UNIVERSITE CHEIKH ANTA DIOP FACULTE DES SCIENCES ET TECHNIQUES DEPARTEMENT DE CHIMIE

LABORATOIRE DE CHIMIE MINERALE ET ANALYTIQUE (LACHIMIA)

THESE DE DOCTORAT 3^{ème} CYCLE MENTION CHIMIE DE COORDINATION SUR LE SUJET :

SYNTHESE ET CARACTERISATION PAR SPECTROSCOPIES INFRAROUGE, RAMAN, RMN, MÖSSBAUER ET PAR DIFFRACTION AUX RAYONS X DE NOUVEAUX COMPLEXES ET DERIVES ORGANOSTANNIQUES AVEC LES IONS RCO₂⁻ [R = HOC₆H₄, HSC₆H₄, CO₂(CH₂)₄, (NO₂)₂C₆H₃, C₆H₅CH=CH], Me₂AsO₂⁻, PhAsO₃H⁻, HPO₃⁻ ET IO₃⁻

Présentée par Seydou BASSENE Maître ès Sciences Physiques

Soutenue le 09 Janvier 2004 devant le jury composé de :

Président :	Libasse	DIOP	Professeur	U. C. A. D. Dakar
<u>Membres</u> :	Serigne A.	NDIAYE	Professeur	U. C. A. D. Dakar
	Omar	GUEYE	Maître de Conférences	U. C. A. D. Dakar
	Samba	DIENG	Maître de Conférences	U. C. A. D. Dakar
	Mamadou	SIDIBE	Maître de Conférences	U. C. A. D. Dakar
Rapporteur	: Aminata DL	ASSE-SARR	Maître de Conférences	U. C. A. D. Dakar

JE DEDIE CE TRAVAIL

A la mémoire

de ma mère Néné Bassène, du professeur Oumar Sarr, de ma cousine Jacqueline Badji, de mes amis Thierno Baldé, Salam et Alioune Badara Ndione, de ma grand-mère Mame Aby, de mon grand Chérif Diop qui ont tous, été très tôt, arrachés à notre affection. Que l'Eternel détenteur de la miséricorde les accueille dans son paradis "**Amen**".

A mon père Diéré Bassène et à ma tante Yadi NDiaye pour tous les sacrifices et efforts consentis pour l'épanouissement de leurs enfants

A toute la famille de feu Abdourahmane Diallo (que la terre lui soit légère) particulèrement à Ahmadou Bélla Diallo pour m'avoir accueilli dans leur famille.

A mon grand Sara Sané, mes parents René Badji , Maixent Djiba, Ramatoulaye Bassène et familles

A Aliou Mané pour son soutien et ses conseils ainsi qu'à sa famille

A mes frères, sœurs, cousins et cousines Astou, Coumba, Fatou, Ramatoulaye, Daba, Ousmane, Alioune, Mouhamadou, Mame Ismaila et Bertrand Bassène

A mon homonyme Seydou Bassène; que Dieu lui réserve un grand avenir

A Ma Tante Fama Ndiawar Gueye et son mari Serigne Cheikh Mbacké pour leur soutien et tous les efforts consentis à mon égard.

A tous les amis, frères et compagnons, plus particulièrement Mamadou Diop, Ahmadou T. Diallo, P. Ahmadou Dièye, Serigne Ndam Lô, Alassane Diallo, Kaba Keïta, Ousseynou Gueye, Mbaye Diagne, Mbaye Sidy Ba, Moussa Karé, Alioune Diouf, Very Serge Rénamy, Badou Diallo, Ibrahima Ba, Laye Dieng, Abdou Lahat Cissé, Moustapha Dièye, Amar Diop, Gorgui Bop, Pape Momar Diop et Pape Latyr Ndiaye, que l'amitié et la fraternité qui nous lient soient éternelles.

Aux amis et frères du groupe "Wa mango ji" particulièrement à Pape Amadou Diouf, Pape Cissé, Pape Momar Niane, Amary Diop, Djibril Ndoye, Gora Dia, Abdou Diatara, Ousmane Yade, Ousmane Ndiaye, Mamadou Doudou Gueye, Nicolas Méhouénou, Ndack Gueye, Auguste Nicolas Niouky, Ibrahima Diakhaté, Souadou Diallo, Baye Diakhaté, Lamine Diagne, Cheikh Diagne, Youssou Ndiaye, Youssou Diop, Issa Cissokho, Momar Diaw, Djeugue Mbaye, Ibrahima Kane dit Lamp, Serigne Souhaïbou Mbacké, Jilly Ndiaye, Dane Mbacké, Badou Diagne, Abdoulaye Mbow, grand Ibou Diouf ainsi qu'à leurs familles que Dieu continue à bénir notre union.

A Ibrahima Thioye et à ses sœurs Awa et Maïmouna, à Alassane Sall et à sa femme Arame Fall Sall, à Ndèye Fall, à Seynabou Fall.

A tous les amis du groupe "Benn Bopp" : Koya, Pape Ndiaye, Abou, Ibou.

A Bara Sidy Ndiaye et famille

A tous ceux qui m'ont fait savoir, ne serait ce qu'une lettre.

REMERCIEMENTS

Ce travail a été effectué au Laboratoire de Chimie Minérale et Analytique (LACHIMIA) de la Faculté des Sciences et Techniques de l'Université Cheikh Anta Diop de Dakar sous la direction de Monsieur Mamadou Sidibé Maître de Conférences.

Je remercie Monsieur Mamadou Sidibé de m'avoir accepté à ses cotés, qu'il veuille trouver ici l'expression de ma profonde gratitude.

Mes remerciements vont aussi à :

Monsieur le Professeur Libasse Diop de m'avoir accueilli dans son laboratoire et accepté de présider le jury de la thèse. Que Dieu lui réserve une longévité et lui accorde ses bienfaits.

Monsieur le Professeur Serigne Amadou Ndiaye d'avoir accepté de juger ce travail

Monsieur Omar Gueye Maître de Conférences pour ses encouragements et d'avoir accepté de juger ce travail

Monsieur Samba Dieng Maître de Conférences et Chef du Département de Chimie pour son aide matérielle et d'avoir accepté de juger ce travail

Madame Aminata Diassé Sarr Maître de Conférences pour avoir accepter de juger ce travail et d'en être le rapporteur.

Aux Docteurs Cheikh Abdoul Khadir Diop, Ibrahima Cissé et Kourfia Diawara pour leur disponibilité et leurs contributions à l'aboutissement de ce travail.

A Monsieur le Professeur Adams Tidiani et à M^{me} Maguette Diagne de m'avoir aidé à prendre les spectres infrarouge hautes fréquences contenus dans ce mémoire.

Aux Professeurs Bernard Mahieu (Louvain La Neuve), Maurizio Vidali (Padova), et Kiran C. Molloy (Bath) pour avoir contribué à l'obtention des mesures physiques sur nos composés.

A toute l'équipe du Laboratoire de Chimie Minérale et Analytique (LACHIMIA) particulièrement aux Professeurs Adou Salam Sall, Mouhamed Lamine Gaye et Abdoulaye Diop, aux Docteurs Ousmane Diouf, Kochikpa Okio mon maître, Madame Dinora De Barros, Hayat Qamar, Farba Bouyagui Tamboura et aux doctorants Very Serge Rénamy, Assane Touré, Mayoro Diop, Moussa Dieng, Mouhamadou Sémbène Boye, pour leur disponibilité, leurs conseils et leur soutien.

Et à tous les membres du département de Chimie plus particulièrement aux enseignants qui ont contribué à faire de moi, l'apprenti chimiste que suis devenu.

GLOSSAIRE	8
	9
SYNTHESE DES LIGANDS ET DES COMPOSES	11
	19
	28
I°/ COMPLEXES ET DEIVES CONTENANT LE RESIDU SnR $_3$ (R	t = Ph, Me, Bu) .30
Complexes et dérivés contenant le résidu SnPh ₃	31
I-1°/ (CH ₂ CH ₂ COO) ₂ (SnPh ₃) ₂	
I-2°/ HOC ₆ H ₄ COOSnPh ₃	
I-3°/ $(O_2N)_2C_6H_3COOSnPh_3$	
$I-4^{\circ}/Me_4N(HOC_6H_4COO)_2SnPh_3$	41
I-5°/ NMe ₄ HOC ₆ H ₄ COOSnPh ₃ SCN	43
I-6°/ en(Me ₂ AsO ₂) ₂ .2SnPh ₃ Cl	46
I-7°/ Me ₄ NHSC ₆ H ₄ COOSnPh ₃ Cl	48
I-8°/ IO ₃ Na.3SnPh ₃ CI	49
Complexes et dérivés contenant le résidu SnMe ₃	
I-9°/ (CH ₂) ₄ (COO) ₂ (SnMe ₃) ₂	
I-10°/ PhCH=CHCOOSnMe ₃	
I-11°/ HSC ₆ H₄COOSnMe ₃	63
I-12°/ (O ₂ N) ₂ C ₆ H ₃ COOSnMe ₃	66
I-13°/ PhAsO ₃ HSnMe ₃	75
I-14°/ (Me ₂ AsO ₂ SnMe ₃) ₂ .H ₂ O	81
I-15°/ HPO ₃ (SnMe ₃) ₂ .H ₂ O	
I-16°/ (Cy ₂ NH ₂) ₂ (CH ₂ CH ₂ COO) ₂ .2SnMe ₃ CI	96
Complexes et dérivés contenant le résidu SnBu ₃	
I-17°/ Me ₂ AsO ₂ SnBu ₃ .H ₂ O	98
I-18°/ PhAsO ₃ HSnBu ₃	
II°/ COMPLEXES ET DERIVES CONTENANT LE RESIDU SnR2	(R = Me, Ph) 103
Complexes et dérivés contenant le résidu SnMe ₂	

II-1°/ HOC ₆ H ₄ COOSnMe ₂ Cl	
II-2°/ PhCH=CHCOOSnMe ₂ Cl	106
II-3°/ Cy ₂ NH ₂ PhCH=CHCOOSnMe ₂ CI ₂	
$II-4^{\circ}/Me_4N(O_2N)_2C_6H_3COOSnMe_2CI_2$	
II-5°/ en(Me ₂ AsO ₂) ₂ SnMe ₂ Cl ₂	112
Complexes et dérivés contenant le résidu SnPh ₂	114
II-6°/ en(Me ₂ AsO ₂) ₂ SnPhCl ₂	114
III°/ COMPLEXES AVEC SnX ₄ (X = CI, Br)	117
III-1°/ $en(Me_2AsO_2)_2SnX_4$ (X = CI, Br)	118
III-2°/ Me ₄ NHOC ₆ H ₄ COOSnBr ₄	121
	124
BIBLIOGRAPHIE	126

GLOSSAIRE

NMe₄	= tétraméthylammonium
NEt₄	= tétraéthylammonium
Cy ₂ NH ₂	= dicyclohexylamine
en	= éthylénediammonium [3HN(CH2)2NH3]
Ме	= méthyl (CH ₃)
Et	= éthyl (C_2H_5)
Ph	= phényl (C ₆ H ₅)

INTRODUCTION GENERALE

L'étude du comportement des oxoanions tétraédriques ou pyramidaux agissant comme ligands a été réalisée par plusieurs auteurs (1-8). Les structures aux Rayons X de dérivés carboxylato ont été décrites par Tiekink (9,10). La chimie des dérivés organostanniques qui sont utilisés en médecine dans le traitement du cancer, dans l'agriculture comme engrais ou pesticides, dans l'industrie comme stabilisateurs de PVC et en chimie comme catalyseurs ou intermédiaires réactionnels a fait l'objet de plusieurs études (11-26).

Depuis quelques années nous développons dans notre laboratoire l'étude du comportement en tant que ligand d'oxoanions tétraédriques ou pyramidaux. Ainsi des complexes métalliques et des dérivés organostanniques d'oxoanions tétraédriques substitués ou non substitués tels que XO_4^{n-} et $R_nAO_m^{n-}$ (X= S. Se. W. Mo: A= P. As ; R= H, Ph, Me, PhNH₂ ; n= 1, 2 ; m= 2, 3) et pyramidaux tels que IO_3^- , SeO₃²⁻, SO₃²⁻ ont été isolés (27-38). Leurs structures ont été déterminées par spectroscopies infrarouge, Raman, Mössbauer et RMN. Des études aux Rayons X ont été réalisées sur certains dérivés tels que $SeO_3(SnMe_3)_2H_2O$ (39), (40), (41). $[Me_3Sn(H_2O)]_2C_2O_4$ PhSO₃SnPh₃ En plus des dérivés triorganostanniques de l'oxalate tels que C₂O₄(SnPh₃)₂, C₂O₄(SnMe₃)₂ (42) et de carboxylates tels que (CH₂COO)₂(SnR₃)₂ (R = Me, Bu, Ph), CH₂(COO)₂(SnPh₃)₂ et PhCOOSnR₃ (43) ont été synthétisés et caractérisés par les mêmes méthodes spectroscopiques.

Dans ce travail nous avons repris l'étude du comportement en tant que ligands des anions $Me_2AsO_2^-$, $PhAsO_3H^-$, IO_3^- et HPO_3^{2-} et en plus initié celle des ions $(CH_2CH_2COO)_2^{2-}$, $HOC_6H_4COO^-$, $HSC_6H_4COO^-$, $PhCH=CH-COO^-$ et $(O_2N)_2C_6H_3COO^-$ dans le but de compléter des travaux antérieurs et aussi d'obtenir de nouveaux composés. Les cations stabilisateurs utilisés sont en plus des ions tétraméthylammonium et tétraéthylammonium, le dicyclohexylammonium et l'éthylènediammonium.

Nous avons ainsi obtenu des composés d'addition et de substitution totale qui ont tous été caractérisés par spectroscopies infrarouge et Mössbauer et en plus spectroscopie Raman pour les complexes de SnX_4 (X = Cl, Br). Les études RMN et par diffraction aux Rayons X ont été réalisées pour certains dérivés.

SYNTHESE DES LIGANDS ET DES COMPOSES

SYNTHESE DES LIGANDS

Les sels utilisés tels que $PhAsO_3HNEt_4.2H_2O(L_1)$ et $Me_2AsO_2NMe_4.H_2O(L_2)$ ont été synthétisés par Sidibé (30).

Dans ce travail nous avons synthétisé les ligands $en(Me_2AsO_2)_2.2H_2O$ (L₃), HOC₆H₄COONMe₄.H₂O (L₄), HSC₆H₄COONMe₄.H₂O (L₅), (NMe₄)₂(CH₂)₄(COO)₂.2H₂O (L₆), (Cy₂NH₂)₂(CH₂)₄(COO)₂.H₂O (L₇), PhCH=CHCOONMe₄.2H₂O (L₈), PhCH=CHCOOCy₂NH₂.H₂O (L₉) et (NO₂)₂C₆H₃COONMe₄.H₂O (L₁₀).

$enH_2(Me_2AsO_2)_2.2H_2O(L_3)$

On obtient ce ligand en mélangeant en milieu aqueux et dans la stœchiométrie 1:2 l'éthylènediamine (produit MERCK) et l'acide diméthylarsonique Me_2AsO_2H (produit MERCK). Le mélange est agité environ deux heures puis mis à l'étuve à 60°C. Quelques jours après, il se forme un précipité blanc qui est filtré et la poudre blanche obtenue est lavée à l'éther puis séchée sur P_2O_5 .

enH₂(Me₂AsO₂)₂.2H₂O: % calculé (trouvé) %C 19,35 (19,54); % H 06,99 (06,41); %N 07,53 (07,42)

$HXC_{6}H_{4}COONMe_{4}H_{2}O(L_{4}, L_{5})(X = O, S)$

On mélange, dans la stœchiométrie 1:1, les acides salicylique et thiosalicylique (HXC_6H_4COOH ; X = O, S) (produits MERCK) avec de l'hydroxyde de tétraméthyl ammonium (NMe_4OH) (25% dans l'eau) (produit (MERCK). Le mélange obtenu est agité pendant deux heures puis mis à l'étuve à 60°C. On obtient, quelques jours après des cristaux pour (X = O) et de la poudre maronne pour (X = S) qui sont séchés par la suite sur P₂O₅.

HOC₆H₄COONMe₄.H₂O: % calculé (trouvé) %C 57,64 (57,54); % H 08,29 (08,41); %N 06,11 (06,42)

HSC₆H₄COONMe₄.H₂O: % calculé (trouvé) %C 53,87 (53,65); % H 07,75 (07,62); %N 05,71 (05,57)

$(NMe_4)_2(CH_2)_4(COO)_2.2H_2O(L_6)$

On obtient ce ligand en mélangeant dans la stœchiométrie 1 :2 de l'acide adipique [HOOC(CH₂)₄COOH] (produit MERCK) initialement dissous dans un minimum d'eau avec une solution de NMe₄OH (25% dans l'eau). La solution obtenue est mise à l'étuve à 60°C pendant plusieurs jours. Les cristaux obtenus sont séchés sur P₂O₅.

(NMe₄)₂(CH₂)₄(COO)₂.2H₂O: % calculé (trouvé) %C 51,22 (51,72); % H 10,97 (10,41); %N 08,54 (08,65)

(Cy₂NH₂)₂(CH₂)₄(COO)₂.H₂O (L₇)

Le sel a été obtenu par mélange en milieu aqueux et dans la stœchiométrie 2 :1 de la bicyclohexylamine avec l'acide adipique dissous au préalable dans un minimum d'eau. Le mélange est agité pendant deux heures et la solution obtenue est mise à l'étuve à 60°C. Après quelques jours il se forme un précipité blanc qui est filtré et la poudre obtenue est lavée à l'éther puis séchée sur P_2O_5 .

(Cy₂NH₂)₂(CH₂)₄(COO)₂.H₂O: % calculé (trouvé) %C 68,44 (68,58); % H 11,03 (11,21); %N 05,32 (05,72)

PhCH=CHCOONMe₄.2H₂O (L₈)

On mélange dans la stœchiométrie 1:1 NMe₄OH (25% dans l'eau) avec l'acide cinamique (PhCH=CHCOOH) (produit MERCK) dissous préalablement dans un minimum d'eau. La solution obtenue est agitée pendant deux heures et mise à l'étuve à 60°C. Les cristaux obtenus sont séchés sur P_2O_5 .

PhCH=CHCOONMe₄.2H₂O: % calculé (trouvé) %C 60,70 (60,39); % H 08,95 (08,71); %N 05,45 (05,72)

PhCH=CHCOOCy₂NH₂.H₂O (L₉)

Le sel a été obtenu en mélangeant dans la stœchiométrie 1:1 de la dicyclohexylamine avec l'acide PhCH=CHCOOH dissous initialement dans un minimum d'eau. La solution obtenue est agitée pendant deux heures et mise à l'étuve à 60°C pendant plusieurs jours. On obtient de la poudre blanche qui est lavée à l'éther et séchée sur P_2O_5 .

PhCH=CHCOOCy₂NH₂.H₂O: % calculé (trouvé) %C 72,62 (72,95); % H 09,51 (09,72); %N 03,92 (03,61)

$(NO_2)_2C_6H_3COONMe_4.H_2O(L_{10})$

Le ligand est obtenu en mélangeant dans la stœchiométrie 1:1 une solution de NMe₄OH (25% dans l'eau) avec l'acide dinitrobenzoïque [(NO₂)₂C₆H₃COOH] préalablement dissous dans un minimum d'eau. La solution obtenue est agitée puis mise à l'étuve à 60°C pendant quelques jours. Les cristaux jaunes obtenus sont séchés sur P₂O₅.

(NO₂)₂C₆H₄COONMe₄.H₂O: % calculé (trouvé) %C 43,56 (43,58); % H 05,61 (05,39); %N 13,86 (13,47)

SYNTHESE DES COMPOSES

Les composés ont été obtenus par mélange du ligand avec les dérivés organostanniques $SnR_{\alpha}Cl_{4-\alpha}$ (R = Me, Bu, Ph; α = 2, 3) ou SnX_4 (X = Cl, Br) préalablement dissous dans des solvants appropriés. Le mélange est agité pendant au moins deux heures. On obtient soit un précipité soit une solution limpide.

Le précipité est filtré, lavé avec un solvant approprié et la poudre obtenue est séchée à l'étuve à 60°C ou sur P₂O₅ et le filtrat est mis en évaporation lente.

La solution limpide est mise en évaporation lente pendant quelques jours et le composé obtenu est récupéré puis recristallisé. Les cristaux obtenus sont séchés sur P₂O₅.

Dans les tableaux suivants nous reportons les quantités de réactifs, les solvants utilisés, la nature du composé obtenu, sa couleur, les résultats des analyses élémentaires ainsi que les points de fusion.

HPO₃(SnMe₃)₂H₂O

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
H ₃ PO ₃	0,753	méthanol		blanche	%C:16,92(16,75)
SnMe₃Cl + KOH	1,506	méthanol	cristaux	63	%H:04,94(04,27) %N: -(-)

PhAsO₃HSnMe₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₁	0,889	éthanol		incolore	%C:29,62(29,92)
SnMe₃Cl	0,889	éthanol	cristaux	178	%H:04,11(04,58) %N: -(-)

PhAsO₃HSnBu₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L	0,645	éthanol		blanche	%C:44,03(44,31)
SnBu₃Cl	0,645	éthanol	poudre	152	%H:06,72(06,47) %N: -(-)

(Me₂AsO₂SnMe₃)₂.H₂O

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
Me ₂ AsO ₂ H	2,438	éthanol		incolore	%C:19,37(19,26)
SnMe₃Cl + KOH	2,438	éthanol	cristaux	164	%H:05,17(05,30) %N: -(-)

Me₂AsO₂SnBu₃.H₂O

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₂	3,539	éthanol		incolore	%C:37,78(37,10)
SnBu₃Cl	3,539	éthanol	poudre	63	%H:7,87 (7,50) %N: -(-)

enH₂(Me₂AsO₂)₂.SnMe₂Cl₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₃	1,487	méthanol		blanche	%C:17,30(17,35)
SnMe ₂ Cl ₂	1,487	dichlorométhane	poudre	>250	%H: 05,00(05,12) %N: 05,00(04,75)

enH₂(Me₂AsO₂)₂.SnPh₂Cl₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₃	1,541	méthanol		blanche	%C:31,80(31,86)
SnPh ₂ Cl ₂	1,541	dichlorométhane	poudre	231	%H: 04,70(04,67) %N: 04,10(04,13)

enH₂(Me₂AsO₂)₂.2SnPh₃Cl

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₃	1,230	chloroforme		blanche	%C:45,60(44,88)
SnPh₃Cl	2,460	dichlorométhane	poudre	>250	%H: 04,70(04,85) %N: 02,50(01,81)

enH₂(Me₂AsO₂)₂.SnCl₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₃	2,010	méthanol		blanche	%C:12,10(11,35)
SnCl₄	2,010	benzène	poudre	>250	%H: 3,70 (3,95) %N: 4,70 (4,83)

enH₂(Me₂AsO₂)₂.SnBr₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₃	1,487	méthanol		jaune	%C:09,30(09,57)
SnBr₄	1,487	benzène	poudre	>250	%H:02,80(03,42) %N:03,60(03,55)

IO₃Na(SnPh₃Cl)₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
SnPh₃Cl	0,762	dichlorométhane		blanche	%C:47,87(47,64)
IO₃Na	0,762	Eau + éthanol	cristaux	194	%H:03,32(03,47) %N:(-)

HOC₆H₄COOSnPh₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
HOC ₆ H₄COOH	2,040	éthanol	critaux	blanche	%C:61,52(61,34)
SnPh₃OH	2,040	éthanol		120	%H: 4,10 (04,33) %N: - (-)

HOC₆H₄COOSnMe₂Cl

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₄	2,27	éthanol	podre	blanche	%C:33,62(33,54)
SnMe ₂ Cl ₂	2,27	éthanol		153	%H: 03,10(03,74) %N: - (-)

Me₄N(HOC₆H₄COO)₂SnPh₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₄	0,820	éthanol	poudre	blanche	%C:61,91(61,72)
OHC₀H₄CO₂SnPh₃	0,820	éthanol		202	%H: 05,29(05,72) %N: 02,00(01,83)

Me₄NHO**C**₆H₄COOSnPh₃SCN

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
Me₄NSCN	2,080	éthanol	poudre	blanche	%C:58,09(57,72)
OHC₀H₄CO₂SnPh₃	2,080	éthanol		206	%H: 05,16(05,83) %N: 04,52(04,10)

Me₄NHOC₆H₄COOSnBr₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₄	3,030	éthanol	poudre	jaune	%C:20,31(20,31)
SnBr₄	3,030	bénzène		>260	%H: 02,62(02,34) %N: 02,15(02,08)

HSC₆H₄COOSnMe₃

HSC ₆ H ₄ COOSnMe ₃								
Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)			
HSC ₆ H ₄ CO ₂ H	2,560	méthanol	cristaux	Rouge brique	%C:37,89(38,07)			
SnMe ₃ Cl + KOH	2,560	méthanol		180	%H: 04,42(04,78) %N: -(-)			

Me₄NHSC₅H₄CQOSnPh₃Cl

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₅	1,850	méthanol	poudre	blanche	%C:56,84(57,28)
SnPh₃Cl	1,850	dichlométhane		>260	%H: 05,22(05,94) %N: 02,28(02,72)

(CH₂)₄(COO)₂(SnMe₃)₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
(CH ₂) ₄ (COOH) ₂	6,070	éthanol	cristaux	blanche	%C:30,54(30,64)
SnMe₃Cl + KOH	12,140	éthanol		212	%H: 05,51(05,72) %N: -(-)

$(CH_2)_4(COO)_2(SnPh_3)_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₆	1,360	éthanol	cristaux	blanche	%C:59,75(59,21)
SnPh₃Cl	2,720	éthanol		146	%H: 04,50(04,83) %N: -(-)

(Cy₂NH₂)₂(CH₂)₄(COO)₂(SnMe₃Cl)₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₇	6,720	méthanol	poudre	blanche	%C:47,66(47,91)
SnMe₃Cl	13,440	dichlorométhane		154	%H: 08,16(07,98) %N: 03,09(03,56

PhCH=CHCOOSnMe₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
PhCH=CHCO₂H	5,320	méthanol	cristaux	blanche	%C:46,35(46,92)
SnMe₃Cl + KOH	5,320	méthanol		158	%H: 05,15(05,84) %N: -(-)

PhCH=CHCOOSnMe₂Cl

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₈	2,560	éthanol	poudre	blanche	%C:39,85(39,62)
SnMe ₂ Cl ₂	2,560	éthanol		152	%H: 03,93(03,64) %N: -(-)

Cy₂NH₂PhCH=CHCOOSnMe₂Cl₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₉	2,860	méthanol	poudre	blanche	%C:50,30(50,90)
SnMe ₂ Cl ₂	2,860	dichlorométhane		170	%H: 06,74(06,32) %N: 02,55(02,14)

(NO₂)₂C₆H₃COOSnMe₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
(NO ₂) ₂ C ₆ H ₃ CO ₂ H	4,060	méthanol	cristaux	jaune	%C:32,03(32,46)
SnMe₃Cl + KOH	4,060	méthanol		148	%H: 03,20(03,44) %N: 07,47(07,86)

(NO₂)₂C₆H₃COOSnPh₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
(NO ₂) ₂ C ₆ H ₃ CO ₂ H	1,360	éthanol	cristaux	jaune	%C:53,50(53,82)
SnPh₃OH	1,360	éthanol		175	%H: 03,21(03,80) %N: 04,99(05,23)

NMe₄(NO₂)₂C₆H₃COOSnMe₂Cl₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur et t° de fusion (°C)	Analyses élémentaires Calc.(trouv.)
L ₁₀	2,270	éthanol	poudre	blanche	%C:30,91(30,58)
SnMe ₂ Cl ₂	2,270	dichlorométhane		208	%H: 04,16(04,47) %N: 08,32(08,62)

METHODES SPECTROSCOPIQUES

SPECTROSCOPIE INFRAROUGE

I°/ ANIONS NON SUBSTITUES

Quand l'anion XO_4^{n-} (n = 1, 2, 3) est libre, $\Gamma_{vib} = 2T_2 + A_1 + E$ et sa symétrie est Td. Il possède quatre vibrations fondamentales qui sont : v_1 (vibration de valence symétrique); v_2 (vibration de déformation symétrique); v_3 (vibration de valence antisymétrique) et v_4 (vibration de déformation antisymétrique).

