UNIVERSITE CHEIKH ANTA DIOP DE DAKAR (SENEGAL) FACULTE DES SCIENCES ET TECHNIQUES DEPARTEMENT DE CHIMIE LABORATOIRE DE CHIMIE MINERALE ET ANALYTIQUE (LACHIMIA)

THESE DE DOCTORAT D'ETAT

ès SCIENCES PHYSIQUES

(Mention chimie de coordination inorganique) sur le suiet :

SYNTHESE ET CARACTERISATION PAR SPECTROSCOPIES I.R, MÖSSBAUER, R.M.N ET PAR **DIFFRACTION DES RAYONS X : DE NOUVEAUX COMPLEXES MOLYBDATO ET DICARBOXYLATO D'ETAIN (IV) ET DE QUELQUES DIHALOGENURES METALLIQUES**

Présentée par : M. IBRAHIMA CISSE

Maître Assistant à l'Ecole Normale Supérieure de Dakar le 25 Mai 2002 devant le jury composé de :

<u>Président</u>	M. LIBASSE DIOP	Professeur	U.C.A.D
<u>Rapporteurs</u>	M. BERNARD MAHIEU	Professeur	U.C.L(Be
	M. ABDOU SALAM SALL	Professeur	U.C.A.D
<u>Examinateurs</u>	M. DOUDOU BA	Professeur	U.C.A.D
	M. M. LAMINE GAYE	Maître de conférenc	e U.C.A.D

Directeur de Thèse M. OMAR GUEYE

Maître de conférence U.C.A.D

TH S 6812

U.C.A.D(Dakar)

U.C.L(Belgique)

Je dédie ce travail

A mes filles Fatou Aïssatou Cisse et Amina Ely Cisse, qu'elles trouvent ici toute mon affection. Papa vous adore.

A mon épouse Ndeye Marie Diouf, en témoignage de mon amour.

A mon père El Hadj Omar Cisse et à ma mére Adja Fatou Faye, pour tous les sacrifices consentis pour la réussite de leurs enfants. Merci Papa, Merci Maman.

A mon grand père El Hadj Amadou Lamine Sané et sa famille.

A mes frères et sœurs, à ma belle famille, à mes beaux frères et belles sœurs, à mes cousins et cousines, à mes amis, à tous mes parents. Il est toujours agréable lorsque l'on arrive à la fin d'un travail de s'arrêter un moment, et de penser à ceux et à celles qui ont permis sa réalisation. On se rend bien vite compte que le nombre de personnes qui l'ont rendu possible est impressionnant. Dés lors il m'est difficile et délicat de faire la liste des personnes qui m'ont aidé de prés ou de loin ; j'en oublierai sûrement, et je les prie de bien vouloir m'en excuser

Permettez-moi de m'incliner tout d'abord sur la mémoire de mon Professeur OUMAR SARR, qui a su nous inculquer la rigueur et le goût du travail bien fait. REPOSE EN PAIX CHER PROFESSEUR

Mes remerciements les plus sincères vont en premier lieu au Professeur LIBASSE DIOP, qui a guidé mes premiers pas dans les arcanes de la chimie et qui a continué à être un interlocuteur attentif, toujours disponible, ouvert à la discussion et à la critique constructive. L'ambiance amicale, propice à l'imagination et à la créativité, qu'il a su créer dans son laboratoire a été, sans doute, la meilleure garantie pour mener cette thèse à bonne fin. Son soutien de tous les instants reste incommensurable.

Ma reconnaissance et mes remerciements les plus sincères à l'endroit de Monsieur OMAR GUEYE, Directeur de la Thèse, qui a permis la réalisation de ce travail en acceptant de m'encadrer. Que son épouse et ses enfants trouvent ici mes remerciements et encouragements les plus sincères.

Tout travail, pour être mené à bien, nécessite l'aide matérielle de nombreuses personnes. Aussi, je tiens à exprimer ma gratitude à Monsieur VALDIODIO NDIAYE, Directeur de l'Ecole Normale Supérieure, pour son soutien et sa disponibilité.

Messieurs les professeurs de notre Université, et d'autres tant belges qu'étrangères, qui ont contribué à ma formation, voudront bien, eux aussi, accepter ici l'expression de ma reconnaissance. Je commencerai par le Professeur BERNARD MAHIEU de l'Université Catholique de Louvain la neuve qui m'a permis de travailler plusieurs fois dans son laboratoire et qui a toujours marqué beaucoup d'intérêt pour l'ensemble des travaux effectués au LACHIMIA.

Je renouvelle mes remerciements au Professeur Mahieu d'avoir bien accepté, en sa qualité de rapporteur de ce travail, de se déplacer pour assister à la soutenance.

Je remercie Monsieur le professeur A.S.Sall, doyen de la faculté des sciences et techniques de l'U.C.A.D, pour son soutien et en sa qualité de rapporteur de ce travail.

Je remercie aussi Messieurs les professeurs M.LAMINE GAYE et DOUDOU BA d'avoir bien voulu, malgré leurs tâches multiples, juger ce travail.

Je désire par la même occasion remercier mes collègues de laboratoire(LACHIMIA), de L'ECOLE NORMALE SUPERIEURE, avec lesquels, j'ai pu avoir de nombreuses et de fructueuses discussions dans un esprit de franche collaboration.

Enfin, je m'en voudrais de ne pas citer la Coopération Belge qui par le biais du C.G.R.I (Commissariat général aux relations internationales) m'a donné l'occasion à plusieurs reprises de séjourner en Belgique pour finaliser mes travaux.

SOMMAIRE

GLC	DSSAIRE	Pages 1
INTI	RODUCTION GENERALE	2
A-) N	METHODE DE SYNTHESE	4
I-)	SYNTHESE DES LIGANDS I-1)-Ligands molybdato I-2)-Ligands dicarboxylato	5 5 5
II-)	SYNTHESE DES COMPLEXES II-1)-Complexes molybdato II-2) Complexes dicarboxylato II-2-1)-Complexes obtenus avec SnPh ₃ OH II-2-2)-Complexes obtenus avec les halogénures d'étain (IV)	6 6 14 14) 15
B-) N	METHODES D'ATTRIBUTION ET INSTRUMENTATION	23
I-)	LA SPECTROSCOPIE INFRAROUGE I-1)-Spectroscopie de l'ion MoO_4^{2-} I-2)-Spectroscopie de l'ion oxalate $C_2O_4^{2-}$ I-3)-Spectroscopie de SnX ₄ (X= Cl ; Br) I-4)-Spectroscopie des groupements SnC ₂ et SnC ₃	24 24 24 26 26
II-)	LA SPECTROSCOPIE MÖSSBAUER II-1)-Le déplacement isomérique II-2)-L'éclatement quadripolaire	26 27 28
III-)	LA DIFFRACTION DES RAYONS X PAR LES MONOCRISTAUX : LA CRISTALLOGRAPHIE III-1)-Equation de Bragg III-2)-La diffraction des rayons X par les monocristaux III-3)- Résolution des structures de monocristaux III-3-1)-Cartes de Paterson III-3-2)-Méthodes directes	30 30 32 32 32 33
IV-)	LA SPECTROSCOPIE DE RESONANCE MAGNETIQUE NUCLEAIRE	33

V-)	INSTRUMENTATION	34
C-) I	ETUDES SPECTROSCOPIQUE ET CRISTALLOGRAPHIQUE DES COMPLEXES OBTENUS	35
<i>CON</i> Intro	<i>I^{ère} PARTIE</i> <i>IPLEXES OBTENUS AVEC DES LIGANDS MOLYBDATO</i> duction	36 37
I-)	COMPLEXES D'HALOGENURES METALLIQUES	38
	I-1)-Complexes d'addition avec les dihalogénures métalliques $(R_4N)_2MoO_4.nMX_2$ (avec n = 1; 2:3)	38
	I-2)-Complexes de substitution-addition avec les dihalogénures métalliques I-2-1) $(R_4N)_2MoO_4.4(ZnMoO_4).2ZnX_2$ (R=Me; Et X=Cl; Br.)	41
	$(Me_4N)_2MoO_4.4(CdMoO_4).2CdBr_3Me_4N$	41
	I-2-2) $(Me_4N)_2MoO_4.(ZnMoO_4).ZnCl_2.2H_2O$ I-2-3) $(Me_4N)_2MoO_4.CdMoO_4.2CdCl_2$ I-2-4) $(Et_4N)_2MoO_4.(HgMoO_4).4HgBr_2$ et	46 46
	$(Me_4N)_2MoO_4.(HgMoO_4).4HgCl_2.2Me_4NCl$	48
	I-2-5) $2(Me_4N)_2MoO_4.CdMoO_4.3CdBr_2$	
	$(Me_4N)_2MoO_4$. 3(CdMoO ₄).2CdCl ₃ Me ₄ N	51
	I-2-6) 3[$(Me_4N)_2MoO_4$].ZnMoO ₄ .4ZnBr ₂ et	57
	$(Et_4N)_2 (VIOO_4.3(ZMVIOO_4).3/2ZMCI_2$	22
	I-2-7) $(Me_4N)_2MoO_4.2(ZnMoO_4).2ZnBr_2$ et $(Et_4N)_2MoO_4.2(ZnMoO_4).3ZnBr_2$	54
	I-2-8) $(Me_4N)_2MoO_4.2(HgMoO_4).nHgBr_2.n'Me_4NBr$ (n=1;2;3) (n'=0;1;3/2)	56

II-)	COMPLEXES STANNIQUES	59
	II-1) $(Et_4N)_2MoO_4.2(SnPh_2MoO_4)$	59
	II-2) $(Me_4N)_2MoO_4.3SnPh_3Cl$	59
	II-3) $(Et_4N)_2MoO_4.3(SnPh_2)_2MoO_4$	59
	II-4) $(R_1N)_2M_0O_4 2(SnX_2M_0O_4)$	65
	(R = Ft Me) (X=Cl Br)	05
Cond	clusion	66
	2 ^{ème} PARTIE	
СОЛ	API FYFS ORTENIIS AVEC DES LIGANDS	
CON	DICARROYVI ATO	67
	DICARDOAILAIO	07
Intro	duction	68
I-)	COMPLEXES DE SUBSTITUTION	71
1)	L-1)-Complexes du type (CH) (COO), 2SpPh	71
	$1-1)-complexes du type (c11_n)_x (c00)_2.25mm_3$	12
	(avec n = 1; 2 et x = 0; 1; 2)	0(
	1-2)-Complexes du type $(CH_n)_x(COO)_2.2SnBu_3$	86
	(avec n = 1; 2 et x = 1; 2)	
	1-3)-Complexes du type $(CH_n)_x(COO)_2.2SnMe_3$	93
	(avec n = 1; 2 et x = 0; 2)	
Conc	clusion	102
II-)	COMPLEXES D'ADDITION	103
т	1) Complexed du time (Ma N) (CU) (COO) (SoPh C)	104
11	-1)-Complexes du type $(Me_4N)_2 (CH_n)_x (COO)_2.4SnPn_3Cl$	104
	(avec n = 1; 2 et x = 0; 1; 2)	
II	-2)-Complexes du type $(R_4N)_2(CH_n)_2(COO)_2.mSnX_1$	111
	(avec $n = 1 \cdot 2$, $v = 0 \cdot 1 \cdot 2$, et $m = 1 \cdot 1 \cdot 5 \cdot 2 \cdot X = CL Br$)	
	II_{-2-1} Complexes chlorés	111
		111
	II-2-2)-Complexes bromes	123
Conc	lusion	132
D-) (CONCLUSION GENERALE	133
E-) B	BIBLIOGRAPHIE	136
, -		100

GLOSSAIRE

Me = méthyl

- $Et = \acute{e}thyl$
- $\mathbf{Bu} = \mathrm{butyl}$

 $\mathbf{Ph} = \mathbf{ph} \mathbf{enyl}$

 $\mathbf{Q.S}$ ou $\Delta \mathbf{E}$ = éclatement quadripolaire

I.S ou δ = déplacement isomérique

 Γ = largeur de la raie sur le spectre Mössbauer

vas= vibration de valence antisymétrique

vs = vibration de valence symétrique

 $\delta as =$ vibration de déformation antisymétrique

 δs = vibration de déformation symétrique

INTRODUCTION GENERALE

L'étude du pouvoir coordinant des oxoanions tétraédriques substitués ou non, a permis de synthétiser une grande variété de nouveaux composés. Dans la littérature nous pouvons citer les travaux de HATHAWAY (1) (2) (3) (4), POTIER (5) et ROSOLOVSKI (6) sur les perchlorates du type $M(ClO_4)_n$. L'essentiel des résultats sur le caractère coordinant des oxoanions a été résumé dans les travaux de HATHAWAY. En 1961, KRISHNAMURTY et coll. (7) ont systématisé l'ensemble de travaux sur les oxalates.

Dans notre laboratoire l'étude des interactions du molybdate avec les halogénures a été initiée par SALL (8), celle de l'ion oxalate par GUEYE (9). Plusieurs complexes ont été aussi synthétisés avec des oxoanions tétraédriques tels que le sulfate, le séléniate et le tungstate, pyramidaux tels que le sélénite et l'iodate, substitués tels que le phénylarséniate, l'aminobenzène sulfonate, le diphénylphosphinate etc....

Les études spectroscopiques des molybdates MoO_4^{2-} et MoO_4^{4-} ont été réalisées par WEINSTOCH et coll. (10). SALL (8) a synthétisé des composés d'addition de $(Me_4N)_2MoO_4$ avec des halogénures métalliques et organostanniques. Il a établi le comportement polydentate de l'ion MoO_4^{2-} ainsi que sa tendance à la chélation.

FUJITA et coll. (11) ont mis en évidence le caractère liant de l'oxalate en s'appuyant sur la spectroscopie infrarouge des entités $[Co(NH_3)_4C_2O_4]^+$ et $[Co(NH_3)_5HC_2O_4]^{2+}$, SCOTT et coll. (12) ont fait de même dans plusieurs complexes. L'étude structurale des complexes $(Et_4N)_2C_2O_4.2SnX_4$ (avec X= Cl, Br), a été faite par SKAPSKI et GUERCHAIS (13) et l'étude spectroscopique par FLOCH et GUERCHAIS (14). GUEYE et coll.(9) ont confirmé la nature bichélatante de l'oxalate comme l'avaient déjà montré GUERCHAIS et coll (15) en étudiant les complexes des tétrahalogènures d'étain. La nature tétrachélatante de l'anion oxalate a été mis en évidence pour la première fois par GUEYE et coll. dans (16)

Nous avons repris en partie les travaux de SALL(8) et GUEYE(9) dans le but de mieux appréhender la nature des complexes formés et de mieux définir les divers types structuraux en utilisant en plus de l'infrarouge, la R.M.N, la spectroscopie Mössbauer et la diffraction des rayons X quand les monocristaux sont disponibles. Nous avons au delà de l'oxalate, étendu l'étude à d'autres ligands tels le malonate, le succinate et le maléiate en utilisant comme cations stabilisateurs le tétraméthylammonium et le tétraéthylammonium afin de déterminer d'une part le rôle du cation et d'autre part l'influence de la longueur et de la saturation de la chaîne carbonée sur la stabilité des complexes formés.

Dans le cas des complexes dicarboxylato, notre choix s'est porté sur les composés organométalliques de l'étain(IV) qui sont connus pour leur activité biologique.

Dans une première partie expérimentale, nous présentons les méthodes de synthèse et les résultats d'analyses élémentaires, suivie d'un bref exposé sur les méthodes spectroscopiques et cristallographiques. Les complexes molybdato et leurs spectroscopies sont présentés dans une deuxième partie. Enfin une troisième partie est consacrée aux complexes obtenus avec les ligands dicarboxylato; deux de ces complexes dicarboxylato d'organostanniques obtenus sous forme de monocristaux ont été étudiés par la diffraction des rayons X et les résultats obtenus confirment les structures proposées.

A-) METHODES DE SYNTHESE

۱

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

I-) SYNTHESE DES LIGANDS

I-1) Ligands molybdato

Pour les ligands $L_5 = (Me_4N)_2 MoO_4.5H_2O$ et L' $_5 = (Et_4N)_2 MoO_4.6H_2O$, nous avons neutralisé l'acide MoO_4H_2 (obtenu par dissolution de MoO_3 dans l'eau) par l'hydroxyde correspondant, selon la réaction :

 $\begin{array}{rcl} MoO_3 &+& H_2O &\rightarrow & MoO_4H_2 \\ MoO_4H_2 + 2R_4NOH &\rightarrow & (R_4N)_2MoO_4 &+& 2H_2O \\ & & (avec \ R=Me, \ Et \) \end{array}$

Dans tous les cas, les solutions obtenues sont agitées pendant une journée, puis chauffées légèrement (environ 50°C). Les sels obtenus sont recristallisés dans l'éthanol. Enfin , une fois rincée à l'éther éthylique, les cristaux sont séchés dans un dessiccateur sous P_2O_5 pendant plusieurs semaines.

Les résultats des analyses élémentaires sont reproduits sur le tableau I.

TABLEAU I		
	L ₅	L'5
Eléments	%trouvé (%calculé)	%trouvé (%calculé)
С	24.25 (24.12)	36.62 (36.34)
Н	8.54 (8.53)	10.21 (9.84)
N	7.24 (7.03)	5.29 (5.30)

 $L_5 = (Me_4N)_2MoO_4.5H_2O$ $L_5 = (Et_4N)_2MoO_4.6H_2O$

I-2) Ligands dicarboxylato

La neutralisation totale des acides : oxalique $(COOH)_2$, malonique $CH_2(COOH)_2$, succinique $(CH_2COOH)_2$, maléique $(CHCOOH)_2$ (cis) par une solution aqueuse de Me₄NOH à 10% (produit Merck), a permis d'obtenir respectivement les sels $L_1=(Me_4N)_2(COO)_2.H_2O$, $L_2=(Me_4N)_2CH_2(COO)_2.3H_2O$, $L_3=(Me_4N)_2$ (CH₂COO)₂.2H₂O et $L_4=(Me_4N)_2$ (CHCOO)₂.H₂O.

De même avec une solution aqueuse à 25% de Et_4NOH (produit Merck) nous avons obtenu les sels : L'₁=(Et_4N)₂(COO)₂.2H₂O, L'₂=(Et_4N)₂CH₂(COO)₂.H₂O, L'₃=(Et_4N)₂ (CH₂COO)₂.H₂O et L'₄=(Et_4N)₂ (CHCOO)₂.2H₂O. Le mode de récupération des ligands dicarboxylato reste identique à celui des ligands molybdato développé ci-dessus.

Les résultats des analyses élémentaires (C,H,N), portés sur le tableau II, ont permis de confirmer les formules des ligands.

TABLEAU II

	L	L ₂	L ₃	L ₄	L'1	L'2	L'3	L'4	
			_				_		
Eléments	%trou	%trou	%trou	%trou	%trou	%trou	%trou	%trou	
	(%cal)	(%cal)	(%cal)	(%cal)	(%cal)	(%cal)	(%cal)	(%cal)	
C	44.25	44.03	48.25	51.27	59.68	59.89	60.28	59.12	
	(44.11)	(43.42)	(48.00)	(51.42)	(59.01)	(60.00)	(60.91)	(58.53)	
Н	10.52	10.28	9.27	9.55	11.78	11.20	11.49	10.69	
	(10.29)	(10.52)	(9.33)	(9.28)	(11.47)	(11.57)	(11.67)	(11.21)	
N	10.68	9.05	9.46	9.86	7.99	7.04	7.69	7.12	
	(10.29)	(9.21)	(9.33)	(10.00)	(7.65)	(7.36)	(7.10)	(6.82)	
L ₁ =(M	$(e_4N)_2$	DO)2.2H2	0	L'	$_1 = (Et_4N)$	$\frac{1}{2(COO)_2}$.	$2H_2O$		
L ₂ =(M	e ₄ N) ₂ CH	$_{2}(COO)_{2}$.	3H ₂ O	L'	$_2=(Et_4N)_2$	2CH ₂ (CO	$O)_2.H_2O$		
$L_3 = (Me_4N)_2CH_2COO)_2.2H_2O$ $L'_3 = (Et_4N)_2(CH_2COO)_2.H_2O$									
L4=(M	$e_4N)_2(CH)$	ICOO) ₂ .	H ₂ O	L'	$_{4}=(Et_{4}N)_{2}$	2(CHCOO	$O)_2.2H_2O$	1	

II-) SYNTHESE DES COMPLEXES

Les complexes sont obtenus en faisant réagir les acides de Lewis qui sont ici des halogénures métalliques ou des composés organostanniques avec les bases de Lewis qui sont les différents ligands. Dans tous les cas les mélanges sont agités légèrement pendant une journée dans le but d'obtenir le composé les plus stables. Les précipités obtenus sont lavés à l'éther, puis placés dans un dessiccateur sous P_2O_5 . Les mélanges qui ne précipitent pas sont laissés à l'évaporation lente. Les cristaux obtenus dans ce cas sont recristallisés dans l'éthanol.

