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Abstract

In this talk we present some global properties of cosmological solutions
of the surface-symmetric Einstein equations coupled to collisionless and
charged matter described by the Vlasov and Maxwell equations. This
involves two issues which are the existence of a global time coordinate t
and the asymptotic behaviour of the solution at late times. For details
concerning the proof of results stated in the following we refer to [1] and
references therein.

1 Cosmological models with kinetic matter

The purpose of kinetic theory is to model the evolution of a collection of parti-
cles.

In cosmology the particles in the kinetic description are galaxies or even
cluster of galaxies.

Cosmological spacetimes are those possessing a compact Cauchy hypersur-
face and data are given on a compact 3-manifold.

In kinetic theory the model is statistical and the particle system is described
by a distribution function f = f(t, x, p) which represents the density of particles
at time t in the position x with momentum p.

2 The Einstein-Vlasov-Maxwell system

We consider a self-gravitating collisionless gas and suppose that:
- there are two species of charged particles, one of positive charge +1 and

the other of negative charge −1
- all the particles have the same rest mass m = 1, and the 4-momentum of

each particle is a future-pointing unit timelike vector.
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Thus the number densities f+ and f− for positive and negative charge
species respectively, are non-negative functions supported on the mass shell

PM := {gαβpαpβ = −1, p0 > 0},

a submanifold of the tangent bundle TM of the space-time manifold M with
metric g of signature −+ ++.

On PM , p0 =
√
−g00

√
1 + gabpapb.

We use coordinates (t, xa) with zero shift and corresponding canonical mo-
menta pα ; Greek indices always run from 0 to 3, and Latin ones from 1 to 3.
The Einstein-Vlasov-Maxwell system reads as follows

Gαβ + Λgαβ = 8π(Tαβ + ταβ) (1)

∂tf
+ +

pa

p0
∂xaf+ − 1

p0
(Γa

βγpβpγ + Fβ
apβ)∂paf+ = 0 (2)

∂tf
− +

pa

p0
∂xaf− − 1

p0
(Γa

βγpβpγ − Fβ
apβ)∂paf− = 0 (3)

∇αFβγ +∇βFγα +∇γFαβ = 0 (4)

∇αFαβ = Jβ (5)

Tαβ = −
∫

R3
(f+ + f−)pαpβ |g|1/2 dp1dp2dp3

p0
(6)

ταβ = FαγFβ
γ − gαβ

4
F γδFγδ (7)

Jβ =
∫

R3
(f+ − f−)pβ |g|1/2 dp1dp2dp3

p0
(8)

where |g| is the determinant of the metric g, Gαβ the Einstein tensor, Λ the
cosmological constant, Fαβ the electromagnetic field created by the charged
particles, Jβ the total particle current density generated by the charged particles
and Tαβ and ταβ the energy-momentum tensor for Vlasov and Maxwell matter
respectively.
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3 Some matter properties

- A computation in normal coordinates shows that ∇αJα = 0. This is an
expression of the conservation of charge.

- It is known that Tαβ satisfies the dominant energy condition i.e. TαβV αW β ≥
0 for any two future-pointing timelike vectors V α and Wα.

Let us show that the same is true for the Maxwell tensor ταβ .
Proving this is equivalent to show the weak-energy condition ταβV αV β ≥

0 for all timelike vector V α, together with the property that ταβV β is non-
spacelike for any future-pointing timelike vector V α.

The proof of the latter can be deduced from the following identities which
hold since F is antisymmetric :

ταντν
β =

1
4
(τγδτγδ)gαβ , ταβταβ ≥ 0

Contracting the first of these identities twice with V α implies the following,
using the second identity and the fact that V α is timelike :

(V αταν)(τν
β V β) =

1
4
(τγδτγδ)gαβV αV β ≤ 0

and setting Pν = V αταν , this means that PαPα ≤ 0, that is Pα is non-spacelike
as desired.

Now proving the weak-energy condition is equivalent to show that τ00 is
non-negative since we can choose an orthonormal frame such that V α is the
timelike vector of the frame.

In such a frame g00 = −1 so that

τ00 =
1
2
gabF0aF0b +

1
4
F abFab ≥ 0

as the sum of spatial lengths of a vector and a tensor respectively.

