UNIVERSITE DE YAOUNDE I

FACULTE DES SCIENCES

UNIVERSITY OF YAOUNDE I

FACULTY OF SCIENCE

DEPARTEMENT DE MATHEMATIQUES

DEPARTMENT OF MATHEMATICS

PROBLEME DE CAUCHY SUR UN CONOIDE CARACTERISTIQUE POUR DES EQUATIONS AUX DERIVEES PARTIELLES SEMILINEAIRES HYPERBOLIQUES DU SECOND ORDRE

$$A^{\lambda\mu}(\mathbf{x}^{\alpha}) \frac{\partial^{2} \mathbf{v}}{\partial \mathbf{x}^{\lambda} \partial \mathbf{x}^{\mu}} + \mathbf{f}(\mathbf{x}^{\alpha}, \mathbf{v}, \frac{\partial \mathbf{v}}{\partial \mathbf{x}^{\nu}}) = 0 \; ; \; \mathbf{v}|_{C_{0}} = \phi(\mathbf{x}^{i})$$

THESE PRESENTEE PAR:

BAH SOULEYMANE

POUR L'OBTENTION DU GRADE DE :

DOCTEUR 3éme CYCLE

SPECIALITE:

MATHEMATIQUES

DIRECTEUR DE THESE:

Pr FRANCIS CAGNAC

THESE SOUTENUE LE 16 SEPTEMBRE 1994 A YAOUNDE

JURY: *PRESIDENT*:

M. NOUTCHEGUEME NORBERT Maître de Conférence

MEMBRES:

M. FRANCIS CAGNAC

Professeur

M. GOUDJO COME

Professeur à l'Université

Nationale du Bénin

M. NGUETSENG GABRIEL

Maître de Conférence

M. DOSSA MARCEL

Chargé de Cours

Yaoundé (CAMEROUN)

REMERCIEMENTS

J'adresse une profonde gratitude au professeur Francis CAGNAC qui a accepté de diriger cette thèse et dont la patience et la disponibilité ont permis la réalisation de ce travail dans de bonnes conditions.

Je remercie Monsieur Marcel COSSY DOSSA de l'Université de Yaoundé I pour les nombreux conseils et suggestions dont il m'a fait bénéficier.

Enfin je dédie ce travail à ma femme qui a dû accepter avec patience mon emploi de temps peu convivial.

TABLE DES MATIERES

<u>INTRODUCTION</u>	5
I.1: OBJET DU TRAVAIL	
I.2: METHODE EMPLOYEE	
I.3: SUBDIVISION DU TRAVAIL	9
PARTIE A	11
Chapitre 1: FORMULES DE KIRCHHOFF ET PROBLEME DE CAUCHY SUR UNE HYPERSURFACE SPATIALE	12
1.1 CONOÏDES CARACTERISTIQUES.	
1.1.2: Définitions des conoïdes caractéristiques.	
1.2 FONCTIONS AUXILIAIRES	
1.2.1 Ecriture des équations (F_r) sur $\ell_{\overline{M}_0}$	15
1.2.2 : Fonctions auxiliaires σ_s^r	
1.3: FORMULES DE KIRCHHOFF GENERALISEES	18
1.3.1: Formules de KIRCHHOFF sous l'hypothèse H_{M_o}	
1.3.2 Changement de variables	
1.4: PROBLEME DE CAUCHY SUR UNE HYPERSURFACE ORIENTEE DANS	
L'ESPACE	22
1.4.1: Hypothèses (H ₁)	22
1.4.2: Remarques:	25
1.5: DEVELOPPEMENTS LIMITES AU VOISINAGE DE Mo DES FONCTIONS	
$y^{\lambda}(x_o^{\alpha}; \lambda_1, p_j^{o}(\lambda_h)), p_i(x_o^{\alpha}; \lambda_1, p_j^{o}(\lambda_h)), \Delta, \Delta_j^{l}, \sigma, \text{ET LEURS DERIVEES}:$	25
1.5.1: Développements limités des fonctions y ^{\(\lambda\)} et p _i :	26
1.5.2: Développements limités et propriétés de: Δ , Δ^i_j et leurs dérivées	27
1.5.3 Développements limités de σ et de ses dérivées:	
1.6: ETUDE DES FONCTIONS ω_s^r et L_s^r	
1.6.1: Etude des fonctions ω_s^r	29
1.6.2: Fonctions L _s	31
1.6.3 Conséquences des résultats précédents:	33
Chapitre 2: PROBLEME DE CAUCHY SUR UN CONOIDE	
CARACTERISTIQUE POUR DES EQUATIONS LINEAIRES	34
2.1: FORMULES DE KIRCHHOFF	36
2.1.1: Hypothèse (H ₂). 2.1.2: Représentation paramétrique de So(Mo):	36
2.1.2: Représentation paramètrique de So(Mo):	37
2.1.3: Formules de KIRCHHOFF: 2.1.4: Paramétrage de la bicaractéristique $B_p = \mathcal{C}_{\overline{p}} \cap \mathcal{C}_o$, $p \in \mathcal{B}$.	8د
2.1.4: Parametrage de la bicaracteristique $D_p = C_{\overline{p}} \cap C_o$, $p \in \mathcal{B}$	39
2.2 : ETUDE DES 2-SURFACES So(Mo).	40
2.2.1 Etude des $S_0(M_0)$ quand M_0 est contenu dans un voisinage de ℓ_0 de la forme	
$0 < u \le cs_0.$	42
2.2.2 Etude de $S_0(M_0)$ quand $M_0(x_0^{\alpha})$ tend vers 0.	40
2.2 ETIME DEC NITECDAL EC DOUDI EC	49 50
2.3 ETUDE DES INTEGRALES DOUBLES	
2.3.1 Etude des $I_s(x_0^{\alpha})$ dans le domaine : $u \le Cs_0$	
2.3.2 Etude de $I_s(x_0^{\alpha})$ quand M_0 tend vers O .	
2.4 ETUDE DE LA FONCTION $U(x_0^{\alpha}) = \int_0^2 d\lambda_3 \int_0^{\pi} d\lambda_2 \sin \lambda_2 \int_{\psi(x_0^{\alpha}, \lambda_h)}^0 d\lambda_1 \dots$	54
2.4.1 : Dans le domaine u≤Cs ₀	

2.4.2 Dans le domaine $u > cs_0$ et $x_0^0 < \chi(c)$	55
PARTIE B.	
Chapitre 3: ETABLISSEMENT DES FORMULES DE KIRCHHOFF POUR	
LE PROBLEME DE CAUCHY SEMI-LINEAIRE HYPERBOLIQUE	
3.1: POSITION DU PROBLEME ET HYPOTHESES	
3.2.1 Dérivation de (E)	
3.2.2 Conséquences	
Chapitre 4: DETERMINATION DES RESTRICTIONS A C ₀ DES DERIVEES	
DE LA SOLUTION DU PROBLEME DE CAUCHY	
$4.1: \ell_{0}$ EN COORDONNEES GEODESIQUES	
4.2. DETERMINATION DE $\psi^{(1)} = \frac{\partial v}{\partial x^0}\Big _{C_0}$	64
4.3 DETERMINATION DES $\psi^{(1)}$, I=2, 3	67
Chapitre 5: RESOLUTION DU SYSTEME INTEGRAL C.	70
5.1 EXPRESSION DES FONCTIONS $\vartheta_{s}(x_{0}^{\alpha}, \lambda_{h}) = E_{s}^{i} \left(\Delta_{i}^{l} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h} \right)$	70
5.1.1 Expression des E_{s}^{i}	70
5.1.2 Expression des $J_s(\omega)$	73
5.2 THEOREME PRINCIPAL, ESPACES FONCTIONNELS.	75
5.2.0 Enoncé du théorème.	
5.2.1 Espace Fonctionnel 3	
5.2.2 Application de \mathcal{F} dans \mathcal{F}	
5.3: Θ EST UNE CONTRACTION DANS \mathcal{F}	85
5.3.1 Fonctions $T_s(x_0^{\alpha})$.	86
5.3.2 Fonctions $I_s(x_0^{\alpha})$	88
5.3.3 Contraction.	
Chapitre 6: APPLICATION AU PROBLEME DE CAUCHY SEMI-LINEAIRE	
$A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha}, v) = 0, (E)$	
	94
$ v _{\mathcal{C}_0} = \varphi(x^i)$	
6.1 FORMULES DE KIRCHHOFF ET SOLUTION DE L'EQUATION	
INTEGRALE ASSOCIEE	95
6.1.1 Formule de KIRCHHOFF	95
(12 Discoulant of the average of the second	07
6.1.2 Détermination de $\chi = \frac{\partial v}{\partial x^0}\Big _{C_0}$	91
6.1.3 Résolution de l'équation intégrale (E).	
6.2 SOLUTION DU PROBLEME DE CAUCHY AU SENS DES DISTRIBUTIONS	
6.2.1 Traduction du problème de CAUCHY linéaire en termes de distributions	
6.2.2 Application au problème de CAUCHY semi-linéaire	

INTRODUCTION

I.1: OBJET DU TRAVAIL

Dans le présent travail, nous étudions le problème de Cauchy à données sur un demi-conoïde caractéristique pour des équations semi-linéaires hyperboliques du second ordre du type suivant :

(I₁)
$$\begin{cases} (E) & A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha}, v, D_{\nu}v) = 0 & dans \ \Omega \\ v \Big|_{\mathcal{C}_{O}} = \tilde{v} \Big|_{\mathcal{C}_{O}} = \varphi(x^{i}) \end{cases}$$

où:

*
$$\alpha, \beta, \lambda, \mu, \nu = 0, 1, 2, 3, i = 1, 2, 3$$

$$D_{\lambda\mu} = \frac{\partial^2}{\partial x^{\lambda} \partial x^{\mu}} \quad , \quad D_{\nu} = \frac{\partial}{\partial x^{\nu}}$$

* $^{C}_{O}$ est le demi-conoïde caractéristique pour l'opérateur différentiel linéaire $L=A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu,d}$ 'équation $x^{\circ}=\phi(x^{i})$, de sommet O(o,o,o,o) et orienté vers les x° positifs.

* $\Omega = \{ (x^{\alpha}) \in \Omega_0 ; \phi(x^i) \le x^{\circ} \}$ Ω_0 étant un ouvert de IR⁴ contenant l'origine O.

* $\tilde{v}(x^{\alpha})$ est une fonction arbitraire définie sur Ω

Avant d'entrer dans les détails purement mathématiques du problème, parlons brièvement des motivations physiques de celui-ci :

• Les Problèmes de Cauchy sur un conoïde caractéristique interviennent, d'après les spécialistes, de façon naturelle dans la théorie de la Relativité Générale et ceci de façon, plus régulière que les problèmes de Cauchy ordinaires à données sur une hypersurface spatiale. Ceci est dû, en partie, au fait qu'en Relativité Générale les hypersurfaces isotropes sont aussi les hypersurfaces caractéristiques pour les équations d'EINSTEIN.

L'importance du problème de Cauchy sur un conoïde caractéristique a été relevée dans les questions de Cosmologie, dans l'estimation de la radiation gravitationnelle émise par des systèmes isolés, et aussi dans beaucoup d'autres domaines relevant de la

Relativité Générale dont on peut avoir une idée en consultant les travaux de M.C.DOSSA [B₆] ¹

• Du point de vue mathématique, le Problème de Cauchy sur un conoïde caractéristique pour des équations semi-linéaires hyperboliques du second ordre, consiste à déterminer une fonction $v(x^\alpha)$ vérifiant l'équation (E) et prenant sur C_o la valeur $\phi(x^i)$, restriction à C_o de la fonction arbitraire $\tilde{v}(x^\alpha)$

Le Problème de Cauchy du second ordre sur un conoïde caractéristique a été étudié :

D'abord dans le cadre des équations linéaires :

R. D'ADHEMAR: Pour celles à coefficients constants à trois variables.

M. RIESZ: Pour celles à coefficients constants à n variables. (n≥3)

F. CAGNAC : [B₁], [B₂] et F. G. FRIEDLANDER: Pour des équations linéaires à coefficients variables.

Ensuite dans le cadre des équations quasi-linéaires .

F. CAGNAC [B₃], [B₄]. et M. C. DOSSA [B₆]

Dans tous ces travaux la question qu'on se posait était de savoir, si on pouvait trouver une solution du problème de Cauchy partout où étaient posées les données de Cauchy, ici $\tilde{v}(x^{\alpha})$

C'est ainsi, que dans ces différents travaux, on a démontré que le problème de Cauchy sur un conoïde caractéristique admettait une solution unique définie dans un ouvert D contenu dans l'intérieur D_O , $<< D_O = \{(x^\alpha), \in IR^4; \phi(x^i) \le x^o < +\infty\} >>$, de C_O , et voisinage d'un domaine \mathcal{D} de C_O où:

- $\mathcal{B} = C_0$ et D=D₀ dans le cas des équations linéaires à coefficients constants :
- $-\mathcal{D} = C_0$ et $D \subset D_0$ dans le cas des équations linéaires à coefficients variables:
- $-\mathcal{D}$ est un voisinage du sommet O de C_0 dans le cas des équations quasi-linéaires.

Concernant le problème de Cauchy semi-linéaire, objet de ce travail, on montrera ce qui suit:

- i) Toute solution bornée du problème de Cauchy, ayant des dérivées partielles premières bornées, a celles-ci déterminées de manière unique sur C_O , comme solution d'un système d'équations différentielles sur chaque bicaractéristique de C_O . Ce système n'étant pas linéaire, sa solution n'est pas forcément définie sur C_O tout entier, mais sur un domaine $\mathcal D$ de C_O qui est le domaine maximal pour lequel on puisse se poser le problème de Cauchy pour ces données de Cauchy $\tilde v$. C'est ce domaine maximal que nous désignerons dans la suite par (C_O).
- ii) Toute solution du problème de Cauchy (I_1) cinq fois dérivable admettant des dérivées quatrièmes continues et bornées, satisfait, ainsi que ses dérivées partielles jusqu'à l'ordre trois, à un système d'équations intégrales (Formules de KIRCHHOFF).

l voir Bibliographie à la fin du document

iii) Enfin, ce système d'équations intégrales admet une solution unique dans l'espace des fonctions continues et bornées définies sur un ouvert Ω_1 , "causal ", voisinage de (C_0) dans IR^4 et contenu dans D_0 , intérieur de C_0

I.2: METHODE EMPLOYEE.

Dans cette thèse, nous utilisons la méthode des formules de KIRCHHOFF généralisées, introduites par Madame CHOQUET [B₅]. Le travail cité se rapporte à la résolution d'un problème de Cauchy, pour des systèmes linéaires hyperboliques à données sur une hypersurface de IR4, orientée dans l'espace.

Le résultat obtenu dans ce travail était le suivant:

Etant donnée une solution (v_r) du problème de Cauchy suivant:

$$\begin{cases} (E_r) & A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v_r + B_r^{\lambda s}(x^{\alpha})D_{\lambda}v_s + f_r(x^{\alpha}) = 0 & dans \end{cases} \qquad S$$

$$\begin{vmatrix} v_r \Big|_{\dot{\mathcal{S}}} = \varphi_r(x^i) \\ \frac{\partial v_r}{\partial x^{\alpha}} \Big|_{\dot{\mathcal{S}}} = \chi_r(x^i) \end{cases}$$

- δ est une hypersurface de IR^4 , d'équation $x^\circ = 0$
- • Ω un ouvert de IR^4 , voisinage de \mathring{b} .
- $A^{\lambda\mu}$, $B_r^{\lambda s}$, f_r φ_r et χ_r des fonctions satisfaisant à certaines hypothèses
 - $\int L = A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}$ un opérateur différentiel linéaire x° hyperbolique, donc : $A^{\circ\circ}$ >0 et $A^{ij}X_iX_j$ définie négative

Il existe un ouvert $\Omega_1 \subset \Omega$ voisinage de δ dans IR^4 tel que $\forall M_{\alpha}(x_{\alpha}^{\alpha}) \in \Omega_{B}$ on a (Formules de KIRCHHOFF)

$$(\mathcal{E}_{S}): 4\pi v_{s}(x_{o}^{\alpha}) = \iiint_{(C_{\overline{M_{o}}})} ([v_{r}]L_{s}^{r} + \sigma_{s}^{r}[f_{r}])dV + \iint_{S_{o}(M_{o})} E_{s}^{i} \cos(n, x^{i})dS$$

avec:

- $(\ell_{\overline{M_o}})$ = la partie de demi-conoïde caractéristique de sommet M_O située au dessus de \delta...
 - [v] = la trace sur $(\ell_{\overline{M}_n})$ d'une fonction $v(x^{\alpha})$ de 4 variables.
 - $S_0(M_0)=$ la 2-surface $(\ell_{\overline{M_0}}) \cap \delta$.

- σ_s^r et L_s^r : des fonctions définies sur $(\ell_{\overline{M_e}})$ qui ne dépendent que des coefficients $A^{\lambda\mu}$, $B_r^{\lambda s}$ et de leurs dérivées jusqu'aux ordres respectifs 4 et 2 au plus.
- E_s^i = Des fonctions dépendant des données de Cauchy φ_r et χ_r , des fonctions σ_s^r et leurs dérivées.

Dans sa thèse d'Etat F. CAGNAC, [B1], a montré qu'en remplaçant l'hypersurface $\mathring{\mathcal{S}}$ d'équation x° =0 par le demi-conoïde caractéristique C_0 , d'équation x° = $\phi(xi)$, les équations intégrales ($\mathring{\mathcal{E}}$ s) restaient encore valables pour le problème de Cauchy caractéristique , pourvu qu'on introduise des hypothèses restrictives sur les données de Cauchy $\phi_r(xi)$ et C_0 .

Dans ce travail, nous suivons de près les résultats obtenus par F. CAGNAC dans $[B_1]$.

Considérons, maintenant, le problème (I_1) relatif à l'équation semi-linéaire. Nous pouvons de manière formelle, écrire les relations (\mathcal{E}_S) pour l'équation (E), en prenant $B_r^{\lambda s}=0$ et $f_\Gamma(x^\alpha)=f(x^\alpha,v(x^\alpha),D_\nu v(x^\alpha))$. Toutefois, contrairement aux (\mathcal{E}_S) pour (I_2) , la relation obtenue ne sera pas une équation intégrale. Ceci est dû à la présence dans f des dérivées partielles $D_\nu v$ de la fonction inconnue.

Essayons de lever cette difficulté en dérivant une fois l'équation (E) par rapport aux (x^{α}) . Si nous prenons pour fonctions inconnues v et ses dérivées $v_{\alpha} = \frac{\partial v}{\partial x^{\alpha}}$, on peut écrire pour (E) et l'équation dérivée (E_{α}) les relations intégrales (\mathcal{E}_{S}) . Toutefois, on constate, une fois de plus, que les (\mathcal{E}_{S}) ainsi obtenues ne sont pas des équations intégrales. En effet les σ_{s}^{r} qui sont de la forme $\sigma_{s}^{r} = \sigma \omega_{s}^{r}$ sont telles que :

- σ ne dépend que des A^{λμ}, tandis que :
- Les fonctions ω^r_s dépendent de la fonction inconnue v et de ses dérivées partielles premières v_α .

Comme les fonctions L^r_s sont définies à partir des dérivées secondes des σ^r_s elles introduisent les dérivées partielles troisièmes de ν . Ce constat nous amènera à dériver trois fois l'équation (E) par rapport aux x^α .

En adjoignant à (E) ses équations dérivées jusqu'à l'ordre trois, on obtient un système d'équations aux dérivées partielles du type (E_r) de (I_2) , où les fonctions inconnues sont v et ses dérivées partielles jusqu'à l'ordre trois, que nous noterons (v_r) .

Si on écrit, pour ce nouveau système, les relations intégrales (\mathcal{E}_s), on obtient les mêmes fonctions v_s au premier et au second membres. Toutefois, on n'obtient toujours pas des équations intégrales . En effet les fonctions ω_s^τ , dépendant des fonctions (v_s) , figurent aussi comme inconnues dans les (\mathcal{E}_s).

Pour obtenir un système d'équations intégrales, il faudra adjoindre aux relations intégrales (\mathcal{E}_s) obtenues, des relations intégrales vérifiées par les ω_s^r et leurs dérivées jusqu'à l'ordre deux. Enfin, dans les intégrales doubles du système (\mathcal{E}_s), les fonctions E_s^r dépendent des valeurs des fonctions inconnues (v_s) sur C_o . Il sera donc nécessaire

(par définition des v_s) de déterminer les restrictions à C_o , des dérivées jusqu'à l'ordre trois de la solution du problème de Cauchy.

Ce sera justement le calcul sur C_0 des dérivées partielles premières de la solution du problème de Cauchy qui nous permettra de déterminer le domaine (C_0) auquel nous avons fait allusion précédemment.

1.3: SUBDIVISION DU TRAVAIL.

Le présent travail comporte deux grandes parties.

- α) <u>La partie A</u>, avec ses deux chapitres, rappelle et complète les résultats obtenus dans [B₁]
 - Le premier chapitre est consacré à :
 - La définition des conoïdes caractéristiques.
 - -L'établissement des formules de KIRCHHOFF.
 - -L'étude des fonctions figurant sous les intégrales doubles et triples.
- Le deuxième chapitre, rappelle les résultats obtenus pour le problème de Cauchy caractéristique pour des systèmes linéaires . Ce rappel concernera surtout l'étude des 2-surfaces $S_0(M_0)$ sur lesquelles sont calculées les intégrales doubles. On terminera le chapitre par une étude des intégrales doubles et triples.
- β) *La partie B*, qui traite du problème semi-linéaire, objet de ce travail, comporte quatre chapitres.
- Dans le troisième chapitre, on énonce les hypothèses de base et on écrit le système intégral (\mathcal{C}_S) vérifié par :
- -La solution du problème de Cauchy et ses dérivées jusqu'à l'ordre trois ; relations (\mathcal{E}_{S}).
 - -Les fonctions ω et leur dérivées jusqu'à l'ordre deux.
- Dans le quatrième chapitre, on rappelle comment sont déterminées dans [B₃] les restrictions à C₀ des dérivées jusqu'à l'ordre trois de la solution du problème de Cauchy.
- ullet Dans le cinquième chapitre, on résoud le système d'équations intégrales obtenu dans le troisième chapitre en déterminant un ouvert Ω_1 sur lequel la solution existe.
- Enfin dans le sixième chapitre, on applique les résultats obtenus dans les chapitres précédents au problème de Cauchy semi-linéaire, plus simple, suivant :

(I₃)
$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha},v) = 0 \\ v \Big|_{\mathcal{C}_{0}} = \varphi(x^{i}) \end{cases}$$

En utilisant des résultats obtenus dans $[B_1]$, on montrera que le problème (I_3) admet une solution au sens des distributions.

Enfin, le problème consistant à démontrer que la solution du système d'équations intégrales (\mathcal{E}_S) est effectivement la solution du problème de Cauchy (I_I) ne sera pas abordé ici .

En effet, on sait que ce problème admet une solution unique au voisinage du sommet de C_0 , $[B_4]$ et $[B_6]$. En vertu de l'unicité, celle-ci coı̈ncide avec la solution des (\mathcal{E}_s) dans ce voisinage. Pour montrer que la solution des (\mathcal{E}_s) obtenue dans l'ouvert Ω_1 est solution de (I_1) dans Ω_1 tout entier, on utilise des théorèmes donnant des solutions locales du problème de Cauchy . Mais, dans ce cas-ci, on a besoin non seulement du théorème classique des solutions locales du problème de Cauchy sur une hypersurface spatiale, mais aussi d'un théorème donnant les solutions locales au voisinage de l'intersection d'une hypersurface spatiale et d'une hypersurface caractéristique.

NOTATIONS

Sauf *indications contraires* nous adoptons les notations et conventions suivantes : • Convention d'Einstein:

Quand, dans une expression, un indice est répété en haut et en bas, il s'agit d'une sommation.

• Lettre Grecques:

 α , β , γ , λ , μ , ... prennent les valeurs 0,1, 2,3 ...

• Lettres latines :

i, j, k, l,...prennent les valeurs 1, 2, 3, ...

Si Ω est un ouvert borné de IR^4 , alors :

- * $B^{\mathbf{k}}(\Omega)$ = l'espace vectoriel des fonctions définies sur Ω et y admettant des dérivées k-ièmes continues et bornées .
- * $\mathbf{B^{k,1}}(\Omega)$ = Le sous-espace de $\mathbf{B^k}(\Omega)$ dont les dérivées k-ièmes satisfont à des conditions de Lipschitz.

PARTIE A

RAPPELS ET COMPLEMENTS DES RESULTATS OBTENUS POUR LE PROBLEME DE CAUCHY LINEAIRESUR UN CONOÏDE CARACTERISTIQUE,[B1]:

$$\begin{split} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v_{r} + B^{\lambda s}_{r}D_{\lambda}v_{s} + f_{r}(x^{\alpha}) &= 0 \\ v\bigg|_{\mathcal{C}_{o}} &= \varphi_{r}(x^{i}) \end{split}$$

CHAPITRE 1

FORMULES DE KIRCHHOFF ET PROBLEME DE CAUCHY SUR UNE HYPERSURFACE SPATIALE

Dans ce chapitre, on s'intéresse au problème de Cauchy suivant :

Dans ce chapitre, on s'interesse au probleme de Cauchy suivant :
$$\begin{cases}
(F_r) \ A^{\lambda\mu}(x^{\alpha}) \frac{\partial^2 v_r}{\partial x^{\lambda} \partial x^{\mu}} + B_r^{\lambda s}(x^{\alpha}) \frac{\partial v_s}{\partial x^{\lambda}} + f_r(x^{\alpha}) = 0 \ dans \Omega \\
v_r \Big|_{\dot{b}} = \varphi_r(x^i) \\
\frac{\partial v_r}{\partial x^o} \Big|_{\dot{b}} = \chi_r(x^i)
\end{cases}$$

où:

•
$$\alpha$$
, λ , μ ,= 0,1,2,3...
i =1,2,3,...
r. s.... = 1,2,3....r

- \mathring{b} est une hypersurface de IR⁴, orientée dans l'espace et d'équation $x^\circ = \phi(x^i)$
- φ_r et χ_r, n fonctions données.
- Ω un ouvert de IR⁴, voisinage de δ

Ce chapitre est divisé en six sections:

- Dans la section 1.1, après avoir énoncé des hypothèses préliminaires, nous définissons les demi-conoïdes caractéristiques.
- La section 1.2 est consacrée à l'écriture des équations (F_r) sur les demi-conoïdes caractéristiques $\mathcal{C}_{\overline{M}_0}$ et à l'introduction des fonctions auxiliaires σ_s^r
 - Dans la section 1.3, nous écrivons les formules de KIRCHHOFF pour les (F_r).
- Ces formules seront réécrites dans la section 1.4 sous une forme plus adaptée au problème de Cauchy caractéristique que nous aurons à étudier.
- -En vue de l'étude des intégrales doubles et triples, nous calculons dans la section 1.5, les développements limités de quelques fonctions figurant sous ces intégrales.
- La dernière section 1.6 de ce chapitre est consacrée à l'étude des fonctions ω_s' et L'_s. Ce qui n'était pas nécessaire dans le cas linéaire.

1.1 CONOÏDES CARACTERISTIQUES.

Considérons les équations (F_r) de (1.0) et faisons les hypothèses suivantes:

1.1.1: Hypothèses (Ho):

1-
$$L = A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}$$
 est un opérateur différentiel de type hyperbolique normal:
 $A^{oo} > 0$, $A^{ij}X_iX_j$ définie négative.
2- i) $A^{\lambda\mu} \in B^4(\Omega)$
 ii) $B_r^{\lambda s} \in B^2(\Omega)$
 iii) $f_r \in B^0(\Omega)$

1.1.2: Définitions des conoïdes caractéristiques.

Les hypersurfaces caractéristiques de l'opérateur L qui ont pour équation: $x^0 = F(x^i)$, satisfont à l'équation aux dérivées partielles du premier ordre:

$$(1.1.2.1) \quad A^{oo} + 2A^{oi} p_i + A^{ij} p_i p_j = 0 \quad \text{où } p_i = -\frac{\partial F}{\partial x^i}$$

Définition:

On appelle demi-conoïdes caractéristiques $C_{\overline{M}_o}$ et C_{M_o} pour l'opérateur L, les hypersurfaces caractéristiques engendrées par les bicaractéristiques issues de M_o , orientées soit vers les x^O négatifs, soit vers les x^O positifs.

L'équation (1.1.2.1) a pour système différentiel caractéristique:

$$(1.1.2.2) \frac{dx^{\alpha}}{T^{\alpha}} = \frac{dp_{i}}{R_{i}} = d\lambda_{1} \quad où$$

$$T^{\alpha} = A^{\alpha o} + A^{\alpha i}p_{i}$$

$$R_{i} = -\frac{1}{2}(\frac{\partial \mathcal{L}}{\partial x^{i}} - p_{i}\frac{\partial \mathcal{L}}{\partial x^{o}}) \quad avec$$

$$\mathcal{L}(x^{\alpha}, p_{i}) = A^{oo} + 2A^{oi}p_{i} + A^{ij}p_{i}p_{j}$$

$$\lambda_{1} \quad paramètre \quad réel \quad et \quad A^{\lambda \mu} = A^{\lambda \mu}(x^{\circ} = F(x^{i}), x^{i})$$

Les bicaractéristiques passant par $M_0(x^{\alpha})$ admettent des représentations paramétriques: $x^{\lambda}(x_0^{\alpha}; \lambda_1, p_j^0)$ et $p_j(x_0^{\alpha}; \lambda_1, p_j^0)$ qui sont solutions du système intégral :

$$(1.1.2.3) \begin{cases} x^{\lambda}(x_o^{\alpha}, \lambda_1, p_j^{o}) = X_o^{\lambda} + \int_o^{\lambda_1} T^{\lambda}(x^{\nu}, p_j) d\lambda_1 \\ p_i(x_o^{\alpha}, \lambda_1, p_j^{o}) = p_i^{o} + \int_o^{\lambda_1} R_i(x^{\nu}, p_j) d\lambda_1 \end{cases}$$

Les p_i sont choisis tels que:

$$(1.1.2.4): \mathcal{L}(x_o^{\alpha}; p_i^o) = 0$$

Introduisons l'hypothèse suivante dont nous aurons besoin pour l'étude des formules de KIRCHHOFF.

Hypothèse (H_{Mo}).

Au point M_o les $A^{\lambda\mu}$ véifient:

$$A^{oo}(M_o) = 1, A^{oi}(M_o) = 0 \text{ et } A^{ij}(M_o) = -\delta^{ij}$$

 $\underline{Cons\'equence} \ de \ (H_{Mo}).$

(1.1.2.4)
$$s'\acute{e}rit$$
 : $\sum_{i=1}^{3} (p_i^o)^2 = 1$

On peut donc repérer les bicaractéristiques issues de Mo au moyen des coordonnées sphériques λ_2 et λ_3 telles que :

onnées sphériques
$$\lambda_2$$
 et λ_3 telles que :
$$\begin{cases} p_1^o = \sin \lambda_2 \cos \lambda_3 \\ p_2^o = \sin \lambda_2 \sin \lambda_3 \text{ avec } (\lambda_2, \lambda_3) \in [0, \pi] \times [0, 2\pi] \\ p_3^o = \cos \lambda_2 \end{cases}$$

On aboutit ainsi à une nouvelle représentation paramétrique de $\mathcal{C}_{\overline{M}_0}$:

$$(1.1.2.6) \begin{cases} x^{\lambda} = x^{\lambda}(x_o^{\alpha}; \lambda_1, \lambda_h) & h = 2, 3 \\ p_i = p_i(x_o^{\alpha}; \lambda_1, \lambda_h) \end{cases}$$

Des hypothèses faites sur les $A^{\lambda\mu}$, on déduit que les fonctions $x^{\lambda} = x^{\lambda}(x_o^{\alpha}; \lambda_1, \lambda_h)$ et $p_i = p_i(x_o^{\alpha}; \lambda_1, \lambda_h)$ sont de classe C^3 par rapport à l'ensemble de leurs variables.

