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Abstract

In this thesis, we study the averaging problem for multivalued stochastic differential
equations and for stochatic differential equations driven by double stochastic integrals.
The averaging principle consists in showing that the solution of a differential equation
whose coefficients are pertubed by a process describing a fast motion can be approxi-
amted by that of some unperturbed system obtained by averaging out the fluctuations
arising from the fast motion. This principle play an important role in celestial mechanics,
oscillation theory, radiophysic and in many others areas. The first mathematical rigorous
justification of this principle go back to Bogolyubov (1945). Later on, this principle has
attracted much attention of many researchers and nowdays it is a regular area of research.

In this work, Chapter 1 deals with a brief historical overview of previous works.

In Chapter 2, we extend a result of Liptser and Stoyanov (1990) to reflected stochastic
differential equations whose solution is constrained to stay in the domain of a convexe
function.

Chapter 3 is devoted to the averaging principle for doube It6 stochastic differential
equations. Under some conditions introduced in Hashemi and Heunis (1998), we prove
that the solution of the pertubed equation can be approximated in Ly by that of the
averaged one. We hope that the Ly—convergence can be improved to almost sure one.

In an Appendix , we collect some results needed in Chapter 3.
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Résumé

Dans cette these, on étudie le probléme de moyennisation pour les équations différen-
tielles stochastiques multivoques ainsi que pour les équations différentielles stochastiques
dirigées par des intégrales stochastiques doubles. Le principe de moyennisation consiste &
approcher la solution d'une équation différentielle dont les coefficients sont pertubés par
un processus décrivant un mouvement rapide, par celle de ’équation obtenue en moyen-
nisant les coefficients, ce qui a pour effet de faire disparaitre les oscillations diies au
processus pertubateur. Ce principe joue un roéle trés important en mécanique céleste, en
théorie des oscillations, en radiophysique et dans d’autres domaines. La premiére justifi-
cation mathématique rigoureusc de ce principe est diie & Bogolyubuv (1945). Depuis son
introduction, le principe de moyennisation a attiré I’attention de nombreux chercheurs
et constitue aujourd’hui un domaine de recherche tres actif.

Dans ce travail, le Chapitre 1 est consacré a un bref apercu historique des travaux
antérieurs.

Dans le Chapitre 2, nous étendons un résultat de Liptser et Stoyanov (1990) aux
équations différentielles stochastiques réfléchies dont la solution est contrainte a rester
dans le domaine d’une fonction convexe.

Le Chapitre 3 traite du principe de moyennisation pour les équations différentielles
stochastiques doubles d’Itd. Sous des conditions introduites dans Hashemi et Heunis
(1998), nous établissons une convergence dans L, de la solution de I'équation de dé-
part vers celle de I'équation moyennisée. Nous espérons plus tard pouvoir remplacer la
convergence en probabilité par une convergence presque sure.

Dans un Appendice, nous avons rassemblé quelques résultats dont nous avons besoin

dans le Chapitre 3.

v



Contents

1 GENERAL INTRODUCTION 2
1.1 Averaging Principle for Ordinary Differential Equations . . . . . . . . .. 5
1.1.1  Averaging Principle in Models without Diffusion . . ... .. .. 5

1.1.2  Averaging Principle in Models with Diffusion. . . . .. ... .. 10

1.2 Averaging Principle for Stochastic Partial Differential Equations . . . . . 12
1.3 Averaging Principle for Backward Stochastic Differential Equations . .. 15

2 AVERAGING PRINCIPLE FOR MULTIVALUED STOCHASTIC DIF-

FERENTIAL EQUATIONS! 18
2.1 Notations and Assumptions . . . . . . . . . . . .. ... ... 19
2.2 Result . . ... . . 22

3 AVERAGING PRINCIPLE FOR DOUBLE ITO STOCHASTIC PRO-

CESSES 2 30
3.1 Notations and Assumptions . . . . . .. . . ... ... ... 33
3.2  Preliminary Result . . . . . . . .. ... .. . 36
3.3 MainResult . . . . . ... .. 39
A Appendix 47

! Published in Random Operators and Stochastic Equations 9(4), 399-407.
2 Submitted for publication



Chapter 1

GENERAL INTRODUCTION

Let us consider the differential equation perturbed by a function &,, ¢ > 0, assuming

values in R¢ :

Z; =ealZ;,&,), Zg =m0, t>0 (1.1)

where a(z,y) is a function jointly continuous in its two arguments. If the function a(z, y)
does not increase too fast, then it is clear that (Z7);>¢ converges in any reasonable sense
to the constant . Thus, one may ask the following question:

How to transform the time-parameter { in order to get a nondegenerate limit function?

To this end, it is convenient to put

Then the equation (1.1) becomes

X; =a(X{, &), Xo=120, t2>0. (1.2)

1 is usually of main interest

Indeed, the behaviour of Z; on time intervals of order ¢~
because over such intervals occur significant changes in system (1.1). For example, exit

from the neighbourhood of an equilibrium position or of a periodic trajectory. The study



of the system (1.1) on interval of the form [0,7/¢] is equivalent to that of system (1.2)
on finite interval [0, 7.

The averaging principle consists in showing that the solution X¢ of the perturbed
system can be approximated by the solution of some unperturbed system as ¢ goes to
Z€ro.

Although the averaging principle has long been applied to problems of celestial me-
chanics, oscillation theory and radiophysics (see Arnold 1975), no mathematically rigor-
ous justification of it had existed for a long time. The first general result in this area was
obtained by Bogolyubov (1945), Gikhman (1952), Krasnosel’skii and Krein (1955) who

studied the averaging principle for ordinary differential equation:
X; = F(X{,t/e), X5 = 0. (1.3)

They proved the following: If the function F'(z,t) is Lipchitz continuous in z uniformly
with respect to ¢, bounded and

lim % /0 Fla, t)dt = F(z) (1.4)

T—+o00

exists uniformly in z, then the solution X¢ of (1.3) converges to the solution X of the

unpertubed system

We refer the reader to Bogolyubov and Zubarev (1955), Bogolyubov and Mitropolskii
(1961), Volosov (1962), Neishtadt (1975, 1976) and Sanders and Verhulst (1985), for a
detail survey of these results and many extensions.

After the pioneers, several authors dealt with the averaging problem. Thus, nowdays,
several extensions and connected problems can be found in the litterature. For exam-
ple, stochastic versions of Bogolyubov classical averaging principle has been developed.

Freidlin and Wentzell (1979) treated the averaging problem for stochastic differential



Pardoux and Veretennikov (1997), Es-saky and Ouknine (2001) and Boufoussi et al.
(2002) used the connection of partial differential equations with backward stochastic
differential equations to study the averaging problem.

Other directions of research on averaging principle can be found in the litterature. Let
us mention for example, large deviations principle (see Freidlin 1978), Veretennikov (1990,
1991, 1994, 2000)) and some applications of averaging principle to nonlinear filtering
problem with contamination (see Kleptsina et al. 1997), stochastic control (see Liptser
et al. 1996, 1999) and estimation problem of stochastic system (see Liptser and Spokoiny
2000).

Our contribution in the study of averaging principle consists in establishing an exten-
sion of Liptser and Stoyanov (1990) result to multivalued stochastic differential equations
and double Ito stochastic differential equations. This thesis is organized as follows. We
begin by recalling in Chapter 1 some previous results on averaging principle. Chapter 2
deals with the averaging problem for multivalued stochastic differential equations. Chap-

ter 3 is devoted to the study of the case of double It6 stochastic differential equations.

1.1 Averaging Principle for Ordinary Differential Equa-
tions
1.1.1 Averaging Principle in Models without Diffusion

Let us consider the system of ordinary differential equation in R¢

XtE = a’(XtE7§t/E)7 Xg =, (15)

where & = (£,);0 is a function taking values in R* and ¢ is a small numeric parameter.

Let the function a(z,y) be bounded, continuous in z and y, and let it satisfy a



Lipschitz condition in = uniformly with respect to y :
la(z,y) —ala’,y)| < Llz — 2|.

