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Abstract

The dissertation work substantially bears our contribution to the development of noncom-

mutative (NC) theories. It mainly provides a comparative study of ordinary complex scalar

φ4
?D and complex Grosse-Wulkenhaar (GW) model. In this context, relevant physical quan-

tities such as energy momentum tensors (EMTs) are explicitly computed and improved to

satisfy known physics based properties in line with the Wilson and Jackiw techniques. In all

these theories, the dilatation symmetry is broken and the breaking terms are discussed. As

expected, all computed physical quantities for ordinary complex φ4
?D noncommutative field

theory (NCFT) are easily recovered from the results obtained for the complex GW NCFT

by setting Ω = 0.

A generalization of the Hamiltonian formulation developed by Gomis et al is perfomed

and analyzed for the renormalizable Grosse-Wulkenhaar φ4
?D model.

The dynamical noncommutativity introduced by Aschieri et al [3] is implemented and

discussed in the case of a new class of renormalizable NC field theories (RNCFT) built on

the GW φ?4 scalar field model defined in Euclidean space. Our investigations show that the

twisted GW action is not invariant under global translation. Such an undesirable feature has

been got round by imposing a constraint on the Lagrangian action, which is nothing but

the equation of motion governing the GW harmonic term. Contrarily to pevious works, both

ordinary GW and twisted GW models provide nonlocally conserved and nonsymmetric EMT,

angular momentum tensor (AMT) and dilatation current (DC) due to the presence of the

harmonic term Ω. Fortunately, all these physical quantities can be subjected to well known

Jackiw and Wilson regularization procedures to acquire the local conservation property. We

define the twisted connections in NC spaces and discuss NC gauge transformations. Then,

the Yang-Mills (YM) action, twisted in the dynamical Moyal space, is proved to be invariant

under U?(1) local gauge transformation with the parameter α = α0 + εµx
µ, where εµ is an

infinitesimal parameter and α0 a constant. The NC gauge invariant currents are explicitly

computed. These currents are locally conserved.

Besides, the main properties of the harmonic oscillator in the framework of a dynam-

ical noncommutativity realized through a twisted Moyal product are discussed. Working

in the NC configuration space, explicit spectrums of harmonic oscillator with non-vanished

momentum-momentum bracket are derived and the spectrums computed. It should be pointed

out that, in order to maintain the Bose-Einstein statistics, the model parameters Θ and Θ̄

must satisfy the relation Θ2− Θ̄2 = 0. Therefore, the parameters Θ and Θ̄ reflect the intrin-

sic noncommutativity between positions and momenta, respectively, (as a Planck constant

encodes the noncommutativity of position and momentum).



Résumé

Cette thèse porte sur notre contribution au développement des théories noncommutatives

des champs. Elle prévoit notamment une étude comparative du modèle scalaire ordinaire et

scalaire complexe de Grosse-Wulkenhaar (GW). Dans ce contexte, les quantités physiques

pertinentes telles que le tenseur d’énergie impulsion (EMT) et les courants de Noether en

général sont explicitement calculés et régularisés pour répondre aux propriétés physique

de conservation locale, basée essentielement sur les techniques de Wilson et Jackiw. Dans

toutes ces théories, la symétrie par dilatation est brisée et le terme de brisure est calculé.

Comme prévu, toutes les quantités physiques en théorie des champs ordinaire sont facilement

retrouvées en posant Ω = 0. Une généralisation de la formulation hamiltonienne développée

par Gomis et al est adapté pour le champ scalaire de GW. La noncommutativité dynamique

introduite par Aschieri et al est mis en oeuvre et utilisée dans le cas d’une nouvelle classe

de théories de champ renormalisables, celui de Grosse et Wulkenhaar définit dans l’espace

euclidien. Notre analyse montrent que l’action de GW dynamique n’est pas invariante sous

les translations d’espace temps. Une telle caractéristique indésirable a été contourné en im-

posant une contrainte sur le lagrangien de la théorie, qui n’est rien d’autre qu’une nouvelle

équation du mouvement liée au terme harmonique de GW. Contrairement aux résultats

antérieurs, le tenseur d’énergie impulsion et le tenseur moment angulaire du modèle ordi-

naire et dynamique de GW possèdent la pathologie de la non-conservation locale à cause de

la présence du terme harmonique additionel. Les tenseurs sont de même non-symétriques.

Les courants de dilatation sont aussi calculés dans cette étude. Heureusement, toutes ces

quantités physiques peuvent être soumises à l’analyse de régularité de Jackiw et de Wilson

pour acquérir la propriété de conservation locale. Nous définissons la connection de jauge

dans un espace dynamique noncommutatif et discutons des transformations de jauge NC

appropriées. Ensuite, Nous faisons une analyse sur la théorie de Yang-Mills pure dans un

tel espace déformé et il s’avère que l’action correspondante est invariante sous les trans-

formations de jauge locale U?(1) définient par le parametre infinitésimal α = α0 + ενx
ν ,

ε étant un vecteur infinitésimal. Les courants issus de l’invariance de jauge NC sont ex-

plicitement calculés. Ces courants sont localement conservés. Par ailleurs, les principales

propriétés de l’oscillateur harmonique dans un tel espace dynamique réalisé grace au produit

de Moyal déformé encore appelé produit de Moyal dynamique sont discutées. Le spectre,

de l’oscillateur harmonique dans l’espace de phase NC avec la condition que les impulsions

sont noncommutatives est analysé. Il convient de souligner que, afin de maintenir la statis-

tique de Bose-Einstein, les paramètres du modèle de la théorie doivent satisfaire la relation

Θ2− Θ̄2 = 0. Par conséquent, ces paramètres encodent la propriété de noncommutativité de

l’espace temps (comme la constante de Planck encode la noncommutativité des positions et
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des mouvements).
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Introduction

This dissertation is devoted to the investigation of Noncommutative Solvable Models in Quan-

tum and Field Theories. Quantum Field Theory (QFT) describes the properties of elementary

particles in terms of relativistic quantum fields, while Particle Physics studies the fundamental

constituents of matter and their interactions. Four fundamental interactions are today known:

In the electromagnetic interaction, the symmetry group is a unitary transformation called

U(1). Since there is a single generator, the force is mediated by a single particle, i.e. the photon,

which is known to be massless. The electromagnetic force is due to the photon (γ) exchange. If

a particle is massless and spin-1, it can only have two polarization states. Photons do not carry

charge.

In the weak interaction, the gauge group is the group SU(2) which has three generators. The

three physical gauge bosons that mediate the weak force are W+ (carrying +1 electric charge),

W− (with +1 electric charge), and Z (electrically neutral particle). The gauge bosons for the

weak interaction are massive and possess three polarization states.

The electromagnetic and weak interactions have been unified into a single theoretical frame-

work called electroweak theory.

In the strong interaction, the gauge group is SU(3) which has eight generators. The gauge

bosons corresponding to these generators are called gluons. Gluons mediate interactions between

quarks and are therefore responsible for binding neutrons and protons together in the nucleus.

A gluon is a massless spin-1 particle, and like the photon, has two polarization states. Gluons

carry the charge of the strong force, and can interact among themselves, something that is not

possible with photons since photons carry no charge. The theory that describes the strong force

is called quantum chromodynamics.

The general theory of gravitational interaction is one of the most beautiful and successful

theories in classical physics, called general relativity or Einstein theory. Einstein proposed the

following principles to construct the general relativity. The first is that all laws in physics take the

same forms in any coordinate system. The second principle states that there exists a coordinate

system in which the effect of a gravitational field locally vanishes.2 Any theory of gravity must be

reduced to Newton’s theory of gravity in the weak-field limit. In Newton’s theory, the gravitational

potential Φ satisfies the Poisson equation ∆Φ = 4πGρ, where ρ is the mass density and G

the Newton constant of gravity. The Einstein equation generalizes this classical result so that

the principle of general relativity is satisfied. In general relativity, the gravitational potential is

replaced by the components of the metric tensor. The Einstein equation is defined by Gµν ≡
Ricµν − 1

2
gµνR. Ricµν is the Ricci tensor, gµν the metric tensor and R the scalar curvature.

Similarly, the mass density is replaced by a more general object, called the energy momentum

2 An observer in a freely falling lift does not feel gravity until in crashes.
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tensor (EMT) Tµν . The Einstein equation takes a very similar form Gµν = 8πGTµν . Let ∇µ be

the connection associated to metric gµν , then the EMT is locally conserved, i.e. ∇µT
µν = 0.

Before we leave general relativity, we should note that Einstein equation can be derived from

a field theory, using the Hilbert action SH = 1
8πG

∫
d4x (

√
−gR + 8πGLM), where LM is the

Lagrangian associated to the matter field. To summarize we allow for non-flat metrics in general

relativity, as mentioned above. Roughly, this means that the metric depends on position on the

manifold, leading to curvature in contrary of the standard model.

It is now widely believed to offer a coherent mathematical framework for relativistic models like

the standard U(1)×SU(2)×SU(3) model. This model includes all the particles and interactions

observed up to now, except for the gravity. Forces in nature are believed to result from the

exchange of the gauge bosons. For each interaction, there is a field, and the gauge bosons are the

quanta of the field. The number of gauge bosons that exist for a particular field is given by the

number of generators of the field. The gauge bosons for the electromagnetic, weak, and strong

forces are all spin-1. If the gavity is the gauge theory and therefore be quantized, the force-carrying

particle (called the graviton) is a spin-2 particle. For a particular field, the generators come from

the unitary group used to describe the symmetries of the field.

There exist many approaches to include gravity into quantum field theory. The ultimate step

forward for quantum field theory is a unified theory known as String theory. This theory was

originally proposed as for the strong interraction, but it fell out of favor when quantum chromo-

dynamics was developed. The basic idea of the string theory is that the fundamental objects in

the universe are not pointlike elementary particles, but are instead objects spread out in one di-

mension, called strings. Excitations of the string give the different particles we see in the universe.

String theory is popular because it appears to be a completely unified theory. Quantum field the-

ory unifies quantum mechanics and special relativity, and as result is able to describe interactions

involving three of the four known forces. Gravity is left out. Currently gravity is best described

by Einstein’s general theory of relativity, a classical theory that not take quantum mechanics into

account. Efforts to bring quantum theory into the gravitational realm or vice versa have met with

some difficulties. One reason is that interactions at a point cause the theory to “blow up”; in other

words you get calculations with infinite results. By proposing that the fundamental objects of the

theory are strings rather than point particles, interactions disappear. In addition, a spin-2 state of

the string naturally arises in string theory. It is known that the quantum of the gravitational field,

if it exists, will be a massless spin-2 particle. Since this arises naturally in string theory, many

people believe it is strong candidate for a unifield of all interactions. The intersting solution of

string theory shows that space coordinates do not commute. Recent interest in noncommutative

field theory (NCFT) is then strongly motivated by the discovery that string theory leads to NC

geometry in certain limits.

To make spacetime NC, the commutative algebra of functions is usually replaced by a NC

algebra generated by coordinates xµ with commutation relations

[x̂µ, x̂ν ] = iΘ̃µν(x). (1)

In the canonical case, this commutator is a constant, i.e. Θ̃ = Θ ∈ R. Gauge theory on this space

was studied in great detail in the last few years, mainly due to its appearance in string theory.

But if we think that noncommutativity is an effect of quantum gravity, the canonical case can

only be the simplest example. Other, more complicated structures should be studied, especially

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011
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structures that are related to curved backgrounds. But also in view of our second motivation, the

canonical case proved to be disappointing: it doesn’t cure the inimities of QFT, it rather adds

new ones.

At the length scale lp =
√

~G
c3
' 1, 6.10−35meters, which corresponds to the Planck energy

Ep = ~c
lp

=
√

~c5
G
' 1, 21019GeV , the universal constants c, ~ and G appear naturally equivalent.

Trying to measure smaller and smaller distances, we are forced to use test particles with more

and more energy. This energy will affect the geometry of space itself creating black holes which

finally become bigger than the distances we want to measure. Under the Planck length, distance

looses its meaning. At these super-short distances, physical phenomena are believed to be nonlocal

opposed to the locality of traditional geometrical theories of gravitation and quantum gauge field

theories of particle physics. The solving of quantum field theories at this level implies ”unification

of all interaction of nature”. In the absence of a consistent formulation of quantum gravity, we

do not know the exact nature of quantized space-time, but it is clear that the usual notion

of a differentiable manifold should be replaced by something reflecting the quantum nature of

space-time at very small distances.

By using a noncommutative (NC) structure of space-time at very small length scales lp, one

could also introduce an ultraviolet cutoff. There, the divergencies appearing in the quantization are

UV-effects, and therefore related to small distances. The introduction of noncommutativity could

work as a ultraviolet cut-off, making quantum field theory (QFT) finite. Even though the UV-

divergencies are now well under control through the renormalization programme, they nevertheless

suggest that space-time should change its nature at very small distances. The simplest NC model,

namely φ4
?4, whose action is given by

S[φ] =

∫
d4x

[
1

2
∂µφ ? ∂

µφ+
m2

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

]
(x). (2)

was found to be not renormalizable because of a surprising phenomenon, the so called UV/IR

mixing. The UV/IR mixing of the noncommutative field theories was first discovered in [66]

in the context of scalar field theory. There, it was noticed that regulating the integrals, as in

the commutative theory, leads to a new kind of mixing of the ultraviolet (UV) and infrared

(IR) regimes. That is, the field theory does not give the same result independently of the order in

which the UV and IR limits are taken. Hence the name UV/IR mixing. To avoid the UV/IR mixing

problem, several models which involve an oscillator like counter term have been put forward. On

the one hand such models break translation invariance due to the explicit x-dependence of the

action, but on the other hand they in general show a much better divergence behaviour at

higher loops or are even (in the case of the scalar Grosse-Wulkenhaar (GW) model) proven to be

renormalizable. In the following, we will present the GW model followed by three gauge models

based on similar ideas.

Ideed, in 2004, the first renormalizable NC scalar field model in Euclidean space was introduced

by H. Grosse and R. Wulkenhaar [37] (for a Minkowskian version, see reference [27]). Their trick

was to add a harmonic oscillator-like term to the action as follows:

S[φ] =

∫
d4x

[
1

2
∂µφ ? ∂

µφ+
m2

2
φ ? φ+

Ω2

2
(x̃φ) ? (x̃φ) +

λ

4!
φ ? φ ? φ ? φ

]
. (3)

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011
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Here x̃ = 2(Θ−1) · x and φ is a real scalar field. The additional constant harmonic term Ω

stands for the action UV/IR freedom implying renormalizability and the Lagrangian covariance

under Langmann-Szabo duality [57]. With its explicit dependence in xµ, the Lagrangian includes

an interaction as an external harmonic source. Then, the system described by action (1.64) is

possibly an open system. At the parameter limit Θ → 0, the singularity (Θ−1) → ∞ invokes

a divergence from the classical φ4 scalar field. Furthermore, it is not invariant under space-time

translation. Besides, at the parameter limit θ → 0, the model does not converge to the ordinary

φ4 scalar field theory due to the presence of the inverse matrix (Θ−1), then causing a singularity.

The ?-GW φ4
4 theory is renormalizable at all orders in λ. This result has been now proved by

various methods (see [73] and references therein). By exchanging x̃ ↔ p one can see that the

GW action becomes covariant under Langmann-Szabo (LS) duality [57], i.e. covariant under the

symmetry:

S[φ,m, λ,Ω]→ Ω2S[φ,
m

Ω
,
λ

Ω2
,

1

Ω
]. (4)

Note that (4) is invariant for Ω = 1. The requirement of LS duality has been helpfull to construct

other renormalizable actions for complex-valued scalar fields. However, more investigations are

needed to clarify the actual role of the LS duality in the controle of the UV/IR-mixing and

renormalizability.

The construction of a renormalizable gauge theory on NC space remains still unsolved and

appears to be a quite challenging problem. The naive NC extension of the pure Yang-Mills

action on Moyal space has UV/IR mixing which make its renormalizabilty quite unlikely unless

it is suitably modified. Unfortunately, the harmonic solution proposed in (3) cannot be merely

extended to gauge theories on Moyal spaces. Finding such a suitable extension would first amount

to determine whether or not naive NC Yang-Mills action can be supplemented by additional gauge

invariant terms providing a natural gauge theory counterpart of those harmonic terms. As shown

in [32], the calculation performed within the x-space formalism singles out a class of gauge

invariant actions given by

S =

∫
d4x
( α

4g2
Fµν ? F

µν +
Ω′

4g2
{Aµ,Aν}2

? +
κ

2
Aµ ?Aµ

)
(5)

whereAµ denotes a specific gauge covariant tensorial form, linked with the existence of a canonical

gauge invariant connection.

This dissertation is organized as follows. The first chapter addresses investigations on the

energy-momentum tensors for both ordinary φ4
?D and renormalizable NC GW complex scalar

field theories. Locally conserved non symmetric energy momentum tensors are obtained, using

algebraic techniques. The properties inherited from the models are clarified. Nonlinear Euler-

Lagrange equations of motion are derived and solved using a matrix base method.

In chapter 2, we deal with the Hamiltonian formalulation of the GW φ4
?D model and its

generalization. The study is based on D+1 dimensional space-time formulation of D dimensional

non-local theories. The analysis of constraints shows that the secondary constraints describe the

Euler-Lagrange equations of motion.

In Chapter 3, we computate Noether currrents for the renormalizable GW φ?4 model sub-

jected to a dynamical noncomutativity realized through a twisted Moyal product. The NC energy-

momentum tensor (EMT), angular momentum tensor (AMT) and dilatation current (DC) are

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011



CONTENTS 7

explicitly derived. The breaking of translational and rotational invariances has been avoided

via a constraint equation. Then main properties of the NC gauge theory are investigated in

a 2−dimensional twisted Moyal plane, generated by the vector fields Xa = eµa(x)∂µ; the dynam-

ical effects are induced by a non trivial tensor eµa(x). Finally, connections in such a NC space are

defined. Symmetry analysis is performed and related NC action is proved to be invariant under

defined NC gauge transformations. A locally conserved Noether current is explicitly computed.

Both commuting and NC vector fields Xa are considered.

Chapter 4 first reports on a study of a harmonic oscillator (ho) in the twisted Moyal space, in

a well defined matrix basis, generated by the vector fields Xa = eµa(x)∂µ = (δµa +ωµabx
b)∂µ, which

induce a dynamical star product. The usual multiplication law can be hence reproduced in the ωµab
null limit. The star actions of creation and annihilation functions are explicitly computed. The ho

states are infinitely degenerate with energies depending on the coordinate functions. Then, the

harmonic oscillator is studied in a complete NC phase space with non-vanished space-space and

momentum-momentum coordinates.

Finally, there follow the concluding remarks and discussions.

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011



Chapter One

Grosse-Wulkenhaar Model

The existence of symmetries and fundamental invariants in physics has a number of consequences.

To mention a few, it restricts the class of dynamical models, simplifies calculations for generating

solutions, and involves the conservation of physical quantities (charge, energy, momentum, etc.).

In classical field theory, symmetries and continuous transformations fall generally into two cate-

gories: spacetime (geometric) transformations (Poincaré - Galilei, conformal group symmetries,

etc.) and internal transformations (Lie group symmetries, mixing of fields etc.). One could fur-

ther classify internal transformations as local gauge and global transformations according to that

their generators are position dependent and not, respectively. More developments can be found in

[56]. The implications of having a classical field system invariant under a set of transformations

(finite dimensional connected continuous group) are governed by the so-called Noether theorem

[2][33][56].

With the advent of noncommutative field theory (NCFT)[25], a series of papers has been

produced dealing with noncommutative (NC) versions of Noether currents within the framework

of field modules over Moyal algebra for different kinds of symmetries [1][19][28][36][65] and

including models with interactions and NC spinor currents [40][84]. Let us recall that the Moyal

algebra of functions [34] on the spacetime RD (endowed with some Euclidean or Minkowskian

metric (η = ηµν)) is a subset of the Schwartz class of infinitely differentiable complex valued

functions with rapid decay, mainly equipped with a multiplication called ?-Moyal product defined

by

(f ? g)(x) = m
(
e
i
2

Θρσ ∂ρ⊗∂σf(x)⊗ g(x)
)

x ∈ RD (1.1)

m being the ordinary multiplication of functions and Θ = (Θρσ) the constant noncommutativity

antisymmetric tensor. A salient feature of NCFT over the Moyal algebra is that the tensor Θ =

(Θρσ) (1.1) is not a (Lorentz-Euclide) metric tensor in the sense that Θρσ 6= Λρ
µΛσ

νΘ
µν , Λρ

µ

being some spacetime rotation, implying that it explicitly breaks the rotation invariance. The

particular issue of Lorentz invariance violation in NCFTs was discussed from different point of

view and some breakthroughs were proposed considering whether the simplest algebra in which

the Θ tensor is promoted to an operator so that Lorentz invariance is preserved [14], or some

canonical formulation and realization of the NC space-space (Θ0i = 0) Moyal geometry with a NC

deformed Lorentz symmetry under which, via well defined vector field transformations, both the

?-product and the interval length ds2 remain invariant [13]. There were also different proposals to

maintain Lorentz covariance of NC Lagrangian density involving the twisted Poincaré symmetry

[15][53][84] and the κ-Poincaré quasi group whose elements are deformed Poincaré symmetries
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[63]. Thus, Poincaré symmetries remain to be understood in NCFTs.

Nevertheless, some approaches in order to define a Noether theorem in theories over Moyal

algebra have been developed. A first attempt to a definition of such a theorem maybe belong to

Micu and Sheikh-Jabbari [65]. Their study was performed using formal variations of the NC action

with applications to translation for the NC φ4 scalar field theory and U(1) local gauge symmetry

for NC Dirac spinor field theory. They also conjectured the property that: For any current Jµ,

there are functions f and g such that ∂µJ
µ = [f, g]? which involves that, in space-space Moyal

noncommutativity fixed by Θ0i = 0, the charge Q =
∫
d3x J0 is conserved in time. Besides, a

NC Noether procedure for translation and dilatation symmetries was studied by Gerhold et al.

[28]. Here, the authors use Ward identity operators1 (WIops) in order to define an exact definition

of NC action invariance under a set of continuous transformations. Some further developments

on translation symmetry of NC φ4 scalar field theory and Yang-Mills fields are worked out by

Abou-Zeid and Dorn [1] and by Grimstrup et al. [36]. Furthermore, NC U(N) Noether currents

for matrix gauge transformations were considered in [36]. Note that investigations on rotation

symmetry are avoided in the above studies.

As a peculiar feature of NCFTs, in general, Noether currents fail to be locally conserved. More

precisely, the Noether procedure applied to NC φ4 scalar field theory for infinitesimal translations

yields a symmetric not locally conserved energy momentum tensor (EMT). For a massless theory,

adding the term (1/6)(gµν · ∂2 − ∂µ∂ν)(φ ? φ) to the NC Lagrangian density allows to define a

traceless EMT tensor but still not locally conserved. A computational procedure defined in [1] may

be used to recover a locally conserved EMT, with as inheritance, a nonsymmetric part. Regarding

NC Yang-Mills theory with spinor current under infinitesimal translations, the canonical EMT

proves to be asymmetric, not locally conserved, not traceless and not gauge invariant [36][40]. In

the case of pure NC gauge theory, Jackiw recipe could be applied in order to define a symmetric

EMT which transforms covariantly under gauge transformations and which is locally covariantly

conserved [36]. Further developments concerning broken dilatation symmetry and improvement

procedures are available in Refs.[1][19][28][36].

So far, studies on the NC analogues of Noether currents and symmetries in NC spaces have

been carried out only in the framework of the so-called ’naive’2 NCFTs regardless to the additional

harmonic terms of Grosse and Wulkenhaar [37] ensuring Langmann-Szabo duality [57] and being

the key of a NC renormalizable theory [73][74][81] (for a review of NC renormalizable field theory

see [74]). Moreover, an induced gauge theory coupled with a complex scalar field have led to the

de Goursac et al. conjecture of the NC renormalizable Yang-Mills action [31]. It could be then

natural to investigate all the above formalism around the questions of NC symmetries, Noether

quantities and related properties in these new classes of theories which, undoubtedly, have given

a new lease of life to NCFTs.

In this chapter, from a classification of NC infinitesimal Poincaré-Galilei and local gauge trans-

formations, we recall a rigorous formulation (by Ben Geloun and Hounkonnou) of the NC analogue

of Noether theorem on trivial bimodules and matrix field algebra over the Moyal algebra with the

ambition to go as far as possible in developing a deformed differential calculus and algebraic con-
1In quantum electrodynamics, Ward operators are useful to determine the gauge invariance of the theory which is stated

through the so-called Ward identity of relevance in the study of renormalizability. Often, in this situation, those operators take

the name of Ward identity operators.
2We shall refer this theory to as ordinary NCFT and the quantities occurring in this class of NCFTs to as ordinary NC

quantities.
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cepts without invoking topological aspects. Given the above quoted infinitesimal transformation

generators, NC Noether currents of NC scalar and gauge theories are computed as illustrations.

These NC currents include, as original contributions, Grosse-Wulkenhaar harmonic terms. Discus-

sions on broken rotation and dilatation symmetries follow. Using a particular WIop, we succeed

in defining an analogue of angular momentum in the Moyal space, albeit this analogue appears

only under broken rotation invariance. In the case of pure translations, a regularization procedure

proves to be efficient in order to improve the EMTs for the local conservation order. The ordinary

NC currents are recovered in a particular parameter limit where the Grosse-Wulkenhaar terms

collapse whereas the classical currents (’classical’ always refers to a commutative classical field

theory) are obtained after taking the second limit Θ→ 0.