Dans tout domaine de $\mathcal{C}_{\overline{M}_0}$ où :

$$\Delta = \frac{D(x^{i})}{D(\lambda_{i})} \neq 0 \quad i, j = 1, 2, 3$$

on peut obtenir l'équation de $\ell_{\overline{M}_o}$ sous la forme $x^o = F(x^i)$

On pose
$$\Delta^{i}_{j} = \Delta \cdot \frac{\partial \lambda_{i}}{\partial x_{j}}$$
 mineurs de Δ

1.2 FONCTIONS AUXILIAIRES

1.2.1 Ecriture des équations (F_r) sur $\ell_{\overline{M}_o}$

Notation:

Pour toute fonction $u(x^{\alpha})$ de quatre variables, on pose :

$$[u] = u(x^{\circ} = F(x^{i}), x^{i}) = u \Big|_{\mathcal{C}_{\overline{M}_{0}}}$$

Ecriture des dérivées:

En dérivant [u], on obtient:

$$\frac{\partial [u]}{\partial x^i} = \left[\frac{\partial u}{\partial x^i} \right] + \left[\frac{\partial u}{\partial x^o} \right] \frac{\partial F}{\partial x^i} \text{ et comme } \frac{\partial F}{\partial x^i} = -p_i.$$

On trouve successivement:

$$\begin{bmatrix}
\frac{\partial u}{\partial x^{i}} \end{bmatrix} = \frac{\partial [u]}{\partial x^{i}} + p_{i} \begin{bmatrix} \frac{\partial u}{\partial x^{o}} \end{bmatrix} \\
\begin{bmatrix}
\frac{\partial^{2} u}{\partial x^{o} \partial x^{i}} \end{bmatrix} = \frac{\partial}{\partial x^{i}} \begin{bmatrix} \frac{\partial u}{\partial x^{o}} \end{bmatrix} + p_{i} \begin{bmatrix} \frac{\partial^{2} u}{\partial x^{o}} \end{pmatrix}^{2} \\
\begin{bmatrix}
\frac{\partial^{2} u}{\partial x^{i} \partial x^{j}} \end{bmatrix} = \frac{\partial^{2} [u]}{\partial x^{i} \partial x^{j}} + \frac{\partial p_{i}}{\partial x^{j}} \begin{bmatrix} \frac{\partial u}{\partial x^{o}} \end{bmatrix} + p_{i} \frac{\partial}{\partial x^{j}} \begin{bmatrix} \frac{\partial u}{\partial x^{o}} \end{bmatrix} + p_{j} \frac{\partial}{\partial x^{i}} \begin{bmatrix} \frac{\partial u}{\partial x^{o}} \end{bmatrix} + p_{i} p_{j} \begin{bmatrix} \frac{\partial^{2} u}{\partial x^{o}} \end{bmatrix}^{2}$$

En prenant, à la place de u, les v_r et en remarquant que le coefficient de $\left[\frac{\partial^2 v_r}{(\partial x^o)^2}\right]$, qui est $A^{oo} + 2A^{oi}p_i + A^{ij}p_ip_j$, est nul ,car $\ell_{\overline{M}_o}$ est caractéristique pour L ,et où les $A^{\lambda\mu}$ sont pris pour les arguments: $(x^o = F(x^i), x^i)$, alors le système (F_r) s'écrit sur $\ell_{\overline{M}_o}$:

$$[F_r]: (1.2.1.2) \begin{cases} 2\Big(\Big[A^{ij}\Big]p_j + \Big[A^{oi}\Big]\Big) \frac{\partial}{\partial x^i} \Big[\frac{\partial v_r}{\partial x^o}\Big] + \Big[A^{ij}\Big] \frac{\partial p_i}{\partial x_j} \Big[\frac{\partial v_r}{\partial x^o}\Big] + \Big[A^{ij}\Big] \frac{\partial^2 [v_r]}{\partial x^i \partial x^j} + \\ \Big(\Big(\Big[B^{it}_r\Big]p_i + \Big[B^{ot}_r\Big]\Big) \Big[\frac{\partial v_t}{\partial x^o}\Big] + \Big[B^{it}_r\Big] \frac{\partial [v_t]}{\partial x^i} + \Big[f_r\Big] = 0 \end{cases}$$

• Lien entre dérivation par rapport aux (x^i) et dérivation par rapport aux (λ_j) . De (1.1.2.3) on a:

$$\frac{\partial x^{\alpha}}{\partial \lambda_{1}} = T^{\alpha} = \left[A^{\alpha 0}\right] + \left[A^{\alpha i}\right] p_{i} \ donc$$

$$\frac{\partial \left[u\right]}{\partial \lambda_{1}} = \frac{\partial \left[u\right]}{\partial x^{i}} \frac{\partial x^{i}}{\partial \lambda_{1}} = T^{i} \frac{\partial \left[u\right]}{\partial x^{i}}$$

$$\frac{\partial \left[u\right]}{\partial x^{i}} = \frac{\partial \left[u\right]}{\partial \lambda_{j}} \frac{\partial \lambda_{j}}{\partial x^{i}} = \frac{\Delta_{i}^{j}}{\Delta} \frac{\partial \left[u\right]}{\partial \lambda_{j}} d^{i} o \dot{u}$$

(1.2.1.3)
$$\begin{cases} \left(\left[A^{ij} \right] p_j + \left[A^{io} \right] \right) \frac{\partial \left[u \right]}{\partial x^i} = \frac{\partial \left[u \right]}{\partial \lambda_1} \\ \frac{\partial \left[u \right]}{\partial x^i} = \frac{\Delta_1^j}{\Delta} \frac{\partial \left[u \right]}{\partial \lambda_j} \end{cases}$$

Comme conséquence de (1.2.1.2) et (1.2.1.3), sur chaque bicaractéristique de $\ell_{\overline{M}_a}$, de paramètre λ_1 , (1.2.1.2) s'écrit:

$$[F'_{\mathbf{f}}]: (1.2.1.2') \begin{cases} 2\frac{d}{d\lambda_{1}} \left[\frac{\partial v_{r}}{\partial x^{o}}\right] + \left[A^{ij}\right] \frac{\partial p_{i}}{\partial x^{j}} \left[\frac{\partial v_{r}}{\partial x^{o}}\right] + \left(\left[B^{it}_{r}\right]p_{i} + \left[B^{ot}_{r}\right]\right) \left[\frac{\partial v_{t}}{\partial x^{o}}\right] + \left[B^{it}_{r}\right] \frac{\partial \left[v_{t}\right]}{\partial x^{i}} + \left[A^{ij}\right] \frac{\partial^{2}\left[v_{r}\right]}{\partial x^{i}\partial x^{j}} + \left[f_{r}\right] = 0 \end{cases}$$

1.2.2: Fonctions auxiliaires σ_s^r

Madame CHOQUET a introduit dans $[B_5]$, n^2 fonctions σ_s^r qu'elle a appelées fonctions auxiliaires et a formé des combinaisons linéaires avec les $[F_r]$ telles que les $\sigma_s^r[F_r]$ puissent s'écrire:

$$(1.2.2.1): \left[\mathbf{v}_{r} \right] L_{s}^{r} + \sigma_{s}^{r} \left[f_{r} \right] + \frac{\partial E_{s}^{l}}{\partial x^{i}} = 0 \quad \text{où}:$$

$$\left[\mathbf{E}_{s}^{i} = \left[A^{ij} \right] \sigma_{s}^{r} \frac{\partial \left[\mathbf{v}_{r} \right]}{\partial x^{j}} - \frac{\partial \left(\left[A^{ij} \right] \sigma_{s}^{r} \right)}{\partial x^{j}} \left[\mathbf{v}_{r} \right] + \left[B_{r}^{it} \right] \left[\mathbf{v}_{t} \right] \sigma_{s}^{r} + \left[2 \left(\left[A^{ij} \right] p_{j} + \left[A^{oi} \right] \right) \left[\frac{\partial \mathbf{v}_{r}}{\partial x^{o}} \right] \sigma_{s}^{r} \right] \right]$$

$$\left[L_{s}^{r} = \frac{\partial^{2} \left(\left[A^{ij} \right] \sigma_{s}^{r} \right)}{\partial x^{i} \partial x^{j}} - \frac{\partial \left(\left[B_{t}^{ir} \right] \sigma_{s}^{t} \right)}{\partial x^{i}} \right]$$

Ceci à condition que les σ_s^r vérifient les équations:

$$(1.2.2.3) \quad 2\frac{\partial}{\partial x^{i}} \left\{ \left(\left[A^{ij} \right] p_{j} + \left[A^{oi} \right] \right) \sigma_{s}^{r} \right\} - \left(p_{i} \left[B_{i}^{ir} \right] + \left[B_{i}^{or} \right] \right) \sigma_{s}^{I} - \left[A^{ij} \right] \frac{\partial p_{i}}{\partial x^{j}} \sigma_{s}^{r} = 0$$

Pour trouver une solution à ces équations, on pose $\sigma_s^r = \sigma_s \omega_s^r$ en imposant à σ et aux ω_s^r de vérifier les équations :

Sous l'hypothèse (H_{Mo}) , on montre que :

• La première équation admet la solution :

$$(1.2.2.5) \quad \sigma = -\left|\frac{\sin \lambda_2}{\Delta}\right|^{\frac{1}{2}} \quad \text{avec} \quad \lim_{\lambda_1 \to 0} \lambda_1 \sigma =$$

• En admettant que les ω_s^r vérifient $\omega_s^r \Big|_{\lambda_1=0} = \delta_s^r$, alors la deuxième équation a pour solution :

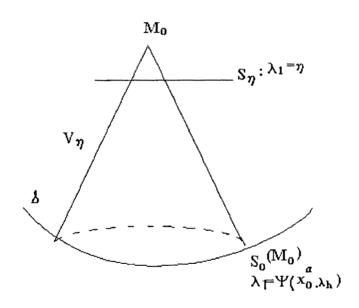
$$(1.2.2.6) \begin{cases} \omega_s^r = \delta_s^r + \int_0^{\lambda_1} (Q\omega_s^r + Q_t^r \omega_s^t) d\lambda_1 & \text{où} \\ Q = -\frac{1}{2} \left(p_j \frac{\partial \left[A^{ij} \right]}{\partial x^i} + \frac{\partial \left[A^{oi} \right]}{\partial x^i} \right) \\ Q_t^r = \frac{1}{2} \left(p_i \left[B_t^{ir} \right] + \left[B_t^{or} \right] \right) \end{cases}$$

1.3: FORMULES DE KIRCHHOFF GENERALISEES

1.3.1: Formules de KIRCHHOFF sous l'hypothèse $H_{_{M_{_{o}}}}$

Intégrons les équations (1.2.2.1) par rapport aux variables x^i , dans le domaine V_η de $\ell_{\overline{M_*}}$ défini par :

$$\eta' \begin{cases} 0 > \eta \ge \lambda_1 \ge \psi(x_o^{\alpha}, \lambda_h) \\ \eta = cte \\ \psi = fonction \ continue \\ h = 2,3 \end{cases}$$



En appliquant la formule de STOKES, on a :

$$\begin{cases} \iiint_{V_{\eta}} \left([V_r] L_s^r + \sigma_s^r [f_r] + \frac{\partial E_s^i}{\partial x^i} \right) dV = \iiint_{V_{\eta}} \left([V_r] L_s^r + \sigma_s^r [f_r] \right) dV + \iint_{S_o(M_o)} E_s^i \cos(n, x^i) dS + \\ \iint_{S_{\eta}} E_s^i \cos(n, x^i) dS \end{cases}$$

où :

- $\cos(n,x^i)$ sont les cosinus directeurs des normales à S_0 et S_η orientées vers l'extérieur du domaine V_η . En utilisant l'hypothèse H_{M_0} et en passant aux variables (λ_j) , on trouve:
 - $dV = dx^1 dx^2 dx^3 = -\Delta d\lambda_1 d\lambda_2 d\lambda_3$, car $\Delta < 0$
 - Sur $S_{\eta_1} \cos(n, x^i) dS = -\Delta_1^i d\lambda_2 d\lambda_3$

• Sur S₀:
$$\cos(\mathbf{n}, \mathbf{x}) dS = \left(\Delta_i^1 - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h\right) d\lambda_2 d\lambda_3$$
 h = 2, 3

par conséquent (i) devient

(ii)
$$\int_{0}^{2\pi} d\lambda_{3} \int_{0}^{\pi} d\lambda_{2} \Delta_{i}^{1} E_{s}^{i} = \int_{0}^{2\pi} d\lambda_{3} \int_{0}^{\pi} d\lambda_{2} \int_{\eta}^{\psi(x_{o}^{\alpha}, \lambda_{h})} \Delta([V_{r}] L_{s}^{r} + \sigma_{s}^{r} [f_{r}]) d\lambda_{1} + \int_{0}^{2\pi} d\lambda_{3} \int_{0}^{\pi} d\lambda_{2} E_{s}^{i} \left(\Delta_{i}^{1} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h}\right)$$

En passant à la limite, quand $\eta \to 0$, dans (ii), on a montré dans [B₅] que:

- L'intégrale triple converge ;
- L'intégrale double du premier membre tend vers $4\pi v_s(x_o^\alpha)$. On obtient les formules de KIRCHHOFF suivantes:

$$(\mathcal{I}_{\mathbf{S}})$$

$$4\pi v_s(x_o^{\alpha}) = \int_{o}^{2\pi} d\lambda_3 \int_{o}^{\pi} d\lambda_2 \int_{o}^{\psi(x_o^{\alpha}, \lambda_h)} d\lambda_1 \Delta([V_r] L_s^r + \sigma_s^r[f_r]) + \int_{o}^{2\pi} d\lambda_3 \int_{o}^{\pi} d\lambda_2 E_s^i \left(\Delta_i^1 - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h\right)$$

1.3.2 Changement de variables

Pour obtenir les formules (\mathcal{F}_s) , il a fallu admettre l'hypothèse (H_{Mo}) . Afin d'obtenir (\mathcal{F}_s) en tout point $M_o(x_o^\alpha) \in \Omega$, on va procéder comme dans $[B_1]$:

" A tout point $M_{\circ}(x_{\circ}^{\alpha})$ on associe un nouveau système de variables (y^{β}) défini par

(1.3.2.1):
$$y^{\beta} = a_{\alpha}^{\beta}(M_{\alpha})x^{\alpha}$$
".

Telles que les équations (F_r) s'écrivent en coordonnées (y^{β})

$$(1.3.2.2) \quad \stackrel{*^{\lambda\mu}}{A} (M_o, y^{\alpha}) \frac{\partial^2 v_r}{\partial y^{\lambda} \partial y^{\mu}} + \stackrel{*^{\lambda s}}{B_r} (M_o, y^{\alpha}) \frac{\partial v_s}{\partial y^{\lambda}} + f_r = 0$$

avec
$$A = a_{\alpha} a_{\beta} A^{\alpha\beta}$$
 et $B_r = a_{\alpha} B_r^{\alpha s}$ et $A = a_{\alpha}$

- ii) les a_{α} sont des fonctions analytiques de M_0 par l'intermédiaire des $A^{\lambda\mu}$.
- iii) $a_i = 0$, de façon que toute hypersurface d'équation $x^o = cte$ soit transformée en une hypersurface d'équation y° = cte.

On note
$$\begin{pmatrix} a^{\alpha} \\ o \beta \end{pmatrix}$$
 la matrice inverse de la matrice $\begin{pmatrix} a_{\alpha} \\ a_{\alpha} \end{pmatrix}$.

En tenant compte de ce nouveau changement de variables, on peut résumer les résultats précédents dans la proposition suivante:

Proposition 1.1

- Si les hypothèses (H_o) sont vérifiées pour les (F_r) ;
- Pour toute solution (v_r) des (F_r) dans un domaine Ω ;
- Pour toute hypersurface (§ qui coupe tous les demi-conoïdes caractéristiques issues de $M_0 \in \Omega$ suivant des 2-surfaces $S_0(M_0)$ définies sur les $\mathcal{C}_{\overline{M_0}}$

équations: $λ_1 = ψ(x_o^α; λ_h)$ h = 2, 3 ψ continue ; - Si les $(^{\complement}_{\overline{M}_0})$, partie de $^{\complement}_{\overline{M}_0}$ situées entre M_o et \mathscr{S} sont contenues dans Ω ;

$$\begin{cases} Alors: \\ \forall \ \mathsf{M}_{o}(\mathsf{x}_{o}^{\alpha}) \in \Omega \ on \ a: \\ \left\{ 4\pi v_{s}(\mathsf{x}_{o}^{\alpha}) = \int_{o}^{2\pi} d\lambda_{3} \int_{o}^{\pi} d\lambda_{2} \sin \lambda_{2} \int_{o}^{\psi(\mathsf{x}_{o}^{\alpha}, \lambda_{h})} d\lambda_{1} \underbrace{\mathsf{A}}([V_{r}] L_{s}^{r} + \sigma_{s}^{r}[f_{r}]) + \int_{o}^{2\pi} d\lambda_{3} \int_{o}^{\pi} d\lambda_{2} E_{s}^{i} \left(\Delta_{i}^{l} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h} \right) \end{cases}$$

où, en coordonnées (y^{β}) associées au point $M_{o}(x_{o}^{\alpha})$:

-
$$\mathcal{C}_{\overline{M}_0}$$
 a pour équation $y^o = F(x^\alpha; y^i)$ et on pose $p_i = -\frac{\partial F}{\partial y^i}$

- Les bicaractéristiques de $\mathcal{C}_{\overline{M}_{c}}$ sont solutions du système intégral:

$$(1.3.2.3)\begin{cases} y^{\lambda} = y_o^{\lambda} + \int_{1}^{\lambda_1} T \, d\lambda_1 \\ p_i = p_i^o + \int_{0}^{\lambda_1} R_i d\lambda_1 \\ avec \quad T = A + A \quad p_i \quad et \quad R_i = -\frac{1}{2} \left(\frac{\partial \dot{L}}{\partial y^i} - p_i \frac{\partial \dot{L}}{\partial y^o} \right) \\ \dot{\dot{L}}(y^{\lambda}, p_i) = A \quad +2A \quad p_i + A \quad p_i p_j \end{cases}$$

- On pose

$$(1.3.2.4) \begin{cases} \Delta = \frac{D(y^1, y^2, y^3)}{D(\lambda_1, \lambda_2, \lambda_3)} \\ \Delta_j^i = \Delta \frac{\partial \lambda_j}{\partial y^j} \\ \Delta = \frac{\Delta}{\sin \lambda_2} \end{cases}$$

$$\begin{aligned}
&\sigma = -\frac{1}{\sqrt{|\Delta|}} \\
&\omega_{s}^{r} = \delta_{s}^{r} + \int_{0}^{\lambda_{1}} \left(Q\omega_{s}^{r} + Q_{t}^{r}\omega_{s}^{t}\right) d\lambda_{1} \quad \text{où} \\
&Q = -\frac{1}{2} \left(p_{j} \frac{\partial \left[A^{ij}\right]}{\partial y^{i}} + \frac{\partial \left[A^{io}\right]}{\partial y^{i}}\right) \\
&Q_{t}^{r} = \frac{1}{2} \left(p_{i} \left[B_{t}^{ir}\right] + \left[A^{or}\right]\right)
\end{aligned}$$

- Les E's et L's s'écrivent

$$E_{s}^{i} = \begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \frac{\partial \left[v_{r}\right]}{\partial y^{j}} - \frac{\partial \left[\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r}\right]}{\partial y^{j}} [v_{r}] + \begin{bmatrix} \star^{iir} \\ B_{t} \end{bmatrix} [v_{r}] \sigma_{s}^{t} + 2 \begin{bmatrix} \star^{ij} \\ A \end{bmatrix} p_{j} + \begin{bmatrix} \star^{oi} \\ A \end{bmatrix} \sigma_{s}^{r} \cdot \frac{\partial \left[v_{r}\right]}{\partial y^{j}}$$

$$U_{s}^{r} = \frac{\partial^{2} \left[\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r}\right]}{\partial y^{i} \partial y^{j}} - \frac{\partial \left[\begin{bmatrix} \star^{iir} \\ B_{t} \end{bmatrix} \sigma_{s}^{t}\right]}{\partial y^{i}}$$

1.4: PROBLEME DE CAUCHY SUR UNE HYPERSURFACE ORIENTEE DANS L'ESPACE

Considérons les relations (\mathcal{I}_S) de la proposition 1.1 du § 1.3. Si on se donne sur l'hypersurface \mathcal{L}_s , les valeurs des v_r et $\frac{\partial v_r}{\partial x^o}$, alors l'expression des E_s^i (1.3.2.6) montrent que les intégrales doubles sont des fonctions connues. Par conséquent les (\mathcal{I}_S) constituent un système d'équations intégrales à fonctions inconnues (v_S) .

Considérons le problème de Cauchy (1.0). Nous allons dans ce paragraphe écrire les formules de KIRCHHOFF pour ce problème, tout en donnant une forme explicite des fonctions $\vartheta_s = E_s^i \left(\Delta_i^1 - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h \right)$ forme adaptée à l'étude du problème de Cauchy caractéristique.

Dans le problème de Cauchy (1.0), on fait les hypothèses suivantes.

1.4.1: Hypothèses (H₁)

- 1- $L = A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}$, $A^{\lambda\mu}$, $B_r^{\lambda s}$ et f_r satisfont aux hypothèses (H₀) du § 1.1
- 2- Soit Aun domaine fermé et borné de \mathcal{S} tel que Ω soit un voisinage de \mathcal{S} vers les x° positifs et tel que:

i)- ϕ est deux fois différentiable sur $\mathscr A$

ii)- φ_r sont n fonctions deux fois différentiables sur \mathcal{L}

iii)- χ_r sont n fonctions différentiables sur \mathcal{S}

Posons en coordonnées (y^{β}) :

$$\begin{cases} y^{\circ} = \phi^{*}(x_{o}^{\alpha}; y^{i}) & \text{équation } de \, b \\ q_{i} = -\frac{\partial \phi^{*}}{\partial y^{i}} & \text{(où } q_{i} = -\frac{\partial \phi}{\partial x^{i}}) \\ \varphi_{r}(x_{o}^{\alpha}; y^{i}) = v_{r}(\phi^{*}(y^{i}), y^{i}) = \varphi_{r}(x^{j}) \\ \chi_{r}(x_{o}^{\alpha}; y^{i}) = \frac{\partial v_{r}}{\partial y^{\circ}}(\phi^{*}(y^{i}), y^{i}) = \frac{\partial v_{r}}{\partial x^{\lambda}}(x^{j}). a^{\lambda} \\ où \quad x^{j} = a^{j} y^{i} + a^{j} \phi^{*}(y^{i}) \end{cases}$$

<u>Détermination des</u> $\psi(x_o^{\alpha}; \lambda_h)$ a)

L'équation de $S_0(M_0) = \mathcal{C}_{\overline{M_o}} \cap \delta$ est de la forme $\lambda_1 = \underline{\psi(x_o^{\alpha}; \lambda_h)}$, h = 2, 3 qui est la solution de l'équation en λ_1 :

(1.4.1.2):
$$\mathcal{J}(x_{0}^{\alpha}; \lambda_{1}, \lambda_{h}) = y^{o}(x_{0}^{\alpha}; \lambda_{1}, \lambda_{h}) - \phi^{*}(y^{i}(x_{0}^{\alpha}; \lambda_{1}, \lambda_{h})) = 0$$

Comme
$$\frac{\partial \mathcal{J}}{\partial \lambda_{1}} = \frac{\partial y^{o}}{\partial \lambda_{1}} - \frac{\partial \phi^{*}}{\partial y^{i}} \frac{\partial y^{i}}{\partial \lambda_{1}} \quad on \ a \ (de \ (1.3.2.3))$$
(1.4.1.3)
$$\frac{\partial \mathcal{J}}{\partial \lambda_{1}} = A + A \quad (p_{i} + q_{i}) + A \quad p_{i} q_{j}$$

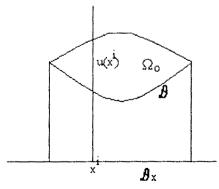
Mais:

• $\mathcal{C}_{\overline{M}_o}$ est caractéristique donc: $A + 2A p_i + A p_i p_j = 0$ • $A Y_i Y_j$ est définie négative donc: $A (p_i - q_i)(p_j - q_j) < 0$

• A', ϕ^* , q_i sont continues

Par conséquent, on montre, dans $[B_1]$, qu'il existe un ouvert $\Omega_o \subset \Omega$ voisinage de A, définie par:

$$\Omega_o: \begin{cases} x^o - \phi(x^i) < u(x^i) & où u(x^i) > 0 \\ (x^i) \in \mathcal{D}_x \end{cases}$$



Où \mathcal{B}_{x} est la projection de \mathcal{B} sur l'espace des (x^{i})

Telle que:

$$(1.4.1.4): \begin{cases} \bullet \ \Omega_o \ est \ causal, \ i.e. \ \forall \ M_o \in \Omega_o \ on \ a \ (\ell_{\overline{M}_o}) \subset \Omega_o \\ \bullet \ \frac{\partial \mathcal{G}}{\partial \lambda_1} > k > 0, \ k = cte, \ d'où \ l'existence \ de \ \psi(x_o^\alpha; \lambda_h) \\ \bullet \ \left| \psi(x_o^\alpha; \lambda_h) \right| < K(x_o^o - \phi(x_o^i)) \ avec \ K = cte \end{cases}$$

(1.4.1.4) montre qu'on peut écrire les formules de KIRCHHOFF pour le problème de Cauchy (1.0).

b) Expression des fonctions
$$J_s = E_s^i (\Delta_i^l - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h)$$

α) Expression des E_s en fonction des données de Cauchy:

De (1.4.1.1) on a:

$$\frac{\partial v_r}{\partial x^{\lambda}}(x^j) \stackrel{\lambda}{a} = \stackrel{o}{a} \frac{\partial v_r}{\partial x^o}(x^j) + \stackrel{i}{a} \frac{\partial v_r}{\partial x^i}(x^j)$$

donc

$$(1.4.1.5) \quad \chi_r(x_o^\alpha; y^i) = \mathop{a}\limits_{oo}^o \chi_r + \mathop{a}\limits_{oo}^i \left(q_i \chi_r + \frac{\partial \varphi_r}{\partial x^i} \right)$$

Mais:

- Sur
$$\mathcal{C}_{\overline{M}_o}$$
: $\frac{\partial [v_r]}{\partial y^j} = \left[\frac{\partial v_r}{\partial y^j}\right] - p_j \left[\frac{\partial v_r}{\partial y^o}\right]$

- Sur (b):
$$\left[\frac{\partial \mathbf{v}_r}{\partial \mathbf{y}^j} \right] = \frac{\partial \boldsymbol{\varphi}_r^*}{\partial \mathbf{y}^j} + \mathbf{q}_j^* \boldsymbol{\chi}_r^*$$

donc, sur S₀(M₀) on a

$$\frac{\partial \left[v_{r}\right]}{\partial v^{j}} = \frac{\partial \phi_{r}^{*}}{\partial v^{j}} + \left(q_{j}^{*} - p_{j}\right)\chi_{r}^{*}$$

d'où l'expression des E's:

$$(1.4.1.6): \begin{cases} E_{s}^{i} = \begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \left\{ \frac{\partial \phi_{r}}{\partial y^{j}} + \begin{pmatrix} \star \\ q_{j} - p_{j} \end{pmatrix} \dot{\chi}_{r} \right\} - \phi_{r} \frac{\partial \left(\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \right)}{\partial y^{j}} + \\ 2 \left(\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} p_{j} + \begin{bmatrix} \star^{oi} \\ A \end{bmatrix} \right) \sigma_{s}^{r} \cdot \dot{\chi}_{r} + \begin{bmatrix} \star^{ir} \\ B_{t} \end{bmatrix} \sigma_{s}^{t} \cdot \phi_{r} \end{cases}$$

Ces relations sont obtenues en tenant compte du fait que sur $\mathcal{C}_{\overline{M}_o}$: $\mathcal{L}(y^{\lambda}, p_i) = 0$

$$\beta) \underline{\text{Expression des }} G_i = \Delta_i^{\text{I}} - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h$$

De la détermination de ψ on a:

(1.4.1.7):
$$G_i = \frac{\frac{\partial \mathcal{J}}{\partial y^i}}{\frac{\partial \mathcal{J}}{\partial \lambda_1}} = \Delta \frac{\begin{pmatrix} * \\ q_i - p_i \end{pmatrix}}{\frac{\partial \mathcal{J}}{\partial \lambda_1}}$$

 γ) <u>Déduction des</u> $\vartheta_{\underline{S}} = G_{\underline{i}} E_{\underline{s}}^{i}$

De (1.4.1.6) et (1.4.1.7) on tire:

$$(1.4.1.8): \vartheta_{s} = \frac{\Delta}{\frac{\partial \mathcal{J}}{\partial \lambda_{1}}} \left\{ \begin{pmatrix} \star \\ q_{i} - p_{i} \end{pmatrix} \left[\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \frac{\partial \varphi_{r}}{\partial y^{j}} - \psi_{r} \frac{\partial \left(\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \right)}{\partial y^{j}} + \sigma_{s}^{J} \left[\begin{bmatrix} \star^{ir} \\ B_{I} \end{bmatrix} , \psi_{r} \right] + \mathcal{L}(y^{\lambda}, q_{i}) \chi_{r} \right\}$$

1.4.2: Remarques:

l- De (1.4.1.4) et (1.4.1.8) et des propriétés de Δ , on peut déduire que les intégrales doubles

$$I_s(x_o^{\alpha}) = \int_o^{2\pi} d\lambda_3 \int_o^{\pi} d\lambda_2 \vartheta_s(x_o^{\alpha}; \lambda_h)$$

sont des fonctions continues et bornées indépendantes des fonctions inconnues (v_s) . Par conséquent les formules de KIRCHHOFF (\mathcal{I}_s) constituent un système d'équations intégrales linéaires d'inconnues (v_s) .

- 3- La présence du terme $\frac{\partial \mathcal{J}}{\partial \lambda_1}$ au dénominateur des $\mathcal{J}_s(x_o^\alpha; \lambda_h)$ ne pose pas de problème d'après (1.4.1.4). Ce ne sera pas le cas dans l'étude du problème de Cauchy sur un conoïde caractéristique où $\frac{\partial \mathcal{J}}{\partial \lambda_1}$ tend vers 0 au voisinage de \mathbf{C}_0 .

1.5: DEVELOPPEMENTS LIMITES AU VOISINAGE DE Mo DES FONCTIONS
$$y^{\lambda}(x_o^{\alpha}; \lambda_1, p_j^{o}(\lambda_h)), p_i(x_o^{\alpha}; \lambda_1, p_j^{o}(\lambda_h)), \Delta, \Delta_{\underline{j}}, \sigma, ET$$
 LEURS DERIVEES:

L'étude des intégrales doubles et triples dans les formules de KIRCHHOFF (\mathcal{I}_s) nécessite une étude particulière du comportement, au voisinage de M_o des fonctions:

- $y^{\lambda}(x_o^{\alpha}; \lambda_1, p_j^{o}(\lambda_h))$ et $p_i(x_o^{\alpha}; \lambda_1, p_j^{o}(\lambda_h))$ définissant les conoïdes caractéristiques $C_{\overline{M}_o}$.
 - Δ , Δ^{i}_{j} et σ

Notons: $\Lambda(x_o^{\alpha}; \lambda_i)$ le domaine défini par:

$$\Lambda: \begin{cases}
(x_o^{\alpha}) \in \Omega \\
\psi(x_o^{\alpha}; \lambda_h) < \lambda_1 < 0; \quad h = 2, 3 \\
(\lambda_2, \lambda_3) \in [0, \pi] \times [0, 2\pi]
\end{cases}$$

Nous désignerons par K et K' des fonctions bornées dans Λ , qui peuvent être différentes selon leurs usages.

Note

On montre que pour toutes les fonctions étudiées dans ce paragraphe et le suivant, on peut dériver termes à termes leurs développements limités au voisinage de M_{cr}

1.5.1: Développements limités des fonctions y \(\lambda \) et p_i:

Le système intégral (1.3.2.3) définissant les conoïdes $C_{\overline{M}_0}$ en coordonnées (y^{λ}) et l'hypothèse (H_{Mo}), montrent qu'on peut obtenir les développements limités suivants au voisinage de M_0 .

*
$$En \lambda_{\underline{I}}$$
:
$$\begin{cases} y^{\lambda} = y_{o}^{\lambda} - p_{i}^{o} \lambda_{1} + K \lambda_{1}^{2} \\ p_{i} = p_{i}^{o} + C_{1,i} (x_{o}^{\alpha}; p_{j}^{o}) \lambda_{1} + K \lambda_{1}^{2} \end{cases}$$

Où $C_{1,i}(x_0^{\alpha}; p_j^{\alpha})$ est un polynôme par rapport aux p_j^{α} et à coefficients continus et bornés de x_0^{α} . D'où, d'après la note précédente:

$$(1.5.1.2): \begin{cases} \frac{\partial y^{o}}{\partial \lambda_{1}} = 1 + K\lambda_{1} & \frac{\partial y^{o}}{\partial p_{h}^{o}} = K\lambda_{1}^{2} \\ \frac{\partial y^{i}}{\partial \lambda_{1}} = -p_{i}^{o} + K\lambda_{1} & \frac{\partial y^{i}}{\partial p_{h}^{o}} = -\delta_{h}^{i}\lambda_{1} + K\lambda_{1}^{2} \\ \frac{\partial^{2} y^{\lambda}}{\partial p_{h}^{o} \partial p_{k}^{o}} = K\lambda_{1}^{2} \end{cases}$$

* En yi:

Les fonctions définies sur $\mathcal{C}_{\overline{M}_o}$ peuvent s'exprimer aussi à l'aide des variables y¹. Dans ce cas, elles admettent un développement limité en fractions rationnelles homogènes (f.r.h.) en yⁱ, s, ayant pour dénominateur une puissance de s, où $s = \sqrt{\sum_{i=1}^{3} (\eta^i)^2}$ où $\eta^i = y^i - y^i_o$. De (1.5.1.1) on tire:

$$(1.5.1.3): \begin{cases} \lambda_1 = -s + K's^2 \\ p_o^i = \frac{\eta^j}{s} + K's \\ F(x_o^\alpha, y^i) = y_o^o - s + K's^2 \end{cases}$$

1.5.2: Développements limités et propriétés de: Δ , Δ^{i}_{j} et leurs dérivées

On pose
$$\Delta = \frac{\Delta}{\sin \lambda_2}$$
; $\Delta_i^l = \frac{\Delta_i^l}{\sin \lambda_2}$; et $\Delta_i^h = \frac{1}{\sin \lambda_2} \frac{\partial p_h^o}{\partial \lambda_\mu} \Delta_i^\mu$ où $h, \mu = 2, 3$

En appliquant les résultats du §(1.5.1) à

$$\Delta = \frac{D(y^{1}, y^{2}, y^{3})}{D(\lambda_{1}, \lambda_{2}, \lambda_{3})} = \sum_{j,k} \frac{1}{2} \left(\frac{\partial p_{j}^{o}}{\partial \lambda_{2}} \frac{\partial p_{k}^{o}}{\partial \lambda_{3}} - \frac{\partial p_{k}^{o}}{\partial \lambda_{2}} \frac{\partial p_{j}^{o}}{\partial \lambda_{3}} \right) \det \begin{bmatrix} \frac{\partial^{j}}{\partial \lambda_{1}} \\ \frac{\partial^{j}}{\partial p_{j}^{o}} \\ \frac{\partial^{j}}{\partial p_{k}^{o}} \end{bmatrix}$$

On obtient

$$(1.5.2.1): \begin{cases} \Delta = -\lambda_1^2 + K\lambda_1^3 = -s^2 + K^{1}s^3 \\ \Delta_i^1 = p_i^o \lambda_1^2 + K\lambda_1^3 \\ \Delta_i^h = (\delta_i^h - p_i^o p_h^o)\lambda_1 + K\lambda_1^2 \end{cases}$$

D'où:

$$(1.5.2.2): \begin{cases} \frac{\Delta_{i}^{1}}{\Delta} = \frac{\Delta_{i}^{1}}{\Delta} = -p_{i}^{o} + K\lambda_{1} = \frac{\eta'}{s} + K's \\ \frac{\Delta_{i}^{h}}{\Delta} = \frac{-\delta_{i}^{h} + p_{i}^{o}p_{h}^{o}}{\lambda_{1}} + K = \frac{\delta_{i}^{h} - p_{i}^{o}p_{h}^{o}}{s} + K' \end{cases}$$

En dérivant terme à terme on a:

$$(1.5.2.3):\begin{cases} \frac{\partial \Delta}{\partial y^{i}} = -2 \eta^{j} + K' s^{2} \\ \frac{\partial^{2} \Delta}{\partial y^{i} \partial y^{j}} = -2 \delta^{ij} + K' s \\ \frac{\partial}{\partial y^{j}} \left(\frac{\Delta^{i}_{l}}{\Delta}\right) = -\frac{\delta^{ij}}{s} + \frac{\eta^{j} \eta^{j}}{s^{3}} + K' \\ \frac{\partial}{\partial y^{j}} \left(\frac{\Delta^{h}_{l}}{\Delta}\right) = \left(-\delta^{h}_{l} + p^{o}_{l} p^{o}_{h}\right) \frac{\eta^{j}}{s^{3}} + K' \end{cases}$$

Des relations (1.5.2.1) à (1.5.2.3) on déduit le lemme suivant:

Lemme 1.5.1.

Au voisinage de λ_1 =0 les fonctions suivantes sont continues et bornées:

$$\frac{\Delta}{\lambda_1^2}, \frac{\Delta_i^l}{\Delta}, \lambda_1 \frac{\Delta_i^h}{\Delta}, \frac{1}{\lambda_1} \frac{\partial \Delta}{\partial y^i}, \frac{\partial^2 \Delta}{\partial y^i \partial y^j}, \lambda_1 \frac{\partial}{\partial y^j} \left(\frac{\Delta_i^l}{\Delta}\right), \lambda_1^2 \frac{\partial}{\partial y^j} \left(\frac{\Delta_i^h}{\Delta}\right)$$

1.5.3 Développements limités de σ et de ses dérivées:

De:

$$\begin{cases} \sigma = -\frac{1}{\sqrt{|\Delta|}} = \frac{1}{\lambda_1} + K = -\frac{1}{s} + K' \\ \begin{bmatrix} \star^{ij} \\ A \end{bmatrix} = -\delta^{ij} + K\lambda_1 = -\delta^{ij} + K's \end{cases}$$

on a:

$$\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma = -\frac{\delta^{ij}}{\lambda_1} + K = -\frac{\delta^{ij}}{s} + K' \text{ et puisqu'on peut dériver termes à termes, on}$$

obtient:

$$(1.5.3.1): \begin{cases} \frac{\partial \sigma}{\partial y^{i}} = \frac{p_{i}^{o}}{\lambda_{1}^{2}} + \frac{K}{\lambda_{1}} = \frac{\eta^{j}}{s^{3}} + \frac{K'}{s} \\ \frac{\partial \left(\begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma \right)}{\partial y^{i}} = -\frac{p_{j}^{o}}{\lambda_{1}^{2}} + \frac{K}{\lambda_{1}} = -\frac{\eta^{j}}{s^{3}} + \frac{K'}{s} \\ \frac{\partial^{2} \sigma}{\partial y^{i} \partial y^{j}} = \frac{\delta^{ij}}{s^{3}} - \frac{3\eta^{i} \eta^{j}}{s^{5}} + \frac{K'}{s^{2}} \\ \frac{\partial^{2} \left(\begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma \right)}{\partial y^{i} \partial y^{j}} = \frac{K'}{s^{2}} = \frac{K}{\lambda_{1}^{2}} \end{cases}$$

Les relations ci-dessus permettent d'énoncer:

Lemme 1.5.2:

$$\lambda_{1}\sigma, \ \lambda_{1}\left(\begin{bmatrix} *^{ij} \\ A \end{bmatrix}\sigma\right), \ \lambda_{1}^{2}\frac{\partial\sigma}{\partial y^{i}}, \ \lambda_{1}^{2}\frac{\partial\left(\begin{bmatrix} *^{ij} \\ A \end{bmatrix}\sigma\right)}{\partial y^{i}}, \ \lambda_{1}^{2}\frac{\partial^{2}\sigma}{\partial y^{i}\partial y^{j}}, \ \lambda_{1}^{2}\frac{\partial^{2}\sigma}{\partial y^{i}\partial y^{j}}$$

1.6: ETUDE DES FONCTIONS ω_s^r et L_s^r

L'étude spécifique des fonctions ω_s^r et L_s^r , n'a pas été faite dans $[B_1]$, on n'en avait pas besoin car le problème était linéaire. Dans le problème semi - linéaire qui nous intéresse, les fonctions $\omega_{\,_S}^{\,\,r}$ et L_S^r dépendent de la fonction inconnue, donc leur étude est nécessaire.

