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I. Introduction

In [9], Marty introduced the notion of an algebraic hyperstructure. Later, many authors have
extended the works of Marty to hyperrings, hyperfields and in particular to the well known
Krasner hyperfield [6]. In [10], Davvaz and Koushky used a Krasner hyperfield K to construct
the hyperring of polynomials over K and they stated and proved some exciting properties of
the hyperring of polynomials. In [1], Ameri and Dehghan discussed the notion of hypervector
space over a field, on which only the external composition is a hyperoperation; they stated and
proved some interesting facts about the hypervector space. In [8], Sanjay Roy and Samanta,
introduced the notion of hypervector spaces over hyperfields, on which external and internal
compositions are both hyperoperations.
Recently, Davvaz and Musavi [3] defined a hypervector space over a Krasner hyperfield and
they established some connections between the hypervector space and some interesting codes.
They also defined linear codes and cyclic codes over hyperfields.
In this paper, we introduce the notion of distance and weight on a hypervector space over a finite
Krasner hyperfield. We also define a generator and a parity check matrix of a hyperlinear code
over a finite Krasner hyperfield and obtain some crucial properties of them. We also compute
the number of code words of a linear code over such finite Krasner hyperfield and we show that
in addition to the fact that the Singleton bound is respected, they have many more code words
than the classical codes with the same parameters.
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Our work is organized as follows: In section 2 we present some basic notions about algebraic
hyperstructures and Krasner hyperfields that we will use in the sequel. We also investigate some
properties of hypervector spaces of finite dimension and of polynomial hyperrings. In section 3
we develop the notion of linear codes and cyclic codes over a finite Krasner hyperfield and we
characterize them by their generator matrix and their parity check matrix. We also define the
distance for these codes.
Our main results on the importance of hyperfields in code theory are stated and proved, e.g. it
is shown that the Singleton bound is respected.

II. Preliminaries

In this section, we recall the preliminary definitions and results that are required in the sequel
(for references see [1, 2, 6]).
Let H be a non-empty set and P∗(H) be the set of all non-empty subsets of H. Then, a map
? : H×H −→ P∗(H), where (x, y) 7→ x?y ⊆ H is called a hyperoperation and the couple (H, ?)
is called a hypergroupoid.

For any two non-empty subsets A and B of H and x ∈ H, we define A ? B =
⋃

a∈A,b∈B

a ? b,

A ? x = A ? {x} and x ? B = {x} ? B.
A hypergroupoid (H, ?) is called a semihypergroup if for all elements a, b, c of H we have (a ?
b) ? c = a ? (b ? c).
A hypergroupoid (H, ?) is called a quasihypergroup if for all a ∈ H we have a ?H = H ?a = H.
A hypergroupoid (H, ?) which is both a semihypergroup and a quasihypergroup is called a
hypergroup.

Definition II.1. A canonical hypergroup is an algebraic structure (R,+), (where + is a hyper-
operation) such that the followings axioms holds:
(i) For any x, y, z ∈ R, x+ (y + z) = (x+ y) + z.
(ii) For any x, y ∈ R, x+ y = y + x.
(iii) There exists 0 ∈ R such that 0 +x = x for every x ∈ R, where 0 is called additive identity.
(iv) For every x ∈ R there exists a unique element x′ ∈ R such that 0 ∈ x+ x′ (We shall write
−x for x′ and we call it the opposite of x).
(v) z ∈ x+ y implies y ∈ −x+ z and x ∈ −y + z.

Definition II.2. A Krasner hyperring is an algebraic structure (R,+, ·) (where only + is a
hyperoperation) which satisfies the followings axioms:
(i) (R,+) is a canonical hypergroup with 0 as additive identity.
(ii) (R, ·) is a semigroup having 0 as a bilaterally absorbing element, i.e. x · 0 = 0 · x = 0.
(iii) The multiplication is distributive with respect to the hyperoperation ”+”.

A Krasner hyperring (R,+, ·) is called commutative (with unit element) if (R, ·) is a
commutative semigroup (with unit).
A commutative Krasner hyperring with unit is called a Krasner hyperfield if (R \ {0}, ·, 1) is a
classical group.