Let us assume that

lim l/0 a(z,€,)ds = a(z) (1.6)

T-—o0 T'
exists for every z € R% This is the case, for example, if ¢, is periodic or is a sum of
periodic functions.
We are going to give an heuristic proof of the averaging principle (see Freidlin and
Wentzell 1984).

The displacement of the trajectory X7 over a small time A can be written in the form

A
XZ —T = / a(Xg’fs/s)dS
0

A A
_ / ofz,€,.)ds + / (a(X5.6,,0) — alz,€,,))ds
0 0

e AJe
= A (Z/o a(:r:,fs)ds> + p.(A).

In view of (1.6), the coefficient of A in the first term of the right member converges to
a(z) as €/A goes to zero. Since the function a(z,y) is bounded, we have |p.(A)| < KA
It follows that the displacement of the trajectory X; over a small time differs from the

displacement of the trajectory X, of the differential equation

Yt: C_L(Yt% X() =T

only by an infinitely small quantity compared to A as A — 0, ¢/A — 0.
Now, let (£,):>0 be a stochastic process. We assume that there exists a vector field

a(z) such that
-
%/ a(z,&,)ds 5 a(x), asT — +oo. (1.7)
0



Let us note that (1.7) is satified if the process (£,);>¢ is ergodic. In this case there exists

a probability measure v on R? such that

a(e) = | ale.g)uldy)

If in addition, (£,);>0 is a strictly stationnary process then

a(z) = Bla(z,£,)] = B a(z, §)].-
Under the convergence (1.7), we have

sup | X7 — X 50, ase—0. (1.8)

t<T

Let us give a sketch of proof for (1.8). To this end let us put

AS = sup [ XE - X,|.

s<t

We have

Ai < / ‘a(X.g?gs/a) o a’(ys’gs/a)‘ ds + ‘/ [a’(ysags/e) - E(YS)]dS
0 0

t
< K/ Atds+ sup
0

s<t

[ X0y~ (X
0
By virtue of Gronwall inequality, we deduce that

sup 'Xf - Xt[ < et sup
t<T t<T

/O. [a’(—X—Sags/E) - 5(73)]618

The end of the proof is based on the fact that ( see Freidlin and Wentzell 1984, p. 48-51
or Liptser and Shiryaev 1989):

P
— 0, as € — 0.

/O' (a(Xs,€,)0) — a(Xo))ds

sup
t<T

7



Heunis and Kouritzin (1994) have improved the convergence in (1.8). They considered a
random differerential equation
- t
X :F(X;,-), Xt = 29
£
where {F(z,t),t > 0} is a strong mixing process for each = and for each w, the function

(z,t) — F(z,t,w) is regular enough to ensure the existence of a unique solution of this

equation over 0 < ¢ < T for all ¢ > 0 . Under some conditions and replacing (1.6) by

T
lim %/0 E[F (z,t)]dt = F(x),

T— 0

they showed that
sup ’Xf—yt[ﬁo, as € — 0

t<T

where X is the solution of the non-random averaged differential equation

Yt: F(Yt), X() = Xg.

Now we give an application of the averaging principle in oscillation theory.
Example: Van Der Pol equation :

Let us consider the Van Der Pol equation :
Z +win, = (1 — 28,

where ¢ is a small numerical parameter.
This equation describes correctly the behavior of some electronic oscillators. When

there is not a perturbation (¢ = 0), we obtain the equation of a harmonic oscillator

C.E"t + wzxt = 0.



The solutions of this equation are z, = r cos(wt + 6).

Let us put y, = 2, , then we have y, = —rwsin(wt 4 ). So in the phase plane (z,z),
the solutions of this equation are the ellipses z; = rcos(wt + 60) , &y = —rwsin(wt + 6).
In this case the phase point rotates with constant angular velocity w and the amplitude
r does not change with time, it is determined only by the initial conditions.

In the case with perturbation ( € # 0), let us put f(z,,#,t) = (1 — z2)z,. Here, in
general r and § are not constant. Nevertheless, one may expect that the rate of change

of them is small provided that ¢ is small.

We have
7, = eFy(y,,ri,t), r§=r
tE ( £l ) 0 0 (1‘9)
et = EF?(wtalr‘z:)t)) 98 = 90-
where ¢, = wt 4+ 6; and
1 , , 1 .
Fi(s,7,t) = ——f(rcoss,—rsins,t)sins, Fy(s,rt) = —— f(rcoss, —rsins,t)coss.
w Tw

Therefore, in the van der Pol variables (r,8) the Van Der Pol equation can be written
as the form (1.5). If f(z,y,t) does not depend explicitly on ¢, then Fi(wt + 6,7) and
Fy(wt+86, 1) are periodic in ¢ and condition (1.6) is satisfied. Then, the averaging principle
is applicable to system (1.9). We refer the reader to Bogolyubov and Mitropolski (1961)
for details on this example.

An averaging principle can be formulated in a more general situation. For example,
Bogolyubov and Mitropolski (1961), Volosov (1962) and Neishtadt (1975, 1976) consid-
ered systems of the type

£ = e 'h(X;E), &=v. (1.10)

The velocity of the trajectory &, has order e7* as £ — 0. Therefore, the motion (£;):>0 is



said to be fast. (X;);>¢ is called the slow motion.

1.1.2  Averaging Principle in Models with Diffusion.

Now, we consider stochastic differential equations with diffusion that is equations of the

form

t t
Z =ao e [ a(Zig)as+vE [ wzaw,
0 0
Let us put X; = Zises then the process X¢ = (X[);>¢ is solution of the equation

t

t
X; =t [ a(Xeg0ds+ [ b
0 0

where W*& = /eW. ..

We assume that (§,):>0 is a strictly stationary and ergodic process independent of
the Wiener process W, and the functions a(z,z), b(x) are measurable satisfying linear
growth and Lipschitz conditions in z uniformly with respect to z.

Under the assumptions given above, Liptser and Stoyanov (1990) proved that for any
fixed T > 0

sup | X; — X;| >0 ase — 0, (1.11)

t<T

where the process (X§):>o is the unique solution of the averaged equation
- t ;€ t ~-€
X, =z0+ / a(X,)ds + / b(X)dWe
0 0

with a(z) = E(a(z,&y)).

Let us note that for each ¢ > 0 the process (Yf) .~ coincides in the sense of distri-

butions with the process (X;);>o which is the unique solution of the equation

t t
Xt:m0+/ E(Xs)ds+/ b(X,)dWs.
0 0

Under additional assumptions on the functions @ and b and on the process £, they also

10



proved that the process Yy = —= (X} — X;) converges in the distribution sense as ¢ —» 0

to a stochastic process Y which is solution of the following equation

t t t
Y, = / d/(XS)YSdS + / V(X,)Y,dW, + / Y(X5)dW s,
0 0 0

where W is some Wiener process, @ (z) = E[a.(z,£,)], a/and Vare respectively the

derivatives of a and b, and

V(z) =2 / " El(ale, &) — a(e))(ala, &) - ax))ldt.

This second result provides a second-order approximation of the process X¢ and can be
regard as a functional central limit theorem.

Later, by strengthening the ergodicity condition on £ to that of strong mixing,
Hashemi and Heunis (1998) showed that the convergence in probability can be improved
to almost sure convergence. When b = 0, such a result is in Liptser and Shiryaev (1989)
but with a stationary ergodic process €.

Let us note that it is possible to pertube also the diffusion coefficient by the process €.
In this case, one can prove only weak convergence rather than convergence in probability
(see Kashminskii 1966,1968) or the books of Freidlin and Wentzell (1984, pages 263-269)
and Freidlin (1985, section 4.3).

One can also consider more general systems as in (1.10) but with diffusion as well
in the slow motion as the fast one (see Veretennikov 1991). The averaging principle for

Volterra equations was studied by Kleptsyna (1996).