1.6.1: Etude des fonctions ω_s^r

Par définition:

$$(1.6.1.1): \quad \omega_s^r(x_0^\alpha, \lambda_1, \lambda_h) = \delta_s^r + \int_o^{\lambda_1} P_t^r \omega_s^t d\lambda_1$$

$$P_t^r = -\frac{1}{2} \left(p_j \frac{\partial_t^{\star ij}}{\partial y^i} + \frac{\partial_t^{\star oi}}{\partial y^i} \right) \delta_t^r + \frac{1}{2} \left(\left[\frac{\star ir}{B_t} \right] p_i + \left[\frac{\star or}{B_t} \right] \right)$$
Les hypothèses faites sur les $A^{\lambda \mu}$ et $B_t^{\lambda s}$, permettent d'affirmer que les

 $P_t^r(x_o^a; \lambda_1, \lambda_h)$ sont deux fois dérivables par rapport à l'ensemble de leurs variables.

Posons:
$$\omega_{sh}^r = \frac{\partial \omega_s^r}{\partial \lambda_h}$$
, $\omega_{shl}^r = \frac{\partial^{-2} \omega_s^r}{\partial \lambda_h \partial \lambda_l}$, $p_{th}^r = \frac{\partial^{-p_t^r}}{\partial \lambda_h}$ et $p_{thl}^r = \frac{\partial^{-2} p_t^r}{\partial \lambda_h \partial \lambda_l}$, h, l=2,3. De (1.6.1.1) on tire:

$$(1.6.1.2): \begin{cases} \omega_{sh}^{r} = \int_{o}^{\lambda_{1}} \left(p_{t}^{r} \omega_{sh}^{t} + p_{th}^{r} \omega_{s}^{t} \right) d\lambda_{1} \\ \omega_{sht}^{r} = \int_{o}^{\lambda_{1}} \left(p_{t}^{r} \omega_{sht}^{t} + p_{tt}^{r} \omega_{sh}^{t} + p_{th}^{r} \omega_{st}^{t} + p_{tht}^{r} \omega_{s}^{t} \right) d\lambda_{1} \end{cases}$$

Le théorème de dérivabilité sous le signe somme et les hypothèses faites sur les $A^{\lambda\mu} = et \, B_r^{\lambda s} \quad \text{montrent que les fonctions } \omega_s^r, \, \omega_{sh}^r, \, \omega_{shl}^r, \, \frac{\omega_{sh}^r}{\lambda_l}, \, \frac{\omega_{shl}^r}{\lambda_l} \quad \text{sont continues et}$ bornées dans Λ .

Définition.

Dans toute la suite, on appellera:

- ω l'une quelconque des fonctions $\{\omega_{\,s}^{\,r},\,\omega_{\,sh}^{\,r},\,\omega_{\,sh}^{\,r}\}$

 $-\tilde{\omega} \quad \textit{l'une quelconque des fonctions} \ \{ \ \frac{\omega \frac{r}{sh}}{\lambda_1}, \ \frac{\omega \frac{r}{shl}}{\lambda_1} \}$

De ce qui précède, ω et $\tilde{\omega}$ sont des fonctions continues et bornées de $(\mathbf{x}_{\circ}^{\alpha}; \lambda_{1}, \lambda_{n})$

Lemme 1.6.1:

Sous les hypothèses (H_o) et (H_{Mo}) , les fonctions $\frac{\partial \omega_s^r}{\partial y^i}$, $\lambda_1 \frac{\partial^2 \omega_s^r}{\partial y^i \partial y^j}$ sont des combinaisons linéaires, à coefficients continus et bornés, de ω et $\tilde{\omega}$.

Preuve:

i) Cas de
$$\frac{\partial \omega_{s}^{r}}{\partial y^{i}}$$
:
$$\frac{\partial \omega_{s}^{r}}{\partial y^{i}} = \frac{\partial \omega_{s}^{r}}{\partial \lambda_{j}} \frac{\partial \lambda_{j}}{\partial y^{i}} = \frac{\Delta_{i}^{i}}{\Delta} \frac{\partial \omega_{s}^{r}}{\partial \lambda_{j}} = \frac{\Delta_{i}^{1}}{\Delta} \frac{\partial \omega_{s}^{r}}{\partial \lambda_{j}} + \frac{\Delta_{i}^{h}}{\Delta} \omega_{sh}^{r} \text{ donc}$$

$$(1.6.1.3): \quad \frac{\partial \omega_{s}^{r}}{\partial y^{i}} = \frac{\Delta_{i}^{1}}{\Delta} p_{t}^{r} \omega_{s}^{t} + \frac{\Delta_{i}^{h}}{\Delta} \omega_{sh}^{r}$$
Posons $a_{it}^{r} = p_{t}^{r} \frac{\Delta_{i}^{1}}{\Delta} \text{ et } b_{i}^{h} = \lambda_{1} \frac{\Delta_{i}^{h}}{\Delta} \text{ on a :}$

$$(1.6.1.3)' \quad \frac{\partial \omega_{s}^{r}}{\partial y^{i}} = a_{it}^{r} \omega_{s}^{r} + b_{i}^{h} \frac{\omega_{sh}^{r}}{\lambda_{i}}$$

est une combinaisons linéaire de ω et $\tilde{\omega}$ à coefficients a_{it}^r et b_i^h continus et bornés (lemme 1.5.1)

ii) cas de
$$\lambda_1 \frac{\partial^2 \omega_s^r}{\partial y^i \partial y^j}$$
:

En dérivant l'expression (1.6.1.3) par rapport à yj on obtient:

$$(1.6.1.4) \frac{\partial^{2} \omega_{s}^{r}}{\partial y^{i} \partial y^{j}} = a_{ijm}^{r} \omega_{s}^{m} + b_{ijm}^{rh} \omega_{sh}^{m} + C_{ij}^{hl} \omega_{shl}^{r} \quad où$$

$$\begin{cases} a_{ijm}^{r} &= \frac{\partial \left(p_{m}^{r} \frac{\Delta_{i}^{1}}{\Delta}\right)}{\partial y^{j}} + \frac{\Delta_{i}^{h} \Delta_{j}^{1} p_{mh}^{r} + p_{l}^{r} p_{m}^{l} \Delta_{i}^{1} \Delta_{j}^{1}}{\Delta^{2}} \\ b_{ijm}^{rh} &= 2 p_{m}^{r} \frac{\Delta_{i}^{1} \Delta_{j}^{h}}{\Delta^{2}} + \frac{\partial \left(\frac{\Delta_{i}^{h}}{\Delta}\right)}{\partial y^{j}} \\ C_{ij}^{hl} &= \frac{\Delta_{i}^{h} \Delta_{j}^{l}}{\Delta^{2}} \end{cases}$$

D'après le lemme (1.5.1) les fonctions suivantes $a_{ijm} = \lambda_1 a_{ijm}^r$, $b_{ijm} = \lambda_1^2 b_{ijm}^{rh}$ et $C_{ij} = \lambda_1^2 C_{ij}^{hl}$ sont continues et bornées, et comme:

$$(1.6.1.5): \lambda_1 \frac{\partial^2 \omega_s^r}{\partial y^i \partial y^j} = a_{ijm}^{*r} \omega_s^m + b_{ijm}^{*rh} \frac{\omega_{sh}^m}{\lambda_1} + C_{ij}^{*rh} \frac{\omega_{shl}^r}{\lambda_1}$$

On en déduit que : $\lambda_1 \frac{\partial^2 \omega_s^1}{\partial y^i \partial y^j}$ est une combinaison linéaire des fonctions ω et $\tilde{\omega}$ à coefficients continus et bornés.

1.6.2: Fonctions L_S:

Proposition 1.6

Si les fonctions $A^{\lambda\mu}$ et $B^{\lambda s}_r$ satisfont aux hypothèses H_o et H_{Mo} , alors les fonctions ΔL^r_s sont des combinaisons linéaires, à coefficients continus et bornés, de ω et $\tilde{\omega}$

Démonstration:

En développant:
$$L_s^r = \frac{\partial^{-2} \left(\begin{bmatrix} *i^j \\ A \end{bmatrix} \sigma_s^r \right)}{\partial y^i \partial y^j} - \frac{\partial \left(\begin{bmatrix} *i^r \\ B_t \end{bmatrix} \sigma_s^t \right)}{\partial y^i} o i \sigma_s^r = \sigma \omega_s^r$$
, on obtient:

$$L_{\rm s}^{\rm r} = \alpha^{\rm ij} \frac{\partial^2 \omega_s^r}{\partial y^i \partial y^j} + \beta_t^{ir} \frac{\partial \omega_s^t}{\partial y^i} + \gamma_t^r \omega_s^t$$

$$\begin{cases} \alpha^{ij} = \begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma \\ \beta_t^{ir} = -\begin{bmatrix} *^{ir} \\ B_t \end{bmatrix} \sigma + 2 \frac{\partial \left(\begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma \right)}{\partial y^j} \delta_t^r \\ \gamma_t^r = -\frac{\partial \left(\begin{bmatrix} *^{ir} \\ B_t \end{bmatrix} \sigma \right)}{\partial y^i} + \frac{\partial^2 \left(\begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma \right)}{\partial y^i \partial y^j} \delta_t^r \end{cases}$$

Le lemme 1.5.2 montre que les fonctions suivantes:
$$\begin{cases} *^{ij} & \Delta \\ \alpha & = \frac{\Delta}{\lambda_1} \alpha^{ij} \\ *^{ir} & \beta_t & = \Delta \beta_t^{ir}; \quad \text{avec } \Delta = \lambda_1^2 (-1 + K \lambda_1), \quad \text{K born\'e} \end{cases}$$

$$*^r \\ \gamma_t & = \Delta \gamma_t^r$$

Sont continues et bornées. Comme les ΔL_s^r sont données par

$$(1.6.2.1): \Delta L_s^r = \overset{*ij}{\alpha} \lambda_1 \frac{\partial^2 \omega_s^r}{\partial y^i \partial y^j} + \overset{*ir}{\beta_t} \frac{\partial \omega_s^t}{\partial y^i} + \overset{*r}{\gamma_t} \omega_s^t$$

(1.6.1.3') et (1.6.1.5) permettent alors d'écrire:

$$(1.6.2.2): \Delta L_{s}^{r} = a_{m}^{r} \omega_{s}^{m} + b_{m}^{rh} \lambda_{1} \frac{\omega_{sh}^{m}}{\lambda_{1}} + C_{sh}^{hl} \frac{\omega_{shl}^{r}}{\lambda_{1}}$$

$$ou: \quad a_{m}^{r} = \alpha_{sijm}^{r} + \beta_{t} a_{im}^{t} + \gamma_{m}$$

$$v_{m}^{rh} = \alpha_{sijm}^{rh} + \beta_{m}^{rh} b_{i}^{h}$$

sont des fonctions continues et bornées.

En conclusion: La relation (1.6.2.2) montre que les fonctions ΔL_s^r sont des combinaisons linéaires de ω et $\tilde{\omega}$ à coefficients continus et bornés.

1.6.3 Conséquences des résultats précédents:

Dans le cas du problème de Cauchy linéaire à données sur une hypersurface spatiale (§ 1.4) les développements limités du § 1.5 permettent d'obtenir les résultats suivants:

(1.6.3.1):
$$\begin{cases} L_s^r = \frac{k}{\lambda_1^2} = \frac{k'}{s^2} \\ E_s^i = \frac{p_i^o}{\lambda_1^2} \varphi_s + \frac{k}{\lambda_1} \\ \Delta_i^l - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h = -\sin \lambda_2 \cdot \lambda_1^2 \begin{bmatrix} & * \\ & -p_i^o + q_i \\ & 1 - \sum_{j=1}^3 p_j^o q_j \end{bmatrix} \\ \vartheta_s = E_s^i \left(\Delta_i^l - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h \right) = \sin \lambda_2 \cdot \varphi_s + k\lambda_1 \end{cases}$$

CHAPITRE 2

PROBLEME DE CAUCHY SUR UN CONOÏDE CARACTERISTIQUE POUR DES EQUATIONS LINEAIRES

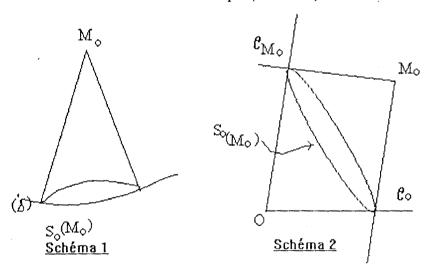
$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v_{r} + B_{r}^{\lambda s}(x^{\alpha})D_{\lambda}v_{s} + f_{r}(x^{\alpha}) = 0 & dans \ D \\ v_{r}|_{\mathcal{C}_{o}} = \varphi_{r}(x^{i}) \end{cases}$$

Dans ce chapitre, on rappelle les résultats obtenus dans $[B_1]$, relatifs au problème de Cauchy linéaire à données sur un conoïde caractéristique $\mathcal{C}_{\mathbf{0}}$.

On suppose que ℓ_0 a pour équation $x^\circ = \phi(x^i)$, de sommet $O(x^{\alpha}=0)$ et orienté vers les x° positifs.

On pose
$$D_o = \{(x^\circ, x^i) \in IR^4 / \phi(x^i) \le x^\circ < +\infty\}$$

Quelles circonstances nouvelles se présentent lorsqu'on passe d'un problème de Cauchy à données sur une hypersurface spatiale (schéma 1) à un problème de Cauchy à données sur un conoïde caractéristique (schéma 2) ?



On fait facilement les constats suivants:

1- Le problème de Cauchy doit être posé autrement qu'en (1.0). En effet, ℓ_0 étant caractéristique pour l'opérateur $L=A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}$ les relations (1.2.1.2) montrent

qu'on ne peut se donner arbitrairement v_r et $\frac{\partial v_r}{\partial x^o}$ sur \mathcal{C}_o . Le problème n'étant, ici, possible que si $\varphi_r = v_r \Big|_{\mathcal{C}_o}$ et $\chi_r = \frac{\partial v_r}{\partial x^o} \Big|_{\mathcal{C}_o}$ satisfont, sur chaque bicaractéristique de \mathcal{C}_o de paramètre Λ_1 , à l'équation différentielle suivante (voir 1.2.1.2').

(2.0.1):
$$\begin{cases} 2\frac{d\chi_{r}}{d\Lambda_{1}} + \left[A^{ij}\right] \frac{\partial q_{i}}{\partial x^{j}} \chi_{r} + \left(\left[B^{it}_{r}\right]q_{i} + \left[B^{ot}_{r}\right]\right) \chi_{t} + \left[A^{ij}\right] \frac{\partial^{2} \varphi_{r}}{\partial x^{i} \partial x^{j}} + \left[B^{it}_{r}\right] \frac{\partial \varphi_{t}}{\partial x^{i}} + \left[f_{r}\right] = 0 \end{cases}$$

Ceci nous conduit donc à poser le problème de Cauchy à données sur un conoïde caractéristique de la manière suivante:

Déterminer des fonctions (v_r) satisfaisant au problème suivant:

(2.0.2):
$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v_r + B_r^{\lambda s}(x^{\alpha})D_{\lambda}v_s + f_r(x^{\alpha}) = 0 & dans \ D_0 \\ v_r \Big|_{\mathcal{C}_o} = \varphi_r(x^i) \end{cases}$$

- 2 $O(x_o^{\alpha}=0)$ étant un point singulier pour \mathcal{C}_o , de nouvelles hypothèses, sur les données de Cauchy ϕ_Γ , sont nécessaires. C'est ainsi que nous considérerons les ϕ_Γ comme des restrictions, à \mathcal{C}_o , des fonctions arbitraires $\tilde{v}_{_\Gamma}(x^{\alpha})$ définies sur D_o .
- 3 Dans le cas du problème de Cauchy sur une hypersurface spatiale (schéma 1), on voit que si $M_o(x_o^\alpha)$ tend vers un point $P(\xi^\alpha) \in \mathcal{S}$, les dimensions de $\left(\mathcal{C}_{\overline{M}_o}\right)$ tendent uniformément vers 0, ou, en d'autres termes, la fonction $\psi(x_o^\alpha; \lambda_h)$ définissant $S_o(M_o)$ tend vers 0.

Par contre, dans le cas du problème de Cauchy sur un conoïde caractéristique ℓ_0 , quand $M_0(x_0^\alpha)$ tend vers un point $P(\xi^\alpha) \in \ell_0$, on constate que:

- D'une part, la portion de conoïde $(\ell_{\overline{M}_o})$, comprise entre M_o et ℓ_o garde des dimensions qui ne tendent pas vers 0.
- D'autre part, au voisinage de \mathcal{C}_{o} , certaines bicaractéristiques de $\mathcal{C}_{\overline{M}_{o}}$ deviennent "parallèles" à celles de \mathcal{C}_{o} , d'où la nécessité d'introduire un nouveau paramètre $\lambda_{2'}$ tel que la bicaractéristique B_{p} de contact entre $\mathcal{C}_{\overline{p}}$ et \mathcal{C}_{o} corresponde à la valeur $\lambda_{2'}=0$.

Ce qui précède nous conduira à introduire des nouvelles hypothèses sur $\mathcal{C}_{\mathbf{0}}$

Ce chapitre se subdivise en quatre sections:

- Dans la section 2.1; nous énonçons les nouvelles hypothèses associées au problème de Cauchy caractéristique et écrivons les formules de KIRCHHOFF pour ce problème.

- La section 2.2 est réservée au rappel de l'étude faite dans $[B_1]$ des 2-surfaces $S_o(M_o)$ = $\mathcal{C}_{\overline{M}_o} \cap \mathcal{C}_o$
- En s'appuyant sur les résultats de la section 2.2, nous montrons dans la section 2.3 que les intégrales doubles:

$$I_{s}(x_{o}^{\alpha}) = \int_{o}^{2\pi} d\lambda_{3} \int_{o}^{\pi} d\lambda_{2} E_{s}^{i} \left(\Delta_{i}^{l} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h} \right)$$

Sont des fonctions continues et bornées, et prennent les valeurs $4\pi\phi_S(\xi^i)$ sur \mathcal{C}_o quand $M_o(x_o^\alpha)$ tend vers $P(\xi^\alpha) \in \mathcal{C}_o$.

- Enfin, nous terminons le chapitre en démontrant, dans la section 2.4, qu'au voisinage de \mathcal{C}_0 , les intégrales triples tendent vers zéro.

2.1: FORMULES DE KIRCHHOFF

2.1.1: Hypothèses (H2).

Considérons le problème de Cauchy (2.0.2) où:

- i)- \mathcal{C}_0 est le demi-conoïde caractéristique pour l'opérateur $L = A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}$ de sommet $O(x^{\alpha} = 0)$, orienté vers les x^{O} positifs et d'équation: $x^{O} = \phi(x^{i})$.
 - * Soit Lun domaine fermé et borné de 6, tel que:

$$I-O\in \mathring{\mathcal{D}}$$
.

- 2- $Si P \in \mathcal{S}$ alors le segment de bicaractéristique $OP \subset \mathcal{S}$.
- 3- \mathcal{L} ne contient que O comme point singulier de \mathcal{L} .
- 4- Les demi-conoïdes $\mathcal{C}_{\overline{p}}$ (P $\in \mathcal{B}^{o}$) n'ont que P comme point singulier

sur le segment de bicaractéristique OP.

ii)- $\Omega \subset D_o$ est un ouvert de IR^4 voisinage de $O(x^{\alpha} = 0)$, satisfaisant à la propriété suivante dite de causalité:

$$\forall \ \mathrm{M}_{\mathrm{o}}(x_{o}^{\alpha}) \in \Omega \ \text{ on a: } (\mathcal{C}_{\widetilde{\mathrm{M}}_{\mathrm{o}}}) \subset \Omega.$$

iii)- $L = A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}$ $A^{\lambda\mu}$, $B_r^{\lambda s}$ et f_r satisfont aux hypothèses (H_o) dans Ω

- iv)- Les $A^{\lambda\mu}$ satisfont en () \dot{a} : $A^{00}(O) = 1$, $A^{0i}(O) = 0$ et $A^{ij}(O) = -\delta^{ij}$.
- v) Les fonctions $\varphi_{\mathbf{r}}(\mathbf{x}^{\mathbf{i}})$ sont des restrictions au domaine \mathcal{B} de $\mathcal{C}_{\mathbf{0}}$ des fonctions arbitraires $\tilde{\mathbf{v}}_{\mathbf{r}}(\mathbf{x}^{\alpha})$ avec $\tilde{\mathbf{v}}_{\mathbf{r}}(\mathbf{x}^{\alpha}) \in \mathrm{B}^2(\Omega)$.

Conséquences de ces hypothèses:

- \mathcal{C}_{o} étant d'équation $x^{o} = \phi(x^{i})$, en posant $q_{i} = -\frac{\partial \phi}{\partial x^{i}}$ et conformément aux relations (1.1.2.3) du § 1.1, les bicaractéristiques de \mathcal{C}_{o} issues de O de paramètres Λ_{1} , $(\Lambda_{1} \geq 0)$ ont pour représentations paramétriques $x^{\lambda}(\Lambda_{1},q_{j}^{o})$ et $q_{i}(\Lambda_{1},q_{j}^{o})$ qui sont solutions du système intégral:

$$(2.1.1.1): \begin{cases} x^{\alpha}(\Lambda_{1}, q_{j}^{o}) = \int_{o}^{\Lambda_{1}} T^{\alpha} d\Lambda_{1} \\ q_{i}(\Lambda_{1}, q_{j}^{o}) = q_{i}^{o} + \int_{o}^{\Lambda_{1}} R_{i} d\Lambda_{1} \end{cases}$$

$$où T^{\alpha} = A^{\alpha o} + A^{\alpha i} q_{i} ; R_{i} = -\frac{1}{2} \left(\frac{\partial \mathcal{L}}{\partial x^{i}} - q_{i} \frac{\partial \mathcal{L}}{\partial x^{o}} \right)$$

avec
$$\ell(x^{\lambda}, q_i) = A^{oo} + 2A^{oi}q_i + A^{ij}q_iq_j$$
 et $\ell(o, q_j^o) = 0$

Cette dernière égalité permet d'introduire des paramètres Λ_2 et Λ_3 , correspondant aux paramètres λ_2 et λ_3 définis sur $\mathcal{C}_{\overline{M}_O}$, et tels que \mathcal{C}_O admette une représentation paramétrique de la forme:

(2.1.1.2):
$$\begin{cases} x^{\lambda} = x^{\lambda} (\Lambda_1, \Lambda_h) \\ q_i = q_i (\Lambda_1, \Lambda_h) \end{cases} \quad h = 2, 3$$

- En coordonnées (y^{β}) associées aux points $M_o(x_o^{\alpha})$ introduites au §1.3.2 on suppose que \mathcal{C}_o admet pour équation:

(2.1.1.3):
$$\begin{cases} y^o = \phi^*(x_o^\alpha, y^i), & \text{et on pose} \\ q_i^* = -\frac{\partial \phi^*}{\partial y^i} \end{cases}$$

2.1.2: Représentation paramétrique de $S_{\underline{0}}(M_{\underline{0}})$:

Les 2-surfaces $S_O(M_O)=\ell_{\overline{M}_o}\cap \ell_o$ ont pour équation la solution en λ_1 de l'équation suivante:

$$y^{o}(x_{o}^{\alpha}; \lambda_{1}, \lambda_{h}) - \phi^{*}(x_{o}^{\alpha}; y^{i}(x_{o}^{\alpha}; \lambda_{1}, \lambda_{h})) = 0$$
 posons:

$$(2.1.2.1): \mathcal{J}(x_o^\alpha; \lambda_1, \lambda_h) = y^o(x_o^\alpha; \lambda_1, \lambda_h) - \phi^*(x_o^\alpha; y^i(x_o^\alpha; \lambda_1, \lambda_h))$$

$$on \ a : \frac{\partial \mathcal{J}}{\partial \lambda_1} = \stackrel{*oo}{A} + \stackrel{*oi}{A} \stackrel{*ij}{(p_i + q_i^*)} + \stackrel{*ij}{A} p_i q_j$$

$$\mathcal{C}_{\overline{M}_o} \text{ \'etan \it t carac\'eristique, on a: } \stackrel{*oo}{A} + 2 \stackrel{*oi}{A} p_i + \stackrel{*ij}{A} p_i p_j = 0$$

$$\mathcal{C}_o \text{ \'etan \it t carac\'eristique, on a: } \stackrel{*oo}{A} + 2 \stackrel{*oi}{A} q_i^* + \stackrel{*ij}{A} q_i^* q_j^* = 0$$

Donc:

(2.1.2.2):
$$\frac{\partial \mathcal{J}}{\partial \lambda_1}(\psi) = -\frac{1}{2} A^{*ij} (p_i - q_i)(p_j - q_j)$$
**ij

Comme la forme quadratique A Y_iY_jest définie négative on a:

$$\forall M_0 \notin \mathcal{C}_0, M_0 \in \Omega, \frac{\partial \mathcal{J}}{\partial \lambda_1} > 0 \text{ d'où le lemme suivant; } [B_1]:$$

Lemme 2.1.1:

Pour tout $M_o \in \Omega$, $M_o \notin \mathcal{C}_o$, les 2-surfaces $S_o(M_o)$ peuvent être représentées par une équation:

(2.1.2.3):
$$\begin{cases} \lambda_1 = \psi(x_o^{\alpha}; \lambda_h) & h = 2, 3 \\ |\psi| < kx_o^{\alpha}, & k \text{ constante} \end{cases}$$
 avec

2.1.3: Formules de KIRCHHOFF:

 Ω étant un domaine causal, le lemme 2.1.1 permet d'énoncer la proposition suivante:

Proposition 2.1.3.1:

- \square Si les hypothèses (H_2) sont satisfaites pour le problème de Cauchy (2.0.2) dans Ω
- Si les fonctions (v_r) sont une solution du même problème de Cauchy dans Ω Alors: $\forall M_o(x_o^\alpha) \in \Omega$, on a:

$$(\mathcal{I}_{s}): \quad 4\pi v_{s}(x_{o}^{\alpha}) = \int_{o}^{2\pi} d\lambda_{3} \int_{o}^{\pi} \sin \lambda_{2} . d\lambda_{2} \int_{o}^{\psi(x_{o}^{\alpha};\lambda_{h})} d\lambda_{1} \Delta\left(\left[v_{r}\right] L_{s}^{r} + \sigma_{s}^{r}\left[f_{r}\right]\right) + \int_{o}^{2\pi} d\lambda_{3} \int_{o}^{\pi} d\lambda_{2} \vartheta_{s} d\lambda_{2} d\lambda_{3} \int_{o}^{\pi} d\lambda_{2} \vartheta_{s} d\lambda_{3} \int_{o}^{\pi} d\lambda_{3} \int_{o}^{\pi} d\lambda_{3} \int_{o}^{\pi} d\lambda_{3} \vartheta_{s} d\lambda_{3} \int_{o}^{\pi} d\lambda_{3} \int_{o}^{\pi} d\lambda_{3} \int_{o}^{\pi} d\lambda_{3} \vartheta_{s} d\lambda_{3} \int_{o}^{\pi} d\lambda_{3} \int_$$

où:

$$\vartheta_{s}(x_{o}^{\alpha}; \lambda_{h}) = \frac{\Delta}{\frac{\partial \mathcal{J}}{\partial \lambda_{1}}} \binom{*}{q_{i} - p_{i}} \left\{ \begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \frac{\partial \varphi_{r}^{*}}{\partial y^{j}} - \frac{\partial \left(\begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \right)}{\partial y^{j}} \varphi_{r}^{*} + \sigma_{s}^{r} \begin{bmatrix} *^{il} \\ B_{r} \end{bmatrix} \varphi_{t}^{*} \right\}$$

Relations obtenues en faisant dans (1.4.1.8), $\ell(x^{\lambda}, q_{i})=0$, car ℓ_{0} est caractéristique.

Remarque:

D'après ce qui précède, les fonctions I_s sont indépendantes des fonctions χ_r , par conséquent, dans les fonctions E_s^i (relation (1.4.1.6)), on peut choisir arbitrairement les valeurs des fonctions χ_r . Pour des raisons de simplicité, nous choisirons $\chi_r=0$ dans les E_s^i . Ceci permet d'écrire les E_s^i sous la forme suivante:

$$(2.1.3.2): \quad E_{s}^{i} = -\frac{\partial \left(\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \right)}{\partial y^{j}} \varphi_{r}^{*} + \begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \frac{\partial \varphi_{r}^{*}}{\partial y^{j}} + \begin{bmatrix} \star^{ii} \\ B_{r} \end{bmatrix} \sigma_{s}^{r} \varphi_{t}^{*}$$

2.1.4: Paramétrage de la bicaractéristique $B_p = \mathcal{C}_{\overline{p}} \cap \mathcal{C}_o, \quad p \in \mathcal{D}$

La relation (2.1.2.2) montre que la fonction $\frac{\partial \mathcal{J}}{\partial \lambda_1}(\psi)$ tend vers 0, lorsque $M_o(x_o^\alpha)$ tend vers $P(\xi^\alpha) \in \mathcal{C}_{O}$. Par conséquent les fonctions $\mathcal{J}_s(x_o^\alpha; \lambda_h)$ (relation 2.1.3.1), ne sont pas bornées; ce qui rend difficile l'étude des intégrales doubles.

Dans [B₁], F. CAGNAC a montré que cette difficulté ne se rencontre que sur les bicaractéristiques "parallèles" à la bicaractéristique B_p qui sont les seules à s'éloigner; ce qui nous pousse à choisir un paramétrage spécial pour B_p. Rappelons brièvement le procédé:

- Développons la fonction $\mathcal{J}(x_0^{\alpha}; \lambda_1, \lambda_h)$ dans (2.1.2.1).

On a:

$$\begin{split} \mathcal{J}(x_o^\alpha;\lambda_1,\lambda_h) &= y_o^o + \lambda_1 - \phi^*(x_o^\alpha;y_o^i - p_i^o\lambda_1 + K^{\scriptscriptstyle \dagger}\lambda_1^2); \quad K^{\scriptscriptstyle \dagger} \ born\acute{e}. \\ &= y_o^o - \phi^*(x_o^\alpha;y_o^i) + \lambda_1 \left[1 + p_i^o \frac{\partial \phi^*}{\partial y^i}(x_o^\alpha;y_o^i) + K^{\scriptscriptstyle \dagger}\lambda_1 \right] \end{split}$$

Posons:

$$\begin{cases} \Pi_{i} = -\frac{\partial \phi^{*}}{\partial y^{i}}(x_{p}^{\alpha}; y_{p}^{i}); & \text{pour } P(x_{p}^{\alpha}) \in \mathcal{C}_{o}, \text{ voisin de M}_{0} \\ s_{p} = \sqrt{\sum_{i=1}^{3} (x_{p}^{i})^{2}} \end{cases}$$

On démontre, dans [B₁], qu'il existe un domaine défini par:

$$\begin{cases} \left|\lambda_{1}\right| < k_{1}s_{p} \\ \eta = \operatorname{Max}\left|x_{o}^{\alpha} - x_{p}^{\alpha}\right| < k_{2}s_{p} \quad \text{où } \mathcal{J}(x_{o}^{\alpha}; \lambda_{1}, \lambda_{h}) \quad \text{peut s'écrire:} \end{cases}$$

$$(2.1.4.1): \mathcal{J}(\lambda_{1}) = y_{o}^{o} - \phi^{*}(x_{o}^{\alpha}; y_{o}^{i}) + \lambda_{1}\left[1 - \sum_{i=1}^{3} p_{i}^{o}\Pi_{i} + \frac{K}{s_{p}}\left|\lambda_{1}\right| + \frac{K'}{s_{p}}\eta\right]$$

où k_1 et k_2 sont des constantes, K et K' des fonctions bornées. Procédons à un changement de paramètre sur $\mathcal{C}_{\overline{M}_o}$. Pour cela, introduisons une matrice orthogonale $\left(\alpha_{i'}^i\right)$ telle que:

(2.1.4.2):
$$\begin{cases} \alpha_{3'}^{i} = \Pi_{i}, \ \det(\alpha_{1'}^{i}) = 1, & posons \ p_{i'}^{o} = \alpha_{i'}^{i} p_{i}^{o} \ \text{où} \\ p_{1'}^{o} = \sin \lambda_{2'} \cdot \cos \lambda_{3'} \\ p_{2'}^{o} = \sin \lambda_{2'} \cdot \sin \lambda_{3'} \\ p_{3'}^{o} = \cos \lambda_{2'} \end{cases}$$

Comme conséquence de ce changement, on a:

$$-\sum_{i=1}^{3} p_i^o \, \Pi_i = 1 - \cos \lambda_{2'},$$

alors la bicaractéristique de contact B_p entre $\ell_{\tilde{p}}$ et ℓ_o correspond à la valeur: $\lambda_{2'} = 0$. La relation (2.1.4.1.) devient:

$$\mathcal{J}(\lambda_1) = y_o^o - \phi^*(x_o^\alpha; y_o^i) + \lambda_1 \left[1 - \cos \lambda_{2'} + \frac{K}{s_p} |\lambda_1| + \frac{K'}{s_p} \eta \right]$$
 et on en déduit que:

$$(2.1.4.3): \left\{ \begin{vmatrix} \lambda_1 | < k_1 s_p \\ \eta < k_2 s_p \end{vmatrix} \Rightarrow \frac{\partial \mathcal{J}}{\partial \lambda_1} = 1 - \cos \lambda_{2'} + \frac{K}{s_p} |\lambda_1| + \frac{K'}{s_p} \eta$$

Ce dernier résultat permet de minorer $\frac{\partial \mathcal{I}}{\partial \lambda_1}$ dans un certain voisinage de M_o , donc de majorer les $\vartheta(x_o^\alpha; \lambda_h)$ dans ce voisinage. Seulement ceci ne concerne que la partie de $S_o(M_o)$ qui est voisine de M_o .

Pour pouvoir majorer $\vartheta(x_o^\alpha;\lambda_h)$ au voisinage de tout B_p , une étude précise des 2-surfaces $S_o(M_o)$ s'était imposée dans $[B_1]$. Dans la section suivante, nous rappelons brièvement les résultats de cette étude.

2.2: ETUDE DES 2-SURFACES S₀(M₀).

Comme nous l'avons dit dans le §2.1.4, la difficulté dans l'étude des intégrales doubles réside dans le fait que :

"Si
$$M_0(x_0^{\alpha})$$
 tend vers $P(\xi^{\alpha}) \in \mathcal{C}_0$, alors $\frac{\partial \mathcal{F}}{\partial \lambda_i}$ tend vers θ ", car les p_i tendent

vers q_i ; en d'autres termes, à la limite $\ell_{\overline{p}}$ et ℓ_0 sont tangents tout au long de leur intersection. Au voisinage de cette limite, $S_o(M_o)$ peut, à priori, avoir toutes les singularités possibles. S'il est possible de dire quelque chose, ici, c'est parce que, $\ell_{\overline{M_0}}$ et ℓ_0 sont des solutions de la même équation des hypersurfaces caractéristiques.

