IMHOTEP

AFRICAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Imhotep Mathematical Journal Volume 3, Numéro 1, (2018),
 pp. 21-32.

Characterization of some natural transformations between the bundle functors $T^{A} \circ T^{*}$ and $T^{*} \circ T^{A}$ on $\mathcal{M} f_{m}$.
P. M. Kouotchop Wamba
wambapm@yahoo.fr

Alphonse MBA alpmba@yahoo.fr

Department of Mathematics, Higher Teacher Training College of the University of Yaoundé 1, P.O BOX, 47, Yaoundé, Cameroon.

Abstract

In this paper, we characterize some natural transformations between the bundle functors $T^{A} \circ T^{*}$ and $T^{*} \circ T^{A}$ on $\mathcal{M} f_{m}$. In the particular case where $A=J_{0}^{r}(\mathbb{R}, \mathbb{R})$, we determine all natural transformations between the bundle functors $T^{r} \circ T^{*}$ and $T^{*} \circ T^{r}$ on $\mathcal{M} f_{m}$. These lifts of 1-forms are studied with application to the theory of presymplectic structures.

Characterization of some natural transformations between the bundle functors $T^{A} \circ T^{*}$ and $T^{*} \circ T^{A}$ on $\mathcal{M} f_{m}$.

P. M. Kouotchop Wamba and Alphonse MBA

Abstract

In this paper, we characterize some natural transformations between the bundle functors $T^{A} \circ T^{*}$ and $T^{*} \circ T^{A}$ on $\mathcal{M} f_{m}$. In the particular case where $A=J_{0}^{r}(\mathbb{R}, \mathbb{R})$, we determine all natural transformations between the bundle functors $T^{r} \circ T^{*}$ and $T^{*} \circ T^{r}$ on $\mathcal{M} f_{m}$. These lifts of 1 -forms are studied with application to the theory of presymplectic structures.

Mathematics Subject Classification (2010). 58A32, secondary 58A20, 58A10.
Keywords. Weil-Frobenius algebras, Weil functors, symplectic manifolds and natural transformations.

1. Introduction

By $\mathcal{M} f$ we denote the category of all smooth manifolds and all smooth maps and $\mathcal{M} f_{m} \subset \mathcal{M} f$ be the subcategory of m-dimensional manifolds and their local diffeomorphisms. Let A be a Weil algebra; it is a real commutative and finite dimensional algebra with unit, which is of the form $A=\mathbb{R} \cdot 1_{A} \oplus N_{A}$, where N_{A} is the ideal of nilpotent elements of A and $T^{A}: \mathcal{M} f \rightarrow \mathcal{M} f$ be the corresponding Weil functor, [5]. In particular, when A is the space of all r-jets of \mathbb{R}^{k} into \mathbb{R} with source $0 \in \mathbb{R}^{k}$ denoted by $J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)$, the corresponding Weil functor is the functor of k-dimensional velocities of order r and denoted by T_{k}^{r}. For $k=1$, it is called tangent functor of order r and denoted by T^{r}. For any manifold M, we consider each element of $T^{A} M$ in the form of an A-jet $j^{A} \varphi$, where $\varphi \in C^{\infty}\left(\mathbb{R}^{n}, M\right)$ and n the width of A. For a smooth map $f: M \rightarrow N$, the map $T^{A} f \in C^{\infty}\left(T^{A} M, T^{A} N\right)$ is defined by $T^{A} f\left(j^{A} \varphi\right)=j^{A}(f \circ \varphi)$.

Let M be a smooth manifold of dimension $m>0$. For any $r \geq 1$, we consider the collection of canonical pairings (nondegenerates on the fibers)

$$
\langle\cdot, \cdot\rangle_{M}: T M \times_{M} T^{*} M \rightarrow \mathbb{R} \text { and }\langle\cdot, \cdot\rangle_{T^{r} M}^{\prime}=\varsigma_{r}^{1} \circ T^{r}\left(\langle\cdot, \cdot\rangle_{M}\right): T^{r} T M \times_{T^{r} M} T^{r} T^{*} M \rightarrow \mathbb{R}
$$

where ς_{r}^{1} is a linear form on $J_{0}^{r}(\mathbb{R}, \mathbb{R})$ defined by $\varsigma_{r}^{1}\left(j_{0}^{r} \varphi\right)=\left.\frac{1}{r!} \frac{d^{r}}{d t^{r}} \varphi(t)\right|_{t=0}$.
For each manifold M, there is a canonical diffeomorphism (see $[3,5]$)

$$
\kappa_{M}^{r}: T^{r} T M \rightarrow T T^{r} M
$$

which is an isomorphism of vector bundles

$$
T^{r}\left(\pi_{M}\right): T^{r} T M \rightarrow T^{r} M \quad \text { and } \quad \pi_{T M}^{r}: T T^{r} M \rightarrow T^{r} M
$$

such that $T\left(\pi_{M}^{r}\right) \circ \kappa_{M}^{r}=\pi_{T M}^{r}$. Let $\left(x^{1}, \cdots, x^{m}\right)$ be a local coordinate system of M, we introduce the coordinates $\left(x^{i}, \dot{x}^{i}\right)$ in $T M,\left(x^{i}, \dot{x}^{i}, x_{\beta}^{i}, \dot{x}_{\beta}^{i}\right)$ in $T^{r} T M$ and $\left(x^{i}, x_{\beta}^{i}, \dot{x}^{i}, \widetilde{x}_{\beta}^{i}\right)$ in $T T^{r} M$. We have

$$
\kappa_{M}^{r}\left(x^{i}, \dot{x}^{i}, x_{\beta}^{i}, \dot{x}_{\beta}^{i}\right)=\left(x^{i}, x_{\beta}^{i}, \dot{x}^{i}, \widetilde{x}_{\beta}^{i}\right)
$$

with $\widetilde{x}_{\beta}^{i}=\dot{x}_{\beta}^{i}$. On the other hand, there is a canonical diffeomorphism ([2])

$$
\alpha_{M}^{r}: T^{*} T^{r} M \rightarrow T^{r} T^{*} M
$$

which is an isomorphism of vector bundles

$$
\pi_{T^{r} M}^{*}: T^{*} T^{r} M \rightarrow T^{r} M \quad \text { and } \quad T^{r}\left(\pi_{M}^{*}\right): T^{r} T^{*} M \rightarrow T^{r} M
$$

dual of κ_{M}^{r} with respect to pairings $\langle\cdot, \cdot\rangle_{T^{r} M}^{\prime}=\tau_{r} \circ T^{r}\left(\langle\cdot, \cdot\rangle_{M}\right)$ and $\langle\cdot, \cdot\rangle_{T^{r} M}$, i.e. for any $\left(u, u^{*}\right) \in T^{r} T M \oplus T^{*} T^{r} M$,

$$
\left\langle\kappa_{M}^{r}(u), u^{*}\right\rangle_{T^{r} M}=\left\langle u, \alpha_{M}^{r}\left(u^{*}\right)\right\rangle_{T^{r} M}^{\prime}
$$

Let $\left(x^{1}, \cdots, x^{m}\right)$ be a local coordinates system of M, we introduce the coordinates $\left(x^{i}, p_{j}\right)$ in $T^{*} M,\left(x^{i}, p_{j}, x_{\beta}^{i}, p_{j}^{\beta}\right)$ in $T^{r} T^{*} M$ and $\left(x^{i}, x_{\beta}^{i}, \pi_{j}, \pi_{j}^{\beta}\right)$ in $T^{*} T^{r} M$. We have:

$$
\alpha_{M}^{r}\left(x^{i}, \pi_{j}, x_{\beta}^{i}, \pi_{j}^{\beta}\right)=\left(x^{i}, x_{\beta}^{i}, p_{j}, p_{j}^{\beta}\right) \quad \text { with }\left\{\begin{array}{rll}
p_{j} & =\pi_{j}^{r} \\
p_{j}^{\beta} & =\pi_{j}^{r-\beta}
\end{array}\right.
$$