11



1.2 Averaging Principle for Stochastic Partial Dif-

ferential Equations

In this section we study the behavior as ¢ — 0 of solution of boundary value problems

for elliptic or parabolic differential equations with a small parameter.

Let us consider for example, the Cauchy problem

ou d 5%u d ou
s +e L]Z:l a;;(z, 8)81’1'813]' + ; b;(z, s) o,

+ c(z, s)u + d(z, s)} =0

in the region R* x [0, +00). Let

_ 1T . 1T

ai(z) = Tl_g)noo ?/0 a;j(z,s)ds, bi(z) =T11_I)noo ?/0 bi(z,s)ds
_ 1T . 1T
clz) = Th_r)lrloo T/o c(z,s)ds, d(z) =T11Hmoo T/o d(z,s)ds

and consider the average equation

ou d 0%y “_ bu _
7 + Z aij(m)axiaxj + Zbi(a:)axi +¢(z)u + d(z) = 0.

ij=1

=1

Let the coefficients of these equations satisfy conditions:

(1.12)

(1.14)

(C1). The matrix ((ai;)) is non-negative definite for (z,s) € R% x [0, +00), and all

coeflicients are continuous with respect to (z,s), are bounded for s > 0 and are

sufficiently smooth so that solutions to equations (1.12) and (1.14) exist.

(C2). The limits in (1.13) are uniform in z

(C3). All coefficients are uniformly continuous in x with respect to (z, s) € R*x[0, +00).

(C4). A solution of the Cauchy problem (1.14) exists.

12



Khasminskii (1963) proved the following

Theorem 1.1 Let conditions (C1)-(C4) be satisfied, let u.(z,s) be a solution of equa-
tion (1.12) in the region R¢ x (0,T'/€), satisfying the condition

Jim ue,5) = (@),
where f(x) is a continuous bounded function in Re. Let v(z,s) be a solution of equation
(1.14) in the region R? x (0,T) satisfying the condition v(z,T) = f(x). Then

lim sup = 0.

€0 (2 5)eREx(0,T)

Us (m, §> —v(z,s)

Let us mention that other versions of the Averaging Principle for stochastic partial
differential equation have been studied:

Makhno (1980) and Bondarev (1990) studied stochastic PDEs: For any (t,z) €
(0, 400) x R4

%i(t,l’) = ¢[Ly . Xe(t, z)dt + At z, X°(t,z))dt + Zle ai(t, @, X°(t,z))dWi(t)]
X:(0,z) = olz)

(1.15)
where ¢ is a small parameter, and
d d
0*u Ju
Lt,ru = Z aij(t, I)m -+ 2 bi(t, I)é; + C(t, SE)U

£,j=1 i=

The averaging principle for equation (1.15) was justified in the first paper and an expo-
nential estimate for the deviations of the solution to PDE (1.15) from the solution of the

determinate averaged equation is obtained in the last one.

13



Let us note that the averaged equation is

%%](t,x) = LU+ A(z,U(t,z))
U@©,z) = ¢(z)
where J .
Lau= Z-J:laij(x)&f;;j + Zz:;l_)l(x)g; + C(z)u

with the coeflicients defined as in (1.13).

Recently, averaging principle for random operators received great attentions. For ex-
ample, Kleptsyna and Piatnitski (2002) considered non-selfadjoint parabolic equations
with random evolution. They dealt with parabolic operators involving rapidly oscillating
random in time and periodic in spatial variables coefficients that is the Cauchy problem

ou* Oa;j (T ou® 1, sz ou®
% (z,t) = . (g7§t/52> @(37,15) + gbz (;&/ﬁ) a;(af,t)

ua(x’ 0) = uO(m)

where (£,)i>0 is a stationary ergodic process taking values in R%.
This kind of equations was previously investigated by Campillo et al. (2001) who
considered the asymptotic behaviour of the solution of the following cauchy problem: for

any (z,t) € R¢ x [0, 7]

auE . 1 €
5 (te) = div[a(S, €y ) Vst )| + gl e (12)
w(0,z) = wup(z)

where « is a parameter.
The case of nonlinear operator was treated by Pardoux and Piatnitski (2001). Indeed,
they studied the equation

Ous(t,z)  Oayy
5‘t - 8.’1)1

x ou® 1z . . B
(Eagt/ez) T%(tax) + gg(gagt/egvu (t,.’E)), u (0,.’17) - Uo(.’L')

14



1.3 Averaging Principle for Backward Stochastic Dif-
ferential Equations

Backward stochastic differential equations (BSDEs) has been introduced by Pardoux
and Peng (1990) in order to give a probabilistic representation of solutions of nonlinear
PDEs. Thanks to this connection between the two theories, one can expect that averaging
principle for PDEs could be obtained via that of BSDEs. . It seems that the first result
using this idea is due to Pardoux and Veretennikov (1996). They considered the averaging
problem of BSDE’s where the coeflicient in front of the Brownian motion does not enter
the nonlinear term. This corresponds to semilinear PDE’s where the non-linear term is
a function of the solution, not of its gradient.

More precisely, let us consider

dX}° = e 'F(X)S, XPN)d+ G(X)<, XPF)dt, Xp© =)
dXP = e PH(XX)dt + e 'K(XPF)dW,, X;° = i

where X' € Re, X2%¢ ¢ R, F,G, H, K are measurable functions with values in R% R!
and R¢ @ R! correspondently, (W;):>ols an |—dimensional Wiener process.

Assume that the coefficients F, G, H, K are periodic (of period one in each direction)
functions of the variable x5, so that the the process (Xf “)i>0 can be considered as taking
values in the {—dimensional torus T".

We also make a serie of assumptions (see Pardoux and Veretennikov 1996) which imply
among others things that the process (X;)i>o admits a unique invariant probability

measure p on 1%,

/ F(zy, zo)p(dzy) = 0, Vz, € RY,
i

15



and X converges in distribution to a d-dimensional diffusion processX! with generator

£ =

: 0? SN
— aij(xl)@atli@a:lj + sz(zl)axh

i=1

1
2

7,7=1

where

Gi;(@1) = / (B, 22) (1, 2) + Fy(on, 22y, 22) (i),

bi(z,) = N Gi(zy, z2)pu(dzy) + /Tl (F(z1,29), Vg, Ji(1, 22)) p(dzo)
LoJi(z1,))(z2) = Fi(zy,20), z9 € T,

Ly being the inifinitesimal generator of the diffusion process (X;*)o in case £ = 1.

Therefore, there exists a d-dimensional Brownian motion {By,¢ > 0} such that
4 t
X! =z} +/ b(X1)ds +/ 5(X!)dB,
0 0

where 7(z,) = [E(zl)]% .

By using averaging principle for the semi-linear BSDE

T T
Y7 = g(x2) + / OO, X34, YE)ds - / 2w, (1.16)
i t

the authors solved an averaging problem for the semi-linear PDE

%(t’”’) = Laf(tz) + flou(te), 0<E<T, zeR™
w(0,7) = g(z1),z € R, (1.17)

where £, denote the infinitesimal generator of the diffusion process (X ¢, X 28,50 1€

0

32:1i '

d
Le=c"2Ly+ Y [T Fi(a) + Gi(2)]

i=1
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Let us note that the corrresponding averaged equations for (1.16) and (1.17)are

T T
Y, = g(Xp) + / F(X1,Y,)ds — / Z,dB,
t t

and
Oou — _ ;
a(t,ﬂf) = Lu(t,z) + f(z,ut,z)), 0<t<T, z€R
u(0,2) = g(z),ze€R?
where
fley) = | flar, 2, y)p(dzy).
Tl
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Chapter 2

AVERAGING PRINCIPLE FOR
MULTIVALUED STOCHASTIC
DIFFERENTIAL EQUATIONS!