We now give an example of a finite hyperfield with two elements 0 and 1, that we name
F2 and which will be used it in the sequel.

Example II.3. Let F2 = {0, 1} be the finite set with two elements. Then F2 becomes a Krasner
hyperfield with the following hyperoperation ”+” and binary operation ”·”
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+ 0 1
0 {0} {1}
1 {1} {0, 1}

and

· 0 1
0 0 0
1 0 1

A Krasner hyperring R is called a hyperdomain if R is a commutative hyperring with
unit element and a · b = 0 implies that a = 0 or b = 0 for all a, b ∈ R.
Let (R,+, ·) be a hyperring and A be a non-empty subset of R. Then, A is said to be a subhy-
perring of R if (A,+, ·) is itself a hyperring. The subhyperring A of R is normal in R if and only
if x+ A− x ⊆ A for all x ∈ R. A subhyperring A of a hyperring R is a left (right ) hyperideal
of R if r · a ∈ A (a · r ∈ A) for all r ∈ R, a ∈ A. Also, A is called a hyperideal if A is both a left
and a right hyperideal.
Let A and B be non-empty subsets of a hyperring R. The sum A + B is defined by A + B =

{x| x ∈ a+b for some a ∈ A, b ∈ B} and the product A·B is defined by A·B = {x| x ∈
n∑

i=1

ai · bi,

with ai ∈ A, bi ∈ B,n ∈ N∗}.
It is easy to see, that if A and B are hyperideals of R, then A+B and A ·B are also hyperideals
of R.

Definition II.4. An additive-multiplicative hyperring is an algebraic structure (R,+, ·) (where
+ and · are both hyperoperations) which satisfies the following axioms:
(i) (R,+) is a canonical hypergroup with 0 as additive identity.
(ii) (R, ·) is a semihypergroup having 0 as a bilaterally absorbing element, i.e., x · 0 = 0 · x = 0.
(iii) The hypermultiplication ”·” is distributive with respect to the hyperoperation ”+”.
(iv) For all x, y ∈ R, we have x · (−y) = (−x) · y = −(x · y).

An additive-multiplicative hyperring (R,+, ·) is called commutative if (R, ·) is a com-
mutative semihypergroup and R is called a hyperring with multiplicative identity if there exists
e ∈ R such that x · e = x = e · x for every x ∈ R. We fix the notation 1 for the multiplicative
identity.

We close this section with the following definition

Definition II.5. A non-empty subset A of an additive-multiplicative hyperring R is a left (right)
hyperideal if,
(i) a, b ∈ A implies a− b ⊆ A,
(ii) a ∈ A, r ∈ R implies r · a ⊆ A (a · r ⊆ A).

II.1. Hypervector spaces over hyperfields

We will give some properties related to the hypervector space which will allow us to characterize
linear codes over a Krasner hyperfield.
From now on, and for the rest of this paper, by F we mean a Krasner hyperfield.

Definition II.6. Let F be a Krasner hyperfield. A commutative hypergroup (V,+) together with
a map · : F × V −→ V , is called a hypervector space over F if for all a, b ∈ F and x, y ∈ V ,
the following conditions hold:
(i) a · (x+ y) = a · x+ a · y (right distributive law),
(ii) (a+ b) · x = a · x+ b · x (left distributive law),
(iii) a · (b · x) = (ab) · x (associative law),
(iv) a · (−x) = (−a) · x = −(a · x),
(v) x = 1 · x.

Let us give an example.

Example II.7. If F is a Krasner hyperring, then for n ∈ N, Fn is a hypervector space over F
where the composition of elements are as follows:
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x + y = {z ∈ Fn; zi ∈ xi + yi, i = 1...n} and a · x = (a · x1, a · x2, ..., a · xn) for any x, y ∈ Fn

and a ∈ F .

Definition II.8. Let (V,+, ·, 1) be a hypervector space over F . A subset A ⊆ V is called a
subhypervector space of V if:
(i) A 6= 0.
(ii) For all x, y ∈ A, then x− y ⊆ A.
(iii) For all a ∈ F , for all x ∈ A, then a · x ∈ A.

