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Abstract 

In this thesis, we study the averaging problem for multivalued stochastic differential 

equations and for stochatic differential equations driven by double stochastic integrals. 

The averaging principle consists in showing that the solution of a differential equation 

whose coefficients are pertubed by a process describing a fast motion can be approxi­

amted by that of sorne unperturbed system obtained by averaging out the fluctuations 

arising from the fast motion. This principle play an important raIe in celestiai mechanics, 

oscillation theory, radiophysic and in many others areas. The first mathematical rigorous 

justification of this principle go back to Bogolyubov (1945). Later on, this principle has 

attracted much attention of many researchers and nowdays it is a regular area of research. 

In this work, Chapter 1 deals with a brief historicai overview of previous works. 

In Chapter 2, we extend a result of Liptser and Stoyanov (1990) to reflected stochastic 

differential equations whose solution is constrained to stay in the domain of a convexe 

fUIlction. 

Chapter 3 is devoted to the averaging principle for doube Itô stochastic differential 

equations. Under some conditions introduced in Hashemi and Heunis (1998), we prove 

that the solution of the pertubed equation can be approximated in L 2 by that of the 

averaged one. We hope that the L2-convergence can be impraved to aimost sure one. 

In an Appendix , \ve collect sorne results needed in Chapter 3. 
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Résumé 

Dans cette thèse, on étudie le problème de moyennisation pour les équations différen­

tielles stochastiques multivoques ainsi que pour les équations différentiell<:'B stochastiques 

dirigées par des intégrales stochastiques doubles. Le principe de moyennisation consiste à 

approcher la solution d'une équation différentielle dont les coefficients sont pertubés par 

un processus décrivant un mouvement rapide, par celle de l'équation obtenue en moyen­

nisant les coefficients, ce qui a pour effet de faire disparaître les oscillations dûes au 

processus pertubateur. Ce principe joue un rôle très important en mécanique céleste, en 

théorie des oscillations, en radiophysique et dans d'autres domaines. La première justifi­

cation mathématique rigoureuse de ce principe est dûe à Bogolyubuv (1945). Depuis son 

introduction, le principe de moyennisation a attiré l'attention de nombreux chercheurs 

et constitue aujourd'hui un domaine de recherche très actif. 

Dans ce travail, le Chapitre 1 est consacré à un bref aperçu historique des travaux 

antérieurs. 

Dans le Chapitre 2, nous étendons un résultat de Liptser et Stoyanov (1990) aux 

équations différentielles stochastiques réfléchies dont la solution est contrainte à rester 

dans le domaine d'une fonction convexe. 

Le Chapitre 3 traite du principe de moyennisation pour les équations différentielles 

stochastiques doubles d'Itô. Sous des conditions introduites dans Hashemi et Heunis 

(1998), nous établissons une convergence dans L2 de la solution de l'équation de dé­

part vers celle de l'équation moyennisée. Nous espérons plus tard pouvoir remplacer la 

convergence en probabilité par une convergence presque sûre. 

Dans un Appendice. nous ayons rassemblé quelques résultats dont nous aVOI1'S besoin 

dans le Chapitre 3. 
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Chapter 1 

GENERAL INTRODUCTION 

Let us consider the differential equation perturbed by a function Ç,tl t > 0, assuming 

values in !Rd : 

(1.1 ) 

where a(x, y) is a function jointly continuous in its two arguments. If the function a(x, y) 

does not increase too fast, then it is clear that (Zfh>o converges in any rea..c;;onable sense 

to the constant xo. Thus, one may ask the following question: 

How to trarr"form the time-parameter tin order to get a nondegenerate limit function? 

To this end, it is convenient to put 

Then the equation (1.1) becomes 

(1.2) 

lndeed, the behaviour of on time intervals of order E~l is usually of main interest 

because over sncb i nterTab occur significant changes in system (1.1). For examplc, exit 

from the neighbourhood ;Hl eqllilibriurn position or of a perimEe trajec:tory. The study 
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of the system (1.1) on interval of the form [0, T/ê] is equivalent to that of system (1.2) 

on finite interval [0, Tl. 
The averaging principle consists in showing that the solution XE of the perturbed 

system can be approximated by the solution of sorne unperturbed system as ê goes to 

zero. 

Although the averaging principle ha.:; long been applied to problems of celestial me­

chanics, oscillation theory and radiophysics (see Arnold 1975), no mathematically rigor­

ous justification of it had existed for a long time. The first general result in this area was 

obtained by Bogolyubov (1945), Gikhman (1952), Krasnosel'skii and Krein (1955) who 

studied the averaging principle for ordinary differential equation: 

.t[ = F(X[, t/é), xg = Xo. (1.3) 

They proved the following: If the function F(x, t) is Lipchitz continuons in x uniformly 

with respect to t, bounded and 

1 lT -lim T F(x, t)dt = F(x) 
T~+oo ,0 

(1.4) 

exists uniformly in x, then the solution XE of (1.3) converges to the solution X of the 

unpertu bed system 

We refer the reader to Bogolyubov and Zubarev (1955), Bogolyubov and Mitropolskii 

(1961), Volosov (1962), :\eishtadt (1975, 1976) and Sanders and Verhulst (1985), for a 

detail survey of these re.-:ults and many extensions. 

After the pioneers, sen'ral aut hors dealt with the problem. Thus, nowdays. 

several extensions and problems can be found in the litteratnre. For exam-

pIe, stochastic versions Bogol,\'ubov classical averaging principle ha') heell 

Freidlill alld \-Ventzell (1 qï9) treatcd the averaging problcm fnr stochastic diffenJ.ntial 



equations without drift 

where (çtk~o is a stochastic process. Under a convergence such as that in (lA), they 

showed that the solution of this pertubed equation can be approximated in sorne sense 

by the non-random solution of the averaged equation 

More precisely,they proved that sUPO::;t::;T IX; - Xtl converges in probability to zero as e 

---t 0 if 

~ l T 

a(x, çt)dt ~ a(x) as T -+ +00. 

Liptser and Stoyanov (1990) generalized this result to stochastic differential equations 

with diffusion: 

where W is a Wienner process. This kind of asymptotic behaviour of the pertubed system 

can be viewed as a weak law of large numbers. So it was natural to search for a strong 

large numbers theorem. lndeed, later on, the convergence in probability was improved 

to almost sure convergence by Heunis and Kouritzin (1994) for stochastic differential 

equations without drift and Hashemi and Heunis (1998) for those with diffusion. Let US 

note that a functional central limit type theorem was obtained by Khasminskii (1966) 

who studied the limit behaviour of é-~ (XE - X). 