Les vibrations v_3 et v_4 d'espèce T₂ sont actives en infrarouge et en Raman alors que v_2 d'espèce E et v_1 d'espèce A₁ ne sont actives qu'en Raman. Lorsque l'oxoanion est coordiné, il peut conserver sa symétrie Td ou subir un abaissement de symétrie et devenir C_{3v}; C_{2v}; C_s ou C₁.

* Symétrie Td.

Si dans une coordination l'anion est tétra-unidentate c'est à dire les oxygènes perturbés de la même façon, sa symétrie est Td. v_3 et v_4 apparaissent chacune sous forme d'une seule bande et v_1 est absente.

L'absence de v_1 en infrarouge est une condition nécessaire et suffisante pour conclure à la symétrie Td d'un oxoanion. Quand il y a un effet de cristal, v_1 peut apparaître sous forme de trace.

* Symétrie C_{3v}

Si trois oxygènes de l'oxoanion sont équivalents dans un état de coordination, on a une symétrie C_{3v} . Dans ce cas, les vibrations d'espèce T_2 éclatent en E et A_1 toutes deux actives en infrarouge; v_1 devient active en infrarouge. v_3 et v_4 apparaissent chacune sous forme de deux bandes et v_1 et v_2 sous forme d'une seule bande.

* Symétrie C_{2v}

On a une symétrie C_{2v} si les oxygènes de l'oxoanion sont perturbés deux à deux de la même façon : les vibrations d'espèce T_2 éclatent en trois composantes $A_1 + B_1 + B_2$ toutes actives en infrarouge ; v_2 éclate en $A_1 + A_2$ mais seule A_1 est active en infrarouge. v_1 reste active en infrarouge.

 v_3 et v_4 apparaissent chacune sous forme de trois bandes en infrarouge et v_1 et v_2 sous forme d'une seule bande chacune.

* Symétrie C_s ou C₁

Dans ce cas, l'oxoanion a , soit deux oxygènes perturbés de la même façon (symétrie C_s) , soit les quatre oxygènes perturbés de façons différentes (symétrie C_1). Comme dans le cas de la symétrie C_{2v} , les vibrations de v_3 et v_4 apparaissent sous forme de trois bandes ; v_2 apparaît dans le cas d'une symétrie C_s ou C_1 sous forme de deux bandes.

La présence des deux bandes de vibration v_2 permet de différencier une symétrie C_{2v} d'une symétrie C_s ou C_1 . Il n'est pas possible par spectroscopie infrarouge de différencier une symétrie C_s d'une symétrie C_1 .

Sur le tableau ci- dessous nous résumons le nombre de bandes des vibrations de l'oxoanion XO₄ⁿ⁻ en infrarougeselon sa symétrie.

Symétrie de l'anion	v ₁	v ₂	v ₃	V ₄
Td	0	0	1	1
C _{3v}	1	1	2	2
C _{2v}	1	1	3	3
C _s ou C ₁	1	2	3	3

Quand l'oxoanion YO_3^{n-} est libre, sa symétrie est C_{3v} et $\Gamma_{vib} = 2A_1 + 2E_1$ Il possède quatre vibrations qui sont: v_1 et v_2 d'espèce A_1 , v_3 et v_4 d'espèce E (toutes les quatre vibrations sont actives en infrarouge). Si l'anion est coordiné il peut devenir C_s ou C_1 .

* Symétrie C_{3v}

Les trois oxygènes sont perturbés de la même façon. v_3 , v_4 , v_2 et v_1 apparaissent chacune sous forme d'une seule bande.

* Symétrie C_s ou C₁

L'anion est monodentate ou bi-unidentate; les vibrations d'espèce E éclatent en deux composantes A' et A" toutes deux actives en infrarouge. Ainsi v_3 et v_4 apparaissent chacune sous forme de deux bandes et v_1 et v_2 sous forme d'une seule bande chacune.

II°/ ANIONS SUBSTITUES

- Les oxoanions de type ZXO_3^{n-} (n = 1, 2) dérivant des anions de type XO_4^{n-} ont leur groupement XO_3^{n-} de symétrie C_{3v} quand ils sont libres. Ces groupements peuvent être C_s ou C_1 quand ils sont coordinnés.

Cependant il faut noter qu'il est difficile de faire pour ces oxoanions substitués une corrélation entre la symétrie de l'anion et le nombre de bandes en infrarouge comme on le fait avec ceux de type YO_3^{n-} .

Par exemple : on ne peut pas conclure que le groupement XO_3^{n-} de l'anion ZXO_3^{n-} est C_{3v} , C_s ou C_1 uniquement à partir du nombre de bandes de v_3 .

- L'oxoanion de type $Z_2XO_2^-$ est de symétrie C_{2v} . Suivant qu'il est monodentate ou bi-unidentate il est de symétrie C_s ou C_1 .

Comme dans le premier cas, il est difficile de faire une corrélation entre la symétrie de l'anion et le nombre de bandes en infrarouge.

III°/ MOLECULES SnX₄

-Les molécules SnX_4 (X = CI ; Br) sont tétraédriques; les vibrations antisymétriques d'espèce T_2 sont actives en infrarouge. Quand SnX_4 est coordiné, l'environnement du métal est en général octaédrique.

Dans la coordination *Cis*, SnX_4 est de symétrie C_{2v} et T_2 éclate en trois bandes (A₁ + B₁ + B₂) qui sont toutes actives en infrarouge et en Raman. $v_{as}SnX_4$ qui est d'espèce T_2 apparaît ainsi sous forme de trois bandes.

Dans la coordination *Trans*, SnX₄ est de symétrie D_{4h} ; parmi les vibrations de valence seule la vibration d'espèce E_u est active en infrarouge et A_{1g} et B_{1g} actives en Raman (44-47). On obtient ainsi une seule bande fine en infrarouge et deux bandes intenses en Raman dues à v_{as} SnX₄.

IV°/ COMPLEXES ET DERIVES AVEC LES RESIDUS SnR2 et SnR3

- Dans le cas des complexes et dérivés contenant les résidus SnR₂ et SnR₃ (R = Me, Bu, Ph), les géométries linéaires du résidu SnR₂ ou planes de symétrie D_{3h} du résidu SnR₃ sont respectivement liées à la non apparition de v_s SnR₂ ou v_s SnR₃. Quand ces bandes apparaissent en infrarouge, le squelette de SnR₂ est coudé et celui de SnR₃ de symétrie C_{3v} (48-53).

V°/ CAS DE L'ION CARBOXYLATE

Dans l'ion carboxylate libre, les longueurs des liaisons CO sont égales et leur valeur est intermédiaire entre celle de la liaison C=O et de la liaison COH dans l'acide (les formes mésomères limites permettent de mieux rendre compte de ces faits).

Les vibrations de valence $v_{as}COO^{-}$ et $v_{s}COO^{-}$ sont localisées entre 1650 cm⁻¹ et 1400 cm⁻¹. La vibration de valence du groupement carbonyl C=O est localisée au dessus de 1650 cm⁻¹.

Dans les composés qu'ils forment, les ions carboxylates peuvent être monodentates (c), bi-unidentates (a) ou chélatants (b).

SPECTROSCOPIE MÖSSBAUER (54)

La spectroscopie Mössbauer consiste en l'absorption de photons gamma d'énergie comprise entre 10.000 et 100.000 ev, par un noyau atomique. Elle s'applique généralement aux deux éléments que sont le ⁵⁷Fe et l'étain ¹¹⁹Sn à cause de l'existence d'interactions hyper fines facilement mesurables.

A l'état fondamental, lorsqu'un noyau absorbe un photon et passe vers un état excité, on peut considérer trois interactions principales :

- une interaction monopolaire électrique, causée par la pénétration du nuage électronique dans le noyau de l'atome.

- une interaction quadripolaire électrique, causée par un gradient de champ électrique agissant sur le moment quadripolaire du noyau atomique - une interaction dipolaire magnétique, causée par l'action d'un champ magnétique sur le moment magnétique du noyau.

La mesure de ces interactions hyper fines permet de montrer qu'elles sont responsables respectivement de trois paramètres fondamentaux caractérisant un spectre Mössbauer : le déplacement isomérique (δ), l'éclatement quadripolaire (ΔE) et la largeur de la raie Γ .

Le déplacement isomérique donne des renseignements sur l'état d'oxydation du métal alors que les valeurs de l'éclatement quadripolaire nous informent sur l'environnement du métal. Plusieurs études (55, 56) ont permis de corréler l'environnement de l'étain et la valeur de l'éclatement quadripolaire.

1,7mms⁻¹<ΔE<2,2mms⁻¹ →Octaèdre *cis*2,1mms⁻¹<ΔE<2,6mms⁻¹ →Tétraédre3,0mms⁻¹<ΔE<4,1mms⁻¹ →Bipyramide trigonale3,5mms⁻¹<ΔE<4,5mms⁻¹ →Octaèdre *trans*

SPECTROSCOPIE RMN

Un noyau possède un spin nucléaire si le nombre de protons ou de neutrons est impair. La RMN utilise la résonance de plusieurs noyaux dont les plus importants sont ¹H, ¹³C et ¹¹⁹Sn.

Quand le noyau est placé dans un champ magnétique B, il possède une énergie $W = \mu .B$ (μ étant le moment magnétique du noyau). Il sera donc possible d'effectuer une transition entre deux niveaux en fournissant au noyau de l'énergie électromagnétique $h\nu = \gamma Bh/2\pi$. Cette transition correspond à une fréquence ν appelée fréquence de Larmor. Deux méthodes sont envisagées pour exciter le noyau :

- faire varier la fréquence à B fixé
- faire varier B à v_0 fixée.

Le plus souvent c'est la deuxième méthode qui est utilisée. Les appareils récents font largement appel à l'informatique en remplaçant le balayage par une analyse du signal par transformée de fourier. Les fréquences utilisées vont de quelques dizaines (il y a 20 ans) à plusieurs centaines aujourd'hui.

Le nuage électronique entourant le noyau subit les effets du champ magnétique B_0 et va créer à son tour un champ induit B' s'opposant à B_0 . Le noyau verra donc en réalité un champ **B** = $(1 - \sigma)B_0$. On dit que l'environnement blinde le noyau en le protégeant des effets du champ. Cet effet peut être influencé par les effets électroniques (inductif, mésomère).

Un proton protégé par une constante de blindage σ résonnera à la fréquence $v = \gamma(1 - \sigma)B_0/2\pi$. On peut noter que la fréquence de résonance augmente quand σ diminue et inversement.

Pour ces raisons, on préfère caractériser la résonance de façon relative en prenant pour référence un composé particulier. Le plus souvent, il s'agit du Tétramétylsilane (TMS) qui présente la particularité d'avoir des protons particulièrement blindés. Si v_{TMS} est la fréquence de résonance du TMS, on définit le déplacement chimique δ d'un proton résonnant à fréquence v par :

$\delta = (v - v_{\text{TMS}})/v_0.10^6$

 δ ne dépend que des constantes σ du proton et du TMS, δ possède un caractère intrinsèque caractéristique de l'environnement du proton. En pratique, la plus part des protons ont des déplacements chimiques compris entre 0 et 10 ppm.

On a vu que le champ local auquel est réellement soumis le proton dépend de son environnement électronique. La présence d'autres noyaux peut modifier le champ local et on a : B = $B_0(1-\sigma)$ + B" (B" étant la contribution des noyaux voisins). Cette interaction entre noyaux est appelée couplage spin – spin.

On appelle constante de couplage notée J l'écart entre deux fréquences de résonance. Cet écart, qui est de l'ordre de quelques Hz, est indépendant de la fréquence de travail du spectromètre et ne dépend que de la nature de l'interaction.

Les constantes de couplage et les déplacements chimiques sont des paramètres très importants car ils nous renseignent sur les densités de charge ou de spin et sur la structure nucléaire. Pour les composés organostanniques, la connaissance des constantes de couplage $J(^{119}Sn-^{13}C)$ et $^{2}J(^{119}Sn-^{13}C-^{1}H)$ et du déplacement chimique δ de l'étain permettent de déterminer l'environnement autour de l'étain.

Sur un spectre RMN ¹H, le signal enregistré est lié au nombre de protons résonnant au déplacement δ. Compte tenu du mode de détection utilisé, c'est la surface du pic d'absorption qui est proportionnelle au nombre de protons. Un spectre RMN s'accompagne donc toujours d'une courbe d'intégration donnant les surfaces des divers pics. L'intégration des pics sur un spectre RMN ¹H à partir des aires des pics correspondant aux différents protons, permet de confirmer la formule chimique du composé.

DIFFRACTION DES RAYONS X PAR UN CRISTAL (57)

Découverte en 1973 par W. H. et W. L. Bragg, la diffraction des Rayons X a été très tôt appliquée à la détermination de la structure cristalline de NaCl, KCl, CaCO₃, etc....

Un cristal est formé de plusieurs séries de plans contenant un grand nombre d'atomes, ces plans sont appelés plans réticulaires. Quand un faisceau de Rayons X parallèles tombe sur la surface d'un cristal, il pénètre profondément dans ce cristal et frappe les ions ou les atomes qui forment les nœuds du réseau cristallin. Ces nœuds renvoient ce faisceau dans toutes les directions ; on dit que les Rayons X subissent le phénomène de diffraction [voir schéma (a)].

schéma (a)

Sur le schéma b ci-dessous de la loi de Bragg, nous observons les rayons X diffractés dans une direction faisant un angle 20 avec le rayon incident.

schéma (b)

Avec

d : distance inter-réticulaire du cristal analyseur pour la réflexion utilisée.

 λ : longueur d'onde.

 $\boldsymbol{\theta}$: angle du faisceau incident avec la surface du cristal.

n : (nombre entier positif souvent égal à l'unité) ordre de la réflexion.

Un cristal est constitué de plans atomiques équidistants de d . Quand la différence de marche entre les rayons incidents et les rayons diffractés par les atomes est égale à un nombre entier de fois la longueur d'onde, il y a interférence constructive. Soit 20 l'angle entre la direction des rayons incidents et celle des rayons diffractés. Il y a interférence constructive quand la loi de Bragg est satisfaite:

2.d_{hkl}.sin $\theta = n\lambda$

Avec un monocristal, il est possible de mesurer avec précision la position et l'intensité des réflexions et, à partir des données, de déterminer le groupe d'espace et les positions des atomes avec l'aide de l'informatique. La cristallographie s'avère être la technique de détermination structurale la plus importante dont disposent les chimistes.

Pour résoudre les structures cristallines on utilise la méthode de Patterson ou méthode des atomes lourds basée sur le programme SHELXS (58).

INSTRUMENTATION

Les analyses élémentaires ont été effectuées au Service Central d'Analyses du C.N.R.S. à Vernaison (France) ou au laboratoire de microanalyses de l'Université de Padova (Italie).

Les spectres infrarouge à hautes fréquences ont été enregistrés à l'aide d'un spectrophotomètre JASCO 5800 FT-ir et les basses fréquences à l'aide ou un Perkin- Elmer 580B (basses fréquences) ; les composés sont en suspension dans le nujol et les faces utilisées sont en lodure de Césium (hautes fréquences) ou en polyéthylène (basses fréquences). Les spectres hautes fréquences ont été enregistrés au laboratoire de chimie minérale et analytique de l'Université Cheikh Anta DIOP (Sénégal) et ceux de basse fréquence au laboratoire de chimie inorganique, métallorganique et analytique de l'Université de Padova (Italie).

Les spectres R. M. N. ont été enregistrés à l'Université de Strasbourg (France) avec un spectrophotomètre Bruker 300. Le solvant utilisé est le chloroforme et a référence pour les spectres de ¹H et ¹³C est le TMS.

Les spectres Mössbauer ont été enregistrés dans un cryostat à azote liquide à la température de 80K. La source utilisée (CaSnO₃) est maintenue à la température ambiante et à une accélération constante. Un logiciel adéquat a été utilisé pour affiner les spectres. Les spectres ont été pris à l'Université Catholique de Louvain La Neuve (Belgique).

Les données cristallographiques ont été mesurées à la température de 293K à l'aide d'un diffractomètre Siemens P4. Le graphite utilisé est monochromaté et de radiation MoK α (λ = 0,71073 Å). Les structures moléculaires ont été résolues par la méthode de Patterson avec le programme SHELXTL PLUS (PC) (59). Les structures ont été résolues à l'Université de BATH (Royaume Uni).

Les points de fusion ont été mesurés à l'aide d'un banc de Koffler ou d'un appareil Büchi 530.

I°/ COMPLEXES ET DERIVES CONTENANT LE RESIDU SnR₃ (R = Ph, Me, Bu)

Plusieurs complexes et dérivés contenant le résidu SnR₃ (R = Me, Bu, Ph) avec des ligands organiques ou inorganiques ont été obtenus et leurs structures déterminées par l'application de méthodes spectroscopiques (infrarouge, Mössbauer, RMN et Rayons X) (60-66).

Dans notre laboratoire, l'étude des complexes et dérivés contenant le résidu SnR₃ avec les oxoanions tétraédriques ou pyramidaux , les oxalates et les ions carboxylates a fait l'objet de plusieurs travaux. C'est ainsi que les structures par Rayons X de certains dérivés tels que [(Ph₃Sn)(H₂OSnPh₃)SO₄]_n (67), MePO₃HSnMe₃ (41), NEt₄(SnMe₃)₇(HAsO₄)₄.H₂O (31), R₄N(XO₄)SnPh₃ (X = S, Se ; R = Me, Bu) ou Cy₂NH₂SO₄SnPh₃ (68), SeO₃(SnMe₃)₂H₂O (39), [Me₃Sn(H₂O)]₂C₂O₄ (40), (CH₂)₂(COO)₂(SnMe₃)₂ (69) ont été déterminées.

Les dérivés $Ph_2PO_2SnMe_3$ (70) et $R_2MO_2SnPh_3$ (R =H, Me, Ph ; M = As, P) (71) ont fait l'objet d'études spectroscopiques (infrarouge, Mössbauer et RMN).

Dans ce travail nous avons synthétisé de nouveaux complexes et dérivés contenant le résidu SnR₃ (R = Me, Bu, Ph) avec les ligands Me₂AsO₂⁻, IO₃⁻, HPO₃²⁻, PhAsO₃H⁻ et des ions carboxylates. Nous avons obtenu des complexes de substitution, et des complexes d'addition. Ces dérivés ont été caractérisés par les mêmes méthodes spectroscopiques. Sur la base des données spectroscopiques des structures ont été proposées.

Complexes et dérivés contenant le résidu SnPh₃

$I-1^{\circ}/(CH_{2}CH_{2}COO)_{2}(SnPh_{3})_{2}$ (A₁)

Les données infrarouge de ce composé sont reportées sur le tableau la et son spectre infrarouge est représenté sur la figure 1a. L'absence de bande au dessus de 1650 cm⁻¹ sur le spectre infrarouge du dérivé, indique l'inexistence de C=O libre. L'apparition de la bande due à v_s SnC₃ à 217cm⁻¹ sous forme de bande forte montre que le groupement SnC₃ n'est pas rigoureusement plan. v_{as} SnC₃ est localisée à 276 cm⁻¹ sous forme d'une bande très forte, la liaison métal-ligand se traduit par la présence de vSnO à 202 cm⁻¹.

Le spectre Mössbauer du complexe est représenté sur la figure 1b. La valeur élevée de l'éclatement quadripolaire ($\Delta E = 3,19 \text{ mms}^{-1}$) traduit une transcoordination du ligand sur le résidu SnPh₃. La faible valeur de Γ ($\Gamma = 0,92$) montre qu'on a un seul type d'étain. Partant des données spectrales nous proposons une structure en

couche infinie avec un environnement bipyramidal trigonal autour de Sn ; l'oxoanion étant tétra-unidentatate (schéma 1). Cette structure est semblable à celle proposée par CISSE et coll. (69) dans le cas de $(CH_2)_2(COO)_2(SnMe_3)_2$.

figure 1b: spectre Mössbauer de (CH₂CH₂COO)₂(SnPh₃)₂

			CH	12 = 0.9864
		VALUES O	F PAF	RAMETERS
INI	TIAL	FINAL		ERROR
YD = 37087	98.7500 37	709602.0000	±	173.3377
Q. S. =	3.2000	3.1901	±	0.0068
I. S. =	1.2000	1.2042	±	0.0025
Larg 1 =	0.8500	0.9046	<u>+</u>	0.0174
Larg2 =	0.8500	0.9436	±	0.0148
Int1 =	0.0500	0.0173	±	0.0002
Int2 =	0.0500	0.0201	±	0.0002
VMAX = - 7.	5000	FOLDING PO	DINT :	= 258.6829

I-2°/ HOC₆H₄COOSnPh₃ Etude cristallographique du dérivé HOC₆H₄COOSnPh₃

Sur la figure 2c, nous avons représenté la structure ORTEX du dérivé. Les données cristallographiques sont reportées sur le tableau lb, les distances et angles de liaisons entre les atomes sur le tableau lc, les coordonnées des atomes et les facteurs d'agitation isotropique et anisotropique dans le cristal sur les tableaux ld₁, ld₂ et ld₃. Le dérivé cristallise dans un système monoclinique, le groupe d'espace étant P2₁/c. Les paramètres de la maille élémentaire sont : a = 13,2180(10) Å ; b = 11,9530(2) Å ; c = 14,5150(2) Å ; $\alpha = \gamma = 90^{\circ}$, $\beta = 116,7031(5)^{\circ}$. La taille du cristal est de 0,20 x0,20 x0,08 mm. Les valeurs des angles [O(1)-Sn(1)-C(7) = 102,02(6)^{\circ} ; O(1)-Sn(1)-C(13) = 104,17(6)^{\circ} ; O(1)-Sn(1)-C(1) = 92,77(6)^{\circ}] supérieures à 90^{\circ} montrent que le groupement SnC₃ n'est pas plan. Les deux premières valeurs

proches de 109°28 montrent que l'environnement autour de l'étain est tétraédrique. La différence entre les liaisons C(19)-O(2) [1,241(2) Å] et C(19)-O(1) [1,301(2) Å] s'explique par la présence de la liaison hydrogène intramoléculaire [O(2)--H(3)] formée par l'hydrogène du groupement OH et l'oxygène O(2) de l'ion carboxylate. Cette liaison hydrogène n'est pas très forte du fait de la valeur élevée de la longueur O(2)-O(3) [2,83(5) Å]. La différence entre les longueurs de liaisons C-O indique le comportement monodentate du ligand.

La valeur de Sn(1)-O(1) [2,086(4) Å] est simlaire à celles trouvées par Volano et coll. (72) dans le cas des dérivés $RC_6H_4COOSnPh_3$ (R = o-NH₂, p-NH₂, o-OMe, p-SMe) qui ont tous des structures discrètes avec un étain à environnement tétraédrique.

Les données cristallographiques montrent que le dérivé a une structure discrète avec un anion monodentate et un environnement de l'étain tétraédrique.