Definition II.9. A subset S of a hypervector space over F , V is called linearly independent if
for every vectors x1, x2, ..., xn in S and for every coefficients a1, a2, ..., an in F , (n ∈ N \ {0, 1})
0 ∈ a1 · x1 + a2 · x2 + · · ·+ an · xn implies that a1 = a2 = · · · = an = 0.
A subset S of V is called linearly dependent if it is not linearly independent.

If S is a nonempty subset of V , the set 〈S〉 define by 〈S〉 =
⋃
{

n∑
i=1

ai · xi| xi ∈ S, ai ∈

F, n ∈ N \ {0, 1}} ∪ l(S), (where l(S) = {a · x| a ∈ F, x ∈ S}) is the smallest subhypervector
space of V containing S.

Definition II.10. Let V be a hypervector space over F . A vector x ∈ V is said to be a linear
combination of the vectors x1, x2, ..., xn ∈ V if there exist a1, a2, ..., an ∈ F such that x ∈
a1 · x1 + a2 · x2 + · · ·+ an · xn.

Definition II.11. Let V be a hypervector space over F and S be a subset of V . S is said to be a
basis for V if,
(i) S is linearly independent,
(ii) Every element of V can be expressed as a finite linear combination of elements from S.

As in the case of classical vector spaces, the dimension of a hypervector space is the
number of elements in a basis. It is not hard to see that this number is independent of the
chosen basis.

II.2. Polynomial hyperring

We recall the definition of a polynomial over the Krasner hyperfield F . Assume that for all
a, b ∈ F , a · (−b) = (−a) · b = −(a · b).

We denote by F [x] the set of all polynomials in the variable x over F . Let f(x) =

n∑
i=0

aix
i and

g(x) =

m∑
i=0

bix
i be any two elements of F [x].

Let us define the set P∗(F )[x] = {
n∑

k=0

Akx
k; where Ak ∈ P∗(F ), n ∈ N}, the hypersum and

hypermultiplication of f(x) and g(x) are defined as follows:

• + : F [x]× F [x] −→ P∗(F )[x]
(f(x), g(x)) 7−→ (f + g)(x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (aM + bM )xM ,
where M = max{n,m}.

• · : F [x]× F [x] −→ P∗(F )[x]

(f(x), g(x)) 7−→ (f · g)(x) =

m+n∑
k=0

(
∑

l+j=k

al · bj)xk, ifdeg(f) ≥ 1 and deg(g) ≥ 1

Imhotep Proc.
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If deg(f) < 1 or deg(g) < 1, then the hypermultiplication is reduced to · : F [x]×F [x] −→ F [x]

(f(x), g(x) 7−→ (f · g)(x) =

m+n∑
k=0

(
∑

l+j=k

al · bj)xk.

We recall the crucial result from [7]:

Theorem II.12. [7] The algebraic structure (F [x],+, ·) is an additive-multiplication hyperring.

III. Linear codes and cyclic codes over finite hyperfields

In this section we shall study the concept of linear codes and cyclic codes over the finite Krasner
hyperfield F2 from Example II.3. We first recall some basics from code theory. Let A be an
alphabet. The Hamming distance dH(x, y) between two vectors x, y ∈ An is defined to be the
number of coordinates in which x differs from y. For a classical code C ⊆ An containing at least
two words, the minimum distance of a code C, denoted by d(C), is d(C) = min{dH(x, y)|x, y ∈ C
and x 6= y}.
If An is a vector space, then C ⊆ An is a linear code if C is a sub-vector space. In this latter
case we compute for a code word x ∈ C, wH(x) the number of nonzero coordinates in x called
Hamming weight of x. We denote by k =dim(C) the dimension of C and the code C is called an
(n, k, d)-code which can be represented by his generator matrix (see [4] for more details).
For n ∈ N \ {0, 1} it is clear that, Fn

2 is a hypervector space over F2.

Definition III.1. A linear code C of length n over F2 is a subhypervector space over F2 of the
hypervector space Fn

2 .