Lorsque $M_0(x_0^{\alpha})$ est au voisinage de $P(\xi^{\alpha}) \in \ell_0$, les 2-surfaces $S_o(M_o)$ ont l'allure de "boudins" qui s'allongent tout le long de la bicaractéristique de contact B_p entre $\ell_{\overline{p}}$ et ℓ_0 (voir schéma 3).

Dans $[B_1]$, F. CAGNAC a fait l'étude des 2-surfaces $S_o(M_o)$ en deux étapes :

- la première étape consiste à faire tendre $M_0(x_0^\alpha)$ vers un point $P(\xi^\alpha) \in \mathcal{C}_0 - \{0\}$. On introduit, pour cela, un système de coordonnées (ζ^λ) dans lequel la bicaractéristique de contact B_p entre $\mathcal{C}_{\overline{p}}$ et \mathcal{C}_0 est représentée par des équations :

$$\begin{cases} \zeta^{\mathsf{I}} = \zeta^2 = 0 \\ \zeta^0 = \tilde{\phi}(0, 0, \zeta^3) \end{cases}$$

où $\zeta^0 = \tilde{\phi}(\zeta^i)$ est l'équation de C_0 en coordonnées (ζ^{λ}) . Dans ce système de coordonnées, on montre que $S_0(M_0)$ admet une représentation paramétrique :

$$\rho = \overline{\omega}(M_0, \alpha, \zeta^3) \quad \text{où} : \begin{cases} \zeta^h = \rho \alpha^h, \quad h = 2, 3 \\ \alpha^1 = \cos \alpha \\ \alpha^2 = \sin \alpha \end{cases}$$

sauf aux voisinages de Mo et de O.

Aux voisinages de M_o et de O, il y a deux "calottes" (voir schéma 3) pour lesquelles on ne peut utiliser la représentation précédente.

- Du côté de M_0 , on utilisera la représentation : $\lambda_1 = \psi(x_o^a; \lambda_h)$ déterminée précédemment.
- Du côté de O, on utilisera une représentation analogue au moyen des paramètres Λ_i de \mathcal{C}_O ; $\Lambda_1 = \Psi(x_o^a, \Lambda_h)$.

On aura aussi besoin de développements limités de la fonction $\overline{\omega}(M_o; \alpha, \zeta^3)$ qui représente $S_o(M_o)$.

* Au voisinage de M_0 , c'est-à-dire quand $\zeta^3 \rightarrow 0$, ces développements limités ne s'écrivent de façon commode qu'en associant à chaque point $M_o(x_o^a)$ voisin de \mathcal{C}_0 , un point $P(\xi^\alpha)$ bien déterminé de \mathcal{C}_0 ; ce qui conduira à introduire des coordonnées (ξ^1, \overline{u}) pour repérer M_0 .

L'étude précédente de $S_o(M_o)$ ne vaut que pour M_o contenu dans un voisinage de ℓ_o de la forme :

$$0 < u \le cs_o$$
, $(ou): u = x_o^o - \phi(x_o^i)$ et $s_o = \sqrt{\sum_{i=1}^3 (x_o^i)^2}$, et $c = c^{te}$

* Pour terminer l'étude de $S_0(M_0)$, quand M_0 est voisin de C_0 , il reste une deuxième étape, qui consiste à étudier $S_0(M_0)$ quand M_0 est voisin de O et $u \ge cs_0$.

Etudions donc ces deux étapes.

2.2.1 Etude des $S_{\underline{O}}(M_{\underline{O}})$ quand $M_{\underline{O}}$ est contenu dans un voisinage de $\underline{\mathcal{C}}_{\underline{O}}$ de la forme $\underline{0 < u \le cs_{\underline{o}}}$.

(voir schéma 4).

A) Définition du système de coordonnées (ζ^{λ}).

Pour $P(\xi^{\alpha}) \in \mathcal{C}_0 - \{0\}$, soit (z^{λ}) le système de coordonnées associé à P, c'est-àdire tel que :

$$z^{\lambda} = a_{\mu}^{0\lambda}(p)x^{\mu}.$$

Alors, la bicaractéristique $B_p = \ell_{\overline{p}} \cap \ell_0$ admet la représentation paramétrique :

(2.2.1.1):
$$Y^{\lambda}(\xi^{i}, \mu) = y^{\lambda}(x^{\alpha} = \xi^{\alpha}, \lambda_{1} = \mu, p_{i}^{0} = \pi_{i}(\xi^{i}))$$
, où $\pi_{i} = -\frac{\partial \phi}{\partial z^{i}}(z_{p}^{i})$.

- Maintenant, faisons correspondre à tout point de B_p , de paramètre $\lambda_1 = \mu$, une matrice $\gamma_i^j(\xi^i,\mu)$ telle que :

$$i) \quad \gamma_3^i = \frac{\partial y^i}{\partial \mu} \frac{1}{\sqrt{\sum_{i=1}^3 (\frac{\partial y^i}{\partial \mu})^2}}$$

(2.2.1.2): $\{ii\}\ (\gamma^i_j)$ est une matrice orthogonale

iii) Les $\gamma_h^i(\xi^i, \mu)$, h = 1, 2 sont trois fois différentiables.

- Alors, en associant aux quatre nombres (ζ^{λ}) . un point de coordonnées (z^{λ}) par les formules :

formules:
(2.2.1.3):
$$\begin{cases} z^{i} = Y^{i}(\xi^{i}, \zeta^{3}) + \gamma_{h}^{i}(\xi^{i}, \zeta^{3})\zeta^{h}, h = 1, 2 \\ z^{0} = \zeta^{0} \end{cases}$$

on a le lemme suivant, démontré dans [B1].

Lemme 2.2.1.

Il existe un voisinage $V(B_p)$ de B_p tel que :

- (2.2.1.3) définit un changement de coordonnées dans V(B_p).
- Les fonctions $\zeta^i(\xi^i,z^i)$ et $z^i(\xi^i,\zeta^i)$ sont trois fois différentiables et à dérivées bornées.
- $V(B_p)$ est causal, c'est-à-dire que : $\forall M_0 \in V(B_p)$, on a : $(\ell_{\overline{M}_0}) \subset V(B_p)$.

Ce lemme permet donc d'utiliser les coordonnées (ζ^{λ}) pour représenter $(\ell_{\overline{M}_0})$ et pour étudier $S_0(M_0)$, si $M_0 \in V(B_p)$.

B) Coordonnées (ζ^i, \overline{u}) de M_0 .

Pour les raisons évoquées à l'introduction du §2.2, à tout point M_o voisin de ℓ_o on associe un point $P \in C_o$; ce sera le point P tel que dans le système de coordonnées (z^λ) relatif à P, les coordonnées Z_o^λ de M_o sont :

(2.2.1.4)
$$\begin{cases} z_o^i = z_p^i, & i = 1, 2, 3 \\ z_o^o = z_p^o + \overline{u} \end{cases}$$

En effet, on démontre dans [B₁] le lemme suivant :

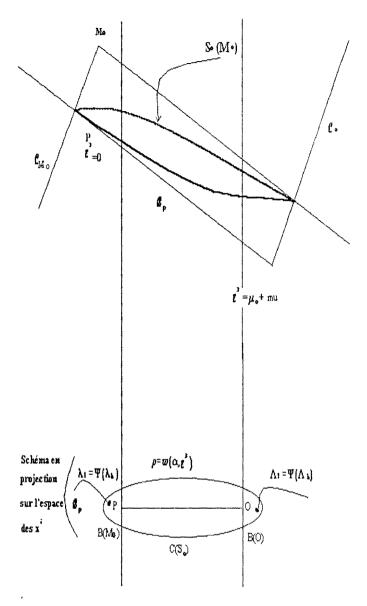
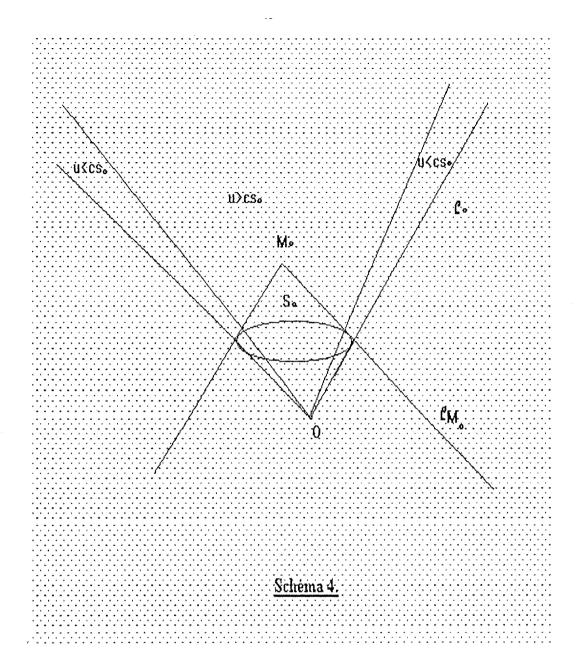


Schéma 3.



Lemme 2.2.2.

If existe un domaine
$$W_I$$
 défini par :
$$\begin{cases} 0 \le u \le c_1 s_0 \\ (x_0^i) \in \mathcal{D}_x, \quad c_1 = c^{te}, \ et \quad u = x_0^0 - \phi(x_0^i) \end{cases}$$

tel que :

A tout $M_o \in W_l$, correspond un point $P(\xi^{\alpha}) \in \ell_0$ et un seul tel que : $\mathbf{z}_0^{\circ} = \mathbf{z}_p^{\circ}$.

On pose : $z_0^0 = z_p^0 + \overline{u}$. Alors, on a :

Lemme 2.2.3. [B₁].

Il existe un domaine $W_2 \subset W_1$ défini par : $0 \le u \le c_2 s_0$, $c_2 = Cte \le c_1$ tel que :

$$0 \le u \le c_2 s_0$$
, $c_2 = Cte \le c_1$ tel que

- i) (ζ^i, \overline{u}) constitue un système de coordonnées dans W_2 .
- ii) $\forall M_o \in W_2$, on $a : (\ell_{\overline{M}_a}) \subset V(B_p)$, où sont définies les coordonnées (ζ^{λ}) .

C) Equations de $\left(\ell_{\overline{M}_0}\right)$ et $\underline{\ell_{\circ}}$ en coordonnées $(\underline{\zeta}^{\lambda})$.

i) Equation de $(c_{\overline{M}_0})$.

Le précédent lemme permet de déterminer une représentation paramétrique de $\left(\ell_{\overline{M}_0}\right)$, en coordonnées (ζ^λ) , que nous noterons comme dans $[B_1]$:

(2.2.1.5):
$$\zeta^0 = \tilde{F}(\xi^i, \overline{u}, \zeta^i)$$
, avec :

- \tilde{F} trois fois différentiable, sauf en ζ i=0, et ses dérivées premières bornées.
- \tilde{F} et $\frac{\partial \tilde{F}}{\partial \bar{u}}$ admettent des développements limités en \bar{u} de la forme :

(2.2.1.6)
$$\begin{cases} \tilde{F}(\xi^{i}, \overline{u}, \zeta^{i}) = z_{p}^{0}(\xi^{i}) + \overline{u} - \tilde{s} + K(\tilde{s} + \overline{u})^{2} \\ \frac{\partial \tilde{F}}{\partial \overline{u}} = 1 + K(\tilde{s} + \overline{u}) \end{cases}$$

où K borné et
$$\tilde{s} = \sqrt{\sum_{i=1}^{3} (\zeta^{i})^{2}}$$
.

ii) Equation de ℓ_0 :

La partie de ℓ_0 contenue dans $V(B_{\mathfrak{p}})$ admet en coordonnées (ζ^{λ}) une équation de la forme

(2.2.1.7)
$$\begin{cases} \zeta^{0} = \tilde{\phi}(\xi^{i}, \zeta^{i}) & \text{où} : \\ * \\ \tilde{\phi}(\xi^{i}, \zeta^{i}) = \phi\left(\xi^{\alpha}, z^{i}(\xi^{i}, \zeta^{i})\right) \end{cases}$$

3 fois différentiable sauf au point $O(\zeta^1 = \zeta^2 = 0, \zeta^3 = \mu_O(\xi^1))$, avec: $\vec{\phi}$

 $\mu_{\text{n}}(\xi^i) \text{ est la valeur du paramètre } \lambda_l = \mu \text{ au point } O \text{ sur la bicaractéristique } B_{\text{p}} \text{ de } \ell_{\bar{\text{p}}}.$

D) Equation de $S_o(M_o) = (\ell_{\overline{M}_o}) \cap \ell_o$

Pour tout $M_{\circ} \in W_2$, $S_{\circ}(M_{\circ})$ a pour équation : $\tilde{F}(\xi^i, \overline{u}, \zeta^i) - \tilde{\phi}(\xi^i, \zeta^i) = 0$ En introduisant les variables ρ et α définies par $\zeta^h = \rho \alpha^h$ où $\alpha^1 = \cos \alpha$ et α^2 =sin α on a démontré le lemme suivant, dans [B₁] :

Lemme 2.2.4.

Il existe des constantes l, m, k_1 et k_2 telles que pour tout $M_o \in W_2$ et dans le domaine :

$$-ls_{o} > \zeta^{3} > \mu_{o} + mu; \ u = x_{o}^{o} - \phi(x_{o}^{i})$$

 $S_o(M_o)$ admet une représentation paramétrique :

$$\rho = \overline{\omega}(\xi^i, \overline{u}, \alpha, \zeta^3)$$
 telle que :

i) $\overline{\omega}$ est trois fois différentiable,

ii) \overline w satisfait aux inégalités :

$$(2.2.1.8): \quad k_1 \sqrt{u} \sqrt{Min \left(\left|\zeta^3\right|, \zeta^{13}\right)} < \overline{\omega} < K_1 \sqrt{u} \sqrt{Min \left(\left|\zeta^3\right|, \zeta^{13}\right)}, \quad \zeta^{13} = \zeta^3 - \mu_0$$

iii) $\overline{\omega}$ est $\frac{\partial \overline{\omega}}{\partial \overline{n}}$ admettent les développements limités suivants :

(2.2.1.9)
$$\begin{cases} \overline{\omega} = \sqrt{\overline{u}} \sqrt{\frac{2B(\zeta^{3})}{A(\alpha,\zeta^{3})}} \left[1 + K \frac{\sqrt{u}}{\sqrt{Min} \left(|\zeta^{3}|, \zeta^{13} \right)} \right] \\ \frac{\partial \overline{\omega}}{\partial \overline{u}} = \frac{1}{\sqrt{\overline{u}}} \sqrt{\frac{B(\zeta^{3})}{2A(\alpha,\zeta^{3})}} \left[1 + K \frac{\sqrt{u}}{\sqrt{Min} \left(|\zeta^{3}|, \zeta^{13} \right)} \right] \\ K \text{ borné} \\ B(\xi^{i}, \zeta^{i}) = \frac{\partial \tilde{F}}{\partial \overline{u}} \left(\xi^{i}, 0, 0, \zeta^{3} \right) \\ A(\xi^{i}, \alpha, \zeta^{3}) = \alpha^{h} \alpha^{k} \frac{\partial G}{\partial \zeta^{h} \partial \zeta^{k}} \left(\xi^{i}, 0, 0, \zeta^{3} \right) \\ où G(\xi^{i}, \zeta^{i}) = \tilde{F}(\xi^{i}, 0, \zeta^{i}) - \tilde{\phi}(\xi^{i}, \zeta^{i}) \end{cases}$$

Enfin, on a les majorations :

$$(2.2.1.10) \begin{cases} \left| \frac{1}{\rho} \frac{\partial \overline{\omega}}{\partial \alpha} \right| < K ; \left| \frac{\partial \overline{\omega}}{\partial \zeta^{3}} \right| < K ; \left| \frac{\partial \overline{\omega}}{\partial \zeta^{4}} \right| < K \text{ et} \\ \left| \frac{\partial \overline{\omega}}{\partial \overline{u}} \right| < K \sqrt{\frac{\min(|\zeta^{3}|, \zeta^{3})}{\overline{u}}}. \end{cases}$$

Pour les difficultés qui se présentent au voisinage de M_0 , on utilise encore la représentation paramétrique : $\rho = \overline{\omega}(\xi^1, \overline{u}, \alpha, \zeta^3)$.

De [B₁] on a le lemme suivant, relatif aux développements limités de ρ quand ζ^3 tend vers 0.

Lemme 2.2.5.

Il existe des constantes k_2 , K_2 et l telles que : pour tout $M_0 \in W_2$ et dans le domaine : $0 \ge \zeta^3 \ge -ls_0$; $S_0(M_0)$ admet la représentation paramétrique : $\rho = \overline{\omega}(\xi^1, \overline{u}, \alpha, \zeta^3)$, avec :

*
$$k_{2}\sqrt{\overline{u}(\overline{u}+|\zeta^{3}|)} < \overline{\omega} < K_{2}\sqrt{\overline{u}(\overline{u}+|\zeta^{3}|)}$$

* $\overline{\omega}$ et ses dérivées admettent des développements \liminf ités:
$$\overline{\omega} = \sqrt{\overline{u}(\overline{u}-2\zeta^{3})} \Big[1 + \frac{K}{s_{0}} \Big(u + |\zeta^{3}| \Big) \Big]$$

$$\frac{\partial \overline{\omega}}{\partial \zeta^{3}} = -\frac{\sqrt{\overline{u}}}{\sqrt{\overline{u}-2\zeta^{3}}} + \frac{K}{s_{0}} \Big(u + |\zeta^{3}| \Big)$$

$$\frac{\partial \overline{\omega}}{\partial \overline{u}} = \frac{\overline{u}-\zeta^{3}}{\sqrt{\overline{u}(\overline{u}-2\zeta^{3})}} \Big[1 + \frac{K}{s_{0}} \Big(u + |\zeta^{3}| \Big) \Big]$$

$$\frac{\partial \overline{\omega}}{\partial \zeta^{i}} = \frac{K}{s_{0}} \Big(u + |\zeta^{3}| \Big)$$

$$\frac{1}{\rho} \frac{\partial \overline{\omega}}{\partial \alpha} = \frac{K}{s_{0}} \Big(u + |\zeta^{3}| \Big), \text{ avec } K \text{ borné.}$$

Définition.

La partie de $S_0(M_0)$ se trouvant dans le domaine $0 \ge \zeta^3 \ge \mu_0 + mu$, réunion des deux domaines définis dans les lemmes (2.2.4-5) sur lequel $S_0(M_0)$ admet la représentation paramétrique : $\rho = \overline{\omega}(\xi^1, \overline{u}, \alpha, \zeta^3)$, sera appelée le <u>corps</u> de $S_0(M_0)$ et notée $C(S_0)$.

Il reste à étudier $S_0(M_0)$ dans les domaines :

- * $\zeta^3 \ge 0$, bout de $S_0(M_0)$ du côté de M_0 , noté : $\underline{B(M_0)}$.
- * $\zeta^3 \le \mu_0$ +mu; bout de $S_0(M_0)$ du côté de O, noté $\underline{B(O)}$

Pour ces deux bouts, on a les lemmes suivants (démontrés dans [B₁]):

Lemme 2.2.6: Bout B(Mo)

Pour tout $M_0 \in W_2$ et dans le domaine $\zeta^3 \ge 0$,

- il existe une constante k telle que : $\frac{\partial \mathcal{J}}{\partial \lambda_1} > k > 0$.
- $S_0(M_0)$ admet la représentation paramétrique : $\lambda_1 = \psi(x_0^\alpha, \lambda_{h'}), h' = 2^i, 3^i$ telle que:

(2.2.1.12)
$$\begin{cases} \left| \lambda_1 \right| < Ku, & \text{où } u = x_0^0 - \phi(x_0^i) \\ \lambda'_2 > \lambda'_0 \\ \left| \frac{\partial \psi}{\partial \lambda_h} \right| < Ku, & \text{K et } \lambda'_0 & \text{des constantes.} \end{cases}$$

- La frontière (Γ) d'équation $\zeta^3=0$, entre $B(M_0)$ et $C(S_0)$ peut être représentée par une équation :

(2.2.1.13)
$$\begin{cases} \lambda_{2'} = \gamma(x_0^{\alpha}, \lambda_{3'}), \text{ avec} \\ \gamma \text{ dérivable et } \left| \gamma(\lambda_{3'}) - \frac{\pi}{2} \right| < Ku. \end{cases}$$

Lemme 2.2.7: Bout B(O).

Pour tout $M_0 \in W_2$ et dans le domaine $\zeta^3 \le \mu_0 + mu$;

- $S_o(M_o)$ admet la représentation paramétrique : $\Lambda_1 = \Psi(\mathbf{x}_0^\alpha, \Lambda_h)$. avec h=2, 3. (Λ_1, Λ_h) les paramètres du demi-conoïde \mathcal{C} .
- Il existe des constantes K et Λ'_{o} telles que sur $S_{o}(M_{o})$ on a:

(2.2.1.14)
$$\begin{cases} \Lambda_1 < Ku \\ \Lambda_2 > \Lambda'_0 \\ \left| \frac{\partial \Psi}{\partial \Lambda_h} \right| < Ku , \quad u = x_0^0 - \phi(x_0^i). \end{cases}$$

Récapitulons les résultats obtenus lorsque $M_0 \to P \in \mathcal{C}_0 - \{0\}$ dans le théorème suivant :

Théorème 2.1.

. Il existe une constante $C_3 \le C_2$, telle que si M_o est dans le domaine W_3 défini par :

 $0 \le u \le C_3 s_o$, on peut représenter $S_o(M_o)$:

- i) dans le domaine $\zeta^3 \ge 0$, coordonnées (λ_2, λ_3) , par l'équation :
- $\lambda_1 = \psi(x_0^{\alpha}, \lambda_{h'}), h' = 2', 3'$ tel que les résultats du lemme (2.2.6) soient satisfaits.
- ii) <u>Dans le domaine $0 > \zeta^3 > \mu_0 + mu$ </u>, coordonnées (α, ζ^3) , par l'équation : $\rho = \overline{\omega}(\xi^1, \overline{u}, \alpha, \zeta^3)$, tel que soient satisfaits les lemmes (2.2.4-5).
- iii) <u>Dans le domaine $\zeta^3 \leq \mu_0 + mu$ </u>, coordonnées (Λ_2, Λ_3) , par l'équation : $\Lambda_1 = \Psi(\mathbf{x}_0^{\alpha}, \Lambda_h)$, h = 2, 3, tel que soit satisfait le lemme (2.2.7).

2.2.2 Etude de $S_{\underline{O}}(M_{\underline{O}})$ quand $M_{\underline{u}}(x_{\underline{u}}^{\alpha})$ tend vers 0.

On démontre dans [B₁], le théorème suivant :

Théorème 2.2.

Quelque soit la constante $c \le C_3$, il existe une constante $\chi(c)$ et des constantes k, k' et K positives telles que :

pour
$$M_o$$
 dans le domaine :
$$\begin{cases} u \ge cs_0 \\ x_0^0 < \chi(c) \end{cases}$$

- $S_o(M_o)$ admet une représentation paramétrique $\lambda_1 = \psi(x_0^\alpha, \lambda_h)$, h = 2, 3;

$$\begin{vmatrix} \frac{\partial \mathcal{J}}{\partial \lambda_{1}} > k > 0; & k^{T} x_{0}^{0} < u; & \text{où } : u = x_{0}^{0} - \phi(x_{0}^{i}) \\ \frac{\partial \psi}{\partial \lambda_{h}} < Ku; & s_{0} < 2x_{0}^{0} \\ |\psi| < Ku. \end{vmatrix}$$

2.3 ETUDE DES INTEGRALES DOUBLES.

Nous appliquons, dans ce paragraphe, les résultats des théorèmes 2.1 et 2.2 à l'étude des intégrales doubles :

$$I_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \vartheta_s(x_0^{\alpha}, \lambda_h), \quad \text{où} : \vartheta_s = E_s^i \left(\Delta_i^1 - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h \right).$$

Les l_s étant indépendants des χ_r , en prenant $\chi_r = 0$ dans les E_s^i , on obtient :

$$(2.3.0.1) \quad E_s^i = -\frac{\partial \sigma_s^r}{\partial y^j} \left[\begin{matrix} \star \\ A^{ij} \end{matrix} \right] \begin{matrix} \star \\ \varphi_r + \sigma_s^r g_r^i, \text{ où } ; \end{matrix}$$

$$g_r^i = \begin{bmatrix} \star \\ A^{ij} \end{bmatrix} \frac{\partial \varphi_r}{\partial y^j} - \varphi_r^* \frac{\partial \begin{bmatrix} \star \\ A^{ij} \end{bmatrix}}{\partial y^j} + \begin{bmatrix} \star \\ B_r^{it} \end{bmatrix} \varphi_t^*$$

sont des fonctions bornées d'après les hypothèses faites sur les $A^{\lambda\mu}$, $B_r^{\lambda s}$ et $\phi_r(x^i)$.

Par conséquent, les relations (1.6.3.1) restent valables pour les E_s¹. Donc on a

(2.3.0.2)
$$E_s^i = \frac{p_i^0}{\lambda_i^2} \varphi_s^* + \frac{K}{\lambda_i}$$
, K borné.

2.3.1 Etude des $I_s(x_0^{\alpha})$ dans le domaine : $u \le cs_{\underline{O}}$.

Conformément aux conclusions du théorème 2.1, on partage le domaine d'intégration en trois parties. On a :

$$I_{s}(x_{0}^{\alpha}) = \underbrace{\iint_{B(M_{0})} d\lambda_{3} d\lambda_{2} \vartheta_{s}}_{I_{sp}} + \underbrace{\iint_{C(S_{0})} d\lambda_{3} d\lambda_{2} \vartheta_{s}}_{I_{sc}} + \underbrace{\iint_{B(O)} d\lambda_{3} d\lambda_{2} \vartheta_{s}}_{I_{sv}}$$

Les calculs faits dans [B₁] conduisent aux résultats suivants :

a) Etude des I_{sp} , domaine $\zeta^3 \ge 0$.

On passe aux variables λ_2 , λ_3 , d'où :

$$I_{sp} = \int_0^{2\pi} d \lambda_3 \int_{\gamma(\lambda_3, \cdot)}^{\pi} d \lambda_2 \underbrace{E_s^i \left(\Delta_i^{1'} - \frac{\partial \psi}{\partial \lambda_{h'}} \Delta_i^{h'} \right)}_{\mathcal{J}_{sp}}$$

On trouve:

(2.3.1.1₁)
$$\begin{cases} \beta'_{sp} = \sin \lambda_{2'} \varphi_{s} + K_{1}\lambda_{1}, & ou \ encore : \\ \delta'_{sp} = \sin \lambda_{2'} \varphi_{s} + K'_{1}u, & carici \ \lambda_{1} = ku \\ u = x_{0}^{0} - \phi(x_{0}^{i}), & K_{1}, & K'_{1} \ \text{et } k \ born\acute{e}es. \end{cases}$$

En intégrant, on obtient :

(2.3.1.1)
$$I_{sp}(x_0^{\alpha}) = 2\pi\varphi_s(\xi^i) + Ku$$
, K borné

b) Etude des I_{SC} , domaine $0 > \zeta^3 > \mu_0 + mu$.

En passant aux variables α , ζ^3 ; on a :

$$I_{sc} = \int_{\mu_0 + mu}^{0} d\zeta^3 \int_{0}^{2\pi} d\alpha \cdot E_s^i \underbrace{\left(\frac{D(\lambda_2, \lambda_3)}{D(\alpha, \zeta^3)}\right)_{S_0} \left(\Delta_i^{l'} - \frac{\partial \psi}{\partial \lambda_{h'}} \Delta_i^{h'}\right)}_{D_i}$$

Décomposant le domaine $0>\zeta^3>\mu_0+mu$, comme dans les lemmes (2.2.4-5), on a obtenu les résultats suivants dans [B₁].

i) Dans le domaine $-ls_0 > \zeta^3 > \mu_0 + mu$.

(2.2.1.2₁)
$$D_i = K' \sqrt{u} \sqrt{Min(|\zeta^3|, \zeta^{3})}$$
, K' bornée.

•
$$E_s^i = \frac{p_i^0}{\lambda_i^2} \phi_s^* + \frac{k'}{\lambda_i}$$
, k' bornée.

Comme dans ce domaine $\frac{1}{\lambda_1} = \frac{k''}{|\zeta^3|}$, (k'' bornée), on a :

(2.3.1.2₂)
$$E_s^i = k_0 \left(\frac{1}{|\zeta^3|^2} + \frac{1}{|\zeta^3|} \right)$$
, k_0 bornée.

Par conséquent :

$$\vartheta_{sc_1} = D_i E_s^i = k \sqrt{u} \left(\frac{1}{|\zeta^3|^{3/2}} + \frac{1}{|\zeta^3|^{1/2}} \right)$$
; k bornée.

En intégrant on obtient :

(2.3.1.2)
$$I_{sc_1} = K \frac{\sqrt{u}}{\sqrt{s_0}}$$
, K bornée.

ii) Dans le domaine $-ls_0 < \zeta^3 < 0$:

Là, aussi, dans [B₁], on a obtenu le résultat suivant:

$$(2.3.1.3_1) \quad D_i = \sum_{h} \alpha^h \gamma^h \sqrt{\overline{u}(\overline{u} - 2\zeta^3)} + \gamma^3 \overline{u} + \frac{K}{S_0} \sqrt{\overline{u}(u + |\zeta^3|)^{\frac{3}{2}}},$$
où : $\gamma^j_{0i} = \gamma^j_i(\xi^i, 0)$.

(2.3.1.3₂)
$$E_s^i = \varphi_s(\xi^i) \frac{\gamma_i \alpha^h \sqrt{\overline{u}(\overline{u} - 2\zeta^3)} + \gamma^i \zeta^3}{(\overline{u} - \zeta^3)^3} + \frac{K}{s_0(u + |\zeta^3|)}$$

Ces relations sont obtenues à partir de :

$$(2.3.1.3_{3})\begin{cases} \lambda_{1} = -(\overline{u} - \zeta^{3}) \Big[1 + \frac{K}{s_{0}} (u + |\zeta^{3}|) \Big] \\ p_{i}^{0} = \frac{\gamma^{i}}{0h} \frac{\alpha^{h}}{\sqrt{u}(\overline{u} - 2\zeta^{3})} + \gamma^{i} \zeta^{3}}{\overline{u} - \zeta^{3}} + \frac{K}{s_{0}} (u + |\zeta^{3}|) \\ * \varphi_{r} \Big(x_{0}^{\alpha}; y^{i} (x_{0}^{\alpha}, \lambda_{i}) \Big) = \varphi_{r} (\xi^{i}) + \frac{K}{s_{0}} (u + |\zeta^{3}|) \\ \frac{1}{\lambda_{1}} = \frac{K}{u + |\zeta^{3}|}, \text{ avec } K \text{ bornée.} \end{cases}$$

D'où:

$$(2.3.1.3_4) \quad \vartheta_{sc_2} = D_i E_s^i = \varphi_s(\xi^i) \frac{\overline{u}}{(\overline{u} - \zeta^3)^2} + \frac{K}{s_0} \frac{\sqrt{u}}{(u + |\xi^3|) \frac{1}{2}}.$$

En intégrant, on obtient :

(2.3.1.3)
$$I_{sc_2} = \int_{-b_0}^{0} d\zeta^3 \int_{0}^{2\pi} d\alpha . \vartheta_{sc_2} = 2\pi \varphi_s(\xi^i) + K \frac{\sqrt{u}}{\sqrt{s_0}}$$

En conclusion:

Dans le domaine $0 \ge \zeta^3 \ge \mu_0 + mu$, on a : (2.3.1.4) $I_{sc} = I_{sc_1} + I_{sc_2} = 2\pi\varphi_s(\xi^j) + K\frac{\sqrt{u}}{\sqrt{s_0}}$

c) Etude des I_{s0} dans le domaine $\zeta^3 \le \mu_0 + \mu_0$

En passant aux variables Λ_2 , Λ_3 , on a :

$$I_{s0} = \iint_{(\Lambda_2,\Lambda_3) \in B(\mathcal{O})} d \Lambda_2 d \Lambda_3 E_s^i \underbrace{\left(\frac{D(\lambda_2,\lambda_3)}{D(\Lambda_2,\Lambda_3)}\right)_{S_0} \left| \left(\Delta_i^1 - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h\right)}_{\underline{D}_i}$$

En utilisant les égalités suivantes, valables dans ce domaine :

(2.3.1.5₁)
$$\begin{cases} \Lambda_1 = k_1 u \\ \frac{1}{\lambda_1} = \frac{k_2}{s_0}, \ k_1, \ k_2 \text{ bornées.} \end{cases}$$

On montre dans [B₁] que :

$$\underline{D_i} = K_1 \Lambda_1^2 = K_2 u^2, \ E_s^i = \frac{K_3}{s_0^2}$$

Donc
$$\vartheta_{S_0} = K' \frac{u^2}{S_0^2}$$
; d'où en intégrant :
(2.3.1.5) $I_{S_0} = K \frac{u^2}{S_0^2}$, avec : K_1, K_2, K_3, K', K bornées.

Conclusion.

Dans le domaine u≤Cs_O, on a .

(2.3.1.6)
$$I_s(x_0^{\alpha}) = 4\pi\varphi_s(\xi^i) + K\frac{\sqrt{u}}{\sqrt{s_0}}$$
, K bornée.

2.3.2 Etude de $I_s(x_0^{\alpha})$ quand M_0 tend vers O.

Dans le domaine $\begin{cases} u \ge cs_0 \\ x_0^0 < \chi(c) \end{cases}$, on a :

$$\frac{\partial \mathcal{J}}{\partial \lambda_1} > K > 0$$
; donc en utilisant (2.3.0.2), on obtient:

(2.3.2.1₁)
$$\vartheta_s = \sin \lambda_2 \varphi_s + K' \lambda_1$$
, et comme $\lambda_1 = K'' x_0^0$.

En intégrant, on a :

(2.3.2.1)
$$I_s(x_0^{\alpha}) = 4\pi\varphi_s(0,0,0) + Kx_0^{\theta}, K', K'', K bornées.$$

Remarques:

1- K représentant des fonctions bornées, les égalités (2.3.1.6) et (2.3.2.1) montrent que les fonctions I_S sont continues et bornées, et prennent les valeurs $4\pi\phi_S$ sur \mathcal{D} .

2- Nous verrons que dans le cas des problèmes semi-linéaires, les fonctions K des relations (2.3.1.6) et (2.3.2.1) dépendent de la fonction inconnue par l'intermédiaire des fonctions ω_s^r .

2.4: ETUDE DE LA FONCTION
$$U(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \sin \lambda_2 \int_{\psi(x_0^{\alpha}, \lambda_b)}^{0} d\lambda_1$$
:

Pour résoudre, par la méthode des approximations successives, les équations intégrales (\mathcal{J}_{S}), il est nécessaire de montrer que si $M_{0}(x_{0}^{\alpha})\in\Omega$ tend vers un point de ℓ_{O} , la fonction (x_{0}^{α}) est majorée par une fonction qui tend vers zéro. Pour montrer qu'il existe une telle fonction, on applique à $(\ell_{\overline{M}_{0}})$ (domaine des intégrales triples) la même décomposition que pour la 2-surface $S_{O}(M_{O})$. C'est ainsi que dans $[B_{1}]$, on a obtenu les résultats suivants :

2.4.1 : Dans le domaine u≤Cs_o.