4 Surface symmetry and time coordinates

Spacetime M = R × S1 × F , with F a two-dimensional compact manifold (let
F̃ be the covering manifold of F ).

Areal coordinates :

ds2 = −e2µ(t,r)dt2 + e2λ(t,r)dr2 + t2(dθ2 + sin2
k θdϕ2)

where r ∈ [0, 1], and the functions µ and λ are periodic in r with period 1
- plane symmetry (k = 0) : F = T 2 and G = E2 acts isometrically on

F̃ = R2, sink θ = 1, (θ, ϕ) ∈ [0, 2π]× [0, 2π]
- spherical symmetry (k = 1) : F = S2 and G = SO(3) acts isometrically

and without fixed points on S1 × S2, sink θ = sin θ, (θ, ϕ) ∈ [0, π]× [0, 2π]
- hyperbolic symmetry (k = −1) : F̃ = H2/Γ with Γ a discrete group of

isometries of H2, sink θ = sinh θ, (θ, ϕ) ∈ [0,∞)× [0, 2π].
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Symmetry leads to some simplifications

Due to symmetry f+ and f− can be written as functions of

t, r, w := eλp1, L := t4(p2)2 + t4 sin2
k θ(p3)2,

with r, w ∈ R; L ∈ [0,+∞).

In surface symmetry the only non-zero components of F are F01 and F23.
Indeed setting h := g+e0⊗e0−e1⊗e1, with e0 = e−µ ∂

∂t and e1 = e−λ ∂
∂r , the

mapping Xβ 7→ hβ
αXα is the orthogonal projection on the tangent space of the

orbit, and since the vector Yσ := Fαβ(e0)αhβ
σ is invariant under the symmetry

group, it vanishes. This implies that F02 = F03 = 0. Similarly, replacing e0 by
e1 in the expression of Yσ yields F12 = F13 = 0.

5 The coupled EVM system in surface symme-
try

The hypotheses above are used to write down the equations in surface symmetry:

∂tf
++

eµ−λw√
1 + w2 + L/t2

∂rf
+

− (λ̇w + eµ−λµ′
√

1 + w2 + L/t2 − eλ+µE)∂wf+ = 0 (9)

∂tf
−+

eµ−λw√
1 + w2 + L/t2

∂rf
−

− (λ̇w + eµ−λµ′
√

1 + w2 + L/t2 + eλ+µE)∂wf− = 0 (10)

e−2µ(2tλ̇ + 1) + k − Λt2 = 8πt2ρ (11)

e−2µ(2tµ̇− 1)− k + Λt2 = 8πt2p (12)

µ′ = −4πteλ+µj (13)

e−2λ (µ′′ + µ′(µ′ − λ′))− e−2µ

(
λ̈ + (λ̇− µ̇)(λ̇ +

1
t
)
)

+ Λ = 4πq (14)

∂r(t2eλE) = t2eλa (15)

∂t(t2eλE) = −t2eµb (16)
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Matter quantities

ρ(t, r) :=
π

t2

∫ ∞

−∞

∫ ∞

0

√
1 + w2 + L/t2(f+ + f−)(t, r, w, L)dLdw

+
1
2
(e2λE2 + ct−4) = e−2µ(T00 + τ00)(t, r), (17)

p(t, r) :=
π

t2

∫ ∞

−∞

∫ ∞

0

w2√
1 + w2 + L/t2

(f+ + f−)(t, r, w, L)dLdw

− 1
2
(e2λE2 + ct−4) = e−2λ(T11 + τ11)(t, r), (18)

j(t, r) :=
π

t2

∫ ∞

−∞

∫ ∞

0

w(f+ + f−)(t, r, w, L)dLdw = −eλ+µT01(t, r), (19)

q(t, r) :=
π

t4

∫ ∞

−∞

∫ ∞

0

L√
1 + w2 + L/t2

(f+ + f−)(t, r, w, L)dLdw

+ (e2λE2 + ct−4) =
2
t2

(T22 + τ22)(t, r), (20)

a(t, r) :=
π

t2

∫ ∞

−∞

∫ ∞

0

(f+ − f−)(t, r, w, L)dLdw, (21)

b(t, r) :=
π

t2

∫ ∞

−∞

∫ ∞

0

w√
1 + w2 + L/t2

(f+ − f−)(t, r, w, L)dLdw. (22)

6 Initial data, regularity of solutions

Initial data are prescribed at some time t = t0 > 0,

f+(t0, r, w, L) =
◦

f+(r, w, L), f−(t0, r, w, L) =
◦

f−(r, w, L),

λ(t0, r) =
◦
λ(r), µ(t0, r) =

◦
µ(r), E(t0, r) =

◦
E(r)

and we study the existence and behaviour of the corresponding solution for
t ∈ [t0,+∞).

