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BIFURCATIONS OF A SECOND ORDER
DIFFERENTIAL EQUATION WITH PERIODIC

COEFFICIENTS

BOULCHARD MEWOLI

Abstract. In this paper, we study the bifurcations for the second

order differential equation
..
x − a0(x) − a1(x)

·
x − a2(x)

·
x

2
= 0,

where ak : R → R are Cr one periodic functions.

1. Introduction

Consider the non linear differential equation

(1)
··
x − a0(x) − a1(x)

·
x − a2(x)

·
x

2
= 0

where ak : R → R are Cr one periodic functions with r ≥ 3. Equation
(1) describes the dynamics of many biological, physical or chemical
phenomena. The most known is the oscillations of a damped pendulum.
One of the problems in connection with this equation is the study of
the bifurcations of its phase portrait. This problem has been studied
by some authors. A. Chenciner [2] also obtained equation (1), with
a1 and a2 constants, to describe the elimination of the resonant form
in a bifurcation problem of a discrete dynamical system. He gives a
description of the phase portrait of the equation. In the case a2 = 0
and a1 constant, Xu Gang and al [9] used a two times scales (t and
τ = a−1

1 t) method to obtain asymptotic solutions of the equation, when
a1 → +∞, in the form

x(t, τ) = A(τ) + B(τ)exp(a1t).

In [6], some structural stability properties of (1) are presented.
In this paper, we analyze the bifurcations of the solutions for equa-

tion (1) as functions ak change. We begin (section 2) by studying two
local bifurcations of equilibrium points of (1), namely the saddle-node
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and the Andronov-Hopf-Poincaré bifurcations. For the last one, we ob-
tain the existence conditions for a homotopic periodic orbit of (1). In
section 3, we study (1) by using techniques of Coll and al. [3] which per-
mit to transform equation (1) to an Abel type equation. The problem
to determine the periodic solutions is equivalent to determine the fixed
points of a Poincaré operator associated with that Abel’s equation. We
prove the existence of periodic orbits of (1) and we give some proper-
ties on the number of these orbits. In connection with the structural
stability problem, the behavior at infinity of the solutions is described
by a compactification technique [6].

The second order scalar differential equation (1) is equivalent to the
2-dimensional system:

·
x = y(2)
·
y = a0(x) + a1(x)y + a2(x)y2

where (x, y) belongs to the cylinder S1× R, with S1 = R/2πZ = [0, 1]
mod.1.

We denote by X the vector field defined on the cylinder S1 × R by

X(x, y) = y
∂

∂x
+

k=2∑
k=0

ak(x)yk ∂

∂y
,

with ak ∈ Cr(R/2πZ), r ≥ 3, the space of Cr real valued functions de-
fined on the circle S1. So we can identify the vector field X with an ele-
ment (a0, a1, a2) of (Cr(R/2πZ))3.

2. Local bifurcations

This section concerns the local bifurcations of (2), i.e. the bifurca-
tions of equilibrium points. We study two types of those bifurcations:
the saddle-node and the Andronov-Hopf-Poincaré bifurcations.

The equilibrium points (singularities) of (2) have to be of the form
(x∗, 0), where x∗ satisfies a0(x∗) = 0, and are located on the circle
S1×{0}. If (x∗, 0) is an equilibrium point of (2), then the eigenvalues of
dX(x∗, 0) are solutions of the characteristic equation

(3) λ2 − a1(x∗)λ − a′
0(x∗) = 0

and are given by the relations
(4)

λ1 =
a1(x∗) −

√
a1(x∗)2 + 4a′

0(x∗)
2

, λ2 =
a1(x∗) +

√
a1(x∗)2 + 4a′

0(x∗)
2

.
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2.1. Saddle-node bifurcation. Let (x∗, 0) be a point of S1× R. On
the neighborhood of x∗, we write

(5) a0(x) =

∞∑
k=0

a0k (x − x∗)
k

where a0k = 1
k!

