | cp−1−|T∩K | + |N\(T ∪ K )| cp−|T∩K |

]
XT .

Since |K | = p − 1 and |N| = 2p − 1, it follows that for all T ⊆ N such that T ̸= K and |T | = p − 1, we have
|K\T | = p − 1 − |T ∩ K | and |N\(T ∪ K )| = 2p − 1 − |T | − |K\T | = p − |K\T | = |T ∩ K | + 1. Therefore,∑

L

= pXK +

∑
T⊆N,T ̸=K ,|T |=p−1

[
(p − 1 − |T ∩ K |) cp−1−|T∩K | + (|T ∩ K | + 1) cp−|T∩K |

]
XT .

For all T ⊆ N such that T ̸= K and |T | = p − 1, note that, the relation (D.1), taking m = p − 1 − |T ∩ K |, implies that

(p − 1 − |T ∩ K |) cp−1−|T∩K | + (|T ∩ K | + 1) cp−|T∩K | = 0 and
∑
L

= pXK . (D.4)

We conclude from (D.2), (D.3) and (D.4) that XK =
1
p for all coalitions K ⊆ P . Thus, ϕ (GC ) = Φ (GC ). □

Appendix E. Proof of Lemma 3.2

Proof. Suppose that ϕ is a power index on G that satisfies (E), (NPM) and (SC). We denote by Gn the set of all simple
games G = (N,W(G)) ∈ G with n players such that |Mi(G)| ≤ 1 for all i ∈ N . We prove by induction on n = |N| ≥ 1 the
assertion A (n) that for all simple games G ∈ Gn, ϕ(G) = Φ(G). In the initialization step, we consider n ∈ {1, 2}.

Suppose that n = 1 and let G = (N,W(G)) ∈ G1. Then N = {i} for some i ∈ P . By efficiency, ϕ(G) = Φ(G).
Suppose that n = 2 and let G = (N,W(G)) ∈ G2. Then M(G) = {{i}}; or M(G) = {{j}}; or M(G) = {{i} , {j}}; or

M(G) = {{i, j}} with N = {i, j} for some i, j ∈ P . First suppose thatM(G) = {{i}} with N = {i, j}. Then by efficiency and
Proposition 3.5, ϕi (G) = Φi (G) = 1 and ϕj (G) = Φj (G) = 0 since j is a null player in G. That is ϕ(G) = Φ(G). Similarly, if
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M(G) = {{j}}, then ϕj (G) = Φj (G) = 1 and ϕi (G) = Φi (G) = 0. That is ϕ(G) = Φ(G). Now suppose thatM(G) = {{i} , {j}}
with N = {i, j}. Then G = G{i,j} and ϕ(G) = Φ(G) by Lemma 3.1. Finally, suppose that M(G) = {{i, j}} with N = {i, j}.
Consider a player k ∈ P\{i, j}. Let G1 = (N1,W(G1)) and G2 = (N2,W(G2)) be the simple games defined by N1 = {i, k},
N2 = {j, k},M(G1) = {{i, k}} andM(G2) = {{j, k}}. Note that G1 = Gj↔k, G2 = Gi↔k and G2 = Gi↔j

1 . By Proposition 3.6, it
follows that

ϕi (G) = ϕk (G2) , ϕj (G) = ϕk (G1) and ϕi (G1) = ϕj (G2) .

It then follows by efficiency with respect to G, G1 and G2,

ϕi (G)+ ϕj (G) = 1, ϕi (G1)+ ϕj (G) = 1 and ϕi (G1)+ ϕi (G) = 1.

Solving this three equations leads to ϕi (G) = ϕj (G) = ϕi (G1) =
1
2 . Since Φi (G) = Φj (G) =

1
2 , it holds that ϕ(G) = Φ(G).

