AFRICAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Imhotep Mathematical Journal Volume 3, Numéro 1, (2018), pp. 21 – 32.

Characterization of some natural transformations between the bundle functors $T^A \circ T^*$ and $T^* \circ T^A$ on $\mathcal{M}f_m$.

P. M. Kouotchop Wamba wambapm@yahoo.fr

> Alphonse MBA alpmba@yahoo.fr

Department of Mathematics, Higher Teacher Training College of the University of Yaoundé 1, P.O BOX, 47, Yaoundé, Cameroon.

Abstract

In this paper, we characterize some natural transformations between the bundle functors $T^A \circ T^*$ and $T^* \circ T^A$ on $\mathcal{M}f_m$. In the particular case where $A = J_0^r(\mathbb{R}, \mathbb{R})$, we determine all natural transformations between the bundle functors $T^r \circ T^*$ and $T^* \circ T^r$ on $\mathcal{M}f_m$. These lifts of 1-forms are studied with application to the theory of presymplectic structures.

©Imhotep-Journal.org/Cameroon

I

IMHOTEP - Afr. J. Pure Appl. Math. **3** (2018), 21–32 1608-9324/010021–20, DOI 13.1007/s00009-003-0000 © 2018 Imhotep-Journal.org/Cameroon

Characterization of some natural transformations between the bundle functors $T^A \circ T^*$ and $T^* \circ T^A$ on $\mathcal{M}f_m$.

P. M. Kouotchop Wamba and Alphonse MBA

Abstract. In this paper, we characterize some natural transformations between the bundle functors $T^A \circ T^*$ and $T^* \circ T^A$ on $\mathcal{M}f_m$. In the particular case where $A = J_0^r(\mathbb{R}, \mathbb{R})$, we determine all natural transformations between the bundle functors $T^r \circ T^*$ and $T^* \circ T^r$ on $\mathcal{M}f_m$. These lifts of 1-forms are studied with application to the theory of presymplectic structures.

Mathematics Subject Classification (2010). 58A32, secondary 58A20, 58A10.

Keywords. Weil-Frobenius algebras, Weil functors, symplectic manifolds and natural transformations.

1. Introduction

By $\mathcal{M}f$ we denote the category of all smooth manifolds and all smooth maps and $\mathcal{M}f_m \subset \mathcal{M}f$ be the subcategory of *m*-dimensional manifolds and their local diffeomorphisms. Let A be a Weil algebra; it is a real commutative and finite dimensional algebra with unit, which is of the form $A = \mathbb{R} \cdot 1_A \oplus N_A$, where N_A is the ideal of nilpotent elements of A and $T^A : \mathcal{M}f \to \mathcal{M}f$ be the corresponding Weil functor, [5]. In particular, when A is the space of all r-jets of \mathbb{R}^k into \mathbb{R} with source $0 \in \mathbb{R}^k$ denoted by $J_0^r(\mathbb{R}^k, \mathbb{R})$, the corresponding Weil functor is the functor of k-dimensional velocities of order r and denoted by T_k^r . For k = 1, it is called tangent functor of order r and denoted by T^r . For any manifold M, we consider each element of $T^A M$ in the form of an A-jet $j^A \varphi$, where $\varphi \in C^{\infty}(\mathbb{R}^n, M)$ and n the width of A. For a smooth map $f : M \to N$, the map $T^A f \in C^{\infty}(T^A M, T^A N)$ is defined by $T^A f(j^A \varphi) = j^A (f \circ \varphi)$.

Let M be a smooth manifold of dimension m > 0. For any $r \ge 1$, we consider the collection of canonical pairings (nondegenerates on the fibers)

$$\langle \cdot, \cdot \rangle_M : TM \times_M T^*M \to \mathbb{R} \text{ and } \langle \cdot, \cdot \rangle'_{T^rM} = \varsigma^1_r \circ T^r (\langle \cdot, \cdot \rangle_M) : T^rTM \times_{T^rM} T^rT^*M \to \mathbb{R}$$

where ς_r^1 is a linear form on $J_0^r(\mathbb{R},\mathbb{R})$ defined by $\varsigma_r^1(j_0^r\varphi) = \frac{1}{r!} \frac{d^r}{dt^r} \varphi(t)|_{t=0}$.

For each manifold M, there is a canonical diffeomorphism (see [3, 5])

$$\kappa_M^r: T^r TM \to TT^r M$$

which is an isomorphism of vector bundles

$$T^r(\pi_M): T^rTM \to T^rM$$
 and $\pi^r_{TM}: TT^rM \to T^rM$

such that $T(\pi_M^r) \circ \kappa_M^r = \pi_{TM}^r$. Let (x^1, \dots, x^m) be a local coordinate system of M, we introduce the coordinates (x^i, \dot{x}^i) in TM, $(x^i, \dot{x}^i, x^i_\beta, \dot{x}^i_\beta)$ in T^rTM and $(x^i, x^i_\beta, \dot{x}^i, \tilde{x}^i_\beta)$ in TT^rM . We have

$$\kappa_{M}^{r}\left(x^{i}, \dot{x}^{i}, x_{\beta}^{i}, \dot{x}_{\beta}^{i}\right) = \left(x^{i}, x_{\beta}^{i}, \dot{x}^{i}, \widetilde{x}_{\beta}^{i}\right)$$

with $\widetilde{x}^i_{\beta} = \dot{x}^i_{\beta}$. On the other hand, there is a canonical diffeomorphism ([2])

 $\alpha^r_M: T^*T^rM \to T^rT^*M$

which is an isomorphism of vector bundles

$$\pi^*_{T^rM}: T^*T^rM \to T^rM$$
 and $T^r(\pi^*_M): T^rT^*M \to T^rM$

dual of κ_M^r with respect to pairings $\langle \cdot, \cdot \rangle_{T^r M}' = \tau_r \circ T^r (\langle \cdot, \cdot \rangle_M)$ and $\langle \cdot, \cdot \rangle_{T^r M}$, i.e. for any $(u, u^*) \in T^r T M \oplus T^* T^r M$,

$$\langle \kappa_{M}^{r}\left(u\right), u^{*} \rangle_{T^{r}M} = \langle u, \alpha_{M}^{r}\left(u^{*}\right) \rangle_{T^{r}M}^{\prime}$$

Let (x^1, \dots, x^m) be a local coordinates system of M, we introduce the coordinates (x^i, p_j) in T^*M , $(x^i, p_j, x^i_\beta, p^\beta_j)$ in T^rT^*M and $(x^i, x^i_\beta, \pi_j, \pi^\beta_j)$ in T^*T^rM . We have:

$$\alpha_M^r \left(x^i, \pi_j, x_\beta^i, \pi_j^\beta \right) = \left(x^i, x_\beta^i, p_j, p_j^\beta \right) \quad \text{with} \begin{cases} p_j &= \pi_j^r \\ p_j^\beta &= \pi_j^{r-\beta} \end{cases}$$