∂ka0

∂xk (x∗), k ≥ 0.
Let µ ≡ a00, then

(6) a0(x, µ) = µ +
∞∑

k=1

a0k (x − x∗)
k ,

and the system (2) takes the form

(7)

{ ·
x=y

·
y= a0(x, µ) + a1(x)y + a2(x)y2

The point (x∗, 0) is an equilibrium of (2) when µ = 0, and the eigen-
values of dX(x∗, 0) are

(8) λ1 =
a1(x∗) −

√
a2

1(x∗) + 4a01

2
, λ2 =

a1(x∗) +
√

a2
1(x∗) + 4a01

2
.

A saddle-node bifurcation occurs for µ = 0 if

λ1 = 0, λ2 �= 0 and a02 �= 0.

The above conditions are equivalent to

(9) a01 = 0 , a1(x∗) �= 0 and a02 �= 0.

So we deduce the following proposition.

Proposition 1. (Saddle-node bifurcation) The subset S of the func-
tion space (Cr(R/2πZ))3 defined by the conditions (9) is a saddle-node
bifurcation set for the differential system (2).

2.2. Andronov-Hopf-Poincaré bifurcation. Suppose that (0, 0) is
an equilibrium point of (2). An Andronov-Hopf-Poincaré bifurcation
can occur for the differential system (2) when (3) admits two pure
imaginary complex eigenvalues. This is achieved if

(10) a1(0) = 0 and a′
0(0) < 0.

Then the eigenvalues of dX(0, 0) are given by

λ1.2 =
1

2
a1(0) ± iω,

ω2 = −1

4
(a1(0))2 − a′

0(0).
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By choosing

c =
1

2
a1(0)

as the bifurcation parameter for (2), the pulsation ω(c) and the eigen-
values λ1.2 take the form

ω2(c) = −c2 − a′
0(0)(11)

λ1.2(c) = c ± iω(c).

Then the eigenvalues are of the form λ(c∗) = ±iω∗ when c = 0, and we
have

d

dc
Re(λ1,2(c)) = 1 �= 0.

In view of the bifurcation analysis, we use the transformation given by
the eigenvectors corresponding with the eigenvalues λ1.2(c) of dX(0, 0, c),

x = u, y = cu + ω(c)v.

Then we obtain the canonical form of (2):

(12)

⎧⎨⎩
.
u = cu + ω( c)v,

.
v = −ω(c)u + cv +

k+l=3∑
k+l=2

Akl(c)u
kvl + O(‖(u, v)‖4).

where the coefficients Akl(c) are given by the following relations

A20(c) =
1

ω(c)

(
1

2
a

′′
0(0) + a′

1(0)c + a2(0)c2

)
,

A11(c) = a′
1(0) + 2µa2(0),

A02(c) = a2(0)ω,

A30(c) =
1

ω(c)

(
1

6
a

′′′
0 (0) +

1

2
a

′′
1(0)c + a′

2(0)c2

)
(13)

A21(c) =
1

2
a

′′
1(0) +

1

ω(c)
a′

2(0)c2,

A12(c) = a′
2(0)ω(c),

A03(c) = 0.

Using the polar coordinates (r, θ),

(14) u = r cos θ, v = r sin θ,

(12) becomes

(15)

{ ·
r = cr + Ω2(θ, c)r

2 + Ω4(θ, c)r
3 + ...

·
θ = ω(c) + β1(θ, c)r + β2(θ, c)r

2 + ...
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where

(16)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ω2(θ, c) =
∑

k+l=2

Akl(c)cos
kθ sinl+1 θ,

Ω4(θ, c) =
∑

k+l=3

Akl(c)cos
kθ sinl+1 θ,

β1(θ, c) =
∑

k+l=2

Akl(c)cos
k+1θ sinl θ

β2(θ, c) =
∑

k+l=3

Akl(c)cos
k+1θ sinl θ

From (15) and (16), we deduce that, in the region such that

(17)
·
θ = ω(c) + β1(θ, c)r + β2(θ, c)r

2 + ... �= 0,

the differential system (15) is equivalent to the one dimensional equa-
tion

(18)
dr

dθ
=

cr + 1
16

(
a

′′
1(0) + 4a′

2(0)c
)
r3 + R(r, θ)

ω(c) + 3
8ω(c)

(
1
16

a
′′′
0 (0) + 1

2
a”

1(0)c + a′
2(0)c2

)
r2 + Θ(r, θ)

,

where R and Θ are 2π−periodic functions in θ with zero averages.
Since the right hand side of (18) is 2π−periodic in the variable θ,

we can apply the averaging method [5], and we obtain the averaged
equation of (18)

(19)
d
∼
r

dθ
=

1

ω0

(
c + R4(c)

∼
r

2
+ ...