The first work on the averaging principle for partial differential equations is due to 

Khasminskii (1963). The case of stochastic partial differential equatiorLs was treated by 

Makhno (1980) and Bondarev (1990) arnong others. Recently. 'H'eraging principle for 

raIldoIIl opcrators rccei,'t'd a attention Campillo et al, 2001, Pardon.x itnJ 

Piatnitski 2001, Klcptsyna and Piatllitski 1997, 2002). 
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Lipschitz condition in x uniformly with respect to y : 

la(x,y) - a(xl,y)1 ::; Llx - xii. 

Let us assume that liT lim T a(x,çs)ds = a(x) 
T---+oo 0 

(1.6) 

exists for every x E :!Rd. This is the case, for example, if çt is periodic or is a sum of 

periodic fllllctions. 

We are going to give an heuristic proof of the averaging principle (see Freidlin and 

Wentzell 1984). 

The displacement of the trajectory Xi over a small time ~ can be written in the form 

In view of (1.6), the coefficient of ~ in the first term of the right member converges to 

a(x) as si ~ goes to zero. Since the function a(x, y) is bounded, we have IPé(~)1 ::; K~2. 

It follows that the displacement of the trajectory Xi over a small time differs from the 

displacement of the trajectory t of the differential equation 

only by au infinitely small quantity compared to ~ as il O. ~ -> o. 

Now, let (çt)t>o be (Î srochastic process. \Vc aSSUllle that tlH'rc (:xisls a vcctlJr field 

1i.(J) snch rhat 

(1. 7) 



Let us note that (1. 7) is satified if the pro cess (çtk:::o is ergodic. In this case there exists 

a probability measure v on ]Rd such that 

a(x) r a(x, y)v(dy). 
J/Rd 

If in addition, (çtk:::o is a strictly stationnary process then 

Under the convergence (1. 7), we have 

sup lX; 
t$T 

I~o) as é ---+ O. 

Let us give a sketch of proof for (1.8). To this end let us put 

D.i suplX: - Xsl· 
s$t 

We have 

D.~ < ltla(X:,çs/EJ a(Xs,çs/t:)lds 

< K t D.~ds+ sup 1 r [a(Xu , Çu/J Jo s9 Jo 

By virtue of Gronwall inequality, we deduce that 

sup lX: 
t'S.T 

Ilt 

[a(XS1 Çs/J - a(Xs)]dsl 

a(X u)]dul. 

(1.8) 

The end of the proof is on the fact that ( see FreidIin and \\'entzell 1984, p. 48-51 

or Liptser and ShiryèW\' Hl~9): 

aS:é 0, 
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Heunis and Kouritzin (1994) have irnproved the convergence in (1.8). They considered a 

randorn differerential equatiol1 

xg =Xo 

where {F(x, t), t 2: O} is a strong rnixing process for each x and for each w, the function 

(x,t) ----+ F(x,t,w) is regular enough to ensure the existence of a unique solution ofthis 

equation over 0 ::; t ::; T for aU ê > 0 . Under sorne conditions and replacing (1.6) by 

lirn Tl fT E[F(x, t)Jdt = F(x), 
T--->oo Jo 

they showed that 

sup lX: - Xt! 
t5:T 

0, asê-tO 

where is the solution of the non-randorn averaged differential equation 

Now we give an application of the averaging principle in oscillation theory. 

Example: Van Der Pol equation : 

Let us consider the Van Der Pol equation : 

.. 2 Il 
Xt + w Xt El 

where ê is a srnall nurnerical parameter. 

This equation describes correctly the behavior of sorne electronic oscillators. Vlhen 

thcre is Hot a perturbation (é 0), we obtain the cquation of a harmonie oscillator 

o. 



The solutions of this equation are Xt = r cos(wt + B). 

Let us put Yt = Xt ,then we have Yt = -rwsin(wt+B). So in the phase plane (x,x), 

the solutions of this equation are the ellipses Xt = r cos(wt + B) ,Xt = -rw sin(wt + B). 

In this case the phase point rotates with constant angular velocity w and the amplitude 

r does not change with time, it is determined only by the initial conditions. 

In the case with perturbation ( é =1= 0), let us put f(xt, Xt, t) = (1 - xZ)Xt. Here, in 

general rand B are not constant. Nevertheless, one may expect that the rate of change 

of them is small provided that é is small. 

We have 

where 'l/Jt = wt + B~ and 

éFI('l/Jt,rj,t), rô =ro 

é F2 ('l/Jt, ri, t), B~ = Bo· 
(1.9) 

FI(s,r,t) = -~f(rcoss,-rsins,t)sins, F2(s,r,t) = -~f(rcoss,-rsins,t)coss. 
w rw 

Therefore, in the van der Pol variables (r, B) the Van Der Pol equation can be written 

as the form (1.5). If f(x, y, t) does not depend explicitly on t, then FI (wt + B, r) and 

F2(wt+B, r) are periodic in t and condition (1.6) is satisfied. Then, the averaging principle 

is applicable to system (1.9). We refer the reader to Bogolyubov and Mitropolski (1961) 

for details on this example. 

An averaging principle can be formulated in a more general situation. For example, 

Bogolyubov and Mitropolski (1961), Volosov (1962) and Neishtadt (1975, 1976) cons id­

ered systems of the type 

Xf bl (X~ , E,~) , 

é-
l b2 (Xf, E,~), 

xg =x 

(1.10) 

The vclocity of the trajcytury E,t hêhS order S--l (1::; é -c> O. TlwrcforC'. the motion (E,Jt.::ü is 



said to be fast. (Xf)t>o is called the slow motion. 

1.1.2 A veraging Principle in Models with Diffusion. 

Now, we consider stochastic differential equatioIL'3 with diffusion that is equations of the 

form 

Let us put Xi Z~/e: then the pro cess Xe = (Xf)t?::o is solution of the equation 

where We = JëW/e . 

We assume that (ç t k~o is a strictly stationary and ergodic pro cess independent of 

the Wiener process W, and the functions a( z, x), b( x) are measurable satisfying linear 

growth and Lipschitz conditions in x uniformly with respect to z. 

Under the assumptions given above, Liptser and Stoyanov (1990) proved that for any 

fixed T > 0 

sup IX~ X:I ~ 0 as é -t 0, 
tS'l' 

where the process (X.nf~:O is the unique solution of the averaged equation 

with a(x) = lE(a(x,ço)). 

(1.11) 

Let us note that for each € > 0 the process (X:) t~O coincides in the sense of distri­

butions with the process (Xt)t~O which is the unique solution of the equation 

l't /'/ 
X~ = X(J a(X~)d8 + b(X~)dTVs . 