II-1) Complexes molybdato

(Me₄N)₂MoO₄.2HgCl₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:11.51(11.28)
L ₅	1.20	Ethanol	Précipité		H : 2.78(2.82)
			jaune		N: 3.11(3.28)
HgCl ₂	0.60	Ethanol			Cl: 17.24(16.68)

	(1116411)2111004.2211012							
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C:16.13(16.51)			
L ₅	1.20	Ethanol	Précipité		H: 4.96(4.13)			
[blanc		N : 5.05(4.82)			
ZnCl ₂	4.80	Ethanol			Cl: 25.78(24.44)			

(Me₄N)₂MoO₄.2ZnCl₂

	` <u> </u>				
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C: 8.71(8.53)
L ₅	2.10	Ethanol	Précipité		H: 2.24(2.13)
			blanc		N : 2.44(2.28)
CdBr ₂	8.40	Ethanol			Br: 42.95(42.65)

(Me₄N)₂MoO₄.3CdBr₂

(Me₄N)₂MoO₄.3HgBr₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C: 6.65(6.90)
L ₅	3.20	Ethanol	Précipité		H: 1.76(1.72)
			blanc		N : 1.93(2.00)
HgBr ₂	12.80	Ethanol			Br: 43.37(43.30)

(Me₄N)₂MoO₄.3HgCl₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C: 9.05(8.55)
L ₅	1.40	Ethanol	Précipité		H: 2.26(2.13)
			jaune		N: 2.48(2.49)
HgCl ₂	5.60	Ethanol			Br: 19.02(18.97)

(Et₄N)₂MoO₄.3HgCl₂

	(24	1.() <u>2</u>	2		
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:15.30(15.54)
L'5	3.20	Ethanol	Précipité		H: 3.22(3.27)
			jaune		N: 2.00(2.26)
HgCl ₂	12.80	Ethanol			Cl: 18.37(17.24)

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C: 7.88(6.88)			
L ₅	1.60	Ethanol	Précipité		H : 1.94(1.92)			
			jaune		N : 2.15(2.00)			
HgCl ₂	12.80	Ethanol			Cl: 20.02(20.37)			

(Me₄N)₂MoO₄.4HgCl₂

(Me₄N)₂MoO₄.4CdCl₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C:10.24(9.21)			
L ₅	0.90	Ethanol	Précipité		H : 2.74(2.30)			
			blanc		N: 2.94(2.68)			
CdCl ₂	7.20	Ethanol			Cl: 28.26(27.26)			

(Me₄N)₂MoO₄.4(ZnMoO₄).2ZnBr₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C: 5.85(5.76)
L ₅	3.20	Ethanol	Précipité		H:1.93(1.44)
			blanc		N:1.65(1.68)
ZnBr ₂	12.80	Ethanol			Br: 21.39(19.23)

$(Et_4N)_2MoO_4.4(ZnMoO_4).2ZnCl_2.3H_2O$

	(-	· / · · · · · · · · · · · · · · · · · ·		~	
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C : 10.01(11.40)
L'5	2.30	Ethanol	Précipité		H : 2.53(2.96)
			blanc		N : 1.22(1.66)
ZnCl ₂	9.20	Ethanol			Cl: 8.56(8.43)

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
			Précipité	-	C: 8.86(8.53)
L ₅	3.20	Ethanol	blanc		H : 2.40(2.13)
					N : 2.70(2.48)
CdBr ₂	1.60	Ethanol			Br : 20.62(21.32)

(Me₄N)₂MoO₄.4(CdMoO₄).2CdBr₃Me₄N

(Me₄N)₂MoO₄.ZnMoO₄.ZnCl₂.2H₂O

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
			Précipité		C:12.96(12.60)
L ₅	3.20	Ethanol	blanc		H: 3.34(3.96)
					N : 3.81(3.86)
$ZnCl_2$	12.80	Ethanol			Cl: 10.59(10.05)

(Me₄N)₂MoO₄.CdMoO₄.2CdCl₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:10.12(10.61)
L ₅	2.80	Ethanol	Précipité		H:2.53(2.78)
			blanc		N : 2.96(2.62)
CdCl ₂	5.60	Ethanol			Cl: 14.96(14.95)

(Et₄N)₂MoO₄.HgMoO₄.4HgBr₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse		
	(m mol)		composé		élémentaire		
					%trouvé(%calculé)		
	2.30	Ethanol			C: 8.66(8.63)		
L'5			Précipité		H:1.56(1.79)		
	9.20	Ethanol	blanc		N : 1.61(1.66)		
HgBr ₂					Hg: 45.85(45.11)		

Réactifs	Quantités	Solvants utilisés	Nature	dù	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
	1.40	Ethanol			C:9.48(9.72)
L_5			Précipité		H:2.35(2.43)
	2.80	Ethanol	jaune		N : 2.57(2.83)
HgCl ₂					Cl:17.48(17.98)

(Me₄N)₂MoO₄.HgMoO₄.4HgCl₂ .2Me₄NCl

2(Me₄N)₂MoO₄.CdMoO₄.3CdBr₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
			_		C:11.25(11.24)
L_5	2.40	Ethanol	Précipité		H:2.67(2.81)
			blanc		N : 2.81(3.84)
CdBr ₂	2.40	Ethanol			Br: 29.16(28.11)

$(Me_4N)_2MoO_4.3(CdMoO_4).2CdCl_3Me_4N$

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:11.90(11.20)
L_5	3.60	Ethanol	Précipité		H: 3.00(2.80)
			blanc		N : 3.18(3.26)
CdCl ₂	10.80	Ethanol			Cl: 11.80(12.42)

3(Me₄N)₂MoO₄.ZnMoO₄.4ZnBr₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C:14.19(14.03)			
L ₅	1.50	Ethanol	Précipité		H: 3.60(3.50)			
			blanc		N:4.07(4.09)			
ZnBr ₂	3.00	Ethanol			Br: 32.40(31.19)			

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse		
	(m mol)		composé		élémentaire		
					%trouvé(%calculé)		
					C: 14.89(14.76)		
L'5	2.30	Ethanol	Précipité		H: 3.36(3.07)		
			blanc		N : 2.30(2.15)		
ZnCl ₂	9.40	Ethanol			Cl: 26.10(26.46)		

(Et₄N)₂MoO₄.3(ZnMoO₄).3/2ZnCl₂

$(Me_4N)_2MoO_4.2ZnMoO_4.2ZnBr_2$

	(- /2 1		~	
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C : 7.73(7.93)
L_5	1.20	Ethanol	Précipité		H: 2.18(1.98)
			blanc		N : 2.00(2.31)
ZnBr ₂	3.60	Ethanol			Br: 26.10(26.46)

$(Et_4N)_2MoO_4.2ZnMoO_4.3ZnBr_2$

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse		
	(m mol)		composé		élémentaire		
					%trouvé(%calculé)		
		_			C:13.04(12.41)		
L'5	2.30	Ethanol	Précipité		H : 2.54(2.58)		
			blanc		N : 1.78(1.81)		
ZnBr ₂	9.20	Ethanol			Br: 30.89(31.02)		

(Me₄N)₂MoO₄.2HgMoO₄.HgBr₂

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse		
	(m mol)		composé		élémentaire		
					%trouvé(%calculé)		
					C: 7.02(6.89)		
L ₅	7.00	Ethanol	Précipité		H:1.88(1.72)		
			blanc		N : 2.08(2.01)		
HgBr ₂	14.00	Ethanol			Hg: 43.24(43.22)		

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C: 7.17(7.56)
L ₅	1.50	Ethanol	Précipité		H:1.71(1.88)
			blanc		N : 2.00(2.20)
HgBr ₂	4.50	Ethanol			Hg: 42.28(42.13)

(Me₄N)₂MoO₄.2HgMoO₄.2HgBr₂.Me₄NBr

(Me₄N)₂MoO₄.2HgMoO₄.3HgBr₂.3/2Me₄NBr

	(110414)211004.211511004.0115012.07211041404							
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C: 7.15(7.16)			
L ₅	1.50	Ethanol	Précipité		H:1.69(1.79)			
			blanc		N:1.99(2.08)			
HgBr ₂	4.50	Ethanol			Hg: 43.24(43.22)			

(Et₄N)₂MoO₄.2(MoO₄SnPh₂)

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:38.68(37.34)
L'5	4.60	Ethanol	Cristaux		H : 5.48(4.66)
		Ethanol	blancs		N:2.32(2.17)
SnPh ₂ Cl ₂	2.30	(à chaud)			

(Me₄N)₂MoO₄.3SnPh₃Cl

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C:49.97(50.83)			
L ₅	3.20	Ethanol			H : 5.00(4.71)			
			Cristaux		N:1.98(1.91)			
SnPh ₃ Cl	9.60	Ethanol	blancs		X : 7.09(7.27)			
-		(à chaud)			Sn: 23.51(24.31)			

	ວຍກ	$100_4(50P0_3)_2$].W	0U4(E141N)	12	
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C: 49.48(49.63)
	2.30	Ethanol	Cristaux		H: 4.32(4.33)
L' <u>5</u>			blancs		N:1.08(0.93)
		Ethanol			Sn: 23.65(23.75)
SnPh ₃ Cl	7.20	(à chaud)			

3[MoO4(SnPh3)2].MoO4(Et4N)2

$(Me_4N)_2MoO_4.2(MoO_4.SnCl_2)$

Réactifs	Quantités	Solvants utilisés	Nature du	Analyse
	(m mol)		composé	élémentaire
				%trouvé(%calculé)
			-	C:10.01(9.52)
L ₅	2.00	Ethanol	Précipité	H: 2.19(2.39)
			jaune clair	N: 3.02(2.77)
SnCl ₄	1.00	benzène		Cl: 13.68(14.09)

$(Et_4N)_2MoO_4.2(MoO_4.SnCl_2)$

Réactifs	Quantités	Solvants utilisés	Nature du	Analyse
	(m mol)		composé	élémentaire
			_	%trouvé(%calculé)
				C:17.22(17.11)
L'5	9.00	Ethanol	Précipité	H: 4.00(3.56)
			jaune clair	N : 2.47(2.49)
SnCl ₄	9.00	benzène		Cl: 13.05(12.65)

$(Et_4N)_2MoO_4.2(MoO_4.SnBr_2)$

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C:13.52(14.77)			
L'5	1.80	Ethanol	Précipité		H:2.97(3.07)			
			jaune clai	r	N:1.83(2.15)			
SnBr ₄	1.80	benzène			Br: 23.46(24.66)			

II-2) Complexes dicarboxylato II-2-1) Complexes obtenus avec SnPh₃OH

Ces quatre complexes ont été synthétisés directement à partir des quatre acides dicarboxyliques utilisés et de SnPh₃OH.

(COO) ₂ . 25nP n ₃										
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse					
	(m mol)		composé		élémentaire					
					%trouvé(%calculé)					
					C: 56.73(57.76)					
(COOH) ₂	2.77	Ethanol	Précipité		H: 4.10 (3.80)					
			blanc		Sn: 30.11(30.20)					
SnPh ₃ OH	5.54	Ethanol								

CH₂(COO)₂.2SnPh₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
			Précipité		C:58.10(58.25)
CH ₂ (COOH) ₂	3.36	Ethanol	blanc		H: 4.07 (3.98):
					Sn: 29.54(29.67)
SnPh ₃ OH	6.72	Ethanol			

(CH₂COO)₂.2SnPh₃

\mathbf{D}			NT .	1	
Reactifs	Quantites	Solvants utilises	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C : 58.75 (58.73)
(CH ₂ COOH) ₂	2.97	Ethanol	Précipité		H: 4.51 (4.15)
			blanc		Sn: 29.02(29.23)
SnPh ₃ OH	5.94	Ethanol			

(CHCOO), 2SnPh

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C : 58.96 (58.86)			
(CHCOOH) ₂	3.01	Ethanol	Cristaux		H:4.14 (3.92)			
			blancs		Sn: 29.40(29.31)			
SnPh ₃ OH	6.02	Ethanol						

II-2-2)Complexes obtenus avec les halogénures d'étain (IV)

Les complexes qui suivent sont préparés à partir d'un mélange des ligands dicarboxylato et des halogénures d'étain $(SnMe_3Cl, SnBu_3Cl, SnPh_3Cl, SnCl_4 et SnBr_4)$ préalablement dissous dans un solvant adéquat.

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse				
	(m mol)		composé		élémentaire				
					%trouvé(%calculé)				
	1.10	Ethanol			C:21.33(21.26)				
L			Précipité		H: 5.00(4.87)				
	2.20	Ethanol	blanc		Sn : 52.99(52.65)				
SnMe ₃ Cl									

(COO)₂.2SnMe₃.2H₂O

(CH₂COO)₂.2SnMe₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse				
	(m mol)		composé		élémentaire				
					%trouvé(%calculé)				
					C:27.23(26.46)				
L_3	1.14	Ethanol	Cristaux		H: 5.55(4.85)				
			blancs		Sn: 52.28(52.65)				
SnMe ₃ Cl	2.28	Ethanol							

(CHCOO)₂.2SnMe₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C : 26.33(26.58)
L_4	1.34	Ethanol	Précipité		H : 4.88(4.43)
			blanc		Sn: 52.60(52.88)
SnMe ₃ Cl	2.68	Ethanol			

CH₂(COO)₂.2SnBu₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		Elémentaire			
					%trouvé(%calculé)			
					$C \cdot 4641(4699)$			
L ₂	1.36	Ethanol	Précipité		H : 7.92(8.12)			
			blanc		Sn: 33.97(34.89)			
SnBu ₃ Cl	2.72	Ethanol						

 $CH_2(COO)_2.2SnBu_3$

		L()L			
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		Elémentaire
					%trouvé(%calculé)
					C:46.14(46.99)
L'2	0.66	Ethanol	Précipité		H: 8.44(8.12)
			blanc		Sn : 34.72(34.89)
SnBu ₃ Cl	1.32	Ethanol			

(CH₂COO)₂.2SnBu₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:47.33(47.76)
L ₃	1.28	Ethanol	Précipité		H : 8.13(8.24)
			blanc		Sn: 32.94(33.80)
SnBu ₃ Cl	2.56	Ethanol			

(CH₂COO)₂.2SnBu₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:47.65(47.76)
L'3	1.01	Ethanol	Précipité		H : 8.43(8.24)
			blanc		Sn: 32.64(33.80)
SnBu ₃ Cl	2.02	Ethanol			

(CHCOO)₂.2SnBu₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C : 47.46(47.90)
L ₄	1.37	Ethanol	Précipité		H : 7.91(7.98)
			blanc		Sn: 33.56(33.90)
SnBu ₃ Cl	2.74	Ethanol			

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:54.35(55.33)
L_1	2.12	Ethanol	Précipité		H : 5.24(4.72)
		Ethanol	blanc		N : 2.01(1.57)
SnPh ₃ Cl	4.24	(à chaud)			Sn: 26.54(26.94)

(COO)₂.2SnPh₃

			.		
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C : 57.84(57.91)
L'1	2.01	Ethanol	Précipité		H : 4.53(3.81)
		Ethanol	blanc		Sn: 31.05(30.20)
SnPh ₃ Cl	4.02	(à chaud)			

(Me₄N)₂CH₂(COO)₂.4SnPh₃Cl

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:55.86(54.92)
L ₂	1.60	Ethanol	Précipité		H : 4.85(4.79)
		Ethanol	blanc		N:1.88(1.56)
SnPh ₃ Cl	3.20	(à chaud)			Sn :26.53(26.73)

CH₂(COO)₂.2SnPh₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse				
	(m mol)		composé		élémentaire				
					%trouvé(%calculé)				
					C : 57.30(58.39)				
L'2	1.93	Ethanol	Précipité		H : 4.30(3.99)				
		Ethanol	blanc		Sn : 29.14(29.67)				
SnPh ₃ Cl	3.86	(à chaud)							

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse					
	(m mol)		composé		élémentaire					
					%trouvé(%calculé)					
					C: 55.88(54.47)					
L ₃	1.90	Ethanol	Précipité		H: 4.79(4.87)					
		Ethanol	blanc		N: 2.09(1.55)					
SnPh ₃ Cl	2.80	(à chaud)			Sn :26.46(26.52)					

(Me₄N)₂(CH₂COO)₂.4SnPh₃Cl

(CH₂COO)₂.2SnPh₃

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
			_		%trouvé(%calculé)
					C : 57.00(58.86)
L'3	1.86	Ethanol	Précipité		H : 5.07(4.16)
		Ethanol	blanc		Sn: 28.06(28.88)
SnPh ₃ Cl	3.72	(à chaud)			

(Me₄N)₂(CHCOO)₂.4SnPh₃Cl

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:55.70(54.43)
L ₄	1.90	Ethanol	Précipité		H: 4.49(4.71)
		Ethanol	blanc		N: 2.02(1.55)
SnPh ₃ Cl	3.80	(à chaud)			Sn :26.12(26.55)

(CHCOO)₂.2SnPh₃

	(
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C : 58.40(59.01)
L'4	1.87	Ethanol	Précipité		H : 4.46(3.96)
		Ethanol	blanc		Sn: 28.00(28.95)
SnPh ₃ Cl	3.74	(à chaud)			

$(Me_4N)_2(COO)_2.2SnCl_4$ Réactifs Quantités Solvants utilisés Nature du Analyse composé élémentaire (m mol) %trouvé(%calculé) C:17.54(16.22) Précipité H: 4.01(3.24) 6.48 Ethanol blanc N: 4.05(3.78)

Cl: 36.98(37.46)

$(Et_4N)_2(COO)_2.2SnCl_4$

Benzène

12.96

 L_{I}

 $SnCl_4$

	(- /2(- /2			
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:25.27(24.78)
L'1	5.63	Ethanol	Précipité		H: 4.48(4.59)
· · · · · · · · · · · · · · · · · · ·			blanc		N: 2.78(3.21)
SnCl ₄	11.26	Benzène			Cl: 32.10(32.64)

(Me₄N)₂CH₂(COO)₂.2SnCl₄

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:18.57(17.52)
L ₂	10.84	Ethanol	Précipité		H: 4.60(3.45)
			blanc		N: 4.38(3.71)
SnCl ₄	21.68	Benzène			Cl: 36.04(36.78)

(Et₄N)₂CH₂(COO)₂.1,5SnCl₄

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C: 30.67(30.21)
L'2	2.70	Ethanol	Précipité		H: 6.55(5.56)
			blanc		N: 3.79(3.71)
SnCl ₄	5.40	Benzène			Cl: 28.52(28.26)

(Me₄N)₂(CH₂COO)₂.2SnCl₄

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:18.96(18.76)
L_3	3.44	Ethanol	Précipité		H: 4.66(3.38)
			blanc		N: 4.81(3.64)
SnCl ₄	6.88	Benzène			Cl: 36.02(36.13)

$(Et_4N)_2(CH_2COO)_2.2SnCl_4$

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:25.97(26.60)
L'3	2.55	Ethanol	Précipité		H: 5.47(4.89)
			blanc		N: 2.88(3.11)
SnCl ₄	5.10	Benzène			Cl: 30.96(31.62)

(Me₄N)₂(CHCOO)₂.2SnCl₄

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C: 19.50(18.81)
L ₄	5.61	Ethanol	Précipité		H: 4.69(3.39)
			blanc		N: 4.65(3.65)
SnCl ₄	11.22	Benzène			Cl: 35.79(36.22)

(Et₄N)₂(CHCOO)₂.2SnCl₄

Dás stifs	Oursetit's	\mathbf{C} a large state set i lite i s	NInterne	.l.,	A 1
Reactifs	Quantites	Solvants utilises	Nature	au	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:26.63(26.76)
L'4	4.38	Ethanol	Précipité		H : 5.14(4.90)
			blanc		N: 3.71(3.12)
SnCl ₄	8.76	Benzène			Cl: 31.87(31.69)

$(Me_4N)_2(COO)_2$	SnBr ₄
--------------------	-------------------

	· · · · · · · · · · · · · · · · · · ·	. /= /=	•		
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
L					C: 18.58(18.32)
	2.58	Ethanol	Précipité		H: 3.33(3.66)
			jaune		N: 4.47(4.27)
SnBr ₄	5.16	Benzène			Br: 47.01(47.40)

$(Et_4N)_2(COO)_2.1,5SnBr_4$

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:21.21(21.47)
L'1	1.60	Ethanol	Précipité		H: 4.55(3.97)
			jaune		N:2.27(2.78)
SnBr ₄	3.20	Benzène			Br: 46.14(47.69)

(Me₄N)₂CH2(COO)₂.1,5SnBr₄

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:14.10(14.86)
L ₂	2.72	Ethanol	Précipité		H: 3.36(2.92)
			jaune		N: 3.16(3.15)
SnBr ₄	5.54	Benzène			Br: 51.95(52.83)

(Et₄N)₂CH₂(COO)₂.1,5SnBr₄

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C : 22.24(22.35)
L'2	1.74	Ethanol	Précipité		H: 4.68(4.11)
			jaune		N : 2.82(2.74)
SnBr ₄	3.48	Benzène			Br: 46.54(47.03)

$(Me_4N)_2(CH_2COO)_2.2SnBr_4$								
Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse			
	(m mol)		composé		élémentaire			
					%trouvé(%calculé)			
					C:12.88(12.84)			
L_3	3.21	Ethanol	Précipité		H: 2.21(2.31)			
			jaune		N: 2.67(2.49)			
SnBr ₄	6.42	Benzène			Br:54.10(55.65)			

$(Et_4N)_2(CH_2COO)_2.2SnBr_4$

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse		
	(m mol)		composé		élémentaire		
					%trouvé(%calculé)		
					C: 19.96(19.14)		
L'3	3.59	Ethanol	Précipité		H:4.11(3.51)		
			jaune		N:2.24(2.23)		
SnBr ₄	7.18	Benzène			Br:51.10(50.71)		

(Me₄N)₂(CHCOO)₂.2SnBr₄

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:12.97(12.86)
L ₄	3.96	Ethanol	Précipité		H: 2.22(2.32)
			jaune		N: 2.19(2.50)
SnBr ₄	7.92	Benzène			Br: 54.30(55.74)

(Et₄N)₂(CHCOO)₂.1,5SnBr₄

Réactifs	Quantités	Solvants utilisés	Nature	du	Analyse
	(m mol)		composé		élémentaire
					%trouvé(%calculé)
					C:22.16(23.20)
L'4	2.40	Ethanol	Précipité		H: 4.67(4.06)
			jaune		N: 2.80(2.70)
SnBr₄	4.80	Benzène			Br: 46.24(47.12)

B-) METHODES D'ATTRIBUTION ET INSTRUMENTATION

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

I-) LA SPECTROSCOPIE INFRAROUGE

I-1) Spectroscopie de l'ion MoO₄²⁻

Quand l'ion libre MoO_4^{2-} a une symétrie T_d , seules les vibrations fondamentales v3 et v4 d'espèce T2 sont actives en infrarouge, tandis qu'en RAMAN toutes les vibrations sont actives.