Structure de HOC₆H₄COOSnPh₃ (figure 2b)

Tableau lb : Tableau des données cristallographiques

Formule	C ₂₅ H ₂₀ O ₃ Sn
Masse Molaire	487.10
Système cristallin	Monoclinique
Groupe d'espace	P2 ₁ /c
	a = 13.2180(10) Å α = 90
	b = 11.9530(2) Å β = 116.7031(5)
	c = 14.5150(2) Å γ = 90
Volume	3334.4(7) Å ³
Z	4
Température (K)	170(2)
Longueur d'onde	0.71073
Densité (calculée)	1.579g/cm ³

F(000)	976
Coeficient d'absorption	1,271mm ⁻¹
Taille du cristal	0,20 x 0,20 x 0,08 mm
Limite de θ pour les données mesurées	3,14 - 30.0°
Limites des indices	-18<=h<=18, -16<=k<=16, -20<=l<=20
Nombre de réflexion mesurées	48061
Nombre de réflexion indépendantes	$5980 [R_{(int)} = 0.0668]$
Max. et min. de Transmission	0,66 et 0,93
Methode de rafinement	Full-matrix least-squares on F ²
Précision du raffinement	0,947
Nombre de réflexions observées (>20)	4651
Facteur R finale [I>2σ (1)]	$R_1 = 0,029 wR_2 = 0,0672$
Indices R (ensemble des données)	$R_1 = 0,048 wR_2 = 0,0739$
Coefficient d'extinction	0.0047(4)
Densité résiduelle	1,127 and -0,670 eA ⁻³

Tableau Ic: Tableau des angles (°) et longueurs de liaisons (Å)

Liaisons	Longueurs
Sn(1)-C(13)	2.122(2)
Sn(1)-C(1)	2.128(2)
Sn(1)-C(7)	2.118(2)
Sn(1)-O(1)	2.086(4)
O(1)-C(19)	1.301(2)
O(2)-C(19)	1.241(2)
O(3)-C(21)	1.363(2)
O(3)-H(31)	0.783(4)
O(2)-H(31)	1.932(4)
O(2)-O(3)	2.832(5)
Angles	Valeurs
C(7)-Sn(1)-C(1)	119.01(8)
O(1)-Sn(1)-C(7)	102.02(6)
O(1)-Sn(1)-C(1)	92.77(6)
C(13)-Sn(1)-C(1)	111.33(7)
O(1)-Sn(1)-C(13)	104.17(6)
C(19)-O(1)-Sn(1)	119.50(12)
O(2)-C(19)-O(1)	123.13(18)
O(2)-C(19)-C(20)	121.14(18)
O(1)-C(19)-C(20)	115.69(17)
C(19)-O(2)H(31)	100.12(1)
C(21)-O(3)-H(31)	112.08(3)
O(3)-H(31)O(2)	142.01(3)

Tableau Id₁: Tableau des coordonnées (x10⁴) et facteurs d'agitation isotropiques (A²x 10⁴) U(eq) des atomes (Sn, O, C) dans le cristal

Atoms	X	у	Z	U(eq)
Sn(1)	7210(11)	2190(10)	455(9)	21 (6)
O(1)	7861(11)	3384(12)	-182(11)	26(3)
O(2)	6505(13)	3044(12)	-1774(11)	29(3)
O(3)	6468(12)	4183(13)	-3305(11)	28(3)
C(1)	8675(17)	2238(16)	1908(2)	24(4)
C(2)	9401(17)	1315(17)	2223(15)	26(4)
-------	-----------	-----------	-----------	-------
C(3)	10366(18)	1314(19)	3170(16)	32(5)
C(4)	10626(19)	2240(19)	3806(17)	31(5)
C(5)	9917(19)	3164(2)	3503(16)	32(5)
C(6)	8946(18)	3166(19)	2567(16)	28(4)
C(7)	5705(17)	2971(16)	3025(16)	23(4)
C(8)	2744(3)	2672(2)	2792(3)	31(1)
C(9)	4695(2)	4065(18)	1029(18)	35(5)
C(10)	3733(2)	4027(19)	98(19)	37(5)
C(11)	3748(19)	3463(2)	-727(18)	35(5)
C(12)	4723(19)	2943(17)	-632(17)	30(5)
C(13)	7155(17)	6996(17)	-361(14)	23(4)
C(14)	8050(2)	457(2)	-583(17)	33(5)
C(15)	8061(2)	-533(2)	-1084(18)	39(6)
C(16)	7193(2)	-1287(2)	-1352(17)	37(5)
C(17)	6298(2)	-1054(19)	-1139(18)	37(5)
C(18)	6278(18)	-65(18)	-65(16)	30(5)
C(19)	7332(16)	3594(17)	-1166(15)	23(4)
C(20)	7750(16)	4574(16)	-1523(14)	21(4)
C(21)	7266(16)	4849(16)	-2577(14)	22(4)
C(22)	7625(18)	5800(17)	-2895(15)	28(4)
C(23)	8484(18)	6448(17)	-2183(16)	28(4)
C(24)	8992(18)	6172(17)	-1145(16)	28(4)
C(25)	8616(17)	5250(17)	-822(15)	25(4)

Tableau Id_2 : Tableau des coordonnées (x10⁴) et facteurs d'agitation isotropiques (A²x 10⁴) U(eq) des atomes d'hydrogène dans le cristal

Atoms	X	У	Z	U(eq)
H(31)	6270(3)	3650(2)	-2950(2)	94(12)
H (2)	9235	680	1786	31
H (3)	10847	677	3378	38
H (4)	11288	2244	4449	38
H (5)	10096	3801	3940	38
H (6)	8462	3801	2370	34
H (8)	6339	3547	1779	35
H (9)	4687	4454	1597	42
H (10)	3061	4388	23	44
H (11)	3081	3433	-1365	42
H (12)	4725	2564	-1207	36
H (14)	8659	972	-393	40
H (15)	8673	-686	-1240	47
H (16)	7209	-1968	-1683	44
H (17)	5692	-1573	-1329	44
H (18)	5657	90	-505	36
H (22)	7278	6006	-3603	34
H (23)	8730	7092	-2408	34
H(24)	9593	6615	-662	33
H(25)	8953	5069	-109	30

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn(1)	23(9)	21(8)	0	(5)	10(6)	-1(5)
O(1)	30(8)	27(8)	22(7)	4(6)	11(6)	-3(6)
O(2)	30(8)	31(8)	22(7)	0(6)	11(6)	-7(6)
O(3)	30(8)	31(8)	22(7)	0(6)	10(6)	-2(6)
C(1)	25(10)	26(11)	21(9)	4(8)	11(8)	-4(8)
C(2)	29(10)	25(10)	27(10)	5(8)	15(9)	-1(8)
C(3)	30(11)	36(12)	30(11)	12(9)	14(9)	3(9)
C(4)	27(11)	46(14)	20(10)	5(9)	10(9)	-4(9)
C(5)	32(12)	42(13)	24(10)	-7(9)	15(9)	-8(10)
C(6)	30(11)	30(11)	26(10)	1(9)	13(9)	-2(9)
C(7)	26(10)	22(10)	25(10)	2(8)	13(8)	0(7)
C(8)	34(11)	27(11)	29(11)	-2(9)	16(9)	-3(9)
C(9)	43(13)	29(12)	42(13)	6(10)	27(11)	2(10)
C(10)	33(12)	31(12)	51(14)	0(11)	23(11)	5(9)
C(11)	29(11)	38(13)	36(12)	0(10)	11(10)	4(10)
C(12)	31(11)	31(11)	28(11)	-1(9)	13(9)	0(8)
C(13)	27(10)	24(10)	19(9)	2(7)	11(8)	2(8)
C(14)	35(12)	36(13)	35(12)	-3(10)	21(10)	-3(10)
C(15)	44(14)	43(14)	40(13)	-3(11)	28(12)	7(11)
C(16)	45(14)	32(12)	31(12)	-7(9)	15(10)	9(10)
C(17)	35(12)	29(12)	41(13)	-9(10)	13(10)	-3(9)
C(18)	28(11)	31(11)	31(11)	-5(9)	14(9)	-1(9)
C(19)	25(10)	25(10)	23(9)	-1(8)	13(8)	3(8)
C(20)	23(9)	23(10)	21(9)	-1(7)	13(8)	3(7)
C(21)	24(10)	22(10)	22(9)	-2(7)	11(8)	0(8)
C(22)	38(12)	27(10)	24(10)	4(8)	19(9)	6(9)
C(23)	41(12)	20(10)	34(11)	-2(8)	26(10)	0(9)
C(24)	32(11)	25(10)	34(11)	-2(8)	26(10)	0(9)
C(25)	26(10)	27(10)	22(10)	-3(8)	12(8)	0(8)

Tableau Id₃: Tableau des facteurs d'agitation anisotropiques ($A^2 \times 10^3$)

Les données et le spectre infrarouge du dérivé sont respectivement reportés sur le tableau la et la figure 2a.

La présence de v_s SnC₃ localisée à 217 cm⁻¹ sur le spectre infrarouge du complexe permet d'envisager l'existence de groupement SnPh₃ non plan. v_{as} SnC₃ apparaît à 273 cm⁻¹. L'absorption à 3100cm⁻¹ et l'absence de vC=O libre vers 1660 cm⁻¹ révèlent une liaison hydrogène intramoléculaire.

Partant des données spectrales nous proposons une structure discrète avec une liaison hydrogène intramoléculaire et un environnement tétraédrique autour de l'étain (schéma 2). Cette structure a été confirmée par Rayons X (figure 2b).

					<u>au i</u>				
attributions	∨ОН	v(COO ⁻) + vNO ₂	δ(COO-) + δNO ₂	ρ (COO -	ω(COO-)	v _{as} SnC ₃	v _s SnC ₃	$\delta_{as}SnC_3$	vSnO
A 1		1572F 1523F 1304m 1237f	785m 662m	557F 547ép 468ép	442ép 356m	276tF	217m	235m	202f
A ₂	3100m	1632tF 1594tF 1579m 1301F	785m 662m	563F 538F	481f 460m 421F	273tF	217m	226F	202f
A ₃		1633tF 1539tF	787m	551tF	424F 370m	274tF	216m	233F	202m

Tableau I

F = Forte, tF=très forte, f = faible, m = moyenne, ép = épaulement

I-3°/ (O₂N)₂C₆H₃COOSnPh₃ (A₃)

Les attributions des bandes fondamentales en infrarouge sont reportées sur le tableau la et le spectre du composé sur le figure 3a.

L'absence de v(C=O) attendue au dessus de 1650 cm⁻¹ sur le spectre infrarouge du complexe montre la non existence de C=O libre. v_sSnC_3 qui apparaît à 216 cm⁻¹ montre que le groupement SnC₃ n'est pas plan. $v_{as}SnC_3$ et vSnO sont respectivement localisées à 274 cm⁻¹ et 202 cm⁻¹.

Le spectre Mössbauer du complexe est représenté sur la figure 3b. Les paramètres Môssbauer du complexe ($\Delta E = 3,36 \text{ mms}^{-1}$; $\delta = 1,29 \text{ mms}^{-1}$; $\Gamma = 0,89$) sont comparables à ceux de Me(CH₂)₆COOSnPh₃ ($\Delta E = 3,35 \text{ mms}^{-1}$, $\delta = 1,29 \text{ mms}^{-1}$) trouvées par Ford et coll.(73) et qui a une structure chaîne contenant un étain pentacoordiné.

Partant des données spectrales nous proposons une structure en chaîne infinie avec un anion bi-unidentate et un environnement bipyramidal trigonal autour de l'étain similaire à celle de (schéma 3). La structure de ce composé est (O₂N)₂C₆H₄COOSnMe₃ isolé dans ce travail et étudié par diffraction aux Rayons X. Sur le schéma 3, on pouvait placer les groupements phényl en position trans par rapport à la liaison étain-carbone appartenant au plan de la page.

figure 3b: spectre Mössbauer de (NO₂)₂C₆H₄COOSnPh₃

HB11	56 (O	N)PhCO ₂ SnF	'n	SB141
		C	HI2=	1.3369
	V A	LUES OF PA	RAN	IETERS
INI	TIAL	FINAL		ERROR
YD= 1168427.250	11 00	68977.2500	+-	95.7577
Q.S.=	3.5000	3.3619	+-	0.0063
I.S. =	1.5000	1.2914	+-	0.0031
LARG1=	0.9000	0.8879	+-	0.0162
LARG2=	0.9000	0.8956	+-	0.0117
PROF1=	0.0500	0.0360	+-	0.0004
PROF2=	0.0500	0.0448	+-	0.0004
VMAX = 7.770) FC	DEDING POIN	T = 2	58.0057

I-4°/ Me₄N(HOC₆H₄COO)₂SnPh₃ (A₄)

Ce complexe a été obtenu en additionnant à HOC₆H₄COOSnPh₃ le ligand HOC₆H₄COONMe₄. Sur le tableau II nous avons reporté les attributions des bandes fondamentales sur le spectre infrarouge du complexe représenté sur la figure 4a.

L'apparition d'une bande large à 3250 cm⁻¹ sur le spectre infrarouge de ce complexe permet d'envisager l'existence de liaison hydrogène interne. L'absence de v_sSnC_3 vers 217 cm⁻¹ sur le spectre infrarouge du complexe indique l'existence d'un groupement SnC₃ plan. $v_{as}SnC_3$ et vSnO apparaissent respectivement à 277 cm⁻¹ et 202 cm⁻¹. Sur la figure 4b est reporté le spectre Mössbauer du composé. La valeur de l'éclatement quadripolaire du composé ($\Delta E = 3,10$ mms⁻¹) montre que l'étain est transcoordiné. Sur la base des données spectroscopiques nous proposons une structure discrète avec un anion monodentate, l'environnement autour de l'étain étant bipyramidal trigonal (schéma 4). Des associations par l'intermédiaire de liaisons hydrogène donnant lieu à des polymères peuvent aussi être envisagées.

schéma 4

figure 4a : spectre infrarouge de Me₄N(HOC₆H₄COO)₂SnPh₃

figure 4b: spectre Mössbauer de Me₄N(HOC₆H₄COO)₂SnPh₃

			CHI	2 = 0.8746
		VALUES O	F PAR	AMETERS
INIT	TIAL	FINAL		ERROR
YD = 100519	93.5625 10	004810.0000	±	088.2004
Q. S. =	3.3000	3.1001	±	0.0167
I. S. =	1.2500	1.3842	±	0.0085
Larg 1 =	0.8500	0.9046	Ŧ	0.0391
Larg2 =	0.8500	0.9136	±	0.0367
Int1 =	0.0300	0.0144	±	0.0004
Int2 =	0.0300	0.0169	±	0.0004
VMAX = - 7.	5000	FOLDING PO	OINT =	= 258.7070

I-5°/ NMe₄HOC₆H₄COOSnPh₃SCN (A₅)

Les attributions des bandes infrarouge du complexe sont reportées sur le tableau II et son spectre sur la figure 5a.

L'absence de la bande due à v_s SnC₃ vers 217 cm⁻¹ montre que le groupement SnC₃ est plan. v_{as} SnC₃ et vSnO apparaissent respectivement à 271 cm⁻¹. La bande très intense localisée à 2062 cm⁻¹ est due à vCN. L'absence d'une bande au dessus de 1650 cm⁻¹ montre qu'il n'y a pas de groupement CO libre dans le complexe. vOH apparaît sous forme d'épaulement à 3100 cm⁻¹ La valeur de l'éclatement quadripolaire ($\Delta E = 3,21$ mms⁻¹) montre qu'on a une transcoordination autour de l'étain.

Partant des données spectrales nous proposons une structure discrète dans laquelle l'ion carboxylate est monodentate et l'environnement autour de l'étain bipyramidal trigonal (schéma 5).

Tableau II

attributions	∨ОН	vC00	δCOO	ρCOO + ωCOO	v _{as} SnC ₃	v₅SnC₃	δ _{as} SnC ₃	vSnO
A4	3250lar	1576F 1304F	760F 666F	568F 553F 534F;361ép 478F;396m	277tF	-	235F	202m
A ₅	3100ép	1575m 1302m	761m 667m	569F 553F 534F;361m 479F;398m	277F	-	235tF	202m

TF = très Forte, F = Forte, lar = largef = faible, m = moyenne, ép = épaulement

figure 5b : Spectre Mössbauer de NMe₄HOC₆H₄COOSnPh₃SCN

HB1158	HOPhCO ₂ S	InPhaSCNTMN	SB158
		CHI2	2= 0.8229
	VAL	UES OF PARA	METERS
	INITIAL	FINAL	ERROR
YD= 1252599.	.0000 1252	2896.7500 +-	100.9242
Q.S.=	3.5000	3.2122 +-	0.0225
I.S. =	1.5000	1.2156 +-	0.0165
LARG1=	0.9000	0.9879 +-	0.0895
LARG2=	0.9000	1.0370 +-	0.0864
PROF1=	0.0500	0.0066 +-	0.0004
PROF2=	0.0500	0.0065 +-	0.0003
VMAX = 7.	7700 FOL	DING POINT =	257.7934

I-6°/ en(Me₂AsO₂)₂.2SnPh₃CI (A₆)

Ce complexe peut être considérè comme deux ions complexes $[Me_2AsO_2SnPh_3Cl]^-$ reliés par des liaisons hydrogène faisant intervenir l'ion éthylènediamonium [⁺H₃N(CH₂)₂NH₃⁺]. Le spectre infrarouge et les attributions des bandes fondamentales sont représentés respectivement sur la figure 6a et le tableau III. Les bandes à 243 cm⁻¹ et 285 cm⁻¹ sont respectivement attribuées à vSnO et vSnCl. L'apparition de v_sSnC₃ sous forme d'une bande faible à 210 cm⁻¹ permet de conclure à un groupement SnC₃ non rigoureusement plan ; ceci peut être dû à une trancoordination dissymétrique O-Sn-Cl

Sur la figure 6b est représenté le spectre Mössbauer du complexe. La valeur de l'éclatement quadripolaire ($\Delta E = 3,21 \text{ mms}^{-1}$) supérieure à celle de SnPh₃Cl (2,55 mm.s⁻¹) (74) qui a une structure tétraédrique, indique une transcoordination de l'étain. La faible valeur de Γ révèle un seul type d'étain dans le complexe. Partant de ces données spectrales, nous proposons une structure discrète avec un environnement pentagonal pour l'étain (schéma 6).

figure 6b: spectre Mössbauer de en(Me₂As0₂)₂.2SnPh₃Cl

			CH	2 = 0.9986					
	VALUES OF PARAMETERS								
INIT	IAL	FINAL		ERROR					
YD = 032076	8.2188 03	320583.4375	±	053.9796					
Q. S. =	3.5000	3.2148	<u>+</u>	0.0708					
1. S. =	1.1000	1.2321	±	0.0320					
Larg 1 =	0.9000	0.9622	±	0.1409					
Larg2 =	0.9000	0.9817	±	0.1964					
Int1 =	0.0200	0.0076	±	0.0008					
Int2 =	0.0200	0.0081	±	0.0008					
VMAX = -7.7	700	FOLDING PO	DINT :	= 258.0000					

Tableau III

I-7°/ Me₄NHSC₆H₄COOSnPh₃CI (A₇)

Le spectre infrarouge du composé est représenté sur la figure 7a et les attributions des bandes principales sur le tableau IV. L'absence d'une bande au dessus de 1650 cm⁻¹ montre qu'il n'y a pas de groupement CO libre. vSH est localisée à 2500 cm⁻¹ sous forme d'une bande forte. L'apparition de la bande due à v_sSnC_3 sous forme d'une bande faible à 217 cm⁻¹ indique un groupement SnC₃ non plan. $v_{as}SnC_3$ et vSnCl sont respectivement localisées à 276 cm⁻¹ et 299 cm⁻¹. vSnO apparaît à 201 cm⁻¹ sous forme d'une bande forte. Le spectre Mössbauer du complexe est reporté sur la figure 7b. La valeur de l'éclatement quadripolaire ($\Delta E = 3,44$ cm⁻¹) comparable à celle du complexe A₆, indique une transcoordination du ligand autour du résidu SnPh₃.

Sur la base des données spectrales, nous proposons une structure discrète dans laquelle l'anion est monodentate avec un environnement bipyramidal trigonal autour de l'étain (schéma 7).

figure 7a; spectre infrarouge de Me₄NHSC₆H₄COOSnPh₃CI

Tableau IV

attributions	vC00	δCOO	ρCOO	ωCOO	vSnCl	$v_{as}SnC_3$	v _s SnC ₃	$\delta_{as}SnC_3$	vSnO
A4	1633F 1607F	749 F 655m	561F 554F 545F 536m	414m 372F 341F	299m	276tF	217f	240tF	201F

tF = très Fort; F = Fort; m = moyen; f = faible; tr = trace

figure 7b: spectre Mössbauer de Me₄NHSC₆H₄COOSnPh₃CI

			CHI	2 = 0.8603					
INITI	AL	FINAL		ERROR					
YD = 006177	5.3008 0	061700.3906	±	021.6691					
Q. S. =	3.5000	3.4482	±	0.0292					
I. S. =	1.4000	1.2693	±	0.0144					
Larg 1 =	0.9000	0.8769	±	0.0631					
Larg2 =	0.9000	0.7543	±	0.0576					
Int1 =	0.0200	0.0362	±	0.0018					
Int2 =	0.0200	0.0453	±	0.0022					
VMAX = -7.7	000	FOLDING P	OINT =	= 258.0528					

I-8°/ IO₃Na.3SnPh₃CI (A₈)

Le spectre infrarouge du composé est représenté sur la figure 8a et les attributions des bandes principales sur le tableau Va. Le non éclatement de v_4 qui

apparaît à 349 cm⁻¹ permet de dire que l'ion IO₃⁻ est de symétrie C_{3v}. La présence de v_sSnC₃ sur le spectre infrarouge du complexe à 216 cm⁻¹ indique que le groupement SnC₃ n'est pas plan. v_{as}SnC₃ et vSnCl sont respectivement localisées à 275 cm⁻¹ et 283 cm⁻¹ . vSnO qui apparaît à 206 cm⁻¹ sous forme d'épaulement indique la coordination métal-ligand. Les paramètres Mössbauer du complexe ($\Delta E = 3,24$ mms⁻¹ ; $\delta = 1,28$ mms¹ ; $\Gamma = 0,89$) sont comparables à celles trouvées par DIOP et coll. (75) dans le cas du complexe (Et₄N)₂SO₄.3SnPh₃Cl ($\Delta E=3,16$ mms⁻¹ ; $\delta=1,31$ mms¹ ; $\Gamma = 0,87$) qui a une structure discrète dans laquelle l'environnement de l'étain est bipyramidal trigonal.

Les données spectrales permettent de proposer une structure discrète dans laquelle les groupements SnC₃ sont transcoordinés, l'anion IO₃⁻ étant tri-unidentate (schéma 8c). La structure proposée est confirmée par la diffraction au Rayons X (figure 8c).

Tableau Va

attributions	V1	V2	V3	V4	v _{as} SnC ₃	v₅SnC₃	δ _{as} SnC ₃ + δsSnC ₃	vSnCl	vSnO
A ₈	850f	443m	782F	349m	275F	216f	236F 191m	283ép	206ép

F = Forte, f = faible, m = moyenne, ép = épaulement

figure 8b: spectre Mössbauer de IO₃Na.3SnPh₃CI

-2

0

VITESSE

2

4

-8

-6

-4

6

8

	CHI2 = 0.8975						
		VALUES C	of Paf	RAMETERS			
INIT	IAL	FINAL		ERROR			
YD = 126154	2.3508 [·]	1252560.3316	±	234.4632			
Q. S. =	3.5000	3.5426	±	0.0452			
I. S. =	1.3000	1.2782	±	0.0234			
Larg 1 =	0.850	0.8879	±	0.0538			
Larg2 =	0.850	0.9012	±	0.0475			
Int1 =	0.0200	0.0135	±	0.0030			
Int2 =	0.0200	0.0165	±	0.0030			
VMAX = - 7.5	000	FOLDING P	OINT =	= 258.4263			

Etudes cristallographiques du complexe IO₃Na.3SnPh₃CI

La structure ORTEX du complexe est représentée sur la figure 8c. Les données cristallographiques sont reportées sur le tableau Vb, les valeurs des angles et liaisons entre les atomes sur le tableau Vc, les coordonnées et facteurs d'agitation isotropiques et anisotropiques des atomes dans le cristal sur les tableaux Vd₁, Vd₂ et Vd₃.Le complexe cristallise dans un système hexagonal de groupe d'espace P6₃/m. Les paramètres de la maille sont : a =25,3790(2) Å; b =25,3790(10) Å; c =16,1870(2) Å; $\alpha = \beta = 90^{\circ}$; $\gamma = 120^{\circ}$. La taille du cristal est de 0,40 x 0,30 x 0,25 mm. La différence d'electronégativité qui existe entre les atomes de chlore et d'oxygène explique l'effet d'affaissement du groupement SnC₃ et donne aux angles C(7)-Sn(1)-O(1) [85,5(2)°]; C(1)-Sn(1)-O(1) [85,26(19)°]; C(13)-Sn(1)-O(1) [82,9(3)°] des valeurs inférieures à 90°. La valeur de l'angle O(1)-Sn(1)-Cl(1) = 175,73(16)° montre que la liaison O-Sn-Cl n'est pas rigoureusement linéaire. Les longueurs de liaisons Sn(1)-Cl(1) [2,467(2) Å] et Sn(1)-O(1) [2,390(6) Å] différentes traduisent une transcoordination dissymétrique du ligand sur le groupement SnC3 avec des liaisons longues Sn-Cl et des liaisons courtes Sn-O. L'environnement autour de l'étain étant bipyramidal trigonal. Les longueurs de liaisons I-O identiques montrent que l'anion est tri-unidentate et sa géométrie est pyramidale (les angles O-I-O sont de l'ordre de 103°). Les données cristallographiques montrent que le dérivé a une structure discrète avec un anion tri-unidentate. L'étain central est transcoordiné de manière dissymétrique avec des liaisons Sn-O et Sn-Cl respectivement courtes et longues.

figure 8c: structure de IO₃Na.3SnPh₃CI (figure 8c)

Tableau Vb :	Tableau des	données	cristallog	graphiques
--------------	-------------	---------	------------	------------

Formule	$C_{54} H_{45} Cl_3 I Na O_3 Sn_3$
Masse molaire	1354,21
Température	150(2) K
Longueur d'onde	0,71073 Å
Système cristallin	Hexagonal
Groupe d'espace	P6 ₃ /m
Dimensions	$a = 25,3790(2)$ Å $\alpha = 90^{\circ}$
	$b = 25,3790(2)$ Å $\beta = 90^{\circ}$
	$c = 16,1870(2)$ Å $\gamma = 120^{\circ}$
Volume	9029,13(15) Å ³
Z	6
Densité (calculée)	1,494 Mg/m ³
Coéficient d'absorption	1,924 mm ⁻¹
F(000)	3948
Taille du crystal	0,40 x 0,30 x 0,25 mm
Limite de θ pour les données mesurées	2.99 to 30.03°
Limites des indices	-32<=h<=35; -35<=k<=32; -22<=l<=22
Nombre de réflexions mesurées	145895
Nombre de réflexions indépendantes	17558 [R(int) = 0,0741]
Nombre de réflexions observées (>2o)	12174
Max. et min. de transmission	
Methode de rafinement	Full-matrix least-squares on F ²
Facteur R finale [I>2σ(I)]	$R^{1} = 0,0531$ w $R_{2} = 0,1268$
Indices R (ensemble des données)	$R^1 = 0,0917 \ WR_2 = 0,1471$
Densité résiduelle	1,637 et -1,322 eÅ ⁻³