. 0 . II 

Undcr additiollal assHlllpriolls Oll the fUlletions (J and b alld Olt the process ç. they also 
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proved that the process l";e = .Îë(Xi -~) converges in the distribution sense as é ---t 0 

to a stochastic pro cess Y which is solution of the following equation 

where W is sorne Wiener process, al (x) = E [a~(x, ço)], a'and b'are respectively the 

derivatives of a and b, and 

This second result provides a second-order approximation of the process XE and can be 

regard as a functional centrallimit theorem. 

Later, by strengthening the ergodicity condition on ç to that of strong mixing, 

Hashemi and Heunis (1998) showed that the convergence in probability can be improved 

to almost sure convergence. When b = 0, such a result is in Liptser and Shiryaev (1989) 

but with a stationary ergodic process ç. 
Let us note that it is possible to pertube also the diffusion coefficient by the pro cess ç. 

In this case, one can prove only weak convergence rather than convergence in probability 

(see Kashminskii 1966,1968) or the books of Freidlin and Wentzell (1984, pages 263-269) 

and Freidlin (1985, section 4.3). 

One can also cOI1.'3ider more general systems as in (1.10) but with diffusion as weIl 

in the slow motion as the fast one (see Veretennikov 1991). The averaging principle for 

Volterra equations was studied by Kleptsyna (1996). 

11 



1.2 Averaging Princip le for Stochastic Partial Dif-

ferential Equations 

In this section we study the behavior as é ----l- 0 of solution of boundary value problems 

for elliptic or parabolic differential equations with a small parameter. 

Let us consider for example, the Cauchy problem 

(1.12) 

in the region ]Rd x (0, +00). Let 

liT - liT lim aij(x, s)ds, bi(x) = lim T bi(x, s)ds 
T --!IX) TOT ---.oc; 0 

(1.13) 

c(x) - liT - liT lim - c(x, s)ds, d(x) = lim - d(x, s)ds T--->oc; T 0 T---+oc; T 0 

and consider the average equation 

AU I:d 
02U Ld 

- au -
5) + aij(x) a a + bi(X)~ + c(x)u + d(x) = O. 
uS x· x· uX' i,j=l t J i=l t 

(1.14) 

Let the coefficients of these equations satisfy conditions: 

(Cl). The matrix ((azj)) Îs non-negative definite for (x, s) E ]Rd X [0, +00), and aIl 

coefficients are cont ÎnuOLL'3 wi th respect to (x, s), are bounded for s > 0 and are 

sufficiently smooth so that solutions to equations (1.12) and (1.14) exist. 

(C2). The limi ts in (1.13) are uniform in x 

( C3). AU codficicut:-; (\ rc unif( Ilirily co nt il1llOUS ill :r wi th respect t 0 s) E ]Rd X [0, -t- 'Xl ) . 

(C4). A solutioll of t Caudl\: prohlern (1.14) cxisl.s. 

12 



Khasminskii (1963) proved the following 

Theorem 1.1 Let conditions (Cl)- (C.O be satisjied, let U é (x, s) be a solution of equa­

tion (1.12) if:., the region]Rd x (0, T/E), satisfying the condition 

lim UE (x, s) f (x) , 
s-.Tjé 

where f(x) is a continuous bounded function in ]Rd, Let v(x, s) be a solution of Equation 

(1.14) in the region ]Rd x (0, T) satisfying the condition v(x, T) f(x). Then 

lim sup lUE (x, ~) - v(x, s) 1 = O. 
é-+O (x,S)ElRd x(O,T) E 

Let lL.'i mention that other versions of the Averaging Principle for stochastic partial 

differential equation have been studied: 

Makhno (1980) and Bondarev (1990) studied stochastic PDEs: For any (t,x) E 

(0, +(0) X ]Rd 

{ 
8~é (t, x) = E[Lt,xXE(t, x)dt + A(t, x, Xé(t, x))dt 2:1=1 Œi(t, x, Xé(t, x))dWi(t)] 

Xé(O, x) = <p(x) 
(l.15 ) 

where E is a small parameter, and 

d 2 d 

L 8 u L 8u Lt,xu = a1}(t,x)8 8 + bi (t,x)8 +C(t,x)u. 
x X· x· 

j.j=l 1 J i=l 1 

The averaging principle for equation (1.15) was justified in the first paper and an expo­

nelltial estilllate for the deviatîollS of the solution to PDE (l. ) from the solution of the 

dctclïuillatC' avcraged eqllatioll i.s obtailH:d in tl1(' last Olle. 



Let us note that the averaged equatio!1 is 

{

au 
7it(t, x) 

U(O, x) 

where 

LxU A(x, U(t, x)) 

cp(x) 

C(x)u 

with the coefficients defined as in (1.13). 

Recently, averaging principle for random operators received great attentions. For ex­

ample, Kleptsyna and Piatnitski (2002) considered non-selfadjoint parabolic equations 

with random evolution. They dealt with parabolic operators involving rapidly oscillating 

random in time and periodic in spatial variables coefficients that is the Cauchy problem 

au E 

at (x, t) 

uE(x,O) 

where (çtk~o is a stationary ergodic process taking values in ]Rd. 

This kind of equations was previously investigated by Campillo et aL (2001) who 

considered the asymptotic behaviour of the solution of the following cauchy problem: for 

any (x, t) E ]Rd X [0, T] 

where Q is a parameter. 

div la(~JçtIEà)VUE(t)x)J + 

uo(x) 

~)ÇtIE,,)UE(t)X) 
'-

The case of nonlinear llperator was treated by Pardoux and Piatnitski (2001). Indeed, 

they studied the eqllatÎcl l1 

Du" (t . . r) 
at 

) -:-~(t, :1:) 
/ D:rj 

(t,.r)). u"(O,x)='uo 



1.3 Averaging Principle for Backward Stochastic Dif­

ferential Equations 

Backward stochastic differential equations (BSDEs) has been i::troduced by Pardoux 

and Peng (1990) in order to give a probabilistic representation of solutions of nonlinear 

PDEs. Thanks to this connection between the two theories, one can expect that averaging 

principle for PDEs could be obtained via that of BSDEs .. It seems that the first resuit 

using this idea is due to Pardoux and Veretennikov (1996). They considered the averaging 

problem of BSDE's where the coefficient in front of the Brownian motion does not enter 

the nonlinear term. This corresponds to semilinear PDE's where the non-linear term is 

a function of the solution 1 not of its gradient. 

More precisely, let us consider 

where X 1
,€ E }Rd, x 2

,€ E JR.L, F, G, H, K are measurable functions with values in ]Rd,]RI 

and ]Rd (8)}Rl correspondently, (Wtk:~ois an /-dimensional Wiener process. 

Assume that the coefficients F, G l H, K are periodic (of period one in each direction) 

functions of the variable X2, so that the the process (X?'€k~.o can be considered as taking 

values in the l-dimensional torus Tl. 