Appelons:

$$\begin{cases} \mathcal{B}_{M_0} = \text{le domaine de } (\mathcal{C}_{\overline{M_0}}) \text{ défini par } : \zeta^3 \geq 0, \\ \mathcal{B}_c = \text{le domaine de } (\mathcal{C}_{\overline{M_0}}) \text{ défini par } : 0 > \zeta^3 > \mu_0 + mu, \\ \mathcal{B}_0 = \text{le domaine de } (\mathcal{C}_{\overline{M_0}}) \text{ défini par } : \zeta^3 \leq \mu_0 + mu. \end{cases}$$

D'où

$$(x_0^{\alpha}) = \underbrace{\iiint_{\partial_{M_0}} \sin \lambda_2 d\lambda_2 d\lambda_3 d\lambda_1}_{U_p} + \underbrace{\iiint_{\partial_C} \sin \lambda_2 d\lambda_2 d\lambda_3 d\lambda_1}_{U_c} + \underbrace{\iiint_{\partial_0} \sin \lambda_2 d\lambda_2 d\lambda_3 d\lambda_1}_{U_0}.$$

a) Cas de
$$U_p$$
: $\zeta^3 \ge 0$.

En utilisant les variables λ_1 , λ_{2^i} , et λ_{3^i} et le fait que $|\lambda_1| < K_1 u$; $K_1 = C^{ie}$; $u = x_0^0 - \phi(x_0^i)$, on a montré dans [B₁] que :

(2.4.1.1):
$$U_p(x_0^{\alpha}) < K^{\alpha}u; K^{\alpha} = C^{\alpha}$$

<u>b) Cas de $U_{\underline{c}}$; $0 > \zeta^3 > \mu_0 + mu$.</u>

En utilisant les variables ρ , α , ζ^3 et la décomposition faite au §2.3 de ce domaine, on montre dans $[B_1]$ que :

(2.4.1.2):
$$U_c(x_0^{\alpha}) < K'u|Logu|$$
. K' =cte

c) Cas de
$$U_0$$
; $\zeta^3 \le \mu_0 + mu$.

On utilise les variables Λ_1 , Λ_2 , Λ_3 et le fait que

 $\Lambda_1 = \Psi(x_0^{\alpha}, \Lambda_h) < K_2 u$, $K_2 = C^{te}$, ce qui donne dans $[B_1]$:

(2.4.1.3): $U_0(x_0^{\alpha}) < K^{\dagger}u$.

<u>On conclut</u>: Dans le domaine $u \leq Cs_O$, on a :

(2.4.1.4): $U(x_0^{\alpha}) < K'u|Logu|$.

2.4.2 Dans le domaine $u > cs_0$ et $x_0^0 < \chi(c)$.

Ici,
$$|\psi(x_0^{\alpha}, \lambda_h)| < K_3 x_0^0, K_3 = C^{te}$$

On a:

$$(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \sin \lambda_2 \int_{\psi(x_0^{\alpha}, \lambda_h)}^0 d\lambda_1 < \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \sin \lambda_2 \int_{-K_3 x_0^0}^0 d\lambda_1$$

Soit:

(2.4.2.1):
$$U(x_0^{\alpha}) < K^{\dagger}x_0^{\theta}$$

Résumons les résultats des §2.3 et §2.4.

Pour $c \le C_3$ (C_3 constante déterminée au §2.2), on a :

$$(2.4.3) \begin{cases} \circ \quad Dans \ le \ domaine : \ u \leq cs_0, \\ U(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \sin \lambda_2 \int_{\psi(x_0^{\alpha}, \lambda_h)}^0 d\lambda_1 < K'u | Logu | \\ I_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \, \mathcal{I}_s = 4\pi \varphi_s + k' \frac{\sqrt{u}}{\sqrt{s_0}} \\ \circ \quad Dans \ le \ domaine: \quad u > cs_0 \ et \ x_0^0 < \chi(c) \\ U(x_0^{\alpha}) < K' x_0^0 \\ I_s(x_0^{\alpha}) = 4\pi \varphi_s + k' x_0^0, \quad K' \ cons \ tan \ te \ et \ k' \ bornée. \end{cases}$$

PARTIE B

PROBLEME DE CAUCHY SEMI-LINEAIRE SUR UN CONOIDE CARACTERISTIQUE

$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha}, v, D_{\nu}v) = 0 \\ v \Big|_{\mathcal{C}_0} = \varphi(x^i) \end{cases}$$

Chapitre 3

ETABLISSEMENT DES FORMULES DE KIRCHHOFF POUR LE PROBLEME DE CAUCHY SEMI-LINEAIRE HYPERBOLIQUE

$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha}, v, D_{\nu}v) = 0 \\ v\Big|_{\mathcal{C}_0} = \tilde{v}\Big|_{\mathcal{C}_0} = \varphi(x^{i}) \end{cases}$$

Dans cette deuxième partie, nous étudions le problème de Cauchy semi-linéaire, objet de ce travail. Ce chapitre est composé de deux sections :

- Dans la section 3.1, après avoir posé le problème, nous montrons qu'il est nécessaire de dériver trois fois l'équation semi-linéaire pour pouvoir appliquer la méthode précédente. Ceci nous imposera de nouvelles hypothèses sur les données (coefficients et données de Cauchy).
- Il sera question dans la section 3.2 d'écrire les formules de KIRCHHOFF pour le nouveau système d'équations aux dérivées partielles, dont les fonctions inconnues sont v et ses dérivées partielles jusqu'à l'ordre trois. Enfin, on en déduira un système d'équations intégrales à résoudre dont les inconnues sont, en plus des fonctions précédentes, les fonctions ω_s^r et leurs dérivées jusqu'à l'ordre deux.

3.1: POSITION DU PROBLEME ET HYPOTHESES

Considérons le problème de Cauchy semi-linéaire sur un conoı̈de caractéristique $\mathcal{C}_{\mathbf{O}}$ suivant :

(3.1.1)
$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha}, v, D_{\nu}v) = 0 \\ v\Big|_{\mathcal{C}_0} = \tilde{v}\Big|_{\mathcal{C}_0} = \varphi(x^i) \end{cases}$$

Si on écrivait, formellement, pour le problème (3.1.1), les formules de KIRCHHOFF (\mathcal{J}_s) du chapitre 2, la présence des dérivées partielles premières $D_v v$ dans f, de façon non linéaire, montrerait que l'égalité obtenue n'est pas une équation intégrale.

Pour pouvoir appliquer la méthode choisie, dérivons l'équation (E) par rapport aux (x^{α}) ; en posant : $v_{\alpha} = \frac{\partial v}{\partial x^{\alpha}}$ (notation valable seulement pour v), on obtient :

$$(E_{\alpha}): A^{\lambda\mu}(x^{\alpha}) \frac{\partial^{2}v_{\alpha}}{\partial x^{\lambda}\partial x^{\mu}} + B_{\alpha}^{\lambda\eta} \frac{\partial^{2}v_{\eta}}{\partial x^{\lambda}} + f_{\alpha} = 0$$
où

(3.1.2)
$$\begin{cases} B_{\alpha}^{\lambda\eta} \frac{\partial v_{\eta}}{\partial x^{\lambda}} = \frac{\partial A^{\lambda\mu}}{\partial x^{\alpha}} \frac{\partial v_{\mu}}{\partial x^{\lambda}} + \frac{\partial f}{\partial D_{\nu}v} \frac{\partial v_{\alpha}}{\partial x^{\nu}} \\ f_{\alpha} = \frac{\partial f}{\partial x^{\alpha}} + \frac{\partial f}{\partial v} v_{\alpha} \end{cases}$$

En appliquant à (E) et (E_{α}) la méthode des chapitres précédents, où les fonctions inconnues sont $v = v_0$ et v_{α} , on obtient :

inconnues sont
$$\mathbf{v} = \mathbf{v}_0$$
 of \mathbf{v}_{α} , on obtaint:

$$(\mathcal{E}_s) : 4\pi v_s(x_0^{\alpha}) = \int_0^2 d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \Delta([v_{\lambda}] L_s^{\lambda} + \sigma_s^{\lambda}[f_{\lambda}]) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 E_s(\Delta_i^1 - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h)$$

où $(v_s) = (v_0, v_{\alpha})$

$$(\sigma_s^{\lambda} = \sigma_s \omega_s^{\lambda} \text{ avec } :$$

$$\omega_s^{\lambda} = \delta_s^{\lambda} + \int_0^{\lambda_1} (Q\omega_s^{\lambda} + Q_i^{\lambda} \omega_s^i) d\lambda_1 \quad \text{où } :$$

$$Q = -\frac{1}{2} \left[p_j \frac{d A^{ij}}{\partial y^i} + \frac{d A^{oi}}{\partial y^i} \right]$$

$$Q_t^{\lambda} = \frac{1}{2} \left[p_i \left[B_t^{i\lambda} \right] + \left[B_t^{0\lambda} \right] \right]$$

$$L_s^{\lambda} = \frac{\partial^2 \left(\left[A^{ij} \right] \sigma_s^{\lambda} \right)}{\partial y^i \partial y^j} - \frac{\partial \left(\left[B_t^{i\lambda} \right] \sigma_s^i \right)}{\partial y^i}$$

Ces relations (3.1.3), font apparaître des difficultés dans les (\mathcal{E}_S) ; en effet :

- De (3.1.2) et (3.1.3), on constate que les fonctions ω_s^{λ} dépendent des fonctions inconnues v_s , par l'intermédiaire des coefficients $B_s^{\lambda\eta}$, lesquels sont fonctions des dérivées partielles premières de f (par rapport aux $D_v v$), donc des dérivées partielles premières de v.
- Les fonctions L_s^{λ} font intervenir les dérivées secondes des ω_s^{λ} donc des dérivées troisièmes de f et v.

Du constat précédent, on déduit que pour pouvoir appliquer la méthode des formules de KIRCHHOFF au problème de Cauchy semi-linéaire, il est nécessaire de dériver au préalable trois fois l'équation (E) par rapport aux (x^{α}). Ceci nous amène aux hypothèses suivantes pour le problème de Cauchy (3.1.1).

Hypothèses (H):

- I Les hypothèses (H_2) -i) et ii) sont vérifiées;
- 2 $L=A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}$ est un opérateur différentiel régulièrement hyperbolique, tel que .
- i) $A^{oo} > \varepsilon$, $(\varepsilon > 0)$; $A^{ij} X_i X_j$ définie négative
- ii) $\exists \alpha > 0$; $\forall (x^0, x^i) \in \Omega$; $-A^{ij}XiXj > \alpha/X/f$
- $3 i) A \lambda \mu \in B^7(\Omega)$
 - ii) $A^{00}(0)=1$, $A^{0i}(0)=0$ et $A^{ij}(0)=-\delta^{ij}$
- $4 f(x\alpha, v, D_v v) \in C^5(\Omega x \Omega x \Omega')$ où :

 Ω' est un ouvert de IR

 Ω' est un ouvert de IR^4

5 - $\varphi(x^i)$ est la restriction à $\mathcal{C}_{\sigma}d'$ une fonction arbitraire $\tilde{v}(x^a)$ où $\tilde{v} \in B^7(\Omega)$

Remarque 3.1

Ces hypothèses "fortes" de dérivabilité faites sur les données $_A\lambda\mu$ et f ne sont nécessaires que sur le demi-conoïde $_{\mathcal{L}_{\mathfrak{a}}}$ (justification sera faite au chapitre 4). En dehors de $_{\mathcal{L}_{\mathfrak{a}}}$ on aura besoin uniquement de $_A\lambda\mu\in B^4(\Omega)$ et $f\in C^3(\Omega x\Omega'x\Omega'')$.

3.2 FORMULES DE KIRCHHOFF ET SYSTEME INTEGRAL

3.2.1 Dérivations de (E)

En conformité avec les arguments soulevés au paragraphe précédent, dérivons trois fois (E) par rapport aux x^{α}

Posons:
$$f = f_0$$
, $v = v_0$, $v_{\alpha} = \frac{\partial v}{\partial x^{\alpha}}$, $v_{\alpha\beta} = \frac{\partial^2 v}{\partial x^{\alpha} \partial x^{\beta}}$ et $v_{\alpha\beta\gamma} = \frac{\partial^3 v}{\partial x^{\alpha} \partial x^{\beta} \partial x^{\gamma}}$

On obtient:

(3.2.1.1)
$$\begin{cases} (E) : A^{\lambda\mu}(x^{\alpha}) \frac{\partial^{2}v_{0}}{\partial x^{\lambda} \partial x^{\mu}} + f_{0}(x^{\alpha}, v_{0}, D_{\nu}v_{0}) = 0 \\ (E_{\alpha}) : A^{\lambda\mu}(x^{\alpha}) \frac{\partial^{2}v_{\alpha}}{\partial x^{\lambda} \partial x^{\mu}} + B^{\lambda\eta}_{\alpha} \frac{\partial^{2}v_{\eta}}{\partial x^{\lambda}} + f_{\alpha} = 0 \\ (E_{\alpha\beta}) : A^{\lambda\mu}(x^{\alpha}) \frac{\partial^{2}v_{\alpha\beta}}{\partial x^{\lambda} \partial x^{\mu}} + B^{\lambda\eta\delta}_{\alpha\beta} \frac{\partial^{2}v_{\eta\delta}}{\partial x^{\lambda}} + f_{\alpha\beta} = 0 \\ (E_{\alpha\beta\gamma}) : A^{\lambda\mu}(x^{\alpha}) \frac{\partial^{2}v_{\alpha\beta\gamma}}{\partial x^{\lambda} \partial x^{\mu}} + B^{\lambda\eta\delta\varepsilon}_{\alpha\beta\gamma} \frac{\partial^{2}v_{\eta\delta\varepsilon}}{\partial x^{\lambda}} + f_{\alpha\beta\gamma} = 0 \end{cases}$$

- ou : * $B_{\alpha}^{\lambda\eta}$, $B_{\alpha\beta}^{\lambda\eta\delta}$, $B_{\alpha\beta\gamma}^{\lambda\eta\delta\varepsilon}$, sont des polynômes des fonctions :
- les dérivées partielles premières de $A^{\lambda\mu}$
- $_{\perp}$ les dérivées partielles premières de f par rapport aux $D_{V}v$.
- * f_{α} (reps. $f_{\alpha\beta}$ et $f_{\alpha\beta\gamma}$) sont des polynômes des fonctions :
- A^{λμ} et leurs dérivées partielles jusqu'à l'ordre un (resp. deux et trois);
- f et ses dérivées partielles par rapport à tous ses arguments jusqu'à l'ordre un (resp. deux et trois);
- v et ses dérivées partielles jusqu'à l'ordre un (resp. deux et trois).

Notation:

En prenant comme nouvelles fonctions inconnues $(v_r) = (v_0, v_{\alpha}, v_{\alpha\beta}, v_{\alpha\beta\gamma})$, le système (3.2.1.1) s'écrit :

$$(\mathbf{E}_{\mathbf{f}}): A^{\lambda\mu}(x^{\alpha}) \frac{\partial^{2}v_{r}}{\partial x^{\lambda} \partial x^{\mu}} + B_{r}^{\lambda s} \frac{\partial^{2}v_{s}}{\partial x^{\lambda}} + f_{r} = 0.$$

3.2.2 Conséquences

On constate que si les hypothèses (H) sont vérifiées pour (E), alors, à fortiori, les hypothèses (H₂) sont satisfaites pour les équations (E_r), où :

$$\begin{cases} B_r^{\lambda s}(x^{\alpha}) = B_r^{\lambda s}(x^{\alpha}, v(x^{\alpha}), D_{\alpha}v(x^{\alpha})) \\ f_r(x^{\alpha}) = f_r(x^{\alpha}, v_s(x^{\alpha})) \end{cases}$$

Par conséquent, on peut appliquer aux (E_r) les résultats de la proposition (1.1) du chapitre 1. On obtient ainsi la proposition suivante :

Proposition 3.2.2.1

Si les hypothèses (H) sont vérifiées pour le problème de Cauchy (3.1.1), alors :

- toute solution v , de (3.1.1), cinq fois dérivables à dérivées quatrièmes bornées, satisfait, ainsi que ses dérivées partielles jusqu'à l'ordre trois, aux formules de KIRCHHOFF généralisées :

$$(\mathcal{E}_{s}): 4\pi v_{s}(x_{0}^{\alpha}) = \int_{0}^{2\pi} d\lambda_{3} \int_{0}^{\pi} \sin \lambda_{2} d\lambda_{2} \int_{0}^{\psi(x_{0}^{\alpha}, \lambda_{h})} d\lambda_{1} \Delta([v_{r}] L_{s}^{r} + \sigma_{s}^{r}[f_{r}]) + \int_{0}^{2\pi} d\lambda_{3} \int_{0}^{\pi} d\lambda_{2} \vartheta_{s}(x_{0}^{\alpha}, \lambda_{h})$$

úo

$$(3.2.2.1) \begin{cases} \beta_{s}(x_{0}^{\alpha}, \lambda_{h}) = E_{s}^{i}(\Delta_{i}^{l} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h}) \\ E_{s}^{i} = -\frac{\partial \sigma_{s}^{r}}{\partial y^{j}} \begin{bmatrix} *^{ij} \\ A \end{bmatrix} \overset{*}{\varphi_{r}} + \sigma_{s}^{r} (\begin{bmatrix} *^{ij} \\ A \end{bmatrix} \frac{\partial \varphi_{r}}{\partial y^{j}} - \overset{*}{\varphi_{r}} \frac{\partial \begin{bmatrix} *^{ij} \\ A \end{bmatrix}}{\partial y^{j}} \overset{*}{+} \begin{bmatrix} *^{l} \\ B_{r}^{il} \end{bmatrix} \varphi_{t}^{*}) \\ \sigma_{s}^{r} = \sigma \omega_{s}^{r} \\ U_{s}^{r} = \frac{\partial^{2}(\begin{bmatrix} *^{ij} \\ A^{ij} \end{bmatrix} \sigma_{s}^{r})}{\partial y^{i} \partial y^{j}} - \frac{\partial (B_{t}^{ir}) \sigma_{s}^{r}}{\partial y^{j}} \end{cases}$$

Toutefois, ici, les fonctions ω_s^r , toujours définies par :

$$(3.2.2.2) : \omega_{s}^{r} = \delta_{s}^{r} + \int_{0}^{\lambda_{1}} d\lambda_{1} \left\{ -\frac{1}{2} \left(p_{j} \frac{\partial \left(x_{i}^{*} \right)}{\partial y^{i}} + \frac{\partial \left(x_{i}^{*} \right)}{\partial y^{i}} \right) \omega_{s}^{r} + \frac{1}{2} \left(p_{i} \left[x_{i}^{*} \right] + B_{i}^{0r} \right) \omega_{s}^{r} \right\}$$

dépendent des fonctions v et v_{α} par l'intermédiaire des fonctions $B_{S}^{\lambda r}$.

Par conséquent, dans les seconds membres des (\mathcal{E}_S) il n'y a pas que les fonctions (v_S) qui sont inconnues, mais aussi les ω_S^r et leurs dérivées jusqu'à l'ordre deux qui interviennent dans les L_S^r .

Toutefois, d'après le lemme 1.6.1 du paragraphe 1.6 du chapitre 1, les fonctions $\frac{\partial \omega_s^r}{\partial y^i}$ et $\lambda_1 \frac{\partial^2 \omega_s^r}{\partial y^i \partial y^j}$ sont des combinaisons linéaires des fonctions $\omega(\omega_s^r, \omega_{sh}^r, \omega_{shl}^r)$ et $\tilde{\omega}(\frac{\omega_{sh}^r}{\lambda_1}, \frac{\omega_{shl}^r}{\lambda_1})$. Donc pour déterminer les dérivées premières et secondes des ω_s^r , il

suffit de connaître $\omega_s^r, \omega_{sh}^r$ et ω_{shi}^r . Les relations (1.6.1.2) nous donnent les formules intégrales vérifiées par les fonctions ω , lesquelles s'écrivent :

(3.2.2.3)
$$\omega = \omega_0 + \int_0^{\lambda_1} F(v_s, \omega) d\lambda_1$$
, où :

- * $F(v_s, \omega)$ est une combinaison linéaire des fonctions ω et dont les coefficients sont des polynômes des dérivées des fonctions $A^{\lambda\mu}$ et f jusqu'à l'ordre trois et des v_s .
 - * ω_0 est l'une des fonctions $\left\{\delta_s^r, 0, 0\right\}$.

Considérons maintenant les intégrales doubles dans les équations (\mathcal{E}_S), les fonctions ϕ_Γ figurant dans les E_S^i ne sont autres que les valeurs sur (\mathcal{C}_{σ}) des fonctions inconnues (v_S). Mais ici, les v_S sont les dérivées de v_S jusqu'à l'ordre trois. Par conséquent, la connaissance sur \mathcal{C}_{σ} des dérivées de v_S jusqu'à l'ordre trois est nécessaire pour le calcul des intégrales doubles. Ce travail fera l'objet du chapitre 4.

Récapitulons les résultats précédents sous la :

Proposition 3.2.2.2:

Si les hypothèses (H) sont vérifiées, alors , dans les conditions de la proposition 3.2.2.1, les fonctions v_s et ω vérifient le système intégral suivant :

$$(\mathcal{C}_s) \begin{cases} 4\pi v_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \mathcal{I}_s(v_s, \omega) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \mathcal{I}_s(\omega) \\ \omega = \omega_0 + \int_0^{\lambda_1} F(v_s, \omega) d\lambda_1 \end{cases}$$

$$\begin{cases} \mathcal{J}_{s}(v_{s},\omega) = \Delta([v_{s}]L_{s}^{r}(v_{s},\omega) + \sigma\omega_{s}^{r}[f_{r}(v_{s})]) \\ \mathcal{J}_{s}(\omega) = E_{s}^{i}(\omega)\left(\Delta_{i}^{1} - \frac{\partial\psi}{\partial\lambda_{h}}\Delta_{i}^{h}\right) \end{cases}$$

La résolution du système (&) fera l'objet du chapitre 5.

Chapitre 4

DETERMINATION DES RESTRICTIONS A C₀ DES DERIVEES DE LA SOLUTION DU PROBLEME DE CAUCHY.

Dans le chapitre précédent, nous avons vu que la détermination, sur $\mathcal{C}_{\mathbf{O}}$ des valeurs des dérivées, jusqu'à l'ordre trois, de la solution du problème de Cauchy était nécessaire pour le calcul des intégrales doubles dans le système ($\mathcal{C}_{\mathbf{S}}$).

Dans [B₃], F. CAGNAC a étudié ce problème dans un cadre plus général, celui des équations quasi-linéaires hyperboliques du second ordre. Nous rappelons ici les résultats qu'il avait obtenus en les appliquant au problème semi-linéaire qui nous intéresse.

- La section 4.1 de ce chapitre est consacrée à la définition du demi-conoïde $\mathcal{C}_{\mathbf{O}}$ en coordonnées géodésiques.
- Dans la section 4.2, nous déterminons les dérivées partielles premières de la solution du problème de Cauchy. Le domaine de définition (\mathcal{C}_{O}) de celles-ci, étant la partie de \mathcal{C}_{O} dont nous avons parlée au début de ce travail et au voisinage duquel, le problème de Cauchy admet une solution.

Enfin, on énonce le théorème permettant la détermination sur $(\mathcal{C}_{\mathbf{O}})$ des dérivées secondes et troisièmes de la solution du problème de Cauchy.

4.1 : $\mathcal{C}_{\mathbf{O}}$ EN COORDONNEES GEODESIQUES

Dans ce chapitre, on a besoin des développements limités de la fonction définissant \mathcal{C}_O et ses dérivées au voisinage du sommet $O(x^{\alpha}=0)$ (ou encore pour $\Lambda_1=0$). Pour ces cas et pour des raisons de simplicité, on choisira comme coordonnées (x^{α}) , les coordonnées géodésiques au point O pour la métrique hyperbolique définie par la matrice inverse des $A^{\lambda\mu}$.

On obtient ainsi:

- $\mathcal{C}_{\mathbf{O}}$: est le cône d'équation :

(4.1.1)
$$x^0 = S$$
 où $S = \sqrt{\sum_{i=1}^{3} (x^i)^2}$

- Les bicaractéristiques de \mathcal{C}_O sont les génératrices du cône, et ont pour équation $\begin{cases} x^0 = \Lambda_1 \\ x^1 = a^0 \Lambda \end{cases}$

$$: (4.1.2) \begin{cases} x^0 = \Lambda_1 \\ x^i = q_i^0 \Lambda_1 \\ q_i = q_i^0 \end{cases}$$

- donc le long de chaque bicaractéristique de $\mathcal{C}_{\mathbf{O}}$ on a:

(4.1.3)
$$\begin{cases} x^{0} = \Lambda_{1} = S \\ \frac{x^{i}}{\Lambda_{1}} = \frac{x^{i}}{S} = q_{i}^{0} = C^{te} \end{cases}$$

Considérons maintenant les équations (1.2.1.1) du chapitre 1, où on prend \mathcal{C}_{O} (resp. Λ_{1}) à la place de $\mathcal{C}_{\overline{M}_{0}}$ (resp. λ_{1}), (rappelons que \mathcal{C}_{O} et $\mathcal{C}_{\widetilde{M}_{0}}$ sont des demi-conoïdes caractéristiques pour le même opérateur différentiel).

On constate que pour déterminer les dérivées partielles d'ordre \leq l sur $\mathcal{C}_{\mathbf{O}}$ d'une fonction v, il suffit de connaître :

$$- \left| \operatorname{les} \frac{\partial^{p} v}{(\partial x^{0})^{p}} \right|_{\mathcal{C}_{0}}; \quad p \leq l$$

- les dérivées de la fonction définissant $\mathcal{C}_{\mathbf{O}}$: ici :xo=S
- les dérivées de $\varphi = v|_{\dot{C}_0}$ jusqu'à l'ordre l.

Par conséquent, pour le cas nous concernant, il suffit de déterminer les

$$\frac{\partial v}{(\partial x^0)^l}\Big|_{\mathcal{C}_0}$$
 pour $l=1, 2, 3$.

Pour cela, posons:

(4.1.4)
$$\begin{cases} v|_{\mathcal{C}_0} = \bar{v}|_{\mathcal{C}_0} = \varphi = \psi^{(0)} \\ \frac{\partial^l v}{\partial (x^0)^l}|_{\mathcal{C}_0} = \psi^{(l)}, \quad l = 1, 2, 3. \end{cases}$$

4.2. DETERMINATION DE
$$\psi^{(1)} = \frac{\partial v}{\partial x^0}\Big|_{C_0}$$

Afin de pouvoir déterminer $\psi^{(1)}$, écrivons (E) sur \mathcal{C}_{0} . Les relations (1.2.1.2'), du chapitre 1 donnent :

(E)
$$\frac{2d\psi^{(1)}}{d\Lambda_1} + \left[A^{ij}\right] \frac{\partial q_i}{\partial x^j} \psi^{(1)} + \left[A^{ij}\right] \frac{\partial^2 \varphi}{\partial x^i \partial x^j} + \left[f\right] = 0$$

$$\left[A^{ij}\right] = A^{ij}(x^0 = S, x^i)$$

[f] est pris pour les arguments :

$$\begin{cases} x^{0} = S \\ x^{i} = x^{i} (\Lambda_{1}, q_{j}^{0}) \\ v = \varphi(\Lambda_{1}, q_{j}^{0}) \\ \frac{\partial v}{\partial x^{0}} = \psi^{(1)} (\Lambda_{1}, q_{j}^{0}) \\ \frac{\partial v}{\partial x^{i}} = \frac{\partial \varphi}{\partial x^{i}} + q_{i} \psi^{(1)} \end{cases}$$

- Φ f étant lipschitzienne en $D_V v$, [f] l'est en $Ψ^{(1)}$. Dans [E], les termes qui posent des problèmes sont les fonctions $\left[A^{ij}\right] \frac{\partial q_i}{\partial x^j}$ et $\left[A^{ij}\right] \frac{\partial^2 \varphi}{\partial x^i \partial x^j}$ qui ne sont pas bornées pour $Λ_1$ =0.
- O Dans [B₃], F. CAGNAC a montré que l'hypothèse $\varphi = \tilde{v}|_{\mathcal{C}_0}$ entraı̂ne pour la fonction $\varphi(x^i)$ les propriétés suivantes :
- i) φ admet un développement limité au voisinage de l'origine de la forme : $\varphi(x^i) = \tilde{v}(0) + a_i x^i + a_o S + \dots$

où :
$$a_{\alpha} = \frac{\partial \tilde{v}}{\partial x^{\alpha}}(0)$$
, $\alpha = 0, 1, 2, 3$ et $S = \sqrt{\sum_{i=1}^{3} (x^i)^2}$

ii) Les dérivées de φ admettent les développements limités dérivés.

$$(4.2.1) \begin{cases} \frac{\partial \varphi}{\partial x^{i}} = a_{i} + a_{0} \frac{x^{i}}{S} + \dots = a_{i} + a_{0} q_{i}^{0} + \dots \\ \frac{\partial^{2} \varphi}{\partial x^{i} \partial x^{j}} = a_{0} \left(\frac{\delta^{ij}}{S} - \frac{x^{i} x^{j}}{S^{3}} \right) + \dots = \frac{a_{0}}{\Lambda_{1}} \left(\delta^{ij} - q_{i}^{0} q_{j}^{0} \right) + \dots \end{cases}$$

Comme:
$$[A^{ij}] = -\delta^{ij} + K\Lambda_1$$
 (K bornée), on a:
(4.2.2) $[A^{ij}] \frac{\partial^2 \varphi}{\partial x^i \partial x^j} = -\frac{2a_0}{\Lambda_1} + m(\Lambda_1, q_j^0)$

où m est une fonction continue et bornée au voisinage de Λ_1 =0.

• D'autre part, C_0 étant d'équation : $x^0 = S$, on a :

$$\begin{aligned} q_i &= -\frac{\partial S}{\partial x^i} = -\frac{x^i}{S} = -\frac{x^i}{\Lambda_1} \\ \frac{\partial q_i}{\partial x^j} &= -\frac{\partial^2 S}{\partial x^i \partial x^j} = \frac{1}{S} \left(\delta^{ij} - \frac{x^i x^j}{S^2} \right) = \frac{1}{\Lambda_1} \left(\delta^{ij} - q_i^0 q_j^0 \right) \end{aligned}$$

d'où:

$$(4.2.3) \left[A^{ij} \right] \frac{\partial q_i}{\partial x^j} = \frac{2}{\Lambda_1} + m'(\Lambda_1, q_j^0)$$

où m' est une fonction continue et bornée au voisinage de Λ_1 =0

Maintenant, si on pose $\psi_0^{(1)} = \psi^{(1)} - a_0$, alors (4.2.2) et (4.2.3) permettent d'écrire [E] sous la forme :

$$(4.2.4) \quad \frac{d\psi_0^{(1)}}{d\Lambda_1} + \frac{1}{\Lambda_1} \psi_0^{(1)} + g(\Lambda_1, q_j^0, \psi_0^{(1)}) = 0$$

où

$$g(\Lambda_1, q_j^0, \psi_0^{(1)}) = \frac{1}{2} \{ m + m' \psi^{(1)} + [f] \}$$

est une fonction continue en Λ_1 et lipschitzienne en $\psi_0^{(1)}$ (car [f] l'est en $\psi^{(1)}$).

On en déduit, par conséquent, que *toute solution bornée* de (4.2.4) vérifie l'équation intégrale :

(4.2.5)
$$\psi_0^{(1)} = \frac{1}{\Lambda_1} \int_0^{\Lambda_1} \left[-\Lambda g(\Lambda_1, q_j^0, \psi_0^{(1)}) \right] d\Lambda$$

Les propriétés de la fonction g montrent que (4.2.5) admet une solution unique : $\psi_0^{(1)} = \psi^{(1)} - a_0$, qui soit bornée au voisinage de Λ_1 =0 et cette solution s'annule pour Λ_1 =0.

Domaine de définition (C_0) de. $\psi^{(1)}$:

L'équation intégrale (4.2.5) n'étant pas linéaire en $\psi^{(l)}$, car f n'est pas linéaire en $D_{\nu}v$, sa solution n'est pas nécessairement prolongeable à tout le demi-conoïde ℓ_{0} .

Notation:

Dans toute la suite, nous désignerons par (\mathcal{E}), la partie du demi-conoïde \mathcal{E} sur laquelle est définie la solution $\psi^{(1)}$ de l'équation intégrale (4.2.5).

Des calculs précédents, on est conduit à la :

Proposition 4.2.1:

Etant donné le problème de Cauchy $(A^{\lambda\mu},f,\tilde{v})$ satisfaisant aux hypothèses (H), alors :

Il existe sur le demi-conoïde C_0 , un domaine C_0 voisinage du sommet C_0 , formé des segments de bicaractéristiques issues de C_0 tel que : $\psi^{(1)} = \frac{\partial v}{\partial x^0}\Big|_{C_0}$ soit déterminée de

façon unique pour toute solution bornée à dérivées premières bornées.

Remarque.

A l'extérieur de (\mathcal{C}_0) , il y a peu d'espoir d'avoir des solutions (et si c'était le cas, les dérivées de celles-ci ne seraient pas bornées et donc des solutions sans intérêt).

Par contre, on peut démontrer qu'on peut trouver une solution du problème de Cauchy au voisinage de (\mathcal{C}_{O}) tout entier.

Notons ici, d'ailleurs, une grande différence entre les problèmes de Cauchy semi-linéaire et linéaire. Dans ce dernier cas, on peut prolonger $\psi^{(1)}$ à tout le demi-conoïde ℓ_0 ; c'est-à-dire que : $(\ell_0) = \ell_0$ dans le cas linéaire.

Différentiabilité de $\psi^{(1)}$.

On a la proposition suivante qui découle du théorème sur la différentiabilité des solutions des équations différentielles ordinaires dépendant d'un paramètre ; voir H. CARTAN [B₇].

Proposition 4.2.2.

- Si les $A^{\lambda\mu}$ et \tilde{v} sont de classe C^p ($p \ge 2$)
- Si f est de classe Cp-2

alors:

 $\psi^{(1)}(x^i)$ est de classe $C^{p-2} sur (\mathcal{C}) - \{0\}$.

Corollaire 4.2.2.

Sous les hypothèses (H) de notre problème, on a : $\psi^{(1)}(x^i)$ est de classe C^5 sur (C_0) - $\{0\}$.

4.3 DETERMINATION DES $\psi^{(1)}$, I=2, 3.

Pour déterminer $\psi^{(2)}$ et $\psi^{(3)}$, écrivons sur $\mathcal{C}_{\mathbf{O}}$, les équations dérivées de (E) par rapport à $\mathbf{x}^{\mathbf{O}}$, jusqu'à l'ordre deux. On obtient alors, sur chaque bicaractéristique de $\mathcal{C}_{\mathbf{O}}$:

$$(4.3.1) \begin{cases} \left[E_o\right] \cdot \frac{2d\psi^{(2)}}{d\Lambda_1} + \left[A^{ij}\right] \frac{\partial q_i}{\partial x^j} \psi^{(2)} + \left[A^{ij}\right] \frac{\partial^2 \psi^{(1)}}{\partial x^i \partial x^j} + \left[f_1\right] = 0 \\ \left[E_{oo}\right] \cdot \frac{2d\psi^{(3)}}{d\Lambda_1} + \left[A^{ij}\right] \frac{\partial q_i}{\partial x^j} \psi^{(3)} + \left[A^{ij}\right] \frac{\partial^2 \psi^{(2)}}{\partial x^i \partial x^j} + \left[f_2\right] = 0 \end{cases}$$

où, par exemple

$$f_{1} = \frac{\partial A^{\lambda \mu}}{\partial x^{0}} \frac{\partial \mathcal{V}}{\partial x^{\lambda} \partial x^{\mu}} + \frac{\partial f}{\partial_{\nu}^{\nu}} \frac{\partial \mathcal{V}}{\partial x^{\nu} \partial x^{0}} + \frac{\partial f}{\partial x^{0}} + \frac{\partial f}{\partial \nu} \frac{\partial \nu}{\partial x^{0}}$$

et

$$(4.3.2) \begin{cases} [f_1] = f_1|_{\mathcal{C}_0} = h_{12}\psi^{(2)} + h_{11} \text{ avec} : \\ h_{12} = \frac{\partial A^{00}}{\partial x^0} + 2\frac{\partial A^{0i}}{\partial x^0}q_i + \frac{\partial A^{ij}}{\partial x^0}q_iq_j + \frac{\partial f}{\partial_0 v} + \frac{\partial f}{\partial_i v}q_i \\ h_{11} = \frac{\partial A^{ij}}{\partial x^0} \left(\frac{\partial^2 \psi}{\partial x^i \partial x^j} + \frac{\partial q_i}{\partial x^j} \psi^{(1)} + q_i \frac{\partial \psi^{(1)}}{\partial x^j} + q_j \frac{\partial \psi^{(1)}}{\partial x^i} \right) + \\ + \frac{\partial \psi^{(1)}}{\partial x^i} \left(2\frac{\partial A^{0i}}{\partial x^0} + \frac{\partial f}{\partial_i v} \right) + \frac{\partial f}{\partial x^0} + \frac{\partial f}{\partial v} \psi^{(1)} \end{cases}$$

On constate que $[f_1]$ est linéaire en $\psi^{(2)}$ et les mêmes calculs montrent que $[f_2]$ est aussi linéaire en $\psi^{(3)}$.