So, α_M^r establishes a canonical isomorphism between T^*T^rM and T^rT^*M . It has a fundamental importance in the description of higher order Lagrangian and Hamiltonian formalisms (see [4]). By ε_M^r we denote the bundle map $(\alpha_M^r)^{-1}$. In particular, ε^r is a natural transformation between the functors $T^r \circ T^*$ and $T^* \circ T^r$ defined on the category $\mathcal{M}f_m$. For r = 1, ε_M^1 is called *natural isomorphism of Tulczyjew over* M. This construction has been generalized in [7] for any Weil-Frobenius algebra defined below. In [9], the authors show that any Weil algebra has a Weil-Frobenius algebra structure if and only if there is a natural equivalence between the bundle functors $T^A \circ T^*$ and $T^* \circ T^A$ defined on $\mathcal{M}f_m$. The aim of this paper is to characterize all natural transformations $T^A \circ T^* \to T^* \circ T^A$, when A is a Weil algebra and we give some applications to the lifts of 1-forms. So, the main results of this paper are theorems 2, 3 and 4.

All manifolds and maps are assumed to be infinitely differentiable, we fix one Weil algebra A. For any $g \in C^{\infty}(\mathbb{R}^k, \mathbb{R})$ and any multiindex $\beta = (\beta_1, \dots, \beta_k)$, we denote by

$$D_{\beta}(g)(z) = \frac{1}{\beta!} \frac{\partial^{|\beta|}g}{(\partial z_{1})^{\beta_{1}} \cdots (\partial z_{k})^{\beta_{k}}}(z)$$

the partial derivative with respect to the multiindex β of g.

2. The natural transformations $T^A \circ T^* \to T^* \circ T^A$.

2.1. Preliminaries

For any $k \ge 2$, we denote by N_A^k the ideal of A generated by the products of k elements of N_A .

Proposition 2.1. There is one and only one natural integer $h \ge 1$ such that, $N_A^h \ne 0$ and $N_A^{h+1} = 0$. It is called the height of A.

Proof. See [3, 5].

Vol. 3 (2018) Characterization of some transformations between $T^A \circ T^*$ and $T^* \circ T^A$.

We put $e_0 = 1_A$, for each multiindex $\alpha \neq 0$ the vector $e_\alpha = j^A(x^\alpha)$ is an element of N_A . Therefore, for any $\varphi \in C^\infty(\mathbb{R}^n, \mathbb{R})$ we have

$$j^{A}\varphi = \varphi\left(0\right) \cdot \mathbf{1}_{A} + \sum_{1 \le |\alpha| \le h} \frac{1}{\alpha!} \cdot D_{\alpha}(\varphi)\left(0\right) e_{\alpha}$$

It follows that the family $\{e_{\alpha}\}_{1 \leq |\alpha| \leq h}$ generates the ideal N_A . We denote by B_A the set of all multiindices such that $\{e_{\alpha}\}_{\alpha \in B_A}$ is a basis of N_A and \overline{B}_A its complementary with respect to the set of all multiindices $\mu \in \mathbb{N}^n$ such that $1 \leq |\mu| \leq h$. For $\beta \in \overline{B}_A$, we have $e_{\beta} = \sum_{\mu \in B_A} \lambda_{\beta}^{\mu} e_{\mu}$.

By this formula, we deduce that:

$$j^{A}\varphi = \varphi\left(0\right) \cdot 1_{A} + \sum_{\alpha \in B_{A}} \left[\frac{1}{\alpha!} \cdot D_{\alpha}(\varphi)\left(0\right) + \sum_{\beta \in \overline{B}_{A}} \frac{\lambda_{\beta}^{\alpha}}{\beta!} \cdot D_{\beta}(\varphi)\left(0\right) \right] e_{\alpha}$$
(1)

Corollary 2.2. Let $\varphi, \psi \in C^{\infty}(\mathbb{R}^n, M)$, the following assertions are equivalent:

- (i) $j^A \varphi = j^A \psi$
- (ii) $\varphi(0) = \psi(0) = x$ and for any chart (U, x^i) of M in x we have: $\frac{1}{\alpha!} D_{\alpha}(x^i \circ \varphi)(0) + \sum_{\beta \in \overline{B}_A} \frac{\lambda_{\beta}^{\alpha}}{\beta!} D_{\beta}(x^i \circ \varphi)(0) = \frac{1}{\alpha!} D_{\alpha}(x^i \circ \psi)(0) + \sum_{\beta \in \overline{B}_A} \frac{\lambda_{\beta}^{\alpha}}{\beta!} D_{\beta}(x^i \circ \psi)(0)$ where $1 \leq i \leq m$ and $\alpha \in \overline{P}$.

where $1 \leq i \leq m$ and $\alpha \in B_A$.

Remark 2.3. Let (U, x^i) be a local coordinate system of M, the local coordinate system $(\overline{x}^i, \overline{x}^i_{\alpha})$ of $T^A M$ over the open $T^A U$ is such that,

$$\begin{cases} \overline{x}^{i} = x_{0}^{i} \\ \overline{x}_{\alpha}^{i} = x_{\alpha}^{i} + \sum_{\beta \in \overline{B}_{A}} \lambda_{\beta}^{\alpha} \cdot x_{\beta}^{i} \end{cases}$$
(2)

where $x_0^i(j^A\varphi) = x^i(\varphi(0))$ and $x_\alpha^i(j^A\varphi) = \frac{1}{\alpha!} \cdot D_\alpha(x^i \circ \varphi)(z)|_{z=0}$. It is called an adapted coordinate system associated to (U, x^i) . In the sequel, the same symbol x^i will be used both for a function $U \to \mathbb{R}$ and for the composite function $T^A U \to U \to \mathbb{R}$. The latter function may also be written as the pullback $\pi^*_{A,U}(x^i)$.

2.2. The canonical isomorphisms between $T^A E^*$ and $(T^A E)^*$

Let p be a linear form on A. The mapping $\hat{p}: (a,b) \mapsto p(ab)$ is bilinear symmetric and satisfies $\hat{p}(ab,c) = \hat{p}(a,bc)$

Definition 2.4. We say that the linear form p is nondegenerate if the bilinear form \hat{p} is nondegenerate. The pair (A, p) is called a Weil-Frobenius algebra.