Let (Q, F,P,{F},50) be the underlying stochastic basis, W = {W, = (W, -, W) : t > 0}
a d—dimensional standard Wiener process and £ = {¢, : £ > 0} a r—dimensional strictly
stationary ergodic process independent of W. Liptser and Stoyanov(1990) studied the
limit behaviour of the family of stochastic processes (z€ : € > 0), as € — 0, where 2° is

the solution of an Itd’s stochastic differential equation

t t
T; =T+ 5/ a(x$, &, )ds + 51/2/ b(zf)dW,, 0<t<e ! (2.1)
0 0

More precisely, under some regularity conditions on the coefficients a and b, they
proved that supgc,<.-1 |7; — T}| converges in probability towards zero as e — 0, where
7° is the solution of the Itd’s stochastic differential equation obtained from the equation

(2.1) by averaging out the fluctuations in the drift term arising from the stochastic process

£:

1 Published in Random Operators and Stochastic Equations 9(4), 399-407.
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t t
0 0

with a(z) = E (a(z,&,)) -
The above result can be considered as stochastic version of the classical Bogolyubov
averaging principle(see Bogolyubov and Mitropol’skii(1961)).

In this paper we consider multivalued stochastic differential equations

dy; + e A(y;)dt > ea(y;, &,)dt + e *b(yf)dW;, 0<t < e

&

Yo = Yo

dy; + cA(y;)dt > ea(ys)dt + eY2b(y5)dW,, 0 <t <e!
(2.3)
Yo = Yo
where A is a maximal monotone multivalued operator on R%.
Our goal is to study the asymptotic behaviour of supy<,.-1 |yf — 7| as € goes to zero.
The paper is organized as follows. In section 2.1 we give some notations and make

assumptions used throughout. In particular, we recall some definitions and results about

multivalued maximal monotone operators. Section 2.2 is devoted to the result.

2.1 Notations and Assumptions

For any matrix B we put ||B||? = trace(BB") where B* stands for the transpose of B.

We shall need the following assumptions .

(H1) ¢ : R x R" — R? and b : R¢ — R? ® R? are Borel measurable mappings such
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that there exists a constant L > 0 satisfying
la(z, z) = a(a’, 2)|| < Lile = ||, [|b(z) = b(=)|| < Lljz -2

lla(z, )11 < L+ [l2l]), 6@ < L1+ |Jz])
forallz,2' € R* and z € R”
(H2) the initial condition yy € R¢ is deterministic
(H3) {¢, : t > 0} is an R"—valued, F,—progressively measurable process
(H4) W and £ are two independent processes
(H5) ¢ is a strictly stationary process
Now, let us state some definitions and results about multivalued operators on R¢.

Definition 2.2 A multivalued operator A on R¢ is an P(R%)—valued map defined on R?,
where P(RY) stands for the collection of subsets of R<.

We respectively denote by Gr(A) and D(A) the graph and the domain of A :
Gr(A) = {(z,y) eR*x R?: y € A(z)}
D(A) = {z € RY: A(z) # 0}.
Definition 2.3 A multivalued operator A on R® is said monotone if

V(z1,v1), (22, y2) € Gr(A) (1 — 29,00 — y2) =0,

where (o, o) is the Euclidian inner product on R?.

Definition 2.4 A multivalued monotone operator A on R? is said mazimal monotone

if there is no multivalued monotone operator whose graph strictly contains the graph of
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A,that is: for every (z,y) € RY x R? such that (z — u,y — v) > 0 for all (u,v) € Gr(A),
we have y € A(z).

Now, let us introduce the Yosida approximation of A which is a sequence (4,),>; of

one valued maximal monotone maps defined on R¢ by :
1
A, =n(I - J,) where J,, = (I + EA)_I and [ is the identity operator on R%.

We have

e For all n > 0, A, is a Lipschitz continuous map.

e For all z € D(A), the set A(z) is closed and convex and hence there exists a unique

point A°(z), such that |4°(z)| = min{ly| : y € A(2)}.
o For all z € D(A), [A.(z)| < |A%z)| and A,(z) — A%=z) as n — +o0.

For more details on multivalued maximal monotone operators, the reader can see the
book of Brézis(1973).

From now on , A is a maximal monotone operator on R? such that the interior of D(A)
is non empty. Under the assumptions (H1)-(H5), the multivalued stochastic differential
equations (2.2) and (2.3) admit unique solutions which we denote respectively by (y°, k°)

and (7, k") in the sense that:

o {yf:t>0}(resp. {7 :t>0}) is a continuous F,—adapted process with values

almost surely in the closure of D(A).
o {kf:t> 0} (resp. { E: .t > 0}) is a continuous R?—values, F;,—adapted process,

with finte variation such that k5 = O(resp. k, = 0) almost surely.

dys = ea(ys,&,)dt + /2b(yf)dW, — edki, t >0, as.
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T, = ea(y )dt + eY2b(g5)dW, — edk,, t>0, as.

resp.
Yo = Yo
e For all F;—adapted couple of continuous processes («, 3) such that for all t > 0

(ar, B,) € Gr(A), the measure (y§ — oy, dki — B,dt) (resp. (¥F — ay, d%te — B,dt)) is

almost surely positive on R*.

The proof of existence and uniqueness of solutions of equations (2.2) and (2.3) is a

straightforward adaptation of methods in Cépa(1994) or Pettersson(1995).

2.2 Result

Let us put
er = yte/a ?i = yf/a Kte = 6kt€/53 F: = 6Ef/5 and Wte = 61/2Wt/€-

One can prove that (Y¢, K¢) (resp. (Y ,K") ) is the unique solution of the multivalued

stochastic differential equation

dYE + A(YE)dt 3 a(YE, €, )dt +b(YE)AWE, 0<t<1, as.
(2.4)

Y5 =w

dY; + AY;)dt 3 a(Y;)dt + b(Y;)dWs, 0<t<1 , as.
resp. (2.5)

?g:yo

For alln > 1 and £ > 0, let Y™ (resp. Yo" } be the unique solution of the stochastic
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differential equation

d}/;E,n — a[(}/;&‘,n,é-t/e)dt + b(}/;E,n)dmg . An(}/;t:”,n)dt) O S t S 1

Yo" =1yo

~FET

dY;" = a(Y;"dt+ oY) dWe — A (Y Mdt, 0 <t < 1
resp.
Yo" =1

We begin by some preliminary results.

Lemma 2.5 Under assumptions (H1)-(H5), we have

supsup E ( sup |Yf’"|2> < 400 (2.6)
£>0 n>0 0<t<1

and
supsup E ( Sup |?i’n|2) < +o0. (2.7
e>0 n>0  \0<t<1

Proof. For al N >0, >0andn > 1, let us put
ry =mf{0 <t <1:]¥7" > N}

with the convention inf ) = +o0.
By virtue of Lemma 5.4 in Cépa(1994), there exists a € R¢ and two positive constants

(3 and p such that for all z € R n > 1
(An(z),z — @) = BlAn(2)| — plz — of = fu (2.8)

Now, by applying It6’s formula to the process |YfAfN — a|?, we obtain

) ) t/\‘rfv i
Yt —aft = [Yo - af +2 / (@(Y2" €, Yo" — a)ds
0
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INTH tATS,
w2 [ by 2 [ (A, v - ey
0 0

AT
[ s
0
By using the inequality (2.8) and assumption (H1), we derive that for all 0 <t <1

tAT%
Yl —al < |Ve—af +2L / Ve (14 [YE)ds
0

AT, AT
2 / (VoR — o, bYEm)dWE)| — 28 / ALY ds
0 0

tATs, tATS,
+2u/ Yo" — alds + 208u + LQ/ (1+ |YS€’"|)2ds.
0 0

2 2
Now, the elementary inequality zy < %-F% implies that there exists C = C(a, p, 3, L)

such that

INTS tAT%
v, el o (e [ e atas) o | [ e < by
g 0

It follows that
i
E ( sup |Y0. — 04|2) <C (1 +/ E ( sup |V — a|2> ds)
0<s<t N 0 0<u<s N
) | (2.9)

In view of Burkholder-Gundy inequality for stochastic integrals in Barlow and Prot-