) ∼
r

where

ω0 = ω(0) =
√

−a′
0(0),

R4(c) =
1

16

[
a

′′
1(0) + 4a′

2(0)c + O(c2)
]
.(20)

The averaged equation (19) admits r = 0 as a trivial equilibrium state.
Under the condition

(21) a
′′
1(0) �= 0,

equation (19) has a non zero equilibrium point at order c given by

(22)
∼
r∗ =

√
1∣∣a′′

1(0)
∣∣c1/2 + O(c), if c > 0,

or

(23)
∼
r∗ =

√
1∣∣a′′

1(0)
∣∣(−c)1/2 + O(|c|), if c < 0.
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Then the equation (1) admits a limit cycle of amplitude r � ∼
r∗. The

limit cycle is stable for c > 0 and unstable for c < 0.
The above analysis leads to the following proposition.

Proposition 2. (Andronov-Hopf-Poincaré bifurcation) The subset PH

of the function space (C1(R/2πZ))
3

defined by

PH =
{

(a0, a1, a2) : a0(0) = 0, a′
0(0) < 0, a1(0) = 0 and a

′′
1(0) �= 0

}
is a Andronov-Hopf-Poincaré bifurcation set for the differential system
(2).

Proof. Let (x∗, 0) be an equilibrium point of (2). Without loss of gen-
erality, we suppose x∗ = 0. Then the eigenvalues of dX(0, 0) are purely
imaginary if and only if

a1(0) = 0 and a
′
0(0) < 0.

So the bifurcation conditions are given by

(24) a0(0) = 0, a1(0) = 0, a
′
0(0) < 0 and a

′′

0 (0) < 0,

and the theorem follows from [5].

3. Existence of non-homotopic periodic orbits

In this section, we study the existence problem for non-homotopic
to zero periodic orbits of (2). We recall that a periodic orbit of X is
non-homotopic to zero if it circles the cylinder without intercepting the
x-axis. For such orbits, we define a Poincaré map (first return map),
and we reduce the problem of determining these orbits to the problem
of finding fixed points of the Poincaré map. The stability property
of the solutions is also deduced from that of the fixed points of the
Poincaré map.

3.1. Poincaré map. A non homotopic periodic orbit of (2) is entirely
located either on the half cylinder y > 0, or on the half cylinder y < 0.
In these regions, the differential system (2) is equivalent to the first
order differential equation with periodic coefficients

(25)
dy

dx
=

1

y
(a0(x) + a1(x)y + a2(x)y2).

Since (25) is not defined for y = ∞, we use a compactification Mc of
M∗ = S1 × R

∗ for the study of the orbits of the dynamical system
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(2) at the infinity of the cylinder S1 × R. We defined the coordinate
transformation g : M∗ → M∗, where

g(x, y) = (x,
1

y
) ≡ (x, u),(26)

g(x,∞) = (x, 0).

Under the map g, the points of the infinity of M, i.e. y = ∞, become
the circle C0 = S1 × {0} and the differential equation (25) takes the
form

(27)
du

dx
= −(a2(x)u + a1(x)u2 + a0(x)u3) ≡ F (x, u).

Equation (27) is a particular case of the Abel differential equation. We
shall use it to describe some properties of the bifurcated periodic orbits
of (2).

For any η �= 0, we denote by u(x, η) the solution of (27) such that
u(0, η) = η. Let

Σ+ = {(ξ, η) : ξ = 0 (mod.1), η > 0)}
and

Σ− = {(ξ, η) : ξ = 0 (mod.1), η < 0}
Then Σ± are transversal sections to the vector field X. The elements of
Σ± will be denoted simply by η. We define the Poincaré map P associ-
ated with Σ± by

(28) P (η) =

{
u(1, η), if η > 0;
u(−1, η), if η < 0.