We denote by \mathcal{D}_m the category of vector bundles with *m*-dimensional base and vector bundle isomorphisms with identity as base maps. We denote by T^A , the covariant functor $T^A : \mathcal{D}_m \to \mathcal{VB}$ from the category \mathcal{D}_m into the category \mathcal{VB} of all vector bundles and their vector bundle homomorphisms, such that

$$T^{A}(E,M,\pi) = \left(T^{A}E, T^{A}M, T^{A}\pi\right) \text{ and } T^{A}\left(id_{M},f\right) = \left(id_{T^{A}M}, T^{A}f\right)$$

for any \mathcal{D}_m -objet (E, M, π) and \mathcal{D}_m -morphism (id_M, f) ([3]). For a linear form $p: A \to \mathbb{R}$ and the vector bundle (E, M, π) , we consider the natural vector bundle morphism

$$\tau^p_{A,E}: T^A E^* \to \left(T^A E\right)^* \tag{3}$$

defined for any $j^A \varphi \in T^A E^*$ and $j^A \psi \in T^A E$ by:

$$\tau_{A,E}^{p}\left(j^{A}\varphi\right)\left(j^{A}\psi\right) = p\left(j^{A}\left(\langle\psi,\varphi\rangle_{E}\right)\right) \tag{4}$$

where $\langle \psi, \varphi \rangle_E : \mathbb{R}^n \to \mathbb{R}, \ z \mapsto \langle \psi(z), \varphi(z) \rangle_E$ and $\langle \cdot, \cdot \rangle_E$ the canonical pairing. We have **Proposition 2.5.** For any \mathcal{D}_m -morphism $f: E_1 \to E_2$, the diagram

commutes.

Proof. Let $j^A \varphi \in T^A E_2^*$ and $j^A \psi \in T^A E_1$ over $T^A M$. We have:

On the other hand,

$$\begin{aligned} \tau^{p}_{A,E_{1}} \circ T^{A} f^{*} \left(j^{A} \varphi \right) \left(j^{A} \psi \right) &= \tau^{p}_{A,E_{1}} \left(j^{A} \left(f^{*} \circ \varphi \right) \right) \left(j^{A} \psi \right) \\ &= p \left(j^{A} \left(\langle \psi, f^{*} \circ \varphi \rangle_{E_{1}} \right) \right) \\ &= \left(T^{A} f \right)^{*} \circ \tau^{p}_{A,E_{2}} \left(j^{A} \varphi \right) \left(j^{A} \psi \right) \end{aligned}$$

It follows that $(T^A f)^* \circ \tau^p_{A, E_2} = \tau^p_{A, E_1} \circ T^A f^*$. Thus $\tau^p_{A, E} : T^A E^* \to (T^A E)^*$ is a natural homomorphism of vector bundles.

Remark 2.6. (*Local expression of* $\tau_{A,E}^p$). Let (η_1, \dots, η_k) be a basis of local sections of E and (η^1, \dots, η^k) be the dual basis of local sections of $\pi_* : E^* \to M$. We have an adapted coordinate systems (x^i, y^j) in E, (x^i, u_j) in E^* , $(x^i, y^j, \overline{x}^i_\alpha, \overline{y}^j_\alpha)$ in $T^A E$, $(x^i, u_j, \overline{x}^i_\alpha, \overline{u}^\alpha_j)$ in $T^A E^*$ and $(x^i, w_j, \overline{x}^i_\alpha, \overline{w}^\alpha_j)$ in $(T^A E)^*$. Locally, we have

$$\tau_{A,E}^{p}\left(x^{i}, u_{j}, \overline{x}_{\alpha}^{i}, \overline{u}_{j}^{\alpha}\right) = \left(x^{i}, w_{j}, \overline{x}_{\alpha}^{i}, \overline{w}_{j}^{\alpha}\right) \text{ with } \begin{cases} w_{j} = u_{j}p_{0} + \sum_{\alpha \in B_{A}} \overline{u}_{j}^{\alpha}p_{\alpha} \\ \overline{w}_{j}^{\alpha} = \sum_{\beta \in B_{A}} \overline{u}_{j}^{\beta-\alpha}p_{\beta} \end{cases}$$

where $p(e_{\gamma}) = p_{\gamma}$.

Theorem 2.7. There is a bijective correspondence between the set of all the natural isomorphism of vector bundles $\tau_{A,E}: T^A E^* \to (T^A E)^*$ satisfying, for any $a, b \in A$

$$\tau_{A,\mathbb{R}}\left(a\right)\left(b\right) = \tau_{A,\mathbb{R}}\left(1_{A}\right)\left(ab\right) \tag{5}$$

and the set of all the linear and nondegenerate maps of A.

Proof. For the first part, see [7]. Inversely, let $\tau_{A,E} : T^A E^* \to (T^A E)^*$ be the canonical vector bundle isomorphism verifying (1.5). The map $\tau_{A,\mathbb{R}} : A \to A^*$ denoted by \overline{p} is a vector space isomorphism. It induces the linear map

$$p: A \to \mathbb{R} \\ a \to \overline{p}(1_A)(a)$$

We consider the bilinear symmetric map induced by p denoted \hat{p} and defined in the following way: $\hat{p}: (a, b) \mapsto p(1_A)(ab)$. By the equality (1.5), it follows that \hat{p} is nondegenerate. Let $\tau_{A,E}^p$ be a natural transformation defined by p. For any vector space V, using the equation (1.5) we have $\tau_{A,V}^p = \tau_{A,V}$. The equality $\tau_{A,E}^p = \tau_{A,E}$ comes by calculation in local coordinates.

Remark 2.8. The theorem above, shows in particular that: a natural vector bundle morphisms $T^A E^* \to (T^A E)^*$ (satisfying (1.5)) is a natural equivalence if and only if A is a Weil-Frobenius algebra.

Example 2.9. (i) For $A = \mathbb{D}$, consider the linear map $p_{\mathbb{D}} : \mathbb{D} \to \mathbb{R}$ given by

$$p_{\mathbb{D}}(j_0^1\varphi) = \frac{d}{dt} \left(\varphi(t)\right)|_{t=0}$$

We have the natural isomorphism $\tau_{\mathbb{D},E}^{p_{\mathbb{D}}} = I_E : TE^* \to (TE)^*$, called the Swap map of E.

(ii) For $A = J_0^r(\mathbb{R}, \mathbb{R})$ and the linear form ς_r^1 is non degenerate, it induces the natural vector bundle isomorphism $I_E^r: T^r E^* \to (T^r E)^*$, ([6]). The local expression of I_E^r is of the form:

$$I_E^r(x^i, u_j, x_\beta^i, u_j^\beta) = (x^i, w_j, x_\beta^i, w_j^\beta) \quad \text{with} \quad \left\{ \begin{array}{ll} w_j &=& u_j^r \\ w_j^\beta &=& u_j^{r-j} \end{array} \right.$$

For an arbitrary linear map $p: A \to \mathbb{R}$ non necessarily nondegenerate, it induces the natural vector bundle morphism $\tau_{A,E}^p: T^A E^* \to (T^A E)^*$ over $\operatorname{id}_{T^A M}$ non necessarily bijective.