Dans le cas d'un abaissement de symétrie par complexation, les vibrations v1 et v2 apparaissent en infrarouge. Selon le mode de coordination l'ion $MoO_4^{2^-}$ peut être : T_d , C_{3v} , C_{2v} , C_1 ou C_s . Le nombre de bandes obtenues en infrarouge, permet de définir la symétrie de l'anion. Tableau (III)

	Nombre de bandes actives en Infrarouge			je
Vibrations → Symétrie de l'anion ↓	v 1	v 2	v 3	v 4
T _d	-		1	1
C _{3v}	1	1	2	2
C _{2v}	1	1	3	2
C ₁ ou C _s	1	2	3	3

TABLEAU III

I-2) Spectroscopie de l'ion oxalate $C_2O_4^{2-}$

SCOTT et coll.(12) avaient tenté dans la série des oxalato cobalt amines une corrélation entre le nombre de bandes vCOO et le type de coordination de l'oxalate. En effet les vibrations de valence de l'ion oxalate sont au nombre de quatre et sont classées en deux catégories :

-deux vibrations d'espèce u

-deux vibrations d'espèce g

Dans le cas d'une complexation, la symétrie de l'ion oxalate peut être D_{2h} , C_{2v} , C_s ou C_1 .

Lorsque les atomes d'oxygène sont perturbés de la même façon, l'oxalate est plan et centrosymétrique, de symétrie D_{2h} . On assiste à une activité sélective Infrarouge-Raman : seules les vibrations d'espèce **u** sont actives en infrarouge. Deux bandes apparaissent dans la zone de valence.

Lorsque les atomes d'oxygènes sont perturbés de la même façon, deux à deux, l'oxalate est de symétrie C_{2v} . Il est C_s ou C_1 si au maximum deux oxygènes sont perturbés de la même façon. Dans ces deux cas toutes les vibrations sont actives en infrarouge. Quatre bandes sont présentent dans la zone de valence, comme dans $(Me_4N)_2C_2O_4.SnCl_4$ (8) ou l'ion oxalate bidentate présente quatre bandes de valence à 1706, 1684, 1357 et à 1226 cm⁻¹.

Dans le cas d'un effet de cristal on peut s'attendre à des éclatements, ce qui augmente le nombre de bandes.

I-3) Spectroscopie de SnX_4 (X= Cl; Br)

 SnX_4 est C_{2v} ou D_{4h} suivant que le complexe octaédrique formé est cis ou trans. -Quand SnX_4 est C_{2v} vas SnX_4 d'espèce T2 éclate en trois composantes toutes d'espèce non dégénérée (A1+B1+B2).

-Quand SnX₄ est D_{4h} , on attend l'apparition de vSn-X d'espèce Eu; elle est généralement fine et intense.

I-4) Spectroscopie des groupements SnC₂ et SnC₃

L'apparition de $vsSnC_2$ indique un groupement SnC_2 coudé, et son absence, un SnC_2 linéaire.

Le groupement SnC₃ peut être de symétrie C_{3v} ou D_{3h} . Dans le cas d'une symétrie C_{3v} , la configuration est pyramidale, et $vsSnC_3$ apparaît. L'absence de cette bande indique un groupement SnC₃ plan, avec une symétrie D_{3h} .

II- LA SPECTROSCOPIE MÖSSBAUER (17)(18)(19)

Découverte en 1957 par RUDOLF MÖSSBAUER, au cours de son travail de doctorat, la spectroscopie Mössbauer ou spectroscopie de résonance magnétique nucléaire consiste en l'absorption de photons gamma d'énergie comprise entre 10.000 et 100.000 ev, par un noyau atomique. Elle s'applique très vite aux deux éléments ⁵⁷Fe et ¹¹⁹ Sn à cause de l'existence d'interactions hyper fines aisément mesurables.

Lorsqu'un noyau atomique, à l'état fondamental, absorbe un photon et passe vers un état excité, trois interactions principales sont à considérer :

-une interaction mono polaire électrique, causée par la pénétration du nuage électronique dans le noyau de l'atome

-une interaction quadripolaire électrique, causée par un gradient de champ électrique agissant sur le moment quadripolaire du noyau atomique

-une interaction dipolaire magnétique, causée par l'action d'un champ magnétique sur le moment magnétique du noyau. La mesure de ces interactions hyper fines permet de montrer qu'elles sont responsables respectivement de trois paramètres fondamentaux caractérisant un spectre Mössbauer: le déplacement isomérique ou isomère shift (I.S ou δ), l'éclatement quadripolaire (Q.S ou ΔE) et la largeur de la raie Γ .

II-1) Le déplacement isomérique

La pénétration du nuage électronique (essentiellement par les électrons s) dans le noyau atomique crée une interaction d'ordre électrostatique. En supposant que la densité de charge positive dans le noyau est constante et que la densité de charge électronique est partout la même, on calcule aisément l'expression classique de cette interaction.

L'écart δ entre l'énergie du rayonnement gamma émis par la source et celle qui est absorbée de façon résonnante dans l'échantillon lorsque les effets relativistes sont négligeables, vaut:

$$\delta = K\{ \left| \Psi(o)_{S} \right|_{a}^{2} - \left| \Psi(o)_{S} \right|_{s}^{2} \}$$

K est une constante qui dépend du rayon du noyau

le terme $|\Psi(0)_{s}|_{a}^{2} - |\Psi(0)_{s}|_{s}^{2}$ reflète la différence de densité électronique dans le noyau de l'absorbant et celui de l'émetteur.

Le déplacement isomérique est proportionnel à la différence de densité en électrons s dans le noyau de l'échantillon et dans celui de la source. Dés lors, le renseignement le plus immédiat que donne le déplacement isomérique d'un échantillon concerne son état d'oxydation.

Par rapport au CaSnO₃ (stannate de calcium) utilisé actuellement comme source par la plupart des laboratoires, les déplacements isomériques suivants font l'objet d'un large consensus(17) :

TABLEAU IV : Exemples de déplacements isomériques de l'étain

	Déplacements isomériques
Sn ²⁺	4.0 - 4.8 mm.s ⁻¹
Sn II covalent	2.6 - 4.0 mm.s ⁻¹
Sn II organométallique	2.1 - 3.0 mm.s ⁻¹
Sn métallique	2.0 - 2.6 mm.s ⁻¹
Sn IV organométallique	1.2 - 1.6 mm.s ⁻¹
Sn IV covalent	0.0 - 1.6 mm.s ⁻¹
Sn ⁴⁺	$= 0.0 \text{ mm.s}^{-1}$

Le déplacement isomérique ou isomère shift (I.S) se mesure sur un spectre Mössbauer par l'écart qui sépare le milieu des deux raies de la vitesse zéro. Il s'exprime en mms⁻¹ mais représente une différence d'énergie entre le rayonnement gamma émis par la source et celui absorbé par l'échantillon.

Il existe cependant des logiciels informatiques permettant d'évaluer avec une bonne précision les valeurs des paramètres.

II-2) L'éclatement quadripolaire

Les noyaux atomiques sont insensibles au champ électrique. Ils sont généralement dépourvus de moment dipolaire. Sous l'action d'un champ électrique les noyaux atomiques n'ont aucune orientation privilégiée et ne développent aucune énergie de couplage. Cependant l'existence de moment quadripolaire pourrait être due à un excès ou à un défaut de charge positive sur certains axes, par rapport à la symétrie sphérique.

En électrostatique classique, on sait qu'une répartition quadripolaire de charges s'oriente dans un gradient de champ électrique ce qui entraîne une perturbation des niveaux d'énergie des noyaux et une modification des fréquences de résonance; tout ceci se répercute sur les spectres d'absorption gamma.

Le gradient de champ est un tenseur représenté par une matrice 3*3 dans un système d'axes cartésien x,y,z.

Gradient de champ

Vxx Vxy Vxz Vyx Vyy Vyz Vzx Vzy Vzz

Par conséquent, pour l'étain 119, en présence d'un gradient de champ au site du noyau, la raie unique éclate en un doublet dont l'écart est égal à la différence d'énergie séparant les deux sous-niveaux excités. Le barycentre des deux raies correspond à l'éclatement quadripolaire.

EXEMPLE : Détermination de l'éclatement quadripolaire Q.S sur un spectre Mössbauer

Dans la plupart des publications les auteurs attribuent à l'étain un environnement en tenant compte de la valeur de l'éclatement quadripolaire. (Exemple voir tableau V) (17-18)

29
Structure	Q.S.(mm/s)
Octaèdre cis	1,7 - 2,2
Tétraèdre	2,1 - 2,6
Bipyramide trigonale	3,0 - 4,1
Octaèdre trans	3,5 - 4,5
Bipyramide pentagonale	4,0

TABLEAU V

Signalons que les premières tentatives pour interpréter les spectres Mössbauer s'appuyaient sur un paramètre ρ (rapport entre l'éclatement quadripolaire et le déplacement isomérique) introduit par HERBER (20). Ce dernier a conclu à une hybridation sp3 de l'étain chaque fois que ρ était inférieur à 1.8 et une hybridation sp3d de l'étain lorsque ρ était supérieur à 2.1.

III- LA DIFFRACTION DES RAYONS X PAR LES MONOCRISTAUX : LA CRISTALLOGRAPHIE (21) (22) (23)

Découverte par W.H et W.L.Bragg en 1913, la diffraction des rayons X a été très tôt appliquée à la détermination de la structure cristalline de NaCl puis celle de nombreux autres composés en particuliers KCl, ZnS, CaF_2 , $CaCO_3$ et le diamant.

W.L.Bragg avait remarqué que la diffraction des rayons X s'effectuait comme la réflexion sur le plan d'atomes dans le cristal, mais que les rayons n'étaient réfléchis que pour certaines orientations du cristal par rapport à la source de rayonnement et par rapport au détecteur. Ceci est différent de la réflexion de la lumière par un miroir ou les angles d'incidence et de réflexion sont égaux. Dans la diffraction des rayons X, la réflexion n'a lieu que si les conditions d'interférence constructive sont satisfaites.

III-1) Equation de Bragg

La figure ci-dessous illustre la condition de Bragg pour la réflexion des rayons X par un cristal. Considérons une coupe à travers un cristal. Les lignes reliant les points noirs représentent des ensembles de plans parallèles dont les indices de Miller sont hkl et la distance interplanétaire d_{hkl} . Soit un faisceau monochromatique de rayons X, ADI qui frappe les plans selon un angle d'incidence **a** .Les rayons A et D sont respectivement diffractés par les atomes situés en B et F. Ces interférences constructives ont lieu si la différence de marche δ_0 entre les deux faisceaux est un multiple entier de la longueur d'onde.

Réflexion de Bragg par une famille de plans cristallins d'espacement dhkl

$$\delta_o = (DF+FH) - (AB+BC)$$

on sait que AB=DE et BC=GH alors $\delta_o = EF + FG$

d'après la figure EF= FG = d_{hkl} sin a et ainsi δ_o = 2 d_{hkl} sin a Soit λ la longueur d'onde et n un entier on a

$$n \lambda = 2 d_{hkl} \sin a$$

Pour n=1, on a $\lambda = 2d_{hkl}/2$.sin a les réflexions correspondant sont du premier ordre pour une famille de plans distants de $d_{hkl}/2$. Les indices de Miller de cette famille de plan sont 2h2k2l. La réflexion du second ordre sur les plans hkl ne peut donc pas être distinguée de la réflexion du premier ordre sur les plans 2h2k2l et l'équation de Bragg peut s'écrire simplement sous la forme:

$$\lambda = 2 \mathbf{d}_{\mathbf{hkl}} \sin \mathbf{a}$$

III-2)-La diffraction des rayons X par les monocristaux

Avec un monocristal, il est possible de mesurer avec précision la position et l'intensité des réflexions hkl et, à partir de ces données, de déterminer non seulement le groupe d'espace du cristal mais aussi les positions atomiques, avec le développement de l'informatique, cette détermination se fait avec rapidité et précision et la diffraction des rayons X s'avère être la technique de détermination structurale la plus puissante dont dispose le chimiste.

Un diffractométre piloté par un ordinateur collecte les données : l'angle de Bragg, **a**, et l'intensité, **I**, de chaque réflexion hkl .Le monocristal est monté de façon qu'il puisse tourner autour de l'un des axes cristallographiques. La rotation du cristal amène chaque plan de celui-ci dans la condition de diffraction et les réflexions sont enregistrées sur des clichés nommés clichés de cristal tournant ou oscillant si l'angle de rotation est limité.

Le travail final consiste à mesurer l'intensité de chaque réflexion pour obtenir toutes les données nécessaires à la détermination de la structure du cristal. Cette méthode, bien qu'ayant donné pendant longtemps de bons résultats,

reste laborieuse. De nos jours les intensités sont collectées avec un diffractométre automatique.

III-3)- Résolution des structures de monocristaux

Pour résoudre les structures cristallines, les chimistes créent un ensemble de phases d'essai des facteurs de structure .Deux méthodes sont utilisées:

*la méthode de Paterson utilisée pour résoudre la structure des composés organométalliques par exemple; car elle nécessite la présence d'atomes lourds (au moins un) dans la maille.

*les méthodes directes, lorsqu'il n'y a pas d'atome lourd, sont utilisées pour la détermination de la structure des composés organiques, biologiques et des clusters.

III3-1)- Cartes de Paterson

Paterson a signalé qu'une série de fourrier avec les valeurs F_{hkl} comme coefficients produit une carte de densité électronique tridimensionnelle, mais qu'une série de fourrier avec les coefficients $|F_{hkl}|^2$ présente des pics qui correspondent à tous les vecteurs inter atomiques :

$$P(u,v,w) = 1/V \qquad \sum_{hkl} |F_{hkl}|^2 \cos 2\pi (hu+kv+lw)$$

V représente le volume de la maille. Les coordonnées du vecteur joignant les deux atomes sont : u, v, w.

La taille du vecteur est proportionnelle au produit des numéros atomiques des atomes concernés. Par exemple dans le cas d'une structure contenant des atomes d'étain et de carbone, la taille du vecteur Sn - Sn est proportionnelle à $(50 \times 50)=2500$, celle de Sn - C est proportionnelle à $(50 \times 6)=300$ et celle d'un vecteur C - C à $(6 \times 6)=36$. Ainsi, on constate que le pic du Sn - Sn se détache largement de tout le reste, de même que le pic Sn - C qui est très loin du pic

C - C. Il faut cependant noter que la résolution devient de plus en plus difficile si le nombre d'atomes augmente.

III-3-2)-Méthodes directes

Lorsque tous les atomes dans le cristal ont un pouvoir diffusant semblable, les méthodes directes s'appliquent plus facilement. Ces méthodes reposent sur le fait que la densité électronique dans une structure doit toujours être positive et que la structure est formée d'atomes discrets à symétrie sphérique. Avec un calcul de probabilité pour les valeurs de la phase on obtient une carte de densité électronique de la maille. Les programmes de calcul les plus utilisés sont ceux de MULTAN et SHELX.

IV-) LA SPECTROSCOPIE DE RESONANCE MAGNETIQUE NUCLEAIRE (24)(25)

Lorsqu'un noyau possède un spin , il est possible de faire une étude par spectroscopie RMN. C'est le cas des noyaux : ¹H, ¹³C, ¹¹⁹Sn, ¹²¹Sb.

Les paramètres à extraire des spectres de résonance magnétique nucléaire : déplacements chimiques et constantes de couplage, sont extrêmement importants de par les renseignements qu'il donnent sur les densités de spins ou de charges, et sur la géométrie nucléaire. Les absorptions de résonance magnétique sont directement proportionnelles au nombre de noyaux résonants.

L'intégration des pics sur un spectre RMN ¹H à partir des aires des pics correspondant aux différents protons (ceux du cation et des résidus SnR_2 ou SnR_3), permet de confirmer la stéochimétrie du composé ; en effet l'aire du pic (ou des pics) est proportionnel au nombre de protons dus à ce dernier (ou à ces derniers). Le spectre RMN ¹¹⁹Sn nous renseigne sur les différents types d'étain dans un composé organométallique. La connaissance de la constante de couplage ¹J(¹¹⁹Sn-¹³C) et du déplacement chimique de l'étain permettent de déterminer l'environnement autour de l'étain.

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

V-) INSTRUMENTATION

Les analyses élémentaires ont été effectuées au service central d'analyses du C.N.R.S à Vernaison (France) et au laboratoire de microanalyse de l'Université de Padova en Italie.

Les spectres infrarouge ont été enregistrés en pastille KBr ou en suspension dans le nujol avec un spectrophotomètre Perkin-Elmer 580B, les faces étant en iodure de césium ou en polyéthylène pour les spectres basses fréquences. Les spectres ont été enregistrés à Dakar (SENEGAL) et au laboratoire de chimie inorganique, métallorganique et analytique de l'Université de PADOVA en Italie.

Les spectres R.M.N (en solution dans le chloroforme) ont été pris à l'Université Catholique de Louvain la neuve (Belgique) avec un spectrophotomètre Bruker 300.

Les spectres Mössbauer ont été enregistrés dans un cryostat à azote liquide à température de 80,0K. La source CaSnO₃ est maintenue à la température ambiante et à une accélération constante . Un logiciel adéquat a été utilisé pour affiner les spectres (l'Université Catholique de Louvain la neuve).

Les structures moléculaires ont été résolues pour la diffraction des rayons X à l'Université Catholique de Louvain la neuve à l'aide d'un programme SHELXTL.

C-) ETUDES SPECTROSCOPIQUE ET CRISTALLOGRAPHIQUE DES COMPLEXES OBTENUS

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

35

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

COMPLEXES OBTENUS AVEC LES LIGANDS MOLYBDATO

1^{ère} PARTIE

36

INTRODUCTION

MÜLLER, BOGGE et SCHIMANSKI (26) ont étudié la nature bidentate et bichélatante du tétrathiomolybdate $MoS_4^{2^-}$.

Les études spectroscopiques des mölybdates MoO_4^{2-} et MoO_4^{4-} ont été réalisés par WEINSTOCH et coll (10).

SALL(8) a synthétisé des composés d'addition de $MoO_4(Me_4N)_2$ avec des halogénures métalliques et des halogénures organostanniques. Il a établi par l'étude de la spectroscopie infrarouge le comportement polydentate de l'ion MoO_4^{2-} ainsi que sa tendance à la chélation.

Nous avons étendu l'étude à d'autres stéochiométries et aux composés du sel $MoO_4(Et_4N)_2$ pour élucider entre autres, le rôle du cation dans la nature des complexes formés et leur stabilité. Les travaux menés nous ont permis d'obtenir deux types de complexes : des complexes d'addition qui sont formellement des complexes obtenus par addition directe de dihalogénures métalliques ou des halogénures organostanniques sur l'oxoanion d'une part, des complexes de substitution-addition d'autre part.

Nous présentons d'abord les spectres infrarouge des ligands (figure 00). Les fortes bandes qui apparaissent sur les deux spectres au voisinage de 1400 cm⁻¹ sont dues au nujol et aux molécules d'eau. Dans le cas du complexe $MoO_4(Et_4N)_2$ les bandes vers 1200 et 1000 cm⁻¹peuvent être attribuées aux Et_4N^+ ; de même dans $MoO_4(Me_4N)_2$, la bande localisée à 950 cm⁻¹, est due au cation Me_4N^+ . Les bandes fortes au voisinage de 800 cm⁻¹ présentes sur les deux spectres sont attribuées à l'anion $MoO_4^{2^-}$.

I.CISSE, Thése de Doctorat d'Etat ès-Sciences, Dakar(2002)

I-) Complexes d'halogénures métalliques

I-1) Complexes d'addition avec les dihalogénures métalliques (R₄N)₂MoO₄.nMX₂

avec R= Me, Et; n = 2, 3, 4; M= Hg, Zn, Cd et X = Cl, Br

$(A) = (Me_4N)_2 MoO_4.2 HgCl_2$	$(F) = (Me_4N)_2MoO_4.3HgBr_2$
$(B) = (Me_4N)_2MoO_4.2ZnCl_2.H_2O$	$(G)=(Me_4N)_2MoO_4.3CdBr_2$
$(D) = (Me_4N)_2MoO_4.3HgCl_2$	$(H) = (Me_4N)_2MoO_4.4HgCl_2$
$(E) = (Et_4N)_2MoO_4.3HgCl_2$	$(I) = (Me_4N)_2MoO_4.4CdCl_2$

Sur la figure (1) est représenté le spectre infrarouge du complexe $(E)=(Et_4N)_2MoO_4.3HgCl2$ et les attributions des bandes fondamentales ainsi que la symétrie de l'anion de l'ensemble des complexes ci-dessus sont sur le tableauVI.

La symétrie T_d du molybdate dans les complexes (A) et (B) avait permis à SALL et coll.(27) d'envisager une structure discrète avec un molybdate bichélatant, Schéma (a).

L'absence de v1 et le non éclatement de v3 dans le cas des complexes (D) et (G) permettent de conclure à un molybdate de groupe ponctuel T_d . Partant de toutes ces données spectrales nous proposons (pour ces deux composés) une structure dimère représentée sur le schéma (b) et une structure à chaîne infinie schéma (b').

La symétrie C_{3v} du molybdate dans les complexes (E) et (F) nous permet d'envisager une structure discrète avec un molybdate trichélatant, schéma (c) ou une structure avec un molybdate tri-unidentate.

Enfin pour les complexes quadrinucléaires (H) et (I), la symétrie T_d du molybdate permet de proposer une structure discrète avec un molybdate tétrachélatant schéma (d) ou tétra-unidentate schéma (e).