We also make a serie of assumptions (see Pardoux and Veretennikov 1996) which imply 

among others things that the process (X?'€)t?~o admits a unique invariant probahility 

measure JL on Tl, 
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and X 1
,E converges in distribution to a d-dimensional diffusion processX1 with generator 

where 

L2 being the inifinitesimal generator of the diffusion pro cess (X;,Ek=:o in case é = 1. 

Therefore, there exists a d-dimensional Brownian motion {Et, t 2: O} such that 

l 

where a(xl) = [a(xl)j2 . 

By using averaging principle for the semi-linear BSDE 

y:E = g(X1,E) + fT f(X 1,E X 2,E yE)ds _fT ZEdW 
t T S's'S S s 

t t 

the authors solved an averaging problem for the semi-linear PDE 

OUE 
ot (t, x) 

uE(O, x) 

LEUê(t,X) + f(x,u(t,x)), 0::; t::; T, x E ~d+l 

g(xd. xE ]Rd+l, 

(1.16) 

( 1.17) 

where ,lE dellote the infinitesimal generator of the diffusion proccss (Xl,,:, X 2,ck"o i.e. 

}G 



Let us note that the corrresponding averaged equations for (1.16) and (1.17)are 

and 

âu 
ât (t, x) .Eu(t, x) + j(x, u(t, x)), 0 S t s T, x E Rd 

u(O, x) - g(x), x E Rd 

where 
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Chapter 2 

AVERAGING PRINCIPLE FOR 

MULTIVALUED STOCHASTIC 

DIFFERENTIAL EQUATIONS l 

Let (ft, F, P, {:Ft} t?:O) be the underlying stochastic basis, W {Wt = (Wl,'" , Wt
d

) : t 2:: O} 

a d-dimensional standard Wiener pro cess and ç {ç t : t 2:: O} a r-dimensional strictly 

stationary ergodic pro cess independent of W. Liptser and Stoyanov(1990) studied the 

limit behaviour of the family of stochastic pro cesses (xE: : é > 0), as é ---+ 0, where xC: is 

the solution of an Itô's stochastic differential equation 

(2.1) 

More precisely, under sorne regularity conditions on the coefficients a and b, they 

proved that sUPo<::t:Sc1 Ix~ - 1 converges in probability towards zero as é ---+ 0, where 

i8 the solution of the Itô's stochastic differential equation obtained from the equation 

(2.1) by Hveraging out the fluctuations il! the drift tenu arising from the stochastic: pro cess 

ç: 
-_ ..... -----_ .... __ ..... _--

l Published in Random Operators and Stochastic Equations 9(4). 399-407. 
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with a(x) lE (a(x, ço)) . 

The above result can be considered as stochastic version of the classical Bogolyubov 

averaging principle(see Bogolyubov and Mitropol'skii(1961)). 

In this paper we consider multivalued stochastic differential equations 

(2.2) 

Y6 = Yo 

(2.3) 

-e; 
Yo = Yo 

where A is a maximal monotone multivalued operator on Rd. 

Our goal is to study the asymptotic behaviour of sUPo::;t::;c1 lift - 1 as ê gOt'13 to zero. 

The paper is organized as follows. In section 2.1 we give sorne notations and make 

assumptiol1.<s used throughout. In particular, we recall sorne definitions and results about 

multivalued maximal monotone operators. Section 2.2 is devoted to the result. 

2.1 Notations and Assumptions 

For any matrix B wc put ilBW tTace(BB t
) where B t stands for the transpose of B. 

Wc shaH need the follO\\'ing assumptions . 

(Hl) a: x are Dorel llll'ilSUra bIc rnappiIlgs s11ch 

19 



that there exists a constant L > 0 satisfying 

Ila(x,z) a(x',z)ll:::: Lllx x'lI, Ilb(x) b(x')II:::: Lllx - x'II 

Ila(x,z)1I :::: L(l + Ilxll), Ilb(x)11 :::: L(l + Ilxll) 

for aIl x, x' E !Rd and z E !Rr 

(H2) the initial condition Yo E !Rd is deterministic 

(H3) {çt : t > O} is an Rr -valued, Ft-progressively measurable process 

(H4) W and ç are two independent pro cesses 

(H5) ç is a strictly stationary process 

Now, let us state sorne definitions and results about multivalued operators on !Rd. 

Definition 2.2 A multivalued operator A on !Rd is an PCRd)-valued map defined on IRd, 

where P(!Rd ) stands for the collection of subsets of!Rd • 

We respectively denote by Gr(A) and D(A) the graph and the domain of A: 

Gr(A) {(x, y) E !Rd X IRd ; Y E A(x)} 

D (A) {x E !Rd : A (x) =1= 0}. 

Definition 2.3 A multivalued operator A on !Rd ois said monotone if 

wherc (e,.\ is the Euch:'on hUI ]JT'OIluct on 

Definition 2.4 A muhic 

if therc Is no ml1ltivalzltd monotrme opcrator whosc gmph sirit'lly C07I.tu.illS ymph of 

20 



A,that is: fOT every (X, y) E Rd X Rd such that (x - u, y - v) > 0 fOT all (u, v) E Gr(A), 

we have y E A(x). 

Now, let us introduce the Yosida approximation of A which is a sequence (An)n~l of 

one valued maximal monotone maps defined on Rd by : 

An = n(I - Jn) where Jn = (I + ~Atl and 1 is the identity operator on Rd. 
n 

We have 

• For ail n 2:: 0, An is a Lipschitz continuous map. 

• For ail xE D(A), the set A(x) is closed and convex and hence there exists a unique 

point AO(x), such that IAO(x) 1 = min{lyl : y E A(x)}. 

For more details on multivalued maximal monotone operators, the reader can see the 

book of Brézis(1973). 

From nowon , A is a maximal monotone operator on Rd such that the interior of D(A) 

is non empty. Under the assumptions (Hl)-(H5), the multivalued stochastic differential 

equations (2.2) and (2.3) admit unique solutions which we denote respectively by (yé, ké) 

and Cfl, Tt) in the sense that: 

• { yf : t 2:: O}(resp. {yf: t 2:: a}) is a continuous Ft-adapted pro cess with values 

almost surely in the dosure of D(A). 

• {kt : t 2:: O}( resp. {k~: t 2:: a}) is a continuous ]Rd - val ues, Ft - adapted pro cess , 

with finte variation such that kô = O(resp. 0) almost surely. 

• 
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-c 
éd kt , t 2: 0, a.s. 

resp. 

-c 
Ya = Yo 

• For aU Ft -adapted couple of continuous processes (a, 13) such that for all t 2: 0 

((Xl,f3t) E Gr(A), the measure (yf (Xl, dkf - f3t dt) (resp. (Jjf - at, dk~ - f3tdt)) is 

almost surely positive on }R+. 