1/2
)< (B (s iz, - o))
0<s<t N

24

sAT;
/ (V2" — a0, B(YE) W)
0

+E ( sup

0<s<t

ter(1989), we have

SAT%
/ (V2™ — 0, B(YEM)AWE)
0

E ( sup
0<s<t



s/\‘rN
/ b(YEm) W
4]

2 1/2
X (E (sup )) .
0<s<t

By virtue of Doob’s inequality, we deduce that

(o )) <o (e (e -o7))
<(2( [ 1oz, lleu))W-

So, it follows from (2.9) and assumption (H1) that

t
E (sup Yoire — a|2> <C <1 +/ E ( sup |V a{2> ds) .
0<s< 0 0<u<s

Now, Gronwall lemma implies that there exists a constant C' = C(«a, i, 3, L) such that

s/\'rN
/ (VEm — o, (YE) W)
0

sup sup [E ( sup Y, MT — a[z)} < C < +oo0.

e>0 n>1 0<t<

By letting N — +00, we conlude that

sup sup {]E ( sup |Y;" — a|2)J < 00,

e>0 n>1 0<t<1

which yields (2.6). The inequality (2.7) can be derive by the same techniques. W
We shall need the following integrability condition

t
supsup & (/ |An(Y:’")|2ds) < +00. (2.10)
0

e>0 n>1

Let us give some situations where condition (2.10) is satisfied.

a) If D(A) = R? and |A%(2)] < L(1+ |z|) for all z € R%, one can prove by using Lemma
4 that condition (2.10) is satisfied.
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b) If A is the subdifferential operator of a proper lower semicontinuous convex func-
tion ® : R* — [—o00,+00) then by applying It6’s formula to the semimartingale
{®(Y™) : 0 <t <1} and using Lemma 4, one can prove that condition (2.10) is

also satisfied.

Proposition 2.6 Under assumptions (H1)-(H5), if we assume that condition (2.10) is

satisfied, then there exists a positive constant C such that for alln,m > 1

1 1

sup ( sup |V — Yf’m|2) <C (— + —) (2.11)
e>0  \0<t<1 n o m
76,1 —e,m 2 1 1

supE ( sup |V, -V, ) <C (— + —) : (2.12)
e>0  \0<t<1 nm

Proof. By virtue of [t6’s formula, we have

t
N 2/ (@Y™, 65ge) = (Y™, 6,0), Yo = YE™)ds
0
t
‘2/ (An(¥7") = Am(YE™), Y7 = YEM)ds
0
t
+2/ <YSE,?1 _ }/;E,TTL’ (b(y;e,n) _ b(y;s,m)) dW:)
0

t
w [l = b ds
0
1 1
By using the fact that I = J, + ﬁAn = Jn + —TEA"“ A (YE™) € A(J(YP™) and
An(YE™) € A(Jm(YE™)), we obtain

—(Ap (V") = An(YSM), Y5 = YET) = = (An(Y) = An(YS™), Ju(Y5)

1 1 m
= A (Y57) = Tn(Y5T) = —An(YS™))

n m
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= ~(An(Y5") = An(Y9™), Ja(YET) = Jm(YE™))

£,1n e,m ]' £, ]' e,m
'<An(Ys,7 ) - Am(Ys7 )a —An(Ys’ ) - _Am(Ys’ )>
n m

en e,m 1 en 1 €,m
< —<An(Y:s’ )_ Am(Ys, )751471'(}/5Y )_ EAm(Ys1 )>

1 1
< —Z A (YE™ 2 £,m\|2

n m

+ (3 + i) (Au(VE"), A(VE™)

1 s 1 )
< m yem) . n €,n ]

Therefore, Burkholder-Gundy inequality for stochastic integrals in Barlow and Prot-
ter(1989) and assumptions (H1)-(H5) imply that there exists a positive constant C' such

that for all ¢ > 0,n,m > 1

t
1
E ( sup D/se,n _ Ysa,m|2> < C/ E (iYsEm _ YSE,m)Z) ds + iE ( sup IYSe,n _ Yse,ml2>
0

0<s<t 0<s<t

It follows that for all n,m > 1

‘ 1
supE (sup Y™ — Yf’m(Q) <C (/ supE ( sup Y™ — Yf’mIZ) ds> +C (— + —1—> .
>0 0<s<t 0 >0 0<u<s n m
Now, Gronwall lemma, leads to (2.11). The proof of the inequality (2.12) can be done by

a similar argument. W

Proposition 2.7 Under assumptions (H1)-(H5), if we assume that condition (2.10) is
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satisfied, then

lim [SUPE ( sup |V — Yﬂz)} =0 and lim {sup]E ( sup I?in — ?if)} = 0.

n—00 | ¢>0 0<t<1 n—00 | >0 0<t<1

Proof. It follows by proposition 2.6 and the uniqueness of solutions of multivalued

stochastic differential equations (2.4) and (2.5). &

Theorem 2.8 Under assumptions (H1)-(H5), if we assume that condition (2.10) is sat-
isfied, then for all 6 > 0

limOJP’ ( sup ly; — 7| > 6) = 0.

0<t<e~1
Proof. us note that

sup |yf — 7| = sup |Y7 - Y.
OStSE‘l 0<t<1

By virtue of Proposition 2.7, for all 6 > 0, we have

lim <sup]P’ ( sup |Y;7" — Yﬂ) > 6) =0 and lim (sup]P’ ( sup &7?” - ?ﬂ) > 6) =0.

n—00 \ £30 0<t<1 n—00 \ £>0 0<t<1

Therefore for all v, > 0, there exists ng > 0 such that for all € > 0

o —€,n0 —¢ I}
]P’(sup Y™ — YE| > 5) S% and]P’(Sup [Yt’ ~Yt| > ) < %

0<e<1 0<e<1 3

Since Ay, is Lipschitz, by virtue of Theorem 1 in Liptser and Stoyanov(1990),

—en 6
lirnO]P> ( sup |Y7™ — Y, > §> =0.

0<t<1
Now, by using the inequality
—5E,NQ <5E

Ve = Y5 S |YE—YEm™ |+ Y0 =7, |+ |V, =Y,
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we deduce

limsup P ( sup |YF —~Y,| > 5) < a.

0<t<1

e—0

Since « is arbitrary, we conclude that

lim P ( sup Y7 =Y, > 5) = 0.

0<t<1
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Chapter 3

AVERAGING PRINCIPLE FOR
DOUBLE ITO STOCHASTIC
PROCESSES !

The averaging principle for dynamic sytems plays an important role in problems of ce-
lestial mechanics, oscillation theory, control theory, radiophysics, and many others areas.
The first rigorous result on this subject was given by Bogolyubov (1945), who considered

the system of ordinary differential equations
X, =eF(t, X)), Xo=uxq

He formulated a general principle according to which, for ¢ — 0, a solution of this system
on a time interval of length O(1/¢) can be approximated arbitrarily closely by the solutior

of the averaged equation

—th EF(Xt)7 70 = Zq,

L Submitted for publication
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if the limit
— 1 /T
F(z) = lim —/ F(t,z)dt
T Jo

TS +00
exists, and the function F(t,z) is bounded and statisfies a Lipschitz condition with
respect to the space variable.
Since its introduction, the averaging principle has attracted much attention of many
authors. For example, Liptser and Stoyanov (1990) studied the asymptotic behaviour of

an Ito’s process (zf):>¢ whose drift is pertubed by an ergodic stionnary process (£,);>0 :

t t
si=wobe [ e )ds+vE [ WaDaw, 05t s e (3.1)
0 0

More precisely, under some regularity conditions on the coefficients a and b, they proved
that supp<,<.—1 |27 — 7| converges in probability towards zero as ¢ — 0, where 75 is the
solution of the It6’s stochastic differential equation, obtained from the equation (3.1) by

averaging out the fluctuations in the drift term arising from the stochastic process &:
t t
T = x0+s/ a (Z)ds + \@/ b(z5 ) dWs.
0 0

This result was generalized by Hashemi and Heunis (1998), who improved the convergence
in probability to an almost surely convergence when the ergodicity hypothesis for the
perturbing process (€,):>0 is strengthened to that of strong mixing.

