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Résu1né 

Le sujet ùc rNt<' tbése est l'étude des notions de Hopficité <>t de C()-hopficité 
dans la f.atfgoric O('S eomplexes. Cette thésP ~t romposée de quatre• C'hapitrcs. 
Dans Ir chapitrE> 1 des notions d'algébrc homologique sont ra.ppC'Ift«~ notam­
ment les catégorif'S et les foncteurs. Dans le chapitre 2, nous étudions If-s objets 
projectif.,, m}ertif s, lwpfieTU~. cohopfiens de la. catégorie des <-omplcxes d<> 
A- uuxlulrH not{'(• COAI P. Les objets de C0.\-1 P sont les suitœ compl<'xcs <>t 
les morphismes sont h)S chaines. Le résultat cs .. wntiel du deuxi(~mt• chapitre <'St 
le théorémr suivant : toute suite complexe d(• A-modul«>S quasi-proje<·tiv•~ et for­
tement rolwpjlnuu· ou quasi-injective et fortement hopftm.nr t!St mw suit<' 
complex ... clt• FITTU\G. Dans le chapitre 3, nous l'tudions les ohj<'ts fortement 
hopf ien.<t, f ort<'rnrnt colwp f ien.~. quasi - inJectifs, quasi - projectif.<;, de 
la catégorit! COM P On y étudie aussi l('S objets de Fitting Ô<' la <:at(>g()­

rie des complMCffi. L<- résultat lt> plus remarquable est lt> thl>ori'mc suivant : 
tout~ suite <'ompl<'xc de A-modules quasi-projccth-e (>( fortenwnt rohopfzrnne 
ou quas. - 111Jt>ctive et fortement hopfienne ~t Wle suitf' complexe d~ FIT­
TrJG. Le chapitre 4 f'St une investigation sur les ('l.·Jl - complexl'S. 11 ~t ("'nsa­
cré à l'étud<' d~ obJets Hopfiens, objets Co-bopJieru; ùans la catégories des 
G- Cl-\-'- <'Omplrxœ . On y étudie également les objets Hopficns, obJ<'~<J Or 
HopfiP.ns d<' la c:att'gorie G1l où G est un groupe discrPt et G1l.. dc'>Higna.nt la 
catégorie Ù<'s G homotopie des G-CVI <"'mpi<'XC'S avec pointK bas<'. 



6 

Abstract 

The snbject of this thesis is the study of th<' notion of Hopfcity and Co­
hopfcity in this c·at<'gory of chain complexŒ of A-modules. ln th<' rhaptcr 
1 the notions of rat<'gories and functors art• stud.ied to be surrund<'<l in the 
following chaptcrs. Sorne notions of bomologir.al algcbra are remind<'<l. ln the 
r.h.apter 2 \\'t' study projective, injective, hopfian. cobopfian chain r.omple.x(>S. 
The maiu rt'Suh in this rhapter is the following theorem : any projcctiw and 
cohopfian or injr<'tive and hopfian chain rornplex of A-modules is a Fit ting 
chain cowplcx. In the chapter 3 we study quasi-projective, quasi-injretive, 
strongly bopfian, strongly cohopfian chain c.omplexcs. The main n-sult. in this 
chapter 3 is tb(• following theorcm: any qua.<ii-projcctive and strongly <·ohopfian 
or quasi-inj('('tive and strongly hopfian chain comple.x of A-modules is a Fitting 
chain complcx Th(' chapter 4 is an investigation on the catcgory of CW­
complexcs. Tht• C'hapt('r 4 is dedicated th(' study of hopfian, rohopfian in the 
category on CW-<'Omple.xes. \Ve also study th(' catego~· bopfian, c·ohopfian 
objf'Cts of H, the eategory of pointed path-connt>eted CW-<omplexcs. 
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0.1 Introduction 

Le sujet dr C'l'tt<' thi-:w est l'étude des notions de Hopficité et de C<rhopfi<:ité 
dans la catégori(• rir.s complexes .En général 1<'8 notions d'hopfcitl> et <h• mhop­
cité sont surtout rt udircs dans la catégorie dE~ A- modules. On s'œt cl<'mandé 
est-il possiblE' d'rtudier ces notions dan~ la catégorie des suih~ complcx<'S d<' 
A- modul<'s , ailUii qur la forte hopfcité et la forte cohopfcité.Da.ru; C<' hut on a 
utilisé certains outils d<' l'algèbre homologiquE'. Cette thèse est ainsi Htrudttrc?c 
d<' la façon tmivant<' : 

Dans 1<• dlaJ>itre 1 les notions de cati'goriE'S <'t de foncteurs sont (•tudi~ 
pour être inv<>Sti<·~ dans lC's chapitres suivauts. Le concept de catégoriE' t!:'tl in­
troduit puis a.c<·ompagné d'exemples. Dans la deuxième section du chapitre 1, 
on étudu" lE'S fonctrurs <'Ovariants et contravariants Les transformations natu­
reUes sont abordées, et sui\"ies d'exemples. U> lrmme de Yonroa est énond· er 
démontré Les foncteurs adjoints sont etudiés et des exemples sont donnés. On 
a abon.lé l~ fom·U>urs (>quivalents. Une caracti'risation des fonct<'urs équiva­
lents est dl>montrt'c M. œl1e des fonrteurs f'SienticUement surjectifs. 

Dans le t:hapitn• 2, nous étudions les objets projectif s,t.njeclif.<~, IUJp/ic:n.s, 
colwpfzcm; dt' la (:st.tkgorie des complexes de A- modules not.N> ('OM P. Les 
objets dr CO M P sont lœ suites complexes ('t les morphismes sout l•~ c·haines. 
Une stùte compl(•xr C t!St une suite de .4-modulC'S ct d'homomorphismC'S dr 

.4-moduh•s C : . .. ~ Cn+I ~l C" ~ Cn-t ~~ ... wrifia.nt dn o d,+t = O. 
pour tout n E Z 
Une chaim• f ('St di•finie par : 

C c. d..H d,. 
: ··· - n+t--Cn-Cn-1-••• 

/! f~+ll ~ fn! f~-l t 
C' f'W .. ' 1 ('' d',. ('' 

: . . . -vn+l-- n- n - I-''' 

où 4,.+1 o /.,.+1 = f,. o dn+1, Vn E Z 

Dans ce chapitre on a démontré les résultats suivants : 

1. Si C t~t \lflt' sni te complexe a"-cc E !;4>U.'i complexe non uul de C t:t C / E 
hopjtPn alors C t•st hopfien 

2. SiC <'St UJH' t~uit.c complexe dont tout sous complexe proprr est rolwpficn 
alors C œt tohop f ien 
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3. C = (f)C' où (C') est une famille dt' œ complexes alors les proJ)()Sttions 

stlivd.Ilt<'$ sout équivalentes 
Ct )C ~~ ltapfien {respectivement cohopfum)alors ci œt hopf u-n (res-

pectiwmf'nt cohop f ien) 
c2 )St C'est c:omplètement invariant alors C œt hopfuon(respectivement 
roh op f u•n) si l't Sl'ulement si C' ffit hopf ien (respectivement cohap f ien) 

4. Si C <'St llll <X>mplexe projectif et E un sous complexe t-"ornpli~tl'ml'nt in­
variant et Huperflu de C alors E <>st hopf irn si et seull'ml'nt si C / E est 

hopften 

5. Si C est un complexe injectif et E m• sous romplexe compli't<•nu•nt inva­

riant et ('S."l('nt irl 
de C alors E est cohop f ien si et seulement si C est colwp f um 

6. Tltl'<m!nw : Si C est une suite complt-.xc de A-modules alors on a 

• Si C est uru' suite pmjective ct cohopjlmne alors C est hapjtNme. 

• Si C l'Nt mu• suit.e injective et hopfiRnne. alon; C œt cohnpfir.nnr. 

1. Thron'ml' : Tout.e suitl' complexe projert1ve et cohopj1enne ou injective 
et hopjlrnrw œt une suite complexe de Fitting 
(Le chapttrr 2 a fait l'objet <l'un artidc publif-e <lan.'i Intf"rnat ional Ma-

themati<·al Forum) 

Dans le chapitre 3. nous étudions lffi obj<'ts flrrtement hopftens, Jartrment 
cohopj'lt>ns, quas• -injectif s. quasi- projectifs, dP. la catégori•• COM P. On 
y étudi•• a.u..'i.-;i lt<ti objets <le Fitting de la (:atégorie d<'S complexes 

On a di-montré dans l<' chapitre 3 l~ résultats suivants : 

1. Si C t~t mw :mire complexe fortemt'nt bop&>nne (res~tavemt•nc forte­
mt'nt rohopfi<'nne) er E une sous suite de C facteur dir{'("t de C alors E ~ 
C / E sont fort f•menr hopfiennes ( rcsp«tiwment fortemenl <.-ohopficnne) 

2. Si E est une suite complexe complètement invariante avf'C· E ct C / E for­
tc•rnt•nt bopfienncs alors (respectivement fortement cohopfit•nn<'s) alors C 
est foru·m<'nt hopfienne (rffipectivcment fortement cohopfienn<!) 

3. C = <DC' où ~ est une suite compl<'t<•m(•nt invariantE> 
Si C' {'Nt forh•m<>nt hopfienne (respœtivement fortPmcnt <'ohopfi<'nne) 
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alors C est fortement hopfienne {respectivement fortement cohopfienne) 

4. Soit C œt. une suite complexe .C est. une suite complexe quasi-projective 
si et seulC'mcnt si chaque A-module de la chaine est quasi proj<'ctif 

5. Soit C une suite complexe. C est une suite quasi-injective si et seulement 
si c.haque A-module de la chaill(• est quasi-injectif 

6. Soit C une suite complexe. Si C ~t une suite complexe qua.si-injt.'<:tive 
fortement hopfienne alors C est une suite fortement cohopfiennc 

7. Soit C une suite complexe. Si C t-'St un<' suite complexe qtk'lSÎ-projective 
fortement cohopfienne alors C est une suite fortement hopfiennc 

8. Toute suite complexe de A-modules quasi-projective et cohapfienne ou 
quasi- injective et hapfienne est une suite complexe de FITTING. 

(Le troisième chapitre a fait l'objet d'une publication dans Journal of 1\tathc­
matics Resea.rch ) 

Le chapitre 4 est une investigation sur h~ CW- complexes. On donne la 
définition du foncteur homologique H n de la catégorie CO 1Vl P dans la catégl:r 
rie Ab. On a aussi étudjé les suites exacte~'> de complexes. On a aussi énoncé 
et démontré le théorème port-ant sur l'homomorphisme de liaison permettam. 
de transformer nne suite exacte courte en suite exacte longue. Le lemme du 
serpent dans la catégorie CO M P est énoncé et démontré. 
Ensuite on applique les notions de la première partie à l'homologie de." CW­
complexes. Cela commenœ par des préliminaires sur les limites inductives et 
la notion d'homotopie. 
La dernière partie du chapitre 4 est consacr6e à. l'étude des objets Hopfiens, 
objet.s C<rhopfiens dans la catégories des G- CW- complexes. Ainsi dans les 
deux sous sect.ious qui vont suivre on étudie lt>A'i objets Hopficns, objets C<r 
Hopfiens de la cat.égorie G1l où G est un groupe discret et G1-l désignant la 
catégorie des G homotopie des G-C\V avec points base. 



Chapitre 1 

Catégories et Foncteurs 

1.1 Int roduction 

Le chapitre 1 E"St un chapitre qui rasscmblr des résultats ct rappels préli­
minaires à l'f.tudc df'S chapitres 2, 3. et 4. 
D'abord on y définit la notion de catégorie t>t ou y donne d~ t>xemplcs de caté­
gories utilisk>s clans IP.S autres chapitres. Lr.s notions de produit et d~ roprodtùt 
sont définir~ r.t aussi sont donnés des exemples de produit et l'Oproduit. On a 
démontré d8Jls la première section de cc chapitre que le produit de deux obj<'ts 
d'une ca.tégorir ffit tmique à isomorphisme' prÈ'S. 
Dans la dcuxic··mr section du chapitre 1 on y aborde l'étude df'S foncteurs. On 
a défini la notion de foncteur et fourni des <'Xrmples de fon<'t<'nrs <:ovaria.nts 
ou contravanams. La notion de transformation naturf'lle est définir <>t illustrée 
par plusif:'urs <'Xcmples. Le lemmP de Yon<'da (~t énoncé et dl•montré.Lœ fonc­
teurs représt'ntablffi sont définis. La notion d<' foncteurs adjoints ffit i'tudik> et 
renforck' à l'aide d'exemples traités. Lœ <'Oll<'<'pts de fonct<'urs fidèlcs,pleins. 
essentiels, pl<'inemcnt fidèles sont définis. Cds a permis de <'arf)(:tt>riscr les 
foncteurs pl<'in<'mcnt fidèlt>S. On a aussi abord(• 1~ notions de foncteurs d'équi­
valences de fouctcurs.dc foncteurs cssentieL".<'ssentiellement ~urje<'tifs. C('('i a 
permis la carac·ré'risation des fonc-teurs équivalents 

10 



1.2 Catégories 

Définition 1 Une caté,.qorie C est la donnée : 

1. d 'une classe d'objets notée Ob{C} 

11 

2. pom· tmtt cm.1.ple (X, Y) d'objets de C d'un ensemble noté Homc(X, Y) 
dont les éléments sont appelés morphismes di~ X dans Y 

9. pour tout triplet (X, Y, Z) d'obJets de C d'une application(!, g) -----+ 9 of 
de Homc(X, Y)xHomc(Y, Z) dans Homc(X, Z),appelée morphisme com­

posée,satisfaisant aux deux conditions suivantes : 
• Pour tout quadruplet (X, Y, Z, T) d'objet.s de C et pour tout triplet 

(!. g,h) E Hamc(X. Y) x Homc(Y, Z) x Homc(Z1 T) 
h 0 (g 0 f) = (h 0 g) 0 f 

• pour tout objet X de C ,il existe un morphisme lx E Homc(X, X) 
appelé morphisme identité de X tel que 
pour tout objet objet Y de C et pour fE Homc(X, Y), folx = f 
pour tout objet Y de C pour tout gE Homc(Y, X),lx o g = .fJ 

Exemple 1 1. Catégorie Ens des CTI..r;embles dont les objets sont le.'> en-
sembles et les morphismes les applications 

2. Catégorie Gr de.'l _groupes dont les objets sont les groupes et les mor·­
phismes sont le.r; homomorphismes de grouprs 

9. Caté_qorie Ab des gmupes abélùms dont les objets sont les groupes abélien~ 
et les flèches sont les homomorphismes de groupes abélie11..o; 

4- Caté_qorie associée à un en..r;errJ.ble préordonné Soit (E, < ) un ensemble 
préordonné. On définit cette caté_qorie notée E comme suit : 
• ob(Ë)=E 
• PouT" tout œv.ple (X, Y) d'objets de Ë on IJO.se E {X, Y) - tk si X ~Y 

sinon Ë {X, Y) --0 

• La transitivité de la relation ~ définit de façon unique la compositwn 
de.c; morphisme.-; puis la ré[lexi1tité et l'antisymétri.e assurent l'existence 
et l 'unicité du morphisme identité t:~ pour tout objet X de Ë 

5. Catégorie A- mod 
Le.s objets de A- Mod sont les A- Mod à gauche et les morphismes sont 
les homomorphismes de A- Mod 

6·. Catégorie de matrices à coefficients dans un anneau A notée matrA : 
• ob{matr A)= .l\·* 
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• Pour tout couple (m, n) E N• x N* un moryhisme de rn dans n est 
une matrice à rn lignes et n colonnes. 

• Si/ E matrA(m.n) etg E matrA(n,p) alors.qof = fxg E 
rnatr A(m,p). 

• La composition des matrices étant associatù•e alors si fE matrA(m, n), 
gE matrA(n,p), hE mAtrA(p,q) alorsho(gof)=Jx(gxh) =(hog)of. 

• Soit nE ob( matrA) le morphisme identité est la matrice unité d 'or·dr-e 
71. 

Définition 2 Soient A et B deux objets d'une catégorie C. Un produit de .4. 
et de. B est tm triplet(P,pA,PB) tel que: 

1. P e.r;t 1Lfl objet de C . 

2. PA E HC1f1lc(P, .4) et PB E Homc(P, B) d tel que pour tout triplet 
(Q. QA, QB) • 
• a) Q est un objet de C . 
• b} qA E Homc(Q, A) et QJJ E Homc(Q, B) il existe un un-ique mor­

phisme r : Q --+ P rendant le diagmmme su-ivant suivant : 

Q 

.;r .. 
u~ 

.4 B 

Exemple 2 1. Dllns la catégorie Ens le produit de deux objets est lettr 
produit carlé.sien 

2. Dan.r; la catégorie des groupes considérons n groupes tels que: 

(Gt, *1). (G2, *2), ... , (Gn, *n)· 
Le produit des n groupes est défini par : 
(al, a2, ... , an) *(bt. b:! .... , bn) = (a1*1 bll a2*2bz .... , a...•nbn} avec tl.ï, b, E 
Gi. 

3. Soit ( E, ~) un ensemble partiellement ordonné. E est une catégorie do11i 
le.s objets sont les éléments de E. Soit X, Y deux objets de E alors : 
E (X, Y}=tk si X~ Y sinon Ë (X, Y)=0 
Suppm;ons i = inf(X, Y) . Supposon.~ i' vér-ifiant : 

x 
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Deme i' < X et i' $ Y d01rc i' ~ i donc i' = i et la tmnsitwité le 
diagrumme comrnutl> œ qui achève la dérnon.'ltratton . 

.1. Dan.~ la catégorie A-Mod, le produit de..ç A- modules .~li où i E /,ut 
romme ensemble, le produit n.~l;. fapplicattonlinéaire Pi : n.\1, -+ J{1 

I = (x,)i E [ H Xj 

où x, est la j ièm.e r.omposante de x. 

Proposition 1 Dans une catégorie si le produit existe, alors il est unique à 
isomorphi~me près 

Preuve En consenJant le.~ rwtattons de la défimtimr préd..dente r.onsidénm.s 
deux cas : 

1. Premier cas : Si P = Q on obtient un unique morphi.<>me t : P --+ P 
tel qu.e le dia_qmmme précédent commute. Puisque 1 p fait commutrr le 
dtagmmme alon~ d il e.~t le seul. 

2. Deuxième cas :Soit (P,pA,Pn) et (Q, lJA,QlJ) deu.x produ.tts de A et de B 
Comme ( Q, qA .lJB) e.11t un. pmduit de A et 8 alors il existe un uniquP 
mory1hisme q: Q--+ P tel que [JA o q = lJA et PRo q = qu 
On obtient en ir11'en~ant les rôles de P et Q le.'î deux résultaL'I qA op = PA 
et Qn oP= PB 
On a alors le diagramme sui1•ant : 

Donc p .4 = qA op = PA o q op 
On a aussi PB = lfH op = PB o q op 
On obtient q o p : P --+ P e.~t ·un morphi~mc qui fait commuter le dia­
gramme pré.cédent d'où q op= lp 

DP même qA = PA o q = l/A o p o q 
On a aussi qB =PB o q =quo po q 
On vbtient po q : Q --+ Q e.st tm mory)hi.ml.e qui fait commuter· lP 
diagramme préâ.dent d'où po q = lQ- Ain.~i P ~ Q. 

Définition 3 Soient . .o\ et 8 deu.x objets d :une catégorie C. Un coproduit dt> . .o\ 
et de n e.~t un tnplet(S, SA, SB) tel que : 

1. S e.~t un objet de C. 

~- sA E Home( A. S) ct s8 E Hamc(B, S) et tel que pour tout triplt>t 
(T. tA, tB) . 
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• T e~<Jt un ob;et de C . 
• tA E Homc(A, T) et tB E Home( B. T) zL ni..te un unique morph1Sme 

r : S ~ T rrndant le diagrnmme suit'()nt suit'()nt : 

T 

B 

1.3 Foncteurs 

Définjtion 4 Soient C Pt V deux catégories. Alors la relation F : C ---+ V est 
un fondror de C dafL'i V ,,i : 

1. Pour chaque ob;et A de C il assoae un umquP obJet F(A) de V . 

2. Pour tout morphi8me 1 : A ---+ B de C u assone un unique morphiSme' : 
F(J) : F(A)---+ F(B) de V. 

3. Ss on a deux morphssmes de C telles que : A ...!.... B ~ C. Alors F(g o 

/) F(g) o F(J) . 

4- F(lA) = lF(A) . 