Corollary 2.10. There is a bijective correspondence between the set of all the natural vector bundle morphisms $\tau_{A,E}: T^A E^* \to (T^A E)^*$ verifying (1.5) and the set A^* .

For each $1 \leq |\alpha| \leq h$, we consider the linear map $\varsigma_A^{\alpha} : A \to \mathbb{R}$ defined by:

$$S_A^{\alpha}(j^A\varphi) = \frac{1}{\alpha!} D_{\alpha}\left(\varphi\right)(z)|_{z=0}$$

It induces the vector bundle morphism $\tau^{\alpha}_{A,E}: T^A E^* \to (T^A E)^*$ over $\operatorname{id}_{T^A M}$. Let (x^i, u^j) be an adapted local coordinate system of E, the local expression of the bundle map $\tau^{\alpha}_{A E}: T^{A}E^{*} \to (T^{A}E)^{*}$ takes the form

$$\tau_{A,E}^{\alpha}\left(x^{i}, u_{j}, \overline{x}_{\beta}^{i}, \overline{u}_{j}^{\beta}\right) = \left(x^{i}, w_{j}, \overline{x}_{\beta}^{i}, \overline{w}_{j}^{\beta}\right) \text{ with } \begin{cases} w_{j} &= \overline{u}_{j}^{\alpha} \\ \overline{w}_{j}^{\beta} &= \overline{u}_{j}^{\alpha-\beta} \end{cases}$$

We denote by * the covariant functor from \mathcal{D}_m into \mathcal{D}_m defined by:

$$*(E, M, \pi) = (E^*, M, \pi_*)$$
 and $*(id_M, f) = (id_M, ({}^tf)^{-1})$

Corollary 2.11. All natural transformations of $T^A \circ * \to * \circ T^A$ verifying (1.5) are of the form

$$p_0\tau^0_{A,*} + \sum_{1 \le |\alpha| \le h} p_\alpha \cdot \tau^\alpha_{A,*} \tag{6}$$

where p_0 , p_{α} are the real numbers.

Proof. Let $\tau_A: T^A \circ * \to * \circ T^A$ be a natural transformations verifying (1.5), it induces a linear map $p: A \to \mathbb{R}$. This linear map has the form

$$p_0\varsigma_A^0 + \sum_{1 \le |\alpha| \le h} p_\alpha\varsigma_A^\alpha$$

So we have the result.

Corollary 2.12. For all $k \geq 2$ and $r \geq 1$, do not exist a natural equivalence between $T_k^r E^*$ and $(T_k^r E)^*$ verifying (1.5). In particular $J_0^r(\mathbb{R}^k,\mathbb{R})$ is not a Weil-Frobenius algebra.

Proof. See [9].

Afr. J. Pure Appl. Math.

2.3. Main results.

For each manifold M, there is a canonical diffeomorphism (see [3, 5])

$$\kappa^A_M: T^ATM \to TT^AM$$

which is an isomorphism of vector bundles

$$T^{A}(\pi_{M}): T^{A}TM \to T^{A}M \quad \text{and} \quad \pi_{T^{A}M}: TT^{A}M \to T^{A}M$$

such that, $\pi_{T^AM} \circ \kappa_M^A = T^A(\pi_M)$. In particular, for any $f \in C^\infty(M, N)$ we have

$$\kappa_N^A \circ T^A T f = T T^A f \circ \kappa_M^A$$

Let $p: A \to \mathbb{R}$ be a linear map, it induces the natural vector bundle morphism $\tau_{A,.}^p: T^A \circ * \to * \circ T^A$. For any manifold M of dimension m, we consider the vector bundle morphism

$$\varepsilon_{A,M}^{p} = \left[\left(\kappa_{M}^{A} \right)^{-1} \right]^{*} \circ \tau_{A,TM}^{p} : T^{A}T^{*}M \to T^{*}T^{A}M.$$

It is clear that the family of maps $\left(\varepsilon_{A,M}^{p}\right)$ defines a natural transformation between the functors $T^{A} \circ T^{*}$ and $T^{*} \circ T^{A}$ on the category $\mathcal{M}f_{m}$ and denoted

$$\varepsilon^p_{A*}: T^A \circ T^* \to T^* \circ T^A.$$

When p is nondegenerate, the mapping $\varepsilon_{A,M}^p$ is a vector bundle isomorphism over id_{T^AM} . In local coordinate system $\{x^1, \dots, x^m\}$ of M, we introduce the coordinates (x^i, \dot{x}^i) in TM, (x^i, π_i) in T^*M , $(x^i, \dot{x}^i, \bar{x}^i_{\beta}, \bar{x}^i_{\beta})$ in T^ATM , $(x^i, \pi_j, \bar{x}^i_{\beta}, \bar{\pi}^\beta)$ in T^AT^*M , $(x^i, \bar{x}^i_{\beta}, \dot{x}^i, \dot{x}^i_{\beta})$ in TT^AM and $(x^i, \bar{x}^i_{\beta}, \bar{\xi}_j, \bar{\xi}^\beta_j)$ in T^*T^AM . We have:

$$\kappa_M^A\left(x^i, \dot{x}^i, \overline{x}^i_\beta, \overline{\dot{x}^i_\beta}\right) = \left(x^i, \overline{x}^i_\beta, \dot{x}^i, \overline{\dot{x}^i_\beta}\right)$$

with $\overline{\dot{x}^i_\beta} = \dot{\overline{x}}^i_\beta$. It follows that

$$\varepsilon_{A,M}^{p}\left(x^{i},\pi_{j},\overline{x}_{\beta}^{i},\overline{\pi}_{j}^{\beta}\right) = \left(x^{i},\overline{x}_{\beta}^{i},\overline{\xi}_{j},\overline{\xi}_{j}^{\beta}\right) \quad \text{with} \quad \begin{cases} \overline{\xi}_{j} = \pi_{j}p_{0} + \sum_{\mu \in B_{A}} \overline{\pi}_{j}^{\mu}p_{\mu} \\ \overline{\xi}_{j}^{\beta} = \sum_{\mu \in B_{A}} \overline{\pi}_{j}^{\mu-\beta}p_{\mu} \end{cases}$$
(7)

Example 2.13. (i) When $A = \mathbb{D}$ and $p_{\mathbb{D}} : \mathbb{D} \to \mathbb{R}$, $j_0^1 \varphi \mapsto \frac{d}{dt} (\varphi(t)) |_{t=0}$ we have the natural isomorphism of Tulczyjew $\varepsilon_M : TT^*M \to T^*TM$, (see [5]). For the linear map $p_0(j_0^1\gamma) = \gamma(0)$, we obtain the natural vector bundle morphisms ε_M^0 such that locally,

$$\varepsilon_{M}^{0}\left(x^{i},\pi_{i},\dot{x}^{i},\dot{\pi}_{i}
ight)=\left(x^{i},\dot{x}^{i},\pi_{i},0
ight)$$
 .