On the other hand, the multiple stochastic integrals with respect to a particular
class of martingales and for random integrands have been introduced by Meyer (1976).
These integrals were extended by Ruiz de Chavez (1985) for a class of semimartingales.
Recently, C.Tudor and M.Tudor (2002) considered Double Ité processes that is solutions
to stochastic differential equations driven by multiple stochastic integrals (see also C.
Tudor and M. Tudor 1997). This kind of equations include the classical Ito equations,
integro-differential and some classes of Volterra equations. The asymptotic behaviour of

double It6 processes was first considered in Pérez-Abreu and Tudor (2001) who proved a
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large deviations principle for these processes.

In this paper, we consider the following double [t0’s stochastic differential equation

4 4
5 = a:0+5/ F (&, ) ds—}—\/g/ G(zi)dWS—}—sz/ H (ety,ety, &, , 25) dtydts
0 0

Ca(t)

+e K(et, ety, 25, )dW;, d W, (3.2)
Ca(t)

where £ = (&,)i>0 is a strictly stationary process and Cy (t) = {(t;,t2) € R2 |0 < ¢; <
ty < t}.

The averaged equation corresponding to (3.2) is the following equation

t t
T = x0+5/ F(fi)ds—f—\/_é/ G(f‘;‘)dWs+52/ H (et ety, 75 ) dtydts
0 0 Ca(t)

te [ Klety, ety z5 ) AW, dW,,, (3.3)
Ca(t)

where

F(z) =E[F (§,2)] = E[F (§,2)]

and

F(tlat%x) =E [H (t17t2n£t17m):| :E[H (t13t257607$)]'

Our goal is to study the asymptotic behaviour of supyc,c -1 [2f — Z5| as € — 0.

The paper is organized as follows. In section 3.1, we give some notations and make
assumptions used throughout. Section 3.2 contains a preliminary result on the estimate
of the moments of solutions to double Itd stochatic differential equations. Section 3.3
is devoted to the the main result. The last section is an appendix wherein, we have

collected some results needed for the proof of the main result.
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3.1 Notations and Assumptions

Let (Q, F,P, {]:t}tzo) be the underlying stochastic basis, (W,;);>o and (Wt)tzg two linear
JF;—Wiener processes and £ = {€, : t > 0} a one dimensional strictly stationary process.

For all t > 0 we put
Cy(t) = {(t1,t2) ERZ : 0 <ty <t <t}

and

Cy = {(t1,t2) € RL: 0 < t; <t}

Let LS denote the space of functions o : Ry — R, such that « is strictly increasing ,

du
o(u)

continuous , concave and f01+ = +o00.

It is clear that o) (u) = Lu, L > 0, az(u) = u|logu|'~¢, as(u) = u|logu||log | log u||' ¢,
0 < e <1, belong to LS and «;, as, ag are not Lipschitz. Also, if a1, g € LS, ¢y,
co >0, ¢1 4+ ¢y >0, then aje; + agey € LS.

Let F(t,z), G(t,z) : R xR — R, H(t1,ty, y,z) : CoxR? — R, K(t;,t2,2) : CoxR —

R be mesurable functions such that

(H1) (Growth condition). There exists a constant L > 0 satisfying

Vo € R,VyeR, |F(y,2)|°+|G(z)[> <L +|z|*)

v(tlat2) € Cg, Vz c R: Vy c Ra |H(t17t2ay7$) |2 + iK (t17t2a$) |2 S L(l + |$|2)

(H2) (Holder-type condition on F,G ). There exists a € LS such that: Vi € R, ,
Vz,y € R,

|F(t,2) = F (t,9) | +1G(a) - G < |z — y").
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(H3) (Holder-type condition on H, K'). There exists & € LS such that: V (¢,t3) € Cy,
Vz € R, Vz,y € R,

‘H (tlthazax) - H(tl;t27z)y) ,2 + ’K (tl,t27x) - K(tlat27y),2 S &(,x - y|2)

(H4) The initial condition zy € R is deterministic.

(H5) (£):>0 is independent of the Brownian motions (W;),s, ,<Wt) , strictly station-
= £>0
ary and satisfies the following strongly mixing condition:
if

Gt=ca{t,uelst]}, G =0{f,uc[s,00)}, V0 <s<t<oo,

and y(u) is a function defined for all u € [0, c0) by

v(u) =sup sup |P(ANB)-P(A)P(B),
120 Aegt
Beg,

then y(u) — 0 as u — oo.

(H6) We suppose that the Rosenblatt mixing coefficient v defined in (H5) satisfies the

following condition: there are constants 6 € (1,00) and 1 € (0, c0) such that

Yu € [1,00) y(u) < nu™.

It is clear that the functions ' and H satisfy growth and Holder type conditions:
Vz € R,Vy € R, ¥V (t1,t2) € Cs,

F@)? < LA+, |Ht,teo)| < LA+ [2])

IA

’F(a:) - F(Z/)(Q < aflz—y?, |F(t1,t2733) - ﬁ(tl,t'z,y)’g < affr - yl?).
Let us put
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X;=af,, Wi= W, and W; =W,
Then, equations (3.2) and (3.3) can be written respectively

t t
Xf = m0+/ F(és/E,Xj)ds+/ G(X5)dWe + H(ty,ta, €, ey X, )dtrdts
0 0 Cae

+ K (ty,ty, X ) AW W, (3.4)
CQ(t)

and
=-€ t_'—E t r e XA
X, = zo+ / F(X})ds + / G(X)dWe + H(t1,t2, X, )dtydts
0 0 Coty

+ / K(t1,ts, X;, JAWE W (3.5)
Caty

Let C([0, 1]) denote the vector space of all R-valued continuous functions defined over the

unit interval endowed with the uniform norm
1@l = sup [®:], V& e C([0,1]).
0<t<1

We put
Af = XF— X, vt €[0,1].

Let us note that

|A®]| . = sup IXf — Yﬂ = sup |z} — 7).
0<t<1 0<t<e!

Under conditions (H1)-(H5), C. Tudor and M. Tudor (2002) have proved the existence

and uniqueness of solutions to equations (3.4) and (3.5).
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3.2 Preliminary Result

Lemma 3.9 Assume conditions (H1)-(H5). Then, for every p € [2,+00), there exists

positive constants C(p) and C(p) such that
E[(|X°l.)] < C(p)  and E[(|X"]| )] < Clp),

where X¢ and X are the solutions of equations (3.4) and (3.5) respectively.
Proof. For every p € [1,+00) and t € [0,1], we have

2p 2p

t
+ / G(X5)dW:
0

t
| XE[P < 5% (|330|2p+\ / F(&,), X2)ds
4]

2p 2p

+ K (ty,ty, X5 )dAWE dW

t2

+ H(t17t21§t1/5’Xt€1)dtldt2

Ca)

Caey

It follows that

E ( sup |Xﬂ2p)
0<t<1

IA

5% {|x0|2p+E (sup

0<t<1

t
/ F(E, . X5)ds
0

)

t 2p

+E ( sup / G(X5)dW:

0<t<1 |Jo

2p

+E Sup H(t17t27§t1/5)Xfl)dtldt2

0<t<1 | J Oy

2p

+E | sup K (t1, 10, X{ )dW Wi (3.6)

0<t<1 [J Oy

In view of Cauchy-Schwarz inequality and condition (H1),we have

2p

sup
0<t<1

1
< /0 |F(€,., X0) | ds

t
/ F(E,)., X5)ds
0

1
< / (1+ |X2)Pds
0
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1
< 2PLP/ (14 [X5*P)ds.
0