So, α_{M}^{r} establishes a canonical isomorphism between $T^{*} T^{r} M$ and $T^{r} T^{*} M$. It has a fundamental importance in the description of higher order Lagrangian and Hamiltonian formalisms (see [4]). By ε_{M}^{r} we denote the bundle map $\left(\alpha_{M}^{r}\right)^{-1}$. In particular, ε^{r} is a natural transformation between the functors $T^{r} \circ T^{*}$ and $T^{*} \circ T^{r}$ defined on the category $\mathcal{M} f_{m}$. For $r=1, \varepsilon_{M}^{1}$ is called natural isomorphism of Tulczyjew over M. This construction has been generalized in [7] for any Weil-Frobenius algebra defined below. In [9], the authors show that any Weil algebra has a Weil-Frobenius algebra structure if and only if there is a natural equivalence between the bundle functors $T^{A} \circ T^{*}$ and $T^{*} \circ T^{A}$ defined on $\mathcal{M} f_{m}$. The aim of this paper is to characterize all natural transformations $T^{A} \circ T^{*} \rightarrow T^{*} \circ T^{A}$, when A is a Weil algebra and we give some applications to the lifts of 1 -forms. So, the main results of this paper are theorems 2,3 and 4 .

All manifolds and maps are assumed to be infinitely differentiable, we fix one Weil algebra A. For any $g \in C^{\infty}\left(\mathbb{R}^{k}, \mathbb{R}\right)$ and any multiindex $\beta=\left(\beta_{1}, \cdots, \beta_{k}\right)$, we denote by

$$
D_{\beta}(g)(z)=\frac{1}{\beta!} \frac{\partial^{|\beta|} g}{\left(\partial z_{1}\right)^{\beta_{1} \ldots\left(\partial z_{k}\right)^{\beta_{k}}}}(z)
$$

the partial derivative with respect to the multiindex β of g.
2. The natural transformations $T^{A} \circ T^{*} \rightarrow T^{*} \circ T^{A}$.

2.1. Preliminaries

For any $k \geq 2$, we denote by N_{A}^{k} the ideal of A generated by the products of k elements of N_{A}.
Proposition 2.1. There is one and only one natural integer $h \geq 1$ such that, $N_{A}^{h} \neq 0$ and $N_{A}^{h+1}=0$. It is called the height of A.

Proof. See [3, 5].

We put $e_{0}=1_{A}$, for each multiindex $\alpha \neq 0$ the vector $e_{\alpha}=j^{A}\left(x^{\alpha}\right)$ is an element of N_{A}. Therefore, for any $\varphi \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ we have

$$
j^{A} \varphi=\varphi(0) \cdot 1_{A}+\sum_{1 \leq|\alpha| \leq h} \frac{1}{\alpha!} \cdot D_{\alpha}(\varphi)(0) e_{\alpha}
$$

It follows that the family $\left\{e_{\alpha}\right\}_{1 \leq|\alpha| \leq h}$ generates the ideal N_{A}. We denote by B_{A} the set of all multiindices such that $\left\{e_{\alpha}\right\}_{\alpha \in B_{A}}$ is a basis of N_{A} and \bar{B}_{A} its complementary with respect to the set of all multiindices $\mu \in \mathbb{N}^{n}$ such that $1 \leq|\mu| \leq h$. For $\beta \in \bar{B}_{A}$, we have $e_{\beta}=\sum_{\mu \in B_{A}} \lambda_{\beta}^{\mu} e_{\mu}$. By this formula, we deduce that:

$$
\begin{equation*}
j^{A} \varphi=\varphi(0) \cdot 1_{A}+\sum_{\alpha \in B_{A}}\left[\frac{1}{\alpha!} \cdot D_{\alpha}(\varphi)(0)+\sum_{\beta \in \bar{B}_{A}} \frac{\lambda_{\beta}^{\alpha}}{\beta!} \cdot D_{\beta}(\varphi)(0)\right] e_{\alpha} \tag{1}
\end{equation*}
$$

Corollary 2.2. Let $\varphi, \psi \in C^{\infty}\left(\mathbb{R}^{n}, M\right)$, the following assertions are equivalent:
(i) $j^{A} \varphi=j^{A} \psi$
(ii) $\varphi(0)=\psi(0)=x$ and for any chart $\left(U, x^{i}\right)$ of M in x we have:

$$
\frac{1}{\alpha!} D_{\alpha}\left(x^{i} \circ \varphi\right)(0)+\sum_{\beta \in \bar{B}_{A}} \frac{\lambda_{\beta}^{\alpha}}{\beta!} D_{\beta}\left(x^{i} \circ \varphi\right)(0)=\frac{1}{\alpha!} D_{\alpha}\left(x^{i} \circ \psi\right)(0)+\sum_{\beta \in \bar{B}_{A}} \frac{\lambda_{\beta}^{\alpha}}{\beta!} D_{\beta}\left(x^{i} \circ \psi\right)(0)
$$

where $1 \leq i \leq m$ and $\alpha \in B_{A}$.
Remark 2.3. Let $\left(U, x^{i}\right)$ be a local coordinate system of M, the local coordinate system $\left(\bar{x}^{i}, \bar{x}_{\alpha}^{i}\right)$ of $T^{A} M$ over the open $T^{A} U$ is such that,

$$
\left\{\begin{array}{l}
\bar{x}^{i}=x_{0}^{i} \tag{2}\\
\bar{x}_{\alpha}^{i}=x_{\alpha}^{i}+\sum_{\beta \in \bar{B}_{A}} \lambda_{\beta}^{\alpha} \cdot x_{\beta}^{i}
\end{array}\right.
$$

where $x_{0}^{i}\left(j^{A} \varphi\right)=x^{i}(\varphi(0))$ and $x_{\alpha}^{i}\left(j^{A} \varphi\right)=\left.\frac{1}{\alpha!} \cdot D_{\alpha}\left(x^{i} \circ \varphi\right)(z)\right|_{z=0}$. It is called an adapted coordinate system associated to $\left(U, x^{i}\right)$. In the sequel, the same symbol x^{i} will be used both for a function $U \rightarrow \mathbb{R}$ and for the composite function $T^{A} U \rightarrow U \rightarrow \mathbb{R}$. The latter function may also be written as the pullback $\pi_{A, U}^{*}\left(x^{i}\right)$.
2.2. The canonical isomorphisms between $T^{A} E^{*}$ and $\left(T^{A} E\right)^{*}$

Let p be a linear form on A. The mapping $\widehat{p}:(a, b) \mapsto p(a b)$ is bilinear symmetric and satisfies

$$
\widehat{p}(a b, c)=\widehat{p}(a, b c)
$$

Definition 2.4. We say that the linear form p is nondegenerate if the bilinear form \hat{p} is nondegenerate. The pair (A, p) is called a Weil-Frobenius algebra.