Définition 5 Soient C et V deu:r: catégories. 
Alo1·s un dtt que la relation F : C ~ V est un foncteur contmvanant de C 
dans V st: 

1. Pour chaque ob}et A de C il associe un umqttc objet F(A) de V . 

2. Pour tout morpha.m~e 1 : .4 ---+ B de C il a.'i.,one un um.que morpha."ïmt> : 
F(f) : F(B) ---+ F(A) de V . 

3. Si (ffl a deux morph&!lmes de C telles que : A J..... B --4 C. Alors F(g o 

/) = F(J) o F(g) . 

4- F(lA) - lF(A) . 

Exemple 3 Exemple.• de foncteurs 

1. Foncteur d 'une ra.Jigone C dans Ens noti Hom(A, - ) défini par pour 
tout objet ..4 d 'unt· r-atégone C : 
Hmn(A, )(B) = Hom(A, B). pour tout ob1e.t D de C 
pour tout morplusme fE Hom(B, U) de C, Hom( A.)(/) = Hom( A. /) 
où 1/mn(A , )(/)est noté f. avec f.(h ) = foh,pour tout hE Hom(A, B) 

Soit B ~ B' -4 8" où f et g sont deu.r morphismes de C. 



Comparon.s (go!). et g. o /. 

Soit (g o !).. : Hom( A, B) -+ Hom( A , B") 
h H (g o /),.( h) = (g o f) o h 

D'autre part (g. o f.)(h) = g.(f.(h)) or f.(h) = f oh 
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donc (g. o /.)(h.) =go (Jo h) Avec l'a.ssociatit'ité de la composition des 
ap7>lications on obtient : 
go (J oh)= (go f) o (h) =(go f).(h) on obtient (go!).= g .. of. 
Posons f = lB où lB: B -----7 B. 
Soit (1 8 ).: h -----7 ls oh= h, ceci pour tout hE Ham(A, B) 
AiTLsi (lB)• = lHom(A,B) · 

2. Foncteur d'une catégorie C dans Ens noté Hom(-, B) défini paT p011.T· 

tout objet B de C 
Hom(-, B)(A) = Hom(A, B) , pour tout objet A de la ca.tégorie C 
pourtoutmorphismef E Hom.(C,G') deC Ham(-, B)(J) = Harn(J, D) = 

f. avec f,.(h) =ho f où hE llarn(C'G) 

Soit f,g,h morphismes de C telles que: C ~ C' --4 C" ~ B 
Comparons (go!}. , f. o g. : Hom(C", B) -----7 Hom(C, B) 
D'afxml. (go f).(h) =ho (go!) 
D'autre part(!. o g,)(h) = f.(g.(h)) = f.(h o g) =(ho g) of 
Comme (ho g) of= h(og of) donc (go!). = f. o g. 
Posons f =le où le: C -----7 C 
(le). : h -----7 ho le= h ainsi (le).= lHom(C,B) 

Ce qui précède prouve que Harn(-, B) est un foncteur contro.variant. 

3. Etant donné un R module AR,il existe un foncteur FA: R- Mod -----7 Ab 
noté A ®R- et défini pa1·: 
FA(B) = .4 ~RB et FA(g) =lA '&·Rg où g: B -----7 B' est urt morphisme 
de R- modules 
De même etant donné un R- module RB, ü existe un foncteur G 8 : 

.. ~od - R -----7 Ab noté- ®R. B d défini par: 
GB(A) = A ®RB et GB(J} = f ®la où f: A -----7 A' est 1.m morphisme 
de R- modules 
Preuve: 
Démontrons que FA préseroe le morphisme identité 
En effet FA(Ia) = lA® ln or lA~ lB transforme a® b en a® b d'où 
lA® 18 = l...t®B·Ainsi FA(la) = lF..t(B) 

Démontrons que FA(g' o g) = F,1(g') o FA(g) 
FA(g'og) = A®(g'og) = lA ® (g'og) = (lA®g')o(lA®g) = FA(g')oFA(g) 

Définition 6 Soit C une catégorie,on définit le foncteur identtque le : C -----7 C 
par: 
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lc{A) = A pour tout obJet A de Cet le(/) = / pour tout morphi.sme / E 
Home( A, D) et le est covanant 

Définition 7 Soient F : C ----. V et G : V ~ ! dcu..z foncteurs de même 
t~ananœ. Alors la relatwn notée Go F de C dan."J ! appelée fonr.teur composée 
dP. F suwu• dr G est définie par : 
Go F(A) = G{F(A)) et Go F(/) = G(F(/)), Go F(lA) = laoF(A) 

Définit ion 8 : 
So1.ent C et V deux catégories. Url foncteur F de> C dans V e.-rt un isomor­
phtSme 3 'il t'XI.$te 

un foncteur G: V~ C tel que Go F =le et F o G = lt.,. Le.~ catégorie.<; C 
et V sont dtte-3 t.Somorphes. 

Définition 9 Sment F,G deux foncteurs rovanants de C dan.<t V .Alors on 
appelle tmnfformo.tton naturelle ou morphisme fonctonella wlatwn r : F ~ 
G et la donnée pour toul obJet A de C d ·un objet r .4 de V tt>L't que pour tout 
morph1.Smr. f : A ~ A' le diagrnmme smvant est r.ommutattf : 

F(A)~G(A) 

! F(f) l G(/) 

F( A') ~G(N) 

De plu.11 T est dit isomorphisme fonctoriel si pour tout obJet A de C, rA e.<;t 
tm isomorphume dt~ V 

Définition et proposition 1 La compo~ition de dtmx tronsforTnations natu­
n;lle.<; est tmf' tran4ifonnatwn natun>lle 

P reuve Smt>nt dtux r.atégories C et V. Soient F. G. H : C ~ V trois /tmc­
kurs cot•ananl$. 
Sozent ks trunsfonnattans naturelle.'> r, a telle.' que F ~ G ~ H . A lor., 
pour tout morphtSme 1 : c ----. C1 de c on a le.<i diagramme3 .,uwants : 

et 

F(C)~G(C) 

l F(f} l C(/) 

F(C') ...!!::_ G(C1
) 



G(C)~ H(C) 

l G(f) 1 H(/) 

G(C') ~ H(C') 

On obtient ."Tc' o F (f) = G(f) o Tc 
et OC~ o G(f) = H(f) o ac 
En utili.sant la dernière Tf'lation et en composant à droite Tc on a : 
H(f) o uc o Tc = ac• o G(J) o Tc or G(f) o Tc = uc' o F(J) 
Ainsi H(J) o ac o Tc = tTc• o TC' o F(f). 
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En posant uc ore = (u o T)c pour- tout C objd de C on a démontré que : 
u o T : F --+ H est u.n morphisme fonctoriel 

On note Nat(F. G) la dasse des transformations de naturelle d(" F dans G 

Définit ion 10 Soient C et V deux caté.gories et tm foncteur F : C --+ V. 
F est appelée équitralenr..e de catégories de C dan.;; V s 'il existe tm foncteur 
G : V --+ C et deux i8omorphisme.s fonctoriels lif' G o F dan.s le et de F o G 
dans lv 

Remarque 1 Dans le ('li.'> où les deux foncteun t'ont contravariants on défimt 
de la même manière la composée de morphisme.'i fonctoriels. 

Exemple 4 Exem,Ple dr transfonnation natun~lle 
Soit A un. objet de de la r.11tégoric Ens avec A {a} et deux foncteurs cova­
riants Hom (A. - ), 1 E'IU de Ens dan.<; lui même. Soit T : Hom( A. -) --+ 1 En11 

tel que pour X olrjet de En.~ on a Tx est défini par : 
Tx : Ham( A, X) -+ l E:ru(X) =X 

f ~ r·<(f) = /(a) 
rx est une est une apr1lication bijective _ Pour tout morphisme h de Ens td 
que h : X ~ Y con.'lideroTL'! le diagmmme suitiUTll : 

Ham(A, X)~ lEu(X) 

! "· ! 1 f:,..(h) 

Hom(A, Y)~ lEu(Y) 
Or IE_(X) =X et lE,..(h) = h do11c le diagramme pn'.cédent de1'tent : 
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Comparons h o Tx et ry oh. 
(ho Tx )(!) = h(f(a)) = (ho f)(a) 
D'autre part (ry oh.)(!)= Ty(h.(f)) = ry(h o!) =(ho f)(a) 
D'où h o Tx = Ty o h •. Ainsi r est un isomorphittme fonctonel. 

Lemme 1 Lemme de Yoneda Soient C une catégorie quelconque et la catégo­
rie Ens. 
Soit G: C --t Ens 1m foncteur covariant. 
Alors pour tout obj('t A de C il existe une bijection y : Nat( Horne (A, - ), G) ~ 

'T ~ 

Où Nat(Homc(A,-),G) désigne la classe des transforrn.atwns naturelles de 
Homc(A, - ) dans C et A est un objet de C 

P reuve Solt r : Horne( A, -) --t G 
SoU 1,.. E Hom(A, A) onT,..(l,..) E G(A) comme y(r) = r,..(l,..) d'où y e.-;t lnen 
définie. 
Démontrons que y est InJective. PoTI.1" tout objet B u existe un morphisme 
(#) E H omc( A. B) rendant commutatif les diagrammes sui11ants : 

Harnc(A . .4) ~ G(A) 

! op. ! O(.p) 

Homc(A. B) ~ G(.4) 
et 

Homc(A, A(~G(A) 

! 'Il• ! G(t;) 

Homc(A. B)(/~ G(A) 
Or~ obttent d 'après la commutativité du diagramme : 

G(.p) o ;A( lA) = TR o <p.(l,..) = Ta(<p o (lA)) = rs(!{)) 

et Hamc( .4 . A)~ G(.4) 

! ~· ! G(~J 
Hamc(A. B(!....- G(A) 

On obt~ent d 'aprè.s la commutativité du diagramme : 
G(rp) o r,..(lA) = rs o <p.(lA) = Ta('l' o (lA)) = ra(cp) 
Ce qul donm• :G(cp) o rA (lA)= rs(!{)) 
Soit u : Hom(A,-) -4 G une autre transformation naturelle on obtzt>nt : 
ua(cp) = G(cp) o uA(lA) 
Supposons que y(r) = y(u) on a uA(lA) = 7A(1A) d'oti. G(.p)(uA(lA)) -
G(rA(IA)) 
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D'où un(cp) = Ts(cp) ain.st us = Ts pour tout objet D de C,finale.ment u = T 
cc qui établ1t que y e.flt unr injection 
Démontroru que y est uru• surjection 
Pour x E G(A) et "' E Home( A. B) posons T8 (tb) = G(1/·)(z) lÜmr G(~') : 
G(A) --+ G(D) 
Démonlrrm.~ queT e.st ILnt• tronsformatloTL naturelle. 
Si 8 : B --+ G un m017Jhisme de C Soit le diagmmme. suivant : 

Harrtc(A, D) r.!!...- G(B) 

! O. l C:(O) 

Homc(A,C)~G(C) 
Dan.s un .<~ens le dt.a.qramme donne T8(lL') = G(tl!){.r) 

t'n appl1qr.umt G(O) on nbtlcnt G(O)(TB(ç)) = G(O)(G(t•)(z)) 
Dans l 'autre Tc o O.(t,~•) = Tc(O o ~·) = G(O o t;·)(x) 
Comme G t>.~t un foncteur G(O o \') = G(O) o G(t.') . 
Par com~rauon on on obtient : G(O) o r8 =Tc o O. ainsi r e.~t un~: tronsfor· 
matton naturelle 
On saù que .TB(") = G(\l•)(x) en posant B =A et f/1 = lA 
Donc y(T) = T.4(l.4) = G(l.4)(x) =x 

Proposition 2 Sotent C une catégorie avec A et D objets de C. 

1. S1 r : Homc(A , -) --+ Homc(B, -) est une tronsformataon naturrllf 
aJ.oni puur tout objet G de C on obtient : 
Tc= l/1• où ?/.• = r,.(IA): B--+ A 
et lt! morphtSmt' mduit ,p• de : Homc(A. C) -+ Homc(B, C) 

Si Tc = o· alor., (} = "-' . 

2. Si T et u deu.:r morphismes functcriels teL-; que : 
Homc(A,-) ~ HomdB.-) ~ Homc(C.-) . Si uc: = f'J• et Tc= ?J,• 
alors (uor)c = (1/lo 'l)• . 

3. S• Homc(.4, -) et Home( B.-) .sont isomorph~ alors . .4:::! B 

Preuve 1. Posoru yJr = r,..(lA) E Homc(B, A) d'après le lrmmr! b Yoneda 
pour tout C obJt>f dr C et tout tp E Home( A, C) on a rc('P) = tp.(.P) 
maa.~ tp.(ft.•) =cp o 1/r = ~·(.p) 

2. D'après i} Il f..:L1.'1tc un unique morphisme 1/J E Homc(B, A) et un umque 
morphi.5me '1 EE Hamc( 8', B) tel.o; que re( cp) = V'.(<P) et oc(<p') = 
1}. ( !p') 
Puur tout!/> E Homc(A, C) et tout 'P' E Home( B. C) on a : (uor)c(<P) = 
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3. Sir : Homc(A, -) ~ Hamc(B, - ) est un isomorphi.5me fonctoriel 
alors d un existe isomorphisme fonctoriel u : H (.}'fTJc ( B , - ) ---t Horne (A -) 
teLs que : u o T = lHomc(A,-) et To u = 1Homc(B,-) 

D'après i} il enste l' : B ---t A et 7] : A ---+ B avec re = ,p• et a c = fi• 
D'apri>s iii} T 0 (J = w· 0 fi'" = (7] 0 1/J)* = 18 
Ausst u o r = (1/J o fJ)• =lÀ 
D'apris l 'unicité on obtient : tt· o 7] = lA et fi o tt• =lB d'où 7] : .4 ---+ B 
est un isomorphtsme. 

Définition 11 Foncteu1· représentable Soit C une catégorie qu.elr.onque.Alors 
le foncteur mvariant F : C ---+ En.t; est dit représentable s'il exi.o;tt- un isomor­
phisme fonctoriel de F dans F"" Home( A,-) pour tout objet A de C 

D éfinition 12 foncteurs Adjoints Définition : 
Soit C etC' deux catégories et F (n'spectivement) un foncteur covariant de C 
dans C' ( rY:!spectivement de C dans C ). On dit que G est adJoint à droite de 
F et qut> F est adjoint à gauche de G, si pour tout couple d 'objet.s (X, Y) de 
C x C',il existe une bijection f/Jx,Y dl~ Homc·(F(X), Y) sur Hamc(X, G(Y)) 
telle que pour· tout morphisme f : X ---+ X' de C et pour tor.1.t morphisme 
g : Y ---+ Y' de C' le..s diagmmmes suitJant.<; sont commutatifs : 

Homc·(F(X') , Y)~ Homc(X' , G(Y)) 

! HOfTic,(F(f),Y) ! Homc(f,G(Y)) 

Homc•(F(X), Y)~ Homc(X , G(Y)) 

et 

Horric'(F(X), Y)~ Homc(X, G(Y)) 

! llrnnc ,(F(X),g) 1 llmri("(X,G(g)) 

Cl' x Y' 
Hamc,(F(X ). Y')- Hom<:(X, G(Y')) 

Exemple 5 a)Les foncteurs Hom r.t ® sont adjoints. Pour la preuve voir [15] 
b)Soient .4 11.n anneau et S une partae multiplicative satur-ée de A qui vérifit• 
les condtt1on.s de Ore à gauche. Alor.') les foncteurs s-1()et H omA(S- l(A), -) 
sont adjotnt.'I.Pour la preuve voir [5) 

Définition 13 Soumt t: , V deux catégories. Un foncteur F est dit isomor­
phismes 'il f.xiste un foncteur G : V---tt: tels que G o F = l.V . On dit que t: 
et V sont t.Somorphes s'il existe un Ï.<>omorphisme de t: dan.o; V 
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Définition 14 SOlrnt E , V deux rotégone., et F : E ---t V. F tt.st appP­
lée équ1vaknn s'il r..n.~te un foncteur G : V ---t E et deux L5omorpht:;mes 
fonctonel.s dt> Go F dans et de F o G dan'> G : V___. E 

Définition 15 foncteur fidèle, plein,plemement fidi>le 
Sment C et V deux catégories et un foncteur c.ovanant F : C ___. V. F est 

dzt fidèle (re.'tpt"ClttH!ment plein.respectiuement pleinement fidèle} .~i l'applica­
tion FA,R : Home( A. B) ___. Hamv(F(A), F(B)) e.st injective(re.:rpectiuement 

surjective,re . .,-perh11ement bijective} telle que pour tout morphumr f : X ___. X' 
de C et pour tou.f morphisme 9: Y ___.Y' dP C' 

Proposition 3 So•t F: C ___. V un foncte1jr pleinement fidèlr . So&t f : A ___. 
B un morpln.lJmf' df· C.Alors F(f) est un i.<wmorphi.~me $Î f.t ,•wult:mf' 'ILt si f 
est un &.flomorphi.14me 

Preuve Sent f : A---t 8 alors F(J): F{A) ___. F(B) 
Supposons F(f} r~~t un uomorphismF alors il tt..riste un L~omorpha.mae h 
F(B) --+ F(.-4) tel que F(J) oh= lF(B) eth o F(f) = lF(A) 

F {tant pleaneffl.P11t fidèle il enste un umqut r1wrpha..m~e g : lJ ___. .-4 tel que 
F(g) = h . Ams-i F(f) o F(9} = lF(B) et F(g) o F(f) = lF(A) · Cummt• F e.<it un 

foncteur nwununt on obttent F(f o g) = F(l n) et F(q o /) = F(l_.t) . Or Fest 
fidèle on obtz.cnt f o .q = lB et go f = 1A.Par c.onséquent f est un L~omorphi.<ime 
Réc1proqut>mt'nt Supposons que f : A ___. B r.d tm i.'lomorpht.Sme dl· C donc û 
e:nste utt a..•wme~rpht.'lme .9 : B --+ .4. teb• que f o g = ls et 9 of = 1 .... Donc 
F(g o /) = F(IA) = lFCA) et F(f o g) = F(lB) - lF(B) · CommP F est un 

foncteur r.ot•anant on obtient F(g) o F(f) = lF(A) et F(f) o F(g) = lF(B) d'où 
F(J) est un t.~omorphtsme. 

Définition 16 foncteur essentiellement ,.,t,rje.ctif Soit F : C --+ V un fonc­
teur. F e.9t t'.'l.'ientiellemcnt surjectif si rwur tout objet D dP V il e.:.n.'ltt! tm obJet 
C de C tRL'I lJ1"' F( C) ~ D 

Proposition 4 So1t F: C --+ V un f011Cteur. Alor.-; F est un l.qutvalPnce si 
t!t .9eulem('nt F pkmement fidèle et essenttellnrwnt suryectif. 