1.1 Moyal algebra

NCFTs theories can be studied by replacing the NC operators acting in a Hilbert space by

functions in phase space with the Moyal product. Then the canonical commutation relation

between coordinates functions is given by

[xµ, xν ]? = xµ ? xν − xν ? xµ = iΘµν . (1.2)

The Moyal star-product is noncommutative and associative, i.e.

f ? g 6= g ? f, f ? (g ? h) = (f ? g) ? h, ∀f, g, h ∈ C∞(IRD
Θ). (1.3)

Consider E =: {xµ, µ ∈ [[1, D]]} and C[[x1, x2, · · · , xD]], the free algebra generated by E. Let

I be the ideal of C[[x1, x2, · · · , xD]], generated by the elements xµ ? xν − xν ? xµ − iΘµν . The

Moyal Algebra AΘ is the quotient C[[x1, x2, · · · , xD]]/I. Each element in AΘ is a formal power

series in the xµ’s for which the relation [xµ, xν ]? = iΘµν holds. Moyal algebra can be here also

defined as the linear space of smooth and rapidly decreasing functions equipped with the NC star

product given in []. By using the Fourier transform of functions f, g ∈ S(IRD
Θ), star-product (1.1)

has the integral representation given by

(f ? g)(x) =
1

(2π)D

∫
IRD

Θ

dDk dDy f(x+
1

2
Θ.k) g(x+ y)eik.y

=
1

πD|detΘ|

∫
IRD

Θ

dDy dDz f(x+ y) g(x+ z)e−2iyΘ−1z. (1.4)

Using (1.4), we can show the associativity of the star-product. We also deduce that∫
dDx (f ? g)(x) =

∫
dDx (g ? f)(x) =

∫
dDx f(x).g(x), (1.5)

∫
dDx (f1 ? f2 ? · · · ? fn)(x) =

∫
dDx (fn ? f1 ? · · · ? fn−1)(x). (1.6)

The cyclicity of the star-product implies that

< f ? g, h >=< f, g ? h >=< g, h ? f >, where < f, g >=

∫
IRD

Θ

dDx (f ? g)(x) (1.7)
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and allows to estend the Moyal algebra by duality into an algebra of tempered distributions. Let us

consider the product of a tempered distribution with a Schwartz-class function. Let T ∈ S ′(IRD
Θ)

and g ∈ S(IRD
Θ), we define < T, h >=: T (h) and < T ∗, h >= < T, h̄ >. We define T ? f and

f ? T for all f ∈ S(IRD
Θ) by

< T ? f, h >=< T, f ? g >, < f ? T, h >=< T, h ? f > . (1.8)

We are now ready to define the linear space M as the intersection of two subspaces ML and

MR of S ′(IRD
Θ)

Definition 1.1 The Moyal multiplier algebra is defined by

M =ML ∩MR (1.9)

where

ML = {T ∈ S ′(IRD
Θ);∀f ∈ S(IRD

Θ),T ? f ∈ S(IRD
Θ)} (1.10)

MR = {T ∈ S ′(IRD
Θ);∀f ∈ S(IRD

Θ), f ? T ∈ S(IRD
Θ)}. (1.11)

On can show that M is an associative ∗−algebra. It contains, among others, the identity, poly-

nomials, the δ distribution and its derivatives. Then the relation [xµ, xν ]? = iΘµν often given

as a definition of the Moyal space, holds in M but not in AΘ. Other relevant properties of the

star-product that hold on M are

∂µ(f ? g) = ∂µf ? g + f ? ∂µg, (f ? g)† = g† ? f †, [xµ, f ]? = iΘµν∂νf (1.12)

xµ ? f = xµf +
i

2
Θµν∂νf, x

µ(f ? g) = (xµf) ? g − i

2
Θµνf ? ∂νg. (1.13)

1.1.1 Module over Moyal algebra

The multiplier Moyal algebra M is unital involutive associative ?-algebra. It contains the plane

wave functions. NCFTs over Moyal algebra of functions can be defined as field theories over

module H over the NC algebraM or as matrix field theories with coefficients inM. Connections

defined on vector bundles in ordinary differential geometry are replaced, in NC geometry, by the

generalizing concept of connection on projective modules. The sesquilinear maps

∇µ : H → H (1.14)

are called connections if they satisfy the differentiation chain rule

∇µ(f ? m) = (∂µf) ? m+ f ?∇µm, for f ∈M, m ∈ H (1.15)

assumed here to be a left module overH, and if they are compactible with the Hermitian structure

of H i.e.,

∂µh(m1,m2) = h(∇µm1,m2) + h(m1,∇µm2). (1.16)

Suppose that m = 1 the unit element of M. Then

∇µ(f ? 1) = ∂µf + f ?∇µ1 with ∇µ1 =: iAµ. (1.17)

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011



Moyal algebra 12

We get then the connection ∇µ in the anti-fundamental representation given by

∇µ(.) =: ∂µ(.) + i(.) ? Aµ. (1.18)

Then Aµ is called the gauge potential in the anti-fundamental representation. We can also defined

the gauge connection in the fundamental representation using the right module over M by

∇µ(m ? f) = (∇µm) ? f +m ? ∂µf, ∇µ(1) =: −iAµ. (1.19)

We now get

∇µ(.) =: ∂µ(.)− iAµ ? (.). (1.20)

Aµ is called the gauge potential in the fundamental représentation. We can also defined the gauge

connection in the adjoint representation given by

∇µ(m ? f ? m) = (∇µm) ? f ? m+m ? ∂µf ? m+m ? f ?∇µf (1.21)

and for m = 1 we get

∇µ(.) =: ∂µ(.) + i[(.), Aµ]?. (1.22)

Then Aµ is called the gauge potential in the adjoint representation. One can see that these

three representations are equivalent. Recall that the sesquilinear map h satisfies the relation

h(f1, f2) = f †1 ? f2 if we impose the condition M = H. This implies that the gauge connection

is Hermitian i.e. A†µ = Aµ. In the rest of this thesis, we notify that

∇µ = ∂µ(.)− iAµ ? (.) (1.23)

∇\
µ = ∂µ(.) + i(.) ? Aµ (1.24)

IDµ = ∂µ(.) + i[(.), Aµ]? (1.25)

1.1.2 Gauge Transformation

The gauge transformation is the morphism of module H denoted by γ satisfying the relation

γ(m ? f) = γ(m) ? f, ∀m ∈ H, ∀f ∈M (1.26)

and preserving the hermitian structure h i.e.

h
(
γ(f), γ(g)

)
= h(f, g), ∀f, g ∈M. (1.27)

If m = 1, γ(f) = γ(1)?f , and ifH =M, then γ(1)†?γ(1) = 1. We now arrive at the conclusion

that γ(1) ∈ U(M), where U(M) =: U?(D/2) is the group of unitary transformations. Let us

write γ(1) =: U and U ? φ =: φU , where φ ∈M. Then we have

U † ? U = U ? U † = 1. (1.28)

The connection ∇µ is the covariant derivative by further satisfying the gauge transformation

∇U
µ (φ) = U ?∇µ(U−1 ? φ), or ∇U

µ (φU) = U ?∇µ(φ), ∀φ ∈M. (1.29)
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Equation (1.29) implies that

∇U
µ = ∂µ − iAUµ ?, and AUµ = U ? Aµ ? U

† + iU ? ∂µU
†. (1.30)

Given the connection ∇, the corresponding curvature is

Fµν = i[∇µ,∇ν ]? = ∂µAν − ∂νAµ − i[Aµ, Aν ]? (1.31)

and its gauge transformation

FU
µν = U ? Fµν ? U

†. (1.32)

Of course the NC version of the Maxwell action given by

SM = − 1

4κ2

∫
dDxFµν ? F

µν = − 1

4κ2

∫
dDxFµν .F

µν (1.33)

is gauge invariant since, as explained above, integration acts as a trace for the star-product. Note

that the gauge group in this case is U?(1).∫
dDxFU

µν ? F
µνU =

∫
dDxU † ? Fµν ? U ? U †F µν ? U

=

∫
dDxFµν ? F

µν . (1.34)

The elements of the U?(1) group are the star-exponentials given by

U(x) = exp?(iα(x)) = 1 + iα(x)− 1

2
α(x) ? α(x) + · · · . (1.35)

This relation implies that U−1 = U †. Gauge invariant coupling to matter fields can be easily

defined. Consider for example Dirac fermion fields coupled to a gauge field. A gauge invariant

massless situation can be defined by the action SD written in the form

SD =

∫
dDx ψ̄ ? (iγµ∇µψ) (1.36)

where γµ are the Dirac matrices, ψ is the Dirac spinor, and ψ̄ = ψ†γ0.

1.2 Ward Identity Operators and NC Noether Theorem

The subsequent developments, in the core of this work, aim at giving a formulation of the NC

Noether theorem using the WIop method.

Consider a continuous set of transformations xµ → x
′µ and a family of matrix fields φi =

{(φi)AB} which transforms as φi → φ′i with i = 1, . . . , n. The Jacobian of the transformation is

nothing but |∂x′µ/∂xν | = 1 + ∂µδx
µ.

Next, consider a NC action S =
∫
dDx Tr L?(φi, ∂µφi, xµ) which, under the above transfor-

mations, transforms formally as S → S ′± and admits the infinitesimal variations

(δS)± = S ′± − S =

∫
dDx Tr

(∣∣∣∣∂x′∂x

∣∣∣∣ ? L′?)
±
−
∫
dDx Tr L?
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=

∫
dDx Tr [ δL? + (∂µδx

µ ? L?)± ] . (1.37)

The derivation δ can be chosen symmetrized (implicit summation is used) with the expansion

δ(·) =
1

2

{[
δφi,AB ?

δ(·)
δφi,AB

+
δ(·)
δφi,AB

? δφi,AB

]
+

[
δxµ ?

∂(·)
∂xµ

+
∂(·)
∂xµ

? δxµ
]}

. (1.38)

From (1.38), evaluating δL?, we obtain the action variation

δS =

∫
dDx Tr

[
δφi,AB ?

δL?
δφi,AB

+ ∂µ(δxµ ? L?)
]
. (1.39)

Assuming that the infinitesimal transformations δφi,AB are spanned by a family of parameters

{λa} such that δφi,AB = δφi,AB(λa), the global canonical WIop for the transformation is given

by

{W?(λa)}(·) =

∫
dDx Tr

{
1

2

[(
δφi,AB ?

δ(·)
δφi,AB

+
δ(·)
δφi,AB

? δφi,AB

)
+

(
δxµ ?

∂(·)
∂xµ

+
∂(·)
∂xµ

? δxµ
)]}

. (1.40)

Then, a NC analogue of Noether theorem can be formulated in this way:

Theorem 1.2 (NC Noether theorem)

If a NC action S is invariant under a set of transformations generated by a family of infinitesimal

parameters {λa}, then

{W?(λa)}S = −
∫
dDx Tr ∂µJµ(λa) = 0

and there exists a globally conserved vector current Jµ,a such that

∂

∂λa
{W?(λa)}S = −

∫
dDx Tr ∂µJµ,a = 0.

It is then natural to ask if it is valuable to consider this as a NC analogue of the classical Noether

theorem, the local conservation of the Noether current being not ensured in the formulation.

Many facts invite us to consider this as actually the best of what we can expect from the

NC action formulation. First, it is the NC method the closest of classical Noether procedure.

Furthermore, as we will see hereafter, in NC space-space Θ0i = 0 geometry and for infinitesimal

translation symmetry, an exactly conserved D-vector momentum Pµ may be exhibited. This shows

the similarity between the classical and NC procedures. Besides, we will prove that, through

some computational techniques, regularization procedures improve quantities to recover local

conservation property. Finally, at the parameter limit Θ → 0 the globally conserved currents

obtained through the NC WIop method are reduced to classical Noether currents.
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1.3 Complex scalar Grosse-Wulkenhaar Model

Despite the enormous amount of investigations centered around the study of noncommutative

field theories (see [25]-[57] and references therein for reviews), some of the most fundamental

questions surrounding them have yet to be answered to full satisfaction. Regarding for instance

peculiar features of noncommutative field theories (NCFT) in the Moyal ?-product description,

the Noether theorem for translation symmetry generally leads to an energy momentum tensor

(EMT) which is not locally conserved, not traceless in the massless situation and, not symmetric

and not gauge invariant in gauge theories [1],[25],[28],[36].

The present work addresses comparative results on energy momentum tensors computed in

both ordinary φ4
?D and renormalizable NC Grosse and Wulkenhaar complex scalar field theories.

In the first part we discuss the energy momentum tensor computation in complex φ4
?D NCFT.

Second part deals with the investigation of the NC complex Grosse and Wulkenhaar model.

1.3.1 Energy momentum tensor in complex φ4
?D NC field theory

The action of a complex scalar field φ coupled with the interaction (φ ? φ̄)2 can be expressed in

a D-dimensional Euclidean spacetime RD
Θ by

S?[φ, φ̄] =

∫
dDx

[
∂µφ ? ∂

µφ̄+m2φ ? φ̄

+
λ1

4!
(φ ? φ̄ ? φ ? φ̄) +

λ2

4!
(φ ? φ̄ ? φ̄ ? φ)

]
, (1.41)

φ̄ being the conjugate of the field φ. λ1 and λ2 are real constants. In the sequel, we assume

that λ1 = λ2 = λ/2. Then, (3) becomes

S?[φ, φ̄] =

∫
dDx

[
∂µφ ? ∂

µφ̄+m2φ ? φ̄

+
λ

2.4!

(
φ ? φ̄ ? φ ? φ̄+ φ ? φ̄ ? φ̄ ? φ

)]
(1.42)

from which the peculiar Euler Lagrange equations of motion can be readily derived by direct

application of the variational principle, as follows:

δS?
δφ

= −∂ρ∂ρφ̄+m2φ̄+
λ

2.(4!)
(2φ̄ ? φ ? φ̄+ {φ̄ ? φ̄, φ}?) = 0, (1.43)

and

δS?
δφ̄

= −∂ρ∂ρφ+m2φ+
λ

2.(4!)
(2φ ? φ̄ ? φ+ {φ ? φ, φ̄}?) = 0. (1.44)

The global Ward identity operator for the model, defined as [7],[28]:

WΘ
µ =

∫
dDx

1

2

(
∂µφ ?

δ

δφ
+

δ

δφ
? ∂µφ+ ∂µφ̄ ?

δ

δφ̄
+

δ

δφ̄
? ∂µφ̄

)
(1.45)

acts on the noncommutative S? to yield the canonical energy momentum tensor (EMT):

WΘ
µ S? = 0 =⇒ Tρµ =

1

2
{∂µφ, ∂ρφ̄}? +

1

2
{∂µφ̄, ∂ρφ}? − gρµL? (1.46)
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where

L? =
1

2
{∂ρφ, ∂ρφ̄}? +

m2

2
{φ, φ̄}? +

λ

2.(4!)

[1

2
{φ, φ̄ ? φ ? φ̄}?

+
1

4

(
{φ ? φ̄, φ̄ ? φ}? + {φ ? φ, φ̄ ? φ̄}?

)]
. (1.47)

gµν is the Euclidean metric. Remark that, instead of a symmetric and locally conserved energy

momentum tensor occurring in the commutative spacetime, the Θ− deformed EMT is symmetric

and nonlocally conserved. To get rid the theory of such a pathology, let us display the Coleman

and Jackiw improvement procedure [16]. This requires for D = 4 the computation of the EMT

divergence:

∂ρTρµ = − λ

4(4!)

(
[φ ? φ̄, ∂µφ ? φ̄− φ ? ∂µφ̄]? +

1

2
[φ ? φ̄, ∂µφ̄ ? φ

− φ̄ ? ∂µφ]? +
1

2
[φ ? φ, [∂µφ̄, φ̄]?]?

)
+ (φ↔ φ̄). (1.48)

Defining now the ?′-product

(f ?′ g)(x) := f(x)
sin (1

2

↼

∂µ Θµν
⇀

∂ν)

1
2

↼

∂µ Θµν
⇀

∂ν

g(x) , (1.49)

with the virtue that −i[f, g]? = Θµν∂µf ?
′ ∂νg meaning that any ?-commutator is a divergence,

and

[f, g]? = i∂µ(Θµνf ?′ ∂νg) = i∂ν(Θ
µν∂µf ?

′ g), (1.50)

displaying the same technique as in [7], a correction term can be found to get a locally conserved

albeit non symmetric EMT. Indeed, the relation (1.48) then leads to the expression

∂ρTρµ = −iλ Θαβ

4(4!)
gρα∂

ρ
{
φ ? φ̄ ?

′
∂β

(
∂µφ ? φ̄− φ ? ∂µφ̄

)
+

1

2
φ ? φ̄ ?

′
∂β

(
∂µφ̄ ? φ− φ̄ ? ∂µφ

)
+

1

2
φ ? φ ?

′
∂β

(
[∂µφ̄, φ̄]?

)}
+ (φ↔ φ̄) = −∂ρtρµ (1.51)

where

tρµ = iλ
Θαβ

4(4!)
gρα

{
φ ? φ̄ ?

′
∂β

(
∂µφ ? φ̄− φ ? ∂µφ̄

)
+

1

2
φ ? φ̄ ?

′
∂β

(
∂µφ̄ ? φ− φ̄ ? ∂µφ

)
+

1

2
φ ? φ ?

′
∂β

(
[∂µφ̄, φ̄]?

)}
+ (φ↔ φ̄) (1.52)

In the massless theory, one can then deduce an improved EMT in the form

T Iρµ = Tm=o
ρµ +

1

6

(
gρµ�− ∂ρ∂µ

)
{φ, φ̄}? (1.53)
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which is traceless, i. e. tr(T Iρµ) = gρµT Iρµ = T Iµµ = 0 while the improved locally conserved EMT

is given by

T̂ Iρµ = Tm=o
ρµ + tρµ +

1

6

(
gρµ�− ∂ρ∂µ

)
{φ, φ̄}?. (1.54)

Let us mention that tr(T̂ Iρµ) = tr(tρµ). More precisely, for D = 4

tr(T̂ Iρµ) = tµµ = iλ
Θµβ

(4!)

{
φ ? φ̄ ?

′
∂β

(
∂µφ ? φ̄− φ ? ∂µφ̄

)
+

1

2
φ ? φ̄ ?

′
∂β

(
∂µφ̄ ? φ− φ̄ ? ∂µφ

)
+

1

2
φ ? φ ?

′
∂β

(
[∂µφ̄, φ̄]?

)}
+(φ↔ φ̄). (1.55)

Further investigations in order to obtain a symmetric locally conserved EMT T̂ sρµ can be considered

through the ordinary Belinfante trick. Let us define the tensor χσρµ such that

T̂ sρµ ≡ T̂ρµ + ∂σχσρµ, χσρµ = −χρσµ

The Belinfante problem requires T̂ sρµ to be symmetric:

T̂ sρµ = T̂ sµρ =⇒ T̂ρµ + ∂σχσρµ = T̂µρ + ∂σχσµρ
=⇒ tρµ − tµρ = ∂σ(χσµρ − χσρµ). (1.56)

By setting χσ[µρ] =: 1
2
(χσµρ − χσρµ), we obtain the Belinfante partial differential equation

∂σχσ[µρ] =
1

2
(tρµ − tµρ) (1.57)

or explicitly

∂σχσ[µρ] = iλ
Θαβ

8(4!)
gρα

{
φ ? φ̄ ?

′
∂β

(
∂µφ ? φ̄− φ ? ∂µφ̄

)
+

1

2
φ ? φ̄ ?

′
∂β

(
∂µφ̄ ? φ− φ̄ ? ∂µφ

)
+

1

2
φ ? φ ?

′
∂β

(
[∂µφ̄, φ̄]?

)
+ (φ↔ φ̄)

}
− (µ←→ ρ). (1.58)

Finally, let us examine the term breaking the dilation symmetry. By considering the infinitesimal

generator

δεx
µ = (1 + ε)xµ, δεφ = ε(1 + xµ ? ∂µ)φ

where ε is the dilatation parameter, we can express the dilation transformation in terms of the

Ward functional differential operator

WΘ
D =

1

2

∫
dDx

[
(1 + xµ ? ∂µ)φ ?

δ

δφ
+

δ

δφ
? (1 + xµ ? ∂µ)φ

+ (1 + xµ ? ∂µ)φ̄ ?
δ

δφ̄
+

δ

δφ̄
? (1 + xµ ? ∂µ)φ̄

]
(1.59)
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acting on the Euclidean action S?[φ, φ̄] in a massless field theory. As xµ ? ∂µφ = xµ∂µφ, one can

immediately check that∫
dDx

[
xµ ?

(
∂ρ

1

2
{∂µφ, ∂ρφ̄}?

)]
=

∫
dDx

[
xµ ? ∂ρ

(
∂µφ ? ∂ρφ̄

)]
(1.60)

and ∫
dDx

{
xµ ?

[
∂µ

(1

2
{∂ρφ, ∂ρφ̄}?

)
− ∂ρφ ? ∂µ∂ρφ̄− ∂ρφ̄ ? ∂µ∂ρφ

]
= 0.

(1.61)

It follows that

WΘ
DS?[φ, φ̄] = −

∫
dDx

[
∂ρ
(1

2
{xµ, T̂ Iρµ}?

)
− tµµ

− 1

2

{
xµ,

λ

2.(4!)

[
∂µφ ?

(
2φ̄ ? φ ? φ̄+ {φ, φ̄ ? φ̄}?

)
+ ∂µφ̄

(
2φ ? φ̄ ? φ+ {φ̄, φ ? φ}? +

)
− 1

2
∂µ{φ, φ̄ ? φ ? φ̄}?

− 1

4
∂µ

(
{φ ? φ̄, φ̄ ? φ}? + {φ ? φ, φ̄ ? φ̄}?

]}
?

]
(1.62)

affording a breaking term given by

B = −tµµ −
1

2

{
xµ,

λ

2.(4!)

[
∂µφ ?

(
2φ̄ ? φ ? φ̄+ {φ̄ ? φ̄, φ}?

)
+∂µφ̄

(
2φ ? φ̄ ? φ+ {φ̄, φ ? φ}?

)
− 1

2
∂µ

(
{φ, φ̄ ? φ ? φ̄}?

)
−1

4
∂µ

(
{φ ? φ̄, φ̄ ? φ}? + {φ ? φ, φ̄ ? φ̄}?

)]}
?
. (1.63)

1.3.2 Energy momentum tensor in NC complex Grosse-Wulkenhaar model

This section aims at prolonging the investigations started in [7, 8] by considering now the non-

commutative (NC) complex Grosse-Wulkenhaar (GW) Lagrangian action as follows:

SΩ
? [φ, φ̄] =

∫
dDx

[
∂µφ ? ∂

µφ̄+m2φ ? φ̄+
Ω2

2
(x̃µφ) ? (x̃µφ̄)

+
λ

2.4!
(φ ? φ̄ ? φ ? φ̄+ φ ? φ̄ ? φ̄ ? φ)

]
, (1.64)

where x̃ = 2(Θ−1) · x, Θ breaks into diagonal blocks

(
0 Θ

−Θ 0

)
. φ is a complex scalar field

(with rapid decay). The harmonic term Ω, (Ω ∈ [0,
√

2]) ensures ultraviolet (UV)/infrared (IR)

freedom for the action implying its renormalizability, and such that the Lagrangian action becomes

covariant under Langmann-Szabo duality [57], i.e. covariant under the symmetry: x̃µ ←→ pµ ≡
∂µ. The Lagrangian density, depending explicitly on xµ through the field φ interaction with a

harmonic external source, does not describe a closed system. Furthermore, it is not invariant under

space-time translation. Besides, at the parameter limit Θ → 0, the model does not converge to
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the ordinary φ4 scalar field theory due to the presence of the inverse matrix (Θ−1), then causing

a singularity. The ?-Grosse-Wulkenhaar φ4
D theory is renormalizable at all orders in λ. This

result has been now proved by various methods (see [73] and references therein). It is a matter

of algebra to recast the Grosse-Wulkenhaar harmonic term as

(x̃µφ) ? (x̃µφ̄) =
1

4

(
x̃µ ? φ ? x̃

µ ? φ̄ + x̃µ ? φ ? φ̄ ? x̃
µ

+ φ ? x̃µ ? x̃
µ ? φ̄+ φ ? x̃µ ? φ̄ ? x̃

µ
)

and to re-express accordingly the action (1.64) so that it now entirely lies in the ?-algebra of fields

with the advantage to be stable under formal ?-algebraic computations (such that the cyclicity

of ?-factors under integral). One can then deduce a suitable NC complex GW Lagrangian density

in the form

LΩ
? = L? +

Ω2

8

[
x̃ ? φ ? x̃ ? φ̄+ x̃ ? φ̄ ? x̃ ? φ+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ x̃ ? x̃ ? φ ? φ̄+ x̃ ? x̃ ? φ̄ ? φ
)]

(1.65)

Besides, through the usual variational principle, the Euler-Lagrange equations of motion for φ

and φ̄ take the form:

δSΩ
?

δφ
= 0⇔ − ∂ρ∂

ρφ̄+m2φ̄+
λ

2.4!
(2φ̄ ? φ ? φ̄+ {φ̄ ? φ̄, φ}?)

+
Ω2

8
(2x̃ ? φ̄ ? x̃+ {φ̄, x̃ ? x̃}?) = 0 (1.66)

δSΩ
?

δφ̄
= 0⇔ − ∂ρ∂

ρφ+m2φ+
λ

2.4!
(2φ ? φ̄ ? φ+ {φ ? φ, φ̄}?)

+
Ω2

8
(2x̃ ? φ ? x̃+ {φ, x̃ ? x̃}?) = 0,

with the additional constraint relation δSΩ
? /δx̃ρ = 0, i.e.

Ω2

8

(
2φ ? x̃ρ ? φ̄+ 2φ̄ ? x̃ρ ? φ+ {φ ? φ̄, x̃ρ}? + {φ̄ ? φ, x̃ρ}?

)
= 0

(1.67)

stated to avoid translational invariance violation due to the presence of the coordinate x̃ρ. As

expected, all equations carry contributions from both complex field and its conjugate counterpart,

making the Lagrange equations of motion and the corresponding constraint relation more cum-

bersome than in the pure real scalar field background. Furthermore, the explicit appearance of

the coordinate x̃µ in the Grosse and Wulkenhaar Lagrangian density implies no invariance under

spacetime translation.

1.3.3 Regularization of the EMTs

The energy momentum of the theory can be now computed considering infinitesimal translations.

Indeed, from infinitesimal translations, we can define the global canonical Ward identity operator
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(WIop) for the NC complex GW model

WΘ
µ =

1

2

∫
dDx (∂µφ ?

δ

δφ
+

δ

δφ
? ∂µφ+ ∂µφ̄ ?

δ

δφ̄
+

δ

δφ̄
? ∂µφ̄

+ ∂µx̃ρ ?
δ

δx̃ρ
+

δ

δx̃ρ
? ∂µx̃ρ) (1.68)

such that its action on the Lagrangian density

WΘ
µ S

Ω
? ≡ −

∫
dDx ∂ρ TΩ

ρµ = 0 (1.69)

yields the canonical energy momentum tensor (EMT)

TΩ
ρµ =

1

2
{∂µφ, ∂ρφ̄}? +

1

2
{∂µφ̄, ∂ρφ}? − gρµLΩ

? , (1.70)

where gρµ is the Euclidean metric, LΩ
? the NC Lagrangian, {(·), (·)}? the ?-anticommutator. The

EMT then conserves its form comparatively to the result of [7]. TΩ
ρµ is symmetric, nonlocally

conserved, and in massless theory, not traceless. Moreover, putting the mass term to zero, the

usual improved tensor

T I,Ωρµ = TΩ,m=o
ρµ +

1

6

(
gρµ − ∂ρ∂µ

)
{φ, φ̄}?

is not traceless too. Let us investigate now an improvement to (1.70) for the local conservation

order. After some algebra, it can be deduced

∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[x̃ ? x̃, ∂µφ ? φ̄+ ∂µφ̄ ? φ]?

+ [x̃ ? φ̄, ∂µφ ? x̃]? + [x̃ ? φ, ∂µφ̄ ? x̃]?

+ [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
− Ω2

8
[x̃, ∂µφ ? x̃ ? φ̄+ ∂µφ̄ ? x̃ ? φ]?

=: −∂ρtΩρµ, (1.71)

where

∂ρTρµ = − λ

4(4!)

(
[φ ? φ̄, ∂µφ ? φ̄− φ ? ∂µφ̄]?

+ [φ̄ ? φ, ∂µφ̄ ? φ− φ̄ ? ∂µφ]?

+
1

2
[φ ? φ̄, ∂µφ̄ ? φ− φ̄ ? ∂µφ]?

+
1

2
[φ̄ ? φ, ∂µφ ? φ̄− φ ? ∂µφ̄]?

+
1

2
[φ ? φ, [∂µφ̄, φ̄]?]? +

1

2
[φ̄ ? φ̄, [∂µφ, φ]?]?

)
. (1.72)

[(·), (·)]? is the Moyal ?-commutator. Thus the ”Wulkenization” [73] process clearly governs the

EMT improvement mechanism. A closer look on (1.71) shows that TΩ
ρµ is globally conserved, as

in NCFT the ?-commutators under integral cancel. For physical interpretation, let us consider

the space-space NCFT determined by Θ0i = 0. Then one can readily prove that there exists a
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conserved D-vector momentum PΩ
µ , i.e. satisfying ∂0PΩ

µ = ∂0
∫
dD−1xTΩ

0µ = 0. Such a vector

conserved quantity is also observed in the naive (unrenormalizable) NC scalar field [28] as well

as in the NC real GW model [7]. Displaying the same tedious algebraic apparatus as in [7] and

[41], a correction term can be found to get a new locally conserved albeit non symmetric EMT

T̂ I,Ωρµ = T I,Ωρµ + tΩρµ, where

tΩρµ = −iλ Θαβ

4(4!)
gρα

{
φ ? φ̄ ?

′
∂β

(
∂µφ ? φ̄− φ ? ∂µφ̄

)
+ φ̄ ? φ ?

′
∂β

(
∂µφ̄ ? φ− φ̄ ? ∂µφ

)
+

1

2
φ ? φ̄ ?

′
∂β

(
∂µφ̄ ? φ− φ̄ ? ∂µφ

)
+

1

2
φ̄ ? φ ?

′
∂β

(
∂µφ ? φ̄− φ ? ∂µφ̄

)
+

1

2
φ ? φ ?

′
∂β

(
[∂µφ̄, φ̄]?

)
+

1

2
φ̄ ? φ̄ ?

′
∂β

(
[∂µφ, φ]?

)}
− i

Ω2

16
gραΘαβ

{
x̃ ? x̃ ?

′
∂β

(
∂µφ ? φ̄+ ∂µφ̄ ? φ

)
+ x̃ ? φ ?

′
∂β

(
∂µφ̄ ? x̃

)
+ x̃ ? ∂µφ ?

′
∂β

(
φ̄ ? x̃

)
+ x̃ ? φ̄ ?

′
∂β

(
∂µφ ? x̃

)
+ x̃ ? ∂µφ̄ ?

′
∂β

(
φ ? x̃

)}
− i

Ω2

8
gραΘαβx̃ ?

′
∂β

(
∂µφ ? x̃ ? φ̄+ ∂µφ̄ ? x̃ ? φ

)
, (1.73)

with non-vanishing trace for m = 0, recalling that the theory is not scale invariant. Furthermore,

one can work out a symmetric locally conserved EMT through the ordinary Belifante trick (see

[7] and references therein), defining the tensor χσρµ such that

T̂Ωs
ρµ = T̂Ω

ρµ + ∂σχσρµ, χσρµ = −χρσµ.

The underlying Belifante type partial differential equation

T̂Ω
ρµ − T̂Ω

µρ = ∂σ(χσµρ − χσρµ) =: ∂σχσ[µρ] (1.74)

∂σχσ[µρ] = −iλ Θαβ

8(4!)
gρα

{
φ ? φ̄ ?

′
∂β

(
∂µφ ? φ̄− φ ? ∂µφ̄

)
+

1

2
φ ? φ̄ ?

′
∂β

(
∂µφ̄ ? φ− φ̄ ? ∂µφ

)
+

1

4
φ ? φ ?

′
∂β

(
∂µφ̄ ? φ̄

)
+ (φ↔ φ̄)

}
− i

Ω2

32
gραΘαβ

{
x̃ ? x̃ ?

′
∂β

(
∂µφ ? φ̄+ ∂µφ̄ ? φ

)
+

[
x̃ ? φ̄ ?

′
∂β

(
∂µφ ? x̃

)
+ x̃ ? ∂µφ ?

′
∂β

(
φ̄ ? x̃

)
+ (φ↔ φ̄)

]}
− i

Ω2

16
gραΘαβx̃ ?

′
∂β

(
∂µφ ? x̃ ? φ̄+ ∂µφ̄ ? x̃ ? φ

)
− (µ←→ ρ) (1.75)
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is less comfortable than the one worked out by Abou-Zeid and Dorn [1]. The nonlocal conservation

of the canonical massless EMT obviously induces a dilatation symmetry breaking. In addition,

even if an improved locally conserved EMT is provided, the scale invariance is no longer valid

and predictable since the evidence of a non-vanishing trace of this improved EMT. Both these

arguments on dilatation symmetry breaking are valid for massless Grosse and Wulkenhaar model.