Atoms	x	У	Z	U(eq)
		-		
<u>I(1)</u>	-25(1)	3300(1)	5781(1)	27(1)
Sn(1)	1487(1)	4690(1)	6115(1)	34(1)
Sn(2)	-1370(1)	3464(1)	6111(1)	_ 36(1)
Sn(3)	-154(1)	1824(1)	6494(1)	_ 29(1)
Cl(1)	2220(1)	5792(1)	6058(3)	66(1)
CI(2)	-2473(1)	3101(1)	6050(2)	58(1)
CI(3)	197(1)	1078(1)	6589(2)	49(1)
O(1)	724(2)	3641(3)	6220(4)	32(1)
O(2)	-313(2)	3744(3)	6176(5)	35(1)
O(3)	-427(3)	2600(2)	6367(4)	35(2)
C(1)	2124(2)	4365(2)	6127(5)	35(1)
C(2)	2742(2)	4785(2)	6182(6)	75(4)
C(3)	3163(2)	4587(2)	6189(7)	91(5)
C(4)	2966(2)	3969(2)	6140(7)	80(4)
C(5)	2348(2)	3549(2)	6085(6)	59(3)
C(6)	1927(2)	3747(2)	6079(5)	42(2)
C(7)	1098(3)	4660(3)	4925(3)	43(2)
C(8)	1043(3)	5152(3)	4669(4)	75(4)
C(9)	834(4)	5162(3)	3878(5)	105(6)
C(10)	681(4)	4678(4)	3343(3)	86(4)
C(11)	737(3)	4185(3)	3598(3)	72(3)
C(12)	945(3)	4176(2)	4389(3)	46(2)
C(13)	1097(4)	4754(4)	7255(4)	49(2)
C(14)	966(5)	5221(4)	7352(5)	103(5)
C(15)	735(5)	5289(5)	8098(6)	113(6)
C(16)	635(5)	4890(5)	8746(5)	138(9)
C(17)	765(5)	4424(4)	8649(4)	102(5)
C(18)	996(4)	4355(3)	7903(5)	76(4)
C(19)	-1416(3)	3077(3)	7316(3)	44(2)
C(20)	-985(3)	3415(3)	7914(4)	48(2)
C(21)	-1030(3)	3174(4)	8700(4)	66(3)
C(22)	-1506(4)	2596(4)	8886(4)	90(4)
C(23)	-1937(4)	2258(3)	8288(5)	101(5)
C(24)	-1892(3)	2499(3)	7503(5)	71(3)
C(25)	-1050(2)	4425(2)	6051(4)	30(1)
C(26)	-429(2)	4836(2)	6013(6)	53(2)
C(27)	-219(2)	5456(2)	5958(6)	76(4)
C(28)	-631(3)	5666(2)	5942(6)	67(3)
C(29)	-1252(2)	5255(2)	5980(6)	62(3)
C(30)	-1461(2)	4635(2)	6035(5)	58(3)
C(31)	-1371(3)	3042(3)	4977(3)	40(2)
C(32)	-911(3)	3336(3)	4396(4)	54(3)
C(33)	-948(3)	3063(4)	3637(3)	77(3)
C(34)	-1446(4)	2496(4)	3458(4)	89(4)
C(35)	-1906(4)	2202(3)	4039(5)	117(7)
C(36)	-1869(3)	2475(3)	4798(4)	104(6)
C(37)	-1119(2)	1189(2)	6504(5)	38(2)
C(38)	-1320(2)	570(2)	6568(5)	41(2)
C(39)	-1937(2)	157(2)	6654(5)	47(2)
C(40)	-2353(2)	361(2)	6676(4)	41(2)
C(41)	-2152(2)	979(2)	6611(5)	49(2)
C(42)	-1534(2)	1393(2)	6525(5)	43(2)

Table Vd₁. Tableau des coordonées ($x \ 10^4$) et facteurs d'agitation isotropiques ($A^2 \ x \ 10^3$) U(eq) des atomes (I, Sn, CI, C, O) dans le cristal

C(43)	282(3)	2162(3)	5336(3)	34(2)
C(44)	868(3)	2271(4)	5186(4)	67(3)
C(45)	1134(3)	2479(4)	4416(5)	88(5)
C(46)	816(4)	2579(4)	3796(4)	67(3)
C(47)	230(4)	2471(4)	3946(3)	78(4)
C(48)	-36(3)	2263(4)	4715(4)	61(3)
C(49)	225(2)	2239(1)	7666(1)	41(2)
C(50)	781(2)	2317(2)	7926(2)	92(5)
C(51)	1000(2)	2547(2)	8710(2)	151(10)
C(52)	662(2)	2699(2)	9232(1)	92(5)
C(53)	106(2)	2622(1)	8972(1)	66(3)
C(54)	-113(1)	2392(1)	8189(1)	69(3)
Na(1)	3342(3)	6659(3)	3617(5)	29(3)

Tableau Vc : Tableau des angles [°] et longueurs de liaisons [Å]entre les atomes dans le cristal

Liaisons	Longueurs	Liaisons	Longueurs
Sn(1)-C(13)	2.137(6)	Sn(1)-C(7)	2.148(5)
Sn(1)-C(1)	2.153(4)	Sn(1)-O(1)	2.390(6)
Sn(1)-Cl(1)	2.467(2)	Sn(2)-C(31)	2.126(5)
Sn(2)-C(25)	2.153(4)	Sn(2)-C(19)	2.160(5)
Sn(2)-O(2)	2.410(6)	Sn(2)-Cl(2)	2.472(2)
Sn(3)-C(43)	2.129(5)	Sn(3)-C(37)	2.155(4)
Sn(3)-C(49)	2.149(3)	Sn(3)-O(3)	2.401(6)
Sn(3)-Cl(3)	2.469(2)		
Angles	Valeurs	Angles	Valeurs
O(2)-I(1)-O(1)	103.2(3)	I(1)-O(2)-Sn(2)	124.0(3)
O(2)-I(1)-O(3)	103.2(3)	I(1)-O(3)-Sn(3)	126.6(3)
C(13)-Sn(1)-C(7)	123.8(2)	O(1)-I(1)-O(3)	102.0(3)
C(7)-Sn(1)-C(1)	114.4(3)	C(13)-Sn(1)-C(1)	119.1(3)
C(7)-Sn(1)-O(1)	85.5(2)	C(13)-Sn(1)-O(1)	82.9(3)
C(13)-Sn(1)-Cl(1)	93.6(2)	C(1)-Sn(1)-O(1)	85.26(19)
C(1)-Sn(1)-Cl(1)	98.57(14)	C(7)-Sn(1)-Cl(1)	94.57(18)
C(31)-Sn(2)-C(25)	115.9(3)	O(1)-Sn(1)-Cl(1)	175.73(16)
C(25)-Sn(2)-C(19)	117.4(3)	C(31)-Sn(2)-C(19)	124.3(2)
C(25)-Sn(2)-O(2)	86.22(19)	C(31)-Sn(2)-O(2)	84.6(2)
C(31)-Sn(2)-Cl(2)	93.6(2)	C(19)-Sn(2)-O(2)	83.9(3)
C(19)-Sn(2)-Cl(2)	94.2(2)	C(25)-Sn(2)-Cl(2)	97.84(14)
C(43)-Sn(3)-C(37)	118.4(3)	O(2)-Sn(2)-Cl(2)	175.94(15)
C(37)-Sn(3)-C(49)	115.0(2)	C(43)-Sn(3)-C(49)	124.4(2)
C(37)-Sn(3)-O(3)	85.91(19)	C(43)-Sn(3)-O(3)	84.2(2)
C(43)-Sn(3)-Cl(3)	92.9(2)	C(49)-Sn(3)-O(3)	85.12(16)
C(49)-Sn(3)-Cl(3)	94.40(9)	C(37)-Sn(3)-Cl(3)	97.85(15)
I(1)-O(1)-Sn(1)	125.6(3)	O(3)-Sn(3)-Cl(3)	176.03(15)

Tableau Vd₂: Tableau des facteurs d'agitation anisotropiques des atomes $(A^2 \times 10^3)$

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
I(1)	28(1)	26(1)	27(1)	3(1)	3(1)	13(1)
Sn(1)	30(1)	31(1)	45(1)	3(1)	2(1)	18(1)
Sn(2)	28(1)	27(1)	49(1)	1(1)	-1(1)	10(1)
Sn(3)	27(1)	33(1)	28(1)	1(1)	0(1)	14(1)
CI(1)	48(1)	30(1)	116(2)	-2(2)	6(2)	16(1)
Cl(2)	25(1)	48(1)	90(2)	6(2)	-1(1)	10(1)
Cl(3)	46(1)	47(1)	65(2)	-1(1)	-3(1)	33(1)

	*		·····	· · · · · · · · · · · · · · · · · · ·		
O(1)	24(2)	29(3)	41(3)	8(3)	2(2)	11(2)
O(2)	28(3)	29(3)	49(3)	0(3)	2(3)	15(2)
O(3)	32(3)	23(3)	45(4)	6(2)	7(3)	10(2)
C(1)	27(3)	38(4)	41(3)	-5(4)	-9(4)	17(3)
C(2)	27(4)	39(5)	154(12)	22(6)	-3(6)	13(4)
C(3)	24(4)	45(5)	194(15)	34(7)	5(6)	10(4)
C(4)	29(4)	49(5)	163(12)	41(6)	9(6)	20(4)
C(5)	31(4)	37(4)	114(8)	20(6)	2(5)	20(3)
C(6)	33(4)	34(4)	65(5)	8(5)	5(5)	21(3)
C(7)	32(4)	60(6)	47(5)	30(5)	15(4)	30(4)
C(8)	117(10)	68(7)	71(7)	22(6)	9(7)	69(8)
C(9)	129(13)	130(13)	87(10)	39(9)	-28(9)	88(12)
C(10)	81(8)	116(11)	64(8)	38(8)	-3(7)	52(8)
C(11)	70(7)	105(9)	43(5)	18(6)	11(5)	46(7)
C(12)	60(6)	52(5)	30(4)	0(4)	2(4)	31(5)
C(13)	44(5)	47(5)	58(6)	-17(4)	-9(4)	23(4)
C(14)	135(13)	145(14)	92(10)	-41(9)	-15(9)	118(12)
C(15)	156(15)	190(18)	59(8)	-16(10)	-3(9)	135(15)
C(16)	91(10)	163(17)	104(13)	-91(13)	30(9)	20(10)
C(17)	125(12)	92(10)	43(6)	-10(7)	23(7)	19(9)
C(18)	91(8)	55(6)	52(7)	-3(5)	31(6)	14(6)
C(19)	38(4)	30(4)	64(6)	2(4)	18(4)	16(4)
C(20)	45(5)	47(5)	52(6)	-1(4)	10(4)	22(4)
C(21)	85(8)	91(8)	33(5)	8(5)	23(5)	51(7)
C(22)	102(10)	129(13)	71(8)	26(9)	21(8)	81(10)
C(23)	107(11)	91(10)	71(9)	43(8)	12(8)	23(8)
C(24)	71(7)	36(5)	75(8)	0(5)	9(6)	4(5)
C(25)	27(3)	30(3)	31(3)	-5(3)	0(3)	15(3)
C(26)	27(4)	36(4)	94(7)	10(5)	-5(5)	15(3)
C(27)	34(4)	35(4)	158(13)	-20(7)	-26(7)	16(4)
C(28)	50(5)	34(4)	117(10)	-12(6)	-5(6)	20(4)
C(29)	56(5)	40(4)	103(9)	-21(6)	-22(6)	34(4)
C(30)	37(4)	39(4)	100(8)	-23(6)	-21(6)	21(4)
C(31)	43(5)	39(4)	36(4)	-10(3)	-14(4)	20(4)
C(32)	56(5)	64(6)	25(4)	-10(4)	-4(4)	17(4)
C(33)	81(7)	89(8)	47(6)	2(6)	-11(5)	33(7)
C(34)	119(10)	89(8)	63(7)	-48(7)	-39(7)	55(8)
C(35)	133(13)	60(7)	97(11)	-39(7)	30(10)	2(8)
C(36)	105(10)	56(7)	96(10)	-47(7)	17(8)	-1(7)
C(37)	30(4)	36(4)	36(4)	9(5)	-1(4)	7(3)
C(38)	38(4)	31(4)	56(5)	-7(4)	7(5)	19(3)
C(39)	48(5)	26(3)	58(6)	-8(4)	5(4)	12(3)
C(40)	28(3)	30(4)	44(5)	-2(3)	-4(3)	-1(3)
C(40)	27(4)	41(5)	70(7)	10(5)	-5(5)	12(3)
C(42)	36(4)	30(4)	59(5)	5(5)	-15(5)	14(3)
C(42)	45(5)	35(4)	16(3)	0(3)	0(3)	15(4)
C(43)	51(6)	100(9)	30(4)	-8(5)	1(4)	23(6)
C(45)	36(5)	127(12)	62(7)	-11(7)	19(5)	12(6)
C(46)	79(7)	58(6)	36(5)	-2(4)	18(5)	13(5)
C(47)	121(11)	94(9)	51(7)	15(6)	14(7)	77(9)
C(48)	85(8)	104(9)	25(5)	-1(5)	0(5)	70(7)
C(40)	39(5)	39(5)	38(5)	-4(4)	-3(4)	15(4)
C(50)	70(0)	136(13)	82(9)		_31(7)	69(9)
C(51)	133(14)	280(30)	119(14)	-118(16)	_94(12)	164(17)
C(57)	120(12)	11/(11)	<u></u>	-30(7)	-30(7)	70(10)
C(52)	78/7)	76/8)	45(6)	-16(6)	-4(5)	39(6)
C(54)	67(7)	93(10)	52(7)	-9(6)	-16(6)	42(7)
No(1)	17(3)	17(3)	53(10)	0	0	9(2)
[[Na(1)	L 17(3)	1/10/		L	·	·····

Atom	X	v	z	U(eg)
H(2)	2877	5207	6215	90
H(3)	3585	4874	6226	109
H(4)	3254	3833	6145	96
H(5)	2213	3127	6052	71
H(6)	1505	3460	6041	51
H(8)	1147	5483	5035	90
H(9)	796	5499	3704	126
H(10)	539	4684	2802	103
H(11)	632	3855	3232	86
H(12)	984	3839	4563	55
H(14)	1035	5494	6909	124
H(15)	646	5608	8164	136
H(16)	477	4937	9256	166
H(17)	697	4151	9092	123
H(18)	1086	4036	7837	91
H(20)	-660	3810	7787	58
H(21)	-736	3405	9109	80
H(22)	-1537	2431	9423	108
H(23)	-2262	1863	8415	122
H(24)	-2186	2268	7093	85
H(26)	-147	4692	6024	63
H(27)	206	5737	5932	91
H(28)	-487	6090	5905	81
H(29)	-1533	5399	5969	74
H(30)	-1886	4354	6061	69
H(32)	-570	3723	4518	65
H(33)	-634	3264	3240	92
H(34)	-1472	2310	2940	107
H(35)	-2246	1815	3917	141
H(36)	-2183	2274	5195	125
H(38)	-1036	431	6554	49
H(39)	-2075	-266	6699	56
H(40)	-2775	78	6735	49
H(41)	-2436	1119	6626	58
H(42)	-1397	1816	6481	51
H(44)	1085	2202	5610	80
H(45)	1534	2553	4314	105
H(46)	998	2722	3270	80
H(47)	13	2540	3522	93
H(48)	-436	2189	4818	74
H(50)	1012	2212	7569	110
H(51)	1380	2600	8887	181
H(52)	812	2856	9768	111
H(53)	-125	2726	9329	80
H(54)	-493	2339	8011	83

Tableau Vd₃: Tableau des coordonnées (x 10⁴) et facteurs d'agitation isotropiques (A² x 10³) des atomes d'hydrogène dans le cristal

Complexes et dérivés contenant le résidu SnMe₃

I-9°/ (CH₂)₄(COO)₂(SnMe₃)₂ (B₁)

Les attributions des bandes fondamentales du complexe sont reportées sur le tableau VI et le spectre infrarouge sur la figure 9a.

L'absence de v(C=O) attendue au dessus de 1650 cm⁻¹ sur les spectres infrarouge de ce complexe confirme l'inexistence d'un C=O libre. v_sSnC_3 qui apparaît sous forme de trace montre que le groupement SnC₃ est plan. v_{as} SnC₃ est localisée à 555 cm⁻¹ sous forme d'une bande forte. La liaison métal-ligand se traduit par l'apparition de la bande due à vSnO à 235 cm⁻¹. Sur la figure 9b nous avons reporté le spectre Mössbauer du complexe. Les données Mössbauer (ΔE 3,64 mms⁻¹; $\delta = 1,30$ mms⁻¹; $\Gamma = 0,95$) sont similaires à celles trouvées par Cissé et col. (69) dans le cas du complexe (CH₂)₂(COO)₂(SnMe₃)₂ (ΔE 3,63 mms⁻¹; $\delta = 1,31$ mms⁻¹). Ce complexe a une structure tridimentionnelle dans laquelle l'étain est transcoordiné. La valeur faible de Γ montre qu'on a un seul type d'étain. Sur la base de ces données spectroscopiques, nous proposons une structure tridimentionnelle dans laquelle l'anion est bi-unidentate et l'environnement autour de l'étain bipyramidal trigonal (schéma 9). Cette structure est identique à celle trouvée par Cissé et coll. (69) dans le cas du complexe (CH₂)₂(COO)₂(SnMe₃)₂.

			lable	au vi			
Attributions	vCO2	δCO2	ρCO ₂	ωCO2	v _{as} SnC ₃	v _s SnC ₃	vSnO
B ₁	1552TF 1377m 1289F	771T 649TF	595f 549TF	483TF 363m 334TF	555F	513tr	235m

F = Forte, tF=très forte, f = faible, m = moyenne, ép = épaulement, tr = trace

I-10°/ PhCH=CH-COOSnMe₃ (B₂)

Sur le tableau VII, nous avons reporté les attributions des bandes principales sur le spectre infrarouge du complexe représenté par la figure 10a.

 v_s SnC₃ qui apparaît sous forme d'une bande faible à 515 cm⁻¹ montre que le groupement SnC₃ n'est pas rigoureusement plan. v_{as} SnC₃ et vSnO sont localisées

59

figure 9b : Spectre Mössbauer de (CH₂)₄(COO)₂(SnMe₃)₂

		ter the second	CHI	2 = 0.9759
		VALUES O	F PAR	AMETERS
INIT	AL	FINAL		ERROR
YD = 016879	5.4844 01	168956.6523	±	073.9713
Q. S. =	3.2000	3.6423	±	0.0106
I. S. =	1.2000	1.3040	±	0.0125
Larg 1 =	0.8500	0.9482	±	0.0098
Larg2 =	0.8500	0.9541	±	0.0113
Int1 =	0.0500	0.0584	±	0.0008
Int2 =	0.0500	0.0578	±	0.0008
VMAX = - 7.5	000	FOLDING P	OINT =	= 258.7343

respectivement à 554 cm⁻¹ et 219 cm⁻¹. Sur la figure 10b est reporté le spectre Mössbauer du complexe. La valeur de l'éclatement quadripolaire (ΔE 3,50 mms⁻¹; $\delta = 1,23$ mms-1; $\Gamma = 0,90$) est une indication d'un environnement bipyramidal trigonal autour de l'étain. L'apparition de v_s SnC₃ peut s'expliquer par une transcoordination dissymétrique autour de l'étain. Sur la base des données spectroscopiques nous proposons une structure en chaîne infinie avec un anion biunidentate et un environnement autour de l'étain bipyramidal trigonal (schéma 10). Cette structure est identique à celle étudiées aux Rayons X par M. Gielen et coll. (76) dans le cas du complexe PhCH=CH-COOSnPh₃.

Tableau VII

figure 10a : spectre Mössbauer de PhCH=CH-COOSnMe₃

[CHI	2 = 0.8654
		VALUES O	F PAR	AMETERS
INITI	AL	FINAL		ERROR
YD = 0186279	9.5478 01	186452.4589	±	041.4725
Q. S. =	3.2000	3.5063	±	0.0079
I. S. =	1.2000	1.2334	±	0.0097
Larg 1 =	0.8500	0.9051	±_	0.0174
Larg2 =	0.8500	0.8978	±	0.0138
Int1 =	0.0500	0.0039	±	0.0007
Int2 =	0.0500	0.0046	±	0.0007
VMAX = -7.5	000	FOLDING PO	DINT =	= 258.8752

I-11°/ HSC₆H₄COOSnMe₃ (B₃)

Les attributions des bandes principales et le spectre infrarouge du complexe sont respectivement reportés sur le tableau VIII et la figure 11a.

L'apparition d'une bande faible due à $v_s SnC_3$ à 518 cm⁻¹ montre que le groupement SnC₃ n'est pas rigoureusement plan. $v_{as}SnC_3$ et vSnO sont respectivement localisées à 568 cm⁻¹ et 229 cm⁻¹. Sur la figure 11b nous avons reporté le spectre Môssbauer du complexe. La valeur élevée de l'éclatement quadripolaire (ΔE 3,53 mms⁻¹) indique une transcoordination autour de l'étain.

Le signal intense à 0,657 ppm avec des signaux satellites à 0,588, 0,592, 0,781 et 0,785 ppm dus au couplage avec l'étain $[{}^{2}J({}^{119}Sn-{}^{13}C-{}^{1}H) = 59,21Hz$ et ${}^{2}J({}^{117}Sn-{}^{13}C-{}^{1}H) = 56,78$ Hz)] sur le spectre RMN du proton (figure11c) est dû aux protons des groupements méthyl. Le multiplet qui apparaît entre 7 et 8 ppm est dû aux protons du groupement phényl.

Le spectre RMN du carbone 13 (figure11d) présente un signal intense à -1,938 ppm avec des signaux satellites à -4,606, -4,448, 0,612 et 0,730 ppm qui sont tous attribués au carbone des groupements méthyl. Leur couplage avec l'étain donne $[J(^{119}Sn-^{13}C) = 402,65$ Hz et $J(^{117}Sn-^{13}C) = 384,85$ Hz)]. Les carbones du phényl C (1, 2, 4) sortent respectivement sous forme de singulet à 139, 129 et 132 ppm et C(3) apparaît sous forme de doublet centré à 125,40 ppm (J = 35,31 Hz).

On n'a pas le spectre RMN pour savoir la valeur du déplacement chimique δ^{119} Sn. Il nous semble important de noter que les valeurs des constantes de couplage ²J(¹¹⁹Sn-¹³C-¹H) et J(¹¹⁹Sn-¹³C) du composé comparables à celles trouvées par Molloy et coll. (77) [²J(¹¹⁹Sn-¹³C-¹H) = 57,6 Hz et J(¹¹⁹Sn-¹³C) = 359,1 Hz] dans le cas du complexe C₄N₂H₅SnMe₃ qui a une structure tétraédrique permettent d'envisager que celle du dérivé a changé en solution. En effet quand le dérivé est mis en solution, le solvant peut casser la chaîne donnant ainsi à l'étain un environnement tétrédrque. Le carbone du carbonyl apparaît sous forme de singulet à 171 ppm.

Sur la base des données spectroscopiques, nous proposons une structure en chaîne infinie dans laquelle l'anion est bi-unidentate et l'environnement autour de l'étain est bipyramidal trigonal (schéma 11).

229F

1555F 1377tF F = Forte, tF=très Forte, f = faible, m = moyenne, ép = épaulement

654m

550TF

560ép

471m

392F

64

figure 11b : Spectre infrarouge de HSC₆H₄COOSnMe₃

		·	СН	12 = 0.8693
		VALUES (DF PA	RAMETERS
INIT	IAL	FINAL		ERROR
YD = 112181	3.1250 1	1121395.5000	±	098.3425
Q. S. =	3.6000	3.5385	±	0.0300
I. S. =	1.3000	1.2727	±	0.0139
Larg 1 =	0.850	0.9679	±	0.0603
Larg2 =	0.850	0.9672	±	0.0650
Int1 =	0.0200	0.0092	±	0.0004
Int2 =	0.0200	0.0091	±	0.0004
VMAX = - 7.5	000	FOLDING F	POINT	= 258.9468

figure 11c : spectre RMN ¹H de HSC₆H₄COOSnMe₃

I-12°/ (O₂N)₂C₆H₃COOSnMe₃ (B₄)

Les données infrarouge du dérivé sont reportées sur le tableau IXa et le spectre infrarouge sur la figure 12a.

L'apparition de v_sSnC_3 sur le spectre infrarouge à 515 cm⁻¹ montre que le groupement SnC₃ n'est pas plan. $v_{as}SnC_3$ est localisée à 560 cm⁻¹ et vSnO qui apparaît sous forme d'une bande moyenne à 235 cm⁻¹ traduit la liaison métal-ligand.

Le spectre Mössbauer du dérivé est reporté sur la figure 12b. La valeur de l'éclatement quadripolaire (ΔE 3,65 mms⁻¹) indique une transcoordination autour de l'étain.

Sur le spectre RMN du proton (figure12c) nous notons un pic intense à 0,718 ppm avec des pics satellites à 0,620 et 0,624 ppm dus au couplage des protons des groupements méthyl avec les isotopes ¹¹⁹Sn et ¹¹⁷Sn [${}^{2}J({}^{119}Sn-{}^{13}C-{}^{1}H) = 58,82$ Hz et ${}^{2}J({}^{117}Sn-{}^{13}C-{}^{1}H) = 56,12$ Hz].

Le spectre RMN du carbone 13 (figure12d) montre un pic intense à -1,925 ppm dû aux carbones des groupements méthyl ; la présence des pics satellites à -4,532, -4,416, 0,568 et 0,683 ppm s'explique par le couplage des carbones des groupements méthyl avec les isotopes ¹¹⁹Sn et ¹¹⁷Sn [J(¹¹⁹Sn-¹³C) = 393,56 Hz et $J(^{117}Sn-^{13}C) = 376,09$ Hz] dus. Les carbones du groupement phényl apparaissent sous forme de doublet pour les carbones C(2) et C(4) à 121,908 ppm (J = 33,12Hz) et à 129,969 ppm (J = 33,12Hz) respectivement et sous forme de singulet pour les carbones C(1) (136,423 ppm) et C(3) (148,429 ppm). Le pic à 168,74 ppm est dû au carbone du groupement carbonyl.

Sur la base des données spectrales, nous proposons une structure en chaîne infinie dans laquelle l'anion est bi-unidentate et l'environnement de l'étain bipyramidal trigonal (schéma 12). Cette structure est confirmée aux Rayons X (figure 12e).