The proof of existence and uniqueness of solutions of equations (2.2) and (2.3) is a 

straightforward adaptation of methods in Cépa(1994) or Pettersson(1995). 

2.2 Result 

Let us put 

Y:C: t 

One can prove that (Yc, Kc) (resp. (Y
c
, K

C

) ) is the unique solution of the multivalued 

stochastic differential equation 

(2.4) 

y;e: o Yo 

dY~ + A(Y~)dt ::1 a(Y:)dt + b(Y:)dWtc, 0::; t < 1 , a.s. 

resp. (2.5) 

Y~ = yI) 

For aU Tl > 1 and:: > O. let }'O,n (resp. yc,n ) be the unique St.1lution of the stochastÎc 
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differential equation 

dy:e,n = a(y:e,n (: )dt + b(y:e,n)dWé - A (y:é,n)dt 0 <_ t <_ 1 
t t '''''tle t t nt, 

Ya 

rcsp. 
-E,n 
Y a = Ya 

We begin by sorne prefuninary results. 

Lemma 2.5 Under assumptions (Hl)-(H5), we have 

(2.6) 

and 

(2.7) 

Proof. For all N ~ 0, E: > 0 and n ~ 1, let us put 

with the convention inf'" +00. 

By virtue of Lemrna 5.4 in Cépa(1994), there exists a E ]Rd and two positive COI1'3tants 

(3 and Il SUdl that for aU :L' E ]Rd, n ~ 1 

,x - a) > An(x)1 - 111x al - (3f1 (2,8) 

:\'ow, by applying IW';, furmula to the process 11~~~~N a1 2
, \nc> ~Ibtain 



By using the inequality (2.8) and assumption (Hl), we derive that for aIl 0 :::; t :::; 1 

2 2 

Now, the elementary inequality xy :::; ~ + ~ implies that there exists C = C(o:, IL, {3, L) 

such that 

It follows that 

In view of Burkholder-Gundy inequalîty for stochastic intcgrals in Barlow and Prot­

E)S9). we have 

,n) 
Il JI) :::; c (lE (SIlI.). î Il 

0<.'<1 
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By virtue of Doob's inequality, we deduce that 

So, it follows from (2.9) and assumption (Hl) that 

Now, Gronwalllemma implies that there exists a constant C C(o:,{l"B,L) such that 

supsup [lE (sup rY~~;, - 0: 12)] < C < +00. 
é>O n2:1 099 N 

By letting N ---+ +00, we conlude that 

which yields (2.6). The inequality (2.7) can be derive by the same techniques .• 

We shaH need the following integTability condition 

Let us give 80me situations where condition (2.10) is satisficd. 

(2.10) 

a) If D(A) =]Rd and 1 (1')I:S: L( l + I.rl) for al! J' ]Rd, Olle cal! l'l'ove by using Lemma 

4 that conditioIl (2.10) is ::::atisficd. 

2:) 



b) If A is the subdifferential operator of a proper lower semicontinuous convex func­

tion <P : Rd ---t [-00, +00) then by app1ying Itô's formula to the semimartingale 

{<p(~E,n) : 0 t ~ I} and using Lemma 4, one can prove that condition (2.10) is 

a1so satisfied. 

Proposition 2.6 Under assumptions (H1)-(H5) , if we assume that condition (2.10) is 

satisfied, then there exists a positive constant C such that for all n, m ~ 1 

sup lE sup Y t' - y t' ~ C - + - . ( I-En -EmI2) (1 1) 
E>O 09::;1 n m 

Proof. By virtue of Itô's formula, we have 

ly'tE,n y'E,mI2 = 21t
(a(YE,n t: ) _ a(yE,m t: ) YE,n _ YE,m)ds 

t s '''''sIE s, ""sIE' S S 
o 

By using the fad that 1 

_(./l,/(\T,c,E.n) A 1\ .m) \ ,n _ lJ€,17l) = -(A (lT1"n) _ A I}·;:,m) J (yE,n) 
'-1 1, III \ 1 , . 1 , 1 5 Tl S III \ s ' n s 

1 (_ -~-A y~,n) 
. n s 

n 

26 

J ('yt',m) _ ~A (YE,m), 
'IT/. .s rn s 1 

rn 

(2.11) 

(2.12) 



:S -(An(~Iô,n) - Am (Yslô,m) , ~An(~Iô,n) - ~Am(Y81ô,m)) 
n m 

:S -~ IAn(~Iô,n)12 - ~ IAm(~Iô,m)12 
n m 

Therefore, Burkholder-GWldy inequality for stochastic integrals in Barlow and Prot­

ter(1989) and assumptions (H1)-(H5) imply that there exists a positive constant C such 

that for aU E > 0, n, m 2: 1 

It foUows that for aU n, m 2: 1 

I\'ow, Grollwalllemma leads to (2.11). The pro of of the inequality (2.12) can be done by 

a similar argument. • 

Proposition 2.7 Und(/' aSSlLTllptùms (Hl) (H5). if wc aSSlllll( tlzat condition (2.10) is 
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satisfied, then 

Proof. It follows by proposition 2.6 and the uniqueness of solutions of multivalued 

stochastic differential equations (2.4) and (2.5). • 

Theorern 2.8 Under assumptions (Hl)-(H5), if we assume that condition (2.10) is sat­

isfied, then for aU 0 ;?: 0 

Proof. us note that 

lim P ( sup Iyf - ml;?: 0) = O. 
e--+O 0::;ts;c1 

sup IY/ Y~I. 
0::;t9 

By virtue of Proposition 2.7, for an 0 > 0, we have 

o and lim (supp (sup Iy~,n - Y:I) ;?: 0) = O. 
n--HX) e>O OS;tS;l 

Therefore for aH Œ, 0 > 0, there exists no > 0 such that for aU é > 0 

Since Ano is Lipschitz, by virtue of Theorem 1 in Liptser and Stoyanov(1990), 

lim ]pl (su. p.. 1 Yte,no 
:C~O OS;t<l 

Now, by using the iuequality 

1 
- yé,Ht) 1+ 1 

1 l, t 

28 

ye,no l > ~) = 0 . 
t -3 

l, 



we deduce 

Since Cl: is arbitrary, we conclude that 

•• 
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Chapter 3 

AVERAGING PRINCIPLE FOR 

DOUBLE ITÔ STOCHASTIC 

PROCESSES 1 

The averaging principle for dynamic sytems plays an important role in problems of ce­

lestial mechanics, oscillation theory, control theory, radiophysics, and many others areas. 