Preuve Supposon.s que F : C ---t V est um équtvalenc.e. donc il rnc;tc un 
foncteur G : V ___. C et un isomorphisme fonctonel f!J : F o G ___. le. Ain..;i 
pour tout obJet A de V on a F o G(..4) ~ A d'où F(G(A)) ~ .-4 et P.n posant 
G(A) = A' on obtu'1lt F(A') ~ ..4 ce qt.n établit que F est e.~.~~ntt.~llr.mt'nt .<;ur­
jectitH'. 
Démontron.'t CJ?Lf F est fidèle. 
Il suffit d'établirl 'mjectitrité de l'application FA,lf : Hom(A, B) -+ Hom(F(A), F(B)) 

f t-t F(f) 
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Supposons F(J) = F(g) donc Go F(f) =Go F(g) or 4>: F o G ---t- le est un 
tSomorphssmr fonctoriel donc le diagramme .,u&vant est commutah/ : 

GoF(A)~A) 

!GoFfn ! / 
GoF(B)~B 
:hn.~t ë>8 o G o F(f) = t],B o Go F(g) d 'aprè.s la rommutatlt'ÎfC' du dtagromme 
f o <bA = tf>s o Go F(f) donc f o 4JA =go ë>A or <I>A est un JSnmorpht.mle donr 
f = g ce qut ftabltt que F est fidèle 
Démontron.'i qtJR F e.-;t plein. 
Soitg E Hom(F(A) , F(B)) on a alorsG(g): GoF(A) ---t- GoF(B). Po.wm.s 
f = <be o G(g) o <bA 1 r.e qui donne f o 4>A = 4JN o G(g) alors t/Js o Go F(f) = 
9s o G(g) Go F(f) = G(g) comme G e~o;t fidrlr on obtient F(f) = g d'où F 
est pletn cela entrawe que F est pleinement fidèle et e.ssentieliPment surjf'.ctif. 
Supposons que F e.d pleinement fidèle et e!>sentiellement suryectt/ alo~ c.nn.'ii­
dérons le fonctf'ur G : V---t-C défim pour toul obJet A' de V .d erastR .4 de C 
tel que F( .4) ::::- A' r~r F e~-;t e.'isentu·!llem~mt suryechf 
Posons G(A') = A 
Soit f' : A' ---t- 8' un morphtSme de V alor.<; il e.xiste deux morphtmu.., : 
<PA! : F(A) ---t- A' , 4'8' : F( 8) ---+ B' et </Jw - t o /' o<i>A' E HlmJ(F(A). F( B} ). 
F étant pleinl'rw•nt fidèle il existe un umque morphisme f E J/cnn(A, B ) fp[ 

que F(f) ~ f/>g - l o !' o t!JA'. Posons G(f') = / 
Démontron.~ qu'tl enrrte deux tron.o;formations naturelles q, : G o F ---t- le et 
41 : FoG--+ lp 
Sost A un obJet dr C 011 aG o F(A) = G(F(A)) ~A. 
Posons 41A : Go tf>A = .4--+ .4 , (/)A= lA, pour tout obJet A de C 
Soit f : A ---+ D où / o lA = la o f donc le dtagromme sutt:ant : 

GoF(A)~A) 

!GoF(J) 1/ 
GoF(B)~D 

est commutatif par conséquent il eriste un L~omorphisme fonrtonel 
de G o F ---+ le 

Soit A' un ob]d de V alors il existe de C trL<i que G(A') = A F(A) ~A , 
F(G(A')) = F(A) ::::-A' donc ù exlSte un isomorphisme(/>~,: FoG(A') ---t-A' 
Soit !' : A' ---+ B' (Wei" G(f) = 1 et F(f) = d>'s, - 1 0 r 0 tt/A' et lr d'lagramme 



SUttl(lnt 

Go F(A') ~A') 
1 GoP(J') ! J' 

GoF(B')Lu 

et il existe ~ : F o G ----+ 1» un ISomorpht.Sffle fonctoriel. 
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Définition 17 Soit F: C ----+ C' un foncteur. F e.'Jt surjective si pou1· tout X' 
de C' il e..xs.~tP un obJet X de C tel., que F(X) = X' 

Soit F : C --. C' un foncteur. F est dit :Juryechf si pour toul X' de C' il 
existe Ufl nbJP.t X dr C tel que F( X} = X' 

Définition 18 Soit F : C ----+ C un foncteur. F est essentiellement inJet:· 
t1f{respectivement mJectif ) si pour tout obJPL X , X' de C st F(X) = F(X') ~ 
X ~X' (resputit'f'ment X= X'} 

Sent F : C ----+ C' est dit ln]ectzve ou bten dense St F est surjectitte et injec­
tave. 

Proposition 5 Soit F : C ----+ C'. Alors F e.st tm tSomorphtsme .'ii et .~ieule­
ment si F e.-;t rk•nse et pleinement fidèle. 



Chapitre 2 

Objets Hopfiens,Objets cohopfiens 
dans la catégorie des 
COMPLEXES 

2. 1 Introduction 

Dans ce d1apitrc, nous étudions les objets '(TI"Ojedif s,injcct.if s, hopfiens. 
cohopfiens de la ca.tégoric des complexes de A-modules notée GOAl P. Les 
objets de CO .\1 P sont les suites complexes et )('.,s morphismes sont les cbaines. 

Une suite complexe C est Ull(:' suite de A-modules et d'homomorphismes 

de A-modules C: . .. ~ Cn+l ~1 
C,. ~ Cn- 1 ~1 

• •• vérifiant fin o d,+l = 
O,pour tout 7l E Z 
Une chaine fest d<'finie par : 

OÙ d~+l o fn+l = fn o dn+l• 'Vn E Z 
Soit C un objet de COMP et fun morphisme de C dans lui même.C est hop­
fien( rcspectivementcohopfien) 
si tout épimorphismc(respectivemcnt monomorphisme) est un isomorphisme 
Une suite complexe est dite complétem(•nt invariante si chaque A-module de 
la cl1aine est, complét.ement invariant. 
Une suite complexe est dit<• essentielle(respectivement superflue) si chaque A­
module de la chaine est es.<;entiellc( respectivement supe.rflu). 
Une ~mite complexe C est. dite de Fitting si pour toute chaine f de C dans C 
.il existe un entier n tel C = lmfn ffi Ker f" 

24 
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Dans la section 3 on a démontré les résultats suivants : 

1. Si C est une suite complexe avec E sous complexe non nul de C et C 1 E 
hapfien alors C t>-St hopfien. 

2. SiC est une suite complexe dont tout sous complexe propre est cohapfien 
alors C est cohopfien. 

3. C = EEJCioù ( C1) est une famille de de complexes alors les propositions 
suivantes sont équivalentes . 
• i) c est hapfien (respectivement cohapfien)alors ci est hopfien (res­

pectivement cohop f ien). 
• ii) Si C1 est complétement invariant alors C est hopfien(respectivemcnt 

cohopfien) si et seulement si Ci est hapfien (respectivement cohopfien). 

Dans la section 4 on a démontré les résllitats suivants : 

l. Si C est un complexe projectif et E un sous complexe complét.ement 
invariant et superflu de C alors E est hop fien si et seulement si C 1 E est 
hapfien. 

2. SiC est un complexe injectif etE un som; complexe complètement inva­
riant et essentiel. 
de C alors E est cohopfien si et seulement siC est cohopfien. 

3. Théorème : Si C est une suite complexe de A-modules alors on a 
- ci) SiC est une suite projective et cohapfienne alors C est hopfienne. 
- c2) SiC est une suite injective et hapfienne alors C est cohopfienne. 

4. Théorème: Toute suite complexe projective et cohapfienne ou injective 
et hopfienne est une suite complexe de Fitting. 

Dans ce chapitre A désigne un auneau associatif unitaire non nécessairement 
commutatif et .lill désigne un A- module à gauche nnifére. 

2.2 D éfinitions et Résultat s P réliminaires sur 
la cat égorie CO.l\11 P 

2.2.1 Catégorie CON!P 

Définition et p roposit ion 2 .La catégorie des complexes de A-modules no­
tée COl\f P est la catégo·rie dont les objets sont les suites d'homomorphismes 
( dn) de A modules à gauche notée 

(C, d): ... ~ Cn+t d~.v Cn ~ Cn-I ~~ ... 
vérifiant dn o dn+I = O,pour tout nEZ et les morphismes sont les chaines. 
Une chaine f: (C,d) ~ (C',d') est une suite d'homomorphismes Un) de A-
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modules à gauche : 

(c d) C 
d,..p d.. 

, : ... - n+t-Cn-Cn-1-·· · 

/l f,.+l 1 ~ f~ l /n- 1 1 
(C' ~) C' .. -+ ' C' tt.. C' , u : ... - n.._l - n-- n-t-··• 

vérifiant d'n+l o fn+l =ln o dn+l, pour tout 1l E Z 

Remarque 2 On appelle complexe nul le complexe ( C.,., dn) 01i C,. = 0 et dn 
e.st le morphi.sme nul. Vn E Z 

Soit f ct g d('ll.X chaint--s du complexe ( C, d) vrTH ( C'. d') 
On appelle :somnw des morphismes f et g la chaine définie par f + g -

(/.,. + 9n)nEZ 
où / = (/,.)neZ C't 9 = (g,.),.ez 

Preuve So•t le dsagrumme suit'ant : 

On a : 
d',. 0 (/ n + 9n) = d'n 0 / n + d'n 0 9n 

or d',. 0 ln= /n-1 0 dn et d'n 0 9n = 9n-l 0 dn 
ainsi cl,. o (/,. + g,.) = Un-1 + g,._t) o dn 
ce qui proutw que f + g est une chaine de ( C , d) v~rs ( C, d') 

Proposition 6 Solent (C, d) et (C'. d') deux .'>uite.'i complexes df~ A- modules 
à gauche 
Alors on con.•truit la .<mite somme directe des complexes (C. d) et (C', 4) notée 
pafi C e C', d E9 d') de la manière suivante : 
(C ffi C'),. = C,. $ C:. et (d EB d')n = dn ffi d'", m' 
dn œ d'" : c.,. e c~ ---+ c,._. œ c~_1 
(zn, x',.)-+ (dn{xn), d'n(~)) 

Preuve C'e,.;t clair que dn œ d'n e..st 1.m morphi.'ime.. Démontmns Q1J.P ( dn Œ ~) o 
(dn+I œ d'n+l) = 0 
On sait que (d,.+l (B ~+l)(Xn+lt x'n+l) = (dn+l(Xn+I), d'n+l(z~+l)) 
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D'où (fin ffi d'n) O ((tl.,+ 1 ID L(.+l )(Zn+l• x'n+ 1)) (dra 0 dn U (zn+ 1 ),lfn O d'n+l (rn+ 1)) 
(ft- d,. o d,.+I(In+t) = 0 et d'n o<s+l(.x'n+l) = 0 
D'où (dn Œ tf,,) o (dn+t e d'"+I) = 0, pour tout n E Z 

Proposition 7 Soscnt ( C , d) une suite complexe de A -modulPs et (En) une fa­
mille de A modulrH telle que pour tout n.En est tm sou.s modtJle dt: Cn· Alors : 
-Sl d,. (En) Ç En 1 donr la suite des morphismes t.ndutt.s ( d,. : En -+ En 1) est 
unr suttP. r.omplt>..xe de A- modules notér (E, d) et appelée .t;ous cnmplP.xe de 
(C,d} 
-La szntf (in : En -+ Cn) des monomorphtsme.'i canomques con.•htur 
une chatnt' t : (E, d) -+ (C, d). 

Preuve 
- Posons <5" : En -+ E,._1 l'indult de d,.. dlmontrons que. 6n est bien défi-

me: 
Sou xE En, donr. d,.(z) E Er.-1 d'(JÙ 6. est bien définie 
6" est tm rrwrphtMne c.ar composée de deu:r morphismes 
Vérifion.'i que 6,. o 6n+l = 0 
Solt xE .E,.+I, alors cSn+I(x) = dn+l (x) E En et 6n((d.,.+I)(x)) = dn odn+l (x) = 
0 donc 6" o 6n+l = O. pour tout nEZ 
Ainst (E,6) la .mlle des morphismes tnduiL'i (d,. : En -+ En 1) e.~t "1ll' suite 
complexe 
-Démontrvn . ., qtu> 1 : (E,cS)-+ (C,d) est une chaine. 

Soit x E En+l• alors cSn+t(x) = d.,.+I(x) donc in o ~+l(x} = 'n(d.n+t(z)) = 
dn+l (x) 
D'autre part pou1· :z E E.t+t on a În+t(x) = x alors d.n +t o i..+a(x) = dn+l(x) 
D'où pour tout ozE En+l on ai,. o6,.+l(x) = d,.+l oi.+l(:r.) 
Aum i: (E,cS)-+ (C,d) r.st une chaine c'est à dire que i: (E,d)-+ (C,d) 

Proposition 8 Sotf':nt (C, d) : . .. -+ C"+' ~~ Cn ~ Cn 1 ~~ ••• unt suste 

complexe et 

(E, d) : ... -+ En+t ~~En~ En.- t d~a ••• 

F. d.. tl d., F. d..-1 (F,d): ... -+ n+l -t Fn ~ n - 1 -t ••• 
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deu.:r. sou.s suite<" complexes de C 
Alor<" on a la sous suite complexe notée : 

En F : . .. __.. En+t n Fn+t ~~ En n Fn ~ En-1 n Fn-1 ~1 
••• 

Cette <"Uite est appelée 1 'intersection des deux sou.s- suites E et F. 

P reuve Nous avons E et F sous- suites de C alors on a: dn(En) C En-I et 

dn(Fn) C F"-1 
donc d,.(En n Fn) Ç dn(En) C En-I 

et dn(En n Fn) Ç d,.(Fn) Ç Fn-I 
d'où dn(En n Fn) Ç En-1 n Fn-1 
Ain.~i En F est une sous suite complexe appelée l'intersection de E et F. 

Proposit ion 9 Soit f une chaine de (C, d) vers (C', cl). Posons ker/ -
(ker /n)nEZ la famille. des sous A- modules à gauche 

.ll.ntl k ~ ker f : . . . __.. ker f n+ 1 ~ er f n :::; ker ln -l __.. ••• 

avec ..6.n(x) = dn(x),pour xE ker ln 
Alors (ker f. ô.) est un sous complexe de (C, d). 

Preuve Preuve 

C 
,-, dn-H d.. C 

; ···-Vn+l~c,l- n-1-·•• 

/! /nTl! ~ /nl J"-1! 
C' C' " tt C' d'n C' : ... - n+1~ n~ ' n-J-··· 

On a : Ô.n+ 1 : ker fn+1 __.. ker fn 
.vérifions que ô..n+1 e.'it bien définie ,soit xE ker fn+1 donc fn+t(x) = 0 

donc cln+l o fn+t(X) = 0 
Comme le diagramme est commutatif: 
cln+l o /n+t(x) = fn o dn+1(x) = 0 d'où. dn+l (x) E ker fn 
Or ô..n+t(x) = dn+t(X) donc ô..n+1(x) E Ker ln· 
D'autre pari. si x= y alors d,.+I(x) = dn+l(Y) a1ors ô..n+t(X) = Ô.n+t(y), ainsi 
Ô.n+I est bien définie et c'est clair que c'est un morphisme 

Calculons Lln o Ô.n+ a 
pou·r x E ker fn+l on a ô..n o Lln+l(x) = Lln(dn+t(X)) = d,. o dn+t(x) d 'où 
Ô.n o ô..n+t = 0 

Proposition 10 Soient f une chaine de (C,d) ven; (C' 1 d'). 
A.lors on a la suite complexe (/mf, a) = (lmfn, an) définie paT' : 1)(mr tout 
nEZ on a On: lmfn __.. lmfn-1 avec crn(Y) = d'n.{Y) 



((/mf,a): . . . ~ lmfn+l ~1 
lmfn ~ lmfn 1-+ ... ) 

qui est tm Mu.~ complexe de ( C', cl) 

Preuve 
Soit Ontl: lmfn+l -+ lmfn 

lmfn+I 
y 
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.. Soit y E Jmfn+l donc il existe xE Cn+I tel que /n+t (x) - y don<' d'n+ l o 

/nu(z) = ((n+t(Y) 
or d'n+l 0 ln+l- ln 0 dn+t d 'où t(.+l(y) = /n(d,+ l(x)) 

D 'oii. On+I(Y)- d~+ 1 (y) E lmf., 
amsi On+ 1 a bten url .~NlS 

... Si y- y ',d'n+l (y) = d'n+ 1(y') d 'où On+l(y) = a,.+J(y') 

... . Calculons <tn o <ln+l 

Sott y E lmfn+1 donc On+1(y) = d'n+1(y) 
a:n o On+1 (y) = C'tn(d'n+l (y)) comme a:n(x) = c/"(.z) on obtient On o an+l (y) = 

cln ° d'n+l (y) 
An~.n a,. o a:n+l = () 
ce qui prouve qtl.(' ( 1 m /, rt) est un sous complt!Ie de. ( C', cl) 

Proposit ion 11 Sott (E,6) un sous comple..xe de (C,d) .Posons/\ - {Kn)nez 
où Kn = C"IEn .Alors (K. a)) est une sutte complexe appelée complP.ze quo 
ttent de C parE notée C/ E où a= (on) at•n· an : Kn ~ Kn 1 

P reuve 
Soit Pn : Cn ~ K" la surjection canoniqt.u­

On pose On = Pn -1 o dn o p;;1 

- 1 cl.... 

Kn ~ Cn ~ Cn- 1 ~~ Kn- 1 
Y-+ Y~ d,.(y) ~ Pn 1 (d,. (y) ) 
a:,. (y) = Pn.- 1 o d,. o Pn 1(jj) 
.Montrons que On a h1e11 un sens 

Sad y E K.,. donc p" 1(y) E C,. alo1"!1 dn(p;'(ji)) E Cn- t et Pn t(dn(Pn 1(!ï))) E 
Kn- 1 
.. . Démontrrms qtlt' nn t>~'it lnen définie 
Soit y = ii donc ji - y' = 0 d'où y- y' = 0 dom· y - y' E K erp" =- En 
donc Pn- l o d,.(y - y') = 0 
Ce qut donne Pn-1 o dn(Y) - Pn-1 o d,.(y') = 0 
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D 'où p.,. 1 o d,(y) = Pn-l o dn(y') d 'où P,.- 1 o cl, o p; 1(y) = Prt - 1 o a,. o p; 1(J') 
d'où on(Y) = On(Ü') amsi On est bîen définit, 
. . Démontron.~ t[Ue On o On;-1 = 0 
On = Pn- 1 o cl,. o p,;1 et On-t- I = Pn o dn+t o P~!l 
On 0 On+l = {pn- 1 0 dn 0 p;1

) 0 {pn 0 dn+1 o p;!1) 

an O lln+I = Pn- 1 o d., o (ide..) odn+t op~!1 
D'où On o On+J = /ln - 1 o (dra o tÏn+I) o p;!1 = 0 Enfin On o On+l = 0 
Donc (K,o) est le complexe quotient deC parE 

Corollaire 1 Smt f : ( C, d) ~ ( C', d') u.nr rhaine. Alors lt> complc.xe qootient 
C'jlmf 
est ap[H'lP le ( 'Ofl<'1/CW de f et noté coker / = (coker /n)nEZ 

Preuve /mf t!it tm .'lOUS complexe de C' So1t an : lmfn -+ Imfn - J 
Y-+ On(!l) = tf,.(y) 

S t 
tl,. : Cn/ /m/n -+ C~_1/ lmf.- t 

oa _ , c-> z -+unz 
En posant K~ = C'.,J Jmfn et JI,. : ~--+ K~ ,roryP.ctwn mnontque 

on au.ro u~(z} = tl,. 1 o d'no JI, - 1(z) 
~ e.st lnen dl fim e d'apri3la proposition 2.0.6 et (K' , u') e.~t unt' .~wte complPxP-

Corolla.irc 2 Soit f une chaine de ( C, d) tu-rs ( C', cf) .Le complu(' C / Ker f 
e.~t appdé rmmage de f et noté coim f 

Preuve 
On pose : Ân : ker ln -+ker fn - l aver Lln(r) = dn(x), r E ker fn pour tout 

n E Z 
-1 

On pose Kn Cn/kerfn et Kn ~ Cn ~ Cn-t "!.:+• K,. 1 et f3n = p,._1 odnop;;1 

{J,.: Kn-+ K,. l a /)it>n un .~ens et est bien définiP et vénfie {J,. of3n-+t = O.Ainsi 
( K, {3) est un t'omplexe 

Théorème 1 CtLroctéruation d'un monomorphisme de COAt f' Soif f une 
chame b (C. d) t't.rs (C',tl) . 
• 4lors f e.~t un monomorphisme de CO Al P si et seulement si K e:r f = 0 

Preuve Suppo.ton.-; que fest un monombfJJhim&e de (C, d) t•ers (CJI, cf) donc 
/ o u = / o t ' e.ntroane u = t1 donc pour tout n E Z f,. o u,. = f,. o v,. cntmme 
u.,. = Vn d 'où/ra t,,t un monomorphisme ker ln = O. pour tout n E Z d 'oiJ 
ker/ - 0 
RécaprYN[Uffilcnt .mppo:wn.~ ker/ = 0 donc ker f est un comple.:u nul donc 
chacufl.l' dt- .rct•,o• compo.<~antes est nulle d'où ln f'~'ît tm monomorph&.tme de A­
modult>.'l dMlf' pour tout n E Z cela donne si ln ot.~.n = /n OVn. alors Un = tin airu-i 
(/ o u)n = (/ o v)" NLtraine (u)n = (v)n en d!finitzve f est un monomorphi .. •>m<> 
de suites complexe..• 
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T héorème 2 Soit f : ( C, d) -+ ( C', d') un morphi.~tme de suites complexe..~. A lors 
f e.t;t tm éf!i11W1JJhisme de .mite..~ œmple:xes si et 8f'?uement si/mf= C' 

P reuve Supposons que fest t,tn épimorph1.•.;me de COMP alors u o f = v o f 
e11traine u =v donc 1)0U1' tout nEZ (u o !)" = (vo /)n entmine Un = Vn donc 
fn est un éiJimorphisme de A-modules donc /mf"= C~, pour tout nEZ d'où 
/mf= C' 
Réciproquement .'>upposons lm.J = C' donc.pour tout n E Z ,Imfn = C~ tl'oti 
fn est un épimorphi.sme de A-modules ain.si pour tout n E Z,un o fn = Vn o fn 
alors (uo /)n = (vo f}n entroine Un= Vn d 'où f e.r;t Un épimorphisme dC' Stl.tt(>.o; 

complexes 

Cor ollaire 3 Soit une chaine f : ( C, d) -t ( C', 4') est une suite d 'homomm·­
phismes Un) de A- modules à gauche : 

Alors f est un isomorphtsme de Camp si et .<it!Ulement si pour tout 11 E Z, fn 
est un isomorphi<m~t' de A- module.<; 

P reuve Comme f est tm monomorphisme {respe..ctivement est un épsmor­
phi...sme) si et seulement si Kerf = 0 (respectivement /mf= 0 )cela fqttwaut 

à f est 1m i.•wmorphù;me donc Ker fn = 0 tionc J"" est un monomorph!sme ct 
lmfn = 0 donc ln est un épimorphisme ainB1 cela é.quiuaut fn est un 1.5tJmor­
phisme de A- module.;;. 