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

Schema(a)

M=Hg,Zn

TABLEAU VI

Attributions des bandes fondamentales des complexes :

 $(A) = (Me_4N)_2MoO_4.2HgCl_2$ $(B) = (Me_4N)_2MoO_4.2ZnCl_2.H_2O$ $(D) = (Me_4N)_2MoO_4.3HgCl_2$ $(E) = (Et_4N)_2MoO_4.3HgCl_2$

 $(F) = (Me_4N)_2MoO_4.3HgBr_2$ $(G) = (Me_4N)_2MoO_4.3CdBr_2$ $(H) = (Me_4N)_2MoO_4.4HgCl_2$ $(I) = (Me_4N)_2MoO_4.4CdCl_2$

	FREQUENCES (cm ⁻¹)							
Attributions	(A)	(B)	(D)	(E)	(F)	(G)	(H)	(I)
ν1				910ep	901m			
ν3	814F	883F	893F	867F	883F	841m	880F	770F
		804F		828m	825TF		830F	738F
				644F	770ep		800F	
ν2				533F	539F			
				489m	493m			
ν4	464m	450m	448m	395m	367m	341m	450m	355m
				354m	339m			
				338m				
vM-0	300f	330ep	300m	290m	303F	300F	320m	315F
νΜ-Χ	270m	275F	270F	270m	271m	153F	270F	200F
Symétrie de	T _d	T _d	T _d	C _{3v}	C _{3v}	T _d	T _d	T _d
l'anion								

Avec M = Hg; Cd; Zn TF= très forte F= forte

X= Cl ; Br

m= moyenne

ep = épaulement

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

I-2) Complexes de substitution-addition avec les dihalogénures métalliques I-2-1) (R4N)₂MoO₄.4(ZnMoO₄).2ZnX₂

(R=Me; Et X=Cl; Br) et

 $(Me_4N)_2MoO_4.4(CdMoO_4).2CdBr_3Me_4N$

 $(J)= (Me_4N)_2MoO_4.4(ZnMoO_4).2ZnBr_2$

 $(K) = (Et_4N)_2MoO_4.4(ZnMoO_4).2ZnCl_2.3H_2O$

 $(L) = (Me_4N)_2MoO_4.4(CdMoO_4).2CdBr_3Me_4N$

Sur les figures (2), (3) et (4) nous avons reproduit les spectres infrarouge des complexes (J), (K) et (L) respectivement; les attributions des bandes fondamentales sont sur le tableau VII.

Le chevauchement des bandes dans le domaine des vibrations de valence ne permet pas de faire la différence entre deux molybdates différents mais de symétrie T_d avec effet de cristal et la présence simultanée d'un molybdate T_d et d'un molybdate de symétrie C_{2v} ; tout choix serait arbitraire.

Nous attribuons les bandes de valence aussi bien que les vibrations de déformation aux deux molybdates sans prévoir avec exactitude quelle bande appartient à quel molybdate.

-a)Dans l'hypothèse de deux molybdates de symétrie T_d nous pouvons proposer une structure infinie dans laquelle un molybdate central tétrachélatant est lié par chélation à quatre ZnMoO₄ qui sont liés chacun à un ZnX₂ partagé (schéma f). Dans le cas du cadmium les deux molécules de Me₄NBr peuvent se lier directement aux atomes de cadmium liés au molybdate central par liaison dative simple.

-b)Dans l'hypothèse de la présence simultanée d'un molybdate de symétrie T_d et d'un molybdate de symétrie C_{2v} , nous proposons une structure discrète avec un molybdate tétrachélatant central lié à deux groupements CdMoO₄CdBr₃NMe₄ et à deux groupements CdMoO₄ (schéma g). (Dans le cas des composé du zinc on trouve les structures en remplaçant les CdBr₃ par des ZnX₂). Schéma (f)

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

Figure (2) : Spectre infrarouge du complexe (Me4N)2MoO4.4(ZnMoO4).2ZnBr2

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

Figure (3) : Spectre infrarouge du complexe (Et4N)2MoO4.4(ZnMoO4).2ZnCl2.3H2O

Tableau VII

Attributions des bandes fondamentales des complexes :

 $(J)= (Me_4N)_2MoO_4.4(ZnMoO_4).2ZnBr_2$ $(K)= (Et_4N)_2MoO_4.4(ZnMoO_4).2ZnCl_2.3H_2O$ $(L)= (Me_4N)_2MoO_4.4(CdMoO_4).2CdBr_3Me_4N$

			FREQUENCES	(cm^{-1})
Attributions	(J)		(K)	(L)
Vibrations de	920		962m	925m
valence de MoO ₄	884		792m	879m
	864	TF	738m	828TF
	828		863m	798F
	795			730F
	744			
v2	423m		469f	435m
v4	360ep)	416m	384m
	325m			360m
				353m
				318F
vM-0	296m		329ep	290m
	325m			238m
vM-X	206m		274F	177TF
Symétrie de	T_d ou T_d +	- C _{2v}	T_d ou $T_d + C_{2v}$	T_d ou $T_d + C_{2v}$
l'anion				
TE-tube foute I	f t			1

TF= très forte F= forte m=moyenne f=faible ep=épaulement

1.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

I-2-2) $(Me_4N)_2MoO_4.(ZnMoO_4).ZnCl_2.2H_2O$

Sur la figure (5) nous avons reproduit le spectre infrarouge de ce complexe et sur le tableau VIII, les attributions des bandes fondamentales.

L'apparition de v1 sous forme de trace , le non éclatement de v3 et l'absence de v2, permettent de conclure à une symétrie T_d pour le molybdate. La structure proposée est une chaîne infinie avec des molybdates bichélatants schéma (h).

Cependant rien n'empêche à priori de considérer le complexe dans sa composition triviale $Me_4NMoO_4.ZnCl.H_2O$, la structure serait une chaîne infinie avec un molybdate bichélatant, l'environnement autour du zinc étant pyramidal à base carrée schéma (i). Il faut noter que l'existence de deux bandes dues au vZn-O favorise la première structure.

I-2-3) (Me_4N)₂ MoO_4 .Cd MoO_4 .2CdCl₂

Sur le tableau VIII sont reportées les attributions des bandes fondamentales du spectre infrarouge de ce complexe ainsi que la symétrie de l'anion. La non apparition de v1 et v2, le non éclatement de v3 permettent de conclure à un molybdate de symétrie T_d . Le spectre RMN du solide de ce complexe est reporté sur la figure (R1). Il indique l'existence de deux types de Cd à différents environnements dans le rapport 2 : 1 (rapport de aires).

La structure proposée, dérivant des données spectroscopiques est discrète avec des molybdates bichélatants, l'environnement autour du métal étant tétraédrique schéma (j). Ce type de structure avait déjà été retrouvé dans des complexes de substitution addition par DIASSE-SARR(28).

Schéma (i)

Figure (5) : Spectre infrarouge du complexe

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

(Me4N)2MoO4.CdMoO4.2CdCl2

I-2-4) (Et₄N)₂MoO₄.(HgMoO₄).4HgBr₂ et (Me₄N)₂MoO₄.(HgMoO₄).4HgCl₂.2Me₄NCl

Sur la figure (6) nous avons reproduit le spectre infrarouge du complexe bromé et les attributions sur le tableau VIII.

L'apparition de v1 à 907 cm⁻¹ sous forme d'une bande faible et le non éclatement de v3, permettent de conclure à un groupe ponctuel T_d pour le molybdate. La structure proposée est une chaîne infinie avec des molybdates tétrachélatants. L'environnement autour du Hg central, dans le cas du complexe chloré, est octaédrique (schéma k); alors que dans le cas du complexe bromé, l'environnement autour du Hg central est tétraédrique (schéma l). L'approche des chlorures est sûrement plus aisée que celle des bromures; cependant il est difficile d'exclure le rôle du cation stabilisateur.

Figure (6) : Spectre infrarouge du complexe (Et4N)2MoO4.HgMoO4.4HgBr2

TABLEAU VIII

Attributions des bandes fondamentales des complexes : $(M)=(Me_4N)_2MoO_4.(ZnMoO_4).ZnCl_2.2H_2O$ $(N)=(Me_4N)_2MoO_4.CdMoO_4.2CdCl_2$ $(O)=(Et_4N)_2MoO_4.(HgMoO_4).4HgBr_2$ $(P)=(Me_4N)_2MoO_4.(HgMoO_4).4HgCl_2.2Me_4NCl$

	FREQUENCES (cm ⁻¹)				
ATTRIBUTIONS	(M)	(N)	(O)	(P)	
ν1	919Tf				
v3	880F 856Tf 814 m	839F	831F	806F	
v2					
∨4	391 m	435 f	498m 463m 373m	450m	
vM-0	316ep 308F	308 F	332m 313m	320ep	
ν Μ-Χ	253f	250F	272F	270F	
Symétrie de l'anion	T _d	T _d	T _d	T _d	
Tf= très faible F=	forte	m=moyenne	f=faible_ep	=épaulement	

I-2-5) 2[(Me₄N)₂MoO₄].CdMoO₄.3CdBr₂ et (Me₄N)₂MoO₄. 3(CdMoO₄).2CdCl₃Me₄N

Sur le tableau IX sont reportées les attributions des bandes fondamentales de ces complexes ainsi que les symétries des anions.

L'absence de la vibration de valence symétrique v1 dans le cas du complexe bromé et le non éclatement de v3 permettent de conclure à un groupe ponctuel T_d pour le molybdate. La vibration de valence antisymétrique v4 apparaît à 306 cm⁻¹. Partant de ces données spectrales, nous proposons , une structure discrète avec des molybdates bichélatants et le Cd central étant hexacoordiné, schéma (m).

Pour le complexe chloré v1 apparaît sous forme de trace. L'absence de v2 et le non éclatement de v3, nous poussent à attribuer une symétrie T_d au molybdate. Les deux bandes à 240 et 205cm⁻¹ sont dues respectivement à vCd-O et vCd-Cl. Nous proposons une structure discrète avec un molybdate bichélatant, schéma (n).

TABLEAU IX

Attributions des bandes fondamentales des complexes : $(Q)=2(Me_4N)_2MoO_4.CdMoO_4.3CdBr_2$ $(R) = (Me_1N)_{2}M_{0}O_{1} = (Me_1N)_{2}M_{0}O_{1}$

(10) (10)				
	FREQUENCES	FREQUENCES (cm ⁻¹)		
ATTRIBUTIONS	(Q)	(R)		
v1		960Tf		
v3	821TF	844TF		
ν2	436f			
v4	306TF	310F		
vCd-O	240m	240ep		
vCd-X	176TF	205F		
Symétrie de l'anion	T _d	T _d		

ep=épaulement

$I-2-6) \quad 3[(Me_4N)_2MoO_4].ZnMoO_4.4ZnBr_2$

Et

$(Et_4N)_2MoO_4.3(ZnMoO_4).3/2ZnCl_2$

Les attributions des bandes fondamentales des deux complexes ci-dessus sont reportées sur le tableau X.Pour le complexe bromé, le très faible éclatement de v4 et l'absence de v1, permettent de considérer l'éclatement de v3 comme étant dû à un effet de cristal et de conclure à un molybdate de symétrie T_d . Partant de ces données spectrales nous proposons :

-une structure discrète avec des molybdates bichélatants, et un Zn central tétraédrique schéma (o)

-une structure discrète avec des molybdates bichélatants, le Zn étant octacoordiné (schéma p). DIASSE-SARR a proposé le même type de coordination dans le complexe $3(Me_4N)_2SO_4.CdSO_4.4CdBr_2$ (29).

Ce deuxième type devrait entraîner une grande différence au niveau des vibrations de ZnO du fait de l'encombrement autour de Zn d'ou l'apparition de deux forte bandes à 255 et 230 cm⁻¹ attribuées à vZn-O.

Concernant le complexe chloré, l'apparition de v1 à 960 cm⁻¹, l'éclatement de v3 et le nombre de bande permettent d'envisager l'existence de deux types de molybdate de symétrie Td et C_{2v} . Les trois bandes d'intensité moyenne associées à la bande à 960cm⁻¹ seraient certainement dues au molybdate de symétrie C_{2v} ; alors que la bande très intense à 795 cm⁻¹serait due à v3 du molybdate de symétrie T_d. La structure rendant compte de ces données spectrales est tridimensionnelle avec un molybdate central de symétrie C_{2v} , schéma (q).

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

I-2-7) $(Me_4N)_2MoO_4.2(ZnMoO_4).2ZnBr_2$ et

(Et₄N)₂MoO₄.2(ZnMoO₄).3ZnBr₂

Sur le tableau X sont reportées les attributions des bandes fondamentales des spectres infrarouge des complexes ci-dessus, sur la figure (7) le spectre infrarouge du complexe obtenu avec le tétraéthylammonium.

54

Dans le cas du premier complexe (U), la non apparition de v1 et le très faible éclatement de v3, permettent de conclure à un molybdate de symétrie T_d . La structure proposée est discrète avec un molybdate bichélatant schéma (r).

Pour le complexe obtenu avec le tétraéthylammonium, v1 apparaît à 945cm^{-1} ; l'éclatement de v3 et le nombre de bandes dans la zone de valence permettent d'envisager l'existence de deux types de molybdate :

-l'un de symétrie C_{2y}

-l'autre de symétrie T_d

Les trois bandes d'intensité moyenne associées à la bande à 945 cm⁻¹ seraient dues au molybdate de symétrie C_{2v} ; alors que la bande très intense à 793cm⁻¹ serait due à v3 du molybdate de symétrie T_d. La structure rendant compte de ces données spectrales est discrète, schéma (s).

Figure (7) : Spectre infrarouge du complexe (Et4N)2MoO4.2(ZnMoO4).3ZnBr2

TABLEAU X

Attributions des bandes fondamentales des complexes : (S)= $3(Me_4N)_2MoO_4.ZnMoO_4.4ZnBr_2$ (T)= $(Et_4N)_2MoO_4.3(ZnMoO_4).3/2ZnCl_2$ (U)= $(Me_4N)_2MoO_4.2(ZnMoO_4).2ZnBr_2$ (V)= $(Et_4N)_2MoO_4.2(ZnMoO_4).3ZnBr_2$

FREQUENCES (cm ¹)					
ATTRIBUTIONS	(S)	(T)	(U)	(V)	
v1		960m		945F	
	887F	947F	949	922 m	
	821F	915m	918 TF	846 m	
v3		850ep	868	793 F	
		795TF	742	737 m	
ν2		455m		522 tf	
	320m	410m	306 f	407 m	
ν4		390ep		370	
		355m		358	
				355	
vZn-O	255F	260ep	295 m	296 ep	
	230F		240 ep		
vZn-X	205TF	270TF	210 TF	206 TF	
Symétrie de l'anion	T _d	$T_d + C_{2v}$	T _d	$T_d + C_{2v}$	

Tf= très faible TF= très forte m=moyenne f=faible ep=épaulement

I-2-8) $(Me_4N)_2MoO_4.2(HgMoO_4).nHgBr_2.n'Me_4NBr$ (n=1;2;3) (n'=0;1;3/2)

 $(W) = (Me_4N)_2MoO_4.2(HgMoO_4).HgBr_2$ (X) = (Me_4N)_2MoO_4.2(HgMoO_4).2HgBr_2.Me_4NBr (Y) = (Me_4N)_2MoO_4.2(HgMoO_4).3HgBr_2.3/2Me_4NBr

Sur le tableau XI nous avons reporté les attributions des bandes fondamentales ainsi que la symétrie des anions. Le très faible éclatement de v4 et l'absence de v1, dans tous les cas, permettent d'expliquer l'éclatement de v3 comme étant dû à un effet de cristal et de conclure à un molybdate de symétrie T_d

Le complexe (W) peut être considéré comme dérivant du complexe $(Me_4N)_2MoO_4.2(HgMoO_4)$ par addition d'une molécule de HgBr₂. Nous pouvons logiquement envisager une structure du type P_4O_6 en considérant la formule dimère $(MoO_4)_6(HgMe_4N)_4.2HgBr_2$; les quatre Hg seraient aux

sommets d'un tétraèdre et reliés entre eux par des molybdates bichélatants .On peut imaginer la cage en interactions certes faibles avec les HgBr₂ externes qui seraient partagées entre deux faces. La structure proposée, schéma (t), est tridimensionnelle avec quatre HgBr₂ pontants.

Pour le complexe (X), nous proposons une structure tridimensionnelle avec un $HgBr_2$ sur chacune des faces, les bromures seraient des ponts entre deux cages.

Enfin pour le complexe (Y) les $HgBr_2$ seraient en interaction suivant les six côtés de la cage avec les molybdates et seraient liés aux $HgBr_2$ d'une autre cage grâce à un pont Br⁻; la structure proposée est tridimensionnelle.

Ce type de structure similaire à P_4O_6 a déjà été synthétisée dans notre laboratoire dans le cas du sulfate par Diasse-Sarr (28) et dans le cas du tungstate par Debarros (30).

Tableau XI

Attributions des bandes fondamentales des complexes :

 $(W) = (Me_4N)_2MoO_4.2(HgMoO_4).HgBr_2$

(X) = $(Me_4N)_2MoO_4.2(HgMoO_4).2HgBr_2.TMNBr$

(Y) = $(Me_4N)_2MoO_4.2(HgMoO_4).3HgBr_2.3/2TMNBr$

	FREQUENCES (cm ⁻¹)				
Attributions	(W)	(X)	(Y)		
ν1					
ν3	895 862 F 779	898 F 858 m 779 TF 667 m	910 m 898 m 877 m 837 F 788 F		
ν2	453 f	455 f	457 f		
ν4	339 F 332 m 322 m	369 m 352 m 339 m 322 m	419 m 345 F 322 f		
vHg-O	287m	299 TF 273 m	301 m 274 m		
vHg-X	188 TF	187 TF	188 TF		
Symétrie de l'anion	T _d	T _d	T _d		

TF= très forte F= forte m=moyenne f=faible ep=épaulement

II -)COMPLEXES STANNIQUES II-1) $(Et_4N)_2MoO_4.2(SnPh_2MoO_4)$

Sur la figure (8) nous avons reproduit le spectre infrarouge de ce complexe, sur le tableau XII les attributions des bandes fondamentales ainsi que la symétrie de l'anion.

La vibration de valence symétrique v1 apparaît à 931cm⁻¹. L'éclatement de v3 et le nombre de bandes permettent de conclure à deux type de molybdate de symétrie T_d et C_{2v} .

Dans $SnPh_2(H_2PO_2)_2$, Sall(8) localise $vasSnC_2$ à 300cm⁻¹ alors que Debarros (30) localise $vasSnC_2$ à 275 cm⁻¹ dans $(Me_4N)_2WO_4.2(SnPh_2WO_4)$. Ceci nous permet d'attribuer la bande à 274 cm⁻¹ à $vasSnC_2$.

Les bandes moyennes à 230 et 222cm⁻¹ sont attribuées à vsSnC₂ et vSn-O respectivement ; ce qui permet de conclure à un SnC₂ coudé .La structure proposée est discrète avec un molybdate bichélatant au centre (T_d) et deux molybdates terminaux (C_{2v}). Le groupement SnC₂ est angulaire schéma (u). Cependant rien n'empêche d'envisager un développement de type infini avec un environnement octaédrique autour de Sn et un SnC₂ coudé .

II-2) (Me₄N)₂MoO₄.3SnPh₃Cl

Sur le tableau XII nous avons reproduit les attributions des bandes fondamentales de ce complexe ainsi que la symétrie de l'anion.

Nous notons l'apparition de v1 à 932 cm^{-1} et l'éclatement de v3 en plusieurs composantes. La vibration de valence antisymétrique $\sqrt{asSnC_3}$ apparaît à 271 cm-1. L'absence de $\sqrt{sSnC_3}$ corrobore un groupement SnC₃ plan.

Sur la figure (m1) est représenté le spectre Mössbauer du complexe. La valeur du déplacement isomérique δ = 1.23 mm.s⁻¹; permet de conclure à un seul type de Sn IV organométallique. L'éclatement quadripolaire ΔE = 3.21 mm.s⁻¹ est supérieur à celui de SnPh₃Cl (2.48 mm.s⁻¹) (29) ce qui confirme la coordination. En effet dans Et₄NNO₃.3SnPh₃Cl (31) les paramètres Mössbauer sont δ =1.64mm.s⁻¹, ΔE = 3.14 mm.s⁻¹. Partant de ses données spectrales , nous proposons un environnement bipyramidal trigonal autour de Sn la structure proposée est discrète, avec un molybdate tri-unidentate schéma (v).

II-3) $(Et_4N)_2MoO_4.3(SnPh_3)_2MoO_4$

Sur le tableau XII nous avons reproduit les attributions des bandes fondamentales de ce complexe ainsi que la symétrie de l'anion.

La vibration de valence symétrique v1 apparaît à 929cm⁻¹. L'éclatement de v3 et le nombre de bandes permettent d'envisager l'existence de molybdate de symétries C_{3v} avec effet cristal.

La présence de la bande intense à 275 cm⁻¹ due à vasSnC₃ d'après Wharf et coll. (32) et Lahlou et Diop (33) l'absence de bande à 213 cm⁻¹ permettent de conclure à un groupement SnC₃ de symétrie D_{3h} .

Les valeurs du déplacement isomérique $\delta = 1.20 \text{ mm.s}^{-1}$ et de l'éclatement quadripolaire $\Delta E = 3.06 \text{ mm.s}^{-1}$, indiquées sur la figure (m2), permettent de conclure à un seul type de Sn IV organométallique trans-coordiné comme dans $(Et_4N)_2C_2O_4.2(SnPh_3)_2C_2O_4$ (16). La structure proposée est discrète schéma(w).