The first rigorou.'3 n~ult on this subject was given by Bogolyubov (1945), who considered 

the system of ordinary differential equations 

X o = Xo· 

He formulated a general principle according to which, for E --+ 0, a solution of this system 

on a time interval of lengt h 0(1/::) can be approximated arbitrarily closely by the solution 

of the averaged equation 

X o Xo, 

1 Subrnitted for publication 
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if the limit 

F(x) 1 loT lim T F(t, x)dt 
T-++oo • 0 

exists, and the function F(t, x) is bounded and statisfies a Lipschitz condition with 

respect to the space variable. 

Since its introduction, the averaging principle has attracted much attention of many 

authors. For example, Liptser and Stoyanov (1990) studied the asymptotic behaviour of 

an Itô's pro cess (xfk:~o whose drift is pertubed by an ergodic stionnary process (çtk::o : 

(3.1) 

More precisely, under some regularity conditions on the coefficients a and b, they proved 

that sUPo$tscl Ixf xf 1 converges in probability towards zero a.."l E --t 0, where is the 

solution of the Itô's stochastic differential equation, obtained from the equation (3.1) by 

averaging out the fluctuations in the drift term arising from the stochastic pro cess ç: 

This result was generalized by Hashemi and Heunis (1998), who improved the convergence 

in probability to an almost surely convergence when the ergodicity hypothesis for the 

perturbing process (çt)t~O is strengthened to that of strong mixing. 

On the other hand, the multiple stochastic integrals with respect to a particular 

cla..'3s of martingales and for random integrands have been introduced by Meyer (1976). 

TheBe integrals were extended by Ruiz de Chavez (1985) for a class of semimartingales. 

Recently, C.Tudor and :\LTudor (2002) considered Double Itô processes that is solutions 

to stochastic differcntial equations driven by multiple stocllastic intcgrals (sec also C. 

Tudor and :\I. Tudor HJ9ï). This kind of equHtioW'i include the classicalltô (~quatiolls. 

intcgro-difl('rential and :-" llllC C of Volterra equations. The a:-:;ymptotic beha\'iour 

d(Jllble Itô proccsscs W(Î::' first cOllsidcrcd in P(~wz-Ahrcll and Tudor (2001) who provcd a 

:H 



large deviations principle for these processes. 

In this paper, we consider the following double It6's stochastic differential equation 

x~ XO+é tF(çs,x!)ds+Vc tG(x~)dWs+é2 r H(étl,ét2,Çtl,xt)dtldt2 
Jo Jo JC2(t) 

+é r K(d h d2, xUdWt1 dWt2 , (3.2) JC2(t) 

where ç = (çtk,:o is a strictly stationary process and Gdt) = {(tl, t2 ) E IRt 1 0 '5 t l '5 

t2 '5 t}. 

The averaged equation corresponding to (3.2) is the following equation 

x~ XO+é t (X!)ds+Vc tG(x~)dWs+é2 r H(étl,ét2,X~Jdtldt2 
Jo Jo JC2(t) 

+é r K(ét1 , ét2, xUdWt1 dWt2 , (3.3) 
JC2(t) 

where 

and 

Our goal is to study the asymptotic behaviour of sUPO:9:;c1 Ixr :Er 1 as é ----t O. 

The paper is organized as follows. In section 3.1, we give some notations and make 

assumptions used throughout. Section 3.2 contains a preliminary result on the estimate 

of the moments of solutions to double It6 stochatic differential equations. Section 3.3 

is devoted to the the main result. The last section is an appendix wherein, we have 

collected sorne results llccded for the proof of the main result. 



3.1 Notations and Assumptions 

Let (n, F, JP>, {Ft}t?;o) be the underlying stochastic basis, (W't)t?;O and (Wt)t?;O two linear 

Ft - Wiener pro cesses and ç {çt : t 2: O} a one dimensional strictly stationary process. 

For aU t > 0 we put 

and 

Let L8 denote the space of functions a : IR+ ---t IR+ such that a is strictly increasing , 

continuous , concave and IOl+ a~:) +00. 

It is clear that al(u) = Lu, L > 0, a2(u) = ul1oguI1-E', a3(u) uiloguillog IloguI1 1-E', 

o < E < 1, belong to LS and al, a2, a3 are not Lipschitz. Also, if al, a2 E L8, Cl, 

C2 ~ 0, Cl + C2 > 0, then alel Q:2C2 E L8. 

Let F(t, x), G(t, x) : IR+ xIR ---t IR, H(t l , t2, y, x) : C2 xIR2 
---t IR, K(tb t2, x) : C2 xIR ---t 

IR be mesurable functions such that 

(Hl) (Growth condition). There exists a constant L > 0 satisfying 

Vx IR, Vy E:IR, IF (y, x) 12 + IG (x) 12 :s L(1 + Ix1 2
) 

C2, Vx ER, Vy E:IR, IH (t l , t2, y, x) 1
2 + IK (t l , t2, x) 12 :s L(1 + IxI

2
). 

(H2) (Holder-type condition on F, G ). There exists a E L8 such that: Vt E 

Vx,y E:IR, 

L 
.If 1 ), 



(H3) (Haider-type condition on H, K). There exists a E LS snch that: V (tl, t2 ) E O2 , 

Vz E :IR, Vx, y E R, 

(H4) The initial condition xo E IR is deterministic. 

(R5) (Ç'k::o is independent of the Brownian motions (Wdt>o : (Wt) , strictly station-
- t?O 

ary and satisfies the following strongly mixing condition: 

if 

and Î( u) is a function defined for all u E [0, (0) by 

then Î(u) 

Î(U)=SUP sup 1lP'(AnB)-lP(A)lP(B)I, 
t?O AE9ô 

Oasu 00. 

(R6) We suppose that the Rosenblatt mixing coefficient f defined in (H5) satisfies the 

following condition: there are constants () E (1,00) and 7] E (0,00) snch that 

It is clear that the fWlctions F and H satisfy gTowth and Hûlder type conditions: 

Vx E IR, Vy E IR, V (t l , t2) E O2, 

IF(:J:)1 2 < L(l - Ix1 2
), 1 H(t], t'J. .. r) 1

2 
< L( 1 ([2) 
-

1

2 
- 1f1 2 L ! 

.) 

,:2\ 
IP(.r) < ,1 

1. t'l. . . 1) HU1. I 'l.. < (lI' ni'! .;; JI ). • l' 

LeL us put 



Then, equations (3.2) and (3.3) can be written respectively 

x: = Xo + r F(Çslf' X!)ds + t G(X:)dW: + r H(t l , t2 , Ç,tl/e:, X:Jdt 1dt2 Jo Jo JC2(t) 

+ r K(tl,t2,X:l)dWt~Wt~ (3.4) JC2(t) 

and 

x; Xo + t F(X:)ds + t G(X:)dW: + r H(t 11 t2, X~l )dt1dt2 Jo Jo JC2 (t) 

+ r K(t},t2,X~JdWt~Wt~. 
JC2 (f) 

(3.5) 

Let C([O, 1]) denote the vector space of alllR-valued continuous functions defined over the 

unit interval endowed with the uniform norm 

1/<1>1/00 = sup l<1>tl, V <1> E C([O, 1]). 
Os;tS; l 

Vve put 

2lf = X: - X~, Vt E [O,lJ. 

