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Abstract

In this talk we present some global properties of cosmological solutions
of the surface-symmetric Einstein equations coupled to collisionless and
charged matter described by the Vlasov and Maxwell equations. This
involves two issues which are the existence of a global time coordinate ¢
and the asymptotic behaviour of the solution at late times. For details
concerning the proof of results stated in the following we refer to [1] and
references therein.

1 Cosmological models with kinetic matter

The purpose of kinetic theory is to model the evolution of a collection of parti-
cles.

In cosmology the particles in the kinetic description are galaxies or even
cluster of galaxies.

Cosmological spacetimes are those possessing a compact Cauchy hypersur-
face and data are given on a compact 3-manifold.

In kinetic theory the model is statistical and the particle system is described
by a distribution function f = f(t,z,p) which represents the density of particles
at time ¢ in the position x with momentum p.

2 The Einstein-Vlasov-Maxwell system

We consider a self-gravitating collisionless gas and suppose that:

- there are two species of charged particles, one of positive charge +1 and
the other of negative charge —1

- all the particles have the same rest mass m = 1, and the 4-momentum of
each particle is a future-pointing unit timelike vector.



Thus the number densities f+ and f~ for positive and negative charge
species respectively, are non-negative functions supported on the mass shell

PM = {gasp®p’ = -1, p° > 0},

a submanifold of the tangent bundle T'M of the space-time manifold M with
metric g of signature — + ++.

On PM, p° = \/=g%\/1 + garp®p".

We use coordinates (t,z®) with zero shift and corresponding canonical mo-
menta p® ; Greek indices always run from 0 to 3, and Latin ones from 1 to 3.
The Einstein-Vlasov-Maxwell system reads as follows
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where |g| is the determinant of the metric g, Gos the Einstein tensor, A the
cosmological constant, F,,3 the electromagnetic field created by the charged
particles, J? the total particle current density generated by the charged particles
and T, 3 and 7,3 the energy-momentum tensor for Vlasov and Maxwell matter
respectively.



3 Some matter properties

- A computation in normal coordinates shows that V,J¢ = 0. This is an
expression of the conservation of charge.

- It is known that T4 satisfies the dominant energy condition i.e. TogVW# >
0 for any two future-pointing timelike vectors V* and W€.

Let us show that the same is true for the Maxwell tensor 7,3.

Proving this is equivalent to show the weak-energy condition TagV“Vﬂ >
0 for all timelike vector V¢, together with the property that Tagvﬂ is non-
spacelike for any future-pointing timelike vector V.

The proof of the latter can be deduced from the following identities which
hold since F' is antisymmetric :

1
TawTs = 1 (7 75)00p,  TapT? 20

Contracting the first of these identities twice with V¢ implies the following,
using the second identity and the fact that V¢ is timelike :

1
(Vo ra)(75V7) = £ (77 735) 905V V7 <0

and setting P, = V*7,,, this means that P, P* < 0, that is P, is non-spacelike
as desired.

Now proving the weak-energy condition is equivalent to show that 7o is
non-negative since we can choose an orthonormal frame such that V< is the
timelike vector of the frame.

In such a frame ggg = —1 so that

1 1
Too = igabFOaFOb + ZFabFab >0

as the sum of spatial lengths of a vector and a tensor respectively.

4 Surface symmetry and time coordinates

Spacetime M = R x S ! x F, with F a two-dimensional compact manifold (let
F be the covering manifold of F).
Areal coordinates :

ds? = —e2 ) qgp2 4 AT g2 4 t2(df? + sin? dp?)

where r € [0,1], and the functions p and A are periodic in r with period 1

- plane symmetry (k = 0) : F = T? and G = E, acts isometrically on
F =R2? sin, 0 =1, (6, ) € [0,27] x [0, 27]

- spherical symmetry (k = 1) : F = $? and G = SO(3) acts isometrically
and without fixed points on S! x S2, sing 6 = sin @, (6, ¢) € [0, 7] x [0, 27]

- hyperbolic symmetry (k = —1) : F = H?/T with T' a discrete group of
isometries of H?, sing § = sinh 0, (0, ¢) € [0, 00) x [0, 27].