We denote by \mathcal{D}_{m} the category of vector bundles with m-dimensional base and vector bundle isomorphisms with identity as base maps. We denote by T^{A}, the covariant functor $T^{A}: \mathcal{D}_{m} \rightarrow \mathcal{V B}$ from the category \mathcal{D}_{m} into the category $\mathcal{V B}$ of all vector bundles and their vector bundle homomorphisms, such that

$$
T^{A}(E, M, \pi)=\left(T^{A} E, T^{A} M, T^{A} \pi\right) \quad \text { and } \quad T^{A}\left(i d_{M}, f\right)=\left(i d_{T^{A} M}, T^{A} f\right)
$$

for any \mathcal{D}_{m}-objet (E, M, π) and \mathcal{D}_{m}-morphism $\left(i d_{M}, f\right)([3])$. For a linear form $p: A \rightarrow \mathbb{R}$ and the vector bundle (E, M, π), we consider the natural vector bundle morphism

$$
\begin{equation*}
\tau_{A, E}^{p}: T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*} \tag{3}
\end{equation*}
$$

defined for any $j^{A} \varphi \in T^{A} E^{*}$ and $j^{A} \psi \in T^{A} E$ by:

$$
\begin{equation*}
\tau_{A, E}^{p}\left(j^{A} \varphi\right)\left(j^{A} \psi\right)=p\left(j^{A}\left(\langle\psi, \varphi\rangle_{E}\right)\right) \tag{4}
\end{equation*}
$$

Afr. J. Pure Appl. Math.
where $\langle\psi, \varphi\rangle_{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}, z \mapsto\langle\psi(z), \varphi(z)\rangle_{E}$ and $\langle\cdot, \cdot\rangle_{E}$ the canonical pairing. We have
Proposition 2.5. For any \mathcal{D}_{m}-morphism $f: E_{1} \rightarrow E_{2}$, the diagram

\[

\]

commutes.
Proof. Let $j^{A} \varphi \in T^{A} E_{2}^{*}$ and $j^{A} \psi \in T^{A} E_{1}$ over $T^{A} M$. We have:

$$
\begin{aligned}
\left(T^{A} f\right)^{*} \circ \tau_{A, E_{2}}^{p}\left(j^{A} \varphi\right)\left(j^{A} \psi\right) & =\left(\tau_{A, E_{2}}^{p}\left(j^{A} \varphi\right)\right)\left(T^{A} f\left(j^{A} \psi\right)\right) \\
& =\left(\tau_{A, E_{2}}^{p}\left(j^{A} \varphi\right)\right)\left(j^{A}(f \circ \psi)\right) \\
& =p\left(j^{A}\left(\langle f \circ \psi, \varphi\rangle_{E_{2}}\right)\right) \\
& =p\left(j^{A}\left(\left\langle\psi, f^{*} \circ \varphi\right\rangle_{E_{1}}\right)\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\tau_{A, E_{1}}^{p} \circ T^{A} f^{*}\left(j^{A} \varphi\right)\left(j^{A} \psi\right) & =\tau_{A, E_{1}}^{p}\left(j^{A}\left(f^{*} \circ \varphi\right)\right)\left(j^{A} \psi\right) \\
& =p\left(j^{A}\left(\left\langle\psi, f^{*} \circ \varphi\right\rangle_{E_{1}}\right)\right) \\
& =\left(T^{A} f\right)^{*} \circ \tau_{A, E_{2}}^{p}\left(j^{A} \varphi\right)\left(j^{A} \psi\right)
\end{aligned}
$$

It follows that $\left(T^{A} f\right)^{*} \circ \tau_{A, E_{2}}^{p}=\tau_{A, E_{1}}^{p} \circ T^{A} f^{*}$. Thus $\tau_{A, E}^{p}: T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*}$ is a natural homomorphism of vector bundles.

Remark 2.6. (Local expression of $\left.\tau_{A, E}^{p}\right)$. Let $\left(\eta_{1}, \cdots, \eta_{k}\right)$ be a basis of local sections of E and $\left(\eta^{1}, \cdots, \eta^{k}\right)$ be the dual basis of local sections of $\pi_{*}: E^{*} \rightarrow M$. We have an adapted coordinate systems $\left(x^{i}, y^{j}\right)$ in $E,\left(x^{i}, u_{j}\right)$ in $E^{*},\left(x^{i}, y^{j}, \bar{x}_{\alpha}^{i}, \bar{y}_{\alpha}^{j}\right)$ in $T^{A} E,\left(x^{i}, u_{j}, \bar{x}_{\alpha}^{i}, \bar{u}_{j}^{\alpha}\right)$ in $T^{A} E^{*}$ and $\left(x^{i}, w_{j}, \bar{x}_{\alpha}^{i}, \bar{w}_{j}^{\alpha}\right)$ in $\left(T^{A} E\right)^{*}$. Locally, we have

$$
\tau_{A, E}^{p}\left(x^{i}, u_{j}, \bar{x}_{\alpha}^{i}, \bar{u}_{j}^{\alpha}\right)=\left(x^{i}, w_{j}, \bar{x}_{\alpha}^{i}, \bar{w}_{j}^{\alpha}\right) \text { with }\left\{\begin{aligned}
w_{j} & =u_{j} p_{0}+\sum_{\alpha \in B_{A}} \bar{u}_{j}^{\alpha} p_{\alpha} \\
\bar{w}_{j}^{\alpha} & =\sum_{\beta \in B_{A}} \bar{u}_{j}^{\beta-\alpha} p_{\beta}
\end{aligned}\right.
$$

where $p\left(e_{\gamma}\right)=p_{\gamma}$.
Theorem 2.7. There is a bijective correspondence between the set of all the natural isomorphism of vector bundles $\tau_{A, E}: T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*}$ satisfying, for any $a, b \in A$

$$
\begin{equation*}
\tau_{A, \mathbb{R}}(a)(b)=\tau_{A, \mathbb{R}}\left(1_{A}\right)(a b) \tag{5}
\end{equation*}
$$

and the set of all the linear and nondegenerate maps of A.
Proof. For the first part, see [7]. Inversely, let $\tau_{A, E}: T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*}$ be the canonical vector bundle isomorphism verifying (1.5). The map $\tau_{A, \mathbb{R}}: A \rightarrow A^{*}$ denoted by \bar{p} is a vector space isomorphism. It induces the linear map

$$
\begin{array}{cccc}
p: & A & \rightarrow & \mathbb{R} \\
& a & \rightarrow & \bar{p}\left(1_{A}\right)(a)
\end{array}
$$

We consider the bilinear symmetric map induced by p denoted \hat{p} and defined in the following way: $\widehat{p}:(a, b) \mapsto p\left(1_{A}\right)(a b)$. By the equality (1.5), it follows that \widehat{p} is nondegenerate. Let $\tau_{A, E}^{p}$ be a natural transformation defined by p. For any vector space V, using the equation (1.5) we have $\tau_{A, V}^{p}=\tau_{A, V}$. The equality $\tau_{A, E}^{p}=\tau_{A, E}$ comes by calculation in local coordinates.

Afr. J. Pure Appl. Math.

Remark 2.8. The theorem above, shows in particular that: a natural vector bundle morphisms $T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*}$ (satisfying (1.5)) is a natural equivalence if and only if A is a Weil-Frobenius algebra.

Example 2.9. (i) For $A=\mathbb{D}$, consider the linear map $p_{\mathbb{D}}: \mathbb{D} \rightarrow \mathbb{R}$ given by

$$
p_{\mathbb{D}}\left(j_{0}^{1} \varphi\right)=\left.\frac{d}{d t}(\varphi(t))\right|_{t=0}
$$

We have the natural isomorphism $\tau_{\mathbb{D}, E}^{p_{\mathbb{D}}}=I_{E}: T E^{*} \rightarrow(T E)^{*}$, called the Swap map of E.
(ii) For $A=J_{0}^{r}(\mathbb{R}, \mathbb{R})$ and the linear form ς_{r}^{1} is non degenerate, it induces the natural vector bundle isomorphism $I_{E}^{r}: T^{r} E^{*} \rightarrow\left(T^{r} E\right)^{*},([6])$. The local expression of I_{E}^{r} is of the form:

$$
I_{E}^{r}\left(x^{i}, u_{j}, x_{\beta}^{i}, u_{j}^{\beta}\right)=\left(x^{i}, w_{j}, x_{\beta}^{i}, w_{j}^{\beta}\right) \quad \text { with } \quad \begin{cases}w_{j} & =u_{j}^{r} \\ w_{j}^{\beta} & =u_{j}^{r-\beta}\end{cases}
$$

For an arbitrary linear map $p: A \rightarrow \mathbb{R}$ non necessarily nondegenerate, it induces the natural vector bundle morphism $\tau_{A, E}^{p}: T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*}$ over $\mathrm{id}_{T^{A} M}$ non necessarily bijective.