A non homotopic periodic orbit of (2) in the half-cylinder y > 0 (re-
spectively y < 0) corresponds to a solution u(x, η) of the initial value
problem

du

dx
= −(a2(x)u + a1(x)u2 + a0(x)u3),(29)

u(0) = u(1) (respectively u(0) = u(−1)).(30)

This implies that u(x, η) defines a non homotopic periodic orbit if and
only if η is a fixed point of the Poincaré map P, i.e. P (η) = η. The
following lemma gives the expressions for the first three derivatives of
P.
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Lemma 3 (See [3]). For η > 0, the first three derivatives of the
Poincaré map satisfy the following formulae:

P
′
(η) = exp

(∫ 1

0
∂F
∂u

(x, u(x, η))dx
)

, ,

P
′′
(η) = P

′
(η)

∫ 1

0

[
∂2F
∂u2 (x, u(x, η) exp

(∫ x

0
∂F
∂u

(ζ, u(ζ, η))dζ
)]

dx,

P
′′′
(η) = P

′
(η)

[
3
2

(
P

′
(η)

P
”
(η)

)2

− ∫ 1

0

[
6a0(x) exp

(
2
∫ x

0
∂F
∂u

(ζ, u(ζ, η))dζ
)]

dx

]
.

Proof. By differentiating the relation

du

dx
(x, η) = F (x, u(x, η))

with respect to the initial condition η, we obtain the variation equation:

∂u

∂x

(
∂u

∂η
(x, η)

)
=

∂F

∂u
(x, u(x, η))

(
∂u

∂η
(x, η)

)
with initial condition

∂u

∂η
(0, η) = 1.

Then

∂u

∂η
(x, η) = exp

(∫ x

0

∂F

∂u
(ξ, u(ξ, η))dξ

)
,

and the expression for P ′ follows from the relation

P
′
(η) =

∂u

∂η
(1, η).

The formulae for P
′′
(η) and P

′′′
(η) are obtained by successive deriva-

tions of P
′
(η).

Corollary 4. Let u(x, η) be a periodic solution of (27), and γ be the
non-homotopic orbit defined by u(x, η). Then

(31) P
′
(η) = exp (2N(γ)ã2 + T (η)ã1)

where N(γ) = +1 (respectively N(γ) = −1) if x varies from 0 to 1
(respectively x varies from 1 to 0), T (η) is the period of the solution(
x(t, 0), y(t, 1

η
)
)
, and ãi, i = 1, 2, means the average of the periodic

function ai.
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Proof. Let u(x, η) be a periodic solution of (27), with η > 0, then x
varies from 0 to 1. By using Lemma 3, we obtain

P
′
(η) = exp

(∫ 1

0

∂F

∂u
(x, u(x, η))dx

)
= exp

∫ 1

0

− (
a2(x) + 2a1(x)u(x, η) + 3a0(x)u2(x, η)

)
dx.

From the relation

a0(x)u2 = −
[

du

udx
+ a2(x) + a1(x)u

]
,

we deduce that

P
′
(η) = exp

∫ 1

0

(
2a2(x) + a1(x)u(x, η) + 3a0(x)

du

udx
(x, η)

)
dx

= exp (2ã2 + T (η)a1) .

The case where η < 0 follows by similar considerations.

3.2. Bifurcations of non-homotopic orbits. The following theo-
rem gives the behavior of the orbits of (27) at the infinity of Mc, and
describes some bifurcation properties of non-homotopic to zero periodic
orbits of (2).

Theorem 5. Consider the differential system (2) where the functions
ak are one periodic. Then the following properties hold.

(i) C0 is a limit cycle of (27) with characteristic multiplier equal to
exp(−ã2).

(ii) If a1 ≡ 0, then the Poincaré map P undergoes a saddle node
bifurcation at ã0 = ã0c, leading to the existence of two non-
homotopic periodic orbits of (2) located on S1×R

+ and S1×R
−

respectively, symmetric with respect to the circle C0, one stable
and the other unstable.

(iii) If the function a1 is negative on [0, 1], then equation (2) admits
at most three non-homotopic to zero periodic solutions. When
ã1 varies on R

+ or R
−, a stable periodic orbit of (2) never dis-

appears.