Here is an example:

Example III.2. . • For n = 3, F 3
2 is a linear code of length 3 over F2.

• C = {0000000, 1011111, 0111010, 1100101, 1101101, 1110111, 1001101, 0010010, 0101000, 1111111}
is a linear code of length 7 over F2.

Definition III.3. Let x = (x1, ..., xn) and y = (y1, ..., yn) be two vectors in Fn
2 (n ≥ 2). The

inner product of the vectors x and y in Fn
2 is defined by x · yt =

n∑
i=1

xi · yi. (where yt mean the

transpose of y)

Definition III.4. Let C be a linear code of length n (n ≥ 2) over F2. The dual of C is defined
by C⊥ = {y ∈ Fn

2 | 0 ∈ x · yt,∀x ∈ C} and denoted by C⊥.
The code C is self-dual if C = C⊥.

Remark III.5. In the previous Definition III.4 if n = 1, then C⊥ = {y ∈ F2| 0 = x ·yt,∀x ∈ C}.

Definition III.6. A cyclic code C of length n over F2 is a linear code which is invariant by the
shift map s, define by s((a0, ..., an−1)) = (an−1, a0, ..., an−2). i.e. for all (a0, ..., an−1) ∈ C, we
have s((a0, ..., an−1)) ∈ C.

Example III.7. C = {000, 101, 110, 011, 111} is a cyclic code of length 3 over F2.
In fact s(000) = 000, s(101) = 110, s(110) = 011, s(011) = 101, s(111) = 111.

The polynomial f(x) = a0 + a1x
1 + a2x

2 + · · · + an−1x
n−1 of degree at most n − 1

over F2 may be considered as the sequence a = (a0, a1, a2, ..., an−1) of length n in Fn
2 . In fact,

there is a correspondence between Fn
2 and the residue class hyperring F2[x]

(xn−1) (see [3] for more

details).

Imhotep Proc.
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φ : Fn
2 −→

F2[x]

(xn − 1)

c = (c0, c1, c2, ..., cn−1) 7−→ c0 + c1x
1 + c2x

2 + · · ·+ cn−1x
n−1.

Using Theorem 3.7 in [3], the multiplication of x by any element of F2[x]
(xn−1) is equivalent to

applying the shift map s to the corresponding element of Fn
2 .

Metric distance.
We are now going to define a distance relation on linear codes over the finite hyperfield F2,
which will allow us to detect if there is an error in a received word.

Definition III.8. Let n ∈ N∗. The mapping

dH : Fn
2 × Fn

2 −→ N
(x, y) 7−→ dH(x, y) = card{i ∈ N|xi 6= yi}

is a distance on Fn
2 , called the Hamming distance.

The following map denoted by wH on the cartesian product (P∗(F2))n:

wH : (P∗(F2))n −→ N
a = (a1, ..., an) 7−→ card{i ∈ N| 0 /∈ ai}.

is the Hamming weight on the hypervector space Fn
2 .

We can easily verify that for all x, y ∈ Fn
2 , we have dH(x, y) = wH(x − y) (as in the

classical case).
If C is a linear code over F2, we call the integer number d = min{wH(x)|x ∈ C} the minimal
distance of the code C.

Remark III.9. If x ∈ Fn
2 , then we write x = ({x1}, ..., {xn}) that now belongs to the cartesian

product (P∗(F2))n. Hence we can compute wH(x) = card{i ∈ N| 0 /∈ xi} = dH(0, x).

To obtain the linear code of length n over F2 as a subhypervector space of Fn
2 , it is

sufficient to have a basis of the linear code. This basis can often be represented by a k×n matrix
over F2 (where k is the dimension of the code). Let M(F2) be the set of all (l × n)-matrices
over F2 with l ≤ n.

Definition III.10. Let C be a linear code over F2. Any matrix from M(F2) where the rows form
a basis of the code C is called a generator matrix of C.

Definition III.11. Let x = (x1, ..., xn) be a vector of Fn
2 and y = (y1, y2, ..., yn) be an element

of the cartesian product (P∗(F2))n. We say that x belongs to y if xi ∈ yi for any i = 1...n.