Certaines fonctions qui interviennent dans ces équations ne sont pas bornées au sommet de \mathcal{C}_{O} . Toutefois, l'hypothèse $\phi = \tilde{v}\big|_{\mathcal{C}_{0}}$ avec \tilde{v} de classe C^{7} permet de montrer que ces équations ont une solution et une seule bornée en O.

En conclusion, on obtient le théorème suivant , $[B_3]$:

Théorème 4.3

Etant donné le problème de Cauchy sur un conoïde caractéristique \mathcal{C}_0 , défini par les $A^{\lambda\mu}$, f et \tilde{v} où :

- $A^{\lambda\mu}$ et \tilde{v} sont de classe C^7
- f est de classe C^5 ;

alors :

* Pour $l \le 3$, les $\psi^{(l)} = \left[\frac{\partial^l v}{(\partial x^0)^l}\right]$ sont déterminées de façon unique sur (\mathcal{C}) , pour

toute solution du problème de Cauchy qui a ses dérivées bornées jusqu'à l'ordre quatre.

* Les fonctions $\psi^{(1)}(x^i)$ sont de classe C^{7-2l} sur $(\mathcal{O}_{-l}(0), \{0\})$

Corollaire 4.3.

De ce théorème, on déduit que les φ_s entrant en compte dans les intégrales doubles du système (\mathcal{Q} sont déterminées de façon unique, et sont de classe \mathbb{C}^1 , sur (\mathcal{Q})- $\{0\}$.

Chapitre 5

RESOLUTION DU SYSTEME D'EQUATIONS INTEGRALES (\mathcal{C}_s)

$$\begin{cases} 4\pi v_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin\lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \mathcal{I}_s(v_s, \omega) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \mathcal{I}_s(\omega) \\ \omega = \omega_0 + \int_0^{\lambda_1} F(v_s, \omega) d\lambda_1 \end{cases}$$

Avec ce chapitre, nous entrons dans la partie principale de cette thèse. Il s'agit en effet, de résoudre le système d'équations intégrales (\mathcal{C}_S) obtenu dans la proposition 3.2.2.2 du chapitre 3. La méthode de résolution adoptée est la méthode des approximations successives.

Le chapitre comporte trois sections :

- La section 5.1 est un préliminaire, où après avoir exprimé les fonctions E_s^t à l'aide des fonctions ω et $\tilde{\omega}$, nous donnons une expression des fonctions $\vartheta_s(x_0^\alpha, \lambda_h)$ adaptée au problème semi-linéaire.
- Dans la section 5.2 nous énonçons le théorème principal et construisons un espace fonctionnel dans lequel, on cherchera la solution du système (\mathcal{C}_S).
- C'est dans la section 5.3 que se fera la résolution proprement-dite par l'utilisation du principe des applications contractantes.

5.1 EXPRESSION DES FONCTIONS
$$\vartheta_s(x_0^{\alpha}, \lambda_h) = E_s^i \left(\Delta_i^1 - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h \right)$$

5.1.1 Expression des \underline{E}_s^i .

Rappelons que $\begin{cases} \omega & \text{est l'une quelconque des fonctions } \left\{ \omega \frac{r}{s}, \omega \frac{r}{sh}, \omega \frac{r}{shl} \right\} \\ \widetilde{\omega} & \text{est l'une quelconque des fonctions } \left\{ \frac{\omega \frac{r}{sh}}{\lambda_1}, \frac{\omega \frac{r}{shl}}{\lambda_1} \right\} \end{cases}$

Notons: $\hat{\omega}$ les fonctions $\hat{\omega}_s^r = \frac{\omega_s^r - \delta_s^r}{\lambda_1}$.

Nous allons démontrer le lemme suivant :

Lemme 5.1.1.

Les fonctions E^i_s peuvent s'écrire sous la forme :

(5.1.1.1)
$$E_s^i = \frac{p_i^0}{\lambda_1^2} \phi_s + \frac{E'(\hat{\omega}, \omega, \tilde{\omega})}{\lambda_1}$$

où $E'(\hat{\omega}, \omega, \tilde{\omega})$ est une fonction affine de ses arguments, à coefficients continus et bornés.

Preuve:

Comme on l'a vu :

$$E_{s}^{i} = -\frac{\partial \sigma_{s}^{r}}{\partial y^{j}} \begin{bmatrix} *^{ij} \\ A \end{bmatrix} \overset{*}{\varphi_{r}} + \sigma_{s}^{r} \begin{bmatrix} *^{ij} \\ A \end{bmatrix} \frac{*}{\partial \varphi_{r}} - \overset{*}{\varphi_{r}} \frac{\partial \begin{bmatrix} *^{ij} \\ A \end{bmatrix}}{\partial y^{j}} + \begin{bmatrix} * \\ B_{r}^{il} \end{bmatrix} \overset{*}{\varphi_{l}}$$

où $\sigma_s^r = \sigma \, \omega_s^r$; donc E_s^i peut s'écrire : $E_s^i = A_s^i + B_s^i$ où :

$$E_s^i = A_s^i + B_s^i \quad \text{où} :$$

$$A_s^i = -\frac{\partial \sigma}{\partial y^j} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \omega_s^r \varphi_r^r$$

$$\mathcal{B}_{s}^{i} = -\frac{\partial \omega_{s}^{r}}{\partial y^{j}} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \sigma \varphi_{r} + \sigma \omega_{s}^{r} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \frac{\partial \varphi_{r}}{\partial y^{j}} - \varphi_{r}^{r} \frac{\partial A^{ij}}{\partial y^{j}} + \begin{bmatrix} * \\ B_{r}^{ii} \end{bmatrix} \varphi_{t}^{r}$$

Calcul des A_s^i .

De
$$\omega_s^r = \overline{\delta_s^r} + \lambda_1 \hat{\omega}_s^r$$
, on a:

$$A_{s}^{i} = -\frac{\partial \sigma}{\partial y^{j}} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \phi_{s}^{*} - \lambda_{1} \hat{\omega}_{s}^{r} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \phi_{r}^{*} \frac{\partial \sigma}{\partial y^{j}}$$

On sait que:

$$\frac{\partial \sigma}{\partial y^j} = \frac{p_j^0}{\lambda_1^2} + \frac{K}{\lambda_1} \quad \text{d'après (1.5.3.1)},$$

et
$$\begin{bmatrix} * \\ A^{ij} \end{bmatrix} = -\delta^{ij} + K\lambda_1$$
 (K bornée)

Donc:

$$-i) \quad -\frac{\partial \sigma}{\partial y^{j}} \begin{bmatrix} \star \\ A^{ij} \end{bmatrix} \varphi_{s}^{\star} = \frac{p_{i}^{0}}{\lambda_{1}^{2}} \varphi_{s}^{\star} + \frac{E_{0s}^{i}}{\lambda_{1}}$$

où E_{0s}^{i} sont des fonctions continues et bornées.

D'autre part:

- ii)
$$-\lambda_{1}\hat{\omega}_{s}^{r} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \varphi_{r}^{*} \frac{\partial \sigma}{\partial y^{j}} = -\frac{\hat{\omega}_{s}^{r}}{\lambda_{1}} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \varphi_{r}^{*} \lambda_{1}^{2} \frac{\partial \sigma}{\partial y^{j}}$$
$$= \frac{\hat{\omega}_{s}^{r}}{\lambda_{1}} E_{1r}^{i}$$

où E_{1r}^i sont des fonctions bornées.

Par conséquent :

(1)
$$A_s^i = \frac{P_i^0}{\lambda_1^2} \varphi_s^* + \frac{1}{\lambda_1} \left(E_{0s}^i + E_{1r}^i \hat{\omega}_s^r \right)$$

Calcul des \mathcal{B}_s^i .

De (1.6.1.3) du paragraphe 1.6, on a :

$$\frac{\partial \omega_s^r}{\partial y^j} = \frac{\Delta_j^l}{\Delta} p_t^r \omega_s^t + \frac{\Delta_j^h}{\Delta} \omega_{sh}^r, \text{ done } :$$

$$(\Delta_j^l) = (\Delta_j^h)^{-\frac{1}{2}} \omega_s^h + \frac{\Delta_j^h}{\Delta} \omega_{sh}^r, \text{ done } :$$

$$\mathcal{B}_{s}^{i} = \sigma \left(\frac{\Delta_{j}^{l}}{\Delta} p_{t}^{r} \omega_{s}^{t} + \frac{\Delta_{j}^{h}}{\Delta} \omega_{sh}^{r} \right) \left[A^{ij} \right]_{\varphi_{r}}^{*} + \sigma \omega_{s}^{r} g_{r}^{i} , \text{ avec}$$

$$g_r^i = \begin{bmatrix} *_{ij} \\ A^{ij} \end{bmatrix} \frac{\partial \varphi_r}{\partial y^j} - \varphi_r \frac{\partial A^{ij}}{\partial y^j} + \begin{bmatrix} *_{it} \\ B_r^{it} \end{bmatrix} \varphi_t \quad \text{continue et bornée (relation 2.3.0.1)}. \quad \text{On peut}$$

écrire

$$\mathcal{B}_{s}^{i} = \sigma \left(\frac{\Delta^{1}_{j}}{\Delta} p_{t}^{r} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \varphi_{r}^{r} + g_{t}^{i} \right) \omega_{s}^{t} + \sigma \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \varphi_{r}^{r} \frac{\Delta^{h}_{j}}{\Delta} \omega_{sh}^{r}$$

Soit:
$$\mathcal{B}_{s}^{i} = \lambda_{1} \sigma \left(\frac{\Delta_{j}^{1}}{\Delta} p_{t}^{r} \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \varphi_{r}^{r} + g_{t}^{i} \right) \frac{\omega_{s}^{i}}{\lambda_{1}} + \lambda_{1} \sigma \begin{bmatrix} * \\ A^{ij} \end{bmatrix} \varphi_{r}^{r} \lambda_{1} \frac{\Delta_{j}^{h}}{\Delta} \frac{\omega_{sh}^{r}}{\lambda_{1}^{2}}$$

Comme $\lambda_I \sigma$ est borné et les fonctions entre parenthèses sont bornées, on en déduit que :

$$\mathcal{B}_{s}^{i} = \frac{\omega_{s}^{r}}{\lambda_{1}} E_{2r}^{i} + \frac{1}{\lambda_{1}} \frac{\omega_{sh}^{r}}{\lambda_{1}} E_{3r}^{ih}, \text{ où les } E_{2r}^{i} \text{ et } E_{3r}^{ih} \text{ sont des fonctions continues et bornées.}$$

Par conséquent :

(2)
$$\hat{\mathcal{B}}_{s}^{i} = \frac{1}{\lambda_{1}} \left(E_{2r}^{i} \omega_{s}^{r} + E_{3r}^{ih} \frac{\omega_{sh}^{r}}{\lambda_{1}} \right)$$

Conclusion.

(1) et (2) donnent :

(5.1.1.1)
$$E_s^i = \frac{p_i^0}{\lambda_1^2} \dot{\varphi}_s + \frac{E'(\hat{\omega}, \omega, \tilde{\omega})}{\lambda_1}$$
;

où $E'(\hat{\omega}, \omega, \tilde{\omega}) = E_{0s}^i + E_{1r}^i \hat{\omega}_s^r + E_{2r}^i \omega_s^r + E_{3r}^{ih} \frac{\omega_{sh}^r}{\lambda_1}$; ce qui achève la démonstration du lemme.

Notation.

Dans toute la suite, $E(\hat{\omega}, \omega, \tilde{\omega})$ désignera une fonction affine de $\hat{\omega}$, ω et $\tilde{\omega}$, à coefficients continus et bornés, qui pourra être différente à chaque usage de ce symbole.

5.1.2 Expression des $\theta_s(\omega)$.

De l'étude précédente des E_s^i , on a :

$$\vartheta_{s}(\omega) = \left(\Delta_{i}^{1} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h}\right) \left(\frac{p_{i}^{0}}{\lambda_{1}^{2}} \varphi_{s} + \frac{E(\hat{\omega}, \omega, \tilde{\omega})}{\lambda_{1}}\right), \text{ soit } :$$

(5.1.2.1)
$$\begin{cases} \hat{\vartheta}_{s} = \hat{\vartheta}_{s}^{0} + \hat{\vartheta}_{s}^{1}, \text{ où } : \\ \hat{\vartheta}_{s}^{0} = \left(\Delta_{i}^{1} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h}\right) \frac{p_{i}^{0}}{\lambda_{1}^{2}} \varphi_{s}^{*}, \text{ sont indépendantes des } v_{s} \text{ et } \omega. \\ \hat{\vartheta}_{s}^{1} = \left(\Delta_{i}^{1} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h}\right) \frac{E(\hat{\omega}, \omega, \tilde{\omega})}{\lambda_{1}} \end{cases}$$

En prenant en considération les résultats obtenus au paragraphe 2.4 du chapitre 2 sur l'étude des intégrales doubles, on a :

A) Dans le domaine $u \le cs_0$:

i) Dans le domaine $\zeta^3 \ge 0$:

En passant aux variables $\lambda_{2'}$ et $\lambda_{3'}$, les relations (5.1.2.1) donnent :

(5.1.2.2)
$$\vartheta_{sp} = \sin \lambda_{2'} \varphi_s + E(\hat{\omega}, \omega, \tilde{\omega}) \lambda_1$$

ii) Dans le domaine $0 > \zeta^3 > \mu_0 + mu$:

On utilise les variables α et ζ^3 et on subdivise le domaine en deux parties.

* Dans le domaine : $-ls_0 > \zeta^3 > \mu_0 + mu$,

Les relations (2.3.1.2₁) et 2.3.1.2₂) du chapitre 2 et (5.1.2.1) précédentes donnent:

$$\begin{split} D_i &= K' \sqrt{u} \sqrt{Min(\left|\zeta^3\right|, \zeta^3)}, \quad \text{K' bornées,} \\ E_s^i &= \frac{K''}{\left|\zeta^3\right|^2} + \frac{E(\hat{\omega}, \omega, \tilde{\omega})}{\left|\zeta^3\right|} = \frac{E(\hat{\omega}, \omega, \tilde{\omega})}{\left|\zeta^3\right|^2}, \text{ par définition de : } E(\hat{\omega}, \omega, \tilde{\omega}) \end{split}$$

(K" bornées)

(5.1.2.3)
$$\hat{J}_{sc_1} = D_i E_s^i = \frac{\sqrt{u}}{\left|\zeta^3\right|^{3/2}} E(\hat{\omega}, \omega, \tilde{\omega})$$
, toujours par définition de $E(\hat{\omega}, \omega, \tilde{\omega})$.

* Dans le domaine $0 > \zeta^3 > -ls_0$

On conserve le résultat (2.3.1.34) en prenant $K = E(\hat{\omega}, \omega, \tilde{\omega})$, on obtient :

$$(5.1.2.4) \quad \vartheta_{sc_2} = \varphi_s(\xi^i) \frac{\overline{u}}{(\overline{u} - \zeta^3)^2} + \frac{\sqrt{u}}{s_0} \frac{E(\hat{\omega}, \omega, \overline{\omega})}{\left(u + \left|\zeta^3\right|\right)^{\frac{1}{2}}}$$

iii) Dans le domaine $\zeta^3 \le \mu_0 + \mu_0$: ici, $\vartheta_{s0} = D_i E_s^i$, avec :

$$\begin{cases} D_i = K'' \Lambda_1^2, & K'' \text{ bornée} \\ E_s^i = \frac{p_i^0}{\lambda_1^2} \varphi_s^* + \frac{E(\hat{\omega}, \omega, \tilde{\omega})}{\lambda_1} \end{cases}$$

En utilisant les égalités (obtenues à partir de (2.3.1.5₁)) :

$$\begin{cases} \Lambda_1 = k_1 u \\ \frac{1}{\lambda_1} = \frac{k_2}{s_0}, \quad k_1 \text{ et } k_2 \text{ bornées.} \end{cases}$$

(5.1.2.5)
$$\vartheta_{so} = u^2 \left(\frac{k'}{s_0^2} + \frac{E(\hat{\omega}, \omega, \tilde{\omega})}{s_0} \right) = k_1'' \frac{u^2}{s_0^2} E(\hat{\omega}, \omega, \tilde{\omega}) = \frac{u^2}{s_0^2} E(\hat{\omega}, \omega, \tilde{\omega}),$$

B) Dans le domaine : $u > cs_0$ et $x_0^0 < \chi(c)$.

La relation (2.3,2.1₁) s'écrit :

(5.1.2.6)
$$\vartheta_s = \sin \lambda_2 \varphi_s + \lambda_1 E(\hat{\omega}, \omega, \tilde{\omega})$$

5.2 THEOREME PRINCIPAL. ESPACES FONCTIONNELS.

5.2.0 Enoncé du théorème.

Considérons le problème de Cauchy suivant :

(5.2.0.1)
$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha},v,D_{\nu}v) = 0, & dans \ \Omega \\ v|_{C_o} = \tilde{v}|_{C_o} = \varphi(x^i) \end{cases}$$

<u>où:</u>

 $\overset{\sim}{C_o}$ est le demi-conoïde caractéristique d'équation : $x^0 = \phi(x^i)$, orienté vers les x^0 positifs.

$$\Omega$$
 est un ouvert de R⁴; $\Omega \subset D_0 = \{(x^{\alpha}) \in \mathbb{R}^4; \phi(x^i) \le x^0 < +\infty\}$

 Ω de frontière contenan(C_0), domaine de C_0 défini au chapitre4.

 Ω satisfait à la condition:

$$\forall \mathbf{M}_0(x_0^{\alpha}) \in \Omega, \text{ on a } (\mathbf{C}_{\overline{M}_0}) \subset \Omega$$

Le théorème suivant est le principal résultat de ce travail :

Théorème 5.2.

Hypothèses:

- 1 $L=A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}$ est un opérateur différentiel régulièrement hyperbolique dans Ω, tel que :
 - i) $A^{oo} > \varepsilon$, $(\varepsilon > 0)$ et $A^{ij}X_iX_j$ définie négative.

ii)
$$\exists \alpha \geq 0$$
, $\forall (x^0, x^i) \in \Omega$, $-A^{ij}X_iX_i \geq \alpha/X/^2$.

- 2 $A^{\lambda\mu} \in B^7(\Omega)^{(2)}$, telles que $A^{oo}(0) = 1$, $A^{oi}(0) = 0$, $A^{ij}(0) = -\delta^{ij}$.
- $3-f(x^\alpha,v,D_\nu v)\in C^5(\Omega x\Omega' x\Omega'')^{(l)},\ ou\ :$

 Ω' est un ouvert de IR et Ω'' est un ouvert de IR⁴.

4 - φ est la restriction à \mathscr{C} d'une fonction arbitraire $\tilde{v}(x^{\alpha})$, avec : $\tilde{v} \in B^{7}(\Omega)$.

Conclusions:

1 - Toute solution v du problème de Cauchy (5.2.0.1), cinq fois différentiables, admettant des dérivées quatrièmes bornées, vérifie, ainsi queses dérivées jusqu'à l'ordre trois, le système intégral suivant :

$$(\mathcal{C}_s) \begin{cases} (\mathcal{E}_s): & 4\pi v_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^s, \lambda_h)} d\lambda_3 \mathcal{J}_s(v_s, \omega) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \mathcal{J}_s(\omega) \\ (\Omega_s): & \omega(x_0^{\alpha}, \lambda_1, \lambda_h) = \omega_0 + \int_0^{\lambda_1} F(v_s, \omega) d\lambda_1 \end{cases}$$

Les notations étant celles de la proposition 3.2.2.2 du paragraphe 3.2 du chapitre 3.

- 2 Il existe un ouvert $\Omega_I \subset \Omega$, ayant (\mathscr{C}_0) pour frontière et causal, i.e $\forall M_0(x_0^a) \in \Omega_1$, on a : $(\mathscr{C}_{\overline{M_0}}) \subset \Omega_1$; tel que :
- i) Le système intégral (\mathcal{C}_S) admette une solution unique (v_S , ω) dans l'espace des fonctions continues et bornées sur Ω_I .
- ii) Sur (G) les v_S prennent les valeurs φ_S (obtenues au corollaire 4.3 du chapitre 4).

Démonstration.

La première partie des conclusions est une conséquence de la proposition (3.2.2.2) du chapitre 3.

La deuxième partie des conclusions se démontre par la méthode des approximations successives. Le reste de ce chapitre sera consacré à cette démonstration.

²Voir la remarque 3.1 du §3.1, chapitre 3.

5.2.1 ESPACE FONCTIONNEL \mathcal{J} .

Introduisons l'espace fonctionnel \mathcal{J} ainsi défini

un élément de \mathcal{F} est un ensemble V=(v_s) des fonctions telles que :

 $\underline{\mathbf{P_1}}$: Les $v_s(\mathbf{x}^{\alpha})$ sont définies, continues et bornées dans un domaine Ω_1 de frontière $\overline{(\mathcal{C}_O)}$, satisfaisant à : $\forall M_0 \in \Omega_1$, on a : $(\mathcal{C}_{\overline{M}_0}) \subset \Omega_1$

 $\underline{P_2}$: Les v_S prennent les valeurs ϕ_S sur (\mathcal{C}_O) .

 $\underline{P_3}$: Les v_S satisfont à l'inégalité : $|v_S(x^0,x^i)-\phi_S(x^i)| \le h$, où h est une constante qui sera précisée plus loin.

Enfin, on munit \mathcal{J} de la métrique de convergence uniforme

$$d(V,V^{T}) = ||V^{T} - V|| = \underset{(x^{\alpha}) \in \Omega_{T} \setminus S}{Max} \left(|v^{T}_{s}(x^{\alpha}) - v_{s}(x^{\alpha})| \right)$$

Remarques

 \underline{R}_1 : $\mathcal{J} \neq \emptyset$ (pour la démonstration, voir $[B_6]$, théorème 1, page 59).

<u>R2</u>: L'inégalité de P3 entraîne l'existence d'une constante N telle que :

$$\left|v_s(x^{\alpha})\right| < \sup_{(x^i) \in (\mathcal{C}_0)_x} \left|\varphi_s(x^i)\right| + h \le N$$
, où $(\mathcal{C}_0)_X$ est la projection de (\mathcal{C}_0) dans l'espace des (x^i) .

Ce qui permettra, le moment venu, de majorer les fonctions figurant sous les intégrales triples et doubles indépendamment des fonctions v_s.

5.2.2 APPLICATION DE $\mathcal F$ DANS $\mathcal F$.

Soit Θ l'application définie sur $\mathcal F$ par :

"A tout élément $V=(v_S)\in\mathcal{I}$, Θ associe l'ensemble $W=(w_S)$ des fonctions définies par :

$$(5.2.2.1) \quad 4\pi w_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin\lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \mathcal{J}_s(\omega(v)) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \mathcal{J}_s(\omega)$$
où:

$$\begin{cases} \mathcal{J}_{s}(v,w) = \Delta \left(\left[v_{r} \right] \mathcal{L}'_{s} + \sigma'_{s} \left[f_{r} \right] \right) \\ \mathcal{J}_{s}(\omega) = E_{s}^{i}(\omega) \left(\Delta_{i}^{1} - \frac{\partial \psi}{\partial \lambda_{h}} \Delta_{i}^{h} \right) \\ \sigma'_{s} = \sigma . \omega'_{s}(v) \\ \mathcal{L}'_{s} = \mathcal{L}'_{s}(v,\omega,\tilde{\omega}) \\ E_{s}^{i} = E_{s}^{i}(\hat{\omega},\omega,\tilde{\omega}) \end{cases}$$

étant la solution du système intégral

(5.2.2.2)
$$\omega = \omega_0 + \int_0^{\lambda_1} F(v, \omega) d\lambda_1.$$

Proposition 5.2.2.1.

Pour un choix convenable de l'ouvert Ω_I , Θ est une application de \mathcal{I} dans luimême.

Démontrons d'abord les lemmes suivants

Lemme 5.2.2.1₁.

Si $V=(v_S)$ est un élément de \mathcal{I} , alors les fonctions ω , solutions du système intégral (5.2.2.2) sont telles que :

il existe des constantes h' et h" telles que :

$$|\omega| \le h'$$
, $|\hat{\omega}| \le h''$ et $|\tilde{\omega}| \le h''$.

Démonstration du lemme.

Introduisons l'espace fonctionnel \mathcal{F} , ainsi défini : un élément de \mathcal{F} est l'ensemble $\Omega = \left(\omega_{s}^{r}, \omega_{sh}^{r}, \omega_{sh}^{r}\right)$ des fonctions définies sur Λ (paragraphe 1.5 du chapitre 1), avec la norme.

$$(5.2.2.3) \quad \|\Omega\| = \sup_{(x_0^{\alpha}, \lambda_i) \in \Lambda} \left(\left| \omega(x_0^{\alpha}, \lambda_i) \right| \right)$$

$$= \sup_{(x_0^{\alpha}, \lambda_i) \in \Lambda} \left(\left| \omega_s^r(x_0^{\alpha}, \lambda_i) \right|, \left| \omega_{sh}^r(x_0^{\alpha}, \lambda_i) \right|, \left| \omega_{shl}^r(x_0^{\alpha}, \lambda_i) \right| \right)$$
où, ici,
$$\Lambda(x_0^{\alpha}, \lambda_i) = \begin{cases} (x_0^{\alpha}) \in \Omega_1 \\ \psi(x_0^{\alpha}, \lambda_h) \le \lambda_1 < 0 \\ \lambda_2 \in (0, \pi) \\ \lambda_3 \in (0, 2\pi) \end{cases}$$

Le système intégral vérifié par $\Omega = \left(\omega \frac{r}{s}, \omega \frac{r}{sh}, \omega \frac{r}{sh!}\right)$ s'écrit ainsi :

(5.2.2.4)
$$\Omega = \int_0^{\lambda_1} (P\Omega) d\lambda_1 + \Omega_0, \text{ où }:$$

- * $\Omega_0 = (\delta_s^r, 0, 0)$;
- * P = la matrice des coefficients du système différentiel associé à ω . Ces coefficients sont des polynômes des dérivées des A^{\lambda\mu} et f jusqu'à l'ordre trois.

L'hypothèse $V=(v_s)\in \mathcal{I}$ implique que les coefficients de la matrice P sont continus et bornés.

Prenons pour norme d'une matrice $P=(p_{ij})$: $1 \le i \le j \le n$, le nombre :

$$\|\mathbf{P}\| = \sup_{\mathbf{j}} \left(\sum_{i} |\mathbf{p}_{ij}| \right), \text{ et posons } : N' = \sup_{(x_0^{\alpha}, \lambda_i) \in \Lambda} \|P(x_0^{\alpha}, \lambda_i)\|.$$

Prenons les normes pour (5.2.2.4), on obtient :

$$\|\Omega\| \le \|\Omega_0\| + \int_{\lambda_1}^0 N' \|\Omega\| d\lambda_1$$

Appliquons à cette inégalité le lemme de GROMWALL. Ce qui donne :

$$\|\Omega\| \le \|\Omega_0\| e^{N'|\lambda_1|}.$$

Comme $\left|\lambda_{1}\right| \leq \left|\psi(x_{0}^{\alpha}, \lambda_{1})\right| < k_{0}x_{0}^{0}, (k_{0} = constante).$

On peut écrire :

$$(5.2.2.5_1) \quad \|\Omega\| \le h' \quad \text{où } h' = \|\Omega_0\| e^{N'k_0 x_0^0}.$$

La relation (5.2.2.3) permet d'en déduire :

$$(5.2.2.5) \quad \left|\omega\right| \leq h', \quad donc, \quad d'avoir: \begin{cases} \left|\omega_{s}^{r}\right| \leq h' \\ \left|\omega_{sh}^{r}\right| \leq h' \\ \left|\omega_{shl}^{r}\right| \leq h' \end{cases}$$

Ce qui démontre la première inégalité du lemme. Pour les inégalités concernant $\hat{\omega}$ et $\tilde{\omega}$, considérons l'équation (5.2.2.4), on a :

(*)
$$\|\Omega - \Omega_0\| \le |\lambda_1| N' \|\Omega\| \le |\lambda_1| N' h'$$
 (d'après 5.2.2.5₁)

donc:

$$\frac{\left\|\Omega - \Omega_0\right\|}{\left|\lambda_1\right|} \le h'' \quad \text{où } h'' = N'h'.$$

Mais par définition :

$$\frac{\|\Omega - \Omega_0\|}{|\lambda_1|} = Sup\left(\frac{\left|\omega_s^r - \delta_s^r\right|}{|\lambda_1|}, \frac{\left|\omega_{sh}^r\right|}{|\lambda_1|}, \frac{\left|\omega_{shl}^r\right|}{|\lambda_1|}\right)$$

Par conséquent :

$$(5.2.2.6) \begin{cases} \left| \hat{\omega} \right| = \frac{\left| \omega_{s}^{r} - \delta_{s}^{r} \right|}{\left| \lambda_{1} \right|} \leq \frac{\left\| \Omega - \Omega_{0} \right\|}{\left| \lambda_{1} \right|} \leq h^{"}, de \ m \hat{e} me : \\ \left| \frac{\left| \omega_{sh}^{r} \right|}{\left| \lambda_{1} \right|} \leq h^{"} \right| \\ \left| \frac{\left| \omega_{shl}^{r} \right|}{\left| \lambda_{1} \right|} \leq h^{"} \end{cases} \Rightarrow \left| \tilde{\omega} \right| \leq h^{"}$$

Ce qui achève la démonstration du lemme.

Lemme 5.2.2.1₂.

Si $V=(v_S^-)\in \mathcal{J}$ alors les fonctions $E(\hat{\omega},\omega,\tilde{\omega})$ sont continues et bornées et satisfont à la majoration :

$$(5.2.2.7) \quad \left| E(\hat{\omega}, \omega, \tilde{\omega}) \right| \le k_0 (\|\Omega\| + 1), \ k_0 = c^{te}.$$

Preuve.

Par conséquent, la définition des $E(\hat{\omega}, \omega, \tilde{\omega})$ (lemme 5.1.1) permet de déduire que ces fonctions sont continues et bornées.

Posons:

$$\left\| \hat{\Omega} \right\| = \sup_{\left(\mathbf{x}_{0}^{\alpha}, \lambda_{1} \right) \in \Lambda} \left(\left| \hat{\omega} \left(\mathbf{x}_{0}^{\alpha}, \lambda_{1} \right) \right| \right)$$
$$\left\| \tilde{\Omega} \right\| = \sup_{\left(\mathbf{x}_{0}^{\alpha}, \lambda_{1} \right) \in \Lambda} \left(\left| \tilde{\omega} \left(\mathbf{x}_{0}^{\alpha}, \lambda_{1} \right) \right| \right)$$

De l'inégalité (*) on a :

$$(5.2.2.8) \quad \begin{cases} \left\| \hat{\Omega} \right\| \leq N' \left\| \Omega \right\| \\ \left\| \tilde{\Omega} \right\| \leq N' \left\| \Omega \right\| \end{cases}$$

- On sait que (lemme 5.1.1) :

$$E(\hat{\omega}, \omega, \tilde{\omega}) = E_{0s}^i + E_{1r}^i \hat{\omega}_s^r + E_{2r}^i \omega_s^r + E_{3r}^{ih} \frac{\omega_{sh}^r}{\lambda_1}, \text{ où les fonctions } E_{\alpha r}^i, E_{\alpha r}^{ih} \quad \alpha = 0, 1, 2, 3,$$

sont des fonctions continues et bornées. Donc il existe une constante k'o telle que :

$$\left| E(\hat{\omega}, \omega, \tilde{\omega}) \right| \le k'_0 \left(1 + \left| \hat{\omega} \right| + \left| \omega \right| + \left| \tilde{\omega} \right| \right).$$

Les relations (5.2.2.8) donnent donc :

$$|E(\hat{\omega}, \omega, \tilde{\omega})| \le k_0 (1 + ||\Omega||), k_0 = c^{te}.$$

Ce qui achève la démonstration du lemme.

Démonstration de la proposition 5.2.2.1.

Il faut démontrer que la fonction $W=(w_S)$ définie par les relations (5.2.2.1) appartient à \mathcal{I} , en d'autres termes que les w_S satisfont à P_1 , P_2 et P_3 de la définition de \mathcal{I} .

Ecrivons (5.2.2.1) sous la forme :

$$\begin{split} &4\pi w_s(x_0^\alpha) = T_s(x_0^\alpha) + I_s(x_0^\alpha), \text{ où :} \\ &\begin{cases} T_s(x_0^\alpha) = \int_0^{2\pi} d\lambda_3 \int_0^\pi \sin\lambda_2 d\lambda_2 \int_0^{\psi(x_0^\alpha, \lambda_h)} d\lambda_1 \mathcal{I}_s(v, \omega) \\ I_s(x_0^\alpha) = \int_0^{2\pi} d\lambda_3 \int_0^\pi d\lambda_2 E_s^i(\omega) \bigg(\Delta_i^l - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h\bigg) \end{cases} \end{split}$$

1) Démontrons que les w_S sont continues et bornées sur Ω_I pour $V = (v_S) \in \mathcal{Z}$

A) Pour les intégrales triples :

- Les propriétés des intégrales dépendant d'un paramètre montrent que les T_S sont bornées.
- Le problème de la continuité ne se pose que sur (ℓ_0) . Mais la majoration :

$$(5.2.2.9) \quad T_s(x_0^{\alpha}) \le \sup_{\substack{(x_0^{\alpha}, \lambda_i) \in \Lambda}} \left| \mathcal{I}_s(v, \omega) \middle| k_1^{\prime} u \middle| Log u \middle| \right|$$

obtenue à partir de (2.4.3) du paragraphe 2.4, chapitre 2, montre que les $T_s(x_0^{\alpha})$ tendent vers 0 quand (x_0^{α}) tend vers un point de (ℓ_0) .

B) Pour les intégrales doubles :

Nous utilisons le résultat du lemme 5.2.2.12 écrit sous la forme :

(5.2.2.10) $E(\hat{\omega}, \omega, \tilde{\omega}) = k_0^{"}(1 + ||\Omega||)$, $(k_0^{"} \text{ born\'ee})$. L'étude préliminaire faite au paragraphe 5.1.2 sur les $\vartheta_s(\omega)$ permet d'obtenir les résultats suivants :

a) Dans le domaine u≤Cs_O.

 α) Dans le domaine $\zeta^{\overline{3}} \ge 0$

On a vu que:

(1)
$$\vartheta_{sp} = \sin \lambda_{2} \varphi_{s} + \lambda_{1} E(\hat{\omega}, \omega, \tilde{\omega}),$$

Comme dans ce domaine : $\lambda_1 = k'_0 u$ (k'_0 bornée) et $0 < \gamma(\lambda_3') < \pi$.