Corollary 2.10. There is a bijective correspondence between the set of all the natural vector bundle morphisms $\tau_{A, E}: T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*}$ verifying (1.5) and the set A^{*}.

For each $1 \leq|\alpha| \leq h$, we consider the linear map $\varsigma_{A}^{\alpha}: A \rightarrow \mathbb{R}$ defined by:

$$
\varsigma_{A}^{\alpha}\left(j^{A} \varphi\right)=\left.\frac{1}{\alpha!} D_{\alpha}(\varphi)(z)\right|_{z=0}
$$

It induces the vector bundle morphism $\tau_{A, E}^{\alpha}: T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*}$ over id $T_{T_{M}}$.
Let $\left(x^{i}, u^{j}\right)$ be an adapted local coordinate system of E, the local expression of the bundle map $\tau_{A, E}^{\alpha}: T^{A} E^{*} \rightarrow\left(T^{A} E\right)^{*}$ takes the form

$$
\tau_{A, E}^{\alpha}\left(x^{i}, u_{j}, \bar{x}_{\beta}^{i}, \bar{u}_{j}^{\beta}\right)=\left(x^{i}, w_{j}, \bar{x}_{\beta}^{i}, \bar{w}_{j}^{\beta}\right) \text { with }\left\{\begin{aligned}
w_{j} & =\bar{u}_{j}^{\alpha} \\
\bar{w}_{j}^{\beta} & =\bar{u}_{j}^{\alpha-\beta}
\end{aligned}\right.
$$

We denote by $*$ the covariant functor from \mathcal{D}_{m} into \mathcal{D}_{m} defined by:

$$
(E, M, \pi)=\left(E^{}, M, \pi_{*}\right) \quad \text { and } \quad *\left(i d_{M}, f\right)=\left(i d_{M},\left({ }^{t} f\right)^{-1}\right)
$$

Corollary 2.11. All natural transformations of $T^{A} \circ * \rightarrow * \circ T^{A}$ verifying (1.5) are of the form

$$
\begin{equation*}
p_{0} \tau_{A, *}^{0}+\sum_{1 \leq|\alpha| \leq h} p_{\alpha} \cdot \tau_{A, *}^{\alpha} \tag{6}
\end{equation*}
$$

where p_{0}, p_{α} are the real numbers.
Proof. Let $\tau_{A}: T^{A} \circ * \rightarrow * \circ T^{A}$ be a natural transformations verifying (1.5), it induces a linear map $p: A \rightarrow \mathbb{R}$. This linear map has the form

$$
p_{0} \varsigma_{A}^{0}+\sum_{1 \leq|\alpha| \leq h} p_{\alpha} \varsigma_{A}^{\alpha}
$$

So we have the result.

Corollary 2.12. For all $k \geq 2$ and $r \geq 1$, do not exist a natural equivalence between $T_{k}^{r} E^{*}$ and $\left(T_{k}^{r} E\right)^{*}$ verifying (1.5). In particular $J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)$ is not a Weil-Frobenius algebra.
Proof. See [9].

2.3. Main results.

For each manifold M, there is a canonical diffeomorphism (see $[3,5]$)

$$
\kappa_{M}^{A}: T^{A} T M \rightarrow T T^{A} M
$$

which is an isomorphism of vector bundles

$$
T^{A}\left(\pi_{M}\right): T^{A} T M \rightarrow T^{A} M \quad \text { and } \quad \pi_{T^{A} M}: T T^{A} M \rightarrow T^{A} M
$$

such that, $\pi_{T^{A} M} \circ \kappa_{M}^{A}=T^{A}\left(\pi_{M}\right)$. In particular, for any $f \in C^{\infty}(M, N)$ we have

$$
\kappa_{N}^{A} \circ T^{A} T f=T T^{A} f \circ \kappa_{M}^{A}
$$

Let $p: A \rightarrow \mathbb{R}$ be a linear map, it induces the natural vector bundle morphism $\tau_{A, .}^{p}: T^{A} \circ * \rightarrow$ $* \circ T^{A}$. For any manifold M of dimension m, we consider the vector bundle morphism

$$
\varepsilon_{A, M}^{p}=\left[\left(\kappa_{M}^{A}\right)^{-1}\right]^{*} \circ \tau_{A, T M}^{p}: T^{A} T^{*} M \rightarrow T^{*} T^{A} M
$$

It is clear that the family of maps $\left(\varepsilon_{A, M}^{p}\right)$ defines a natural transformation between the functors $T^{A} \circ T^{*}$ and $T^{*} \circ T^{A}$ on the category $\mathcal{M} f_{m}$ and denoted

$$
\varepsilon_{A, *}^{p}: T^{A} \circ T^{*} \rightarrow T^{*} \circ T^{A}
$$

When p is nondegenerate, the mapping $\varepsilon_{A, M}^{p}$ is a vector bundle isomorphism over $i d_{T^{A} M}$. In local coordinate system $\left\{x^{1}, \cdots, x^{m}\right\}$ of M, we introduce the coordinates $\left(x^{i}, \dot{x}^{i}\right)$ in $T M$, $\left(x^{i}, \pi_{i}\right)$ in $T^{*} M,\left(x^{i}, \dot{x}^{i}, \bar{x}_{\beta}^{i}, \overline{\dot{x}_{\beta}^{i}}\right)$ in $T^{A} T M,\left(x^{i}, \pi_{j}, \bar{x}_{\beta}^{i}, \bar{\pi}_{j}^{\beta}\right)$ in $T^{A} T^{*} M,\left(x^{i}, \bar{x}_{\beta}^{i}, \dot{x}^{i}, \dot{x}_{\beta}^{i}\right)$ in $T T^{A} M$ and $\left(x^{i}, \bar{x}_{\beta}^{i}, \bar{\xi}_{j}, \bar{\xi}_{j}^{\beta}\right)$ in $T^{*} T^{A} M$. We have:

$$
\kappa_{M}^{A}\left(x^{i}, \dot{x}^{i}, \bar{x}_{\beta}^{i}, \overline{\dot{x}_{\beta}^{i}}\right)=\left(x^{i}, \bar{x}_{\beta}^{i}, \dot{x}^{i}, \bar{x}_{\beta}^{i}\right)
$$

with $\overline{\dot{x}_{\beta}^{i}}=\dot{\bar{x}}_{\beta}^{i}$. It follows that

$$
\varepsilon_{A, M}^{p}\left(x^{i}, \pi_{j}, \bar{x}_{\beta}^{i}, \bar{\pi}_{j}^{\beta}\right)=\left(x^{i}, \bar{x}_{\beta}^{i}, \bar{\xi}_{j}, \bar{\xi}_{j}^{\beta}\right) \quad \text { with } \quad\left\{\begin{align*}
\bar{\xi}_{j} & =\pi_{j} p_{0}+\sum_{\mu \in B_{A}} \bar{\pi}_{j}^{\mu} p_{\mu} \tag{7}\\
\bar{\xi}_{j}^{\beta} & =\sum_{\mu \in B_{A}} \bar{\pi}_{j}^{\mu-\beta} p_{\mu}
\end{align*}\right.
$$