Indeed, defining infinitesimal dilatation generators and the corresponding global symmetrized

Wlop WΘ
D,ε, respectively,

δεx̃µ = (1 + ε)x̃µ, δ1,εφ = εD1φ, δ2,εφ = εD2φ,

D1(.) = (1 + xµ ? ∂µ)(.), D2(.) = ((.) + ∂µ(.) ? xµ) (1.76)

WΘ
D,ε(.) =

∫
dDx

{ ε
4

[
D1φ ?

δ(.)

δφ
+
δ(.)

δφ
? D1φ+D2φ ?

δ(.)

δφ

+
δ(.)

δφ
? D2φ+ (φ←→ φ̄)

]
+

1

2

[
δεx̃ρ ?

δ(.)

∂x̃ρ

+
δ(.)

δx̃ρ
? δεx̃ρ

]}
so that ∂

∂ε
WΘ
D,ε(S

Ω
? ) = −

∫
dDx(∂ρDΩ

ρ + BΩ
? ) with DΩ

ρ the dilatation current given by DΩ
ρ =

1
2
{xµ, T̂ I,Ωρµ }?, the breaking quantity BΩ

? reveals a dependence on both the non-vanishing trace

of the local conservation improving tensor tΩρµ through T̂ I,Ω,µµ and the GW term. Explicitly, one

finally gets

BΩ
? = −T̂ I,Ω,µµ − 1

2
{xµ, λ

2.(4!)
[∂µφ ? (2φ̄ ? φ ? φ̄+ {φ̄ ? φ̄, φ}?)

+ ∂µφ̄(2φ ? φ̄ ? φ+ {φ̄, φ ? φ}?)−
1

2
∂µ({φ ? φ̄ ? φ, φ̄}?)

+
1

4
∂µ({φ ? φ̄, φ̄ ? φ}? + {φ ? φ, φ̄ ? φ̄}?)]

+
Ω2

8
[−∂µ({x̃ ? φ, x̃ ? φ̄}? +

1

2
{x̃ ? {φ̄, φ}?, x̃}?)

+ ∂µφ ? (2x̃ ? φ̄ ? x̃+ {φ̄, x̃ ? x̃}?)
+ ∂µφ̄ ? (2x̃ ? φ ? x̃+ {φ, x̃ ? x̃}?)]}? (1.77)

where, for D = 4,

T̂ I,Ω,µµ ≡ tr(T I,Ωρµ )

= −Ω2

16

{
2[x̃, φ ? x̃ ? φ̄+ φ̄ ? x̃ ? φ]? + [x̃ ? φ̄, φ ? x̃]?

+ [x̃ ? φ, φ̄ ? x̃]? + [x̃ ? x̃, {φ, φ̄}?]? + {φ̄, x̃ ? x̃ ? φ}?
+ {φ, x̃ ? x̃ ? φ̄}? + 3x̃ ? {φ, φ̄}? ? x̃+ 3x̃ ? x̃ ? {φ, φ̄}?
+ 8x̃ ? (φ ? x̃ ? φ̄+ φ̄ ? x̃ ? φ)

}
. (1.78)

Physically admissible Lagrangians

In this subsection, let us list the 8 relevant Lagrangians, obtained by permutation symmetry,

denoted by LΩ
?i, i = 1, 8, that can be used to improve the energy momentum tensor by the
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formula: ∂ρTΩ
ρµ = ∂ρtΩρµ. They are given with the expressions of corresponding ∂ρTΩ

ρµ.

•

LΩ
?1 = L? +

Ω2

8

[
x̃ ? φ ? x̃ ? φ† + x̃ ? φ̄ ? x̃ ? φ+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ x̃ ? x̃ ? φ ? φ̄+ x̃ ? x̃ ? φ̄ ? φ
)]
. (1.79)

∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[x̃ ? x̃, ∂µφ ? φ̄+ ∂µφ̄ ? φ]? + [x̃ ? φ̄, ∂µφ ? x̃]?

+[x̃ ? φ, ∂µφ̄ ? x̃]? + [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
−Ω2

8
[x̃, ∂µφ ? x̃ ? φ̄+ ∂µφ̄ ? x̃ ? φ]?. (1.80)

•

LΩ
?2 = L? +

Ω2

8

[
φ ? x̃ ? φ̄ ? x̃+ φ̄ ? x̃ ? φ ? x̃+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ x̃ ? x̃ ? φ ? φ̄+ x̃ ? x̃ ? φ̄ ? φ
)]
. (1.81)

∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[x̃ ? x̃, ∂µφ ? φ̄+ ∂µφ̄ ? φ]? + [x̃ ? φ̄, ∂µφ ? x̃]?

+[x̃ ? φ, ∂µφ̄ ? x̃]? + [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
+

Ω2

8
[x̃, ∂µφ ? x̃ ? φ̄+ ∂µφ̄ ? x̃ ? φ]?. (1.82)

•

LΩ
?3 = L? +

Ω2

8

[
x̃ ? φ ? x̃ ? φ̄+ x̃ ? φ̄ ? x̃ ? φ+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ φ ? φ̄ ? x̃ ? x̃+ φ̄ ? φ ? x̃ ? x̃
)]
. (1.83)

∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[φ̄ ? ∂µφ+ φ ? ∂µφ̄, x̃ ? x̃]? + [x̃ ? φ̄, ∂µφ ? x̃]?

+[x̃ ? φ, ∂µφ̄ ? x̃]? + [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
−Ω2

8
[x̃, ∂µφ ? x̃ ? φ̄+ ∂µφ̄ ? x̃ ? φ]? (1.84)

•

LΩ
?4 = L? +

Ω2

8

[
φ ? x̃ ? φ̄ ? x̃+ φ̄ ? x̃ ? φ ? x̃+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ φ ? φ̄ ? x̃ ? x̃+ φ̄ ? φ ? x̃ ? x̃
)]
. (1.85)
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∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[φ̄ ? ∂µφ+ φ ? ∂µφ̄, x̃ ? x̃]? + [x̃ ? φ̄, ∂µφ ? x̃]?

+[x̃ ? φ, ∂µφ̄ ? x̃]? + [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
+

Ω2

8
[x̃, ∂µφ ? x̃ ? φ̄+ ∂µφ̄ ? x̃ ? φ]? (1.86)

•

LΩ
?5 = L? +

Ω2

8

[
x̃ ? φ ? x̃ ? φ̄+ φ̄ ? x̃ ? φ ? x̃+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ x̃ ? x̃ ? φ ? φ̄+ x̃ ? x̃ ? φ̄ ? φ
)]
. (1.87)

∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[x̃ ? x̃, ∂µφ ? φ̄+ ∂µφ̄ ? φ]? + [x̃ ? φ̄, ∂µφ ? x̃]?

+[x̃ ? φ, ∂µφ̄ ? x̃]? + [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
−Ω2

8
[x̃, ∂µφ ? x̃ ? φ̄− φ̄ ? x̃ ? ∂µφ]?. (1.88)

•

LΩ
?6 = L? +

Ω2

8

[
x̃ ? φ ? x̃ ? φ̄+ φ̄ ? x̃ ? φ ? x̃+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ φ ? φ̄ ? x̃ ? x̃+ φ̄ ? φ ? x̃ ? x̃
)]
. (1.89)

∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[φ̄ ? ∂µφ+ φ ? ∂µφ̄, x̃ ? x̃]? + [x̃ ? φ̄, ∂µφ ? x̃]?

+[x̃ ? φ, ∂µφ̄ ? x̃]? + [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
−Ω2

8
[x̃, ∂µφ ? x̃ ? φ̄− φ̄ ? x̃ ? ∂µφ]? (1.90)

•

LΩ
?7 = L? +

Ω2

8

[
φ ? x̃ ? φ̄ ? x̃+ x̃ ? φ̄ ? x̃ ? φ+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ x̃ ? x̃ ? φ ? φ̄+ x̃ ? x̃ ? φ̄ ? φ
)]
. (1.91)

∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[x̃ ? x̃, ∂µφ ? φ̄+ ∂µφ̄ ? φ]? + [x̃ ? φ̄, ∂µφ ? x̃]?

+[x̃ ? φ, ∂µφ̄ ? x̃]? + [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
−Ω2

8
[x̃, ∂µφ̄ ? x̃ ? φ− φ ? x̃ ? ∂µφ̄]?. (1.92)

•

LΩ
?8 = L? +

Ω2

8

[
φ ? x̃ ? φ̄ ? x̃+ x̃ ? φ̄ ? x̃ ? φ+

1

2

(
x̃ ? φ̄ ? φ ? x̃

+x̃ ? φ ? φ̄ ? x̃+ φ ? φ̄ ? x̃ ? x̃+ φ̄ ? φ ? x̃ ? x̃
)]
. (1.93)
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∂ρTΩ
ρµ = ∂ρTρµ −

Ω2

16

(
[φ̄ ? ∂µφ+ φ ? ∂µφ̄, x̃ ? x̃]? + [x̃ ? φ̄, ∂µφ ? x̃]?

+[x̃ ? φ, ∂µφ̄ ? x̃]? + [x̃ ? ∂µφ, φ̄ ? x̃]? + [x̃ ? ∂µφ̄, φ ? x̃]?

)
−Ω2

8
[x̃, ∂µφ̄ ? x̃ ? φ− φ ? x̃ ? ∂µφ̄]?. (1.94)
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Chapter Two

Hamiltonian formulation of the GW

model and its generalization

This chapter is devoted to the construction of a Hamiltonian formulation of the Grosse-Wulkenhaar

model, one of the very few renormalizable noncommutative theories. The Hamiltonian formula-

tion of classical field theory, crucial in the quantization procedure, remains a task to be solved

in the noncommutative field theories (NCFTs) widely developed in recent years [24]-[34] (and

references therein). So far, all attempts to solve this problem have been made before the advent of

the new class of renormalizable NCFTs built on the Grosse and Wulkenhaar (GW) φ4 scalar field

theory. See [30] and [61] (and references therein) for more details. This work aims at filling this

gap, considering the class of renormalizable GW models treated with a method that generalizes

previous construction [30]. The expression of the total Hamiltonian of the system is given. From

a space-time Galilean transformation and imposing an additional constraint from the application

of the Noether’s theorem, the Noether currents are computed as a U?(N) gauge currents from

U?(N) gauge transformations with finite translations, i.e. gε(x) = e−iε
µΘ−1

µν x
ν ∈ U?(N) such that

gε(x) ? f(x) ? g†ε(x) = f(x + ε). The rotation group of RD can be considered as a particular

concrete case.

2.1 Hamiltonian formulation of the NCFTs

In this section, we briefly review the Hamiltonian formulation of NCFTs recently developed by

Gomis et al [30]-[61]. We then generalize this formulation by introducing a compact support

wh(x).

2.1.1 Quick review of Hamiltonian formulation of NCFTs

This subsection, mainly based on [30] and [61] (and references therein), addresses a Hamiltonian

formulation of field theories in a noncommutative space-time. This formulation involves two time

coordinates t and λ, and the dynamics in this space is described in such a way that the evolution

is local with respect to one of the times. The non-local Lagrangian at time t, Lnon(t), depends

not only on variables at time t but also on ones at different times. In other words, it depends on

an infinite number of time derivatives of the position qi(t). The analogue of the tangent bundle

for Lagrangians depending on positions and velocities is now infinite dimensional and can be
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represented as the space of all possible trajectories. The action is given by

S[q] =

∫
dt Lnon(t) =

∫
dt L([q(t+ λ)]). (2.1)

The functional variational principle can be applied to the action (2.1) to produce the Euler-

Lagrange (EL) equation of motion as follows:

δS[q]

δq(t)
=

∫
dt′

δLnon(t′)

δq(t)
= 0 (2.2)

which must be understood as a functional relation to be fulfilled by physical trajectories. The

latter are not obtained as evolution of some given initial conditions. Since the equation of motion

is of infinite degree in time derivatives, one should give as initial conditions the value of all these

derivatives at some initial time. In other words, we should give the whole trajectory (or part of it)

as the initial condition. Let J = {q(λ), λ ∈ R} be the space of all possible trajectories. Then the

EL equation of motion (2.2) is a Lagrangian constraint defining the subspace JR ⊂ J of physical

trajectories. In 1 + 1 dimensional field theory, we introduce new dynamical variables Q(t, λ) such

that

Q(t, λ) = q(t+ λ) = Ttq(λ) (2.3)

where Tt is the time evolution operator for a given initial trajectory q(λ). t is the evolution

parameter and λ is a continuous parameter indexing the degrees of freedom.

Definition 2.1 If we denote by P(t, λ) the canonical momentum of Q(t, λ), and

Q′(t, λ) =: ∂λQ(t, λ), Q̇(t, λ) =: ∂tQ(t, λ), (2.4)

then the Hamiltonian is defined as

H(t, [Q,P ]) =:

∫
dλP(t, λ)Q′(t, λ)− L̃(t, [Q]) (2.5)

where L̃(t, [Q]) is a functional defined by L̃(t, [Q]) =
∫
dλ δ(λ)L(t, λ).

The density L(t, λ) is constructed from the original non-local Lagrangian density Lnon(t) by

replacing q(t) by Q(t, λ), the t-derivatives of q(t) by λ-derivatives of Q(t, λ) and q(t + ρ) by

Q(t, λ+ ρ). In this construction of the Hamiltonian, λ inherits the signature of the original time

t and is a time-like coordinate. L(t, λ) is local in t and is non-local in λ. H depends linearly on

P(t, λ) but does not depend on Q̇(t, λ).

The first and second Hamilton equations can be written as:

Q̇(t, λ) = Q′(t, λ), Ṗ(t, λ) = P ′(t, λ) +
δL̃(t, [Q])

δQ(t, λ)
. (2.6)

Their solutions are related to those of the EL equations of motion of the original non-local

Lagrangian Lnon if we impose a constraint on the momentum

ϕ(t, λ) ≡ P(t, λ)−
∫

dσ
ε(λ)− ε(σ)

2

δL(t, σ)

δQ(t, λ)
≈ 0. (2.7)
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Here ε(λ) is the sign distribution. The symbols ”≡” and ”≈ ” stand for ”strong” and ” weak”

equalities, respectively. Further constraints are generated by requiring the stability of the primary

ones. In the first step, we obtain:

ϕ̇(t, λ) ≡ ϕ′(t, λ) + δ(λ)

∫
dσ

δL(t, σ)

δQ(t, 0)
≈ 0 (2.8)

or simply

ϕ̇0(t, λ) ≡ δ(λ)

∫
dσ

δL(t, σ)

δQ(t, λ)
≈ 0 (2.9)

which reduces to the EL equation of motion. Repeating this, we get an infinite set of Hamiltonian

constraints. So doing, we are able to describe the original non-local Lagrangian system as a 1 + 1

dimensional local (in one of the times) Hamiltonian system, governed by the Hamiltonian H and a

set of constraints. Note that this formalism can be viewed as a generalization of the Ostrogradski

construction in the case of infinite order derivative theories.

2.1.2 A generalization in 1 + 1 dimensional field theory

In this subsection, we aim at enlarging the class of Hamiltonians that can be constructed in the

framework of the above mentioned formalism. The corresponding system of Hamilton equations

and the constraints are deduced. This generalization will be used in the next section to construct

an infinite set of Hamiltonians compatible with the GW model.

Consider a parameter h ∈]0, 1[, x, y ∈ Rn and define

|x− y| =

√√√√ n∑
i=1

(xi − yi)2, ωh(x− y) =
ω(x−y

h
)

hn
(2.10)

where

ω(u) =

{
c · exp( 1

|u|2−1
) |u| < 1

0 |u| ≥ 1
, c =

[ ∫
|u|<1

exp(
1

|u|2 − 1
)du
]−1

. (2.11)

Then we consider the family of Hamiltonians

Hh(t, [Qh,Ph]) =

∫
dλPh(t, λ)Q′h(t, λ)− Lh(t, [Qh]) (2.12)

where the quantities Ph(t, λ), Qh(t, λ) , Lh(t, [Qh]) are defined as follows:

Ph(t, λ) =

∫
R2

dy ωh(x− y)P(y), Qh(t, λ) =

∫
R2

dy ωh(x− y)Q(y) (2.13)

Lh(t, [Qh]) =

∫
R2

dy ωh(x− y)L(t′, [Q]) (2.14)

x = (t, λ) and y = (t′, λ′), Q′h(t, λ) = ∂λQh(t, λ) and
∫
Rn dy ωh(x− y) = 1.

Lemma: Let Lh, h ∈]0, 1[, define a class of differentiable functionals with compact

support ωh(x), i.e. for |x| < M, Lh(x) 6= 0, and Lh(x) = 0 otherwise, where M is a

positive number:

Lh(x) =

∫
Rn
dyωh(x− y)L(y).

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011



Hamiltonian formulation of the NCFTs 29

If the functional L is summable on x ∈ D ⊂ Rn, then∫
D
|Lh(x)− L(x)|dx→ 0 for h→ 0, (2.15)

i.e. Lh converges in average to L for h→ 0 where D is a bounded measurable set.

Proof: For x ∈ D, we have

Lh(x)− L(x) =

∫
Rn

ωh(x− y)[L(y)− L(x)]dy (2.16)

where

L(x) =

∫
Rn
ωh(x− y)L(x)dy =

1

hn

∫
|x−y|≤h

ω
(x− y

h

)
L(x)dy.

Then

|Lh(x)− L(x)| ≤ c1
hn

∫
|x−y|≤h |L(y)− L(x)|dy, (2.17)

with c1 = max|x−y|≤h ω
(
x−y
h

)
. (2.18)

Using Fubini’s theorem we can get∫
D
|Lh(x)− L(x)|dx ≤ c1

hn

∫
D

∫
|x−y|≤h

|L(y)− L(x)|dydx (2.19)

≤ c1

hn

∫
|y′|≤h

dy′
∫
D
|L(x+ y′)− L(x)|dx.

By the mean-continuity property, i.e. for all small ε > 0 there exists a small δ > 0 such that∫
D
|L(x+ y′)− L(x)|dx ≤ ε, for |y′| ≤ δ. (2.20)

Then ∫
D
|Lh(x)− L(x)|dx ≤ c1ε

hn

∫
|y′|≤h

dy′ ⇒
∫
D
|Lh(x)− L(x)|dx ≤ c1ε

∫
|z|≤1

dz

⇒
∫
D
|Lh(x)− L(x)|dx ≤ c1 · c2ε

where c2 is the volume of the unit sphere in Rn. �
Consider now the Lagrangian density Lh(t, λ) defined by

Lh(t, [Qh]) =

∫
R2

dy ω(x− y)Lh(y). (2.21)

Following [30], the density Lh(t, λ) is constructed from Lnonh (t) = L([qh(t+λ)]) by replacing qh(t)

by Qh(t, λ), the t-derivatives of qh(t) by λ-derivatives of Qh(t, λ) and qh(t+ ρ) by Qh(t, λ+ ρ).

In this construction of the Hamiltonian (4.134), λ inherits the signature of the original time t and

is a time-like coordinate [30]. Furthermore the symmetry of the original Lagrangian is realized

canonically in the enlarged space. Note that Lh(t, λ) is local in t and nonlocal in λ. Defining then

a time evolution operator Tt for a given initial trajectory q(t) as follows

Tt : q(λ) 7→ q(t+ λ), (2.22)
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we introduce a family of new dynamical variables Qh(t, λ), for 0 < h < 1 as:

Qh(t, λ) = qh(t+ λ) =: Tt

(
qh(λ)

)
. (2.23)

t is the ”evolution” parameter and λ is a continuous parameter indexing the degrees of freedom.

In differential form, condition (2.23) reads:

∂Qh
∂t

(t, λ) =
∂Qh
∂λ

(t, λ). (2.24)

The generalized fundamental Poisson bracket turns to be by a straightforward computation using

(2.13),

{Qh(t, λ),Ph(t, λ′)} = ωh(λ− λ′). (2.25)

The relation (2.24) which well yields, in the limit case h→ 0, the usual local canonical commu-

tation {Q(t, λ),P(t, λ′)} = δ(λ − λ′) defines a family of first Hamilton equations for (4.134).

The corresponding family of second Hamilton equations can be written as follows:

Ṗh(t, α) = P ′h(t, α) +
∂Lh(t, [Qh])
∂Qh(t, α)

(2.26)

where Ph(t, λ)ωh(λ−α)
∣∣∣M
λ=−M

= 0 (Ph with compact support). Ṗh(t, α) and P ′h(t, α) are defined

in (2.4). Now integrating the second Hamilton equations yields

Γh(t, λ, [Qh,Ph]) ≡ Ph(t, λ)−
∫
dσ
δLh(t, σ)

δQh(t, λ)
· ε(λ)− ε(σ)

2
≈ 0.

(2.27)

The stability of primary constraints implies the secondary constraints given by

Ξh ≡
∫

dλ
δLh(t, λ)

δQh(t, 0)
≈ 0. (2.28)

2.2 Hamiltonian formulation of the Grosse-Wulkenhaar model

We now consider the transformation of the D canonical field variables into the D + 1 ones:

xµ = (t, xi) 7−→ Xµ = (t, x0, xi) = (t, x̄i), φ(x) 7−→ Q(t, x̄)

and x̃ 7−→ X̃ = (t, ˜̄x) = (t, 2(Θ−1)x̄). In this case, the GW Lagrangian density takes the form

Lnon(t, x̄) =
1

2
∂µQ(t, x̄) ? ∂µQ(t, x̄) +

Ω2

2

(
˜̄xµQ(t, x̄)

)
?
(

˜̄x
µQ(t, x̄)

)
+

m2

2
Q(t, x̄) ?Q(t, x̄) +

λ

4!
Q(t, x̄) ?Q(t, x̄) ?Q(t, x̄) ?Q(t, x̄).

(2.29)
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Substituting φ(x) by Qh(t, x0, xi), we get the family of Lagrangian densities

Lnonh (t, x̄) =
1

2
∂µQh(t, x̄) ? ∂µQh(t, x̄) +

m2

2
Qh(t, x̄) ?Qh(t, x̄)

+
Ω2

2

(
˜̄xµQh(t, x̄)

)
?
(

˜̄x
µQh(t, x̄)

)
+

λ

4!
Qh(t, x̄) ?Qh(t, x̄) ?Qh(t, x̄) ?Qh(t, x̄). (2.30)

Setting

Υh(t, x̄) : =

∫
dDx̄′

δLh(t, x̄′)
δQh(t, x̄)

· ε(x̄
0)− ε(x̄′0)

2

= −δ(x̄0)∂x̄0Qh(t, x̄) +
λ

4!

∫
dDy1d

Dy2d
Dy3d

Dx̄′
(ε(x̄0)− ε(x̄′0)

2

)
×Qh(t, y1)Qh(t, y2)Qh(t, y3)Φ(x, y1, y2, y3, y4)

+
Ω2

8

∫
dDy1d

Dy2d
Dy3d

Dx̄′ ỹ1ỹ2Qh(t, y3)
ε(x̄0)− ε(x̄′0)

2

×Ψ(x, y1, y2, y3, y4) (2.31)

with

Φ(x, y1, y2, y3, y4) =
[
K(x̄− x̄′, y1 − x̄′, y2 − x̄′, y3 − x̄′)

+ K(y1 − x̄′, x̄− x̄′, y2 − x̄′, y3 − x̄′)
+ K(y1 − x̄′, y2 − x̄′, x̄− x̄′, y3 − x̄′)

+ K(y1 − x̄′, y2 − x̄′, y3 − x̄′, x̄− x̄′)
]

(2.32)

and

Ψ(x, y1, y2, y3, y4) =
[
K(x̄′ − y1, x̄

′ − x̄, x̄′ − y2, x̄
′ − y3)

+ K(x̄′ − x̄, x̄′ − y1, x̄
′ − y3, x̄

′ − y2)

+ K(x̄′ − y1, x̄
′ − y3, x̄

′ − x̄, x̄′ − y2)

+ K(x̄′ − y2, x̄
′ − x̄, x̄′ − y1, x̄

′ − y3)

+ K(x̄′ − y1, x̄
′ − y3, x̄

′ − y2, x̄
′ − x̄)

+ K(x̄′ − y3, x̄
′ − y1, x̄

′ − x̄, x̄′ − y2)

+ K(x̄′ − y1, x̄
′ − x̄, x̄′ − y3, x̄

′ − y2)

+ K(x̄′ − y2, x̄
′ − y3, x̄

′ − y1, x̄
′ − x̄)

]
, (2.33)

we can define the symmetric Kernel K of four star products by

K(x− x1, x− x2, x− x3, x− x4) = e−ix∧
∑4
i=1(−1)i+1xie−iϕ4 (2.34)

where ϕ4 =
∑4

i<j=1(−1)i+j+1xi ∧ xj, x∧ y = 2xΘ−1y. Expanding this kernel expression, we get

K(x− x1, x− x2, x− x3, x− x4) = exp
{
− i
[
(x− x1) ∧ (x− x2)
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−(x− x1) ∧ (x− x3) + (x− x1) ∧ (x− x4) + (x− x2) ∧ (x− x3)

−(x− x2) ∧ (x− x4) + (x− x3) ∧ (x− x4)
]}
. (2.35)

The primary constraints can be reexpressed by the formula

Γh(t, x̄) ≡ Ph(t, x̄)−Υh(t, x̄) ≈ 0 (2.36)

characterizing the family of primary constraints for the class of GW models defined by the pa-

rameter h. The family of secondary constraints can be obtained in the same way. The previous

lemma guarantees the convergence:

h→ 0⇒ Ph → P ; Qh → Q; Γh → Γ (2.37)

as well as the limit of the family (2.36) of primary constraints:

Γ = lim
h→0

Γh = P(t, x̄)−Υ(t, x̄) ≈ 0.

The secondary constraints appear as the equation of motion of the field Qh, i.e.

Ξh(t, x̄) ≈ 0. (2.38)

The total Hamiltonian can be then defined as

HT
h (t, [Qh,Ph]) = Hh(t, [Qh,Ph]) + Λ1(t, x̄) ? Γh(t, x̄)

+Λ2(t, x̄) ? Ξh(t, x̄), (2.39)

where Λi(t, x̄), i = 1, 2 are Lagrange multipliers. The corresponding field theory action STh (t, x̄)

STh (t, x̄) =

∫
dtdDx̄

(
Lh(t, x̄) + Λ1(t, x̄) ? Γh(t, x̄) + Λ2(t, x̄) ? Ξh(t, x̄)

)
=

∫
dtdDx̄LTh (t, x̄), Λi(t, x̄) ∈ T ∗J (2.40)

generates the Euler-Lagrange equation of motion

δSTh (t, x̄)

δQh(t, x̄′)
=

∫
dtdDx̄

( δLh(t, x̄)

δQh(t, x̄′)
+ Λ1(t, x̄) ?

δΓh(t, x̄)

δQh(t, x̄′)

+
δΛ1(t, x̄)

δQh(t, x̄′)
? Γh(t, x̄) + Λ2(t, x̄) ?

δΞh(t, x̄)

δQh(t, x̄′)

+
δΛ2(t, x̄)

δQh(t, x̄′)
? Ξh(t, x̄)

)
= 0 (2.41)

which gives

δLh(t, x̄)

δQh(t, x̄′)
+ Λ1(t, x̄) ?

δΓh(t, x̄)

δQh(t, x̄′)
+ Λ2(t, x̄) ?

δΞh(t, x̄)

δQh(t, x̄′)

)
≈ 0 (2.42)

where the constraints equations (2.36) and (2.38) have been taken into account. If we perform

the following set of infinitesimal transformations of simply connected continuous arbitrary group
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G:

x̄ 7−→ x̄′ = x̄+
1

2

(
$a ?

δx̄

δ$a

+
δx̄

δ$a

? $a

)
, (a = 1, 2, · · ·)

Qh(t, x̄) 7−→ Qth(t, x̄′) = Qh(t, x̄) +
1

2

(
$a ?

δF(Qh(t, x̄))

δ$a

+
δF(Qh(t, x̄))

δ$a

? $a

)
,

(2.43)

where F(Qh(t, x̄)) is a transformation of fields Qh(t, x̄) and {$a(x̄)} defines a family of in-

finitesimal parameters of this group, then the transformation Qth(t, x̄′) of fields Qh(t, x̄′) at a

same point x̄′ can be expressed through the generators Ga
µ as:

Qth(t, x̄′) =
(

1− i

2
{$a, G

a
µ}? + O($2)

)
?Qh(t, x̄′) = e

− i
2
{$a,Gaµ}?

? ?Qh(t, x̄′)
=: g ?Qh(t, x̄′), (2.44)

with

eiα? = 1 + iα +
i2

2!
α ? α +

i3

3!
α ? α ? α + . . . ;α ∈ C∞(R) (2.45)

and

Qh(t, x̄′) = Qh
(
t, x̄+

1

2
($a ?

δx̄

δ$a

+
δx̄

δ$a

? $a)
)

= Qh(t, x̄) +
1

2
($a ?

δx̄µ

δ$a

+
δx̄µ

δ$a

? $a) ? ∂µQh(t, x̄) + O($2)

= Qh(t, x̄) +
1

2
{$a,

δx̄µ

δ$a

}? ? $a) ? ∂µQh(t, x̄) + O($2). (2.46)

Evidently, the group element g = e
− i

2
{$a,Gaµ}?