For the induction step, suppose that A (n) holds for some integer n ≥ 2. We prove that A (n + 1) necessarily holds.
Consider a simple game G = (N,W(G)) ∈ Gn+1. Set C = {i ∈ N : |Mi(G)| = 1} and N0(G) = {i1, i2, . . . , in0} with
n0 = |N0(G)| that is the number of null players in the simple game G. Note that N = C ∪ N0(G). First suppose that
|S| = 1 for all S ∈ M(G). Then G = GC [i1, i2, . . . , in0 ] and ϕi(G) = 0 = Φi(G) for all i ∈ N0(G) by Proposition 3.5.
And for all i ∈ C , one have in the one hand ϕi(G) = ϕi(GC ) and Φi(G) = Φi(GC ) by Remark 3.1, and in the other
hand ϕi(GC ) = Φi(GC ) by Lemma 3.1; therefore ϕi(G) = Φi(G). Then ϕ(G) = Φ(G). Now suppose that there exists
some S ∈ M(G) such that |S| ≥ 2. Consider three distinct players i, j and k in N such that i, j ∈ S and k ∈ C . Let
Si = S\{i} and Sj = S\{j}. Define the simple games G1 = (N1,W(G1)) and G2 = (N2,W(G2)) by N1 = N\{i}, N2 = N\{j},
M(G1) = [M(G)\{S}] ∪ {Si} and M(G2) = [M(G)\{S}] ∪ {Sj}. Since G ∈ Gn+1, coalitions in M(G) are disjoints. Thus,
no coalition in M(G)\{S} contains Si or Sj. This guarantees that the simple games G1 and G2 are well-defined. By the
induction assumption, ϕt (G1) = Φt (G1) =

1
n1

for all t ∈ C \ {i} and ϕt (G2) = Φt (G2) =
1
n2

for all t ∈ C \ {j}. Note that
n1 = |N1 \ N0(G1)| = |N \ (N0(G) ∪ {i})| = |N \ (N0(G) ∪ {j})| = |N2 \ N0(G2)| = n2. Moreover, G is an i -supplementation
of G1 as well as a j-supplementation of G2. Therefore, moving from G1 to G, (SC) implies that

ϕj (G) = (1 − ϕi (G)) ϕj (G1) =
1 − ϕi (G)

n1
and ϕt (G) = (1 − ϕi (G)) ϕt (G1) =

1 − ϕi (G)
n1

.

Similarly, from G2 to G, (SC) implies that

ϕi (G) =
(
1 − ϕj (G)

)
ϕi (G2) =

1 − ϕj (G)
n1

and ϕt (G) =
(
1 − ϕj (G)

)
ϕt (G2) =

1 − ϕj (G)
n1

.

We then deduce that

ϕt (G) =
1 − ϕi (G)

n1
=

1 − ϕj (G)
n1

with ϕi (G) =
1 − ϕj (G)

n1
.

Therefore

ϕi (G) = ϕj (G) =
1

n1 + 1
.

Recalling that G is an i-supplementation of G1, we deduce by (SC) that for all t ∈ C\{i},

ϕt (G) = (1 − ϕi (G)) ϕt (G1) =
1 − ϕi (G)

n1
=

1
n1 + 1

.

This proves that ϕt (G) = Φt (G) =
1

n1+1 for all t ∈ C where n1 +1 = |{t ∈ N : |Mt (G)|= 1}| = |N \ N0(G)|. Also, one have
ϕt (G) = 0 = Φt (G) for all t ∈ N0(G) by Proposition 3.5. Finally, ϕ (G) = Φ (G). This proves that A (n + 1) holds. Therefore,
we conclude that A (n) holds for all integers n ≥ 2. □

Appendix F. Proof of the sufficiency part of Theorem 3.1

Proof. Sufficiency. Consider a power index ϕ on G that satisfies (E), (NPM) and (SC). Given a simple game G = (N,W(G)) ∈

G, we denote by E (G) the set of all players i in G such that |Mi(G)| ≥ 2 and by G(m) the set of all simple games
G = (N,W(G)) ∈ G in which E (G) contains exactly m players. We prove by induction on integer m ≥ 0 the assertion
A′ (m) that for all simple games G ∈ G(m), ϕ(G) = Φ(G).