Attributions	$vCO_2 + vNO_2$	δCO ₂ + δNO ₂	ρCO₂	ωCO ₂	vasSnC3	v _s SnC ₃	vSnO
B₄	1622ép 1614TF 1581F 1538TF 1374TF 1339TF	792F 777F	554TF 548TF	420TF 366F	560F	515m	235

Ta	h	eai	ιD	(a
- I G		661		<u>`a</u>

F = Forte, TF=très forte, f = faible, m = moyenne, ép = épaulement, tr = trace

67

figure 12b : Spectre Mössbauer de (O₂N)₂C₆H₃COOSnMe₃

			CH	12 = 0.9870
		VALUES	OF PAF	RAMETERS
INI	ΓIAL	FINAL		ERROR
YD = 062174	48.5000	0621529.8125	_ ±	069.0586
Q. S. =	3.2000	3.6578	±	0.0085
I. S. =	1.250	0 1.3160) ±	0.0112
Larg 1 =	0.850	0 0.8264	±	0.0053
Larg2 =	0.850	0 0.8358	±	0.0210
Int1 =	0.050	0 0.0359	±	0.0005
int2 =	0.050	0 0.0424	±	0.0005
VMAX = -7.	5000	FOLDING F	POINT :	= 259.0410

Etude cristallographique du dérivé (O₂N)₂C₆H₃COOSnMe₃

La structure ORTEX du complexe est représentée sur la figure 12e. Les données cristallographiques sont reportées sur le tableau IXb, les valeurs des angles et des longueurs de liaisons entre les atomes sur le tableau IXc, les coordonnées et facteurs d'agitation isotropique et anisotropique des atomes dans le cristal sur les tableaux IXd₁, IXd₂ et IXd₃. Le complexe cristallise dans un système monoclinique le groupe d'espace étant P2₁/a. Les paramètres de la maille sont : a =17,8710(3) Å ; b =7,0880(1) Å; c =22,7860(3) Å; $\alpha = \gamma = 90^{\circ}$; $\beta = 112,855(1)^{\circ}$. La taille du cristal est de 0.20 x 0.15 x 0.15 mm. Les valeurs des angles C(1)-Sn(1)-O(1) [97,22(10)°]; C(2)-Sn(1)-O(1) [92,70(10)°];C(3)-Sn(1)-O(1) [91,88(10)°] montrent le que groupement SnC₃ n'est pas rigoureusement plan. Cet effet d'affaissement est dû à la différence qui existe entre les longueurs de liaisons Sn(1)-O(1) [2,1812(19)Å] et Sn(1)-O(8) [2,501(2)Å]. On peut expliquer cette différence par une délocalisation des liaisons π du groupement phényl et du carbonyl. Le groupement SnC₃ est ainsi transcoordiné de manière dissymétrique avec des liaisons Sn-O courte et longue, l'environnement de l'étain étant bipyramidal trigonal. Les angles O-N-O sont tous égaux ainsi que les longueurs de liaison N-O; ce qui montre que le groupement NO2 n'est pas coordiné. Les longueurs de liaison Sn-O [Sn(1)-O(1) = 2.1812(19) Å, Sn(1)-O(8) = 2.501(2) Å 1 sont similaires à celles trouvées par Chih et coll. (78) dans le cas de MeCOOSnMe₃ [(Sn(1)-O(1) = 2,177(14)Å], Sn(1)-O(8) = 2,460(15)Å] qui a une structure en chaîne.

Les données cristallographiques montrent que le complexe a une structure en chaîne infinie avec une transcoordination dissymétrique de l'anion bi-unidentate sur le groupement SnC₃. Les liaisons Sn-O autour de l'étain sont courtes et longues (figure 12e).

figure 12d : Spectre RMN ¹³C de (O₂N)₂ C₆H₃COOSnMe₃

figure 12d : Spectre RMN¹³C de (O₂N)₂C₆H₃COOSnMe₃

Formule	$C_{10}H_{12}N_2O_6Sn$
Masse molaire	374,91
Température	150(2) K
Longueur d'onde	0,71073 Å
Système cristalin	Monoclinique
Groupe d'espace	P2 ₁ /a
Dimensions	$a = 17,8710(3)$ Å $\alpha = 90^{\circ}$
	b = 7,0880(1)Å β = 112,855(1)°
	$c = 22,7860(3)$ Å $\gamma = 90^{\circ}$
Volume	2659,69(7) Å ³
Z	8
Densité (calculée)	1,873 Mg/m ³
Coefficient d'absorption	1,945 mm ⁻¹
F(000)	1472
Taille du cristal	0,20 x 0,15 x 0,15 mm
Limite de θ pour les données mesurées	3,67 to 27,52°
Limites des indices	-23<=h<=21; -9<=k<=9; -29<=l<=29
Nombre de réflexions mesurées	32447
Nombre de réflexions indépendantes	6067 [R(int) = 0,0609]
Nombre de réflexions observées (>2o)	4945
Max. et min. de transmission	0,75 and 0,70
Methode de rafinement	Full-matrix least-squares on F ²
Facteur R finale [I>2o(I)]	$R^1 = 0,0284$ $wR_2 = 0,0633$
Indices R (ensemble des données)	$R^1 = 0,0426 \ WR_2 = 0,0692$
Densité résiduelle	1,394 et -0,645 eÅ ⁻³

Tableau IXc :	Tableau des angles [°] et longueurs de liaisons [Å] entre le	S
	atomes dans le cristal	

Liaisons	Longueurs	Liaisons	Longueurs
Sn(1)-C(3)	2.117(3)	Sn(1)-O(1)	2.1812(19)
Sn(1)-C(2)	2.123(3)	Sn(2)-C(12)	2.114(3)
Sn(1)-O(8)	2.501(2)	Sn(2)-C(13)	2.120(3)
Sn(2)-C(11)	2.117(3)	Sn(2)-O(2)	2.556(2)
Sn(2)-O(7)	2.1746(19)	O(2)-C(4)	1.236(3)
O(1)-C(4)	1.277(3)	O(3)-N(1)	1.223(4)
O(2)-Sn(2)	2.556(2)	O(5)-N(2)	1.224(3)
O(4)-N(1)	1.229(4)	O(7)-C(14)	1.273(3)
O(6)-N(2)	1.233(3)	O(9)-N(3)	1.222(4)
O(8)-C(14)	1.239(3)	O(11)-N(4)	1.222(3)
O(10) -N(3)	1.221(3)	N(1)-C(7)	1.478(4)
O(12)-N(4)	1.229(4)	N(3)-C(17)	1.481(4)
N(2)-C(9)	1.474(4)	C(4)-C(5)	1.518(4)
N(4)-C(19)	1.476(4)	C(14)-C(15)	1.511(4)
Sn(1)-C(1)	2.120(3)		
Angles	Valeurs	Angles	Valeurs
C(3)-Sn(1)-C(1)	114.46(14)	C(3)-Sn(1)-C(2)	121.06(13)
C(1)-Sn(1)-C(2)	123.08(13)	C(3)-Sn(1)-O(1)	91.88(10)
C(1)-Sn(1)-O(1)	97.22(10)	C(2)-Sn(1)-O(1)	92.70(10)
C(3)-Sn(1)-O(8)	83.96(10)	C(1)-Sn(1)-O(8)	91.69(10)
C(2)-Sn(1)-O(8)	82.77(10)	O(1)-Sn(1)-O(8)	171.07(7)
C(12)-Sn(2)-C(11)	114.63(14)	C(12)-Sn(2)-C(13)	113.85(14)
C(11)-Sn(2)-C(13)	129.33(14)	C(12)-Sn(2)-O(7)	93.59(10)
C(11)-Sn(2)-O(7)	92.63(11)	C(13)-Sn(2)-O(7)	98.23(10)
C(12)-Sn(2)-O(2)	90.37(10)	C(11)-Sn(2)-O(2)	82.34(11)

C(13)-Sn(2)-O(2)	83.51(10)	O(7)-Sn(2)-O(2)	174.58(7)
C(4)-O(1)-Sn(1)	116.57(17)	C(4)-O(2)-Sn(2)	152.2(2)
C(14)-O(7)-Sn(2)	121.36(17)	C(14)-O(8)-Sn(1)	138.79(18)
O(3)-N(1)-O(4)	124.4(3)	O(3)-N(1)-C(7)	117.8(3)
O(4)-N(1)-C(7)	117.9(3)	O(5)-N(2)-O(6)	124.3(3)
O(5)-N(2)-C(9)	118.2(3)	O(6)-N(2)-C(9)	117.5(3)
O(10)-N(3)-O(9)	124.5(3)	O(10)-N(3)-C(17)	117.6(3)
O(9)-N(3)-C(17)	117.8(3)	O(11)-N(4)-O(12)	124.3(3)
O(11)-N(4)-C(19)	117.8(3)	O(12)-N(4)-C(19)	117.9(3)
O(2)-C(4)-O(1)	125.0(3)	O(2)-C(4)-C(5)	120.0(3)
O(1)-C(4)-C(5)	115.0(2)	C(6)-C(5)-C(10)	120.2(3)
C(6)-C(5)-C(4)	119.8(3)	C(10)-C(5)-C(4)	119.9(3)
C(5)-C(6)-C(7)	119.3(3)	C(8)-C(7)-C(6)	122.5(3)
C(8)-C(7)-N(1)	118.8(3)	C(6)-C(7)-N(1)	118.7(3)
C(7)-C(8)-C(9)	116.5(3)	C(8)-C(9)-C(10)	123.4(3)
C(8)-C(9)-N(2)	118.2(3)	C(10)-C(9)-N(2)	118.5(3)
C(9)-C(10)-C(5)	118.0(3)	O(8)-C(14)-O(7)	126.1(3)
O(8)-C(14)-C(15)	118.9(3)	O(7)-C(14)-C(15)	115.0(2)
C(20)-C(15)-C(16)	120.4(3)	C(20)-C(15)-C(14)	118.7(3)
C(16)-C(15)-C(14)	120.9(3)	C(17)-C(16)-C(15)	118.2(3)
C(18)-C(17)-C(16)	123.1(3)	C(18)-C(17)-N(3)	118.4(3)
C(16)-C(17)-N(3)	118.4(3)	C(19)-C(18)-C(17)	116.8(3)
C(18)-C(19)-C(20)	122.8(3)	C(18)-C(19)-N(4)	119.0(3)
C(20)-C(19)-N(4)	118.3(3)	C(15)-C(20)-C(19)	118.7(3)

Table IXd₁. Tableau des coordonées ($x \ 10^4$) et facteurs d'agitation isotropiques ($A^2 \ x \ 10^3$) U(eq) des atomes (Sn, N, C, O) dans le cristal

Atoms	X	у	Z	U(eq)
Sn(1)	5545(1)	4909(1)	2912(1)	20(1)
Sn(2)	7606(1)	2059(1)	2120(1)	21(1)
O(1)	5152(1)	4603(3)	3701(1)	24(1)
O(2)	3871(1)	4245(3)	3013(1)	27(1)
O(3)	1876(1)	4006(4)	4041(1)	43(1)
O(4)	2189(2)	2484(4)	4930(1)	49(1)
O(5)	5919(1)	1711(4)	5809(1)	40(1)
O(6)	4984(2)	672(3)	6113(1)	37(1)
O(7)	6462(1)	3048(3)	1407(1)	26(1)
O(8)	6143(1)	4844(3)	2085(1)	26(1)
O(9)	4069(2)	900(4)	-461(1)	41(1)
O(10)	3098(2)	2888(4)	-920(1)	47(1)
O(11)	2997(2)	8753(4)	138(1)	46(1)
O(12)	4060(2)	9648(3)	948(1)	45(1)
N(1)	2362(2)	3195(4)	4507(1)	37(1)
N(2)	5208(2)	1498(4)	5734(1)	28(1)
N(3)	3720(2)	2397(4)	-482(1)	29(1)
N(4)	3681(2)	8493(4)	538(1)	31(1)
C(1)	4814(2)	7276(4)	2478(2)	28(1)
C(2)	5214(2)	2096(4)	2598(2)	28(1)
C(3)	6744(2)	5585(5)	3538(2)	33(1)
C(4)	4406(2)	4183(4)	3556(1)	22(1)
C(5)	4195(2)	3575(4)	4112(1)	23(1)
C(6)	3401(2)	3666(4)	4061(1)	26(1)
C(7)	3212(2)	3051(4)	4563(2)	27(1)
C(8)	3786(2)	2301(4)	5112(1)	27(1)

C(9)	4575(2)	2265(4)	5150(1)	24(1)
C(10)	4801(2)	2899(4)	4668(1)	23(1)
C(11)	7031(2)	-119(4)	2426(2)	32(1)
C(12)	8068(2)	1222(5)	1436(2)	33(1)
C(13)	8059(2)	4691(4)	2555(2)	31(1)
C(14)	5996(2)	4139(4)	1554(1)	20(1)
C(15)	5193(2)	4570(4)	1017(1)	19(1)
C(16)	4833(2)	3275(4)	526(1)	21(1)
C(17)	4091(2)	3737(4)	51(1)	21(1)
C(18)	3695(2)	5424(4)	39(1)	22(1)
C(19)	4076(2)	6670(4)	529(1)	21(1)
C(20)	4819(2)	6282(4)	1020(1)	19(1)

Tableau IXd₂: Tableau des coordonnées (x 10⁴) et facteurs d'agitation isotropiques (Å² x 10³) des atomes d'hydrogène dans le cristal

Atoms	X	у	Z	U(eq)
H(1A)	4618	7866	2781	42
H(1B)	4350	6866	2100	42
H(1C)	5137	8190	2353	42
H(2A)	5382	1812	2247	42
H(2B)	4623	1954	2452	42
H(2C)	5482	1223	2951	42
H(3A)	6868	6887	3462	49
H(3B)	7127	4725	3462	49
H(3C)	6793	5456	3979	49
H(6)	2989	4147	3685	31
H(8)	3645	1833	5446	32
H(10)	5353	2875	4715	27
H(11A)	6551	-557	2065	48
H(11B)	6866	363	2761	48
H(11C)	7410	-1172	2594	48
H(12A)	8573	512	1646	49
H(12B)	8177	2342	1230	49
H(12C)	7669	422	1115	49
H(13A)	8634	4800	2628	46
H(13B)	7997	4773	2964	46
H(13C)	7753	5715	2276	46
H(16)	5090	2109	516	25
H(18)	3186	5709	-291	27
H(20)	5065	7173	1351	23

Tableau IXd₃: Tableau des facteurs d'agitation anisotropiques des atomes $(\text{\AA}^2 \times 10^3)$

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn(1)	21(1)	19(1)	19(1)	-1(1)	7(1)	-3(1)
Sn(2)	19(1)	20(1)	23(1)	-2(1)	8(1)	1(1)
O(1)	25(1)	31(1)	19(1)	-1(1)	10(1)	-8(1)
O(2)	26(1)	35(1)	20(1)	-2(1)	9(1)	-4(1)
O(3)	32(1)	59(2)	41(2)	0(1)	18(1)	7(1)
O(4)	37(2)	85(2)	36(1)	-1(1)	25(1)	-6(1)
O(5)	34(1)	49(2)	35(1)	11(1)	10(1)	1(1)
O(6)	52(2)	37(1)	25(1)	7(1)	16(1)	-2(1)
O(7)	20(1)	26(1)	26(1)	-2(1)	5(1)	7(1)

O(8)	22(1)	36(1)	20(1)	-2(1)	8(1)	-1(1)
O(9)	46(2)	31(1)	43(1)	-13(1)	11(1)	-1(1)
O(10)	47(2)	40(2)	32(1)	-3(1)	-8(1)	-5(1)
O(11)	37(1)	51(2)	43(1)	5(1)	8(1)	24(1)
O(12)	57(2)	30(1)	42(2)	-3(1)	14(1)	14(1)
N(1)	33(2)	53(2)	29(2)	-11(1)	18(1)	-5(1)
N(2)	42(2)	22(1)	21(1)	-3(1)	12(1)	-1(1)
N(3)	31(2)	30(2)	25(1)	-2(1)	9(1)	-11(1)
N(4)	36(2)	31(2)	27(1)	7(1)	15(1)	13(1)
C(1)	42(2)	20(2)	26(2)	1(1)	18(1)	3(1)
C(2)	32(2)	17(2)	39(2)	-3(1)	17(1)	-1(1)
C(3)	25(2)	45(2)	25(2)	-2(1)	6(1)	-11(2)
C(4)	26(2)	21(2)	20(1)	-5(1)	10(1)	-5(1)
C(5)	29(2)	21(2)	21(1)	-4(1)	13(1)	-5(1)
C(6)	27(2)	29(2)	23(2)	-7(1)	11(1)	-3(1)
C(7)	26(2)	31(2)	27(2)	-9(1)	15(1)	-5(1)
C(8)	37(2)	27(2)	23(2)	-6(1)	18(1)	-5(1)
C(9)	34(2)	18(2)	20(1)	-3(1)	11(1)	-2(1)
C(10)	27(2)	20(2)	23(2)	-5(1)	11(1)	-5(1)
C(11)	32(2)	28(2)	38(2)	5(1)	17(2)	0(1)
C(12)	33(2)	41(2)	24(2)	-2(1)	12(1)	8(2)
C(13)	23(2)	24(2)	40(2)	-10(1)	8(1)	-4(1)
C(14)	19(1)	20(2)	22(1)	5(1)	8(1)	-3(1)
C(15)	16(1)	23(2)	18(1)	3(1)	8(1)	0(1)
C(16)	23(1)	21(2)	21(1)	2(1)	11(1)	0(1)
C(17)	23(2)	20(2)	22(1)	-1(1)	12(1)	-6(1)
C(18)	18(1)	29(2)	22(1)	6(1)	10(1)	0(1)
C(19)	24(2)	21(2)	23(1)	2(1)	14(1)	3(1)
C(20)	21(1)	22(2)	18(1)	1(1)	11(1)	1(1)

I-13°/ PhAsO₃HSnMe₃ (B₅)

Les attributions des bandes principales sont reportées sur le tableau Xa et le spectre infrarouge du dérivé sur la figure 13a.

Le groupement SnC₃ n'est pas rigoureusement plan du fait de la présence de v_s SnC₃ à 511cm⁻¹ sous forme d'une bande faible sur le spectre infrarouge du dérivé. v_{as} SnC₃ et vSnO sont localisées respectivement à 558 cm⁻¹ et 250 cm⁻¹. La présence de la bande large due à vOH à 3400 cm⁻¹, 2900 cm⁻¹ et 2300 cm⁻¹ révèlent une liaison hydrogène moyenne (bandes A, B, C).

Le spectre Mössbauer du complexe est reporté sur la figure 13b. La valeur élevée de l'éclatement quadripolaire ($\Delta E = 3,87 \text{ mms}^{-1}$) est une indication d'une transcoordination du ligand autour de l'étain.

Le spectre RMN du proton présente un signal intense à 0,53 ppm du aux protons des groupements méthyl. Le couplage des protons des groupements méthyl avec les isotopes ¹¹⁷Sn et ¹¹⁹Sn donne les constantes ${}^{2}J^{117}Sn-{}^{13}C-{}^{1}H = 66Hz$ et (${}^{2}J^{119}Sn-{}^{13}C-{}^{1}H = 66Hz$ et (${}^{2}J^{119}Sn-{}^{1}H$

¹³C-¹H = 69,4 Hz. On note aussi un multiplet ente 7,38 et 7,78 dû aux protons du groupement phényl.

Le spectre RMN du carbone 13 présente un singulet à -0,62 ppm dû aux carbones des groupements méthyl couplés aux isopes ¹¹⁷Sn (J¹¹⁷Sn¹³C = 493,4 Hz) et ¹¹⁹Sn(J¹¹⁹Sn¹³C = 513,6 Hz). Les carbones des groupements phényl apparaissent sous forme de 4 doublets centrés à 139 ppm (ipso) ; 128,7ppm (ortho) ; 128,6ppm (méta) ; 131,6ppm (para). Sur le spectre RMN de l'étain apparait un singulet à 22,6 ppm . Quand SnMe₃Cl est libre la valeur du déplacement chimique est de +164 ppm (79) ; le glissement du signal de l'étain à 22,6 ppm montre que l'étain est coordiné. Si l'étain, dans SnMe₃Cl, est pentacoordiné, ²J¹¹⁹Sn-¹³C-¹H et J¹¹⁹Sn¹³C sont respectivement supérieurs à de 65Hz et 450Hz. Les valeurs des constantes de couplage confirment une pentacoordination de l'étain dans le cas du dérivé (80). Sur la base des données spectroscopiques nous proposons une structure en chaîne infinie avec un anion bi-unidentate et un environnement autour de l'étain bipyramidal trigonal (schéma 13). Les chaînes sont reliées entre elles par des liaisons

hydrogène. Cette structure est confirmée par diffraction aux Rayons X (figure 13e).

figure 13a: spectre infrarouge de PhAsO₃HSnMe₃

Tableau Xa

Attributions	vOH	vAsO ₃	vAsC	δ AsO ₃	v _{as} SnC ₃	v _s SnC ₃	vSnO
B 5	2900lar	895F 886F	690F	409F 345F	558F	511f	250m
F = Forte, lar =large, f = faible, m = moyenne							

NOSSING 1440088 - 1450088 - 14500888 - 14500888 - 14500888 - 14500888 - 14500888 - 14200888 -

figure 13b: spectre Mössbauer de PhAsO₃HSnMe₃

8

			CH	2 = 0.9546
		VALUES OF	F PAF	RAMETERS
INITI	AL	FINAL		ERROR
YD = 0612147	.4622 0	612546.91254	±	053.2346
Q. S. =	3.2000	3.8721	±	0.0092
I. S. =	1.2400	1.4842	±	0.0132
Larg 1 =	0.9000	0.9815	±	0.0072
Larg2 =	0.9000	0.9842	±	0.0339
Int1 =	0.0020	0.0108	±	0.0002
Int2 =	0.0020	0.0119	±	0.0002
VMAX = - 7.50	000	FOLDING PC	DINT =	= 258.1247

Etude cristallographique du dérivé PhAsO₃HSnMe₃

La structure ORTEX du complexe est reportée sur la figure 13e. Les données cristallographiques sont reportées sur le tableau Xb, les angles et longueurs de liaisons sur le tableau Xc, les coordonnées et les facteurs d'agitation isotropiques et anisotropiques des atomes dans le cristal sur les tableaux Xd₁, Xd₂. Le complexe cristallise dans un système monoclinique le groupe d'espace étant P21/c. Les paramètres de la maille sont : $\alpha = \gamma = 90^\circ$; $\beta = 113.9240(10)^\circ$; a= 10.6090(10) Å : b = 10,4730(10) Å; c = 12,4500(10) Å. La taille du cristal est 0,25 x 0,20 x 0,10 mm. Les angles O(1)-Sn(1)-C(1,2,3) sont respectivement 89,59(9)°, 96,68(8)° et 90,38(10)°. Ces valeurs montrent que le groupement SnC₃ n'est pas plan. La valeur de l'angle O(1)-Sn(1)-O(2) [173,03(6)] supérieure à 120° et proche de 180° traduit une transcoordination du ligand sur le résidu SnMe₃ donnant ainsi à l'étain un environnement bipyramidal trigonal. Les différences qui existent entre les angles As(1)-O(1)-Sn(1) [138,94(9)] et As(1')-O(2')-Sn(1) [136,28(10)] d'une part et entre les longueurs de liaisons Sn(1)-O(2') [2,3577(16) Å] et Sn(1)-O(1) [2,1677(16) Å] d'autre part s'expliquent par la présence de la liaison hydrogène formée entre l'atome O(2') d'un ligand et l'atome d'hydrogène du groupement OH d'un ligand voisin. Les valeurs de Sn(1)-O(2') et Sn(1)-O(1) sont comparables à celles trouvées par Diassé-Sarr et coll. (41) [Sn(1)-O(2') = 2,4338(4) Å; Sn(1)-O(1) = 2,1647(4) Å]dans le cas du dérivé MePO₃HSnMe₃ qui a une structure en chaîne.

Les longueurs des liaisons As(1)-O(1) [1,6658(17) Å] et As(1)-O(2) [1,6754(16)] presque similaires révèlent la nature bi-unidentate du ligand. La longueur de la liaison As(1)-O(3) [1,7175 (17)] différente de celles de As(1)-O(1) et As(1)-O(2) s'explique par la présence de la liaison hydrogène formée entre l'hydrogène H lié à O(3) et un atome d'oxygène d'un ligand voisin.