? ∈ U?(N), where U?(N) is the NC transformation

of unitary gauge group. Using (2.43) and (2.46) leads to the noncommutative generators Ga
µ are

determined by the relation:

i

2

{
$a, G

a
µ

}
?
?Qh(t, x̄) =

1

2

{ δx̄µ
δ$a

, $a

}
?
? ∂µQh(t, x̄)

−1

2

{
$a,

δF(Qh(t, x̄))

δ$a

}
?
. (2.47)

One can check that the action of U?(N) on the coordinates well lies on the Moyal algebra AΘ,

xµ ∈ AΘ, g ? x
µ = gxµ − 1

4
Θµρ∂ρ{$a, G

a
µ}? ∈ AΘ (2.48)

Let us now write the nonlocal Lagrangians (4.77) in the following form:

Lh(t, x̄) = L?h(Qh(t, x̄), ∂µQh(t, x̄), x̄) (2.49)

= Lh
(
Qh(t, x̄), ∂µQh(t, x̄), ∂µ∂νQh(t, x̄), · · · , x̄; Θαβ

)
. (2.50)

Remark that in equation (2.49), all products are the star ones and the EL equation of motion

can be written in a similar form as in the usual commutative field theories:

∂L?h
∂Qh

− ∂µ
∂L?h
∂∂µQh

= 0. (2.51)
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Theorem 2.2 Assume the quantity B($) = 1
4

{
ζ($, x̄), ∂µ

(
{∂νQh(t, x̄), ∂Lh(t,x̄)

∂∂µQh(t,x̄)
}?
)}

?
, where

ζ($, f) = 1
2

(
$a ?

δf
δ$a

+ δf
δ$a

?$a

)
, is vanished, i.e B($) = 0. Then, the GW model is invariant

under the infinitesimal transformation (2.43) and the conserved tensor is given by

J a
µ =

1

4

{{
$a,

δx̄ν

δ$a

}
?
, Tµν

}
?
− 1

4

{{
$a,

δF(Qh(t, x̄))

δ$a

}
?
,
∂Lh(t, x̄)

∂∂µQh(t, x̄)

}
?
.

(2.52)

Proof: Setting ζ($, f) = 1
2

(
$a ?

δf
δ$a

+ δf
δ$a

? $a

)
, then ∂tµ =

(
δνµ − ∂µζ($, x̄)

)
∂ν and we

can deduce the identity dDx̄′ = [1 + ∂µζ($, x̄) + O($2)]dDx̄. Using the relation (2.49), a direct

evaluation of δS yields

δS = St − S
=

∫
dtdx̄′ L?h(Qth(t, x̄′), ∂tµQth(t, x̄′), x̄′)−

∫
dtdx̄L?h(Qh(t, x̄), ∂µQh(t, x̄), x̄)

=

∫
dtdDx̄

[
(1 + ∂µζ($, x̄)) ? Lh(t, x̄) + ζ($,F) ?

∂Lh(t, x̄)

∂Qh(t, x̄)

+ζ($, x̄) ? ∂µ(Lh(t, x̄)) + ∂µ(ζ($,F)) ?
∂Lh(t, x̄)

∂∂µQh(t, x̄)

−∂µζ($, x̄)∂νQh(t, x̄) ?
∂Lh(t, x̄)

∂∂µQh(t, x̄)
+ O($2)

]
−
∫
dtdx̄Lh(t, x̄)

=

∫
dtdx̄

[
− ∂µJ a

µ + ζ($,F) ?
( ∂Lh
∂Qh

− ∂µ
∂Lh
∂∂µQh

)
+ B($)

]
. (2.53)

In this relation, the first term is a divergence term defining the NC tensor J a
µ expressed as follows:

J a
µ =

1

4

{{
$a,

δx̄ν

δ$a

}
?
, Tµν

}
?
− 1

4

{{
$a,

δF(Qh(t, x̄))

δ$a

}
?
,
∂Lh(t, x̄)

∂∂µQh(t, x̄)

}
?
.

(2.54)

The second term contains the EL equation of motion while the last term, usually called the

breaking term, is given by the relation

B($) =
1

4

{
ζ($, x̄), ∂µ

(
{∂νQh(t, x̄),

∂Lh(t, x̄)

∂∂µQh(t, x̄)
}?
)}

?
. (2.55)

Tµν is the energy-momentum tensor computed in [7], defined with non-local variables Qh(t, x̄):

Tρµ =
1

2
{∂ρQh(t, x̄), ∂µQh(t, x̄)}? − gρµL?h. (2.56)

Then translational invariance violation, engendered by the appearance of the coordinate ˜̄x
µ

, can

be avoided by imposing the constraint B($) ≈ 0. �
It is worth noticing that if $a ? (δxµ/δ$a) is a constant parameter and F is trivial, then the

current (2.54) is reduced to the NC energy momentum tensor (2.56). If $a?(δxµ/δ$a) is defined

as $µν
a xν , where $µν

a is the Lorentz tensor and $a ? (δF/δ$a) = −$µν
a xν∂µQh(t, x̄), then the

current (2.54) is reduced to the angular momentum tensor. The current J a
µ is not symmetric,

nonlocally conserved, and in massless theory, not traceless.
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Chapter Tree

Twisted Field Theories

3.1 Generalities

It is generally believed that the picture of spacetime as a manifold M locally modelled on the

flat Minkowski space should break down at very short distances of the order of the Planck length

lp = (G~/c3)1/2. Limitations in the possible accuracy of localization of spacetime events should

in fact be a feature of a quantum theory incorporating gravitation. The obtaining of a better

understanding of physics at short distances and the cure of the problems occuring when trying to

quantize gravity should lead to change the nature of spacetime in a fundamental way. This could

be realized by implementing the noncommutativity through the coordinates which satisfy the

commutation relations [x̂µ, x̂ν ] = iΘ̃µν(x̂) 6= 0. In general, the function Θ̃µν(x̂) is unknown, but,

for physical reasons, should vanish at large distances where we experience the commutative world

and may be determined by experiments [24] and [71]. The Θ−deformation case which may at very

short distances provide a reasonable approximation for Θ̃µν(x̂) is described by the commutation

relation [x̂µ, x̂ν ] = iΘµν . The algebra of functions of such noncommuting coordinates can be

represented by the algebra of functions on ordinary spacetime, equipped with a noncommutative

?−product. For a constant antisymmetric matrix Θµν , this can be represented by the Groenewold-

Moyal product (1.1). This product can be generalized under the form

(f ? g)(x) = m
{
ei

Θab

2
Xa⊗Xbf(x)⊗ g(x)

}
(3.1)

where Xa = eµa(x)∂µ are vector fields. The commutation relation of coordinates then becomes

[xµ, xν ]? = iΘabeµa(x)eνb (x) := iΘ̃µν(x) engendering a twisted scalar field theory where eµa , and

hence the ?−product itself, appear dynamical. We interpret that the spacetime is not neccessarily

flat. But insted we have just been considering physics in orthogonal non-coordinate bases of the

spacetime manifold. The orthogonal basis vectors for the tangent spaces of the spacetime manifold

are Xa and the basis one-forms for the cotangent spaces are X∗a = eaµdx
µ. where ∂µ and dxµ are

the coordinate bases for the tangent and cotangent spaces of the spacetime manifold and have

conventionally the inverse of the vierbein eaµ = (eµa)−1. In general, the non-coordinate base has a

non vanishing Lie bracket and satisfies

[Xa, Xb] = ecν

[
eµa∂µe

ν
b − e

µ
b ∂µe

ν
a

]
Xc = Cc

abXc. (3.2)

The particular condition [Xa, Xb] = 0, (i. e. the vector fields are commuting), implies constraints

on eµa , namely eν[a∂νe
µ
b] = 0, that can be solved off-shell in terms of D scalar fields φa, (see [3] and
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[4]). Supposing that the square matrix eµa has an inverse eaµ everywhere, so that the Xa are linearly

independent, then the above condition becomes ∂[µe
a
ν] = 0 which is satisfied by eaν = ∂νφ

a. Since

Xaφ
b = δba, the field φb can be seen as new coordinates along the Xa directions. Besides, the

Leibniz rule extends to the commuting fields Xa as follows: Xa(f ? g) = (Xaf) ? g + f ? (Xag).

The metric tensor of the spacetime manifold is defined by the orthonormal basis vectors Xa with

respect to the metric g in all point of the spacetime

g(Xa, Xb) = eµa .e
ν
bgµν = δab. (3.3)

Hence the spacetime is not anymore flat. Furtheremore, expanding the dynamical ?-product (3.1)

of two functions as follows:

f ? g = fg +
i

2
ΘabXafXbg

+
1

2!

( i
2

)2

Θa1b1Θa2b2(Xa1Xa2f)(Xb1Xb2g) + · · ·

≡ e∆(f, g) (3.4)

where powers of the bilinear operator ∆ are defined as

∆(f, g) =
i

2
Θab(Xaf)(Xbg) ∆0(f, g) = fg

∆n(f, g) =
( i

2

)n
Θa1b1 · · ·Θanbn(Xa1 · · ·Xanf)(Xb1 · · ·Xbng) (3.5)

one can deduce the following rules (straightforwardly generalizing the usual Moyal product iden-

tities):

f ? g = fg +XaT (∆)(f, X̃ag) (3.6)

[f, g]? = f ? g − g ? f = 2XaS(∆)(f, X̃ag) (3.7)

{f, g}? = f ? g + g ? f = 2fg + 2XaR(∆)(f, X̃ag) (3.8)

where

T (∆) =
e∆ − 1

∆
S(∆) =

sinh(∆)

∆

R(∆) =
cosh(∆)− 1

∆
and X̃a =

i

2
ΘabXb. (3.9)

S(∆)(., X̃.) is a bilinear antisymmetric operator and

T (∆)(f, X̃ag)− T (∆)(g, X̃af) = 2S(∆)(f, X̃ag). (3.10)

The Moyal product (3.1) correspond to the twist F = exp
(
− i

2
ΘabXa ⊗Xb

)
. The question

arises whether we can deform the symmetry in such a way that it acts consistently on the deformed

space i.e. leaves the deformed space invariant and such it is reduced to the undeformed symmetry

in the commutative limit. The answer is yes: Lie algebras can be deformed in the category of

Hopf algebras. Hopf algebras coming from a Lie algebra are also called quantum groups. Quantum

group symmetries lead to new features of field theories on NC space.
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3.2 Twisted Grosse-Wulkenhaar Model

Recently, Paolo Aschieri et al [3] introduced a so-called dynamical noncommutativity to investi-

gate Noether currents in an ordinary nonrenormalizable twisted φ?4 theory. This work addresses

questions of the applicability of such a formalism on the new class of renormalizable NC field

theories (NCRFT) built on the Grosse and Wulkenhaar (GW) φ?4 scalar field model defined in

Euclidean space-time by the action functional [37]

SΩ
? [φ] =

∫
dDx

(1

2
∂µφ ? ∂

µφ+
Ω2

2
(x̃µφ) ? (x̃µφ) +

m2

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
(3.11)

where x̃µ = 2(Θ−1)µνx
ν and SΩ

? [φ] is covariant under Langmann-Szabo duality [57]. Ω and λ are

dimensionless parameters.

We derive the field equations of motion and provide with the explicit computation of relevant

physical quantities such as the noncommutative energy momentum tensor (NC EMT), the angular

momentum tensor (AMT) and the dilatation current (DC). Furthermore, we proceed to the

symmetry analysis including the translation, rotation and dilatation transformations and compute

the conserved currents.

3.2.1 Twisted Grosse-Wulkenhaar model: Noether currents

The integral in (3.11), defined with the dynamical Moyal ?−product (3.1), is not cyclic; even

with suitable boundary conditions at infinity,∫
dDx (f ? g) 6=

∫
dDx (g ? f). (3.12)

Using now the measure edDx where e = det(eaµ), a cyclic integral can be defined so that, up to

boundary terms: ∫
edDx (f ? g) =

∫
edDx(fg) =

∫
edDx (g ? f). (3.13)

Therefore, the NC GW Lagrangian action (3.11) can be rewritten by means of a cyclic integral

as follows:

SΩ
? [φ] =:

∫
edDx

(
LΩ
? ? e

−1
)

=:

∫
edDx

{1

2
∂µφ ? ∂

µφ+
m2

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

+
Ω2

2
(x̃µφ) ? (x̃µφ) +

1

2
∂µφa ? ∂

µφa
}
? e−1 (3.14)

where e = deteaµ. From (3.14) the peculiar Euler Lagrange equations of motion can be readily

derived by direct application of the variational principle and the use of formulas of derivatives

and variations given by [3]

δφce
µ
a = −eνae

µ
b δφce

b
ν = −eνae

µ
b ∂νδφ

b = −eµbXa(δφ
b) ∂µe = eXa(∂µφ

a)

δφcXa = δφc(e
µ
a∂µ) = −eµbXa(δφ

b)∂µ = −Xa(δφ
b)Xb

δφce = eXa(δφ
a) δφce

−1 = −e−1Xa(δφ
a) eXa(f) = ∂µ(eeµaf). (3.15)
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To compute δφc variations, it turns out that the following identity:

δφc(f ? g) = −(δφcXcf) ? g − f ? (δφcXcg) + δφcXc(f ? g) (3.16)

where the functions f and g do not depend on φc, is useful. By induction, one can immediately

prove that (3.16) holds for ?-products of an arbitrary number of factors:

δφc(f ? g ? · · · ? h) = −(δφcXcf) ? g ? · · · ? h
−f ? (δφcXcg) ? · · · ? h
− · · · − f ? g ? · · · ? (δφcXch)

+δφcXc(f ? g ? · · · ? h). (3.17)

Equations of motion for φ and related currents

The action (3.14) can be viewed as the sum of four actions pertaining to different terms as

follows:

SΩ,0
? [φ] =

1

2

∫
edDx

(
∂µφ ? ∂

µφ ?+∂µφa ? ∂
µφa
)
? e−1

SΩ,m2

? [φ] =
m2

2

∫
edDx (φ ? φ ? e−1)

SΩ,λ
? [φ] =

λ

4!

∫
edDx (φ ? φ ? φ ? φ ? e−1)

SΩ,har
? [φ] =

Ω2

2

∫
edDx (x̃µφ) ? (x̃µφ) ? e−1.

The variations of these quantities with respect to the field φ, using the cyclicity property of the

integral, give the following relations:

δφ(SΩ,0
? ) =

∫
dDx

{
− δφ.∂σ

(e
2
{∂σφ, e−1}?

)
+ ∂σ

[eδφ
2
.{∂σφ, e−1}?

+eeσbT (∆)
(
δ∂µφ,

X̃b

2
{∂µφ, e−1}?

)
+eeσbS(∆)

(
∂µφ, X̃

b(∂µδφ ? e−1)
)]}

(3.18)

δφ(SΩ,m2

? ) =

∫
dDx

{
δφ.(

em2

2
{φ, e−1}?)

+∂σ

[m2

2
eeσbT (∆)

(
δφ, X̃b{φ, e−1}?

)
+m2eeσbS(∆)

(
φ, X̃b(δφ ? e−1)

)]}
(3.19)

δφ(SΩ,λ
? ) =

λ

4!

∫
dDx

{
δφ{φ ? φ, {φ, e−1}?}?

+∂σ

[
eeσbT (∆)

(
δφ, X̃b{φ ? φ, {φ, e−1}?}?

)
+2eeσbS(∆)

(
φ, X̃b(δφ ? φ ? φ ? e−1)

)
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+2eeσbS(∆)
(
φ ? φ, X̃b(δφ ? φ ? e−1)

)
+2eeσbS(∆)

(
φ ? φ ? φ, X̃b(δφ ? e−1)

)]}
(3.20)

δφ(SΩ,har
? ) =

Ω2

8

∫
dDx

{
eδφ{x̃, {e−1, {x̃, φ}?}?}?

+∂σ

[
eeσbT (∆)

(
δφ, X̃b{x̃, {e−1, {x̃, φ}?}?}?

)
+2eeσbS(∆)

(
x̃, X̃b(δφ ? {x̃, φ}? ? e−1)

)
+2eeσbS(∆)

(
{x̃, φ ? x̃}?, Xb(δφ ? e−1)

)
+2eeσbS(∆)

(
{φ, x̃}?, X̃b(δφ ? x̃ ? e−1)

)]}
. (3.21)

Summing all these four variations and factoring out δφ from the resulting expression and grouping

the surface terms, source of the current hereafter denoted by Kσ, we can write the GW action

variation with respect to the field φ into the global form

δφSΩ
? =

∫
dDx

(
δφEφ + ∂σKσ

)
(3.22)

from which we deduce the equation of motion of the field φ as:

Eφ = −1

2
∂σ

(
e{∂σφ, e−1}?

)
+
m2

2
e{φ, e−1}? +

λ

4!
e{φ ? φ, {φ, e−1}?}?

+
Ω2

8
e{x̃, {e−1, {x̃, φ}?}?}? = 0. (3.23)

In the commutative limit Θ → 0, the equation (3.23) becomes the usual φ4 field equation of

motion

�φ−m2φ− λ

3!
φ3 = 0. (3.24)

The current Kσ results from the combination of following contributions:

Kσ = Kσ(0) +Kσ(m2) +Kσ(λ) +Kσ(Ω2) (3.25)

induced, respectively, by:

1. the velocity term contribution

Kσ(0) =
eδφ

2
.{∂σφ, e−1}? + eeσb

[
T (∆)

(
δ∂µφ,

X̃b

2
{∂µφ, e−1}?

)
+S(∆)

(
∂µφ, X̃

b(∂µδφ ? e−1)
)]

(3.26)

2. the mass term

Kσ(m2) = eeσb

[m2

2
T (∆)

(
δφ, X̃b{φ, e−1}?

)
+m2S(∆)

(
φ, X̃b(δφ ? e−1)

)]
(3.27)
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3. the φ?4 interaction

Kσ(λ) = eeσb

[ λ
4!
T (∆)

(
δφ, X̃b{φ ? φ, {φ, e−1}?}?

)
+
λ

12
S(∆)

(
φ, X̃b(δφ ? φ ? φ ? e−1)

)
+
λ

12
S(∆)

(
φ ? φ, X̃b(δφ ? φ ? e−1)

)
+
λ

12
S(∆)

(
φ ? φ ? φ, X̃b(δφ ? e−1)

)]
(3.28)

4. and the GW harmonic interaction

Kσ(Ω2) = eeσb

[Ω2

8
T (∆)

(
δφ, X̃b{x̃, {e−1, {x̃, φ}?}?}?

)
+

Ω2

4
S(∆)

(
x̃, X̃b(δφ ? {x̃, φ}? ? e−1)

)
+

Ω2

4
S(∆)

(
{x̃, φ ? x̃}?, Xb(δφ ? e−1)

)
+

Ω2

4
S(∆)

(
{φ, x̃}?, X̃b(δφ ? x̃ ? e−1)

)]
. (3.29)

Equations of motion for φc and related currents

The φc variation of the action (3.14)

δφcS = δφc{
∫

dDx e
[
LΩ
? ? e

−1
]
}

=

∫
dDx

[
(δφce)LΩ

? ? e
−1 + e(δφc(LΩ

? ? e
−1))

]
(3.30)

where the ordinary Leibniz rule is used when the variation δφc acts on the pointwise product, can

be considered as a sum of two terms A and B. The term A is given by:

A =

∫
dDx (δφce)[LΩ

? ? e
−1]

=

∫
dDx

[
− eδφaXa(LΩ

? ? e
−1) + ∂ρ

(
ee ρ
a δφ

a(LΩ
? ? e

−1)
)]

(3.31)

where δφce = eXa(δφ
a), while the second term B encompasses contributions from the veloc-

ity, the mass, the φ4 interaction and the harmonic potential denoted by B0, Bm2 , Bλ, Bhar,

respectively.

The mass term, Bm2 , depends on the ? product and e−1 as follows:

Bm2 =
m2

2

∫
dDx eδφc(φ ? φ ? e

−1)

=
m2

2

∫
dDx e

(
− (δφaXaφ) ? φ ? e−1 − φ ? (δφaXaφ) ? e−1

−φ ? φ ? (δφaXae
−1) + δφaXa(φ ? φ ? e

−1) + φ ? φ ? (δφce
−1)
)
. (3.32)
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Noting that δφce
−1 = −e−1(Xaδφ

a), we obtain

Bm2 =
m2

2

∫
dDx e{δφaXa(φ ? φ ? e

−1)− φ ? φ ? Xa(δφ
ae−1)

−(δφaXaφ) ? φ ? e−1 − φ ? (δφaXaφ) ? e−1}. (3.33)

Adding and substracting (δφaXaφ) ? e−1 ? φ from (3.33) enable to combine the terms under the

integral in the following way:

Bm2 =
m2

2

∫
dDx {eδφa

(
Xa(φ ? φ ? e

−1) + e−1Xa(φ ? φ)

−(Xaφ){φ, e−1}?
)

+ eXb

(
− φ ? φ ? (δφbe−1)

+T (∆)[Xa(φ ? φ), X̃b(δφae−1)]− T (∆)[δφa(Xaφ), X̃b{φ ?, e−1}]

+2S(∆)[δφa(Xaφ) ? e−1, X̃bφ]
)
} (3.34)

where the terms proportional to eδφa,

m2

2
eδφa

(
Xa(φ ? φ ? e

−1) + e−1Xa(φ ? φ)− (Xaφ){φ, e−1}?
)

(3.35)

contribute to the equation of motion, while those proportional to eXb,

−m
2

2
∂µ

{
eeµb

(
− φ ? φ ? (δφbe−1) + T (∆)[Xa(φ ? φ), X̃b(δφae−1)] (3.36)

−T (∆)[δφa(Xaφ), X̃b{φ, e−1}?] + 2S(∆)[δφa(Xaφ) ? e−1, X̃bφ]
)}

are surface terms giving the current J σ to be defined later. The remaining contributions can be

computed in analogous way to give the relations:

B0 =
1

2

∫
dDx

{
eδφc

[
Xc(∂µφ ? ∂

µφ ? e−1) + e−1Xc(∂µφ ? ∂
µφ)

−Xc∂µφ.{∂µφ, e−1}?
]

+ ∂σ

[
− eeσb

(
∂µφ ? ∂

µφ ? (δφbe−1)
)

−eeσbT (∆)
(
δφcXc∂µφ, X̃

b{∂µφ, e−1}?
)

−2eeσbS(∆)
(
∂µφ, X̃b((δφcXc∂µφ) ? e−1)

)
+eeσbT (∆)

(
Xc(∂µφ ? ∂

µφ), X̃b(δφce−1)
)]}

+
1

2

∫
dDx

{
eδφc

[
Xc

(
∂µφa ? ∂

µφa ? e−1
)

+ e−1Xc(∂µφa ? ∂
µφa)

−Xc∂µφa.{∂µφa, e−1}? −
2

e
∂µ

(e
2
{∂µφc, e−1}?

)]
+∂σ

[
− eeσb

(
∂µφa ? ∂

µφa ? (δφbe−1)
)

+ eδφa{∂σφa, e−1}?

−eeσbT (∆)
(
δφcXc∂µφa, X̃

b{∂µφa, e−1}?
)

−2eeσbS(∆)
(
∂µφa, X̃

b((δφcXc∂µφ
a) ? e−1)

)
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+2eeσbS(∆)
(
∂µφa, X̃

b(∂µδφa ? e−1)
)

+2eeσbT (∆)
(
δ∂µφa,

X̃b

2
{∂µφa, e−1}?

)
+eeσbT (∆)

(
Xc(∂µφa ? ∂

µφa), X̃b(δφce−1)
)]}

(3.37)

Bλ =
λ

4!

∫
dDx

{
eδφa

(
Xa(φ ? φ ? φ ? φ ? e

−1) + e−1Xa(φ ? φ ? φ ? φ)

−Xaφ.{φ ? φ, {φ, e−1}?}?
)

+ ∂σ

[
− eeσb (φ ? φ ? φ ? φ ? δφbe−1)

−eeσbT (∆)
(
δφcXcφ, X̃

b{φ ? φ, {φ, e−1}?}?
)

−2eeσbS(∆)
(
φ, X̃b((δφcXcφ) ? φ ? φ ? e−1)

)
−2eeσbS(∆)

(
φ ? φ, X̃b((δφcXcφ) ? φ ? e−1)

)
−2eeσbS(∆)

(
φ ? φ ? φ, X̃b((δφcXcφ) ? e−1)

)
+eeσbT (∆)

(
Xc(φ ? φ ? φ ? φ), X̃b(δφce−1)

)]}
(3.38)

Bhar =
Ω2

2

∫
dDx

{
eδφc

(
Xc((x̃φ) ? (x̃φ) ? e−1) + e−1Xc((x̃φ) ? (x̃φ))

−φXcx̃.{x̃φ, e−1}? − (Xcφ)x̃.{x̃φ, e−1}?
)

+∂σ

[
− eeσb

(
(x̃φ) ? (x̃φ) ? (δφbe−1)

)
−eeσbT (∆)

(
δφcXc(x̃φ), X̃b{x̃φ, e−1}?

)
−2eeσbS(∆)

(
x̃φ, X̃b((δφcXc(x̃φ)) ? e−1)

)
+eeσbT (∆)

(
Xc((x̃φ) ? (x̃φ)), X̃b(δφce−1)

)]}
. (3.39)

Summing now all the contributions and rearranging, after tedious algebraic transformations, in

terms of two components representing the δφc factor and the current surface counterpart, the

GW action φc-variation takes the form

δφcSΩ
? =

∫
dDx

(
δφcE(φ,φc) + ∂σJ σ

)
(3.40)

=

∫
dDx

(
− δφcXcφEφ − δφcEφc + ∂σJ σ

)
(3.41)

from which we get the following field equation:

E(φ,φc) = e
[1

e
Xc(LΩ

? )− (Xcφ)
(m2

2
{φ, e−1}? +

λ

4!
{φ ? φ, {φ, e−1}?}?

+
Ω2

2
x̃.{x̃φ, e−1}?

)
− Ω2

2
φXcx̃.{x̃φ, e−1}?
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−1

2
Xc∂µφ.{∂µφ, e−1}? −

1

2
Xc∂µφa.{∂µφa, e−1}?

−1

e
∂µ

(e
2
{∂µφc, e−1}?

]
= 0.

(3.42)

Using the identities x̃µ ? φ = x̃µφ+ i∂µφ and φ ? x̃µ = x̃µφ− i∂µφ implying x̃φ = 1
2
{x̃, φ}?,

we can deduce that Ω2

2
x̃.{x̃φ, e−1}? = Ω2

8
{x̃, {e−1, {x̃, φ}?}?}?, and the equation of motion can

be reexpressed as

E(φ,φc) = −XcφEφ +XcLΩ
? −

1

2
Xcφ∂µ

(
e{∂µφ, e−1}?

)
−eΩ2

2
φXcx̃.{x̃φ, e−1}? −

e

2
Xc∂µφ.{∂µφ, e−1}?

−e
2
Xc∂µφa.{∂µφa, e−1}? − ∂µ

(e
2
{∂µφc, e−1}?

)
= −XcφEφ − Eφc = 0 (3.43)

where

Eφc = −XcLΩ
? +

1

2
Xcφ∂µ

(
e{∂µφ, e−1}?

)
+ e

Ω2

2
φXcx̃.{x̃φ, e−1}?

+
e

2
Xc∂µφ.{∂µφ, e−1}? +

e

2
Xc∂µφa.{∂µφa, e−1}?

+∂µ

(e
2
{∂µφc, e−1}?

)
(3.44)

with
Ω2

2
φXcx̃.{x̃φ, e−1}? =

Ω2

8
Xcx̃.{φ, {e−1, {x̃, φ}?}?}?.

One can immediately show that, as expected from [3], when φ is on shell (i.e. Eφ = 0), the

φc field equation of motion simply reduces to Eφc = 0, and in the commutative limit, we get

�φc = 0 as it should. Besides, the field equations (3.23) and (3.44) are trivially satisfied by the

solution φ = 0, eaµ = ∂µφ
a = δaµ corresponding to the usual Moyal product. The field φ acts as a

source for the noncommutativity field φc.

In the same vein, the current J σ is given by

J σ = J σ(0) + J σ(m2) + J σ(λ) + J σ(Ω2) (3.45)

where the contributions engendered by the velocity term, the mass term, the φ?4 interaction and

the GW harmonic interaction source are, respectively, expressed as

J σ(0) =
1

2
eδφa{∂σφa, e−1}?

+eeσb

{1

2

[
− T (∆)

(
δφcXc∂µφa, X̃

b{∂µφa, e−1}?
)

−2S(∆)
(
∂µφa, X̃

b((δφcXc∂µφ
a) ? e−1)

)
+2S(∆)

(
∂µφa, X̃

b(∂µδφa ? e−1)
)

+2T (∆)
(
δ∂µφa,

X̃b

2
{∂µφa, e−1}?

)]
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+
1

2

[
− T (∆)

(
δφcXc∂µφ, X̃

b{∂µφ, e−1}?
)

−2S(∆)
(
∂µφ, X̃b((δφcXc∂µφ) ? e−1)

)]
−LΩ

? (0) ? (δφbe−1) + δφb(LΩ
? (0) ? e−1)

+T (∆)
(
Xc(LΩ

? (0)), X̃b(δφce−1)
)}

(3.46)

J σ(m2) = eeσb

{m2

2

[
− T (∆)

(
δφa(Xaφ), X̃b{φ, e−1}

)
+2S(∆)

(
δφa(Xaφ) ? e−1, X̃bφ

)]
−LΩ

? (m2) ? (δφbe−1) + δφb(LΩ
? (m2) ? e−1)

+T (∆)
(
Xc(LΩ

? (m2)), X̃b(δφce−1)
)}

(3.47)

J σ(λ) = eeσb

{ λ
4!