For the initialization step, suppose that m = 0. For all simple games G = (N,W(G)) ∈ G(0), E (G) = ∅. That is
|Mi(G)| ≤ 1 for all i ∈ N . Therefore, ϕ(G) = Φ(G) by Lemma 3.2. This prove that A′ (0) holds.

For the induction step, suppose that A′ (m) holds for some integer m ≥ 0. We prove that A′ (m + 1) necessarily holds.
Consider a simple game G = (N,W(G)) ∈ G(m+1). Then |E (G)| = m + 1 ≥ 1. Thus, there exists some player i ∈ E (G).
Let p = |M(G)| and q = |Mi(G)|. We writeMi(G) =

{
S1, S2, . . . , Sq

}
andM(G) =

{
S1, S2, . . . , Sq, Sq+1, . . . , Sp

}
. Consider

p + q distinct players j1, j2, . . . , jp, i1, i2, . . . , iq ∈ P\N . We define the simple games:
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• G1 = (N1,W(G1)) with N1 = (N\{i}) ∪
{
j1, j2, . . . , jp

}
∪
{
i1, i2, . . . , iq

}
and

M(G1) =
{
T1 ∪ {i1, j1} , . . . , Tq ∪

{
iq, jq

}
, Sq+1 ∪

{
jq+1

}
, . . . , Sp ∪

{
jp
}}

where Tt = St\{i} for all t ∈ {1, 2, . . . , q}.
• G2 = (N2,W(G2)) with N2 = N ∪

{
j1, j2, . . . , jp

}
and

M(G2) =
{
T1 ∪ {i, j1} , . . . , Tq ∪

{
i, jq
}
, Sq+1 ∪

{
jq+1

}
, . . . , Sp ∪

{
jp
}}

=
{
S1 ∪ {j1} , . . . , Sq ∪

{
jq
}
, Sq+1 ∪

{
jq+1

}
, . . . , Sp ∪

{
jp
}}
.

• G3 = (N3,W(G3)) with N3 = N2\{i} and

M(G3) =
{
T1 ∪ {j1} , . . . , Tq ∪

{
jq
}
, Sq+1 ∪

{
jq+1

}
, . . . , Sp ∪

{
jp
}}
.

Note that G1 is obtained from G by adding jt to St for t ∈ {1, . . . , p} and replacing player i in each St by it for
t ∈ {1, . . . , q}. Since each new player belongs to exactly one minimal coalition in G1, then E (G1) = E (G) \{i}. It follows
that |E (G1) | = m. Therefore by the induction assumption, ϕ(G1) = Φ(G1). Also note that moving from G1 to G2 consists
in merging players i1, i2, . . . , iq into i. Since {i1, i2, . . . , iq} is a coalition of independent players in the simple game G1, we
then deduce that

ϕi(G2) =

q∑
t=1

ϕit (G1) since ϕ satisfies (NPM)

=

q∑
t=1

Φit (G1) since ϕ(G1) = Φ(G1)

= Φi(G2) since Φ satisfies (NPM).

To continue, also note that E (G3) = E (G) \{i}, it follows that |E (G3) | = m. Therefore by induction assumption,
ϕ(G3) = Φ(G3). By observing that G2 is an i-supplementation of G3, it follows that for all k ∈ N2\{i},

ϕk(G2) = (1 − ϕi(G2)) ϕk(G3) since ϕ satisfies (SC)
= (1 −Φi(G2))Φk(G3) since ϕi(G2) = Φi(G2) and ϕ(G3) = Φ(G3)
= Φk(G2) since Φ satisfies (SC).

This proves that ϕ(G2) = Φ(G2). Finally, we define the simple games
(
G′
t

)
0≤t≤p by G′

0 = G and for all t ∈ {1, 2, . . . , p},
G′
t =

(
N ′
t ,W(G′

t )
)
with

N ′

t = N ∪ {j1, j2, . . . , jt} andM(G′

t ) =
{
S1 ∪ {j1} , . . . , St ∪ {jt} , St+1, . . . , Sp

}
.