Les données cristallographiques montrent que le dérivé a une structure en chaîne infinie (figure13e) contenant un ligand bi-unidentate avec un environnement de l'étain bipyramidal trigonal. Ces chaînes infinies sont reliées par des liaisons hydrogène formant ainsi une structure en cavités (figure 13f).

structure de PhAsO₃HSnMe₃ (figure 13f)

Table Xb: Tableau des données cristallographiques

Formule	C. H. As O. Sn
Masse molaire	364,82
Température	170(2) K
Longueur d'onde	0,71073 Å
Système cristallin	Monoclinique
Groupe d'espace	P21/c
Dimensions	$a = 10,6090 (10) \text{\AA} \alpha = 90^{\circ}$
	b = 10,4730 (10)Å β = 113,9240(10)°
	$c = 12,4500 (10) \text{\AA} \gamma = 90^{\circ}$
Volume	1264,45(2) Å ³
Z	4
Densité (calculée)	1,916 Mg/m ³
Coefficient d'absorption	4,600 mm ⁻¹
F(000)	704
Taille du cristal	0,25 x 0,20 x 0,10 mm
Limite de θ pour les données mesurées	3,89 to 30,03°
Limites des indices	-14<=h<=14; -14<=k<=14; -17<=l<=17
Nombre de réflexions mesurées	34392

Nombre de réflexions indépendantes	3680 [R(int) = 0,0714]
Nombre de réflexion observées (> 2σ)	3389
Data Completeness	0,996
Max. et min. de transmission	0,54 and 0,28
Méthode de rafinement	Full-matrix least-squares on F ²
Facteur R finale [I>2σ(I)]	$R_1 = 0,0277 wR_2 = 0,0682$
Indices R (ensemble des données)	$R_1 = 0,0308 \ WR_2 = 0,0706$
Densité résiduelle	1,265 et -1,217 eÅ ⁻³

Table Xc: Longueurs[Å] et angles des liaisons [°]

Liaisons	Longueurs	Liaisons	Longueurs
Sn(1)-C(1)	2.121(2)	Sn(1)-C(2)	2.123(3)
Sn(1)-C(3)	2.125(3)	Sn(1)-O(1)	2.1677(17)
Sn(1)-O(2')	2.3577(16)	As(1)-O(1)	1.6658(17)
As(1)-O(2)	1.6754(16)	As(1)-O(3)	1.7175(17)
As(1)-C(4)	1.898(2)	O(2)-Sn(1)	2.3577(16)
C(4)-C(5)	1.389(3)	C(4)-C(9)	1.389(3)
C(5)-C(6)	1.395(4)	C(6)-C(7)	1.378(5)
C(7)-C(8)	1.384(5)	C(8)-C(9)	1.395(4)
Angles des liaisons	Valeurs	Angles des liaisons	Valeurs
C(1)-Sn(1)-C(2)	115.40(11)	C(1)-Sn(1)-C(3)	123.41(11)
C(2)-Sn(1)-C(3)	120.77(12)	C(1)-Sn(1)-O(1)	89.59(9)
C(2)-Sn(1)-O(1)	96.68(8)	C(3)-Sn(1)-O(1)	90.38(10)
C(1)-Sn(1)-O(2)	86.90(8)	C(2)-Sn(1)-O(2)	90.27(8)
C(3)-Sn(1)-O(2)	86.53(9)	O(1)-Sn(1)-O(2)	173.03(6)
O(1)-As(1)-O(2)	114.17(9)	O(1)-As(1)-O(3)	110.05(10)
O(2)-As(1)-O(3)	107.50(8)	O(1)-As(1)-C(4)	107.55(9)
O(2)-As(1)-C(4)	113.81(9)	O(3)-As(1)-C(4)	103.20(9)
As(1')-O(2')-Sn(1)	136.28(10)	As(1)-O(1)-Sn(1)	138.94(9)
C(5)-C(4)-C(9)	121.2(2)	C(5)-C(4)-As(1)	119.59(19)
C(9)-C(4)-As(1)	119.15(17)	C(4)-C(5)-C(6)	118.9(3)
C(7)-C(6)-C(5)	120.2(3)	C(6)-C(7)-C(8)	120.9(3)
C(7)-C(8)-C(9)	119.6(3)	C(4)-C(9)-C(8)	119.2(2)

Table Xd₁ : Tableau des coordonnées des atomes (x 10⁴) et les facteurs d'agitation isotropiques corresondants U(eq) (A² x 10³)

Atom	x.10 ⁴	y. 10 ⁴	z. 10 ⁴	U(eq)
Sn(1)	9114(1)	7637(1)	2054(1)	21(1)
As(1)	8222(1)	4852(1)	3236(1)	18(1)
O(1)	7901(2)	6190(2)	2445(2)	34(1)
O(2)	9805(2)	4257(2)	3583(2)	27(1)
O(3)	8038(2)	5118(2)	4526(2)	27(1)
C(1)	7651(3)	9037(2)	2014(2)	29(1)
C(2)	10882(3)	7494(2)	3664(2)	30(1)
C(3)	8987(3)	6593(3)	550(2)	39(1)
C(4)	6782(2)	3682(2)	2426(2)	23(1)
C(5)	6543(3)	2662(2)	3032(3)	34(1)
C(6)	5530(3)	1772(3)	2411(3)	48(1)
C(7)	4770(3)	1923(3)	1222(3)	48(1)
C(8)	5014(3)	2937(3)	619(3)	41(1)
C(9)	6023(3)	3835(3)	1227(2)	31(1)
H(10)	8840(30)	5310(40)	5090(30)	67(13)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn(1)	22(1)	19(1)	21(1)	3(1)	8(1)	0(1)
As(1)	17(1)	17(1)	20(1)	-1(1)	7(1)	-2(1)
O(1)	26(1)	30(1)	40(1)	14(1)	8(1)	-5(1)
O(2)	18(1)	32(1)	31(1)	-13(1)	8(1)	-1(1)
O(3)	22(1)	37(1)	22(1)	-5(1)	8(1)	2(1)
C(1)	32(1)	27(1)	33(1)	3(1)	17(1)	6(1)
C(2)	29(1)	29(1)	27(1)	7(1)	7(1)	-2(1)
C(3)	55(2)	31(1)	35(1)	-6(1)	23(1)	-1(1)
C(4)	18(1)	23(1)	26(1)	-2(1)	8(1)	-3(1)
C(5)	35(1)	32(1)	32(1)	0(1)	11(1)	-14(1)
C(6)	49(2)	44(2)	51(2)	-3(1)	19(2)	-27(1)
C(7)	35(2)	50(2)	53(2)	-14(2)	12(1)	-22(1)
C(8)	29(1)	50(2)	33(1)	-8(1)	1(1)	-11(1)
C(9)	24(1)	35(1)	28(1)	-1(1)	4(1)	-4(1)

Table Xd₂: Facteurs d'agitation anisotropique ($A^2 \times 10^3$)

I-14°/ (Me2AsO2SnMe3)2.H2O (B6)

Sur la figure 14a nous avons reporté le spectre infrarouge du dérivé et les attributions des bandes principales sur le tableau XIa.

La grosse absorption à 3482 cm⁻¹ et la bande intense à 1619 cm⁻¹ dues respectivement à vH₂O et δ H₂O révèlent des liaisons hydrogène dans la molécule. La présence de v_sSnC₃ à 518 cm⁻¹ sous forme d'une bande faible indique que le groupement SnC₃ n'est pas plan. v_{as}SnC₃ et vSnO sont respectivement localisées à 544 cm⁻¹ et 202 cm⁻¹. Sur la figure 14b est reporté le spectre Mössbauer du complexe. Les valeurs des paramètres Mössbauer (Δ E = 3,84 mms⁻¹; δ = 1,25 mms⁻¹; Γ = 0,80) sont similaires à celles trouvées par Sidibé et col. (70) dans la cas du complexe Ph₂PO₂SnMe₃ (Δ E = 3,82 mms⁻¹; δ = 1,26 mms⁻¹; Γ = 0,86) qui a une structure en chaîne infinie de type (c) de tiekinik (81) dans les carboxylates, l'étain étant pentacoordiné avec un anion bi-unidentate.

Les protons des groupements méthyl apparaissent sur le spectre RMN ¹H du dérivé (figure 14c) sous forme d'un signal intense à 0,469 ppm avec des signaux satellites à 0,349, 0,355, 0,584 et 0,589 ppm dus au couplage des protons avec les isotopes ¹¹⁷Sn et ¹¹⁹Sn [²J(¹¹⁹Sn-¹³C-¹H) = 72,03 Hz et J(¹¹⁷Sn-¹³C-¹H) = 68,72 Hz)].

Le spectre RMN du carbone 13 (figure14d) présente un signal intense à 3,756 ppm dû aux carbones des groupements méthyl. Les signaux satellites à –0,009, 0,159, 7,356 et 7,522 ppm qui l'accompagnent sont dus au couplage des atomes de carbones avec les isotopes ¹¹⁹Sn et ¹¹⁷Sn donnant respectivement $[J(^{119}Sn-^{13}C) = 568,28$ Hz et $J(^{117}Sn-^{13}C) = 510,56$ Hz)]. Le signal intense qui apparaît à 19,941ppm

est dû aux carbones des groupements méthyl du ligand. Les valeurs des constantes de couplage indiquent une pentacoordination autour de l'étain (80).

Sur la base des données spectroscopiques, nous proposons une structure en chaîne infinie identique à celle de Ph₂PO₂SnMe₃ (70). Les chaînes infinies sont reliées par des liaisons hydrogène formées entre la molécule d'eau qui accompagne le complexe et un des oxygènes du ligand. (schéma 14). Cette structure a été confirmée par diffraction aux Rayons X (figure 14e).

figure 14a : Spectre infrarouge de (Me₂AsO₂SnMe₃)₂.H₂O

Attributions	vH_2O	δH ₂ O	vAsO ₂	vAsC ₂	δAsO ₂	δAsC ₂	v _{as} SnC ₃	v _s SnC ₃	vSnO
B ₆	3482lar	1619tF	880tF 751tF	634tF 600m	468m 391tF	309tF	544m	518tr	202m

Tableau Xla

tF très Forte, F = Forte, lar =large, m = moyenne, tr = trace

figure 14b : Spectre Mössbauer de (Me₂AsO₂SnMe₃)₂.H₂O

[CH	2 = 0.86	93
			V/	ALUES OF	- PAF	RAMETE	RS
	INIT	IAL	FIN			ERRO	DR I
	YD = 016905	3.4844	01691	66.9063	<u>±</u>	035.81	10
	<u>Q. S. =</u>	3.20	00	3.8463	<u>+</u>	0.00	85
	<u> </u>	1.20	00	1.2480	<u>±</u>	0.00	42
	Larg 1 =	0.85	00	0.8092	<u>+</u>	0.01	84
	Larg2 =	0.85	00	0.8065	<u>±</u>	0.02	35
	Int1 =	0.05	00	0.0697	<u> </u>	0.00	10
	lnt2 =	0.05	00	0.0751	<u>±</u>	0.00	$\frac{10}{20}$
l	VMAX = -7.8	000	FUI		JINI =	- 258.94	58
0.802	0 . 683	0.589	0.469	0.355	0.253	0.133	
 1		Ľ	K		<u> </u>		

figure 14d : spectre RMN ¹³C de (Me₂AsO₂SnMe₃)₂.H₂O

Etude cristallographique du dérivé (Me2AsO2SnMe3)2.H2O

Sur la figure 14e est représentée la structure ORTEX du composé. Les données cristallographiques sont reportées sur le tableau XIb, les valeurs des angles et des longueurs liaisons entre les atomes sur le tableau XIc, les coordonnées et facteurs d'agitation isotropiques et anisotropiques des atomes dans le cristal sur les tableaux XId₁, XId₂, XId₃. Le complexe cristallise dans un système monoclinique de groupe d'espace P2₁/n. Les paramètres de la maille sont : a = 10,9350(10) Å ; b = 14,3350(10) Å; c = 13,7640(10) Å; $\alpha = \gamma = 90^{\circ}$; $\beta = 107,5330(10)^{\circ}$. La taille du cristal est de 0,30 x 0,30 x 0,15 mm. Les valeurs des angles O(3)-Sn(2)-C(8); O(3)-Sn(2)-C(7); O(3)-Sn(2)-C(6) qui sont respectivement : 89,79(11)°; 91,29(11)°; 84,95(11)° montrent que le groupement SnC₃ n'est pas rigoureusement plan. L'angle O(3)-Sn(2)-O(2) égal à 176,48(8)° indique une transcoordination du ligand sur le groupement SnC₃ donnant ainsi à l'étain un environnement bipyramidal différence existe angles As(2)-O(3)-Sn(2)trigonal. La qui entre les [128,21(11)°] et As(1)-O(1)-Sn(1) [141,25(12)°] s'explique par la présence de la liaison hydrogène formée par l'oxygène O(3) du ligand et l'hydrogène de la molécule d'eau. En effet l'oxygène O(3) est attiré par l'hydrogène de la molécule d'eau causant ainsi une fermeture de l'angle As(2)-O(3)-Sn(2). Les valeurs des longueurs de liaison

As-O [As(2)-O(4)=1,672(2) Å; As(2)-O(3) = 1,686(2) Å] presque identiques montrent que le ligand est bi-unidentate. Les valeurs des longueurs de liaisons Sn-O [Sn(2)-O(2) = 2,207(2) Å; Sn(2)-O(3) = 2,277(3) Å; Sn(1)-O(1) = 2,196(2) Å; Sn(1)-O(4') = 2,219(2) Å] sont comparables à celles trouvées par Diassé-Sarr et coll. (39) dans le cas du dérivé SeO₃(SnMe₃)₂H₂O qui a une structure en chaîne.

Les données cristallographiques montrent que la structure du dérivé est une chaîne infinie avec un anion bi-unidentate et un environnement de l'étain bipyramidal trigonal. Elles révèlent aussi la présence de liaisons hydrogène entre un des oxygènes de l'anion et l'hydrogène de la molécule d'eau qui accompagne le dérivé.

Tableau Alb . Tableau des donnees chistallographiques	Tableau	Xlb :	Tableau	des	données	cristallographiqu	les
---	---------	-------	---------	-----	---------	-------------------	-----

Formule	Cue Han Asa Or Sha
Masse motaire	610 58
Temperature	150(2) K
Longueur d'onde	0.71073 A
Système cristallin	monoclinique
Groupe d'espace	P 21/n
Dimensions	$a = 10.93500(10) \text{ Å} \alpha = 90^{\circ}$
	b = 14.33500(10) Å β = 107.5330(10)°
	$c = 13.76400(10) \text{ Å} \gamma = 90^{\circ}$
Volume	2057.32(3) Å ³
Ζ	4
Densité calculée	2.000 Mg/m ³
Coeficient d'absorption	5.630 mm ⁻¹
F(000)	1192
Taille du cristal	0.30 x 0.30 x 0.15 mm
Limite de θ pour les données mesurées	3.91 to 30.08°
Limites des indices	-15<=h<=15, -20<=k<=20, -19<=l<=19

Nombre de réflexions indépendantes	5992 [R(int) = 0.0740]
Nombre de réflexions mesurées	38163
Data Completeness	99,2 %
Max. et min. de transmission	0,4855 et 0,2829
Méthode de rafinement	Full-matrix least-squares on F ²
Facteur R finale [I>2o(I)]	$R_1 = 0,0310, \omega R_2 = 0,0806$
Indices R (ensemble des données)	$R_1 = 0.0331, \omega R_2 = 0.0820$
Coeficient d'extinction	0,0047(3)
Densité résiduelle	1,065 et -1,308 e. Å ⁻³

Tableau XIc: Tableau des angles (°) et longueurs de liaisons (Å)

Liaisons	Longueurs	Angles (suite)	Valeurs (suite)
Sn(1)-C(3)	2.122(3)	C(2)-Sn(1)-O(4)	86.25(11)
Sn(1)-C(2)	2.132(3)	C(1)-Sn(1)-O(4)	92.49(10)
Sn(1)-C(1)	2.135(3)	O(1)-Sn(1)-O(4)	174.48(9)
Sn(1)-O(1)	2.196(2)	C(8)-Sn(2)-C(6)	120.00(14)
Sn(1)-O(4')	2.219(2)	C(8)-Sn(2)-C(7)	120.26(15)
Sn(2)-C(8)	2.116(3)	C(6)-Sn(2)-C(7)	119.58(16)
Sn(2)-C(6)	2.121(3)	C(8)-Sn(2)-O(2)	93.68(11)
Sn(2)-C(7)	2.128(3)	C(6)-Sn(2)-O(2)	92.78(11)
Sn(2)-O(2)	2.207(2)	C(7)-Sn(2)-O(2)	87.47(10)
Sn(2)-O(3)	2.277(2)	C(8)-Sn(2)-O(3)	89.79(11)
As(1)-O(1)	1.672(2)	C(6)-Sn(2)-O(3)	84.95(11)
As(1)-O(2)	1.682(2)	C(7)-Sn(2)-O(3)	91.29(11)
As(1)-C(4)	1.909(3)	O(2)-Sn(2)-O(3)	176.48(8)
As(1)-C(5)	1.913(3)	O(1)-As(1)-O(2)	110.93(10)
As(2)-O(4)	1.672(2)	O(1)-As(1)-C(4)	110.11(13)
As(2)-O(3)	1.686(2)	O(2)-As(1)-C(4)	108.49(13)
As(2)-C(9)	1.907(3)	O(1)-As(1)-C(5)	111.80(14)
As(2)-C(10)	1.918(3)	O(2)-As(1)-C(5)	107.71(13)
O(3)-O(5)	2.882(4)	C(4)-As(1)-C(5)	107.68(16)
O(4)-Sn(1)	2.219(2)	O(4)-As(2)-O(3)	111.94(11)
Angles	Valeurs	O(4)-As(2)-C(9)	109.49(13)
C(3)-Sn(1)-C(2)	117.58(17)	O(3)-As(2)-C(9)	108.69(13)
C(3)-Sn(1)-C(1)	118.37(16)	O(4)-As(2)-C(10)	111.41(14)
C(2)-Sn(1)-C(1)	124.05(14)	O(3)-As(2)-C(10)	106.87(14)
C(3)-Sn(1)-O(1)	92.96(12)	C(9)-As(2)-C(10)	108.31(15)
C(2)-Sn(1)-O(1)	90.43(11)	As(1)-O(1)-Sn(1)	141.25(12)
C(1)-Sn(1)-O(1)	85.72(10)	As(1)-O(2)-Sn(2)	124.41(11)
C(3)-Sn(1)-O(4)	92.48(12)	As(2)-O(3)-Sn(2)	128.21(11)
Sn(2)-O(3)-O(5)	100.96(11)	As(2)-O(3)-O(5)	114.88(13)
As(2)-O(4)-Sn(1)	139.45(12)		

Tableau XId₁: Tableau des coordonnées (x 10⁴) et facteurs d'agitation isotropiques(A² x 10³) U(eq) des atomes(O, Sn, As,C) dans le cristal

Atoms	X	У	Z	U(eq)
Sn(1)	4965(1)	2960(1)	391(1)	20(1)
Sn(2)	2165(1)	4075(1)	2847(1)	19(1)
O(1)	3484(2)	3771(2)	793(2)	27(1)
O(2)	1204(2)	4151(2)	1191(2)	24(1)
O(3)	3140(2)	4093(2)	4561(2)	29(1)
O(4)	1551(2)	2731(2)	4972(2)	29(1)

O(5)	5801(3)	4000(2)	4638(3)	56(1)
As(1)	1974(1)	4142(1)	301(1)	19(1)
As(2)	2758(1)	3473(1)	5469(1)	20(1)
C(1)	6194(3)	3348(3)	1858(2)	32(1)
C(2)	4694(3)	3776(3)	-952(2)	32(1)
C(3)	3912(4)	1698(2)	257(4)	42(1)
C(4)	1957(3)	5378(2)	-221(3)	33(1)
C(5)	1019(3)	3364(3)	-794(3)	36(1)
C (6)	3443(4)	5177(2)	2807(3)	35(1)
C(7)	357(3)	4386(3)	3055(2)	35(1)
C(8)	2744(3)	2672(2)	2792(3)	31(1)
C(9)	4234(3)	2794(2)	6233(3)	31(1)
C(10)	2327(3)	4355(3)	6361(3)	33(1)

Tableau XId₂: Tableau des coordonnées ($x \ 10^4$) et facteurs d'agitation isotropiques (A² $x \ 10^3$) U(eq) des atomes d'Hydrogène dans le cristal

Atoms	X	v	Z	U(ea)
H(1A)	6619	3940	1806	47
H(1B)	6843	2863	2112	47
H(1C)	5686	3421	2331	47
H(2A)	5234	4335	-788	48
H(2B)	3792	3961	-1218	48
H(2C)	4934	3408	-1466	48
H(3A)	4120	1392	924	63
H(3B)	4139	1284	-228	63
H(3C)	2992	1834	15	63
H(4A)	1068	5588	-509	49
H(4B)	2384	5381	-753	49
H(4C)	2410	5798	332	49
H(5A)	142	3602	-1062	55
H(5B)	997	2726	-544	55
H(5C)	1430	3364	-1336	55
H(6A)	3028	5777	2842	53
H(6B)	3671	5143	2172	53
H(6C)	4220	5120	3389	53
H(7A)	247	5064	3066	52
H(7B)	321	4119	3701	52
H (7C)	-329	4117	2493	52
H(8A)	2045	2255	2817	46
H(8B)	3500	2546	3375	46
H(8C)	2957	2566	2158	46
H(9A)	4941	3229	6524	47
H(9B)	4485	2352	5784	47
H(9C)	4035	2452	6783	47
H(10A)	3050	4779	6638	50
H10B)	2137	4022	6920	50
H(10C)	1572	4714	5979	50

Tableau XId₃ :Tableau des facteurs d'agitation anisotropiques ($A^2 \times 10^3$)

Atomes	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn(1)	18(1)	23(1)	19(1)	1(1)	6(1)	2(1)
Sn(2)	19(1)	19(1)	21(1)	0(1)	8(1)	-1(1)
As(1)	17(1)	24(1)	17(1)	0(1)	6(1)	1(1)
As(2)	18(1)	25(1)	17(1)	1(1)	6(1)	-2(1)

O(1)	22(1)	36(1)	24(1)	-1(1)	8(1)	8(1)
O(2)	20(1)	35(1)	20(1)	2(1)	9(1)	2(1)
O(3)	26(1)	41(1)	21(1)	4(1)	6(1)	-11(1)
O(4)	22(1)	39(1)	26(1)	-2(1)	8(1)	-10(1)
O(5)	43(2)	53(2)	74(2)	8(2)	22(2)	-1(1)
C(1)	29(1)	45(2)	20(1)	-3(1)	6(1)	2(1)
C(2)	28(1)	46(2)	22(1)	9(1)	8(1)	6(1)
C(3)	33(2)	25(2)	74(3)	-7(2)	25(2)	-5(1)
C(4)	26(1)	30(2)	39(2)	14(1)	7(1)	0(1)
C(5)	35(2)	47(2)	26(1)	-10(1)	7(1)	-10(1)
C(6)	48(2)	28(2)	30(2)	-1(1)	12(1)	-16(1)
C(7)	25(1)	55(2)	27(1)	-5(1)	11(1)	7(1)
C(8)	37(2)	20(1)	36(2)	2(1)	11(1)	5(1)
C(9)	24(1)	30(2)	38(2)	2(1)	5(1)	1(1)
C(10)	36(2)	36(2)	31(2)	-3(1)	15(1)	5(1)

I-15°/ HPO₃(SnMe₃)₂H₂O (B₇)

Les attributions des bandes fondamentales et le spectre infrarouge du complexe sont reportés respectivement sur le tableau XIIa et la figure 15a.

Comme dans le cas de (Me₂AsO₂SnMe₃)₂.H₂O, l'absorption à 3400 cm⁻¹ et la bande intense à 1639 cm⁻¹ dues respectivement à vH₂O et δ H₂O confirme la présence de l'eau. La largeur de l'absorption centrée à 3000 cm⁻¹ semble indiquer que la molécule d'eau est impliquée dans une liaison hydrogène. La bande intense qui apparaît à 2362 cm⁻¹ est caractéristique de vPH. La présence de v_sSnC₃ sous forme d'une bande faible à 512 cm⁻¹ montre que le groupement SnC₃ n'est pas plan. v_{as}SnC₃ est localisée à 567 cm⁻¹ sous forme d'une bande moyenne. La liaison métalligand se traduit par l'apparition de vSnO à 237cm⁻¹ sous forme d'une bande forte. Le spectre Mössbauer de ce composé est reporté sur la figure 15b. La valeur élevée de l'éclatement quadripolaire (Δ E = 3,74 mms⁻¹) montre que l'étain est transcoordiné. Ce type de composé avait été obtenu par Diassé-Sarr et coll. (39) dans le cas de SeO₃(SnMe₃)₂H₂O dont la structure aux Rayons X révèle une couche infinie dans laquelle l'étain est transcoordiné.

Le spectre RMN du proton (figure 15c) montre un signal intense à 0,51 ppm avec des signaux satellites à 0,403, 0,416, 0,618 et 0,623 ppm dus au couplage des protons des groupements méthyl avec les isotopes ¹¹⁹Sn et ¹¹⁷Sn [$^{2}J(^{119}Sn-^{13}C-^{1}H) = 66,03$ Hz et $^{2}J(^{117}Sn-^{13}C-^{1}H) = 63,03$ Hz].

Le spectre RMN du carbone (figure 15d) présente un signal intense à 0,33 ppm dû aux carbones des groupements méthyl. Les signaux satellites à -2,864 et 3,388 ppm sont dus au couplage des atomes de carbones avec l'atome ¹¹⁹Sn donnant une

constante $J(^{119}Sn^{-13}C) = 471$ Hz. Les valeurs des constantes de couplage indiquent un environnement bipyramidal trigonal de l'étain central (80).

Sur la base des données spectroscopiques nous proposons une structure en couche infinie dans laquelle l'anion est tri-unidentate avec un environnement de l'étain bipyramidal trigonal. Dans la structure du dérivé HPO₃(SnMe₃)₂H₂O la molécule d'eau est coordinée à l'étain central. Une liaison hydrogène est formée entre l'hydrogène de la molécule d'eau et un oxygène de l'anion (schéma 15). Cette structure est confirmée par diffraction aux rayons X (figure 15e).

figure 15a : Spectre infrarouge de HPO₃(SnMe₃)₂.H₂O

Tableau Xlla

Attributions	vH₂O	δH ₂ O	vPO ₃	vPH	δΡΟ3	$v_{as}SnC_3$	v _s SnC ₃	vSnO
B ₆	3400lar	1639tF	1191m 1128tF 1056tF 982ttF	690F	557tF 548ép 449m 443 m	567m	512f	237F

tF très Forte, F = Forte, lar =large, f = faible, m = moyenne, ép = épaulement

figure 15b : Spectre infrarouge de HPO₃(SnMe₃)₂.H₂O

			CHI	2 = 0.9628
		VALUES C	F PAR	AMETERS
INIT	NAL	FINAL		ERROR
YD = 056201	14.5000 0	562412.5271	±	048.3254
Q. S. =	3.4000	3.7421	±	0.0128
l. S. =	1.2000	1.3420	±	0.0178
Larg 1 =	0.9000	0.9623	Ŧ	0.0117
Larg2 =	0.9000	0.9645	±	0.0139
Int1 =	0.0020	0.0158	±	0.0008
Int2 =	0.0020	0.0174	±	0.0008
VMAX = -7.9	5000	FOLDING P	OINT =	= 258.0213

Etude cristallographique du dérivé HPO₃(SnMe₃)₂,H₂O

Sur la figure 15f nous avons représenté la structure ORTEX du complexe. Les données cristallographiques sont reportées sur le tableau XIIb, les valeurs des angles et des longueurs de liaisons entre les atomes sur le tableau XIIc, les coordonnées et facteurs d'agitation isotropiques et anisotropiques des atomes sur les tableaux XIId₁, XIId₂ et XIId₃. Le complexe cristallise dans un système orthorhombic avec un groupe d'espace P_{bca}.

90

figure 15c : Spectre RMN ¹³C de HPO₃(SnMe₃)₂.H₂O

91

Les paramètres de la maille sont : $\alpha = \beta = \gamma = 90^{\circ}$; a = 13,9980(4) Å; b = 13,2190(4) Å; c = 16,3620(4) Å. La taille du cristal est de 0,50 x0,25 x 0,08 mm. Le groupement SnC₃ n'est pas rigoureusement plan autour de Sn(1) du fait des valeurs des angles O(4)-Sn(1)-C(1, 2, 3) [87,37°(17), 85,06°(17), 83,57°(17)] inférieures à 90°.

L'effet d'affaissement s'explique par la différence des oxygènes liés à Sn(1) et provenant respectivement de la molécule d'eau O(4) et de l'anion O(1). Cet effet d'affaissement n'est pas observé dans le cas de Sn(2) [O(2)-Sn(2)-C(4, 5, 6) = 91,59°, 90,94°, 89,29°)] car les oxygènes O(2) et O(3') liés au groupement SnC₃ sont identiques car proviennent du même type d'anion. Les longueurs des liaisons P-O(1, 2, 3) [1,520(3) Å, 1,532(3) Å, 1,508(3) Å] presque identiques montrent que l'anion est tri-unidentate. La valeur de l'angle P-O(2)-Sn(2) [126,02(18)°] faible par rapport à celle de P-(O1)-Sn(1)[140,4(2)°] s'explique par la présence d'une liaison hydrogène formée entre l'atome d'hydrogène H(4) de la molécule d'eau et l'atome d'oxygène O(2) de l'anion. En effet l'interaction entre O(2) et H(4) contribue à la fermeture de l'angle. La différence entre les longueurs de liaisons O-H [O(4)-H(4) = 1,428(6) Å ; O(4)-H(5) = 0,89(8) Å] montre que H(5) n'est pas impliqué dans la liaison hydrogène. C'est la liaison hydrogène qui a augmenté la longueur de O(4)-H(4). La variation de l'angle H(4)-O(4)-H(5) [107(5)°] par rapport à celui de la molécule d'eau libre (104°5) montre que la molécule d'eau est coordinée par l'oxygène. Les longueurs des liaisons Sn-O [Sn(1)-O(1) = 2,122(3) Å ; Sn(1)-O(4) = 2,422(3) Å] sont comparables à celles trouvées par Drew et coll.(82) dans le cas du dérivé $(NO_3)SnMe_3H_2O$ [Sn(1)-O(1) = 2,22(3) Å , Sn(1)-O(4) = 2,47(2) Å] qui a une structure en chaîne.