[
− T (∆)

(
δφcXcφ, X̃

b{φ ? φ, {φ, e−1}?}?
)

−2S(∆)
(
φ, X̃b((δφcXcφ) ? φ ? φ ? e−1)

)
−2S(∆)

(
φ ? φ, X̃b((δφcXcφ) ? φ ? e−1)

)
−2S(∆)

(
φ ? φ ? φ, X̃b((δφcXcφ) ? e−1)

)]
−LΩ

? (λ) ? (δφbe−1) + δφb(LΩ
? (λ) ? e−1)

+T (∆)
(
Xc(LΩ

? (λ)), X̃b(δφce−1)
)}

(3.48)

J σ(Ω2) = eeσb

{Ω2

2

[
− T (∆)

(
δφcXc(x̃φ), X̃b{x̃φ, e−1}?

)
−2S(∆)

(
x̃φ, X̃b((δφcXc(x̃φ)) ? e−1)

)]
−LΩ

? (Ω2) ? (δφbe−1) + δφb(LΩ
? (Ω2) ? e−1)

+T (∆)
(
Xc(LΩ

? (Ω2)), X̃b(δφce−1)
)}

(3.49)

where

LΩ
? (0) =

1

2
∂µφ ? ∂

µφ+
1

2
∂µφa ? ∂

µφa LΩ
? (m2) =

m2

2
φ ? φ

LΩ
? (λ) =

λ

4!
φ ? φ ? φ ? φ LΩ

? (Ω2) =
Ω2

2
(x̃µφ) ? (x̃µφ). (3.50)

3.2.2 Symmetries and conserved currents

Let us now deal with the symmetry analysis and deduce the conserved currents. Performing a

functional variation of the fields and a coordinate transformation

φ′(x) = φ(x) + δφ(x) φ′c(x) = φc(x) + δφc(x) x′µ = xµ + εµ (3.51)

and using dDx′ = [1 + ∂µε
µ + O(ε2)]dDx lead to the following variation of the action, to first

order in δφ(x), δφc(x), x̃ and εµ:

δSΩ
? =

∫
edDx

{∣∣∣∂x′
∂x

∣∣∣ ? (L′Ω? ? e−1)
}
−
∫

edDx (LΩ
? ? e

−1)
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=

∫
dDx

{
δ
(

(LΩ
? ? e

−1)e
)

+ ∂µε
µ ?
(

(LΩ
? ? e

−1)e
)}

=

∫
dDx

{
δφ

(
(LΩ

? ? e
−1)e

)
+ δφc

(
(LΩ

? ? e
−1)e

)
+δx̃

(
LΩ
? ? e

−1)e
)

+ εµ ? ∂µ[(LΩ
? ? e

−1)e] + ∂µε
µ ? (LΩ

? ? e
−1)e

}
. (3.52)

On shell, and integrated on a submanifold M ⊂ RD with fields non vanishing at the boundary

(so that the total derivative terms do not disappear), we get:

δSΩ
? =

∫
M

dDx ∂σ
[
Kσ + J σ +Rσ + εσ ?

(
(LΩ

? ? e
−1)e

)]
(3.53)

encompassing different contributions explicated below. In the computations, we decompose the

GW harmonic term as follows [7]

(x̃φ) ? (x̃φ) =
1

4
(x̃ ? φ ? x̃ ? φ+ x̃ ? φ ? φ ? x̃+ φ ? x̃ ? x̃ ? φ+ φ ? x̃ ? φ ? x̃) (3.54)

in order to get the NC Lagrangian entirely lain in the ?− algebra of fields with the advantage to

be stable under formal ?− algebraic computations (such that the cyclicity of ?− factors under

integral). By first performing the φc variation of the harmonic term in the GW action (3.14),

using the right hand side of (3.54), and then identifying the result with (3.39) one can infer the

identity

Ω2

2

{
− T (∆)

(
δφcXc(x̃φ), X̃b{x̃φ, e−1}?

)}
+

Ω2

2

{
− 2S(∆)

(
x̃φ, X̃b((δφcXc(x̃φ)) ? e−1)

)}
=

Ω2

8

{
− T (∆)

(
δφcXcφ, X̃

b({x̃, {e−1, {x̃, φ}?}?}?)
)

−T (∆)
(
δφcXcx̃, X̃

b({φ, {e−1, {x̃, φ}?}?}?)
)}

+
Ω2

4

{
− S(∆)

(
x̃, X̃b((δφcXcφ) ? {φ, x̃}? ? e−1)

)
−S(∆)

(
{x̃, φ ? x̃}?, X̃b((δφcXcφ) ? e−1)

)
−S(∆)

(
{φ, x̃}?, X̃b((δφcXcφ) ? x̃ ? e−1)

)
−S(∆)

(
φ, X̃b((δφcXcx̃) ? {φ, x̃}? ? e−1)

)
−S(∆)

(
{φ, x̃}?, X̃b((δφcXcx̃) ? φ ? e−1)

)
−S(∆)

(
{φ, x̃ ? φ}?, X̃b((δφcXcx̃) ? e−1)

)}
. (3.55)

Then, from x̃ variation of the action (3.14) expressed as

δx̃SΩ
? =

∫
dDx (δx̃ e

Ω2

8
{φ, {e−1, {x̃, φ}?}?}? + ∂σRσ) (3.56)

we deduce the current term

Rσ =
Ω2

8
eeσb

{
T (∆)

(
δx̃, X̃b{φ, {e−1, {x̃, φ}?}?}?

)
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+2S(∆)
(
{x̃, φ}?, X̃b(δx̃ ? φ ? e−1)

)
+2S(∆)

(
{φ, x̃ ? φ}?, X̃b(δx̃ ? e−1)

)
+2S(∆)

(
φ, X̃b(δx̃ ? {x̃, φ}? ? e−1)

)}
. (3.57)

On the other side, using the identity δφcXc∂µφ = ∂µ(δφcXcφ)− ∂µ(δφceρc)∂ρφ and (3.55), and

collecting different terms in appropriate way, the current J σ (3.45) can be now written as

J σ = Kσ(δφ→ −δφcXcφ) +Rσ(δx̃→ −δφcXcx̃)

+
eδφc

2
Xcφ.{∂σφ, e−1}? +

eδφc

2
.{∂σφc, e−1}?

+eeσb

{
− LΩ

? ? (δφbe−1) + δφb(LΩ
? ? e

−1)

+T (∆)
(
Xc(LΩ

? ), X̃b(δφce−1)
)

+
1

2
T (∆)

(
∂µ(δφceρc)∂ρφ, X̃

b{∂µφ, e−1}?
)

+S(∆)
(
∂µφ, X̃

b((∂µ(δφceρc)∂ρφ) ? e−1)
)}

+
1

2
eeσb

{
− T (∆)

(
δφcXc∂µφa, X̃

b{∂µφa, e−1}?
)

−2S(∆)
(
∂µφa, X̃

b((δφcXc∂µφ
a) ? e−1)

)
+2S(∆)

(
∂µφa, X̃

b(∂µδφa ? e−1)
)

+T (∆)
(
∂µδφa, X̃

b{∂µφa, e−1}?
)}
, (3.58)

where

Kσ(−δφcXcφ) ≡ Kσ(δφ→ −δφcXcφ)

= −eδφ
cXcφ

2
.{∂σφ, e−1}?

−eeσb
[
T (∆)

(
∂µ(δφcXcφ),

X̃b

2
{∂µφ, e−1}?

)
+S(∆)

(
∂µφ, X̃

b(∂µ(δφcXcφ) ? e−1)
)

+
m2

2
T (∆)

(
δφcXcφ, X̃

b{φ, e−1}?
)

+m2S(∆)
(
φ, X̃b(δφcXcφ ? e

−1)
)

+
λ

4!
T (∆)

(
δφcXcφ, X̃

b{φ ? φ, {φ, e−1}?}?
)

+
λ

12
S(∆)

(
φ, X̃b(δφcXcφ ? φ ? φ ? e

−1)
)

+
λ

12
S(∆)

(
φ ? φ, X̃b(δφcXcφ ? φ ? e

−1)
)

+
λ

12
S(∆)

(
φ ? φ ? φ, X̃b(δφcXcφ ? e

−1)
)

+
Ω2

8
T (∆)

(
δφcXcφ, X̃

b{x̃, {e−1, {x̃, φ}?}?}?
)
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+
Ω2

4
S(∆)

(
x̃, X̃b(δφcXcφ ? {x̃, φ}? ? e−1)

)
+

Ω2

4
S(∆)

(
{x̃, φ ? x̃}?, Xb(δφcXcφ ? e

−1)
)

+
Ω2

4
S(∆)

(
{φ, x̃}?, X̃b(δφcXcφ ? x̃ ? e

−1)
)]

(3.59)

and

Rσ(−δφcXcx̃) ≡ Rσ(δx̃→ −δφcXcx̃)

= −Ω2

8
eeσb

{
T (∆)

(
δφcXcx̃, X̃

b{φ, {e−1, {x̃, φ}?}?}?
)

+2S(∆)
(
{x̃, φ}?, X̃b(δφcXcx̃ ? φ ? e

−1)
)

+2S(∆)
(
{φ, x̃ ? φ}?, X̃b(δφcXcx̃ ? e

−1)
)

+2S(∆)
(
φ, X̃b(δφcXcx̃ ? {x̃, φ}? ? e−1)

)}
. (3.60)

Kσ keeps the previous defined expression in (3.25). In contrary to the result in [3] for ordinary

φ4
? theory, the twisted GW action is not invariant under global translation. Now imposing the

constraint Ex̃ = δSΩ
?

δx̃
= 0 giving

e
Ω2

8
{φ, {e−1, {x̃, φ}?}?}? = 0 (3.61)

coupled to the transformations

δφ = −εν∂νφ δφc = −εν∂νφc εν = constant (3.62)

that we subtitute into (3.130) and taking into account eaν = ∂νφ
a, we infer from the relation

0 = δSΩ
? =

∫
M

dDx εν∂µT µν (3.63)

the EMT

T µν = −e
2

(∂νφ){∂µφ, e−1}? −
e

2
(∂νφc){∂µφc, e−1}?

+eeµb

{
LΩ
? ? (e−1∂νφ

b) + T (∆)
(
XcLΩ

? , X̃
b(e−1∂νφ

c)
)

+Ω2Θ−1
γν

[
S(∆)

(
{x̃γ, φ}?, X̃b(φ ? e−1)

)
+S(∆)

(
{φ, x̃γ ? φ}?, X̃b(e−1)

)
+S(∆)

(
φ, X̃b{x̃γ, φ}? ? e−1

)]}
. (3.64)

This tensor is neither symmetric nor locally conserved. In the case of standard Moyal product, it

reduces to the NC EMT computed in [7] and its regularization can be worked out in the same

way as done in that work. Similarly, using the transformation

δφ = −εν∂νφ = −ενρxρ∂νφ δφc = −εν∂νφc = −ενρxρ∂νφc εν = ενρxρ (3.65)
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where ενρ is an infinitesimal constant skew symmetric Lorentz tensor, and ενρx[ν∂ρ]φ = −2ενρxρ∂νφ

substituted into (3.130) yields

0 = δSΩ
? =

∫
M

dDx ενρ∂µMµ
νρ (3.66)

which affords the AMT as

Mµ
νρ =

e

4
x[ν∂ρ]φ{∂µφ, e−1}? +

e

4
x[ν∂ρ]φc{∂µφc, e−1}?

−ee
µ
b

2

(
LΩ
? ? (e−1x[ν∂ρ]φ

b)
)

+
eeµb
2

{
T (∆)

(
XcLΩ

? , X̃
b(e−1x[ν∂ρ]φ

c)
)

−T (∆)
(
∂[νφ,

1

2
X̃b({∂ρ]φ, e

−1}?)
)

−T (∆)
(
∂[νφ

d,
1

2
X̃b({∂ρ]φd, e

−1}?)
)

+S(∆)
(
∂[νφ, X̃

b(∂ρ]φ ? e
−1)
)

+S(∆)
(
∂[νφd, X̃

b(∂ρ]φ
d ? e−1)

)
−Ω2

4
Θ−1
γ[ν

[
T (∆)

(
xρ], X̃

b({φ, {e−1, {x̃γ, φ}?}?}?)
)

+2S(∆)
(
{x̃γ, φ}?, X̃b(xρ] ? φ ? e

−1)
)

+2S(∆)
(
{φ, x̃γ ? φ}?, X̃b(xρ] ? e

−1)
)

+2S(∆)
(
φ, X̃b(xρ] ? {x̃, φ}? ? e−1)

)]}
. (3.67)

This angular momentum tensor is not conserved, in contrary to the result obtained for the non

renormalizable twisted φ?4 model studied in [3]. This analysis is compatible with the previous GW

model investigation [8]. One recovers the canonical angular momentum tensor of the decoupled

fields in the commutative limit. Defining now the dilatation transformation by

x→ x′ = εx φ(x)→ φ′(x′) = φ′(εx) = ε−∆φ(x) (3.68)

where ε is a constant number, and ∆ is the scale dimension of the field φ, we note that the GW

action is invariant over dilatation symmetry if ∆ = 0 and ε = ±1, implying

x′ = x φ′(x) = φ(x) or x′ = −x φ′(−x) = φ(x) (3.69)

which is nothing but a parity transformation of the space-time inducing a conserved current:

Dµ = Rµ(δx̃→ −2x̃)− 2xµ(LΩ
? ? e

−1)e. (3.70)

Finally, the EMT, AMT and DC can be computed under the well defined field values at the

boundary, i.e.
∫
edDxXbS(∆)(f, X̃bg) = 0, to give simplified expressions. In this case, there

follow

T µν = −e
2

(∂νφ){∂µφ, e−1}? −
e

2
(∂νφc){∂µφc, e−1}?
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+eeµb

{
LΩ
? ? (e−1∂νφ

b) + T (∆)
(
XcLΩ

? , X̃
b(e−1∂νφ

c)
)}

(3.71)

and

Mµ
νρ =

e

4
x[ν∂ρ]φ{∂µφ, e−1}? +

e

4
x[ν∂ρ]φc{∂µφc, e−1}?

−ee
µ
b

2

(
LΩ
? ? (e−1x[ν∂ρ]φ

b)
)

+
eeµb
2

{
T (∆)

(
XcLΩ

? , X̃
b(e−1x[ν∂ρ]φ

c)
)

−T (∆)
(
∂[νφ,

1

2
X̃b({∂ρ]φ, e

−1}?)
)

−T (∆)
(
∂[νφ

d,
1

2
X̃b({∂ρ]φd, e

−1}?)
)

−Ω2

4
Θ−1
γ[νT (∆)

(
xρ], X̃

b({φ, {e−1, {x̃γ, φ}?}?}?)
)}

(3.72)

and the current of dilatation symmetry expressed as

Dµ = −Ω2eeµbT (∆)
(
x̃, X̃b{φ, {e−1, {x̃, φ}?}?}?)

)
− 2xµ(LΩ

? ? e
−1)e. (3.73)

3.3 Twisted Yang-Mills Model

As already mentioned, the construction of noncommutative field theories in a nontrivial back-

ground metric generally implies a non-constant deformation matrix Θ̃µν = Θ̃µν(x). There natu-

rally results the difficulty of finding a suitable explicit closed Moyal type formula and consequently,

defining a noncommutative product becomes rather complicated.The situation is simpler when

one deals with the Moyal space RD
Θ , i.e. the deformed D−dimensional space endowed with a

constant Moyal ?−bracket of coordinate functions [xµ, xν ]? = iΘµν . In this case the star product

(see [76]-[19] and reference therein) is defined by

(f ? g)(x) = m
{
ei

Θµν

2
∂µ⊗∂νf(x)⊗ g(x)

}
x ∈ RD

Θ ∀f, g ∈ C∞(RD
Θ) (3.74)

m is the ordinary multiplication of functions, i.e. m(f ⊗ g) = f.g. In the coordinate basis, this

space is generated by the usual commuting vector field ∂µ =: ∂
∂xµ
∈ TxRD

Θ , the tangent space of

RD
Θ , conferring to Moyal space the properties of a flat space.

On the contrary, in the context of a dynamical noncommutative field theory, the vector field

can be generalized to take the form Xa = eµa(x)∂µ, where eµa(x) is a tensor depending on the

coordinate functions in the complex general linear matrix group of order D, GL(D,C). The star

product then takes the form

(f ? g)(x) = m
{
ei

Θab

2
Xa⊗Xbf(x)⊗ g(x)

}
x ∈ RD

Θ̃
∀f, g ∈ C∞(RD

Θ̃
) (3.75)

and the vielbeins are given by the infinitesimal affine transformation as

eµa(x) = δµa + ωµabx
b, (3.76)
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where ωab ∈ GL(D,C). Using (3.76), the non vanishing Lie bracket peculiar to the non-coordinate

base [44]

[Xa, Xb] = ecν

[
eµa∂µe

ν
b − e

µ
b ∂µe

ν
a

]
Xc = Cc

abXc (3.77)

is here simply reduced to

[Xa, Xb] = ωµba∂µ − ω
µ
ab∂µ = −2ωµab∂µ. (3.78)

Besides, the dynamical star product (3.75) can now expressed as

(f ? g)(x) = m
[

exp
( i

2
θe−1εµν∂µ ⊗ ∂ν

)
(f ⊗ g)(x)

]
(3.79)

where e−1 =: det(eµa) = 1 + ω1
12x

2 − ω2
12x

1; εµν is the symplectic tensor in two dimensions,

(D = 2), i.e ε12 = −ε21 = 1, ε11 = ε22 = 0.

The coordinate function commutation relation becomes [xµ, xν ]? = iΘ̃µν = i(Θµν−Θa[µω
ν]
abx

b)

which can be reduced to the usual Moyal space relation, as expected, by setting ωµab = [0]. One

can check that the Jacobi identity is also well satisfied, i.e.

[xµ, [xν , xρ]?]? + [xρ, [xµ, xν ]?]? + [xν , [xρ, xµ]?]? = ΘbµΘd[νω
ρ]
bd = 0 (3.80)

conferring a Lie algebra structure to the defined twisted Moyal space. This identity ensures the

associativity of the star-product (3.75) and implies that

Θ̃σρ∂ρΘ̃
µν + Θ̃νρ∂ρΘ̃

σµ + Θ̃µρ∂ρΘ̃
νσ = 0. (3.81)

Remark that with the relation (3.78), the requirement that ωab is a symmetric tensor trivially

ensures the associativity of the star product. In the interesting particular case addressed in this

work, the associativity of the star product (3.75) can be shown even for the non symmetric tensor

ωab.

Proof of associativity: Notwithstanding the condition [Xa, Xb] 6= 0, i.e. ωµab is skew-

symmetric, the twisted ?−product defined in (3.75) remains noncommutative and associative.

Indeed, using the twisted star-product

(f ? g)(x) = m
[

exp
( i

2
θe−1εµν∂µ ⊗ ∂ν

)
(f ⊗ g)(x)

]
, (3.82)

one can see that

eikx ? eiqx = ei(k+q)xe−
i
2
θe−1kεq. (3.83)

The Fourier transform of f, g ∈ S(R2
Θ̃

) can be written as

f̃(k) =

∫
d2x e−ikxf(x), g̃(q) =

∫
d2x e−iqxg(x) (3.84)

with the function inverse transform given by

f(x) =

∫
d2k eikxf̃(k), g(x) =

∫
d2q eiqxg̃(q). (3.85)
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We can redefine the twisted star-product of two Schwartz functions f, g as:

(f ? g)(x) =

∫
d2kd2q f̃(k)g̃(q)eikx ? eiqx

=

∫
d2kd2q f̃(k)g̃(q)ei(k+q)xe−

i
2
θe−1kεq. (3.86)

Then, we have(
(f ? g) ? h

)
(x) =

[ ∫
d2kd2q f̃(k)g̃(q)e−

i
2
θe−1kεqei(k+q)x

]
?
[ ∫

d2p eipxh̃(p)
]

=

∫
d2kd2qd2p f̃(k)g̃(q)h̃(p)

(
e−

i
2
θe−1kεqei(k+q)x

)
? eipx (3.87)

Recalling that e−1 = 1 + ωµx
µ, we get

(
(f ? g) ? h

)
(x) =

∫
d2kd2qd2p f̃(k)g̃(q)h̃(p)e

− i
2

(
θkεq− 1

2
θ2ω(kεq)εp

)
e−

i
2
θe−1(k+q)εp

× e
i

(
k+q+p− 1

2
θωkεq

)
x

=

∫
d2kd2qd2p f̃(k)g̃(q)h̃(p)e

− i
2

(
θkεq+θ(k+q)εp− 1

2
θ2ω(kεq)εp

)

× e
i

(
k+q+p− i

2
θω(k+q)εp− 1

2
θωkεq

)
x

(3.88)

In the other side,(
f ? (g ? h)

)
(x) =

∫
d2kd2qd2p f̃(k)g̃(q)h̃(p)eikx ?

(
e−

i
2
θe−1qεpei(q+p)x

)
=

∫
d2kd2qd2p f̃(k)g̃(q)h̃(p)e

− i
2

(
θqεp+θkε(q+p)− 1

2
θ2ω(kεq)εp

)

× e
i

(
k+q+p− 1

2
θωqεp− 1

2
θωkε(q+p)

)
x

(3.89)

A straightforward expansion shows that (3.88) and (3.89) coincide. There results the conclu-

sion that the used twisted star-product (3.75) is well associative.�
From the particular condition [Xa, Xb] = 0, (i. e. the vector fields are commuting), there result

constraints on eµa , namely eµ[a∂µe
ν
b] = 0, that can be solved off-shell in terms of D scalar fields

φa. Supposing that the square matrix eµa has an inverse eaµ everywhere so that the Xa are linearly

independent, then the above condition becomes ∂[µe
a
ν] = 0 which is satisfied by eaν = ∂νφ

a. Since

Xaφ
b = δba, the field φb can be viewed as new coordinates along the Xa directions. The metric

g on RD
Θ̃

can be chosen to be g(Xa, Xb) = eµae
ν
bgµν = δab. See [3]-[43] for more details. In the

whole work, we deal with Euclidean signature and D = 2.

In this section we provide the general properties of gauge theory in twisted Moyal space,

and define related connections. The tensor ωµab is an infinitesimal tensor, skew-symmetric in the

indexes a and b. We study the symmetry of pure gauge theory and show that the related NC

action is invariant under U?(1) gauge transformation. Besides, we compute the resulting Noether

current. Finally, we investigate the properties of the model for commuting vector fields Xa.
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3.3.1 Connections and gauge transformation

Consider E = {xµ, µ ∈ [[1, 2]]} and C[[x1, x2]], the free algebra generated by E. Let I be the

ideal of C[[x1, x2]], engendered by the elements xµ ? xν − xν ? xµ − iΘ̃µν . The twisted Moyal

Algebra AΘ̃ is the quotient C[[x1, x2]]/I. Each element in AΘ̃ is a formal power series in the

xµ’s for which the relation [xµ, xν ]? = iΘ̃µν holds. Moyal algebra can be here also defined as

the linear space of smooth and rapidly decreasing functions equipped with the NC star product

given in (3.75). The gauge symmetries on this noncommutative space can be realized in their

enveloping algebra. However, there is an isomorphism mapping the noncommutative functions

algebra AΘ̃ into the commutative one, equipped with an additional noncommutative ?−product

[76]. We consider the following infinitesimal affine transformation

eµa(x) = δµa + ωµabx
b, ωµab =: −ωµba, and |ωµ| << 1. (3.90)

For D = 2, eµa and Θab can be expressed as follows:

(e)µa =
( 1 + ω1

12x
2 ω2

12x
2

−ω1
12x

1 1− ω2
12x

1

)
and (Θ)ab =

( 0 θ

−θ 0

)
= θ(ε)ab (3.91)

where ε12 = −ε21 = 1, ε11 = ε22 = 0. There follow the relations

e−1 =: det(eµa) = 1 + ω1
12x

2 − ω2
12x

1 (3.92)

e =: det(eaµ) = 1− ω1
12x

2 + ω2
12x

1. (3.93)

The tensor Θ̃µν can be written as [44]

(Θ̃)µν = (Θ)µν − (Θa[µω
ν]
ab)x

b =
( 0 θe−1

−θe−1 0

)
. (3.94)

Let us now define the space-time (M ⊆ R2
Θ̃

) metric as

gµν = eaµe
b
νδab =

( 1− 2ω1
12x

2 ω1
12x

1 − ω2
12x

2

ω1
12x

1 − ω2
12x

2 1 + 2ω2
12x

1

)
, (3.95)

where eaµ =
( 1− ω1

12x
2 −ω2

12x
2

ω1
12x

1 1 + ω2
12x

1

)
(3.96)

and its inverse as

gµν = eµae
ν
b δ
ab =

( 1 + 2ω1
12x

2 ω2
12x

2 − ω1
12x

1

ω2
12x

2 − ω1
12x

1 1− 2ω2
12x

1

)
, (3.97)

where eµa =
( 1 + ω1

12x
2 ω2

12x
2

−ω1
12x

1 1− ω2
12x

1

)
(3.98)

with g = −det(gµν). Noncommutative field theory over Moyal algebra of functions can be defined

as field theories over module H on the noncommutative algebra AΘ̃ or as matrix theories with

coefficients inAΘ̃. In the following, we restrict the study of field modules to rank trivial bi-modules

H over AΘ̃ with a Hilbert space structure defined by the scalar product

< a, b >=:

∫
ed2x Tr(a† ? b) ? e−1; a, b ∈ AΘ̃. (3.99)
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Provided this framework, the notion of connection defined on vector bundles in ordinary differential

geometry is replaced, in NC geometry, by the generalized concept of connection on the projective

modules as follows.

Definition 3.1 The sesquilinear maps ∇µ : H → H are called connections if they satisfy the

differentiation chain rule

∇µ(m ? f) = m ? ∂µ(f) +∇µ(m) ? f, for f ∈ AΘ̃ and m ∈ H (3.100)

(assumed here to be a right module over AΘ̃), and if they are compatible with the Hermitian

structure of H defined as h(f, g) = f † ? g, i.e.

∂µh(m1,m2) = h(∇µm1,m2) + h(m1,∇µm2). (3.101)

In the sequel, we can identify AΘ̃ with H.

Definition 3.2 Denoting by 1 the unit element of AΘ̃, we define the gauge potential by ∇µ1 =

−iAµ. Then the connection can be explicitly written as

∇µ(.) = ∂µ(.)− iAµ ? (.) (3.102)

Aµ is called the gauge potential in the fundamental representation.

Note that the left module can be used to define the connection in the anti-fundamental rep-

resentation by ∇µ(.) = ∂µ(.) + i(.) ? Aµ. In the same vein, the module can be used to define

the connection on the adjoint representation by ∇µ(.) = ∂µ(.)− i[Aµ, (.)]?. Here, we adopt the

fundamental representation. Now, we define the gauge transformation as a morphism of module,

denoted by γ, satisfying the relation

γ(m ? f) = γ(m) ? f for f ∈ AΘ̃ and m ∈ H (3.103)

and preserving the Hermitian structure h, i.e.

h(γ(f), γ(g)) = h(f, g) for f, g ∈ AΘ̃. (3.104)

For f = g = 1, one can prove that γ(1) ∈ U(AΘ̃), the group of unitary elements of AΘ̃, i.e.

γ†(1) ? γ(1) = 1.

Note that the Jacobi identity is covariantly written in the form

Θ̃σρ∇ρΘ̃
µν + Θ̃νρ∇ρΘ̃

σµ + Θ̃µρ∇ρΘ̃
νσ = 0. (3.105)

This equation is evidently satisfied whenever the following condition holds

∇ρΘ̃
µν = 0, (3.106)

which is very simple to handle in two-dimensional space. Indeed, in D = 2 the most general Θ̃

can be written in the form

Θ̃µν =
εµν√
−g(x)

θ(x1, x2), (3.107)
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where θ(x1, x2) is a constant, simply denoted by θ. Then

e−1 = 1/
√
−g(x) or e =

√
−g(x). (3.108)

To end this section, let us mention that the integral
∫
dDx f ? g, defined with the dynamical

Moyal ?−product (3.75), is not cyclic, even with suitable boundary conditions at infinity, i.e.∫
dDx (f ? g) 6=

∫
dDx (g ? f). (3.109)

Using now the measure edDx where e = det(eaµ), a cyclic integral can be defined so that, up to

boundary terms: ∫
edDx (f ? g) =

∫
edDx(fg) =

∫
edDx (g ? f). (3.110)

In flat space
√
−g(x) = 1.

3.3.2 Dynamical pure gauge theory

We consider a field ψ, element of the algebra AΘ̃, (ψ ∈ AΘ̃), and its infinitesimal gauge variation

δψ such that, under an infinitesimal gauge transformation α(x), the relation δαψ(x) = iα(x) ?

ψ(x) is obeyed. The covariant coordinates are defined as

Xµ = xµ + Aµ, Aµ ∈ AΘ̃ (3.111)

Aµ is called the gauge potential and satisfies the relation δαA
µ = Θ̃µρ∂ρα + i[α,Aµ]?. One can

check that

[α(x), Θ̃µσ]? = iΘa[µωσ]
acΘ

cρ∂ρα(x), and Θ̃−1
µσδαΘ̃µσ = 2ωaacδx

c. (3.112)

From the last two equations and the definition of Aσ such that Aµ = Θ̃µσAσ, we derived the

gauge variation

δαAσ = ∂σα(x) + i[α(x), Aσ]? + 2ωaac

(
Θcρ∂ρα(x)− δxc

)
Aσ (3.113)

There result two contributions in the expression of δαAσ: the first contribution consisting of the

first two terms of the ordinary Moyal product [64], and the second one given by the last term

pertaining to the twisted effects of the theory. Of course, when ω = 0, we recover the usual

Moyal result.