(ii) If $A = J_0^1(\mathbb{R}^p, \mathbb{R})$ and $p_{J_0^1(\mathbb{R}^p, \mathbb{R})} : J_0^1(\mathbb{R}^p, \mathbb{R}) \to \mathbb{R}$, $j_0^1\varphi \mapsto \varphi(0) + \sum_{i=1}^p \frac{\partial\varphi}{\partial x^i}(0)$, we have the natural vector bundle morphism $\varepsilon_{p,M}^1 : T_p^1T^*M \to T^*T_p^1M$ defined in [12]. In local coordinate,

$$\varepsilon_{p,M}^{1}\left(x^{i},\pi_{i},x_{\beta}^{i},\pi_{i}^{\beta}\right) = \left(x^{i},x_{\beta}^{i},\xi_{i},\xi_{i}^{\beta}\right) \text{ with } \begin{cases} \xi_{i} = \sum_{|\alpha|=1} \pi_{i}^{\alpha}\\ \xi_{i}^{\beta} = \pi_{i} \end{cases}$$

(iii) If $A = J_0^r(\mathbb{R}, \mathbb{R})$, and $p_{J_0^r(\mathbb{R}, \mathbb{R})} : J_0^r(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$, $j_0^r \varphi \mapsto \frac{1}{r!} \cdot \frac{d^r}{dt^r}(\varphi(t))|_{t=0}$, we have the natural vector bundle isomorphism $\varepsilon_M^r : T^r T^* M \to T^* T^r M$ defined in [2].

(iv) When $A = J_0^r(\mathbb{R}^k, \mathbb{R})$ and the linear form on $J_0^r(\mathbb{R}^k, \mathbb{R})$ defined by

$$p_{J_0^r(\mathbb{R}^k,\mathbb{R})}\left(j_0^r\varphi\right) = \sum_{|\alpha|=r} \frac{1}{\alpha!} D_\alpha(\varphi)(z)|_{z=0}.$$

We deduce the natural transformations $\varepsilon_{k,M}^r: T_k^r T^*M \to T^*T_k^r M$ such that locally

$$\varepsilon_{k,M}^{r}\left(x^{i},\pi_{i},x_{\beta}^{i},\pi_{i}^{\beta}\right) = \left(x^{i},x_{\beta}^{i},\xi_{i},\xi_{i}^{\beta}\right) \quad \text{where} \quad \begin{cases} \xi_{i} = \sum_{|\alpha|=r} \pi_{i}^{\alpha} \\ \xi_{i}^{\beta} = \sum_{|\alpha|=r} \pi_{i}^{\alpha-\beta} \end{cases}$$

Let D be a derivation of A, for any real number t, $D_t = \exp(tD) \in \operatorname{Aut}(A)$, where Aut (A) is the group of all automorphisms of A. It is a Lie subgroup of Lie group GL(A). The map $D_t : A \to A$ is an automorphism of A, it induces a natural transformation $\widetilde{D}_{t,M} : T^A M \to T^A M$. On the other hand, the multiplication of the tangent vectors of M by reals is a map $\mathfrak{m}_{TM} : \mathbb{R} \times TM \to TM$. Applying the Weil functor T^A , we obtain $T^A(\mathfrak{m}_{TM}) : A \times T^A TM \to T^A TM$. Let $c \in A$, we put

$$\operatorname{af}_{M}(c) = \kappa_{M}^{A} \circ T^{A}(\mathfrak{m}_{TM})(c, \cdot) \circ (\kappa_{M}^{A})^{-1},$$

it is a natural tensor of type (1,1) on T^AM , called affinor. In [5], one shows that, all natural transformations $T \circ T^A \to T \circ T^A$ are of the form af $(c) + T\left(\widetilde{D}_t\right)$, where $t \in \mathbb{R}$.

Theorem 2.14. Let (A, p) be a Weil-Frobenius algebra. All natural transformations $\theta_A : T^A \circ T^* \to T^* \circ T^A$ are of the form

$$T^*\left(\widetilde{D}_t\right) \circ \varepsilon_A^p + \left(\operatorname{af}\left(c\right)\right)^* \circ \varepsilon_A^p \tag{8}$$

where $c \in A$, $t \in \mathbb{R}$ and D a derivation of A.

Proof. Let $\theta_A : T^A \circ T^* \to T^* \circ T^A$ be a natural transformation, $\theta_A \circ (\varepsilon_A^p)^{-1} = \varphi_{A,p}$: $T^* \circ T^A \to T^* \circ T^A$ is a natural transformation. We obtain a natural transformation $\varphi_{A,p}^* :$ $T \circ T^A \to T \circ T^A$, it exists a derivation D of A and $c \in A$ such that $\varphi_{A,p}^* = \operatorname{af}(c) + T\left(\widetilde{D}_t\right)$, for a real number t. We obtain $\theta_A = T^*\left(\widetilde{D}_t\right) \circ \varepsilon_A^p + (\operatorname{af}(c))^* \circ \varepsilon_A^p$.

Corollary 2.15. Let (A, p) be a Weil-Frobenius algebra. All natural isomorphisms on a manifold $M, T^AT^*M \to T^* \circ T^AM$ are of the form

$$T^*(\widetilde{D}_{t,M}) \circ \varepsilon^p_{A,M}$$

where $t \in \mathbb{R}$ and D a derivation of A.

Corollary 2.16. All natural morphisms $TT^*M \to T^*TM$ are of the form

$$aT^*(F_{t,M}) \circ \varepsilon_M + b\varepsilon_M + c\varepsilon_M^0$$

where $F_{t,M}$ is a one parameter subgroup of the Euler vector field on TM, a, b, c are real numbers and $t \neq 0$.

Proof. We recall that $\mathbb{D} \simeq \mathbb{R}^2$, the structure of Weil algebra is given by:

$$(x_0, x_1) \cdot (y_0, y_1) = (x_0 y_0, x_0 y_1 + x_1 y_0)$$

Let D be a derivation of \mathbb{R}^2 . The natural transformation \widetilde{D}_t associated is given by:

$$D_{t,M} = \alpha F_{t,M}.$$

Afr. J. Pure Appl. Math.