Let us note that 

Under conditions (HI)- (H5), C. Tudor and M. Tudor (2002) have proved the existence 

and uniquelless of soluticlllS to equatiolls (:3.4) and (3.5). 
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3.2 Preliminary Result 

Lemma 3.9 Assume conditions (H1)-(H5). Then, for every p E [2, +00), there exists 

positive constants C (p) and C (p) such that 

where X ê and Xê are the solutions of equations (3.4) and (3.5) respectively. 

Proof. For every p E [1, +(0) and tE [0,1], we have 

It follows that 

+lE ( S ... l.lp 
ü<t:S 1 

TlE (sup 
ü:St9 

In view of Cauchy-Sdl\c~ illr>Cjuality alld condition (Hl),we ha\'(: 

:111p 1 F'( 
l.:Sl 

;'2p 

.XJd.'i1 

(3.6) 



Therefore 

E (SUp 1 t F(f,slo X:) dS I

2P

) ::; 2P LP t (1 + E (SlIP IX~12P)) ds. 
099 Jo Jo o<;u<;s 

By virtue of BurkhOlder-Davis-Cundy inequality, there exists a positive constant C( depending 

only on p) such that 

Therefore, by using Cauchy-Schwarz inequality and condition (Hl), we obtain 

E (sup 1 t G(X:)dw:1
2P

) ::; 22PCLP t (1 + E (SUP IX~12P)) ds. (3.7) 
09<;1 Jo Jo 0<;U<;8 

Now, 

So, Cauchy-Schwarz inequality and condition (Hl) lead to 

Therefore, 

E (SIlP 
O:::t::: 1 
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• 

• 

.. 

Let us note that 

Since the pro cess t I------t J; (J~2 K (t2, Xii )dWt~) dWt~ is a martingale, by applying the 

Burkholder-Davis-Gundy inequality, there exists a positive constant e(depending only 

on p) such that 

Now, for any v the process 'Il f----t Jou K(v, XiJdWt~ is a martingale. Consequently, by 

applying BurkhOlder-Davis-Gwldy inequality and condition (Hl), there exists a constant 

e (depending only on p) such that 

Therefore, 

lE (sup 
09::;1 

By combining the inequalities (3.6) to (3.9), one can show that there exists a positive 

constant C (depending only on L,p) such that 

lE (snp IX[ 2
P

) < C (1 + 11 lE (Sl.lP IX~12P)) ds. 
0'Ô· 1 0 OS::uS::s 

C(J!) . 



The same calculations show that 

• 
3.3 Main Result 

Theorem 3.10 Assume conditions (Hl) to (H6). Then we have 

lim E ( sup Ix~ - X~12) = 0 
e-.O 0s;t::;;o:-1 

where {xf 1 0 ::; t ::; E-
1

} and {xi 1 0 ::; t ::; Cl} are the unique strong solutions of (3.2) 

and (3.3) respectively. 

Proof. We have 

6f - X~ - X: = it 

[F(çs/oX:) - F(Xs)] ds + lt [G(X:) - G(X:)] dW: 

+ r [H(tl,t2,Çt1/e,X~J - H(t 1,t2,X:J] dt 1dt 2 JC2(t) 

+ r [K(tl,t2 ,X:J - K(tI,t2 ,X:J] dW~dWt~. 
}c2(t) 

Therefore, 

6~ .- lt [F(E,S/ë) X~) F(çsjt:) :x:)] ds 

+ t . X~ê) - F(Xs)J ds t [G(X~l 
.Jo Jo 8 

G( X,Ô)] dvV ê 

+'/2' HU1.t'2. Çt l ,Xr))-H(tl.t2 ,E,tl· S 

+ 1 :H(tl.t2.E,'1 ,X;,) -11(tl,t2,X~I)] ciré 
. ('., . 



(3.10) 

Let us put 

It fo11ow8 that for every t E [0, 1] 

ILlil' :S 61'IF(~'I" X:) - F(~'I" X:)I' ds + 6[1' !'(S)dS[' 

t 2 2 

+6[ r [C(X:) - C(X:)] dW:[ + 61 hé(tl 1 t2)dtldt2 Jo c2 (t) 

+6 r IH(tl,t2,~trlé,X:J H(tl,t2,~tl/é,X:JI2dtldt2 JC2(1) 

2 

6 1 [K (tl,t2,XtJ - K (t l ,t21 X;JJ d~~dWt2 . 
C2 (1) 

By using conditions (H2) and (H3), we derive that for aH t E [0,1] we have 

ILlil' :S 61' fr (Ix: - x:1') ds + 6[l !'(S)dS[' + 6[1' [C(X;) - C(X:)] dW:[' 
2 

+6 r a (IXfl - X:1 1
2

) dt 1dt2 + 61 hê(t1 , t2)dtrdt2 
} C2(t) c2 ( t) 

2 

(3.11) 

In view of Burkhülder-Davis-Gundy inequality, t here exists a positive constant C such 

that 

C·{-\:") 12 ri 
7:. S «'i!, 



By virtue of condition (H2), we have 

Now, since 0: is concave, we have 

Therefore, 

In view of the concavity of a, for every t E [0,1], we have 

(3.13) 

Let us note that 

l'2~s)[K(t>t2,XfJ K(tl,t21 )]dH't~d{Vr2 

1s (112 

~f\,'(tl,t21XfJ K (t l1 t21 X;JJ dtVt1 ) dtVt~2' 

Since the proccss{ Ir: (J;:~2 [K (t l, t2 , XtJ K (ill t2, tJJ dîTt:) dW~ : 8 2: o} is a mar­

tillg;ah BurkhiJldcr-D,i\'i:-:-Glll!dy incquality implics that therf' C'xists positive constant 



C such that 

l& (SUp 1 r [K (tll t21 X:J K (tll t21 X;J] dWt~ dWt~ 12) 
0<;89 JC2(S) 

< CIE (l (f [K (tl' t" xU K (tl' t" X;,l] dW:.)' dt,) 

< C lIE (l' [K (t"t 2,xi,) K (tl,t"X;,l] dWt~)' dt, 

< C t 1& (SUp 1 t [K (tl' t2l X;J K (t l,t21 X:J] dVVt~ 12) dt2· Jo 0<;89 Jo 

Now, for every v E [0,1], the pro cess {J; [K (tll v, X[J - K (tl' v, )] dWt~ : s ;:::: O} 

is a martingale. Therefore, Burkhôlder-Davis-Gundy inequality implies that there exists 

a positive constant C such that 

lE(suP t/[K(tl,t21X;J K(tllt2lX~J]dWt~/2) 
O<;8<;t Jo 

< 1& (lt IK (tll t21 X[J K (tl' t2, X:J 12dtl ) . 