Example 2.13. (i) When $A=\mathbb{D}$ and $p_{\mathbb{D}}: \mathbb{D} \rightarrow \mathbb{R},\left.\quad j_{0}^{1} \varphi \mapsto \frac{d}{d t}(\varphi(t))\right|_{t=0}$ we have the natural isomorphism of Tulczyjew $\varepsilon_{M}: T T^{*} M \rightarrow T^{*} T M$, (see [5]). For the linear map $p_{0}\left(j_{0}^{1} \gamma\right)=$ $\gamma(0)$, we obtain the natural vector bundle morphisms ε_{M}^{0} such that locally,

$$
\varepsilon_{M}^{0}\left(x^{i}, \pi_{i}, \dot{x}^{i}, \dot{\pi}_{i}\right)=\left(x^{i}, \dot{x}^{i}, \pi_{i}, 0\right)
$$

(ii) If $A=J_{0}^{1}\left(\mathbb{R}^{p}, \mathbb{R}\right)$ and $p_{J_{0}^{1}\left(\mathbb{R}^{p}, \mathbb{R}\right)}: J_{0}^{1}\left(\mathbb{R}^{p}, \mathbb{R}\right) \rightarrow \mathbb{R}, \quad j_{0}^{1} \varphi \mapsto \varphi(0)+\sum_{i=1}^{p} \frac{\partial \varphi}{\partial x^{i}}(0)$, we have the natural vector bundle morphism $\varepsilon_{p, M}^{1}: T_{p}^{1} T^{*} M \rightarrow T^{*} T_{p}^{1} M$ defined in [12]. In local coordinate,

$$
\varepsilon_{p, M}^{1}\left(x^{i}, \pi_{i}, x_{\beta}^{i}, \pi_{i}^{\beta}\right)=\left(x^{i}, x_{\beta}^{i}, \xi_{i}, \xi_{i}^{\beta}\right) \text { with }\left\{\begin{aligned}
\xi_{i} & =\sum_{|\alpha|=1} \pi_{i}^{\alpha} \\
\xi_{i}^{\beta} & =\pi_{i}
\end{aligned}\right.
$$

(iii) If $A=J_{0}^{r}(\mathbb{R}, \mathbb{R})$, and $p_{J_{0}^{r}(\mathbb{R}, \mathbb{R})}: J_{0}^{r}(\mathbb{R}, \mathbb{R}) \rightarrow \mathbb{R},\left.\quad j_{0}^{r} \varphi \mapsto \frac{1}{r!} \cdot \frac{d^{r}}{d t^{r}}(\varphi(t))\right|_{t=0}$, we have the natural vector bundle isomorphism $\varepsilon_{M}^{r}: T^{r} T^{*} M \rightarrow T^{*} T^{r} M$ defined in [2].

Afr. J. Pure Appl. Math.
(iv) When $A=J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)$ and the linear form on $J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)$ defined by

$$
p_{J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)}\left(j_{0}^{r} \varphi\right)=\left.\sum_{|\alpha|=r} \frac{1}{\alpha!} D_{\alpha}(\varphi)(z)\right|_{z=0}
$$

We deduce the natural transformations $\varepsilon_{k, M}^{r}: T_{k}^{r} T^{*} M \rightarrow T^{*} T_{k}^{r} M$ such that locally

$$
\varepsilon_{k, M}^{r}\left(x^{i}, \pi_{i}, x_{\beta}^{i}, \pi_{i}^{\beta}\right)=\left(x^{i}, x_{\beta}^{i}, \xi_{i}, \xi_{i}^{\beta}\right) \quad \text { where } \quad\left\{\begin{array}{l}
\xi_{i}=\sum_{|\alpha|=r} \pi_{i}^{\alpha} \\
\xi_{i}^{\beta}=\sum_{|\alpha|=r} \pi_{i}^{\alpha-\beta}
\end{array}\right.
$$

Let D be a derivation of A, for any real number $t, D_{t}=\exp (t D) \in \operatorname{Aut}(A)$, where Aut (A) is the group of all automorphisms of A. It is a Lie subgroup of Lie group $G L(A)$. The map $D_{t}: A \rightarrow A$ is an automorphism of A, it induces a natural transformation $\widetilde{D}_{t, M}: T^{A} M \rightarrow$ $T^{A} M$. On the other hand, the multiplication of the tangent vectors of M by reals is a map $\mathfrak{m}_{T M}: \mathbb{R} \times T M \rightarrow T M$. Applying the Weil functor T^{A}, we obtain $T^{A}\left(\mathfrak{m}_{T M}\right): A \times T^{A} T M \rightarrow$ $T^{A} T M$. Let $c \in A$, we put

$$
\operatorname{af}_{M}(c)=\kappa_{M}^{A} \circ T^{A}\left(\mathfrak{m}_{T M}\right)(c, \cdot) \circ\left(\kappa_{M}^{A}\right)^{-1}
$$

it is a natural tensor of type $(1,1)$ on $T^{A} M$, called affinor. In [5], one shows that, all natural transformations $T \circ T^{A} \rightarrow T \circ T^{A}$ are of the form af $(c)+T\left(\widetilde{D}_{t}\right)$, where $t \in \mathbb{R}$.
Theorem 2.14. Let (A, p) be a Weil-Frobenius algebra. All natural transformations $\theta_{A}: T^{A} \circ$ $T^{*} \rightarrow T^{*} \circ T^{A}$ are of the form

$$
\begin{equation*}
T^{*}\left(\widetilde{D}_{t}\right) \circ \varepsilon_{A}^{p}+(\operatorname{af}(c))^{*} \circ \varepsilon_{A}^{p} \tag{8}
\end{equation*}
$$

where $c \in A, t \in \mathbb{R}$ and D a derivation of A.
Proof. Let $\theta_{A}: T^{A} \circ T^{*} \rightarrow T^{*} \circ T^{A}$ be a natural transformation, $\theta_{A} \circ\left(\varepsilon_{A}^{p}\right)^{-1}=\varphi_{A, p}:$ $T^{*} \circ T^{A} \rightarrow T^{*} \circ T^{A}$ is a natural transformation. We obtain a natural transformation $\varphi_{A, p}^{*}$: $T \circ T^{A} \rightarrow T \circ T^{A}$, it exists a derivation D of A and $c \in A$ such that $\varphi_{A, p}^{*}=\operatorname{af}(c)+T\left(\widetilde{D}_{t}\right)$, for a real number t. We obtain $\theta_{A}=T^{*}\left(\widetilde{D}_{t}\right) \circ \varepsilon_{A}^{p}+(\operatorname{af}(c))^{*} \circ \varepsilon_{A}^{p}$.

Corollary 2.15. Let (A, p) be a Weil-Frobenius algebra. All natural isomorphisms on a manifold $M, T^{A} T^{*} M \rightarrow T^{*} \circ T^{A} M$ are of the form

$$
T^{*}\left(\widetilde{D}_{t, M}\right) \circ \varepsilon_{A, M}^{p}
$$

where $t \in \mathbb{R}$ and D a derivation of A.
Corollary 2.16. All natural morphisms $T T^{*} M \rightarrow T^{*} T M$ are of the form

$$
a T^{*}\left(F_{t, M}\right) \circ \varepsilon_{M}+b \varepsilon_{M}+c \varepsilon_{M}^{0}
$$

where $F_{t, M}$ is a one parameter subgroup of the Euler vector field on $T M, a, b, c$ are real numbers and $t \neq 0$.