Therefore

2p 1
E (sup ) < 2”[/’/ (1 +E ( sup |X§|2p)) ds.
0<t<1 0 0<u<s

By virtue of Burkholder-Davis-Gundy inequality, there exists a positive constant C'(depending

t
/ F(gs/ea Xf)ds
0

only on p) such that

t
/ G(X5)dWe
0

2p 1 P
E (Sup ) < CE (/ |G(X§)|2ds> .
0<t<1 0

Therefore, by using Cauchy-Schwarz inequality and condition (H1), we obtain
2p 1
) < QQPCL”/ (1 +F < sup |X§|2p>> ds. (3.7)
0 0<u<s

t ta
H(tl,tg,ftl/E,Xfl)dtldtg:/0 (/0 H(tl,tg,ftl/E,Xfl)dh) dt,.

t
| cexaaw:
0

E | sup
0<t<1
Now,

Carny

So, Cauchy-Schwarz inequality and condition (H1) lead to

t to 2 ! t2 2p
sup / (/ H(tla t27§t1/5) XtE] )dt1> dtz S / / IH(tl? t27§t1/57 Xtel)l dtldt?
o<t<1 |Jo 0 0 70
1
0 0<u<s
Therefore,
2p 1
E | sup H(thtz,le/s’XtEl)dtldt? < 2PLP/ (1 +FE ( sup |X5|2P>> ds.
0<t<1 1/ Cyyy 0 pene

(3.8)
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Let us note that

/v — t to o o
K(ty, by, X )dWE dWE :/ (/ K(tl,tg,Xfl)del) AW
Cg(t) 0 0

Since the process ¢ —— fot ( Ot2 K(t%Xfl)thi) AW

123

1s a martingale, by applying the
Burkholder-Davis-Gundy inequality, there exists a positive constant C(depending only

2p 1 2 P
< CE ( dt2> .
0

Now, for any v the process u — fou K (v, X{“"l)dfl/izg1 is a martingale. Consequently, by

on p) such that

K (ty, o, X )AWE W,

to .
/ K(tl)t%XtEl)thel

E | sup
0<t<1

applying Burkholder-Davis-Gundy inequality and condition (H1), there exists a constant

2
) < 2PCLP/ (1 +E (Sup |X5|2P)> ds
0 u<s

C' (depending only on p) such that

sup
0<u<ty

/ K(t, ty, X2 )dW;

Therefore,
2p 1
E| sup K(t1,t2,X§1)th€1 ng < 2PCLP/ (1 +E (sup |X5|2P>) ds.
0<t<1 |J Cyqy ° "

(3.9)
By combining the inequalities (3.6) to (3.9), one can show that there exists a positive

constant C' {(depending only on L, p) such that

1
E < sup |Xﬂ2p) <C (1 —I—/ E < sup |X§|2p>) ds.
0<t<1 0 0<u<s

Hence, by virtue of Gronwall inequality, we deduce that

B ( s 1X:) < o).

0<t<1
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The same calculations show that

E(Sup Eds ) < C(p).

0<¢t<1

3.3 Main Result

Theorem 3.10 Assume conditions (H1) to (H6). Then we have

imE | sup |zf —Z5|?
e—0 0<t<e—1

where {2€ |0 <t <e '} and {Z5 | 0 <t < e '} are the unique strong solutions of (3.2)

and (3.3) respectively.
Proof. We have
A = -X; / o X5) — F(X,)] ds +/ [G(X3) - G(X,)] awy
0
+

ti o, €y e Xgy) = H(ty,t2, X, )] dtydts

L

Cayy

+/ (K (t1,t2, X)) — K(t1,t0, X, )] dWs dW,.
Ca(yy

Therefore,

Ai [F gs/ea - (gs/e’—)?i)] ds

S~

/0 6o X2 = FO) o+ [ GX0) ~ GORD]

+

t11t27£t1/55 tl) H(tl’t2’§t1/€’ )l dt dt2
C2(t)

+/ t17t2 gtl/m ) (tl,th )} dt1dtz
CQ(t)
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+ / (K (ty, b2, X5) — K(ty, 80, X;, )] AW dWE. (3.10)
C?(t)

Let us put

£ ey £

fg(s) = F(gs/eays) - F(Xi) and hg(tht?) = H(tlat%gtl/eaytl) - F(tlvt%yfl)'

It follows that for every ¢ € [0, 1]

t 2
IA§I2 < 6/0 JF(gs/aXf) _F(€S/5’7§)l2d8+6

/O ' F(s)ds

/ hg(tl,tg)dtldtg
Coty

2 2

+6 +6

/ [GOX7) - GO aw:

+6/ |H (12,64, 100 XE) = H (t1,t2, 6, ey Xy )| dtadt
Ca(ty

2
+ 6

/ (K (ti,ts, X)) — K (t1, 12, X5, )] dWE dW,
Cagy

By using conditions (H2) and (H3), we derive that for all ¢ € [0, 1] we have

t t 2 t 2
AP < 6/a(|X§—Y§ 2) ds+6‘/ fé(s)ds| +6 / [G(X?) - G(X))] dWE
0 0 0
2

+6/ a(]xi—ﬁl\z) dt,dts + 6/ he(ty, ty)dt dty

Caey Caey

2
16 / (K (b1, 2, XE) — K (b1, 2, X5, )] dVE dTF2 (3.11)
Caqty

In view of Burkholder-Davis-Gundy inequality, there exists a positive constant C' such

that

2

E | sup

0<s<t

< CE [/Ot G(x?) - G(X)| ds} .

/O [G(X9) - G(XE)] W

40



By virtue of condition (H2), we have
t ~€.,]2 t €2
/ |G(X?) — G(X,)| ds < / o (]XSE —Xﬂ ) ds.
0 0
Now, since « is concave, we have

(e (b)) <o (B (g o))

Therefore,

/0 [G(X3) - (X)) dwe

0<s<t

2} <c /O't o (]E (QES |A;3|‘2)) ds.  (3.12)

In view of the concavity of &, for every ¢ € [0, 1], we have

E ( sup / & (}Xg _ X52|2) dtldtg) < E (/ & (jxg _ lef) dtldtg>
0<s<t J Cy(s) Ca(t)
t
E (/ a ( sup |AZ|2> ds)
0 0<u<s

t
/ a (E ( sup (Ai|2)> ds. (3.13)

0 0<u<s

E [ sup

(A

(A

Let us note that
/C() [K (1,80, X5) — K (t1, 10, X, )| AW AW,
2(s
s to . N .
— / (/ [K(tl,tg,Xfl)—K(tl,tg,th)Jdel)deQ,
0 0

Since the process{fos ( Ot? (K (t1,t5, Xf) — K (t1,t2, X,,)] de) th‘; D5 > 0} is a mar-

tingale, Burkholder-Davis-Gundy inequality implies that there exists a positive constant
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(' such that

2
E (snp )
0<s<t
t to 9
CE (/ (/ (K (t1,t2, X)) — K (t1,t2, X, )]dw> dt2>
0 \Jo
¢ to 9
o [ B [ 1K (bt Xe) - 5 (1,02 X0)] )
2
C’/ (Sllp >dt2,
0<s<t

Now, for every v € [0,1], the process {fos (K (t1,0,X5) — K (t1,v,X},)] del D5 > 0}

/ | [K (t1,te, X)) — K (t1, 12, Xy, )] dWE AW,
Co(s

IA

IN

IA

/ (K (1, t2, X2) — K (b1, 5, X, )] d2

is a martingale. Therefore, Burkholder-Davis-Gundy inequality implies that there exists

)

a positive constant C' such that

E ( sup /
0<s<t JO

t
< E (/ IK (tl,tg,XtEI) K(tl,t27X ) ‘thl)
0

[K (t1,t2, X5)) = K (t1,12,X;,)] dWE

Thanks to condition (H3), it follows that

2
E ( sup )
0<s<t
t
C’/ e! (E ( sup ‘Aif)) ds. (3.14)
0 0<u<s

In view of the concavity of «, we have

E Uota (1x: -x2[) ds] < /Ota (E (0223 \Aif)) ds. (3.15)

o0 =8 (o Jaif).