Tableau XII

 $\begin{array}{l} \mbox{Attributions des bandes fondamentales des complexes :} \\ (Z1) = (Et_4N)_2MoO_4.2(SnPh_2MoO_4) \\ (Z2) = (Me_4N)_2MoO_4.3SnPh_3Cl \\ (Z3) = (Et_4N)_2MoO_4.3(SnPh_3)_2MoO_4 \end{array}$

		FREQUENCE	$\mathbf{S} (\mathrm{cm}^{-1})$
Attributions	(Z1)	(Z2)	(Z3)
ν1	931 m	932 m	929 m
<u>v3</u>	910F	873 f	868 m
	840 f	855 f	849m
	810 tf	793 f	784 F
	786 TF		
	657 F		
ν2	575 m	435 ep	435 ep
ν4	415 m	397 f	395 f
	373 m	340 F	
2	323 TF		
vasSnC3		273 TF	275 TF
vasSnC2	274 F		
vsSnC3			
vsSnC2	230 F		
vSn-O	222 F	325 F	326 F
vSn-Cl		273 TF	
Symétrie	$T_d + C_{2v}$	C _{3v}	C_{3v}
de l'anion			
TF= très forte	F= forte m	=moyenne f=fa	ible ep=épaulement

Figure (8) : Spectre infrarouge du complexe (Et4N)2MoO4.2SnPh2MoO4

			0 10-1 1000
			UFIZ= 1.1830
		and an	VALLES OF PARAVETERS
	an (د افغان العلمي ₍ , , , , , , , , , , , , , , , , , , ,	INTIAL	FINAL ERROR
YD=	1126225.1250	1126823.2	2500 +- 95.0152
	QS	3.2000	3.2127 + 0.0055
	IS	1.2000	1.2333 +- 0.0024
	LARGI	0.9000	0.9562 + 0.0117
	LARG2	0.9000	0.9849 +~ 0.0096
· · · · · · · · · · · · · · · · · · ·	PROF1	0.0400	0.0478 +- 0.0004
	PROF2	0.0500	0.0590 +- 0.0004
	VMAX = 7.7	BOD FOLD	NGPONT=258.0127

62

			<u></u>	0H	A1039y
			•	CHI2=	1.0035
			VALUES OF F	PARAM	ETERS
		INITIAL	FINAL		ERROR
YD=	493617	.6250	493515.0625	+- 5	9.8001
	Q.S.	3.0000	2.862	7 +-	0.0533
	I.S.	1.3000	1.248	2 +-	0.0282
	LARG1	0.9000	0.753	7 +-	0.1157
	LARG2	0.9000	0.838	6 +-	0.0432
	PROF1	0.0200	0.006	<u>;</u> 9 +-	0.0006
	PROF2	0.0200	0.006	57 +-	0.0006
	VMAX = -7	7.7800 I	OLDING POIL	VT = 25	57.5082

Schéma (u)

Schéma (w)

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

II-4) $(R_4N)_2MoO_4.2(SnX_2MoO_4)$ (R=Et ,Me; X=Cl, Br)

 $(Z4) = (Me_4N)_2MoO_4.2(SnCl_2MoO_4)$ $(Z5) = (Et_4N)_2MoO_4.2(SnCl_2MoO_4)$ $(Z6) = (Et_4N)_2MoO_4.2(SnBr_2MoO_4)$

Le tableau XIII rassemble les attributions des bandes fondamentales des complexes ainsi que les symétries des anions. Les spectres infrarouge des complexes montrent l'existence d'une bande forte vers 964cm⁻¹ que nous pouvons attribuer à v1 du molybdate de symétrie C_{2v} . Les nombres de bandes dans la zone de valence permettent d'envisager l'existence d'un autre molybdate de symétrie T_d . Les paramètres Mössbauer de ces complexes portés sur le tableau XIIIA permettent de conclure à un seul type de Sn (IV) covalent.

Tableau XIIIAdes paramètres Mössbauer des complexes (Z4), (Z5) et (Z6)

Complexes	(Z4)	(Z5)	(Z6)
δ (mm.s ⁻¹)	0.45	0.39	0.61
$\Delta E (mm.s^{-1})$	0.20	0.21	0.25

Les valeurs obtenues pour l'éclatement quadripolaire ΔE indiquent que l'environnement autour de Sn est octaédrique comme l'ont soulignés Gueye et coll(16) dans (Et₄N)₂C₂O₄.2SnCl₄. La structure proposée pour ces trois complexes est discrète avec un molybdate de symétrie T_d au centre et deux molybdates terminaux de symétrie C_{2v}, schéma (x) (page précédente)..

Tableau XIII : Attributions des bandes fondamentales des complexes : (Z4), (Z5) et (Z6)

	FREQUENCES (cm ⁻¹)		
Attributions	(Z4)	(Z5)	(Z6)
v1	964 TF	964 TF	964 TF
ν3	895 ep	895 ep	897 ep
	800 F	800 F	798 F
ν2	434 m	434 m	457 m
	356 m	356 m	356 m
	311 ep	311 ep	315 ep
vSn-O	295 F	295 F	295 F
+		222 f	269 f
vSn-X			
Symétrie	$T_d + C_{2v}$	$T_d + C_{2v}$	$T_d + C_{2v}$
de l'anion			
TF= très forte	'F= forte m=	movenne f=faible	ep=épaulement
CONCLUSION

Au terme de cette série de complexes synthétisés, la nature polychélatante du molybdate MoO_4^{2-} a été confirmée. Les composés obtenus sont de type addition simple $(R_4N)_2MoO_4.nMX_2$ (M=Hg, Zn, Cd; X = Cl, Br) et de type substitution-addition $(R_4N)_2MoO_4.m(MMoO_4).nMX_2$ avec ou sans R_4NX d'addition (m=1,2,3; n=1,2,3,4).

Nous remarquons qu'avec le cation tétraméthylammonium il se forme beaucoup de composés d'addition du type $(Me_4N)_2MoO_4.nMX_2$ (avec n=2,3,4) alors qu'avec l'ion tétraéthylammonium seul le composé $(Et_4N)_2MoO_4.3HgCl_2$ est obtenu.

Dans la série de composés de substitution-addition obtenus avec les molécules de type MX_2 seuls quatre l'ont été en utilisant le cation tétraéthylammonium comme cation stabilisateur.

Dans le cas de $SnPh_3Cl$ le molybdate donne un composé d'addition(1-3) quand le cation stabilisateur est le tétraméthylammonium, alors qu'avec le tétraéthylammonium on obtient un composé de substitution-addition.

Vis-à-vis de SnCl₄ le molybdate donne un composé de substitutionaddition avec les deux cations, alors que les composés de SnX₄ ont été synthétisés jusqu'ici avec les autres anions tétraédriques ou pas $SO_4^{2^-}$, $SeO_4^{2^-}$, $H_2PO_2^-$, MeAsO₂⁻, étaient des composés d'addition du type (Me₄N)H₂PO₂SnX₄., (Me₄N)Me₂AsO₂ SnX₄. ou (Me₄N)₂H₂PO₂(SnX₄)_{1,5}. Ce n'est qu'avec l'oxalate que l'on a obtenu (Et₄N)₂C₂O₄(SnX₄)₂.

Il semble alors se dégager une influence très nette de la taille du cation par rapport au type de composé formé par le ligand molybdate. La présence du petit cation Me_4N^+ favorise la formation prépondérante de composés d'addition de différentes stéochiométries et dans de rares cas de substitution-addition, les composés cristallisent avec des fractions plus ou moins importantes de Me_4NX . Alors que dans le cas du cation stabilisateur Et_4N^+ plus volumineux, on a la formation prépondérante de composés d'addition. Les très rares cas de composés d'addition obtenus le sont avec de gros acides de Lewis du type HgX₂.

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar(2002)

COMPLEXES OBTENUS AVEC LES LIGANDS DICARBOXYLATO

2^{ème} PARTIE

INTRODUCTION

L'étude du pouvoir coordinant des dicarboxylates tel que l'oxalate a conduit à la synthèse de plusieurs nouveaux complexes (1). Dans notre laboratoire, l'étude des interactions de l'ion oxalato et des acides de Lewis organostanniques tels que SnR_aX_{4-a} (a=2; 3; 4. X=Cl; Br et R= Me; Bu; Ph) a été initiée depuis quelques années par Gueye(9). Il a confirmé la nature polychélatante de l'ion oxalate et sa tendance à se comporter en anion bichélatant pour donner des complexes binucléaires à structures discrètes.

D'importantes études dans le domaine du magnétisme et de la conduction électrique ont été réalisées, dans le cadre de l'étude des complexes oxalato. Ainsi pour le magnétisme on peut citer entre autres les travaux de VERDAGUER et coll (54-56) dans les complexes du type $Cu(C_2O_4).1/3H_2O$, $Cu(C_2O_4)(NH_3)_2.2H_2O$ et $[Cu(C_2O_4)_2]^{2-}$. De même il a été mis en évidence dans les complexes bis oxalato platine, des ligands oxalato N⁴ chélatants avec un environnement plan carré autour du platine comme dans $K_{1,6}Pt(C_2O_4)2(H_2O)_x$ où des plans carrés se superposent avec des distances Pt-Pt de l'ordre de 2,75 Å. Ces composés à empilement colonnaire ont une très haute conductivité électrique dans la direction de l'axe Pt-Pt (57).

Alors qu'il existe de nombreuses études structurales des complexes oxalato d'étain(IV), des structures de tels complexes avec comme oxoanion le malonate, le succinate ou le maléiate (cis) ont été moins étudiées TIEKINK dans un article récent (88) a passé en revue les différentes structures cristallographiques des carboxylates d'étain proposées dans la littérature.

Nous avons initié l'étude des dicarboxylates précédemment cités, en utilisant comme cations stabilisateurs le tétraméthylammonium et le tétraéthylammonium afin de déterminer d'une part le rôle du cation et d'autre part celui de la longueur de la chaîne carbonée de l'oxoanion sur la stabilité des complexes formés. C'est ainsi que plusieurs complexes de substitution comme d'addition avec les halogénures organostanniques seront obtenus. Des structures seront proposées sur la base des spectroscopies infrarouge, Mössbauer et de résonance magnétique nucléaire. Deux composés obtenus sous forme de monocristaux feront l'objet d'une étude cristallographique.

Sur les figures (α) et (β) nous représentons les spectres infrarouge des ligands (Et₄N)₂(CH₂COO)₂.H₂O et (Et₄N)₂(CHCOO)₂.2H₂O respectivement, et sur le tableau(XXII) les attributions des bandes fondamentales de tous les ligands dicarboxylato étudiés dans ce travail.

TABLEAU (XXII): : Fréquences en cm⁻¹ des principales bandes IR des ligands

$L_1 = (Me_4N)_2(COO)_2.2H_2O$
$L_2 = (Me_4N)_2 CH_2(COO)_2.3H_2O$
$L_3 = (Me_4N)_2(CH_2COO)_2.2H_2O$
$L_4 = (Me_4N)_2(CHCOO)_2.2H_2O$

 $L'_{1}=(Et_{4}N)_{2}(COO)_{2}.2H_{2}O$ $L'_{2}=(Et_{4}N)_{2}CH_{2}(COO)_{2}.H_{2}O$ $L'_{3}=(Et_{4}N)_{2}(CH_{2}COO)_{2}.H_{2}O$ $L'_{4}=(Et_{4}N)_{2}(CHCOO)_{2}.2H_{2}O$

		FREQUENCES (cm ⁻¹)						
Attributions	(L1)	(L2)	(L3)	(L4)	(L1')	(L2')	(L3')	(L4')
vC=O	1714m	1704m	1712m	1716m	1712f	1709m	1724m	1708m
vasCOO	1604F	1560F	1576F	1578F	1608F	1557F	1581F	1581F
		1479m	1412m	1404m		1545f	1411m	1394F
vsCOO	1324F	1348F	1346m	1324m	1328F	1412m	1351F	1312m
		1225m	1312f	1234f		1290m	1314m	
			1280f				1282m	
vC=C	1655f	1658f	1667f	1655f	1667f	1656f	1655f	1653f
vC-C	810m	823m	824f	826m	812f	816f	815f	837f
δ(COO ⁻)	776F	777m	765m	697Tf	774F	710f	701m	678m
ρ(COO ⁻)	530F	654m	697f	538f	527F	654m	627m	628m
ω(COO ⁻)	519f]538f		520f	514m	598f	594f	554m

F= forte

m= moyenne

f= faible

Tf=très faible

I-) COMPLEXES DE SUBSTITUTION

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar(2002)

I-) Complexes de substitution

Rappelons que les complexes dicarboxylato de substitution du type $(CH_n)_x(COO)_2.2SnPh_3$ obtenus dans ce travail, ont été synthétisés à partir des acides dicarboxyliques et de SnPh₃OH. Il faut Cependant souligner que l'action de SnPh₃Cl sur les ligands ayant comme cation stabilisateur le tétraéthylammonium permet d'obtenir les même types de complexes de substitution.

Les complexes de substitution du type $(CH_n)_x(COO)_2.2SnR_3$ sont obtenus directement avec SnR₃Cl (avec R= Bu, Me). Pour le chlorure de triméthylétain SnMe₃Cl les composés obtenus l'ont tous été avec les ligands ayant comme cation cation stabilisateur le tétraméthylammonium à l'exception du malonate (Me₄N)₂CH₂(COO)₂.3H₂O, qui n'a donné aucun complexe. Glowacki et étudié la du coll.(34)ont diffraction aux rayons Х complexe (CH)₂(COO)₂.2SnMe₃. Cette étude sera confirmée dans ce travail. Rappelons également que certains ligands n'ont pas permis d'obtenir un composé avec SnBu₃Cl de même qu'avec SnMe₃Cl.

I-1-) Complexes du type (CH_n)_x(COO)₂.2SnPh₃

(avec n = 1, 2 et x = 0, 1, 2) (A1)= (COO)₂.2SnPh₃ (A2)= CH₂(COO)₂.2SnPh₃ (A3)= (CH₂COO)₂.2SnPh₃ (A4)= (CHCOO)₂.2SnPh₃

Sur le tableau XIV nous avons reproduit les attributions des bandes fondamentales des spectres infrarouge des complexes ci-dessus et sur la figure(9) le spectre infrarouge du complexe $CH_2(COO)_2.2SnPh_3$.

v(C=O) est absente sur les spectres infrarouge des complexes $(COO)_2.2SnPh_3$ et $(CH_2COO)_2.2SnPh_3$. Vue le nombre de bandes dans la zone de valence de l'oxoanion pour le complexe (A1), la symétrie D_{2h} peut être envisagée pour l'oxalate. $vsSnC_3$ est localisée entre 216 et 218 cm⁻¹ sur tous ces spectres infrarouge ; $vasSnC_3$ est localisée à 275cm⁻¹: il existe au moins un groupement SnPh₃ de symétrie C_{3v} . Schlam et coll. (40) avaient localisé v(C=C) à 1655cm⁻¹ dans $Cu_2(O_2CCH=CHCH_3)_4(DMF)_2$; ce qui nous permet d'attribuer la bande à 1653cm⁻¹à v(C=C) dans (CHCOO)₂.2SnPh₃.

Les spectres RMN ¹H, dans le chloroforme (CDCl₃), de ces complexes sont reportés sur les figures (R2), (R3), (R4) et (R5) respectivement. L'intégration des pics à partir de leurs aires permet de confirmer les stéochiométries proposées.

Les spectres Mössbauer des complexes (A1) et (A3) représentés respectivement sur les figures (m3) et (m4) confirment la présence d'un seul type de Sn(IV) organométallique avec un environnement bipyramidal trigonal. Partant de ces données spectrales nous proposons une structure discrète avec un oxoanion bichélatant pour chacun des deux complexes (A1) et (A3) schémas(1) et (2) respectivement. Notons que des structures semblables avaient été trouvées par Gueye(9) dans lesquelles l'oxalate est chélatant. Cependant pour le complexe (A2) la présence d'un seul type de Sn(IV) organométallique avec un environnement bipyramidal trigonal, permet d' envisager une structure discrète chélatante (chélation faible)à cause de la présence de v(C=O). La structure proposée est discrète avec un malonate chélatant, schéma(3).

Enfin pour le complexe $(CHCOO)_2.2SnPh_3$ (A4) le spectre Mössbauer présenté sur la figure (m5) confirme la présence de deux type de Sn (dans des rapports1/3 et 2/3). Les isomères shift 1.27 et 1.33 mms⁻¹ confirment un Sn(IV) organométallique. Les valeurs de l'éclatement quadripolaire 2.49 et 3.54 mms⁻¹ sont en accord respectivement avec un Sn à environnement T_d et un autre à environnement bipyramidal trigonal ce qui sera confirmé par l'étude cristallographique ci-dessous.

Etude cristallographique du complexe (CHCOO),.2SnPh₃

Les données de l'intensité des rayons X ont été mesurées à la température ambiante avec un MAR345 en utilisant MoK α (λ =0,71069 Å). Le détecteur est placé à la distance de 120 mm du cristal. Pour le complexe (CHCOO)₂.2SnPh₃ 100 images ont été collectées sous un angle de 3° pendant 300s ce qui nous a permis de mesurer au total 42552 réflexions dont 7216 indépendantes. Les paramètres de cellules d'unité ont été affinés par processus d'intégration en rassemblant toutes les tâches. Les données relatives au cristal sont énumérées sur le tableau (1a); les valeurs des longueurs et des angles sont reportées sur la tableau (2a). La structure proposée a été résolue par la méthode de Paterson avec SHELXL97. Les atomes d'hydrogène ont été calculés avec AFIX et affinés en les affectant un facteur d'agitation thermique isotrope uniforme. La structure proposée est infinie (schéma (4)) dans laquelle nous avons une double liaison qui introduit une certaine rigidité, ce qui augmente l'effet des gênes stériques de sorte que les structures les plus stables sont infinies. Le paramètre absolu de Flach (-0.001) très faible permet de confirmer l'existence d'une seule configuration (cis) pour le complexe (CHCOO)₂.2SnPh₃.

TABLEAU XIV: fréquences en cm⁻¹ des principales bandes IR des complexes

 $(A1)=(COO)_2.2SnPh_3$ $(A2)=CH_2(COO)_2.2SnPh_3$ $(A3)=(CH_2COO)_2.2SnPh_3$ $(A4)=(CHCOO)_2.2SnPh_3$

Attributions	Fréquences (cm ⁻¹)				
\$	(A1)	(A2)	(A3)	(A4) .	
v(C=0)		1736ep	•••	1685m	
		1714TF			
vas(COO ⁻)	1377F	1639m	1645f	1630m	
	1332 m	1579m	1572ep	1585F	
vs(COO ⁻)	1278F	1543F	1527F	1540F	
	1240F	1 364 F	1470ep	1360m	
		1261m	1259f	1325F	
		1224TF	1222f	1225F	
v(C=C)				1653m	
v(C-C)	794m	821m	830m	830F	
δ(COO ⁻)	443F	597m	443m	670m	
ρ(COO ⁻)	385m	529m	389m	630m	
ω(COO ⁻)	350Tf	443ep		575m	
vasSnC ₃	274F	271F	275F	275F	
vsSnC ₃	218m	216m	219m	218m	
vSn-O	280F	279F	280F	290F	

TF=très forte ; F= forte ;Tf= très faible ; f= faible ; m= moyenne ; ep= épaulement.