Théorème a Théorèmes d'isomorphismes danN la catégorie Com.p 
1)1er théorème d'isomorphi.r;me: Soit f t.tnf' cllaint! de complexes de (C,d) 11e1·.s 
( C', d') telle que : 

d) 
d..t 1 d., 

(C, : •.. -c,.+• ~en -en-•-··· 
/1 /n+11 d! ~~1 /•-•1 

( rtl _,) C' .. H C' d'., C' v,u : ... - ,l+l- /n- n-t-··· 

Alors il existe tm isomorphisme (} :CfKerf--+ lmf rendant le dlagmmme 
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suivant commutatif : 

C---.:.....1--• imfc_i_. C' 

~/. 
Cjkerf 

2}2eme fhéori>mP d'isomorphism e: S oient E et F deux sou-5 oomple:rrs du 
c.omplexe ( C, d) alors les complexes E / ( E n F) et ( E + F) / F sont isomorphes 
3) 3eme théorème d'isomorphisme: S oient trois suites complexes de A- mo­
dules E. F, C vé.nfiant :E C F CC. Alors (CJE)f(FJE) isomorphe à. CfF 

Preuve 1} Soit f une chaine de complexes dl~ (C. d) t•ers (C', d') telle que : 

D'après le c.orollai'fl' précé.J.ent il suffit de démontœr pour tout n € Z,qu'il existe 
un isomoryJhl.~Jme Un vérifiant : 

Cn ___ -.:t;...:."--- imfn ~ C~ 

~~ 
Or ce résultat r~•t tJmi dans la catégorie des modules. 
2) Soient E et F df'ux sous complexes du romple..xe (C, d) 
Soit 1r : C --+ C / E l 'épimorphiBme canonique d on obtient K errr = E et 
soit h la re.ctt7'icti.cm de 1r à F où h : F --+ C / E avec kerh = F n E et 
Jmh = (E + F)/ E atrzsi d'après le premier thfm'èrne d'isomorphi.9tn(' E/kerh 
isomorphe à lm.h. Or EfKerh = E/(E nF et lmh = (E + F)/ E 
3)Soit la rhainr 1r: C / E--+ C/ F 
on a Ker1r = F/E et lm1r =CfF 
En utilasant le pre11uer théorème d'isomorphi:mte on a :(C/ E)j(Ker1r) =[m'Tf. 
Ce qui étlJblst lt> théorème 

2.3 objet s hopfiens objets cohophiens objet s injectifs­
objets projectifs dans la catégorie COM P 

Définition 19 Soit C un objet de la catégorie COA-f P. Alors C est tlit simple 
s'il est non nul et .~;on seul sous complexe c ·c.'it lut même 
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Définition 20 Smt C un obJet de C0.\1 P et f une chaine de C dans lut 
m/hne. Alon C est dtt hap/ietl (respectivement r.ohopfien } .u tout épimor­
ph1.Sme f (respect1vement tout monomorphisme) P.st un 1.SomorphlSme 

P roposition 12 Tout complexe simple est lwpfiMl et colwpftr.n 

P r euve Soit C un obje.t simple de CO .\.J P cela équtvaut à "Vn E Z, Cn est 
S1mple Sut11JOSons fn suryectif On obtient imfn = Cn et Cn ~ 0 supposon.~ 
ker fn =1 0 alors ker fn est un ~ou.s module deCn dtfféœnt de 0 et de C" ce qut 
rontredtt l'hypothèse Cn est simplP d'où C est horJjien 
D 'autrr ptut supJH>SOns C objet supposons C,. ~'1mple avec fn 11lJf'.Ctif donr 
ker fn = 0 .'JU1Jposon..<~ imfn =1 Cn on aurnit imfn =1 0 car fn =1 0 et tm/n =1 Cn 
ce qui rontredtt l'hypothèse Cn simple 

Proposition 13 Soit C un complexe simple et f un morphi.çmc· dt> C dan.<~ lm 
mNne. A lor.'i l'ensemble des morplwmes de C muni des opérnt•on.'i + et o est 
un corp.<i 

Preuve Comme C t>st .'lèmple équit,aut à "Vn E Z, C" est s&mplt Il est conrm 

qtre {End(Cn), +, o) est un anneau associait/ umtau? Sod /n E End(Cn)IO ct 
fn =1 0 alon ker J,. =1 Cn et kPT J,. sous module du module .nmple CYl d01U' 
ker fn = 0 d'où fn est inje.etive 
D'autre t'art J(Cn) ~ C,. et fn ~ 0 donc f n(Cn) = Cn doù fn liU1Jf'.Ctive cqfd 

P roposit ion 14 So1t C Un objet de CO.\JP atsl'r E .sou.ç comple..xt de C non 
nul at,ec CIE hopfien alors C est un objet hap/ft•n de CO.\f P 

P reuve Suppo:~ons que C soit un complexe non hopfien donr il existe k E Z 
tel A : Ca: -+ Ca: s01t unt> suryection qui n·e.,t pa.' un 1Somorphssme Commt 
E1r = ker J, on a E~r =1 0 car he t>st non inJectatte Dooc J, mdutt un isomor­
phisme Ï. : Ca:IE.t -+ Ea: s, 1r~c : c" -+ C1 IE.- dP..ngne la suryectitm canomqur 
la compo!tif. 11"t o Ï.t : Ca:IE.t-+ C~ciEA: est une suryedton qus n 'r.st pa.'i injectitlf' 
le noyau dr. la composée n'étant pas rédutt a O}.Ce qui contn!dit Phypothi>-;( 
C~ciE~t hopfkn 

Proposition 15 SoJt C un ob;et dt' COMP dont tout .<;ous complexe proprr E 
r.st c.ohopjun alors C est f·ohopfien 
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Preuve Par un mùwnnement par l'absurde supposons que C est non cohap f ùm 
donc il existe k E Z et un morphisme injectif u,. : C,. ~ Ct non sur­
Jectif Soit Ek = imu.a: Comme E,. C C~: alors ·uk induit un isomorphisme 
ü,. : C~c ~ Et avec r.ï"~:IE~r : E~c ~ Et est une injection non surjectitte. Ce qui 
contredit l 'hypotheseE,. cohop f ien 

DéfiJJition 21 Un .4 sotLs module N d(~ ."-1 est dit com.plétement invariant si 
pour· tout endomorphi5me f de A! on a f ( N) Ç N 

Définition 22 Soient E : ·"', 1\-f. de.'l A- modules. E est dit injectif si pour tout 
monomorphisme ü : N ~ .~ et pour· tout morphisme tt> : N ~ E, il existe un 
mory>hisme 1/J : M ~ E 1Jérifiant f/> = t/J o a 

Définition 23 Soient E, R, S des suite.s complexes de A- modules.Alors E est 
une suite complexe inJective si pour tout monorrwrphism.e de suites a: S ~ R 
et pour toute chame </>; S ~ E alors 11 enste une chaine 1/J : R ~ E telle qu.e 
f/J o o = tf> et vérifiant : 

Remarque :SiE est une suite complexe injective alors E et un objet injectif 
de la <:atégorie des complexes de A- modules 

Théorème 4 Théon.~me :Soit (E, w}: ... ~ En+I 11.1~ 1 En~ En-l ~ ... une 
suite complexe de A- modules.A.lor.<; E est injectif si et seulement si potJ.r tout 

n E Z, En est injectif 

Preuve Supposons que E est injectif et .-;oient f : Nf ~ N un monomorphisme 
de A- module.s 
et ~71 : j\tf ~En un morphisme de A- modules 
Soient Set R deux su1tes complexe..<; de A- modules et o une chaine deS dans 

R tdles que: 

où pour tout n E Z 
Sn = JJ et Un= Id,\1 



avec Rn=.~· et Vn = ldN 
tl'n est u.n monomorphisme de A- module.s,pour tout n E Z 
Soit th ·unt~ chairte de S dan.~ E telle que 

S S u,. 1 1 s "" s r·-: .. r---ï--=-r-··· 
E E "'"'' E w.. : ... - 'n-+1- n-En- 1--··• 

où les t!>1c : JI -+ E~c sont de~ morphi...,'mes qudc.onques de .4-m.vdule.s 
E etant inJe..ctive donc il existe 1/J tme chaine telll' que : 

R S t',. Il S lln S 
: ... - n+l- n- n - 1-··• 

~! ~'"U l \•,.l \/1.-t! 
E E U.'n t 1 E Wn E 

: ... - n+l- n- ra 1-··· 

35 

telle que 1/.1oo = tf> donc 1/J,. o / = tPn. Donc il exi~te 1/.',. : Rn -+ E,. tell/.!,. of = tf>,. 
En est ÏnJe.ctif 
Réciproqut:ment .supposons que potlr tout nEZ, En est un A- module inJectif 
et démontmns que E est une suite complexe injective 
Soit 7 un rrumomorphssme de compÙ'..xes 

S S Un 
1 1 S "" S r · -:.r ~-ï -:.r-· ·· 

E "'"'' E "'" E: ... - n+l- n-E,. 1-··• 

Soit {3 une chaine de complexes telle que : 

R S Uni 1 S Un S r · --: . .r ---:. ï -:.:r-· · · 
E u;, .. E w .. E: ... - n+l- n-E,. 1-··• 

Alors commt• pour tou.t n E Z, E,. est injectif et "rn est un monomorphisme de 
.4.- module.s donc il existe .).,. : R.,. -+ En vérifiant {J,. = .Àn o 1n Soit .À tellt• 
que : 

"" 1 1 "" R: ... -Rn+l-Rn-Rn-1 - ... 

A 1 ·'••+l! À~ 1 An-I! 
E llln+l E Wn 

E: ... - n+l- n-En- 1-··· 
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Démontrons que À est une chaine 

Tl suffit que U1n+ 1 o Àn+t = Àn. o Vn+t 

On a Wn.+l o f3n+l = fJn.Un+t car {3 est une cluLtne 
Or f3n = À,. o 1n 
donc w,.+l o (Àn+l o 1n+t) = (>.,. o 1'n.) o fln+l 

alors (wn+l o Àn+l) o "Yn+l = Àn o ('Yn o Un+t) 
ainsi ( Wn+ J ) 0 À..+ 1) 0 Î'n+l = À,. o ( Vn+ 1 0 'Yta+l) 
En défimtu•e (·wn+l o Àn+I) o Tn+l =(À.. ov,.+l) o 1'n+l 

Or 1'n+l e.llt un monomorphisme deA- modulPs d·mi w,.+l o Àn+l = >. .. o Vn+h 

pour tout n EZ 
d'où,\ est une ('haine 
Vér"ifoWJ qv.P ,\ o 1' = {3 
On sait que 1UJtJ.1' ttmt n E Z, f3n. = Àn o "rn aver {3 = (f3n),-y = hn) ct À= (Àn) 
d'où>. o -y= {J.Ce qui démontre que E est ·u.1u~ !mite complexe inJecbve 

Théorème 5 Critère de BAER dans la catégorie de.s f'..Omplexes de A- mo­
dules 
Soient (In.)neZ une famille d'ideaux de l 'anne.au .4 et 

(E. v): ... -+ En.+l 
11

~1 En~ En-t -+ ... U7W .<suite complexe injective. dr A­
modules.Alor.'i pour toute chaine a vérifiant : 

Un+l J tA,. J / : ... -Jn+l- n- n- 1-·•• 

0! On+ll 0~! On - 1 1 
l'n+l tJn E E: •.. -En+l -En- n-1-··· 

il e.nste une chame f3 qui prolonge o telle : 

A A u:,.+, A ton A #r · -:.r -.. ~" --:._r-· · · 
E E Vntl E Vn E 

: • • • .__... n+l ~ n ______,.... tt - l - • • • 

où An= A, 1JOU1" tout nEZ 
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Définition 24 Sost N un A- sou.s module d'un module lvi est dd complète­
ment 1nvanant si pour tout endomorphisme f de JI on a J(N) Ç N 

Définition 25 Sotent C: ... Cn+1 ___. Cn ___. Cn- t ---+ •• • 
une ~mte complexe de A- modules etE: ... En+I ---+ En---+ En- I """'+ • •• 
un S01L5 c-.omplexe dl' C 
Alors E est dtt .'W1L., complexe complètement invariant de C si pour tout n E Z, 
En est complètement invanant 

Définition 26 Un A- sov.s mudule E de lvi e.-;t essentiel da~'l Al si 1JQur· tout 
sous modulP non md K de J\f, on a E n K =F 0 ; M e.st appelée e..ct('~·;ùm 

essenttelle de E 

Définition 27 SoJent C : . . . C,.+I _. Cn _. Cn- 1 ---+ ••• ur&c suite rompleze 
de A- modulr..'i et E : ... En+I ___. E,. ---+ ~-• ---+ ••• un sous complue dt' C . 
Alo~ E est dite sulie es.'irntielle de C si pour tout n E Z, En Pst e.'it>N1itel de 

Cn 

projectif 

Définition 28 Soit M un A- module. Un A- module P est dtt projectif si 
pour tout épimorphtSme g : Nf ---+ N et pot1.1· tout morphisme f : P ---+ .~·, il 
existe un morphisme h : P ---+ -~1 vérifiant f = g o h 

Définitiou 29 Sotent E, S, R des suites C()mplexes deA- modulf'.'i. Alors E 
e.st une suttc complexe projective si pour tout épimorphisme o : R ___. S et pou1· 

toute chatnt> Ç> : E ---+ S, il existe une chaine tf..• : E ---+ R telle a o 1/J = </> , illustré 
par le diagrummr .~uu~ant : 

remarque 

Si E t~t nw' suitt• projective de A- modules alors E est un obj<'t projcdif 
de la catègori<' <i<'N rompl<'.xcs de A- modules 
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Théorème 6 Soit E: ... -+ En+l 
11

~1 
En ~ En-l -+ ... une suite complexe 

de A- mod11.les.E est une suite projective si ct seulement si pour tout nE Z,En 
est un A- rnodule pmjectif. 

Preuve Supposon.'i que E est projectif 
Soient f : N -+ ,\l 'un épimorphisme de A- modules et (/Jn : En -+ ,\,/ un 
morphisme de A- modules 
Soient S etR deux suites complexes et o une chaine de R vers S telles que : 

où R,. ="Al et t'n = Id,., 
Sn = N et Un = 1 dN 
Soit an un épimorphisme de A- modules 
Soit (jJ tme chaine de E dans S véri.fiant : 

E E Wntl E Wn E r·-: .. r -.. r -=-r -. · · 
S S Un_.l S u,. S 

: ... - n+l- n- n.-1-··· 

Avec les 9t: E~c-+ M sont des morphismes quelconques de A- module.'>. 
Comme E e.st projective alors il existe une chaine 'lp telle que : 

IL'n+l W,. E 
E: ... -En+l--En- n-1-··· 

~ l ~n+l ! ~ .. ! ~n-l l 
R D Vn+ 1 R "" D 

: ... - .. tn+l- 'fl- .. Ln-1-··· 

où o o?jJ = ÇJ ainsi pour tout nEZ, On. o Wn = <f>n· Il existe alor·s 'Ibn : E,. -+ Rn 
telle que f o Wn = ~n.Airui En est projectif 
Réciproquement Stt71posons que pour tout nEZ, En est un module A- module 
projectif et démorltrvns que E est Utle suite projective 
Soit 'Y un épirnorphisme telle que : 

D Vntl 11n 0 
R: ... - .. ~..n+t-R.,1-,Ln-t-··· 

~1 ~n+l! ~n! ~n- 1 ! 
S S Un~· l S ,.,. S 

: ... - n+l- n- n-1-··· 
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Soit8 unr. chaine compli>..Ie vérifiant : 

E J;t ~~'n i 1 1P,o E 
: • • · - Lln+l-. En- rt -1-· · · 

~! B.+tl hl 6.-·l 
S S Un+l S ... S, 

: •.. - 11+l- n- n-1-··· 

Alor.~ romm r pour tout 11 E Z ,En est projectif et 'Yn est 1ln épt.morphismr dr 

A- m .. udull'!l a ms' il exi.llle ~" : En -+ Rn vérifiant 1n o Àn 
Soit ~ tellr : 

Démontron.'f qur .\ elit une chaine 

R tla+l "" "a-1 ... -R.,.+l-Rn-R.. .-... 

1~ l1ft+l 11n l la-1 
S 

... 1 1 "" s ... _, 
... -S,.+t-Sn- "·-··· 

1~ lp,.p !~ lfln-1 
E 

lllni 1 E w,. E W,.-1 

.. . -En+l- n- ~ n -1- ··· 

Jl suffit QUl' ).,.+l 0 Wn+J = Vn+l 0 ~n 
Or fln H o Wn+l = Un+t o fln car {3 e.<Jt une chainf' 
Comme "(" o ~n = /Jn donr : 
1n+t 0 ~n ... J 0 Uln+l = Un+l 0 ('Yn 0 ~n) 
Am.~ bn+J 0 ~n+t) O U1n+l = Un+I o hn O ~n} 
Alor.~ 'Yn+l o (>.,.+1 o Wn+l) = 'Ya+l o (vn+l o ~n) 
Or -y,.+ 1 et ti1l épimoryhisme d'où À"+l o Wn+ 1 = tin+ 1 o À,. ce qu& JUStifie que ~ 
est une <·hame œmpleu 
v érifoms qur. 1 0 À = 8 
On sad qu~ pour tout 11 E Z, .Bn = ')'11 o .\a d 'où fJ = 1 o ~. Cr. qui f.tablat que 

E est um .'IUlt~ r.omplezc inJective 

Proposition 16 Soit (C,) une famtlle de complexe.s G)C, est pro;ective si et 
.~f'uleme.nt .n C, est pro]ectit~e : 

Preuve Dans la dérrum.Htmtion on utilise le Thhm'me de camr·Unsation des 

.'luite.o; complt•zes proje.cttves 
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Supposons que mc, ~t proJectit'f donc quel que soit n E Z, œC:' est Ufl A­
module projectif d'où Ci est un A- module proJectif 
A inst q est unt• .sutte projective pour tout i 
Réciproquement S!Jupposon.s Ci e.st une suiU> proJecive donc pour tout n E Z,CJ: 
est un A modulr proJectif donc a>c:' donr œG, est proJectat~e 

Définition 30 Un A- sou..,- module E de~~ est dzt superflu dans .~1 si pour 
tout sou ... module• K de .M tds qw: K + E = M alort; K = Al 

Définition 31 Sosent 

C: •. · ~ Cn+l ~ Cn ~ Cn- 1 ~ • · · 

une .sutte comple.ze de A- modules et 

E : ... ~ En+ t --t En ___. En- I ___. . .. 

un .sou.~ r.()mplue de C teL<; que : 
E e.~t ddc sude superjlue de C si pour tout nEZ, En est superflu de Cn 

Théorème 7 St C est un complexe proJecttf et E un so~s complue compUte­
ment mt•anant et .ruperflu dans C alors E est hopf tf'f1 si et !ie.ulement S1 C 1 E 
est hopjien 

Preuve Supposons E est hopfien. commr Cn est un A- module proJectif et 
E,., est complètement mvariant Pt .superflu dans Cn 
Donc fout épimorphtsme de E dans lm mRme est urt z.somorphtSme d'où En 
est hopfien 
.4 inst C ,.1 En est hopf ien pour tout n E Z, en conclu. non C 1 E est hop ji en 

Ré.r1proquement .supposons qtV' C 1 E est hopf ien donc C" 1 En est hopf ien 
at,ec Cn projP.Clt/ et En est un A- sous- module r.omplètemcmt mt•ttnant et 
.supt'rjlu dans Cn donc pour tout 11 E Z, En e.st lwpften d'uti E est lwpfien 

Tbéor~mc 8 St C est un complexe injectif et E tm 'IO~ compk!ze compléle­
ment mt~anant et e.ssentit>l dan-s C alors E f'."t colwpj'len sa et .~eulNnNit S1 C 
est <'ohap/ten 

Preuve Suppmwns que E est <'Ohopfien alors Era est mhopftPn et ~ e.st un 
.c~ous A- modulf• complètement mvanant ct e.<Jsentirl dan.., Cn alQ1~ Cn est 
cohopftt'n pour fout nEZ, d'où C est cohopfien 

Rirlproqucment .'11lpposons C est c.tJhopften donr Cn e,t l:ohapfic'n et En 
e.<tt un A- sous module romplètemrnt inmnant et t>s.<wnttel dam Cn 
. Alor.s En est rohopfien pour tout nEZ d'où E est mhopftt>n 
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Théorème 9 Si C e.st une suite complexe de A-modules alors : 
-Si C est une sutte proJedwe et cohopfienne alor!f C est hapfienne 
- Si C e.çt une sutte injective et lwpfienne alor.s C tst colwpfiennc 

Preuve Supposons que C est une suite complexe projective et cohopfienne 
donc Cn est un A- module projectif et cohapfien 
d'où On est hopfien pour tout n E Z ainsi C est hopfienne 
SuppO$Ons que C est une stLite complexe injective et chapfienne donc Cn est 
un A- module tnjectif et hopfien 
d'où Cn e.'lt cohopfien pour tout nE Il ainsi C est cohopfiermr. 