/ (K (t1,t2, X)) — K (t1,t2, X, )]deldW;?
Ca(s)

Let
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By combining (3.11) to (3.15), we deduce that

g°(t) < gole) + C/Ot(a + &) (g°(s))ds.

[/ o) 45

In view of Lemma A.13, for every ¢ € [0, 1]

where

2
/ h®(s1, s2)dsydsa| | .
Ca(s)

90(€) ( sup
0<s<1

g°(t)

IN

Gt {G (g90(€)) +C’/0t ds]
GG (90(e)) + C].

IA

where G(r fl o 1a) )

WehaveG( ) — —ooasr — 0 and G7!(r) — 0 as 1 — —o0.
Therefore, it remains to prove that lim0 go(e) = 0.

To this end let us note that

s to
/ he(ty,to)dt dty = / (/ hE(tl,tg)dtl) dty
Ca(s) 0 0

S to e
= [H (tr,t2, €0y X0y) — H (ta,12, X, )] dty ] dt
0 0 /
s/e to o —
= 62/ (/ [H (6t11€t27§t1) stl) H (EtlaEtQaXstl,':l dtl) dt?
0

0

For each ® € C'[0,1] and € > 0, we put

e? [ [H(etr,et &, , Per,) — H(cty, et,®pp,)] dty if 0<t <!

a.(t,®) =
0 if e l<t<oo,
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In view of Cauchy-Schwarz inequality and Condition (H1), for every ¢t € [0,¢7!], we have

t
Iaa(tuq))|2 S E4t/ ‘H(tlustagtlvq)etl)_ﬁ(t1a€t7(b€t1)‘2dt1
0

< 2€4t2[811p {H(tl,et,ﬁtl,q’gtl)‘2+ sup {F(tl,et,égtl){Z

0<t1 <t 0<t1 <t

< 4L (14 ||®]2) %

So, for all ¢t € [0, +00)

~1/2

L) (1+ [ 2)2) " e Hac(t, @) < 1.

Let us put
O(s) = (AL) V2 (14 | )2) " e tau(t, @).

2
Since § > 1 in Condition (H3), there exists ¢ € (0,+0c0) such that § > 1 + 3
We have
E©(s))=0 and E(O(s)[*t) <1, Vs> 0.

By applying Lemma A.12 with
O(s) = (4L)"V* (1 + H(I)Hi)*l/? e 'a.(t,®), M =1, and n as in Condition (H3)

there exists I € (0, +00), § € (0,+00) such that

E ( /u@(s)ds M) < T(u—t)'F5.

/ a.(s,®)ds
t

It follows that

d

248
) < TePI(AL(L + [|9]f2) (u — 1)) +2.
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Now, let
t
Qt) = / a:(s,®)ds, 0<t<e 'l
0

Forall0 <t <u< >
E[|Q(u) — Q"] < h(t,w)'+2

where h(t,u) = 4FﬁL(1 + | @)% (u — t)e.
By applying Lemma A.11 with Y = RT =0, U =¢"", p=2+8,y=1+ %,

obtain the existence of a constant A such that

t
]E( sup /aE(s,Q))ds
o<t<e~1 [Jo

243
) < A(h(0,e71)1*2.

Therefore,

t
/ a.(s,P)ds
0

2+8
E( sup ) < ATE*P(AL(1 + H@Hio)s’l)Hg
0<t<e~!
< ADUL(1+ |2, )e) 5.

It follows that

2

2 ¢ 248\ | 75
) < |E ( sup / a.(s, P)ds )}
o<t<e=! |Jo

< A(AD)FL (14 (|]2) . (3.16)

t
/ a.(s, ®)ds
0

El sup
0<t<e!

In view of the fact that £ is independent of the Brownian motions W and W by using

2
= sup
(10,1] ) 0<t<e—!

A(AT -%L(ém”;44@u>@q®06

(3.16), we have

as s, d)ds

) dp (P)

E ( sup / hE(tl,tQ)dtldtQ
0<t<1 | J Co(t)

IA
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where (. is the law of the process X" which does not depend on €.

2
)SCa

2
/ he(tl,tg)dtldtg == O
CQ(t)

It follows that

E ( sup / hg(tl,tg)dtldtg
0<t<i | Jop(r)

which leads to

limE | sup
e—0 0<t<1

For the proof of

t 2
lim E ( sup / fe(s)ds ) =
e—0 0<t<1 [Jo
it suffices to put
,Bg) — F(P)]ds if 0<t<e!
as(t,®> — fO [ gs ( )}
0 if el<t<oo.

and use analogous calculations as above.ll
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Appendix A
Appendix

In this appendix we collect some results which are needed for the proof of the main result.

Lemma A.11 Let 0 < T < U < o0 and {Q (t), T <t < U}be a process on some proba-
bility space (2, F,P) taking values in a separable normed vector space Y with norm |||

such that
a) t — Q (t,w) is continuous on [T, U] for a.a.w

b) there are constants v € (1,00) and p € (0,00) such that: VT <t <u < U,

ENQ(u) — Q)" < [a(t,uw)]’

where h(t,u) is a non-negative continuous function defined for T'<t <u <U
satisfying
VT <t<u<U, h(t,u) + h(u,v) < h(t,v).

Then there exists some constant A € (0,00) depending only on p and v such that :

B sw Q@) - QD] < AT,V

T<t<U

Proof. It is just a Corollary of Theorem 1 in Longnecker and Serfling (1977). B
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Lemma A.12 Suppose that {®(s),s € [0,00)} is a zero-mean R%-valued jointly measur-
able process on (2, F,P) such that

(a) E [||©(3)||2+6] <M , Vs € [0,00), for some constants M,é € (0,00);

(b) there are o-algebras {G:,0 < s <t < oo} over Q such that Gt C G¥ C F for all
0<u<s<t<v<oo, and s — P(s) is G-measurable for each s € [0, 00);

(¢) there are constants § € (1+267",00) and n € (0, 00) such that a(u) < nu=? Vu €
[1,00) where

a(u) =sup sup |[P(ANB)—-P(A)P(B)|

t20 AegG

BEG,,

Then there are constants I' € [0,00) and 8 € (0,00) such that

L[u¢@ym

where ' and 3 depend only on the constants M, 6, n and 6 in (a) and (c).

2+

E <Tu-t)"5,¥0<t<u<oo

Proof. It is a straightforward adaptation of Theorem 2.1 in Sotres and Ghosh
(1977).1

Lemma A.13 (Bihari’s inequality). Let u and v be two continuous functions on [0, 1]
and H another continuous function from R* into itself which is moreover nondecreasing

and such that H(r) >0 forr >0 . If there exists ug € R* such that :
t
WS1MQSW+/wgmmmm
0

then

MQ§G4FWQ+A%@@}

for all t € 10,1} such that
t
G(ug) +/ v(s)ds € Dom(G™")
0
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where G(r) = [/ ds for r >0 and G is the inverse function of G .

In partz'cular zf moreover up =0 and [j. #SS) = 400 , then for allt <1 u(t) = 0.

Lemma A.14 (Burkholder-Davis-Gundy inequality). Let p > 0.There exists posi-

tives constants ¢, and C, such that for all continuous local martingale M = (M),
B {(M)} < B{UM))} < C,E {(M))}

where M} = sup |M,|.

0<s<t

Lemma A.15 (Gronwall). Let g : [0,T] — R a continuous function such that, for
all t,
t
9(t) Sa+b/ g(s)ds, a€R, b>0.
0

Then for all t
g(t) < aexp(bt).

Lemma A.16 (Ité6’s formula). Let X a It6 process with values in R™ : fori =1,----,n

t d t
= Xi+ / Kids+ ) / HikqWE,
0 PR
If f € CY2([0,T]) x R™) then
t n t 4
X)) = F(0,X0) + / 01 (s, X)ds+ 3 [ 00 1(s. X)dX;
i=1 V0
+= Z/ (s, X)d (X", X7,
1,7=1

d
with dX! = Kids+ }: Ho*dW* and d (X*, X7, = H ik Fikds.

=1 k=1
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