Figure (9) : Spectre infrarouge du complexe CH2(COO)2.2SnPh3

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar(2002)

na hara na anna anna anna anna anna anna	a proventi aggi a di a di anggi a		e o zmeno zmeste je stano stronova te sa stanska	0HA1024
			CH	112= 1.7307
		VAI	LUES OF PARA	METERS
		INITIAL	FINAL	
YD=	642828	.4375	644296.0625	+- 75.6225
	Q.S.	2.7000	2.9388	+-
	ni.S.	1.4000	1.3221	+_
	LARGT	0.9000	1.1154	+
	LARG2	0.9000	1.3321	+-
	PROF1	0.0200	0.0885	+-
	PROF2	0.0200	0.1175	+_
	/MAX = -7	.7800 F	OLDING POIN	Γ =
AIRE TO	TALE = 0.	40223E+0	7 (UNITES ARB	ITRAIRES)

A the same is second one of the second sec	ις εμετροποίος 	ternening assan energe store and en i energe st	a kan na caalaan Aria kan is haanaan is di si Calabaha and Noris s	0HA1028		
	CHI2= 0.9369					
	VALUES OF PARAMETERS					
	INITIAL FINAL					
YD=	253103	.3281 2	53099.7813 +-	47.4423		
	Q.S.	3.2000	3.2269 -	F-		
	^I.S.	1.5000	1.2696 -	F-		
	LARG1	0.9000	1.1423 -	F-		
	LARG2	0.9000	1.1245 -	+-		
	PROF1	0.0200	0.0302 ·	+-		
	PROF2	0.0200	0.0393	+-		
VN	MAX = -7.7	'800 FOL	DING POINT =			

	··· ·· ···		<u> </u>	0HB1068r
				CHI2= 1.3085
			VALUES OF PA	RAMETERS
		INITIAL	FINAL	ERROR
YD=	1928500.6250	0 192	8543.7500 +-	134.9436
	Q.S.1	2.1000	2.4912	+- 0.1074
	I.S.1	1.2000	1.2724	+- 0.0248
	LARG1	0.9000	1.1277	+- 0.1183
	PROF1	0.0200	0.0080	+- 0.0008
	Q.S.2	3.5000	3.5406	+- 0.0225
	I.S.2	1.4000	1.3391	+- 0.0061
	LARG2	0.9000	0.8649	+- 0.0265
	PROF2a	0.0200	0.0183	+- 0.0009
	PROF2b	0.0200	0.0225	+- 0.0009
a	VMAX = 7.7	800 FC	DLDING POINT	= 258.0155
RAPPORT	COMPOSANTE	2/SURI	ACE TOTALE	= 0.66345
		AIRE N	10MERO2 = 0	.16915E+07
RAPPORT	COMPOSANTE	1/SURI	ACE TOTALE =	= 0.33655
		AIREN	IUMERO1 = 0	.85804E+06

Tableau (1a). Données cristallographiques et affinement des paramètres pour le complexe (CHCOO),.2SnPh₃

pour le comp	$f(chcoo)_2$
Formule	$C_{20}H_{16}O_{2}Sn^{-1}$
Masse moléculaire	407.02
Système cristallin	orthorhombic
Groupe d'espace	P212121
Dimension de la maille é	lémentaire
a(Å)	11.370(3)
b(Å)	17.317(6)
c(Å)	17.913(6)
β(°)	107.78(5)
$V(Å^3)$	3527(2)
Z	8
Densité(gcm ⁻³)	1.53
λ	0.71069
F(000)	1616
$\mu(mm^{-1})$	1.45
Dimension approximativ	/e
du cristal (mm)	0.20x0.20x0.12
Intervalle de kl	0 <i>≤h≤</i> 14
	$0 \le k \le 21$
	0<1<22
N° de réfl. mesurées	42552
N° de réfl. indép. (Rint)	7216(0.052)
Perfection (%)	99.9
N° de réfl observées $(l>2\sigma(l)$)) 6984
N° de paramètres	417
R	0 029
wRa	0.078
weigh $1/[\sigma^2(Fo^2)]$	$+(0.0562P)^{2}+0.00P1$
$S(\text{on } F^2)$	1.06
Paramétre absolu de Flack	-0.001(19)
coefficient d'extinction	0.0229
(Λ/σ)	0.001
$\Delta_0(\max\min)(e/Å^3)$	0.81 -0.56

$\Delta \rho(\max,\min) (e/Å^3) = 0.81 - 0.56$ Tableau (2a) : Longueurs des liaisons en (Å) et angles en (°) pour le Complexe (CHCOO)₂.2SnPh₃

Sn(1)-C(15)	2.123(3)
Sn(1)-C(9)	2.125(3)
Sn(1)-C(3)	2.128(3)
Sn(1)-O(1)	2.205(2)
Sn(1)-O(2)#1	2.3961(19)
O(1)-C(1)	1.259(4)
C(1)-O(2)	1.249(3)
C(1)-C(2)	1.504(4)
C(2)-C(22)#2	1.321(5)
O(2)-Sn(1)#2	2.3961(19)
C(3)-C(8)	1.376(4)
C(3)-C(4)	1.383(5)
C(4)-C(5)	1.375(6)
C(5)-C(6)	1.387(7)
C(6)-C(7)	1.354(7)
C(7)-C(8)	1.395(5)
C(9)-C(10)	1.381(5)
C(9)-C(14)	1.391(5)

C(10) - C(11)C(11) - C(12)C(12)-C(13) C(13)-C(14) C(15) - C(16)C(15) - C(20)C(16) - C(17)C(17) - C(18)C(18)-C(19) C(19)-C(20) Sn(2) - O(21)Sn(2) - C(29)Sn(2)-C(23) Sn(2)-C(35) C(21) - O(22)C(21) - O(21)C(21)-C(22) C(22) - C(2) # 1C(23)-C(24) C(23) - C(28)C(24)-C(25) C(25) - C(26)C(26)-C(27) C(27)-C(28) C(29) - C(30)C(29)-C(34) C(30) - C(31)C(31) - C(32)C(32) - C(33)C(33)-C(34) C(35) - C(36)C(35)-C(40) C(36) - C(37)C(37) - C(38)C(38)-C(39) C(39) - C(40)C(15) - Sn(1) - C(9)C(15) - Sn(1) - C(3)C(9) - Sn(1) - C(3)C'(15) - Sn(1) - O(1)C(9) - Sn(1) - O(1)C(3) - Sn(1) - O(1)C(15) - Sn(1) - O(2) #1C(9) - Sn(1) - O(2) #1C(3) - Sn(1) - O(2) # 1O(1) - Sn(1) - O(2) # 1C(1) - O(1) - Sn(1)O(2) - C(1) - O(1)O(2) - C(1) - C(2)O(1) - C(1) - C(2)C(22) #2-C(2) -C(1)

1.402(6)1.351(8)1.350(8)1.399(5)1.376(5)1.376(5)1.375(7)1.362(7)1.363(7)1.378(6) 2.093(3)2.129(4)2.136(4)2.146(4) 1.234(4)1.300(4)1.461(5)1.321(5)1.360(6)1.394(6)1.401(6)1.343(8)1.359(9)1.389(7)1.342(7)1.419(7)1.407(9)1.372(14)1.353(13)1.371(8)1.374(8)1.393(8) 1.379(8)1.361(14)1.331(13)1.406(9)124.54(12)114.20(12)120.73(13)96.78(11)92.65(10)87.58(10) 87.66(10)91.21(9)83.49(9)171.03(8)132.1(2)126.0(2)119.4(2)114.4(3)125.2(3)

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar(2002)

C(1) = O(2) = Sp(1) # 2	132 16(17)
C(8) = C(3) = Sn(1) + 2	123 6(2)
C(4) - C(2) - Sn(1)	123.0(2)
C(4) = C(3) = SII(1)	118.0(2)
C(10) = C(9) = Sn(1)	120.1(3)
C(14) - C(9) - Sn(1)	121.6(2)
C(16) - C(15) - Sn(1)	121.3(3)
C(20)-C(15)-Sn(1)	121.8(3)
C(17)-C(16)-C(15)	121.7(4)
C(18)-C(17)-C(16)	120.3(4)
C(17)-C(18)-C(19)	119.3(4)
C(18)-C(19)-C(20)	120.2(4)
C(15) - C(20) - C(19)	121.6(4)
O(21) - Sn(2) - C(29)	105.50(13)
O(21) - Sn(2) - C(23)	118.73(13)
C(29) - Sn(2) - C(23)	116,68(16)
O(21) - Sn(2) - C(35)	93 81 (16)
C(29) - Sn(2) - C(35)	112 61(18)
C(23) = Sn(2) = C(35)	112.01(10) 107.35(16)
C(23) = SII(2) = C(33)	110 0(2)
O(22) = C(21) = O(21)	119.9(3)
O(22) - C(21) - C(22)	122.7(3)
O(21) - C(21) - C(22)	11/.4(3)
C(21) = O(21) = Sn(2)	103.8(2)
C(2) #1-C(22) -C(21)	123.9(3)
C(24)-C(23)-C(28)	118.7(4)
C(24)-C(23)-Sn(2)	123.7(3)
C(28)-C(23)-Sn(2)	117.6(3)
C(23)-C(24)-C(25)	120.5(5)
C(26)-C(25)-C(24)	120.5(6)
C(25)-C(26)-C(27)	120.0(5)
C(26)-C(27)-C(28)	120.8(5)
C(27) - C(28) - C(23)	119.5(5)
C(30) - C(29) - C(34)	118.7(5)
C(30) - C(29) - Sn(2)	121.7(4)
C(34) - C(29) - Sn(2)	119.6(4)
C(29) - C(30) - C(31)	121.2(7)
C(32) - C(31) - C(30)	1190(8)
C(32) = C(32) = C(31)	120.7(6)
C(32) = C(32) = C(31)	120.7(0)
C(32) = C(33) = C(34)	120.0(7)
C(33) = C(34) = C(29)	119.9(6)
C(36) = C(35) = C(40)	128.5(5)
C(36) = C(35) = Sn(2)	121.5(4)
C(40) = C(35) = Sn(2)	119.9(4)
C(35) - C(36) - C(37)	120.9(7)
C(38) - C(37) - C(36)	119.7(9)
C(39)-C(38)-C(37)	121.1(6)
C(38) - C(39) - C(40)	120.5(7)
C(35)-C(40)-C(39)	119.1(7)
des transformations	

#1 x+1/2,-y+3/2,-z #2 x-1/2,-y+3/2,-z

Schéma (4) : Structure cristallographique du complexe (CHCOO)₂.2SnPh₃

2-)- Complexes du type (CH_n)_x(COO)₂.2SnBu₃

(avec n = 1, 2 et x = 1, 2) $(B1) = CH_2(COO)_2.2SnBu_3$ $(B2) = (CH_2COO)_2.2SnBu_3$ $(B3) = (CHCOO)_2.2SnBu_3$

Sur le tableau XV nous avons reproduit les attributions des bandes fondamentales des spectres infrarouge des complexes ci-dessus et sur la figure(10) le spectre infrarouge du complexe $(CH_2COO)_2$.2SnBu₃.

L'absence de v(C=O) attendu au dessus de 1650 cm⁻¹ sur le spectre infrarouge du complexe $CH_2(COO)_2.2SnBu_3$ permet d'envisager de l'inexistence d'un C=O libre. Alors que sur les spectres infrarouge des deux autres complexes, v(C=O) est bien présente à 1716 et 1714 cm⁻¹. La vibration de valence symétrique $vsSnC_3$ n'apparaît pas sur les spectres infrarouge : les groupements SnBu₃ (malgré la longueur de la chaîne butylée) sont presque plans de symétrie D_{3h}. La vibration de valence antisymétrique du groupement SnC₃ est localisée vers 335 cm⁻¹ sur tous les spectres.

L'intégration des pics à partir de leurs aires sur les spectres RMN ¹H, figures (R6) et (R7) ,des complexes (B1) et (B2) respectivement, permet de confirmer les stéochiométries proposées.

Sur la figure (m6) est reporté le spectre Mössbauer du complexe (CH₂COO)₂. 2SnBu₃. Les valeurs du déplacement isomérique des complexes sont respectivement 1.54 , 1.44 et 1.52 mm⁻¹, celles de l'éclatement quadripolaire 3.57 , 3.73 et 3.71 mm⁻¹ ; elles confirment un seul type de Sn(IV) organométallique à environnement bipyramidal trigonal ce qui est vérifié aisément sur les spectres RMN ¹¹⁹Sn des complexes (B2) et (B3) reproduits sur les figures (R8) et (R9) respectivement.

Partant des données spectrales nous proposons des structures infinies pour tous les complexes. S'agissant du complexe (B1), le malonate est tétraunidentate, l'environnement autour de Sn est bipyramidal trigonal schéma(5). Pour les complexes (B2) et (B3), à cause de la présence de C=O libre d'une part, et la similitude des données spectrales d'autre part, nous proposons des structures semblables dans lesquelles l'oxoanion est polydentate avec un oxygène bidentate d'un côté lié à des SnBu₃ partagés et deux oxygènes monodentates toujours liés à des SnBu₃ pontants. L'environnement autour des groupements SnBu₃ reste bipyramidal trigonal schémas (6) et (7) respectivement.

Figure (10) : Spectre infrarouge du complexe (CH2COO)2.2SnBu3

TABLEAU XV : fréquences en cm⁻¹ des principales bandes IR des complexes

 $(B1) = CH_2(COO)_2.2SnBu_3$ $(B2) = (CH_2COO)_2.2SnBu_3$ $(B3) = (CHCOO)_2.2SnBu_3$

Attributions	Fréquences (cm ⁻¹)			
V	(B1)	(B2)	(B3)	
ν (C=O)		1716m	1714m	
vas(COO ⁻)	1505TF	1553TF	1606m	
vs(COO ⁻)	1397m	1409TF	1418F	
	1333F	1342 ep	1430m	
	1269m	1286F	1234m	
v(C=C)		•••••	1654m	
v(C-C)	813f	812F	814m	
δ(COO ⁻)	696m	667TF	654F	
ρ(COO ⁻)	678m	518F	534m	
ω(COO ⁻)	604m	451m	459m	
		410m		
vasSnC ₃	335m	335 m	334m	
vsSnC ₃				
vSn-O	249m	260m	258m	

TF=très forte ; F= forte ;Tf= très faible ; f= faible ; m= moyenne ; ep= épaulement

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar(2002)

Figure(R9) : Spectre RMN 119Sn du complexe (CHCOO)2.2SnBu3

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

Figure(R8) : Spectre RMN 119Sn du complexe (CH₂COO)₂.2SnBu₃

Figure(R9) : Spectre RMN 119Sn du complexe (CHCOO)2.2SnBu3

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

		0HB1071	r
		CHI2= 1.525	9
		VALUES OF	
	INITIAL	FINAL ERROR	
YD= 21	119228.5000	2119590.0000 +- 140.452	8
Q.S.	3.7000	3.7383 +- 0.0036	
I .S.	1.5000	1.4492 +- 0.0018	
LARG1	1.1000	1.1026 +- 0.0111	
LARG2	1.1000	1.1201 +- 0.0077	
PROF1	0.0400	0.0528 +- 0.0003	
PROF2	0.0400	0.0578 +- 0.0002	
VMAX	= 7.7800	FOLDING POINT = 257.9841	

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar(2002)

3-)-Complexes du type $(CH_n)_x(COO)_2.2SnMe_3$ (avec n = 1, 2 et x = 0; 2) (C1) = $(COO)_2.2SnMe_3$ (C2)= $(CH_2COO)_2.2SnMe_3$ (C3) = $(CHCOO)_2.2SnMe_3$

Sur le tableau XVI nous avons reproduit les attributions des bandes fondamentales des spectres infrarouge des complexes ci-dessus et sur la figure (11) le spectre infrarouge du complexe $(CH_2COO)_2.2SnMe_3$.

L'absence de bande au dessus de 1650 cm⁻¹sur les spectres infrarouge des complexes, confirme l'inexistence de C=O libre : les oxoanions sont tétradentates. $vs(SnC_3)$ est absente sur les trois spectres infrarouge; les groupements SnMe₃ sont plans transpentacoordinés, de symétrie D_{3h}. Partant de ces données spectrales il est impossible d'envisager une structure discrète.

Le spectre RMN (1 H) du complexe (CH₂COO)₂.2SnMe₃ représenté sur la figure (R10) révèle l'existence de deux types de proton avec des déplacements chimiques distincts. L'intégration des pics à partir de leurs aires est de 4.45 qui n'est pas loin du rapport du nombre de protons différents du complexe (18/4); il en est de même du complexe (CHCOO)₂.2SnMe₃ dont le spectre RMN(1 H) représenté sur la figure(R11).

Sur la figure(m7) est reporté le spectre Mössbauer du complexe (C3). Les paramètres Mössbauer des trois complexes sont présentés sur le tableau (m1). Ils sont pratiquement identiques d'un spectre à un autre. Ils permettent de conclure cependant à un seul type de Sn(IV) organométallique. Les valeurs obtenues pour l'éclatement quadripolaire ΔE indiquent que l'environnement autour de Sn est une bipyramide trigonale transcoordiné comme l'avait souligné Diassé-Sarr dans SeO₃.2SnMe₃ (29). Toutes ses données spectrales permettent de proposer pour les composés C1 et C3 les structures infinies schémas (8) et (10) respectivement. Pour le complexe C2, le même type de structure infinie proposée est confirmée par la diffraction de rayons X schéma (9).

TABLEAU (m1): Paramètres Mössbauer des complexes dicarboxylato detriméthyl étain

	(C1)	(C2)	(C3)
Complexes			
δ (mm/s)	1,30	1,32	1,31
$\Delta E(mm/s)$	3,66	3,67	3,63

Etude cristallographique

Les données de l'intensité des rayons X ont été mesurées à la température ambiante avec un MAR345 en utilisant MoK $\alpha(\lambda=0,71069 \text{ Å})$. Le détecteur est à la distance de 120 mm du cristal. Pour le complexe $(CH_2COO)_2.2SnMe_3$,160 images ont été collectées sous un angle de 3° pendant 120s ce qui nous a permis de mesurer au total 13181 réflexions dont 1683 indépendantes. Les paramètres de cellules d'unité ont été affinés par processus d'intégration en rassemblant toutes les tâches. Les données relatives au cristal sont énumérées sur le tableau (1b) ; les valeurs des longueurs et des angles sont reportées sur la tableau (2b). La structure proposée a été résolue par la méthode de Paterson avec SHELXL97. Les atomes d'hydrogène ont été calculés avec AFIX et affinés en leur affectant un facteur d'agitation thermique isotrope uniforme. La structure proposée est représentée sur le schéma (9).

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

¹⁰⁰ I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

TABLEAU XVI: fréquences en cm⁻¹ des principales bandes IR des complexes :

 $(C1) = (COO)_2.2SnMe_3$ $(C2) = (CH_2COO)_2.2SnMe_3$ $(C3) = (CHCOO)_2.2SnMe_3$

Attributions	Fréquences (cm ⁻¹)		
*	(C1)	(C2)	(C3)
v(C=O)	••••		• • • •
vas(COO ⁻)	1594 TF	1584 F	1543 F
vs(COO ⁻)	1269 F	1427 m	1453 m
		1409 m	1345 m
v(C-C)	819 Tf	821 f	816 f
ν(C=C)	•••		
δ(COO ⁻)	773 F	779 F	776 F
ρ(COO ⁻)	563 m	.677 F	654 m
ω(COO ⁻)	392 m	553m	567 m
vasSnC ₃	561 F	552 F	558 F
vsSnC ₃			
vSn-O	277 tf	287 m	288 m

TF=trés forte ; F= forte ;Tf= trés faible ; f= faible ; m= moyenne ; ep= épaulement.

Tableau (1b): Données cristallographiques et affinement des paramétres
pour le complexe (CH2COO)2.2SnMe3

Formule	C5H11O2Sn			
Masse moléculaire	221.83			
Système cristallin	monoclinic			
Groupe d'espace	C2/c			
Dimension de la maille élémentaire				
a(Å)	13.052(3)			
b(Å)	9.460(4)			
c(Å)	13.411(4)			
$\beta(^{\circ})_{2}$	110.76(2)			
$V(A^3)$	1548.4(9)			
Z	8			
Densité(gcm ⁻³)	1.90			
λ	0.71069			
F(000)	856			
$\mu(\text{mm}^{-1})$	3.22			
Dimension approximative				

du cristal (mm)	0.20x0.20x0.12
Intervalle de <i>hkl</i>	0≤ <i>h</i> ≤16
	-17 <i>≤l≤</i> 16
N° de réfl . mesurées	13181
N° de réfl .indépendantes .(R	Lint) 1683(0.067)
Perfection (%)	94.1
N° de réfl. observées. (I≥2σ	(<i>I</i>)) 1617
N° de paramètres	75
R	0.052
wR ₂	0.117
weigh $1/[\sigma^2(Fo^2)+(0$.078P) ² +1.093P]
S (on F2)	1.20
Paramètre absolu de Flach	-0.001(19)
coefficient d'extinction	0.038(2)
(Δ/σ)	0.001
$\Delta \rho(\text{max,min}) (e/Å^3)$	2.25 - 2.51

Tableau (2b) : Longueurs des liaisons en (Å) et angles en (°) pour le complexe(CH₂COO)₂.2SnMe₃

Sn(1)-C(3)	2.123(5)
Sn(1)-C(2)	2.124(4)
Sn(1)-C(1)	2.124(4)
Sn(1)-O(1)	2.203(2)
Sn(1)-O(2)#1	2.396(2)
O(1) - C(4)	1.272(4)
O(2) - C(4)	1.250(4)
O(2) - Sn(1) #2	2.396(2)
C(4) - C(5)	1.511(4)
C(5) - C(5) #3	1.518(6)
C(3) - Sn(1) - C(2)	127.0(2)
C(3) - Sn(1) - C(1)	116.1(2)
C(2) - Sn(1) - C(1)	115.21(17)
C(3) - Sn(1) - O(1)	95.03(15)
C(2) - Sn(1) - O(1)	95.90(13)
C(1) - Sn(1) - O(1)	91.83(14)
C(3) - Sn(1) - O(2) # 1	85.26(15)
C(2) - Sn(1) - O(2) # 1	87.08(13)
C(1) - Sn(1) - O(2) #1	84.46(13)
O(1) - Sn(1) - O(2) # 1	175.99(8)
C(4) - O(1) - Sn(1)	114.9(2)
C(4) - O(2) - Sn(1) # 2	143.6(2)
O(2) - C(4) - O(1)	122.3(3)
O(2) - C(4) - C(5)	119.2(3)
O(1) - C(4) - C(5)	118.5(3)
C(4) - C(5) - C(5) #3	115.0(3)
Symétrie des transformations :	· · · · ·
#1 - x + 1/2 - y - 1/2 - z + 1/2	#2 - x + 1/2 + 1/2 - z + 1/2
	$ = \frac{1}{12} + \frac{1}{1$

#3 -x, -y+2, -z

	an an an ann anns an	and a state of the			
			0HA1043		
		C	HI2= 0.7444		
	VALUES OF				
	INITIAL	FINAL	ERROR		
YD=	1176730.7500	1176651.0000	+- 95.7596		
Q.S.	3.3000	3.6310 +-	0.0129		
I.S	. 1.3000	1.3138 +-	0.0021		
LARG	1 0.9000	0.7914 +-	0.0226		
LARG	2 0.9000	0.9024 +-	0.0274		
PROF	1 0.0600	0.0192 +-	0.0004		
PROF	2 0.0600	0.0176 +-	0.0004		
	/MAX = -7.7800	FOLDING POIN	1T =		

Schéma (9) :Structure cristallographique du complexe $(CH_2COO)_2.2SnMe_3$

Conclusion

A la suite de la série de complexes dicarboxylato d'organostannique de substitution synthétisés, nous avons proposé sur la base des spectroscopies infrarouge, Mössbauer et R.M.N, des structures discrètes dans lesquelles le ligand est chélatant et des structures tridimensionnelles infinies avec des SnR₃ partagés. Dans le cas des complexes formés avec l'organostannique SnPh₃⁺, les structures discrètes sont favorisées ; cependant la taille du groupement SnPh₃ comparée à celle de SnMe₃ et de SnBu₃ a certainement été prépondérante. Deux structures ont été proposées sur la base de la diffraction des rayons X. Une classification de toutes les structures obtenues permettra probablement de mettre en évidence le rôle de la nature de la chaîne carbonée sur la stabilité des complexes formés.

Avec l'acide de Lewis SnPh₃Cl, les ligands dicarboxylato donnent tous des composés d'addition (1-4) lorsque le cation antagoniste est le tétraméthylammonium. Avec le tétraéthylammonium, plus volumineux, les mêmes ligands donnent avec SnPh₃Cl des composés de substitution identiques à ceux obtenus par réaction directe entre SnPh₃OH et les acides dicarboxyliques.