Proof. We recall that $\mathbb{D} \simeq \mathbb{R}^{2}$, the structure of Weil algebra is given by:

$$
\left(x_{0}, x_{1}\right) \cdot\left(y_{0}, y_{1}\right)=\left(x_{0} y_{0}, x_{0} y_{1}+x_{1} y_{0}\right)
$$

Let D be a derivation of \mathbb{R}^{2}. The natural transformation \widetilde{D}_{t} associated is given by:

$$
\widetilde{D}_{t, M}=\alpha F_{t, M}
$$

On the other hand, any affinor is of the form $\beta \mathrm{id}_{T T M}+c \cdot \mathrm{af}_{M}\left(e_{1}\right)$, with $e_{1}=(0,1)$. It follows that the natural morphism

$$
\theta_{M}: T T^{*} M \rightarrow T^{*} T M
$$

is given by:

$$
\theta_{M}=\alpha T^{*}\left(F_{t, M}\right) \circ \varepsilon_{M}+(\alpha+\beta) \varepsilon_{M}+b \varepsilon_{M}^{0}
$$

because $\left(\operatorname{af}_{M}\left(e_{1}\right)\right)^{*} \circ \varepsilon_{M}=\varepsilon_{M}^{0}$.

Let $\left(e_{0}, \cdots, e_{r}\right)$ the canonical basis of $A=J_{0}^{r}(\mathbb{R}, \mathbb{R})$. For $0 \leq \alpha \leq r$ and a manifold M, we put:

$$
\left\{\begin{array}{l}
\varepsilon_{M}^{0}=\left[\left(\kappa_{M}^{r}\right)^{-1}\right]^{*} \circ \tau_{A, T M}^{0} \\
\varepsilon_{M}^{\alpha}=\left[\left(\kappa_{M}^{r}\right)^{-1}\right]^{*} \circ \tau_{A, T M}^{\alpha}
\end{array}\right.
$$

Consider the linear map $\phi_{\alpha}: J_{0}^{r}(\mathbb{R}, \mathbb{R}) \rightarrow J_{0}^{r}(\mathbb{R}, \mathbb{R})$ defined by

$$
\left\{\begin{aligned}
\phi_{\alpha}\left(e_{0}\right) & =0 \\
\phi_{\alpha}\left(e_{\beta+1}\right) & =\frac{(\alpha+\beta)!}{\alpha!\beta!} e_{\alpha+\beta}
\end{aligned}\right.
$$

is a derivation, it induces a one parameter subgroup of a vector field on $T^{r} M$ denoted by $\phi_{\alpha, M}^{t}: T^{r} M \rightarrow T^{r} M$.
Proposition 2.17. Any derivation $\phi: J_{0}^{r}(\mathbb{R}, \mathbb{R}) \rightarrow J_{0}^{r}(\mathbb{R}, \mathbb{R})$ is of the form

$$
\phi=\sum_{\beta=1}^{r} a_{\beta} \cdot \phi_{\beta}
$$

where a_{1}, \cdots, a_{r} are real numbers.
Proof. For any $\alpha=0, \cdots, r$, we have $e_{0} \cdot e_{\alpha}=e_{\alpha}$, therefore $\phi\left(e_{\alpha}\right) \cdot e_{0}+\phi\left(e_{0}\right) \cdot e_{\alpha}=\phi\left(e_{\alpha}\right)$.
It follows that

$$
\phi\left(e_{0}\right) \cdot e_{\alpha}=0, \quad \forall \alpha=0, \cdots, r
$$

So that, $\phi\left(e_{0}\right)=0$. We put,

$$
\phi\left(e_{1}\right)=\sum_{\beta=0}^{r} a_{\beta} e_{\beta}
$$

with $a_{0}, a_{1}, \cdots, a_{r}$ are the real numbers. Using the relation $e_{1} \cdot e_{1}=2 e_{2}$, we have

$$
\phi\left(e_{2}\right)=\phi\left(e_{1}\right) \cdot e_{1}=\sum_{\beta=0}^{r-1}(\beta+1) a_{\beta} e_{\beta+1}
$$

By the same way, $e_{2} \cdot e_{1}=3 e_{3}$, it follows that, $3 \phi\left(e_{3}\right)=\phi\left(e_{2}\right) \cdot e_{1}+\phi\left(e_{1}\right) \cdot e_{2}$. Now

$$
\begin{aligned}
\phi\left(e_{2}\right) \cdot e_{1} & =\sum_{\beta=0}^{r-2}(\beta+1)(\beta+2) a_{\beta} e_{\beta+2} \\
\phi\left(e_{1}\right) \cdot e_{2} & =\sum_{\beta=0}^{r-2} \frac{(\beta+1)(\beta+2)}{2} a_{\beta} e_{\beta+2}
\end{aligned}
$$

We deduce that,

$$
\phi\left(e_{2}\right) \cdot e_{1}+\phi\left(e_{1}\right) \cdot e_{2}=\sum_{\beta=0}^{r-2} 3 \frac{(\beta+1)(\beta+2)}{2} a_{\beta} e_{\beta+2}
$$

So,

$$
\phi\left(e_{3}\right)=\sum_{\beta=0}^{n-2} \frac{(\beta+1)(\beta+2)}{2} a_{\beta} e_{\beta+2}
$$

Afr. J. Pure Appl. Math.

Vol. 3 (2018) Characterization of some transformations between $T^{A} \circ T^{*}$ and $T^{*} \circ T^{A}$.

Looking the expressions of $\phi\left(e_{1}\right), \phi\left(e_{2}\right)$ and $\phi\left(e_{3}\right)$ we put

$$
\phi\left(e_{\alpha}\right)=\sum_{\beta=0}^{r-\alpha+1} \frac{(\alpha+\beta-1)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta-1}
$$

By induction, using the relation $e_{\alpha} \cdot e_{1}=(\alpha+1) e_{\alpha+1}$, we obtain,

$$
(\alpha+1) \phi\left(e_{\alpha+1}\right)=\phi\left(e_{\alpha}\right) \cdot e_{1}+\phi\left(e_{1}\right) \cdot e_{\alpha}
$$

Now,

$$
\begin{gathered}
\phi\left(e_{\alpha}\right) \cdot e_{1}=\sum_{\beta=0}^{r-\alpha+1} \frac{(\alpha+\beta-1)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta-1} \cdot e_{1}=\sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta} \\
\phi\left(e_{1}\right) \cdot e_{\alpha}=\sum_{\beta=0}^{r} a_{\beta} e_{\beta} \cdot e_{\alpha}=\sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}
\end{gathered}
$$

We deduce that

$$
\phi\left(e_{\alpha}\right) \cdot e_{1}+\phi\left(e_{1}\right) \cdot e_{\alpha}=\sum_{\beta=0}^{r-\alpha} \frac{(\alpha+1)(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}
$$

Thus,

$$
\phi\left(e_{\alpha+1}\right)=\sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}
$$

On the other hand, $\phi\left(e_{r}\right)=a_{0} e_{r-1}+a_{1} e_{r}$ and $e_{r} \cdot e_{1}=0$. So that $\phi\left(e_{r}\right) \cdot e_{1}+\phi\left(e_{1}\right) \cdot e_{r}=0$. As

$$
\begin{aligned}
\phi\left(e_{r}\right) \cdot e_{1} & =r a_{0} e_{r} \\
\phi\left(e_{1}\right) \cdot e_{r} & =a_{0} e_{r}
\end{aligned}
$$

It follows that $a_{0}=0$. So that, for any $\alpha=0, \cdots, r-1$, we have

$$
\phi\left(e_{\alpha+1}\right)=\sum_{\beta=1}^{r-\alpha} a_{\beta} \frac{(\alpha+\beta)!}{\beta!\alpha!} e_{\alpha+\beta}=\sum_{\beta=1}^{r-\alpha} a_{\beta} \phi_{\beta}\left(e_{\alpha+1}\right)
$$

Thus, we obtain the result.