Note that G′
p = G2 and that G′

t is an jt -supplementation of G′

t−1 for all t ∈ {1, 2, . . . , p}. Moreover i ∈ N ′
t andMi(G′

t ) ̸= ∅

for all t ∈ {1, 2, . . . , p}. By the definition of Φ , it follows that Φi(G′
t ) > 0 for t ∈ {1, 2, . . . , p}. This proves that, for all

k ∈ N ′
t\{i}, Φk(G′

t ) < 1. Since ϕ(G2) = Φ(G2) and G′
p is an jp-supplementation of G′

p−1, we deduce from Proposition 3.4 that
ϕ(G′

p−1) = Φ(G′

p−1) with Φjp−1 (G
′

p−1) < 1. By iterating this procedure for t = p, p − 1, . . . , 1, it holds that ϕ(G′

0) = Φ(G′

0).
Since G′

0 = G, we get ϕ(G) = Φ(G). This proves that A′(m+1) holds. In conclusion, A′(m) holds for all integers m ≥ 0. □

Appendix G. Proof of Proposition 4.1

Proof. Consider a power index ϕ on G. Suppose that ϕ satisfies (E), (SC), (NPEM), (NP) and (S). Consider a simple game
G = (N,W(G)) ∈ G, a coalition T ⊆ N containing only independent players with |T | ≥ 2. Let S be the set of all members
of T who are null players in G; and G′

= (N\S,W(G′)) be the simple game such that M(G′) = M(G). The game G′ is
obtained from G when the members of S leave G without altering the status of any minimal winning coalition.

Step 1. First suppose that S is empty. Then by (NPEM), condition (2) is satisfied.
Step 2. Now suppose that S is not empty and T\S = {i}. Note that i is no longer a player in the game GT

= (NT ,W(GT )).
Consider the game G′′

= (NT
∪ {i},W(G′′)) obtained from GT when player i gets in the game by joining only all

minimal winning coalitions that contain iT ; that is, for all K ⊆ NT
∪ {i}, K ∈ M(G′′) if and only if (iT /∈ K , i /∈ K

and K ∈M(GT )), or (iT ∈ K , i ∈ K and K\{i} ∈M(GT )). On the one hand, G′′ is an i-supplementation of the game
GT . Furthermore, i and iT are symmetric players in G′′. Therefore by (S), (E) and (SC), it follows that

ϕi(G′′) = ϕiT (G
′′) = (1 − ϕi(G′′))ϕiT (G

T ). (G.1)

On the other hand, G′′ is an iT -supplementation of G′. Thus, it follows that

ϕiT (G
′′) = ϕi(G′′) = (1 − ϕiT (G

′′))ϕi(G′). (G.2)
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It follows from (G.1) and (G.2) that ϕiT (G
T ) = ϕi(G′). By noting that when a null player k leaves a simple game while

the set of minimal winning coalitions remains unchanged, the shares of players other than k remain unchanged
by applying both (E), (SC) and (NP). Therefore, ϕi(G′) = ϕi(G) since G′ is obtained from G when the members of S
leaves G. Therefore ϕiT (G

T ) = ϕi(G). Hence condition (2) is satisfied.
Step 3. Finally, suppose that S is not empty and |T\S| ≥ 2. Set T ′

= T\S. Then no null player belongs to T ′ and T ′ contains
only independent players. By (NPEM),

ϕiT ′ (G
T ′

) =

∑
j∈T ′

ϕj(G) =

∑
j∈T

ϕj(G). (G.3)

The second equality in (G.3) holds by (NP) since players in S = T\T ′ are null players in the game G. In the game
GT ′

, note that coalition T ′′
= {iT ′} ∪ S contains only independent players and all members of T ′′ are null players

in GT ′

except player iT ′ . As it is just shown in Step 2., merging in the game GT ′

the members of T ′′ into iT implies
that

ϕiT

((
GT ′
)T ′′
)

= ϕiT ′ (G
T ′

). (G.4)

Moreover,
(
GT ′
)T ′′

= GT . Therefore, condition (2) holds by (G.3) and (G.4).

In each of the three possible cases, condition (2) holds. That is ϕ satisfies (NPM). □
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