En intégrant (1), on aura ,de (5.2.2.10) :

$$I_{s_p} = \int_0^{2\pi} d\lambda_3 \int_{\gamma(\lambda_3)}^{\pi} d\lambda_3 \vartheta_{s_p}^{'} = 2\pi\varphi_s + k_1^{'} u(\|\Omega\| + 1), \ (k_1^{'} \ born\acute{e}e)$$

Donc:

$$(5.2.2.11) \quad I_{s_n}(x_0^{\alpha}) = 2\pi\varphi_s(\xi^i) + k_1'u(\|\Omega\| + 1), \ (k_1' \ born\acute{e}e).$$

β) Dans le domaine $0 > \zeta^3 > \mu_0 + mu$.

$$i)$$
 Pour $-ls_0 > \zeta^3 > \mu_0 + mu$

Les relations (5.1.2.3) donnent :

(2)
$$\vartheta_{sc_1} = k_2^{"} \frac{\sqrt{u}}{\left|\zeta^3\right|^{3/2}} (1 + \|\Omega\|) , (k_2^{"} bornée)$$

En intégrant, on obtient :

$$I_{sc_1} = \int_{\mu_0 + mu}^{-ls_0} d\zeta^3 \int_0^{2\pi} d\alpha. k'' \frac{\sqrt{u}}{\left|\zeta^3\right|^{\frac{3}{2}}} (1 + \|\Omega\|), \text{ donc}:$$

(5.2.2.12)
$$I_{SC_1} = k_1 \frac{\sqrt{u}}{\sqrt{s_0}} (1 + ||\Omega||), (k_1 \text{ bornée})$$

ii) Pour
$$0 > \zeta^3 > -ls_0$$

Le même raisonnement appliqué à :

$$I_{sc_2} = \int_{-ls_0}^{0} d\zeta^3 \int_{0}^{2\pi} d\alpha \left[\varphi_s(\xi^i) \frac{\overline{u}}{(\overline{u} - \xi^3)^2} + \frac{\sqrt{u}}{s_0} \frac{E(\hat{\omega}, \omega, \tilde{\omega})}{(u + |\xi^3|)^{\frac{1}{2}}} \right], \text{ donne } :$$

$$(5.2.2.13) \quad I_{sc_2}(x_0^{\alpha}) = 2\pi\varphi_s(\xi^i) + k_1^{'} \frac{\sqrt{u}}{\sqrt{s_0}} (1 + \|\Omega\|)$$

 γ) Dans le domaine $\zeta^3 < \mu_0 + mu$

Les relations (5.1.2.5) donnent :

$$\vartheta_{s_0} = k_2'' \frac{u^2}{s_0^2} (1 + ||\Omega||)$$
; en intégrant, on as

$$(5.2.2.14) \quad I_{s_0} = k_1' \frac{u^2}{s_0^2} (1 + \|\Omega\|)$$

Par conséquent, on a :

Dans le domaine u≤Cs₀:

$$(5.2.2.15) \quad I_{s}(x_{0}^{\alpha}) = 4\pi\phi_{s}(\xi^{i}) + k_{1}^{i} \frac{\sqrt{u}}{\sqrt{s_{0}}} (1 + \|\Omega\|) \quad (k_{1}^{i} \text{ born\'ee}).$$

Donc les $I_s(x_0^{\alpha})$ sont continues et bornées.

b) Dans le domaine : $u \ge cs_0$ et $x_0^0 < \chi(c)$

$$\int_{s} = \sin \lambda_{2} \, \hat{\varphi}_{s} + \lambda_{1} E(\hat{\omega}, \omega, \tilde{\omega})$$

De $\lambda_1 = k_1 x_0^0$ (k_1^n bornée), on en déduit :

$$\int_{s} = \sin \lambda_{2} \, \phi_{s} + k_{1}^{"} x_{0}^{0} (1 + ||\Omega||).$$

En intégrant, on obtient :

$$(5.2.2.16) \quad I_s(x_0^{\alpha}) = 4\pi\phi_s(0,0,0) + k_1 x_0^0 (1 + \|\Omega\|), \quad (k_1 \text{ bornée}).$$

Cette relation montre que les Is sont continues et bornées

Récapitulons les résultats obtenus de A) et B)

* Dans le domaine
$$u \le Cs_0$$
:
 $|T_s| \le \sup_{\Lambda} |\mathcal{I}_s(x_0^{\alpha}, \lambda_i)| k_1^{n} u |Logu| \quad (k_1^{n} \text{ constante}), \text{ ou encore } :$

$$T_s = K_1 u |Logu|$$
 (K₁ borné)

$$\label{eq:et_I_S} \textit{et} \; I_{S}(x_{0}^{\alpha}) = 4\pi\phi_{S}(\xi^{i}) + k_{1}^{'} \frac{\sqrt{u}}{\sqrt{s_{0}}} (1 + \left\|\Omega\right\|) \;\; (k_{1}^{'} \; \text{born\'ee}).$$

Par conséquent,

$$(5.2.2.17) \quad 4\pi w_s(x_0^{\alpha}) = 4\pi \varphi_s(\xi) + K_1 u |Logu| + k_1 \frac{\sqrt{u}}{\sqrt{s_0}} (1 + ||\Omega||) \quad (k_1 \& K_1 \text{ bornées})$$

* Dans le domaine $u \ge cs_0$ et $x_0^0 < \chi(c)$

Les mêmes calculs donnent :

$$4\pi w_s(x_0^{\alpha}) = 4\pi \varphi_s(0,0,0) + k_1^{"}.x_0^{0} + k_1^{'}x_0^{0}(1 + \|\Omega\|)$$

$$(5.2.2.18) \quad 4\pi w_s(x_0^{\alpha}) = 4\pi \varphi_s(0,0,0) + K_1 x_0^{0} (2 + \|\Omega\|).$$

Conclusion

- 1) Des relations (5.2.2.17) et (5.2.2.18), on déduit que les fonctions W_S sont continues et bornées.
- 2) Les W_S prennent les valeurs de ϕ_S sur ℓ_0 , ceci découle directement des deux relations précédentes.

Il reste à démontrer ce qui suit :

Les W_s satisfont à l'inégalité $\left| \mathbf{w}_s(\mathbf{x}^0, \mathbf{x}^i) - \phi_s(\mathbf{x}^i) \right| < h$ pour Ω_1 convenablement choisi.

Enonçons un lemme démontré dans $[B_{1}]$, page 49, et dont nous aurons besoin dans la suite.

Lemme 5.2.2.2.

Etant donnée une constante M, il existe un domaine D(M) défini par

$$D(M) \begin{cases} (x_0^i) \in (\mathcal{C}_0)_x \\ 0 < u < U(x_0^i) \\ u = x_0^0 - \phi(x_0^i) \text{ et } U(x_0^i) < M \end{cases}$$

$$M_0 \in D(M) \Rightarrow (\mathcal{C}_{\overline{M}_0}) \subset D(M)$$

tel que

Démontrons le lemme suivant :

Lemme 5.2.2.3.

Il existe des constantes C, M et X_O telles que dans le domaine

$$\begin{cases} 0 < u < M \\ u \le cs_0 \end{cases} \quad \text{ou} \quad \begin{cases} 0 < u < M \\ u > cs_0 \quad \text{on ait : } \left| w_s(x^0, x^1) - \phi_s(x^1) \right| < h. \\ x_0^0 < X_0 \end{cases}$$

Démonstration.

Les relations (5 2 2 17-18) peuvent s'écrire

$$\begin{cases} |w_s - \varphi_s| \le K' u |Logu| + k' \frac{\sqrt{u}}{\sqrt{s_0}} & ou \\ |w_s - \varphi_s| \le K' x_0^0 & \text{où } k' \text{ et } K' \text{ sont des cons } \tan tes \end{cases}$$

Pour démontrer la proposition, il suffira , d'après le lemme précédent , de déterminer des constantes C, M et X_O telles que :

$$0 < u < M$$

$$u \le cs_0$$
 $\Rightarrow K'u|Logu| + k'\frac{\sqrt{u}}{\sqrt{s_0}} < h$ (i)

<u>ou</u> :

$$\begin{vmatrix}
0 < u < M \\
u > cs_0 \\
x_0^0 < X_0
\end{vmatrix} \Rightarrow K'x_0^0 < h \quad (ii)$$

Nous remarquons que :

* (i) est satisfaite si on a :
$$\begin{cases} (1) & \frac{\sqrt{u}}{\sqrt{s_0}} < \frac{h}{2k'} \\ (2) & u|Logu| < \frac{h}{2K'} \end{cases}$$

- La condition (1) permet de choisir la constante c.

En effet:

$$(1) \Rightarrow u < \frac{h^2}{(2k^1)^2} s_o$$
; on choisit:

(
$$\alpha$$
) $c \le c_4 = Min\left(c_3, \frac{h^2}{(2k')^2}\right)$ où c_3 est obtenu au paragraphe 2.2.

- La condition (2) est satisfaite dès que u est inférieure à une certaine constante dépendant de h. En d'autres termes, il existe une constante M(h) telle que :

$$(\beta)$$
 $0 < u < M(h) \Rightarrow u |Logu| < \frac{h}{2K^3}$

(ii) permet de choisir X_0 . En effet :

$$(ii) \Rightarrow x_0^0 < \frac{h}{K'}, on choisit$$

$$(\gamma)$$
 $X_0 = Min(\frac{h}{K^*}, \chi(c), M(h))$

La condition cherchée $|w_s - \varphi_s| < h$ est vérifiée si Ω_1 est contenu dans le domaine : (λ) $\begin{cases} 0 < u < M(h) \\ u \le cs_0 \end{cases}$ ou $\begin{cases} u > cs_0 \\ x_0^0 < X_0 \end{cases}$

M(h), C et X_0 données par (α) , (β) , et (γ) . Enfin, on peut trouver une constante M telle que :

(*)
$$u < M \Rightarrow (\lambda)$$
.

Par conséquent, le lemme (5.2.2.2) permet de choisir Ω_1 défini ainsi :

$$\Omega_{1} \begin{cases} (x_{0}^{i}) \in (\mathcal{C}_{0})_{x} \\ 0 < u < U(x_{0}^{i}), \quad U(x_{0}^{i}) < M \\ u = x_{0}^{0} - \phi(x_{0}^{i}) \end{cases}$$

et tel que : $M_0 \in \Omega_1 \Rightarrow (\mathcal{C}_{\overline{M}_1}) \subset \Omega_1$

Conclusion

Si $V=(v_S) \in \mathcal{J}$ alors $W=\Theta(V) \in \mathcal{J}$ donc $\Theta(\mathcal{J}) \subset \mathcal{J}$ et la proposition 5.2.2.1 est démontrée.

5.3: Θ EST UNE CONTRACTION DANS β .

Dans ce paragraphe, nous montrons que pour un choix convenable de l'ouvert Ω_1 , l'application Θ définie dans le §5.2 diminue les distances dans \mathcal{J} . \mathcal{J} étant un espace métrique complet, ceci entraînera l'existence d'un point fixe unique, pour Θ , solution de (\mathcal{E}_S) .

Pour cela, considérons $V=(v_S)$ et $V'=(v_S')$ deux éléments de \mathcal{J} . Soient ω et ω' les solutions de l'équation intégrale (Ω_S) dans laquelle on a pris successivement $\omega=\omega(v)$ et $\omega'=\omega(v')$.

Démontrons le lemme suivant :

Lemme 5.3.0.

Si $V=(v_S)$ et $V'=(v_S')$ sont deux éléments de \mathcal{J} alors il existe des constantes P_1

$$et \ P_2 \ telles \ que \qquad : \begin{cases} \left\| \Omega' - \Omega \right\| \leq P_1 \left\| V' - V \right\| \\ \left\| \hat{\Omega}' - \hat{\Omega} \right\| \leq P_2 \left\| V' - V \right\| \\ \left\| \tilde{\Omega}' - \tilde{\Omega} \right\| \leq P_2 \left\| V' - V \right\| \end{cases}$$

Preuve.

$$\begin{cases} \Omega = \int_0^{\lambda_1} P\Omega d\lambda_1 + \Omega_0 , \text{ avec } P = P(V) \\ \Omega' = \int_0^{\lambda_1} P'\Omega' d\lambda_1 + \Omega_0 , \text{ avec } P' = P(V') \end{cases}$$

Donc:

$$\Omega' - \Omega = \int_0^{\lambda_1} (P'\Omega' - P\Omega) d\lambda_1$$

avec:
$$P'\Omega' - P\Omega = (\Omega' - \Omega)P' + \Omega(P' - P)$$
, donc:

$$\left\|P'\Omega'-P\Omega\right\|\leq \left\|\Omega'-\Omega\right\|.\left\|P(V')\right\|+\left\|\Omega\right\|.\left\|P(V')-P(V)\right\|$$

- i) L'hypothèse V et V' dans $\mathcal F$ entraı̂ne que les coefficients de P sont bornées indépendamment de V.
- ii) Les hypothèses faites sur f entraînent que les coefficients de P sont lipschitziens en V.
- i), ii) et le lemme 5.2.2.11 montrent qu'il existe des constantes k'_3 , k''_3 et k'''_3 telles que :

$$\begin{cases} ||P(V')|| \le k_3' \\ ||P(V') - P(V)|| \le k_3'' ||V' - V|| \\ ||\Omega|| \le k_3''' \end{cases}$$

Par conséquent, on a :

$$\|\Omega' - \Omega\| \le |\lambda_1| k_3 \|V' - V\| + \int_{\lambda_1}^0 k_3' \|\Omega' - \Omega\| d\lambda_1, \quad k_3 = C^{te}.$$

Appliquons à cette inégalité le lemme de GROMWALL, on obtient :

(*)
$$\|\Omega' - \Omega\| \le |\lambda_1| k_3 e^{|\lambda_1| k_3} \|V' - V\|$$

$$(**) \quad \frac{\|\Omega' - \Omega\|}{|\lambda_1|} \le k_3 e^{|\lambda_1| k_3'} \|V' - V\|$$

Mais sur le demi-conoïde $(\ell_{\overline{M_0}})$

$$\left|\lambda_1\right| \le k_0 x_0^0, \quad k_0 = C^{te}$$

Donc: $|\lambda_1|k_3e^{|\lambda_1|k_3'}$ et $k_3e^{|\lambda_1|k_3'}$ sont bornées

(5.3.0.1)
$$\begin{cases} \|\Omega' - \Omega\| \le P_1 \|V' - V\| \\ \frac{\|\Omega' - \Omega\|}{|\lambda_1|} \le P_2 \|V' - V\| \end{cases}$$

$$(5.3.0.2) \quad \begin{cases} \left\| \hat{\Omega}' - \hat{\Omega} \right\| \leq \frac{\left\| \Omega' - \Omega \right\|}{\left| \lambda_1 \right|} \leq P_2 \left\| V' - V \right\| \\ \left\| \tilde{\Omega}' - \tilde{\Omega} \right\| \leq \frac{\left\| \Omega' - \Omega \right\|}{\left| \lambda_1 \right|} \leq P_2 \left\| V' - V \right\| \end{cases}$$

Ce qui achève la démonstration du lemme

5.3.1 Fonctions $T_s(x_0^{\alpha})$.

Pour $V=(v_S)$ et $V'=(v_S')$ dans \mathcal{J} , démontrons la proposition suivante :

Proposition 5.3.1.

Les fonctions $T_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \mathcal{I}_s(V, \omega)$ satisfont à :

(*)
$$|T_{s}^{-} - T_{s}| \le K_{1}^{'} u |Logu| ||V_{s}^{-} - V||$$
 dans le domaine $u \le cs_{O}$, et à :
(**) $|T_{s}^{-} - T_{s}| \le K_{1}^{'} x_{0}^{0} ||V_{s}^{-} - V||$ dans le domaine $u \ge cs_{O}$ et $x_{0}^{0} < \chi(c)$

Pour la démonstration :

Comme
$$\mathcal{I}_s(\omega, V) = \Delta([v_r]L_s^r(\omega, \tilde{\omega}, V) + \sigma \omega_s^r[f_r(V)])$$
, posons

$$\begin{cases} h_s(\omega, V) = \Delta([v_r]L_s^r(\omega, \tilde{\omega}, V)) \\ g_s(\omega, V) = \Delta\sigma\omega_s^r[f_r(V)] \end{cases}$$

Démontrons le lemme suivant :

Lemme 5.3.1.1

Les fonctions h_S et g_S , donc J_s , satisfont à une condition de Lipschitz par rapport à leurs arguments

Preuve.

a) Fonctions $h_s(\omega, \tilde{\omega}, V)$:

Posons
$$h'_s = h_s(\omega', \tilde{\omega}', V')$$
. On a:
 $h'_s - h_s = \Delta \{ [v'_r] L'_s(\omega', \tilde{\omega}', V') - [v_r] L'_s(\omega, \tilde{\omega}, V) \}$,
l'expression entre les accolades s'écrit:
 $([v'_r] - [v_r]) L'_s(\omega', \tilde{\omega}', V') + [v_r] (L'_s(\omega', \tilde{\omega}', V') - L'_s(\omega, \tilde{\omega}, V')) + [v_r] (L'_s(\omega, \tilde{\omega}, V') - L'_s(\omega, \tilde{\omega}, V))$

Toutefois:

- la proposition 1.6 du chapitre 1 portant sur les ΔL_s^r ,
- la définition de \mathcal{J} , montrant que V est bornée,
- le lemme 5.2.2.1 $_1$ portant sur les ω , $\tilde{\omega}$ et $\hat{\omega}$,
- les hypothèses sur $A^{\lambda\mu}$ et f montrant que les coefficients des ΔL_s^r , sont lipschitziens en V;

montrent qu'il existe des constantes k_2 , k_2 , k_2 et k_2 telles que :

(1)
$$\left| \Delta L_s^r(\omega', \tilde{\omega}', V') \right| \leq k_2$$

(2)
$$\left| \Delta \left(L_s^r(\omega^{\scriptscriptstyle \dagger}, \tilde{\omega}^{\scriptscriptstyle \dagger}, V^{\scriptscriptstyle \dagger}) - L_s^r(\omega, \tilde{\omega}, V^{\scriptscriptstyle \dagger}) \right) \right| \leq k_2^{\scriptscriptstyle \dagger} Max \left(\left| \omega^{\scriptscriptstyle \dagger} - \omega \right| + \left| \tilde{\omega}^{\scriptscriptstyle \dagger} - \tilde{\omega} \right| \right)$$

$$\leq k_2^{\scriptscriptstyle \dagger} \left(\left\| \Omega^{\scriptscriptstyle \dagger} - \Omega \right\| + \left\| \tilde{\Omega}^{\scriptscriptstyle \dagger} - \tilde{\Omega} \right\| \right)$$

(3)
$$\left| \Delta \left(L_s^r(\omega, \tilde{\omega}, V^*) - L_s^r(\omega, \tilde{\omega}, V) \right) \right| \le k_2^m Max \left(\left| v_s^*(x^{\alpha}) - v_s(x^{\alpha}) \right| \right)$$

$$\le k_2^m \left\| V^* - V \right\|$$

(1), (2) et (3) entraînent :

$$(4) \quad |h_s - h_s| \le k_2 (||\Omega' - \Omega|| + ||\tilde{\Omega}' - \tilde{\Omega}|| + ||V' - V||).$$

b) Fonctions $g_s(\omega, V)$.

Posons
$$g_s^i = g_s(\omega^i, V^i) = \Delta \sigma \omega^{ir}_s [f_r(V^i)]$$
. On a :

$$g_s^{'} - g_s = \Delta \sigma \left\{ \left(\omega_s^{''} - \omega_s^{''} \right) \left[f_r(V') \right] + \omega_s^{''} \left(\left[f_r(V') \right] - \left[f_r(V) \right] \right) \right\}$$

Les hypothèses faites sur f et V, entraînent l'existence des constantes $k_3, k_3, k_3^{"}$, et k_3 telles que :

(1')
$$|\Delta \sigma| \leq k_3$$

$$|f_r(V^1)| |f_r(V^1)| \le k_3^n$$

(3')
$$|[f_r(V')] - [f_r(V)]| \le k_3^m \max_{x^{\alpha} \in \Omega_1} (|v_s(x^{\alpha}) - v_s(x^{\alpha})|)$$

Ce qui entraîne :

(4')
$$\left|g_{s}^{'}-g_{s}\right| \leq k_{3}(\|\Omega'-\Omega\|+\|V'-V\|)$$

Conclusion.

(4) et (4') entraînent l'existence des constantes
$$k'_4$$
 et k_4 telles que :

(5) $\left| \mathcal{J}_s' - \mathcal{J}_s \right| \le k_4' \left(\left\| \Omega' - \Omega \right\| + \left\| \tilde{\Omega}' - \tilde{\Omega} \right\| + \left\| V' - V \right\| \right)$, ce qui achève la démonstration du lemme.

En appliquant le lemme 5.3.0, on obtient :

$$(5') \qquad \left| \mathcal{I}_s - \mathcal{I}_s \right| \le k_4 \| V' - V \|.$$

Revenons à la proposition 5.3.1

Par définition de T_S, on a :

$$|T_s| - T_s| \le \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_{\psi(x_0^a, \lambda_h)}^0 d\lambda_1 |T_s - T_s|$$

L'étude de la fonction $U(x_0^\alpha) = \int_0^{2\pi} d\lambda_3 \int_0^\pi \sin\lambda_2 d\lambda_2 \int_{\psi(x_0^\alpha,\lambda_h)}^0 d\lambda_1$ faite au §2.4 et le résultat du lemme donnent :

(5.3.1.1)
$$\begin{cases} . \text{ Dans le domaine } u \le cs_0 \\ |T'_s - T_s| \le K'_1 u |Logu|, ||V' - V|| \\ . \text{ Dans le domaine } u > cs_0 \text{ et } x_0^0 < \chi(c) \\ |T'_s - T_s| \le K'_1 x_0^0 ||V' - V|| \end{cases}$$

Ce qui achève la démonstration de la proposition.

5.3.2 Fonctions $I_s(x_0^{\alpha})$.

Montrons que les fonctions $I_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \vartheta_s(\omega)$, où, d'après le lemme 5.1.1 :

 $\vartheta_s(\omega) = E_s^i \left(\Delta_i^{\rm I} - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h \right)$, avec : $E_s^i = \frac{p_i^0}{\lambda_1^2} + \frac{E(\hat{\omega}, \omega, \tilde{\omega})}{\lambda_1}$, satisfont à des inégalités de même la forme que (5.3.1.1). Nous allons dans ce paragraphe, utiliser les résultats du §5.1.1 obtenus en début de ce chapitre.

Proposition 5.3.2.

Pour $V=(v_S^-)$ et $V'=(v_S'^-)$ dans \mathcal{J} les fonctions I_S et I_S' satisfont aux inégalités suivantes :

- Dans le domaine u≤cs_o,

(1)
$$\left| I_s' - I_s \right| \le k_1' \frac{\sqrt{u}}{\sqrt{s_0}} \| V' - V \|$$

- Dans le domaine $u > cs_0$ et $x_0^0 < \chi(c)$,

$$\left|I^{t}_{s} - I_{s}\right| \leq k_{1}^{\prime} x_{0}^{0} \left\|V^{\prime} - V\right\| \quad \text{où } k_{1}^{\prime} = c^{te}$$

Démontrons d'abord le lemme suivant :

Lemme 5.3.2.

Les fonctions $E(\hat{\omega}, \omega, \tilde{\omega})$ vérifient :

- une condition de Lipschitz par rapport à leurs arguments;
- l'inégalité $|E(\hat{\omega}', \omega', \tilde{\omega}') E(\hat{\omega}, \omega, \tilde{\omega})| \le k_0 ||V' V||$; $k_0 = c^{te}$

Preuve.

Le lemme 5.1.1 montre que $E(\hat{\omega}, \omega, \tilde{\omega})$ peut s'écrire sous la forme :

$$E(\hat{\omega}, \omega, \tilde{\omega}) = E_0 + E'(\hat{\omega}, \omega, \tilde{\omega}), \text{ où }$$
:

- E_{O} sont des fonctions continues et bornées indépendantes de ω (donc de $\hat{\omega}$ et $\tilde{\omega}$).
- E' est une combinaison linéaire des fonctions $\hat{\omega}$, ω et $\tilde{\omega}$ à coefficients continus et bornés (V et V' prenant les mêmes valeurs sur $S_0(M_0)$). Par conséquent, il existe une constante k"₁ telle que :

$$\begin{split} \left| E(\hat{\omega}', \omega', \tilde{\omega}') - E(\hat{\omega}, \omega, \tilde{\omega}) \right| &= \left| E'(\hat{\omega}', \omega', \tilde{\omega}') - E'(\hat{\omega}, \omega, \tilde{\omega}) \right| \\ &\leq k_1^* Max \Big(\left| \hat{\omega}' - \hat{\omega} \right| + \left| \omega' - \omega \right| + \left| \tilde{\omega}' - \tilde{\omega} \right| \Big) \end{split}$$

Done:

$$(5.3.2.1) \quad \left| E(\hat{\omega}', \omega', \tilde{\omega}') - E(\hat{\omega}, \omega, \tilde{\omega}) \right| \leq k_{\parallel} \left(\left\| \hat{\Omega}' - \hat{\Omega} \right\| + \left\| \Omega' - \Omega \right\| + \left\| \tilde{\Omega}' - \tilde{\Omega} \right\| \right)$$

Le lemme 5.3.0 nous conduit à la deuxième conclusion du lemme.

$$(5.3.2.2) \left| E(\hat{\omega}', \omega', \tilde{\omega}') - E(\hat{\omega}, \omega, \tilde{\omega}) \right| \le k_0 \|V' - V\|$$

Le lemme est démontré.

Démonstration de la proposition.

On utilise les résultats du §5.1.2 et le lemme précédent :

A) Dans le domaine u≤cs₀.

1) Pour $\zeta^3 \ge 0$:

Les relations (5.1.2.2) donnent :

$$\beta'_{sp} - \beta_{sp} = \lambda_1 \left(E(\hat{\omega}', \omega', \tilde{\omega}') - E(\hat{\omega}, \omega, \tilde{\omega}) \right).$$

Comme ici $|\lambda_1| < k_0 u$, $k_0 = c^{1e}$ et $u = x_0^0 - \phi(x_0^1)$.

(5.3.2.2) donne:

$$\left|\vartheta_{sp} - \vartheta_{sp}\right| \le k_0 u \, \left\|V' - V\right\|$$

En intégrant on obtient :

$$(5.3.2.3_1) \quad \left| I_{sp}^{'} - I_{sp} \right| \le k_1' u \| V' - V \|$$

2) Dans le domaine $0 > \zeta^3 > \mu_0 + mu$.

i) Dans
$$-ls_0 > \zeta^3 > \mu_0 + mu_2$$

Les relations (5.1.2.3) donnent :

$$\vartheta_{sc_1}' - \vartheta_{sc_1} = \frac{\sqrt{u}}{\left| \zeta^3 \right|^{3/2}} \left(E(\hat{\omega}', \omega', \tilde{\omega}') - E(\hat{\omega}, \omega, \tilde{\omega}) \right).$$

De (5.3.2.2) on a:

$$\vartheta'_{sc_1} - \vartheta_{sc_1} = k_0'' \frac{\sqrt{u}}{|\zeta^3|^{3/2}} ||V' - V|| ; k_0'' borné.$$

En intégrant on obtient :

$$(5.3.2.3_2) \quad \left| I_{sc_1}' - I_{sc_1} \right| \le k_1' \frac{\sqrt{u}}{\sqrt{s_0}} \| V' - V \|, \quad k_1' = c^{te}.$$

ii) Dans le domaine $0 > \zeta^3 > -ls_0$.

Les relations (5.1.2.4) donnent :

$$\vartheta_{sc_2}' - \vartheta_{sc_2} = \frac{\sqrt{u}}{s_0 \left(u + \left| \zeta^3 \right| \right)^{\frac{1}{2}}} \left(E(\hat{\omega}', \omega', \tilde{\omega}') - E(\hat{\omega}, \omega, \tilde{\omega}) \right).$$

(5.3.2.2) donne donc

$$\vartheta_{sc_2} - \vartheta_{sc_2} = k_0^{"} \frac{\sqrt{u}}{s_0 \left(u + |\zeta^3| \right)^{1/2}} \|V' - V\|, \quad k_0^{"} \quad borné$$

En intégrant, on obtient :

$$(5.3.2.3._3) \quad \left| I_{sc_2}' - I_{sc_2} \right| \le k_1' \frac{\sqrt{u}}{\sqrt{s_0}} \| V' - V \|.$$

3) Dans le domaine $\zeta^3 \le \mu_0 + mu$.

$$(5.1.2.5) \text{ donne :}$$

$$\vartheta'_{s_0} - \vartheta_{s_0} = \frac{u^2}{s_0^2} \left(E(\hat{\omega}', \omega', \tilde{\omega}') - E(\hat{\omega}, \omega, \tilde{\omega}) \right).$$

(5.3.2.2) donne:
$$\left| \vartheta_{s_0}' - \vartheta_{s_0} \right| \le k_0^{(4)} \frac{u^2}{s_0^2} \| V' - V \|, \quad k_0^{(4)} \quad cons \tan te.$$

En intégrant, on obtient :

$$(5.3.2.3_4) \quad \left| I_{s_0}' - I_{s_0} \right| \le k_1' \frac{u^2}{s_0^2} \| V' - V \|, \quad k_1' \quad cons \tan te.$$

Conclusion.

Dans le domaine $u \le cs_0$, on a :

(5.3.2.3)
$$\left| I_s' - I_s \right| \le k_1' \frac{\sqrt{u}}{\sqrt{s_0}} \|V' - V\|, k_1' \text{ constante.}$$

B) Dans le domaine $u > cs_0$ et $x_0^0 < \chi(c)$.

$$\boldsymbol{\vartheta}_{s}^{'} - \boldsymbol{\vartheta}_{s} = \lambda_{1} \big(E(\boldsymbol{\hat{\omega}}^{\scriptscriptstyle{\mathsf{T}}}, \boldsymbol{\omega}^{\scriptscriptstyle{\mathsf{T}}}, \boldsymbol{\tilde{\omega}}^{\scriptscriptstyle{\mathsf{T}}}) - E(\boldsymbol{\hat{\omega}}, \boldsymbol{\omega}, \boldsymbol{\tilde{\omega}}) \big)_{\cdots}$$

Ici
$$|\lambda_1| < \lambda_0 x_0^0$$
, $(\lambda_0 = c^{te})$.

$$\begin{vmatrix} J_s - J_s \end{vmatrix} \le k_0^{(5)} x_0^0 ||V' - V||, \quad k_0^{(5)} \quad \text{constante}$$

En intégrant, on a :
$$|I_s' - I_s| \le k_1' x_0'' |V' - V| ./.$$

En récapitulant les propositions 5.3.1 et 5.3.2, on obtient le résultat suivant :

Si
$$\Theta: \mathcal{F} \to \mathcal{F}$$

 $V = (v_s) \mapsto W = (w_s)$, avec
$$4\pi w_s(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \mathcal{F}_s(v) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \mathcal{F}_s(v)$$
Alors on a:

(5.3.2.5)
$$\begin{cases} * \text{ Dans le domaine } \mathbf{u} \leq \mathbf{cs}_{0}, \quad \mathbf{c} \leq \mathbf{c}_{4}. \\ |w'_{s} - w_{s}| \leq \left(K_{1}u|Logu| + k_{1}\frac{\sqrt{u}}{\sqrt{s_{0}}}\right) |V' - V|| \\ * \text{ Dans le domaine } \mathbf{u} \geq \mathbf{cs}_{0} \text{ et } x_{0}^{0} < X_{0}. \\ |w'_{s} - w_{s}| \leq K_{1}x_{0}^{0} |V' - V|| \end{cases}$$

Où: - c₄ et X₀ ont été déterminées dans le lemme 5.2.2.3 de la proposition 5.2.2.1.
- k₁ et K₁ sont des constantes.

5.3.3 Contraction.

Soient V= (v_S) et V'= (v_S) deux éléments de V, W= (w_S) et W'= (w_S) leurs images respectives par Θ .

On a la proposition suivante :

Proposition 5.3.3.

Il existe un ouvert Ω_1 causal, ayant pour frontière (\mathscr{C}), tel que :

dans $\Omega_I,~\Theta$ diminue la distance dans $~\mathbb{Z}~\Omega_I$ sera défini par :

$$\Omega_{1} \colon \begin{cases} 0 < u < U_{0}(x_{0}^{i}) \\ (x_{0}^{i}) \in (\mathcal{C}_{0})_{x} \\ u = x_{0}^{0} - \phi(x_{0}^{i}) \\ U_{0}(x_{0}^{i}) < M_{0} M_{0} = c^{te}. \end{cases}$$

Démonstration.

Posons
$$d(W', W) = \underset{(x^{\alpha}) \in \Omega_{1}^{A}}{\operatorname{Max}} \left[w'_{s}(x^{\alpha}) - w_{s}(x^{\alpha}) \right]$$

Pour démontrer la proposition, les relations (5.3.2.5) et les lemmes (5.2.2.2) et (5.2.2.3) montrent qu'il suffit de déterminer des constantes C, M_o et X'_o telles que :

$$\begin{array}{l} 0 < u < M_0 \\ u \leq cs_0 \end{array} \} \Rightarrow Ku \big| Logu \big| + k \frac{\sqrt{u}}{\sqrt{s_0}} < 1 \quad (i) \\ \\ \frac{\text{ou}}{0} : \\ 0 < u < M_0 \\ u > cs_0 \\ x_0^0 < X_0^\prime \end{array} \} \Rightarrow Kx_0^0 < 1 \quad (ii)$$

Une démonstration semblable à celle du lemme (5.2.2.3) nous permet de choisir :

*
$$C \le C_5$$
 où $C_5 = Min\left(C_4, \frac{1}{(2k)^2}\right)$.

* Une constante M'_O telle que : $u < M'_0 \Rightarrow u |Log(u)| < \frac{1}{2K}$.

*
$$x_0^0 < X_0'$$
 avec $X_0 = Min(X_0, M_0, \frac{1}{K})$.

La condition $d(W',W) \le \alpha d(V',V)$, avec $0 \le \alpha \le 1$ est vérifiée dès que l'ouvert Ω_1 est contenu dans le domaine :

Enfin, on peut trouver une constante Mo telle que :

$$u < M_0 \Rightarrow (iii)$$
.

L'application du lemme (5.2.2.2) permet de conclure que l'ouvert Ω_1 satisfait aux conditions de la proposition.

Conclusion.

 Θ est une contraction dans \mathcal{I} . \mathcal{A} tant complet, il existe un unique point fixe $V=(v_S)\in \mathcal{A}$ solution de (\mathcal{A}_S) . Ce qui achève la démonstration du théorème principal.

ERRATUM

Unicité de la solution du système intégral (C_s) des formules de Kirchhoff.

Les notations et définitions étant celles de la 1ères partie de la preuve du théorème 5-2 , soit $V'=(v_s)$ une solution de (C_s) dans le domaine causal Ω_1 ; on se propose de montrer que V'=V dans Ω_1 .

Or ,d'après les lemmes 5.2.2.2 et 5.2.2.3 , il existe des constantes strictement positives c_1 , m_1 et X_1 et un domaine causal $D(m_1,c_1,X_1) = D(m_1) \cap A(m_1,c_1,X_1)$ avec :

$$D(m_1): \begin{cases} x_o^\alpha \in (C_o)_x \\ 0 < u < U(x_o^i) \\ \dot{u} = x_o^o - \phi(x_o^i) & \text{et } U(x_o^i) < m_1 \end{cases}$$

$$\begin{cases} c_{M_0} \in D(m_1) \Rightarrow (C_{M_0}^i) \subset D(m_1) \\ \dot{u} = x_o^o = c_{M_0} \end{cases}$$

$$A(m_1, c_1, X_1): \begin{cases} 0 < u < m_1 \\ u \le c_1 s_0 \end{cases} \quad \text{ou} \begin{cases} 0 < u < m_1 \\ u > c_1 s_0 \\ x_0^o < X_1 \end{cases}$$

tel que:

- (i) $D(m_1,c_1,X_1) \subset \Omega_1$
- (ii) dans le domaine $D(m_1, c_1, X_1)$ on a : $|v_s(x^0, x^i) \phi_s(x^i)| < h$.