Theorem 2.18. All natural vector bundle morphisms $T^{r} T^{*} M \rightarrow T^{*} T^{r} M$ are of the form

$$
\sum_{\alpha=1}^{r} a_{\alpha} T^{*}\left(\phi_{\alpha, M}^{t}\right) \circ \varepsilon_{M}^{r}+\sum_{\beta=0}^{r-1} b_{\beta} \varepsilon_{M}^{\beta}
$$

where a_{α}, b_{β}, t are real numbers.
Proof. Any derivation $\phi: J_{0}^{r}(\mathbb{R}, \mathbb{R}) \rightarrow J_{0}^{r}(\mathbb{R}, \mathbb{R})$ is a \mathbb{R}-linear combination of the maps ϕ_{α}. The rest of the proof comes from the formula $\varepsilon_{M}^{\alpha}=\left(\operatorname{af}_{M}\left(e_{\alpha}\right)\right)^{*} \circ \varepsilon_{M}^{r}$, for any $\alpha=0, \cdots r-1$.

Corollary 2.19. All natural isomorphisms on a manifold $M, T^{r} T^{*} M \rightarrow T^{*} \circ T^{r} M$ are of the form

$$
\sum_{\alpha=1}^{r} a_{\alpha} T^{*}\left(\phi_{\alpha, M}^{t}\right) \circ \varepsilon_{M}^{r}
$$

where $a_{\alpha}, t \in \mathbb{R}$.

3. Applications: Lifts of 1 -forms to Weil bundles revisited

In this section, we fix the linear map $p: A \rightarrow \mathbb{R}$ and $\varepsilon_{A, *}^{p}$ the natural transformation $T^{A} \circ T^{*} \rightarrow$ $T^{*} \circ T^{A}$ such that: for any manifold $M, \varepsilon_{A, M}^{p}=\left[\left(\kappa_{M}^{A}\right)^{-1}\right]^{*} \circ \tau_{A, T M}^{p}$.

3.1. Prolongations of 1-forms

Let $\omega \in \Omega^{1}(M)$, we put:

$$
\begin{equation*}
\omega^{(p)}=\varepsilon_{A, M}^{p} \circ T^{A} \omega \tag{9}
\end{equation*}
$$

$\omega^{(p)}$ is a 1-form on $T^{A} M$. If locally $\omega=\omega_{i} d x^{i}$ then we have:

$$
\begin{equation*}
\omega^{(p)}=\left(\omega_{i} p_{0}+\sum_{\gamma \in B_{A}} \bar{\omega}_{i}^{(\gamma)} p_{\gamma}\right) d x^{i}+\sum_{\beta \in B_{A}}\left(\sum_{\mu \in B_{A}} \bar{\omega}_{i}^{(\mu-\beta)} p_{\mu}\right) d \bar{x}_{\beta}^{i} \tag{10}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\bar{\omega}_{i}^{(\gamma)}=\omega_{i}^{(\gamma)}+\sum_{\nu \in \bar{B}_{A}} \lambda_{\nu}^{\gamma} \omega_{i}^{(\nu)} \tag{11}\\
\bar{\omega}_{i}^{(\mu-\beta)}=\omega_{i}^{(\mu-\beta)}+\sum_{\alpha \in \bar{B}_{A}} \lambda_{\alpha}^{\mu} \omega_{i}^{(\alpha-\beta)}
\end{array}\right.
$$

Definition 3.1. The differential form $\omega^{(p)}$ defined on $T^{A} M$ is called p-prolongation of ω from M to $T^{A} M$

Example 3.2. (i) Case where $A=\mathbb{D}$. (see [4])
(a) For the linear map $p=1_{\mathbb{D}}: \mathbb{D} \rightarrow \mathbb{R}, \quad j_{0}^{1} \gamma \mapsto \gamma(0)$ the local expression of $\omega^{\left(1_{\mathbb{D}}\right)}$ is given by:

$$
\omega^{\left(1_{\mathbb{D}}\right)}=\omega_{i} d x^{i}
$$

The 1-form $\omega^{\left(1_{\mathbb{D}}\right)}$ coincide with the vertical lift of ω from M to $T M$.
(b) For $p=p_{\mathbb{D}}$ as defined in example 2, we have $p_{0}=0$ and $p_{1}=1$, so

$$
\omega^{\left(p_{\mathbb{D}}\right)}=\frac{\partial \omega_{i}}{\partial x^{k}} \dot{x}_{k} d x^{i}+\omega_{i} d \dot{x}^{i}
$$

The 1-form $\omega^{\left(p_{\triangleright}\right)}$ coincide with the complete lift of ω from M to $T M$.
(ii) Case where $A=J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)$. For the linear map $p=\varsigma_{\alpha}^{k}:\left.j_{0}^{r} g \mapsto \frac{1}{\alpha!} D_{\alpha}(g(t))\right|_{t=0}$ we have $p_{\gamma}=0$ for $\gamma \neq \alpha$ and $p_{\alpha}=1$. So using the equation (2.2) we deduce that:

$$
\omega^{\left(\varsigma_{\alpha}^{k}\right)}=\omega_{i}^{(\alpha)} d x^{i}+\sum_{1 \leq|\beta| \leq r} \omega_{i}^{(\alpha-\beta)} d x_{\beta}^{i}=\sum_{0 \leq|\beta| \leq r} \omega_{i}^{(\alpha-\beta)} d x_{\beta}^{i}
$$

Thus $\omega^{\left(\varsigma_{\alpha}^{k}\right)}$ coincide with the α-prolongation of differential form ω from M to $T_{k}^{r} M$ defined in [10].
(iii) General case. For the linear map $p=\varsigma_{A}^{\alpha}:\left.j^{A} \varphi \mapsto \frac{1}{\alpha!} D_{\alpha}(\varphi(z))\right|_{z=0}$ with $\alpha \in B_{A}$ and $\varphi \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ we have: $p_{\gamma}=0$ for $\gamma \neq \alpha$ and $p_{\alpha}=1$. Thus

$$
\omega^{\left(\varsigma_{A}^{\alpha}\right)}=\bar{\omega}_{i}^{(\alpha)} d x^{i}+\sum_{\beta \in B_{A}} \bar{\omega}_{i}^{(\alpha-\beta)} d \bar{x}_{\beta}^{i}
$$

The differential form $\omega^{\left(\varsigma_{A}^{\alpha}\right)}$ coincides with the α-prolongation of differential form defined in [3].