The NC gauge tensor T µν ∈ AΘ̃ is defined by T µν = [Xµ, Xν ]? − iΘ̃µν and satisfies the

properties

δαT
µν = i[α(x), T µν ]?. (3.114)

It is then convenient to use the relation T µν = iΘ̃µσΘ̃νλFσλ to derive the twisted Faraday tensor

Fσλ as

Fσλ = ∂σAλ − ∂λAσ − i[Aσ, Aλ]? −Θ−1
νλΘa[νωλ]

aσAλ + Θ−1
µσΘa[µω

σ]
aλAσ
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−
(

Θ−1
µσΘa[µωσ]

acΘ
cρ∂ρAλ

)
Aσ +

(
Θ−1
νλΘa[νωλ]

acΘ
cρ∂ρAσ

)
Aλ (3.115)

= ∂σAλ − ∂λAσ − i[Aσ, Aλ]? + 2ωaa[σAλ] − 2ωaacΘ
cρ(∂ρA[σ)Aλ]. (3.116)

Canceling the ”twisted” contributions involved in the last two terms on the right hand side of

this relations, we turn back to usual Moyal product result.

We then arrive at the expression of the dynamical NC pure gauge action defined as

SYM = − 1

4κ2

∫
ed2x

(
Fµν ? F

µν ? e−1
)

(3.117)

where e =: det(eaµ).

Define also the gauge transformation U by

U = eiα? =
∞∑
k=0

ik(α)k?
k!

= 1 + iα + (i2/2!)α ? α + (i3/3!)α ? α ? α + · · · ; α ∈ C∞(R) (3.118)

U?(1) is NC gauge group generated by elements U ∈ U?(1). The infinitesimal gauge transfor-

mation U = 1 + iα(x) defined in the noncommutative Moyal space is the same as the ordinary

infinitesimal gauge transformation in commutative space. Making the gauge transformation of

tensor Fµν into FU
µν = U ? Fµν ? U

†, then the transformed gauge action yields:

SUYM = − 1

4κ2

∫
ed2x

(
U ? Fµν ? U

† ? U ? F µν ? U † ? e−1
)

= − 1

4κ2

∫
ed2x

(
U ? Fµν ? F

µν ? U † ? e−1
)

= − 1

4κ2

∫
ed2x

(
Fµν ? F

µν ? U † ? e−1 ? U

+2S(∆)(U, X̃a(Fµν ? F
µν ? U † ? e−1))

)
(3.119)

Proposition 3.3 Provided the stubborn requirement that the surface terms be vanished, the

action (3.117) is invariant under the global gauge transformation, i.e. setting α = α0 = cste in

(3.118).

Proof: From the infinitesimal gauge transformation U(α) = 1 + iα(x), its conjugate given by

U †(α) = 1− iα(x) and the definition e−1 := 1 +ωµx
µ, where ω1 = ω1

12 and ω2 = −ω2
12, we have

U † ? e−1 = e−1(1− iα(x)) +
1

2
Θ̃µν∂µα(x)ων

⇒ U † ? e−1 ? U = e−1 + Θ̃µνων∂µα(x) = e−1 + Θµνων∂µα(x).

U † ? e−1 ? U = e−1 ⇒ Θµνων∂µα(x) = 0⇒ α(x) = α0 = cste �

Furthermore, the following statement is true.
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Proposition 3.4 Provided the same requirement of vanishing condition of the surface terms,

(i) the action (3.117) is invariant under the noncommutative group of unitary transformations

U?(1) defined by the parameter α = α0 + εσx
σ, where εσ is an infinitesimal parameter and α0 an

arbitrary constant, and (ii) there exists an isomorphism between the NC gauge group induced by

(3.113) and U?(1) group.

Proof: The part (i) is immediate from the previous proof. (ii) Imposing the condition α =

α0 + ελx
λ, the NC gauge transformation (3.113) is reduced to the form:

δαAσ = ∂σα− εµΘµρ∂ρAσ = ∂ρ

(
δρσ
α

2
− εµΘµρAσ

)
= ∂Λ (3.120)

giving rise to the isomorphism

f : ∂Λ→ eiΛ? = 1 + i
(α

2
− εµΘµρAσ

)
(3.121)

mapping the NC gauge group (3.113) into the U?(1) group. �
Therefore, the U?(1) group can be considered as the invariance NC gauge group for the

Yang-Mills action defined in (3.117). Note that setting εµ = 0 we recover the global gauge

transformation of the usual gauge field theory.

The Aµ variation of the action (3.117) is given by

δASYM = − 1

4κ2

∫
d2x (δAβEA + ∂βJ

β) (3.122)

where the equation of motion of the field A is provided by

δSYM
δAβ

= EA = −∂µ(e{F µβ, e−1}?) + ∂ν(e{F βν , e−1}?)

−ie[Aν , {F βν , e−1}?]? + ie[Aµ, {F µβ, e−1}?]?
−2ωaacΘ

cρ
(
∂ρ(−eAν{F βν , e−1}? + eAµ{F µβ, e−1}?)

)
−2eωaacΘ

cρ
(
∂ρAµ{F µβ, e−1}? − ∂ρAν{F βν , e−1}?

)
+2e

(
ωaaµ{F µβ, e−1}? − ωaaν{F βν , e−1}?

)
= 0

(3.123)

and the current Jβ by

Jβ = − 1

4κ2

[
eδAν{F βν , e−1}? − eδAµ{F µβ, e−1}?

−ieeβa
(
T (∆)(δA[µ, X̃

a[Aν], {F µν , e−1}?]?)

+T (∆)([δA[µ, Aν]]?, X̃
a{F µν , e−1}?)

+2S(∆)(A[µ, X̃
a(δAν]{F µν , e−1}?))

)
−2ωaacΘ

cβeδA[µAν]{F µν , e−1}?
+eeβa

(
T (∆)(δF µν , X̃a{F µν , e−1}?)

+2S(∆)(F µν , X̃aδF µν ? e−1)
)]

(3.124)
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where [δA[µ, Aν]]? = δAµ ? Aν − Aν ? δAµ − δAν ? Aµ + Aµ ? δAν . Using the property that

F µν = −F νµ and the fact that the surface terms are canceled, the equation of motion EA = 0

and the current Jβ can be re-expressed, respectively, as

δSYM
δAβ

= EA = −2∂µ(e{F µβ, e−1}?)− 4ωaacΘ
cρ∂ρ(eAµ{F µβ, e−1}?)

−4eωaacΘ
cρ∂ρAµ{F µβ, e−1}? + 4eωaaµ{F µβ, e−1}? = 0 (3.125)

and

Jβ =
1

2κ2

(
eδAµ{F µβ, e−1}? + ωaacΘ

cβeδA[µAν]{F µν , e−1}?
)
. (3.126)

Let us now deal with the symmetry analysis and deduce the conserved currents. Performing the

following functional variation of fields and coordinate transformation

A′µ(x) = Aµ(x) + δAµ(x), x′µ = xµ + εµ, εµ = δxµ = 0 (3.127)

and using d2x′ = [1 + ∂µε
µ + O(ε2)]d2x = d2x lead to the following variation of the action, to

first order in δAµ(x) and δφc(x):

δSYM =

∫
ed2x

{∣∣∣∂x′
∂x

∣∣∣ ? (L′YM ? e−1)
}
−
∫

ed2x (LYM ? e−1)

=

∫
d2x δ

(
(LYM ? e−1)e

)
=

∫
d2x

{
δAµ

(
(LYM ? e−1)e

))}
(3.128)

where

LYM = − 1

4κ2
F µν ? Fµν and L′YM = − 1

4κ2
F µν
U ? FU

µν . (3.129)

On shell, and integrated on a submanifold M ⊂ R2 with fields non vanishing at the boundary

(so that the total derivative terms do not disappear), we get:

δSYM =

∫
M

d2x ∂σJ σ = 0. (3.130)

Proposition 3.5 The noncommutative Noether current J σ is locally conserved.

Proof: The analysis of the local properties of this tensor requires the useful formulas

δαAµ = εµ(1 + Θρσ∂ρAσ), ωaac = −ωc, ∂βe = −ωβ, {F µν , e−1}? = 2e−1F µν . (3.131)

A straightforward computation gives

Jβ =
εµ
κ2

(
1 + Θρσ∂ρAσ

)
F µβ ⇒ ∂βJ

β =
εµ
κ2

(
1 + Θρσ∂ρAσ

)
∂βF

µβ. (3.132)

The equation of motion (3.125) can be simply re-expressed in the form

∂µF
µβ = 2ωµF

µβ − 4ωcΘ
cρ(∂ρAµ)F µβ − 2ωcΘ

cρAµ∂ρF
µβ. (3.133)

Now using the fact that εω = 0 yields the result. �
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Remark 3.6 .

• The equation of motion (3.133) is reduced to ∂µF
µβ = 0 in ordinary Moyal plane.

• The action of gauge theory covariantly coupled with the matter fields defined by

S = SYM + SM (3.134)

where

SM =

∫
R2

ed2x
[
ψ̄(x)

(
− iΓµ∇µ +m

)
ψ(x) + λ1(ψ̄ ? ψ ? ψ̄ ? ψ)(x)

+λ2(ψ̄ ? ψ̄ ? ψ ? ψ)(x)
]
? e−1, (3.135)

is also invariant under global gauge transformation (δψ = iα0ψ, δψ̄ = −iα0ψ̄). The current

can be also easily deduced in the same manner as above.

3.3.3 Case of commuting vector fields

Consider the non coordinates base eµa = δµa +ωµabx
b and the symmetric tensor (between the index

a and b) ωµab. Then, the twisted star product is naturally associative since

[Xa, Xb] = ωµba∂µ − ω
µ
ab∂µ = 0. (3.136)

The matrix representation of eµa is given by

(e)µa =
( 1 + ω1

11x
1 + ω1

12x
2 ω2

11x
1 + ω2

12x
2

ω1
12x

1 + ω1
22x

2 1 + ω2
12x

1 + ω2
22x

2

)
(3.137)

and

(e)aµ =
( 1− ω1

11x
1 − ω1

12x
2 −ω2

11x
1 − ω2

12x
2

−ω1
12x

1 − ω1
22x

2 1− ω2
12x

1 − ω2
22x

2

)
. (3.138)

Further,

e−1 = det(eµa) = 1 + (ω1
11 + ω2

12)x1 + (ω2
22 + ω1

12)x2

e = det(eaµ) = 1− (ω1
11 + ω2

12)x1 − (ω2
22 + ω1

12)x2., (3.139)

The noncommutative tensor is provided by (Θ̃)µν = θe−1
( 0 1

−1 0

)
. Besides, the matrix eaµ can

be written as eaµ = δaµ + ωabµ xb, where ωabµ = −ωµab. Finally, the solution of the field equation

eaµ = ∂µφ
a is well given by φa = xa + 1

2
ωabµ xb x

νδµν as deduced in [44]. The φc variation of the

action can be easily computed and the resulting equation of motion is

δSYM
δφc

= Eφc,A = e−1Xa(Fµν ? F
µν)− (XaF

µν){Fµν , e−1}? = 0 (3.140)

This variation generates the current

Kβ = −ee
β
b

4κ2

[
(−Fµν ? F µν ? δφbe−1) + T (∆)

(
Xa(Fµν ? F

µν), X̃b(δφae−1)
)
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−T (∆)
(
δφa(XaFµν), X̃

b{F µν , e−1}?
)

+ δφb(Fµν ? F
µν ? e−1)

]
+2S(∆)

(
δφa(XaFµν) ? e

−1, X̃bF µν
)
. (3.141)

Performing the transformation φ′c(x) = φc(x) + δφc(x) where δφc(x) = iα ? φc(x), with α = α0

or α = α1, the variation of the action yields the result:

δSYM =

∫
d2x δ

(
(LYM ? e−1)e

)
=

∫
d2x

{
δAµ

(
(LYM ? e−1)e

)
+ δφc

(
(LYM ? e−1)e

)}
=

∫
M

d2x ∂σ

(
J σ +Kσ

)
= 0 (3.142)

Then J σ can be computed in the same way as for symmetric ωµab. See relation (3.124). The gauge

invariance of the YM action furnishes the current J ′σ = J σ +Kσ. Under vanishing condition of

the surface terms, J ′σ is locally conserved on shell.
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Chapter Four

Noncommutative Solvable Quantum

Models

Quantum mechanics, and its extension, quantum field theory, are counted amongst the greatest

scientific advances of the 20th century. This is not only due to the unprecedented success of quan-

tum theory in explaining and predicting experimental results, but also maybe more than anything,

quantum theory represented a conceptual revolution, challenging the deterministic paradigm of

classical physics. In quantum mechanics, a system is allowed to be in a superposition of different

states simultaneously, and only upon the intervention of measurement is it forced to take on a

definite state. Any prediction of experimental outcomes is therefore statistical in nature.

Despite its accomplishments, quantum mechanics appears to have one obvious limitation: it

is formulated exclusively to describe point particles, regarded as entities without spatial extent or

structure. Of course, any particle looks like a point from sufficiently far, and at low densities we

would expect finite-size effects to play a minor role. However, at high densities and energies we

would expect such effects to be significant.

In this chapter, we first review the formalism of noncommutative quantum mechanics, where

noncommutative quantum mechanics is formulated as a quantum system on the Hilbert space

of Hilbert-Schmidt operators acting on classical configuration space. Then we investigate some

relevant solvable models.

4.1 Relation between configuration space and Fock space

Let us specialize to two-dimensional spacetime with NC coordinates x̂1, x̂2. In this case the

canonical commutation relation can be written as [x̂1, x̂2] = iΘ or defining â and â† as

â =
x̂1 + ix̂2

√
2

, â† =
x̂1 − ix̂2

√
2

or b̂ =
â√
Θ
, b̂† =

â†√
Θ
. (4.1)

Then the operator â and â† realize the algebra of annihilation and creation operators usually

introduced in the process of second quantization. One can then consider a Fock space with a

basis |n > (n ∈ N) provided by the eigenfunctions of the number operator N̂ = b̂†b̂ such that

N̂ |n >= n|n >, with

b̂|n >=
√
n|n− 1 >, b̂†|n >=

√
n+ 1|n+ 1 > or (4.2)

â|n >=
√

Θn|n− 1 >, â†|n >=
√

Θ(n+ 1)|n+ 1 > (4.3)
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and the vacuum state |0 > defined so that â|0 >= 0 = b̂|0 >. For Θ ' 0 (not equal to 0), one

can write

N̂ =
(x̂1)2 + (x̂2)2

2Θ
=

r̂2

2Θ
(4.4)

so that configuration space at infinity can be connected with n→∞ in Fock space. Let us now

derive a precise connection, known as the Weyl connection, between the Moyal product of fields

in configuration space and the product of operators in Fock space. To this end, we consider a

field f(x1, x2) in configuration space and take its Fourier transform

f̃(k, k̄) =

∫
d2x f(x1, x2) ei(x

1k1+x2k2). (4.5)

Then, define an operator, acting in Fock space, associated to f , by

Wf (b̂, b̂
†) =

1

(2π
√

Θ)2

∫
d2k f̃(k, k̄)e−i(k̄b̂+kb̂

†) (4.6)

In term of the complex coordinates at this point, one can already verify that∫
d2z f(z, z̄) = 2πΘ trWf z =

x1 + ix2

√
2

(4.7)

and tr means the Fock space trace of operator Wf . To see this, we start from (4.6) and write

< n|Wf |n >=
1

4π2Θ

∫
d2k f̃(k, k̄) < n|e−i(k̄b̂+kb̂†)|n >= Wnn (4.8)

which, using the Baker-Campbell-Haussdorf formula, can be arranged as

Wnn =
1

4π2Θ

∫
d2k f̃(k, k̄)e

kk̄
2 < n|e−ikb̂† e−ik̄b̂|n > . (4.9)

Then, use the Schwinger formula

< n|e−ikb̂† e−ik̄b̂|n >= Ln(kk̄). (4.10)

A derivation of this formulae, as well as a number of the resulting properties of the Laguerre

polynomials, is given in [14]. One gets

trWf =
∑
n

Wnn =
1

4π2Θ

∫
d2k f̃(k, k̄)e

kk̄
2

∑
n

Ln(kk̄). (4.11)

Then using the identity∑
n

tnLn(x) =
1

1− t
e
−tx
1−t

∑
n

Ln(kk̄) = 2πδ(k)δ(k̄) (4.12)

leads to

trWf =
1

2πΘ
f̃(0, 0) =

1

2πΘ

∫
d2zf(z, z̄). (4.13)
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The natural basis to use in Fock space in order to expand operators W consists of the elementary

operators |m >< n|,

Wf =
∑
mn

(Wf )mn|m >< n|. (4.14)

The basis operators can be in turn expressed in terms of b̂† and b̂ in the form

|m >< n| =:
b̂†m√
m!
e−b̂

†b̂ b̂
n

√
n!

: (4.15)

where : : denotes normal ordering. That identity (4.15) holds can be seen just by verifying that,

when acting on kets |p >’s and on bras |q >’s, both sides give the same answer. Expression (4.6)

gives a symmetric ordered operator. We can write an analogous formula but for a normal ordered

operator just by using the Baker-Campbell-Hausdorff relation. One has, starting from (4.6)

: Wf (b̂, b̂
†) : =

1

4π2Θ

∫
d2kf̃N(k, k̄) : e−i(k̄b̂+kb̂

†) :

=
1

4π2Θ

∫
d2kf̃N(k, k̄)e−i(k̄b̂+kb̂

†)ek
2/4. (4.16)

Note that we use the subscipt N associated to the normal-ordered expression. Consider the

operator Wn = |n >< n|. For simplicity, we temporarily put Θ = 1. Using representation (4.15),

we have

Wn =:
b̂†n√
n!
e−b̂

†b̂ b̂
n

√
n!

:=
1

4π2

∫
d2k g̃nN(k, k̄) : e−i(k̄b̂+kb̂

†) : (4.17)

with

g̃nN(k, k̄) =
1

n!

∫
d2z ei(kz̄+k̄z)z̄ne−z̄zzn. (4.18)

We can use at this point an integral representation for the Laguerre polynomials. See the very

useful book on coherent states by A. Perelemov, or that recently published by J-P. Gazeau. In

fact, one has:

Ln(k2/2) =
1

2πn!
ek

2/2

∫
d2z |z|2ne−i(k̄b̂+kb̂†) (4.19)

and use the second line in the equation (4.16) to write

|n >< n| = 1

2π

∫
d2k e−k

2/4Ln(k2/2)e−i(k̄b̂+kb̂
†). (4.20)

The function gn(x) that corresponds to the operator Wn can be copied from (4.20)

gn(x) =
1

2π

∫
d2k e−k

2/4Ln(k2/2)e−ikx

= 2(−1)ne−r
2

Ln(2r2) (4.21)

where r2 = (x1)2 + (x2)2. Re-introducing Θ we then have the connection

|n >< n| → 2(−1)ne−r
2/ΘLn(2r2/Θ). (4.22)
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Now, we are ready to present the most significant formula in this section,

WfWg︸ ︷︷ ︸
operator product

= W f ? g︸︷︷︸
star product

. (4.23)

It shows that the star product of fields in configuration space as defined in (1.1) becomes a

simple operator product in Fock space. In this way, one can either work using Moyal products or

operator products and pass from one language to the other just by Weyl (anti)transforming the

results. In order to prove (4.23) we start from the l.h.s. and use (4.16) to write

Wf .Wg =
1

16π4Θ

∫
d2k

∫
d2k′ f̃(k, k̄)g̃(k′, k̄′)e−

(k2+k
′2)

4 e−i(k̄b̂+kb̂
†)e−i(k̄

′b̂+k′b̂†)

=
1

16π4Θ

∫
d2k

∫
d2k′ f̃(k, k̄)g̃(k′, k̄′)e−

(k2+k
′2)

4 e−i[(k̄+k̄′)b̂+(k+k′)b̂†]

×e
i
2

(kk̄′−k′k̄). (4.24)

We now proceed to the change of variable k + k′ = p, (k− k′)/2 = q and analogously for “bar”

variables. Then (4.24) becomes

Wf .Wg =
1

4π2

∫
d2p e−i(p̄b̂+pb̂

†)
[ 1

4π2

∫
d2q e

i
2

(qp̄−pq̄) f̃(q + p/2, q̄ + p̄/2)

×g̃(−q + p/2,−q̄ + p̄/2)
]

(4.25)

Now, the factor in square brackets is nothing but the Fourier transform of f ? g for NC R2 (and

with Θ = 1). Hence, we end with

Wf .Wg =
1

4π2

∫
d2p e−i(p̄b̂+pb̂

†)f̃ ? g(p, p̄) = Wf?g. (4.26)

So, we have established the announced connection between operator multiplication and the star

product of functions.

It is easy to identify the operation that corresponds to differentiation in Fock space. Indeed,

starting from

[b̂†, b̂n] = −nb̂n−1 (4.27)

we see that, for any holomorphic function f(b̂) written in the form

f(b̂) =
∑

cnb̂
n, (4.28)

one can define a differentiation operation through the formula

∂f

∂b̂
= −[b̂†, f(b̂)] (4.29)

and analogously for any f(b̂†). Then, differentiation of a field φ(z, z̄) becomes, in operator lan-

guage,

∂zφ(z, z̄)→ − 1√
Θ

[b̂†,Wφ], ∂z̄φ(z, z̄)→ − 1√
Θ

[b̂,Wφ] (4.30)
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Then the action of NCFT can be written in operator language. Note that for z = reiϕ

|0 >< 0| = 2e−r
2/Θ (4.31)

Using the formula

∞∑
n=0

1√
n+ 1

|n+ 1 >< n| =
√

2Θ

r

(
1− e−r2/Θ

)
e−iϕ (4.32)

and
∞∑
n=0

1√
n+ 1

|n >< n+ 1| =
√

2Θ

r

(
1− e−r2/Θ

)
eiϕ (4.33)

we can deduce:

|n >< n+ l| = 2(−1)n

√
n!

(n+ l)!

(2r2

Θ

)l/2
e−r

2/ΘeilϕLln

(
2r2/Θ

)
. (4.34)

In the commutative limit, we find

1

Θ
e−r

2/Θ
Θ→0︷︸︸︷−→ πδ(x1)δ(x2) (4.35)

4.1.1 Harmonic oscillator basis on Moyal space: Algebraic formulation

Following the matrix base method [34], we represent the elements of the D−dimensional Moyal

algebra M in a matrix base. Let b
(D)
kl (x) be eigenfunctions of the harmonic oscillator

H =

D
2∑
l=1

1

2

(
x2

2l−1 + x2
2l

)
, for l = 0, 1 · · · D

2
. (4.36)

Properties 4.1 Let b
(D)
00 = 2D/2e−2H/Θ, then we have the property b

(D)
00 ? b

(D)
00 = b

(D)
00 .

Prove: To prove this formula, let us write the Moyal star product as

(f ? g)(x) =

∫
dDy

dDk

(2π)D
f(x+

1

2
Θk)g(x+ y)eiky (4.37)

and take D = 2. Then (Θ) =

(
0 Θ

−Θ 0

)
and b

(2)
00 = 2e

−|x|2
Θ ; |x|2 = (x1)2 + (x2)2.

b
(2)
00 ? b

(2)
00 = 4

∫
d2y

d2k

(2π)2
e−

1
Θ
|x+ 1

2
Θk|2e−

1
Θ
|x+y|2eiky

|x+
1

2
Θk|2 = (x1 +

1

2
Θk2)2 + (x2 − 1

2
Θk1)2 = |x|2 +

1

4
Θ2|k|2 + Θx ∧ k

where x ∧ k = x1k2 − x2k1. We have also

|x+ y|2 = |x|2 + |y|2 + 2xy
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Then

b
(2)
00 ? b

(2)
00 =

4e
−2|x|2

Θ

(2π)2

∫
d2kd2y e−

1
4

Θ|k|2−x∧k− 1
Θ
|y|2− 2

Θ
xy+iky.

Remark that

−x ∧ k − 2

Θ
xy = (y, k)

( − 2
Θ
x

∧x

)
= (y, k)b

and

−1

4
Θ|k|2 − 1

Θ
|y|2 − iky = −1

2
(y, k)

( 2
Θ
−i

−i Θ
2

)( y

k

)
X = (y, k) is a vector on R2

Θ × R2. In the same consideration
( 2

Θ
−i

−i Θ
2

)
= A is 4× 4 matrix

given by A =
( 2

Θ
I2 −iI2

−iI2
Θ
2
I2

)
. I2 is 2× 2 identity matrix.

b
(2)
00 ? b

(2)
00 =

4e
−2|x|2

Θ

(2π)2

∫
d4X e−

1
2
<X,AX>+<b,X>.

Then using the generalized gaussian integral∫
dDx e

−
(

1
2
<X,AX>+<b,X>+c

)
= (2π)D/2e

1
2
<b,A−1b>−c(detA)−1/2 (4.38)

we get

b
(2)
00 ? b

(2)
00 =

4e
−2|x|2

Θ

(2π)2
(2π)2e

1
2
<−b,A−1(−b)>1

2

1
2
< −b, A−1(−b) >= |x|2

Θ
⇒ b

(2)
00 ? b

(2)
00 = b

(2)
00 . This result can be generalized to D dimensions.�

Definition 4.2 Defining the annihilation and creation operators as

al =
x2l−1 + ix2l√

2
, and āl =

x2l−1 − ix2l√
2

, (4.39)

the elements of matrix basis on Moyal space are given by

b
(D)
kl =

āk? ? b
(D)
00 ? al?√

k!l!Θ|k|+|l|
(4.40)

where a =
∑D/2

i=1 ai, and ā =
∑D/2

i=1 āi.

Properties 4.3 We have

a ? b
(D)
kl =

√
|k|Θb(D)

k−1,l, b
(D)
kl ? a =

√
Θ(|l + 1|)b(D)

k,l+1, (4.41)

a ? b
(D)
kl =

√
Θ(|k + 1|)b(D)

k+1,l, b
(D)
kl ? a =

√
|l|Θb(D)

k,l−1 (4.42)

H ? b
(D)
kl = Θ(|k|+ 1

2
)b

(D)
kl , b

(D)
kl ? H = Θ(|l|+ 1

2
)b

(D)
kl , (4.43)

where k, l ∈ ND/2 and |k| =
∑D/2

i=1 ki.
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Prove For simplicity, let us restrict the proof to D = 2−dimensional Moyal space. We get

f ? a =
(
a− θ

2

∂

∂a

)
f, f ? a =

(
a+

θ

2

∂

∂a

)
f (4.44)

and

a ? f =
(
a+

θ

2

∂

∂a

)
f, a ? f =

(
a− θ

2

∂

∂a

)
f. (4.45)

Then

b(2)
mn ? a =

am? ? b
(2)
00 ? a

n
?√

m!n!θm+n
? a =

am? ? b
(2)
00 ? a

n+1
?√

m!n!θm+n

=
am? ? b

(2)
00 ? a

n+1
?√

m!(n+ 1)!θm+n+1

√
θ(n+ 1) =

√
θ(n+ 1)b

(2)
m,n+1 (4.46)

a ? b(2)
mn = a ?

am? ? f0 ? a
n
?√

m!n!θm+n
=
am+1
? ? b

(2)
00 ? a

n
?√

m!n!θm+n

=
am+1
? ? b

(2)
00 ? a

n
?√

(m+ 1)!n!θm+n+1

√
θ(m+ 1) =

√
θ(m+ 1)b

(2)
m+1,n. (4.47)

Note that

a ? b(2)
mn = ab(2)

mn +
θ

2

∂b
(2)
mn

∂a
= ab(2)

mn +
θ

2

[
m
am−1
? ? b

(2)
00 ? a

n
?√

m!n!θm+n
+
am? ? (−2a

θ
b

(2)
00 ) ? an?√

m!n!θm+n

]
= ab(2)

mn +
mθ

2

am−1
? ? b

(2)
00 ? a

n
?√

(m− 1)!n!θm−1+n

1√
mθ
− am? ? (ab

(2)
00 ) ? an?√

m!n!θm+n

= ab(2)
mn +

√
mθ

2
b

(2)
m−1,n −

am? ? (ab
(2)
00 ) ? an?√

m!n!θm+n
. (4.48)

We now prove that

am? ? (ab
(2)
00 ) ? an?√

m!n!θm+n
= ab(2)

mn −
√
mθ

2
b

(2)
m−1,n. (4.49)

Applying am? to ab
(2)
00 m = 1, 2, · · ·, we have the result

am? ? (ab
(2)
00 ) = 2maamb

(2)
00 −m2m−2am−1θb

(2)
00 . (4.50)

Remark that amb
(2)
00 = 1

2m
am? ? b

(2)
00 . Then am? ? (ab

(2)
00 ) can be written as

am? ? (ab
(2)
00 ) = a.am? ? b

(2)
00 −

mθ

2
am−1
? ? b

(2)
00 (4.51)

and

am? ? (ab
(2)
00 ) ? an?√

m!n!θm+n
= a

am? ? b
(2)
00 ? a

n
?√

m!n!θm+n
− mθ

2

am−1
? ? b

(2)
00 ? a

n
?√

m!n!θm+n
= ab(2)

mn −
√
mθ

2
b

(2)
m−1,n. (4.52)

Finally a ? b
(2)
mn =

√
mθb

(2)
m−1,n.
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Anagously,

b(2)
mn ? a = ab(2)

mn

√
nθ

2
b

(2)
m,n−1 −

am? ? (ab
(2)
00 ) ? an?√

m!n!θm+n
. (4.53)

In the same vein

(ab
(2)
00 ) ? an? = 2nanab

(2)
00 − n2n−2an−1θb

(2)
00 . (4.54)

Using the identity b
(2)
00 a

n = 1
2n
b

(2)
00 ? a

n
? we have

(ab
(2)
00 ) ? an? = ab

(2)
00 ? a

n
? −

nθ

2
b

(2)
00 ? a

n−1 =⇒ am? ? (ab
(2)
00 ) ? an?√

m!n!θm+n
= ab(2)

mn −
√
nθ

2
b

(2)
m,n−1. (4.55)

Finally b
(2)
mn ? a =

√
nθb

(2)
m,n−1. �

For D = 2, b
(2)
kl = fkl which can be expanded in polar coordinates, (x1 = rcos(ϕ), x2 =

rsin(ϕ)), to give

fkl = 2(−1)k
√
k!

l!
ei(l−k)ϕ

(2r2

Θ

) l−k
2
Ll−kk

(2r2

Θ

)
e−

r2

Θ (4.56)

where the Lkn(x) are the associated Laguerre polynomials. The generalization to higher dimensions

is straightforward. In particular, for D = 4, we get k = (k1, k2), l = (l1, l2) and

b
(4)
kl (x) = fk1,l1(x1, x2)fk2,l2(x3, x4).