2.4 Suites complexes noetheriennes et artiniennes 

Théorème 10 Sott At un .4.- module. Alors lr.s as~ettion.~ .nm~antes sont 
équivalente$ : 
a)Tout eruernble non tride de soU3-module.s de .U cont1ent au moiru un élément 
maximal 
b)Toute sutte croissante de sous module de Al est stationnatre 

Preuve Supposons la proposition a) est vérifiée d comidérons L1 Ç L2 Ç 
L3 Ç ... une sutte crotssante de sous modules de AJ.Alors la famille (Ls),~l 
contient un élfment maximal Lp donc pour tout s ~ p on a L, = Lp ainsi la 
suite (L,),2: 1 est stationnair-e 

Réciproquement supposons la proposition vraie et considénms A un ert­
semble nor~ vide de sous modules de Al. Par tm roisonnemertt par l'absurde 
supposons A ne conttenne p as un élément maxmwl donc ,,i L E A alon, il 
existe L' E A tel que L c L'.Ai.nsi on peut con.~tmire L1 C L2 C L3 C ... 
une suite ,,tnctement croissante de c;ous modules de A non .c;tattonnaire de A. 
Donc ceci contredit l'hypothèse b) 

Définit ion 32 Un A- module A-f qui vérifie l'une des r.onditiom du théorème 
précédent e.~t dJt nœthtnen 

Théorêmc 11 Soit M un A- modult. Alors les assertwm· JUÏt:antes sont 
équ1Valentes : 
a) Tout en.9emble non vide de sous-modules de Al contient au moms un élémrnt 
minimal 
b) Toute suite décrotssante de sou.-5 modules de .U e:Jt stattannau-c 
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Définition 33 Un A- module Af qui ttérifie l'une des conditions du théorème 
précédent est dit artimtn 

Définition 34 Une sutte complexe C : ... ~ Cn+l ~1 Cn ~ Cn-1 ~a ... 
est dite noctherienne (respectivement artinienne ) si pour tout n E Z,Cn est 
noctherien (respectivement artinien ) 

Théor èm e 12 Une suite complexe C: ... -+ Cn+l ~1 C,., ~ Cn- 1 ~1 
••• 

est noethct"Lrnne si et .'ietllement si pour tout n E Z, tout sow1 modu.le de Cn 
est de type fini 

P reuve Par d~finition la suite C est noethérienne si pour to"t n E Z. lr 
A- module Cn c.'lt northérien.Or Cn noethérien équivaut à Cn df tyfK' fini e.()t 
vérifie dans l<~ catlgorie des modules 

Théorème 13 S01t 0 ~ E ~ F ~ G ~ 0 uue suite exacte de com­
plexes de A- modules. Alors la suite F est noeW.nenne S1 et seulement si 
les suite.' E et G SO?lt nocthenennes et les sous-smtes complue.~ ou facteurs 
directs d'une .~u1te complexe sont noetherien 

P reuve On satt la SU'lte 0 ~ E ~ F --4 G ~ 0 est exacte si et seule­
ment si la .9uite 0 ~En~ Fn ~ Gn ~ 0 de A- module~ est exacte 
pour tout n E Z. Comme E et G sont noethe1"iermes alors En et Gn sont no­
therierme.'J ce qui entroine Fn est noetherienne po·ur tout nEZ d'où F est une 
suite noethrnenne 

Corolla ire 4 Soit p suites complexes C1 , C2 •••• , C, dont chacune est no the­
rienne alo1·s 
C1 6 C'J 6 ... œ C11 est notherienne 

P reuve En raiSonnant par recurrenec s-ur p pour p ~ 2 
Pour p = 2 on a la suite exacte canonique 0 ~Ct~ C1 eC2 ~ C2 ~ 0 
Comme par hypothèse C1 et C2 sont notheriennes et en utilisant la .'JtLite exaete 
canonique 0 ~ C1 ~ C1 œ C2 ~ C2 ~ 0 et le théo1'ème précédent on a 
Ct œ C2 est nothénenne 

Sott k+ 1 smtes complexes Ctt C2.- •• , Ct+l dont chacune e$f nothericnne t-t 
supposons c 1 ec2œ ... œcil noth.enenne coruidéron.~ la suite txactt! canonique : 

Sachant que ( C1 9 C2 e ... œ Ck) e C,.._t = Ct œ C2 œ ... e C~c œ CA:+t 
on obtient la sutte exncte canoniqu.e 0---+ C1 œC2CD· . . œc,.. ---+ Ct œC2œ ... œ 
c,.. e Ca+1 --+ Ck+1 ~ 0 avec Ct œ c.~ e ... œ C~e et CA:+l .~ont notherienncs 
d'où C1 œ C2 œ ... œ C~e œ Ck+t est notherienne 
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Théorème 14 Sott Sott 0 ____. E ~ F -4 G ____. 0 une suite exacte de 
complexes de A- modules.Alors la. su.ite F est artiniennc si et seulement si 
les suttes E et G sont arliniennes et les sou.s suites complexes et les facteurs 
direets d'une suite complexe artmiennes sont artiniens 

Preuve On sat.t la suite 0 ____. E ~ F -4 G ____. 0 est exacte si ct seule­
ment si la suite 0 ____. En ~ Fn ~ Gn ____. 0 de A- modules e.'lt exacte 
pour to'ut n E Z. Comme E et G sont artiniennes alor.<J En et Gn sont arti­
niennes ce qu·i entraine Fn est artiniennes pour tout n E Z d'où F est une 
suite arlmierme 

Corolla ire 5 Sott p suites complexes C11 C2 , •.. , Cp dont chacune e.st arti­
nienne 
alo1-s C1 ED C2 œ ... Œ> C, est artinienne 

Preuve En raMon nant par recurrence sur p pour p ~ 2 
Pour p = 2 on a la. suite exacte canonique 0---+ C1 ---+Ct EDC2 ---+ C2---+ 0 
Comme par hypothèse C1 et C2 sont artinienne et en uttlrsant la smte exacte 
canonique 0---+ C1 ---+ Ct ffi C2 ____. C2 ____. 0 et le théorème précédent on a 
cl 9 c2 est artinicnne 

Soit k + 1 suites complexes C1, C2 , ••. , Ck+t dont chacune e.9t artinienne et 
supposon.'J cl ffi Oze ... œck artinienne considérons la .mite lXacte canonique: 
o---+ c1 ffi c2 œ ... e c}c ____. (C1 œ c2 œ .. . œ ck) e ck+l ---+ ck+l ---+ o 
Sacha.nt que (C1 ffi C2 e ... œ CA:) e Ck-t =Ct œ C2 œ ... e C~c œ C.tc+t 
on obtient la suite exacte canonique 0 ---+ C1 EB C2 œ ... œ C~r ---+ C1 œ C2 Œl 
... ec,.ecA:-1---+ ck+I ---+ 0 avec Ct ec2œ· .. œck et Ctr+l sont artiniennfS 
d'où C1 ffi C2 ffi ... œ C~c œ C.~:+t est artinienne 

2.5 Suites complexes de FITTII\G 

Définition 35 Un A- module JU est dit module de FITTING St pour tout 
endomorphzsme 1 de lt-f, il existe un entier n ~ 1 tel que A-1 = Kerr' e I mf" 

Définition 36 Une suite complexe C e.st d'lie de FITTING si pour toute 
chaine 1 de C dans lut même, il existe un entier n ~ 1 tel C = Ker fn ffi 1 mfn 

Thêorêmc 15 Sott C: ... __. Cn+l __. Cn __. Cn-I __. ... une sut.te complexe 
de A- modt,les. C est dite saite de F /TT I NG si et seulement pour tout n E Z, 
Cn est un A- module de FITTING 
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Preuve C etant une suite romplexe de Fitting donc il existe un errtier naturel 
n norl nul tel que C=Kerfnelmfn 
donc pour tout k E Z on a C~t=Kerf: œ !mf; donc pour tout k E Z,C,. est 
Fitting 
Réciproquement si Ck est de Fitting alors il e-Xiste vn entier nat·urel non nul 
n tel que 
C~t=Kerfr œ Imfr 
ainsi pour tout k E Z,C~t est de Fitting d 'où. C est une suite complexe de 
Fitting 

Théorême 16 Toute suite complexe projedit'e et cohupfienne ou injective 
et hopfierme e.~t une suite complexe de FITTING 

Preuve Soit une :mite complexe C : ... -+ Cn+l ~~ Cn ~ Cn-1 ~1 
•• • 

D'apres le théorème 6 precedent si C est unt suit.t; complexe projective et 
cohupfienne alors C est hopfienne.Donc C est hapfienne et cohopfienne 
alors pour tout n E Z, C,. est UTl A- module hapfirn et cohopfien ainsr Cn 
est de Fitting d'où C est une s11ite complexe de Fitting 
De même d'après le thém~me (j pricédent siC est une suite complexe injective 
et hupfienne alors C est cohopfierme.Donc C est hopfienne et cohopfierme 
ainsi pour· tout nE Z, Cn est un A- module hopfien et cohopfien donc Cn 
est de Fitting d~où C est une su.·ite complexe de Fitting 



Chapitre 3 

Objets forte1nent Hopfiens,Objets 
fortement cohopfiens dans la 
catégorie des COMPLEXES 

3.1 Introduction 

Dans ce chapitre: nous étudions les objets qua.!>i - injectifs, quasi -
projectifs, jortfment hopfiens: fortement cohopfteru de la catégorie des 
complexes de A-modules notée CO.UP.On y étudie aussi les objets de Fit­
ting de la catégorie des complE-xes de A- modules .Les objets de CO!\IP sont 
les suites complexes et les morphismes de CO~IP sont les chaincs complexes 

Cne suite complexe C: ... -t Cn+l ~1 Cn ~ Cn- 1 ~1 
••• est une suite (dn) 

de morphismes de A -modules à. gauche 
vérifiant dn o dn+1 = O,pour tout n E Z 
Une rhajne f de ( C, d) vers ( C, d) est défini(' par : 

C: ... -- Cn+l ~ Cn ~ Cn-l- · • • 

fi f,.+l! f,.! /n-1 t 
C C dn+l C d,. C 

: .•. -- n-1- tl-- n-1--··· 
OÙ dn+l 0 fn+l = fn o dn+1 1 'Vn E Z 
Soit C un objet de CO::\{P et f un morphisme de C dans lui même.C est 
hopficn(respectivernent cohopfien) si tout épimorphisme(rcspectivemcnt mo­
nomorphisme) est un isomorphisme 
Une suite complexe est dite complètement inv-ariante si chaque A-module de 
la chaine est complètement inYariant 
Une suite complexe est dite essentielle(respcctivcment superflue) si chaque A­
module de la chaine est essentielle(respectiYemcnt superflu) 
Une suite complexe C est dite de FITTING si pour toute chaine f de C dans 
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Cil existe un entier naturel n tel que : 
C - 1 m/n 9 Kerr où /n = / c / o •.• o / 

Dan œ chapitre les résultats essentiels sont les suivants : 

1. Si C e:;t mw suite complexe fortement hopfienne (respectivement forte­
ment cohopficnne) etE une sous suite de C facteur direct de C alors E et 
C / E ~nt fortement hop.fiennes (respectivement fortement cohopficnnc). 

2. Si E est. unt• suite complexe complètement invariante a wc E et C / E 
fortent(>Jlt hop.fiennes alors (respectivement fortement cohopficnnf:'s) alors 
C est fort(\uu.•nt hopficnne (respectivement fortement cohopfienne). 

3. c = eci OÙ ci est une suite complètement invariante. Si ci t:~'lt rortClTI('llt 
hopfienn~ (respectivement fortement cohopfienne) alor~ C est Fortem<>nt 
hopfienne (respectivement fortement cohopfienne). 

4. Soit C est une suite complexe.C est mw suite complext> quasi- projective 
si et seulement si chaque A-module de la chaine est quasi projectif. 

5. Soit C une suite complexe. C est une suite quasi-injective si et seul<'ment 
Sl chaque A-module de la chaine est quasi-injectif. 

6. Soit C \lUC suite complexe.Si C est une suite complexe quasi- injective 
fortement hopfiennt- alors C est une suite fortement cobopfienne . 

7. Soit C une suite complexe.Si C est Wle suite complexe quasi- project ive 
fortemeut <:ohopfienne alors C est une suite fortement bopfienue. 

8. Toute suite complexe de A-modules quasi-projective et colwpfienne ou 
qu.asi - injective et hopf'ienne ~t une suite complexe de FITTfKG. 

Dans <'e chapitre A désigne un anneau associatiF unitaire non n(>cc.."lSaircmcnt 
commutatif.Lcs A- modules sont des A- modules é gauche unitair<'s 

l 
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3.2 Définitions et Résultats Préliminaires 

Définition 37 Soit (C, d) une suite complexe de A modules à gauche et f la. 
chaine de ( C, d) vers ( C, d) avec 

(c ) 
dn+l d, 

,d : ... -Cn+l--Cn--Cn-1-... 

J! fn+t! /"! /n-1! 
(C1 d): ... -Cn+l ~Cn ~Cn-1- ... 

vérifiant : dn+l o fn+l = fn o lin+b pour tout n E Z 
On appelle f of la chaine composée notée j2 telle que (P)n = ln o fn, pour· 
tout nEZ 

C C dn-1 C dn C dn-1 F.- r.~ ~~-- i~~-~··· 
C C dn-1 dn c d..-1 
···-- n+t-Cn- n-1-··· 

if 1/ft+l !fn ~fn- 1 
C 

d,,_, dn d..-1 
C ... - n+l - cn-Cn-1-··· 

De même on définit J" par (Jk)n = fn o fn o . .. o fn, avec k facteurs,pou·r 
tout nEZ 

P roposition 17 Soit ( C, d) u.ne suite complexe de A- modules et f une 
chaine de ( C, d) vers ( C, d) t·éri.fiant : 

(C,J): ... -Cn+l ~Cn~Cn-l-··· 

/! /n+J l fn ! /n-1! 
(c ) d..+l dn 

,d : ... -Cn+l-Cn--Cn-1-··· 

Soit .Q~+ 1 : Ker !~+1 4- Ker/~ 
x t-t dn+l(x) 

où f!+l = fn+l o fn+l o ... o fn+l avec k facteurs 
Alors 6!+1 est -un morphisme 

P reuve Sott Â~+l : Kerf!-t 4- Kerf! 
x H dn+l(x) 

K f k+l K çk+I 
et Â k+l . er n+l 4- er Jn 

n+l • X H dn..,..t(X) 
On a I<erf!t1 Ç Kerf!!t et Kerf,~ Ç Kerj~+l d'où .0.!+1 est le morphisme 
. d 't A +1 m ·uz par ~n+l 
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Proposition 18 Soit (C~ d) une suite complexe de A- modules et f une 
chaine de ( C, d) vers ( C, d) vérifiant 

(C,d): ... -Cn+l ~Cn ~Cn-1-··· 

J! f~+l! fn! /n-1 l 
(C,d): ... -Cn+1 ~Cn~Cn-1-··· 

I .tk+l I +k+l Soit ok+l • mJn+l -+ m,n 
n+l ' Y t-t dn+l(Y) 

.4lors o~tt e.st un morphisme 

Preuve Soit o~+l : 1 mf!+t -+ 1 mf! 
x t-t dn+l(x) 

I .çk+I I .tk+l 
et ok+l • mJn+l -+ TnJn 

n+l ' X t--t dn+t(x) 
On a Imf!tf Ç lmf!+l et Imf!+I Ç lmff: d'où tS!!~ e.st le morphisme induit 
par o!+l 

Définition 38 Soit C une suite complexe telle que : 

C : ... -+ Cn+t ~· Cn ~ Cn-t ~~ ... 
Soit E une sous suite complexe de C telle que : 
E E 1t.n+l E u.,l E Un-1 

: · • · -+ n+l ~ 'n ----t n-1 -+ · · · 
Alors E est facteur direct de C s-i et seulement si En est facteur direct de Cn 

3.3 objets fortement hopfiens - objets fortement 
cohopfiens dans la catégorie des complexes 
de A - modules 

3.3.1 objets fortement hopfiens- objets fortement cohop­
fiens dans la catégorie comp 

Définition 39 Soit fla chaine de (C,d) vers (C,d) vérifiant: 

{C,d): ... -Cn+l ~Cn ~Cn-1-··· 
/! fn+l! /nf /n-1! 

(C,d): ... -Cn+l ~Cn ~Cn-t-·· · 
Alors on a la suite : 

( f
it) k .O.!i-1 le !).k .çk .o.!-1 

Ker : ... -+ Kerfn+l ~ Kerfn ~ Ker10_ 1 ~ ••• 

Cette suite est dite stationnaire s'-il existe ko EN* tel que (Ker flco) = (Ker Jko+s),quel 
que so·it s E N 
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De mémf. 011 a : 

l . (1 Jk) le ~. k ~ lt 
6!-1 a smte m : ... --+ lmfn+I --t lm/.,. ~ lmfn-l --+ ... 

Cette suite est dtte stationnaires 1il existe ko E N* tel que (Imf'>c,) = Im[ko+- ,quel 
que sott s E N 

Proposition 19 Soit f une chaine de (C: d) ver.'> (C, d) telle qtJ.F 

(C,d): ... -Cn+l~Cn~Cn-t-··· 

/! /M1! /"! /n-1! 
(C,d): ... -Cn+l ~Cn ~Cn-1-··· 
Alors (Ker Jk) C'!lt stationnaire si et seulement si (Ker/!) est .stationnaire 1xmr 
to11.t 11 E Z 

Preuve Comme (K erf"') est stationnaire alON il existe ko E N* tel que 
(Ker/lc0 ) = (/(erfk.·-"),quel que soit sEN d :où Kerf::O = KerJ:;o+- pour 
tout n E Z. Ce qut équrvaut à démontrer que la suite (Ker J!) e.çt .(tatwnrnure 
pour tout n E Z 
Réciproquement .1uppo~oru que la sui~ (Ker f!) est stationnatrr pour W1lt 
n E Z alors d exi~te ko E N* ~~ que ainsi quel que sott s E ~ d'où Ker f:O = 
Ker f~+• pour tout n E Z. Ce qui établit que ( ]( e.r fk ) est stat'lonuaire pour 
tout entter naturel k 

Proposition 20 So&t f une chaine de ( C, d) vers ( C, d) tellt que 

(C,d): ... -Cn+I ~Cn ~ Cn-1- ... 