Afr. J. Pure Appl. Math.
3.2. The symplectomorphisms $\varepsilon_{A, M}^{p}: T^{A} T^{*} M \rightarrow T^{*} T^{A} M$

Let Ω be a 2 form on M. It induces the vector bundle morphism $\Omega^{\sharp}: T M \rightarrow T^{*} M$. We put:

$$
\begin{equation*}
\left(\Omega^{\sharp}\right)^{(p)}=\varepsilon_{A, M}^{p} \circ T^{A}\left(\Omega^{\sharp}\right) \circ\left(\kappa_{M}^{A}\right)^{-1} \tag{12}
\end{equation*}
$$

The $T^{A} M$-morphism of vector bundles $\left(\Omega^{\sharp}\right)^{(p)}: T T^{A} M \rightarrow T^{*} T^{A} M$ defines a differential form $\Omega^{(p)}$ on $T^{A} M$ of degree 2 called p-prolongation of Ω from M to $T^{A} M$. If locally $\Omega=\Omega_{i j} d x^{i} \wedge d x^{j}$ then:

$$
\left\{\begin{array}{l}
\Omega^{(p)}=\Omega_{i j} p_{0} d x^{i} \wedge d x^{j}+\sum_{\alpha \in B_{A}} p_{\alpha}\left(\sum_{\beta \in B_{A}} \bar{\Omega}_{i j}^{(\alpha-\beta)}\right) d x^{i} \wedge d \bar{x}_{\beta}^{j} \tag{13}\\
+\sum_{\mu, \beta \in B_{A}}\left(\sum_{\alpha \in B_{A}} p_{\alpha} \bar{\Omega}_{i j}^{(\alpha-\beta-\mu)}\right) d \bar{x}_{\mu}^{i} \wedge d \bar{x}_{\beta}^{j}
\end{array}\right.
$$

Example 3.3. In the particular case where $A=J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)$ and $p=\varsigma_{\alpha}^{k}$ we have:

$$
\Omega^{\left(\varsigma_{\alpha}^{k}\right)}=\Omega_{i j}^{(\alpha-\beta-\mu)} d x_{\mu}^{i} \wedge d x_{\beta}^{j}
$$

It coincides with the α-prolongation of Ω from M to $T_{k}^{r} M$ defined in [10].
Example 3.4. If Ω_{M} is a Liouville 2-form on $T^{*} M$ defined in local coordinates system $\left(x^{i}, \pi_{j}\right)$ by:

$$
\Omega_{M}=d x^{i} \wedge d \pi_{i}
$$

then we have:

$$
\begin{equation*}
\Omega_{M}^{(p)}=p_{0} d x^{i} \wedge d \pi_{i}+\sum_{\alpha \in B_{A}} p_{\alpha} d x^{i} \wedge d \bar{\pi}_{i}^{\alpha}+\sum_{\alpha, \beta \in B_{A}} p_{\alpha} d \bar{x}_{\beta}^{i} \wedge d \bar{\pi}_{i}^{\alpha-\beta} \tag{14}
\end{equation*}
$$

It is clear that $d\left(\Omega_{M}^{(p)}\right)=0$. Thus the 2-form $\Omega_{M}^{(p)}$ defines a presymplectic structure on $T^{A} T^{*} M$. It is symplectic form if p is nondegenerate.
Theorem 3.5. The vector bundle morphisms $\varepsilon_{A, M}^{p}: T^{A} T^{*} M \rightarrow T^{*} T^{A} M$ is a symplectomorphism between the pre-symplectic manifolds $\left(T^{A} T^{*} M, \Omega_{M}^{(p)}\right)$ and $\left(T^{*} T^{A} M, \Omega_{T^{A} M}\right)$. Where $\Omega_{T^{A} M}$ is a Liouville 2-form on $T^{*} T^{A} M$

Proof. The expression in local coordinate of Liouville 2 -form on $T^{*} T^{A} M$ is given by:

$$
\begin{aligned}
& \Omega_{T^{A} M}=d x^{i} \wedge d \pi_{i}+\sum_{\alpha \in B_{A}} d \bar{x}_{\alpha}^{i} \wedge d \bar{\pi}_{i}^{\alpha} \\
\left(\varepsilon_{A, M}^{p}\right) *\left(\Omega_{T^{A} M}\right)= & \sum_{\alpha \in B_{A} \cup\{0\}} d\left(\bar{x}_{\alpha}^{i} \circ \varepsilon_{A, M}^{p}\right) \wedge d\left(\bar{\pi}_{i}^{\alpha} \circ \varepsilon_{A, M}^{p}\right) \\
= & d x^{i} \wedge d\left(p_{0} \pi_{i}+\sum_{\alpha \in B_{A}} p_{\alpha} \bar{\pi}_{i}^{\alpha}\right)+\sum_{\beta, \alpha \in B_{A}} p_{\alpha} d \bar{x}_{\beta}^{i} \wedge d \bar{\pi}_{i}^{\alpha-\beta} \\
= & p_{0} d x^{i} \wedge d \pi_{i}+\sum_{\alpha \in B_{A}} p_{\alpha} d x^{i} \wedge d \bar{\pi}_{i}^{\alpha}+\sum_{\beta, \alpha \in B_{A}} p_{\alpha} d \bar{x}_{\beta}^{i} \wedge d \bar{\pi}_{i}^{\alpha-\beta}
\end{aligned}
$$

$\operatorname{Thus}\left(\varepsilon_{A, M}^{p}\right) *\left(\Omega_{T^{A} M}\right)=\Omega_{M}^{(p)}$.

Remark 3.6. (i) In particular, when $p=\varsigma_{r}^{1}$ we obtain the results of [2].
(ii) When (A, p) is a Weil-Frobenius algebra, the bundle $T^{A} T^{*} M$ has a canonical symplectic structure determined by $\left(\varepsilon_{A, M}^{p}\right) *\left(\Omega_{T^{A} M}\right)=\Omega_{M}^{(p)}$. More precisely, in [9], the authors show that: for any Weil algebra A the bundle $T^{A} T^{*} M$ has the canonical symplectic structure if and only if A is a Weil-Frobenius algebra.

References

1. Abraham, R. and Marsden, J., E. Foundations of mechanics, second edition Library of congress cataloging in publication data, October 1987.
2. Cantrijn, F., Crampin, M.,Sarlet W., and Saunders, D., The canonical isomorphism between $T^{k} T^{*}$ and $T^{*} T^{k}$. C.R. Acad. Sci. Paris, t. 309 (1989), série II, 1509-1514.
3. Gancarzewicz, J., Mikulski, W. and Pogoda, Z., Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1-41.
4. Gràcia, X., Pons, J., M., and Romàn-Roy, N., Higher order Lagrangian systems: Geometric structures, dynamics, and constraints, J. Math. Phy., 32, No., 10 (1991), 2744-2763.
5. Kolar, I., Michor, P. and Slovak, J., Natural operations in differential geometry, Springer-Verlag. 1993.
6. Kouotchop Wamba, P., M., Canonical Poisson-Nijenhuis structures on higher order tangent bundles, Annales Polonici Mathematici 1111 (2014), 21-37.
7. Kouotchop Wamba, P., M. and Ntyam, A., Prolongations of Dirac structures related to Weil bundles, Lobatchevskii journal of mathematics, 35 (2014), $\mathrm{N}^{\circ} 2$, pp 106-121.
8. Kurek, J., Natural affinors in higher order cotangent bundle, Archivum Mathematicum (BRNO), Tomus 28 (1992), 175-180.
9. Miroslav Doupovec and Miroslav Kureš Some geometric constructions on Frobenius Weil bundles, Differential geometry and its applications 35 (2014), 143-149.
10. Morimoto, A., Lifting of some type of tensors fields and connections to tangent bundles of p^{r} velocities, Nagoya Math., J. 40 (1970), 13-31.
11. Tomáš J., Some classification problems on natural bundles related to Weil bundles. Proc. Conf. Dif. Geom. (2001), University Valencia, published by World Scientific, pp. 297-310.
12. Wouafo Kamga, J., Global prolongation of geometric objets to some jet spaces, International centre for theoretical physics, Trieste, Italy, november 1997.
P. M. Kouotchop Wamba
e-mail: wambapm@yahoo.fr
Alphonse MBA
e-mail: alpmba@yahoo.fr
Department of Mathematics, Higher Teacher Training College of the University of Yaoundé 1, P.O BOX, 47, Yaoundé, Cameroon.

Submitted: 2 January 2018
Revised: 26 July 2018
Accepted: 3 August 2018