Proof. (i) The property follows from the relations

F (x, 0) = 0,

P
′
(0) = exp(

∫ 1

0

∂F

∂u
(x, 0)dx) = exp

(
−

∫ 1

0

a2(x)dx

)
= exp(− ∼

a2)



10 BOULCHARD MEWOLI

(ii) Suppose that a1 ≡ 0. Let ρ = u2, then (27) becomes

(32)
dρ

dx
= −2(a2(x)ρ + a0(x)).

The solution ρ(x; x0, ρ0) of (32) such that ρ(x; x0, ρ0) = ρ0 is
given by the relation :

ρ(x; x0, ρ0) = exp(−2

∫ x

x0

a2(τ)dτ)(33)

×
[
ρ0 −

∫ x

x0

2a0(τ) exp

(
2

∫ τ

x0

a2(ξ)dξ

)
dτ

]
So, the equation of the orbit of (2) issued from the point (x0, y0),
y0 �= 0, is given by the relation

y2(x, x0, y0) = y2
0 exp(2

∫ x

x0

a2(τ)dτ)(34)

×
[
1 − 2y2

0

∫ x

x0

a0(τ) exp(2

∫ τ

x0

a2(ξ)dξ)dτ

]−1

y(x, x0, y0) = y0 exp(

∫ x

x0

a2(τ)dτ)

×
[
1 − 2y2

0

∫ x

x0

a0(τ) exp(2

∫ τ

x0

a2(ξ)dξ)dτ

]−1/2

.

From (34) we deduce that the phase portrait of (2) is symmetric
with respect to the x-axis. Then the non homotopic orbits
appear by couples on S1×R

+ (respectively S1×R
−). A solution

y(x, 0, y0) defines a non homotopic to zero orbit if and only
y(1, 0, y0) = y0. Then y0 must be a solution of the equation

(35)

y0

{
exp(

∼
a2) −

[
1 − 2y2

0 ×
∫ 1

0

a0(ζ) exp(

∫ ζ

0

(−2a2(ξ)dξ)dζ

]1/2
}

= 0

i.e

(36)
(
exp(2

∼
a2) − 1

)
− 2y2

0

∫ 1

0

a0(ζ) exp(

∫ ζ

0

(−2a2(ξ)dξ)dζ = 0.

The equation (36) is a canonical normal form of a saddle node
bifurcation for the Poincaré map and admits two real solutions
if and only if

(37)
(
exp

(∼
a2

)
− 1

)(∫ 1

0

a0(τ) exp(−2

∫ τ

0

a2(ξ)dξ)dτ

)
> 0.
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When the condition (37) is fulfilled, the equation (2) admits
two non-homotopic to zero periodic orbits which are symmetric
with respect to the x-axis, i.e. to C0. The stability property
follows from (31) .

(iii) Let d denote the displacement function defined on the transver-
sal section Σ+ by

d(η) = P (η) − η.

Zeros of d correspond to initial conditions which define periodic
orbits of (2). If a0 < 0, then using lemma 3, we have

d
′′′

= P
′′′

> 0.

The first part of the property (iii) follows from the fact that,
if the third derivative of the displacement function d has the
same sign, then this function admits at most three zeros. For
the second part of the property, the relation (31) implies that
the characteristic multiplier P

′
decreases when ã1 moves from

0 to − ∞. Then if P
′
(η) remains inferior to one as ã1 moves

from 0 to − ∞, a stable orbit cannot disappear.

Remark 6. The proof of statement (ii) of the above theorem also fol-
lows using averaging theory [5].

4. Conclusion

In this paper, we considered a nonlinear second order differential
system on the cylinder S1 × R. Through section 2, we analyzed the
conditions in order to obtain an Andronov-Hopf-Poincaré bifurcation
leading to the existence of a homotopic to zero orbit. Next, in sec-
tion 3, we used a Poincaré operator associated with an Abel’s equation
equivalent to the system for obtain some existence and stability the-
orems for the non homotopic orbits. More considerations on global
homotopic to zero orbits obtained by using a Poincaré operator as for
the non homotopic case are left for further analysis.

Acknowledgement. The author would like to thank the anonymous
referee for his/her suggestions in improving the presentation and the
contents of this paper.
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