II-) COMPLEXES D'ADDITION

II- Complexes d'addition

Les complexes d'addition organostanniques obtenus dans ce travail sont de deux types. Des complexes du type $(Me_4N)_2(CH_n)_x(COO)_2.4SnPh_3Cl$ (avec n=1 ;2 ; et x= 0;1;2) ayant comme cation stabilisateur le tétraméthylammonium; alors que les ligands ayant comme cation le tétraéthylammonium ont tous donné avec SnPh_3Cl des complexes de substitution. Nous avons obtenu d'autre part des complexes organostanniques d'addition du type $(R_4N)_2(CH_n)_x(COO)_2.mSnX_4$ (avec R= Me ; Et et X=Cl ;Br et m= 1 ;1,5 ;2) . Il faut noter que SnX_4 (dans la stéochiométrie de synthèse utilisée) ne donne que des complexes d'addition avec les dicarboxylates étudiés dans ce travail.

II-1) Complexes du type $(Me_4N)_2(CH_n)_x$ -COO.4SnPh₃Cl (avec n = 1 ; 2 et x = 0 ; 1 ; 2) (D1)= $(Me_4N)_2(COO)_2$.4SnPh₃Cl

 $(D2) = (Me_4N)_2CH_2(COO)_2.4SnPh_3Cl$ $(D3) = (Me_4N)_2(CH_2COO)_2.4SnPh_3Cl$ $(D4) = (Me_4N)_2(CHCOO)_2.4SnPh_3Cl$

Le spectre infrarouge du complexe $(Me_4N)_2(CHCOO)_2.4SnPh_3Cl$ est reporté sur la figure (12). Sur le tableau XVII nous avons reproduit les attributions des bandes fondamentales des spectres infrarouge des complexes (D1), (D2), (D3) et (D4).

v(C=O) est absente sur les spectres infrarouge des complexes; ce qui indique des ligands avec tous les oxygènes liés. $vsSnC_3$ est bien pointée entre 217 et 220cm⁻¹; Wharf et coll. (32) ont localisé la bande $vsSnC_3$, dans leurs travaux , à 213 cm⁻¹. L'apparition de cette bande permet d'envisager un groupement SnC₃ non plan de symétrie C3v.

Les spectres Mössbauer des complexes (D1), (D2) et (D3) sont respectivement reportés sur les figures (m8), (m9) et (m10). Les valeurs de l'éclatement quadripolaire supérieures à celle de SnPh₃Cl (2.48 mms⁻¹) sont caractéristiques d'un SnPh₃Cl coordiné comme l'ont montré G.M.BRAMCOFT et coll (35) dans leurs travaux. Les paramètres Mössbauer indique l'existence d'un seul type de Sn (IV) organométallique. Les structures découlant de ces données spectrales sont discrètes avec des dicarboxylates tétra-unidentates, l'environnement autour de l'étain est bipyramidal trigonal schémas (11), (12), (13) et (14) respectivement

Figure (12) : Spectre infrarouge du complexe (Me4N)4(CHCOO)2.4SnPh3Cl

TABLEAU XVII : fréquences en cm⁻¹ des principales bandes IR des complexes :

 $(D1)= (Me_4N)_2(COO)_2.4SnPh_3Cl$ $(D2)= (Me_4N)_2CH_2(COO)_2.4SnPh_3Cl$ $(D3)= (Me_4N)_2(CH_2COO)_2.4SnPh_3Cl$ $(D4)= (Me_4N)_2(CHCOO)_2.4SnPh_3Cl \\$

Attributions	Fréquences (cm ⁻¹)			
♥	(D1)	(D2)	(D3)	(D4)
v(C=O)				
vas(COO ⁻)	1608F	1635m	1626m	1630m
•	1462F	1572f	1572f	1573m
vs(COO ⁻)	1267m	1543m	1531F	1480F
	1251m	1340m	1429m	
ν(C=C)				1650m
v(C-C)	820f	813Tf	820m	810F
δ(COO ⁻)	748m	731F	731m	755F
ρ(COO ⁻)	690f	698f	698f	617f
ω(COO ⁻)	580f	626f	661m	570m
vasSnC ₃	271F	278F	271F	271F
vsSnC ₃	218F	220m	220m	217F
vSn-O+vSn-Cl	239ep	240ep	240ep	237ep

TF=très forte ; F= forte ;Tf= très faible ; f= faible ; m= moyenne ; ep= épaulement.

Schéma (11)

		· · · · · · · · · · · · · · · · · · ·		UHA1035
			(CH12= 0.9848
		V	ALUES OF PAR	AMETERS
		INITIAL	FINAL	ERROR
YD=	575637.2	500 5763	59.1875 +- 68	.2073
	Q.S.	3.0000	3.0234 +-	0.0133
	– I.S.	1.6000	1.2730 +-	0.0064
	LARG1	0.9000	0.8586 +-	0.0372
	LARG2	0.9000	0.9836 +-	0.0286
	PROF1	0.0200	0.0262 +-	0.0005
	PROF2	0.0200	0.0280 +-	0.0005
	VMAX = -7	.7800 FOLD	ING POINT = 25	7.9772

107

taana oo dhiraa ta gaaga ta iiyaaan ii 201 d	میکردها، با این این دروانیه ایکرین که ایک ^{ایک} ایک ایک می باید به ایک	an ann a' gu anna caolar ann na <u>sao</u> r ann ann an ann ann an ann an a	0HA1036.		
CHI2= 0.9993					
	VALUES OF P	ARAMETERS			
	INITIAL	FINAL	ERROR		
YD=	656455.9375	656824.1250	+- 73.0576		
Q.S.	3.3000	3.1769 +-	0.0045		
I.S.	1.3000	1.2627 +-	0.0023		
LARG1	0.9000	0.9479 +-	0.0103		
LARG2	0.9000	0.9937 +-	0.0100		
PROF1	0.0200	0.0720 +-	0.0005		
PROF2	0.0200	0.0771 +-	0.0005		
VMAX =	-7.7800 F	OLDING POINT = 2	258.0110		

an is sharp and the second of	0HA1038					
	CHI2= 0.8921					
	VALUES OF F	PARAMETERS				
	INITIAL	FINAL	ERROR			
YD=	438892.8438	439037.8750	+- 58.8654			
Q.S.	3.2000	3.0276 +-	0.0123			
I.S.	1.4000	1.3038 +-	0.0062			
LARG1	0.9000	0.9436 +-	0.0287			
LARG2	0.9000	1.0074 +-	0.0264			
PROF1	0.0200	0.0310 +-	0.0006			
PROF2	0.0200	0.0355 +-	0.0006			
VMAX -	VMAX = -7.7800 FOLDING POINT = 258.2945					

I.CISSE, Thèse de Doctorat d'Etat ès Sciences Dakar (2002)

109

II-2) Complexes du type $(R_4N)_2(CH_n)_x(COO)_2.mSnX_4$ (avec n = 1; 2, x = 0; 1; 2 et m = 1; 1,5; 2)

Les complexes du type $(R_4N)_2(CH_n)_x(COO)_2.mSnX_4$, ont fait l'objet de plusieurs études. Dans la littérature on peut citer les travaux de LE FLOCH et GUERCHAIS (14) sur l'oxalate. Il ont mis au point la structure aux rayons X de $(Et_4N)_2C_2O_4.2SnX_4$ (avec X=Cl,Br) qui a été confirmée par GUEYE (9).

Dans notre laboratoire, en plus des complexes oxalato obtenus par GUEYE (9), QAMAR(62), plusieurs complexes de tétrahalogénures d'étain ont été synthétisés avec des oxoanions tétraédriques (MoO_4^{2-} , WoO_4^{2-} , SO_4^{2-} , SO_4^{2-}) pyramidaux (SeO_3^{2-} , IO_3^{-} , $PhAsO_3^{2-}$, $Ph_2PO_2^{--}$, $H_2PO_2^{--}$) en utilisant leurs sels de tétra-alkylammonium.

II-2-1) Complexes chlorés

$(D1) = (Me_4N)_2(COO)_2 \cdot 2SnCl_4$	$(D5)=(Et_4N)_2(COO)_2.2SnCl_4$
$(D2)=(Me_4N)_2CH_2(COO)_2.2SnCl_4$	$(D6) = (Et_4N)_2CH_2(COO)_2.1,5SnCl_4$
$(D3) = (Me_4N)_2(CH_2COO)_2.2SnCl_4$	$(D7)=(Et_4N)_2(CH_2COO)_2.2SnCl_4$
$(D4)=(Me_4N)_2(CHCOO)_2.2SnCl_4$	$(D8) = (Et_4N)_2(CHCOO)_2.2SnCl_4$

Sur les tableaux XVIII et XIX nous avons reproduit les attributions des bandes fondamentales des spectres infrarouge des complexes ci-dessus et sur les figures (13) (14) (15) et (16) les spectres infrarouge des complexes (D3) (D5) (D7) et (D8) respectivement.

La vibration de valence vC=O apparaît nettement sur tous les spectres infrarouge des complexes ci-dessus : il existe au moins un groupement C=O non liant ou faiblement liant sur toutes les structures. Cependant il faut noter que dans les complexes oxalato la symétrie de l'oxoanion est C_{2v} conformément au nombre de bandes dans la zone de valence. La vibration vSn-Cl présente trois composantes sur les spectres infrarouge des complexes (D1) , (D5) , (D7) et (D8) ce qui indique une symétrie C_{2v} pour le groupement SnCl₄; ceci laisse présager une chélation du type cis-coordination comme dans les complexes du type SnCl₄.2L où TUDELA et coll.(63)ont montré que la valeur supérieure limite de l'isomère shift pour un SnCl₄ cis-coordiné est de 0,57mms⁻¹(29). vSn-O est noyée sur certains spectres dans la(les) bande(s) attribuée(s) à vSn-Cl. Dans le cas des complexes du type (R₄N)₂(COO)₂.2SnX₄ les structures proposées sont en accord avec celles décrites par LE FLOCH et GUERCHAIS (14) sur l'oxalate.

Sur les figures (m11), (m12) et (m13) sont reportés les spectres Mössbauer des complexes (D1), (D7) et (D8) respectivement. Les paramètres Mössbauer, presque identiques sur tous les spectres des complexes chlorés synthétisés cidessus, confirment un seul type de Sn IV covalent à environnement octaédrique comme l'ont souligné Gueye et coll. dans $(Et_4N)_2(COO)_2.2SnCl_4$ (16).

Les structures proposées pour les complexes (D1), (D7) et (D8) sont discrètes , avec ligands chélatants faiblement, les $SnCl_4$ cis-coodinés, avec un environnement autour de Sn est octaédrique schémas (15) ,(16) et (17) respectivement. La structure du complexe (D5) est semblable à celle de (D1) . S'agissant des complexes (D2), (D3) et (D4),vue la similitude spectrale, les structures proposées sont infinies avec des groupements $SnCl_4$ trans-coordines, schémas (18), (19) et (20) respectivement. Enfin pour le complexe (D6) , à cause de la stéochiométrie nous proposons une structure infinie avec un dicarboxylate tri-unidentate, l'environnement autour de $SnCl_4$ reste octaédrique trans-coodiné, schémas (21).

Figure (13): Spectre infrarouge du complexe (Me4N)2(CH2COO)2.2SnCl4

Figure (14): Spectre infrarouge du complexe (Et4N)2(COO)2.2SnCl4

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

1.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

TABLEAUX XVIII: fréquences en cm⁻¹ des principales bandes IR des complexes :

 $(D1) = (Me_4N)_2(COO)_2.2SnCl_4$ (D2) = (Me_4N)_2CH_2(COO)_2.2SnCl_4 (D3) = (Me_4N)_2(CH_2COO)_2.2SnCl_4

 $(D4)=(Me_4N)_2(CHCOO)_2.2SnCl_4$

Attributions	Fréquences (cm ⁻¹)			
•	(D1)	(D2)	(D3)	(D4)
v(C=O)	1709TF	1710m	1735ep	1714F
			1718F	
vas(COO ⁻)	1683F	1587m	1541F	1560F
	1650ep	1520m	1449m	1436m
vs(COO ⁻).	1389F	1450m	1365F	1410m
	1257m	1292m	1292m	1230f
			1228F	1212m
v(C=C)			•••	1654m
v(C-C)	800m	810m	859f	827m
δ(COO ⁻)	528m	578m	532m	528m
ρ(COO ⁻)	509m	559m	526f	511f
ω(COO ⁻)	480m	524m	497f	505m
	335m			
vSnCl	296F	294F	299F	299F
	242m			
vSn-O	264m	260ep	299	299

TF=très forte ; F= forte ;Tf= très faible ; f= faible ; m= moyenne ; ep= épaulement.

TABLEAUX XIX : fréquences en cm⁻¹ des principales bandes IR des complexes :

 $(D5)= (Et_4N)_2(COO)_2.2SnCl_4$ $(D6)= (Et_4N)_2CH_2(COO)_2.1,5SnCl_4$ $(D7)= (Et_4N)_2(CH_2COO)_2.2SnCl_4$ $(D8)= (Et_4N)_2(CHCOO)_2.2SnCl_4$

Attributions	Fréquences (cm ⁻¹)			
Ŵ	(D5)	(D6)	(D7)	(D8)
ν (C=O)	1736TF	1715F	1736 F	1715F
			1715	
vas(COO ⁻)	1459TF	1405F	1558f	1538F
	1420	1372m	1539m	1409m
	1407	1354m	1405m	1372m
	1365	1222m	1385m	1306m
vs(COO ⁻)	1307m		1306m	1230m
	1224TF		1225m	1183m
	1164m			
v(C=C)				1653m
v(C-C)	800F	800m	800m	800F
δ(COO ⁻)	588m	570m	571f	538m
ρ(COO ⁻)	553f	539m	521F	469m
ω(COO)	528m	527m	465m	466f
vsSn-Cl	340 TF		334 TF	340 TF
	314	294TF	314	312
	294		293	293
vSn-O	294	294	293	293

TF=très forte ; F= forte ;Tf= très faible ; f= faible ; m= moyenne ; ep= épaulement.

1.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

ananta - Mara antiti ti tani saranina ita	na an a' an ann ann an Ann Ann an Ann Ann Ann An		CHI2 = 1.2481	
	VALUES OF F	PARAMETERS		
	INITIAL	FINAL	ERROR	
YD=	427739.6563	428095.6875	+- 51.9277	
INT	0.0100	0.0910 +-	0.0005	
I.S	0.5000	0.3661 +-	0.0035	
LARG	0.9000	1.1551 +-	0.0111	
VMAX :	VMAX = -7.7800 FOLDING POINT = 258.0000			

an an an an an ann a' an	AND IN THE SECOND CONTRACTOR OF THE POINT OF A SECOND CONTRACTOR OF A SECOND CONTRACTOR OF A SECOND CONTRACTOR	CHI2= 1.7979
	VALUES OF PAF	RAMETERS
	INITIAL	FINAL ERROR
YD=	608579.9375	608983.6875 +- 60.3039
INT	0.1000	0.1331 +- 0.0005
I.S	0.5000	0.3420 +- 0.0018
LARG	0.9000	1.0345 +- 0.0058
VMAX =	7.7800 FOL	DING POINT = 258.0000

		С	HI2= 1.9145
	VALUES OF	PARAMETERS	
	INITIAL	FINAL	ERROR
YD=	518480.0938	519531.0625	+- 57.4023
INT	0.0900	0.1275 +-	0.0005
1.S	0.4500	0.4014 +-	0.0022
LARG	0.9000	1.1672 +-	0.0071
VMAX	= -7.7800	FOLDING POINT =	258.0000

Figure (m13) : Spectre mössbauer du complexe (Et $_4$ N) $_2$ (CHCOO) $_2$.2SnCl $_4$

II-2-2) Complexes bromés

$(E1)=(Me_4N)_2(COO)_2.SnBr_4$	$(E5) = (Et_4N)_2(COO)_2 \cdot 1,5SnBr_4$
$(E2) = (Me_4N)_2CH_2(COO)_2.1,5SnBr_4$	$(E6) = (Et_4N)_2CH_2(COO)_2.1,5SnBr_4$
$(E3) = (Me_4N)_2(CH_2COO)_2.2SnBr_4$	$(E7)=(Et_4N)_2(CH_2COO)_2.2SnBr_4$
$(E4) = (Me_4N)_2(CHCOO)_2 \cdot 2SnBr_4$	$(E8) = (Et_4N)_2(CHCOO)_2 \cdot 1,5SnBr_4$

Sur les tableaux XX et XXI nous avons reproduit les attributions des bandes fondamentales des spectres infrarouge des complexes ci-dessus et sur les figures (17) et (18) les spectres infrarouge des complexes (E4) et (E5) respectivement.

La vibration de valence vC=O apparaît nettement sur tous les spectres infrarouge des complexes bromés ci-dessus (entre 1730 et 1706 cm⁻¹). vSn-Br présente une composante fine et intense d'espèce Eu localisée vers 205cm⁻¹sur tous les spectres infrarouge des complexes, ce qui confirme l'existence d'un groupement SnBr₄ plan, de symétrie D_{4h}. Donc la chélation ne peut être envisagée; toutes les structures proposées seront infinies avec un dicarboxylayte polydentate. La taille de Br comparée à celle de Cl a certainement favorisé ce mode de coordination.

Pour le complexe oxalato ayant comme cation stabilisateur le tétaméthylammonuim (E1), la symétrie de l'oxoanion est C_{2v} conformément au nombre de bandes dans la zone de valence. Par contre dans le cas du complexe $(Et_4N)_2(COO)_2.1,5SnBr_4$, la symétrie de l'oxoanion est C_1 ou C_s vu le nombre de bandes dans la zone de valence de l'oxalate.

Sur les figures (m14) et (m15) sont reportés les spectres Mössbauer des complexes (E7) et (E8) respectivement. Les paramètres Mössbauer de tous les complexes bromés synthétisés dans ce travail sont presque identiques, et confirment un seul type de Sn (IV) covalent à environnement octaédrique. En effet les valeurs des isomères shift sont comprises entre 0,6 et 0,8 mms⁻¹.

Les structures proposées sont infinies avec un groupement SnBr₄ partagé et trans-coordiné, l'environnement autour de l'étain reste octaédrique. Pour les complexes oxalato (E1) et (E5) nous proposons respectivement les schémas(22) et (23). Une structure unique est proposée pour les complexes malonato (E2) et (E6) compte tenu de la similitude spectrale et de la stéochiométrie schéma (24), de même pour les complexes succinato (E3) et (E7), schéma (25). Enfin pour (E4) et (E8), les deux structures sont représentées par les schémas (26) et (27) respectivement.

123

Figure (17): Spectre infrarouge du complexe (Me4N)2(CHCOO)2.2SnBr4

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

Figure (18): Spectre infrarouge du complexe (Et4N)2(COO)2.1,5SnBr4

TABLEAU XX: fréquences en cm⁻¹ des principales bandes IR des complexes :

 $(E1) = (Me_4N)_2(COO)_2.SnBr_4$ $(E2) = (Me_4N)_2CH_2(COO)_2.1,5SnBr_4$ $(E3) = (Me_4N)_2(CH_2COO)_2.2SnBr_4$ $(E4) = (Me_4N)_2(CHCOO)_2.2SnBr_4$

Attributions	Fréquences (cm ⁻¹)			
*	(E1)	(E2)	(E3)	(E4)
ν (C=O)	1730F	1706m	1710m	1714m
	1714m			
vas(COO ⁻)	1479F	1557m	1530F	1540m
	1441m	1482F	1445m	1481F
vs(COO ⁻)	1414f	1415m	1415m	1445m
	1368m	1288F	1288m	1415f
				1289m
v(C=C)				1668ep
v(C-C)	817f	815Tf	813f	825f
δ(COO ⁻)	792m	588f	557f	622f
ρ(COO ⁻)	576m	564f	531Tf	556Tf
ω(COO)	534m	516f	515Tf	487f
vsSn-Br	209 TF	208F	208F	208F
vSn-O	281m	278m	268Tf	276f

TF=très forte ; F= forte ;Tf= très faible ; f= faible ; m= moyenne ; ep= épaulement

TABLEAU XXI: fréquences en cm⁻¹ des principales bandes IR des complexes :

 $(E5) = (Et_4N)_2(COO)_2.1,5SnBr_4$

 $(E6) = (Et_4N)_2CH_2(COO)_2.1,5SnBr_4$

 $(E7)=(Et_4N)_2(CH_2COO)_2.2SnBr_4$

 $(E8) = (Et_4N)_2(CHCOO)_2.1,5SnBr_4$

Attributions	Fréquences (cm ⁻¹)				
*	(E5)	(E6)	(E7)	(E8)	
ν (C=O)	1708F	1703f	1714m	1735 F	
				1711	
vas(COO ⁻)	1548m	1400m	1524F	1548m	
	1398m	1305m	1401m	1455TF	
	1367m	1138F	1309m	1388F	
vs(COO ⁻)	1305m		1244m	1366m	
	1229f		1184F	1224m	
	1168F			110 3 F	
ν(C=C)				1653m	
ν(C-C)	812Tf	813f	821f	822m	
δ(COO ⁻)	595f	795m	676f	551f	
ρ(COO ⁻)	587f	525f	632f	529f	
ω(COO ⁻)	528f	515f	513f	472m	
vsSn-Br	205 TF	206TF	208TF	207TF	
vSn-O	276m	279Tf	281F	279f	

TF=très forte ; F= forte ;Tf= très faible ; f= faible ; m= moyenne ; ep= épaulement.