A solution (f+, f−, λ, µ,E) is being said to be regular if f± ∈ C1(I × R2 ×
[0,∞[), f± ≥ 0, suppf±(t, r, ., .) is compact, uniformly in r and locally uniformly
in t, the functions λ, λ̇, µ, µ′, E are in C1(I ×R), and f±, λ, µ,E are periodic in
r with period 1.

7 Some remarks

- If the subsystem (9)-(12), (16) is satisfied as well as equations (13) and (15)
for t = t0 then (13)-(15) hold for all t.

It is then enough to concentrate on the subsystem (9)-(12), (16).
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On the other hand equations (13) and (15) are being considered as constraint
equations on initial data (at t = t0).

- To solve the Maxwell constraint equation (15) (for t = t0) we need to

impose the following condition, because (e
◦
λ
◦
E)(r) is periodic in r with period 1∫ 1

0

∫ ∞

−∞

∫ ∞

0

e
◦
λ(

◦
f+ −

◦
f−)(r, w, L)dLdwdr = 0,

This is the reason why it is necessary to consider a model with more than

one species of particles, otherwise the integral
∫ 1

0

∫∞
−∞

∫∞
0

e
◦
λ
◦
f(r, w, L)dLdwdr

would never vanish, except if
◦
f is identically zero.

8 Local existence theorem

An iterative scheme is used to prove the following

Theorem 1 Let
◦

f± ∈ C1(R2 × [0,∞[) with
◦

f±(r + 1, w, L) =
◦

f±(r, w, L) for

(r, w, L) ∈ R2 × [0,∞[,
◦

f± ≥ 0, and w0 := w+
0 + w−0 , L0 := L+

0 + L−0 with

w±0 := sup{|w||(r, w, L) ∈ supp
◦

f±} < ∞

L±0 := sup{F |(r, w, L) ∈ supp
◦

f±} < ∞

Let
◦
λ,

◦
E ∈ C1(R),

◦
µ ∈ C2(R) with

◦
λ(r) =

◦
λ(r + 1),

◦
µ(r) =

◦
µ(r + 1),

◦
E(r) =

◦
E(r + 1) for r ∈ R, and

◦
µ
′
(r) = −4π2

t0
e
◦
λ+

◦
µ

∫ ∞

−∞

∫ ∞

0

w(
◦

f+ +
◦

f−)(r, w, L)dLdw, r ∈ R,

∂r(t20e
◦
λ
◦
E) = πe

◦
λ

∫ ∞

−∞

∫ ∞

0

(
◦

f+ −
◦

f−)(r, w, L)dLdw, r ∈ R.

Then there exists a unique, right maximal, regular solution (f+, f−, λ, µ,E)

of (9)-(16) with (f+, f−, λ, µ,E)(t0) = (
◦

f+,
◦

f−,
◦
λ,

◦
µ,

◦
E) on a time interval

[t0, Tmax[ with Tmax ∈]t0,∞].

9 Continuation criteria and global existence to
the future

Proposition 1 Let (f+, f−, λ, µ,E) be a right maximal regular solution ob-
tained in the local existence theorem. If
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sup{|w||(r, w, L) ∈ suppf+}, sup{|w||(r, w, L) ∈ suppf−}, sup{µ(t, r)|r ∈
R, t ∈ [t0, Tmax[}, and sup{(eλE)(t, r)|r ∈ R, t ∈ [t0, Tmax[} are finite then
Tmax = ∞.

Actually it can be proven that the boundedness of µ implies the other con-
ditions in the latter proposition. It is therefore enough to obtain a bound on µ
in order to show that the solution can be extended on the whole time interval
[t0,∞). This follows from a series of estimates that we do not present here. We
can thus state:

Theorem 2 For initial data as in the local existence theorem with t20 > 1/Λ in
the case of spherical symmetry, the solution of the surface-symmetric Einstein-
Vlasov-Maxwell system with positive cosmological constant, written in areal co-
ordinates, exist for all t ∈ [t0,∞[ where t denotes the area radius of the surfaces
of symmetry of the induced spacetime.