Les données cristallographiques montrent que le dérivé a une structure en chaîne infinie avec un anion tri-unidentate et un environnement de l'étain bipyramidal trigonal (figure 15e). Les chaînes infinies sont reliée entre elles par des liaisons hydrogène formées entre un des atomes d'hydrogène de la molécule d'eau qui accompagne le dérivé et un des atomes d'oxygène de l'anion (figure 15f).

figure 15f: structure de HPO₃(SnMe₃)₂.H₂O

Tableau XIIb : Tableau des données cristallographiques

formule	$C_6 H_{21} P O_4 Sn_2$
Masse molaire	425,60
Température	150(2) K
Longueur d'onde	0,71073 A
Système cristallin	orthorhombique
Groupe d'espace	P _{bca}
Dimensions	$a = 13,9980(4) Å \alpha = 90^{\circ}$
	b = 13,2190(4) Å β = 90°
	$c = 16,3620(4) \text{ Å} \gamma = 90^{\circ}$
Volume	3027,62(16) Å ³

Ζ	8
Densité calculée	1,929 Mg/m ³
Coefficient d'absorption	3,397 mm ⁻¹
F(000)	1696
Taille du cristal	0,50 x 0,25 x 0,08 mm
Limite de θ pour les données mesurées	3,27 to 27,47°
Limites des indices	-18<=h<=18, -15<=k<=17, -20<=l<=21
Nombre de reflexions indépendantes	3448 [R(int) = 0.0740]
Nombre de reflexions mesurées	18407
Max. et min. de transmission	0,7728 et 0,2815
Methode de rafinement	Full-matrix least-squares on F ²
Facteur R finale [I>2σ(I)]	R ₁ = 0,0361, ωR ₂ = 0,0780
Indices R (ensemble des données)	$R_1 = 0.0500, \ \omega R_2 = 0.0859$
Densité résiduelle	0,913 et -1,634 e. Å ⁻³

Tableau XIId₁: Tableau des coordonnées (x 10⁴) et facteurs d'agitation isotropiques(A² x 10³) U(eq) des atomes: O, Sn, As et C

Atoms	X	У	Z	U(eq)
Sn(1)	1351(1)	9875(1)	1966(1)	22(1)
Sn(2)	2413(1)	7572(1)	-283(1)	21(1)
O(1)	1370(2)	10060(1)	-99(1)	23(1)
O(2)	2221(2)	9602(2)	688(2)	31(1)
O(3)	2401(3)	9244(2)	-629(2)	26(1)
O(4)	1551(2)	10956(2)	36(2)	32(1)
Р	1753(1)	10070(3)	3438(2)	31(1)
C(1)	288(4)	11015(4)	1926(3)	32(1)
C(2)	874(4)	8378(4)	2207(3)	37(1)
C(3)	2815(4)	10285(4)	2079(3)	33(1)
C(4)	920(3)	7371(3)	-166(3)	32(1)
C(5)	3276(4)	7976(3)	730(3)	31(1)
C(6)	3087(4)	7344(4)	-1432(3)	37(1)

Tableau XIIc : Tableau des angles (°) et longueurs de liaisons (Å)

Liaisons	Longueurs	Angles (suite)	Valeurs (suite)
Sn(1)-C(3)	2.128(5)	C(2)-Sn(1)-O(4)	85.06(17)
Sn(1)-C(2)	2.126(5)	C(1)-Sn(1)-O(4)	87.37(17)
Sn(1)-C(1)	2.119(5)	O(1)-Sn(1)-O(4)	176.25(12)
Sn(1)-O(1)	2.122(3)	C(4)-Sn(2)-C(5)	121.6(2)
Sn(1)-O(4)	2.422(4)	C(4)-Sn(2)-C(6)	120.1(2)
Sn(2)-C(4)	2.114(5)	C(5)-Sn(2)-C(6)	118.3(2)
Sn(2)-C(5)	2.121(5)	C(4)-Sn(2)-O(3')	89.52(16)
Sn(2)-C(6)	2.125(5)	C(5)-Sn(2)-O(3')	89.54(16)
Sn(2)-O(2)	2.297(3)	C(6)-Sn(2)-O(3')	91.10(16)
Sn(2)-O(3')	2.214(3)	C(4)-Sn(2)-O(2)	91.59(15)
P-O(1)	1.520(3)	C(5)-Sn(2)-O(2)	90.94(15)
P-O(2)	1.532(3)	C(6)-Sn(2)-O(2)	89.29(15)
P-O(3)	1.508(3)	O(3')-Sn(2)-O(2)	179.35(12)
P-H	1.45 (6)	O(3)-P-O(1)	113.7(2)
O(3)-Sn(2')	1.214(3)	O(3)-P-O(2)	112.3(2)
O(4)-H(4)	1.428(6)	O(1)-P-O(2)	110.49(18)

O(4)-H(5)	0.89(8)	O(3)-P-H	112(2)
Angles	Valeurs	O(1)-P-H	102(2)
C(3)-Sn(1)-C(2)	121.6(2)	O(2)-P-H	106(2)
C(3)-Sn(1)-C(1)	119.9(2)	P-O(1)-Sn(1)	140.4(2)
C(2)-Sn(1)-C(1)	116.5(2)	P-O(2)-Sn(2)	126.02(18)
C(3)-Sn(1)-O(1)	96.75(17)	P-O(3)-Sn(2')	142.6(2)
C(2)-Sn(1)-O(1)	91.60(17)	H(5)-O(4)-Sn(1)	126.4(3)
C(1)-Sn(1)-O(1)	95.67(17)	H(4)-O(4)-H(5)	107(5)
C(3)-Sn(1)-O(4)	83.57(17)	Sn(1)-O(4)-H(4)	131(5)

Tableau XIId₂: Tableau des coordonnées (x 10⁴) et facteurs d'agitation isotropiques(A² x 10³) U(eq) des atomes d'Hydrogène

Atoms	x	y	Z	U(eq)
Н	880(40)	10350(40)	-520(40)	44(16)
H(4)	1800(60)	10300(50)	3780(50)	70(20)
H(1A)	-343	10700	1873	47
H(1B)	403	11458	1455	47
H(1C)	312	11415	2430	47
H(2A)	182	8339	2122	55
H(2B)	1023	8199	2774	55
H(2C)	1196	7906	1836	55
H(3A)	3209	9673	2090	50
H(3B)	2909	10666	2587	50
H(3C)	3002	10706	1612	50
H(4A)	649	7191	-699	48
H(4B)	629	8001	28	48
H(4C)	791	6828	226	48
H(5A)	3943	8034	555	46
H(5B)	3224	7455	1154	46
H(5C)	3060	8627	951	46
H(6A)	3774	7468	-1378	55
H(6B)	2817	7813	-1834	55
H(6C)	2981	6646	-1613	55
H(7A)	730	10258	4517	61
H(7B)	110	9602	3889	61
H(7C)	180	10803	3782	61

Tableau XIId₃: Tableau des facteurs d'agitation anisotropiques (A² x 10³)

Atomes	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn(1)	25(1)	21(1)	21(1)	-2(1)	2(1)	-3(1)
Sn(2)	29(1)	15(1)	19(1)	-1(1)	1(1)	-1(1)
P	31(1)	16(1)	21(1)	0(1)	0(1)	2(1)
O(1)	40(2)	30(2)	22(1)	-3(1)	7(1)	-7(1)
O(2)	41(2)	16(1)	21(1)	2(1)	6(1)	3(1)
O(3)	51(2)	14(1)	31(1)	4(1)	-3(1)	-5(1)
O(4)	28(2)	42(2)	23(1)	-4(1)	0(1)	-3(1)
C(1)	34(3)	30(2)	31(1)	1(1)	4(1)	4(1)
C(2)	49(3)	25(2)	35(1)	2(1)	-1(1)	-12(1)
C(3)	24(2)	36(3)	39(3)	-5(2)	6(2)	-7(1)
C(4)	31(3)	23(2)	42(2)	1(1)	-4(1)	-2(1)
C(5)	33(2)	23(2)	36(1)	-60(1)	-8(1)	1(1)
C(6)	55(3)	27(2)	29(2)	-3(1)	14(1)	3(1)
C(7)	45(3)	52(3)	26(1)	0(1)	8(1)	

I-16°/ (Cy2NH2)2(CH2CH2COO)2.2SnMe3CI (B8)

Les attributions des bandes fondamentales sur le spectre infrarouge du complexe sont regroupées sur le tableau XIII et le spectre reporté sur la figure 16a. L'apparition de la bande due à v_s SnC₃ sous forme de trace indique un groupement SnC₃ plan de symétrie D_{3h}. v_{as} SnC₃ et vSnO apparaissent respectivement sous forme de bandes moyennes à 553 cm⁻¹ et 227 cm⁻¹. vSnCl est localisée à 253 cm⁻¹ sous forme d'épaulement. Le spectre du Mössbauer du complexe est reporté sur la figure 16b. La valeur de l'éclatement quadripolaire ($\Delta E = 3,80$ mms⁻¹) qui est similaire à celle de SnMe₃F ($\Delta E 3,82$ mms⁻¹) (83) montre que l'étain est transcoordiné avec un environnement bipyramidal trigonal.

Sur la base de ces données spectroscopiques nous proposons une structure discrète dans laquelle l'anion est bi-unidentate, l'environnement de l'étain étant bipyramidal trigonal (shéma 16).

Attributions	vCO ₂	δCO2	ρ CO 2	ωCO ₂	v _{as} SnC ₃	v _s SnC ₃	vSnCl	vSnO
B ₈	1557tF 1377tF 1280f	771tF 649F	588m 545F	478F 367F 361F	553m	515tr	253ép	227m

Tableau XIII

F = Forte, tF=très forte, f = faible, m = moyenne, ép = épaulement, tr = trace

figure 16b : spectre Mössbauer de (Cy2NH2)2(CH2CH2COO)2.2SnMe3CI

			CHI	2 = 1,9848
		VALUES C)F PAR	RAMETERS
INIT	INITIAL			ERROR
YD = 023205	5,9063 0	232297,3906	±	040,4239
Q. S. =	3,5000	3,8022	±	0,0170
I. S. =	1,5000	1,2907	±	0,0126
Larg 1 =	0,9000	0,8950	±	0,0406
Larg2 =	0,9000	0,8963	±	0,0568
Int1 =	0,0200	0,0291	±	0,0009
Int2 =	0,0200	0,0297	±	0,0008
VMAX = - 7,7	000	FOLDING P	OINT =	= 258,5126

I-17°/Me₂AsO₂SnBu₃.H₂O (C₁)

Le spectre infrarouge du composé est représenté sur la figure 17a et les attributions des bandes fondamentales reportées sur le tableau XIV.

 v_s SnC₃ qui apparaît sous forme de bande moyenne à 605 cm⁻¹ permet de conclure à l'existence d'un groupement SnBu₃ non plan et de symétrie C_{3v}, v_{as} SnC₃ est localisée à 670 cm⁻¹ et vSnO à 227 cm⁻¹ sous forme d'une bande faible. Le spectre Mössbauer du complexe est représenté sur la figure 17b. La valeur de l'éclatement quadripolaire ($\Delta E = 2,93 \text{ mms}^{-1}$) inférieure à 3 mms⁻¹ montre que l'étain a un environnement tétraédrique (55, 56). Partant des données spectrales, nous proposons une structure discrète avec un anion monodentate, l'environnement autour de l'étain étant tétraédrique (schéma 17). L'absorption large entre 3500 et 2700 cm⁻¹ permet d'envisager des liaisons hydrogène impliquant la molécule d'eau.

figure 17a : spectre infrarouge de Me₂AsO₂SnBu₃.H₂O

figure 17b : spectre Mössbauer de Me₂AsO₂SnBu₃.H₂O

		CHI2 = 0,8990					
		VALUES O	F PAR	AMETERS			
INI	INITIAL			ERROR			
YD = 07691	12,6875 07	769152,7500	±	082,0631			
Q. S. =	3,5000	2,9319	±	0,0115			
I. S. =	1,0000	1,1588	±	0,0061			
Larg 1 =	0,9000	0,9313	±	0,0298			
Larg2 =	0,9000	0,9523	±	0,0319			
Int1 =	0,0400	0,0238	<u>±</u>	0,0005			
Int2 =	0,0400	0,0308	±	0,0004			
VMAX = -7,	7000	FOLDING PO	DINT =	258,0000			

I-18°/ PhAsO₃HSnBu₃ (C₂)

Les attributions des bandes principales sur le spectre infrarouge du composé sont reportées sur le tableau XV et le spectre est représenté sur la figure 18a. La bande large qui s'étend de 3500 cm⁻¹ à 2300 cm⁻¹ est attribuée à vOH ; la largeur de la bande permet de penser que le groupement OH est impliqué dans une liaison hydrogène La présence de v_sSnC_3 à 615 cm⁻¹ sur le spectre infrarouge indique un groupement SnBu₃ non plan. La bande qui apparaît à 269 cm⁻¹ attribuée à vSnO indique une liaison métal-ligand. $v_{as}SnC_3$ est localisée à 677 cm⁻¹ sous forme d'une bande forte.

Le spectre Mössbauer du complexe est représenté sur la figure 18b. La valeur de l'éclatement quadripolaire ($\Delta E = 3,87 \text{ mms}^{-1}$) est comparable à celle de SnBu₃F ($\Delta E = 3,73 \text{ mms}^{-1}$) (84) qui a une structure contenant un étain transcoordiné avec un environnement bipyramidal trigonal.

Sur la base des données spectrales nous proposons une structure identique à celle du dérivé PhAsO₃HSnMe₃ (B₅) (schéma 18).

Tableau XV							
Attributions	vOH	vAsO ₃	vPhAs	δAsO ₃	v _{as} SnC ₃	v _s SnC ₃	vSnO
C ₂	3200 lar	891 F 864 F 833 F	690F	405F 365F 356F	677F	615 m	269 m
lar = large, tF	= très For	te, F = Forte	, f = faible	m = moyen	ine		

schéma 18

figure 18a : spectre infrarouge de PhAsO₃HSnBu₃

figure 18b : spectre Mössbauer de PhAsO₃HSnBu₃

				CHI2 = 1,9228			
		VALUES C	VALUES OF PARAMETERS				
INITIAL		FINAL		ERROR			
YD = 04517	04,9063 0	451726,5000	±	082,3517			
Q. S. =	4,0000	3,8747	±	0,0108			
I. S. =	2,1000	1,4811	±	0,0027			
Larg 1 =	0,9000	0,9871	±	0,0106			
Larg2 =	0,9000	0,9876	<u>±</u>	0,0207			
Int1 =	0,0100	0,0972	±	0,0006			
Int2 =	0,0200	0,0868	±	0,0006			
VMAX = -7	7000	FOLDING P	OINT =	258,0000			

CONCLUSION

Ce travail nous a permis de synthétiser de nouveaux complexes et dérivés de SnR₃Cl (R = Me, Bu, Ph). La pluspart des composés ont des structures discrètes ou en chaîne infinie.

Les anions utilisés sont monodentates, bi-unidentates ou tri-unidentates et l'environnement de l'étain est bipyramidal trigonal avec une transcoordination symétrique ou dissymétrique.

Dans le cas du dérivé $HOC_6H_4COOSnPh_3$, la structure est discrète avec un anion monodentate et un environnement autour de l'étain tétraédrique. Dans $HOC_6H_4COOSnPh_3$, nous notons une liaison hydrogène interne qui se manifeste par absorption aux environs de 3200 cm⁻¹.

Les études par spectroscopie RMN nous ont permis de confirmer la pentacoordination autour de l'étain.

Les structures de $HOC_6H_4COOSnPh_3$, $IO_3Na.3SnPh_3Cl$, $PhAsO_3HSnMe_3$, $(NO_2)_2C_6H_3COOSnMe_3$ ($Me_2AsO_2SnMe_3$)₂. H_2O et $HPO_3(SnMe_3)_2H_2O$ ont été déterminées par Rayons X.

Dans le cas du complexe HPO₃(SnMe₃)₂H₂O , la molécule d'eau de cristallisation est coordinée à l'étain central par l'oxygène et relie les chaînes infinies par liaison hydrogène. Par contre, pour le complexe (Me₂AsO₂)₂SnMe₃.H₂O la molécule n'est pas directement coordinée à l'élément central mais relie les chaînes infinies par liaison hydrogène.

Le changement de cation nous a permis d'isoler le composé d'addition $(Cy_2NH_2)_2(CH_2)_4(COO)_2.2SnMe_3CI$ (avec les cations de type R_4N^+ on obtient une substitution totale).

Il faut aussi signaler le caractére particulier du complexe IO₃Na.3SnPh₃Cl qui réside dans le fait que le cation stabilisateur est Na⁺. C'est le premier complexe de SnPh₃Cl avec comme cation stabilisateur un alcalin.

II°/ COMPLEXES ET DERIVES CONTENANT LE RESIDU SnR₂ (R = Me, Ph)

Les dérivés diorganométalliques contenant des oxoanions tels que les ions carboxylates et qui ont des activités biologiques très importantes ont fait l'objet de plusieurs travaux (85-91). Les structures aux Rayons X des dérivés diorganométalliques tels que RCO_2SnMe_2CI (R = Me ; $2-NC_5H_4$) () ont révélé des structures en chaîne infinie.

Dans notre laboratoire des dérivés diorganoméalliques tels aue (R Me₂AsO₂SnR₂Cl = Me. Bu) (70), (PhSO₃NMe₄)₂SnBu₂Cl₂ (92). SeO₄(NMe₄)₂(SnPh₂Cl₂)₂ (93) ont été synthétisés et caractérisés par les méthodes spectroscopiques.

Dans ce travail nous avons synthétisé de nouveaux dérivés avec les oxoanions cités précédemment. Les composés obtenus ont été caractérisés par spectroscopie infrarouge et Mössbauer. Sur la bases des données spectroscopiques des structures ont été proposées.

Complexes et dérivés contenant le résidu SnMe_z

II-1°/ HOC₆H₄COOSnMe₂CI (D₁)

Les attributions des bandes fondamentales sont reportées sur le tableau XVI et le spectre infrarouge est représenté sur la figure 19a. La bande qui apparaît à 3232 cm⁻¹ est attribuée à vOH. v_sSnC_2 est absente sur le spectre infrarouge du complexe, ce qui permet de conclure à un groupement SnC₂ linéaire. $v_{as}SnC_2$ est localisée à 567 cm⁻¹ sous forme d'une bande moyenne.

Le spectre Mössbauer du complexe est représenté sur la figure 19b. La valeur élevée de l'éclatement quadripolaire ($\Delta E = 3,58 \text{ mms}^{-1}$) comparable à celle trouvée par Sidibé et coll. (70) dans le cas du dérivé Me₂AsO₂SnBu₂Cl ($\Delta E = 3,40 \text{ mms}^{-1}$) qui a une structure en chaîne avec une transcoordination non symétrique des groupements SnBu₂.

Partant des données spectrales nous proposons une structure en chaîne infinie avec une transcoordination non symétrique des groupements SnMe₂ (schéma19). Cette structure est identique à celle de Me₂AsO₂SnBu₂Cl trouvé par Sidibé et coll. (70).

figure 19b : spectre Mössbauer de HOPhCOO.SnMe₂Cl

HB1	157 H	OPhCO ₂ SnMe	,ĈI	SB154
		C	Hi2	= 1.7196
	V	ALUES OF PA	RAI	METERS
	NITIAL	FINAL		ERROR
YD= 6141771	0625	615135.9375	+-	72.5538
Q.S.=	3.5000	3.5832	+-	0.0026
I.S. =	1.5000	1.3425	+-	0.0014
LARG1=	0.9000	0.9353	+-	0.0068
LARG2=	0.9000	0.9576	+-	0.0055
PROF1=	0.0500	0.1117	+-	0.0005
PROF2=	0.0500	0.1461	+-	0.0005
VMAX = 7.77	'00 Fi	OLDING POIN	Τ=2	257.9272

II-2°/ PhCH=CHCOOSnMe₂CI (D₂)

Les attributions des bandes fondamentales sont reportées sur le tableau XVII et le spectre infrarouge du dérivé sur la figure 20a. v_sSnC_2 qui apparaît à 514cm⁻¹ montre que le groupement SnC₂ est non linéaire. $v_{as}SnC_2$ et v_sSnCI sont respectivement localisées à 562 cm⁻¹ et 296 cm⁻¹ sous forme de bandes fortes. vSnO qui apparaît sous forme d'une bande forte à 257 cm⁻¹ indique la coordination métalligand.

Le spectre Mössbauer du complexe est représenté sur la figure 20b. Les valeurs des paramètres Mössbauer (Γ =0,97 ; δ =1,20 mms⁻¹ ; Δ E=3,43 mms⁻¹) sont comparables à celles de Me₂AsO₂SnBu₂Cl trouvées par Sidibé (70). Sur la base des données spectrales nous proposons une structure identique à celle de D₁ (schéma 20).

Attributions	vCO ₂	δCO2	ρ CO 2	ωCO2	$v_{as}SnC_2$	v _s SnC₂	vSnCl	vSnO	
D ₂	1639tF 1580m 1548F 1376tF	770tF	588F 548F 529F	399F 366F	5 62F	514F	296tF	257F	

Tableau XVII

F = Forte, f = faible, m = moyenne

figure 20b : spectre Mössbauer de PhCH=CH-COOSnMe₂Cl
			CH	2 = 0,8548				
VALUES OF PARAMETERS								
INI	ΓIAL	FINAL		ERROR				
YD = 09865.	7109 098	845,6406	<u>±</u>	028,6914				
Q. S. =	3.4000	3.4360	±	0.0264				
I. S. =	1.2000	1.2035	±	0.0223				
Larg 1 =	0.9000	1,0462	±	0.1409				
Larg2 =	0.9000	0.9364	±	0.0811				
Int1 =	0.0200	0.0250	±	0.0012				
Int2 =	0.0200	0.0328	±	0.0012				
VMAX = -7.	7000	FOLDING P	OINT =	= 257.6799				

II-3°/ Cy₂NH₂ PhCH=CH-COOSnMe₂CI₂ (D₃)

Le spectre infrarouge du complexe est représenté sur la figure 21a et les attributions des bandes principales sont reportées sur le tableau XVIII. $v_s SnC_2$ qui est présente sous forme de bande moyenne à 519 cm⁻¹ montre que le groupement SnC₂ n'est pas linéaire. Les bandes à 227 cm⁻¹ et 283 cm⁻¹ sont respectivement attribuées à vSnO et vSnCI. $v_{as}SnC_3$ est localisée à 570 cm⁻¹ sous forme d'une bande moyenne.

Le spectre Mössbauer du complexe est représenté sur la figure 21b. La valeur de l'éclatement quadripolaire ($\Delta E=3,73 \text{ mm.s}^{-1}$) montre que l'étain est transcoordiné et son environnement est octaédrique.

Sur la base des données spectroscopiques, nous proposons une structure en chaîine infinie avec un anion bi-unidentale et l'environnement autour de l'étain est octaédrique (schéma 21).

Attributions	vCO2	δCO2	ρ CO 2	ωCO₂	vasSnC ₂	vsSnC ₂	vSnCl	vSnO		
D ₃	1639F 1580m 1546F 1377TF	770F 633F	587F 549m 536m 501F	446m 361F	570m	519m	283F	227m		

Tableau XVIII

F = Forte, f = faible, m = moyenne

figure 21a : spectre infrarouge de Cy₂NH₂ PhCH=CH-COOSnMe₂Cl₂

			CHI	2 = 1,0404
		VALUES O	F PAR	AMETERS
INITIA	AL.	FINAL		ERROR
YD = 0607683	.1875 0	607546,6875	±	070,7386
Q. S. =	3.2000	3.7378	±	0.0610
I. S. =	1.4000	1.1713	±	0.0407
Larg 1 =	0.9000	0,9464	±	0.1318
Larg2 =	0.9000	1,9627	±	0.1950
Int1 =	0.0100	0.0040	±	0.0005
Int2 =	0.0100	0.0045	±	0.0005
VMAX = - 7.70	00	FOLDING PO	DINT =	259,9901

figure 21b : spectre Mössbauer de Cy2NH2 PhCH=CH-COOSnMe2Cl2

II-4°/ Me₄N(NO₂)₂C₆H₃COO.SnMe₂Cl₂ (D₄)

Les attributions des bandes principales sont reportées sur le tableau XIX et le spectre infrarouge est représenté sur la figure 22a. $v_s SnC_2$ présente sous forme d'épaulement à 519 cm⁻¹ confirme la présence d'un groupement SnC₂ coudé. $v_{as}SnC_2$ apparaît à 570 cm⁻¹ et v_sSnO à 212 cm⁻¹. vSnCl est localisée à 243 cm⁻¹ sous forme d'une bande forte.

Le spectre Mössbauer du complexe est représenté sur la figure 22b. La valeur de l'éclatement quadripolaire ($\Delta E = 3,70$ mm.s⁻¹) confirme une transcoordination du ligand avec un environnement octaédrique autour de l'étain.

Sur la base des données spectrales nous proposons une structure semblable à celle de D₃ (schéma 22).