, or more approximation of the	, inne offenger r <u>ages f</u> oregant, e	С	HI2 = 1.0376			
VALUES OF PARAMETERS						
	INITIAL	FINAL	ERROR			
YD=	59922.4492	59982.9844	+- 19.3063			
INT	0.0600	0.0594 +-	0.0013			
1.S	0.7000	0.6237 +-	0.0131			
LARG	0.9000	1.1799 +-	0.0438			
VMAX	= 7.7800 F	OLDING POINT :	= 258.0000			

I.CISSE, Thèse de Doctorat d'Etat ès Sciences, Dakar (2002)

			0HA1052,		
			CHI2= 0.9306		
VALUES OF PARAMETERS					
	INITIAL	FINAL	ERROR		
YD=	141557.0469	141751.0938	+- 29.5628		
PROF	0.0400	0.0669 +-	0.0010		
1.S.	0.9000	0.8549 +-	0.0078		
LARG	1.0000	1.0918 +-	0.0257		
VMAX	= -7.7800	FOLDING POINT	= 257.9187		

Figure (m15) : Spectre mössbauer du complexe (Et $_4$ N) $_2$ (CHCOO) $_2$.1,5SnBr $_4$

130

Conclusion

La caractérisation des complexes dicarboxylato stanniques du type $(Me_4N)_2(CH_n)_x(COO)_2.4SnPh_3Cl (n=1,2;x=0,1,2)$ et

 $(R_4N)_2(CH_n)_x(COO)_2.mSnX_4$ (avec R= Me ; Et et X=Cl ;Br et m= 1;1,5;2), par les spectroscopies infrarouge et Mössbauer, a permis de proposer des structures discrètes comme infinies.

Les complexes avec $SnPh_3Cl$ ont donné des structures discrètes dans lesquelles le dicarboxylate est tétra-unidentate, l'environnement autour du Sn est bipyramidal trigonal; le groupement SnC_3 possède une symétrie C_3v . La taille de l'acide au sens de Lewis ($SnPh_3Cl$) a certainement favorisé ce mode de coordination.

Avec les tétrahalogénures d'étain (IV), SnX_4 (X= Cl, Br) tous les ligands utilisés donnent des complexes d'addition de type (1-1), (1-1,5) et (1-2). Avec $SnCl_4$, le petit ligand oxalato donne des composés (1-2) à structures discrètes avec $SnCl_4$ cis coordiné quelque soit la taille du cation stabilisateur . Dans le cas du cation tétraméthylammonium, Me_4N^+ , lorsque la chaîne carbonée du ligand dicarboxylato augmente, on obtient des composés à structures infinies avec un $SnCl_4$ transcoordiné. Par contre avec le gros cation tétraéthylammonium, même quand la chaîne carbonée s'allonge , les composés restent discrètes. Dans le cas de $SnBr_4$, tous les composés obtenus sont à structures infinies, tous les $SnBr_4$ étant trans coordinés . Le type de composé obtenu semble évoluer de la stéochiométrie (1-1) pour l'oxalate à (1-2) pour le succinate en passant par (1-1,5) pour le malonate quand le cation antagoniste est petit du type Me_4N^+ ; cette tendance se maintient quand on utilise un cation plus volumineux le Et_4N^+ (mais l'évolution est moins nette).

Ces résultats montrent l'existence d'un effet de masse ou de la taille du ligand lui même ou de son cation antagoniste sur le type de structures obtenues. Un éventail plus large de ligands et de cations antagonistes dans la même série pourrait permettre de se prononcer de façon plus nette sur cet effet de masse des ligands. Toutes nos tentatives de synthétiser des ligands avec le cation tétrabutylammonium n'ont pas abouti, mais des essais avec des cations de type phosphonium (PPh₄⁺, PhCH₂PPh₃⁺) semblent prometteurs.

D-) CONCLUSION GENERALE

Ce travail nous a permis, avec la synthèse et la caractérisation par spectroscopiesInfrarouge, RMN et Mössbauer et par diffraction des rayons-X de nouveaux complexes molybdato et dicarboxylato, de confirmer le caractère coordinant de ces oxoanions. Des complexes d'addition, de substitution comme de substitution-addition de dihalogénures métalliques, d'halogénures organostanniques ou tétrahalogénures d'étain (IV) ont été mis en évidence.

Nous avons pu noter la tendance du molybdate à donner des composés polynucléaires directe $(R_4N)_2MoO_4.nMX_2;$ d'addition des composés polynucléaires de substitution-addition dans lesquels le métal central s'entoure de deux, trois ou quatre molybdates sur lesquels viennent se fixer un nombre de molécules de MX₂ égal au nombre de molybdate entourant le métal central, ont aussi été obtenus dans ce travail . Des composés polynucléaires de substitutionaddition dans lesquels un molybdate s'entoure de plusieurs centres métalliques qui seraient liés à des molécules de MX₂ externes par d'autres molybdates. Avec l'étain (IV) à côté des complexes organométalliques d'addition et de substitution obtenus avec SnPh₃Cl et SnPh₂Cl₂, nous avons mis en évidence l'existence de composés de substitution-addition avec les tétrahalogénures d'étain.

Ces résultats indiquent une influence très nette de la taille du cation stabilisateur sur le type de composé de coordination formé par le ligand molybdate. La présence du petit cation tétraméthylammonium Me_4N^+ , favorise la formation prépondérante de composés d'addition de différentes stéochiométries et même dans les rares cas de composés de substitution-addition obtenus, les solides cristallisent avec une fraction plus ou moins importantes d'halogénures Me_4NX . Par contre la présence du plus volumineux cation tétraéthylammonium Et_4N^+ , favorise la formation prépondérante de composés de substitution-addition tétraéthylammonium Et_4N^+ , favorise la formation prépondérante de composés de substitution-addition tétraéthylammonium Et_4N^+ , favorise la formation prépondérante de composés de substitution-addition.

Les ligands dicarboxylato ayant comme cation stabilisateur le tétraéthylammonium Et_4N^+ donnent avec l'acide de Lewis SnPh₃Cl, des composés de substitutions identiques à ceux obtenus directement par réaction entre les acides dicarboxyliques correspondant et SnPh₃OH. Ces complexes du ont structures discrètes des $(CH_n)_x(COO)_2.2SnPh_3$ des avec ligands bicarboxylates bichélatants et un seul type d'étain à environnement bipyramidal trigonal ou alors des structures infinies avec un ligand maléiate tri-unidentate et deux types d'étain pyramidal et bipyramidal trigonal. L'existence de la double liaison dans la chaîne carbonée introduit une rigidité qui augmente les gênes stériques et favorise les structures infinies qui sont les plus stables.

Lorsque le cation stabilisateur est le tétraméthylammonium Me_4N^+ plus petit, les ligands dicarboxylates donnent avec $SnPh_3Cl$ des composés d'addition de type (1-4) à structures discrètes, les dicarboxylates étant tétradentates et l'étain ayant un environnement bipyramidal trigonal.

Avec l'acide de Lewis SnBu₃Cl plus volumineux, les gênes stériques sont plus importants et on obtient des structures infinies et cela indépendamment de la nature ou de la taille du cation antagoniste du ligand dicarboxylate.

Avec l'acide SnMe₃Cl, on obtient également des composés de substitution à structures infinies comme précédemment.

Avec les tétrahalogénures d'étain (IV), $SnX_4(X=Cl, Br)$ tous les ligands utilisés donnent des complexes d'addition de type (1-1), (1-1,5) et (1-2).

Une corrélation semble se dessiner entre les structures des différents complexes formés d'une part et la taille du ligand lui même et son cation antagoniste d'autre part. Les structures cristallines obtenues nous ont permis d'affiner l'interprétation des données infrarouge et Mössbauer notamment dans les cas des autres structures non encore résolues.

Il serait important dans l'avenir d'élargir cette étude avec de plus gros cation stabilisateur et des ligands à chaînes plus longues pour préciser le sens de cette corrélation. L'obtention de monocristaux demeure un objectif prioritaire pour élucider de manière définitive les structures non résolues.

Les complexes obtenus feront ultérieurement l'objet de tests dans des laboratoires de phytopathologie (tests sur les bestioles nuisibles) et de pharmacie Certains laboratoires pharmaceutiques étudient les perspectives d'application dans quelques domaines importants de la médecine humaine notamment : les propriétés antivirales, les propriétés antibactériennes, le traitement de l'hyperbilirubinémie, le thérapie photo dynamique du cancer, les propriétés antitumorales, les mécanismes d'action pour ne citer que ceux la.

E-)BIBLIOGRAPHIE

.
[2]-B.J.HATHAWAY, Struct.Bond.(Berlin), 14, 19(1973)

[3]-B.J.HATHAWAY ,Comprehensive Coordination Chemistry,vol 2,Ligands Pergamon Press 1^{ère} éd ,413,(1987)

[4]-B.J.HATHAWY, D.E.WEBSTER, Proc. Chem, 14(1963)

[5]-A.POTIER and J.POTIER ,Spectrochim , Acta , 35A , 443 (1979)

[6]-V.YA ROSOLOVSKI and Z.K.NIKITA, Russ.J.Org.Chem.25,715(1980)

[7]-K.V.KRISNAMURTY and G.M.HARRIS ,Chem,Rev,61,213, (1961)

[8]-A.S.Sall, thése de 3^e cycle Dakar-Sénégal (1985).

[9]-O. Gueye, Thése de doctorat d'Etat és-Sciences, UCAD, Dakar (1988)

[10]-N.WEINSTOKH, H.SCHULZE and A.MÜLLER, j.Chem.Phys, 59, 5063,(1973)

[11]-J.FUJITA, A.E MARTELL et K. NAKAMOTO, J. Chem Phys; 36, 324, 331 (1962)

[12]-K.L. SCOTT, K. WIEGHARDT et A.G. SYKES, Inorg. Chem, 12, 655 (1973)

[13]-A.C.SKAPSKI, J.E.GUERCHAIS et J.Y.CALVES, C.R.Acad.Sci, 78, 1377(1974)

[14]-F.LE FLOCH , J.SALA-PALA et J.E.GUERCHAIS, Bull .Soc .Chim, 120,12 (1975)

[15]-J.E.GUERCHAIS, and al C.R. Acad.Sci.278c, 1377(1974)

[16]-O.GUEYE ,H.QAMAR , L.DIOP , C.A.DIOP et U.RUSSO Polyhedron 12, 1245, (1993)

[17]-B.MAHIEU, Principes de spectroscopie Mössbauer et applications à la chimie de l'étain, (1994)Belgique

[18]-B.MAHIEU, Contribution à l'étude de la chimie organométallique et du recyclage de l'étain (1994) Belgique

[19]-B.MAHIEU, La spectroscopie Mössbauer et ses applications (1992) Belgique

[20]-R.H.HERBER, H.A. STÖCKLER and W.T.REICHIE, J, Chem, Phys, 42, 2447, (1965)

[21]-W.E.ADDISON, Structural principles in inorganic compounds .Longmans (1961)London.

[22]-L.BELLAMY and C.CALVO, act crystallogr .Sect.B,34,896, (1981).

[23]-H.O.KALINOWSKI, S.BERGER and S.BRAUN, Carbon NMR Spectroscopy, J.Wiley, Chichester, pp 313-316(1988)

[24]-R.A.HOFFMAN.Pure.Appl.Chem, 11, 534, (1965)

[25]-H.GÜNTHER.NMR Spectroscopy, Wiley, Chichester, (1980)

[26]-A.MÜLLER, H.BÖGGE and U. SCHIMANSKI, Inorg, Chem, Acta, 45, L249, (1990)

 $[\mathbf{27}]\text{-}A.S.SALL$ and L.DIOP , Spectrochim , Acta , 46A , N° 5 , 793-796 , (1990)

[28]-A.DIASSE-SARR, thése de 3^e cycle Dakar-Sénégal (1994)

[29]-A.DIASSE-SARR, Thése de doctorat d'Etat és-Sciences, UCAD, Dakar (1998)

[30]-D.DeBARROS , A.S.SALL, O.GUEYE et L.DIOP , Bull.Chem. Soc.Ethiop. 113(1993)

[31]-M.SIDIBE, Thése de doctorat d'Etat és-Sciences, UCAD, Dakar (1998)

[32]-I.WHARF, J.Z.LOBOS and M.ONYSZCHUK, CAN.J.Chem, vol 48 2787, (1990)

[33]-M.LAHLOU and L.DIOP, Spectrochim, Acta 47A, N°12, 1775-1779 (1990) [34]-A .GLOWACKI . , F .HUBER. and H .PREUT. Recl.Trav.Chem .Pays-Bas 365, 207, (1988)

[35]-G.M.BRANCOFT et R.H.PLATT « Mössbauer spectra of inorganic compounds : Structure and bonding » dans « Advanced Inorganic Chemistry », vol 15, Academic Press, NewYork, 110(1992)

[36]-M.GIELEN and al, Main Group Metal Chemistry, Vol.10,N°.3,(1987) [37]-M.GIELEN, A.ELKLOUFI, M.BIESMANS, A.BOUHDID, D.DE

VOS, B.MAHIEU and R.WILLEM, Metal Based DrugsVol.1, N°.4(1994) [38]-M.GIELEN, M.ACHEDDAD, B.MAHIEU and R.WILLEM, Main Group

Metal Chemistry, Vol.14, N°.2(1991)

[39]-O .GUEYE et L.DIOP , Bull . Chem .Soc.Ethiop , 5(2),103-106(1991)

[40]-F.S.ROXANA , M.PEREC, R.CALVOL.LEZAMA, M.INSAUSTI, T. ROJO and B.M.FOXMAN , Inorg. Chem. Acta vol 310 , 81-88 (2000).

[41]-T.YANO,K.NAKASHIMA,J.OTERA and R.OKAWARA Organomet, 4, 1501(1985)

[42]-C.S.PARULEKAR, V.K.JAIN, T.KESAVADAS and E.R.T TIEKINK, J. Organomet. Chem., 387,163(1990)

[43]-M.GIELEN and al, Organometallics, Vol.13, N°.7, (1994)

[44]-J.ZHANG, L.J.WAN and K.ITAYA .J ournal of electroanalytical Chem. Vol.500 N°.2 (2001).

[45]-M.CINDRI, N.STRUKAN, and al .Inorg.Chim.Acta Vol 403 N°2 (2000)

[46]-B.BLEANEY and K.D.BOWERS.Proc.R.Soc.Lond.A 266, 95 (1952).

[47]-B.E.MYERS,L.BERGER and S.A.FRIEDBERG.J.Appl.PHYS. 40,1149 (1969).

[48]-F.NAKAMOTO. Infrared and Raman Spectra of Inorganic and coordination Compounds (4th.ed),J.Wiley and Sons, New York(1986)

[49]-A.M.SERGIO and al ,Inorg.Chem.Acta ,312 ,7-14 (2001).

[50]-Z.M.WANG, L.J.VAN de BURGT and G.R.CHOPPIN .Inor. Chem. Acta,310 ,pp.248-256(2000).

[51]-I.CISSE . Thése de spécialité Dakar (1995).

[52]-I.R.BEATTIE and G.P.Mc.GROSSMAN, Inorg.Chem.Acta ,5, 1308 (1966).

[53]-N.W.ALCOCK, V.M.TRACY and T.C.WADDINGTON, J.Chem. Soc. Dalton.Trans, 2243(1976)

[54]-M.JULVE, M.VERDAGUER, A.GLEIZES, M.P.LEVISALLES and O. KAHN, Inorg.Chem.Acta, 23, 3808, (1984).

[55]-A.MICHALOWICZ, J.J.GIRED and J.GOULON, Inorg .Chem, 18, 3004, (1979)

[56]-J.J.GIRED, O.KAHN and M.VERDAGUER, Inog. Chem, 19, 274, (1980).

[57]-J.S.MILLER, and A.J.EPSTEIN .Prog.Inog.Chem.Ges , 20,1,(1976).

[58]-R.E.HESTER and W.E.L.GROSSMAN . Inorg.Chem., 5, 1308, (1966).

[59]-A.WERNER, BER.Dtsch.Cem.Ges,45, 3061(1972).

[60]-F.MAZZI and G.GARAVELLI, Period.Mineral.26, 269, (1957)

[61]-CHEIKH A.K.DIOP ,HAYAT QAMAR , IBRAHIMA CISSE and LIBASSE DIOP , Main Group Met Chem , 22 ,41(1999)

[62]-H.Q.KANE, Thése de doctorat de 3^{ème} cycle UCAD (1997)

[63]-D.TUDELA, V.FERNANDEZ and J.TORENO, J.Chem.Soc Dalton Trans 1281, (1985).

[64]-HOULTON and TARTAK, Chem.Commun, 871, (1968).

[65]-AUBKE and coll, Chem.Commun, 258, (1963)

[66]-A.S.SALL O.SARR and L.DIOP, Bull.Chem.Soc.Ethiop,61,11-14,(1992)

[67]-B.J.HATHAWAY and A.E.UNDERHILL, J.Chem Soc, 3091 (1961)

[68]-A.NOVAK, J.Chem.Phys, 1615 (1972)

[69]-H.QAMAR, D.E.A., Dakar, (1993).

[70]-C.K.MOLLOY,K.QUILL and I.W.NOWELL.J.Chem.Soc.,Dalton Trans 101(1987)

[71]-K.C.MOLLOY, T.G.PURCELL, K.QUILL and I.W.NOWELL. J. Organomet. Chem. 267, 237, (1984)

[72]-S.W.NG, V.G.KUMAR DAS and R.BUTCHER, J.Organomet .Chem., 376,277,(1989)

[73]-N.W.ALCOCK and R.E.TIMMS, J.Cem .Soc .A .1873(1968)

[74]-Y.K.HO,K.C.MOLLOY ,J.J.ZUCKERMAN,F.REIDINGER and J.A. ZUBIETA. J.Organomet.chem.187,213(1980)

[75]-F.HUBER.,B.MUNDUS-GLOWACKI and H.PREUT.J.Organomet.Chem 365,111(1989)

[76]-T.PLOCKHART, W.F.MANDERS and E.M.HOLT.J.Am.Chem.Soc 108,6611,(1986)

[77]-C.S.PARULEKAR, V.K.JAIN, T.KESAVADAS and E.R.T.TIEKINK. J.organomet.Chem, 387, 163, (1990)

[78]-T.BIRCHALL, C.S.FRAMPTON and J.P.JOHNSON .Acta.Crystallogr . Chem.43,1492(1987)

[79]-G.VALLE.V.PERUZZO.G.TAGLIAVINI and P.GANIS.J.Organomet. Chem.,276,325(1984)

[80]-I.W.NOWELL, J.S.BROOKS, G.BEECH and R.HILL.J.Organomet.Chem 244,119(1983)

[81]-T.BIRCHALL and J.P.JOHNSON. Can. J .Chem,60,934(1982)

[82]-R.FAGGIANI, J.P.JOHNSON, I.D.BROWN and T.BIRCHALL. Acta. Crystallogr. B, 34, 3742(1978)

[83]-M.GIELEN, M.MELOTTE , G.ATASSI and R.WILLEM, Tetrahedron , 45, 1219(1989)

[84]-G.M.SHELDRICK, SHELX76, Program for Crystal Structure Determination, Univ. Cambridge, England (1976).

[85]-T.P.LOCKHART, J.C.CALABRESE and F.DAVIDSON, Organometallics 6,2479(1987)

[86]-R.VAN LAMBALGEN and P.LELIEVELD, Invest. New Drugs, 5,161(1987)

[87]-V.CHANDRASEKHAR, R.O.DAY, J.M.HOLMES and R.R.HOLMES, Inorg.Chem., 27,958-964(1988)

[88]-E.R.T.TIEKINK, G.K.SANDHU and S.P.VERMA , Acta . Crystallogr. C. 45,1810(1989)

[89]-P.G.HARRISON and R.C.PHILIPS.J.Organomet.Chem.182,37(1979)

[90]-P.G.HARRISON,K.LAMBERT,T.J.KING and B.MAJEE J.Chem.Soc., Dalton Trans 363(1983)

[91]-H.A.STÖCKLER and H.SANO, Phys.Lett, A25,550(1967)

[92]-A.G.DAVIES, J.P.GODDARD, M.B.HURSTHOUSE and N.P.C. WALKER, J.Ckem.Soc., Dalton Trans, 1873(1986)

[93]-J.A.ZUBIETA and J.J.ZUCKERMAN, Progr.Inorg.Chem .,24,251-475 (1978) ;P.J.SMITH, J.Organomet.Chem.Libr .,12,97(1981)

[94]-C.PELIZZI, G.PELIZZI and G.PREDIERI, J.Organomet.Chem, 263,9-20 (1984)

[95]-D.V.NAIK and W.R.SCHEIDT, Inorg.Chem., 12, 272-276(1973)

[96]-A.S.SALL and L.DIOP, Spectrochim.Acta, 171, 53(1990)

[97]-O.SARR and L.DIOP, Spectrochim.Acta .A46,12395(1990)

[98]-I.R.BEATTIE and G.P.McQUILLAN.J.Chem.Soc.1523,(1963)

[99]-D.De BARROS, A.S.SALL, O.GUEYE and L.DIOP, Bull.Chem.Soc. Ethiop,113(1993)

[100]-C.A.K.DIOP, M.LAHLOU, L.DIOP, B.MAHIEU and U.RUSSO, Main Group Met.Chem., 20, 10(1997)

[101]-C.A.K.DIOP, Thése de Doctorat d'Etat ès-Sciences, Dakar (1998)

[102]-M.GIELEN, Coordination Chem.Reviews, 151, 41(1996)

[103]-M.GIELEN, « Tin as Vital nutrient : Implications in cancer prophylaxis and other physiological process, Antitumor active organotin compounds », N.F.Cardarelli (ed), C.R.Press, Chap 13(1986)

[104]- A.S.SALL, Thése de Doctorat d'Etat ès-Sciences Dakar-Sénégal (1989).

[105]-G.M.SHELDRICK, SHELXS-96, Program for the solution of crystal structures, University of Göttingen, Germany, (1996)

[106]- G.M.SHELDRICK, SHELXS-96, Program for the refinement of crystal structures, University of Göttingen, Germany, (1996)

[107]-G.A.PARKER, Analytical Chemistry of Molybdenum, Springer-Verlag, New York (1983)

[108]-International Tables for X-Ray Crystallography, Vol.IV, Tables 2.2B and 2.3.1, Kynoch Press, Birmingham (1974)

[109]-P.MAIN, S.J.FISKE, S.E.HULL, L.LESSINGER, G.GERMAIN, J.P.DECLERCQ, M.M.WOOLFSON, NULTAN-80, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Universities of York, England and Louvain-La-Neuve, Belgium(1980)