/ l /ft+l! /n! /n-1! 
(C,d): ... -C,1+l ~Cn ~Cn-1-··. 
Alors (lmflt) est stationnaire si et seulement si (!mf!) e3t statiormaire po·ur 
tout nEZ 

Preuve Comme (Imflt) est stationnaire alor.'i il eriste k0 EN" tel que (lm/~)= 
(Jmfko+•).quel que soit sE~ d 7où !mf!"= /mf!o+~ pour tout nEZ. Ce qui 
équivaut d démontrer que la suite (lmf!) est stationnaire pour wut n E Z 
Réciproquement supposons que la suite (lmf!) est stationnaire pour tout n E Z 
alors tl existe ko EN* tel que ainsi quel que soit sE N d'où /mf~ = lmf::OH 
pour tout n E Z. Ce qui établit que (I mfk) est stationnam~ pour tout entier· 
naturel k 
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Définition 40 Un A- module AI est dit fortement hop~n {f'fSJif:< tit•trmnt 
fortement cohopfien) si pour tout endomorphisme f de AI lo. suttt: ( f( er F') est 
stationnam~ ker j2 Ç ker f 3 • •• Ç Ker fn (re!;pectitlementlmf ~ Imfl ... :::J 

Imr· ... ) 

Définition •11 Une .. ~uite complexe C est de A- modules est dtte fortement 
hopfienne(respe.ctivement fortement cohopfienne) si pour toute chaine f de 
(C,d) dan.'! (C,d), (Kerjk) {respectivement (Jmf")) ~t stattonnair<' 

Proposition 21 C est une suite complexe fortement hopfiennc s'il rxiste k E 
N tel que 
Ker f! n !mf! = O,pour tout nE Z 

Preuve S'il exù;te kEN tel queKerf!nimf! = 0 alors (Kl'T J!) c.'t .'!tatton­
naire pour tout n E Z. Cela éq1Jivaut à dire que (Kerjk) est stattormmre ce 
qui étobltt que C est une suite complexe fortement hopfienTle 

Proposition 22 C telle que 

( C, cl) : ••• --C n+l ~ Cn ~ Cn-t - ... une suite complexe JOT"Û'.ment 

J! /~+1! /n 1 /n-1! 
(C,d): . .. -Cfl+l~Cn~Cn-1-··· 
cohopfienne, 

s'il exzste un entier nat-urel k tel que : 
/mf!+ Ker f~ = Cn ,pour tout nEZ 

Preuve s'il extste un entier naturel k tel que : 
/mf!+ Ker f! = Cn, pour tout pour tout n E Z alors {lm/!) est statzormaire 
pour tout n E Z am.si (lmfk) est stationnaire d'où C est urte suite complexe 
fortement cohopfienne 

Théorème 17 Soit C une suite romplexe etE une sous suite complexe d(; C 
Si C est fortement hopfien.ne (respectivement fortement cohopfienne) et E est 
facteur dtrect de C alors E et Cf E sont fortement hop fi ens {respectwement 
fortement cohopfiens) 

Preuve Démontrons d'abord que E est fortement hopfienn('; (respectivement 
fortement cohopfienne) 
Supposon., que C = E œ K et soit g une rhaine de E darl.S lui mi!m.c qui peut 
~tre prolongée à C telle q1-'e f = g œ 0, allee 0 le morphisme nul de /( 
Comme C c.'lt fortement hopfienne (respertivement fortement cohopfienne ) 
donc (Ker f") (respectivement (Imfk) est ~tationnaire alorg il existe ko E N* 
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tel que (Ker Jko ) = (Ker,~ ...... ) (respectit'ement (lmjlto) = (/mjto+•) ) :quel 
que soit sEN 
d:où Ker/:0 = Kerf:O+• (respectivement lm/~ = Imj~H pour tout nEZ) 
d:où Cn est fortement hopfien {respectivement fortement cohopfien ) et En 
facteur dtrect de Cn pour tout n E Z ce qui cntraine que E et C / E fortPment 
hopfiens (respectwement fortement cohpfiens ) 

Théorème 18 Soit C une suite complexe et E une sou.s suite complexe de 
C Si E est complètement invariante avtc E et C / E sont fortement hop­
fiennes{respectivementfortement cohopfienne.9) alors C est fortement hopfienne 
(respectivement fortement cohopfienne) 

Preuve Sott (C, d) une suite complexe de A- modules et f une chaine de 
(C, d) vers (C. d} vérifiant: 

(C, d) : .. . -Cm+t ~Cm~Cm-t- ·· · 

J l 1~-·! 1-! 1-- 1 t 
(C,d) : ... -Cm+J ~Cm~Cm-l - . .. 
E étant complètement mvariant dans C alors f indüit une chamc Il de E dans 
lui m~me telle qur : 

(E ) 
4.+1 4. 

,d : . . . -Em+l-Em-Em-1-··· 

(E.:L. .. __:;L, ~ .. :~m ._hm;L.- ... 
f indutt une cha me g de C / E dans lui même telle que : 

(CJE,u): ... -Cm+dEm+l~Cm/Em ~C.,.,._tfEm ~-· ·· 

g i 9m+l l 9m! 9m- 1 t 

(C/E,u) : . . . -Cm+dEm+l
11

~Cm/Em ~Cm-t/Em 1-• • · 

Comme E et C/ E sont fortement cohopfiennes alors Imh" - lmh"+lt et 
/mg" - lmgn+lr donc pour tout m E Z on obhent Imh':n = lmhr;,.+lr et 
1 mg!;. = 1 mg::,-t 
Si p = 2n, pour :t E C,. on a g::.(x + E,.) = g~+1 (y + Em) pour un certam 
y E E, .Am . .n t = rm{x)- /;!(y) E Em d'où f~(t) = ~1 (=) pour un certam 
: E Em par conséquent J:a (x) = f::1 (y + z) cknc C est fortement cohopfienne 

Supposons que E etC/ E sont fortement hopfienncs donc Kerh' = Kerh"+lc 
et IKerg" = Kerq"t-" d'où pour tout mEZ on obtient Kerh~ = K(rhi,.- k et 
Kerg::. = Kcrq:~+k.Soitx E Kerf~ doncg2n+1(x+Em) = 0 dotzcy = /~(:r) E 
Em et J;!+1(y) = O.On obtient y E Kerh~+l = Kerh~ ainst xE Ker 1;:: d'où 
C est fortement hopfienne 
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Corollaire 6 Sott C = œCi où i E 1 Ci est une suite complètement inva­
nante SiC, est fortement hopfienne (respectivement fortement cohopfienne) 
alors C elit fortement hopfienne {respectivement fortement cohopfienne) 

Preuve Soit f une chaine de C dans lui même aLors u exi.~te une unique 
famille (!,) où i E 1 où fi = f le, et m = L: n,. les C, ~tant fortement 
hopfiennes alors Ker ft'' = Ker fin,+' par suite (J)K er f:" = 0K er f;•+l. Ainsi 
Ker((f)fi)"' Ker(CDJ,)rn+l. En définitive C est fortement hopfienne 

Soit f une chaine de C da11.s lui même alors il existe une unique fa­
mille (/,) 01i i E 1 où fi = f le, et m = L: ni. les Ct étant fortement 
cohopjienne~ alors Im,J;• = Jmfti+l par suite eimf{" = elmf;•+t. Ainsi 
Jm(ef,)m Im(9f1)m-rl.En définitive C est fortement cohopfiemle 
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3.3.2 suite quasi-injective 

Définition 42 Un A- module .U est quasi- injectif si pour tout monomor­
phisme g d'un .~ou.s A- module deN dans A1 et pour tout morphisme f deN 
dans Al , d extste un morphisme h de 1\I dans lui mémt trérifiant f = h o g 

M 

'Î ~ ··~ ... 
N---.!.- Al 

Définition 43 Soient C et E de·ux suites complexes de A- mod1Lle.ç. On dit 
C est quasi ifl]ecttf si pour tout monomorphisme g de E dans C et pour toute 
chaine de E dans C il exù;te une chaine h de C dam C vé1i.fiant f = h o g 

Théorème 19 Soit C: ... -+ Cn+l ~· Cn ~ Cn.-1 ~ ... ttnf. suiu complexe 
de A- moduks.C est quaSt-injectit:e si et seulement si pour tout n E z. Cn est 
un module quast-injectif 

Preuve Supposons que R est quast- injective et soie1tt f : JU -+ N un mono­
morpht.Sme de A- modules 
et <bn : .~1 ~ R, mt morphisme de A- modul~ 
Soient S et R deux suites complexes de A- modules et a une chaifle deS dans 
R telles que : 
S · S ~ S un S - où pour tout Tt E Z 

~r-= .. r ··ï--=-r ... 
lln+l tin 

R: ... - ~+1-Rfl,-Rn-1- ... 
Sn= l'rf et Un.= ! dM 
avec Rn= N et Vn = ldN 
O'n est un monomorphisme de A- modules,pour to-ut n E Z 
Soit t:> une chatne deS dans R telle que 

S S u,.+l S "- S 
.... - n.-1- "- n.- 1-··· 

• ! ._+1 1 Or.! ~l! 
R 

D U.n+l D 111n D 
: ... - 1Ln.+l -- 1. '-n - 1Ln,- l-.•• 

où les c:>t: M -+ R~~: .~ont des morphismes quelconques de A-modules 
R étant quasi- injective donc il existe 1/J une chame telle que : 

R . co ~ S "" ~ telle que t1Joa = <P donc t/Jno f = r·-::r ~r-::r- ··· 
n D '11/.,+J 'D Wn D 

: ···-1Ln+l-"Ln-"Ln-l-··· 
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Q.,..Donc il existe f/Jn: Rn--+ Rn tel,P,. of=~ d'où Rn est quasi· injectif 
Réciproquement supposons que pour tout n E Z, Rn. est urt A- module quasi­
mject1/ et démontron.~ que R est une suite complexe it~jective 
Soit "f un monomorphisme de complexes 

S S lln+l S Un 
: ... - n+l- n-Sn-1-·· · 

~! ~ft+l ! ~~ ~ ~-· ! 
R 

0 Wn-. 0 W.. 
:. ·· -'"n+l-~tn-Rn-l-· .. 
Soit {3 une chaine de complexes telle que : 

R : . . . - Sn+t ~Sn ~ S.,._1 - • •• Alors com.m{ pour tout n E Z, 

8! ~+1! p,.! Pn-11 
U!n+l 111,. 

R: ... -.Rn+t-Rn--Rn-1-··· 
Rn est quas"- mjectij et "Yn e.'lt un monomorphisme de A-modules donc il exi!;te 
)... : Rn -+ Rn vénfiant {J,. = À,. o -y,. Soit ,\ telle que : 

Démontron.fï que ,\ est une chaine 
s s U..+l s u,. s 1&,-l F- F·-:-l:- F~ ... 
R Rn ' '"+1 R,. Vn R,. u,.-1 F.- 1::.~ ~ .. - l:~··· 

D Wn-1 D w, D 11/n- 1 
R ... - 'tn+I- .l'-fl-- 't.n-1- · · • 

Il suffit que Wn+l o Ân+l = À,. o Vn+l 

On a Wn+l o /3n+l = BnUn+l car {3 est une chaine 
Or {3,. = .Àn 0 "rn 

donc Wn+l o (Àn+l o "rn+l) =(À,. o -y,.) o '-'n+ l 

alors (u:n+l o À.t. t) o "Yn+l = À,. o bn o Un+I) 
amsi (wn+d 0 >...+.) 0 "Yn+l = ,\,. 0 (v,. ... l 0 1n..-l) 

En difmittvl! {Wn-1 o À.t+t ) o "Yn-1 = (Àn o VnTl) O "Yn+l 
Or "fn-rl est url. monomorphisme deA- modules d'où. Wn+l o Àn+ 1 - Àn o Vn+ 1t 

pour tout n E Z 
d'où. À est une chaine 
V tri fons que À o 'Y = 8 
On sait que pour tout nEZ, fJn = Àn o rn avec {3 = (fJn),"Y = (rn) et).= (Àn) 

d'où À o "Y= {3.Ce qut démontre que Rest une suite complexe. quasi· mjective 
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suite complêt ement invariante -essentielle 

Définition 44 Solt N un A- sous module d'un modul(! .\1 est dit complète­
ment invariant ,n pour tout endomorphisme f de J\.1 on a f(N) ç; N 

Définition 45 Soient C une suite complexe de A- modulr.t~ et E un sou.t~ 
complexe de C tels que : 
C : ... Cn+l -+ C, -+ Cn.-1 -+ ... 
et 
E: . .. En+l-+ En-+ En- I -+ . . . 
E e.~t url so~ complexe ClJmplètement invariant dans C si pour tout n E Z, 
En est complètement invariant 

Définition 46 Un A- sou.'> moduleE de .\1 est essentiel dan~ M si pour tout 
so~ module tion nul K de .M, on a E n K :/: 0 ; .\1 e.,t appelée extenston 
essentielle de E te es.•H!flhelle dans C si pour tout n E z. En est es.'entiel dan..,. 
Cn 
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3.3.3 suite quasi projective 

Définition 47 Un A- module P est dit quasi- projectif si pour tout A- mo­
dule Net tout éptmorphisme r.: P--+ Net tout homomorphtsme <h: P 4 N,il 
extste un endomorphisme tb : P 4 P tel que 11' o t/J = 4> tllustré par le dia­
gramme commutatt.j .9uivant : 

p 

;/~~ 
P~N-0 

Définit ion 48 Sotent C etE deux .<mites complexes de A- modules. On dit 
que C est unf! suite qua.tti-projective si pour tout épimorpht"smc : C --+ E et 
pour tout morpht..çme f : C --+ E ,il existe une chame h : C 4 C vérifiant : 
f = g o h , dlustTé par le diagramme suivant : 

c 
h .~ 1/ ,g 

c-E-o 

Théorèm e 20 Sott C: ... 4 Cn+l ~~ Cn ~ Cn-1 4 .•. une su~tc comp[c:z;e 
de A- modul.es.C est quasi-projective si et seulement si pour tout n E Z, Cn 
est un module quasi-projectif 

Preuve Supposons que E est quasi- proJective 
Soient f : N .....,. M urt épimorphisme de A- modules et dJn : En 4 M un 
morphisme dt A- modules 
Sotent S rtE deu.:r. suites complexEs et a une chame de E vers S telles que : 

""+' '"'" E: ... - En+t-En-En-1- ... 
a! o•••l a~l o,._1! 

S S u..~ · s u,. s : ... - n+l- n-- n-1-· ·· 

où En = M et Vn = 1 d-'1 
Sn = N et Un= Id.v 
So1t a:n un éplmorphtSme de A- module.9 
Soit <b une chaine de E dans S vérifia-nt : 

v·,.+l w,. 
E: ... - En+l- En-En-1- ·. · 

·l ~+l! ~ .. ! $q-l! 
~ .. +1 Il., s 

S: . .. -Sn+l-Sn- n-I- ··· 

Avec le.5 cP1t: E~c.....,. A! sont des morphismes quelconques de A- modules. 
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Comme E e~t qua.n- projecti!;e alors il existe u1u: chaim: tjJ telle que : 

E E 
11.',.., .,. 

: ···- n+l -En-En-1-··· 

·1 ~·l! ~~ l\.-11 
R 

D "n+l V.. f 
: ..• - '~+1- Rn -Rn-·-· .. 

où a o 1/J = dJ atnsi pour tout n E Z, an o 'Ibn = tf>n. Il existe alors tPn : En __. R.,. 
telle que f o 1/.'n = Ôn .Ainsi En est quasi- pro;ectif 
Réciproqumnfmt .'fupposons que pom· tout n E Z 1 En e.st tm A- modul(> quasi­
pro;ccttf et démont7'0ns que E est une suite quasi- proJective 
Soit 1 un épt.morphisme telle que : 

E E L.,+l v,. E 
: ... - n+l-En- n-1-··· 

~i ~"+Il ~n! ~n-1 t 
S S un ... l S u,. S 

: ••• - n+l- n- n-1-··· 

SOtt/J une chome complexe vérifiant : 
ll.'n+ l ID,. E E: ... -En+l-En- ·n-1-··· 

~! ~··! ~~! ~-·1 
S S, "'~•· s u,. s 

: ···- r.+l- n- n-1-··· 
Alm-s comme pour tOttt n E Z,En est projectif et 'Yn est un éplmorphisme de 
A- modules atnst il ~:ctste Àn: En__. R.,. vérifiant 'Yn o Àn 

Soit ). telle : 

E .., u:"+' E 111,. E : ···-.,_+1- n- n-1-··· 

A! A.+> l Vn•• A.l •. ""-• 1 
R: ... -Rn+l -vn -Rn-1 -. · · 
Démontrons que ). est une chaine 

C' Vn+l tin E v., - 1 
E ... -~ .... t-En- n-1-··· 

11 t~n+l t1n t7n-l 
s s Un+l s u., s Un-I 

i~·- 1~=- ~~- ·~~:~ ... 
-..+1 '!P.o E ..,.._, 

E ... -E,.+l-En- n-1-·· · 

Il suffit que Àn+ 1 o Wn+ 1 = t'n+l o À. 
Or {J,Tl o Wn-1 = Un+t o {3,. car~ est une chaine 
Comme ')',. o ~ = ~" donc : 
'Yn-1 0 Àn+I 0 Uln+l = Un+l 0 ('ln 0 .Àn) 
Atn.Sl bn+l o Àn•l) o Wn+l = Un+1 o bn o Àn) 

Alors 'Yn+l o (Àn+l o Wn+l) = 'Yn+l o (vn+l o Àn) 
Or "Yn+l et un épimorphisme d'où Àn+l o Wn+l = tJn+l o Àn ce qui JUStifie que À 

est une chaine complexe 
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Vérifions que 1 o ,\ = fj 
On $ait que pour tout nE Z, /3n = 'Yn o >.,. d'où P = 'Y o ;\. Ce qui établit que 
E est une sutte oompleu quasi- projective 
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3.3.4 suites de fitting 

Définition 49 Un A- module J\l e,st dtt module dt F JTT 1 J\"G st pour tout 
endomorph1sme f dF. M ,il existe un entier n ~ 1 tel que .\1 = K r.r f" e Imr 

D éfinition 50 Une suite complexe C e.st dite de F /TT 1 NG si pour· toutr 
chaine f de C dans lui méme, il existe un entier n ~ 1 tel C = Ker f" ffi 1 mfn 

Théorème 21 Sott C une suite telle que C : ... ~ Cn+1 ~· Cn ~ Cn-l ~~ 
... Soit C : ... ~ Cn-1 ~ Cn -T Cn-l ~ ... u.nr suttc complexe de A-
modules. C est dite suite de F liT 11'iG si et seulement pou.r tout n E Z, Cn 
est un A- module de FITTI!VG pour to·ut nEZ 

Preuve Su.pposon$ que C est une suite complexe de FITTI NG alors il existe 
un entter naturel non nul k tel qv.P C =Ker f"(I1Imflt: donc Ker fknJmfk = 0 
etC= Kerfk + lmflc d'où pour tout nEZ, Cn = /(crf! +lm/,~ d'où Cn est 
fortement hopfien et fortement cohpfien amsi Cn est d~ f ITTI NG 
Réciproquement supposons Cn est un A- module de F !TT 1 V G dom: (Ker/!) 

·et (!mf!) $Ont stationnatres d!où (Ker J") et (lmfk) sont .~tat1onnaires. Ce 
qui démontre que C est une suite complexe de F /TT 1 N G 

Théorème 22 Soit C une suite complexe on a : 
SiC quasi- projective et fortement cohopfienne alors C est fortement 
hopficnne 
SiC quast- tnjective et f ortement hopfienne alors C est fortement cohopfienne 

Preuve Supposons que la suite C est quasi-projective et fortement cohopfiennt 
alo1·s Cn est quasi-projectif d'après le théorème 4 et (ker/~) e.9t stationnaire 
ce qui implique que Cn est quasi-projectif et (ker fk) est stationnai'('(' ainsr la 
suite C e8t fortement hopfienne 
Supposons que la sut tc C est quasi-injective et fortement hop/ ienne alMs Cn 
e!Jt qua~t-mjecttf d'après le thém'ème 3 et (!mf!) est stattonnaire ce qui im­
plique que C,. est quasi-injectif tt (Imfk) est stattOnnain~ amsi la stnte C est 
fortement cohopfienne 

Théorème 23 Tout complexe quasi - proJedtf et cohopficn ou quast -

inJedzf et lwpflen est un complexe de FITTING 

Preuve Supposons que C est t:ne suite quast - projectn.:e et cohopfienne 
alor·s d'après le théor-ème précédent C est hop ftenn(. amst C est cohop ftenne 
etlwp f ienne donc elle est un complexe de F /TT lN G 
Sv.ppo!lOn..lf qtte C est une suite quasi- injective et hopfienne alors d'après le 
théorême précédent C est cohopfienne ainsi C est cohopfienne ethopf'ienne 
donc elle est 1m complexe de FJTTING 



Chapitre 4 
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4.1 introduction 

Le chapitre 4 t'St une investigation sur les ClJ.'- complc.."<CS .. On y donne 
la définitiou du foncteur homologique Hn de la catégorie COA! P dans la caté­
gorie Ab. On 1\ aussi étudié les suites exactes de complexes. On a aussi énoncé 
et démontré le théorème portant sur l'homomorphisme de liau;on permettant 
de transformer une suite exacte courte en suite exacte longue. Le lemme du 
serpent dans la catégorie CO .\1 P est é>noncé ct démontrl•. 
Ensuite on applique les notions de la premièr<' partie à l'homologie des en··­
complexes. Cela commenœ par des prélimiuaircs sur les limite:, inductives ct 
la notion d'homotopie. 
La dernière partie du chapitre 4 est consacrée à l'étude d~ objets Hopficnt:J,objct::. 
Co-hopfiens dans la catégories des G- Cl-V - complexes. Ainsi dans l<'S deux 
sous sections qui vont suivre on étudie les objets Hopfiens, objets Co-Hopfiens 
de la catégorie G7i où G e&"t un groupe discret N Gtl désignant la catégorie 
des G homotopie dt'S G-C\V avec points base. 