On the other hand, any affinor is of the form $\beta \operatorname{id}_{TTM} + c \cdot \operatorname{af}_M(e_1)$, with $e_1 = (0, 1)$. It follows that the natural morphism

$$\theta_M: TT^*M \to T^*TM$$

is given by:

$$\theta_M = \alpha T^* (F_{t,M}) \circ \varepsilon_M + (\alpha + \beta) \varepsilon_M + b \varepsilon_M^0,$$

because $(\operatorname{af}_M(e_1))^* \circ \varepsilon_M = \varepsilon_M^0$.

Let (e_0, \dots, e_r) the canonical basis of $A = J_0^r(\mathbb{R}, \mathbb{R})$. For $0 \le \alpha \le r$ and a manifold M, we put:

$$\begin{cases} \varepsilon_M^0 &= \left[\left(\kappa_M^r \right)^{-1} \right]^* \circ \tau_{A,TM}^0 \\ \varepsilon_M^\alpha &= \left[\left(\kappa_M^r \right)^{-1} \right]^* \circ \tau_{A,TM}^\alpha \end{cases}$$

Consider the linear map $\phi_{\alpha}: J_0^r(\mathbb{R}, \mathbb{R}) \to J_0^r(\mathbb{R}, \mathbb{R})$ defined by

$$\begin{cases} \phi_{\alpha} \left(e_{0} \right) &= 0\\ \phi_{\alpha} \left(e_{\beta+1} \right) &= \frac{\left(\alpha+\beta \right)!}{\alpha!\beta!} e_{\alpha+\beta} \end{cases}$$

is a derivation, it induces a one parameter subgroup of a vector field on T^rM denoted by $\phi^t_{\alpha,M}: T^rM \to T^rM$.

Proposition 2.17. Any derivation $\phi: J_0^r(\mathbb{R}, \mathbb{R}) \to J_0^r(\mathbb{R}, \mathbb{R})$ is of the form

$$\phi = \sum_{\beta=1}^{r} a_{\beta} \cdot \phi_{\beta}$$

where a_1, \cdots, a_r are real numbers.

Proof. For any $\alpha = 0, \dots, r$, we have $e_0 \cdot e_\alpha = e_\alpha$, therefore $\phi(e_\alpha) \cdot e_0 + \phi(e_0) \cdot e_\alpha = \phi(e_\alpha)$. It follows that

$$\phi(e_0) \cdot e_\alpha = 0, \quad \forall \alpha = 0, \cdots, n$$

So that, $\phi(e_0) = 0$. We put,

$$\phi\left(e_{1}\right) = \sum_{\beta=0}^{r} a_{\beta} e_{\beta}$$

with a_0, a_1, \dots, a_r are the real numbers. Using the relation $e_1 \cdot e_1 = 2e_2$, we have

$$\phi(e_2) = \phi(e_1) \cdot e_1 = \sum_{\beta=0}^{r-1} (\beta+1) a_{\beta} e_{\beta+1}$$

By the same way, $e_2 \cdot e_1 = 3e_3$, it follows that, $3\phi(e_3) = \phi(e_2) \cdot e_1 + \phi(e_1) \cdot e_2$. Now

$$\phi(e_2) \cdot e_1 = \sum_{\substack{\beta=0\\r-2}}^{r-2} (\beta+1) (\beta+2) a_{\beta} e_{\beta+2}$$

$$\phi(e_1) \cdot e_2 = \sum_{\substack{\beta=0\\\beta=0}}^{r-2} \frac{(\beta+1)(\beta+2)}{2} a_{\beta} e_{\beta+2}$$

We deduce that,

$$\phi(e_2) \cdot e_1 + \phi(e_1) \cdot e_2 = \sum_{\beta=0}^{r-2} 3 \frac{(\beta+1)(\beta+2)}{2} a_\beta e_{\beta+2}$$

So,

$$\phi(e_3) = \sum_{\beta=0}^{n-2} \frac{(\beta+1)(\beta+2)}{2} a_{\beta} e_{\beta+2}$$

Looking the expressions of $\phi(e_1)$, $\phi(e_2)$ and $\phi(e_3)$ we put

$$\phi(e_{\alpha}) = \sum_{\beta=0}^{r-\alpha+1} \frac{(\alpha+\beta-1)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta-1}$$

By induction, using the relation $e_{\alpha} \cdot e_1 = (\alpha + 1) e_{\alpha+1}$, we obtain,

$$(\alpha + 1) \phi(e_{\alpha+1}) = \phi(e_{\alpha}) \cdot e_1 + \phi(e_1) \cdot e_{\alpha}$$

Now,

$$\phi(e_{\alpha}) \cdot e_{1} = \sum_{\beta=0}^{r-\alpha+1} \frac{(\alpha+\beta-1)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta-1} \cdot e_{1} = \sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta}$$
$$\phi(e_{1}) \cdot e_{\alpha} = \sum_{\beta=0}^{r} a_{\beta} e_{\beta} \cdot e_{\alpha} = \sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}$$

We deduce that

$$\phi(e_{\alpha}) \cdot e_{1} + \phi(e_{1}) \cdot e_{\alpha} = \sum_{\beta=0}^{r-\alpha} \frac{(\alpha+1)(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}$$

Thus,

$$\phi\left(e_{\alpha+1}\right) = \sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}$$

On the other hand, $\phi(e_r) = a_0 e_{r-1} + a_1 e_r$ and $e_r \cdot e_1 = 0$. So that $\phi(e_r) \cdot e_1 + \phi(e_1) \cdot e_r = 0$. As

$$\phi(e_r) \cdot e_1 = ra_0 e_r \phi(e_1) \cdot e_r = a_0 e_r$$

It follows that $a_0 = 0$. So that, for any $\alpha = 0, \dots, r-1$, we have

$$\phi(e_{\alpha+1}) = \sum_{\beta=1}^{r-\alpha} a_{\beta} \frac{(\alpha+\beta)!}{\beta!\alpha!} e_{\alpha+\beta} = \sum_{\beta=1}^{r-\alpha} a_{\beta} \phi_{\beta}(e_{\alpha+1})$$

Thus, we obtain the result.

Theorem 2.18. All natural vector bundle morphisms $T^rT^*M \to T^*T^rM$ are of the form

$$\sum_{\alpha=1}^{r} a_{\alpha} T^* \left(\phi_{\alpha,M}^t \right) \circ \varepsilon_M^r + \sum_{\beta=0}^{r-1} b_{\beta} \varepsilon_M^{\beta}$$

where a_{α}, b_{β}, t are real numbers.