Thanks to condition (H3), it follows that 

In view of the concavity of a. we have 

(3.15 ) 

42 



By combining (3.11) to (3.15), we deduce that 

where 

In view of Lemma A.13, for every t E [0,1] 

gê(t) < C- l [c (go(c)) + C l t 

ds 1 
< C- l [C (go(c)) + Cl· 

r ds 
where C(r) J 

l (a+a)(s) 
We have C(r) ---+ -oc as r o and C- 1(r) ---+ 0 as r ---+ -00. 

Therefore, it remains to prove that lim go{c) = O. 
::--->0 

To this end let us note that 

k'I'J h'( t l, t,)dtldt, ~ l' (1" h' (tl' t,)dt l) dt, 

l s (l t2 

[H (t1' t 2 , ~tdê' X;J - (tl' t 2 , X:J] dt 1) dt2 

[l' ([' [H (Et l , Et" ç" ' ) H (Et l , ct" X:,J 1 dt l ) dt" 

For eaeh 1> E C [0, 1] and é > O. we put 

{ 

;:-2 rt ~ JI 
. (t _f) \ = ~ Jo -IL . '± , 

o if é- 1 < t x. 

4:3 



In view of Cauchy-Schwarz inequality and Condition (Hl), for every t E [D, t:- 1
], we have 

laE(t,<I»1 2 < ét l t 

IH(t l ,t:t,Çtl,<I>ttJ H(t l ,t:t,<I>EtJ!2 dt l 

< 2t:4 t2 [SUp IH(t b Et, Çt l,<I>EtJI
2 + :mp !H(t l ,Et,<I>tt1 )!2] 

0919 091:S;t 

< 4L (1 + II<I>II~) 

So, for aIl t E [D, +oc) 

Let us put 

8(s) = (4Lt l/2 (1 + II<I>II~) -1/2 E-1aE (t, <I». 

Since () > 1 in Condition (lI3), there exists t5 E (0, +(0) such that () > 1 + ~. 
We have 

E(8(s)) = 0 and E(18(s )12+6) :; 1, Vs > O. 

By applying Lemma A.12 with 

8(8) = (4L)-l/2 (1 + 11<I>,,~r1/2 E-1aE(t, <I», M 1, and 17 as in Condition (H3) 

there exists r E (D, +cx::), (3 E (O. +(0) sneh that 

It follows t bat 
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Now, let 

For all 0 ::; t ::; u < 00 

where h(t, u) 
2 

4f2+i3 L(l 

By applying Lemma A.lI with Y = IR, T = 0, U Cl, Il = 2 + ,8, Î 1 + ~, we 

obtain the existence of a constant A such that 

Therefore, 

lE C~~~~-.Il a,(s, <I»d812+~) < ArE2+~( 4L(1 + Il <1> Il;'')E- 1 
) l+g 

< Af(4L(1 + ,,<PII!Jé)l+~. 

It follows that 

< 4(Af) L (1 + 11<p11~) é. (3.16) 

In view of the fact that E, is independent of the Brownian motions l:ll and rv by using 

(3.16), we have 



where /le is the law of the process Xe which do es not depend on é. 

It follows that 

which leads to 

For the proof of 

limlE (Su.p 1 t r(S)ds I

2

) = 0, 
e--O O::;t9 Jo 

it suffices to put 

a,(t, <1» = { ~~ [F(ç" <1>,,) F(<pes )] ds if 0 < t ~ é- l 

if é- 1 < t < 00. 

and use analogous calculations as above .• 

tlG 



Appendix A 

Appendix 

In this appendix we eollect sorne results whieh are needed for the proof of the main result. 

Lemma A.II Let 0 < T < U < 00 and {Q (t), T ~ t ~ U}be a pTOœss on some pTOba­

bility space (O,F,lP') taking values in a sepamble normed vector space Y with norm Il.11 

such that 

a) t f---t Q (t, w) is continuous on [T, U] for a.a.w 

b) there are constants 1 (1, x) and IL E (0, (0) such that: 'riT ~ t ~ u ~ U, 

E IIQ(u) - Q(t)// Jl ~ [h(t, u)J' 

where h(t, u) 1:5 a non-negative continuous function defined for T ~ t ~ u ~ U 

satisfying 

IçfT ~ t < u ~ U, h(t, u) + h(u, v) ~ h(t, v). 

Then there C2;ists S01Tit constant A E (0, depending only on JI and f such that : 

E r lp liQ(t) Q(Tnl'l::; il [h(T. ,. 
, T-/' It 

Proof. It is j1lst a C (J[ Theormn 1 in L()llgn(:ck(~r ;,:lli Serfiing (1977). • 
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Lemma A.12 Suppose that {<p( s), s E [O,oo)} is a zero-rnean JRd -valued jointly measur­

able process on (D, F, lP) such that 

(a) E [II<I>(s)11 2+o] < AI, Vs E [0,(0), for sorne constants M,o E (0,00); 

(b) there are rr-algebms {9;, ° < s < t < oo} over D such that 9; C 9~ ~ F for aIl 

0::; u < s < t < 11::; oc, and s ---t <I>(s) is 9;-rneasumblefor each sE [0,(0); 

(c) there are constants 0 E (1 + 20-1
, (0) and"l E (0, (0) such that a(u) ::; "lU-o, Vu E 

[1,00) where 

n(u) =sup sup IJP> (A n B) - JP> (A) JP> (B)I 
t;::a AE9Ô 

Then there are constants r E [0,00) and f3 E (0,00) such that 

E Ill" <I>(S)dSI12+~ < r(u - t)1+~, \fO 'Ô t 'Ô u < 00 

where rand f3 depend only on the constants !v!, 0, "l and 0 in (a) and (c). 

Proof. It is a straightforward adaptation of Theorem 2.1 in Sotres and Ghosh 

(1977) .• 

Lemma A.13 (Bihari's inequality). Letu and v be two continuousfunctions on [0, 1] 

and H another continuous function frorn jR+ into itself which is rnOTeover nondecreasing 

and su ch that H(r) > 0 fOT r > ° . If theTe exists Ua E jR+ such that : 

Vi < 1 u(t) ::; Ua + ,lat v(s)H(u(s)ds 

th en 

for Idl t E [O. 1] slIch ; ,;! 

G(u,) + j,l1J(''i)rlS E DOIn(G 1
) 

, () 
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