L'application Θ étant contractante dans la boule centrée en (ϕ_s) de rayon h, on a alors V'= V dans $D(m_1, c_1, X_1)$. On en déduit que les intégrales doubles qui apparaissent dans les formules de Kirchhoff associées respectivement à V= (v_s) et V'= (v_s) sont égales, donc on peut prendre c_1 = c (cf théoèmes 2.1 et 2.2)

Soient M_1 la borne supérieure des constantes $m_1 \le M$ et \widetilde{X}_0 la borne supérieure des constantes $X_1 \le X_0$ telles que : $D(m_1, c_1, X_1) \subset \Omega_1$ et V' = V dans $D(m_1, c_1, X_1)$.

Il suffit de montrer que $M_1 = M$ et $\widetilde{X}_o = X_o$.

Soit ϵ >,assez petit .Considérons le point A_o de composantes ($M_{1-\epsilon}$,0,0,0) et C_{A_o} le demiconoïde caractéristique de sommet A_o orienté vers les $x^o \ge 0$ avec $C_{A_o} \subset \Omega_1$.Considérons le système intégral des formules de Kirchhoff avec conditions initiales sur le conoïde C_{A_o} :

$$\begin{split} \widetilde{\phi}_s &= v_s\big|_{C_{A_o}} = v_s^{'}\big|_{C_{A_o}} \text{. Comme ci-dessus , on montre que ce système admet dans un voisinage} \\ \widetilde{D}(\widetilde{m},\widetilde{c},\widetilde{X}) \text{ de } C_{A_o} \text{ } (\widetilde{D}(\widetilde{m},\widetilde{c},\widetilde{X}) \text{ défini de la même façon que } D(\widetilde{m},\widetilde{c},\widetilde{X}) \text{ à condition de remplacer} \\ C_o \text{ par } C_{A_o} \text{) une solution unique } w_s \text{ telle que } \big|w_s - \widetilde{\phi}_s\big| \leq 2h_1 \text{ avec:} \end{split}$$

$$\int_{s} h_1 = \operatorname{Max} \left\{ \sup_{s} |v_s - \varphi_s| , \sup_{s} |v_s' - \varphi_s| \right\} (x^{\alpha}) \in \Omega_1 ; \text{ on en déduit que } : v_s = w_s = v_s' \text{ dans } \widetilde{D}(\widetilde{m}, \widetilde{c}, \widetilde{X}) ;$$

donc V'=V dans $\widetilde{D}(\widetilde{m},\widetilde{c},\widetilde{X})\cup D(M_{1-\epsilon},c,X_1)$; en prenant ϵ suffisamment petit , on aboutit à : $\widetilde{D}(\widetilde{m},\widetilde{c},\widetilde{X})\cup D(M_{1-\epsilon},c,X_1)\supseteq D_1(M_2,c,X_1)$ avec $M_2\geq M_1$, ceci contredit la maximalité de M_1 , donc $M_1=M$.

On montre de même que $\widetilde{X}_1 = X_o$. Donc V = V' dans Ω_1 tout entier .

Chapitre 6

APPLICATIONS AU PROBLEME DE CAUCHY SEMI-LINEAIRE
$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha},v) = 0, & (E) \\ v |_{\mathcal{C}_{\theta}} = \varphi(x^{i}) \end{cases}$$

Dans ce dernier chapitre, nous considérons un problème de Cauchy semi-linéaire où la fonction f ne dépend pas des dérivées partielles premières de la fonction inconnuev. Nous pouvons donc écrire - sans dérivation préalable de l'équation (E) - l'équation intégrale (E) associée au problème de Cauchy.

L'intérêt de ce chapitre réside dans le fait que nous y montrons que la solution de l'équation intégrale (&) est la solution au sens des distributions du problème de Cauchy. Le chapitre comporte deux sections.

- La première section est consacrée à l'écriture de la formule de KIRCHHOFF relative au problème de Cauchy, et à la résolution de l'équation intégrale associée.
- Dans la deuxième section, nous montrons que la solution de cette équation intégrale est la solution au sens des distributions du problème de Cauchy, utilisant en cela des résultats obtenus dans [B₁], chapitre 6.

Enonçons le théorème auquel nous conduiront les résultats de ce chapitre.

Théorème 6.0.

(6.0) Considérons le problème de Cauchy suivant :
$$\begin{cases}
(E): A^{\lambda\mu}(x^{\alpha}) \frac{\partial v}{\partial x^{\lambda} \partial x^{\mu}} + f(x^{\alpha}, v) = 0 & \text{dans } \Omega \\
v\Big|_{V_{ij}} = \tilde{v}\Big|_{V_{ij}} = \varphi(x^{i})
\end{cases}$$

Hypothèses.

1 - G, \mathcal{S} , Ω satisfont aux hypothèses H_2 -i) et ii) du §2.1.

2 - $L = A^{\lambda\mu}D_{\lambda\mu}$, $A^{\lambda\mu}$, φ satisfont à H_2 -iii), iv) et v) du §2.1.

3 - $f(x^{\alpha}, v) \in B^{0,1}(\Omega x \Omega')$ où Ω' est un ouvert de IR.

Conclusion:

Il existe un ouvert Ω_I , causal, ayant $\mathcal L$ pour frontière tel que : le problème (6:0) admette, au sens des distributions sur Ω_I , une solution.

6.1 <u>FORMULES DE KIRCHHOFF ET SOLUTION DE L'EQUATION</u> INTEGRALE ASSOCIEE

6.1.1 Formule de KIRCHHOFF.

Si les hypothèses du théorème 6.0 sont satisfaites, alors la conclusion de la proposition 2.1.3.1 du §2.1.3 s'applique au problème de Cauchy 6.0 ; par conséquent, on a le résultat suivant :

Pour toute solution bornée v du problème (6.0), on a la formule suivante : $\forall M_0(x_0^{\alpha}) \in \Omega$, on a :

(E):
$$4\pi v(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin\lambda_2 d\lambda_2 \int_0^{\psi x_0^{\alpha}, \lambda_h} d\lambda_1 \Delta([\nu]L + \Sigma[f(\nu)]) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \vartheta(x_0^{\alpha}, \lambda_h)$$

où : les $B_r^{\lambda s}$ étant nuls :

$$\sigma = -\frac{1}{\sqrt{|\Delta|}}, \quad \lim_{\lambda_1 \to 0} \lambda_1 \sigma = 1$$

$$\omega = 1 + \int_0^{\lambda_1} Q \omega. d\lambda_1, \quad \text{où}$$

$$Q = -\frac{1}{2} \left(p_j \frac{\partial \left[A^{ij} \right]}{\partial y^i} + \frac{\partial \left[A^{0i} \right]}{\partial y^i} \right)$$

Remarque 1.

La fonction ω étant indépendante de la fonction inconnue v, l'étude faite au chapitre 2 montre que (\mathcal{E}) est une équation intégrale, d'inconnue v. Toutefois, (\mathcal{E}) n'est pas une équation intégrale linéaire, à cause de la fonction $f(x^{\alpha},v)$ qui n'est pas linéaire en v.

Remarque 2.

La fonction $\Im(x_0^\alpha,\lambda_h)$ étant indépendante de v, contrairement au cas semi-linéaire général, les résultats du §2.3 du chapitre 2 s'appliquent. C'est ainsi qu'on a les résultats suivants pour (\mathcal{E}) ; en posant $\Im(v) = \Delta([v]L + \Sigma[f(v)])$.

a) Dans le domaine
$$\underline{u} \leq \underline{cs_{Q}}$$
.
$$I(\underline{x_0^{\alpha}}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \vartheta(x_0^{\alpha}, \lambda_h) = 4\pi\varphi(\xi^i) + k' \frac{\sqrt{u}}{\sqrt{s_0}}$$

Donc:

$$4\pi v(x_0^{\alpha}) = 4\pi \varphi(\xi^i) + k^{\dagger} \frac{\sqrt{u}}{\sqrt{s_0}} + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \mathcal{I}(v), \text{ k' bornée.}$$

b) Dans le domaine $u \ge cs_0$ et $x_0^0 < \chi(c)$. $I(x_0^{\alpha}) = 4\pi\varphi(0,0,0) + k'x_0^0$.

$$I(x_0^{\alpha}) = 4\pi\varphi(0,0,0) + k'x_0^0$$

$$4\pi v(x_0^{\alpha}) = 4\pi \varphi(0,0,0) + k' x_0^{0} + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha},\lambda_h)} d\lambda_1 \forall (\nu).$$

6.1.2 Détermination de $\chi = \frac{\partial v}{\partial x^0}\Big|_{C_0}$

L'écriture de (E) (de 6.0), sur ℓ_0 donne :

[E]:
$$2\frac{d\chi}{d\Lambda_1} + \left[A^{ij}\right] \frac{\partial q_i}{\partial x^j} \chi + \left[A^{ij}\right] \frac{\partial^3 \varphi}{\partial x^i \partial x^j} + \left[f\right] = 0$$
, où :

$$\left[A^{ij}\right] = A^{ij} \left(x^0 = S, x^i\right), \quad S = \sqrt{\sum_{i=1}^3 (x^i)^2}.$$

[f] est pris pour les arguments :

$$\begin{cases} x^0 = S \\ x^i = x^i (\Lambda_1, q_j^0) \\ v = \varphi(\Lambda_1, q_j^0) \end{cases}$$

[E] est une équation différentielle linéaire en χ . L'étude faite au chapitre 4 montre que χ est déterminée de façon unique sur tout le domaine δ de ℓ_0 , pour toute solution du problème (6.0) à dérivées premières bornées.

6.1.3 Résolution de l'équation intégrale (ξ).

En s'appuyant sur le théorème principal (5.2), on va démontrer de façon brève le théorème suivant :

Théorème 6.1.3.

Si les hypothèses du théorème 6.0 sont satisfaites , alors : il existe un ouvert $\Omega_1 \subset \Omega$, causal, ayant \mathscr{A} pour frontière et tel que :

- i) L'équation intégrale (E) admette une solution unique v dans l'espace des fonctions continues et bornées sur Ω_I .
 - ii) Sur Δ, ν prend la valeur φ.

Démonstration.

Elle est calquée sur la démonstration du théorème principal du chapitre précédent.

A) Espace fonctionnel \mathcal{J} .

On introduit l'espace fonctionnel \mathcal{J} défini ainsi :

un élément de $\mathcal I$ est une fonction v telle que :

 $\underline{\mathbf{P_1}}$: v est définie, continue et bornée dans un domaine Ω_1 de frontière β satisfaisant à la propriété de causalité, à savoir :

$$\forall M_0 \in \Omega_1$$
, on a : $(\ell_{\overline{M_0}}) \subset \Omega_1$.

 $\underline{\mathbf{P_2}}$: La trace de v sur $\boldsymbol{\beta}$ est la fonction $\boldsymbol{\phi}$.

 $\underline{\mathbf{P_3}}$: v satisfait à l'inégalité $|v(x^0, x^1) - \varphi(x^1)| < h$ où $h = c^{te}$.

Enfin, on définit sur \mathcal{J} la métrique de convergence uniforme :

$$d(v', v) = ||v' - v|| = \max_{(x^{\alpha}) \in \Omega_{1}} (|v'(x^{\alpha}) - v(x^{\alpha})|)$$

B) Application Θ de I dans lui-même.

Définissons une application Θ sur \mathcal{I} par :

 $\forall v \in \mathcal{I}$, on pose $\Theta(v)$ =w, avec :

(1):
$$4\pi w(\mathbf{x}_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi \mathbf{x}_0^{\alpha}, \lambda_h} d\lambda_1 \Delta([\mathbf{v}]L + \Sigma[f(\mathbf{v})]) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \vartheta(\mathbf{x}_0^{\alpha}, \lambda_h)$$

Lemme 6.1.3.1.

Pour un choix convenable de l'ouvert Ω_I , Θ est une application de $\mathscr I$ dans luimême.

Preuve.

L'application de (6.1.1.1) à (1) donne :

$$\begin{cases} \text{Dans le domaine } u \leq cs_0: \\ 4\pi w(x_0^{\alpha}) = 4\pi \varphi(\xi^i) + k' \frac{\sqrt{u}}{\sqrt{s_0}} + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \mathcal{I}(v) \\ \text{Dans le domaine } u > cs_0, \ x_0^0 < \chi(c): \\ 4\pi w(x_0^{\alpha}) = 4\pi \varphi(0, 0, 0) + k' x_0^0 + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 \mathcal{I}(v) \end{cases}$$

En appliquant à l'intégrale triple les résultats du §2.4 du chapitre 2, et comme $v \in \mathcal{J}$ entraı̂ne $\mathcal{J}(v)$ borné, (*) donne :

(**) $\begin{cases} \text{Dans le domaine } u \leq cs_0; \\ 4\pi w(x_0^{\alpha}) = 4\pi \varphi(\xi^i) + k^i \frac{\sqrt{u}}{\sqrt{s_0}} + K^i u |Logu| \\ \text{Dans le domaine } u > cs_0, \quad x_0^0 < \chi(c); \\ 4\pi w(x_0^{\alpha}) = 4\pi \varphi(0,0,0) + K^i x_0^0, \quad \text{où ket K' bornée} \end{cases}$

- Ces relations montrent que si $v \in \mathcal{J}$ alors $w = \Theta(v)$ est une fonction continue, bornée et prend la valeur φ sur \mathcal{J} .
- La démonstration de la condition $|w(x^0,x^i)-\phi(x^i)| \le h$ se fait de la même façon que pour le lemme 5.2.2.3.

Par conséquent, il existe des constantes :

$$\begin{cases} \bullet \ C_4 = Min\left(C_3, \left(\frac{h}{2k^1}\right)^2\right) \\ \bullet \ M(h) \ tel \ que : \ 0 < u < M(h) \Rightarrow u |Logu| < \frac{h}{2k^1} \\ \bullet \ M'' = Min\left(\frac{h}{K^1}, \chi(c), M(h)\right) \end{cases}$$

telles que :

* la condition $|w(x^0,x^i)-\phi(x^i)|$ < h est vérifiée dans tout ouvert Ω_1 contenu dans le domaine.

(***)
$$\begin{cases} 0 < u < M(h) \\ u \le cs_0 \\ c \le C_4 \end{cases} \text{ ou } \begin{cases} 0 < u < M(h) \\ u > cs_0 \\ x_0^0 < M'' \end{cases}$$

Enfin, on peut trouver une constante M telle que :

$$u < M \Rightarrow (***)$$
.

Le lemme 5.2.2.2 permet de choisir Ω_1 défini ainsi :

$$\Omega_{1} \begin{cases} 0 < u < U(x_{0}^{i}) \\ (x_{0}^{i}) \in (\ell_{0})_{x} & \text{avec} : \begin{cases} U(x_{0}^{i}) < M \\ u = x_{0}^{0} - \phi(x_{0}^{i}) \end{cases}$$

On conclut que si $v \in \mathcal{I}$, alors on peut trouver l'ouvert Ω_1 tel que $\Theta(v)=w\in \mathcal{I}$, donc :

 $\Theta(\mathcal{I})\subset\mathcal{I}$ et le lemme est démontré.

C) Θ est une contraction dans \mathcal{J} .

Démontrons le lemme suivant qui est l'équivalent de la proposition 5.3.1.

Lemme 6.1.3.2.

Soient v et v' deux éléments de l'et T et T' les intégrales triples de () calculées respectivement à partir de v et v'. Alors, on a :

Dans le domaine
$$u \le cs_0$$
:
$$|\mathbf{T'} - \mathbf{T}| \le K' u |Log u| . ||v' - v||$$
Dans le domaine $u > cs_0$, $x_0^0 < \chi(c)$:
$$|\mathbf{T'} - \mathbf{T}| \le K' x_0^0 ||v' - v||$$
, où K=cte.

Preuve.

Pour v et v' dans \mathcal{J} , on a :

$$T'-T = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_0^{\psi(x_0^{\alpha}, \lambda_h)} d\lambda_1 (\mathcal{I}(v') - \mathcal{I}(v)).$$

où :

$$\mathcal{J}(\mathbf{v}') - \mathcal{J}(\mathbf{v}) = \Delta \mathbf{L}([\mathbf{v}'] - [\mathbf{v}]) + \Delta \Sigma([\mathbf{f}(\mathbf{v}')] - [\mathbf{f}(\mathbf{v})]).$$

Comme:

- * Δ L et $\Delta\Sigma$ sont bornées (§1.5 et 1.6).
- * f est lipschitzienne en v.

Il existe une constante λ' telle que :

$$|\mathcal{I}(\mathbf{v}') - \mathcal{I}(\mathbf{v})| \le \lambda' ||\mathbf{v}' - \mathbf{v}||.$$

En appliquant à
$$(x_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin \lambda_2 d\lambda_2 \int_{\psi(x_0^{\alpha}, \lambda_h)}^{0} d\lambda_1$$
.

les résultats du §2.4, on obtient la conclusion du lemme.

Lemme 6.1.3.3.

Il existe un ouvert Ω_I , causal, défini par :

$$\Omega_{1} \begin{cases} 0 < u < U(x_{0}^{i}) \\ (x_{0}^{i}) \in \mathcal{S}_{x} \end{cases} \quad \text{avec} : \begin{cases} U(x_{0}^{i}) < M \\ M = C^{le} \\ u = x_{0}^{0} - \phi(x_{0}^{i}). \end{cases}$$

tel que : Θ diminue la distance dans ${\mathbb Z}$

Démonstration.

Soient v et v' dans ∂ , w= Θ (v) et w'= Θ (v') leurs images par Θ .

$$\left. \begin{array}{l} 4\pi w(x_0^\alpha) = T(x_0^\alpha) + I(x_0^\alpha) \\ 4\pi w'(x_0^\alpha) = T'(x_0^\alpha) + I(x_0^\alpha), \end{array} \right\} \ \text{car} \, \vartheta(x_0^\alpha, \lambda_h) \ \text{est indépendant de v.}$$

Alors:

$$4\pi \left| w'(x_0^{\alpha}) - w(x_0^{\alpha}) \right| = \left| T'(x_0^{\alpha}) - T(x_0^{\alpha}) \right|$$

Le lemme 6.1.3.2 entraı̂ne

$$\begin{cases} \left| w^{t}(x_{0}^{\alpha}) - w(x_{0}^{\alpha}) \right| \leq Ku \left| Logu \right| , \left\| v^{t} - v \right\| \\ ou : \\ \left| w^{t}(x_{0}^{\alpha}) - w(x_{0}^{\alpha}) \right| \leq Kx_{0}^{0} \left\| v^{t} - v \right\|, \quad K = C^{te}. \end{cases}$$

Prenons:

$$d(w', w) = \underset{(x_0^{\alpha}) \in \Omega_1}{\text{Max}} \left| w'(x_0^{\alpha}) - w(x_0^{\alpha}) \right|.$$

D'après les lemmes 5.2.2.2 et 5.2.2.3, pour démontrer qu'il existe un ouvert causal Ω_1 sur lequel Θ diminue les distances dans \mathcal{F} , il suffit de déterminer des constantes C', M' $_{\Omega}$ et X telles que :

$$\begin{cases} 0 < u < M_0' \\ u \le cs_0 \implies Ku |Logu| < 1 \\ c \le C' \end{cases}$$

ou:

$$\begin{cases} 0 < u < M_0' \\ u > cs_0 \implies K.x_0^0 < 1 & \text{(ii)} \\ x_0^0 < X \end{cases}$$

. Il est évident qu'on peut trouver une constante M'o telle que :

$$0 < u < M_0' \Rightarrow u |Logu| < \frac{1}{K}$$

Le lemme 6.1.3.1 montre qu'on peut choisir :

$$\begin{cases} C' = C_4 \\ X = Min(M'', M'_0, \frac{1}{K}) \end{cases}$$

Pour que Θ diminue la distance, il suffit que l'ouvert Ω_1 soit contenu dans le domaine défini par:

$$\begin{array}{ll} \text{(****)} & \begin{cases} 0 \leq u \leq M_0^{'} & \\ u \leq cs_0 & \text{ou} \\ C \leq C_4 & \end{cases} & \begin{cases} 0 \leq u \leq M_0^{'} \\ u > cs_0 \\ x_0^0 < X \end{cases}$$

Et comme on peut trouver une constante M telle que :

$$u \leq M \Rightarrow (****),$$

alors le lemme 5.2.2.2 permet de déterminer Ω_1 sur lequel Θ est une contraction, achevant ainsi la démonstration du lemme.

Conclusion.

Fetant un espace métrique complet, les lemmes (6.1.3.1 \rightarrow 3) achèvent la démonstration du théorème 6.1.3

6.2 SOLUTION DU PROBLEME DE CAUCHY AU SENS DES DISTRIBUTIONS

Dans ce paragraphe, la solution élémentaire utilisée dans $[B_1]$ nous permettra de montrer que la solution de l'équation intégrale (\mathcal{E}) (§6.1.1) est solution du problème de Cauchy (6.0) au sens des distributions.

- On définit, dans la première partie, le problème de Cauchy en termes de distributions dans le cas où l'hypersurface initiale est d'abord spatiale et ensuite un demiconoïde caractéristique.
- En appliquant un résultat obtenu dans $[B_1]$ nous montrons, dans la deuxième partie, que la solution de l'équation intégrale (\mathcal{E}) est la solution au sens des distributions du problème de Cauchy semi-linéaire (6.0).

6.2.1 Traduction du problème de Cauchy linéaire en termes de distributions.

A) Données sur une hypersurface spatiale.

Considérons le problème de Cauchy suivant:

(6.2.1.1)
$$\begin{cases} (F): A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + B^{\lambda}(x^{\alpha})D_{\lambda}v + f(x^{\alpha}) = 0, & \text{dans } \Omega. \\ v|_{\mathcal{S}} = \varphi(x^{i}) \\ \frac{\partial v}{\partial x^{0}}|_{\mathcal{S}} = \chi(x^{i}) \end{cases}$$

où :

(I)
$$\begin{cases} \circ \ L = A^{\lambda\mu}(x^\alpha)D_{\lambda\mu}, \ A^{\lambda\mu}, \ B^\lambda, \ f, \ \hbar \ \ \ \text{et} \ \chi \ \text{satisfont} \\ \text{aux hypothèses} \ (H_1) \ \text{du paragraphe 1.4, chapitre 1.} \\ \circ \ \Omega \ \text{est un ouvert de IR}^4 \ \text{contenant} \ \hbar, \ \text{et partagé par} \ \hbar \ \text{en deux parties} : \\ \Omega^+ = \left\{ (x^\alpha) \in \Omega; x^0 > \varphi(x^i) \right\} \\ \Omega^- = \left\{ (x^\alpha) \in \Omega; x^0 < \varphi(x^i) \right\} \\ x^0 = \varphi(x^i) \ \text{étant l'équation de } \hbar.$$

En considérant l'opérateur linéaire A sur les distributions v sur Ω , défini par :

$$Av = A^{\lambda\mu} \frac{\partial^2 v}{\partial x^{\lambda} \partial x^{\mu}} + B^{\lambda} \frac{\partial v}{\partial x^{\lambda}}$$

on a démontré dans [B₁] le lemme suivant :

Lemme 1.

- * Si les conditions (1) sont satisfaites;
- * Si v est deux fois différentiable sur Ω^+ ;
- * Si v et ses dérivées premières sont continues sur &
- * Si les dérivées secondes de v sont sommables;
- * Si v est nulle sur Ω :

alors on a:

$$(6.2.1.2): Av = \overline{Av} + T.$$

оù

$$- \overline{Av} = \begin{cases} Av & \text{dans } \Omega^+ \\ 0 & \text{ailleurs.} \end{cases}$$

- T'est une distribution, de support Adéfinie par :

 $\forall g \in \mathcal{P}^2(\Omega); (\mathcal{P}^k(\Omega)) = \text{espace des fonctions k fois dérivables et à support compact dans } \Omega).$

(6.2.1.3):
$$\langle T, g \rangle = \iiint_{\delta: x^0 = \phi(x^i)} dx^1 dx^2 dx^3 \left\{ g \left[\left(-\frac{\partial F}{\partial x^0} + B^0 + A^{ij} \frac{\partial q_i}{\partial x^j} + B^i q_i \right) \varphi + F(q_i) \cdot \chi + 2 \left(A^{0i} + A^{ij} q_j \right) \frac{\partial \varphi}{\partial x^i} \right] - \frac{\partial g}{\partial x^0} F(q_i) \varphi \right\}$$

avec
$$\begin{cases} q_i = -\frac{\partial \phi}{\partial x^i} \\ F(q_i) = A^{00} + 2A^{0i}q_i + A^{ij}q_iq_j \end{cases}$$

De ce lemme, le problème de Cauchy ordinaire en termes de distributions se pose ainsi :

- Trouver une distribution $v \in \mathcal{B}'(\Omega)$ telle que :

$$Av = -\overline{f} + T$$
, avec support de $v \subset \Omega^+$, car $\overline{Av} = -\overline{f}$

B) Données sur un demi-conoïde caractéristique.

Le problème de Cauchy est le suivant : $(6.2.1.4) \begin{cases} (F): A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + B^{\lambda}(x^{\alpha})\frac{\partial v}{\partial x^{\lambda}} + f(x^{\alpha}) = 0, & \text{dans } \Omega. \\ v|_{C_0} = \varphi(x^i) \end{cases}$

On a démontré le lemme suivant dans [B₁]:

Lemme 1 (bis).

- Si L, $A^{\lambda\mu}$, B^{λ} , f, et φ satisfont aux hypothèses (H₂) du §2.1 du chapitre 2;
- Si v satisfait, sauf en O, aux hypothèses du lemme 1;

alors, on a :

(6.2.1.5):
$$Av = \overline{Av} + T$$
, avec $\overline{Av} = \begin{cases} Av = -f, \text{ dans } \Omega \\ 0 \text{ ailleurs.} \end{cases}$

où:

 $\forall g \in \mathcal{S}^2(\Omega)$, T est donnée par :

$$(6.2.1.6): \quad \langle T, g \rangle = \iiint_{\mathcal{C}_0; x^0 = \phi(x^i)} dx^1 dx^2 dx^3 g \left[\left(-\frac{\partial F}{\partial x^0} + B^0 + A^{ij} \frac{\partial q_i}{\partial x^j} + B^i q_i \right) \varphi + 2 \left(A^{0i} + A^{ij} q_j \right) \frac{\partial \varphi}{\partial x^i} \right]$$

En effet, sur \mathcal{C}_0 : $F(q_i) = A^{00} + 2A^{0i}q_i + q_iq_j = 0$, par conséquent, (6.2.1.3) donne (6.2.1.6).

C) Solution au sens des distributions du problème de Cauchy linéaire sur un demi-conoïde caractéristique.

Si les hypothèses du lemme 1 (bis) sont satisfaites, on peut appliquer la proposition (2.1.3.1) au problème de Cauchy linéaire (6.2.1.4) et on obtient l'équation intégrale linéaire :

$$(\mathcal{F}): 4\pi \mathbf{v}(\mathbf{x}_0^{\alpha}) = \int_0^{2\pi} d\lambda_3 \int_0^{\pi} \sin\lambda_2 d\lambda_2 \int_0^{\psi(\mathbf{x}_0^{\alpha}, \lambda_h)} d\lambda_1 \Delta([\nu]L + \Sigma|f|) + \int_0^{2\pi} d\lambda_3 \int_0^{\pi} d\lambda_2 \vartheta(\mathbf{x}_0^{\alpha}, \lambda_h)$$

où :

$$\Sigma = \sigma \omega \text{ et } L = \frac{\partial^2 \left(\begin{bmatrix} \star^{ij} \\ A \end{bmatrix} \Sigma \right)}{\partial y^i \partial y^j} - \frac{\partial \left(\begin{bmatrix} \star^{ij} \\ B \end{bmatrix} \Sigma \right)}{\partial y^i},$$

$$\sigma = -\frac{1}{\sqrt{|\Delta|}},$$

$$\omega = 1 + \int_0^{\lambda_1} P \omega d\lambda_1 \text{ et } P = -\frac{1}{2} \left[p_j \frac{\partial \begin{bmatrix} * \\ A^{ij} \end{bmatrix}}{\partial y^i} + \frac{\partial \begin{bmatrix} * \\ A^{0i} \end{bmatrix}}{\partial y^i} \right] + \frac{1}{2} \left[p_i \begin{bmatrix} * \\ B^i \end{bmatrix} + \begin{bmatrix} * \\ B^0 \end{bmatrix} \right].$$

$$\vartheta = E^i \left(\Delta_i^1 - \frac{\partial \psi}{\partial \lambda_h} \Delta_i^h \right), \text{ avec } :$$

$$E^{i} = -\frac{\partial \left(\left[\stackrel{*}{A}^{ij} \right] \Sigma \right)}{\partial y^{i}} \stackrel{*}{\varphi} + \left[\stackrel{*}{A}^{ij} \right] \Sigma \frac{\partial \varphi}{\partial y^{i}} + \Sigma \left[\stackrel{*}{B}^{i} \right] \stackrel{*}{\varphi}$$

En utilisant la solution élémentaire construite au chapitre 6, page 142, F. CAGNAC a démontré dans [B₁], le lemme suivant :

Lemme 2.

Si: - les $A^{\lambda\mu}$ sont de classe C^4 sur Ω

- les B sont de classe C^2 sur Ω

-
$$f(x^{\alpha})$$
 est de classe C^0 sur Ω
- $\varphi = \tilde{v}|_{\mathcal{C}_0}$ où \tilde{v} est de classe C^2 sur Ω ,

alors:

la solution v de l'équation intégrale (&) vérifie au sens des distributions, l'égalité :

$$(6.2.1.7)$$
 $Av+f=T$, $où$:

$$A = A^{\lambda \mu} D_{\lambda \mu} + B^{\lambda} D_{\lambda}$$

6.2.2 Application au problème de Cauchy semi-linéaire

Considérons le problème de Cauchy suivant :

(6.0)
$$\begin{cases} (E): A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + f(x^{\alpha},v) = 0, & \text{dans } \Omega \\ v|_{\mathcal{E}_0} = \varphi(x^i) \end{cases}$$

Sous les hypothèses du théorème 6.0, on a montré au §6.1.1, que toute solution $v \in B^2(\Omega)$ de (6.0) vérifie l'équation intégrale (8) du §6.1.1.

Le théorème 6.1.3 a permis de déterminer un ouvert causal Ω_1 , dans lequel l'équation intégrale (&) admet une solution unique continue et bornée.

Soit A l'opérateur linéaire, sur les distributions v, sur Ω_1 , défini par :

$$Av = A^{\lambda\mu} \frac{\partial^2 v}{\partial x^{\lambda} \partial x^{\mu}},$$

alors on a le lemme suivant, dont la preuve achèvera la démonstration du théorème 6.0.

Lemme 3.

Si les hypothèses du théorème 6.0 sont satisfaites, alors : la solution v de l'équation intégrale (f vérifie au sens des distributions sur Ω_1 ,

l'égalité (6.2.3.1)
$$Av+G=T$$
;

où:

- G est la distribution sur Ω_1 définie par : $G(x^{\alpha}) = f(x^{\alpha}, v(x^{\alpha}))$
- T est la distribution de sup port \mathcal{C}_0 définie par $\forall g \in \mathcal{B}^2(\Omega_1)$

$$\begin{cases} < T, g > = \iiint\limits_{\theta_0: x^0 = \phi(x^i)} dx^1 dx^2 dx^3 g \left[\left(-\frac{\partial F}{\partial x^0} + A^{ij} \frac{\partial q_i}{\partial x^j} \right) \varphi + 2 \left(A^{0i} + A^{ij} q_j \right) \frac{\partial \varphi}{\partial x^i} \right] \\ carici, \ B^{\lambda} = 0. \end{cases}$$

Preuve.

En effet, si les hypothèses citées sont satisfaites, alors :

- v est continue et bornée, il en sera de même de $G(x^{\alpha}) = f(x^{\alpha}, v(x^{\alpha}))$ (hypothèse sur f). Par conséquent, nous pouvons appliquer au problème de Cauchy:

(6.0')
$$\begin{cases} A^{\lambda\mu}(x^{\alpha})D_{\lambda\mu}v + G(x^{\alpha}) = 0 \\ v|_{C_0} = \varphi(x^i) \end{cases}$$

la conclusion du lemme 2 ; ce qui achève la démonstration du lemme 3, et donc du théorème 6.0. Δ

BIBLIOGRAPHIE

- [1] F. CAGNAC: Thèse de doctorat d'Etat, Paris VI (1973).
- [2] F. CAGNAC: Annali di Matematica pura ed applicata (IV), vol. CIV, pp.355-393 (1975).
- [3] F. CAGNAC : Problème de Cauchy sur un conoïde caractéristique : solution en série formelle et détermination des dérivées successives sur le conoïde : Pre print 1992.
- [4] F. CAGNAC: Annali di Matematica pura ed applicata (IV), vol. CXXIX pp.13-41 (1980).
- [5] Y. CHOQUET-BRUHAT: Acta mathematica, 88 (1952) pp. 145-177.
- [6] M.C. DOSSA: Problème de Cauchy hyperbolique pour des équations non linéaires. Thèse de doctorat d'Etat, Yaoundé 1992.
- [7] H. CARTAN: Calcul différentiel, Hermann (1977).

ERRATA

Page 3: Chapitre 1 à la page 11 au lieu de 12

1.1 Conoïdes caractétristiques à la page 12 aulieu de 13

Page 5: [B6]⁽¹⁾ (1) Voir Bibliographie

Page 7: Nommer le système (I₂) équation dans l'accolade

Page 12: Partie A aulieu de page 12

Pages 18 à 39: Lire ψ aulieu de Ψ

Page 23 ligne 8: remplacer q par q_i

ligne 11, remplacer Φ par φ.

Page 24: à la place de (1.4.1.8) lire

$$(1.4.1.8): \vartheta_{s} = \frac{\Delta}{\frac{\partial \mathcal{F}}{\partial \lambda_{1}}} \left\{ \begin{pmatrix} * \\ q_{i} - p_{i} \end{pmatrix} \left[\begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \frac{\partial \phi_{r}}{\partial y^{j}} - \phi_{r} \frac{\partial \left[\begin{bmatrix} *^{ij} \\ A \end{bmatrix} \sigma_{s}^{r} \right]}{\partial y^{j}} + \sigma_{s}^{t} \left[\begin{bmatrix} *^{ir} \\ B_{t} \end{bmatrix} \phi_{r} \right] + \mathcal{L}(y^{\lambda}, q_{i}) \chi_{r} \right\}$$

Page 27: Lemme 1.5.1 remplacer $\frac{\Delta}{\lambda_1}$ par $\frac{\Delta}{\lambda_1^2}$

Page 40: Ligne 12 lire: donc de majorer $\vartheta_s(x_0^{\alpha}, \lambda_h)$

Ligne 14 lire pour pouvoir majorer $\mathcal{J}_s(x_0^{\alpha}, \lambda_h)$

Page 41: Avant dernière ligne: lire pour terminer l'étude de S_o(M_o)

Page 78: Ligne 9 dans l'expression de $E(\hat{\omega}, \omega, \widetilde{\omega})$ lire E_{3r}^{ih}

Page 88: ii) Lire $0 > \zeta^3 > -ls_o$

Page 96: (*) et suite, remplacer X(c) par $\chi(c)$

Page 101: Lemme 1: lire \overline{Av} au lieu de $\widetilde{A}v$