10 Spatially homogeneous solutions

These correspond to LRS (locally rotationally symmetric) models of Bianchi
type I and type III and Kantowski-Sachs type for plane, hyperbolic and spherical
symmetry respectively.

- spacetime : a manifold G × I, , I being an open interval and G a simply
connected three-dimensional Lie group.

- metric
ds2 = −dτ2 + gije

i ⊗ ej ,

{ei} is a left invariant frame and {ei} the dual coframe.
- The Einstein constraint equations are

R− kijk
ij + (kijg

ij)2 = 16π(T00 + τ00) + 2Λ (23)

∇ikij = −8πT0j . (24)

- The Einstein evolution equations are

∂tgij = −2kij (25)

∂tkij = Rij+(klmglm)kij − 2kilk
l
j − 8π(Tij + τij)

− 4π(T00 + τ00) + 4π(Tlm + τlm)glmgij − Λgij , (26)

- The Vlasov equations are

∂τf+ + [2ki
jv

j−(1 + grsv
rvs)−1/2γi

mnvmvn

− (F0
i + Fj

i v
j

v0
)]∂vif+ = 0 (27)

∂τf− + [2ki
jv

j−(1 + grsv
rvs)−1/2γi

mnvmvn

+ (F0
i + Fj

i v
j

v0
)]∂vif− = 0, (28)
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- The Maxwell equations

Ci
ijF

j0 = J0 (29)

∂τF 0i − (trk)F 0i + Ck
kjF

ji = J i, (30)

where

T00 + τ00 =
∫

(f+ + f−)(τ, v)(1 + grsv
rvs)1/2(det g)1/2dv

+ F0γF0
γ +

1
4
FγδF

γδ (31)

T0i =
∫

(f+ + f−)(τ, v)vi(det g)1/2dv (32)

Tij + τij =
∫

(f+ + f−)(τ, v)vivj(1 + grsv
rvs)−1/2(det g)1/2dv

+ FiγFj
γ − gij

4
FγδF

γδ, (33)

with v := (v1, v2, v3) and dv := dv1dv2dv3.
γi

mn = 1
2gik(−Cl

nkgml + Cl
kmgnl + Cl

mngkl), Ci
jk are the structure constants

of the Lie algebra of G.

J0 =
∫

(f+ − f−)(τ, v)(det g)1/2dv

J i =
∫

(f+ − f−)(τ, v)vi(1 + grsv
rvs)−1/2(det g)1/2dv.

We can prove the following:

Theorem 3 Let f±(0, v) be a nonnegative C1 function with compact support.
Let (gij(0), kij(0), f+(0, v), f−(0, v), F 0i(0)) be an initial data set for the evo-
lution equations (25), (26), the Vlasov equations (27), (28) and the Maxwell
equation (30), which has Bianchi symmetry and satisfies the constraint equa-
tions (23), (24), and (29). Then the corresponding solution of the Einstein-
Vlasov-Maxwell system is a future complete spacetime for causal trajectories.

11 Completeness in the inhomogeneous case

A bootstrap argument is used to prove the major part of the following:

Theorem 4 Consider any solution of Einstein-Vlasov-Maxwell system with pos-
itive cosmological constant in surface symmetry written in areal coordinates,
with initial data as in the global existence theorem. Let δ be a positive constant
and suppose the following inequalities hold:

|t0λ̇(t0)− 1| ≤ δ, |(e−λµ′)(t0)| ≤ δ, |(eλE)(t0)| ≤ δ (34)

|Λt20e
2µ(t0) − 3− 3ke2µ(t0)| ≤ δ, w̄(t0) ≤ δ, c ≤ δ, (35)
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where w̄(t) denotes the maximum of w over the support of f+(t) or f−(t). Then
if δ is sufficiently small, the following properties hold at late times:

tλ̇− 1 = O(t−2), e−λµ′ = O(t−2), eλE = O(t−2), (36)

Λt2e2µ − 3− 3ke2µ = O(t−3), w̄ = O(t−1). (37)

Furthermore the spacetime is future complete for causal trajectories.
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