Symmetry leads to some simplifications
Due to symmetry f+ and f~ can be written as functions of
t,rw = e pt, L= t*(p?)% + tsin? 6(p®)?,
with 7, w € R; L € [0, +00).
In surface symmetry the only non-zero components of F' are Fy; and Fas.
Indeed setting h := g+eg®eg—e1®eq, with eg = e*“% and e; = e’A%, the
mapping X” + h2 X is the orthogonal projection on the tangent space of the
orbit, and since the vector Y, := F,3(eo)*h? is invariant under the symmetry

group, it vanishes. This implies that Fys = Fy3 = 0. Similarly, replacing ey by
e1 in the expression of Y, yields Fi3 = Fi3 = 0.

5 The coupled EVM system in surface symme-
try

The hypotheses above are used to write down the equations in surface symmetry:
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Matter quantities
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6 Initial data, regularity of solutions

Initial data are prescribed at some time t =ty > 0,

f+(t0,r,w,L) = fo+(r7w7L)7 f_(t07raw7L) = fo_(rava)7

[e]

Mto,r) = A1), ulto,r) = lr), Blto,r) = B(r)

and we study the existence and behaviour of the corresponding solution for
t € [to, +00).

A solution (fT, f~,\, u, E) is being said to be regular if f* € C1(I x R? x
[0, 00]), f* >0, supp fi(t r, .,.) is compact, uniformly in r and locally uniformly
in ¢, the functions A\, \, 1, it’, E are in C*(I x R), and f*, \, i, E are periodic in
r with period 1.

7 Some remarks

- If the subsystem (9)-(12), (16) is satisfied as well as equations (13) and (15)
for ¢ = to then (13)-(15) hold for all ¢.
It is then enough to concentrate on the subsystem (9)-(12), (16).



On the other hand equations (13) and (15) are being considered as constraint
equations on initial data (at t = tg).
- To solve the Maxwell constraint equation (15) (for ¢ = t;) we need to

impose the following condition, because (e*E)(r) is periodic in r with period 1

[ [ 6 e v =

This is the reason why it is necessary to consider a model with more than
one species of particles, otherwise the integral fol 2 J5 € f(r,w, L)dLdwdr

would never vanish, except if f is identically zero.

8 Local existence theorem

An iterative scheme is used to prove the following

Theorem 1 Let f* € C*(R? x [0,00[) with f¥(r + 1,w,L) = f*(r,w, L) for
(r,w, L) € R? x [0,00[, f¥ >0, and wo := wq +wy, Lo := L§ + Ly with

Sh

wg = sup{|w||(r,w, L) € suppf*} < oo
Lg := sup{F|(r,w, L) € suppf*} < oo

(o)

Let A, E € CY(R), ji € C2(R) with A(r) = A(r + 1), j(r) = p(r + 1), E(r) =
E(r+1) forr €R, and

4 2 o [e%e) 0 o o
p(r)= —Le“‘”/ / w(ft + f7)(r,w, L)dLdw, r € R,
to —o00 J0

8T(t(2)e)‘]05) = 7re)‘/ / (f* — f)(r,w, LYdLdw, r €R.
—o0 J0

Then there exists a unique, right mazimal, reqular solution (f*,f~,\ u, F)

of (9)-(16) with (fT,f7, A\ u, E)(ty) = (f*,fﬂf\,ﬁ,ko?) on a time interval
[to, Tmax[ with Tinax G]to, OO]

9 Continuation criteria and global existence to
the future

Proposition 1 Let (f*,f~,\,u, E) be a right marimal regular solution ob-
tained in the local existence theorem. If



sup{|wl||(r,w, L) € suppf*}, sup{|w||(r,w,L) € suppf~}, sup{u(t,r)|r €
R, t € [to, Tonazl}, and sup{(e*E)(t,r)|r € R, t € [to, Tmaz|} are finite then
Tinaz = 00.