Remark III.12. If G is a generator matrix of the linear code C of length n and dimension k,
the product a ·G (where a ∈ F k

2 ) is the vector which belongs to (P∗(F2))n and is defined as:

(a1, ..., ak) ·

 g11 · · · g1n
...

. . .
...

gk1 · · · gkn

 = (

k∑
i=1

ai · gi1, ...,
k∑

i=1

ai · gin).

Proposition III.13. Let G ∈ Mk×n(F2) be a generator matrix of the linear code C over F2,
then C = {c ∈ a ·G| a ∈ F k

2 }.

Definition III.14. Given a linear [n, k]-code over F2, we call a generator matrix for C⊥ a parity
check matrix for C.

Imhotep Proc.
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Here and until the end of this paper, we will denoted by G the generator matrix and
by H the parity check matrix of the linear code C over F2.

Theorem III.15. Let C be a linear code of length n (n ≥ 2) and dimension k over F2. Then
H ∈M(n−k)×n(F2) and 0 ∈ G ·Ht. (where Ht mean the transpose of H).

Remark III.16. There exists a finite hyperfield such that for any other finite field of the same
cardinality, the linear codes over the hyperfield are always better than the classical linear code
over the finite field in the sense that they have more code words.

In classical coding theory, one of the most important problems mentioned in [5] is to find
a code with a large number of words knowing the parameters (length, dimension and minimal
distance). So the hyperstructure theory may help to increase the number of code words.

Theorem III.17. Let C be a linear code of length n and dimension k over F2. If M is the

cardinality of C, then 2k ≤M ≤


2n−k + k + 1, if k ≤ 2;

2n−k +

k−1∑
i=2

(
k
i

)
+ k + 1, if k > 2.

Corollary III.18. Let C be a linear code of length n and dimension k over F2, and C ′ be a linear
code of length n and dimension k over the field F2. Then d ≤ d′ ≤ n − k + 1 (where d is the
minimal distance of C and d′ is the minimal distance of C ′).

Remark III.19. The previous Corollary III.18 shows that a linear code over F2 satisfies the
Singleton bound.

Proposition III.20. Let C be a linear code of length n and dimension k over F2, then c ∈ C if
and only if 0 ∈ c ·Ht.

Proposition III.21. Let C be a linear code of length n over F2, then the double dual of C equals
C, i.e. (C⊥)⊥ = C.

Since a cyclic code in Fn
2 has only one generating polynomial [3], it is clear that this

polynomial divides the polynomial xn − 1.

Proposition III.22. If g(x) = a0 + a1x + · · · + akx
k ∈ F2[x], is the generating polynomial for

a cyclic code C over F2, then G =



a0 · · · ak 0 0 · · · 0
0 a0 · · · ak 0 · · · 0

0 0 a0 · · · ak · · ·
...

...
...

. . .
. . . · · ·

. . . 0
0 0 · · · 0 a0 · · · ak

 is the generator

matrix of the cyclic code C.

Proposition III.23. With the same notation as in Proposition III.22, let h(x) ∈ F2[x]
(xn−1) be a

polynomial such that xn − 1 ∈ h(x) · g(x), then

1) The linear code C over F2 can be represented by C = {p(x) ∈ F2[x]
(xn−1) | 0 ∈ p(x) · h(x)}.

2) h(x) is the generating polynomial for the linear code C⊥.

IV. Conclusion

In this work, we have defined many concepts for linear codes and cyclic codes over the hyperfield
F2, such as the generator matrix, the parity check matrix and the Hamming distance. We have
also characterized these linear codes and cyclic codes. We have noticed that over a finite field and
a finite Krasner hyperfield with the same cardinality, it is possible to have a code over a finite

Imhotep Proc.



8 S. Atamewoue Tsafack, Selestin Ndjeya and Celestin Lele

field and a code over a finite Krasner hyperfield with the same parameters (length, dimension,
minimal distance) such that, the linear code over the hyperfield has more code words than the
linear code over the field.
So the hyperstructure theory produces codes that have advantages over classical codes and
thus we obtain a method that we might use in future works to solve some problems in classical
coding theory.
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