More generally, the following properties are satisfied:

(b
(D)
kl ? b

(D)
k′l′ )(x) = δlk′b

(D)
kl′ (x), (4.57)∫

dDx b
(D)
kl (x) = (2πΘ)D/2δkl, (4.58)

(b
(D)
kl )† = b

(D)
lk . (4.59)

The existence of an isomorphism between the unital involutive Moyal algebra and a sub-algebra

of the unital involutive algebra of complex infinite-dimensional matrices allows to define, for all

g ∈M, a unique matrix (gkl) given by

gkl =
1

(2πΘ)D/2

∫
dDx g(x)b

(D)
kl ,

satisfying

∀x ∈ RD g(x) =
∑

k,l∈ND/2
gkl b

(D)
kl (x).

We have

[x̃µ, φ]? = 2i∂µφ⇒ ∂µ∂
µφ = −1

4
[x̃µ, [x̃µ, φ]?]?.

Setting φ(x) = b
(D)
kl (x),

x̃ ? x̃ ? b
(D)
kl = − 8

Θ2
H ? b

(D)
kl = − 8

Θ
(|k|+ 1

2
)b

(D)
kl , (4.60)

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011



Harmonic oscillator in twisted Moyal plane 68

with

H =

D
2∑
l=1

1

2

(
x2

2l−1 + x2
2l

)
, for l = 0, 1 · · · D

2
,

and

x̃ ? b
(D)
kl ? x̃ = − 4

Θ2
(a ? b

(D)
kl ? ā+ ā ? b

(D)
kl ? a) (4.61)

= − 4

Θ

(√
|k||l|b(D)

k−1,l−1 +
√
|k + 1||l + 1|b(D)

k+1,l+1

)
. (4.62)

4.2 Harmonic oscillator in twisted Moyal plane

Recently [3], a formulation of dynamical noncommutativity, which allows for a consistent inter-

pretation of position measurement and the solution of the problem of a noncommutative well,

has been put forward. In their approach, the authors required that the vector fields Xa commute,

ensuring the associativity of the star product (3.1). This work addresses a study of a harmonic

oscillator properties in the twisted Moyal plane. The associativity property does not play any

specific role in the formulation of a non coordinate base [72] as used here and therefore is not

required. Besides, it is worth noticing that such hypothesis made in [3] (consisting to assume the

associativity of the star product or, equivalently, the commutativity of the fields Xa), does not

change the results of our investigations.

Furthermore, the use of non coordinate base leads to consider a curve geometry, more general

and richer than a flat one. This could be also of some importance in the study of quantum

gravity. Using appropriate matrix basis and deforming the issue of a twisted product, we solve the

resulting eigenvalue problem to find the states and the energy spectrum of the harmonic oscillator

Hamiltonian. These states are infinitely degenerate.

As a prelude to the construction of a matrix basis appropriate for this study, let us set up main

algebraic relations pertaining to twisted noncommutative coordinate transformations.

4.2.1 Useful relations

We consider the following infinitesimal affine transformation

eµa(x) = δµa + ωµabx
b, ωµab =: −ωµba, and |ωµ| << 1. (4.63)

In the sequel, we restrict the discussion to D = 2, where eµa and Θab can be expressed as follows:

(e)µa =
( 1 + ω1

12x
2 ω2

12x
2

−ω1
12x

1 1− ω2
12x

1

)
and (Θ)ab =

( 0 Θ

−Θ 0

)
= Θ(ε)ab (4.64)

where ε12 = −ε21 = 1, ε11 = ε22 = 0. There follow the relations

e−1 =: det(eµa) = 1 + ω1
12x

2 − ω2
12x

1 (4.65)

e =: det(eaµ) = 1− ω1
12x

2 + ω2
12x

1. (4.66)

Before going further in the development, let us immediately recall that all results of our investi-

gation remain also valid even when the considered vector fields commute.
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The ?−product of two Schwartz functions on R2
Θ can be written under the form

(f ? g)(x) = m
[

exp
( i

2
Θe−1Jµν∂µ ⊗ ∂ν

)
(f ⊗ g)(x)

]
(4.67)

where µ, ν = 1, 2 and ∂µ =: ∂
∂xµ

. Using the twisted star product (4.67) one can see that

eikx ? eiqx = ei(k+q)xe−
i
2

Θe−1kJq. (4.68)

The Fourier transform of f, g ∈ S(R2
Θ) can be written as

f̃(k) =

∫
d2x e−ikxf(x), g̃(q) =

∫
d2x e−iqxg(x) (4.69)

with the function inverse transform given by

f(x) =
1

(2π)2

∫
d2k eikxf̃(k), g(x) =

1

(2π)2

∫
d2q eiqxg̃(q). (4.70)

We can then redefine the twisted star product of two Schwartz functions f, g as:

(f ? g)(x) =
1

(2π)4

∫
d2kd2q f̃(k)g̃(q)eikx ? eiqx

=
1

(2π)4

∫
d2kd2q f̃(k)g̃(q)ei(k+q)xe−

i
2

Θe−1kJq

=
1

(2π)4

∫
d2kd2q

∫
d2yd2z f(y)g(z)

×eik(x−y− 1
2

Θe−1Jq)eiq(x−z) (4.71)

Using the identity∫
d2k eik(x−y− 1

2
Θe−1Jq) = (2π)2δ(2)(x− y − 1

2
Θe−1Jq) (4.72)

and the variable change q to q′ = 1
2
Θe−1Jq, we arrive at the adapted form for the proof of the

next Proposition 4.4:

(f ? g)(x) =
( e

πΘ

)2
∫

d2yd2z f(y)g(z)e−
2ei
Θ

(x−y)J(x−z)

=
( e

πΘ

)2
∫

d2yd2z f(x− y)g(x− z)e
−2ei

Θ
yJz

=

∫
d2z

d2t

(2π)2
f(x− 1

2
Θe−1t)g(x− z)e−itJz. (4.73)

Proposition 4.4 If f and g are two Schwartz functions on R2
Θ, then f ? g is also a Schwartz

function on R2
Θ.

Proof: It is immediate by induction on the formula (4.73) using integration by parts. �
The tensor Θ̃µν can be explicit as

(Θ̃)µν = (Θ)µν − (Θa[µω
ν]
ab)x

b =
( 0 Θe−1

−Θe−1 0

)
. (4.74)
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The twisted Moyal product of fields generates some basic properties like the Jacobi identity

[xµ, [xν , xρ]?]? + [xρ, [xµ, xν ]?]? + [xν , [xρ, xµ]?]? = ΘbµΘd[νω
ρ]
bd = 0 (4.75)

conferring a Lie algebra structure to the defined twisted Moyal space, and

xµ ? f = xµf +
i

2
Θabeµae

ρ
b∂ρf and f ? xµ = xµf − i

2
Θabeµae

ρ
b∂ρf. (4.76)

The star brackets (anticommutator and commutator) of xµ and f can be immediately deduced

as follows: {xµ, f}? = 2xµf, [xµ, f ]? = iΘabeµae
ρ
b∂ρf . The relations (4.76) can be detailed for

xµ, µ = 1, 2 as:

x1 ? f = x1f +
i

2
Θe−1∂2f f ? x1 = x1f − i

2
Θe−1∂2f (4.77)

x2 ? f = x2f − i

2
Θe−1∂1f f ? x2 = x2f +

i

2
Θe−1∂1f (4.78)

giving rise to the creation and annihilation functions

a =
x1 + ix2

√
2

ā =
x1 − ix2

√
2

(4.79)

with the commutation relation [a, ā]? = Θe−1. It then becomes a matter of algebra to use the

transformations of the vector fields ∂1 and ∂2 into ∂a =: ∂
∂a

and ∂ā =: ∂
∂ā

and vice-versa to infer

e−1 = 1− aω − āω̄ and e = 1 + aω + āω̄, where

ω =:
ω2

12 + iω1
12√

2
and ω̄ =:

ω2
12 − iω1

12√
2

(4.80)

leading to useful relations

∂e−1

∂a
= −ω, ∂e−1

∂ā
= −ω̄ and for k ∈ Z, ωek = ω, ω̄ek = ω̄. (4.81)

Expressing the twisted ?−product (4.67) in terms of vectors fields ∂a and ∂ā as

(f ? g)(a, ā) = m
[ ∞∑
n=0

n∑
k=0

(−1)n−k

k!(n− k)!
(
1

2
Θe−1)n

×(∂a ⊗ ∂ā)k(∂ā ⊗ ∂a)n−k(f ⊗ g)(a, ā)
]

(4.82)

and using equations (4.77) and (4.78) (or independently (4.82)) yield

a ? f =
(
a+

Θe−1

2

∂

∂ā

)
f ā ? f =

(
ā− Θe−1

2

∂

∂a

)
f (4.83)

f ? a =
(
a− Θe−1

2

∂

∂ā

)
f f ? ā =

(
ā+

Θe−1

2

∂

∂a

)
f. (4.84)

Provided the above definitions, we can now introduce the notions of right and left harmonic

oscillator states denoted by fRm0 and fL0n, respectively.
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4.2.2 The right and left states

Let fR00 ∈ L2(R2
Θ) be the ho “right” fundamental state such that

a ? fR00 =: 0 with fR00 = 2e−
2aā

Θe−1 (1− 1
2
āω̄). (4.85)

Then, fR00 solves the eigenvalue problem H?fR00 = ER00f
R
00 with the corresponding right fundamental

eigenvalue ER00 = Θ
2

(1− 2āω̄) of the self-adjoint unbounded twisted ho Hamiltonian operator

H ? (.) = : āa ? (.) =

[
ā ? a+

Θe−1

2

]
? (.) =

[
a ? ā− Θe−1

2

]
? (.)

=
1

2

[
(x1)2 + (x2)2 +

(
iΘe−1x1 − Θ2

4
ω1

12

)
∂2

−
(
iΘe−1x2 − Θ2

4
ω2

12

)
∂1 −

Θ2

4
e−2(∂2

1 + ∂2
2)

]
≡ 1

2
µ1 (4.86)

defined in the domain

D(H?) =
{
f ∈ L2(R2

Θ) | f, fx1 , fx2 ∈ ACloc(R2
Θ);

µ1

2
f ∈ L2(R2

Θ)
}
. (4.87)

ACloc(R2
Θ) denotes the set of the locally absolutely continuous functions on R2

Θ. Similarly, the

fundamental left state fL00 ∈ L2(R2
Θ) defined such that

fL00 ? ā =: 0 with fL00 = 2e−
2aā

Θe−1 (1− 1
2
aω) (4.88)

solves the eigenvalue problem fL00 ? H = EL00f
L
00 with the left fundamental eigenvalue EL00 =

Θ
2

(1− 2aω) of the self-adjoint unbounded twisted ho Hamiltonian operator

(.) ? H = : (.) ? āa = (.) ?

[
ā ? a+

Θe−1

2

]
= (.) ?

[
a ? ā− Θe−1

2

]
=

1

2

[
(x1)2 + (x2)2 −

(
iΘe−1x1 − Θ2

4
ω1

12

)
∂2

+

(
iΘe−1x2 − Θ2

4
ω2

12

)
∂1 −

Θ2

4
e−2(∂2

1 + ∂2
2)

]
≡ 1

2
µ2 (4.89)

defined in the domain

D(?H) =
{
f ∈ L2(R2

Θ) | f, fx1 , fx2 ∈ ACloc(R2
Θ);

µ2

2
f ∈ L2(R2

Θ)
}
. (4.90)

Then, the other states follow from the next statement.

Proposition 4.5 The vectors fRm0 ∈ L2(R2
Θ) given for any m ∈ N by

fRm0 =
1√
m!Θm

[
2mām(1 +

maω

2
− māω̄

4
)− UmΘωām−1

2

]
fR00 (4.91)

solve the eigenvalue problem H ? fRm0 = ERm0f
R
m0 with

ERm0 =
Θ

2

[
2m+ 1−maω − (3m+ 2)āω̄ − m2Θω

4ā
+

ΘωUm
2mā

]
, m ∈ N (4.92)

where

Um = (m− 1)2m−2 +
m−3∑
k=0

(k + 1)2k+1, m ≥ 3, Ui≤1 = 0, U2 = 1. (4.93)
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Proof: The results are immediate by induction, performing similar analysis as in [34] to construct

the right states fRm0 such that ā ? fRm0 =
√

Θ(m+ 1)fRm+1,0. The identity

∂kaf
R
00 =

[
k(k − 1)ω

(
− 2ā

Θ

)k−1

+
(
− 2ā

Θe−1

)k
(1 + kaω − kāω̄

2
)
]
fR00, (4.94)

∂kāf
R
00 =

[k(k − 1)

2
ω̄
(
− 2a

Θ

)k−1

+
(
− 2a

Θe−1

)k]
fR00 (4.95)

∂ka

(
− 2a

Θe−1

)l
= klω

l!

(l − k + 1)!

(
− 2

Θ

)k−1(
− 2a

Θ

)l−k+1

+
l!

(l − k)!

(
− 2

Θ

)k(
− 2a

Θ

)l−k
el (4.96)

∂kā

(
− 2ā

Θe−1

)l
= klω̄

l!

(l − k + 1)!

(
− 2

Θ

)k−1(
− 2ā

Θ

)l−k+1

+
l!

(l − k)!

(
− 2

Θ

)k(
− 2ā

Θ

)l−k
el. (4.97)

are useful. �
Similarly, the study of the ho left states provides the following result.

Proposition 4.6 The vectors fL0n ∈ L2(R2
Θ) given for any n ∈ N by

fL0n =
1√
n!Θn

[
2nan(1 +

nāω̄

2
− naω

4
)− UnΘω̄an−1

2

]
fL00 (4.98)

solve the eigenvalue problem fL0n ? H = EL0nfL0n with

EL0n =
Θ

2

[
2n+ 1− nāω̄ − (3n+ 2)aω − n2Θω̄

4a
+

Θω̄Un
2na

]
, n ∈ N. (4.99)

Proof: It uses the same procedure as previously, but with the construction of the left states fL0n
such that fL0n ? a =

√
Θ(n+ 1)fL0,n+1. The identity

∂kāf
L
00 =

[
k(k − 1)ω̄

(
− 2a

Θ

)k−1

+
(
− 2a

Θe−1

)k
(1 + kāω̄ − kaω

2
)
]
fL00, (4.100)

∂kaf
L
00 =

[k(k − 1)

2
ω
(
− 2ā

Θ

)k−1

+
(
− 2ā

Θe−1

)k]
fL00. (4.101)

are also useful. �
Besides limω,ω̄→0 ERm0 = Θ

(
m+ 1

2

)
and limω,ω̄→0 EL0n = Θ

(
n+ 1

2

)
corresponding to the usual

Moyal ?−product spectrum of the harmonic oscillator Hamiltonian H.

All these results show that the ho right and left states as well as their respective energy

spectrum are expressible in terms of the space deformation constant Θ and of an additional piece

inherent to the nature of the induced infinitesimal transformation through the parameter ω and

its conjugate. Besides, a noteworthy feature of these states is the following.
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Proposition 4.7 The right and left fundamental states defined by f
(m)R
00 =: am+1 ? fRm0 and

f
(n)L
00 =: fL0n ? ā

n+1 are given by the following expressions:

f
(m)R
00 = −

√
m!Θm+2

8

m∑
j=1

(m+ 4j + 1)

(m− j)!
ω̄fR00 and (4.102)

f
(n)L
00 = f

(n)R
00 (ā↔ a, ω̄ ↔ ω)

= −
√
n!Θn+2

8

n∑
j=1

(n+ 4j + 1)

(n− j)!
ωfL00 (4.103)

which, in the usually Moyal product case, are reduced to 0. Besides, the twisted harmonic oscillator

states fRm0 and fLm0 are degenerate with respect to the rules

am+2 ? fRm0 = 0 and fL0m ? ā
m+2 = 0 ∀ m ≥ 1. (4.104)

Prove To prove the proposition we derive the right and left ?−actions of the creation and

annihilation functions onto the ho states.

a ? fRm0 =
m2m−1ām−1

√
m!Θm−2

(1 +
m− 2

2
aω − m+ 5

4
āω̄)fR00

− (m− 1)ΘωUmā
m−2

4
√
m!Θm−2

fR00

a2 ? fRm0 =
m(m− 1)2m−2ām−2

√
m!Θm−4

[
1 +

m− 4

2
aω

− (m+ 9)(m− 1) +m+ 5

4(m− 1)
āω̄
]
fR00

− (m− 1)(m− 2)ΘωUmā
m−3

8
√
m!Θm−4

fR00

...

ak ? fRm0 =
m(m− 1) · · · (m− k + 1)2m−kām−k√

m!Θm−2k

[
1 +

m− 2k

2
aω

− āω̄

4
(m− k)!

k∑
j=1

(m+ 4j + 1)

(m− j)!

]
fR00

− (m− 1)(m− 2) · · · (m− k)ΘωUmā
m−k−1

2k+1
√
m!Θm−2k

fR00

where k ≤ m
...

am ? fRm0 =
m!√
m!Θ−m

[
1− maω

2
− āω̄

4

m∑
j=1

(m+ 4j + 1)

(m− j)!

]
fR00

am+1 ? fRm0 = −
√
m!Θm+2ω̄

8

m∑
j=1

(m+ 4j + 1)

(m− j)!
fR00 ∝ fR00 (4.105)

am+2 ? fRm0 = 0. (4.106)
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Similarly, fL0n ? ā, fL0n ? ā
2, · · · fL0n ? ān, fL0n ? ān+1 can be computed as

fL0n ? ā =
n2n−1an−1

√
n!Θn−2

(1 +
n− 2

2
āω̄ − n+ 5

4
aω)fL00

− (n− 1)Θω̄Una
n−2

4
√
n!Θn−2

fL00

fL0n ? ā
2 =

n(n− 1)2n−2an−2

√
n!Θn−4

[
1 +

n− 4

2
āω̄

− (n+ 9)(n− 1) + n+ 5

4(n− 1)
aω
]
fL00

− (n− 1)(n− 2)Θω̄Una
n−3

8
√
n!Θn−4

fL00

...

fL0n ? ā
k =

n(n− 1) · · · (n− k + 1)2n−kan−k√
n!Θn−2k

[
1 +

n− 2k

2
āω̄

− aω

4
(n− k)!

k∑
j=1

(n+ 4j + 1)

(n− j)!

]
fL00

− (n− 1)(n− 2) · · · (n− k)Θω̄Una
n−k−1

2k+1
√
n!Θn−2k

fL00;

where k ≤ n
...

fL0n ? ā
n =

n!√
n!Θ−n

[
1− nāω̄

2
− aω

4

n∑
j=1

(n+ 4j + 1)

(n− j)!

]
fL00

fL0n ? ā
n+1 = −

√
n!Θn+2ω

8

n∑
j=1

(n+ 4j + 1)

(n− j)!
fL00 ∝ fL00 (4.107)

fL0n ? ā
n+2 = 0. (4.108)

�

Remark 4.8 1. fR00 and fL00 are the twisted fundamental states restoring, in the limit of ordinary

Moyal space, the fundamental state given by 2e−
2aā
Θ . For the analysis purpose, we call fR00

and fL00 the normal twisted fundamental states.

2. The states fRm0 correspond to twisted right m + 1 particles states, reducing, in the usual

case, to right m particles states, while the states fL0n represent the twisted left n+1 particles

states.

3. There are an infinite number of twisted right m− k particles states and an infinite number

of twisted left n− k particles states given by ak+1 ? fRm0 and fL0n ? ā
k+1, respectively.

4.2.3 Matrix basis of the theory

The usual construction of a matrix basis [34] exploits the ?−multiplication of fRm0 with fL0n, i.e.

L2(R2
Θ) 3 b(2)

mn = : χ(ω, ω̄,Θ,m, n)fRm0 ? f
L
0n
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= χ(ω, ω̄,Θ,m, n)
(ām ? fR00) ? (fL00 ? a

n)√
m!n!Θm+n

. (4.109)

Without loss of generality, we set the normalization constant χ(ω, ω̄,Θ,m, n) =: 1 by convention.

The corresponding eigenvalue problems are given by

H ? b(2)
mn = ERm0b

(2)
mn and b(2)

mn ? H = EL0nb(2)
mn (4.110)

while the ?−actions of the annihilation and creation functions a and ā are reproduced as follows:

ā ? b
(2)
mn =

√
Θ(m+ 1)b

(2)
m+1,n and b

(2)
mn ? a =

√
Θ(n+ 1)b

(2)
m,n+1, with the basis fundamental

state b
(2)
00 = fR00 ? f

L
00 satisfying the expected requirements a ? b

(2)
00 = 0, b

(2)
00 ? ā = 0. Given the

(1, 1)−particles states defined by L2(R2
Θ) 3 Λ1,1

mn =: (am?fRm0)?(fL0n?ā
n), their twisted spectrums

can be computed from the eigenvalue problems H ?Λ1,1
mn = ER

Λ1,1
m0

Λ1,1
mn and Λ1,1

mn ?H = EL
Λ1,1

0n

Λ1,1
mn

to get, depending on the right and left Hamiltonian ?−actions,

ER
Λ1,1
m0

=
Θ

2

[
1− āω̄

2

( m∑
j=1

m+ 4j + 1

(m− j)!
+ 4
)]
, m > 0 (4.111)

EL
Λ1,1

0n
= ER

Λ1,1
n0

(ā↔ a, ω̄ ↔ ω)

=
Θ

2

[
1− aω

2

( n∑
j=1

n+ 4j + 1

(n− j)!
+ 4
)]
, n > 0. (4.112)

For ω = 0 and ω̄ = 0, these energies are reduced to the usual Moyal space matrix basis right and

left fundamental energies. As needed, the Wick rotation can be used to ensure the real value of

the energy. In the same vein, one can define the single twisted (m− k + 1) right particles states

by ak ? fRm0 =: Λm−k+1
m0 ∈ L2(R2

Θ) corresponding to the energy values obtained from the right

Hamiltonian ?−action by

ER
Λm−k+1
m0

=
Θ

2

{
2m− 2k + 1− (m− k)aω

+
āω̄

2

[
(m− k − 1)(m− k)!

k∑
j=1

m+ 4j + 1

(m− j)!

− (m− k)(m+ 4k + 6)− 4
]
− (m− k)(m− 2k)Θω

4ā

+
(m− k + 1)(m− k)ΘωUm

m2m+1ā

}
m ≥ k > 0. (4.113)

By analogy, the single twisted (n − l + 1) left particles states fL0n ? ā
l =: Λn−l+1

0n ∈ L2(R2
Θ) are

associated with the left action energy values

EL
Λn−l+1

0n
= ER

Λn−l+1
n0

(
ω̄ ↔ ω, ā↔ a

)
=

Θ

2

{
2n− 2l + 1− (n− l)āω̄

+
aω

2

[
(n− l − 1)(n− l)!

l∑
j=1

n+ 4j + 1

(n− j)!

− (n− l)(n+ 4l + 6)− 4
]
− (n− l)(n− 2l)Θω̄

4a
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+
(n− l + 1)(n− l)Θω̄Un

n2n+1a

}
, n ≥ l > 0. (4.114)

Proposition 4.9 The energy spectrums (4.113) and (4.114) of the mixed twisted (m− k + 1)

right and (n− l+ 1) left particles states L2(R2
Θ) 3 Λm−k+1,n−l+1

mn =: (ak ? fRm0) ? (fL0n ? ā
l) solve

the following respective eigenvalue problems:

H ? Λm−k+1,n−l+1
mn = ER

Λm−k+1
m0

Λm−k+1,n−l+1
mn (4.115)

Λm−k+1,n−l+1
mn ? H = EL

Λn−l+1
0n

Λm−k+1,n−l+1
mn . (4.116)

We readily recover the spectrums (4.111) and (4.112) by replacing m = k and n = l in the

relations (4.113) and (4.114). Of course, in the limit regime, these energies also well reproduce

the ordinary Moyal plane (m− k) right and (n− l) left particles energies:

lim
ω,ω̄→0

ER
Λm−k+1
m0

=
Θ

2

[
2(m− k) + 1

]
(4.117)

lim
ω,ω̄→0

EL
Λn−l+1

0n
=

Θ

2

[
2(n− l) + 1

]
(4.118)

respectively.

4.2.4 Case of commuting vector fields

Consider the coordinates base eµa = δµa + ωµabx
b and the symmetric tensor (between the index a

and b) ωµab. Then, the twisted star product is associative and

[Xa, Xb] = ωµba∂µ − ω
µ
ab∂µ = 0. (4.119)

The matrix representation of eµa is given by

(e)µa =
( 1 + ω1

11x
1 + ω1

12x
2 ω2

11x
1 + ω2

12x
2

ω1
12x

1 + ω1
22x

2 1 + ω2
12x

1 + ω2
22x

2

)
(4.120)

and

(e)aµ =
( 1− ω1

11x
1 − ω1

12x
2 −ω2

11x
1 − ω2

12x
2

−ω1
12x

1 − ω1
22x

2 1− ω2
12x

1 − ω2
22x

2

)
. (4.121)

Then,

e−1 = det(eµa) = 1 + (ω1
11 + ω2

12)x1 + (ω2
22 + ω1

12)x2 = 1 + aω + āω̄

e = det(eaµ) = 1− (ω1
11 + ω2

12)x1 − (ω2
22 + ω1

12)x2 = 1− aω − āω̄, (4.122)

where ω = 1√
2

(
(ω1

11 +ω2
12)− i(ω2

22 +ω1
12)
)

and a = 1√
2
(x1 + ix2). The noncommutative tensor

is given by (Θ̃)µν = Θe−1
( 0 1

−1 0

)
. Then, we can immediately perform the computation and

check that the eigenvalue problem of the harmonic oscillator yields the same solution as for the

case of the skew symmetric tensor ωµab, but now defining ω and ω̄ as

ω =
1√
2

(
(ω1

11 + ω2
12)− i(ω2

22 + ω1
12)
)
, ω̄ =

1√
2

(
(ω1

11 + ω2
12) + i(ω2

22 + ω1
12)
)
. (4.123)
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Besides, the matrix eaµ can be written as eaµ = δaµ + ωabµ xb, where ωabµ = −ωµab. Finally, the

solution of the field equation eaµ = ∂µφ
a is well given by φa = xa + 1

2
ωabµ xb x

νδµν . From there

follow all results obtained in the core of this work.

4.3 Harmonic oscillator in noncommutative phase space

In recent years, there is an increasing interest in the application of noncommutative (NC) geome-

try to physical problems [17] in solid-state and particle physics [76], mainly motivated by the idea

of a strong connection of noncommutativity with field and string theories. Besides, the evidence

coming from the latter and other approaches to the issues of quantum gravity suggests that

attempts to unify gravity and quantum mechanics could ultimately lead to a non-commutative

geometry of spacetime. The phase space of ordinary quantum mechanics is a well-known ex-

ample of noncommuting space [86]. The momenta of a system in the presence of a magnetic

field are noncommuting operators as well. Since the noncommutativity between spatial and time

coordinates may lead to some problems with unitarity and causality, usually only spatial noncom-

mutativity is considered. Besides, so far quantum theory on the NC space has been extensively

studied, the main approach is based on the Weyl-Moyal correspondence which amounts to re-

placing the usual product by a ?−product in the NC space. Therefore, deformation quantization

has special significance in the study of physical systems on the NC space. Moreover, the prob-

lem of quantum mechanics on NC spaces can be understood in the framework of deformation

quantization [6]-[39]. In the same vein, some works on harmonic oscillators (ho) in the NC space

from the point of view of deformation quantization have been reported in [38]-[55] and refer-

ences therein. In this dissertation, we consider different representations of a harmonic oscillator

in a general full noncommutative phase space with both the spatial and momentum coordinates

being noncommutative. Indeed, noncommutativity between momenta arises naturally as a con-

sequence of noncommutativity between coordinates, as momenta are defined to be the partial

derivatives of the action with respect to the noncommutative coordinates. This work continues

the investigations stated in [38],[11] and [12] devoted to the study of a quantum exactly solvable

D-dimensional NC oscillator with quasi-harmonic behaviour. We intend to extend previous re-

sults presenting a similar analysis to the quantum version of the two-dimensional NC system with

non-vanishing momentum components. For additional details in the motivation, see [38]. The

physical model resembles to the Landau problem in NC quantum mechanics extensively studied

in the literature. See [69] and [50] and references therein for more details. Broadly put, it is worth

noticing that the description of a system of a two-dimensional harmonic oscillator in a full NC

phase space is equivalent to that of the model of a two-dimensional ho in a constant magnetic

field in some NC space.