Actually it can be proven that the boundedness of ;1 implies the other con-
ditions in the latter proposition. It is therefore enough to obtain a bound on u
in order to show that the solution can be extended on the whole time interval
[to, 00). This follows from a series of estimates that we do not present here. We
can thus state:

Theorem 2 For initial data as in the local existence theorem with t3 > 1/A in
the case of spherical symmetry, the solution of the surface-symmetric Einstein-
Vlasov-Mazxwell system with positive cosmological constant, written in areal co-
ordinates, exist for all t € [tg, 0o[ where t denotes the area radius of the surfaces
of symmetry of the induced spacetime.

10 Spatially homogeneous solutions

These correspond to LRS (locally rotationally symmetric) models of Bianchi
type I and type III and Kantowski-Sachs type for plane, hyperbolic and spherical
symmetry respectively.
- spacetime : a manifold G x I, , I being an open interval and G a simply
connected three-dimensional Lie group.
- metric
ds® = —dr? + gijei ® e,

{e;} is a left invariant frame and {e’} the dual coframe.
- The Einstein constraint equations are

R — k‘ijkij + (k‘ijgij)Q = 167T(T00 + Too) + 2A (23)
Vlku = —87T'T0j. (24)
- The Einstein evolution equations are
Orgij = —2k; (25)
8tkij = Rij—F(klmglm)kij — kalk; — 87T(Tij + Tij)
— 4m(Too + To0) + 47 (Tim + Tim )9 ™ 955 — Agij, (26)
- The Vlasov equations are

—+ 7,9 r s\—1/2 1 m,n
O f7 + [2kjv? —(1 + grsv"v%) 1248 o™y

, o
— (Fy '+ F} 15)]&,7‘, =0 (27)
o-f~ + [Qkévj—(l + grs0"v°) T2 "
, ol a
+ (Fo "+ F; 15)]81,# =0, (28)



- The Maxwell equations
C,F°=J° (29)
O, F% — (trk)F* + Cy, FI* = J°, (30)
where
Too + To0 = /(f+ + 7)1, 0) (1 + grsv™v®) /2 (det g) 2do
+ Fo, Fo 7 + %FW(;F”‘S (31)
Ty = / (F* + £7)(r, v)ui(det ) 2dv (32)
Ty iy = [+ 1) o)1+ g0 o) 2(detg) 2o
+ FFy 0 — %ngF’Y‘S, (33)
with v := (v,0v%,v3) and dv := dvtdv?dv3.

Vinn = 39" (=Clgmi + Chygni + Clyngia), Cjy, are the structure constants
of the Lie algebra of G.

5= [ = £)r o) et o) 2d
Jh= /(f+ — )00 (1 + grsv™0®) "2 (det g) /2 du.

We can prove the following:

Theorem 3 Let f¥(0,v) be a nonnegative C* function with compact support.
Let (gi;(0), ki;(0), f7(0,v), f~(0,v), FY(0)) be an initial data set for the evo-
lution equations (25), (26), the Viasov equations (27), (28) and the Mazwell
equation (30), which has Bianchi symmetry and satisfies the constraint equa-
tions (23), (24), and (29). Then the corresponding solution of the FEinstein-
Viasov-Mazwell system is a future complete spacetime for causal trajectories.

11 Completeness in the inhomogeneous case

A bootstrap argument is used to prove the major part of the following:

Theorem 4 Consider any solution of Einstein-Viasov-Mazwell system with pos-
itive cosmological constant in surface symmetry written in areal coordinates,
with initial data as in the global existence theorem. Let & be a positive constant
and suppose the following inequalities hold:

ltoA(to) — 1] <6, [(e 1) (to)| < 6, [(*E)(to)] <6 (34)

|At2e21(t0) _ 3 _ 3ke1(0)| < 5 w(ty) <0, ¢ <6, (35)



where w(t) denotes the mazimum of w over the support of fT(t) or f~(t). Then
if 0 is sufficiently small, the following properties hold at late times:

tA—1=0(t"2), e M/ =0(t72), S E=0(72), (36)
At?e?t —3 —3ke*" = O(t™?), w =0t ). (37)

Furthermore the spacetime is future complete for causal trajectories.
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