Proof. Any derivation $\phi: J_0^r(\mathbb{R}, \mathbb{R}) \to J_0^r(\mathbb{R}, \mathbb{R})$ is a \mathbb{R} -linear combination of the maps ϕ_{α} . The rest of the proof comes from the formula $\varepsilon_M^{\alpha} = (\operatorname{af}_M(e_{\alpha}))^* \circ \varepsilon_M^r$, for any $\alpha = 0, \dots r - 1$.

Corollary 2.19. All natural isomorphisms on a manifold M, $T^rT^*M \to T^* \circ T^rM$ are of the form

$$\sum_{\alpha=1}^{r} a_{\alpha} T^* \left(\phi_{\alpha,M}^t \right) \circ \varepsilon_M^r$$

where $a_{\alpha}, t \in \mathbb{R}$.

3. Applications: Lifts of 1-forms to Weil bundles revisited

In this section, we fix the linear map $p: A \to \mathbb{R}$ and $\varepsilon_{A,*}^p$ the natural transformation $T^A \circ T^* \to T^* \circ T^A$ such that: for any manifold M, $\varepsilon_{A,M}^p = [(\kappa_M^A)^{-1}]^* \circ \tau_{A,TM}^p$.

3.1. Prolongations of 1-forms

Let $\omega \in \Omega^1(M)$, we put:

$$\omega^{(p)} = \varepsilon^p_{A,M} \circ T^A \omega \tag{9}$$

 $\omega^{(p)}$ is a 1-form on $T^A M$. If locally $\omega = \omega_i dx^i$ then we have:

$$\omega^{(p)} = \left(\omega_i p_0 + \sum_{\gamma \in B_A} \overline{\omega}_i^{(\gamma)} p_\gamma\right) dx^i + \sum_{\beta \in B_A} \left(\sum_{\mu \in B_A} \overline{\omega}_i^{(\mu-\beta)} p_\mu\right) d\overline{x}_\beta^i \tag{10}$$

with

$$\begin{cases}
\overline{\omega}_{i}^{(\gamma)} = \omega_{i}^{(\gamma)} + \sum_{\nu \in \overline{B}_{A}} \lambda_{\nu}^{\gamma} \omega_{i}^{(\nu)} \\
\overline{\omega}_{i}^{(\mu-\beta)} = \omega_{i}^{(\mu-\beta)} + \sum_{\alpha \in \overline{B}_{A}} \lambda_{\alpha}^{\mu} \omega_{i}^{(\alpha-\beta)}
\end{cases}$$
(11)

Definition 3.1. The differential form $\omega^{(p)}$ defined on T^AM is called p-prolongation of ω from M to T^AM

Example 3.2. (i) Case where $A = \mathbb{D}$. (see [4])

(a) For the linear map $p = 1_{\mathbb{D}} : \mathbb{D} \to \mathbb{R}$, $j_0^1 \gamma \mapsto \gamma(0)$ the local expression of $\omega^{(1_{\mathbb{D}})}$ is given by:

$$\omega^{(1_{\mathbb{D}})} = \omega_i dx^i$$

The 1-form $\omega^{(1_{\mathbb{D}})}$ coincide with the vertical lift of ω from M to TM.

(b) For $p = p_{\mathbb{D}}$ as defined in example 2, we have $p_0 = 0$ and $p_1 = 1$, so

$$\omega^{(p_{\mathbb{D}})} = \frac{\partial \omega_i}{\partial x^k} \dot{x}_k dx^i + \omega_i d\dot{x}^i$$

The 1-form $\omega^{(p_{\mathbb{D}})}$ coincide with the complete lift of ω from M to TM. (ii) **Case where** $A = J_0^r(\mathbb{R}^k, \mathbb{R})$. For the linear map $p = \varsigma_{\alpha}^k : j_0^r g \mapsto \frac{1}{\alpha!} D_{\alpha}(g(t))|_{t=0}$ we have $p_{\gamma} = 0$ for $\gamma \neq \alpha$ and $p_{\alpha} = 1$. So using the equation (2.2) we deduce that:

$$\omega^{\left(\varsigma_{\alpha}^{k}\right)} = \omega_{i}^{\left(\alpha\right)} dx^{i} + \sum_{1 \le |\beta| \le r} \omega_{i}^{\left(\alpha - \beta\right)} dx_{\beta}^{i} = \sum_{0 \le |\beta| \le r} \omega_{i}^{\left(\alpha - \beta\right)} dx_{\beta}^{i}$$

Thus $\omega^{(\varsigma_{\alpha}^k)}$ coincide with the α -prolongation of differential form ω from M to $T_k^T M$ defined in [10].

(iii) General case. For the linear map $p = \varsigma_A^{\alpha} : j^A \varphi \mapsto \frac{1}{\alpha!} D_{\alpha}(\varphi(z))|_{z=0}$ with $\alpha \in B_A$ and $\varphi \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ we have: $p_{\gamma} = 0$ for $\gamma \neq \alpha$ and $p_{\alpha} = 1$. Thus

$$\omega^{(\varsigma_A^{\alpha})} = \overline{\omega}_i^{(\alpha)} dx^i + \sum_{\beta \in B_A} \overline{\omega}_i^{(\alpha-\beta)} d\overline{x}_{\beta}^i$$

The differential form $\omega^{(\varsigma^{\alpha}_{A})}$ coincides with the α -prolongation of differential form defined in [3].

Vol. 3 (2018) Characterization of some transformations between $T^A \circ T^*$ and $T^* \circ T^A$.

3.2. The symplectomorphisms $\varepsilon^p_{A,M}: T^AT^*M \to T^*T^AM$

Let Ω be a 2 form on M. It induces the vector bundle morphism $\Omega^{\sharp}: TM \to T^*M$. We put:

$$\left(\Omega^{\sharp}\right)^{(p)} = \varepsilon^{p}_{A,M} \circ T^{A} \left(\Omega^{\sharp}\right) \circ \left(\kappa^{A}_{M}\right)^{-1}$$
(12)

The $T^A M$ -morphism of vector bundles $(\Omega^{\sharp})^{(p)} : TT^A M \to T^*T^A M$ defines a differential form $\Omega^{(p)}$ on $T^A M$ of degree 2 called *p*-prolongation of Ω from M to $T^A M$. If locally $\Omega = \Omega_{ij} dx^i \wedge dx^j$ then:

$$\begin{cases}
\Omega^{(p)} = \Omega_{ij} p_0 dx^i \wedge dx^j + \sum_{\alpha \in B_A} p_\alpha \left(\sum_{\beta \in B_A} \overline{\Omega}_{ij}^{(\alpha - \beta)} \right) dx^i \wedge d\overline{x}_{\beta}^j \\
+ \sum_{\mu, \beta \in B_A} \left(\sum_{\alpha \in B_A} p_\alpha \overline{\Omega}_{ij}^{(\alpha - \beta - \mu)} \right) d\overline{x}_{\mu}^i \wedge d\overline{x}_{\beta}^j
\end{cases}$$
(13)

Example 3.3. In the particular case where $A = J_0^r (\mathbb{R}^k, \mathbb{R})$ and $p = \varsigma_{\alpha}^k$ we have:

$$\Omega^{\left(\varsigma_{\alpha}^{k}\right)} = \Omega_{ij}^{\left(\alpha-\beta-\mu\right)} dx_{\mu}^{i} \wedge dx_{\beta}^{j}$$

It coincides with the α -prolongation of Ω from M to $T_k^r M$ defined in [10].