Consider a 4D general NC phase space. The coordinates of position and momentum, x =

(x1, x2) and p = (p1, p2), modelling the classical system of a two-dimensional ho maps into their

respective quantum operators x̂ and p̂ giving rise to the Hamiltonian operator

Ĥ =
1

2

(
p̂µp̂

µ + x̂µx̂
µ
)

(4.124)

with commutation relations

[x̂µ, p̂ν ] = i~effδµν , [x̂µ, x̂ν ] = iΘµν , [p̂µ, p̂ν ] = iΘ̄µν , µ, ν = 1, 2 (4.125)
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where Θµν and Θ̄µν are skew-symmetric tensors carrying the dimensions of (length)2 and (momentum)2,

respectively. The effective Planck constant is given by

~eff = ~
(

1 +
ΘµνΘ̄µν

4D~2

)
, (4.126)

where D = 2 is the dimension of the NC space. One can readily check that one can rewrite the

operators x̂µ and p̂ν as

p̂µ = π̂µ +
1

2~
Θ̄µν q̂ν , x̂µ = q̂µ − 1

2~
Θµν π̂ν (4.127)

in terms of π̂µ and q̂ν that obey the standard Weyl-Heisemberg algebra

[q̂µ, π̂ν ] = i~δµν ; [q̂µ, q̂ν ] = 0 = [π̂µ, π̂ν ]. (4.128)

In the deformation quantization theory of a classical system in the noncommutative space, one

treats (x, p) and their functions as classical quantities, but replaces the ordinary product between

these functions by the following generalized ?−product

? = ?~eff ?Θ ?Θ̄

= exp
[i~eff

2

(←−
∂ xµ
−→
∂ pµ −

←−
∂ pµ
−→
∂ xµ

)
+
iΘµν

2

←−
∂ xµ
−→
∂ xν

+
iΘ̄µν

2

←−
∂ pµ
−→
∂ pν

]
. (4.129)

The variables xµ, pµ on the NC phase space satisfy the following commutation relations similar

to (4.130)

[xµ, pν ]? = i~effδµν , [xµ, xν ]? = iΘµν , [pµ, pν ]? = iΘ̄µν (4.130)

µ, ν = 1, 2

with the following uncertainty relations

∆x1∆x2 >
Θ

2
∆p1∆p2 >

Θ̄

2

∆x1∆p1 >
~eff

2
∆x2∆p2 >

~eff
2
. (4.131)

The first two uncertainty relations show that measurements of positions and momenta in both

directions x1 and x2 are not independent. Taking into account the fact that Θ and Θ̄ have

dimensions of (length)2 and (momentum)2 respectively, then
√

Θ and
√

Θ̄ define fundamental

scales of length and momentum which characterize the minimum uncertainties possible to achieve

in measuring these quantities. One expects these fundamental scales to be related to the scale of

the underlying field theory (possible the string scale), and thus to appear as small corrections at

the low-energy level or quantum mechanics. Commonly, the time evolution function for a time-

independent Hamiltonian H of a system is described by the ?−exponential function denoted here

by e
(.)
? :

e
Ht
i~eff
? :=

∞∑
n=0

1

n!

( t

i~eff

)n n times︷ ︸︸ ︷
H ? H ? · · · ? H, (4.132)
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which is the solution of the following time-dependent Schrodinger equation

i~eff
d

dx
e

Ht
i~eff
? = H(x, p) ? e

Ht
i~eff
?

= H
(
xµ +

i~eff
2

∂pµ +
iΘµρ

2
∂xρ , p

ν − i~eff
2

∂xν

+
iΘ̄µσ

2
∂xσ
)
e

Ht
i~eff
? . (4.133)

There corresponds the generalized ?−eigenvalue time-independent Schrodinger equation:

H ?Wn =Wn ? H = EnWn (4.134)

where Wn and En stand for the Wigner function and the corresponding energy eigenvalue of the

system. The Fourier-Dirichlet expansion for the time-evolution function defined as

e
Ht
i~eff
? =

∞∑
n=0

e
−iEnt
~eff Wn (4.135)

links the Wigner function to the ?−exponential function.

Provided the above, the operators on a NC Hilbert space can be represented by the functions

on a NC phase space, where the operator product is replaced by relevant star-product. The algebra

of functions of such noncommuting coordinates can be replaced by the algebra of functions on

ordinary spacetime, equipped with a NC star-product. So, considering the transformations (4.127)

and leaving out the operator symbol ,̂ we arrive at (q, π) phase space and the commutation relation

changes into (4.128), with the star-product defined in the following way.

Definition 4.10 Let C∞(R4) be the space of smooth functions f : R4 → C. For f, g ∈ C∞(R4),

the formal star product is defined by

f ? g = f exp
[i~

2

←−
∂ µJ

µν−→∂ ν

]
g. (4.136)

Here the smooth functions f and g depend on the real variables q1, q2, π1 and π2, and

←−
∂ µJ

µν−→∂ ν =

( ←−
∂

∂q1
,

←−
∂

∂π1
,

←−
∂

∂q2
,

←−
∂

∂π2

)
0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




−→
∂
∂q1

−→
∂
∂π1−→
∂
∂q2

−→
∂
∂π2


=

←−
∂

∂q1

−→
∂

∂π1
−
←−
∂

∂π1

−→
∂

∂q1
+

←−
∂

∂q2

−→
∂

∂π2
−
←−
∂

∂π2

−→
∂

∂q2
. (4.137)

Therefore, the star product f ? g represents a deformation of the classical product fg. This

deformation depends on the Planck constant ~. In term of physics, the difference f ? g − fg

describes quantum fluctuation depending on ~. For the present case,

qµ ? πν − qµπν = i~
2
δµν , πν ? qµ − πνqµ = − i~

2
δµν . Hence

[qµ, πν ]? = i~δµν . (4.138)
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Building now, in the standard manner, the creation and annihilation operators of ho system as

al =
ql + iπl√

2
āl =

ql − iπl√
2

l = 1, 2 (4.139)

and using the polar coordinates such that

ql = ρl cosϕl, πl = ρl sinϕl, (4.140)

we solve the right and left eigenvalue equations

al ? fmn =
√
m~fm−1,n āl ? fmn =

√
(m+ 1)~fm+1,n

fmn ? al =
√

(n+ 1)~fm,n+1 fmn ? āl =
√
n~fm,n−1 (4.141)

to find the eigenfunctions fmn as

fmn ≡ 2(−1)m
√
m!

n!
ei(n−m)ϕl

(2ρ2
l

~

)n−m
2
Ln−mm

(2ρ2
l

~

)
e−

ρ2l
~ , m, n ∈ N (4.142)

with

f00 = 2e−ρ
2
l /~. (4.143)

Ln−mm are the generalized Laguerre polynomials defined for n = 0, 1, 2, · · · , α > 1, by

Lαn(x) =
1

n!
exx−α

dn

dxn
(xn+αe−x) =

n∑
k=0

Γ(n+ α + 1)

Γ(k + α + 1)

(−x)k

k!(n− k)!
. (4.144)

Then the states defined by b
(4)
mn = fm1n1fm2n2 , where m = (m1,m2), n = (n1, n2), m1,m2, n1, n2 ∈

N, exactly solve the right and left eigenvalue problems of the Hamiltonian H0 =
∑2

l=1 ālal as

H0 ? b
(4)
mn = ~(|m|+ 1)b(4)

mn and b(4)
mn ? H0 = ~(|n|+ 1)b(4)

mn (4.145)

where |m| = m1 +m2.

Now, consider the Hamiltonian (4.124) and use the relation (4.128) to re-express it with the

help of variables q and π as follows:

H = H0 +HL +Hq(Θ̄) +Hπ(Θ) (4.146)

where

H0 =
1

2

(
(q1)2 + (q2)2 + (π1)2 + (π2)2

)
(4.147)

HL = −Θ + Θ̄

2~
−→q ∧ −→π −→q ∧ −→π = q1π2 − q2π1 (4.148)

and

Hq(Θ̄) =
Θ̄2

8~2

(
(q1)2 + (q2)2

)
Hπ(Θ) =

Θ2

8~2

(
(π1)2 + (π2)2

)
. (4.149)

It is a matter of computation to verify that the Hamiltonians H0 and HL ?−commute. Idem

for the Hamiltonians HL and HI = Hq(Θ̄) + Hπ(Θ). Therefore, the Hamiltonians of family

{H0, HL}, (respectively {HL, HI}) can be simultaneously measured.
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Proposition 4.11 In the case Θ = −Θ̄, the Hamiltonian H can be expressed as

H =
(

1 +
Θ2

4~2

)
H0 (4.150)

and the states b
(4)
mn solve the right and left eigenvalue problems of H as

H ? b(4)
mn = ERm0b

(4)
mn ERm0 = ~

(
1 +

Θ2

4~2

)
(|m|+ 1) (4.151)

and

b(4)
mn ? H = EL0nb(4)

mn EL0n = ~
(

1 +
Θ2

4~2

)
(|n|+ 1) (4.152)

where m = (m1,m2), n = (n1, n2) m1,m2, n1, n2 ∈ N, |m| = m1 +m2.

In the general (q, π)−representation, the problem to solve is equivalent to that of the two-

dimensional Landau problem in a symmetric gauge on a noncommutative space. Indeed, the

Hamiltonian H can be re-transcribed as

H =
α2

2

(
(q1)2 + (q2)2

)
+
β2

2

(
(π1)2 + (π2)2

)
− γ−→q ∧ −→π =: H\

0 +HL (4.153)

where

α2 = 1 +
Θ̄2

4~2
, β2 = 1 +

Θ2

4~2
, γ =

Θ + Θ̄

2~
(4.154)

Remark that the Hamiltonian terms H\
0 and HL commute. Therefore, the eigenvectors of {H\

0, HL}
are automatically eigenvectors of H. As matter of convenience, to solve the Schrödinger eigen-

equation, let us choose the polar coordinates

q1 = ρ cosϕ q2 = ρ sinϕ (4.155)

and assume the variable separability to write

f̃(ρ, ϕ) = ξ(ρ)eikϕ, k = 0,±1,±2, · · · (4.156)

Then, from the static Schrödinger equation on NC space, H ? f̃(ρ, ϕ) = E f̃(ρ, ϕ), we deduce

the radial equation as follows:[
− ~2β2

2

( ∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
+
α2

2
ρ2 − γ~k

]
ξ(ρ, ϕ) = Eξ(ρ, ϕ) (4.157)

yielding the spectrum of H under the form

E = ~
α2

β2
(n+ 1)− ~γk, n = 0, 1, 2, · · · (4.158)

with

ξ(ρ, ϕ) ∝ e−
α
~β ρ

2

Hn

(
α

~β
ρ2

)
. (4.159)
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The last term of the energy spectrum E falls down when γ = 0, i.e. Θ = −Θ̄. In this case,

α2 = β2 and we recover the discrete spectrum of the usual two-dimensional harmonic oscillator

as expected. The results obtained here can be reduced to specific expressions reported in the

literature [38] for particular cases. Besides, the formalism displayed in this work permits to avoid

the appearence of infinite degeneracy of states observed when ~2
eff − ΘΘ̄ = 0 in [69] where

the phase space is divided into two phases based on the following conditions on the deformation

parameters:

• Phase I for ~2
eff −ΘΘ̄ > 0

• Phase II for ~2
eff −ΘΘ̄ < 0.

Thanks to the linear transformations (x, p) → (q, π) performed in the present work, the real

energy conditions shown in [50] also fall down.

4.3.1 Another representation

The star-product associated with the deformation (4.130) is given by

? = e
i
2

Σµν∂µ⊗∂ν , where Σµν =:


0 ~eff Θ 0

−~eff 0 0 Θ̄

−Θ 0 0 ~eff
0 −Θ̄ −~eff 0

 (4.160)

while the operator ∂µ is given by ∂µ = (∂1, ∂2, ∂3, ∂4) =: (∂x1 , ∂p1 , ∂x2 , ∂p2). Consider the vector

Xµ = (X1, X2, X3, X4) =: (x1, p1, x2, p2). Then the star action between Xµ and the function

f acting in the phase space is given by

Xµ ? f = Xµf +
i

2
Σµρ∂ρf, f ? X

µ = Xµf − i

2
Σµρ∂ρf. (4.161)

We verify that the nonvanishing commutation relations between coordinates and momentums

are given by [x1, x2]? = iΘ, [p1, p2]? = iΘ̄, [x1, p1]? = i~eff = [x2, p2]?. Let us now define the

creation and annihilation operators as

a1 =
1√
2

(x1 + ip1), ā1 =
1√
2

(x1 − ip1) (4.162)

a2 =
1√
2

(x2 + ip2), ā2 =
1√
2

(x2 − ip2). (4.163)

Then, the star-product between the creation and annihilation operators and the function f acting

in the NC phase space yields

a1 ? f = a1f +
1

2
~eff∂ā1f +

i

4

(
(Θ− Θ̄)∂a2 + (Θ + Θ̄)∂ā2

)
f (4.164)

a2 ? f = a2f +
1

2
~eff∂ā2f −

i

4

(
(Θ− Θ̄)∂a1 + (Θ + Θ̄)∂ā1

)
f (4.165)

f ? a1 = a1f −
1

2
~eff∂ā1f −

i

4

(
(Θ− Θ̄)∂a2 + (Θ + Θ̄)∂ā2

)
f (4.166)

f ? a2 = a2f −
1

2
~eff∂ā2f +

i

4

(
(Θ− Θ̄)∂a1 + (Θ + Θ̄)∂ā1

)
f. (4.167)
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In the same way, if we use the relation f ? g = ḡ ? f̄ ,

ā1 ? f = ā1f −
1

2
~eff∂a1f +

i

4

(
(Θ− Θ̄)∂ā2 + (Θ + Θ̄)∂a2

)
f (4.168)

ā2 ? f = ā2f −
1

2
~eff∂a2f −

i

4

(
(Θ− Θ̄)∂ā1 + (Θ + Θ̄)∂a1

)
f (4.169)

f ? ā1 = ā1f +
1

2
~eff∂a1f −

i

4

(
(Θ− Θ̄)∂ā2 + (Θ + Θ̄)∂a2

)
f (4.170)

f ? ā2 = ā2f +
1

2
~eff∂a2f +

i

4

(
(Θ− Θ̄)∂ā1 + (Θ + Θ̄)∂a1

)
f. (4.171)

We have also the commutation relations

[a1, a2]? = i
2
(Θ− Θ̄), [ā1, ā2]? = i

2
(Θ− Θ̄),

[a1, ā2]? = i
2
(Θ + Θ̄), [a2, ā1]? = − i

2
(Θ + Θ̄),

[a1, ā1]? = ~eff , [a2, ā2]? = ~eff (4.172)

showing that the annihilation and creation operators defined in (4.162) and (4.163) are not

appropriate for solving the considered eigenvalue problem of the harmonic oscillator.

The determinant of the skew-symmetric matrix Σ, detΣ = (~2
eff − ΘΘ̄)2, is positive. The

critical point deduced from detΣ = 0 divides the space of the parameters into two phases:

• Phase I for ~2
eff −ΘΘ̄ > 0

• Phase II for ~2
eff −ΘΘ̄ < 0.

The critical point from ~2
eff −ΘΘ̄ = 0 corresponds to the reduction of dimensions in phase space

and to infinite degeneracy of states, and is related to the NC Landau problem. It is obvious that

the Hamiltonian 4.124 is invariant under rotation in the plane. The angular momentum, being

the rotation generator, takes the form

Lnc =
1

~2
eff −ΘΘ̄

[
x1p2 − x2p1 +

Θ̄

2

(
(x1)2 + (x2)2

)
+

Θ

2

(
(p1)2 + (p2)2

)]
. (4.173)

We observe that it acquires Θ-dependent corrections compared with the commutative case. The

algebra [Xµ, Xν ]? = iΣµν has many possible realizations. The minimal one in terms of two

independent sets of canonical coordinates and momenta (x̄µ, p̄µ) satisfying standard Heisenberg

commutation relations would be

x1 = x̄1, p1 = p̄1 + Θ̄x̄2

x2 = x̄2 + Θp̄1 p2 = p̄2. (4.174)

Because of this, the cases ~2
eff −ΘΘ̄ < 0 and ~2

eff −ΘΘ̄ > 0 should be treated differently.

• Consider first the case ~2
eff − ΘΘ̄ < 0 and take ~eff = 1 for normalization condition. In

this case, we can define

x1 = ζx̄1, p1 = 1
ζ
p̄1 + ςx̄2

x2 = ζp̄1 p2 = 1
ζ
x̄1 − ςp̄2 (4.175)

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011



Harmonic oscillator in noncommutative phase space 84

where ζ2 = Θ and ς2 = 1/Θ − Θ̄. x̄µ and p̄µ form a set of canonical variables, i.e.

[x̄µ, p̄ν ]? = iδµν . The Hamiltonian for the oscillator with the magnetic field (4.124) is given

by

H =
1

2

[(
ζ2 +

1

ζ2

)(
(x̄1)2 + (p̄1)2

)
+ ς2

(
(x̄2)2 + (p̄2)2

)
+

2ς

ζ
(x̄1p̄2 + x̄2p̄1)

]
(4.176)

We can now make a Bogolyubov transformation on this by expressing x̄µ, p̄µ in terms of a

canonical set Qµ, P µ by writing
x̄1

x̄2

p̄1

p̄2

 = coshλ


Q1

Q2

P 1

P 2

+ sinhλ


P 1

P 2

Q1

Q2

 . (4.177)

Choosing

tanh 2λ = − 2ςζ

1 + ζ4 + ς2ζ2
(4.178)

the Hamiltonian (4.176) becomes

H =
1

2

[
Ω+

(
(P 1)2 + (Q1)2

)
+ Ω−

(
(P 2)2 + (Q2)2

)]
(4.179)

where

Ω± =
1

2

√
(Θ− Θ̄)2 + 4± 1

2
(Θ + Θ̄). (4.180)

The equation (4.179) shows that the spectrum is given by that of two harmonic oscillators

of frequencies Ω+ and Ω−, i.e.

Emn = Ω+(m+
1

2
) + Ω−(n+

1

2
). (4.181)

• The case of ~2
eff − ΘΘ̄ > 0 can be treated in a similar way. With ς2 = Θ̄ − 1/Θ, we can

write

x1 = ζx̄1, p1 = 1
ζ
p̄1 + ςx̄2

x2 = ζp̄1 p2 = −1
ζ
x̄1 + ςp̄2 (4.182)

The Hamiltonian (4.124) become

H =
1

2

[(
ζ2 +

1

ζ2

)(
(x̄1)2 + (p̄1)2

)
+ ς2

(
(x̄2)2 + (p̄2)2

)
+

2ς

ζ
(x̄2p̄1 − x̄1p̄2)

]
. (4.183)

The required Bogolyubov transformation is
x̄1

x̄2

p̄1

p̄2

 = coshλ


Q1

Q2

P 1

P 2

+ sinhλ


P 2

P 1

−Q2

−Q1

 . (4.184)
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The required choise of λ is given by

tanh 2λ =
2ςζ

1 + ζ4 − ς2ζ2
(4.185)

H can then be written as (4.179) with

Ω± = ±1

2

√
(Θ− Θ̄)2 + 4 +

1

2
(Θ + Θ̄). (4.186)

We again have two oscillators of frequencies Ω±.

We see from the above results that there is a critical value of the magnetic field or Θ̄ given

by ΘΘ̄ = 1. Ω− vanishes upon approaching this value from either side. The Hamiltonian is

independent of P 2, Q2. Thus the number of states for fixed energy will become unbounded,

since all the states generated by P 2, Q2 are now degenerate. This large degeneracy can also be

seen from a semiclassical estimate of the number of states for fixed energy. Remark that the

eigenvalues of the general matrix iΣ, are

(phase II) Ω± =
1

2

√
(Θ− Θ̄)2 + 4~2

eff ±
1

2
(Θ + Θ̄) (4.187)

(phase I) Ω± = ±1

2

√
(Θ− Θ̄)2 + 4~2

eff +
1

2
(Θ + Θ̄). (4.188)

Then the pair (H,Σ) defines a system with given energy spectrum and corresponding energy

eigenfunctions.
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Concluding remarks and discussions

In this dissertation work, we have obtained the following results:

In Chapter I, we have provided a comparative study of ordinary complex scalar φ4
?D and complex

GW model. In this context, EMTs have been explicitly computed and improved to satisfy known

physics based properties in line with the Wilson and Jackiw techniques. In particular, the obtaining

of a symmetric locally conserved EMTs has required the resolution of a nonlinear Belinfante type

partial differential equation. For the complex GW model, the Euler-Lagrange equations of motion

have been exactly solved for Ω =
√

2 using the well known matrix base method. In all these

theories, the dilatation symmetry has been broken and the breaking terms have been discussed.

As expected, all computed physical quantities for ordinary complex φ4
?D NCFT are easily recovered

from the results obtained for the complex GW NCFT by setting Ω = 0.

We have also provided, in Chapter II, a generalization of the Hamiltonian formulation developed

by Gomis et al [30], which has been applied to the renormalizable Grosse-Wulkenhaar φ4
?D model.

The Euler-Lagrange equation of motion has been derived in this case. The constraints and NC

currents have been investigated and analyzed. This study reveals that:

1. It is possible to study the original D dimensional non-local GW Lagrangian system describing

the renormalizable GW model as a D+1 dimensional local (in one of the times) Hamiltonian

system, governed by the Hamiltonian (2.39) and a set of constraints.

2. Examples of Hamiltonian symmetry generators of class of the renormalizable GW model

working in a D + 1 dimensional space can be given.

3. As expected from previous investigations on NC Noether currents, the tensor J a
µ (2.54) is

not symmetric, nonlocally conserved, and, in massless theory, not traceless.

4. A characteristic feature of the Hamiltonian formalism for non-local theories is that it contains

the Euler-Lagrange equations as Hamiltonian constraints. The Euler-Lagrange equation of

motion is a constraint in the space of trajectories.

The EL equation of motion in D+1 dimensions can be also solved using the matrix base formalism.

In that case, the matrix elements can be written as:

B(D+1)
h,kl (t, x̄) =

∫
dt′ ωh(t− t′)et

d
dx̄

(
b

(D)
kl (x̄)

)
. (4.189)

where et
d
dx̄ can be taken as the evolution operator Tt (translation operator). The fields Qh(t, x̄)

can be reexpressed as follows:

Qh(t, x̄) =
∑
k,l

CklB(D+1)
h,kl (t, x̄). (4.190)



Then, the formalism developed in [34] can be applied step by step. Further, the same matrix base

method can be adapted to formulate the NC tensors J a
µ . Unfortunately, such a computation is

too tedious and gives rise to cumbersome expressions that are irrelevant for this work. Moreover,

their interpretation needs more investigations whose results will be in the core of a forthcoming

work.

In chapter III, we have implemented the dynamical noncommutativity introduced by Aschieri

et al [3] in the new class of renormalizable NC field theories (NCRFT) built on the Grosse

and Wulkenhaar (GW) φ?4 scalar field model defined in Euclidean space. The corresponding

equations of motion and Noether currents have been studied and explicitly computed taking into

account different contributions from velocity term, mass term, φ?4 interaction and GW harmonic

interaction term. When eaµ = δaµ the ?−product between any two functions reduces to the Moyal

product, as already observed in [3]. The field φ acts as a source for the noncommutativity field φc.

Our investigation has showed that the twisted GW action is not invariant under global translation.

Such an undesirable feature has been got round by imposing a constraint on the Lagrangian

action, which is nothing but the equation of motion governing the GW harmonic term. The

previous works [3]-[28] have pointed out that the ordinary φ4−theory leads to nonlocally conserved

and symmetric EMT and AMT while the twisted non renormalizable φ4−theory restores the local

conservation of these tensors. Contrarily, both ordinary GW [7, 8] and twisted GW models provide

nonlocally conserved and nonsymmetric EMT, AMT and DC due to the presence of the harmonic

term Ω. Fortunately, as shown in [7], all these physical quantities can be subjected to well

known Jackiw and Wilson regularization procedures to acquire the local conservation property.

We have also defined the twisted connections in noncommutative spaces and discussed NC gauge

transformations. Then, the YM action, twisted in the dynamical Moyal space, has been proved

to be invariant under U?(1) local gauge transformation with the parameter α1 = α0 + εµx
µ,

where εµ is an infinitesimal parameter and α0 a constant. The NC gauge invariant currents

are explicitly computed. These currents are locally conserved. Finally, it is worthy to mention

that the approach developed here can be extended to investigate twisted gauge theory in finite

D−dimensional Moyal space. The only technical difficulty resides in the fact that the choice of

ω could not be arbitrarily made. For this reason, the canonical form of eµa given by δµa + ωµabx
b

seems to be natural, except for the trivial case when ω = 0.

We have investigated, in Chapter IV, the main properties of harmonic oscillator in the frame-

work of a dynamical noncommutativity realized through a twisted Moyal product. The construc-

tion of the appropriate matrix basis has introduced an x-dependence in the definition of the

star product. We have computed the states and energies of the twisted harmonic oscillator. The

degeneracy states and their energy have been explicitly derived. All examined quantities easily

acquire good physical properties when ω2
12 and x1 are transformed into iω2

12 and ix1, respectively.

Furthermore, the ordinary Moyal space tools are well recovered as expected by setting ω = 0

and ω̄ = 0. Working in the NC configuration space, explicit spectrums of harmonic oscillator

with non-vanished momentum-momentum bracket are derived. Using algebraic method, we have

computed the spectrums. It should be pointed out that, in order to maintain the Bose-Einstein

statistics, the model parameters Θ and Θ̄ must satisfy the relation Θ2 − Θ̄2 = 0. Therefore,

the parameters Θ and Θ̄ reflect the intrinsic noncommutativity between positions and momenta,

respectively, (as a Planck constant encodes the noncommutativity of position and momentum),
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which should be independent on the concrete physical model.

Ph.D. Thesis In Mathematical Physics Dine Ousmane Samary c©2011



Bibliography

[1] Abou-Zeid, M. and Dorn, H.: 2001, ‘Comments on the energy momentum tensor

in noncommutative field theories’, Phys. Lett. B Vol. no. 514, pp. 193-188.

[2] Antoine J.-P.: 2006 ‘Representation Theory in Classical and Quantum Physics’, In:

Proceedings of the Fourth International Workshop on Contemporary Problems in

Mathematical Physics, Govaerts J., Hounkonnou M. and Mzesane A. (Eds), World

Scientific, Singapore, pp. 3–64.

[3] Aschieri, P. Castellani, L. and Dimitrijevic, M.: 2008 ‘Dynamical Noncommutativity

and Noether Theorem in Twisted φ?4 Theory’ Lett Math Phys. Vol. no. 85,

pp. 39-53.[ e-print hep-th/0106048]

[4] Aschieri, P. Dimitrijevic, M. Meyer, F. and Wess, J.: 2005 ‘Noncommutative ge-

ometry and gravity’ [ e-print hep-th/0510059].

[5] Atkinson, D. and Hounkonnou, M. N.: 2001 ’Quantum mechanics, a self contained

course’ Rinton Press, New Jersey.

[6] Bayen, F. Flato, M. Fronsdal, A Lichnerowicz. Sternheimer, D.:1978 ‘Deformation

theory and quantization. I. Deformations of symplectic structures’, Ann. Physics

111, 61.

[7] Ben Geloun J, and Hounkonnou M.N.: 2007 ‘Energy-Momentum Tensors in Renor-

malizable Noncommutative Scalar Field Theory’ Phys Lett B 653 343-345.

[8] Ben Geloun J and Hounkonnou, M N.: 2007 ‘Noncommutative Noether Theorem’

AIP Procceding 956 55-60.

[9] Ben Geloun J, Hounkonnou, M N and Massamba F.: 2007 ’Moyal algebra: relevant

properties, projective limits and applications in noncommutative field theory’ SUT

Journal of Mathematics 44 55-88.

[10] J. Ben Geloun,: 2007 ’Nonlinear Models in Noncommutative Geometry’ Phd thesis

ICMPA-MPA/2007.

[11] Binqsheng, L. and Sicong, J.: 2009 ‘Deformed squeezed states in noncommutative

phase space’ [ e-print math-th/0902.377]

[12] Binqsheng, L. Sicong, J. and Taihua, H.: 2009 ‘Deformation quantization for cou-

pled harmonic oscillators on a general noncommutative space’ [ e-print math-

th/0902.369]



[13] Calmet X.:2005 ‘Space-Time Symmetries of Noncommutative Spaces’, Phys. Rev.

D71 085012, e-print hep-th/0411147].

[14] Carlson C., Carone C. and Zobin N.: 2002 ‘Noncommutative Gauge Theory without

Lorentz Violation’, Phys. Rev. D66 (2002) 075001, e-print [hep-th/0206035].

[15] Chaichian, M., Kulish, P.P., Nishijima, K. and Tureanu, A.: 2004, ‘On a Lorentz-

Invariant Interpretation of Noncommutative Space-Time and Its Implications on

Noncommutative QFT’, Phys. Lett. B Vol. no. 604, pp. 98–102;

Koch, F. and Tsouchnika, E.: 2005, ‘Construction of Θ-Poincaré algebras and their
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