Та	b	lea	u	XIX	(

Attributions	νCO ₂ νNO ₂	δCO2	ρ CO 2	ωCO2	$v_{as}SnC_2$	v₅SnC₂	vSnCl	vSnO
D4	1622tF 1550tF 1537tF 1346tF	791tF 644f	551m 520tF 501F	469F 444tF 372m	570m	519f	243F	212F

tF = très Forte, F = Forte, f = faible, m = moyenne

figure 22a : spectre Mössbauer de Me₄N(NO₂)₂C₆H₃COO.SnMe₂Cl₂

			CHI	2 = 1,9228
		VALUES O	F PAR	AMETERS
INITI	AL	FINAL		ERROR
YD = 0486679	9,1563 04	486721,1563	±	061,5719
Q. S. =	3,4000	3,7089	±	0,0118
I. S. =	1,4000	1,4011	±	0,0124
Larg 1 =	0,9000	0,8871	±	0,0189
Larg2 =	0,9000	0,8710	<u>+</u>	0,0289
Int1 =	0,0200	0,0360	±	0,0004
Int2 =	0,0200	0,0394	±	0,0008
VMAX = -7,7	000	FOLDING PO	DINT =	257,8562

II-5°/ enH₂(Me₂AsO₂)₂.SnMe₂Cl₂ (D₅)

Les attributions des bandes principales sont reportées sur le tableau XX et le spectre infrarouge du complexe est représenté sur la figure 23a ; l'absence de v_sSnC_2 permet de conclure à un groupement SnC₂ linéaire. $v_{as}SnC_2$ apparaît à 570 cm⁻¹ sous forme d'une bande forte, vSnCl et vSnO sont localisées respectivement à 253 cm⁻¹ et 220 cm⁻¹.

Sur la figure 23b est représenté le spectre Mössbauer du dérivé. La valeur élevée de l'éclatement quadripolaire ($\Delta E = 3,74 \text{ mms}^{-1}$) indique une transcoordination avec un environnement de l'étain octaédrique.

Sur la base des données spectroscopiques nous proposons une structure discrète dans laquelle les deux anions sont monodentate et l'environnement autour de l'étain octaédrique (schéma 23a). On peut aussi avoir une structure dimère ou en chaîne infinie (schéma 23b)

Tableau XX								
Attributions	vAsMe ₂	vAsO ₂	δ AsO ₂	δAsMe ₂	v _{as} SnC ₂	v _s SnC ₂	vSnCl	vSnO
D ₅	640F 608TF	900TF 840TF	431F	330F 304F	570F	-	253m	220F

tF = très Forte, F = Forte, m = moyen

figure 23b : spectre Mössbauer de enH2(Me2AsO2)2.SnMe2Cl2

			CH	2 = 0,8658
		VALUES O	F PAR	AMETERS
INIT	IAL	FINAL		ERROR
YD = 006591	0,9063 00	066074,4141	±	015,2330
Q. S. =	4,0000	3,7435	±	0,0379
I. S. =	2,0000	1,0278	±	0,0257
Larg 1 =	0,9000	0,9165	<u>+</u>	0,1253
Larg2 =	0,9000	1,9389	<u>+</u>	0,2521
Int1 =	0,0100	0,0715	±	0,0016
Int2 =	0,0100	0,0775	±	0,0013
VMAX = - 7,7	000	FOLDING PO	DINT =	258,0000

Complexes contenant le résidu SnPh₂

$II-6^{\circ}/enH_2(Me_2AsO_2)_2.SnPh_2Cl_2(D_6)$

Les attributions des bandes principales sur le spectre infrarouge du complexe sont reportées sur le tableau XXI et le spectre est représenté sur la figure 24a. L'absence de v_s SnC₂ attendue vers 510 cm⁻¹ sur le spectre permet de conclure à un groupement SnC₂ linéaire. v_{as} SnC₂ apparaît à 286 cm⁻¹, vSnCI et vSnO sont localisées respectivement à 250 cm⁻¹ et 236 cm⁻¹

Sur la figure 24b est représenté le spectre Mössbauer du complexe. La valeur de l'éclatement quadripolaire ($\Delta E = 3,26 \text{ mms}^{-1}$) supérieure à celle de SnPh₂Cl₂ ($\Delta E = 2,82 \text{ mms}^{-1}$) (79) indique un environnement octaédrique autour de l'étain.

Les données spectroscopiques nous permettent de proposer une structure discrète identique à celle de D₆ (schéma 24). Comme dans le cas du complexe du méthyl, on peut envisager une structure dimère.

	Tableau XXI							
attributions	vAsMe ₂	vAsO ₂	δAsO ₂	δAsMe ₂	vasSnC ₂	vsSnC ₂	vSnCl	vSnO
D ₆	642m 615m	880F 840tF	433m	336m 305F	286m	-	250m	236m

tF = très Forte; F = Forte; m = moyen

figure 24a : spectre infrarouge de enH₂(Me₂AsO₂)₂.SnPh₂Cl₂

figure 24b : spectre Mössbauer de enH2(Me2AsO2)2.SnPh2Cl2

				CH	12 = 0,9345
			VALUES O	F PAF	RAMETERS
INIT	AL	F	FINAL		ERROR
YD = 0121534	4,4375	012	1690,0391	Ŧ	028,9146
Q. S. =	3,500	ю	3,2615	±	0,0108
I. S. =	1,400	ю	0,8355	±	0,0027
Larg 1 =	0,900	00	0,9692	±	0,0106
Larg2 =	0,900	00	0,9401	±	0,0207
Int1 =	0,010	00	0,0822	±	0,0010
Int2 =	0,010	0	0,0896	±	0,0010
VMAX = -7,70	000	F	OLDING PO	INT =	258,0000

CONCLUSION

Ce travail nous a permis de synthétiser de nouveaux complexes et dérivés contenant le résidu SnR₂ (R = Me, Ph) avec l'anion Me₂AsO₂⁻ et les carboxylates.

Le cation éthylénediammonium a un comportement différent des autres cations utilisés car il stabilise l'anion par des liaisons électrostatiques en lui donnant un comportement monodentate.

Le changement de cation dans le cas de l'ion PhCH=CHCOO⁻ nous a permis d'isoler le composé d'addition Cy₂NH₂PhCH=CHCOOSnMe₂Cl₂.

A l'aide des spectroscopies infrarouge et Mössbauer nous avons proposé des structures discrètes ou en chaine infinie dans les quelles l'étain a un environnement octaèdrique avec un ligand monodentate ou bi-unidentate.

III°/ COMPLEXES AVEC SnX₄ (X = CI, Br)

Plusieurs études spectroscopiques (infrarouge, Raman et Mössbauer) sur les complexes de type SnX₄.2L (L = DMSO, DMF, PhAsO, CH₃CN,) ont été réalisées (94-101). Ces études ont tenté de différencier les isomères *cis* ou *trans* parmi ces complexes.

Dans notre laboratoire des complexes de SnX₄ avec les oxoanions tétraédriques ou pyramidaux ont été isolés et caractérisés par les mêmes techniques spectroscopiques (102-104).

Dans ce travail nous avons synthétisé des comlplexes de SnX_4 avec des oxoanions tels que $Me_2AsO_2^-$ et $HOC_6H_4COO^-$ en utilisant respectivement comme cations antagonistes l'éthylènediammonium et le tétraméthylammonium. Sur la base des données spectroscopiques, des structures discrètes ou en chaîne infinie ont été proposées.

III-1°/ $enH_2(Me_2AsO_2)_2.SnX_4$ (X = Cl, Br) (E₁, E₂)

Les attributions des bandes principales des complexes sont reportées sur le tableau XXI et le spectre infrarouge de en(Me₂AsO₂)₂.SnBr₄ est représenté respectivement sur la figure 25. Sur les spectres infrarouge des complexes l'éclatement de $vSnX_4$ n'est pas net par contre l'apparition de $vSnX_4$ (X = Cl, Br) respectivement à 298 cm⁻¹ et 189 cm⁻¹ sous forme d'une raie fine et intense sur les spectres Raman indique une cis coordination de la molécule de SnX₄. Le spectre Mössbauer du complexe bromé est représenté sur la figure 25c. Les données Mössbauer [(E₁: $\Delta E = 0,00 \text{ mms}^{-1}$; $\delta = 0,22 \text{mms}^{-1}$, $\Gamma = 1,44$) et $(E_2: \Delta E = 0.66)$ mms⁻¹; $\delta = 0.47$ mms⁻¹; $\Gamma = 1.16$)] montrent une diminution des déplacements isomériques par rapport à celui de la molécule de SnX₄ quand elle est libre (δ = 0,8 mms⁻¹) (105). Cette diminution traduit la liaison entre le ligand et la molécule SnX₄. En effet quand la molécule de SnX₄ est liée, l'étain entre en interaction avec les atomes donneurs des ligands diminuant ainsi la valeur du déplacement isomérique. La liaison métal-ligand est confirmée par l'apparition de vSnO sur les spectres infrarouge des complexes. La valeur de l'éclatement quadripolaire du complexe bromé est similaire à celle trouvée par Tudéla et coll. (106) dans le cas du complexe $cisSnBr_4(OPPh_3)$ ($\Delta E = 0.64 \text{ mms}^{-1}$).

Sur la base de ces données spectroscopiques nous proposons une structure discrète contenant deux anions monodentates avec une molécule de SnX₄ *cis* coordinée de symétrie C_{2v} (schéma 25). On peut aussi avoir une structure dimère.

figure 25 : spectre infrarouge de enH₂(Me₂AsO₂)₂.SnBr₄

attributions	vAsMe ₂	vAsO ₂	δ AsO ₂	δAsMe ₂	v SnX₄	vSnO
E1	656F 615m	880F 850tF 816ép	470F 410f	320ép 275tF	310F (298tF)	236m
E ₂	656m 600f	900F 880F 860F 830F	467F 406F	301ép 280F	219F (189tF)	236m

Tableau XXI

tF = très Fort, F = Foert, m = moyen, f = faible, ép = épaulement

figure 25c : spectre Mössbauer de enH₂(Me₂AsO₂)₂.SnBr₄

			CHI	2 = 0,9874
		VALUES OF	F PAR	RAMETERS
INITI	AL	FINAL		ERROR
YD = 017412	5,3649 01	174251,4785	±	062,5489
Q. S. =	0,5000	0,6627	±	0,0010
I. S. =	0,8000	0,4713	±	0,0274
Larg =	0,9000	1,1767	±	0,1240
VMAX = -7,7	000	FOLDING PC	DINT =	= 256,0048

III-2°/ NMe₄HOC₆H₄COOSnBr₄ (E₃)

Les attributions des bandes principales du complexe sont reportées sur le tableau XXII et les spectres infrarouge et Raman sont respectivement représentés sur les figures 26a et 26b.

La bande intense qui apparaît à 182 cm⁻¹ sur le spectre Raman montre que la molécule de SnX₄ est *cis*coordinée. L'absence d'une bande au dessus de 1650 cm⁻¹ traduit l'inexistance d'un C=O libre.

Le spectre Mössbauer du complexe est reporté sur la figure 26c. Les données Mössbauer ($\Delta E = 0.73 \text{ mms}^{-1}$; $\delta = 0.73 \text{ mms}^{-1}$, $\Gamma = 1.18$) et l'aparirion de vSnO à 254 cm-1 sur le spectre infrarouge du complexe confirment la liaison métal-ligand et la ciscoordination de la molécule de SnX₄.

Sur la base des données spectrales nous proposons une structure discrète avec une molécule de SnX₄ ciscoordinée et un anion bi-unidentate (shéma 26).

Cette structure est identique à celle trouvée par Sidibé et coll. (107) dans le cas de $NR_4Me_2AsO_2SnX_4$ (R = Me, Et).

figure 26a : spectre infrarouge de NMe4HOC6H4COOSnBr4

figure 26b : spectre Raman de NMe₄HOC₆H₄COOSnBr₄

figure 26c : spectre Mössbauer de NMe₄HOPhCOOSnBr₄

			CHI	2 = 0,9931				
VALUES OF PARAMETERS								
INITIAL		FINAL		ERROR				
YD = 015866*	1,4375 01	158591,5938	±	031,9856				
Q. S. =	0,5000	0,7347	±	0,0009				
I. S. =	0,8000	0,7293	±	0,0302				
Larg =	0,9000	1,1767	<u>+</u>	0,1000				
VMAX = - 7,7000		FOLDING POINT = 256,0000						

Tableau XXII

Attributions	vOH	vCO ₂	δCO2	ρ CO 2	ωCO2	vSnBr ₄	vSnO
E ₃	3200m	1662F 1612F 1525m 1296m	771ép 657m	563ép 552tF 501F	466tF 456ép	219f (182tF)	254f

tF = très Forte, F = Forte, f = faible, m = moyenne, ép = épaulement

CONCLUSION

Dans ce travail nous avons synthétisé de nouveaux complexes de SnX_4 (X = Cl, Br) avec l'anion Me₂AsO₂⁻ et l'ion carboxylate HOC₆H₄COO⁻. Le changement de cation dans le cas de l'anion Me₂AsO₂⁻ nous a permis d'obtenir des complexes à structures discrètes avec deux anions monodentates. Nous rappelons que Sidibé (107), en utilisant comme cation antagoniste le tétramétylammonium avec l'anion Me₂AsO₂⁻, n'a pu isoler que des complexes de SnX₄ qui ont des structures en chaîne infinie ; le ligand étant bi-unidentate. Dans le cas du carboxylate la nature bi-unidentate et la tendance à donner des structures en chaîne ont été confirmées.

CONCLUSION GENERALE

Ce travail nous a permis de synthétiser près d'une trentaine de nouveaux complexes et dérivés organostanniques avec des oxoanions tétraédriques, l'ion iodate et des ions carboxylates.

Des études spectroscopiques nous ont permis de proposer des structures discrètes et en chaîne infinie. La tendance pour les carboxylates à donner des structures en chaîne infinie a été confirmée. Cependant un dérivé carboxylato à structure discrète a été isolé, c'est le cas de HOC₆H₄COOSnPh₃.

Il faut noter l'important rôle joué par le changement de cation qui nous a permis d'isoler des complexes d'addition tels que Cy₂NH₂PhCH=CHCOOSnMe₂Cl₂, (Cy₂NH₂)₂(CH₂)₄(COO)₂.2SnMe₃Cl qui sont difficiles à obtenir avec les cations habituels comme le tétraméthylammonium ou le tétraéthylammonium, cations qui donnent souvent des composés de substitution totale.

L'environnement bipyramidal trigonal de l'étain dans les dérivés contenant le résidu SnR₃ (R = Me, Bu, Ph) a été confirmé par spectroscopies Mössbauer et RMN. Pour le dérivé HOC₆H₄COOSnPh₃, l'environnement de l'étain est tétraédrique.

Dans le cas des complexes et dérivés contenant le résidu SnR₂ (R = Me, Ph), les études spectroscopiques (infrarouge et Mössbauer) ont révélé des structures discrètes ou en chaîne infinie avec un étain à environnement octaédrique.

Les études cristallographiques des complexes $[HOC_6H_4COOSnPh_3, (NO_2)_2C_6H_3COOSnMe_3, IO_3Na.3SnPh_3CI, (Me_2AsO_2SnMe_3)_2.H_2O, PhAsO_3HSnMe_3, HPO_3(SnMe_3)_2H_2O] nous ont permis d'atteindre les différentes structures proposées.$

Pour les complexes de SnX₄ (X = Cl, Br), des structures ont été proposées grâce aux spectroscopies infrarouge, Raman et Mössbauer.

Le caractére singulier du ligand enH₂(Me₂AsO₂)₂ est à signaler puisqu'il permet d'envisager des structures jusqu'ici jamais rencontrées avec les oxoanions. Ce ligand atypique dans la chimie de coordination des oxoanions ouvre de nouvelles perspectives de recherche compte tenu du fait que l'association de l'oxoanion à l'ion éthylènediammonium par liaison hydrogène permet à l'ion de rester fixé à l'oxoanion même si il est lié au centre métallique alors qu'avec des cations en interaction electrostatique pure avec l'oxoanion (cas du tétraméthylammonium et tetraéthylammonium) les composés de substitution totale se forment facilement.

Le complexe IO₃Na.3SnPh₃CI ayant comme cation stabilisateur un métal alcalin a été obtenu pour la première fois dans ce travail.

BIBLIOGRAPHIE

- 47°/ K. Nakamoto Infrared and Raman Spectra of inorganic and coordination compound, J. Wiley et Sons 4th ed (1978)
- 48°/ R. C. Poller et J. N. R. Ruddick J. Chem. Soc., (1969) 2273
- 49°/ K. L. Jaura, K. Chander et K. K. Sharma, Z. Anorg. Allg. Chem.,376 (1970) 303
- 50°/ K. Yasuda, R. Okawara J. Organomet. Chem., 3 (1965) 76
- 51°/ R. Okawara et K. Yasuda, J. Organomet. Chem., 1 (1964) 356
- 52°/ J. P. Clark, and C. J. Wilkins J. Chem. Soc., (A) (1966) 871
- 53°/ R. J. H. Clark, A. G. Davies et R. J. Puddephatt *J. Chem. Soc.*,
 (A) (1968) 1828
- 54°/ R. L. Mössbauer, Z. Physik 151, (1958) (124) Naturewissenschaften. 45 (1958) 358, Z. Naturforsch. 140, (1959) 221
- 55°/ R. V. Parish et R.H. Platt, Inorg. Chim. Acta, 4, (1970) 65
- 56°/ K. C. Molloy, K. Quill, S. J. Blunden et R. Hill, Polyhedron, 5, 4 (1986) 359
- 57°/ L. Bellamy et C. Calvo, Acta Crystallogr. Sect. B, 34 (1981) 896
- 58°/ W. Lu, B. W. Lu Wang et Y. Lu, Acta Cryst., C56 (2000) 316
- 59°/ Siemens SHELXTL PLUS, Release 4.0 for Siemens R3 Crystallographic Rechearch System, Siemens Analytical X-Ray Instruments, Inc., Madison, WI, (1989)
- 60°/ P. B. Simons et W. A. G. Graham, J. Organomet. Chem., 8 (1997) 479
- 61°/ K. C. Molloy, K. Quill. et I. W. Nowell, J. Organomet. Chem., 289 (1985) 271
- 62°/ B. F. E. Ford, J. R. Sams, R. G. Goel et D. R. Ridley, *J. Inorg. Nucl. Chem.*, 33 (1971) 339
- 63°/ N. W. G. Debye, D. E. Fenton, S. E. Ulrich et J. J. Zuckerman, J. Organomet. Chem., 28 (1971) 339
- 64°/ D. W. Allen, I. W. Nowell, J. S. Brooks et R. W. Clarkson, *J. Organomet Chem.*, 219(1981)29
- 65°/ G. K. SANDHU, S. P. VERMA et E. R. T. Tiekink, *J. Organomet Chem.*, 393 (1990) 195
- 66°/ G. K. Sandhy, R. Hundal et E. R. T. Tiekink, *J. Organomet Chem.*, 412 (1991) 31
- 67°/ C. A. K. Diop, L Diop et A. R. Toscano, *Main group Met. Chem.*, 25, 5 (2002) 327

- 68°/ C. A. K. Diop, K. Y. A. Okio, L. Diop et B Mahieu, *Main group Met. Chem.* 23, 9 (2000) 493
- 69°/ I. Cissé, O. Gueye, B. Mahieu, B. Tinant et E. R. T. Tiekink, *Main group Met. Comp.*, 17 (2003) 821
- 70°/ M. Sidibé, M. Lahlou, L. Diop et B Mahieu, *Main group Met. Chem.*, 21, 10 (1998) 605
- 71/ C. A. K. Diop, M. Lahlou, L. Diop, B. Mahieu et U. Russo, Main Group Met. Chem., 20,10 (1997) 681
- 72°/ J. F. Vollano, R. O. Day, R. R. Holmes, Inorg. Chem., 23 (1984) 3160
- 73°/ B. F. E. Ford, B. V. Liengme et J. R. Sams, *J. Organomet. Chem.*, 19 (1969) 53
- G. M. Bancroft et R. H. Platt, Mössbauer Spectra of Inorganic Compound Bonding and Structure in "advances in inorganic Chemistry and Radiochemistry", edited by H. J. Emeleus and A. G. Sharpe Academic Press, New York, 15 (1972) 141
- 75°/ C. A. K. Diop, H. Qamar, I. Cissé, L. Diop et U. Russo, *Main Group Met. Chem.*, 22, 1 (1999) 41
- 76°/ S. L. Foong, S. Ng, Weng, M. Gielen et V. G. Kumar Das, *Malaysian J. Sci.*,
 15B (1994) 13
- 77°/ K. C. Molloy, P. C. Waterfield et M. F. Mahon, J. Organomet. Chem., 365 (1989) 61
- 78°/ H. Chih, R. B. Penfold, J. Cryst. Mol. Struct., 3 (1973) 285
- 79°/ A. G. Davies et P. J. Smith, *in Comprehensive Organometallic Chemistry* eds.G. Wilkinson, F. G. A. Stone et E. W. Abel, *Pergamon Pres*, 11 (1982) 327
- 80°/ M. Nadvornik, J. Holecek, K. Handlir, A. Lycka, J. Organomet. Chem., 275 (1984) 43
- 81°/ E. R. T. Tiekink Appl. Organomet. Chem., 5 (1991) 1
- 82°/ R. E. Drew, F. W. B. Einstein, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., B 28 (1972) 345
- 83°/ B. Gassenheimer, R. H. Herber, Inorg. Chem., 9 (1970) 1686
- 84°/ J. Deroght, M. Gielen, et S. Lejeune, J. Organomet. Chem., 21 (1970) 333
- 85°/ S. Ng Weng, V. G. Kumar Das, J. Organomet. Chem., 409 (1991) 143
- 86°/ G. M. Bancroft, K. D. Butler et A. T. Rake, J. Organomet. Chem., 34 (1972) 137

- 87°/ S. Ng Weng, V. G. Kumar Das, B.W. Skelton et A. H. White, *J. Organomet.*, *Chem.* 377 (1989) 221
- 88°/ C. Pettinari, M.pellei, M. Miliani, A. Cingolani, A. Cassetta, L. Barba, A. Pifferi,
 E. Rivarola, *J. Organomet. Chem.*, 553 (1998) 345
- 89°/ G. K. Sandhu, R. Hundal et E. R. T. Tiekink, *J. Organomet. Chem.*, 393 (1990) 195
- 90°/ G. K. Sandhu, R. Hundal et E. R. T. Tiekink, *J. Organomet. Chem.*, 412 (1991) 31
- 91°/ T. P. Lockhart, J. C. Calabresse et F. Davidson, J. Organomet. Chem., 6 (1987) 2479
- 92°/ O. Sarr et L. Diop, Spectrochim. Acta, 46A, 8 (1990) 1239
- 93°/ O. Sarr et L. Diop Bull. Chem. Soc. Ethiop., 4 (2), (1990) 137
- 94°/ I. R. Beattie et L/ Rule, J. Chem. Soc., (1965) 2995
- 95°/ J. Philip, M. A. Mullins et C. Curran, Inorg. Chem., (1986) 1895
- 96°/ P. A. Yeats, J. R. Sams et F. Aubke, Inorg. Chem., 9 (4), (1970) 740
- 97°/ P. G. Harrison, B. C. Lane et J. J. Zuckerman, *Inorg. Chem.*, 11 (7), (1972) 1537
- 98°/ N. Ohkaku et K. Nakamoto, Inorg. Chem., 12 (1973) 2440
- 99°/ S. J. Ruzika, A. E. Merbach, Inorg. Chim. Acta, 60 (1976) 221
- 100°/ C. U. Davanzo et Y. Gushikem, J. Chem. Soc. Dalton Trans, (1981) 843
- 101°/ C. U. Davanzo et Y. Gushikem, Inorg. Chim. Acta, 60 (1982) 219
- 102°/ M. Sidibé, H. Allouch et L. Diop, J. SOACHIM, 005 et 006 (1998) 131
- 103°/ M. Sidibé et L. Diop, J. SOACHIM, 007 (1999) 33
- 104°/ A. Diassé-Sarr et L. Diop, J. SOACHIM, 011 (2001)39
- 105°/ A. Diassé-Sarr, C. A. K. Diop, D. De Barros, L. Diop et B. Mahieu, J. SOACHIM, 014 (2002) 149
- 106°/ D. Tudela, V. Fernandez et J. Tornero, *J. Chem. Soc. Dalton Trans*, (1985) 1281
- 107°/ S. Bassène, M. Sidibé et L. Diop, J. SOACHIM, 016 (2003) sous presse

Ce travail nous a permis de synthétiser près d'une trentaine de nouveaux complexes et dérivés organostanniques avec des oxoanions tétraédriques, l'ion iodate et des ions carboxylates.

Des études spectroscopiques nous ont permis de proposer des structures discrètes et en chaîne infinie. La tendance pour les carboxylates à donner des structures en chaîne infinie a été confirmée. Cependant un dérivé carboxylato à structure discrète a été isolé, c'est le cas de HOC₆H₄COOSnPh₃.

Il faut noter l'important rôle joué par le changement de cation qui nous a permis d'isoler des complexes d'addition tels que Cy₂NH₂PhCH=CHCOOSnMe₂Cl₂, (Cy₂NH₂)₂(CH₂)₄(COO)₂.2SnMe₃Cl qui sont difficiles à obtenir avec les cations habituels comme le tétraméthylammonium ou le tétraéthylammonium, cations qui donnent souvent des composés de substitution totale.

L'environnement bipyramidal trigonal de l'étain dans les dérivés contenant le résidu SnR₃ (R = Me, Bu, Ph) a été confirmé par spectroscopies Mössbauer et RMN. Pour le dérivé HOC₆H₄COOSnPh₃, l'environnement de l'étain est tétraédrique.

Dans le cas des complexes et dérivés contenant le résidu SnR₂ (R = Me, Ph), les études spectroscopiques (infrarouge et Mössbauer) ont révélé des structures discrètes ou en chaîne infinie avec un étain à environnement octaédrique.

Les études cristallographiques des complexes [HOC₆H₄COOSnPh₃, $(NO_2)_2C_6H_3COOSnMe_3$, IO₃Na.3SnPh₃Cl, (Me₂AsO₂SnMe₃)₂.H₂O, PhAsO₃HSnMe₃, HPO₃(SnMe₃)₂H₂O] nous ont permis d'atteindre les différentes structures proposées.

Pour les complexes de SnX_4 (X = Cl, Br), des structures ont été proposées grâce aux spectroscopies infrarouge, Raman et Mössbauer.

Le caractére singulier du ligand enH₂(Me₂AsO₂)₂ est à signaler puisqu'il permet d'envisager des structures jusqu'ici jamais rencontrées avec les oxoanions. Ce ligand atypique dans la chimie de coordination des oxoanions ouvre de nouvelles perspectives de recherche compte tenu du fait que l'association de l'oxoanion à l'ion éthylènediammonium par liaison hydrogène permet à l'ion de rester fixé à l'oxoanion même si il est lié au centre métallique alors qu'avec des cations en interaction electrostatique pure avec l'oxoanion (cas du tétraméthylammonium et tetraéthylammonium) les composés de substitution totale se forment facilement.

Le complexe IO₃Na.3SnPh₃Cl ayant comme cation stabilisateur un métal alcalin a été obtenu pour la première fois dans ce travail.