Example 3.4. If Ω_M is a Liouville 2-form on T^*M defined in local coordinates system (x^i, π_j) by:

$$\Omega_M = dx^i \wedge d\pi_i,$$

then we have:

$$\Omega_M^{(p)} = p_0 dx^i \wedge d\pi_i + \sum_{\alpha \in B_A} p_\alpha dx^i \wedge d\overline{\pi}_i^\alpha + \sum_{\alpha, \beta \in B_A} p_\alpha d\overline{x}_\beta^i \wedge d\overline{\pi}_i^{\alpha - \beta}$$
(14)

It is clear that $d\left(\Omega_M^{(p)}\right) = 0$. Thus the 2-form $\Omega_M^{(p)}$ defines a presymplectic structure on $T^A T^* M$. It is symplectic form if p is nondegenerate.

Theorem 3.5. The vector bundle morphisms $\varepsilon_{A,M}^p$: $T^AT^*M \to T^*T^AM$ is a symplectomorphism between the pre-symplectic manifolds $\left(T^AT^*M, \Omega_M^{(p)}\right)$ and $\left(T^*T^AM, \Omega_{T^AM}\right)$. Where Ω_{T^AM} is a Liouville 2-form on T^*T^AM

Proof. The expression in local coordinate of Liouville 2-form on T^*T^AM is given by:

$$\Omega_{T^{A}M} = dx^{i} \wedge d\pi_{i} + \sum_{\alpha \in B_{A}} d\overline{x}_{\alpha}^{i} \wedge d\overline{\pi}_{i}^{\alpha}$$

$$\left(\varepsilon_{A,M}^{p}\right)_{*} (\Omega_{T^{A}M}) = \sum_{\alpha \in B_{A} \cup \{0\}} d\left(\overline{x}_{\alpha}^{i} \circ \varepsilon_{A,M}^{p}\right) \wedge d\left(\overline{\pi}_{i}^{\alpha} \circ \varepsilon_{A,M}^{p}\right)$$

$$= dx^{i} \wedge d\left(p_{0}\pi_{i} + \sum_{\alpha \in B_{A}} p_{\alpha}\overline{\pi}_{i}^{\alpha}\right) + \sum_{\beta,\alpha \in B_{A}} p_{\alpha}d\overline{x}_{\beta}^{i} \wedge d\overline{\pi}_{i}^{\alpha-\beta}$$

$$= p_{0}dx^{i} \wedge d\pi_{i} + \sum_{\alpha \in B_{A}} p_{\alpha}dx^{i} \wedge d\overline{\pi}_{i}^{\alpha} + \sum_{\beta,\alpha \in B_{A}} p_{\alpha}d\overline{x}_{\beta}^{i} \wedge d\overline{\pi}_{i}^{\alpha-\beta}$$

$$\left(\varepsilon_{A}^{p}\right)_{*} (\Omega_{A} = 0) = \Omega^{(p)}$$

Thus $\left(\varepsilon_{A,M}^{p}\right)_{*}\left(\Omega_{T^{A}M}\right) = \Omega_{M}^{\left(p\right)}.$

Remark 3.6. (i) In particular, when $p = \varsigma_r^1$ we obtain the results of [2].

(ii) When (A, p) is a Weil-Frobenius algebra, the bundle $T^A T^* M$ has a canonical symplectic structure determined by $\left(\varepsilon_{A,M}^p\right)_* (\Omega_{T^AM}) = \Omega_M^{(p)}$. More precisely, in [9], the authors show that: for any Weil algebra A the bundle $T^A T^* M$ has the canonical symplectic structure if and only if A is a Weil-Frobenius algebra.

References

- 1. Abraham, R. and Marsden, J., E. *Foundations of mechanics*, second edition Library of congress cataloging in publication data, October 1987.
- Cantrijn, F., Crampin, M., Sarlet W., and Saunders, D., The canonical isomorphism between T^kT^{*} and T^{*}T^k. C.R. Acad. Sci. Paris, t. **309** (1989), série II, 1509–1514.
- Gancarzewicz, J., Mikulski, W. and Pogoda, Z., Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1–41.
- Gràcia, X., Pons, J., M., and Romàn-Roy, N., Higher order Lagrangian systems: Geometric structures, dynamics, and constraints, J. Math. Phy., 32, No., 10 (1991), 2744-2763.
- Kolar, I., Michor, P. and Slovak, J., Natural operations in differential geometry, Springer-Verlag. 1993.
- Kouotchop Wamba, P., M., Canonical Poisson-Nijenhuis structures on higher order tangent bundles, Annales Polonici Mathematici 111 1 (2014), 21–37.
- Kouotchop Wamba, P., M. and Ntyam, A., Prolongations of Dirac structures related to Weil bundles, Lobatchevskii journal of mathematics, 35 (2014), N° 2, pp 106–121.
- Kurek, J., Natural affinors in higher order cotangent bundle, Archivum Mathematicum (BRNO), Tomus 28 (1992), 175–180.
- Miroslav Doupovec and Miroslav Kureš Some geometric constructions on Frobenius Weil bundles, Differential geometry and its applications 35 (2014), 143–149.
- Morimoto, A., Lifting of some type of tensors fields and connections to tangent bundles of p^r-velocities, Nagoya Math., J. 40 (1970), 13–31.
- Tomáš J., Some classification problems on natural bundles related to Weil bundles. Proc. Conf. Dif. Geom. (2001), University Valencia, published by World Scientific, pp. 297–310.
- 12. Wouafo Kamga, J., *Global prolongation of geometric objets to some jet spaces*, International centre for theoretical physics, Trieste, Italy, november 1997.

P. M. Kouotchop Wamba e-mail: wambapm@yahoo.fr

Alphonse MBA e-mail: alpmba@yahoo.fr Department of Mathematics, Higher Teacher Training College of the University of Yaoundé 1, P.O BOX, 47, Yaoundé, Cameroon.

Submitted: 2 January 2018 Revised: 26 July 2018 Accepted: 3 August 2018

32