4.2 Généralités sur les suites complexes 

Lemme 2 Serpent 
Considérons commutatif de A- rnodules : 

Ker(g)~ 

jl 
N 

·l 
M' 

p~ 
Coker{f) ~ Coker{g) w;-- Coker\h) 

où les lignes ( u, v) et ( u', v') sont exactes alors on a : 
i) on a v1 o u1 - 0, $Î li est in;ectif, la suite (ttt, Vt) est exacte. 
ii) on a t'2 o u 2 - 0, si v est surjectif, la suite (u2, 112) est e~rc.tcte 
iii) Supposons u' inJectif et v surjectif alors il e.riste u.n homomorphtsme et un 
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Ker(!)~ 

il 
Ker(h} - --

1 

t! : 
p 

seul d: Ker(h)---+ Coker(f) t.el que 

u 

M' N' P 

M 

,--- - -tt-- --- -.- - -- -- -~--- - _: 
1 

1 ·1 ~ ·1 ~ ·1 
1- - ,. Coker(f) ~ Coker(g) v;- Coker(h) 

et ayant la propriété suwante :Si z E K er(h), y E N et x' E Af' vérifiant 
v(y) = k(z) et u'(r') = g(y), on a d(z) = p(x') . De plus on a la sutte exacte: 

(•) : Ker(/) ..!.4 Ker(g) ~ Ker(h) ~ Colœr(f) ~ Coker(g) ...!4 Coker(h) 

Proposition 23 S01t (C,d) : . . . ~ Cn+I ~· Cn ~ Cn-1 ~· ... une 
sulte complexe de A- modules à gauche et L un A- module 4 droite.Alcrs 
(L 0 C! lL ® d) est une suite complexe de A- modules 
où 1L <& dn : L ® Cn ---+ L ® Cn-1 

Preuve Calculons (h ® dn) o (h ® dn+l) 
On obtient (1L ® dn) o (lL ® dn+t) ={lLo lL) ® (dn o dn.u) = h ® 0 =O. Ce 
qui p7'0twe que (L ® C, lL 0 d) est une suite complexe. 

Définition et proposition 3 On appelle foncteur homologie Hn le foncteur 

défini par 
Hn : Comp ---t Ab pour to-ut obJet C de Comp on a Hn(C) = kerdn/ Imdn-t 
et pour toutt chaine f : C ---t C' de Comp on a le morphtsme de Ab défint 

par 
Hn(f) : Hn(C) -+ Hn(C') 

Zn ~ fn(Zn) 

Preuve .Sott f la chaine définie par : 

C : . .. -Cn+t~C"~Cn-1- · · · 
Il f,.+t ~ ({ / .. ~ / .. -1! 

C' C' n + l C' <(. C' : .. . - n+l- n- t'I -l - '' ' 

Comme dn o dn-L = 0 donc Imdn+l Ç kerdn et or kerdn. et Imdn sont des 
sou.s groupes commutattfs de Cn alors Hn(C) = kerdnflmdn+l est tm groupe 
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commutatif . 
. Démontnms que Hn(f) est bien définie: 
Soit Zn E kerdn donc dn(~) = 0 alor·s fn-l odn(Zn) = 0 d'après la commutati­
vité du diagramme d~ o fn (:!n) = 0 donc fn(Zn) E kerd~. Donc si Zn E Hn(C) 
alors Hn(f )(zn) E Hn( C') 
Sott Zn E Imdn+1 donc il existe Zn+l E cfl ... l tels que dnH(ZnH) =Zn 
alMs fn o d>l+l(z,._I) = fn(Zn) or d~+l o fn+t(Zn+J) = J,.(z,.) donc /(Zn) E 
/m~-r1 
ainsi si Zn E /mdn+t donc Hn(J)(z-;.) = 0 
S01t ~ = z-~ donc Zn-~= 0 alors =n-in E /md,+l aiflSt Hn(J)(Zn - Z:.) = 
fn(Zn - ~.) = 0 d'où fn(Zn) = fn(::.~) alors Hn(J)(zn) = Hn(f)(z~ ). Ainsi 
Hn(f) est bien défim.e. 

~-,.--.,.-

.HnU C g}(z-;.) = (/ 0 9)n(~) = fn 0 9n(Zn) = fn(9n(Zn)) = Hn(f)(gn(Zn)) 
On obtien.t H11 (j)(Hn(g)(i'n)) = Hn(J) o Hn(g)(Zn) par conséquent Hn(f o 9) = 
Hn(/) 0 Hn (g) 
. H,t(lc)(Z'n) = (lc)n(zn) = lc,.(Zn) = t;. = lH,.(C)(t;.) ain.n Hn(lc) = ls,.(C) 
En définitlve Hn est un foncteur covariant de Comp dans Ab. 

Définition 51 Solt f : C ---+- C' une chaine de Comp. f est dite nullcho­
motopie s 'ü existe pour tout n E Z un A- morphtsme Sn : Cn ---t C~+l 
vérifiant : 

fn = d'n+l 0 Sn+ Sn-1 0 dn 

at•ec : 
d,.+l c d.,. c C; ... -Cn-rl- n- n-1-··· 

1 ! s .. /,ls .. -1/ j 1 t f.,.+l ,{ f,. ~1 .. -1 t 

C' C' <f, +~ ~ c(. C' . .-........... ~ ._...... ~ 
• • • • n + 1 " •t-l • · • 

Définition 52 Soient f, g : C ----+ C' deux chames de Comp. 1 est ditt ho­
motope à 9 si f- g est dtte nullehomotope 

Proposition 24 Soient J, 9 : C ---+- C' deux cha mes de Comp. telles que f 
est homotope à g. Alors pour tout nEZ on a : Hn(J) = Hn(g) 

Preuve Soient S et 1 - 9 vérifiant : 

avec 
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SupposoM que Zn E kerdn donc dn(z11) = 0 d'où Sn 1 o dn(Zn) = 0 
aWr3 Un- gn){zn) = d'n+l o Sn(Zn) ainsi (/n - 9n)(z,) E /md',T1 on obtient 
Un- gn)(Zn) = 0 ce qui donnt fn(Zn) = gn(z,) d'où Hn(f) = Hn (9) 

Proposition 25 La relation de homot.opie est une relatton d'équivalence 

Preuve 1 est homotcpe à lui même car ln- 9n = dn+l oO...L..Oodn où 0 désigne 
le morphisme nul 0: C~c:--+ Ck_1 , pour tout k E Z 
Si f est homotope à g on obtient ln- 9n = d:1+t o Sn+ Sn-1 o d,, 
ce qui donne 9n- /n = d~+t o( -Sn)...L..( -S11 _ 1)odn donc il exi.11te un morphisme 
-Sk : C,. ---+ Cat-1 pour tout k E Z donc g est homotope à 1 
St 1 et g homotopes et 9 eth homotopes avec f : C--+ C' et g: C'--+ C" 

Proposition 26 Soient C, C', C" trois suttes complexes de Comp et f : C' --+ 
C ---+ 0 ct 9 : C --+ C" deux chaines de Comp. Alor., 0 --+ C' ~ C ~ 
C" --+ 0 e.'t uru· .~ulte e:c.acte de chaînes si et seulement St pour t011t n E Z, 

o--+ro~ ~c ~C"--+O '-'n n n 

Proposition 27 Soit 0 --+ C' ~ C ~ C" --+ 0 est une suite exacte de 
Comp.Alors pour tout n E Z, il existe un homomorphisme 6n tel que 

6, : Hn(C") -+ Hn-l(C') 
~' H i;;.:_1 o dn o Pn(z" + lmdn) 

Preuve Soit le dtagramme commutatif suivant : 

C l ~ C' cfn-1 C' dfn-2 C' .. · ---+- n.__ n-1- n-2 -. • • 

! ! . 1' ln+l t,, t~n- 1 

C C dn c d..-1 c dn-2 
... --- n- n-1- n 2-··· 

lPn+l 1Pn \Pn-1 

tl' .Ill d" f d'.' 
C', C"' "+1 C" ""' C" , _1 C" "-2 

··· n.,.l- n-- n-1- 'n-z - ··· 

On sait que Hn(C'') = kenf;. / Imtf'n.q · Soit z" E kerd: Ç c: comme Pn est 
un ép1morphume alors tl existe a E Cn tel que Pn(a) = z" et dn(a) E Cn-1 or 
Pn-1 o dn(a) =d'" o p,.(a) o d'~(z") = 0 
Donc dn(a) E kerpn-1 or kerJJn-t = lmPn-l alors dn(a) E lmPn-1 comme tn-1 

est un monomorph.sme donc il existe un unique a' E C~-l tel que În-l(a') = 

dn(a) 

Démontrons que a' E kerd~_1 • On a in-l (a') = dn(a) E kerdn-1 donc 
dn- 1 o Ïn-l (a') = 0 ce qui donne in-2 o d~- l {a') = 0 or Ïn-2 est un monomor­
phtsme alors d'n_1(a') = 0 d'où a' E kerd~- t 
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Démontrons l'umcité de l'~mage de ; 1 par cSn 
S01t e E Cn tel que Pn(e) = Pn(a) = z" (Û)nc Pn(e-a) = 0 donc e-a E kerpn = 
/min alors e- a E lmdp" donc il existe m E C~ tel que in(m) = e- a alors 
dn o im(m) = dn(e -a) ainsi 'În-1 o d'n(m) = dn(e) - dn(a) il exz..ste fi tel que 
d,t(e) = Ïn-l(e') et in-1 o d'n(m) = in-l(e')- in-l(a') = În-1(e'- a') et comme 
in-t est un monomorphisme alors un monomorphisme alors d~(m) = e' -a' 
donc a'+ lmd'n = e' + !md~ donc tSn est bien définie 

4.3 Résolutions de complexes et Hotnotopie 

4 .3.1 Hon1ologie des C\V-complexes 

Définition 53 Une structure de en· complexe sur un e3paœ X est la donnée: 
t}d 'une filtrotwn de X : 

Sk-lX Y Sk0X ... Y Sk" X Y ... Y X 

par des sou.s·espaces S~·nx appelés n-squdettes dr. X 
ti} pour chaque entier n > 0 d'un ensemble d'ind1ces En ct d'une famille 

(gn)ne~. 
d'applicatzOTIS continuc.s Yn: Dn--+ Sk"X telles que 9n(S"-1

) C Sk"-
1
X 

Ces données vénfient: Bn.o = Bn pour tout a: E En et .S:-1 = sn-l le bord de 

Bn,o 
L'application g

0 
tnduit, d'après ii) une application fo.: ~-l--+ Skn-l X 

Notons 9n(re~pecti1lement fn-1 ) l'unique application 

Définit ion 54 On dit qu'un diagramme commutatif de A- modules et d'ho­
momorphi.fJmP..t~ : 

~ ~ M • M ~ M ~ 1 ·~ l;7' .. - ... 
M 

déftnit JH comme limite inductu;e des (.Mn, un) si quelque sott le module N et 
les a.pplu:attons ltnéaires 9n : Afn ~ N telle.s que que l'on att 9n+1 o Un = g,., 
quel que .so&t n, alors il existe un unique homomorphlSme g : A! -+ N telle 
que l'on ait go /n = 9n,quel que soit n 
Notatton :On écrit alors J\f = ~(.Atfn, Un) 

Lemme 3 Si le.s Un sont des tsomorphi.<;mes pour n a.~.~ez grand d r.n va de 

meme de~ ln 
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Preuve Supposons que les Un soient des isomorphisme3 pour n ~ no et défi­
nusons les applicatJon.'i linéatres 9n : .Un ~ Afno en posant 

{

Uno o ""·-1 o ..• o Un .r;i n -< t'1i) 

9n = tdMno s-i n = no 
Un0 -1 o Uno+l -1 o ... Un -1 si 1l >- no 

On vérifie que 9n+l oun = g,.. Donc il existe un homomorphu;me g: J\1 ~ 
Mno tel que l'on ait g o ln = 9n pour tout n. En particulier, on obttent pour 
n =no, go /no= id'A1no· Par ailleu1·s on a : 

. {'no Ot.tno 0 • •. 0 Un= fn St n-< no 
fno o g o fn = /no o 9n = fno si n - no Dans tous 

f -1 -1 . 
no 0 ·U..,.. 0 0 ••. 0 'Un 81 T~ >- no 

le3 ca3 on a l 'égal.tté (f no o g) o f" = j.,... En utt.li.'lant la définition des limites 
tnducttves on peut .\[ = N et 9n = ln on a idAf est le seul homomorphisme 
h pour lequel on ah o ln· On a aussi fno o g = idM.Par œnséquent /no et 
/n =/no 0 u,.-1 0 ••. u-l pour n >- nnc, sont d~ ISomorphisme$ 

Théorème 24 Soit Xo ~ X1 ~ ••• ~~ Xn ... ~ X une filtration de X par 
des espaces X,. séparés. Soit ln: Xn ~X l'inclu.szon. Alors le diagramme. : 

H,(Xo) ~Hp(Xt) H,(it) . • . 1/. (X t,(a,.) 
~· ~.· .-... 

Hp( X) 

définit, pour to·ut p, Hp( X) comme limite inductive Hp(X) = ~(H11 (X.,..), Hp( in)) 

Preuve Soit a un élément de Hp( X) et soit z E C,{X) un cycle dans la classe 
a. Comme z est urlf p- chaîne, on peut icri.re : 
z = E;.

1
À,Tj où lesT; : tl., ~ X sont des p- simplexes. Pour tout j, 

il existe un entier n
1 

tel que l'on ait ï;(â p) C Xn, ; So1t n = su1J n1 pou1· 
1 ~ j ~ k. On a alor.s T1 (.6.p ) c Xn donc Cp(Xn) c C,(X) d'où C,(Jn)(z) = z. 
Par IKk"sage à l'homologie Hp(/n)(an) =a. On a donc dém.D1~tré 

i) Quel que soit a E Hp( X), il existe un entiern et un élément OnE H,(Xn ) 

tels que que l'on att Hp(fn)(a:n) = O: 

So1cnt mamtcnant OnE Hp(X.,..) etamE Hp(Xm) deux éléments vérifiant 

HpUnHo:n ) = Hp(/m)(am) 
ti) Sous œ...8 hypothè.'fes il existe un entier q cu,sez grand tel que que l'on ait : 
Hp(iq t)) 0 ••• 0 Hp(in)(o:n) = Hp(tq-l)) 0 ..• 0 Jlp(im){O:m) 
En effet, soit:nt Zn et Zm des cycle3 dans les cla~:~se,-; On et Clm· On a Zn E 
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Cp(X,,) C C11(X) et Zm E Cp(Xm) c Cp(X). Au ntueau des cycles, l'égalité 
H,(/n)(on) = Hp(/m)(am). Il existe (n + 1) stmplexes Ta. ... , Ti de X et des 
~calaire.~ J.La, .•• , J.Ll de A tels que que l'on ait : 
Zn- Zm = L:~ 1J.Ljdp+t(T1 ). Pour q assez grand on a r1(~t) C X, par consé­
quent Zn- Zm est un bord dans Cp(Xq) 

Sott M url A- module , et soient 9n : H,(X,.) ----+ Al des applications 
linéatr'es vérifiant gn+l o Hp(in) = gn. On définit g : Hp(X) --+ .\{ de la 
façon suivante D'ap1-è.8 i) il existe, étant donné a E Hp(X), un OnE H,(Xn) 
tel que l'orl ait H,(/n)(an) = o. En posant g(a) == 9n(o 11 ) et on obtient 
g 0 Hp(Jn) = gn 

Théorème 25 On a: 
st p pa. ir au p >--n 

si p impair et p-<n ii.(P.(R,Z) = G/2Z 
si p=n impair 

et 

. {0 H,(Pn(R), Z/2Z) = ! 
Z. 2Z 

Corollaire 7 On a: 

- { 0 si p 
H,(P~(R , Z) = 

Z/2Z si p 

- { 0 si 
Hp(PocC!i) , Z/2Z) = 

Z/2Z si 

si p = 0 ou p >-- n 

sinon 

pair ou p negatif 

impair 

p~O 

p>-0 

Preuve On sait que d'après le théori:me précédent , H,(in) : H,(Pn(IR) ----+ 
H,(Pn+l(R) est un isomorphisme pour n >--p. Le lemme et le théorème précé­
dent permettent de conclure. 

Proposition 28 Les "!'odules iftt(Sk" X ) sont nuls_ pour q >-- n. 
Les lwmomorphismes Hq(Ïn- t): H9 (Sk"- 1X ) ----+ H,(Sk"X) sont des isomor­
phismes pour q -< n - 1, et des surytctions pour pour q = n - 1 

Preuve SI E" n'a qu'un élément, alors on a S k" X = CUn-1). La stute exacte 
s 'écrit : 
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et le résultat s'en dlduit 
Dans le ak'l général on construit la suite exacte : 

0-+ Hn(Sk" X)~ Hn-1( IJ s;;-1) H,.-l(lr-t) Hn-t(Sk"- 1X)-+ Hn-1(Sk"X)-+ 0 
o ei: .. 

Ce qui permet de conclure 

En effet on a une application r.p: (lJaeE, Bn,a, U aei:,. San-t) --+ (Skx, Sk"-1 X) 
et un diagramme commutatif : 

Hn(U Bn.o. U s~- 1 ) ~ Hn(Sk" X, Sk"-1 X) 

,.. 1'1., ( R) • ~ u.(X) 

Hn-t(U ~-1 ) H.-tU.-t) Hn-1(Skn-l X) 
Comme Bn.o est contractile, la flèche de gauche est un isomorphtme et mats 

au.sS1 H,.(;p) e3t un lSomorphisme on a awrs 
Keron(X)::: KerH,.-t{/n- t) Et Cokerun(X)::: CokerH,.-t (/n-1) 

La sutte tzacte d'homologie de la paire (Sk"X. Sk"'- 1 X) e3t donnée par: 

0--+ Îfn(Sk"X) HnUçl Îfn(Sk" X , Sk"-1X) O'n{~) Hn-t(Sk"- 1X) /{,._,(ï;-tl Hn-t(Sk"X)--+ 0 

D'où Hn(Sk" X) = KerunX et Hn-1 (Sk" X)= Cokerun(X) 

Théorème 2() Les homomorphismes Hq{kn): Hq(Sk" X) --+ Hq(X) sont des 
isomorphisme.'l pour fi >- q 

Corollaire 8 Si tous les ~n sont des en.semble.~ finis et si l'anneau A est prin­
cipal, les module.5 H

9
(X) .9ont de.-; modules de type fini.;; (en parttculier .~i l'an­

neau des coefficients e.'it un corps,ce sont des e.9paœs ve.cton.eL'I de dimension 
finie) 

P reuve Le module H,(X) est isomorphe à }!,(Skq+t X). 
n suffit donc de démontrer que les modules Hq(SkqX) SOfit de type fini quels 
que sotent q et n . On va raisonner par récun-ence sur n 
Pour n = 0, ou a Sk0X étant un ensemble fini de points, lo. pmpriété est vé-
rifiée. 
Le pa.ssagP de n - 1 à n se fait de la façon suivafite d'après la proposi-
tion précédente et l'hypothèse de récurrence H0(Skn X) est un quottent dt 
Hq(Sk11 1 X) pour q--< n, donc de type fini. Comme ~n est un eruemble fini , 
Hn-l (ua(.'I:., ~ 1) est un module libre de type fini et par conséqu~nt Hn(Skn X) 
est libre de type fini 



4.3.2 Résolutions de complexes et Homotopies 

Définition 55 On appelle résolution du complexe C. 

la donnée d'lme suite exacte de complexes et d'homomorphismes: 

C 
d...p_ C d.. ,p-l C d.. .o C 

... --+ •.P ---'+ •,p-1 ~ . . . • ,0 --+ • ---+ 0 
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Pour tout entier p, ou a C.,p est un complexe,sa. composante de degré n, (C • .p)n 
désignée par 0,.,11 D<' même d,.,p : c .. p --+ C.,p-l est un morphisme de com­
plexes. On note (d.,p)n = dn,p et dn.p: Cn,p--+ Cn,p-1 <'St. un homomorphisme 
de A- module~. Enfin Cn,p = 0 pour n -< O,quel qUf' soit p ~ 0 

P roposit ion 30 Sott ( C.,p, d •. p) une résolution du complue C.,. On a alor·s 
d.,,_1 o d • .p = 0 quel que soit p >-O. Alors H0 (d •. .,- 1) o H0(d. ,p) = 0 et la S1Jite 
de modules et d'homomorphismes: 

H (c ) 1/o(d...-) H. (C ) Ho(IL.f"t ) Ho(tl. t) H (C ) 0 O --+ 0 •.P --+ 0 •.p-1 • • • --+ 0 • .0 --+ 

est un complexe que l'on notero K.(C) 

Théorème 27 Sott ( C • .p. d • .,) une résolutio11 acycltque du complexe C •. Alors 
il existe tm uomorphisme On: Hn(K.(C)) --+ Hn(C.) pour tout entter n 

Preuve D'après les propriétés des suites e:roctes, on a une suite exacte courte: 

0 /md '·.p+l c ; .. p 1 d 
--+ •,p-r-1 ~ •,P--+ m •·P---+ 0 

pour tout p ~ O. La suite exacte d'homologie associée s 'éc1'it: 

Hn(C.,p) ~H .. (j.~p) Hn(lmd • .p) Un• Hn-1(/mC.,p+l) H,.~l) Hn-t(C.,p) 

Mai.!! si onan>- 1, les moduks H<C•,p) et Hn-J(C.,p) sont nuls ~t par consé­
quent Un e.CJt un isomorphisme. Comme on a 1 md •. o on obti(mt par récurrence 
sur p,un isomorphtSme Hn(C.) ~ H1{Jmd •. n-1) Ernvons mamtenant le dé­
but de la suitr txacte d'homologie associée à la suite exacte courte : 

0 Imd i.... c j .... - 1 lmd 0 --+ •.n --+ •,n-1 --+ •.n-1 --+ 

On obtient: 

H ( md ) 
a 1 ( ) Ho(,.,.) u (C ) Hoü• ... -1) u (l ,~ ) O 

Ht(C •. n-1)---+ 1 1 •,n-1 ---=+Ho Imd •. n ~ no •.n-1 ~ no mu..,n-1 --+ 

atlel' 0 = H,(C.,n-1) 
Le module Hn(C.) est donc isomorphe au noyau de H0(t.,n) et la suite 

H d ) Ho(i. ,.) (C ) Ho(j .... -1) u ( / d ) 0 (lm o*, n ~ Ho •,n-l --+ no rn •,n-1 ~ 
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est exacte. On obtient u1t diagramme commutatif où toutes le$ $Uitt.s formées 
par au moms deux flèches alignée-s sont exact~ 

0 0~ 
~ p ~ 

kerHo(d,~- -- ---- -- •kerHt··•) 

Ho( Im d• ,n+d 

t Ho(.j•,.-+a) 

Ho(C.,n) 

Ho(••.n+t) Ho(C .. ,n) HoU .... ) Ho(fm d •. n) -0 

~ !Ho(t ... l 

Ho(C. n-d 

La restriction de HoU •. n) àKerHo(d.,n applique KerHo(d.,ft) dans KerHo(i •. n) 
d défimt une appl!catton linéaire p: KuHo(d. ,'l) -+ KerHo(i •. .,) qui com­
plète en traits pleins de façon à obtemr un dJagromme commutatif. comme 
Ho(J •. n) ~t suryect:ve {exactitude de la ligne horizontale) alors p est surjec­
tive. Mats on a K erp = KerHo(J •. n) et KerHo(i. ,n) = lmHo(d. n+t) ;Soit 
xE K er Hu(i •. "') = lmHo(i •. n-d donc il existe y E /mHo(i.,nH) tel quP x = 
Ho(t •. n+l)(y). CommeHo(i •. n-d estsurjective, onpeutécrirey = HoÜ•.n+l)(z) 
on obtient alors x= Ho(i •. n-1) o HoU•.n-1){.:::) = Ho{d •. n+l)(z) 
Par passagt au quotient, p tnduit un tsomorphtsme 
p: Hn(K.(C)) = /(erHo(d •. n)/Im.Ho(d •. n+d-+ KerH0 (in) 
En posant On = Àn op où Àn : Ker Ho(in) ...=.. Hn(C.,n) on obtient que 
On: Hn(K.(C)) --+ Hn(C .. ) est un isomorphisme 

Proposi t ion 31 Soit/. : c. --+ c~ tm morphtsme de complexes. On suppose 
que l'on a Cn - c~ pour n--< 0, que c~ est U11 A rn.odule ltbr-e quel que soit n, 
que Hn(f) est un ~omorphisme quel que soit ne que C. ~t Ho(C) = Hq(C) = 
A, Hn(C) = 0 pour n :# 0 et n =f: q. Alors ilextste un morphume ck cmnple.xes 
G.: C~ --+ C. et une homotopie reliant/. o g. d ide: 

4.4 Objets hopfiens,Objets cohopfiens dans la 
catégorie des G-CW -Complexes 

Objets Hopfiens 

Définit ion 56 Soit G un groupe. On appelle catégorie Oc la catégonc dont 
les objtts sont les groupes quotients G / H où H est un .~ou. . ., .fJT'OUpe normal de 

G 
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dont les morphiJmes g: G/H ~ G/ K défin:s par la nlation d'é~Jmoolence 
g- 1 Hg C K pour tout gE G où K est un sous grou11e normal de G. 

Définition 57 Un Oc groupe abélien e.st un foncteur c.ontmvanant de Oc 
dar~ la catégorie Ab. 

Définition et proposition 4 Soit G un groupe. On note par Cc groupe la 
catégorie dont le.~ objets sont les foncteurs Oc et le.o; morphismes sont les trans­
formations naturelles. 

L'objet nul de Ca est noté: 
0

: c7~ :: ~b 
où 0 est le grou]Je réduit à un élément. 

Proposition 32 Cc e.o;t unt catégorie abélienne. 

D éfinition et proposition 5 :ième intégrale d:homolog1e 
Soit X un ob; et d'une catégorie G1l, pour i ~ 0, on a un Oc groupt· ahélten : 

H, : Oc ~ Ab défini par : 
pour tottt obJet G/H de Oc on a Hi(G/ H ) = Hi(XH) 

où X 11 = {x, hx = .r: Vh EH} et H1(XH) est lei-ème groupe de homolog~e de 
XH. 

pour tout morphisme g: G/ H ~ G/ K de Oc on a HiX (g) = Hi(g) : 
H,(XK) --+ li, (XH ) de Oc où g: XK --+ xH at•ec g est induit par l'action 
de G su.,· X 
Soit f : X --+ Y un morphisme de G1i alors f tnduit u.nl! transforma-
tion naturelle f. : H..nX -+ HnY, avec f.(G/ H) = Hn(JH) où Hn(JH) : 
Hn(XH) --+ Hn(YH) pour· tout n ~O. 

Lemnte 4 Un morphisme 71 : T ~ S de Co e.st 1.tn épimorphisme (respecti­
vement un monomorphi3me ) si et seulement si : 
TJ(G/ H ): T(G/ H) --+ S(G/ H est un épimorphisme (respectivement un mo­
nomorphume ) d4ns la catigorie Ab pour tout objet G / H de Oc. 

Remarque 3 Si Ca est la catégone de.s Oc groupes, alor·s tm morph:sme 11 : 
T --+ S de C'c est un monomorphisme (respectivement f.pimorpht.sme) &i.et 
seulement 71(Gj H) est un monomorphisme(respectivement éptmorphisme). 

Proposition 33 St un objet T de CG satisfait la cund1tion T(G/ H) est Hop­
fien (respecttt•fmrnt Co-hopfien} dans .4b pour tout objet G / H de Oa, alors T 
est Jlopjiet1 (respectivement Co-hopfien) dans Ca. 

Définition 58 Un morphisme f : X ---+ Y de G1l est unr· G-cquiva.lence 
d'homotopte si f. : HnX-+ HnY est un isomorphisme pour tout 11 ~O. 
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Proposition 34 SoJt f ; X ---+ Y un épimorphisme de G'H.. Alors f. : 
fuX-+ J:L.Y est un ép1.morphisme de Cc pour tout k >O. 

Preuve So&t f une mclusion. Sotent rr : Y -+ Y 1 X et c : Y -+ Y 1 X, où c 
est con.sta1tt alors 1r o f = c o f .Si f est un éptm01phisme 1r est G homotope 
d c. Atnsi JIOUr tout H C G, d'après le lemme précédent on a u.nc .~mte e:r.acte 
.. . Hk(X 11 )-+ H~c(YH) ---t H~c ((Y/X)11 ) = H8k(Y11 /X 11 )-+ . .. que /11

: 

Hk(XIf) -+ H~c(Y11 ) est un épimorphisme de Ab pour tout k ~ 1. 

Rcn1arquc 4 Pour tout morphisme f : X ---+ Y de Gtl. f., : JkX --+ H 0Y 
est un isomorphisme. 

Preuve H0(X 11 ) est engendré pa1· la classe de homologie du pcn.nt base x0 
E 

xc C H0(X 11 ) et f est un morphisme de G1i., (JI1
). transforme le générateur 

de H0(Xu ) en un générateur de H0(YH). 

Théorème 28 Soit f : X -+ X un épimorplnsme de G'H. Si pour tout n ~ 1 
HnX e.st un obJet Hopfien de Cc, alors f est une G- {qutvalence d 1homotopte. 

Preuve D'après la remarque pricédente J.&X-+ &Y. 
Si f ~t un êptrrwrphtsme,d'après la proposition précédente J. est un épimor­
pht.Sme pour tout n ~ 1. Ainsi pour tout n ~ 1 est un objet Hopfien de Cc. 

Définition 59 Un G- espact. X est dit nilpotent si pour tout n > 1 on a 
'fin X est ntlpotent comme Oc- module sur zr1 X teLq qu 'tL~ cx&.~tent des Oc-

module.s : 
{Q} = l!:n,oX C !!:n,1X C ... C 1rn,rnX = !I..nX tel!, que chaque An.; = 
Z!:n,J+IX /'!!n,;X 3oit abélien avec Faction de 1[1X. 

Corollaire 9 So~ent X un objet mlpotent de G1i. et JL,X rm objet Hopfien 
de Ca pour tout 11 ~ 11 alors X est Hop[re11 dan.~ G1i.. 

Preuve Soit J : X --+ X. D 'aprè.s le théorème 24 f e.~t un<: G- équivalence 
d'homotopie. Mats xu étant nilpotent pour H c G, cela ent?-ame que ! 11 : 
XH ---+ X 11 est 1me équivalence d'homotopie et alors f : X ---+ X est u11e 
équivalence d'homotopie. 

Proposition 35 Pour tout objet X de G1l and pour tout Oc groupe À : 

Oc-+ Ç &l enste un b~morphisme adjoint :[X, K(>., l)]c +---+ Hom(rr.1X, À) . 

Preuve Sl f : X --+ K(>.., 1) est un élément de (X. K (>.., 1))c, alors la 
transformatton naturelle correspondante darl.S Hom(JI1X , À) est donnée par 
/. : 2r1X--+ À • On pose 7r.1K(À, 1) =À. 
Réciproquement une trnn.~formation naturelle T : 111 X --t À indu.tt une G­
tronsformation naturelle T.: K(7I.1X, 1) --+ K(À, 1). Eta11t donné X peut être 
considéré un G- ~ous complexe de K(zr1X, 1). 
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Proposition 36 St f : X ---+ Y est un épimorphisme de G1l. alor.'i j. : 
~1X ---+ zr.1 Y ~t un éptmorphisme de Cé;. 

Coronaire 10 Si À : Oa---+ 9 est Hopfien dans Cé;, alor.s K(,\, 1) e$t hopfien 
dans G1l. 

Corollaire 11 St X est G- (n- 1)- connexe, pour tout n ~ 1 (XIf est 
(n- 1)- conne:re) et f : X ---+ X est un épimo1ph·u;me de G1l alors /. : 
EnX --+ 1I.nX est utl épimorphi'lme. 

Preuve St X est G- (n -1)- connexe, la transformation naturelle l[7,X ---+ 
KnX de Hurewicz est un isomorphisme. Ceci ré1mlte de la proposition 30. 

Proposition 37 Si X est G- (n- 1)- connexe. pour tout n ~ !,alors il 
e:.nste un b1morph~me adJoint {X, K(.X, n})c +---+ Hom(ZI.nX • .X), pour tout 
.X : Oc ---t Ab. 

Corollaire 12 Si .X: Oc ---+ Ab est Hopfien daru Ca alors K(-\, n) est Hop­
fien dans G'H. . 

Objets Co-Hopficns 

Dans cette partie on étudie les conditions dans lesquelles un objet X de de 
G1l peut être Co-bopfien. 

Proposition 38 f : S ---+ S est un monomorphtSme de Cé si et seulement 
il induit/.: K(S, 1)---+ K(T, 1) est un monomorphisme de G'H.. 

Corol1airc 13 Pour tout objet À : Oc ---+ G1i dans C~, K(-\,1) est Co­
hopfien s' et SP.tûement À est Co-hopfien. 

Corollaire 14 Si~ : Oc ---+ ~-tb dans Co et n ~ 1, K(.X, 1) e.~t Co-hopfien 
dans G1l si et seulement si ~ est Co-hopfien dans Co. 

Définition GO Pour tout objet X de G'H., E,.X est dzt de type fini sil[,X(G/H) = 
1r,(X8 ) t>..st de type fini pour tout H cG. X est appcll..e G- homotopie de type 

fini si 14X est de type fini pour tout i ~ 2. 

Théorème 29 Sotent X un objet G- homotope de type fini de G?i ul que 
l[

1
(XH) ~st un groupe cohopfien et le monomorphisme X 8 '"-'+X de 1i pour 

tout H C G alors X est un objet Co-hopfien dans G'H.. 
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P reuve SOtt 1 : X ~X un monomorphtsme de G11.. Par hypothè3e 18 
: 

X 8 ~ X 8 est un monomorphisme de 1l pour tout H c G. Si 1r,(XH) 
est de type fint, pour tout i ~ 2 et 1r1(XH) est Co-hopfien , cela entrame 
18 : X 8 ---+ X 11 est une équivalence d'homotopie. Alor.~ f est une G- équi­
valence d'homotopie. 

Démontrons d'abord que / - f{e} : X = x<e} --+ x<el = X est un 
monomorphisme de ti. Supposons le point base x0 E xc est G- fixe 0- œllule 
dans X. Soient a, {3 : Y --t X morphismes dt' tl teL'; que J o a ~ Jo B .Soit 
F : Y x 1 --+ X lune homotopie telle quef o a '== f o /3. Corundè7'07LS Y x G 
un G- espace, où l'action de G est définie par g(y, h) = (y, gh),pou1· tous 
g E G, h E G, y E Y. Définissons 6 : Y x G --t X par o(y. t>) = a(y) et 
a(y,g) = ga(y) . Alors a· e.-;t une G- transformation. On not~ a(y0 ,g) = x0 

pour tout g E G. Alors Yc e.-;t un G complexe at•ec point bas<. qut e.-;t un G­
fini 0- cellule et est un objet de G1l.. La transjonnatlon ô mduit une G­
tro.nslonnatwn ër : Yc ---+X qut conserve les potnts base. De façon analogue 
i3 : Yc, ---+ X. La homotopie F : Y x 1 --t X donne une G- homotopie 
F : Y x G x 1 ~X entre f o a= 1 o [J ulle que F(y,e,t) = F(y,t) ct 
Ë'(y, g, t) = gF(y, t) pour tout gE G: t E 1. Si F est une homotopie consen;ant 
les pomts base .• F induit une G- homotopie F : Yc x 1 --t X, entre / o & 
et f o jj. Comme 1 est un monomorphisme de G11., a est G- homotope à {3. 
Soit F1 : Yc x 1 --+X une G- homotopie entre à et jj. Soit uru~ enveloppe 
i: Y __. Yc 

Y .._.. (y,e] 
Soit F1 :Y x 1-+ X un~ composée dei x id: Y x 1 --+ Ya xI et F1. Alors 
F

1 
:cr~ /9.Alors J{e} : X{e} --t X{e} est un monomorphisme dcms 11.. 

Soit H c G. Soit a, {3 E: Y -+ X H deux morphisme.<~ de Il tellc!l que 111 
o 

a ~ IH 0 fJ. Soit i : X 11 ....... x Al01'S i 0 /
11 

0 a ::::: i 0 /
11 

0 {3 edo. tmplique 
ioloa ~ iofo{3. Comme 1 est une G- transformationiol11 =foi. St f{f'} est 
tm monomorphtsme de ti on en déduit que i o a :::::= i o fJ. Comme i : X 11 

<-+ X 
est un monomorphi.sme alors a~ {3. Alors / 11 est un monomorphume de 11.. 

Corollaire 15 So't X un objet de G1l. telle que l'action de G est semi-libn 
et xc = {x0}, x0 est un G- fixé 0 cellule. Soit wi(X) ~t dt: type fini pour 
i1r ~ 2 et 1r1 (X) est cm groupe Co-lwpfien. Alors X est un obJet Co-hopfitn de 
G1l. 

R em arque 5 Soient G un gmv.pc; drscret et X un G- CW-complexe.Alor.ç 
X peut étre Hopfien {respectivement Co-hopfi~n) dan.o, G1l ... artS étre Hopfien 
(respectit•ement Co-hopfien) dans 1{ et vice -ucr.ça. 

Exemple 6 Supposons que G = Z2. Définissons un Oc- groupe À: Oc---+ 
Ab tel que .>t(G/G) = Z, .>t(G/{e}) = {0}, le gr'Oupe trivial et .>t(G/{e} ---+ 
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G/G) : Z ~ {0} l'homommphtsme naturel. Sott X = K(À,l).Alors X est 
Co-Hopfien dans 1l maJ.S non Co-Hopfien dans GH. 

Pour la preuve posons X= X{!!}= K(À(G/{r }, 1). Alors X est contrac­
ttle. Par conséquent X est non Co-Hopfien in K. Rema1quon . ., que .X est norl 
Co-Hopfiett dan.-; Ca. Pour TJ : À ~ .X défini par TJ(G/G) : x ~ 2x, 
TJ( G / { e}) = id{o} e3t tm monomorphisme mai.ç n'est [Jas tm l..'iomorphi.'lm( dans 
Cc d'apre . ., le lemme 2. Il resulte du corollatre 8 que X est non CO-Hopfien 
dans G1l. 

Si G = Z, et Hn d~igne le sous groupe 21~Z, avec n > O.Si H est un sous 
groupe de G, Hf. Hn pour tout n, alors H = kZ, où k = 2n•, l impair, l ~ -1 
et l f. 1 avec n; > O.fl est clair que kZ c Hn et il n'e..r.tste pa.'i de Hm tel que 
Hm C kZ. Or Hn+t C Hn pour tout n. On définit un Oc groupl' .X : Oc ~ Ab 
ain.~ : 
Soit ~ la somTn( d1recte EViQe, des copies dénombrable..<t de Q de base 
{e1,e2 , ••. ,en .... }. Qx est un espace vectonel sur Q. C'est clalr que qx­
n'est m Hopfien nt Co-Hopfien dans .4b. Soit Q" = e:=1Qe. En remarquant 
que tout homomorplusme de groupes Q" ~ ~" est un Q homomorphisme 
~ ~ Q" liné4ire. Alors Q" e.st Hopfitn et Co-Hopfien dans Ab. On obttent 
.X(G/{e}) = Qx et >.(G/Hn) = Qn pour tout n ~O. St k E Z, atJ(:C k = 2"•l 
tel que l 1mpatr différent de 1 et -1 et n. ~ 0 on obttent .X(G/kZ) = Qn• 
où , CjJ = {0} déStgne le groupe trivial. Pour Hn- l C Hn, soit l'inclusion 
.X(G/ Hn+l --+ G/ Hn) : Q" ~ Qn+l. Pour k E Z C Hn, , avec k = 2n;z, où l 
impair, di.fftfrent de -1 et de 1 et n ~ 0, soit l'identité A( G / kZ --+ G / Hn.) : 
Qn' ~ Q"'· Si {e} C Hn et {e} C kZ,k = 2rl'l,soient >.(G/{f}--+ G/Hn): 
«:r ~ 000 et .X((G/{e} --+ G/kZ): Q"• ~ Qx inclusions naturelle . ., d'où 

>. est un foncteur rontmvariant de Oc dans Ab. 
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4.5 Conclusion 

Les perspectiYes de recherches se déclinent ainsi : On étudie <leJA les suites 
complexes semi-hopfiennes et <les complexes semi -cohopfiennes.Des articles 
sont à sownettrc à. publication. 
Cette étude concerne aussi des objets fortement Hopficns. fortement Co-Hopfiens 
dans la. catégorie des G- CJl' complexes .... 
La recherche porte également sur les suites complexes faiblcmPnt Co-Hopfienncs 
ct de la cla&.<;e des complexes de Dedekind finis. 
Les catégories abéliennes sont à l'étude : localisation dmu; les catégories abé­
liennes, catégories localement noethcricnnes, application à 1 'étude dt-li faisceaux 
cohérents. 
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